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Preface

The 26th International Symposium on Algorithms and Computation (ISAAC 2015)
was held during December 9–11, 2015, in Nagoya, Japan. ISAAC is a well-established
annual international symposium that covers a wide range of topics in algorithms and
theory of computation, and provides a forum for researchers where they can exchange
ideas in this active research community.

The technical program of the symposium included 65 contributed papers selected by
the Program Committee from 180 submissions received in response to the call for
papers. Each submission was reviewed by at least three Program Committee members,
possibly with the assistance of external reviewers. Two special issues of Algorithmica
and International Journal of Computational Geometry and Applications will publish
selected papers among the contributed ones. The best paper award was given to
“Trading Off Worst and Expected Cost in Decision Tree Problems” by Aline Saettler,
Eduardo Laber, and Ferdinando Cicalese. In addition to selected papers, the program
also included three invited talks by Constantinos Daskalakis, Ravindran Kannan, and
Thomas Rothvoss.

We thank all the people who made this meeting possible: the authors for submitting
papers, the Program Committee members and external reviewers for volunteering their
time to review the submissions. We would like to extend special thanks to Conference
Co-chairs Tomio Hirata and Ken-ichi Kawarabayashi, Organizing Committee mem-
bers, and all conference volunteers for their dedication that made ISAAC 2015 a
successful event.

We would like also to acknowledge the sponsors of ISAAC 2015 for their generous
support: Kayamori Foundation of Information Science Advancement, Support Center
for Advanced Telecommunications Technology Research (SCAT), The Telecommu-
nications Advancement Foundation, Nagoya University, Special Interest Group on
Algorithms (SIGAL) of IPSJ, and the Technical Committee of Theoretical Foundation
of Computing (COMP) of IEICE. The symposium was partially supported by the
following grants: Grant-in-Aid for Scientific Research on Innovative Areas, Exploring
the Limits of Computation (ELC), JST CREST Foundations of Innovative Algorithms
for Big Data, and the JST ERATO Kawarabayashi Large Graph Project.

Last but not least, we would like to acknowledge the excellent environment pro-
vided by EasyChair, without which an enormous amount of very time consuming work
would have been necessary to finish this task.

December 2015 Khaled Elbassioni
Kazuhisa Makino
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Soft Clustering: Models and Algorithms

Ravi Kannan

Microsoft Research, India
kannan@microsoft.com

Abstract. Traditional Clustering partitions a set of data points into clusters. In a
number of problems, each data point does not belong just to one cluster, but is best
described as belonging fractionally to many clusters. One way of formalizing a Soft
Clustering problem is via Non-negative Matrix Factorization (NMF). In NMF, we
hypothesize that the given non-negative m by n data matrix A (with each column a
data point) is approximately equal to the product of two non-negative matrices
B and C, where B is m by k and C is k by n for some k much smaller than m and
n. The columns of B may be thought of centers of the k clusters, each column of
C is the weight a data point puts on each cluster. In general, A may or may not be
stochastic. Topic Modeling is a special case of NMF, where matrix C is stochastic
(often with Dirichlet distribution for the weights) with independent columns.
Overlapping Community Detection is another area with a soft clustering core:
given whether each pair among a population knowns each other or not, one is to
soft cluster them into communities. Each of these problems and others has con-
siderable literature and different models.

The purpose of this talk is to first discuss the problems and models and argue
that there are two essential common elements:

(i) Each data point puts much higher weight on one cluster than the others. [We call
this the Dominant Cluster hypothesis.]

(ii) Each cluster has a set of dominant features. Features are coordinates. Dominant
features have high values. [We call this the Dominant Features hypothesis.]

We formalize these assumptions plus a few technical ones. We then give an
algorithm to find the dominant cluster of each data point. The main difficulty is that
traditional mixture models (Gaussian mixtures, Stochastic Block Models etc.), are
hard clustering models and so the expected value of all data points in each cluster is
the same. Here, the two hypotheses imply that expected value in the dominant part
of a cluster is higher, but certainly not the same. This can make the spread inside
each cluster larger and can also reduce the inter-cluster separation. Thus traditional
hard clustering methods do not work.

We solve this problem with a crucial thresholding step at the outset which finds
a suitable threshold for each feature. We show that after thresholding, we can do
Singular Value Decomposition to find a decent starting clustering and then run
Lloyd’s algorithm which we will prove will yield a good clustering. We will also
present empirical evidence that the assumptions do hold as well as results on the
effectiveness of the algorithm.

Parts Joint with subsets of T. Bansal, C. Bhattacharyya, N. Goyal, J. Pani.



Computing on Strategic Inputs

Constantinos Daskalakis

EECS and CSAIL, MIT
costis@csail.mit.edu

Abstract. Algorithmic mechanism design centers around the following ques-
tion: How much harder is optimizing an objective over inputs that are furnished
by strategic agents compared to when the inputs to the optimization are known?
The challenge is that, when agents controlling the inputs care about the output
of the optimization, they may misreport them to influence the output. How does
one take into account strategic behavior in optimization?

We present computationally efficient, approximation-preserving reductions
from mechanism design (i.e.optimizing over strategic inputs) to algorithm
design (i.e. optimizing over known inputs) in general Bayesian settings. We also
explore whether structural properties about optimal mechanisms can be inferred
from these reductions. As an application, we present extensions of Myerson’s
celebrated single-item auction to multi-item settings.



Lower Bounds on the Size of Linear Programs

Thomas Rothvoß

University of Washington, Seattle
rothvoss@uw.edu

Abstract. Linear programs are at the heart of combinatorial optimization as they
allow to model a large class of polynomial time solvable problems such as
flows, matchings and matroids. The concept of LP duality lead in many cases to
structural insights that in turn lead to specialized polynomial time algorithms. In
practice, general LP solvers turn out to be very competitive for many problems,
even in cases in which specialized algorithms have the better theoretical running
time. Hence it is particularly interesting to model problems with as few linear
constraints as possible. For example, it is possible to model the convex hull of
all spanning trees in a graph using Oðn3Þ many linear constraints and variables.

A natural question that emerges is which polytopes do not admit a compact
formulation. The first progress was made by [Yannakakis 1991] who showed
that any symmetric extended formulation for the matching polytope and the TSP
polytope must have exponential size. Conveniently, this allowed to reject a
sequence of flawed P = NP proofs, which claimed to have (complicated)
polynomial size LPs for TSP.

The major breakthrough by [Fiorini, Massar, Pokutta, Tiwary and de Wolf
2012] showed that several well studied polytopes, including the correlation
polytope and the TSP polytope, have exponential extension complexity (without
relying on the symmetry assumption). More precisely, they show that the
rectangle covering lower bound for the correlation polytope is exponential, for
which they use known tools from communication complexity such as Razbor-
ov’s rectangle corruption lemma [Razborov 1990].

A completely independent line of research was given by [Chan, Lee,
Raghavendra and Steurer 2013] who use techniques from Fourier analysis to
show that for constraint satisfaction problems, known integrality gaps for the
Sherali-Adams LP translate to lower bounds for any LPs of a certain size. For
example they show that no LP of size nOðlogn=loglognÞ can approximate MaxCut
better than 2� e. This is particularly interesting as in contrast the gap of the
SDP relaxation is around 1.13 [Goemans, Williamson 1995].

A very prominent polytope in combinatorial optimization is the perfect
matching polytope, which is the convex hull of all characteristic vectors of
perfect matchings in a complete n-node graph G ¼ ðV ;EÞ. A seminal work of
[Edmonds 1965] gives an exact description of this polytope with 2HðnÞ many
inequalities. Finally, [Rothvoss 2013] proved that the extension complexity is
2HðnÞ as well, while only a quadratic lower bound was known before.
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An Optimal Algorithm for Tiling the Plane
with a Translated Polyomino

Andrew Winslow(B)

Université Libre de Bruxelles, 1050 Brussels, Belgium
andrew.winslow@ulb.ac.be

Abstract. We give a O(n)-time algorithm for determining whether trans-
lations of a polyomino with n edges can tile the plane. The algorithm is
also a O(n)-time algorithm for enumerating all regular tilings, and we
prove that at most Θ(n) such tilings exist.

1 Introduction

A plane tiling is a partition of the plane into shapes each congruent to a fixed
set of tiles. As the works of M.C. Escher attest, plane tilings are both artistically
beautiful and mathematically interesting (see [20] for a survey of both aspects).
In the 1960s, Golomb [8] initiated the study of polyomino tiles: polygons whose
edges are axis-aligned and unit-length.

Building on work of Berger [2], Golomb [9] proved that no algorithm exists
for determining whether a set of polyomino tiles has a plane tiling. Ollinger [17]
proved that this remains true even for sets of at most 5 tiles. It is a long-standing
conjecture that there exists an algorithm for deciding whether a single tile admits
a plane tiling (see [10,11]).

Motivated by applications in parallel computing, Shapiro [21] studied tilings
of polyomino tiles on a common integer lattice using translated copies of a
polyomino. For the remainder of the paper, only these tilings are considered.
Ollinger [17] proved that no algorithm exists for determining whether sets of at
most 11 tiles admit a tiling, while Wijshoff and van Leeuwen [22] obtained a
polynomial-time-testable criterion for a single tile to admit a tiling. Beauquier
and Nivat [1,7] improved on the result of Wijshoff and van Leeuwen by giving a
simpler criterion called the Beauquier-Nivat criterion.

Informally, a tile satisfies the Beauquier-Nivat criterion if it can be sur-
rounded by copies of itself (see Fig. 1). Such a surrounding must correspond
to a regular tiling (also called isohedral) in which all tiles share an identical
neighborhood. Using a naive algorithm, the Beauquier-Nivat criterion can be
applied to a polyomino with n vertices in O(n4) time.

The O(n4) algorithm of [1] is implicit; the main achievement of [1] is a concise
characterization of exact tiles, akin to Conway’s criterion (see [19]). Gambini
and Vuillon [6] gave an improved O(n2)-time algorithm utilizing structural and
algorithmic results on words describing boundaries of polyominoes. Around the

c© Springer-Verlag Berlin Heidelberg 2015
K. Elbassioni and K. Makino (Eds.): ISAAC 2015, LNCS 9472, pp. 3–13, 2015.
DOI: 10.1007/978-3-662-48971-0 1



4 A. Winslow

Fig. 1. A polyomino tile (dark gray), a surrounding of the tile (gray), and the induced
regular tiling (white).

same time, Brlek et al. [3,4] also used a word-based approach to achieve O(n)-
time algorithms for two special cases: (1) the boundary contains no consecutive
repeated sections larger than O(

√
n), and (2) testing a restricted version of

the Beauquier-Nivat criterion (surroundable by just four copies). Provençal [18]
further improved on the algorithm of Gambini and Vuillon for the general case,
obtaining O(n log3(n)) running time. In a recent survey of the combinatorics of
Escher’s tilings, Massé et al. [16] conjecture that a O(n)-time algorithm exists. In
this work, we confirm their conjecture by giving such an algorithm (Theorem2).

The algorithm doubles as an algorithm for enumerating all surroundings (reg-
ular tilings) of the polyomino. As part of the proof of the algorithm’s running
time, we prove a claim of Provençal [18] that the number of surroundings of a
tile with itself is O(n) (Corollary 1). This complements the tight bounds on a
special class of surroundings by Blondin Massé et al. [14,15], and proves that
our O(n + k)-time algorithm for enumerating all k surroundings (Lemma 10) is
also a O(n)-time algorithm.

2 Definitions

Here we give precise formulations of terms used throughout the paper. The
definitions are similar to those of Beauquier and Nivat [1] and Brlek et al. [4].

2.1 Words

A letter is a symbol x ∈ Σ = {u,d, l, r}. The complement of a letter x, written x,
is defined by the following bijection on Σ: u = d, r = l, d = u, and l = r.

A word is a sequence of letters and the length of a word W , denoted |W |,
is the number of letters in W . For an integer i ∈ {1, 2, . . . , |W |}, W [i] refers
to the ith letter of W and W [−i] refers to the ith from the last letter of W .
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The notation lk or W k denotes the word consisting of k repeats of a letter l or
word W , respectively.

There are several functions mapping a word W to another word of the same
length. The complement of W , written W , is the word obtained by replacing each
letter of W with its complement. The reverse of W , written ˜W , are the letters
of W in reverse order. The backtrack of W , written ̂W , is defined as ̂W = ˜W .
Note that for any two words X and Y , ̂AB = ̂B ̂A.

2.2 Factors

A factor of W is an occurrence of a word in W , written X � W . For integers
1 ≤ i, j ≤ |W | with i ≤ j, W [i..j] denotes the factor of W from W [i] to W [j],
inclusive. A factor X starts or ends at W [i] if W [i] is the first or last letter of
X, respectively.

Two factors X,Y � W may refer the same letters of W or merely have the
same letters in common. In the former case, X and Y are equal, written X = Y ,
while in the latter, X and Y are congruent, written X ≡ Y . For instance, if
W = uuulruuu then W [1..3] ≡ W [6..8]. A factorization of W is a partition of
W into consecutive factors F1 through Fk, written W = F1F2 . . . Fk.

2.3 Special Words and Factors

A word X is a prefix or suffix of a word W provided W = XU or W = UX,
respectively. A word X is a period of W provided |X| ≤ |W | and W is a prefix
of Xk for some k ≥ 1 (introduced in [13]). Alternatively, X is a prefix of W and
W [i] = W [i + |X|] for all 1 ≤ i ≤ |W | − |X|.

A factor X � W is a prefix if X starts at W [1], written X �pre W . Similarly,
X � W is a suffix if X ends at W [−1], written X �suff W . A factor X � W
that is either a prefix or suffix is an affix, written X �aff W . A factor X � W
that is not an affix is a middle, written X �mid W .

The factor X � W such that W = UXV , |U | = |V |, and |X| ∈ {1, 2} is
the center of W . A factor X � W is a mirror, written X �mir W , provided
W = XUY V with Y ≡ ̂X and |U | = |V |. For any X �mir W , ̂X refers to the
factor Y in the definition.

A mirror factor is admissible provided U [1] �= U [−1], V [1] �= V [−1]. Observe
that each admissible factor is the maximum-length mirror factor with its center.
Thus any two admissible factors have distinct centers.

2.4 Polyominoes and Boundary Words

A cell is a unit square with lower-leftmost vertex (x, y) ∈ Z
2 and remaining

vertices (x + 1, y), (x, y + 1), (x + 1, y + 1). A polyomino is a simply connected
union of cells whose boundary is a simple closed curve.

The boundary of a polyomino consists of cell edges. The boundary word of
a polyomino P , denoted B(P ), is the circular word of letters corresponding to
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the sequence of directions traveled along cell edges during a clockwise traversal
of the polyomino’s boundary (see Fig. 2).

Boundary words are circular : the last and first letters are defined to be
consecutive. Thus for any indices i, j ∈ Z \ {0}, W [i] and W [i..j] are defined.
For the boundary word W = urrdll, W [10] = W [−9] = d and W [6..2] = lur.

Fig. 2. A regular tiling (left) and non-regular tiling (right) of a polyomino with bound-
ary word ururdrurd3luldlul. The copies in the regular tiling have a common neigh-
borhood factorization ABC ̂A ̂B ̂C, with A = u, B = ru, C = rdrurd.

2.5 Tilings

For a polyomino P , a tiling of P is an infinite set T of translations of P , called
copies, such that every cell in the plane is in exactly one copy. A tiling is regular
(e.g. isohedral) provided there exist vectors o,u , v such that the set of lower-
leftmost vertices of copies in the tiling is o + {iu + jv : i, j ∈ Z}. Two tilings T
and T ′ are equal provided there exists a vector v such that T ′ = v + T .

Copies of a tiling intersect only along boundaries, and copies with non-empty
boundary intersection are neighbors. Lemma 3.5 of [22] implies that the inter-
section between a pair of neighbors corresponds to a neighbor factor of each
neighbor’s boundary word and these factors form a neighborhood factorization.
Every regular tiling has a neighbor factorization common to all copies in the
tiling.

3 The Beauquier-Nivat Criterion

Recall that ̂X is the reverse complement of X. Thus ̂X is the same path as X but
traversed in the opposite direction. So any pair of factors X and ̂X appearing
on the boundary of a polyomino are translations of each other with the interior
of the boundary on opposite sites. Beauquier and Nivat [1] gave the following
criterion for determining whether a polyomino tile admits a tiling:
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Definition 1. A factorization W = ABC ̂A ̂B ̂C of a boundary word W is a BN
factorization.

Lemma 1 (Theorem 3.2 of [1]). A polyomino P has a tiling if and only if
B(P ) has a BN factorization.

As seen in Fig. 3, a BN factorization corresponds to the neighborhood fac-
torization of a regular tiling. We prove this formally by reusing results from the
proof of Lemma 1.

Fig. 3. BN factorizations (left) and the regular tilings induced by these factorizations
(right). For one polyomino (bottom), two of the factors are zero length. However, no
BN factorization can have more than two length-0 factors.

Lemma 2 (Corollary 3.2 of [1]). Let P be a polyomino. There exists a fac-
torization B(P ) = F1

̂F3F2
̂F1F3

̂F2 if and only if there exists a tiling T of P with
three copies P1, P2, P3 such that:

– P1, P2, P3 appear clockwise consecutively around a common point q.
– Fi is the last neighbor factor of Pi whose clockwise endpoint is incident to q.

Lemma 3. Let P be a polyomino. A factorization of B(P ) is a BN factorization
if and only if a regular tiling of P has this neighbor factorization.

Proof. The factorization B(P ) = F1
̂F3F2

̂F1F3
̂F2 is a generic BN factorization.

So it suffices to prove that there exists a tiling T of P satisfying the condi-
tions of Lemma 2 if and only if there exists a regular tiling Treg with neighbor
factorization B(P ) = F1

̂F3F2
̂F1F3

̂F2.



8 A. Winslow

Tiling ⇒ neighbor factorization. Let T be a tiling and P1, P2, P3 ∈ T be
copies as defined in the statement of Lemma 2. Let u and v be the amount P2

and P3 are translated relative to P1, respectively. Lemma 3.2 of [1] states that
the copies obtained by translating P1 by u , v , v − u , −u , −v , and u − v is a
surrounding of P1: a set of interior-disjoint copies such that every edge of C1 is
shared by a copy. Since P3 is a copy of P2 translated by v−u , the neighbor factor
of P1 incident to the copy translated by v −u is F2. By similar reasoning, P1 has
neighbor factors ̂F1, F3, and ̂F2 incident to the copies translated by −u , −v , and
u − v , respectively. So P1 has neighbor factorization B(P ) = F1

̂F3F2
̂F1F3

̂F2.
Corollary 3.1 of [1] states that for every surrounding, there exists a regular tiling
of P containing the surrounding and thus has the neighbor factorization of P1.

Tiling ⇐ neighbor factorization. Now suppose there exists a regular tiling
Treg of P with neighbor factorization F1

̂F3F2
̂F1F3

̂F2. Let P1 ∈ Treg be a copy
and q be the clockwise endpoint of the factor F1 of P1. Let P2, P3 ∈ Treg be
copies adjacent to P1 and incident to factors F1 and ̂F3 of P1. Let u and v
be the amount P2 and P3 are translated relative to P1, respectively. Then q is
the clockwise endpoint of the factor F2 of P1, translated by u . Also, q is the
clockwise endpoint of the factor F3 translated by, translated by v . So the factors
of P2 and P3 whose clockwise endpoints are q are F2 and F3, respectively. ��

4 A Bound on the Number of Factorizations

Here we prove that the number of BN factorizations of the boundary word of
an n-omino is O(n). This fact is used in Sect. 4 to improve the bound on the
running time the algorithm from O(n + k) to O(n).

Lemma 4. Let W be a boundary word with a factor X. Let P, S �mir W such
that P �pre X, S �suff X, and P �= S. Then X has a period of length 2|X| −
(|P | + |S|).

Proof. Since P and S are mirror, there exists X ′ � W with |X ′| = |X|, ̂P �pre

X ′, and ̂S �suff X ′. Observe that X has a period of length r ≥ 1 if and only
if X[i] = X[i + r] for all 1 ≤ i ≤ |X| − r. Let 1 ≤ i ≤ |P | + |S| − |X|. Then
1 ≤ |P | + 1 − i ≤ |X| and 1 ≤ |P | + 1 + |̂S| − |X ′| − i ≤ |̂S|. So:

X[i] = P [i]

= ̂P [|P | + 1 − i]

= X ′[|P | + 1 − i]

= ̂S[|P | + 1 + |̂S| − |X ′| − i]

= ̂S[|̂S| + 1 − (i + |X ′| − |P |)]
= S[i + |X ′| − |P |]
= X[i + |X ′| − |P | + (|X| − |S|)]
= X[i + 2|X| − (|P | + |S|)]
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Since P �= S, 2|X| − (|P | + |S|) ≥ 2|X| − (2|X| − 1) = 1. So X has a period of
length 2|X| − (|P | + |S|). ��

Lemma 5. Let W be a boundary word with X � W . Let P, S �mir W such
that P �pre X, S �suff X, and P �= S. Any factor Y �mid X with |Y | >
2|X| − (|P | + |S|) is not an admissible factor of W .

Proof. By Lemma 4, X has a period of length r = 2|X|− (|P |+ |S|). Let Y �mid

X and |Y | > r.
Let X ′ � W with |X ′| = |X| and the center of X ′ exactly |W |/2 letters

from the center of X. Then ̂P �pre X ′, ̂S �suff X ′, and ̂Y �mid X ′. Again by
Lemma 4, X ′ has a period of length r.

Let U, V � W such that W = Y U ̂Y V . Since Y is a middle factor of X,
the letter U [1] is in X. Since X has a period of length r and |Y | > r, U [1] =

Y [|Y | + 1 − r] = ̂Y [r]. Since ̂Y is a middle factor of X ′ and X ′ has a period of
length r, U [−1] = ̂Y [r]. So U [1] = U [−1] and Y is not admissible. ��

Lemma 6. Let W be a boundary word. There exists a set F of O(1) factors of
W such that every F �adm W with |F | ≥ |W |/6 is an affix factor of an element
of F .

Proof. A special case on three factors. Let P1, P2, P3 �adm W with |P1|, |P2|,
|P3| ≥ |W |/6 and centers contained in a factor of W with length at most
|W |/14. Let X � W be the shortest factor such that P1, P2, P3 � X, and so
Pi �pre X and Pj �suff X for some i, j ∈ {1, 2, 3}. We prove that if i �= j, then
P1, P2, P3 �aff X.

Without loss of generality, suppose i = 1, j = 2 and so P3 �mid X. By
Lemma 5, since P3 �adm W , |P3| ≤ 2|X| − (|P1| + |P2|) ≤ |P1| + |W |/7 + |P2| −
(|P1| + |P2|) = |W |/7 < |W |/6, a contradiction. So P3 �aff X.

All nearby factors. Consider a set I = {F1, F2, . . . , Fm} of at least three
admissible factors of W of length at least |W |/6 such that the centers of the
factors are contained in a common factor of W of length |W |/14. We will prove
that every element of I is an affix factor of one of two factors of W .

Let G � W be the shortest factor such that Fi � G for every Fi ∈ I . It is
either the case that there exist distinct Fl, Fr ∈ I with Fl �pre G, Fr �suff G,
or that G ∈ I and every Fi ∈ I besides G has Fi �mid G.

In the first case, Fi �aff G for any i �= l, r by the previous claim regarding
three factors. Also Fl, Fr �aff G. So every factor in I is an affix factor of G.

In the second case, let G′ � G be the shortest factor with the same center as
G such that every factor in I excluding G is a factor of G′. Clearly G′ �mir W
and G′ ��adm W . Without loss of generality, there exists Fp ∈ I such that
Fp �pre G′. Since Fp �adm W and G′ ��adm W , Fp �= G′.

Applying Lemma 5 with X = G′, P = Fp, S = G′, every middle factor of G′

in I has length at most 2|G′| − (|G′| + |Fp|) ≤ |G′| − |Fp| ≤ |W |/7 < |W |/6. So
every factor of G′ in I is an affix factor of G′. Thus every factor in I is either
G or an affix factor of G′.
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All factors. Partition W into 15 factors I1, I2, . . . , I15 each of length at most
|W |/14. Let Ii be the set of admissible factors with centers containing letters in
Ii. Then by the previous claim regarding more than three factors, there exists a
set Fi (G and possibly G′) such that every element of Ii is an affix factor of an
element of Fi and |Fi| ≤ 2. So every F �adm W with |F | ≥ |W |/6 is an affix
factor of an element of F =

⋃15
i=1 Fi and |F | ≤ 2 · 15. ��

Theorem 1. A boundary word W has O(|W |) BN factorizations.

Proof. Consider the choices for the three factors A, B, C of BN factorization
W = ABC ̂A ̂B ̂C. In any factorization, some factor has size at least |W |/6. By
Lemma 6, there exists a O(1)-sized set of factors F such that any factor with
length at least |W |/6 is an affix factor of an element of F . Without loss of
generality, either |A| ≥ |W |/6 and A is a prefix of a factor in F or |C| ≥ |W |/6
and C is a suffix of a factor in F .

Let H = ABC be the factor formed by consecutive factors A, B, C of a BN
factorization. Then since |H| = |W |/2 and shares either the first or last letter
with a factor in F , there are O(1) total factors H. For a fixed H, choosing the
center of B determines B (since B is admissible) and thus A and C. So there
are at most 2(|W |/2) factorizations for a fixed factor H. ��

Since Lemma 3 proves that factorizations and tilings are equivalent, the pre-
vious theorem implies a linear upper bound on the number of regular tilings of
a polyomino:

Corollary 1. An n-omino has O(n) regular tilings.

As pointed out by Provençal [18], it is easy to construct polyominoes with
Ω(n) such tilings. For instance, the polyomino with boundary word W = uridli

with i ≥ 1 has |W |/2 − 1 regular tilings.

5 An Algorithm for Enumerating Factorizations

The bulk of this section describes a O(|W |)-time algorithm for enumerating
the factorizations of a polyomino boundary word W . The algorithm combines
algorithmic ideas of Brlek et al. [4] and a structural result based on a well-known
lemma of Galil and Seirferas [5].

Lemma 7 (Corollary 5 of [4]). Every factor of a BN factorization is
admissible.

Lemma 8 is a variation of Lemma C4 of Galil and Seirferas [5]. We reproduce
their proof with minor modifications.

Lemma 8. Let A and B be two words of the same length. Moreover, let A =
X1X2 = Y1Y2 = Z1Z2 and B = XQ

̂X2 = ̂Y1
̂Y2 = ̂Z1ZQ with |X1| < |Y1| < |Z1|.

Then XQ = ̂X1 and ZQ = ̂Z2.
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X2

Y2Y1

V

Z1 Z2

X1
̂X2

̂Y2
̂Y1

̂V

̂Z1 ZQ

XQ

A B

Fig. 4. The words used in the proof of Lemma 8.

Proof. Let V be the word such that Y1V = Z1 (see Fig. 4).

Claim (1): ̂V is a period of ̂Z1. Since Y1V = Z1, then ̂Z1 = ̂Y1V = ̂V ̂Y1 is a
prefix of B. So ̂Y1 is a prefix of ̂Z1 = ̂V ̂Y1 and thus ̂V is a period of ̂Y1. So ̂V is
a period of ̂V ̂Y1 = ̂Z1.

Claim (2): V is a prefix of X2. Since V is a prefix of Y2, ̂V is a suffix of ̂Y2.
So ̂V is a suffix of ̂X2 and V is a prefix of X2.

Claim (3): X1V is a prefix of Z1. Since V is a prefix of X2, X1V is a prefix
of Y1V . Since |X1V | < |Y1V | = |Z1|, X1V is also a prefix of Z1.

Claim (4): ̂V is a period of ̂X1. By claim (1), ̂V is a period of ̂Z1, so Z1 has
a period of length |̂V | = |V |. By claim (3), X1V is a prefix of Z1 and so also has
a period of length |V |. Then X̂1V = ̂V ̂X1 has a period of length |V |, namely ̂V .
So ̂V is also a period of ̂X1.

Finally, combining claims (1) and (4), since ̂V is a period of both XQ and
̂X1, XQ = ̂X1. By symmetry, the same proof also implies ZQ = ̂Z2. ��

Lemma 9 (Theorem 9.1.1 of [12]). Two non-circular words X, Y can be
preprocessed in O(|X| + |Y |) time to support the following queries in O(1)-time:
what is the longest common factor of X and Y starting at X[i] and Y [j]?

Lemma 10. Let W be a polyomino boundary word. Then the BN factorizations
of W can be enumerated in O(|W |) time.

Proof. Lemma 7 states that BN factorizations consist entirely of admissible fac-
tors. The algorithm first computes all admissible factors, then searches for fac-
torizations consisting of them.

Computing admissible factors. Lemma 7 implies that there are at most 2|W |
admissible factors, since admissible factor has a distinct center. For each center
W [i..i] or W [i..i + 1], the admissible factor with this center is LR, where R

is the longest common factor of W starting at W [i + 1] and ̂W starting at
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̂W [|W |/2 − (i + 1)]. Similarly, L is the longest common factor of ˜W starting at
˜W [|W |/2 − i] and W starting at W [i]. Preprocess WW , ̂W ̂W , ˜W ˜W , and WW
using Lemma 9 so that each longest common factor can be computed in O(1)
time. If |L| �= |R|, then X is not admissible and is discarded. Since O(1) time is
spent for each of 2|W | admissible factors, this step takes O(|W |) total time.

Enumerating factorizations. Let W = AY ̂AZ with A an admissible factor
and |Y | = |Z|. Let B1, B2, . . . , Bl be the admissible prefix factors of Y , with
|B1| < |B2| < · · · < |Bl|. Similarly, let C1, . . . , Cm be the suffix factors with
|C1| < · · · < |Cm|. Lemma 8 implies that for fixed A, there exist intervals [b, l],
[c,m] such that the BN factorizations ABiCj

̂ÂBi
̂Cj are exactly those with i ∈

[b, l] or j ∈ [c,m].
First, construct a length-sorted list of the admissible factors starting at each

W [k] in O(|W |) time using counting sort. Do the same for all factors ending at
each W [k].

Next, use a two-finger scan to find, for each factor A that ends at W [k], the
longest factor Bl starting at W [k + 1] such that |A| + |Bl| ≤ |W |/2. Then check
whether Cj , the factor following Bl such that |ABlCj | = |W |/2, is admissible and
report the factorization ABlCj

̂ÂBl
̂Cj if so. Checking whether Cj is admissible

takes O(1) time using an array mapping each center to the unique admissible
factor with this center.

Additional BN factorizations containing A are enumerated by checking fac-
tors Bi with i = l − 1, l − 2, . . . for an admissible following factor Cj . Either Cj

is admissible and the factorization is reported, or i = b − 1 and the iteration
stops.

Finally, use a similar two-finger scan to find, for each factor A that starts
at W [k], the longest factor Cm that ends at W [k + |W |/2 − 1] such that |A| +
|Cm| ≤ |W |/2, check whether Bi preceeding Cm such that |ABiCm| = |W |/2
is admissible, and report the possible BN factorization. Then check and report
similar factorizations with Cj for j = m − 1,m − 2, . . . until j = c − 1.

In total, the two-finger scans take O(|W |) time plus O(1) time to report
each factorization. Reporting duplicate factorizations can be avoided by only
reporting a factorization if A[1] appears before B[1], C[1], ̂A[1], ̂B[1], and ̂C[1]
in W . Then by Theorem1, reporting factorizations also takes O(|W |) time. ��

Combining this algorithm with Lemmas 1 and 3 yields the desired algorithmic
result:

Theorem 2. Let P be a polyomino with n edges. In O(n) time, it can be deter-
mined if P admits a tiling and the regular tilings of P can be enumerated.

Acknowledgments. The author thanks Stefan Langerman for fruitful discussions and
comments that greatly improved the paper, and anonymous reviewers for pointing out
an error in an earlier version of the paper.
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Adaptive Point Location in Planar Convex
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Abstract. We present a planar point location structure for a convex
subdivision S. Given a query sequence of length m, the total running time
is O(OPT +m log log n+ n), where n is the number of vertices in S and
OPT is the minimum running time to process the same query sequence
by any linear decision tree for answering planar point location queries
in S. The running time includes the preprocessing time. Therefore, for
m ≥ n, our running time is only worse than the best possible bound by
O(log logn) per query, which is much smaller than the O(log n) query
time offered by an worst-case optimal planar point location structure.

Keywords: Point location · Convex subdivision · Adaptive data
structure

1 Introduction

There has been extensive research on planar point location—a fundamental
problem in computational geometry—to obtain worst-case optimal query time,
preprocessing time, and space complexity [2,16,20–25]. Some of them are now
standard results in textbooks in computational geometry [8,11]. Planar point
location can be seen as a generalization of the one-dimensional dictionary prob-
lem to two dimensions. In any dimension, the information theoretic lower bound
in processing a sequence of m queries follows from Shannon’s work [26] and the
entropy-based lower bound is

∑

z f(z) · log m
f(z) , where f(z) denotes the access

frequency of an item z in the sequence of length m. The splay tree [27] has
been designed such that, given an initially empty structure and a sequence of
m insertions, deletions, and queries, the total running time for manipulating
the data structure to process these operations is O

(

∑

z f(z) · log m
f(z)

)

, where
every insertion and deletion of z also contributes one to the access frequency
of z. Notice that the access frequencies of items are unknown beforehand. As a
result, o(log n) amortized query time is possible in one dimension if the access
frequencies of the items are substantially unequal.
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For point location in a planar subdivision S, there are also previous works on
making the performance adaptive to the access frequencies. When the regions
in S have constant complexities, and the query distribution is fixed and avail-
able as part of the input, there are several works by Arya et al. [4–7] and
Iacono [17] to construct a data structure such that the expected query time
is O

(

∑

z pz log 1
pz

)

, where pz is the probability of a query point falling into the
region z. The algorithm of Iacono [17] uses O(n) space and O(n) preprocessing
time. The algorithm of Arya et al. [7] uses O(n) space and O(n log n) preprocess-
ing time, and its expected running time per query is optimal up to the leading
constant factor modulo some additive lower-order terms. Subsequently, analo-
gous results have been obtained for connected subdivisions [13] and disconnected
subdivisions [1,9,10] in which the regions may have arbitrary complexities. In
the aforementioned results, the query distribution is fixed and available as part
of the input. A natural question is whether we can obtain a self-adjusting planar
point location structure that can adapt to a query sequence without knowing the
access frequencies of the regions beforehand. There has been only one such result
in the case that S is a triangulation by Iacono and Mulzer [19]. They present a
method that achieves a total running time of O

(

n +
∑

z f(z) · log m
f(z)

)

, includ-
ing the preprocessing time to construct the initial structure before processing
the query sequence.

In this paper, we study the adaptive point location problem for a convex
subdivision S. That is, every region in S is a convex polygon (except the outer
unbounded region). We do not require the regions in S to have constant complex-
ities. One cannot just triangulate S, apply the result for triangulation by Iacono
and Mulzer [19], and hope to achieve the entropy-based lower bound. Suppose
that we encode the names of the regions using bit vectors of possibly different
lengths. Then, the entropy-based lower bound is the minimum number of bits
needed to encode the sequence of output region names corresponding to the m
queries under the prescribed access frequencies. Each output bit requires at least
one unit of processing time, and therefore, the entropy-based lower bound is also
a lower bound for the total running time. Consequently, geometry is not taken
into consideration at all. Arya et al. [7] show that one can design a convex poly-
gon of n sides and a query distribution so that a query point lies in the polygon
with probability 1/2 and the expected number of point-line comparisons needed
to decide whether a query point lies in the polygon is Ω(log n). However, the
entropy-based lower bound for a single query is only a constant in this case. This
shows that the entropy-based lower bound is too weak for a convex subdivision.
As in [13], we compare our result with the best linear decision tree for answering
point location queries in S. This is reasonable because the linear decision tree
models the process for answering a query by point-line comparisons, and many
existing point location structures are based on point-line comparisons.1

1 Methods that employ indexing (e.g. [15]) and bit tricks (e.g. [12]) do not fall under
the linear decision tree model.



16 S.-W. Cheng and M.-K. Lau

Given a sequence of m queries, our method runs in O(OPT+m log log n+n)
total time, where OPT is the minimum time to process the same query sequence
by any linear decision tree for answering point location queries in S. Our time
bound includes the preprocessing time before processing the query sequence.
Therefore, for m ≥ n, our running time is only worse than the best possible
bound by O(log log n) time per query, which is much smaller than the O(log n)
query time offered by an worst-case optimal planar point location structure.

One can build another auxiliary planar point location structure so that a
query can be executed on our adaptive structure and this auxiliary point location
structures simultaneously until one of the two structures returns an answer. The
advantage is that this auxiliary point location structure can offer additional
properties. For example, if one uses the distance-sensitive planar point location
structure [3], it means that queries far away from any region boundary can be
answered fast too. Alternatively, if one uses the proximate planar point location
structure [18] as the auxiliary structure, then a query can be answered faster if
the query point is close to the previous one.

2 Triangulation of a Convex Polygon

Let P be a convex region in S with nP vertices in counterclockwise order
(v0, v1, ..., vnP −1). We triangulate P as follows. Select every other vertex of P .
(When nP is odd, the last vertex selected is adjacent to the first vertex selected.)
Let P1 be the convex hull of these selected vertices. Clearly, P1 ⊂ P , P \ P1 is a
collection of triangles, and the number of vertices of P1 is at most �nP /2�. Then,
we recurse on P1 to construct P2 and so on until we produce a convex hull Pj

that is a single triangle or a single line segment. The triangulation of P is the
collection of triangles in P \P1, P1\P2, etc. We denote this triangulation of P by
TP . Figure 1 shows an example. This hierarchical triangulation was first intro-
duced by Dobkin and Kirkpatrick [14] in the context of detecting intersection
between two convex polygons and polyhedra. Note that O(log n) Pi’s are con-
structed because the size of the Pi’s decreases repeatedly by a constant factor.
The time to produce each Pi is �nP /2i�. Therefore, the total time to compute TP

is O
(∑∞

i=0 nP /2i
)

= O(nP ). A line segment � in P intersects the boundary of
each Pi’s in at most two points. It follows that � intersects at most two triangles
in Pi−1 \ Pi, and therefore, � intersects O(log n) triangles in TP . Interestingly,
this simple hierarchical triangulation TP leads to a query performance that is
adaptive and only slightly worse than the best possible bound. In the following,
we prove an upper bound on the entropy of TP that is closely related to the
performance of any linear decision tree.

Lemma 1. Let P be a convex polygon in R
2. Let H(TP ) denote the entropy of

TP . Let D be an arbitrary linear decision tree for determining whether a query
point in R

2 lies in P . Let LD be the set of leaves of D and for every leaf ν ∈ LD,
let rν denote the convex region represented by ν. Consider an arbitrary query
sequence of length m. For any region r ⊆ R

2, let f(r) denote the number of
queries that fall inside r. Then, the following inequality is satisfied.
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Fig. 1. Triangulation by convex hull. The red, blue and green triangles are obtained
from the first, second and third convex hulls respectively (Color figure online)

H(TP ) =
∑

t∈TP

f(t) · log
m

f(t)

≤
∑

ν∈LD

f(rν) · (depth(ν) + O(log(depth(ν))) + O(log log n))

Proof. For any line segment � inside P , � intersects at most two triangles in
Pi \Pi+1 in each level of the hierarchical triangulation TP . Therefore, � intersects
at most O(log n) triangles in TP . Let q be a query point that falls in the convex
polygon rν for some leaf ν ∈ LD. Let k be the number of sides of rν . We have
depth(ν) ≥ k because each internal node on the path from the root of D to ν
corresponds to a cut along a line.

We can expand the linear decision tree D to another linear decision tree D′′

that allows us to identify the triangle t ∈ TP containing q. The construction of
D′′ works in two steps as follows. For each leaf ν ∈ LD, we recursively add a chord
to split rν into two convex polygons, each having at most (�k

2 � + 1) sides. At
the same time, we attach two child nodes of ν to represent these smaller convex
polygons. The recursion stops when rν is triangulated. Figure 2 gives an example
of the recursive triangulation of rν . The recursive triangulation of the leaves
in LD produces a subtree rooted at ν of height O(log k) = O(log(depth(ν))).
Let D′ denote this intermediate linear decision tree obtained. Each leaf of D′

represents a triangle t′ that lies in rν for some ν ∈ LD. The boundary of t′

intersects O(log n) triangles in TP . Therefore, for any query point that lies in t′,
we can determine which triangle t ∈ TP contains that query point in O(log log n)
time by applying binary search on the O(log n) triangles that intersect t′. This
motivates us to expand D′ further as follows. For every leaf ν′ of D′, replace ν′

by a linear decision tree that corresponds to a binary search on the triangles in
TP that intersects the triangle corresponding to ν′. The resulting linear decision
tree is D′′. The height of D′′ is O(log log n) more than the height of D′.
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Fig. 2. The red lines represent the boundary of the convex k-gon of a leaf node of D
and the blue lines represent the split of the convex k-gon (Color figure online).

If q is a query point inside rν for some ν ∈ LD, then we can follow the path
from the root of D to ν and then from ν to a leaf ν′′ of D′′. The length of
the path traversed is depth(ν′′) ≤ depth(ν) + O(log(depth(ν))) + O(log log n).
The entropy of TP is an information-theoretic lower bound to answering point
location queries in TP . In particular, this lower bound applies to the linear
decision tree D′′. Therefore,

H(TP ) =
∑

t∈TP

f(t) · log
m

f(t)

≤
∑

leaf ν′′ of D′′
f(rν′′) · depth(ν′′)

≤
∑

ν∈LD

f(rν) · (depth(ν) + O(log(depth(ν))) + O(log log n))

	


3 Point Location in a Convex Subdivision

Let S be an input convex subdivision. For each convex region P in S, we triangu-
late P hierarchically as described in Sect. 2. The collection of all triangles in all
convex regions in S form a triangulation T of S. Clearly,

∑

P∈S nP = O(n), and
therefore, T has O(n) triangles and T can be constructed in O(n) time. Next, we
invoke the previous work of Iacono and Mulzer [19] for building an adaptive point
location structure for planar triangulations. This gives us a point location data
structure for T . We will prove that this point location data structure guarantees
that any query sequence of length m can be answered in O(OPT+m log log n+n)
time, where OPT is the minimum time needed by any linear decision tree to
process that query sequence.
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The method of Iacono and Mulzer [19] is based on rebuilding from time to
time. Initially, an optimal worst-case data structure W0 is built on all triangles
in T , and we start answering queries using W0 until Θ(nα) queries have been
answered for some α ∈ (0, 1). Then we identify the nβ most frequently queried
triangles for some β ∈ (0, 1) such that α ∈ (β, 1 − β), triangulate their exterior,
and then build a point location structure W1 that is distribution-sensitive with
respect to frequency counts in these nβ triangles [17]. These frequency counts
are fixed when the rebuilding starts. The counts and this distribution-sensitive
structure will not be updated as more queries are processed. Until the next
rebuilding after another Θ(nα) queries, we first submit every query to W1, and
if W1 does not report a triangle in the input triangulation, we resort to W0 to
answer the query. The challenge in [19] lies in proving that the total time to
answer any query sequence of length m matches the entropy bound.

We prove below that by constructing Iacono and Mulzer’s data structure on
the triangulation T of S, we can obtain a query performance that is adaptive to
the query sequence.

Theorem 1. Let S be a convex subdivision of n vertices in R
2. Our algorithm

is a point-line comparison based algorithm that answers any point location query
sequence of length m in O(OPT + m log log n + n) time, where OPT is the min-
imum time to process the same query sequence by any linear decision tree for
answering point location queries in S. The preprocessing time is included in our
running time bound.

Proof. Let T be the triangulation of S obtained by triangulating every convex
region in S as described in Sect. 2. We apply Theorem 2 in [19] to construct a
point location structure on T . This total time spent by this structure on any
query sequence of length m is

O

(

n +
∑

t∈T

f(t) · log
m

f(t)

)

.

By manipulating the terms, we obtain

O

(

n +
∑

t∈T

f(t) · log
m

f(t)

)

= O

(

n +
∑

P∈S

∑

t∈TP

f(t) · log
m

f(t)

)

.

Then Lemma 1 implies that

O

(

n +
∑

t∈T

f(t) · log
m

f(t)

)

= O

⎛

⎝n +
∑

P∈S

∑

ν∈LD|P
f(rν) · (depth(ν) + O(log(depth(ν))) + O(log log n))

⎞

⎠ ,
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where D is an arbitrary linear decision tree for answering point location queries
in S and we use LD|P to denote the subset of leaves of D that correspond to
subset of points in P . Some explanation is in order why Lemma 1 is applicable.
Clearly, a linear decision tree for answering point location queries in S is also
a linear decision tree for answering point location queries in P , so Lemma 1 is
applicable.

Since a leaf of D must correspond to a subset of points in at most one convex
region P in S, the total running time for answering any query sequence of length
m is

O

(

n +
∑

ν∈LD

f(rν) · (depth(ν) + O(log(depth(ν))) + O(log log n))

)

= O

(

∑

ν∈LD

f(rν) · depth(ν)

)

+ O(m log log n + n).

The first term is O(OPT) because we can choose D to be the optimal linear
decision tree. 	


4 Conclusion

One can build another auxiliary planar point location structure so that a query
can be executed on our adaptive structure and this auxiliary point location
structures simultaneously until one of the two structures returns an answer.
The advantage is that this auxiliary point location structure can offer additional
properties. For example, if one uses the distance-sensitive planar point location
structure [3], it means that queries far away from any region boundary can be
answered fast too. Alternatively, if one uses the proximate planar point location
structure [18] as the auxiliary structure, then a query can be answered faster if
the query point is close to the previous one. Notice that the performance of these
auxiliary structures are independent from the access frequencies. Therefore, such
an auxiliary structure is constructed only once at the beginning, and it does not
need to be rebuilt periodically as our point location structure.

Acknowledgment. We thank the anonymous referees for their helpful comments.

References

1. Afshani, P., Barbay, J., Chan, T.: Instance optimal geometric algorithms. In: Pro-
ceedings of the 50th Annual IEEE Symposium on Foundations of Computer Sci-
ence, pp. 129–138 (2009)

2. Adamy, U., Seidel, R.: On the exact worst case query complexity of planar point
location. In: Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 609–618 (1998)



Adaptive Point Location in Planar Convex Subdivisions 21

3. Aronov, B., de Berg, M., Roeloffzen, M., Speckmann, B.: Distance-sensitive planar
point location. In: Dehne, F., Solis-Oba, R., Sack, J.-R. (eds.) WADS 2013. LNCS,
vol. 8037, pp. 49–60. Springer, Heidelberg (2013)

4. Arya, S., Cheng, S.W., Mount, D.M., Ramesh, H.: Efficient expected-case algo-
rithms for planar point location. In: Proceedings of the 7th Scandinavian Workshop
on Algorithm Theory, pp. 353–366 (2000)

5. Arya, S., Malamatos, T., Mount, D.M.: Nearly optimal expected-case planar point
location. In: Proceedings of the 41st Annual Symposium on Foundations of Com-
puter Science, pp. 208–218 (2000)

6. Arya, S., Malamatos, T., Mount, D.M.: A simple entropy-based algorithm for pla-
nar point location. ACM Trans. Algorithms 3(2), article 17 (2007)

7. Arya, S., Malamatos, T., Mount, D., Wong, K.: Optimal expected-case planar point
location. SIAM J. Comput. 37(2), 584–610 (2007)

8. Boissonnat, J.D., Yvinec, M.: Algorithmic Geometry. Cambridge University Press,
Cambridge (1998)
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Abstract. Let P be a set of n vertices in the plane and S a set of non-
crossing line segments between vertices in P , called constraints. Two
vertices are visible if the straight line segment connecting them does
not properly intersect any constraints. The constrained θm-graph is con-
structed by partitioning the plane around each vertex into m disjoint
cones with aperture θ = 2π /m, and adding an edge to the ‘closest’ vis-
ible vertex in each cone. We consider how to route on the constrained
θ6-graph. We first show that no deterministic 1-local routing algorithm
is o(

√
n)-competitive on all pairs of vertices of the constrained θ6-graph.

After that, we show how to route between any two visible vertices using
only 1-local information, while guaranteeing that the returned path has
length at most 2 times the Euclidean distance between the source and
destination. To the best of our knowledge, this is the first local routing
algorithm in the constrained setting with guarantees on the path length.

1 Introduction

A fundamental problem in any graph is the question of how to route a message
from one vertex to another. What makes this more challenging is that often this
must be done locally, i.e. it can only use knowledge of the source and destination
vertex, the current vertex and all vertices directly connected to the current
vertex. Routing algorithms are considered geometric when the graph that is
routed on is embedded in the plane, with edges being straight line segments
connecting pairs of vertices and weighted by the Euclidean distance between
their endpoints. Geometric routing algorithms are important in wireless sensor
networks (see [10,11] for surveys of the area) since they offer routing strategies
that use the coordinates of the vertices to guide the search, instead of the more
traditional routing tables.
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We study this problem in the presence of line segment constraints. Specifi-
cally, let P be a set of vertices in the plane and let S be a set of line segments
between vertices in P , with no two line segments intersecting properly. The line
segments of S are called constraints. Two vertices u and v can see each other if
and only if either the line segment uv does not properly intersect any constraint
or uv is itself a constraint. If two vertices u and v can see each other, the line
segment uv is a visibility edge. The visibility graph of P with respect to a set of
constraints S, denoted Vis(P, S), has P as vertex set and all visibility edges as
edge set. In other words, it is the complete graph on P minus all non-constraint
edges that properly intersect one or more constraints in S.

This setting has been studied extensively within the context of motion plan-
ning amid obstacles. Clarkson [8] was one of the first to study this problem and
showed how to construct a (1 + ε)-spanner of Vis(P, S) with a linear number
of edges. A subgraph H of G is called a t-spanner of G (for t ≥ 1) if for each
pair of vertices u and v, the shortest path in H between u and v has length at
most t times the shortest path in G between u and v. The smallest value t for
which H is a t-spanner is the spanning ratio of H. Following Clarkson’s result,
Das [9] showed how to construct a spanner of Vis(P, S) with constant span-
ning ratio and constant degree. Bose and Keil [6] showed that the Constrained
Delaunay Triangulation is a 2.42-spanner of Vis(P, S). Recently, the constrained
half-θ6-graph (which is identical to the constrained Delaunay graph whose empty
visible region is an equilateral triangle) was shown to be a plane 2-spanner of
Vis(P, S) [4] and all constrained θ-graphs with at least 6 cones were shown to
be spanners as well [7].

However, though it is known that these graphs contain short paths, it is not
known how to route in a local fashion. To address this issue, we look at k-local
routing algorithms in the constrained setting, i.e. routing algorithms that must
decide which vertex to forward a message to based solely on knowledge of the
source and destination vertex, the current vertex and all vertices that can be
reached from the current vertex by following at most k edges. Furthermore, we
require our algorithms to be competitive, i.e. the length of the returned path
needs to be related to the length of the shortest path in the graph.

In the unconstrained setting, there exists a 1-local 0-memory routing algo-
rithm that is 2-competitive on the θ6-graph and 5/

√
3-competitive on the half-

θ6-graph (the θ6-graph consists of the union of two half-θ6-graphs) [3]. In the
same paper, the authors also show that these ratios are the best possible, i.e.
there are matching lower bounds.

In this paper, we show that the situation in the constrained setting is quite
different: no deterministic 1-local routing algorithm is o(

√
n)-competitive on all

pairs of vertices of the constrained θ6-graph, regardless of the amount of memory
it is allowed to use. Despite our lower bound, we describe a 1-local 0-memory
routing algorithm between any two visible vertices of the constrained θ6-graph
that guarantees that the length of the path traveled is at most 2 times the
Euclidean distance between the source and destination. Additionally, we provide
a 1-local O(1)-memory 18-competitive routing algorithm between any two visible
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vertices in the constrained half-θ6-graph. To the best of our knowledge, these are
the first local routing algorithms in the constrained setting with guarantees on
the path length.

2 Preliminaries

We define a cone C to be the region in the plane between two rays originating
from a single vertex, the apex of the cone. We let six rays originate from each
vertex, with angles to the positive x-axis being multiples of π /3 (see Fig. 1).
Each pair of consecutive rays defines a cone. We write Cu

i to indicate the i-
th cone of a vertex u, or Ci if the apex is clear from the context. For ease of
exposition, we only consider point sets in general position: no two vertices define
a line parallel to one of the rays that define the cones and no three vertices are
collinear.

C0

C1C5

C4

C3

C2

u

Fig. 1. The cones having
apex u in the θ6-graph

C0,0

C5,0

C4,0

C3,0

C2,0

u

C0,1
C1,0

C1,1

C1,2

C4,1

Fig. 2. The subcones hav-
ing apex u in the con-
strained θ6-graph.

C0,0

C2,0

C1,0

C0,0

C2,0

u

C0,1
C1,0

C1,1

C1,2

C1,1

Fig. 3. The subcones hav-
ing apex u in the con-
strained half-θ6-graph.

Let vertex u be an endpoint of a constraint and let the other endpoint lie in
cone Cu

i . The lines through all such constraints split Cu
i into several subcones

(see Fig. 2). We use Cu
i,j to denote the j-th subcone of Cu

i . When a constraint
c = (u, v) splits a cone of u into two subcones, we define v to lie in both of these
subcones. We consider a cone that is not split to be a single subcone.

The constrained θ6-graph is constructed as follows: for each subcone Ci,j of
each vertex u, add an edge from u to the closest visible vertex in that subcone,
where distance is measured along the bisector of the original cone, not the sub-
cone. More formally, we add an edge between two vertices u and v if v can see
u, v ∈ Ci,j , and for all vertices w ∈ Ci,j that can see u, |uv′| ≤ |uw′|, where v′

and w′ denote the orthogonal projection of v and w on the bisector of Ci. Note
that our general position assumptions imply that each vertex adds at most one
edge per subcone to the graph.

Next, we define the constrained half-θ6-graph. This is a generalized version
of the half-θ6-graph as described by Bonichon et al. [1]. The constrained half-
θ6-graph is similar to the constrained θ6-graph with one major difference: edges
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are only added in every second cone. More formally, its cones are categorized as
positive and negative. Let (C0, C2, C1, C0, C2, C1) be the sequence of cones in
counterclockwise order starting from the positive y-axis. The cones C0, C1, and
C2 are called positive cones and C0, C1, and C2 are called negative cones. Note
that the positive cones coincide with the even cones of the constrained θ6-graph
and the negative cones coincide with the odd ones. We add edges only in the
positive cones (and their subcones). We use Cu

i and C
u

i to denote cones Ci and
Ci with apex u. For any two vertices u and v, v ∈ Cu

i if and only if u ∈ C
v

i

(see Fig. 3). Analogous to the subcones defined for the θ6-graph, constraints can
split cones into subcones. We call a subcone of a positive cone a positive subcone
and a subcone of a negative cone a negative subcone (see Fig. 3). We look at the
undirected version of these graphs, i.e. when an edge is added, both vertices are
allowed to use it. This is consistent with previous work on θ-graphs.

Given a vertex w in a positive cone Cu
i of vertex u, we define the canonical

triangle Tuw to be the triangle defined by the borders of Cu
i (not the borders of

the subcone of u that constains w) and the line through w perpendicular to the
bisector of Cu

i . Note that for each pair of vertices there exists a unique canonical
triangle. We say that a region is empty if it does not contain any vertices of P .

Next, we define our routing model. A routing algorithm is a deterministic k-
local, m-memory routing algorithm, if the vertex to which a message is forwarded
from the current vertex u is a function of s, t, Nk(u), and M , where s and t are
the source and destination vertex, Nk(u) is the k-neighborhood of u and M is a
memory of size m, stored with the message. The k-neighborhood of a vertex u is
the set of vertices in the graph that can be reached from u by following at most
k edges. For our purposes, we consider a unit of memory to consist of log2 n bits
or a point in R

2. Our model also assumes that the only information stored at
each vertex of the graph is Nk(u). Since our graphs are geometric, we identify
each vertex by its coordinates in the plane. Unless otherwise noted, all routing
algorithms we consider in this paper are deterministic 0-memory algorithms.

There are essentially two notions of competitiveness of a routing algorithm.
One is to look at the Euclidean shortest path between the two vertices, i.e. the
shortest path in the visibility graph, and the other is to compare the routing
path to the shortest path in the graph. A routing algorithm is c-competitive with
respect to the Euclidean shortest path (resp. shortest path in the graph) provided
that the total distance traveled by the message is not more than c times the
Euclidean shortest path length (resp. shortest path length) between source and
destination. The routing ratio of an algorithm is the smallest c for which it is
c-competitive.

Since the shortest path in the graph between two vertices is at least as long
as the Euclidean shortest path between them, an algorithm that is c-competitive
with respect to the Euclidean shortest path is also c-competitive with respect
to the shortest path in the graph. We use competitiveness with respect to the
Euclidean shortest path when proving upper bounds and with respect to the
shortest path in the graph when proving lower bounds.

To be able to talk about points at intersections of lines, we distinguish
between vertices and points. A point is any point in R

2, while a vertex is part
of the input.
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t

s

Fig. 4. The constrained θ6-graph start-
ing from a grid, using horizontal con-
straints to block vertical edges, and the
red path of the routing algorithm(Color
figure online)

u

t

s

Fig. 5. The constrained θ6-graph that
looks the same from the red path of the
routing algorithm, but has an almost
vertical dashed blue path(Color figure
online)

3 Lower Bound on Local Routing

We modify the proof by Bose et al. [2] (that shows that no deterministic routing
algorithm is o(

√
n)-competitive for all triangulations) to show the following lower

bound.

Theorem 3.1. No deterministic 1-local routing algorithm is o(
√

n)-competitive
with respect to the shortest path on all pairs of vertices of the θ6-graph, regardless
of the amount of memory it is allowed to use.

Due to space constraints, we present a shortened version of the proof of this
theorem. The full proof can be found in the arXiv version [5].

Proof. Consider an n × n grid and shift every second row to the right by half
a unit. We stretch the grid, such that each horizontal edge has length n (see
Fig. 4). Next, we replace each horizontal edge by a constraint to prevent vertical
visibility edges. Finally, we add two additional vertices, origin s and destination
t, centered horizontally at one unit below the bottom row and one unit above
the top row, respectively.

We move all vertices by at most some arbitrarily small amount ε, such that
no two vertices define a line parallel to one of the rays that define the cones and
no three vertices are collinear. In particular, we ensure that all vertices on the
bottom row have s as the closest vertex in one of their subcones and all vertices
on the top row have t as the closest vertex in one of their subcones. On this
point set and these constraints, we build the constrained θ6-graph G.

Consider any deterministic 1-local ∞-memory routing algorithm and let π be
the path this algorithm takes when routing from s to t. If π consists of at least
n
√

n non-vertical steps, the total length of the path is Ω(n2
√

n). However, G
contains a path of length O(n2) between s and t: the path that follows a diagonal
edge to the left of line st, followed by a diagonal edge to the right, until it reaches
t. Hence, in this case, the local routing algorithm is not o(

√
n)-competitive.
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Now, assume that π consists of f(n) non-vertical steps, for n < f(n) < n
√

n.
Consider the 2

√

f(n) neighbors of s at horizontal distance at most n
√

f(n) from
s. Next, consider the vertical lines through these 2

√

f(n) neighbors of s and let
π′ be the routing path π minus vertices s and t. We say that a vertex of π′

touches a vertical line if it has a neighbor on that line. Hence, any vertex along
π′ touches at most 2 vertical lines. Thus, the total number of lines touched by
the vertices along π′ is at most 2f(n). Hence, there exists a vertical line that is
touched at most

√

f(n) times. Let u be the neighbor of s on the vertical line
that is touched the fewest number of times.

We now create a new constrained θ6-graph G′ such that the deterministic
1-local routing algorithm follows the same path, but G′ contains a short ‘almost
vertical’ path via u. We start with s, t, and all vertices of π. Next, we add all
vertices and constraints connected to these vertices in G. On this point set and
these constraints, we build the constrained θ6-graph G′ (see Fig. 5).

Since the horizontal distance between vertices is far larger than their vertical
distance, an ‘almost vertical’ path from u to the top row of G′ is formed. This
almost vertical path is a path that is vertical whenever possible and uses detours
to avoid path π (see Fig. 6): If π arrives at a vertex v that has a neighbor on the
vertical line through u, we avoid π by following one edge away from π, followed
by an edge back to the vertical line through u (see Fig. 6a). If π arrives at a
vertex on the vertical line through u, we avoid the vertex before and after v on
π as before, and meet π at v (see Fig. 6b). Since no edge along the left and right
boundary of G touches the vertical line through u, this vertical line is touched
by at most

√

f(n) vertices of π and only O
(

√

f(n)
)

of these detour edges are

required. Hence, G′ contains a path from s to t of length O
(

n
√

f(n)
)

.

u

v

u

v

(a) (b)

Fig. 6. The two types of detour: (a) when π does not visit the vertical line through u,
(b) when π visits the vertical line through u

Since the 1-local routing algorithm is deterministic and the 1-local informa-
tion of the vertices of π in G′ is the same as in G, the algorithm follows the same
path. The remainder of the proof uses a case distinction in order to compare the
length of the routing path with the length of the shortest path. The general idea
is that since most edges in G′ have length at least n, π has length Ω(nf(n)),
which implies that π is not o(

√
n)-competitive, as f(n) ≥ n + 1. Hence, since

G′ can be constructed for any deterministic 1-local routing algorithm, we have
shown that no deterministic 1-local routing algorithm is o (

√
n)-competitive on

all pairs of vertices. ��
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4 Routing on the Constrained θ6-Graph

In this section, we provide a 1-local routing algorithm on the constrained θ6-
graph for any pair of visible vertices. Since the constrained θ6-graph is the union
of two constrained half-θ6-graphs, we start by describing a routing algorithm
for the constrained half-θ6-graph for the case where the destination t lies in a
positive subcone of the origin s. Throughout this section, we use the following
auxiliary lemma proven by Bose et al. [4].

Lemma 4.1. Let u, v, and w be three arbitrary points in the plane such that uw
and vw are visibility edges and w is not the endpoint of a constraint intersecting
the interior of triangle uvw. Then there exists a convex chain of visibility edges
from u to v in triangle uvw, such that the polygon defined by uw, wv and the
convex chain is empty and does not contain any constraints.

4.1 Positive Routing on the Constrained Half-θ6-Graph

Before describing how to route when t lies in a positive subcone of s, we first
show that there exists a path in canonical triangle Tst.

Lemma 4.2. Given two vertices u and w such that u and w see each other and
w lies in a positive subcone Cu

i,j, there exists a path between u and w in the
triangle Tuw in the constrained half-θ6-graph.

The proof of this lemma is a straightforward modification of Theorem 1 in [4].

Positive Routing Algorithm for the Constrained Halfθ6-Graph. Next,
we describe how to route from s to t, when s can see t and t lies in a positive
subcone Cs

i,j (see Fig. 7): When we are at s, we follow the edge to the closest
vertex in the subcone that contains t. When we are at any other vertex u, we
look at all edges in the subcones of Cu

i and all edges in the subcones of the
adjacent negative cone C

u
that is intersected by st. An edge in a subcone of

C
u

is considered only if it does not cross st. For example, in Fig. 7, we do not
consider the edge to v1 since it lies in C

u
and crosses st. It follows that we can

cross st only when we follow an edge in Cu
i .

u

v1

v2

s

t

z

v3

Fig. 7. An example of routing
from s to t ∈ Cs

0 . The dashed
line represents the visibility line
between s and t

Let z be the intersection of st and the bound-
ary of C

u
that is not a boundary of Cu

i . We
follow the edge uv that minimizes the unsigned
angle ∠zuv. For example, in Fig. 7, when we are
at vertex u we follow the edge to v2 since, out
of the two remaining edges uv2 and uv3, ∠zuv2
is smaller than ∠zuv3. We also note that during
the routing process, t does not necessarily lie in
Cu

i . Finally, since the algorithm uses only infor-
mation about the location of s and t and the
neighbors of the current vertex, it is a 1-local
routing algorithm.
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We proceed by proving that the above routing algorithm can always perform
a step, i.e. at every vertex reached there exists an edge that is considered by
the algorithm. Due to space constraints, we only state the lemma and refer the
reader to the arXiv version [5] for the proof.

Lemma 4.3. The routing algorithm can always perform a step in the con-
strained half-θ6-graph.

Theorem 4.4. Given two vertices s and t in the half-θ6-graph such that s and
t can see each other and t lies in a positive subcone of s, there exists a 1-local
routing algorithm that routes from s to t and is 2-competitive with respect to the
Euclidean distance.

Proof. We assume without loss of generality that t ∈ Cs
0 . The routing algorithm

will thus only take steps in Cvi
0 , C

vi

1 , and C
vi

2 , where vi is an arbitrary vertex
along the routing path. Let a and b be the upper left and right corner of Tst. To
bound the length of the routing path, we first bound the length of each edge. We
consider three cases: (a) edges in subcones of C

vi

1 or C
vi

2 , (b) edges in subcones
of Cvi

0 that do not cross st, (c) edges in subcones of Cvi
0 that cross st. For ease

of notation we use v0 and vk to denote s and t.

vi

vi+1

s

x

ss

t

(a) (b) (c)

vi vi

vi+1

vi+1

ai

ai ai bi
t t

Fig. 8. Bounding the edge lengths: (a) an edge in a subcone of C
u
1 , (b) an edge in a

subcone of Cu
0 that does not cross st, and (c) an edge in a subcone of Cu

0 that crosses st

Case (a): If edge vivi+1 lies in a subcone of C
vi

1 , let ai be the upper corner of
Tvi+1vi

(see Fig. 8a). By the triangle inequality, we have that |vivi+1| ≤ |viai| +
|aivi+1|. The case where vivi+1 lies in C

vi

2 is analogous.

Case (b): If edge vivi+1 lies in a subcone of Cvi
0 and does not cross st, let ai

and bi be the upper left and right corner of Tvivi+1 (see Fig. 8b). If vi lies to the
left of st, we use that |vivi+1| ≤ |viai| + |aivi+1|. If vi lies to the right of st, we
use that |vivi+1| ≤ |vibi| + |bivi+1|.
Case (c): If edge vivi+1 lies in a subcone of Cvi

0 and crosses st, we split it into
two parts, one for each side of st (see Fig. 8c). Let x be the intersection of st and
vivi+1. If u lies to the left of st, let ai be the upper left corner of Tvix and let
bi be the upper right corner of Txvi+1 . By the triangle inequality, we have that
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|vivi+1| ≤ |viai| + |aix| + |xbi| + |bivi+1|. If u lies to the right of st, let ai be
the upper left corner of Txvi+1 and let bi be the upper right corner of Tvix. By
triangle inequality, we have that |vivi+1| ≤ |vibi| + |bix| + |xai| + |aivi+1|.

To bound the length of the full path, let x and x′ be two consecutive points
where the routing path crosses st and let vivi+1 be the edge that crosses st at x
and let vi′vi′+1 be the edge that crosses st at x′. Let ax and bx be the upper left
and right corner of Txx′ . If the path between x and x′ lies to the left of st, this part
of the path is bounded by |xai| +

∑i′−1
j=i |ajvj+1| +

∑i′

j=i+1 |vjaj | + |ai′x
′|. Since

xai and all vjaj are parallel to xax and all axvj+1 are horizontal, we have that
|xai|+

∑i′

j=i+1 |vjaj | = |xax|. Similarly, since ai′x
′ and all ajvj+1 are parallel and

have disjoint projections onto axx
′, we have that

∑i′−1
j=i |ajvj+1|+|ai′x

′| = |axx′|.
Thus, the length of a path to the left of st is at most |xax| + |axx′|. If the path
between x and x′ lies to the right of st, this part of the path is bounded by
|xbi| +

∑i′−1
j=i |bjvj+1| +

∑i′

j=i+1 |vjbj | + |bi′x′| = |xbx| + |bxx′| (see Fig. 9a).

s

t

s
(a) (b)

a b ta b

x

x′ax bx

x

x′ bx

Fig. 9. Bounding the total length: (a) the bounds (solid lines) are unfolded (dotted
lines) and (b) the unfolded bounds (solid lines) are flipped to the longer of the two
sides (dotted lines) and unfolded again (dashed lines)

Next, we flip all unfolded bounds to the longer of the two sides at and bt: if
|at| ≥ |bt|, we replace all bounds of the form |xbx|+ |bxx′| by |xax|+ |axx

′| and if
|at| < |bt|, we replace all bounds of the form |xax| + |axx′| by |xbx| + |bxx′| (see
Fig. 9b). Note that this can only increase the length of the bounds. Finally, we
sum these bounds and get max{|sa|+ |at|, |sa|+ |bt|}, which is at most 2 · |st|. ��

4.2 Routing on the Constrained θ6-Graph

To route on the constrained θ6-graph, we split it into two constrained half-θ6-
graphs: the constrained half-θ6-graph oriented as in Fig. 3 and the constrained
half-θ6-graph where positive and negative cones are inverted. When we route from
s to t, we pick the constrained half-θ6-graph in which t lies in a positive subcone
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of s, referred to as G+ in the remainder of this section, and apply the routing
algorithm described in the previous section. Since this routing algorithm is 1-local
and 2-competitive, we obtain a 1-local and 2-competitive routing algorithm for
the constrained θ6-graph, provided that we can determine locally, while routing,
whether an edge is part of G+. When at a vertex u, we consider the edges in order
of increasing angle with the horizontal halfline through u that intersects st.

Lemma 4.5. While executing the positive routing algorithm for two visible ver-
tices s and t, we can determine locally at a vertex u for any edge uv in the
constrained θ6-graph whether it is part of G+.

Proof. Suppose we color the edges of the constrained θ-graph red and blue such
that red edges form G+ and blue edges form the constrained half-θ6-graph, where
t lies in a negative subcone of s. At u, we need to determine locally whether uv
is red. Since an edge can be part of both constrained half-θ6-graphs, it can be
red and blue at the same time. This makes it harder to determine whether an
edge is red, since determining that it is blue does not imply that it is not red.

If v lies in a positive subcone of u, we need to determine if it is the closest
vertex in that subcone. Since by construction of the constrained half-θ6-graph,
u is connected to the closest vertex in this subcone, it suffices to check whether
this vertex is v. Note that if uv is a constraint, v lies in two subcones of u and
hence we need to check if it is the closest vertex in at least one of these subcones.

If v lies in a negative subcone of u, we know that if it is not the closest visible
vertex in that subcone, uv is red. Hence, it remains to determine for the edge to
the closest vertex whether it is red: If it is the closest visible vertex, it is blue, but
it may be red as well if u is also the closest visible vertex to v. Hence, we need
to determine whether u is the closest vertex in Cv

i,j , a subcone of v that contains
u. We consider two cases: (a) uv is a constraint, (b) uv is not a constraint.

Case (a): Since uv is a constraint, it cannot cross st. Since we are considering
uv, all edges that make a smaller angle with the horizontal halfline through u
that intersects st are not red. Hence, uv is either part of the boundary of the
routing path or the constraint is contained in the interior of the region bounded
by the routing path and st. However, by the invariant of Lemma4.3, the region
bounded by the routing path and st does not contain any constraints in its
interior. Thus, uv is part of the boundary of the routing path and uv is red.

Case (b): If uv is not a constraint, let regions A and B be the intersection of
Cv

i and the two subcones of u adjacent to C
u

i and let C be the intersection of
Cv

i,j and the negative subcone of u that contains v (see Fig. 10). We first note
that since uv lies in a negative subcone of u, the invariant of Lemma4.3 implies
that B is empty. Furthermore, since v is the closest visible vertex to u, C does
not contain any vertices that can see u or v.
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u

v

A
C

B

Fig. 10. Determining whether an edge
is part of the constrained half-θ6-graph

Since C does not contain any ver-
tices that can see u or v, any con-
straint in C

u

i that has u as an end-
point and lies above uv, ensures that
v cannot see A, i.e. it cannot block
visibility of this region only partially.
Hence, if such a constraint exists, u
is the closest visible vertex to v in
Cv

i,j , since neither B nor C contain
any vertices visible to v. Therefore,
uv is red.

If v can see A, we show that uv is red, if and only if the closest visible vertex
in the subcone of u that contains A does not lie in A. We first show that if uv is
red, then the closest visible vertex in the subcone of u that contains A does not
lie in A. We prove the contrapositive of this statement. Since A is visible to v, u
is not the endpoint of a constraint in C

u

i above uv. Hence, we have two visibility
edges uv and ux and u is not the endpoint of a constraint intersecting the interior
of triangle uxv. Thus, by Lemma 4.1, we have a convex chain between x and v.
Let y be the vertex adjacent to v along this chain. Since the polygon defined by
ux, uv, and the convex chain is empty and does not contain any constraints, y
lies in Cv

i,j . Thus, u is not the closest visible vertex in Cv
i,j and uv is not red.

Next, we show that if the closest visible vertex x in the subcone of u that
contains A does not lie in A, then uv is red. We prove this by contradiction,
so assume that uv is not red. This implies that there exists a vertex y ∈ Cv

i,j

that is visible to v and closer than u. Since B is empty and C does not contain
any vertices that can see v, y lies in A. Since uv and vy are visibility edges and
v is not the endpoint of a constraint intersecting the interior of triangle uyv,
by Lemma 4.1 there exists a convex chain of visibility edges between u and y.
Furthermore, since C does not contain any vertices that can see u, the vertex
adjacent to u along this chain lies in A. Since any vertex in A is closer to u than
x, this leads to a contradiction, completing the proof. ��

4.3 Negative Routing on the Constrained Half-θ6-Graph

To complement the positive routing algorithm on the constrained half-θ6-graph,
we also provide a negative routing algorithm on this graph. Due to space con-
straints, we refer the reader to [5] for details on the routing algorithm. We note
that negative routing is harder than positive routing, since there need not be an
edge to a vertex in the cone of s that contains t. This also caused the separation
between spanning ratio and routing ratio in the unconstrained setting [3].

Theorem 4.6. There exists an O(1)-memory 1-local 18-competitive routing
algorithm for negative routing in the constrained half-θ6-graph.
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Abstract. We propose an algorithm for finding a (1 + ε)-approximate
shortest path through a weighted 3D simplicial complex T . The weights
are integers from the range [1, W ] and the vertices have integral coordi-
nates. Let N be the largest vertex coordinate magnitude, and let n be
the number of tetrahedra in T . Let ρ be some arbitrary constant. Let
κ be the size of the largest connected component of tetrahedra whose
aspect ratios exceed ρ. There exists a constant C dependent on ρ but
independent of T such that if κ ≤ 1

C
log log n + O(1), the running time

of our algorithm is polynomial in n, 1/ε and log(NW ). If κ = O(1), the
running time reduces to O(nε−O(1)(log(NW ))O(1)).

Keywords: Weighted region · Shortest path · Approximation algorithm

1 Introduction

Finding shortest paths are classical geometric optimization problems (e.g. [4,10–
12,15]). In 2D, researchers have also studied cost models in applications that are
non-Lp metrics and anisotropic (e.g. [1,2,5–9,14,17]). In 3D, other than motion
planning, shortest path is a popular tool for simulating seismic raytracing in ray-
based tomography schemes for studying some geological properties (e.g. [13]).

The weighted region problem is a way to model the unequal difficulties in
traversing different regions [14]. In 3D, we are given a simplicial complex T of
n tetrahedra. These tetrahedra and their vertices, edges and triangles are called
the simplices of T . Given two simplices in T , either they are disjoint or their
intersection is another simplex in T . Every vertex has integral coordinates and
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let N denote the largest vertex coordinate magnitude. Each tetrahedron τ is
associated with an integral weight ωτ ∈ [1,W ]. For every edge or triangle, its
weight is equal to the minimum weight among the tetrahedra incident to that
edge or triangle. The cost of a path that lies in a simplex σ is equal to the path
length multiplied by ωσ. Given a path P in T , we denote its length by ‖P‖ and
its cost by cost(P ) =

∑

simplex σ ωσ‖P ∩ σ‖. The weighted region problem is to
find the least-cost path from a given source vertex to a given destination vertex.

The weighted region problem in 2D has been studied extensively. Fully poly-
nomial time approximation schemes are known [7,14]. There are also successful
discretization schemes whose running time is linear in the input size and depen-
dent on some geometric parameter of the polygonal domain [2,17]. In contrast,
only one algorithm for the weighted region problem in 3D has been proposed
(Aleksandrov et al. [3]). The authors [3] present a (1 + ε)-approximation algo-
rithm whose running time is O

(

Knε−2.5 log n
ε log3 1

ε

)

, where K is asymptotically
at least the cubic power of the maximum aspect ratio of the tetrahedra in the
worst case. (Aspect ratio is defined in Sect. 2.) It is an open problem whether an
FPTAS exists for the 3D weighted region problem.

Let ρ be an arbitrary constant independent of T . We call a tetrahedron
skinny if its aspect ratio exceeds ρ. Two skinny tetrahedra are connected if their
boundaries touch, and the transitive closure of this relation gives the connected
components of skinny tetrahedra. Let κ be the number of tetrahedra in the
largest connected component of skinny tetrahedra.

We present a (1 + ε)-approximation algorithm for the 3D weighted region
problem. It runs in O

(

22
O(κ)

nε−7 log2 W
ε log2 NW

ε

)

time. The hidden constant
in the exponent O(κ) is dependent on ρ but independent of T . Thus, there
exists a constant C dependent on ρ but independent of T such that if κ ≤
1
C log log n + O(1), the running time is polynomial in n, 1/ε and log(NW ). If
κ = O(1), the running time is linear in n. In comparison, the running time
in [3] has the advantage of being independent from N and W , but K can be
arbitrarily large even if there are only O(1) skinny tetrahedra. Putting the result
in [3] in our model, K is a function of N and n in the worst case, and K can be
Ω( 1

nN3 + 1).

2 Preliminaries

A path P in T consists of links and nodes. A link is a maximal segment that lies
in a simplex of T . Nodes are link endpoints. We assume that P does not bend
in the interior of any simplex because such a bend can be shortcut. So the nodes
of P lie at vertices, edges and triangles. Given two points x and y in this order
in P , we use P [x, y] to denote the subpath between them.

The simplex sequence of a path P is the ordered sequence Σ of vertices, edges
and triangles that intersect the interior of P from u to v. If P has the minimum
cost among all paths from u to v with simplex sequence Σ, we call P a locally
shortest path (with respect to Σ). The shortest path from u to v is the locally
shortest path with the minimum cost among all possible simplex sequences.
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Let B(x, r) denote a closed ball centered at a point x with radius r.
The aspect ratio of a tetrahedron τ is the ratio of the radius of the smallest

sphere that encloses τ to the radius of the largest sphere inscribed in τ . If the
aspect ratio is bounded by a constant, all angles of τ are bounded from below
and above by some constants. A tetrahedron is skinny if its aspect ratio exceeds
some arbitrary constant ρ fixed a priori. If a tetrahedron is not skinny, it is fat.

Two tetrahedra are connected if their boundaries touch. The equivalence
classes of the transitive closure of this relation are called connected components
of tetrahedra. Two tetrahedra are edge-connected if they share at least one edge.
The equivalence classes of the transitive closure of this relation are called edge-
connected components of tetrahedra. A cluster is a connected component of
skinny tetrahedra. Recall that every cluster has at most κ tetrahedra.

For every simplex σ in T , star(σ) denotes the set of tetrahedra that have σ
as a boundary simplex. Given a set K of simplices, |K| denotes the union of all
simplices in K and bd(K) denotes the set of simplices in the boundary of |K|.

For simplicity, we will show a 1 + O(ε) approximation ratio, which can be
reduced to 1 + ε by tuning some constants. Our algorithm discretizes T and
builds an edge-weighted graph G so that the shortest path in G is a 1 + O(ε)
approximation. This approach is also taken in [3]. However, in order to allow for
skinny tetrahedra, we discretize the fat tetrahedra only, and the edges in G rep-
resent approximate shortest paths that may not lie within a single tetrahedron.

Let {u, v} be a pair of vertices of G. If u and v lie in a cluster, we would ideally
connect them by an edge with weight equal to the shortest path cost between u
and v within the cluster. However, even if a simplex sequence is given, finding
the locally shortest path requires solving a nonlinear system derived using Snell’s
law. It is unclear how to do this exactly. Instead, we switch to convex distance
functions induced by convex polytopes with O(1/ε) vertices, so that the modified
metrics give 1+O(ε) approximations of the original metrics. Under the modified
metrics, the locally shortest path with respect to Σ can be obtained by linear
programming. We enumerate all possible simplex sequences to find the shortest
path cost within the cluster under the modified metrics.

3 Placement of Steiner Points

For every vertex v in T , the fat tetrahedra in star(v) may form multiple edge-
connected components and we call each a fat substar. For an edge or triangle σ,
there is at most one fat substar in star(σ).

Definition 1. Let x be a point in the union of vertices, edges and triangles of
T . Let σ be the simplex of lowest dimension containing x. For every fat substar
F of σ, define δF (x) to be the minimum distance from x to a simplex in bd(F )
that does not contain x. When σ is an edge or triangle, there is at most one fat
substar of σ and so we simplify the notation to δ(x).

Remark 1: For a vertex v of T , δF (v) is the distance between v and a triangle
opposite v in some tetrahedron τ ∈ F . Since the tetrahedra in F have bounded
aspect ratio and there are O(1) of them, δF (v) = Θ(‖e‖) for every edge e ∈ F .
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Remark 2: For a point x in the interior of an edge e, δ(x) is the distance
between x and an edge or triangle σ that bounds a fat tetrahedron incident to
e and shares only a vertex v with e. Also, δ(x) = Θ(‖vx‖).

For every vertex v of T and every fat substar F of v, define a vertex-ball
Bv,F = B(v, ε

3W δF (v)). Let Nv be the union of Bv,F ∩F over all fat substars F .
Let uv be an edge of a fat tetrahedron in T . We place Steiner points in uv

outside Nu and Nv as follows. Initialize B to be the union of the interiors of Nu

and Nv. Find the point p ∈ uv \B such that δ(p) is maximum. Make p a Steiner
point. Define an edge-ball Bp = B(p, ε

3δ(p)). Add the interior of Bp to B. Repeat
until uv \ B is empty. Finally, make the intersection point q between uv and the
boundary of Nu a Steiner point and introduce an edge-ball Bq = B(q, ε

3δ(q)).
Repeat the same for the intersection point between uv and the boundary of Nv.

As we will see below, the edge-balls centered at two consecutive Steiner points
strictly outside Nu and Nv overlap significantly. After placing Steiner points
strictly outside Nu and Nv, an extreme edge-ball may have a tiny overlap with
Nu or Nv. In this case, if x is a point on some triangle incident to uv such that x
lies close to this tiny overlap, then δ(x) can be arbitrarily small. This will cause
a problem in discretizing triangles. Thus, we place two more edge-balls at the
intersection points between uv and the boundaries of Nu and Nv.

Lemma 1. Let uv be an edge of a fat tetrahedron. The edge uv is covered by
the union of Nu, Nv, and the edge-balls centered at the Steiner points in uv. For
every consecutive pair of Steiner points p, q ∈ uv strictly outside Nu and Nv,
‖pq‖ ≥ ε

3 · max{δ(p), δ(q)}, and either p lies on the boundary of Bq or q lies on
the boundary of Bp. There are O

(

1
ε log W

ε

)

Steiner points in uv.

Proof. The construction ensures the coverage of uv. Assume that q was placed
after p. By construction, q is not inside B(p, ε

3δ(p)) and so ‖pq‖ ≥ ε
3δ(p). As q

is placed after p, δ(q) ≤ δ(p) and so ‖pq‖ ≥ ε
3δ(p) ≥ ε

3δ(q).
In the interior of uv, δ(x) increases linearly from a limit of zero at u and

then decreases linearly to a limit of zero at v. The placement of Steiner points
strictly outside Nu and Nv begins with the point p ∈ uv that maximizes δ(p).
Therefore, the point q ∈ uv that maximizes δ(q) outside the interiors of Nu, Nv,
and Bp must lie on the boundary of Bp. Repeating this argument establishes the
third property in the lemma.

Let F be the fat substar of u that contains uv. At the intersection point x
between uv and the boundary of Nu, δ(x) ≤ ‖ux‖ = ε

3W δF (u) = Θ( ε
W ‖uv‖)

by Remark 1. By Remark 2, δ(x) = Ω(min{‖ux‖, ‖vx‖}) = Ω(min{ ε
W ‖uv‖, (1 −

ε
W )‖uv‖}. So δ(x) = Θ( ε

W ‖uv‖). Similarly, at the intersection point x between
uv and the boundary of Nv, δ(x) = Θ

(

ε
W ‖uv‖

)

. The maximum value of δ(x)
in the interior of uv is at most 1

2‖uv‖. Let p, q ∈ uv be two consecutive Steiner
points strictly outside Nu and Nv such that δ(x) increases linearly from a limit
of zero from u to p and then to q. By Remark 2, δ(p) = Θ(‖pu‖). We have
shown that ‖pq‖ ≥ ε

3δ(p). By the linear increase in δ(·), we get δ(q) = (1 +
‖pq‖/‖pu‖)δ(p) ≥ (1+Θ(ε))δ(p). The next Steiner point after q is thus at distance
at least ε

3δ(q) ≥ ε
3 (1 + Θ(ε)) δ(p) from q. In other words, the distance between
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consecutive Steiner points strictly outside Nu and Nv increases repeatedly by at
least a factor 1+Θ(ε) from Ω( ε2

W ‖uv‖) at the boundary of Nu to O(ε‖uv‖) in the
interior of uv. The same holds for the sequence of Steiner points from Nv. Hence,
there are O

(

log1+Θ(ε)
W
ε

)

= O
(

1
ε log W

ε

)

Steiner points. ��

Lemma 2. Placing Steiner points on an edge takes O
(

1
ε log W

ε

)

time.

The placement of Steiner points in a triangle uvw of a fat tetrahedron is
slightly more involved. In the interior of uvw, the value of δ(x) is determined by
the triangles of at most two fat tetrahedra incident to uvw. Consider one triangle
t out of these candidates. Orient space so that uvw is horizontal. The graph of
the distance function from x to t is a plane that makes an angle arctan(sin θ)
with the horizontal, where θ is the dihedral angle between t and uvw (which is
bounded from below and above by some constants). The graph of δ(x) is thus
a lower envelope of planes. Moreover, this lower envelope H is supported by
exactly three planes induced by three triangles that share with uvw the edges
uv, vw and uw. Let � denote the longest edge length of uvw. The maximum
height of H is hmax = Θ(�) as the tetrahedra defining δ(x) have bounded aspect
ratios. For each point x in the interior of uvw that are close to and outside the
vertex-balls and edge-balls at the boundary of uvw, δ(x) ≥ cε2�/W for some
constant c > 0.1 Let H+ denote the portion of H at height hmin = cε2�/W 2

or above. We will place Steiner points in the projection of H+ in uvw. By the
geometry of H, a cross-section of H bounds a triangle that has the same angles
as uvw and projects to the interior of uvw.

Define h0 = hmax and for i ≥ 1, hi = hi−1/(1 + ε). Let Ai ⊂ uvw be the
triangular annulus that the portion of H between heights hi and hi+1 projects
to. Both the inner and outer boundaries of this annulus are similar to uvw. The
area of Ai is Θ((hi − hi+1)(hi + hi+1)) = Θ(εh2

i ). We place Steiner points in
each Ai as follows. Initialize B = ∅. Make an arbitrary point p ∈ Ai \B a Steiner
point. Define a triangle-ball Bp = B(p, ε

3δ(p)). Add the interior of Bp to B.
Repeat until Ai \ B is empty.

Lemma 3. Let uvw be a triangle of a fat tetrahedron. The triangle uvw is
covered by the union of Nu, Nv, Nw, and edge-balls and triangle-balls with centers
in uvw. There are O

(

1
ε2 log W

ε

)

Steiner points in uvw.

Proof. The construction ensures the coverage of uvw. We can show as in the
proof of Lemma 1 that ‖pq‖ ≥ ε

3 max{δ(p), δ(q)} for every pair of Steiner points p
and q placed in Ai. The value of δ(x) in Ai is between hi and hi+1. Therefore, if we
place disks of radii ε

6hi+1 centered at the Steiner points in Ai, the disks are dis-
joint. At least a constant fraction of each such disk lies inside Ai. Therefore, there
are O(εh2

i /(ε2h2
i+1)) = O(1/ε) Steiner points in Ai. As i increases, hi decreases

and approaches hmin = Θ(ε2hmax/W 2). Observe that hi = (1+ε)−ihmax. Hence,
(1 + ε)−ihmax ≥ hmin, which implies that i = O

(

log1+ε
W
ε

)

= O
(

1
ε log W

ε

)

. It
follows that there are O

(

1
ε2 log W

ε

)

Steiner points in uvw. ��
1 The smallest value of δ(x) occurs near the edge-ball centered at the intersection
point between uv and the boundary of Nu or the boundary of Nv.
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Lemma 4. Placing Steiner points in uvw takes O( 1
ε4 log W

ε ) time.

4 Steiner Graph and Snapping

The vertices of T and the Steiner points form the vertices of G. Before defining
the edges of G, we first define extended clusters. An extended cluster C∗ consists
of the skinny tetrahedra in a cluster C and the tetrahedra in contact with C.
The tetrahedra in C∗ \ C are fat, and therefore, there are O(κ) tetrahedra in
C∗. If a boundary simplex σ of C∗ is in contact with the boundary of C, then σ
must also be a boundary simplex of T .

There are two kinds of edges in G. Each edge of the first kind connects two
graph vertices x and y in the same extended cluster C∗. The edge weight is
1 + O(ε) times the shortest path cost in C∗ from x to y. We will show in Sect. 5
how to compute such an edge weight. Each edge of the second kind connects
two graph vertices in a vertex star free of skinny tetrahedra. The edge weight
is 1 + O(ε) times the shortest path cost in that vertex star, which can also be
computed by the method in Sect. 5. Notice that T is covered by the extended
clusters and vertex stars free of skinny tetrahedra. Due to the overlap among
extended clusters and vertex stars, we may construct multiple edges between
two graph vertices, and if so, we keep the edge between them with the lowest
weight.

Assuming that G has been computed, we prove below that a shortest path
in G is a (1 + O(ε))-approximate shortest path in T . We need three technical
lemmas (Lemmas 5, 6, and 7) that snap a path to vertices and Steiner points.

Lemma 5. Let v be a vertex of a fat tetrahedron. Let F be a fat substar of
v. Let x be a point in |F | such that ‖vx‖ ≥ δF (v)/2. Let P be a path such
that a subpath of P in |F | connects x to a point y ∈ Bv,F . We can convert
P [x, y] to a path Q from x to y so that Q ⊂ |F |, Q passes through v, and
cost(Q) ≤ (1 + O(ε)) · cost(P [x, y]).

Proof. Let x′ be the first entry point of P [x, y] into Bv,F . We replace P [x, y] by
P [x, x′]∪x′v ∪ vy. We have cost(x′v) ≤ W‖x′v‖ = ε

3δF (v) ≤ 2ε
3−2ε‖xx′‖ ≤ O(ε) ·

cost(P [x, x′]) ≤ O(ε) · cost(P [x, y]). Similarly, cost(vy) ≤ O(ε) · cost(P [x, y]). ��

Lemma 6. Let t be a triangle of a fat tetrahedron τ . Let p be a Steiner point
in the interior of t, and let Bp denote the triangle-ball centered at p. Let P be a
path such that a subpath of P in τ connects a point x in a boundary simplex of
τ other than t to a point y ∈ Bp ∩ t. We can convert P [x, y] to a path Q from x
to y so that Q ⊂ τ , Q passes through p, and cost(Q) ≤ (1 + O(ε)) · cost(P [x, y]).

Proof. P [x, y] ⊂ τ by assumption. Let x′ be the last entry point of P [x, y] into
Bp. Retrace P [x, x′] from x′ towards x until we hit a boundary simplex of τ
other than t for the first time at a point x̂. Note that δ(p) ≤ ‖px̂‖. We replace
P [x, y] by P [x, x′] ∪ x′p ∪ py. Figure 1 illustrates the three cases below.
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Fig. 1. The path Q in cases 1, 2 and 3 in the proof of Lemma 6 from left to right.

Case 1: P [x̂, x′] is a segment whose interior lies in the interior of τ . We have
cost(x′p) = ε

3ωτδ(p) ≤ ε
3−εωτ‖x̂x′‖ ≤ O(ε) · cost(P [x, x′]) ≤ O(ε) · cost(P [x, y]).

Similarly, cost(py) ≤ ε
3ωtδ(p) ≤ ε

3ωτδ(p) ≤ O(ε) · cost(P [x, y]).

Case 2: P [x̂, x′] is a segment whose interior lies in the interior of t. Then the
interior of P [x̂, y] lies in the interior of t. We analyze the extra cost as in Case 1
with ωτ replaced by ωt.

Case 3: P [x̂, x′] consists of two segments x̂x′′ and x′′x′ whose interiors lie in the
interiors of τ and t, respectively. Then the interior of P [x′′, y] lies in the interior
of t. If ‖x̂x′′‖ ≥ 1

2‖x̂x′‖, then we adapt the analysis in Case 1 using the relation
δ(p) ≤ 6

3−ε‖x̂x′′‖. Otherwise, ‖x′′x′‖ ≥ 1
2‖x̂x′‖ and we adapt the analysis in

Case 2 using the relation δ(p) ≤ 6
3−ε‖x′′x′‖. ��

Lemma 7. Let e be an edge of a fat tetrahedron. Let F denote the fat substar
of e. Let p be a Steiner point in the interior of e, and let Bp denote the edge-
ball centered at p. Let x be a point in |F | such that ‖px‖ ≥ δ(p)/2. Let P be a
path such that a subpath of P in |F | connects x to a point y ∈ Bp ∩ t, where t
is a triangle in F incident to e. Suppose that y lies outside every triangle-ball
Bq where q ∈ t. Then, we can convert P [x, y] to a path Q from x to y so that
Q ⊂ |F |, Q passes through p, and cost(Q) ≤ (1 + O(ε)) · cost(P [x, y]).

Proof. Since y lies outside every triangle-ball Bq where q ∈ t, y is at distance
O( ε2

W 2 ‖e‖) from e. Let y′ be the closest point in e to y. Let x′ be the first entry

py

y

e
t

σ
x

a

Fig. 2. The resulting path Q in the proof of Lemma 7.
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point of P [x, y] into Bp. Retrace P [x, x′] from x′ towards x until we hit x or
a simplex in bd(F ) other than e for the first time. Let x̂ be the point where
retracing stops. Note that δ(p) ≤ 2‖px̂‖.

Let σ be the triangle or tetrahedron with the minimum weight among those
incident to e and visited by P [x̂, x′]. Suppose that P [x̂, x′] enters σ for the first
time at a point a.

We replace P [x, y] by P [x, a]∪ap∪py′∪yy′. Figure 2 illustrates the conversion.
First, cost(ap) = ωσ‖ap‖ ≤ ωσ‖ax′‖+ ε

3ωσδ(p) ≤ cost(P [a, x′])+ 2ε
3−2εωσ‖x̂x′‖ ≤

cost(P [a, x′]) + O(ε) · cost(P [x, x′]). Next, cost(py′) = ωe‖py′‖ ≤ ε
3ωσδ(p) ≤

2ε
3−2εωσ‖x̂x′‖ ≤ O(ε) · cost(P [x, x′]). Also, cost(yy′) ≤ W‖yy′‖ ≤ O(W · ε2

W 2 ‖e‖).
Recall that p is not inside the vertex-balls at the endpoints of e, and these vertex-
balls have radius Ω(ε‖e‖/W ). Therefore, δ(p) = Ω(ε‖e‖/W ) by Remark 2.
Hence, cost(yy′) ≤ O(ε) · δ(p) ≤ O(ε) · ‖x̂x′‖ ≤ O(ε) · cost(P [x, x′]). ��

Next, we convert a path P from vs to vd to a path Q such that the nodes
vs = ui1 , ui2 , ui3 , · · · , uim

= vd in Q are vertices of G, and for all j ≥ 1,
Q[uij

, uij+1 ] is contained in an extended cluster or a vertex star free of skinny
tetrahedra. Moreover, cost(Q) ≤ (1 + O(ε)) · cost(P ). Therefore, G gives a
1 + O(ε) approximation because G contains the edges {uij

, uij+1} with weight
(1 + O(ε)) · cost(Q[uij

, uij+1 ]).

Lemma 8. Let P be a path in T from vs to vd. We can convert P to a path Q
in T from vs to vd such that the nodes vs = ui1 , ui2 , ui3 , · · · , uim

= vd in Q are
vertices of G, and for all j ≥ 1, Q[uij

, uij+1 ] is contained in an extended cluster or
a vertex star free of skinny tetrahedra. Moreover, cost(Q) ≤ (1 + O(ε)) · cost(P ).

Proof. Let P0 denote a path from vs to vd in T .
Suppose that vs is disjoint from all clusters. If P0 does not leave star(vs),

then vd is a vertex in star(vs) and the lemma is trivially true. Assume that P0

leaves star(vs) for the first time at a point y. Then y lies in a boundary simplex
σ of star(vs) disjoint from vs. We modify P0[vs, y] by applying Lemmas 5, 6, or 7
to make a detour to a vertex or Steiner point p ∈ σ.

Suppose that vs is contained in a cluster C. Recall that C∗ denotes the
extended cluster corresponding to C. If P0 does not leave C∗, then vd is a vertex
in C∗ and there is nothing to prove. Assume that P0 leaves C∗ for the first time
at a point y. Let x be the point in the boundary of C that P0 leaves C for the
last time before reaching y. Let σ be the simplex of lowest dimension in bd(C∗)
that contains y. The simplex σ is disjoint from the boundary of C; otherwise,
σ would be a boundary simplex of T , meaning that P0 cannot leave C∗ at y,
a contradiction. We modify P0[x, y] by applying Lemmas 5, 6, or 7 to make a
detour to a vertex or Steiner point p ∈ σ.

Let P1 denote the path resulted from modifying P0. The extra cost of O(ε) ·
cost(P0[vs, y]) can be charged to P0[vs, y]. Then we work on P1[y, vd]. Recall
that y belongs to the boundary simplex σ of star(vs) or an extended cluster
containing vs, whichever case is applicable. We identify a vertex v as follows.
If σ is a vertex, let v = σ. If σ is an edge, let v be the closest endpoint of σ
to y. If σ is a triangle, let e be the closest edge of σ to y and then let v be
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the closest endpoint of e to y. Then, we repeat the previous analysis on v and
P1[y, vd]. That is, we check the exit of P1[y, vd] from star(v) or an extended
cluster containing v, whichever case is applicable. The vertex or Steiner point p
to which P0 was snapped belongs to σ and p is already a vertex of G. The next
application of Lemmas 5, 6, or 7 will convert P1[y, vd] to a path P2[y, vd] that
passes through a vertex or Steiner point q such that P2[p, q] lies in an extended
cluster or a vertex star free of skinny tetrahedra. The extra charge in converting
P1 to P2 can be charged to a subpath of P1[y, vd]. Repeating the argument proves
the lemma. ��

5 Processing Extended Clusters and Vertex Stars

Let Γ be a connected set of O(κ) tetrahedra. Let p and q be two points in the
union of vertices, edges, and triangles in Γ . We present an algorithm to compute
a (1 + O(ε))-approximate shortest path in Γ from p to q.

5.1 Locally Shortest Path

For every triangle t ∈ Γ , its unit disk is the Euclidean disk Dt that is centered
at the origin, lies on a plane parallel to t, and has radius 1/ωt. The travel cost
from a point x to a point y in t is λ if changing the radius of Dt + x to λ/ωt

puts y on the boundary of the shrunk or expanded disk. To approximate Dt,
we place Θ(1/

√
ε) points roughly uniformly on the boundary of Dt as follows.

Enclose Dt by a concentric unit square. Place points on the square boundary
at distance

√
ε apart. Project these points radially onto the boundary of Dt.

Let D∗
t denote the convex hull of the points on the boundary of Dt. One can

measure the travel cost from x to y by shrinking or expanding D∗
t +x instead. It

is easy to check that D∗
t ensures a 1+O(ε) approximation of the cost under Dt.

For every tetrahedron τ ∈ Γ , its unit ball Dτ is the Euclidean ball centered at
the origin with radius 1/ωτ . Similar to the 2D case, Dτ can be approximated by
a convex hull D∗

τ with O(1/ε) vertices. Computing D∗
t and D∗

τ for all triangles
and tetrahedra takes O

(

n
ε log 1

ε

)

time.
Let Σ = (σ1, σ2, · · · , σm) be a given simplex sequence. Let p and q be two

points in some tetrahedra incident to σ1 and σm, respectively. We show how
to compute the locally shortest path from p to q with respect to Σ by linear
programming. Consider the case that every σi is a triangle denoted by vi,1vi,2vi,3.
The case of some σi being vertices or edges can be handled similarly.

Let xix
′
i+1 be a possible path link where xi ∈ σi and x′

i+1 ∈ σi+1. Let τi

denote the tetrahedron bounded by σi and σi+1. Using barycentric coordinates,
the variable xi ∈ R

3 satisfies the constraint xi =
∑3

j=1 αi,jvi,j for some non-
negative variables αi,j ∈ R such that

∑3
j=1 αi,j = 1. Similarly, the variable

x′
i+1 ∈ R

3 satisfies x′
i+1 =

∑3
j=1 α′

i+1,jvi+1,j for some non-negative variables
α′

i+1,j ∈ R such that
∑3

j=1 α′
i+1,j = 1. For convenience, assume that v0,j = p and

vm+1,j = q for j ∈ [1, 3]. We need the facet g of D∗
τi

that contains the direction of
the vector x′

i+1−xi because the cost of xix
′
i+1 is equal to 〈x′

i+1−xi, ng〉/〈ng, ng〉,
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where 〈·, ·〉 denotes the inner product operator and ng denotes the vector that
goes from the origin to a point in the support plane of g such that ng ⊥ g. By the
convexity of D∗

τi
, the facet f of D∗

τi
that gives the largest 〈x′

i+1−xi, nf 〉/〈nf , nf 〉
is the correct facet g. Therefore, we introduce a variable zi ∈ R and require
zi ≥ 〈x′

i+1 −xi, nf 〉/〈nf , nf 〉 for every facet f of D∗
τi

. Part of the total path cost
is

∑m
i=0 zi. The minimization ensures that zi = 〈x′

i+1 − xi, ng〉/〈ng, ng〉 at the
end. We also allow for potential critical refraction at σi+1, i.e., allow for the link
x′

i+1xi+1 ⊂ σi+1. To capture the cost of x′
i+1xi+1, we introduce another variable

z′
i+1 and require z′

i+1 ≥ 〈xi+1 − x′
i+1, nf 〉/〈nf , nf 〉 for every edge f of D∗

σi+1
.

The objective is to minimize
∑m

i=0 zi +
∑m

i=1 z′
i.

There are Θ(mε−1) constraints and Θ(m) variables. The coefficients in the
constraints xi =

∑3
j=1 αi,jvi,j and x′

i =
∑3

j=1 α′
i,jvi,j have magnitudes N or less

because every coordinate of vi,j has magnitude at most N . Roughly speaking,
the vertex coordinates in D∗

τi
result from multiplying 1/ωτi

with the coordinates
of the grid vertices on the unit cube. The grid box side length is

√
ε. Therefore,

O
(

log W
ε

)

bits suffice for a vertex coordinate in D∗
τi

. For every facet f of D∗
τi

,
we first compute an outward normal νf of f by taking cross-product using the
vertices of f . The coordinates of νf thus require O(log W

ε ) bits. Let u be a vertex
of f . We solve the linear equation 〈 1

ανf , 1
ανf − u〉 = 0 for α ∈ R such that 1

ανf

lies on the support plane of f , i.e., nf = 1
ανf . Thus, α requires O(log W

ε ) bits and
so does nf . The same conclusion applies to the constraints 〈xi −x′

i, nf 〉/〈nf , nf 〉
for every edge f of D∗

σi
. In summary, the total number of bits to encode the

linear program is O
(

mε−1 log NW
ε

)

. The ellipsoid method [16] solves the above
linear program in O(m7ε−3 log2 NW

ε + m8ε−2 log2 NW
ε ) arithmetic operations.

5.2 Approximate Shortest Path

To compute the approximate shortest path in Γ from p to q, our strategy is to
enumerate all possible simplex sequences from p to q, use the method in Sect. 5.1
to compute a 1 + O(ε) approximation of the locally shortest path with respect
to each simplex sequence, and finally select the shortest one among these locally
shortest paths. The remaining questions are how long a simplex sequence and
how many simplex sequences we need to consider.

Consider a shortest path P in Γ from p to q. Let σ1, σ2, · · · be the simplices
in Γ in non-decreasing order of weights. We can assume that P ∩σ1 is connected.
Otherwise, we can shortcut P by joining the two connected components in P ∩σ1

by a line segment in σ1 without increasing the path cost. For a similar reason,
we can assume that P ∩ σ2 has at most two connected components. In general,
P ∩σi has at most 2i−1 connected components. This argument is best visualized
as arranging the connected components in a full binary tree with P ∩ σ1 at
the root, two nodes of P ∩ σ2 at the next level, and so on. It follows that the
simplex sequence is at most 2O(κ) long. Consequently, there are at most 22

O(κ)

simplex sequences. There are O(κ2

ε4 log2 W
ε ) pairs of vertices and Steiner points

in an extended cluster or vertex star free of skinny tetrahedra. We repeat the
approximate shortest path computation O(n · κ2

ε4 log2 W
ε ) times, invoking the
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result in Sect. 5.1 at most 22
O(κ)

times with m = 2O(κ) for each approximate
shortest path computation.

Theorem 1. Let ρ be an arbitrary constant. Let T be a simplicial complex of n
tetrahedra such that vertices have integral coordinates with magnitude at most N
and tetrahedra have integral weights in the range [1,W ]. Let κ be the number of
tetrahedra in the largest connected component of tetrahedra whose aspect ratios
exceed ρ. For all ε ∈ (0, 1) and for every pair of source and destination vertices
vs and vd in T , we can find a (1 + ε)-approximate shortest path in T from vs to
vd in O

(

22
O(κ)

nε−7 log2 W
ε log2 NW

ε

)

time.
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Abstract. We investigate the problem of succinctly representing an
arbitrary unlabeled permutation π, so that πk(i) can be computed
quickly for any i and any integer power k. We consider the problem
in several scenarios:
– Labeling schemes where we assign labels to elements and the query is

to be answered by just examining the labels of the queried elements:
we show that a label space of

∑n
i=1�n

i
� · i is necessary and sufficient.

In other words, 2 lg n bits of space are necessary and sufficient for
representing each of the labels.

– Succinct data structures for the problem where we assign labels to the
n elements from the label set {1, . . . , cn} where c ≥ 1: we show that
Θ(

√
n) bits are necessary and sufficient to represent the permutation.

Moreover, we support queries in such a structure in O(1) time in the
standard word-RAM model.

– Succinct data structures for the problem where we assign labels to the
n elements from the label set {1, . . . , cn1+ε} where c is a constant and
0 < ε < 1: we show that Θ(n(1−ε)/2) bits are necessary and sufficient
to represent the permutation. We can also support queries in such a
structure in O(1) time in the standard word-RAM model.

1 Introduction and Motivation

A permutation π is a bijection from the set {1, . . . , n} to itself. Given a permu-
tation π on an n element set, our problem is to preprocess the set, assigning a
unique label to each element, to obtain a data structure with minimum space
to support the following query: given a label i, determine πk(i) quickly. We
denote such queries by πk(). Moreover, we assume that k is bounded by some
polynomial function in n.

We are interested in succinct, or highly-space efficient data structures. Our
aim is to develop data structures whose size is within a constant factor of the
information theoretic lower bound. Designing succinct data structures is an area
of interest in theory and practice motivated by the need of storing large amount

This work was sponsored by the NSERC of Canada and the Canada Research Chairs
Program.

c© Springer-Verlag Berlin Heidelberg 2015
K. Elbassioni and K. Makino (Eds.): ISAAC 2015, LNCS 9472, pp. 49–59, 2015.
DOI: 10.1007/978-3-662-48971-0 5



50 H. El-Zein et al.

of data using the smallest space possible. For succinct representations of dictio-
naries, trees, arbitrary graphs, partially ordered sets and equivalence relations
see [1,3,5,6,11,12,14].

Permutations are fundamental in computer science and are studied exten-
sively. Several papers have looked into problems related to permutation gener-
ation [15], permuting in place [7] etc. Others have dealt with the problem of
space-efficient representation of restricted classes of permutations, like the per-
mutations representing the lexicographic order of the suffixes of a string [8,10],
or the so-called approximately min-wise independent permutations [2], which
are used for document similarity estimation. Since there are exactly n! permu-
tations, the number of bits required to represent a permutation of length n is
�lg(n!)� ∼ n lg n − n lg e + O(lg n)1 bits. Munro et al. [13] studied the space
efficient representation of general permutations where general powers can be
computed quickly. They gave a representation taking the optimal �lg(n!)�+o(n)
bits, and a representation taking ((1+ε)n lg n) bits where πk() can be computed
in constant time.

Our paper is the first to study the space-efficient representation of permuta-
tions where labels can be freely reassigned. This problem is similar to the problem
of representing unlabeled equivalence relations [5,11]. However, our problem dif-
fers from representing equivalence relations when the label space exceeds n. In
our case we must know the size of each cycle, while for equivalence relations it
is not necessary to know the exact size of the equivalence classes. Thus, as we
increase the label space we will not witness a drastic decrease in auxiliary stor-
age size. We study this problem in several scenarios; thus, showing the tradeoffs
between label space and auxiliary storage size for the stated problem. In Sect. 3,
we cover the scenario where queries are to be answered by just examining the
labels of the queried elements. We show that a label space of

∑n
i=1�n

i � · i is
necessary and sufficient. Then, we show that with a label space of n2 queries
can be answered in constant time. In Sect. 4, we cover the scenario where labels
can be assigned from the set {1, . . . , n}. We show that Θ(

√
n) bits are necessary

and sufficient to represent the permutation. We use the same data structure as
the main structure in [11]. However, we optimize it to achieve constant query
time while using only O(

√
n) bits; thus, solving an open problem from [11]. Note

that the details of this improvement are also found in the first author’s the-
sis [4]. Section 5 contains the main result of this paper. We cover the scenario
where labels can be assigned from the set {1, . . . , cn1+ε} where c is a constant
and 0 < ε < 1. We show that Θ(n(1−ε)/2) bits are necessary and sufficient to
represent the permutation, and we support queries in such a structure in O(1)
time in the standard word-RAM model.

Finally as an application to our new data structures, we give a representation
of a labeled permutation that takes s(n) + O(

√
n) bits and can answer πk() in

O(tf + ti) time, where s(n) denotes the number of bits required for a represen-
tation R to store a labeled permutation, and tf and ti are the time needed for
R to support π() and π−1(). This result improves Theorem 3.3 in [13].

1 We use lg n to denote log2 n.
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2 Definitions and Preliminaries

A permutation π is a bijection from the set {1, . . . , n} to itself, and we denote
its inverse bijection as π−1. We also extend the definition to arbitrary integer
power of π as follows:

πk(i) =

⎧

⎪

⎨

⎪

⎩

πk+1(π−1(i)) k < 0
i k = 0
πk−1(π(i)) k > 0

A permutation can be viewed as a set of disjoint cycles. Since we are working
with unlabeled permutations, we have the freedom to assign the labels in any
way. In all our labeling schemes, we give elements within the same cycle and
cycles of the same length consecutive labels. For example the elements of the
first cycle of length l will get labels from the interval [s, s + l − 1], such that
π(i) = i + 1 for i ∈ [s, s + l − 2] and π(s + l − 1) = s. The elements of the
second cycle of length l will get labels in the range [s + l, s + 2l − 1], and so
on. Thus given a label i and an integer k, to answer πk(i) it is sufficient to
compute l the length of the cycle that i belongs to, and s the smallest index of
an element that belongs to a cycle of length l. Now, it is not hard to verify that
πk(i) = s + rl + ((p + k)%l)2 where r = �(i − s)/l� and p = i − (s + rl).

Notice that the multiset formed by the cycles lengths of a given permutation
π over an n-element set will form an integer partition of the integer n. An integer
partition p of n is a multiset of positive integers that sum to n. We call these
positive integers the elements of p, and we denote by |p| this number of elements.
We say that an integer partition p of n dominates an integer partition q of m
where n > m if q is a subset of p. For example, the integer partition {5, 5, 10}
of 20 dominates the integer partition {5, 5} of 10, but not the integer partition
{4, 6} of 10. Given an integer partition p of n, we define a part q of size k to be
a collection of elements in p that sum to k. We say that an integer s fills q if
q contains �k/s� integers s and one integer k mod s. Furthermore, we say that
two parts intersect if they share at least one common element; otherwise, they
are non-intersecting. For example the integer partition {1, 4, 5} of 10 contains
the following parts: part {1} of size 1, part {4} of size 4, part {5} of size 5, part
{1, 4} of size 5, part {1, 5} of size 6, part {4, 5} of size 9 and part {1, 4, 5} of
size 10. We say that 5 fills the parts {5} and {4, 5} but not the part {1, 4, 5}.
The parts {4, 5} and {4} are intersecting, while the parts {4, 5} and {1} are
non-intersecting.

Finally, we give two observations that we will use repeatedly.

Observation 1. M not necessarily distinct integers m0, . . . ,mM−1 ordered such
that mi ≤ mi+1 in the range [0, N −1],can be represented in O(N +M) bits such
that the ith integer mi can be accessed in O(1) time.

2 We use % to denote the modulo operation.
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Observation 2. M positive integers m0, . . . ,mM−1 that sum to N can be repre-
sented in O(N +M) bits such that the ith integer mi can be accessed in O(1) time,
the partial sum

∑i
j=1 mj can be computed in O(1) time, and given an integer x we

can compute the biggest index i such that
∑i

j=1 mj ≤ x in O(1) time.

The proof of both observations is found in the appendix. Note that if we are
allowed to reorder the numbers in Observation 2, we can reduce the size of the
representation to O(

√
N) bits without compromising the constant runtime of

the stated operations.

3 Direct Labeling Scheme

In this section we cover the problem where queries are answered by computing
directly from the labels without using any auxiliary storage except for the value
of n. We show that a label space of

∑n
i=1�n

i � · i is necessary and sufficient to
represent the permutation. Moreover, we show that with a label space of n2 πk()
can be computed in constant time.

Theorem 3. Given a permutation π, a label space of
∑n

i=1�n
i � · i is necessary

and sufficient to represent the permutation.

For the proof of Theorem3 check the appendix. To answer queries in constant
time we extend the label space to n2. Then we assign labels from the set of
integers in the range [0, n − 1] for all the elements in cycles of length 1, and
labels from the set of integers in the range [n(i − 1) + (r − 1)i, n(i − 1) + ri − 1]
for the elements in the rth cycle of length i, where 1 ≤ r ≤ �n/i�. Given a label
x, to answer a query πk(x) find l = �x/n� + 1. Next, compute s = (l − 1)n,
r = �(x − s)/l� and p = x − (s + rl), then return s + rl + ((p + k)%l).

Theorem 4. Given a permutation π, we can assign to each of the elements a
label in the range of {1, . . . , n2} such that πk() can be computed in constant time
by looking only at the labels.

4 Succinct Data Structures with Label Space n

In this section we consider the scenario where the n elements are to be assigned
labels in the range 1 to n. The queries can be answered by looking at an auxiliary
data structure. Moreover, we have the freedom to assign the labels in any way.

Following [11], the information theoretic lower bound for the representation of
a permutation is the number of partitions of n, which by the Hardy-Ramanujan
formula [9] is asymptotically equivalent to 1

4n
√
3
eπ

√
2n
3 . Thus the information

theoretic lower bound for representing a permutation is Θ(
√

n) bits of space.
We will use the same data structure as the main structure in [11], however

we will optimize it to achieve constant query time while using only O(
√

n) bits.
Given π let k be the number of distinct cycle sizes in π. For i = 1 to k, let si
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be the distinct sizes of the cycles, and let ni be the number of cycles of size si.
Order the cycles in non-decreasing order by γi = sini so that for i = 1 to k − 1,
sini ≤ si+1ni+1. Notice that since

∑k

i=1
sini = n and sini ≥ i for i = 1, . . . , k, (1)

k is at most
√

2n. The primary data structure is made up of two sequences:

– the sequence δ that consists of δ1 = s1n1 and δi = sini − si−1ni−1, for
i = 2, . . . , k and

– the sequence n that consists of ni, for i = 1, . . . , k.

Elements of the two sequences are represented in binary. Since the length of
each element may vary, we store two other sequences that shadow the primary
sequences. The shadow sequences have a 1 at the starting point of each element
in the shadowed sequence and a 0 elsewhere. Also store a select structure on
the two shadow sequences in order to identify the 1s quickly. It is proved in [11]
these sequences can be stored in O(

√
n) bits.

The sequence δ gives an implicit ordering of the elements. Assign the first
s1n1 labels to the elements of the cycles with length s1, the elements of the next
n2 cycles are assigned the next s2n2 labels and so on.

Denote by the predecessor of an element x to be max{j |
∑j

i=1 sini < x}.
Store an array A, where A[i] = max{j |

∑j
t=1 stnt ≤ i(i + 1)/2}, for i = 1 to√

2n. Next, we prove a modified version of Lemma 2 in [11].

Lemma 1. The predecessor p(x) of an integer x in the sequence
∑i

t=1 stnt,
i = 1 to k is in the range [A[�

√
2x� − 1], A[�

√
2x� − 1] + 5].

Proof. Let i = �
√

2x� − 1. Without loss of generality assume that i ≥ 6, since
for x < 25 we can store p(x) explicitly in O(lg n) bits. Notice that

i(i + 1)/2 ≤ (
√

2x − 1)
√

2x/2 ≤ x

and

x ≤
√

2x(
√

2x + 1)/2 ≤ (i + 2)(i + 3)/2

For j = A[i] + 1,
∑j−1

t=1 stnt ≤ i(i + 1)/2, so j − 1 ≤ i and j ≤ i + 1.
Since

∑j
t=1 stnt > i(i + 1)/2, sjnj ≥ i(i + 1)/(2j) ≥ i/2. Hence,

∑j+5
t=1 stnt ≥

(i + 2)(i + 3)/2 ≥ x. ��

The actual value of p(x) can be obtained by checking at most six numbers.
Moreover, A can be stored using O(

√
n) bits using the method described in

Observation 1.
In the standard word-RAM model, computing

√
x is not a constant time

operation. The standard Newton’s iterative method uses O(lg lg n) operations.
Following [11], we can use a look-up to precomputed tables and finds

√
x in
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constant time. We use two tables, one when the number of bits up to the most
significant bit of x is odd, denoted by O, and one when the number of bits is even,
denoted by E. For i = 1, . . . , �

√
2n�, we store in E[i] the value of �

√
i2�lg i��,

and in O[i] the value of �
√

i2�lg i�−1�. E and O can be stored in O(
√

n) bits by
storing them using the method described in Observation 1.

Lemma 2. For i ≤ n, �
√

i� can be computed in constant time using a precom-
puted table of O(

√
n) bits.

For each i, where at least one of δi’s bits locations in δ is a multiple of (ε lg n),
store the partial sum value

∑i
j=1 (sjnj) and the value of sini. Moreover, for every

possible sequence of δ values δ1, δ2, . . . , δi of length (ε lg n) and its corresponding
shadow sequence, store in a table T the values i and

∑i
j=1 (

∑j
k=1 δk). To compute

∑i
j=1 (sjnj) for an arbitrary index i, find the biggest index k ≤ i that has it’s

partial sum value stored. Notice that
∑i

j=1 (sjnj) =
∑k

j=1 (sjnj)+(i−k)sknk +
∑i

j=k+1 (
∑i

l=k+1 δl). Since these values can be obtained using table lookup on T ,
we can compute the partial sum at an arbitrary index in constant time. Moreover,
we can compute the value of sini for an arbitrary index i by computing the partial
sum at i−1 and subtracting it from the partial sum at i. Finally, we can compute
si by computing sini and dividing it by ni. By choosing ε < 1/4, the size of T
becomes o(

√
n) bits.

Answering Queries: Given a label x, to compute πk(x) we first find the
predecessor p(x) of x by querying A and checking at most 6 different values.
Next we compute the partial sum value s =

∑p(x)−1
i=1 (nisi). Then, compute

r = �(x− s)/sp(x)� and p = x− (s+ rsp(x)), then return s+ rsp(x) +((p+k)%l).

Theorem 5. Given an unlabeled permutation of n elements, Θ(
√

n) bits are
necessary and sufficient for storing the permutation if each element is to be
given a unique label in the range {1, 2, . . . , n}. Moreover, πk() can be computed
in O(1) time in such a structure.

5 Succinct Data Structures with Label Space cn1+ε

In this section we consider the scenario where the n elements are to be assigned
labels in the range 1 to cn1+ε where c is a constant and 0 < ε < 1. As in Sect. 4
we assign an implicit ordering of the elements, and queries can be answered by
looking at an auxiliary data structure.

Given π, we divide the cycles in π into four different groups and handle each
group appropriately. For i = 1 to k3, let si be the distinct sizes of the cycles of
size ≤ n(1+ε)/2, and let ni be the number of cycles of size si. Without loss of
generality, assume that:

– γi = sini ≤ (
√

cn(1+ε)/2)/2 = η, for 1 ≤ i ≤ k1.
– si ≤ n(1−ε)/2 and γi > η, for k1 < i ≤ k2.
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– n(1−ε)/2 < si ≤ n(1+ε)/2 and γi > η, for k2 < i ≤ k3.

Let lk3+1, . . . , lk4 be the size of the cycles that are bigger than n(1+ε)/2. Note
that the li (i = k3 + 1 to k4) values are not necessarily unique.

Case 1: Reserve the first (cn1+ε)/4 labels to handle all possible cycle sizes when
γi ≤ η. Assign labels to the elements in the cycles that satisfy this criteria in a
similar method to the labeling scheme described in Theorem 4. To be more spe-
cific, we assign labels from the set of integers in the range [0, η − 1] for all the
elements in cycles of length 1, and assign labels from the set of integers in the
range [η(j −1), ηj −1] for all the elements in cycles of length j, where 2 ≤ j ≤ η.
This covers all the elements of the cycles of sizes s1, . . . , sk1 , and increases the
label space by at most η2 = (cn1+ε)/4. Let B1 = (cn1+ε)/4.

Case 2 (k1 + 1 ≤ i ≤ k2): Order the si values in increasing order. Make sure
that all cycles of size si, fill a part whose length is ciη a multiple of η. Notice that
(k2 −k1) < n/η since γi > η, so the label space will increase by at most n. Since
∑k2

i=k1+1(ci) ≤ (2n)/η = O(n(1−ε)/2), we can store the ci values in O(n(1−ε)/2)
bits using the method described in Observation 2. Moreover, we store a bit vector
ψ of size n(1−ε)/2 to identify the si values, and we store a select structure on
ψ to identify the 1s quickly. Assign labels in the range [B1, B1 + c(k1+1)η − 1]
to the elements in cycles of size s(k1+1), then assign the next c(k1+2)η labels to
elements in cycles of size s(k1+2), and so on. Let B2 = B1 +

∑k2
j=k1+1 cjη.

Case 3 (k2 + 1 ≤ i ≤ k3): Make sure that all cycles of size si, fill a part whose
length is ciη a multiple of η. As in case 2, store the ci values in O(n(1−ε)/2) bits
using the method described in Observation 2. To identify the si values: order
them in increasing order of ri = si%(16n(1−ε)/2/c) and store the ri values in
O(n(1−ε)/2) bits using the method described in Observation 1, then store the
value of qi = si/(16n(1−ε)/2/c) ≤ (cnε/16) in the label of each element that is in
a cycle of size si. Now si = qi(16n(1−ε)/2/c)+ri. Let β1 be equal to

∑k3
i=k2+1 ciη.

Assign labels in the range

[

B2 + qi2�lg(β1)� +
i−1
∑

j=k2+1

cjη,B2 + qi2�lg(β1)� +
i

∑

j=k2+1

cjη − 1
]

to the elements in the cycles of size si. The label space will increase by at most
(cnε/16)2�lg(β1)� +β1 ≤ (cn1+ε)/4+O(n). Let B3 = B2 + (cnε/16)2�lg(β1)� +β1.

Case 4 (k3 + 1 ≤ i ≤ k4): For the cycles of length li, make sure that each cycle
fills a part whose length is ciη a multiple of η. As in the previous cases, store
the ci values in O(n(1−ε)/2) bits using the method described in Observation 2.
To identify the li values: order them by ri = (li%η)%(8n(1−ε)/2/

√
c) and store

the ri values in O(n(1−ε)/2) bits using the method described in Observation 1,
then store the value of qi = (li%η)/(8n(1−ε)/2/

√
c) ≤ (cnε/16) in the label of

each element that is in a cycle of size li. Now li = qi(8n(1−ε)/2/
√

c)+ri+(ci−1)η.
Let β2 be equal to

∑k4
i=k3+1 ciη. Assign labels in the range
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[

B3 + qi2�lg(β2)� +
i−1
∑

j=k3+1

cjη,B3 + qi2�lg(β2)� +
i

∑

j=k3+1

cjη − 1
]

to the elements in the cycle of size li.

The total size of the structures used is O(n(1−ε)/2) bits, and the total address
space increased to at most (3cn1+ε)/4 + O(n) ≤ cn1+ε as required.

Answering Queries: Given a label x, to compute πk(x) we distinguish between
four different cases:

Case 1 x < B1: Compute the value of l = �x/η�+1, s = (l−1)η, r = �(x−s)/l�,
and p = x − (s + rl). Then, return s + rl + ((p + k)%l).

Case 2 B1 ≤ x < B2: Compute the value m = (x − B1)/η. Then get the
biggest index i such that

∑i
j=k1+1 cj ≤ m. This operation can be done in O(1)

time using the structure from Observation 2. Next, find l the index of the ith one
in ψ; l is the size of the cycle that x belongs to. Compute s = B1 +

∑i−1
j=k1+1 cjη,

r = �(x − s)/l�, and p = x − (s + rl). Then, return s + rl + ((p + k)%l).

Case 3 B2 ≤ x < B3: Compute the value m = ((x − B2)%β1)/η. Then
get the biggest index i such that

∑i
j=k2+1 cj ≤ m. Next calculate qi =

�(x − B2)/2�lg(β1)�� and l = qi(16n(1−ε)/2/c) + ri; l is the size of the cycle that
x belongs to. Compute s = B2 + qi2�lg(β1)� +

∑i−1
j=k2+1 cjη, r = �(x − s)/l�, and

p = x − (s + rl). Then, return s + rl + ((p + k)%l).

Case 4 B3 ≤ x: Compute the value m = ((x − B3)%β2)/η. Then get the biggest
index i such that

∑i
j=k3+1 cj ≤ m. Next calculate qi = �(x − B3)/2�lg(β2)�� and

l = qi(8n(1−ε)/2/
√

c) + ri + (ci − 1)η; l is the size of the cycle that x belongs to.
Compute s = B3+qi2�lg(β2)�+

∑i−1
j=k3+1 cjη, r = �(x−s)/l�, and p = x−(s+rl).

Then, return s + rl + ((p + k)%l).

All operations used take constant time, so πk(x) can be computed in O(1)
time.

Theorem 6. Given an unlabeled permutation of n elements, Θ(n(1−ε)/2) bits
are sufficient for storing the permutation if each element is to be given a unique
label in the range {1, . . . , cn1+ε} for any constant c > 1 and ε < 1. Moreover,
πk() can be computed in O(1) time in such a structure.

Note that ε doesn’t need to be a constant. By setting ε = α + β lg lg n/lg n
where α and β are constants, and 0 < α < 1 we get the following theorem:

Theorem 7. Given an unlabeled permutation of n elements, Θ(n(1−α)/2/lgβ/2 n)
bits are sufficient for storing the permutation if each element is to be given a unique
label in the range {1, . . . , cn1+α lgβ n} for any constant c, α, β where 0 < α < 1.
Moreover, πk() can be computed in O(1) time in such a structure.
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6 Lower Bounds

In this section we provide lower bounds on the auxiliary data size as the label
space increases.

6.1 Lower Bound for Auxiliary Data with Label Space cn

In [5] El-Zein et al. showed that for the problem of representing unlabeled equiv-
alence relations, increasing the label space by a constant factor causes the size
of the auxiliary data structure to decrease from O(

√
n) to O(lg n) bits.

In contrast to the problem of representing unlabeled equivalence relations, in
this section we show that for the problem of representing unlabeled permutations
increasing the label space by a constant factor will not affect the size of the
auxiliary data structure asymptotically.

For any integer c > 1, let Scn be the set of all partitions of �cn� and Sn the
set of all partitions of n. Without loss of generality assume that

√
n is an integer

that is divisible by c. While one partition of cn can dominate many partitions
of n, we argue that at least

( c
√

n√
n/c

)

/
(

√
n√

n/c

)

partitions of cn are necessary to
dominate all partitions of n. Let S be the smallest set of partitions of cn that
dominates all the partitions of n. We claim that:

Lemma 3. |S| ≥
( c

√
n√

n/c

)

/
(

√
n√

n/c

)

. The proof of Lemma 3 is found in the appen-
dix. The information theoretic lower bound for the space needed to represent a
permutation of size n once labels are assigned from the set {1, . . . , cn} is

lg(|S|) ≥ lg(
(

c
√

n√
n/c

)

/

( √
n√

n/c

)

)

∈ Ω(
√

n).

Theorem 8. Given an unlabeled permutation of n elements, Θ(
√

n) bits are
necessary and sufficient for storing the permutation if each element is to be
given a unique label in the range {1, . . . , cn} for any constant c > 1. Moreover,
πk() can be computed in O(1) time in such a structure.

6.2 Lower Bound for Auxiliary Data with Label Space cn1+ε

Using techniques that are similar to the techniques presented in the previous
subsection, we show that for the problem of representing unlabeled permutations
an auxiliary data structure of size O(n(1−ε)/2) bits is necessary when the label
space is cn1+ε, where c is any constant and 0 < ε < 1.

Denote by Scn1+ε the set of all partitions of cn1+ε and by Sn the set of
all partitions of n. We argue that at least

( (c+1)n(1+ε)/2

n(1−ε)/2/(c+1)

)

/
(cn(1+ε)/2/(c+1)

n(1−ε)/2/(c+1)

)

are
necessary to dominate all partitions of n. Let S be the smallest set of partitions
of cn1+ε that dominates all partitions of n. We claim that:
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Lemma 4. |S| ≥
( (c+1)n(1+ε)/2

n(1−ε)/2/(c+1)

)

/
(cn(1+ε)/2/(c+1)

n(1−ε)/2/(c+1)

)

. The proof of Lemma 4 is
found in the appendix. The information theoretic lower bound for space to repre-
sent a permutation of size n once labels are assigned from the set {1, . . . , cn1+ε} is

lg(|S|) ≥ lg(
(

(c + 1)n(1+ε)/2

n(1−ε)/2/(c + 1)

)

/

(

cn(1+ε)/2/(c + 1)
n(1−ε)/2/(c + 1)

)

)

∈ Ω(n(1−ε)/2).

Theorem 9. Given an unlabeled permutation of n elements, Θ(n(1−ε)/2) bits
are necessary and sufficient for storing the permutation if each element is to
be given a unique label in the range {1, . . . , cn1+ε} for any constant c > 1 and
ε < 1. Moreover, πk() can be computed in O(1) time in such a structure.

7 Applications

As an application to our data structures, we give a representation of a labeled
permutation that takes s(n) + O(

√
n) bits and can answer πk() in O(tf + ti)

time, where s(n) denotes the number of bits required for a representation R to
store a labeled permutation, and tf and ti are the time needed for R to support
π() and π−1().

This result improves Theorem 3.3 in [13]: Suppose there is a representation R
taking s(n) bits to store an arbitrary permutation π on {1, . . . , n}, that supports
π() in time tf , and π−1() in time ti. Then there is a representation for an
arbitrary permutation on {1, . . . , n} taking s(n)+O(n lg n/ lg lg n) bits in which
πk() can be supported in tf + ti + O(1) time, and one taking s(n) + O(

√
n lg n)

bits in which πk() can be supported in tf + ti + O(lg lg n) time.

Theorem 10. Suppose there is a representation R taking s(n) bits to store an
arbitrary permutation π on {1, . . . , n}, that supports π() and π−1() in time tf
and ti. Then there is a representation for an arbitrary permutation on {1, . . . , n}
taking s(n) + O(

√
n) bits in which πk() can be supported in tf + ti + O(1) time.

Proof. Given π, treat it as an unlabeled permutation and build the data struc-
ture from Theorem 5 on it. Call this structure P . Notice that the bijection
between the labels generated by P and the real labels of π form a permuta-
tion. Store this permutation using the given scheme in a structure P ′. Now
πk(i) = π−1

P ′ (πk
P (π1

P ′(i))) can be computed in tf + ti + O(1) time, and the total
space used is s(n) + O(

√
n) bits. ��

8 Conclusion

We have provided a complete breakdown for the label space-auxiliary storage
size tradeoff for the problem of representing unlabeled permutations. As there is
a huge body of research in ‘labeling schemes’, investigation into such a tradeoff
for other problems maybe interesting. Moreover as an application to our new
data structures, we showed how to improve the general representation of permu-
tations. Given that permutations are fundamental in computer science, we feel
that our structures will find applications in many other scenarios.
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Abstract. In this paper we investigate the top-k-selection problem, i.e.
to determine and sort the top k elements, in the dynamic data model.
Here dynamic means that the underlying total order evolves over time,
and that the order can only be probed by pair-wise comparisons. It is
assumed that at each time step, only one pair of elements can be com-
pared. This assumption of restricted access is reasonable in the dynamic
model, especially for massive data set where it is impossible to access
all the data before the next change occurs. Previously only two special
cases were studied [1] in this model: selecting the element of a given rank,
and sorting all elements. This paper systematically deals with k ∈ [n].
Specifically, we identify the critical point k∗ such that the top-k-selection
problem can be solved error-free with probability 1 − o(1) if and only if
k = o(k∗). A lower bound of the error when k = Ω(k∗) is also determined,
which actually is tight under some conditions. In contrast, we show that
the top-k-set problem, which means finding the top k elements without
sorting them, can be solved error-free with probability 1 − o(1) for all
1 ≤ k ≤ n. Additionally, we consider some extensions of the dynamic
data model and show that most of these results still hold.

1 Introduction

Sorting, a fundamental primitive in algorithms, has been an active research topic
in computer science for decades. In the era of big data, it is the cornerstone of
numerous vital applications – Web search, online ads, and recommendation sys-
tems to name but a few. While sorting has been extensively studied, little is
known when the data is dynamic. Actually, dynamic data is common in prac-
tical applications: the linking topology of Web pages, the friendship network of
Facebook, the daily sales of Amazon, and so on, all keep changing. The basic
challenge in dealing with dynamic, massive data is that the access to the data
is too restricted to catch the changes.
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For example, it is impossible to get an exact snapshot of Web, and a third-
party vendor can query the Facebook network only via a rate-limited API. As
a result, this paper is devoted to studying the sorting problem on dynamic,
access-restricted data.

In the seminal paper [1], Anagnostopoulos et al. formulated a model for
dynamic data as follows. Given a set U of n elements, at every discrete time t,
there is an underlying total order πt on U . For every t ≥ 1, πt is obtained from
πt−1 by sequentially swapping α random pairs of consecutive elements, where α
is a constant number. The only way to probe πt is querying the relative rank of
ONE pair of elements in U at every time step. The goal is to learn about the
true order πt. Obviously, it is impossible to always exactly find out the orders, so
our objective is that at any time t, the algorithm estimates the correct answer
(or an approximate answer) with high probability. In this paper, “with high
probability” and “with probability 1 − o(1)” are used interchangeably.

Anagnostopoulos et al. [1] proved that the Kendall tau distance between
πt and π̃t, defined in Sect. 2 and denoted by KT(πt, π̃t), is lower-bounded by
Ω(n) with high probability at every t, where π̃t is the order estimated by any
algorithm. This lower bound is nearly tight, since they proposed an algorithm
with KT(πt, π̃t) = O(n ln lnn). Furthermore, they designed an algorithm that
with high probability, exactly identifies the element of a given rank.

Though elegant, this model is too restricted: the evolution is extremely slow
since α is constant, and is extremely local since only consecutive elements are
swapped. Hence, it is extended in this paper by allowing α to be a function of
n, and is called the consecutive-swapping model. We further generalize it to the
Gaussian-swapping model by relaxing the locality condition.

Inspired by [1], we study the general top-k-selection problem: at every time
t, figure out the top k elements and sort them, where k ∈ {1, 2, ...n}. Its two
extreme cases where k = n and k = 1 correspond to the sorting problem and the
selection problem in [1], respectively. The error-free solvability of the selection
problem suggests that the error in solving the top-k-selection problem may vanish
as k decreases, so it is natural to investigate the critical point where the error
vanishes and to find the optimal solution beyond the critical point. Another
motivation lies in the wide application of top-k-selection, also known as partial
sorting. It has been used in a variety of areas such as Web and multimedia
search systems and distributed systems, where massive data has to be dealt
with efficiently [2].

Additionally, we consider a closely related top-k-set problem: at every time t,
identify the set of the top k elements. The top-k-set problem is weaker in that it
does not require to sort the elements. In the static data setting, when a selection
algorithm identifies the kth element, it automatically determines the set of the
top k elements (see for example Knuth’s book [3]). However, this is not apparent
in the dynamic data model.

Our Contributions. The main results of this paper lie in two aspects in the
consecutive-swapping model. First, it is shown that the top-k-set problem can
be solved error-free with high probability for any 1 ≤ k ≤ n. Second and more
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important, k∗ = Θ(
√

n
α ) is proven to be the critical point of k for the top-k-

selection problem, which means that this problem can be solved error-free with
high probability if and only if k = o(k∗).

In addition, for k beyond k∗, we obtain tight lower bounds of KT(π̃t
k, πt

k),
the Kendall tau distance between the true order πt

k and the algorithmically
estimated order π̃t

k of the top k elements. Specifically, if k = Ω(
√

n
α ), then for

any algorithm, KT(π̃t
k, πt

k) �= 0 with constant probability. When k = ω(
√

n) and
α = O(1), for any algorithm, KT(π̃t

k, πt
k) = Ω(k2

n ) with high probability at every
t. These lower bounds can be reached by ONE algorithm with parameter k, (see
Algorithm 2), hence being tight.

The results of the top-k-selection problem in the consecutive-swapping model
are summarized in Table 1. Most of the results are also generalized to the Gaussian-
swapping model with constant α, as summarized in Table 2.

Table 1. Results in the consecutive-swapping model

k X � KT(π̃t
k, πt

k)

o(
√

n
α
) Pr(X = 0) = 1 − o(1)

Θ(
√

n
α
) Pr(X = 0) = Θ(1) = Pr(X > 0)

ω(
√

n
α
) Pr(X = O( k2α

n
)) = 1 − o(1)a

In a case, this upper bound of X is tight for
constant α. See Sect. 3

Table 2. Results in the Gaussian-swapping model

k X � KT(π̃t
k, πt

k)

o(
√

n
ln0.25 n

) Pr(X = 0) = 1 − o(1)

Θ(
√

n
ln0.25 n

) Pr(X = 0) = Θ(1)

ω(
√

n
ln0.25 n

) Pr(X = O( k2 ln n
n

)) = 1 − o(1)

Related Work. The sorting/selection problem has been actively investigated
for decades [2,4–6], but the study of this problem in dynamic data setting was
initiated very recently [1]. In [1], Anagnostopoulos et al. considered two special
cases of the top-k-selection problem, namely k = n and k = 1, in the consecutive-
swapping model with constant α. Their work has inspired the problem and the
data model in this paper. The theoretical results in [1] were experimentally
verified by Moreland [7] in 2014.

Dynamic data is also studied in the graph setting. [8] considered two clas-
sical graph connectivity problems (path connectivity and minimum spanning
trees) where the graph keeps changing over time and the algorithm, unaware of
the changes, probes the graph to maintain a path or spanning tree. Bahmani
et al. [9] designed an algorithm to approximately compute the PageRank of
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evolving graphs, and Zhuang et al. [10] considered the influence maximization
problem in dynamic social networks. On the other hand, Labouseur et al. [11]
and Ren [12] dealt with the data structure and management issues, respectively,
enabling efficient query processing for dynamic graphs.

It is worth noting that our dynamic data model is essentially different from
noisy information model [13,14]. In computing with noisy information, the main
difficulty is brought about by misleading information. On the contrary, in our
model, the query results are correct, while the difficulty comes from the restricted
access to the dynamic data. The ground truth can be probed only by local
observation, so it is impossible to capture all changes in the data. The key issue
is to choose query strategies in order to approximate the real data with high
probability.

In the algorithm community, there are many other models dealing with
dynamic and uncertain data, from various points of view. However, none of them
captures the two crucial aspects of our dynamic data model: the underlying data
keeps changing, and the data exposes limited information to the algorithm by
probing. For example, data stream algorithms [15] deal with a stream of data,
typically with limited space, but the algorithms can observe the entire data that
has arrived; local algorithms on graphs [16,17] probe the underlying graphs by a
limited number of query, but typically the graphs are static; in online algorithms
[18], though the data comes over time and is processed without knowledge of the
future data, the algorithms know all the data up to now; the multi-armed-bandit
model [19] tends to optimize the total gain in a finite exploration-exploitation
process, while our framework concerns the performance of the algorithm at every
time step in an infinite process.

The rest of the paper is organized as follows. In Sect. 2, we provide the formal
definition of the models and formulate the problems. Section 3 is devoted to
solving the top-k-set problem and the top-k-selection problem in the consecutive-
swapping model. In Sect. 4, the problems are studied in the Gaussian-swapping
model. Section 5 concludes the paper. Due to the limitation of space, all proofs
of the theorems will be omitted.

2 Preliminaries

We now formalize our dynamic data model.
Let U = {u1, ..., un} be a set with n elements, and U be the set of all total

orders over U , that is, U = {π : U → [n] |∀i �= j, π(ui) �= π(uj)}, where
[n] � {1, 2, ...n}. For any π ∈ U and k ∈ [n], we define π−1(k) to be the kth
element and π(u) to be the rank of u relative to π. If π(u) < π(v), we say u >π v
or simply by u > v when π can be inferred from context.

In this paper, we consider the process where the order on U gradually changes
over time. Time is discretized into steps sequentially numbered by nonnegative
integers. At every time step t, there is an underlying total order πt on U . For
every t ≥ 1, πt is obtained from πt−1 by sequentially swapping α random pairs of
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consecutive elements, where α is an integer function of n. This is our consecutive-
swapping model.

Now we introduce the Gaussian-swapping model whose defining feature is
that non-consecutive pairs can be swapped in the evolution. Specifically, for
every t ≥ 1, πt is still obtained from πt−1 by sequentially swapping α pairs of
elements. However, each pair (not necessarily consecutive) is selected as follows,
rather than uniformly randomly. First, d is sampled from a truncated Gaussian
distribution Pr(D = d) = βe

−d2
2 where β is the normalizing factor. Then, a pair

of elements whose ranks differ by d is chosen uniformly randomly from all such

pairs. Thus, the overall probability that a pair (u, v) gets swapped is βe
−d2
2

n−d ,
where d is the difference between the ranks of u and v, related to πt−1.

In either model, at any time step t, the changes of πt are unknown by the
algorithms running on the data. The only way to probe the underlying order
is by comparative queries. At any time t, given an arbitrary pair of elements
u, v ∈ U , an algorithm can query whether πt(u) > πt(v) or not. At most one
pair of elements can be queried at each time step.

Now we define I-sorting problem for any index set I ⊆ [n]: at each time step t,
find out all the elements whose ranks belong to I, and sort them according to πt.
The concept of I-sorting problem unifies both the sorting problem (|I| = n) and
the selection problem (|I| = 1). This paper mainly studies the top-k-selection
problem, a special case of the I-sorting problem with I = [k] for k ∈ [n]. For
convenience, in this paper we use notation πt

k to represent the true order on the
top k elements at time t. A closely-related problem, called the top-k-set problem,
is also studied. It requires to find out (πt)−1([k]) at each time t, without sorting
them.

We then define the performance metrics of the algorithms. In the top-k-set
problem, we want to maximize the probability that the output set is exactly the
same as the true set for sufficiently large t. In the top-k-selection problem, we
try to minimize the Kendall tau distance between the output order and the true
order on the top k elements, for sufficiently large t. Since an algorithm solving
the top-k-selection problem may output an order on a wrong set, we extend
the definition of Kendall tau distance to orders on different sets. Specifically,
given total orders σ on set V and δ on set W with |V | = |W |, their Kendall
tau distance is defined to be KT(σ, δ) = |{(x, y) ∈ V 2 : σ(x) < σ(y) and (x �∈
W or y �∈ W or δ(x) > δ(y))}|. Intuitively, it is the number of pairs that either
are not shared by W and V or are ordered inconsistently by the two total orders.

Throughout this paper, one building block of the algorithms is the ran-
domized quick-sort algorithm. We describe the randomized quick-sort algorithm
briefly. Given an array, it works as follows: (1) Uniformly randomly pick an ele-
ment, called a pivot, from the array. (2) Compare all elements with the pivot,
resulting in two sub-arrays: one consisting of all the elements smaller than the
pivot, and the other consisting of the other elements except the pivot. (3) Recur-
sively apply steps 1 and 2 to the two sub-arrays until all the sub-arrays are
singletons.
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3 Consecutive-Swapping Model

In this section, we consider the top-k-set problem and the top-k-selection prob-
lem in the consecutive-swapping model. For the top-k-set problem, Sect. 3.1
shows an algorithm which is error-free with probability 1 − o(1) for arbitrary
k. Section 3.2 is devoted to the top-k-selection problem. It presents an algorithm
that is optimal when α is constant or k is small.

3.1 An Algorithm for the Top-k-set Problem

The basic idea is to repeatedly run quick-sort over the data U , extract the set
of the top k elements from the resulting order, and output this set during the
next run. But an issue should be addressed: since the running time of quick-sort
is Ω(n ln n) with high probability, the set of the top k elements will change with
high probability during the next run, leading to out-of-date outputs. Because
the rank of every element does not change too much during the next run of
quick-sort, a solution is to parallel sort a small subset of U that contains the top
k elements with high probability.

Algorithm 1. Top-k-set
Input: A set U of n elements
Output: ˜T

1: Initialize π̃, L, C, π̃C , and ˜T arbitrarily
2: while (true) do
3: Execute in odd steps: /*QS1*/
4: π̃ ← quick sort(U)
5: L ← π̃−1([k − cα lnn]) and C ← π̃−1([k + cα lnn]) \ L /*The constant c will

be determined in the proof of Theorem 1*/
6: Execute in even steps: /*QS2*/
7: π̃C ← quick sort(C)

8: ˜T ← L
⋃

π̃−1
C ([cα lnn])

9: end while

Specifically, the algorithm Top-k-set consists of two interleaving procedures
(denoted by QS1 and QS2, respectively), each of which restarts once it termi-
nates. In the odd steps, QS1 calls quick-sort to sort U , preparing two sets L and
C. The set L consists of the elements that will remain among top k during the
next run of QS1 with high probability, while C contains the uncertain elements
that might be among top k in this period. Then, QS2 will sort the set C com-
puted by the last run of QS1 to produce the estimated set of top k elements. At
any time t, the output ˜Tt of the algorithm is the set ˜T computed by the previous
run of QS2.

Theorem 1 shows that Algorithm 1 is error-free with high probability.
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Theorem 1. Assume that α = o(
√

n
lnn ). For any k ∈ [n], Pr( ˜Tt = (πt)−1([k])) =

1 − o(1), where ˜Tt is the output of Algorithm1 at time t, πt is the true order on
U at time t, and t is sufficiently large.

The basic idea of the proof lies in two aspects. First, with high probability, the
estimated rank of every element with respect to π̃ is at most O(α ln n) away
from the true rank, implying that all the elements in L are among top k and
all top k elements are in L

⋃

C. Second, with high probability, the kth element
of U does not swap throughout sorting C, so the set of top k elements remains
unchanged and is exactly contained in ˜T . The detailed proof will be omitted.

3.2 An Algorithm for the Top-k-selection Problem

Now we present an algorithm to solve the top-k-selection problem. The basic
idea is to repeatedly run quick-sort over the data U , extracting a small subset
that includes all the elements that can be among top k during the next run. To
exactly identify the top k elements in order, the small set is sorted and the order
of the top k elements is produced accordingly. Like in designing the top-k-set
algorithm, there is also an issue to address: since sorting the small set takes time
Ω(k ln k), the order of the top k elements will soon become out of date. Again
note that with high probability the rank of each element does not change too
much during sorting the small set, so the order of the top k elements can be
regulated locally and keeps updated.

Specifically, Algorithm 2 consists of four interleaving procedures (QS1, QS2,
QS3, and Local-sort), each of which restarts once it terminates. At the (4t+1)-th
time steps, QS1 invokes a quick-sort on U , preparing a set C of size k+O(α ln n)
which with high probability, contains all the elements among top k during the
next run of QS1. At the (4t+2)-th time steps, QS2 calls another quick-sort on the
latest C computed by QS1, producing a set P of size k. With high probability,
the set P exactly consists of the top k elements of U during the next run of
QS2. At the (4t+3)-th time steps, the other quick-sort is invoked by QS3 on the
latest P computed by QS2, periodically updating the estimated order over P .
The resulting order is actually close to the true order over P during the next run
of QS3. Finally, at the (4t)-th time steps, an algorithm Local-sort is executed on
the total order over P that is produced by the last run of QS3, so as to locally
regulate the order. At any time t, the output π̃t

k of Algorithm 2 is the last π̃k

computed by Local-sort.
The main idea of Algorithm 3 (Local-sort) is to regulate the order over P

block by block. Since block-by-block processing takes linear time, the errors can
be corrected in time and few new errors will emerge during one run of Algo-
rithm3. Considering that the elements may move across blocks, it is necessary
to make the blocks overlap. Actually, for each j, the element of the lowest rank
in the j-th block is found, regarded as the j-th element of the final order, and
removed from the block. The rest elements of the j-th block, together with the
lowest-ranked element in P (according to the latest order produced by QS3)
that has not yet been processed, forms the (j + 1)-th block. The element of the
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Algorithm 2. Top-k-selection
Input: A set U of n elements
Output: π̃k

1: Let t be the time
2: Initialize π̃, C, π̃C , P, π̃P , and π̃k arbitrarily
3: while (true) do
4: Execute in t ≡ 1(mod 4) steps /*QS1*/
5: π̃ ← quick sort(U)
6: C ← π̃−1([k + c′α lnn]) /*The constant c′ will be determined in the proof of

Theorem 2*/
7: Execute in t ≡ 2(mod 4) steps /*QS2*/
8: π̃C ← quick sort(C)
9: P ← π̃−1

C ([k])
10: Execute in t ≡ 3(mod 4) steps /*QS3*/
11: π̃P ← quick sort(P )
12: Execute in t ≡ 0(mod 4) steps /*Local-sort*/
13: π̃k ← Local-sort(P, π̃P , 4c+1) /*The constant c will be determined in the proof

of Theorem 2*/
14: end while

Algorithm 3. Local-sort
Input: A set P ; an order π over P ; an integer c
Output: π̃

1: m ← |P |
2: B1 ← π−1([c]) /* Define the first block */
3: π̃−1(1) ← Maximum-Find(B1)
4: j = 2
5: while (c + j − 1 ≤ m) do
6: Bj ← (Bj−1\π̃−1(j − 1))

⋃

π−1(c + j − 1) /* Define the j-th block */
7: π̃−1(j) ← Maximum-Find(Bj)
8: j = j + 1
9: end while
10: Be ← Bj−1 /*Deal with the final block*/
11: while |Be| ≥ 1 do
12: π̃−1(j) ← Maximum-Find(Be)
13: Be ← Be\π̃−1(j)
14: j = j + 1
15: end while

lowest rank in each block is found by calling Algorithm4, which repeatedly runs
sequential comparison. Both Algorithms 3 and 4 are self-explained, so detailed
explanation is omitted here.

Theorem 2. Assume α = o(
√

n
lnn ) and k = O(( n

α lnn )1−ε), where ε > 0. Let π̃t
k

be the output of Algorithm2 and πt
k be the true order over the top k elements at

time t. For sufficiently large t, we have that:
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Algorithm 4. Maximum-Find
Input: B
Output: umax

1: umax ← B(1)
2: j = 2
3: while (j ≤ |B|) do
4: if umax < B(j) then
5: umax ← B(j)
6: end if
7: j = j + 1
8: end while

1. If k2α = o(n), Pr(KT(π̃t
k, πt

k) = 0) = 1 − o(1),
2. If k2α = Θ(n), Pr(KT(π̃t

k, πt
k) = 0) = Θ(1), and

3. If k2α = ω(n), Pr(KT(π̃t
k, πt

k) = O(k2α
n )) = 1 − o(1).

We sketch the basic idea of the proof. First, with high probability, the rank
of every element with respect to π̃ is at most O(α ln n) away from the true
rank, implying that all the top k elements are contained in C. Second, with
high probability, the kth element of U does not swap throughout sorting C, so
P is exactly the set of top k elements and the resulting rank of every element
deviates from the true rank by at most a constant. Third, due to the small
rank deviation of every element, the ordering can be corrected locally by sorting
blocks of constant length. The detailed proof will be omitted.

3.3 Lower Bounds for the Top-k-selection Problem

Now we analyze the lower bounds of the performance of any top-k-selection algo-
rithm. The lower bounds hold for both randomized and deterministic algorithms.

Let A be an arbitrary algorithm which takes our dynamic data as input and
outputs a total order π̃t

k on a subset of size k at every time step t. Let πt
k be

the true order on the top k elements. The following theorems characterize the
difference between π̃t

k and πt
k when k is large.

Theorem 3. Given k = Ω(
√

n
α ) and α = o(n), Pr(KT(π̃t

k, πt
k) > 0) = Θ(1) for

every t > k.

The main idea of the proof is that with a constant probability, in any period
of Θ(

√

n
α ), exactly one swap occurs among the top k elements and the swap is

not observed. The detailed proof will be omitted.

Theorem 4. Given k = ω(
√

n) and α = O(1), KT(π̃t
k, πt

k) = Ω(k2

n ) in expecta-
tion and with probability 1 − o(1) for every t > k/8.

The basic idea of the proof is that with high probability, in any period of
Θ(k), Ω(k2

n ) swaps occur among the top k elements and a majority of the swaps
are not observed. The detailed proof will be omitted.
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From Theorems 2 and 3, we know that Θ(
√

n/α) is the critical point of k,
and it is impossible to generally improve Algorithm2 even if k = ω(

√

n/α). The
term critical point means the least upper bound of k such that top-k-selection
problem can be solved error-free with probability 1 − o(1).

4 Gaussian-Swapping Model

This section is devoted to extending the algorithms for the consecutive-swapping
model to the Gaussian-swapping model. We focus on the special case where α
is a constant, and still assume that at each time step only one pair of elements
can be compared.

Algorithms 1 and 2 can be slightly adapted to solve the top-k-set problem and
the top-k-selection problem in this model, respectively. Specifically, replacing
α in lines 5 and 8 of Algorithm1 with ln0.5 n, one gets Algorithm 5; likewise,
in Algorithm 2, replacing α in line 6 with ln0.5 n and 4c + 1 in lines 13 with
4c ln0.5 n+1, we get Algorithm 6. The following theorems state the performance
of these algorithms, and the proofs are omitted.

Theorem 5. For any k ∈ [n], we have Pr( ˜Tt = (πt)−1([k])) = 1 − o(1), where
˜Tt is the output of Algorithm 5 at time t, πt is the true order at time t, and t is
sufficiently large.

Theorem 6. Assume that k = O(( n
lnn )1−ε), where ε > 0. Let π̃t

k be the output
of Algorithm6 and πt

k be the true order over the top k elements at time t. For
sufficiently large t, we have:

1. If k = o(
√

n
ln0.25 n

), Pr(KT(π̃t
k, πt

k) = 0) = 1 − o(1),
2. If k = Θ(

√
n

ln0.25 n
), Pr(KT(π̃t

k, πt
k) = 0) = Θ(1), and

3. If k = ω(
√

n
ln0.25 n

), Pr(KT(π̃t
k, πt

k) = O(k2 lnn
n )) = 1 − o(1).

Except for the Gaussian distribution, d can also be determined by other
discrete distributions, for example, p(d) = β

dγ , where γ is a constant and β is a
normalizing factor. When γ is large enough (say, γ > 10), the results similar to
those in the Gaussian-swapping model can be obtained.

5 Conclusions

In this paper we identify the critical point k∗ such that the top-k-selection prob-
lem can be solved error-free with high probability if and only if k = o(k∗). A lower
bound of the error when k = Ω(k∗) is also determined, which actually is tight
under some condition. On the contrary, it is shown that the top-k-set problem
can be solved error-free with probability 1 − o(1), for all k ∈ [n]. These results
hold in the consecutive-swapping model and most of them can be extended to
the Gaussian-swapping model.

A number of problems remain open for the top-k-selection problem in the
consecutive-swapping model. For α = ω(1), we have not shown whether the
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upper bound O(k2α
n ) of error is tight when k = ω(

√

n
α ). For α = O(1), there

exists a gap between k = n and k = O(( n
lnn )1−ε), where the lower bound Ω(k2

n )
of error has not yet shown to be tight. We conjecture that these bounds are tight.
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Optimal Search Trees with 2-Way Comparisons

Marek Chrobak1, Mordecai Golin2, J. Ian Munro3, and Neal E. Young1(B)

1 University of California – Riverside, Riverside, CA, USA
neal.young@ucr.edu

2 Hong Kong University of Science and Technology, Hong Kong, China
3 University of Waterloo, Waterloo, Canada

Abstract. In 1971, Knuth gave an O(n2)-time algorithm for the clas-
sic problem of finding an optimal binary search tree. Knuth’s algorithm
works only for search trees based on 3-way comparisons, but most mod-
ern computers support only 2-way comparisons (<, ≤, =, ≥, and >).
Until this paper, the problem of finding an optimal search tree using 2-
way comparisons remained open — poly-time algorithms were known
only for restricted variants. We solve the general case, giving (i) an
O(n4)-time algorithm and (ii) an O(n log n)-time additive-3 approxima-
tion algorithm. For finding optimal binary split trees, we (iii) obtain a
linear speedup and (iv) prove some previous work incorrect.

1 Background and Statement of Results

In 1971, Knuth [10] gave an O(n2)-time dynamic-programming algorithm for a
classic problem: given a set K of keys and a probability distribution on queries,
find an optimal binary-search tree T . As shown in Fig. 1, a search in such a tree
for a given value v compares v to the root key, then (i) recurses left if v is smaller,
(ii) stops if v equals the key, or (iii) recurses right if v is larger, halting at a leaf.
The comparisons made in the search must suffice to determine the relation of
v to all keys in K. (Hence, T must have 2|K| + 1 leaves.) T is optimal if it has
minimum cost, defined as the expected number of comparisons assuming the
query v is chosen randomly from the specified probability distribution.

Knuth assumed three-way comparisons at each node. With the rise of higher-
level programming languages, most computers began supporting only two-way
comparisons (<,≤,=,≥, >). In the 2nd edition of Volume 3 of The Art of Com-
puter Programming [11, Sect. 6.2.2 ex. 33], Knuth commented

. . . machines that cannot make three-way comparisons at once. . . will have
to make two comparisons. . . it may well be best to have a binary tree whose
internal nodes specify either an equality test or a less-than test but not both.
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Fig. 1. A binary search tree T using 3-way comparisons, for K = {H, O, W}.
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Fig. 2. Two 2wcsts for K = {H, O, W}; tree (b) only handles successful queries.

But Knuth gave no algorithm to find a tree built from two-way comparisons (a
2wcst, as in Fig. 2(a)), and, prior to the current paper, poly-time algorithms
were known only for restricted variants. Most notably, in 2002 Anderson et al. [1]
gave an O(n4)-time algorithm for the successful-queries variant of 2wcst, in
which each query v must be a key in K, so only |K| leaves are needed (Fig. 2(b)).
The standard problem allows arbitrary queries, so 2|K| + 1 leaves are needed
(Fig. 2(a)). For the standard problem, no polynomial-time algorithm was pre-
viously known. We give one for a more general problem that we call 2wcst:

Theorem 1. 2wcst has an O(n4)-time algorithm.

We specify an instance I of 2wcst as a tuple I = (K = {K1, . . . ,Kn},
Q, C, α, β). The set C of allowed comparison operators can be any subset of
{<,≤,=,≥, >}. The set Q specifies the queries. A solution is an optimal 2wcst
T among those using operators in C and handling all queries in Q. This def-
inition generalizes both standard 2wcst (let Q contain each key and a value
between each pair of keys), and the successful-queries variant (take Q = K and
α ≡ 0). It further allows any query set Q between these two extremes, even
allowing K �⊆ Q. As usual, βi is the probability that v equals Ki; αi is the
probability that v falls between keys Ki and Ki+1 (except α0 = Pr[v < K1] and
αn = Pr[v > Kn]).1

1 As defined here, a 2wcst T must determine the relation of the query v to every
key in K. More generally, one could specify any partition P of Q, and only require
T to determine, if at all possible using keys in K, which set S ∈ P contains v. For
example, if P = {K, Q \ K}, then T would only need to determine whether v ∈ K.
We note without proof that Theorem 1 extends to this more general formulation.
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To prove Theorem 1, we prove Spuler’s 1994 “maximum-likelihood” conjec-
ture: in any optimal 2wcst tree, each equality comparison is to a key in K
of maximum likelihood, given the comparisons so far [14, Sect. 6.4 Conj. 1]. As
Spuler observed, the conjecture implies an O(n5)-time algorithm; we reduce this
to O(n4) using standard techniques and a new perturbation argument. Anderson
et al. proved the conjecture for their special case [1, Cor. 3]. We were unable to
extend their proof directly; our proof uses a different local-exchange argument.

We also give a fast additive-3 approximation algorithm:

Theorem 2. Given any instance I = (K,Q, C, α, β) of 2wcst, one can compute
a tree of cost at most the optimum plus 3, in O(n log n) time.

Comparable results were known for the successful-queries variant (Q = K) [1,16].
We approximately reduce the general case to that case.

Binary split trees “split” each 3-way comparison in Knuth’s 3-way-comparison
model into two 2-way comparisons within the same node: an equality compari-
son (which, by definition, must be to the maximum-likelihood key) and a “<”
comparison (to any key) [3,6,8,12,13]. The fastest algorithms to find an opti-
mal binary split tree take O(n5)-time: from 1984 for the successful-queries-only
variant (Q = K) [8]; from 1986 for the standard problem (Q contains queries in
all possible relations to the keys in K) [6]. We obtain a linear speedup:

Theorem 3. Given any instance I = (K = {K1, . . . ,Kn}, α, β) of the standard
binary-split-tree problem, an optimal tree can be computed in O(n4) time.

The proof uses our new perturbation argument (Sect. 3.1) to reduce to the case
when all βi’s are distinct, then applies a known algorithm [6]. The perturbation
argument can also be used to simplify Anderson et al.’s algorithm [1].

Generalized binary split trees (gbsts) are binary split trees without the
maximum-likelihood constraint. Huang and Wong [9] (1984) observe that relax-
ing this constraint allows cheaper trees — the maximum-likelihood conjecture
fails here — and propose an algorithm to find optimal gbsts. We prove it incor-
rect!

Theorem 4. Lemma 4 of [9] is incorrect: there exists an instance — a query
distribution β — for which it does not hold, and on which their algorithm fails.

This flaw also invalidates two algorithms, proposed in Spuler’s thesis [15], that
are based on Huang and Wong’s algorithm. We know of no poly-time algorithm
to find optimal gbsts. Of course, optimal 2wcsts are at least as good.

2wcstwithout equality tests. Finding an optimal alphabetical encoding has sev-
eral poly-time algorithms: by Gilbert and Moore — O(n3) time, 1959 [5];
by Hu and Tucker — O(n log n) time, 1971 [7]; and by Garsia and Wachs
— O(n log n) time but simpler, 1979 [4]. The problem is equivalent to find-
ing an optimal 3-way-comparison search tree when the probability of query-
ing any key is zero (β ≡ 0) [11, Sect. 6.2.2]. It is also equivalent to finding
an optimal 2wcst in the successful-queries variant with only “<” comparisons
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allowed (C = {<},Q = K) [1, Sect. 5.2]. We generalize this observation to prove
Theorem 5:

Theorem 5. Any 2wcst instance I = (K = {K1, . . . ,Kn},Q, C, α, β) where =
is not in C (equality tests are not allowed), can be solved in O(n log n) time.

Definition 1. Fix any 2wcst instance I = (K,Q, C, α, β).
For any node N in any 2wcst T for I, N ’s query subset, QN , contains

queries v ∈ Q such that the search for v reaches N . The weight ω(N) of N is
the probability that a random query v (from distribution (α, β)) is in QN . The
weight ω(T ′) of any subtree T ′ of T is ω(N) where N is the root of T ′.

Let 〈v < Ki〉 denote an internal node having key Ki and comparison operator
< (define 〈v ≤ Ki〉 and 〈v = Ki〉 similarly). Let 〈Ki〉 denote the leaf N such that
QN = {Ki}. Abusing notation, ω(Ki) is a synonym for ω(〈Ki〉), that is, βi.

Say T is irreducible if, for every node N with parent N ′, QN �= QN ′ .

In the remainder of the paper, we assume that only comparisons in {<,≤,=}
are allowed (i.e., C ⊆ {<,≤,=}). This is without loss of generality, as “v > Ki”
and “v ≥ Ki” can be replaced, respectively, by “v ≤ Ki” and “v < Ki.”

2 Proof of Spuler’s Conjecture

Fix any irreducible, optimal 2wcst T for any instance I = (K,Q, C, α, β).

Theorem 6 (Spuler’s conjecture). The key Ka in any equality-comparison
node N = 〈v = Ka〉 is a maximum-likelihood key: βa = maxi{βi : Ki ∈ QN}.
The theorem will follow easily from Lemma 1:

Lemma 1. Let internal node 〈v = Ka〉 be the ancestor of internal node
〈v = Kz〉. Then ω(Ka) ≥ ω(Kz). That is, βa ≥ βz.

Proof (Lemma 1). Throughout, “〈v ≺ Ki〉” denotes a node in T that does an
inequality comparison (≤ or <, not =) to key Ki. Abusing notation, in that
context, “x ≺ Ki” (or “x �≺ Ki”) denotes that x passes (or fails) that comparison.

Assumption 1. (i) All nodes on the path from 〈v = Ka〉 to 〈v = Kz〉 do
inequality comparisons. (ii) Along the path, some other node 〈v ≺ Ks〉 separates
key Ka from Kz: either Ka ≺ Ks but Kz �≺ Ks, or Kz ≺ Ks but Ka �≺ Ks.

It suffices to prove the lemma assuming (i) and (ii) above. (Indeed, if the lemma
holds given (i), then, by transitivity, the lemma holds in general. Given (i), if
(ii) doesn’t hold, then exchanging the two nodes preserves correctness, changing
the cost by (ω(Ka)−ω(Kz))×d for d ≥ 1, so ω(Ka) ≥ ω(Kz) and we are done.)

By Assumption 1, the subtree rooted at 〈v = Ka〉, call it T ′, is as in Fig. 3(a):
Let child 〈v ≺ Kb〉, with subtrees T0 and T1, be as in Fig. 3.



Optimal Search Trees with 2-Way Comparisons 75
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Fig. 3. (a) The subtree T ′ rooted at 〈v = Ka〉 and possible replacements (b), (c).

Lemma 2. If Ka ≺ Kb, then ω(Ka) ≥ ω(T1), else ω(Ka) ≥ ω(T0).

(This and subsequent lemmas in this section are proved in [2, Sect. 7.2]. The idea
behind this one is that correctness is preserved by replacing T ′ by subtree (b) if
Ka ≺ Kb or (c) otherwise, implying the lemma by the optimality of T .)

Case 1: Child 〈v ≺ Kb〉 separates Ka from Kz. If Ka ≺ Kb, then Kz �≺ Kb, so
descendant 〈v = Kz〉 is in T1, and, by this and Lemma 2, ω(Ka) ≥ ω(T1) ≥
ω(Kz), and we’re done. Otherwise Ka �≺ Kb, so Kz ≺ Kb, so descendant
〈v = Kz〉 is in T0, and, by this and Lemma 2, ω(Ka) ≥ ω(T0) ≥ ω(Kz), and
we’re done.

Case 2: Child 〈v ≺ Kb〉 does not separate Ka from Kz. Assume also that descen-
dant 〈v = Kz〉 is in T1. (If descendant 〈v = Kz〉 is in T0, the proof is symmetric,
exchanging the roles of T0 and T1.) Since descendant 〈v = Kz〉 is in T1, and child
〈v ≺ Kb〉 does not separate Ka from Kz, we have Ka �≺ Kb and two facts:
Fact A: ω(Ka) ≥ ω(T0) (by Lemma 2), and
Fact B: the root of T1 does an inequality comparison (by Assumption 1).
By Fact B, subtree T ′ rooted at 〈v = Ka〉 is as in Fig. 4(a):
As in Fig. 4(a), let the root of T1 be 〈v ≺ Kc〉, with subtrees T10 and T11.

Lemma 3. (i) ω(T0) ≥ ω(T11). (ii) If Ka �≺ Kc, then ω(Ka) ≥ ω(T1).

(As replacing T ′ by (b) or (c) preserves correctness; proof in [2, Sect. 7.2].)
Case 2.1: Ka �≺ Kc. By Lemma 3(ii), ω(Ka) ≥ ω(T1). Descendant 〈v = Kz〉 is in
T1, so ω(T1) ≥ ω(Kz). Transitively, ω(Ka) ≥ ω(Kz), and we are done.
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Fig. 4. (a) The subtree T ′ in Case 2, two possible replacements (b), (c).
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Case 2.2: Ka ≺ Kc. By Lemma 3(i), ω(T0) ≥ ω(T11). By Fact A, ω(Ka) ≥
ω(T11). If 〈v = Kz〉 is in T11, then ω(T11) ≥ ω(Kz) and transitively we are done.

In the remaining case, 〈v = Kz〉 is in T10. T ’s irreducibility implies Kz ≺ Kc.
Since Ka ≺ Kc also (Case 2.2), grandchild 〈v ≺ Kc〉 does not separate Ka from
Kz, and by Assumption 1 the root of subtree T10 does an inequality comparison.
Hence, the subtree rooted at 〈v ≺ Kb〉 is as in Fig. 5(a):

y
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n

n

n
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y yn

n

n

(a) (b)
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T0 v ≺ Kc

T11

T10

v ≺ Kd

T100  T101

v ≺Kb

T0

v ≺Kc

T11

v ≺Kd

T100  T101

Fig. 5. (a) The subtree rooted at 〈v ≺ Kb〉 in Case 2.2. (b) A possible replacement.

Lemma 4. ω(T0) ≥ ω(T10).

(Because replacing (a) by (b) preserves correctness; proof in [2, Sect. 7.2].)
Since descendant 〈v = Kz〉 is in T10, Lemma 4 implies ω(T0) ≥ ω(T10) ≥

ω(Kz). This and Fact A imply ω(Ka) ≥ ω(Kz). This proves Lemma 1. ��
Proposition 1. If any leaf node 〈K�〉’s parent P does not do an equality com-
parison against key K�, then changing P so that it does so gives an irreducible
2wcst T ′ of the same cost.

Proof. Since Q〈K�〉 = {K�} and P ’s comparison operator is in C ⊆ {<,≤,=}, it
must be that K� = max QP or K� = min QP . So changing P to 〈v = K�〉 (with
〈K�〉 as the“yes” child and the other child the “no” child) maintains correctness,
cost, and irreducibility. ��
Proof (Theorem6). Consider any equality-testing node N = 〈v = Ka〉 and any
key Kz ∈ QN . Since Kz ∈ QN , node N has descendant leaf 〈Kz〉. Without loss
of generality (by Proposition 1, leaf 〈Kz〉’s parent is 〈v = Kz〉. That parent is a
descendant of 〈v = Ka〉, so ω(Ka) ≥ ω(Kz) by Lemma 1. ��

3 Proofs of Theorem1 (Algorithm for 2wcst) and
Theorem3

First we prove Theorem 1. Fix an instance I = (K,Q, C, α, β). Assume for now
that all probabilities in β are distinct. For any query subset S ⊆ Q, let opt(S)
denote the minimum cost of any 2wcst that correctly determines all queries in
subset S (using keys in K, comparisons in C, and weights from the appropriate
restriction of α and β to S). Let ω(S) be the probability that a random query v
is in S. The cost of any tree for S is the weight of the root (= ω(S)) plus the cost
of its two subtrees, yielding the following dynamic-programming recurrence:
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Lemma 5. For any query set S ⊆ Q not handled by a single-node tree,

opt(S) = ω(S) + min

⎧
⎨

⎩

min
k

opt(S \ {k}) (if “=” is in C, else ∞) (i)

min
k,≺

opt(S≺
k ) + opt(S \ S≺

k ), (ii)

where k ranges over K, and ≺ ranges over the allowed inequality operators (if
any), and S≺

k = {v ∈ S : v ≺ k}.
Using the recurrence naively to compute opt(Q) yields exponentially many query
subsets S, because of line (i). But, by Theorem 6, we can restrict k in line (i)
to be the maximum-likelihood key in S. With this restriction, the only subsets
S that arise are intervals within Q, minus some most-likely keys. Formally, for
each of O(n2) key pairs {k1, k2} ⊆ K ∪ {−∞,∞} with k1 < k2, define four key
intervals

(k1, k2) = {v ∈ Q : k1 < v < k2}, [k1, k2] = {v ∈ Q : k1 ≤ v ≤ k2},
(k1, k2] = {v ∈ Q : k1 < v ≤ k2}, [k1, k2) = {v ∈ Q : k1 ≤ v < k2}.

For each of these O(n2) key intervals I, and each integer h ≤ n, define top(I, h)
to contain the h keys in I with the h largest βi’s. Define S(I, h) = I \ top(I, h).
Applying the restricted recurrence to S(I, h) gives a simpler recurrence:

Lemma 6. If S(I, h) is not handled by a one-node tree, then opt(S(I, h)) equals

ω(S(I, h)) + min

⎧
⎨

⎩

opt(S(I, h + 1)) (if equality is in C, else ∞) (i)
min
k,≺

opt(S(I≺
k , h≺

k )) + opt(S(I \ I≺
k , h − h≺

k )), (ii)

where key interval I≺
k = {v ∈ I : v ≺ k}, and h≺

k = |top(I, h) ∩ I≺
k |.

Now, to compute opt(Q), each query subset that arises is of the form S(I, h)
where I is a key interval and 0 ≤ h ≤ n. With care, each of these O(n3)
subproblems can be solved in O(n) time, giving an O(n4)-time algorithm. In
particular, represent each key-interval I by its two endpoints. For each key-
interval I and integer h ≤ n, precompute ω(S(I, h)), and top(I, h), and the h’th
largest key in I. Given these O(n3) values (computed in O(n3 log n) time), the
recurrence for opt(S(I, h)) can be evaluated in O(n) time. In particular, for line
(ii), one can enumerate all O(n) pairs (k, h≺

k ) in O(n) time total, and, for each,
compute I≺

k and I \ I≺
k in O(1) time. Each base case can be recognized and

handled (by a cost-0 leaf) in O(1) time, giving total time O(n4). This proves
Theorem 1 when all probabilities in β are distinct; Sect. 3.1 finishes the proof.

3.1 Perturbation Argument; Proofs of Theorems 1 and 3

Here we show that, without loss of generality, in looking for an optimal search
tree, one can assume that the key probabilities (the βi’s) are all distinct. Given
any instance I = (K,Q, C, α, β), construct instance I ′ = (K,Q, C, α, β′), where
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β′
j = βj + jε and ε is a positive infinitesimal (or ε can be understood as a

sufficiently small positive rational). To compute (and compare) costs of trees
with respect to I ′, maintain the infinitesimal part of each value separately and
extend linear arithmetic component-wise in the natural way:

1. Compute z × (x1 + x2 ε) as (zx1) + (zx2)ε, where z, x1, x2 are any rationals,
2. compute (x1 + εx2) + (y1 + εy2) as (x1 + x2) + (y1 + y2)ε,
3. and say x1 + εx2 < y1 + εy2 iff x1 < y1, or x1 = y1 ∧ x2 < y2.

Lemma 7. In the instance I ′, all key probabilities β′
i are distinct. If a tree T is

optimal w.r.t. I ′, then it is also optimal with respect to I.
Proof. Let A be a tree that is optimal w.r.t. I ′. Let B be any other tree, and
let the costs of A and B under I ′ be, respectively, a1 + a2ε and b1 + b2ε. Then
their respective costs under I are a1 and b1. Since A has minimum cost under
I ′, a1 + a2ε ≤ b1 + b2ε. That is, either a1 < b1, or a1 = b1 (and a2 ≤ b2). Hence
a1 ≤ b1: that is, A costs no more than B w.r.t. I. Hence A is optimal w.r.t. I. ��

Doing arithmetic this way increases running time by a constant factor.2 This
completes the proof of Theorem 1. The reduction can also be used to avoid the
significant effort that Anderson et al. [1] devote to non-distinct key probabilities.

For computing optimal binary split trees for unrestricted queries, the fastest
known time is O(n5), due to [6]. But [6] also gives an O(n4)-time algorithm
for the case of distinct key probabilities. With the above reduction, the latter
algorithm gives O(n4) time for the general case, proving Theorem 3.

4 Proof of Theorem2 (Additive-3 Approximation
Algorithm)

Fix any instance I = (K,Q, C, α, β). If C is {=} then the optimal tree can be
found in O(n log n) time, so assume otherwise. In particular, < and/or ≤ are
in C. Assume that < is in C (the other case is symmetric).

The entropy HI = −∑
i βi log2 βi −

∑
i αi log2 αi is a lower bound on opt(I).

For the case K = Q and C = {<}, Yeung’s O(n)-time algorithm [16] constructs
a 2wcst that uses only <-comparisons whose cost is at most HI + 2 − β1 − βn.
We reduce the general case to that one, adding roughly one extra comparison.

Construct I ′ = (K′ = K, Q′ = K, C′ = {<}, α′, β′) where each α′
i = 0 and

each β′
i = βi + αi (except β′

1 = α0 + β1 + α1). Use Yeung’s algorithm [16] to
construct tree T ′ for I ′. Tree T ′ uses only the < operator, so any query v ∈ Q
that reaches a leaf 〈Ki〉 in T ′ must satisfy Ki ≤ v < Ki+1 (or v < K2 if i = 1).
To distinguish Ki = v from Ki < v < Ki+1, we need only add one additional
comparison at each leaf (except, if i = 1, we need two).3 By Yeung’s guarantee,
T ′ costs at most HI′ + 2 − β′

1 − β′
n. The modifications can be done so as to

increase the cost by at most 1 + α0 + α1, so the final tree costs at most HI′ + 3.
By standard properties of entropy, HI′ ≤ HI ≤ opt(I), proving Theorem2.
2 For an algorithm that works with linear (or O(1)-degree polynomial) functions of β.
3 If it is possible to distinguish v = Ki from Ki < v < Ki+1, then C must have at

least one operator other than <, so we can add either 〈v = Ki〉 or 〈v ≤ Ki〉.
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Fig. 6. Two gbsts for an instance. Keys are ordered alphabetically (A0 < A1 < A2 <
A3 < B0 < · · · ). Each node shows its equality key and the frequency of that key; split
keys are not shown. The algorithm of [9] gives (a), of cost 1763, but (b) costs 1762.

5 Proof of Theorem4 (Errors in Work on Binary Split
Trees)

A generalized binary split tree (gbst) is a rooted binary tree where each node
N has an equality key eN and a split key sN . A search for query v ∈ Q starts
at the root r. If v = er, the search halts. Otherwise, the search recurses on the
left subtree (if v < sr) or the right subtree (if v ≥ sr). The cost of the tree
is the expected number of nodes (including, by convention, leaves) visited for a
random query v. Figure 6 shows two gbsts for a single instance.

To prove Theorem 4, we observe that [9]’s Lemma 4 and algorithm fail on
the instance in Fig. 6. There is a solution of cost only 1762 (in Fig. 6(b)), but the
algorithm gives cost 1763 for the instance (as in Fig. 6(a)), as can be verified by
executing the Python code for the algorithm in Appendix A.1. The intuition is
that the optimal substructure property fails for the subproblems defined by [9]:
the circled subtree in (a) (with root A2) is cheaper than the corresponding
subtree in (b), but leads to larger global cost. For more intuition and the full
proof, see the full paper [2, Sect. 7.3].

6 Proof of Theorem5 (O(n logn) Time Without
Equality)

Fix any 2wcst instance I = (K,Q, C, α, β) with C ⊆ {<,≤}. Let n = |K|. We
show that, in O(n log n) time, one can compute an equivalent instance I ′ =
(K′,Q′, C′, α′, β′) with K′ = Q′, C′ = {<}, and |K′| ≤ 2n+1. (Equivalent means
that, given an optimal 2wcst T ′ for I ′, one can compute in O(n log n) time an
optimal 2wcst T for I.) The idea is that, when C ⊆ {<,≤}, open intervals are
functionally equivalent to keys.
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Assume without loss of generality that C = {<,≤}. (Otherwise no correct
tree exists unless K = Q, and we are done.) Assume without loss of generality
that no two elements in Q are equivalent (in that they relate to all keys in K
in the same way; otherwise, remove all but one query from each equivalence
class). Hence, at most one query lies between any two consecutive keys, and
|Q| ≤ 2|K| + 1.

Let instance I ′ = (K′,Q, C′, α′, β′) be obtained by taking the key set K′ =
Q to be the key set, but restricting comparisons to C′ = {<} (and adjusting
the probability distribution appropriately — take α′ ≡= 0, take βi to be the
probability associated with the ith query — the appropriate αj or βj).

Given any irreducible 2wcst T for I, one can construct a tree T ′ for I ′ of
the same cost as follows. Replace each node 〈v ≤ k〉 with a node 〈v < q〉, where
q is the least query value larger than k (there must be one, since 〈v ≤ k〉 is in T
and T is irreducible). Likewise, replace each node 〈v < k〉 with a node 〈v < q〉,
where q is the least query value greater than or equal to k (there must be one,
since 〈v < k〉 is in T and T is irreducible). T ′ is correct because T is.

Conversely, given any irreducible 2wcst T ′ for I ′, one can construct an
equivalent 2wcst T for I as follows. Replace each node N ′ = 〈v < q〉 as follows.
If q ∈ K, replace N ′ by 〈v < k〉. Otherwise, replace N ′ by 〈v ≤ k〉, where key k
is the largest key less than q. (There must be such a key k. Node 〈v < q〉 is in
T ′ but T ′ is irreducible, so there is a query, and hence a key k, smaller than q.)
Since T ′ correctly classifies each query in Q, so does T .

To finish, we note that the instance I ′ can be computed from I in O(n log n)
time (by sorting the keys, under reasonable assumptions about Q), and the
second mapping (from T ′ to T ) can be computed in O(n log n) time. Since I ′

has K′ = Q′ and C = {<}, it is known [10] to be equivalent to an instance of
alphabetic encoding, which can be solved in O(n log n) time [4,7].

A Appendix

A.1 Python Code for Theorem4 (gbst Algorithm of [9])

1 #!/usr/bin/env python3.4
2 import functools
3 memoize = functools.lru cache(maxsize=None)
4

5 def huang1984(weights):
6 ”Returns cost as computed by Huang and Wong's GBST algorithm (1984).”
7

8 n = len(weights)
9 beta = {i+1 : weights[key] for i, key in enumerate(sorted(weights.keys()))}

10

11 def is legal(i, j, d): return 0 <= i <= j <= n and 0 <= d <= j -i
12

13 @memoize
14 def p w t(i, j, d):
15 ”Returns triple: (cost p[i,j,d], weight w[i,j,d], deleted keys for t[i,j,d]).”
16

17 interval = set(range(i+1, j+1))
18

19 if d == j-i: # base case
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20 return (0, 0, interval)
21

22 def candidates(): # Lemma 4 recurrence from Huang et al.
23 for k in interval: # k = index of split key
24 for m in range(d+2): # m = num. deletions from left subtree
25 if is legal(i, k-1, m) and is legal(k-1, j, d-m+1):
26 cost l, weight l, deleted l = p w t(i, k-1, m)
27 cost r, weight r, deleted r = p w t(k-1, j, d-m+1)
28 deleted = deleted l .union( deleted r )
29 x = min(deleted, key = lambda h : beta[h])
30 weight = beta[x] + weight l + weight r
31 cost = weight + cost l + cost r
32 yield cost, weight, deleted -set([x])
33

34 return min(candidates())
35

36 cost, weight, keys = p w t(0, n, 0)
37 return cost
38

39 weights = dict(b4=20,
40 a3=20, v3=20,
41 a2=20, p2=20, t2=20, x2=20,
42 a1=20, d1=22, n1=20, q1=20, s1=20, u1=20, w1=20, y1=20,
43 b0=10, c0= 5, d0=10, e0=10, n0=10, p0=10, q0=10, r0=10,
44 s0=10, t0=10, u0=10, v0=10, w0=10, x0=10, y0=10, z0=10)
45

46 assert huang1984(weights) == 1763
# Both assertions pass. The first is used in our Theorem\,{4}.

47

48 weights['d1'] += 0.99 # Increasing a weight cannot decrease the optimal cost, but
49 assert huang1984(weights) < 1763

# in this case decreases the cost computed by the algorithm.
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Abstract. We study the problem of supporting (orthogonal) range
selection queries over a set of n points in constant-dimensional space.
Under the standard word-RAM model with word size w = Ω(lg n),
we present data structures that occupy O(n · (lg n/ lg lg n)d−1) words
of space and support d-dimensional range selection queries using
O((lg n/ lg lg n)d) query time. This improves the best known data struc-
ture by a factor of lg lg n in query time. To develop our data struc-
tures, we generalize the “parallel counting” technique of Brodal, Gfeller,
Jørgensen, and Sanders (2011) for one-dimensional range selection to
higher dimensions.

As a byproduct, we design data structures to support d-dimensional
range counting queries within O(n · (lg n/ lg w + 1)d−2) words of space
and O((lg n/ lg w + 1)d−1) query time, for any word size w = Ω(lg n).
This improves the best known result of JaJa, Mortensen, and Shi (2004)
when lg w � lg lg n.

1 Introduction

Range searching is an important topic in data structures and computational
geometry. Recently, there has been growing interest in so-called “range aggregate
queries”, where instead of reporting or counting points inside a query range,
we want to compute some aggregate function over the weights of the points
inside the query range. In this paper, we study the version of the problem for
multidimensional orthogonal ranges (axis-aligned boxes), where the aggregate
function is the median, or more generally, the k-th smallest element.

More precisely, we can formulate the d-dimensional (orthogonal) range
selection problem as follows, by viewing the weights as an extra dimension.
The coordinates of each input point p are represented as a (d + 1)-tuple
(p1, p2, . . . , pd, pd+1). A query range is a d-dimensional rectangle R = [a1..b1] ×
[a2..b2]×· · ·× [ad..bd], and a range selection query asks for the point whose coor-
dinate in the (d + 1)-st dimension is the k-th smallest among all input points
contained in R × (−∞,∞).

The underlying model of computation in this paper is the standard word-
RAM model [4] with word size w = Ω(lg n). Under this model, bitwise and
arithmetic operations including multiplication can be performed over machine
words in O(1) time. Without loss of generality, coordinates of points are assumed

c© Springer-Verlag Berlin Heidelberg 2015
K. Elbassioni and K. Makino (Eds.): ISAAC 2015, LNCS 9472, pp. 83–92, 2015.
DOI: 10.1007/978-3-662-48971-0 8
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to fit in rank space [5]. Coordinates can be replaced with their ranks in the point
set, by increasing the query time by the cost of O(1) predecessor searches.

The one-dimensional case of the range selection problem has been well stud-
ied [2,3,7,8]. Krizanc et al. [8] proposed the problem, and their structures
required either super linear space or O(nε) query time for some constant ε > 0.
Brodal et al. [2] presented a linear space data structure with only O(lg n/ lg lg n)
query time, by a novel application of bit-level parallelism. As shown by Jørgensen
and Larsen [7], Brodal et al.’s linear space structure achieved optimal worst-
case query time for any data structure within O(n · polylog(n)) bits of space.
Jørgensen and Larsen [7] further designed an adaptive data structure for one-
dimensional range selection queries, which occupied linear space and required
only O(lg k/ lg lg n + lg lg n) query time to select the k-th smallest element in
the range. More recently, Chan and Wilkinson [3] reduced the query time to
O(lg k/ lg lg n + 1) using the same amount of space.1 Shallow cutting [9] played
a central role in designing these adaptive data structures.

For the case of higher dimensions, Brodal et al. [2] pointed out that a d-
dimensional range selection query could be reduced to O(lg n) d-dimensional
range counting queries. As shown by JaJa et al. [6], each d-dimensional range
counting query requires O((lg n/ lg lg n)d−1) query time. Thus the overall query
time for a d-dimensional range selection query would be O(lg n·(lg n/ lg lg n)d−1).
To the best of our knowledge, this is the only known result for multidimensional
range selection queries.

In this paper, we present data structures that support d-dimensional
range selection queries using O(n · (lg n/ lg lg n)d−1) words of space and
O((lg n/ lg lg n)d) query time, for any constant integer d ≥ 1. This improves
the straightforward solution by a factor of lg lg n in query time. To develop our
data structures, we generalize Brodal et al.’s “parallel counting” technique [2]
into higher dimensions. In the search for the k-th smallest point, we keep solv-
ing subproblems of finding the first non-negative integer in an increasing array,
where the length of an array is bounded above by O(lgε n) for some constant
0 < ε < 1. Instead of performing binary search on each of these subproblems,
we examine all integers in the array from the highest bits in a parallel fashion,
to speed up the search. These integers are not stored explicitly and have to be
retrieved at query time, where the retrievals are either multidimensional range
counting queries or multidimensional “parallel counting” queries.

Along the way, we also improve JaJa et al.’s work for range counting
queries [6] with some novel bit manipulation tricks, which may be of indepen-
dent interest. Our data structures support d-dimensional range counting queries
within O((lg n/ lg w + 1)d−1) query time and O(n · (lg n/ lg w + 1)d−2) words of
space, for any word size w = Ω(lg n). When w is lgω(1) n, this improves JaJa
et al.’s O((lg n/ lg lg n)d−1) query and O(n · (lg n/ lg lg n)d−2) space bounds [6].

The rest of this paper is organized as follows. Section 2 contains preliminaries.
Section 3 defines and solves a problem that abstracts the bottleneck of selection
1 The conference version claimed O(lg k/ lg w + 1) query time but it would require

non-standard word operations.
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queries. In Sects. 4 and 5, we apply the “abstract” problem to range selection
queries and present our data structures.

2 Preliminaries

Let [a..b] denote the set of integers from a to b. For point p = (p1, p2, . . . , pd+1)
and each i ∈ [1..d+1], pi is referred to as the i-th coordinate of p. For two points
p = (p1, p2, . . . , pd+1) and q = (q1, q2, . . . , qd+1), p is said to be dominated by q if
pi ≤ qi for each i ∈ [1..d+1]. Let σ be a fixed parameter, which will be set to be
either �lgε n� or �wε� for constant 0 < ε < 1/d. A point p = (p1, p2, . . . , pd+1) is
said to be of type d′ if pi ∈ [1..σ] for each i ∈ [d′ +1..d+1], i.e., the last d−d′ +1
coordinates fit in a narrow range [1..σ]. A set of m points is said to be of type d′

if all these m points are of type d′ and the i-th coordinates of points are in rank
space for each i ∈ [1..d′], i.e., they are drawn from [1..m] and pairwise different.
The input point set is of type d + 1.

To exploit abilities of the word RAM, it is a standard technique to pack a
short list of sufficiently small integers into a machine word. We divide a word into
subwords of m bits, each storing the two’s complement representation of a signed
integer that ranges from −2m−1 to 2m−1 − 1. With this representation, a set of
operations can be performed in parallel to integers of the packed list in O(1) time,
provided that each of these integers in the input and the output fits in m bits:
One can add a constant integer to, subtract a constant integer from, or bit shift
all signed integers of a packed list. One can also add or subtract corresponding
integers of two packed lists. One can even find the first non-negative integer or
the last negative one in a packed list, given that multiplications are permitted [4].

3 The “Abstract” Problem

Let s, b, and t be parameters satisfying that (s + b + 2)t < w and b � s.
Intuitively, s denotes the “section size”, and b denotes the number of “carry
bits”. The j-th section of an integer x is defined to be 	x/2sj
 mod 2s.

Let A[1..t] be an increasing sequence of w-bit signed integers, with A[0] < 0.
The goal of our abstract problem is to find the smallest index i∗ > 0 so that
A[i∗ − 1] < 0 ≤ A[i∗]. However, the value of each A[i] is not given explicitly;
rather, each A[i] is decomposed into a sequence of signed integers A0[i], A1[i], . . .,
satisfying the properties that |Aj [i]| < 2s+b and A[i] =

∑

j≥0 Aj [i] · 2sj . (Note
that for b = 0, the decomposition corresponds to precisely the sections of an
integer, but the parameter b offers more flexibility, which will be needed in
our applications later.) We can only access the sequence A using the following
oracles:

– Given 1 ≤ i ≤ t, return A[i];
– Given j ≥ 0, return the concatenation of the binary representations of

(Aj [1], . . . , Aj [t]), stored in a single word in which the i-th subword is equal
to Aj [i]. (Because (s + b + 2)t < w, the result fits in a word.)
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We resist to solve this problem with binary search directly, which would
require O(lg t) time. Instead, we examine in a parallel manner the Aj [i]’s in
decreasing order of j. The following lemma shows how to achieve a query time
that is adaptive to the values of the A[i]’s.

Lemma 1. The “abstract” problem described in this section can be solved within
O(1 + 1

s · lg A[t]−A[1]
A[i∗]−A[i∗−1] ) word operations and oracle calls.

Proof. Given an index p, we define Bp[i] =
∑

j≥p Aj [i] · 2s(j−p) for 1 ≤ i ≤ t.
Note that Bp[1], . . . , Bp[t] may not be in increasing order. However, as shown
below, Bp[i] · 2sp provides an approximation of A[i]:

∣

∣A[i] − Bp[i] · 2sp
∣

∣ ≤
∑

0≤j<p

2s+b · 2sj = 2s+b · 2sp − 1
2s − 1

< 2s+b · 2sp

2s−1
= 2sp+b+1. (1)

We maintain a range [� + 1..r] that contains i∗, as well as the concatenation
of the binary representations of (Bp[�], . . . , Bp[r]). We ensure the invariant that
for � ≤ i ≤ r, |Bp[i]| ≤ 2b+1 before each iteration. Thus (Bp[�], . . . , Bp[r]) can be
packed into a single word in which the i-th subword equals to Bp[i] for � ≤ i ≤ r,
and the remaining bits are 0.

At the beginning of the algorithm, we compute A[1] and A[t] with two oracle
calls, and set the initial value of p to be p0 = � 1

s · lg(A[t] − A[1])�. We also set
the initial value of � = 1 and r = t. Then for each i, |A[i]| ≤ A[t] − A[1] ≤ 2sp0 .
By Inequality 1,

|Bp0 [i] · 2sp0 | ≤ |A[i] − Bp0 [i] · 2sp0 | + |A[i]| < 2sp0+b+1 + 2sp0 .

This implies that |Bp0 [i]| ≤ 2b+1. In addition, we observe that

Bp0 [i] = Ap0 [i] + Ap0+1[i] · 2s + Ap0+2[i] · 22s + · · · ≡ Ap0 [i] (mod 2s).

We then have Bp0 [i] + 2b+1 = (Ap0 [i] + 2b+1) mod 2s since |Bp0 [i]| ≤ 2b+1 and
b � s. This formula allows us to initialize (Bp0 [1], ..., Bp0 [t]) using one oracle
call and O(1) word operations.

In each iteration of the algorithm, we decrement the value of p and compute
(Bp[�], . . . , Bp[r]) using the following equation:

(Bp[�], . . . , Bp[r]) = 2s · (Bp+1[�], . . . , Bp+1[r]) + (Ap[�], . . . , Ap[r]).

The computation requires O(1) word operations and one oracle call. Note that
for � ≤ i ≤ r, Bp[i] fits in a subword, because |Bp+1[i]| ≤ 2b+1 and |Bp[i]| ≤
2s+b+1 + 2s+b < 2s+b+2. We then find the largest index �′ in [�..r] with Bp[�′] ≤
−2b+1, and the smallest index r′ in [�..r] with Bp[r′] ≥ 2b+1. As described in
Sect. 2, �′ and r′ can be determined using O(1) word operations [4].

By Inequality 1, we have A[�′] < 0 and A[r′] > 0. Thus subranges [�..�′]
and [r′ + 1..r] can be discarded, and we know that i∗ is contained in [�′ + 1..r′].
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We then evaluate A[�′ + 1] and A[r′ − 1] by two oracle calls. The algorithm
terminates if one of the following conditions holds: i∗ = �′ + 1 is returned if
A[�′ +1] > 0, or i∗ = r′ is returned if A[r′ −1] < 0. Otherwise, we reset � = �′ +1
and r = r′ − 1. Note that |Bp[�′ + 1]|, . . . , |Bp[r′ − 1]| ≤ 2b+1, so the invariant is
maintained, and we can continue on to the next iteration.

Now we analyze the running time of the algorithm. After each iteration before
termination,

A[i∗] − A[i∗ − 1] ≤ A[r] − A[�] < (B[r] − B[�]) · 2sp + 2 · 2sp+b+1

≤ 2 · 2b+1 · 2sp + 2 · 2sp+b+1 = 2sp+b+3.

Thus, p ≥ 1
s · [lg(A[i∗] − A[i∗ − 1]) − O(b)]. The algorithm requires O(1 + 1

s ·
lg A[t]−A[1]

A[i∗]−A[i∗−1] ) oracle calls. �

4 Range Selection

In this section, we apply the above “abstract” problem to range selection queries.
We use t = �lgε n�, section size s = �(1/2) · lg1−ε n�, and b = Θ(lg lg n) for con-
stant 0 < ε < 1/d. We build a range tree over the (d+1)-st coordinates of points
with branching factor t. Thus, the height of the range tree is O(lg n/ lg lg n).
Each node v in the range tree represents a range [av..bv] and the set S(v) of
points whose (d + 1)-st coordinates are in [av..bv]. The leaf nodes in the range
tree each represent a single point.

To answer a given range selection query with query range R and rank k, we
repeatedly solve subqueries of the following form: given an internal node v and
its children v1, . . ., vt in the range tree, find the child vi∗ so that the desired
answer is contained in S(vi∗). To connect these subqueries with the “abstract”
problem, we set A[i] = N [i]−k, where N [i] is the number of points that fall into
R × [av1 ..bvi

]. We set Aj [i] = Nj [i] − kj , where N0[i], N1[i], . . . is a sequence to
be specified later that decomposes N [i], and kj is the j-th section of k.

To compute N [i] and the Nj [i]’s, we define the following two kinds of queries
over a point set S of type d with σ = �lgε n�, for which the support is summarized
in Lemma 2. The proof of Lemma 2 is deferred to Sect. 5.

– dominance counting queries: given a query point q = (q1, q2, . . . , qd+1), return
the number of points in S that are dominated by q;

– parallel counting queries: given a query (q1, q2, . . . , qd, j) for some j ≥ 0, return
the concatenation of (Cj [1], . . . , Cj [t]), where, for 1 ≤ i ≤ t, C0[i], C1[i], . . . is
a sequence that decomposes C[i], the answer to the dominance counting query
(q1, q2, . . . , qd, i).

Lemma 2. For any constant 0 < ε < 1/d, a point set S of size m ≤ n and type
d′ with σ = �lgε n� can be stored in O(m lg lg n · (lg n/ lg lg n)d′−1) bits of space,
so that (a) dominance counting queries and (b) parallel counting queries can be
answered in O((lg n/ lg lg n)d′−1) query time.
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To facilitate the use of Lemma 2, we transform each S(v) into a point set
D(v) of type d. For each point p ∈ S(v), we replace the first d coordinates of
p with their ranks in S(v), and replace pd+1 with the index of v’s child that
represents a set containing p.

Given a d-dimensional query range R, we can express it as additions and
subtractions of 2d = O(1) d-dimensional dominance ranges. Let these ranges be
z1, z2, . . . , z2d . Computing N [i] and A[i], which is essentially a (d+1)-dimensional
range counting query, can be reduced to dominance counting queries over D(v)
for ranges z1× [1..i], . . . , z2d × [1..i], and can be done by Lemma 2(a). Let N [i, z�]
be the result for z� × [1..i] for 1 ≤ � ≤ 2d. By Lemma 2(b) we can decompose
N [i, z�] into a sequence N0[i, z�], N1[i, z�], . . . In addition, (Nj [1, z�], . . . , Nj [t, z�])
can be computed for j ≥ 0. We define Nj [i] to be sum of Nj [i, z�] over all z�. Then
the sequence N0[i], N1[i], . . . decomposes N [i] and the sequence A0[i], A1[i], . . .
decomposes A[i], after increasing the parameter b by log(2d) = O(1).

Now we can finally support range selection queries. Starting with the root
node, we define and compute the oracles as described above. After determining
i∗, the query algorithm recurses on vi∗ after setting k = k − A[i∗ − 1]. We
repeatedly apply Lemma 1 until we reach a leaf node v, and av = bv is the answer.
The query algorithm requires solving O(lg n/ lg lg n) “abstract” problems. We
sum the cost of Lemma 1 over these O(lg n/ lg lg n) subproblems. Observe that
the sum of the logarithms of ratios in Lemma 1 is actually telescoping. The total
number of oracle calls is thus O(lg n/ lg lg n + 1

s · lg n) = O(lg n/ lg lg n), each
requiring O((lg n/ lg lg n)d−1) time. We conclude:

Theorem 1. Under the word RAM model with word size w = Ω(lg n), d-
dimensional range selection queries over a set of n points can be supported in
O((lg n/ lg lg n)d) query time and O(n · (lg n/ lg lg n)d−1) words of space.

5 Dominance Counting and Parallel Counting

Our method for dominance counting queries is similar to JaJa et al.’s work [6].
The major improvement is a novel algorithm to answer queries over a point set
of size �wdε� and type 1 with σ = �wε� for any constant 0 < ε < 1/d within O(1)
time and O(lg w) bits of space per point, which is presented in Lemma 4. This
algorithm does not require a global lookup table, so it is able to handle larger
word size w = ω(lg n).

Lemma 3. For any constant 0 < ε < 1/d, dominance counting queries over a
point set S of size m ≤ n and type 1 with σ = �wε� can be supported using
O(m lg w) bits of space and O(1) query time.

Proof. We sort all points of the point set in increasing order of the first coor-
dinates, and divide the list into blocks of size m1 = w2. Then we divide each
block into subblocks of size m2 = �wdε�. Each block/subblock is labeled with
the largest first coordinate over the points inside the block/subblock. For each
block β, we precompute a d-dimensional table Fβ in which, for 1 ≤ q2, . . . , qd+1 ≤
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�wε�, the entry Fβ [q2, . . . , qd+1] stores the number of points in S that are dom-
inated by (label(β), q2, . . . , qd+1), where label(β) is the label of β. Similarly,
for each subblock β′ of β, we maintain a d-dimensional table gβ′ in which, for
1 ≤ q2, . . . , qd+1 ≤ �wε�, the entry Gβ′ [q2, . . . , qd+1] stores the number of points
inside β that are dominated by (label(β′), q2, . . . , qd+1).

Given a dominance counting query q = (q1, q2, . . . , qd+1), we find the right-
most block β whose label is no greater than q1. Then we find the rightmost
subblock β′ to the right of β whose label is no greater than q1. Without loss of
generality, we assume the existence of both β and β′. The other cases can be
handled similarly. Thus the answer to the given dominance counting query can
be expressed as Fβ [q2, . . . , qd+1]+Gβ′ [q2, . . . , qd+1]+h, where h is the number of
points in the subblock to the right of β′ that are dominated by the given query.

Later in Lemma 4, we will show the computation of h requires O(1) query
time and O(lg w) bits of space per point. Thus, the overall query time for domi-
nance counting queries over the point set of type 1 is O(1). Finally we analyze the
space cost. The tables for all blocks require O((m/m1)×wdε × lg m) = o(m) bits
of space in total. The tables for all subblocks require O((m/m2)×wdε × lg m1) =
O(m lg w) bits of space in total. Therefore the overall space cost is O(m lg w)
bits. �
Lemma 4. Dominance counting queries inside a subblock can be supported using
O(1) query time and O(lg w) bits of space per point.

Proof. We divide a machine word into chunks of size s1 = d · (�ε lg w� + 1) each.
Each chuck is further divided into d subchunks of size s2 = �ε lg w�+1 each. We
sort all points in increasing order of the first coordinates, and, for each point
in the point set, we store its second coordinate to its (d + 1)-st coordinate in
a chunk γ. For 1 ≤ � ≤ d, the (� + 1)-st coordinate will be stored in the �-th
subchunk of γ. Note that these coordinates each fit in the lowest �ε lg w� bits of
a subchunk. The highest bit of the same subchunk, which is referred to as the
flag bit, is set to be zero. Thus the space cost is s1 = O(lg w) bits per point.
Because each subblock consists of at most m2 points and m2 × s1 = o(w), the
chunks of all points in a subblock can fit in a single machine word.

Let q = (q1, q2, . . . , qd+1) be the query and β′ be the rightmost subblock that
intersects with q. We find the rank r of q1 over the points of β′, and copy the
chunks of the first r points of β′ into the first r chunks of a machine word A. This
requires only O(1) time since these chunks are stored consecutively in memory.
Then we store q2, q3, . . . , qd+1 duplicately in the first r chunks of another word B.
For each of these r chunks and each 1 ≤ � ≤ d, q�+1 is stored in the �-th subchunk
as the lowest �ε lg w� bits, and the flag bit of the subchunk is set to be 1. The
construction of B also requires O(1) time.

We then compute C = B − A, mask all bits of C to 0 except the flag bits of
the subchunks in each of the first r chunks, and right-shift C by s2 − 1 bits. It
is not hard to see that a point is dominated by q iff the value the corresponding
chunk represents is equal to (2ds2 − 1)/(2s2 − 1).

To count the occurrences of that value, we create another word D so that
each of the first r chunks represents (2ds2 − 1)/(2s2 − 1) + 2ds2−1. That is,
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the lowest bits of all subchunks and the flag bit of the d-th subchunk are set to
be 1 in each of the first r chunks, and the other bit are set to be 0. We compute
E = D − C, and mask all bits of E to 0 except the highest bits of the first r
chunks, i.e., the flag bits of the d-th subchunks. The highest bit of a chunk is 1
iff the corresponding point is dominated by q.

Finally we sum up the highest bits of the first r chunks. To achieve that, we
right-shift E by s1 − 1 bits, so that the highest bit of each chunk becomes the
lowest one. Then we multiply the shifted word by (2rs1 − 1)/(2s1 − 1) and the
value stored in the r-th chunk will be the sum we need, which is also the answer
to the query q. The whole algorithm requires O(1) time and no table lookup. �

Lemma 5. For any constant 0 < ε < 1/d, dominance counting queries over a
point set S of size m ≤ n and type d′ with σ = �wε� can be supported using
O(m lg w · (lg n/ lg w + 1)d′−1) bits of space and O((lg n/ lg w + 1)d′−1) query
time.

Proof. The base case in which d′ = 1 has been handled in Lemmas 3 and 4. We
only show how to reduce the case of d′ to that of d′ − 1. We build a range tree
over the d′-th coordinates of points with branching factor �wε�. The height of
the range tree is bounded above by O(lg n/ lg w + 1). Each node v in the range
tree represents a range [av..bv] and the set S(v) of points whose d′-th coordinates
are in [av..bv]. The leaf nodes in the range tree each represent a single point.

For each internal node v, we transform S(v) into a point set D(v) of type
d′ − 1. For any � < d′ and any point p ∈ S(v), its �-th coordinate p� is replaced
with the rank of p�, i.e., the number of points in S(v) whose �-th coordinates
are no greater than p�. In addition, the d′-th coordinate of p is replaced with an
integer in [1..t], which is the index of v’s child that represents a set containing p.
Queries over D(v) can be supported recursively.

Inside each internal node v, for each dimension 1 ≤ � ≤ d′ we write down
a sequence Sv,�[1..|S(v)|]. For each point p ∈ S(v), Sv,�[p�] is the integer that
replaced the d′-th coordinate of p. We represent these sequences using the suc-
cinct data structures of Belazzougui and Navarro [1]. These data structures use
O(|Sv,�| lg w) bits of space, and support ranki(Sv,�, p�) operations in O(1) time,
which count the occurrences of i’s in Sv,�[1..p�].

Let the given dominance counting query be q = (q1, q2, . . . , qd+1). Start-
ing with the root node, we traverse the range tree from top to bottom. Let
v be the root node and let v1, . . . , vt be the children of v from left to right.
We find the largest i so that bvi

≤ qd′ . Querying D(v) recursively with
(q1, . . . , qd′−1, i, qd′+1, qd+1), we can find the number of points in the first i chil-
dren of v that are dominated by q. Then we recursively query S(vi+1) with
q′ = (q′

1, q
′
2, . . . , q

′
d′ , qd′+1, . . . , qd+1), where q′

� = ranki+1(Sv,�, q�) for 1 ≤ � ≤ d′.
We return the sum of the answers found.

This range tree is of height O(lg n/ lg w + 1), and a dominance counting
query on a point set of type d′ is reduced to O(lg n/ lg w + 1) queries on points
sets of type d′ − 1. Thus we achieve the desired bounds for query time and
space cost. �
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Remark. Lemma 5 is a stronger version of Lemma 2(a). By Lemma 5, one
can support d-dimensional range counting queries within O((lg n/ lg w + 1)d−1)
query time and O(n · (lg n/ lg w +1)d−2) words of space. This improves the data
structures of JaJa et al. [6] when w ≥ lgω(1) n.

Next we consider how to prove Lemma 2(b). Unlike the structures for domi-
nance counting queries with σ = �wε�, for parallel counting queries we can only
set σ = �lgε n�.
Lemma 6. For any constant 0 < ε < 1/d, parallel counting queries over a
point set S of size m ≤ n and type 1 with σ = �lgε n� can be supported using
O(m lg lg n) bits of space and O(1) query time. In addition, we also need global
lookup tables that occupy o(n) bits of space in total.

Proof. We sort all points of S in increasing order of the first coordinates. We
divide S into blocks of size n1 = �lg2 n�, and divide each block into subblocks
of size n2 = �lgdε n�. We still label each block/subblock with the largest first
coordinate over the points inside the block/subblock.

For each block β we maintain a table Dβ in which, for j ∈ [0..�(lg n)/s�]
and 1 ≤ q2, q3, . . . , qd ≤ �lgε n�, the entry Dβ [q2, q3, . . . , qd, j] stores the j-th
sections of f [1], f [2], . . . , f [�lgε n�], where f [i] is the number of points in S that
are dominated by (label(β), q2, . . . , qd, i). As described in Sect. 3, we store the
j-th section of each of these values in a subword of s + b + 2 bits, and pack
them into a single word. These table Dβ ’s occupy O(m/n1) × O(lg(d−1)ε n) ×
(�lg n/s� + 1) × O(lg n) = O(m/ lg1−dε n) = o(m) bits in total.

For each subblock β′ of β we maintain a table Eβ′ in which, for 1 ≤
q2, q3, . . . , qd ≤ �lgε n�, the entry Eβ′ [q2, q3, . . . , qd] stores the concatenation
of g[1], g[2], . . . , g[�lgε n�], where g[i] is the number of points inside β that
are dominated by (label(β′), q2, . . . , qd, i). Each g[i] can be represented in
�lg n1� = O(lg lg n) bits. The overall space cost for all the tables Eβ′ is
O(m/n2) × �lgdε n� × O(lg lg n) = O(m lg lg n) bits. We further precompute a
global lookup table X that, for each possible values of g[1], g[2], . . . , g[�lgε n�],
stores a word in which the i-th subword is equal to g[i]. Clearly the lookup table
X requires o(n) bits of space.

We can encode each subblock in O(m2 lg lg n) = O((lgdε n)·lg lg n) bits. Then
we precompute another global lookup table Y that, for any possible encoding
of a subblock β′ and any 1 ≤ q1, q2, . . . , qd ≤ �lgε n�, stores the concatenation
of h[1], h[2], . . . , h[�lgε n�], where h[i] is the number of points inside β′ that are
dominated by (q1, q2, . . . , qd, i). The table Y also requires o(n) bits of space since
there are only O(n1−δ) possible encodings of subblocks for some δ > 0.

Let (q1, q2, . . . , qd, j) be a parallel counting query. We find the rightmost
block β whose label is no greater than q1, and the rightmost block β′ to the
right of β whose label is no greater than q1. If j > 0, then we simply return
Dβ [q2, q3, . . . , qd, j]. If j = 0, then we further find the subblock β′′ to the right of
β′ and the rank r of q1 inside β′′. The answer is the sum of Dβ [q2, q3, . . . , qd, 0],
Eβ′ [q2, q3, . . . , qd], and Y [enc(β′′), q2, q3, . . . , qd], where enc(β′′) is the encoding
of β′′. Note that we need X to transform the entry of Eβ′ . The overall query
time is O(1). �
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Finally, following the same approach of the proof for Lemma 5 but using
branching factor �lgε n�, we can prove Lemma 2(b). Since the answer is expressed
as a sum of the j-th sections of K = O((lg n/ lg lg n)d′

) numbers, we need to set
b larger than lg K = Θ(lg lg n).
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Abstract. We study the problem of assigning transmission ranges to
radio stations placed in a d-dimensional (d-D) Euclidean space in order
to achieve a strongly connected communication network with minimum
total cost, where the cost of transmitting in range r is proportional to rα.
While this problem can be solved optimally in 1D, in higher dimensions
it is known to be NP -hard for any α ≥ 1.

For the 1D version of the problem and α ≥ 1, we propose a new app-
roach that achieves an exact O(n2)-time algorithm. This improves the
running time of the best known algorithm by a factor of n. Moreover, we
show that this new technique can be utilized for achieving a polynomial-
time algorithm for finding the minimum cost range assignment in 1D
whose induced communication graph is a t-spanner, for any t ≥ 1.

In higher dimensions, finding the optimal range assignment is NP -
hard; however, it can be approximated within a constant factor. The best
known approximation ratio is for the case α = 1, where the approxima-
tion ratio is 1.5. We show a new approximation algorithm that breaks
the 1.5 ratio.

1 Introduction

A wireless ad-hoc network is a self-organized decentralized network that consists
of independent radio transceivers (transmitter/receiver) and does not rely on any
existing infrastructure. The network nodes (stations) communicate over radio
channels. Each node broadcasts a signal over a fixed range and any node within
this transmission range receives the signal. Communication with nodes outside
the transmission range is done using multi-hops, i.e., intermediate nodes pass the
message forward and form a communication path from the source node to the
desired target node. The twenty-first century witnesses widespread deployment
of wireless networks for professional and private applications. The field of wireless
communication continues to experience unprecedented market growth. For a
comprehensive survey of this field see [11].

Let S be a set of points in the d-dimensional Euclidean space representing
radio stations. A range assignment for S is a function ρ : S → R+ that assigns
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each point a transmission range (radius). The cost of a range assignment, is
defined as cost(ρ) =

∑

v∈S(ρ(v))α for some real constant α ≥ 1. In the case
α ∈ (1, 6], the cost represents the power consumption of the network, where α
varies depending on different environmental factors [11]. The linear case α = 1,
corresponds to minimizing the sum of ranges (radii).

A range assignment ρ induces a directed communication graph Gρ = (S,Eρ),
where Eρ = {(u, v) : ρ(u) ≥ |uv|} and |uv| denotes the Euclidean distance
between u and v. A range assignment ρ is valid if the induced (communication)
graph Gρ is strongly connected. For ease of presentation, throughout the paper
we refer to the terms ‘assigning a range |uv| to a point u ∈ S’ and ‘adding a
directed edge (u, v)’ as equivalent.

We consider the d-D Minimum Cost Range Assignment (MinRange)
problem, that takes as an input a set S of n points in Rd, and whose objective is
finding a valid range assignment for S of minimum cost. This problem has been
considered extensively, for different values of d and α, with additional require-
ments and modifications. Some of these works are mentioned in this section.

Kirousis et al. [9] considered the 1D MinRange problem (the radio stations
are placed on a line) and showed an O(n4)-time exact algorithm for the problem.
Later, Das et al. [8] improved the running time to O(n3). Here, we propose an
O(n2)-time exact algorithm, this improves the running time of the best known
algorithm by a factor of n without increasing the space complexity. The novelty
of our method lies in separating the range assignment into two, left and right,
assignments and restricting the algorithm search to optimal assignments that
minimize a new evaluation function cost′, defined with respect to this separation.
This counter intuitive approach reveals the existence of an optimal solution of a
simple structure and allows us to achieve the aforementioned result. Moreover, it
can be utilized to compute an optimal range assignment in 1D with the additional
requirement that the induced graph is a t-spanner, for a given t ≥ 1. Hopefully,
our new technique will enable solving other range assignment variations as well.

A geometric directed graph G = (S,E) is a t-spanner for a set S, if for every
two points u, v ∈ S there exists a path in G from u to v of length at most
t|uv|, where the length of a path is defined as the sum of lengths of its edges.
The importance of avoiding flooding the network when routing, was one of the
reasons that led researchers to consider the combination of range assignment
and t-spanners, e.g., [1,12–14], as well as the combination of range assignment
and hop-spanners, e.g., [6,9]. While bounded-hop spanners bound the number of
intermediate nodes forwarding a message, t-spanners bound the relative distance
a message is forwarded. For the 1D bounded-hop range assignment problem,
Clementi et al. [6] showed a 2-approximation algorithm whose running time is
O(hn3). To the best of our knowledge, we are the first to show an algorithm
that computes an optimal solution for the range assignment with the additional
requirement that the induced graph (viewed as geometric graph) is a t-spanner.

While the 1D version of the MinRange problem can be solved optimally,
for any d ≥ 2 and α ≥ 1, it has been proven to be NP -hard (in [9] for d ≥ 3
and 1 ≤ α < 2 and later in [7] for d ≥ 2 and α > 1). However, some versions
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can be approximated within constant factor. For α = 2 and any d ≥ 2 Kirousis
et al. [9] gave a 2-approximation algorithm based on the minimum spanning tree.
The best known approximation ratio is for the case α = 1, i.e., the cost function
equals to the sum of radii, where the approximation ratio is 1.5 [3]. Minimization
of the radii sum has been considered also in the context of other range assignment
problems, such as set of circles connectivity [5] and circle coverage [2,10]. This
linear model may be appropriate also for power consumption in future systems
where the transmitting stations do not transmit in all directions simultaneously,
but rather focus the transmission energy in a narrow angle beam whose direction
changes according to the needs of the network, as predicted in [10].

We show a new approximation algorithm for the MinRange problem with
α = 1 that breaks the 1.5 ratio with a ratio of 1.5 − c, for a suitable constant
c > 0. for which the 1.5 ratio bound has not been breached, such as metric TSP,
scheduling parallel jobs and minimum strongly connected sub-graph, or even
have been proved to be the best one can hope for unless P = NP , such as the
bin packing problem.

Due to space limitation, we omit an algorithm description (pseudo-code) and
some figures and proofs; however, all of them are given in the full version of this
manuscript [4].

2 Minimum Cost Range Assignment in 1D

In the 1D version of the MinRange problem, the input set S = {v1, ..., vn}
consists of points located on a line. For simplicity, we assume that the line
is horizontal and for every i < j, vi is to the left of vj . Given two indices
1 ≤ i < j ≤ n, we denote by Si,j the subset {vi, ..., vj} ⊆ S.

We present two polynomial-time algorithms for finding optimal range assign-
ments, the first, in Sect. 2.1, for the basic 1D MinRange problem, and the sec-
ond, in Sect. 2.2, subject to the additional requirement that the induced graph
is a t-spanner (the 1D MinRangeSpanner problem). Our new approach for
solving these problems requires introducing a variant of the range assignment.
Instead of assigning each point in S a radius, we assign each point two direc-
tional ranges, left range assignment, ρl : S → R+, and right range assignment,
ρr : S → R+. A pair of assignments (ρl, ρr) is called a left-right assignment.
Assigning a point v ∈ S a left range ρl(v) and a right range ρr(v) implies that
in the induced graph, Gρlr , v can reach every point to its left up to distance
ρl(v) and every point to its right up to distance ρr(v). That is, Gρlr , contains
the directed edge (vi, vj) if and only if one of the following holds: (i) i < j and
|vivj | ≤ ρr(vi), or (ii) j < i and |vivj | ≤ ρl(vi). The cost of an assignment
(ρl, ρr), is defined as cost(ρl, ρr) =

∑

v∈S(max{ρl(v), ρr(v)})α.
Our algorithms find a left-right assignment of minimum cost that can be

converted into a range assignment ρ with the same cost by assigning each point
v ∈ S a range ρ(v) = max{ρl(v), ρr(v)}. Note that any valid range assignment
for S can be converted to a left-right assignment with the same cost, by assigning
every point v ∈ S, ρl(v) = ρr(v) = ρ(v). To be more precise, either ρl(v) or ρr(v)
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should be reduced to |vu| where u is the farthest point in the directional range
(for Lemma 1 to hold). Therefore, a minimum cost left-right assignment implies
a minimum cost range assignment.

In addition to the cost function, we define cost′(ρl, ρr) =
∑

v∈S((ρl(v))α +
(ρr(v))α), and refine the term of optimal solution to include only solutions that
minimize cost′(ρl, ρr) among all solutions, (ρl, ρr), with minimum cost(ρl, ρr).

2.1 An Exact Algorithm for the 1D MinRange Problem

Das et al. [8] state three basic lemmas regarding properties of an optimal range
assignment. The following three lemmas are adjusted versions of these lemmas
for a left-right assignment.

Lemma 1. In an optimal solution (ρl, ρr), for every vi ∈ S, either ρl(vi) = 0 or
ρl(vi) = |vivj |; similarly, either ρr(vi) = 0 or ρr(vi) = |vivk|, for some j ≤ i ≤ k.

Lemma 2. Given indices 1 ≤ i < j < k ≤ n, let (ρl, ρr) be an optimal solution
for Si,k subject to the constraints ρl(vj) ≥ |vivj | and ρr(vj) ≥ |vjvk|, then,
• for all m = i, ..., j − 1, ρr(vm) = |vmvm+1| and ρl(vm) = 0; and
• for all m = j + 1, ..., k, ρl(vm) = |vmvm−1| and ρr(vm) = 0.

Lemma 3. In an optimal solution (ρl, ρr), ρl(v1) = 0 and ρr(v1) = |v1v2|.

Lemma 1 allows us to simplify the notation ρx(vi) = |vivj | for x ∈ {l, r} and
1 ≤ i, j ≤ n, and write ρx(i) = j, for short. We use dynamic programming which
exploits the special structure of an optimal solution according to our refined
definition. An optimal solution consists of a ‘division’ of the interval [v1, vn] into
sub-intervals [vi, vk′ ] having i < k ≤ k′ with ρl(k) = i and ρr(k) = k′, and thus
Lemma 2 applies for each of them. The set of sub-intervals does not precisely
admit a division since we allow each sub-interval [vi, vk′ ] to share its endpoint
and the point adjacent to it, i.e., vk′ and vk′−1, with the consecutive sub-interval.

Given 1 ≤ i < n, we denote by OPT (i) the cost of an optimal solution for the
sub-problem defined by the input Si,n, subject to the constraint ρr(i) = i + 1.
Thus, the cost of an optimal solution for the whole problem is OPT (1).

To guide the reader, we first present an algorithm with O(n3) running time
Then, we reduce the running time to O(n2).

A Cubic-Time Algorithm. Our algorithm, to which we refer as 1DMinRA
algorithm, computes the values OPT (i) based on the recursive formula given in
Lemma 4. This formula relies on the structure of an optimal solution described
earlier.

Lemma 4. Consider the value OPT (i), then if i = n−1, OPT (i) = 2|vn−1vn|α
and if 1 ≤ i < n − 1,

OPT (i) = min
i<k<n

k<k′≤n

⎧
⎨

⎩

k′−2∑

m=i

|vmvm+1|α +OPT (k′ − 1)− |vk′−1vk′ |α+max{|vivk|α, |vkvk′ |α}
⎫
⎬

⎭
.
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Proof. Trivially, OPT (n − 1) equals 2|vn−1vn|α. Let Xi denote the right side of
the equation, we prove OPT (i) = Xi.

OPT (i) ≤ Xi: We show that all costs that appear as min function arguments in
Xi correspond to valid assignments and thus infer, by the optimality of OPT (i),
that the above inequality holds. Consider an argument with parameters k and k′.
We associate it with an assignment (ρl, ρr) defined as follows. For m ≥ k′ −1 the
assignment is inductively defined by OPT (k′ −1). For every i ≤ m < k, ρl(m) =
m and ρr(m) = m + 1, for every k < m < k′, ρl(m) = m − 1 and ρr(m) = m
(ρr(k′ − 1) is reassigned) and for k, ρl(k) = i, ρr(k) = k′. By the validity
of OPT (k′ − 1), every two points among Sk′−1,n are (strongly) connected. By
definition, ρr(k′ − 1) = k′ and our assignment for Sk,k′−1 (including reassigning
ρr(k′ − 1)) ensures the existence of a path connecting vk′−1 to vk′ (passing
through vk). Moreover, our assignment for Si,k′−1 guarantees the connectivity
between every two points in Si,k′−1, and altogether between every two points
in Si,n.

OPT (i) ≥ Xi: Consider an optimal solution (ρl, ρr) for the points Si,n subject
to the condition that ρr(i) = i + 1. Let vk be a point to the right of vi with
ρl(k) = i and let ρr(k) = k′. Note that since vi is the leftmost point and the
induced graph is strongly connected, such a point necessarily exists.

Next we show that there is no edge directed either right or left connecting
two points on different sides of vk′ in Gρlr , except for possibly an edge (vj , vk′−1)
with j > k′. Assume towards contradiction that the former does not hold, i.e.,
there exists i < t < k′, with ρr(t) ≥ k′; then, reassigning ρr(k) = max{t, k}
maintains the connectivity, and reduces the value of cost′ without increasing the
value of cost in contradiction to the optimality of the solution. Now, let vj be
a point to the right of vk′ with ρl(j) = j′ ∈ [i, k′], we show that j′ ≥ k′ − 1.
Consider a point vt, j′ < t < k′. As we have shown, ρr(t) < k′. By symmetric
arguments we have ρl(t) > j′. Namely, there is no edge going out of the interval
(vj′ , vk′). Thus, connectivity can be achieved only if this interval is empty of
vertices, i.e., either j′ = k′ − 1 or j′ = k′ (note that k′ − 1 > i).

The above observation allows us to divide the problem into two independent
subproblems, one for the points Si,k′−1 subject to the constraints ρl(k) = i
and ρr(k) = k′, and the other for the points Sk′−1,n subject to the artificial
constraint ρr(k′ − 1) = k′ that guarantees the existence of a path from k′ − 1 to
k′, due to the solution of the first subproblem, but should not be paid for. Note
that the case where j′ = k′ is covered by the choice of vk′ as the point whose
left range covers the leftmost point of the subproblem Sk′−1,n (i.e., parameter
k in the above formula). Regarding the first subproblem, by Lemma 2, in an
optimal assignment, for every i ≤ m < k, ρl(m) = m and ρr(m) = m + 1,
and for every k < m ≤ k′ − 1, ρl(m) = m − 1 and ρr(m) = m. Thus, its cost
is

∑k′−2
m=i |vmvm+1|α + max{|vivk|α, |vkvk′ |α}. The optimal cost of the second

subproblem is OPT (k′ − 1) − |vk′−1v
′
k|α. Hence, the cost of an optimal solution

to the whole problem is the sum of the above costs and the lemma follows.
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The algorithm computes the values OPT (i) according to the formula given
in Lemma 4 for every 1 ≤ i ≤ n and stores them in a table T. During the i-th
iteration T [i′] = OPT (i′) for every i < i′ < n. Finally, it outputs T[1]. To reduce
the running time of each computation it uses a 2-dimensional matrix storing for
every 1 ≤ i < j ≤ n the sum

∑j−1
m=i |vmvm+1|α.

The algorithm description (pseudo-code) is given in the full version [4].
While the table T maintains only the costs of the solutions, the optimal

assignment can be easily retrieved by backtracking the entries leaded to the
optimal cost and inferring the associated range assignment (as described in the
proof of Lemma 4).

Complexity. The total running time is O(n3), since O(n) iterations are per-
formed during the algorithm and each iteration takes O(n2) time. Obviously,
the algorithm requires O(n2) space (the same space complexity as in [8]).

Lemma 5. Algorithm 1DMinRA runs in O(n3) time using O(n2) space.

A Quadratic-Time Algorithm. We show how to reduce the running time
of Algorithm 1DMinRA to O(n2). Consider the equality stated in Lemma 4.
Observe that given fixed values i and k′, the value k that minimizes the argument
of the min function with respect to i and k′ is simply the value k that minimizes
max{|vivk|α, |vkvk′ |α}. This value is simply the closest point to the midpoint of
the segment vivk′ , denoted by c(i, k′). Thus,

OPT (i) = min
i+1<k′≤n

⎧

⎪

⎪

⎨

⎪

⎪

⎩

k′−2
∑

m=i

|vmvm+1|α + OPT (k′ − 1) − |vk′−1vk′ |α

+ max{|vivc(i,k′)|α, |vc(i,k′)vk′ |α}

⎫

⎪

⎪

⎬

⎪

⎪

⎭

.

Consider Algorithm 1DMinRA after applying the above modification in the
computation of T [i]. Since there are only O(n) sub-problems to compute, each
in O(n) time, the running time reduces to O(n2) and Theorem 1 follows.

Theorem 1. The 1D MinRange problem can be solved in O(n2) time using
O(n2) space.

2.2 An Exact Algorithm for the 1D MinRangeSpanner Problem

Given a set S = {v1, .., vn} of points in 1D and a value t ≥ 1, the 1D Min-
RangeSpanner problem aims to find a minimum cost range assignment for S,
subject to the requirement that the induced graph is a t-spanner. (We view the
induced graph as a geometric graph whose edges are line segments connecting
pairs of input points.) We further utilize the technique presented in Sect. 2.1
to obtain a polynomial-time exact algorithm for the 1D MinRangeSpanner
problem. This algorithm follows the same guidelines as Algorithm 1DMinRA
and relies on arguments similar to those of Lemma 4.
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We begin with providing the key notions required for understanding the cor-
rectness of the algorithm, followed by its description. The first and most crucial
observation is that the problem can still be divided into two subproblems in
the same way as in Algorithm 1DMinRA, by similar arguments to those of
Lemma 4. In Lemma 4 we show that any assignment that does not satisfy the
conditions required for the division can be adjusted to a new assignment with
a lower value of cost′ that preserves connectivity. The new assignment, how-
ever, preserves also the lengths of the shortest paths, which make the argument
legitimate for this problem as well.

The two problems (MinRange and MinRangeSpanner) differ when it
comes to solving each of the above subproblems. Consider the left subprob-
lem, i.e., of the form described in Lemma 2. The optimal assignment for it is
no longer necessarily the one stated in the lemma, since it does not ensure the
existence of t-spanning paths. Therefore, our algorithm divides problems of this
form into smaller subproblems handled recursively. Dealing with such subprob-
lems requires defining new parameters: a rightmost input point vj , and the length
of the shortest paths connecting vi to vj , vj to vi and vi to vi+1 not involving
points in Si,j except for the endpoints, denoted by

−→
δ ,

←−
δ , and δi, respectively.

Regarding the computation of a subproblem, since points may be covered now
by vertices outside the subproblem domain, we allow vk to have either a right
or a left range being 0 (in the terms of Algorithm 1DMinRA, either k = i or
k = k′).

Another key observation is that any directed graph G over S is a t-spanner for
S if and only if for every 1 ≤ i < n there exists a t-spanning path from vi to vi+1

and from vi+1 to vi. Moreover, given that G is strongly connected implies that
the addition of an edge between consecutive points does not affect the length of
the shortest path between any other pair of consecutive points. Therefore, for
subproblems with j = i + 1 we assign ρr(i) = i + 1 (resp. ρl(i + 1) = i) if and
only if

−→
δ /|i, i+1| > t (resp.

←−
δ /|i, i+1| > t) and thus ensuring that the induced

graph is a t-spanner.
Our algorithm may consider solutions in which an assignment to a node is

charged more than once in the total cost; however, for every such solution, there
exists an equivalent one in which the charging is done properly and is preferred
by the algorithm due to its lower cost.

The description of our algorithm and its complexity given in [4] implies the
following theorem.

Theorem 2. The 1D MinRangeSpanner problem can be solved in O(n7) time
using O(n5) space.

3 The MinRange Problem in Higher Dimensions

In this section we focus on the MinRange problem for dimension d ≥ 2 and
α = 1. As all the versions of the problem for d ≥ 2 and α ≥ 1, it is known to be
NP -hard. Currently, the algorithm achieving the best approximation ratio for
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α = 1 and d ≥ 2 is the Hub algorithm with a ratio of 1.5. This algorithm was
proposed by G. Calinescu, P.J. Wan, and F. Zaragoza for the general metric case,
and analyzed by Ambühl et al. in [3] for the restricted Euclidean case. We show
a new approximation algorithm and bound its approximation ratio from above
by 1.5 − c for c = 5/105. Although in some cases our phrasing is restricted to
the plane, all arguments hold for higher dimensions as well.

3.1 Our Approach

Presenting our approach requires acquaintance with two existing algorithms.
The first is the Hub algorithm that finds the minimum enclosing disk C of S
centered at point hub ∈ S. Then, it sets ρ(hub) = rmin where rmin is C’s radius.
Finally, it directs the MST (S) towards the hub. The cost of this assignment is
w(MST (S)) + rmin ≤ w(MST (S)) + (w(MST (S)) + w(eM ))/2, where eM is
the longest edge in MST (S) and the weight function w is defined with respect
to Euclidean lengths. The second algorithm is the algorithm for 1D MinRange
problem by Kirousis et al. [9], to which we refer as the 1D RA algorithm. We
observe that this algorithm outputs an optimal solution for any ordered set
V = {v1, ..., vn} with distance function h that satisfies the following line alike
condition: for every 1 ≤ i ≤ j < k ≤ l ≤ n, it holds that h(vi, vl) ≥ h(vj , vk).

To guide the reader, we give an intuition and a rough sketch of our algorithm.
The algorithm computes several solutions of four types and then chooses the
minimum among them. Our analysis shows that at least one of the suggested
solutions admits the required approximation. Those solutions roughly rely on two
main methods. One uses a hub approach and achieves the required approximation
for ‘well spread’ instances. The other uses more complicated techniques in order
to achieve appropriate approximation for instances that roughly lie on a line. In
order to distinguish between the two types of instances additional terminology
is required. Given a graph G over S and two points p, q ∈ S, the stretch factor
from p to q in G is δG(p, q)/|pq|, where δG(p, q) denotes the Euclidean length of
the shortest path between p and q in G. We use ∼large when referring to values
greater than fixed thresholds, some with respect to w(MST (S)), defined later.

Consider MST (S) and its longest path PM . If one of the following conditions
holds, then one of the first two solutions suggested by the algorithm, which use
a hub approach, result in a better approximation than 1.5: (A1) there exists a
∼large edge in MST (S); (A2) a ∼large fraction of PM consists of disjoint sub-
paths connecting pairs of points with ∼large stretch factor, not dominated by
one sub-path of at least half the fraction; or (A3) the weight w(MST (S)\PM )
is ∼large.

Otherwise, there are three possible cases: (B1) S roughly lies on a line; (B2)
there are two points in PM with ∼large stretch factor, i.e., there is a ∼large ‘hill’
in PM , and then either the optimal solution roughly consists of two independent
subproblems, each roughly lies on a line (corresponds to a ‘hill’ side); or (B3)
the optimal solution uses edges connecting the two sides of the ‘hill’, covering
∼large fraction of it.
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The last three cases are approximated using the following technique. We con-
sider every possible pair of separation edges of the optimal solution, i.e., edges
that together cover a portion of the ‘hill’ and separate it into three sub-paths
(the middle area covered by the edges and two uncovered areas), while the two
uncovered areas are independent (namely, not connected by an edge). Note that
such two edges exist (as shown later in our analysis). For each pair of separation
edges we direct the middle covered sub-path to achieve a strongly connected sub-
graph via a cycle and solve the remaining two sub-paths separately, using two
different techniques on each sub-path. In the first, we (i) ‘flatten’ the path, (ii)
define a new distance function over the points of the sub-path, (iii) utilize the 1D
RA algorithm to achieve an optimal assignment with respect to the defined dis-
tance function and then (iv) carefully transform it into a valid range assignment
with respect to the Euclidean metric. Thus, we achieve a good approximation
for input set that roughly lies on a line. In the second technique, we use the Hub
algorithm. A (1.5 − c)-approximation is obtained for cases (B1) and (B2), using
the first technique, and for case (B3), using the second technique.

3.2 The Approximation Algorithm

The algorithm uses the following three procedures that are defined precisely at
the end of the algorithm’s description.

• The flatten procedure f - a method performing shortcuts between pairs of
points on a given path P resulting in a path without two points of stretch
factor greater than cs.

• The distance function hS - a distance function defined for an ordered set
P ⊆ S, satisfying the line alike condition.

• The adjustment transformation g - a function adjusting an optimal range
assignment for an ordered set P ⊆ S with distance function h, to a valid
assignment for P .

Let R be the forest obtained by omitting from MST (S) the edges of its longest
path, PM . Given a point v ∈ PM , let T (v) denote the tree of R rooted at v. For
every u ∈ T (v) let r(u) denote the root of the tree in R containing u, namely,
v. For a set of points V ⊂ PM , let T (V ) denote the union

⋃

v∈V T (v). For ease
of presentation, we assume the path PM has a left and a right endpoints, thus,
the left and right relations over PM are naturally defined.

The Main Algorithm Scheme: Compute four solutions and return the one
of minimum cost. In case of multiple assignments to a point in a solution, the
maximum among the ranges counts.

Solution (i): apply the Hub algorithm.

Solution (ii): apply a variant of the Hub algorithm - find a point ph ∈ PM

that minimizes the value rh = max{|ph p1|, |ph pz|}, where p1 and pz are the
endpoints of the path PM . Assign ph the range rh, direct PM towards ph and
bi-direct all edges in R.
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(* The rest of the algorithm handles cases (B1)-(B3) defined in Sect. 3.1 *)

For every edge e ∈ PM do:
Let Pel , Per be the paths of PM\e, to the left and to the right of e, respec-

tively. Apply the flatten procedure f on Pel and Per to obtain the paths
Pl′ = (p1, p2, ..., pm) and Pr′ = (pm+1, pi+2, ..., pz), respectively.

(* Note R has been changed during the flatten procedure *)

For every 4 points pl, pl′ , pr′ , pr with l ≤ l′ ≤ m < r′ ≤ r do:
In both solutions (iii) and (iv) direct the path Px = (pl, ...pm, pm+1, ..., pr)

towards pl and for each point pi with 1 ≤ i ≤ z direct T (pi) towards pi and
assign pi a range w(T (pi)). Perform the least cost option among the following
two, either add the edge (pl, pr), or add the two edges, one from ul to ur′ for
ul ∈ T (pl), ur′ ∈ T (pr′) of minimum length and the other from ul′ to ur for ul′ ∈
T (pl′), ur ∈ T (pr) of minimum length. As for the two paths Pl = (p1, p2, ..., pl)
and Pr = (pr, pr+1, ..., pz), assign them ranges as follows:

Solution (iii): apply the Hub algorithm separately on each path.

Solution (iv): apply the 1D RA algorithm separately on each path with respect
to the distance function hS .

The Flatten Procedure f . Let cs = 5/4. Given a path P = {vi, .., vn}, set
QP = {}. Let j > i be the maximum index such that δP (vi, vj) > cs|vivj |. If
such index does not exist, let j = i+1. Else (j > i+1), add the edge (vi, vj)
to P , remove the edge (vj−1, vj) from P , move the sub-path (vi, .., vj−1) from
P to the forest R, and update QP = QP ∪ {(vi, vj)}. Finally, repeat with
the sub-path (vj , .., vn) without initializing QP .

The definitions for hS and g are given with respect to the paths Pl and Pl′ ,
the definitions for the path Pr and Pr′ are symmetric.

The Distance Function hS . For every pj , pk with 1 ≤ j ≤ k ≤ l we define,

hS(pj , pk) = min
u∈T (pj′ ),1≤j′≤j

v∈T (pk′ ),k≤k′≤m

|uv|.

The Adjustment Transformation g. Given an assignment ρ′ : Pl → R+, we
transform it into an assignment g(ρ′) = ρ : Pl′ → R+. First, we assign:

ρ(pj) =

{

cs · ρ(pj) + ck · T (pj), 1 ≤ j ≤ l,

ck · T (pj), l < j ≤ m,

where ck = 1 + 8(1 + cs) = 19. The multiplicity (by cs) handles the gaps caused
by points breaking the line alike condition with respect to the Euclidean metric.
The role of the additive part, together with the second stage of the transforma-
tion, elaborated next, is to overcome the absence of points outside the path. In
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the second stage, for every pj with 1 ≤ j ≤ m, let 1 ≤ j− < j be the mini-
mum index for which there exists u ∈ T (pj−) with |pju| ≤ ck · w(T (pj)), and
let j < j+ ≤ m be the maximum index for which there exists u ∈ T (pj+) with
|pju| ≤ ck · w(T (pj)), direct the sub-path between pj− and pj+ towards pj .

The correctness of the algorithm, proved in [4], implies Theorem 3.

Theorem 3. Given a set S of points in Rd for d ≥ 2 and α = 1, a minimum
cost range assignment (1.5 − c)-approximation can be computed in polynomial
time for S, where c = 5
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Abstract. In this paper, we study the approximability of the Mini-
mum Rainbow Subgraph (MRS) problem and other related problems.
The input to the problem is an n-vertex undirected graph, with each
edge colored with one of p colors. The goal is to find a subgraph on a
minimum number of vertices which has one induced edge of each color.
The problem is known to be NP-hard, and has an upper bound of O(

√
n)

and a lower bound of Ω(log n) on its approximation ratio.
We define a new problem called the Densest k Colored Subgraph

problem, which has the same input as the MRS problem alongwith a
parameter k. The goal is to output a subgraph on k vertices, which has
the maximum number of edges of distinct colors. We give an O(n1/3)
approximation algorithm for it, and then, using that algorithm, give an
O(n1/3 log n) approximation algorithm for the MRS problem. We observe
that the MIN-REP problem is indeed a special case of the MRS problem.
This also implies a combinatorial O(n1/3 log n) approximation algorithm
for the MIN-REP problem. Previously, Charikar et al. [5] showed an
ingenious LP-rounding based algorithm with an approximation ratio of
O(n1/3 log2/3 n) for MIN-REP. It is quasi-NP-hard to approximate the

MIN-REP problem to within a factor of 2log1−ε n [15]. The same hardness
result now applies to the MRS problem. We also give approximation pre-
serving reductions between various problems related to the MRS problem
for which the best known approximation ratio is O(nc) where n is the
size of the input and c is a fixed constant less than one.

1 Introduction

Given an input graph, to output an optimal subgraph satisfying some constraints
is perhaps the most studied family of problems from an approximation perspec-
tive. Of late combinatorists have extensively studied such problems when the
edges are colored, called Rainbow Subgraph problems. See [1,6,11,17,18] for a
short representative list.

Our focus is arguably the simplest such computational problem, called the
Minimum Rainbow Subgraph (MRS) problem. The input to the problem is an
n-vertex undirected graph, with each edge colored with one of p colors. The goal
is to find a subgraph on a minimum number of vertices which has one induced
c© Springer-Verlag Berlin Heidelberg 2015
K. Elbassioni and K. Makino (Eds.): ISAAC 2015, LNCS 9472, pp. 106–115, 2015.
DOI: 10.1007/978-3-662-48971-0 10
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edge of each color. This was introduced in [4] and has been studied from the
approximation viewpoint by [4,13,16]. The motivation for this problem comes
from the Pure Parsimony Haplotyping (PPH) problem in computational biology.
The reader is referred to [10] for a detailed description of the PPH problem. The
MRS problem is known to be NP-hard.

There is a trivial O(
√

n) approximation algorithm for the MRS problem.
Select one edge of each color and add its end points to the solution set. And this
is the best known upper bound for this problem. The upper bound on the approx-
imation ratio can be improved for bounded degree graphs. Camcho et al. [4] gave
a 5

6Δ-approximation algorithm on graphs with maximum degree Δ, which was
later improved by Katrenič et al. [13] to

(

1
2 +

(

1
2 + ε

)

Δ
)

. Katrenič et al. [13]
also present an exact algorithm for the MRS problem that has a running time
of nO(1) · 2p · Δ2p. Hüffner et al. [12] study the parameterized complexity of the
MRS problem with different parameters.

We observe that the approximation ratio for the MRS problem achieved by
the trivial algorithm may not be beaten using natural LP and SDP relaxations.
We give an Ω(

√
n) lower bound on the integrality gap for these natural relax-

ations (see Appendix B in the full version of this paper [19]). As the first idea
towards an algorithm with an improved ratio, we define a new problem: the
Densest k Colored Subgraph (DkCS) problem. The input to the DkCS problem
consists of an undirected graph with each edge colored with one of p colors and a
parameter k. The goal is to find a subgraph on k vertices which has the maximum
number of edges with distinct colors. We show then that an f -approximation
algorithm for the DkCS problem implies an O(f log n) approximation algorithm
for the MRS problem (see Appendix A in the full version of this paper [19]).

Note that the well studied Densest k Subgraph (DkS) problem is a special
case of the DkCS problem, in which every edge is colored with a different color.
In addition to being NP-hard, the DkS problem has been shown not to admit a
PTAS under various complexity theoretic assumptions [8,14]. The DkS problem
is known to be notoriously hard to approximate. Breaking the O(

√
n) barrier,

Feige et al. [9] gave an O(n1/3−ε) approximation algorithm, for some ε > 0. In a
remarkable paper, Bhaskara et al. [2] improve this to O(n1/4+ε), for any ε > 0.
There is a large gap between the known upper and lower bounds for the DkS
problem. As evidence for the hardness of approximating the DkS problem within
polynomial factors, a lower bound of Ω(n1/4/ log3 n) on the integrality gap for
Ω(log n/ log log n) rounds of the Sherali-Adams relaxation for the DkS problem
is shown in [3].

The introduction of colors (in the DkCS problem) intuitively seems to
increase the difficulty. One difficulty, for instance is that exactly one edge of
each color is of importance. In this paper, we give an O(n1/3) approximation
algorithm for the DkCS problem. Our algorithm builds on the one for the DkS
problem in [9].

The MRS problem falls in a class of problems with the known upper bound on
the approximation ratio |I|c where |I| is the input size and c a constant less than
one, and with the known lower bounds being smaller growing functions. Prior to
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a breakthrough result by Charikar et al. [5], several papers reduced the MIN-
REP [15] problem (defined in Sect. 2.7) to other problems in order to obtain hard-
ness results. It was conjectured that the MIN-REP problem has a lower bound
Ω(

√
n) on the approximation ratio, which was refuted by Charikar et al. [5]. They

gave an LP-rounding algorithm with approximation ratio O(n1/3 log2/3 n). We
observe that the MIN-REP problem is a special case of the MRS problem, and
this gives a combinatorial O(n1/3 log n) approximation algorithm for MIN-REP.
Note that an o(n1/3) approximation algorithm for the MRS problem, implies an
improved approximation ratio for the MIN-REP problem.

On the inapproximability side, a proof in [16] implies that it is quasi-NP-
hard to approximate the MRS problem to within Ω(log n). Kortsarz [15] showed
that it is quasi-NP-hard to approximate the MIN-REP problem to within a
factor of 2log

1−ε n, for any ε > 0. The same hardness result applies to the MRS
problem.

We present a randomized approximation preserving reduction from the DkS
problem to the MRS problem (in Sect. 3). We also present approximation pre-
serving reductions from the MRS problem to three problems, namely, the Red
Blue Set Cover problem, the Power Dominating Set problem, and the Target
Set Selection problem (See Appendix C in the full version of this paper [19] for
problem definitions and reductions). We observe that there exists a PTAS for
the MRS problem on planar graphs, and in general on minor free graphs (see
Sect. 4 in the full version of this paper [19]).

2 An O(n1/3) Approximation Algorithm for DkCS

Our algorithm follows the one in [9] to some extent. Some of the claims one can
make in the uncolored case do not hold here and we need to overcome this. One
difficulty is that exactly one edge of each color is of use in the optimal. The other
difficulty is that we do not know which colors appear in the optimum and hence
are “important”. The basic idea in [9] is to pick the vertices in two phases. First
pick a subset of vertices with a large number of edges incident on them and then
to pick a subset with large number of edges incident on these and the first set.

Our algorithm A employs four different procedures, A1, A2, A3, and A4,
each of which selects a dense colored subgraph. It returns the densest of the four
colored subgraphs that are found.

2.1 Preliminaries

The color degree of a vertex is defined to be the number of distinct colors repre-
sented among edges incident on the vertex. The average color degree of a vertex
in a set S ⊆ V is the ratio of total number of distinct colors among the edges
induced by the vertices in S to the size of S. For a set S ⊆ V and a vertex v, the
color degree of v into S is the color degree of v in the graph induced by S ∪{v}.

Let, for 1 ≤ i ≤ 4, Ai(G, k) denote the average color degree of the subgraph
selected by the algorithm Ai.
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One tool that we use repeatedly is the well known approximation algorithm
for the unweighted maximum coverage problem. In this problem we are given a
collection of subsets of a set and a positive integer k. The objective is to find k
subsets which cover the maximum number of elements. This problem is known
to be NP-hard. The greedy algorithm which chooses the subset which covers
the most number of uncovered colors at each stage has an approximation ratio
1 − 1/e, and no algorithm can do better [7].

For instance if we wish to determine k vertices which have the maximum
number of edges with distinct colors incident on them, we can use the same
greedy strategy and get an approximation ratio of 1 − 1/e on the maximum
number of colors covered.

Proposition 1. The greedy algorithm to find k vertices which have the maximum
number of edges with distinct colors incident on them is 1 − 1/e approximate.

Let the average color degree of the densest colored subgraph on k vertices in G
be d∗(G, k), or simply d∗ when it is obvious from the context. Let G∗ denote the
optimum densest colored subgraph of k vertices.

2.2 Procedure A1: A Trivial Procedure

Without loss of generality, we may assume that the graph G contains at least
k/2 edges of distinct colors.

Procedure A1. Select k/2 edges of distinct colors from G. Return the set of
vertices incident on these edges, adding arbitrary vertices to this set if its size is
smaller than k.

Clearly, A1(G, k) ≥ 1.

2.3 Procedure A2: A Greedy Procedure

Our next procedure is a two step procedure. We first, greedily select a subset T
of k/2 vertices to maximize the number of edges with distinct colors having at
least on end-point in T . Later we again greedily pick k/2 vertices T ′ to maximize
the number of edges with distinct colors covered by T ∪ T ′.

Procedure A2. Select the vertex of maximum color degree. Add it to T . Remove
all edges of all colors incident on this vertex from G. Repeat this till |T | = k/2.
After this is done, consider the original graph G. Select the vertex in G \ T
of maximum color degree into T . Add it to T ′. Remove all edges of all colors
incident on this vertex from the vertices in G \ T . Repeat this till |T ′| = k/2.
Return T ∪ T ′.

Let c(T ) denote the number of distinct colors among edges incident on ver-
tices in T . Let dT denote the average color degree of a vertex in T . That is,
dT = c(T )/(k/2).
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Lemma 1. Procedure A2 returns a subgraph satisfying A2(G, k) ≥ c1
kdT

2n , for
some constant c1 > 0.

Proof. Let m1 denote the number of distinct colors among edges, both of whose
endpoints lie in T . Then the number of distinct colors with one end point in T is
dT |T |−2m1 = dT k/2−2m1 ≥ 0. The greedy strategy together with Proposition 1
ensures that at least (1 − 1

e )|T ′|/|G \ T | > (1 − 1
e ) k

2n fraction of these distinct
colored edges are contained in T ∪ T ′. Thus the total number of distinct colored
edges in the subgraph induced by T ∪ T ′ is at least

(

dT k

2
− 2m1

)((

1 − 1
e

)

k

2n

)

+ m1 ≥ c1
dT k2

n
. ��

By Proposition 1, dT ≥
(

1 − 1
e

)

d∗(G, k). Thus, this greedy procedure approxi-
mates d∗(G, k) to within a ratio of at most O(n

k ).

2.4 Colored Walks of Length 2

Our next procedure works when the color degree of vertices is small. Towards
building intuition, consider G∗, the optimum densest k colored subgraph in G.
In G∗ every edge has a distinct color. Also, |V (G∗)| = k. Assume that d∗ is at
least

√
k. Then, if the graph expands (this term is used loosely), then there is

a vertex v in V (G∗) so that half the vertices in the optimum solution are at
distance 2 from v in G∗. The idea is to look “greedily” in such neighborhoods.
Suppose we knew this vertex v. (We try every vertex.) Then we first find vertices
having maximum length two walks (with edges of distinct colors) to v and then
vertices reachable by distinct colored edges having a large number of colored
edges into the first set. Details follow.

For vertices u and v, let W2(u, v) denote the maximum number of colored
length 2 walks from u to v, such that all edges in these paths are distinctly
colored. Without colors, this number is easily determined. In the colored version,
we need to invoke the algorithm for maximum matching. This number can be
determined as follows. Any n-vertex graph can have at most n2 distinct colors.
Consider an auxillary graph G′ on n2 vertices, each vertex corresponding to one
color. A length 2 walk between u and v is represented by an edge between two
vertices in G′ corresponding to the colors of the edges on that walk. Now, we
find a maximum matching for the graph G′. Let W2(u, v) denote the set of colors
corresponding to the maximum matching in G′.

Procedure A3. Construct a candidate graph H(v) for every vertex v in G as
follows. For every w ∈ G, compute W2(v, w). Select the vertex w for which
|W2(v, w)| is maximum. Add it to P (v). Remove all edges in G which are col-
ored with the colors of edges incident on w that belong to W2(v, w). Repeat the
procedure till |P (v)| = k/2. Now consider the original graph. Select a neighbor
x of v which has maximum color degree into P (v). Add x to Q(v). Remove all
edges of these colors from G. Repeat the procedure till |Q(v)| = k/2. Let H(v)
denote the subgraph induced on P (v) ∪ Q(v). (If H(v) still contains less than k
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vertices, then it is completed to size k arbitrarily.) Among all vertices v, select
the densest colored candidate graph H(v) as the output.

Let cdeg∗(v) denote the color degree of v in G∗.
We now analyze the approximation ratio of this procedure. Let us first note

that the number of colored length 2 walks within the optimum subgraph G∗ is
at least k(d∗(G, k))2. This is because each v ∈ G∗ contributes (cdeg∗(v))2 to this
sum, and

∑

v∈G∗(cdeg∗(v))2 ≥ k(d∗(G, k))2 by convexity.
It follows that there is a vertex v which is the endpoint of at least (d∗(G, k))2

colored length-2 walks in G∗. By the greedy construction of P (v) and Propo-
sition 1, there are at least (1 − 1

e )(d∗(G, k))2/2 walks of colored length 2
between this v and vertices of P (v). There are at least (1 − 1/e)(d∗(G, k))2/2
distinct colored edges between Q(v) and P (v) if cdeg(v) ≤ k/2, and at
least (1 − 1

e )2(d∗(G, k))2k/4cdeg(v) distinct colored edges between Q(v) and
P (v) otherwise. Since we do not require P (v) and Q(v) to be disjoint, each
edge may have been counted twice. Hence, altogether, H(v) contains at least
(1 − 1

e )2 min[(d∗(G, k))2/4, (d∗(G, k))2k/8Δc(G))] edges, where Δc(G) denotes
the maximum color degree in the graph.

This guarantees,

A3(G, k) ≥
(

1 − 1
e

)2 (d∗(G, k))2

2max[k, 2Δc(G))]
.

2.5 Procedure A4: Another Greedy Procedure

This procedure is the key to handling colors. This complements Procedure A3. In
this procedure, we will pick a candidate subgraph with the following guarantee.
Either the vertices in this subgraph will have high color degree, or the graph left
after removing this subgraph has only vertices of low color degree.

So this procedure works in conjunction with Procedure A3. In the uncolored
case, a procedure like Procedure A2 is enough to achieve this result. In this case
it is tricky, and we need to get the algorithm just right. Details follow.

Procedure A4. Select a vertex u with maximum color degree. Add it to U . For the
vertex u, arbitrarily keep only one edge of each color incident on it, and remove
the rest. For every edge (u, v) colored c remove every edge colored c which is
incident on v from the graph, except (u, v). Now, repeat this step till |U | = k/2.

Now from the original graph (minus the edges removed in the above step), find
a vertex of maximum color degree into U . Add this vertex to V . Call these colors
as covered. Repeatedly choose the vertex which covers the maximum number of
uncovered colors, and add it to V . Add a total of k/2 vertices to V this way. If
|U ∪ V | is less then k, then add arbitrary vertices to it, to make it of size k.

Consider the vertices of U in the original graph. Find greedily the k/2 vertices
that cover the most number of colors going into U as in Procedure A2. Call this
set V ′.

Among the two subgraphs U ∪ V ′ and U ∪ V , return the one which has more
number of edges of distinct colors.

Let dU denote the color degree of last vertex added to U .
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Lemma 2. If k2 ≥ 4n, then A4(G, k) ≥ c2
dU

k . Else, A4(G, k) ≥ c3
dU k

n .

Proof. The total number of edges incident on the vertices U is at least kdU/2.
Let the number of colors covered after picking the ith vertex in V be fi. Then
the number of edges incident on vertices of U which are colored with one of
these fi colors is at most kfi/2. This is because every vertex in U can have one
edge of same color incident on it. Hence the total number of edges incident on
vertices in U colored with uncovered colors is at least kdU/2 − kfi/2. Hence,
the next vertex added to V will cover at least (kdU/2 − kfi/2)/n colors. Hence,
fi+1 ≥ fi +(kdU/2−kfi/2)/n. By induction, the total number of colors covered

in U ∪ V is f k
2

≥ dU

(

1 −
(

1 − k
2n

)
k
2
)

. If k2 ≥ 4n, f k
2

≥ dU

(

1 −
(

1
e

) k2
4n

)

≥

dU

(

1 − 1
e

)

. Else, f k
2

≥ dU

(

1 −
(

1 −
(

k/2
1

)

k
2n +

(

k/2
2

) (

k
2n

)2
))

≥ dU · k2

4n . ��

2.6 Algorithm A

Algorithm A applies Procedures A1, A2, and A4, on the graph G, and Procedure
A3 on the subgraph induced on Gl = G \ U , where U is the set of k/2 vertices
chosen by Procedure A4, and returns the densest colored subgraph of these.

Let an α fraction of the edges in the densest k colored subgraph be incident
on the vertices of U . If α ≤ 1

2 , then clearly Gl has a densest k colored subgraph
with average color degree Ω(d∗). Else, there are d∗k/2 edges of different colors
from the optimum which are incident on the vertices of U . In A4, we choose k/2
vertices having edges to U which cover the maximum number of colors (upto a
constant factor). Thus, A4(G, k) = Ω(d∗).

The performance guarantee of algorithm A is at least the geometric mean of
the performance guarantee of any three of the Procedures A1, A2, A3, and A4.
We look at three different cases.

1. If k ≥ dU , then Δc(Gl) ≤ k
2 + dU ≤ 2k. Thus,

A(G, k) ≥ max [A1(G, k), A2(G, k), A3(Gl, k)]

≥
(

1 · c1
kdT

2n
· c4

(d∗(G, k))2

2max[k, 2Δc]

)1/3

≥ d∗(G, k)
cn1/3

,

for some c > 0. Here the last inequality follows from the fact that dT ≥
(1 − 1

e )d∗(G, k) (by Proposition 1).
For the remaining cases, we may assume Δc(Gl) ≤ 2dU , because dU > k.

2. If k2 ≥ 4n, then

A(G, k) ≥ max [A2(G, k), A4(G, k), A3(Gl, k)]

≥
(

c1
kdT

2n
· c2

dU

k
· c4

(d∗(G, k))2

8dU

)1/3

≥ d∗(G, k)
cn1/3

,

for some c > 0. Here the last inequality follows from the fact that dT ≥
(1 − 1

e )d∗(G, k) (by Proposition 1).
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3. If k2 < 4n, then

A(G, k) ≥ max [A1(G, k), A4(G, k), A3(Gl, k)]

≥
(

1 · c3
dUk

n
· c4

(d∗(G, k))2

8dU

)1/3

≥ d∗(G, k)
cn1/3

,

for some c > 0. Here the last inequality follows from the fact that k ≥ d∗(G, k).

This completes the proof for an O(n1/3) approximation algorithm for the DkCS
problem. The following theorem implies an O(n1/3 log n) approximation algo-
rithm for the MRS problem.

Theorem 1. If there is an f approximation algorithm for the DkCS problem
then there is an O(f log n) approximation algorithm for the MRS problem.

The proof of this theorem can be found in Appendix A in the full version of this
paper [19].

2.7 An Algorithm for MIN-REP

The MIN-REP problem is a minimization version of the label cover problem [15].
The input consists of a bipartite graph G = (A,B,E), where |A| = |B| = n, and
equitable partitions of A and B into k sets of same size q = n/k. The bipartite
graph and the partitions of A and B induce a “supergraph” H in the following
way - The vertices of graph H are the equitable partitions of set A and B. Two
vertices corresponding to sets Ai and Bj are adjacent by a “superedge” in H if
and only if there exist ai ∈ Ai and bi ∈ Bi which are adjacent in G. The goal
is to choose A′ ⊂ A and B′ ⊂ B such that the pairs (a, b), a ∈ A′ and b ∈ B′,
cover all the superedges of H, while minimizing |A′| + |B′|.

Charikar et al. [5] gave an O(n1/3 log2/3 n) approximation algorithm for the
MIN-REP problem using LP rounding. We observe that the MIN-REP problem
is indeed a special case of the MRS problem. Consider an instance of the MIN-
REP problem. Color all the edges between vertices of Ai and Bj with same
color. Use different color for every pair Ai and Bj . Clearly, an f -approximation
algorithm for the MRS problem implies an f -approximation algorithm for the
MIN-REP problem. (Note that an LP based algorithm similar to [5] will not
give a better approximation ratio for the MRS problem. This is evident from the
Ω(

√
n) integrality gap shown for LP2 in Appendix B in the full version of this

paper [19].)

3 Reduction from the Densest k-Subgraph (DkS)
Problem

The Densest k-Subgraph problem is a well studied problem [2,3,9]. Given a
simple undirected graph, the goal is to output a subgraph on k vertices which
has maximum number of edges. The best known hardness result for the DkS
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problem is due to Feige [8] and Khot [14], that the DkS problem does not have
a PTAS. Feige proves the result assuming random 3-SAT formulas are hard to
refute and Khot proves it assuming NP does not have randomized algorithms
that run in subexponential time (i.e. that NP � ∩ε>0 BPTIME(2nε

)). It is
widely believed that the DkS problem has a lower bound on approximation
ratio within a factor of nc, for some c > 0.

Theorem 2. If there is an f-approximation algorithm for the MRS problem,
then there is a randomized O(f2 · log n)-approximation algorithm for the DkS
problem.

Proof. We exhibit a randomized reduction from the DkS problem to the MRS
problem. Consider an instance of the DkS problem. Assume that this graph G
has a subgraph on k vertices with t edges such that t is maximum. Assume
that t is known. This is a kosher assumption, since one can run the algorithm
for each possible value of t. Color each edge of the graph independently and
randomly with one of t/(c log t) colors. Let X be a random variable that denotes
the number of edges needed to cover all the colors. The expected number of
edges needed to cover all the colors (by the coupon collector argument) is

(

t

c log t

)

c′ log
(

t

c log t

)

≤ t

c′′

Then by Markov’s inequality,

Pr(X > t) ≤ E[X]
t

≤ 1
c′′

If c is chosen appropriately, then this probability will be small. This implies
that there will be k vertices such that whp there is at least one edge of every color
in the subgraph induced by these vertices. Suppose there exists an f approxi-
mation algorithm for the MRS problem. This algorithm will give a subgraph
on at most f · k vertices and t/(c log t) edges. The density of this subgraph is
(

t
c log t · 1

fk

)

. Select k/2 vertices of highest degree from this subgraph. Call this
set U . Find k/2 vertices of highest degree into U from this subgraph. Call this
set V . U ∪ V will have at least t

cf2 log t edges. Thus, an f approximation algo-
rithm for the MRS problem implies a randomized O(f2 · log n)-approximation
algorithm for the DkS problem. ��
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Abstract. Caching (also known as paging) is a classical problem con-
cerning page replacement policies in two-level memory systems. General
caching is the variant with pages of different sizes and fault costs. The
strong NP-hardness of its two important cases, the fault model (each
page has unit fault cost) and the bit model (each page has the same fault
cost as size) has been established. We prove that this already holds when
page sizes are bounded by a small constant: The bit and fault models
are strongly NP-complete even when page sizes are limited to {1, 2, 3}.

Considering only the decision versions of the problems, general
caching is equivalent to the unsplittable flow on a path problem and there-
fore our results also improve the hardness results about this problem.

Keywords: General caching · Small pages · NP-hardness · Unsplittable
flow on a path

1 Introduction

Caching (also known as uniform caching or paging) is a classical problem in
the area of online algorithms and has been extensively studied since 1960s. It
models a two-level memory system: There is the fast memory of size C (the
cache) and a slow but large main memory where all data reside. The problem
instance comprises a sequence of requests, each demanding a page from the main
memory. No cost is incurred if the requested page is present in the cache (a cache
hit). If the requested page is not present in the cache (a cache fault), the page
must be loaded at the fault cost of one; some page must be evicted to make
space for the new one when there are already C pages in the cache. The natural
objective is to evict pages in such a way that the total fault cost is minimized.
For a reference on classical results, see Borodin and El-Yaniv [7].

In 1990s, with the advent of World Wide Web, a generalized variant called
file caching or simply general caching was studied [11,12]. In this setting, each
page p has its size(p) and cost(p). It costs cost(p) to load this page into the
cache and the page occupies size(p) units of memory there. Uniform caching
is the special case satisfying size(p) = cost(p) = 1 for every page p. Other
important cases of this general model are

– the cost model (weighted caching): size(p) = 1 for every page p;

A full version is available on arXiv. http://arxiv.org/abs/1506.07905.
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– the bit model : cost(p) = size(p) for every page p;
– the fault model : cost(p) = 1 for every page p.

Caching, as described so far, requires the service to load the requested page
when a fault occurs, which is known as caching under the forced policy. Allowing
the service to pay the fault cost without actually loading the requested page to
the cache gives another useful and studied variant of caching, the optional policy.

Previous Work. In this article, we consider the problem of finding the optimal
service in the offline version of caching when the whole request sequence is
known in advance. Uniform caching is solvable in polynomial time with a natural
algorithm known as Belady’s rule [5]. Caching in the cost model is a special
case of the k-server problem and is also solvable in polynomial time [8]. In late
1990s, the questions about the complexity status of general caching were raised.
The situation was summed up by Albers et al. [1]: “The hardness results for
caching problems are very inconclusive. The NP-hardness result for the Bit model
uses a reduction from partition, which has pseudopolynomial algorithms. Thus
a similar algorithm may well exist for the Bit model. We do not know whether
computing the optimum in the Fault model is NP-hard.”

There was no improvement until a breakthrough in 2010 when Chrobak
et al. [9] showed that general caching is strongly NP-hard, already in the case of
the fault model as well as in the case of the bit model. General caching is usually
studied under the assumption that the largest page size is very small in compar-
ison with the total cache size, as is for example the case of the aforementioned
article by Albers et al. [1]. Instances of caching with pages larger than half of
the cache size (so called obstacles) are required in the proof given by Chrobak
et al. Therefore, this hardness result is in fact still quite inconclusive.

Independently, a weak NP-hardness of the fault model was proven by
Darmann et al. [10]. A substantially simpler proof of the strong NP-hardness of
general caching was given by Bonsma et al. [6]; only pages of sizes in {1, 2, 3}
are needed in the proof, but they have many different costs: this means that
the costs are far from the fault model and in fact they are also far from the bit
model.

In the decision version, offline general caching is equivalent (together with
interval scheduling/packing, resource allocation and other problems) to the
unsplittable flow on a path problem (UFPP). An important parameter in the
world of UFPP is task density, in the language of caching it is the fault cost
divided by the page size. An approximation scheme with quasi-polynomial time
complexity when the ratio of the maximum density to the minimum density is
quasi-polynomial was given by Bansal et al. [2]. The first non-trivial instance of
UFPP for which a PTAS was invented by Batra et al. [4] is the one when the
task densities are in a constant range. The bit model of caching is equivalent to
the case when all task densities are equal to one.

Our Contribution. We give a novel proof of strong NP-hardness for general
caching which gives the first hardness result restricted to small pages in the fault
and cost models:
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Theorem 1.1. General caching is strongly NP-hard even in the case when the
page sizes are limited to {1, 2, 3}, for both the fault model and the bit model, and
under each of the forced and optional policies.

The proof of the result for general costs (and sizes {1, 2, 3}) is rather simple,
in particular significantly simpler than the one given by Chrobak et al. [9] and
at the same time it uses only two different costs, which is simpler compared
to Bonsma et al. [6]. The reductions for the result in the fault and bit models
are significantly more involved and require a non-trivial potential-function-like
argument.

Open Problems. For the decision version, closing the remaining gap with small
pages seems challenging and could provide new useful insights: Is general caching
also (strongly) NP-hard when page sizes are limited to {1, 2}? Can caching with
page sizes {1, 2} be solved in polynomial time, at least in the bit or fault model?

The currently best approximation algorithm is a 4-approximation by Bar-Noy
et al. [3], while there is no hardness of approximation result. A better understand-
ing of approximability of general caching remains a challenge.

Outline. Our main result – a polynomial-time reduction from independent set
to caching in the fault model under the optional policy with page sizes restricted
to {1, 2, 3} – is explained in Sect. 2 and its validity is proven in Sect. 3.

The remaining proofs are omitted; they are given in the full version available
as arXiv:1506.07905. There, in section “Bit Model”, we show how to modify the
reduction so that it works for the bit model as well. In section “Forced Policy”,
we show how to obtain the hardness results also for the forced policy. Finally, in
the appendix, we give a self-contained presentation of the simple proof of strong
NP-hardness for general costs.

2 Reduction

The decision problem IndependentSet is well-known to be NP-complete. By
3Caching(forced) and 3Caching(optional) we denote the decision versions
of caching under each policy with page sizes restricted to {1, 2, 3}.

Problem: IndependentSet
Instance: A graph G and a number K.
Question: Is there an independent set of cardinality K in G?

Problem: 3Caching(policy)
Instance: A universe of pages, a sequence of page requests, numbers C

and L. For each page p it holds size(p) ∈ {1, 2, 3}.
Question: Is there a service under the policy policy of the request

sequence using the cache of size C with a total fault cost of at
most L?

We define 3Caching(Fault,policy) to be the problem 3Caching(policy)
with the additional requirement that page costs adhere to the fault model. The
problem 3Caching(bit,policy) is defined analogously.
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In this section, we describe a polynomial-time reduction from Indepen-
dentSet to 3Caching(fault,optional). Informally, a set of pages of size
two and three is associated with each edge and a page of size one is associated
with each vertex. Each vertex-page is requested only twice while there are many
requests on pages associated with edges. The request sequence is designed in such
a way that the number of vertex-pages that are cached between the two requests
in the optimal service is equal to the size of the maximum independent set.

We now show the request sequence of caching corresponding to the graph
given in IndependentSet with a parameter H. In the next section, we prove
that it is possible to set a proper value of H and a proper fault cost limit L such
that the reduction becomes a valid polynomial-time reduction.

Reduction 2.1. Let G = (V,E) be the instance of IndependentSet. The
graph G has n vertices and m edges and there is an arbitrary fixed order of
edges e1, . . . , em. Let H be a parameter bounded by a polynomial function of n.

A corresponding instance IG of 3Caching(fault,optional) is an instance
with the cache size C = 2mH +1 and the total of 6mH +n pages. The structure
of the pages and the requests sequence is described below.

Pages. For each vertex v, we have a vertex-page pv of size one. For each edge e,
there are 6H edge-pages associated with it that are divided into H groups. The
ith group consists of six pages āe

i , α
e
i , a

e
i , b

e
i , β

e
i , b̄e

i where pages αe
i and βe

i have
size three and the remaining four pages have size two.

For a fixed edge e, let āe-pages be all pages āe
i for i = 1, . . . , H. Let also

ā-pages be all āe-pages for e = e1, . . . , em. The remaining collections of pages
(αe-pages, α-pages, . . . ) are defined in a similar fashion.

Request Sequence. The request sequence of IG is organized in phases and
blocks. There is one phase for each vertex v ∈ V , we call such a phase the v-phase.
There are exactly two requests on each vertex-page pv, one just before the begin-
ning of the v-phase and one just after the end of the v-phase; these requests do
not belong to any phase. The order of phases is arbitrary. In each v-phase, there
are 2H adjacent blocks associated with every edge e incident with v; the blocks
for different incident edges are ordered arbitrarily. In addition, there is one initial
block I before all phases and one final block F after all phases. Altogether, there
are d = 4mH + 2 blocks.

Let e = {u, v} be an edge, let us assume that the u-phase precedes the
v-phase. The blocks associated with e in the u-phase are denoted by Be

1,1,
Be

1,2, . . . , B
e
i,1, Be

i,2, . . . , B
e
H,1, Be

H,2, in this order, and the blocks in the v-phase
are denoted by Be

1,3, Be
1,4, . . . , B

e
i,3, Be

i,4, . . . , B
e
H,3, Be

H,4, in this order. An exam-
ple is given in Fig. 1.

Even though each block is associated with some fixed edge, it contains one or
more requests to the associated pages for every edge e. In each block, we process
the edges in the order e1, . . . , em that was fixed above. Pages associated with the
edge e are requested in two rounds. In each round, we process groups 1, . . . , H
in this order. When processing the ith group of the edge e, we request one or
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Be1
1,1B

e1
1,2B

e1
2,1B

e1
2,2

u-phase
I Be2

1,1B
e2
1,2B

e2
2,1B

e2
2,2

v-phase
Be1

1,3B
e1
1,4B

e1
2,3B

e1
2,4

w-phase
Be2

1,3B
e2
1,4B

e2
2,3B

e2
2,4 F

pvpu pw

Fig. 1. An example of phases, blocks and requests on vertex-pages for a graph with
three vertices u, v, w and two edges e1 = {u, w}, e2 = {v, w} when H = 2

more pages of this group, depending on the block we are in. The following table
determines which pages are requested.

Block First round • Second round

before Be
i,1 āe

i •

Be
i,1 āe

i , αe
i • bei

Be
i,2 αe

i , ae
i • bei

between Be
i,2 and Be

i,3 ae
i • bei

Be
i,3 ae

i • bei , βe
i

Be
i,4 ae

i • βe
i , b̄ei

after Be
i,4 • b̄ei

Reduction 2.1 is now complete. An example of requests on edge-pages asso-
ciated with one edge e is depicted in a figure in the full version. Notice that the
order of the pages associated with e is the same in all blocks; more precisely, in
each block the requests on the pages associated with e form a subsequence of

āe
1 αe

1 ae
1 . . . āe

i αe
i ae

i . . . āe
H αe

H ae
H be

1 βe
1 b̄e

1 . . . be
i βe

i b̄e
i . . . be

H βe
H b̄e

H . (1)

Preliminaries for the Proof. Instead of minimizing the service cost, we max-
imize the savings compared to the service which does not use the cache at all.
This is clearly equivalent when considering the decision versions of the problems.

Without loss of generality, we assume that any page is brought into the cache
only immediately before some request to that page and removed from the cache
only after some (possibly different) request to that page; furthermore, the cache is
empty at the beginning and at the end. That is, a page may be in the cache only
between two consecutive requests to this page, and either it is in the cache for the
whole interval or not at all.

Each page of size three is requested only twice in two consecutive blocks, and
these blocks are distinct for all pages of size three. Thus, a service of edge-pages
is valid if and only if at each time, at most mH edge-pages are in the cache. It is
convenient to think of the cache as of mH slots for edge-pages.

As each vertex-page is requested twice, the savings on the n vertex-pages are
at most n. Furthermore, a vertex-page can be cached if and only if during the
phase it never happens that at the same time all slots for edge-pages are full and
a page of size three is cached.
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Let SB denote the set of all edge-pages cached at the beginning of the block B
and let Se

B be the set of pages in SB associated with the edge e. We use sB = |SB |
and se

B = |Se
B | for the sizes of the sets. Each edge-page is requested only in

a contiguous segment of blocks, once in each block. It follows that the total
savings on edge-pages are equal to

∑

B sB where the sum is over all blocks.
In particular, the maximal possible savings on the edge-pages are (d − 1)mH,
using the fact that SI is empty. We shall show that the maximum savings are
(d − 1)mH + K where K is the size of the maximum independent set in G.

Almost-Fault Model. To understand the reduction, we consider what happens
if we relax the requirements of the fault model and set the cost of each vertex-
page to 1/(n + 1) instead of 1 as required by the fault model.

In this scenario, the total savings on vertex-pages are n/(n + 1) < 1 which
is less than savings incurred by one edge-page. Therefore, edge-pages must be
served optimally in the optimal service of the whole request sequence.

In this case, the reduction works already for H = 1. This leads to a quite short
proof of the strong NP-hardness for general caching and we give this proof in
an appendix of the full version. Now we show the main ideas that are important
also for the design of our caching instance in the fault and bit models.

We first prove that for each edge e and each block B �= I we have se
B = 1 (see

the appendix). Using this we show below that for each edge e, at least one of the
pages αe

1 and βe
1 is cached between its two requests. This implies that the set of

all vertices v such that pv is cached between its two requests is independent.
For a contradiction, let us assume that for some edge e, neither of the pages

αe
1 and βe

1 is cached between its two requests. Because pages αe
1 and βe

1 are
forbidden, there is be

1 in SBe
1,2

and ae
1 in SBe

1,3
. Somewhere between these two

blocks Be
1,2 and Be

1,3, we must switch from caching be
1 to caching ae

1. However,
this is impossible, because the order of requests implies that we would have to
cache both be

1 and ae
1 at some moment (see Fig. 2). However, there is no place in

the cache for such an operation, as se′
B = 1 for every e′ and B �= I.

In the fault model, the corresponding claim se
B = H does not hold. Instead,

we prove that the value of se
B cannot change much during the service and when

we use H large enough, we still get a working reduction.

āe
1

Be
1,1 Be

1,2 Be
1,3 Be

1,4

αe
1

ae
1

be1
βe
1

b̄e1

Fig. 2. Pages associated with one edge when H = 1
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3 Proof of Correctness

In this section, we show that the reduction described in the previous section is
indeed a reduction from IndependentSet set to 3Caching(fault,optional).
We prove that there is an independent set of cardinality K in G if and only
if there is a service of the caching instance IG with the total savings of at
least (d − 1)mH + K. First the easy direction, which holds for any value of the
parameter H.

Lemma 3.1. Let G be a graph and IG the corresponding caching instance from
Reduction 2.1. Suppose that there is an independent set W of cardinality K in G.
Then there exists a service of IG with the total savings of at least (d−1)mH+K.

Proof. For any edge e, denote e = {u, v} so that the u-phase precedes the v-
phase. If u ∈ W , we keep all āe-pages, be-pages, βe-pages and b̄e-pages in the
cache from the first to the last request on each page, but we do not cache ae-
pages and αe-pages at any time. Otherwise, we cache all āe-pages, αe-pages,
ae-pages and b̄e-pages, but do not cache be-pages and βe-pages at any time.
Figure 3 shows these two cases for the first group of pages. In both cases, at each
time at most one page associated with each group of each edge is in the cache
and the savings on those pages are (d − 1)mH. We know that the pages fit in
the cache because of the observations made in Sect. 2.

For any v ∈ W , we cache pv between its two requests. To check that this is
a valid service, observe that if v ∈ W , then during the corresponding phase no
page of size three is cached. Thus, the page pv always fits in the cache together
with at most mH pages of size two. ��

We prove the converse in a sequence of lemmata. In section “Bit Model” of
the full version we will show how to reuse the proof for the bit model. To be
able to do that, we list explicitly all the assumptions about the caching instance
that are used in the following proofs.

Properties 3.2. Let TG be an instance of general caching corresponding to
a graph G = (V,E) with n vertices, m edges e1, . . . , em, the same cache size and
the same universe of pages as in Reduction 2.1. The request sequence is again

āe
1

Be
1,1 Be

1,2 Be
1,3 Be

1,4

αe
1

ae
1

be1
βe
1

b̄e1

āe
1

Be
1,1 Be

1,2 Be
1,3 Be

1,4

αe
1

ae
1

be1
βe
1

b̄e1

Fig. 3. The two ways of caching in Lemma 3.1
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split into phases, one phase for each vertex. Each phase is again partitioned into
blocks, there is one initial block I before all phases and one final block F after
all phases. There is the total of d blocks.

The instance TG is required to fulfill the following list of properties:

(a) Each vertex page pv is requested exactly twice, right before the v-phase and
right after the v-phase.

(b) The total savings incurred on edge-pages are equal to
∑

sB (summing over
all blocks).

(c) For each edge e, there are exactly H pages associated with e requested in I,
all the āe-pages, and exactly H pages associated with e requested in F , all
the b̄e-pages.

(d) In each block, pages associated with e1 are requested first, then pages asso-
ciated with e2 are requested and so on up to em.

(e) For each block B and each edge e, all requests on ae-pages and b̄e-pages in B
precede all requests on āe-pages and be-pages in B.

(f) Let e = {u, v} be an edge and p an αe-page or βe-page. Let B be the first
block and B the last block where p is requested. Then B and B are either
both in the u-phase or both in the v-phase. Furthermore, no other page of
size three associated with e is requested in B, B, or any block between them.

Lemma 3.3. The instance from Reduction 2.1 satisfies Properties 3.2.

Proof. All properties (a), (b), (c), (d), (f) follow directly from Reduction 2.1
and the subsequent observations. To prove (e), recall that the pages associated
with an edge e requested in a particular block always follow the ordering (1).
We need to verify that when the page ae

i is requested, no page āe
j for j ≤ i is

requested and that when the page b̄e
i is requested, no āe-page and no page be

j for
j ≤ i is requested. This can be seen easily when we explicitly write down the
request sequences for each kind of block. ��

For the following claims, let TG be an instance fulfilling Properties 3.2. We
fix a service of TG with the total savings of at least (d − 1)mH.

Let B be the set of all blocks and B the set of all blocks except for the initial
and final one. For a block B, we denote the block immediately following it by B′.

We define two useful values characterizing the service for the block B: δB =
mH − sB (the number of free slots for edge-pages at the start of the service of
the block) and γe

B = |se
B′ − se

B | (the change of the number of slots occupied by
pages associated with e after requests from this block are served).

The first easy lemma says that only a small number of blocks can start with
some free slots in the cache.

Lemma 3.4. When summing over all blocks except for the initial one
∑

B∈B\{I}
δB ≤ n.
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Proof. Using the property (b) and sI = 0, the savings on edge-pages are
∑

B∈B\{I}
sB = (d − 1)mH −

∑

B∈B\{I}
δB .

The total savings are assumed to be at least (d−1)mH. Due to the property (a),
the savings on vertex-pages are at most n. Claim of the lemma follows. ��

The second lemma states that the number of slots occupied by pages asso-
ciated with a given edge does not change much during the whole service. The
proof is postponed to the full version.

Lemma 3.5. For each edge e ∈ E,
∑

B∈B
γe

B ≤ 6n.

For the rest of the proof, we set H = 6mn + 3n + 1. This enables us to show
that the fixed service must cache some of the pages of size three.

Lemma 3.6. For each edge e ∈ E, there is a block B such that some αe-page
or βe-page is in SB and δB = 0.

Proof. Fix an edge e = ek. For each block B, we define

εB = number of αe-pages and βe-pages in SB.

Observe that due to the property (f), εB is always one or zero. We use
a potential function

ΦB = number of ae-pages and b̄e-pages in SB .

Because there are only ā-pages in the initial block and only b̄-pages in the
final block (property (c)), we know

ΦI′ = 0 and ΦF ≥ H − δF . (2)

Now we bound the increase of the potential function as

ΦB′ − ΦB ≤ δB +
k−1
∑

�=1

γe�

B + εB . (3)

To justify this bound, we fix a block B and look at the cache state after
requests on edges e1, . . . , ek−1 are processed. How many free slots there can be
in the cache? There are initial δB free slots in the beginning of the block B, and
the number of free slots can be further increased when the number of pages in
the cache associated with e1, . . . , ek−1 decreases. This increase can be naturally
bounded by

∑k−1
�=1 γe�

B . Therefore, the number of free slots in the cache is at most
δB +

∑k−1
�=1 γe�

B .
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Because of the property (e), the number of cached ae-pages and b̄e-pages
can only increase by using the free cache space or caching new pages instead of
αe-pages and βe-pages. We already bounded the number of free slots and εB is
a natural bound for the increase gained on αe-pages and βe-pages. Thus, the
bound (3) is correct.

Summing (3) over all B ∈ B, we have

ΦF − ΦI′ =
∑

B∈B
(ΦB′ − ΦB) ≤

∑

B∈B

(

δB +
k−1
∑

�=1

γe�

B + εB

)

which we combine with (2) into

H − δF ≤
∑

B∈B

(

δB +
k−1
∑

�=1

γe�

B + εB

)

,

and use Lemmata 3.4 and 3.5 to bound
∑

εB as

∑

B∈B
εB ≥ H − δF −

∑

B∈B

(

δB +
k−1
∑

�=1

γe�

B

)

≥ H − n − n − (k − 1)6n

≥ H − 6mn − 2n = n + 1.

As there is at most one page of size three requested in each block (prop-
erty (f)), the inequality

∑

εB ≥ n+1 implies that there are at least n+1 blocks
where an αe-page or a βe-page is cached. At most n blocks have δB non-zero
(Lemma 3.4); we are done. ��

Lemma 3.7. Suppose that there exists a service of TG with the total savings
of at least (d − 1)mH + K. Then the graph G has an independent set W of
cardinality K.

Proof. Let W be a set of K vertices such that the corresponding page pv is
cached between its two requests. (There are at least K of them because the
maximal savings on edge-pages are (d − 1)mH.)

Consider an arbitrary edge e = {u, v}. Due to Lemma 3.6, there exists
a block B such that δB = 0 and some αe-page or βe-page is cached in the
beginning of the block. This block B is either in the u-phase or in the v-phase,
because of the statement of the property (f). This means that at least one of the
two pages pu and pv is not cached between its two requests, because the cache
is full. As a consequence, the set W is indeed independent. ��

The value of H was set to 6mn + 3n + 1, therefore Reduction 2.1 is indeed
polynomial. Lemmata 3.1, 3.3 and 3.7 together imply that there is an indepen-
dent set of cardinality K in G if and only if there is a service of the instance
IG with the total savings of at least (d − 1)mH + K. We showed that the prob-
lem 3Caching(fault,optional) is indeed strongly NP-hard.
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The Secretary Problem with a Choice Function
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Abstract. In the classical secretary problem, a decision-maker is willing
to hire the best secretary out of n applicants that arrive in a random
order, and the goal is to maximize the probability of choosing the best
applicant. In this paper, we introduce the secretary problem with a choice
function. The choice function represents the preference of the decision-
maker. In this problem, the decision-maker hires some applicants, and
the goal is to maximize the probability of choosing the best set of appli-
cants defined by the choice function. We see that the secretary problem
with a path-independent choice function generalizes secretary version of
the stable matching problem, the maximum weight bipartite matching
problem, and the maximum weight base problem in a matroid. When
the choice function is path-independent, we provide an algorithm that
succeeds with probability at least 1/ek where k is the maximum size of
the choice, and prove that this is the best possible. Moreover, for the
non-path-independent case, we prove that the success probability goes
to arbitrary small for any algorithm even if the maximum size of the
choice is 2.

1 Introduction

In the classical secretary problem, a decision-maker is willing to hire the best
secretary out of n applicants that arrive in a random order, and the goal is to
maximize the probability of choosing the best applicant. We call the probabil-
ity success probability. As each applicant appears, it must be either selected or
rejected, and the decision is irrevocable. It is assumed that the decision must be
based only on the relative ranks of the applicants seen so far and the number
of applicants n. It is well known that one can succeed with the optimal prob-
ability 1/e by the following algorithm: observe the first n/e applicants without
selecting, and then select the next applicant who is the best among the observed
applicants [8,15,21].

In this paper, we introduce the secretary problem with a choice function. In
this model, the decision-maker may choose more than one applicant. As each
applicant appears, it must be either selected or rejected, and the decision is
irrevocable. It is assumed that the decision must be based only on the preference
on the subsets of applicants seen so far and the number of applicants n. We
assume that the preference of the decision-maker is represented by a choice
function.

c© Springer-Verlag Berlin Heidelberg 2015
K. Elbassioni and K. Makino (Eds.): ISAAC 2015, LNCS 9472, pp. 129–139, 2015.
DOI: 10.1007/978-3-662-48971-0 12
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A function Ch : 2S → 2S is called a choice function if Ch(S′) ⊆ S′ holds for
any S′ ⊆ S. A choice function is called path-independent if it satisfies

Ch(Ch(X) ∪ Y ) = Ch(X ∪ Y ) (X,Y ⊆ S).

A choice function Ch is said to be consistent (irrelevance of rejected contracts) if

Ch(Y ) ⊆ X ⊆ Y =⇒ Ch(X) = Ch(Y ),

and substitutable (comonotone) if

X ⊆ Y =⇒ Ch(Y ) ∩ X ⊆ Ch(X),

and size-monotone (law of aggregate demand) if

X ⊆ Y =⇒ |Ch(X)| ≤ |Ch(Y )|.

Aizerman and Malishevski [1] noted that a choice function is path-independent
if and only if it satisfies the substitutability and the consistency. Moreover,
if a choice function is substitutable and size-monotone, then it is consistent
and path-independent. We define width of a choice function Ch : 2S → 2S as
maxS′⊆S |Ch(S′)|.

Moreover, path-independent choice functions appear in the stable matching
problem, the maximum weight bipartite matching problem, and the maximum
weight base problem for a matroid, as shown in Sect. 2.

Related Work. Various variants of the secretary problem have been studied
over several decades. An important generalization of the secretary problem is
the k-choice secretary problem. In this setting, the decision-maker is allowed to
accept k candidates. For an overview of the secretary problem, see the surveys
[10,11,29].

Nikolaev [26] and Tamaki [30] considered the situation that the decision-
maker is allowed to have two choices, and he must choose both the best and
the second best out of n applicants. They proved that the asymptotic optimal
probability is 0.2254 for the problem. Vanderbei [31] provided an asymptotic
result for the case that k choices to select all of the k best candidates.

Buchbinder, Jain, and Singh [5] introduced the J-choice, K-best secretary
problem, referred to as the (J,K)-secretary problem. Now, the decision-maker is
allowed to accept J applicants, and the objective is to maximize the expected
number of applicants selected among the best K. They formulated a linear pro-
gramming (LP) that describe the optimal value for the problem. Chan, Chen, and
Jiang [6] extended the LP to a continuous LP and analyze asymptotic behavior.

Recently, the secretary problem is generalized to online problems in the ran-
dom order model. Now, we assume that each applicant has a value. The goal is to
maximize the profit, i.e., the sum of the values of selected applicants. The qual-
ity of an online algorithm is usually measured by the competitive ratio, which is
the ratio between the expected profit of the solution obtained by the online algo-
rithm over the random arrival order and the optimal profit. Kleinberg [18] pre-
sented

√
k/(

√
k −5) competitive algorithm for the sum of the value of k selected
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applicants. Babaioff, Immorlica, and Kleinberg [4] introduced the matroid
secretary problem. In this model, the set of selected applicants must be an inde-
pendent set in an underlying matroid. They conjectured that the matroid secre-
tary problem is O(1)-competitive. Lachish [20] provided O(log log r)-competitive
algorithm where r is the rank of given matroid, and Feldman, Svensson, and
Zenklusen [9] presented a simpler algorithm with the same competitive ratio.
Korula and Pál [19] presented 8-competitive algorithm for bipartite matching.
Babaioff, Immorlica, Kempe, and Kleinberg [2] introduced knapsack secretary
problem and proposed 10e-competitive algorithm. For more details, see Dinitz
[7] and Babaioff, Immorlica, Kempe, and Kleinberg [3].

Main Results Obtained in this Paper. In this paper, we discuss the optimal
success probability of secretary problem with a choice function.

It is not difficult to see that selecting the best secretaries with size k is harder
than simultaneously succeeds k classical secretary problems. Hence, the following
theorem holds (the precise proof is given in Sect. 4).

Theorem 1. For any ε > 0, there exists a path-independent and size-monotone
instance (S,Ch) such that no algorithm succeeds with probability 1/e|Ch(S)| + ε.

On the other hand, we can attain the probability if the given choice function
satisfies the path-independency. Our algorithm is a simple threshold based one:
observe the first n/e applicants without selecting, and then select if the next
applicant is contained in the best set of applicants in the applicants seen so far.

Theorem 2. There exists an algorithm that succeeds with probability 1/ek for
any path-independent instance (S,Ch), where k is the width of Ch, i.e., k =
maxS′⊆S |Ch(S′)|.

Moreover, we prove that if the given choice function does not satisfy the
substitutability, there exists no constant success probability algorithm even if
the width of the choice function is 2.

Theorem 3. For any ε > 0, there exists consistent, size-monotone, and
|Ch(S)| ≤ 2 instance (S,Ch) such that no algorithm succeeds with probability ε.

The Organization of the Paper. The rest of the paper is organized as fol-
lows. In Sect. 2, we formally define the secretary problem with a choice function.
In Sect. 3, we provide a threshold algorithm and prove that it succeeds with a cer-
tain probability (Theorem2). In Sect. 4, we show upper bounds for the problem
(Theorems 1 and 3).

2 Model

Imagine that a decision-maker is willing to hire some secretaries out of n appli-
cants S. The decision-maker knows the number n. The decision-maker has a
choice function Ch on the set of applicants that represents her preference. Thus,
the best set of secretaries is Ch(S). The applicants are interviewed one-by-one in
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a random order. Immediately after the interview, an irrevocable decision must
be made whether or not hire the applicant. Namely, if an applicant is hired, he
will stay hired until the end of the process, and likewise if it is not. The deci-
sion must be based only on the number n and the value choice function Ch for
the subsets of the applicants interviewed so far. The goal is to maximize the
probability to hire Ch(S).

Examples. The path-independency (substitutability) is not just a natural
assumption as a preference but also it has some interesting applications. In
fact, choice functions induced from M�-concave value functions (and also quasi
M�-concave functions) are endowed with the substitutability and the size-
monotonicity by Fujishige and Tamura [12] and Murota–Yokoi [25]. More specifi-
cally, the secretary problem with a path-independent (and size-monotone) choice
function generalizes secretary version of the stable matching problem, the maxi-
mum weight bipartite matching problem, and the maximum weight base problem
for a matroid, as we see below.

Stable Matching. Assume that the decision-maker is willing to hire secre-
taries at k positions P , out of n applicants A. Each position has a preference
list that ranks applicants in strict order. Also, each applicant has a preference
that ranks k positions in strict order. The lists are not necessarily complete to
express unacceptable pairs. The applicants are interviewed one-by-one in a ran-
dom order. The preferences related to an applicant is revealed when s/he arrives.
Let μ : P ∪ A → A ∪ P be a matching on positions and applicants. Then a pair
(pi, aj) ∈ P × A is called a blocking pair for μ if pi prefers aj to μ(pi) and aj

prefers pi to μ(aj). The matching μ is called stable matching if there exists no
blocking pair for μ. It is well-known that the set of people who are matched
is the same for all stable matching [14]. We define Ch(X) for X ⊆ A as the
set of applicants who are matched in a stable matching for X to P . Then the
width of Ch is at most k. Moreover, Ch is a size-monotone and path-independent
choice function because the number of the “engaged pairs” is monotone increas-
ing in the deferred-acceptance algorithm [13,23] and it produces the same stable
matching no matter what the order of “proposal”. See [16,22,28] for the details
of the algorithm and the stable matching problem. If there is only one position
(k = 1) and the preference lists are complete, the problem becomes the classical
secretary problem.

Weighted Bipartite Matching. Assume that the decision-maker is willing
to hire secretaries at k positions P , out of n applicants A. The worth of each
assignment a ∈ A to p ∈ P is w(a, p). The applicants are interviewed one-by-one
in a random order. The worth of each assignment incident to an applicant is
revealed when s/he arrives. The goal is to maximize the profit, which is the sum
of the worth of assignments in a matching, i.e., the value

∑

(a,p)∈M w(a, p) for
the matching M . For simplicity, we assume that matchings have distinct profits.
We define Ch(X) for X ⊆ A as the set of applicants who are matched in the
maximum weight matching for X to P . Then the width of Ch is at most k.
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Moreover, Ch is a path-independent and size-monotone choice function as we
show below. Let X ⊆ A, a∗ ∈ A\X, and M and M ′ are the maximum matching
for X to P and X ∪ {a∗} to P , respectively. Then the symmetric difference
M 
 M ′ forms a path from a∗ (or the empty set), since if not we can improve
either M or M ′ [17]. Thus if p ∈ P is matched in M then it is also matched in
M ′, i.e.,

⋃

(a,p)∈M{p} ⊆
⋃

(a,p)∈M ′{p}. Additionally, M ′ contains no unmatched
applicant in M , i.e., if a ∈ X satisfies (a, p) �∈ M for any p ∈ P then (a, p′) �∈ M ′

for any p′ ∈ P . It implies that Ch is substitutable and size-monotone, and hence,
it is path-independent and size-monotone.

We can also see the path-independency and the size-monotonicity by the facts
that Γ (X) = max{

∑

(a,p)∈M w(a, p) | M is a matching,
⋃

(a,p)∈M{a} = X}
is an M�-concave function [24] and M�-concave implies substitutable and size-
monotone choice function [12,25].

If there is only one position (k = 1) and the preference lists are complete,
the problem becomes the classical secretary problem.

Matroids. A matroid is a set system (E, I), i.e. E is a finite set and I is a
family of subsets of E, with the following properties:

(I1) ∅ ∈ I,
(I2) J ⊆ I ∈ I ⇒ J ∈ I,
(I3) I, J ∈ I, |J | < |I| ⇒ ∃v ∈ I \ J such that J ∪ {v} ∈ I.

Given a matroid M = (E, I), a subset I of E is called independent set if I
belongs to I, and an inclusionwise maximal independent set is called a base.
Any two bases of a matroid have the same number of elements, and the number
is called rank of the matroid. For more details, see, e.g., [27]. Let (E, I) be a
matroid and each element e ∈ E has a positive weight w(e). For simplicity, we
assume that independent sets have distinct weights.

Now we reinterpret the secretary problem in the auction context. Assume
that the decision-maker is willing to sell some items to n bidders E. Each bidder
e has a bid w(e) to buy an item. There is a matroid structure M = (E, I)
on the bids, and a set of bids can be simultaneously accepted if and only if
they are an independent set in the matroid. The bidders arrive one-by-one in
a random order. Immediately after the arrival, an irrevocable decision must be
made whether or not accept the bid. We define Ch(X) for X ⊆ E as the set
argmax{

∑

e∈Y w(e) | Y ⊆ X, Y ∈ I}. Then the width of Ch is the rank of
the matroid M . Moreover, Ch is a path-independent and size-monotone choice
function [12,25]. If the matroid is a uniform matroid of rank 1, the problem
becomes the secretary problem.

3 Algorithm

Assume that Ch is a path-independent choice function. We prove that the fol-
lowing simple algorithm succeeds with probability at least 1/ek where k is the
width of Ch, i.e., k = maxS′⊆S |Ch(S′)|. Let S = {1, . . . , n} and σ(i) be the
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item given in the ith round. Denoted by Bi the best subset of applicants in
Sσ

i := {σ(1), . . . , σ(i)}, i.e., Bi = Ch(Sσ
i ). Note that Bi+1 = Ch(Bi ∪{σ(i + 1)})

holds since Ch is path-independent. Then our algorithm accept ith applicant
when σ(i) ∈ Bi. The algorithm is summarized as Algorithm 1.

Algorithm 1. Threshold Choice Algorithm
1: B0 ← ∅
2: for all applicant σ(i) do
3: Bi ← Ch(Bi−1 ∪ {σ(i)})
4: if i > n/e and σ(i) ∈ Bi then accept σ(i)
5: else reject σ(i)
6: end for

We prove Theorem 2 by showing that Algorithm1 chooses the best set Ch(S)
with probability at least 1/ek when Ch is a path-independent and width k choice
function.

Proof of Theorem 2. Without loss of generality, we may assume that n (= |S|)
is a sufficiently large number, because we can add dummy applicants who are
never selected by Ch without changing the width and the path-independency of
Ch. We can also run the algorithm with dummy applicants in an online manner.
Let Ch(S) = {σ(i1), σ(i2), . . . , σ(it)} (i1 < i2 < · · · < it, t ≤ k). Let Aj be
the event that Ch(Sσ

ij−1) ∩ (Sσ
ij−1 \ Sσ

ij−1
) = ∅ where i0 = �n/e�. The algorithm

succeeds if i1 > n/e and all the events A1, . . . , At occur, because it accepts all
the applicants in Ch(S) by the substitutability, and Aj means that the algorithm
selects no applicants in Sσ

ij−1\Sσ
ij−1

by the consistency. Thus, for a fixed sequence
i1, . . . , it, the conditional probability of Aj given Aj+1, . . . , At is

Pr
[

Aj | Ch(S)={σ(i1),...,σ(it)}
Aj+1,...,At

]

=

(

ij−1 − (j − 1)

|Ch(Sσ
ij−1)| + 1 − j

)/(

ij − j

|Ch(Sσ
ij−1)| + 1 − j

)

≥
(

ij−1 − (j − 1)

k + 1 − j

)/(

ij − j

k + 1 − j

)

because Ch(Sσ
ij−1) is of the form

Ch(Sσ
ij−1) = {σ(i1), σ(i2), . . . , σ(ij−1), σ(rj), σ(rj+1), . . . , σ(rtj )} (tj ≤ k),

and Aj happens if rj , . . . , rtj ∈ {1, 2, . . . , ij−1} \ {i1, i2, . . . , ij−1}. Therefore,
Algorithm 1 chooses the set Ch(S) with probability at least
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∑

n/e<i1<i2<···<it≤n

1
(

n
t

)

t
∏

j=1

Pr
[

Aj | Ch(S)={σ(i1),...,σ(it)}
Aj+1,...,At

]

≥
∑

n/e<i1<i2<···<it≤n

1
(

n
t

)

t
∏

j=1

(

ij−1−(j−1)
k+1−j

)

(

ij−j
k+1−j

)

≥
∑

n/e<i1<i2<···<it≤n

t!
nt

⎛

⎝

t−1
∏

j=1

i0 − (j − 1)
ij − k

⎞

⎠

⎛

⎝

k
∏

j=t

i0 − (j − 1)
it − j

⎞

⎠

≈ t!
∫ 1

1/e

dxt

∫ xt

1/e

dxt−1 · · ·
∫ x3

1/e

dx2

∫ x2

1/e

⎛

⎝

t−1
∏

j=1

1/e

xj

⎞

⎠

⎛

⎝

k
∏

j=t

1/e

xt

⎞

⎠ dx1 (1)

= t! · 1
ek

∫ 1

1/e

dxt

∫ xt

1/e

dxt−1 · · ·
∫ x3

1/e

dx2

∫ x2

1/e

dx1

x1 · · · xt−1 · xk−t+1
t

= t! · 1
ek

∫ 1

1/e

dxt

∫ xt

1/e

dxt−1 · · ·
∫ xl+1

1/e

(log(exl))l−1

(l − 1)! · xl · · · xt−1 · xk−t+1
t

dxl (2)

= t! · 1
ek

·
∫ 1

1/e

(log(ext))t−1

(t − 1)! · xk−t+1
t

dxt ≥ t! · 1
ek

·
∫ 1

1/e

(log(ext))t−1

(t − 1)! · xt
dxt (3)

= t! · 1
ek

· (log e)t − (log 1)t

t!
=

1
ek

. (4)

Equation (1) is a Riemann approximation where ij/n → xj as n → ∞. The last
four equalities (2)–(4) hold by

d

dx
(log(ex))l =

l(log(ex))l−1

x
. ��

Remark 1. By (3) in the above proof, we obtain a success probability

1
ek

·
∫ 1

1/e

t(log(ext))t−1

xk−t+1
dx

when |Ch(S)| = t and the width of Ch is k.

4 Upper Bounds

In this section, we prove upper bounds of the success probability.
We first show that for any ε > 0, there exists a path-independent and size-

monotone instance (S,Ch) such that no algorithm succeeds with probability
1/e|Ch(S)| + ε (Theorem 1). We use a choice function that implies k classical
secretary problems at the same time.
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Proof of Theorem 1. Let Si = {(i − 1) · n + 1, . . . , (i − 1) · n + n} for i = 1, . . . , k

and S =
⋃k

i=1 Si. We consider the following choice function on S:

Ch(S′) =
k

⋃

i=1

argmin{x ∈ S′ ∩ Si}.

Then, Ch(S) = {1, n + 1, . . . , (k − 1) · n + 1} and Ch is path-independent and
size-monotone. Then, the success probability for any algorithm goes to at most
1/ek as n goes to infinity because this situation is the classical secretary problem
for each Si. ��

We note that the choice function in the above proof is implied by a stable
matching with a partial list, a weighted bipartite matching, and a maximum
weight base problem for a partition matroid.

Finally, we provide a proof of Theorem3.

Proof of Theorem 3. Let Ch be a choice function on S = {1, 2, . . . , 2m2} such
that

Ch(S′) =

{

{m2,m2 + 1} ({m2,m2 + 1} ⊆ S′),
argmin{x ∈ S′} (otherwise).

Then, Ch is consistent, size-monotone, and |maxS′⊆S Ch(S′)| ≤ 2, but not sub-
stitutable. This instance is the same as the classical secretary problem with 2m2

applicants, except for {m2,m2 + 1}. Thus, it is more difficult than choosing m2

or m2 + 1 in the classical setting, i.e., applicants are rankable, and the decision-
maker chooses one applicant. Hence, it is sufficient to show that no algorithm
can succeed with positive probability for the problem when m goes to infinity.

To provide an upper bound, we use a linear programming method introduced
by Buchbinder, Jain, and Singh [5]. Consider the following linear programming:

max
∑2m2

i=1

∑i
j=1

(m2−1
j−1 )(m2

i−j)+(m2

j−1)(m
2−1
i−j )

(2m2
i )

pij

s.t. i · pij ≤ 1 −
∑

i′<i

∑i′

j′=1 pi′j′ (i ∈ [2m2], j ∈ [i]),
pij ≥ 0 (i ∈ [2m2], j ∈ [i])

where [n] = {1, 2, . . . , n}. We claim that the optimal value for the linear pro-
gramming gives an upper bound of the success probability for the problem. Let
pij be the probability of selecting the applicant relatively rank j in the ith round
for i ∈ [2m2] and j ∈ [i]. Then the success probability is

2m2
∑

i=1

i
∑

j=1

(

m2−1
j−1

)(

m2

i−j

)

+
(

m2

j−1

)(

m2−1
i−j

)

(

2m2

i

) pij

because if ith applicant is relatively rank j, its true rank is k with probability
(

k − 1
j − 1

)(

2m2 − k

i − j

)/(

2m2

i

)

.
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Also, pij must satisfy the following relation:

pij = Pr[σ(i) is selected | σ(i) is relatively rank j] · Pr[σ(i) is relatively rank j]

≤ Pr[σ(1), . . . , σ(i − 1) are not selected | σ(i) is relatively rankj] · 1
i

= Pr[σ(1), . . . , σ(i − 1) are not selected] · 1
i

=
1
i

⎛

⎝1 −
∑

i′<i

i′
∑

j′=1

pi′j′

⎞

⎠ .

Thus, the linear programming present an upper bound of the success probability.
To evaluate the optimal value, now we consider the dual problem:

min
∑2m2

i=1

∑i
j=1 qij

s.t. i · qij +
∑

i′>i

∑i′

j′=1 qi′j′ ≥ (m2−1
j−1 )(m2

i−j)+(m2

j−1)(m
2−1
i−j )

(2m2
i )

(i ∈ [2m2], j ∈ [i]),

qij ≥ 0 (i ∈ [2m2], j ∈ [i]).

Let q∗ be

q∗
ij =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1
i

(m2−1
j−1 )(m2

i−j)+(m2

j−1)(m
2−1
i−j )

(2m2
i )

(2m2 > i ≥ 2m2 − 2m, j ∈ [i]),

1
m + (2mm )(2m

2−2m
m2−m )

(2m2
m2 )

(i = 2m2, j ∈ {m2,m2 + 1}),

0 (othwerwise).

If q∗ is a feasible solution for the dual LP, the success probability is at most

2

m
+

2
(

2m
m

)(

2m2−2m
m2−m

)

(

2m2

m2

) +

2m2−1
∑

i=2m2−2m

i
∑

j=1

1

i

(

m2−1
j−1

)(

m2

i−j

)

+
(

m2

j−1

)(

m2−1
i−j

)

(

2m2

i

)

≤ 2

m
+

2
(

2m
m

)(

2m2−2m
m2−m

)

(

2m2

m2

) +

2m2−1
∑

i=2m2−2m

2

i
≤ 2

m
+

2
(

2m
m

)(

2m2−2m
m2−m

)

(

2m2

m2

) +
4m

2m2 − 2m
→ 0

as m goes to infinity by Stirling’s formula, which proves the theorem by weak
duality of linear programming.

We finally claim that q∗ is a feasible solution for the dual LP. For 2m2 > i ≥
2m2 −2m, it is clear that q∗ satisfies the inequality. For i = 2m2, q∗ satisfies the
inequality because the right-hand side value is one if j = m2,m2 + 1 and zero
otherwise. For i < 2m, we can check as

(

m2−1
j−1

)(

m2

i−j

)

+
(

m2

j−1

)(

m2−1
i−j

)

(

2m2

i

) ≤
j

m2

(

m2

j

)(

m2

i−j

)

+ i−j+1
m2

(

m2

j−1

)(

m2

i−j+1

)

(

2m2

i

)

≤ j

m2
+

i − j + 1
m2

≤ 2m

m2
≤ q∗

2m2,m2 + q∗
2m2,m2+1.



138 Y. Kawase

For 2m ≤ i < 2m2 − 2m, we have
(

m2−1
j−1

)(

m2

i−j

)

+
(

m2

j−1

)(

m2−1
i−j

)

(

2m2

i

) ≤ max
j′

2
(

m2

j′
)(

m2

i−j′
)

(

2m2

i

) = max
j′

2
(

i
j′
)(

2m2−i
m2−j′

)

(

2m2

m2

)

≤
2
(

i
�i/2	

)(

2m2−i
m2−�i/2	

)

(

2m2

m2

) ≤
2
(

2m
m

)(

2m2−2m
m2−m

)

(

2m2

m2

)

≤ q∗
2m2,m2 + q∗

2m2,m2+1. ��

Intuitively, the dual solution q∗ represents that the applicants with rank m2

or m2 +1 appear after (2m2 −2m)th round with low probability and the success
probability is low if an algorithm selects an applicant before 2m2 − 2m.
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Abstract. Practical optimization problems frequently include uncer-
tainty about the quality measure, for example due to noisy evaluations.
Thus, they do not allow for a straightforward application of traditional
optimization techniques. In these settings meta-heuristics are a popular
choice for deriving good optimization algorithms, most notably evolu-
tionary algorithms which mimic evolution in nature. Empirical evidence
suggests that genetic recombination is useful in uncertain environments
because it can stabilize a noisy fitness signal. With this paper we want
to support this claim with mathematical rigor.

The setting we consider is that of noisy optimization. We study a
simple noisy fitness function that is derived by adding Gaussian noise to
a monotone function. First, we show that a classical evolutionary algo-
rithm that does not employ sexual recombination (the (µ+1)-EA) cannot
handle the noise efficiently, regardless of the population size. Then we
show that an evolutionary algorithm which does employ sexual recom-
bination (the Compact Genetic Algorithm, short: cGA) can handle the
noise using a graceful scaling of the population.

1 Introduction

Heuristic optimization is widely used in practice for solving hard optimization
problems for which no efficient problem-specific algorithm is known. Such prob-
lems are typically very large, noisy and constrained and cannot be solved by sim-
ple textbook algorithms. The inspiration for heuristic general-purpose problem
solvers often comes from nature. A well-known example is simulated annealing,
which is inspired from physical annealing in metallurgy. The largest and proba-
bly most successful class, however, are biologically-inspired algorithms, especially
evolutionary algorithms.

Evolutionary and Genetic Algorithms. Evolutionary Algorithms (EAs)
were introduced in the 1960s and have been successfully applied to a wide
range of complex engineering and combinatorial problems [1,10,24]. Like Dar-
winian evolution in nature, evolutionary algorithms construct new solutions
from old ones and select the fitter ones to continue to the next iteration.
The construction of new solutions from old ones, so-called reproduction, can

c© Springer-Verlag Berlin Heidelberg 2015
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be asexual (mutation of a single individual) or sexual (crossover of several
individuals). An EA that uses sexual reproduction is typically called Genetic
Algorithm (GA). Since the beginning of EAs, it has been argued that GAs
should be more powerful than pure EAs, which use only asexual reproduc-
tion [13]. This was debated for decades, but theoretical results and explana-
tions on crossover are still scarce. There are some results for simple artificial
test functions, where it was proven that a GA asymptotically outperforms an
EA without crossover [16,17,20,25,31,35] and the other way around [30]. How-
ever, these artificial test functions are typically tailored to the specific algorithm
and proof technique and the results give little insight into the advantage of sex-
ual reproduction on realistic problems. There are also a few theoretical results
for problem-specific algorithms and representations, namely coloring problems
inspired by the Ising model [32] and the all-pairs shortest path problem [5]. For
a nice overview of different aspects where populations and sexual recombination
are beneficial for optimization of static fitness functions, see [29].

The underlying search space of many optimization problems is the set {0, 1}n

of all length-n bit strings. Many problems (including combinatorial ones such as
the minimum spanning tree problem) have a straightforward formulation as an
optimization problem on {0, 1}n. Many evolutionary algorithms are applicable
to this search space without further modification adaption, and most formal
analyses of evolutionary algorithms consider this search space. A popular simple
fitness function on this search space is OneMax, which uses the number of 1s in
a bit string as fitness value. A cornerstone of the analysis of any search heuristic
is an analysis of its performance on the OneMax function [8,37], and studying
the class of OneMax functions has also lead to several breakthroughs in the field
of black-box complexity [4,9]. Finally, there are also works analyzing the use of
crossover for the OneMax function [7,28,33].

Noisy Search. Heuristic optimization methods are typically not used for simple
problems, but for rather difficult problems in uncertain environments. Evolution-
ary algorithms are very popular in settings including uncertainties; see [2] for a
survey on examples in combinatorial optimization, but also [18] for an excellent
survey also discussing different sources of uncertainty. Uncertainty can be mod-
eled by a probabilistic fitness function, that is, a search point can have different
fitness values each time it is evaluated. One way to deal with this is to replace
fitness evaluations with an average of a (large) sample of fitness evaluations and
then proceed as if there was no noise. In this work we show that generic GAs
(with sexual reproduction) can overcome noise much more efficiently than using
this naive approach. To do this in a rigorous manner, we assume additive pos-
terior noise, that is, each time the fitness value of a search point is evaluated,
we add a noise value drawn from some distribution. This model was studied in
evolutionary algorithms without crossover in [6,11,12,14,34].

We will consider centered Gaussian noise with variance σ2 and use OneMax as
the underlying fitness function. Already such a seemingly simple setting poses
difficulties to the analysis of evolutionary algorithms, as these algorithms are
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not developed with the analysis in mind. Particularly algorithms with sexual
recombination have been resisting a mathematical analysis.

Our Results. We are interested in studying how well search heuristics can
cope with noise, for which we use the concept of graceful scaling (Definition 2);
intuitively, a search heuristic scales gracefully with noise if (polynomially) more
noise can be compensated by (polynomially) more resources.

We first prove a sufficient condition for when a noise model is intractable
for optimization by the classical (μ+1)-EA (Theorem 4) and show that this
implies that this simple asexual algorithm does not scale gracefully for Gaussian
noise (Corollary 5). On the other hand, we study the compact GA (cGA), which
models a genetic algorithm, and show how its gene-pool recombination operator
is able to “smooth” the noise sufficiently to exhibit graceful scaling (Theorem 9).

We proceed in Sect. 2 by formalizing our setting and introducing the algo-
rithms we consider. In Sect. 3 we give our results. Note that in this extended
abstract, we omit many proof details and provide only proof sketches due to
space constraints. We conclude the paper in Sect. 4.

2 Preliminaries

In the remainder of the paper, we will study a particular function class (OneMax)
and a particular noise distribution (Gaussian, parametrized by the variance).
Let σ2 ≥ 0. We define the noisy OneMax function om[σ2] : {0, 1}n → R := x �→
‖x‖1 + Z where ‖x‖1 := |{i : xi = 1}| and Z is a normally distributed random
variable Z ∼ N (0, σ2) with zero mean and variance σ2.

The following proposition gives tail bounds for Z by using standard estimates
of the complementary error function [36].

Proposition 1. Let Z be a zero-mean Gaussian random variable with variance
σ2. For all t > 0 we have

Pr (Z < −t) =
1
2

erfc
(

t

σ
√

2

)

≤ 1
2
e−t2/(2σ2)

and asymptotically for large t > 0,

Pr (Z < −t) =
1

1 + o(1)
σ√
2πt

e−t2/(2σ2).

2.1 Algorithms

The (μ + 1)-EA, defined in Algorithm1, is a simple mutation-only evolutionary
algorithm that maintains a population of μ solutions and uses elitist survival
selection. It derives its name from maintaining a population of μ individuals (ran-
domly initialized) and generating one new individual each iteration by mutating
a parent chosen uniformly at random from the current population. Then it eval-
uates the fitness of all individuals and chooses one with minimal value to be
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Algorithm 1. The (μ + 1)-EA
1 t ← 0;
2 Pt ← µ elements of {0, 1}n u.a.r.;
3 while termination criterion not met do
4 Select x ∈ Pt u.a.r.;
5 Create y by flipping each bit of x independently with probability 1/n;
6 Let z ∈ Pt ∪ {y} chosen s.t. ∀v ∈ Pt ∪ {y} : f(z) ≤ f(v);
7 Pt+1 ← Pt ∪ {y} \ {z};
8 t ← t + 1;

removed from the population, so that again μ individuals proceed to the next
generation.

The compact genetic algorithm (cGA) [15] is a genetic algorithm that main-
tains a population of size K implicitly in memory. Rather than storing each indi-
vidual separately, the cGA only keeps track of population allele frequencies and
updates these frequencies during evolution. Offspring are generated according to
these allele frequencies, which is similar to what occurs in models of sexually-
recombining natural populations. Indeed, the offspring generation procedure can
be viewed as so-called gene pool recombination introduced by Mühlenbein and
Paaß [23] in which all K members participate in uniform recombination. Since
the cGA evolves a probability distribution, it is also a type of estimation of
distribution algorithm (EDA). The correspondence between EDAs and models
of sexually recombining populations has already been noted [22], and Harik
et al. [15] demonstrate empirically that the behavior of the cGA is equivalent to
a simple genetic algorithm at least on simple problems.

Algorithm 2. The compact GA
1 t ← 0;
2 p1,t ← p2,t ← · · · ← pn,t ← 1/2;
3 while termination criterion not met do
4 for i ∈ {1, . . . , n} do
5 xi ← 1 with probability pi,t, xi ← 0 with probability 1 − pi,t;

6 for i ∈ {1, . . . , n} do
7 yi ← 1 with probability pi,t, yi ← 0 with probability 1 − pi,t;

8 if f(x) < f(y) then swap x and y;
9 for i ∈ {1, . . . , n} do

10 if xi > yi then pi,t+1 ← pi,t + 1/K;
11 if xi < yi then pi,t+1 ← pi,t − 1/K;
12 if xi = yi then pi,t+1 ← pi,t;

13 t ← t + 1;

The first rigorous analysis of the cGA is due to Droste [8] who gave a gen-
eral runtime lower bound for all pseudo-Boolean functions, and a general upper
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bound for all linear pseudo-Boolean functions. Defined in Algorithm2, the cGA
maintains for all times t ∈ N0 a frequency vector (p1,t, p2,t, . . . , pn,t) ∈ [0, 1]n.
In the t-th iteration, two strings x and y are sampled independently from this
distribution where Pr(x = z) = Pr(y = z) =

(∏

i : zi=1 pi,t

)

×
(∏

i : zi=0(1 − pi,t)
)

for all z ∈ {0, 1}n. The cGA then compares the objective values of x and y, and
updates the distribution by advancing pi,t toward the component of the winning
string by an additive term. This small change in allele frequencies is equivalent
to a population undergoing steady-state binary tournament selection [15].

Let F be a family of pseudo-Boolean functions (Fn)n∈N where each Fn is a
set of functions f : {0, 1}n → R. Let D be a family of distributions (Dv)v∈R such
that for all Dv ∈ D, E(Dv) = 0. We define F with additive posterior D-noise as
the set F [D] := {fn + Dv : fn ∈ Fn,Dv ∈ D}.

Definition 2. An algorithm A scales gracefully with noise on F [D] if there is a
polynomial q such that, for all gn,v = fn + Dv ∈ F [D], there exists a parameter
setting p such that A(p) finds the optimum of fn using at most q(n, v) calls
to gn,v.

Algorithms that operate in the presence of noise often depend on a priori
knowledge of the noise intensity (measured by the variance). In such cases, the
following scheme can always be used to transform such algorithms into one
that has no knowledge of the noise character. Suppose A(σ2) is an algorithm
that solves a noisy function with variance at most σ2 within Tδ(σ2) steps with
probability at least 1 − δ. A noise-oblivious scheme for A is in Algorithm 3.

Algorithm 3. Noise-oblivious scheme for A

1 i ← 0;
2 repeat until solution found
3 Run A(2i) for Tδ(2

i) steps;
4 i ← i + 1;

If an algorithm A scales gracefully with noise, then the noise oblivious scheme
for A scales gracefully with noise. The following proposition holds by a simple
inductive argument.

Proposition 3. Suppose fn,v ∈ F [D] is a noisy function with unknown vari-
ance v. Fixing n and assume that, for all c > 0 and all x, cTδ(x) ≤ Tδ(cx). Then
for any s ∈ Z+, the noise-oblivious scheme optimizes fn,v in at most Tδ(2sv)
steps with probability at least 1 − δs.

3 Results

We derive rigorous bounds on the optimization time, defined as the first hitting
time of the process to the true optimal solution (1n) of om[σ2], on a mutation-
only based approach and the compact genetic algorithm.
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3.1 Mutation-Based Approach

In this section we consider the (μ + 1)-EA. We will first, in Theorem 4, give a
sufficient condition for when a noise model is intractable for optimization by a
(μ+1)-EA. While uniform selection removes any individual from the population
with probability 1/(μ + 1), the condition of Theorem4 requires that the noise is
strong enough so that the (μ + 1)-EA will remove any individual with at least
half that probability. Then we will show that, in the case of additive posterior
noise sampled from a Gaussian distribution, this condition is fulfilled if the noise
is large enough, showing that the (μ+1)-EA cannot deal with arbitrary Gaussian
noise (see Corollary 5).

Theorem 4. Let μ ≥ 1 and D a distribution on R. Let Y be the random variable
describing the minimum over μ independent copies of D. Suppose

Pr(Y > D + n) ≥ 1
2(μ + 1)

.

Consider optimization of OneMax with reevaluated additive posterior noise from
D by (μ+1)-EA. Then, for μ bounded from above by a polynomial, the optimum
will not be evaluated after polynomially many iterations w.h.p.

Proof Sketch. For all t and all i ≤ n let Xt
i be the random variable describing

the proportion of individuals in the population of iteration t with exactly i 1s.
The proof is by induction on t that

∀t,∀i ≥ an : E(Xt
i ) ≤ ban−i,

where a, b and c are specifically chosen constants. In other words, the expected
number of individuals with i 1s is decaying exponentially with i after an. This
will give the desired result with a simple union bound over polynomially many
time steps. ��

We apply Theorem 4 to show that large noise levels make it impossible for
the (μ + 1)-EA to efficiently optimize when the noise is significantly larger than
the range of objective values. The proof is a simple exercise in bounding the tails
of a Gaussian distribution using Proposition 1.

Corollary 5. Consider optimization of om[σ2]by (μ + 1)-EA. Suppose σ2 ≥ n3

and μ bounded from above by a polynomial in n. Then the optimum will not be
evaluated after polynomially many iterations w.h.p.

3.2 Compact GA

Let T � be the optimization time of the cGA on om[σ2], namely, the first time
that it generates the underlying “true” optimal solution 1n. We consider the
stochastic process Xt = n −

∑n
i=1 pi,t and bound the optimization time by

T = inf{t ∈ N0 : Xt = 0}. Clearly T � ≤ T since the cGA produces 1n in the
T -th iteration almost surely. However, T � and T can be infinite when there is
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a t < T � where pi,t = 0 since the process can never subsequently generate any
string x with xi = 1. To circumvent this, Droste [8] estimates E(T �) conditioned
on the event that T � is finite, and then bounds the probability of finite T �. In
this paper, we will prove that as long as K is large enough, the optimization
time is finite (indeed, polynomial) with high probability. To prove our result, we
need the following drift theorem.

Theorem 6 (Tail Bounds for Multiplicative Drift [3,21]). Let {Xt : t ∈
N0} be a sequence of random variables over a set S ⊆ {0} ∪ [xmin, xmax] where
xmin > 0. Let T be the random variable that denotes the earliest point in time
t ≥ 0 such that Xt = 0. If there exists 0 < δ < 1 such that E(Xt − Xt+1 | T >
t,Xt) ≥ δXt, then

Pr
(

T >
λ + ln(X0/xmin)

δ

∣

∣

∣

∣

X0

)

≤ e−λ for all λ > 0.

The following lemma bounds the drift on Xt, conditioned on the event that
no allele frequency gets too small.

Lemma 7. Consider the cGA optimizing om[σ2] and let Xt be the stochastic
process defined above. Assume that there exists a constant a > 0 such that pi,t ≥ a
for all i ∈ {1, . . . , n} and that Xt > 0, then E(Xt − Xt+1 | Xt) ≥ δXt where
1/δ = O

(

σ2K
√

n
)

.

Proof Sketch. Let x and y be the offspring generated in iteration t and Zt =
‖x‖1 − ‖y‖1. Then Zt = Z1,t + · · · + Zn,t where

Zi,t =

⎧

⎪

⎨

⎪

⎩

−1 if xi = 0 and yi = 1,
0 if xi = yi,
1 if xi = 1 and yi = 0.

Let E denote the event that in line 8, the evaluation of om[σ2] correctly ranks x
and y. Then

E(Xt − Xt+1 | Xt) =
E(|Zt|)

K

(

1 − 2Pr(E)
)

.

Using combinatorial arguments and properties of the Poisson-Binomial distribu-
tion, the expectation of |Zt| can be bounded from below by aXt

√

2/n. The proof
can then be completed by bounding the probability that x and y are incorrectly
ranked, which is at most 1

2

(

1 − Ω(σ−2)
)

. This follows from straightforward devi-
ation bounds on the normal distribution derived from Proposition 1. ��

To use Lemma 7, we require that the allele frequencies stay large enough dur-
ing the run of the algorithm. Increasing the effective population size K obviously
translates to finer-grained allele frequency values, which means slower dynamics
for pi,t. Indeed, provided that K is set sufficiently large, the allele frequencies
remain above an arbitrary constant for any polynomial number of iterations with
very high probability. This is captured by the following lemma.
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Lemma 8. Consider the cGA optimizing om[σ2] with σ2 > 0. Let 0 < a < 1/2
be an arbitrary constant and T ′ = min{t ≥ 0: ∃i ∈ [n], pi,t ≤ a}. If K =
ω(σ2

√
n log n), then for every polynomial poly(n), n sufficiently large, Pr(T ′ <

poly(n)) is superpolynomially small.

Proof Sketch. Let i ∈ [n] be an arbitrary index. Let {Yt : t ∈ N0} be the tochastic
process Yt = (1/2 − pi,t) K. The proof begins by first showing that

E(Yt | Y1, . . . , Yt−1) ≤ Yt−1 − Ω(σ−2)
1√
n

.

The idea behind this claim is a follows. Obviously, Yt − Yt−1 ∈ {−1, 0, 1} and it
suffices to bound the conditional expectation of this difference in one step. Again
let x and y be the offspring generated in iteration t. The argument proceeds by
considering the substrings of x and y induced by the remaining indexes (in [n] \
{i}), which are by definition statistically independent. Let E denote the event
that these substrings are equal. If xi �= yi, then whichever string contains a 1 in
the i-th position has a strictly greater “true” fitness, and the change in Yt with
respect to Yt−1 depends only on the event that om[σ2] incorrectly ranks x and y.
This probability can be bounded as in Lemma7 and the 1/

√
n factor comes a

bound on Pr(E) that arises from the fact that the number of positions j ∈ [n]\{i}
where xj �= yj has a Poisson-Binomial distribution. It is then straightforward to
show that the contributions to the expected difference conditioned on E remains
strictly negative. This is simply an exercise in checking the remaining possibilities
and bounding their probability.

The proof is then finished by applying a refinement to the negative drift
theorem of Oliveto and Witt [26,27] (cf. Theorem 3 of [19]). Implicitly ignoring
self-loops in the Markov chain (which can only result in a slower process), we
have Y1 = 0 and |Yt − Yt+1| ≤ 1 <

√
2, and thus for all s ≥ 0,

Pr(T ′ ≤ s) ≤ s exp
(

− (1/2 − a)K|ε|
32

)

,

with ε = −Ω(σ−2/
√

n). Since K = ω(σ2
√

n log n), Pr(T ′ ≤ s) = sn−ω(1).
So, for any polynomial s = poly(n), with probability superpolynomially close

to one, Ys has not yet reached a state larger than (1/2 − a)K, and so pi,t > a
for all 0 ≤ t ≤ s. As this holds for arbitrary i, applying a union bound retains
a superpolynomially small probability that any of the n frequencies have gone
below a by s = poly(n) steps. ��

It is now straightforward to prove that the optimization time of the cGA is
polynomial in the problem size and the noise variance. This is in contrast to the
mutation-based (μ + 1)-EA, which fails when the variance becomes large. This
means the cGA scales gracefully with noise in the sense of Definition 2 applied
to the om[σ2] noise model.

Theorem 9. Consider the cGA optimizing om[σ2] with variance σ2 > 0. If
K = ω(σ2

√
n log n), then with probability 1 − o(1), the cGA finds the optimum

after O(Kσ2
√

n log Kn) steps.
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Proof. We will consider the drift of the stochastic process {Xt : t ∈ N0} over the
state space S ⊆ {0}∪ [xmin, xmax] where Xt = n−

∑n
i=1 pi,t. Hence, xmin = 1/K.

Fix a constant 0 < a < 1/2. We say the process has failed by time t if there
exists some s ≤ t and some i ∈ [n] such that pi,s ≤ a. Let T = min{t ∈ N0 : Xt =
0}. Assuming the process never fails, by Lemma 7, the drift of {Xt : t ∈ N0} in
each step is bounded by E(Xt − Xt+1 | Xt = s) ≥ δXt where 1/δ = O

(

σ2K
√

n
)

.
By Theorem 6, Pr (T > (ln(X0/xmin) + λ) /δ) ≤ e−λ. Choosing λ = d ln n for
any constant d > 0, the probability that T = Ω(Kσ2

√
n log Kn) is at most n−d.

Letting E be the event that the process has not failed by O(Kσ2
√

n log Kn)
steps, by the law of total probability, the hitting time of Xt = 0 is bounded by
O(Kσ2

√
n log Kn) with probability (1 − n−d) Pr(E) = 1 − o(1) where we can

apply Lemma 8 to bound the probability of E . ��

4 Conclusions

In this paper we have examined the benefit of sexual recombination in evolution-
ary optimization on the fitness function om[σ2]. The noise-free function (om[0]) is
efficiently optimized by a simple hillclimber in Θ(n log n) steps (this well-known
statement follows from a coupon collector argument). Corollary 5 asserts that
mutation-only (and by extension, simple hillclimbers) cannot optimize om[σ2] in
polynomial time without using some kind of resampling strategy to reduce the
variance. The intuitive reason for this is that the probability of generating and
accepting a worse individual becomes larger than the probability of generating
and accepting a better individual: mutation has a bias towards bit strings with
about as many 0s as 1s, and for high noise the probability of accepting slightly
worse individuals is about 1/2. Thus, mutation-only evolutionary algorithms do
not scale gracefully in the sense that they cannot optimize noisy functions in
polynomial time when the noise intensity is sufficiently high.

On the other hand, we proved that a genetic algorithm that uses gene pool
recombination can always optimize noisy OneMax (om[σ2]) in expected polyno-
mial time, subject only to the condition that the noise variance σ2 is bounded
by some polynomial in n. Intuitively, the cGA can leverage the sexual operation
of gene pool recombination to average out the noise and follow the underlying
objective function signal.

Our results highlight the importance of understanding the influence of dif-
ferent search operators in uncertain environments, and suggest that algorithms
such as the compact genetic algorithm that use some kind of recombination are
able to scale gracefully with noise.
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Abstract. Proper learning from positive samples is a basic ingredient
for designing secure steganographic systems for unknown covertext chan-
nels. In addition, security requirements imply that the hypothesis should
not contain false positives. We present such a learner for k-term DNF
formulas for the uniform distribution and a generalization to q-bounded
distributions. We briefly also describe how these results can be used to
design a secure stegosystem.

1 Introduction

Digital steganography is a fairly new field of modern computer science concerned
with camouflaging the presence of secret data in legal communications. In the
general setting, a sender, often called Alice or the steganographer wishes to send a
hidden message to a recipient via a public channel, which is completely monitored
by an adversary called Warden or steganalyst. Taking a “typical” document Alice
tries to embed a secret message in it such that a steganalyst cannot determine
whether the secret message is present or not. In particular, Warden should have
little chances to distinguish original documents, called coverdocuments, from
altered ones called stegodocuments. This implies in general that the distributions
of coverdocuments and stegodocuments have to be fairly close.

A crucial component when modeling steganography and steganalysis is the
knowledge of the parties involved about coverdocuments. Considering different
levels of knowledge, various models have been defined and studied. For example,
if both the steganographer and the steganalyst have perfect knowledge about the
distribution of coverdocuments and these documents satisfy certain conditions,
secure steganography can be modeled and investigated by means of informa-
tion and coding theory, whereas steganalysis can be done by applying statistical
detection theory. But, though well-understood, such models are quite artificial
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and far away from reality (for more discussion, see [9]). The other extreme is to
assume that the steganographer a priori has no knowledge whatsoever about typ-
ical documents and can only get information using a sampling oracle. Even if the
steganalyst has full knowledge assuming the existence of secure cryptographic
one-way functions, provably secure steganography is possible [7], but any secure
steganographic system requires an exponential number of samples with respect
to the message length [4]. Thus, steganography becomes highly inefficient.

To be closer to the real world, newer approaches to steganalysis and steganog-
raphy assume some reasonable partial knowledge about the type of covertext
channel. Then steganalysis can be formulated as a binary classification prob-
lem and examined using methods from machine learning. This line of research
has currently received much attention (see e.g. [6,10,17]). However, learning
approaches to steganography have not been studied systematically so far.

As in real applications of steganography we assume that Alice knows that
the coverdocument distribution belongs to some class of distributions – she can
choose the media where to embed into. Besides that, she can only use a sampling
oracle to get information about the actual coverdocument distribution. Then
the steganographic encoding can be stated as a two-stage problem (for a formal
definition of steganography see Sect. 4):

(1) Algorithmic learning of the concrete distribution of coverdocuments and
(2) Generating a stegodocument that encodes a given piece of message.

Hence, the essential difficulties in constructing efficient algorithms arise because
of two reasons. First, a standard PAC approach to model this situation typically
fails because of a fundamental difference: only positive samples are available.
Second, algorithms for random generation of combinatorial objects from a given
(typically uniform) distribution, see e.g. [8], cannot be applied directly since the
generated objects have to encode given messages.

Most recently Lískiewicz et al. [12] have obtained several promising results
in generating stegodocuments. They have considered three families of coverdoc-
ument channels described by monomials, by decision trees (DTs), and by DNF
formulas, respectively, assuming uniform distribution of documents. The learn-
ing complexity of the corresponding concept classes in the general case ranges
from low up to high (assuming RP �= NP ). For these families of channels effi-
cient generic algorithms have been constructed that for a given description of the
coverdocuments, suitably manipulate the documents to embed secret messages,
even against a steganalyst with full knowledge. This solves Problem (2) above
and allows secure steganography assuming the coverdocument distributions can
be learned properly, i.e. such that the learning algorithm outputs a monomial,
resp. a DT, or a DNF expression as its hypothesis, when learning from positive
data only.

Notice the importance of the proper learning here. For example, it is well
known that k-term DNF formulas can be learned efficiently from positive samples
with respect to k-CNF formulas, i.e. such that the learning algorithm outputs a k-
CNF formula for the concept represented by an unknown k-term DNF. However,
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such a k-CNF representation of coverdocuments is useless for stegodocuments
generation, because one would have to find satisfying assignments for k-CNF
formulas which cannot be done efficiently in general. Unlike monomials and k-
CNF formulas, the problem whether DTs and DNF-formulas can be learned
properly from positive samples in an efficient way, remains open even for simple
probability distributions like the uniform one. This paper gives an affirmative
answer to this question for k-term DNFs.

Learnability of k-term DNF: Known Results. For the notion of learnabil-
ity, we loosely follow the PAC model. In the standard setting (i.e. with positive
and negative samples) it is not feasible to learn k-term DNF formulas properly in
a distribution-free sense for fixed k ≥ 2 unless RP = NP . Learning k-term DNF
concepts for k ≥ 4 remains infeasible even if allowing as hypothesis f(k)-term
DNF, for f(k) ≤ (2k − 3) [14]. For unrestricted DNF formulas, it is infeasible
to learn with respect to DNF hypothesis, even if the number of terms in the
hypotheses is arbitrary large [1]. Assuming that samples are drawn from specific
distributions over the learning domain but still allowing positive and negative
samples, the situation changes drastically. Flammini et al. [5] have shown that
k-term DNF formulas are learnable (properly) in polynomial time using posi-
tive and negative samples drawn from q-bounded distributions (the ratio of the
probabilities D(x)/D(y) for elements in the support does not exceed q for some
number q ≥ 1). This class is a natural generalization of the uniform distribution.

If the number of terms of the DNFs may grow, from [19] we know that n-term
DNF formulas over the uniform distribution can be learned using a polynomial
number of samples in quasi-polynomial time. However, the hypothesis space has
to be extended to (n · t)-term DNF with t depending on the sample complexity.

Concerning steganographic applications one has to learn DNF formulas prop-
erly and from positive samples only. The next serious complication is to exclude
false positives in order to achieve steganographic security. In the distribution free
setting, this learning task can efficiently be mastered for 1-term DNF (monomi-
als) [18]. But it becomes infeasible for k-term DNF, with k ≥ 2, and log-term
as well as for unrestricted DNF formulas [13]. There is a positive result for
monotone DNF (MDNF) formulas over the uniform distribution. It is possible
to learn log-term MDNF formulas from positive samples only [15]. The class
of k-term MDNFs can even be learned over q-bounded distributions from pos-
itive samples [11,16]. Also, a method for positively learning 2-term DNF over
q-bounded distributions is known [5]. Most recently De et al. [3] have shown that
DNF formulas have efficient learning algorithms from uniformly distributed pos-
itive samples, but instead of a k-term DNF hypothesis the learner outputs a
sampler. This model seems to be unsuitable for embedding secret messages effi-
ciently, because it is unknown how coverdocuments can be modified to securely
embed a given message without knowing an adequate k-term DNF hypothesis.

Our Contribution. The main result of this paper is an efficient learner without
false positives for k-term DNF formulas from positive samples with hypothesis
space identical to the concept class for arbitrary fixed k over q-bounded distri-
butions. The major challenge already occurs for the uniform distribution: false
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positives cannot be tolerated at all. Our solution works in two phases. The learner
switches from k-term DNF to k-CNF representation in phase 1 and then back
in the second phase. In more details, in the first phase k-term DNF formulas
are learned using k-CNF formulas with very high accuracy and without false
positives using a first sequence of positive samples.

In phase 2, we construct a set of maximal monomials that should cover most
of the k-CNF formula generated. The number of candidates for these monomials
could be extremely large. Thus, we have to design a mechanism to select a
suitable subset. This subset will still contain many more than k monomials.
Finally, we apply tests with a second sequence of positive samples to select a
subset of size at most k as final hypothesis.

As a negative result, we show that it is impossible to learn unrestricted DNF
formulas without false positives. For q-bounded distributions learning n-term
DNF formulas requires an exponential number of positive samples regardless of
the hypothesis space. An overview of the current state of knowledge concerning
DNF learning is given in Table 1.

Table 1. Positive and negative (unless RP = NP ) results for learning DNF formulas
from positive samples over several distributions in polynomial time.

Concept class Distribution-free Uniform/q-bounded

1-term DNF (monomials) yes [18] yes [18]

2-term DNF no [13] yes [5]

k-term DNF no [13] yes (Theorem1)

log-term DNF no [14] open

unrestricted DNF no [14] no (Theorem2)

2 Preliminaries

Let us start with some basic definitions. In the following, n will always denote
the number of variables and X = {0, 1}n the set of binary strings of length n.
For a distribution D over X let sp(D) := {x ∈ X | D(x) > 0} denote the
support of D. For q ≥ 1 such a distribution is called q-bounded if max{D(x) |
x ∈ sp(D)} ≤ q · min{D(x) | x ∈ sp(D)}.

For a Boolean formula ϕ let sat(ϕ) := {x ∈ X | ϕ(x)} denote the set of
assignments that satisfy ϕ; sat(ϕ) will also be called the support of ϕ. A k-CNF
formula ψ is given by a conjunction of clauses each containing at most k literals.
We may assume that ψ does not contain tautological clauses (having a variable
and its negation simultaneously). A k-term DNF formula ϕ is a disjunction of at
most k monomials. ϕ is called non-redundant if it does not contain monomials M
such that removing M from ϕ does not change sat(ϕ), in particular there are no
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identical monomials (that means having the same set of literals) or trivial mono-
mials with empty support (containing a variable and its negation). A monomial
M will be called shorter than a monomial M ′ if it consists of less literals than
M ′; we call M larger than M ′ if |sat(M)| > |sat(M ′)|. In this paper we con-
sider the family of concept classes {sat(ϕ) ⊆ X | ϕ is a k-term DNF formula}
and proper learning of the classes from positive examples, i.e. we require that a
learner seeing only satisfying assignments outputs a k-term DNF formula.

The reader is assumed to be familiar with the standard concepts of PAC
theory (see e.g. [18]). Below we present only the definition of learnability of a
concept C from positive examples. This can be modeled by the condition that the
underlying distribution D on X fulfills sp(D) = C. Allowing false positives makes
the problem trivial because the hypothesis H = X would make errors D(C � H)
with weight 0. We therefore define: A learns C from positive samples without false
positives if for every pair (C,D) of a concept C ∈ C and distribution D ∈ D that
fulfills sp(D) = C its hypothesis satisfies: H ⊆ C and Pr[D(C \H) ≥ ε] ≤ δ. A
concept class C with a set D of q-bounded distributions can be learned efficiently
if a learner exists with running time bounded by a polynomial in (1/ε, 1/δ, n, q).

3 Learning k-term DNF from Positive Samples

Flammini et al. [5] have presented a method for learning a k-term DNF formula ϕ
for q-bounded distributions. In a first phase candidate monomials are generated
from positive samples in such a way that all monomials of ϕ having enough
assignments actually occur. But there are generally more, and some of these
monomials may have assignments that do not belong to sat(ϕ). Therefore, in
the second phase, combinations of at most k candidate monomials are tested
against a set of positive and negative samples. If such a combination fulfills a
specific error bound then it becomes the output. It has been shown that with
high probability this yields an approximate hypothesis.

In the following we will develop a generalization of this method that is capa-
ble of positively learning k-term DNF formulas. The learner gets only positive
samples and is not allowed to generate false positives.

Computing Maximal Monomials from CNF-Formulas. It is known how
to learn a k-term DNF formula ϕ without false positives by using as hypothesis
space k-CNF formulas. In this case ((2n)k+1−ln δ)/ε positive samples are needed
[2,14,18]. The learner starts with the conjunction of all possible non-tautological
clauses of length at most k, of which there are at most (2n)k+1. Then clauses
not satisfied by positive samples are deleted.

Our first innovation will construct candidate monomials for ϕ by learning
a k-CNF representation ψ for ϕ and extracting monomials from ψ afterwards.
We choose monomials M with sat(M) ⊆ sat(ψ) as large as possible. Generally,
for k ≥ 3 it is NP -hard to find a single satisfying assignment for a k-CNF
formula. But here we already know a number of satisfying assignments, namely
the positive samples used to create ψ. For this purpose, we define a criterion for
potential candidate monomials generated from ψ and a sample x ∈ sat(ψ).
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Definition 1. Let ψ be a Boolean formula and x ∈ sat(ψ). A monomial M is
(ψ, x)-maximal if x ∈ sat(M) ⊆ sat(ψ) and there is no submonomial of M with
this property (a submonomial is obtained by removing some literals from M).

Algorithm 1 given below computes such maximal monomials. It starts with
the monomial M = 1 and adds literals until sat(M) ⊆ sat(ψ) is satisfied. We
may assume that every clause of ψ does not contain any variable more than once.

Lemma 1. For a k-CNF formula ψ and x ∈ sat(ψ) Algorithm1 computes a
(ψ, x)-maximal monomial. Its runtime is bounded by a polynomial pk(n). For
every (ψ, x)-maximal monomial M there exists a sequence of literals selected in
line 10 such that the algorithm outputs M .

Input: k-CNF formula ψ without tautological clauses; assignment x ∈ sat(ψ)
Output: some (ψ, x)-maximal monomial M

1 M ←− 1; remove every literal from ψ that is not satisfied by x;
2 while true do
3 foreach clause K in ψ do
4 if there is exactly one literal � in K then
5 M ←− (M ∧ �);
6 remove all clauses that contain � from ψ;

7 end

8 end
9 if ψ is empty then return M ;

10 select an arbitrary literal �′ from ψ;
11 remove �′ from every clause in ψ;

12 end

Algorithm 1. MaxMonomial(ψ, x)

The learner to be defined below needs several (ψ, x)-maximal monomials, but
at most 2k − 1 many. To get them one could perform a depth-first search over
those literals that are selected and then deleted from ψ until enough maximal
monomials have been found. However, different choices may lead to the same
monomial eventually. In order to be efficient we need a suitable mechanism to
prune the search tree. Our strategy and its analysis are quite involved; therefore,
the details will be presented in a full version of this paper.

Learning Candidate Monomials. Considering every maximal monomial for
each positive sample used to learn the k-CNF formula ψ, one might get a very
large set of monomials. Thus, a new idea is needed to handle such a situation.
To obtain a bounded number of candidates to continue with we try to prune the
set of maximal monomials without losing too many satisfying assignments. To
this aim every monomial of the unknown k-term DNF formula ϕ that has a large
support should become a candidate monomial. On the other hand, monomials
with a small support might be removed without losing much accuracy.

Let us start by considering the number of maximal monomials in case the k-
CNF formula ψ is equivalent to the unknown k-term DNF formula ϕ. In general



Proper Learning of k -term DNF Formulas 157

sat(ψ) may cover only parts of the satisfying region of a monomial in a scattered
way. Hence, there could exist many (ψ, x)-maximal monomials.

Definition 2. Let ϕ = M1 ∨ · · · ∨ Mk be a non-redundant k-term DNF for-
mula, x ∈ sat(ϕ), and I = {i1, . . . , ip} ⊆ {1, . . . , k} be a non-empty set of
indices. A monomial MI,x is called (ϕ, I, x)-maximal if it is (ϕ, x)-maximal and
sat(MI,x) ⊆ sat(Mi1 ∨ · · · ∨ Mip

) and after removing any Mij
from the right

side this inclusion fails.

Lemma 2. For fixed ϕ, I, and x, a (ϕ, I, x)-maximal monomial MI,x is unique.
If y ∈ sat(Mi1 ∨ · · · ∨ Mip

) has a maximal monomial MI,y then MI,y = MI,x.

This implies that the number of different (ϕ, I, x)-maximal monomials over
all x ∈ sat(ϕ) and nonempty I ⊆ {1, . . . , k} is bounded by 2k − 1. Next we
will derive a bound on the number of satisfying assignments for those maximal
monomials that intersect potentially scattered regions of ϕ.

Lemma 3. Let ϕ = M1 ∨ · · · ∨ Mk be a non-redundant k-term DNF formula
with monomials Mi ordered by increasing length. For d ∈ N let ϕd = M1 ∨
· · · ∨ Mu be composed of all Mi with |sat(Mi)| ≥ 2d. For a Boolean formula
χd with sat(χd) ⊆ sat(Mu+1 ∨ Mu+2 ∨ · · · ∨ Mk) define ψd := ϕd ∨ χd,
M[d] := {M | Misa(ψd, x) − max. monom. forsomex ∈ (sat(χd) \ sat(ϕd))},
and ξd :=

∨

M∈M[d] M . Then it holds |sat(ξd)| ≤ 2d+k−1.

These notions provide the foundation for the learner specified in Algorithm2
giving the following result.

Theorem 1. For constant k, Algorithm2 learns k-term DNF formulas without
false positives over q-bounded distributions in polynomial time with respect to
(1/ε, 1/δ, n, q) by drawing no more positive samples than

σ(ε, δ, n, k, q) := ε−1 q k 23k+1
(

(2n)k+1 + ln(2/δ)
)

+ 48ε−2 ln
(

2k2+2/δ
)

.

Correctness Proof. We first show a bound on how much monomials may
overlap (their sat-regions have a nonempty intersection).

Lemma 4. Let ϕ = M1 ∨ · · · ∨ Mk be a non-redundant k-term DNF formula
and ϕi equal ϕ without Mi. Then |sat(Mi) \ sat(ϕi)| ≥ |sat(Mi)| · 2−k+1.

Next, let us estimate how well a k-CNF formula ψ can reconstruct the original
monomials of the unknown k-term DNF ϕ.

Definition 3. Let g(ϕ, q, k) := q 2k|sat(ϕ)|. For γ > 0 call a monomial Mi of
ϕ γ-large if |sat(Mi)| ≥ γ g(ϕ, q, k).

Lemma 5. Let ϕ = M1∨· · ·∨Mk be a k-term DNF formula with monomials Mi

and ψ = K1∧· · ·∧Kp be a k-CNF formula with clauses Kj and sat(ψ) ⊆ sat(ϕ).
Let D be a q-bounded distribution with sp(D) = sat(ϕ) and let γ > 0. If
D(sat(ϕ) \ sat(ψ)) < γ then for every γ-large Mi it holds sat(Mi) ⊆ sat(ψ).
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Input: ε, δ, k, q, sampling oracle EX
Output: hypothesis ϕ′

ε1 ←− ε q−1 k−1 2−(3k+1);

N1 ←− ε−1
1 ((2n)k+1 + ln(2/δ));

draw N1 samples E = (e1, . . . , eN1) using EX;
learn k-CNF formula ψ using samples in E;
M ←− ∅;
for j ←− 1 to N1 do

let Mj denote all (ψ, ej)-maximal monomials and mj := min{|Mj |, 2k − 1};
generate an arbitrary subset M′

j of Mj of size mj ;
M ←− M ∪ M′

j ;

end

reduce M to the (2k − 1)-shortest monomials;

N2 ←− 48 ε−2 ln(2k
2+2/δ);

draw N2 samples S = (s1, . . . , sN2) using EX;
foreach subset W of M of size at most k do

ϕW :=
∨

M∈W M ;
if ϕW misclassifies less than 3εN2/4 samples of S then return ϕ′ := ϕW ;

end

Algorithm 2. Learn-k-Term-DNF(ε, δ, k, q, EX)

Thus, if a CNF-formula ψ approximates a k-term DNF-formula ϕ quite well
then every monomial of ϕ with large support is completely covered by ψ. Only
monomials with small support may give rise to errors in the approximation.

Now we show that the set of candidate monomials M constructed by Algo-
rithm2 contains all large monomials.

Lemma 6. Let ϕ = M1 ∨ · · · ∨ Mk be a non-redundant k-term DNF for-
mula. With probability at least 1 − δ/2, Algorithm2 adds a monomial M ′

i ,
with sat(M ′

i) ⊇ sat(Mi), to M for every (ε122k)-large Mi, where ε1 =
ε q−1 k−1 2−(3k+1).

Proof sketch. Let Mi be an (ε122k)-large monomial. Assume that the algorithm
has learned a k-CNF formula ψ with D(sat(ϕ) \ sat(ψ)) ≤ ε1, which happens
with probability at least 1 − δ/2. Then, using Lemmas 3, 4, and 5 one can show
that the sample sequence E contains at least one element ej ∈ sat(Mi), such
that no (ϕ, ej)-maximal monomial intersects with potential scattered regions of
ϕ. Hence the number of (ψ, ej)-maximal monomials can be bounded by Lemma 2
and some M ′

i with sat(M ′
i) ⊇ sat(Mi) will be added to M. All maximal mono-

mials that intersect with scattered regions have less assignments than Mi by
Lemmas 3 and 5. Thus M ′

i is among the 2k − 1 shortest monomials in M by
Lemma 2. ��
From Lemma 6 one can conclude the correctness of Algorithm 2. The learning
algorithm can be made applicable even if q is unknown (see [5]).

A Negative Result. Verbeurgt [19] has developed a method for learning
poly(n)-term DNF over the uniform distribution from a polynomial number of
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positive and negative samples with a quasi-polynomial running time. In contrast,
we can show (proof omitted):

Theorem 2. For every q-bounded distribution D and every hypothesis space H,
learning n-term DNF formulas without false positives requires an exponential
number of positive samples drawn according to D for ε < 1/q.

4 Learning Documents for Steganography

We start this section with a short review of basic definitions similar to [7]. Let
X denote the set of cover- or stegodocuments. A channel C is a mapping with
domain X ∗ that for every sequence h of documents, called a history, defines a
probability distribution Ch on X .

A sampling oracle for C takes a history h as input and returns a random ele-
ment according to Ch. In order to generate a typical sequence of coverdocuments
c1, c2, . . . of C one starts with the empty history and asks the sampling oracle for
a first element c1, then with history h1 = c1 a second element c2 is requested,
and so on. C is called supuniform if for every h, Ch is the uniform distribution
on sp(Ch).

A stegosystem for X is a pair of polynomial-time bounded probabilistic algo-
rithms S = [SE,SD] such that, for a security parameter κ,

(1) the encoder SE having access to a sampling oracle for a channel C gets
as input a history h (elements that have already been generated by C), a
secret key K ∈ {0, 1}κ, and a message μ ∈ {0, 1}m and returns a sequence of
stegodocuments s1, s2, . . . that should look like typical elements of C starting
with history h (the length of this sequence may depend on κ and m).

(2) The decoder SD takes as input a secret key K and a sequence of documents
S and returns a string μ ∈ {0, 1}m.

The unreliability of S = [SE,SD] with respect to a channel C is given by
UnRelS,C := maxh,μ∈{0,1}m

{

PrK∈{0,1}κ [SD(K,SE(h,K, μ)) �= μ]
}

.
For security analysis we take as adversary a probabilistic machine W called a
(t, ζ)-warden that can perform a chosen hiddentext attack:

• W can access a sampling oracle for the channel C that in the following will be
called his reference oracle;

• W selects a history h and a message μ and queries a challenge oracle CH which
is either SE(h,K, μ) or C(h, μ), where C(h, μ) returns a sequence of random
elements of C with history h of the same length as SE(h, ·, μ);

• W runs in time t and can make up to ζ queries;
• with the help of the reference oracle C and the challenge oracle CH the warden

W C,CH tries to distinguish stego- from coverdocuments.

His advantage over random guessing is defined as the difference

AdvS,C(W ) :=
∣

∣

∣

∣

Pr
K∈{0,1}κ

[

W C,SE(·,K,·) = 1
]

− Pr
[

W C,C(·,·) = 1
]

∣

∣

∣

∣

.
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For a given family F of channels C the strongest notion of security for a
stegosystem S is defined as InSecS,F (t, ζ) := supC∈F supW AdvS,C(W ), where
W runs over all (t, ζ)-wardens. Thus, if InSecS,F is small then for every channel
C of F no W – even those having perfect knowledge about C – can detect the
usage of S with significant advantage.

Now let us consider channels C over the document space X = {0, 1}n such
that for every history h the support of Ch can be described by a k-term DNF
formula. These will be called k-term DNF channels. In [12] a polynomial-time
bounded embedding algorithm has been constructed that for a given string
ω ∈ {0, 1}b, an arbitrary key K, and a k-term DNF formula ϕ with sufficiently
large support (depending on b) generates a document s ∈ sat(ϕ) that encodes ω.
The distribution of these stegodocuments is uniform over sat(ϕ) where the prob-
ability is taken over random choices of K and the internal randomization of
the algorithm. Assuming that the underlying k-term DNF channel C is known
exactly – this means for every h a k-term DNF formula for sp(Ch) – one can use
this embedding procedure to construct an efficient stegosystem Ŝ for the family
F of all supuniform k-term DNF channels C. It has both small unreliability and
small insecurity.

Definition 4. For η ≥ 1 and an integer k ≥ 1 let Fk,η be the set of all supuni-
form k-term DNF channels C such that for every history h it holds |sp(Ch)| ≥ 2η.

Let b denote the number of bits encoded per document and m = � · b the
length of the secret message μ to be embedded. Combining the embedding tech-
nique of [12] with the results of the previous section we can show:

Theorem 3. For the channel family Fk,η and given reliability parameters ε, δ >
0 there exists a stegosystem Sk that for every C ∈ Fk,η achieves the inse-
curity bound of Ŝ and the unreliability bound UnRelSk,C ≤ 2�(ε + δ) +
2em (k · 2−η/(1 − ε))(log e)/b.

Trying to extend this result to q-bounded channels one faces the problem
that the corresponding distributions are not efficiently learnable – their support
can be learned, but not the individual probabilities which cannot even be speci-
fied in polynomial length in general. Thus, the stegoencoder cannot get complete
knowledge about the channel and the same should hold for the steganalyst – oth-
erwise he can easily detect any deviation from the channel distribution implying
that secure and efficient steganography would be impossible. The analysis for
this situation is given in a full version of this paper.

5 Conclusions

We have provided a polynomial-time algorithm for properly learning k-term
DNF formulas from positive samples only. Further, we have shown that unre-
stricted DNF formulas cannot be learned from positive samples without false
positives due to information theoretical reasons. Although the analogous learn-
ability problem for log-term DNF formulas remains still open, the negative result
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for unrestricted DNF formulas shows that this new method for learning k-term
DNF formulas is quite powerful.

Combining our learning algorithm with the embedding procedure of [12] we
are able to construct an efficient and provably secure stegosystem for a fam-
ily of channels that can be defined by k-term DNF formulas. This illustrates
that methods of algorithmic learning are important for steganography. Here,
however, both learning and embedding components are crucial. As an example,
the embedding problem for supports represented by efficiently learnable k-CNF
formulas seems to be infeasible.
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Abstract. Given a square (0, 1)-matrix A, we consider the problem of
deciding whether there exists a permutation of the rows and a permuta-
tion of the columns of A such that, after these have been carried out, the
resulting matrix is triangular. The complexity of the problem was posed
as an open question by Wilf [6] in 1997. In 1998, DasGupta et al. [3]
seemingly answered the question, proving it is NP-complete. However,
we show here that their result is flawed, which leaves the question still
open. Therefore, we give a definite answer to this question by proving
that the problem isNP-complete. We finally present an exponential-time
algorithm for solving the problem.

1 Introduction

In his contribution to the tribute to the late Professor Erdös [6], Wilf posed the
following question: “Let A be an m×n matrix of 0’s and 1’s. Consider the com-
putational problem: do there exist permutations P of the rows of A, and Q, of
the columns of A such that after carrying out these permutations, A is triangu-
lar? The question we ask concerns the complexity of the problem. Is this problem
NP-complete? Or, does there exist a polynomial-time algorithm for doing it?”
As noted by Wilf, this problem is strongly related to job scheduling with prece-
dence constraints, a well-known problem in theoretical computer science. The
present paper is devoted to giving an answer to this question.

A square matrix is called lower triangular if all the entries above the main
diagonal are zero. Similarly, a square matrix is called upper triangular if all
the entries below the main diagonal are zero. A triangular matrix is one that
is either lower triangular or upper triangular. Because matrix equations with
triangular matrices are easier to solve, they are very important in linear algebra
and numerical analysis. We refer the reader to [4] for an advanced discussion.

For an arbitrary square matrix A, it is well-known that there exists an invert-
ible matrix S such that S−1AS is upper triangular. We focus here, however,
on permutation matrices. Recall that a permutation matrix is a square matrix
obtained from the same size identity matrix by a permutation of rows. A prod-
uct of permutation matrices (resp. the inverse of a permutation matrix) is also
a permutation matrix. In fact, for any permutation matrix P , P−1 = PT .
c© Springer-Verlag Berlin Heidelberg 2015
K. Elbassioni and K. Makino (Eds.): ISAAC 2015, LNCS 9472, pp. 165–175, 2015.
DOI: 10.1007/978-3-662-48971-0 15



166 G. Fertin et al.

This paper is organized as follows. In Sect. 2, we provide the basic material
needed for this paper. Section 3 is devoted to proving hardness of determining
whether a square (0, 1)-matrix is permutation equivalent triangular, i.e. whether
it can be transformed into a triangular matrix by independent row and col-
umn permutations. In Sect. 4, we give some properties of permutation equiva-
lent triangular matrices, and present an exponential-time algorithm to determine
whether a matrix is a permutation equivalent triangular matrix. The paper con-
cludes with suggestions for further research directions.

2 Notations

For any positive integer n, denote [n] = {1, 2, . . . , n}. Let A = [ai,j ], 1 ≤ i ≤ m
and 1 ≤ j ≤ n, be a matrix of m rows and n columns. In the case that m = n,
the matrix is square of order n. It is convenient to refer to either a row or a
column of the matrix as a line of the matrix. We use the notation AT for the
transpose of matrix A. We always designate a zero matrix by 0, a matrix with
every entry equal to 1 by J , and the identity matrix of order n by I. In order to
emphasize the size of these matrices we sometimes include subscripts. Thus Jm,n

denotes the all 1’s matrix of size m by n, and this is abbreviated to Jn if m = n.
Notations 0m,n, 0n and In are similarly defined. In displaying a matrix we often
use ∗ to designate a submatrix of appropriate dimensions. Two matrices A and
B are said to be permutation equivalent if there exist permutation matrices P
and Q of suitable sizes such that B = PAQ.

We will be mostly concerned with matrices whose entries consist exclusively
of the integers 0 and 1. Such matrices are referred to as (0, 1)-matrices. For a
(0, 1)-matrix A, we let ω(A) stand for the number of 1’s in A. A square matrix
A = [ai,j ] of order n is said to be lower left triangular (or llt, for short) if it has
only 0’s above the main diagonal (i.e. ai,j = 0 for 1 ≤ i < j ≤ n). We write

for the llt (0, 1)-matrix whose 0’s are exclusively above the main diagonal.
For two matrices A = [ai,j ] and B = [bi,j ] of size m by n, we write A ≤ B if
ai,j ≤ bi,j for 1 ≤ i ≤ m and 1 ≤ j ≤ n, so that a square matrix A of order n is llt
if A ≤ . In the context of permutation equivalent matrices, we will sometimes
not be interested in any particular orientation of a triangular matrix and forget
about any specific orientation such as “lower left”. Furthermore, for readability,
a matrix which is permutation equivalent to a triangular matrix is said to be a pet
matrix. The row sum vector R(A) =

[

r1 r2 . . . rm

]

and the column sum vector
C(A) =

[

c1 c2 . . . cn

]

of A are defined by ri =
∑

1≤j≤n ai,j for 1 ≤ i ≤ m and
cj =

∑

1≤i≤m ai,j for 1 ≤ j ≤ n. The row sum vector R(A) (resp. column sum
vector C(A)) is stepwise bounded if |{i : ri ≤ k}| ≥ k (resp. |{j : cj ≤ k}| ≥ k)
for 1 ≤ k ≤ n. It is clear that if a (0, 1)-matrix A is a pet matrix then both
R(A) and C(A) are stepwise bounded. The permanent of A = [ai,j ] is defined as
the number given by the formula per(A) =

∑

(j1,j2,...,jn)∈Sn
a1,j1 a2,j2 . . . an,jn ,

where the summation is over all permutations (j1, j2, . . . , jn) of [n]. Observe
that, unlike the determinant, we do not put a minus sign in front of some of
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the terms in the summation. Of particular importance, the permanent does not
change if the rows or columns of A are permuted.

For a set K ⊆ [m] we will write K for the set [m]\K. Let K = {i1, i2, . . . , ik}
be a set of k elements with K ⊆ [m], and let L = {j1, j2, . . . , jl} be a set of l
elements with L ⊆ [n]. The sets K and L designate a collection of row indices
and column indices, respectively, of the matrix A, and the k by l submatrix
determined by them is denoted A[K,L]. Let X = {xi : 1 ≤ i ≤ n} be a non-
empty set of n elements, that we call an n-set. Let S = (Si : 1 ≤ i ≤ m) be
m not necessarily distinct subsets of the n-set X. We refer to this collection of
subsets of an n-set as a configuration of subsets. We set ai,j = 1 if xj ∈ Si,
and ai,j = 0 if xi /∈ Si. The resulting (0, 1)-matrix A = [ai,j ], 1 ≤ i ≤ m and
1 ≤ j ≤ n of size m by n is the incidence matrix for the configuration of subsets
S of the n-set X. The 1s in row αi of A display the elements in the subset Si,
and the 1’s in column βj display the occurrences of xj among the subsets. Let
S = (Si : 1 ≤ i ≤ n) be a configuration of subsets of some ground n-set X. A
bijective mapping ϕ : S → [n] is said to be a stepwise bounded labeling (or sbl
for short) of S if

∣

∣

∣

⋃

ϕ(Sj)≤i Sj

∣

∣

∣ ≤ i for 1 ≤ i ≤ n.

3 Answering Wilf’s Question

We prove in this section that, given a square (0, 1)-matrix A, deciding whether
there exists a permutation matrix P and a permutation matrix Q of suitable
size such that PAQ is triangular is NP-complete.

3.1 Disproving a Previous Related Result

Before giving our proof, it is worth mentioning that the following problem (called
LBQIS(n, k) and rephrased to fit the context of this paper) is claimed to be
NP-complete in [3]: Given a (0, 1)-matrix of order n and a positive integer k ≤ n,

do there exist permutation matrices P and Q such that PAQ =
[

A1,1 A1,2

A2,1 A2,2

]

where A1,2 is a square lower triangular matrix of size k by k? It is not very
difficult to find a polynomial transformation from LBQIS to Wilf’s question,
which would prove the NP-completeness of the latter. Just add n − k all-zero
rows and n − k all-zero columns to matrix A to obtain a new matrix A′. Now,
notice that each submatrix A1,2 in a solution for LBQIS may be completed with
the n − k all-zero rows put before row 1 of A1,2 and with the n − k all-zero
columns put after column k of A1,2 to yield a solution for the instance A′ in
Wilf’s question, and viceversa.

Unfortunately, paper [3] contains a serious flaw in the proof. To fix things,
note that in [3] LBQIS is stated in terms of bipartite graphs, for which matrix
A is the reduced adjacency matrix. Then, LBQIS(n, k) is proved NP-complete
by reduction from another problem on bipartite graphs called LBIS(n, k), using
the so-called Rearrangement Lemma (Lemma 3.5 in [3]). However, the proof
of this lemma is not correct, as shown by the two following counter-examples,
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which address two different assertions in the proof. Let G be the graph (input
for LBIS) with vertices U = {i | 1 ≤ i ≤ 4} and V = {i | 1 ≤ i ≤ 4}, whose
edges are (1, 1), (2, 1), (2, 2), (3, 2), (3, 4), (4, 3) and (4, 4). Thus, n = 4. Define
k = 1. Let G′ be the input graph for LBQIS built as in [3], and k′ = k2 + k = 2.
In the proof of the Rearrangement Lemma, the first line claims that, given U ′

and V ′ with respective vertex orders σ1 and σ2 that realize an LBQIS of size
k′ for G′, one may assume that the vertices in σ1 and σ2 (which are pairs of
integers) are in non-decreasing order of their first integer. This is contradicted
by the sets U ′ = {[2, 4], [1, 2]} and V ′ = {[1, 3], [2, 2]} which realize an LBQIS
of size k′ (i.e. 2) with the orders already indicated in U ′ and V ′, but which
cannot be reordered as U ′ = {[1, 2], [2, 4]} and V ′ = {[1, 3], [2, 2]} since these
new orders do not realize an LBQIS any longer. So the first assertion in the
proof is false. Moreover, the vertex subset U ′ ∪V ′ of G′, with U ′ = {[1, 1], [2, 1]}
and V ′ = {[1, 2], [1, 3]} is a solution of LBQIS of size k′ for which the second
assertion in the same lemma (“clearly q1 ≤ p1”) is also false. So, the proof of
the Rearrangement Lemma is not correct, and consequently this also holds for
the proof of the NP-completeness of LBQIS.

3.2 Our NP-completeness Proof for Wilf ’s Question

We present our results in terms of sbl for configurations of subsets. The rationale
for considering sbl for configurations of subsets stems from the following lemma.

Lemma 1. Let S = (Si : 1 ≤ i ≤ n) be a configuration of subsets of some ground
n-set, and let A be the corresponding incidence matrix. There exist permutation
matrices P and Q of order n such that PAQ ≤ iff there exists an sbl of S.

We need to focus our attention on a special type of sbl. Call a bijective
mapping ϕ : S → [n] normalized if ϕ maps the identical subsets of elements of
S to a set of consecutive integers. Most of the interest in normalized bijective
labelings stems from the following intuitive lemma.

Lemma 2. Let S = (Si : 1 ≤ i ≤ n) be a configuration of subsets of some
ground n-set. If there exists an sbl of S then there exists a normalized sbl of S.

We are now ready to prove that deciding whether there exists an sbl of
some configuration of subsets is NP-complete thereby proving that deciding
whether a square (0,1)-matrix is a pet matrix is NP-complete as well. The
proof proceeds by a reduction from the NP-complete 3Sat problem [2]. Let
an arbitrary instance of the 3Sat problem be given by a 3CNF formula φ =
c1∨c2∨. . .∨cm over variables x1, x2, . . . , xn. Our construction is divided into two
steps: (1) construction of a (polynomial size) ground set X and (2) construction
of a configuration of subsets C of the ground set X. Throughout the proof, parts
of the ground set X are written as capital bold letters (V,T,F, . . .) and subsets
of the configuration are written with capital calligraphic letters (Vi, Ti,Fi, . . .).
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V1

T1

T1

V2

F2

F2

V3

F3

F3

C1

B

S

L2,2C3
L3,3
L3,3

V1 T1 V1 V2 F2 V2 F3 V3V3

L1,1C1 C2 L2,2 C3 C3L3,3

C∗

C2

C1

p1 − 1

q1

r1

p2

q2

r2

p3

q3

r3

r3q3p3r2q2p2r1q1p1

L2,2
L1,1

L1,1

C2

L1,2,L1,2,L1,3,L1,3
L2,1,L2,1,L2,3,L2,3

F1,F1,T2,T2 ,T3,T3

L3,1,L3,1,L3,2,L3,2

Fig. 1. Illustration of the construction for the 3CNF formula φ = (x1 ∨x2 ∨x3)∧ (x1 ∨
x2 ∨x3)∧ (x1 ∨x2 ∨x3). Identical subsets are not distinguishable in our representation.
A satisfying truth assignment is given by f(x1) = TRUE, f(x2) = FALSE and f(x3) =
FALSE. For sake of clarity, neither the ground set X nor the collection of subsets C is
fully represented.

To begin with, define pi = 3(n+m+1− i)+2, qi = 3(n+m+1− i)+1 and
ri = 3(n + m + 1 − i) for 1 ≤ i ≤ n + m. Furthermore, define pn+m+1 = 1, K =
∑n

i=1 qi+2
∑n+m

i=n+1 qi and L =
∑n+m

i=1 (pi+1+ri). Let us now define the ground set
X. Consider the pairwise disjoint sets defined as follows: Vi = {vi,j | 1 ≤ j ≤ pi},
V′

i = {v′
i,j | 1 ≤ j ≤ ri}, Ti = {ti,j | 1 ≤ j ≤ qi}, Fi = {fi,j | 1 ≤ j ≤ qi}

for 1 ≤ i ≤ n. Furthermore, define Ci = {ci,j | 1 ≤ j ≤ pn+i} C′
i = {c′

i,j | 1 ≤
j ≤ rn+i} for 1 ≤ i ≤ m, and Li,k = {�i,k,j | 1 ≤ j ≤ qn+i} for 1 ≤ i ≤ m
and 1 ≤ k ≤ 3. Finally, define S = {s}. For simplicity of notation, write V =
⋃

1≤i≤n Vi, V′ =
⋃

1≤i≤n V′
i, T =

⋃

1≤i≤n Ti, F =
⋃

1≤i≤n Fi, C =
⋃

1≤i≤m Ci,
C′ =

⋃

1≤i≤m C′
i, and Li =

⋃

1≤k≤3 Li,k for 1 ≤ i ≤ m and L =
⋃

1≤i≤m Li.
Informally, elements of V∪V′ are associated to variables, elements of T∪F are
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associated to literals, elements of C ∪ C′ are associated to clauses, elements of
L are associated to literals in clauses and S is a separator set. The ground set
X of our construction is defined to be X = V ∪ V′ ∪ T ∪ F ∪ C ∪ C′ ∪ L ∪ S.

Having defined the ground set X, we now turn to the detailed construction
of a configuration of subsets C of X. For sake of clarity, this will be divided
into several steps. First, each variable xi, 1 ≤ i ≤ n, is associated to identical
subsets Vi,j , 1 ≤ j ≤ qi, in C. These subsets are defined as follows: Vi,j =
(

⋃

1≤k≤i Vk

)

∪
(

⋃

1≤k≤i−1 V
′
k

)

for 1 ≤ i ≤ n and 1 ≤ j ≤ qi. Let us denote
by Vi, 1 ≤ i ≤ n, the collection (Vi,j | 1 ≤ j ≤ qi). Next, each (positive)
literal xi, 1 ≤ i ≤ n, is associated to identical subsets Ti,j , 1 ≤ j ≤ ri, and
to identical subsets T ′

i,j , 1 ≤ j ≤ pi+1. These subsets are defined as follows:

Ti,j = Ti ∪
(

⋃

1≤k≤i Vk

)

∪
(

⋃

1≤k≤i−1 V
′
k

)

for 1 ≤ i ≤ n and 1 ≤ j ≤ ri, and

T ′
i,j = Ti ∪

(

⋃

1≤k≤i Vk

)

∪
(

⋃

1≤k≤i V
′
k

)

for 1 ≤ i ≤ n and 1 ≤ j ≤ pi+1.
Of course, a similar construction of subsets applies for the negation xi of each
variable xi, i.e., Fi,j = Fi ∪

(

⋃

1≤k≤i Vk

)

∪
(

⋃

1≤k≤i−1 V
′
k

)

for 1 ≤ i ≤ n

and 1 ≤ j ≤ ri, and F ′
i,j = Fi ∪

(

⋃

1≤k≤i Vk

)

∪
(

⋃

1≤k≤i V
′
k

)

for 1 ≤ i ≤ n

and 1 ≤ j ≤ pi+1. For readability, write Ti = (Ti,j | 1 ≤ j ≤ ri), T ′
i = (T ′

i,j |
1 ≤ j ≤ pi+1), Fi = (Fi,j | 1 ≤ j ≤ ri) and F ′

i = (F ′
i,j | 1 ≤ j ≤ pi+1) for

1 ≤ i ≤ n. Note that the following (strict) inclusions hold for all 1 ≤ i ≤ n,
1 ≤ j1 ≤ qi, 1 ≤ j2 ≤ ri and 1 ≤ j3 ≤ pi+1: (i) Vi,j1 ⊂ Ti,j2 ⊂ T ′

i,j3
and (ii)

Vi,j1 ⊂ Fi,j2 ⊂ F ′
i,j3

. We now turn to the m clauses of the 3CNF formula. Each
clause ci, 1 ≤ i ≤ m, is associated to identical subsets Ci,j , 1 ≤ j ≤ qn+i. These

subsets are defined as follows: Ci,j = V ∪ V′ ∪
(

⋃

1≤k≤i Ck

)

∪
(

⋃

1≤k≤i−1 C
′
k

)

for 1 ≤ i ≤ m and 1 ≤ j ≤ qn+i. Let us denote by Ci, 1 ≤ i ≤ m, the collection
(Ci,j | 1 ≤ j ≤ qn+i). It is easily seen that Vi,j1 ⊂ Ck,j2 for all 1 ≤ i ≤ n,
1 ≤ j1 ≤ qi, 1 ≤ k ≤ m and 1 ≤ j2 ≤ qn+k.

Now, we consider the only part of the construction that depends on which
literal occurs in which clauses. Denote by λi,k the k-th literal of clause ci, that
is write ci = λi,1 ∨ λi,2 ∨ λi,3 for 1 ≤ i ≤ m, where each λi,k is a variable
or its negation. The k-th literal, 1 ≤ k ≤ 3, of each clause ci, 1 ≤ i ≤ m, is
associated to identical subsets Li,k,j , 1 ≤ j ≤ rn+i, and to identical subsets
L′

i,k,j , 1 ≤ j ≤ pn+i+1. These subsets are defined as follows: Li,k,j = V ∪ V′ ∪
Ak ∪ Li,k ∪

(

⋃

1≤�≤i C�

)

∪
(

⋃

1≤�≤i−1 C
′
�

)

for 1 ≤ i ≤ m, 1 ≤ j ≤ rn+i and

1 ≤ k ≤ 3 and L′
i,k,j = V ∪ V′ ∪ Ak ∪ Li,k ∪

(

⋃

1≤�≤i C�

)

∪
(

⋃

1≤�≤i C
′
�

)

for
1 ≤ i ≤ m, 1 ≤ j ≤ pn+i+1 and 1 ≤ k ≤ 3, where Ak = T� if λi,k = x� and
Ak = F� if λi,k = x�. For the sake of clarity, write Li,k = (Li,k,j | 1 ≤ j ≤ rn+i)
and L′

i,k = (L′
i,k,j | 1 ≤ j ≤ pn+i+1) for 1 ≤ i ≤ m and 1 ≤ k ≤ 3. Again, observe

that Ci,j1 ⊂ Li,k,j2 ⊂ Li,k,j2 for all 1 ≤ i ≤ m, 1 ≤ j1 ≤ qn+i, 1 ≤ j2 ≤ rn+i,
1 ≤ j3 ≤ pn+i+1 and 1 ≤ k ≤ 3.

Our construction ends with p1 + K − 1 utility subsets. These subsets will
be partitioned into two separate classes according to their intended function:
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bootstrap subsets and separator subsets. First, C contains identical bootstrap
subsets Bi, 1 ≤ i ≤ p1 − 1, defined as follows: Bi = ∅ for 1 ≤ i ≤ p1 − 1.
The idea is to force any sbl to map the p1 − 1 empty sets of B to the first
p1 − 1 = 3(n + m) + 1 integers. Indeed, it is easily seen that all the above
defined subsets of the configuration of subsets C but those of B contain at least
p1 elements and hence cannot be mapped to an integer i ≤ p1 − 1 in any sbl
of C. Second, C contains identical separator subsets Si, 1 ≤ i ≤ K, defined by:
Si = V ∪ V′ ∪ C ∪ C′ ∪ S for 1 ≤ i ≤ K. The rationale of these subsets is that
we need a separator between subsets in C corresponding to a satisfying truth
assignment f for the 3CNF formula φ and garbage subsets of C, that is subsets
not involved in the satisfying truth assignment f . For simplicity, let us denote
by B the collection (Bi | 1 ≤ i ≤ p1−1) and by S the collection (Si | 1 ≤ i ≤ K).
Clearly our construction can be carried out in polynomial time: indeed, we have
|X| = O(m2 + n2) and |C| = O(m2 + n2).

Lemma 3. There exists a satisfying truth assignment f for φ iff there exists an
sbl of the configuration of subsets C of the ground set X.

The key elements of the proof are as follows. First, it is crucial to focus on
solutions that map identical subsets of elements of C to a set of consecutive
elements (see Lemma 2). Second, the general shape of the solution is largely
guided by the construction. Indeed, the empty subsets have to be placed first,
followed by subsets corresponding to literals (either the positive or the negative
literal of each variable is chosen) and next by subsets corresponding to clauses
(one satisfying literal of each clause is chosen). Finally the separator subsets have
to be placed, with the result that (thanks to the large polynomial number of such
subsets) the remaining subsets can be placed in any order without violating the
sought sbl property. The reader is invited to consider Fig. 1 for a schematic
illustration of the reduction. We now briefly discuss, in an informal way, the two
key arguments that are used in the proof. First, the whole procedure is, to some
extent, similar to the accounting method used in amortized complexity analysis.
Indeed, one might view the operation of placing a set (one after the other) as the
process of charging some customer, the cost being the number of new elements
that are introduced. With this metaphor in mind, notice that we do not charge
when a subset does not introduce any new element, so that the leftover amount
can be stored as “credit”. When we place a new subset that does introduce some
new elements, we can use the “credit” stored to pay for the cost of the operation.
Second, when a subset uses the “credit” stored to pay the cost of introducing
new elements, the following invariants can be shown to hold true: (i) it uses
all the available credit and (ii) it does not allow to accumulate (it should be
now clear that consecutive identical subsets do allow for accumulating credit) as
much credit as it has consumed, thereby proving that subsets introduce less and
less new elements as we progress adding subsets one after the other.

Theorem 1. Let A be a (0, 1)-matrix. Deciding whether A is a pet matrix is
NP-complete.



172 G. Fertin et al.

4 Exponential-Time Algorithm

We present here an exponential-time algorithm for deciding whether a given a
(0, 1)-matrix A of order n is a pet matrix. We start by presenting some basic
properties of square (0, 1)-matrices that can be transformed into some triangular
matrix by row and column independent permutations to help solving involved
algorithmic issues. We of course focus of polynomial-time checkable properties.

We first focus on the permanent of a square (0, 1)-matrix. A well-known result
(see e.g. [1]) states that for a (0, 1)-matrix A of order n, one has per(A) = 1 iff
the lines of A may be permuted to yield a triangular matrix with 1’s in the n
main diagonal positions and 0’s above the main diagonal. This theorem amounts
to saying that per(A) = 1 iff there exist permutation matrices P and Q such
that I ≤ PAQ ≤ . As shown in the following lemma, per(A) = 1 is certainly
a threshold value in our context.

Lemma 4. Let A be (0, 1)-matrix. If A is a pet matrix then per(A) ≤ 1.

Notice that deciding per(A) ≤ 1 for (0, 1)-matrices of order n reduces to
computing at most n + 1 perfect matchings in bipartite graphs [1], and hence
the above test is O(n3

√
n) time as the Hopcroft–Karp algorithm for computing

a maximum matching in a bipartite graph B = (V,E) runs in O(|E|
√

|V |) [5].
Next, it is a simple matter to check that if a (0, 1)-matrix A of order n is a

pet matrix, then it contains at most 1
2n(n+1) 1’s (i.e., ω(A) ≤ 1

2n(n+1)). The
following lemma gives a lower bound.

Lemma 5. Let A be (0, 1)-matrix of order n, n ≥ 2. If A contains at most n+1
1’s, then A is a pet matrix.

Notice that, albeit not very impressive, Lemma 5 is tight as the square matrix
[

In−2 0n−2,2

02,n−2 J2

]

of order n has n − 2 + 4 = n + 2 1’s and is not a pet matrix.

Finally, the following trivial lemma gives another condition that helps
improving the running time of the algorithm in practice.

Lemma 6. Let A be (0, 1)-matrix of order n and D(A) the directed graph associ-
ated to A ( i.e., the adjacency matrix of D(A) is A). If D(A) is acyclic (excluding
self-loops), then A is a pet matrix.

We now turn to presenting our exponential-time algorithm. The simplest
exhaustive algorithm considers every possible pair of permutation matrices
(P,Q) yielding an O((n!)2 · poly(n)) time algorithm. However, according to
Lemma 1, it is enough to consider every permutation matrix P of order n and
check whether the first i, 1 ≤ i ≤ n, rows of PA have 1’s in at most i columns.
This observation yields an O(n! · poly(n)) time algorithm. We propose here
another exhaustive algorithm that improves on the O(n! · poly(n)) time algo-
rithm. The basic idea is to recursively split into smaller submatrices, instead
of enumerating all permutations. For a (0, 1)-matrix A of order n, we consider
every possible set R of n/2� rows of A and every possible set of n/2� columns



Obtaining a Triangular Matrix by Independent Row-Column Permutations 173

PAQ =
A1 0
∗ A2

(a) Even

PAQ =

⎡
⎣
A1 0 0
∗ 1 0

A2

⎤
⎦

(b) Odd and one 1

PAQ =

⎡
⎣
A1 0 0
∗ 0 0

A2

⎤
⎦

(c) Odd and zero 1

Fig. 2. Obtaining a triangular (0,1)-matrix by recursively placing a 0 matrix in the
upper right part.

C of A, and check whether these lines induce a zero matrix (or a matrix with at
most one 1 in case the matrix has odd order; details follow).

If n is even, we let P and Q be two permutation matrices that put the rows in
R at the first n/2� positions and the columns in C at the last n/2� positions.
The key element for the improvement is that no specific order is required for
the rows in R nor for the columns in C. The algorithm rejects the matrix A
for the subsets R and C if ω(A[R,C]) > 1, otherwise we can write PAQ as in
Fig. 2(a), where A1 and A2 are matrices of order n/2� = n/2, and we proceed by
recursively checking that both A1 and A2 are pet matrices. The case when n is
odd is a bit more involved. First, the algorithm rejects matrix A for the subsets R
and C if ω(A[R,C]) > 1. Otherwise, we need to consider two (possibly positive)
cases: ω(A[R,C]) = 1 or ω(A[R,C]) = 0. If ω(A[R,C]) = 1, we let P and Q be
two permutation matrices that put the rows in R at the first n/2� positions
and the columns of C at the last n/2� positions (no specific order for the rows
in R nor for the columns in C, except that the 1 of A is at row index n/2�
and at column index n/2� in PAQ). We can write PAQ as in Fig. 2(b), where
A1 and A2 are matrices of order �n/2�, and we proceed by recursively checking
that both A1 and A2 are pet matrices. Finally, if ω(A[R,C]) = 0, for every row
index i ∈ R and every column index j ∈ C, we let P and Q be two permutation

Algorithm 1. Recognizing pet matrices.
1 Algorithm: permTriangular

Data: A square matrix A = [ai,j ] of order n
Result: true if A is a pet matrix, false otherwise

2 if (ω(A) ≤ n + 1) or (per(A) = 1) or (A is stepwise bounded) or (D(A) is
acyclic) then return true

3 if (ω(A) > n(n+1)
2

) or (per(A) > 1) or (R(A) or C(A) is not stepwise bounded)
then return false

4 for every subset R ⊂ [n] of size
⌈

n
2

⌉

and every subset C ⊂ [n] of size
⌈

n
2

⌉

do
5 if n is even then
6 if permTriangularEven(A, R, C) then return true
7 else
8 if permTriangularOdd(A, R, C) then return true

9 return false
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matrices that put the rows in R at the first n/2� positions and the columns
of C at the last n/2� positions (no specific order for the rows in R nor for the
columns in C except that row i in A is at row index n/2� and column index
j is at column index n/2� in PAQ). We can write PAQ as in Fig. 2(c), where
A1 and A2 are matrices of order �n/2�, and we proceed by recursively checking
that both A1 and A2 are pet matrices.

Algorithm 2. Subprocedure for recognizing pet matrices of even order.
1 Algorithm: permTriangularEven

Data: A square matrix A = [ai,j ] of even order n, and non-empty subsets
R ⊂ [n] and C ⊂ [n], both of size n

2
Result: true if A is a pet matrix with A[R,C] as the upper right

submatrix, false otherwise
2 if ω(A[R,C]) > 0 then return false
3 Let Aul = A[R,C] and Alr = A[R,C]
4 return permTriangular(Aul) && permTriangular(Alr)

Algorithm 3. Subprocedure for recognizing pet matrices of odd order.
1 Algorithm: permTriangularOdd

Data: A square matrix A = [ai,j ] of odd order n, and non-empty subsets
R ⊂ [n] and C ⊂ [n], both of size

⌈

n
2

⌉

Result: true if A is a pet matrix with A[R,C] as the upper right
submatrix, false otherwise

2 if ω(A[R,C]) > 1 then return false
3 if ω(A) = 0 then
4 for every i ∈ R and every j ∈ C do
5 Let Aul = A[R \ {i}, C] and Alr = A[R,C \ {j}]
6 if permTriangular(Aul) && permTriangular(Alr) then return true

7 return false
8 else
9 Let i and j be the row and column indices of the unique 1 in A[R,C]

10 Let Aul = A[R \ {i}, C] and Alr = A[R,C \ {j}]
11 return permTriangular(Aul) && permTriangular(Alr)

A detailed description is given in Algorithms 1, 2 and 3. We now turn to
evaluating the time complexity of this algorithm and we write T (n) for the time
complexity of calling permTriangular(A) for some (0, 1)-matrix A or order n.
We have

T (n) ≤
{

(n/2�)2
(

n
�n/2�

)2 (2T (�n/2�) + 1) + O(n3
√

n) if n is odd

2 (n/2�)2
(

n
�n/2�

)2
T (�n/2�) + O(n3

√
n) if n is even

with T (1) = O(1). The O(n3
√

n) term is the time complexity for lines 2
and 3 in Algorithm 1. We also observe that the worst case occurs when
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n = 2m − 1 as �n/2� , �n/4� , . . . are odd integers. Looking for an asymptotic
solution of the worst case, we thus write the following simplified recurrence:
T (2m) = 22m−2

(

2m

2m−1

)2 (

2T (2m−1) + 1
)

+ 27m/6, with T (1) = 1. Now, write

α(2m) = 22m−2
(

2m

2m−1

)2
. Clearly, α(2m) ≥ 27m/6, and hence we focus for now on

on the recurrence T (2m) = 2α(2m)
(

T (2m−1) + 1
)

. A convenient non-recursive
form of T (2m) is given in the following lemma.

Lemma 7. T (2m) =
(

2m
∏m

i=1 α(2i)
)

+
(

∑m
i=1 2m−i+1

∏m
j=i α(2j)

)

.

We now need the following lemma, in order to give an asymptotic solution
for T (n) in Proposition 1.

Lemma 8.
∑m

i=1 2m−i
∏m

j=i α(2j) = O
(

m 22
m+2+m+1

)

.

Proposition 1. Algorithm permTriangular runs in O
(

n 24n π− log(n)
)

time.

Proof. We have already observed that the worst case occurs for n = 2m − 1.
According to Lemma 8, we have T (2m) = O

(

22
m+2+m−3 π−m

)

and hence

T (n) = O
(

22
log(n)+2+log(n)−3 π− log(n)

)

= O
(

n 24n π− log(n)
)

. ��

5 Conclusion

We suggest further research directions regarding the hardness of recognizing pet
(0,1)-matrices. (i) What is the average running time of Algorithm permTriangular
for pet matrices? (ii) A graph labeling strongly related to symmetric pet (0,1)-
matrices can be defined as follows: Given a graph G = (V,E) or order n, decide
whether there exists a bijective mapping f : V → [n] such that f(u) + f(v) > n

for every edge {u, v} ∈ E (i.e., PAPT ≤ ). Investigating the relationships
between the two combinatorial problems is expected to yield fruitful results.
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and upper quota. This problem, which we call maximum weight many-to-
one matching with lower and upper quotas (wmlq), has applications to
the assignment of students to projects within university courses, where
there are constraints on the minimum and maximum numbers of stu-
dents that must be assigned to each project.

In this paper, we provide a comprehensive analysis of the complex-
ity of wmlq from the viewpoints of classic polynomial time algorithms,
fixed-parameter tractability, as well as approximability. We draw the
line between NP-hard and polynomially tractable instances in terms of
degree and quota constraints and provide efficient algorithms to solve
the tractable ones. We further show that the problem can be solved in
polynomial time for instances with bounded treewidth; however, the cor-
responding runtime is exponential in the treewidth with the maximum
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1 Introduction

Many university courses involve some element of team-based project work.
A set of projects is available for a course and each student submits a subset
of projects as acceptable. For each acceptable student–project pair (s, p), there
is a weight w(s, p) denoting the utility of assigning s to p. The question of
whether a given project can run is often contingent on the number of students
assigned to it. Such quota constraints also arise in various other contexts involv-
ing the centralized formation of groups, including organizing activity groups at
a leisure center, opening facilities to serve a community and coordinating rides
within car-sharing systems. In these and similar applications, the goal is to max-
imize the utility of the assigned agents under the assumption that the number
of participants for each open activity is within the activity’s prescribed limits.

We model this problem using a weighted bipartite graph G = (A ∪̇ P,E),
where the vertices in A represent applicants, while the vertices in P are posts
they are applying to. So in the above student–project allocation example, A and
P represent the students and projects respectively, and E represents the set of
acceptable student–project pairs. The edge weights capture the cardinal utilities
of an assigned applicant–post pair. Each post has a lower and an upper quota
on the number of applicants to be assigned to it, while each applicant can be
assigned to at most one post. In a feasible assignment, a post is either open
or closed : the number of applicants assigned to an open post must lie between
its lower and upper quota, whilst a closed post has no assigned applicant. The
objective is to find a maximum weight many-to-one matching satisfying all lower
and upper quotas. We denote this problem by wmlq.

In this paper, we study the computational complexity of wmlq from var-
ious perspectives: Firstly, in Sect. 2, we show that the problem can be solved
efficiently if the degree of every post is at most 2, whereas the problem becomes
hard as soon as posts with degree 3 are permitted, even when lower and upper
quotas are all equal to the degree and every applicant has a degree of 2. Further-
more, we show the tractability of the case of pair projects, i.e., when all upper
quotas are at most 2. Then, in Sect. 3, we study the fixed parameter tractability
of wmlq. To this end, we generalize the known dynamic program for maximum
independent set with bounded treewidth to wmlq. The running time of our
algorithm is exponential in the treewidth of the graph, with umax, the maximum
upper quota of any vertex, as the basis. This yields a fixed-parameter algorithm
when parameterizing by both the treewidth and umax. We show that this expo-
nential dependence on the treewidth cannot be completely separated from the
remaining input by establishing a W [1]-hardness result for wmlq parameterized
by treewidth. Finally, in Sect. 4, we discuss the approximability of the problem.
We show that a simple greedy algorithm yields an approximation guarantee of
umax+1 for wmlq and

√|A|+1 in the case of unit edge weights. We complement
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these results by showing that these approximation factors are asymptotically best
possible, unless P = NP.

Related work

Among various applications of centralized group formation, perhaps the assign-
ment of medical students to hospitals has received the most attention. In this
context, as well as others, the underlying model is a bipartite matching prob-
lem involving lower and upper quotas. The Hospitals/Residents problem with
Lower Quotas (hrlq) [4,12] is a variant of wmlq where applicants and posts
have ordinal preferences over one another, and we seek a stable matching of
residents to hospitals. Hamada et al. [12] considered a version of hrlq where
hospitals cannot be closed, whereas the model of Biró et al. [4] permitted hospi-
tal closures. Strategyproof mechanisms have also been studied in instances with
ordinal preferences and no hospital closure [11].

The Student/Project Allocation problem [19, Sect. 5.6] models the assignment
of students to projects offered by lecturers subject to upper and lower quota
restrictions on projects and lecturers. Several previous papers have considered
the case of ordinal preferences involving students and lecturers [1,14,20] but
without allowing lower quotas. However two recent papers [15,21] do permit
lower quotas together with project closures, both in the absence of lecturer pref-
erences. Monte and Tumennasan [21] considered the case where each student
finds every project acceptable, and showed how to modify the classical Serial
Dictatorship mechanism to find a Pareto optimal matching. Kamiyama [15] gen-
eralized this mechanism to the case where students need not find all projects
acceptable, and where there may be additional restrictions on the sets of stu-
dents that can be matched to certain projects. This paper also permits lower
quotas and project closures, but our focus is on cardinal utilities rather than
ordinal preferences.

The unit-weight version of wmlq is closely related to the D-matching prob-
lem [8,17,26], a variant of graph factor problems [24]. In an instance of the D-
matching problem, we are given a graph G, and a domain of integers is assigned
to each vertex. The goal is to find a subgraph G′ of G such that every vertex
has a degree in G′ that is contained in its domain. Lovász [16] showed that the
problem of deciding whether such a subgraph exists is NP-complete, even if each
domain is either {1} or {0, 3}. On the other hand, some cases are tractable.
For example, if for each domain D, the complement of D contains no consec-
utive integers, the problem is polynomially solvable [26]. As observed in [25],
D-matchings are closely related to extended global cardinality constraints and
the authors provide an analysis of the fixed-parameter tractability of a special
case of the D-matching problem; see Sect. 3 for details.

The problem that we study in this paper corresponds to an optimization
version of the D-matching problem. We consider the special case where G is
bipartite and the domain of each applicant vertex is {0, 1}, whilst the domain
of each post vertex p is {0} ∪ {�(p), . . . , u(p)}, where �(p) and u(p) denote the
lower and upper quotas of p respectively. Since the empty matching is always
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feasible in our case, our aim is to find a domain-compatible subgraph G′ such
that the total weight of the edges in G′ is maximum.

2 Degree- and Quota-restricted Cases

First, we provide a formal definition of the maximum weight many-to-one match-
ing problem with lower quotas (wmlq). Then, we characterize the complexity
of the problem in terms of degree constraints on the two vertex sets: applicants
and posts. At the end, we discuss the case of bounded upper quota constraints.

2.1 Problem Definition

In our problem, a set of applicants A and a set of posts P are given. A and P
constitute the two vertex sets of an undirected bipartite graph G = (V,E) with
V = A ∪̇ P . For a vertex v ∈ V we denote by δ(v) = {{v, w} ∈ E : w ∈ V } the
set of edges incident to v and by Γ (v) = {w ∈ V : {v, w} ∈ E} the neighborhood
of v, i.e., the set of vertices that are adjacent to v. For a subset of vertices
V ′ ⊂ V , we define δ(V ′) =

⋃
v∈V ′ δ(v). Each edge carries a weight w : E → R≥0,

representing the utility of the corresponding assignment. Each post is equipped
with a lower quota � : P → Z≥0 and an upper quota u : P → Z≥0 so that
�(p) ≤ u(p) for every p ∈ P . These functions bound the number of admissible
applicants for the post (independent of the weight of the corresponding edges).
Furthermore, every applicant can be assigned to at most one post. Thus, an
assignment is a subset M ⊆ E of the edges such that |δ(a) ∩ M | ≤ 1 for every
applicant a ∈ A and |δ(p) ∩ M | ∈ {0, �(p), �(p) + 1, ..., u(p)} for every p ∈ P .
A post is said to be open if the number of applicants assigned to it is greater
than 0, and closed otherwise. The size of an assignment M , denoted |M |, is the
number of assigned applicants, while the weight of M , denoted w(M), is the
total weight of the edges in M , i.e., w(M) =

∑
e∈M w(e). The goal is to find an

assignment of maximum weight.

Remark 1. Note that when not allowing closed posts, the problem immediately
becomes tractable. It is easy to see this in the unweighted case as any algorithm
for maximum flow with lower capacities can be used to determine an optimal
solution in polynomial time. This problem can be easily reduced to the classical
maximum flow problem. The method can be naturally extended to the weighted
case as the flow based linear program has integral extreme points due to its total
unimodularity property.

Problem 1. wmlq
Input: I = (G,w, �, u); a bipartite graph G = (A ∪̇ P,E) with edge weights w.
Task: Find an assignment of maximum weight.
If w = 1 for all e ∈ E, we refer to the problem as mlq.

Some trivial simplification of the instance can be executed right at start. If
u(p) > |Γ (p)| for a post p, then u(p) can be replaced by |Γ (p)|. On the other
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hand, if �(p) > |Γ (p)|, then post p can immediately be deleted, since no feasible
solution can satisfy the lower quota condition. Moreover, posts with �(p) = 1
behave identically to posts without a lower quota. From now on we assume that
the instances have already been simplified this way.

2.2 Degree-Restricted Cases

In this subsection, we will consider wmlq(i, j), a special case of wmlq, in which
we restrict us to instances in which every applicant submits at most i applications
and every post receives at most j applications. In order to establish our first
result, we reduce the maximum independent set problem (mis) to mlq. In mis, a
graph with n vertices and m edges is given and the task is to find an independent
vertex set of maximum size. mis is not approximable within a factor of n1−ε for
any ε > 0, unless P = NP [29]. The problem remains APX-complete even for
cubic (3-regular) graphs [2].

Theorem 1. mlq(2,3) is APX-complete.

Proof. First of all, mlq(2,3) is in APX because feasible solutions are of polyno-
mial size and the problem has a 4-approximation (see Theorem 7).

To each instance I of mis on cubic graphs we create an instance I ′ of mlq
such that there is an independent vertex set of size at least K in I if and only if I ′

admits an assignment of size at least 3K, yielding an approximation-preserving
reduction. The construction is as follows. To each of the n vertices of graph G
in I, a post with upper and lower quota of 3 is created. The m edges of G are
represented as m applicants in I ′. For each applicant a ∈ A, |Γ (a)| = 2 and Γ (a)
comprises the two posts representing the two end vertices of the corresponding
edge. Since we work on cubic graphs, |Γ (p)| = 3 for every post p ∈ P .

First we show that an independent vertex set of size K can be transformed
into an assignment of at least 3K applicants. All we need to do is to open a post
with its entire neighborhood assigned to it if and only if the vertex representing
that post is in the independent set. Since no two posts stand for adjacent vertices
in G, their neighborhoods do not intersect. Moreover, the assignment assigns
exactly three applicants to each of the K open posts.

To establish the opposite direction, let us assume that an assignment of
cardinality at least 3K is given. The posts’ upper and lower quota are both set
to 3, therefore, the assignment involves at least K open posts. No two of them
can represent adjacent vertices in G, because then the applicant standing for the
edge connecting them would be assigned to both posts at the same time.

The reduction given here is an L-reduction [23] with constants α = β = 3.
Since mlq(2,3) belongs to APX and mis is APX-complete in cubic graphs, it
follows that mlq(2,3) is APX-complete. 	


So far we have established that if |Γ (a)| ≤ 2 for every applicant a ∈ A and
|Γ (p)| ≤ 3 for every post p ∈ P , then mlq is NP-hard. In the following, we also
show that these restrictions are the tightest possible. If |Γ (p)| ≤ 2 for every post
p ∈ P , then a maximum weight matching can be found efficiently, regardless
of |Γ (a)|. Note that the case wmlq(1,∞) is trivially solvable.
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Theorem 2. wmlq(∞, 2) is solvable in O(n2 log n) time, where n = |A| + |P |.
Proof. After executing the simplification steps described after the problem def-
inition, we apply two more changes to derive our helper graph H. Firstly, if
�(p) = 0, u(p) = 2 and |Γ (p)| = 2, we separate p’s two edges, splitting p into
two posts with upper quota 1. After this step, all posts with u(p) = 2 also have
�(p) = 2. All remaining vertices are of upper quota 1. Then, we substitute all
edge pairs of posts with �(p) = u(p) = 2 with a single edge connecting the two
applicants. This edge will carry the weight equal to the sum of the weights of
the two deleted edges.

Clearly, any matching in H translates into an assignment of the same weight
in G and vice versa. Finding a maximum weight matching in a general graph
with n vertices and m edges can be done in O(n(m + n log n)) time [10], which
reduces to O(n2 log n) in our case.

2.3 Quota-Restricted Cases

In this section, we address the problem of wmlq with bounded upper quotas.
Note that Theorem 1 already tells us that the case of u(p) ≤ 3 for all posts p ∈ P
is NP-hard to solve. We will now settle the complexity of the only remaining
case, where we have instances with every post p ∈ P having an arbitrary degree
and u(p) ≤ 2. This setting models posts that need to be assigned to pairs of
applicants.

The problem is connected to various known problems in graph theory, one of
them being the S-path packing problem. In that problem, we are given a graph
with a set of terminal vertices S. The task is to pack the highest number of
vertex-disjoint paths so that each path starts and ends at a terminal vertex, while
all its inner vertices are non-terminal. The problem can be solved in O(n2.38)
time [7,27] with the help of matroid matching [18]. An instance of mlq with
�(p) = u(p) = 2 for every post p ∈ P corresponds to an S-path packing instance
with S = A. The highest number of vertex-disjoint paths starting and ending
in A equals half of the cardinality of a maximum assignment. Thus, mlq with
�(p) = u(p) = 2 can also be solved in O(n2.38) time. On the other hand, there
is no straightforward way to model posts with u(p) = 1 in S-path packing and
introducing weights to the instances also seems to be a challenging task. Some
progress has been made for weighted edge-disjoint paths, but to the best of our
knowledge the question is unsettled for vertex-disjoint paths [13].

In the full version of the paper [3] we present a solution for the general case
wmlq with u(p) ≤ 2. Our algorithm is based on f -factors of graphs [9].

Theorem 3. wmlq with u(p) ≤ 2 for every p ∈ P can be solved in O(nm +
n2 log n) time, where n = |V | and m = |E|.

3 Bounded treewidth graphs

In this section, we investigate wmlq from the point of view of fixed-parameter
tractability and analyze how efficiently the problem can be solved for instances
with a bounded treewidth.
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Fixed-parameter tractability. This field of complexity theory is motivated by the
fact that in many applications of optimization problems certain input parameters
stay small even for large instances. A problem, parameterized by a parameter
k, is fixed-parameter tractable (FPT) if there is an algorithm solving it in time
f(k) · φ(n), where f : R → R is a function, φ is a polynomial function, and n is
the input size of the instance. Note that this definition not only requires that the
problem can be solved in polynomial time for instances where k is bounded by a
constant, but also that the dependence of the running time on k is separable from
the part depending on the input size. On the other hand, if a problem is shown
to be W[1] − hard, then the latter property can only be fulfilled if FPT = W[1],
which would imply NP ⊆ DTIME(2o(n)). For more details on fixed-parameter
algorithms see, e.g., [22].

Treewidth. In case of wmlq we focus on the parameter treewidth, which, on an
intuitive level, describes the likeness of a graph to a tree. A tree decomposition of
graph G consists of a tree whose nodes—also called bags—are subsets of V (G).
These must satisfy the following three requirements.

1. Every vertex of G belongs to at least one bag of the tree.
2. For every edge {a, p} ∈ E(G), there is a bag containing both a and p.
3. If a vertex in V (G) occurs in two bags of the tree, then it also occurs in all

bags on the unique path connecting them.

The width of a tree decomposition with a set of bags B is maxb∈B |b| − 1. The
treewidth of a graph G, tw(G), is the smallest width among all tree decomposi-
tions of G. It is well known that a tree decomposition of smallest width can be
found by a fixed-parameter algorithm when parameterized by tw(G) [5].

In the following, we show that wmlq is fixed-parameter tractable when para-
meterized simultaneously by the treewidth and umax, whereas it remains W [1]-
hard when only parameterized by the treewidth. A similar study of the fixed-
parameter tractability of the related extended global cardinality constraint prob-
lem (egcc) was conducted in [25]. egcc corresponds to the special case of the
D-matching problem where the graph is bipartite and on one side of the bipar-
tition all vertices have the domain {1}. Differently from wmlq, egcc is a feasi-
bility problem (note that the feasibility version of wmlq is trivial, as the empty
assignment is always feasible). The authors of [25] provide a fixed-parameter
algorithm for egcc when parameterized simultaneously by the treewidth of the
graph and the maximum domain size, and they show that the problem is W[1]-
hard when only parameterized by the treewidth. These results mirror our results
for wmlq, and indeed both our FPT-algorithm for wmlq and the one in [25]
are extensions of the same classic dynamic program for the underlying maxi-
mum independent set problem. However, our hardness result uses a completely
different reduction than the one in [25]. The latter makes heavy use of the fact
that the domains can be arbitrary sets, whereas in wmlq, we are confined to
intervals.
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Theorem 4. wmlq can be solved in time O(T +(umax)3 tw(G)|E|), where T is the
time needed for computing a tree decomposition of G. In particular, wmlq can be
solved in polynomial time when restricted to instances of bounded treewidth, and
wmlq parameterized by max{tw(G), umax} is fixed-parameter tractable.

The algorithmic proof of Theorem 4 can be found in the full version of the
paper [3]. While our algorithm runs in polynomial time for bounded treewidth,
the degree of the polynomial depends on the treewidth the algorithm only
becomes a fixed-parameter algorithm when parameterizing by treewidth and
umax simultaneously. We will now show by a reduction from Minimum Maxi-
mum Outdegree that this dependence is necessary under the assumption that
FPT �= W[1].

Problem 2. Minimum Maximum Outdegree
Input: A graph G = (V,E), edge weights w : E → Z+ encoded in unary, a
degree-bound r ∈ Z+.
Task: Find an orientation D of G such that

∑
e∈δ+

D(v) w(e) ≤ r for all v ∈ V ,
where δ+D(v) stands for the set of edges oriented so that their tail is v.

Theorem 5 (Theorem 5 from [28]). Minimum Maximum Outdegree is
W [1]-hard when parameterized by treewidth.

Theorem 6. mlq is W[1]-hard when parameterized by treewidth, even when
restricted to instances where �(p) ∈ {0, u(p)} for every p ∈ P .

Proof. Given an instance (G = (V,E), w, r) of Minimum Maximum Outde-
gree, we construct an instance (G′ = (A ∪̇ P,E′), �, u) of mlq as follows. For
every vertex v ∈ V we introduce a post pv ∈ P and let �(pv) = 0 and u(pv) = r.
Furthermore, for every edge e = {v, v′} ∈ E, we introduce two posts pe,v and
pe,v′ with �(pe,v) = �(pe,v′) = u(pe,v) = u(pe,v′) = w(e) + 1, and 2w(e) + 1
applicants a1

e,v, . . . , a
w(e)
e,v , a1

e,v′ , . . . , a
w(e)
e,v′ , ze, for which we introduce the edges

{pv, ai
e,v}, {ai

e,v, pe,v}, {pv′ , ai
e,v′}, and {ai

e,v′ , pe,v′} for i ∈ {1, . . . , w(e)} as well
as {pe,v, ze} and {ze, pe,v′}.

We show that the constructed instance has a solution serving all applicants
if and only if the Minimum Maximum Outdegree instance has an orientation
respecting the bound on the outdegree.

First assume there is an orientation D of G with maximum outdegree at
most r. Then consider the assignment that assigns for every oriented edge
(v, v′) ∈ D the w(e) applicants ai

e,v to pv and the w(e) + 1 applicants ai
e,v′

and ze to pe,v′ . As the weighted outdegree of vertex v is at most r, every post
pv gets assigned at most r = u(pv) applicants.

Now assume M is a feasible assignment of applicants to posts serving every
applicant. In particular, for every edge e = {v, v′} ∈ E, applicant ze is assigned
to either pe,v or pe,v′ and exactly one of these two posts is open because the
lower bound of w(e) + 1 can only be met if ze is assigned to the respective post.
If pe,v is open then all w(e) applicants ai

e,v′ are assigned to pv′ and none of the
applicants ai

e,v is assigned to pv, and vice versa if pe,v′ is open. Consider the
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orientation obtained by orienting every edge e from v to v′ if and only if pe,v is
open. By the above observations, the weighted outdegree of vertex v corresponds
to the number of applicants assigned to post pv, which is at most r.

Finally, note that G′ can be constructed in time polynomial in the input size
of the Minimum Maximum Outdegree instance as the weights are encoded
in unary there. Furthermore, the treewidth of G′ is at most max{tw(G), 3}. To
see this, start with a tree decomposition of G and identify each vertex v ∈ V
with the corresponding post pv. For every edge e = {v, v′} ∈ E, there is a bag
B with pv, p′

v ∈ B. We add the new bag Be = {pv, p′
v, pe,v, pe,v′} as a child

to B. We further add the bags Bze
= {pe,v, pe,v′ , ze}, Bai

e,v
= {pv, pe,v, ai

e,v} and
Bai

e,v′ = {pv′ , pe,v′ , ai
e,v} for i ∈ {1, . . . , w(e)} as children to Be. Observe that the

tree of bags generated by this construction is a tree decomposition. Furthermore,
since we did not increase the size of any of the existing bags and added only bags
of size at most 4 the treewidth of G′ is at most max{tw(G), 3}. 	


4 Approximation

Having established the hardness of wmlq even for very restricted instances in
Theorem 1, we turn our attention towards approximability. In this section, we
give an approximation algorithm and corresponding inapproximability bounds
expressed in terms of |A|, |P | and upper quotas in the graph.

The method, which is formally listed in Algorithm 1, is a simple greedy
algorithm. We say a post p is admissible if it is not yet open and |Γ (p)| ≥ �(p).
The algorithm iteratively opens an admissible post maximizing the assignable
weight, i.e., it finds a post p′ ∈ P and a set A′ of applicants in its neighborhood
Γ (p′) with �(p′) ≤ |A′| ≤ u(p′) such that

∑
a∈A′ w(a, p′) is maximized among all

such pairs. It then removes the assigned applicants from the graph (potentially
rendering some posts inadmissible) and re-iterates until no admissible post is left.

Algorithm 1. Greedy algorithm for wmlq

Initialize P0 = {p ∈ P : |Γ (p)| ≥ �(p)}.
Initialize A0 = A.
while P0 �= ∅ do

Find a pair p′ ∈ P0 and A′ ⊆ Γ (p′) with |A′| ≤ u(p′) such that
∑

a∈A′ w(a, p′) is
maximized among all such pairs.
Open p′ and assign all applicants in A′ to it.
Remove p′ from P0 and remove the elements of A′ from A0.
for p ∈ P0 with �(p) > |Γ (p) ∩ A0| do

Remove p from P0.
end for

end while

In the full version of the paper [3] we give a tight analysis of the algorithm,
establishing approximation guarantees in terms of the number of posts |P |, num-
ber of applicants |A|, and the maximum upper quota umax := maxp∈P u(p) over
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all posts. We also provide two examples that show that our analysis of the greedy
algorithm is tight for each of the described approximation factors. We further
show there that the approximation ratios given above for wmlq are almost tight
from the point of view of complexity theory.

We point out a reduction from wmlq to the set packing problem here. The
elements in the universe of the set packing problem would be A ∪ P . For each
post p and for each subset S ⊂ Γ (p), such that l(p) ≤ |S| ≤ u(p), we create
a set S ∪ {p} for the set packing instance. However, if the difference between
upper and lower quota is not bounded, this would create an exponential sized
input for the set packing problem and we could only employ an oracle based
algorithm known for set packing problem to solve wmlq. The greedy algorithm
known for set packing problem [6] can be made to work in a fashion similar to
the algorithm presented above.

Theorem 7. Algorithm 1 is an α-approximation algorithm for wmlq with α =
min{|P |, |A|, umax + 1}. Furthermore, for mlq, Algorithm 1 is a

√|A| + 1-
approximation algorithm. It can be implemented to run in time O(|E| log |E|).

Theorem 8. mlq is not approximable within a factor of |P |1−ε or
√|A|1−ε

or u1−ε
max for any ε > 0, unless P = NP, even when restricting to instances where

�(p) = u(p) for every p ∈ P and |Γ (a)| ≤ 2 for every a ∈ A.
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Abstract. In this paper, we study an interval coverage problem. We
are given n intervals of the same length on a line L and a line segment
B on L. Each interval has a nonnegative weight. The goal is to move
the intervals along L such that every point of B is covered by at least
one interval and the maximum moving cost of all intervals is minimized,
where the moving cost of each interval is its moving distance times its
weight. Algorithms for the “unweighted” version of this problem have
been given before. In this paper, we present a first-known algorithm for
this weighted version and our algorithm runs in O(n2 log n log log n) time.
The problem has applications in mobile sensor barrier coverage.

1 Introduction

In this paper, we consider an interval coverage problem, which has applications
in mobile sensor barrier coverage in wireless sensor networks. For convenience,
we introduce and discuss the problem from the barrier coverage point of view.

Let L be a line, say, the x-axis. Let B be a line segment on L, called a
barrier. Denote by β the length of B. Without loss of generality, we assume B
is the interval [0, β] on L. Let S = {s1, s2, . . . , sn} be a set of n sensors and each
sensor si is a point on L with coordinate xi. Each sensor si has a weight wi ≥ 0.
All sensors have the same sensing range r. Namely, if a sensor is currently at
a location x′ on L, then all points of L in the interval [x′ − r, x′ + r] is said to
be covered by the sensor and the interval is called the covering interval of the
sensor. The problem is to move each sensor si of S to a new location yi on L
such that every point of B is covered by at least one sensor of S and the value
max1≤i≤n wi · |xi−yi| is minimized. For each sensor si, wi · |xi−yi| is the moving
cost of si. We call the problem the weighted barrier coverage, denoted by WBC.
We assume r · n ≥ β since otherwise a coverage of B would not be possible.

If all sensors have the same weight, then we refer to it as the “unweighted”
version. An O(n log n) time algorithm has been given for the unweighted version
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by Chen et al. [5]. For the weighted version, to the best of our knowledge, we
are not aware of any previous work. In this paper, we present an algorithm for
the weighted version and our algorithm runs in O(n2 log n log log n) time.

Related Work. Mobile Sensor Networks (MSNs) consist of a number of mobile
wireless sensors, which have limited battery power and may have different energy
dissipation ratio (characterized by the weights). The advantage of allowing the
sensors to be mobile increases monitoring capability compared to those for which
static wireless sensors are used. One of the most important applications in MSNs
is to monitor a barrier to detect intruders in an attempt to cross a specific region.

If the sensors of S have different sensing ranges, we call the problem the “non-
uniform case” (otherwise it is the “uniform case”). For the unweighted uniform
case, Czyzowicz et al. [8] first gave an O(n2) time algorithm, and later, Chen
et al. [5] solved the problem in O(n log n) time. For the unweighted non-uniform
case, Chen et al. [5] presented an O(n2 log n) time algorithm.

The min-sum unweighted version of the problem has also been studied, where
the objective is to minimize the sum of the moving distances of all sensors. The
non-uniform case of the problem is NP-hard [9]. For the uniform case, Czyzowicz
et al. [9] gave an O(n2) time algorithm, and recently, Andrews and Wang [1]
proposed an O(n log n) time solution. Another variation of the problem is the
min-num version, where the goal is to move the minimum number of sensors to
form a barrier coverage. Mehrandish et al. [12,13] proved the problem is NP-hard
if sensors have different ranges and gave polynomial time algorithms otherwise.

Some problems on static sensors have also been considered. For example,
Bar-Noy and Baumer [2] studied a problem of maximizing the lifetime of a
network with static sensors, where the goal is to schedule the active time of
sensors in a network so that the lifetime is maximized. A similar problem was
considered in [3]. Fan et al. [10] studied a problem that aims to set an energy
for each sensor to form a coverage such that the cost of all sensors is minimized.

Our Techniques. The unweighted uniform case of WBC is much easier due to an
order preserving property [5,8]: There always exists an optimal solution in which
the order of the sensors is the same as that in the input. However, the property
no longer holds for the unweighted non-uniform case [5]. We can easily show that
for the weighted version, the property does not hold even for the uniform case.
This is one main difficulty for solving our problem WBC.

To solve the problem, we generalize the techniques in [5] for the unweighted
non-uniform case. Specifically, let λ∗ denote the maximum moving cost in an
optimal solution of WBC. We first solve a decision problem in O(n log n) time
to determine whether λ ≥ λ∗ for any given value λ. If λ ≥ λ∗, then our decision
algorithm will find a “feasible solution” in which the order of the sensors will
be determined. Further, with O(n2) time preprocessing, we can solve the deci-
sion problem in O(n log log n) time for any λ (the log log n factor is due to the
van Emde Boas Tree [7]). For solving our original problem WBC (referred to
as the optimization problem for differentiation from the decision problem), we
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use an approach similar in spirit to parametric search [6,11]. Namely, our opti-
mization algorithm tries to “parameterize” the decision algorithm. Although we
do not know the value λ∗, we will simulate the behavior of the decision algo-
rithm on λ = λ∗, i.e., we determine the same order of the sensors as it would
be obtained by the decision algorithm on λ = λ∗. To this end, our algorithm
maintains an interval (λ1, λ2] that contains λ∗ and each step of the algorithm
will shrink the interval by calling the decision algorithm on certain values λ.
Unlike the traditional parametric search [6,11], our approach does not involve
any parallel scheme and is actually quite practical.

The rest of the paper is organized as follows. In Sect. 2, we introduce some
notation. In Sect. 3, we present our algorithm for the decision problem. Section 4
solves the optimization problem. Due to the space limit, some proofs are omitted
but can be found in the full version of the paper.

2 Preliminaries

For ease of exposition, we assume the weight of each sensor of S is positive. We
follow some terminologies in the previous work [5].

We use a configuration to refer to a specification on where each sensor si ∈ S
is located. For example, in the input configuration, each si is at xi. We use CI to
denote the input configuration. Note that we can determine whether λ∗ = 0 by
checking whether the union of the covering intervals of all sensors in CI contains
B, which can be easily done in O(n) time. If λ∗ = 0, we do not need to move
any sensor. Henceforth, we assume λ∗ > 0.

For any sensor si, we use I(si) to denote its covering interval. For any subset
S′ of sensors, with a little abuse of notation, we use I(S′) to denote the union
of the covering intervals of all sensors in S′. For each sensor si, we call the left
(resp., right) endpoint of I(si) the left (resp., right) extension of si.

For convenience, for any point x on L, we also use x to denote its coordinate
on L, and vice versa. For any point x on L, let p+(x) denote a point x′ ∈ L such
that x′ > x and x′ is infinitesimally close to x. Note that our algorithm never
needs to find such a point p+(x) and we use p+(x) only for explaining our idea.

3 The Decision Problem

In this section, we consider the decision problem: given any value λ > 0, deter-
mine whether λ ≥ λ∗.

We present an O(n log n) time algorithm that solves the decision problem.
We call this algorithm the decision algorithm. Given any value λ, if λ ≥ λ∗, then
we say that λ is a feasible value and our decision algorithm will find a feasible
solution in which B is covered and the moving cost of each sensor is at most λ.

Consider any value λ > 0. For any sensor si ∈ S, λ/wi is the maximum
distance si is allowed to move on L. Let ai = xi−r−λ/wi and bi = xi+r+λ/wi.
Note that ai is the leftmost point and bi is the rightmost point on L that can
be covered by si with respect to λ. We call ai (resp., bi) the leftmost (resp.,
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rightmost) λ-coverable point of si. Let xl
i = ai + r and xr

i = bi − r. Namely, xl
i

(resp., xr
i ) is the leftmost (resp., rightmost) location that si is allowed to move,

and we call it the leftmost (resp., rightmost) λ-reachable location of si.
In the following, in Sect. 3.1 we describe the algorithm while leaving the

implementation details in Sect. 3.2. The correctness proof of the algorithm is
omitted. The high-level scheme of our decision algorithm is similar to that for
the unweighted non-uniform case in [5], but the low-level details are different.

3.1 The Algorithm Description

In the beginning, we move each sensor si to its rightmost λ-reachable location
xr
i . Let C0 denote the resulting configuration. In C0, for each sensor si, it is not

allowed to move rightwards but can move leftwards by distance 2λ/wi.
If λ ≥ λ∗, our algorithm will compute a subset Sc of sensors with their new

locations such that B is covered by these sensors (i.e., B ⊆ I(Sc)) and the
moving cost of each sensor of Sc is at most λ. For each sensor si ∈ S \ Sc, it
can be anywhere in [xl

i, x
r
i ], but in our solution it is at xr

i (i.e., it does not move
from its location in C0). We call Sc a solution subset.

Consider a general step i with i ≥ 1. Let Ci−1 be the configuration right
before the i-th step. Our algorithm maintains the following invariants. (1) We
have a subset of sensors Si−1 = {sg(1), sg(2), . . . , sg(i−1)}, where for each 1 ≤
j ≤ i − 1, g(j) is the index of the sensor sg(j) in S. Let Si−1 = ∅ for i = 1. (2)
In Ci−1, for each sensor sk of S, if sk is in Si−1, then sk is at a new location
yk ∈ [xl

i, x
r
i ]; otherwise, it is still at xr

k. (3) B ∩ I(Si−1), i.e., the intersection
of B and the union of the covering intervals of all sensors of Si−1 in Ci−1, is
an interval [0, Ri−1] for some value 0 ≤ Ri−1 < β. This means that the point
p+(Ri−1) is not covered by any sensor in Si−1. Let R0 = 0.

Initially when i = 1, we have Si−1 = ∅ and R0 = 0, and thus all algorithm
invariants hold for C0. The i-th step of the algorithm will find a new sensor
sg(i) ∈ S \ Si−1 and move it to a new location yg(i) ∈ [xl

g(i), x
r
g(i)] (and thus

obtain a new configuration Ci). Let Ri = yg(i) + r and Si = Si−1 ∪ {sg(i)}. We
will show that B ∩ I(Si) = [0, Ri]. If Ri ≥ L, then we have found a feasible

x
Ri−1

x
Ri−1

sg(i)

Fig. 1. Illustrating the two sets Si1 (left) and Si2 (right). The segments are the covering
intervals of sensors. The thick segments correspond to the sensors in Si1 (left) and Si2

(right). The four black points in the right figure are the leftmost λ-coverable points of
the four sensors to the right of Ri−1. The sensor sg(i) of Si2 is labeled (any sensor in
Si1 can be sg(i)).
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solution with Si as our solution subset. Otherwise, we proceed on the next step
i + 1 and all algorithm invariants are maintained. We give the details of the i-th
step below. Note that the discussions are on the configuration Ci−1.

Since the interval [0, Ri−1] is currently covered by the sensors of Si−1, we
need to find sensors in S \ Si−1 to cover the rest of the barrier, i.e., [Ri−1, β].

Define Si1 to be the set of sensors that cover the point p+(Ri−1) in Ci−1,
i.e., Si1 = {sk | xr

k − r ≤ Ri−1 < xr
k + r}. According to the algorithm invariants,

no sensor in Si−1 covers p+(Ri−1). Thus, it holds that Si1 ⊆ S \ Si−1.
If Si1 	= ∅, then we choose an arbitrary sensor Si1 as sg(i)

1 (e.g., see Fig. 1)
and let yg(i) = xr

g(i). We let Ri = yg(i) + r and Ci = Ci−1 (i.e., Ci is the same as
Ci−1 since sg(i) is not moved in this case).

If Si1 = ∅, then define Si2 as the set of sensors of S whose leftmost λ-coverable
points are to the left of (or at) Ri−1 and whose left extensions are strictly to the
right of Ri−1, i.e., Si2 = {sk | ak ≤ Ri−1 < xr

k − r}. Hence, for each sk ∈ Si2,
sk currently in Ci−1 does not cover p+(Rj−1) but we can move sk leftwards for
a distance at most 2λ/wk to cover it.

If Si2 	= ∅, then we choose the leftmost sensor of Si2 as sg(i) (e.g., see Fig. 1),
and let yg(i) = Ri−1 + r. We move sg(i) to yg(i) to obtain the configuration Ci

(where the right extension of sg(i−1) colocates with the left extension of sg(i)).
If Si2 = ∅, then we conclude that λ < λ∗ and terminate the algorithm.
Hence, if Si1 = Si2 = ∅, the algorithm will stop and report λ < λ∗. Otherwise,

a sensor sg(i) is found from either Si1 or Si2, and it is moved to yg(i). In either
case, according to our discussion, Ri = yg(i) + r and [0, Ri] = I(Si) in Ci (recall
that Si = Si−1 ∪{sg(i)}). If Ri ≥ β, then we terminate the algorithm and report
λ ≥ λ∗ and Ci as a feasible solution; otherwise, we proceed on the next step i+1
and all algorithm invariants have been maintained.

As there are n sensors in S, the algorithm will finish in at most n steps.

3.2 The Algorithm Implementation

We first give an implementation for our algorithm that runs in O(n log n) time.
Later we will improve the implementation with certain preprocessing.

We first move each sensor si to xr
i to obtain the initial configuration C0.

Then, we sort the 2n extensions of all sensors in C0 from left to right. During
the algorithm, in each i-th step, we need to maintain the set Si1. To this end,
we sweep a point p on the line L from left to right. During the sweeping, when p
encounters the left extension of a sensor, we insert the sensor into Si1, and when
p encounters the right extension of a sensor, we delete it from Si1. In this way,
in each i-th step, when p is at Ri−1, the set Si1 is available.

If Si1 	= ∅, then we arbitrarily pick a sensor in Si1 as sg(i). To store the set
Si1, since all sensor covering intervals have the same length, an easy observation
is that the earlier a sensor is inserted into Si1, the earlier it is deleted from Si1.
Therefore, we can simply use a first-in-first-out queue to store all sensors of Si1

1 It might be more natural to pick the rightmost sensor of Si1 as sg(i). In fact, an
arbitrary one is sufficient.
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such that each insertion and deletion can be done in constant time. To pick an
arbitrary sensor in Si1, we can always pick the sensor in the front of the queue.

If Si1 = ∅, then we need to determine whether Si2 = ∅. If yes, we terminate
the algorithm and report λ < λ∗. Otherwise, we need to find the leftmost sensor
of Si2 as sg(i). We assume that the sweeping point p is now at Ri−1. To maintain
the set Si2 during the sweeping of p, we do the following.

In the beginning we sort the n leftmost λ-coverable points of all sensors of S
along with the 2n extensions of all sensors in C0. During the sweeping of p, if p
encounters a leftmost λ-coverable point of some sensor sk, then we insert sk to
Si2. Further, if p encounters a left extension of some sensor sk, then we delete
sk from Si2 (recall that this is also the moment we should insert sk to Si1).

In this way, when p is at Ri−1, Si2 is available. Since we need to find the
leftmost sensor in Si2, we use a balanced binary search tree T to store all sensors
of Si2 where the “key” of each sensor sk is the value xr

k (which is its location in
Ci−1). Clearly, T can support each of the following operations on Si2 in O(log n)
time: inserting a sensor, deleting a sensor, finding the leftmost sensor.

After sg(i) is found, Ri can be computed immediately as discussed in the
algorithm description. If sg(i) is from Si1, then we do not need to actually move
sg(i). We proceed to sweep p as usual. If sg(i) is from Si2, we need to move sg(i)
leftwards to yg(i) = Ri−1 + r. Since sg(i) is moved, we should also update the
original sorted list of the 2n extensions of all sensors in C0 to guide the future
sweeping of p. We use the following approach to avoid the explicit update. We
maintain a flag table for all sensor extensions in C0. Initially, every table entry
is valid. If sg(i) is moved, then we set the table entries of the two extensions of
the sensor invalid, which can be done in constant time. Due to this extra table,
during the sweeping of p, when p encounters a sensor extension, we first check
the table to see whether the extension is still valid. If yes, then we proceed as
usual; otherwise we ignore the event. This only cost an extra constant time at
each event. In addition, after we proceed to sweep p from Ri−1, before processing
the next event, we always check whether it is before p arrives at Ri (which is
actually the right extension of sg(i)). If yes, we proceed as usual; otherwise, we
should process the event at Ri (i.e., determine the next sensor sg(i+1)).

Hence, during the sweeping of p, each event can be handled in O(log n) time
and each i-th step of the algorithm can be performed in O(log n) time. Since
there are O(n) events, the total running time of the algorithm is O(n log n).

Note that the space of the algorithm is O(n).

Theorem 1. Given any value λ, we can determine whether λ ≥ λ∗ in O(n log n)
time and O(n) space.

Our algorithm in Sect. 4 will call our decision algorithm many times, for which
we have the following alternative result by improving the above implementation
with certain preprocessing. The proof for Corrollary 1 is omitted.

Corollary 1. With O(n2) time and O(n2) space preprocessing, we can deter-
mine whether λ ≥ λ∗ in O(n log log n) time for any given λ.
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4 The Optimization Problem

In this section, we give an O(n2 log n log log n) time algorithm for solving the
optimization problem. The goal is to compute λ∗, after which we can obtain an
optimal solution by applying the decision algorithm on λ = λ∗.

The high-level scheme of our algorithm is different from that for the
unweighted non-uniform case in [5] because the algorithmic scheme in [5] relies
on another decision algorithm that can determine whether λ∗ = λ for any given
λ while our algorithmic scheme does not need such a decision algorithm. The
details of our algorithm are even more different from those in [5].

We assume that the preprocessing in Corollary 1 has been done. Unless oth-
erwise stated, we always use Corollary 1 to implement our decision algorithm.

4.1 An Overview

As discussed before, a main difficulty is that we do not know the order of the
sensors that cover B in an optimal solution. If we knew λ∗, then we could run
our decision algorithm on λ = λ∗ to obtain an optimal solution in which the
order of the sensors is also determined. We use an idea similar to the parametric
search [6,11]. We “parameterize” our decision algorithm with λ as a parameter.
Although we do not know the value λ∗, we execute the decision algorithm in such
a way that it will determine the same solution subset of sensors sg(1), sg(2), . . . in
the same order as would be obtained if we ran the decision algorithm on λ = λ∗.
To this end, we will use our decision algorithm to prune certain λ values.

Recall that for any value λ, step i of our decision algorithm determines the
sensor sg(i) and obtains the set Si = {sg(1), sg(2), . . . , sg(i)} with I(Si) ∩ B =
[0, Ri] in the configuration Ci. In our following algorithm, we often consider λ
as a variable rather than a fixed value. Thus, we will use Si(λ) (resp., Ri(λ),
sg(i)(λ), Ci(λ), xr

i (λ)) to refer to the corresponding Si (resp., Ri, sg(i), Ci, xr
i ).

Our algorithm has at most n+1 steps. Consider a general i-th step for i ≥ 1.
Right before the step, we have an interval (λ1

i−1, λ
2
i−1] and a sensor set Si−1(λ),

such that the following algorithm invariants hold.

1. λ∗ ∈ (λ1
i−1, λ

2
i−1], i.e., λ∗ is either equal to λ2

i−1 or in (λ1
i−1, λ

2
i−1).

2. The set Si−1(λ) is the same for all values λ ∈ (λ1
i−1, λ

2
i−1). If λ∗ 	= λ2

i−1, then
Si−1(λ) has the same sensors as Si−1(λ∗) with the same order.

3. Ri−1(λ) on λ ∈ (λ1
i−1, λ

2
i−1) is a nondecreasing linear function and it has been

explicitly computed.
4. Ri−1(λ) < β for any λ ∈ (λ1

i−1, λ
2
i−1).

Initially when i = 1, we let λ1
0 = −∞ and λ2

0 = ∞. Since S0(λ) = ∅ and
R0(λ) = 0 for any λ, all invariants hold for i = 1.

The i-th step will either compute λ∗, or obtain a new interval (λ1
i , λ

2
i ] ⊆

(λ1
i−1, λ

2
i−1] and a sensor sg(i)(λ) with Si(λ) = Si−1(λ) ∪ {sg(i)(λ)} such that all

algorithm invariants hold on Si(λ) and (λ1
i , λ

2
i ]. We will show that the i-th step

runs in O(n log n log log n) time. The details of the i-th step are given below.
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4.2 A General i-th Step

We assume λ∗ 	= λ2
i−1 and thus λ∗ is in (λ1

i−1, λ
2
i−1). In fact, our following

algorithm does not reply on this assumption, but only uses the set Si−1(λ), the
interval (λ1

i−1, λ
2
i−1), and the function Ri−1(λ), which are all known. But we

make the assumption only for explaining the rationale of our approach.
Since λ∗ ∈ (λ1

i−1, λ
2
i−1), by our algorithm invariants, for any λ ∈ (λ1

i−1, λ
2
i−1),

Si−1(λ) has the same sensors as Si−1(λ∗) with the same order. We simulate the
decision algorithm on λ = λ∗. In order to determine the sensor sg(i)(λ∗), we first
compute Si1(λ∗), i.e., the set of sensors covering the point p+(Ri−1(λ∗)) in the
configuration Ci−1(λ∗), as follows.

Consider any sensor sk in S\Si−1(λ). Its position in the configuration Ci−1(λ)
is xr

k(λ) = xk + λ/wk, which is an increasing function of λ. Thus, both the left
and the right extensions of sk in Ci−1(λ) are increasing linear functions of λ. By
our algorithm invariants, Ri−1(λ) is a nondecreasing linear function. Suppose
f(λ) is the left or right extension of sk in Ci−1(λ). Unless the slope of Ri−1(λ)
is 1/wk, there is at most one value λ in (λ1

i−1, λ
2
i−1) such that Ri−1(λ) = f(λ).

Let S′ be the set of sensors sk of S \ Si−1(λ) such that 1/wk is not equal to the
slope of Ri−1(λ). We compute the set Si1(λ∗) as follows.

Suppose we increases λ from λ1
i−1 to λ2

i−1. During the increasing of λ, we say
that an “event” happens if Ri−1(λ) is equal to the left or right extension value of
a sensor sk ∈ S′ at the current value of λ (called event value). It is not difficult
to see that during the increasing of λ, the set Si1(λ) is fixed between any two
adjacent events. In order to compute Si1(λ∗), we first compute all event values,
which can be done in linear time by using the function Ri−1(λ) and all left and
right extension functions of the sensors in S′. Let Λ denote the set of all event
values. In addition, we add λ1

i−1 and λ2
i−1 to Λ. Next we sort all values in Λ.

Then, by using our decision algorithm, we do binary search on the sorted list of
Λ to find two adjacent values λ1 and λ2 in the sorted list such that λ∗ ∈ (λ1, λ2].
Note that (λ1, λ2] ⊆ (λ1

i−1, λ
2
i−1]. Since |Λ| = O(n), the binary search calls our

decision algorithm O(log n) times, which takes O(n log n log log n) time in total.
We make another assumption that λ∗ 	= λ2. Again, this assumption is only

for explaining the rationale of our approach, and the following algorithm does
not rely on this assumption. Under the assumption, for any λ in (λ1, λ2), the
set Si1(λ) is exactly Si1(λ∗). Hence, we can compute Si1(λ∗) by taking any
λ ∈ (λ1, λ2) and explicitly computing Si1(λ), which can be done in O(n) time.

The above has computed Si1(λ∗) in O(n log n log log n) time (provided that
our previous two assumptions are true). According to our decision algorithm,
depending on whether Si1(λ∗) = ∅, there are two cases.

If Si1(λ∗) 	= ∅, we take any sensor of Si1(λ∗) as sg(i)(λ∗). Let λ1
i = λ1,

λ2
i = λ2, and Si(λ) = Si−1(λ)∪{sg(i)(λ∗)}. We will show later that all algorithm

invariants hold on Si(λ) and (λ1
i , λ

2
i ] (further processing may be needed).

If Si1(λ∗) = ∅, then according to our decision algorithm, we need to com-
pute the set Si2(λ∗), i.e., the set of sensors of S whose leftmost λ-coverable
points are to the left of (or at) Ri−1(λ∗) and whose left extensions are strictly
to the right of Ri−1(λ∗). Under our previous two assumptions, we have λ∗ ∈
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(λ1, λ2) ⊆ (λ1
i−1, λ

2
i−1). By our algorithm invariants, Ri−1(λ) is a nondecreasing

linear function on λ ∈ (λ1, λ2). For each sensor sk ∈ S, its leftmost λ-coverable
point ak(λ) = xk − λ/wk − r is a decreasing linear function. Therefore, the
interval (λ1, λ2) contains at most one value λ such that Ri−1(λ) = ak(λ).

Suppose we increases λ from λ1 to λ2. During the increasing of λ, we say
that an “event” happens when Ri−1(λ) is equal to ak(λ) for some sensor sk ∈ S
at some event value λ. During the increasing of λ, the set Si2(λ) is fixed between
any two adjacent events. This suggests the following way to compute Si2(λ∗).

First, we compute all event values by using Ri−1(λ) and the functions ak(λ)
of all sensors sk of S. Let Λ contain all event values. We also add λ1 and λ2 to
Λ. We sort all values of Λ. Then, by using our decision algorithm, we do binary
search on the sorted list of Λ to find two adjacent values λ′

1 and λ′
2 in the sorted

list such that λ∗ ∈ (λ′
1, λ

′
2]. Note that (λ′

1, λ
′
2] ⊆ (λ1, λ2]. Since |Λ| = O(n),

the above binary search calls the decision algorithm O(log n) time, which takes
O(n log n log log n) time in total.

By our above analysis, the set Si2(λ) is fixed for all λ ∈ (λ′
1, λ

′
2). We take an

arbitrary value λ ∈ (λ′
1, λ

′
2) and compute the set Si2(λ) explicitly, which can be

done in O(n) time. The proof of Lemma 1 is omitted.

Lemma 1. If Si2(λ) = ∅, then λ∗ is in {λ2
i−1, λ2, λ

′
2}.

By Lemma 1, if Si2(λ) = ∅, then λ∗ is the smallest feasible value of
{λ2

i−1, λ2, λ
′
2}, which can be found by calling our decision algorithms on the

three values respectively. Otherwise, we proceed as follows.
We make the third assumption that λ∗ 	= λ′

2. Similarly, this assumption
is only for explaining our approach, and the following algorithm does not rely
on this assumption. Under the assumption, λ∗ ∈ (λ′

1, λ
′
2). Hence, Si2(λ∗) =

Si2(λ). Next, we find the sensor sg(i)(λ∗), which is the leftmost sensor of Si2(λ∗).
Although Si2(λ) is fixed for all λ ∈ (λ′

1, λ
′
2), the leftmost sensor of it may not be

the same for all λ ∈ (λ′
1, λ

′
2). To find sg(i)(λ∗), we use the following approach.

For each sensor sk ∈ Si2(λ), its location in the configuration Ci−1(λ) is
xr
k(λ) = xk + λ/w for any λ ∈ (λ′

1, λ
′
2). Hence, xr

k(λ) is an increasing linear
function of λ, which defines a line in the 2D coordinate system in which the
x-coordinates correspond to the λ values and the y-coordinates correspond to
xr
k values. We consider the lower envelope L of the lines defined by all sensors of

Si2(λ). For each point q of L, suppose q lies on the line defined by the sensor sk
and q’s x-coordinate is λq. Then, if λ = λq, the leftmost sensor of Si2(λ) is sk.
This means that each line segment of L corresponds to the same leftmost sensor
of Si2(λ). Based on this observation, we proceed to compute sg(i)(λ∗) as follows.

We first compute the lower envelope L, which can be done in O(n log n)
time [4]. Then, let Λ be the set of the x-coordinates of the vertices of L. Note
that |Λ| = O(n) since L is the lower envelope of at most n lines. We also add
λ′
1 and λ′

2 to Λ. We sort all values of Λ. Then, by using our decision algorithm,
we do binary search on the sorted list of Λ to find two adjacent values λ′′

1 and
λ′′
2 such that λ∗ ∈ (λ′′

1 , λ′′
2 ]. Note that (λ′′

1 , λ′′
2 ] ⊆ (λ′

1, λ
′
2]. Since λ′′

1 and λ′′
2 are

two adjacent values of the sorted Λ, by our above analysis, there is a sensor that
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is always the leftmost sensor of Si2(λ) for all λ ∈ (λ′′
1 , λ′′

2 ]. To find the above
leftmost sensor, we only need to take any value λ in (λ′′

1 , λ′′
2) and explicitly

compute the locations of sensors in Si2(λ). The above algorithm finds sg(i)(λ∗)
in O(n log n log log n) time, which is dominated by the binary search.

Further, we let λ1
i = λ′′

1 , λ2
i = λ′′

2 , and Si(λ) = Si−1(λ) ∪ {sg(i)(λ∗)}. We
will show later that all algorithm invariants hold on Si(λ) and (λ1

i , λ
2
i ] (further

processing may be needed).

4.3 Maintaining the Algorithm Invariants

If λ∗ has been computed above, then we terminate the algorithm. Otherwise, we
have obtained an interval (λ1

i , λ
2
i ] ⊆ (λ1

i−1, λ
2
i−1] that contains λ∗ and a sensor

set Si(λ). Hence, the first algorithm invariant holds. In the sequel, we discuss
the other three invariants.

According to our algorithm, Si(λ) is the same for all values λ in the open
interval (λ1

i , λ
2
i ). Further, assume λ∗ 	= λ2

i . Then, our above three assumptions
(i.e., λ∗ 	∈ {λ2

i−1, λ2, λ
′
2}) are all true. By our algorithm invariants, Si−1(λ) =

Si−1(λ∗) holds for all λ ∈ (λ1
i , λ

2
i ) ⊆ (λ1

i−1, λ
2
i−1). Since our above algorithm for

computing sg(i)(λ∗) is based on the above three assumptions and now that the
assumptions are all true, the sensor sg(i)(λ∗) has been correctly computed above.
Since Si(λ) = Si−1(λ) ∪ {sg(i)(λ∗)} and Si−1(λ) = Si−1(λ∗), Si(λ) = Si(λ∗)
holds for all λ ∈ (λ1

i , λ
2
i ). This shows that the second invariant holds.

For the third invariant, recall that Ri(λ) is equal to the right extension
of sg(i)(λ) in Ci(λ). Further, if sg(i)(λ) ∈ Si1(λ), then Ri(λ) is equal to
xg(i) + r + λ/wg(i), which is a nondecreasing linear function of λ. If sg(i)(λ) ∈
Si2(λ), then Ri(λ) = Ri−1(λ) + 2r. Since Ri−1(λ) is a nondecreasing lin-
ear function on (λ1

i−1, λ
2
i−1), Ri(λ) is also a nondecreasing linear function on

(λ1
i , λ

2
i ) ⊆ (λ1

i−1, λ
2
i−1). Therefore, in either case, the third algorithm invariant

holds.
For the fourth invariant, if Ri(λ) < β for all λ ∈ (λ1

i , λ
2
i ), then the fourth

invariant also holds. Otherwise, we have Lemma 2 whose proof is omitted.

Lemma 2. If it is not true that Ri(λ) < β for all λ ∈ (λ1
i , λ

2
i ), then Ri(λ) is a

strictly increasing linear function on (λ1
i , λ

2
i ) and there is a value λ′ ∈ (λ1

i , λ
2
i )

such that Ri(λ′) = β.

By Lemma 2, we compute the value λ′ ∈ (λ1
i , λ

2
i ) such that Ri(λ′) = β. This

means that B is covered by the sensors Si(λ′) in the configuration Ci(λ′). Thus,
λ′ is a feasible value and λ∗ ∈ (λ1

i , λ
′]. Due to that Ri(λ) is a strictly increasing

function, Ri(λ) < β for all λ ∈ (λ1
i , λ

′). We update λ2
i to λ′. Now the fourth

invariant also holds. Note that all the first three invariants still hold with this
updated (and smaller) interval (λ1

i , λ
2
i ).

This completes the i-th step, which takes O(n log n log log n) time. If λ∗ is
not computed, all algorithm invariants hold and we proceed on the next step.
We can prove that λ∗ will be computed in at most n + 1 steps.

Since each step of the algorithm takes O(n log n log log n) time, λ∗ can be
computed in O(n2 log n log log n) time. The space complexity of the algorithm
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is O(n2), which is dominated by the preprocessing of Corollary 1. If we use
Theorem 1 to implement the decision algorithm, then the total time for com-
puting λ∗ is O(n2 log2 n) and the space complexity is O(n).

Theorem 2. The problem WBC can be solved in O(n2 log n log log n) time and
O(n2) space; alternatively, it can be solved in O(n2 log2 n) time and O(n) space.
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Abstract. We introduce a new framework for proving the time hier-
archy theorems for heuristic classes. The main ingredient of our proof
is a hierarchy theorem for sampling distributions recently proved by
Watson [11]. Class HeurεFBPP consists of functions with distrib-
utions on their inputs that can be computed in randomized poly-
nomial time with bounded error on all except ε fraction of inputs.
We prove that for every a, δ and integer k there exists a func-
tion F : {0, 1}∗ → {0, 1, . . . , k − 1} such that (F, U) ∈ HeurεFBPP for
all ε > 0 and for every ensemble of distributions Dn samplable in
na steps, (F, D) /∈ Heur1− 1

k
−δFBPTime[na]. This extends a previ-

ously known result for languages with uniform distributions proved by
Pervyshev [9] by handling the case k > 2. We also prove that
P �⊆ Heur 1

2 −εBPTime[nk] if one-way functions exist.

We also show that our technique may be extended for time hierarchies
in some other heuristic classes.

1 Introduction

The time hierarchy theorem for a computational model states that given more
time it is possible to solve more computational problems. For deterministic Tur-
ing machines this theorem was proved by Hartmanis and Stearns [4] by using
diagonalization. To show that there exists a language that is decidable in O(n3)
steps but not decidable in O(n2) one may consider a language that contains a
string x if Turing machine Mx rejects x in n2 steps. Time hierarchy theorems are
known for all syntactic computational models (a model is syntactic if it is possi-
ble to enumerate all correct machines of this model). Standard diagonalization
does not work if it is impossible to negate the answer of a machine in polyno-
mial time (for example, we don’t know whether NP = co-NP); but delayed
diagonalization [13] works well for all syntactic models.

A computational model is semantic if it is impossible to enumerate correct
machines. For example BPTime, RTime, ZPTime are semantic models; we
cannot enumerate correct machines since they have to satisfy promises. There
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President’s grant MK-2813.2014.1 and by the Government of the Russia (grant
14.Z50.31.0030).
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are no known tight time hierarchy theorems for any semantic model. The best
current result for a time hierarchy for randomized computations with bounded
error is superpolynomial: BPTime[nlog n] � BPTime[2nε

] [8]. However, we are
not able to prove that BPTime[n] � BPTime[n100 log n].

The first advancement in that direction was a time hierarchy theorem for
randomized classes with several bits of nonuniform advice [1,2], the latest results
include a time hierarchy for classes with only one bit of advice: BPTime/1 [2],
ZPTime/1,MATime/1, etc. [10]. The idea of the proofs of time hierarchies
with nonuniform advice from [2] (the similar idea was used in [1]) is based on
the existence of an optimal algorithm for some PSPACE-complete language.
The proof from [10] is based on a tricky delayed diagonalization.

Fortnow and Santhanam also proved the time hierarchy theorem for heuris-
tic randomized algorithms with bounded error, such algorithms may give an
incorrect answer (and also violate the promise) on a small fraction of inputs.
Namely, there exists a language L that can be decided in Heur 1

nc
BPP, but can-

not be decided in Heur 1
nc
BPTime[na] with uniform distribution. This proof

is also based on an optimal algorithm for a PSPACE-complete language.
Pervyshev [9] simplifies and strengthens the time hierarchy theorem for heuris-
tic BPTime: there exists a language L that can be decided in HeurεBPP,
but can not be decided in Heur 1

2−εBPTime[na] with uniform distribution.
Pervyshev used a delayed diagonalization against all randomized Turing
machines. Delayed diagonalization require the ability to simulate a machine on
the next input length. A randomized Turing machine may accept with any prob-
ability of error, thus it cannot be simulated with a bounded error. Let M be a
randomized Turing machine that may violate a promise. Suppose we need to sim-
ulate it on an input x. Pervyshev suggested a method to simulate it heuristically:
for every input x we put into the correspondence a set of strings {y1, y2, . . . , yN},
where N is large enough. On every yi we execute M(x) many times and calcu-
late the frequency of ones μi. We accept yi if μi is greater than θyi

, where
θyi

= 2
5 + i

5N . Note that if M(x) satisfies the promise of bounded error, then
the answer of our simulation is the same for all yi. And if M(x) violates the
promise, then our simulation may violate the promise only for a small fraction
of yi, namely for such yi that θyi

is very close to Pr[M(x) = 1].
In this paper we consider k-valued functions and prove that for all a and

δ and integer k there exists a function F : {0, 1}∗ → {0, 1, . . . , k − 1} such
that (F,U) ∈ HeurεFBPP for all ε > 0 and for every ensemble of distributions
Dn samplable in na steps (F,D) /∈ Heur1− 1

k −δFBPTime[na]. So in case of
k-valued functions we improve the fraction of hard instances from 1

2 − δ that
was known for languages (i.e. k = 2) to 1 − 1

k − δ. It is an interesting open
question to prove something better than 1

2 − δ for languages. Note that for
deterministic computations P � Heur1−δDTime[nk] may be proved by the
standard diagonalization.

Pervyshev’s approach does not work for k > 2 by the following rea-
son. Consider a function F : {0, 1}n → {0, 1, . . . , k − 1} such that for some
a ∈ {0, 1, . . . , k − 1} and δ > 0, Pr

x←Un

[F (x) = a] ≥ 1 − δ. Assume that there is a
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function F ′ such that Pr
x←Un

[F (x) �= F ′(x)] ≤ 1− 1
k −2δ, then Pr

x←Un

[F ′(x) = a] ≥
1
k + δ. It is easy to see that if we have an access to F ′ then a can be computed
for k = 2, while a cannot be determined for k > 2.

Our proof is based on the hierarchy for polynomial-time samplable distri-
butions recently proved by Watson [11]. Watson proved that for any integer
constant k, positive a and ε there exists a polynomial-time samplable ensemble
of random variables γn that take values from the set {0, 1, . . . , k − 1}, such that
for every samplable in na steps ensemble of random variables αn with values in
{0, 1, . . . , k − 1} the statistical distance between αn and γn is at least 1 − 1

k − ε
for some n.

It is interesting to compare our proof for k = 2 with the proof of Pervyshev.
In case of languages we need Watson’s theorem only for k = 2; this particu-
lar case can be proved elementary by a delayed diagonalization. We define a
language Lγ that is based on the ensemble γn; we prove that Lγ is solvable in
HeurεBPP. If Lγ is solvable in randomized heuristic time na by an algorithm
A, then A may be used to generate in na steps an ensemble of random vari-
ables αn that is close to γn; the latter contradicts the theorem of Watson. In
our proof for languages we separate the wheat from the chaff. For example, we
don’t care about machines that violate the promise, that’s why we don’t use
the multithreshold trick described above. Instead we use similar but more sim-
ple observation: for polynomial-time samplable random variable γn ∈ {0, 1} the
language {r | Pr[γ|r| = 1] > 0.r} is in HeurεBPP for all ε.

This method can also be used to prove hierarchy theorems for other heuristic
classes. Pervyshev proved the time hierarchy theorem for heuristic nondeter-
ministic computations. This proof can also be formulated in our framework. To
achieve that we extend the notion of samplability of random variables. We define
a class of random variables (taking values in {0, 1}) that can be sampled in non-
deterministic polynomial time: the sampling algorithm applies a function from
NP to random bits. Watson’s theorem for k = 2 also holds for nondeterminis-
tically samplable random variables. To prove a time hierarchy for heuristic NP
we need a more accurate version of Watson’s theorem, namely, we prove (only
for k = 2) a hierarchy for a nondeterministic sampling for the case of a sampling
algorithm that uses exactly n random bits, where n is the index of the random
variable. In fact, this hierarchy was implicitly proved in [9]. It is an interesting
open question to extend Watson’s theorem for arbitrary k for nondeterministic
sampling, the current proof does not work since it uses codes with good list
decoding properties that are not monotone.

We also note that our method works for heuristic hierarchies for all classes
CTime and BP · CTime, where C is a syntactic computational model that is
closed under the application of majority. This observation for CTime was explic-
itly formulated in [9]. But the observation for BP · CTime has not appeared in
[9]; the heuristic time hierarchy theorem for AM holds since AM = BP · NP,
but Pervyshev proved it as a corollary of more complicated hierarchy for heuris-
tic MA.
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Conditional Results. There are several known conditions that imply the time
hierarchy theorem for BPTime. The existence of a BPP-complete problem
(under strong enough reductions) implies a time hierarchy theorem for BPTime
(see for example [1]). The paper of Fortnow and Santhanam [2] implies that if
it is possible to approximate the running time of the optimal algorithm for
the PSPACE-complete language in polynomial time, then there exists a time
hierarchy for BPTime. The time hierarchy theorem for BPTime also holds
in case of the existence of a log(n) → n pseudorandom generator (i.e. a gen-
erator mapping a seed of size C log n to n pseudorandom bits), since in that
case BPTime[nk] ⊆ DTime[nk+ε] and the hierarchy follows from the deter-
ministic time hierarchy. Such a pseudorandom generator exists if, for example,
E \ Size[2εn] �= ∅ [6]. The existence of a n → poly(n) pseudorandom generator
is not sufficient for a full derandomization, and thus BPTime hierarchy is not
trivial in this case.

We prove that P �⊆ Heur 1
2−εBPTime[nk] under the existence of n → poly(n)

a pseudorandom generator (that is equivalent to the existence of one-way func-
tions). We also note that if NP ⊆ BPP then BPP �⊆ BPTime[nk] for all k.
In terms of Impagliazzo’s worlds [5] the BPTime hierarchy theorem holds in
Algorithmica and Criptomania worlds.

Organization of the Paper. In Sect. 3 we prove Pervyshev’s result demonstrating
our method; in Sect. 4 we prove BPTime hierarchy under the assumption of
the existence of one-way functions; in Sect. 5 we prove heuristic hierarchy for
k-valued functions; in Sect. 6 we prove our main result, extending the result
from the previous section to arbitrary distributions. In Sect. 7 we show that it
is possible to reprove the heuristic hierarchy for NTime in our framework.

2 Preliminaries

For two random variables χ1, χ2 with values from a set K the statistical distance
between them is Δ(χ1, χ2) = max

S⊆K
|Pr[χ1 ∈ S] − Pr[χ2 ∈ S]|.

An ensemble of distributions D is a family of distributions {Dn}∞
n=1, where

Dn is a distribution on {0, 1}n. A distributional problem is a pair (L,D) of a
language L and an ensemble of distributions D. Let Un denote an ensemble of
uniform distributions over {0, 1}n.

The class Heurδ(n)BPTime[f(n)] consists of distributional problems (L,D)
such that there exists a probabilistic algorithm A that runs in at most O(f(n))
steps and for every n the following holds: Pr

x←Dn

[Pr[A(x) = L(x)] ≥ 3
4 ] ≥ 1−δ(n),

where the inner probability is over random bits of the algorithm A. We also
denote Heurδ(n)BPP =

⋃

k≥0

Heurδ(n)BPTime[nk]. We also define classes for

functions: Heurδ(n)FBPTime[f(n)] consists of pairs (F,D), where F : {0, 1}∗ →
{0, 1}∗ is a function and D is an ensemble of distributions, such that there exists
a probabilistic algorithm A that runs in at most O(f(n)) steps and for every n
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the following holds: Pr
x←Dn

[Pr[A(x) = F (x)] ≥ 3
4 ] ≥ 1 − δ(n), where the inner

probability is over random bits of the algorithm A. We denote Heurδ(n)FBPP =
⋃

k≥0

Heurδ(n)FBPTime[nk].

In the following, we use some abuse of notation and omit uniform distribu-
tions. For example if we state that L ∈ Heurδ(n)BPP, we formally mean that
(L,U) ∈ Heurδ(n)BPP.

We say that a distributional problem (L,D) is heuristically decidable in
nondeterministic time O(f(n)) with an error δ(n) (we denote this as (L,D) ∈
Heurδ(n)NTime[f(n)]) iff there is a nondeterministic algorithm A that runs in
at most O(f(n)) steps, such that for any n we have that Pr

x←Dn

[A(x) = L(x)] ≥
1 − δ(n). We also define Heurδ(n)NP =

⋃

k≥0

Heurδ(n)NTime[nk].

3 Hierarchy for HeurBPP

Definition 1. An ensemble of random variables γn is samplable in time O(f(n))
iff there exist a constant k and a deterministic algorithm A that on the input
(1n, r) runs in O(f(n)) steps and A(1n, r) is distributed according to γn, where
r is distributed uniformly over {0, 1}kf(n). We denote the set of all ensembles
samplable in time O(f(n)) as DSamp[f(n)].

The following theorem is a particular case of a theorem from [11]. However
the proof of this particular case is much simpler than the Watson’s proof of his
more general statement.

Theorem 1 [11]. For every a > 0 and ε = 1
poly(n) > 0, there exist b > 0 and

an ensemble of random variables γn ∈ DSamp[nb] that take values from {0, 1}
such that for every ensemble αn ∈ DSamp[na] there exists an arbitrary large
n0 such that the statistical distance between αn0 and γn0 is at least 1

2 − ε.

Let γn be an ensemble of random variables that take values from {0, 1}. We
denote Lγ =

⋃

n
{r ∈ {0, 1}n | Pr[γn = 1] > 0.r}, where 0.r is a binary number.

Lemma 1. For every polynomial-time samplable ensemble of random variables
γn that take values from {0, 1} the language Lγ ∈ HeurεBPP for every ε =

1
poly(n) > 0.

Proof. Consider the following algorithm A: sample N independent instances of
the random variable γn, let q be a fraction of 1s. If q ≥ 0.r then return 1
otherwise 0. By Chernoff bounds if |0.r − Pr[γn = 1]| > ε/4 then Pr[A(r) �=
Lγ(r)] < 2e− 1

8 ε2N ; it is less than 1
4 for N = O( 1

ε2 ). Note that Prr[|0.r − Pr[γn =
1]| ≤ ε/4] ≤ 2−n + ε/2 that is less than ε for large enough n. 	


Lemma 2. Let L be a language such that for all n | Pr
x←Un

[x ∈ L] − Pr[γn =

1]| < δ and L ∈ Heurε(n)BPTime[nk] for some ε(n), δ ≥ 0. Then there exists an
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ensemble of random variables βn such that βn ∈ DSamp[nk+1] and Δ(βn, γn) ≤
ε(n) + δ + 1

2n .

Proof. Let E be a randomized algorithm that solves L in HeurεBPTime[nk].
Let Ê(x) execute E(x) for N = O(n) times and return the most frequent answer.
Consider an ensemble of random variables αn defined in the following way: sam-
ple a random element x ∈ {0, 1}n and return L(x). Then consider the following
algorithm that samples βn: sample a random element x ∈ {0, 1}n and return
Ê(x). Since | Pr

x←Un

[x ∈ L] − Pr[γn = 1]| < δ we have that Δ(αn, γn) < δ. Let C

be a set of all x such that Pr[E(x) = L(x)] ≥ 3
4 . Chernoff bounds imply that for

x ∈ C we have that Pr[Ê(x) = L(x)] > 1 − 1
2n .

Δ(βn, γn) = | Pr
x,r

[Ê(x) = 1] − Pr[γn = 1]|
≤ | Pr

x,r
[Ê(x) = 1] − Pr

x
[x ∈ L]| + |Pr

x
[x ∈ L] − Pr[γn = 1]| ≤ ε(n) + 2−n + δ.

	


Theorem 2 [9]. For every b > 0 and δ = 1
poly(n) > 0 there exists a language L

such that L �∈ Heur 1
2−δBPTime[nb] and for all τ = 1

poly(n) , L ∈ HeurτBPP.

Proof. Let γn be an ensemble from Theorem 1 for ε = δ/2 and a = b + 1. By
Lemma 1 Lγ ∈ HeurτBPP. Assume that Lγ ∈ Heur 1

2−δBPTime[nb]. Note that
by construction of Lγ we have that | Pr

x←Un

[x ∈ Lγ ]−Pr[γn = 1]| < 1
2n . Hence by

Lemma 2 there exists βn ∈ DSamp[na] and Δ(βn, γn) ≤ 1
2 −δ+ 1

2n + 1
2n < 1

2 − δ
2

for n large enough. The latter contradicts Theorem 1. 	


4 Conditional Hierarchy

Theorem 3. Assume that one-way functions exist. Then for every ε > 0 and
a > 0 there exists a language L ∈ P such that L �∈ Heur 1

2−εBPTime[na].

Proof. Consider the random variable γn from Theorem 1 and let S be a gen-
erator that generates γn. We assume that S gets random bits as the second
input. Let S use p(n) random bits. Let G be pseudorandom generator that
maps n random bits to p(n) pseudorandom ones. Consider the random vari-
able S(1n, G(r)), where r ← Un. Since G is a pseudorandom generator we have
that Δ(S(1n, G(Un)), γn) = Δ(S(1n, G(Un)), S(1n, Up(n))) < ε/4 for all n large
enough.

Consider the language L =
⋃

n
{r ∈ {0, 1}n | S(1n, G(r)) = 1}. It is obvious

that L ∈ P. Lemma 2 and Theorem 1 implies L �∈ Heur 1
2−εBPTime[na]. 	


An anonymous reviewer noted that Theorem 3 also follows from the approach
of Pervyshev.

We also show that the BPTime time hierarchy holds if all languages from
NP are easy.
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Theorem 4. If NP ⊆ BPP, then BPTime[nk] � BPP for all k > 0.

Proof. Assume, for the sake of contradiction, that BPP ⊆ BPTime[nk]. By
the argument similar to Adleman’s theorem we get BPTime[nk] ⊆ Size[n2k+2].
Results of [12] implies that if NP ⊆ BPP, then PH ⊆ BPP. So if BPP =
BPTime[nk], then PH ⊆ Size[n2k+2] that contradicts Kannan’s theorem [7].

	


5 Hierarchy for k-valued Functions

In this section we extend heuristic time hierarchy theorem for functions that take
constant number of values. Now we need the full power of Watson’s theorem.

Theorem 5 [11]. For every a > 0, k > 0 and ε = 1
poly(n) > 0, there exists b > 0

and an ensemble of random variables γn ∈ DSamp[nb] that take values from
{0, 1, . . . , k − 1} such that for every ensemble αn ∈ DSamp[na] there exists n0

such that the statistical distance between αn0 and γn0 is at least 1 − 1
k − ε.

Let γn be an ensemble of random variables that take values from {0, 1, . . . ,

k − 1}. For every n we split the segment [0, 1) on k disjoint parts: I
(n)
0 =

[

p
(n)
0 = 0, p

(n)
1

)

, I
(n)
1 =

[

p
(n)
1 , p

(n)
2

)

, . . . , I
(n)
k−1 =

[

p
(n)
k−1, p

(n)
k = 1

)

(here we

assume that [a, a) is ∅). For all i ∈ {0, 1, . . . , k − 1}, p
(n)
i+1 − p

(n)
i = Pr[γn = i].

We define function Fγ : {0, 1}∗ → {0, 1, . . . , k − 1} such that for all r ∈ {0, 1}n,
Fγ(r) = i iff 0.r ∈ I

(n)
i , where 0.r is a binary number. More formally Fγ(r) =

min{i ∈ {0, 1, . . . , k − 1} | Pr[γn ∈ {0, 1, . . . , i}] > 0.r}.
The following lemma is an extension of Lemma 1.

Lemma 3. For every polynomial-time samplable ensemble of random variables
γn that take values from {0, 1, . . . , k − 1} the function Fγ ∈ HeurεFBPP for
every ε = 1

poly(n) > 0.

Proof. Consider the following algorithm A: sample N = O
(

k4 log(k)
ε2

)

indepen-
dent instances of the random variable γn, let qi be a fraction of is. Find minimum

j such that
j

∑

i=1

qi > 0.r and return j. By Chernoff bounds Pr[|qi − Pr[γn = i]| >

ε/2k2] < 2e− 1
2k4 ε2N .

Assume that for all i ∈ {0, 1, . . . , k − 1} we have that |0.r − p
(n)
i | > ε/2k. In

this case A(r) �= Fγ(r) only if for some j ≤ i, |qj − Pr[γn = j]| > ε/2k2 that

happens with probability at most 2e− 1
2k4 kε2N < 1

4 for N = O
(

k4 log(k)
ε2

)

. Hence

Pr[A(r) �= Fγ(r)] < 1
4 .

Note that Pr
r

[∀i ∈ {0, 1, . . . , k − 1} |0.r − Pr[γn = i]| ≤ ε/2k] ≤ k2−n + ε/2
that is less than ε for large enough n. 	
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Lemma 4. Let F be a function {0, 1}∗ → {0, 1, . . . , k−1} such that for all n sta-
tistical distance between F (Un) and γn is at most δ, where Un is uniform distri-
bution over {0, 1}n and F ∈ Heurε(n)FBPTime[na] for some ε(n), δ ≥ 0. Then
there exists an ensemble of random variables βn such that βn ∈ DSamp[na+1]
and Δ(βn, γn) ≤ ε(n) + δ + 1

2n .

Proof. The proof repeats the proof of Lemma 2. 	


Theorem 6. For every b > 0 and every k > 0 and every δ = 1
poly(n) > 0

there exists a function F : {0, 1}∗ → {0, 1, . . . , k − 1} such that F /∈
Heur1− 1

k −δFBPTime[nb] and for every τ = 1
poly(n) > 0 F ∈ HeurτFBPP.

Proof. Let γn be an ensemble from Theorem 1 for ε = δ
2 , and a = b + 1. By

Lemma 3 Fγ ∈ HeurτFBPP. Assume that Fγ ∈ Heur1− 1
k −δFBPTime[nb].

Note that by construction of Fγ for all i ∈ {0, 1, . . . , k − 1} we have that
| Pr
x←Un

[Fγ(x) = i] − Pr[γn = i]| < 1
2n , hence Δ(Fγ(Un), γn) ≤ k

2n+1 . Hence by

Lemma 4 there exists βn ∈ DSamp[na] and Δ(βn, γn) ≤ 1− 1
k −δ+ k

2n+1 + 1
2n <

1 − 1
k − δ

2 for n large enough. The latter contradicts Theorem 5. 	


6 Hierarchy for Arbitrary Distributions

In this section we strengthen the results from previous sections for arbitrary
distributions. Now Watson’s theorem is not sufficient for our goal, but actually
Watson [11] proved slightly stronger statement:

Theorem 7. For every a > 0, k > 0 and ε = 1
poly(n) > 0, there exists b > 0

and an ensemble of random variables γn ∈ DSamp[nb] that take values from
{0, 1, . . . , k − 1} such that for every ensemble αn ∈ DSamp[na] there exists
c ∈ {0, 1, . . . , k − 1} and arbitrary large n0 such that Pr[γn0 = c] ≥ 1 − ε/2 and
Pr[αn0 = c] ≤ 1

k + ε/2.

The proof of Theorem 7 for k = 2 repeats the proof of Theorem 1. For
the proof of the general statement see [11]. Let γn be an ensemble of random
variables that take values from {0, 1, . . . , k−1}. As in previous section for every n

we split the segment [0, 1) on k disjoint parts: I
(n)
0 , . . . , I

(n)
k−1. We define function

Hγ : {0, 1}∗ → {0, 1, . . . , k − 1} such that for all r ∈ {0, 1}n, Hγ(r) = i iff
Θr ∈ I

(n)
i , where Θr = 3

8 + 0.r
4 .

The proof of the next Lemma repeats the proof of Lemma 3 almost literally.

Lemma 5. For every polynomial-time samplable ensemble of random variables
γn that take values from {0, 1, . . . , k − 1}, Hγ ∈ HeurεFBPP for every ε =

1
poly(n) > 0.

Theorem 8. For every b > 0 and every k > 0 and every δ = 1
poly(n) > 0

there exists a function H : {0, 1}∗ → {0, 1, . . . , k − 1} such that for all D ∈
DSamp[nb] (H,D) �∈ Heur1− 1

k −δFBPTime[nb] and for every τ = 1
poly(n) , H ∈

HeurτFBPP.
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Proof. Let γn be an ensemble from Theorem 1 for ε = δ
2 , and a = b + 1. By

Lemma 5 Hγ ∈ HeurδFBPP.
Assume that for some D ∈ DSamp[nb], (Hγ ,D) ∈ Heur1− 1

k −δ

FBPTime[nb]. Let E be randomized algorithm that decides (Hγ ,D) and G

is a generator for D. Let Ê(x) execute E(x) for N = O(n) times and return the
most frequent answer. Consider the following random variable αn that is defined
by the following algorithm: (1) Sample a random element x ← G(1n); (2) Return
Ê(x). Note that αn is samplable in O(nb+1) steps.

By Theorem 7 applied to γn and αn and ε = δ
2 there exists n0 and c ∈

{0, 1, 2, . . . , k − 1} such that Pr[γn = c] ≥ 1 − δ
4 and Pr[αn = c] ≤ 1

k + δ
4 .

The size of I
(n0)
c is at least 3

4 for δ < 1, hence Θr ∈ I
(n0)
c for all r ∈ {0, 1}n0 .

Therefore Hγ(x) = c for all x ∈ {0, 1}n0 and by the definition of αn and by
Chernoff bounds Pr[αn0 = c] ≥ 1

k + δ − 2−n0 > 1
k + δ/2 for large enough n0 that

contradicts Theorem 7. 	


7 Hierarchy for HeurNP

In this section we show that our technique can also be used to prove a hierarchy
theorem for heuristic NP.

Definition 2. An ensemble of random variables γn is samplable in nondeter-
ministic time O(f(n)) with nk random bits iff there exists a nondeterminis-
tic algorithm A that on an input (1n, r) runs in O(f(n)) steps, and A(1n, r)
is distributed according γn, where r is distributed uniformly over {0, 1}nk

. We
denote the set of all ensembles samplable in time O(f(n)) with nk random bits
as NSampnk [f(n)].

In the proof of the time hierarchy theorem for heuristic NTime we use
Boolean samplers from [3] instead of mixers used by Pervyshev. It is not very
important whether to use samplers or mixers, but we prefer samplers since it
makes the presentation slightly more elegant.

Definition 3. A Boolean sampler is a randomized algorithm S, that takes on
input an integer number n and rational numbers δ, ε. Algorithm S has an oracle
access to a function f : {0, 1}n → {0, 1}; S makes several nonadaptive requests
to the function f and outputs a number in the range [0, 1]. Let us denote f̄ =
1
2n

∑

x∈{0,1}n

f(x). For every function f : {0, 1}n → {0, 1} the following inequality

should be satisfied: Pr[|Sf (n, ε, δ) − f̄ | ≥ ε] < δ.
A Boolean sampler is called averaging if it outputs the average value of

requested values.

Theorem 9 [3]. There is an averaging Boolean sampler S which uses n ran-
dom bits, makes q(n, ε, δ) = O( 1

ε2δ ) requests to the function, and runs in time
polynomial in n, 1

ε and 1
δ .
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Corollary 1. There exists an averaging Boolean sampler S that uses n−1 ran-
dom bits, makes O( 1

ε2δ ) requests to the function, and runs in time polynomial in
n, 1

ε and 1
δ .

The following theorem is an analogue of Theorem 1 for distributions sam-
plable by nondeterministic algorithms with fixed number of random bits. In
the proof of Theorem 1 we may evaluate the frequency of random variable by
sampling but now we use a Boolean sampler in order to save random bits.

Theorem 10. For every a > 0 and ε > 0 there exists b > 0 and an ensemble of
random variables γn ∈ NSampn[nb] that take values from {0, 1} such that for
every ensemble αn ∈ NSampn[na] with values from {0, 1} there exists n such
that the statistical distance between αn and γn is at least 1

2 − ε.

Proof. We use delayed diagonalization. Let Ei be an enumeration of all non-
deterministic algorithms (we interpret them as generators of random variables
that use n random bits); we assume that Ei is supplied with an alarm clock
that terminates its execution on an input (1n, r) after na+1 steps. Let S be a
Boolean sampler from Corollary 1. We define a sequence ni as follows n1 = 1,
ni+1 = n∗

i +1 and n∗
i = 2na+1

i . We define γn by the following algorithm Γ (1n, r),
where r ← Un is the string of random bits. For n such that ni ≤ n ≤ n∗

i :
if n = n∗

i then γn is concentrated on the element from {0, 1} that has the
minimal probability according to Ei(1ni , r), where r is uniformly distributed
over {0, 1}n. This can be done by brute-force search in time poly(n∗

i );
if ni ≤ n < n∗

i − 1 then we execute Sf (1n+1, ε
2 , 1

4 ) using r as a random
string, where f : {0, 1}n+1 → {0, 1} and f(z) = Ei(1n+1, z). Return 1 iff the
result of the sampler exceeds 1

2 . Here we use that S is an averaging sampler and
nondeterministic computations are closed under the application of majority.

Let αn be generated by a nondeterministic algorithm A(1n, r) with n random
bits in O(na) steps, and A have number i in our enumeration. We prove by
contradiction that there exists n (ni ≤ n ≤ n∗

i ) such that Δ(γn, αn) > 1
2 − ε,

where Δ denotes the statistical distance. Assume that Δ(γn, αn) ≤ 1
2 − ε for

all n. Let b denote the element that has probability 1 according to γn∗
i

(by the
construction Pr[Ei(1ni) = b] ≤ 1

2 ). We prove by induction on k (for 0 ≤ k ≤
n∗

i − ni) that Pr[γn∗
i −k = b] > 1 − ε

2 . The base k = 0 is trivial. Now we prove
the induction step. By the induction hypothesis Pr[αn∗

i −k = b] ≥ Pr[γn∗
i −k =

b] − 1
2 + ε > 1 − ε

2 − 1
2 + ε = 1

2 + ε
2 . Hence by definition of a Boolean sampler

Pr[γn∗
i −k−1 = b] ≥ 1 − ε

2 . Finally we get a contradiction with Pr[αni
= b] ≤ 1

2 .
	


Theorem 11 [9]. For every b > 0 and δ > 0 there exists a language L such that
L �∈ Heur 1

2−δNTime[nb] and L ∈ NP.

Proof. Let γn be an ensemble from Theorem 10 for ε = δ/2 and a = b + 1,
and S be a generator for this random variable. Consider the language L =
{x|S(1|x|, x) = 1}. It is easy to see that this language is in NP. Let us prove
that L /∈ Heur 1

2−δNTime[nb]. Assume the contrary and let nondeterministic
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algorithm A decide L in time nb with error less than 1
2 − δ. In this case for the

random variable αn that is distributed according to A(x) for x ← An we have
that Δ(αn, γn) < 1

2 − δ for all n. The latter contradicts Theorem 10. 	


Further research. Is it possible to improve error from 1
2 − δ to 1− δ for HeurNP

or HeurBPP hierarchy?
The second and third open questions are to prove BPTime hierarchy

in Heuristica, where NP �⊆ BPP but (NP,PSamp) ⊆ HeurBPP, and in
Pessiland, where (NP,PSamp) �⊆ HeurBPP but there are no one-way func-
tions.

Acknowledgments. The authors thank Edward A. Hirsch and anonimous reviewers
for useful comments.
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Abstract. Random walks are frequently used in randomized algorithms.
We study a derandomized variant of a random walk on graphs, called
rotor-router model. In this model, instead of distributing tokens ran-
domly, each vertex serves its neighbors in a fixed deterministic order.
For most setups, both processes behave remarkably similar: Starting with
the same initial configuration, the number of tokens in the rotor-router
model deviates only slightly from the expected number of tokens on the
corresponding vertex in the random walk model. The maximal difference
over all vertices and all times is called single vertex discrepancy. Cooper
and Spencer (2006) showed that on Z

d the single vertex discrepancy is
only a constant cd. Other authors also determined the precise value of cd

for d = 1, 2. All these results, however, assume that initially all tokens
are only placed on one partition of the bipartite graph Z

d. We show that
this assumption is crucial by proving that otherwise the single vertex
discrepancy can become arbitrarily large. For all dimensions d ≥ 1 and
arbitrary discrepancies � ≥ 0, we construct configurations that reach a
discrepancy of at least �.

1 Introduction

Algorithms that are allowed to make random decision can solve many prob-
lems more efficiently than purely deterministic algorithms. One such example is
the approximation of the volume of a convex body, where randomness gives a
super-polynomial speed-up in computing power [11]. The first polynomial-time
algorithm for this (and a number of other) problems is based on a certain ran-
dom walk (e.g. [1]). Random walks appear to be powerful tools for designing
efficient randomized algorithms.

Rotor-Router Model. The wide applicability of random walks raises the ques-
tion what properties of the random walk are crucial and how much randomness
is needed for this. To study this, we consider a derandomized variant of the ran-
dom walk on the infinite grid Z

d. In this rotor-router model, each vertex x ∈ Z
d

is equipped with a “rotor” together with a cyclic permutation (called a “rotor
sequence”) of the 2d cardinal directions of Zd. While the tokens performing a
random walk leave a vertex in a random direction, in the rotor-router model the
tokens deterministically go in the direction the rotor is pointing. After a token

c© Springer-Verlag Berlin Heidelberg 2015
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is sent, the rotor is rotated according to the fixed rotor sequence. This ensures
that the tokens are distributed evenly among the neighbors.

Synonyms of the Rotor-Router Model. The rotor-router model was redis-
covered independently several times in the literature. First under the name
“Eulerian walker” [20], then as “edge ant walk” [22] and “whirling tour” [10].
It was later popularized by James Propp [16] and therefore also called “Propp
machine” by Cooper and Spencer [6]. The same authors later also used the term
“deterministic random walk” [4,8]. To emphasize the working principle, we only
use the term “rotor-router model” in the rest of the paper.

Some Properties of the Rotor-Router Model. Many aspects of the model
have been studied. The vertex and edge cover time of the rotor-router model
can be asymptotically faster or slower as the classical random walk, depending
on the topology [2,12,23]. Very precise bounds are also known if multiple tokens
are deployed in parallel [7,15,17]. Our focus is on the single-vertex discrepancy
with which we compare the rotor-router model and the expected behavior of the
classical random walk. If particles are arbitrarily placed on the vertices and do
a simultaneous walk in both models, we are interested in the maximal difference
in the number of tokens between both models, at all times and on each vertex.

Known Results for the Single-Vertex Discrepancy. [6] proved that on Z
d

the single vertex discrepancy is a constant cd. For the case d = 1, that is, the
graph being the infinite path, Cooper et al. [4] showed that c1 ≈ 2.29. For d = 2
the constant is c2 ≈ 7.83 for circular rotor sequences and c2 ≈ 7.29 otherwise [8].
It is further known that there is no such constant for infinite trees [5]. There are
also (linear) upper and lower bounds for the discrepancy of finite graphs [14].
For some special finite graphs like hypercubes, stronger (i.e. polylogarithmic in
the number of nodes) upper bounds are known [14].

Open Question. All three aforementioned results for the grid Z
d assume that

the initial configuration is “even”, that is, it only has tokens on one partition
of the bipartite graph Z

d. This assumption is, however, essential for achieving a
constant discrepancy. Cooper et al. already pointed out for d = 1 that without
this assumption their results “cannot be expected” [4, p. 2074]. We make this
statement rigorous and present for each dimension d a configuration such that
the single-vertex discrepancy on Z

d becomes arbitrarily large.

Results. To allow a direct comparison, let us first restate the result of Cooper
and Spencer [6]. The mathematical notation is introduced in Sect. 2.

Theorem 1 ([6]). For all d ≥ 1 there is a constant cd ∈ R+ such that for all
even initial configurations, the single-vertex discrepancy on Z

d is bounded by cd.

Our main result is the following complement of the previous statement.

Theorem 2. For all d ≥ 1 and � ∈ R there is an initial configuration such that
the single-vertex discrepancy on Z

d is at least �.

The reason for the unbounded discrepancy observed for non-even initial con-
figurations is that the two partitions of Z

d subtly interfere with each other
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through the rotors. In every time step, all tokens switch back and forth between
even and odd positions. In a random walk they are distributed independently,
in the rotor-router model they follow the rotors, which exchange information
between both partitions. This causes the unbounded discrepancy for appropri-
ately set up initial configurations.

It should be noted that the discrepancy of � in Theorem 2 already occurs for
small configurations. In fact, Corollary 8 shows that a discrepancy of � can be
reached after Θ

(

��2/d2�
)

time steps with O(�1 + �/d�2d+1) tokens.

Techniques. For proving Theorem2, we define a specific (infinitely large) initial
configuration called (k, d)-wedge (cf. Definition 4), for which we study explicitly
how it develops over time in the rotor-router and random walk model. We prove
that this configuration is “stable” in the rotor-router model, that is, it stays
unchanged after an even number of steps (cf. Lemma6). The proof needs to
consider 26 cases. We prove the cases using an automated theorem prover. Given
this structural insight on the behavior of (k, d)-wedge, we calculate the resulting
discrepancy (cf. Lemma 7). The proof makes use of the fact that the expected
behavior of the d-dimensional random walk starting with a (k, d)-wedge can
be decomposed into a collection of 1-dimensional random walks. To obtain a
result for finite time and finite configurations, we observe that a subset of the
(k, d)-wedge suffices to achieve a desired discrepancy (cf. Corollary 8).

2 Preliminaries

Random Walks. A random walk is a stochastic process that describes the
movement of a number of tokens on a graph G. At each time step, each token
at a vertex x chooses a neighbor independently and uniformly at random, and
moves to that neighbor.

We consider simple random walks on an infinite d-dimensional grid Z
d. A

token at coordinate x = (x1, . . . , xd) can move in the 2d cardinal directions,
as given by the unit vectors: e1 = (1, 0, 0 . . .),e2 = (0, 1, 0, . . .), . . . ,−e1 =
(−1, 0, 0, . . .),−e2 = (0,−1, 0, . . .), . . . ,−ed = (0, . . . ,−1). We refer to this set
of directions by E2d. Following [18], we write Zi for the direction that a token
took at time step i. As all directions are equiprobable and independent, we have
Pr[Zi = ej ] = Pr[Zi = −ej ] = 1

2d for all j. The position of a token after t steps
can then be described as a sum of random variables St = x+Z1 +Z2 + . . .+Zt.

We write Sd
t (x) to express the probability that a d-dimensional random walk

starting at the origin reaches vertex x after t steps. E.g., for dimension d = 1
we obtain S1

t (x) = 2−t
(

t
(t+x)/2

)

.
We denote by x̄ the sum of the individual components of x, i.e. x̄ := xT1 =

∑d
i=1 xd. Observe that the grid Z

d is a bipartite graph where all nodes with even
x̄ form one partition, and nodes with odd x̄ form the other. With each time
step, a token therefore switches the partition. To this end, we have Sd

t (x) = 0 if
(x̄ − t ≡ 1) mod 2. We write a ∼ t to say that (a ≡ t) mod 2, and we call a
node x even if x̄ ∼ 0, and odd otherwise.
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Rotor-Router Model. Let us now formally define the rotor-router model on
the grid Z

d. Each vertex x in this graph is equipped with a rotor rx ∈ E2d. The
rotor sequence for a vertex x is defined by a cyclic permutation r→

x : E2d → E2d.
At each time step t, all tokens at x do exactly one move as follows. A par-

ticular token moves in the direction of the rotor rx; and afterwards, the rotor is
updated to point to r→

x (rx). This is repeated until all tokens have been moved.
Since tokens are not labeled, the order in which the tokens are passed to the
rotor does not matter. All configurations of the rotor-router model are therefore
fully defined by the initial placement of tokens, the initial rotor configurations
rx and the rotor sequences r→

x for all vertices x ∈ Z
d. If all tokens are initially

on even vertices, we speak of an even configuration.

Single Vertex Discrepancy. When comparing the quality of the simulation of
the rotor-router model, one often refers to the single vertex discrepancy, which is
defined as follows. Let f(x, t) : Zd ×N0 → N0 be the number of tokens at vertex
x after t steps of the (deterministic) rotor-router model, and let E(x, t) : Zd ×
N0 → R

+ denote the expected number of tokens after t steps of a random walk
with the same starting configuration f(x, 0). To compute E(x, t) we determine
for each y ∈ Z

d the probability that a random walk starting at y reaches x after
exactly t steps and multiply the result with the number of tokens that were at
y. Hence,

E(x, t) =
∑

y∈Zd

f(y, 0) · Sd
t (x − y). (1)

Using this, we can define the single vertex discrepancy.

Definition 3. Let d ≥ 1 and an initial configuration f(x, 0) for all x ∈ Z
d be

given. We call Δ(x, t) = |f(x, t) − E(x, t)| the single vertex discrepancy at x
after t steps. Then, we define the single vertex discrepancy Δd as

Δd := sup
x∈Zd,t∈N

Δ(x, t). (2)

3 Stable Configuration of the Rotor-Router Model

According to Theorem 1, the single vertex discrepancy is constant if we start with
an even configuration. To prove that this condition is necessary, we construct
the (k, d)-wedge, a starting configuration of tokens that ensures that there are
effectively only two states of the rotor-router model.

The (k, d)-wedge intuitively forms a “peak” of tokens at the origin, and the
rest of the graph is populated with tokens in a way that stabilizes the peak. In
the random walk model, the expected number of nodes in the origin will decrease
over time, while in the rotor-router model, the number of nodes always stays the
same. The (k, d)-wedge is illustrated in Fig. 1 and formally defined as follows.

Definition 4. Let k, d ∈ N be given, where k adjusts the vertex discrepancy. The
rotor direction of vertex x at time t will be referred to by r(x, t) : Zd ×N0 → E2d.
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f(x, 0)

4k + 1

1

−2k 0 2k

x

Fig. 1. Illustration of the (k, 1)-wedge in dimension 1. The y-axis describes the number
of tokens at position x. Dark colored bars show the even partition, light colored bars
the odd one. This stable configuration is used to show our main result.

We define the (k, d)-wedge, a starting configuration of the rotor-router model,
as follows. For even vertices x with x̄ ∼ 0, we set

f(x, 0) := f0(x̄, 0) :=

⎧

⎪

⎨

⎪

⎩

d · (4k + 1 + 2x̄) if x̄ ∈ [−2k, 0] ,
d · (4k + 3 − 2x̄) if x̄ ∈ [1, 2k] ,
d otherwise.

r(x, 0) := r0(x̄, 0) :=

{

−e1 if x̄ ∈ [1, 2k] ,
e1 otherwise.

For odd vertices x with x̄ ∼ 1, we set

f(x, 0) := f1(x̄, 0) :=

⎧

⎪

⎨

⎪

⎩

d · (1 − 2x̄) if x̄ ∈ [−2k, 0] ,
d · (2x̄ − 1) if x̄ ∈ [1, 2k] ,
d · (4k + 1) otherwise.

r(x, 0) := r1(x̄, 0) :=

{

−e1 if x̄ ∈ [−2k,−1] ,
e1 otherwise.

The rotor sequences follow the order e1, . . . ,ed,−e1, . . . ,−ed.

Next, we show that the (k, d)-wedge is a stable configuration, meaning that
the rotor-router model returns to the initial configuration every two steps. To this
end, we introduce a function g : Zd ×E2d ×E2d ×N → N, where g(x,±ei,±ej , t)
denotes the number of tokens that vertex x receives from vertex x ± ei at time
t when r(x ± ei, t) = ±ej . Therefore,

g(x,e,f , t) =

{

f(x+e,t)−d
2d if sgn(e) = sgn(f),

f(x+e,t)+d
2d otherwise,

(3)



Unbounded Discrepancy of Deterministic Random Walks on Grids 217

where sgn(−ei) = −1 and sgn(+ei) = 1 for all i = 1, . . . , d. Then we can write

f(x, t + 1) =
d

∑

i=1

g(x,ei, r(x + ei, t), t) +
d

∑

i=1

g(x,−ei, r(x − ei, t), t), (4)

which results from summing up the number of tokens that the neighbors of x
pass to x at time step t. Recall that f(x, 0) = f(x̄, 0) and therefore f(x±e1, 0) =
f(x̄± 1, 0). The same holds for r(x, 0). The definition of g in Eq. (3) can in this
case be extended to g(x̄,±1,±e1, 0), and we can simplify Eq. (4) to

f(x̄, 1) =
d

∑

i=1

g(x̄, 1, r(x̄ + 1, 0), 0) +
d

∑

i=1

g(x̄,−1, r(x̄ − 1, 0), 0)

= d · (g(x̄, 1, r(x̄ + 1, 0), 0) + g(x̄,−1, r(x̄ − 1, 0), 0)). (5)

To prove stability, it remains to show the following Lemmata.

Lemma 5. Given a (k, d)-wedge, it holds

r(x, 1) = −r(x, 0) and f(x, 1) =

{

f1(x̄, 0) if x̄ ∼ 0,

f0(x̄, 0) if x̄ ∼ 1.

Lemma 6. Given a (k, d)-wedge, it holds r(x, 2) = r(x, 0) and f(x, 2) = f(x, 0).

Lemma 5 states that the configuration of the rotor-router model after one step
is again the (k, d)-wedge, except that it is shifted by one to the left. Furthermore,
all rotors point in the opposite direction. By the same intuition, the next step
undoes these changes and the configuration returns to the (k, d)-wedge after 2
steps, which is shown by Lemma 6.

These statements can be proven by a case distinction over Eq. (5). While none
of the cases are mathematically challenging, there are 26 of them. Proving every
case by hand is tedious and provides little to no further insight to the problem.
Nevertheless, even small off-by-one errors break the stability of the (k, d)-wedge,
which is why we wanted to convince ourselves that the (k, d)-wedge is indeed
correct. To this end, we used the automated prover Isabelle/HOL [19] for the
case distinction. Our code can be found in the long version of this paper.

Such provers excel at keeping track of all subgoals (i.e. cases) of a proof.
Mostly, the proofs are not human readable, as they rely on internal proof rou-
tines. Automated proof systems like Isabelle/HOL, however, contain a certified
kernel; so trusting the automated proof boils down to trusting the formalization
of the problem and the correctness of the kernel. It is debated whether an auto-
mated proof can be considered correct or not—in our case, we believe that it
is more reasonable to trust the correctness of Isabelle’s kernel than to trust a
lengthy and error-prone proof of 26 cases.
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Discrepancy with Infinite Steps. If the rotor-router model is initialized
with the (k, d)-wedge, the number of tokens stays the same at all vertices x,
independent of the number of steps the process is run (mod 2), as was shown
above. In contrast, the expected number of tokens on the even partition decreases
over time for the random walk. The reason for this is that at every time step
and on every vertex the number of tokens is not a multiple of the number of
neighboring vertices, ensuring that the rotor-router model cannot distribute the
tokens equally to all neighbors as the random walk does. To show a lower bound
on the discrepancy, we inspect the difference between the actual and the expected
number of tokens at the origin after enough steps. We prove the following lemma.

Lemma 7. If the rotor-router model is initialized with the (k, d)-wedge, we have

lim
t→∞ Δ(0, t) ≥ 4dk.

Proof. Recall that f(0, t) describes the number of tokens at x = 0 when the
rotor-router model is run, whereas E(0, t) describes the expected number of
tokens at x = 0 for the random walk after t steps. By Definition 3,

Δ(0, t) = |f(0, t) − E(0, t)|.
For the sake of brevity, we assume from now on that t is even; however, the
statement holds for all t. Then, since the (k, d)-wedge was proven to be stable,
we obtain f(0, t) = d · (4k + 1).

The calculation of E(0, t) is more involved. According to Eq. (1),

E(0, t) =
∑

y∈Zd

f(y, 0) · Sd
t (y),

where Sd
t (y) is the probability that a d-dimensional random walk that starts

at y = (y1, . . . , yd) ends at 0 after t steps. Sd
t (y) admits simple formulas for

d ∈ {1, 2}, but there are no simple equations for d ≥ 3 known to us.
To circumvent this problem, we show that the expected number of tokens

E(x, t) is actually the same for all dimensions d ≥ 1; if the starting configuration
is the (k, d)-wedge.

Consider the expected number of tokens at a vertex x with respect to x̄ =
x1 + . . .+xd. With one step, a token starting at x can only reach vertices y with
ȳ ∈ {x̄ − 1, x̄ + 1}. The probability that either happens is 1/2, i.e.

∑

y∈Z
d

ȳ=b

Sd
1 (x − y) =

{

1
2 , if b ∈ {x̄ − 1, x̄ + 1}
0 otherwise.

Consider now the following variation of a random walk on Z
d, where each

token can only move in one dimension, i.e.

Pr[Zi = e1] = Pr[Zi = −e1] = 1/2,

Pr[Zi = ej ] = Pr[Zi = −ej ] = 0 for all j > 1.
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In this setting, we obtain a collection of 1-dimensional random walks operating
independently of each other. We write E

′(x, t) to denote the expected number
of tokens in this random walk; and we initialize E

′(x, 0) again with the (k, d)-
wedge. Note that E′(x, t) = E

′(x̄, t) again only depends on x̄ and t. By showing
E

′(x, t) = E(x, t) we can analyze a 1-dimensional random walk and directly
obtain results for d-dimensional random walks.

We prove E
′(x, t) = E(x, t) by induction over t. For the base case, we have

E(x, 0) = E
′(x, 0) by definition. For the inductive step t → t + 1, we obtain

E(x, t) =
∑

y∈Z
d

E(y, t − 1) · Sd
1 (x − y) (6)

=
∑

y∈Z
d

ȳ=x̄+1

E
′(ȳ, t − 1) · Sd

1 (x − y) +
∑

y∈Z
d

ȳ=x̄−1

E
′(ȳ, t − 1) · Sd

1 (x − y)

= E
′(x̄ + 1, t − 1) · 1

2
+ E

′(x̄ − 1, t − 1) · 1
2

= E
′(x̄, t) = E

′(x, t), (7)

where Eqs. (6) and (7) hold by the tower rule for expectation.
We now focus on the 1-dimensional random walk initialized with the (k, d)-

wedge. Let I1 := [−2k, 2k] and I2 := Z \ I1. We know that f(x, t) = d for all
x ∈ I2, x ∼ 0. We denote the expected number of tokens that started in S ⊆ Z

and arrive at the origin after t ∼ 0 steps by ES(0, t).

EI2(0, t) =
∑

x∈I2
x∼0

f(x, 0) · S1
t (|x|) ≤

∑

x∈[−t,t]
x∼0

d · 2−t ·
(

t

(t + |x|)/2

)

.

We now split the sum using that S1
t (x) = S1

t (−x):

EI2(0, t) ≤ d

2t
·

⎛

⎜

⎝

t
∑

x=0
x∼0

(

t

(t + x)/2

)

+
t

∑

x=2
x∼0

(

t

(t + x)/2

)

⎞

⎟

⎠
=

d

2t
·

t
∑

x=0

(

t

x

)

= d.

This approximation shows that EI2(0, t) ≤ d, which is obviously independent of
the number of steps the process is run.

The number of expected tokens that started in I1 and end at the origin after

t steps will be approximated using the upper bound
(

t
t/2

)

≤
√

2
πt · 2t · e− 18t−1

72t2+12t

[21]. Then, EI1 can be estimated the following way:

EI1(0, t) =
k

∑

i=1

S1
t (2i) · f(2i, 0) +

k
∑

i=0

S1
t (2i) · f(−2i, 0)

= d2−t

(

k
∑

i=1

(

t
t
2 + i

)

· (4k + 3 − 4i) +
k

∑

i=0

(

t
t
2 + i

)

· (4k + 1 − 4i)

)



220 T. Friedrich et al.

≤
(

t

t/2

)

· d2−t ·
(

k
∑

i=1

(4k + 3 − 4i) +
k

∑

i=0

(4k + 1 − 4i)

)

=
(

t

t/2

)

· d2−t · (2k + 1)2 ≤
√

2
πt

· e
− 18t−1

72t2+12t · d · (2k + 1)2.

Knowing EI1(0, t) and EI2(0, t), we compute E(0, t) by adding these terms and

obtain E(0, t) ≤ d+
√

2
πt ·e− 18t−1

72t2+12t ·d ·(2k+1)2. This results in a discrepancy of

|f(0, t) − E(0, t)| ≥ max

{

0, 4dk −
√

2
πt

· e
− 18t−1

72t2+12t · d · (2k + 1)2
}

. (8)

For large enough t, this proves the claim. �

This means that by using the second partition of Z
d in the rotor-router

model, it is possible to produce an arbitrarily large discrepancy of Ω(dk) which
reveals that there is no constant bound for the single vertex discrepancy. Figure 2
illustrates the single vertex discrepancy in a (k, 1)-wedge over time for k ∈
{16, 32, 64}.

Discrepancy Within Finite Steps. Lemma 7 shows that a discrepancy of 4dk
can be reached if the processes are run for t → ∞ steps. It is, however, possible
to achieve high discrepancy using already few steps by investigating Eq. (8) more
carefully. We show the following Corollary.

Corollary 8. Given dimension d ≥ 1 and a discrepancy � ∈ R+, there exists
a (k, d)-wedge that reaches the discrepancy � in t ∈ O

(⌈

�2/d2
⌉)

steps using
O(�1 + �/d�2d+1) tokens.

Proof. By Eq. (8), the number of steps that are needed to reach discrepancy �
with a (k, d)-wedge are

�
!
≤ 4dk −

√

2
πt

· e
− 18t−1

72t2+12t · d · (2k + 1)2

⇐ t ≥ 2
π

· d2(2k + 1)4

(4dk − �)2

Using standard analysis tools, we find that the minimum number of steps nec-
essary to reach the given discrepancy � is

t =
2 · d2(

⌈

d+�
2d

⌉

+ 1)4

π · (2d + �)2
∈ Θ

(⌈

�2

d2

⌉)

when using a (
⌈

d+�
2d

⌉

, d)-wedge. As the process runs t steps, it visits Θ(td) posi-
tions of the grid Z

d, each of which needs ≤ d · (4k+1) tokens. Therefore, in total
it needs at most O(�1 + �/d�2d+1) tokens. �
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Fig. 2. The simulated single vertex discrepancies for different (k, 1)-wedges. The plots
show that even for small t and k a high discrepancy can be achieved. This intuition is
formalized in Corollary 8.

4 Conclusion

The rotor-router model is a derandomized variant of the classical random walk.
It can be used algorithmically for example in broadcasting [9], external merge-
sort [3] and load balancing [13]. We study the similarity of the rotor-router model
to the expected behavior of the random walk. It was observed and well studied
that on grids the number of tokens only differs by some small constant at all
times and on each vertex [4,6,8]. We closely look at the underlying assumptions
of these results and prove that if tokens are allowed to start at an arbitrary
position, both models can deviate arbitrarily far. Besides the revealed combi-
natorial structure, our result indicates that also in algorithmic applications the
rotor-router model can deviate significantly from the expected behavior of the
random walk, which should be studied further.
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Abstract. We characterize the best possible trade-off achievable when
optimizing the construction of a decision tree with respect to both the
worst and the expected cost. It is known that a decision tree achieving
the minimum possible worst case cost can behave very poorly in expec-
tation (even exponentially worse than the optimal), and the vice versa is
also true. Led by applications where deciding for the right optimization
criterion might not be easy, recently, several authors have focussed on
the bicriteria optimization of decision trees.

An unanswered fundamental question is about the best possible trade-
off achievable. Here we are able to sharply define the limits for such a
task. More precisely, we show that for every ρ > 0 there is a decision tree
D with worst testing cost at most (1+ρ)OPTW +1 and expected testing
cost at most 1

1−e−ρ OPTE , where OPTW and OPTE denote the minimum
worst testing cost and the minimum expected testing cost of a decision
tree for the given instance. We also show that this is the best possible
trade-off in the sense that there are infinitely many instances for which
we cannot obtain a decision tree with both worst testing cost smaller
than (1+ ρ)OPTW and expected testing cost smaller than 1

1−e−ρ OPTE .

1 Introduction

We consider a very general model of the decision tree construction problem:
We have a set of objects S = {s1, . . . , sn} which is partitioned into m classes
C1, . . . , Cm. Objects are characterized by the value they take with respect to a
set of tests T . Each test t ∈ T has a finite number of possible values, which we
assume upper bounded by some fixed value �. Each test t has also an associated
rational positive cost c(t) which has to be paid in order to use the test. The aim
is to design a procedure which given an object identifies its class by adaptively
using tests to acquire information on the object whose classification has to be
discovered. Each new test restricts the set of possible classifications to those
of the objects matching (or satisfying) the results of all the tests performed so
far. The procedure stops when the objects agreeing with the results of the tests
performed belong to the same class, which must also be the class of the object
that had to be classified. We assume that the set of tests is complete, that is,
for any pair of objects from distinct classes, there exists a test t which separates
c© Springer-Verlag Berlin Heidelberg 2015
K. Elbassioni and K. Makino (Eds.): ISAAC 2015, LNCS 9472, pp. 223–234, 2015.
DOI: 10.1007/978-3-662-48971-0 20
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them, i.e., it has different values for the two objects. We also assume that a
probability distribution p on the set of objects is provided, according to which
the objects to be classified are believed to be chosen.

More formally, by an instance I we understand a quintuple I = (S, C, T,p, c)
where S is the set of objects, C is the family of classes defining the partition of
S, T is the set of tests, p is the probability distribution on S and c is the cost
function assigning a non-negative cost to each test in T.

As an example let us consider a diagnosis problem: the objects might be
a set of possible diseases, e.g., {flu, dengue, cancer} divided into infectious
{flu} and non-infectious {dengue, cancer}. The goal is to have a strategy for
quickly/cheaply testing whether a patient allegedly ill might be infectious or not.

Any testing procedure can be represented by a decision tree, which is a tree
where every internal node is associated with a test. The branches stemming out
from a node are associated with the possible outcomes of the test associated
with the node. Every leaf is associated with a set of objects that belong to the
same class. More formally, a decision tree D over the set of objects S can be
inductively defined as follows: (i) if every object of S belongs to the same class
i, then D is a single leaf associated with class i; (ii) otherwise, the root r of D is
associated with some test t ∈ T and the children of r are decision trees for the
non empty sets in {S1

t , . . . , S�
t}, where Si

t is the subset of S for which the test t
takes value i.

Given a decision tree D, rooted at r, we can identify the class of an object
s by following a path from r to a leaf as follows: first, we ask for the result of
the test associated with r when performed on s; then, we follow the branch of
r associated with the result of the test to reach a child r′ of r; next, we apply
the same steps recursively starting from r′. The procedure ends when a leaf
is reached, which determines the class of s. We also say that this is the leaf
associated to s.

We define cost(D, s) as the sum of the tests’ cost on the path from the root
of D to the leaf associated with object s. Then, the worst testing cost and the
expected testing cost of D are, respectively, defined as

costW (D) = max
s∈S

{cost(D, s)} and costE(D) =
∑

s∈S

cost(D, s)p(s) (1)

Most of the works on decision tree optimization focuses on building a decision
tree that minimizes only one of the above measures [1,5,7,12–15,18,23]. From an
application point of view, the choice of the optimization criterion reflects different
assumptions on the data model: a more optimistic perspective on the knowledge
of the underlying distribution might elicit the minimization of the expected
testing cost; a more pessimistic perspective might prefer the more conservative
minimization of the worst case testing cost.

However, the two different optimization criteria can lead to very different
trees: a decision tree minimizing the expected cost for a very skewed distribution
can have a skewed shape with a very high worst case cost even exponentially
bigger than the worst cost of a decision tree optimized with respect to the worst
testing cost. Conversely optimizing with respect to the worst testing cost can
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lead to a tree with poor performance in expectation. The choice of the “wrong”
optimization criterion might have serious consequences in practical applications
(see, e.g., [17] for such a study in the economics literature).

These arguments have motivated recent work on decision tree constructions
optimizing both worst and the expected testing cost [3,9,16,19]. In [9], which
was our starting point in this line of research, we provided an algorithm which
builds a decision tree guaranteeing simultaneously O(log n)-approximation for
both worst and expected testing cost—which is the best possible approximation
achievable for either criterion under standard complexity assumptions.

Here, we address, and, surprisingly, exactly answer, a more fundamental ques-
tion regarding the existence of arbitrarily good trade-offs between expected and
worst cost: Does there exist in general (asymptotically for any instance) a deci-
sion tree with worst testing cost and expected testing cost arbitrarily close,
respectively, to the optimal worst testing cost and the optimal expected testing
cost? Or, otherwise, what is the threshold for the best trade-off we can hope for?

Our Results. In Sect. 2, we show that for every ρ > 0 and every instance I there
exists a decision tree D with worst testing cost at most (1+ρ)OPTW (I)+1 and
expected testing cost at most 1

1−e−ρ OPTE(I), where OPTW (I) (resp. OPTE(I))
denote the cost of the decision tree with minimum worst testing cost (resp.
minimum expected testing cost) for the instance I.

We then show, in Sect. 3, that this is a sharp characterization of the best
possible trade-off attainable, in the sense that there are infinitely many instances
for which we cannot obtain a decision tree with both worst testing cost smaller
than (1 + ρ)OPTW (I) and expected testing cost smaller than 1

1−e−ρ OPTE(I).
To obtain the upper bound, we present a procedure that given a parameter

ρ > 0, a decision tree DW with worst testing cost W and a decision tree DE

with expected testing cost E, produces a decision tree D with worst testing cost
at most (1+ρ)W +1 and expected testing cost at most 1

1−e−ρ E. For the analysis
of our procedure we employ techniques from non-linear programming (NLP) [4].
Although we had reached our upper bound in an independent way, we shall
mention that our techniques are similar to those employed in [2,25] to obtain
tight trade-offs between the minimization of the expected completion time and
the makespan for scheduling problems.

For the lower bound, we then make use of the probability distribution used
in the analysis of the upper bound—obtained by the optimal solution of the
NLP—as a starting point for constructing non-trivial instances that guarantee
that the upper bound is tight. In this case, the results of [2,25] give no clue how
to obtain a tight lower bound for our problem.

Related Work. There are some studies related to the simultaneous minimiza-
tion of the expected testing cost and the worst testing cost for the prefix code
problem [6,11,20–22]. The problem of constructing a prefix code is a particular
case of decision tree optimization in which each object belongs to a distinct class,
the testing costs are uniform and the set of tests is in one to one correspondence
with the set of all binary strings of length n so that the test corresponding to a
binary string b outputs 0 (1) for object si if and only if the ith bit of b is 0 (1).



226 A. Saettler et al.

In contrast to our present findings, the results of Milidiu and Laber [22]
imply that in the case of the prefix code problem, asymptotically, there exists
a decision tree that is arbitrarily close to the optimum with respect to both
expected and worst cost. More precisely, for every instance I with n objects and
any ρ > 0, there is a decision tree D such that costW (D)/OPTW (I) ≤ (1 + ρ)
and costE(D)/OPTE(I) ≤ 1/ψρ log n−1, where ψ is the golden ratio (1 +

√
5)/2.

Some proofs are deferred to the full version of the paper.

2 Trade-off: Upper Bound

In this section, we show our upper bound on the achievable trade-off between
worst and expected testing cost for the decision tree optimization problem. Our
proof will be constructive, that is, we will show a procedure for constructing a
decision tree guaranteeing the desired trade off.

Given a positive number j, and two decision trees DE and DW for instance
I, the procedure CombineTrees(DE , DW , j) (See Algorithm 1) constructs a new
decision tree Dj for I whose worst testing cost is increased by at most j w.r.t
the worst testing cost of DW , i.e., costW (Dj) ≤ j + costW (DW ). Our algorithm
uses the definition of a j-replaceable node, by which we mean a node v in D such
that the total cost of the tests on the path from the root of D to v (including
v) is at least j and the cost of the path from the root of D to the parent of
v is smaller than j. The procedure Trade-Off repeatedly uses CombineTrees
to create several decision trees with increasingly worst testing cost and chooses
the one with the best expected testing cost. We will show that this way it can
guarantee the best possible trade off.

Proposition 1. The decision tree Dj returned by CombineTrees has worst test-
ing cost at most j + costW (DW ).

Now we analyze the decision tree D = Dj∗
output by Trade-Off(DE ,DW , C),

where C is an integer parameter. Notice that D is the decision tree with minimum

Algorithm 1. Computes trade off tree between DW and DE

Procedure CombineTrees(DE , DW , j)

1: Dj ← DE

2: Traverse Dj and construct R = {v | v is a j-replaceable node of Dj}
3: for each v ∈ R do
4: Replace in Dj the subtree rooted at v with DW

5: return Dj

Procedure Trade-Off(DE , DW , C)

1: for j = 0, . . . , C do
2: Dj ← CombineTrees(DE , DW , j)
3: j∗ ← arg min

0≤j≤C
costE(Dj)

4: return Dj∗
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expected testing cost among the decision trees D0,D1,D2, . . . , DC , where Dj

is the decision tree returned by CombineTrees(DE ,DW , j). It follows from the
previous proposition that costW (D) ≤ C + costW (DW ).

The analysis of the expected testing cost of D is more involved. In order to
simplify the notation we will let W = costW (DW ). We also assume for simplicity
in the following that test costs are integers. Given a decision tree D′ and an
object/leaf s ∈ S with cost(D′, s) = κ we will say that s has cost κ in D′.

Let pi, with i = 1, . . . , C, be the sum of the probabilities of objects with cost
i in DE and pC+1 be the sum of the probabilities of the objects with cost larger

than C in DE . Clearly costE(DE) ≥
C+1
∑

i=1

pi · i. Furthermore, for j = 0, . . . , C,

we have that costE(Dj) ≤
j

∑

i=1

pi · i +

⎛

⎝(j + W )
C+1
∑

i=j+1

pi

⎞

⎠ because the objects

whose cost in DE is larger than j have cost at most j + W in Dj . Thus,

costE(D)
costE(DE)

= min
j=0,...,C

costE(Dj)
costE(DE)

≤ min
j=0,...,C

{
∑j

i=1 pi · i + (j + W )
∑C+1

i=j+1 pi
∑C+1

i=1 pi · i

}

≤ max
p∈P

min
j=0,...,C

{
∑j

i=1 pi · i + (j + W )
∑C+1

i=j+1 pi
∑C+1

i=1 pi · i

}

,

where P = {(p1, p2, . . . , pC+1)|
∑C+1

i=1 pi = 1 and p1, p2, . . . , pC+1 ≥ 0}.
Thus, we can conclude that costE(D)/costE(DE) ≤ z∗, where z∗ is the

maximum achieved by the following non linear program (NLP):

z∗ = max z s. t. (2)

z

(

C+1
∑

i=1

i · pi

)

−
j

∑

i=1

i · pi − (j + W )

⎛

⎝

C+1
∑

i=j+1

pi

⎞

⎠ ≤ 0, j = 0, . . . , C (3)

C+1
∑

i=1

pi = 1 (4)

pi ≥ 0, i = 1, . . . , C + 1 (5)

Perharps surprisingly we can prove that the optimal solution of the NLP is given
by p∗ = (p∗

1, p
∗
2, . . . , p

∗
C+1, z

∗), where for i = 1, . . . , C,

p∗
i =

(W − 1)i−1

W i
, and p∗

C+1 =
(W − 1)C

WC
and z∗ =

1
(

1 −
(

W−1
W

)C+1
) . (6)

The proof consists of showing that the functions that define the C +1 non linear
constraints are convex in the polyhedra P and the point p∗ satisfies the Karush-
Kuhn-Tucker conditions [4]. Thus, by setting C equal to an integer such that
(C − 1)/W < ρ ≤ C/W , we get the following theorem.
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Theorem 1. Fix an instance I of the decision tree optimization problem and let
DE be a decision tree such that costE(DE) = OPTE(I). For every ρ > 0 there
exists a decision tree D such that

costW (D) ≤ (1 + ρ)OPTW (I) + 1 and costE(D) ≤
(

1
1 − e−ρ

)

OPTE(I).

3 Trade-off: Lower Bound

In this section we show that the previous theorem is essentially tight by proving
the following result.

Theorem 2. Fix positive integers W and C. There exists an instance I such
that the following hold: 1. OPTW (I) ≤ W. 2. OPTE(I) ≤ W

(

1 −
(

W−1
W

)C
)

+

�log W �
(

W−1
W

)C
. 3. If a decision tree D for I is such that costW (D) ≤ W + C

then it holds that costE(D) ≥ W.

Corollary 1. For any fixed ρ > 0 and ε > 0, there are infinitely many instances
I of the decision tree problem such that no decision tree can simultaneously
guarantee worst testing cost smaller than OPTW (I)(1 + ρ) and expected testing
cost smaller OPTE(I)

(

1
1−e−ρ

)

− ε.

Proof. Pick an integer W and C = �ρW �. Then, consider the instance I given
by the previous theorem. It follows that every decision tree D, with costW (D) ≤
W + C ≤ (1 + ρ)W , satisfies costE(D) ≥ W . Thus,

costE(D)

OPTE(I)
≥ 1

1 − (W−1
W

)C
+ �log W�

W

(

W−1
W

)C
≥ 1

1 − (W−1
W

)ρW
+ �log W�

W

(

W−1
W

)ρW

It is easy to see that the right hand side expression goes to 1
1−e−ρ as W goes to

∞. Thus, for every W larger than a certain integer, say Wε we get that right
hand side is larger than 1

1−e−ρ − ε so that there are infinitely many instances
with the required property.

3.1 The Structure of the Instance I in Theorem 2

For positive integers W and C we define the following instance I = (S, T, C,p, c).

The Set of Objects S. For the sake of simplifying notation, let LW = �log W �.
The set of objects is divided into the objects of type i (for each i = 1, . . . , C+LW )
and light objects with almost zero probability mass. For each i = 1, . . . , C + LW

there are 2i objects of type i, which we denote by S(i) = {o
(i)
1 , . . . , o

(i)
2i }.

For each i = 1, . . . , C and j = 1, . . . , 2i, the probability of o
(i)
j is (W−1)i−1

2iW i .

Hence, the total probability of objects of type i is p(S(i)) = (W−1)i−1

W i . Note that
this is exactly the probability distribution of the optimal solution of the NLP
presented in the previous section.
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For each i = C + 1, . . . , C + LW and j = 1, . . . , 2i, the probability of o
(i)
j is

(

W−1
W

)C 1
2C(2LW +1−2)

. Hence, for the total cumulative probability of objects of

type larger than C we have p(S(C+1) ∪ · · · ∪ S(C+LW )) =
(

W−1
W

)C
.

Finally, there are 2C+LW +1 light objects, each of which has the same proba-
bility which is very close to zero. We denote by SL = {oL

j | j = 1, . . . , 2C+LW +1}
the set of the light objects, and we set p(SL) = ε′ → 0.1

The Partition into Classes C. Each object belongs to a different class.

A Canonical Representation of the Objects. For later purposes it is con-
venient to visualize the set of objects as a complete binary tree T of depth
C + LW + 1. By the ith level of T we understand the set of nodes at distance i
from the root.

For i = 1, . . . , C + LW the objects of type i are identified with the nodes at
level i of T . Therefore, for i = 1, . . . , C + LW and j = 1, . . . , 2i, the jth node
(counting from left to right) in level i is identified with object o

(i)
j of S(i). We

use O
(i)
j to denote the set of objects of the subtree of T rooted at o

(i)
j .

The light objects are identified with the nodes at level C + LW + 1 of T .
Therefore, for j = 1, . . . , 2C+LW +1, the jth node (counting from left to right) in
level C + LW + 1 of T is identified with object oL

j of SL. We shall note that the
root of T is not associated with an object.

The Set of Tests T . The set T of available tests is easily explained with
reference to the canonical representation of the objects presented above. The
values taken by a test can be interpreted as a partition of the set of objects,
each value corresponding to the subset of objects for which the test has that
value. Therefore, we describe a test by the way it partitions or splits the set of
objects.

There is one test of type 1, which we denote with t
(1)
1 and splits the objects

as follows: (i) the single object {o
(1)
1 }; (ii) the single object {o

(1)
2 }; (iii) the set

O
(1)
1 − {o(1)1 }; (iv) the set O

(1)
2 − {o(1)2 }.

For each i = 2, . . . , C + LW and j = 1, . . . , 2i−2 the set T includes a test
t
(i)
j which splits the set of objects into 4 parts as follows: (i) the single object

{o
(i)
2j−1}; (ii) the single object {o

(i)
2j }; (iii) O

(1)
1 − {o(1)1 , o

(i)
2j−1} − O

(i)
2j ; (iv) O

(1)
2 ∪

{o
(1)
1 } ∪

(

O
(i)
2j \ {o

(i)
2j }

)

.

For each i = 2, . . . , C + LW and j = 2i−2 + 1, . . . , 2i−1 the set T includes a
test t

(i)
j which splits the set of objects into 4 parts as follows: (i) the single object

{o
(i)
2j−1}; (ii) the single object {o

(i)
2j }; (iii) O

(1)
1 ∪ {o(1)2 } ∪

(

O
(i)
2j−1 \ {o

(i)
2j−1}

)

; (iv)

O
(1)
2 − {o(1)2 , o

(i)
2j } − O

(i)
2j−1.

1 The probability of all the other objects should be multiplied by 1−ε. For simplifying
the notation we shall simply assume that the light objects have zero probability.
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We can try to visualize the split produced by test t
(i)
j , with i > 1, as follows:

we first separate the objects in the subtrees of T rooted at the children of o
(i−1)
j ;

then we separate the roots of these two subtrees from the remaining objects.
This way we create 4 groups, two of them being singletons. Then, one of the
non-singleton groups gets the remaining objects from the set O

(1)
1 −{o(1)1 } while

the other gets those from O
(1)
2 − {o(1)2 }. Finally, we add {o

(1)
1 , o

(1)
2 } to one of the

non-singleton groups according to whether the object o
(i−1)
j is in O

(1)
1 or in O

(1)
2 .

For each i = 1, . . . , C + LW , we will refer to tests {t
(i)
j | j = 1, . . . , 2i−1} as the

tests of type i.
Finally, T includes a test denoted by t∗ which separates each single object.

The Cost of the Tests. The tests of type i = 1, . . . , C + LW have cost 1 while
the test t∗ has cost W . We will refer to test t∗ as the costly test.

3.2 Proof of Theorem 2

Proof of Item 1. The first item of Theorem 2 follows because a tree with the
costly test t∗ at the root has worst testing cost W .

Proof of Item 2. To prove the second item we construct a decision tree DC(I)
for instance I, which we call the Canonical Decision Tree, and we evaluate its
expected testing cost.

If we ignore the leaves—which can be added in the natural way—the structure
of the nodes associated with tests in the canonical decision tree DC(I) can
be obtained as follows: start with the canonical tree of objects T ; replace the
root of T with the test t

(1)
1 and each node o

(i)
j with the test t

(i+1)
j , for i =

1, . . . C + LW − 1. Finally, each node on level C + LW is replaced by the costly
test t∗.

It is not to hard to verify that

costE(DC(I)) ≤
C

∑

j=1

j
(W − 1)j−1

W j
+ (C + LW )

(

W − 1
W

)C

(7)

= W

(

1 −
(

W − 1
W

)C
)

+ LW

(

W − 1
W

)C

. (8)

Inequality (7) follows by observing that in the canonical decision tree every
object of type larger than C has cost at most C + �LW . Moreover, we use
C

∑

j=1

j
(W − 1)j−1

W j
= W − (C + W )

(

W − 1
W

)C

to obtain (8). Thus, we have

established the item 2 of Theorem 2.
Proof of Item 3. To establish the item 3, we need some additional notation. By
the test associated with a non-light object o we mean the non-costly test that
separates the two children of o, that is, for o = o

(i)
j the test associated to o is

t
(i+1)
j . For a decision tree D, we use Obj(ν) to denote the set of objects associated
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with the leaves in the subtree of D rooted at ν. We say that a test t occurs at
cost level κ in a decision tree D if the total cost of tests on the path from the
root of D to t (excluding t) is κ.

The proof of the following propositions are deferred to the full version.

Proposition 2. Let D be a decision tree for instance I. Let ν be an internal
node of D, such that Obj(ν) includes non-light objects. Then there are two sibling
nodes/objects of the canonical tree of objects T , name them x1 and x2, such that
each object in Obj(ν) is a descendant of either x1 or x2 in T .

Proposition 3. The following inequalitiy holds: Pr[O(i)
k − o

(i)
k ] ≤ (W −

1)Pr[o(i)k ], for any 1 ≤ i ≤ C + LW and 1 ≤ k ≤ 2i.

Lemma 1. Let D be a decision tree for the instance I such that costW (D) ≤
W + C. Then costE(D) ≥ W.

Proof. Let D be a decision tree with minimum expected testing cost among all
decision trees for I with worst testing cost not larger than W + C.

First, we argue that every non-costly test in D with at least one non-light
object as a descendant occurs at cost level at most C − 1. For the sake of
contradiction, let us assume that some non-costly test that has at least one non-
light object as a descendant occurs at cost level larger than or equal to C. Let ν
be the node of D corresponding to such a test and let o be a non-light object in
Obj(ν). Assume that o ∈ O

(1)
1 (the proof for the other case is analogous so that

we omit it). We have two cases: o is of type i > 1 and o is of type 1. If o is of
type larger than 1 then the two light objects identified with the two nodes in the
leftmost path of the subtree rooted at o in T are also in Obj(ν) because the only
tests that separate them from o are the costly test and the test corresponding
to the parent of o. However, none of these tests can be an ancestor of ν in D,
for otherwise we would have o /∈ Obj(ν). Thus, in order to separate these light
objects we need a costly test in the subtree of D rooted at ν. This implies that
costW (D) > C +W , which is a contradiction. If o has type 1 then the argument
is the same except for the fact that we consider the two light objects identified
with the two nodes in the righmost path of the subtree rooted at o in T .

Now, we argue that there exists a tree D̃ with worst testing cost at most
C + W and expected testing cost not larger than that of D such that all costly
tests in D̃, which are ancestors of at least one non-light object, occur at cost
level C. For that, let ν be an internal node of D associated with a costly test
that occurs at cost level smaller than C and such that Obj(ν) contains non-light
objects. By Proposition 2 the set of objects Obj(ν) can be partitioned into three
parts {o

(s)
2j−1}, {o

(s)
2j } and Obj(ν)\{o

(s)
2j−1, o

(s)
2j } ⊆

(

O
(s)
2j−1 ∪ O

(s)
2j

)

−{o(s)2j−1, o
(s)
2j },

for some 1 ≤ s ≤ C + LW . and some 1 ≤ j ≤ 2s. From Proposition 3 we have

Pr[Obj(ν) \ {o
(s)
2j−1, o

(s)
2j }] ≤ Pr[{O

(s)
2j−1} \ {o(s)2j−1}] + Pr[{O

(s)
2j } \ {o(s)2j }] (9)

≤ Pr[{o
(s)
2j−1, o

(s)
2j }](W − 1). (10)
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Let D′ be the decision tree obtained by replacing the costly test at ν with
the test t

(s)
j and then using costly tests on the two branches not leading to

leaves. This reduces the cost of the leaves associated with o
(s)
2j−1 and o

(s)
2j by

W − 1 and increases by 1 the cost of the leaves associated to the objects in
Obj(ν) \ {o

(s)
2j−1, o

(s)
2j }. In formulas, using (9)-(10), we have

costE(D′)=costE(D)−(W −1)Pr[{o
(s)
2j−1, o

(s)
2j }]+Pr[Obj(ν)\{o

(s)
2j−1, o

(s)
2j }] ≤ costE(D).

Repeated application of the above transformation gives a decision tree D̃
such that: costW (D̃) = C + W ; costE(D̃) ≤ costE(D) and for each node ν of
D̃ associated with a costly test, either Obj(ν) contains only light objects or ν
occurs at cost level C.

For each � = 1, 2, . . . , C let p̃� be the probability of the non-light objects
whose cost in D̃ is �. Note that every non-costly test splits the set of non-light
objects into exactly four parts, with exactly two of them associated to leaves.
Thus, it follows that in D̃, there are at most 2� leaves at level � associated with
non-light objects (such objects having cost �). Therefore, for each k = 1, . . . , C.

k
∑

�=1

p̃� ≤
k

∑

�=1

(W − 1)�−1

W �
. (11)

In fact for each k there are at most 2k+1 − 2 leaves associated with non-light
objects in the first k levels. In addition the set of 2k+1 − 2 objects of largest
probability in I is given by the set of objects of type 1, . . . , k, whose cumulative
probability coincides with the right-hand-side expression.

Then, ignoring the contribution of the light objects, we can write

costE(D̃) =
C

∑

j=1

(

1 −
j−1
∑

�=1

p̃�

)

+ W

(

1 −
C

∑

�=1

p̃�

)

(12)

≥
C

∑

j=1

(

1 −
j−1
∑

�=1

(W − 1)�−1

W �

)

+ W

(

1 −
C

∑

�=1

(W − 1)�−1

W �

)

(13)

=
C

∑

j=1

(W − 1)j−1

W j−1
+ W

(

(W − 1)C

WC

)

= W (14)

where (12) is a rewriting of costE(D̃) in terms of the contribution of the internal
nodes/tests by cost level; and (13) follows from (12) because of (11). By the
construction of D̃ we finally have the desired result costE(D) ≥ costE(D̃) ≥ W.

4 Open Problems

An interesting open question regards the case of uniform testing costs. We ask
whether for every ε > 0, there is some integer n0 such that every instance I with
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uniform testing costs and with more than n0 objects, admits a decision tree D
such that costE(D) ≤ (1+ε)OPTE(I) and costW (D) ≤ (1+ε)OPTW (I). Notice
that this result holds for the special case of decision tree construction that we
have in prefix code problem [22].
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Abstract. Sliding Token is a natural reconfiguration problem in
which vertices of independent sets are iteratively replaced by neighbors.
We develop techniques that may be useful in answering the conjecture
that Sliding Token is polynomial-time decidable on bipartite graphs.
Along the way, we give efficient algorithms for Sliding Token on bipar-
tite permutation and bipartite distance-hereditary graphs.

1 Introduction

Reconfiguration problems have been subject to much recent attention and study.
We focus on just one reconfiguration problem, Sliding Token, which is a nat-
ural reconfiguration problem over independent sets on graphs. Recall that an
independent set of a graph is a subset of its vertices such that no two are adja-
cent. A vertex in an independent set is called a token. Intuitively, one “slides”
tokens across edges to form new independent sets.

For independent sets I and J , we write I
G↔ J if |I| = |J | and there exists an

edge uv ∈ E(G) where I�J = {u, v}, where � denotes symmetric difference. A
reconfiguration sequence is a sequence of independent sets 〈I1, I2, . . . , Ik〉 such
that Ii

G↔ Ii+1 for all 1 ≤ i < k. For independent sets I and J on graph G,
the binary relation I

G� J denotes that a reconfiguration sequence containing
both I and J exists. “ G�” partitions independent sets into equivalence classes:
let [I]G = {J | I G� J} be the equivalence class of I (with the subscript omitted
when implied from context). A yes-instance of Sliding Token is a graph G

and independent sets I and J where I
G� J .

Hearn and Demaine [3] show Sliding Token is PSPACE-complete.
Kamiński et al. [5] give a linear-time algorithm for Sliding Token on cographs.
There are also polynomial-time algorithms on trees and claw-free graphs for
Sliding Token [1,2]. On graphs of bounded bandwidth (and thus treewidth),
Sliding Token remains PSPACE-complete [9]. Sliding Token is W [1]-hard
parameterized only by the length of the reconfiguration sequence [4,6].

1.1 Preliminaries

Let G be a graph with vertex set V (G) (with n = |V (G)|) and edge set E(G),
and S a subset of its vertices. G[S] is the subgraph induced by S: the graph
c© Springer-Verlag Berlin Heidelberg 2015
K. Elbassioni and K. Makino (Eds.): ISAAC 2015, LNCS 9472, pp. 237–247, 2015.
DOI: 10.1007/978-3-662-48971-0 21
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with vertex set S and edge set E(G) ∩ (S × S). Define G \ S as G[V (G) \ S].
NG(v) is the set of all vertices adjacent to v in G and NG[v] = NG(v) ∪ {v}.
NG[S] = ∪v∈SNG[v] for vertex-subset S. When the graph is unambiguous, it is
omitted from the notation.

Let R(G, I) = {v | v ∈ ∩I′∈[I]GI
′} be the subset of I containing all of the

tokens v such that v ∈ I ′ for all I ′ ∈ [I]G. Vertices in R(G, I) are called rigid
with respect to G and I. An independent set I is unlocked if R(G, I) = ∅.

Because we frequently form sets that are just slight modifications of others,
we write A + x to be A ∪ {x} and A − x to be A \ {x}.

A graph is a permutation graph if and only if there is a bijection between the
vertices and a set of line segments between two parallel vertical lines such that
two vertices are adjacent if and only if their corresponding segments intersect.
A bipartite permutation graph is a permutation graph that has no odd-length
cycles.

Given an ordering 〈v1, . . . , vn〉 of the vertices of a graph, let N+
G (vi) =

NG(vi) ∩ {vi+1, . . . , vn}. Similarly, define N−
G (vi) = NG(vi) ∩ {v1, . . . , vi−1}.

The following is easily derived from e.g. [7,8]:

Proposition 1. Each connected bipartite permutation graph G has an ordering
〈v1, v2, . . . , vn〉 to V (G) such that

1. for all j > 1, N(vj) �⊂ N(v1),
2. for all i ≤ j ≤ k, every path from vi to vk contains some vertex in NG[vj ]
3. v2 ∈ N(v1) if n > 1,
4. v2 is a pendant only if n = 2,
5. for all i and j where 1 ≤ i < j ≤ n, vi’s distance to v1 is at most vj’s

distance to v1, and
6. for all i and j where 1 ≤ i < j ≤ n and vi and vj have equal distance to v1,

N−
G (vj) ⊆ N−

G (vi) and N+
G (vi) ⊆ N+

G (vj), and
7. N−

G (vi) �= ∅ for all 1 < i ≤ n.

Such an ordering can be found in linear time. ��

Bipartite permutation graphs may seem somewhat arbitrary; however, their
many definitions make them a compelling class to study. For example, they
are also characterized as bipartite AT-free graphs, bipartite bounded tolerance
graphs, bipartite tolerance graphs, bipartite trapezoid graphs, and unit interval
bigraphs. They are well studied (see e.g. [7]) and Sliding Token is PSPACE-
complete on some slight non-bipartite generalizations (e.g. AT-free, perfect [5]).

We present an algorithm to efficiently decide Sliding Token on bipartite
permutation graphs. Our main theorem is:

Theorem 1. Sliding Token can be decided in polynomial time on bipartite
permutation graphs of n vertices.

This result bounds the diameter of the “reconfiguration graph” for Sliding
Token on a bipartite permutation graph; the algorithm produces a sequence
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of length quadratic in the number of tokens if any sequence exists. Because of
this, determining if there exists a reconfiguration sequence of length at most k
is in NP.

To prove the main result, we first give some results about general and biparite
graphs in Sects. 2 and 3. We prove our main result in Sect. 4 and then briefly
show how techniques developed within can be applied to other classes of bipartite
graphs.

2 Coping with Rigid Tokens

In general, tokens may be confined to specific areas of the graph. For example,
in the PSPACE-hardness reduction for Sliding Token given by Demaine and
Hearn [3], no token can ever slide out of its specific gadget (see e.g. Theorem 23
in [3]). Rigidity is a much stricter form of confinement; easing proof of strong
statements about it, and for the purposes of Sliding Token on bipartite per-
mutation graphs, it is not too restrictive. Once identified, rigid vertices and their
neighborhoods can be deleted. This allows algorithms to only consider instances
without rigid vertices, which, in this case, significantly simplifies them.

Proposition 2. If G′ is an induced subgraph of G and I
G′
� J , then I

G� J
via the same reconfiguration sequence. ��

Proposition 3. I
G� J if and only if I − v

G\N [v]� J − v for any v ∈ R(G, I) ∩
R(G, J).

Proof. First, assume I G� J . Fix a reconfiguration sequence 〈I = I0, I1, . . . , Ik =
J〉. v ∈ Ij and N(v) ∩ Ij = ∅ for 0 ≤ j ≤ k. Therefore, simply remove v from all
Ij , 0 ≤ j ≤ k, and remove NG[v] from G: the sets remain independent and do
not use deleted vertices.

Next, suppose I−v
G\N [v]� J−v. Proposition 2 gives I−v

G� J−v. Modify the
reconfiguration sequence by inserting v into each independent set. This maintains
independence: no vertex in NG(v) is in the reconfiguration sequence as those
vertices do not exist in the induced subgraph. ��

Proposition 4. I
G� J if and only if R(G, I) = R(G, J) and I \ R(G, I)

G\N [R(G,I)]� J \ R(G, I).

Proof. By definition of rigidity, if R(G, I) �= R(G, J) then J �∈ [I]G. Repeated
application of Proposition 3 implies the other direction. ��

Proposition 5. Let I be an independent set and S ⊆ I. If, for all w ∈ N(S),
|N(w) ∩ S| > 1, then S ⊆ R(G, I). ��
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3 An Algorithm on Bipartite Graphs

In this section, we show that it is relatively straightforward to manipulate the
tokens of an independent set in a bipartite graph in a number of ways to e.g.
find rigid tokens. In general graphs, identifying R(G, I) is PSPACE-complete; a
proof is briefly sketched here. Given an instance 〈G, I, J〉 of Sliding Token, we
modify G by adding two vertices to produce G′: vertex v adjacent to all vertices
in V (G)\J and vertex w adjacent to only v. A token is added to I on w. Clearly,
w �∈ R(G′, I ∪ {w}) if and only if I G� J .

Algorithm 1. SwitchSides(A,B,E, I0)
Input: Bipartite graph G = (A ∪ B,E), independent set I0
Output: Reconfiguration sequence 〈I0, . . . , Ik〉 where Ik ∩A = R(G, I0) ∩A and

k = |I0| − |R(G, I0) ∩ A|
1 M ← ∅ // Will hold available slides

2 C ← table from vertices to subsets of vertices
// Initialize M

3 foreach vertex u ∈ B do
4 Cu ← N(u) ∩ I0
5 if |Cu| = 1 then
6 M ← M ∪ {u}
7 k ← 0
8 while |M | > 0 do
9 k ← k + 1

10 u ← remove an arbitrary element u from M // u ∈ B will be in Ik
11 v ← remove the unique vertex v from Cu // v ∈ Ik−1

12 Ik ← Ik−1 − v + u
13 foreach vertex w ∈ N(v) do
14 Cw ← Cw − v
15 if |Cw| = 1 then
16 M ← M ∪ {w}

17 return 〈I0, I1, . . . , Ik〉

Algorithm 2. Wiggle(A,B,E, I0)
Input: Bipartite graph G = (A ∪ B,E), independent set I0
Output: Reconfiguration sequence 〈I0, . . . , Ik〉 with k ≤ 4|I0| such that for all

v ∈ I0 \ R(G, I0), there is some j where Ij \ Ij−1 = {v}
1 〈I0, . . . , Ik1〉 ← SwitchSides(A,B,E(G), I0)
2 〈I0 = I ′

0, . . . , I
′
k2〉 ← SwitchSides(B,A,E(G), I0)

3 return 〈I0, . . . , Ik1 , Ik1−1, . . . , I0, I
′
1, . . . , I

′
k2 , I

′
k2−1, . . . , I0〉
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Proposition 6. Given a bipartite graph G = (A∪B,E) and an independent set
I0, in linear time a reconfiguration sequence 〈I0, . . . , Ik〉 can be computed where
Ik ∩ A = R(G, I0) ∩ A and k = |I0| − |R(G, I0 ∩ A)|.

Proof. We analyze Algorithm 1.

Runtime. The first loop, when processing u, charges its work to all the incident
edges to u. Charge each iteration of the inner loop (lines 14–16) to the edge vw
and charge the work on lines 9–12 to the vertex v. No edge or vertex is charged
more than twice, and each charge takes O(1) time.

Correctness. Let Ct
u (M t) be the state of Cu (resp., M) at the top of the tth

execution of the while loop (i.e. at line 9 when k is incremented to be t).
The while loop of Algorithm 1 maintains these properties going into the tth

iteration: (P1) Ct
u = N(u)∩ It−1 for all vertices u ∈ B and (P2) M t = {u ∈ I0 :

|Ct
u| = 1}.
The output is a valid reconfiguration sequence because (1) Ik and Ik−1 differ

by adjacent vertices (line 12) and (2) P1 guarantees that each set is independent.
Next, we prove I0 ∩ Ik ∩ A = R(G, I0) ∩ A. As only vertices in I0 ∩ A are

removed from an independent set during the reconfiguration sequence, both I0
and Ik contain I0 ∩ B. Since it is a valid reconfiguration sequence, we know
R(G, I0) ⊆ I0 ∩ Ik. Thus, R(G, I0) ⊆ I0 ∩ Ik and it remains to be shown that
no non-rigid vertices of I0 \ (R(G, I0) ∩ A) are in Ik. Since M is empty at the
end of the algorithm, |Cu| �= 1 for all u ∈ Ik. Consider S = I0 ∩ Ik ∩ A. Any
w ∈ N(S) must have |Cw| > 1 by property (P1), so Proposition 5 with G and S
shows S ⊆ R(G, I0). Thus, I0 ∩ Ik ∩ A = R(G, I0) ∩ A.

Finally, we show that the length of the reconfiguration sequence, k, is as
promised. For all 0 < j ≤ k, we have that |Ij ∩ I0| = |Ij−1 ∩ I0| − 1, so |I0| −
|R(G, I0) ∩ A| is an upper bound on k. To lower-bound k, it takes k slides to
reconfigure k vertices out of I0. ��

Algorithm 2 applies Algorithm 1 twice to produce a sequence that starts and
ends with the same sequence but ensures that each token not in R(G, I) slides
exactly twice.

Lemma 1. Given bipartite graph G = (A ∪ B,E), and independent set I0 in
linear time Algorithm2 finds a reconfiguration sequence of length at most 4|I0|
in which each token of I0 \ R(G, I0) slides exactly twice. ��

Lemma 2. Let G = (A ∪ B,E) be a bipartite graph and I be an independent
set of G. In linear time, R(G, I) can be computed.

Proof. Invoke Algorithm 2. By the post-condition promises, the tokens that never
slid in the output sequence are exactly R(G, I). ��

Lemma 3. Let G = (A∪B,E) be a connected bipartite graph and I an unlocked
independent set. Then for any v ∈ V (G), in linear time, one can find a recon-
figuration sequence 〈I = I0, I1, . . . , Ik = J〉 where v ∈ J , v �∈ Ik−1, and k is at
most |I| plus the distance between v and the closest token of I.
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Proof. We distinguish 3 cases:
(1) If v ∈ I, the entire sequence is just 〈I〉.
(2) If there is a unique closest token w in I to v, the reconfiguration sequence

repeatedly replaces that token with a vertex that is one closer to v. Let u be
any vertex in N(v) where some shortest path from w to v passes through u.
Since w is uniquely closest to v among all tokens in I, it must be the case that
N(u) ∩ I = {w}. So update construct I ′ = I − w + u; u is now uniquely closest
in I ′ to v, so this process can be repeated.

(3) Otherwise, let S be the set of all closest vertices to v at distance d.
Without loss of generality assume S ⊆ A. By the correctness of Algorithm 1,
there is a J ∈ [I] where J ⊆ B. Consider a reconfiguration sequence 〈I =
I0, I1, . . . , Ik = J〉 from I to J . There must be an index j, with j ≤ k ≤ |I|,
where Ij has a unique closest token to v as either some token will first move
to be distance d − 1 away from v, or all but one token will slide to be at least
distance d+ 1 away. Then, from Ij , the reconfiguration sequence is as described
in case (2). ��

We write IGv (with the graph usually omitted) to indicate an independent set
resulting in invoking Lemma 3 on G and I to place a vertex on v. This produces
some reconfiguration sequence of linear length from I to Iv, in which Iv is the
only independent set containing v.

We are able to simplify instances with the following lemma:

Lemma 4. Let I be an unlocked independent set in bipartite graph G.
(1) If N [v] ∩ I = ∅, then R(G \ {v}, I) = ∅.
(2) If N [N [v]] ∩ I ⊆ {v}, then R(G \ N [v], I − v) = ∅.

Proof. Invoke Algorithm 2 on G. Since all tokens move no farther than to their
neighbors, both cases immediately follow. ��

Proposition 7. Suppose NG(u) = NG(v). For any unlocked independent sets I

and J , I G� J if and only if IGu
G\{v}� JG

u .

Proof. The “if” direction is trivial. For the “only if” direction, assume I
G� J .

This implies IGu
G� JG

u . First, observe that no unlocked set contains both u and
v. Each set S in any reconfiguration sequence from IGu to JG

u on G that contains
v can be replaced by S − v + u. Now this sequence only uses vertices only in

G \ {v}, so IGu
G\{v}� JG

u . ��

4 Sliding Token on Bipartite Permutation Graphs

Throughout the section, let G be a bipartite permutation graph with vertices
〈v1, v2, . . . , vn〉 ordered as described previously.

Proposition 8. Assume R(G, I) = R(G, J). If vi ∈ R(G, I), then each compo-
nent of G \N [vi] is a bipartite permutation graph and I

G� J if and only if, for

each component C of G \ N [vi], we have I ∩ C
G[C]� J ∩ C.
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Proof. First, note that an induced subgraph of a bipartite permutation graph is
still a bipartite permutation graph. Now, we appeal to Proposition 4. ��

v1

v2

v3

v4

v5

v6

v7

v8

Fig. 1. Two unlocked independent sets in different equivalence classes: {v1, v4, v5}
and {v2, v3, v6}.

Lemma 2 locates rigid vertices in linear time and Proposition 8 permits
treating each component independently after deleting rigid vertices and their
neighborhoods. We assume R(G, I) = ∅ for the remainder of the section. Using
Proposition 7 allows us to assume that each vertex has a distinct neighborhood.

In each equivalence class over G�, we will pick a representative independent
set as the lexicographically least element (i.e. the independent set I minimizing
∑

vi∈I 2i). We write I+ to indicate the representative of the equivalence class to

which some independent set I belongs. Then, deciding if I G� J is equivalent
to determining if I+ = J+.

To give some intuition on why finding I+ is nontrivial, Fig. 1 illustrates two
unlocked independent sets in different equivalence classes.

Fix some I and let w+
j be the jth least token of I+. The algorithm relies on

two vital observations: first, that there are only two possibilities for where the
token of least index in I will reside in I+ and second, that I+ can be assembled
one vertex at a time.

Proposition 9. |{v1, v2}∩I+|= 1. If |I+| ≥ 2 and v2 ∈ I+ then |N(v1)∩I+| ≥ 2.

Proof. First, we prove |{v1, v2} ∩ I+| = 1. Suppose not: that w+
1 = vi for some

i > 1. There are two cases to consider:
(1) Assume vi ∈ N(v1). Use Lemma 3 to place a token on v1 and obtain a

reconfiguration sequence 〈I+ = I0, I1, . . . , Ik〉. Recall that vi ∈ Ij for all j < k.
Consider the sequence 〈I0, . . . , Ik, Ik−1 − vi + v2, Ik−1 − vi + v2, Ik−2 − vi +
v2, . . . , I0−vi+v2〉. This sequence is valid, so I+−vi+v2 ∈ [I+]. But I+−vi+v2
is lexicographically less than I+, a contradiction.

(2) Now assume vi �∈ N(v1). Again use Lemma 3 to place a token on v1.
Similarly, the sequence can be unrolled in reverse, except this time leaving a
token on v1.
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Now we prove if v2 ∈ I+ then |N(v1) ∩ I+| ≥ 2. Suppose not: that v2 ∈ I+

but N(v1) ∩ I+ = {v2}. Then I+
G↔ I+ − v2 + v1 is legal and lexicographically

less, a contradiction. ��

Proposition 10. If I is an unlocked independent set containing w+
1 and w+

2

then R(G \ N [w+
1 ], I − w+

1 ) ⊆ {w+
2 }.

Proof. We assume |I| > 2 as the statement is otherwise trivial. Let vj = w+
2 for

some j > 2 (by Proposition 9, w+
2 �= v2). We proceed with case analysis:

1. Assume v1 ∈ I.
(a) Assume N [N [v1]] ∩ I = {v1}. Then Lemma 4 applies to I.
(b) Assume v1 is a pendant. For v1 to slide, at some set I ′ in the reconfiguration

sequence given by Algorithm 2, N(v2) ∩ I ′ = {v1}. Lemma 4 applies to I ′.
(c) Assume no neighbor of v1 has v1 as its only neighboring token. N(v1) ⊆

N(vj) (otherwise, we fall into one of the previous cases) so the token on v1
cannot slide until vj slides. Once vj slides, N [N [v1]] = {v1} and Lemma 4
completes the proof.

(d) Otherwise, observe that N(v2) ∩ I = {v1}. Let Li be the set of vertices
distance i away from v1.

If any two vertices va, vb in I ∩ L2 have N−(u) = N−(v), then Algo-
rithm 1 slides all vertices of L2 with index at least b (assuming a < b)
into L3. Notice that it suffices to show that a = j.

In I+, there must be a k where k > j and N−(vk) = N−(vj); (other-
wise I+ − v1 + v2 − vj + vi is lexicographically less than I+). However, if
vk �∈ I, more argument is required. Consider any reconfiguration sequence
from I to I+. Let I ′ be the last independent set in the sequence contain-
ing vk. In I ′, the token of second-least index cannot be in N−(vk) but
must be in L2. We show this gives a contradiction to I+’s lexicographical
minimality: since the token on vk does not slide for the remainder of the
reconfiguration sequence, the two first tokens are able to reconfigure from
v1 and vj in I+ to a lesser configuration.

2. Assume v2 ∈ I. By Proposition 9, vj ∈ N(v1). Thus, N(v2) ⊆ N(v1). Consider
a reconfiguration sequence in which v2 eventually slides, e.g. the one generated
by Lemma 3 to produce IGv1

. In this, vj must slide before v1. Let I ′ be the
independent set immediately after vj slides. N [N [vi]]∩I ′ = {vi}, so Lemma 4
applies.

��

Proposition 11. I+ − w+
1 is lexicographically minimal on G \ N [w+

1 ]. ��

We find a reconfiguration sequence between I and I+ using dynamic pro-
gramming over vertex index with a table T [·]. For notational convenience, we
define J i,k = {vj ∈ J | i ≤ j ≤ k} for any independent set J . Let Gi be the
unique component of G \ N [vi] containing vertices of higher index. T [i] will be
assigned some J = arg maxJ∈[I]:J�vi

|J0,i|. As a base case, set T [0] = I.
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Define

W (i, j) =

⎧

⎪

⎨

⎪

⎩

T [j] if vi ∈ T [j]
T [j]0,k ∪ (T [j]j+1,n)Gj

vi
if R(Gj , T [j]j+1,n) = ∅

“invalid” otherwise.

(Recall, the notation in the middle case invokes Lemma 3.) Say W (i, j) is
valid if 0 ≤ j < i and W (i, j) is an independent set and not “invalid”. Among
the valid W (i, j) that maximize |W (i, j)0,i|, set T [i] to be the W (i, j) where j is
least.

Lemma 5. If vi ∈ I+ then T [i]0,i = I0,i+ .

Proof. Using Propositions 10 and 11, this follows from a simple induction on the
size of I+. ��

Theorem 2. Given a connected bipartite permutation graph G and an unlocked
independent set I, there is a cubic-time algorithm to find I+.

Proof. Given the dynamic programming table T [·], find the least index i where
|T [i]0,i| = |I| and report I+ = T [i]; by Lemma 5, this is correct.

In total, O(n2) sets W (i, j) are computed, each of which takes linear time,
giving cubic runtime. ��

Given this, proving the main theorem is straightforward:

Proof (of Theorem 1). As input, we are given a bipartite permutation graph
G and two independent sets I and J . If R(G, I) �= R(G, J), then output “no”.
Otherwise, form G′ = G\N [R(G, I)]. For each C component of G′, find I ′ = I∩C
and J ′ = J ∩ C; then find I ′+ and J ′+ using Theorem 2. If in any component,
I ′+ and J ′+ differ, then output “no”. Otherwise, it must be that I

G� J . ��

5 Sliding Token on Bipartite Distance-Hereditary Graphs

In this section, we give an additional application of the techniques built in Sect. 3.
A graph is distance-hereditary if the distance between two vertices in any con-
nected induced subgraph is exactly the distance in the original graph. One char-
acterization of bipartite distance-hereditary graphs is graphs obtainable from a
single vertex by repeatedly picking a vertex v in the graph and then adding a
new vertex w with either N(w) = {v} (pendant) or N(w) = N(v) (twin).

Theorem 3. There is a polynomial-time algorithm to decide Sliding Token
on bipartite distance-hereditary graphs.

Proof. Let I0 and J0 be independent sets of the same cardinality on bipartite
distance-hereditary graph G. We analyze the following algorithm.

We can assume, using Lemma 2 and Proposition 4 thatR(G, I) = R(G, J) = ∅.
Repeatedly:
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1. If N(v) = N(w) for any v, w, use Lemma 3 to place a token on v in I and in
J , and then delete w.

2. Else, if there is a pendant v whose neighbor w has degree 2, use Lemma 3 to
place a token from I and from J on v, then delete N(v).

3. Otherwise, compute a sequence of operations used to construct the graph and
look at the last twin operation used. At least one of the two involved vertices
must have a pendant. Use Lemma 3 to place a token from I and from J on
the pendant and delete it and its neighborhood.

Bipartite distance-hereditary graphs are closed under vertex deletion, so after
each iteration the graph remains bipartite distance-hereditary. Suppose that
before an iteration, R(G, I) = ∅. Let G′, I ′, J ′ be the graph and independent
sets after the iteration. We show that R(G′, I ′) = R(G′, J ′) = ∅.

In case (1), since NG(v) = NG(w) and v ∈ I ′ ∩ J ′, we have NG(w) ∩ I ′ =
NG(w) ∩ J ′ = ∅. Lemma 4 implies R(G′, I ′) = R(G′, J ′) = ∅. In cases (2) and
(3), if there is a token on any neighbor u of w besides v in I ′, then after invoking
Algorithm 2, there must be an intermediate independent set I ′′ where v ∈ I ′′

but u �∈ I ′′. From I ′′, Lemma 4 completes the proof. ��

6 Discussion

We show that Sliding Token can be efficiently decided on bipartite permuta-
tion graphs and bipartite distance-hereditary graphs. The results of [5] show that
Sliding Token is PSPACE-hard on AT-free graphs, which are a natural gener-
alization of bipartite permutation graphs to non-bipartite graphs. This suggests
that bipartitedness is closely related to the complexity of Sliding Token.

The complexity of Sliding Token on bipartite graphs remains a com-
pelling topic for future research; the tools developed here tackle rigidity but need
strengthening to be able to decide Sliding Token when dynamic programming
does not fit as naturally.

Acknowledgements. E.F. partially supported by an NSF EAPSI fellowship and NSF
grants CCF-09-64037 and CCF-14-09520.
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Abstract. The linear maximum induced matching width (LMIM-
width) of a graph is a width parameter based on the maximum induced
matching in some of its subgraphs. In this paper we study output-
polynomial enumeration algorithms on graphs of bounded LMIM-width
and graphs of bounded local LMIM-width. In particular, we show that
all 1-minimal (σ, ρ)-dominating sets, and hence all minimal dominating
sets, of graphs of bounded LMIM-width can be enumerated with polyno-
mial (linear) delay using polynomial space. Furthermore, we show that
all minimal dominating sets of a unit square graph can be enumerated
in incremental polynomial time.

1 Introduction

Enumeration is at the heart of computer science and combinatorics. Enumera-
tion algorithms for graphs and hypergraphs typically deal with listing all vertex
subsets or edge subsets satisfying a given property. As the size of the output is
often exponential in the size of the input, it is customary to measure the run-
ning time of enumeration algorithms in the size of the input plus the size of
the output. If the running time of an algorithm is bounded by a polynomial in
the size of the input plus the size of the output, then the algorithm is called
output-polynomial. A large number of such algorithms have been given over the
last 30 years; many of them solving problems on graphs and hypergraphs [7–
9,13,19–21,23]. It is also possible to show that certain enumeration problems
have no output-polynomial time algorithm unless P = NP [19–21].

Recently Kanté et al. showed that the famous longstanding open question
whether there is an output-polynomial algorithm to enumerate all minimal
transversals of a hypergraph is equivalent to the question whether there is an
output-polynomial algorithm to enumerate all minimal dominating sets of a
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graph [14]. Although the main question remains open, a large number of results
have been obtained on graph classes. Output-polynomial algorithms to enumer-
ate all minimal dominating sets exist for graphs of bounded treewidth and of
bounded clique-width [6], interval graphs [7], strongly chordal graphs [7], planar
graphs [9], degenerate graphs [9], split graphs [14], path graphs [15], permutation
graphs [16], line graphs [10,15,18], chordal bipartite graphs [12], chordal graphs
[17] and graphs of girth at least 7 [10].

In this paper, we extend the above results to graphs of bounded linear max-
imum induced matching width (LMIM-width), which is a linearized version of
the notion of maximum induced matching width introduced by Vatshelle [25].
Belmonte and Vatshelle showed that several important graph classes, among
them interval, circular-arc and permutation graphs, have bounded LMIM-
width [1]. Polynomial-time algorithms solving optimization problems on such
graph classes have been studied in [4,25].

In this paper, we study two ways of using bounded LMIM-width in enumer-
ation algorithms. In Sect. 3 we study the enumeration problem corresponding to
an extended and colored version of the well-known (σ, ρ)-domination problem,
asking to enumerate all 1-minimal Red (σ, ρ)-dominating sets. This includes
the enumeration of all minimal (total) dominating sets on graphs of bounded
LMIM-width. We establish as our main result an enumeration algorithm with
polynomial (linear) delay and polynomial space for this problem. Our algorithm
uses the enumeration (and counting) of paths in directed acyclic graphs. In
Sect. 4 we study the enumeration of all minimal dominating sets in unit square
graphs. We first show that any r-neighborhood in such graphs have LMIM-width
bounded by O(r2). Then we show how to adapt the so-called flipping method
developed by Golovach et al. [10] to enumerate all minimal dominating sets of a
unit square graph in incremental polynomial time. Due to space constraints, var-
ious proofs are omitted in this extended abstract. The full version of the paper
is available in [11].

2 Definitions and Preliminaries

Graphs. The power set of a set V is denoted by 2V . For two sets A and B we
let A \ B be the set {x ∈ A | x /∈ B}, and if X is a subset of a ground set V , we
let X̄ be the set V \ X. We often write x to denote the singleton set {x}. We
denote by N the set of positive or null integers, and let N

∗ be N \ {0}.
A graph G is a pair (V (G), E(G)) with V (G) its set of vertices and E(G) its

set of edges. An edge between two vertices x and y is denoted by xy (respectively
yx). The subgraph of G induced by a subset X of its vertex set is denoted by
G[X]. The set of vertices that is adjacent to x is denoted by NG(x), and we
let NG[x] be the set NG(x) ∪ {x}. For U ⊆ V (G), NG[U ] =

⋃

v∈U NG[v] and
NG(U) = NG[U ] \ U . For a vertex x and a positive integer r, Nr

G[x] denotes
the set of vertices at distance at most r from x. For two disjoint subsets A and
B of V (G), let G[A,B] denote the graph with vertex set A ∪ B and edge set
{uv ∈ E(G) | u ∈ A, v ∈ B}. Clearly, G[A,B] is a bipartite graph and {A,B}
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is its bipartition. Recall that a set of edges M is an induced matching if the
end-vertices of distinct edges of M are different and not adjacent. We denote by
mimG(A,B) the size of a maximum induced matching in G[A,B].

Let G be a graph, and let Red,Blue ⊆ V (G) such that Red∪Blue = V (G).
We refer to the vertices of Red as the red vertices, the vertices of Blue as the
blue vertices, and we say that G together with given sets Red and Blue is a
colored graph. For simplicity, whenever we say that G is a colored graph, it is
assumed that the sets Red and Blue are given. Notice that Red and Blue are
not necessarily disjoint. In particular, it can happen that Red = Blue = V (G);
a non-colored graph G can be seen as a colored graph with Red = Blue = V (G).

A graph G is an (axis-parallel) unit square graph if it is an intersection graph
of squares in the plane with their sides parallel to the coordinate axis. These
graphs also are known as the graphs of cubicity 2. We use the following equivalent
definition, see e.g. [5], in which each vertex v of G is represented by a point in R

2.
A graph G is a unit square graph if there is a function f : V (G) → R

2 such that
two vertices u, v ∈ V (G) are adjacent in G if and only if ‖f(u) − f(v)‖∞ < 1,
where the norm ‖‖∞ is the L∞ norm. For a vertex v ∈ V (G), we let xf (v)
and yf (v) denote the x and y-coordinate of f(v) respectively. We say that the
point (xf (v), yf (v)) represents v. The function f is called a realization of the
unit square graph. It is straightforward to see that for any unit square graph
G, there is a realization f : V (G) → Q

2. We always assume that a unit square
graph is given with its realization. Indeed, it is NP-hard to recognize unit square
graphs [3]. We refer to the survey of Brandstädt, Le and Spinrad [2] for the
definitions of all other graph classes mentioned in our paper.

Enumeration. Let D be a family of subsets of the vertex set of a given graph G
on n vertices and m edges. An enumeration algorithm for D lists the elements of
D without repetitions. The running time of an enumeration algorithm A is said
to be output polynomial if there is a polynomial p(x, y) such that all the elements
of D are listed in time bounded by p((n+m), |D|). Assume now that D1, . . . , D�

are the elements of D enumerated in the order in which they are generated
by A. Let us denote by T (A, i) the time A requires until it outputs Di, also
T (A, �+1) is the time required by A until it stops. Let delay(A, 1) = T (A, 1) and
delay(A, i) = T (A, i)−T (A, i−1). The delay of A is max{delay(A, i)}. Algorithm
A runs in incremental polynomial time if there is a polynomial p(x, i) such that
delay(A, i) ≤ p(n+m, i). Furthermore A is a polynomial delay algorithm if there
is a polynomial p(x) such that the delay of A is at most p(n + m). Finally A is
a linear delay algorithm if delay(A, 1) is bounded by a polynomial in n+m and
delay(A, i) is bounded by a linear function in n + m.

Linear induced matching width. The notion of the maximum induced match-
ing width was introduced by Vatshelle [25] (see also [1]). We will give the defin-
ition in terms of colored graphs and restrict ourselves to the case of linear max-
imum induced matching width. Let G be a colored n-vertex graph with n ≥ 2
and let x1, . . . , xn be a linear ordering of its vertex set. For each 1 ≤ i ≤ n,
we let Ai = {x1, x2, . . . xi} and Āi = {xi+1, xi+2, . . . xn}. The maximum induced
matching width (MIM-width) of x1, . . . , xn is
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max{max{mimG(Ai ∩ Red, Āi ∩ Blue),mimG(Ai ∩ Blue, Āi ∩ Red)} | 1 ≤ i ≤ n}.

The linear maximum induced matching width (LMIM-width) of G, denoted
by lmimw(G), is the minimum value of the MIM-width taken over all linear
orderings of G.

Belmonte and Vatshelle [1] proved that several important graph classes have
bounded linear maximum induced matching width. For example, the LMIM-
width of an interval graph is 1 and the LMIM-width of a permutation graph is
at most 2.

(σ, ρ)-domination. The (σ, ρ)-dominating set notion was introduced by Telle
and Proskurowski [24] as a generalization of dominating sets. Indeed, many
NP-hard domination type problems such as the problems d-Dominating Set,
Independent Dominating Set and Total Dominating Set are special cases of the
(σ, ρ)-Dominating Set Problem. See [4, Table 1] for more examples. For technical
reasons, we introduce Red (σ, ρ)-domination. Let σ and ρ be finite or co-finite
subsets of N. We say that a set D ⊆ V (G) (σ, ρ)-dominates U ⊆ V (G) if it
(σ, ρ)-dominates every u ∈ U , i.e., for each u ∈ U , |NG(u) ∩ D| ∈ σ if u ∈ D,
otherwise |NG(u) ∩ D| ∈ ρ.

Let G be a colored graph. A set of vertices D ⊆ Red is a Red (σ, ρ)-
dominating set if D (σ, ρ)-dominates Blue. If Red = Blue = V (G), then a
Red (σ, ρ)-dominating set is a (σ, ρ)-dominating set.

Notice that if σ = N and ρ = N
∗, then a set D ⊆ V (G) (σ, ρ)-dominates a

vertex u if u ∈ D or u is adjacent to a vertex of D, i.e., the notion of (σ, ρ)-
domination coincides with the classical domination in this case. Whenever we
consider this case, we simply write that a set D dominates a vertex or set and D
is a (Red) dominating set omitting (σ, ρ). We are interested in Red dominating
sets because that is what we actually need in Sect. 4.

A Red (σ, ρ)-dominating set D of a graph G is said minimal if for any proper
subset D′ ⊂ D, D′ is not a Red (σ, ρ)-dominating set, and we say that D is
1-minimal if for each vertex x in D, D \ x is not a Red (σ, ρ)-dominating set.
Clearly, every minimal Red (σ, ρ)-dominating set is 1-minimal, but the converse
is not true for arbitrary σ and ρ.

Because our aim is to enumerate 1-minimal Red (σ, ρ)-dominating sets, we
need some certificate that a considered set is 1-minimal. Let D be a Red (σ, ρ)-
dominating set of a colored graph G. For a vertex u ∈ D, the vertex v ∈ Blue
is its certifying vertex (or a certificate) if v is not (σ, ρ)-dominated by D \ {u}.

Notice that because D is a Red (σ, ρ)-dominating set, if v is a certificate for
u, then v ∈ NG[u]. Observe also that, for some pairs (σ, ρ), a vertex may be a
certificate for many vertices and it can be a certificate for itself. Notice that in the
case of the classical domination, certificates are usually called privates because
they are certificates for exactly one vertex, including itself. It is straightforward
to show the following.

Lemma 1. A set D ⊆ Red is a 1-minimal Red (σ, ρ)-dominating set of a
colored graph G if and only if each vertex u ∈ D has a certificate.
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Lemma 2. Let D be a Red (σ, ρ)-dominating set of G. If v is a certificate for
u ∈ D, then v = u or v is a certificate for all vertices of NG(v) ∩ D.

3 Enumerations for Graphs of Bounded LMIM-width

In this section we prove the following, which generalizes the results in [16].

Theorem 1. Let (σ, ρ) be a pair of finite or co-finite subsets of N and let c be
a positive integer. For a colored graph G given with a linear ordering of V (G) of
MIM-width at most c, one can count in time bounded by O(nc), and enumerate
with linear delay, all 1-minimal Red (σ, ρ)-dominating sets of G.

Corollary 1. Let (σ, ρ) be a pair of finite or co-finite subsets of N. Then, for
every colored graph G in one of the following graph classes, we can count in
polynomial time, and enumerate with linear delay all 1-minimal Red (σ, ρ)-
dominating sets of G: interval graphs, permutation graphs, circular-arc graphs,
circular permutation graphs, trapezoid graphs, convex graphs, and for fixed k,
k-polygon graphs, Dilworth-k graphs and complements of k-degenerate graphs.

The following corollary improves some known results in the enumeration
of minimal transversals of interval and circular-arc hypergraphs where only an
incremental polynomial time algorithm was known (see e.g. [22]).

Corollary 2. For every hypergraph H being an interval hypergraph or a
circular-arc hypergraph one can count in polynomial time, and enumerate with
linear delay, all minimal transversals of H.

The remaining part of the section is devoted to the main ideas of the proof
of Theorem 1. Throughout this section let (σ, ρ) be a fixed pair of finite or co-
finite subsets of N and let G be a fixed n-vertex colored graph with n ≥ 2. Let
x1, . . . , xn be a fixed linear ordering of the vertex set of G such that the maximum
induced matching width of x1, . . . , xn is bounded by a constant c. Furthermore,
for all i ∈ {1, 2, . . . , n}, we let Ai = {x1, x2, . . . xi} and Āi = {xi+1, xi+2, . . . xn}.

Let d(N) = 0. For every finite set μ ⊆ N, let d(μ) = 1 + max{a | a ∈ μ},
and for every co-finite set μ ⊆ N, let d(μ) = 1 + max{a | a ∈ N \ μ}. For
finite or co-finite subsets σ and ρ of N, we let d(σ, ρ) = max(d(σ), d(ρ)). As
pointed out in [4] given a subset D of Red, we can check if D is a Red (σ, ρ)-
dominating set by computing |D ∩ NG(x)| up to d(σ, ρ) for each vertex x in
Blue. We define σ∗ = σ \ ρ and ρ∗ = ρ \ σ. Let also σ− = {i ∈ σ | i − 1 /∈ σ},
ρ− = {i ∈ ρ | i − 1 /∈ ρ}.

Lemma 3. The sets σ∗, ρ∗, σ− and ρ− are finite or co-finite. Also, d(σ∗, ρ∗) ≤
d(σ, ρ) and d(σ−, ρ−) ≤ d(σ, ρ) + 1.

Lemma 4. Let D be a Red (σ, ρ)-dominating set of G and let u ∈ D. The vertex
u is a certificate for itself if and only if u ∈ Blue and |NG(u)∩D| ∈ σ∗. A vertex
v ∈ NG(u) ∩ Blue is a certificate for u if and only if D (σ−, ρ−)-dominates v.
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Let d ∈ N and let A ⊆ V (G). Two red subsets X and Y of A are d-neighbor
equivalent w.r.t. A, denoted by X ≡d

A Y , if min(d, |X ∩ NG(x)|) = min(d, |Y ∩
NG(x)|) for all x ∈ Ā ∩ Blue. It is clear that ≡d

A is an equivalence relation and
we let nec(≡d

A) be its number of equivalence classes.

Lemma 5 ([1]). Let d ∈ N and let A ⊆ V (G). Then nec(≡d
A) ≤ nd·c.

We will follow the same idea as in [4] where a minimum (or a maximum) (σ, ρ)-
dominating set is computed. For every i ∈ {1, . . . , n} and every subset X of Ai ∩
Red, we denote by repd

Ai
(X) the lexicographically smallest set R ⊆ Ai ∩ Red

such that |R| is minimised and R ≡d
Ai

X. Notice that it can happen that R = ∅.

Lemma 6 ([4]). For every i ∈ {1, . . . , n}, one can compute a list LRi con-
taining all representatives w.r.t. ≡d

Ai
in time O(nec(≡d

Ai
) · log(nec(≡d

Ai
)) · n2).

One can also compute a data structure that given a set X ⊆ Ai ∩ Red in time
O(log(nec(≡d

Ai
)) · |X| ·n) allows us to find a pointer to repd

Ai
(X) in LRi. Similar

statements hold for the list LRī containing all representatives w.r.t. ≡d
Āi
.

Our goal now is to define a DAG, denoted by DAG(G), the maximal paths
of which correspond exactly to the 1-minimal Red (σ, ρ)-dominating sets.

For 1 ≤ j ≤ n and C ⊆ Aj ∩ Blue (or C ⊆ Āj ∩ Blue) we denote by
SGj(C) (or by GGj(C)) the set X obtained from C if we we initially set X =
C and recursively apply the following rule: let x be the greatest (or smallest)
vertex in X such that N(X \ {x}) ∩ (Āj ∩ Red) = N(X) ∩ (Āj ∩ Red) (or
N(X \ {x}) ∩ (Aj ∩ Red) = N(X) ∩ (Aj ∩ Red)) and set X = X \ {x}.
Notice that SGj(C) and GGj(C) are both uniquely determined, and both have
sizes bounded by c from [1, Lemma 1]. Observe also that if C ⊆ Aj ∩ Blue (or
C ⊆ Āj ∩ Blue), then SG�(C ∪ {x�}) = SG�(SGj(C) ∪ {x�}) for all � > j (or
GG�(C ∪ {x�}) = GG�(GGj(C) ∪ {x�}) for all � ≤ j).

Let 1 ≤ j < n and let (Rj , R
′
j , Cj , C

′
j) ∈ LRj × LRj̄ × 2Aj∩Blue × 2Āj∩Blue

and (Rj+1, R
′
j+1, Cj+1, C

′
j+1) ∈ LRj+1×LR ¯j+1×2Aj+1∩Blue×2Āj+1∩Blue. There

is an ε-arc-1 from (Rj , R
′
j , Cj , C

′
j) to (Rj+1, R

′
j+1, Cj+1, C

′
j+1) if

(1.1) Rj ≡d
Aj+1

Rj+1 and R′
j ≡d

Āj
R′

j+1, and
(1.2) if (xj+1 /∈ Blue or (xj+1 ∈ Blue and |N(xj+1) ∩ (Rj ∪ R′

j+1)| ∈ ρ and
|N(xj+1) ∩ (Rj ∪ R′

j+1)| /∈ ρ−)) then (Cj+1 = SGj+1(Cj) and C ′
j =

GGj(C ′
j+1)), otherwise we should have (|N(xj+1) ∩ (Rj ∪ R′

j+1)| ∈ ρ−)
and
(1.2.a) if N(xj+1)∩ (Āj+1 ∩Red) �= ∅, then Cj+1 = SGj+1(Cj ∪{xj+1}),

else Cj+1 = SGj+1(Cj), and
(1.2.b) if N(xj+1) ∩ (Aj ∩Red) �= ∅, then C ′

j = GGj(C ′
j+1 ∪ {xj+1}), else

C ′
j = GGj(C ′

j+1).

There is an ε-arc-2 from (Rj , R
′
j , Cj , C

′
j) to (Rj+1, R

′
j+1, Cj+1, C

′
j+1) if

(2.1) Rj+1 ≡d
Aj+1

(Rj ∪ {xj+1}), R′
j ≡d

Āj
(R′

j+1 ∪ {xj+1}), xj+1 ∈ Red,
(|N(xj+1) ∩ (Rj ∪ R′

j+1)| ∈ σ if xj+1 ∈ Blue), and
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(2.2) if (xj+1 /∈ Blue or (xj+1 ∈ Blue and |N(xj+1) ∩ (Rj ∪ R′
j+1)| /∈ σ−)),

then (Cj+1 = SGj+1(Cj) and C ′
j = GGj(C ′

j+1)), otherwise we should have
(|N(xj+1) ∩ (Rj ∪ R′

j+1)| ∈ σ−) and
(2.2.a) if N(xj+1)∩ (Āj+1 ∩Red) �= ∅, then Cj+1 = SGj+1(Cj ∪{xj+1}),

else Cj+1 = SGj+1(Cj), and
(2.2.b) if N(xj+1) ∩ (Aj ∩Red) �= ∅, then C ′

j = GGj(C ′
j+1 ∪ {xj+1}), else

C ′
j = GGj(C ′

j+1), and
(2.3) either (N(xj+1)∩(Cj ∪C ′

j+1) �= ∅) or ((xj+1 ∈ Blue and |N(xj+1)∩(Rj ∪
R′

j+1)| ∈ σ∗).

The nodes of DAG(G). (R,R′, C, C ′, i) ∈ LRi×LRī×2Ai∩Blue×2Āi∩Blue×[n]
is a node of DAG(G) whenever xi ∈ Red, C = SGi(C) and C ′ = GGi(C ′). We
call i the index of (R,R′, C, C ′, i). Finally s = (∅, ∅, ∅, ∅, 0) is the source node
and t = (∅, ∅, ∅, ∅, n + 1) is the terminal node of DAG(G).

The arcs of DAG(G). There is an arc from the node (R0, R
′
0, C0, C

′
0, j) to

the node (Rp, R
′
p, Cp, C

′
p, j + p) with 1 ≤ j < j + p ≤ n if there exist tuples

(R1, R
′
1, C1, C

′
1), . . . , (Rp−1, R

′
p−1, Cp−1, C

′
p−1) such that (1) for each 1 ≤ i ≤

p − 1, (Ri, R
′
i, Ci, C

′
i) ∈ LRj+i × LR ¯j+i × 2Aj+i∩Blue × 2Āj+i∩Blue and there is

an ε-arc-1 from (Ri−1, R
′
i−1, Ci−1, C

′
i−1) to (Ri, R

′
i, Ci, C

′
i), and (2) there is an

ε-arc-2 from (Rp−1, R
′
p−1, Cp−1, C

′
p−1) to (Rp, R

′
p, Cp, C

′
p).

There is an arc from the source node to a node (R,R′, C, C ′, j) if (S = {x ∈
(Aj ∩ Blue) \ {xj} | N(x) ∩ (Āj ∩ Red) �= ∅ and |N(x) ∩ ({xj} ∪ R′)| ∈ ρ−})

(S1) {xj} ≡d
Aj

R and ({xj} ∪ R′) (σ, ρ)-dominates Aj ∩ Blue,
(S2) if (xj ∈ Blue and |N(xj) ∩ R′| ∈ σ−) then C = SGj(S ∪ {xj}), otherwise

C = SGj(S), and
(S3) either (N(xj) ∩ (C ′ ∪ C) �= ∅) or (xj ∈ Blue and |N(xj) ∩ R′| ∈ σ∗).

There is an arc from a node (R,R′, C, C ′, j) to the terminal node if

(T1) |N(x) ∩ R| ∈ ρ for each x ∈ Āj+1 ∩ Blue, and
(T2) C ′ = GGj({x ∈ Āj ∩Blue | N(x)∩(Aj ∩Red) �= ∅ and |N(x)∩R| ∈ ρ−}).

If P = (s, v1, v2, . . . , vp, t) is a path in DAG(G), then the trace of P , denoted
by trace(P ), is defined as {xj1 , xj2 , . . . , xjp} where for all i ∈ {1, 2, . . . , p}, ji is
the index of the node vi. We have the following lemmas.

Lemma 7. Let P be the set of paths in DAG(G) from the source node to the termi-
nal node. Themapping which associates with everyP ∈ P trace(P ) is a one-to-one
correspondence with the set of 1-minimal Red (σ, ρ)-dominating sets.

Lemma 8. DAG(G) is a DAG and can be constructed in time O(nc·d).

We can now prove Theorem 1. By Lemma 8 DAG(G) is a DAG and can be
constructed in time O(nc·d). By Lemma 7 it is sufficient to count and enumerate
the maximal paths in DAG(G), and since we can count the maximal paths and
enumerate them with linear delay (see for instance [16]), this concludes the proof.
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4 Enumeration of Minimal Dominating Sets for Unit
Square Graphs

Let G be a unit square graph and suppose that f : V (G) → Q
2 is a realization

of G. (See Sect. 2 for more details on the point model of unit square graphs used
in our paper.) For a vertex v ∈ V (G), frac(v) = xf (v)−xf (v)� is the fractional
part of the x-coordinate of the point representing v. Let v1, . . . , vn be a linear
ordering of the vertex set of G such that frac(vi) ≤ frac(vj) for all j > i. We
prove that the MIM-width of v1, . . . , vn is bounded by O(diam2) where diam is
the diameter of G, which we state in the following.

Theorem 2. For a unit square graph G, u ∈ V (G) and a positive integer r,
lmimw(G[Nr

G[u]]) = O(r2). Moreover, if a realization f : V (G) → Q
2 of G is

given, then a linear ordering of vertices of MIM-width O(r2) can be constructed
in polynomial time.

We will now explain how to use this property and Theorem 1, to obtain an
incremental polynomial time enumeration algorithm for the minimal dominating
sets of G. To do it, we use a variant of the flipping method proposed in [10].

Given a minimal dominating set D∗, the flipping operation replaces an iso-
lated vertex of G[D∗] with its neighbor outside of D∗, and, if necessary, adds or
deletes some vertices to obtain new minimal dominating sets D, such that G[D]
has more edges compared to G[D∗]. The enumeration algorithm starts with enu-
merating all maximal independent sets of the input graph G using the algorithm
of Johnson, Papadimitriou, and Yannakakis [13], which gives the initial mini-
mal dominating sets. Then the flipping operation is applied to every appropriate
minimal dominating set found, to find new minimal dominating sets inducing
subgraphs with more edges.

Let G be a graph. Let also D ⊆ V (G). For u ∈ D, CD[u] = {v ∈ V (G) | v ∈
NG[u] \ NG[D \ {u}]} and CD(u) = {v ∈ V (G) | v ∈ NG(u) \ NG[D \ {v}]} =
CD[u] \ {u}. Observe that if D is a minimal dominating set, then CD[u] is the
set of certificates for a vertex u ∈ D.

Let us describe the variant of the flipping operation from [10], that we use.
Let G be the input graph; we fix an (arbitrary) order of its vertices: v1, . . . , vn.
Suppose that D′ is a dominating set of G. We say that the minimal dominating
set D is obtained from D′ by greedy removal of vertices (with respect to order
v1, . . . , vn) if we initially let D = D′, and then recursively apply the following
rule: If D is not minimal, then find a vertex vi with the smallest index i such that
D \ {vi} is a dominating set in G, and set D = D \ {vi}. Clearly, when we apply
this rule, we never remove vertices of D′ that have certificates. Whenever greedy
removal of vertices of a dominating set is performed, it is done with respect to
this ordering.

Let D be a minimal dominating set of G such that G[D] has at least one
edge uw. Then the vertex u ∈ D is dominated by the vertex w ∈ D. Therefore,
CD[u] = CD(u) �= ∅. Let X be a non-empty inclusion-maximal independent
set such that X ⊆ CD(u). Consider the set D′ = (D \ {u}) ∪ X. Notice that
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D′ is a dominating set in G, since all vertices of CD(u) are dominated by X
by the maximality of X and u is dominated by w, but D′ is not necessarily
minimal, because it can happen that X dominates all the certificates of some
vertex of D\{u}. We apply greedy removal of vertices to D′ to obtain a minimal
dominating set. Let Z be the set of vertices that are removed by this to ensure
minimality. Observe that X ∩ Z = ∅ and u /∈ Z by the definition of these sets;
in fact there is no edge between a vertex of X and a vertex of Z. Finally, let
D∗ = ((D \ {u}) ∪ X) \ Z.

It is important to notice that |E(G[D∗])| < |E(G[D])|. Indeed, to construct
D∗, we remove the endpoint u of the edge uw ∈ E(G[D]) and, therefore, reduce
the number of edges. Then we add X but these vertices form an independent
set in G and, because they are certificates for u with respect to D, they are
not adjacent to any vertex of D \ {u}. Therefore, |E(G[D∗])| ≤ |E(G[D′])| <
|E(G[D])|.

The flipping operation is exactly the reverse of how we generated D∗ from
D; i.e., it replaces a non-empty independent set X in G[D∗] such that X ⊆
G[D∗] ∩ NG(u) for a vertex u /∈ D∗ with their neighbor u in G to obtain D.
In particular, we are interested in all minimal dominating sets D that can be
generated from D∗ in this way. Given D and D∗ as defined above, we say that
D∗ is a parent of D with respect to flipping u and X. We say that D∗ is a parent
of D if there is a vertex u ∈ V (G) and an independent set X ⊆ NG(u) such that
D∗ is a parent with respect to flipping u and X. It is important to note that
each minimal dominating set D such that E(G[D]) �= ∅ has a unique parent with
respect to flipping of any u ∈ D ∩ NG[D \ {u}] and a maximal independent set
X ⊆ CD(u), as Z is lexicographically selected by a greedy algorithm. Similarly,
we say that D is a child of D∗ (with respect to flipping u and X) if D∗ is the
parent of D (with respect to flipping u and X). The proof of the following lemma
is implicit in [10].

Lemma 9 [10]. Suppose that for a graph G, all independent sets X ⊆ NG(u)
for a vertex u can be enumerated in polynomial time. Suppose also that there is
an enumeration algorithm A that, given a minimal dominating set D∗ of a graph
G such that G[D∗] has an isolated vertex, a vertex u ∈ V (G) \ D∗ and a non-
empty independent set X of G[D∗] such that X ⊆ D∗ ∩ NG(u), generates with
polynomial delay a family of minimal dominating sets D with the property that
D contains all minimal dominating sets D that are children of D∗ with respect
to flipping u and X. Then all minimal dominating sets of G can be enumerated
in incremental polynomial time.

To obtain our main result, we will show that there is indeed an algorithm as
algorithm A described in the statement of Lemma 9 when the input graph G
is a unit square graph. We show that we can construct A by reduction to the
enumeration of minimal Red dominating sets in an auxiliary colored induced
subgraph of G[N3

G[u]]. Let D∗ be a minimal dominating set of a graph G such
that G[D∗] has an isolated vertex. Let also u ∈ V (G) \ D∗ and X is a non-
empty independent set of G[D∗] such that X ⊆ D∗ ∩ NG(u). Consider the set
D′ = (D \ X) ∪ {u}. Denote by Blue the set of vertices that are not dominated
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by D′. Notice that Blue ⊆ NG(X) \ NG[u]. Therefore, Blue ⊆ N2
G[u]. Let

Red = NG(Blue) \ NG[X]. Clearly, Red ⊆ N3
G[u]. We construct the colored

graph H = G[Red ∪ Blue]. Let A′ be an algorithm that enumerates minimal
Red dominating sets in H. Assume that if Blue = ∅, then A′ returns ∅ as the
unique Red dominating set. We construct A as follows.

Step 1. If A′ returns an empty list of sets, then A returns an empty list as well.
Step 2. For each Red dominating set R of H, consider D′′ = D′ ∪ R and

construct a minimal dominating set D from D′′ by greedy removal.

Lemma 10. If A′ lists all minimal Red dominating sets with polynomial delay,
then A generates with polynomial delay a family of minimal dominating sets D
with the property that D contains all minimal dominating sets D that are children
of D∗ with respect to flipping u and X.

Now we are ready to prove the main result of the section.

Theorem 3. For a unit square graph G given with its realization f , all minimal
dominating sets of G can be enumerated in incremental polynomial time.

Proof. It is straightforward to observe that for a vertex u of a unit square graph
G, any independent set X ⊆ NG(u) has at most 4 vertices. Hence, all indepen-
dent sets X ⊆ NG(u) for a vertex u can be enumerated in polynomial time. By
combining Theorems 1 and 2, and Lemmas 9 and 10, we obtain the claim. ��
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Abstract. The local minimum degree of a graph is the minimum degree
that can be reached by means of local complementation. For any n, there
exist graphs of order n which have a local minimum degree at least
0.189n, or at least 0.110n when restricted to bipartite graphs. Regard-
ing the upper bound, we show that the local minimum degree is at most
3
8
n+o(n) for general graphs and n

4
+o(n) for bipartite graphs, improving

the known n
2

upper bound. We also prove that the local minimum degree
is smaller than half of the vertex cover number (up to a logarithmic
term). The local minimum degree problem is NP-Complete and hard to
approximate. We show that this problem, even when restricted to bipar-
tite graphs, is in W[2] and FPT-equivalent to the EvenSet problem,
whose W[1]-hardness is a long standing open question. Finally, we show
that the local minimum degree is computed by a O∗(1.938n)-algorithm,
and a O∗(1.466n)-algorithm for the bipartite graphs.

1 Introduction

Notations. Given a graph G = (V,E), ∼G denotes the neighbourhood relation
of G i.e., ∀u, v ∈ V , u ∼G v ⇔ {u, v} ∈ E. We consider simple (∀u ∈ V, u �∼ u),
undirected (u ∼ v ⇔ v ∼ u) graphs. The set NG(u) = {v | u ∼G v} is the
neighbourhood of u and its size δG(u) = |NG(u)| is the degree of u. δ(G) =
minu∈V δG(u) is the minimum degree of G and τ(G) is the vertex cover number
i.e., the size of the smallest set S such that if u ∼ v, then u ∈ S or v ∈ S. For
any D ⊆ V , OddG(D) = Δu∈DNG(u) = {v ∈ V | |NG(v) ∩ D| = 1 mod 2} is
the odd-neighbourhood of D, where Δ denotes the symmetric difference.

Local Complementation. Local complementation of a graph with respect to
one of its vertices consists in complementing the neighbourhood of this vertex:

Definition 1. The local complementation of a graph G with respect to one of its
vertices u is the graph G�u such that v∼G�uw iff (v∼Gw) xor (u∼Gv ∧u∼Gw).

The local complementation is an involution (G � u � u = G). Two graphs are
LC-equivalent if there exists a sequence of local complementation transforming
one into the other: G ≡LC H ⇔ ∃u0, . . . uk, G � u0 . . . � uk = H.
c© Springer-Verlag Berlin Heidelberg 2015
K. Elbassioni and K. Makino (Eds.): ISAAC 2015, LNCS 9472, pp. 259–270, 2015.
DOI: 10.1007/978-3-662-48971-0 23
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Local complementation has been introduced by Kotzig [20]. The study of this
quantity is motivated by several applications: Bouchet [4,5] and de Fraysseix [9]
used local complementation to give a characterization of circle graphs, and Oum
[22] links the notion of vertex minor of a graph to LC-equivalence. A noticeable
property of local complementation proved by Bouchet [2] is that LC-equivalence
of graphs can be decided in time polynomial in the order of the graphs.

Cut Rank. Local complementation is related to the cut-rank function1 [2,22]:
given a graph G and a bipartition (A, V \A) of its vertices, cutrkG(A) is the rank
of the linear map LA : 2A → 2V \A = X → OddG(X) ∩ (V \A). LA is linear with
respect to the symmetric difference: LA(XΔY ) = LA(X)ΔLA(Y ). The cut-rank
can equivalently be defined as the rank of the cut-matrix, a sub-matrix of the
adjacency matrix. Notice that for any A, cutrkG(A) = cutrkG(V \A).

LC-equivalent graphs have the same cutrank (cutrkG(·) = cutrkG�u(·)) [3],
however the converse which was conjectured in [2], has been disproved by
Fon deer Flaass [12]: the counterexample involves two isomorphic Petersen
graphs which have the same cut-rank but which are not LC-equivalent.

LU-equivalence. More recently, local complementation has emerged as a key
operation in the field of quantum information theory. The graph state formal-
ism consists in representing a quantum state using a graph (see [15] for details).
This powerful formalism provides a graphical representation of quantum entan-
glement: each vertex represent a quantum bit (qubit) and the edges represent
intuitively the entanglement between the qubits. Since entanglement is a non
local property, the strength of the entanglement can only decrease when local
operations are applied on the quantum state, and as a consequence the entangle-
ment is invariant by local reversible operations. In the field of quantum informa-
tion theory this intuition is captured by the LU-equivalence of quantum states:
two quantum states have the same entanglement if and only if they are LU-
equivalent i.e., there is a local unitary operation transforming one state into the
other. LU-equivalence of quantum states can be naturally lifted to graphs as
follows: two graphs are LU-equivalent if and only if the corresponding quantum
states are LU-equivalent. Van den Nest [27] proved that LC-equivalent graphs
are LU-equivalent. Moreover Hein et al. [15] proved that LU-equivalent graphs
have the same cutrank. Thus LU-equivalence is weaker than LC-equivalence but
stronger than the cut-rank equivalence. Using Fon der Flaass’s counterexam-
ple based on the Petersen graph, one can show that there exist pairs of graphs
which are not LU-equivalent but which have the same cutrank [15]. LC- and LU-
equivalences were conjectured to coincide [25]. Indeed, LC- and LU-equivalence
actually coincide for several families of graphs [26,28], however a counterexample
of order 27 has been discovered using computer assisted methods [19].

1 It was used by Bouchet [2] and others under the name connectivity function, and
coined the cut-rank by Oum [22].
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Local Minimum Degree. In this paper we will focus on the minimum degree
up to local complementation called local minimum degree:

Definition 2. Given a graph G, the local minimum degree of G is

δloc(G) = min
H≡LCG

δ(H)

The local minimum degree has been used to bound the rate of some quantum
codes obtained by graph concatenation [1]. This quantity has also been used to
characterise the complexity of preparation of graph states [16] which are used as a
resource in measurement-based quantum computation [24] (a model of quantum
computation which is very promising in terms of physical implementation), as
well as blind quantum computation [6] for instance. The local minimum degree
is also used to bound the optimal threshold that can be achieved by graph-based
quantum secret sharing [13,21].

The local minimum degree is related to the cut-rank function and the smallest
set of the form D ∪ OddG(D):

Property 1 [16]. Given a graph G = (V,E),

δloc(G) + 1 = min
∅⊂D⊆V

|D ∪ OddG(D)| = min{|A| : A ⊆ V ∧ cutrkG(A) < |A|}

The second equation provides a cut-rank characterisation of the local mini-
mum degree which implies that two graphs which have the same cut-rank have
the same local minimum degree. As a consequence, since LU-equivalent graphs
have the same cut-rank function, they have the same local minimum degree, too.
Thus the local minimum degree is invariant for the three closely related, albeit
distinct, classes of equivalence based respectively on local complementation, local
unitary operations, and cut-rank functions.

Bounds on the Local Minimum Degree. The local minimum degree has
been studied for several families of graphs: the local minimum degree of the
hypercube is at least logarithmic in the order of the hypercube [16]; the local
minimum degree of a Paley graph Pn of order n is at least

√
n. There is no

known specific upper bound on the local minimum degree of Paley graphs
except that not all Paley graphs can have a linear local minimum degree (i.e.,
δloc(Pn) = Θ(n)), and the existence of an infinite number of Paley graphs with a
linear local minimum degree would imply the Bazzi-Mitter conjecture on elliptic
curves [17,18].

There is no known explicit construction which leads to a local minimum
degree greater than the square root of the order of the graph, however using
probabilistic methods, it has been proven that there exist graphs of order n
which have a local minimum degree larger than 0.189n [18]. There are even
bipartite graphs with a linear local minimum degree: for any n there exists a
bipartite graph of order n and local minimum degree at least 0.110n [18].

Regarding the upper-bounds, Property 1 implies that the local minimum
degree is at most half of the order of the graph, since no set larger than half of the
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vertices can have a full cut-rank. In Sect. 2, we improve this upper bound, proving
that for any graph of order n, its local minimum degree is at most 3

8n + o(n),
and n

4 + o(n) for bipartite graphs. We also prove that the local minimum degree
is smaller than half of the vertex cover number (up to a logarithmic term).

Complexity of the Local Minimum Degree. One motivation for studying
the complexity of computing the local minimum degree comes from the problem
of producing graphs with a ‘large’ local minimum degree. Indeed, there is no
known explicit construction of graphs with a local minimum degree linear in the
order of the graph, but a random graph has such a ‘large’ local minimum degree
with high probability. So to produce a graph with a large local minimum degree,
one can pick a graph at random and then double check that the local minimum
degree is actually ‘large’. However, computing the local minimum degree is hard,
even for bipartite graphs: the associated decision problem is NP-Complete [18]
and hard to approximate [18].

In Sect. 3, we investigate the parameterized complexity of the local mini-
mum degree problem and its restriction to bipartite graphs. We show that both
problems are FPT-equivalent to the so-called EvenSet problem, implying their
W[2]-membership. However, it does not imply any hardness result since the
W[1]-hardness of EvenSet is long standing open question [11].

In Sect. 4, we introduce exponential algorithms for computing the local min-
imum degree, mainly based on the improved upper bounds. We show that
the local minimum degree of any graph of order n can be computed in time
O∗(1.938n) and more interestingly that the local minimum degree of bipartite
graphs can be computed in time O∗(1.466n).

2 Upperbounds on the Local Minimum Degree

For improving the known bounds on the local minimum degree, we use as a
routine the fact that in any bipartite graph G = (V1, V2, E), there exists a
non empty subset of V1 which oddly dominates at most |V2|

2(1−2−|V1|) vertices, so
roughly speaking as long as V1 is not too small with respect to V2 there is a non
empty subset of V1 which oddly dominates at most half of the vertices of V2.
This fact is a direct consequence of the so called Plotkin bound [23] on linear
codes:

Lemma 1. For any bipartite graph G = (V1, V2, E), there exists a non empty
set D ⊆ V1 s.t.

|OddG(D)| ≤ |V2|
2(1 − 2−|V1|)

Proof. C := {OddG(D) : D ⊆ V1} is a linear binary code of length n = |V2|
and rank k = |V1|, where OddG(D) is identified with its indicator vector in
V2. According to the Plotkin bound [23], the minimum distance d of C is at
most n/(2(1 − 2−k)), thus there exists a non empty set D ⊆ V1 such that
|OddG(D)| ≤ |V2|/(2(1 − 2−|V1|)). �
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The local minimum degree can be bounded by the vertex cover number as
follows:

Lemma 2. Given a graph G of order n and vertex cover number τ(G) > 0,

2δloc(G) ≤ τ(G) + log2(τ(G)) + 1

Proof. Let G = (V,E) be a graph of order n, and let S be an independent set
of size α = n − τ(G), and R ⊆ S a subset of size k to be fixed later. Let G′ =
(R, (V \S)∪R,E′) be a bipartite graph s.t. for any u ∈ R, NG′(u) = {u}∪NG(u).
Notice that there are two copies of R in G′, one on each side of the bipartite
graph: there is a matching between these two copies of R, the other edges of
G′ are those of G between R and V \ S. According to Lemma 1 there exists
D ⊆ R′ s.t

|OddG′(D)| ≤ |V | − |S| + |R|
2(1 − 2−|R|)

=
τ(G) + k

2(1 − 2−k)

The odd-neighbourhood of D in G′ is related to the odd-neighbourhood of D in
G as follows: OddG′(D) = Δu∈DNG′(u) = Δu∈D({u}∪NG(u)) = DΔOddG(D).
Thus |OddG′(D)| = |D ∪ OddG(D)|. As a consequence, δloc(G) + 1 ≤ τ(G)+k

2(1−2−k)
.

– If �log2(τ(G) + 1)� ≤ n − τ(G), then we fix k = �log2(τ(G) + 1)�:

δloc(G) + 1 ≤ τ(G) + �log2(τ(G) + 1)�
2(1 − 2−
log2(τ(G)+1)�)

<
1
2
(τ(G) + log2(τ(G))) + 1 (1)

To prove the second inequality of Eq. (1), let τ(G) = 2r + y with y < 2r.
Notice that �log2(τ(G) + 1)� = r + 1, thus

δloc(G) + 1 ≤ 2r + y + r + 1
2(1 − 2−r−1)

Moreover, standard calculation shows that 2r+y+r+1
1−2−r−1 < 2r +y+log2(2r +y)+2

when r > 0. Thus 2δloc(G)+2 < τ(G)+log2(τ(G))+2. When r = 0, τ(G) = 1,
thus G is a star (and possibly some isolated vertices), so 2δloc(G) ≤ 2 =
τ(G) + log2(τ(G)) + 1.

– If �log2(τ(G) + 1)� > n − τ(G), then it is enough to prove that 2δloc(G) ≤ n
since τ(G) + log2(τ(G)) + 1 ≥ τ(G) + �log2(τ(G) + 1)� > n. For any set S of
size �n

2 � + 1, cutrkG(S) < |S| since |V \ S| < |S|, thus according to property
1, δloc(G) < �n

2 � + 1 ≤ n/2. �

Remark 1. In Lemma 2, the condition τ(G) > 0 only excludes the empty graph
and is used to guarantee that the logarithm is well defined. The bound is tight
for star graphs: δloc(Sn) = 1 and τ(Sn) = 1. This is the only tight case and when
τ(G) > 1, the proof can be modified to prove the following statement where the
constant factor is removed: if τ(G) > 1, 2δloc(G) ≤ τ(G) + log2(τ(G)).

The vertex cover number-based bound on the local minimal degree leads to
an improved general upper bound for bipartite graphs:
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Theorem 1. For any bipartite graph G of order n > 0,

δloc(G) <
n

4
+ log2 n

Proof. If n ≤ 2, the property is satisfied. Otherwise, since G is bipartite τ(G) ≤
�n
2 �, so according to Lemma 2, δloc(G) ≤ 1

2 (τ(G) + log2(τ(G)) + 1) ≤ n
4 +

1
2 log2(n/2) + 1

2 ≤ n
4 + 1

2 log2 n < n
4 + log2 n. �

Contrary to the bipartite case, the bound involving the vertex cover number
does not lead to an improved upper bound for non-bipartite graphs. However, we
prove that the local minimum degree of a graph of order n is at most 3

8n + o(n)
exploiting the structure of the kernels of the linear maps associated with the
cuts of the graph:

Theorem 2. For any graph G of order n > 0,

δloc(G) <
3
8
n + log2 n

Proof. For any integer 0 < k < n/2, let S be a subset of �n/2� + k ver-
tices. Let L : S → V \ S be the map D → OddG(D) \ S which is lin-
ear for the symmetric difference, i.e. L(D1ΔD2) = L(D1)ΔL(D2). Notice
that for any D ∈ Ker(L), D ∪ Odd(D) ⊆ S. According to the rank nul-
lity theorem, dim(Ker(L)) ≥ 2k − 1. Let R ⊆ S be a basis for Ker(L). Let
G′ = (R,S × {1, 2, 3}, E′) be a bipartite graph s.t. for any D ∈ R,NG′(D) =
D×{1} ∪ OddG(D)×{2} ∪ (OddG(D)ΔD)×{3}: the neighbourhood of D in G′

is the disjoint union of D, OddG(D) and DΔOddG(D). Notice that |R| ≥ 2k −1
and |S × {1, 2, 3}| = 3(�n/2� + k), so according to Lemma 1, there exists a non
empty R0 ⊆ R such that |OddG′(R0)| ≤

⌊

3
2 . �n/2+k

1−2−2k+1

⌋

.
Let F := ΔD∈R0D. Since R is a basis and R0 �= ∅, F �= ∅. More-

over OddG′(R0) = ΔD∈R0NG′(D) = ΔD∈R0(D × {1} ∪ OddG(D) × {2} ∪
(OddG(D)ΔD) × {3}) = F × {1} ∪ OddG(F ) × {2} ∪ (FΔOddG(F )) × {3}.
Thus |OddG′(R0)| = |F | + |OddG(F )| + |FΔOdd(F )| = 2|F ∪ OddG(F )|. As a
consequence,

|F ∪ OddG(F )| ≤
⌊

1
2

⌊

3
2
.
�n/2� + k

1 − 21−2k

⌋⌋

(2)

We choose k=�4 log2(n)/3� to guarantee |F ∪ OddG(F )| ≤ 3
8n+ log2(n)+

O(1). More precisely, notice that |F ∪ OddG(F )|≤ 3
8 . n+2�4 log2(n)/3

1−2×2−2�4 log2(n)/3� ≤ 3
8 .

n+8 log2(n)/3

1−8.n−8/3 which is strictly smaller than 3
8n + log2 n + 1 when n > 60. For

2 < n ≤ 61, one can double check by direct calculation that the bound in
Eq. 2 is actually strictly smaller than 3

8n + log2(n) + 1. Thus for any n > 2,
minD �=∅ |D ∪ OddG(D)| < 3

8n + log2 n + 1, so δloc(G) < 3
8n + log2 n. Finally, it

is easy to check that δloc(G) < 3
8n + log2 n also holds for n ≤ 2. �

Remark 2. Choosing k = �log2(n)/2� in the proof of Theorem 2 gives an asymp-
totically slightly better bound: δloc(G) ≤ 3/8n + 3/4 log2(n) + O(1).
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3 Parameterized Complexity

The decision problem associated with the local minimum degree is known to be
NP-complete and hard to approximate: there exists no k-approximation algo-
rithm for this problem for any constant k unless P=NP [18]. In this section we
consider the parameterized complexity of this problem, and its bipartite version.
Please refer to [10] for an introduction to parameterized complexity.

Local Minimum Degree : Bipartite Local Minimum Degree :
input: A graph G input: A bipartite graph G
parameter: An integer k parameter: An integer k
question: Is δloc(G) ≤ k? question: Is δloc(G) ≤ k?

We show that both problems are FPT-equivalent to the EvenSet problem [11]:

EvenSet:
input: A bipartite graph G = (R,B,E)
parameter: An integer k
question: Is there a non empty D ⊆ R, such that |D| ≤ k and OddG(D) = ∅ i.e.,
every vertex in B has an even number of neighbours in D?

To prove the FPT-equivalence of these three problems, first we prove that
EvenSet is harder than Local Minimum Degree, and then that Bipartite
Local Minimum Degree is harder than EvenSet.

Theorem 3. EvenSet is FPT-reducible to Local Minimum Degree.

Proof. Given an instance (G, k) of Local Minimum Degree, let (G′, k′) be an
instance of EvenSet where:
G′ = (A1 ∪ A2,∪A3, A4 ∪ A5, E1 ∪ E2 ∪ E3), k′ = 2k+2

∀i ∈ [1, 5], Ai = {ai,u,∀u ∈ V (G)}
E1 = {(a1,u, a4,u),∀u ∈ V (G)},
E2 = {(ai,u, a5,u),∀i ∈ {2, 3},∀u ∈ V (G)}
E3 = {(a2,u, ai,v),∀i ∈ {4, 5},∀{u, v} ∈ E(G)}

In other words, G′ consists of 5 copies Ais of V (G), there is a matching between
A1 and A4, and between A3 and A5. Moreover, the subgraph induced by A2∪A4

is the bipartite double of G, whereas subgraph induced by A2 ∪A5 the bipartite
double of G augmented with a matching.

– If (G, k) is a positive instance of Local Minimum Degree with a non
empty D ⊆ V (G) such that |D ∪ OddG(D)| ≤ k+1. Let D′ = {a1,u | u ∈
OddG(D)} ∪ {a2,u | u ∈ D} ∪ {a3,u | u ∈ OddG(D)ΔD}, thus D′ is composed of
the copy of D in A2, the copy of OddG(D) in A1 and the copy of DΔOddG(D)
in A3. Notice that OddG′(D′) = ∅, and D′ �= ∅ since D �= ∅. Moreover |D′| =
|OddG(D)| + |D| + |DΔOddG(D)| = 2|D ∪ OddG(D)| ≤ 2k + 2 = k′. Thus D′

makes (G′, k′) a positive instance of EvenSet.
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– If (G′, k′) is a positive instance of EvenSet with a non empty D ⊆ A1∪A2∪A3

of size at most k′ such that OddG′(D) = ∅. For i ∈ [1, 3], let Di = {u ∈
V (G) | ai,u ∈ D}. Notice that D1 = OddG(D2) and D3 = OddG(D2)ΔD2.
D �= ∅ implies D2 �= ∅, moreover |D2 ∪ OddG(D2)| = 1

2 (|D2| + |OddG(D2)| +
|OddG(D2)ΔD2|) = 1

2 |D| ≤ 1
2k′ = k+1, so D2 makes (G, k) a positive instance

of Local Minimum Degree. �

Corollary 1. Local Minimum Degree is in W[2].

W[2]-membership of Local Minimum Degree is not surprising in the sense
that not only EvenSet but all similar problems of graph domination with parity
conditions are known to be in W[2] [8]. We refine this W[2]-membership by
proving that both Local Minimum Degree and Bipartite Local Minimum
Degree are FPT-equivalent to EvenSet. They form a peculiar subclass of W[2]
for which no hardness results are known: the W[1]-hardness of EvenSet is a long
standing open question in parameterized complexity [11]. This contrasts with the
subclass of problems FPT-equivalent to the W[1]-hard OddSet problem which
contains problems like Weak Odd Domination and Quantum Threshold
[7,14].

Theorem 4. Bipartite Local Minimum Degree is FPT-reducible to
EvenSet.

Proof. If (G=(R,B,E), k) is a positive instance of EvenSet, then it is also a
positive instance of Bipartite Local Minimum Degree. But if (G, k) is a
positive instance of Bipartite Local Minimum Degree, it may fail to be a
positive instance of EvenSet mainly for two reasons:

(i) A set D such that |D ∪ OddG(D)| ≤ k+1 may not be a subset of R
(ii) For solving EvenSet, one wants to guarantee that OddG(D) = ∅.

Regarding the first point, a gadget with a local minimum degree larger than
k+1 is attached to each vertex in B to guarantee that no vertex of B can occur
in a set D such that |D ∪ Odd(D)| ≤ k+1. Concretely we can use a Paley graph
Pq which vertices are {0, . . . , q − 1} for q = 1 mod 4 a power of prime, and (i, j)
is an edge iff ∃x, i − j = x2 mod q. The local minimal degree of a Paley graph is
at least square root of its order. However to keep the bipartiteness of the graph
we use the bipartite double of a Paley graph rather than a Paley graph. Indeed,
it is known that the local minimum degree of a bipartite double graph is as large
as the local minimum degree of the original graph (δloc(G⊕2) ≥ δloc(G) [17]).
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Regarding the second point, each vertex of B is duplicated k times in such
a way that for any D ⊆ R if a vertex v ∈ B is in the odd neighbourhood of D
than its k copies are also in the odd-neighbourhood which contradicts the fact
that |D ∪ Odd(D)| is at most k + 1.

Concretely, let q be a prime number such that q ≥ k2 + 1 and q = 1 mod 4,
let (G′, k) be an instance of Bipartite Local Minimum Degree such that
G′ = (R ∪ P ′, P , EG ∪ EPaley), where P = ∪b∈B,i∈[0,k]Pb,i, P ′ = ∪b∈B,i∈[0,k]P

′
b,i

Pb,i={pb,i,r,∀r∈[0, q − 1]}, P ′
b,i={p′

b,i,r,∀r∈[0, q − 1]} EPaley= ∪b∈B,i∈[0,k] E
(b,i)
Paley

and E
(b,i)
Paley={(pb,i,r, p

′
b,i,r′),∀r, r′∈[0,q − 1] s.t. ∃�∈[0, q − 1], �2=r−r′ mod q}.

– If (G, k) is a positive instance of EvenSet with D⊆E s.t. OddG(D)=∅ then
OddG′(D)=∅ so (G′, k) is a positive instance of Bipartite Local Minimum
Degree.
– If (G′, k) is a positive instance of Bipartite Local Minimum Degree with
D s.t. |D∪OddG′(D)| ≤ k+1. For any b ∈ B, i ∈ [0, k], let D′

b,i = D∩(Pb,i∪P ′
b,i),

in the subgraph induced by Pb,i ∪ P ′
b,i |D′ ∪ OddG′[Pb,i∪P ′

b,i]
(D)| ≤ k + 1, thus

D′
n,i = ∅ since δloc(Paleyk2+1) > k. So D ⊆ R. Moreover if there exists

pb,i,0 ∈ OddG′(D) then ∀j ∈ [0, k], pb,j,0 ∈ OddG′(D), so |D ∪OddG′(D)| > k+1,
so by contradiction OddG′(D)=∅. Thus (G, k) is a positive of EvenSet. �

Corollary 2. Bipartite Local Minimum Degree and Local Minimum
Degree are FPT-equivalent to EvenSet.

W[1]-hardness of EvenSet is a long standing open problem, the FPT-
equivalence with (Bipartite) Local Minimum Degree might give some
more insights and open new perspectives on the parameterized complexity of
EvenSet.

4 Exponential Algorithms

In this section we introduce exact exponential algorithms for computing the local
minimum degree of a graph.

Property 2. The local minimum degree of a graph of order n can be computed
in time O∗(1.938n).

Proof. Thanks to Property 1 and Theorem 2, δloc(G)+1= min{|A| : |A| ≤ 3
8n +

log2(n) ∧ cutrkG(A)<|A|}. The algorithm consists in enumerating all subsets of
at most 3

8n+ log2(n) vertices and computing its cut-rank. The cut-rank can be
computed in polynomial time, so the complexity of this algorithm is O∗(2H( 3

8 )n)
where H(x)= − x log2 x − (1−x) log2(1−x) is the binary entropy function. �

Regarding the bipartite case, enumerating all the subsets of size at most n
4 +

log2(n) leads to a O∗(1.755n) algorithm. This naive algorithm can be improved:

Theorem 5. The local minimum degree of a bipartite graph of order n can be
computed in time O∗(1.466n).
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Proof. We use the following property of bipartite graphs: given a bipartite graph
G = (V1, V2, E), δloc(G) + 1 = min∅⊂D⊆V1 or ∅⊂D⊆V2 |D ∪ OddG(D)|. Indeed, for
any D ⊆ V1 ∪ V2, both (D ∩ V1) ∪ OddG(D ∩ V1) and (D ∩ V2) ∪ OddG(D ∩ V2)
are subsets of D ∪ OddG(D). Let |V1| = αn and |V2| = (1 − α)n. We assume
w.l.o.g. that α ≤ 1/2. Since V1 is a vertex cover set, according to Lemma 2,
δloc(G) ≤ α

2 n+ log2(αn)
2 . Thus to compute the local miminum degree, it is enough

to enumerate all sets D of size at most α
2 n + log2(αn)

2 in both V1 and V2 and
to compute their odd neighbourhood – which can be done in time polynomial
in n. There are

( αn
α
2 n+

log2(αn)
2

)

+
( (1−α)n

α
2 n+

log2(αn)
2

)

= O∗(2(1−α)nH( α
2(1−α) )) sets to

enumerate. Notice that α → (1 − α)H( α
2(1−α) ) is maximal for α0 = 0.3885, and

2(1−α0)H(
α0

2(1−α0) ) = 1.46557. �

5 Conclusion

After having shown that the local minimum degree is smaller than half of the
vertex cover number (up to a logarithmic term), we have improved the best
known upper bound on the local minimum degree, proving that it is at most
3
8n + o(n) and n

4 + o(n) for bipartite graphs. Moreover, we have investigated
the parametrized complexity of the problem, showing its W[2]-membership and
its FPT-equivalence with the EvenSet problem, even when restricted to bipar-
tite graphs. Finally, we have introduced a O∗(1.938n)-algorithm – O∗(1.466n)-
algorithm for the bipartite graphs – for computing the local minimum degree.

This is noticeable that the bipartite case evolves quite similarly to the general
case: same parameterized complexity, and upper bound and algorithm slightly
better in the bipartite case. It would be interesting to investigate other families
of graphs, in particular those defined by excluded vertex minors, in order to
identify a family of graphs which local minimum is large but easy to compute
or to approximate.
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References

1. Beigi, S., Chuang, I., Grassl, M., Shor, P., Zeng, B.: Graph concatenation for
quantum codes. J. Math. Phys. 52(2), 022201 (2011)

2. Bouchet, A.: Graphic presentations of isotropic systems. J. Comb. Theory Ser. A
45, 58–76 (1987)

3. Bouchet, A.: Connectivity of isotropic systems. In: Proceedings of the third inter-
national conference on Combinatorial mathematics, pp. 81–93. New York Academy
of Sciences (1989)

4. Bouchet, A.: κ-transformations, local complementations and switching. In: NATO
Advance Research Workshop, vol. C, pp. 41–50 (1990)



Minimum Degree up to Local Complementation 269

5. Bouchet, A.: Circle graph obstructions. J. Comb. Theor. Ser. B 60(1), 107–144
(1994)

6. Broadbent, A., Fitzsimons, J., Kashefi, E.: Universal blind quantum computation.
In: 50th Annual IEEE Symposium on Foundations of Computer Science, FOCS
2009 (2009)
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Abstract. Conflict-free coloring of hypergraphs is a very well stud-
ied question of theoretical and practical interest. For a hypergraph
H = (U,F), a conflict-free coloring of H refers to a vertex coloring
where every hyperedge has a vertex with a unique color, distinct from
all other vertices in the hyperedge. In this paper, we initiate a study of
natural maximization version of this problem, namely, Max-CFC: For
a given hypergraph H and a fixed r ≥ 2, color the vertices of U using r
colors so that the number of hyperedges that are conflict-free colored is
maximized. By previously known hardness results for conflict-free color-
ing, this maximization version is NP-hard.

We study this problem in the context of both exact and parameter-
ized algorithms. In the parameterized setting, we study this problem
with respect to the natural parameter, the solution size. In particular,
we study the following question: p-CFC: For a given hypergraph, can
we conflict-free color at least k hyperedges with at most r colors, the
parameter being k. We show that this problem is FPT by designing an
algorithm with running time 2O(k log log k+k log r)(n+m)O(1) using a novel
connection to the Unique Coverage problem and applying the method
of color coding in a non-trivial manner. For the special case for hyper-
graphs induced by graph neighbourhoods we give a polynomial kernel.
Finally, we give an exact algorithm for Max-CFC running in O(2n+m)
time. All our algorithms, with minor modifications, work for a stronger
version of conflict-free coloring, Unique Maximum Coloring.

1 Introduction

A hypergraph H is a pair (U,F) where U is a set of n vertices and F contains
m subsets of U . We call these subsets hyperedges. Thus a general graph is a
hypergraph where every hyperedge contains exactly two vertices. A k-vertex-
coloring of H, for k ∈ N is a function c : U → {1, 2, . . . , k}. A coloring is called a
proper coloring if none of the hyperedges are monochromatic, i.e. all the vertices
of the hyperedge are not of the same color. We look at a stricter version of
coloring called conflict-free coloring.

The research leading to these results has received partial funding from the Euro-
pean Research Council under the European Union’s Seventh Framework Programme
(FP7/2007-2013)/ERC grant agreement no. 306992.

c© Springer-Verlag Berlin Heidelberg 2015
K. Elbassioni and K. Makino (Eds.): ISAAC 2015, LNCS 9472, pp. 271–282, 2015.
DOI: 10.1007/978-3-662-48971-0 24
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Definition 1. A vertex coloring c : U → {1, 2, . . . , k} of a hypergraph H(U,F)
is said to be conflict-free, if for every F ∈ F ,∃v ∈ F such that ∀u ∈ F , u �= v
implies c(u) �= c(v). In other words, every hyperedge has a uniquely colored
vertex.

The minimum number of colors required to conflict-free color the vertices of a
hypergraph H is called the conflict-free chromatic number of H and is repre-
sented as χcf (H). For a given hypergraph H, the minimum conflict-free coloring
problem refers to computing the value of χcf (H).

The concept of conflict-free coloring was introduced for hypergraphs induced
by geometric regions, motivated by the frequency allocation problem in cellular
networks [4]. This problem also found applications in areas like Radio Frequency
Identification and Robotics. Conflict-free coloring question has been extensively
studied for hypergraphs induced by various geometric regions [1,8,13].

Pach and Tardos [12] initiated the study of conflict-free coloring for general
hypergraphs and gave an upper bound of O(

√
m) on the conflict-free chromatic

number. On the algorithmic side, the minimum conflict-free coloring problem
for a general hypergraph is NP-hard by results shown in [4,7]. [12] also studied
the conflict-free coloring of hypergraphs induced by graph neighborhoods. Here
the vertex set of the hypergraph corresponds to vertex set of a general graph
G = (V,E) and the hyperedges are defined by the neighborhoods (open or closed)
of the vertices in G. [12] showed an upperbound of O(log2 n) and a lower bound
of Ω(log n) for this problem. Gargano and Rescigno [7] studied the minimum
conflict-free coloring of these hypergraphs and showed NP- completeness. [7]
also showed that the minimum conflict-free coloring problem for these graphs
becomes tractable when parameterized by the vertex cover or the neighborhood
diversity number of the graph. Specifically, they gave an algorithm that decides
whether a hypergraph induced by neighborhoods of a graph G can be conflict-free
colored using k colors. This algorithm runs in time 2O(kt log k) where t represents
the neighborhood diversity number of G. Note that this also implies an algorithm
to solve the minimum conflict-free coloring problem in hypergraphs induced by
graph neighbourhoods, which runs in O(nn) time.

In this paper, we initiate a study a maximization version of the Minimum
Conflict-Free Coloring problem.

Maximum Conflict-free Coloring(Max-CFC)
Input: A hypergraph (U,F) on n vertices and m hyperedges, and an integer
r ≥ 2.
Output: A maximum-sized subfamily of hyperedges that can be conflict-free
colored with r colors.

The NP-hardness of this problem follows from the NP-hardness reductions shown
in [7]. We give an exact algorithm for this problem that runs in O(2m+n) · nO(1)

time. As a corollary, we obtain an exact algorithm, of running time O(4n) ·nO(1),
for hypergraphs induced by neighbourhoods in graphs. We also define a stronger
variant of conflict-free coloring namely, unique-maximum coloring [3].
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Definition 2. A vertex coloring c : U → {1, 2, . . . , k} is said to be unique-
maximum, if for every F ∈ F ,∃v ∈ F such that ∀u ∈ F , u �= v implies c(u) <
c(v). In other words, the maximum color occuring in a hyperedge occurs uniquely.
The minimum number of colors required to unique-maximum color H is called
the unique-maximum chromatic number of H.

For a given hypergraph H, the minimum unique-maximum coloring problem
refers to computing the minimum number of colors required to unique-maximum
color H.

Similar to the definition of Max-CFC, we can define Maximum Unique-
Maximum Coloring (Max-UMC) to take as input a hypergraph H and a
positive integer r ≥ 2, and output the largest subfamily of hyperedges that has
a unique-maximum coloring with r colors. Our algorithms for Max-CFC, with
some modification, also works for Max-UMC.

In the parameterized setting, we study Max-CFC parameterized by solution
size.

p-CFC Parameter: k
Input: A hypergraph (U,F) on n vertices and m hyperedges, and positive
integers r ≥ 2 and k.
Question: Is there a subfamily of at least k hyperedges that can be conflict-
free colored using r colors?

We also study this problem when we restrict the input hypergraph to that
induced by the closed/open neighbourhood of a graph G.

Our Results and Methods. In the realm of parameterized algorithm we obtain
the following result.

1. We show that the problem is FPT by designing a kernel with at most 4k

vertices and O(k log k) hyperedges. The kernel is obtained by finding a novel
connection to Unique Coverage problem [10]. We use this one way con-
nection to either say that the given instance for p-CFC is a YES instance
or conclude that the number of hyperedges is upper bounded by O(k log k).
Finally, using extremal results on set-family we bound the number of ver-
tices (elements) to 4k. Moreover, when we restrict the input hypergraph to
that induced by the closed/open neighbourhood of a graph G, then the above
imply polynomial kernels for these variants.

2. A direct consequence of our kernel is an r4
k

(n+m)O(1) algorithm for p-CFC.
We exploit the fact that the number of hyperedges is at most O(k log k)
in the reduced instance to design an FPT algorithm with running time
2O(k log log k+k log r)(n+m)O(1). We arrive at the required algorithm by combin-
ing the fact that we have small number of hyperedges and using the technique
of color coding introduced in [2] in a non-trivial manner.

Finally, we design an exact algorithm that solves the Max-CFC problem for
general hypergraphs. This algorithm exploits structural properties of a YES
instance for Max-CFC. Our algorithm runs in O(2m+n) time. The algorithm
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also works for the Minimum Conflict-Free coloring problem. In particular,
for hypergraphs induced by graph neighbourhoods, our algorithm runs in time
O(4n) which is a non-trivial improvement over the best known exact algorithm
that runs in O(nn) time [7]. The algorithm is based on dynamic programming
combined with an application of subset-convolution. We refer to [6] for a more
detailed introduction to exact algorithms. Some minor modifications to our algo-
rithm give an exact algorithm for Unique Maximum Coloring.

2 Preliminaries

A set of consecutive integers {1, 2, . . . n} will be written as [n] in short. We
denote the hypergraph as H = (U,F). We refer to the objects in the universe U
by either vertices or elements. Furthermore, for a vertex v ∈ U , deg(v) denotes
the number of hyperedges v is part of. The neighbourhood of a vertex v ∈ U ,
denoted by N(v), is the subfamily of hyperedges in F that contain v.

Parameterized Algorithms. The instance of a parameterized problem is a
pair containing the actual problem instance of size n and a positive integer
called a parameter, usually represented as k. The problem is said to be in FPT
if there exists an algorithm that solves the problem in f(k)nO(1) time, where
f is a computable function. The problem is said to admit a g(k)-sized kernel,
if there exists an polynomial time algorithm that converts the actual instance
to a reduced instance of size g(k), while preserving the answer. When g is a
polynomial function, then the problem is said to admit a polynomial kernel. A
reduction rule is a polynomial time procedure that changes a given instance I1
of a problem Π to another instance I2 of the same problem Π. We say that the
reduction rule is safe when I1 is a YES instance of Π if and only if I2 is a YES
instance. Readers are requested to refer [5] for more details.

Exact Algorithms. Although all NP-Complete problems can be solved by some
brute-force algorithm, the running time of these algorithms can be extremely
large even for some small input. However, for some these problems, we can
design super-polynomial algorithms which are considerably faster than brute-
force. Such algorithms which solve NP-Complete problems optimally are called
exact algorithms. At times, these may even be practical for moderate or small
instance sizes.

3 FPT Algorithm for p-CFC

We are given a hypergraph H = (U,F) as input and two positive integers, k
and r. In this section, we give an FPT algorithm for p-CFC on hypergraphs,
parameterized by k. In other words, we wish to find out if k hyperedges can
be conflict-free colored using r colors. For simplicity, throughout this section, we
assume that we are given a simple hypergraph, that is no hyperedges are repeated.
We first give a kernel and then use this kernel to get the desired FPT algorithm.
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Kernel for p-CFC. We begin with a simple observation that if r > k, then
we can conflict-free color any subfamily of k edges with r colors. Thus, for the
remaining section, we assume that r ≤ k.

We can also preprocess the input instance to detect simple YES instances of
the problem, by applying the following reductions to the instance.

Reduction 1. If there is a vertex v ∈ U such that deg(v) is at least k say YES.

Lemma 1 (†).1 Reduction Rule 1 is safe.

Next, we draw a connection between p-CFC and the Unique Hitting Set
(UHS) problem. In UHS, we take a hypergraph H and a positive integer k
as input. The question is to decide whether there is a set S of vertices and a
subfamily F ′ of size at least k such that each hyperedge in F ′ contains exactly
1 vertex from S i.e., each hyperedge of F ′ needs to be uniquely hit by S.

Observation 1 (†). Given a hypergraph H and a positive integer k, if (H, k)
is a YES instance for UHS, then (H, k, r = 2) is a YES instance for p-CFC.

The UHS problem, in turn, is related to the Unique Coverage (UC)
problem. In UC, we take a hypergraph H and a positive integer k as input. The
question is to decide whether there is a subfamily F ′ of hyperedges and a set S
of at least k vertices such that each vertex in S belongs to exactly 1 hyperedge
of F ′. In other words, each vertex of S needs to be uniquely covered by F ′.

Lemma 2 (†). An instance (H = (U,F), k) of UHS has an equivalent instance
(H ′ = (Û , F̂), k) of UC, where the parameter remains the same, and |U | =
|F̂ |, |Û | = |F|.

The UC problem has been studied in the field of parameterized complexity.
When k, the number of vertices to be uniquely covered, is the parameter, the
problem was shown to be in FPT in [10]. The following Proposition was proved
in [10], and we will shortly show how this is useful to us.

Proposition 1 [10, Lemma 17]. Let (H = (U,F), k) be an instance of UC
such that every hyperedge has size at most k − 1. Then there exists a constant
αuc such that if |U | ≥ αuck log k then (H = (U,F), k) is a YES instance and
furthermore in polynomial time, it is possible to find a subfamily covering at least
k elements uniquely.

We use Proposition 1 to bound the universe size for p-CFC.

Lemma 3 (†). Let (H = (U,F), k, r) be an instance of p-CFC. Then in poly-
nomial time, either we can conclude that (H, k, r) is a YES instance of p-CFC
or |F| ≤ αuck log k.

Thus, from now onwards, we assume our instance to have at most O(k log k)
hyperedges. Using an extremal result on set systems [9, Theorem 8.12], we obtain
the following.
1 Proofs labelled with † can be found in the full version.
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Theorem 1 (†). p-CFC has a kernel with at most 4k vertices and O(k log k)
sets.

Corollary 1. p-CFC for hypergraphs induced by graph neighborhoods admits
polynomial kernels.

Corollary 1 follows from Lemma 3 and the fact that the number of hyperedges are
same as the number of vertices in hypergraphs induced by graph neighborhoods.

Theorem 1 immediately implies that p-CFC is FPT. Given an instance
(H = (U,F), k, r) of p-CFC, by using Theorem 1, we either conclude that
(H = (U,F), k, r) is a YES instance of p-CFC or we have that |U | ≤ 4k. Now
we look at every r-partition of U and check whether there are k hyperedges that
are conflict-free colored. If we succeed for any partition then we return YES,
else we conclude that the given instance is a NO instance. The running time of
this algorithm is upper bounded by r4

k

(|U | + |F|)O(1).

Faster FPT algorithm for p-CFC. Let N = |U | + |F|. In this section,
we give the full description of an FPT algorithm for p-CFC that runs in
2O(k log log k+k log r) · NO(1) time. We will assume that our input instance con-
tains at most O(k log k) hyperedges and 4k vertices.

Towards this we first define some concepts. Given a set S ⊆ U , a subfamily
F ′, and a coloring Γ : U → [r], we say that S is a cfc-solution if each hyperedge
h in F ′ is conflict-free colored and a uniquely colored vertex of h belongs to
S. Furthermore, given such a set S and a hyperedge h, let unicoleltS(h) denote
the uniquely colored vertex of h that belongs to S. In what follows we define
an auxiliary problem and give an FPT algorithm for this problem. Finally, we
reduce our problem to this one with some guesses and by using the color coding
technique, introduced by Alon et al. in [2], to obtain the desired algorithm for
p-CFC.

Partitioned p-CFC Parameter: r + p + |F|
Input: A hypergraph (U = U1 � U2 · · · Up,F), a function Ψfamily : F → [r],
Ψparts : [p] → [r], a subset U ′ ⊆ U and a coloring function Γ′ : U ′ → [r], for
every v ∈ U − U ′, a list Lv ⊆ [r]
Question: Does there exist a coloring function Γ : U → [r] such that: Each
hyperedge is conflict-free colored, Γ(U ′) = Γ′(U ′). For each v ∈ U−U ′,Γ(v) ∈
Lv. Also, there exists a cfc-solution set S of size exactly p, for all i ∈ [p], |S ∩
Ui| = 1 and for every h ∈ F , unicoleltS(h) ∈

⋃

j∈Ψ−1
parts(Ψfamily(h))

Uj?

In simple words, the problem definition can be explained as follows. We are
given a partitioning of the universe U into p-parts and a partial coloring function
Γ′ on a subset U ′. We are looking for a coloring Γ : U → [r] which extends Γ′.
Each vertex v in U −U ′ has a list of admissible colors, and Γ must choose a color
from Lv. Also, due to Γ, each of the hyperedge is conflict free colored and there
exists a cfc-solution set S such that it contains exactly one vertex from each
part. Suppose the hypothetical set S be {x1, x2, . . . , xp} (think of xi as some
kind of variables) where xi ∈ Ui. The function Ψparts is used to guess the color
of xi in Γ. The function Ψfamily divides the family F into r chunks (not to be
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confused with parts and coloring). The idea is that the uniquely colored vertex
of h ∈ F , say xj , has been assigned the same color by Γ as h has been assigned
to the chunk number by Ψfamily, i.e., Γ(xj) = Ψfamily(h). Next we show how we
can solve the Partitioned p-CFC problem.

Given an instance ((U = U1�U2 · · · Up,F ′), Ψfamily, Ψparts, U
′,Γ′, {Lv ⊆ [r]|v ∈

U −U ′}) of Partitioned p-CFC, we first do a polynomial time preprocessing of
the instance. For all v ∈ U ′, we must set Γ(v) = Γ′(v). In the following Reduction
Rules, we show that the input functions Ψfamily and Ψparts allow us to prune the
list of some of the vertices. The first reduction rule deals with hyperedges h
where |Γ′−1(Ψfamily(h)) ∩ h| = 1

Reduction 2. Suppose there is a hyperedge h containing w ∈ U ′ such that
Ψfamily(h) = Γ′(w). Then, for every v ∈ h−{w} we delete Ψfamily(h) from Lv. We
delete h from F .

Lemma 4 (†). Reduction Rule 2 is safe.

Reduction 3. If there is a vertex v ∈ Ui, i ∈ [p], and h ∈ F , such that v ∈ h,
Ψfamily(h) �= Ψparts(i), then we remove the color Ψfamily(h) from the list of v.

Lemma 5 (†). Reduction Rule 3 is safe.

The next rule deals with hyperedges h where |Γ′−1(Ψfamily(h)) ∩ h| ≥ 2.

Reduction 4. If there are two vertices v, w ∈ U ′ and a hyperedge h ∈ F , such
that Ψfamily(h) = Γ′(v) = Γ′(w), then we say NO.

Lemma 6 (†). Reduction Rule 4 is safe.

Reduction 5. Suppose there is a vertex w ∈ U − U ′ with Lw = {c}, then we
put w in U ′ and set Γ′(w) = c. If there is a vertex v where Lv = ∅, then we
say NO.

Lemma 7 (†). Reduction Rule 5 is safe.

Given an instance ((U = U1 � U2 · · · Up,F ′), Ψfamily, Ψparts, U
′,Γ′, {Lv ⊆ [r]|v ∈

U − U ′}) of Partitioned p-CFC, we apply Reduction Rules 2, 3, 4, 5 exhaus-
tively. If in the process we infer that the given instance is a NO instance then
we return the same. It could also happen that we get F = ∅. In this case for
every vertex v ∈ U − U ′, Γ assigns to v an element of L(v) arbitrarily. Thus,
from now onwards we assume that neither we obtain that the given instance
is a NO instance nor that F = ∅. We call an instance of Partitioned p-
CFC reduced if Reduction Rules 2, 3, 4, 5 are not applicable. For simplicity, let
((U = U1 � U2 · · · Up,F ′), Ψfamily, Ψparts, U

′,Γ′, {Lv ⊆ [r]|v ∈ U − U ′}) denote the
reduced instance of Partitioned p-CFC. Observe that the reduced instance
have the following properties:

1. For every vertex v, |Lv| ≥ 2.
2. For every hyperedge h, |Γ′−1(Ψfamily(h)) ∩ h| = 0.
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We define the set Vi ⊆ U −U ′ as the set of vertices that have i in their list of
admissible colors. Then there are two kinds of vertices in Vi: It could be that the
vertex v has i ∈ Lv and ∃h ∈ F , v ∈ Uj ∩h such that Ψfamily(h) = i, Ψparts(j) = i.
Or, the vertex v has i ∈ Lv. Also, for any h with Ψfamily(h) = i, v /∈ h.

To solve the reduced instance of Partitioned p-CFC, we will solve some r
instances of an even more specialized problem that we define now. Let Parti-
tioned UHS be the problem of determining, for a given partition U1 � . . . � Uq

of the universe and a family F , whether there is a set S of vertices that uniquely
hits all hyperedges of the input hypergraph (that is, for all h ∈ F , |h ∩ S| = 1)
and where ∀i ∈ [q], |Ui ∩ S| = 1. Now we define some sets based on Vi ⊆ U :

1. For every j ∈ [r], and x ∈ Ψ−1
parts(j) let Zx

j = Ux ∩ Vj and Zj =
⋃

x∈Ψ−1
parts(j)

Zx
j .

2. For every j ∈ [r], and h ∈ Ψ−1
family(j) let hj = h ∩ Vj and Fj = {hj | h ∈

Ψ−1
family(j)}.

Next we relate the instance of Partitioned p-CFC to Partitioned UHS.

Lemma 8. Let ((U = U1 � U2 · · · Up,F ′), Ψfamily, Ψparts, U
′,Γ′, {Lv ⊆ [r]|v ∈ U −

U ′}) denote the reduced instance of Partitioned p-CFC. Then it is a YES
instance of Partitioned p-CFC if and only if for all j ∈ [r], (�x∈Ψ−1

parts(j)
Zx

j ,Fj)
is a YES instance of Partitioned UHS.

Proof. First, suppose that ((U = U1 � U2 · · · Up,F ′), Ψfamily, Ψparts, U
′,Γ′, {Lv ⊆

[r]|v ∈ U − U ′}) is a YES instance of Partitioned p-CFC. Then there is
a satisfying assignment Γ such that each hyperedge is conflict-free colored,
Γ′(U ′) = Γ(U ′). For each v ∈ U −U ′,Γ(v) ∈ Lv. Also, there exists a cfc-solution
set S = {v1, . . . , vp} such that for all i ∈ [p], |S ∩ Ui| = 1. In the reduced
instance, for all h, |Γ′−1(Ψfamily(h)) ∩ h| = 0. Thus, S ∩ U ′ = ∅. For each i ∈ [r],
we look at S ∩ Vi. By definition of Zi, every vertex in S ∩ Vi must belong to a
part in Zi. In particular, every vertex of S ∩ Γ−1(i) must belong to a part in Zi.
Also, since every vertex of S belongs to a unique part of U1 � U2 · · · Up, there is
exactly one vertex in S ∩ Zx

i , for each Zx
i ∈ Zi. Also, we know that for every

h ∈ F , if unicoleltS(h) = vj , then Γ(vj) = Ψfamily(h). Thus, for each hyperedge
h ∈ Fi, unicoleltS(h) ∈ S ∩Γ−1(i). F or every other vertex u ∈ h − unicoleltS(h),
Γ(u) �= i and therefore u /∈ S ∩Γ−1(i). Thus, for every i ∈ [r], Si = S ∩Γ−1(i) is
a unique hitting set of Fj with the property that ∀x ∈ Ψ−1

parts(i), |Zx
i ∩ Si| = 1.

Thus, (�x∈Ψ−1
parts(j)

Zx
j ,Fj) is a YES instance of Partitioned UHS.

In the reverse direction, suppose (�x∈Ψ−1
parts(j)

Zx
j ,Fj) is a YES instance of

Partitioned UHS. Then a solution set Si is a unique hitting set of Fj with the
property that ∀x ∈ Ψ−1

parts(i), |Zx
i ∩ Si| = 1. By definition, Si ⊆ Zi ⊆ Vi. First,

for each vertex v ∈ Si, we assign Γ(v) = i. For each w ∈ U ′, must we set Γ(w) =
Γ′(w). Now, we look at a vertex w ∈ Vi−Si. Look at the colors in Lw−{i}. In the
reduced instance, it must be the case that, for any h with Ψfamily(h) �= i, w /∈ h.
For a vertex w ∈ (U − U ′) −

⋃

j∈[r] Si, we arbitrarily pick a color c ∈ Lw − {i}
and set Γ(w) = c. Every hyperedge h has exactly one vertex in the color class
Ψfamily(h), namely the vertex in SΨfamily(h) ∩ h that uniquely hit h. Thus, Γ is a
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satisfying assignment and ((U = U1 � U2 · · · Up,F ′), Ψfamily, Ψparts, U
′,Γ′, {Lv ⊆

[r]|v ∈ U − U ′}) is a YES instance of Partitioned p-CFC. ��

Lemma 8 allows us to reduce an instance of the Partitioned p-CFC prob-
lem to r instances of Partitioned UHS. Next, we design an algorithm for
Partitioned UHS.

Lemma 9 (†). Partitioned UHS, where the number of hyperedges is m, the
universe size is n and a q ≤ m partitioning of the universe is given, is FPT
parameterized by m. The running time of the algorithm is 4m · (n + m)O(1).

Lemmata 8, 9 and safeness of the Reduction Rules 2, 3, 4, 5 together result
in the following algorithm for Partitioned p-CFC.

Lemma 10. Partitioned p-CFC can be solved in time 2p+|F| · NO(1).

We give an algorithm for p-CFC using Lemma 10 and the method of color
coding technique of [2]. For this we need the notion of a Perfect Hash Family. A
Perfect Hash Family is a family of functions, whose domain is a universe U of n
elements and range is a set of k elements, and with the following property: for
every k-sized subset S ⊆ U , there is a function ζ in the family that maps S to
the range injectively. That is, every element of S maps to a different number in
[k]. The following Proposition shows that such families are constructive [11].

Proposition 2. For any n and k ≤ n, a (n, k)-Perfect Hash Family of size
ekkO(log k) log n can be deterministically computed in time ekkO(log k)n log n.

Our main theorem is the following.

Theorem 2. p-CFC can be solved in time 2O(k log log k+k log r) · NO(1).

Proof. Let ((U,F), k, r) be an instance of p-CFC. Recall that |U | = n, |F| = m
and N = n + m. Given an instance we first apply Theorem 1 and obtain an
equivalent instance with at most 4k vertices and O(k log k) hyperedges. We run
through all p ≤ k. Since the number of hyperedges in the input instance is

αuck log k, the number of subfamilies of size k is
(

αuck log k
k

)

≤ (αuck log ke)
k

k
≤

(αuc log k)k. We guess a subfamily F ′ of hyperedges that will be conflict free
colored. That is, we are trying to find a coloring Γ : U → [r] such that each
hyperedge h in F ′ is conflict-free colored. Let S be a hypothetical cfc-solution
corresponding to it. In other words, for each hyperedge h in F ′, a uniquely
colored vertex of h (with respect to Γ) belongs to S. We guess the size of |S|,
say p ≤ k. For a fixed p, let F be the family of (n, p)-Perfect Hash Family of
size eppO(log p) log n. By the property of F, we know that there exists a function
ζ ∈ F that maps S to [p] injectively. Let U1, . . . , Up denote the partition of U
given by ζ. Observe that after this we will be seeking for a cfc-solution S such
that |S ∩ Ui| = 1 for all i ∈ [p].

Next for each hyperedge h in F ′, we guess the color of a vertex in h that
is uniquely colored by Γ. There are rk such guesses. Thus, after this guess, we



280 P. Ashok et al.

define a function Ψfamily : F ′ → [r] such that h is assigned the color of the
vertex in h that will be uniquely colored by Γ. Finally, for the potential solution
set S we guess the color of each vertex given by Γ. Since we are looking for
a cfc-solution set S, such that ∀i ∈ [p], |Ui ∩ S| = 1} it is equivalent to say
that we guess an r partitioning of the p parts in U = (U1, . . . , Up). That is, the
vertex of S ∈ Ui will be assigned to each color by Γ. To express this guess, we
define another function Ψparts : [p] → [r] such that Ψparts(j) = i if the vertex x
in S ∩ Uj will have Γ(x) = i. Thus, there are rp guesses for the coloring of the
potential solution set S by Γ. At the end of this sequence of guesses, we have
fixed a choice of hyperedges that are to be r conflict-free colored, a coloring of
the potential solution set S (without actually knowing the vertices of S, this
essentially means a partitioning of the parts of U) and a partitioning of the
hyperedges according to which color of Γ will determine that the hyperedge is
conflict-free colored. This results in the following instance of Partitioned p-
CFC: ((U = U1 � U2 · · · Up,F ′), Ψfamily, Ψparts, U

′ = ∅, (∀v ∈ U : Lv = [r])). By
Lemma 10 we know that we can solve this in time 2p+k · NO(1) ≤ 4k · NO(1).
Thus the overall running time for p-CFC is upper bounded by the number of
guesses and the running time of an algorithm for Partitioned p-CFC. Thus,
the running time of the algorithm is upper bounded by:

(

αuck log k

k

)

× k × |F| × rk × rk × 4k · NO(1) = 2O(k log log k+k log r) · NO(1).

��

4 Exact Algorithm for Max-Conflict Free Coloring

In this section, we give an exact algorithm for solving Max-CFC for hyper-
graphs. We give a recurrence on subproblems, using which we can give a dynamic
programming algorithm to solve the problem. However, a much faster algorithm
can be designed using the technique of subset convolutions on functions.

Theorem 3 (†). Max-CFC for hypergraphs can be solved by an exact algorithm
that runs in O(2(m+n)) time.

Proof Outline. Let H = (U,F) be the input hypergraph. Suppose, for a given
hypergraph, there is a procedure to decide whether there exists an r-coloring
that is conflict-free. Then, we can generate all subsets F ′ of F , such that there
exists an r-coloring of vertices of (U(F)′,F ′) that is conflict-free, by running
this procedure for all subsets. Then solving the Max-CFC problem reduces to
picking the maximum sized subsets among those.

We now give a procedure to find the minimum number of colors required
to conflict-free color a given hypergraph, (U ′,F ′). Let χ′ be a r-coloring on U ′

and let F ′ be conflict-free colored by χ′. Then χ′ partitions U ′ into r partitions,
U1, U2, . . . , Ur, such that the following property is true.
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∀F ∈ F ′,∃i ∈ [r] such that |F ∩ Ui| = 1.

Let F1 be the set of hyperedges such that ∀F ∈ F1, |F ∩ U1| = 1 i.e., all the
hyperedges in F1 have a unique vertex colored by color 1. Then, if we correctly
guessed U1 then solving whether F ′ has an r conflict-free coloring in U is equiv-
alent to solving whether F ′ \ F1 has an r − 1 conflict-free coloring in U \ U1.

Let C(X, E) be the minimum number of colors needed to conflict-free color
the hypergraph (X, E). We give the following recurrence relation to find C(X, E).

C(X, E) =

⎧

⎨

⎩

min
X′⊆X:∃h∈E,|h∩X′|=1

{1 + C(X \ X ′, E \ E ′)}, if X �= φ

0, if X = φ
(1)

where E ′ = {h ∈ E||h ∩ X ′| = 1}. We use the above recurrence to get first an
algorithm with running time O(3n2m) and then using the method of subset-
convolution speed up the running time to O(2n+m). ��

It is to be noted that by setting r = n, C(V,F) returns the minimum number
of colors required to conflict-free color the given hypergraph.

Corollary 2. Given a hypergraph H, χcf (H) can be found in O(2n2m) time.

Corollary 3. The Max-CFC problem on hypergraphs induced by neighbour-
hoods of graphs can be solved in O(4n) time.
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Abstract. We consider a geometric matching of two realistic terrains,
each of which is modeled as a piecewise-linear bivariate function. For two
realistic terrains f and g where the domain of g is relatively larger than
that of f , we seek to find a translated copy f ′ of f such that the domain
of f ′ is a sub-domain of g and the L∞ or the L1 distance of f ′ and g
restricted to the domain of f ′ is minimized. In this paper, we show a tight
bound on the number of different combinatorial structures that f and g
can have under translation in their projections on the xy-plane. We give
a deterministic algorithm and a randomized algorithm that compute an
optimal translation of f with respect to g under L∞ metric. We also
give a deterministic algorithm that computes an optimal translation of
f with respect to g under L1 metric.

1 Introduction

In the terrain matching problem, we are given two terrains and the goal is to
measure the similarity between two terrains. Terrain matching has been exten-
sively used for various applications to locate the exact position of objects such as
aircrafts [5,10,15], cruise missiles [3,6], underwater vehicles [13,16,17], rockets
and robots for space missions [7,14].

In these applications, terrain matching is used to specify the location of
an object by constructing local terrain data around the object and finding the
most similar sub-terrain in the existing global terrain data. A typical method
to find the most similar sub-terrain is feature matching. Well known examples
of features are linear edges, 2D curves, contour lines and Gaussian curvatures
[5,6,10]. These features describe some characteristics of a terrain, but may not
fully reflect the geometric properties of the terrain.

Moroz and Aronov [12] and Agarwal et al. [1] dealt with terrain matching
as a geometric matching problem. They defined a terrain f as a piecewise-linear
bivariate function f : Df → R, where Df is a triangulated domain of f in the xy-
plane. For each vertex of the triangulation, the function value f(v) is given, and
the other values are given by the linear interpolation within each triangle. They
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funded by the Korea government(MSIP) (No. 2011-0030044).
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gave algorithms that compute exact L∞, L1 (under vertical scaling and trans-
lation) and L2 distances between two terrains, respectively. These algorithms
only handle two input terrains defined on the same domain, and to the best of
our knowledge, there is no research about matching two triangulated terrains
defined on different domains.

We deal with a geometric matching problem concerning two terrains defined
by the piecewise-linear bivariate functions on triangulated domains, but in this
paper we do not require that two terrains have the same domain. Let Df + t =
{p + t | p ∈ Df} be a translated image of Df by a translation vector t ∈ R

2. We
define the distance between two terrains as follows.

Definition 1. Let f : Df → R and f ′ : Df ′ → R be two terrains such that
Df ′ = Df + t for a translation vector t ∈ R

2. The distance d∞(f, f ′) between f
and f ′ under L∞ metric is

min
h∈R

max
p∈Df

|(f(p) + h) − f ′(p + t)|

and the distance d1(f, f ′) between f and f ′ under L1 metric is

min
h∈R

∫∫

p∈Df

|(f(p) + h) − f ′(p + t)|dp.

We use two different distances to measure the similarity between two terrains.
The distance d∞ measures the min-max vertical distance under vertical transla-
tion h and the distance d1 measures the minimum volume under vertical trans-
lation h.

Our problem can be stated as follows:

Problem (Terrain Matching). Given two terrains f : Df → R and g : Dg →
R, find an optimal translation vector t∗ such that D

∗ = Df + t∗ ⊂ Dg and the
distance between f and g �D∗ is minimized, where g �D∗ denotes the restriction
of g to D

∗.

In many computational geometric problems, there is a certain gap between
the worst-case computational complexity of an algorithm and the actual running
time of the algorithm on inputs from real world applications [11]. The same
phenomenon happens for the terrain matching problem. So, it is an important
issue to develop an algorithm that is efficient for a realistic input. We assume
that our input terrains satisfy some realistic constraints. A realistic terrain is a
terrain with three additional constraints. In the following definition, k and r are
assumed to be positive constants.

Definition 2 [11]. A terrain f : Df → R is a realistic terrain if it satisfies the
followings:
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(a) The triangulation of Df is a k-low-density triangulation.
(b) For the smallest rectangle that contains Df , the ratio of the length of a short

side to the length of a long side is 1 : r.
(c) The longest edge in the triangulation of Df is at most constant times as long

as the shortest one.

A planar triangulation T is called a k-low-density triangulation if for any axis-
aligned square R with side length s, the number of edges of T with length greater
than or equal to s that intersect R is at most k. Also, by Definition 2(b), we
assume that the domain of a realistic terrain is an axis-aligned rectangle with
constant side-length ratio.

1.1 Our Results

We present first algorithms for matching two triangulated terrains with differ-
ent domains and also show geometric properties between two realistic terrains.
To solve the terrain matching problem under L∞ metric, we first gather two-
dimensional translation vectors t such that Df + t ⊂ Dg. Then, we subdivide
the set of translation vectors into a partition such that the translation vectors
t of a cell of the partition correspond to “one combinatorial structure” between
two triangulations of Df + t and Dg. For each cell of the partition, we can find
a translation vector that minimizes the distance among the translation vectors
in the cell by reducing it to a linear programming problem.

To solve the terrain matching problem under L1 metric, we need to treat the
amount of vertical translation h of f explicitly. After we concatenate h as a third
coordinate of the two-dimensional translation vectors t = (tx, ty), we subdivide
the set of three-dimensional translation vectors (tx, ty, h) into a partition such
that the volume function between f and g for the translation vectors (tx, ty, h)
of a cell can be expressed by a single formula. For each cell of the partition, we
find a three-dimensional translation vector that minimizes the distance among
the translation vectors of the cell by using numerical methods.

Our results are twofold: Let m (resp. n) be the number of triangles in the
triangulation of Df (resp. Dg), assuming that m ≤ n. The side lengths of Df

(resp. Dg) are a and ar (resp. a′ and a′r′) for a positive constant r (resp. r′). Let
A = m + ( a

a′ )2n.

1. Under L∞ metric,
– We show that the number of different combinatorial structures between

the triangulation of Df and the triangulation of Dg is O(nmA), and this
bound is tight if a′ > 2a.

– We present a deterministic algorithm and a randomized algorithm for
the terrain matching problem. The deterministic algorithm runs in
O(nmA4/3+δ) time using O(n + A2) space for a fixed δ > 0, and the ran-
domized algorithm runs in O(nmA log n log2 A log2 log A) expected time
using O(n+A2) space. The randomized algorithm outperforms the deter-
ministic algorithm when m = Ω(log3 A).
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– The time complexity of the randomized algorithm is near linear to the
number of different combinatorial structures. It seems hard to avoid
searching the whole combinatorial structures, so our algorithms run rea-
sonably fast.

2. Under L1 metric,
– We show that the number of different formulae of the volume function

defined between f and g is O(nmA4).
– We present a deterministic algorithm for the terrain matching problem

that runs in O(nmA4) time using O(n + A3) space.

The factor A = (m + ( a
a′ )2n) is O(m) when m : n ≈ a2 : a′2. This condition

holds when edge lengths of triangles in both realistic terrains are asymptotically
same. Many real world applications use terrains with this condition to match.
With A = O(m), the running times and the space complexities of our algorithms
are linear to n (except the randomized algorithm); it means that our algorithms
can be used as a query algorithm for finding the most similar part of large
terrain data g for query terrain data f which runs in time linear to the size of
the database.

Due to lack of space, all proofs are omitted but can be found in the full
version.

2 Translation Space Under L∞ Metric

Let S be a set of translation vectors t that satisfies Df +t ⊂ Dg, i.e., S = {t ∈ R
2 |

Df + t ⊂ Dg}. We call S the translation space of f and g. As mentioned before,
our goal is to find an optimal translation vector in S. To find it among infinitely
many translation vectors in S, we need to investigate geometric properties of
input terrains.

Let the triangulations of Df and Dg be Tf and Tg, respectively. In this section,
we show that S can be subdivided into the finite number of cells such that the
interior of each cell induces the same combinatorial structure of the overlay of
the triangulations. Then we show a tight upper bound on the number of the
combinatorially different sets of translation vectors.

2.1 Candidate Pairs Defining the Distance Between Two Terrains

For a translation vector t, let O(f, g, t) be the overlay of Tf + t and Tg where
Tf + t = {p + t | p ∈ Tf} be a translated image of Tf (Fig. 1). The following
lemma shows that there is a vertex v ∈ O(f, g, t) that realizes the distance
between f and g �Df+t, i.e., d∞(f, g �Df+t) = |(f(v − t) + h′) − g(v)|, where
h′ = argmin

h∈R

max
p∈Df

|(f(p) + h) − g(p + t)|.

Lemma 1. There is a vertex of O(f, g, t) that realizes d∞(f, g �Df+t) for any
translation vector t ∈ S.

Each vertex of O(f, g, t) corresponds to a vertex-triangle pair or an edge-edge
pair of two triangulations Tf + t and Tg. We define the combinatorial structure
C(t) between Tf and Tg at t ∈ S as the set of these pairs between Tf + t and Tg.
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Tf Tg

O(f, g, t)

Fig. 1. An example of the overlay O(f, g, t).

2.2 Subdividing Translation Space

Now we describe how to subdivide S into cells such that C(t) = C(t′) for any
two translation vectors t and t′ in the interior of a cell. We denote by M the
subdivision. The combinatorial structure corresponding to an edge or a vertex
of M is the union of the combinatorial structures of the adjacent cells of the
edge or the vertex in M.

Let us consider the different combinatorial structures induced by two trian-
gles � and �′ from Tf and Tg, respectively (Fig. 2(a)). Let S� = {t ∈ R

2 |
(� + t) ∩ �′ 	= ∅} (the gray region in Fig. 2(b)). For an edge-edge pair (e, e′)
where e and e′ are edges of � and �′, respectively, the set of translation vectors
t such that e + t and e′ intersect forms a parallelogram in S� (Fig. 2(b)). For a
vertex-triangle pair (�, v) where v is a vertex of �′, the set of translation vectors
t such that �+ t and v intersect forms a triangle. Similarly, for a vertex-triangle
pair (v,�′) where v is a vertex of �, the set of translation vectors such that
v + t and �′ intersect forms a triangle. We say that the parallelogram in S� is
defined by an edge-edge pair and the triangle in S� is defined by a vertex-triangle
pair. The overlay of the parallelograms and triangles defined by all edge-edge
and vertex-triangle pairs between � and �′, respectively, subdivides S� into
cells such that the interior of each cell corresponds to exactly one combinatorial
structure between � and �′ (Fig. 2(c)).

(a) (b) (c)

e

e

Fig. 2. (a) Two triangles � and �′, and two edges e and e′ of them. (b) The set of
translation vectors t such that e + t ∩ e′ �= ∅ in S� (darker parallelogram). (c) The
resulting subdivision of S�.
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The subdivision M induced by Tf and Tg is constructed as follows. An edge-
edge pair and a vertex-triangle pair between Tf and Tg define a parallelogram
and a triangle in S, respectively. The subdivision M is constructed by overlaying
the parallelograms and the triangles. In the following lemma, we show that it
suffices to overlay the triangles to construct M.

Lemma 2. The subdivision M can be constructed by overlaying the triangles in
S defined by all the vertex-triangle pairs between Tf and Tg.

We propose the simplified way to construct M as follows. The triangle in S
defined by a vertex of Tf and a triangle � of Tg is a translated copy of �. For a
vertex v of Tf , the set of triangles in S that are defined by v and the triangles in
Tg forms a translated copy of Tg. Let Tg(v) be the translated copy of Tg formed
by a vertex v of Tf . The triangle in S defined by a vertex of Tg and a triangle �
of Tf is a translated copy of −�, where −� is the reflection through the origin
of �. For a vertex u of Tg, the set of triangles in S that are defined by u and
the triangles in Tf forms a translated copy of −Tf , where −Tf is a set of −�
for all � ∈ Tf . Let Tf (u) be the translated copy of −Tf formed by a vertex u
of Tg. By Lemma 2, M is the overlay of Tf (u) and Tg(v) for all vertices u of Tg

and v of Tf , restricted to S.

2.3 Complexity of the Subdivision M
We analyze the number of cells in M for two terrains. Since M is a planar sub-
division, we can bound the number of cells by bounding the number of vertices
of M.

For two terrains, not necessarily realistic, the subdivision of their translation
space has O(n2m2) cells; M is the overlay of Tf (u) and Tg(v) for all vertices
u of Tg and v of Tf , restricted to S. So, M is the overlay of O(nm) edges and
has O(n2m2) cells. It can be easily shown that this bound is tight. However,
the worst case scenario hardly happens in real world applications. We are going
to present a better bound for realistic terrains. First of all, we introduce some
properties of a realistic terrain.

Lemma 3 [11]. Let f : Df → R be a realistic terrain such that Tf has n triangles
and the side lengths of Df are a and ar for a positive constant r. Then the
following conditions hold.

– All edges in Tf have length Θ( a√
n
).

– Let R be a rectangle that intersects Tf , of which both side lengths are Ω( a√
n
),

and that has total area R. Then R intersects O( R
a2 n) triangles of Tf .

Next, the following lemma describes an upper bound of the number of cells in
M when f and g are realistic terrains.

Lemma 4. The number of cells in the subdivision M is O(nm(m+( a
a′ )2n)), and

the number of pairs in a combinatorial structure is O(m + ( a
a′ )2n). When edge

lengths of Tf and Tg are asymptotically same, i.e., a√
m

= Θ( a′√
n
), the number of

cells becomes O(nm2).
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If f and g are realistic terrains and Dg is “larger enough” than Df , we can
show that the bound in Lemma 4 is tight by a simple example.

Theorem 1. Let f : Df → R and g : Dg → R be two realistic terrains such
that Tf (resp. Tg) has m (resp. n) triangles and the side lengths of Df (resp.
Dg) are a and ar (resp. a′ and a′r′) for a positive constant r (resp. r′). The
number of different combinatorial structures between Tf and Tg is O(nmA),
where A = m + ( a

a′ )2n. This bound is tight if a′ > 2a.

3 Geometric Matching Algorithms Under L∞ Metric

In this section, we first show how to compute M and the combinatorial struc-
tures corresponding to the interiors of the cells. We find an optimal translation
vector t∗ ∈ c for each cell c in M by considering the combinatorial structure
corresponding to the interior of c. For two translation vectors t in the interior
of c and t′ on the boundary of c, every vertex of O(f, g, t′) is an intersection
induced by an edge-edge pair or a vertex-triangle pair in C(t), so it is enough
to consider the combinatorial structure corresponding to the interior of c. From
now on, the term “combinatorial structure of a cell” means C(t) for a translation
vector t in the interior of the cell.

We observe that the combinatorial structures of the adjacent cells of M have
only O(1) different edge-edge or vertex-triangle pairs, so they can be computed
efficiently. We present a deterministic algorithm and a randomized algorithm to
compute an optimal translation vector.

3.1 Construction of M
The subdivision M is constructed by overlaying Tf (u) and Tg(v) for all vertices
v ∈ Tf and u ∈ Tg restricted to S as explained in Sect. 2.2. The total number
of the edges to overlay is O(nm). The overlay of N edges can be constructed
in O(N log N + K) time using O(N + K) space [2], where K is the number
of intersections. In our case, N = O(nm) and K = O(nm(m + ( a

a′ )2n)) by
Theorem 1, so M can be constructed in O(nm(m + ( a

a′ )2n + log n)) time using
O(nm(m + ( a

a′ )2n)) space.
However, it is not necessary to maintain the whole subdivision M; after

finding an optimal translation vector among the translation vectors in a cell of
M, the cell is not necessary anymore. So we only maintain a small part of M to
reduce the space. We divide S into a regular grid of length � and then compute
cells of the subdivision M that intersect each of the grid cells, one by one.

Lemma 5. For two realistic terrains, M can be reported cell by cell of a grid
of length � = Θ( a√

m
+ a′√

n
) in O(nmA) time using O(n + A2) space, where

A = m + ( a
a′ )2n.

After constructing the cells of M in a grid cell, we compute the corresponding
combinatorial structure of each cell of M. The straightforward way is computing



292 S.D. Yoon et al.

the combinatorial structure of each cell separately, but this is inefficient because
the combinatorial structures of the adjacent cells of M are similar as in the
following.

Let ci and cj be two adjacent cells of M with a common edge e, and Ci and
Cj be the corresponding combinatorial structures, respectively. Without loss of
generality, we can say that e is a part of an edge of a triangle in S defined by a
vertex v of Tf and a triangle � of Tg. Let t be a translation vector in the interior
of e. In the overlay of Tf + t and Tg, v + t lies on the interior of an edge of � and
v is the unique vertex that lies on an edge of the overlay of Tf + t and Tg by the
construction. It means that Ci and Cj have at most O(1) different pairs because
of the k-low-density assumption (Definition 2(a)) which implies that the degree
of each vertex of Tf and Tg is at most k.

Observation 1. The combinatorial structures of two adjacent cells of M have
k = O(1) different pairs.

Note that the sequence of cells can be obtained by a standard DFS(depth first
search) scheme.

3.2 A Deterministic Geometric Matching Algorithm

We first consider a deterministic algorithm to compute an optimal translation
vector of a cell in M. Computing an optimal translation vector of a cell can be
reduced to a linear programming in R

4 as follows. We use w to represent the
fourth coordinate of R4.

Let f [D] = {(x, y, f(p)) | p = (x, y) ∈ D ⊆ Df}, and g[D] = {(x, y, g(p)) | p =
(x, y) ∈ D ⊆ Dg}. For an edge-edge pair (e, e′) of a combinatorial structure of
a cell c in M, let (0, 0, v(t, h)) be a vertical translation vector with respect to
t = (tx, ty) ∈ R

2 and h ∈ R such that f [e] + (tx, ty, h) + (0, 0, v(t, h)) and g[e′]
are contained in a common plane in R

3. For a translation vector t ∈ c, let p be
the intersection point of e+ t and e′. Then, |v(t, h)| = |(f(p)+h)−g(p+ t)|. The
set of points (tx, ty, h, |v(t, h)|) in R

4 is the upper envelope of two hyperplanes
which consist of two sets of points (tx, ty, h, v(t, h)) and (tx, ty, h,−v(t, h)) for
t = (tx, ty) ∈ R

2 and h ∈ R, respectively. For a vertex-triangle pair of a com-
binatorial structure, we can construct the upper envelope of two hyperplanes in
R

4 analogously.
For a cell c in M and a translation vector t ∈ c, we construct a set of

hyperplanes in R
4 corresponding to the pairs in a combinatorial structure C(t) as

described. The problem of finding an optimal translation vector t for c reduces to
the linear programming problem of finding a point q of the smallest w-coordinate
in the upper envelope of the hyperplanes in R

4 for (qx, qy) ∈ c, where qx and qy

are the x- and y-coordinates of q, respectively. Note that the restriction (qx, qy) ∈
c can be described by a set of linear inequality constraints. The translation vector
(qx, qy) is an optimal translation vector for c.

Matoušek and Schwarzkopf [9] gave a dynamic data structure supporting
a linear programming in R

4. With N hyperplanes, the data structure can be



Geometric Matching Algorithms for Two Realistic Terrains 293

constructed in O(N4/3+δ) deterministic time and space for any fixed δ > 0.
Also, both update time (insertions and deletions of hyperplanes) and query time
are O(N1/3+δ) amortized time.

The overall strategy is as follows. We subdivide S by a regular grid of length
� = Θ( a√

m
+ a′√

n
) and treat the cells one by one. For a grid cell, we compute the

corresponding part of M and a sequence of adjacent cells in M as described in
Sect. 3.1. Next, we build the data structure [9] with hyperplanes in R

4 for the
combinatorial structure of the first cell of the sequence. We find the lowest point
in the upper envelope of the hyperplanes. For the rest cells in the sequence, we
update the data structure for the corresponding combinatorial structure, and
then find the lowest point. Note that the number of updates for a cell is O(1) by
Observation 1 if we follow the sequence of adjacent cells. We repeat this until
the end of the sequence. By Lemma 4, the number of edge-edge and vertex-
triangle pairs in a combinatorial structure is O(m + ( a

a′ )2n) and the number of
different combinatorial structure is O(nm(m + ( a

a′ )2n)). The following theorem
summarizes the overall time and space complexity.

Theorem 2. Let f : Df → R and g : Dg → R be the two realistic terrains such
that Tf (resp. Tg) has m (resp. n) triangles and the side lengths of Df (resp.
Dg) are a and ar (resp. a′ and a′r′) for a positive constant r (resp. r′). We can
compute an optimal translation vector t∗ such that Df +t∗ ⊂ Dg and the distance
under L∞ metric between f and g �D∗ is minimized in O(nmA4/3+δ) time with
O(n + A2) space for any fixed δ > 0 and A = m + ( a

a′ )2n.

3.3 A Randomized Geometric Matching Algorithm

In this section, we propose a randomized algorithm for the reduced problem
described in Sect. 3.2. We first present a decision algorithm to decide the exis-
tence of a point of the upper envelope of hyperplanes in R

4 such that the w-
coordinates of the point is smaller than an input value. Next, we propose a
randomized approach to compute an optimal translation vector.

As described in Sect. 3.2, we construct the set of hyperplanes in R
4 corre-

sponding to the combinatorial structure of a cell c of M and the set of hyper-
planes corresponding to the boundary edges of c. A decision version of finding the
lowest point in the upper envelope of hyperplanes can be stated as follows: given
δ > 0, is there a point in the upper envelope of hyperplanes whose w-coordinate
is smaller than δ?

We check whether there is such a point in the upper envelope by introduc-
ing a new hyperplane Hδ : w = δ. If the upper envelope has such a point then
the intersections of Hδ and each ‘upper half-space’ of the hyperplanes have a
non-empty common intersection in Hδ. This problem can be reduced to a lin-
ear programming in R

3, and we use a semi-online data structure for a linear
programming in R

3 [4].

Lemma 6. For given δ > 0, we can solve the decision problem for each
cell of M in O(log2 A log2 log A) amortized time where A = m + ( a

a′ )2n.
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Therefore, we can find translation vectors t such that d∞(f, g �Df+t) ≤ δ in
O(nmA log2 A log2 log A) time.

Next, we present how to use the solutions of the decision problems to find an
optimal translation vector. First we randomly choose one cell c of M and com-
pute the minimum distance δ between f and g for the combinatorial structure of
c by solving a linear programming [8]. With this δ, we solve the decision problem
for each cells of M and find cells which realize the distance smaller than δ. We
can expect that only constant fraction of the number of the cells realize the dis-
tance smaller than δ. We repeat this procedure recursively with a new distance δ′

computed from one of the cells decided as ‘yes’ from the previous recursive step
until we find a cell which realizes the minimum distance. The expected number
of recursion is O(log(#cells)) = O(log(nm(m + ( a

a′ )2n))) = O(log n).

Theorem 3. Let f : Df → R and g : Dg → R be the two realistic terrains
such that Tf (resp. Tg) has m (resp. n) triangles and the side lengths of Df

(resp. Dg) are a and ar (resp. a′ and a′r′) for a positive constant r (resp.
r′). We can compute an optimal translation vector t∗ such that Df + t∗ ⊂
Dg and the distance under L∞ metric between f and g �D∗ is minimized
in O(nmA log n log2 A log2 log A) expected time with O(n + A2) space where
A = m + ( a

a′ )2n.

4 Geometric Matching Algorithm Under L1 Metric

In this section, we solve the terrain matching problem under L1 metric. To
compute the distance between two terrains under L1 metric, we need to compute
the volume function between two terrains. The volume function of two terrains
is a sum of volume functions between pairs of triangles, so we need to compute
the volume functions between pairs of triangles.

To get a single formula for the volume function, we need to consider the
amount of vertical translation h of f along with the translation vector t =
(tx, ty) ∈ S. If we concatenate h to the translation vector t = (tx, ty) as a third
coordinate, then a vertical prism {(tx, ty, h)|h ∈ R} in R

3 over each cell of M
can be seen as all possible vertical translations.

The basic idea is as follows. We first compute M as described in Sect. 3.1. For
each cell c of M, we subdivide the translation space of R3 with domain c such
that the volume function between each pair of triangles is described as a single
formula within a cell of the subdivision. We compute an optimal translation
vector for each cell by using numerical methods.

Theorem 4. Let f : Df → R and g : Dg → R be the two realistic terrains such
that Tf (resp. Tg) has m (resp. n) triangles and the side lengths of Df (resp.
Dg) are a and ac (resp. a′ and a′c′) for a positive constant c (resp. c′). We
can compute an optimal translation vector t∗ such that Df + t∗ ⊂ Dg and the
distance under L1 metric between f and g �D∗ is minimized in O(nmA4) time
using O(n + A3) space, where A = m + ( a

a′ )2n.
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9. Matoušek, J., Schwarzkopf, O.: Linear optimization queries. In: Proceedings of the
Eighth Annual Symposium on Computational Geometry, SCG 1992, pp. 16–25.
ACM (1992)

10. Medioni, G., Nevatia, R.: Matching images using linear features. IEEE Trans.
Pattern Anal. Mach. Intell. (PAMI) 6(6), 675–685 (1984)

11. Moet, E., van Kreveld, M., van der Stappen, A.F.: On realistic terrains. Comput.
Geom. 41(12), 48–67 (2008)

12. Moroz, G., Aronov, B.: Computing the distance between piecewise-linear bivariate
functions. In: Proceedings of the Twenty-third Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2012, pp. 288–293. SIAM (2012)

13. Newman, P., Durrant-Whyte, H.: Using sonar in terrain-aided underwater naviga-
tion. In: Proceedings on IEEE International Conference on Robotics and Automa-
tion, vol. 1, pp. 440–445 (1998)

14. Olson, C., Matthies, L.: Maximum likelihood rover localization by matching range
maps. In: Proceedings on IEEE International Conference on Robotics and Automa-
tion, vol. 1, pp. 272–277 (1998)

15. Rodriquez, J.J., Aggarwal, J.K.: Matching aerial images to 3-D terrain maps. IEEE
Trans. Pattern Anal. Mach. Intell. 12(12), 1138–1149 (1990)

16. Sistiaga, M., Opderbecke, J., Aldon, M., Rigaud, V.: Map based underwater nav-
igation using a multibeam echosounder. In: Proceedings on OCEANS, vol. 2, pp.
747–751 (1998)

17. Williams, S., Dissanayake, G., Durrant-Whyte, H.: Towards terrain-aided naviga-
tion for underwater robotics. Adv. Robot. 15(5), 533–549 (2001)



Size-Dependent Tile Self-Assembly:
Constant-Height Rectangles and Stability

Sándor P. Fekete1, Robert T. Schweller2, and Andrew Winslow3(B)

1 TU Braunschweig, Braunschweig, Germany
s.fekete@tu-bs.de

2 University of Texas–Pan American, Edinburg, TX, USA
rtschweller@utpa.edu
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Abstract. We introduce a new model of algorithmic tile self-assembly
called size-dependent assembly. In previous models, supertiles are sta-
ble when the total strength of the bonds between any two halves
exceeds some constant temperature. In this model, this constant tem-
perature requirement is replaced by an nondecreasing temperature func-
tion τ : N → N that depends on the size of the smaller of the two halves.
This generalization allows supertiles to become unstable and break apart,
and captures the increased forces that large structures may place on the
bonds holding them together.

We demonstrate the power of this model in two ways. First, we give
fixed tile sets that assemble constant-height rectangles and squares of
arbitrary input size given an appropriate temperature function. Second,
we prove that deciding whether a supertile is stable is coNP-complete.
Both results contrast with known results for fixed temperature.

1 Introduction

In this paper, we introduce the size-dependent tile self-assembly model, a natural
extension of the well-studied two-handed tile assembly model or 2HAM [4]. As
in the 2HAM, a size-dependent system consists of a collection of square Wang
tiles [17,21] with an associated bond strength assigned to each tile edge color.
In the 2HAM, self-assembly proceeds by repeatedly combining any two previ-
ously assembled supertiles into a new stable supertile provided the total bond
strength between the supertiles meets or exceeds some positive integer called the
temperature.

Although the 2HAM is both simple and natural, the model does not capture
the intuition that two large assemblies should require more bond strength to be
stable than two very small assemblies. As an analogy, a single staple is sufficient
to attach two pieces of paper or to attach a sheet of paper to the hull of a
battleship. However, a staple is too weak to amalgamate together two battleships.

The size-dependent self-assembly model generalizes the 2HAM by replacing
the fixed, integer temperature parameter τ of the 2HAM with a nondecreasing
c© Springer-Verlag Berlin Heidelberg 2015
K. Elbassioni and K. Makino (Eds.): ISAAC 2015, LNCS 9472, pp. 296–306, 2015.
DOI: 10.1007/978-3-662-48971-0 26
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temperature function τ(n) that specifies a required threshold of bond strength
when given the size of the smaller of two supertiles under consideration. A set
of tile types and temperature function together define a size-dependent self-
assembly system.

Our results. We first consider efficiently assembling fixed-height rectangles and
squares in the size-dependent self-assembly model. We prove that there exists
a fixed tile set assembling a k × 3 rectangle for every k ≥ 7 given an appropri-
ate temperature function. This tile set is extended to obtain a matching result
for k × k squares. These results demonstrate that size-dependent temperature
functions can, in theory, direct assembly in the spirit of temperature program-
ming [11,20], concentration programming [3,7,12], and staging [5]. Unlike these
other methods, size-dependence is present in all physical systems, but has not
be demonstrated to be programmable. Thus these constructions demonstrate
that this ubiquitous aspect of physical systems can (and likely already does)
direct assembly in dramatic ways, regardless of whether they can be implemented
physically.

In addition to the design of systems that assemble rectangles and squares, we
consider the complexity of determining if a supertile is stable, i.e. cannot break
apart due to insufficient bond strength. Determining the stability of an supertile
is a fundamental problem for design, simulation, and analysis of tile self-assembly
systems. This problem enjoys a straightforward, polynomial-time solution in
the 2HAM. In contrast, we prove that the problem is coNP-complete in the
size-dependent model, even for temperature functions with just two distinct
temperatures.

Reversibility. A key feature of size-dependence is reversibility : the possibility
of breaking bonds. Our rectangle and square constructions make critical use of
reversibility to beat tile type lower bounds in similar models (see [18]), and our
hardness result proves that this mechanism is capable of complex behaviors.

Reversibility has been more directly incorporated into a number of other self-
assembly models via glues that repel [8,16] or deactivate [10,13,14], tiles that
dissolve [1], and temperatures that change over time [2,20]. Reversibility in these
models has yielded a number of new functionalities, including replication [1,13],
fuel-efficient computation [14,19], shape identification [15], and efficient small-
scale assembly of general shapes [6]. We believe that further study of the ubiqui-
tous but indirect form of reversibility found in size-dependent self-assembly may
yield similar functionality.

2 Definitions

The first three subsections define the 2HAM, giving definitions equivalent to
those in prior work, e.g. [4]. The final section describes the differences between
the two-handed and size-dependent models.
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2.1 Tiles, Assemblies, and Supertiles

A tile type is a quadruple (gN , gE , gS , gW ) of glues from a fixed alphabet Σ. Each
glue gi ∈ Σ has an associated non-negative integer strength, denoted by str(gi).1

An instance of a tile type, called a tile, is an axis-aligned unit square with center
in Z

2. The edges of a tile are labeled with the glues of the tile’s type (e.g. gN ,
gE , gS , gW ) in clockwise order, starting with the edge with normal vector 〈0, 1〉.
Two tiles are adjacent if their centers have distance 1.

An assembly α is a partial mapping α : Z
2 → T from tile locations to a set of

tile types T , also called a tile set. The domain of this partial function is denoted
by dom(α). Each assembly has a dual bond graph: a grid graph with vertex set
dom(α) and an edge between every pair of adjacent tiles that form a bond. An
edge cut of the bond graph of an assembly is also called a cut of the assembly,
and the total strength of the bonds of the edges in the cut is the strength of the
cut. An assembly is τ -stable if every cut of the assembly has strength at least τ .

For an assembly α : Z
2 → T and vector u = 〈x, y〉 with x, y ∈ Z

2, the
assembly α+u denotes the assembly consisting of the tiles in α, each translated
by u. For two assemblies α and β, β is a translation of α, written β � α,
provided that there exists a vector u such that β = α + u. The supertile of α is
the set α̃ = {β : α � β}. A supertile α̃ is τ -stable provided that the assemblies
it contains are τ -stable. The size of a supertile is denoted by |α̃| and is equal to
the size of an assembly in α̃ (and not the cardinality of α̃, which is always ℵ0).

2.2 The Assembly Process

Two assemblies α and β are disjoint if dom(α)∩dom(β) = ∅. The union of two
disjoint assemblies α and β, denoted by α∪β, is the partial function α∪β : Z

2 →
T defined as (α∪β)(x, y) = α(x, y) if (x, y) ∈ dom(α) and (α∪β)(x, y) = β(x, y)
if (x, y) ∈ dom(β). Two supertiles α̃ and β̃ can combine into a supertile γ̃
provided:

– There exist disjoint assemblies α ∈ α̃ and β ∈ β̃.
– α ∪ β = γ ∈ γ̃ and the cut partioning dom(γ) into dom(α) and dom(β) has

strength at least τ (equivalently, γ is τ -stable).

The set of all combinations of α̃ and β̃ at temperature τ is denoted by Cτ
α̃,β̃

.

2.3 Two-Handed Tile Assembly Systems

A two-handed tile assembly system or two-handed system is a pair T = (T, τ),
where T is a tile set and τ ∈ N is a temperature. Given a system T = (T, τ), a
supertile α̃ is producible, written α̃ ∈ A[T ], provided that either |α̃| = 1 or α̃ is
a combination of two other producible supertiles of T . A supertile α̃ is terminal
provided that for all producible supertiles β̃, Cτ

α̃,β̃
= ∅. A system is directed or

deterministic provided that it has only one terminal supertile.
1 In later sections, glues with strength 0 are treated as non-existent.
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Given a shape P ⊆ Z
2, we say a system T self-assembles P , provided that

every terminal supertile α̃ of T has an assembly α ∈ α̃ such that dom(α) = P .
That is, every terminal supertile has shape P , up to translation. A shape P is a
w×h rectangle provided that P = {x+1, x+2, . . . , x+w}×{y+1, y+2, . . . , y+h}
for some x, y, w, h ∈ Z. If w = h, then the rectangle is a square.

2.4 Size-Dependent Systems

A size-dependent two-handed tile assembly system or size-dependent system S =
(T, τ) is a generalization of a two-handed tile assembly system. Two-handed and
size-dependent systems are identical, except for the definition of τ . Recall that
in two-handed systems, τ ∈ N determines the bond strength needed for two
supertiles to combine and for a supertile to be τ -stable.

In size-dependent systems, τ is not an integer temperature, but rather a non-
decreasing temperature function τ : N → N. An assembly γ is τ -stable provided
any cut partioning dom(γ) into two assemblies dom(α), dom(β) has strength at
least τ(min(|α|, |β|)). A supertile γ̃ is τ -stable provided the assemblies in γ̃ are
τ -stable. Also, two supertiles α̃ and β̃ can combine into a supertile γ̃ provided
that:

– There exist disjoint assemblies α ∈ α̃ and β ∈ β̃.
– α ∪ β = γ ∈ γ̃ and the cut partioning dom(γ) into dom(α) and dom(β) has

strength at least τ(min(|α|, |β|)).

For a given temperature function τ : N → N, the set of all combinations of α̃
and β̃ is denoted by Cτ

α̃,β̃
. Note that the second condition is not equivalent to γ

being τ -stable. Figure 1 illustrates an example: a cut in a supertile has sufficient
strength, but combining with another supertile causes increased size that causes
the cut to become insufficiently strong. So α̃, β̃ may be τ -stable while their
combination γ̃ is τ -unstable.

⇒ ⇒

Fig. 1. Three steps of size-dependent self-assembly with glue function τ(n) = n − 1.
The addition of a new tile (left) causes the supertile to have a strength-1 cut partioning
it into two supertiles of 3 tiles each (center). Because τ(3) = 2 > 1, the supertile can
then break (right).

Supertiles that are τ -unstable can also “break” into smaller supertiles. A
supertile γ̃ can break into α̃ and β̃ provided that:
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– There exist disjoint assemblies α ∈ α̃ and β ∈ β̃ with connected bond graphs.
– α ∪ β = γ ∈ γ̃ and the strength of the cut partioning γ into α and β is less

than τ(min(|α|, |β|)).

A cut between two supertiles resulting from a break is called a break cut. For a
given temperature function τ : N → N, the set of all supertiles resulting from
breaks of γ̃ is denoted by Bτ

γ̃ . Given a size-dependent system T = (T, τ), a
supertile α̃ is producible provided either:

– |α̃| = 1.
– α̃ is the combination of two other producible supertiles.
– α̃ is the result of a break of a producible supertile.

A producible supertile α̃ is terminal provided Cτ
α̃,β̃

= ∅ and Bτ
α̃ = ∅.

Note that the conditions on supertiles combining and breaking do not imply
that combining supertiles or supertiles resulting from a break are τ -stable. This
allows for systems with an infinite number of producible supertiles and a unique
terminal supertile, including those described in this work.

3 Constant-Height Rectangles

Here we prove that there exists a single set of tiles that can be used to self-
assemble constant-height rectangles of arbitrary width using an appropriate
choice of temperature function. Such a result contrasts with the polynomial
number of tiles required to assemble a constant-height rectangle in an assembly
system with constant temperature [2].

Theorem 1. There exists a tile set T such that for every k ≥ 7, there exists a
size-dependent system with tile set T that self-assembles a k × 3 rectangle.

Proof. The temperature function used is:

τ(n) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

3 : n ≤ k − 6
4 : k − 5 ≤ n ≤ k + 3
5 : k + 4 ≤ n ≤ 2k − 2
8 : otherwise

The tile set consists of three tile types and two blocks: supertiles with unique
internal glues and strength 8, the maximum temperature of the system. The tiles
and blocks are listed and named in Fig. 2.

The system works by assembling a unique terminal k × 3 supertile in three
phases. First, top filler tiles and top bases combine into arbitrarily wide height-2
supertiles. These undergo at least two breaks to form top half supertiles of size
2k − 3. Second and separately, bottom filler tiles and bottom bases combine to
form bottom half supertiles of size approximately k+3. Finally, these two halves
combine into a terminal k × 3 supertiles shown in Fig. 3. It can easily be verified
that this supertile is a terminal supertile of the system; it remains to be shown
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Top filler Bottom baseTop base

Bottom
filler

Fig. 2. The tile types and blocks for the constant-height rectangle construction. The
gray glues are unique and strength at least 8 (Color figure online).

Fig. 3. The unique terminal supertile of the constant-height rectangle construction.

that no other terminal supertiles of the system exist (necessary for the system
to self-assemble a k × 3 rectangle).

Top Filler Supertiles. To start, consider the producible supertiles consisting
of only top filler tiles, called top filler supertiles. Because τ(n) > 2 for all n,
upper and lower top filler tiles must first combine into size-2 supertiles before
combining with other top filler supertiles into height-2 rectangular supertiles
(lower right supertile in Fig. 4). These rectangular supertiles break along 2-edge
and 3-edge cuts into the remaining supertiles seen in Fig. 4.

Because k ≥ 7, any partition of the lower right supertile in Fig. 4 either has
a part that is a single tile or uses a strength-4 cut of at least 2 edges and thus
both parts have size at least k + 3 ≥ 10. Therefore, the remaining 8 types of
supertiles in Fig. 4 have at least 4 columns of 2 tiles each.

The width bounds seen in the figure are computed by considering how the
supertiles are created. If the supertile is the result of a break, it must satisfy the
size bound for the strength of the cut used in the break. If it is the result of a
combination, it must be larger than the total sizes of the combined supertiles.2

We designate three types of top filler supertiles as seen in Fig. 4. As already
proven, breaks only result in single tiles or supertiles of size 10 and larger. Any
two-tab (one-tab) supertile can break into a one-tab (tabless) supertile and a
single tile, and these are the only breaks that use cuts of strength at most 3.
Then any other break uses a cut of strength 4 or more, and so results in supertiles
of size at least k + 4. Thus any combination of two-tab and one-tab supertiles
has size at least 2(k + 4). A two-tab supertile can also be the result of a break
using a cut of strength 7 and thus have size at least 2k − 3 and, because two-tab
supertiles have even size, 2k − 2. Because min(2(k + 4), 2k − 2) − 1 = 2k − 3
and k ≥ 7, 2k − 3 ≥ k + 4 and a break of a two-tab supertile into a single tile

2 An upper bound is also implied by τ , but this is ignored here.
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≥ k − 2 ≥ k − 2

≥ k − 2 ≥ k − 2

≥ (k + 3)/2

≥ (k + 3)/2

≥ (k + 3)/2 ≥ (k + 3)/2

Two-tab One-tab

Tabless

Fig. 4. The producible top filler supertiles.

and one-tab supertile cannot yield a one-tab supertile smaller than k + 4. In
conclusion, one-tab and two-tab supertiles have size at least k + 4 and 2k − 2,
respectively, implying the bounds seen in Fig. 4.

Top and Bottom Halves. Top filler supertiles cannot combine with other
supertiles, except for a complete top base to form a top half supertile (upper
supertile in Fig. 5). Top half supertiles may combine with top filler supertiles
and break into top half and top filler supertiles. A top half supertile with a
single upper filler tile in the rightmost column is ready. Because ready top half
supertiles are two-tab top filler supertiles that have combined with a top base,
they have size at least 2k − 3 and thus width at least k − 2.

Independently of top halves, bottom filler tiles combine into arbitrarily wide
height-1 supertiles called a bottom filler supertile. These supertiles also combine
with bottom bases at various stages of assembly. A bottom half supertile contains
bottom filler tiles and a completed bottom base. If the number of bottom filler
tiles in a bottom half is at least 2k−18 (and there exists a 1-edge strength-3 cut
partitioning the supertile into two of size at least k − 5), the bottom half can
break into a bottom half and bottom filler supertile.

Combining Halves. The only shared glues between top and bottom tiles are
the strength-2 glues on the south of the top base and west of the bottom base
(turquoise and yellow in Fig. 2). Thus a supertile consisting of bottom tiles can-
not combine with a supertile consisting of top tiles, unless the supertiles are
bottom and top halves.

A bottom half and top half can combine, provided they have the same width
and the top half is ready (and thus has width at least k − 2. Moreover, because
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≥ k − 2

≤ k − 2

Fig. 5. The top half and bottom half supertiles. The bottom half λ can be arbitrarily
large, but the upper bound follows from the requirement that to combine, τ(|λ|) ≤ 4
and thus |λ| ≤ k.

the maximum strength of the bonds between the bottom and top halves is 4,
they can only combine only if the smaller supertile, necessarily the bottom half,
has size at most k + 3 and thus width at most k − 2. Thus, the bottom and top
halves combine provided they both have width exactly k −2, forming a terminal
supertile of width exactly k.

No Waste. Although it is not required by the definition of self-assembly, this
system also has the property that every supertile may undergo a sequence of
breaks and combinations to become terminal. In other words, the system has
no “waste” supertiles. This can be seen by noting that supertiles not found
within the (unique) terminal supertile, i.e. top filler supertiles wider than k − 4,
top halves wider than k − 2, bottom filler supertiles of width more than k − 5,
and bottom halves of width more than k − 2 can repeatedly break into smaller
supertiles that are found in the terminal supertile. ��

The temperature functions used in the previous construction all have a max-
imum bounded above by the constant 8. Next, we prove that any set of temper-
ature functions used to assemble arbitrarily large constant-height rectangles are
similarly bounded above by a constant.

Theorem 2. Let T be a tile set and τ1, τ2, . . . be an infinite sequence of temper-
ature functions such that the size-dependent system (T, τi) assembles a ki ×O(1)
rectangle and all ki are distinct. Let f(n) = mini∈N(τi(n)). Then f(n) = O(1).

Proof. Let c ∈ N be the maximum height of a rectangle assembled by a system
(T, τi). Let gmax be the maximum strength of a glue in T . Let γ̃ be a terminal
assembly of (T, τi) and thus a rectangle with width ki. For any n ≤ ki/2, there
exists a cut of γ̃ into supertiles α̃, β̃ such that n = |α̃| ≤ |β̃| and the cut contains
at most c + 1 edges. Then since γ̃ is stable, f(n) ≤ τi(n) ≤ (c + 1)gmax for all
n ≤ ki/2. Because there exist infinitely many ki, every n has n ≤ ki/2 for large
enough ki and we conclude that f(n) ≤ (c + 1)gmax for all n ∈ N. ��
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4 Squares

Here we extend the constant-height rectangle construction in the last section
to assemble squares. The temperature function, tile types, and blocks from the
constant-height rectangle construction are used to form the base of the square;
additional tile types and blocks are used to “fill in” the remainder of the square
once the base is complete.

Theorem 3. There exists a tile set T such that, for every k ≥ 7, there exists a
size-dependent system with tile set T that self-assembles a k × k square.

The constant-height rectangle construction used as the basis for the con-
struction of Theorem 3 result in temperature functions that are bounded above
by a constant. We conjecture that there exists a square construction that uses
temperature functions that all scale as Ω(

√
n), and prove that no better lower

bound is possible:

Theorem 4. Let T be a tile set and τ1, τ2, . . . be an infinite sequence of tem-
perature functions such that the size-dependent system (T, τi) assembles a ki ×ki

square and ki are all distinct. Let f(n) = mini∈N(τi(n)), the minimum of all
temperature functions for size n. Then f(n) is not ω(

√
n).

5 τ -stabilility is coNP-complete

In two-handed tile assembly systems that are not size-dependent, determining
whether a supertile is τ -stable amounts to determining if there exists a cut of
the bond graph of weight less than τ , a problem decidable in polynomial time. In
contrast, we prove that the same problem is coNP-complete for size-dependent
systems, even when restricted to constant-time-computable temperature func-
tions with just two distinct temperatures.

The reduction is from maximum independent set in Hamiltonian cubic (3-
regular) planar graphs, proved NP-hard in [9]. The constructed assembly contains
vertex gadgets arranged horizontally along a line bisecting the assembly. Gad-
gets are connected by zero-strength cuts mirroring the edges of the input graph,
and have two possible cuts through them: include or exclude. The include path
has slightly lower strength, but intersects the zero-strength cuts connecting the
vertex gadget to the gadgets of adjacent vertices in the input graph. The tem-
perature function requires that any cut passes through all vertex gadgets, does
not use the include cuts of the gadgets of two adjacent vertices in the graph,
and does not use too many exclude paths. Thus an independent set of at least
some size exists if and only if there exists a sufficiently larger independent set of
vertices.

Theorem 5. Given a temperature function τ : N → N and supertile, determin-
ing whether the supertile is τ -stable is coNP-complete.
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6 Open Problems

The rectangle and square constructions in this work use artificial temperature
functions engineered in tandem with the tile sets. A central open question is
whether physically implementable families of temperature functions (e.g. τ(n) =
cnδ for varying c, δ > 0) are similarly capable of such control. We conjecture that
the design of such systems is possible but difficult; consider the lengthy analysis
of the construction in Sect. 3 with just 5 components. Alternatively, temperature
functions may be given as input along with shapes, with the goal of designing
systems that assemble shapes despite the temperature functions.

The difficulty of system design is supported by the coNP-hardness of deter-
mining stability. Proving the PSPACE-hardness of predicting a system outcomes,
such as whether a unique terminal supertile exists, would give even further evi-
dence of this difficulty.

As previously discussed, reversibility is a key feature of size-dependent sys-
tems. Reversibility has been more directly incorporated into algorithmic design
in other tile assembly models, leading to functionality not found in irreversible
models. For instance, replication of shapes and patterns [1,13], fuel-efficient
systems [14,19], and assembly of arbitrary shapes using a small, bounded scale
factor [6]. Can any of these be achieved with size-dependent systems?

Acknowledgements. This work began at the Bellairs Workshop on Self-Assembly
and Computational Geometry, March 21–28th, 2014. We thank the other participants
for a productive and positive atmosphere, in particular, Alexandra Keenan and the
co-organizers, Erik Demaine and Godfried Toussaint.
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Abstract. The geodesic k-center problem in a simple polygon with n
vertices consists in the following. Find k points, called centers, in the
polygon to minimize the maximum geodesic distance from any point of
the polygon to its closest center. In this paper, we focus on the case
where k = 2 and present an exact algorithm that returns an optimal
geodesic 2-center in O(n2 log2 n) time.

1 Introduction

The geodesic k-center problem in a simple polygon P consists in the following.
Find a set S of k points in P that minimizes maxp∈P mins∈S d(s, p), where d(x, y)
is the length of the shortest path between x and y lying in P (also called geodesic
path). Geometrically, this is equivalent to find k smallest geodesic disks with the
same radius whose union contains P .

The k-center problem in the 2-dimensional Euclidean space is the same as
the one for a simple polygon, except that, the distance between two points, x
and y, is their Euclidean distance. For a finite point set, there have been a lot of
results on the k-center problem in the 2-dimensional Euclidean space. For a set
of n points in the plane, the 1-center problem can be solved in linear time [6].
Chan showed that the 2-center problem can be solved in O(n log2 n log2 log n)
deterministic time and in O(n log n) expected time [4]. The k-center problem can
be solved in O(nO(

√
k)) time [9]. Kim and Shin considered the problem of covering

a convex polygon with two congruent disks and presented a O(n log3 n log log n)-
time algorithm for the problem [10].

The k-center problem has also been studied under the geodesic metric inside
a simple polygon for the special case k = 1. Asano and Toussaint studied the
geodesic 1-center problem and presented the first algorithm for the problem
which returns the geodesic center of a polygon with n vertices in O(n4 log n)
time [2]. In 1989, the running time was improved to O(n log n) time by Pollack
et al. [13]. They first triangulate the polygon and find the triangle that contains
the center in O(n log n) time. Then they subdivide the triangle further and find
the region containing the center such that any point inside the region has the
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combinatorially equivalent shortest path tree from the point. Then the problem
is reduced to find the lowest point of the upper envelope of a family of functions,
which was dealt in [12] due to Megiddo. Very recently, the running time was
improved by Ahn et al. to O(n) [1], which is optimal. They construct a set
of O(n) chords instead of triangulating the polygon and find a triangle that is
bounded by at most three chords in the set and contains the center in linear
time. Afterwards they find the lowest point of the upper envelope of a family of
functions inside the triangle, using an algorithm similar to the one in [12].

Surprisingly, there has been no result for the geodesic k-center problem for
k > 1, except the one by Vigan [14]. They gave an exact algorithm for the
geodesic 2-center problem in a simple polygon with n vertices, which runs in
O(n8 log n) time. The algorithm follows the framework of Kim and Shin [10],
which returns a pair of congruent disks of smallest radius whose union contains a
convex polygon in the Euclidean plane. However, the algorithm does not seem to
work as it is because of the following reasons. First, they claim that the decision
version of the geodesic 2-center problem in a simple polygon can be solved using
a technique similar to the one by Kim and Shin without providing any detailed
argument. The decision algorithm by Kim and Shin, however, does not seem to
work for an arbitrary simple polygon unless it is modified to handle a simple
polygon. Second, they apply parametric search using their decision algorithm.
Again, they do not describe how their parallel algorithm works. The parallel
algorithm by Kim and Shin [10] does not seem to extend for this problem.

Our Results. We present an O(n2 log2 n)-time exact algorithm for the geodesic
2-center problem in a simple polygon with n vertices, which is the first correct
algorithm for this problem. To be more specific, we first observe that a simple
polygon P can always be partitioned into two regions by a geodesic path con-
necting two boundary points x and y of P such that the radius of an optimal
geodesic 2-center is the larger of the radii of the optimal geodesic 1-centers of the
regions. Then we consider O(n) candidate pairs of polygon edges one of whose
element (e, e′) satisfies x ∈ e and y ∈ e′ and present a procedure that finds O(n)
such pairs in O(n2) time. Finally, we present an algorithm that computes an
optimal 2-center restricted to such a pair of edges in O(n log2 n) time using the
parametric search by Megiddo with a decision and a parallel algorithms.

2 Preliminary

A polygon is simple if every vertices are distinct and edges intersect only at
common endpoints. A polygon P is weakly simple if, for any ε > 0, there is a
simple polygon Q such that the Fréchet distance between P and Q is at most
ε [5]. Most algorithms designed for simple polygons also work for weakly simple
polygons including the algorithms we use in this paper.

The vertices of a simple polygon P with n vertices are labeled v1, . . . , vn in
clockwise order along the boundary of P . We set vn+k = vk for all 1 ≤ k < n.
An edge whose endpoints are vi and vi+1 is denoted by ei.
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For any two points x and y lying inside a (weakly) simple polygon P , the
geodesic path between x and y, denoted by π(x, y), is the shortest path between
x and y inside P . The length of π(x, y) is called the geodesic distance between
x and y, denoted by d(x, y). In this paper, “distance” refers to the geodesic
distance unless specified otherwise.

For a set X (for instance a polygon or a disk), ∂X denotes the boundary of X.
For any points u and w on ∂P , let C[u,w] be the part of ∂P in clockwise order
from u to w. The subpolygon of P bounded by π(u,w) and C[u,w] is denoted
by P [u,w]. Note that P [u,w] may not be simple, but it is always weakly simple.
Indeed, consider the Euclidean disks centered at points in π(u,w) with radius
ε > 0. There exists a simple curve connecting u and w that lies in the union of
these disks and which does not cross C[w, u]. A region bounded by that simple
curve and C[w, u] is a simple polygon whose Fréchet distance from P is at most
ε. The radius of P is defined as maxp∈P d(c, p) and is denoted by r(P ), where c
is the optimal geodesic 1-center of P . We set r(α, β) = r(P [α, β]) for any points
α, β ∈ ∂P for brevity.

The geodesic disk centered at v with radius r, denoted by Dr(v), is the
set of points whose geodesic distance from v is at most r. The boundary of
a geodesic disk inside P consists of disjoint polygonal chains of ∂P and O(n)
circular arcs [3].

We call a pair of points (c1, c2) in P a 2-center. The radius of a 2-center
(c1, c2) in P is defined as maxp∈P min{d(c1, p), d(c2, p)}. If the radius of a 2-
center is the minimum over all 2-centers in P , the 2-center is said to be optimal.
Note that Dr(c1) ∪ Dr(c2) contains P for a 2-center (c1, c2) and a radius r at
least as large as the radius of (c1, c2).

For any two points x and y ∈ P , the bisector of x and y is defined as the set
of points in P equidistant from x and y. A bisector of two points may contain
a two-dimensional region if there is a vertex of P equidistant from x and y. To
avoid this, we define the bisecting curve of x and y, denoted by b(x, y), to be the
maximal curve which contains the midpoint of π(x, y) and does not contain any
point on ∂P in its interior.

All missing proofs can be found in the full version of this paper.

Lemma 1. The bisecting curve is well-defined for any two points in P .

3 The Partition by an Optimal 2-center

Let (c∗
1, c

∗
2) be an optimal geodesic 2-center and r∗ be the radius of (c∗

1, c
∗
2). For

any two points α and β on ∂P , let rmax(α, β) = max{r(α, β), r(β, α)}.

Lemma 2. If P is covered by two geodesic disks centered at points in P with
radius r, then there are two points x, y ∈ ∂P with rmax(x, y) ≤ r.

For any 2-center (c1, c2) in P and radius r, we call a pair of points α, β ∈
∂P a point-partition of P with respect to the tuple (c1, c2, r) if and only if
d(c1, x) ≤ r and d(c2, y) ≤ r for all points x ∈ P [α, β] and y ∈ P [β, α]. Note
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vi

f(vi)

vi+1

f(vi+1)

v

f(v)

w

fcc
fcw

Fig. 1. (Left) The gray chain indicates C[v, f(v)] and the points marked with squares
are possible positions of f(w). (Right) The edges on the gray chain are the candidate
edges of ei = vivi+1.

that a point-partition with respect to (c1, c2, r) does not exist if r is less than the
radius of (c1, c2). A pair of edges (e, e′) is called an edge-partition with respect
to (c1, c2, r) if and only if x ∈ e and y ∈ e′ for some point-partition (x, y)
with respect to (c1, c2, r). In particular, a point-partition and an edge-partition
with respect to (c∗

1, c
∗
2, r

∗) are called an optimal point-partition and an optimal
edge-partition, respectively. By Lemma 2, there always exist an optimal point-
partition and an optimal edge-partition in a simple polygon. Note that a point-
partition and an edge-partition with respect to (c1, c2, r) are not necessarily
unique if min{d(c1, α), d(c1, β)} < r, where α and β are the two endpoints of
b(c1, c2). If an optimal point-partition (α, β) of P is given, we can compute an
optimal 2-center in linear time using the algorithm in [1].

We first compute a set of edge pairs, which we call candidate edge pairs,
containing at least one optimal edge-partition. For each candidate edge pair
(ei, ej), we compute an optimal 2-center (c1, c2) restricted to (ei, ej), that is, c1
and c2 are 1-centers of P [α, β] and P [β, α], respectively, where (α, β) is the pair
realizing inf(x,y)∈ei×ej

rmax(x, y).

3.1 Computing a Set of Candidate Edge Pairs

In this section, we define candidate edge pairs and describe how to find a set of
all candidate edge pairs in O(n2) time. We define the function f(v) which maps
each vertex v of P to the first clockwise vertex v′ of P from v that minimizes
rmax(v, v′).

Lemma 3. Let v be a vertex of P and w be a vertex lying on C[v, f(v)]. Then
f(w) ∈ C[fcc, v], where fcc is the counterclockwise neighbor vertex of f(v).

An edge ej = vjvj+1 is called a candidate edge of ei = vivi+1 if and only if
(1) f(vi+1) = vj and f(vi) = vj+1, or (2) vj or vj+1 lies on C[f(vi), f(vi+1)]
when f(vi) appears earlier than f(vi+1) when we traverse the boundary of P in
clockwise order from vi (See Fig. 1 (Right)). A pair of edges (ei, ej) is called a
candidate edge pair if ej is a candidate edge of ei.
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Lemma 4. There is an optimal edge-partition in the set of all candidate edge
pairs.

Lemma 5. The number of candidate edge pairs is O(n).

Now we give a procedure that finds the set of all candidate edge pairs. First,
we compute the vertex f(v1) by traversing all vertices of P in clockwise order.
Afterwards, we find f(vi) for all i ∈ [2, n]. Suppose that we have already com-
puted f(vi−1) and we want to find f(vi). By Lemma 3, we do not need to consider
the vertices lying in the interior of C[vi−1, fcc], where fcc is the counterclockwise
neighbor vertex of f(vi−1). Thus we traverse the vertices from fcc in clockwise
order and check whether the current vertex is f(vi). To check this, we consider
three vertices: the current vertex vc and the two neighbor vertices vn1 , vn2 of vc.
If rmax(vc, vi) ≤ min{rmax(vn1 , vi), rmax(vn2 , vi)}, f(vi) is the current vertex vc

by the monotonicity of the functions r(v, ·) and r(·, v), where v is a fixed vertex
of P . Otherwise, vc is not f(vi), so we move to the vertex next to vc. We can find
all f(vi) for i ∈ [1, n] by traversing ∂P twice. For each vertex we visit during the
traversal, we compute rmax(α, β) for three different pairs (α, β) of vertices of P ,
each of which takes O(n) time by the algorithm in [1].

Afterwards, we compute the set of all candidate edge pairs based on the
information we just computed. For each edge ei, we traverse the edges lying
between f(vi) and f(vi+1). It takes time proportional to the number of candidate
edge pairs, which is O(n) by Lemma 5.

Lemma 6. The set of all candidate edge pairs can be computed in O(n2) time.

4 A Decision Algorithm for a Candidate Edge Pair

We say that a point-partition (α, β) is restricted to (ei, ej) if α ∈ ei and β ∈ ej .
We say that a tuple (c1, c2, r) consisting of a 2-center (c1, c2) and a radius r
is restricted to (ei, ej) if some point-partitions with respect to (c1, c2, r) are
restricted to (ei, ej). We can view rmax(α, β) as the function whose variables are
α ∈ ei and β ∈ ej . Since the function is continuous and the domain is bounded,
there exist two points α∗ ∈ ei, β

∗ ∈ ej that minimize the function. We call
(c∗

1, c
∗
2) an optimal 2-center restricted to (ei, ej) if c∗

1 and c∗
2 are the optimal

1-centers of P [α∗, β∗] and P [β∗, α∗], respectively.
In this section, we present a decision algorithm for a candidate edge pair

(ei, ej). Let r∗
ij be the radius of an optimal 2-center restricted to (ei, ej). Let r

be an input of the algorithm. The decision algorithm decides whether r∗
ij > r or

not.
We assume that r(vi+1, vj) ≤ r ≤ r(vi, vj+1) and r(vj+1, vi) ≤ r ≤

r(vj , vi+1), since the other cases can be handled easily.
The decision algorithm first assumes that r ≥ r∗

ij and constructs a 2-center
restricted to (ei, ej) with radius r. The 2-center produced by the algorithm is
valid if and only if r ≥ r∗

ij . Therefore, the algorithm can then decide whether
r ≥ r∗

ij by checking whether the 2-center is valid. Thus, from now on, we assume
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that r > r∗
ij . Let (c1, c2, r) be a tuple consisting of a 2-center (c1, c2) and radius

r which is restricted to (ei, ej), and (α, β) be a point-partition with respect to
(c1, c2, r) which is restricted to (ei, ej). Without loss of generality, we assume
that Dr(c1) covers P [β, α] and Dr(c2) covers P [α, β].

4.1 Computing the Intersection of Geodesic Disks

The first step of the decision algorithm is to compute I1 = ∩i
k=j+1Dr(vk) and

I2 = ∩j
k=i+1Dr(vk) in O(n log n) time. Clearly, c1 ∈ I1 and c2 ∈ I2. The following

lemmas show a few properties of ∂I1 and ∂I2 which will be used by our algorithm.

Lemma 7. The number of circular arcs in ∂I1 and ∂I2 is O(n).

Lemma 8. Let D = {D1, . . . , Dk} be a set of geodesic disks with the same radius
and let I be the intersection of all disks in D. Let S =< s1, . . . , st > be the cyclic
sequence of circular arcs of ∂I along its boundary in clockwise order. For any
i ∈ [1, k], the circular arcs in ∂I ∩ ∂Di are consecutive in S.

Let S1 and S2 be the closures of ∂I1 \ ∂P and ∂I2 \ ∂P , respectively. Note
that ∂I1 and ∂I2 consist of O(n) circular arcs and (possibly incomplete) edges
of ∂P . By the following lemma, it is sufficient to choose two points, one from S1

and one from S2, in order to find a 2-center restricted to (ei, ej) with radius r.

Lemma 9. If r ≥ r∗
ij, there is a tuple (c1, c2, r) restricted to (ei, ej) such that

c1 ∈ S1 and c2 ∈ S2.

4.2 Subdividing the Edges and the Chains

We choose any two points w1 ∈ ∂I1 and w2 ∈ ∂I2 which are endpoints of some
circular arcs of ∂I1 and ∂I2, respectively. We use them as reference points for ∂I1
and ∂I2. To find a 2-center, we traverse ∂I1 and ∂I2 from w1 and w2, respectively.
We write p ≺ q for any two points p ∈ ∂It and q ∈ ∂It, if p comes earlier than q
when we traverse ∂It in clockwise order from the reference point wt for t = 1, 2.
We consider ∂I1 and ∂I2 as chains starting from w1 and w2, respectively.

We compute the shortest path maps SPMvi
and SPMvi+1 , where SPMx is

the graph which is obtained by extending the edges of the shortest path tree
rooted at a vertex x towards their descendants [8]. By overlaying them with ∂I1,
we obtain the set of O(n) finer arcs of ∂I1 in linear time.

We also subdivide the polygon edge ei into O(n) subedges by overlaying the
extensions of the edges in the shortest path trees rooted at vi and vi+1 towards
the parents of their endpoints with ei. Let Li be the set of intersections of the
extensions of the edges in the shortest path trees with ei. We define Lj similarly.

For any point x on a finer circular arc and any point p on a subedge, the
combinatorial structures of π(x, p) are the same if the geodesic path π(x, p)
consists of more than two segments for all x, p. Otherwise, there are at most
three distinct combinatorial structures of π(x, p) depending on x and p.
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4.3 Four Coverage Functions and Their Extrema

We define four functions φt(x) and ψt(x) for t = 1, 2 as follows. We represent
each point p ∈ ei (and q ∈ ej) as a real number ‖vi − p‖/‖vi − vi+1‖ (and
‖vj − q‖/‖vj − vj+1‖) in [0, 1], where ‖x − y‖ is the Euclidean distance between
the points x and y. We use a real number in [0, 1] and its corresponding point
interchangeably. We define the function φ1 : S1 → [0, 1] (and φ2 : S2 → [0, 1])
that maps x ∈ S1 (and x ∈ S2) to the supremum (and the infimum) of the
numbers which represent the points in Dr(x)∩ei. Similarly, we define a function
ψ1 : S1 → [0, 1] (and ψ2 : S2 → [0, 1]) that maps x ∈ S1 (and x ∈ S2) to
the infimum (and the supremum) of the numbers which represent the points in
Dr(x) ∩ ej .

We need to split St (for t = 1, 2) in subsections such that φt and ψt are
monotone when restricted to each subsection. However, St is not necessarily a
connected subset of ∂It. Thus, to simplify the description of the split, we define
four continuous functions φ′

t, ψ
′
t : ∂It → [0, 1] by interpolating φt and ψt on ∂It:

φ′
t(x) =

{

φt(x) if x ∈ St
dc(x,x1)
dc(x1,x2)

φt(x1) + dc(x,x2)
dc(x1,x2)

φt(x2) otherwise,

where x1 and x2 are the first and the last point of St along ∂It from x in clockwise
order, respectively, and dc(x′, y′) denotes the length of a chain C[y′, x′]. The
function ψ′

t is defined similarly. Recall that we let wt be the reference point for
∂It. As we traverse ∂It, we eventually come back to wt. Therefore, wt can be
thought of as the first and the last point of ∂It. The functions φ′

t and ψ′
t are

well-defined in the sense that each of φ′
t(wt) and ψ′

t(wt) takes the same value,
no matter if wt is the first or the last point of ∂It.

Lemma 10. The functions φ′
t and ψ′

t (for t = 1, 2) are well-defined. Excluding
wt, each of φ′

t and ψ′
t has at most one local maximum and at most one local

minimum. Moreover, these local extrema lie on St.

We can compute the local extrema of φ′
t and ψ′

t in O(log3 n) time. These
local extrema subdivide ∂I1 into at most five subchains c1,k for k ∈ {1, 2, . . . , 5}
as follows. Let x1, x2, x3 and x4 be the local maxima and the local minima of
φ′
1 and ψ′

1 with x1 ≺ x2 ≺ x3 ≺ x4. The subchain c1,k is the set of points
x ∈ ∂I1 with xk−1 ≺ x ≺ xk for k ∈ {1, 2, . . . , 5}, where we set x0 = x5 = w1.
Similarly, the local extrema of φ′

2 and ψ′
2 divide the chain ∂I2 into five subchains

c2,� (	 ∈ {1, 2, . . . , 5} ). After subdividing ∂I1, φ1 and ψ1 are monotone when
the domain is restricted to c1,k ∩ S1 (k ∈ {1, 2, . . . , 5}). Similarly, φ2 and ψ2

restricted to c2,� ∩ S2 (	 ∈ {1, 2, . . . , 5}) are monotone.

4.4 Computing a 2-center for a Pair of Subchains

We consider a pair of subchains (c1,k, c2,�) (k ∈ {1, 2, . . . , 5} and 	 ∈
{1, 2, . . . , 5}). Let s1,k = S1 ∩ c1,k and s2,� = S2 ∩ c2,�. We find a 2-center
with radius r that is restricted to (ei, ej), if it exists, where one center is on
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s1,k and the other is on s2,�. Assume that φ1 and ψ1 (respectively φ2 and ψ2)
are decreasing when their domain is restricted to s1,k (respectively to s2,�). The
other cases can be handled in a similar way.

We define two new functions μ1 : s1,k → s2,� and μ2 : s1,k → s2,�. For a point
x ∈ s1,k, μ1(x) (and μ2(x)) is the first clockwise point (and the last clockwise
point) in s2,� which is covered by Dr(φ1(x)) (and Dr(ψ1(x))). If every point in
s2,k is covered by Dr(φ1(x)), then μ1(x) is defined as the last clockwise point of
s2,l. Notice that μ1(x) and μ2(x) are increasing on s1,k. Then, if there is a point
x ∈ s1,k such that μ1(x) ≺ μ2(x), (x, μ1(x), r) is restricted to (ei, ej).

To decide whether this is the case, we traverse c1,k and c2,� and (x, μ1(x), r)
is restricted to (ei, ej) for the current points x ∈ c1,k and μ1(x) ∈ c2,�. As we
scan the subchains, we pick O(n) points, which are called event points. Then
we compute μ1(x) and μ2(x) for all event points in s1,k in linear time. Then
we traverse the two subchains and find a 2-center using the information we just
computed.

We explain how we compute the event points on c1,k. The set of event points
of c1,k is the subset of c1,k consisting of points belonging to one of the three
types defined below.

– (T1) The subchain c1,k ⊆ ∂I1 consists of circular arcs and line segments. It
was subdivided by two SPM’s in Sect. 4.2. The endpoints of all these circular
arcs, line segments and subdivisions are the event points of type T1.

– (T2) the points x ∈ s1,k such that d(x, p) = r for some p ∈ Li.
– (T3) the points x ∈ s1,k such that d(x, p) = r for some p ∈ Lj .

Let E1, E2 and E3 be the sets of points of types T1, T2 and T3, respectively. Let
E = E1∪E2∪E3. We say η ∈ E is caused by p if d(η, p) = r for p ∈ Li ∪Lj . We do
not need to compute E1, since we already maintain the arcs of c1,k in clockwise
order. Recall that Li is the set of intersection points of the extensions of the
edges in the two shortest path trees of vi, vi+1 with ei. Let Li = {p1, . . . , pm}
be sorted along ei in clockwise order from vi.

We explain how to compute E2 by traversing c1,k from its starting point.
Assume that we have reached an event point η ∈ E1 ∪ E2 and have already
computed all T2 points on the subchain lying before η. Let η′ be the T1 point
next to η. It is sufficient to show that we can find all T2 points on the subchain
lying between η and η′ by walking the subchain from η to η′ once. If η ∈ c1,k\s1,k,
let h(η) be the last T2 point in s1,k in clockwise order with h(η) ≺ η. Otherwise,
let h(η) = η. While computing all T2 points, we also compute φ1(h(η)) and
π(η, φ1(h(η))) for every event point η ∈ E1 ∪ E2.

If the subchain of c1,k connecting η′ and η lies in ∂P , there are two possible
cases: η′ /∈ s1,k or η′ ∈ s1,k. In both cases, there is no T2 point between η′

and η. Thus η′ is the event point next to η and it is sufficient to compute
φ1(h(η)) and π(η, φ1(h(η))). If η′ /∈ s1,k then h(η′) = h(η). Thus, we compute
π(η′, φ1(h(η))), which takes constant time. If η′ ∈ s1,k, then h(η′) = η′. To
compute π(η′, φ1(η′)), we first compute d(η′, pi′), where pi′pi′+1 is the subedge of
ei which contains φ1(h(η)). Since φ1 is decreasing, φ1(η′) lies on C[vi, φ1(h(η))].
Thus, if d(η′, pi′) > r, then φ1(h(η)) does not lie on C[pi′ , φ1(h(η))], so we can
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skip pi′ . We check each subedge of ei from pi′ in counterclockwise order until it
contains φ1(η′), and compute the geodesic path π(η′, φ1(η′)) for φ1(η′) on the
subedge. It takes time proportional to the number of subedges we traverse on ei.

Otherwise, the subchain of c1,k connecting η′ and η lies in s1,k. In this case,
we first compute d(η′, pi′), where pi′pi′+1 is the subedge of ei which contains
φ1(h(η)). If d(η′, pi′) is smaller than r, then φ1(η′) lies between φ1(η) and pi′ ,
and it can be computed in constant time. In this case, there is no T2 point
between η and η′. If d(η′, pi′) is greater than or equal to r, then there is an event
point caused by pi′ lying between η and η′. It can be computed in constant time.
Moreover, it is the first T2 point from η.

Until now, we have computed the set E1 ∪ E2 and the values φ1(η) for all
η ∈ E1 ∪ E2 lying in s1,k. Similarly, we also compute E3 and φ1 for all event
points in E3. Moreover, we can define the event points in c2,� and compute all
event points similarly. Using this information, we can compute μ1(x) and μ2(x)
for all x ∈ E in linear time.

By the following lemma, we can find a 2-center restricted to (ei, ej) with
radius r by traversing c1,k once.

Lemma 11. Let η and η′ in E be two event points adjacent along s1,k. We can
determine whether there is a point η ≺ x ≺ η′ such that μ1(x) ≺ μ2(x) in time
proportional to the number of event points between μ2(η′) and μ1(η).

If r∗
ij ≥ r, there exists a 2-center (c1, c2) with radius r such that c1 ∈ S1

and c2 ∈ S2 (see Lemma 9). We have μ1(c1) ≺ c2 ≺ μ2(c1). Thus, the algorithm
always considers the subarc pair, one containing c1 and the other containing c2.

4.5 The Analysis of the Decision Algorithm

The first step, computing the intersection of the geodesic disks, takes linear time
once the farthest-point geodesic Voronoi diagrams of the vertices of C[vj+1, vi]
and of the vertices of C[vi+1, vj ] have been constructed. The second step, sub-
dividing the edges and the chains with the SPM’s, takes O(n) time. The third
step, finding the local extrema of φ′

t and ψ′
t (for t = 1, 2), takes O(log3 n) time.

In the last step, we consider O(1) subchain pairs. For a given subchain pair
(c1,k, c2,�), we compute all event points on the subchains. The set E1 of T1 points
has already been given. The sets E2 and E3 of T2 and T3 points, respectively,
can be computed in O(n) time by the following lemma.

Lemma 12. Let η be a T1 or T2 point that the algorithm has computed. If
we have already computed π(η, φ1(η)) and the subedge pi′pi′+1 of ei containing
φ1(η), we can compute d(η′, pi′) in constant time, where η′ is the T1 event point
next to η.

Lemma 13. For a candidate edge pair (ei, ej) and a radius r, we can decide
whether r ≥ r∗

ij in O(n) time, once the farthest-point geodesic Voronoi diagrams
of the vertices of C[vj+1, vi] and of the vertices of C[vi+1, vj ] are constructed.
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5 An Optimization Algorithm for a Candidate Edge Pair

Using the parametric searching technique [11], our decision algorithm can be
extended into an optimization algorithm as follows.

Instead of computing ∂I1(r∗
ij) and ∂I2(r∗

ij) explicitly, we compute the com-
binatorial structures of ∂I1(r∗

ij) and ∂I2(r∗
ij). There is an interval [r1, r2] which

contains r∗
ij and such that the combinatorial structures of I1(r) and I2(r) are

the same for any r ∈ [r1, r2]. We first find such an interval by binary search
on a set of candidate radii using our decision algorithm. Let rL and rU be the
radii which we obtain by binary search. We have r∗

ij ∈ [rL, rU ]. We construct the
combinatorial structures of I1(r1) and I2(r1).

Then we subdivide ∂I1(r∗
ij) (and ∂I2(r∗

ij)) into O(n) finer arcs by overlay-
ing the shortest path maps of vi, vi+1, vj , and vj+1 with ∂I1(r∗

ij) (and ∂I2(r∗
ij)).

To be specific, we compute the combinatorial structure of the subdivisions of
∂I1(r∗

ij) and ∂I2(r∗
ij). Let g1(r), . . . , gm(r) (and g′

1(r), . . . , g
′
m′(r)) be the alge-

braic functions of constant degree which represent the endpoints of the finer arcs
of ∂I1(r) (and ∂I2(r)) for r ∈ [rL, rU ].

Lemma 14. The set of endpoints of the finer arcs of ∂I1(r) and ∂I2(r) can be
computed in O(n log2 n) time for r ∈ [rL, rU ].

5.1 Computing the Coverage Function Values

Lemma 15. For an index k ∈ [1,m], the subedge of ei containing φ1(gk(r∗
ij))

can be computed in O(n log n) time.

We can compute the subedge of ei containing gk(r∗
ij) for all indices k ∈ [1,m]

in O(n2 log n) time. To compute them efficiently, we parallelize this procedure
using O(n) processors. The details can be found in the full version of the paper.
Afterwards, we compute the algebraic functions φ1(gk(r)) and φ2(g′

k′(r)) for all
k ∈ [1,m] and all k′ ∈ [1,m′]. Then we sort the points in Li and the points
φ1(gk(r∗

ij)), φ2(g′
k′(r∗

ij)) for all k ∈ [1,m] and all k′ ∈ [1,m′] in O(n log2 n)
time using Cole’s parallelized sorting algorithm [7] and the decision algorithm
in Sect. 4.

Lemma 16. The points φ1(gk(r∗
ij)), φ2(g′

k(r∗
ij)) for all indices k ∈ [1,m] and

the points in Li can be sorted in O(n log2 n) time.

5.2 Constructing 4-Tuples Consisting of Two Cells and Two
Subedges

Consider a 4-tuple (x1, x2, y1, y2), where xt is a finer arc of ∂It(r∗
ij) for t = 1, 2

and y1, y2 are subedges in ei, ej , respectively. We say the 4-tuple (x1, x2, y1, y2)
is optimal if there is an optimal 2-center (c∗

1, c
∗
2) such that c∗

1 ∈ x1, c
∗
2 ∈ x2 and

α ∈ y1, β ∈ y2 for some point-partition (α, β) with respect to (c∗
1, c

∗
2, r

∗
ij). If an

optimal 4-tuple is given, then we can compute c∗
1 and c∗

2 in constant time.
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Lemma 17. Given an optimal 4-tuple (x1, x2, y1, y2), an optimal 2-center
(c1, c2) restricted to the candidate edge pair (ei, ej) can be computed in constant
time.

Instead of considering all 4-tuples, we construct a set of 4-tuples with size O(n)
containing at least one optimal 4-tuple by parallelizing the procedure in Sect. 4.4
after modifying it.

Lemma 18. An optimal 2-center restricted to a given candidate edge pair can
be computed in O(n log2 n) time.

Theorem 1. An optimal 2-center can be computed in O(n2 log2 n) time.
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Abstract. Let P = {C1, C2, . . . , Cn} be a set of color classes, where
each color class Ci consists of a pair of objects. We focus on two prob-
lems in which the objects are points on the line. In the first problem
(rainbow minmax gap), given P , one needs to select exactly one point
from each color class, such that the maximum distance between a pair
of consecutive selected points is minimized. This problem was studied
by Consuegra and Narasimhan, who left the question of its complexity
unresolved. We prove that it is NP-hard. For our proof we obtain the
following auxiliary result. A 3-SAT formula is an LSAT formula if each
clause (viewed as a set of literals) intersects at most one other clause,
and, moreover, if two clauses intersect, then they have exactly one literal
in common. We prove that the problem of deciding whether an LSAT
formula is satisfiable or not is NP-complete. We present two additional
applications of the LSAT result, namely, to rainbow piercing and rainbow
covering.

In the second problem (covering color classes with intervals), given
P , one needs to find a minimum-cardinality set I of intervals, such that
exactly one point from each color class is covered by an interval in I.
Motivated by a problem in storage systems, this problem has received
significant attention. Here, we settle the complexity question by proving
that it is NP-hard.

1 Introduction

A multiple choice problem consists of a set of color classes P = {C1, C2, . . . , Cn},
where each color class Ci consists of a pair of objects. When the underlying
objects are points (resp., intervals) on the x-axis, we say that P is a set of point
(resp., interval) color classes. Consider a set P of point color classes. We call an
interval on the x-axis that contains at most one point from each color class a
conflict-free interval (or CF-interval for short). Given a set of color classes P and
a set Q ⊆ ∪n

i=1Ci, we say that Q is a rainbow if it contains at most one object
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from each color class. The first problem that we study (rainbow minmax gap) is
mentioned in a recent paper by Consuegra and Narasimhan [6].

Rainbow Minmax Gap (Decision Version): Given a set P of n point color
classes and a value d > 0, determine whether there exists a rainbow Q of size
n with max gap at most d, where the max gap of Q is the maximum distance
between a pair of consecutive points in Q.
This problem is the 1-dimensional version of a more general 2-dimensional prob-
lem. Consider a set of agents (represented by points in the plane) where each
agent provides a certain service, and for each of these services, there are several
agents in the set providing this service. The goal is to compute a minimum bot-
tleneck spanning tree consisting of exactly one agent for each of the available
services. In [6], the authors present a 2-approximation algorithm for rainbow
minmax gap, but leave the question whether the problem is NP-hard or not
open. In Sect. 3 we prove that the problem is NP-hard.

In order to obtain this result we define a new and especially simple satisfia-
bility problem, which we call linear SAT (or LSAT for short), and prove that it is
still NP-complete. A 3-SAT formula is an LSAT formula if each clause (viewed as
a set of literals) intersects at most one other clause, and, moreover, if two clauses
intersect, then they have exactly one literal in common. An LSAT formula can
be depicted as a set of disjoint semi-closed intervals on a line, see Fig. 1. We
prove that the problem of deciding whether an LSAT formula is satisfiable or
not is NP-complete. This is quite surprising, since the satisfiability problem for
the class of formulas that can be depicted as disjoint closed intervals on a line
is already polynomially solvable. We believe that the NP-completeness of LSAT
may be useful in deriving other hardness results. In particular, we use LSAT to
prove NP-hardness of the following two multiple choice problems, see Sect. 3.

Rainbow Piercing: Given a set P of point color classes and a set of intervals
I on the x-axis, determine whether there exists a rainbow Q that is a piercing
set for I (i.e., each interval in I is pierced by at least one point in Q).

Rainbow Covering: Given a set P of interval color classes, i.e., where each
color class Ci is a pair of intervals on the x-axis, and a set of points S on the x-
axis, determine whether there exists a rainbow Q that covers S (i.e., each point
in S is covered by at least one interval in Q).

A fascinating related problem is: cover exactly one point from each color class
using a minimum number of (arbitrary) intervals. This problem is motivated by
the following problem. Consider a storage system where each item is stored in
multiple places, and the objective is to retrieve all items with a minimum number
of contiguous read operations. The problem is formally defined as follows.

Covering Color Classes with Intervals of Arbitrary Length: Given a set
P of point color classes, find a minimum-cardinality set I of intervals of arbitrary
length, such that exactly one point from each color class is covered by an interval
in I.

In Sect. 4 we show that this problem is NP-hard, by first showing that the
following simpler problem is NP-hard.
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Covering Color Classes with Unit Length Intervals: Given a set P of point
color classes, decide whether or not there exists a set of unit length intervals, I,
such that exactly one point from each color class is covered. Assuming a feasible
solution exists, minimize the cardinality of I.

Related Work. As far as we know, the first to consider a “multiple-choice”
problem of this kind were Gabow et al. [9], who studied the following problem.
Given a directed acyclic graph with two distinguished vertices s and t and a
set of k pairs of vertices, determine whether there exists a path from s to t
that uses at most one vertex from each of the given pairs. They showed that the
problem is NP-complete. A sample of additional graph problems of this kind can
be found in [2,10,13]. The first to consider a problem of this kind in a geometric
setting were Arkin and Hassin [3], who studied the following problem. Given
a set V and a collection of subsets of V , find a cover of minimum diameter,
where a cover is a subset of V containing at least one representative from each
subset. They also considered the multiple-choice dispersion problem, which asks
one to maximize the minimum distance between any pair of elements in the
cover. They proved that both problems are NP-hard. Recently, Arkin et al. [1]
considered the following problem. Given a set S of n pairs of points in the plane,
color the points in each pair by red and blue, so as to optimize the radii of
the minimum enclosing disk of the red points and the minimum enclosing disk
of the blue points. In particular, they consider the problems of minimizing the
maximum and minimizing the sum of the two radii. In another recent paper,
Consuegra and Narasimhan [6] consider several problems of this kind, including
the rainbow minmax gap problem, for which they present a 2-approximation
algorithm (and we prove NP-hardness).

2 A New Satisfiability Result

In the boolean satisfiability problem (SAT), one is given a formula in conjunctive
normal form and the goal is to determine whether it is satisfiable or not. SAT
is one of the first problems that was shown to be NP-complete (by Cook [7]).
Subsequently, many variants of SAT were shown to be NP-complete, including
the variant known as 3-SAT, in which each clause consists of at most three
literals [5,11,14]. Some restricted variants of SAT can be solved in polynomial
time [4,8,12]. In this section we define an especially simple variant of 3-SAT,
which we call linear SAT (LSAT for short), and prove that it is NP-complete.
A 3-SAT formula is an LSAT formula if each clause (viewed as a set of literals)
intersects at most one other clause. Moreover, if two clauses intersect, then they
have exactly one literal in common. Let F be an LSAT formula and let T be its
corresponding set of literals, then F can be depicted as in Fig. 1. That is, one
can sort the literals in T , such that (i) each clause of F corresponds to at most
three consecutive literals in the sorted list, and (ii) each clause shares at most
one of its literals with another clause, in which case this literal is extreme in
both clauses.
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(z1 ∨ z2 ∨ z3)

z1 z2 z3 z4 z5z1 z2 z3z4 z5 z6 z7z6 z7

(z1 ∨ z4)(z4 ∨ z2) (z4 ∨ z5 ∨ z3) (z6 ∨ z7 ∨ z5) (z5 ∨ z6 ∨ z7)

Fig. 1. An example of an LSAT formula.

Observe that if the clauses of a 3-SAT formula F are pairwise disjoint, then
one can determine in polynomial time whether F is satisfiable or not, by deter-
mining whether the corresponding bipartite graph in which there is an edge
between clause C and variable x if and only if either x or x appear in C con-
tains a perfect matching. It is therefore somewhat surprising that LSAT is NP-
complete, since the clauses of an LSAT formula are almost pairwise disjoint. We
now prove that LSAT is NP-complete by a reduction from 3,4-SAT. A 3-SAT
formula is a 3,4-SAT formula if each variable appears in at most 4 clauses, either
negated or unnegated. 3,4-SAT was shown to be NP-complete by Tovey [14].

Let F be a 3,4-SAT formula, let X be the underlying set of variables, and
let C be the set of clauses of F . Without loss of generality, we assume that
each variable xi ∈ X appears unnegated (i.e., as xi) in at most three clauses
and negated (i.e., as xi) in at most two clauses. We construct an LSAT formula
FL = (XL, CL) from F , and show that there is a truth assignment for X such
that each clause in C is satisfied if and only if there is a truth assignment for XL

such that each clause in CL is satisfied. We construct XL from X as follows. For
each variable xi ∈ X we add to XL the variables xi, ai, yi1, yi2, yi3, zi1, zi2. Also,
for each variable xi we add the following clauses to CL:

1. (yi1 ∨ xi) 2. (xi ∨ ai) 3. (yi2 ∨ ai) 4. (ai ∨ yi3) 5. (zi1 ∨ xi) 6. (xi ∨ zi2).

Observe that clause 1 and clause 2 share xi, clause 3 and 4 share ai, and clause 5
and 6 share xi. Now, for each clause Ci ∈ C, we add a clause to CL as follows. For
each variable xi that appears in Ci, if xi appears unnegated, then we replace it by
yi1, yi2, or yi3, depending on whether this is the first, second, or third occurrence
of xi, and if xi appears negated, we replace it by zi1 or zi2, depending on whether
this is the first or second occurrence of xi. For example, given the formula

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x4 ∨ x2) ∧ (x1 ∨ x4 ∨ x2),

we create the following three clauses (in addition to the six clauses that are
created for each of the variables x1, x2, x3, x4).

(y11 ∨ y21 ∨ z31), (y12 ∨ y41 ∨ z21), (y13 ∨ z41 ∨ z22).

It is easy to see that the obtained formula, FL, is indeed an LSAT formula, since
each clause in CL that was obtained from a clause in C by replacement does not
share any of its literals with another clause in CL.

Theorem 1. F is satisfiable if and only if FL is satisfiable.
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Proof. Assume F is satisfiable, that is, there exists a truth assignment for X
such that each clause in C is satisfied. We show that FL is satisfiable. If xi ∈ X
was assigned FALSE (i.e., 0), then we assign TRUE (i.e., 1) to the variables
ai, yi1, yi2, yi3 and 0 to the variables xi, zi1, zi2. On the other hand, if xi ∈ X
was assigned 1, then we assign 0 to ai, yi1, yi2, yi3 and 1 to xi, zi1, zi2. We claim
that this truth assignment to the variables of XL satisfies FL. Observe first that
all the 6|X| clauses created for the variables in X are satisfied, since each of
them consists of two literals which assume opposite values. It remains to show
that the assignment satisfies the clauses consisting of three literals. But this is
obvious, since for any clause C ∈ C and any literal t of C, the value of t and the
value of t′ are equal, where t′ is the literal replacing t in FL. (That is, if t = xi,
then t′ = yik, for some k ∈ {1, 2, 3}, and xi = 1 if and only if yik = 1, and if
t = xi, then t′ = zik, for some k ∈ {1, 2}, and xi = 1 if and only if zik = 1.)

We now prove that if FL is satisfiable, then so is F . Consider any truth
assignment for XL that satisfies FL. This truth assignment (restricted to X)
also satisfies F . This is true, since, as can easily be verified, yik = 1 =⇒ xi = 1
and zik = 1 =⇒ xi = 1. (For example, if yi2 = 1, then since (yi2 ∨ ai) is
satisfied, we deduce that ai = 1 and therefore, ai = 0. But now, since (xi ∨ ai)
is satisfied, we deduce that xi = 1). �

We conclude that

Theorem 2. LSAT is NP-complete.

3 Applications of LSAT to Rainbow Problems

In this section we prove that the rainbow problems mentioned in the introduction
are NP complete, by devising reductions from LSAT. Specifically, we first prove
that (the decision version) of minmax gap is NP-complete, and then we show
that rainbow piercing and rainbow covering are NP-complete.

3.1 Rainbow Minmax Gap (Decision Version) is NP-complete

Let P be a set of n color classes, where each color class Ci is a pair of points
{pi, pi} on the x-axis, and let d > 0. We prove that the decision version of
rainbow minmax gap is NP-complete, that is, it is NP-complete to determine
whether there exists a rainbow Q ⊂ ∪n

i=1Ci of size n, such that the maximum
gap between a pair of consecutive points in Q is at most d.

We present a reduction from LSAT. Let F be an LSAT formula, and let X be
the underlying set of variables and B be the set of clauses of F . Let k be the num-
ber of clauses in B that do not intersect any other clause in B. Place the points
q1, q2, . . . , qk+1 on the x-axis, from left to right, such that the distance between
any two consecutive points is d + d

4 . Now, for each clause Bi of these k clauses,
place three additional points between qi and qi+1, one for each of its liter-
als. For example, if Bi = (xa ∨ xb ∨ xc), then we place the points pa, pb,
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and pc such that pb is at the middle of the interval qiqi+1 and pa and pc are
to its left and right, respectively, at distance d

8 from pb (see Fig. 2(a)).
Next, consider the pairs of clauses that have a single literal in common, and

let l be their number. Place the points qk+2, . . . , qk+l+1, from left to right, such
that the distance between qk+i and qk+i+1 is 2d, for i = 1, . . . , l. Now, for the i’th
pair B,B′ of these l pairs of clauses, place five additional points between qk+i

and qk+i+1. For example, if B = (xa ∨ xb ∨ xc) and B′ = (xc ∨ xd ∨ xe), then we
place the points pa, pb, pc, pd, pe such that the distance between qk+i and the first
point (pa), as well as the distance between qk+i+1 and the last point (pe), is d

2

and the distance between any two consecutive points is d
4 (see Fig. 2(b)). Finally,

place the points q1, . . . , qk+l+1 such that distance between any two consecutive
points, including the distance between qk+l+1 and q1, is d + ε, for some ε > 0.
See Fig. 3 for a complete example.

Notice that in our reduction, we have assumed that each clause in F consists
of three literals. However, we can adapt the reduction to fit formulas containing
two literal clauses.

qi papbpc qi+1

d/2 d/4 d/2

(xa ∨ xb ∨ xc)

(a)

pa pcpb pd pe

d/2 d/4 d/4 d/4 d/4 d/2

qk+i qk+i+1

(xa ∨ xb ∨ xc) ∧ (xc ∨ xd ∨ xe)

(b)

Fig. 2. The reduction from LSAT to the decision version of minmax gap.

Lemma 1. Let P be the resulting set of color classes (i.e., P = {{q1, q1}, . . . ,
{qk+l+1, qk+l+1}, {pa, pa}, {pb, pb}, . . .} ). F is satisfiable if and only if there exists
a rainbow Q consisting of one point from each color class, such that the maximum
gap between a pair of consecutive points in Q is at most d.

Proof. Assume F is satisfiable, and consider the rainbow Q that is obtained
as follows. First, add the points q1, . . . , qk+l+1 to Q. Next, for each variable xi

appearing in F , if xi was assigned TRUE, then add the point pi to Q; otherwise,
add the point pi to Q. Obviously, Q consists of exactly one point from each color
class. We claim that the distance between any two consecutive points in Q is at
most d. To see this, it is enough to examine the situation between qi and qi+1,
for i = 1, . . . , k + l. If i ≤ k, then since the clause, Bi, corresponding to this
interval is satisfied, one of its literals is true and the point corresponding to it
was added to Q. Clearly, the distance between this point and qi (alternatively,
qi+1) is at most 3d

4 (see Fig. 2(a)). If k + 1 ≤ i ≤ k + l, then consider the pair of
clauses B,B′ corresponding to this interval. Since both are satisfied, then either
the literal that is common to both is true, or each of them has a unique literal
that is true. In the former case, Q contains the midpoint between qi and qi+1,
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whose distance from qi (alternatively, qi+1) is exactly d, and in the latter case,
Q contains two points p1, p2, such that the distance between them is at most d
and the distance between p1 and qi, as well as the distance between p2 and qi+1

is at most 3d
4 (see Fig. 2(b)). We have shown that Q is as required.

q1 p1p2p3 p4p2p6q2 p1 p4p6q3

d/2 d/4 d/2 d/2 d/4 d/2

q4p2 p3

d/2 d/4 d/4 d/4 d/4 d/2

q1 q2

d+ d+

Fig. 3.A complete example: F = (x1∨x2∨x3)∧(x4∨x2∨x6)∧(x1∨x6∨x4)∧(x4∨x2∨x3).

Assume now that there exists a rainbow Q consisting of one point from each
color class, such that the maximum gap between a pair of consecutive points in
Q is at most d. Observe that Q cannot contain any of the points q1, . . . , qk+l+1,
so it must contain all the points q1, . . . , qk+l+1. We assign values to the variables
appearing in F is follows. If pi ∈ Q, then set xi = 1, and if pi ∈ Q, then
set xi = 0. We claim that this assignment satisfies each of the clauses of F .
Consider any clause Bi that does not intersect any other clause in B. Since the
distance between qi and qi+1 is greater than d, at least one of the three points
corresponding to Bi’s literal belongs to Q, implying that Bi is satisfied. Consider
now any two clauses B,B′ that have a single literal in common. In this case, the
distance between qi and qi+1 is 2d. So, either Q contains the midpoint between
qi and qi+1 which corresponds to the common literal, implying that both clauses
are satisfied, or Q contains two points, one corresponding to a literal of B and
one to a literal of B′, again implying that both clauses are satisfied. Thus, we
have shown that F is satisfiable. �

Hence, we have proved the following theorem.

Theorem 3. The decision version of rainbow minmax gap is NP-complete.

Corollary 1. Rainbow minmax gap is NP-hard.

3.2 Rainbow Piercing and Rainbow Covering are NP-complete

In the full version of this paper, we prove the following two theorems:

Theorem 4. Rainbow piercing is NP-complete.

Theorem 5. Rainbow covering is NP-complete.

4 Exact Coverage of Color Classes

Let P = {C1, C2, . . . , Cn} be a set of n color classes, where each color class Ci is
a pair of points {pi, pi} on the x-axis. We consider coverage problems where the
goal is to use intervals on the x-axis to cover exactly one point from each color
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class. We now prove that the following three problems are NP-hard; the decision
versions are easily seen to be in NP. Note that in each of these problems, it is
implied that the intervals are conflict-free (no interval can contain two points
from the same color class). In this section, we represent point pairs in Figs. 4, 5
and 6 as the tips of a 
 shape or the tips of a � shape. Certain pairs in these
figures are drawn in color in order to help explain the constructions.

Problem 1 (Covering color classes with unit length intervals). Decide
whether or not there exists a set of unit length intervals, I, such that exactly one
point from each color class is covered by an interval in I.

Problem 2 (Covering color classes with the fewest unit length inter-
vals). Find a minimum-cardinality set I of unit length intervals (assuming a
feasible solution exists), such that exactly one point from each color class is cov-
ered by an interval in I.

Problem 3 (Covering color classes with intervals of arbitrary length).
Find a minimum-cardinality set I of intervals of arbitrary length, such that
exactly one point from each color class is covered by an interval in I.

4.1 Unit Intervals

Theorem 6. Problem 1 is NP-Complete.

Proof. Problem 1 is clearly in NP because we can check whether or not exactly
one point from each color class is covered in polynomial time. The reduction is
from 3-SAT. Given n variables {x1, x2, x3, . . . , xn}, and m clauses {c1, c2, c3, . . . ,
cm}, we design the following gadgets.

variables
di

1 − ε1 − ε

clause ci

(a)

clause contains xi clause contains ¬xiT F

qi
y
y

variable xi

(b)

Fig. 4. Clause and variable gadgets for Problem 1 (Color figure online).

Each clause gadget (Fig. 4(a)) consists of five points. It contains a pair of
points di (represented by a 
 shape in Fig. 4(a)), interleaved with three blue
points; each of the three paired to a point in a variable gadget (these blue pairs
are represented by a � shape in Fig. 4(a)). In a clause gadget, the Euclidean
distance between any two consecutive (blue) points that are paired to variables
is 1 − ε for ε > 0 (ε should be bounded above; ε < 1/3 suffices). Each variable
gadget (Fig. 4(b)) consists of a consecutive pair of points, qi, surrounded by blue
points on each side. If variable xi (resp. xi) appears in clause ci, then one blue
point will be placed to the right (resp. left) of qi and this point will be paired to
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a blue point in ci. The blue points that surround qi are placed a distance of y
from their respective farthest points in qi. We set y < 1, ensuring that any unit
interval that covers a point in qi must also cover either the surrounding blue
points to the left or right of qi. Setting xi to FALSE is equivalent to covering
the right point of qi. Setting xi to TRUE is equivalent to covering the left point
of qi. We line up all of the variables, followed by all of the clauses, so that each
consecutive gadget is spaced farther than unit distance apart.

If a clause evaluates to FALSE, each of the three blue points in a clause
cannot be covered. Pair di will now be left uncovered because we cannot cover
a point in di with a unit interval without covering one of the blue points in
the clause. If a clause evaluates to TRUE, then a point from di can always be
covered. Therefore, there exists a satisfying truth assignment in 3-SAT if and
only if there exists a covering with unit length intervals such that exactly one
point from each color class is covered. �

variables

clause ci

di1 di2 di3 di4

di

Fig. 5. Clause gadget for Problem 2 (Color figure online).

We now suppose that there indeed exists a set of unit length intervals I such
that exactly one point from each color class is covered by an interval in I. We
show that finding such a set of minimum-cardinality is NP-hard. The reduction
is from 3-SAT. We use the same variable gadgets and modify the clause gadgets.
A clause gadget, ci, contains 13 points. It contains four consecutive pairs of
points, dij , 1 ≤ j ≤ 4 (see Fig. 5) and another pair of points, di, one of which lies
between di1 and di2 and the other lies between di3 and di4. The remaining three
points (blue in Fig. 5) lie between di1 and di, between di2 and di3 and between
di3 and di. The Euclidean distance between the right point in dij and the left
point in dij+1, 1 ≤ j ≤ 3, is less than one, ensuring that one unit interval can
cover both dij and dij+1. The two points that define dij are spaced unit distance
apart. In the full version of this paper, we prove the following theorem using the
gadget described above.

Theorem 7. Problem 2 is NP-Hard.

4.2 Arbitrary Length Intervals

With intervals of arbitrary length, there always exists a solution that gives com-
plete coverage. We show that finding such a solution of minimum is NP-hard.

Theorem 8. Problem 3 is NP-Hard.
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Proof. The reduction is again from 3-SAT. In this case, spacing of points is
irrelevant. Variable gadgets are set up very similarly to the unit interval version.
This time, in order to ensure that in a minimum-cardinality cover, the blue
points (either to the left or to the right of qi) in a variable gadget are covered
with the same interval that covers qi, we enclose pair qi with a ‘safety’ pair
si (see Fig. 6). We will see that covering a point in qi and not using the same
interval to cover a point in si would be too costly. Clause gadgets are set up in
the same way as the unit interval, optimization problem (Fig. 5).

We break the set of points in the construction into two halves, H1 which
contains the variable and clause gadgets, and H2 which contains another gadget
which will be described soon (see Fig. 6). Surrounding each variable and each
clause we place a cluster of M >> n + 3m points. Note that the points in
a cluster are laid out side-by-side (rather than on the same x-coordinate). In
H2, we create M groups of points, where each group is made up of n + m + 1
points, one paired to each cluster in H1. Surrounding these groups are pairs of
consecutive points, g1 and g2. Pair g1 lies to the left of the first group and pair
g2 lies to the right of the last group. The gadget in H2 will help us isolate all of
the variable and clause gadgets in H1.

q1 q2 q3 qn

c1 c1 c3 cm

H1 H2

g1 g2
group Mgroup 1 group 2

cluster 1
cluster 2

cluster n+m+ 1

s1 s2 s3 sn

Fig. 6. Arbitrary length intervals – the big picture (Color figure online).

First, we show that any feasible solution uses at least n + 3m + 1 intervals.
Case 1: No cluster in H1 is completely covered. The variable and clause

gadgets are now isolated. We need at least n intervals to cover the variable
gadgets and at least 3m intervals to cover the clause gadgets. At least one more
interval is needed to cover the remaining points in H2.

Case 2: At least one cluster in H1 is completely covered. If any cluster is
completely uncovered then at least M intervals will be needed in H2. If all
clusters are “touched” by an interval then at least n + 3m + 1 intervals will be
used in H1 (at least n+m+1 intervals touch a cluster and at least 2m intervals
are needed to finish covering the clauses). At least one more interval is needed
to cover points in H2. At least n + 3m + 2 intervals are used in total.

Now we claim that there exists a satisfying truth assignment in 3-SAT if
and only if a minimum cover uses n + 3m + 1 intervals. Suppose there exists a



328 E.M. Arkin et al.

satisfying truth assignment. Any feasible solution must use at least n + 3m + 1
intervals. This lower bound can be achieved by covering pairs in H1 the same
way as in the unit interval optimization problem construction and using one
more interval in H2 to cover g1, all groups, and g2.

Now suppose that a minimum cover uses n+3m+1 intervals. By Case 2, we
know that no cluster in H1 can be completely covered. Therefore, all variable
and clause gadgets are isolated the same way they were in the unit interval
version. Recall that in the variable gadgets, a ‘safety’ pair si encloses the set of
blue points that extend to clause gadgets. If the interval used to cover qi does
not also cover pair si, then an extra interval will be needed in the covering; this
would be one interval too many. Therefore, we now see that variable gadgets
work the same way as in the unit interval version. This means that if any clause
would have evaluated to FALSE then at least n + 3m + 2 intervals would have
been needed. �
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Abstract. We present fully dynamic algorithms for maintaining
betweenness centrality (BC) of vertices in a directed graph G = (V, E)
with positive edge weights. BC is a widely used parameter in the analy-
sis of large complex networks. We achieve an amortized O(ν∗2 · log3 n)
time per update with our basic algorithm, and O(ν∗2 · log2 n) time with
a more complex algorithm, where n = |V |, and ν∗ bounds the number
of distinct edges that lie on shortest paths through any single vertex.
For graphs with ν∗ = O(n), our algorithms match the fully dynamic
all pairs shortest paths (APSP) bounds of Demetrescu and Italiano [8]
and Thorup [28] for unique shortest paths, where ν∗ = n − 1. Our first
algorithm also contains within it, a method and analysis for obtaining
fully dynamic APSP from a decremental algorithm, that differs from the
one in [8].

1 Introduction

Betweenness centrality (BC) is a widely-used measure in the analysis of large
complex networks, and is defined as follows. Given a directed graph G = (V,E)
with |V | = n, |E| = m and positive edge weights, let σxy denote the number of
shortest paths (SPs) from x to y in G, and σxy(v) the number of SPs from x to y

in G that pass through v, for each pair x, y ∈ V . Then, BC(v) =
∑

s �=v,t�=v
σst(v)

σst
.

The measure BC(v) is often used as an index that determines the relative
importance of v in G, and is computed for all v ∈ V . Some applications of
BC include analyzing social interaction networks [13], identifying lethality in
biological networks [20], and identifying key actors in terrorist networks [6,15]. In
the static case, the widely used algorithm by Brandes [5] runs in O(mn+n2 log n)
on weighted graphs. Several approximation algorithms are available: [1,24] for
static computation and, recently, [3,4] for dynamic computation. Heuristics for
dynamic betweenness centrality with good experimental performance are given
in [10,16,26], but none provably improve on Brandes. The only earlier exact
dynamic BC algorithms that provably improve on Brandes on some classes of
graphs are the recent separate incremental and decremental1 algorithms in [18,
19]. Table 1 contains a summary of these results.

This work was supported in part by NSF grants CCF-0830737 and CCF-1320675.
1 Incremental/decremental refer to the insertion/deletion of a vertex or edge; the cor-

responding weight changes that apply are weight decreases/increases, respectively.

c© Springer-Verlag Berlin Heidelberg 2015
K. Elbassioni and K. Makino (Eds.): ISAAC 2015, LNCS 9472, pp. 331–342, 2015.
DOI: 10.1007/978-3-662-48971-0 29
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In this paper, we present two results for fully dynamic exact betweenness
centrality: a basic algorithm that provably improves over Brandes for dense
graphs (where m is close to n2) with succinct single-source SP dags, and a faster
algorithm that is considerably more complicated.

Our techniques recompute the BC scores using certain data structures related
to shortest paths extensions (see Sect. 2), which are generalizations of similar
ones introduced by Demetrescu and Italiano in [8] for fully dynamic all pairs
shortest paths (APSP) (the DI method), where only one SP is maintained for
each pair of vertices. To compute BC, however, we need all the SPs for each pair
of vertices (all pairs all shortest paths – APASP). Our fully dynamic algorithms
build on our recent work (with Nasre) [19] on decremental APASP (the NPRdec
method), which generalizes the DI data structures to represent all of the multiple
SPs for every pair of vertices using a tuple-system (see Sect. 3.1 (A System of
Tuples)).

Table 1. Related results (DR stands for Directed and UN for Undirected)

Paper Year Time Weights Update type DR/UN Result

Brandes [5] 2001 O(mn) NO Static Alg. Both Exact

Brandes [5] 2001 O(mn + n2 log n) YES Static Alg. Both Exact

Geisberger et al. [9] 2007 Heuristic YES Static Alg. Both Approx.

Riondato et al. [24] 2014 depends on ε YES Static Alg. Both ε-Approx.

Semi Dynamic

Green et al. [10] 2012 O(mn) NO Edge Inc. Both Exact

Kas et al. [12] 2013 Heuristic YES Edge Inc. Both Exact

NPR [18] 2014 O(ν∗ · n) YES Vertex Inc. Both Exact

NPRdec [19] 2014 O(ν∗2 · log n) YES Vertex Dec. Both Exact

Bergamini et al. [4] 2015 depends on ε YES Batch (edges) Inc. Both ε-Approx.

Fully Dynamic

Lee et al. [16] 2012 Heuristic NO Edge Update UN Exact

Singh et al. [26] 2013 Heuristic NO Vertex Update UN Exact

Kourtellis+ [14] 2014 O(mn) NO Edge Update Both Exact

Bergamini et al. [3] 2015 depends on ε YES Batch (edges) UN ε-Approx.

This paper (Basic) 2015 O(ν∗2 · log3 n) YES Vertex Update Both Exact

This paper (ffd) 2015 O(ν∗2 · log2 n) YES Vertex Update Both Exact

Our Results. Let ν∗ be the maximum number of distinct edges that lie on short-
est paths through any given vertex in G; we assume ν∗ = Ω(n). Both of our BC
algorithms are obtained through fully dynamic all pairs all shortest paths. The
first APASP algorithm fully-dynamic matches the DI APSP bound (which
computes unique SPs) for graphs with ν∗ = O(n); fully-dynamic generalizes
DI, though it is somewhat different from DI even for unique SPs, and its analysis
is quite different from DI. The second APASP algorithm ffd is a generalization of
Thorup [28] (the Thorup method) for APASP and matches its bound for APSP
when ν∗ = O(n); the main challenge here is to generalize the ‘level graphs’ of
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Thorup to the case when SPs for a given vertex pair can be distributed across
multiple levels. Both APASP algorithms lead to fully dynamic BC algorithms as
follows:

Theorem 1. Let Σ be a sequence of Ω(n) fully dynamic vertex updates on a
directed n-node graph G = (V,E) with positive edge weights. Let ν∗ bound the
number of distinct edges that lie on shortest paths through any single vertex in
any of the updated graphs or their vertex induced subgraphs. Then, all BC scores
(and APASP) can be maintained in amortized time:

(1) O(ν∗2 · log3 n) per update with algorithm fully-dynamic,
(2) O(ν∗2 · log2 n) per update with algorithm ffd.

Discussion of the parameters m∗ and ν∗. Let m∗ be the number of distinct
edges in G that lie on shortest paths; ν∗, defined above, is the maximum number
of distinct edges on shortest paths through a single vertex. Clearly, ν∗ ≤ m∗ ≤ m.

– m∗ vs m: In many cases, m∗ � m: as noted in [11], in a complete graph
(m = Θ(n2)) where edge weights are chosen from a large class of probability
distributions, m∗ = O(n log n) with high probability.

– ν∗ vs m∗: Clearly, ν∗ = O(n) in any graph with only a constant number of
SPs between every pair of vertices. These graphs are called k-geodetic [23]
(when at most k SPs exists between two nodes), and are well studied in
graph theory [2,17,27]. In fact ν∗ = O(n) even in some graphs that have
an exponential number of SPs between some pairs of vertices. In contrast,
m∗ can be Θ(n2) even in some graphs with unique SPs, for example the
complete unweighted graph Kn.

Another type of graph with ν∗ � m∗ is one with large clusters of nodes (e.g.,
as described by the planted �-partition model [7,25]). Consider a graph H with
k clusters of size n/k (for some constant k ≥ 1) with δ < w(e) ≤ 2δ, for some
constant δ > 0, for each edge e in a cluster; between the clusters is a sparse
interconnect. Then m∗ = Ω(n2) but ν∗ = O(n).

For the above classes of graphs, both of our BC algorithms will run in amor-
tized Õ(n2) time per update (Õ hides polylog factors). More generally we have:

Theorem 2. Let Σ be a sequence of Ω(n) updates on graphs with O(n) distinct
edges on shortest paths through any single vertex in any vertex-induced subgraph.
Then, all BC scores (and APASP) can be maintained in amortized time O(n2 ·
log2 n) per update.

In this extended abstract, we present the key features of our results; details
and full proofs are on arXiv [21,22]. Our algorithms use ˜O(m ·ν∗) space, extend-
ing the ˜O(mn) result in DI for APSP. Brandes uses only linear space, but all
known dynamic algorithms require at least Ω(n2) space.

Overview of the Paper. In Sect. 2 we describe our fully dynamic BC algorithm
that uses the data structures maintained by our APASP algorithms. In Sect. 3 we
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review the NPRdec and DI algorithms. In Sect. 4 we describe our fully dynamic
approach, and in Sect. 5 we present our first algorithm fully-dynamic and
establish its amortized time bound of O(ν∗2 ·log3 n). In Sect. 6 we briefly describe
our faster algorithm ffd, and we conclude with Sect. 7.

2 The Fully Dynamic Betweenness Centrality Algorithm

The static Brandes algorithm [5] computes BC scores in a two phase process.
The first phase (implicitly) computes the SP out-dag for every source through
n applications of Dijkstra’s algorithm. The second phase uses an ‘accumulation’
technique that computes all BC scores using these SP dags in O(n · ν∗) time.

In our fully dynamic algorithm, we will leave the second phase unchanged.
For the first phase, we will use the approach in the incremental BC algorithm
in [18], which maintains the SP dags using a very simple and efficient incremen-
tal algorithm. For decremental and fully dynamic updates, the corresponding
dynamic APASP algorithms to maintain the SP dags are more involved. Neither
the decremental nor our new fully dynamic APASP algorithms maintain the
SP dags explicitly, instead they maintain data structures to update a collection
of tuples (see Sect. 3.1 (A System of Tuples)). We now describe a very simple
method to construct the SP dags from these data structures (this step is not
addressed in the decremental APASP algorithm in [19]).

For every vertex pair x, y, the following sets R∗(x, y), L∗(x, y) are maintained
in NPRdec, and in both of our fully dynamic algorithms (a restricted version of
these sets was introduced for APSP in DI) :

– R∗(x, y) contains all nodes y′ such that every shortest path x � y in G can be
extended with the edge (y, y′) to generate another shortest path x � y → y′.

– L∗(x, y) contains all nodes x′ such that every shortest path x � y in G can be
extended with the edge (x′, x) to generate another shortest path x′ → x � y.

These sets allow us to construct the SP dag for each source s using the
following algorithm build-dag. In our fully dynamic algorithms R∗ and L∗ will
be supersets of the exact collections of nodes defined above, but the check in
Step 3 will ensure that only the correct SP dag edges are included. The combined
sizes of these R∗ and L∗ sets is O(n · ν∗ · log n) in our fully dynamic algorithms,
hence the amortized time bound for the overall fully dynamic BC algorithm is
dominated by the time bound for fully dynamic APASP.

Algorithm 1. build-dag(G, s,w,D) (w is the weight function; D is the distance matrix)

1: for each t ∈ V do
2: for each u ∈ R∗(s, t) do
3: if D(s, t) + w(t, u) = D(s, u) then add the edge (t, u) to dag(s)
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3 Background

3.1 The NPR Decremental APASP Algorithm [19]

The decremental algorithm NPRdec for APASP builds on the key concept of a
locally shortest path (LSP) in a graph, introduced in the DI method [8]. A path
p in G is an LSP if the path p′ obtained by removing the first edge from p and
the path p′′ obtained by removing the last edge from p are both SPs in G. For
APASP, we need to maintain all shortest paths, and G can have an exponential
(in n) number of SPs. Thus the DI method is not feasible for APASP since
it maintains each SP (and LSP) separately. In order to succinctly maintain all
SPs and LSPs in a manner suitable for efficient decremental updates, NPRdec
developed the tuple-system described below.

A System of Tuples. Since a graph could have an exponential number of
shortest paths, NPRdec introduced the compact tuple-system described below.
Let w be the edge weight function in G, and let d(x, y) denote the shortest
path length from x to y. A tuple, τ = (xa, by), represents a set of paths in G,
all with the same weight, and all of which use the same first edge (x, a) and
the same last edge (b, y). If the paths in τ are LSPs, then τ is an LST (locally
shortest tuple), and the weight of every path in τ is w(x, a) + d(a, b) +w(b, y).
If d(x, y) = w(x, a) + d(a, b) + w(b, y), then τ is a shortest path tuple (ST).

A triple γ = (τ, wt, count) represents the tuple τ = (xa, by) that contains
count paths from x to y, each with weight wt. We use triples to succinctly store
all LSPs and SPs for each vertex pair in G. For x, y ∈ V , we define:

P (x, y) = {((xa, by), wt, count): (xa, by) is an LST from x to y in G}
P ∗(x, y) = {((xa, by), wt, count): (xa, by) is an ST from x to y in G}.

A left tuple (or �-tuple), τ� = (xa, y), represents the set of LSPs from x to y,
all of which use the same first edge (x, a). A right tuple (r-tuple) τr = (x, by)
is defined analogously. For a shortest path r-tuple τr = (x, by), L(τr) is the set
of vertices which can be used as pre-extensions to create LSTs in G, and for a
shortest path �-tuple τ� = (xa, y), R(τ�) is the set of vertices which can be used
as post-extensions to create LSTs in G. Hence:

L(x, by) = {x′ : (x′, x) ∈ E(G) and (x′x, by) is an LST in G}
R(xa, y) = {y′ : (y, y′) ∈ E(G) and (xa, yy′) is an LST in G}.

For x, y ∈ V , L∗(x, y) denotes the set of vertices which can be used as pre-
extensions to create shortest path tuples in G; R∗(x, y) is defined symmetrically:

L∗(x, y) = {x′ : (x′, x) ∈ E(G) and (x′x, y) is a �-tuple representing SPs in G}
R∗(x, y) = {y′ : (y, y′) ∈ E(G) and (x, yy′) is an r-tuple representing SPs in G}.

Data Structures. The NPRdec algorithm uses priority queues for P and P ∗,
and balanced search trees for L∗, L, R∗ and R, as well as for a set Marked-Tuples
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that is specific only to one update. It also uses priority queues Hc and Hf for
the cleanup and fixup procedures, respectively.

Lemma 1. [19] Let G = (V,E) be a directed graph with positive edge weights.
The number of LSTs (or triples) that contain a vertex v in G is O(ν∗2), and the
total number of LSTs (or triples) in G is bounded by O(m∗ · ν∗).

The NPRdec algorithm maintains all STs and LSTs in the current graph,
and for each tuple, it maintains the L, R, L∗ and R∗ sets. To execute a new
update to a vertex v, NPRdec (similar to DI) first calls an algorithm cleanup
on v which removes all STs and LSTs that contain v. This is followed by a
call to algorithm fixup on v which computes all STs and LSTs in the updated
graph that are not already present in the system. The overall algorithm update
consists of cleanup followed by fixup. If the updates are all decremental then
NPRdec maintains exactly all the SPs and LSPs in the graph in O(ν∗2 · log n)
amortized time per update. Several challenges to adapting the techniques in the
DI decremental method to the tuple-system are addressed in [19]. The analysis
of the amortized time bound is also more involved since with multiple shortest
paths it is possible for the dynamic APASP algorithm to examine a tuple and
merely change its count; in such a case, the DI proof method of charging the
cost of the examination to the new path added to or removed from the system
does not apply.

3.2 The DI Fully Dynamic APSP Algorithm [8]

The DI method first gives a decremental APSP algorithm, and shows that this is
also a correct, though inefficient, fully dynamic APSP algorithm. The inefficiency
arises because under incremental updates the method may maintain some old
SPs and their combinations that are not currently SPs or LSPs; such paths are
called historical shortest paths (HPs) and locally historical paths (LHPs). To
obtain an efficient fully dynamic algorithm, the DI method introduces ‘dummy
updates’ into the update sequence. A dummy update performs cleanup and fixup
on a vertex that was updated in the past. Using a strategically chosen sequence
of dummy updates, it is established in [8] that the resulting APSP algorithm runs
in amortized time O(n2 · log3 n) per real update. The DI method continues to
use the notation P ∗, L∗, etc., even though these are supersets of the defined sets
in a fully dynamic setting. We will do the same in our fully dynamic algorithms.

4 Overview of Our Fully Dynamic APASP Approach

A natural approach to obtain a fully dynamic APASP algorithm would be to
convert the NPRdec decremental APASP algorithm to an efficient fully dynamic
APASP algorithm by using dummy updates, similar to DI. There are two steps
in this process, and each has challenges (the second step is more challenging).

Step 1: Converting NPRdec to a correct (but inefficient) fully dynamic APASP
algorithm. Recall that the decremental APSP algorithm in DI stores old or ‘his-
torical’ SPs (i.e., HPs) in the P ∗ sets if it is used as a fully dynamic algorithm.
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Historical paths arise due to the following reason: When incremental updates are
interleaved with decremental ones, a path placed previously in a P ∗ may cease
to be an SP and become a historical SP (or HP) if a shorter path for the same
vertex pair is created by an incremental update. However, DI show that their
decremental algorithm remains correct if HPs remain in P ∗.

For the APASP case, the decremental NPRdec algorithm is not correct when
used with fully dynamic updates. To see this, let us extend the notion of historical
paths to historical tuples (HT and LHT) in the natural way. Using NPRdec, we
could have an HT τ in P ∗ which is no longer an ST, but is an LST. Now, if
additional paths are added to τ in the next update, then NPRdec will treat this
tuple as an LST and update its count in P but not in P ∗. If later, τ is restored as
an ST (through a decremental update), it will have an incorrect lower count in P ∗

which will not be detected (this can never happen in DI since it assumes unique
SPs). Additional issues occur in NPRdec that need to be addressed (see [21]).

Our first step in developing a fully dynamic APASP algorithm is to update
the NPRdec algorithm so that the resulting algorithm fully-update remains
correct under fully dynamic updates. This algorithm and its analysis are available
in [21]; the details are technical and are omitted here. Algorithm fully-update
matches the amortized bound in NPRdec for decremental updates while being
correct for fully dynamic updates. However, as with DI, it is inefficient as a fully
dynamic algorithm.

Lemma 2. Consider a sequence of r calls to fully-update on a graph with
n vertices. Let C be the maximum number of tuples in the tuple-system that
can contain a path through a given vertex, and let D be the maximum number of
tuples that can be in the tuple-system at any time. Then fully-update executes
the r updates in O((r · (n2 + C) + D) · log n) time.

Lemma 3. Suppose every HT in the tuple-system is an ST in one of z different
n-node graphs, and every LHT is formed from these HTs. Then,
1. The number of LHTs in G’s tuple-system is at most O(z · m · ν∗).
2. If all HTs that contain a given vertex u lie within z′ ≤ z of the z graphs, then

the number of LHTs that contain u is O((z + z′2) · ν∗2).

The proof of Lemma 2 adapts the NPRdec analysis to fully-update;
Lemma 3 follows from basic properties of the tuple-system (see [21] for both
proofs).

Step 2. Obtaining a good dummy sequence for efficient fully dynamic APASP.
The DI method uses ‘dummy updates’, where a vertex updated at time t is also
given a ‘dummy’ update at steps t + 2i, for each i > 0 (this update is performed
along with the real update at step t + 2i). The effect of a dummy update on a
vertex v is to remove any HP or LHP that contains v, thereby streamlining the
collection of paths maintained. Further, with unique SPs, each HP in P ∗(x, y) for
a given pair x, y will have a different weight. An O(log n) bound on the number
of HPs in a P ∗(x, y) is established in DI as follows. Let the current time step be
t, and consider an HP τ last updated at t′ < t. Let us denote the smallest i such
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that t′ + 2i > t as the dummy-index for τ . By observing that different HPs for
x, y must have different dummy-indices, it follows that their number is O(log t),
which is O(log n) since the data structure is reconstructed after O(n) updates.

If we try to apply the DI dummy sequence to APASP, we are faced with the
issue that a new ST for x, y (with the same weight) could be created at each
update in a long sequence of successive updates. Then, an incremental update
could transform all of these STs into HTs. If this happens, then several HTs for
x, y, all with the same weight, could have the same dummy-index (in DI only
one HP can be present for this entire collection due to unique SPs). Thus, the DI
approach of obtaining an O(log n) bound for the number of HPs for each vertex
pair does not work for HTs in our tuple-system.

Our method for Step 2 is to use a different dummy sequence, and a completely
different analysis that obtains an O(log n) bound for the number of different
‘PDGs’ (a PDG is a type of derived graph defined in Sect. 5) that can contain
the HTs. Our new dummy sequence is inspired by the ‘level graph’ method intro-
duced in Thorup [28] to improve the amortized bound for fully dynamic APSP to
O(n2·log2 n), saving a log factor over DI. The Thorup method is complex because
it maintains O(log n) levels of data structures for suitable ‘level graphs’. Our first
algorithm fully-dynamic does not maintain these level graphs (though our
second algorithm ffd does). Instead, fully-dynamic performs exactly like the
fully dynamic algorithm in DI, except that it uses this alternate dummy update
sequence, and it calls fully-update for APASP instead of the DI update algo-
rithm for APSP. Our change in the update sequence requires a completely new
proof of the amortized bound which we sketch in the next section (Sect. 5). We
consider this to be a contribution of independent interest: If we replace fully-
update by the DI update algorithm in fully-dynamic, we get a new fully
dynamic APSP algorithm which is as simple as DI, with a new analysis. The full
details of algorithm fully-dynamic are in [21].

In Sect. 6 we briefly describe the second algorithm ffd, which achieves an
O(log n) improvement over the amortized bound for fully-dynamic. This algo-
rithm overcomes some technical challenges in order to generalize the Thorup
method to APASP, and is considerably more complicated than fully-dynamic.

5 Algorithm fully-dynamic

Algorithm fully-dynamic applies fully-update (see Sect. 4, Step 1) to vertex
v with the new weight function w′ for the t-th update. Then it executes dummy
updates on a sequence N of the most recently updated vertices as specified in
Steps 2-5. The length of this sequence of vertices is determined by the position
k of the lsb set to 1 in the bit representation B = br−1 · · · b0 of t.

Let Gt be the graph after the t-th update, with G0 the initial graph. Thus,
G = Gt−1 in Algorithm 2, and the updated graph is Gt. For each i such that bi =
1, we let timet(i) be the earlier update step t′ whose bit representation matches
B in positions br−1 · · · bi and has zeros elsewhere. We define Prior-times(t) =
{timet(i) | bi = 1}. Note that |Prior-times(t)| = O(log t). The following lemma
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Algorithm 2. fully-dynamic(G, v,w′, t)
1: fully-update(v,w′)
2: k ← position of the least significant bit set in the representation br−1 · · · b0 of t
3: N ← set of vertices updated at steps t − 1, · · · , t − (2k − 1)
4: for each u ∈ N in decreasing order of update time do
5: fully-update(u,w′) (dummy updates)

follows from the fact that a vertex updated at t′ /∈ Prior-times(t) would have
been updated by a more recent dummy update (see [21] for the proof).

Lemma 4. For every vertex v in Gt, the step tv of the most recent update to v
is in Prior-times(t).

The Prior Deletion Graph (PDG). For t′ < t, let W be the set of vertices
that are updated in the interval of steps [t′ + 1, t]. We define the prior deletion
graph (PDG) Γt′,t as the induced subgraph of Gt′ on the vertex set V (Gt′)−W .
If t is the current update step, then we simply use Γt′ instead of Γt′,t.

We say that a path p is present in both Gt′ and Gt if no call to fully-update
is made on any vertex in p in the interval [t′ +1, t]. The following lemma follows
from a PDG Γt′,t being the result of applying a sequence of decremental updates
to Gt′ . Thus, an ST in Gt′ is an ST in Γt′,t if it is present in it.

Lemma 5. 1. If τ is an ST in Gt′ then τ continues to be an ST in every PDG
Γt′,t with t ≥ t′ in which τ is present.

2. For any t̂ ≥ t′, if τ is an ST in Gt̂ then τ is an ST in every PDG Γt′,t′′ ,
t′′ ≥ t̂, in which τ is present.

PDGs for Update t: We will associate with the current update step t, the set
of PDGs Γt′ , for t′ ∈ Prior-times(t). These PDGs are similar to the level graphs
maintained in Thorup, but we choose to give them a different name since we do
not maintain these graphs; we only use them here to analyze the performance
of our algorithm. We rebuild the tuple-system after 2n updates, so t ≤ 2n.

Lemma 6. Each HT in the tuple-system for Gt is an ST in at least one of the
Γt′,t for t′ ∈ Prior-times(t). Further z = O(log n) in Lemma 3 for Gt.

Proof. Consider an HT τ = (xa, by) in Gt. Let the most recently updated vertex
in τ be v, and let its update step be tv ≤ t. By definition of HT, τ is an ST in
some t′ in [tv, t], hence by Lemma 5, part 2, using t̂ = t′ = tv and t′′ = t, we
have τ an ST in Γtv . Further, by Lemma 4, tv ∈ Prior-times(t). Finally, since
|Prior-times(t)| = O(log t) = O(log n) for any t, z = O(log n) in Lemma 3. �

We will now use the above lemma to establish the amortized time bound.

Lemma 7. Algorithm 2 executes a sequence Σ of n real updates on an n-node
graph in O(ν∗2 · log3 n) amortized time per update.



340 M. Pontecorvi and V. Ramachandran

Proof. (Sketch) We apply Lemma 2. By Lemma 6 we have z = O(log n) in
Lemma 3, hence D = O(m · ν∗ · log n) in Lemma 2. Let C1 and C2 be the cost
of a cleanup for a real and dummy update, respectively. Then, we use z′ = z in
Lemma 3 for the real updates, so C1 = O(ν∗2 · log2 n).

It is readily seen that there are O(n log n) dummy updates performed during
the n real updates. At the real update step t, when a dummy update is performed
on vertex u (last updated at time tu), only PDGs Γt and Γtu contain u, hence
z′ = 2 in Lemma 3. Thus C2 = O(ν∗2 · log n). Hence, by Lemma 2, the total
time for the n real updates and n log n dummy updates is O( (n · (n2 + C1) +
n log n · (n2 + C2) + D) · log n) = O(n · ν∗2 · log3 n + m · ν∗ · log2 n). Since we
assume ν∗ = Ω(n), we have m = O(n · ν∗), and we obtain the desired amortized
cost for each of the n real updates. �

6 Algorithm ffd

We give a very brief overview of Algorithm ffd, deferring the details to [22].

Background. For unique SPs, Thorup uses a level system of decremental-only
graphs, with updates being insertion or deletion of a node with incident edges.
The PDGs in Sect. 5 are an abstract representation of the graphs maintained
in Thorup’s level system. Every path maintained by Thorup is an SP or LSP
in some level graph (i.e., PDG), and when a node is removed from the current
graph, it is also removed from every PDG that contains it. This saves a log factor
in the amortized time bound over the DI bound.

Algorithm ffd. In our algorithm ffd for fully dynamic APASP, we explicitly
maintain the PDGs of Sect. 5 using ‘local’ data structures (see [22] for a detailed
description of the structures). A level i PDG is active at time t if i is the lsb
set in some t′ ∈ Prior-times(t); we say level(t′) = i. Each path p in a tuple
is centered in level k = level(t′), where t′ is the most recent step in which p
entered the tuple system in a fixup step. Thus, the paths represented by a tuple
are spread across the active levels at which these paths are centered; this avoids
copying over all data structures each time a new level is activated, which would
be very expensive. To keep track of this distribution of paths, we associate an
O(log n)-size array Cγ with each tuple γ that stores the number of paths in γ
centered at each level.

We face several challenges when we try to extend the Thorup method to
APASP. Here we briefly describe a major challenge, which we call the partial
extension problem (PEP) (see [22] for a detailed example). This arises when a
collection of HTs for x, y are restored as STs due to a decremental update. A
tuple τ in this collection may have its correct extensions in the local structures
L∗

i and R∗
i in level i, but its extensions in a more recent level j may not be

in L∗
j and R∗

j if τ is not an ST in that level, and is instead an HT. Thus,
when the algorithm processes τ as an ST after the current decremental update,
it needs to generate the correct extensions in L∗

j and R∗
j since they are not

currently present in these sets, but to maintain efficiency, it should not try to
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generate extensions in L∗
i and R∗

i , since they are already present there. Neither
Thorup nor fully-dynamic need to distinguish between these two cases. In
fully-dynamic, algorithm fully-update (called in Steps 1 and 5) creates
LHTs by combining every pair of compatible HTs, hence these LHTs will always
be available in the corresponding tuple-system. This problem is not an issue in
Thorup either, due to the assumption of unique SPs: Thorup can afford to look
at all HPs, since there are only O(n2 · log n) of them. Algorithm ffd maintains
HTs (since it maintains APASP), and their number can be much larger.

In order to maintain both correctness and efficiency in the PEP scenario
for APASP, we introduce two new data structures: (1) the historical distance
matrices DL that allow us to efficiently determine the most recent level graph
in which an HT was an ST, and (2) data structures LN and RN that allow us
to efficiently identify exactly those new extensions that need to be performed.

7 Conclusion

We conclude with a possible avenue for improving the amortized bound. Instead
of the tuples we maintain in our tuple systems, we could have maintained left and
right tuples (see Sect. 3.1 (A System of Tuples)). This would reduce the space
usage from Õ(m · ν∗) to Õ(mn). This improved space bound is achievable with
Õ(ν∗2) amortized time (details omitted). The number of left or right tuples that
contain a given vertex is only Õ(n · ν∗), but the time bound does not improve
with our current method. Is there an improved method that achieves Õ(n · ν∗)
amortized time?
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Abstract. A team of k mobile robots is deployed on a weighted graph
whose edge weights represent distances. The robots perpetually move
along the domain, represented by all points belonging to the graph edges,
not exceeding their maximal speed. The robots need to patrol the graph
by regularly visiting all points of the domain. In this paper, we consider
a team of robots (patrolmen), at most f of which may be unreliable, i.e.
they fail to comply with their patrolling duties.

What algorithm should be followed so as to minimize the maximum
time between successive visits of every edge point by a reliable patrol-
men? The corresponding measure of efficiency of patrolling called idle-
ness has been widely accepted in the robotics literature. We extend it to
the case of untrusted patrolmen; we denote by �f

k(G) the maximum time
that a point of the domain may remain unvisited by reliable patrolmen.
The objective is to find patrolling strategies minimizing �f

k(G).
We investigate this problem for various classes of graphs. We design

optimal algorithms for line segments, which turn out to be surprisingly
different from strategies for related patrolling problems proposed in the
literature. We then use these results to study the case of general graphs.
For Eulerian graphs G, we give an optimal patrolling strategy with idle-
ness �f

k(G) = (f + 1)|E|/k, where |E| is the sum of the lengths of the
edges of G. Further, we show the hardness of the problem of computing
the idle time for three robots, at most one of which is faulty, by reduc-
tion from 3-edge-coloring of cubic graphs — a known NP-hard problem.
A byproduct of our proof is the investigation of classes of graphs mini-
mizing idle time (with respect to the total length of edges); an example of
such a class is known in the literature under the name of Kotzig graphs.
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1 Introduction

Patrolling occurs in many activities of everyday life whenever it is required to
monitor a specific region, for example, the perimeter of a piece of land or a
building, so as to investigate a feature of interest for purposes of surveillance.
Typically, in such a setting patrolmen are assigned to monitor specified regions
by moving perpetually at regular intervals through areas assigned to them.

In this paper, we are interested in patrolling when some of the patrolmen
may be unreliable (faulty) in that they fail to report their monitoring activities.
More specifically, we model and study the following problem: We are given a
team of robot patrolmen and a domain to be monitored. Assume that some
of the patrolmen may be unreliable. We want to design a strategy constructing
perpetual patrolmen trajectories, so that, independently of which subset of them
(of a given size) will turn out to be faulty, no point of the environment will ever
be left unvisited by some reliable robot longer than the allowed idle time.

Preliminaries and Notation. We are given a connected topological graph
G = (V,E) with V being its set of vertices and E its set of edges. In the sequel
we define several useful concepts.

The Jordan arc representing each edge e ∈ E of the graph G = (V,E)
is modeled as a smooth continuous and rectifiable curve of arbitrary positive
length represented by its edge weight w(e). We may suppose that the graph is
embedded in 3D space, with no edge crossings. By |E| we denote the sum of the
lengths of the edges of G.

At any time a robot may occupy any point belonging to edge e (so the sum
of its distances from both endpoints of e sums up to w(e)). We denote by DG the
domain (the union of edges) along which the robots walk. We assume a continu-
ous traversal model, whereby the movement of the i-th robot within DG follows
a continuous function of time πi : [0,∞) → DG, for each i = 1, 2, . . . , k. Hence,
πi(t) denotes the position in DG of the i-th robot at time t. Each robot may
move in any direction along an edge not exceeding the maximum (unit) speed so
within time interval [t1, t2] each robot may travel a distance of at most t2 − t1.
We also suppose that when walking at maximum speed, a robot travels the unit
distance in unit time, so that time and distance travelled are commensurable.
By patrolling strategy we understand the set P = {π1, π2, . . . , πk} of infinite tra-
jectories of k robots in DG, where πi(t) is the point of DG occupied by the i-th
robot at time t.

The performance of the patrolling strategy is evaluated by using a measure of
idleness, widely used in robotics literature. Suppose that we design the patrolling
strategy P = {π1, π2, . . . , πk} for k robots moving in the domain of a geometric
graph G when each robot is reliable. Then the idleness of strategy P for graph
G (or its idle time), denoted by �f

k(G,P) is the supremum of the lengths of time
intervals between two consecutive visits to the same point of DG (supremum
taken over time and all points of DG). When up to f robots may be faulty,
we assume that the adversary, knowing our strategy, may choose a set F of f
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faulty robots, a point p of the domain and a time moment t ≥ 0. The idleness
of the strategy is the supremum (taken over all such adversarial choices) of time
intervals T such that point p is not visited during the time interval [t, t + T ] by
any reliable robot. Finally, the idleness of a graph G for k robots, at most f of
which may be faulty, is denoted by �f

k(G) := infP �f
k(G,P). Hence �f

k(G) is the
lower bound of idleness over all possible patrolling strategies. When there are no
faulty robots (i.e., f = 0) we use the notation �k(G,P) := �0

k(G,P).
Consider a walk of a robot within the segment, which starts at one of its

endpoints, walks to the other endpoint and returns to the initial one. Such a
cyclic path around the segment has length equal to twice its size. By an Eulerian
tour of the segment by r robots we mean a perpetual movement of these robots,
which are equally spaced around such a cyclic path, and walking in the same
cyclic direction with the same speed. By CPT (G) we denote the length of a
Chinese Postman Tour on the graph G.

Related Work. Patrolling has been defined as the act of surveillance consisting
in walking perpetually around an area in order to protect or supervise it. It is
useful in monitoring and locating objects or humans that need to be rescued
from a disaster, in ecological monitoring or detecting intrusion. Network admin-
istrators may use mobile agent patrols to detect network failures or to discover
web pages which need to be indexed by search engines, cf. [22]. Patrolling has
been recently intensively studied in robotics (cf. [6,13,14,17,22,30]) where it is
often viewed as a version of terrain coverage, a central task in robotics.

Boundary and area patrolling have been studied in [1,13,14,26] with
approaches placing more emphasis on experimental results. The accepted mea-
sure of the algorithmic efficiency of patrolling is called idleness and it is related
to the frequency with which the points of the environment are visited (cf.
[6,13,14,22]); this criterion was first introduced in [22]. Depending on the
requirements, idleness may sometimes be viewed as the average [13], worst-case
[30], probabilistic [1] or experimentally verified [22] time elapsed since the last
visit of a node (cf. also [6]). In some papers the terms of blanket time [30] or
refresh time [26] have been used instead.

A survey of diverse approaches to patrolling based on the idleness criteria
can be found in [27]. In [3–5] patrolling is studied as a game between patrollers
and the intruder. Some papers consider the patrolling problem based on swarm
or ant-based algorithms [15,24,30]. In these approaches robots are memoryless
(or having small memory), decentralized [24] with no explicit communication
permitted either with other robots or the central station, with local sensing
capabilities (e.g., [15]). Ant-like algorithms usually mark the visited nodes of
the graph. [30] presents an evolutionary process and shows that a team of mem-
oryless robots, by leaving marks at the nodes while walking through them, after
relatively short time stabilizes to the patrolling scheme in which the frequency
of the traversed edges is uniform to a factor of two (i.e., the number of traversals
of the most often visited edge is at most twice the number of traversals of the
least visited one).
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A theoretical analysis of approaches to patrolling in graph-based models can
be found in [6]. The two basic methods are referred to as cyclic strategies, where
a single cycle spanning the entire graph is constructed with the robots assigned
to consecutively traverse this cycle in the same direction, and as partition-based
strategies, where the region is split into a number of either disjoint or overlapping
portions to be patrolled by subsets of robots assigned to these regions. The
environment and the time considered in the models studied are usually discrete
in an underlying graph environment. In [26], polynomial-time patrolling solutions
for lines and trees are proposed. For the case of cyclic graphs, [26] proves the
NP-hardness of the problem and a constant-factor approximation is proposed.

Patrolling with robots that do not necessarily have identical speeds has been
initiated in [9]. As shown in [12,20] it offers several surprises both in terms of the
difficulty of the problem as well as in terms of the algorithmic results obtained.
In particular, no optimal patrolling strategy involving more than three robots
has yet been proposed.

Fault tolerance related to mobile robots has been considered for several prob-
lems in distributed computing with failures occurring either to the environment
(nodes or links) or to the robots themselves. The cases of faulty robots were often
studied for the robot gathering problem under various assumptions of faults
(crash and Byzantine), e.g., [2,10,11]. Other studies concerned the problem of
convergence, e.g. [7], flocking, e.g., [29] and many other ones. Several papers, e.g.,
[8,19,28] concerned unreliable or inaccurate robot sensing devices, rather than
the robots themselves. Experimental papers related to unreliable robots per-
forming patrolling were considered in the robotics literature [13,14,17,23]. To
the best of our knowledge, the theoretical study, considered in our paper, con-
cerning optimally patrolling a connected graph in the presence of faulty robots
has not been investigated in the past.

Outline and Results of the Paper. In Sect. 2, we provide optimal patrolling
strategies for line segments. These non-intuitive strategies rely on a decomposi-
tion of the set of robots into three groups with different patrolling tours, in a
way dependent on k and f . Next we employ these results in Sect. 3 as building
blocks to provide strategies for general graphs. In particular, for any Eulerian
graph G we show that the idleness satisfies �f

k(G) = (f + 1)|E|/k. In Sect. 3.2,
we analyze the hardness of the problem of computing the idle time on a specific
class of graphs (derived from the class of Kotzig graphs) by showing that if the
idle time could be computed optimally then we could solve 3-edge-coloring of
cubic graphs, a well known NP-hard problem (see [16]). Finally, in Sect. 4 we
conclude with a summary of our results and mention additional work and various
related open problems. All missing proofs can be found in the full paper.

2 Idleness of Line Segments

In this section we study exclusively the idleness of the line segment and provide
upper and lower bounds for idleness. Without loss of generality we assume that
we have to patrol the unit-length segment, represented by the interval I = [0, 1].
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However, the results can be easily reformulated for segments of any given length.
Throughout the main part of this section we assume that most of the robots are
reliable, more precisely that f < k−2

2 . We first give a patrolling strategy and
analyze its performance. Then we analyze the lower bound for segment idleness
showing that our strategy is optimal for odd f and almost optimal for even f .

2.1 The Upper Bound

The idea of the strategy is the following. We partition the segment I into three
subsegments IL (left), IR (right), and IM (middle), where IM does not contain
any endpoint of I. Two subsets of robots will follow Eulerian tours of IL and IR
and the remaining robots are assigned to do the Eulerian tour of the entire I.
We show that by choosing sizes of the segments of the partition as well as the
number of robots assigned to each Eulerian tour we obtain an efficient strategy.
We have the following theorem:

Theorem 1. Consider k robots patrolling segment I = [0, 1], with at most f of
them faulty where k > 2 and f < k

2 − 1. There exists a patrolling strategy P of
I whose idleness satisfies �f

k(I,P) ≤ 2�f/2�+2
k−2�f/2�

Proof. First we give explicitly the patrolling strategy.

1. Decompose the unit interval I into three segments IL, IM and IR with pair-
wise disjoint interiors:

IL :=
[

0, �f/2�
k−2�f/2�

]

, IM :=
[

�f/2�
k−2�f/2� , 1 − �f/2�

k−2�f/2�

]

, IR :=
[

1 − �f/2�
k−2�f/2� , 1

]

2. For each of the segments IL, IR assign �f/2	 equally spaced robots to perform
an Eulerian tour of this segment.

3. The remaining k − 2 �f/2	 robots perform an Eulerian tour of the entire
segment I. These robots are also equally spaced around I.

Observe first that the subsegments IL, IR, IM are well defined. Indeed, as f
is an integer f < k

2 −1 implies f ≤ k−3
2 . Hence 2 �f/2	 ≤ f +1 ≤ k−3

2 +1 = k−1
2 .

However, for any integer k > 2 we have k−1
2 ≤ k−2 which implies 2 �f/2	 ≤ k−2,

so the denominator of the fractions in the definitions of the segments IL, IM , IR
is not zero. Moreover, the point 1/2 belongs to IM , hence all these segments are
well defined.

Denote by SL (respectively SR, SI) the set of robots executing an Eulerian
tour of IL (respectively IR, I). Observe that the distance d between two con-
secutive robots of SI , computed around this Eulerian tour, equals d = 2

k−2�f/2� .
We now prove the correctness of the upper bound on the idleness of any point
p ∈ I. We consider two cases: when p belongs to an extremal subsegment IL or
IR and when p is in the middle segment IM .

Case 1: Point p is in extremal subsegment (by symmetry we may assume
without loss of generality that p ∈ IL). Suppose first that at least one robot
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ri ∈ SL is not faulty. Then ri revisits every point of IL at time intervals of at
most 2|IL|. Hence the idleness of p ∈ IL (maximized at endpoints of IL) is bound
by �f

k(I,P) ≤ 2|IL| = 2�f/2�
k−2�f/2� < 2�f/2�+2

k−2�f/2� When all �f/2	 robots of SL are
faulty, the idle time is maximized for p = 0, while the adversary chooses the
remaining 
f/2� faulty robots to form a stream of consecutive robots of SM .
Then the time between visits of point p = 0 by two reliable robots (i.e. one
preceding and one following such a stream) equals d(
f/2� + 1) and we have

�f
k(I,P) ≤ d(
f/2� + 1) =

2(
f/2� + 1)
k − 2 �f/2	 (1)

again verifying the claim of the theorem. The argument is entirely symmetric
when p ∈ IR and is therefore omitted.

Case 2: p ∈ IM . The visits to this point are made exclusively by the robots
from SI . Point p is being visited by two streams of robots executing the Eulerian
tour of I, one walking over p from left to right and the other one from right to left
(clearly, in the Eulerian cycle the robots are moving in the same direction, but
from the “point of view of the point p” the traversal is in opposite directions).
Each of these streams may have several faulty robots, and the idle time at p
depends on the distance between the two reliable robots starting and ending
such faulty streams.

Consider first the case when the two faulty-robots streams, visiting p at the
same time, are disjoint, i.e. separated by at least one reliable robot (cf. Fig. 1 (a),
where ◦ denotes a reliable robot and • a faulty robot).

p x

z

yz

IM 0

y

zy

IM

IL

t1

t2

f/2
k−2 f/2

(a) (b)

Fig. 1. Illustration of the patrolling strategy for a point p on the central part of the
line segment.

To maximize the time while point p remains unvisited by reliable robots, the
adversary has to make faulty two sequences of consecutive robots (i.e. those
belonging to both left-to-right and right-to-left streams) arriving at p at the
same time. The idle time is then determined by the length of the shorter of
the two sequences of consecutive faulty robots, which in the worst-case contains

f/2� robots. Then the claim of the theorem is again satisfied by Eq. (1).

Consider now the case when there is a single faulty-robot stream visiting
p in both directions (see Fig. 1 (b) which depicts a time moment t when this
happens). In the worst case this stream may contain f robots. Let t1 be the



When Patrolmen Become Corrupted: Monitoring a Graph 349

time since the last visit of p by a reliable robot y and t2 - the time when the
next reliable robot z visits p. As x > |IL| = �f/2�

k−2�f/2� and all robots present
within IL at time t are faulty, as well as the distance between y and z around
the Eulerian cycle is at most d(f + 1), we have

�f
k(I,P) = t1 + t2 ≤ d(f + 1) − 2|IL| =

2(f + 1)

k − 2 �f/2� − 2 �f/2�
k − 2 �f/2� =

2 �f/2� + 2

k − 2 �f/2� .

This completes the proof of Theorem 1. �

2.2 The Lower Bound

We first show the following lemma, which applies for general graphs.

Lemma 1. Consider a patrolling strategy P of graph G. Let E′ be a subset
of segments of edges of G, such that starting from some time moment of the
strategy, in the union of the interiors of all elements of E′ there are always at
most r robots. Then �f

k(I,P) ≥ (f+1)|E′|
r , where |E′| denotes the sum of lengths

of segments of E′.

The next theorem proves that the patrolling strategy from the previous
section is optimal for odd f and almost optimal for even f .

Theorem 2. For any k and f such that f < k/2 − 1 we have �f
k(I) ≥ f+1

k−f−1 .

Proof. Partition the unit interval into the following three segments

IL :=

[
0,

f + 1

2(k − f − 1)

]
, IM :=

(
f + 1

2(k − f − 1)
, 1 − f + 1

2(k − f − 1)

)
, IR :=

[
1 − f + 1

2(k − f − 1)
, 1

]
.

By the condition f < k/2 − 1 in the hypothesis of the theorem the three
sub-segments should not have a non-trivial overlap. Before proving the theorem
we derive a crucial claim.

Claim. If �f
k(I) < f+1

k−f−1 then at each time moment during the patrolling there
must be at least f + 1 robots in each of the segments IL and IR.

By symmetry it is sufficient to prove this claim for the segment IL. Suppose
that �f

k(I) < f+1
k−f−1 and assume on the contrary that at some time, say t0,

we have at most f robots in the segment IL. If an adversary makes all of these
robots faulty then it would follow that no reliable robot could visit the endpoint
0 during the entire time interval [t0−|IL|, t0+|IL|], where |IL| denotes the length
of the interval IL. Therefore the idle time at the endpoint 0 would be larger than
2|IL| = f+1

k−f−1 , which contradicts the hypothesis of the claim.
From the Claim above we see that at all times each of the two intervals IL and

IR contains at least f +1 robots. Since at each time moment at least 2f +2 robots
must be visiting IL, IR, the open interval IM must always contain at most k−2f−2
robots. Applying Lemma 1 to the set E′ consisting of the segment IM , since |IM | =

(1 − f+1
k−f−1 ) we have �f

k(I) ≥ (f+1)|IM |
(k−2f−2) =

(f+1)(1− f+1
k−f−1 )

(k−2f−2) = f+1
k−f−1 . �
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3 Idleness of Arbitrary Graphs

In this section we study upper and lower bounds for patrolling times on general
graphs. First we prove a theorem associating the patrolling time to the length
of a Chinese Postman Tour on the graph. Next we use the results in Sect. 2
concerning line segments so as to determine asymptotic bounds on the patrolling
time for arbitrary graphs. The efficiency of the proposed strategy is arbitrarily
close to the optimal one when k is sufficiently large.

3.1 A General Result and Algorithm

First we prove the following theorem and approximation patrolling strategy on
arbitrary graphs.

Theorem 3. For any connected graph G, and k ≥ 2 robots, at most f of which
are faulty, (f ≤ k − 1), we have that (f+1)|E|

k ≤ �f
k(G) ≤ (f+1)CPT (G)

k .

Proof. The upper bound is implied from the following patrolling algorithm:

1. Select any Chinese Postman Tour of G.
2. Have the robots patrol the graph by placing them equidistant along the Chi-

nese Postman Tour.

It is clear that the respective distances between consecutive robots will be
CPT (G)

k . The worst case idle time occurs when we have f consecutive faulty
robots. In this case the resulting idle time will never exceed (f+1)CPT (G)

k , which
proves the upper bound.

The lower bound follows directly from Lemma 1 applied to E′ being the set
of all edges of G. �

As a corollary of Theorem 3 we obtain the following tight (and simple) expres-
sion for the value of the idleness for Eulerian graphs.

Corollary 1 (Idleness for Connected Eulerian Graphs). For any con-
nected Eulerian graph G, and k ≥ 2 robots, at most f of which are faulty
(f ≤ k − 1), we have that �f

k(G) = (f+1)|E|
k .

The claim is immediate since in this case |E| = CPT (G).

3.2 Hardness of Computing the Idleness

To show the hardness of our problem in general graphs, we restrict ourselves to
the special case of k = 3 robots with exactly f = 1 fault. We will now prove
that the problem of computing the idleness �1

3(G) is NP-hard for general graphs
with unit-length edges. The proof proceeds by reduction from 3-Edge-Coloring
in Cubic Graphs (3ECC), a well-known NP-complete problem (see [18]).

First we show the following auxiliary result which partially characterizes
graphs having minimum possible idleness �1

3 with respect to the total length of
their edges. For a graph H = (V,E) and E′ ⊆ E, denote by H[E′] ⊆ H the
connected subgraph of H with edge set E′.
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Lemma 2. Let H = (V,E) be a graph with unit-length edges.

(i) If �1
3(H) = 2

3E(H), then there exists a partition of the edge set E = E1 ∪
E2 ∪ E3 such that each of the graphs H[E \ Ei], 1 ≤ i ≤ 3, is semi-Eulerian
(i.e., connected and with at most two vertices of odd degree).

(ii) Conversely, if there exist a decomposition of the edge set: E = E1 ∪E2 ∪E3,
such that |E1| = |E2| = |E3| = 1

3E(H) and each of the graphs H[E \ Ei],
1 ≤ i ≤ 3, is Eulerian, then �1

3(H) = 2
3E(H).

We use Lemma 2 to show the following theorem.

Theorem 4 (Hardness of Computing the Idleness). It is NP-hard to
decide whether for a given graph H with unit-length edges we have �1

3(H) =
2
3E(H).

The above theorem shows that the problem of computing the optimal
idle time for patrolling with unreliable robots is NP-hard in general. For an
unbounded number of robots k (i.e., when k is treated as part of the input) and
graphs with edges of integer length, the decision problem belongs to PSPACE,
but we do not know whether it belongs to NP. We leave this as an open problem.

3.3 Characterizing Graphs with Minimum Idle Time

We close this section by considering some properties which hold for graphs with
small idle time in fault-tolerant patrolling, and giving examples of classes of such
graphs.

For the case of 3 robots, some classes of graphs minimizing idle time �1
3 (with

respect to the total length of edges) are given by Lemma 2. An example of such
a class is known in the literature under the name of Kotzig graphs [21]. A graph
is Kotzig if it is 3-regular and admits a decomposition into three matchings
M1,M2,M3 such that E = M1 ∪ M2 ∪ M3 and for each pair i �= j, the union
Mi∪Mj forms a Hamiltonian cycle of the graph. By Lemma2(ii), we immediately
obtain that Kotzig graphs have the minimum possible idleness �1

3 in the class
of cubic graphs, i.e., �1

3 = 2
3E = 2

3 · 3
2n = n. Interestingly, this idleness �1

3 is
also best possible in the sense that we cannot obtain better idle time if we know
beforehand which of the three robots is faulty, and attempt to solve the problem
only for two non-faulty robots: for Kotzig graphs, we have �0

2 = CPT
2 = 2n

2 = n.

Corollary 2 (Idleness of Kotzig Graphs). �1
3(G) = �0

2(G) = n, for n-
vertex Kotzig graphs G.

We remark that we do not know of a complete structural characterization
of all graphs having minimum idleness �1

3 = 2
3E. The characterization from

Lemma 2 is only partial, and the distinction between semi-Eulerian and Eulerian
graphs in claims (i) and (ii) of the Lemma 2 is important. For example, when
the patrolled graph is a cycle with 3 unit-length edges, we have �1

3 = 2
3E = 2,

whereas this graph does not admit a decomposition E = E1 ∪ E2 ∪ E3 into non-
empty sets E1, E2, E3 such that each of the graphs induced by E \Ei is Eulerian.
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On the other hand, when the patrolled graph is a star with 3 unit-length edges,
this graph admits a decomposition E = E1 ∪E2 ∪E3 into single edges such that
each of the graphs induced by E \ Ei is semi-Eulerian, but this graph does not
minimize idle time: by Theorem 3, �1

3 ≥ CPT
2 = 3 > 2

3E.
Variants of Lemma 2 can also be obtained for a larger number of robots. For

k even, classes of graphs having minimum possible idle time �1
k = 2

kE include
Hamiltonian Decomposable Graphs, i.e., k-regular graphs whose edge set can be
partitioned into k/2 edge-disjoint Hamiltonian cycles [25].

4 Conclusion and Open Problems

We gave optimal fault-tolerant patrolling strategy for segments (for odd f) and
Eulerian graphs. In all proposed strategies the collection of patrolmen is divided
into sub-collections, each of the sub-collections, forming a “cycle” of equally
spaced robots walking around a portion of the graph (with some portions being
covered by more than one sub-collection). Somewhat surprisingly, for a graph
as simple as a segment, the optimal strategy consists of two sub-collections
patrolling small sub-segments and the third sub-collection patrolling the entire
segment (hence the points close to the endpoints being visited by the robots
belonging to two sub-collections). We also proved that for some graphs finding
an optimal patrolling strategy is NP-hard.

While optimal strategies for Eulerian graphs work for any ratio of faulty
patrolmen, the strategies for segments assume the maximal faulty robots ratio
to be slightly smaller than half the total of all robots. One open question is to give
optimal patrolling strategies for segments when the faulty robot ratio is high.
There are plenty of open questions concerning different models of patrolling:
robot failures may be dynamic, failures may happen with given probability,
robots may have non-zero visibility radii, or may be allowed to communicate.
Some questions, like robots with distinct patrolling speeds and two-dimensional
domains may be hard.
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shop” held on July 16–20, 2012, in Vancouver, BC, Canada. The authors would like to
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29. Yang, Y., Souissi, S., Défago, X., Takizawa, M.: Fault-tolerant flocking for a group
of autonomous mobile robots. J. Syst. Softw. 84(1), 29–36 (2011)

30. Yanovski, V., Wagner, I.A., Bruckstein, A.M.: A distributed ant algorithm for
efficiently patrolling a network. Algorithmica 37(3), 165–186 (2003)



Cops and Robbers on String Graphs
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Abstract. The game of cops and robber, introduced by Nowakowski
and Winkler in 1983, is played by two players on a graph. One controls k
cops and the other a robber. The players alternate and move their pieces
to the distance at most one. The cops win if they capture the robber,
the robber wins by escaping indefinitely. The cop number of G is the
smallest k such that k cops win the game.

We extend the results of Gavenčiak et al. [ISAAC 2013], investigating
the maximum cop number of geometric intersection graphs. Our main
result shows that the maximum cop number of string graphs is at most
15, improving the previous bound 30. We generalize this approach to
string graphs on a surface of genus g to show that the maximum cop
number is at most 10g + 15, which strengthens the result of Quilliot
[J. Combin. Theory Ser. B 38, 89–92 (1985)]. For outer string graphs,
we show that the maximum cop number is between 3 and 4. Our results
also imply polynomial-time algorithms determining the cop number for
all these graph classes.

1 Introduction

The Cops and Robber game on graphs has been introduced by Winkler and
Nowakowski [12] and independently by Quilliot [14]. In this paper, we investigate
this game on the classes of geometric intersection graphs.

Rules of the Game. In this game two players alternate their moves. The first
player (called “the cops”) places k cops on the vertices of a graph G. Then the
second player (called “the robber”) chooses a vertex for the robber. Then the
players alternate. In the cops’ move, every cop either stays in its vertex or moves
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to one of its neighbors. More cops may occupy the same vertex. In the robber’s
move, the robber either stays in its vertex, or goes to a neighboring vertex.

The game ends when the robber is captured which happens when a cop
occupies the same vertex as the robber. The cops wins if he is able to capture
the robber. The robber wins if he is able to escape indefinitely.

Definition 1.1. For a graph G, its cop number cn(G) is the least number k
such that the cops have a winning strategy on G with k cops. For a class of
graphs C, the maximum cop number max-cn(C) is the maximum cop number
cn(G) of a connected graph G ∈ C, possibly +∞.

The restriction to connected graphs is standard. The reason is that if G has
connected components C1, . . . , Ck, then cn(G) =

∑k
i=1 cn(Ci).

Known Results. Graphs of the cop number one were characterized already
by Quilliot [14]. These are the graphs whose vertices can be linearly ordered
v1, v2, . . . , vn so that each vi for i ≥ 2 is a corner of G[v1, . . . , vi], i.e., vi has a
neighbor vj for some j < i such that vj is adjacent to all other neighbors of vi.

For k part of the input, deciding whether the cop number of a graph is
at most k has been shown to be NP-hard (2010) [4], PSPACE-hard (2013) [10]
and very recently (2015) even EXPTIME-complete [8], confirming a conjecture
of Goldstein and Reingold (1995) [7]. In order to test whether k cops suffice to
capture the robber on an n-vertex graph, we can search the game graph which
has O(nk+1) vertices to find a winning strategy for cops. In particular, if k is a
fixed constant, this algorithm runs in polynomial time.

For general graphs on n vertices, it is known that at least
√

n cops may
be needed (e.g., for the incidence graph of a finite projective plane). Meyniel’s
conjecture states that the cop number of a connected n-vertex graph is O(

√
n).

For more details and results, see the recent book [2].

Geometrically Represented Graphs. Figure 1 shows that the geometry of a
graph class heavily influences the maximum cop number. For planar graphs, the
classical result of Aigner and Fromme [1] shows that the maximum cop number
is 3. This result was generalized to graphs of bounded genus by Quilliot [14]
and improved by Schroeder [15]. However, while for planar graphs (genus 0) the
maximum cop number is equal 3, already for toroidal graphs (genus 1) the exact
value is not known.

We study intersection representations in which a graph G is represented
by a map ϕ : V → 2X for some ground set X such that the edges of G are
described by the intersections: uv ∈ E ⇐⇒ ϕ(u) ∩ ϕ(v) 
= ∅. The ground set
X and the images of ϕ are usually somehow restricted to get particular classes
of intersection graphs. For example, the well-known interval graphs have X = R

and every ϕ(v) a closed interval.
All of these classes admit large cliques, so their genus is unbounded and the

above bound of the maximum cop number does not apply. On the other hand
existence of large cliques does not imply big maximum cop number since only
one cop can guard a maximal clique. It was shown by Gavenčiak et al. [6] that for
most of these intersection graph classes, the maximum cop-number is bounded.
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Fig. 1. The Hasse diagram of inclusions between important classes of geometrically
represented graphs with known bounds on the maximum cop number. The bounds
presented in this paper are in gray.

In particular, it is shown in [6] that the maximum cop number of string graphs
is at most 30. The class of string graphs (STRING) is the class of intersection
graphs of strings: X = R

2 and every ϕ(v) is required to be a finite curve that is a
continuous image of the interval [0, 1] in R

2. It is known that every intersection
graph of arc-connected sets in the plane (i.e., connected regions bounded by
closed simple Jordan curves) is a string graph, so the above bound applies to
most classes of intersection graphs in the plane. For instance, boxicity k graphs
(k-BOX) are intersection graphs of k-dimensional intervals in R

k and they are
string graphs for k ≤ 2.

Let S be an arbitrary surface of genus g. We consider a generalization of string
graphs for X = S, and we denote this class by g-STRING. It is known that every
graph embeddable to a genus g can be represented by a contact representation
of disks on a suitable Riemann surface of genus g; so GENUSg�g-STRING. The
class of outer-string graphs (OUTER-STRING) consists of all string graphs having
string representations with each string in the upper half-plane, intersecting the
x-axis in exactly one point, which is an endpoint of this string.

Theorem 1.2. We show the following bounds for the maximum cop number:

(i) 3 ≤ max-cn(OUTER-STRING) ≤ 4.
(ii) 3 ≤ max-cn(STRING) ≤ 15.
(iii) 3 ≤ max-cn(g-STRING) ≤ 10g + 15.

We note that the strategies of cops in all upper bounds are geometric
and their description is constructive, using an intersection representation of G.
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If only the graph G is given, we cannot generally construct these representations
efficiently since recognition is NP-complete [9] for string graphs and open for the
other classes. Nevertheless, since the state space of the game has O(nk+1) states
and the number of cops k is bounded by a constant, we can use the standard
exhaustive game space searching algorithm to obtain the following:

Corollary 1.3. There are polynomial-time algorithms computing the cop num-
ber and an optimal strategy for the cops for any outer-string graph, string graph
and a string graph on a surface of a fixed genus g.

Furthermore, our results can be used as a polynomial-time heuristic to prove
that a given graph G is not, say, a string graph, by showing that cn(G) > 15.
For instance, a graph G of girth 5 and the minimum degree at least 16 is not a
string graph since cn(G) > 15: in any position of 15 cops with the robber on v,
at least one neighbor of v is non-adjacent to the cops.

Definitions. Let G = (V,E) be a graph. For a vertex v, we use the open
neighborhood N(v) = {u : uv ∈ E} and the closed neighborhood N [v] = N(v) ∪
{v}. Similarly for V ′ ⊆ V , we put N [V ′] =

⋃

v∈V ′ N [v] and N(V ′) = N [V ′] \
V ′. For V ′ ⊆ V , we denote by G|V ′ the subgraph of G induced by V ′. For
assumptions for string representations, see the full version.

2 Outer-String Graphs

In this section, we prove that the maximum cop number of outer string graphs
is between 3 and 4, thus establishing Theorem1.2(i).

Proof (Theorem 1.2(i), sketch). Figure 2 shows a connected outer string graph
requiring three cops. It remains to show the four cops are always sufficient.

Fig. 2. The 3-by-5 toroidal grid G and one of its outer-string representations. Clearly
cn(G) = 3.

We quickly sketch the strategy using Fig. 3, for the details, see the full version.
Two cops are called guards and in each phase they guard two strings si and sj
such that the robber is confined under them. Two other cops called hunters
travel along strings p0, . . . , pk covering the top of the confined area, always one
is on pi and the other on pi+1. When the robber is confined under pi and pi+1,
the guards move to pi and pi+1 and the next phase begins. ��
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si

Gij

sj
p0 p1 pk. . .

Fig. 3. An overview of the strategy.

3 Guarding Shortest Paths and Curves in String Graphs

Shortest Paths. We recall a lemma by Aigner and Fromme [1] giving us a
strategy to prevent the robber to enter any given shortest path using only one
cop in general graphs.

Lemma 3.1 ([1], Lemma 4). Let P = {u = p0, p1, . . . , pk = v} be any shortest
u − v path. Then a single cop C can, after a finite number of moves (used to
move cop C to an appropriate position on P ), prevent the robber from safely
entering P . That is, if the robber ever moved on P , he would be captured in the
next move.

This result is particularly useful for planar graphs where one can cut the
graph by protecting several shortest paths. For intersection graphs, forbidding
the robber to visit vertices of P is not sufficient to prevent him from moving
from one side of the part to the other. We need a stronger tool to geometrically
restrict the robber. We get this by showing that in general graphs we can protect
the closed neighborhood of a given shortest path using five cops, preventing the
robber from safely stepping on any string even crossing the protected path.

We first need one additional generalization of Lemma3.1 – we protect paths
which are not necessarily shortest in G, but are shortest from the point of the
robber within a region he is already confined to. Below we combine this general-
ization with guarding path neighborhood. We believe that these tools may be of
some further interest. We say that an u−v path P is shortest relative to D ⊆ V
if there is no shorter u − v path in G using at least one vertex of D. Note that
P itself may or may not go through D.

Confinement, Safe Moves and Guarding. When our strategy makes sure
that any time in the future of the game, whenever the robber leaves D ⊆ V
he is captured immediately, we say that the robber is confined to D. Note that
this includes the case when the robber cannot even get outside D without being
captured. If the robber can be immediately captured by moving to a vertex v,
we say that the robber cannot safely move to v. When the strategy makes sure
that the robber may not safely move to any v ∈ P , we say that P is guarded.
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Note that in the following we get exactly the original statement for D = V .
Also, we could equivalently define a relative shortest path by having no shortcuts
contained in D with the same results.

Lemma 3.2. Let u, v ∈ V and let P be a shortest u − v path relative to D ⊆ V
with the robber confined to D. Then a single cop C can, after a finite number of
initial moves, prevent the robber from safely entering P .

Proof. Since the robber is confined to D, we can apply Lemma 3.1 to G|P∪D. ��

Lemma 3.3 ([6], Lemma 6). Let u, v ∈ V and let P be a shortest u − v
path relative to D ⊆ V with the robber is confined to D. Then five cops
C−2, C−1, C0, C1, C2 can, after a finite number of initial moves, guard N [P ].

In the following, when we say “start guarding a path”, we do not explicitly
mention the initial time required to position the five cops onto the path and
assume that the strategy waits for enough turns.

Shortest Curves. Since our strategy for string graphs is partially geometric,
we introduce the concept of shortest curves as particular curves through the
string representation of a shortest path. Note that below we consider any curves
sharing only their endpoints to be disjoint.

Let G be a string graph together with a fixed string representation ϕ, robber
confined to D ⊆ V and P a shortest u−v relative to D. Suppose that we choose
and fix two points πu ∈ ϕ(u) and πv ∈ ϕ(v). Let πuv ⊆ ϕ(P ) be a curve from
πu to πv such that πuv ⊆

⋃

p∈P ϕ(p) and for every p ∈ P πuv has a connected
intersection with φ(p) and these correspond to the points of P in the same order.
We call πuv a shortest curve of P (relative to D) with endpoints πu and πv. A
curve π is called a shortest curve (relative to D) if it is a shortest curve of some
shortest path. We leave out D if D = V or it is clear from the context.

The shortest path in the graph corresponding to a shortest curve π is uniquely
defined by the sequence of strings that intersect π on a substring of non-zero
length. To guard a shortest curve π means to guard its corresponding shortest
path. The number of its strings is the length of π. Note that the Euclidean length
of π plays no role in this paper.

Corollary 3.4. Let G be a string graph together with a string representation ϕ
and let π be a shortest curve relative to D such that the robber is confined to
D. Then five cops can (after a finite number of initial moves) prevent the robber
from entering any string intersecting π.

Proof. Let P be the shortest path such that π is a shortest curve of P . By
guarding N [P ], the cops prevent from entering strings intersecting π. ��

Lemma 3.5. Any sub-curve (continuous part) of a shortest curve (relative to
D) is also a shortest curve (relative to D). ��
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4 Capturing Robber in String Graphs

In this section we show that the number of cops sufficient to capture a robber
on a connected string graphs is bounded by 15. The idea of the proof of Theo-
rem 1.2(ii) is inspired by the proof of Aigner and Fromme for planar graphs [1].
Before we prove Theorem 1.2(ii), we introduce several notions used below.

Segments, Faces and Regions. For a given string graph G and its string
representation ϕ let the faces (of ϕ) be the open arc-connected regions of R

2 \
ϕ(G), and let a closed face be the closure of a face. As we assume that the
number of intersections of ϕ is finite, the number of faces is also finite. Note that
every face is an open set.

A segment of string π is a part of the string not containing any intersection
with another string between either two intersections, an intersection and an
endpoint, or two endpoints. Note that the number of segments is also finite. A
region is a closed subset of R

2 obtained as a closure of a union of some of the
faces.

Let clos(X) denote the topological closure of a set X and int(X) the topo-
logical interior of X. A vertex v is internal to B (also contained in B) if
ϕ(v) ⊆ int(B). Denote all vertices internal to a region B by VB = {v ∈ V |
ϕ(v) ⊆ int(B)}. In the next section we will use the following topological result,
following from the previous section and Corollary 3.4.

Proposition 4.1. If there is D ⊆ V such that the cops guard disjoint shortest
curves π1 and π2 (relative to D) between points πu to πv such F is the closed
face of R

2 \ (π1 ∪ π2) containing the robber’s string and D is the component of
VF containing the robber, then the robber may not safely leave D.

Additionally, we use the following topological lemma, for the proof see the
full version.

Lemma 4.2. Given two disjoint simple πu − πv curves π1 and π2 in R
2, with

πu, πv different points, let F be one of the closed faces of R
2 \ (π1 ∪π2). For any

simple πu − πv curve π3 contained in F and going through at least one of its
inner points we have that every face of F \ (π1 ∪ π2 ∪ π3) is bounded by simple
and disjoint curves π′

i and π′
3 with π′

i ⊆ πi, π′
3 ⊆ π3 and i ∈ {1, 2}.

Restricted Graphs and Strategies. Given a closed region B ⊆ R
2, let G

restricted to B, denoted G|B , be the intersection graph of the curves of ϕ ∩ B.
This operation may remove vertices (for entire strings outside B), remove edges
(crossings outside B) and it also splits each vertex v whose string ϕ(v) leaves
and then reenters B at least once. In the last case, every arc-connected part of
ϕ(v) ∩ B spans a new vertex vi. The new vertices are also called the splits of v.
The new graph is again a string graph with representation denoted ϕ|B directly
derived from ϕ. Note that this operation preserves the faces and strings in int(B)
and all representation properties assumed above, namely the vertex set of G|B
is finite. Also, the number of segments does not increase.
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Lemma 4.3. Let B be a region. If π is a shortest curve (optionally relative to
D with the robber confined to D) and π′ ⊆ π is a sub-curve with π′ ⊆ B, then
π′ is a shortest curve (relative to D) in G|B and ϕ|B.

Proof. This follows from Proposition 3.5 and the fact that underlying path of π′

is preserved (and if any p ∈ P ′ got split into {pi} we use the pi intersecting π′)
and no path (e.g. through D) can get shortened by a restriction. ��

We now show that a strategy for a restricted graph may be used in the
original graph.

Lemma 4.4. Let B be a region. If there is a cop’s strategy S ′ eventually cap-
turing a robber in G|B confining him to VB then there is a strategy S for the
same number of cops capturing the robber on G confining him to VB.

Proof. The strategy S plays out as S ′ except when S ′ would move a cop to a
split vi ∈ VG|B of v ∈ VG, S moves the cop to v. Note that all such moves are
possible. Robber’s choices while internal to B are not extended in any way.

Assume the robber moves from internal u to non-internal v, which is split to
v1, . . . vk in G|B . Note that at least one of vv1, . . . vk, say vi, is adjacent to u in
G|B , as ϕ(u) has to intersect ϕ(v) in int(B). Let S play as S ′ would if the robber
moved to vi, capturing him with this move as assumed in the statement. ��

The Strategy for 15 Cops. Our strategy proceeds in phases, monotonously
shrinking the safe area of the robber. Slightly informally, in every phase the
robber is confined to D ⊆ V by either (A) a single cop guarding a cut-vertex
separating D from the rest of the graph or (B) two squads of cops guarding
two shortest curves forming a simple closed circle. Then we show that we can
decrease either the number of the segments of ϕ or size of D while not increasing
the other and get one of the cases again.

Note that it is important that in case (B) the curves form a simple (not
self-intersecting) cycle (as the general case has many technical issues). Also, the
reader can assume that the robber is always inside the cycle, e.g. using circular
inversion of ϕ if not, but it is not necessary.

Proof (Theorem 1.2(ii)). In any situation let ˜P be the union of currently guarded
paths and vertices. Let D be the component of V \ N [ ˜P ] containing the robber
and let Q = N [ ˜P ] ∩ N [D]. Recall that whenever the robber would be in N [ ˜P ]
he would be immediately captured, so D is well defined. Let s be the number of
segments of ϕ.

We build a strategy that confines the robber to D for the rest of the game.
Therefore we may assume that V = D ∪ Q ∪ ˜P as the vertices outside N [D] are
irrelevant for the robber and unused by our strategy.

Claim. Let V = D ∪ Q ∪ ˜P , the robber be on r ∈ D and one of the following:
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(A) One cop guards a vertex c, | ˜P | = 1.
(B) The cops guard two shortest curves π1 and π2 (relative to D) between points

πu to πv such that π1 ∪ π2 forms a simple cycle, | ˜P | ≥ 2 and additionally
G = G|F where F is the closed face of R

2 \ (π1 ∪ π2) containing ϕ(r).

Then 15 cops have a strategy to capture the robber confining him to D.

Proof (Claim). We prove this by induction on s and |D|, the claim obviously
holds for s ≤ 1 and |D| = 0. We distinguish two cases:

Case A. If Q = {q} then start guarding q, stop guarding c and let G′ = G−c
while also leaving out any irrelevant vertices to have V ′ = D′ ∪Q′ ∪{q} as above.
We then use claim case (a) for G′ with both smaller s′ and D′

� D.
If Q = {q1, . . . qk}, k ≥ 2, let G′ = G − c and let πqi be any point of

ϕ(c) ∩ ϕ(qi). Now let π1 be a shortest curve between some πqi and πqj . We let
π2 ⊆ ϕ(c) be the part of ϕ(c) between πqi and πqj .

However, π1 ∪ π2 may not be a simple cycle. Let πu = πqi and let πv to be
the first point of π1 ∪ π2 along π2 going from πu. Note that if there is no other
intersection then πv = πqj . Now let π′

1 and π′
2 be the parts of π1 and π2 between

πu and πv, forming a simple cycle.
Let G′′ = G|F where F is the closed face of R

2 \ (π1 ∪ π2) containing ϕ(r).
Remove any irrelevant vertices from G′′ to have V ′′ = D′′ ∪ Q′′ ∪ ˜P ′′ as above
and use claim case (b) for smaller D′′

� D (as P1 has a neighbor in D) and not
increased |s′′|. Note that ˜P ′′ uses at least one vertex other than c.

Case B. If there is no πu − πv path through a vertex of D then, according to
Menger’s theorem, there must be a cut-vertex c ∈ ˜P ∪ Q separating D from ˜P .
Let one cop guard c and then stop guarding ˜P . Let G′ = G \ ( ˜P − c) while also
leaving out irrelevant vertices to have V ′ = D′ ∪ Q′ ∪ {c} as above. We then use
claim case (a) for G′ with smaller s′ and D′ ⊆ D.

If there is a πu−πv path through a vertex of D, let π3 be shortest such curve.
Note that it is a shortest curve relative to D. Let five cops start guarding π3

and then let F be the closed face of R
2 \ (π1 ∪ π2 ∪ π3) containing the robber

string. According to Lemma 4.2 we have that F is delimited by disjoint π′
i and

π′
j where i = 3 or j = 3 and π′

i ∪ π′
j form a simple cycle. We let the cops stop

guarding πk where k /∈ {i, j} and restrict the guarding of πi and πj to π′
i and π′

j

as in Proposition 3.5. | ˜P | ≥ 2 as one vertex string can not form a closed loop.
Let G′ = G|F while also removing any irrelevant vertices from G′ to have

V ′ = D′ ∪Q′ ∪ ˜P ′ as above. We then use claim case (b) for G′ with non-increased
s and D′

� D. �

Having proven the claim, the theorem then follows by guarding an arbitrary
vertex c with one cop so ˜P = {c}, defining D and Q as before the claim, and
discarding irrelevant vertices to get V ′ = D ∪ Q ∪ ˜P . We then use claim case (a)
with G′ = G|V ′ . ��
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5 String Graphs on Bounded Genus Surfaces

In this section, we generalise the results of the previous section and prove that
10g + 15 cops are sufficient to catch the robber on graphs having a string repre-
sentation on a surface of genus g.

We assume familiarity with basic topological concepts related to curves on
surfaces, such as genus, non-contractible closed curves and the fundamental
group of surfaces; otherwise see [13]. Specifically, we use the following topo-
logical lemma, which directly follows from the properties of the fundamental
group.

Lemma 5.1. Let π1, π2 and π3 be three curves on a surface S, all sharing the
same endpoints x and y and oriented from x to y. If the closed curve π1 − π2 is
non-contractible, then at least one of π1 − π3 and π2 − π3 is non-contractible as
well. ��

Let G be a graph with a string representation ϕ on a surface S. We represent
the combinatorial structure of ϕ by an auxiliary multigraph A(G) embedded on
S and defined as follows: the vertices of A(G) are the endpoints of the strings
of ϕ and the intersection points of pairs of strings of ϕ, and the edges of A(G)
correspond to segments of strings of ϕ connecting pairs of vertices appearing
consecutively on a string of ϕ. By representing ϕ by A(G), we will be able to
apply the well-developed theory of graph embeddings on surfaces.

We say that a (closed) walk W = w0, w1, . . . wk in G imitates a (closed) curve
π ⊆ ϕ[G] on the surface S if π can be partitioned into a sequence of consecutive
segments π0, π1, . . . , πk of positive length, such that π =

∑k
i=0 πi and πi ⊆ ϕ(wi)

for each i = 0, . . . , k. A closed walk W imitates a non-contractible curve if there
is a non-contractible curve π ⊆ ϕ[G] imitated by W .

Lemma 5.2. Let ϕ be a string representation of a connected graph G on a
surface S of genus g > 0 and let W be a closed walk in G imitating a non-
contractible curve. Then every connected component of the graph G′ = G−N [W ]
has a string representation on a surface of genus at most g − 1.

Lemma 5.3. If a graph G has no string representation in the plane, then for
every string representation ϕ of G on a surface S there is a closed walk W in G
imitating a non-contractible curve.

Proof. Let A(G) be the auxiliary multigraph corresponding to the string repre-
sentation ϕ. Since A(G) is not planar, the embedding of A(G) contains a non-
contractible cycle (see [11, Chapter 4.2]), which corresponds to a noncontractible
curve on S. This curve is imitated by a closed walk W of G. ��

Lemma 5.4. On a graph G with a string representation ϕ on a surface S and
a shortest closed walk W imitating a non-contractible curve, 10 cops have a
strategy to guard N [W ] after a finite number of initial moves – that is capture a
robber immediately after he enters a vertex of N [W ].
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Proof (Theorem 1.2(iii)). Let G be a connected graph with a string represen-
tation ϕ on a surface S of the smallest possible genus g. We want to show that
10g +15 cops have a strategy to capture the robber on G. We proceed by induc-
tion on the genus g. If g = 0, we use Theorem 1.2(ii).

Let g > 0, and fix a string representation of G on a surface of genus g. Let
W be a shortest closed walk in G imitating a non-contractible curve.

By Lemma 5.4, 10 cops may, after a finite amount of moves, prevent the
robber from entering N [W ]. The first part of the cops’ strategy is to designate
a group of 10 cops that will spend the entire game guarding N [W ]. Thus, after
a finite number of moves the robber will remain confined to a single connected
component K of the graph G′ = G − N [W ].

By Lemma 5.2, the graph K has a string representation on a surface of genus
at most g − 1, and by induction, 10(g − 1) + 15 cops have a strategy to capture
the robber on K. Thus, 10g + 15 cops will capture the robber on G. ��

6 Conclusions

In this paper, we improve the bound on the maximum cop number of string
graphs and also generalize this bound for string graphs on arbitrary surfaces. It
remains open whether other intersection classes of special and higher dimensional
sets have bounded maximum cop number. In particular:

Problem 6.1. Is the maximum cop number of k-BOX bounded?

We note that bounded genus graphs have bounded boxicity [3]. If the answer is
positive, it implies another strengthening of [14,15].
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Abstract. In the classical vertex cover problem, we are given a graph
G = (V, E) and we aim to find a minimum cardinality cover of the edges,
i.e. a subset of the vertices C ⊆ V such that for every edge e ∈ E, at least
one of its extremities belongs to C. In the Min-Power-Cover version
of the vertex cover problem, we consider an edge-weighted graph and we
aim to find a cover of the edges and a valuation (power) of the vertices
of the cover minimizing the total power of the vertices. We say that an
edge e is covered if at least one of its extremities has a valuation (power)
greater than or equal than the weight of e. In this paper, we consider Min-
Power-Cover variants of various classical problems, including vertex
cover, min cut, spanning tree and path problems.

1 Introduction

In the classical vertex cover problem, we are given a graph G = (V,E) and
we aim to find a minimum cardinality cover of the edges, i.e. a subset of the
vertices C ⊆ V such that for every edge e ∈ E, at least one of its extremities
belongs to C. In the Min-Power-Cover version of the vertex cover problem,
we consider an edge-weighted graph and we aim to find a cover of the edges and
a valuation (power) of the vertices of the cover minimizing the total power of
the vertices. We say that an edge e is covered if at least one of its extremities
has a valuation (power) greater than or equal than the weight of e. A motivating
example is related to the installation of security cameras in the crossroads of a
town. Here the graph represents the road network of the town, where the ver-
tices represent the crossroads and the edges the roads. Each edge is associated
with a weight which represents the cost of the camera that is needed in order to
guarantee the adequate visibility. The bigger the length of the road-segment the
bigger the cost of the camera that is needed for offering good quality images.
The objective is to determine a choice and a placement of cameras minimizing
the overall cost, i.e. a cover of minimum power (cost). We call this problem the
Min-Power-Cover vertex cover problem. More generally, we are interested in
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the Min-Power-Cover variants of classical graph problems, including asym-
metric vertex cover, minimum cut, spanning tree and (s, t)-path. In the classical
setting, the solution of all these problems is just a subgraph of the initial graph
respecting some particular structural property. In their Min-Power-Cover
variants, we aim in determining subgraphs whose edges can be covered with the
minimum total power. A natural question is then to know what is the difficulty
of the Min-Power-Cover variants compared to the corresponding classical
graph problems. In this paper, we investigate this question. Interestingly, some
of these problems have the same difficulty as their classical variant, while others
become much more difficult in the Min-Power-Cover setting. As a warm-
up take for instance the maximum matching problem, one can easily see that
the classical version coincides with its Min-Power-Cover variant: a matching
whose edges can be covered with the minimum total power is just a minimum
weighted maximum matching. More generally, it is not difficult to see that if
the subgraph that we are interested to determine has a maximum degree of
Δ then a ρ-approximation algorithm for the classical problem gives directly a
(Δ · ρ)-approximation for its Min-Power-Cover variant. As a corollary, there
is a 3-approximation algorithm for the Min-Power-Cover variant of the met-
ric Traveling Salesman Problem (TSP) and a 2-approximation algorithm for the
Min-Power-Cover variant of the cycle cover problem.

Notice that our model differs from the Min-Power model studied in [1–4]
where for covering a given edge it is required that the power associated to both
of its extremities is at least equal to the edge cost.

Our Contribution. In Sect. 2, we study the Min-Power-Cover variant of
the vertex cover problem. We show that there is a 2-approximation algorithm
for both the symmetric and the asymmetric versions of the problem for general
graphs. We also prove that the problem can be solved in polynomial time for
bipartite graphs. In Sect. 3, we show how to solve the Min-Power-Cover vari-
ant of the (s, t)–cut problem both for the directed and the undirected case. In
Sect. 4, we show that the Min-Power-Cover spanning tree problem is as hard
to approximate as the classical dominating set problem. Finally in Sect. 5, we
propose a simple variation of Dijkstra’s algorithm for solving the Min-Power-
Cover variant of the shortest path problem.

2 Min-Power-Cover Vertex Cover

We consider two versions of the problem, the asymmetric and the symmetric
version. In the asymmetric version, we are given a graph G = (V,E) with two
weights wu,v and wv,u on each edge (u, v) ∈ E. We aim to find a non negative
power pv for each vertex v ∈ V such that for all (u, v) ∈ E, either wv,u ≤ pv or
wu,v ≤ pu, and such that

∑

v∈V pv is minimized. Intuitively, wu,v (resp. wv,u)
denotes the minimum power that have to be associated to vertex u (resp. v) in
order to cover the edge (u, v). An instance of the minimum power vertex cover
is called symmetric if one has wu,v = wv,u for all edges (u, v) ∈ E.
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Notice that the Min-Power-Cover vertex problem is NP-hard since for
the special case in which wu,v = wv,u = 1 for all edges (u, v) ∈ E we get the
classical vertex cover problem.

2.1 A 2-Approximation Algorithm for the Asymmetric Case

If (u, v) is an edge of G, we use u ∼ v to denote that u and v are adjacent. We
give an algorithm inspired by the local ratio method in approximation algorithms
(see for example [5] for a survey):

Algorithm 1. Algorithm for the asymmetric case of Min-Power-Cover Ver-
tex Cover

pv ← 0 for all v ∈ V
while E �= ∅ do

Select (u, v) ∈ E such that ε ← min{wu,v, wv,u} is minimum.
Update pu and pv:
pu ← pu + ε
pv ← pv + ε
Update all adjacent edges with u and v:
∀u′ ∼ u, wu,u′ ← wu,u′ − ε
∀v′ ∼ v, wv,v′ ← wv,v′ − ε
Delete all edges (a, b) ∈ E if wa,b = 0 including edge (u, v).

end while

Theorem 1. This algorithm is a polynomial time 2-approximation algorithm
for the asymmetric Min-Power-Cover vertex cover problem.

Proof. It is easy to see that the algorithm returns a feasible solution. Now we
want to analyze its approximation ratio. The algorithm works in several itera-
tions. At each iteration we select an edge, we increase the power at its extremi-
ties, and we simplify the instance by decreasing some weights and removing some
edges (at least one). Let denote by Ik the instance at the end of the k-th iteration
(or the beginning of the k +1-th iteration), and let denote by OPT (k) the value
of an optimal solution for the instance Ik. The algorithm ends when E becomes
empty. This means that if the while loop is executed K times, the instance IK
has no edge and therefore OPT (K) = 0. Notice that OPT (0) = OPT is the cost
of the optimal solution for the initial instance.

At each iteration of the algorithm, we can consider that we make a pay-
ment. Let PAY (k) = 2ε with ε corresponding to the selected edge (u, v) at the
k-th iteration. We are going to prove that we pay at most twice the decrease
in cost of the optimal solution, i.e. OPT (k) − OPT (k + 1) ≥ ε = PAY (k)/2
for 1 ≤ k ≤ K − 1. For this, we construct a feasible solution for the instance
Ik+1 from the solution OPT (k). There are three cases to consider according to
whether edge (u, v) is covered only by u, or only by v, or by both u and v, in
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solution OPT (k). For the first case, p∗
u(k) (the assigned power for u in OPT (k))

is at least ε. We construct a solution as follows: pu(k + 1) ← p∗
u(k) − ε and

pv(k+1) ← p∗
v(k) ∀v 	= u. This is a feasible solution for Ik+1 of cost OPT (k)−ε,

and thus OPT (k +1) ≤ OPT (k)− ε. Similarly for the second case, we have also
OPT (k+1) ≤ OPT (k)−ε. For the third case, we have p∗

u(k) ≥ ε and p∗
v(k) ≥ ε,

and the solution such that pu(k + 1) ← p∗
u(k) − ε, pv(k + 1) ← p∗

v(k) − ε and
pw(k + 1) ← p∗

w(k) ∀w 	= u, v, shows that OPT (k + 1) ≤ OPT (k) − 2ε. So in
any case we always have OPT (k) − OPT (k + 1) ≥ ε.

Notice that the cost of the solution returned by the algorithm is cost(ALG) =
∑K

k=1 PAY (k). Since we have OPT (k) − OPT (k + 1) ≥ ε ∀k, we obtain that
OPT (0) − OPT (K) ≥

∑

k PAY (k)/2 = cost(ALG)/2. Finally 2OPT ≥
cost(ALG). Since at each iteration at least one edge is removed from E, the
time complexity is O(|E|). 
�

2.2 A Faster 2-Approximation Algorithm for Symmetric Case

We give an algorithm which is faster for the symmetric case:

Algorithm 2. Algorithm for the symmetric case of Min-Power-Cover Vertex
Cover

pv ← 0 for all v ∈ V
while E �= ∅ do

Select (u, v) ∈ E such that wu,v is maximum.
Update pu and pv:
pu ← wu,v

pv ← wu,v

Delete (u, v) and all adjacent edges with u and v:
∀u′ ∼ u, wu,u′ ← 0
∀v′ ∼ v, wv,v′ ← 0
Delete all edges (a, b) ∈ E if wa,b = 0 including edge (u, v).

end while

Theorem 2. This algorithm is a polynomial time 2-approximation algorithm
for the symmetric min power vertex cover problem.

Proof. Let M be the set of edges selected by the algorithm. It is easy to see that
M is a matching of the graph. Indeed, when selecting an edge, the algorithm
removes all its adjacent edges. The optimal solution must cover every edge in
M . So, it must include at least one of the endpoints of each edge ∈ M , where
no two edges in M share an endpoint. Hence, the cost of an optimal solution
satisfy OPT ≥

∑

e∈M we. But the algorithm returns a power vertex cover of
cost 2 ×

∑

e∈M we, so we have cost(ALG) = 2 ×
∑

e∈M we ≤ 2 × OPT . 
�



Min-Power Covering Problems 371

2.3 A Polynomial Case: Bipartite Graphs

If the graph is bipartite we show that the asymmetric Min-Power-Cover
vertex cover problem can be solved in polynomial time.

We state the problem as a integer linear program and then we show that the
matrix of constraints is totally unimodular. We assume that the edges incident to
a vertex v ∈ V are sorted in non decreasing order of their weights (with respect
to the vertex v), so we have w1

v ≤ w2
v ≤ . . . ≤ w

d(v)
v , with w1

v := minz | (v,z)∈E wvz,
and d(v) the degree of vertex v. We define δv,1 := w1

v and δv,i := wi
v − wi−1

v for
2 ≤ i ≤ d(i). We denote by f(e, v) the index of edge e according to vertex v in
this ordering. So one has w

f(e,v)
v = wv,u if e = (v, u). Notice that f(e, u) can be

different of f(e, v), with e = (u, v). The integer linear program can be written
as follows:

min
∑

v

∑d(v)
i=1 δv,i xv,i

s.t. xv,i−1 − xv,i ≥ 0 ∀v ∈ V, ∀i ∈ {2, . . . , d(v)} (1)
xu,f(e,u) + xv,f(e,v) ≥ 1 ∀e = (u, v) ∈ E (2)

xv,i ∈ {0, 1} ∀v ∈ V, ∀i ∈ {1, . . . , d(v)} (3)

In this integer linear program, xv,i = 1 means that we assign to vertex v a
power which is at least the i-th weight wi

v. Constraints (1) ensure the coherence
between the different values xv,i for i = 1, . . . , d(v). Constraints (2) ensure that
each edge e ∈ E is covered.

Proposition 1. The matrix of constraints of the above integer linear program
is totally unimodular.

Proof. We use the Hoffman’s conditions which are sufficient for a matrix A to
be totally unimodular. The rows of A can be partitioned into two disjoint sets
B and C such that:

– Every column of A contains at most two non-zero entries;
– Every entry in A is 0, +1, or −1;
– If two non-zero entries in a column of A have opposite signs, then the rows

of both are in B, or both in C;
– If two non-zero entries in a column of A have the same sign, then the row of

one is in B, and the other in C.

The two first conditions can be easily verified. Moreover every variable xv,i ∀i
are in the same set thanks to the first property. Finally, since we have a bipartite
graph, we have two sets B and C such that B ∪ C = V and B ∩ C = ∅, ∀u ∈ V
either u ∈ B, or u ∈ C. Then, it is easy to see that constraints (2) verify condition
4. Indeed, it corresponds to an edge (u, v) and because it is a bipartite graph,
xu,f(e,u) and xv,f(e,v) are not in the same set. 
�
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3 Min-Power-Cover Cut

We study two versions of the Min-Power-Cover cut problem. In the first
version we study the directed case while in the second one, we consider the
undirected case.

3.1 Directed Graphs

Given a directed graph G = (V,E), with a weight wu,v on each arc (u, v) ∈ E,
we want to find a minimum cost s − t cut C = (S, T ) of G with S, T ⊂ V ,
S ∩ T = ∅, such that s ∈ S and t ∈ T , where s and t are two vertices of G. The
cost is given by the sum of powers that we have to assign to each vertex in order
to cover all the arcs belonging to the cut, i.e. the arcs (u, v) such that u ∈ S
and v ∈ T . The problem can be viewed as finding the minimum total power to
disconnect the graph between s and t. This value could serve as an indication of
the robustness of the graph against attacks. To disconnect an arc (u, v), we have
to set a power pu on the source u of the arc such that wu,v ≤ pu. The objective
function is minv∈V

∑

pv.
We show that we can solve in polynomial time this problem on graph G

by solving the classical minimum (s, t)-cut problem on a related graph G′. We
transform the graph G into a graph G′ in the following way:

Let O(v) be the set of outcoming arcs of vertex v. We sort O(v) in non
increasing order of their weights. Let O(v, i) be the i-th outcoming arc of vertex
v according to the order of weights defined previously. Thus we have wO(v,1) ≥
wO(v,2) ≥ . . . ≥ wO(v,|O(v)|). We denote by gv,i a vertex in G′ which corresponds
to arc O(v, i) in G. For each vertex v in G, we create |O(v)| + 1 new vertices
forming a path in the following order: v, gv,1, . . . , gv,|O(v)|. Then we set the cost of
arcs as follows: the cost of arc (v, gv,1) is wO(v,1), and the cost of arc (gv,i, gv,i+1)
is wO(v,i+1) for i = 1, . . . , |O(v)| − 1. Finally for each arc (v, u) = O(v, i), we
create an arc (gv,i, u) with infinite cost. This construction is depicted in Fig. 1.

O(v, 1)

v

O(v, 2)

v gv,2gv,1
wO(v,2)wO(v,1)+∞

u

u

+∞

x x

+∞

Fig. 1. Illustration of the transformation of a vertex v from graph G to G′

Definition 1. We call a path in G′ a valid path if all its arcs have a finite cost,
except the last one.
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Lemma 1. (u, v) is an arc in G if and only if there is a valid path from u to v
in G′.

Proposition 2. The Min-Power-Cover cut problem on graph G can be solved
by finding a classical minimum cut in graph G′.

Proof. Let OPT be the cost of an optimal solution for the Min-Power-Cover
cut problem on graph G, and let OPT ′ be the cost of an optimal solution for
the min-cut problem in graph G′.

We first show that OPT ≥ OPT ′. We show that an optimal solution for
the Min-Power-Cover cut problem can be transformed to a feasible solution
for the min-cut problem in graph G′ with the same cost. Let p∗

v the assigned
power at vertex v in OPT . We may assume that the value of an assigned power
for a vertex v corresponds to a weight of an outcoming edge of v. Indeed, if
wO(v,i+1) < p∗

v < wO(v,i), then p∗
v can be lowered to wO(v,i+1), which leads to

a better solution, in contradiction with the fact that OPT was optimal. Let P
be the set of vertices v in G such that p∗

v > 0 in solution OPT . For all vertices
v ∈ P, we delete all outcoming arcs e of v such that we ≤ p∗

v. Moreover, for all
vertices v ∈ P, we delete an arc in G′. Since the affected power p∗

v on a vertex v
is equal to some wO(v,i), then we can delete the arc (gv,i−1, gv,i) in G′. If there
is some arc with the same value, then cut the arc with the smallest index.

Let S and T with P ⊆ S the two sets of vertices according to OPT .
Let us consider any two vertices u ∈ S and v ∈ T . By OPT , we know that

there is no arc (u, v) since we already deleted these arcs by assigning power to
vertices. Then there is no path from u to v in G′ thanks to Lemma 1.

Thus we have a feasible solution for the min-cut problem in graph G′ with
the same cost.

We show now that OPT ≤ OPT ′. We show that an optimal solution for the
min-cut problem in graph G′ can be transformed into a feasible solution for the
Min-Power-Cover cut problem in G with the same cost.

Let A be the set of arcs that disconnect G′. Each arc a ∈ A corresponds
to some arc (gv,i−1, gv,i) (otherwise it would be an infinite arc), then for each
arc a ∈ A, we set the power of vertex v in G to wv,i. Then we can delete all
outcoming arcs e of v such that we ≤ p∗

v in G. Since there is no valid path from
u to v in OPT ′ such that u ∈ S ∩ V and v ∈ T ∩ V without crossing a cut arc,
then there is no arc (u, v) in G. Thus, it is a feasible solution for the min-power
cut problem with the same cost. 
�

3.2 Undirected Graph

Given an undirected graph G = (V,E), we want to find an s − t cut C = (S, T )
of G such that s ∈ S and t ∈ T , where s and t are two given vertices.

The cost is given by the sum of power that we assign to each vertex in order
to disconnect the graph. To disconnect an edge, we have to set a power on one
of its two extremities forming the edge, i.e. if (u, v) is the edge, then we must
have either wu,v ≤ pu, or wu,v ≤ pv. The objective function is min

∑

pv.
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As for the directed case, we transform the graph G into a graph G′ in the
following way:

Let E(v) the set of adjacent edges of vertex v. We sort, in non increasing
order of weights, the set E(v). Let E(v, i) be the i-th incident edge to vertex v
according to the order of weights previously defined. Thus we have wE(v,1) ≥
wE(v,2) ≥ . . . ≥ wE(v,|E(v)|).

We denote by gv,i and g′
v,i a vertex in G′ which corresponds to the edge ev,i

in G. For each vertex v in G, we create 2|E(v)| + 1 new vertices forming a path
in the following order: g′

v,|E(v)|, . . . , g
′
v,1, v, gv,1, . . . , gv,|E(v)|.

Then, we set the cost of arcs as follows: the cost of (g′
v,i+1, g

′
v,i) is wE(v,i+1)

for i = 1, . . . , |E(v)| − 1, the cost of (g′
v,1, v) is wE(v,1), the cost of (v, gv,1) is

wE(v,1), and the cost of (gv,i, gv,i+1) is wE(v,i+1) for i = 1, . . . , |E(v)| − 1. This
construction is depicted in Fig. 2.
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v

O(v, 2)

v gv,2gv,1
wO(v,2)wO(v,1)
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+∞

x
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O(v, 3)

gv,3
wO(v,3)

+∞
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+∞
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+∞

wO(v,2) wO(v,1)wO(v,3)
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x
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gy,1

wO(u,1)wO(u,1)

wO(x,1)wO(x,1)

wO(y,1)wO(y,1)

Fig. 2. Illustration of the transformation of a vertex v from graph G to G′

Then for each arc (v, u) = E(v, i) = E(u, j), we create an arc (g′
v,i, gu,j) and

an arc (g′
u,j , gv,i) with infinite cost.

Proposition 3. The Min-Power-Cover cut problem on an undirected graph
can be solved using the classical min-cut problem in graph G′.

Proof. Let OPT be the optimal solution for the Min-Power-Cover cut prob-
lem and OPT ′ be the optimal solution for the min-cut problem in graph G′.

Let us first show that OPT ≥ OPT ′.
We show that an optimal solution for the Min-Power-Cover cut problem

can be transformed to a feasible solution for the min-cut problem in graph G′
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with the same cost. Let p∗
v the affected power at vertex v in OPT . We may

assume that the value of the affected power for a vertex v corresponds to a
weight of an adjacent edge of v. Indeed, if wE(v,i+1) < p∗

v < wE(v,i), then p∗
v can

be reduced to wO(v,i+1) and we have a better solution which contradicts the fact
that OPT was optimal.

Let P be the set of vertices v in OPT in G such that p∗
v > 0.

For all vertices v ∈ P, we delete all adjacent edges e of v such that we ≤ p∗
v.

Moreover, for all vertices v ∈ P, we delete an arc in G′. Since the affected power
p∗
v on a vertex v is equal to some wO(v,i), then we can delete the arc (gv,i−1, gv,i)

or (g′
v,i, g

′
v,i−1) in G′ according to whether v ∈ S or v ∈ T . If there is some arc

with the same value, then we cut the arc with the smallest index.
Let S and T be the two sets of vertices according to OPT .
Consider two vertices u ∈ S and v ∈ T . By OPT , we know that there is

no edge (u, v) since we already deleted these edges by affecting power to the
vertices. Then (u, v) cannot be a simple path in G′ thanks to Lemma 1.

Thus we have a feasible solution for the Min-Cut problem in graph G′ with
the same cost.

Now, let us show that OPT ≤ OPT ′.
We show that an optimal solution for the Min-Cut problem in graph G′ can

be transformed to a feasible solution for the Min-Power-Cover cut problem
in G with the same cost.

Let A be the set of arcs that disconnect G′. Each arc a ∈ A corresponds to
some (gv,i−1, gv,i) or (g′

v,i, g
′
v,i−1) (otherwise it is an infinite arc). Then for each

arc a ∈ A, we set the power of vertex v in G to wO(v,i). Then we can delete all
adjacent edges e of v such that we ≤ p∗

v in G. Since there is no simple path (u, v)
(resp. (v, u)) in OPT ′ such that u ∈ S ∩V and v ∈ T ∩V without crossing a cut
arc (gv,i−1, gv,i) (resp. (g′

v,i, g
′
v,i−1)), then there is no arc (u, v) (resp. (v, u)) in

G. Thus, we have a feasible solution for the Min-Power-Cover cut problem
with the same cost. 
�

4 Min-Power-Cover Spanning Tree

In this section, we will show that the Min-Power-Cover spanning tree problem
is as hard to approximate as the Dominating Set problem.

Given an edge-weighted graph G = (V,E), the objective is to find a spanning
tree and to assign power to vertices such that all the edges of the spanning tree
are covered. An edge is covered if the assigned power in one of its extremities is
at least the weight of that edge. We want to minimize the sum of powers over
all vertices. W.l.o.g. we assume that G is connected.

Recall that a dominating set is a subset of vertices S ⊆ V such that any vertex
outside S is adjacent with at least one vertex inside S. The min dominating
set problem consists in finding a dominating set S such that |S| is minimum.

In the following we assume that each edge of the graph has a unit weight. Let
MPST ∗ (resp. DOM∗) be the cost of an optimal solution for the Min-Power-
Cover spanning tree (resp. min dominating set) problem. We denote by T ∗

the corresponding spanning tree with respect to MPST ∗.
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Proposition 4. One has, DOM∗ ≤ MPST ∗ ≤ 2DOM∗ − 1.

Proof. Since all edges of the graph have a unit weight, it is easy to see that in
an optimal solution for Min-Power-Cover spanning tree, each vertex is either
assigned a power of 1 or 0. Let L(T ∗) be the set of vertices which are assigned a
power of 1. Therefore, MPST ∗ = |L(T ∗)|. Let us consider a vertex v ∈ V , since
T ∗ is a spanning tree, v belongs to some edge e = (u, v) ∈ T ∗, and since e is
covered, either u ∈ L(T ∗) or v ∈ L(T ∗). It means that L(T ∗) is a dominating
set, and therefore DOM∗ ≤ MPST ∗.

We prove now that MPST ∗ ≤ 2DOM∗ − 1. Let V (DOM∗) be the domi-
nating set such that |V (DOM∗)| = DOM∗. We denote by ∂V (DOM∗) := {e =
(u, v) ∈ E |u or v ∈ DOM∗} the set of edges which are adjacent with a vertex
in V (DOM∗). If the graph G(V, ∂V (DOM∗)) is connected then we can select
a spanning tree T (V,E′) of G(V,E) such that E′ ⊆ ∂V (DOM∗) and such that
L(T ) = DOM∗. In this case, MPST ∗ ≤ DOM∗. Let us assume now that there
are k ≥ 2 connected components in G(V, ∂V (DOM∗)), and let denote by Ki the
i-th connected component for 1 ≤ i ≤ k. Notice that k ≤ DOM∗. We show how
to transform V (DOM∗) into a feasible solution for the Min-Power-Cover
spanning tree problem: we add a vertex v in V (DOM∗) such that v ∈ Ki and
u ∈ Kj with i 	= j and such that (u, v) ∈ E. Thus we merge two connected
components into one. We iterate, and thus we have to add at most k −1 vertices
to V (DOM∗) in order to obtain a feasible solution for the Min-Power-Cover
spanning tree problem. Therefore, MPST ∗ ≤ DOM∗ + k − 1 ≤ 2DOM∗ − 1. 
�

5 Min-Power-Cover Path

Given a graph G = (V,E), the objective is to find a path from a vertex s to a
vertex t with the minimum power cost. We consider the asymmetric case. If an
edge (u, v) is covered, then either wu,v ≤ pu, or wu,v ≤ pv. We say that a path is
valid if each edge of the path is covered by the power affectation on the vertices.
Then the objective function is min

∑

pv.
For each vertex v we consider a cost function C(v, p) which is the cost of

a path from s to v if the power in vertex v is equal to p. Let δ be the degree
of vertex v. In each vertex we consider at most δ different values of power. Let
Q be a set of pairs (v, p). We consider the following modification of Dijkstra’s
Algorithm.

Theorem 3. The algorithm solves the symmetric Min-Power-Cover path
problem optimally.

Sketch of Proof. In order to prove the correctness of the algorithm we note that
the following statements hold each time that (2) is executed in the algorithm:
(a) For all (v, p) ∈ R and all (u, k) ∈ Q : C(v, p) ≤ C(u, k). (b) For all (v, p) ∈ R:
If the power in vertex v is equal to p, C(v, p) is the cost of a cheapest s− v-path
in G. In particular, (b) holds when the algorithm terminates, so we obtain the
optimal solution. The rest of the proof can be found in Sect. 7 of [6]. Since the
number of pairs is at most n + 2m then the running time of the algorithm is
O(m2), where m = |E(G)|.
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Algorithm 3. Algorithm for the Min-Power-Cover Path
1: Set C(s, p) = p. Set C(v, p) = ∞ for all v and p. Set R = ∅.
2: Find a pair (v, p) ∈ Q \ R such that C(v, p) = min(u,k)∈Q\R C(u, k).
3: Set R = R ∪ (v, p).
4: for (u, k) ∈ Q \ R such that (v, u) ∈ E and wv,u ≤ p or wu;v ≤ k do
5: if C(u, k) > C(v, p) + k then
6: set C(u, k) = C(v, p) + k
7: path(u, k) = (v, p)
8: end if
9: end for

10: If R �= Q then go to 2.
11: For each vertex v take a minimum cost C(v, p) over all p.

6 Concluding Remarks

We have introduced a new variant of classical graph problems, namely the Min-
Power-Cover variant. We have shown that while the difficulty of the problem
for the power-cover variants of the min-cut, path and vertex cover problems
remains the same, the power-cover variant of the spanning tree problem is hard
to approximate. An interesting open question is to study the complexity and the
approximability of the power-cover variants of other problems. In particular, it
would be interesting to know whether there is an approximation algorithm for the
Min-Power-Cover metric Traveling Salesman Problem with an approximation
ratio better than 3.
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1. Althaus, E., Călinescu, G., Mandoiu, I.I., Prasad, S.K., Tchervenski, N., Zelikovsky,
A.: Power efficient range assignment for symmetric connectivity in static ad hoc
wireless networks. Wireless Netw. 12(3), 287–299 (2006)

2. Byrka, J., Grandoni, F., Rothvoß, T., Sanità, L.: An improved lp-based approxima-
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Abstract. We study the diameter of a spanning tree, i.e., the length of
its longest simple path, under the imprecise points model, in which each
point is assigned an own occurrence disk instead of an exact location.
We prove that the minimum diameter of a spanning tree for n points
each of which is selected from its occurrence disk can be computed in
O(n9) time for arbitrary disks and in O(n6) time for unit ones. If the
disks are disjoint, we improve the run-time respectively to O(n8 log2 n)
and O(n5). These results contrast with the fact that minimizing the sum
of the edge lengths of a spanning tree for imprecise points is NP-hard.

1 Introduction

Given a set of points, a spanning tree is a tree connecting all points, its diameter
is the length of its longest simple path, and a minimum diameter spanning tree
is a spanning tree with the smallest diameter. We consider the imprecise points
model in which each point is assigned an own occurrence disk instead of an exact
location, and attempt to place one point in each disk such that the diameter of
a minimum diameter spanning tree of the resulting point set is minimized.

The motivation for the study of imprecise points comes from data imprecision
in real-world applications. In practical applications, the exact locations of points
are often unknown because the measurements of an instrument have some error
interval or the corresponding objects may move or fluctuate. An important task
for imprecise points is to compute the minimum and maximum values that cer-
tain geometric measures on the point set can attain. Geometry measures such as
the smallest bounding box [10], the smallest enclosing circle [8,10], the farthest
pair [10], the width [10], the closest pair [5,10], or the area and perimeter of the
convex hull [9] have been studied for various shapes of occurrence regions.

For points whose locations are all exactly known, Ho et al. [7] proved that
there always exists a minimum diameter spanning tree that is either monopolar,
i.e., it contains a point, called a pole, linked to all the remaining points, or bipolar,
i.e., it contains two poles such that all remaining points are linked to one of
the two, and developed an algorithm for computing such a tree in O(n3) time.
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Chan [2] further improved the time bound to o(n17/6+α) for any fixed α > 0.
Since the best known exact algorithm still takes near-cubic time, Gudmundsson
et al. [6] and Spriggs et al. [12] proposed fast approximation algorithms.

Although to the best of our knowledge there is no study on minimum diam-
eter spanning trees for imprecise points, there is a considerable amount of work
concerning minimum cost spanning trees, where the cost is the sum of edge
lengths. Löffler and van Kreveld [9] proved that it is NP-hard to minimize the
cost of a spanning tree for imprecise points in intersecting disks or squares. The
problem is NP-hard even for disjoint disks [4] and for axis-aligned segments [3].

1.1 Our Results

Theorem 1. The minimum diameter of a spanning tree of n points each of
which is selected from a respective disk region can be computed in O(n9) time
for arbitrary disks and in O(n6) time for unit disks. If the disks are disjoint, the
required computation time decreases respectively to O(n8 log2 n) and O(n5).

Theorem 1 reveals a stark contrast: while for imprecise points a minimum diam-
eter spanning tree can be computed much faster than a minimum cost spanning
tree (polynomial run-time versus NP-hardness), the reverse is true for exact
points (almost cubic versus O(n log n) run-time). The difference in the imprecise
points model comes from the fact that there always exists a minimum diam-
eter spanning tree whose longest simple path consists of at most three edges
(monopolar or bipolar). Therefore, the diameter can be attained by at most four
disks, while the cost depends instead on all the n disks.

There are two main challenges for achieving this polynomial run-time. First,
although there are only linearly many monopolar tree topologies, the number of
bipolar tree topologies is exponential in the number of points. It is not clear how
to reduce the number of topologies to be considered without the exact locations
of points. Second, even for a fixed tree topology, it is unknown how to place
points in their respective disks efficiently in order to minimize the diameter.

For the first challenge, we use the arrangements formed by bisectors among
disks to prove that it is sufficient to consider O(n7) bipolar tree topologies. For
unit disks, we further show that it is sufficient to consider only O(n4) bipolar
tree topologies admitting a straight line separating the centers of the disks linked
to one pole from the centers of the disks linked to the other pole.

For the second challenge, we employ farthest-disk Voronoi diagrams for the
bipolar case and refined second-order farthest-disk Voronoi diagrams for the
monopolar case to analyze the locations of poles, and to compute optimum
locations for them. For disjoint disks, we develop a sequential search achieving a
faster run-time than in the intersecting case. For unit disks, we further improve
the run-time by computing farthest-disk Voronoi diagrams in a batch.

The paper is organized as follows. In Sect. 2 we introduce notation, defi-
nitions, and farthest-disk Voronoi diagrams. In Sects. 3 and 4 we respectively
compute optimal placements for monopolar and bipolar topologies. In Sect. 5
we develop the sequential search for disjoint disks and in Sect. 6 we discuss unit
disks.
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2 Preliminary

Let D = {D1, . . . , Dn} be a set of distinct disks in the plane with centers ci =
(hi, ki) and radius ri for 1 ≤ i ≤ n; we use C to denote the set of all centers.
A point set P = {p1, . . . , pn} is called placement if pi ∈ Di for 1 ≤ i ≤ n. For
a tree T , let δT denote its (Euclidean) diameter, and for a placement P , let δP

denote the diameter of its minimum diameter spanning tree. A placement P is
called minimum if δP is smallest among all placements. We say that D admits
monopolarity if there exists a minimum placement which ensures the existence
of a monopolar minimum diameter spanning tree. Throughout the paper, we
assume the intersection of all disks in D to be empty. Otherwise, the problem
can be solved trivially by selecting the same point in the intersection of all disks.

For a point x and a disk D, we define the distance d(x,D) between x and D
as miny∈D |xy|. Given a compact, connected subset A ⊂ R

2, we use clA and ∂A
to indicate respectively the closure and the boundary of A. The following two
facts indicate the run-time of two basic operations used in our computation and
implemented by the Newton-Raphson method.

Fact 1. For two disks Dp,Dq and an edge e that is a line segment or a circular
or hyperbolic arc, a point t ∈ cl e minimizing d(t,Dp)+d(t,Dq) can be computed
in O(1) time.

Fact 2. For two disks Dp,Dq and two circular arcs e1, e2, the points s ∈
cl e1, t ∈ cl e2 minimizing d(s,Dp) + |st| + d(t,Dq) can be computed in O(1)
time.

Farthest-disk Voronoi diagrams. For a set D of disjoint disks, the farthest-disk
Voronoi diagram FV(D) of D is a planar subdivision such that all points in a
region share the same farthest disk among D, and FVR(D,D) represents the
Voronoi region associated with a disk D ∈ D. The common boundary between
two Voronoi regions is called a Voronoi edge, and the common vertex among
more than two Voronoi regions is called a Voronoi vertex. A Voronoi region
FVR(D,D) consists of O(n) disjoint faces.

FV(D) can also be defined by bisectors among disks in D. For two disks D
and D′, their bisector B(D,D′) = {x ∈ R

2 | d(x,D) = d(x,D′)} partitions the
plane into two connected regions H(D,D′) = {x ∈ R

2 | d(x,D) < d(x,D′)} and
H(D′,D) = {x ∈ R

2 | d(x,D′) < d(x,D)}. We then have

FVR(D,D) =
⋂

D′∈D\{D}
H(D′,D) and FV(D) =

⋃

D∈D

∂FVR(D,D).

A Voronoi edge between FVR(D,D) and FVR(D′,D) is a part of B(D,D′).
Note that, if D and D′ intersect, B(D,D′) contains a two-dimensional face

corresponding to D ∩ D′, which makes the definition of FV(D) ambiguous. To
remove the ambiguity, we amend the bisector system as follows. If D′ ⊆ D, we
let H(D,D′) be R

2, and both B(D,D′) and H(D′,D) be empty. If D ⊆ D′,
the treatment is symmetric. Otherwise, let y, z be the two intersection points
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between ∂D and ∂D′; we redefine B(D,D′) as {x ∈ R
2 \ D ∩ D′ | d(x,D) =

d(x,D′)} ∪ yz. That is, we replace the part of B(D,D′) within D ∩ D′ with yz.
The sets H(D,D′) and H(D′,D) become the connected regions induced by the
resulting curve and containing their original parts.

The refined second order farthest-disk Voronoi diagram FV2(D) is generated
from FV(D) by further partitioning each non-empty FVR(D,D) with FV(D \
{D}). We use FVR2((D,D′),D) to denote the intersection between FVR(D,D)
and FVR(D′,D \ {D}). Then FV2(D) =

⋃

D,D′∈D ∂FVR2((D,D′),D), and all
points in FVR2((D,D′),D) share the same farthest disk D and the same second
farthest disk D′ in D. The following theorems provide structural and computa-
tional properties of FV(D) and of FV2(D).

Theorem 2. Both FV(D) and FV2(D) have O(n) faces, and FV(D) is a tree.

Theorem 3. FV(D) and FV2(D) can be computed respectively in O(n log2 n)
time and O(n2 log2 n) time. If D consists of unit disks, both FV(D) and FV2(D)
can be computed in O(n log n) time.

3 Monopolar Case

We consider the case where D admits monopolarity, and compute a minimum
placement P with a monopolar minimum diameter spanning tree T . The general
idea is to compute an optimum pole pi for each disk Di ∈ D, and select the one
resulting in the smallest δT . To minimize δT , for each disk Dj ∈ D \ {Di} it is
sufficient to place pj at the first intersection between −−→picj and Dj .

The following fact indicates that δT is determined by the first and second
farthest disks of pi, and relates pi to the refined second-order farthest Voronoi
diagram FV2(D). Using this fact, we prove that it is sufficient to consider the
location of pi either on ∂Di, or on an edge of FV2(D).

Fact 3. For a pole pi ∈ Di, it holds that

δT = d(pi,Dj) + d(pi,Dk),

where Dj and Dk are the first and second farthest disks of pi in D.

Lemma 1. If D admits monopolority, there exists a minimum placement with
a monopolar minimum diameter spanning tree T whose pole pi belongs to ∂Di

or FV2(D) ∩ Di.

Proof. Following the notation of Fact 3, it holds that pi ∈ FVR2((Dj ,Dk),D),
and we further let p′

i be the first intersection between ∂(FVR2((Dj ,Dk),D) ∩
Di) and −−→picj . Since Dj is the farthest disk for all points in pip′

i, the segment
pip′

i does not intersect Dj ; otherwise all disks contain the intersection point,
contradicting the assumption that the intersection of all disks is empty. Since
moving pi toward cj will not increase d(pi,Dj) + d(pi,Dk) unless pi enters Dj

(no matter whether pi belongs to Dk or not), replacing pi with p′
i results in a

placement satisfying the statement. Note that if FVR2((Dj ,Dk),D) ∩ Di = ∅,
then ∂(FVR2((Dj ,Dk),D) ∩ Di) = ∂Di. 
�
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By Lemma 1, for computing an optimal pole in Di, it is sufficient to consider a
planar graph formed by combining ∂Di with the edges of FV2(D)∩Di. For each
edge e of the planar graph, we find the optimum location of pi on cl e, and select
the one resulting in the smallest δT . We then conclude the following theorem.

Theorem 4. If D admits monopolarity, a minimum placement for D can be
computed in O(n2 log2 n) time, and in O(n2) time when D are all unit disks.

Proof. Consider a disk Di and an edge e of the planar graph induced by ∂Di and
(FV2(D) ∩ Di). If e ⊂ clFVR2((Dj ,Dk),D), by Fact 3, the optimum location
pi ∈ cl e minimizes d(pi,Dj) + d(pi,Dk). Furthermore, if e belongs to ∂Di,
then e is a circular arc; otherwise, e belongs to a bisector between two disks, and
consists of at most three parts, each of which is a line segment or a hyperbolic arc.
Therefore, by Fact 1 pi can be computed in O(1) time. By Theorem 2 the planar
graph has O(n) edges, and thus an optimal location pi ∈ Di can be computed
in O(n) time, resulting in overall O(n2) time for all n disks. Furthermore, by
Theorem 3 FV2(D) can be computed in O(n2 log2 n) time for general disks and
O(n log n) time for unit disks, leading to the statement. 
�

4 Bipolar Case

We now describe how to compute a minimum placement P in the case where
D does not admit monopolarity. It is known [7] that in this case there exists a
bipolar minimum diameter spanning tree T of P . Throughout this section, we
use pi ∈ Di and pj ∈ Dj to denote the two poles of T , and Di and Dj to denote
the disks of D\{Di,Dj} whose points in P are linked in T respectively to pi and
pj . We also call Di and Dj a pair of polar disks, and a configuration consisting
of Di, Dj , Di, and Dj a bipolar tree topology. If pi and pj are fixed, to minimize
δT , for each disk Dk ∈ Di and for each Dl ∈ Dj , it is sufficient to place pk and
pl such that d(pi, pk) and d(pj , pl) are minimized; that is, pk and pl are the first
intersections respectively between −−→pick and Dk and between −−→pjcl and Dl.

The idea of our algorithm is to compute a minimum placement P for
every pair of polar disks Di and Dj and every essential 2-partition Di,Dj of
D\{Di,Dj}, and select the one resulting in the minimum δT . We use the arrange-
ment generated by the bisectors among disks to show that, for a fixed pair of
polar disks, the number of essential 2-partitions to consider is O(n5) (i.e., O(n7)
topologies in overall). We then use FV(Di) and FV(Dj) to prove that there
exists a minimum placement where pi and pj lie on the boundaries of Di and
Dj , respectively, and to compute the optimum locations in O(n2) time, resulting
in an overall run-time of O(n9). These results rely on the following fact coming
from the “stability condition” of Ho et al. [7], i.e., a longest simple path of a
bipolar minimum diameter spanning tree contains the edge between two poles.

Fact 4. Given a bipolar minimum diameter spanning tree with poles pi ∈ Di

and pj ∈ Dj, it holds that

δT = d(pi,Dk) + |pipj | + d(pj ,Dl),
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where Dk and Dl are respectively the farthest disks of pi in Di and of pj in Dj.
Thus, pi belongs to FVR(Dk,Di) and pj belongs to FVR(Dl,Dj).

4.1 Bipolar Tree Topologies

In order to bound the number of bipolar tree topologies we look at the situation
where the poles pi, pj and the 2-partition Di,Dj are fixed. If Dk is the farthest
disk of pi in Di, by Fact 4 moving any disk D ∈ Dj satisfying d(pi,D) ≤ d(pi,Dk)
into Di will not increase δT . Therefore, it is sufficient to consider a bipolar tree
topology where Di contains every disk in D \ {Di,Dj} whose distance to pi is
at most d(pi,Dk) and Dj contains all the remaining ones.

More formally, for a pole pi ∈ Di we define a sequence (B1, B2, . . . , Bn−2) of
D \ {Di,Dj} to be the nearest ordered sequence of pi if Bm is the mth nearest
disk of pi in D \ {Di,Dj} for 1 ≤ m ≤ n− 2 (with ties broken arbitrarily). If the
farthest disk Dk of pi in Di is Bm, replacing Di with {B1, . . . , Bm} and Dj with
{Bm+1, . . . , Bn−2} (and moving the points in the placement accordingly) does
not increase δT . By this argument, once the pole pi is fixed (regardless of pj),
the number of different candidates for Di and Dj that need to be considered is
n − 2, i.e., Di = {B1, . . . , Bm} and Dj = {Bm+1, . . . , Bn−2} for 1 ≤ m ≤ n − 2.

As a result, for a pair of polar disks Di and Dj , if we could bound the total
number of different nearest ordered sequences of D \ {Di,Dj} for all points
pi ∈ Di by a polynomial in n, the number of bipolar tree topologies we would
need to consider is therefore equal to the polynomial times (n − 2). This poly-
nomial bound is proven in the following lemma using the arrangement formed
by bisectors among the disks in D \ {Di,Dj}.

Lemma 2. For a pair of polar disks Di and Dj it is sufficient to consider O(n5)
2-partitions, and those partitions can be enumerated in O(n5) time.

Proof. (Sketch) We consider the arrangement formed by the
(

n−2
2

)

bisectors
between all pairs of disks in D \ {Di,Dj}. Observe that all points in a face
of the arrangement share the same nearest ordered sequence of D \ {Di,Dj},
because there is no bisector passing through it. Since any two bisectors intersect
at most four times (even for modified bisectors), the arrangement has O(n4)
faces. Therefore, the total number of different nearest ordered sequences of D \
{Di,Dj} for all points in the plane is O(n4), and the number of 2-partitions
that need to be considered is O(n4) · (n − 2) = O(n5). The arrangement can be
computed in O(n4) time by incrementally inserting disks since the kth insertion
forms O((k−1)3) intersections. For each face of the arrangement intersecting Di,
we generate the corresponding nearest nearest order sequence and the (n − 2)
candidates for Di, resulting in a total run-time of O(n4) · (n − 2) = O(n5). 
�

4.2 Locations of an Optimum Placement

The following lemma employs FV(Di) and FV(Dj) to analyze the optimum
locations of pi ∈ Di and pj ∈ Dj for fixed Di and Dj .
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Lemma 3. If D does not admit monopolarity, there exists a minimum place-
ment with a bipolar minimum diameter spanning tree with poles pi ∈ Di and
pj ∈ Dj such that pi ∈ ∂Di and pj ∈ ∂Dj.

Proof. We assume that in a minimum placement pi and pj do not belong to
Di ∩Dj . Otherwise, by triangle inequality placing pi on pj results in a minimum
placement admitting a monopolar minimum diameter spanning tree. If pi �∈ ∂Di,
we move pi along the direction −−→pipj until we reach ∂Di. While moving pi, even
if its farthest disk Dk in Di changes, d(pi,Dk) + |pipj | will not increase, and
thus the diameter will not increase. If also pj �∈ ∂Dj , we move pj to ∂Dj in a
symmetric way without increasing the diameter, leading to this lemma. 
�

For a pair of polar disks Di and Dj and a 2-partition of D\{Di,Dj} into Di and
Dj , we compute a minimum placement as follows. We first compute FV(Di) and
FV(Dj) and use them to partition respectively ∂Di and ∂Dj into arcs. Then,
for each arc ak ∈ ∂Di \FV(Di) and each arc al ∈ ∂Dj \FV(Dj), we find a point
p′

i ∈ cl ak and a point p′
j ∈ cl al minimizing the corresponding diameter. Finally,

we select pi and pj as the pair p′
i and p′

j resulting in the smallest diameter.

Theorem 5. If D does not admit monopolarity, a minimum placement for D
can be computed in O(n9) time.

Proof. For each pair of polar disks Di,Dj we consider by Lemma 2 O(n5) 2-
partitions of D\{Di,Dj}. For each 2-partition Di,Dj , we compute by Theorem 3
FV(Di) and FV(Dj) in O(n log2 n) time. Since by Theorem 2 both diagrams have
O(n) edges, both ∂Di \ FV(Di) and ∂Dj \ FV(Dj) have O(n) arcs, and O(n2)
pairs of arcs will be dealt with. We process each pair of arcs by Fact 2 in O(1)
time and thus compute a minimum placement for fixed Di,Dj and Di,Dj in
O(n2) time. The total run-time is then O(n9). 
�

5 Disjoint Disks

Since the run-time is dominated by the bipolar case, the improvements presented
in Sects. 5 and 6 only consider the bipolar case. If the disks in D are pair-wise
disjoint, we propose a linear-time sequential search to compute a minimum place-
ment for fixed Di,Dj and Di,Dj , leading to O(n8 log2 n) run-time (dominated
by the construction of FV(Di) and FV(Dj)). The key observation in order to
obtain this improvement is that, for pi ∈ ∂Di and pj ∈ ∂Dj , a local minimum
placement is also a global minimum one.

We reformulate δT as a function of pi ∈ ∂Di and pj ∈ ∂Dj by parametrizing
pi and pj for two angles θi and θj such that pi = (ri cos θi +hi, ri sin θi +ki) and
pj = (rj cos θj + hj , rj sin θj + kj). By Fact 4, δT is attained by a path from pk

to pl passing through pi and pj , for some Dk ∈ Di and Dl ∈ Dj depending on
the locations of pi and pj . Thus, we define a periodic function

fk,l(θi, θj) = d(pi,Dk) + |pipj | + d(pj ,Dl) = |ckpi| + |pipj | + |pjcl| − rk − rl,



388 C.-H. Liu and S. Montanari

FVR(Dk )

FVR(Dk)

FVR(Dk )

FVR(Dl )

FVR(Dl)FVR(Dl)

pi

pj

ak

ak
ak al

al

al

fk,l

(θi, θj)
fk,l

fk,l

fk ,l

fk ,l

fk ,l

fk ,l

fk ,l

fk ,l

Fig. 1. Geometric interpretation of the functions fk,l for a pair of disks Di and Dj .

representing the length of such a simple path. Then, regardless of the locations
of pi and pj , we can express δT as a function

f(θi, θj) = max
Dk∈Di,Dl∈Dj

fk,l(θi, θj).

The following lemmas indicate that a local minimal point of fk,l is a global
minimum one, and that the same property also holds for f .

Lemma 4. If fk,l has a local minimum at θi and θj, the point is also a global
minimum.

Lemma 5. If f has a local minimum at θi and θj, the point is also a global
minimum.

Proof. Assume that f has a global minimum at θ′
i and θ′

j . Let Dk and Dk′ be
the farthest disks respectively of pi and p′

i in Di, and Dl and Dl′ be the farthest
disks respectively of pj and p′

j in Dj . By Lemma 4, the definition of f , and the
fact that f has a global minimum at θ′

i and θ′
j , it holds that

fk,l(θi, θj) ≤ fk,l(θ′
i, θ

′
j) ≤ fk′,l′(θ′

i, θ
′
j) ≤ fk,l(θi, θj).

Thus, fk,l(θi, θj) = fk′,l′(θ′
i, θ

′
j) and f has a global minimum at θi, θj . 
�

Corollary 1. If f has a local minimum at θi for fixed θj (resp. at θj for fixed
θi), the point is also a global minimum for fixed θj (resp. for fixed θi).

We re-interpret f geometrically to present the sequential search as follows. We
view (θ, φ, fk,l(θ, φ)) as a point in three dimension, so that fk,l is a 3D surface,
and f is the upper envelope of all fk,l. If we assign different colors to different fk,l,
the vertical projection of f onto the xy-plane is a planar subdivision consisting
of axis-parallel rectangles, where each rectangle is associated with a function fk,l

such that fk,l(θi, θj) = f(θi, θj) if (θi, θj) belongs to the rectangle. Therefore,
a point (θi, θj) in a rectangle associated with a function fk,l corresponds to a
point pi on the arc ak = FVR(Dk,Di) ∩ ∂Di and a point pj on the arc al =
FVR(Dl,Dj)∩∂Dj . Searching the minimal point of fk,l inside the corresponding
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rectangle is equivalent to searching the minimum δT for a pair of poles, pi and
pj on the corresponding arcs. Figure 1 illustrates the geometric interpretation.

We can sequentially search the rectangles until we find a point (θi, θj) with
minimum f(θi, θj). We begin with an arbitrary rectangle and compute the min-
imal value inside it, i.e., the minimum δT achieved by a pair of points on the
corresponding arcs. If the minimal point occurs in the interior of the rectangle,
by Lemma 5 we have found a global minimum. Otherwise, we compute the mini-
mum values for the at most three other rectangles adjacent to the minimal point
and select the smallest one. If the smallest value of the selected adjacent rec-
tangle is not smaller than that of the previous one, then the previous point was
a global minimum. Otherwise, we continue searching in the selected rectangle.
The following lemma indicates the run-time of this sequential search. Note that
the geometric interpretation is presented only for easier understanding; we do
not construct the corresponding planar subdivision due to its quadratic size.

Lemma 6. For fixed Di,Dj and Di,Dj, a pair of poles pi ∈ ∂Di and pj ∈ ∂Dj

with minimum δT can be computed in O(|∂Di \FV(Di)|+ |∂Dj \FV(Dj)|) time.

Proof. Moving from one rectangle to the next one, at least one of the correspond-
ing arcs is replaced with its adjacent arc. By Corollary 1, if we leave one arc it
will not be considered again. Therefore, the number of pairs of tested arcs (i.e.,
tested rectangles) is O(|∂Di \ FV(Di)| + |∂Dj \ FV(Dj)|). By Fact 2 a solution
for a pair of arcs can be computed in O(1) time, concluding this lemma. 
�

Since O(|∂Di \ FV(Di)| + |∂Dj \ FV(Dj)|) = O(n), the time for computing a
minimum placement for fixed Di,Dj and Di,Dj is bounded by the O(n log2 n)
construction time of FV(Di) and FV(Dj). There are O(n2) pairs of disks and we
consider O(n5) topologies per pair, resulting in the following overall run-time.

Theorem 6. If all disks are pairwise disjoint, a minimum placement for D can
be computed in O(n8 log2 n) time.

6 Unit Disks

If all disks in D are unit, we improve the run-time to O(n6) for the intersect-
ing case and to O(n5) for the disjoint case. We obtain these improvements by
reducing the number of bipolar topologies that need to be considered, and by
decreasing the overall time required to compute all the Voronoi diagrams.

6.1 Separable Bipolar Tree Topologies

The key property for reducing the number of bipolar tree topologies to be con-
sidered is proven by the following lemma.

Lemma 7. If all disks in D are unit, there exists a minimum placement admit-
ting a bipolar minimum diameter spanning tree with poles pi ∈ Di and pj ∈ Dj

such that the centers of Di and the centers of Dj can be separated by a straight
line, or admitting a monopolar minimum diameter spanning tree.
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Proof. Consider a minimum placement P for D with a bipolar minimum diam-
eter spanning tree T whose poles are pi ∈ Di and pj ∈ Dj . We modify Di and
Dj to satisfy the statement without increasing δT . Let Bi and Bj denote the
smallest balls centered respectively at pi and pj and enclosing respectively the
centers of Di and Dj . Let Ri and Rj be the radii of Bi and Bj , respectively.

If Ri < 1, all disks in Di contain pi, and all points for Di are placed on pi, so
the distance between pi and its farthest disk in Di is 0; if Ri ≥ 1, such distance is
Ri − 1. Hence we can reformulate this distance as max{Ri − 1, 0}. By symmetry
for Rj and Fact 4, it holds that δT = max{Ri − 1, 0} + max{Rj − 1, 0} + |pipj |.

If Bi and Bj do not intersect or are tangent, the first statement trivially
holds. Otherwise, we distinguish the relation between Bi and Bj into two cases.

If Bj ⊂ Bi, for all disks Dl ∈ Dj , we replace pl ∈ Dl with the first intersection
between −−→picl and Dl and link pl to pi instead of pj . These operations result in a
monopolar spanning tree whose diameter is not greater than δT , leading to the
second statement. The symmetric holds if Bi is completely contained inside Bj .

If Bi ∩ Bj �= ∅ but neither ball is completely contained inside the other,
we construct another minimum placement for D admitting a bipolar minimum
diameter spanning tree satisfying the first statement as follows. Let L be the
line passing through the two intersections between ∂Bi and ∂Bj , and Hi and
Hj be the two connected regions of R2 separated by L, where Bi \ Bj ⊂ Hi and
Bj \ Bi ⊂ Hj . We move each Dk ∈ Di whose center ck belongs to Hj from Di

to Dj , and move each disk Dl ∈ Dj whose center cl belongs to Hi from Dj to
Di. Since all centers of the moved disks belong to Bi ∩ Bj , the movement will
not increase neither Ri nor Rj , leading the first statement. 
�

An essential 2-partition of D \ {Di,Dj} thus corresponds to a 2-partition of the
centers C \ {ci, cj} that can be separated by a straight line. The following well-
known lemma implies that, for a pair of polar disks Di and Dj , the number of
2-partitions to be considered is O(n2), and they can be computed in O(n2) time.

Lemma 8. For a set S of n points, there are O(n2) 2-partitions of S into S1

and S2 such that there exists a line separating S1 and S2, and those 2-partitions
can be generated in O(n2) time.

6.2 Computing Farthest Voronoi Diagrams in a Batch

To further improve the run-time, for a fixed pair of polar disks Di,Dj we compute
all O(n2) diagrams FV (Di) and FV (Dj) in a batch. Since for unit disks it holds
that FV(D) = FV(C), we can use two well-known facts: the farthest-site Voronoi
diagram of n point sites can be computed in O(n) time if their convex hull is pre-
computed [1], and we can dynamically update convex hulls in O(log2 n) time [11].
To apply these facts, we first generate a tour of all the 2-partitions such that any
two consecutive 2-partitions differ by one disk. This tour is computed in O(n2)
time by applying the central point-line duality on C \ {ci, cj}, and its length is
O(n2). We then construct the convex hulls of the two sets of centers in the first
2-partition and start following the tour. When moving from a 2-partition to the
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next one, we update the convex hulls by inserting one center point into one hull
and deleting it from the other one in O(log2 n) time. While visiting a 2-partition,
we compute the two farthest-site Voronoi diagrams from the respective hulls in
O(n) time. Since there are O(n2) 2-partitions, we conclude the following lemma.

Lemma 9. If D are all unit disks, for a pair of polar disks Di and Dj all the
O(n2) 2-partitions of D \ {Di,Dj} satisfying Lemma 7 and the corresponding
farthest-disk Voronoi diagrams can be computed in O(n3) time.

For a pair of polar unit disks Di and Dj , we find a minimum placement by com-
puting all the O(n2) 2-partitions of D\{Di,Dj} together with the corresponding
farthest Voronoi diagrams in O(n3) time. For each 2-partition, a minimum place-
ment can be found in O(n2) and O(n) time respectively for intersecting and for
disjoint disks, leading to O(n3) and O(n4) time respectively for a pair of polar
unit disks. Thus, we conclude the following overall run-time.

Theorem 7. If all disks in D are unit, a minimum placement can be computed
in O(n6) time and O(n5) time respectively for intersecting and for disjoint disks.

References

1. Aggarwal, A., Guibas, L.J., Saxe, J.B., Shor, P.W.: A linear-time algorithm for
computing the voronoi diagram of a convex polygon. Discrete Comput. Geom. 4,
591–604 (1989)

2. Chan, T.M.: Semi-online maintenance of geometric optima and measures. SIAM
J. Comput. 32(3), 700–716 (2003)

3. Disser, Y., Mihalák, M., Montanari, S., Widmayer, P.: Rectilinear shortest path
and rectilinear minimum spanning tree with neighborhoods. In: Fouilhoux, P.,
Gouveia, L.E.N., Mahjoub, A.R., Paschos, V.T. (eds.) ISCO 2014. LNCS, vol.
8596, pp. 208–220. Springer, Heidelberg (2014)

4. Dorrigiv,R., Fraser, R.,He,M.,Kamali, S., Kawamura,A., López-Ortiz, A., Seco,D.:
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Abstract. We present algorithms for classifying trajectories based on a
movement model parameterized by a single parameter, like the Brownian
bridge movement model. Classification is the problem of assigning tra-
jectories to classes of similar movement characteristics. For instance, the
set of trajectories might be the subtrajectories resulting from segment-
ing a trajectory, thus identifying movement phases. We give an efficient
algorithm to compute the optimal classification for a discrete set of para-
meter values. We also show that classification is NP-hard if the parameter
values are allowed to vary continuously and present an algorithm that
solves the problem in polynomial time under mild assumptions on the
input.

1 Introduction

Recent advances in tracking technology lead to increasing amounts of movement
data. For instance, animals, vehicles, and people are tracked to analyze their
movement. Movement data is typically recorded as a sequence of time-stamped
positions, called a trajectory. To analyze these data requires efficient algorithms,
a task addressed by the emerging field of computational movement analysis [7].

Here we study the fundamental analysis task of classifying trajectory data.
Classification asks to group trajectories (or trajectory pieces) into classes of sim-
ilar trajectories. That is, a classification of a set of trajectories T is a partition of
T into disjoint classes. If the trajectories correspond to periods of homogeneous
behaviour (e.g. they are the segments produced by a segmentation algorithm),
the classification can detect when behavioural states recur.

Our Approach. The motivation for classification is typically to make inferences
about the underlying movement process. Hence it is only natural to take a sta-
tistical perspective on this analysis tasks: As we describe in more detail below,
we see trajectory classification as fitting a parameterized movement model to
the data. Taking such an approach is essential when designing algorithms for
applications –as in ecology– that use movement data in a statistical analysis.

In ecology, movement models are used to infer a continuous motion from dis-
crete samples of the movement path. Mostly random movement models, like the
Brownian bridge movement model (BBMM) [3,5,9] and variants of it, e.g. [11],
Lévy walks [10] and behavioural change point analysis [8] are used.

In these movement models, a link l, i.e. the part of the trajectory between
two consecutive observations, has an associated log-likelihood function Ll(x) as
c© Springer-Verlag Berlin Heidelberg 2015
K. Elbassioni and K. Makino (Eds.): ISAAC 2015, LNCS 9472, pp. 393–403, 2015.
DOI: 10.1007/978-3-662-48971-0 34
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a function of the model parameter x, indicating how well the model fits the
data for each possible value of x. The log-likelihood of a parameter value x for a
trajectory τ is given by Lτ (x) =

∑

l∈τ Ll(x). A classification C has an associated
log-likelihood, which is defined as LC =

∑

C∈C
∑

τ∈C Lτ (x(C)). That is, the log-
likelihood of each class C is the sum over the log-likelihoods of its elements (i.e.,
trajectories) τ , evaluated at the parameter value x(C) assigned to C. The log-
likelihood of C is the sum of the log-likelihoods of the classes. Our algorithms
assume that the log-likelihood functions are bitonic. We think this assumption
is justified, since only bitonic log-likelihood functions are encountered with the
movement models used in practice.

We could now define an optimal classification as one that maximizes the log-
likelihood, but then it would be optimal to put each trajectory into its own class,
resulting in the largest possible number of degrees of freedom for the model. One
solution is to fix the number of classes, but typically the number of classes is
not known beforehand. To determine a good number of classes an information
criterion like the Bayesian information criterion (BIC) can be used [8,11].

To facilitate multi-scale analysis, we use a more general notion of an infor-
mation criterion (IC) to define the optimal classification. An IC assigns a value
to each classification based on its likelihood and the complexity of the model
(that is, the number of classes). In particular we consider ICs of the form
IC(C) = −2LC + |C| · p, where LC is the log-likelihood of the model instance
and |C| is the number of classes. The number p is a penalty factor for adding
complexity to the model that counteracts overfitting. We now define an optimal
classification to be one that minimizes the value of the IC. p may be chosen
simply as log k to obtain the BIC, where k is the number of trajectories, or one
may use a stability diagram [1] to select a good value. Our algorithms can be
adapted to produce stability diagrams.

Problem Statement. Given a set of trajectories T , an optimal classification
Copt is the classification {C1, . . . , C�} and selection of model parameters for the
classes x(Ci), 1 ≤ i ≤ �, that achieves the minimum value for the information
criterion among all classifications and parameter values for T . Our goal is to
compute optimal classifications. Note that an optimal classification asks both
for the choice of classes and their model parameters.

Related Work. In movement ecology, classification algorithms have been used
to identify behavioural states from acceleration data [14,15]. Also, criteria-based
segmentation can be used for classification, by using multiple criteria, one for each
class. This setting has been successfully applied to data of migrating geese [4].
This work extends our previous work [2] where we use a model-based approach
for trajectory segmentation and classification.

Similar problems are studied for time series data such as audio. However,
the nature and models of these data differ from ours. It would be interesting
to explore whether our approach can be extended to these by appropriate mod-
elling.
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Results and Overview. First we consider a discrete setting where we assume
that the parameter values are drawn from a finite set of candidate values and
that the log-likelihood functions are given by listing the values they take on
these. We give a dynamic programming algorithm for this case in Sect. 2. Next
we consider the case where the parameter values are drawn from a continuous
domain D, which is usually an interval on the real line. Here, we first show that
the decision problem becomes NP-hard in Sect. 3. Then, we give a polynomial
time algorithm under mild assumptions on the input in Sect. 4.

Figure 1 shows an example of our method. Two movement tracks, collected
from a fisher (animal) [12,13], were segmented based on the BBMM [2]. Each
trajectory produced 5 segments, and these 10 segments were given as input to the
discrete classification algorithm, which was implemented in R, again using like-
lihoods based on the BBMM and using the BIC penalty factor. This resulted in
two classes, indicating that the animal was alternating between just two behav-
ioural states.

Fig. 1. Examples of classification of fisher tracks. Classes indicated by colour (Color
figure online).

Preliminaries. We assume a trajectory τ is given by a sequence of n time-
stamped positions. When classifying a set of trajectories T , we use � to denote
the number of classes and C1, . . . , C� ⊆ T to denote the classes. Each class
Ci is assigned a value of the model parameter x(Ci). Each trajectory τi ∈ T
has an associated log-likelihood function Li(x), which is the sum of the log-
likelihood functions of the links in τi. We assume that the log-likelihood functions
Li are bitonic, i.e. that they have one maximum and are increasing before that
and decreasing after. We also assume w.l.o.g. that the functions are given in
increasing order by the parameter value at which they reach their maximum.
That is, if we define Mi := arg maxx(Li(x)), then i < j ⇒ Mi ≤ Mj . We
represent a classification C for L1, . . . , Lk by an array of length k where C[i] is the
parameter value that the classification assigns to the class of Li, or C[i] = nil if C
is a partial classification that does not classify Li. For the discrete classification,
we assume we are given a set of model parameters {x1, . . . , xm} in sorted order.
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2 Dynamic Programming for Discrete Parameter

First we present a dynamic programming algorithm for the case that a discrete
set of parameter values is given. A natural approach would be to process the
trajectories in the order they are given. However it is not necessarily the case
that if Mi < Mj that this order is also reflected in the classes they are associated
with. Figure 2 shows an example. However, we can use the following property to
efficiently compute the optimal classification.

x1 x2

L1

L2 L3

L4

Fig. 2. An optimal classification may not respect the order in which trajectories obtain
their maximum likelihood. For low penalty factors, there will be two classes C1 =
{L1, L3} and C2 = {L2, L4} with x(C1) = x1 and x(C2) = x2.

Observation 1. Let x(C1) < · · · < x(C�) be the parameter values assigned to
the classes in an optimal classification. Then only classes Cj and Cj+1 need to
be considered for a trajectory that reaches its maximum likelihood in the interval
[x(Cj), x(Cj+1)), by the bitonicity of the log-likelihood function. In particular if
we know that some x(Ci) is selected then x(Cj) with j < i does not depend on
any of the trajectories with maximum larger than or equal to x(Ci).

Using this observation, the optimal classification can be efficiently computed.
For a problem instance (L1, . . . , Lk), (x1, . . . , xm), add dummy values x0 := −∞
and xm+1 := ∞. Let Li,j := {Ll ∈ {L1, . . . , Lk} | xi ≤ Ml < xj}, with 0 ≤ i <
j ≤ m+1, denote the set of functions that reach their maximum value between xi

and xj . For i ∈ {1, . . . , m}, let Opti = {C1, . . . , C�} be the optimal classification
of L0,i, conditioned on x(C�) = xi, even if C� is empty. Let Ci denote the complete
classification that is obtained from Opti by assigning all trajectories in Li,m+1

to C�. The following lemma suggests a means to efficiently compute Opti.

Lemma 2. Opti consists of an optimal classification of L0,j for some j ∈
{0, . . . , i − 1} extended with a class with parameter value xi, by assigning each
trajectory in Lj,i the parameter value xj or xi that has the highest log-likelihood.

Proof. Let x(C1) < · · · < x(C�−1) < x(C�) = xi be the parameter values for the
classes in Opti. If � = 1, all trajectories are assigned to one class, which we view as
an extension of the empty classification Opt0. Otherwise x(C�−1) = xj for some
j < i, since the parameter values come from {x1, . . . , xm}. By Observation 1,
Opti consists of an optimal classification of L0,j (that uses xj), i.e. Optj , and
the trajectories in Lj,i are independently assigned to either C�−1 or C�. ��
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DiscreteClassification((L1, . . . , Lk), (x1, . . . , xm))

1 Opt0 ← An array of length n with all elements set to nil
2 C ← An arbitrary (complete) classification of L1, . . . , Lk

3 for i ← 1 to m
4 do for j ← 0 to i − 1
5 do Oj ← Optj
6 for Ll ∈ Lj,i

7 do Oj [l] ← arg max
x∈{xj ,xi}

(Ll(x))

8 Opt i ← arg min
{Oj |0≤j<i}

ICi(Oj)

9 Ci ← Opt i with all nil s replaced by xi

10 f IC(Ci) < IC(C)
11 then C ← Ci

12 return C

Algorithm 1. Discrete classification.

See Algorithm 1 for the pseudocode of the algorithm. IC is the function that
computes the value of the information criterion for a given (partial) classification.
ICi computes the IC under the assumption that xi is used, even if no trajectory
has been assigned to xi. We do this to take into account that we assign the
remaining trajectories to xi in the next step. Comparing values of the IC for
partial classifications is useful only if they assign values to exactly the same
trajectories, as is the case for all Oj in a single iteration of the algorithm.

Theorem 3. Algorithm1 computes the optimal classification of k trajectories
with respect to an information criterion in O(km2) time and O(mk) space, where
m is the number of candidate parameter values.

Proof. For the correctness observe that the optimal classification C is one of the
{Ci | 1 ≤ i ≤ m} computed by the algorithm: Let xi be the largest value that is
selected in C. Then all trajectories in Li,m+1 are assigned to xi, and the other
trajectories are assigned according to an optimal classification of L0,i conditioned
on using xi, i.e. Opti. This is exactly the Ci computed in the algorithm.

The runtime and space use are as follows. The outer loop has m iterations.
The middle and inner loops have O(m) and O(k) iterations respectively. These
middle and inner loops with all the operations in them take O(mk) time. Com-
puting the IC of O(m) classifications, each of size k, takes O(mk) time too, and
all the other operations need less time than that, so the running time of the
algorithm is O(km2). At any time, the algorithm stores O(m) (partial) classifi-
cations, each of size k, leading to a space use of O(mk). ��

By reusing values computed in previous iterations of the outer loop, the
running time can be improved to O(m2 + mk(log m + log k)).
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3 NP-hardness for Continuous Parameter

We briefly sketch a reduction from Set Cover, showing that the decision version
of continuous classification is NP-hard. Let S = {S1, . . . , Sn} be a family of
subsets of a universe U = {1, . . . , m} such that

⋃n
i=1 Si = U , and assume that

an integer k < n is given. Given this instance of Set Cover, we construct a
set of log-likelihood functions, a penalty factor p and a constant c such that a
classification C with IC(C) ≤ c exists if and only if S has a cover of size ≤ k.

For each i ∈ U , we construct a pair of log-likelihood functions, L−
i and L+

i ,
over the domain [0, 2n), which encode for each subset of S whether it covers i. The
sum of all these functions is the number of elements covered by the subsets under
consideration. Furthermore there are two likelihood functions which encode the
number of subsets selected. Only if a cover of size ≤ k exists, there is a value x
in the domain such that a single class with parameter value x has a sufficiently
large log-likelihood. A large penalty factor prevents using two or more classes.

4 Polynomial-Time Algorithm for Realistic Inputs

We now present an algorithm that runs in polynomial time for realistic inputs.
For reasonably homogeneous trajectories (and a standard movement model) the
likelihood functions are sufficiently smooth. In this case the number of classifi-
cations we need to consider reduces; essentially, this is because the reordering
illustrated in Fig. 2 does not happen too often. At the end of this section, we
give the precise assumptions we need to make on the likelihood functions.

For a set of input functions L := {L1, . . . , Lk}, let Opti denote the optimal
classification with exactly i classes. Assume that we can optimize the value of
the model parameter and compute the log-likelihood for a fixed class of size n
in F (n) time. Let Ci

j denote the jth class in Opti (sorted by parameter value).
The algorithm iteratively computes Opti+1 from Opti, for i ∈ {1, . . . , k − 1}.

There is only one classification with one class (ignoring the parameter value), so
Opt1 = {C1

1} = {{L1, . . . , Lk}}. x(C1
1 ) can be computed in O(F (k)) time.

xi
j be a shorthand notation for x(Ci

j). Recall that a classification is stored in
an array specifying for each function the parameter value of the class to which it
is assigned. Recall that Mi is the parameter value at which function Li reaches
its maximum likelihood. In constructing Opti+1, we use the following properties,
where Ci

0 and Ci
i+1 are empty dummy classes:

Lemma 4. Let Opti = {Ci
1, . . . , C

i
i} and Opti+1 = {Ci+1

1 , . . . , Ci+1
i+1} be the

optimal classifications of a set of functions L = {L1, . . . , Lk} with i and i + 1
classes respectively. Let x(Ci

0) := M1 and x(Ci
i+1) := Mk. Then, the jth class of

Opti+1 has a smaller parameter value than the jth class in Opti, but no smaller
than the j − 1th class in Opti. That is,

∀j ∈ {1, . . . , i + 1} : xi
j−1 ≤ xi+1

j ≤ xi
j .
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Lemma 5. Functions shift to a class with a larger index as the number of classes
increases, but no more than one class at a time. That is,

∀j ∈ {1, . . . , k} : Lj ∈ Ci
m ⇒ Lj ∈ Ci+1

m ∪ Ci+1
m+1 .

Proof. Consider a function Ll ∈ Ci
m. Then, Ml ∈ (xi

m−1, x
i
m+1) and Ll(xi

m−1) ≤
Ll(xi

m) ≥ Ll(xi
m+1), and the first inequality is strict if Ml < xi

m. If Ml ≥ xi+1
m ,

Ll �∈ Ci+1
p with p ≤ m− 1 by Observation 1. If Ml < xi+1

m , Ll(xi+1
m ) ≥ Ll(xi

m) >

Ll(xi
m−1) ≥ Ll(xi+1

p ) for any p ≤ m − 1 by Lemma 4 and thus Ll /∈ Ci+1
p .

Similarly, Ll /∈ Ci+1
p for any p > m + 1 and thus Ll ∈ Ci+1

m or Ll ∈ Ci+1
m+1. ��

When Opti is computed, we can use it to compute Opti+1. By Lemmas 4
and 5, a function can be in one of only two classes of Opti+1 and the parameter
value xi+1

j for a class Ci+1
j must be in a particular interval [xi

j−1, x
i
j ].

For a function Ll ∈ Ci
j , whether Ll ∈ Ci+1

j or Ll ∈ Ci+1
j+1 is determined by the

parameter values xi+1
j and xi+1

j+1 for these classes. The parameter values for two
consecutive classes can be represented as a point inside a rectangle Ri

j ⊆ D2:
(

xi+1
j , xi+1

j+1

)

∈
[

xi
j−1, x

i
j

]

×
[

xi
j , x

i
j+1

]

=: Ri
j .

Let Pl := {(p, q) ∈ D2 | Ll(p) = Ll(q) ∧ p < q} be the set of points that
represent pairs of parameter values at which Ll has the same value. If Ll is
continuous and strictly bitonic (i.e. strictly increasing and decreasing), Pl is a
bimonotone continuous curve that separates the region {(x, y) ∈ D2 | x < y}
into two parts. For any point (p, q) in the region below Pl, we have Ll(p) < Ll(q).
Thus, if the two candidate classes for Ll have parameter values xi+1

j and xi+1
j+1,

and (xi+1
j , xi+1

j+1) lies below Pl, then Ll is in Ci+1
j+1 rather than Ci+1

j . Similarly,
if (xi+1

j , xi+1
j+1) lies above Pl, then Ll is in Ci+1

j . These curves are illustrated in
Fig. 3. If Ll is not strictly bitonic or discontinuous at a finite number of points,
Pl is not a well-defined Jordan curve. In this case, we relax the definition of Pl to
be the continuous, bimonotone curve separating the region with Ll(p) < Ll(q)
from that with Ll(q) ≤ Ll(p) (note that the latter inequality is no longer strict).
This curve always exists and suffices to find the optimal classification.

If the intersection of Pl with Ri
j for some Ll ∈ Ci

j is empty, Ll is assigned to
a fixed class in Opti+1 regardless of the choice of parameter values. Otherwise,
Pl divides Ri

j into two contiguous regions: one in which Ll ∈ Ci+1
j and one in

which Ll ∈ Ci+1
j+1. We first show how to compute Opt2 from Opt1 using these

curves, then how to generalize this to arbitrary i.

Computing Opt2. The set {P1, P2, . . . , Pk} defines an arrangement of curves
A. This is illustrated in Fig. 3. Let A1

1 be the part of A inside R1
1. Each face

of A1
1 defines a partition of C1

1 = {L1, L2, . . . , Lk} into two classes, fixing the
structure of the classification.

Lemma 6. One of the faces f in A1
1 represents Opt2, in the sense that C2

1 =
{Ll | Pl lies below f} and C2

2 = {Ll | Pl lies above f}.
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xp q

L1

L2

(a)

x2
1

x2
2

p

q

P2

P1

(b)

Fig. 3. A pair of log-likelihood functions L1, L2 (a) and the arrangement A induced
by the curves P1, P2 (b). Both functions have L(p) = L(q), and thus the arrangement
has a vertex at (p, q). A has 5 faces, with the shaded faces corresponding to the same
classification C2

1 = {L1}, C2
2 = {L2}.

Proof. By Lemma 4 and the definition of R1
1, we know that p := (x2

1, x
2
2) ∈

R1
1. Let f be the face of A1

1 that contains p. If Opt2 is not the classification
represented by f there is a function Ll such that Ll ∈ C2

1 , but p lies below Pl

or vice versa. However, if p is below Pl, Ll(x2
1) < Ll(x2

2) and the classification
is improved by assigning Ll to C2

2 , contradicting the optimality of Opt2. Thus,
the classification represented by f is precisely Opt2. ��

For each face, the parameter values of the two classes are optimized separately
and the resulting classification with the highest likelihood is selected as Opt2.

Computing Opt i (i > 2). In computing Opt3 from Opt2 (or generally Opti+1

from Opti for i ≥ 2), we have to deal with the fact that both A2
1 and A2

2 produce
candidates for subsets of C3

2 . We could consider each pair of faces (f1, f2) ∈
A2

1 × A2
2 and optimize parameter value for the three classes represented by f1

and f2, but that does not generalize to arbitrary i, since we would have to
consider every i-tuple of faces in Ai

1 × Ai
2 × · · · × Ai

i, which is exponential in i.
Instead, the optimal classification can be computed by computing a longest

path on a polynomial-size directed acyclic graph Gi. The vertices of Gi are
organized in i+2 levels, with a source vertex r at level 0 and a target vertex t at
level i+1. For each face in Ai

j , Gi has a vertex at level j representing it. A vertex
v at level j, or face in Ai

j , corresponds to a partition of Ci
j into two parts, say

λv and ρv, which are candidates to become part of Ci+1
j and Ci+1

j+1 respectively.
For each j ∈ {0, . . . , i}, Gi contains an edge from each vertex at level j to each
vertex at level j + 1. See Fig. 4 for an illustration of this construction.

An edge from a vertex u at level j − 1 to a vertex v at level j fixes a set of
functions ρu ∪ λv that is a candidate for Ci+1

j , with ρr = λt = ∅, i.e. r and t do
not contribute to Ci+1

1 or Ci+1
i+1 . For the candidate class represented by an edge,

the parameter value is optimized and its log-likelihood is set as the edge weight.
An r–t path in Gi visits exactly one vertex at each level, and this path

represents a particular classification, with each edge corresponding to a class.



Model-Based Classification of Trajectories 401

M1 M8

M1

M8

R1
1

R2
2

R2
1

(x1
1, x

1
1)

(x2
2, x

2
2)

(x2
1, x

2
1)P1

P2
P3

P4

P5

P6

P7

P8

fu

fv

(a) A set of curves and their arrangement.

Level 1 Level 2 3leveL0leveL

tr

u

v

(b) The graph G2.

Fig. 4. Illustration of the algorithm for a set of curves. The coloured path through
u and v represents the coloured faces fu ⊆ R2

1 and fv ⊆ R2
2, yielding a candidate

for Opt3 with C1 = {L1, L4}, C2 = {L2, L3, L5, L6} and C3 = {L7, L8} (Color figure
online).

The log-likelihood of the classification is the sum of the weights of the edges in
the path, i.e. the path’s length.

Lemma 7. Opti+1 corresponds to the longest r–t path in Gi.

We omit the proof for space reasons, but note that an optimal classification
must correspond to an r–t path using similar reasoning to the proof of Lemma 6.

The use of A and Gi is illustrated in Fig. 4. For the value of x1
1, the shaded

rectangle is R1
1. Suppose that the parameter values for Opt2 are (x2

1, x
2
2) at the

big red dot. Then C2
1 = {L1, L2, L4, L5} and C2

2 = {L3, L6, L7, L8}, i.e. the
curves lying below and above this point. The red rectangles are R2

1 and R2
2 and

the graph G2 has six vertices at level 1 corresponding to the six faces of A2
1 and

five vertices at level 2. A path through G2 corresponds to selecting one face in
each of the rectangles, thus fixing the classification.

Analysis. A has O(sk2) faces, where s is the maximal number of intersections
between a pair of curves in A. Thus, a trivial bound on the complexity of Gi

is obtained by observing that each level of Gi has at most O(sk2) vertices and
thus the number of vertices in Gi is O(sk3). A more careful analysis shows that
Gi has O(sk2) vertices and O(s2k4) edges.

The curves Pi and the arrangement A can be computed in O(kλs+2(k))
time [6], where λs(n) is the maximum length of an (n, s) Davenport-Schinzel
sequence and the constant in the big-O notation depends on the input functions.
The algorithm described in [6] requires that the following operations can be
performed efficiently on the curves:
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1. Find the intersection points of two curves.
2. Given a vertical line segment, find its highest and lowest intersections with a

curve.
3. Determine the relative order of two points on a curve using some parameter-

ization.
4. Given a curve, find its points of vertical tangency.

Using a tilted coordinate system with the x-axis parallel to the line y = −x
and the y-axis parallel to y = x, all functions are strictly x-monotone without
any points of “vertical” (parallel to the tilted y-axis) tangency. Thus 3. and 4.
become trivial and every curve has only one intersection with any “vertical” line
segment. The complexity of operations 1 and 2 depends on the nature of the
log-likelihood functions. If these operations can be done efficiently, we can also
decide efficiently whether a particular point lies above or below a specific curve.

Then, to compute Opti+1 from Opti we need to compute Ai
1, . . . ,Ai

i, i.e.
the intersection of A with the rectangles Ri

1, . . . ,Ri
i. In particular, we need to

know which faces of A intersect each rectangle to construct Gi. This step can
be performed in O(sk2) time using a depth-first search on the dual graph of A.

Computing the length of an edge in Gi is assumed to take O(F (n)) time,
where n is the size of the class represented by the edge. Then, computing all
edge lengths takes O(s2k4F (k)) time. Since Gi is a DAG, the longest path can
be computed in O(|V | + |E|) = O(s2k4) time.

Thus, given Opti and A, computing Opti+1 takes O(s2k4F (k)) time. To find
the optimal classification, we have to compute all classifications up to Optk and
select the one among those with minimum IC for the given penalty factor.

Theorem 8. The optimal classification of k trajectories can be computed in
time O(s2k5F (k) + kλs+2(k)), where F (n) is the time required to optimize the
likelihood for a set of n trajectories, s is the maximum number of pairwise inter-
sections between the curves Pi and the constant in the big O-notation depends
on the input functions.

For the algorithm to run in polynomial time, we need to be able to effi-
ciently compute the arrangement A, and to optimize the likelihood for a set of
trajectories (expressed as F (n)). Furthermore, the complexity of the algorithm
depends on the complexity of A and the graphs Gi, which are polynomial if s
is polynomially bounded. For the Brownian bridge movement model, the curves
intersect at most once in practice, and many pairs do not intersect. For example,
in an arrangement for 20 fisher trajectories similar to those in Fig. 1 there were
only 4 intersections. The arrangement often has linear complexity, reducing |Gi|
by a factor k2. The parameter value for a set of trajectories can be optimized
to a fixed precision in time linear in the total length of the trajectories. Exact
solutions can be obtained using root-finding techniques for polynomials, where
the degree is linear in the total length of the trajectories. So, the algorithm com-
putes an optimal classification of k trajectories of total length n in O(k3n) for
the BBMM in practice.
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Abstract. We present linear-time algorithms to construct tree-like
Voronoi diagrams with disconnected regions after the sequence of their
faces along an enclosing boundary (or at infinity) is known. We focus
on the farthest-segment Voronoi diagram, however, our techniques are
also applicable to constructing the order-(k+1) subdivision within an
order-k Voronoi region of segments and updating a nearest-neighbor
Voronoi diagram of segments after deletion of one site. Although tree-
structured, these diagrams illustrate properties surprisingly different
from their counterparts for points. The sequence of their faces along
the relevant boundary forms a Davenport-Schinzel sequence of order ≥ 2.
Once this sequence is known, we show how to compute the corresponding
Voronoi diagram in linear time, expected or deterministic, augmenting
the existing linear-time frameworks for points in convex position with
the ability to handle non-point sites and multiple Voronoi faces.

1 Introduction

It is well known that the Voronoi diagram of points in convex position can be
computed in linear time, given the order of their convex hull [1]. Linear-time
constructions also exist for a class of related diagrams such as the farthest-point
Voronoi diagram, computing the medial axis of a convex polygon, and deleting
a point from the nearest-neighbor Voronoi diagram. In an abstract setting, a
Hamiltonian abstract Voronoi diagram can be computed in linear time [9], given
the order of Voronoi regions along an unbounded simple curve, which visits each
region exactly once and can intersect each bisector only once. This construction
has been extended recently to include forest structures [5] under similar condi-
tions where no region can have multiple faces within the domain enclosed by
the curve. The medial axis of a simple polygon can also be computed in linear
time [8]. It is therefore natural to ask what other types of Voronoi diagrams can
be constructed in linear time.

Classical variants of Voronoi diagrams such as higher-order Voronoi diagrams
for sites other than points, had surprisingly been ignored in the literature of
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computational geometry until recently [4,13]. Given a set S of n simple geo-
metric objects in the plane, called sites, the order-k Voronoi diagram of S is
a partitioning of the plane into regions such that every point within a region
has the same k nearest sites. For k = 1, this is the nearest-neighbor Voronoi
diagram and for k = n − 1 it is the farthest-site Voronoi diagram of S. Despite
similarities, these diagrams for non-point sites, e.g., line segments, illustrate fun-
damental structural differences from their counterparts for points, such as the
presence of disconnected regions (see also [2,6,10]). This had been a gap in the
computational geometry literature, until recently, as segment Voronoi diagrams
are fundamental to problems involving proximity among polygonal objects. This
paper contributes further in closing this gap. For more information on Voronoi
diagrams see the book of Aurenhammer et al. [3]. For application examples of
higher order segment Voronoi diagrams see, e.g., [11] and references therein.

In this paper we give linear-time algorithms (expected and deterministic)
for constructing tree-like Voronoi diagrams with disconnected regions, after the
sequence of their faces within an enclosing boundary (or at infinity) is known. We
focus on the farthest-segment Voronoi diagram, however, the same techniques
are applicable to constructing the order-(k+1) subdivision within a given order-k
segment Voronoi region, and updating in linear time the nearest-neighbor seg-
ment Voronoi diagram after the deletion of one site. Interestingly, the latter two
problems require computing initially two different tree-like diagrams. A major
difference from the respective problems for points is that the sequence of faces
along the relevant enclosing boundary forms a Davenport-Schinzel sequence of
order at least two,1 in contrast to the case of points, where no repetition can
exist. Repetition introduces several complications, including the fact that the
sequence of Voronoi faces along the relevant boundary for a subset of the origi-
nal segments, S′ ⊂ S, is not a subsequence of the respective sequence for S. In
addition, such a subsequence may not even correspond to a Voronoi diagram.
Thus, the intermediate diagrams computed by our algorithms are interesting
on their own right. They have the structural properties of the relevant segment
Voronoi diagram, however, they do not correspond to such a diagram nor are
they instances of abstract Voronoi diagrams.

The purpose of this paper is to extend the paradigm of the existing linear
constructions for tree-structured diagrams beyond the case of points in convex
position [1]. Our goal is to generalize fundamental techniques known for points
to more general objects so that the computation of their basic diagrams can
be unified, despite their structural differences. As a byproduct we also improve
the time complexity of the basic iterative approach to construct the order-k
segment Voronoi diagram to O(k2n + n log n) from the standard O(k2n log n)
[13], and also updating a nearest neighbor diagram after deletion of one site in
time proportional to the number of updates performed in the diagram.

1 Order-3 for the farthest-segment Voronoi diagram [2,12], order-4 for the order-k
segment Voronoi diagram (easy to derive from [13]), order-2 for disjoint segments or
the corresponding abstract Voronoi diagrams [10,13].
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2 Preliminaries and Definitions

Let S be a set of arbitrary line segments in R
2; segments in S may intersect or

touch at a single point. The distance between a point q and a line segment si

is d(q, si) = min{d(q, y) | y ∈ si}, where d(q, y) denotes the ordinary distance
between two points q, y in the L2 (or the Lp) metric. The bisector of two segments
si, sj ∈ S is b(si, sj) = {x ∈ R

2 | d(x, si) = d(x, sj)}. For disjoint segments,
b(si, sj) is an unbounded curve that consists of a constant number of pieces,
where each piece is a portion of an elementary bisector between the endpoints
and open portions of si, sj . If two segments intersect at point p, their bisector
consists of two such curves intersecting at p.

The farthest Voronoi region of a segment si is freg(si) = {x ∈ R
2 | d(x, si) >

d(x, sj), 1 ≤ j ≤ n, j �= i}. For disjoint line segments or line segments that
intersect but do not touch at endpoints, the order-k Voronoi region of a set
H, where H ⊂ S, |H| = k, and 1 ≤ k ≤ n − 1, is k-reg(H) = {x | ∀s ∈
H,∀t ∈ S \ H d(x, s) < d(x, t)}. For an extension of this definition to line
segments forming a planar straight-line graph, see [13]. Note, for k = n − 1,
freg(si) = k-reg(S \ {si}). The (non-empty) farthest (resp., order-k) Voronoi
regions of the segments in S, together with their bounding edges and vertices,
define a partition of the plane, called the farthest-segment Voronoi diagram,
denoted FVD(S), see Fig. 1(a) (resp., order-k Voronoi diagram). Any maximally
connected subset of a Voronoi region is called a face.
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Fig. 1. [12] (a) FVD(S), S = {s1, . . . , s5}; (b) its farthest hull; (c) Gmap(S)

A farthest Voronoi region freg(si) is non-empty and unbounded in direction
φ if and only if there exists an open halfplane, normal to φ, which intersects all
segments in S but si [2]. The line �, normal to φ, bounding such a halfplane, is
called a supporting line. The direction φ (normal to �) is referred to as the hull
direction of � and it is denoted by ν(�). An unbounded Voronoi edge separating
freg(si) and freg(sj) is a portion of b(p, q), where p, q are endpoints of si and
sj , such that the line through pq induces an open halfplane that intersects all
segments in S, except si, sj (and possibly except additional segments incident
to p, q). Segment pq is called a supporting segment ; the direction normal to it
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pointing to the inside of this halfplane is denoted by ν(pq) and is called the hull
direction of pq. A segment si ∈ S such that the line � through si is supporting,
is called a hull segment ; its hull direction is ν(si) = ν(�), normal to �. The
closed polygonal line obtained by following the supporting and hull segments in
the angular order of their hull directions is called the farthest hull. Figures 1(a)
and (b) illustrate a farthest-segment Voronoi diagram and its hull respectively.
In Fig. 1(b), supporting segments are shown in dashed lines, and hull segments
are shown in bold. Arrows indicate the hull directions of all supporting and hull
segments. For more information see [12].

The Gaussian map of FVD(S), denoted Gmap(S), (see Fig. 1(c)) provides a
correspondence between the faces of FVD(S) and a circle of directions K [12].
K can be assumed to be a unit circle, where each point x on K corresponds to
a direction as indicated by the radius of K at x. Each Voronoi face is mapped
to an arc on K, which represents the set of directions along which the face is
unbounded. An arc is delimited by two consecutive hull directions of supporting
segments. The Gmap(S) can be viewed as a cyclic sequence of consecutive arcs
on K, where each arc corresponds to one face of FVD(S). Two neighboring
arcs α, γ are separated by the hull direction ν(α, γ) of a supporting segment
pq (ν(α, γ) = ν(pq)); ν(α, γ) is the direction towards infinity of the relevant
portion of bisector b(p, q). The arc of a hull segment is called a segment arc
and consists of two sub-arcs separated by the hull direction ν of the segment,
where each sub-arc corresponds to an endpoint of the hull segment. An arc that
corresponds to a single endpoint of a segment is called a single-vertex arc. The
Gmap(S) can be computed in O(n log n) time (or output-sensitive O(n log h)
time, where h = |Gmap(S)|) [12].

The standard point-line duality transformation T offers a correspondence
between the faces of FVD(S) and envelopes of wedges [2]. A segment si = uv
corresponds to a lower wedge, defined by the lower envelope of T (u) and T (v)
(see, e.g., Fig. 5), and to an upper wedge defined as the area above the upper
envelope of T (u), T (v). Let E (resp., E′) be the boundary of the union of the
lower (resp., upper) wedges. The faces of FVD(S) correspond exactly to the edges
of E and E′ [2]. Let the upper and lower Gmap be the portion of Gmap(S) above
and below the horizontal diameter of K respectively.

There is a clear correspondence between E (resp., E′) and the upper (resp.,
lower) Gmap: the vertices of E are exactly the hull directions of supporting
segments on the upper Gmap and the apexes of wedges in E are exactly the
hull directions of hull segments [12]. In fact, any x-monotone path π in the
arrangement of upper (resp., lower) wedges can be transformed into a sequence
of arcs in the portion of K above (resp., below) its horizontal diameter. Each
edge of π, portion of T (u), corresponds to an arc on K for u, and each vertex of
π, which is an intersection point T (u) ∩ T (v), corresponds to the hull direction
ν(uv) of the supporting segment uv.

Throughout this paper, given an arc α, let sα denote the segment in S that
induces α.
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3 The Farthest Voronoi Diagram of a Sequence

Let G be a sequence of arcs on the circle of directions K, corresponding to a pair
of x-monotone paths in the dual space, one in the arrangement of upper (resp.
lower) wedges. No arcs in the sequence can overlap and no gaps are allowed. We
call G an arc sequence. Consecutive arcs of the same segment in G are assumed
unified into a single maximal arc.

In the following we define the farthest Voronoi diagram of such an arc
sequence G, FVD(G). For G = Gmap(S), FVD(G) = FVD(S). The diagrams
of such sequences appear as intermediate diagrams in the process of computing
FVD(S), however, they do not correspond to any type of segment Voronoi dia-
gram. We first define such a diagram and then present an arc deletion and arc
insertion operation, which constitute the basis for our algorithms.

Given an arc α ∈ G and a point x ∈ R
2, x �∈ sα, let r(x, sα) denote the ray

emanating from x in the direction −→px, where p is the point in sα closest to x (see
Fig. 2). We say that x is attainable from α if the direction of r(x, sα) is contained
in α. A point x in the interior of sα is attainable from α if ν(sα) is in α (i.e., if
α is a segment arc). An endpoint of sα is attainable from all its corresponding
arcs (see Sect. 2).

Let d(x, α) = d(x, sα), if x is attainable from α, and let d(x, α) = −∞, other-
wise. The locus of points attainable from arc α is called the attainable region of
α, R(α). Figure 2 illustrates the attainable regions of arcs α1, α2, and β, shaded.
Intuitively, an arc α exists only for points within its attainable region (i.e., α is
relevant exclusively within R(α) and it should not be considered outside).
Remark 1. For arcs α1, α2 ∈ G of the same segment sα, R(α1)∩R(α2)\{sα} = ∅.

Given two arcs α, β (sα �= sβ) we define their arc bisector by b(α, β) =
b(sα, sβ) ∩ R(α) ∩ R(β). If sα = sβ and α, β are consecutive, then b(α, β) =
R(α) ∩ R(β) is called the artificial bisector of α, β. The farthest Voronoi region
of an arc α is now defined in the ordinary way

freg(α) = {x ∈ R
2 | d(x, α) > d(x, γ),∀ arc γ ∈ G, γ �= α}.

The subdivision of the plane derived by the farthest regions of all arcs in G and
their boundaries, is called the farthest Voronoi diagram of G, denoted FVD(G).
The closure of freg(α) is denoted by freg(α).
Definition 1. Let T (G) = R

2 \ ∪α∈Gfreg(α). If all edges of T (G) are portions
of arc bisectors, then G, T (G), and FVD(G) are all called proper.

For a proper sequence, T (G) is simply the graph structure of FVD(G). The
diagrams and sequences produced by our algorithms are always proper. Note,
however, that for an arbitrary arc sequence, T (G) may contain boundaries
of attainable regions and even two-dimensional regions. Figure 3(a) illustrates
FVD(G) for a proper arc sequence G, which consists of three maximal arcs of
segments s1, s4, and s5 and is derived from Gmap(S) of Fig. 1. Ray r indicates
an artificial bisector between two consecutive arcs of s5 (which have been uni-
fied into a single maximal arc for s5). Figure 3(b) illustrates FVD(G′′), where
G′′ contains an additional arc β of segment s3 (G′′ = G ⊕ β).
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Fig. 3. FVD(G) for an arc sequence of Fig. 1;
(a) FVD(G); (b) FVD(G′′), G′′ = G ⊕ β.

Lemma 1. For a proper arc sequence G, T (G) is a tree.

Proof (Sketch). Since G is proper, all the edges of T (G) are portions of arc
bisectors. Let x be a point on T (G) along arc bisector b(α, β). We first prove that
the entire ray r(x, sα) must be enclosed in freg(α), i.e., regions are unbounded.
This is because no arc bisector involving α can bound r(x, sα) as we walk on
it starting at x, unless an arc δ suddenly becomes attainable because r(x, sα)
intersects R(δ) at point z and d(z, δ) > d(z, α); but then z ∈ T (G) without being
on an arc bisector, a contradiction. It remains to show that T (G) is connected.
If T (G) contained two different components, there would be a face of a segment
sα inducing two non consecutive arcs in G, α1 and α2. But then freg(α1) and
freg(α2) would be neighboring, contradicting Remark 1. �

An arc sequence G is called a subsequence of Gmap(S) if every arc of G
entirely contains a corresponding arc of Gmap(S) induced by the same segment.
The arcs in G are simply expanded versions of the arcs in Gmap(S). The arcs
in Gmap(S) as well as their expanded versions in G are called original arcs. A
sequence G′ is called an augmented subsequence of Gmap(S) if G′ contains at
least one arc of Gmap(S) for every segment with an arc in G′. An augmented
subsequence consists of original arcs, which are expanded versions of the arcs
in Gmap(S), and new arcs, which do not correspond to arcs of Gmap(S). An
augmented subsequence G′, which has the same original arcs as G, is said to be
corresponding to G. Note that in the dual space, G and G′ no longer correspond
to envelopes of wedges, but to x-monotone paths that contain portions of these
envelopes. The intermediate sequences of diagrams produced by our algorithms
are always augmented subsequences of Gmap(S).

3.1 Deletion and Insertion of Arcs

Throughout our algorithms we use a deletion and a re-insertion operation for
original arcs in sequences derived from Gmap(S). The deletion operation pro-
duces subsequences of Gmap(S) that are not necessarily proper. As a result,
the insertion operation introduces new arcs, creating augmented subsequences,
which are always proper. Let G�β (resp., G⊕β) denote the arc sequence derived
from G after deleting from it (resp., inserting to it) arc β.
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(d)

γ

α

β

(a) (c)(b)

α
β

γ
α γ

sα

sβ

r

pα

Fig. 4. Sequence αβγ, sα = sγ . (a) The dual wedges; (b) G; (c) G � {β}; (d) The
artificial bisector b(α, γ) = r; the dashed curve indicates b(sα, sβ).

Arc Deletion. A subsequence G is derived from Gmap(S) by deleting arcs. When
an arc β is deleted from G, the neighboring arcs α and γ expand over β (see
Fig. 4(a)–(c)). Either both α and γ expand (see Figs. 4 and 5(a) illustrating
segments in the dual space) or one expands while the other shrinks (see Fig. 5(b)).
During the expansion, α and γ may change from being a single-vertex arc to a
segment arc. Since α and γ are original, they both remain present in G�{β}, and
their common endpoint becomes ν(α, γ). Assuming sα �= sγ , ν(α, γ) corresponds
to bisector b(α, γ) as obtained from b(sα, sγ). If sα = sγ , we let α and γ expand
until they reach ν(sβ), i.e., ν(α, γ) = ν(sβ). If sα = sβ then α expands to cover
the entire β and ν(α, γ) = ν(β, γ).

Remark 2. The artificial bisector b(α, γ) (for sα = sγ) is (or contains) a ray
perpendicular to sβ , emanating from the relevant endpoint of sα and extending
away from sβ (see Fig. 4(d)).

β

γα γα

β

γα

(a)
β γα γα β γα

γ

(b)

Fig. 5. Deleting and re-inserting β in sequence αβγ. (a) α and γ enlarge; (b) γ enlarges,
α shrinks. From left to right: the initial sequence; after deleting β; after re-inserting β.

Arc Insertion. Let G′ be a proper augmented subsequence of Gmap(S) and let
β be an original arc, β �∈ G′. Let α, γ be two consecutive original arcs in G′, such
that β is between α, γ in Gmap(S). A number of new arcs may lie between α, γ
in G′. To insert β in G′ there are several cases to consider. The insertion of arc
β in G′ corresponds to inserting freg(β) in FVD(G′). Figure 5 illustrates in dual
space the deletion and re-insertion of an arc β in a sequence αβγ.

Basic cases are as follows (assuming for simplicity that α, γ are consecutive
in G′): (1) sα, sβ , and sγ are all distinct, and ν(α, γ) is in β. This is the standard
case, resulting in αβγ, see Fig. 5(a). (2) sα = sγ . Then β is inserted over ν(sβ) =
ν(α, γ), resulting in αβγ, and freg(β) is inserted over the artificial bisector b(α, γ)
in FVD(G′), see Fig. 3. (3) Arc γ (equiv. α), as it appears expanded in G′, entirely
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contains β, see Fig. 5(b) (note that α had shrunk during the deletion of β). Then
the insertion of β splits γ in two arcs resulting in αγ′βγ, where γ′ is a new arc.
In FVD(G′), freg(β) splits freg(γ) into freg(γ) and freg(γ′). (4) sα = sβ (equiv.
sβ = sγ). Then α is split by ν(α, β) and one part becomes β. Note that ν(α, β)
is determined when α and β became consecutive in a deletion operation, and
that α, β cannot be neighbors in Gmap(S).

If α and γ are not consecutive in G′, a number of new arcs may be traced to
find the actual entry point for β between α and γ. The insertion of β may delete
a series of such consecutive new arcs. Assuming that G′ is proper, it is not hard
to show that G′′ = G′ ⊕ β is also a proper augmented subsequence of Gmap(S).

αβ

sβ
sα

αβ

(a)

sα
sδ α

γ

β

δ

αβ

γ
δ

sβ = sδ

sα = sγ

(b)

α

γ
δ

rβ

sα

sδ
rβ

α

γ

δ
sα = sγ

(c)

Fig. 6. FVD(G) and G. (a) G = Gmap(S) for S = {sα, sβ}; (b) G = Gmap(S) for
S = {sα, sδ}; (c) G = αγδ = Gmap(S) � β where S = {sα, sδ}

Note that arc sequences defined by two segments are always proper. Figure 6
illustrates such sequences and their Voronoi diagrams. Figures 6(a) and (b) show
FVD(S) and Gmap(S) for two disjoint and intersecting segments respectively.
Figure 6(c) illustrates FVD(G) for G = Gmap(S)�β, where S is the same as in
Fig. 6(b). In the latter figure, arcs α and γ (sα = sγ) become neighbors inducing
one maximal arc αγ; region freg(αγ) is shown shaded; it is split into freg(α) and
freg(γ) by the artificial bisector b(α, γ) = rβ ∪ sα.

4 A Randomized Linear Construction

Wesketch an expected linear-time algorithm to computeFVD(S), givenGmap(S).
It is inspired by the simple two-phase randomized approach of [7] for points in con-
vex position and uses the concepts of Sect. 3. Let α1, α2, . . . , αh be a random per-
mutation of arcs in Gmap(S), and let Ai = {α1, α2, . . . , αi}, 1 ≤ i ≤ h, be the
set of the first i arcs in this order. Let t be the largest index such that α1, . . . , αt

consists of arcs of only two segments that form exactly two maximal arcs.
The algorithm proceeds in two phases. Phase 1 computes the subsequence Gi,

t ≤ i < h, where Gh = Gmap(S), and Gi is obtained from Gi+1 by deleting arc
αi+1 as described in Sect. 3. The two neighbors of αi+1 in Gi+1 are recorded as a
tentative re-entry point for αi+1 during phase 2. Note that both neighbors may
correspond to the same segment or the segment of one neighbor may coincide
with sαi+1 . In phase 2, the algorithm computes incrementally G′

i and FVD(G′
i),
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for t < i ≤ h, starting with FVD(G′
t), G′

t = Gt. G′
t is proper as it consists

of exactly two maximal arcs. G′
i+1 is obtained from G′

i by inserting back αi+1

(G′
i+1 = G′

i ⊕αi+1). During the re-entry of αi+1 a new arc may be created, thus,
G′

i+1 �= Gi+1. The entry point for αi+1 is either an unbounded bisector (regular
or artificial) or an arc σ that entirely contains αi+1. In the latter case, a new arc
is created. At the end of phase 2 we obtain FVD(G′

h) = FVD(S) (G′
h = Gh).

In the full paper we prove: (1) the complexity of G′
i is O(i) despite the new

arcs; (2) the expected number of new arcs traced in a step of phase 2 is constant.
Then using backwards analysis we can derive the following theorem.

Theorem 1. Given Gmap(S), the FVD(S) can be computed in expected O(h)
time, where h is the complexity of FVD(S).

5 A Deterministic Linear Divide-and-Conquer Algorithm

We now augment the framework of Aggarwal et al. [1] for points in convex
position with techniques from Sects. 3, 4, and derive a linear-time algorithm to
compute FVD(S), given Gmap(S). Let G be a subsequence of Gmap(S), and let
G′ be a corresponding proper augmented subsequence such that the complexity
of G′ is O(|G|), where |G| denotes the number of arcs of the sequence G. Our
algorithm follows the flow of [9], which in turn follows [1].

1. Unite consecutive arcs of the same segment in G into single maximal arcs.
2. Color each arc of G red or blue by applying the following two rules:

(a) For each 5-tuple F of consecutive arcs αβγδε in G, compute FVD(F ′)
as follows: start with the sequence γδ, and consecutively insert the arcs
β, ε, α (in this order) resulting in FVD(F ′). (F ′ is a possibly augmented
version of F .) In FVD(F ′), if freg(γ) does not neighbor any region of
segments sα and sε, color γ red; else color γ blue.

(b) For each series of consecutive blue arcs, color red every other arc, except
the last one.

3. Let B (blue) be the sequence obtained from G by deleting all the red arcs.
Recursively compute FVD(B′). (B′ is a possibly augmented version of B.)

4. Partition the red arcs into crimson and garnet : Re-color as crimson at least
a constant fraction of the red arcs, such that for any two crimson arcs, if they
were inserted in FVD(B′), their Voronoi regions would not touch.

5. Insert the crimson arcs one by one in FVD(B′) resulting in FVD(V ′).
6. Let Gr (garnet) be the sequence obtained from G by deleting all blue and

crimson arcs. Recursively compute FVD(Gr′).
7. Merge FVD(V ′) and FVD(Gr′) into FVD(G′) so that |G′| is O(|G|).
8. For any arcs united in Step 1, subdivide their regions in FVD(G′) into finer

parts by inserting the corresponding artificial bisectors.

The recursion ends when the number of maximal arcs in G is at most five.
Then FVD(G′) can be directly computed in O(1) time and also enhanced as
indicated in Step 8. If all arcs in G are of the same segment, no diagram is
generated but instead G is returned as a list of arcs. In this case, in Step 7, we
obtain FVD(G′) by inserting this list of arcs in FVD(V ′) one by one.
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Step 2. Rules 2a and 2b guarantee that no two consecutive arcs in G are red
and no three consecutive arcs in G are blue. The insertion order in Rule 2a
guarantees that γ neighbors at most one new arc.

Step 4. To choose the crimson arcs we apply the combinatorial lemma of [1] on
(a modified) T (B′). The lemma states that for a binary tree T with n leaves
embedded in R

2, if each leaf of T is associated with a subtree of T and if for
any two successive leaves these subtrees are disjoint, then in O(n) time we can
choose a set of leaves, whose number is at least a constant fraction of n and
whose subtrees are pairwise disjoint. We associate each red arc β in G with a
unique leaf of T (B′), which would be the entry point for β in FVD(B′). If the
insertion of β splits an arc of B′ in two, then we also add an artificial bisector to
T (B′) to serve as an entry point for β. The leaf in T (B′) associated with β is in
turn associated with the incident subtree of T (B′), which would be intersected
by freg(β), if β were inserted in FVD(B′). The modified T (B′) satisfies the
requirements of the combinatorial lemma, and has complexity proportional to
|B′| plus the number of red arcs |R|.
Step 7. We obtain G′ and FVD(G′) by merging FVD(V ′) and FVD(Gr′). To keep
the complexity of G′ within O(|G|), we merge the two diagrams while discarding
parts that are guaranteed to contain no original arcs. Merging is done in two
steps: (1) identify starting points for the merge curves between the two diagrams,
and (2) trace the merge curves. Here, we identify starting points only for the
merge curves that are related to original arcs. Skipping a merge curve has the
effect of discarding the portion of one diagram that is bounded by it. This can
be safely done because any portions of the diagram that are associated with only
new arcs can not appear in FVD(S). G′ contains all the original arcs of V ′ and
Gr′; furthermore, |G′| is O(|V ′| + |Gr′|). Since G′ contains all the original arcs
of G, it is an augmented subsequence of Gmap(S) corresponding to G. It is not
hard to prove that G′ is proper.

G′ is an augmented subsequence of Gmap(S) corresponding to G, and the
recursive algorithm starts with G = Gmap(S). Thus, at the end of the algorithm,
the resulting arc sequence must be G′ = Gmap(S) (easy to see in dual space).

Lemma 2. |G′| is O(|G|).

Proof. Let m = |G| and S(m) = |G′|. Since Step 4 is performed by applying
the combinatorial lemma of [1], |Gr| ≤ q|R|, where 0 < q < 1 and |R| is the
number of red arcs (|R| = |G| − |B|). Thus, (following [1,9]) there exist positive
constants q1 and q2, q1 + q2 < 1, such that |B| ≤ q1|G| and |Gr| ≤ q2|G|. At
Step 4, at most one new arc is generated for every crimson arc inserted in B′,
thus, |V ′| = S(q1m) + O(m). At Step 7, |G′| ≤ |V ′| + |Gr′| + O(m). Thus,
|G′| ≤ S(q1m) + S(q2m) + O(m). Hense, S(m) = O(m). �

Since the size of the augmented subsequences is always kept bounded, the
time complexity can be analyzed similarly to [1]. We conclude:

Theorem 2. Given Gmap(S), the FVD(S) can be computed in O(h) time,
where h is the combinatorial complexity of FVD(S).
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Concluding Remarks

Theorems 1 and 2 apply also to computing the order-(k+1) subdivision within
an order-k Voronoi region in time proportional to the complexity of the region’s
boundary. It also applies to updating a nearest-neighbor segment Voronoi dia-
gram after the deletion of one segment in time proportional to the number of
updates in the diagram. In this paper we considered line segments, however, the
presented techniques are not specific to them. For example, the constructions
can be easily adapted for the respective farthest abstract Voronoi diagram (to
be described in the full paper). Note that the farthest abstract Voronoi diagram
can be constructed in expected O(n log n) time by a randomized incremental
construction [10], which is not related to the randomized linear-time approach
in this paper.
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Abstract. An unfolding of a polyhedron is a single connected planar
piece without overlap resulting from cutting and flattening the surface
of the polyhedron. Even for orthogonal polyhedra, it is known that edge-
unfolding, i.e., cuts are performed only along the edges of a polyhedron,
is not sufficient to guarantee a successful unfolding in general. However,
if additional cuts parallel to polyhedron edges are allowed, it has been
shown that every orthogonal polyhedron of genus zero admits a grid-
unfolding with quadratic refinement. Using a new unfolding technique
developed in this paper, we improve upon the previous result by showing
that linear refinement suffices. Our approach not only requires fewer cuts
but is also much simpler.

1 Introduction

The study of folding and unfolding in computational geometry can be traced back
to several hundred years ago [4], reflecting the fact that it is natural for human
to construct a polyhedron by folding from its unfolding. The interested reader
is referred to [3] for a nice introduction to this field. Specifically, an unfolding
of a polyhedron is a single connected planar piece resulting from cutting and
flattening its surface. Ideally, we hope to only cut the edges of a polyhedron
when producing an unfolding. In reality, however, even for orthogonal polyhedra
it is known that cutting along edges is not sufficient to guarantee an unfolding
in general. Such a negative result gives rise to the so-called grid-unfolding, in
which new edges (which are allowed to be cut) are added by intersecting the
polyhedron with all coordinate planes passing through a vertex. Even with such
a relaxation in unfolding, it remains a major open problem to decide whether
every orthogonal polyhedron admits a grid-unfolding [5]. Up to this point, only
a few restricted classes of orthogonal polyhedra, such as orthotubes, are known
to admit grid-unfoldings [5].
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The notion of a refinement under grid-unfolding was proposed in [2], in which
each rectangular face of a polyhedron under grid-unfolding is further refined to
an a × b grid, where all grid lines are allowed to be cut. Such an unfolding
style is called an (a × b)-grid-unfolding. Using the epsilon-unfolding algorithm
[2], all orthogonal polyhedra of genus zero can be grid-unfolded with exponential
refinement, i.e., (O(2n)×O(2n))-grid-unfolded. Just recently, an (O(n2)×O(n2))-
grid-unfolding algorithm (called delta-unfolding) was proposed [1], adapting the
heavy-path decomposition technique for balancing trees in data structure design
in conjunction with the idea behind the strategy of [2].

In this paper, we give a new grid-unfolding algorithm that only requires linear
refinement (i.e., (O(n) × O(n))-grid-unfolding), yielding an improvement over
the delta-unfolding method which needs quadratic refinement. Our algorithm is
based on some new ideas which differ from [1,2]:

– Instead of insisting on keeping a partial unfolding in a single piece throughout
the procedure, we allow the presence of many (up to O(n)) pieces during
the process, and they are linked together in the last step. This prevents the
complicated back and forth spiraling for each component.

– The strategy behind [1,2] relies on an unfolding tree based on the adjacency
relationship among components of a polyhedron. We introduce a new type of
an unfolding tree, which attempts to establish better “bridges” between (not
necessarily adjacent) components of a polyhedron.

– In our method, we first identify and unfold the so-called backbone of a poly-
hedron into a y-convex polygon on the plane; and the remaining faces are
stitched to the unfolded backbone afterward.

2 Preliminaries

An orthogonal polyhedron is a polyhedron with all edges parallel to axes of the
Cartesian coordinate system in 3D. Throughout the paper, we write O to denote
an orthogonal polyhedron. We always assume that O is of genus zero. We let
Y0, Y1, . . . be the planes orthogonal to the y-axis containing some vertex in O.
These planes are ordered in a way that ya > yb for any a > b, if we let y = yi
be the plane for Yi. We also call Yi the layer i. The portion of O within the
two layers Yi−1 and Yi consists of some disjoint connected parts, each of which
is called a component of layer i. Viewing in the y+ direction (i.e., increasing y
coordinates), each component C (of layer i) has two rims. The back rim (resp.,
front rim) is the portion of the surface of O that is located in both C and Yi

(resp., C and Yi−1).
The part of the surface of C not located in Yi−1 or Yi consists of possibly sev-

eral connected pieces, which are called bands. The outmost one that surrounds
the entire C is called protrusion, denoted as prot(C). The other ones that sur-
round holes of C are called dents. However, as observed in [2], when O is of
genus zero, all the dents can be “popped out” to become protrusions of other
components. As a result, we assume that there is no dent.
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Fig. 1. Illustrations of some basic concepts.

Recall that an edge-unfolding [5] cuts a polyhedron along some (not neces-
sarily all) of its edges. In the setting of a grid-unfolding [5], it is allowed to cut
along additional edges formed by intersecting the polyhedron with coordinate
planes passing through vertices of the polyhedron. Unless stated otherwise, a
polyhedron is referred to one with such additional edges in our subsequent dis-
cussion. With this assumption in mind, it is not hard to see that all the faces
are axis-parallel rectangles in a polyhedron (see Fig. 1(4)).

Let G be the graph formed by the vertices and the edges of a polyhedron. The
set of vertices, edges, and faces in the polyhedron are denoted as V (G), E(G),
and F (G), respectively. Let G∗ be the dual graph of G in which each node
corresponds to a face in the polyhedron such that {f1, f2} ∈ E(G∗) if f1 and
f2 are neighboring faces. As there is a natural isomorphism between E(G) and
E(G∗), with a slight abuse of notation we simply write {v1, v2} = {f1, f2}, where
v1, v2 ∈ V (G) and f1, f2 ∈ V (G∗), if {v1, v2} is the edge shared between two
rectangular faces f1 and f2. A set of faces P = {f1, f2, ..., fk} in G∗ is called a
straight path if faces in P can be unfolded to a rectangle that is an 1 × k grid.
We sometimes write P = (f1, f2, ..., fk) to denote the sequence of faces along a
straight path.

An (a× b)-refinement of a grid-unfolding (also called (a× b)-grid-unfolding),
where a, b ∈ Z+, is to refine each face (which is a rectangle) into an a × b grid,
and in the unfolding process, all grid lines are allowed to be cut [5].

Figure 1(1) is a polyhedron having layers Y0, Y1, Y2 and Y3. Figure 1(2) shows
its four components. The dotted and the dashed portions of the surface of C1

are its dent and protrusion, respectively. Figure 1(3) shows the portion of the
surface of O in Y2. The portion 1, 2, and 3 are the back rim of C1, the back
rim of C2, and the front rim of C3, respectively. Figure 1(4) shows the vertices,
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( 1) ( 3)

( 4)( 2)

Fig. 2. Examples of grid-unfolding.

edges, and faces of the polyhedron. Note that (f1, f2, f3, f4) is a straight path,
while (f0, f1, f2, f3) is not. We have {u, v}, {v, w} ∈ E(G) and {v, w} = {f1, f2}.

The components of a polyhedron naturally form a tree structure [2]. We define
the component tree T0 to be the tree of components such that {C,C ′} ∈ E(T0)
iff there are some faces f ∈ C and f ′ ∈ C ′ such that {f, f ′} ∈ E(G∗). For the
polyhedron in Fig. 1(1), its component tree is the path (C0, C1, C3, C2).

An orthogonal polygon is a polygon with edges parallel to either the x-axis
or the y-axis of the Cartesian coordinate system in 2D. A polygon Q is called
y-convex if the intersection of any straight line parallel to the y-axis and the
interior of Q is a single connected line segment.

Figure 2(2) shows an (1 × 1)-grid unfolding for the polyhedron depicted in
Fig. 2(1). The y-convex polygon in Fig. 2(4) is a (2 × 3)-grid unfolding resulting
from cutting along the solid lines on the polyhedron in Fig. 2(1).

3 The Unfolding Tree

In this section we introduce a tree structure which is a key element behind our
linear refinement unfolding algorithm. Before proceeding further, we require the
definition of a bridge. A bridge between components C and C ′ is a straight path
P = (f0, f1, . . . , fk) such that

– f0 (resp., fk) belongs to the protrusion of C (resp., C ′), and f0 and fk are
normal to the z+ or z− directions.

– f1, . . . , fk−1 belong to the same layer, and hence, they are all normal to either
y+ or y−.

A bridge is said to be in layer Yi if f1, . . . , fk−1 above are in layer Yi.
An unfolding tree TU is a tree of components of the orthogonal polyhedron

O returned by the following procedure. The procedure starts with V (TU ) = the
set of all components, and E(TU ) = ∅ initially. It adds an edge e = {C,C ′} to
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Fig. 3. Illustrations of an unfolding tree, bridges, and connectors. Here f(d+) (resp.,
f(d−)) indicates that face f is normal to the d+ (resp., d−) direction, where d ∈
{x, y, z}.

E(TU ) iteratively provided that there is a bridge between C and C ′, and adding
e does not create a cycle. The procedure ends when no more edges can be added.

The bridge under consideration when adding edge {C,C ′} is denoted as
br(C,C ′) (also called the bridge associated with {C,C ′}).

Using the bridges br(C0, C1) = (f0, f1, f2), br(C1, C2) = (f2, f3, f4), br(C2,
C3) = (f4, f5, f6), br(C2, C4) = (f10, f11, f12), br(C4, C5) = (f14, f15, f16), the
unfolding tree of Fig. 3(1) is shown in Fig. 3(4). Note that the unfolding tree,
depending on the choices of the bridges, is not unique. We also note that the
so-called unfolding tree in [2] is actually the component tree in our terminology
(see T0 in Fig. 3(3), for instance).

With respect to an unfolding tree, we have the following lemmas:

Lemma 1. The graph TU computed by the aforementioned procedure is a tree.

Lemma 2. For each leaf C of TU , there must be one rim RC of C such that all
faces in the rim are not adjacent to any face in another component C ′ (C �= C ′).

We associate each leaf C of an unfolding tree TU with a connector (denoted
as con(C)), which is a straight path P = (f0, f1, . . . , fk) such that f0 and fk
are normal to z+ or z– directions, and all of f1, . . . , fk−1 belong to the rim
RC guaranteed by Lemma 2. In Fig. 3, we may set (h0, h1, h2), (f6, f7, f8), and
(g0, g1, g2) as the connector of C0, C3, and C5, respectively. Note that h1 (normal
to the y+ direction) belongs to the back rim of component C0.

Suppose TU is an unfolding tree of an orthogonal polyhedron O, we consider
the following set Fbb of faces (called the backbone) which plays a critical role in
our subsequent unfolding process. Fbb = Fp ∪ Fb ∪ Fc, where
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– Fp = {prot(C) | C ∈ V (TU )},
– Fb =

⋃

(C,C′)∈E(TU ){f0, .., fk | (f0, .., fk) = br(C,C ′)},
– Fc =

⋃

C∈V (TU ),C is a leaf {f0, .., fk | (f0, .., fk) = con(C)},

In words, Fbb contains all the protrusions of the components of O, plus the
bridges associated with edges and the connectors associated with leaves of the
unfolding tree. The next lemma shows that an unfolding for Fbb meeting some
requirements implies an unfolding for the whole polyhedron.

Lemma 3. Let Fbb be the backbone associated with an unfolding tree of a polyhe-
dron O. Suppose that the surface of Fbb can be (a×b)-grid-unfolded to a y-convex
orthogonal polygon Q in which each edge between a face in F (G)\Fbb and a face
in a protrusion is parallel to the x-axis (of the 2D Cartesian system). Then, the
entire surface of O can be (a × b)-grid-unfolded.

Proof. The desired unfolding can be constructed by stitching the remaining faces
to the current unfolding Q along some edges parallel to the x-axis (of the 2D
Cartesian system), just as how the unfolding in Fig. 2(4) is extended from the
partial unfolding in Fig. 2(3). ��

4 The Linear Refinement Unfolding Algorithm

In this section we present a grid-unfolding algorithm that only requires lin-
ear refinement for orthogonal polyhedra. Specifically, the required refinement
is (2|leaves(TU )| × 4|leaves(TU )|). Note that |leaves(TU )| is O(|V (G)|). In the
subsequent discussion, Lemmas 1 and 2 are applied implicitly.

Connector

Bridge to Parent

Protrusion

Bridges to children

Connector

(1) Leaf component (2) Intermediate component (3) Root component

Fig. 4. An overview of the unfolding algorithm.

We designate a leaf of TU as the root to make the tree directed. For each
component C ∈ V (TU ), we write TC to denote the subtree rooted at C. Our
approach is based on a bottom-up procedure operating on the unfolding tree
TU . A high-level overview of our algorithm is illustrated in Fig. 4, which involves
three types of operations:

– For each leaf component, a strip is created by unfolding its connector and its
protrusion (Fig. 4(1)).
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– For each intermediate component, we gather all strips from its children sub-
trees, extend them to cover the entire protrusion, and pass them to its parent
(Fig. 4(2)).

– Finally, at the root, |leaves(TU )| strips are concatenated to form a desired
partial unfolding meeting the condition of Lemma 3 (Fig. 4(3)).

Note that bridges and connectors play important roles in our algorithm.
Bridges allow us to extend strips from one component to another, and connectors
allow us to create and concatenate the strips.

For each C which is not a root, let Fbb(C) be the part of the backbone
containing only the protrusions and connectors of components in TC , and the
bridges associated with each links in E(TC). Suppose (f0, f ′, ...) is the bridge
linking C to its parent, where f0 is in C. We define an invariant I as follows:

Orientation: ccw Orientation: cw

(1) (2) (3)

Bridge

Parent( )

Bridge

Parent( )

Fig. 5. Requirement for each Qj .

Invariant I. Given a component C and an orientation of either clockwise (cw, for
short) or counter-clockwise (ccw, for short), let r = |leaves(TC)| be the number
of leaf nodes in TC . The surface of Fbb(C) can be (2r × 4r)-grid-unfolded into
Q1, Q2, . . . , Qr y-convex orthogonal polygons such that

1. the edge between f0 and f ′ is divided into 2r segments: {f0, f ′} = (s1, t1,
s2, t2, . . ., sr, tr). Both sj and tj , 1 ≤ j ≤ r, are parallel to the x-axis in the
polygon Qj . See Fig. 5(2-3).

2. for each Qj , suppose (lu, ld) and (ru, rd) are the left-most side and the right
most side of Qj , respectively, as depicted in Fig. 5(1).

– If the given orientation is ccw, Qj is of the shape depicted in the lower
figure of Fig. 5(2), in which the left (resp., right) endpoint of sj (resp., tj)
is ld (resp., ru). Figure 5(2) also displays the 3D view of the unfolding.

– If the given orientation is cw, Qj is of the shape depicted in the lower
figure of Fig. 5(3), in which the left (resp., right) endpoint of sj (resp., tj)
is lu (resp., rd). Figure 5(3) also displays the 3D view of the unfolding.
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We call each Qj a strip in the subsequent discussion. In words, Invariant I

says that for a component C and a chosen orientation (ccw or cw), Fbb(C) can
be unfolded into r strips (i.e., y-convex orthogonal polygons) all of which respect
the same orientation associated with C. Furthermore, the r strips meet at the
beginning of the bridge linking C to its parent.

Connector 

Bridge 

Protrusion 

Connector 

Connector 

Bridge

Parent( )

Fig. 6. Unfolding a leaf component.

Lemma 4. For each orientation (cw or ccw), and for each leaf C in the unfold-
ing tree TU , Invariant I holds.

Proof. Adapting the Single Box Spiral Path described in [2] suffices. See Fig. 6
for an illustration of an unfolding Q1 of Fbb(C), for the case where C is in layer
i, the bridge linking C and its parent is in Yi−1, and the orientation is ccw. ��

Lemma 5. For each orientation (cw or ccw), and for each intermediate com-
ponent C (i.e., neither a root nor a leaf) in the unfolding tree TU , Invariant I
holds.

Proof. The proof is done by induction on |V (TC)|. The desired unfolding of
Fbb(C) is constructed by extending the strips of Fbb(C ′) for each child C ′ of
C. We assume that C is in layer i, and we only deal with the case that the
bridge linking C to its parent is in Yi−1 and the chosen orientation is ccw, as
the other cases are similar. We denote B0 as the bridge linking C to its parent,
and B1, B2, ..., Bd the bridges linking the d children of C to C.

By Lemma 4 and by induction hypothesis, for each child C ′ of C, we assume
that Fbb(C ′) is already unfolded into |leaves(TC′)| strips meeting Invariant I. If
br(C ′, C) is in Yi−1 (resp., Yi), we assume that Fbb(C ′) is unfolded in the cw
(resp., ccw) orientation, respectively.

We let (f0, f1, . . . , fk) be the faces in the protrusion of C in a counter-
clockwise ordering with respect to the y+ direction, where f0 belongs to B0.
Bj , 1 ≤ j ≤ d, can be divided into two groups, B1 and B2, such that B1 = {Bj |
Bj is in Yi−1} and B2 = {Bj | Bj is in Yi}.

Let {g1, . . . , ga} (a = |B1|) be the set of faces of the protrusion of C associated
with B1. We further assume that if gi = fmi

and gj = fmj
, i < j implies mi <

mj (g1, . . . , ga are listed in increasing order with respect to the index of fmj
).
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The bridge to parent

Protrusion

Protrusion

The bridge to parent
The unfoldings for a child subtree

Bridge

A child of d f

Fig. 7. Unfolding an intermediate component.

Similarly, let {h1, . . . , hb} (b = |B2|) be the set of faces of the protrusion of C
associated with B2 listing in decreasing order with respect to (mj − k) mod k,
for fmj

= hj .
The protrusion of C is partitioned into three regions, A, B and C. Region A

is divided into |B1| levels; and both of B and C are divided into |B2| levels. See
Fig. 7.

Next, we show how to extend the strips (associated with Fbb(C ′)) along
br(C ′, C) and prot(C) to the face f0, the beginning of B0 (the bridge linking C
and its parent). We have the following two cases:

– (Case 1: br(C ′, C) = (. . . , gj) ∈ B1) We extend the strips coming from the
bridge (. . . , gj) ∈ B1, 1 ≤ j ≤ a, by going up along the bridge to level A.j,
turning left until reaching f0.

– (Case 2: br(C ′, C) = (. . . , hj) ∈ B2) We extend the strips coming from the
bridge (. . . , hj) ∈ B2, 1 ≤ j ≤ b, by going down along the bridge to level C.j,
turning right until reaching fk, going down to level B.j, turning right, and
then going straight until reaching f0.

What remains is to extend some strips in either the up or the down direction,
if needed, to unfold the entire protrusion of C.

Figure 7(1) shows the result after carrying out the procedure described in
Cases 1 and 2 for each child; and Fig. 7(2) shows the final result after extending
some strips to “fill” the entire protrusion.

To see that each Qj is unfolded in the ccw orientation, see Fig. 8 (note that
the circled region indicates the portion of Qj before the procedure). For the case
that the strip (before the procedure) is coming here via a bridge in Yi (which
ends at a face hm, for some m), then according to our choice of the orientation,
Qj is in the ccw orientation (before the procedure). After the procedure, the ccw
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Bridge to parent

Bridge to parent

Bridge to children

ccw: bridge coming from 

Bridge to parent

Bridge to parent

Bridge to children

cw: bridge coming from 

Fig. 8. Extending strips at an intermediate component.

orientation is preserved since our procedure only add some zig-zag turns in its
two ends. For the case that Qj was previously in the cw orientation (i.e. coming
from Yi−1), a U-turn is made to change it to ccw after the procedure.

Note that the amount of refinement is at most (2r×4r), which can be reached
at f0 when a = 0 (i.e. when there is no gj). ��

We are now in a position to prove the main theorem:

Theorem 1. Every orthogonal polyhedron O can be (2r × 4r)-grid-unfolded,
where r = |leaves(TU )|.

Proof. Let C be the root of TU , and let C ′ be the child of C, and let br(C,C ′)
ends at the face f0. We assume that C is in layer i and that br(C,C ′) is in Yi−1,
as the other cases are similar.

In view of Lemmas 4 and 5, we assume that Fbb(C ′) is already unfolded into
|leaves(TC′)| = r strips in the ccw orientation.

Let (f0, f1, . . . , fk) be the faces in the protrusion in a counter-clockwise order-
ing with respect to the y+ direction, where fi and fj , i < j, are the two faces
belonging to the connector of C. We divide the protrusion into two regions
A and B.

Our task is to link these strips together to form a single piece of partial unfold-
ing meeting the condition of Lemma 3 using br(C,C ′), prot(C), and con(C):

1. For each strip Qj , we extend its two ends by going down along the bridge to
layer B, turning right until reaching f1, going down to layer A, turning right
and going straight until reaching fi.

2. Now, the edge {fj , fj+1} in portion B is divided into 2r segments: L(Q1),
R(Q1), L(Q2), R(Q2), . . ., L(Qr), R(Qr), where L(Qj) (resp., R(Qj)) stands
for the left-most (resp., right-most) edge of the strip Qj . We connect all the
strips via the connector and the path (fi, . . . , fj) in the protrusion as follows:
R(Q1) and R(Qr) are linked, L(Q2) and L(Qr) are linked, . . . etc. See Fig. 9(2)
for the case when r = 3.

3. Finally, as in the intermediate case, we finish the rest of the unfolding for the
protrusion by extending some strips in either the up or the down direction.



Unfolding Orthogonal Polyhedra with Linear Refinement 425

Connector

Protrusion

Connector

Bridge to children

Connector

Connector

Fig. 9. Unfolding the root component.

Figure 9(1) and (3) show the first step; Fig. 9(2) and (4) show the second step;
Fig. 9(5) illustrates the component C in the polyhedron. The required refinement
is (2r × 4r). By Lemma 3, the theorem is concluded. ��
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Abstract. Given a set of k-colored points in the plane, we consider the
problem of finding k trees such that each tree connects all points of one
color class, no two trees cross, and the total edge length of the trees
is minimized. For k = 1, this is the well-known Euclidean Steiner tree
problem. For general k, a kρ-approximation algorithm is known, where
ρ ≤ 1.21 is the Steiner ratio.

We present a PTAS for k = 2, a (5/3 + ε)-approximation for k = 3,
and two approximation algorithms for general k, with ratios O(

√
n log k)

and k + ε.

1 Introduction

Steiner tree is a fundamental problem in combinatorial optimization. Given an
edge-weighted graph and a set of vertices called terminals, the task is to find a
minimum-weight subgraph that connects the terminals. For Steiner forest, the
terminals are colored, and the desired subgraph must connect, for each color,
the terminals of that color.

In this paper, we consider a geometric variant of Steiner forest where we
add the constraint of planarity and require that terminals with distinct colors
lie in distinct connected components. More precisely, we consider the problem
of computing, for a k-colored set of points in the plane (which we also call
terminals), k pairwise non-crossing planar Euclidean Steiner trees, one for each
color. Such trees exist for every given set of points. We call the problem of
minimizing the total length of these trees k-Colored Non-Crossing Euclidean
Steiner Forest (k-CESF). Figure 1 shows some instances.

The problem is motivated by a method that Efrat et al. [7] suggested recently
for visualizing embedded and clustered graphs. They visualize clusters by regions
in the plane that enclose related graph vertices. Their method attempts to reduce
visual clutter and optimize “convexity” of the resulting regions by reducing the
amount of “ink” necessary to connect all elements of a cluster. Efrat et al. [7]
proposed the problem k-CESF and provided a simple kρ-approximation algo-
rithm, where ρ is the Steiner ratio, that is, the supremum, over all finite point
c© Springer-Verlag Berlin Heidelberg 2015
K. Elbassioni and K. Makino (Eds.): ISAAC 2015, LNCS 9472, pp. 429–441, 2015.
DOI: 10.1007/978-3-662-48971-0 37
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(a)

a

b

(b) (c)

Fig. 1. Difficult examples for k-CESF. (a) The optimum contains no straight-line edge.
(b) Segment ab is used twice by the black curve. (c) The black curve can be made arbi-
trarily longer than the corresponding straight-line segment (Gray segments represent
different colors.) (Color figure online).

sets in the plane, of the ratio of the total edge length of a minimum spanning
tree over the total edge length of a Euclidean Steiner tree (EST). Chung and
Graham [6] showed that ρ ≤ 1.21.

Our Contribution. The middle column of Table 1 shows our results. For k-
CESF, we present a deterministic (k + ε)- and a randomized O(

√
n log k)-

approximation algorithm; see Sect. 2. The main result of our paper is that 2-
CESF admits a polynomial-time approximation scheme (PTAS); see Sect. 3. By
a non-trivial modification of the PTAS, we prove that 3-CESF admits a (5/3+ε)-
approximation algorithm; see Sect. 4.

Table 1. Known and new results for k-CESF (hardness and approximation ratios)

k k-CESF planar graph

1 EST: NP-hard [10], 1 + ε [1,15] ST: NP-hard [10], 1 + ε [4]

2 1 + ε (Theorem 4)

3 5/3 + ε (Theorem 5)

general k k + ε (Theorem 1), O(
√

n log k) (Theorem 3) k const.-size nets on 2
faces, exact [12]

n/2 NP-hard [2], O(
√

n log n) [5] k size-2 nets on h faces,
exact [9]

Our PTAS for 2-CESF uses some ideas of Arora’s algorithm [1] for EST,
which is equivalent to 1-CESF. Since, in a solution to 2-CESF, the two trees
are not allowed to cross, our approach differs from Arora’s algorithm in several
respects. We use a different notion of r-lightness, and by a portal-crossing reduc-
tion we achieve that each portal is crossed at most three times. More care is also
needed in the perturbation step and in the base case of the dynamic program.

Related Work. Apart from the result of Efrat et al. [7], so far the only two
variants of k-CESF that have been studied are those with extreme values of k. As
mentioned above, 1-CESF is the same as EST, which is NP-hard [10]. Arora [1]
and Mitchell [15] showed independently that EST admits a PTAS. The other
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extreme value of k, for which k-CESF has been considered, is k = n/2. This
is the problem of joining specified pairs of points via non-crossing curves of
minimum total length. Liebling et al. [13] gave some heuristics for this problem.
Bastert and Fekete [2] claimed that (n/2)-CESF is NP-hard, but their proof has
not been formally published. Recently, Chan et al. [5] considered (n/2)-CESF
in the context of embedding planar graphs at fixed vertex locations. They gave
an O(

√
n log n)-approximation algorithm based on an idea of Liebling et al. [13]

for computing a short non-crossing tour.
There is substantial work on the case where there are obstacles in the plane.

Note that, in contrast to k-CESF, a valid solution may not exist in that set-
ting. For a single color (that is, 1-CESF with obstacles), Müller-Hannemann
and Tazari [17] give a PTAS. Papadopoulou [18] gave an algorithm for find-
ing minimum-length non-crossing paths joining pairs of points (that is, n/2-
CESF) on the boundary of a single polygon. A practical aspect of the problem—
computing non-crossing paths of specified thickness—was studied by Polishchuk
and Mitchell [19]. Their algorithm computes a representation of the thick paths
inside a simple polygon; they also show how to find shortest thick disjoint paths
joining endpoints on the boundaries of polygonal obstacles (with exponential
dependence on the number of obstacles). The main difficulty with multiple obsta-
cles is deciding which homotopy class of the paths gives the minimum length.
If the homotopy class of the paths is specified, then the problem is significantly
easier [8,20]. Hurtado et al. [11] studied a set visualization problem where points
can be blue or red or both, and the points of either color must be connected.
Their aim was to minimize the total length of the network. The blue and red
subgraphs may intersect.

The graph version of the problem has been studied in the context of VLSI
design. Given an edge-weighted plane graph G and a family of k vertex sets
(called nets), the goal is to find a set of k non-crossing Steiner trees intercon-
necting the nets such that the total weight is minimized. The problem is clearly
NP-hard, as the special case k = 1 is the graph Steiner tree problem (ST), which
is known to be NP-hard [10]. ST admits a PTAS [4]. On planar graphs, k-CESF
can be solved in O(2O(h2)n log k) time [9] for k terminal pairs (that is, size-2
nets) if all terminals lie on h faces of the given n-vertex graph and in O(n log n)
time for h = 2 and k constant-size nets [12]. We list these results in Table 1;
many entries are still open.

In the group Steiner tree problem, one is given a k-colored point set and the
task is to find a minimum-length tree that connects at least one point of each
color. The problem is discussed in a survey by Mitchell [16]. Another related
problem is that of constructing a minimum-length non-crossing path through a
given sequence of points in the plane. Its complexity status remains open [14].

2 Algorithms for k-CESF

Despite its simple formulation, the k-CESF problem seems to be rather difficult.
There are instances where the optimum contains no straight-line edges or con-
tains paths with repeated line segments; see Figs. 1(a) and (b). This shows that
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obvious greedy algorithms fail to find an optimal solution, as Liebling et al. [13]
observed. They also provided an instance of the problem in a unit square for
k = n/2 in which the length of an optimal solution is in Ω(n

√
n), whereas

the trivial lower bound (the sum of lengths of straight-line segments connect-
ing the pairs of terminals) is only O(n). The example is based on the existence
of expander graphs with a quadratic number of edge crossings. In Fig. 1(c), we
provide an example in which one of the curves in the optimal solution can be
arbitrarily longer than the trivial lower bound for the corresponding color.

Efrat et al. [7] suggested an approximation algorithm for k-CESF. The key
ingredient of their algorithm is the following observation, which shows how to
make a pair of given trees non-crossing: reroute one of the trees using a “shell”
around the other tree. For any geometric graph G, we denote its total edge length
by |G|.

Lemma 1 (Efrat et al. [7]). Let R and B be two trees in the plane spanning
red and blue terminals, respectively. Then, there exists a tree R′ spanning the red
terminals such that (i) R′ and B are non-crossing and (ii) |R′| ≤ |R| + 2|B|.

(a) (b)

Fig. 2. (a) A low-stretch curve C
through the terminals; (b) a 3-CESF
solution to the instance reated by wrap-
ping paths around C (Color figure
online).

Efrat et al. [7] start with k (possi-
bly intersecting) minimum spanning trees,
one for each color. Then, they iteratively
go through these trees in order of increas-
ing length. In every step, they reroute the
next tree by laying a shell around the cur-
rent solution as in Lemma 1. Their algo-
rithm has approximation factor kρ. In the
full version of the paper [3], we show that
the algorithm even yields approximation
factor k + ε if we use a PTAS for EST for
the initial solution to each color.

Theorem 1. For every ε > 0, there is a (k + ε)-approximation algorithm for
k-CESF.

For even k, we can slightly improve on this by using our PTAS for 2-CESF
(Theorem 4).

Theorem 2. For every ε > 0, there is a (k − 1 + ε)-approximation algorithm
for k-CESF if k is even.

Next, we present an approximation algorithm for k-CESF whose ratio
depends only logarithmically on k, but also depends on

√
n. The algorithm

employs a space-filling curve through a set of given points. The curve was uti-
lized in a heuristic for (n/2)-CESF by Liebling et al. [13]. Recently, Chan et al. [5]
showed that the approach yields an O(

√
n log n)-approximation for (n/2)-CESF.

We show that similar arguments yield approximation ratio O(
√

n log k) for
general k.
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Theorem 3. k-CESF admits a (randomized) O(
√

n log k)-approximation algo-
rithm.

Proof. Chan et al. [5] gave a randomized algorithm to construct a curve C
through the given set P of n points. Their curve has small stretch, that is,
the ratio between the Euclidean distance d(p, q) of two points p, q ∈ P and their
distance dC(p, q) along the curve is small. Assuming that the points are scaled
to lie in a unit square, Chan et al. showed, for a fixed pair of points p, q ∈ P ,
E[dC(p, q)] ≤ O(

√
n log( 1

d(p,q) )) · d(p, q). Using C, we construct a solution to k-
CESF so that, for every color, the terminals are visited in the order given by the
curve; and thus, the solution to every color is a path. All paths can be wrapped
around the curve without intersecting each other; see Fig. 2.

If the order of the points along the curve for a specific color i is pi
1, . . . , p

i
ni

,
then the length of the corresponding path is

∑ni−1
j=1 dC(pi

j , p
i
j+1) = dC(pi

1, p
i
ni

).

Let d̄ =
∑k

i=1 d(pi
1, p

i
ni

)/k. The total (expected) length of the solution is

ALG =
k

∑

i=1

E[dC(pi
1, p

i
ni

)] ≤
k

∑

i=1

O(
√

n log(1/d(pi
1, p

i
ni

))) · d(pi
1, p

i
ni

).

Given that log is concave, this expression is bounded by
∑k

i=1 O(
√

n log(1/d̄)) ·
d̄; see Chan et al. [5]. Since the optimal solution to P connects all pairs of
terminals of the same color (possibly using non-straight-line curves), OPT ≥
∑k

i=1 d(pi
1, p

i
ni

) = kd̄. Hence,

ALG ≤
k

∑

i=1

O(
√

n log(k/OPT)) · OPT /k ≤ O(
√

n log k)OPT . ��

3 PTAS for 2-CESF

In this section, we show that 2-CESF admits a PTAS. We follow Arora’s app-
roach for computing EST [1], which consists of the following steps. First, Arora
performs a recursive geometric partitioning of the plane using a quadtree and
snaps the input points to the corners of the tree. Next, he defines an r-light
solution, which is allowed to cross an edge of a square in the quadtree at most r
times and only at so-called portals. Then he builds an optimal portal-respecting
solution using dynamic programming (DP), and finally trims the edges of the
solution to get the result. To get an algorithm for 2-CESF, we modify these steps
as follows:

(i) The perturbation step, which snaps the terminal to a grid, is modified to
avoid crossings between trees. Similarly, the reverse step transforming a
perturbed instance solution into one to the original instance is different; see
Lemmas 2 and 3.
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(ii) We use a different notion of an r-light solution in which every portal is
crossed at most r times. We devise a portal-crossing reduction that reduces
the number of crossings to r = 3; see Lemma 5.

(iii) The base case of the DP needs a special modification; it computes a set of
crossing-free Steiner trees of minimum total length (see Lemma 6).

We assume that the bounding rectangles of the two sets of input terminals
overlap; otherwise, we can use a PTAS for the Steiner tree of each input set
individually. We first snap the instance to an (L × L)-grid with L = O(n). We
proceed as follows. Let L0 be the diameter of the smallest bounding box of
the given 2-CESF instance. We place an (L × L)-grid of granularity (grid cell
size) g = L0/L inside the bounding box. By scaling the instance appropriately,
we can assume that the granularity is g = 1. We move each terminal of one color
to the nearest grid point in an even row and column, and each terminal of the
other color to the nearest grid point in an odd row and column. Thus, the grid
point for each terminal is uniquely defined, and no terminals of different color
end up at the same location. If there are more terminals of the same color on
a grid point, we remove all but one of them. We call the resulting instance a
perturbed instance.

Lemma 2. Let OPTI be the length of an optimal solution to a 2-CESF
instance I of n terminals and let ε > 0. There is an (L×L)-grid with L = O(n/ε)
such that OPTI∗ ≤ (1+ε)OPTI , where OPTI∗ is the length of an optimal solu-
tion to the perturbed instance I∗.

Proof. Choose L to be a power of 2 within the interval [3
√

2n/ε, 6
√

2n/ε] and
perturb the instance as described above. Consider an optimal solution to I.
Iteratively, we connect every terminal in I∗ to the optimum solution as follows:
Connect the terminal to the closest point of the tree in the optimum solution
that has the same color. If this line segment crosses the tree of the other color,
then reroute this tree around the line segment by using two copies of the line
segment. Two copies suffice even if the other tree is crossed more than once
since all crossing edges can be connected to the two new line segments. The
distance between the terminal and the tree is at most the distance between the
terminal and the corresponding terminal in I, which is bounded by

√
2 as we are

assuming the unit grid. Hence, we pay at most 3
√

2 for connecting the terminal.
Since the bounding rectangles of the input terminals overlap, OPTI ≥ L. Thus,
the additional length of an optimal solution to I∗ is

OPTI∗ −OPTI ≤ 3
√

2n ≤ ε · OPTI . ��

The next lemma, proven analogously to Lemma 2, shows that we can trans-
form a solution to the perturbed instance into one to the original instance.

Lemma 3. Given a solution T to the perturbed instance as defined in Lemma 2,
we can transform T into a solution to the original instance, increasing its length
by at most ε · OPTI .
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In the following, we assume that the instance is perturbed. We place a
quadtree in dependence of two integers a, b ∈ [0, . . . , L − 1] that we choose inde-
pendently uniformly at random. We place the origin of the coordinate system
on the bottom left corner of the bounding box of our instance. Then we take a
box B whose width and height is twice the width and height of the bounding
box. We place it such that its bottom left corner has coordinates (−a,−b). Note
that the bounding box is inside B. We extend the (L×L)-grid to cover B. Thus,
we have an (L′ × L′)-grid with L′ = 2L.

Then we partition B with a quadtree along the (L′ × L′)-grid. The partition
is stopped when the current quadtree box coincides with a grid cell. We define
the level of a quadtree square to be its depth in the quadtree. Thus, B has level 0,
whereas the level of a leaf is bounded by log L′ = log(2L) = O(log n). Then, for
each grid line �, we define its level as the highest (that is, of minimum value)
level of all the quadtree squares that touch � (but which are not crossed by it).

Let m = �4 log L′/ε	. On each grid line � of level i, we place 2i · m equally
spaced points. We call these points portals. Thus, each square contains at most
m portals on each of its edges. A solution that crosses the grid lines only at
portals is called portal-respecting. We show that there is a close-to-optimal portal-
respecting solution. Note that, in contrast to Arora, we first make the solution
portal-respecting before reducing the number of crossings on each grid line. The
proof of the following lemma is similar to the Arora’s prove and is provided in
the full version of the paper [3].

Lemma 4. Let OPTI be the length of an optimal solution to a 2-CESF
instance I, and let ε > 0 be as in the definition of m. Then, there exists a
position of the quadtree and a portal-respecting solution to I of length at most
(1 + ε)OPTI .

The last ingredient of our DP is to reduce the number of crossings in every
portal. We call a solution r-light if each portal is crossed at most r times.

In the following, we explain an operation which we call a portal-crossing
reduction. We are given a portal-respecting solution consisting of two Steiner
trees R and B (red and blue) and we want to reduce (that is, modify without
increasing its length) it such that R and B pass through each portal at most
three times in total.

Lemma 5. Every portal-respecting solution of 2-CESF can be transformed into
a 3-light portal-respecting solution without increasing its length.

Proof. Consider a sequence of passes through a portal. We assume that there are
no terminals in the portals. If two adjacent passes belong to the same tree, then
we can eliminate one of them by snapping it to the other one. Note that this
may create cycles, but they can be broken by removing the longest part of each
cycle. Therefore, we can assume that the passes form an alternating sequence. It
suffices to show that any alternating sequence of four passes can be reduced to
two passes by shortening the trees. Let a, b, c, and d be such a sequence as shown
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a b c d

(a) (b) (c) (d)

Fig. 3. A portal modification for four passes (Color figure online).

in Fig. 3a, where a and c belong to B and b and d to R. We cut the passes b and c.
This results in two connected components in each tree. W.l.o.g., a and the upper
part of c belong to the same connected component; see Fig. 3b. Otherwise, we
can change the colors because (i) a and the lower part of c are connected, and
(ii) the upper part of b and d are connected.

Since R and B are disjoint, d and the lower part of b are in the same connected
component; see Fig. 3c. Then, we connect the component as shown in Fig. 3d and
shorten the trees (e.g., the lower part of b can be reduced to a terminal of R).
Note that the passes a and d remain in the solution, while the passes b and c are
eliminated. We repeat the procedure for the remaining passes, until there are at
most three passes left. The length of the solution does not increase because the
portal has zero width. ��

With the next Lemma 6, we show how to find a close-to-optimal 3-light
portal-respecting solution to the perturbed instance. We assume that an appro-
priate quadtree (as defined in Lemma 4) is given.

Lemma 6. Let ε > 0 be as above. Given a perturbed instance I∗ of an n-
terminal 2-CESF instance, we can compute, in time O(nO(1/ε)) and O(nO(1/ε))
space, a solution of length at most (1 + ε)OPTI∗ , where OPTI∗ is the length of
an optimal 3-light portal-respecting solution to I∗.

Proof. We use DP with a subproblem consisting of (a) a square of the quadtree,
(b) a sequence of up to three red and blue points on each portal on the border of
the square, and (c) a non-crossing partition of these points into sets of the same
color. A partition of these points is non-crossing if for no four points a, b, c, d,
occurring in that order on the boundary of the square, it holds that a and c
belong to one set of the partition, and b and d to another one. The goal is to
find an optimal collection of crossing-free red and blue Steiner trees, such that
each set of the partition and each terminal inside the square is contained in a
tree of the same color.

The base case of our DP is a unit square, which is either empty or contains
terminals only at corners of the square. If the square is empty, we consider each
set of the partition as an instance of 1-CESF and solve it by the PTAS for
EST [1]. For each point set, we force its Steiner tree to lie inside its convex hull,
by projecting any part outside the convex hull to its border. Since the partition
is non-crossing, the convex hulls of its point sets are pairwise disjoint. Therefore,
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the Steiner trees and their union is also a close-to-optimal solution to the base
case. If the square contains (up to four) terminals at the corners, these terminals
are treated in a similar way as portals.

For composite squares in the quadtree, we proceed as follows. For the four
squares that subdivide the composite square, we consider all combinations of
all possible (b) and (c) that match together and match the subproblem. In the
DP, we already have computed a close-to-optimal solution to every choice of
(b) and (c) of each of the four squares; taking the best combination gives a
close-to-optimal solution.

The size of the DP table is proportional to the number of subproblems,
that is, (a) × (b) × (c). There are O(n2) squares in the quadtree in total. Each
square contains at most m = O(log n/ε) portals. For each portal, there is a
constant number of possible sequences of up to three colored points. Thus,
there are 2O(log n/ε) = nO(1/ε) possibilities for (b). Since the number of non-
crossing partitions of a set of k elements is the k’th Catalan number Ck, we
have CO(log n/ε) < 2O(log n/ε) = nO(1/ε) possibilities for (c). In total, we consider
nO(1/ε) subproblems in the DP.

The running time to solve an instance of the base case is polynomial in
m = O(log n/ε). The running time to handle a composite square is polyno-
mial in (nO(1/ε))4, which is nO(1/ε). Thus, the total running time is bounded
by nO(1/ε). ��

Now we prove the main result of this section.

Theorem 4. 2-CESF admits a PTAS.

Proof. Consider a 2-CESF instance I. Let OPT be the length of an optimum
solution. For any ε > 0, by Lemmas 2, 4 and 5, the length, OPT′, of an optimal
3-light portal-respecting solution to the perturbed version of I is a most (1 +
ε)OPT. Using Lemma 6, we find a 3-light portal-respecting solution to the
perturbed instance of length at most (1 + ε)OPT′ ≤ (1 + ε)(1 + ε)OPT. By
Lemma 3, we transform the solution into a solution to I by increasing its length
by at most ε · OPT. Therefore, for every ε′ > 0, we can construct a solution
to I of length (1 + ε)(1 + ε)OPT +ε · OPT ≤ (1 + ε′)OPT by choosing ε > 0
appropriately. ��

4 Algorithm for 3-CESF

The above approach for 2-CESF cannot be directly applied to 3-CESF since
optimal trees may need to pass portals many times. For example, the three
paths crossing the portal in Fig. 4 are difficult because we cannot locally reroute
to make them O(1)-light as in Lemma 5.

Instead, we now improve the approximation ratio of 3 + ε (from Theorem 1)
to 5/3 + ε. We re-use some ideas of the approach for 2-CESF.

To this end, take an optimal solution T for 3-CESF. The terminals are red,
green, and blue; we call the corresponding trees R, G, and B. We assume that B
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is the cheapest among the three trees. In the beginning, we construct a quadtree
partitioning the plane and choose the portals, for a given ε, as described in
Sect. 3. We then make the solution portal-respecting, which results in a solution
T ∗ consisting of trees R∗, G∗, and B∗. In expectation, this increases the length
of each of the trees (and hence, of T ) by a factor of at most 1 + ε.

Fig. 4. A difficult portal crossing
of a 3-CESF instance (Color figure
online).

First, we show that we have few portal
passes if the blue and the green tree do not
meet at any portal, that is, no blue and green
passes are adjacent.

Lemma 7. Consider a portal-respecting solu-
tion T ∗ to 3-CESF consisting of trees R∗, G∗,
B∗. If B∗ and G∗ do not meet at any por-
tal, then T ∗ can be transformed into a 7-light
portal-respecting solution.

Proof. Apply the portal-crossing reduction from Lemma 5 and consider a por-
tal. Recall that, after this operation, there are no rbrb and rgrg subsequences
in the passes of the portal. Here, r, b, and g correspond to the passes of the
trees R∗, B∗, and G∗, respectively. If the portal has only one blue or one
green pass, then the solution is already 7-light at the portal (with the longest
possible sequences rgrbrgr and rbrgrbr, respectively). Otherwise, it contains
at least two blue and at least two green passes. Notice that the sequence
of passes must be r-alternate, that is, of the form . . . r ◦ r ◦ r . . . since blue
and green do not meet. Thus, a sequence of more than 7 passes must con-
tain a subsequence grbrgrb (or a symmetric one, brgrbrg). These subsequences
are reducible. See Fig. 5 for one of the possible cases, the other cases are
analogous. ��

Fig. 5. Constructing a 7-light solution
to an instance without adjacent blue-
green passes (one of several possible
cases) (Color figure online).

Now, we show that T ∗ can be trans-
formed into a 10-light portal-respecting
solution T ′ of length at most |R∗|+ |G∗|+
3|B∗|.

Lemma 8. A portal-respecting solution
T ∗ to 3-CESF, consisting of trees B∗, R∗,
and G∗, can be transformed into a portal-
respecting solution T ′ such that

(i) T ′ passes at most 10 times through
each portal, and

(ii) |T ′| ≤ |R∗| + |G∗| + 3|B∗|.

Proof sketch. We define a BG-solution; informally, this is a solution in which we
are allowed to connect green branches to the blue tree (if they never meet, we can
apply Lemma 7). We prove the lemma in two steps. First, we show that T can
be transformed to a portal-respecting BG-solution TBG with at most 6 passes
per portal having the same (or smaller) length. In this solution, B∗ remains
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connected and passes each portal at most twice. Then, we further modify TBG

to get a portal-respecting solution T ∗ with at most 10 passes per portal and the
desired length by laying a shell around B∗ to reroute G∗. The full proof is given
in the full version of the paper [3]. ��

Before we describe our approximation algorithm, we first need to discuss the
perturbation step. The perturbation itself is the same as in Sect. 3: we move each
terminal to a uniquely defined closest grid point (we assign the grid points of
even row and odd column to the third color) and merge terminals of the same
color to one terminal. However, we need a different technique to transform a
solution to the original instance into a solution to the perturbed instance and
vice versa.

Lemma 9. Let I be a 3-CESF instance with n terminals, let OPTI be the length
of an optimal solution to I, and let ε > 0. Then, we can place an (L×L)-grid with
L = O(n/ε) such that, for the perturbed instance I∗ of I, OPTI∗ ≤ (1+ε)OPTI .

Proof sketch. We proceed similar to the proof of Lemma 2 by connecting each
terminal of I∗ to the nearest point of its corresponding tree. Since this connection
can cross segments of two colors, we have to be more careful with the rerouting.
The full proof is given in the full version of the paper [3]. ��

Analogously to the proof of Lemma 9, we transform a solution to a perturbed
instance back into one to the original instance not increasing the length by much.
Then, we combine the lemmas to prove the main result of this section.

Lemma 10. We can transform a solution T to the perturbed instance I∗ into
a solution to the original instance I, increasing the length by at most ε OPTI .

Proof. Iteratively connect each terminal of the original instance to the solution
T analogously to the proof of Lemma 9. ��
Theorem 5. For every ε > 0, 3-CESF admits a (5/3 + ε)-approximation algo-
rithm.

Proof. Let ε′ = 3
√

1 + 3ε/5 − 1. Let T be an optimal solution to a 3-CESF
instance I with trees R, G and B. W.l.o.g., assume that |B| ≤ |R|, |G|. Denote
by OPTI = |R|+ |G|+ |B| the length of T . We first construct a portal-respecting
solution T ∗ of length |T ∗| = |R∗|+ |G∗|+ |B∗| ≤ (1+ ε′)(|R|+ |G|+ |B|). Then,
Lemma 8 yields an optimal 10-light portal-respecting solution T ′ of length

|T ′| ≤ |R∗| + |G∗| + 3|B∗| ≤ 5/3 · |T ∗| ≤ 5/3 · (1 + ε′) · (|R| + |G| + |B|)
= 5/3 · (1 + ε′) · OPTI .

Using a DP similar to the one described in Sect. 3 and using Lemma 9, we
find a 10-light portal-respecting solution of length (1 + ε′)|T ′| to the perturbed
instance I∗ of I. By Lemma 10, we can transform our solution to I∗ into a
solution to I whose total length is bounded by

(1 + ε′)2|T ′| ≤ 5/3(1 + ε′)3 OPTI < (5/3 + ε)OPTI .

��
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5 Conclusion

We have presented approximation algorithms for k-CESF. We leave the following
questions open. Is k-CESF APX-hard for some k ≥ 3? Can we improve the
running time of the PTAS for 2-CESF from O(nO(1/ε)) to O(n(log n)O(1/ε)) as
Arora [1] did for EST?

Currently, we are studying an “anchored” version of k-CESF where the only
allowed Steiner points are input points of a different color. Any α-approximation
for k-CESF yields an α(1 +

√
3)/2- approximation for the anchored version.

Acknowledgments. We are grateful to Alon Efrat, Jackson Toeniskoetter, and
Thomas van Dijk for the initial discussion of the problem.
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Abstract. The Nemhauser and Trotter’s theorem applies to the famous
Vertex Cover problem and can obtain a 2-approximation solution and
a problem kernel of 2k vertices. This theorem is a famous theorem in
combinatorial optimization and has been extensively studied. One way to
generalize this theorem is to extend the result to the Bounded-Degree
Vertex Deletion problem. For a fixed integer d ≥ 0, Bounded-
Degree Vertex Deletion asks to delete at most k vertices of the input
graph to make the maximum degree of the remaining graph at most d.
Vertex Cover is a special case that d = 0. Fellows, Guo, Moser and
Niedermeier proved a generalized theorem that implies an O(k)-vertex
kernel for Bounded-Degree Vertex Deletion for d = 0 and 1, and
for any ε > 0, an O(k1+ε)-vertex kernel for each d ≥ 2. In fact, it is
still left as an open problem whether Bounded-Degree Vertex Dele-
tion parameterized by k admits a linear-vertex kernel for each d ≥ 3. In
this paper, we refine the generalized Nemhauser and Trotter’s theorem.
Our result implies a linear-vertex kernel for Bounded-Degree Vertex
Deletion parameterized by k for each d ≥ 0.

1 Introduction

Vertex Cover, to find a minimum set of vertices in a graph such that each
edge in the graph is incident on at least one vertex in this set, is one of
the most fundamental problems in graph algorithms, graph theory, parameter-
ized algorithms, theories of NP-completeness and many others. Nemhauser and
Trotter [22] proved a famous theorem (NT-Theorem) for Vertex Cover.

Theorem 1 [NT − Theorem]. For an undirected graph G = (V,E) of n = |V |
vertices and m = |E| edges, there is an O(

√
nm)-time algorithm to compute two

disjoint vertex subsets C and I of G such that for any minimum vertex cover K ′

of the induced subgraph G[V \ (C ∪ I)], K ′ ∪ C is a minimum vertex cover of G
and

|K ′| ≥ |V \ (C ∪ I)|
2

.
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This theorem provides a polynomial-time algorithm to reduce the size of the
input graph by possibly finding partial solution. It turns out that NT-Theorem
has great applications in approximation algorithms [5,17,19] and parameterized
algorithms [2,7]. We can see that V \ I is a 2-approximation solution and G[V \
(C ∪ I)] is a 2k-vertex kernel of the problem taking the size of the solution as
the parameter k. Lokshtanov et al. [21] also apply NT-Theorem to branching
algorithms for Vertex Cover and some other related problems. Due to NT-
Theorem’s practical usefulness and theoretical depth in graph theory, it has
attracted numerous further studies and follow-up work [2,4,9,14]. Bar-Yehuda,
Rawitz and Hermelin [4] extended NT-Theorem for a generalized vertex cover
problem, where edges are allowed not to be covered at a certain predetermined
penalty. Fellows, Guo, Moser and Niedermeier [14] extended NT-Theorem for
Bounded-Degree Vertex Deletion.

In this paper, we are interested in Bounded-Degree Vertex Deletion.
A d-degree deletion set of a graph G is a subset of vertices, whose deletion leaves
a graph of maximum degree at most d. For each fixed d, Bounded-Degree
Vertex Deletion is to find a d-degree deletion set of minimum size in an
input graph. Bounded-Degree Vertex Deletion and its “dual problem” to
find maximum s-plexes have applications in computational biology [8,14] and
social network analysis [3,24]. There is a substantial amount of theoretical work
on this problem [20,23,24], specially in parameterized complexity [6,8,14].

Since Vertex Cover is a special case of Bounded-Degree Vertex
Deletion, we are interested in finding a local optimization theorem similar to
NT-Theorem for Bounded-Degree Vertex Deletion. Fellows, Guo, Moser
and Niedermeier [14] made a great progress toward to this interesting problem
by giving the following theorem.

Theorem 2 [14]. For an undirected graph G = (V,E) of n = |V | vertices and
m = |E| edges, any constant ε > 0 and any integer d ≥ 0, there is an O(n4m)-
time algorithm to compute two disjoint vertex subsets C and I of G such that for
any minimum d-degree deletion set K ′ of the induced subgraph G[V \ (C ∪ I)],
K ′ ∪ C is a minimum d-degree deletion set of G, and

|K ′| ≥ |V \ (C ∪ I)|
d3 + 4d2 + 6d + 4

for d ≤ 1, and

|K ′|1+ε ≥ |V \ (C ∪ I)|
c

for d ≥ 2,

where c is a function of d and ε.

In this theorem, for d ≥ 2, the number of remaining vertices in V \ (C ∪ I)
is not bounded by a constant times of the solution size |K ′| of G[V \ (C ∪ I)].
This is a significant difference between this theorem and the NT-Theorem for
Vertex Cover. In terms of parameterized algorithms, Theorem 2 cannot get
a linear-vertex kernel for Parameterized Bounded-Degree Vertex Dele-
tion (with parameter k being the solution size) for each d ≥ 2. In fact, in
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an initial version [15] of Fellows, Guo, Moser and Niedermeier’s paper, a bet-
ter result was claimed, which can get a linear-vertex kernel for Parameter-
ized Bounded-Degree Vertex Deletion for each d ≥ 0. Unfortunately,
the proof in [15] is incomplete. We also note that Chen et al. [8] proved a 37k-
vertex kernel for Bounded-Degree Vertex Deletion for d = 2. However,
whether Bounded-Degree Vertex Deletion for each d ≥ 3 allows a linear-
vertex kernel is not known. In this paper, based on Fellows, Guo, Moser and
Niedermeier’s work [15], we close the above gap by proving the following theo-
rem for Bounded-Degree Vertex Deletion.

Theorem 3 [Our result]. For an undirected graph G = (V,E) of n = |V |
vertices and m = |E| edges and any integer d ≥ 0, there is an O(n5/2m)-time
algorithm to compute two disjoint vertex subsets C and I of G such that for any
minimum d-degree deletion set K ′ of the induced subgraph G[V \ (C ∪I)], K ′ ∪C
is a minimum d-degree deletion set of G and

|K ′| ≥ |V \ (C ∪ I)|
d3 + 4d2 + 5d + 3

.

From this version of the generalized Nemhauser and Trotter’s theorem, we
can get a (d3 + 4d2 + 5d + 3)k-vertex kernel for Bounded-Degree Vertex
Deletion parameterized by the size k of the solution, which is linear in k for
any constant d ≥ 0. There is no difference between the cases that d ≤ 1 and
d ≥ 2 anymore. For the special case that d = 0, our theorem specializes a 3k-
vertex kernel for Vertex Cover, while Theorem 2 provides a 4k-vertex kernel
and NT-Theorem provides a 2k-vertex kernel. For the special case that d = 1,
our theorem provides a 13k-vertex kernel and Theorem 2 provides a 15k-vertex
kernel. For the special case that d = 2, our theorem obtains a 37k-vertex kernel,
the same result obtained by Chen et al. [8].

Recently, Dell and van Melkebeek [12] showed that unless the polynomial-
time hierarchy collapses, Parameterized Bounded-Degree Vertex Dele-
tion does not have kernels consisting of O(k2−ε) edges for any constant ε > 0,
which implies that linear size would be the best possible bound on the number
of vertices in any kernel for this problem. It has also been proved by Fellows,
Guo, Moser and Niedermeier [14] that when d is not bounded, Parameterized
Bounded-Degree Vertex Deletion is W[2]-hard. Then unless FPT = W[2],
it is impossible to remove d from the size function of any kernel of this problem.
These two hardness results also imply that our result is ‘tight’ in some sense.

The framework of our algorithm follows that of Fellows, Guo, Moser and
Niedermeier’s algorithm [14]. But we still need some new and nontrivial ideas
to get our result. For the purpose of presentation, we will define a decomposi-
tion, called ‘d-bounded decomposition’ to prove Theorem3 and construct our
algorithms. This decomposition can be regarded as an extension of the crown
decomposition for Vertex Cover [1,10], but more sophisticated. To compute
C and I in Theorem 3, we will change to compute a proper d-bounded decompo-
sition. Some similar ideas in construction of crown decompositions as in Fellows,
Guo, Moser and Niedermeier’s algorithm for Theorem2 [14] are used to construct
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our decomposition. The detailed differences between our and previous algorithms
will be addressed in Sect. 4. Before introducing the decompositions, we first give
the notation system in this paper. Proofs of some lemmas are omitted due to
space limitation, which can be found in the full version of this paper.

2 Notation System

Let G = (V,E) stand for a simple undirected graph with a set V of n = |V |
vertices and a set E of m = |E| edges. For simplicity, we may denote a singleton
set {v} by v. For a vertex subset V ′, a vertex in V ′ is denoted by V ′-vertex. The
graph induced by V ′ is denoted by G[V ′]. We also use N(V ′) to denote the set
of vertices in V \V ′ adjacent to some vertices in V ′ and let N [V ′] = N(V ′)∪V ′.
The vertex set and edge set of a graph G′ are denoted by V (G′) and E(G′),
respectively. A bipartite graph with two parts of vertices A and B and edge set
EH is denoted by H = (A,B,EH).

For an integer d′ ≥ 1, a star with d′ +1 vertices is called a d′-star. For d′ > 1,
the unique vertex of degree > 1 in a d′-star is called the center of the star and all
other degree-1 vertices are called the leaves of the star. For a 1-star, any vertex
can be regarded as a center and the other vertex as a leaf. A star with a center
v is also called a star centered at v. For two disjoint vertex sets V1 and V2, a set
of stars is from V1 to V2 if the centers of the stars are in V1 and leaves are in
V2. A ≤d′-star is a star with at most d′ leaves. A d′-star packing (resp., ≤d′-star
packing) is a set of vertex-disjoint d′-stars (resp., ≤d′-stars). We will use α(G)
to denote the size of a minimum d-degree deletion set of a graph G.

3 The Decomposition Techniques

Crown decomposition is a powerful tool to obtain kernels for Vertex Cover.
This technique was firstly introduced in [1,10] and found to be very useful in
designing kernelization algorithms for Vertex Cover and related problems
[2,9,26].

Definition 1 [CrownDecomposition]. A crown decomposition of a graph G
is a partition of the vertex set of G into three sets I, C and J such that

(1) I is an independent set,
(2) there are no edges between I and J , and
(3) there is a matching M on the edges between I and C such that all vertices

in C are matched.

See Fig. 1(a) for an illustration for crown decompositions. In some references,
I �= ∅ is also required in the definition of crown decompositions. Here we allow
I = ∅ for the purpose of presentation. It is known that

Lemma 1 [1]. Let (I, C, J) be a crown decomposition of G. Then (I, C) satisfies
the local optimality condition in Theorem1, i.e., K ′ ∪ C is a minimum vertex
cover of G for any minimum vertex cover K ′ of the induced subgraph G[V \
(I ∪ C)].
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……

(b): A 3-bounded decomposition

…………

(a): A crown decomposition

Fig. 1. Decompositions

By this lemma, we can reduce the instance of Vertex Cover by removing
I ∪ C of a crown decomposition. There are some methods that find certain
crown decompositions of a graph and result in a linear-vertex kernel for Vertex
Cover [2].

In this paper, we will use d-bounded decomposition, which extends the defini-
tion of crown decompositions and Lemma 1. Let A and B be two disjoint vertex
subsets of a graph G. A full d′-star packing from A to B is a set of |A| vertex-
disjoint d′-stars with centers in A and leaves in B. The third item in Definition 1
means that there is a full 1-star packing from C to I. We define the following
decomposition.

Definition 2 [d−BoundedDecomposition]. A d-bounded decomposition of a
graph G = (V,E) is a partition of the vertex set of G into four sets I, C, T and
J such that

(1) any vertex in I ∪ T is of degree ≤ d in the induced subgraph G[V \ C],
(2) there are no edges between I and J , and
(3) there is a full (d + 1)-star packing from C to I.

An illustration for d-bounded decompositions is given in Fig. 1(b). We have
the following Lemma 2 for d-bounded decompositions. This lemma can be derived
from the lemmas in [14], although d-bounded decomposition is not formally
defined in [14].

Lemma 2. Let (I, C, T, J) be a d-bounded decomposition of G. Then (I, C) sat-
isfies the local optimality condition in Theorem3, i.e., K ′ ∪ C is a minimum
d-degree deletion set of G for any minimum d-degree deletion set K ′ of the
induced subgraph G[V \ (I ∪ C)].

By Lemma 2, we can reduce an instance by removing I ∪ C if the graph
has a d-bounded decomposition (I, C, T, J). This is the main idea how we get
Theorem 3 and kernels for our problem. Here arises a problem how to find a d-
bounded decomposition (I, C, T, J) of a graph such that I �= ∅ if it exists. First,
we give a simple observation.

Observation 1. Let R be a set of vertices v such that any vertex in N [v] is of
degree ≤ d. Then (I = R,C = ∅, T = N(R), J = V \ (I ∪ T )) is a d-bounded
decomposition of G.
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By Lemma 2 and Observation 1, we can reduce an instance by removing from
the graph the set B of vertices v such that any vertex in N [v] is of degree ≤ d.
We will introduce an algorithm that can find more d-bounded decompositions.

4 Algorithms

We first introduce an algorithm to find d-bounded decompositions of graphs,
based on which we can easily get an algorithm for the generalization of NT-
theorem in Theorem 3.

4.1 The Algorithm for Decompositions

First of all, we give the main idea of our algorithm to find a d-bounded decom-
position (I, C, T, J) of a graph G = (V,E). It contains three major phases.
Phase 1: find a partition (X,Y ) of the vertex set V such that the maximum
degree in G[Y ] is at most d.
Phase 2: find two subsets C ′ ⊆ X and I ′ ⊆ Y satisfying Basic Condition: there
is a full (d + 1)-star packing from C ′ to I ′ and there is no edge between I ′ and
X \ C ′.
Phase 3: iteratively move some vertices out of I ′ and some vertices out of C ′ to
make (I ′, C ′, T ′ = N(I ′)\C ′, J ′ = V \(I ′ ∪C ′ ∪T ′)) a d-bounded decomposition.

In fact, the first two phases of our algorithm are almost the same as that of
Fellows, Guo, Moser and Niedermeier’s algorithm [14]. However, in Phase 3, our
algorithm uses a different method to compute I ′ and C ′. This is critical for us
to get an improvement.

Phase 1. For Phase 1, we can find a maximal (d + 1)-star packing S and let
X = V (S). By the maximality of S, we know that X is a d-degree deletion set
and G[Y ] has no vertex of degree > d. Then the partition (X,Y ) satisfies the
condition in Phase 1. In order to obtain a good performance, our algorithm may
not use an arbitrary maximal (d + 1)-star packing S. When we obtain a new
(d + 1)-star packing S′ such that |S′| > |S| in our algorithm, we will update X
by letting X = V (S′).

Phase 2. After obtaining (X,Y ) in Phase 1, our algorithm finds two special sets
C ′ ⊆ X and I ′ ⊆ Y in Phase 2. To find C ′ and I ′ satisfying Basic Condition, we
need to find a special ≤(d+1)-star packing from X to Y , which can be computed
by the algorithms for finding maximum matchings in bipartite graphs. Note that
the idea of computing ≤(d+1)-stars from X and Y has been used to solve some
other problems in references [11,16,25].

We consider the bipartite graph H = (X,Y,EH) with edge set EH being
the set of edges between X and Y in G, and are going to find a ≤(d + 1)-star
packing from X to Y in H. Note that a Y -vertex no adjacent to any vertex
in X will become a degree-0 vertex in H. We construct an auxiliary bipartite
graph H ′ = (X1 ∪ X2 ∪ . . . Xd+1, Y, E′

H), where each Xi (i = 1, 2, . . . , d + 1) is a
copy of X and a vertex vi ∈ Xi is adjacent to a vertex u ∈ Y if and only if the
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corresponding vertex v ∈ X is adjacent to u in H. For a vertex v ∈ X, we may
use vi to denote its corresponding vertex in Xi.

We find a maximum matching M ′ in H ′ by using a O(n1/2m)-time algo-
rithm [13,18]. Let M be the set of edges in H corresponding to the matching
M ′, i.e., an edge uv (u ∈ Y and v ∈ X) of H is in M if and only if uvi is
in M ′ for some vi corresponding to v. Edges in M are called marked and oth-
ers are called unmarked. Observe that since M ′ is a matching in H ′, we have
that |M | = |M ′|. The set of marked edges in H forms a ≤(d + 1)-star packing
S≤d+1. This is the ≤(d + 1)-star packing we are seeking for. It is also easy to
observe that

Lemma 3. Graph H has a ≤(d + 1)-star packing containing t edges if and only
if H ′ has a matching of size t.

Next, we analyze some properties of S≤d+1 and find C ′ and I ′ satisfying
Basic Condition based on these properties.

Let Sd+1 denote the set of (d + 1)-stars in S≤d+1. An X-vertex in a star
in Sd+1 is fully tagged. Then X ∩ V (Sd+1) is the set of fully tagged vertices. A
Y -vertex is untagged if it is adjacent to at least one vertex in X in H but not
contained in any star in S≤d+1. A path P in H that alternates between edges
not in M and edges in M is called an M -alternating path.

Lemma 4. If there is an M -alternating path P from an untagged vertex u ∈ Y
to a vertex v ∈ X in H, then v is fully tagged.

Next, we are going to set C ′ and I ′. If there is no untagged vertex, let C ′ = ∅.
Otherwise let C ′ be the set of X-vertices connected with at least one untagged
vertex by an M -alternating path in H. Let X ′ = X \ C ′. Let Y ′ be the set of
Y -vertices that is a leaf of a ≤(d + 1)-star in S≤d+1 that is centered at a vertex
in X ′, and I ′ = Y \ Y ′.

Lemma 5. The two sets C ′ and I ′ obtained above satisfy Basic Condition.

We describe the above progress to compute C ′ and I ′ as an algorithm
basic(G,X, Y ) in Fig. 2, which will be used as a subalgorithm in our main
algorithm.

Lemma 6. Algorithm basic(G,X, Y ) runs in O(n1/2m) time.

Note that all untagged vertices will be in I ′. So if the size of Y is large, for
example |Y | > (d + 1)|X|, we can guarantee that there is always some untagged
vertices and the set I ′ returned by basic(G,X, Y ) is not an empty set.

Phase 3. After obtaining (C ′, I ′) from Phase 2, we look at the partition P =
(I ′, C ′, T ′ = N(I ′) \ C ′, J ′ = V \ (I ′ ∪ C ′ ∪ T ′)). Since there is no edge between
I ′ and X ′ = X \ C ′, we know that T ′ ⊆ Y and X ′ ⊆ J ′. Then there is no
edge between I ′ and J ′. The partition P satisfies Conditions (2) and (3) in
Definition 2 for d-bounded decompositions. Next, we consider Condition (1). Let
G∗ = G[V \C ′]. Any vertex in I ′ is of degree ≤ d in G∗, because G[Y ] = G[V \X]
has maximum degree ≤ d and I ′-vertices are not adjacent to any vertex in X\C ′.
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Input: A graph G = (V,E) and a partition (X,Y ) of the vertex set V .
Output: Two sets C ⊆ X and I ⊆ Y satisfying the Basic Condition.

1. Compute the bipartite graph H and the auxiliary bipartite graph H .
2. Compute a maximum matching M in H and the corresponding edge set M and

the ≤(d + 1)-star packing S≤d+1 in H.
3. Let C be ∅ if there is no untagged vertex, and the set of X-vertices connected

with at least one untagged vertex by an M -alternating path in H otherwise. Let
X ← X\C . Let Y be the set of Y -vertices each of which is a leaf of a ≤(d+1)-star
centered at a vertex in X and let I ← Y \ Y .

4. Return (C , I ).

Fig. 2. Algorithm basic(G, X, Y )

Although T ′ = N(I ′) \ C ′ ⊆ Y , vertices in T ′ is possible to be of degree > d in
G∗. In fact, we only know that each vertex in T ′ is of degree ≤ d in G[Y ]. But
in G∗, every T ′-vertex is adjacent to some vertices in X ′ = X \ C ′ and thus can
be of degree > d. So Condition (1) may not hold. We will move some vertices
out of C ′ and I ′ to make the decomposition satisfying Condition (1).

Let B be the set of T ′-vertices that are of degree > d in G∗. Note that any
vertex in B is adjacent to some vertices in X. We call vertices in NI′(B) =
N(B) ∩ I ′ bad vertices. Note that B is not an empty set if and only if NI′(B) is
not an empty set. If B = ∅, then Condition (1) holds directly. For the case that
B �= ∅, i.e., NI′(B) �= ∅, our idea is to update I ′ by removing NI′(B) out of I ′.
However, after moving some vertices out of I ′, there may not be a full (d+1)-star
packing from C ′ to I ′ anymore. So after moving NI′(B) out of I ′ we invoke the
algorithm basic(G[C ′ ∪ I ′], C ′, I ′) for Phase 2 on the subgraph G[C ′ ∪ I ′] to
find new C ′ and I ′, and then check whether there are new bad vertices or not.
We do these iteratively until we find a d-bounded decomposition, where no bad
vertex exists. In the returned d-bounded decomposition, I ′ and C ′ may become
empty. However, we can guarantee I ′ �= ∅ when the size of the graph satisfies
some conditions. We analyze this after describing the whole algorithm.

The Whole Algorithm for Decomposition. Our algorithm decomposition
(G) presented in Fig. 3 is to compute two subsets of vertices C and I of the input
graph G such that (I, C, T = N(I) \ C, J = V \ (I ∪ C ∪ T )) is a d-bounded
decomposition of G.

Steps 3, 4 and 6 in decomposition(G) are the same steps in basic(G,X, Y ).
Here we add Step 5 into these steps, which is used to update the (d + 1)-star
packing S. In decomposition(G), Steps 1, 2 and 5 are corresponding to Phase 1,
Steps 3, 4 and 6 are corresponding to Phase 2, and Steps 7 and 8 are correspond-
ing to Phase 3. Note that Step 8 will also invoke basic(G,X, Y ).
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Input: A graph G = (V,E).
Output: Two subsets of vertices C and I such that (I, C, T = N(I) \ C, J = V \ (I ∪
C ∪ T )) is a d-bounded decomposition.

1. Find a maximal (d + 1)-star packing S in G.
2. X ← V (S) and Y ← V \ X.
3. Compute the bipartite graph H and the auxiliary bipartite graph H .
4. Compute a maximum matching M in H and the corresponding edge set M and

the ≤(d + 1)-star packing S≤d+1 in H.
5. Let Sd+1 be the set of (d + 1)-stars in S≤d+1.

If {|Sd+1| > |S|},
then S ← Sd+1 and goto Step 2.

6. Let C be ∅ if there is no untagged vertex, and be the set of X-vertices connected
with at least one untagged vertex by an M -alternating path in H otherwise. Let
X ← X \ C . Let Y be the set of leaves of ≤(d + 1)-stars in S≤d+1 centered at
vertices in X and let I ← Y \ Y .

7. Compute the set NI (B) of bad vertices based on C and I .
8. If {NI (B) = ∅},

then I ← I \ NI (B), (C , I ) ← basic(G[C ∪ I ], C , I ), and goto Step 7.
9. Return (C = C , I = I ).

Fig. 3. Algorithm decomposition(G)

Lemma 7. The two vertex sets C and I returned by decomposition(G) make
(I, C, T = N(I) \ C, J = V \ (I ∪ C ∪ T )) a d-bounded decomposition.

We can prove the following two important lemmas.

Lemma 8. Algorithm decomposition(G) runs in O(n3/2m) time and returns
(C, I) such that (I, C, T, J) is a d-bounded decomposition of G, where T = N(I)\
C and J = V (G) \ (I ∪ C ∪ T ).

Lemma 9. Algorithm decomposition(G) returns (C, I) such that

|V \ (C ∪ I)| ≤ (d3 + 4d2 + 5d + 3)α(G).

4.2 The Algorithm for Theorem3

Lemma 9 can get the size condition in Theorem 3 directly. We use the following
algorithm in Fig. 4 for Theorem 3.

From the second iteration of Step 2 in BDD(G), each execution of I ← I ∪ I ′

will include at least one new vertex to I. So decomposition(G[V \ (C ∪ I)]) will
be called for at most n + 1 times. Algorithm BDD(G) runs in O(n5/2m) time.
Furthermore, if decomposition(G′ = G[V \ (C ∪ I)]) returns two empty sets,
then by Lemma 9 we have |V (G′)| = |V (G′)\(C ∪I)| ≤ (d3+4d2+5d+3)α(G′).
These together with Lemmas 8 and 9 imply Theorem 3.
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Input: A graph G = (V,E).
Output: Two subsets of vertices C and I satisfying the conditions in Theorem 3.

1. C, I ← ∅.
2. Do { (C′, I ′) ← decomposition(G[V \ (C ∪ I)]), C ← C ∪ C′ and I ← I ∪ I ′ }

while I ′ �= ∅.
3. Return (C, I).

Fig. 4. Algorithm BDD(G)

5 Concluding Remarks

In this paper, we provide a refined version of the generalized Nemhauser-Trotter-
Theorem, which applies to Bounded-Degree Vertex Deletion and for any
d ≥ 0 can get a linear-vertex problem kernel for the problem parameterized by
the solution size. This is the first linear-vertex kernel for the case that d ≥ 3.
Our algorithms and proofs are based on extremal combinatorial arguments, while
the original NT-Theorem uses linear programming relaxations [22]. It seems no
way to generalize the linear programming relaxations used for the original NT-
Theorem to Bounded-Degree Vertex Deletion [14]. A crucial technique
in this paper is the d-bounded decomposition. To find such kinds of decomposi-
tions, we follow the ideas to find crown decompositions [2] and the algorithmic
strategy in [14]. However, we use more ticks and can finally obtain the linear
size condition.

As pointed out by Fellows et al. [14], the results for Bounded-Degree
Vertex Deletion in this paper can be modified for the problem of packing
stars. We believe that the new decomposition technique can be used to get local
optimization properties and kernels for more deletion and packing problems.
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Abstract. We introduce the successive Hitting Set model, where the set
system is not given in advance but a set generator produces the sets that
contain a specific element from the universe on demand. Despite incom-
plete knowledge about the set system, we show that several approxima-
tion algorithms for the conventional Hitting Set problem can be adopted
to perform well in this model. We describe, and experimentally investi-
gate, several scenarios where the new model is beneficial compared to
the conventional one.

1 Introduction

The Hitting Set problem is a classical NP-complete problems, with applications
in various areas as computational geometry [1], sensor networks [2], or route
planning [3]. The unweighted Hitting Set problem (HS) is defined as follows.

Definition 1 (Hitting Set). Given a set system (U,S) with U being a universe
of elements and S a collection of subsets of U , the Hitting Set problem demands
to find a smallest subset of the universe H ⊆ U such that all sets in S are hit
by H, i.e. ∀S ∈ S : S ∩ H �= ∅.

In the weighted version, additionally a weight function w : U → R
+ is given.

The goal is then to find the cheapest H ⊆ U which hits all sets in S.
Both problem versions are not only NP-hard but exhibit also an inapprox-

imability bound of ln(m)(1 − o(1)) with m = |S| as the dual of the Hitting Set
problem, the Set Cover problem, was proven to be ln(n)(1−o(1)) inapproximable
with n being the number of elements in the universe [4]. Hitting Set problems are
often tackled in practice with the greedy algorithm [5], as it provides an asymp-
totically optimal approximation guarantee of ln(m) + Θ(1). For more refined
Hitting Set problem versions, or with a priori knowledge about the set system,
better approximations and custom-tailored heuristics are possible.

The main obstacle for solving Hitting Set type problems in practice is that
with S ⊆ P(U) the number of sets might be significantly larger than the number
of elements in the universe U . Therefore storing S explicitly can demand enor-
mous space, and operations on the complete set system are extremely expensive.

c© Springer-Verlag Berlin Heidelberg 2015
K. Elbassioni and K. Makino (Eds.): ISAAC 2015, LNCS 9472, pp. 453–464, 2015.
DOI: 10.1007/978-3-662-48971-0 39
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This limits the applicability of greedy and other approximation algorithms to
rather small instances.

A natural question is, whether we could solve the Hitting Set problem without
having to store and investigate whole S at once. Obviously, this demands that
we can access certain subsets of S efficiently. We formalize this idea into a new
model, which we call the successive Hitting Set (SHS) model.

Definition 2 (Successive Hitting Set Model). Given a universe of elements
U , and a deterministic set generator G : U → P(U). The set generator called for
u ∈ U reveals the collection of sets that contain u. The universe together with
∪u∈UG(u) forms the set system.

The Hitting Set problem in the successive model remains basically unchanged.
And, of course, we could just call the generator for all elements first, and then
run the conventional Hitting Set algorithms to compute H. But the scope of the
paper is to design (approximation) algorithms that issue calls to the generator in
a way that the number of known sets (i.e. sets that have to be explicitly stored)
at any point in time is significantly lower than |S|.

1.1 Related Work

Hitting Set problems or Set Cover problems with the set system being not fully
provided a priori were tackled before in the context of an on-line model [6]. In
this model, sets or elements are revealed to the algorithm in some unpredictable
order and have to be handled immediately. On-line algorithms are analyzed by
bounding the competitive ratio, that is the solution cost in the on-line model
divided by the solution cost in the conventional off-line model. This differs sig-
nificantly from our successive setting, as here the sets are not revealed by some
‘adversary’ but it is part of our envisioned approximation algorithms to call the
set generator for elements in the universe wisely.

Furthermore, there is a wide range of heuristics for the conventional Hit-
ting Set problem which aim at compressing the set system or avoid its explicit
construction in order to be able to tackle large instances or to accelerate the com-
putation [7–10]. Most often these heuristics are custom-tailored for certain kinds
of set systems, and the focus is rather on providing good solutions in practice
than on investigating theoretical approximation guarantees. We will provide suc-
cessive algorithms in the following which exhibit good approximation guarantees
and perform well in practice at the same time.

1.2 Contribution

– We adopt the standard greedy algorithm to work in the SHS model with an
approximation guarantee of ln(m) + 2.

– We show that the k-approximation for the k-Hitting Set problem via the
pricing method carries over to our new model.
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– We prove that for set systems with VC-dimension d, a 2dc log(dc) approxima-
tion is possible in the SHS model. In the conventional model, the guarantee
is dc log(dc).

– We investigate several applications where the successive model leads to a
considerably reduced space consumption and/or faster computation times
compared to the conventional model. Furthermore, we show that in practice
our devised approximation algorithms achieve close-to-optimal solutions.

2 Preliminaries

In this paper we restrict ourselves to algorithms where the generator is only called
once per element in the universe. Otherwise, every time an operation needs to
be conducted in a conventional Hitting Set algorithm, the respective part of the
set system is generated (if it fits in memory) and simply forgotten afterwards.
But this potentially leads to a very high number of calls to the generator. Hence
the time spend on set generation might dominate the total runtime, which is not
what we aim for. So the paradigm in this paper is that a set once generated can
only be forgotten after it was hit. This also provides us with an easy correctness
prove for all our algorithms: If the generator was called for every element in the
universe and the set system is empty, a feasible Hitting Set is at hand.

We use the following notation. With c we denote the size of the optimal
solution H∗. We refer to the underlying set of elements for a collection of sets S as
S = ∪S∈SS. We assume the sets in S to be closed under intersection, that is we
cannot divide S into two partitions SA and SB with SA∩SB = ∅. This of course
is only a technical restriction. If S is not closed under intersection, we could
define independent subproblems and solve them individually. In our algorithms,
whenever a temporary set system runs empty because no sets intersect with
previously chosen ones, we just call the generator for some arbitrary element
(for which the generator was not already called), and proceed from there.

3 Greedy Algorithm for General Set Systems

The classical greedy algorithm for the Hitting Set problem works as follows. In
every round of the algorithm, the element u ∈ U is selected which hits most so far
unhit sets. Or, in the weighted case, the element u which minimizes w(u)/|{S ∈
S : S 
 u}|. Then u is added to the Hitting Set H, and all newly hit sets are
removed from the system. The algorithm proceeds until S runs empty.

The computation of the best hitter in every round and the removal of the
newly hit sets induce a complete sweep over all elements in so far unhit sets.
This makes the execution of greedy quite expensive, especially in early rounds.

The greedy algorithm guarantees a ln(b) + Θ(1) approximation with b being
the size of the largest subset of S that can be hit with a single element from U . As
this subset potentially contains (almost) all sets from S, we have a ln(m)+Θ(1)
approximation with m = |S|.
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3.1 Successive Greedy

In the SHS setting, we proceed as follows. We start with an arbitrary subset
S′ ⊆ S. (If no such set is specified, we call the generator G for an arbitrary
element in U and refer to the resulting set as S′.) We select the best hitter
for S′, add it to the solution H and remove all hit sets from S′ just like in the
conventional greedy algorithm. But now, for every set that was hit, we call the set
generator for all contained elements. (Of course, we never call the set generator
twice for an element during the course of the algorithm, and we discard sets
immediately that are already hit.) The generated sets are added to S′. Then
the whole process is repeated. The algorithm stops after the set generator was
called for every element in U , and S′ ran empty.

3.2 Approximation Quality

The successive greedy algorithm has very limited knowledge about the set system
in every round. This is the very opposite of the way conventional greedy works,
as it always selects the best hitter globally. Nevertheless, we will prove that the
approximation guarantee of the successive greedy algorithm is quite close to the
guarantee in the conventional model, as specified in the following Theorem.

Theorem 1. Successive greedy computes a Hitting Set H with the property
|H| ≤ c · (ln m + 2) where c denotes the optimal solution size and m being
the number of sets in the complete set system.

Proof. Let h be a hitter in the optimal solution, and S(h) the collection of
sets hit by h. With s = |S(h)| we denote the number of sets hit by h, i.e. every
set in S(h) is bought at cost w(h)/s (in the unweighted case w(h) = 1). We will
argue that the total costs for S(h) in the successive greedy algorithm are lower
or equal to w(h)(Hs−1+1) with Hs−1 indicating the (s−1)th harmonic number.

Let h0 be the first hitter in the course of the successive greedy algorithm
which hits a set S in S(h). Obviously, S is bought at cost ≤ w(h), as h would have
been a possible choice as well. After h0 is added to H, all sets are generated which
intersect with S. Therefore, in the next round of the successive algorithm all sets
S(h)\S are available in the temporary set system. (Of course, h0 might hit more
than one set in S(h), but this would only reduce the total costs for S(h).) The
successive greedy algorithm could now choose h as the next hitter for S(h), with
a cost ratio of w(h)/(s − 1). So the only reason why the algorithm decides for
another element h1 is, that its ratio is even better or equal to w(h)/(s−1). This
ratio determines the cost for the next hit set in S(h). Then we can apply the
same argument recursively, providing us with a cost ratio of ≤ w(h)/(s − i) for
hitter hi, until i = s − 1 and all sets in S(h) are hit. Hence the total cost for all
sets in S(h) can be expressed as:

w(h) +
s−1
∑

i=1

w(h)
s − i

= w(h) + w(h)
s−1
∑

i=1

1
i

= w(h)(Hs−1 + 1)
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Using Hn < ln n+1, we can upper bound the costs for S(h) by w(h)(ln(s)+ 2).
So compared to the costs of w(h) for S(h) in the optimal solution, we pay
more by at most a factor of ln(s) + 2. As this is true for every hitter in the
optimal solution, and s ≤ m, successive greedy has an approximation guarantee
of ln(m) + 2. �

Arguing more precisely, the standard greedy algorithm exhibits an approx-
imation guarantee of Hb with b being the size of the largest subset of S that
can be hit with a single element from U . This term converges to ln(b) + γ for
growing b, with γ denoting the Euler-Mascheroni constant (γ ≈ 0.57721). In the
successive model, the approximation guarantee is Hb−1 +1 = Hb +1−1/(b−1).

4 Pricing Method for the K-Hitting Set Problem

We now consider the k-Hitting Set problem. Here, all sets in the collection S con-
tain at most k elements. For this special kind of Hitting Set problem, the general
inapproximability bound does not apply. In fact, there exists a k-approximation
algorithm which is an instance of the primal-dual method. The algorithm is
called the pricing method as it assigns prices pS to sets in the system. Initially
all prices are zero, so ∀S ∈ S : pS = 0. For every element u ∈ U , the following
constraint yields

∑

S∈S(u) pS ≤ w(u) with S(u) being the collection of sets that
contain u. If equality holds, the element u is called tight. The pricing method
operates in rounds. In every round, a set S from S is selected which contains
only elements that are not tight. Then the price of the set pS is increased as
much as possible without violating any constraint. This leads to at least one of
the elements in S becoming tight. The algorithm exits as soon as every set in S
contains some tight element. All tight elements form then the Hitting Set H.

4.1 Successive Algorithm

Again, we start with some arbitrary set S′ ⊆ S. We select a set S from S′ in
every round to make one of the contained elements tight. But we have to be
very careful about not violating any constraints when increasing the price of S.
Therefore, we maintain potential weights w′ for every u ∈ U . In the beginning,
we have w′(u) = w(u) for all elements. Then after selecting S, we compute
Δ = minu∈S w′(u). We increase the price pS by Δ and at the same time decrease
all potential weights from elements in S by Δ. At least one of those elements
will have a potential weight of 0 afterwards. All elements with w′ being 0 are
added to H, and hit sets are removed from S′. Note, that it does not matter
how we issue calls to the generator. We can just select some arbitrary element
u in every round (for which the generator was not already called); and add the
respective sets G(u) to S′. Again, the algorithm exits as soon as the generator
was called for all elements and S′ is empty.
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4.2 Correctness and Analysis

Correctness of the successive pricing method is obvious, as the algorithm only
terminates when every set in the system contains some tight element; and the
tight elements coincide with the Hitting Set.

The quality analysis works similar to the conventional pricing method analy-
sis. The only point we have to assure is not to violate any constraint. Every time
we increase the price of a set, we decrease the potential weights of all contained
elements. Therefore the summed prices of sets that contain a specific element are
always equal to the original potential weight minus the final potential weight of
the element. As potential weights never drop below 0, the summed prices of sets
that contain element u are bounded by w(u). Therefore all constraints are satis-
fied at any point in time. Accordingly, the quality analysis for the conventional
pricing method can be applied, proving that the successive pricing method also
has an approximation guarantee of k.

Theorem 2. The successive pricing method returns a solution H for an instance
of the k-Hitting-Set problem with |H| ≤ c ·k where c denotes the optimal solution
size.

The advantage of the successive approach is again that it requires only a
very small subset of S to be explicitly stored. More precisely, a single set being
available in each round suffices for correctness and to achieve the desired approx-
imation quality. Hence, linear space in the size of U would be enough for the
pricing method to work, if our set generator can be instrumented to produce the
sets per element one by one. For comparison, whole S might require space in
the order of k · |U |k.

5 Concatenated Hitting Sets

Lets assume we have some algorithm A for HS which provides a better approx-
imation guarantee than the generally tight ln(m) bound by making use of char-
acteristics of the underlying set system. A famous incarnation of such A is the
algorithm by Brönimann and Goodrich [11] which provides for set systems with
VC-dimension d a solution within dc log(dc). In this context, the VC-dimension
can be regarded as a complexity measure for the set system. Low VC-dimensions
are exhibited e.g. by many set systems on geometric objects [12]. We now describe
a successive scheme which can exploit such algorithms A to find good approxi-
mate solutions while only operating on subsets of S.

5.1 Successive Algorithm

Like before, we start with some arbitrary subset S1 ⊆ S. We apply algorithm
A to S1 conventionally. This provides us with an initial Hitting Set H1. Then
we delete the sets in S1 from the system but add all sets that have a non-empty
intersection with a set in S1 (by calling the generator for all elements in S1).
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Of course, we never add already hit sets to the system at any point in time. For
the newly generated set system S2, we again apply A which leads to a second
Hitting Set H2. We repeat the process until the generator was called for every
element in U and the set system is empty. The final Hitting Set returned is the
union of H1,H2, · · · ,Hk.

5.2 Correctness and Approximation Quality

As every set in S is generated at some point and only deleted after it was hit,
correctness of the successive algorithm is obvious.

It remains to analyze the solution quality. We make the following two simple
but crucial observations:

Observation 3. The optimal solution size ci for Si is smaller or equal to the
optimal solution size c = |H| for S reduced to Si, i.e. ci ≤ |H ∩ Si|.

Observation 4. Si ∩ Sj = ∅ if |i − j| > 1, because all sets intersecting with
Si are either already contained in Si−1 or are created in Si+1 and therefore hit
and deleted before the construction of Si+2.

The second observation tells us that Sodd = S1,S3, · · · is a collection of pair-
wise intersection free instances, and the same is true for Seven = S2,S4, · · · .
According to the first observation, the optimal solution for whole S requires at
least as many hitters for Si as the individual optimal solution. As the union of
intersection free instances can not lead to any redundant hitters, we conclude
c ≥

∑k/2
i=1 c2i and c ≥

∑k/2
i=1 c2i−1. In total we get 2c ≥

∑k
i=1 ci.

Now, we consider A with an approximation guarantee of d log(dc) with d
denoting the VC-dimension of the set system. For any subset of S, the VC-
dimension can not be higher than d. So we have |Hi| ≤ dci log(dci). The optimal
solution for any Si is smaller or equal to the global solution, i.e. ci ≤ c. Hence
we can upper bound |Hi| by dci log(dc). Then we can upper bound the size of
the solution resulting from combining all individual Hi by:

k
∑

i=1

|Hi| ≤
k

∑

i=1

dci log(dc) = d log(dc)
k

∑

i=1

ci ≤ 2dc log(dc)

The last inequality uses our lower bound for the optimal solution c as constructed
above.

There are other set systems which even exhibit constant approximations [13]
or PTAS [1]. The respective approximation algorithms can easily be plugged into
our successive scheme and the analysis is quite similar.

Theorem 5. For an approximation algorithm A which computes a Hitting Set
H with the guarantee |H| ≤ f(c), the successive variant of A exhibits an approx-
imation guarantee of 2f(c).
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Fig. 1. Left: Illustration of the successive greedy algorithm. Hitters are indicated by
black dots, the enumeration reflects the order in which they were chosen. Middle:
Independent collection of sets picked by the successive pricing method. All elements in
the lilac sets form the Hitting Set. Right: Illustration of the concatenation algorithm.
The first instance is given by the blue sets, the second by the red sets and the third
by the green sets (together with a Hitting Set per instance). The green and the blue
instances are intersection-free. The colorless set on the right is not in the green instance
as it is already hit by the red Hitting Set (Colour figure online).

So our successive scheme produces a solution with an approximation guarantee
which is only worse by a factor of 2 compared of the original approximation
guarantee. At the same time, our algorithm only requires the storage of the
actual Si, and operations to compute H are only performed on sub-instances.

For improving the solution quality in practice, we can apply a backwards
pruning strategy. At the moment we constructed the Hitting Set Hi for Si, we
can check if elements in Hi−1 become superfluous due to Hi. For that purpose,
we sweep over the sets in Si−1 that are not hit by Hi and only maintain their
hitters in Hi−1.

6 Applications

Our theoretical investigations showed that operating in the successive model
leads to the same approximation guarantees in Big-O-notation than in the con-
ventional model. But the question remaining is, if there are really applications
where the intermediate sizes of the set system known to the successive approxi-
mation algorithms are considerably smaller than |S|.

Figure 1 illustrates all three introduced algorithms (successive greedy, suc-
cessive pricing method and concatenation). For the k-Hitting Set problem we
observed that a single known set suffices for the pricing method to work cor-
rectly. But for greedy and the concatenated algorithm, the existence of elements
u ∈ U with G(u) containing a significant fraction of the elements in U possi-
bly leads to set systems with their size comparable to S. So in that case our
successive algorithms are not advantageous.

In this section, we will describe applications where the successive model is
intuitively beneficial compared to the conventional one.
Set Systems with Efficient Generators. The efficiency of our successive
algorithms relies on how quick they can operate on the temporary set system as
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well as on how quick they can generate the next required sets. We will describe
an exemplary application in the following, where efficient generators are easily
available. So at the latest when the complete set system would no longer fit in
memory, the successive algorithm will outperform the conventional one.

Example 1 (Hitting k-Paths or Shortest Paths). Given a graph G(V,E), the
objective is to hit all simple paths in G which contain at least k nodes or have
a length exceeding some bound B (when additionally given a cost function f :
E → R). The efficient construction of all paths that contain a certain vertex v
can be accomplished using a breadth-first-search or Dijkstra based approach [8].
Note that the successive framework only makes sense when k or B are chosen
as a small fraction of the diameter of the graph.

Incomplete Knowledge. In some applications, it might not even be possible
to call the generator G a priori for every element, as necessary information might
be missing. This is typically the case in AI applications, where e.g. mobile robots
have to explore unknown terrain. Let, for example, the task of the robot be to
physically mark every square of side length a which contains a certain amount
of items in some finite area. Of course, the robot might explore the whole area
first, then compute the set of all relevant squares, identify the respective marker
positions, and then drive back to place them. But in the spirit of our successive
scheme, it always could explore areas next that intersect with the ones just hit
by driving in an a-tube around them. Then the set of squares it has to remember
and that are used for computation of the next marker position(s) is smaller, and
potentially the robot has to drive less of a detour to place the marker.

Solving Conventional Instances in the SHS Model. Even if the set system
is explicitly available and fits in memory, it might be beneficial in terms of
runtime to use the successive version of the greedy algorithm. Think of a set
system where the best hitter hits only a very small fraction of all sets. Therefore
the number of sets will decrease slowly in the greedy algorithm. But every round
requires a complete scan over all remaining sets, so the computation gets quite
expensive. In the successive algorithm, we could define S′ as a collection of
sufficiently small sets in S. Then, computing the initial hitter can be made as
cheap as desired. If every element can hit only a small fraction of sets in S, also
the increase in the set system size by calling the generator is moderate.

An efficient generator for explicitly available set systems is easy to design.
For example, one could store S as an array of sets and keep for every element
u ∈ U a list of corresponding set indices.

7 Experiments

We implemented the standard greedy algorithm and the described successive
greedy variant in C++ and evaluated them in terms of quality, space consump-
tion and runtime. The timings were measured on a single core of an Intel i5-4300U
CPU with 1.90 GHz and 12 GB RAM.
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Table 1. Comparison of greedy and successive greedy on several benchmarks. ’k’ equals
103. ’lb’ stands for lower bound, T(ext) is time for set extraction, T(hit) for hitting set
computation, T(total) or T for complete execution time. Timings are given in seconds
(s), minutes (m) or hours (h).

Greedy Successive Greedy

#nodes lb |S| space T(ext) T(hit) T(total) |H| max |S′| T |H|
100 k 1,857 731 k 0.17GB 12 s 47 s 59 s 3,302 15 k 21 s 4,411

500 k 8,959 4,431 k 1.08GB 99 s 19m 21m 16,423 72 k 457 s 21,313

996 k 18,862 8,033 k 1.98GB 172 s 76m 79m 33,909 126 k 18m 41,073

6,611 k 96,468 – – – – – – 749 k 10 h 246,370

21,945 k 274,981 – – – – – – 2251 k 37 h 691,513

As example application we chose the construction of Hitting Sets on shortest
paths in a graph (Example 1 in Sect. 6) as it is of theoretical and practical
interest (see [3,8,14]).

We extracted real-world road networks from OSM1 to model the graphs. We
chose networks with the number of nodes increasing from about 100,000 to 20
million. The number of edges in our test graphs is about twice the number of
nodes. We demanded to find a Hitting Set for each of the graphs which hits
every shortest path with a length exceeding 1000 m. The results for greedy and
successive greedy are provided in Table 1. We observe that the greedy algorithm
can only provide solutions for the instances with up to one million nodes in the
graph. For larger benchmarks, the space consumption of the set system exceeds
our hardware capabilities. The successive greedy algorithm on the other hand
leads to results on all benchmarks. The solution quality is naturally worse com-
pared to the classical greedy solution (about 25% on average in our experiments).
To make statements about the solution quality compared to the optimum, we
computed simple lower bounds along by selecting a collection of pair-wise inde-
pendent sets in the system. Comparing the solutions found by successive greedy
to those lower bounds (provided in Table 1, second column), we see that they
are never more than a factor of 3 apart. So the approximation ratio of successive
greedy is quite good in our setting.

If we compare the size of the complete set system |S| to the maximum number
of sets in the temporary set system (max |S′|) maintained by successive greedy,
we observe a drastic reduction. For example, for the 996k instance, S′ has at
most 1.5% of the size of S. The space consumption of S′ was comparable to
the space consumption of the input graph for all instances. This is also reflected
in the computation times. The extraction times of the set system are negligible
compared to the times for the Hitting Set computation. For successive greedy
the total time is always smaller than for conventional greedy, e.g. by a factor of
4.28 for the 996 k instance. For larger instances this effect expectedly would be
even more pronounced.
1 openstreetmap.org.

https://www.openstreetmap.org
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So in concurrency with out theoretical investigations, successive greedy turns
out to be a useful tool to construct Hitting Sets in practice – especially on large
instances.

8 Conclusions and Future Work

We introduced the successive Hitting Set model and designed algorithms that
work in this model with good theoretical approximation guarantees – close to
the guarantees in the conventional model. The experimental study confirmed
that there are indeed applications where algorithms in the successive model lead
to less space consumption and better computation times than the conventional
algorithms. In future work, memory consumption could be turned into a hard
constraint. We observed that the successive pricing method works if only a single
set is available in every round. For successive greedy and the concatenation
algorithm, the ‘wavefront’ of sets might become huge, though. Therefore it would
be interesting to study algorithms in the successive model with the number of
sets in the temporary system being restricted a priori – either instance-dependent
(e.g. considering the maximal number of sets that can be hit by a single element)
or completely ad hoc.
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Abstract. Complex networks have become increasingly popular for
modeling various real-world phenomena. Realistic generative network
models are important in this context as they simplify complex network
research regarding data sharing, reproducibility, and scalability stud-
ies. Random hyperbolic graphs are a very promising family of geometric
graphs with unit-disk neighborhood in the hyperbolic plane. Previous
work provided empirical and theoretical evidence that this generative
graph model creates networks with many realistic features.
In this work we provide the first generation algorithm for random hyper-
bolic graphs with subquadratic running time. We prove a time com-
plexity of O((n3/2 + m) log n) with high probability for the generation
process. This running time is confirmed by experimental data with our
implementation. The acceleration stems primarily from the reduction
of pairwise distance computations through a polar quadtree, which we
adapt to hyperbolic space for this purpose and which can be of inde-
pendent interest. In practice we improve the running time of a previous
implementation (which allows more general neighborhoods than the unit
disk) by at least two orders of magnitude this way. Networks with billions
of edges can now be generated in a few minutes.

Keywords: Complex networks · Hyperbolic geometry · Efficient range
query · Polar quadtree · Generative graph model

1 Introduction

The algorithmic analysis of complex networks is a highly active research area
since complex networks are increasingly used to represent phenomena as varied
as the WWW, social relations, protein interactions, and brain topology [18].
Complex networks have several non-trivial topological features: They are usually
scale-free, which refers to the presence of a few high-degree vertices (hubs) among
many low-degree vertices. A heavy-tail degree distribution that occurs frequently
in practice follows a power law [18, Chap. 8.4], i. e. the number of vertices with
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degree k is proportional to k−γ , for a fixed exponent γ > 0. Moreover, complex
networks often have the small-world property, i. e. the distance between any two
vertices is surprisingly small, regardless of network size.

Generative network models play a central role in many complex network
studies for several reasons: Real data often contains confidential information; it
is then desirable to work on similar synthetic networks instead. Quick testing
of algorithms requires small test cases, while benchmarks and scalability studies
need bigger graphs. Graph generators can provide data at different user-defined
scales for this purpose. Also, transmitting and storing a generative model and its
parameters is much easier than doing the same with a gigabyte-sized network.
A central goal for generative models is to produce networks which replicate
relevant structural features of real-world networks [9]. Finally, generative mod-
els are an important theoretical part of network science, as they can improve
our understanding of network formation. The most widely used graph-based
system benchmark in high-performance computing, Graph500 [5], is based on
R-MAT [10]. This model is efficiently computable, but has important drawbacks
concerning realism and preservation of properties over different graph sizes [14].

Random hyperbolic graphs (RHGs), introduced by Krioukov et al. [15], are a
very promising graph family in this context: They yield a provably high cluster-
ing coefficient (a measure for the frequency of triangles) [12], small diameter [7]
and a power-law degree distribution with adjustable exponent. They are based
on hyperbolic geometry, which has negative curvature and is the basis for one
of the three isotropic spaces. (The other two are Euclidean (flat) and spherical
geometry (positive curvature).) In the generative model, vertices are distributed
randomly on a hyperbolic disk of radius R and edges are inserted for every vertex
pair whose distance is below R.1 This family of graphs has been analyzed well
theoretically [7,8,12,13] and Krioukov et al. [15] showed that complex networks
have a natural embedding in hyperbolic geometry. Calculating all pairwise dis-
tances in the generation process has quadratic time complexity. This impedes
the creation of massive networks and is likely the reason previously published
networks based on hyperbolic geometry have been in the range of at most 105

vertices. A faster generator is necessary to use this promising model for networks
of interesting scales.

Proofs, details, further experiments, pseudocode and visualizations omitted
due to space constraints can be found in the full version [24].

Outline and Contribution. We develop, analyze, and implement a fast, sub-
quadratic generation algorithm for random hyperbolic graphs.

To lay the foundation, Sect. 2 discusses other generative network models and
introduces fundamentals of hyperbolic geometry. The main technical part starts
with Sect. 3, in which we use the Poincaré disk model to relate hyperbolic to

1 We consider the name “hyperbolic unit-disk graphs” as more precise, but we use
“random hyperbolic graphs” to be consistent with the literature. More general
neighborhoods are possible [15] but not considered here since most theoretical
works [7,8,12] are for unit-disk neighborhoods.
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Euclidean geometry. This allows the use of a new spatial data structure, namely
a polar quadtree adapted to hyperbolic space, to reduce both asymptotic com-
plexity and running time of the generation. We further prove the time complexity
of our generation process to be O((n3/2 + m) log n) with high probability (whp,
i. e. ≥ 1 − 1/n) for a graph with n vertices, m edges, and sufficiently large n.
Our experimental results in Sect. 4 confirm our theoretical bound for the run-
ning time. A graph with 107 vertices and 109 edges can be generated with our
shared-memory parallel implementation in about 8 min. The generator code is
available in the network analysis toolkit NetworKit [22].

2 Related Work and Preliminaries

To make the following discussions clearer, we first introduce some network ter-
minology. The clustering coefficient measures how likely two vertices with a
common neighbor are to be connected. Different definitions exist, we use the
global clustering coefficient, the fraction of closed triplets to connected triplets.
Many real networks have multiple connected components, yet one large compo-
nent is usually dominant. The diameter is the longest shortest path in the graph,
which is often surprisingly small in complex networks. Complex networks also
often exhibit a community structure, i. e. dense subgraphs with sparse connec-
tions between them.

2.1 Existing Graph Generators

The Barabasi-Albert model [2] is a preferential attachment model, designed to
replicate the growth of real complex networks. The probability that a new vertex
will be attached to an existing vertex v is proportional to v’s degree, which
results in a power-law degree distribution. While the distribution’s exponent is
constant for the basic model, generalizations for arbitrary exponents exist (see
e. g. [18, Chap. 14]). Preferential attachment processes can be implemented with
a running time in O(n + m) [6].

The Dorogovtsev-Mendes model [11] is designed to model network growth
with a fixed average degree. It is very fast in theory (Θ(n)) and practice, but
accepts only the vertex count as parameter and is thus inflexible.

The Recursive Matrix (R-MAT) model [10] was proposed to recreate prop-
erties of complex networks including a power-law degree distribution, the small-
world property and self-similarity. Design goals also include few parameters and
high generation speed. The R-MAT generator recursively subdivides the ini-
tially empty adjacency matrix into quadrants and drops edges into it according
to given probabilities. It has Θ(m log n) asymptotic complexity and is fast in
practice. However, at least the R-MAT parameters used by the Graph500 sys-
tem benchmark [5] lead to an insignificant community structure and clustering
coefficients, as no incentive to close triangles exists.

Given a degree sequence seq , the Chung-Lu (CL) model [1] adds edges
(u, v) with a probability of p(u, v) = seq(u)seq(v)∑

k seq(k) , recreating seq in expectation.
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The model can be conceived as a weighted version of the well-known Erdős-Rényi
(ER) model and has similar capabilities as the R-MAT model [21]. Implementa-
tions exist with Θ(n + m) time complexity [17]. LFR [16], in turn, was designed
as a benchmark generator for community detection algorithms. Usually the user
specifies vertex degrees and community sizes. However, the implementation is
also able to handle other parameters.

BTER [14] is a two-stage structure-driven model. It uses the standard ER
model to form relatively dense subgraphs and thus distinct communities. After-
wards, the CL model is used to add edges, matching the desired degree distrib-
ution in expectation [20]. This is done in Θ(n + m log dmax), where dmax is the
maximum vertex degree.

To summarize, all these models have their characteristics and also deficien-
cies. While some seem more preferable than others, no model is widely accepted
as suitable for all (or at least most) possible scenarios or applications. Thus,
the promising previous results described next motivate a deeper investigation of
RHGs.

2.2 Graphs in Hyperbolic Geometry

Kriokouv et al. [15] introduced the family of random hyperbolic graphs and
showed how they naturally develop a power-law degree distribution and other
properties of complex networks. In the generative model, vertices are generated
as points in polar coordinates (φ, r) on a disk of radius R in the hyperbolic
plane with curvature −ζ2. We denote this disk with DR. The angular coordinate
φ is drawn from a uniform distribution over [0, 2π]. The probability density for
the radial coordinate r is given by [15, Eq. (17)] and controlled by a growth
parameter α:

f(r) = α
sinh(αr)

cosh(αR) − 1
(1)

For α = 1, this yields a uniform distribution on hyperbolic space within DR. For
lower values of α, vertices are more likely to be in the center, for higher values
more likely at the border of DR.

We denote the hyperbolic distance between two points p1 and p2 with
distH(p1, p2). In the model, any two vertices u and v are connected by an edge
if their hyperbolic distance distH(u, v) is below R. The neighborhood of a point
(= vertex) thus consists of the points lying in a hyperbolic circle around it. (Kri-
oukov et al. also present a more general model in which edges are inserted with
a probability depending on hyperbolic distance. For this purpose, they define
a family of monotonically falling functions parametrized by a temperature T .
As noted earlier, we are in line with the theoretical works [7,8,12] and discuss
unit-disk neighborhoods only. The latter can be considered as the special case
T = 0.) Several works have analyzed the properties of the resulting graphs the-
oretically. Krioukov et al. show that for α/ζ > 1

2 , the degree distribution follows
a power law with exponent 2 · α/ζ + 1 [15, Eq. (29)]. Gugelmann et al. [12]
prove non-vanishing clustering and a low variation of the clustering coefficient.
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(a) Native representation as specified in [15]. (b) Poincaré disk model.

Fig. 1. Comparison of geometries. Neighbors of the bold blue vertex are in the hyper-
bolic respective Euclidean circle. The center of the Euclidean circle is marked with ×
(Colour figure online).

Bode et al. [7] discuss the size of the giant component and the probability that
the graph is connected [8]. They also show [8] that the curvature parameter ζ
can be fixed while retaining all degrees of freedom, we thus assume ζ = 1 from
now on. Kiwi and Mitsche [13] bound the diameter asymptotically almost surely
for 1

2 < α < 1. The average degree k of a random hyperbolic graph is controlled
with the radius R, using an approximation given by [15, Eq. (22)]. An example
graph with 500 vertices, R ≈ 5.08 and α = 0.8 is shown in Fig. 1a. For the pur-
pose of illustration in the figure, we choose a vertex u (the bold blue vertex) and
add edges (u, v) for all vertices v where distH(u, v) ≤ 0.2 · R. The neighborhood
of u then consists of vertices within a hyperbolic circle (marked in blue).

A previous generator implementing the extended model and with quadratic
complexity is available [3]. We show in Sect. 4.1 that for the random hyperbolic
graphs described above, our implementation is at least two orders of magnitude
faster in practice.

2.3 Poincaré Disk Model

The Poincaré disk model is one of several representations of hyperbolic space
within Euclidean geometry and maps the hyperbolic plane onto the Euclidean
unit disk D1(0). The hyperbolic distance between two points pE , qE ∈ D1(0) is
then given by the Poincaré metric [4]:

distH(pE , qE) = acosh
(

1 + 2
||pE − qE ||2

(1 − ||pE ||2)(1 − ||qE ||2)

)

. (2)
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Algorithm 1. Graph Generation
Input: n, k, α
Output: G = (V, E)

1 R = getTargetRadius(n, k, α); /* Eq.(22) [15] */

2 V = n vertices;
3 T = empty polar quadtree of radius mapToPoincare(R);
4 for vertex v ∈ V do
5 draw φ[v] from U [0, 2π);
6 draw rH[v] with density f(r) = α sinh(αr)/(cosh(αR) − 1); /* Eq.(1) */

7 rE [v] = mapToPoincare(rH[v]);
8 insert v into T at (φ[v], rE [v]);

9 for vertex v ∈ V do in parallel
10 CH = circle around (φ[v], rH[v]) with radius R;
11 CE = transformCircleToEuclidean(CH); /* Prop. 1 */

12 for vertex w ∈ T .getVerticesInCircle(CE) do
13 add (v, w) to E;

14 return G;

Figure 1b shows the same graph as in Fig. 1a, but translated into the Poincaré
model. This model is conformal, i. e. it preserves angles. More importantly for
us, it maps hyperbolic circles onto Euclidean circles.

3 Fast Generation of Graphs in Hyperbolic Geometry

We proceed by showing how to relate hyperbolic to Euclidean circles. Using this
transformation, we are able to partition the Poincaré disk with a polar quadtree
that supports efficient range queries. We adapt the network generation algo-
rithm to use this quadtree and prove subsequently that it achieves subquadratic
generation time.

3.1 Generation Algorithm

Fig. 2. Polar quadtree

Transformation from Hyperbolic Geometry.
Neighbors of a query point u = (φh, rh) lie in a
hyperbolic circle around u with radius R. This
circle, which we denote as H, corresponds to
a Euclidean circle E in the Poincaré disk. The
center Ec and radius radE of E are in general
different from u and R. All points on the bound-
ary of E in the Poincaré disk are also on the
boundary of H and thus have hyperbolic dis-
tance R from u. Among these points, the two on
the ray from the origin through u are straight-
forward to construct by keeping the angular coordinate fixed and choosing the
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radial coordinates to match the hyperbolic distance: (φh, re1) and (φh, re2), with
re1 , re2 ∈ [0, 1), re1 �= re2 and distH(Ec, (φh, re)) = R for re ∈ {re1 , re2}. It
follows:

Proposition 1. Ec is at (φh, 2rh

ab+2 ) and radE is

√

(

2rh

ab+2

)2

− 2r2
h−ab

ab+2 , with

a = cosh(R) − 1 and b = (1 − r2h).

Algorithm. The generation of G = (V,E) with n vertices and average degree k is
shown in Algorithm 1. As in previous efforts [3], vertex positions are generated
randomly (lines 5 and 6). We then map these positions into the Poincaré disk
(line 7) and, as a new feature, store them in a polar quadtree (line 8). For
each vertex u the hyperbolic circle defining the neighborhood is mapped into
the Poincaré disk according to Proposition 1 (lines 10–11) – also see Fig. 1b,
where the neighborhood of u consists of exactly the vertices in the light blue
Euclidean circle. Edges are then created by executing a Euclidean range query
with the resulting circle in the polar quadtree (lines 12–13). We use the same
probability distribution for the node positions and add an edge (u, v) exactly
if the hyperbolic distance between u and v is less than R. This leads to the
following proposition:

Proposition 2. Algorithm 1 generates random hyperbolic graphs as defined in
Sect. 2.2.

Data Structure. As mentioned above, our central data structure is a polar
quadtree on the Poincaré disk. While Euclidean quadtrees are common [19],
we are not aware of previous adaptations to hyperbolic space. A node in the
quadtree is defined as a tuple (minφ,maxφ,minr,maxr) with minφ ≤ maxφ

and minr ≤ maxr. It is responsible for a point p = (φp, rp) ∈ D1(0) iff
(minφ ≤ φp < maxφ) and (minr ≤ rp < maxr). Figure 2 shows a section of
a polar quadtree, where quadtree nodes are marked by dotted red lines. We call
the geometric region corresponding to a quadtree node its quadtree cell. When
a point is to be inserted into an already full leaf node, the node is split into four
children. Splitting in the angular direction is straightforward as the angle range
is halved: midφ := maxφ+minφ

2 . For the radial direction, we choose the splitting
radius to result in an equal division of probability mass:

midrH := acosh
(

cosh(α maxrH) + cosh(α minrH)
2

)

/α (3)

(Note that Eq. (3) uses radial coordinates in the native representation, which
are converted back to coordinates in the Poincaré disk.) This leads to two lemmas
useful for establishing the time complexity of the main quadtree operations:

Lemma 1. Let DR be a hyperbolic disk of radius R, p a point in DR which
is chosen according to the distribution discussed in Sect. 2.2, and T be a polar
quadtree on DR. Let C be a quadtree cell at depth i. Then, the probability that p
is in C is 4−i.
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Lemma 2. Let R and DR be as in Lemma 1. Let T be a polar quadtree on DR

containing n points distributed according to Sect. 2.2. Then, for n sufficiently
large, height(T ) ∈ O(log n) whp.

3.2 Time Complexity

The time complexity of the generator is determined by the quadtree operations.

Quadtree Insertion. For the amortized analysis, we consider each element’s initial
and final position during the insertion of n elements. Let h(T ) be the final height
of quadtree T , let h(i) be the final depth of element i and let t(i) be the depth
of i when it was inserted. During insertion of element i, t(i) quadtree nodes are
visited until the correct leaf for insertion is found, the cost for this is linear in
t(i). When a leaf cell is full, it splits into four children and the depth of each
element in the leaf increases by one. Over the course of inserting all n elements,
element i thus moves h(i)−t(i) times due to leaf splits. To reach its final position
at depth h(i), element i accrues cost of O(t(i)+h(i)−t(i)) = O(h(i)) ⊆ O(h(T )),
which is O(log n) whp due to Lemma 2. The amortized time complexity for a
node insertion is then: T (Insertion) ∈ O(log n) whp.

Quadtree Range Query. Neighbors of a vertex u are the vertices within a Euclid-
ean circle constructed according to Proposition 1. Let N (u) be this neighborhood
set in the final graph, thus deg(u) := |N (u)|. We denote leaf cells that do not
have non-leaf siblings as bottom leaf cells.

Lemma 3. Let T and n be as in Lemma 2. A range query on T returning a
point set A will examine at most O(

√
n + |A|) bottom leaf cells with probability

at least 1 − 1
n2 .

Due to Lemma 3, the number of examined bottom leaf cells for a range
query around u is in O(

√
n + deg(u)) with probability at least 1 − 1

n2 . The
query algorithm traverses T from the root downward. For each bottom leaf cell
b, O(h(T )) inner nodes and non-bottom leaf cells are examined on the path from
the root to b. Due to Lemma 2, h(T ) is in O(log n) whp. The time complexity to
gather the neighborhood of a vertex u with degree deg(u) is thus: T (RQ(u)) ∈
O ((

√
n + deg(u)) · log n) whp.

Graph Generation. To generate a graph G from n points, the n positions need
to be generated and inserted into the quadtree. The time complexity of this is
O(n) + n · O(log n) = O(n log n) whp. In the next step, neighbors for all points
are extracted. This has a complexity of

T (Edges) =
∑

v

O
((√

n + deg(v)
)

· log n
)

= O
((

n3/2 + m
)

log n
)

whp. (4)

The complexity bounds for each of the n range queries hold with probability at
least 1 − 1

n2 , with a union bound we get a probability of at least 1 − 1/n for
the above complexity. This dominates the quadtree operations and thus total
running time. We conclude:
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Theorem 1. Generating random hyperbolic graphs can be done in O((n3/2 +
m) log n) time whp for sufficiently large n, i. e. with probability ≥ 1 − 1/n.

A more thorough discussion of the probabilities can be found in the full version.

4 Experimental Evaluation

We compare the output and running times of our implementation and the imple-
mentation of Aldecoa et al. [3] for the same parameters. Please note that the
implementation at [3] supports a more general model including six different
regimes, among them the generalized model of Krioukov et al. described in
Sect. 2.2. In practice, they support a variable clustering coefficient and non-
powerlaw degree distributions. The random hyperbolic graphs we consider, where
two nodes are connected exactly if their hyperbolic distance is at most R, cor-
respond to a finite γ and a temperature of zero.

Implementation. Our implementation uses the NetworKit toolkit [22] and is
written in C++ 11. The code is compiled with GCC 4.8 and parallelized with
OpenMP. The parallelization over the range queries is straightforward as they
are independent.

Several optimizations improve performance. Sorting the points by angular
coordinates before generating the graph improves cache locality, since points
close to each other also have similar neighbors and thus similar access pat-
terns to the quadtree data structure. The number of memory reallocations while
constructing the neighborhood of a vertex v can be reduced by pre-allocating
memory according to the expected degree of v, which is approximated by [15,
Eq. (12)]. This is especially useful in a parallel setting with a global lock for
memory allocations. The effect of these optimizations depend on the density of
the generated graph.

Experimental Setup. In the comparison with the implementation of [3], the gen-
erated graphs could not be compared directly as both implementations sample
random graphs. In its output files, the implementation of [3] does provide the
hyperbolic coordinates of the generated points. Yet, since the distance threshold
R is computed non-deterministically with a Monte Carlo process and not written
to the log file, we do not have all necessary information to recreate the graphs
exactly. Instead, we generate series of graphs with 10000 nodes, average degree
k between 4 and 256 and degree distribution exponent γ between 2.2 and 7. We
then compare the average properties of the generated graphs.

Running time measurements were made on a server with 256 GB RAM and
2x8 Intel Xeon E5-2680 cores at 2.7 GHz. With hyperthreading, we use 32 virtual
threads for our parallel implementation. The implementation of [3] is sequential.

4.1 Results

Qualitative Comparison. Figures showing properties of the generated graphs in
comparison with the implementation of [3] can be found in the full paper [24].
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Some random fluctuations are visible, but for almost all properties the averages
of our implementation are very similar to the implementation of [3]. The mea-
sured values of γ for thin graphs and various target γs differ from the previous
implementation, but the fluctuation within the measurements of each implemen-
tation are sufficiently strong that it leads us to assume some measurement noise.
The differences between the implementations are smaller than the variations
within one implementation. Both generators create graphs with at times high
diameters, about 600 for graphs with 10000 nodes, k = 16 and γ = 7. At first
glance, this seems to contradict the theoretical bound in [13]. However, their
result is only for 1

2 < α < 1, while γ = 7 corresponds to a value of 3 for α.

Running Time. Figure 3 shows the running times for networks with 104-107

vertices and up to 1.2 · 109 edges. We achieve a throughput of up to 13 million
edges/s. Even at only 104 vertices, our implementation is two orders of magnitude
faster than the quadratic-time implementation of [3] for the same parameters
– where only one order of magnitude stems from parallelization (the typical
parallel speedup values at this scale range between 8 and 12). For graphs with
105 vertices, we already see an improvement of three orders of magnitude and,
due to our algorithm’s smaller asymptotic complexity of O((n3/2+m) log n), this
gap grows with increasing graph sizes. Note that the proof of this complexity
bound (stated in Sect. 3) is supported by the measurements, as illustrated by
the lines for the theoretical fit in Fig. 3.
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Fig. 3. Comparison of running times to generate networks with 104-107 vertices, α = 1
and varying k. Circles represent running times of our implementation, diamonds the
running times of the implementation of [3]. Our running times are fitted with the

equation T (n, m) =
((

3.8 · 10−7n + 1.14 · 10−9n3/2 + 1.38 · 10−8m
)

log n
)

seconds.
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5 Conclusions

In this work we have provided efficient range queries in the hyperbolic plane –
based on a polar quadtree, which we have adapted to hyperbolic space and which
can thus be of independent interest. We have further shown that the fast range
queries facilitate the generation of random hyperbolic graphs (RHGs) in running
time O((n3/2 +m) log n) time whp. In practice our parallel generator constructs
RHGs with billions of edges in a few minutes, about two orders of magnitude
faster than the quadratic-time algorithm.

Previous work (both theoretical and empirical) has already shown that the
generated graphs are complex networks with many properties also found in real-
world instances [15, Sect. 4]. Thus, RHGs constitute a promising model for com-
plex network research that deserve even further attention. In the context of
our paper, future work will investigate the incremental quadtree construction in
order to admit a dynamic model with vertex movement; this deserves a more
thorough treatment than possible here given the space constraints. An extension
to generate random hyperbolic graphs with non-zero temperatures can be found
in our manuscript about probabilistic neighborhood queries [23].
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geometry of complex networks. Phys. Rev. E 82(3), 036106 (2010)

16. Lancichinetti, A., Fortunato, S., Radicchi, F.: Benchmark graphs for testing com-
munity detection algorithms. Phys. Rev. E 78(4), 046110 (2008)

17. Miller, J.C., Hagberg, A.: Efficient generation of networks with given expected
degrees. In: Frieze, A., Horn, P., Pra�lat, P. (eds.) WAW 2011. LNCS, vol. 6732,
pp. 115–126. Springer, Heidelberg (2011)

18. Newman, M.: Networks: An Introduction. Oxford University Press, Oxford (2010)
19. Samet, H.: Foundations of Multidimensional and Metric Data Structures. Morgan

Kaufmann Publishers Inc., San Francisco (2005)
20. Seshadhri, C., Kolda, T.G., Pinar, A.: Community structure and scale-free collec-
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Abstract. We present a new way of analyzing Contraction Hierarchies
(CH), a widely used speed-up technique for shortest path computations
in road networks. In previous work, preprocessing and query times of
deterministically constructed CH on road networks with n nodes were
shown to be polynomial in n as well as the highway dimension h of the
network and its diameter D. While h is conjectured to be polylogarithmic
for road networks, a tight bound remains an open problem. We rely on the
empirically justifiable assumption of the road network exhibiting small
growth. We introduce a method to construct randomized Contraction
Hierarchies on road networks as well as a probabilistic query routine.
Our analysis reveals that randomized CH lead to sublinear search space
sizes in the order of

√
n log

√
n, auxiliary data in the order of n log2 √

n,
and correct query results with high probability after a polynomial time
preprocessing phase.

1 Introduction

Contraction Hierarchies (CH) [1] are a preprocessing based technique to accel-
erate shortest path computations in road networks. The basic idea behind CH
is to augment the network with shortcut edges which allow to settle less nodes
in a Dijkstra run without compromising correctness of the result. CH are widely
used on real-world instances, as they provide an excellent trade-off between the
amount of auxiliary data (only doubling the network size) and speed-up (about
three orders of magnitude compared to a plain Dijkstra). But these values are
solely empirical, based on experiments on real-world networks [2]. Theoretical
explanations for this good empirical behaviour are still not fully satisfying.

1.1 Related Work

In [3], the notion of the highway dimension h of a network was introduced to
explain the practical performance of CH and other speed-up techniques (on
undirected networks). A small highway dimension indicates that shortest paths
in the road network longer than a parameter r can be hit by a set S of nodes
with S being locally sparse. Here, locally sparse means that the intersection
c© Springer-Verlag Berlin Heidelberg 2015
K. Elbassioni and K. Makino (Eds.): ISAAC 2015, LNCS 9472, pp. 479–490, 2015.
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of a ball of radius r with S contains at most h elements. Assuming optimal
preprocessing, it was shown that O(nh log D) shortcut edges are added to the
original network, with n being the number of nodes in the network and D ≤ n
the network diameter. The number of nodes settled in a CH-Dijkstra run was
shown to be in O(h log D). As optimal CH preprocessing is NP-hard (using
Hitting Set computations as a subroutine), they also study a polynomial time
approximation version. This adds another factor of log n to the auxiliary data
size and the query time. While h is conjectured to be polylogarithmic for road
networks, the problem of proving h to be small is still open (for grids it is known
that h ∈ Θ(

√
n)). Moreover, h-values for real-world networks are unknown (as its

computation is NP-hard as well) and the preprocessing methods introduced to
study CH theoretically are too slow to be practical for large road networks [4].
Hence validating whether the theoretical results reflect real-world behavior is
difficult.

In [5], CH were studied based on the topology of the network. It was shown
that for planar graphs, CH preprocessing based on nested dissection leads to
auxiliary data in the order of O(n log n). For minor-closed graphs with bal-
anced O(

√
n) separators, search spaces are shown to be in O(

√
n), for graphs

with treewidth k in O(k log n). For graphs with highway dimension h, results
matching those in [3] were reported assuming edge costs that maximize h. An
implementation of CH based on nested dissection [6] showed that it leads to
good performance in practice. Nevertheless a real comparison to the theoretical
results again is hardly possible due to h being unknown. Moreover all results so
far heavily use Big-O-Notation, making it difficult to tell whether the observed
behaviour in practice is due to asymptotics or due to hidden constants.

1.2 Contribution

We exhibit a so far unexplored connection of CH to Skip Lists [7], a data struc-
ture for fast search within ordered sets of elements. Based on the model of
randomized Skip List construction, we describe a CH variant with randomized
preprocessing for some probability parameter p ∈]0, 1[. We prove the expected
number of shortcuts to be at most n(1 − p)(0.5 · log21/p

√
n + (1 − p2)−1), and the

expected search space size to be (6 ln 1/plog
√

n + 2)
√

n (no O-notation here!).
Preprocessing is in polynomial time. For our results to be valid, we rely on a
simple and intuitive bound on the growth rate of the underlying metric. More-
over, we prove our theoretical bounds to be meaningful by comparing them to
experimental results on real-world road networks. Surprisingly, the randomized
construction shares certain characteristics with a common heuristic CH construc-
tion scheme. For this simple heuristic construction, no theoretical guarantees
of any kind are known. While heuristically constructed CH naturally outper-
form CH with randomized preprocessing, our studies are the first to give some
insight in the theoretical auxiliary data size and search space parameters for this
heuristic construction.
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2 Preliminaries

In the following, we describe preprocessing and query answering for conventional
CH carefully. We then briefly review randomized Skip Lists to show their poten-
tial to serve as model for randomized CH construction. Finally, we provide some
details on the graph model that is used in our analysis.

2.1 Contraction Hierarchies

Given a road network G(V,E) and edge costs c : E → R
+, the preprocessing

phase of CH works as follows: Every node v ∈ V gets assigned a level l : V → N

inducing a (not necessarily total) order on the nodes. Then a CH-graph G′(V,E∪
E+) is constructed upon this order where E+ denotes the set of shortcut edges.
For a pair of nodes v, w a shortcut edge e = (v, w) is added to E+ if all nodes on
the shortest path between v and w exhibit a level smaller than min{l(v), l(w)}.
The cost of e is set to the shortest path distance between v and w. Determining
node levels that minimizes |E+| is APX-hard [8,9].

In practice, though, there exist heuristics which construct CH-graphs with
small sets of shortcut edges very efficiently. The most common heuristic is based
on the node contraction operation [1]. Here, a node v and all its adjacent edges
are removed from the current graph, and shortcut edges are inserted between
any pair of neighbors u,w of v if u, v, w was the shortest path from u to w.
Nodes are contracted one-by-one and their rank in the contraction order is used
as node level. If the goal is keeping |E+| small, a good candidate for the next
node to contract is the one with minimal edge difference (ED), which denotes the
number of added shortcuts if v is contracted minus the number of edges that are
currently adjacent to v (some heuristics also consider a linear combination of the
ED and other values). So after contraction of v, the current graph has one node
less and ED(v) more edges (note that ED(v) can be negative). The ED-values
need to be continuously updated, as contracting a node influences the ED-values
of its neighbors. It was noted, though, that independent sets of nodes can be
contracted at once without violating correctness. So nodes in the current graph
are first sorted increasingly by their ED-value. Then an independent set of nodes
is chosen greedily considering the nodes in the ED-order (with all nodes in the
set receiving the same level). This approach allows to construct the CH-graph
in very few contraction rounds and leads to few added shortcuts in practice.

The final CH-graph (original graph plus all shortcuts) has the following nice
property (no matter how l was chosen): Between any pair of nodes s, t there exists
a shortest path on which the node levels at first monotonously increase and then
monotonously decrease (so the path is unimodal wrt. l). Therefore queries can
be answered via a bi-directional Dijkstra computation that only relaxes upward
edges (v, w) with l(v) ≤ (w) in the forward run and accordingly downward edges
in the backwards run. By construction, the forward and the backward run both
settle the node(s) with the highest level on the shortest path from s to t. Hence a
node that minimizes the forward plus the backwards distance yields the optimal
shortest path distance.



482 S. Funke and S. Storandt

2.2 Randomized Skip Lists

Skip Lists are a data structure for efficient search and maintenance of an ordered
set of elements. Skip Lists consist of layers of linked lists. The bottom layer is
a linked list that contains all n elements in sorted order. Each element gets
assigned a height h. To determine the height values randomly, first a probability
p ∈]0, 1[ is chosen. Then for every element a coin with probability p for HEAD is
flipped until TAIL shows up. The number of times the coin showed HEAD marks
the height. The maximum height among all elements determines the number of
additional layers in the Skip List data structure. Each list i contains only links
between elements with a height ≥ i and ‘skips’ over the others. In expectation,
the maximum height is log1/p n and therefore the total space consumption is in
O(n log1/p n). Searching for an element using a suitable query algorithm that
works its way from the topmost layer down demands 1/p log1/p n. Choosing dif-
ferent values of p allows to trade search costs against storage costs. We will use
randomized Skip List construction as model for randomized CH construction by
interpreting the road network as the bottom layer.

2.3 Our Model: Graph Metrics with Bounded Growth

Like [3] we need to make some assumptions about the structure of our road
networks for an analysis to succeed. In typical representations of a road network
(as for example derived from data of the OpenStreetMap project) as graphs
G(V,E, c) with edge costs c : E → N, edges represent road segments of rather
uniform length, so we can replace edge costs by respective sequences of unit-
cost edges without blowing up the size of the graph by more than a constant
factor. So from now on we will focus on graphs with unit edge costs. Our crucial
assumption on the structure of G can be stated as follows: For any node v ∈ V ,
the number of nodes w at distance k is bounded by g ·k for some constant g ≥ 1,
that is

|{w ∈ V : d(v, w) = k}| ≤ g · k

We have verified this condition to hold for small values of g for several real-
world networks. It also implies |{w ∈ V : d(v, w) ≤ k}| ≤ gk(k + 1)/2 – which
mimics the area growth in R2 when increasing the radius of a circle. To keep the
presentation simpler, we assume in the following g = 1, but it is easy to see that
the parameter g could be carried along all following calculations.

Our condition has some connection to already existing characterizations of
graph metrics. For example, demanding that the number of nodes at distance k
is exactly g · k implies an expansion rate of 4 according to the definition of [10]
as well as constant doubling dimension [11]. On the other hand there are metrics
with an unbounded expansion rate yet satisfying our condition.
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3 Randomized Contraction Hierarchies

3.1 Preprocessing

We start the preprocessing phase by assigning levels l : V → N by coin tosses in
the same way as for Skip Lists (with a probability p for HEAD). So l(v) is an
integer greater than zero with P (l(v) ≥ L) = pL−1.

To complete the preprocessing, we need to compute the set of shortcuts
resulting from our randomized choice of node levels. To that end, we run a
Dijkstra computation from each node v until on every active path in the search
tree there is a node with a level ≥ l(v). For every first node w on a shortest path
from v with l(w) ≥ l(v) we insert the shortcut e = (v, w) with c(e) = dv(w) in
the CH-graph (avoiding multi edges).

The preprocessing obviously demands only polynomial time. We expect a
maximum node level of O(log n), so assigning levels to n nodes can be done
in expected O(n log n) time. The n Dijkstra runs in the second phase require
O(n2 log n + nm) time and dominate the overall runtime.

3.2 Analysis

Let us now analyze our CH construction. The two key performance indicators
are the total number of shortcuts and the number of settled nodes in a query.
Ideally, both of these values should be small in order to guarantee a space-efficient
CH-graph and a good speed-up compared to plain Dijkstra’s algorithm.

Throughout the analysis, log always refers to log1/p.

Total Number of Shortcuts. To bound the total number of shortcuts we first
bound the number of upward edges emanating from some node v. We provide
two such bounds, one being stronger for nodes v with small levels, the other
being stronger for nodes v with large levels.

Lemma 1. The expected number of upwards edges (original or shortcut) ema-
nating from a node v with level L is bounded by p1−L.

Proof. A shortcut (v, w) from v to a node w with a shortest path v � w of length
k exists if and only if the level of w is at least L while the level of all k −1 nodes
inbetween on the shortest path from v to w is less than L. So the probability for
the shortcut (v, w) to exist can be expressed as P (l(w) ≥ L) · P (l < L)k−1. Due
to our condition we have at most k nodes at distance k, hence the total number
of upward edges can be bounded as:

E(X) ≤
D

∑

k=1

k · P (l ≥ L) · P (l < L)k−1 =
D

∑

k=1

kpL−1(1 − pL−1)k−1

Here D is the diameter of the graph, D ≤ n. We then substitute 1 − pL−1 with
q and end up with:
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E(X) ≤ 1 − q

q

D
∑

k=1

kqk <
1 − q

q

∞
∑

k=0

kqk =
1 − q

q
· q

(1 − q)2
=

1
pL−1 �	

Lemma 2. The expected number E(X) of upwards edges (original or shortcut)
emerging from a node v with level L is bounded by npL−1.

Proof. Upwards shortcuts demand the target node to have a level ≥ L. Therefore
the total number of shortcuts emerging from a node with level L is bounded by
the expected number of nodes with a level ≥ L in the network. As the expected
number of nodes with level L equals n(1−p)pL−1, the expected number of nodes
with a level at least L is npL−1. �	

We observe that the bound by Lemma1 is tighter for L ≤ log
√

n and the bound
by Lemma 2 for L > log

√
n.

Theorem 1. The expected number of upwards edges in the CH-graph is bounded
by n(1 − p)(0.5 · log2

√
n + (1 − p2)−1).

Proof. Using Lemma 1 and the fact that we expect npL−1(1 − p) nodes at level
L we bound the number of outgoing edges from nodes with level ≤ log

√
n by

log
√

n
∑

L=1

n(1 − p)pL−1p1−L ≤ n(1 − p) · 0.5 · log2
√

n

and the number of edges from nodes with higher level using Lemma2 by

∞
∑

L=log
√

n+1

n(1 − p)pL−1npL−1 =
n2(1 − p)

p2
·

∞
∑

L=log
√

n+1

p2L

=
n2(1 − p)

p2
· p2(plog n − p2n)

1 − p2
=

n2(1 − p)(1/n − p2n)
1 − p2

≤ n(1 − p)
1 − p2

�	

The analysis for the number of downwards edges can be done analogously. So the
final number of expected edges in the CH-graph is n(1 − p)(0.5 · log2

√
n + (1 −

p2)−1) for undirected networks (summing up the two bounds in the Theorem)
and twice this number, i.e., n(1−p)(log2

√
n+2(1−p2)−1) for directed networks.

Search Space Analysis. We define the search space SS(v) for a node v ∈ V
as the number of nodes that are pushed into the priority queue (PQ) during
a CH-Dijkstra run from v (relaxing only upwards edges). We will first analyze
the direct search space (DSS) of v. A node w is in DSS(v) if on the shortest
path from v to w all nodes have levels ≤ l(w). Therefore, w will be settled
with the correct distance d(v, w) in the CH-Dijkstra run. Unfortunately, SS(v)
is typically a superset of DSS(v) as also nodes on monotonously increasing but
non-shortest paths are considered. We will modify the query algorithm to bound
the number of such nodes.
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Lemma 3. The expected size of DSS(v) is bounded by (1 + p)
√

n.

Proof. We can assume that all nodes with a level l > log
√

n are always in
DSS(v). In expectation, there are

∑∞
L=log

√
n+1 npL(1 − p) =

√
n such nodes in

the network. A node w is in DSS(v) if on the shortest path from v to w all
nodes have a level of at most l(w). The expected number of such nodes with
l(w) ≤ log

√
n can be bounded by

log
√

n
∑

L=1

P (l = L)
D

∑

k=1

kP (l ≤ L)k−1 =
log

√
n

∑

L=1

pL−1(1 − p)
D

∑

k=1

k(1 − pL−1)k−1.

As the last sum can be bounded by p−2L+2, we get:

log
√

n
∑

L=1

p−L+1(1 − p) = p(
√

n − 1)

Together with the at most
√

n nodes in DSS(v) with a level greater than log
√

n,
the size of DSS(v) is bounded by (1 + p)

√
n. �	

To characterize and reduce the number of nodes in SS(v)\DSS(v), we need the
following properties about nodes in DSS(v).

Lemma 4. The probability for a node w at distance k from v to be in DSS(v)
but exhibiting a level l(w) < log k − log(c ln(1/p) log k) is bounded by k−c.

Proof. If w ∈ DSS(v), all k nodes on the shortest path from v to w have a level
of at most l(w). As l(w) < log k − log(c ln(1/p) log k) the same needs to hold for
all nodes on this shortest path. The probability for that can be expressed as:

(

1 − plog k−log(c ln(1/p) log k)
)k

=
(

1 − c ln(1/p) log k

k

)k

Using (1+x) ≤ ex with x = −c ln(1/p) log k ·k−1, we can upper bound the above
formula by

(

e−c ln(1/p) log k·k−1
)k

= e−c ln(1/p) log k = e−c ln(1/p) ln(k)/ln(1/p) = k−c. �	

Applying the above Lemma we show that with high probability a node in DSS(v)
whose shortest path from v is at least n1/4 long does not have too small a level.

Lemma 5. A node w at shortest path distance k > n1/4 from v is in DSS(v)
and exhibits a level l(w) ≥ log k−log(c ln(1/p) log k) with probability ≥ 1−n−c/4.

Proof. The probability P = P (l(w) < log k − log(c ln(1/p) log k)) is bounded
by k−c (according to Lemma 4). So the larger k the smaller the probability. For
k > n1/4 we get P < n−c/4. Hence we can lower bound the probability of the
counter-event by 1 − n−c/4. �	



486 S. Funke and S. Storandt

Armed with this insight, we modify our query algorithm such that nodes
with too small a level relative to their distance are discarded during the
exploration. That is, during the run of CH-Dijkstra, we discard a node w
from further consideration (not pushing it into the PQ) if d(w) > n1/4 and
l(w) < min (log

√
n, log d(w) − log(c ln(1/p) log d(w))) , where d(w) denotes the

current distance label of w in the CH-Dijkstra run. The following theorem shows
that for appropriate choice of c, this leads to small search spaces and with high
probability to the correct result.

Theorem 2. Our modified query algorithm has an expected search space size of
at most

√
n(2 + c ln(1/p)

√
2 log

√
n) and computes the correct result with proba-

bility ≥ 1 − 2n
−c+4

4 .

Proof. We know that always d(v, w) ≤ d(w) has to be true, where d(v, w) is
the true distance from v to w. Therefore, the number of nodes with d(v, w) ≤
d(w) ≤ n1/4 can be bounded by

∑n
1/4

i=1 k ≤ √
n. The number of nodes with

l(w) ≥ log d(w) − log(c ln(1/p) log d(w)) can be bounded by
D

∑

k=1

xkP (l ≥ log k − log(c ln(1/p) log k)

with xk ≤ k, ∀k = 1, . . . , D and
∑

xk = n. As P (l ≥ log k − log(c ln(1/p) log k)
decreases with growing k, this sum can be upper bounded by:

√
2n

∑

k=1

kP (l ≥ log k − log(c ln(1/p) log k) =

√
2n

∑

k=1

k
c ln(1/p) log(k)

k

= c ln(1/p)

√
2n

∑

k=1

log k ≤ c ln(1/p)
√

2n log
√

n

Together with the at most
√

n nodes above level log
√

n in expectation, our
search space size does not exceed

√
n(2 + c(ln(1/p)

√
2 log

√
n) nodes.

It remains to show that queries are answered correctly with high probabil-
ity. Queries are answered correctly for sure if SS(v) ⊇ DSS(v). According to
Lemma 5, a node w ∈ DSS(v) at distance k > n1/4 is not contained in our
pruned search space with probability at most n−c/4. We are interested in an
upper bound for the probability that at least one of the nodes in DSS(v) is
not in our search space. We simply apply the union bound upper bounding the
probability that one or more nodes of DSS(v) do not have large enough level by
n · n−c/4 = n(−c+4)/4. So with probability ≥ 1 − n

−c+4
4 , all nodes of DSS(v) are

actually in the search space of v and with the same argument holding for the
(reverse) search space of the target, we arrive at the bound for the correctness
of the query result. �	

The above Theorem implies for c = 4 + α, α > 0 our query routine produces
the correct result with probability ≥ 1−2n−α/4. Choosing for example c = 6 we
have a success probability of 1 − 2/

√
n and expected search space sizes for source

and target of less than
√

n(2 + 6 log
√

n) for p = 1/2.
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4 Experimental Results

We implemented randomized CH construction and the proposed query answering
algorithm in C++. We also implemented the heuristic CH construction based on
iterative contraction of independent sets as described in Sect. 2.1. Experiments
were conducted on a single core of an Intel i5-4300U CPU with 1.90 GHz and
12 GB RAM. We used the OSM road network data of a cut-out of Germany with
2, 275, 793 nodes and 4, 637, 537 directed edges for evaluation.
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Fig. 1. Left: Our model predicts the number of nodes with distance k to be beneath the
green line. The red boxes indicate the real distance dependent node distribution based
on Dijkstra search trees from 1,000 randomly chosen source nodes. Right: Node level
distribution resulting from heuristic and randomized CH construction (Color figure
online).

We first validate our chosen model. In Fig. 1, left, we compare the average
number of nodes at distance k from a source in our real network (with euclidean
distances as cost metric) to the prediction according to the model. We observe
that up to distance about 1000 there are indeed almost exactly k nodes with
distance k. Then the number declines.

Unless mentioned otherwise, the following experiments are conducted using
p = 1/2 for randomized CH. We first want to evaluate the CH preprocessing.
Figure 1, right, shows that the expected number of nodes per level reflects the
real node levels quite perfectly. While this is not surprising for the randomized
construction, it is indeed for the heuristic construction. So basically in every con-
traction round, about half of the remaining nodes form an independent set and
get contracted at once, leading to the same node level distribution as for our Skip
List based randomized levels. The maximum level in the heuristic construction
was 99, though, and therefore about a factor of 5 higher than in the randomized
CH, but this is due to the fact that towards the end of the contraction process
the remaining nodes form clique-like structures which only allow for contracting
a single element as independent set.

For randomized CH, we expect the number of shortcuts to be less than 41
million for n = 2, 275, 793. Averaged over three runs, our CH-graph contained
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Fig. 2. Number of upwards shortcuts emerging from a node dependent on its level.
Both axes are in logscale.

23, 758, 675 shortcuts. In the heuristically constructed CH-graph, 8, 678, 644
shortcuts are inserted, which is better by a factor of about 3. Figure 2 pro-
vides a detailed overview of the number of upwards shortcuts emerging from a
node in dependency of its level. We observe that bound 1 and 2 resulting from
Lemmas 1 and 2 are almost perfect predictions for the average value per level.
For the heuristic construction the curve is stretched and exhibits a lower peak.
This is a result of a wider range of node levels and a lower number of total
shortcuts (due to the ED-related node contraction order).

Finally, we evaluated search spaces and query times for randomized and
heuristic CH. In a query answered in the heuristically constructed CH-graph,
497 nodes were settled on average. Query times were in the order of a half
microsecond which results in a speed-up of factor 500 compared to plain Dijkstra.
With randomized CH, the predicted search space size for c > 4 is over 66,000.
The number of actually settled nodes in our experiments was only 5,241, showing
that some of our upper bound assumptions in the analysis are too pessimistic.
All queries were answered correctly in our experiments. Query times were in the
order of 20 ms, yielding only a speed-up of 10 compared to plain Dijkstra. Still,
the fact that there is speed-up at all using a randomized construction shows
that our results have some degree of practical justification. Moreover, it follows
straight from the Skip List like construction that the expected number of nodes
on the optimal CH-path from s to t with d(s, t) = k is 2 log k. Evaluating 1,000
example queries, we observed that this result is matched accurately – indeed for
both, randomized and heuristically constructed CH.

To study the influence of p, we ran the same experiments with p = 1/4 and
p = 3/4. For p = 1/4, the expected maximum number of shortcuts is 32 million, the
real number was 16, 941, 163. For p = 3/4 our upper bound implies no more than
49 million expected edges in the CH-graph, and we ended up with 28, 526, 499
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in the experiments. The search space sizes and query times were slightly worse
for both p = 1/4 and p = 3/4 compared to p = 1/2. If levels are more spread due
to higher p they are also more connected due to more shortcuts. If levels are
less spread there are large connected components of nodes with the same level
which are explored until our level-distance-bound kicks in. Hence p = 1/2 seems
to be a suitable choice, not only because it leads to a close relation with the
heuristic CH construction but also since the auxiliary data size vs search space
size trade-off is good.

5 Conclusions

It is rather surprising that it is possible to construct CH via a level assignment
that does not take into account the structure of the graph. This is in stark con-
trast to common heuristic construction schemes as well as the approaches in
[3,5] where the construction process is heavily guided by the graph structure.
Furthermore, our randomized construction scheme shares some natural charac-
teristics with the common heuristic construction scheme – both in theory as well
as in empirical evaluations. Our results should be seen as a step towards a better
understanding of the good performance of contraction hierarchies in practice.
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Abstract. The minmax regret problem for combinatorial optimization
under uncertainty can be viewed as a zero-sum game played between an
optimizing player and an adversary, where the optimizing player selects a
solution and the adversary selects costs with the intention of maximizing
the regret of the player. The conventional minmax regret model consid-
ers only deterministic solutions/strategies, and minmax regret versions
of most polynomial solvable problems are NP-hard. In this paper, we
consider a randomized model where the optimizing player selects a prob-
ability distribution (corresponding to a mixed strategy) over solutions
and the adversary selects costs with knowledge of the player’s distribu-
tion, but not its realization. We show that under this randomized model,
the minmax regret version of any polynomial solvable combinatorial
problem becomes polynomial solvable. This holds true for both interval
and discrete scenario representations of uncertainty. Using the random-
ized model, we show new proofs of existing approximation algorithms
for the deterministic model based on primal-dual approaches. We also
determine integrality gaps of minmax regret formulations, giving tight
bounds on the limits of performance gains from randomization. Finally,
we prove that minmax regret problems are NP-hard under general convex
uncertainty.
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When probability distributions are available for cost coefficients (e.g. from
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historical data or other estimates), stochastic programming is often an appro-
priate modeling choice [13,26]. In other cases, costs may only be known to be
contained in intervals (i.e. each cost has a known lower and upper bound) or to
be a member of a finite set of scenarios, and one is more interested in worst-
case performance. Robust optimization formulations are desirable here as they
employ a minmax-type objective [12,17,23].

In a general robust optimization problem with cost uncertainty, one must
select a set of items from some feasible solution set such that item costs are
contained in some uncertainty set. The basic problem of selecting an optimal
solution from the solution set when costs are known is referred to as the nomi-
nal problem. When only the uncertainty set is known, the goal under the minmax
criterion (also referred to as absolute robustness) is to select a solution that gives
the best upper bound on objective cost over all possible costs from the uncer-
tainty set [27] (assuming that the nominal problem is a minimization problem).
That is, one must select the solution that, when item costs are chosen to max-
imize the cost of the selected solution, is minimum. Under the minmax regret
criterion (sometimes called the robust deviation model), the goal is instead to
select the solution that minimizes the maximum possible regret, defined as the
difference between the cost of the selected solution and the optimal solution [25].

A problem under the minmax regret criterion can be viewed as a two-stage
game played between an optimizing player and an adversary. In the first stage,
the optimizing player selects a deterministic solution. In the second stage, an
adversary observes the selected solution and chooses values/costs from the uncer-
tainty set with the intention of maximizing the player’s regret. The goal of the
optimizing player is thus to select a solution that least allows the adversary
to generate regret. For both interval and discrete scenario representations of
cost uncertainty, the minmax regret versions of most polynomial solvable prob-
lems are NP-hard [1,2,5,8,23,28]. A variation on this model, first suggested by
Bertsimas et al. [10] for minmax robust optimization, is to allow the optimizing
player to select a probability distribution over solutions and require the adver-
sary to select costs based on knowledge of the player’s distribution, but not its
realization. In this paper, we study this randomized model under the minmax
regret criterion instead of the minmax criterion.

We show that under this randomized model, the minmax regret version of
any polynomial solvable 0–1 integer linear programming problem is polynomial
solvable. This holds true for both interval and discrete scenario representations
of uncertainty. Our observation is that the randomized model corresponds to the
linear programming relaxation of the mixed integer program for the deterministic
model. While the relaxation may have an exponential number of constraints, an
efficient separation oracle is given by the nominal problem.

The linear programming formulation leads to further insights. We show that
currently known approximation algorithms for deterministic minmax regret prob-
lems [3,19], which have been proved using combinatorial arguments, can be proved
using simpler primal-dual methods. This analysis also yields integrality gaps for
deterministic minmax regret problems. The integrality gaps are shown to be equal
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to k for discrete scenario uncertainty, where k is the number of scenarios, and equal
to 2 for interval uncertainty. Both gaps match the ratios of the approximation
algorithms, showing that these algorithms are optimal. The integrality gaps also
establish lower bounds on performance when moving from the deterministic model
to the randomized model. Letting ZD and ZR denote the deterministic and ran-
domized minmax regret values for a common nominal problem, we effectively show
that ZD/k ≤ ZR ≤ ZD for discrete scenario uncertainty and ZD/2 ≤ ZR ≤ ZD

for interval uncertainty.
Given that the randomized model makes many minmax regret problems poly-

nomial solvable for interval uncertainty and discrete scenario uncertainty, it is
natural to ask if polynomial solvability remains in the presence of slightly more
elaborate uncertainty sets. We show that for general convex uncertainty sets,
however, deterministic and randomized minmax regret problems are NP-hard,
even for polynomial solvable nominal problems.

The paper is structured as follows. In the remainder of this section we review
related work. Section 2 introduces notation and definitions. Section 3 highlights
our most important results for discrete scenario uncertainty, interval uncertainty,
and convex uncertainty. A full development of these topics, with proofs, is con-
tained in the full version of the paper [24]. A conclusion is given in Sect. 4.

Related Work. One of the first studies of minmax regret from both an algo-
rithmic and complexity perspective was that of Averbakh [7]. He looked at the
minmax regret version of the simple problem of selecting k items out of n total
items, where the cost of each item is uncertain and the goal is to select the
set of items with minimum total cost. For interval uncertainty, he derived a
polynomial-time algorithm based on interchange arguments. He demonstrated
that for the discrete scenario representation of uncertainty, however, the minmax
regret problem becomes NP-hard, even for the case of only two scenarios. It is
interesting to contrast these results with the case of general minmax regret lin-
ear programming which, as shown by Averbakh and Lebedev [9], is NP-hard for
interval uncertainty but polynomial solvable for discrete scenario uncertainty.

Apart from the item selection problem, most polynomial solvable minmax
regret combinatorial problems are NP-hard, both for interval and discrete sce-
nario uncertainty [1,2,8,23,28]. The survey paper of Aissi et al. [5] provides a
comprehensive summary of results related to both minmax and minmax regret
combinatorial problems. For problems that are already NP-complete, most of
their minmax regret versions are Σp

2 -complete [16]. To solve minmax regret prob-
lems in practice, the book by Kasperski reviews standard mixed integer program
(MIP) formulations for both interval and discrete scenario uncertainty [17].

General approximation algorithms for deterministic minmax regret problems
are known for both types of uncertainty. Kasperski and Zieliński [19] proved a
2-approximation algorithm based on midpoint costs under interval uncertainty,
and Aissi et al. [3] gave a k-approximation algorithm using mean costs under
discrete scenario uncertainty, where k is the number of scenarios. Under interval
uncertainty, fully polynomial-time approximation schemes are known for many
problems [17,20]. For discrete scenario uncertainty, Kasperski et al. [18] looked
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at the minmax regret item selection problem, which models special cases of
many combinatorial problems. They showed that for a non-constant number of
scenarios, the problem is not approximable within any constant factor unless
P=NP. If the number of scenarios is constant, fully polynomial-time approxi-
mation schemes are known for some problems [4,6].

The application of a game-theoretic model with mixed strategies to robust
optimization problems was introduced by Bertsimas et al. [10]. They focused
on the minmax robust model, and their analysis was motivated by adversarial
models used for online optimization algorithms. They showed that if it is possible
to optimize over both the solution set and the uncertainty set in polynomial time,
then an optimal mixed strategy solution can be calculated in polynomial time,
and that the expected cost under the randomized model is no greater than the
cost for the deterministic model. They also gave bounds on the improvement
gained from randomization for various uncertainty sets. Our work is similar
to theirs, but we focus on the minmax regret criterion instead of the minmax
criterion.

Other related areas of research are Stackelberg security games [21,22], net-
work interdiction games [11], and dueling algorithms [15]. A common feature of
many of these works, as well as ours, is that they involve games that at first
glance have exponential size but can be solved efficiently using the appropriate
reductions.

2 Definitions

We consider a general combinatorial optimization problem where we are given
a set of n items E = {e1, e2, . . . , en} and a set F of feasible subsets of E. Each
item e ∈ E has a cost ce ∈ R. Given the vector c = (c1, . . . , cn), the goal of the
optimization problem is to select a feasible subset of items that minimizes the
total cost; we refer to this as the nominal problem:

F ∗(c) := min
T∈F

∑

e∈T

ce. (1)

Let x = (x1, . . . , xn) be a characteristic vector for some set T , so that xe = 1
if e ∈ T and xe = 0 otherwise. Also let X ⊆ {0, 1}n denote the set of all
characteristic vectors corresponding to feasible sets T ∈ F . We assume that X is
described in size m (e.g. with m linear inequalities). We can equivalently write
the nominal problem with a linear objective function

F ∗(c) = min
x∈X

∑

e∈E

cexe. (2)

Throughout the paper, we use both set notation and characteristic vectors for
ease of presentation.

We review the conventional definitions for the deterministic minmax regret
framework and then present the analogous definitions for our randomized model.
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For some cost vector c ∈ C, the deterministic cost of a solution T ∈ F is

F (T, c) :=
∑

e∈T

ce. (3)

The regret of a solution T under some cost vector c is the difference between the
cost of the solution and the optimal cost:

R(T, c) := F (T, c) − F ∗(c). (4)

The maximum regret problem for a solution T is

Rmax(T ) := max
c∈C

R(T, c) = max
c∈C

(F (T, c) − F ∗(c)). (5)

The deterministic minmax regret problem is then

ZD := min
T∈F

Rmax(T ) = min
T∈F

max
c∈C

(F (T, c) − F ∗(c)). (6)

We abuse the notation F (·, c), R(·, c) and Rmax(·) by replacing set arguments
with vectors (e.g. F (x, c) in place of F (T, c)), but we generally use capital letters
for sets and lowercase letters for vectors.

We now move to the randomized framework, where the optimizing player
selects a distribution over solutions and the adversary selects a distribution over
costs. Starting with the optimizing player, for some set T ∈ F , let yT denote
the probability that the optimizing player selects set T . Let y = (yT )T∈F be the
vector of length |F| specifying the set selection distribution; we refer to y simply
as a solution. Define the feasible region for y as

Y := {y | y ≥ 0,1�y = 1}, (7)

where the notation 0 and 1 indicates a full vector of zeros and ones, respectively.
We similarly define a distribution over costs for the adversary. The set C may in
general be infinite, but we only consider strategies with finite support; for now
we assume that such strategies are sufficient. Thus consider a finite set Cf ⊆ C,
and for some c ∈ Cf , let wc denote the probability that the adversary selects
costs c. Then let w = (wc)c∈Cf

and define the feasible region

W := {w | w ≥ 0,1�w = 1}. (8)

We are interested in succinct descriptions of strategies for both players. We
define for the optimizing player a mixed strategy encoding M = (Θ, Y ) as a set of
deterministic solutions Θ = {Ti ∈ F | i = 1, . . . , μ} that should be selected with
nonzero probability and the corresponding probabilities Y = {yTi

∈ [0, 1] | i =
1, . . . , μ} that satisfy

∑μ
i=1 yTi

= 1. Here μ is the support size of the mixed
strategy (i.e. the number of deterministic solutions with nonzero probability).
Likewise, define an adversarial mixed strategy encoding L = (C,W ) as a set of
costs C = {cj ∈ Cf | j = 1, . . . , η} to be selected with corresponding probabilities
W = {wcj ∈ [0, 1] | j = 1, . . . , η} satisfying

∑η
j=1 wcj = 1.
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The expected regret under y and w is simply

R(y, w) :=
∑

T∈F

∑

c∈Cf

yT wcR(T, c) =
∑

T∈F

∑

c∈Cf

yT wc(F (T, c) − F ∗(c)). (9)

For a given y, the maximum expected regret problem is

Rmax(y) := max
w∈W

∑

c∈Cf

wc

∑

T∈F
yT R(T, c) = max

c∈Cf

∑

T∈F
yT R(T, c). (10)

The above equality follows from a standard observation in game theory: the opti-
mization of w ∈ W is maximization of the function G(y, c) =

∑

T∈F yT R(T, c)
over the convex hull of Cf , which is equivalent to optimizing over Cf itself. The
minmax expected regret problem, which we refer to as the randomized minmax
regret problem, is

ZR := min
y∈Y

Rmax(y) = min
y∈Y

max
c∈C

(

∑

T∈F
yT (F (T, c) − F ∗(c))

)

, (11)

where we have replaced Cf with C under the assumption that Cf contains the
maximizing cost vector.

3 Results

We only consider the perspective of the optimizing player here; analogous results
for the adversary are given in the full version of the paper [24].

3.1 Discrete Scenario Uncertainty

Under discrete scenario uncertainty, we are given a finite set S of |S| = k sce-
narios. For each S ∈ S, there exists a cost vector cS = (cS

e )e∈E . Our solvability
result for the optimizing player is the following.

Theorem 1. For discrete scenario uncertainty, if the nominal problem F ∗(c)
can be solved in time polynomial in n and m, then the corresponding randomized
minmax regret problem miny∈Y maxS∈S(F (y, cS)−F ∗(cS)) can be solved in time
polynomial in n, m, and k.

Recall that the feasible region X is described in size m. The algorithm for deter-
mining the optimizing player’s mixed strategy, shown in Algorithm 1, solves two
linear programs. The first is a linear programming relaxation of the deterministic
minmax regret problem,

min
p,z

z

s.t.
∑

e∈E

cS
e pe − F ∗(cS) ≤ z, ∀S ∈ S, (LPD)

p ∈ CH(X ), z free,
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where CH(X ) denotes the convex hull of X and p ∈ [0, 1]n. We refer to the
vector p = (p1, . . . , pn) as the marginal probability vector ; it indicates the total
probability that each item should be selected in the mixed strategy. Given the
optimal vector p∗ from solving (LPD), the second linear program maps the
marginal probabilities to an optimal mixed strategy:

max
u,w

w −
∑

e∈E

peue

s.t. w −
∑

e∈T

ue ≤ 0, ∀T ∈ F , (LPM)

u,w free,

where u = (u1, . . . , un). While both (LPD) and (LPM) potentially have an
exponential number of constraints, a separation oracle is given by solvability of
the nominal problem. Solvability of the latter program (LPM) is a known result
from [14].

Algorithm 1. Rand-Minmax-Regret (discrete scenario uncertainty)
Input: Nominal combinatorial problem, cost vectors (cS)S∈S
Output: Optimizing player’s optimal mixed strategy M∗ = (Θ∗, Y ∗) where Θ∗ =

(T1, . . . , Tµ) and Y ∗ = (yT1 , . . . , yTµ)
1: Solve linear program (LPD) to get probability vector p∗ = (p∗

1, . . . , p
∗
n).

2: Solve linear program (LPM) with p = p∗ to generate constraints indexed i =
1, . . . , μ. Each constraint i corresponds to a set Ti ∈ F and dual variable yTi ,
indicating that Ti is an element in the optimal mixed strategy and has probability
yTi .

A k-approximation algorithm for the deterministic minmax regret problem
was introduced by Aissi et al. [3] and is shown in Algorithm 2. Using a new
primal-dual interpretation with the formulation (LPD), as well as some argu-
ments from [3], we show a simple proof of Theorem 2.

Algorithm 2. Mean-Cost-Approximation (Aissi et al. [3])
Input: Nominal combinatorial problem, cost vectors (cS)S∈S
Output: Feasible solution M ∈ F satisfying Rmax(M) ≤ kZD.

1: Determine mean costs for each item: de ← 1

k

∑

S∈S
cSe , ∀e ∈ E.

2: Solve nominal problem with mean costs: M ← argmin
T∈F

∑

e∈T

de.
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Theorem 2. For discrete scenario uncertainty, the solution to the nominal
problem with mean costs is a k-approximation for the deterministic minmax
regret problem.

Since the randomized minmax regret problem corresponds to a linear program-
ming relaxation of the deterministic minmax regret problem (specifically, the
deterministic formulation is given by replacing the constraint p ∈ CH(X ) with
x ∈ X in (LPD)), it follows that ZR ≤ ZD. Additionally, the primal-dual inter-
pretation allows us to prove a new lower bound on ZR, stated in Theorem 3
below. We show that this bound is tight.

Theorem 3. For discrete scenario uncertainty and all nominal problems,

ZR ≥ ZD

k
, (12)

where k = |S| is the number of scenarios. Equivalently, the integrality gap of the
mixed integer program corresponding to (LPD) is equal to k.

3.2 Interval Uncertainty

For interval uncertainty, each item cost is independently contained within known
lower and upper bounds:

ce ∈ [c−
e , c+e ], ∀e ∈ E. (13)

Define the region
I := {c | ce ∈ [c−

e , c+e ], e ∈ E}. (14)

Our solvability result for interval uncertainty is the following.

Theorem 4. For interval uncertainty, if the nominal problem F ∗(c) can be
solved in time polynomial in n and m, then the corresponding randomized min-
max regret problem miny∈Y maxc∈I(F (y, c) − F ∗(c)) can be solved in time poly-
nomial in n and m.

The algorithm for determining the optimizing player’s mixed strategy is shown
in Algorithm 3. This is the same algorithm that is used for the discrete scenario
uncertainty case, except the linear program (LPI) is used instead of (LPD),

min
p,z

z

s.t.
∑

e∈E\T

c+e pe −
∑

e∈T

c−
e (1 − pe) ≤ z, ∀T ∈ F , (LPI)

p ∈ CH(X ), z free.

For the deterministic minmax regret problem under interval uncertainty, the
known 2-approximation algorithm of Kasperski and Zieliński [19] uses midpoint
costs and is shown in Algorithm 4. Using primal-dual methods, we show a new
proof for this algorithm as stated by Theorem 5. We also prove Theorem 6,
establishing the integrality gap for interval uncertainty, and we show that the
corresponding bound is tight.
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Algorithm 3. Rand-Minmax-Regret (interval uncertainty)
Input: Nominal combinatorial problem, item cost bounds (c−

e , c+e ), e ∈ E.
Output: Optimizing player’s optimal mixed strategy M∗ = (Θ∗, Y ∗) where Θ∗ =

(T1, . . . , Tµ) and Y ∗ = (yT1 , . . . , yTµ)
1: Solve linear program (LPI) to get probability vector p∗ = (p∗

1, . . . , p
∗
n).

2: Solve linear program (LPM) with p = p∗ to generate constraints indexed i =
1, . . . , μ. Each constraint i corresponds to a set Ti ∈ F and dual variable yTi ,
indicating that Ti is an element in the optimal mixed strategy and has probability
yTi .

Algorithm 4.Midpoint-Cost-Approximation (Kasperski and Zieliński [19])
Input: Nominal combinatorial problem, item cost bounds (c−

e , c+e ), e ∈ E.
Output: Feasible solution M ∈ F satisfying Rmax(M) ≤ 2ZD.

1: Determine midpoint costs for each item: de ←
(

c−
e + c+e

2

)

, ∀e ∈ E.

2: Solve nominal problem with midpoint costs: M ← argmin
T∈F

∑

e∈T

de.

Theorem 5. For interval uncertainty, the solution to the nominal problem with
midpoint costs is a 2-approximation for the deterministic minmax regret problem.

Theorem 6. For interval uncertainty and all nominal problems,

ZR ≥ ZD

2
. (15)

Equivalently, the integrality gap of the mixed integer program corresponding to
(LPI) is equal to 2.

3.3 Convex Uncertainty

If the uncertainty set C is allowed to be a general nonnegative convex set and the
nominal problem is polynomial solvable, we show that the maximum expected
regret problem becomes NP-hard. This result implies that both randomized and
deterministic minmax regret problems are NP-hard under convex uncertainty,
since both are at least as hard as the maximum expected regret problem.

Theorem 7. For polynomial solvable nominal problems F ∗(c) =
minx∈X

∑

e∈E cexe and nonnegative convex uncertainty sets C, the maximum
expected regret problem maxc∈C

(∑

e∈E cepe − F ∗(c)
)

where p ∈ CH(X ) is NP-
hard.

4 Conclusion

Our results on lower bounds for randomized minmax regret in relation to deter-
ministic minmax regret, specifically Theorems 3 and 6, have important impli-
cations for approximating deterministic minmax regret problems. Theorem 3
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indicates that the integrality gap for the minmax regret problem under discrete
scenario uncertainty is equal to k, and it is easy to create instances of nearly all
nominal problems that achieve this gap. This also holds true for the integrality
gap of 2 under interval uncertainty. In Kasperski [17], it is posed as an open
problem whether or not there exist approximation algorithms under interval
uncertainty that, for some specific nominal problems, achieve an approximation
ratio better than 2. We have answered this question in the negative for approx-
imation schemes based on our linear programming relaxations.

An important future step with randomized minmax regret research is to
develop approximation algorithms for dealing with nominal problems that are
already NP-hard. This problem is non-trivial: an algorithm with an approxima-
tion factor α for a nominal problem does not immediately yield an algorithm to
approximate the randomized minmax regret problem with a factor α.
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Abstract. Given a set P of n labeled points in the plane, the radial sys-
tem of P describes, for each p ∈ P , the radial ordering of the other points
around p. This notion is related to the order type of P , which describes
the orientation (clockwise or counterclockwise) of every ordered triple
of P . Given only the order type of P , it is easy to reconstruct the radial
system of P , but the converse is not true. Aichholzer et al. (Reconstruct-
ing Point Set Order Types from Radial Orderings, in Proc. ISAAC 2014)
defined T (R) to be the set of order types with radial system R and
showed that sometimes |T (R)| = n− 1. They give polynomial-time algo-
rithms to compute T (R) when only given R.

We describe an optimal O(n2) time algorithm for computing T (R).
The algorithm constructs the convex hulls of all possible point sets with
the given radial system, after which sidedness queries on point triples
can be answered in constant time. This set of convex hulls can be found
in O(n) time. Our results generalize to abstract order types.

1 Introduction

Let P be a set of n labeled points in the plane. The chirotope of P is a function
that indicates the orientation of each triple of P (clockwise, counterclockwise,
or collinear). Throughout this paper, we consider only point sets in general posi-
tion, that is, without collinear triples. Two labeled point sets have the same
order type if they have the same chirotope or if one chirotope is the negation
of the other. Many problems on planar point sets do not depend on the exact
coordinates of the points but only on their order type. Examples include com-
puting the convex hull and determining whether two segments with endpoints
in the point set intersect. A generalized configuration of points is a labeled point
set and an arrangement of pseudo-lines such that each pair of points is on a
pseudo-line and each pseudo-line contains exactly two points [5]. By the con-
tainment in semispaces defined by these supporting pseudo-lines, orientations of
point triples are defined analogously to point sets: if a point c is to the left of
c© Springer-Verlag Berlin Heidelberg 2015
K. Elbassioni and K. Makino (Eds.): ISAAC 2015, LNCS 9472, pp. 505–516, 2015.
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the pseudo-line through a and b when going from a to b, then the triple (a, b, c)
is oriented counterclockwise. Abstract order types are the generalization of point
set order types to generalized configurations of points. For most combinatorial
purposes, generalized configurations of points behave like point sets; their con-
vex hull is the intersection of those halfspaces bounded by the pseudolines that
contain all the points and determines a cycle of directed arcs. Their chirotope
determines whether two arcs defined by pairs of points cross. We refer to the
work of Goodman and Pollack (see, e.g., [6]) and to a book by Knuth [7] (who
calls abstract order types “CC systems”) for more details. In this paper, we will
be solely concerned with abstract order types. As opposed to many other pub-
lications on the subject, we stress that we consider labeled abstract order types
here (and not abstract order type isomorphism classes). That is, we say that two
abstract order types are equivalent when the bijection between them is fixed and
they have the same chirotope, or one chirotope is the negation of the other.

Radial Systems. The counterclockwise radial system Rχ of an abstract order
type χ on a set P defines, for each p ∈ P , the counterclockwise order Rχ(p) of
the elements in P \ {p} around p. We call each Rχ(p) a counterclockwise radial
ordering. When χ is realizable as a point set, then Rχ(p) can be found by sweep-
ing a ray around p in counterclockwise direction. Given a function U , we write
U ∼ Rχ when, for all p ∈ P , it holds that U(p) is equal to Rχ(p) or the reverse of
Rχ(p). Thus, in a sense, the relation ∼ “forgets” the clockwise/counterclockwise
direction of each individual Rχ(p). We call U an undirected radial system and
each U(p) an undirected radial ordering. When we say radial system, we always
mean counterclockwise radial system. It is possible to recover Rχ from U (all
omitted proofs can be found in the full version of the paper):

Theorem 1.1. Let χ be an abstract order type on V with |V | = n and let
U ∼ Rχ. Then U uniquely determines Rχ (up to complete reversal) and we can
recover Rχ from U by reporting the direction of every U(v) in O(n) time.

Aichholzer et al. [1] investigated under which circumstances the undirected radial
system U of a generalized configuration of points P uniquely determines the
abstract order type χ. They show that if P has a convex hull with at least four
points, then U uniquely determines χ. More precisely: let T (U) be the set of
abstract order types with undirected radial system U (i.e., the sequences in U
are known to originate from an abstract order type). We have

Theorem 1.2. ([1, Theorems 1 and 2]). Consider an abstract order type χ
on a set V with n = |V | ≥ 5 and let U ∼ Rχ. Let H ⊆ V be the points of the
convex hull of χ. Then we can compute |H| from U in polynomial time. Further,
(i) if |H| �= 3, then T (U) = {χ} and we can compute χ from U in polynomial
time; and (ii) if |H| = 3, then |T (U)| ≤ n− 1; all elements of T (U) have convex
hull size 3; and we can compute T (U) from U in polynomial time.

In the full version of [1] it is shown that (i) can be implemented in O(n3) time.
There exist counterclockwise radial systems R with |T (R)| = n − 1. Hence,
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it is not possible to improve the bound on |T (U)| in (ii), even if we consider
counterclockwise radial systems instead of undirected radial systems [1].

Although U does not always uniquely determine χ, the pair (U,H), where
H is the set of points on the convex hull, always suffices [1]. Thus, the abstract
order types in T (U) all have different convex hulls. Given an undirected radial
system U on a set V , we say that a subset H ⊆ V is important if H is the convex
hull of some abstract order type in T (U). An important triangle is an important
set of size 3. Important sets are interrelated as follows.

Theorem 1.3 ([1, Propositions 1–4]). Consider a radial system R on a set
V with n = |V | ≥ 5. If V has more than two important triangles, then all
important triangles must have an element v∗ ∈ V in common. Thus, in general,
exactly one of the following cases applies:

(1) there is exactly one important set, and it has size at least four; or
(2) all important sets are triangles, there are at most n − 1 of them, and they

all share an element v∗ ∈ V ; or
(3) there are exactly two important sets, and they are disjoint triangles.

For cases (2) and (3), there exists actually a complete characterization of the
important triangles. For an abstract order type χ ∈ T (U), an inner important
triangle of χ is an important triangle of U that is not equal to the convex hull
of χ. The following lemma reformulates the fact that an inner important triangle
is not contained in a convex quadrilateral [1,9].

Lemma 1.4 ([1,9]). Let χ be an abstract order type on a set P . A trian-
gle 〈a, b, c〉 of χ is an inner important triangle iff the following conditions hold.

(1) It is empty of points of P .
(2) It partitions P \ {a, b, c} into three subsets Pa, Pb, and Pc, such that Pa is

to the left of the directed line ba and to the right of ca, and Pb and Pc are
defined analogously.

(3) For any two points v, w ∈ Pa, the pseudo-line vw intersects the edge bc; and
similarly for points in Pb and Pc.

In this context, we mention that, if R is the radial system of some point set
order type, then every abstract order type with radial system R can be realized
as a point set [9, Theorem 27]. We do not consider realizability of abstract order
types as point sets in this work. In the following, with a realization of a radial
system R, we mean an abstract order type whose radial system is R.

Interestingly, realizability of radial systems cannot be decided by checking
realizability of all induced radial systems up to any fixed constant size. Figure 1
shows a construction which is not realizable as an abstract order type, while
every radial system induced by any strict subset of the vertices can be realized,
even as a point set order type.

Theorem 1.5. For any k ≥ 3, there exists a radial system Rk over n = 2k + 1
vertices that is not realizable as an abstract order type, but that becomes realizable
as a point set order type when removing any point.
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Fig. 1. The construction of R5 on the left, and point set order type realizations of two
induced radial systems after removing either w5 or v1 on the right.

Good Drawings. A good drawing (sometimes also called simple topological graph)
of a graph is a drawing in the plane or on the sphere where each vertex is
represented by a distinct point, and each edge is represented by a Jordan arc
between its two vertices; any two such arcs intersect in at most one point, which
is either a common endpoint or a proper crossing. The rotation of a vertex v
in a good drawing is the cyclic order of the edges incident to v. The rotation
system of a good drawing is the set of the rotations of its vertices. The radial
system of a point set P is equivalent to the rotation system of the complete
geometric graph on P . A generalized configuration of points Q defines a good
drawing of Kn where the vertices are embedded on the points of Q and every
edge is a segment of a pseudo-line in Q. The radial system of Q is equivalent to
the rotation system of this good drawing. In a good drawing of Kn, the rotation
system determines which edges cross. Therefore, it fixes the drawing up to the
ordering of the crossings; in particular, we can find out whether two edges cross
by locally inspecting the rotations for the four vertices involved [8]. We will use
good drawings as a tool to maintain important sets in our algorithm.

Related Work. Variations on the notion of radial systems have been studied
in many contexts. A prime example are local sequences, which are obtained by
sweeping a line (instead of a ray) around each point. Goodman and Pollack [6]
show that they determine the order type of P . Pilz and Welzl [9] describe a
hierarchy on order types based on crossing edges in which two order types are
considered equivalent iff they have the same radial system. We refer to Aichholzer
et al. [1] for a more complete list of related work.

Our Results. For a given undirected radial system U on n vertices (which has
size Θ(n2)), we provide an algorithm to direct the n radial orderings in O(n)
time (Theorem 1.1). Our main algorithm identifies the set of convex hulls of
all abstract order types consistent with the given radial system in O(n) time
(provided that the input is the radial system of an abstract order type). This set
allows for constant-time queries to the chirotope for any of these abstract order
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types. Hence, this is a means of reporting an explicit representation of T (U)
in O(n) time, significantly improving Theorem1.2. We remark that this can be
shown to be optimal, as an adversary can use any unconsidered point in a suitable
example to alter |T (n)| (e.g., by using it to “destroy” a top triangle as defined
in Sect. 2.1). If we do not know that the set of permutations provided as input is
indeed the radial system of an abstract order type, we show how to verify this in
O(n2) time. A straight-forward adversary argument shows that Ω(n2) time (i.e.,
reading practically the whole input) is necessary to verify whether |T (n)| = 0.
In this sense, our algorithm is optimal.

For radial systems as a data structure, we require that we can obtain the
relative order of three elements in a radial ordering in constant time. This can
be done by storing not only the radial ordering, but also the rank of each element
within some linear order defined by the radial ordering around each vertex, when
considering the n elements to be identified by their index in {1, . . . , n}.

2 Obtaining Chirotopes from Radial Systems

Let R be the radial system for which we want to obtain the set T (R) of abstract
order types that realize it. (This set may be empty.) Our algorithm for com-
puting T (R) (conceptually) constructs a good drawing of a plane graph on the
sphere by adding the vertices one-by-one and maintaining the faces that are
candidates for the convex hull. We will see later that this actually boils down to
maintaining at most two sequences of vertices plus one special vertex. Through-
out the description, we assume that the radial orderings indeed correspond to
the radial system of an abstract order type. If any of the assumptions is not
fulfilled, we know that there is no abstract order type for the given set of radial
orderings. If R can be realized as an abstract order type, then the plane graph is
the subdrawing of a drawing weakly isomorphic (cf. [8]) to the complete graph
on any generalized configuration of points that realizes that abstract order type.

For a plane cycle C = 〈c0, . . . , cm−1〉 of m vertices (which we think of as
counterclockwise with its interior to its left) in a good drawing of the complete
graph, we say that an edge civ emanates to the outside of the cycle at ci if we
encounter v in a counterclockwise sweep in R(ci) from ci−1 to ci+1.1 Otherwise,
civ emanates to the inside. If cv emanates to the outside for all c ∈ C, then v
covers the cycle. If cv emanates to the inside for all c ∈ C, then we say that v
is inside the cycle, and outside otherwise. If v neither is inside C nor covers C,
then the good drawing restricted to C plus all edges from vertices of C to v is not
plane. We call a cycle 〈c0, . . . , cm−1〉 ,m ≥ 4, compact if it is plane and, for each
ci, the edges cici+2, cici+3, . . . , cici−2 all emanate to the inside (i.e., its rotation
system corresponds to the radial system of m points in convex position).

Observation 2.1. In any realization of a radial system, a compact cycle corre-
sponds to a set of points in convex position.

1 We consider all indices modulo the length of the corresponding sequence.
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Lemma 2.2. Consider a radial system R. If Γ is a good drawing of the complete
graph whose rotation system corresponds to R, then no element of an important
set is inside of a compact cycle in Γ . In particular, no edge crosses an edge of
the cell in Γ that defines the convex hull of a realization.

Lemma 2.2 is closely related to Lemma 1.4 (see also [2, Theorem 3.2]). Consider
a radial system R and a directed edge ab. Assume that ab is an edge of the
convex hull of an abstract order type χ with Rχ ∼ R (i.e., a realization) so that
all other points of χ are to the left of ab. It is easy to see that the edge ab and R
together uniquely determine the convex hull of our abstract order type. Hence,
there is only one abstract order type realizing R with such an edge. We re-state
the following well-known fact.

Lemma 2.3. Given the radial system and a directed convex hull edge of an
abstract order type, the orientation of a triple can be reported in constant time.

2.1 Obtaining Hull Edges

Let P be a set of n points (or a generalized configuration of points), and let R
be the radial system of the abstract order type χ of P . We assume that there
is at least one abstract order type realizing R. The goal is to find a set of O(n)
candidate edges that may appear on the convex hull of a realization (i.e., the
edges of the convex hull of P if there is no other realization of R or the union of
the edges of all important triangles). Our algorithm incrementally builds a “hull
structure” (defined below) for P . Before step k, we have a current set Pk−1 ⊆ P
of k −1 points and a hull structure Zk−1 that represents the candidate edges for
Pk−1. The algorithm selects a point pk ∈ P \Pk−1, adds it to Pk−1, and updates
Zk−1. A careful choice of pk allows for updates in constant amortized time.

We begin with the description of the hull structure. Let Pk ⊆ P be a set
of k points (k ≥ 4). The kth hull structure Zk is an abstract representation
of a graph with vertex set Vk ⊆ Pk that is embedded on the sphere. That is,
Zk stores the incidences between the vertices, edges, and faces, but it does not
assign coordinates to the points. Hull structures come in three types (see Fig. 2),
which correspond in one-to-one-fashion to the three possible configurations of
important sets in Theorem 1.3:

Type 1: Zk is a compact cycle (recall that therefore, R restricted to Vk represents
a convex |Vk|-gon with |Vk| ≥ 4).

Type 2: Zk consists of a compact cycle C and a top vertex t that covers C. The
3-cycles incident to t are called top triangles. A top triangle τ is marked either
unexamined, dirty, or empty. Initially, τ is unexamined. Later, τ is marked either
dirty or empty. “Dirty” indicates that τ cannot contain a convex hull vertex in
its interior. “Empty” means that τ is a candidate for an important triangle. We
orient each top triangle so that all other vertices of Zk are to the exterior.

Type 3: Zk is the union of two vertex-disjoint 3-cycles T1 and T2, called inde-
pendent triangles. T1 and T2 are directed so that each has all of Pk to the interior.
Moreover, the edges between the vertices of T1 and T2 appear as in Fig. 2.
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Let Rk be the restriction of R to Pk. We maintain the following invariant:
(a) if Rk has exactly one important set of size at least four, Zk is of Type 1
and represents the counterclockwise convex hull boundary; (b) if Rk has two
disjoint important triangles, Zk is of Type 3, and the important triangles are
exactly the independent triangles; (c) if Rk has several important triangles with
a common vertex, Zk is of Type 2 and all important triangles appear as top
triangles; (d) if Rk has exactly one important triangle, Zk is of Type 2 or 3, with
the important triangle as a top triangle (Type 2) or as an independent triangle
(Type 3). Furthermore, if Zk is of Type 2, no convex hull vertex for P lies inside
a dirty triangle, and each point of Pk lies either in C or in a dirty triangle.

Type 1 Type 2 Type 3

C

t

Fig. 2. The three different types of hull structures.

Initially, we pick 5 arbitrary points from P . Among those, there must be a
compact 4-cycle Z4 (e.g., [1, Figure 4]), which can be found in constant time.
Our initial hull structure Z4 is of Type 1, with vertex set V4 = P4. We next
describe the insertion step for each possible type. For the running time analysis,
we subdivide the algorithm into phases. Each phase is of Type 1, 2, or 3, and a
new phase begins each time the type of the hull structure changes.

Type 1. We take an arbitrary vertex c of Zk−1 and check in constant time
whether c has an incident edge in R emanating to the outside of Zk−1. If not,
the edges incident to c in Zk−1 are on the convex hull of P , and we are done;
see below. Otherwise, let pk ∈ P \ Pk−1 be the endpoint of such an edge. We set
Pk = Pk−1 ∪ {pk}, and we walk along Zk−1 (starting at c) to find the interval I
of vertices for which the edge to pk emanates to the outside. There are two cases:
(i) if I = Zk−1 (i.e., pk covers Zk−1), then Zk is the hull structure of Type 2 with
compact cycle Zk−1, top vertex pk, and all top triangles marked unexamined;
(ii) if I = 〈ci, . . . , cj〉 is a proper subinterval of Zk−1, the next hull structure Zk

is of Type 1 with vertex sequence 〈pk, cj , . . . , ci〉 (R is realizable, so cj �= ci).

Lemma 2.4. We either obtain an edge from which the convex hull can be deter-
mined uniquely, or Zk is a valid hull structure for Pk.

Lemma 2.5. A Type 1 phase that begins with a hull structure of size m and
lasts for � insertions takes O(m + �) time. Furthermore, the next phase (if any)
is of Type 2, beginning with a hull structure of size at most m + �.
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Type 2. We begin with a simple observation.

Observation 2.6. Let Zk−1 be a Type 2 hull structure with compact cycle C
and top vertex t. The vertices of C appear in their circular order in the clockwise
radial ordering around t.

We need to identify a suitable vertex pk to insert. For this, we select an
unexamined top triangle τ = 〈t, ci+1, ci〉 and test whether ci has an incident edge
that emanates to the inside of τ . If yes, let v ∈ P \Pk−1 be an endpoint of such an
edge and check whether civ crosses the edge tci+1. If so, then by Lemma 2.2 the
vertices of τ lie inside a convex quadrilateral and there is no convex hull vertex
inside τ . We mark τ dirty and proceed to the next unexamined triangle. If not,
we set pk = v and Pk = Pk−1 ∪ {pk}. If ci has no incident edge emanating to
the inside of τ , we perform the analogous steps on ci+1. If ci+1 also has no such
incident edge, we mark τ empty and proceed to the next unexamined triangle.
(The empty triangle τ might still be crossed by an edge incident to t.)

Lemma 2.7. We either find a new vertex pk, or all candidate edges for P lie
in Zk. Furthermore, no dirty triangle contains a possible convex hull vertex of P .

cj

ci

pk

t

pk

(a) (c)
t

cj

ci

t

pk

(b)

cjci

t

pk

(d)

cj

ci

Fig. 3. Zk−1 is of Type 2 and pk is not covering: if pk forms a non-crossed 4-cycle, Zk

is of Type 1 (a, b); if not, Zk is of Type 2 with pk on the compact cycle (c, d). The
algorithm will later discover that the triangle 〈t, cj+1, cj〉 in (c) is not important since
it is inside a convex quadrilateral (Color figure online).

With pk at hand, we inspect the boundary of C to find the interval I of
vertices for which the edge to pk emanates to the outside of C. First, if pk does
not cover C, i.e., I = 〈ci, . . . , cj〉 is a proper subinterval of C, then pk must lie
between ci−1 and cj+1 in the clockwise order around t, as in any realization one
of the cases in Fig. 3 applies. If pk is between ci−1 and ci or between cj and cj+1,
then either 〈pk, t, ci−1, ci〉 or 〈t, pk, cj , cj+1〉 is a compact 4-cycle containing Pk,
and we make it the next hull structure Zk of Type 1; see Fig. 3(a). The green
areas in the figures are the only regions where we might still find candidate
edges. Otherwise, if i + 1 = j and the edge tpk crosses cici+1, the compact
4-cycle 〈t, cj , pk, ci〉 contains Pk and becomes the next Type 1 hull structure Zk;
see Fig. 3(b). In any other case (i.e., pk lies between ci and cj in clockwise order
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around t and if i + 1 = j then tpk does not cross cici+1), Zk is of Type 2 and
obtained from Zk−1 by removing the top triangles between ci and cj and adding
the top triangles 〈t, pk, ci〉 and 〈t, cj , pk〉; see Fig. 3(c) and (d). If cipk intersects
an edge of Zk−1, then 〈t, pk, ci〉 lies in a compact 4-cycle and is marked dirty.
Otherwise, it is marked unexamined. We handle 〈t, cj , pk〉 similarly.

C

t

pk

cj
cj+1

ci
ci+1

Fig. 4. Zk−1 is of Type 2 and pk
is covering.

Second, suppose pk covers C and let i, j be
so that pk is between ci and ci+1 in clockwise
order around t and t lies between cj and cj+1

in clockwise order around pk. Observation 2.6
ensures that these edges are well-defined; see
Fig. 4. Now there are three cases. First, if i = j,
then one of 〈ci, ci+1, t, pk〉 or 〈ci, ci+1, pk, t〉
defines a compact 4-cycle containing Pk, so
Zk is of Type 1 and consists of this cycle; see
Fig. 5(a). Second, if {i, i + 1} ∩ {j, j + 1} = ∅,
then Zk is of Type 3, with independent trian-
gles 〈pk, ci, ci+1〉 and 〈t, cj , cj+1〉; see Fig. 5(b).
Third, suppose that j = i+1 or i = j +1, say,
j = i + 1. Then Zk is of Type 2, with top ver-
tex cj and compact cycle 〈t, pk, ci, cj+1〉. The
top triangle 〈cj , cj+1, ci〉 is dirty, the other top
triangles are unexamined; see Fig. 5(c–d).

ci = cj ci+1

pk

ci+1

(a) (b)

cj cj+1

ci

tt
(c) (d)

ci

t

cj+1 cj+1

t

cj = ci+1 cj = ci+1

ci ci−1 ci−1

pk pk pk

Fig. 5. Zk−1 is of Type 2 and pk (box) is covering: if t and pk are between the same
vertices in each other’s rotation, Zk is of Type 1 (a); if these vertices are disjoint, Zk

is of Type 3 (b); if t and pk have a common neighbor cj in the other’s rotation (c), the
new top vertex cj of Zk structure requires the construction of a new compact cycle (d).

Lemma 2.8. The resulting hull structure is valid for Pk.

Lemma 2.9. A Type 2 phase that begins with a hull structure of size m and
lasts for � insertions takes O(� + m) time. Furthermore, if the next phase (if
any) is of Type 1, it begins with a hull structure of size at most 4.
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Type 3. Let T1 = 〈a, b, c〉 and T2 = 〈a′, c′, b′〉 be the two independent triangles
of Zk−1, and let pk be an arbitrary vertex of P \Pk−1. We set Pk = Pk−1 ∪{pk},
and we distinguish three cases. First, if pk is inside both T1 and T2, then Zk =
Zk−1. Second, suppose that pk is outside, say, T1, and that {pk, a, b, c} forms a
compact 4-cycle C. (Hence, pk is inside T2; recall that “inside” and “outside” is
defined by the cycle’s orientation.) Then Zk = C is of Type 1. Third, suppose
that pk is outside T1 but {pk, a, b, c} does not form a compact 4-cycle. W.l.o.g.,
suppose further that a is inside the triangle 〈pk, b, c〉. There are two subcases (see
Fig. 6): (a) if a lies inside a compact 4-cycle, we replace a by pk in T1 to obtain
an independent 3-cycle that, together with T2, defines Zk, again of Type 3;
(b) otherwise, a is an element of a compact 4-cycle C that involves pk, one
vertex of T2 and one other vertex of T1. Then, Zk is a Type 2 hull structure with
compact cycle C whose top vertex is the vertex of T1 that is not an element of C.
The top triangles incident to the vertex of T2 are marked dirty, the remaining
top triangles are marked unexamined.

(a) (b)

b c

pk

a

b c

pk

a

a

cb

a

cb

Fig. 6. If a vertex of an independent triangle is in a compact 4-cycle (e.g., 〈pk, a′, c′, c〉),
then Zk if of Type 3 (a). Otherwise, Zk is of Type 2 with top vertex c (b).

Lemma 2.10. The resulting structure Zk is a valid hull structure for Pk.

Observation 2.11. A Type 3 phase with � insertions takes O(�) time. If the
next phase (if any) is of Type 2, it begins with a hull structure with at most 5
vertices, if it is of Type 1, it begins with a hull structure of size 4.

To wrap up, we get the following lemma:

Lemma 2.12. The final hull structure Zn contains all candidate edges for R,
and it can be obtained in O(n) time.

2.2 Obtaining the Actual Hulls from a Hull Structure

After having obtained Zn, it remains to identify the faces that are important
sets. If Zn is of Type 1, then it is the only important set of R. If this is not the
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case, we want to obtain all the important triangles of R, i.e., all convex hulls of
abstract order types realizing the radial system.

Lemma 2.13. Given a Type 2 hull structure, we can decide in linear time which
top triangles are important triangles of R.

Lemma 2.14. For a Type 3 hull structure, we can decide in linear time which
of the two independent triangles are important triangles of R.

For each important set we obtained for the radial system R, its chirotope is
now given by Lemma 2.3.

Theorem 2.15. Given a radial system R of an abstract order type, we can
answer queries to the chirotopes of T (R) in constant time, after O(n) preprocess-
ing time.

Recall that we assumed that there is at least one realization of R. We can
now check this assumption in the following way. We build the dual pseudo-line
arrangement using an arbitrary chirotope we obtained for R using Lemma 2.3.
This whole process takes O(n2) time [3,4]. If it fails then R has no realization.
Otherwise, the dual pseudo-line arrangement explicitly gives the rotation system
of the corresponding abstract order type, which we now compare to R.

Corollary 2.16. Testing whether a set of radial orderings is the radial system
of an abstract order type can be done in O(n2) time.

We can apply our insights to obtain all important sets of a given chirotope.

Theorem 2.17. Given an abstract order type, a hull structure of its radial sys-
tem can be found in O(n log n) time. Further, the faces in the hull structure that
can become convex hulls can be reported in the same time.
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2. Balko, M., Fulek, R., Kynčl, J.: Crossing numbers and combinatorial characteriza-
tion of monotone drawings of Kn. Discrete Comput. Geom. 53(1), 107–143 (2015)

3. Chazelle, B., Guibas, L.J., Lee, D.T.: The power of geometric duality. BIT 25(1),
76–90 (1985)



516 O. Aichholzer et al.

4. Edelsbrunner, H., O’Rourke, J., Seidel, R.: Constructing arrangements of lines and
hyperplanes with applications. SIAM J. Comput. 15(2), 341–363 (1986)

5. Goodman, J.E.: Proof of a conjecture of Burr, Grünbaum, and Sloane. Discrete
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1 Institute of Theoretical Computer Science, ETH Zurich, Zurich, Switzerland
karlb@inf.ethz.ch

2 Max Planck Institute for Informatics, Saarbrücken, Germany
marvin@mpi-inf.mpg.de

3 Saarbrücken Graduate School of Computer Science,Saarbrücken, Germany

Abstract. The Fréchet distance is a well-studied and popular measure
of similarity of two curves. The best known algorithms have quadratic
time complexity, which has recently been shown to be optimal assuming
the Strong Exponential Time Hypothesis (SETH) [Bringmann FOCS’14].
To overcome the worst-case quadratic time barrier, restricted classes
of curves have been studied that attempt to capture realistic input
curves. The most popular such class are c-packed curves, for which
the Fréchet distance has a (1 + ε)-approximation in time O(cn/ε +
cn log n) [Driemel et al. DCG’12]. In dimension d � 5 this cannot be
improved to O((cn/

√
ε )1−δ) for any δ > 0 unless SETH fails [Bringmann

FOCS’14]. In this paper, exploiting properties that prevent stronger
lower bounds, we present an improved algorithm with time complex-
ity O(cn log2(1/ε)/

√
ε + cn log n). This improves upon the algorithm by

Driemel et al. for any ε � 1/ log n, and matches the conditional lower
bound (up to lower order factors of the form no(1)).

1 Introduction

The Fréchet distance is a popular measure of similarity of curves and has two
classic variants. Roughly speaking, the continuous Fréchet distance of two curves
π, σ is the minimal length of a leash required to connect a dog to its owner,
as they walk without backtracking along π and σ, respectively. In the discrete
Fréchet distance we replace the dog and its owner by two frogs – in each time
step each frog can jump to the next vertex along its curve or stay where it is.

In a seminal paper in 1991, Alt and Godau introduced the continuous Fréchet
distance to computational geometry [2,13]. For polygonal curves π and σ with
n and m vertices, respectively, (we always assume m � n) they presented an
O(nm log n) algorithm. The discrete Fréchet distance was defined by Eiter and
Mannila [12], who presented an O(nm) algorithm. Since then, Fréchet distance

An extended version of this article can be accessed at http://arxiv.org/abs/1408.
1340.
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has become a rich field of research, with many variants and related problems
being studied (see, e.g., the references in [6]). As a natural measure for curve
similarity, the Fréchet distance has found applications in various areas such as
signature verification (see, e.g., [16]), map-matching tracking data (see, e.g., [5]),
and moving objects analysis (see, e.g., [7]).

Apart from log-factor improvements [1,8] the quadratic complexity of the
classic algorithms for the continuous and discrete Fréchet distance are still the
state of the art. In fact, the first author recently showed a conditional lower
bound: Assuming the Strong Exponential Time Hypothesis (SETH) there is no
algorithm for the (continuous or discrete) Fréchet distance in time O((nm)1−δ)
for any δ > 0, so apart from lower order factors of the form no(1) the classic
algorithms are optimal [6].

In attempts to obtain faster algorithms for realistic inputs, various restricted
classes of curves have been considered, such as backbone curves [4], κ-bounded
and κ-straight curves [3], and φ-low density curves [11]. The most popular model
of realistic inputs are c-packed curves. A curve π is c-packed if for any point
z ∈ R

d and any radius r > 0 the total length of π inside the ball B(z, r) is at
most cr, where B(z, r) is the ball of radius r around z. This model has been
used for several generalizations of the Fréchet distance [9,10,14,15]. Driemel
et al. [11] introduced c-packed curves and presented a (1 + ε)-approximation
for the continuous Fréchet distance in time O(cn/ε + cn log n), which works in
any R

d, d � 2. Assuming SETH, the following lower bounds have been shown
for c-packed curves: (1) For sufficiently small constant ε > 0 there is no (1 + ε)-
approximation in time O((cn)1−δ) for any δ > 0 [6]. (2) In any dimension d � 5
and for varying ε > 0 there is no (1 + ε)-approximation in time O((cn/

√
ε )1−δ)

for any δ > 0 [6].
In this paper we are interested in better-than-constant approximation algo-

rithms. Specifically, for any constant 0 < β < 1 we set ε = n−β and ask what
running time is necessary to compute a (1 + ε)-approximation of the Fréchet
distance on c-packed curves. Note that in this regime the known upper and
lower bounds differ by a factor

√
ε −1−o(1) = nβ/2+o(1). We improve upon the

algorithm by Driemel et al. [11] by presenting an algorithm that matches the
conditional lower bound of [6].

Theorem 1.1. For any ε ∈ (0, 1] we present a (1+ε)-approximation on c-packed
curves for the continuous and discrete Fréchet distance in time Õ(cn/

√
ε ).

We use the Õ-notation to hide polylogarithmic factors in n and 1/ε. Specifi-
cally, our running time is O( cn√

ε
log(1/ε) + cn log n) for the discrete variant and

O( cn√
ε

log2(1/ε) + cn log n) for the continuous variant. This improves upon the
algorithm by Driemel et al. for any ε � 1/ log n. While our algorithm might be
too complex to speed up the algorithm by Driemel et al. in practical situations,
it clarifies the optimal asymptotic dependence on c,n, and ε – apart from lower
order factors no(1), in dimension d � 5, and unless SETH fails [6]. Specifically,
for any constants α, β � 0 even after restricting c = nα+o(1) and ε = n−β+o(1),
any algorithm takes time Ω(min{cn/

√
ε , n2}1−o(1)) in dimension d � 5 [6], i.e.,
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any algorithm is at most a factor of no(1) faster than the better of our proposed
algorithm (Õ(cn/

√
ε )) and the exact algorithm (Õ(n2)).

Organization. After setting up notation in Sect. 2, we present a new approxi-
mate decision procedure in Sect. 3. This procedure reduces the problem to one-
dimensional curves, which we study in Sect. 4. Our exposition is limited to the
continuous Fréchet distance; it is straightforward to obtain a similar algorithm
for the discrete variant. For reasons of space, proofs, illustrations and basic tech-
nical lemmas for compositions of curves are deferred to the full version.

2 Preliminaries

Throughout the paper we fix the dimension d � 2. We let B(z, r) be the ball of
radius r around z ∈ R

d. For integers i � j, we let [i..j] := {i, i+1, . . . , j}, which is
not to be confused with the real interval [i, j]. A (polygonal) curve π is defined by
its vertices (π1, . . . , πn) with πp ∈ R

d, p ∈ [1..n]. We let |π| = n be the number of
vertices of π and ‖π‖ be its total length

∑n−1
i=1 ‖πi −πi+1‖, where ‖.‖ denotes the

Euclidean norm. We write πp..b for the subcurve (πp, πp+1, . . . , πb). We can also
view π as a continuous function π : [1, n] → R

d with πp+λ = (1 − λ)πp + λπp+1

for p ∈ [1..n − 1] and λ ∈ [0, 1]. For the second curve σ = (σ1, . . . , σm) we will
use indices of the form σq..d for the reader’s convenience.

Variants of the Fréchet Distance. Let Φn be the set of all continuous and
non-decreasing functions φ from [0, 1] onto [1, n]. The continuous Fréchet dis-
tance between two curves π, σ with n and m vertices, respectively, is defined as

dF(π, σ) := inf
φ1∈Φn,φ2∈Φm

maxt∈[0,1] ‖πφ1(t) − σφ2(t)‖.

We call φ := (φ1, φ2) a (continuous) traversal of (π, σ), and say that it has width
maxt∈[0,1] ‖πφ1(t) − σφ2(t)‖.

In the discrete case, we let Δn be the set of all non-decreasing functions
φ from [0, 1] onto [1..n]. We obtain the discrete Fréchet distance ddF(π, σ) by
replacing Φn and Φm by Δn and Δm. We obtain an analogous notion of a (dis-
crete) traversal and its width. Note that any φ ∈ Δn is a staircase function
attaining all values in [1..n]. Hence, (φ1(t), φ2(t)) changes only at finitely many
points in time t. At any such time step, we jump to the next vertex in π or σ or
both.

Free-Space Diagram. The discrete free-space of curves π, σ is defined as
Dd

�δ(π, σ) := {(p, q) ∈ [1..n] × [1..m] | ‖πp − σq‖ � δ}. Note that any discrete
traversal of π, σ of width at most δ corresponds to a monotone sequence of points
in the free-space where at each point in time we increase p or q or both. Because
of this property, the free-space is a standard concept used in many algorithms
for the Fréchet distance.

The continuous free-space is defined as D�δ(π, σ) := {(p, q) ∈ [1, n] × [1,m] |
‖πp − σq‖ � δ}. Again, a monotone path from (1, 1) to (n,m) in D�δ(π, σ)
corresponds to a traversal of width at most δ. It is well-known [2,13] that each
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free-space cell Ci,j := {(p, q) ∈ [i, i + 1] × [j, j + 1] | ‖πp − σq‖ � δ} (for
i ∈ [1..n−1], j ∈ [1..m−1]) is convex, specifically it is the intersection of an ellipse
with [i, i+1]× [j, j +1]. In particular, the intersection of the free-space with any
interval [i, i+1]×{j} (or {i}×[j, j+1]) is an interval Ih

i,j (or Iv
i,j), and for any such

interval the subset that is reachable by a monotone path from (1, 1) is an interval
Rh

i,j (or Rv
i,j). Moreover, in constant time one can solve the following free-space

cell problem: Given intervals Rh
i,j ⊆ [i, i+1]×{j}, Rv

i,j ⊆ {i}×[j, j+1], determine
the intervals Rh

i,j+1 ⊆ [i, i + 1] × {j + 1}, Rv
i+1,j ⊆ {i + 1} × [j, j + 1] consisting

of all points that are reachable from a point in Rh
i,j ∪ Rv

i,j by a monotone path
within the free-space cell Ci,j . Solving this problem for all cells from lower left to
upper right we determine whether (n,m) is reachable from (1, 1) by a monotone
path and thus decide whether the Fréchet distance is at most δ.

From Approximate Deciders to Approximation Algorithms. An approxi-
mate decider is an algorithm that, given curves π, σ and δ > 0, 0 < ε � 1, returns
one of the outputs (1) dF(π, σ) > δ or (2) dF(π, σ) � (1 + ε)δ. In particular, if
δ < dF(π, σ) � (1 + ε)δ the algorithm may return either of the two outputs.

Let D(π, σ, δ, ε) be the running time of an approximate decider and set
D(π, σ, ε) := maxδ>0 D(π, σ, δ, ε). We assume polynomial dependence on ε, i.e.,
that there are constants 0 < c1 < c2 < 1 such that for any 0 < ε � 1 we
have c1D(π, σ, ε/2) � D(π, σ, ε) � c2D(π, σ, ε/2). Driemel et al. [11] gave the
following construction of a (1 + ε)-approximation for the Fréchet distance.

Lemma 2.1. For any approximate decider with running time D(π, σ, ε) we can
construct a (1+ε)-approximation running in time O

(

D(π, σ, ε)+D(π, σ, 1) log n
)

.

3 The Approximate Decider

By Lemma 2.1 it suffices to give an improved approximate decider with running
time O( cn√

ε
log2(1/ε)) for the Fréchet distance to prove Theorem 1.1.

Long Segments and Pieces. We first partition our curves into subcurves,
each of which is either a long segment, i.e., a single segment of length at least
Λ = Θ(

√
ε δ), or a piece, i.e., a subcurve staying in the ball of radius Λ around

its initial vertex. More formally, we modify the given curve π by introducing
new vertices as follows. Start at the initial vertex π1. If the segment following
the current vertex has length at least Λ = Λε,δ := min{ 1

2

√
ε , 1

4} · δ then mark
this segment as long and proceed to the next vertex. Otherwise follow π from
the current vertex πx to the first point πy such that ‖πx − πy‖ = Λ (or until we
reach the end of π). If πy is not a vertex, but lies on some segment of π, then
introduce a new vertex at πy. Mark πx..y as a piece of π and set πy as current
vertex. Repeat until π is completely traversed. Since this procedure introduces
at most |π| new vertices and does not change the shape of π, with slight abuse
of notation we call the resulting curve again π and set n := |π|. This partitions
π into subcurves π1, . . . , πk, with πs = πps..bs , where every part πs is either
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• a long segment : bs = ps + 1 and ‖πps
− πbs‖ � Λ, or

• a piece: ‖πps
− πbs‖ = Λ and ‖πps

− πx‖ < Λ for all x ∈ [ps, bs).

Note that the last piece actually might have distance ‖πps
− πbs‖ less than Λ,

however, for simplicity we assume equality for all pieces. Similarly, we introduce
new vertices on σ and partition it into subcurves σ1, . . . , σ	, with σt = σqt..dt

,
each of which is a long segment or a piece. Let m := |σ|.
Free-Space Regions. We follow the usual approach of exploring the reachable
free-space (see Sect. 2). However, we treat regions spanned by a piece π′ of π
and a piece σ′ of σ in a special way. Typically, if π′, σ′ consist of n′,m′ segments
then their free-space would be resolved in time O(n′m′), by resolving each of
the n′m′ induced free-space cells in constant time. We show that by resorting
to approximation we can reduce this running time to Õ(n′ + m′). This is made
formal by the following subproblem and lemma.

Problem 3.1 (Free-space region problem). Given δ > 0, 0 < ε � 1, curves π, σ
with n and m vertices, and entry intervals R̃h

i,1 ⊆ [i, i+1]×{1} for i ∈ [1..n) and
R̃v

1,j ⊆ {1}×[j, j+1] for j ∈ [1..m), compute exit intervals R̃h
i,m ⊆ [i, i+1]×{m}

for i ∈ [1..n) and R̃v
n,j ⊆ {n} × [j, j + 1] for j ∈ [1..m) such that (1) the exit

intervals contain all points reachable from the entry intervals by a monotone
path in D�δ(π, σ) and (2) all points in the exit intervals are reachable from the
entry intervals by a monotone path in D�(1+ε)δ(π, σ). Here and in the remainder
of the paper, we denote reachable intervals by R̃ instead of R to stress that we
work with approximations.

Lemma 3.1. If π and σ are pieces then the free-space region problem can be
solved in time O((n + m) log2 1/ε).

We will prove this lemma in Sects. 3.1 and 4. Using the algorithm of the above
lemma, we obtain an approximate decider for the Fréchet distance as follows.

Algorithm 1. We consider all regions rs,t = [ps, bs]× [qt, dt] spanned by parts πs

and σt. With each region rs,t we store the entry intervals R̃h
i,qt

⊆ [i, i + 1] × {qt}
for i ∈ [ps..bs) and R̃v

ps,j ⊆ {ps}× [j, j +1] for j ∈ [qt..dt). We correctly initialize
the outer reachability intervals R̃h

i,1 and R̃v
1,j . Then we enumerate all regions

sorted by increasing layer s + t, and among all regions with equal s + t sorted
by s. For each region rs,t we resolve its free-space region: (1) If both πs, σt are
long segments, we can resolve the free-space cell rs,t in constant time, (2) if πs

is a piece and σt is a long segment, we sequentially resolve the free-space cells
[i, i+1]× [qt, dt] for i = ps, . . . , bs −1 (and symmetrically if πs is a long segment
and σt a piece), and (3) if both πs, σt are pieces we solve the corresponding free-
space region problem using Lemma 3.1. Finally, we return dF(π, σ) � (1 + ε)δ if
(n,m) ∈ R̃h

n−1,m and dF(π, σ) > δ otherwise.
Observe that instead of enumerating all regions, we may enumerate only

reachable regions, i.e., regions where some stored entry interval is non-empty.
Indeed, if the reachable regions in layer L are rs1,L−s1 , . . . , rsa,L−sa

, sorted by
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s1 � . . . � sa, then the reachable regions in layer L + 1 are among {rsi+1,L−si
,

rsi,L−si+1 | 1 � i � a}, and we can check for each such region in constant time
whether it is reachable, so we can efficiently enumerate all reachable regions in
layer L + 1, again sorted by s. This trick was also used in [11, Lemma 3.1].

To bound the running time of this algorithm, we charge the time spent for
region rs,t to appropriate segments of πs or σt. Then we argue that the number
of charges of a segment πi..i+1 gives a lower bound on the length of σ in a small
ball around πi..i+1, which in turn is bounded since σ is c-packed. This analysis
is similar to [11] and yields Lemma 3.2. Combining Lemma 3.2 with Lemma 2.1
yields Theorem 1.1.

Lemma 3.2. Algorithm 1 is a correct approximate decider with running time
O( cn√

ε
log2 1/ε) on c-packed curves.

3.1 Solving the Free-Space Region Problem on Pieces

It remains to prove Lemma 3.1. Let (π, σ, δ, ε) be an instance of the free-space
region problem, i.e., π and σ are curves that stay within distance Λ = Λε,δ =
Θ(

√
ε δ) of their initial vertices. We reduce this instance to the free-space region

problem on one-dimensional separated curves, i.e., curves π̂, σ̂ in R such that all
vertices of π̂ lie above 0 and all vertices of σ̂ lie below 0.

Consider the line L containing the starting points of π and σ. Denote by
Π : Rd → L the projection onto L. By projecting π and σ we obtain one-
dimensional curves π̂ := Π(π) = (Π(π1), . . . , Π(πn)) and σ̂ := Π(σ) = (Π(σ1),
. . . ,Π(σm)). Moreover, if the initial vertices are within distance ‖π1 − σ1‖ �
δ−2Λ then all pairs of points in π, σ are within distance δ, since π, σ stay within
distance Λ of their initial vertices. In this case, the free-space region problem is
trivial. Otherwise, π and σ are sufficiently far apart so that their projections π̂, σ̂
are separated, i.e., there is a point z ∈ L such that π̂ and σ̂ lie on different sides
of z on L. Thus, π̂, σ̂ are one-dimensional separated curves, and after rotation
and translation we can assume that they lie on R and are separated by 0.

We show that it suffices to solve the free-space region problem on π̂, σ̂, with
parameters δ̂ := δ and ε̂ := 1

2ε (with the same entry intervals as for π, σ).

Lemma 3.3. Any solution to the free-space region problem on (π̂, σ̂, δ̂, ε̂) solves
the free-space region problem on (π, σ, δ, ε).

In the proof, we crucially use that since π, σ stay within distance Λ = Θ(
√

ε δ)
of their initial vertices, the projection does not change distances between π and
σ significantly – it follows from the Pythagorean theorem that any distance of
approximately δ is changed by less than εδ. Thus, we can replace π, σ by π̂, σ̂
without introducing too much error.

In the following section, we show how to solve the free-space region prob-
lem on one-dimensional separated curves (Lemma 4.1). Together with the above
Lemma 3.3 this concludes the proof of Lemma 3.1.
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Remark. We distilled the property that we use in Lemma3.3 from the condi-
tional lower bound [6]. In [6], two curves π, σ are constructed for which it is hard
to decide whether dF(π, σ) is at most δ or at least (1 + ε)δ. In this construction,
for some consecutive points πi, πi+1 and σj , σj+1 we want to force any algorithm
reaching (πi, σj) to make a simultaneous step to (πi+1, σj+1), i.e., we want that
(i) ‖πi − σj‖, ‖πi+1 − σj+1‖ � δ and (ii) ‖πi − σj+1‖, ‖πi+1 − σj‖ > (1 + ε)δ. By
elementary geometric arguments, (i) and (ii) imply ‖πi − πi+1‖, ‖σj − σj+1‖ �√

ε δ. Thus, we cannot “compress” the curves π and σ too well (in terms of
c-packedness), resulting in the factor 1/

√
ε in the lower bound of [6]. This

bottleneck is closely related to Lemma 3.3.

4 On One-Dimensional Separated Curves

This section is dedicated to proving the following lemma.

Lemma 4.1. The free-space region problem on one-dimensional separated curves
can be solved in time O((n + m) log2 1/ε).

To this end, we reduce our problem to the following simpler problem by subdivid-
ing the curves and performing parallel binary searches (the details are deferred
to the extended version). In the remainder of this section we prove Lemma 4.2.

Problem 4.1 (Reduced free-space problem). Given δ > 0 and 0 < ε � 1, given
one-dimensional separated curves π, σ with n,m vertices and all vertex coordi-
nates being multiples of 1

4εδ, and given an entry set E ⊆ [1..n], compute the
exit set Fπ ⊆ [1..n] consisting of all points f such that ddF(πe..f , σ) � δ for
some e ∈ E and the exit set F σ ⊆ [1..m] consisting of all points f such that
ddF(πe..n, σ1..f ) � δ for some e ∈ E.

Lemma 4.2. The reduced free-space problem has a O((n+m) log 1/ε) algorithm.

4.1 Greedy Decider for One-Dimensional Separated Curves

Before solving the reduced free-space problem, let us consider the simpler prob-
lem of deciding ddF(π, σ) � δ for one-dimensional separated curves π, σ. In this
section, we present a near-linear time algorithm for this problem, by walking
along π and σ with greedy steps to either find a feasible traversal or bottleneck
subcurves. We are not the first to have this observation1, which in any case is
not the focus of this work. Instead, we are interested in the (quite complex)
extension of this result to the reduced free-space problem, which we use as a
subroutine for our main result on c-packed curves, see Sect. 4.2.

In the remainder of the paper all indices of curves will be integral. Let π =
(π1, . . . , πn) and σ = (σ1, . . . , σm) be two separated curves in R, i.e., πi � 0 � σj .
For indices 1 � i � n and 1 � j � m, define visσ(i, j) := {k | k � j and σk �
1 We thank Wolfgang Mulzer for pointing us to this (unpublished) result by Matias

Korman and Sergio Cabello (personal communication).
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πi − δ} as the index set of vertices on σ that are later in sequence than σj

and are in distance δ to πi (i.e., seen by πi). Symmetrically, visπ(i, j) := {k |
k � i and πk � σj + δ}. Note that πi � πi′ implies that visσ(i, j) ⊇ visσ(i′, j),
however the converse does not necessarily hold. Moreover, we set reachσ(i, j) :=
[j +1..j +k] where k is maximal with [j +1..j +k] ⊆ visσ(i, j). Note that for any
j′ ∈ reachσ(i, j) we can reach (πi, σj′) starting from (πi, σj) and staying in πi,
since |πi−σj′ | � δ for any j′ ∈ reachσ(i, j). We define reachπ(i, j) symmetrically.

These visibility sets enable us to define the greedy algorithm for the Fréchet
distance of π and σ given in Algorithm 2. Let 1 � p � n and 1 � q � m be
arbitrary indices on σ and π. We say that p′ is a greedy step on π from (p, q),
written p′ ← GreedyStepπ(πp..n, σq..m), if p′ ∈ reachπ(p, q) and visσ(i, q) ⊆
visσ(p′, q) holds for all p � i � p′. Symmetrically, q′ ∈ reachσ(p, q) is a greedy
step on σ from (p, q), if visπ(p, j) ⊆ visπ(p, q′) for all q � j � q′. In pseudocode,
GreedyStepπ(πp..n, σq..m) denotes a function that returns an arbitrary greedy
step p′ on π from (p, q) if such an index exists and returns an error otherwise.
We remark that greedy steps do not imply monotonicity of the coordinates πp,
because πi′ > πi might have equal visibility sets visσ(i′, j) = visσ(i, j). Greedy
steps have, however, a certain monotonicity in visibility sets, see Lemma4.3.

Algorithm 2. Greedy decider for separated curves π1..n and σ1..m in R

1: p ← 1, q ← 1
2: repeat
3: if p′ ← GreedyStepπ(πp..n, σq..m) then p ← p′

4: if q′ ← GreedyStepσ(πp..n, σq..m) then q ← q′

5: until no greedy step was found in the last iteration
6: if p = n and q = m then return ddF(π, σ) � δ
7: else return ddF(π, σ) > δ

Theorem 4.1. Let π and σ be one-dimensional separated curves and δ > 0.
Algorithm 2 decides whether ddF(π, σ) � δ in time O((n + m) log(nm)).

Correctness. We call the indices (p, q) of point pairs considered in some iter-
ation of Algorithm 2 (for any choice of greedy steps, if more than one exists)
greedy point pairs. The following useful monotonicity property holds: If some
greedy point on π sees a point on σ that is yet to be traversed, all following
greedy points on π will see it until it is traversed.

Lemma 4.3. For any greedy point pair (p, q) we have (1) visσ(�, q) ⊆ visσ(p, q)
for all 1 � � � p, and symmetrically, (2) visπ(p, �) ⊆ visπ(p, q) for all 1 � � � q.

We exploit this monotonicity to prove that if Algorithm 2 gets stuck then no
feasible traversal of π and σ exists. We derive an even stronger statement using
the following notion: For a greedy point pair (p, q), define stopπ(πp..n, σq..m) :=
max(reachπ(p, q)∪{p})+1 as the index of the first point after πp on π which is not
seen by σq, or n+1 if no such index exists. Let stopσ be defined symmetrically.
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Lemma 4.4 (Correctness of Algorithm2). Let (p, q) be a greedy point pair,
pstop := stopπ(πp..n, σq..m) and qstop := stopσ(πp..n, σq..m). If on both curves
no greedy step from (p, q) exists, then ddF(π, σ) > δ. Moreover, if qstop � m then
ddF(π1..p′ , σ1..qstop) > δ for all p′ ∈ [1..n], and if pstop � n then ddF(π1..pstop ,
σ1..q′) > δ for all q′ ∈ [1..m].

Our Building Blocks and Their Implementation. A greedy step on a curve
is not uniquely defined. We choose to implement the function GreedyStepπ

such that among all greedy steps that maximize the visibility region, we return
the longest possible step on the curve. This property will be exploited by our
algorithms in Sect. 4.2. More formally, let p′ ∈ reachπ′(p, q) be such that (i) p′

is the largest index in reachπ(p, q) with |visσ(p′, q)| = max{|visσ(z, q)| | z ∈
reachπ(p, q)} and (ii) visσ(p′, q) ⊇ visσ(p, q). If p′ exists, MaxGreedyStepπ

returns this value, otherwise it reports that no such index exists. We show the
following lemma by a reduction to range searching on the point sets P = {(i, πi) |
i ∈ [1..n]} and Q = {(i, σi) | i ∈ [1..m]}.

Lemma 4.5. For one-dimensional separated curves π = π1..n and σ = σ1..m,
MaxGreedyStepπ and stopπ can be implemented to run in time O(log nm)
after O((n + m) log nm) preprocessing. If π, σ are input curves of the reduced
free-space problem then these procedures can be implemented in time O(log 1/ε)
after O((n + m) log 1/ε) preprocessing.

4.2 Solving the Reduced Free-Space Problem

In this section, we solve the reduced free-space problem, given entries E on π.
We first solve the problem of determining the exit set F σ assuming E = {1}
(single entry). Then we show for general E ⊆ [1..n] how to compute Fπ and F σ.

Algorithm 3. Special Case: Single entry

1: function Find-σ-exits(πp..b, σq..d)
2: if q = d then
3: if stopπ(πp..b, σq) = b + 1 then return {q} � End of π is reachable
4: else return ∅
5: if p′ ← MaxGreedyStepπ(πp..b, σq..d) then
6: return Find-σ-exits(πp′..b, σq..d)
7: else if q′ ← GreedyStepσ(πp..b, σq..d) then
8: return Find-σ-exits(πp..b, σq..q′−1) ∪ Find-σ-exits(πp..b, σq′..d)
9: else return Find-σ-exits(πp..b, σq..d−1) � No greedy step possible

Single Entry. The above recursive algorithm computes F σ for curves π, σ if
we have only one entry E = {1}, i.e., any traversal has to start in (1, 1). By
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Lemma 4.4, whenever a greedy step in π is possible we can perform this greedy
step and still reach all exits in F σ. When a greedy step in σ is possible (from
q to q′), then one can show that it is a greedy step with respect to πp..b, σq..d′

for any q′ � d′ � d. Thus by Lemma 4.4, after the greedy step we can still reach
all exits F σ ∩ [q′,∞). This explains the split into σq..q′−1 and σq′..d. Finally, if
no greedy step is possible, then Lemma 4.4 implies that ddF(πp..b, σq..d) > δ, so
that d is no exit, and we can decrement d.

It is crucial that we use MaxGreedyStepπ: Since there can be no two
consecutive maximal greedy steps in π, we can charge greedy steps in π to the
operations in σ, whose number can be easily seen to be bounded by O(m).

Lemma 4.6. Find-σ-Exits(π1..n, σ1..m) correctly identifies F σ given the single
entry E = {1} and runs in time O(m log 1/ε).

Note that symmetrically, we can implement Find-π-Exits(π1..n, σ1..m) return-
ing Fπ given the single entry E = {1} on π in time O(n log 1/ε).

Entries on π, Exits on π. We now want to compute Fπ given a set of entries
E on π. To obtain near-linear time, it is essential to avoid computing the exits
by iterating over every entry. We show how to divide π into disjoint subcurves
that can be solved by a single call to Find-π-Exits each.

Assume we want to traverse πp..n and σ = σ1..m starting in πp and σ1. Let
u(p) := max{p′ ∈ [p..n] | ∃1 � q′ � m : ddF(πp..p′ , σ1..q′) � δ} be the last point
on π that is reachable while traversing an arbitrary subcurve of σ that starts
in σ1. We prove that all exits reachable from p are contained in the interval
[p..u(p)] and that all entries in (p..u(p)] can be ignored, as their exits can also
be reached from p. Thus, we can determine the exits reachable from p by calling
Find-π-Exits(πp..u(p), σ).

Lemma 4.7. The exits set F σ can be computed in time O((n + m) log 1/ε).

Entries on π, Exits on σ. Similarly to Fπ, we show how to compute the
exits F σ given entries E on π, by reducing the problem to calls of Find-σ-Exits.
This time, however, the task is more intricate, as it is much more complex to
define which entries can be ignored. Our solution works as follows. For any
index p on π, let Q(p) := min{q | ddF(πp..n, σ1..q) � δ} be the endpoint of the
shortest initial fragment of σ such that the remaining part of π can be traversed
together with this fragment. Let P (p) := min{p′ | ddF(πp..p′ , σ1..Q(p)) � δ} be
the endpoint of the shortest initial fragment of π, such that σQ(p) can be reached
by a feasible traversal. We show that we can ignore all entries in (p..P (p)] – which
makes the algorithm quite complex. We remark that Q(p) and P (p) are defined
as a minimum, making it necessary to also implement minimal greedy steps.

Lemma 4.8. The exit set Fσ can be computed in time O((n + m) log 1/ε).

Lemmas 4.8 and 4.7 yield an algorithm for the reduced free-space problem,
proving Lemma 4.2. This concludes the proof of Theorem1.1.
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5 Conclusion

We presented an improved (1 + ε)-approximation algorithm for the Fréchet dis-
tance on c-packed curves running in time Õ(cn/

√
ε ). While our running time

improves the state of the art for ε � 1/ log n, we suspect that our algorithm is too
complex to speed up Fréchet distance computation in practical situations, unless
ε is very small. Our running time matches a conditional lower bound, so that it is
asymptotically optimal, up to lower order factors of the form no(1), in dimension
d � 5, and unless the Strong Exponential Time Hypothesis fails. We leave it as
open problems to (1) find simpler and more practical algorithms with the same
asymptotic guarantees as ours, (2) improve our log n and log 1/ε-factors, and (3)
determine the correct asymptotic behaviour in dimension d = 2, 3, 4.
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Abstract. The Gromov-Hausdorff distance is a natural way to measure
distance between two metric spaces. We give the first proof of hardness
and first non-trivial approximation algorithm for computing the Gromov-
Hausdorff distance for geodesic metrics in trees. Specifically, we prove it
is NP-hard to approximate the Gromov-Hausdorff distance better than
a factor of 3. We complement this result by providing a polynomial time
O(min{n,√rn})-approximation algorithm where r is the ratio of the
longest edge length in both trees to the shortest edge length. For metric
trees with unit length edges, this yields an O(

√
n)-approximation algo-

rithm.

1 Introduction

The Gromov-Hausdorff distance (or GH distance for brevity) [9] is one of the
most natural distance measures between metric spaces, and has been used, for
example, for matching deformable shapes [4,14] and for analyzing hierarchical
clustering trees [6]. Informally, the Gromov-Hausdorff distance measures the
additive distortion suffered when mapping one metric space into another using
a correspondence between their points. Multiple approaches have been proposed
to estimate the Gromov-Hausdorff distance or provide alternatives to its com-
putation [4,13,14].

Despite much effort, the problem of computing, either exactly or approx-
imately, GH distance has remained elusive. On one hand, the problem is not
known to be NP-hard, and on the other hand no polynomial-time approxima-
tion algorithm exists for graphic metrics1 unless the graph isomorphism problem
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is in P. (The metrics for two graphs have GH distance 0 if and only if the two
graphs are isomorphic.) Motivated by this trivial hardness result, it is natural
to ask whether GH distance becomes easier in more restrictive settings such as
geodesic metrics over trees.

Our Results. In this paper, we give the first non-trivial results on approximating
the GH distance between metric trees. First, we prove (in Sect. 3) that the prob-
lem remains NP-hard even for metric trees via a reduction from 3-Partition.
In fact, we show that there exists no algorithm with approximation ratio less
than 3 unless P = NP. As noted above, we are not aware of any result that
shows the GH distance problem being NP-hard even for general graphic metrics.

To complement our hardness result, we give an O(
√

n)-approximation algo-
rithm for the GH distance between metric trees with n nodes and unit length
edges. Our algorithm works with arbitrary edge lengths as well; however, the
approximation ratio becomes O(min{n,

√
rn}) where r is the ratio of the longest

edge length in both trees to the shortest edge length. Even achieving the O(n)-
approximation ratio present here for arbitrary r is a non-trivial task.

Our algorithm uses a reduction, described in Sect. 4, to the similar problem
of computing the interleaving distance [15] between two merge trees. Given a
function f : X → R over a topological space X, the merge tree Tf describes the
connectivity between components of the sublevel sets of f . Morozov et al. [15]
proposed the interleaving distance as a way to compare merge trees and their
associated functions2. To take advantage of our reduction from GH distance, we
describe, in Sect. 5, an O(min{n,

√
rn})-approximation algorithm for interleaving

distance between merge trees. Due to lack of space, most of the proofs have been
provided in the full version [1].

RelatedWork. Mostwork on associating points between twometric spaces involves
embedding a given high dimensional metric space into an infinite host space of
lower dimensional metric spaces. However, there is some work on finding a bijec-
tionbetweenpoints in twogivenfinitemetric spaces thatminimizes typicallymulti-
plicative distortion of distances between points and their images, with some limited
results on additive distortion. See [10,12,16] for recent surveys.

The interleaving distance between merge trees [15] was proposed as a measure
to compare functions over topological domains that is stable to small perturba-
tions in a function. Distances for the more general Reeb graphs are given in [3,8].
These concepts are related to the GH distance (Sect. 4), which we will leverage
to design an approximation algorithm for the GH distance for metric trees.

2 Preliminaries

Metric Spaces and the Gromov-Hausdorff Distance. A metric space X =
(X, ρ) consists of a (potentially infinite) set X and a function ρ : X × X →
2 In fact, our hardness result can be easily extended to the GH distance between

discrete tree metrics and the interleaving distance between merge trees.
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R≥0 such that the following hold: ρ(x, y) = 0 iff x = y; ρ(x, y) = ρ(y, x); and
ρ(x, z) ≤ ρ(x, y) + ρ(y, z).

Given sets A and B, a correspondence between A and B is a set C ⊆ A × B
such that: (i) ∀a ∈ A,∃b ∈ B such that (a, b) ∈ C; and (ii)∀b ∈ B,∃a ∈ A such
that (a, b) ∈ C. We use Π(A,B) to denote the set of all correspondences between
A and B.

Let X1 = (X1, ρ1) and X2 = (X2, ρ2) be two metric spaces. The distortion of
a correspondence C ∈ Π(X1,X2) is defined as:

Dist(C) = sup
(x,y),(x′,y′)∈C

|ρ1(x, x′) − ρ2(y, y′)| .

The Gromov-Hausdorff distance [13], dGH , between X1 and X2 is defined as:

dGH(X1,X2) =
1
2

inf
C∈Π(X1,X2)

Dist(C) .

Intuitively, dGH measures how close can we get to an isometric (distance-
preserving) embeddding between two metric spaces. We note that there are dif-
ferent equivalent definitions of the Gromov-Hausdorff distance; see e.g., Theorem
7.3.25 of [5] and Remark 1 of [13].

Given a tree T = (V,E) and a length function l : E → R≥0, we associate a
metric space T = (|T |, d) with T as follows. |T | is a geometric realization of T .
The metric space is extended to points in an edge such that each edge of length l
is isometric to the interval [0, l]. For x, y ∈ |T |, define d(x, y) to be the length of
the path π(x, y) ∈ |T | which is simply the sum of the lengths of the restrictions
of this path to edges in T . It is clear that d is a metric. The metric space thus
obtained is a metric tree. We denote T = (T, d), treating T as the same as |T |.
Merge Trees and the Interleaving Distance. Let f : X → R be a contin-
uous function from a connected topological space X to the set of real numbers.
The sublevel set at a value a ∈ R is defined as F≤a = {x ∈ X | f(x) ≤ a}.
A merge tree Tf captures the evolution of the topology of the sublevel sets as
the function value is increased continuously from −∞ to +∞. Formally, it is
obtained as follows. Let epif = {(x, y) ∈ X×R | y ≥ f(x)}. Let f̄ : epif → R be
such that f̄((x, y)) = y. We may say f̄((x, y)) is the height of point (x, y) ∈ X×R.
For two points (x, y) and (x′, y′) in X×R with y = y′, let (x, y) ∼ (x′, y′) denote
them lying in the same component of f̄−1(y)(= f̄−1(y′)). Then ∼ is an equiva-
lence relation, and the merge tree Tf is defined as the quotient space (X×R)/ ∼.

Since two components at a certain height can only merge at a higher height
and a component can never split as height increases, we get a rooted tree where
the internal nodes represent the points where two components merge and the
leaves represent the birth of a new component at a local minimum. Figure 1
shows an example of a merge tree for a 1-dimensional function. Note that the
merge tree extends to a height of ∞, and our assumption that X is connected
implies we have only one component in F≤∞. We define the root of merge tree
Tf to be the node with the highest function value.
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Fig. 1. Merge tree for a function from R → R (image by Morozov et al. [15]).

Since each point x ∈ Tf represents a component of a sublevel set at a certain
height, we can associate a height value f̂(x) with x. Given a merge tree Tf and
ε ≥ 0, an ε-shift map iε : Tf → Tf maps a point in the tree to its ancestor at
height ε higher. We thus have f̂(iε(x)) = f̂(x) + ε. Given ε ≥ 0 and merge trees
Tf and Tg with the associated shift maps iε and jε respectively, two continuous
maps αε : Tf → Tg and βε : Tg → Tf are said to be ε-compatible if they satisfy
the following conditions

ĝ(αε(x)) = f̂(x) + ε,∀x ∈ Tf ; f̂(βε(y)) = ĝ(y) + ε,∀y ∈ Tg ;

βε ◦ αε = i2ε ; αε ◦ βε = j2ε .

The interleaving distance [15] is then defined as

dI(Tf , Tg) = inf{ε | there exist ε -compatible maps αε and βε}.

Remark. We can relax the requirements on αε and βε as follows. Instead of
requiring exact value changes, we require f̂(x) ≤ ĝ(αε(x)) ≤ f̂(x)+ε and ĝ(y) ≤
f̂(βε(y)) ≤ ĝ(y) + ε. In addition, as x moves toward the root of Tf , αε(x) must
move toward the root of Tg (although αε(x) may remain constant for a range
of x values) and we do not need them to be continuous. A similar rule applies
for βε. Finally, βε(αε(x)) must go to an ancestor of x and αε(βε(y)) must go to
an ancestor of y. Both definitions of interleaving distance are equivalent, and we
may use either based on which is more convenient.

As shown in [15], the interleaving distance is a metric and has the desirable
properties of being both stable to small function perturbations and more discrim-
inative than the popular bottleneck distance between persistence diagrams [7].

In the remainder of the paper, we will frequently drop the superscript ε
when it is clear from the context. Also, we may stop alluding to the underlying
functions f and g of the merge trees Tf and Tg and simply refer to them as T1

and T2. We may also use f and g to sometimes denote the height of the points
in the trees themselves.

3 Hardness of Approximation

We show a reduction from the following decision problem called UNRESTRI-
CTED-PARTITION: given a multiset of positive integers X = {a1, . . . , an} with
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n = 3m, is it possible to partition them into m multisets {X1, . . . , Xm} such that
all the elements in each multiset sum to the same quantity S = (

∑n
i=1 ai) /m.

This problem can be proved to be strongly NP-complete by a reduction from
3-Partition (see [1] for proof), so we can assume that the size of the integers
is polynomial in the input.

Fig. 2. The trees T1 and T2.

We construct two trees T1 and
T2 as follows. Let A and B be
two sufficiently large numbers. Let
Ts,t denote a star graph hav-
ing t edges of length s. T1 con-
sists of a node r1 incident to an
edge (r1, r′

1) of length B and to
n edges {(r1, p1), . . . , (r1, pn)} of
length 1, where pi is the center
of a copy of TA,ai

. T2 consists
of a node r2 incident to an edge
(r2, r′

2) of length B and to m edges
{(r2, q1), . . . , (r2, qm)} of length 2,
where each qi is the center of a distinct copy of TA+1,S . See Fig. 2 for an illus-
tration. Let T1 and T2 denote the metric trees associated with T1 and T2 respec-
tively. Clearly, this construction can be done in polynomial time.

Lemma 1. If the given instance of UNRESTRICTED-PARTITION is a yes
instance, then dGH(T1,T2) ≤ 1. Otherwise, dGH(T1,T2) ≥ 3.

Proof. (Yes instance) We construct a correspondence C between T1 and T2 with
distortion at most 2, hence distance at most 1. A linearly interpolated bijection
between the points of edges (r1, r′

1) and (r2, r′
2), with r1 mapping to r2 and r′

1

mapping to r′
2, is added to C. If ai is assigned to Xj , the linearly interpolated

bijection between edges (r1, pi) and (r2, qj) is added to C. Also, the leaves of TA,ai

are each mapped to a distinct leaf of TA+1,S attached to qj such that there is a
bijection between the leaves of T1 and T2 – this can be done since we have a yes
instance. The interior points of the edges are mapped using linear interpolation.
It can be easily verified that the distortion induced by C is at most 2.

(No instance) We show that any correspondence induces a distortion of at least
6, hence distance at least 3. Assume A and B are large enough so that for any
correspondence with distortion ≤ 6, we can construct a bijection between the leaf
edges of T1 and T2 such that two leaf edges are related if the correspondence sends
the leaf of one edge to points on the other edge, with (r1, r′

1) mapping to (r2, r′
2).

Since we have a no instance, either no such bijection exists or there exists an i
such that two leaves of TA,ai

map to points inside leaf edges in TA+1,S attached to
qj1 and qj2 , for some j1 = j2. Then the corresponding leaves attached to qj1 and
qj2 (say l1 and l2 resp.) must map to points l′1 and l′2 inside TA,ai

in T1. We then
have d1(l′1, l

′
2) ≤ 2A while d2(l1, l2) = 2A + 6. The distortion is at least 6.
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We may also apply the reduction to metric trees with unit edge lengths by
subdividing longer edges with an appropriate number of vertices. We thus have
the following theorem.

Theorem 1. Unless P = NP, there is no polynomial-time algorithm to approx-
imate the Gromov-Hausdorff distance between two metric trees to a factor better
than 3, even in the case of metric trees with unit edge lengths.

4 Relating Gromov-Hausdorff and Interleaving Distances

Given a metric tree T = (T, d), let V (T ) denote the nodes of the tree. Given
a point s ∈ T (not necessarily a node), let fs : T → R be defined as
fs(x) = − d(s, x). Equipped with this function, we obtain a merge tree Tfs

from T. Intuitively, Tfs
has the structure of rooting T at s, and then adding an

extra edge incident to s with function value extending to +∞. The following
theorem, proved in [1], connects the GH distance and the interleaving distance.

Theorem 2. Let γ = minu∈V (T1),v∈V (T2) dI(T1fu
, T2fv

). Then

1
2dGH(T1,T2) ≤ γ ≤ 10dGH(T1,T2) .

Corollary 1. If there is a c-approximation algorithm for the interleaving dis-
tance between two merge trees, then there is a 20c-approximation algorithm for
the Gromov-Hausdorff distance between two metric trees.

5 Computing the Interleaving Distance

We propose algorithms for the decision version of the interleaving distance prob-
lem, which is stated as follows: Given two merge trees T1 and T2 and a value
ε ≥ 0, compute an ε-compatible map between them if such a map exists; otherwise
report that no such map exists.

Given two merge trees T1 and T2, a c-approximate decision procedure for any
c ≥ 1 does the following: if dI(T1, T2) ≤ ε, it returns a pair of cε-compatible maps
between T1 and T2; if dI(T1, T2) > ε it will either return a pair of cε-compatible
maps between T1 and T2 or report that no such maps exist. Using binary search,
this gives us a c-approximation to dI(T1, T2).

If we know αε(x) for a point x at height h, then we can compute αε(y) for
any ancestor y of x at height h′ ≥ h by simply putting αε(y) = jh′−h ◦ αε(x).
A similar claim holds for βε. Thus specifying the maps for the leaves of the trees
suffices, because any point in the tree is the ancestor of at least one of the leaves.
Hence, these maps have a representation that requires linear space in the size of
the trees.

We define the length of any edge in a merge tree other than the edge to infinity
to be the height difference between its two end points. Given a parameter ε > 0,
an edge is called ε-long, or long for brevity, if its length is greater than 2ε.
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We first describe an exact decision procedure if all edges in both trees are long,
and then describe an approximate decision procedure when there are short edges.
Finally, we combine the two procedures to handle arbitrary merge trees.

Algorithm for Trees with Long Edges. A subtree rooted at a point x in
a merge tree T , denoted T x, includes all the points in the merge tree that are
descendants of x and an edge from x that extends upwards to height ∞. For
every x ∈ T , the nearest descendant of x (including x) that is in V (T ), say
τ(x), is the only node such that T x = T τ(x). For u ∈ V (T ), let C(u) denote the
children of u.

Assume dI(T1, T2) ≤ ε, and let α : T1 → T2 and β : T2 → T1 be a pair of
ε-compatible maps. We define an indicator function Φ : T1 × T2 → {0, 1} such
that Φ(u, v) = 1 if dI(Tu

1 , T v
2 ) ≤ ε and 0 otherwise. We propose an algorithm to

compute Φ(u, v) for all u ∈ V (T1), v ∈ V (T2). If Φ(u, v) = 1, the algorithm also
computes a pair of ε-compatible maps between Tu

1 and T v
2 . We are interested in

Φ(r1, r2), where r1 (resp. r2) is the root of T1 (resp. T2).

Lemma 2. If all the edges are long, the maps α and β induce a bijection between
the subtrees rooted at the nodes of T1 and the nodes of T2.

Proof. We define Ψ1 : V (T1) → V (T2) as follows. Let u ∈ V (T1), and let up be its
parent (for u = r1 we set up to be an artificial node at height ∞ above r1). Let u′

be the ancestor of u at height f(up)−2ε−ε0 where ε0 is such that all the children
of up have height less than f(u′) and α(u′) /∈ V (T2). We may use the same ε0 for
all u ∈ V (T1). Set Ψ1(u) = τ(α(u′)). We prove that |f(u)−g(Ψ1(u))| ≤ ε. This is
true because all the points in Tu

1 map to points in T
Ψ1(u)
2 and vice versa, hence

dI

(

Tu
1 , T

Ψ1(u)
2

)

≤ ε. If |f(u) − g(Ψ1(u))| > ε, the roots of Tu
1 and T

Ψ1(u)
2 are

more than ε apart and at least one edge e incident to one of the roots will not be
in the image of the corresponding ε-compatible map. However, the composition
map applied to the lower node incident to e must map it to a point inside e
(since the edges are longer than 2ε), a contradiction. Define Ψ2 similarly.

We now prove Ψ2(Ψ1(u)) = u for all u ∈ V (T1). We know β(α(u′)) lies on the
edge (up, u), because f(u′) < f(up) − 2ε. Therefore, β(Ψ1(u)) is a descendant of
up. Because g(Ψ1(u)) ≥ f(u) − ε, we further conclude β(Ψ1(u)) is an ancestor
of u and Ψ2(Ψ1(u)) is an ancestor of u as well. Since |f(u) − g(Ψ1(u))| ≤ ε
and |g(v) − f(Ψ2(v))| ≤ ε for all u ∈ V (T1) and v ∈ V (T2), we have |f(u) −
f(Ψ2(Ψ1(u))| ≤ 2ε. All the edges are longer than 2ε, so Ψ2(Ψ1(u)) = u. We
conclude Ψ1 is a surjection, with Ψ2 as its inverse. By symmetry, Ψ2 must be
surjective as well, making Ψ1 a bijection.

Lemma 3. Suppose all the edges in T1 and T2 are long. For any pair of nodes
u ∈ V (T1), v ∈ V (T2), Φ(u, v) = 1 iff all of the following hold: (i) |f(u)−g(v)| ≤
ε; (ii) |C(u)| = |C(v)|; (iii) Let C(u) = {u1, . . . uk} and C(v) = {v1, . . . , vk},
then there exists a permutation π of [1 : k] such that Φ(ui, vπ(i)) = 1 for all
i ∈ [1 : k].

See [1] for a proof. Using Lemma 3, we compute Φ(u, v) in a bottom-up
manner. Suppose we have computed Φ(ui, vj) for all ui ∈ C(u) and vj ∈ C(v).
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We compute Φ(u, v) as follows. If (i) or (ii) of Lemma 3 does not hold for u
and v, then we return Φ(u, v) = 0. Otherwise we construct the bipartite graph
Guv = {C(u) ∪ C(v), E = {(ui, vj) | Φ(ui, vj) = 1}} and determine in O(k5/2)
time whether Guv has a perfect matching, using the algorithm by Hopcroft and
Karp [11]. If Guv has a perfect matching M = {(u1, vπ(1)), . . . , (uk, vπ(k))}, we
set Φ(u, v) = 1, else we set Φ(u, v) = 0. If Φ(u, v) = 1, we use the ε-compatible
maps for Tui

, Tvπ(i) , i ∈ [1 : k], to compute a pair of ε-compatible maps between
Tu
1 and T v

2 , as discussed in the proof of Lemma 3. The theorem below follows
(see [1] for the runtime analysis).

Theorem 3. Given two merge trees T1 and T2 and a parameter ε > 0 such that
all edges of T1 and T2 are ε-long, then whether dI(T1, T2) ≤ ε can be determined
in O(n5/2) time. If the answer is yes, a pair of ε-compatible maps between T1

and T2 can be computed within the same time.

Fig. 3. A naive map (Color figure online).

Algorithm for Short Edges. Given
two merge trees, a naive map is to
map the lowest among all the leaves
in both the trees to a point at height
equal to the height of the higher root
(see Fig. 3). Thus, all the points in
one tree will be mapped to the infi-
nitely long edge on the other tree.
This map produces a distortion equal
to the height of the trees, which can be
arbitrarily larger than the optimum.
Nevertheless, this simple idea leads to
an approximation algorithm.

Here is an outline of the algorithm. After carefully trimming off short sub-
trees from the input trees, the algorithm decomposes them into two kinds of
regions – those with nodes and those without nodes. If the interleaving distance
between the input trees is small, then there exists an isomorphism between trees
induced by the regions without nodes. Using this isomorphism, the points in the
nodeless regions are mapped without incurring additional distortion. Using a
counting argument and the naive map described above, it is shown that the dis-
tortion incurred while mapping the regions with nodes and the trimmed regions
is bounded.

Fig. 4. Tree after trimming red points
(Color figure online).

More precisely, given T1, T2 and ε >
0, define the extent e(x) of a point x
(which is not necessarily a tree node) in
T1 or T2 as the maximum height differ-
ence between x and any of its descendants.
Suppose each edge is at most sε long. Let
T ′
1 and T ′

2 be subsets of T1 and T2 con-
sisting only of points with extent at least
2
√

nsε, adding nodes to the new leaves of
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T ′
1 and T ′

2 as necessary. Note that T ′
1 and T ′

2 themselves are trees. For example,
in Fig. 4 the red points in the left tree are those with extent less than a fixed
value, and the right tree is obtained after trimming the red points.

Lemma 4. If dI(T1, T2) ≤ ε, then dI(T ′
1, T

′
2) ≤ ε.

See [1] for a proof of the above lemma. We now define matching points in T ′
1 and

T ′
2. A point x in T ′

1 is a matching point if there exists a branching node x′ in
T ′
1 or y′ in T ′

2 with function value f(x) and there exist no branching nodes nor
leaves in T ′

1 or T ′
2 with function value in the range (f(x), f(x) + 2ε]. Matching

points on T ′
2 are defined similarly. By this definition, no two matching points

share a function value within 2ε of each other unless they share the exact same
function value. Furthermore, if x is a matching point, then all points with the
same function value as x on both T ′

1 and T ′
2 are matching points. There are at

most O(n2) matching points.
Suppose dI(T ′

1, T
′
2) ≤ ε, and let α′ : T ′

1 → T ′
2 and β′ : T ′

2 → T ′
1 be a pair

of ε-compatible functions for T ′
1 and T ′

2. Call a matching point x in T ′
1 and a

matching point y in T ′
2 with f(x) = g(y) matched if α′(x) is an ancestor of y.

Lemma 5. Let x be any matching point in T ′
1. The matched relation is a bijec-

tive function between matching points in T ′
1 with function value f(x) and match-

ing points in T ′
2 with function value f(x).

See [1] for a proof. Let Tm
1 be a rooted tree consisting of one node per matching

point on T ′
1. Let p(v) be the matching point for node v. Tree Tm

1 has node v
as an ancestor of node u if p(v) is an ancestor of p(u) (see Fig. 5). Define Tm

2

similarly. The size of Tm
1 and Tm

2 is O(n2).

(n2).

Fig. 5. The left tree shows matching points
on tree T ′

1 and the right tree shows Tm
1 .

Intuitively, Tm
1 and Tm

2 repre-
sent the trees induced by matching
points. By the definition of inter-
leaving distance and Lemma 5, Tm

1

and Tm
2 are isomorphic if T ′

1 and T ′
2

have interleaving distance at most ε.
Our algorithm finds an isomor-

phism between Tm
1 and Tm

2 in linear
time [2]. If one does not exist, then
the interleaving distance between T ′

1

and T ′
2 must be greater than ε; by

Lemma 4, it thus reports that T1

and T2 have interleaving distance
greater than ε.

If an isomorphism between Tm
1 and Tm

2 does exist, then the following func-
tions α : T1 → T2 and β : T2 → T1 are returned. For each matched pair of
matching points x and y, the algorithm sets α(x) = y and β(y) = x. Now, let
(f1, f2) be any maximal range of function values without any branching points
in T ′

1 or T ′
2 where f2 − f1 > 2ε. Let x′ be any point in T ′

1 with f(x′) ∈ (f1, f2).
Point x′ has a unique matching point descendant x. The algorithm sets α(x′)
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to the point y′ in T ′
2 where y′ is the ancestor of α(x) with g(y′) = f(x′), and it

sets β(y′) = x′. For every remaining point x′′ in T ′
1, the algorithm sets α(x′′) to

α(x) where x is the lowest matching point ancestor of x′′. Assignment β(y′′) is
defined similarly for remaining points y′′ in T ′

2. We call such points x′′ and y′′

lazily assigned. Finally, each point x′′′ in T1 − T ′
1 has α(x′′′) set to α(x) where

x is the lowest ancestor of x′′′ on T ′
1. Similar assignments are done for points in

T2 − T ′
2.

One can verify that α and β meet all their desired properties except for
how much a point’s function value can change going from one tree to the other.
A counting argument gives the following lemma, proved in [1].

Lemma 6. For each lazily assigned point x′′ in T ′
1, we have g(α(x′′)) ≤ f(x′′)+

2
√

nsε.

Theorem 4. Let T1 and T2 be two merge trees and ε > 0 a parameter. There is
an O(n2) time algorithm that returns a pair of 4

√
nsε-compatible maps between

T1 and T2, if dI(T1, T2) ≤ ε and the maximum length of a tree edge is sε. If
dI(T1, T2) > ε, then the algorithm may return no or return a pair of 4

√
nsε-

compatible maps.

Proof. By Lemma 6 and the symmetric lemma for T ′
2, each point in T ′

1 and T ′
2

has its function value changed by at most 2
√

nsε. Points outside T ′
1 and T ′

2 have
their function value changed by at most 2 · 2

√
nsε.

Remark. If s = Ω(n), we modify the above algorithm slightly – we skip the
trimming step, but keep the rest same. It can be shown, as in Lemma 6, that
the height of a point and its image differ by at most 2nε.

Overall Algorithm. Given trees T1 and T2, let r denote the ratio between the
lengths of the longest and the shortest edge in both trees. Our decision procedure
works as follows. There are two cases –

Case 1. The shortest edge is longer than 2ε. We invoke the procedure for long
edges and use Theorem 3.

Case 2. The shortest edge is at most 2ε. We invoke the procedure for short
edges with s = 2r. Using Theorem 4 and the remark following it, we get a
min(2n, 4

√
2rn)-approximate decision procedure.

Finally, by plugging this decision into a binary search over all possible can-
didate values for ε, we obtain an approximation algorithm for the interleaving
distance. The following lemma, proved in [1], states that the number of candi-
date values for ε is only O(n2). Thus binary search takes O(log n) time, and
Theorem 5 follows.

Lemma 7. Let T1 and T2 be two merge trees with internal nodes I1 and I2 resp.
and leaves L1 and L2 resp. Then the value of dI(T1, T2) is either

(i) |f(u) − g(v)| for some pair (u, v) ∈ I1 × I2 ∪ L1 × L2, or
(ii) 1

2 |f(u) − f(u′)| for some u ∈ L1, where u′ is an ancestor node of u, or
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(iii) 1
2 |f(v) − f(v′)| for some v ∈ L2, where v′ is an ancestor node of v.

Theorem 5. Given two merge trees T1 and T2 with a total of n vertices, there
exists an O(n5/2 log n) time O (min{n,

√
rn})-approximation algorithm for com-

puting the interleaving distance between them, where r is the ratio between the
lengths of the longest and the shortest edge in both trees.

Combining Theorem 5 with Corollary 1, we have:

Corollary 2. Given two metric trees T1 and T2 with a total of n vertices, there
exists an O(n7/2 log n) time O (min{n,

√
rn})-approximation algorithm for com-

puting the Gromov-Hausdorff distance between them, where r is the ratio between
the lengths of the longest and the shortest edge in both trees.

6 Conclusion

We have presented the first hardness results for computing the Gromov-
Hausdorff distance between metric trees. We have also given a polynomial time
approximation algorithm for the problem. But the current gap between the lower
and upper bounds on the approximation factor is polynomially large. It would
be very interesting to close this gap. In general, we hope that our current inves-
tigation will stimulate more research on the theoretical and algorithmic aspects
of embedding or matching under additive metric distortion.
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Abstract. In this paper, we prove that the VC-Dimension of visibility
on the boundary of a simple polygon is exactly 6. Our result is the first
tight bound for any variant of the VC-Dimension problem regarding
simple polygons. Our upper bound proof is based off several structural
lemmas which may be of independent interest to researchers studying
geometric visibility.

1 Introduction

Geometric covering problems have been a focus of research for decades. Here we
are given some set of points P and a set S where each s ∈ S can cover some
subset of P . The subset of P is generally induced by some geometric object.
For example, P might be a set of points in the plane, and s consists of the
points contained within some disk in the plane. The goal is to choose the small-
est number of elements in S to cover all of the points in P . Most variants of
the problem are NP-hard, and therefore most research on geometric set cover
focuses on designing polynomial-time approximation algorithms whose approx-
imation ratio is as good as possible. For most variants, the problem can easily
be reduced to an instance of the combinatorial set cover problem which has
a polynomial-time O(log n)-approximation algorithm, which is the best possi-
ble approximation under standard complexity assumptions [3,5,9,11,12]. The
main question therefore is to determine for which variants of geometric set cover
can we obtain polynomial-time approximation algorithms with approximation
ratio o(log n), as any such algorithm must exploit the geometry of the problem
to achieve the result. This area has been studied extensively, see for example
[1,2,14], and much progress has been made utilizing algorithms that are based
on solving the standard linear programming relaxation.

Unfortunately this technique has severe limitations for some variants of geo-
metric set cover, and new ideas are needed to make progress on these variants. In
particular, the techniques are lacking when the points P we wish to cover is the
interior or boundary of a simple polygon, and we wish to place the smallest num-
ber of points in P that collectively “see” the polygon. This problem is classically
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referred to as the art gallery problem as an art gallery can be modeled as a poly-
gon and the points placed by an algorithm represent cameras that can “guard”
the art gallery. This has been one of the most well-known problems in computa-
tional geometry for many years, yet still to this date the best polynomial-time
approximation algorithm for this problem is the O(log n) approximation algo-
rithm that uses no geometric information. The key issue is a fundamental lack
of understanding of the combinatorial structure of visibility inside simple poly-
gons. It seems that in order to develop powerful approximation algorithms for
this problem, the community first needs to better understand the underlying
structure of such visibility.

VC-Dimension. An interesting measure of the complexity of a set system is the
notion of VC-dimension. To define this in the context of a simple polygon P , we
say that a finite set of points G in P is shattered if for every subset of G′ ⊆ G
there exists some point v ∈ P such that v sees every point in G′ and does not
see any point in G \ G′. In this context, we call v a viewpoint. See Fig. 1, where
the red points are G and the green points are a set of viewpoints that shatter G.
The VC-dimension is the largest d such that there exists some simple polygon
P and point set G of size d that can be shattered.

∅
1 2 3

13

23

3

2
1

12 123

Fig. 1. Three points are shattered. The label on green points denotes subset of red
points that it sees (Color figure online).

Brönnimann and Goodrich give a polynomial-time O(log OPT )-approxima-
tion algorithm for any set system with constant VC-dimension [4], establishing a
connection between the VC-Dimension problem and set cover. The VC-dimension
problem has received a lot of recent attention due to this connection with set cover,
but the problem is quite interesting on its own. In 1998, Valtr showed that the
VC-dimension of the visibility in a simple polygon is between 6 and 23 [13]. The
lower bound of 6 is still the best known lower bound, and the upper bound was
not improved until very recently by Gilbers and Klein who give an upper bound
of 14 [8]. The gap here is still extremely large, as 26 viewpoints are needed for the
lower bound and if the upper bound were able to be realized then 214 viewpoints
would be needed. Gilbers and Klein suggest that the actual VC-dimension is likely
to be closer to the lower bound of 6 rather than the upper bound of 14. Regardless,
a lack of knowledge of the structure of visibility in simple polygons has prevented
the community from tightening this gap.
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Due to the complexity of the VC-Dimension problem in simple polygons,
other special cases have been considered. King [10] showed that the VC-
dimension of visibility on x-monotone terrains is 4, where an x-monotone terrain
is a polyginal curve such that any vertical line intersects the chain in at most
one point. In the context of polygons, research has considered special cases, both
by restricting the class of polygon considered or by restricting the location of G
and/or the viewpoints. A polygon is x-monotone (or simply monotone) if any
vertical line intersects the boundary in at most two points. Gibson, Krohn, and
Wang [6] recently showed that the VC-dimension on the boundary of a monotone
polygon (that is, when G and all viewpoints are required lie on the boundary) is
exactly 6. The lower bound is particularly surprising given that it seems that the
monotonicity property would be quite restrictive relative to simple polygons, yet
the lower bound matches the best known lower bound for simple polygons (when
G and the viewpoints can lie anywhere inside of the polygon). Note that this
lower bound of 6 also applies to simple polygons. Recently Gilbers [7] proved an
upper bound of 7 on the VC-dimension of visibility on the boundary of a simple
polygon, but it was not clear if the actual bound should be 6 or 7.

Our Contribution. Given the seemingly restrictive nature of the monotonicity
constraint for the lower bound of Gibson, Krohn, and Wang, it would be rea-
sonable to think that a lower bound of 7 might be possible. Our main result is
to improve the upper bound on the VC-Dimension of visibility on the boundary
of a simple polygon to 6, and thus we obtain the following theorem.

Theorem 1. The VC-Dimension of visibility on the boundary of a simple poly-
gon is 6.

To achieve the tight upper bound, we first give a set of structural lemmas
regarding visibility of points on the boundary of a simple polygon. We believe
these lemmas may be of general interest to researchers studying visibility prob-
lems in simple polygons. Our result is the first tight bound for any variant of
the VC-Dimension problem regarding simple polygons, and we hope this result
will serve as a springboard for further research on the general VC-Dimension
problem and other visibility-based problems for simple polygons.

2 Preliminaries

Let a and b denote two points on the boundary of a simple polygon P . We let
∂P denote the boundary of the polygon, and we let ∂(a, b) denote subset of ∂P
obtained by walking “clockwise” along ∂P from a to b but not including a or b.
If we wish to include a or b in the subset then we denote this ∂[a, b) or ∂(a, b]
respectively. See Fig. 2(a) and (b). For any set of k ≥ 3 points on ∂P , their
clockwise ordering is the order in which we visit them when walking clockwise
around ∂P . For example, if a, b, and c are three points on ∂P , then if b ∈ ∂(a, c)
then their clockwise ordering is (a, b, c) (or equivalently (b, c, a) and (c, a, b)).

For any two points a and b on ∂P , we say a sees b if the line segment ab
does not go outside of P . We call the line segment connecting two points on ∂P
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that see each other a good line segment, and we call the line segment connecting
two points on ∂P that do not see each other a bad line segment. In the figures
throughout the paper, good lines are represented as solid, green lines and bad
lines are represented as dashed, red lines. If a and b do not see each other, then
there must be a point p on ∂P that “cuts through” ab. See Fig. 2(c). We say p is
a blocker for a and b, or equivalently we say p blocks a from seeing b. Note that p
can block a from seeing b and not see a or b. See Fig. 2(d). Note that two points
a and b do not see each other if and only if there is some point in ∂(a, b) that
blocks a from seeing b or there is a point in ∂(b, a) that blocks a from seeing b.

a

b

a

b

p

b

a

p

a

b

(a) (b) (c) (d)

Fig. 2. (a) Bold is ∂(a, b). (b) Bold is ∂(b, a). (c) p blocks a from seeing b. (d) p is a
blocker but does not see a or b (Color figure online).

Structural Lemmas. Our proof technique is to consider sequences of G and
viewpoints in clockwise order and to consider whether or not this ordering is
realizable. Intuitively, one can view the problem as placing the points on a circle
according to the clockwise sequence and then determining if it is possible to
“bend” the boundary of the circle into a simple polygon so that the required
visibility constraints are met. See Fig. 3 for an illustration. Part (a) shows some
ordering of G and viewpoints, and part (b) shows that it is possible to block
all of the bad lines without blocking any good lines. Part (c) however is not
realizable, because we cannot block the bad line without also blocking one of the
good lines.

In this section, we give a set of lemmas which help us show that certain
sequences are not realizable. All lemmas are stated for a sequence of points in
clockwise order; however, it is easy to see that symmetric versions of all lemmas
apply (when the sequence of points is in “counterclockwise order”). The first two
lemma play a major role in our upper bound proof by restricting the location of
possible blockers for a bad line.

Lemma 1. Let a, b, and c denote three points on the boundary of a simple poly-
gon in clockwise order and b sees c. If a sees some point p in ∂(b, c) then no
point in ∂(a, c) can block a from seeing c.

Proof. First note that no point in ∂(b, c) can block a from seeing c or else it
would also block b from seeing c. Moreover, if a sees p in ∂(b, c) then no point in
∂(a, p) can block a from seeing c or else a could not see p, and therefore we have
that no point in ∂(a, p) ∪ ∂(b, c) can block a from seeing c. The Lemma follows
as ∂(a, c) = ∂(a, p) ∪ ∂(b, c). See Fig. 4(a). ��
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Fig. 3. An illustration of the proof technique.
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Fig. 4. An illustration of Lemmas 1 and 2.

Lemma 2. Let a, b, and c denote three points on the boundary of a simple poly-
gon in clockwise order. If there are two points p1 and p2 such that p1 ∈ ∂(a, b),
p2 ∈ ∂(p1, b), p1 sees b, and p2 sees a, then no point from ∂(a, c) can block a
from seeing c if: (1) there is a point in ∂(a, b) that sees c, or (2) b sees c and
does not block a from seeing c.

Proof. First note that due to the visibility assumptions and positioning of p1 and
p2, we have that no point in ∂(a, b) can block a from seeing b by Lemma 1. This
necessarily implies that no point in ∂(a, b) can block a from seeing c. Therefore
if any point in ∂(a, c) blocks a from seeing c then it must be in ∂[b, c). Suppose
condition (1) occurs, and let p3 be a point in ∂(a, b) that sees c. Then no point
in ∂(p3, c) can block a from seeing c or it would also block p3 from seeing c,
and therefore no point in ∂(a, b) ∪ ∂(p3, c) = ∂(a, c) can block a from seeing c.
See Fig. 4(b). Now suppose condition (2) occurs. Since b sees c, we have that no
point in ∂(b, c) can block a from seeing c or it would also block b from seeing
c, and b does not block a from seeing c by assumption. Therefore no point in
∂(a, b) ∪ ∂[b, c) = ∂(a, c) can block a from seeing c. See Fig. 4(c). ��

The following lemma plays a large role in our upper bound proof.

Lemma 3. Let p1, p2, p3, and p4 denote four points on the boundary of a simple
polygon in clockwise order, p2 sees p3, and p4 sees p3. Then if Lemma 1 or 2
applies with a := p1, b := p2, and c := p3 and Lemma 1 or 2 applies with a := p1,
b := p4, and c := p3 then we have that p1 sees p3.
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p3

p2

p4

p1

Fig. 5. An illustration of Lemma 3.

Proof. If either lemma applies then we have that no point in ∂(p1, p3) can block
p1 from seeing p3 and no point in ∂(p3, p1) can block p1 from seeing p3, and
therefore p1 sees p3. See Fig. 5. ��

Let T be any set of points on the boundary of P . We let ST denote the set of
points on the boundary of P that see all of the points in T . We sometimes use
this notation to refer to points that see all points in T and do not see any points
from another set T ′. For example Sab \ Sc denotes the set of all points that see
a and b but do not see c. The next two lemmas are helpful for restricting the
location of viewpoints in certain scenarios. The proofs of Lemmas 4, 5 and 6 are
ommitted due to lack of space.

Lemma 4. Let a, b, c, d denote four points on the boundary of a simple polygon
in clockwise order such that b ∈ Sd and a 	∈ Sd, and suppose a is blocked from
seeing d by a point in ∂(a, d). If there is a point v ∈ Sac that is in ∂(a, b), then
every point z ∈ ∂(v, d) satisfies the following: no point of Saz \ {v} is in ∂(a, d).

Lemma 5. Let a, b, c, d, e, and f denote six points on the boundary of a simple
polygon in clockwise order. Suppose a ∈ Sce \ Sd, d is blocked from seeing a by
a point in ∂(a, d), and d is blocked from seeing a by a point in ∂(d, a) as well.
Then Sbdf = ∅.

The next lemma serves as a “sub-lemma” for the final three lemmas.

Lemma 6. Let a, b, c, and d denote four points on the boundary of a simple
polygon in clockwise order such that b ∈ Sa \ Sd, c ∈ Sd \ Sa, and suppose a sees
a point x ∈ ∂(c, d]. Then if b blocks a from seeing c then it must be that c does
not block b from seeing d.

The upper bound proof relies upon the final three lemmas heavily.

Lemma 7. Let a, b, c, d, p1 and p2 denote six points on the boundary of a simple
polygon in clockwise order. Let p1 and p2 be points such that p1 ∈ Sac \ Sb and
p2 ∈ Sbd \ Sc. Then at most one viewpoint in Sbc can go in ∂(b, c) and the rest
must go in ∂(p1, p2).
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c

d

p1 p2

Fig. 6. An illustration of Lemma 7.

Proof. Let v be some point in Sbc. First note that if v ∈ ∂(p2, b) we cannot
block c from seeing p2 by Lemma 3, and similarly if v ∈ ∂(c, p1) we cannot block
b from seeing p1 by Lemma 3. By Lemma 6, we cannot have that c blocks b
from seeing p1 and simultaneously b blocks c from seeing p2. Without loss of
generality assume that b does not block c from seeing p2, and suppose for the
sake of contradiction we have two viewpoints v1, v2 ∈ Sbc in ∂(b, c). Then we
have that no point in ∂(p2, c) can block c from seeing p2 by the second condition
of Lemma 2. Therefore we have that c sees p2 by Lemma 3. Finally if b ∈ Sbc or
if c ∈ Sbc, then we have that b and c see each other, and it follows that c sees p2
by Lemma 3. See Fig. 6. ��

The next lemma is similar to Lemma 7, but the positions of a and p2 flip
(Fig. 7).

Lemma 8. Let a, p2, b, c, d, p1, and x denote seven points on the boundary of a
simple polygon in clockwise order such that p1 ∈ Sac \ Sb and p2 ∈ Sbdx \ Sc. If
p2 does not block b from seeing p1, then at most one viewpoint in Sbc can go in
∂(b, c) and the rest must go in ∂(p1, p2).

Proof. Let v be some point in Sbc. First note that if v ∈ ∂(p2, b) we cannot block
c from seeing p2 by Lemma 3. Since p2 does not block b from seeing p1, then if
v ∈ ∂(c, p1) we cannot block b from seeing p1 by Lemma 3. Now assume for the
sake of contradiction that we have two viewpoints v1, v2 ∈ Sbc in ∂(b, c). First
suppose that b does not block c from seeing p2. We have nothing can block c
from seeing p2 in ∂(c, p2) by Lemma 1, and nothing can block c from seeing p2 in
∂(p2, c) by Lemma 2. Therefore we have c sees p2 by Lemma 3. So now suppose
that b does block c from seeing p2. By Lemma 6, we have that c cannot block b
from seeing p1. By Lemma 2 we have that no point in ∂(b, p1) can block b from
seeing p1, and therefore must be blocked by a point in ∂(p1, b). By Lemma 1,
we cannot block p1 from seeing p2 with a point in ∂(p1, p2), and therefore we
cannot block b from p1 with a point in ∂(p1, p2). Also we cannot block b from
seeing p1 with a point in ∂(p2, b) or else b would not see p2. Therefore we must
have p2 blocks b from seeing p1. But if p2 blocks b from seeing p1, and b blocks
c from seeing p2, then Lemma 6 implies that c cannot see p1, a contradiction. ��

Our final lemma has points in the same setup as Lemma 8, except here we
assume that p2 does block b from seeing p1.
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Fig. 7. An illustration of Lemmas 8 and 9.

Lemma 9. Let a, p2, b, c, d, p1, and x denote seven points on the boundary of a
simple polygon in clockwise order such that p1 ∈ Sac \ Sb and p2 ∈ Sbdx \ Sc. If
p2 blocks b from seeing p1, then at most one viewpoint in Sbc can go in ∂(b, c)
and the rest must go in ∂(c, p1).

Proof. Let v be some point in Sbc. First note that if v ∈ ∂(p2, b) we cannot block
c from seeing p2 by Lemma 3. Now suppose v ∈ ∂(p1, p2). If v ∈ ∂(p1, a) then
we have that no point in ∂(p1, b) can block b from seeing p1 by Lemma 1 which
contracts that p2 is blocking b from seeing p1. If v ∈ ∂(x, p2), then by Lemma 1
we have that no point in ∂(x, b) can block b from seeing x, which contracts that
p2 is blocking b from seeing p1.

We now show that at most one point in Sb,c can go in ∂(b, c). Since p2 is
blocking b from seeing p1, Lemma 4 implies that b cannot block c from seeing
p2. Therefore if there are distinct points v1, v2 ∈ Sbc in ∂(b, c), Lemma 2 implies
that no point in p(p2, c) blocks c from seeing p2 which implies that c sees p2 by
Lemma 3, a contradiction. Finally if b ∈ Sbc or if c ∈ Sbc, then we have that b
and c see each other, and it follows that c sees p2 by Lemma 3. ��

3 VC-Dimension Upper Bound Proof

In this section, we prove the following theorem. Combined with the lower bound
result of [6], this completes the proof of Theorem 1.

Theorem 2. The VC-Dimension of visibility on the boundary of a simple poly-
gon is at most 6.

We prove Theorem 2 by showing that there is no simple polygon that contains
a set G of 7 points on its boundary that can be shattered. Let G be any set of
7 points on the boundary of a simple polygon P denoted g1, . . . , g7 in clockwise
order. For any subset T ⊆ G, consider the viewpoint that sees every point in
T and no point in G \ T . We denote this viewpoint based off the indices of the
points in T . For example, v167 is the viewpoint that sees g1, g6, and g7 and does
not see g2, g3, g4, and g5. Similarly, we let S24 denote the set of all viewpoints
that see g2 and g4.
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We remind the reader that our proof technique is based on considering dif-
ferent clockwise sequences of points and showing that there is no simple poly-
gon that can satisfy that particular sequence. The viewpoints v1357 (that sees
exactly the odd indexed points) and v246 (that sees exactly the even indexed
points) play a particularly important role in the proof. Intuitively, these points
cause issues for lower bound constructions due to the fact that they (roughly)
alternate which points they see in G. We consider four main cases based on the
location of v1357: (1) v1357 ∈ ∂(g7, g1), (2) v1357 ∈ ∂(g1, g2), (3) v1357 ∈ ∂(g2, g3),
and (4) v1357 ∈ ∂(g3, g4). Note that other locations of v1357 is symmetric to one
of the four considered cases (e.g., v1357 ∈ ∂(g4, g5) is symmetric to Case 4). We
prove Case 1 in the paper, and the proofs for the final three cases are ommitted
due to lack of space. These proofs are similar in nature to that of Case 1.

Case 1: v1357∈∂(g7, g1)
In this case, we can assume without loss of generality that g4 is blocked from
seeing v1357 by a point in ∂(v1357, g4). Moreover, there must be a blocking point
in ∂[g3, g4). If not, then there would be a blocker p ∈ ∂(v1357, g3) and g3 would
not be a blocker, which implies that p would block g3 from seeing v1357. We will
show that it follows that there cannot be a point in ∂(g4, v1357) that also blocks
g4 from seeing v1357. If there is such a blocking point, then there must be one
in ∂(g4, g5] by a symmetric argument to why there must be a blocking point in
∂[g3, g4), and then Lemma 5 implies that we cannot place any points in S147. See
Fig. 8(a). Now consider v246. Note that it cannot be in ∂(v1357, g3) as Lemma 1
with a = g4, b = g3, and c = v1357 would contradict the assumption that there
is a point in ∂(v1357, g4) that blocks g4 from seeing v1357, and so v246 must be
in ∂(g3, v1357).
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Fig. 8. An illustration of Case 1.

We claim that at most one viewpoint in S34 can go in ∂(g3, g4) and the rest
must be in ∂(g4, v1357) ∩ ∂(v246, v1357). In other words when walking clockwise
around ∂P starting at g3, we should reach at most one viewpoint of S34 before
having reached both of g4 and v246, and then we will reach the rest of the points
in S34 prior to reaching v1357. We prove the claim by considering the possible
locations of v246.

– If v246 ∈ ∂(g5, v1357) then the claim is true by Lemma 7 with a = g5, b =
g4, c = g3, d = g2, p1 = v1357, and p2 = v246. See Fig. 8(b).
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– If v246 ∈ ∂(g4, g5) then the claim is true by Lemma 8 with a = g5, b = g4, c =
g3, d = g2, x = g6, p1 = v1357, and p2 = v246. Note we apply Lemma 8 here
and not Lemma 9 since no point in ∂(g4, v1357) blocks g4 from seeing v1357.
See Fig. 8(c).

– If v246 ∈ ∂(g3, g4), then the claim follows by applying Lemma 4 with a =
g4, b = g3, and c = g2, and d = v1357.
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Fig. 9. An illustration of v1357 ∈ ∂(g7, g1).

If there is a simple polygon that shatters G, the ordering of S34 must
satisfy the claim. So suppose the claim is satisfied, and consider the view-
points v1346, v13467 ∈ S34. The claim implies that at least one of them must
be in ∂(g4, v1357) ∩ ∂(v246, v1357), and without loss of generality assume v1346
is there. Now consider v23457, v234567 ∈ S34, and first suppose v23457 is in
∂(g4, v1357) ∩ ∂(v246, v1357). We cannot have v23457 ∈ ∂(v1346, v1357) or g2 sees
v1346 by Lemma 3 with p1 = g2, p2 = g3, p3 = v1346, and p4 = g1. See
Fig. 9(a). So assume we have v23457 ∈ ∂(g4, v1346). If we additionally have
v23457 ∈ ∂(g6, v1357), then g5 sees v1346 by Lemma 3 with p1 = g5, p2 = g6, p3 =
v1346, and p4 = g4. See Fig. 9(b). So assume that v23457 ∈ ∂(g4, g6). We will
now show that v1346 cannot be in ∂(g7, v1357), and therefore it must be in
∂(v23457, g7). If v1346 ∈ ∂(g7, v1357), then we have that g7 sees v246 by Lemma 3
with p1 = g7, p2 = g3, p3 = v246, and p4 = g6. See Fig. 9(c). So now assume that
v23457 ∈ ∂(g4, g6) and v1346 ∈ ∂(v23457, g7), and consider the viewpoints in S12.
By Lemma 7 with a = g7, b = g1, c = g2, d = g3, p1 = v23457, and p2 = v1346,
at most one of them can be in ∂(g1, g2) and the rest must be in ∂(v23457, v1346).
See Fig. 9(d). So consider the viewpoints v124 and v1246. At least one must be in
∂(v23457, v1346) and without loss of generality assume v124 is there. Then g3 sees
v124 by Lemma 3 with p1 = g3, p2 = g4, p3 = v124, and p4 = g2. See Fig. 9(e).
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So we now have that v23457 cannot be in ∂(g4, v1357) ∩ ∂(v246, v1357) and
therefore must be in ∂(g3, g4). The claim then implies that v234567 ∈ ∂(g4, v1357)∩
∂(v246, v1357). The analysis in the previous paragraph can also show that v234567
is not in ∂(g4, g6) or ∂(g6, v1357), but it could be that g6 = v234567. But if
v23457 ∈ ∂(g3, g4) and g6 = v234567 then g6 sees v23457 by Lemma 3 with p1 =
g6, p2 = g7, p3 = v23457, and p4 = g5. See Fig. 9(f).
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Abstract. In this work, we study formalization and construction of
non-interactive statistically binding quantum bit commitment scheme
(QBC), as well as its application in quantum zero-knowledge (QZK)
proof. We explore the fully quantum model, where both computation
and communication could be quantum. While most of the proofs here are
straightforward based on previous works, we have two technical contri-
butions. First, we show how to use reversibility of quantum computation
to construct non-interactive QBC. Second, we identify new issue caused
by quantum binding in security analysis and give our idea to circumvent
it, which may be found useful elsewhere.

Keywords: Bit commitment · Zero-knowledge proof · Quantum cryp-
tography · Quantum complexity theory

1 Introduction

Bit commitment scheme (BC) is a two-stage protocol between sender and
receiver; it can be viewed as the electronic implementation of a “locked box”.
Intuitively, in the first stage of BC, sender conveys a locked box which con-
tains a bit to receiver, who cannot tell whether the bit is 0 or 1 (it is hidden
inside the box); this is known as hiding property of BC. In the second stage,
sender sends a key to receiver, who can then open the box to see the bit. In this
stage, we require that the revealed bit is the same as the one locked in the first
stage; that is, sender commits himself to a single bit value. This is known as the
binding property of BC. Unfortunately, unconditional BC does not exist. As a
compromise, we can base BC on some plausible complexity assumptions such as
one-way function [14]. In modern cryptography, BC serves as a cryptographic
primitive and is widely used in various contructions. Interested readers can refer
to standard textbook such as [7] for a formal introduction of BC.

Of particular interest to this work is quantum bit commitment scheme
(QBC) — bit commitment scheme implemented with quantum mechanism that
c© Springer-Verlag Berlin Heidelberg 2015
K. Elbassioni and K. Makino (Eds.): ISAAC 2015, LNCS 9472, pp. 555–565, 2015.
DOI: 10.1007/978-3-662-48971-0 47
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is also (naturally required) secure against quantum attack. We highlight that
like (classical) BC, QBC still aims to secure classical information, i.e., imple-
ment commitment to a bit rather than a qubit. One should also be careful
about the difference between the (general) QBC we are studying here and the
bit commitment scheme against quantum attack [1]. For the former, both the
computation and communication, i.e. the construction of the scheme, could be
quantum, whereas for the latter, the construction is restricted to be classical.
Nevertheless, they both provides security against quantum adversary. Hence, the
latter can be viewed as a special case of the former. We further remark that BC
against quantum attack is often called QBC in post-quantum cryptography.

Like in classical setting, there are also two flavors of QBC: statistically-
binding QBC and statistically-hiding QBC1. In this work, we restrict our study
to the former, and call it QBC for short henceforth. Statistically-hiding QBC
raises more issues when generalized from its classical counterpart [2] and is
beyond the scope of this work.

In the past two decades, the study of QBC has attracted a great deal of
attentions. However, we notice that most of them only focus on QBC per se,
failing to consider it as a building block (primitive) to construct larger protocols.
In this work, we study a natural application of QBC: quantum zero-knowledge
(QZK) proof, an important notion in both complexity theory and cryptography.

Informally speaking, a zero-knowledge (ZK) proof is an interactive proof
between two parties, prover and verifier, such that at the end of the proof, verifier
is convinced of, say, the membership of the input instance of an NP language, but
learns nothing else; in particular, the witness is not leaked to verifier. Quantum
zero-knowledge proof is zero-knowledge proof realized using quantum mechanism
that is secure against quantum attack. Again, one should differentiate (general)
QZK and classical ZK secure against quantum attack (which is also called QZK
in post-quantum cryptography).

Due to space reasons, in this extended abstract we just state our results,
ideas, and sketch proofs. Details are referred to the full paper [12].

1.1 Our Contribution

We have three main results. First, we propose a formalization of non-interactive
statistically-binding QBC (Sect. 3). Here “non-interactive” means in both commit
and reveal stages, there is only one direction of message from sender to receiver.
We defineweakest quantum binding property, i.e., honest commitment to 0 cannot
be opened as 1, and vice versa; it turns out that this binding suffices for the pur-
pose of constructing QZK proof later. We argue that our formalization is robust,
conceptually simple, and enjoys some nice properties; in particular, it composes in
parallel. We also give a construction of non-interactive statistically-binding QBC
based on pesudorandom generator (PRG) secure against quantum distinguisher,
improving its classical counterpart [14] regarding round complexity.

1 Hiding an binding properties cannot be simultaneously information-theoretic secure
either [13].
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Second, it may come as no surprise but we show that just like in the classical
setting, statistically-binding QBC can be used to construct QZK proof for NP
languages (Sect. 4). We remark that the actual proof is not as straightforward
as it first appears.

Theorem 1. All NP languages have quantum computational zero-knowledge
proof given access to non-interactive computationally hiding, statistically binding
quantum bit commitment scheme.

Combining it with QBC generalized from Naor [14], we have:

Theorem 2. If pseudorandom generator secure against quantum distinguisher
exists, then all languages in NP have quantum computational zero-knowledge
proof.

We remark that in [20], Watrous constructed classical ZK proof against quan-
tum attack using classical BC secure against quantum attack, in contrast to the
quantum construction here. One advantage of our QZK proof over Watrous is
gained from the QBC we used: our QBC relies on a complexity assumption
(PRG against quantum attack) believed to be weaker than quantum one-way
permutation assumed in [20].

Finally, we generalize the classical unconditional (not relying on complexity
assumptions) study of zero-knowledge [16,18] to the quantum setting. First, sim-
ilar to classical setting, we introduce instance-dependent QBC associated with a
promise problem A: the scheme is constructed from instances of A such that when
it is yes instance, the scheme is hiding; when it is no instance, the scheme is bind-
ing. Then, we can prove the following equivalence between instance-dependent
QBC and QZK:

Theorem 3. For every language A ∈ NP, A has quantum statistical (resp.
computational) zero-knowledge proof if and only if A has an instance-dependent
non-interactive quantum bit commitment scheme that is statistically (resp. com-
putationally) hiding on yes instances and statistically binding on no instances.

Such equivalence not only implies statistically-binding QBC is the minimum
assumption for QZK proof, but also useful in proving many properties of QZK
proof unconditionally.

These results can also be viewed as the follow-up works of [10,19,21] on
unconditional study of QZK proof.

1.2 Techniques and Proof Overview

Formalization of non-interactive QBC. Motivated by Watrous’ construc-
tion of complete problem for quantum statistical zero-knowledge proof [19], we
formalize non-interactive QBC in terms of a pair of quantum circuits (Q0, Q1)
(See Definition 2). The QBC proceeds as illustrated in Fig. 1, where quantum
register B contains the value to open that is to be announced in the reveal stage;
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revieceRredneS

Commit stage:

(C,R) ← |0 ,B ← |b ;
Apply Qb on (C,R);

Send C− →

Reveal stage:

Send B, R− →
Apply Q∗

b on (C,R);
Accept if (C,R) = |0 .

Fig. 1. Formalization of non-interactive QBC.

quantum register C contains bit commitment, and register R which is typically
entangled with C, is used to open the commitment. We remark that here we
make an essential use of the reversibility of quantum computation (quantum cir-
cuit Q∗); similar technique is also used in [4]. Inspired by our formalization, we
quantize Naor’s construction of BC from pseudorandom generator [14], obtaining
a non-interactive (as opposed to the original two-message) QBC.
From QBC to QZK. We construct QZK proof for all NP languages given
access to QBC. To this end, we construct QZK proof for NP-complete languages
Hamiltonian Cycle. Our constructions are of GMW-type, almost the same as
their classical counterparts [8] and [3], respectively, except that now we plug
in QBC instead. For the security proof, completeness is trivial; QZK property
follows from quantum hiding property of QBC by applying Watrous’ rewinding
technique [20] directly.

The nontrivial part lies in the soundness. When we try to generalize classical
soundness analysis to the quantum setting, we encounter new difficulty raised
by quantum binding. We shall discuss the difficulty in more detail shortly.

We highlight that a technical lemma (Lemma 1) we use in soundness analy-
sis gives two characterizations of a bunch of subspaces with small “angles”,
which could be found useful elsewhere. We note that this lemma is similar to
[17, Lemma 6]; the advantage of ours is its ability to handle multiple projec-
tors/subspaces rather than two. Thus, it can be used to establish soundness of
protocols with more than one challenge bit, e.g. protocol for Graph 3-Coloring [8].

Unconditional Study of QZK Proof. Like in classical setting [16,18], we
show that from any QZK proof for problem A ∈ NP, we can construct an
instance-dependent statistically binding QBC associate with it. Our basic con-
struction is borrowed from Watrous [19], which is incomparable to its classical
counterpart. Conversely, from QBC to QZK, we construct QZK proof for A by
plugging instance-dependent QBC into the GMW-type zero-knowledge protocol.
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This equivalence between QBC and QZK implies that every promise problem in
NP with QZK proof also has a GMW-type QZK proof. For space reasons, we
shall give no further detail about this result in this extended abstract.

1.3 New Issues Raised by Quantum Binding in Security Analysis

It is well-known that quantum binding is weaker than its classical counterpart
[6]. In more detail, recall that classical binding property of BC roughly says
sender can only open a bit commitment as one value, 0 or 1, but exclusively.
This property is pretty easy to use in showing the security of larger protocol
when BC is used as a building block. For example, soundness of classical ZK
protocol can be reduced to the binding property of underlying BC (see, e.g. [7]).
However, regarding quantum binding, malicious sender is no longer bound to a
single bit value. Explanation follows.

Using our formalization of non-interactive QBC describe in Fig. 1, honest
sender prepares quantum state Qb|0〉CR to commit bit b ∈ {0, 1}. Then malicious
sender is certainly legal to prepare a quantum state like

√
p0 · |0〉B ⊗ Q0|0〉CR +

√
p1 · |1〉B ⊗ Q1|0〉CR, (1)

where real numbers p0, p1 satisfy p0 + p1 = 1. In this case, it is easy to see that
receiver can open the bit commitment successfully, but open as 0 with probability
p0 and 1 with p1. Actually, malicious sender can tweak the probabilities p0
and p1 arbitrarily as he wants; he can even deviate from the ways as described
in expression (1) as well. Therefore, by quantum binding we cannot guarantee
malicious sender be bound to a single bit value.

More issues arise in the security analysis of protocols within which QBC is
composed in parallel to commit a string. In more detail, suppose sender first com-
mits to a string bit by bit using QBC. Later, sender will announce some classical
information to tell receiver which bit commitments and what values are to open.
But these classical information could be in superposition and entangled with
commitments in a similar way as register B in expression (1). If receiver mea-
sures these classical information, then they will collapse, distributed according
to some probability distributions, meanwhile the original quantum commitments
will be disturbed due to entanglement. What making things complicated is, typi-
cally, the kinds of classical information vary according to the random coins of the
outer protocol (refer to Sect. 4 to see an concrete QZK protocol); their probabil-
ity distributions will be correlated through the original quantum commitments
which, unfortunately, has been disturbed in different ways (according to the
random coins). This makes it hard to analyze receiver’s accepting probability
(averaging over all random coins of the outer protocol).

We finally remark that in a special case where QBC is actually classical,
that is, classical BC secure against quantum attack, things go back to the easy
(classical) case. To see this, now we can let (honest) receiver measure everything
upon its arrival, including quantum register C (which is not allowed with gen-
eral QBC) to obtain the commitment. Then it follows from statistically binding
property that (quantum) commitment (malicious sender could still be quantum)
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will collapse to classical commitment to either 0 or 1. Once the superposition
collapses, subsequent security analysis follows almost the same lines of analysis
in the classical setting. We point out that the triviality of soundness in [20] relies
on classical BC against quantum attack being used underly.

Our Solution. The idea of our solution is easy: we pretend receiver does not
measure classical information, but rather takes a “big” binary measurement over
the whole workspace to determine whether to accept or not. In this way, quan-
tum commitments will be fixed in the subsequent analysis. Each binary mea-
surement (corresponding to the random coins of the outer protocol) will induce
an accepting subspace. Intuitively, if we can show that these accepting subspaces
are pairwisely (almost) orthogonal, then we can conclude that receiver cannot
accept with high probability. This is because there cannot exist a quantum state
which has large projections (almost 1) on each orthogonal subspace. To have a
glimpse at how this geometric picture is related to quantum (statistically) bind-
ing, observe that honest quantum bit commitments to 0 and 1 (two quantum
states) are (almost) orthogonal.

1.4 Related Work

Non-interactive perfectly binding BC secure against quantum attack can be based
on quantum one-way permutation [1]. Our construction of non-interactive statis-
tically binding QBC generalized from Naor [14] has the advantage of relying on
a seemingly weaker complexity assumption, but at the cost of quantum construc-
tion. Moreover, while it is folklore that Naor’s two-message construction can be
trivially generalized to the quantum setting, as far as we know, our way of using
reversible computation to realize non-interactive QBC is surprisingly new.

Compared with Kobayashi’s work on QZK proof [11], here we restrict to NP
languages, which is of the most interest from cryptographic view: we expect (hon-
est) prover can be implemented in polynomial time (given access to a witness).
However, some of transformations in [11] may not preserve prover’s complexity.
We also prove many properties of QZK proof that are similar to Kobayashi,
but in a completely different approach that just meets the call for unconditional
study of QZK proof in [11].

To the best of our knowledge, the only previous work using (general) QBC
as a building block is [5], where the security analysis based on quantum (com-
putationally) binding is much different from us.

The remainder of this extended abstract is organized as follows. In Sect. 2, we
introduce some terminologies and notations. Next in Sect. 3, we give a formal-
ization of QBC, followed a construction. Finally in Sect. 4, we show that QBC
suffices for QZK.

2 Preliminaries

Most terminologies and notations of quantum information we are using here are
standard. To save notations, given a projector Π, we also use Π to denote the
subspace on which it projects.
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We assume readers are familiar with classical GMW-type zero-knowledge
protocol and its security analysis [7].

We adopt definitions of quantum (in)distinguishability and quantum zero-
knowledge from Watrous [20], which are straightforward generalizations of their
classical counterparts [7].

Quantum circuit is composed of quantum gates chosen from some fixed uni-
versal, finite, and unitary quantum gate set [15,19]. To save notations, we over-
load notations to use Q and Q∗ to denote the unitary transformation induced
by quantum circuit Q and its inverse, respectively. Quantum algorithm can be
formalized in terms of uniformly generated quantum circuit family; that is, the
description of each quantum circuit in this family can be output by a single
classical algorithm given as input the index of this circuit in the family.

3 Formalization and Construction of QBC

In this section, we shall give a formalization of non-interactive statistically-
binding QBC as motivated by [19]. Then we generalize Naor’s construction [14]
to the quantum setting inspired by our formalization.

We first recall a definition in [19].

Definition 1 (Quantum state defined by quantum circuit). Quantum
circuit Q operates on a pair of quantum registers (C,R). We can view Q encodes
a quantum state in the following way: first initialize (C,R) in state |0〉, and then
apply Q; we call the resulting state of C, i.e. TrR(Q|0〉CR〈0|Q∗), the quantum
state defined by quantum circuit Q.

Our formalization of QBC is based on the definition above.

Definition 2. A non-interactive quantum bit commitment scheme (QBC) is a
two-party, two-stage protocol. It can be represented by an ensemble of quantum
circuit pair {(Q0(n), Q1(n))}n that are uniformly generated in polynomial time.
Specifically,

– The protocol consists of two parties, sender and receiver, proceeding in two
stages: first a commit stage and later a reveal stage.

– In commit stage, to commit bit b ∈ {0, 1}, sender applies quantum circuit Qb

on quantum registers (C,R) that are initialized in all |0〉’s state. Then sender
sends quantum register C, whose state we denote by ρb, to receiver.

– In reveal stage, sender announces b, and sends quantum register R to receiver.
Receiver then applies Q∗

b on (C, R), accepts if (C, R) return to all |0〉’s state.

The execution of QBC is depicted in Fig. 1. We are next to define hiding (or
concealing) and binding properties of QBC.

– Hiding. We say the scheme is computationally hiding if quantum state ensem-
bles {ρ0(n)}n and {ρ1(n)}n are computationally indistinguishable.

– Statistically ε(n)-binding. We say the scheme is statistically ε(n)-binding if
fidelity F (ρ0(n), ρ1(n)) < ε(n). For cryptographic applications, we usually
require ε(n) be negligible, or even exponentially small.
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A discussion about the definition above is referred to the full paper, where
we argue that our formalization is robust, conceptually simple, and without
loss of generality. Hereafter, when we talk about QBC, we are referring to the
formalization given in Definition 2 (rather than any specific constructions).

We highlight that we are defining the weakest quantum binding here (see
the full paper for detail), which enjoys a very appealing property: it composes
in parallel. This makes it easy to extend QBC to quantum string commitment
by committing a binary string bit by bit. Formal definition of quantum string
commitment and proof of the following theorem is referred to the full paper.

Theorem 4. Suppose {(Q0(n), Q1(n))}n is a non-interactive statistically ε(n)-
binding QBC. Then given a binary string s ∈ {0, 1}m, committing each bit si

(i = 1, 2, . . . ,m) of s using QBC results in a non-interactive statistically ε(n)-
binding quantum string commitment scheme, which can be represented by quan-
tum circuit Qs(n) =

⊗m
i=1 Qsi

(n).

We next consider how to construct non-interactive statistically-binding QBC
from plausible complexity assumption. Our idea is inspired by our formaliza-
tion of QBC: it suffices for us to generate an ensemble of quantum states
{(ρ0(n), ρ1(n))}n such that {ρ0(n)}n and {ρ1(n)}n are computationally indis-
tinguishable but statistically distinguishable. To this end, we adapt Naor’s idea
[14]: let ρ0(n) be the density operator corresponding to a pseudorandom dis-
tribution (against quantum distinguisher), and ρ1(n) corresponding to a truly
random (i.e. uniform) distribution. The commit and open procedures follow the
generic one as given in Definition 2. Formally, we prove the following theorem,
whose proof is referred to the full paper.

Theorem 5. If classical pseudorandom generator against quantum distin-
guisher exists, then we have (computationally hiding) statistically binding quan-
tum non-interactive bit commitment scheme.

We remark that if [9] can be generalized to the quantum setting, which is
widely believed, then the assumption of the theorem above and in turn Theorem
2 can be replaced with quantum one-way function.

4 From QBC to QZK

We finally consider how to use QBC to construct QZK proof for all NP lan-
guages. An immediate idea is to plug QBC into GMW-type zero-knowledge pro-
tocols for some NP-complete languages (e.g. [3,8]). This idea is natural, but we
have to reconsider its security, i.e. soundness and quantum zero-knowledge; we
know that showing security against quantum adversary is not always immediate
even given classical security.

Indeed, quantum zero-knowledge property is not trivial, since commonly used
classical rewinding technique cannot be applied in quantum setting generally.
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Fortunately, Watrous [20] develops a quantum rewinding technique that is suit-
able in some special case. After a careful examination, it turns out that this tech-
nique works equally well in our case with QBC. Hence, quantum zero-knowledge
is checked.

Soundness is not clear with QBC either. Quantum binding raises several new
issues that never happen with classical BC (even against quantum attack), as
generally discussed in “Introduction”. In the remainder of this section, we explore
a specific protocol, GMW-type ZK protocol for Hamiltonian Cycle problem [3],
showing that it is sound given quantum binding.

We first briefly recap this protocol and set up some notations for our expo-
sition. In the GMW-type ZK protocol for Hamiltonian Cycle, prover, who plays
the role of sender in QBC, first sends a message or quantum register A that is
expected to contain the quantum string commitment (using QBC to commit bit
by bit) of π(G) (encoded as an n2-bit string), where G is the input graph of n
vertices and π a random permutation over vertex set {1, 2, . . . , n}. After receiv-
ing the (quantum) commitment, verifier, who plays the role of receiver in QBC,
sends back a challenge bit, 0 or 1. Then depending on this challenge bit, prover
sends his second message or quantum registers (B,C), trying to either open the
whole quantum string commitment as π(G), or n (out of n2) positions of the
string commitment as n 1’s corresponding to a Hamiltonian cycle. Here, quan-
tum register C is to store classical information such as permutation π or position
of Hamiltonian cycle c; they will determine which positions and what values of
bit commitments are to open. Register B is just used for opening commitments.

In soundness analysis, G is assumed not Hamiltonian and prover could be
malicious. To estimate verifier’s accepting probability, as mentioned in “Intro-
duction”, our idea is to pretend receiver does not measure π or c, thus avoiding
perturbing quantum commitment or register A. Instead, verifier will apply some
“big” binary measurements {P0,1 − P0} or {P1,1 − P1} on the combined quan-
tum system (A,B,C) received from prover, where

P0 =
∑

π

|π〉C〈π| ⊗ Qπ(G)|0〉AB〈0|Q∗
π(G), (2)

P1 =
∑

c

|c〉C〈c| ⊗ (Qc ⊗ 1c̄)|0〉AB〈0|(Q∗
c ⊗ 1c̄). (3)

Here, quantum circuit Qπ(G) denotes the quantum circuit to commit graph π(G),
and Qc denotes the quantum circuit to commit n 1’s at position c corresponding
to a Hamiltonian cycle. It is easy to write out expressions of Qπ(G) and Qc in
terms of (Q0, Q1) according to Theorem 4.

Note that projectors P0 and P1 induce accepting subspaces corresponding to
verifier’s challenge bit 0 and 1, i.e. succeeding in opening graph π(G) and Hamil-
tonian cycle c, respectively. To prove soundness, we are to show that whatever
quantum state (malicious) prover may prepare as commitment, its projections on
subspaces P0 and P1 cannot be close to 1 simultaneously. This in turn suffices to
show that subspaces P0 and P1 are (almost) orthogonal. To see this, note that for
each pair of π, c, vectors Qπ(G)|0〉 and Qc|0〉 are purifications of honest quantum
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commitments (within A component) to string π(G) and n 1’s, respectively. Since
G does not have Hamiltonian cycle, the substring of π(G) at position c cannot
be all 1’s — this is the very argument used in classical soundness analysis. Then
quantum (statistically) binding implies that P0 and P1, which sum over all π’s
and c’s respectively, are (almost) orthogonal. We further remark that the formal
proof is not as straightforward as the intuition would suggest; some technical
work is required to deal with errors (in case of statistical binding as opposed to
perfect binding), which if we are not careful, may blow up exponentially due to
exponential terms (≈ n!) within expressions of P0 and P1.

Formally, to relate the (almost) orthogonality of subspaces P0 and P1 with
quantum binding, we need a technical lemma as below; it is stated in a contra-
positive way for our purpose of proof by contradiction. In geometric picture, this
lemma gives two characterizations of a bunch of subspaces with small “angles”
(orthogonality corresponds to angle π/2) pairwisely.

Lemma 1. Let X ,Y be two complex Euclidean spaces, and P1, . . . , Pm be pro-
jectors on X ⊗ Y. If there exists a vector |ψ〉 ∈ X ⊗ Y and unitary transfor-
mations U1, . . . , Um ∈ U(Y) such that

∑

i ‖PiUi|ψ〉‖2 /m ≥ 1 − δ for some
0 ≤ δ ≤ 1, then there exists unitary transformations U ′

1, . . . , U
′
m ∈ U(Y) sat-

isfying ‖P1U
′
1 · · · PmU ′

m|ψ〉‖ ≥ 1 − m
√

δ.

Further expositions and details of the proof are referred to the full paper.
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Abstract. Constraint Satisfaction Problem (CSP) is a fundamental
algorithmic problem that appears in many areas of Computer Science.
It can be equivalently stated as computing a homomorphism R → Γ
between two relational structures, e.g. between two directed graphs. Ana-
lyzing its complexity has been a prominent research direction, especially
for the fixed template CSPs where the right side Γ is fixed and the left
side R is unconstrained.

Far fewer results are known for the hybrid setting that restricts both
sides simultaneously. It assumes that R belongs to a certain class of
relational structures (called a structural restriction in this paper). We
study which structural restrictions are effective, i.e. there exists a fixed
template Γ (from a certain class of languages) for which the problem
is tractable when R is restricted, and NP-hard otherwise. We provide a
characterization for structural restrictions that are closed under inverse
homomorphisms. The criterion is based on the chromatic number of a
relational structure defined in this paper; it generalizes the standard
chromatic number of a graph.

As our main tool, we use the algebraic machinery developed for fixed
template CSPs. To apply it to our case, we introduce a new construc-
tion called a “lifted language”. We also give a characterization for struc-
tural restrictions corresponding to minor-closed families of graphs, extend
results to certain Valued CSPs (namely conservative valued languages),
and state implications for (valued) CSPs with ordered variables and for
the maximum weight independent set problem on some restricted fami-
lies of graphs.

1 Introduction

The Constraint satisfaction problems (CSPs) and the valued constraint satisfac-
tion problems (VCSP) provide a powerful framework for analysis of a large set of
computational problems arising in propositional logic, combinatorial optimiza-
tion, artificial intelligence, graph theory, scheduling, biology, computer vision etc.
Traditionally CSP is formalized either as a problem of (a) finding an assignment
of values to a given set of variables, subject to constraints on the values that
can be assigned simultaneously to specified subsets of variables, or as problem
c© Springer-Verlag Berlin Heidelberg 2015
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of (b) finding a homomorphism between two finite relational structures A and B
(e.g., two oriented graphs). These two formulations are polynomially equivalent
under the condition that the input constraints in the first case or input relations
in the second case are given by lists of their elements. Soft version of CSP, that
is VCSP, generalizes the CSP by replacing crisp constraints with cost functions
applied to tuples of variables. In the VCSP we require to find the maximum (or
minimum) of a sum of cost functions applied to corresponding variables.

The CSPs have been the cutting edge research field of theoretical computer sci-
ence since the 70s, and recently this interest has been expanded toVCSP.One of the
themes that revealed rich logical and algebraic structure of the CSPs was the ques-
tion of classification of the problem’s computational complexity when constraint
relations are restricted to a given set of relations or, alternatively, when the sec-
ond relational structure is some fixed Γ. Thus, this problem is parameterized by Γ,
denoted as CSP(Γ) and called a fixed template CSP with a template Γ (another
name is a non-uniform CSP). E.g., if the domain set is boolean and Γ is a relational
structure with four ternary predicates x ∨ y ∨ z, x ∨ y ∨ z, x ∨ y ∨ z, x ∨ y ∨ z,
CSP(Γ) models 3-SAT which is historically one the first NP-complete problems [8].
At the same time, if we restrict Γ to binary predicates, then we obtain tractable 2-
SAT. Generally, Schaeffer proved [23] that for any template Γ over the boolean
set, CSP(Γ) is either in P or NP-complete, and any tractable constraint language
belongs to one of 6 classes (0 or 1-preserving, binary, horn, anti-horn and linear
subspaces). WhenΓ contains only one graph (irreflexive symmetric predicate) Hell
and Nešetřil [14] proved an analogous statement, by showing that only for bipartite
graphs the problem is tractable. Feder and Vardi [10] found that all fixed template
CSPs canbe expressed as problems in a fragment of SNP, calledMonotoneMonadic
SNP (MM SNP). They introduced this class as a natural restriction of SNP for
which Ladner’s argument about the existence of problems with intermediate com-
plexity between P and NP-hard could not be applied. Moreover, they showed that
all problems in MM SNP can be reduced with respect to Turing reduction to fixed
template CSPs and, thus, non-uniform CSPs complexity classification would lead
to a classification of MM SNP problems. This result placed fixed-template CSPs
into a broad logical context that naturally lead to a conjecture that such CSPs are
either tractable or NP-hard, the so called dichotomy conjecture.

In [16] Jeavons observed that any predicate given by primitive positive for-
mula using predicates of the template Γ, when added to Γ, does not change the
complexity of CSP(Γ). This result clarified that the computational complexity of
CSP(Γ) is fully defined by the minimal predicate clone that contains predicates
of Γ. In universal algebra, it has long been known that the predicate clones
are dual to the so called functional clones [11,19,22]. Specifically, it implies
that the complexity of CSP(Γ) is defined by the set of polymorphisms of Γ.
The last was the main motive for subsequent research. Intensive studies in this
direction lead to a conjectured algebraic description of all tractable templates
made by Bulatov et al. [6], with subsequent reformulations of this conjecture by
Maroti and McKenzie [20]. In the long run it was shown by Siggers [24] that
if Bulatov-Jeavons-Krokhin characterization of tractable templates is correct,
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then the tractable core structures can be characterized as those that admit a
single 6-ary polymorphism that satisfies a certain equality. The last fact will
serve as a key ingredient for one of our results.

Besides fixed template CSPs, another parameterization of CSP concerns
restrictions on the left relational structure of the input. If we restrict the left
structure of the input to some specified set H and impose no restriction on
the right relational structure, then the problem is called CSP with structural
restrictions H. For example, if H is a set of graphs with treewidth less or equal
to k ∈ N, then the problem can be solved in polynomial time. It was found by
Grohe [12] that any structural restriction H that defines tractable CSP should
be of bounded treewidth modulo homomorphic equivalence.

RelatedWork. Since many (V)CSP instances do not fall into any of the tractable
classes offered by one of the previous approaches, there has been growing interest
in the so-called hybrid restrictions. That is when the input is restricted to a subset
of all input pairs (R,Γ). One approach to this problem is to construct a new struc-
ture for any input (R,Γ), GR,Γ, and shift the analysis to GR,Γ. In case of binary
CSPs (i.e. when all predicates of an input are binary) it is natural to define GR,Γ as
a microstructure graph [17] of a template (R,Γ). Thereby, a set of inputs for which
certain local substructures in GR,Γ are forbidden form a parametrized problem.
Cooper and Živný [9] investigated this formulation and found examples of spe-
cific forbidden substructures that result in tractable hybrid CSPs. Microstructure
graphs also naturally appear in the context of fixed template CSPs. Specifically, all
templates Γ with binary predicates that define fixed template CSPs for which local
consistency preprocessing of the input results in a perfect microstructure graph
were completely classified in [26].

Our Results. The main topic of our paper is a hybrid framework for (V)CSP,
when left structures are restricted to some set H and combined with a fixed
right structure Γ (corresponding CSP is denoted as CSPH(Γ)). The difficulty
of applying known algebraic machinery to this framework is due to the fact that
the closure operator, analogous to the minimal containing clone, cannot depend
on Γ only. Therefore, in an algebraic theory of hybrid CSPs an analogue of prim-
itive positive formula should depend on both input structures. In our approach
we define for any R ∈ H and Γ a set of predicates ΓR that we call a “lifted”
language. Our key idea is that the closures 〈ΓR〉 for R ∈ H, under certain con-
ditions, could maintain the information on the tractability of CSPH(Γ). In this
paper, by that “certain conditions” we understand the property that H is closed
under inverse homomorphisms. We are especially interested in a classification
of structural restrictions H closed under inverse homomorphisms for which we
could find a template Γ (in a certain class of templates C) that defines tractable
CSPH(Γ), whereas a CSP(Γ) is NP-hard. We call such restrictions effective for
a class C. Our key results are formulated for 2 cases: the class of BJK languages,
that is, the class of templates that are either tractable or have core a without a
Siggers polymorphism, and a class of conservative valued templates.

Specifically, we prove that if H is a set of binary structures closed under inverse
homomorphisms, it is effective for BJK languages if and only if {χ(R) | R ∈ H} is
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bounded, where χ(R) is a chromatic number of R (considered as a graph). The last
result is extended to the nonbinary case, with natural generalization of the chro-
matic number to arbitrary relational structures. A notable corollary of this result
is that the set of acyclic digraphs is an ineffective structural restriction for BJK lan-
guages. This explains why NP-hardness arguments for certain fixed templates of
digraph homomorphism problem can be extended to a case when the input digraph
is acyclic [25]. Less straightforward corollary: let H be a set of binary structures
such that their “graph copies” forbid specific minors, then H is effective for BJK
languages if and only if {χ(R) | R ∈ H} is bounded. The last statement does not
require that H is closed under inverse homomorphisms.

For VCSPH(Γ) we prove an analogue of our previous result for a class C of
all conservative valued templates. We obtain as a corollary that the maximum
weight independent set problem is still NP-hard in some graph classes.

2 Preliminaries

Throughout the paper we assume P �= NP . A problem is called tractable if it
can be solved in polynomial time.

The symbol [n] will denote the set {1, . . . , n}, and Q = Q ∪ {∞} the set of
rational numbers with (positive) infinity. Also D will stand for a finite set.

We will denote the tuples in lowercase boldface such as a = (a1, . . . , ak).
Also for mappings h : A → B and tuples a = (a1, . . . , ak), where aj ∈ A for
j = 1, . . . , k, we will write b = (h(a1), . . . , h(ak)) simply as b = h(a). Relational
structures will be denoted in uppercase boldface as R = (R, r1, . . . , rk).

Finally let ar(�), ar(a), and ar(f) stand for arity of a relation �, size of a
tuple a, and arity (number of parameters) of a function f , respectively.

2.1 Fixed Template CSP

We will first formulate the general CSP in an algebraic way as a decision problems
whether there exists a homomorphism between certain relational structures.

Definition 1. Let R = (R, r1, . . . , rk) and R′ = (R′, r′
1, . . . , r

′
k) be relational

structures with a common signature (that is ar(ri) = ar(r′
i) for every i =

1, . . . , k). A mapping h : R → R′ is called a homomorphism from R to R′ if for
each i = 1, . . . , k, whenever (x1, . . . , xar(ri)) ∈ ri, then ((h(x1), . . . , h(xar(r′

i)
)) ∈

r′
i. In that case, we write R h→ R′ or sometimes just R → R′.

Definition 2 (General CSP). The general CSP is the following decision prob-
lem.Givena pair of relational structureswith common signatureR = (V, r1, . . . , rk)
andΓ = (D, �1, . . . , �k), decidewhetherR → Γ. Equivalently, decidewhether there
is a mapping h : V → D that satisfies

∧

(�,v)∈T

[h(v) ∈ �] (1)

where T = {(�i,v) | i ∈ [k],v ∈ ri} specifies the set of constraints.
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The set V represents the set of variables and we will only consider V finite,
similarly D is the domain set or the set of labels for variables. The relations r1,
. . . , rk specify the tuples of V constrained by relations �1, . . . , �k, respectively.

As we mentioned in the introduction, one natural way to restrict the gen-
eral CSP is to fix the constraint types. A finitary relational structure Γ =
(D, �1, . . . , �k) over a fixed finite domain D will be called a constraint lan-
guage. For such Γ we will denote by Γ (without boldface) the set of relations
{�1, . . . , �k}; with some abuse of terminology set Γ will also be called a constraint
language. (Note that both views are used in the literature).

Definition 3 (Fixed template CSP). Let D be a finite set and Γ a constraint
language over D. Then the decision problem CSP(Γ) is defined as follows: given
a relational structure R = (V, r1, . . . , rk) of the same signature as Γ, decide
whether R → Γ.

We will usually write CSP(Γ ) instead of CSP(Γ). Although there are multiple
relational structures Γ that correspond to the same set Γ , it can be seen that
all choices give equivalent problems; this justifies the notation CSP(Γ ).

2.2 Fixed Template VCSP

A more general framework operates with cost functions f : Dn → Q instead of
relations � ⊆ Dn. This idea leads to the notion of valued CSP.

Definition 4. We denote the set of all functions f : Dn → Q by Φ(n)
D and let

ΦD =
⋃

n≥1 Φ(n)
D . We will often call the functions in ΦD cost functions over D.

For every cost function f ∈ Φ(n)
D , let dom f = {x | f(x) < ∞}. Note that dom f

can be considered both as an n-ary relation and as an n-ary function such that
dom f(x) = 0 if and only if f(x) is finite.

We will say that the cost functions in ΦD take values. Note that in some
papers on VCSP cost functions are called weighted relations.

Definition 5. An instance of the valued constraint satisfaction problem (VCSP)
is specified by finite sets D, V and a function from DV to Q given by

fI(h) =
∑

(f,v)∈T

w(f,v)f(h(v)), (2)

where V is a finite set of variables, w(f,v) are positive numbers,1 and T is a
finite set of constraints of the form (f,v) where f ∈ ΦD is a cost function and
v ∈ V ar(f) is a tuple of variables of size ar(f). The goal is to find an assignment
(or labeling) h ∈ DV that minimizes fI .
1 We will allow two possibilities: (i) weights are positive integers, and the length of the

description of I grows linearly with w(f,v); (ii) weights are positive rationals. All
our statements for VCSPs will hold under both models. Note that in the literature
weights w(f,v) are usually omitted, and T is allowed to be a multiset rather than a
set; this is equivalent to model (i). Including weights will be convenient for hybrid
VCSPs.
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Note that fI can also be looked at as a cost function over the variable set V .

Definition 6. A valued constraint language over D is either a tuple Γ = (D, f1,
. . . , fk) with f1, . . . , fk ∈ ΦD or the corresponding finite set Γ = {f1, . . . , fk} ⊆
ΦD. We will denote by VCSP(Γ ) the class of all VCSP instances in which the
cost functions are all contained in Γ .

This framework subsumes many other frameworks studied earlier and captures
many specificwell-knownproblems, includingk-Sat,Graphk-Colouring,Max
Cut, Min Vertex Cover, and others (see [15]).

A function f ∈ Φ(n)
D that takes values in {0,∞} is called crisp. We will often

view it as a relation in Dn, and vice versa (this should be clear from the context).
If language Γ is crisp (i.e. it contains only crisp functions), then VCSP(Γ ) is a
pure feasibility problem corresponding to CSP(Γ ). Note, however, that accord-
ing to our definitions there is a slight difference between the two: CSP(Γ ) is
a decision problem while VCSP(Γ ) asks to compute a solution explicitly if it
exists.

The dominant research line in this area is to classify the complexity of prob-
lems VCSP(Γ ). Sometimes, problems CSP(Γ ) and VCSP(Γ ) are defined also
for infinite languages Γ and then VCSP(Γ ) is called tractable if for each finite
Γ ′ ⊆ Γ , VCSP(Γ ′) is tractable. Also, VCSP(Γ ) is called NP-hard if for some
finite Γ ′ ⊆ Γ , VCSP(Γ ′) is NP-hard. In turn, we will focus purely on finite
languages Γ .

2.3 Polymorphisms

Let O(m)
D denote the set of all operations g : Dm → D and let OD =

⋃

m≥1 O(m)
D .

When D is clear from the context, we will sometimes write simply O(m) and O.
Any language Γ defined on D can be associated with a set of operations on

D, known as the polymorphisms of Γ , defined as follows.

Definition 7. An operation g ∈ O(m)
D is a polymorphism of a cost function

f ∈ ΦD if for any x1, . . . ,xm ∈ dom f , we have that g(x1, . . . ,xm) ∈ dom f
where g is applied component-wise.

For any valued constraint language Γ over a set D, we denote by Pol(Γ ) the
set of all operations on D that are polymorphisms of every f ∈ Γ .

Clearly, if g is a polymorphism of a cost function f , then g is also a poly-
morphism of dom f . For {0,∞}-valued functions, which naturally correspond
to relations, the notion of a polymorphism defined above coincides with the
standard notion of a polymorphism for relations. Note that the projections, i.e.
operations of the form ei

n(x1, . . . , xn) = xi, are polymorphisms of all valued con-
straint languages. Polymorphisms play the key role in the algebraic approach to
the CSP. For VCSPs more general constructs called fractional polymorphisms are
necessary. We refer to the full version of the paper [18] for further background
on this topic.
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2.4 Algebraic Dichotomy Conjecture

The condition for tractability of CSPs was first conjectured by Bulatov et al. [6],
and a number of equivalent formulations was later given in [2,20,24]. We will
use the formulation by Siggers [24]; it will be important for our purposes that
Siggers polymorphisms have a fixed arity six and so for example on a fixed finite
domain D there is only a finite number of them.

Definition 8. An operation s : D6 → D is called a Siggers operation on D if it is
idempotent (i.e. s(x, x, x, x, x, x) = x for all x ∈ D), and also s(x, x, x, x, y, y) =
s(x, y, x, y, x, x) and s(y, y, x, x, x, x) = s(x, x, y, x, y, x) for all x, y ∈ D.

The conjecture is usually stated for core languages. To reduce the number
of definitions, we will give an alternative formulation that avoids cores. For a
language Γ on D and a domain D′ ⊆ D let Γ [D′] be the language obtained from
Γ by restricting each function to the domain D′.

Definition 9. Tuple (g, s) will be called a Siggers pair on a domain D if g is
a unary operation on D satisfying g ◦ g = g and s is a Siggers operation on
g(D) ⊆ D. We say that a crisp language Γ on domain D admits (g, s) if g is a
unary polymorphism of Γ and s is a 6-ary polymorphism of Γ [g(D)].

Theorem 1 ([24]). A crisp constraint language Γ that does not admit a Siggers
pair is NP-Hard.

Conjecture 1 (A version of the Algebraic Dichotomy Conjecture). If a crisp lan-
guage Γ admits a Siggers pair, then CSP(Γ ) is tractable.

There has been remarkable progress on this conjecture. It has been verified for
domains of size 2 [23] and 3 [4], or for languages containing all unary relations on
D [5]. It has also been shown that it is equivalent to its restriction for directed
graphs (that is when Γ contains a single binary relation �) [7]. Further, the con-
jecture holds if � corresponds to a directed graph with no sources and sinks [3].
Nevertheless, in the general case the conjecture remains open.

Definition 10. A crisp language Γ is called a BJK language if it satisfies one
of the following:

– CSP (Γ ) is tractable
– Γ does not admit a Siggers pair.

Conjecture 2 (Another version of the Algebraic Dichotomy Conjecture). Every
crisp language Γ is a BJK language.

2.5 Hybrid (V)CSP Setting

Definition 11. Let us call a family H of relational structures with a common
signature a structural restriction. If all the relations in H are unary, we call H
all-unary.
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Definition 12 (Hybrid CSP). Let D be a finite domain, Γ a constraint lan-
guage over D, and H a structural restriction of the same signature as Γ. We
define CSPH(Γ) as the following decision problem: given a relational structure
R ∈ H as input, decide whether R → Γ.

Definition 13 (Hybrid VCSP). Let D be a finite domain, Γ = (D, f1, . . . , fk)
a valued constraint language over D, and H a structural restriction of the same sig-
nature as Γ. We define VCSPH(Γ) as the class of instances of the following form.

An instance is a function from DV to Q given by

fI(h) =
∑

(f,v)∈T

w(f,v)f(h(v)), (3)

where V is a finite set of variables, w(f,v) are positive numbers and T is a finite
set of constraints determined by some relational structure R = (V, r1, . . . , rk) ∈
H as follows: T = {(fi,v) | i ∈ [k],v ∈ ri}. The goal is to find an assignment
(or labeling) h ∈ DV that minimizes fI .

Definition 14. A structural restriction H is called effective for a class of (val-
ued) languages C if there is a language Γ with Γ ∈ C, of the same signature as
H, such that (V)CSP(Γ ) is NP-Hard, whereas (V)CSPH(Γ) is tractable.

H is called ineffective for C if for every Γ with Γ ∈ C, of the same signature
as H, (V)CSP(Γ ) and (V)CSPH(Γ) are either both tractable or both NP-hard.

Note, some structural restrictions could potentially be neither effective nor inef-
fective for a given C (since there exist intermediate complexity classes between
NP-hard and tractable problems).

Example 1. Let us give some examples of effective restrictions for the class C of
all crisp languages.

Let H be the set of k-colorable graphs for k > 2. Note that k-colorable
graphs are exactly those that map homomorphically to the complete graph Kk.
Therefore for the language Γ = {�=D} on domain D with |D| > 2, we get
that CSPH(Γ) is tractable (with a constant time algorithm that outputs YES),
whereas CSP(Γ ) is NP-Hard.

Similarly, also restricting to the class of planar graphs or perfect graphs
is effective, since planar graphs are 4-colorable [1], and for perfect graphs the
Graph k-Colouring problem is known to be solvable in polynomial time [13].

3 Our Results

Most of our results will apply to structural restrictions H that are up-closed.

Definition 15. A family of relational structures H is called closed under inverse
homomorphisms (or up-closed for short) if whenever R′ → R and R ∈ H, then
also R′ ∈ H.
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As examples of up-closed relational structures, let us mention directed acyclic
graphs or k-colorable graphs. The proofs are straightforward. On the other hand,
many natural graph classes do not possess this property, e.g. planar graphs and
perfect graphs.

We introduce a notion of a chromatic number of relational structures that
generalizes the usual chromatic number of graphs.

Definition 16. Let R = (V, r1, . . . , rk) be a relational structure. A coloring of
R, that is a mapping c : V → [m], is improper if there is a color j ∈ [m] such
that for each i ∈ [k], the relation ri contains a monochromatic tuple of the color
j. A coloring that is not improper is called proper.

We define the chromatic number χ(R) of R to be the smallest number of
colors that can yield a proper coloring of R. (If no proper coloring exists, we set
χ(R) = ∞; this will happen if e.g. R contains only one unary relation). Also,
we define the chromatic number χ(H) of a structural restriction as

χ(H) = sup{χ(R) : R ∈ H}.

Theorem 2. A structural restriction H with χ(H) < ∞ that is not all-unary is
effective for the class of BJK languages.

Theorem 3. An up-closed structural restriction H with χ(H) = ∞ is ineffective
for the class of BJK languages.

In particular, Theorem3 means that the Algebraic Dichotomy Conjecture
would imply that up-closed structural restrictions H with χ(H) = ∞ are inef-
fective for the class of all CSP languages. Next, we state our results for valued
languages.

Definition 17. A valued language is called conservative if it contains all unary
{0, 1}-valued cost functions.

Definition 18. We say that a relational structure H does not restrict unar-
ies if for each R ∈ H of the form R = (V, r1, . . . , ri−1, ri, ri+1, . . . , rk) with
ar(ri) = 1 and for each unary relation r′

i ⊆ V , we have R′ ∈ H, where
R′ = (V, r1, . . . , ri−1, r

′
i, ri+1, . . . , rk).

Theorem 4. An up-closed structural restriction H with χ(H) = ∞ that does
not restrict unaries is ineffective for the class of conservative valued languages.

Below we list three implications of our theorems. All missing proofs can be
found in the full version of the paper [18].

3.1 Implications of Theorems 2, 3 and 4

Ordered CSP. One natural structural restriction to fixed template CSP is to
introduce ordering of variables and request the constraints to respect the ordering.
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Definition 19. We call a relational structure (V, r1, . . . , rk) ordered if, after
some identification of V with [n] for n = |V |, whenever (v1, . . . , var(rj)) ∈ rj for
some j = 1, . . . , k, then v1 < · · · < var(rj).

Theorem 5. Let H be the set of all ordered relational structures of some fixed
signature. Such structural restriction H is ineffective for BJK languages and for
conservative valued languages.

This has an interesting consequence for graph homomorphism problems.

Corollary 1. For the class of directed acyclic graphs H, algebraic dichotomy
conjecture implies that for every language Γ = (D, �) with a binary relation �,
CSP(Γ ) is tractable if and only if CSPH(Γ) is tractable.

Minor-Closed Families of Graphs. It is known that a minor-closed family of
undirected graphs has either bounded chromatic number or contains all graphs
(see [21, Lemma 2]). Using this result and Ramsey’s Theorem, we can show the
following.

Theorem 6. Let the structural restriction H be a family of directed graphs such
that the underlying family of undirected graphs is minor-closed. Then H is effec-
tive for BJK languages if and only if χ(H) < ∞.

Maximum Independent Set. Although Theorem4 is formulated for conser-
vative languages, it also gives implications for some optimization problems cor-
responding to non-conservative languages. Namely, the following can be shown.

Theorem 7. Let G be a family of undirected graphs with χ(G) = ∞ that is
closed under inverse homomorphisms (i.e. if G,G′ are undirected graphs such
that G ∈ G and G′ maps homomorphically to G then G′ ∈ G). Then the max
weight independent set problem (with positive node weights) is NP-hard
even when restricted to graphs in G.
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Abstract. We give new polynomial-time algorithms for testing isomor-
phism of a class of groups given by multiplication tables (GpI). Two
results (Cannon & Holt, J. Symb. Comput. 2003; Babai, Codenotti &
Qiao, ICALP 2012) imply that GpI reduces to the following: given groups
G, H with characteristic subgroups of the same type and isomorphic to Z

d
p,

and given the coset of isomorphisms Iso(G/Z
d
p, H/Z

d
p), compute Iso(G, H)

in time poly(|G|). Babai & Qiao (STACS 2012) solved this problem when a
Sylow p-subgroup of G/Z

d
p is trivial. In this paper, we solve the preceding

problem in the so-called “tame” case, i. e., when a Sylow p-subgroup of
G/Z

d
p is cyclic, dihedral, semi-dihedral, or generalized quaternion. These

cases correspond exactly to the group algebra Fp[G/Z
d
p] being of tame

type, as in the celebrated tame-wild dichotomy in representation theory.
We then solve new cases of GpI in polynomial time.

Our result relies crucially on the divide-and-conquer strategy pro-
posed earlier by the authors (CCC 2014), which splits GpI into two
problems, one on group actions (representations), and one on group coho-
mology. Based on this strategy, we combine permutation group and rep-
resentation algorithms with new mathematical results, including bounds
on the number of indecomposable representations of groups in the tame
case, and on the size of their cohomology groups.

Finally, we note that when a group extension is not tame, the pre-
ceding bounds do not hold. This suggests a precise sense in which the
tame-wild dichotomy from representation theory may also be a key bar-
rier to cross to put GpI into P.

1 Introduction

The group isomorphism problem (GpI) is to decide whether two finite groups,
given by their multiplication tables, are isomorphic. It is one of the few natural
problems not known to be in P, and unlikely to be NP-complete, as it reduces to
Graph Isomorphism (GraphI; see, e. g., [27]). In addition to being intrinsically
interesting, resolving the exact complexity of GpI is thus a tantalizing ques-
tion. Further, there is a surprising connection between GpI and the Geometric
c© Springer-Verlag Berlin Heidelberg 2015
K. Elbassioni and K. Makino (Eds.): ISAAC 2015, LNCS 9472, pp. 578–589, 2015.
DOI: 10.1007/978-3-662-48971-0 49
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Complexity Theory program (see, e. g., [31] and references therein): Techniques
from GpI were used to solve cases of Lie Algebra Isomorphism that have
applications in Geometric Complexity Theory [21]. In a survey article [2] in
1995, after enumerating several isomorphism-type problems including GraphI
and GpI, Babai expressed the belief that GpI might be the only one expected
to be in P.1 Despite its connection with GraphI, P seems an achievable goal for
GpI, as there are many reasons GpI seems easier than GraphI (see, e. g., the
introduction to [22] for an overview of these reasons).

As a group of order n can be generated by �log n� elements, GpI is solv-
able in time nlog n+O(1) [17,30].2 The only improvement for the general case
was Rosenbaum’s recent n0.5 log n+O(1)-time algorithm [34]. However, there have
been more significant improvements for special group classes, representing a more
structural approach to the problem. Isomorphism of Abelian groups was recog-
nized as easy quite early [35,38], leading to an O(n)-time algorithm [26]. Since
2009, there have been several non-trivial polynomial-time algorithms for much
more complicated group classes: groups with no Abelian normal subgroups [3,4],
groups with Abelian Sylow towers [5,28,32], and p-groups of genus 2 [10,29].

Partly motivated to distill a common pattern from the three then-recent
major polynomial-time algorithms [4,5,29], the authors proposed [22] a divide-
and-conquer strategy for GpI based on the extension theory of groups. This
strategy is crucial for Theorem 1. Before getting to the details of this strategy,
let us first examine an approach for GpI that motivates the problem that we
study.

In 2003, Cannon and Holt [12] suggested the following outline for GpI. First,
they introduce a natural sequence of characteristic subgroups: G = G0�G1�· · ·�
G� = id, where G1 = Rad(G) is the solvable radical of G—the largest solvable
normal subgroup—and Gi/Gi+1 is elementary Abelian for all 1 ≤ i ≤ � − 1.
This filtration is easily computed, and for each factor we know how to test
isomorphism: G/Rad(G) has no Abelian normal subgroups, so is handled by [4].

Given two groups G and H, after computing these filtrations of G and H, the
strategy is to first test isomorphisms of the corresponding factors, which is neces-
sary for G and H to be isomorphic. Then, starting from G0/G1(= G/Rad(G)),
proceed inductively along this filtration. Note that for G0/G1, not only is iso-
morphism decidable in polynomial time, but a generating set for the coset of
isomorphisms Iso(G0/G1,H0/H1) can be found efficiently [4]. After this initial
step, a positive solution to the following problem would show that GpI ∈ P:

Problem 1. Given two groups G,H with characteristic elementary Abelian
subgroups A and B, resp., compute Iso(G,H) from Iso(G/A,H/B) in time
poly(|G|).

In fact, by developing a heuristic algorithm for Problem1 in [12, Sect. 5],
Cannon & Holt obtained a practical algorithm for GpI, but their algorithm uses
1 The exact quotation from Babai’s 1995 survey [2] is: “None of the problems men-

tioned in this section, with the possible exception of isomorphism of groups given
by a Cayley table, is expected to have polynomial time solution.”

2 Miller [30] attributes this algorithm to Tarjan.
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a backtrack search that does not have good worst-case guarantees.3 Still, this is
a very natural approach, and the algorithm in [4] solves the first step—testing
isomorphisms for G/Rad(G)—to this approach in the Cayley table model. In
[4] they thus use this to solve GpI in the case that Rad(G) is trivial.

To the best of our knowledge, the only previous result about Problem1 with
a worst-case analysis in the Cayley table model is by Babai and the second
author [5], who solved the case when A ∼= Z

k
p and the Sylow p-subgroup4 of

G/A is trivial; that is, when p � |G/A|. This was the key to the main result in
[5], namely, a polynomial-time isomorphism test for groups with Abelian Sylow
towers (see definition below, just before Corollary 1).

In this paper, we solve Problem 1 under certain conditions on the Sylow
subgroups of G, more general than the aforementioned one for [5]. Furthermore,
these conditions are very natural, as they are aligned with the celebrated tame-
wild dichotomy in the representation theory of associative algebras [8,15].

For an algebra L over an infinite field, classifying its indecomposable rep-
resentations up to isomorphism is a fundamental problem. Roughly speaking,
the nicest possibility is when there are only finitely many indecomposables, in
which case L is of finite type. Beyond this, some algebras have the property that
their indecomposables come in finitely many one-parameter families in each fixed
dimension d,5 possibly with finitely many exceptions. While this can be much
more complicated than finite type, it is still “classifiable;” such algebras are said
to be of tame type.6 Finally, some algebras L have the peculiar property that
any representation of any algebra can be “embedded as” (or “simulated by”) a
representation of L; such algebras are called wild. Drozd’s celebrated dichotomy
theorem [16] says that every algebra over an infinite field is either tame or wild.

In the case of groups, there is an explicit description of the three cases (see
[8, Theorem 4.4.4]): let p be the characteristic of the field F. FG is of finite type
iff p = 0, or p > 0 and the Sylow p-subgroup of G is cyclic. G is of tame type, but
not finite, iff p = 2 and the Sylow 2-subgroup of G is dihedral, semi-dihedral, or
generalized quaternion (see Sect. 2 for definitions). All other cases are wild.

3 Due to different goals and settings, it is natural for Cannon & Holt and us to adopt
different algorithmic ideas. That is, Cannon & Holt work with more succinct repre-
sentations of groups, and their goal is to obtain algorithms fast in practice. We work
with the “redundant” Cayley tables, and aim for worst-case analysis.

4 Though Sylow p-subgroups of a group are not unique, all of them are isomorphic;
hence we may refer to “the” Sylow p-subgroup.

5 For readers not familiar with this concept, here is an example to illustrate intuitively
what one-parameter families mean. For an algebraically closed field F, the Jordan
blocks form a one-parameter family with the eigenvalue λ ∈ F as the parameter.
The indecomposable d-dimensional representations of F[x] are given exactly the d ×
d Jordan blocks. Defining tame and wild rigorously requires terminology that is
unnecessary for this article; we refer to [8, Sect. 4.4] for a comprehensive introduction.

6 Finite type can be considered as a special case of tame type, namely when the number
of one-parameter families is 0. In the literature, some authors take the definition of
“tame type” to explicitly exclude finite type. We do not adopt that convention here.
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Suppose a group G has a normal subgroup A isomorphic to Z
d
p, and let

Q = G/A. G is called a tame extension of A by Q, if FpQ is of tame type.7 We
solve Problem 1 exactly for groups of this form. Note that the Sylow p-subgroup
being cyclic already generalizes the condition for [5].

Theorem 1. Suppose G,H come from the class of groups that have charac-
teristic subgroups of the same type and isomorphic to the elementary Abelian
subgroup Z

d
p. There is a polynomial-time algorithm to compute the coset of iso-

morphisms Iso(G,H) from the coset of isomorphisms Iso(G/Z
d
p,H/Z

d
p), if G is

a tame extension of Z
d
p, namely if the Sylow p-subgroups of G/Z

d
p are cyclic,

dihedral, semi-dihedral, or generalized quaternion.

The condition on G/Z
d
p is satisfied by several well-known group classes:

– Groups with dihedral Sylow 2-subgroups are classified [7,20]: Let O(G) be
the maximal normal odd-order subgroup. If G has a dihedral Sylow subgroup,
G/O(G) must be isomorphic to one of: (i) a subgroup of PΓL2(Fq) containing
PSL2(Fq); (ii) the alternating group A7; (iii) a Sylow 2-subgroup of G.

– The Sylow 2-subgroup of SL2(Fq) is generalized quaternion when q is odd
[19, p. 42] (or see [14, Corollary 4.12]).

– If D is a division ring, then any Sylow subgroup of a finite subgroup of D\{0}
is cyclic or generalized quaternion (see [14, Corollary 4.10]).

– The Sylow 2-subgroups of the following groups are semi-dihedral: PSL3(Fq)
for q ≡ 3 (mod 4), PSU3(Fq) for q ≡ 1 (mod 4), the Mathieu group M11,
and GL2(Fq) for q ≡ 3 (mod 4) (see, e. g., [1]).

Theorem 1 allows us to solve GpI in P for a class of groups that we now
describe. Following [5], we say that a group G has a Sylow tower if there is a
normal series id = G� � · · ·�G1 �G0 = G where each Gi/Gi+1 is isomorphic to
a Sylow subgroup of G. We say that G has an elementary Abelian Sylow tower
if furthermore all its Sylow subgroups are elementary Abelian. The proof of the
following corollary is straightforward.

Corollary 1. The coset of isomorphisms between two groups G,H can be com-
puted in polynomial time when (1) Rad(G) has an elementary Abelian Sylow
tower, and (2) for any prime p dividing |Rad(G)|, the Sylow p-subgroup of
G/Rad(G) is cyclic, dihedral, semi-dihedral, or generalized quaternion.

We now compare our result with the previous one [5]. Firstly, a critical dif-
ference is that in our setting we need to deal with both actions and cohomology
classes (see Sect. 3). In the setting of [5], the Schur–Zassenhaus Theorem implies
that the cohomology classes are always trivial, so this part does not appear in [5]
at all. Secondly, to deal with actions (Problem3), though we follow the algorith-
mic framework of [5], for the supporting algorithmic subroutines, we need to use
some sophisticated algorithms in computational algebra (see Sect. 2), while in [5]

7
Fp is the algebraic closure of Fp. Though it is not standard to apply “tame” to
extensions, this is justified by the main mathematical results of this paper.
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the corresponding subroutines are rather straightforward. Finally, we bound the
running time of our algorithms by proving size bounds on representations and
on group cohomology in the tame case, using an explicit description of repre-
sentations from the literature, and applying previously known results on group
cohomology. This was not needed in [5].

More broadly, to achieve Theorem1, for the first time in the worst-case analy-
sis of GpI, we step into the regime of modular representation theory—that is,
when the characteristic of the underlying field divides the order of the group.
This theory is much less well-understood than ordinary representation theory.
As the reader may see later, to solve Problem 1 in general seems to require cer-
tain deep use of this theory. We hope this article serves as a first step in this
direction.
Organization. In Sect. 2 we present some preliminaries. In Sect. 3 we show how
the splitting strategy of [22] applies in this case, and in Sect. 4 we give an overview
of the proofs; detailed proofs can be found in [23]. Finally, in Sect. 5 we discuss
the general relationship between GpI and the tame-wild dichotomy.

2 Preliminaries

Notations and Definitions. For a prime p, Fp denotes the field of size p. The
characteristic of a field F is denoted char(F). M(n, p) is the set of n×n matrices
over Fp, and GL(n, p) is the group of n × n invertible matrices of Fp. For n ∈ N,
[n] := {1, . . . , n}. Sym(Ω) denotes the symmetric group over a set Ω; when
Ω = [n] we write Sn. A permutation group over Ω is a subgroup of Sym(Ω).

Zk denotes the cyclic group of order k. A group is elementary Abelian if
it is isomorphic to Z

d
p for some prime p and some integer d. The dihedral

groups (of order a power of 2) are D2m = 〈x, y | x2 = y2m

= 1, yx = xy−1〉.
The semi-dihedral or quasi-dihedral groups are SD2m = 〈x, y | x2 = y2m

=
1, yx = xy2m−1−1〉. The (generalized) quaternion groups are GQ2m = 〈x, y |
x2 = y2m−1

, yx = xy−1〉. D2m , SD2m , and GQ2m are of order 2m+1; D21 is the
Klein four group. Since D2m , SD2m , or GQ2m are generated by 2 elements, we
can test in P whether a given group is D2m , SD2m , or GQ2m .
General Group Theory. A p-group is a group of order pk for some k > 0. A Sylow
p-subgroup of G is a p-subgroup of G of maximal order; by the Sylow theorems,
this order is the maximal order of p dividing |G|, and all Sylow p-subgroups are
conjugate in G. Given the Cayley table of a group, a Sylow p-subgroup can be
found in polynomial time.

A subgroup N of G is characteristic if N is sent to itself by every automor-
phism of G. A characteristic subgroup functor is a function S from finite groups
to finite groups such that (1) S(G) ≤ G for all G, and (2) any isomorphism
ϕ : G1 → G2 restricts to an isomorphism ϕ|S(G1) : S(G1) → S(G2). In particu-
lar, it follows that S(G) is always characteristic in G. Examples of characteristic
subgroup functors include most “natural” characteristic subgroups such as the
center, the derived subgroup, and the terms of the derived, lower central, and
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upper central series. A characteristic subgroup functor is Abelian (resp. elemen-
tary Abelian), if S(G) is Abelian (resp., elementary Abelian) for all G. Con-
vention: In this paper, whenever we say “characteristic subgroup” we mean the
image of an implied characteristic subgroup functor.
Indecomposable Modules. As representations of a group Q over a field F are the
same as modules over the group algebra FQ, we shall use the terms module and
representation interchangeably. For two representations θ and η, we use θ ∼= η
to denote that they are equivalent. Let M be a module of an algebra L. M is
indecomposable if it cannot be written as a direct sum of two submodules. The
decomposition of M into a direct sum of indecomposables is essentially unique:

Theorem 2 (Krull–Schmidt (see, e.g., [8, Theorem 1.4.6])). Let φ and ψ
be two linear representations of a group Q. Suppose φ = ιd1

1 ⊕ · · · ⊕ ιd�

� and
ψ = ιe1

1 ⊕ · · · ⊕ ιe�

� , where ιi’s are indecomposable and pairwise non-isomorphic,
and all di, ei ≥ 0. Then φ ∼= ψ iff di = ei for every i ∈ [�].

2-cohomology Classes. Let Q be a group, and A an Abelian group. An action
θ of Q on A is a group homomorphism Q → Aut(A). A 2-cocycle w.r.t.
the action θ is a function f : Q × Q → A satisfying the 2-cocycle iden-
tity f(p, q) + f(pq, r) = θp(f(q, r)) + f(p, qr). The set of all 2-cocycles is an
Abelian group under pointwise addition, denoted Z2(Q,A, θ). Given a function
u : Q → A, the function bu(q, q′) = u(q) + θq(u(q′)) − u(qq′) is a 2-coboundary
bu : Q×Q → A. The set of 2-coboundaries is a subgroup of Z2(Q,A, θ), denoted
B2(Q,A, θ). The quotient group H2(Q,A, θ) := Z2(Q,A, θ)/B2(Q,A, θ) is the
group of 2-cohomology classes. For f and f ′ in Z2(Q,A, θ), if f−f ′ ∈ B2(Q,A, θ)
(representing the same cohomology class), they are called cohomologous, denoted
f  f ′.
Preliminaries for Algorithms. As customary in permutation group algorithms
[36], a permutation group is represented in algorithms by a set of generators.
The automorphism group of a group G is represented as a permutation group in
Sym(G). A coset of a permutation group is represented by a single coset repre-
sentative together with a set of generators for the subgroup. A representation of
Q is given by listing the images of q ∈ Q explicitly. Two representations θ and η
are equal, denoted θ = η, if θ(q) = η(q) for every q ∈ Q; compare with θ ∼= η. A
2-cohomology class is represented by a 2-cocycle f , which in turn can be viewed
as a matrix over Zp of size d × |Q|2 when A ∼= Z

d
p.

Proposition 1 ([22]). Given two 2-cocycles f and f ′ w.r.t. the action θ : Q →
A (A = Z

d
p), whether f  f ′ can be decided in time poly(|Q|, d, log p).

Theorem 3 (Module isomorphism [9,13,25]). Given two tuples of matri-
ces (A1, . . . , An), (B1, . . . , Bn), Ai, Bj ∈ M(d, p), there exists a deterministic
poly(d, n, log p)-time algorithm that finds C ∈ GL(d, p) s.t. for every i ∈ [n],
CAi = BiC, if such C exists.

Theorem 4 (Finding units in a matrix algebra [11]). Given a linear basis
of a matrix algebra L in M(d, p), a generating set of the unit group of L can be
computed deterministically in time poly(d, p).
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Theorem 5 (Decomposing into indecomposables [13]). Given a module
M over an algebra L over a finite field F, a direct sum decomposition of M can
be computed in time polynomial in the input size and char(F).

Theorem 6 (Parametrized setwise transporter problem [5]). Given a set
of generators of P ≤ St, and S, T ⊆ [t] with |S| = |T | = k, PS→T := {σ ∈ P |
Sσ = T} can be computed in time poly(t, 2k).

3 The divide and conquer strategy for Problem1

Now we briefly recall the divide and conquer strategy from [22], and how it
applies to the particular case of Problem 1. Problem1 requires us to compute the
isomorphisms of G,H from the isomorphisms of G/Z

d
p,H/Z

d
p. It is then natural

to examine how the quotient group G/Z
d
p and the characteristic subgroup Z

d
p

are related by G; this is the starting point for the strategy from [22].
Given a group G and an Abelian characteristic subgroup A of G, let Q :=

G/A; we denote this situation A ↪→ G � Q. The extension data of A ↪→ G � Q
consists of two functions: the (conjugation) action θ : Q × A → A defined by
(q, a) → qaq−1, and the 2-cocycle fs : Q × Q → A, depending on a transversal
or section s : Q → G—for each coset q ∈ G/A assign s(q) ∈ q—and defined by
fs(p, q) := s(p)s(q)s(pq)−1. Aut(A) × Aut(Q) acts naturally on θ and fs.

In Problem 1, we are given two groups G and H, and their respective charac-
teristic subgroups A and B (recall our convention about characteristic subgroup
functors from Sect. 2). Note that if G ∼= H, then A ∼= B and G/A ∼= H/B. We
first test whether A ∼= B; this is easy because they are Abelian. Recall that we
are given Iso(G/A,H/B); if it is empty then G �∼= H. Therefore, at this point we
have either determined that G �∼= H, or we have A ∼= B (identified as A), and
G/A ∼= H/B (identified as Q). This is the divide step of the strategy.

But these conditions are not sufficient to conclude G ∼= H (e. g., compare D4k

and Z2 × D2k with k odd, both as Z2 ↪→ G � D2k), so we are yet to conquer.
Since every element of G has a unique expression as as(q) for a ∈ A, q ∈ Q,
Iso(G,H) embeds as a subgroup of Aut(A) × Aut(Q). When A ∼= Z

d
p, we have

Aut(A) ∼= GL(d, p); Aut(Q) is given to us as part of Iso(G/A,H/B). By [22,
Lemma II.2], Iso(G,H) consists exactly of those (α, β) ∈ Aut(A) × Aut(Q) that
make the two extension data the same.8 Following [22], we refer to the problem
of computing the coset in Aut(A) × Aut(Q) consisting of elements sending one
group to the other as Extension Data Pseudo-congruence (or EDPC):

Problem 2. Let A ∼= Z
d
p. Given Aut(Q) and the extension data (θ, f) and (η, g)

of A ↪→ G � Q and A ↪→ H � Q, respectively, compute {(α, β) ∈ Aut(A) ×
Aut(Q) : θ(α,β) = η, and f (α,β)  g}.

At first sight, EDPC asks for (α, β) that sends θ to η and f to g, simultane-
ously. However, note that f ∈ H2(Q,A, θ): To define the space in which f lives
8 Note that the condition that A, B be characteristic subgroups is crucial; if A and B

are merely normal subgroups, then this does not hold in general. See [22] for details.
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relies on θ in the first place. On the other hand, θ has no dependence on f . There-
fore, EDPC reduces to solving the following two problems, in order. (We shall
refer to Problem 3 as Action Compatibility or ActComp, and Problem4 as
Cohomology Class Isomorphism or CCIso.)

Problem 3. Suppose we are given a group Q by its Cayley table, Aut(Q) by a
set of generators, and two linear representations θ, η : Q → GL(d, p) by listing
images of Q explicitly. Compute a set of generators for the coset {(α, β) ∈
GL(d, p) × Aut(Q) | θ(α,β) = η}, in time poly(|Q|, pd).

Problem 4. Suppose we are given a group Q by its Cayley table, a representa-
tion θ : Q → GL(d, p) by listing the images of Q explicitly, and two 2-cocycles
f, g : Q × Q → Z

d
p in Z2(Q, Zd

p, θ). Furthermore we are given generators for
{(α, β) ∈ GL(d, p) × Aut(Q) | θ(α,β) = θ}. Compute generators for the coset
{(α, β) ∈ GL(d, p) × Aut(Q) | f (α,β)  g and θ(α,β) = θ}, in time poly(|Q|, pd).

4 Overview of Algorithms for ActComp and CCIso

In this section we give an overview of the algorithms for ActComp and CCIso
when FpQ is tame, thereby proving Theorem 1. See [23] for detailed proofs.

The algorithm for ActComp goes as follows. Given representations θ, η :
Q → GL(d, p), decompose them into a direct sum of indecomposables (Theo-
rem 5), and group them by isomorphism types (Theorem3): θ = ιd1

1 ⊕ ιd2
2 ⊕· · ·⊕

ιd�

� , and η = ιe1
1 ⊕ιe2

2 ⊕· · ·⊕ιe�

� . (Some di’s and/or ej ’s may be 0.) By Theorem 2,
θ ∼= η iff di = ei for all i ∈ [�]. To take into account the effect of Aut(Q), consider
the induced action of Aut(Q) on the indecomposables of FpQ. Firstly, compute
the closure of I = {ι1, . . . , ι�} under Aut(Q), denoted as Clo(I). Viewing Aut(Q)
as a permutation group on the domain Clo(I), we need to compute the coset
in Aut(Q) that sends those indecomposables in θ of multiplicity m, to those
indecomposables in η of multiplicity m, for every m ∈ [d]. For each m ∈ [d], this
is a setwise transporter problem, so applying Theorem6 sequentially gives an
efficient algorithm—provided that we can upper bound the number of indecom-
posables of dimension d, and thereby |Clo(I)|, by poly(|Q|, pd). We prove that
for the tame type this holds. This does not follow directly from the definition
of the tame–wild dichotomy, since that requires the underlying field to be infi-
nite, whereas we care about representations over a finite field and need an upper
bound on the number of indecomposables. We are nonetheless able to prove the
upper bound by analyzing the explicit description of the indecomposable fam-
ilies for tame group algebras in the literature. This may be viewed as the first
main technical contribution of this work. On the other hand, for the wild type
this upper bound fails badly [33]. Finally, by Theorems 4 and 3 we can compute,
for each β ∈ Aut(Q) that make θ and η isomorphic, the coset α ∈ GL(d, p) that
make θ(α,β) = η.

We then give an algorithm for CCIso that takes the coset of action com-
patibilities as its input. As for ActComp, the idea is to view the group of
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action compatibilities as a permutation group on H2(Q, Zd
p, θ). Then given two 2-

cocycles (representing two 2-cohomology classes), the problem becomes a point-
wise transporter problem, a classical problem in permutation group algorithms
that is polynomial-time solvable [36]. For this algorithm to be efficient for our
purpose, we need to upper bound |H2(Q, Zd

p, θ)| as poly(|Q|, pd) when FpQ is
tame. Using some standard cohomological yoga combined with known but deep
results on group cohomology [24], we show that, amazingly, this is true. This is
the second main technical contribution of this work. This finishes the overview.

5 Discussion

Generally speaking (if somewhat glibly), there are two overarching reasons an
instance of an isomorphism problem can be easy (not just group isomorphism):
1) there are very few possible isomorphisms to check, or 2) there aren’t very
many isomorphism classes and/or they have an explicit classification. Although
this is a coarse caricature of reality,9 we believe it provides a useful viewpoint.
The results of [26,35,38] use the classification of Abelian groups (2); the results
of [3,4] roughly fall under (1): The number of isomorphisms is only nO(log log n),
and then they use dynamic programming, an algorithm for code equivalence,
and results on finite simple groups to reduce this to polynomial time; the results
of [5,28,32] fall under (2) in the strong sense that they rely on the fact that
the number of irreducible representations of a group G in characteristic p that
doesn’t divide G is finite, and all other representations are direct sums of these;
and the results of [29] use an essentially finite classification of type (2) to reduce
to (1) (see [10]). In this paper, we show that when (2) holds—of which tameness
is a general interpretation—isomorphism can be tested in P.

Because of the universal property of wildness, an explicit classification is
believed to be impossible for wild problems. This does not rule out structural
information, nor does it rule out efficient algorithms to decide when two points
are equivalent under a wild equivalence relation [9,13,25]. However, the wild
problems that arise in GpI are often “wilder than wild” [6](analogous to a prob-
lem being NP-hard but not in NP), and seem to pose a core difficulty for GpI.

The reasons (1) and (2)—or rather, their absence—also partially explain the
widely held belief that nilpotent groups of class 2—those G for which G modulo
its center is Abelian—are the hardest cases of group isomorphism, despite the
lack of a formal reduction. Option (1) is ruled out, because even for p-groups of
class 2 (nilpotent groups of class 2 and order a power of the prime p) in which
every element is of order p, there are roughly nO(log n) possible isomorphisms
to check.10 Option (2) is also ruled out, because the p-groups of class 2 form a
wild classification problem [37], and in fact, one that is “strictly wilder” than
classifying the representations of finite-dimensional algebras [6].

Furthermore, the only algorithms [10,18,29] with worst-case guarantees for
GpI on nontrivial classes of p-groups also rely in a key way on tameness. Garzon
9 For example, we recognize that this may not apply to certain algorithms for GraphI.

10 This is essentially because Aut(Zk
p) ∼= GL(k, Fp), which is of size ∼ pk2

= nΘ(log n).
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& Zalcstein show that GpI for so-called “P3 groups” can be solved in polynomial
time; their proof shows that P3 groups are central products of certain 2-groups,
and the centrally indecomposable non-Abelian P3 groups of a given order fall
into finitely many one-parameter families, i. e., the classification of such groups is
tame.11 The polynomial-time algorithm for quotients of generalized Heisenberg
groups [29] was recently generalized to groups of genus 2 [10], and the authors
make it clear that this algorithm depends in a crucial way on tameness.

These facts, the upper bounds in this paper, and the lower bound on the
number of indecomposables in wild type, suggest that the border between tame
and wild may be the key border to cross on the way to putting GpI into P.

Acknowledgment. We thank Gábor Ivanyos for pointing out to us reference [11]. J.
A. Grochow is supported by an SFI Omidyar Fellowship, and Y. Qiao by Australian
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Abstract. This paper presents a quantum algorithm for triangle find-
ing over sparse graphs that improves over the previous best quantum
algorithm for this task by Buhrman et al. [SIAM Journal on Computing,
2005]. Our algorithm is based on the recent Õ(n5/4)-query algorithm
given by Le Gall [FOCS 2014] for triangle finding over dense graphs
(here n denotes the number of vertices in the graph). We show in partic-
ular that triangle finding can be solved with O(n5/4−ε) queries for some
constant ε > 0 whenever the graph has at most O(n2−c) edges for some
constant c > 0.

1 Introduction

Background. Triangle finding asks to decide if a given undirected graph G =
(V,E) contains a cycle of length three, i.e., whether there exist three vertices
u1, u2, u3 ∈ V such that {u1, u2} ∈ E, {u1, u3} ∈ E and {u2, u3} ∈ E. This
problem has received recently a lot of attention, for the following reasons.

First, several new applications of triangle finding have been discovered
recently. In particular, Vassilevska Williams and Williams have shown a sur-
prising reduction from Boolean matrix multiplication to triangle finding [17],
which indicates that efficient algorithms for triangle finding may be used to
design efficient algorithms for matrix multiplication, and thus also for a vast
class of problems related to matrix multiplication. Relations between variants
of the standard triangle finding problem (such as triangle finding over weighted
graphs) and well-studied algorithmic problems (such as 3SUM) have also been
shown in the past few years (see for instance [16,18]).

Second, triangle finding is one of the most elementary graph theoretical prob-
lems whose complexity is unsettled. In the time complexity setting, the best
classical algorithm uses a reduction to matrix multiplication [11] and solves tri-
angle finding in time O(n2.38), where n denotes the number of vertices in G. In
the time complexity setting again, Grover search [10] immediately gives, when
applied to triangle finding as a search over the set of triples of vertices of the
graph, a quantum algorithm with time complexity Õ(n3/2), which is still the best
known upper bound for the quantum time complexity of this problem.1 In the
1 In this paper the notation Õ(·) removes polylogn factors.
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query complexity setting, where an oracle to the adjacency matrix of the graph
is given and only the number of calls to this oracle is counted, a surge of activity
has lead to quantum algorithms with better complexity. Magniez, Santha and
Szegedy [15] first presented a quantum algorithm that solves triangle finding with
Õ(n1.3) queries. This complexity was later improved to O(n1.296...) by Belovs [4],
then to O(n1.285...) by Lee, Magniez and Santha [13] and Jeffery, Kothari and
Magniez [12], and further improved recently to Õ(n5/4) by Le Gall [8]. The main
open problem now is to understand whether this Õ(n5/4)-query upper bound is
tight or not. The best known lower bound on the quantum query complexity of
triangle finding is the straightforward Ω(n) lower bound.

Another reasonwhy triangle finding has receivedmuch attention from the quan-
tum computing community is that work on the quantum complexity of triangle
finding has been central to the development of algorithmic techniques. Indeed,
all the improvement mentioned in the previous paragraph have been obtained by
introducing either new quantum techniques or new paradigms for the design of
quantum algorithms: applications of quantum walks to graph-theoretic problems
[15], introduction of the concept of learning graphs [4] and improvements to this
technique [13], introduction of quantum walks with quantum data structures [12],
association of combinatorial arguments with quantum walks [8].

Triangle Finding in Sparse Graphs. The problem we will consider in this paper
is triangle finding over sparse graphs (the graphs considered are, as usual, undi-
rected and unweighted). If we denote m the number of edge of the graph (i.e.,
m = |E|), the goal is to design algorithms with complexity expressed as a func-
tion of m and n. Ideally, we would like to show that if m = n2−c for any constant
c > 0 then triangle finding can be solved significantly faster than in the dense
case (i.e., m ≈ n2). Besides its theoretical interest, this problem is of practical
importance since in many applications the graphs considered are sparse.

Classically, Alon, Yuster and Zwick [1] constructed an algorithm exploiting
the sparsity of the graph and working in time O(m1.41), which gives better
complexity than the O(n2.38)-time complexity mentioned above when m ≤ n1.68.
Understanding whether an improvement over the dense case is also possible for
larger values m is a longstanding open problem. Note in the classical query
complexity setting it is easy to show that the complexity of triangle finding is
Θ(n2), independently of the value of m.

In the quantum setting, using amplitude amplification, Buhrman et al. [6]
showed how to construct a quantum algorithm for triangle finding with time and
query complexity O(n+

√
nm). This upper bound is tight when m ≤ n since the

Ω(n)-query lower bound for the quantum query complexity of triangle finding
already mentioned also holds when m is a constant. Childs and Kothari [7]
more recently developed an algorithm, based on quantum walks, that detects
the existence of subgraphs in a given graph. Their algorithm works for any
constant-size subgraph. For detecting the existence of a triangle, however, the
upper bound they obtain is Õ(n2/3

√
m) queries for m ≥ n, which is worse

that the bound obtained in [6]. Buhrman et al.’s result in particular gives an
improvement over the Õ(n5/4)-query quantum algorithm whenever m ≤ n3/2.
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A natural question is whether a similar improvement can be obtained for larger
values of m. For instance, can we obtain query complexity Õ(n5/4−ε) for some
constant ε > 0 when m ≈ n1.99? A positive answer would show that even a little
amount of sparsity can be exploited in the quantum query setting, which is not
known to be true in the classical setting as mentioned in the previous paragraph.

Our Results. In this paper we answer positively to the above question. Our main
result is as follows.

Theorem 1. There exists a quantum algorithm that solves, with high probabil-
ity, the triangle finding problem over graphs of n vertices and m edges with query
complexity

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

O(n +
√

nm) if 0 ≤ m ≤ n7/6,

Õ(nm1/14) if n7/6 ≤ m ≤ n7/5,

Õ(n1/6m2/3) if n7/5 ≤ m ≤ n3/2,

Õ(n23/30m4/15) if n3/2 ≤ m ≤ n13/8,

Õ(n59/60m2/15) if n13/8 ≤ m ≤ n2.

For the dense case (i.e., m ≈ n2) we recover the same complexity Õ(n5/4) as
in [8]. Whenever m = n2−c for some constant c > 0 (in particular, for m ≈ n1.99),
we indeed obtain query complexity Õ(n5/4−ε) for some constant ε > 0 depending
on c. The query complexity of our algorithm is better than the query complexity
of Buhrman et al.’s algorithm [6] whenever m � n7/6. When m � n7/6 we obtain
the same complexity O(n +

√
nm) as in [6].

2 Preliminaries

2.1 Query Complexity for Graph-Theoretic Problems

In this paper we adopt the standard model of quantum query complexity for
graph-theoretic problems. The presentation given below will follow the descrip-
tion of this notions given in [8].

For any finite set T and any r ∈ {1, . . . , |T |} we denote S(T, r) the set of all
subsets of r elements of T . We use the notation E(T ) to represent S(T, 2), i.e.,
the set of unordered pairs of elements in T .

Let G = (V,E) be an undirected and unweighted graph, where V represents
the set of vertices and E ⊆ E(V ) represents the set of edges. We write n = |V |.
In the query complexity setting, we assume that V is known, and that E can be
accessed through a quantum unitary operation OG defined as follows. For any
pair {u, v} ∈ E(V ), any bit b ∈ {0, 1}, and any binary string z ∈ {0, 1}∗, the
operation OG maps the basis state |{u, v}〉|b〉|z〉 to the state

OG|{u, v}〉|b〉|z〉 =
{

|{u, v}〉|b ⊕ 1〉|z〉 if {u, v} ∈ E,
|{u, v}〉|b〉|z〉 if {u, v} /∈ E,

where ⊕ denotes the bit parity (i.e., the logical XOR). We say that a quantum
algorithm computing some property of G uses k queries if the operation OG,
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given as an oracle, is called k times by the algorithm. We also assume that we
know the number of edges of the input graph (i.e., we know m = |E|). All the
results in this paper can be easily generalized to the case where m is unknown.

Quantum Enumeration. Let fG : {1, . . . , N} → {0, 1} be a Boolean function
depending on the input graph G, and let us write M = f−1(1). Assume that for
any x ∈ {1, . . . , N} the value fG(x) can be computed using at most t queries to
OG. Grover search enables us to find an element x such that fG(x) = 1, if such an
element exists, using Õ(

√

N/M ×t) queries to OG. A folklore observation is that
we can then repeat this procedure to find all the elements x ∈ {1, . . . , N} such

that fG(x) = 1 with Õ
((√

N
M +

√

N
M−1 + · · · +

√

N
1

)

× t
)

= Õ
(√

N × M × t
)

queries. We call this procedure quantum enumeration.

Quantum Walk Over Johnson Graphs. Let T be a finite set and r be a positive
integer such that r ≤ |T |. Let fG : S(T, r) → {0, 1} be a Boolean function
depending on the input graph G. We say that a set A ∈ S(T, r) is marked if
fG(A) = 1. Let us consider the following problem. The goal is to find a marked
set, if such a set exists, or otherwise report that there is no marked set. We are
interested in the number of calls to OG to solve this problem. The quantum walk
search approach developed by Ambainis [2] solves this problem using a quantum
walk over a Johnson graph.

The Johnson graph J(T, r) is the undirected graph with vertex set S(T, r)
where two vertices R1, R2 ∈ S(T, r) are connected if and only if |R1 ∩ R2| =
r − 1. In a quantum walk over a Johnson graph J(T, r), the state of the walk
corresponds to a node of the Johnson (i.e., to an element A ∈ S(T, r)). A data
structure D(A), which in general depends on G, is associated to each state A.
There are three costs to consider: the set up cost S representing the number of
queries to OG needed to construct the data structure of the initial state of the
walk, the update cost U representing the number of queries to OG needed to
update the data structure when one step of the quantum walk is performed (i.e.,
updating D(A) to D(A′) for some A′ ∈ S(T, r) such that |A ∩ A′| = r − 1), and
the checking cost C representing the number of queries to OG needed to check if
the current state A is marked (i.e., checking whether fG(A) = 1). Let ε > 0 be
such that, for all input graphs G for which at least one marked set exists, the
fraction of marked states is at least ε. Ambainis [2] (see also [14]) has shown that
the quantum walk search approach outlined above finds with high probability a
marked set if such set exists (or otherwise report that there is no marked set)
and has query complexity Õ

(

S + 1√
ε

(
√

r × U + C)
)

.

2.2 Quantum Algorithm for Dense Triangle Finding

In this subsection we outline the Õ(n5/4)-query quantum algorithm, on which our
algorithm is mainly based, for triangle finding over a dense graph by Le Gall [8].
We actually present a version of this algorithm that solves the following slightly
more general version of triangle finding, since this will be more convenient when
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describing our algorithms for sparse graphs in the next section: given two (non
necessarily disjoint) sets V1, V2 ⊆ V , find a triangle {v1, v2, v3} of G such that
v1 ∈ V1 and v2, v3 ∈ V2, if such a triangle exists. Note that the original triangle
finding problem is the special case V1 = V2 = V .

Let V1 be any subset of V . For any sets X ⊆ V1 and Y ⊆ V , we define
the set ΔG(X,Y ) = E(Y ) \

⋃

u∈X E(NG(u)), where NG(u) denotes the set of

neighbors of u. For any vertex w ∈ V , we define the set ΔG(X,Y,w) =
{

{u, v} ∈

ΔG(X,Y ) | {u,w} ∈ E and {v, w} ∈ E
}

. An important concept used in [8] is
the notion of k-good sets.

Definition 1. Let k be any constant such that 0 ≤ k ≤ 1, and V1 be any subset
of V . A set X ⊆ V1 is k-good for (G,V1) if the inequality

∑

w∈V1
|ΔG(X,Y,w)| ≤

|Y |2|V1|1−k holds for all Y ⊆ V .

Lemma 1 ([8]). Let k be any constant such that 0 ≤ k ≤ 1. Suppose that X is
a set obtained by taking uniformly at random, with replacement,

⌈

3|V1|k log n
⌉

elements from V1. Then X is k-good for (G,V1) with probability at least 1−1/n.

Lemma 1 was proved in [8] only for the case V1 = V , but the generalization is
straightforward.

Let a, b and k be three constants such that 0 < b < a < 1 and 0 < k < 1.
The values of these constants will be set later. The quantum algorithm in [8]
works as follows.

The algorithm first takes a set X ⊆ V1 obtained by choosing uniformly at
random

⌈

3|V1|k log n
⌉

elements from V1, and checks if there exists a triangle of G
with a vertex in X and two vertices in V2. This can be done using Grover search
with

O
(

√

|X| × |E(V2)|
)

= Õ
(

|V1|k/2|V2|
)

(1)

queries. If no triangle has been reported, we know that any triangle of G with
one vertex in V1 and two vertices in V2 must have an edge in ΔG(X,V2).

Now, in order to find a triangle with an edge in ΔG(X,V2), if such a triangle
exists, the idea is to search for a set A ∈ S(V2, �|V2|a) such that ΔG(X,A)
contains an edge of a triangle. To find such a set A, the algorithm performs a
quantum walk over the Johnson graph J(V2, �|V2|a). The states of this walk
correspond to the elements in S(V2, �|V2|a). The state corresponding to a set
A ∈ S(V2, �|V2|a) is marked if ΔG(X,A) contains an edge of a triangle of G.
In case the set of marked states is not empty, the fraction of marked states
is ε = Ω

(

|V2|2(a−1)
)

. The data structure of the walk stores the set ΔG(X,A).
Concretely, this is done by storing the couple (v,NG(v)∩X) for each v ∈ A, since
this information is enough to construct ΔG(X,A) without using any additional
query. The setup cost is S = |A| × |X| = Õ(|V2|a|V1|k) queries. The update cost
is U = 2|X| = Õ(|V1|k) queries. The query complexity of the quantum walk is

Õ
(

S +
√

1/ε
(

|V2|a/2 × U + C
))

, (2)

where C is the cost of checking if a state is marked.
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The checking procedure is done as follows: check if there exists a vertex
w ∈ V1 such that ΔG(X,A) contains a pair {v1, v2} for which {v1, v2, w} is
a triangle of G. For any w ∈ V1, let Q(w) denote the query complexity of
checking if there exists a pair {v1, v2} ∈ ΔG(X,A) such that {v1, v2, w} is a
triangle of G. Using Ambainis’ variable cost search [3] this checking procedure
can be implemented using C =

√

∑

w∈V1
Q(w)2 queries. It thus remains to give

an upper bound on Q(w). Let us fix w ∈ V1. First, a tight estimator of the
size of ΔG(X,A,w) is computed: the algorithm computes an integer δ(X,A,w)
such that |δ(X,A,w)− |ΔG(X,A,w)|| ≤ 1

10 × |ΔG(X,A,w)|, which can be done
in Õ(|V1|k) queries using (classical) sampling. The algorithm then performs a
quantum walk over the Johnson graph J(A,

⌈

|V2|b
⌉

). The states of this walk
correspond to the elements in S(A,

⌈

|V2|b
⌉

). We now define the set of marked
states of the walk. The state corresponding to a set B ∈ S(A,

⌈

|V2|b
⌉

) is marked
if B satisfies the following two conditions:

1. There exists a pair {v1, v2} ∈ ΔG(X,B,w) such that {v1, v2} ∈ E (i.e., such
that {v1, v2, w} is a triangle of G);

2. |ΔG(X,B,w)| ≤ 10 × |V2|2(b−a) × δ(X,A,w).

The fraction of marked states is ε′ = Ω
(

|V2|2(b−a)
)

. The data structure of the
walk will store ΔG(X,B,w). Concretely, this is done by storing the couple (v, ev)
for each v ∈ B, where ev = 1 if {v, w} ∈ E and ev = 0 if {v, w} /∈ E. The setup
cost is S′ =

⌈

|V2|b
⌉

queries since it is sufficient to check if {v, w} is an edge
for all v ∈ B. The update cost is U′ = 2 queries. The checking cost is C′

w =
O

(

√

|ΔG(X,B,w)|
)

= O
(

|V2|b
|V2|a

√

δ(X,A,w)
)

= O
(

|V2|b
|V2|a

√

|Δ(X,A,w)|
)

. We

thus obtain the bound Q(w) = Õ
(

|V1|k + S′ +
√

1/ε′ (|V2|b/2 × U′ + C′
w

)

)

, and
conclude that

C = Õ

⎛

⎝

√

|V1|
(

|V1|k + S′ +
|V2|b/2 × U′

√
ε′

)

+
|V2|b−a

√
ε′ ×

√

∑

w∈V1

|Δ(X,A,w)|

⎞

⎠ .

The final key observation is that, since the set X is k-good for (G,V1) with
high probability, as guaranteed by Lemma 1, the term

∑

w∈V |Δ(X,A,w)| in
the above expression can be replaced by O(|V2|2a|V1|1−k), which enables us to
express C as a function of a, b and k, and then the complexity of the second part
of the algorithm (Expression (2)) as a function of a, b and k. The complexity
of the whole algorithm (the maximum of Expressions (1) and (2)) can thus be
written as a function of a, b and k as well.

For the original triangle finding problem (i.e., for the case V1 = V2 = V ),
taking a = 3

4 and b = k = 1
2 gives query complexity Õ(n5/4).
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3 Quantum Algorithm for Sparse Triangle Finding

In this section we describe our quantum algorithm for triangle finding in sparse
graphs and prove Theorem 1.

Let d be a real number such that 0 ≤ d ≤ 1. The value of this parameter will
be set later. We define the two subsets of V , Vd

h = {v ∈ V | deg(v) ≥ 9
10×nd} and

Vd
l = {v ∈ V | deg(v) ≤ 11

10 ×nd}. A crucial observation is that |Vd
h| = O(m/nd),

since the graph G has m edges. The following proposition shows how to efficiently
classify all the vertices of V into vertices in Vd

h and vertices in Vd
l .

Proposition 1. There exists a quantum algorithm using Q1 = Õ(n1−d
√

m)
queries that partitions the set V into two sets V d

h and V d
l such that, with high

probability, V d
h ⊆ Vd

h and V d
l ⊆ Vd

l .

Proof. Let v be any vertex in V . Using quantum counting [5] we can compute,
using Õ

(√

n
nd

)

queries, a value a(v) such that |a(v) − deg(v)| ≤ nd/100 with
probability at least 1−1/poly(n). We use a(v) to classify v as follows: we decide
“ v is in Vd

h ” if a(v) ≥ nd, and decide “ v is in Vd
l ” if a(v) < nd. This decision

is correct with probability at least 1 − 1/poly(n).
We can thus apply quantum enumeration as described in Sect. 2.1 to obtain

a set V d
h ⊆ V of vertices such that, with high probability, all the vertices in V d

h

are in Vd
h and all the vertices in V \ V d

h are in Vd
l . We then take V d

l = V \ V d
h .

The overall complexity of this approach is Õ
(√

n × m
nd ×

√

n
nd

)

= Õ(n1−d
√

m)
queries, since |Vd

h| = O(m/nd). ��

In the remaining of the section we assume that the algorithm of Proposition 1
outputs a correct classification (i.e., V d

h ⊆ Vd
h and V d

l ⊆ Vd
l ), which happens

with high probability. In particular we assume that |V d
h | = O(m/nd). We will

say that a vertex v ∈ V is d-high if v ∈ V d
h , and say it is d-low if v ∈ V d

l . Once the
vertices have been classified, checking if G has a triangle can be divided into four
subproblems: checking if G has a triangle with three d-low vertices, checking if G
has a triangle with two d-low vertices and one d-high vertex, checking if G has a
triangle with one d-low-degree vertex and two d-high vertices, and checking if G
has a triangle with three high-degree triangles. We now present six procedures
to handle these cases (for some cases we present more than one procedure to
allow us to choose which procedure to use according to the value of m).

Proposition 2. Let a1, k1 and b1 be any constants such that 0 < a1, k1 < 1
and 0 < b1 < a1. There exists a quantum algorithm that finds a triangle of G
consisting of three d-low vertices, if such a triangle exists, with high probability
using Q2 = Õ(n+nk1/2m1/2+na1+d/2+k1−1/2+n1/2+d/2+k1−a1/2+n3/2+k1/2−a1+
n1+b1+d/2−a1 + n3/2−b1/2 + n3/2−k1/2) queries.

The proof of Proposition 2 will use the following key lemma. The proof of
this lemma can be found in the full version of the paper [9].

Lemma 2. Let k be any constant such that 0 < k < 1. Suppose that X is a
set of size |X| =

⌈

3nk log n
⌉

obtained by taking uniformly at random vertices
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from V d
l . Then, with probability at least 1 − 1

n exp( 231
10 nd+k−1 log n)

, the inequality

|NG(v) ∩ X| < 33
10nd+k−1 log n + 2 log n holds for all vertices v ∈ V d

l .

Proof (Proof of Proposition 2). We adapt the algorithm for the dense case
presented in Sect. 2.2. We take V1 = V2 = V d

l , and X ⊆ V1 of size |X| =
⌈

3|V1|k1 log n
⌉

.
We replace the first step of the algorithm, which checks if there exists a tri-

angle of G with a vertex in X and two vertices in V2, by the following procedure
based on [6]. We take a random edge {u, v} ∈ E(V2) ∩ E and then try to find
a vertex w from X such that {u, v, w} is a triangle of G. Note that this can
be implemented using two Grover searches in Õ(

√

|E(V2)|/|E(V2) ∩ E| +
√

|X|)
queries, and that in the worst case (i.e., when there is only one triangle) the
success probability of this approach is Θ(1/|E(V2)∩E|). Using amplitude ampli-
fication we can then check with high probability the existence of such a triangle
with total query complexity

Õ
(

√

|E(V2) ∩ E| × (
√

|E(V2)|/|E(V2) ∩ E| +
√

|X|)
)

= Õ(n +
√

nk1m). (3)

We now show how to adapt the second step of the algorithm presented in
Sect. 2.2 to exploit the sparsity of the graph. First, as observed in [8], the cost of
estimating the size of ΔG(X,A,w) can be reduced to Õ(

√
nk1) queries by using

quantum counting instead of random sampling (quantum counting was not used
in [8] since it did not result in any speed-up for the dense case, but for the sparse
case this is necessary). We now describe our main ideas to exploit the sparsity
of the graph, and show how to reduce the cost of two quantum walks.

First, we describe how to reduce the setup cost S and the update cost U
as follows. By Lemma 2, we know that |NG(v) ∩ X| < t for all v ∈ V2, where
t = 33

10nd1+k1−1 log n+2 log n. Therefore we can use quantum enumeration to find

all vertices in NG(v) ∩ X with Õ

(

√

|X|
t + · · · +

√

|X|
1

)

= Õ(
√

|X|t) queries.

The setup cost S is thus Õ
(

|A| ×
√

|X|t
)

= Õ(na1+k1+d/2−1/2) queries, and the

update cost U = Õ(
√

|X|t) = Õ(nk1+d/2−1/2) queries.
Next, we describe how to reduce the setup cost S′. This set up requires to obtain

the couple (v, ev) for each v ∈ B, where where w is a fixed vertex in V1, ev = 1
if {v, w} ∈ E and ev = 0 if {v, w} /∈ E. Let μ(w) = nd × |B|

|V | = nd+b1−1 be
the average of |NG(w) ∩ B| over all B. We use quantum enumeration to find at
most 10 × μ(w) vertices in NG(w) ∩ B from B. Thus the cost of this procedure

is S′ = Õ

(

√

|B|
|μ(w)| + · · ·

√

|B|
1

)

= Õ(
√

|B| × |μ(w)|) = Õ(nb1+d/2−1/2) queries.

Note that this procedure will not correctly prepare the database for all B’s (since
|NG(w) ∩ B| may exceeds 10 × μ(w) for some B’s); it will prepare correctly the
database only for a large fraction of the B’s. This is nevertheless not a problem
since the initial state of the quantum walk is a uniform superposition of all the
B’s: this procedure will thus prepare a state close enough to the ideal state, which
will modify only in a negligible way the final success probability of the whole walk.
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We also modify the definition of a marked state for the second walk (we add
one condition). Namely, the state corresponding to a set B ∈ S(A,

⌈

|V2|b1
⌉

) will
be marked if B satisfies the following three conditions:

1. there exist two vertices v1, v2 ∈ B such that {v1, v2} ∈ E (i.e., such that
{v1, v2, w} is a triangle of G);

2. |ΔG(X,B,w)| ≤ 10 × |V2|2(b1−a1) × δ(X,A,w);
3. |NG(w) ∩ B| ≤ 10 × μ(w).

It is easy to show that adding the third condition does not change significantly
the fraction of marked states.

The checking procedure of the second walk (and thus its cost C′
w) is the same

as in the dense case.
By evaluating the performance of the walks as done for the dense case in

Sect. 2.2, but replacing Expression (1) by Expression (3) and replacing in the
evaluation of Expression (2) the quantities S, U, S′ and the cost of estimating
|ΔG(X,A,w)| by the expressions we just derived, we obtain the claimed query
complexity for the whole algorithm. For instance, the checking cost of the first
walk is

C = Õ

⎛

⎝

√

|V1|
(

|V1|k1/2 + S′+
|V2|b1/2 × U′

√
ε′

)

+
|V2|b1−a1

√
ε′ ×

√

∑

w∈V1

|Δ(X,A,w)|

⎞

⎠

= Õ
(

n1/2+k1/2 + nb1+d/2 + n1/2+a1−b1/2 + n1/2+a1−k1/2
)

queries. ��

The proofs of the following five propositions can be found in [9].

Proposition 3. Let a2, k2 and b2 be any constants such that 0 < a2 < 1,
1 < nk2 < |V d

h | and 0 < b2 < a2. A triangle of G consisting of two d-low
vertices and one d-high vertex can be detected with high probability using Q3 =
Õ(n+nk2/2m1/2+na2+d+k2m−1/2+n1+d+k2−a2/2m−1/2+n1+k2/2−a2−d/2m1/2+
n1+b2−a2−d/2m1/2 + n1−b2/2−d/2m1/2 +n1−d/2−k2/2m1/2) queries.

Proposition 4. Let a3, k3 and b3 be constants such that 1 < na3 < |V d
h |,

0 < k3 < 1 and 0 < b3 < a3. A triangle of G consisting of two d-high ver-
tices and one d-low vertex can be detected with high probability using Q4 =
Õ(n + nk3/2m1/2 + na3+k3 + nk3−a3/2−dm + n1/2+k3/2−a3−dm + nb3−a3−d/2m +
n1/2−b3/2−dm + n1/2−d−k3/2m) queries.

Proposition 5. A triangle of G consisting of three d-high vertices can be
detected with high probability using Q5 = Õ((m/nd)5/4) queries.

Proposition 6. Let b4 be any constant such that 0 < b4 < 1. A triangle of G
consisting of three d-low vertices can be detected with high probability using Q6 =
Õ(nb4+d/2 + n3/2−b4/2 + n1/2+d) queries.
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Proposition 7. A triangle consisting of at least one d-high vertex can be detected
with high probability using Q7 = O(n + n−d/2m) queries.

We are now ready to prove Theorem 1.

Proof (Proof of Theorem 1). From Propositions 1, 2, 3, 4, 5, 6 and 7 and the dis-
cussion before Proposition prop:B2, the query complexity of our whole algorithm
is min

[

(Q1 + Q6 + Q7), (Q1 + Q3 + Q4 + Q5 + Q6), (Q1 + Q2 + Q3 + Q4 + Q5)
]

.
We write m = n�, for 0 ≤ � ≤ 2, and optimize below the parameters.

If 7
6 ≤ � ≤ 7

5 , the query complexity is upper bounded by Q1 + Q6 + Q7 =
Õ(n1+�/2−d + n3/2−b4/2 + nb4+d/2), which is optimized by taking b4 = 1 − �

7 and
d = 3�

7 , giving the upper bound Õ(n1+�/14).
If 7

5 ≤ � ≤ 3
2 , the query complexity is upper bounded by Q1 + Q6 + Q7 =

Õ(n3/2−b4/2 + n1/2+d + n�−d/2), which is optimized by taking b4 = 8
3 − 4�

3 and
d = 2�

3 − 1
3 , giving the upper bound Õ(n1/6+2�/3).

If 3
2 ≤ � ≤ 13

8 , the query complexity is upper bounded by Q1+Q3+Q4+Q5+
Q6 = Õ(n3/2−b4/2+n1/2+d+na2+d+k2−�/2+n1+b2+�/2−a2−d/2+n1+�/2−b2/2−d/2+
n1+�/2−d/2−k2/2 +nb3+�−a3−d/2 +n1/2+�−b3/2−d +n1/2+�−d−k3/2), which is opti-
mized by taking a2 = 3

10 + 3�
10 , a3 = 23�

15 − 59
30 , b2 = k2 = 1

5 + �
5 , b3 = k3 = 14�

15 − 16
15 ,

b4 = 22
15 − 8�

15 and d = 4
15 + 4�

15 , giving the upper bound Õ(n23/30+4�/15).
If 13

8 ≤ � ≤ 2, the query complexity is upper bounded by Q1+Q2+Q3+Q4+
Q5 = Õ(na1+d/2+k1−1/2+n1+b1+d/2−a1 +n3/2−b1/2+n3/2−k1/2+na2+d+k2−�/2+
n1+b2+�/2−a2−d/2 + n1+�/2−b2/2−d/2 + n1+ �/2− d/2− k2/2 + nb3 + � − a3 − d/2 +
n1/2+�−b3/2−d + n1/2+�−d−k3/2), which is optimized by taking a1 = 3

4 , a2 =
19
20 − �

10 , a3 = 3�
5 − 9

20 , b1 = k1 = 31
30 − 4�

15 , b2 = k2 = 19
30 − �

15 , b3 = k3 = 7
30 + 2�

15

and d = 4�
5 − 3

5 , giving the upper bound Õ(n59/60+2�/15).
For the case � ≤ 7

6 we can obtain a better upper bound by using the
O(n+

√
nm)-query algorithm by Buhrman et al. [6]. This upper bound actually

corresponds to a degenerate case appearing in our approach: the case d = 0.
Indeed, observe that without loss of generality we can assume that deg(v) ≥ 1
for all vertices v ∈ V (for instance by adding dummy vertices to the graph). In
this case we have Vd

h = V for d = 0, which means that we do not need to apply
the algorithm of Proposition 1 in order to obtain a classification: we simply out-
put V 0

h = V and V 0
l = ∅ (i.e., all the vertices of the graph are 0-high). The

only type of triangles we need to consider is triangles with three 0-high vertices,
which can be found with complexity O(n +

√
nm) by Proposition 7 (in this case

the algorithm of Proposition 7 is exactly the same as the algorithm in [6]). ��
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Abstract. The Joint Crossing Number problem asks for a simultaneous
embedding of two disjoint graphs into one surface such that the number of
edge crossings (between the two graphs) is minimized. It was introduced
by Negami in 2001 in connection with diagonal flips in triangulations
of surfaces, and subsequently investigated in a general form for small-
genus surfaces. We prove that all of the commonly considered variants
of this problem are NP-hard already in the orientable surface of genus 6,
by a reduction from a special variant of the anchored crossing number
problem of Cabello and Mohar.

1 Introduction

Motivated by his investigation on diagonal flips in triangulations of surfaces [5],
Negami introduced in [6] the concept of joint crossing numbers. The general
setup consists of two graphs embeddable on the same surface, and the problem
is to find a simultaneous embedding into this surface, so that the number of
edge crossings is minimized (Since both graphs are embedded, every crossing
must involve an edge from each of the graphs.).

In Negami’s original definition, the embedded graphs were allowed to share
vertices and edges (this is the diagonal crossing number). In the subsequent
papers on joint crossing numbers, the attention has been restricted to the case
in which the corresponding graphs are disjoint. This mainstream case is the one
we focus on in this work, and we restrict the attention to orientable surfaces.

Within this case (the graphs G1, G2 to be jointly embedded in the same
surface Σ are disjoint), three variants proposed by Negami have been studied. In
the first one, the aim is to minimize the number of crossings in any embedding of
the disjoint union G1+G2 of G1 and G2; this is simply the joint crossing number.
In the second variant, the joint homeomorphic crossing number, embeddings of
G1 and G2 are already given, and one must embed G1+G2 so that the restriction
of this embedding to each Gi is homeomorphic to the prescribed embedding of
Gi. In the third, and most restricted variant, the joint orientation-preserving
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homeomorphic crossing number, in addition, the restrictions of the embedding
of G1 + G2 to each Gi must be orientation-preserving homeomorphic to the
prescribed embedding of Gi (See the next section for more rigorous definitions.).

Relatively little is known on either of these variants. In [6], Negami bounded
the homeomorphic crossing number in terms of the Betti numbers of the graphs
and the genus of Σ. In [1], Archdeacon and Bonnington calculated the exact
homeomorphic crossing number of two graphs embedded in the projective plane,
and also gave lower and upper bounds, within a constant factor of each other,
for the case in which the host surface is the torus (Negami also obtained some
nontrivial bounds for toroidal joint embeddings in [6]). Richter and Salazar inves-
tigated in [7] the case in which both graphs are densely embedded.

The associated algorithmic problems are the following:

Joint Crossing Number
Input: Graphs G1, G2 embeddable in a given surface Σ, and an integer k.
Question: Is the joint crossing number of G1 and G2 in Σ at most k?

Joint Homeomorphic Crossing Number
Input: Embeddings of each of two disjoint graphs G1, G2 in a surface Σ, and k.
Question: Is the joint homeomorphic crossing number of G1 and G2 at most k?

Joint OP-Homeomorphic Crossing Number
Input: Embeddings of each of two disjoint graphs G1, G2 in a surface Σ, and k.
Question: Is the joint orientation-preserving homeomorphic crossing number of
G1 and G2 in Σ at most k?

It follows from [1, Theorem 2.2] that the last two problem variants are easy in
the projective plane (it suffices to calculate the dual widths of the embeddings).
The aforementioned results also suggest (although this is an open problem) that
optimal solutions in the case of Σ being the torus, can always be obtained in a
particularly nice way: embed all the vertices of one of the graphs, say G1, in the
same face of the other graph G2 (and then route the excessive edges of G1 across
G2). This nice property ceases to be true for the homeomorphic variant already
in the double torus [7], and our results imply that the property fails really badly
for all higher genus surfaces and all problem variants.

In his comprehensive survey [8] of the many different variants of crossing
number definitions, Marcus Schaefer marks the complexity of all the aforemen-
tioned variants of the joint crossing number as open. These problems are all
easily seen to be in NP, so the open problem is their hardness. Our main result
in this paper settles this question.

Theorem 1.1. Joint Crossing Number, Joint Homeomorphic Crossing
Number, and Joint OP-Homeomorphic Crossing Number are NP-hard
problems in any orientable surface of genus 6 or higher. This remains true even
if the inputs are restricted to simple 3-connected graphs.

The proof of this theorem is via a chain of reductions from a special variant
of the anchored crossing number problem of Cabello and Mohar [3].
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The rest of this paper is organized as follows. In Sect. 2 we give rigorous def-
initions of the variants of the joint embedding problem we analyze, and review
some basic concepts. To work out the reduction from Cabello-Mohar’s anchored
crossing number, we devise joint embeddings in which certain vertices of one
of the graphs are required to lie in prescribed faces of the other embedding.
These face-anchored joint embeddings are developed in Sect. 3. An additional
fine-tuning of the construction is given in Sect. 4. The reduction to the anchored
crossing number is laid out in Sect. 5. Finally, in Sect. 6 we present some con-
cluding remarks, among which we give back a slight strengthening of the main
result of aforementioned [3].

2 Basic Concepts

We follow the standard notation of letting G1 + G2 denote the graph obtained
as the disjoint union of two graphs G1, G2. A toroidal grid of size p × q is the
Cartesian product of a p-cycle with a q-cycle; this is a 4-regular graph consisting
of an edge disjoint union of q copies of a p-cycle and p copies of a q-cycle. For
each integer h ≥ 0, we let Sh denote the orientable surface of genus h.

We recall that in a drawing of a graph G in a surface Σ, vertices are mapped
to points and edges are mapped to simple curves (arcs) such that the endpoints
of an arc are the vertices of the corresponding edge; no arc contains a point that
represents a non-incident vertex. For simplicity, we often make no distinction
between the topological objects of a drawing (points and arcs) and their corre-
sponding graph theoretical objects (vertices and edges). A crossing in a drawing
is an intersection point of two edges in a point other than a common endvertex.
An embedding of a graph in a surface is a drawing with no edge crossings.

Let G1, G2 be disjoint graphs, both of which embed in the same orientable
surface Σ. A drawing G0 of the graph G1+G2 in Σ is called a joint embedding of
(G1, G2) if the restriction of G0 to Gi, for each i = 1, 2, is an embedding. Further-
more, if prescribed embeddings G0

1, G
0
2 of G1, G2 are given and the restriction of

G0 to Gi is homeomorphic (respectively, orientation-preserving homeomorphic)
to G0

i , i = 1, 2, then G0 is a joint homeomorphic embedding of (G0
1, G

0
2) (respec-

tively, joint orientation-preserving homeomorphic embedding of (G0
1, G

0
2)) in Σ.

Loosely speaking, in the joint homeomorphic variant(s), one is only allowed to
“deform” the prescribed embeddings of G1, G2 across the host surface.

Note that in any joint embedding of (G1, G2), crossings may arise only
between an edge of G1 and an edge of G2. The joint crossing number of (G1, G2)
in Σ is the minimum number of crossings over all joint embeddings of (G1, G2)
in Σ. The joint homeomorphic crossing number and joint orientation-preserving
homeomorphic crossing number are defined analogously.

In order to resolve the ordinary and homeomorphic variants of joint crossing
number problems at once, we introduce the following. An instance (G1, G2) of
the joint crossing number problem in Σ is called orientation-preserving homeo-
invariant if the input graphs G1, G2 are given together with embeddings G′

1, G
′
2

in Σ, and the following holds: there exists a joint embedding G0 of (G1, G2),
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achieving the joint crossing number, such that the subembedding of G0 restricted
to Gi is orientation-preserving homeomorphic to G′

i, for i = 1, 2.
Note the important difference—while in the joint orientation-preserving

homeomorphic crossing number problem we require the considered joint embed-
dings to respect the given homeomorphism classes of G0

1, G
0
2 (a restriction), for an

orientation-preserving homeo-invariant instance we admit all joint embeddings,
but we know that some of the optimal solutions will respect the homeomorphism
classes of G′

1, G
′
2 (a promise). We call OP-Homeo-Invariant Joint Crossing

Number problem the ordinary Joint Crossing Number problem with inputs
restricted only to orientation-preserving homeo-invariant instances.

The following is a useful artifice in crossing numbers research. In a weighted
graph, each edge is assigned a positive number (the weight, or thickness of the
edge). Now the weighted joint crossing number is defined as the ordinary joint
crossing number, but a crossing between edges e1 and e2, say of weights t1 and t2,
contributes t1t2 to the weighted joint crossing number. The weighted variants of
the joint homeomorphic crossing number and of the joint orientation-preserving
homeomorphic crossing numbers are defined analogously. The following reduc-
tion is easily proved using folklore tricks for transforming weighted graphs into
ordinary ones; the fact that we are not in the plane does not play a role here.

Proposition 2.1 (folklore). There is a polynomial-time reduction from the
weighted joint crossing number problem, with edge weights encoded in unary,
to the unweighted joint crossing number problem. Moreover, this reduction can
preserve 3-connectivity and simplicity of the graphs.

3 Face-Anchored Joint Embeddings

For the purpose of intermediate reduction we introduce the following variant of
the concept of joint embedding of (G1, G2). Assume that C1, . . . , Ck are cycles
of the graph G1 such that there exists an embedding of G1 in Σ in which each
of C1, . . . , Ck is a facial cycle. Let a1, . . . , ak ∈ V (G2). A joint embedding G0

of (G1, G2) in Σ is called face-anchored with respect to {(Ci, ai) : i = 1, . . . , k},
if the restriction of G0 to G1 contains a face αi bounded by Ci such that the
vertex ai of G2 is drawn inside αi, for all i = 1, . . . , k. The pairs (Ci, ai) are the
face anchors of this joint embedding problem, where each αi bounded by Ci is
an anchor face and each ai is an anchor vertex.

We will consider face-anchored joint embeddings and their crossing number
only in the case of Σ being the sphere S0 and k being a constant, and then
we specifically speak about face-anchored joint planar embeddings, and call the
corresponding algorithmic problem k-FA Joint Planar Crossing Number.
If inputs of this problem are restricted only to instances which are orientation-
preserving homeo-invariant (cf. Section 2), then we speak about the OP-Homeo-
Invariant k-FA Joint Planar Crossing Number problem.

Theorem 3.1. For every integer h ≥ 1, there is a polynomial-time reduction
from the OP-Homeo-Invariant h-FA Joint Planar Crossing Number
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aiLi

Ci

G1

Ti

Ci

G2

Fig. 1. A schematic detail of replacing one face anchor with a toroidal gadget, as used
in the proof of Theorem 3.1 (the torus attaches to the light-gray face via the gray hole)
(Color figure online).

problem to the OP-Homeo-Invariant Joint Crossing Number problem in
the surface Sh. This reduction preserves connectivity of the involved graphs, and
the target problem can then be restricted to simple 3-connected graphs.

Proof. By Proposition 2.1, we may consider the source crossing problem as
unweighted and to reduce to the weighted joint crossing number problem in Sh,
as long as the weights are polynomial in the input size.

Consider an unweighted input (G1, G2) of the OP-Homeo-Invariant h-
FA Joint Planar Crossing Number problem, given along with the h face
anchors {(Ci, ai) : i = 1, . . . , h}, and with planar embeddings G′

1, G
′
2 of G1, G2

witnessing the homeo-invariant property. To prove the theorem it suffices to
construct (in polynomial time) a pair (H ′

1,H
′
2) of Sh-embedded graphs such that,

denoting by H1,H2 the corresponding abstract graphs, the following holds:

– if s is the (unknown) face-anchored joint planar crossing number of (G1, G2),
then the joint orientation-preserving homeomorphic (weighted) crossing num-
ber of (H ′

1,H
′
2) is at most f(s) (for a suitable function f); and

– if the joint crossing number of (H1,H2) is at most f(s) for some integer s,
then the face-anchored joint planar crossing number of (G1, G2) is at most s.

We may assume that each cycle Ci is of length at least 4 (otherwise, we just
subdivide it). Our construction of (H ′

1,H
′
2) can be shortly outlined as follows.

(i) We assign to every edge of G1 + G2 the same suitable weight p (“medium
thick”). The purpose is that already a change in one crossing between G1

and G2 would cause a difference of p2 in the target problem, a value larger
than all future required crossings between “light” edges of weight 1 and
other edges of weight up to p.

(ii) For each i = 1, . . . , h, we create a disjoint copy C ′
i of weight 1 of the anchor

cycle Ci, and connect each vertex of C ′
i with its master copy in Ci. Informally,
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we “frame” the G′
1-face bounded by Ci with C ′

i to force a unique plane sube-
mbedding, as in Fig. 1. Let G+

1 denote the resulting graph.
Then we create a graph Ti as follows. Let T 0

i be a new embedded graph
made of a suitable toroidal grid after deleting specific two nonadjacent edges
incident with the same 4-cycle, to form an 8-face in it. Ti is made of the
existing cycle C ′

i and new T 0
i by connecting the four degree-3 vertices of T 0

i

with some four vertices of C ′
i in a matching cyclic order (see again Fig. 1, the

blue graph). All the edges of Ti have weight 1. Let H1 denote the resulting
graph—the union of G+

1 and of all Ti, for i = 1, . . . , h. Note that H1 has
an embedding H ′

1 in the surface Σ � Sh obtained by adding one toroidal
handle to each face bounded by C ′

i.
(iii) For each i = 1, . . . , h, we create a new graph Li which is a copy of K3,3 with

seven of its edges (except two incident ones) made “very thick” of weight ti.
Let H2 denote the graph made of G2 and all Li after identifying one vertex
of Li with ai, for i = 1, . . . , h. Then H2 has an embedding H ′

2 in Σ, such
that G′

2 is a subembedding of H ′
2. See the red graph in Fig. 1.

The informal purpose of such construction is two-fold; first, the nonpla-
nar graph Li must “use” some of the handles of Σ, and second, the thick
edges of Li cannot cross any edge of G′

1 which now have weight p. Conse-
quently, each Li is “confined” to one of the G′

1-faces αj bounded by C ′
j .

Moreover, it will be shown that no two Li, Li′ for i �= i′ are confined to the
same face αj .

(iv) Additional detailed arguments ensure that (iii) actually confines Li, and
hence also the anchor vertex ai, to αi for i = 1, . . . , h. Briefly explaining this
argument: for a sufficiently large integer t we choose ti := (h+1− i) · t, and
we choose the grid in each Tj gadget such that the least number of edges of
Tj that have to be crossed by a noncontractible loop on the toroidal handle
of Tj equals gj := 5+ j. It is then an easy exercise in calculus to argue that
the joint crossing number is minimized only if “ti is matched with gi”.

In other words, informally, an optimal joint embedding solution of (H1,H2)
must “contain” a feasible solution of (G1, G2), and an optimal orientation-
preserving homeomorphic solution of (G′

1, G
′
2) “generates” a good orientation-

preserving homeomorphic solution of (H ′
1,H

′
2). Further technical details clarify-

ing the stated proof outline, and making the target graphs 3-connected, are left
for the full preprint [4] due to space restrictions. ��

4 Multiplying Face Anchors

Recall that our ultimate goal is to find a reduction from a special variant of the
anchored crossing number problem [3], described in Sect. 5. This can already be
achieved with Theorem 3.1, but such an approach would require an unbounded
number of face anchors (and hence unbounded genus in the Joint crossing number
problem). We thus present the following construction which “multiplies” the
number of available face anchors, albeit in a special position.
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Fig. 2. The graphs F1 (top) and F2 (bottom) of the face-anchored joint planar embed-
ding problem Fk,T ; the precise weights of the edges are specified in (F1)–(F6) below.

F1

F2

Fig. 3. Supposed crossing-optimal face-anchored joint planar embedding of Fk,T .

Let F1 be the graph of the 3 × (k + 3) plane grid, and F2 be obtained from
the 2 × (k + 2) plane grid by removing the two side edges (making a “ladder”),
with notation as in Fig. 2. Let C1 denote the cycle (x1

1, x
1
2, x

2
2, x

2
1) of F1, and

C2, C3, C4 the cycles (x2
1, x

2
2, x

3
2, x

3
1), (x1

3, x
1
4, x

2
4, x

2
3), (x2

3, x
2
4, x

3
4, x

3
3). The weights

of the edges of F1 are as follows (where T is a large integer):

(F1) weight T 3 for the six edges x1
2x

2
2, x

2
2x

3
2, x

1
3x

2
3, x

2
3x

3
3, x

1
4x

2
4, x

2
4x

3
4 and

(F2) weight T 4 for the remaining eight edges induced on the vertex set {xi
j : i ∈

{1, 2, 3}, j ∈ {1, 2, 3, 4}} (yes, this part is intentionally not symmetric),
(F3) weight T 2 for every “horizontal” edge on the shortest paths from xi

2 to xi
3,

for i = 1, 2, 3,
(F4) weight jT for the “vertical” edges c1jc

2
j and c2k−jc

3
k−j , for j = 1, 2, . . . , k−1.

The weights of the edges of F2 are as follows:

(F5) weight tj−1 for the “horizontal” edges b′
j−1b

′
j and bk+2−jbk+1−j , for j =

1, 2, . . . , k+1 where b0 = a1, b
′
0 = a2, bk+1 = a3, b

′
k+1 = a4, and tj is defined

by t0 = k3 and tj = tj−1 + j,
(F6) weight k + 1 for all the “vertical” edges bjb

′
j , for j = 1, 2, . . . , k.

Finally, we shortly denote by Fk,T the joint planar embedding instance of
(F1, F2) with the set of four face anchors {(Ci, ai) : i = 1, 2, 3, 4}. The details of
the following claim are left for the full preprint [4] due to space restrictions:
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Lemma 4.1. For every sufficiently large k and T = Ω(k6), every joint planar
embedding solution of Fk,T other than the one depicted in Fig. 3 has its weighted
crossing number exceeding that of Fig. 3 by at least T . Moreover, if a solution
of Fk,T draws any one of the vertices bi or b′

i for i ∈ {1, . . . , k} in the F1-face
incident with both x1

2, x
1
3, then its weighted crossing number exceeds the optimum

by at least Ω(k3) · T 2.

5 Reduction from Anchored Planar Crossing Number

We prove our main theorem at the end of this section. The additional ingredient
we need is the hardness of a special variant of the so-called anchored crossing
number problem in the plane. In general, an anchored drawing [3] of a graph G
is a drawing of G in a closed disc D such that a set A ⊆ V (G) of selected anchor
vertices are placed in specific points of the boundary of D and the rest of the
drawing lies in the interior of D.

We shall use the following very restrictive version of the problem which we
call the anchored crossing number of a pair of planar graphs: The input is a pair
of disjoint connected planar graphs (G1, G2), their anchor sets A1 ⊆ V (G1) and
A2 ⊆ V (G2), and a cyclic permutation σ of A1 ∪ A2. The task is to find the
minimum number of crossings over all anchored drawings of G1 + G2 such that
the anchors appear on the disk boundary in the cyclic order specified by σ. As
before, the problem is considered in the edge weighted form.

Theorem 5.1 (Cabello and Mohar, [3]). The anchored weighted crossing
number problem of the pair of planar graphs (G1, G2), with anchor sets (A1, A2)
and permutation σ, is NP-hard even under the following assumptions:

(A1) each of the graphs G1, G2 itself has a unique anchored embedding, and
(A2) there is a partition A2 = A1

2 ∪A2
2 ∪A3

2 ∪A4
2 such that, for i = 1, 2, 3, 4, the

set Ai
2 is consecutive in σ restricted to A2, and the set of edges incident

with Ai
2 forms a minimum weight cut in G2 separating Ai

2 from A2 \ Ai
2.

Figure 4 illustrates the hardness construction used in [3], and the conditions
(A1) and (A2) of Theorem 5.1, which are not explicitly stated in [3] but can
easily be verified there.

Notice, moreover, in Fig. 4 that the graph G2 also has some “diagonal” min-
imum weight cuts which use the dashed red edges of weight only w − 1. Hence,
for example, every minimum weight cut of G2 between A1

2 ∪A2
2 and A3

2 ∪A4
2 has

to use some of the dashed red edges and so cannot have all its edges incident
to A2. Consequently, the partition of A2 into the four sets in (A2) is not just an
artifact of the visual shape of G2 in Fig. 4 but necessity.

We now establish the final key reduction required to prove Theorem 1.1.

Theorem 5.2. There is a polynomial reduction from the special anchored cross-
ing number problem given in Theorem 5.1 to the OP-Homeo-Invariant 6-FA
Joint Planar Crossing Number problem.
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Fig. 4. An example of the construction of a hard anchored crossing number instance
(G1, G2) taken from [3]: G1 is blue and G2 is red (detailed alone on the right). The solid
thin red edges all have weight w (where w is a large integer) and the middle dashed
red edges have weight w − 1 (Color figure online).

F+
1

R3

R1

Q2

Q1

R3

R1

F+
2

Q2

Q1

Fig. 5. A “join” of the instance Fk,T from Fig. 3 and of its horizontal mirror copy,
giving a planar joint embedding instance F+ with 6 face anchors.

Proof. We will use the instance Fk,T (where sufficiently large k, T will be speci-
fied later) of joint planar embedding of (F1, F2) with the face anchors {(Ci, ai) :
i = 1, 2, 3, 4}, from Sect. 4 in the following way. The graph F1 is joined with
its mirror copy such that the anchor faces C3, C4 get identified with C̄3, C̄4 of
the copy in a “horizontal mirror” way, resulting in the graph F+

1 . Similarly, F+
2

results by joining F2 with its mirror copy and identifying a3, a4 with the copies
ā3, ā4, respectively. The resulting instance of joint planar embedding of (F+

1 , F+
2 )

with the six face anchors {(C1, a1), (C2, a2), (C3 = C̄3, a3 = ā3), (C4 = C̄4, a4 =
ā4), (C̄1, ā1), (C̄2, ā2)}, as depicted in Fig. 5, will be shortly denoted by F+.

Let cr(F+) shortly denote the (optimum) weighted crossing number of this
instance F+, which equals twice the value by Lemma 4.1.

Consider an instance of the anchored crossing number problem, i.e., a pair of
weighted planar graphs (G1, G2) with anchor sets (A1, A2) and permutation σ
satisfying (A1) and (A2) for the partition A2 = A1

2 ∪ A2
2 ∪ A3

2 ∪ A4
2 in a suitable

cyclic order. Our aim is to construct from it an instance H of face-anchored joint
planar crossing number, formed by a pair of graphs (H1,H2), such that H1 ⊇ F+

1
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and H2 ⊇ F+
2 and H inherits the six face anchors of F+. Furthermore, we will

show with the help of (A1) that H is orientation-preserving homeo-invariant.
Recall the horizontal paths Qi, i = 1, 2, in F2 connecting ai to ai+2, and

the horizontal paths Rj , j = 1, 3, in F1 connecting xj
2 to xj

3. Let Qi and Rj

denote their mirror copies in F+. For sufficiently large k, we can easily construct
injective mappings α : A1 → V (R1∪R3∪R3∪R1) and β1 : A1

2 → V (Q1)\{a1, a3},
β2 : A2

2 → V (Q2) \ {a2, a4}, β3 : A3
2 → V (Q2) \ {ā1, a3}, β4 : A4

2 → V (Q1) \
{ā2, a4}, such that the images of A1 ∪ A2 under the respective mappings, when
pictured in Fig. 5, occur exactly in the cyclic order specified by σ.

Let β = β1 ∪ β2 ∪ β3 ∪ β4. We define the graph H1 from a disjoint union of
F+
1 and G1, by identifying the vertex x with α(x) for each x ∈ A1. Similarly,

we define H2 as F+
2 ∪ G2 after identifying y with β(y) for each y ∈ A2. The

homeo-invariant property of H will easily follow from Lemma 4.1 and property
(A1) for the following pair of embeddings (H ′

1,H
′
2): for i = 1, 2, H ′

i is the unique
plane embedding of Hi such that the restriction of H ′

i to F+
i is as in Fig. 5.

Let the weighted anchored crossing number of (G1, G2) with anchor sets
(A1, A2) and cyclic permutation σ equal s. We assume that T = Ω(k6) is chosen
sufficiently large such that T > s. For i = 1, 2, 3, 4, let wi be the minimum
weight of a cut in G2 separating Ai

2 from A2 \ Ai
2; by (A2), wi equals the sum

of weights of the edges incident to Ai
2. Then, there is a drawing H ′ of H1 + H2

with cr(F+) + (w1 + w2 + w3 + w4) · T 2 + s weighted crossings, where the term
(w1 + w2 + w3 + w4) · T 2 accounts for crossings between the G2-edges incident
with A2 and the edges of R1 ∪ R3 ∪ R3 ∪ R1, such that H ′ is a joint orientation-
preserving homeomorphic embedding of (H ′

1,H
′
2).

We finish the proof by showing that if the (weighted) face-anchored joint
crossing number of H equals r, then there exists an anchored drawing of (G1, G2)
respecting (A1, A2) and σ, with at most r′ := r−(w1+w2+w3+w4)·T 2−cr(F+)
crossings. This will then automatically imply that the aforementioned drawing
H ′ which is joint orientation-preserving homeomorphic to (H ′

1,H
′
2), is also an

optimal solution of H. The details are again left for the full preprint [4]. ��

Proof. (of Theorem 1.1). Theorem 1.1 for the Joint Crossing Number prob-
lem and genus 6 follows imediately by the chain of reductions from Theorem 3.1,
and Theorems 5.1 and 5.2. For genus greater than 6, it suffices to add dummy
face anchors in the reduction of Theorem 3.1. Finally, for hardness of the Home-
omorphic and OP-Homeomorphic variants, we can simply use the same
reductions—by the orientation-preserving homeo-invariant promise, the (hard)
instances produced by the chain of reductions have the same solution value in
all the three problem variants. ��

6 Conclusions

The following is another immediate consequence of Theorems 3.1 and 5.1:

Theorem 6.1. The h-FA Joint Planar Crossing Number problem is NP-
hard for every h ≥ 6.
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There is yet another interesting consequence. The main result of aforemen-
tioned [3] is that Crossing Number is NP-hard even on almost-planar graphs,
i.e. those which can be made planar by removing one edge. Their hardness reduc-
tion, derived from hard anchored crossing number instances as shown in Fig. 4,
essentially uses an unbounded number of vertices of arbitrarily high degrees.
Elaborating on the reduction of our proof of Theorem 5.2, while using a spe-
cial gadget derived from F+ turned inside out, we can give back the following
strengthening (we omit the proof due to space constraints):

Theorem 6.2 (slight improvement upon [3]). The Crossing Number
problem remains NP-hard even if the input is restricted to almost-planar graphs
having a bounded number, namely at most 16, vertices of degree greater than 3.

Note that, on the other hand, Cabello and Mohar [2] prove that Crossing
Number is solvable in linear time if the input is an almost-planar graph with
all vertices except for the two of the planarizing edge having degree at most 3.

Another natural extension of our results would be to prove Theorem 1.1 for
non-orientable surfaces. This is not inherently difficult—it suffices to replace
the toroidal gadgets Ti (cf. Fig. 1) with suitable projective grids, and to use a
crosscap instead of each toroidal handle. However, a formal statement would
require us to repeat most of the arguments of the proof of Theorem 3.1, and
hence we refrain from giving the full statement in this short paper.

A question worth further investigation is how small the genus in Theorem 1.1
and the number of face anchors in Theorem 6.1 can be for the statements to hold.
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Abstract. Given a graph G and two vertices s and t in it, graph reach-
ability is the problem of checking whether there exists a path from s
to t in G. We show that reachability in directed layered planar graphs
can be decided in polynomial time and O(nε) space, for any ε > 0. The
previous best known space bound for this problem with polynomial time
was approximately O(

√
n) space [1].

Deciding graph reachability in SC is an important open question in
complexity theory and in this paper we make progress towards resolving
this question.

1 Introduction

Given a graph and two vertices s and t in it, the problem of determining whether
there is a path from s to t in the graph is known as the graph reachability prob-
lem. Graph reachability problem is an important question in complexity the-
ory. Particularly in the domain of space bounded computations, the reachability
problem in various classes of graphs characterize the complexity of different com-
plexity classes. The reachability problem in directed and undirected graphs, is
complete for the classes non-deterministic log-space (NL) and deterministic log-
space (L) respectively [2,3]. The latter follows due to a famous result by Reingold
who showed that undirected reachability is in L [3]. Various other restrictions of
reachability have been studied in the context of understanding the complexity of
other space bounded classes (see [4–6]). Wigderson gave a fairly comprehensive
survey that discusses the complexity of reachability in various computational
models [7].

The time complexity of directed reachability is fairly well understood. Stan-
dard graph traversal algorithms such as DFS and BFS solve this problem in linear
time. We also have a O(log2 n) space algorithm due to Savitch [8], however it
requires O(nlog n) time. The question, whether there exists a single algorithm
that decides reachability in polynomial time and polylogarithmic space is unre-
solved. In his survey, Wigderson asked whether it is possible to design a poly-
nomial time algorithm that uses only O(nε) space, for some constant ε < 1 [7].
This question is also still open. In 1992, Barnes, Buss, Ruzzo and Schieber made
c© Springer-Verlag Berlin Heidelberg 2015
K. Elbassioni and K. Makino (Eds.): ISAAC 2015, LNCS 9472, pp. 614–624, 2015.
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some progress on this problem and gave an algorithm for directed reachability
that requires polynomial time and O(n/2

√
log n) space [9].

Planar graphs are a natural topological restriction of general graphs consist-
ing of graphs that can be embedded on the surface of a plane such that no two
edges cross. Grid graphs are a subclass of planar graphs, where the vertices are
placed at the lattice points of a two dimensional grid and edges occur between
a vertex and its immediate adjacent horizontal or vertical neighbor.

Asano and Doerr provided a polynomial time algorithm to compute the short-
est path (hence can decide reachability) in grid graphs which uses O(n1/2+ε)
space, for any small constant ε > 0 [10]. Imai et al. extended this to give a
similar bound for reachability in planar graphs [1]. Their approach was to use
a space efficient method to design a separator for the planar graph and use
divide and conquer strategy. Note that although it is known that reachability in
grid graphs reduces to planar reachability in log space, however since this class
(polynomial time and O(n1/2+ε) space) is not closed under log space reductions,
planar reachability does not follow from grid graph reachability. Subsequently
the result of Imai et al. was extended to the class of high-genus and H-minor-
free graphs [11]. Recently Asano et al. gave a Õ(

√
n) space and polynomial time

algorithm for reachability in planar graphs, thus improving upon the previous
space bound [12]. More details on known results can be found in a recent survey
article [13].

In another line of work, Kannan et al. gave a O(nε) space and polynomial time
algorithm for solving reachability problem in unique path graphs [14]. Unique
path graphs are a generalization of strongly unambiguous graphs and reachability
problem in strongly unambiguous graphs is known to be in SC (polynomial
time and polylogarithmic space) [15,16]. Reachability in strongly unambiguous
graphs can also be decided by a O(log2 n/ log log n) space algorithm, however
this algorithm requires super polynomial time [17]. SC also contains the class
randomized log space or RL [18]. We refer the readers to a recent survey by
Allender [19] to further understand the results on the complexity of reachability
problem in UL and on certain special subclasses of directed graphs.

Our Contribution

We show that reachability in directed layered planar graphs can be decided in
polynomial time and O(nε) space for any constant ε > 0. A layered planar graph
is a planar graph where the vertex set is partitioned into layers (say L0 to Lm)
and every edge occurs between layers Li and Li+1 only. Our result significantly
improves upon the previous space bound due to [1,12] for layered planar graphs.

Theorem 1. For every ε > 0, there is a polynomial time and O(nε) space algo-
rithm that decides reachability in directed layered planar graphs.

Reachability in layered grid graphs (denoted as LGGR) is in UL which is
a subclass of NL [20]. Subsequently this result was extended to the class of
all planar graphs [21]. Allender et al. also gave some hardness results for the
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reachability problem in certain subclasses of layered grid graphs. Specifically
they showed that, 1LGGR is hard for NC1 and 11LGGR is hard for TC0 [20].
Both these problems are however known to be contained in L though.

As a consequence of our result, it is easy to achieve the same time-space
upper-bound for the reachability problem in upward planar graphs. We say that
a graph is upward planar if it admits an upward planar drawing, i.e., a planar
drawing where the curve representing each edge should have the property that
every horizontal line intersects it in at most one point. In the domain of graph
drawing, it is an important topic to study the upward planar drawing of planar
DAGs [22,23]. It is NP-complete to determine whether a planar DAG with mul-
tiple sources and sinks has an upward planar drawing [24]. However, given an
upward planar drawing of a planar DAG, the reachability problem can easily be
reduced to reachability in a layered planar graph using only logarithmic amount
of space and thus admits the same time-space upper bound as of layered planar
graphs.

Firstly we argue that its enough to consider layered grid graphs (a subclass
of general grid graphs). We divide a given layered grid graph into a courser grid
structure along k horizontal and k vertical lines (see Fig. 1). We then design a
modified DFS strategy that makes queries to the smaller graphs defined by these
gridlines (we assume a solution in the smaller graphs by recursion) and visits
every reachable vertex from a given start vertex. The modified DFS stores the
highest visited vertex in each vertical line and the left most visited vertex in
each horizontal line. We use this information to avoid visiting a vertex multiple
number of times in our algorithm. We choose the number of horizontal and
vertical lines to divide the graph appropriately to ensure that the algorithm
runs in the required time and space bound.

The rest of the paper is organized as follows. In Sect. 2, we give some basic
definitions and notations that we use in this paper. We also state certain earlier
results that we use in this paper. In Sect. 3, we give a proof of Theorem 1.

2 Preliminaries

We will use the standard notations of graphs without defining them explicitly and
follow the standard model of computation to discuss the complexity measures
of the stated algorithms. In particular, we consider the computational model in
which an input appears on a read-only tape and the output is produced on a
write-only tape and we only consider an internal read-write tape in the measure
of space complexity. Throughout this paper, by log we mean logarithm to the
base 2. We denote the set {1, 2, · · · , n} by [n]. Given a graph G, let V (G) and
E(G) denote the set of vertices and the set of edges of G respectively.

Definition 1 (Layered Planar Graph). A planar graph G = (V,E) is
referred as layered planar if it is possible to represent V as a union of disjoint
partitions, V = V1 ∪ V2 ∪ · · · ∪ Vk, for some k > 0, and for any two consecutive
partitions Vi and Vi+1, there is a planar embedding of edges from the vertices of
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Vi to that of Vi+1 and there is no edge between two vertices of non-consecutive
partitions.

Now let us define the notion of layered grid graph and also note that grid graphs
are by definition planar.

Definition 2 (Layered Grid Graph). A directed graph G is said to be a n×n
grid graph if it can be drawn on a square grid of size n × n and two vertices are
neighbors if their L1-distance is one. In a grid graph a edge can have four possible
directions, i.e., north, south, east and west, but if we are allowed to have only
two directions north and east, then we call it a layered grid graph.

We also use the following result of Allender et al. to simplify our proof [20].

Proposition 1 ([20]). Reachability problem in directed layered planar graphs
is log-space reducible to the reachability problem in layered grid graphs.

2.1 Class nSC and its properties

TISP(t(n), s(n)) denotes the class of languages decided by a deterministic
Turing machine that runs in O(t(n)) time and O(s(n)) space. Then, SC =
TISP(nO(1), (log n)O(1)). Expanding the class SC, we define the complexity class
nSC (short for near-SC) in the following definition.

Definition 3 (Complexity Class near-SC or nSC). For a fixed ε > 0, we
define nSCε := TISP(nO(1), nε). The complexity class nSC is defined as

nSC :=
⋂

ε>0

nSCε.

We next show that nSC is closed under log-space reductions. This is an impor-
tant property of the class nSC and will be used to prove Theorem 1. Although
the proof is quite standard, but for the sake of completeness we provide it here.

Theorem 2. If A ≤l B and B ∈ nSC, then A ∈ nSC.

Proof. Let us consider that a log-space computable function f be the reduction
from A to B. It is clear that for any x ∈ A such that |x| = n, |f(x)| ≤ nc,
for some constant c > 0. We can think that after applying the reduction, f(x)
appears in a separate write-once output tape and then we can solve f(x), which
is an instance of the language B and now the input length is at most nc. Now
take any ε > 0 and consider ε′ = ε

c > 0. B ∈ nSC implies that B ∈ nSCε′ and as
a consequence, A ∈ nSCε. This completes the proof.

3 Reachability in Layered Planar Graphs

In this section we prove Theorem 1. We show that the reachability problem in
layered grid graphs (denoted as LGGR) is in nSC (Theorem 3). Then by applying
Proposition 1 and Theorem 2 we have the proof of Theorem 1.

Theorem 3. LGGR ∈ nSC.

To establish Theorem 3 we define an auxiliary graph in Sect. 3.1 and give the
required algorithm in Sect. 3.2.
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Fig. 1. (a) An example of layered grid graph G and its decomposition into blocks (b)
Corresponding auxiliary graph H

3.1 The Auxiliary Graph H

Let G be a n × n layered grid graph. We denote the vertices in G as (i, j),
where 0 ≤ i, j ≤ n and without loss of generality, we can assume that s = (0, 0)
and t = (n, n). Let k be a parameter that determines the number of pieces in
which we divide G. We will fix the value of k later to optimize the time and
space bounds. Assume without loss of generality that k divides n. Given G we
construct an auxiliary graph H as described below.

Divide G into k2 many blocks (will be defined shortly) of dimension n/k×n/k.
More formally, the vertex set of H is

V (H) := {(i, j) | i or j is a non-negative multiple of n/k.}

Note that V (H) ⊆ V (G). We consider k2 many blocks G1, G2, · · · , Gk2 , where a
vertex (i, j) ∈ V (Gl) if and only if i′ n

k ≤ i ≤ (i′ + 1)n
k and j′ n

k ≤ j ≤ (j′ + 1)n
k ,

for some integer i′ ≥ 0 and j′ ≥ 0 and the vertices for which any of the four
inequalities becomes equality, will be referred as boundary vertices. Moreover,
we have l = i′ · k + j′ + 1. E(Gl) is the set of edges in G induced by the vertex
set V (Gl).

For every i ∈ [k + 1], let Lh(i) and Lv(i) denote the set of vertices, Lh(i) :=
{(i′, j′)|j′ = (i − 1)n

k } and Lv(i) := {(i′, j′)|i′ = (i − 1)n
k }. When it is clear

from the context, we will also use Lh(i) and Lv(i) to refer to the corresponding
gridline in H. Observe that H has k + 1 vertical gridlines and k + 1 horizontal
gridlines.

For every pair of vertices u, v ∈ V (Gl)∩V (H) for some l, add the edge (u, v)
to E(H) if and only if there is a path from u to v in Gl, unless u, v ∈ Lv(i) or
u, v ∈ Lh(i) for some i. Also for every pair of vertices u, v ∈ V (Gl) for some
l, such that u = (i1, j1) and v = (i2, j2), where i1 = i2 = i′ n

k for some i′ and
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j1 = j′ n
k , j2 = (j′ + 1)n

k for some j′, or j1 = j2 = j′ n
k for some j′ and i1 = i′ n

k ,
i2 = (i′ + 1)n

k for some i′, we add an edge between u and v in the set E(H) if
and only if there is a path from u to v in Gl and we call such vertices as corner
vertices.

Before proceeding further, let us introduce a few more notations that will be
used later. For j ∈ [k], let Lh(i, j) denote the set of vertices in Lh(i) in between
Lv(j) and Lv(j+1). Similarly we also define Lv(i, j) (see Fig. 1). For two vertices
x, y ∈ Lv(i), we say x ≺ y if x is below y in Lv(i). For two vertices x, y ∈ Lh(i),
we say x ≺ y if x is right of y in Lh(i). Note that we consider these two type of
orderings to ensure that for any x, y ∈ V (H) reachable from s in H, if x ≺ y,
then x will be traversed by our algorithm before y.

Lemma 1. There is a path from s to t in G if and only if there is path from s
to t in the auxiliary graph H.

Proof. As every edge (a, b) in H corresponds to a path from a to b in G, so
if-part is trivial to see. Now for the only-if-part, consider a path P from s to t in
G. P can be decomposed as P1P2 · · · Pr, such that Pi is a path from xi to xi+1,
where xi is the first vertex on P that belongs to V (Gl) and xi+1 be the last
vertex on P that also belongs to V (Gl), for some l and in a layered grid graph,
for such xi and xi+1, we have only following two possibilities:

1. xi and xi+1 belong to different horizontal or vertical gridlines; or
2. xi and xi+1 are two corner vertices.

Now by the construction H, for every i, there must be an edge (xi, xi+1) in
H for both the above cases and hence there is a path from s to t in H as well. 
�

Now we consider the case when two vertices x, y ∈ V (H) belong to the same
vertical or horizontal gridlines.

Claim 1. Let x and y be two vertices contained in either Lv(i) or Lh(i) for
some i. Then deciding reachability between x and y in G can be done in log
space.

Proof. Let us consider that x, y ∈ Lv(i), for some i. As the graph G under
consideration is a layered grid graph, if there is a path between x and y, then
it must pass through all the vertices in Lv(i) that lies in between x and y.
Hence just by exploring the path starting from x through Lv(i), we can check
the reachability and it is easy to see that this can be done in log space, because
the only thing we need to remember is the current vertex in the path. Same
argument will also work when x, y ∈ Lh(i), for some i and this completes the
proof. 
�

Now we argue on the upper bound of the length of any path in the auxiliary
graph H. The idea is to partition the set V (H) into 2k + 1 partitions in such
a way that any two consecutive vertices on a path in H lie on two different
partitions.
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Lemma 2. Any path between s and t in H is of length 2k.

Proof. Let us first define the sets D0,D1, · · · ,D2k (e.g., shaded region in
Fig. 1(b) denotes D1), where

Dl := {(i, j)|(i′ − 1)
n

k
≤ i < i′

n

k
, (j′ − 1)

n

k
≤ j < j′ n

k
and i′ + j′ = l + 1}.

Now consider D′
l := Dl ∩ V (H) for 0 ≤ l ≤ 2k. Clearly, D′

0,D
′
1, · · · ,D′

2k induce
a partition on V (H). Now let us take any path s = x1x2 · · · xr = t, from s to t in
H, denoted as P . Observe that by the construction of H, for any two consecutive
vertices xi and xi+1 for some i, if xi ∈ D′

l for some l, then xi+1 ∈ D′
l+1 and

s ∈ D′
0, t ∈ D′

2k. As a consequence, r = 2k + 1 and hence length of the path P
is 2k.

3.2 Description of the Algorithm

We next give a modified version of DFS that starting at a given vertex, visits the
set of vertices reachable from that vertex in the graph H. At every vertex, the
traversal visits the set of outgoing edges from that vertex in counter-clockwise
order.

In our algorithm we maintain two arrays of size k + 1 each, say Av and Ah,
one for vertical and the other for horizontal gridlines respectively. For every
i ∈ [k + 1], Av(i) is the topmost visited vertex in Lv(i) and analogously Ah(i)
is the leftmost visited vertex in Lh(i). This choice is guided by the choice of
traversal of our algorithm. More precisely, we cycle through the outgoing edges
of a vertex in counter-clockwise order.

We perform a standard DFS-like procedure, using the tape space to simulate
a stack, say S. S keeps track of the path taken to the current vertex from the
starting vertex. By Lemma 2, the maximum length of a path in H is at most 2k.
Whenever we visit a vertex in a vertical gridline (say Lv(i)), we check whether
the vertex is lower than the i-th entry of Av. If so, we return to the parent vertex
and continue with its next child. Otherwise, we update the i-th entry of Av to
be the current vertex and proceed forward. Similarly when visit a horizontal
gridline (say Lh(i)), we check whether the current vertex is to the right of the
i-th entry of Ah. If so, we return to the parent vertex and continue with its next
child. Otherwise, we update the i-th entry of Ah to be the current vertex and
proceed. The reason for doing this is to avoid revisiting the subtree rooted at
the node of an already visited vertex.

Lemma 3. Let Gl be some block and let x and y be two vertices on the boundary
of Gl such that there is a path from x to y in G. Let x′ and y′ be two other
boundary vertices in Gl such that (i) there is a path from x′ to y′ in G and (ii)
x′ lies on one segment of the boundary of Gl between vertices x and y and y′

lies on the other segment of the boundary. Then there is a path in G from x to
y′ and from x′ to y. Hence, if (x, y) and (x′, y′) are present in E(H) then so are
(x, y′) and (x′, y).
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Proof. Since G is a layered grid graph hence the paths x to y and x′ to y′ must
lie inside Gl. Also because of planarity, the paths must intersect at some vertex
in Gl. Now using this point of intersection, we can easily show the existence of
paths from x to y′ and from x′ to y. 
�

Lemma 4 will prove the correctness of our algorithm.

Lemma 4. Let u and v be two vertices in H. Then starting at u our algorithm
visits v if and only if v is reachable from u in H.

Proof. It is easy to see that every vertex visited by the algorithm is reachable
from u since the algorithm proceeds along the edges of H.

By induction on the shortest path length to a vertex, we will show that if
a vertex is reachable from u then the algorithm visits that vertex. Let Bd(u)
be the set of vertices reachable from u that are at a distance d from u. Assume
that the algorithm visits every vertex in Bd−1(u). Let x be a vertex in Bd(u).
Without loss of generality assume that x is in Lv(i, j) for some i and j. A similar
argument can be given if x belongs to a horizontal gridline. Further, let x lie
on the right boundary of a block Gl. Let Wx = {w ∈ Bd−1(u)|(w, x) ∈ E(H)}.
Note that by the definition of H, all vertices in Wx lie on the bottom boundary
or on the left boundary of Gl.

Suppose the algorithm does not visit x. Since x is reachable from u via a
path of length d, therefore Wx is non empty. Let w be the first vertex added to
Wx by the algorithm. Then w is either in Lh(j), or in Lv(i − 1). Without loss
of generality assume w is in Lh(j). Let z be the value in Av(i) at this stage of
the algorithm (that is when w is the current vertex). Since x is not visited hence
x ≺ z. Also this implies that z was visited by the algorithm at an earlier stage
of the algorithm. Let w′ be the ancestor of z in the DFS tree such that w′ is
in Lh(j). There must exist such a vertex because z is above the j-th horizontal
gridline, that is Lh(j).

Suppose if w′ lies to the left of w then by the description of the algorithm, w
is visited before w′. Hence x is visited before z. On the other hand, suppose if w′

lies to the right of w. Clearly w′ cannot lie to the right of vertical gridline Lv(i)
since z is reachable from w′ and z is in Lv(i). Let w′′ be the vertex in Lh(j + 1)
such that w′′ lies in the tree path between w′ and z (See Fig. 2). Observe that
all four vertices lie on the boundary of Gl. Now by applying Lemma 3 to the
four vertices w, x, w′ and w′′ we conclude that there exists a path from w′ to x
as well. Since x ≺ z, x must have been visited before z from the vertex w′. In
both cases, we see that z cannot be Av(i) when w is the current vertex. Since z
was an arbitrary vertex such that x ≺ z, the lemma follows. 
�

We next show Lemma 5 which will help us to achieve a polynomial bound
on the running time of the algorithm.

Lemma 5. Every vertex in the graph H is added to the set S at most once in
the algorithm.
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Lh(j)

Lh(j + 1)

Lv(i − 1) Lv(i)

x

z

w w

w

Gl

Fig. 2. Crossing between two paths

Proof. Observe that a vertex u in Lv(i) is added to S only if Av(i) ≺ u, and once
u is added, Av(i) is set to u. Also during subsequent stages of the algorithm, if
Av(i) is set to v, then u ≺ v. Hence u ≺ Av(i). Therefore, u cannot be added to
S again.

We give a similar argument if u is in Lh(i). Suppose if u is in Lv(i) for some
i and Lh(j) for some j, then we add u only once to S. However we update both
Av(i) and Ah(j). 
�

Our algorithm does not explicitly compute and store the graph H. Whenever
it is queried for an edge (x, y) in H, it recursively runs a reachability query in
the corresponding sub grid graph of G such that x is in the bottom left corner
and y is in the top right corner of that sub grid graph and produces an answer.
The base case is when a query is made to a grid graph of size k ×k. For the base
case, we run a standard DFS procedure on the k × k size graph.

In the algorithm, until S is non-empty, in every iteration either an element is
added or an element is removed from S. Hence by Lemma 5, the loop that check
whether S is non-empty, iterates at most 4nk times. Inside that loop, there is
another loop which cycles through all the neighbors of a vertex and hence iterates
for at most 2n/k times where each iteration makes a constant number of calls
to check the presence of an edge in an n/k × n/k sized grid. Let T (n) and S(n)
be the time and space required to decide reachability in a layered grid graph of
size n × n respectively. Then,

T (n) =

{

8n2(T (n/k) + O(1)) if n > k

O(k2) otherwise.

Hence, T (n) = O
(

n3 log n
log k

)

.

Since we do not store any query made to the smaller grids, therefore the
space required to check the presence of an edge in H can be reused. Av and Ah

are arrays of size k + 1 each. By Lemma 2, the number of elements in S at any
stage of the algorithm is bounded by 2k. Therefore,
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S(n) =

{

S(n/k) + O(k log n) if n > k

O(k2) otherwise.

Hence, S(n) = O
(

k
log k log2 n + k2

)

.

Now given any constant ε > 0, if we set k = nε/2, then we get T (n) = O(n6/ε)
and S(n) = O(nε). This proves Theorem 3.
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Abstract. We give a (1 + ε)-approximate distance oracle with O(1)
query time for an undirected planar graph G with n vertices and non-
negative edge length. For ε > 0 and any two vertices u and v in G,
our oracle gives a distance d̃(u, v) with stretch (1 + ε) in O(1) time.
The oracle has size O(n log n(log n/ε + f(ε))) and pre-processing time
O(n log n(log3 n/ε2+f(ε))), where f(ε) = 2O(1/ε). This is the first (1+ε)-
approximate distance oracle with O(1) query time independent of ε and
the size and pre-processing time nearly linear in n, and improves the
query time O(1/ε) of previous (1 + ε)-approximate distance oracle with
size nearly linear in n.

Keywords: Distance oracle · Planar graphs · Approximate algorithms ·
Graph decomposition

1 Introduction

Finding a distance between two vertices in a graph is a fundamental computa-
tional problem and has a wide range of applications. For this problem, there is
a rich literature of algorithms. This problem can be solved by a single source
shortest path algorithm such as the Dijkstra and Bellman-Ford algorithms. In
many applications, it is required to compute the shortest path distance in an
extreme short time. One approach to meet such a requirement is to use distance
oracles.

A distance oracle is a data structure which keeps the pre-computed distance
information and provides a distance between any given pair of vertices very effi-
ciently. There are two phases in the distance oracle approach. The first phase
is to compute the data structure for a given graph G and the second is to pro-
vide an answer for a query on the distance between a pair of vertices in G.
The efficiency of distance oracles is mainly measured by the time to answer a
query (query time), the memory space required for the data structure (oracle
size) and the time to create the data structure (pre-processing time). Typically,
there is a trade-off between the query time and the oracle size. A simple app-
roach to compute a distance oracle for graph G of n vertices is to solve the all
pairs shortest paths problem in G and keep the shortest distances in an n × n
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DOI: 10.1007/978-3-662-48971-0 53
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distance array. This gives an oracle with O(1) query time and O(n2) size. A
large number of papers have been published for distance oracles with better
measures on the product of query time and oracle size, see Sommer’s paper for
a survey [14].

Planar graphs are an important model for many networks such as the road
networks. Distance oracles for planar graphs have been extensively studied.
Djidjev proves that for any size S ∈ [n, n2], there is an exact distance ora-
cle with query time O(n2/S) for weighted planar graphs [6]. There are several
exact distance oracles with size O(S) and more efficient query time for differ-
ent ranges of S, for example, an oracle by Wulff-Nilsen [17] with O(1) query
time and O(n2(log log n)4/ log n) size for weighted directed planar graphs and
an oracle by Mozes and Sommer [13] with query time O((n/

√
S) log2.5 n) and

size S ∈ [n log log n, n2] for weighted directed planar graph. Readers may refer
to Sommer’s survey paper [14] for more details.

Approximate distance oracles have been developed to achieve very fast query
time and near linear size for planar graphs. For vertices u and v in graph G,
let dG(u, v) denote the distance between u and v. An oracle is called an α-
approximate oracle or with stretch α for α ≥ 1 if it provides a distance d̃(u, v)
with dG(u, v) ≤ d̃(u, v) ≤ αdG(u, v) for u and v in G. An oracle is called one with
an additive stretch β ≥ 0 if it provides a distance d̃(u, v) with dG(u, v) ≤ d̃(u, v) ≤
dG(u, v)+β. For ε > 0, Thorup gives a (1+ ε)-approximate distance oracle with
O(1/ε) (resp. O(1/ε + log log Δ), where Δ is the longest finite distance between
any pair of vertices in G) query time and O(n log n/ε) size for undirected (resp.
directed) planar G with non-negative edge length [15]. Klein further simplifies
Thorup’s oracles for undirected planar graphs [9]. Kawarabayashi et al. give
a (1 + ε)-approximate distance oracle with O((1/ε) log2(1/ε) log log(1/ε) log∗ n)
query time and O(n log n log log(1/ε) log∗ n) size for undirected planar graphs
with non-negative edge length [8]. The query times of the oracles above are fast
but still at least O(1/ε).

Distance oracles with constant query time are of both theoretical and practi-
cal importance [4,5]. Our main result is an O(1) query time (1+ ε)-approximate
distance oracle for undirected planar graphs with non-negative edge length.

Theorem 1. Let G be an undirected planar graph with n vertices and non-
negative edge length and let ε > 0. There is a (1 + ε)-approximate dis-
tance oracle for G with O(1) query time, O(n log n(log n/ε + f(ε))) size and
O(n log n(log3 n/ε2 + f(ε))) pre-processing time, where f(ε) = 2O(1/ε).

The oracle in Theorem 1 has a constant query time independent of ε and size
nearly linear in the graph size. This improves the query times of the previous
works [8,15] that are (nearly) linear in 1/ε. Wulff-Nilsen gives an O(1) time
exact distance oracle for G but the oracle has size O(n2(log log n)4/ log n) which
is much larger than a function nearly linear in n.

The result in Theorem 1 can be generalized to an oracle described in the
next theorem.

Theorem 2. Let G be an undirected planar graph with n vertices and non-
negative edge length, ε > 0 and 1 ≤ η ≤ 1/ε. There is a (1 + ε)-approximate
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distance oracle for G with O(η) query time, O(n log n(log n/ε + f(ηε))) size and
O(n log n(log3 n/ε2 + f(ηε))) pre-processing time, where f(ηε) = 2O(1/(ηε)).

Our results build on some techniques used in the previous approximate dis-
tance oracles for planar graphs. Thorup [15] gives a (1 + ε)-approximate dis-
tance oracle for planar graph G with O(1/ε) query time. Informally, some tech-
niques used in the oracle are as follows: Decompose G into a balanced recur-
sive subdivision; G is decomposed into subgraphs of balanced sizes by short-
est paths and each subgraph is decomposed recursively until every subgraph
is reduced to a pre-defined size. A path Q separates vertices u and v in G
if a shortest path between u and v intersects Q. For each subgraph X of G,
let P(X) be the set of shortest paths used to decompose X. For each path
Q ∈ P(X) and each vertex u in X, a set PQ(u) of O(1/ε) vertices called por-
tals on Q is selected. For vertices u and v separated by some path Q in X,
minp∈PQ(u),q∈PQ(v),Q∈P(X) dG(u, p) + dG(p, q) + dG(q, v) is used to approximate
dG(u, v). The oracle keeps the distances dG(u, p) and dG(p, v).

The portal set PQ(u) above is vertex dependent. For a path Q in G of length
d(Q), there is a set PQ of O(1/ε) portals such that for any vertices u and v
separated by Q, minp∈PQ

dG(u, p) + dG(p, v) ≤ dG(u, v) + εd(Q) [11]. Based
on this and a scaling technique, Kawarabayashi et al. [8] give another (1 + ε)-
approximate distance oracle: Create subgraphs of G such that the vertices in
each subgraph satisfy certain distance property (scaling). Each subgraph H of
G is decomposed by shortest paths into a ρ-division of H which consists of
O(|V (H)|/ρ) subgraphs of H, each has size O(ρ). For each subgraph X of H,
let B(X) be the set of shortest paths used to separate X from the rest of H.
For each path Q ∈ B(X), a portal set PQ is selected. For vertices u and v
separated by some path Q ∈ B(X), minp∈PQ,Q∈B(X) dH(u, p) + dH(p, v) is used
to approximate dG(u, v). This oracle does not keep the distances dH(u, p) and
dH(p, v) but uses the distance oracle in [13] to get the distances. By choosing
an appropriate value ρ, the oracle has a better product of query time and oracle
size than that of Thorup’s oracle.

We also use the scaling technique to create subgraphs of G. We decompose
each subgraph H of G into a balanced recursive subdivision as in Thorup’s oracle.
For each subgraph X of H and each shortest path Q used to decompose X, we
choose one set PQ of O(1/ε) portals on Q for all vertices in X. A new ingredient in
our oracle is to use a more time efficient data structure to approximate dG(u, v)
instead of minp∈PQ,Q∈P(X) dH(u, p) + dH(p, v). Using an approach in [16], we
show that the vertices in V (X) can be partitioned into s = f(ε) classes A1, ..., As

such that for every classes Ai and Aj , there is a key portal pij ∈ PQ and for any
u ∈ Ai and v ∈ Aj , if u and v are separated by Q then dH(u, pij) + dH(pij , v) ≤
(1 + ε)dG(u, v) and dH(u, pij) + dH(pij , v) can be computed in O(1) time. This
gives a (1 + ε)-approximate distance oracle with O(1) query time.

The rest of the paper is organized as follows. In the next section, we give
preliminaries of the paper and review the techniques on which our oracles build.
In Sect. 3, we present distance oracles with additive stretch. In Sect. 4, we give



628 Q.-P. Gu and G. Xu

the (1 + ε)-approximate distance oracles which use the additive stretch oracles
as subroutines. The final section concludes the paper.

2 Preliminaries

An undirected graph G consists of a set V (G) of vertices and a set E(G) of edges.
For a subset A ⊆ E(G), we denote by V (A) the set of vertices incident to at least
one edge of A. For A ⊆ E(G) and W ⊆ V (G), we denote by G[A] and G[W ]
the subgraphs of G induced by A and W , respectively. A graph H is a subgraph
of G if V (H) ⊆ V (G) and E(H) ⊆ E(G). For A ⊆ E(G) and B = E(G) \ A,
the vertex set S = V (A) ∩ V (B) is a separator of G that decomposes G into
subgraphs G[A] and G[B].

A path between vertices u and v in G is a sequence of edges e1, .., ek, where
ei = {vi−1, vi} for 1 ≤ i ≤ k, u = v0, v = vk, and the vertices v0, ..., vk are
distinct. Let l(e) be the length of edge e in G. The length of path Q = e1, ..., ek

is d(Q) =
∑

1≤i≤k l(ei). A path Q is a shortest path between vertices u and v if
d(Q) is the minimum among those of all paths between u and v. The distance
between vertices u and v in G, denoted by dG(u, v), is the length of a shortest
path between u and v. For each vertex u in G, the eccentricity of u is λ(u) =
maxv∈V (G) dG(u, v). The radius of G is r(G) = minu∈V (G) λ(u). The diameter of
G is d(G) = maxu∈V (G) λ(u).

A graph is planar if it has a planar embedding (a draw on a sphere without
edge crossing). In the rest of this paper, graphs are undirected planar graphs
with non-negative edge length unless otherwise stated.

A separator S of G decomposes G into at least two connected subgraphs.
A set P of shortest paths in graph G is a shortest path separator of G if S =
∪Q∈PV (Q) is a separator of G. A recursive subdivision of G is a structure that G
is decomposed into subgraphs by a separator and each subgraph is decomposed
recursively until each subgraph is reduced to a pre-defined size. In this paper,
we use only shortest path separators.

A recursive subdivision of G can be viewed as a rooted tree TG with G the
root node. Each node in TG with node degree one is called a leaf node, otherwise
an internal node. Each internal node X of TG is decomposed by a shortest path
separator P(X) into subgraphs X1, . . . , Xc, c ≥ 2. Each Xi, i = 1, . . . , c is a child
node of X in TG. For each internal node X, let B(X) be the set of boundary
paths separating X from the rest of G. Based on a result by Lipton and Tarjan
[12] on the balanced separators of G, Thorup [15] shows the following result.

Lemma 1. [15] For a graph G, a 1
2 -balanced recursive subdivision TG of G

can be computed in O(n log n) time such that for each internal node X of TG,
|V (Xi)| ≤ |V (X)|/2, 1 ≤ i ≤ c, |P(X)| = O(1) and |B(X)| = O(1).

The recursive subdivision of G in Lemma 1 will be used in our oracles. Note
that since the size of a subgraph is reduced by at least 1/2, the depth of TG is
bounded by log(n).
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Let Q be a shortest path in G and ε > 0. Thorup shows that for every vertex
u in G, there is subset PQ(u) ⊆ V (Q) of O(1/ε) vertices such that for any vertices
u and v separated by Q (a shortest path between u and v intersects Q) then

dG(u, v) ≤ min
p∈PQ(u),q∈PQ(v)

dG(v, p) + dG(p, q) + dG(q, v) ≤ (1 + ε)dG(u, v).

The vertices of PQ(u) are called portals on Q for u. For every subgraph X in a 1
2 -

balanced recursive subdivision of G and every shortest path Q ∈ B(X)∪P(X), by
keeping the distance from each vertex u in X to every portal in PQ(u) explicitly,
Thorup shows the following result.

Lemma 2. [15] For graph G and ε > 0, there is a (1 + ε)-approximate distance
oracle with (1/ε) query time, O(n log n/ε) size and O(n log3 n/ε2) pre-processing
time. Especially for ε = 1, there is a 2-approximate distance oracle for G with
O(1) query time, O(n log n) size and O(n log3 n) pre-processing time.

Our oracles will use this oracle for ε = 1 (any constant works) to get a rough
estimation of dG(u, v).

To reduce the query time to a constant independent of ε, we will use a portal
set PQ independent of vertex u. For vertices u and v separated by a path Q,
dG(u, v) = minp∈V (Q) dG(u, p)+ dG(p, v). For a PQ ⊆ V (Q), minp∈PQ

dG(u, p)+
dG(p, v) approximates dG(u, v). The following result will be used.

Lemma 3. [11] For a path Q in G and ε > 0, a set PQ of O(1/ε) vertices in
V (Q) can be selected in O(|V (Q)|) time such that for every vertices u and v
separated by Q, dG(u, v) ≤ minp∈PQ

dG(u, p) + dG(p, v) ≤ dG(u, v) + εd(Q).

The set PQ in Lemma 3 is called an ε-portal set. To apply the ε-portal set to our
oracle, we further need to guarantee dG(u, v) = Ω(d(Q)) for vertices u and v in
question. We will use the sparse neighborhood covers introduced in [1–3] of G to
achieve this goal.

Lemma 4. [3] For G and γ ≥ 1, connected subgraphs G(γ, 1), . . . , G(γ, nγ) of
G with the following properties can be computed in O(n log n) time:

1. For each vertex u in G, there is at least one G(γ, i) that contains u and every
v with dG(u, v) ≤ γ.

2. Each vertex u in G is contained in at most 18 subgraphs.
3. Each subgraph G(γ, i) has radius r(G(γ, i)) ≤ 24γ − 8.

3 Oracle with Additive Stretch

We first give a distance oracle which for any vertices u and v in G and any
ε0 > 0 returns d̃(u, v) with dG(u, v) ≤ d̃(u, v) ≤ dG(u, v) + 7ε0d(G). Based on
the scaling technique in [8] and Lemma 4, this oracle will be extended to an
oracle stated in Theorem 1 for G in the next section.

We start with a basic data structure which keeps the following information:
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– A 1
2 -balanced recursive subdivision TG of G in Lemma 1, each leaf node in TG

has size O(2(1/ε0)).
– For every leaf node X of TG and all u, v ∈ V (X), d̃(u, v) with

dG(u, v) ≤ d̃(u, v) ≤ dG(u, v) + 3ε0d(G).

– For each internal node X of TG, an ε0-portal set PQ for every shortest path
Q ∈ P(X) ∪ B(X). For every PQ, every u ∈ V (X) and every portal p ∈ PQ,
distance d̂(u, p) with

dG(u, p) ≤ d̂(u, p) ≤ dG(u, p) + ε0d(Q).

The data structure above gives a distance oracle with 3ε0d(G) additive stretch
and O(1/ε0) query time: Given vertices u and v in G, let Xu and Xv be the
leaf nodes of TG containing u and v, respectively. If Xu = Xv then d̃(u, v)
can be found in O(1) time. Otherwise, let X be the nearest common ancestor
of Xu and Xv. It is shown in [7] that X can be found in O(1) time. Let q =
argp∈PQ,Q∈B(X)∪P(X) min{dG(u, p)+dG(p, v)}. From d̂(u, p) ≤ dG(u, p)+ε0d(Q),
d̂(p, v) ≤ dG(p, v) + ε0d(Q), Lemma 3 and d(Q) ≤ d(G),

dG(u, v) ≤ min
p∈PQ,Q∈B(X)∪P(X)

d̂(u, p) + d̂(p, v) ≤ d̂(u, q) + d̂(q, v)

≤ dG(u, q) + dG(q, v) + 2ε0d(Q) ≤ dG(u, v) + 3ε0d(G).

This distance can be computed in O(1/ε0) time because |PQ| = O(1/ε0) and
|B(X) ∪ P(X)| = O(1).

Now we reduce the query time for internal nodes in the above oracle to a
constant independent of ε0. For z > 0, let f(z) = 2O(1/z). Based on an approach
in [16], we show that for each internal node X and each path Q ∈ B(X)∪P(X),
the vertices in V (X) can be partitioned into f(ε0) classes such that for any two
classes Ai and Aj , there is a key portal pij ∈ PQ and for every u ∈ Ai and every
v ∈ Aj separated by Q, d̂(u, pij) + d̂(pij , v) ≤ dG(u, v) + 7ε0d(G). By keeping
the classes and key portals, the query time is reduced to O(1). We first define
the classes.

Definition 1. Let Q be a shortest path in G, PQ = {p1..., pl} be an ε0-portal
set on Q and r(G) ≤ D ≤ d(G). The vertices of G are partitioned into classes
based on d̂(u, pi), pi ∈ PQ as follows. For each vertex u, a vector Γ u = (a1, ..., al)
is defined such that for 1 ≤ i ≤ l, ai = 	d̂(u, pi)/(ε0D)
. Vertices u and v are in
the same class if and only if Γ u = Γ v.

We show some properties of the classes defined above in the next two lemmas.

Lemma 5. Let Q be a shortest path in G and PQ an ε0-portal set on Q. Let
r(G) ≤ D ≤ d(G) and let Ai and Aj be any two classes of vertices in G defined
in Definition 1. There is a key portal pij ∈ PQ such that for any vertices u ∈ Ai

and v ∈ Aj separated by Q, dG(u, v) ≤ d̂(u, pij)+ d̂(pij , v) ≤ dG(u, v)+7ε0d(G).
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Proof. We choose arbitrarily a vertex x ∈ Ai and a vertex y ∈ Aj separated by
Q. Let pij = argpi∈PQ

min{d̂(x, pi) + d̂(pi, y)} be the key portal. For any u ∈ Ai

and v ∈ Aj separated by Q, let q = argpi∈PQ
min{dG(u, pi) + dG(pi, v)} and let

p = argpi∈PQ
min{d̂(u, pi)+ d̂(pi, v)}. Then d̂(u, p)+ d̂(p, v) ≤ d̂(u, q)+ d̂(q, v) ≤

dG(u, q) + dG(q, v) + 2ε0d(Q) ≤ dG(u, v) + 3ε0d(G) because d̂(u, q) ≤ dG(u, q) +
ε0d(Q), d̂(q, v) ≤ dG(q, v) + ε0d(Q), PQ is an ε0-portal set and d(Q) ≤ d(G).
Since u, x ∈ Ai, v, y ∈ Aj and and D ≤ d(G),

d̂(u, pij) + d̂(pij , v) ≤ d̂(x, pij) + d̂(pij , y) + 2ε0d(G)

≤ d̂(x, p) + d̂(p, y) + 2ε0d(G) ≤ d̂(u, p) + d̂(p, v) + 4ε0d(G).

Therefore,

dG(u, v) ≤ d̂(u, pij)+ d̂(pij , v) ≤ d̂(u, p)+ d̂(p, v)+4ε0d(G) ≤ dG(u, v)+7ε0d(G).

This completes the proof of the lemma. �

Lemma 6. The total number of classes by Definition 1 is f(ε0).

Proof. Each element ai in a vector Γ u = (a1, .., al) has O(1/ε0) different val-
ues. Since PQ is an ε0-portal set, l = O(1/ε0) and there are (1/ε0)O(1/ε0) dif-
ferent classes. As shown in [16], the upper bound on the number of classes
can be reduced to 2O(1/ε0). For each vector Γ u = (a1, .., al), let Γ ∗

u =
(a1, (a2 − a1), (a3 − a2), .., (al − al−1)). Then Γ u = Γ v if and only if Γ ∗

u = Γ ∗
v.

Since
∑

2≤i≤l |ai − ai−1| = O(1/ε0), there are 2O(1/ε0) different vectors of
(a1, |a2 − a1|, |a3 − a2|, .., |al − al−1|). The i’th element of (a1, (a2 − a1), (a3 −
a2), .., (al − al−1)) is |ai − ai−1| or −|ai − ai−1|. Therefore, there are 2O(1/ε0)

different vectors (a1, (a2 − a1), (a3 − a2), .., (al − al−1)). �

Now we are ready to show a data structure DS0 for our oracle with 7ε0d(G)
additive stretch. DS0 contains the basic data structure given above and the
following additional information:

– For each internal node X of TG and each shortest path Q ∈ B(X)∪P(X), let
AQ

1 , ..., AQ
s be the classes of vertices in V (X) defined in Definition 1. For each

vertex u ∈ V (X), we give an index IQ
X(u) with IQ

X(u) = i if u ∈ AQ
i ; and an

s × s array CQ with CQ[i, j] containing the key portal pQ
ij for classes AQ

i and
AQ

j .

For data structure DS0 we have the following three lemmas.

Lemma 7. For graph G and ε0 > 0, data structure DS0 can be computed in
O(n(log3 n/ε20 + f(ε0))) time.

Due to the space limit, we only give an outline of the proof. Let TG be the
recursive subdivision of G in DS0 and b = 2(1/ε0). It takes O(n log n) time to
compute TG (Lemma 1). For each leaf node X and all u and v in X, we find
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dX(u, v) in O(b2) time and d̃(u, v) = min{dX(u, v),minp∈PQ,Q∈B(X) d̂(u, p) +
d̂(p, v)} in O(b2ε0) time. Therefore, it takes O(nb2/ε0) = O(nf(ε0)) time to
compute the distances d̃(u, v) kept in all leaf nodes of TG.

For each internal node X and every path Q ∈ P(X), we compute an ε0-portal
set PQ, an auxiliary set AQ which is an (ε0/ log n)-portal set on Q, and the
distance d̂(u, p) for u in X and p ∈ PQ ∪AQ. For the root node, the computation
is performed on G. For an internal node X �= G, the computation is done using
X and the distances d̂(u, p) for u in X and p in AQ′ , where Q′ is a path in B(X).
Since TG has depth O(log n), it takes O(n log3 n/ε20) time to compute all portal
sets and distances d̂(u, p).

The value D for computing the classes can be found in O(n) time. Since
there are O(n) internal nodes, by Lemma 6, it takes (n)f(ε0)(1/ε0) = O(nf(ε0))
time to compute all classes and key portals. Therefore, DS0 can be computed in
O(n(log3 n/ε20 + f(ε0))) time. �

Lemma 8. For graph G and ε0 > 0, the space requirement for data structure
DS0 is O(n(log n/ε0 + f(ε0))).

Proof. Let TG be the recursive subdivision of G in DS0 and b = 2(1/ε0). Then
TG has O(n) leaf nodes and O(n) internal nodes. Each leaf node requires O(b2)
space to keep the distances d̃(u, v) for u, v in the node. Therefore, the space
for all leaf nodes is O(nb2) = O(nf(ε0)). By Lemma 2, the sum of |V (X)| for
all nodes X in TG is O(n log n). From |B(X) ∪ P(X)| = O(1) for every X and
|PQ| = O(1/ε0) for each Q ∈ B(X) ∪ P(X), the total space for keeping the
distances d̂(u, v) between vertices and portals is O(n log n/ε0). By Lemma 6,
the space for the classes AQ

1 , .., AQ
s in each internal node X is f(ε0) for every

Q ∈ B(X) ∪ P(X). Since there are O(n) internal nodes, the total space for the
classes in all nodes is O(nf(ε0)) = O(nf(ε0)). Therefore the space requirement
for the oracle is O(n(log n/ε0 + f(ε0))). �

Lemma 9. For graph G and ε0 > 0, d̃(u, v) with dG(u, v) ≤ d̃(u, v) ≤
dG(u, v)+7ε0d(G) can be computed in O(1) time for any u and v in G using data
structure DS0.

Proof. Let TG be the recursive subdivision of G in DS0. Let Xu and Xv be the
leaf nodes of TG that contains vertices u and v in G, respectively. The nearest
common ancestor X of Xu and Xv can be found in O(1) time [7]. If Xu = Xv then
d̃(u, v) can be found in O(1) time. Otherwise, for each path Q ∈ B(X) ∪ P(X),
assume that u ∈ AQ

i and v ∈ AQ
j , and let pQ

ij be the key portal for AQ
i and AQ

j . By
Lemma 5, d̃(u, v) = minpQ

ij ,Q∈B(X)∪P(X) d̂(u, pQ
ij)+d̂(pQ

ij , v) ≤ dG(u, v)+7ε0d(G).

Since |B(X) ∪ P(X)| = O(1) and the key portal pQ
ij can be found in O(1) time

for each path Q ∈ B(X) ∪ P(X), d̃(u, v) can be computed in O(1) time. �

From Lemmas 7, 8 and 9, we have the following result.
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Theorem 3. For graph G and ε0 > 0, there is an oracle which gives a distance
d̃(u, v) with dG(u, v) ≤ d̃(u, v) ≤ dG(u, v) + 7ε0d(G) for any vertices u and v in
G with O(1) query time, O(n(log n/ε0 +f(ε0))) size and O(n(log3 n/ε20 +f(ε0)))
pre-processing time.

We can make the oracle in Theorem 3 a more generalized one: For integer
η satisfying 1 ≤ η ≤ 1/ε0, we partition each path Q ∈ B(X) ∪ P(X) into η

segments Q1, .., Qη, compute the classes AQl

1 , .., AQl
s of vertices in V (X) for each

segment Ql, 1 ≤ l ≤ η, and key portal pQl

ij , and use

d̃(u, v) = min
pQl

ij ,1≤l≤η,Q∈B(X)∪P(X)

d̂(u, pQl

ij ) + d̂(pQl

ij , v)

to approximate dG(u, v). By this generalization, we get the following result.

Theorem 4. For graph G, ε0 > 0 and 1 ≤ η ≤ 1/ε0, there is an oracle which
gives a distance d̃(u, v) with dG(u, v) ≤ d̃(u, v) ≤ dG(u, v) + 7ε0d(G) for any
vertices u and v in G with O(η) query time, O(n(log n/ε0 + f(ηε0))) size and
O(n(log3 n/ε20 + f(ηε0))) pre-processing time.

4 Oracle with (1 + ε) Stretch

For ε > 0, by choosing an ε0 = ε
7c where c > 0 is a constant, the oracle

in Theorem 3 gives a (1 + ε)-approximate distance oracle for graph G with
dG(u, v) ≥ d(G)/c for every u and v in G. For graph G with dG(u, v) much
smaller than d(G) for some u and v, we use a scaling approach as described in
[8] to get a (1 + ε)-approximate distance oracle. The idea is that we compute a
set of oracles as described in Theorem 3, each for a computed subgraph H of
G. Given u and v, we can find in O(1) time a constant number of subgraphs
(and the corresponding oracles) such that the minimum value returned by these
oracles is a (1 + ε)-approximation of dG(u, v). Therefore a (1 + ε)-approximate
distance for any u, v can be computed in constant time.

Let lm be the smallest positive edge length in G. We assume lm ≥ 1 and
the case where lm < 1 can be easily solved in a similar way by normalizing the
length of each edge e of G to l(e)/lm. For each scale γ ∈ {2i|0 ≤ i ≤ log d(G)},
we compute a sparse cover Cγ = {G(γ, j), j = 1, ..., nγ} of G as in Lemma 4. For
each γ, we contract every edge e = {u, v} of length l(e) < γ/n2 in G and then
compute Cγ . Each edge of G appears in subgraphs G(γ, j) for O(log n) different
scales [8]. The data structure DS1 for our (1 + ε)-approximate distance oracle
keeps the following information:

– A 2-approximate distance oracle DST of G in Lemma 2.
– Subgraphs G(γ, j) and for each subgraph G(γ, j), an oracle DS0(γ, j) in

Theorem 3 with ε0 = ε/c′, c′ > 0 is a constant to be specified below.

Lemma 10. For graph G and ε > 0, d̃(u, v) with dG(u, v) ≤ d̃(u, v) ≤
(1 + ε)dG(u, v) can be computed in O(1) time for any u and v in G using data
structure DS1.
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Proof. We assume ε > 5/n, otherwise a naive exact distance oracle with O(1)
query time and O(n2) space can be used for the lemma. Given vertices u and
v in G, oracle DST gives d̃T (u, v) with dG(u, v) ≤ d̃T (u, v) ≤ 2dG(u, v) in
O(1) time (Lemma 2). If d̃T (u, v) = 0 then 0 is returned as dG(u, v). Oth-
erwise, given d̃T (u, v), a scale γ with γ/2 < d̃T (u, v) ≤ γ can be found by
computing log(d̃T (u, v))1. By Lemma 4, there is a G(γ, j) that contains u and
every w with dG(u,w) ≤ dG(u, v) ≤ γ and d(G(γ, j)) = O(γ) = O(dG(u, v)).
It’s easy to see that DS0(γ, j) returns a minimum distance among all the ora-
cles at this scale containing u, v. Besides there exists a constant c1 > 0 such
that d(G(γ, j)) ≤ c1dG(u, v) for any u, v and γ selected according to u, v.
By oracle DS0(γ, j), we get a distance d̃0(u, v) with dG(γ,j)(u, v) ≤ d̃0(u, v) ≤
dG(γ,j)(u, v) + 7ε0d(G(γ, j)). Since G(γ, j) is a subgraph obtained from G with
every edge e contracted for l(e) < γ/n2, dG(γ,j)(u, v) ≤ dG(u, v). Let L be
the largest sum of the lengths of the contracted edges in any path in G. Then
dG(u, v) ≤ dG(γ,j)(u, v) + L and L < γ/n ≤ 4

5εdG(u, v). From γ ≤ 2d̃T (u, v) ≤
4dG(u, v) and ε > 5/n. Let d̃(u, v) = d̃0(u, v) + γ/n. Then

dG(u, v) ≤ d̃(u, v) ≤ dG(γ,j)(u, v) + 7ε0d(G(γ, j)) + γ/n

≤ dG(u, v) + 7c1
ε

c′ dG(u, v) +
4
5
εdG(u, v).

By choosing c′ = 35c1, we have dG(u, v) ≤ d̃G(u, v) ≤ (1 + ε)dG(u, v). By
Lemma 2, it takes O(1) time to compute d̃T (u, v). The time for finding the right
scale r is O(1). From Lemma 4, there are O(1) graphs G(γ, j) containing u and
v. From this and Theorem 3, it takes O(1) time to compute d̃(u, v). �

Lemma 11. Data structure DS1 requires O(n log n(log n/ε + f(ε))) space and
can be computed in O(n log n(log3 n/ε2 + f(ε))) time.

Proof. DST requires space O(n log n). Each DS0(γ, j) requires space O(nγj

log nγj/ε + nγjf(ε)), where nγj = |V (G(γ, j))|. It is shown in [8] that each edge
of G appears in O(log n) graphs of G(γ, j). From this,

∑

γ,j nγj = O(n log n)
and DS1 requires space O(n log n(log n/ε + f(ε))).

It takes O(n log2 n) time to compute the sparse neighborhood covers. The
value D for computing the classes can be computed in O(nγj) time. The time
for computing DS0(γ, j) for each G(γ, j) is O(nγj(log3 nγj/ε2+f(ε))). Therefore,
DS1 can be computed in O(n log n(log3 n/ε2 + f(ε))) time. �

From Lemmas 10 and 11, we get Theorem 1 which is restated below.

Theorem 5. For ε > 0, there is a (1+ε)-approximate distance oracle for G with
O(1) query time, O(n log n(log n/ε+ f(ε))) size and O(n log n(log3 n/ε2 + f(ε)))
pre-processing time.

Using the oracle in Theorem 4 instead of DS0, we get Theorem 2.

1 We assume that d(G)/lm can be stored in one computer word of O(1) bits.
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5 Concluding Remarks

It is open whether there is a (1 + ε)-approximate distance oracle with O(1)
query time and size nearly linear in n for weighted directed planar graphs. For
undirected planar graphs, it is interesting to reduce oracle size and pre-processing
time (the function f(ε)) for the oracles in this paper. Experimental studies for
fast query time distance oracles are worth investigations.
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Abstract. A greedily routable region (GRR) is a closed subset of R2,
in which each destination point can be reached from each starting point
by choosing the direction with maximum reduction of the distance to
the destination in each point of the path. Recently, Tan and Kermarrec
proposed a geographic routing protocol for dense wireless sensor networks
based on decomposing the network area into a small number of interior-
disjoint GRRs. They showed that minimum decomposition is NP-hard
for polygons with holes.

We consider minimum GRR decomposition for plane straight-line
drawings of graphs. Here, GRRs coincide with self-approaching drawings
of trees, a drawing style which has become a popular research topic in
graph drawing. We show that minimum decomposition is still NP-hard
for graphs with cycles, but can be solved optimally for trees in polynomial
time. Additionally, we give a 2-approximation for simple polygons, if a
given triangulation has to be respected.

1 Introduction

Geographic or geometric routing is a routing approach for wireless sensor net-
works that became popular recently. It uses geographic coordinates of sensor
nodes to route messages between them. One simple routing strategy is greedy
routing. Upon receipt of a message, a node tries to forward it to a neighbor
node that is closer to the destination than itself. However, delivery cannot be
guaranteed, since a message may get stuck in a local minimum or void. More
advanced geometric routing protocols employ strategies like face routing [2] and
related techniques based on planar graphs to get out of local minima; see [5,15]
for an overview.

An alternative approach is to decompose the network into components, such
that in each of them greedy routing is likely to perform well [9,18,20]. A global
data structure of preferably small size is used to store interconnectivity between
components. One such network decomposition approach has been recently pro-
posed by Tan and Kermarrec [19]. They model the network as a polygonal region
with obstacles or holes inside it and try to partition this region into a minimum
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DOI: 10.1007/978-3-662-48971-0 54
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number of polygons, in which greedy routing works between any pair of points.
They call such components greedily routable regions (GRRs). For intercomponent
routing, region adjacencies are stored in a graph. The protocol is able to guar-
antee finding paths of bounded stretch. The size of the routing state depends on
the number of GRRs. The authors prove that partitioning a polygon with holes
into a minimum number of regions is NP-hard and propose a simple heuristic. Its
solution may strongly deviate from the optimum even for very simple polygons;
see Fig. 1b.

In this paper, we approach the problem of finding minimum or approximately
minimum GRR decompositions by first considering the special case of partition-
ing drawings of graphs, which can be interpreted as very thin polygons. We
notice that in this scenario, GRRs coincide with increasing-chord drawings of
trees as studied by Alamdari et al. [1].

A self-approaching curve is a curve, where for any point t′ on the curve, the
distance to t′ decreases continuously while traversing the curve from the start
to t′ [11]. An increasing-chord curve is a curve that is self-approaching in both
directions. The name is motivated by the equivalent characterization as those
curves, where for any four points a, b, c, d in this order along the curve, it is
dist(b, c) ≤ dist(a, d).

A graph drawing is self-approaching or increasing-chord if each pair of ver-
tices is joined by a self-approaching or increasing-chord path, respectively. The
study of self-approaching and increasing-chord graph drawings was initiated
by Alamdari et al. [1]. They studied the problem of recognizing whether a
given graph drawing is self-approaching and gave a complete characterization
of trees admitting self-approaching drawings. In our own previous work [17], we
studied self-approaching and increasing-chord drawings of triangulations and 3-
connected planar graphs. Furthermore, the problem of connecting given points
to an increasing-chord drawing has been investigated [1,8].

Contributions. First, we show that partitioning a plane graph drawing into a
minimum number of increasing-chord components is NP-hard. This strengthens
the result of Tan and Kermarrec [19] for polygons with holes. Next, we con-
sider plane drawings of trees. We show how to model the decomposition problem
using Minimum Multicut, which provides a polynomial-time 2-approximation.
We then solve the partitioning problem for trees optimally in polynomial time
using dynamic programming. Finally, we use the insights gained for decomposing
graphs and apply them to the problem of minimally decomposing simple trian-
gulated polygons into GRRs. We provide a polynomial-time 2-approximation for
decompositions that are formed along chords of the triangulation.

2 Preliminaries

Greedily Routable Regions were introduced by Tan and Kermarrec [19] as fol-
lows.
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Fig. 1. (a) Normal ray raye1(p) and a pair of conflicting edges e1, e2. (b) The heuristic
in [19] splits a non-greedy region by a bisector at a maximum reflex angle. If the splits
are chosen in order of their index, seven regions are created, although two is minimum
(split only at 6).

Definition 1 ([19]). A polygon P is a greedily routable region (GRR), if for
any two points s, t ∈ P, s �= t, point s can always move along a straight-line
segment within P to some point s′ such that |s′t| < |st|.
In the full version of our paper [16] we show that this definition is equivalent to
the one used in the abstract.

A decomposition of a polygon P is a partition of P into simple polygons Pi,
i = 1, . . . , k, such that

⋃k
i=1 Pi = P and no Pi, Pj with i �= j share an interior

point. A decomposition of P is a GRR decomposition if each component Pi is
a GRR. Using the concept of a conflict relationship between polygon edges (see
Fig. 1a), Tan and Kermarrec give a convenient characterization of GRRs.

Definition 2 (Normal ray). Let P be a polygon, e = uv a boundary edge and p
a point on uv. Let rayuv(p) denote a ray with origin in p orthogonal to uv, such
that all points on this ray sufficiently close to p are not in the interior of P. (If p
is an acute reflex angle, no such ray exists.)

Definition 3 (Conflicting edges). Let e1 and e2 be two edges of a polygon P.
If for some point p in the interior of e1, raye1(p) intersects e2, then e1 conflicts
with e2.

A polygon is a GRR if and only if it has no pair of conflicting edges [19].
Now consider a straight-line plane drawing Γ of a graph G = (V,E). We

identify the edges of G with the corresponding line segments of Γ and the ver-
tices of G with the corresponding points. Planar straight-line drawings can be
considered as infinitely thin polygons. The routing happens along the edges of Γ ,
and we call Γ a GRR if for any two points s �= t on Γ there exists a point s′ on
the same edge as s, such that |s′t| < |st|.

Assume raye1
(s) for an interior point s on an edge e1 of Γ crosses another

edge e2 in point t. Then, any movement along e1 starting from s increases the
distance to t. We call such edges conflicting. It is easy to see that Γ is a GRR if
it contains no pair of conflicting edges. Obviously, such a drawing Γ contains no
cycles. In fact, a straight-line drawing of a tree is increasing-chord if and only if
it has no conflicting edges [1], which implies the following lemma.

Lemma 1. The following two properties are equivalent for a straight-line draw-
ing Γ to be a GRR. 1) Γ is connected and has no conflicting edges; 2) Γ is an
increasing-chord drawing of a tree.



640 M. Nöllenburg et al.

3 NP-Completeness for Graphs with Cycles

We show that finding a minimum decomposition of a straight-line plane draw-
ing Γ into increasing-chord trees is NP-complete. This strengthens the NP-
hardness result by Tan and Kermarrec [19] for minimum GRR decompositions
of polygons with holes.

First, we prove NP-hardness. Both our proof and the proof in [19] are reduc-
tions from the NP-complete problem Planar 3SAT [14]. Recall that a Boolean
3SAT formula ϕ is called planar, if the corresponding variable clause graph Gϕ

having a vertex for each variable and for each clause and an edge for each occur-
rence of a variable (or its negation) in a clause is a planar graph. In fact, Gϕ can
be drawn in the plane such that all variable vertices are aligned on a vertical
line and all clause vertices lie either to the left or to the right of this line and
connect to the variables via E- or ∃-shapes [13]. The variable gadgets in [19]
are cycles formed by T-shaped polygons which can be made arbitrarily thin.
Thus, in the case of straight-line plane drawings we can use very similar variable
gadgets (see Fig. 2). The clause gadgets in [19], however, are squares, at which
three variable cycles meet. This construction cannot be adapted for straight-line
plane drawings and we have to construct a significantly different clause gadget;
see Fig. 3.

Consider a variable gadget consisting of k T-shapes as shown in Fig. 2. On
each T-shape we place one black and one white point as shown in the figure. It
is easy to verify that neither two black points nor two white points can be in one
increasing-chord component. Thus, a minimum GRR decomposition of a variable
gadget contains at least k components. If it contains exactly k components, then
each component must contain one black and one white point, and there are
exactly two possibilities. Each black point has exactly two white points it can
share a GRR with, and once one pairing is picked, it fixes all the remaining
pairings. The corresponding possibilities are shown in Fig. 2a and 2b and will be
used to encode the values true and false, respectively.

To pass the truth assignment of a variable to a clause it is part of, we use arm
gadgets. In total twelve variations of the arm gadget will be used, depending on
the position of the literal in the clause, the position of the clause, and whether
the literal is negated or not. Since in Gϕ each clause c connects to three variables,
we denote these variables or literals as the upper, middle, and lower variables of
c. Similarly, an arm of c is called an upper, middle, or lower arm if it belongs
to a literal of the same type in c. An arm is called a right (resp. left) arm if it
belongs to a clause that lies to the right (resp. left) of the vertical variable line.
Finally, an arm of c is positive if the corresponding literal is positive in c and it
is negative otherwise.

The basic principle of operation of any arm gadget is the same; as an exam-
ple consider the right upper positive arm in Fig. 2. The full version [16] covers
the remaining arm types. Note that each arm can be arbitrarily extended both
horizontally and vertically to reach the required point of its clause gadget. We
select again black and white points (also called distinguished points) on the line
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b3

w1
c

(a)

q
p
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b2

b3

w1
c

(b)

Fig. 2. Variable gadget with a right upper positive arm. (a) true and (b) false variable
state (Color figure online).

segments of the arm gadget. We shall prove the following property which is
crucial for our construction.

Property 1. 1. Consider a drawing Γi of a variable gadget together with all of its
arms. Then, neither two black nor two white points on Γi can be in one GRR. In
a minimum GRR decomposition of Γi, each component has one black and one
white point, and exactly two such pairings of points are possible, one for each
truth assignment.

2. Consider two such drawings Γi, Γj for two different variables. Then, no
distinguished point of Γi can be in the same GRR as a distinguished point of Γj .

Part 1 of Property 1 extends the same property that we already showed for
variable gadgets without arms to the case including all arms. It is easy to verify
that it holds in all our constructions of the arm gadgets. Part 2 follows from the
way the arms are connected by a clause, i.e., in Fig. 3 no pair of points from pi,
pj , pk can be in same GRR.

For each arm gadget we select a special red point q; see Fig. 2. Point q is
neither white nor black. The clause gadget (green in Fig. 3, partly drawn in
Fig. 2) is connected to the arm by a horizontal segment with a distinguished
point p on its end, which is either black or white depending on the arm type.
Each clause has a distinguished point c chosen as shown in Fig. 3. If points q
and p are in the same GRR, then this GRR obviously cannot contain any point
of a green clause segment (see Fig. 2b). We prove in the full version [16] that
points p and q are in the same GRR exactly for the decomposition corresponding
to the variable state that does not satisfy the clause.

Lemma 2. In a minimum GRR decomposition, the distinguished point c of a
clause gadget can share a GRR with a black or white point of an arm gadget if
and only if the corresponding literal is in the true state.

The remaining ingredient is to show the following property.

Property 2. If a variable assignment satisfies a clause, then its entire clause gad-
get can be contained in a GRR of the corresponding arm.
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variable loops

clause

d

dc

pi pj pk

(a)

c

(b)

Fig. 3. Clause gadget rotated by 90◦. (a) true and (b) false clause state (Color figure
online).

In Fig. 3a, each variable is in a state that satisfies the clause. The lengths of
the blue and green segments are chosen such that each blue component can
be merged with the clause gadget (green) into a single GRR as indicated by
the dashed lines. Finally, we can prove the NP-hardness result by showing that
any satisfying truth assignment for a formula ϕ yields a GRR decomposition
into a fixed number k of GRRs, where k is the total number of black points in
our construction. Likewise, we can show that any decomposition into k GRRs
necessarily satisfies each clause in ϕ. The full proof is in [16].

Theorem 1. For k ∈ N0, deciding whether a plane straight-line drawing can be
partitioned into k increasing-chord components is NP-complete.

4 Trees

We consider greedy tree decompositions, or GTDs. For trees, greedy regions
correspond to increasing-chord drawings. In the following, we consider a plane
straight-line drawing of a tree T = (V,E), |V | = n. We identify the tree with
its drawing, the vertices with the corresponding points and the edges with the
corresponding line segments. We want to partition it into a minimum number of
increasing-chord subdrawings.

In such a partition, each pair of components shares at most one point. We
make a restriction by only allowing contacts of the following type.

Definition 4 (Proper contacts). Two drawings of trees with the only common
point p have a proper contact if p is a leaf in at least one of them.

This definition forbids GRRs to have contacts as in Fig. 4a. First, assume T
is split only at its vertices. In the full version [16] we show how to drop this
restriction and adapt our algorithms to compute minimum or approximately
minimum GRR decompositions of plane straight-line tree drawings which allow
splitting tree edges at interior points.
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(a)
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v3 v4

v5

v6e1
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ne3 ne4

ne5

ne6

(c)

Fig. 4. (a) Orange and blue GRRs have non-proper contacts. (b) Tree drawing decom-
posed in GRRs. Edge pairs {e1, e2}, . . . , {e4, e5}, {e5, e1} as well as {e1, e6}, {e4, e6}
are conflicting. (c) Minimum Multicut instance constructed according to the proof of
Proposition 3. No edge orientation respecting all paths between the terminals exists.
Dashed edges form a solution.

4.1 2-Approximation Using Multicut

We show how to partition the edges of T into a minimum number of
increasing-chord components with proper contacts using Minimum Multicut
on trees. Given an edge-weighted graph G = (V,E) and a set of terminal
pairs {(s1, t1),. . . ,(sk, tk)}, an edge set S ⊆ E is a multicut if removing S from G
disconnects each pair si, ti, i = 1, . . . , k. A multicut is minimum if the total
weight of its edges is minimum.

For the complexity of Minimum Multicut on special graph types, see the
survey by Costa et al. [7]. Computing Minimum Multicut is NP-hard even for
unweighted binary trees [3], but has a polynomial-time 2-approximation [10].

Consider a plane straight-line drawing of a tree T = (V,E). We construct
a tree TM as follows. Tree TM has a vertex nv for each vertex v ∈ V and a
vertex ne for each edge e ∈ E. For each e = uv ∈ E, edges nune and nenv are
in TM .

The set of terminals is defined as {(ne1 , ne2) |edges e1, e2 ∈ E are conflicting}.

Lemma 3. Let the set of edges E′ of TM form a Minimum Multicut. Assume
removing E′ from TM disconnects TM into connected components CM

1 , . . . , CM
k .

Then, components Ci = {e ∈ E | ne ∈ CM
i } form a minimum GRR decomposi-

tion of T .

Proof. Consider a multicut E′ of TM , |E′| = k − 1. Consider a component CM
i .

Then, the edges in Ci are conflict-free and form a connected subtree Ti of T .
Thus, Ti is a GRR by Lemma 1.

Next, consider a GRR decomposition of T into k subtrees Ti = (Vi, Ei) with
proper contacts. Assume Ti, Tj touch at vertex v ∈ V . Let edge e = uv be in Ti,
and let v be a leaf in Ti. Then, we add edge nenv of TM to set S; see Fig. 4b
and 4c. It is |S| = k − 1. After removing S from TM , no connected component
contains vertices ne1 , ne2 for a pair of conflicting edges e1, e2. Thus, S is a
multicut. ��

Note that Minimum Multicut is polynomial in directed trees [6], i.e., trees
whose edges can be directed such that for each terminal pair (si, ti), the si-ti
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path is directed. We are unable to apply this result, since we can get Minimum
Multicut instances for which no such orientation is possible, see Fig. 4c.

Corollary 1. Given a plane straight-line drawing of a tree T = (V,E), a par-
tition of E into 2 · OPT − 1 increasing-chord subtrees of T having only proper
contacts can be computed in time polynomial in |V |, where OPT is the minimum
size of such a partition.

4.2 Optimal Solution

In the following we show how to compute an optimal solution for this problem
in polynomial time via a dynamic program.

Theorem 2. Given a plane straight-line drawing of a tree T = (V,E), a par-
tition of E into minimum number of increasing-chord subtrees of T (minimum
GTD) having only proper contacts can be computed in time O(|V |7).

As it is the case with minimum partitions of simple hole-free polygons into
convex [4] or star-shaped [12] components, our algorithm is based on dynamic
programming. Assume T is rooted at vertex r with degree 1. For each vertex u
with parent πu, let Tu be the subtree of u together with edge πuu. A minimum
partition is constructed from the solutions of subinstances as follows. We shall
store minimum partitions of Tu for various possibilities of the greedy component
containing u. We shall call this component the root component. For subtrees
Tu1 , . . . , Tud

whose only common vertex is u, a minimum partition of T ′ =
⋃

i Tui
is formed by choosing partitions of Tui

and possibly merging some of the
components containing ui, i.e., the root components of Tui

.
Given a tree root, the number of different subtrees containing it might be

exponential, e.g., it is Θ(2n) in a star. The key observation for our algorithm is
that we do not need to store a partition for each possible root component. We
require the following notation.

r

ρ1

ρ2
ρ3

t1 t3

(a)

ui

t1t2

u

Tui

πu

(b)

ui

t1

t2uj

t3t4

u
Tui

Tuj

πu

(c)

Fig. 5. (a) Path ρ2 is clockwise between paths ρ1 and ρ3. (b), (c) Proof of Lemma 5.
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Definition 5 (Path clockwise between). Consider directed non-crossing
paths ρ1, ρ2, ρ3 with common origin r, endpoints t1, t2, t3 and, possibly, com-
mon prefixes. Let Vi be vertices of ρi, i = 1, 2, 3, and let T be the tree formed
by the union of ρ1, ρ2 and ρ3. We say that ρ2 is clockwise between ρ1 and ρ3,
if the clockwise traversal of the outer face of T visits t1, t2, t3 in this order; see
Fig. 5a.

Note that in Definition 5 the three paths may (partially) coincide. Lemma 4
shows that to decide whether a union of two subtrees is increasing-chord, it
is sufficient to consider only the two pairs of “outermost” root-leaf paths of
each subtree. This result is crucial for limiting the number of representative
decompositions that need to be considered during our dynamic programming
approach. The statement of the lemma is illustrated in Fig. 6a. The proof is
found in the full version [16].

Lemma 4. Let T1, T2 be trees drawn with increasing chords having the only
common vertex r. Let all tree edges be directed away from r. Let paths ρ1, ρ2
in T1 and ρ3, ρ4 in T2 be paths from r to a leaf, such that:

- every directed path from r in T1 is clockwise between ρ1 and ρ2;
- every directed path from r in T2 is clockwise between ρ3 and ρ4;
- for i = 1, . . . , 4, path ρi is clockwise between ρi−1 and ρi+1 (mod 4).

If the union of paths ρ1, . . . , ρ4 is drawn with increasing chords, then so is
the union of trees T1 and T2.

We now describe our dynamic program in detail. For a root component R
of Tu, let the leftmost path (or, respectively, the rightmost path) be the simple
path in R starting at πu which always chooses the next counterclockwise (clock-
wise) edge. Let Δ = 0, . . . , 3. For each pair of vertices t1, t2 in Tu, cell τΔ[u, t1, t2]
of a table τΔ stores the size of a minimum GRR decomposition of Tu, in which
the root component has the πu-t1 path and the πu-t2 path as its leftmost
and rightmost path, respectively, and such that u has degree Δ + 1 in the
root component. Furthermore, define τ [u, t1, t2] = minΔ=0,...,3 τΔ[u, t1, t2] and
τ [u] = mint1,t2 τ [u, t1, t2].

Clearly, for each leaf u, it is τ0[u, u, u] = 1, and τΔ[u, t1, t2] = ∞ for all other
values of Δ, t1, t2. Let v be the only neighbor of the tree root r. Then, τ [v] is
the size of a minimum GRR decomposition of T .

For ease of presentation, we use the following notations. Vertex u is not a leaf
and has children u1, . . . , ud. Vertices t1, t2 are in the subtree of ui, vertices t3, t4
are in the subtree of uj , vertices t5, t6 are in the subtree of uk and vertex t7
in the subtree of u�. For q = 1, . . . , 7, let ρq denote the u-tq path. It is always
assumed that the tq are such that paths ρ1, . . . , ρ7 are in this clockwise order.
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Lemma 5. We have the recurrences

1. τ1[u, t1, t2] =

{

τ [ui, t1, t2] +
∑

m�=i τ [um] ρ1 ∪ ρ2 ∪ πuu increasing-chord
∞ otherwise

2. τ2[u, t1, t4] = mint2,t3{τ [ui, t1, t2] + τ [uj , t3, t4] − 1 +
∑

m�=i,j τ [um]}
3. τ3[u, t1, t5] = mint3{τ [ui, t1, t1] + τ [uj , t3, t3] + τ [uk, t5, t5] − 2 +

∑

m�=i,j,k τ [um]}
4. τ0[u, u, u] = min{∑

i τ [ui] + 1,

5. mint1,t2,t3,t4{τ [ui, t1, t2] + τ [uj , t3, t4] +
∑

m�=i,j τ [um]},

6. mint1,t2,t3,t4,t5,t6{τ [ui, t1, t2] + τ [uj , t3, t4] + τ [uk, t5, t6] − 1 +
∑

m�=i,j,k τ [um]},

7. mint1,t3,t5,t7{τ [ui, t1, t1] + τ [uj , t3, t3] + τ [uk, t5, t5] + τ [u�, t7, t7] − 2 +
∑

m�=i,j,k,� τ [um] },

8. and τ0[u, ·, ·] = ∞ otherwise.

where the minimizations in lines 2, 3, 5, 6, and 7 consider only vertices such that
ρ1∪· · ·∪ρ4∪πuu, ρ1∪ρ3∪ρ5∪πuu, ρ1∪· · ·∪ρ4, ρ1∪· · ·∪ρ6, and ρ1∪ρ3∪ρ5∪ρ7
are increasing-chord, respectively.

Proof. Assume u is not a leaf. Each increasing-chord tree drawing either has max-
imum degree at most three or is a subdivision of K1,4 (star with four leaves) [1].
This fact limits the number of possibilities of how the root component of Tu can
be created from the root components of Tui

, i = 1, . . . , d.
Consider a GRR decomposition of Tu of size x with root component R which

has πu-t1 and πu-t2 paths as its leftmost and rightmost path, respectively. If u has
degree 2 in R, then it induces GRR decompositions of all Tum

with m = 1, . . . , d

with sizes xm. Note that x =
∑d

m=1 xm. By definition, τ [um] ≤ xm. Moreover,
the root component of Tui

is R′ = R−πuu and has ρ1 and ρ2 as its leftmost and
rightmost path; see Fig. 5b. Therefore, τ [ui, t1, t2] ≤ xi. It follows that the right-
hand side of recurrence 1 is at most x. Thus, the right-hand side of recurrence 1
is bounded by its left-hand side.

Conversely, assume that the right-hand side of recurrence 1 sums to x < ∞.
Then, there exist GRR decompositions of Tum

of size τ [um] for m �= i, and a GRR
decomposition of Tui

of size τ [ui, t1, t2] whose root component R′ has ρ1 and ρ2
as leftmost and rightmost path, respectively. By Lemma 4 and the assumption
that ρ1∪ρ2∪πuu is increasing-chord, it follows that R′+πuu is increasing-chord.
Together, we obtain a GRR decomposition of Tu of size x, whose root component
has its leftmost and rightmost paths ending at t1 and t2, respectively. Thus, the
left-hand side of recurrence 1 is bounded by its right-hand side.

This finishes the proof for recurrence 1. The remaining recurrences can be
proved analogously. The notable differences are as follows. In recurrence 2, the
root component of the decomposition of Tu is obtained by merging root compo-
nents of decompositions of Tui

and Tuj
as well as edge πuu; see Fig. 5c. Hence, the

number of components in the whole decomposition decreases by 1. In recurrence
3, we merge three root components with edge πuu. Then, u has degree 4, and,
thus, each of the three root components must be a path. In recurrence 4, the root
component of a decomposition of Tu is the single edge πuu. It may, however, be
beneficial to merge up to four root components of children of u, provided their
boundary paths are such that their union is a GRR; see Lemma 4. ��
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Theorem 2 follows by applying Lemma 5 to T bottom-up. For the running
time, the limiting factor is considering all possible choices of t1, . . . , t6 in recur-
rence 5 to compute τ0[u, u, u]. In the full version [16] we show how to compute
minimum partitions where we also allow splits in the interior of edges.

Theorem 3. An optimal partition of a plane straight-line tree drawing in GRRs
with proper contacts allowing edge splits can be computed in O(|V |14) time.

5 Triangulations

We now consider partitioning a hole-free polygon P with a fixed triangulation
into a minimum number of GRRs by cutting it along chords of P contained in the
triangulation. For such decompositions we only consider GRRs each consisting
of a group of triangles of the triangulation that together form a simple polygon
without articulation points.

We reduce the problem to Minimum Multicut on trees and use it to give
a polynomial-time (2 − 1/OPT)-approximation, where OPT is the number of
GRRs in an optimal partition. Recall that a polygon is a GRR if and only if it
has no conflict edges [19]. Let �uvw be the triangle defined by three non-collinear
points u, v, w.

T1

T2
rρ1

ρ2
ρ3

ρ4

u1

v1

u4

v4

(a)

u1
u2

u3

v1

v2

v3

(b)

Fig. 6. (a) Statement of Lemma 4. (b) Conflicting triangles (Color figure online).

From now on, let triangles τ1, . . . , τn form a triangulation of a simple hole-
free polygon P , and let T be its corresponding dual binary tree. For simplicity
we use τi to refer both to a triangle in P and its dual node in T .

Definition 6 (Projection of an edge). For three non-collinear points u1,
u2, u3, let proju1

(u2u3) denote the set of points covered by shifting u2u3 orthog-
onally to itself and away from u1 (blue in Fig. 6b).

Definition 7 (Conflicting triangles). Let τi = �u1u2u3 and τj = �v1v2v3 be
two triangles such that the two edges dual to u1u2 and v1v2 are on the τi-τj

path in T . We call τi, τj conflicting, if proju1
(u2u3) ∪ proju2

(u1u3) contains an
interior point of τj.
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Lemma 6. Let T ′ ⊂ T be a subtree of T and let P ′ be the corresponding simple
polygon dual to T ′. Then P ′ is a GRR if and only if no two triangles τ, τ ′ in P ′

are conflicting.

By Lemma 6, the decompositions of P in k GRRs correspond bijectively to the
multicuts E′ of T with |E′| = k − 1 where the terminal pairs are the pairs of
conflicting triangles; see [16] for the proof. We now use the 2-approximation
for Minimum Multicut on trees [10] to give a (2 − 1/OPT)-approximation
for the minimum GRR decomposition of P . Let E′ be a 2-approximation of
Minimum Multicut in T with respect to the pairs of conflicting triangles.
By the above observation the minimum multicut for T has size OPT −1, hence
|E′| ≤ 2OPT −2, which in turn yields a decomposition into 2OPT−1 regions.
Thus the approximation guarantee is 2 − 1/OPT.

Theorem 4. There is a polynomial-time (2 − 1/OPT)-approximation for min-
imum GRR decomposition of triangulated simple polygons.

Acknowledgements. The second author thanks Jie Gao for pointing him to the topic
of GRR decompositions.
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Abstract. We propose a novel proof technique that can be applied to
attack a broad class of problems in computational complexity, when
switching the order of universal and existential quantifiers is helpful. Our
approach combines the standard min-max theorem and convex approx-
imation techniques, offering quantitative improvements over the stan-
dard way of using min-max theorems as well as more concise and elegant
proofs.
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1 Introduction

1.1 The Min-Max Theorem

The celebrate von Neumann min-max theorem [12] states that every finite, two-
player, zero-sum game has an equilibrium in mixed strategies. That is, the maxi-
mum value of the minimum expected gain for one player is equal to the minimum
value of the maximum expected loss for the other. Any zero-sum game can be
represented as a payoff matrix

A = [A(x, y)]x∈X,y∈Y

where A(x, y) is the payoff in case when the X-player chooses strategy x ∈ X
and the Y -player chooses strategy y ∈ Y , understood as a gain for the X-
player and a loss of the Y -player. The basic moves x ∈ X, y ∈ Y are called
pure strategies (think of one of 3 options in the rock-paper-scissors game). We
allow the players to use randomized strategies, which are called mixed strategies
(think of picking a random answer in the rock-paper-scissors game) represented
formally as distributions pX(·), pY (·) over X and Y respectively, and analyze the
expected payoff

Ey∼pY ,x∼pX
A(x, y) =

∑

y

∑

x

pY (y)pX(x)A(x, y).
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If the player X goes first, she can guarantee her gain to be at least

MaxGain(X) = max
pX

min
y

Ex∼pX
A(x, y),

and when the player Y goes first he guarantees his lost to be at most

MinLoss(Y ) = min
pY

max
x

Ey∼pY
A(x, y),

where in both equations we used the fact that the second player always achieves
the best response with some pure strategy. The min-max theorem guarantees
that we have an equilibrium between the players.

Theorem (Min-Max Theorem [12]). With the notation as above (and players
using mixed strategies), we have

MaxGain(X) = MinLoss(Y ).

Many more general versions of the min-max theorem exist. All of them assure
the equality

sup
x∈X

inf
y∈Y

f(x, y) = inf
y∈Y

sup
x∈X

f(x, y)

under certain conditions imposed on the sets X,Y (for example both convex
and compact subsets of a locally convex topological space) and the function f
(for example continuity, convexity in y and concavity in x). The proofs typically
use fixed point theorems. Min-Max theorems have a lot of applications in game
theory, statistical decision theory, economy and theoretical computer science. In
this paper we focus on applications in cryptography, and the simplest version
will be enough for our discussion.

1.2 Switching the Order of Quantifiers by the Min-Max Theorem

The min-max theorem may be used to change the order of quantifiers (minimiza-
tion corresponds to the existential quantifier and maximization corresponds to
the universal quantifier). A very good example is the classical hardcore lemma
due to Impagliazzo [8]. The lemma stated informally says that if for every algo-
rithm A there exists a large set of inputs on which A fails to compute a fixed
function f , then in fact there exists a large set of inputs on which every algo-
rithm fails to compute f with probability close to 1

2 . This particular lemma falls
into a broad class of results in complexity theory which can be proven using the
min-max theorem. We explain this technique before giving more examples.

The general framework. Let A be a class of test functions (for example
poly-size circuits) over a set of possible inputs I and C be a class of distributions
over I satisfying certain desired properties (for example samplability, high den-
sity, high entropy etc.), and v be a payoff function quantifies how well A performs
on the input X (for example, unpredictability or distinguishing advantage). Sup-
pose that we want to prove the existence of a distribution with certain properties
for which every algorithm has bad (or alternatively good) performance.
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Dream Statement. There is a distribution over inputs (with some
certain properties) such that every algorithm performs badly/well.

∃X ∈ C ∀A ∈ A v(A,X) � c (1)

In many cases, it is much easier to prove a weaker version, which gives the exis-
tence of a distribution with desired properties but only for a chosen algorithm.

Weak Statement. For every algorithm there is a distribution over
inputs (with some certain properties) such that it performs badly/well.

∀A ∈ A ∃X ∈ C : v(A,X) � c (2)

Note that this condition is considerably weaker. Indeed, we will see that in
many applications proving the existence of a suitable distribution X for a fixed
algorithm A is actually trivial. But the big question is whether Eq. (2) implies
Eq. (1)

Does the Weak Statement imply the Dream Statement? Suppose
that Eq. (2) holds. Can we conclude that Eq. (1) also holds, with possibly
somewhat weaker class A and a weaker parameter c?

Note that we allow for some loss in quality (a weaker class of algorithms or
a weaker payoff). Indeed, if both sets C and A are convex the answer is triv-
ially “yes”, by the min-max theorem. However, in most applications the set A
consists of efficient algorithms (circuits of a bounded size) and is not convex,
because taking a mixed strategy corresponds to combining many algorithms by
(possibly) inefficient sampling. For the same reason, the set C might not be con-
vex. However, we might “embed” non-convex sets A and C into “almost” convex
hulls of A′, C′ which are (hopefully) still sufficiently good for our purpose, by
taking moderately long mixed strategies, instead of arbitrarily long. Indeed, let

∀A ∈ A ∀X ∈ C ∃A′ ∈ conv A′ ∃X ′ ∈ conv C′ : |v(A, X) − v(A′, X ′)| � δ (3)

where the conv operator denotes the convex hull. We get the following

Approximate Min-Max Theorem. If the condition (3) holds, then
the Weak Statement implies the Dream Statement is true with A and C
replaced by A′ and C′.

1.3 Our Contribution

Summary. This framework is well known (cf. [1,7,14,17,18] to mention only
some papers closely related to our cryptographic applications). What we offer, is
a novel approximation technique. Previous works used to find A′ and X ′ in convex
hulls by a trivial Chernoff approximation argument. We observe that much better
results are obtained with a carefully chosen convex approximation technique.
Indeed, it turns out that in many cases the quantity |v(A,X)−v(A′,X ′)| can be
upper bounded by the Hölder Inequality which involves moments of A and X.



656 M. Skórski

These moments may be better estimated based on properties of the sets A and C
which leads to quantitative improvements. We stress that the key component is
the right choice of Hölder conjugates, that is the exponents for the corresponding
Lp, Lq spaces.

Advantages and Applications of our framework. Using our technique
we prove a whole bunch of results, reproving what is already known in a more
clear and concise way, improving quantitative bounds, or obtaining new results.
Details are given in Sect. 2.

1.4 Related Works

The work of [18] provides a tool to derive good bounds for certain sets C, in
the uniform settings. We stress that we consider only non-uniform adversaries
here. In fact, our results can be probably made uniform by the use of construc-
tive versions of auxiliary results on convex approximations we have applied (for
example [4]). Anyway, uniform settings are not important for most of our appli-
cations like leakage-resilient crypto. While [18] gives hard bounds, we provide
a framework equipped with a different technique of handling C. Our technique
can exploit moment conditions, which is impossible in [18]. We stress that the
crucial component of our technique is the

2 Applications

We briefly recall some basic notation and conventions. We say that two dis-
tributions X1,X2 are (s, ε)-indistinguishable if for every A of size s we have
|EA(X1) − EA(X2)| � ε.

2.1 Impagliazzo Hardcore Lemma

Impagliazzo Hardcore Lemma. Suppose that are given a function f : {0, 1}n

→ {0, 1} that is mildly hard to predict by a class of circuits; for every circuit A
from our class, A(x) and f(x) agree on at most, say, a 0.99 fraction of inputs x.
This might happen when there is a set of noticeable size on which f is extremely
hard to predict, meaning that there is (almost) no advantage over a random
guess. This set could be as big as a 0.02 = 2(1 − 0.99) fraction of input. Indeed,
if f cannot be guessed better than with probability 1

2 on this set, then the
probability that D agrees with f is at most 0.02 · 1

2 + 0.98 · 1 = 0.99.
Quite surprisingly, this intuitive characterization is true. The first such result

was proved by Impagliazzo [8], with a sub-optimal hardcore density. An improved
version with the optimal density of the hardcore set was found by Holenstein
[7]. Below we present the best possible result due to Klivans and Servedio, the
lower bound was given in [11].
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Theorem 1 (Optimal Unpredictability Hardcore Lemma [10]). Let f :
{0, 1}n → {0, 1} be ε-unpredictable by circuits of size s under a distribution V ,
that is

Pr
x←V

[A(x) = f(x)] � 1 − ε

2
, for every A of size at most s. (4)

Then for any δ ∈ (0, 1) there exists a event E of probability ε such that f is 1−δ
unpredictable under V |E by circuits of size s′ = Ω sδ2/ log(1/ε), that is

Pr
x←V |E

[A(x) = f(x)] � 1 + δ

2
, for every A of size at most s′. (5)

Our Contribution. We reprove Theorem 1 using the framework discussed in
Sect. 1.3. Our approach has the following advantages over the related works:

(a) It is derived from the standard min-max theorem. Previous proofs which
achieve optimal parameters require involved iterative arguments [10,18].

(b) It is modular and much simpler than all alternative proofs. Indeed, the argu-
ment of Holenstein is non-optimal and involved. Also the argument given by
Vadhan and Zheng depends on a non-trivial trick attributed to Nissan and
Levy (which improves the hardcore density from ε

2 to ε) and the machinery is
much heavier. Our approach does not require this trick and follows the most
intuitive strategy: show that there is a hardcore for every fixed adversary
and then switch the order of quantifiers.

(c) We have identified the reason for non-optimality in previous proofs. Some
authors even suggested that it might be impossible to get the tight para-
meters using the standard min-max theorem [18]. We show that this is not
true. The problem is not with the standard min-max theorem but with an
inadequate approximation argument in previous works, which do uniform
approximation [7].

A comparison is given below in Table 1.

A sketch of proof. Assume without losing generality that f : {0, 1}n →
{−1, 1}1. Define the payoff v as the unpredictability of f by A under X

v(A,X) def= Pr
x←X

[f(x) = A(x)] =
1 + Ex←XA(x) · f(x)

2
,

Table 1. Hardcore lemmas obtained by different techniques.

Author Technique Hardcore Density Complexity Loss

[8] boosting (constructive approx.) Pr[E] = ε
2 O(δ−2 · poly(1/ε))

[7] standard min-max + Hardcore Optimization Pr[E] = ε O(nδ−2)

[11] complicated boosting (constructive approx.) Pr[E] = ε O(log(1/ε)δ−2)

[18] complicated boosting (constructive approx.) Pr[E] = ε O(log(1/ε)δ−2)

this paper simple min-max + Lp-approx Pr[E] = ε O(log(1/ε)δ−2)

1 We consider {−1, 1} outputs for technical convenience. Equivalently we could state
the problem for {0, 1}.
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and note that this definition makes sense also for circuits with real outputs. Let
the property set C consists of conditional distributions of the form X = V |E
where Pr[E] � ε and E may vary2 ; note that C is convex. Define A as the
set of real-valued3 circuits of size s, and let A′ be the set of circuits of size
s′ = s

δ−2 log(1/ε) . It is not hard to see that the assumption (4) implies

Proposition 1 (Weak Statement). For every A ∈ A we have v(X,A) � 0
for some X ∈ C.

Now we analyze what happens when we replace A by conv(A′). We claim that

Proposition 2 (Approximation Step). For every A′ ∈ conv(A′) we have
v(X,A′) � δ for some X ∈ C.

To prove this, we show that the Hölder Inequality implies for A,A′ and X ∈ C

|v(X,A) − v(X,A′)| � 1
2

(

Ex←V

(

PV |E(x)
PV (x)

)q) 1
q

·
(

Ex←V

∣

∣A(x) − A′(x)
∣

∣

p) 1
p

for any p, q � 1, 1
p + 1

q = 1. Now we can argue that

(a)
(

Ex←V

(

PV |E(x)

PV (x)

)q) 1
q � ε− 1

p (by the extreme points technique).

(b)
(

Ex←V

∣

∣A(x) − A′(x)
∣

∣

p) 1
p = O

(√

p
�

)

for some A which is of complexity �
relative to A′4 (by standard facts on convex-approximation [3]).

Setting � = δ−2 log(1/ε) (so that A ∈ A), taking X = V |E which corresponds
to A′ according to Proposition 1, setting p = 2 log(1/ε) and putting this all
together we get Proposition 5. This implies the following statement

Proposition 3 (Strong Statement). For some X ∈ C we have v(X,A) � δ
for every A ∈ A′.

which proves Theorem 1 (|v(X,A)| � δ follows by considering A′ closed under
complements).

2.2 A (new) Optimal Hardcore Lemma for Metric Pseudoentropy
and Applications to Transformations

Pseudoentropy notions extend classical information-theoretic entropy notions
into computational settings. The following most widely used entropy notions cap-
ture what it means to be “computationally close” to a high entropy
distribution.

2 We can think of measures M such that M(·) � PV (·) and
∑

x M(x) � ε. Every
X ∈ C can be written as PX(·) = M(·)/∑x M(x) for one of these measures M .

3 Following related works [5,14] we use circuits with real outputs for technical reasons.
4 That is, A is a convex combination of � members of A′.
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Definition 1 (HILL Pseudoentropy [6]). Let Y be a distribution with the
following property: there exists Y ′ of min-entropy at least k such that for every
A of size at most s we have |EA(Y )−EY ′)| � ε. Then we say that X has k bits
of HILL entropy of quality (s, ε) and denote by HHILL

s,ε (Y ) � k.

Definition 2 (Metric Pseudoentropy [1]). Let Y be a distribution with the
following property: for every A of size at most s there exists Y ′ of min-entropy
at least k such that we have |EA(Y )−EY ′)| � ε. Then we say that X has k bits
of metric entropy of quality (s, ε) and denote by HMetric

s,ε (Y ) � k.

Pseudoentropy is an important research area, with applications in determinis-
tic encryption, memory delegation [2], pseudorandom generators [6,18]. Metric
Pseudoentropy is much easier to deal with, and fortunately can be converted
into HILL entropy with some loss in quality parameters (s, ε).

Our contribution. The following results shows that any distribution with
metric pseudoentropy of “moderate” quality has a kernel of HILL entropy with
“strong” quality. We also conclude the optimal Metric-HILL transformation.

Theorem 2 (A HILL-pseudoentropy hardcore for metric pseudoen-
tropy). Suppose that HMetric

s,ε (Y ) � n − Δ, for some Y ∈ {0, 1}n. Then there
is an event E, of probability 1 − ε such that HHILL

s′,δ (Y |E) � n − Δ with s′ =
Ω(sδ2/(Δ + 1)) for every δ. In particular, HHILL

s′,ε+δ(Y ) � n − Δ.

One possible application of this fact is amplifying hardness of pseudoentropy with
poor quality. Imagine that we have many independent samples X1,X2, . . . , Xn

from a distribution with a substantial entropy amount (Δ � n) but of weak
advantage ε = 0.99. We can use the result above to show that pseudoentropy in
X1,X2, . . . , Xn is roughly (1− 0.99)(n−Δ) with good quality (see [16] for more
details). Below we briefly compare this result with related works.

(a) Our result is far stronger than the classical result due to Barak et al. [1]
about the transformation. Not only we replace the factor n by Δ, but also
show the existence of a hardcore in the intermediate step.

(b) This result unifies and improves our recent results [15,16]. The corollary
HHILL

s′,ε+δ(Y ) � n − Δ was the same (and optimal) but the hardcore E was
found with worse complexity s′ = Ω(s · δ2/n).

(c) Our result explains the nature of the Metric-HILL transformation. The HILL
pseudoentropy hardcore is an intermediate step in going from Metric pseu-
doentropy to HILL pseudoentropy.

Our result is illustrated in Fig. 1. The parameters are optimal (see [16]).

A sketch of proof. Let A be the set of real-valued circuits of size s and let
A′ be the set of circuits of size s′ = sδ2/(Δ+1). Let C consists of the conditional
distributions X of the form X ′|E, where Pr[E] � 1 − ε and H∞(X ′) � n − Δ;

this set is convex. The payoff is defined as v(X,A)
def
= EA(Y ) − EA(X). It is

easy to see5 that we have
5 This is trivial for boolean A and somewhat more tricky for real-valued A. A short

proof is given implicitly in [5].
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HMetric(Y ) n − Δ HHILL
s (Y |E) n − Δ HHILL

s (Y ) n − Δ

s = s · δ2/(Δ + 1)
= δ

δ arbitrary, Pr[E] = 1 −
(this paper)

s = s
= +

δ arbitrary
(trivial)

s = s · δ2/(Δ + 1)
= + δ

δ arbitrary
([15,1])

Fig. 1. The Metric-to-HILL pseudoentropy transformation.

Proposition 4 (Weak Statement). ∀A ∈ A ∃X ∈ C v(X,A) � 0.

Now we analyze what happens when A is replaced by conv(A′).

Proposition 5 (Approximation Step). For every A′ ∈ conv(A′) we have
v(X,A′) � δ for some X ∈ C.

To prove this, by the Hölder Inequality for any A,A′ and X ∈ C we show

|v(X,A) − v(X,A′)| �
(

Ex←U

(

2nPY |E(x)
)q) 1

q ·
(

Ex←U

∣

∣A(x) − A′(x)
∣

∣

p) 1
p

for any p, q � 1, 1
p + 1

q = 1 and the uniform distribution U . Now we argue that

(a)
(

Ex←U

(

2nPY |E(x)
)q) 1

q � 2
Δ
p (by the extreme points technique).

(b)
(

Ex←V

∣

∣A(x) − A′(x)
∣

∣

p) 1
p = O

(√

p
�

)

for some A which is of complexity �
relative to A′ (by standard facts on convex-approximation [3]).

Setting � = δ−2(Δ+1) (so that A ∈ A), taking X = X ′|E which corresponds to
A′ according to Proposition 1, setting p = Δ + 1 and putting this all together
we get Proposition 5. This implies the following statement

Proposition 6 (Strong Statement). ∃X ∈ C ∀A ∈ A′ v(X,A) � δ.

This directly implies Theorem 2 (as before, we consider A′ closed under com-
plements). More details can be found in ??.

2.3 A (fixed) Construction of a Simulator for Auxiliary Inputs

In [9] there is a theorem, which says that any short information Z about X can
be efficienly simulated from X, Below we state the corrected version [13].

Theorem 3 (Simulating auxiliary inputs, flaws fixed). For any random
variable X ∈ {0, 1}n, any correlated Z ∈ {0, 1}λ and every choice of parame-
ters (ε, s) there is a randomized function Sim : {0, 1}n → {0, 1}λ of complexity
O

(

s · 24λε−4
)

such that Z and Sim (X) are (ε, s)-indistinguishable given X.
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This result is the key component in the simplified analysis of the EUROCRYPT’09
stream cipher construction. Using Theorem 3, as described in [9], one proves the
resilience of the cipher (assuming bounded leakage in every round) and if the
underlying weak PRF is (s, ε)-secure against two queries on random inputs. The
cipher security (s′, ε′) is related to (s, ε) by a polynomial loss in ε.

Our contribution. We describe a flaw in the proof and improve the corrected
bound by a significant super polynomial factor. Below we briefly describe the
significance of our result

(a) Discovered flaws in the recent (TCC’14) analysis of the EUROCRYPT’09
stream cipher. The alternative bounds seem correct but are much weaker. In
particular, we get no meaningful security with the AES used as a weak PRF
in this construction6. This raises the problem of whether the cipher built on
AES is secure or not. We would need a simulator with a loss of only O(ε−2)
not ε−4 in complexity.

(b) A simpler construction based on the min-max theorem. Based on the frame-
work in Sect. 1.3 we give an alternative proof achieving the simulator com-
plexity of O

(

s · 22λε−4
)

). The gain of 22λ over the original approach, which
is a power of ε for recommended values of parameters [9], comes from the
use of convex approximation techniques. Our proof is considerably simpler
and quantitatively better than in [9] (in particular we don’t need to use the
min-max theorem twice depending on what is the value of the game). Also,
it is much simpler than the alternative approach of Vadhan and Zheng [18],
yet yields comparable results for small leakages (see Table 2).

(c) A clear bound on the security level, in terms of the time-success ratio. We
derive a clear formula which shows what fraction of the security of the origi-
nal weak PRF is transformed into security of the stream cipher. This analysis
shows that we are far from good and provable secure leakage-resilient stream
ciphers as we lose over 5

6 of original security. For more details, see Table 2.

In Table 2 we compare the strength of the simulator theorems in terms of implied
security for this construction. To our knowledge, this is the first analysis of the
time-success ratio for this technique. For more details we refer to ??.

More on the flaws. In the claimed better bound O
(

s · 23λε−2
)

there is a
mistake on page 18 (eprint version), when the authors enforce a signed measure
to be a probability measure by a mass shifting argument. The number M defined
there is in fact a function of x and is hard to compute, whereas the original
proof assumes that this is a constant independent of x. In the alternative bound
O

(

s · 23λε−2
)

a fixable flaw is a missing factor of 2λ in the complexity (page
16 in the eprint version), which is because what is constructed in the proof is
only a probability mass function, not yet a sampler [13].

6 The final bounds on the cipher security depends on the simulator complexity and

are given by ε′ = O
(√

2λε
)

and s′ = s ·2−4λε′4. We can’t prove then even very weak

security ε′ = 2−32 having λ = 10 bits of leakage!.
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Table 2. Security of the EUROCRYPT’09 stream cipher instantiated with a wPRF
having 2k keys and λ bits of leakage, obtained from different simulator results. Every
attacker of size s succeeds with prob. at most s/2k′

.

Author Technique Simulator Complexity Implied Security

[9] Standard Min-Max + L∞-approx sh = s · 24λε−4 k′ = k
6
− 5

6
λ

[18] Complicated Boosting sh = s · 2λε−2 + 2λε−4 k′ = k
6
− 1

3
λ

this paper Standard Min-Max + Lp-approx sh = s · 22λε−4 k′ = k
6
− 1

2
λ

A sketch of the proof. Let A be the set of real-valued circuits of size s
and let A′ be the set of circuits of size s′ = s · 2−2λε2. Let C′ consists of the
distributions of the form X,h(X), where h is computable in size s ·2λ; this set is
not convex. Let C be the set of all circuits of size s ·22λε−2. The payoff is defined
as v(h,A)

def
= EA(X,h(X)) − EA(X,Z). It is easy to see that we have

Proposition 7 (Weak Statement). ∀A ∈ A ∃h′ ∈ C′ v(h′, A) � 0.

Indeed, consider h+
A which for every x outputs this value z for which A(x, z) =

maxA(x, ·) and h−
A which for every x outputs this value z for which A(x, z) =

minA(x, ·). Both are of complexity O
(

2λ
)

. Since we have EA(X,h−(X)) �
EA(X,Z) and EA(X,Z) � EA(X,h+(X)), setting h′ to be a distribution over
h+ and h− that is Pr[h′(x) = z] = θ · Pr[h−(x) = z] + (1 − θ) · Pr[h+(x) = z],
we get v(h′,A) = 0 with some θ. In the next step we replace A′ by conv(A′).

Proposition 8 (Approximation 1). ∀A ∈ convA′ ∃h′ ∈ C′ : v(h′,A′) � ε.

This follows from the standard Chernoff Bound approximation argument7 as

|v(h′, A) − v(h′, A′)| = |EA(X, h′(X)) − EA′(X, h′(X))| � sup
x,z

|A(x, z) − A′(x, z)|.

Now we replace C′ by conv C′. Here a more delicate approximation is required.

Proposition 9 (Approximation 2). For every A and every h′ ∈ conv C′ there
exists h ∈ C such that v(h,A) � v(h′,A) + ε.

This follows because by the Hölder Inequality applied to p = q = 2 we obtain

|EA(X, h′(X)) − EA(X, h(X))| � 2
λ
2 ·
(

E
x∼X

∑

z

∣

∣Px,h(x)(x, z) − Px,h′(x)(x,z)

∣

∣

2

) 1
2

,

and by the standard results on convex approximation [4] the second factor is at
most �− 1

2 for some h of complexity � with respect to C′. We put � = 2λε−2. From
the proven propositions we obtain the final result.

Proposition 10 (Strong Statement). ∃h ∈ C ∀A ∈ A′ v(h,A) � 2ε.
7 A can be viewed as a distribution on A′ we simply pick � independent samples {Ai}i

and try to find an approximator of the form A′ = 1
�

∑�
i=1 Ai. It deviates by more

than ε at (x, z) with probability exp(−2�ε2). We combine this with the union bound.
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2.4 More Applications

For more applications we refer interested readers to the full version. They include
the optimal Dense Model Theorem, a better auxiliary input simulator for
bounded-variance adversaries (new), and a proof that every high-conditional
entropy source can be efficiently simulated (new, extending [17]).
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We investigate the solution spaces of Boolean constraint satisfaction problems
built from atomic constraints by means of conjunction and variable identification.
We study a minimization problem in connection with Hamming distance: Given
an instance of a constraint satisfaction problem in the form of a generalized
conjunctive formula over a set of atomic constraints, the problem asks to find
a satisfying assignment with minimal Hamming distance to a given assignment
that satisfies the formula (NearestOtherSolution, NOSol).

As it is common, we analyze the complexity of our optimization problem
through a parameter, representing the atomic constraints allowed to be used
in the constraint satisfaction problem. We give a complete classification of the
complexity of approximation with respect to this parameterization. It turns out
that our problems can either be solved in polynomial time, or they are complete
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Table 1. Boolean co-clones with bases.

iSk
0 {ork}

iSk
1 {nandk}

iSk
00 {ork,x→y,¬x,x}

iSk
10 {nandk,¬x,x,x→y}

iD1 {x⊕y,x}
iD2 {x⊕y,x→y}

iL {even4}
iL2 {even4,¬x,x}
iV {x∨y∨¬z}
iV2 {x∨y∨¬z,¬x,x}
iE {¬x∨¬y∨z}
iE2 {¬x∨¬y∨z,¬x,x}

iN {dup3}
iN2 {nae3}
iI {even4,x→y}
iI0 {even4,x→y,¬x}
iI1 {even4,x→y,x}
iM2 {x→y,¬x,x}

optimization problem asks for a solution of a constraint satisfaction problem with
the minimal Hamming weight, i.e., minimal Hamming distance to the 0-vector.
Our work generalizes this by allowing the given vector to be any, potentially
also non-0-vector. Moreover, our work can also be seen as a generalization of
questions in coding theory.

It turns out that our problem NOSol lacks compatibility with existential
quantification, which makes classical clone theory inapplicable. Therefore, we
have to resort to weak co-clones requiring only closure under conjunction and
equality. To dispose of the latter we apply the theory developed in [14], as well
as minimal weak bases of Boolean co-clones from [12].

2 Preliminaries

An n-ary Boolean relation R is a subset of {0, 1}n; its elements (b1, . . . , bn) are
also written as b1 · · · bn. Let V be a set of variables. An atomic constraint, or an
atom, is an expression R(x), where R is an n-ary relation and x is an n-tuple of
variables from V . Let L be the collection of all non-empty finite sets of Boolean
relations, also called constraint languages. For Γ ∈ L, a Γ -formula is a finite
conjunction of atoms R1(x1) ∧ · · · ∧ Rk(xk), where the Ri are relations from Γ
and the xi are variable tuples of suitable arity.

An assignment is a mapping m : V → {0, 1} assigning a Boolean value m(x)
to each variable x ∈ V . If we arrange the variables in some arbitrary but fixed
order, say as a tuple (x1, . . . , xn), then the assignments can be identified with
vectors from {0, 1}n. The i-th component of a vector m is denoted by m[i] and
corresponds to the value of the i-th variable, i.e., m[i] = m(xi). The Hamming
weight hw(m) = |{i | m[i] = 1}| of m is the number of 1s in the vector m. The
Hamming distance hd(m,m′) = |{i | m[i] �= m′[i]}| of m and m′ is the number
of coordinates on which the vectors disagree. The complement m of a vector m
is its pointwise complement, m[i] = 1 − m[i].

An assignment m satisfies the constraint R(x1, . . . , xn) if (m(x1), . . . ,
m(xn)) ∈ R holds. It satisfies the formula ϕ if it satisfies all of its atoms; m is said
to be a model or solution of ϕ in this case. We use [ϕ] to denote the set of models
of ϕ. Note that [ϕ] represents a Boolean relation. In sets of relations represented
this way we usually omit the brackets. A literal is a variable v, or its negation ¬v.
Assignments m are extended to literals by defining m(¬v) = 1 − m(v).
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We shall need the following Boolean functions and relations later: By x ⊕ y
we denote addition modulo 2 and x ≡ y means x⊕y ⊕1. Further, we let nae3 :=
{0, 1}3

�{000, 111}, dup3 := {0, 1}3
�{010, 101} and even4 := {(a1, a2, a3, a4) ∈

{0, 1}4 | ⊕4
i=1ai = 0}, as well as S0 := [x1∧x4 ≡ x2∧x3], S1 := [S0(x1, x2, x3, x1)]

and S2 := [x1 ∨x2 → x3]. Moreover, for k ≥ 1 we define ork := {0, 1}k
�{0 · · · 0}

and nandk := {0, 1}k
� {1 · · · 1}.

Throughout the text we refer to different types of Boolean constraint relations
following Schaefer’s terminology [13] (see also [4,6]). A Boolean relation R is (1)
1-valid if 1 · · · 1 ∈ R and it is 0-valid if 0 · · · 0 ∈ R, (2) Horn (dual Horn) if R
can be represented by a formula in conjunctive normal form (CNF) having at
most one unnegated (negated) variable in each clause, (3) monotone if it is both
Horn and dual Horn, (4) bijunctive if it can be represented by a CNF having
at most two variables in each clause, (5) affine if it can be represented by an
affine system of equations Ax = b over Z2, (6) complementive if for each m ∈ R
also m ∈ R. A set Γ of Boolean relations is called 0-valid (1-valid, Horn, dual
Horn, monotone, affine, bijunctive, complementive) if every R ∈ Γ satisfies that
property.

A formula constructed from atoms by conjunction, variable identification,
and existential quantification is called a primitive positive formula (pp-formula).
We denote by 〈Γ 〉 the set of all relations that can be expressed using relations
from Γ ∪{=}, conjunction, variable identification, and existential quantification.
The set 〈Γ 〉 is called the co-clone generated by Γ . A base of a co-clone B is a
set of relations Γ , such that 〈Γ 〉 = B. All co-clones, ordered by set inclusion,
form a lattice. Together with their respective bases, which were studied in [5],
some of them are listed in Table 1. In particular the sets of relations being 0-
valid, 1-valid, complementive, Horn, dual Horn, affine, bijunctive, 2affine (both
bijunctive and affine), and monotone each form a co-clone denoted by iI0, iI1,
iN2, iE2, iV2, iL2, iD2, iD1, and iM2, respectively.

We will also use a weaker closure than 〈Γ 〉, called conjunctive closure and
denoted by 〈Γ 〉∧, where the constraint language Γ is closed under conjunctive
definitions, but not under existential quantification or addition of explicit equal-
ity constraints.

Minimal weak bases of co-clones are bases with certain additional properties.
Since we rely on only some of them, we shall not define this term but refer the
reader to [12,14].

Theorem 1. If Γ is a minimal weak base of a co-clone, then Γ ⊆ 〈Γ ′〉∧ for any
base Γ ′.

Lagerkvist computed weak bases for all Boolean co-clones in [12]. From
there we infer that each co-clone B ∈ {iE, iE0, iE1, iE2, iN, iN2, iI} has a sin-
gleton minimal weak base {RB}, in which RiE := (S1 × {0, 1}) ∩ ({0, 1} × S2),
RiE0 := RiE × {0}, RiE1 := S1 × {1}, RiE2 := S1 × {0} × {1}, RiN := even4 ∩S0,
RiN2 := [RiN(x1, . . . , x4) ∧

∧4
i=1 xi+4 = ¬xi] and RiI := [S1(x1, x2, x3) ∧

S1(¬x4,¬x2,¬x3)].
We assume that the reader has a basic knowledge of approximation algo-

rithms and complexity theory, see e.g. [1,6]. For reductions among decision
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problems we use polynomial-time many-one reduction denoted by ≤m. Many-
one equivalence between decision problems is written as ≡m. For reductions
among optimization problems we employ approximation preserving reductions
(AP-reductions), represented by ≤AP. AP-equivalence of optimization problems
is stated as ≡AP. Besides, the following approximation complexity classes in the
hierarchy PO ⊆ APX ⊆ poly-APX ⊆ NPO occur.

We also need a slightly non-standard variation of AP-reductions between
optimization problems P1, P2: Viz., P1 AP-Turing-reduces to P2 if there is a
polynomial-time oracle algorithm A and a constant α ≥ 1 such that for all r > 1
on any input x for P1 we have

• if all oracle calls within A upon inputs for P2 are answered with feasible
solutions for P2, then A outputs a feasible solution for P1 on input x, and

• if for every call in A the oracle answers with an r-approximate solution, then A

computes a (1 + (r − 1)α + o(1))-approximate solution for P1 on input x.

It is straightforward to check that AP-Turing-reductions are transitive. More-
over, if P1 AP-Turing-reduces to P2 with constant α and P2 has an f(n)-
approximation algorithm, then there is an αf(n)-approximation algorithm
for P1.

To relate our problem to well-known optimization problems we make the
following convention: For optimization problems P and Q we say that Q is P-
hard if P ≤AP Q, i.e. if P reduces to it. Moreover, Q is called P-complete if
P ≡AP Q. We use these notions in particular with respect to the following
problems from [11], taking parameters Γ ∈ L.
Problem MinOnes(Γ ). Given a conjunctive formula ϕ over relations from Γ , a
solution is any assignment m satisfying ϕ. The goal is to minimize the Hamming
weight hw(m).
Problem WeightedMinOnes(Γ ). Given a conjunctive formula ϕ over relations
from Γ and a weight function w : V → N on the variables V of ϕ, a solution
is again any assignment m satisfying ϕ. The objective is to minimize the value
∑

x:m(x)=1 w(x).
We now define some well-studied problems to which we will relate our prob-

lems. Note that these problems do not depend on any parameter.
Problem MinDistance. Given a matrix A ∈ Z

k×l
2 any non-zero vector x ∈ Z

l
2

with Ax = 0 is considered a solution. The aim is to minimize the Hamming
weight hw(x).
Problem MinHornDeletion. For a conjunctive formula ϕ over relations from the
constraint language {[x ∨ y ∨ ¬z], [x], [¬x]}, an assignment m satisfying ϕ is
feasible. The objective is given by the minimum number of unsatisfied conjuncts
of ϕ.

MinDistance and MinHornDeletion are NP-hard to approximate within
2Ω(log1−ε(n)) for all ε > 0 [8,11]. Thus, unless P = NP, both are inequivalent
to any problem P ∈ APX.

We also use the classic satisfiability problem SAT(Γ ), asking for a conjunc-
tive formula ϕ over a Γ ∈ L, if ϕ is satisfiable. Schaefer presented in [13] a com-
plete classification of complexity for SAT(Γ ). His dichotomy theorem proves that
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SAT(Γ ) is in P if Γ is 0-valid (Γ ⊆ iI0), 1-valid (Γ ⊆ iI1), Horn (Γ ⊆ iE2), dual
Horn (Γ ⊆ iV2), bijunctive (Γ ⊆ iD2), or affine (Γ ⊆ iL2); otherwise it is NP-
complete. Moreover, we need the decision problem AnotherSAT(Γ ), asking for a
conjunctive formula ϕ over Γ and a model m, if there is another model m′ �= m
for ϕ. In [10] Juban completely classified the complexity of AnotherSAT. His
dichotomy result shows AnotherSAT(Γ ) to be polynomial-time decidable if Γ
is both 0- and 1-valid (Γ ⊆ iI), complementive (Γ ⊆ iN2), Horn (Γ ⊆ iE2),
dual Horn (Γ ⊆ iV2), bijunctive (Γ ⊆ iD2), or affine (Γ ⊆ iL2); or else to be
NP-complete.

3 Results

Here we present the formal definition of our considered problem, with parameter
Γ ∈ L, and our results; the proofs follow in subsequent sections.

Problem NearestOtherSolution(Γ ), NOSol(Γ )
Input: A conjunctive formula ϕ over relations from Γ and an assignment m
satisfying ϕ.
Solution: Another assignment m′ satisfying ϕ.
Objective: Minimum Hamming distance hd(m,m′).

Theorem 2. For every Γ ∈ L the optimization problem NOSol(Γ ) is

(i) in PO if
(a) Γ is bijunctive (Γ ⊆ iD2) or
(b) Γ ⊆ 〈x1 ∨ · · · ∨ xk, x → y,¬x, x〉 for some k ∈ N, k ≥ 2 (Γ ⊆ iSk

00) or
(c) Γ ⊆ 〈¬x1 ∨ · · · ∨¬xk, x → y,¬x, x〉 for some k ∈ N, k ≥ 2 (Γ ⊆ iSk

10);
(ii) MinDistance-complete if Γ is exactly affine (iL ⊆ 〈Γ 〉 ⊆ iL2);
(iii) MinHornDeletion-complete under AP-Turing-reductions if Γ is

(a) exactly Horn (iE ⊆ 〈Γ 〉 ⊆ iE2) or
(b) exactly dual Horn (iV ⊆ 〈Γ 〉 ⊆ iV2);

(iv) in poly-APX if Γ is
(a) exactly both 0-valid and 1-valid (〈Γ 〉 = iI) or
(b) exactly complementive (iN ⊆ 〈Γ 〉 ⊆ iN2),
where NOSol(Γ ) is n-approximable but not (n1−ε)-approximable unless P =
NP;

(v) and NPO-complete otherwise (iI0 ⊆ 〈Γ 〉 or iI1 ⊆ 〈Γ 〉).

The optimization problem can be transformed into a decision problem as
usual. We add a bound k ∈ N to the input and ask if hd(m,m′) ≤ k. This way
we obtain the corresponding decision problem NOSold. Its complexity follows
immediately from the theorems above. All cases in PO become polynomial-time
decidable, whereas the other cases, which are APX-hard, become NP-complete.
This way we obtain a dichotomy theorem classifying the decision problems as
polynomial or NP-complete for all finite sets of relations Γ .
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4 Duality and Inapplicability of Clone Closure

The problem NOSol is not compatible with existential quantification as the fol-
lowing shows:

Example 3. Consider the relation R = {00000, 01111, 10101} and let (ϕR,m) be
an instance of NOSol with ϕR = R(x1, . . . , x5) and m = 10101. Both m1 = 00000
and m2 = 01111 are feasible solutions of ϕR and hd(m,m1) = hd(m,m2) = 3.
Hence m2 is an optimal solution of (ϕR,m). Let m′ = 1010, m′

1 = 0000, and
m′

2 = 0111 be new tuples, constructed from m, m1, and m2 respectively, by
truncating the last coordinate. Hence, they are the solutions of (∃x5 ϕR,m′).
However, note that hd(m′,m′

1) = 2 and hd(m′,m′
2) = 3. The tuple m′

2 is not an
optimal solution of (∃x5 ϕR,m′).

Because of this incompatibility, we cannot prove an AP-equivalence result
between any two NOSol problems parametrized by constraint languages gen-
erating the same co-clone. Yet, similar results hold for the conjunctive closure.

Proposition 4. Let Γ and Γ ′ be constraint languages. If Γ ′ ⊆ 〈Γ 〉∧ holds
then we have the reductions NOSold(Γ ′) ≤m NOSold(Γ ) and NOSol(Γ ′) ≤AP

NOSol(Γ ).

Proof. For similarity it suffices to show that NOSol(Γ ′) ≤AP NOSol(Γ ) if Γ ′ ⊆
〈Γ 〉∧.

Let a formula ϕ with a model m be an instance of NOSol(Γ ′). As Γ ′ ⊆ 〈Γ 〉∧,
every constraint R(x1, . . . , xk) of ϕ can be written as a conjunction of constraints
upon relations from Γ . Substitute the latter into ϕ, obtaining ϕ′. Now (ϕ′,m)
is an instance of NOSol(Γ ), where ϕ′ is only polynomially larger than ϕ. For ϕ
and ϕ′ have the same variables and hence the same models, also the nearest
other models of ϕ and ϕ′ are the same. ��

For a relation R ⊆ {0, 1}n, its dual relation is dual(R) = {m | m ∈ R}, i.e.,
the relation containing the complements of tuples from R. We naturally extend
this to sets of relations Γ by putting dual(Γ ) = {dual(R) | R ∈ Γ}. Since taking
complements is involutive, duality is a symmetric relation. By inspecting the
bases of co-clones in Table 1, we deduce that many co-clones are duals of each
other, e.g. iE2 and iV2.

We now show that it suffices to consider one half of Post’s lattice of co-clones.

Lemma 5. For every Boolean constraint language Γ we have the mutual reduc-
tions NOSold(Γ ) ≡m NOSold(dual(Γ )) and NOSol(Γ ) ≡AP NOSol(dual(Γ )).

Proof. For a Γ -formula ϕ and an assignment m to ϕ we construct a dual(Γ )-
formula ϕ′ by substitution of every atom R(x) by dual(R)(x). Then m satis-
fies ϕ if and only if m satisfies ϕ′, m being the complement of m. Moreover,
hd(m,m′) = hd(m,m′). ��
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5 Finding Another Solution Closest to the Given One

5.1 Polynomial-Time Cases

Since we cannot take advantage of the clone closure, we must proceed differently.
We use the following result based on a previous theorem of Baker and Pixley [2].

Proposition 6 (Jeavons et al. [9]). Every bijunctive constraint R(x1, . . . , xn)
is equivalent to

∧

1≤i≤j Rij(xi, xj), where Rij is the projection of R to the coor-
dinates i and j.

Proposition 7. If Γ is bijunctive (Γ ⊆ iD2) then NOSol(Γ ) is in PO.

Proof. According to Proposition 6 we may assume that the formula ϕ is a con-
junction of atoms R(x, y) or a unary constraint R(x, x) in the form [x] or [¬x].
Unary constraints can be eliminated and their value propagated into the other
clauses, since they fix the value for a given variable.

For each variable x we construct a model mx of ϕ with mx(x) �= m(x)
such that hd(mx,m) is minimal among all models with this property. Initially
we set mx(x) to 1 − m(x) and mx(y) := m(y) for all variables y �= x and
mark x as flipped. If mx satisfies all atoms we are done. Otherwise let R(u, v)
be an atom falsified by mx. If u and v are marked as flipped, the construction
fails, a model mx with the property mx(x) �= m(x) does not exist. Otherwise
the uniquely determined variable v in R(u, v) is not marked as flipped. Set
mx(v) := 1 − m(v), mark v as flipped, and repeat the process.

If mx does not exist for any variable x, then m is the sole model of ϕ and
the problem is not solvable. Otherwise choose one of the variables x for which
hd(mx,m) is minimal and return mx as second solution m′. ��

Proposition 8. If Γ ⊆ iSk
00 or Γ ⊆ iSk

10 for some k ≥ 2 then NOSol(Γ ) is in
PO.

Proof. We perform the proof only for iSk
00. Lemma 5 implies the same result

for iSk
10.

The co-clone iSk
00 is generated by Γ ′ := {ork, [x → y], [x], [¬x]}. According

to [7], this set Γ ′ is also a so-called plain basis of iSk
00, i.e. we may assume that our

inputs (ϕ,m) contain conjunctive formulas ϕ over these relations and equality,
without existential quantification.

Note that x ∨ y is a polymorphism of Γ , i.e., for any two solutions m1, m2

of ϕ we have that the assignment m1 ∨ m2 which is defined by (m1 ∨ m2)(x) =
m1(x) ∨ m2(x) for every x is also a solution of ϕ. It follows that we get the
optimal solution m′ for the instance ϕ and m by either flipping some values 1
of m to 0 or flipping some values 0 of m to 1 but not both. To see this, assume
the optimal solution m′ flips both ones and zeros, then m′ ∨ m is a solution of
ϕ that is closer to m than m′ which is a contradiction.

The main idea is to compute for each variable x of ϕ the distance of the
solution mx, which is minimal among the solutions of ϕ which differ from m
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on the variable x, and flip only ones or only zeros. Then the algorithm chooses
one mx closest to m as m′ and returns it. Since m and m′ differ in at least one
variable, this yields the correct result.

We describe the computation of mx. If m(x) = 0, we flip x to 1 and prop-
agate iteratively along equalities x = z and x → y-constraints, i.e., if x → y
is a constraint of ϕ and m(y) = 0, we flip y to 1 and propagate. This process
terminates after at most n flips, as we only flip from 0 to 1 and no variable is
flipped more than once. If the resulting assignment satisfies ϕ, this is our mx.
Otherwise, there is no satisfying assignment which we get by flipping x and
only flipping 0 to 1 and thus no candidate mx with the desired properties. If
m(x) = 1, we flip x to 0 and propagate backward along equalities x = z and
binary implications, i.e., if y → x is a constraint of ϕ and m(y) = 1, we flip y
to 0 and iterate. Again, if the result satisfies ϕ, this is our mx; else, there is no
candidate mx for this variable. Finally, return the candidate mx being closest
to m if it exists, otherwise there is no feasible solution. ��

5.2 Hard Cases

Lemma 9. Let Γ be a constraint language. If iI1 ⊆ 〈Γ 〉 or iI0 ⊆ 〈Γ 〉 holds then
finding a feasible solution for NOSol(Γ ) is NPO-hard. Otherwise, NOSol(Γ ) ∈
poly-APX.

Proof. Finding a feasible solution to NOSol(Γ ) is exactly the problem
AnotherSAT(Γ ) which is NP-hard if and only if iI1 ⊆ 〈Γ 〉 or iI0 ⊆ 〈Γ 〉 according
to Juban [10]. If AnotherSAT(Γ ) is polynomial-time decidable, we can always
find a feasible solution for NOSol(Γ ) if it exists. Obviously, every feasible solu-
tion is an n-approximation of the optimal solution, where n is the number of
variables of the input. ��

Tightness Results. It will be convenient to consider the following decision
problem.

Problem:AnotherSAT<n(Γ )
Input: A conjunctive formula ϕ over relations from Γ and an assignment m sat-
isfying ϕ.
Question: Is there another satisfying assignment m′ of ϕ, different from m, such
that hd(m,m′) < n, where n is the number of variables of ϕ?

Note that AnotherSAT<n(Γ ) is not compatible with existential quantifica-
tion. Let ϕ(y, x1, . . . , xn) with the model m be an instance of AnotherSAT<n(Γ )
and m′ its solution satisfying hd(m,m′) < n + 1. Let m1 and m′

1 be the corre-
sponding vectors to m and m′, respectively, with the first coordinate truncated.
When we existentially quantify the variable y in ϕ, producing ϕ1(x1, . . . , xn) =
∃y ϕ(y, x1, . . . , xn), then both m1 and m′

1 are solutions of ϕ′, but we cannot
guarantee hd(m1,m

′
1) < n. Hence we need the equivalent of Proposition 4 for

this problem, whose proof is analogous.
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Proposition 10. AnotherSAT<n(Γ ′) ≤m AnotherSAT<n(Γ ) for Γ, Γ ′ ∈ L, Γ ′ ⊆
〈Γ 〉∧.

Proposition 11. If Γ ∈ L with 〈Γ 〉 = iI or iN ⊆ 〈Γ 〉 ⊆ iN2, then
AnotherSAT<n(Γ ) is NP-complete.

Proof. Containment in NP is clear, so it only remains to show hardness. Since the
considered problem is not compatible with existential quantification, we cannot
use clone theory and therefore we will consider the three co-clones iN2, iN and
iI individually, making use of minimal weak bases.

Case 〈Γ 〉 = iN: We show a reduction from AnotherSAT(R) where R =
{000, 101, 110} which is NP-hard by [10]. Since R is 0-valid, AnotherSAT(R)
is still NP-complete if we restrict it to instances (ϕ,0), where ϕ is a conjunc-
tive formula over R and 0 is the constant 0-assignment. Thus we can perform a
reduction from this restricted problem.

By Theorem 1 and Proposition 10 we may assume that Γ contains the
minimal weak base relation RiN. Given a formula ϕ over R, we construct
another formula ϕ′ over RiN by replacing every constraint R(xi, xj , xk) with
RiN(xi, xj , xk, w), where w is a new global variable. Moreover, set m to the
constant 0-assignment. This construction is a many-one reduction from the
restricted version of AnotherSAT(R) to AnotherSAT<n(Γ ).

To see this, observe that the tuples in RiN that have a 0 in the last coordinate
are exactly those in R×{0}. Thus any solution of ϕ can be extended to a solution
of ϕ′ by assigning 0 to w. Assume that ϕ′ has a solution m which is not constant 0
or constant 1. Because RiN is complementive, we may assume that m(w) = 0.
But then m restricted to the variables of ϕ is not the constant 0-assignment and
satisfies all constraints of ϕ. This completes the proof of the first case.

Case 〈Γ 〉 = iN2: We show a reduction from AnotherSAT<n(RiN) which is NP-
hard by the previous case. Reasoning as before, we may assume that Γ contains
RiN2 = {mm | m ∈ RiN}. Given an RiN-formula ϕ over the variables x1, . . . , xn,
we construct an RiN2-formula over the variables x1, . . . , xn, x′

1, . . . , x
′
n by replac-

ing RiN(xi, xj , xk, x�) with RiN2(xi, xj , xk, x�, x
′
i, x

′
j , x

′
k, x′

�). Moreover, we define
an assignment m′ to ϕ′ by setting m′(xi) := m(xi) and m′(x′

i) := m(xi). It is
easy to see that this construction is a reduction from AnotherSAT<n(RiN) to
AnotherSAT<n(Γ ).

Case 〈Γ 〉 = iI: Note that by restricting the first argument of the minimal
weak base relation RiI to 0, we get the relation {0}×R with R := {000, 011, 101}.
By [10] we have that AnotherSAT(R) is NP-complete. Now we proceed similarly
to the first case, observing that the only solution m such that m(w) = 1 is the
constant 1-assignment. ��
Proposition 12. For Γ ∈ L such that 〈Γ 〉 = iI or iN ⊆ 〈Γ 〉 ⊆ iN2 and any
ε > 0 there is no polynomial-time n1−ε-approximation algorithm for NOSol(Γ ),
unless P = NP.

Proof. Assume that there is a constant ε > 0 with a polynomial-time n1−ε-
approximation algorithm for NOSol(Γ ). We will show how to use this algorithm to
solve AnotherSAT<n(Γ ) in polynomial time. Proposition 11 completes the proof.



Give Me Another One! 673

Let (ϕ,m) be an instance of AnotherSAT<n(Γ ) with n variables. If n = 1,
then we reject the instance. Otherwise, we construct a new formula ϕ′ and a new
assignment m′ as follows. Let k be the smallest integer greater than 1/ε. Choose
a variable x of ϕ and introduce nk − n new variables xi for i = 1, . . . , nk − n.
For every i ∈ {1, . . . , nk − n} and every constraint R(y1, . . . , y�) in ϕ, such that
x ∈ {y1, . . . , y�}, construct a new constraint R(zi

1, . . . , z
i
�) by zi

j = xi if yj = x

and zi
j = yj otherwise; add all the newly constructed constraints to ϕ in order to

get ϕ′. Moreover, we extend m to an assignment of ϕ′ by setting m′(xi) = m(x).
Now run the n1−ε-approximation algorithm for NOSol(Γ ) on (ϕ′,m′). If the
answer is m′ then reject, otherwise accept.

We claim that the algorithm described above is a correct polynomial-time
algorithm for the decision problem AnotherSAT<n(Γ ) when Γ is complementive.
Polynomial runtime is clear. It remains to show its correctness. If the only solu-
tions to ϕ are m and m, then, as n > 1, the approximation algorithm must answer
m′ and the output is correct. Assume that there is a satisfying assignment ms

different from m and m. The relation Γ is complementive, hence we may assume
that ms(x) = m(x). It follows that ϕ′ has a satisfying assignment m′

s for which
hd(m′

s,m
′) < n holds. But then the approximation algorithm must find a sat-

isfying assignment m′′ for ϕ′ with hd(m′,m′′) < n · (nk)1−ε = nk(1−ε)+1. Since
the inequality k > 1/ε holds, it follows that hd(m′,m′′) < nk. Consequently, m′′

is not the complement of m′ and the output of our algorithm is again correct.
When Γ is not complementive but both 0-valid and 1-valid (〈Γ 〉 = iI), we

perform the expansion algorithm described above for each variable of the for-
mula ϕ and reject if the result is the complement for each run. The runtime
remains polynomial. ��

MinDistance-Equivalent Cases. In this section we show that affine co-clones
give rise to problems equivalent to MinDistance. The upper bound is easy.

Lemma 13. For affine Γ ∈ L (Γ ⊆ iL2) the problem NOSol(Γ ) reduces to
MinDistance.

Proof. Let the formula ϕ and the model m be an instance of NOSol(Γ ) over the
variables x1, . . . , xn. Clearly, ϕ can be written as Ax = b and m is a solution of
this affine system. As any solution of Ax = b can be written as m′ = m + m0

where m0 is a solution of Ax = 0, the problem becomes equivalent to computing
the solutions of this homogeneous system of small weight. But this is exactly the
MinDistance problem. ��

The following lemma can be easily proved, since the equivalence relation
[x ≡ y] is the solution set of the linear equation x + y = 0. The relation [x] is
represented by the equation x = 1 whereas the relation [¬x] is represented by
x = 0.

Lemma 14. NOSol({even4}) ≡AP NOSol({even4, [x], [¬x]}).
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Corollary 15. For Γ ∈ L with iL ⊆ 〈Γ 〉 ⊆ iL2 we have MinDistance ≤AP

NOSol(Γ ).

Proof. We show an AP-reduction to NOSol({even4, [x], [¬x]}). Since every sys-
tem of linear equations can be written as a conjunction over relations in iL2, the
claim follows. ��

MinHornDeletion-Equivalent Cases. As in Proposition 11 the need to use
conjunctive closure instead of 〈 〉 causes a case distinction in the proof of the
following result.

Lemma 16. If Γ is proper Horn (iE ⊆ 〈Γ 〉 ⊆ iE2) then one of the following
relations is in 〈Γ 〉∧: [x → y], [x → y] × {0}, [x → y] × {1}, or [x → y] × {01}.

Proof. Supposing that 〈Γ 〉 = iE, we get from Theorem 1 that RiE belongs
to 〈Γ 〉∧. Observe that RiE(x1, x1, x1, x4) = [x1 → x4] and thus [x → y] ∈
〈RiE〉∧ ⊆ 〈Γ 〉∧ which concludes this case. The case 〈Γ 〉 = iE0 leads to
[x → y] × {0} ∈ 〈Γ 〉∧ in a completely analogous manner. The cases 〈Γ 〉 = iE1

and 〈Γ 〉 = iE2 lead to [x → y] × {1} ∈ 〈Γ 〉∧ and [x → y] × {01} ∈ 〈Γ 〉∧,
respectively, by observing that (x1 ≡ x1 ∧ x3) = x1 → x3. ��

Lemma 17. If a constraint language Γ ∈ L is proper Horn (iE ⊆ 〈Γ 〉 ⊆ iE2),
then NOSol(Γ ) is MinHornDeletion-hard.

Proof. Reduction from MinOnes(Γ ∪ {[x]}) which is MinHornDeletion-hard
by [11]. Consider first the case in which [x → y] ∈ 〈Γ 〉∧. By Proposition 4
we may assume that [x → y] ∈ Γ . Let ϕ be a Γ ∪{[x]}-formula. We construct ϕ′

as follows. Replace each atomic formula R(y1, . . . , yk) in ϕ, where R ∈ Γ , by
its conjunctive normal form decomposition, which yields a formula ϕ′′. Since
R ∈ Γ ⊆ iE2 holds, each clause occurring in this decomposition contains at
most one unnegated variable. Those that contain negated variables are 0-valid,
and so is their conjunction. The remaining ones, which are not 0-valid, are just
single variables (literals). Next, replace all literals y from ϕ′′ by x → y, where x
is a global new variable. Finally, add v → x for all variables v of ϕ to get ϕ′.

Observe that ϕ′ is 0-valid. Moreover, the other solutions of ϕ′ are exactly
the solutions of ϕ extended by the assignment x := 1, because whenever one
of the variables v takes the value 1, the clause v → x forces x to 1 which in
turn enforces the unary clauses y of ϕ by the implications x → y. It follows that
OPT(ϕ) + 1 = OPT(ϕ′,0).

Moreover, for every r-approximate solution m′ of ϕ′ we first check whether
m = 0 is a solution of ϕ. In case it is, OPT(ϕ) = 0 and we trivially have
hw(m) ≤ 2rOPT(ϕ). Otherwise, OPT(ϕ) ≥ 1 and we get a solution m of ϕ
by restriction to the variables of ϕ with the weight hw(m) = hd(0,m′) − 1 ≤
r(OPT(ϕ′,0))− 1 ≤ r(OPT(ϕ)+1)− 1 ≤ 2rOPT(ϕ). In any case, we have thus
hw(m) ≤ 2rOPT(ϕ) which shows that the construction is an AP-reduction with
α = 2.
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For the other cases of Lemma 16 we argue similarly. The only difference is the
introduction of some new variables, forced to constant values by the respective
relation from Lemma 16. It is easy to see that these constants do not change the
rest of the analysis. ��

The proof of the following corollary requires a reduction to a similar problem,
namely NearestSolution (NSol), which differs from NOSol in the point that the
input assignment m does not need to satisfy the input formula ϕ; if it does,
then m is the optimal solution (see [3] for details).

Corollary 18. If Γ ∈ L is proper Horn (iE ⊆ 〈Γ 〉 ⊆ iE2) or proper dual-Horn
(iV ⊆ 〈Γ 〉 ⊆ iV2) then NOSol(Γ ) is MinHornDeletion-complete under AP-Turing-
reductions.

Proof. Hardness follows from Lemma 17 and duality. Moreover, NOSol(Γ ) can be
AP-Turing-reduced to NSol(Γ ∪{[x], [¬x]}) as follows: Given a Γ -formula ϕ and
a model m, we construct for every variable x of ϕ a formula ϕx = ϕ∧(x = m(x)).
Then for every x we run an oracle algorithm for NSol(Γ ∪{[x], [¬x]}) on (ϕx,m)
and output one result of these oracle calls that is closest to m.

We claim that this algorithm is indeed an AP-Turing reduction. To see this
observe first that the algorithm always computes a feasible solution, unless
only m satisfies ϕ. Moreover, we have OPT(ϕ,m) = minx(OPT(ϕx,m)). Let
A(ϕ,m) be the answer of the algorithm on (ϕ,m) and let B(ϕx,m) be the
answers to the oracle calls. Consider a variable x∗ such that OPT(ϕ,m) =
minx(OPT(ϕx,m)) = OPT(ϕx∗ ,m), and assume that B(ϕx∗ ,m) is an r-
approximate solution of (ϕx∗ ,m). Then we get

hd(m,A(ϕ,m))
OPT(ϕ,m)

=
miny(hd(m,B(ϕy,m))

OPT(ϕx∗ ,m)
≤ hd(m,B(ϕx∗ ,m))

OPT(ϕx∗ ,m)
≤ r.

Thus the algorithm is indeed an AP-Turing-reduction from NOSol(Γ ) to
NSol(Γ ∪{[x], [¬x]}). Note that NSol(Γ ∪{[x], [¬x]}) reduces to MinHornDeletion
(see [3]). Duality completes the proof. ��

6 Concluding Remarks

The studied problem is in PO for bijunctive constraints. If the constraints are
implication hitting set bounded by k for some k ≥ 2, the problem NOSol still
remains in PO. The situation is more complicated for Horn constraints and dual
Horn constraints, where the task becomes equivalent to MinHornDeletion. The
next complexity stage of the solution structure is characterized by affine con-
straints, where we can apply standard linear algebra techniques to prove equiva-
lence with the MinDistance-problem. The penultimate stage of solution structure
complexity is represented by constraints, for which the existence of a solution is
guaranteed by their definition, but we do not have any other exploitable infor-
mation. We need a guarantee of at least two solutions. The existence of a second
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solution is guaranteed by iN2 being complementive. Our problem belongs to the
class poly-APX for these constraints. We can even exactly pinpoint the poly-
nomial (n, i.e. arity of the formula) for which we can get a polynomial-time
approximation. This complexity result indicates that we cannot get a suitable
approximation for these types of the considered optimization problem. All other
cases cannot be approximated in polynomial time at all.
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Abstract. Many large arithmetic computations rely on tables of all
primes less than n. For example, the fastest algorithms for computing
n! takes time O(M(n log n) + P(n)), where M(n) is the time to multiply
two n-bit numbers, and P(n) is the time to compute a prime table up to
n. The fastest algorithm to compute

(

n
n/2

)

also uses a prime table. We

show that it takes time O(M(n) + P(n)).
In various models, the best bound on P(n) is greater than M(n log n),

given advances in the complexity of multiplication [8,13]. In this paper,
we give two algorithms to computing prime tables and analyze their
complexity on a multitape Turing machine, one of the standard mod-
els for analyzing such algorithms. These two algorithms run in time
O(M(n log n)) and O(n log2 n/ log log n), respectively. We achieve our
results by speeding up Atkin’s sieve.

Given that the current best bound on M(n) is n log n2O(log∗ n), the
second algorithm is faster and improves on the previous best algorithm
by a factor of log2 log n. Our fast prime-table algorithms speed up both
the computation of n! and

(

n
n/2

)

.

Finally, we show that computing the factorial takes Ω(M(n log4/7−ε n))
for any constant ε > 0 assuming only multiplication is allowed.

Keywords: Prime tables · Factorial · Multiplication · Lower bound

1 Introduction

Let P(n) be the time to compute prime table Tn, that is, a table of all primes
from 2 to n. The best bound for P(n) on a log-RAM1 is O(n/ log log n), using the
Sieve of Atkin, and O(n log2 n log log n) on the multitape Turing machine (TM),
a standard model for analyzing prime table computation, factorial computation,
and other large arithmetic computations [13,24,25]. This TM algorithm is due
to Schönhage et al. [24] and is based on the Sieve of Eratosthenes.

M. Farach-Colton and M.-T. Tsai—Work supported by CNS-1408782 and IIS-
1247750.

1 In the standard RAM model, words have O(log n) bits on which arithmetic oper-
ations can be performed in constant time, say, so that array access takes constant
time. We follow the convention of previous papers [14] on this topic by emphasizing
this point in the name log-RAM.
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The main result of this paper is two algorithms that improve the time to
compute Tn on a TM. One runs in O(n log2 n/ log log n) and thus speeds up
Schönhage’s algorithm by a factor of log2 log n.

The other has a running time that depends on the time to multiply large
numbers. Let M(a, b) be the time to multiply an a-bit number with a b-bit
number, and let M(a) = M(a, a). We make the standard assumption [18] that
f(n) = M(n)/n is a monotone non-decreasing function. Then we give a prime-
table algorithm that runs in time O(M(n log n)) on a TM. Fürer’s algorithm [13]
gives the best bound for M(n) on a TM, which is n log n2O(log∗ n), a bound that
was later achieved by a different method by De et al. [8], so our second algorithm
is currently slower than the first algorithm.

Prime tables are used to speed up many types of computation. For exam-
ple, the fastest algorithms for computing n! depend on prime tables [6,24,27].
Schönhage’s algorithm [24] is fastest and takes time O(M(n log n) + P(n)).

The number of bits in n! is Θ(n log n), and Borwein [6] conjectured that
computing n! takes Θ(M(n log n)) time. On the log-RAM, Fürer [14] showed
that M(n) = O(n). So on the log-RAM, the upper bound of Borwein’s conjecture
seems to be true, since M(n log n) dominates O(n/ log log n) for now.

On a TM, there is a simple lower bound of Ω(n log n) to compute n!, since
that is the number of TM characters needed to represent the output. This
contrasts with the O(n)-word output on the log-RAM. On the other hand,
no O(M(n log n))-time algorithm was known in this model, since before our
improved prime-table algorithms, P(n) dominated M(n log n)2. Using our
O(M(n log n))-time prime-table algorithm, the time to compute n! is improved
to O(M(n log n)). If Borwein’s conjecture turns out to be true, this algorithm
will turn out to be optimal for computing n!.

Another use of prime tables is in the computation of binomial coefficients.
The exact complexity of computing binomial coefficients hadn’t been analyzed,
but here we show that a popular algorithm based on [19] takes time O(M(n) +
P(n)). Thus our faster algorithm also improves this running time by log2 log n.

Finally, we consider lower bounds for computing n!. Although we do not
produce a general lower bound for computing n! on a TM3, we do show a lower
bound for algorithms on the following restricted model. We do not restrict which
operation can be used but we assume that the factorial n! is output by a multipli-
cation. We assume that a multiplication can only operate on two integers, each of
which can be an integer of o(n log n) bits or a product computed by a multiplica-
tion. We note that all known algorithms adhere to this restriction [5,6,24,26,27],
under which we show a lower bound

Ω
(

max
t

{

Mt1/2−ε

(

1
t
n log n

)

,
t

w
n log n

})

for t ∈ [1, n], (1)

where w denotes the word size in the model. Given an upper bound and a lower
bound for M(n), we can simplify the lower bound in Eq. (1).
2 We note that before Fürer’s algorithm, the opposite was true. This is because before

Fürer’s algorithm, the best bound on M(n) was O(n log n log log n) [25].
3 And indeed, such a result would be a much more significant than any upper bound!.
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On the Turing Machine, we know that M(n) has a simple linear lower bound
Ω(n) and an upper bound n log n2O(log∗ n) due to Fürer [13] and De et al. [8]. In
that case, we have a lower bound in the multiplication model of

Ω(M(n log4/7−ε n)) for any constant ε > 0. (2)

On the log-RAM, we know that M(n) has a lower bound of Ω(n/ log n) because
operations on O(log n) bit words take at least constant time. The upper bound
for M(n), also due to Fürer [14], is O(n). In that case, under the multiplication
restriction, we have the same lower bound as Eq. (2). They coincide because both
models have a log1+ε n gap between the lower and upper bounds of M(n).

Our Techniques. To get the claimed log2 log n speedup, we replace the sieve of
Eratosthenes with a careful multitape Turing machine implementation of Atkin’s
sieve. To show an upper bound of P(n) in terms of M(n), we prove an upper
bound of the number of (integer) lattice points on the ellipses and truncated
hyperbola specified by Atkin’s conditions. Such bound establish that a majority
of multiplications operate on short operands, thereby making them faster.

Organization. In Sect. 2, we present the related work for computing prime
tables. We propose two algorithms in Sect. 3. Last, in Sect. 4, we show a lower
bound of computing factorials. The related work, upper bounds for factorials
and binomials, and inequalities of M(n) can be found in [12, App. A-C].

2 Background and Related Work

In this section, we present the relevant background on computing prime tables
and defer those for factorials and binomial coefficients to [12, App. A].

The Sieve of Eratosthenes is the standard algorithm used in RAM model. It
creates a bit table where each prime is marked with a 1 and each composite is
marked with a 0. The multiples of each prime found so far are set to 0, each in
O(1) time, and thus the whole algorithm takes time

∑

p≤n n/p = O(n log log n).
However, on a TM, each multiple of a prime cannot be marked in O(1) time.
Instead, marking all the multiples of a single prime takes O(n) time, since the
entire table must be traversed. Because there are O(

√
n/ log n) such primes, this

approach takes O(n3/2/ log n) time.
Schönhage et al. give an algorithm to compute a prime table from 2 to n in

O(n log2 n log log n) time [24]. His algorithm, for each prime p ≤ √
n, generates

a sorted list4 of the multiples of p, and then merges the O(
√

n/ log n) lists so
generated. The total number of integers on these lists is O(n log log n), each
integer needs to be merged O(log n) times, and each integer has O(log n) bits.
Therefore, Schönhage’s algorithm has running time O(n log2 n log log n).

4 It is not the case that each list occupy a tape; otherwise, ω(1) tapes are required.
To merge these lists, put half of the lists on a tape, half on the other, merge them
pairwise, output the sorted lists on another two tapes and recurse. In this way, 4
tapes are enough.
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Alternatively, one can use the AKS primality test [1] on each integer in
the range from 2 to n. The fastest known variant of the AKS primality test is
due to Lenstra and Pomerance and takes Õ(log6 n) time per test on a TM. If
Agrawal’s conjecture [1] is true, it takes Õ(log3 n) time. Whether the conjecture
is true or not, it would still take Ω(n log3 n) time to compute a prime table.
One can use the base-2 Fermat test, 2p ≡ 2 (mod p), to screen out a majority
of composite numbers. This would take O(n log nM(log n)), which is dominated
by the AKS phase. All prime numbers and o(n/ log n) composite numbers can
pass the base-2 Fermat test [16]. Therefore, it reduces the complexity by a log n
factor. In this case, it would take a finer analysis of AKS and settling Agrawal’s
conjecture to determine the exact complexity of this algorithm. It would likely
take Õ(n log2 n) = O(n log2 n logk log n) for some k > 0, and this would improve
on Schönhage’s algorithm if k < 1.

We show how to implement the Sieve of Atkin to achieve a running time
min{O(n log2 n/ log log n),O(M(n log n))} on the Turing Machine in Sect. 3.

3 Fast Algorithms for Atkin’s Sieve

In this section, we give two algorithms for implementing Atkin’s Sieve
on a TM. The first runs in time O(n log2 n/ log log n). The second runs in time
O(M(n log n)). Given the state of the art in multiplication, the first is faster. We
present both, in case a faster multiplication algorithm is discovered.

3.1 Atkin’s Sieve in O(n log2 n/ log logn)

We define notions before proceeding to the proof. A squarefree integer denotes an
integer that has no divisor that is a square number other than 1. Let Nf(x,y)(k) =
0 if there are even number of integer pairs (x, y) that have x > 0, y > 0 and
f(x, y) = k; or 1, otherwise. Similarly, let N′

f(x,y)(k) = 0 if there are even number
of integer pairs (x, y) that have x > y > 0 and f(x, y) = k; or 1, otherwise. The
key distinction is that the latter requires that x > y. In [2], Atkin and Bernstein
classify potential primes into three categories and perform a unique primality
test for each category based on N and N′, as stated in Theorem 1.

Theorem 1 ([2, Theorems 6.1–6.3]). For every squarefree integer k ∈ 1+4N, k
is prime iff Nx2+4y2(k) = 1; for every squarefree integer k ∈ 1 + 6N, k is prime
iff Nx2+3y2(k) = 1; for every squarefree integer k ∈ 11 + 12N, k is prime iff
N′

3x2−y2(k) = 1.

We show how to compute Nx2+4y2(k) for all k ∈ [1, n] in O(n log2 n/ log log n)
time. First, for each x ∈ [1, n1/2], one can enumerate a short list of x2+4·12, x2+
4 ·22, . . . , x2+4 ·(n1/2)2 in O(

√
n log n) time because the differences between two

consecutive terms form an arithmetic progression. Furthermore, each short list
is already sorted. Then, we merge short lists pairwisely until a single sorted list
is obtained; therefore, the running time is O(n log2 n) because there are O(n)
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integers, each of which has O(log n) bits and is encountered O(log n) times in
the merge process. By removing the duplicates in the single sorted list, which
takes O(n log n) time, Nx2+4y2(k) is obtained for all k ∈ [1, n].

To speed up this process by a factor of log log n, noted in [2], Atkin and
Bernstein show that the integers on these short lists are seldom coprime to the
first log1/2 n primes. There are O(n/ log log n) such integers in total. One can
speed up this process by screening out the integers on these short lists that
are not coprime to the first log1/2 n primes. This filter step can be completed
in O(n log1/2 nM(log n)) time and the reduced short lists can be merged in the
desired time. The same technique can be applied to Nx2+3y2(k) and N′

3x2−y2(k)
for all k ∈ [1, n].

Lemma 2. Computing Nx2+4y2(k), Nx2+3y2(k) and N′
3x2−y2(k) for all k in [1, n]

takes O(n log2 n/ log log n) time on the Turing Machine.

We computed the Atkin conditions but now we need to get rid of all non-
squarefree numbers. Therefore, we show that generating all non-squarefree num-
bers requires O(n log n) time in Lemma 3. Merging these three lists followed by
screening out the list of non-squarefree numbers gives a prime table, as summa-
rized in Theorem 4.

Lemma 3. Generating a sorted list of all non-squarefree integers in the range
[1, n] takes O(n log n) time on the Turing Machine.

Proof. We first generate the sorted list L1 of all non-squarefree integers that
has a divisor p2 for some prime p < log n. We initialize an array of n bits as
zeros, for each prime p < log n, we sequentially scan the entire array to mark
all mp2 for integer m by counting down a counter from p2 to 0. Note that it
requires amortized O(1) time to decrease down the counter by 1 due to the
frequency division principle [4]. Since there are O(log n/ log log n) such primes,
the running time of this step is O(n log n/ log log n). We then convert the array
into the sorted list L1 as required, which takes O(n log n) time.

Next, we generate a sorted list L2 of all non-squarefree integers that has a
divisor p2 for some prime p ≥ log n. We generate a sorted short list for each
such prime p, containing all the integers mp2 < n for some integer m. Then, we
merge these sorted short lists. Note that there are

∑

p≥log n n/p2 = O(n/ log n)
integers on these short lists, each integer has O(log n) bits, and each integer is
encountered O(log n) times in the merging process. The running time is thus
O(n log n). We are done by merging L1 and L2. ��

Theorem 4. The prime table Tn from 2 to n can be computed on the Turing
Machine in time

P(n) = O(n log2 n/ log log n).

3.2 Atkin’s Sieve in O(M(n logn))

We show that sieve of Atkin can be realized in O(M(n log n)) time on the Tur-
ing Machine. We apply multiplication to the computation of Nf(x,y)(k) and
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N ′
f(x,y)(k) for all k ∈ [1, n]. The balance of the work will take O(n log n), and

will thus be dominated by the multiplication.
An important aspect of the multiplication will be the number of bits needed

in the multiplicands. For this, we need Lemma 5, stating an upper bound of the
number of (integer) lattice points on the ellipses specified by the first two Atkin
conditions and on the truncated hyperbola 3x2 − y2 = k for x > y > 0.

Lemma 5. The number of integer pairs (x, y) that satisfy x2 + 4y2 = k for
any positive integer k coprime to 6 is bounded by kO(1/ log log k). The same bound
holds for x2 + 3y2 = k and 3x2 − y2 = k, x > y > 0.

Proof. Observe that every pair (x, y) that satisfies x2+4y2 = k induces a unique
pair (x′ = x, y′ = 2y) that satisfies x′2 + y′2 = k. Therefore, the number of pairs
(x, y) that satisfies the latter equation is no less than that of the former. It is
known that, for any odd integer k, there are

O

⎛

⎝

∑

d|k
(−1)(d−1)/2

⎞

⎠ (3)

integer pairs (x′, y′) that satisfy x′2 + y′2 = k [15]. Since the number of divisors
of an integer k is no more than O

(

k1/ log log k
)

due to Wigert [9], an upper bound
for (3) is O(k1/ log log k). Similarly, it is known that for any odd integer k there are

O

⎛

⎝

∑

d|k

(

−3
d

)

⎞

⎠ (4)

integer pairs (x, y) that satisfy x2 + 3y2 = k [17], where
(

a
b

)

denotes the Jacobi
symbol. Because each Jacobi symbol has value no more than 1, an upper bound
for (4) is O(k1/ log log k) as desired.

We argue that, for any integer k coprime to 6, the number of integer pairs
(x, y) that satisfy equation 3x2 − y2 = k, x > y > 0 has the same bound. We
first give a proof for the case that x, y, k are mutually relatively primes and then
relax the restriction.

Let k = pr1
1 pr2

2 · · · prt
t where the pi’s are distinct primes more than 3 and

the ri’s are positive integers. Observe that every integer pair (x, y) that satisfy
3x2 − y2 = k, x > y > 0 has the property that x, y < k1/2. Therefore, every
integer pair (x, y) that satisfy 3x2 − y2 = k, x > y > 0 induces a unique pair
(x′ ≡ x mod k, y′ ≡ x mod k) that satisfies 3x′2 − y′2 ≡ 0 (mod k) as well
as induces a pair (x′ ≡ x mod pri

i , y′ ≡ y mod pri
i ) that satisfies 3x′2 − y′2 ≡

0 (mod pri
i ).

We claim that any integer pair (x, y) that satisfies 3x2 − y2 ≡ 0 (mod k) has
a unique product (yx−1 mod k), where the inverse x−1 exists since x and k are
relatively prime. We give a proof by contradiction. Suppose (x1, y1) and (x2, y2)
yield the same product (yx−1 mod k), then y1x2 ≡ y2x1 (mod k) or, equivalently,
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y1x2 = y2x1 due to x1, y1, x2, y2 < k1/2. Since x1 and y1 are relatively prime,
and x2 and y2 are relatively prime, then x1 = x2, y1 = y2, a contradiction.

We show that the number of distinct products (yx−1 mod k) is at most
2t. Since (x′ ≡ x mod pri

i , y′ ≡ y mod pri
i ) satisfies 3x′2 − y′2 ≡ 0 (modpri

i ),
(ai ≡ y′x′−1 mod pri

i ) is a square root of 3 modulo pri
i . There are at most two

distinct square roots of 3 for each modulo pri
i , pi > 3 [20, Theorem 5.2]. By the

Chinese Remainder Theorem, (a1, a2, . . . , at) is in a one-to-one correspondence
to (yx−1 mod k). Hence, there are at most 2t distinct products (yx−1 mod k)
as desired.

Consequently, the number of integer pairs (x, y) that satisfy 3x2−y2 = k, x >
y > 0 for any integer k coprime to 6 is bounded by

O
(

k1/ log log k
)

for x, y, k are relatively primes.

For the case that two of x, y, k have common divisor d > 1, then the third one
also has the divisor d. Then, one can divide x, y, k by the common divisor d, thus
reducing to a case of x, y, k′ being mutually relatively prime for k′ < k. There
are O(k1/ log log k) such smaller k′ and each smaller k′ contributes O(k1/ log log k)
pairs (x, y) at most. We are done. ��

Lemma 6. Given a function f(x, y) = ax2 + by2 for a > 0, b > 0, Nf(x,y)(k)
for all k ∈ [1, n] can be computed in O(M(n log n)) time.

Proof. Any positive integer pair (x, y) that satisfies f(x, y) = k has the property
that ax2, by2 < k. We claim that a long multiplication on a pair of O(n log n)-bit
integers suffices to compute Nf(x,y)(k) for all k ∈ [1, n].

For i ∈ [1, n], let αi = 1 if some ax2 = i, or otherwise αi = 0. Similarly, for
j ∈ [1, n], let βj = 1 if some by2 = j, or otherwise βj = 0. Then, the following
product of polynomials

∑

i=[1,n]

αiz
i

∑

j∈[1,n]

βjz
j

has the property that the coefficient of zk modulo 2 is equal to Nf(x,y)(k). One
can use a multiplication to replace the product of polynomials by replacing z
with an integer base B. To avoid carry issue, we choose B = Θ(log n) because
the coefficient of zk is at least bounded by O(n2). Thus, the running time is
O(M(n log n)). ��

Corollary 7. Given functions f(x, y) = x2 +4y2, g(x, y) = x2 +3y2, Nf(x,y)(k)
and Ng(x,y)(k) for all k ∈ [1, n] can be computed in O(M(n log n/ log log n)) time.

Proof. We use the algorithm stated in Lemma 6 but, due to Lemma 5, we can
choose B to be Θ(log n/ log log n) rather than Θ(log n). One needs to avoid
the computation of Nf(x,y)(k) for k not coprime to 6 because Nf(x,y)(k) might
require more than Θ(log n/ log log n) bits for such k. We avoid the computation
of Nf(x,y)(k) for such k by classifying x2, 4y2, 3y2 into groups according to their
residue modulo 6. Then, multiplying these groups in pairs only if their sum is
coprime to 6, which amplifies the complexity by a constant factor. ��
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Lemma 8. Given a function f(x, y) = 3x2 −y2, N′
f(x,y)(k) for all k ∈ [1, n] can

be computed in O(M(n log n)) time.

Proof. Any positive integer pair (x, y) that satisfies f(x, y) = k and x > y has
the property that x, y < k1/2. We claim that log n multiplications suffice to
compute N ′

f(x,y)(k) for all k ∈ [1, n].
We relax the condition x > y by divide and conquer and then process each

subproblem as Lemma 6. We reduce the range of pairs (x, y), 0 < y < x < n1/2

to following three cases, let h = n1/2/2: (1) x ∈ [h, n1/2] and y ∈ [0, h), (2)
0 < y < x < h, (3) h ≤ y < x < n1/2.

Note that case (1) can be computed by the product of n-term polynomial as
what was done in Corollary 7 due to Lemma 5. Therefore, case (1) can be done
in O(M(n log n/ log log n)) time. Besides, the number of pairs (x, y) in cases (2)
and (3) is half of that in the original case. To match the claimed complexity, we
recurse for log log n levels, with a running time of O(M(n log n)) and generate
O(log n) lists of pairs (x, y) sorted in ascending f(x, y) and we use the first
algorithm in Lemma 3 to merge them into a sorted list L1 in O(n log n) time.
Note that, by the first algorithm, any pair of duplicated integers is discarded,
since we only care about parity. After the recursion, the number of unprocessed
pairs (x, y) is O(n/ log n). We merge the unprocessed pairs (x, y) into a single
sorted list L2 in ascending f(x, y) by the second algorithm used in Lemma3,
which takes O(n log n) time. Finally, we are done by merging L1 and L2. ��

Combining Lemmas 3, 8 and Corollary 7, we can realize the sieve of Atkin
with a few of long multiplications and some minor procedures doable in O(n log n)
time. As a result, we have Theorem 9.

Theorem 9. The prime table Tn from 2 to n can be computed on the Turing
Machine in time

P(n) = O(M(n log n)).

4 Lower Bound

We present a lower bound for computing the factorial n!. We do not restrict
which operation can be used but we assume that the factorial n! is output by a
multiplication. We assume that a multiplication can only operate on two integers,
each of which can be an integer of o(n log n) bits or a product computed by a
multiplication. Under this assumption, we show that computing the factorial n!
has a lower bound Ω(M(n log4/7−ε n)) for any constant ε > 0.

To show the claimed lower bound, we need some lemmas for M(n) and Mk(n),
where Mk(n) denotes the optimal time to multiply k pairs of two n-bit integers.
There is a subtle difference between Mk(n) and kM(n). Mk(n) denotes the opti-
mal time to multiply k pairs of integers, possibly in parallel, because all these
integers are given at the beginning; however, kM(n) denotes the optimal time to
multiply k pairs of integers serially, one after another. Hence, Mk(n) ≤ kM(n).
To proceed to the lower bound proof, we need three additional inequalities of
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M(n) and Mk(n), which are stated and shown in [12, App. C]. [12, Lemma C.1]
and [12, Lemma C.3] are simple facts about the Turing Machine model. [12,
Lemma C.2] is based on the property of progression-free set [3,7,10,11,21–23].

Since we restrict that the factorial n! is output by a multiplication, there
must be a multiplication a1 × b1 = a0 = n! in every algorithm. Besides, we
restrict that only the integers of o(n log n) bits and intermediate products can
be multiplied. Therefore, a1, b1 are small integers or the computed intermediate
products. Let |x| denote the number of bits in x.

if |ai| > |a0|/2, then ai has more than o(n log n) bits. Therefore, ai is also an
intermediate product and assert the existence of a multiplication ai+1×bi+1 = ai.
We can repeat this until some |ai| ≤ |a0|/2. We define t to be the step where it
stops. Therefore, there must be t multiplications, ai × bi = ai−1 for all i ∈ [1, t],
in any algorithm that can compute the factorial. In other words, we have a lower
bound of

∑

i∈[1,t]

M(|ai|, |bi|). (5)

W.l.o.g., let |ai| ≥ |bi| and therefore |ai| ≥ |a0|/4 for all i ∈ [1, t].
Let us simplify Eq. (5) by observing the distribution of bi’s. Consider that

at

∏

i∈[1,t]

bi = a0 and
∑

i∈[1,t]

|bi| ≥ |a0| − |at|,

then μ = (|b1| + |b2| + · · · + |bt|)/t ≥ |a0|/(2t). Furthermore, for any γ ∈ [1, t],
if there is no bi more than γμ, then there are t/γ bi’s more than μ/2, which is
an extension of Markov’s inequality. We are ready to show the lower bound in
Lemma 10.

Lemma 10. Computing the factorial n! has a lower bound

Ω
(

Mt1/2−ε

(

1
t
n log n

))

where t is a parameter to be determined later.

Proof. By applying the extended Markov inequality to Eq. (5), one has the lower
bound

∑

i∈[1,t]

M(|ai|, |bi|) ≥ max
γ∈[1,t]

min
{

M(|a0|/4, γμ),
t

2γ
M(|a0|/4, μ/2)

}

,

which is, by [12, Lemma C.1], more than

max
γ∈[1,t]

min
{

M
(

γ

t
n log n

)

,
t

2γ
M

(

1
2t

n log n

)}

.

We convert the two terms to the same form and compare. We apply Lemma [12,
Lemma C.2] for the first term and the mentioned Mk(n) ≤ kM(n) bound for the
second term, thus obtaining

max
γ∈[1,t]

min
{

M(2γ)1−ε

(

1
2t

n log n

)

,M t
2γ

(

1
2t

n log n

)}
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for any constant ε > 0. Observe that Mk(a) ≤ M�(a) if k ≤ �. As a result, we
have the following lower bound, by choosing γ = t1/2+ε/2 for any constant ε > 0,

Ω
(

Mt1/2−ε

(

1
t
n log n

))

.
��

Observe that Lemma 10 yields a good lower bound only if t is small. Our
strategy is to find another lower bound which is good when t is large. Then, we
can trade off between these lower bounds. We finalize the proof for the claimed
lower bound in Theorem11.

Theorem 11. On a TM, computing the factorial n! has a lower bound

Ω(n log4/7−ε n) for any constant ε > 0.

Proof. By Lemma [12, Lemma C.1], one has

∑

i∈[1,t]

M(|ai|, |bi|) ≥
∑

i∈[1,t]

(|ai| + |bi|) ≥ t
|a0|
4

.

Combining the above lower bound and the lower bound shown in Lemma10, we
obtain

Ω
(

min
t

max
{

Mt1/2−ε

(

1
t
n log n

)

, tn log n

})

. (6)

Again, we convert the two terms to the same form and compare. We apply
Lemma [12, Lemma C.3] for the first term and apply the current upper bound
of M(n) ≤ n log n2O(log∗ n) for the second term. Then, the lower bound becomes

Ω
(

min
t

max M
(

n log n

t3/4+ε

)

,M
(

tn

2O(log∗ n)

))

. (7)

The optimal bound appears at t = log4/7−ε n for any constant ε > 0 as
desired. ��

Corollary 12. On a log-RAM, computing the factorial n! has a lower bound

Ω(n log4/7−ε n) for any constant ε > 0.

Proof. We replace the lower bound of M(n) in Eq. 6 with Ω(n/ log n) and replace
the upper bound of M(n) in Eq. 7 with O(n). By similar analysis, we
are done. ��

5 Conclusion

The prime number few.
—Stephen Pinker
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Abstract. A black-white combinatorial game is a two-person game in
which the pieces are colored either black or white. The players alternate
moving or taking elements of a specific color designated to them before
the game begins. A player loses the game if there is no legal move avail-
able for his color on his turn.

We first show that some black-white versions of combinatorial games
can only assume combinatorial game values that are numbers, which
indicates that the game has many nice properties making it easier to
solve. Indeed, numeric games have only previously been shown to be
hard for NP. We exhibit a language of natural numeric games (specifi-
cally, black-white poset games) that is PSPACE-complete, closing the gap
in complexity for the first time between these numeric games and the
large collection of combinatorial games that are known to be PSPACE-
complete.

In this vein, we also show that the game of Col played on general
graphs is also PSPACE-complete despite the fact that it can only assume
two very simple game values. This is interesting because its natural black-
white variant is numeric but only complete for PNP[log]. Finally, we show
that the problem of determining the winner of black-white Graph Nim
is in P using a flow-based technique.

Keywords: Combinatorial games · Computational complexity ·
Graph Nim · Poset games · Black-white games · Numeric games · Col
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1 Introduction

This extended abstract considers perfect information, two-player combinatorial
games. In particular, we investigate whether the value1 of these games influences
the computational complexity of deciding which player should win under optimal
play. We consider games that follow the normal gameplay convention: the players
alternate moves according to the rules of the game until no move is possible for
some player; that player then loses the game.

A combinatorial game is impartial if the allowed moves depend only on the
position of the game and not on which of the two players is currently moving.
Examples of impartial games are Nim, poset games, and Geography, all of
which have well-understood complexity [2,10,13]. In contrast, black-white games
have no options common to both players at any position.2 Examples include
games such as chess, checkers, and go. We explore simple black-white variants
of well-known games in the full paper [8].

There is a general theory of combinatorial games developed by Conway [5]
and Berlekamp et al. [1] that has served as one of the major tools in the area. It
can be thought of as a sort of generalization or analogy to the famous Sprague-
Grundy theorem for impartial games [11,14], which neatly distills the properties
of Nim that allow it to be solved in polynomial time. In particular, this general
theory distinguishes a class of combinatorial games that correspond directly to
real numbers and hence share arithmetic operations and order properties with
the real numbers. We call these numeric games, and we review their properties
in [8]. We encourage readers who are unfamiliar with game values to read the full
paper [8], which gives a more thorough investigation of their properties. Numeric
games are special in that it is never beneficial for either player to make a move:
if a player can win by moving, (s)he can also win by skipping a turn. Notice that
this is not a property universally held by all black-white games (e.g. Amazons,
black-white Node Kayles, Hex).

The standard decision problem associated with a game is to determine whether
a given player has a winning strategy. As pointed out in [6], most two-player games
with bounded length are either PSPACE-complete or in P. Any two-player game
can be artificially converted into a numeric game (without altering its complexity)
by forcing alternation between the players. These “one-sided” games are numeric
for a vacuous reason: at any position, only one of the two players has options.
In fact such games can only take on values 1, 0, or −1. See [8] for details. Until
now, however, except for such one-sided games, there were no classes of numeric
games known (to the authors of this paper) to be PSPACE-complete. Furthermore,
the few results that are known about numeric games only show NP-hardness (see
Blue-RedHackenbush [1]). In this paper, we present a natural class of two-player
bounded-length numeric games that is PSPACE-complete, namely, black-white

1 Informally, the value of a game indicates which player will win the game and by how
much. A more precise definition, along with much additional background information
and full proofs, is given in the full paper [8].

2 These are sometimes called red-blue games in the literature.
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poset games. Since natural numeric games have previously only been shown to
be as hard as NP, there existed hope prior to this result that a game with a more
restricted set of game theoretic values may be easier to play. By presenting a nat-
ural PSPACE-complete numeric game, we provide evidence that no such connec-
tion exists.

Despite the fact that numeric games have relatively simple game values, they
can still assume game values that are arbitrarily large. Perhaps then it is not
merely the nature of the values that affects the complexity of a game but also
the number of game values that it can assume. To this end, we investigate the
game of Col [1] played on general graphs. We prove that although this class
of games can only assume two possible game values (albeit not both numeric),
it is still PSPACE-complete.3 Informally, this has the following consequence for
playing many games of Col side-by-side for which we know the corresponding
game values. We can perform an extremely simple computation to decide which
game to play in, but to decide which move to make in that game, we would need
to solve a PSPACE-complete problem!

Interestingly, if you take the game of Col and convert it to a black-white
version of the game in the natural way, then the game does become simpler to
solve. In particular, we show the game becomes PNP[log]-complete. We conclude
the paper with a flow-based technique for solving black-white Graph Nim.

1.1 Black-White Poset Games

Games on partially ordered sets, called poset games, are a class of two-player
impartial games that have been widely studied. Given a partially ordered set, a
player’s turn consists of choosing one element e from the set. This element e is then
removed along with all elements in the set that are greater than e. Well-studied
subfamilies of poset games are Nim, Chomp, Divisors, and Hackendot. In the
black-white version of the game each element of the set has a color, black or white,
and players are only allowed to choose elements of their own color (but choosing
an element still removes everything above it, regardless of color).

Grier [10] showed that (impartial) poset games are PSPACE-complete. His
proof is a reduction from Node Kayles, showed PSPACE-complete by T.J.
Schaefer, who also implicitly showed that black-white Node Kayles is PSPACE-
complete [13]. To show that black-white poset games are also PSPACE-complete,
an obvious approach is to adapt Grier’s reduction to use the black-white version
of Node Kayles. However, Grier’s construction crucially relies on the fact that
both players can remove the same elements, and there is no obvious way to
circumvent this restriction. In Sect. 2, we introduce novel techniques to show
that black-white poset games are PSPACE-complete.

Proposition 1, below, asserts that black-white poset games are all numbers
in the sense of Conway [5] or Berlekamp et al. [1]. See [8] for general background
and for definitions specific to poset games.

3 To clear possible confusion, Col was mistakenly referenced as being proven PSPACE-
complete in [4].
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Proposition 1. All black-white poset games are numbers.

We prove Proposition 1 in [8]. It is important because it helps establish our
assertion that there is a natural numeric game that is PSPACE-complete.

1.2 Generalized Col

The game of Col [1] is a two-player combinatorial strategy game played on a
simple planar graph. During the game, the players alternate coloring vertices of
the graph. One player colors vertices white and the other player colors vertices
black. A player is not allowed to color a vertex neighboring a vertex of the same
color. The first player unable to color a vertex loses.

A well-known theorem about Col is that the value of any game is either x or
x + ∗ where x is a number. We remove the restriction that Col games be played
on planar graphs and consider only those games in which no vertex is already
colored. We prove that deciding whether an initially uncolored graph is a win
for the first player is a PSPACE-complete problem. Furthermore, it is easy to
adapt the theorem about Col to show that the versions of Col we consider only
assume the two very simply game values 0 and ∗.

1.3 Nim on Graphs

The game of NimG simultaneously generalizes the well-known game of Nim and
Geography. A graph G is given where each vertex contains a positive number of
sticks, and a token rests on a designated start vertex. In the “move-remove” vari-
ant we consider4—due to Stockman et al. [15], which we call Vertex NimG—
each move consists of moving the token along an edge to a vertex v then removing
at least one stick from v. We will here consider the game on directed graphs and
treat undirected graphs as a special case.

Geography and Nim are both special cases of Vertex NimG.
Lichtenstein and Sipser [12] showed that Geography is PSPACE-complete for
bipartite graphs,5 hence NimG is PSPACE-hard, even in the bipartite case, i.e.,
the black-white version. Burke and George [3] consider another variant called
Neighboring NimG, which corresponds to NimG on graphs where every vertex
has a self-loop. They show that Neighboring NimG is PSPACE-hard already
for undirected graphs with ≤ 2 sticks per vertex. In contrast, Geography on
undirected graphs is in P [7].

All the considered extensions of Nim on graphs are in PSPACE when the num-
ber of sticks is polynomially bounded. However, it is an open problem whether
the winner can be determined in PSPACE when we allow exponentially many
sticks, i.e., where the numbers of sticks are given in binary. (Clearly, EXP is an
upper bound for the general case.)

4 Other variants are possible; see Fukuyama [9] for example, where sticks are placed
on edges.

5 Bipartite Geography is one-sided as described above, hence vacuously numeric.
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Analogously with Geography, the black-white version of NimG is equiva-
lent to the game on bipartite graphs. Since the black-white version ofGeography
remains PSPACE-complete, this holds for black-white NimG too. As our one “eas-
iness” result, we show that the black-white version of NimG on undirected graphs
is contained in P, even for an exponential number of sticks.6

2 PSPACE-Completeness of Black-White Poset Games

Here we show that deciding the winner of a black-white poset game is PSPACE-
complete. By standard methods the problem can be solved in polynomial space,
so we will focus on the other half of this claim:

Theorem 1. Black-white poset games are PSPACE-hard.

The proof is by a reduction from true quantified Boolean formulas (TQBF),
a PSPACE-complete problem. We give the details of the reduction, and prove its
correctness in the following subsections.

2.1 Construction

Suppose we are given a fully-quantified boolean formula φ of the form

∃x1∀x2∃x3 · · · ∃x2n−1∀x2n∃x2n+1f(x1, x2, . . . , x2n+1)

where f = c1∧c2∧· · ·∧cm is in conjunctive normal form, with clauses c1, . . . , cm.
We define a game (not a poset game) based on this formula, called the TQBF
game, where players take turns assigning the variables either 0 or 1 in turn. That
is, White chooses an assignment for x1, Black chooses an assignment for x2, and
so on. When all the variables are assigned, the game ends and White wins if f
is true under that assignment, otherwise Black wins.

We define our black-white poset game G based on φ as follows, where (X,≤)
is the poset.

– The poset is divided into sections. There is a section (called a stack) for each
variable, a section for the clauses (the clause section), and a section for fine-
tuning the balance of the game (balance section).

– The ith stack consists of a set of incomparable waiting nodes Wi above (i.e.,
greater than) a set of incomparable choice nodes Ci. We also have a pair of
anti-cheat nodes, αi and βi, on all stacks except the last stack. For odd i, the
choice nodes are white, the waiting nodes are black, and the anti-cheat nodes
are black. The colors are reversed for even i.

– The set of choice nodes Ci, consists of eight nodes corresponding to all con-
figurations of three bits (i.e., 000, 001, . . . , 111), which we call the left bit,
assignment bit and right bit respectively.

6 If the number of sticks is polynomially bounded, then undirected black-white NimG
trivially reduces to undirected Geography and so is clearly in P.



694 S.A. Fenner et al.

– The number of waiting nodes is defined to be

|Wi| = (2n + 2 − i)M

where M is the number of non-waiting nodes in the entire game. We will use
the fact that |Wi| ≥ |Wi+1| + M later in the proof.

– The anti-cheat node αi is above nodes in Ci with right bit 0 and nodes in
Ci+1 with left bit 0. Similarly, βi is above nodes in Ci with right bit 1 and
nodes in Ci+1 with left bit 1.

– The clause section contains a black clause node bj for each clause cj , in addi-
tion to a black dummy node. The clause nodes and dummy node are all above
a single white interrupt node. The clause node bj is above a choice node z in
Ci if the assignment bit of z is 1 and xi appears positively in cj , or if the
assignment bit of z is 0 and xi appears negatively in cj .

– The balance section or balance game is incomparable with the rest of the
nodes. The game consists of eight black nodes below a white node, which is
designed to have game-theoretic value −7 1

2 . All nodes in this section are called
balance nodes.

The basic idea is that players take turns taking choice nodes, and the assign-
ment bits of the nodes they choose constitute an assignment of the variables,
x1, . . . , x2n+1. The assignment destroys satisfied clause nodes, and it turns out
that Black can win if there remains at least one clause node. The waiting nodes
and anti-cheat nodes exist to ensure players take nodes in the correct order. The
interrupt node and dummy node control how much of an advantage a clause node
is worth (after the initial assignment), and the balance node ensures the clause
node advantage can decide whether White or Black wins the game (Fig. 1).

W1 W2 W3 χ

C1 C2 C3 · · ·

α1 β1 α2 β2

Fig. 1. An example game with three variables (n = 1). Circles represent individual
nodes, blobs represent sets of nodes, and χ is the set of clause nodes. An edge indicates
that some node in the lower node set is less than some node in the upper node set. The
dotted lines divide the nodes into sections (stacks, clause section and balance section).

It is not hard to see that the number of nodes is polynomial in m and n, so
the poset can be efficiently constructed from an instance of TQBF.
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2.2 Strategy

We claim that White can force a win if and only if the formula is true. To show
this, we need to give a strategy for White when the formula is true, and prove
that it guarantees a win. We also need to show Black has a winning strategy
when the formula is false.

Suppose that White and Black have an informal agreement to simulate the
TQBF game in G by playing as follows. Suppose White’s first move in the TQBF
game is to assign x1 to a1. The corresponding move in G is to take a choice
node in C1, such that the assignment bit is a1 and the other bits are arbitrary.
Similarly, if Black’s reply in TQBF is to assign x2 to a2 then he should take a
choice node in C2 with assignment bit a2 and arbitrary right bit. White’s first
move destroyed either α1 or β1, so Black should choose the left bit of his reply
to preserve the remaining black anti-cheat node in stack 1. Then White takes
a node in C3 such that the assignment bit reflects her assignment of x3 in the
TQBF game, the left bit preserves her anti-cheat node in the previous stack, and
the right bit is arbitrary. This continues until White makes the final move in the
TQBF game, corresponding to taking a choice node in C2n+1. At this point the
TQBF game ends, but there are still nodes in G; we assume the players continue
under optimal play.

Assuming both players stick to the agreement, we claim (and will eventually
prove) that the winner of the TQBF game is also the winner of G (under optimal
play) and therefore deciding the winner of G tells us whether φ is true. This is
complicated by the fact that players may cheat by taking the wrong nodes. Our
goal is to show that the winner of the TQBF can also win G, even if the other
player cheats.

A detailed discussion of strategies, with proofs, is in [8]. From this analysis
we can prove our main result.

Theorem 2. White has a winning strategy for G if and only if φ is true.

The proof is in [8].

3 Generalized Col is PSPACE-Complete

Let Col be the language of Col games on uncolored general graphs where the
first player has a winning strategy. Assume that the graphs are represented in
some explicit manner, such as an adjacency matrix. We will show that Col is
PSPACE-complete by giving a reduction from a game played on propositional
formulas known to be PSPACE-complete [13]. The game, Gpos(POS CNF), is
played on a positive CNF formula. The players take turns choosing a variable
that appears in the formula. Player 1 sets variables to true, and Player 2 sets
variables to false. Once all the variables have been chosen, Player 1 wins if the
formula evaluates to true, and Player 2 wins if the formula evaluates to false.

Theorem 3. Col is PSPACE-complete.
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Most of the rest of this section (Sect. 3) is dedicated to proving Theorem3.
The diagrams in the proof use the interpretation of Col in which the players
remove vertices from the graph, tinting their neighbors so as to reserve them for
the other player. Figure 2 shows this simple coloring scheme.

- Only available to Black.
- Only available to White.
- Available to both players.

Fig. 2. Coloring scheme for Col graph.

Let G be the graph for some Col game which may already be partially colored.
Assuming that vertices x and y in G are not already colored, we will let Gb(x)w(y)

denote the graph G where x has been chosen by Black and y has been chosen
by White. Other game states are defined in an analogous fashion.

3.1 Preliminaries

We will first show that a slight variation of Gpos(POS CNF) is also PSPACE-
complete. Let G∗

pos(POS CNF) be identical to Gpos(POS CNF) except that
Player 1 sets variables to false in an attempt to make the formula false and
Player 2 sets variables to be true with the goal opposite to that of Player 1.
We will show that this game is also PSPACE-complete. Let X be the set of vari-
ables in the Gpos(POS CNF) game and let c1, c2, . . . , cm be the clauses. Let the
G∗

pos(POS CNF) game be played with variables X ∪ {u} and formula (c1 ∨ u) ∧
(c2 ∨u)∧ . . .∧ (cm ∨u). Notice that if Player 1 does not make u false, then Player
2 will make u true and win the game. It is now easy to see that Player 1 wins the
Gpos(POS CNF) game iff Player 2 wins the G∗

pos(POS CNF) game.

3.2 Main Construction

Let X = {x1, x2, . . . , xn} be the set of variables for the G∗
pos(POS CNF) game

played on a CNF formula ϕ with clauses C = {c1, c2, . . . , cm}. We will construct
a Col graph G = (V,E) such that Player 1 wins the G∗

pos(POS CNF) game on ϕ
iff the second player wins the Col game on G. The elements of G are as follows:

– V = X ∪ Y ∪ C ∪ {z}.
– X is the set of variables in the G∗

pos(POS CNF) game.
– Y = {y1, y2, . . . , yn} is a copy of the set of variables in the G∗

pos(POS CNF)
game such that xi refers to the same variable as yi for 1 ≤ i ≤ n.

– C is the set of clauses in the G∗
pos(POS CNF) game.

– E = A ∪ B ∪ C ∪ D.
– A = {(yi, xi) | 1 ≤ i ≤ n}.
– B = {(xi, cj) | variable xi appears in clause cj}.
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– C = {(ci, cj) | 1 ≤ i < j ≤ m}.
– D = {(z, cj) | 1 ≤ j ≤ m}.

An example of this construction on the formula is given in Fig. 3.

x1 y1 x2 y2 x3 y3 x4 y4

(x1 ∨ x2)

(x1 ∨ x3)

(x2 ∨ x3 ∨ x4)

z

Fig. 3. Example of Col construction on (x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x2 ∨ x3 ∨ x4).

A complete analysis and proof of Theorem 3 are given in [8].
The complexity of Col does, in fact, stem from the vertices available to

both players. First notice that the game of Col can also be thought of in the
following manner. If Black chooses a vertex, delete that vertex and tint all neigh-
boring vertices white, so that they are now only available to White. Similarly,
if White chooses a vertex, delete that vertex and tint all neighboring vertices
black, preserving them for Black. If a node is tinted both white and black, then
it is available to neither player and can be deleted for clarity. For the purposes
of displaying Col graphs in this paper, this interpretation will be used. Further-
more, this interpretation begets a natural black-white version of Col. That is,
given a general graph where all nodes are initially tinted black or white, decide
which player has the winning strategy.

Theorem 4. Black-white Col is PNP[log]-complete.

See [8] for a proof of Theorem 4.

4 Black-White NimG on Undirected Graphs is in P

We consider the following problem associated with the game of NimG.

Undirected black-white NimG
Input : An undirected bipartite graph G = (V,E), a weight function
w : V −→ N, and a node v ∈ V .
Question: Is v a winning position in the NimG game (G,w)?
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If the vertex weights were polynomially bounded, then this game trivially reduces
to undirected Geography and hence is in P. Here, the weights are given in
binary and so may be exponential in the size of the input. We show the problem
is still in P by providing a polynomial-time reduction to the maximum flow
problem.

Let G = (V,E) be a bipartite undirected graph. Let V = B ∪ W be the
partition of V into black and white nodes, and w be the weight function such
that w(u) is the number of sticks on node u. Let v denote the vertex on which
the token is placed currently. Remember that in a turn, a player moves the token
to a neighbor u of v and removes, say, r sticks from u. The weight function w′

after the move is given w′(u) = w(u) − r and w′(x) = w(x) for x �= u.
Observe that we may assume that each player removes only r = 1 stick at

each turn. This is because White removes sticks only from white vertices, and
similarly for Black. Therefore a winning strategy for a player remains winning
when the number of sticks removed in each turn is decreased to one.

The rest of the proof of Theorem 5 below can be found in [8].

Theorem 5. Black-white NimG on undirected graphs is in P.

5 Conclusions and Open Problems

We have shown that it is PSPACE-hard to determine the winner of a black-white
poset game, thus establishing a PSPACE-complete numeric game. We also show
that Col played on uncolored general graphs is PSPACE-complete, which is the
first game known to the authors that can only assume two very simple game
theoretic values and still be PSPACE-complete. These two results cast doubt on
the possibility that there is some connection between the range of values that
a family of games can assume and the complexity of deciding the winner of a
game in that family. An interesting open question is to definitively prove that no
such connection exists. For instance, given (reasonable) game values x and y, is
it possible to construct a PSPACE-complete game whose value always simplifies
to either x or y? More concretely, now that we have a PSPACE-completeness
result for a numeric game, can we hope to use it as a template for other numeric
games with longstanding open complexity (e.g. Red-Blue Hackenbush)?

For NimG, we have considered the black-white version on undirected graphs
and have shown that it is decidable in P who wins even when one allows an
exponential number of sticks. This is somewhat surprising given that winning
gameplay may require an exponential number of moves. For all the other versions
of NimG that have been considered in the literature the exact complexity of the
binary encoded versions is open. Some of these games are known to be PSPACE-
hard, and yet we still do not know about membership in PSPACE.

Acknowledgments. We would like to thank an anonymous referee for pointing out
that one-sided games, including directed bipartite Geography, are vacuously numeric.
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Abstract. We revisit the classic problem of run generation. Run gener-
ation is the first phase of external-memory sorting, where the objective
is to scan through the data, reorder elements using a small buffer of size
M , and output runs (contiguously sorted chunks of elements) that are
as long as possible.

We develop algorithms for minimizing the total number of runs (or
equivalently, maximizing the average run length) when the runs are
allowed to be sorted or reverse sorted. We study the problem in the
online setting, both with and without resource augmentation, and in the
offline setting.

First, we analyze alternating-up-down replacement selection (runs
alternate between sorted and reverse sorted), which was studied by Knuth
as far back as 1963. We show that this simple policy is asymptotically
optimal.

Next, we give online algorithms having smaller competitive ratios
with resource augmentation. We demonstrate that performance can also
be improved with a small amount of foresight. Lastly, we present algo-
rithms tailored for “nearly sorted” inputs which are guaranteed to have
sufficiently long optimal runs.

1 Introduction

External-memory sorting algorithms are tailored for data sets too large to fit in
main memory. Generally, these algorithms begin their sort by bringing chunks
of data into main memory, sorting within memory, and writing back out to disk
in sorted sequences, called runs [7,11].

We revisit the classic problem of how to maximize the length of these runs,
the run-generation problem . The run-generation problem has been studied
in its various guises for over 50 years [5–7,10,12,13,15].

The most well-known external-memory sorting algorithm is multi-way merge
sort [1,9]. The multi-way merge sort is formalized in the disk-access machine1

1 The external-memory (or I/O) model applies to any two levels of the memory
hierarchy.

c© Springer-Verlag Berlin Heidelberg 2015
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(DAM ) model of Aggarwal and Vitter [1]. If M is the size of RAM and data is
transferred between main memory and disk in blocks of size B, then an M/B-
way merge sort has a complexity of O

(

(N/B) logM/B (N/B)
)

I/Os, where N is
the number of elements to be sorted. This is the best possible [1].

A top-down description of multi-way merge sort follows. Divide the input into
M/B subproblems, recursively sort each subproblem, and merge them together
in one final scan through the input. The base case is reached when each sub-
problem has size O(M), and therefore fits into RAM.

A bottom-up description of the algorithm starts with the base case, which
is the run-generation phase. Näıvely, we can always generate runs of length M :
ingest M elements into memory, sort them, write them to disk, and then repeat.

The point of run generation is to produce runs longer than M . After all, with
typical values of N and M , we rarely need more than one or two passes over the
data after the initial run-generation phase. Longer runs can mean fewer passes
over the data or less memory consumption during the merge phase of the sort.
Because there are few scans to begin with, even if we only do one fewer scan,
the cost of a merge sort is decreased by a significant percentage.

Replacement Selection. The classic algorithm for run generation is called
replacement selection [8,11]. Starting from an initially full internal-memory
(or buffer), replacement selection proceeds as follows:

1. Pick the smallest element2 at least as large as each element in the current
run.

2. If no such element exists, then the run ends.
3. Eject that element, and ingest the next, so that the memory stays full.

Replacement selection can deal with input elements one at a time, even
though the DAM model transfers input between RAM and disk B elements
at a time. To see why, consider two additional blocks in memory, an “input
block,” which stores elements recently read from disk, and an “output block,”
which stores elements that have already been placed in a run. The algorithm
can then ingest from the input block and eject to the output block one element
at a time, while the blocks can be filled/emptied in chunks of size B.

Properties of Replacement Selection. It has been known for decades that
when the input appears in random order, then the expected length of a run is
2M [7]. In [11], Knuth gives memorable intuition about this result, conceptual-
izing the buffer as a snowplow traveling along a circular track.

Replacement selection performs particularly well on nearly-sorted data and
outputs runs much longer than M . For example, when each element in the input
appears at a distance at most M from its actual rank, a single run is generated.
2 Data structures such as heaps can identify the smallest elements in memory. But

from the perspective of minimizing I/Os, this does not matter—computation is free
in the DAM model.
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On the other hand, replacement selection performs poorly on reverse-sorted
data. It produces runs of length M , which is the worst possible.

Up-Down Replacement Selection. From the perspective of the sorting algo-
rithm, it matters little, or not at all, whether the initially generated runs are
sorted or reverse sorted.

This observation has motivated researchers to think about run generation
where, each time a new run begins, the replacement-selection algorithm has a
choice about whether to generate an up run or a down run .

Knuth [10] analyzes the performance of replacement selection that alternates
deterministically between generating up runs and down runs. He shows that for
randomly generated data, this alternative policy performs worse, generating runs
of expected length 3M/2, instead of 2M .

Martinez-Palau et al. [15] revive this idea in an experimental study. Their
two-way-replacement-selection algorithms heuristically choose between whether
the run generation should go up or down. Their experiments find that two-way
replacement selection (1) is slightly worse than replacement selection for random
input (in accordance with Knuth [10]) and (2) produces significantly longer runs
on inputs that have mixed up-down runs and reverse-sorted inputs.

Our Contributions. The results in this paper complement these prior works.
In contrast to Knuth’s negative result for random inputs [10], we show that strict
up-down alternation is the best possible for worst-case inputs. Moreover, we give
better competitive ratios with resource augmentation, which helps explain why
heuristically choosing between up and down runs based on the elements currently
in memory may yield better solutions.

Up-down run generation boils down to figuring out, each time a run ends,
whether the next run should be an up run or a down run. The objective is to
minimize the number of runs in the output.3 We establish the following:

1. Analysis of Alternating-Up-Down Replacement Selection. We prove that
alternating-up-down replacement selection is 2-competitive. Furthermore, we
show that this is the best possible for deterministic online algorithms.

2. Resource Augmentation with Extra Buffer. We analyze the effect of augment-
ing the buffer available to an online algorithm on its performance. We show
that with a constant-factor-larger buffer, it is possible to perform better than
twice optimal. Specifically, we design a deterministic online algorithm that,
given a buffer of size 4M , matches or beats any optimal algorithm with a
buffer of size M . We also design a randomized online algorithm which is
7/4-competitive using a 2M -size buffer.

3. Resource Augmentation with Extra Visibility. We show that performance fac-
tors can also be improved, without augmenting the buffer, if an algorithm has

3 Note that for a given input, minimizing the number of runs is equivalent to maxi-
mizing the average length of runs.
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limited foreknowledge of the input. In particular, we propose a deterministic
algorithm which attains a competitive ratio of 3/2, using its regular buffer of
size M , with a lookahead of 3M elements of the input (at each step).

4. Better Bounds for Nearly Sorted Data. We give algorithms that perform well
on inputs that have some inherent sortedness. These results are reminiscent
of previous literature studying sorting on inputs with “bounded disorder” [3]
and adaptive sorting algorithms [4,14,16].

5. PTAS for the Offline Problem. We give a polynomial-time approximation
scheme for the offline run-generation which guarantees a (1+ε)-approximation4

with a running time of O
(

(

1+
√
5

2

)1/ε
N log N

)

.

2 Up-Down Run Generation

In this section, we formalize the up-down run generation problem.
An instance of the up-down run generation problem is a stream I of N

elements. The elements of I are presented to the algorithm one by one, in order.
They can be stored in the memory of size M available to the algorithm, which
we henceforth refer to as the buffer . Each element occupies one slot of the
buffer. In general, the model allows duplicate elements, although some results,
particularly those in Sects. 5 and 7, do require uniqueness.

An algorithm A reads an element of I when A transfers the element from
the input sequence to the buffer. An algorithm A writes an element when A
ejects the element from its buffer and appends it to the output sequence S.

Every time an element is written, its slot in the buffer becomes free. Unless
stated otherwise, the next element from the input takes up the freed slot. Thus,
the buffer is always full, except when the end of the input is reached and there
are fewer than M unwritten elements.

An algorithm can decide which element to eject from its buffer based on
(a) the current contents of the buffer and (b) the last element written. The
algorithm may also use o(M) additional words to maintain its internal state (for
example, it can store the direction of the current run). However, the algorithm
cannot arbitrarily access S or I—it can only append elements to S, and access
the next in-order element of I. We say the algorithm is at time step t if it has
written exactly t elements.

A run is a sequence of sorted or reverse-sorted elements. The cost of the
algorithm is the smallest number of runs that partition its output. Specifically,
the number of runs in an output S, denoted R(S), is the smallest number of
mutually disjoint sequences S1, S2, . . . , SR(S) such that each Si is a run and
S = S1 ◦ · · · ◦ SR(S) where ◦ indicates concatenation.

We let OPT(I) be the minimum number of runs of any possible output
sequence on input I, i.e., the number of runs generated by the optimal offline
algorithm. If I is clear from context, we denote this as OPT. Our goal is to give

4 Due to space constraints, we defer some proofs to the full-version [2].
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algorithms that perform well compared to OPT for every I. We call an online
algorithm β-competitive if on any input, its output S satisfies R(S) ≤ βOPT.

At any time step, an algorithm’s unwritten-element sequence consists of
the contents of the buffer, concatenated with the remaining (not yet ingested)
input elements. For the sake of this definition, we assume that the elements in
the buffer are stored in their arrival order (their order in the input sequence I).

Time step t is a decision point or decision time step for an algorithm A
if t = 0 or if A finished writing a run at t. At a decision point, A needs to decide
whether the next run will be increasing or decreasing.

Notation. We use (x ↗ y) to denote the increasing sequence x, x+1, x+2, . . . , y
and (x ↘ y) to denote the decreasing sequence x, x − 1, x − 2, . . . , y.

Let A = a1, a2, . . . , ak. We use A ⊕ x to denote the sequence a1 + x, a2 +
x, . . . ak + x. Similarly, we use A ⊗ x to denote the sequence a1x, a2x, . . . , akx.

Let A and B be sequences. We say that A covers B if or all e, e ∈ B ⇒ e ∈ A.
A subsequence of a sequence A = a1, . . . , ak is a sequence B = an1 , an2 , . . . , an�

where 1 ≤ n1 < n2 < . . . < n� ≤ k.

3 Structural Properties

In this section, we identify structural properties about run generation and present
the tools used to analyze our algorithms. We show that it is never a good idea
to end a run early or to “skip over” an element (keeping it in the buffer even
when it could have been added to the current run).

First, we show that adding elements to an input sequence never decreases
the number of runs. Note that if S′ is a subsequence of S, then R(S′) ≤ R(S).

Lemma 1. If I ′ is a subsequence of I, then OPT(I ′) ≤ OPT(I).

A maximal increasing run is a run generated using the following rules (a
maximal decreasing run is defined similarly):

1. Start with the smallest element in the buffer and always write the smallest
element that is larger than the last element written.

2. End the run only when no element in the buffer can continue the run, i.e., all
elements in the buffer are smaller than the last element written.

Lemma 2. At any decision time step, a maximal increasing (decreasing) run r
covers every other (non-maximal) increasing (decreasing) run r′.

A proper algorithm is an algorithm that always writes maximal runs. We
say an output is proper if it is generated by a proper algorithm. We show that
there always exists an optimal proper algorithm.

Lemma 3. For any input I, there exists a proper output S such that R(S) =
OPT(I).
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We use the following property of proper algorithms throughout the paper.

Property 1. Any proper algorithm satisfies the following two properties:

1. At each decision point, the elements of the buffer must have arrived while the
previous run was being written.

2. A new element cannot be included in the current run if the last element
output is larger (smaller) and the current run is increasing (decreasing).

The following observations and lemmas are used in the analysis of our algo-
rithms.

Observation 1. Consider algorithms A1 and A2 on input I. Suppose that at
time step t1 algorithm A1 has written out all the elements that algorithm A2

already wrote out by some previous time step t2. Then, the unwritten-element
sequence of algorithm A1 at time step t1 forms a subsequence of the unwritten-
element sequence of algorithm A2 at time step t2.

Lemma 4. Consider a proper algorithm A. At some decision time step, A can
write k runs p1◦· · ·◦pk or � runs q1◦· · ·◦q� such that |p1◦· · ·◦pk| ≥ |q1◦· · ·◦q�|.

Then p1 ◦ · · · ◦ pk ◦ pk+1, where pk+1 is either an up or down run, covers
q1 ◦ · · · ◦ q�; the unwritten-element sequence after A writes p1 ◦ · · · ◦ pk+1 is a
subsequence of the unwritten-element sequence after A writes q1 ◦ · · · ◦ q�.

Proof. Since |p1◦· · ·◦pk| ≥ |q1◦· · ·◦q�|, the set of elements that are in q1◦· · ·◦q�

but not in p1 ◦ · · · ◦ pk have to be in the buffer when pk ends. By Property 1,
pk+1 will write all such elements.

The next theorem serves as a template for analyzing our algorithms. It lets
us compare the output of our algorithm against that of the optimal in small
partitions. We show that if in every partition i, an algorithm writes xi runs that
cover the first yi runs of an optimal output (on the current unwritten-element
sequence), and xi/yi ≤ β, then the algorithm outputs no more than β · OPT
runs.

Theorem 1. Let A be an algorithm with output S. Partition S into k contiguous
subsequences S1, S2 . . . Sk. Let xi be the number of runs in Si. For 1 < i ≤ k, let
Ii be the unwritten-element sequence after A writes Si−1. Let I1 = I, Ik+1 = ∅
and α, β ≥ 1. For each Ii, let S′

i be the output of an optimal algorithm on Ii.
If for all i ≤ k, Si covers the first yi runs of S′

i, and xi/yi ≤ β, then
R(S) ≤ β ·OPT. Similarly, if for all i ≤ k, Si covers the first yi runs of S′

i, and
E[xi]/yi ≤ α, then E[R(S)] ≤ α · OPT.

Proof. Consider I ′
i, the unwritten element sequence at the end of the first y

runs of S′
i−1 (we let I ′

1 = I). We show that OPT(Ii) ≤ OPT −
∑i−1

j=1 yi for all
1 ≤ i ≤ k using induction. Note that OPT(I1) = OPT. Assume OPT(Ii) ≤
OPT −

∑i−1
j=1 yi. Since Si+1 covers the first y runs of S′

i+1, by Observation 1,
Ii+1 is a subsequence of I ′

i+1. Then by Lemma 1, OPT(Ii+1) ≤ OPT(I ′
i+1).
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For i > 1, OPT(I ′
i+1) = OPT(Ii) − yi ≤ OPT −

∑i
j=1 yi. Therefore,

OPT(Ii+1) ≤ OPT −
∑i

j=1 yi. When i = k, we have OPT(Ik+1) ≤ OPT −
∑k

j=1 yi. But since Ik+1 contains no elements, OPT(Ik+1) = 0, and we have
∑k

j=1 yi ≤ OPT. Since R(S) =
∑k

j=1 xi, and
∑k

i=1 xi ≤ β
∑k

i=1 yi, we have the
following:

R(S) =
∑k

i=1 xi

OPT
OPT ≤

∑k
i=1 xi

∑k
i=1 yi

OPT ≤ β · OPT.

We also have the same in expectation, that is,

E[R(S)] = E[
k

∑

i=1

xi] ≤ α
k

∑

i=1

yi ≤ α · OPT.

4 Up-Down Replacement Selection

We analyze alternating-up-down replacement selection, which deterministically
alternates between writing (maximal) up and down runs. Knuth [10] showed
that when the input elements arrive in a random order, alternating-up-down
replacement selection performs worse than replacement selection (all up runs).
We show that for deterministic online algorithms, alternating-up-down replace-
ment selection is 2-competitive and optimal for any (adversarial) input.

Lemma 5. Consider two inputs I1 and I2, where I2 is a subsequence of I1.
Let S1 and S2 be proper outputs of I1 and I2 such that S1 and S2 have ini-
tial runs r1 and r2 respectively and r1 and r2 have the same direction. Let the
unwritten-element sequence after r1 and r2 be I ′

1 and I ′
2 respectively. Then I ′

2 is
a subsequence of I ′

1.

Theorem 2. Alternating up-down replacement selection is 2-competitive.

Proof. We show that we can apply Theorem 1 to this algorithm with β = 2. In
any partition that is not the last one of the output, the alternating algorithm
writes a maximal up run ru and then writes a maximal down run rd. We must
show that ru ◦ rd covers any run rO written by a proper optimal algorithm on
Ir, the unwritten element sequence at the beginning of the partition.

If rO is an up run, then rO = ru and thus is covered by ru ◦ rd. If rO is a
down run, consider I ′, the unwritten-element sequence after ru is written; I ′ is
a subsequence of Ir. By Lemma 5 (with I1 = Ir and I2 = I ′), ru ◦ rd covers rO.

In the last partition, the algorithm can write at most two runs while any
optimal output must contain at least one run. Hence xi/yi ≤ 2 in all partitions
as required.

Theorem 3. Let A be any online deterministic algorithm with output SI on
input I. Then there are arbitrarily long inputs I such that R(SI) ≥ 2OPT(I).
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Furthermore, we show that no randomized algorithm can achieve a compet-
itive ratio better than 3/2.

Theorem 4. Let A be any online, randomized algorithm. Then there are arbi-
trarily long inputs such that E[R(SI)] ≥ (3/2)OPT(I).

5 Run Generation with Resource Augmentation

In this section, we consider two kinds of resource augmentation to circumvent
the impossibility result on the performance of deterministic online algorithms.

– Extra buffer : the algorithm’s buffer is a constant factor larger (than the
optimal).

– Extra visibility : the algorithm has prescience—it can see a small number of
incoming elements, but must read and write using the usual M -size buffer.

In this section, we assume that the input elements are unique, as duplicates
nullify the power provided by augmentation. For example, c-visibility does not
help if an input element is repeated c times.

We begin by analyzing the greedy algorithm for run generation. Greedy is
a proper algorithm which looks into the future at each decision point, determines
the length of the next up and down run and writes the longer run.

Greedy is not an online algorithm. However, it is central to our resource
augmentation results. The idea of resource augmentation, in part, is that the
algorithm can use the extra buffer or visibility to determine, at each decision
point, which direction (up or down) leads to the longer next run.

We next look at some guarantees on the length of a run chosen by greedy
(the greedy run) and also on the run not chosen by greedy (the non-greedy
run).

Greedy Is Good but Not Great. First, we show that greedy is not optimal.

Lemma 6. The greedy algorithm can be a factor of 3/2 away from optimal.

Next, we show that all the runs written by the greedy algorithm (except the
last two) are guaranteed to have length at least 5M/4. In contrast, up-down
replacement selection can have have runs of length M in the worst case.

Theorem 5. Each greedy run except the last two has length ≥ M + �M/2�/2�.

We bound how far into the future an algorithm must see to be able to deter-
mine which direction greedy would pick at a particular decision point. Intuitively,
an algorithm should never have to choose between a very long up-run and a very
long down-run. We formalize this idea in the following lemma.

Lemma 7. Given an input I with no duplicate elements, let the two possible
initial increasing and decreasing runs be r1 and r2. Then |r1| < 3M or |r2| < 3M .
This bound is tight; there is an input with |r1| = 3M and |r2| = 3M − 1.
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Online Algorithms with Resource Augmentation. We present several
online algorithms which use resource augmentation (buffer or visibility) to deter-
mine an up-down replacement selection strategy, beating the competitive ratio
of 2.

Matching OPT Using 4M-Size Buffer. We present an algorithm with 4M -
size buffer that writes no more runs than an optimal algorithm with an M -
size buffer. Later on, we prove that (4M − 2)-size is necessary even to be 3/2-
competitive; thus this augmentation result is optimal up to a constant.

Consider the following deterministic algorithm with a 4M -size buffer. The
algorithm reads elements until its buffer is full. It then uses the contents of its
buffer to determine, for an algorithm with buffer size M , if the maximal up run
or the maximal down run would be longer. If the maximal up run is longer, the
algorithm uses its full buffer (of size 4M) to write a maximal up run; otherwise
it writes a maximal down run.

Theorem 6. Let A be the algorithm with a 4M -size buffer described above. On
any input, A writes no more runs than an optimal algorithm with M -size buffer.

Proof Sketch. At each decision point, A determines the direction that a greedy
algorithm on the same unwritten-element sequence (but with a buffer of size M)
would pick. It is able to do so using its 4M -size buffer because, by Lemma 7, we
know the length of the non-greedy run is bounded by 3M . Note that it does not
need to write any elements during this step. In each partition, A writes a maximal
run r in the greedy direction and thus covers the greedy run by Lemma 2.
Furthermore, r covers the non-greedy run as well since all of the elements of
this run must already be in A’s initial buffer and hence get written out. An
optimal algorithm (with M -size buffer), on the unwritten-element-sequence, has
to choose between the greedy and the non-greedy run. Since A covers both the
choices in one run, by Theorem 1, it is able to match or beat OPT. ��

A natural question is whether resource augmentation boosts performance
automatically, without using the greedy-run-simulation technique. The following
lemma shows that this is not the case.

Lemma 8. There exist inputs on which alternating up-down replacement selec-
tion with 4M -size buffer does no better than it would with M -size buffer, that is,
it produces twice the optimal number of runs.

3/2-Competitive Using 4M-Visibility. When we say that an algorithm has
X-visibility (X ≥ M) or (X − M)-lookahead, it means that the algorithm has
knowledge of the next X elements of its unwritten-element-sequence.

The algorithm is only allowed to use the usual M -size buffer for reading and
writing. Furthermore, the algorithm must read elements sequentially from input I,
even if it sees future elements it would like to read or rearrange instead.
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We present a deterministic algorithm which uses 4M -visibility to achieve a
competitive ratio of 3/2. At each decision point, similar to the algorithm in
Theorem 6, we determine the direction leading to the longer (greedy) run using
the 3M -lookahead. However, unlike Theorem 6, an M -size buffer is too small to
output this run. Instead, we show that it is possible to cover two runs of the
optimal algorithm by writing three maximal runs—a greedy run, followed by two
additional runs in the same direction and the opposite direction respectively.

Theorem 7. Let OPT be the optimal number of runs given an M -size buffer on
an input I with no duplicates. Then there exists an online algorithm A with an
M -size buffer and 4M -visibility such that A always outputs S satisfying R(S) ≤
(3/2)OPT.

7/4-Competitive Using 2M-Size Buffer. A 2M -size buffer is insufficient to
determine the direction leading to the longer (greedy) run. Instead, suppose an
algorithm picks a direction randomly, and writes a maximal run using a M -size
buffer. It then uses the additional M buffer slots to simulate the opposite run.

With probability 1/2, the algorithm picks the greedy direction and can cover
the first two runs of optimal (on the unwritten-element sequence) with three runs
(as in Theorem 7). With probability 1/2, the algorithm picks the wrong direction.
Consequently, writing four (alternating) runs cover two runs of the optimal. In
expectation, this achieves a competitive ratio of 1/2(3/2) + 1/2(4/2) = 7/4.

Theorem 8. Let OPT be the optimal number of runs on input I given an M -
size buffer, where I has no duplicate elements. Then there exists an online
algorithm A with a 2M -size buffer such that A always outputs S satisfying
E[R(S)] ≤ (7/4)OPT and R(S) ≤ 2OPT.

Lower Bound for Resource Augmentation. With less than (4M − 2)-
augmentation, no deterministic online algorithm can be 3/2-competitive on all
inputs. Thus, Theorems 6 and 7 are nearly tight.

Theorem 9. With buffer size less than (4M − 2), for any deterministic online
algorithms A, there exists an input I such that if S is the output of A on I, then
R(S) ≥ (3/2)OPT.

6 Offline Algorithms for Run Generation

We give offline algorithms for run generation.The offline problem is the following—
given the entire input, compute (using a polynomial-computation-time algorithm)
the optimal strategy which, when executed by a run generation algorithm (with a
buffer of size M), produces the minimum number of runs.

For any ε, a (1 + ε)-approximation can be achieved by a brute force search
on partitions of the output containing small number of runs. We improve the
running time of this simple PTAS by pruning the suboptimal paths in this search.
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Theorem 10. There exists an offline algorithm A with output S such that
R(S) ≤ (1 + ε)OPT. The running time of A is O(ϕ1/εN log N) where ϕ =
(1 +

√
5)/2.

7 Run Generation on Nearly Sorted Input

We show that up-down replacement selection performs better on inputs with
inherent sortedness. In particular, we say that an input is c-nearly -sorted if there
exists a proper optimal algorithm which outputs runs of length at least cM .

Theorem 11. There exists a randomized online algorithm A using M space
in addition to its buffer such that, on any 3-nearly-sorted input I that has no
duplicates, A is a 3/2-approximation in expectation. Furthermore, A is at worst
a 2-approximation regardless of its random choices.

Theorem 12. The greedy offline algorithm, i.e., picking the longer run at each
decision point, is optimal on a 5-nearly-sorted input that contain no duplicates.
The running time of the algorithm is O(N).

8 Conclusion and Open Problems

In this paper, we present an in-depth analysis of algorithms for run generation.
We establish that considering both up and down runs can substantially reduce
the number of runs in an external sort. The notion of up-down replacement
selection has received relatively little attention since Knuth’s negative result [10],
until the experimental work of Martinez-Palau et al. [15].

The results in our paper complement the findings of Knuth [10] and
Martinez-Palau et al. [15]. In particular, strict up-down alternation being the
best possible strategy explains why heuristics for up-down run-generation lead
to better performance. Moreover, our constant-factor competitive ratios with
resource augmentation may guide followup heuristics and practical speed-ups.

We conclude with open problems. Can randomization help circumvent the
lower bound of 2 on the competitive ratio of online algorithms? No randomized
online algorithm can have a competitive ratio better than 3/2, but there is still
a gap. What is the performance of the greedy offline algorithm compared to
optimal? We show that greedy can be as bad as 3/2 times optimal. Is there a
matching upper bound? Can we design a polynomial, exact algorithm for the
offline run-generation problem? We find it intriguing that our attempts at an
exact dynamic program all require maintaining too many buffer states to run in
polynomial time.
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Abstract. Streaming interactive proofs (SIPs) are a framework to rea-
son about outsourced computation, where a data owner (the verifier)
outsources a computation to the cloud (the prover), but wishes to verify
the correctness of the solution provided by the cloud service. In this paper
we present streaming interactive proofs for problems in data analysis. We
present protocols for clustering and shape fitting problems, as well as an
improved protocol for rectangular matrix multiplication. The latter can
in turn be used to verify k eigenvectors of a (streamed) n× n matrix.

In general our solutions use polylogarithmic rounds of communication
and polylogarithmic total communication and verifier space. For special
cases (when optimality certificates can be verified easily), we present
constant round protocols with similar costs. For rectangular matrix mul-
tiplication and eigenvector verification, our protocols work in the more
restricted annotated data streaming model, and use sublinear (but not
polylogarithmic) communication.

1 Introduction

Third party “cloud” services (from companies like Amazon, Google and
Microsoft) perform intensive computational tasks on large data. Computing
effort is split between a computationally weak “client” who owns the data and
wishes to solve a desired task, and a “server” consisting of a cluster of compute
nodes that performs the computation.

In this setting, how does a client verify that a computation has been per-
formed correctly? The client here will have limited (streaming) access to the
data, as well as limited ability to talk to the server. This motivates the study
of interactive verification with extremely limited sublinear space (or streaming)
verifiers. Such streaming interactive proofs (SIPs) have been developed for clas-
sic problems in streaming like frequency moment estimation and related graph
problems.
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Our Contributions. We initiate a study of streaming interactive proofs for prob-
lems in data analysis. In what follows, we will refer to both SIPs and annotated
streaming protocols which are a variant of SIPs (see Sect. 2 for more details).

Matrix Analysis. We present an annotated data streaming protocol (Sect. 3)
for rectangular matrix multiplication over any field F. Specifically, given input
matrices A ∈ F

k×n and B ∈ F
n×k′

, our protocol computes their product using
communication cost k · k′ · h log |F| and space cost v log |F|, for any desired
pair of positive integers h, v satisfying h · v ≥ n. This improves on prior work
[10] by a factor of k in space cost, and we prove that this tradeoff is optimal
up to a factor of Õ (min (k, k′)). The rectangular matrix multiplication protocol
can in turn be used to verify k (approximate) eigenvectors of an n × n integer
matrix A.1

Shape Analysis. We present a number of protocols for shape fitting and clus-
tering problems. (i) We give 3-message SIPs to verify a minimum enclosing ball
(MEB) and the width of a point set exactly with O(logc n) space and commu-
nication costs. Note that the MEB cannot be approximated to better than a
constant factor by a streaming algorithm with space even polynomial in the
dimension [1]. We show that the streaming hardness of the MEB problem holds
even when the points are chosen from a discrete cube: this is important because
our interactive proofs require discrete input (Sect. 4). (ii) We present O(logc n)
round protocols with O(logc n) communication and verifier space for verifying
optimal k-centers and k-slabs in Euclidean space (Sect. 5). (iii) We also show a
3-message protocol for verifying a 2-approximation to the k-center in a metric
space by adapting the Gonzalez 2-approximation for k-center (Sect. 4).

Technical Overview. In our annotated data streaming protocol for matrix mul-
tiplication, we first observe that multiplying a k × n matrix A with an n × k′

matrix B is equivalent to performing k′ matrix-vector multiplications, one for
each column of B. Rather than naively implement k′ matrix-vector verification
protocols [10], we exploit the fact that the k′ matrix-vector multiplications are
not independent, because the matrix A is held fixed in all of them.

For the k-center and k-slab problems, we must verify feasibility and optimal-
ity of a claimed solution. We verify feasibility by reducing to an instance of a
range counting problem, for which a 2-message SIP exists [7]. For optimality,
the prover must convince the verifier that no other feasible solution has lower
cost. When k = 1, we show that there is a sparse witness of optimality, which
the verifier can check directly using 3 messages, by reduction to range counting.
For general k we instead observe that the certificate can be expressed as a sum
over all solutions of potentially lower cost. Choosing a cost-based ordering of
solutions converts this into a partial sum over a prefix of the ordered set of solu-
tions. Our main tool is a way to verify such a sum in general, using O(logc n)
many messages.

1 We cannot in general verify that the provided vectors are exact eigenvectors due to
precision issues. Section 3 has details.
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We note that while core sets are a natural witness for a property of a point set,
they cannot always be computed by a streaming algorithm, nor is it clear that
a claim of being a core set is easily verified. For the problems considered here,
these issues preclude the use of a “simple” core set, requiring a more complex
interactive protocol.

Prior Work on Streaming Verification. Chakrabarti et al. [5,6] introduced the
notion of annotations in data streams, whereby an all-powerful prover could
provide annotations to a verifier in order to complete a stream computation.
Cormode et al. [11] introduced the SIP model which extends the annotated
data streaming model to allow for multiple rounds of interaction between the
prover and verifier. They introduced a streaming variant of the classical sum-
check protocol [20], and used it to give logarithmic cost protocols for a variety of
well-studied streaming problems. In subsequent works, protocols were developed
in both models for graph problems and matrix-vector operations [10], sparse
streams [4], and were implemented [9]. Most recently, Chakrabarti et al. [7]
developed streaming interactive proofs of logarithmic cost that worked in O(1)
rounds, making use of an interactive protocol for the Index problem. Lower
bounds on the cost of SIPs and their variants have also been studied [3,4,7,18].
These results make use of Arthur-Merlin communication complexity and related
notions.

2 Preliminaries

Models. We work in the streaming interactive proof (SIP) model first proposed
by Cormode et al. [11]. In this model there are two players, the prover P and
verifier V. The input consists of a stream τ of n items from some universe. Let f
be a function mapping a stream τ to any finite set S. A k-message SIP for f works
as follows. First, V and P read the input stream. During this phase, V computes
some small secret state, which depends on τ and V’s private randomness. Second,
V and P then exchange k messages, after which V outputs a value in S ∪ {⊥},
where ⊥ indicates that V is not convinced by P.

Any SIP for f must satisfy soundness and completeness. Completeness
requires that there exists some prover strategy that causes the verifier to output
f(τ) with probability 1 − εc for εc ≤ 1/3. Soundness requires that for all prover
strategies, the verifier outputs a value in {f(τ),⊥} with probability 1 − εs for
some εs ≤ 1/3. The values εc and εs are referred to as the completeness and
soundness errors.2 The annotated data streaming model of Chakrabarti et al. [5]
essentially corresponds to one-message SIPs.3

Costs. In a SIP, the goal is to ensure that V uses sublinear space and that the
protocol uses sublinear communication (number of bits exchanged between V

2 All of our protocols achieve perfect completeness and soundness error 1/poly(n).
3 While the original model allowed P to interleave information with the stream, most

known annotated streaming protocols do not do so, and are thus 1-message SIPs.
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and P) after stream observation. In our protocols, both V and P can execute the
protocol in time quasilinear in the size of the input stream.

Input Model. We assume that each element of the input stream is a tuple
(i, δ), where each i lies in a data universe U of size u, and δ ∈ {+1,−1}. Negative
values of δ model deletions. The data stream implicitly defines a frequency vector
a = (a1, . . . , au), where ai is the sum of all δ values associated with i in the
stream.

Discretization. The protocols we employ make extensive use of finite field
arithmetic. In order to apply these techniques to geometric problems, we assume
that all input points are drawn from the discretized grid U = [m]d. The costs of
our protocols will depend only logarithmically on m.

Protocols from Prior Work. We make use of three tools in our algorithms:
Reed-Solomon fingerprints for testing vector equality, a two-message SIP of
Chakrabarti et al. [7] for the PointQuery problem, and the streaming sum-
check protocol of Cormode et al. [11]. We summarize the main properties of these
protocols here: for more details, the reader is referred to the original papers, and
the full version of this paper for Theorems 1 and 3.

Theorem 1 (Reed-Solomon Fingerprinting). Suppose the input stream τ
specifies two vectors a,a′ ∈ Z

u, guaranteed to satisfy |ai|, |a′
i| ≤ u at the end of

τ . There is a streaming algorithm using O(log u) space that satisfies the following
properties: (i) If a = a′, then the algorithm outputs 1 with probability 1. (ii) If
a �= a′, then the algorithm outputs 0 with probability at least 1 − 1/u2.

The PointQuery and RangeCount Protocols. An instance of the PointQuery
problem consists of a stream of updates as described above followed by a query
q ∈ [u]. The goal is to compute the coordinate aq. For RangeCount problem, let
(U ,R) be a range space and the input consist of a stream τ of elements (with
size n) from the data universe U (with size u), followed by a range R ∈ R. The
goal is to verify a claim by P that |R ∩ τ | = k.

Theorem 2 (Chakrabarti et al. [7]). Suppose the input to PointQuery sat-
isfies |ai| ≤ Δ at the end of the stream, for some known Δ. Then there is a
two-message SIP for PointQuery on an input stream with length n, with space
and communication each bounded by O(log u · log(Δ + log u)). For RangeCount,
there is a two-message SIP for RangeCount with space and communication cost
bounded by O(log(|R|) · log(n · |R|)). In particular, for range spaces of bounded
shatter dimension ρ, log |R| = ρ log n = O(log n).

Theorem 3 (Streaming Sum Check Protocol [11]). Let g be a v-variate
polynomial over F, which may depend on the input stream τ . Denote the degree
of g in variable i by degi(g). Assume V can evaluate g at any point r ∈ F

with a streaming pass over τ , using O(v · log |F|) bits of space. There is an SIP
for computing the function F (τ) =

∑

σ∈Fv g(σ) that uses O(v) messages and
O(

∑v
i=1 degi(g) · log |F|) communication, as well as O(v · log |F|) space.
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The GKR Protocol. Interactive proofs can be designed by algebrizing a circuit
computing a function. One of the most powerful protocols of this form is due to
Goldwasser et al. [14], and known as the GKR protocol. This was adapted to
the streaming setting by Cormode et al. [11], yielding the following result.

Lemma 1 ([11,14]). Let F be a finite field, and let f : Fu → F be a function
of the entries of the frequency vector of a data stream (viewing the entries as
elements of F). Suppose that f can be computed by an O(log(S) · log(|F|))-space
uniform arithmetic circuit C (over F) of fan-in 2, size S, and depth d, with
the inputs of C being the entries of the frequency vector. Then, assuming that
|F| = Ω(d·log S), f possesses an SIP requiring O(d·log S) rounds. The total space
cost is O(log u · log |F|) and the total communication cost is O(d · log(S) · log |F|).

3 Rectangular Matrix Multiplication and Eigenstructure

Eigenpair (eigenvalues and eigenvectors) computation is a key subroutine in
data analysis. Eigenvalues of a streamed n×n matrix can be computed approx-
imately [2], but there are no streaming algorithms to compute the eigenvectors
of a matrix because of the output size.

Verifying the eigenstructure of a symmetric matrix A is more difficult than
merely verifying that a claimed (λ,v) is an eigenpair. This is because the prover
must convince the verifier not only that each (λi,vi) satisfies Av = λv, but
that the collection of eigenvectors together are orthogonal. Thus, the prover
must prove that V V � = D where V is the collection of eigenvectors and D
is some diagonal matrix. Note however that this matrix multiplication check is
rectangular : if we wish to verify that a collection of k eigenvectors are orthogonal,
we must multiply a k × n matrix V by an n × k matrix V �.

We present an annotation protocol called MatrixMultiplication to verify such
a rectangular matrix multiplication. Our protocol builds on the optimal annota-
tions protocols for inner product and matrix-vector multiplication from [6] and
[10]. We prove that our MatrixMultiplication protocol obtains tradeoffs between
communication and space usage that are optimal up to a factor of Õ (min (k, k′)).

Theorem 4. Let A be a k×n matrix and B an n×k′ matrix, both with entries in
a finite field F of size 6n3 ≤ |F| ≤ 6n4. Let (h, v) be any pair of positive integers
such that h · v ≥ n. There is a annotated data streaming protocol for computing
the product matrix C = A · B with communication cost O(k · k′ · h · log n) bits
and space cost O(v · log n) bits. Moreover, any (online) annotated data streaming
protocol for the problem requires the product of the space and communication
costs to be at least Ω ((k + k′) · n).

Proof. We first recall the inner product protocol of Chakrabarti et al. [6]. Given
input vectors a, b ∈ F

n, the verifier in this protocol treats the n entries of a and
b as a grid [h]× [v], and considers the unique bivariate polynomials ã(X,Y ) and
˜b(X,Y ) over F of degree at most h in X and v in Y satisfying ã(x, y) = a(x, y)
and ˜b(x, y) = b(x, y) for all (x, y) ∈ [h] × [v]. The verifier picks a random r ∈ F,
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and evaluates ã(r, y) and b̃(r, y) for all y ∈ [v]. As observed in [6], the verifier
can compute ã(r, y) for any y ∈ [v] in space O(log |F|), with a single streaming
pass over the input. Hence, the verifier’s total space usage is O(v · log |F|). The
prover then sends a univariate polynomial s(X) of degree at most h, claimed to
equal g(X) =

∑

y∈[v] ã(X, y) · b̃(X, y). The verifier accepts
∑

x∈[h] s(X) as the
correct answer if and only if s(r) =

∑

y∈[v] ã(r, y) · b̃(r, y).
Returning the matrix multiplication, let us denote the rows of A by a1, . . . ,ak

and the columns of B by b1, . . . ,bk. Notice that each entry Cij of C is the inner
product of ai and bj .

The Prover’s Computation. In our matrix multiplication protocol, the prover
simply runs the above inner product protocol k · k′ times, one for each entry Cij

of C. This requires sending k · k′ polynomials, sij(X) : (i, j) ∈ [k] × [k′], each of
degree at most h. Hence, the total communication cost is O(k · k′ · h · log n).

The Verifier’s Computation While Observing Entries of A. The ver-
ifier picks a random α and computes, for each y ∈ [v], the quantity sy :=
∑

i ãi(r, y)αi. Using standard techniques [6], the verifier can compute each sy

with a single streaming pass over the entries of A, in O(log n) space. Hence, the
verifier can compute all of the sy values in total space O(v · log n).

The Verifier’s Computation While Observing Entries of B. For each y ∈
[v], the verifier computes the quantity s′

y :=
∑

j∈k′ b̃j(r, y)αk·j . The reason that
we define s′

y in this way is because it ensures that sy ·s′
y =

∑

(i,j)∈[k]×[k′] ãi(r, y) ·
b̃j(r, y)αk·j+i, which is just a fingerprint of the set of values {ãi(r, y) · b̃j(r, y)}
as (i, j) ranges over [k] × [k′].

To check that all sij polynomials are as claimed, the verifier does the fol-
lowing. As the verifier reads the sij polynomials, she computes a fingerprint
of the si,j(r) values, i.e., the verifier computes

∑

i,j si,j(r) · αj·k+i. The veri-
fier checks whether this equals

∑

y(sy · s′
y). If so, the verifier is convinced that

Aij =
∑

x∈[h] sij(x) for all (i, j) ∈ [k] × [k′]. If not, the verifier rejects.

Proof of Completeness. If the si,j polynomials are as claimed, then:
∑

i,j∈[k]×[k′]

gi,j(r) · αj·k+i =
∑

i,j∈[k]×[k′]

∑

y∈[v]

ãi(r, y) · b̃j(r, y)αj·k+i

=
∑

y∈[v]

∑

i,j∈[k]×[k′]

ãi(r, y) · b̃j(r, y)αj·k+i =
∑

y∈[v]

sy · s′
y.

Proof of Soundness. If any of the si,j polynomials are not as claimed (i.e., if
sij(X) �= gij(X) as formal polynomials), then with probability at least 1−h/|F|
over the random choice of r ∈ F, it will hold that si,j(r) �= gij(r). In this
event the verifier will wind up comparing the fingerprints of two different vec-
tors, namely the k · k′-dimensional vector whose (i, j)’th entry is si,j(r), and the
k · k′-dimensional vector whose (i, j)’th entry is

∑

y∈[v] ãi(r, y) · b̃j(r, y). These
fingerprints will disagree with probability at least 1−k ·k′/|F|. Hence, the proba-
bility that the prover convinces the verifier to accept is at most h/|F|+k ·k′/|F|.
If |F| ≥ 100 · h · k · k′, the soundness error will be bounded by 1/50.
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Lower Bound. Cormode et al. [10] proved a lower bound on the cost of (online)
annotated data streaming protocols for matrix-vector multiplication (i.e., for
multiplying a k×n matrix A by an n×1 matrix B). Specifically, their argument
implies that if A is k × n, then any protocol for multiplying A by a vector must
have the product of the space and communication costs be at least Ω(k ·n). The
claimed lower bound follows if k > k′ (the case of k < k′ is analogous).

On V’s and P’s Runtimes. Using Fast Fourier Transform techniques (cf. [9,
Sect. 2]), the prover in the protocol of Theorem 4 can run in O(k · k′ · n log n)
total time, assuming the total number of updates to the input matrices A, B is
O(k · k′ · n log n). The verifier can run in time O(log n) per stream update. The
Eigenpair Verification Protocol. We now show how to use Theorem 4 to ver-
ify that a claimed set of k eigenvalues and eigenvectors are indeed (approximate)
eigenpairs of a given symmetric integer input matrix A. The protocol is cleanest
to present assuming the entries of all of the claimed eigenvectors are integers, in
which case the protocol can verify that the vectors are exact eigenvectors. We
explain how to handle the general case at the end of the section.

The Case Where All Claimed Eigenvectors Have Integer Entries. The
eigenpair verification protocol invokes MatrixMultiplication twice. In the first
invocation, MatrixMultiplication is used to simultaneously verify that all claimed
eigenpairs are indeed eigenpairs. Specifically, the MatrixMultiplication protocol is
used to compute C = A · V , where V is the matrix whose ith column equals the
ith claimed eigenvector vi. The verifier use fingerprints to check that C = V ·D,
where D is the diagonal matrix with entries corresponding to the claimed eigen-
values. In the second invocation, MatrixMultiplication is used to check that the
claimed eigenvectors are orthogonal, by verifying that V �V = D′ for some diag-
onal matrix D′ provided by the prover. Note that in both invocations of the
MatrixMultiplication protocol, the verifier does not have the space to explicitly
store the matrix V . Fortunately, storing V is not necessary, as within both invo-
cations of the MatrixMultiplication protocol, V is treated as part of the input
stream, and the MatrixMultiplication protocol does not require the verifier to
store the input.

The General Case. We now sketch how to handle the general case when the
entries of the claimed eigenvalues are not integers. The protocol guarantees in
this general case that, for any desired error parameter ε, each claimed eigenpair
(λi,vi) satisfies ‖Avi−λivi‖2 ≤ ε. We follow the protocol of Cormode et al. [10].
Specifically, we reduce to the integer case by requiring the prover to round the
entries of all claimed eigenvectors and eigenvalues to an integer multiple of ε′ for
some sufficiently small value ε′ in such a way that the resulting eigenvectors are
exactly orthogonal. It can be shown that there is some ε′ = 1/poly(n, ε−1) such
that the rounding changes each entry of Avi by at most ε/n2. This ensures that
the matrix V/ε′ has integer entries all bounded in absolute value by poly(n/ε).
Hence each entry of V/ε′ can be identified with an element of a finite field of
size poly(n, ε−1), and we can apply the integer matrix multiplication protocol to
compute A · (V/ε′) and (V/ε′)�(V/ε′). The verifier checks that the latter result
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is a diagonal matrix, guaranteeing that the claimed eigenvectors are orthogonal.
Given the former result, the prover can now convince the verifier that each entry
of the former matrix is close enough to (V/ε′)·D to ensure that ‖Avi−λivi‖2 ≤ ε.

Theorem 5. Let A be a symmetric n×n integer matrix with entries bounded in
absolute value by poly(n). Let k be an integer, let h and v be positive integers sat-
isfying h ·v ≥ n and let ε > 0 be an error parameter. Then there is an annotated
data streaming protocol for verifying that a collection of k eigenpairs (λi,vi) are
orthogonal, and each satisfies ‖Avi − λivi‖2 ≤ ε. The total communication cost
is O(k2 · h · log(n/ε)) and the verifier’s space cost is O(v · log(n/ε)).

4 Shape Analysis in a Few Rounds

In this section, we give 3-message SIPs of polylogarithmic cost for finding an
MEB and computing the width of a point set. The key here is to identify a
sparse dual witness that proves optimality (or near-optimality) of the claimed
(primal) solution and then check feasibility of both primal and dual solutions. We
show how the verifier can perform both feasibility checks via a careful reduction
to an instance of the RangeCount problem.

Verifying Minimum Enclosing Balls. Consider the Euclidean k-center prob-
lem with k = 1, otherwise known as the MEB: given a set of n points P ⊂ U in
which U = [m]d, find a ball B∗ of minimum radius that encloses all of them. No
streaming algorithm that uses poly(d) space can approximate the MEB of a set
of points to better than a factor of

√
2 by a coreset-based construction and 1+

√
2

2
in general [1]. Also, the best streaming multiplicative (1 + ε)-approximation for
the MEB uses O((1/ε)

d
2 ) space [8].

The Protocol. The prover reads the input and sends the (claimed) minimum
enclosing ball B. Our protocol reduces checking feasibility and optimality of B
to carefully constructed instances of the RangeCount problem.

Checking Feasibility. We consider a new range space, in which the range set
B is defined to consist of all balls with radius j : j ∈ {0, 1, . . . ,md} and with
centers in [m]d. Notice that |B| = O(m2d). Using the protocol for RangeCount
(Theorem 2), we can verify that the claimed solution B does in fact cover all
points (because this will hold if and only if the range count of B equals the
cardinality of the input point set |P | = n).

Checking Optimality. We will make use of the following well known fact about
minimal enclosing balls, which was used as the main idea for developing an
approximation algorithm for furthest neighbour problem, by Goel et al. [13]:

Lemma 2. Let B∗ be the minimal enclosing ball of a set of points P in R
d.

Then there exist at most d + 2 points of P that lie on the boundary ∂B∗ of B∗

and contain the center of B∗ in their convex hull.
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Putting it all Together. The complete 3-message MEB protocol works as follows.

1. V processes the data stream for RangeCount (with respect to B and P ).
2. P computes the MEB B∗ of P , then rounds the center c of the MEB to the

nearest grid vertex. Denote this vertex by c∗. P sends c∗ to V, as well as the
radius r of B∗, and a subset of points T ∈ P in which MEB(T ) = MEB(P ).
(Note that based on Lemma 2, |T | ≤ d + 2 suffices).

3. V first computes the center c of the MEB for the subset T and checks if c∗ is
actually the rounded value of c. Then V runs a RangeCount protocol with P
to verify that the ball of radius r + 1 and center c∗ contains all of the input
points. It then runs multiple copies of PointQuery to verify that the subset
|T | ≤ d + 2 points provided by P are actually in the input set P .

Theorem 6. There exists a 3-message SIP for the Minimum Enclosing Ball
(MEB) problem with communication and space cost bounded by O(d2 · log2 m).

On V’s and P’s Runtimes. Assuming the distance function D under which
the instance of MEB is defined satisfies mild “efficient-computability” properties,
both V and P can be made to run in total time polylog(md) per stream update
in the protocol of Theorem 6. Specifically, it is enough that for any point x ∈ P ,
there is a De-Morgan formula of size polylog(md) that takes as input the binary
representation of a ball B ∈ B and outputs 1 if and only if x ∈ B. Under the same
assumption on D, the prover P can be made to run in time T + n · polylog(md),
where T is the time required to find the MEB of the input point set P . For
details, see the full description of the PointQuery protocol of [7].

Streaming lower bounds on the grid. We note that restricting the points to a
grid does not make the MEB problem easier for a streaming algorithm. We can
show that lower bound for streaming MEB due to Agarwal and Sharathkumar
[1] can be modified to work even if the points lie on a grid. The details of the
proof can be found in the full version of this paper.

Verifying the Width of a Point Set. Let the width of a point set be the
minimum distance between two parallel hyperplanes that enclose it. Like the
MEB problem, the width of a point set can be approximated by a streaming
algorithm using O(1/εO(d)) space [8], without access to a prover. We present a
similar protocol for verifying the width of a point set as well: details are in the
full version of this paper.

Theorem 7. Given a stream of n input points from U = [m]d, there is a three-
message SIP for verifying the width of the input with space and communication
cost bounded by O(d4 · log2 m).

Verifying Approximate Metric k-Centers. Using the same ideas as for the
MEB, we can verify a 2-approximation to the metric k-center problem via the
use of the k + 1 points generated as witnesses by Gonzalez’ 2-approximation
algorithm [15]. More details are provided in the full version of the paper.
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Theorem 8. Let (X, d) be a metric space in which |X| = m. Given an input
point set |P | = n from (X, d), there is a streaming interactive protocol for veri-
fying k-center clustering on P with space and communication costs bounded by
O(k + log(|R|) · log(n · |R|)), in which |R| ≤ mk+2.

5 SIPs for General Clustering Problems

We present SIPs for two general clustering problems: k-center, and k-slab. Given
a set of n points in [m]d, a k-center is a set of k centers that minimize the
maximum point-center distance. In the k-slab problem, the goal is to find k
hyperplanes so as to minimize the maximum point-hyperplane distance.

k-Slabs. We first consider the k-slab problem. Even when k = 2 (and d =
3), this problem appears to be difficult to solve efficiently without access to
a prover: in fact, it was shown that this problem does not admit a core set
for arbitrary inputs [17]. Later, Edwards et al. [12] showed that if the input
points are from U = [m]d (as in our case), then there exists a coreset with size

at most ( log m
ε )

f(d,k)
(exponential in dimension d), which provides a (1 + ε)-

approximation to k-slab problem. However, the k-slab problem does not admit
a streaming algorithm to the best of our knowledge. As before, we can think of
a “cluster” as described not by a single hyperplane, but as the region between
two parallel hyperplanes that contain all the points in that cluster. The width
of the cluster is the distance between the two hyperplanes. We now think of the
k-slab objective as minimizing the maximum width of a cluster, a quantity we
call the width of the k-slab.

Defining the Relevant Range Space. Each slab can be described by d + 1 points
in U = [m]d and a width parameter. A k-slab is a collection of k of such slabs.
Let  be the range space consisting set of all k-slabs. This range space has
size || = mkd2+2kd. For any k-slab σ ∈ , let w(σ) denote its width. We
assume a canonical ordering of the ranges σ1, σ2, . . . , in increasing order of width
(with an arbitrary ordering among ranges having the same width), as well as an
effective enumeration procedure that given an index i returns the ith range in the
canonical order. We assume the existence of a function M : R → {−1, . . . , ||−1}
that maps a width w to the smallest index i such that w(σi) = w, and to the
null value −1 otherwise. The verifier can compute M by explicit enumeration
using space for one range.

Stream Observation Phase of the SIP. Let τ = (p1, p2, . . . , pn) be the stream of
input points. As the verifier sees the data points, it generates a derived stream
τ ′. For each point pi in the actual input stream τ , V inserts into τ ′ all k-slabs
σ ∈  which contain the point pi. Since τ ′ is a deterministic function of τ and
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P (who sees τ) can also produce τ ′ with no communication from V to P.4 The
frequency fσ of the range σ ∈ τ ′ is the number of points that σ contains.

Proving Feasibility. After τ has passed, P supplies a candidate k-slab σ∗ and
claims that this has optimal width w∗ = w(σ∗). By applying the RangeCount
protocol from Theorem 2 to the derived stream τ ′, V can check that f∗

σ = n and
is therefore feasible. This feasibility check requires only 3 messages.

Optimality. Proving optimality is more involved. Due to space constraints, we
describe in the full version of paper how to use the GKR protocol to achieve this.

Protocol Costs. The total communication cost of the protocol O(log n·log(||)·
log |F|) = O(k · d2 · log m · log2 n) bits. The total space cost is O(log(||) ·
log(|F|)) = O(k · d2 · log m · log n) bits. The total number of rounds required is
O(log n · log(||)) = O(k · d2 · log m · log n).

Theorem 9. Given a stream of n points, there is a streaming interactive proof
for computing the optimal k-slab, with space and communication bounded by
O(k · d2 · log m · log2 n). The total number of rounds is O(k · d2 · log m · log n).

We can avoid the GKR protocol and reduce the number of rounds in Theorem
9 by a factor of log(n) using a technique introduced by Gur and Raz [16], and
applied by Klauck and Prakash [19] to obtain an O(log ||)-round SIP for com-
puting distinct items in a data stream by sacrificing perfect completeness and
increasing the communication by a polylogarithmic amount.

k-Center. To verify solutions for Euclidean k-center, the relevant range space
consists of unions of k balls of radius r, for all centers and radii in the grid. The
size of this range space is m2kd. We omit further details.

Theorem 10. Given a stream of n input points, there is an SIP for computing
the optimal k-center with space and communication bounded by O(k · d · log m ·
log2 n). The total number of rounds is O(k · d · log m · log n).
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Abstract. In this paper we present algorithms with optimal average-
case and close-to-best known worst-case performance for the classic
online bin packing problem. It has long been observed that known bin
packing algorithms with optimal average-case performance are not opti-
mal in the worst-case. In particular First Fit and Best Fit have optimal
asymptotic average-case ratio of 1 but a worst-case competitive ratio of
1.7. The competitive ratio can be improved to 1.691 using the Harmonic
algorithm. Further variations of this algorithm can push down the com-
petitive ratio to 1.588. However, these algorithms have poor performance
on average; in particular, Harmonic algorithm has average-case ratio of
1.27. In this paper, first we introduce a simple algorithm which we term
Harmonic Match. This algorithm performs as well as Best Fit on aver-
age, i.e., it has an average-case ratio of 1. Moreover, the competitive
ratio of the algorithm is as good as Harmonic, i.e., it converges to 1.691
which is an improvement over Best Fit and First Fit. We also intro-
duce a different algorithm, termed as Refined Harmonic Match, which
achieves an improved competitive ratio of 1.636 while maintaining the
good average-case performance of Harmonic Match and Best Fit. Our
experimental evaluations show that our proposed algorithms have com-
parable average-case performance with Best Fit and First Fit, and this
holds also for sequences that follow distributions other than the uniform
distribution.

1 Introduction

An instance of the online bin packing problem is defined by a sequence σ =
〈σ1, . . . , σn〉 of items each having a size in the range (0, 1]. Items arrive one by
one, and an algorithm should take an irrecoverable decision by placing each item
into a bin without any knowledge about the forthcoming items. The goal is to
pack items into a minimum number of bins of uniform capacity. Next Fit (Nf)
algorithm keeps one open bin. If an item does not fit in the open bin, it gets
closed and a new bin is opened. First Fit algorithm (Ff) maintains bins in the
order they are opened and places each item in the first bin with enough space. If
such a bin does not exist, a new bin is opened. Best Fit (Bf) performs similarly
to Ff, except that it maintains bins in the decreasing order of their levels, where
c© Springer-Verlag Berlin Heidelberg 2015
K. Elbassioni and K. Makino (Eds.): ISAAC 2015, LNCS 9472, pp. 727–739, 2015.
DOI: 10.1007/978-3-662-48971-0 61
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the level of a bin is the total size of items in it. An alternative approach is to
partition items into a fixed number of classes and pack items of each class apart
from other classes. An example is the Harmonic (Ha) algorithm which defines K
intervals (1/2, 1], (1/3, 1/2], . . . , (1/K, 1/(K − 1)], and (0, 1/K]. Items with sizes
in the same interval are treated separately using the Next Fit strategy.

Bin packing algorithms are usually compared through their average-case and
worst-case performance. Under average-case analysis, it is assumed that item
sizes are generated independently at random and follow a fixed distribution that
is typically the uniform distribution over the interval [0, 1). With this assump-
tion, one can define the asymptotic average-case performance ratio, or simply
average ratio, of an online algorithm A as lim

n→∞ E
[

A(σ(n))

Opt(σ(n))

]

, where σ(n) is a

randomly generated sequence of length n and A(σ) denotes the number of bins
used by A for packing σ (the same notation is used for Opt). Next Fit has aver-
age ratio of 4/3 [5] while First Fit and Best Fit both have optimal average ratio
of 1 [2]. To compare algorithms with average ratio of 1, a more precise measure of
expected waste is defined as E[A(σ(n))−s(σ(n))], where s(σ(n)) denotes the total
size of items in σ(n). First Fit and Best Fit have expected waste of Θ(n2/3) and
Θ(

√
n lg3/4 n), respectively [16,21]. All online algorithms have expected waste of

size Ω(
√

n lg1/2 n) [21].
There are algorithms which are based on matching a “large” item with a

“small”. Throughout the paper, we call an item large if it is larger than 1/2 and
small otherwise. Interval First Fit (Iff) algorithm [9] divides the unit interval
into K intervals of equal length, namely It = ( t−1

K , t
K ] for t = 1, 2, . . . ,K, where

K = 2j+1 is an odd integer. The algorithm defines j+1 classes so that intervals
Iτ and IK−τ form class τ (1 ≤ τ ≤ j) and interval IK forms class j +1. Items in
each class are packed separately using a strategy similar to First Fit. Algorithm
Online Match (Om) [7] also has a parameter K and declares two items as being
companions if their sum is in the range [1 − 1

K , 1]. A new bin is opened for each
large item. For placing a small item x, the algorithm checks whether there is an
open bin β with a large companion of x; in case there is, it places x in β and closes
β. Otherwise, it packs x using the Nf strategy in a separate list of bins. Matching
Best Fit (Mbf) algorithm is similar to Best Fit except that it closes a bin as soon
as it receives the first small item. There is an online algorithm with expected
waste of size Θ(

√
n lg1/2 n) [22] which matches the lower bound of [21]. The

above matching algorithms have promising average-case performance; however,
they perform poorly in the worst case (see Table 1).

Competitive analysis is the standard worst-case measure for comparing online
algorithms. Throughout the paper, by ‘competitive ratio’ of an online algo-
rithm A, we mean ‘asymptotic competitive ratio’ of A, which is defined as
inf{r ≥ 1 : for some N > 0, A(σ)/Opt(σ) ≤ r for all σ with Opt(σ) ≥ N}.
Next Fit has a competitive ratio of 2 while First Fit and Best Fit have the same
ratio of 1.7 [11]. For large values of K, the competitive ratio of Ha approaches
to T∞ =

∑∞
i=1

1
ti−1 , where t1 = 2 and ti+1 = ti(ti − 1) + 1, i ≥ 1. Members of

a general framework of Super Harmonic algorithms [20] have even better com-
petitive ratios. Similar to Ha, these algorithms classify items by their sizes and
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pack items of the same class together. To improve over Ha, a fraction of opened
bins include items from different classes. These bins are opened with items of
small sizes in the hopes of subsequently adding items of larger sizes. At the time
of opening a bin, it is pre-determined how many items from each class should be
placed in the bin, and it is guaranteed that the reserved spot is enough for any
member of the class. Hence, the expected total size of items in the bin is less than
1, and the expected waste is linear to the number of opened bins. This implies
that the average ratio of Super Harmonic algorithms is strictly larger than 1.
Regarding the lower bound for competitive ratio of online algorithms, Balogh
et al. [1] proved that no online algorithm can have a competitive ratio better
than 1.54037. Table 1 includes a summary of the performance of bin packing
algorithms.

In their survey of bin packing, Coffman et al. [4] state that ‘All algorithms
that do better than First Fit in the worst-case seem to do much worse in the
average-case.’ In this paper, however, we show that this is not necessarily true
and introduce an algorithm whose competitive ratio, average ratio, and expected
wasted space are all at or near the top of each class. This also addresses a
conjecture by Gu et al. [10] stated as ‘Harmonic is better than First Fit in the
worst-case performance, and First Fit is better than Harmonic in the average-
case performance. Maybe there exists an on-line algorithm with the advantages
of both First Fit and Harmonic.’

Table 1. Average ratio, expected waste (under continuous uniform distribution), and
competitive ratios for bin packing algorithms. Results in bold are our contributions.

Algorithm Average ratio Expected waste Competitive ratio

Next Fit (Nf) 1.3̄ [5] Ω(n) 2

Best Fit (Bf) 1 [2] Θ(
√

n lg3/4 n) [16,21] 1.7 [11]

First Fit (Ff) 1 [16] Θ(n2/3) [6,21] 1.7 [11]

Harmonic (Ha) 1.2899 [15] Ω(n) → T∞ ≈ 1.691 [14]

Refined First Fit (Rff) > 1 Ω(n) 1.6̄6 [23]

Refined Harmonic (Rh) 1.2824 [10] Ω(n) 1.636 [10,14]

Modified Harmonic (Mh) 1.189 [17] Ω(n) 1.615 [18]

Harmonic++ > 1 Ω(n) 1.588 [20]

Harmonic Match Hm 1 Θ(
√

n lg3/4 n) → T∞ ≈ 1.691

Refined Harmonic
Match (Rhm)

1 Θ(
√

n lg3/4 n) 1.636

1.1 Contribution

We introduce an algorithm called Harmonic Match (Hm) which has a competitive
ratio similar to Harmonic, i.e., approaches T∞ ≈ 1.691 for large values of K,
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where K is a parameter of the algorithm. For sequences generated uniformly
and independently at random, Harmonic Match has an optimal average ratio of
1 and expected waste of Θ(

√
n lg3/4 n) which is as good as Best Fit and better

than First Fit. The idea behind Harmonic Match can be used in a general way to
improve Super Harmonic algorithms. We illustrate this for the simplest member
of this family, namely the Refined Harmonic algorithm of Lee and Lee [14]. We
introduce a new algorithm called Refined Harmonic Match (Rhm), which has
a competitive ratio of at most 1.636. At the same time, the average ratio and
expected waste of Rhm are as good as those of Best Fit.

Harmonic Match and Refined Harmonic Match are easy-to-implement, and
their running time is as good as Best Fit. This makes them useful in practical
scenarios in which the worst-case scenarios might indeed happen. One example is
the denial of service attacks in cloud [13] in which an adversary sends items (jobs
or ‘tenants) that form a worst-case sequence. In these cases, the advantage of
Rhm over Best Fit is significant from the perspective of cloud service providers.
Although the analysis techniques used in this paper are straightforward, we use
them to prove an important result that shows the average performance does
not need to be compromised for better competitive ratios. For the bulk of this
paper, we assume item sizes are distributed uniformly and independently in the
interval (0, 1]. However, for a better picture on the average-case performance,
we test them on sequences that follow other distributions. The results of our
experiments suggest that Harmonic Match and Refined Harmonic Match have
comparable performance with Best Fit and First Fit. At the same time, they
have a considerable advantage over other members of the Harmonic family of
algorithms. Due to space restrictions, many proofs have been removed. They will
appear in the long version of the paper.

2 Harmonic Match Algorithm

Similarly to Harmonic algorithm, Harmonic Match has a parameter K and
divides items into K classes based on their sizes. We use HmK to refer to Har-
monic Match with parameter K. The algorithm defines K pairs of intervals as
follows. The i-th pair (1 ≤ i ≤ K−1) contains intervals ( 1

i+2 , 1
i+1 ] and ( i

i+1 , i+1
i+2 ].

The K-th pair includes intervals (0, 1
K+1 ] and ( K

K+1 , 1]. An item x belongs to
class i if the size of x lies in any of the two intervals associated with the i-th
pair. Note that the intervals in HmK are the same as Harmonic with parameter
K+1 except that the interval (12 , 1] in the Harmonic algorithm is further divided
into K +1 more intervals in Harmonic Match. This division enables “matching”
large items with proportionally smaller items. The pair of intervals which form a
class have the same length. This is essential for a good average-case performance
for our uniform distribution on (0, 1]. The algorithm applies a strategy similar
to Best Fit to place items inside each class. The Harmonic-type classification of
items allows improvement on the competitive ratio.

The packing maintained by Harmonic Match includes two types of bins: the
“mature” bins which are almost full and “normal” bins which become mature
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by receiving more items. For placing an item x, Hm detects the class that x
belongs to and applies the following strategy to place x. If x is a large item
(x > 1/2), the algorithm opens a new bin and declares it as a normal bin. If x
is small (x ≤ 1/2), the algorithm applies the Best Fit (Bf) strategy to place x
in a mature bin. If there is no mature bin with enough space, the Bf strategy
is applied one more time to place x in a normal bin that contains the largest
“companion” of x. A companion of x is a large item of the same class that fits
with x in the same bin. In case x is placed in a bin (i.e., there is a normal bin
with a companion of x) the selected bin is declared as a mature bin. Otherwise,
the algorithm applies the Next Fit (Nf) strategy to place x in a single normal
bin maintained for that class; such a bin includes small items of the same class.
If the bin maintained by Nf does not have enough space, it is declared as a
mature bin and a new Nf-bin is opened.

Harmonic Match treats items of the same class in a similar way that Online
Match does except that there is no restriction on the sum of the sizes of two
companion items. To facilitate our analysis, we introduce the Relaxed Online
Match (Rom) algorithm as a subroutine of Hm. To place a large item, Rom
opens a new bin. To place a small item x, it applies the Best Fit strategy to
place x in an open bin with a single large item and closes the bin. If such a bin
does not exists, Rom places x using the Next Fit strategy (and opens a new bin
if necessary). Using Rom, we can describe the Harmonic Match algorithm in the
following way. To place a small item, HmK applies the Best Fit strategy to place
it in a mature bin. Large items and the small items which do not fit in mature
bins are treated using the Rom strategy along with other items of their classes.
The bins which are closed by the Rom strategy are declared as mature bins.

2.1 Worst-Case Analysis

To analyze Harmonic Match, we observe that the classic Harmonic algorithm is
monotone in the sense that removing an item does not increase the number of
bins it opens.

Lemma 1. Removing any item from an input sequence σ does not increase the
number of bins used by the Harmonic algorithm for packing σ.

Using the above lemma, we show that the number of bins used by HmK for
any sequence is no larger than that of Harmonic with parameter K+1 (HaK+1).
Informally speaking, the small items which are placed with large items in HmK

can be thought as being “removed” from the packing of Harmonic.

Lemma 2. The number of bins used by Harmonic Match with parameter K
(HmK) to pack any sequence σ is no larger than that of Harmonic with parameter
K (HaK+1).

Proof. We say a small item is red if it is placed in a bin with a large item in the
packing of HmK , and call it white otherwise. Consider a subsequence σ− of σ in
which red items are removed. We show HmK(σ) = HaK+1(σ−). Let σi denote
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the sequence formed by items of class i in HmK (1 ≤ i ≤ K). The number
of bins opened by HmK for σi is li + Nf(Wi) where li is the number of large
items of σi and Wi is the sequence formed by the white items in σi. Let σ−

i be
a subsequence of σi in which red items are removed. Since small and large items
are treated separately by HaK+1, the number of bins used by HaK+1 for σ−

i is
also li +Nf(Wi), and we have HmK(σi) = HaK+1(σ−

i ). Taking the sum over all
classes, we get HmK(σ) = HaK+1(σ−). Since Ha is monotone by Lemma 1, we
have HaK+1(σ−) ≤ HaK+1(σ), and HmK(σ) ≤ HaK+1(σ). �	

For large values of K, the competitive ratio of Harmonic Match approaches
T∞ ≈ 1.691. Indeed, the above upper bound is tight and we get the following
result.

Theorem 1. The competitive ratio of HmK is equal to that of HaK+1, i.e., it
converges to T∞ ≈ 1.691 for large values of K.

2.2 Average-Case Analysis

We study the average-case performance of the Hm algorithm, assuming item sizes
are distributed uniformly in the interval (0, 1]. Like most related work, we make
use of the results related to the up-right matching problem. An instance of this
problem includes n points generated uniformly and independently at random
in a unit-square in the plane. Each point receives a ⊕ or � label with equal
probability. The goal is to find a maximum matching of ⊕ points with � points
so that in each pair of matched points the ⊕ point appears above and to the right
of the � point. Let Un denote the number of unmatched points in an optimal
up-right matching of n points. For the expected size of Un, it is known that
E[Un] = Θ(

√
n lg3/4 n) [8,16,19,21]. Given an instance of bin packing defined

by a sequence σ, one can make an instance of up-right matching as follows [12].
Each item x of size s(x) in σ is plotted as a point in the unit square. The vertical
coordinate of the point corresponds to the index of x in σ (scaled to fit in the
square). If x is smaller than 1/2, the point is labelled as ⊕ and its horizontal
coordinate will be 1 − 2s(x) where s(x) is the size of x; otherwise, the point will
be � and its horizontal coordinate will be 2s(x) − 1. A solution to the up-right
matching instance gives a packing of σ in which the items associated with a pair
of matched points are placed in the same bin. Note that the sum of the sizes of
these two items is no more than the bin capacity. Also, in such a solution, each
bin contains at most two items.

For our purposes, we study σt as a subsequence of σ which only includes
items which belong to the same class in the Hm algorithm. The items in σt are
generated uniformly at random from ( 1

t+1 , 1
t ] ∪ ( t−1

t , t
t+1 ] where t is a positive

integer. Since the two intervals have the same length, as we will describe, the
items can be plotted in a similar manner on the unit square. Any bin packing
algorithm which closes a bin after placing a small item can be used for the
up-right matching problem. Each edge in the matching instance corresponds to
a bin which includes one small and one large item. Recall that the algorithm
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Matching Best Fit (Mbf) is similar to Best Fit except that it closes a bin as
soon as it receives an item with size smaller than or equal to 1/2. So, Mbf can be
applied for the up-right matching problem. Indeed, it creates an optimal up-right
matching, i.e., if we apply Mbf on a sequence σt which is randomly generated
from (0, 1], the number of unmatched points will be Θ(

√
nt lg3/4 nt), where nt is

the length of σt [21]. We show the same result holds for the bin packing sequences
in which items are taken uniformly at random from ( 1

t+1 , 1
t ] ∪ ( t−1

t , t
t+1 ].

Lemma 3. For a sequence σt of length nt in which item sizes are selected uni-
formly at random from ( 1

t+1 , 1
t ] ∪ ( t−1

t , t
t+1 ], we have E[Mbf(σt)] = nt/2 +

Θ(
√

nt lg3/4 nt).

Proof. Define an instance of up-right matching as follows. Let x, with size s(x), be
the i-th item of σt (1 ≤ i ≤ nt). If x is small, plot a point with ⊕ label at position
(1 − (s(x) × t(t + 1) − t), i/nt); otherwise, plot a point with � label at position
(s(x)×t(t+1)−(t2−1), i/nt). This way, the points will be bounded in a unit square.
Since item sizes are generated uniformly at random from the two intervals and
the sizes of the intervals are the same, the point locations and labels are assigned
uniformly and independently at random. Hence, the number of unmatched points
in the up-right matching solution by Mbf is expected to be Θ(

√
nt lg3/4 nt). The

unmatched points are associated with the items in σt which are packed as a sin-
gle item in their bins by Mbf. Let sg denote the number of such items. We have
E[sg] = Θ(

√
nt lg3/4 nt). Except these sg items, other items are packed with

exactly one other item in the same bin. So we have Mbf(σt) − sg = nt/2 which
implies E[Mbf(σt)] = nt/2 + E[sg] = nt/2 + Θ(

√
nt lg3/4 nt). �	

Recall that Rom is a subroutine of Hm. The main difference between Rom
and Mbf is in placing small items without companions. For those, Rom applies
the Nf strategy while Mbf opens a new bin for each item. Clearly, Rom has an
advantage.

Lemma 4. For any instance σ of the bin packing problem, the number of bins
used by Romto pack σ is no more than that of Mbf.

To prove the main result, we also need to show that Mbf is monotone:

Lemma 5. Removing an item does not increase the number of bins used by
Mbf.

Provided with the above lemmas, we prove the main result of this section.

Theorem 2. For packing a sequence σ of length n in which item sizes are
selected uniformly at random from (0, 1], the expected wasted space of Hm is
Θ(

√
n lg3/4 n).
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Proof. Let σ− be a copy of σ in which the items which are placed in mature
bins are removed. Let σ−

1 , . . . , σ−
K be the subsequences of σ− formed by items

belonging to different classes of Hm. We have:

Hm(σ) =
∑K

t=1
Rom(σ−

t ) ≤
∑K

t=1
Mbf(σ−

t ) ≤
∑K

t=1
Mbf(σt)

The inequalities come from Lemmas 4 and 5, respectively. By Lemma 3, we have:

E[Hm(σ)] ≤
∑K

t=1

(

nt/2 + Θ(
√

nt lg3/4 nt)
)

=
n

2
+ Θ(

√
n lg3/4 n)

The last equation holds since K is a constant. The expected value of s(σ),
the total size of items in σ, is n/2. Consequently, for the expected waste of Hm,
we have the following equality which completes the proof:

E[Hm(σ) − s(σ)] = n/2 + Θ(
√

n lg3/4 n) − n/2 = Θ(
√

n lg3/4 n)

�	

3 Refined Harmonic Match

In this section, we introduce a slightly more complicated algorithm, called
Refined Harmonic Match (Rhm), which has a better competitive ratio than Bf
and Hm while performing as well as them on average. Similar to Hm, Rhm classi-
fies items based on their sizes. The classes defined for Rhm are the same as those
of HmK with K = 19. The items which belong to class t ≥ 2 are treated using
the Hm strategy. Namely, a set of mature bins are maintained. If an item fits
in mature bins, it is placed there using the Bf strategy; otherwise, it is placed
together with similar items of its class using the Rom strategy. At the same
time, the bins closed by the Rom strategy are declared as being mature. The
only difference between Hm and Rhm in packing items of class 1, i.e., items in
the range (1/3, 2/3]. Rhm divides these items into four groups a = (1/3, 37/96],
b = (37/96, 1/2], c = (1/2, 59/96], and d = (59/96, 2/3]. To handle the sequences
which result in the lower bound of T∞ for competitive ratios of Ha and Hm,
Rhm designates a fraction of bins opened by items of type a to host the future
c items. Note that the total size of a c item and an a item is no more than 1.

In what follows, we introduce an online algorithm called Refined Relaxed
Online Match (Rrm) as a subroutine of Rhm that is specifically used for placing
items of class 1. At each step of the algorithm, when two items of class 1 are
placed in the same bin, that bin is declared to be mature and will be added
to the set of mature bins maintained by the Hm algorithm that packs items
of other classes. Rrm uses the following strategy to place an item x of class 1
(x ∈ (1/3, 2/3]). If x is a d-item, Rrm opens a new bin for x. If x is a c item, the
algorithms checks whether there are bins with an a item designated to be paired
with a c item. In case there are, x is placed in a bin with an a item using the Bf
strategy; otherwise, a new bin is opened for x. For a and b items (small items
of class 1), Rrm uses the Bf strategy to select a bin with enough space which
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includes a single large item (if there is such a bin). This is particularly important
to guarantee a good average-case behavior. If x is a b item, the algorithms checks
the bin with the highest level in which x fits; if such a bin includes a c or a b
item, x is placed there. Otherwise (when there is no selected bin or when it has
an a item), a new bin is opened for x. If x is an a item, the algorithm uses the
Bf strategy to place it into a bin with a d or c item. If no suitable bin exist, x
is placed in a bin with a single a item (there is at most one such bin). If there
is no such bin, a new bin is opened for x.

When a new bin is opened for an a-item, the bin will be marked to either
include a c item or another a item in the future. We define A-bins as those which
include two a items or a single a item designated to be paired with another a
item, and define C-bins as those which include either a c item together with an a
or a b item or a single a item designated to be paired with a c item in the future.
Rhm tries to maintain the number of A-bins as close to three times the number
of C-bins as possible. Namely, when a bin is opened for an a item, if the number
of A-bins is less than 3 times of C-bins, the bin is declared as an A-bin to host
another a item later; otherwise, the open bin is declared as a C-bin to host a
c item. This way, the number of A-bins is close to (but no more than) 3 times
that of C-bins.

3.1 Worst-Case Analysis

In this section, we prove an upper bound of 1.636 for the competitive ratio of
Rhm. Since Rhm applies Hm for placing items of class t ≥ 2, by Lemma 2, the
number of bins opened by Rhm for these items is no more than that of Harmonic.
An analysis of the number of bins opened by the Harmonic algorithm gives the
following lemma.

Lemma 6. For the number of bins used by Rhm to pack a sequence σ we have

Rhm (σ) ≤ Rrm (σcl1) + nX +
18
∑

t=2

⌊

nt

t + 1

⌋

+ 20W ′/19 + 20

in which σcl1 is the subsequence formed by items of class 1, nX is the number
of large items in classes other than class 1, nt is the number of small items in
class t, and W ′ is the total size of small items in class 19 (the last class).

Using the above lemma, we prove the following theorem.
Theorem 3. The competitive ratio of Rhm is at most 373/228 < 1.636.

To prove the theorem, in the packing of Rrm for items of class 1, we define
a1-bins as those which only include one a-item designated to be paired with a
c-item. We consider the following two cases and prove the theorem for each case
separately.
– Case 1: There is at least one a1-bin in the final packing.
– Case 2: There is no a1-bin in the final packing.
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Let nτ (τ ∈ {a, b, c, d}) denote the number of items of class q in the input
sequence. In both cases, we formulate the number of bins opened by Rrm as
a function of the number of items in each group (i.e., as a function of na, nb, nc,
and nd). By definition of Rrm, no c-bin and a1-bin can exist at the same time. So,
in Case 1, there is no c-bin in the packing. We can bound the number of C-bins
by proving the inequality 3NC ≤ NA + 3 where NC and NA respectively denote
the number of C-bins and A-bins. Using the definition of A-bins and C-bins, we
show the number of bins opened by Rrm is at most nd + 4na/7 + 4nb/7 + 1.
Plugging this to Lemma 6 and applying a straightforward weighting function
similar to that of Lee and Lee [14] completes the proof. In Case 2, we note that
NA ≤ 3NC and use it to show the number of bins opened by Rrm is at most
nd + nc + nb/2 + 3na/7 + 2. Applying another weighting function completes the
proof. The details will appear in the long version of the paper.

3.2 Average-Case Analysis

We show that the average-case performance of Rhm is as good as Bf and Hm.
Except the following lemma, other aspects of the proof are similar to those in
Sect. 2.2.

Lemma 7. For any instance σ of the bin packing problem in which items are
in the range (1/3, 2/3], the number of bins used by Rrm to pack σ is no more
than that of Matching Best Fit (Mbf).

The key observation in the proof is that Rrm uses the Bf strategy to place a
small item x in a bin which includes a large item. Note that small items are
a and b items in the Rrm algorithm. Only if such a bin does not exist, Rrm
deviates from the Bf strategy (this is the main difference between Rrm and
Refined Harmonic of [14]). Given Lemma 7, a similar argument as the proof of
Theorem 2 results in the following theorem.

Theorem 4. For a sequence σ of length n in which item sizes are selected uni-
formly at random from (0, 1], the expected wasted space of Rhm is Θ(

√
n lg3/4 n).

4 Experimental Evaluation

The results of the previous sections indicate that Hm and Rhm have similar
average-case performance as Bf if item sizes are taken uniformly at random from
the range (0, 1]. In this section, we expand the range of distributions beyond this
distribution to further observe the performance of these algorithms. For that,
we considered uniform distribution with different ranges for items sizes (ranges
(0, 1/2] and (0, 1/10]), as well as Normal and Weibull distributions with different
parameters. We also considered uniform instances in which items are sorted in
decreasing order of their sizes. The details about these distributions can be found
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in the long version of the paper. For all distributions, we computed the average
number of bins used by different algorithms for packing 1000 sequences of length
100,000. For algorithms that classify items by their sizes, the number of classes
K is set to 20.

We compute the experimental average ratio of an algorithm as the ratio
between the observed expected number of bins used by the algorithm and that
of Opt. We estimate the number of bins opened by Opt to be the total size of
items. Figure 1 shows the bar chart for experimental average ratio of different
online algorithms. It can be seen that Hm and Rhm, along with Bf and Ff,
have a significant advantage over other algorithms.

Fig. 1. The bar chart for the experimental average ratios of online bin packing algo-
rithms. To make the results more visible, the vertical scale is changed to start at 0.9.

A difference between the packings of Hm and Rhm occurs when a number
of small items of the first class (items of type a in Rhm) appear before any
large item of the same class (an item of type c). In these cases, Rhm reserves
some bins for subsequent large items (by declaring the bins to be C-bins). For
symmetric distributions, where items of sizes x and 1 − x appear with the same
probability, it is unlikely that many small items appear before the next large
item. Consequently, the average number of bins used by Hm and Rhm are the
same. On the other hand, for asymmetric sequences where small items are more
likely to appear, e.g., Uniform-2 with item sizes in the range (0, 1/2], Hm has
a visible advantage over Rhm. In these sequences, there is no reason to reserve
bins for the large items since they are unlikely to appear.

5 Remarks

Hm and Rhm can be seen as variants of Harmonic and Refined Harmonic algo-
rithms in which small and large items are carefully matched in order to improve
the average-case performance. We believe that the same approach can be applied
to improve the average performance of other Super Harmonic algorithms and in
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particular that of Harmonic++. Given the complicated nature of these algo-
rithms, modifying them involves a detailed analysis which we leave as a future
work.

It is possible to study the performance of bin packing algorithms using the
relative worst order analysis [3]. Under this measure, when all items are larger
than 1

K+1 , Harmonic with parameter K is strictly better than Ff and Bf by
a factor of 6/5 [3]. Applying Lemma 2, when all items are larger than 1

K+2 ,
Harmonic Match with parameter K is strictly better than Ff and Bf. This
provides another theoretical evidence for the advantage of Harmonic Match over
Bf and Ff.
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Abstract. We study an online problem in which mobile servers have
to be moved in order to efficiently serve at set of online requests. More
formally, there is a set of n nodes and a set of k mobile servers that
are placed at some of the nodes. Each node can potentially host sev-
eral servers and the servers can be moved between the nodes. There are
requests 1, 2, . . . that are adversarially issued at nodes one at a time,
where a request issued at time t needs to be served at all times t′ ≥ t.
The cost for serving the requests is a function of the number of servers
and requests at the different nodes. The requirements on how to serve
the requests are governed by two parameters α ≥ 1 and β ≥ 0. An algo-
rithm needs to guarantee that at all times, the total service cost remains
within a multiplicative factor α and an additive term β of the current
optimal service cost.

We consider online algorithms for two different minimization objec-
tives. We first consider the natural problem of minimizing the total num-
ber of server movements. We show that in this case for every k, the
competitive ratio of every deterministic online algorithm needs to be at
least Ω(n). Given this negative result, we then extend the minimization
objective to also include the current service cost. We give almost tight
bounds on the competitive ratio of the online problem where one needs
to minimize the sum of the total number of movements and the current
service cost. In particular, we show that at the cost of an additional
additive term which is roughly linear in k, it is possible to achieve a
multiplicative competitive ratio of 1 + ε for every constant ε > 0.

Keywords: Movement minimization · Competitive analysis · General
cost function

1 Introduction

Consider of a company with several project teams which are located at different
places. Moving a whole team to a new location is expensive, however depending
on where new customers arrive, it might still be desirable to do. The cost for
serving the customers at a certain location clearly depends (in a possibly non-
linear way) on the number of project teams and on the number of customers
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at the location. Alternatively think of a distributed service that is offered on a
large network such as the Internet. To offer the service, a provider might have a
budget to place k servers in the network. The best placement of servers depends
on the distribution of the users of the distributed service. As the set of users
might grow (or even change arbitrarily) over time, from time to time, we might
have to move some of the servers, even though migrating a whole server might
be a relatively costly thing to do. These scenarios could be generally seen as a
problem where servers are relatively large entities such that while they can be
moved, doing this is a relatively costly operation, irrespective of, e.g., between
which nodes a movement occurs. The above scenarios are applications of the
abstract problem studied in this paper. The problem studied in this paper can
be formally modeled as follows.

Assume two parameters α and β are given such that α ≥ 1 and max
{α − 1, β} ≥ 1. There is a set V of n nodes and there are k mobile servers, where
each server has to be placed at one of the nodes. Further, there are requests that
arrive at the nodes in an online fashion and which need to be “permanently”
served, i.e. an issued request at time t has to be served at all times t, t + 1, . . ..
We assume that any node can potentially host an arbitrary number of servers.
Formally, the cost for serving the requests at each node v, which is called ser-
vice cost of node v, is given by a general cost function that depends on v, on
the number of requests at node v, as well as on the number of servers placed
at v. Generally, the more requests there are at some node, the more it costs
to serve these requests. Further, if we place more servers at a given node, the
cost for serving the requests at this node becomes smaller (formally defined in
Sect. 2.2).1 The requests arrive one by one and the task of an algorithm is to plan
the movements of the k servers in a way to keep a feasible configuration of the
k servers at all times. A configuration of servers is called feasible whenever the
total service cost, that is the summation of service costs for all nodes, is upper
bounded by αS∗

t + β, where, S∗
t is the optimal total service cost at time t.

We consider two different objective functions. We first study a natural variant
of the problem where the goal is to minimize the total number of movements. For
this setting, we show that any deterministic online algorithm has a competitive
ratio of at least Ω(n), independent of the value of k.

Given this negative result, we then consider an objective function where the
cost at time t is the sum of the total number of movements up to time t and the
total service cost at time t (shown by CostA

t for a given algorithm A). We study
a simple online greedy algorithm which a) only moves when it needs to move
because the configuration is not feasible any more and b) always moves a server
which improves the service cost as much as possible. We show that the total
number of movements up to a time t of this online greedy algorithm can be upper
bounded as a function of the optimal service cost S∗

t at time t. Most significantly,
we show that even for α = 1, for any ε > 0, as long as β = Ω(k + k/ε), at all

1 The most basic cost function would incur a service cost of x whenever x requests
are at a node with no server and a service cost of 0 for all requests at nodes with at
least one server.
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times t, the cost CostA
t of the greedy algorithm can be upper bounded by the

cost CostO
t of an optimal algorithm as CostA

t ≤ (1 + ε)CostO
t + O(β + k log k).

We also show that this result is essentially tight. In particular, an additive term
which is at least linear in k is unavoidable (even for much larger multiplicative
competitive ratio).

1.1 Related Work

When only considering the movement cost, the problem studied in the present
paper falls into a class of movement problems introduced in [7]. In this version,
the most similar of the classic problems is the k-server problem [18] or more
specifically the paging problem [21] (equivalent to the k-server problem with
uniform distances). In the k-server problem, every new request has to be served
by moving some server to the location of the request and the only cost considered
is the total movement cost. For general metric spaces, the best competitive ratios
known are 2k − 1 [16] and Õ(log2 k log3 n) [4]. The authors of [4] use a problem
called the allocation problem (AP) to solve the k-server problem. The AP and
also the results on the AP have some resemblances to the model and results
in the present paper when considering the objective function based on service
and movement costs. However, like k-server, in the AP the requests are served
only once they arrive at the requested points while in our model the requests
are permanently served and servers are not necessarily moved to the requested
points.

When considering the variant of our problem where the service cost is
included in the objective function, the problem can be seen as an online ver-
sion of the mobile facility location problem (MFLP) with uniform distances.
MFLP in general metrics was introduced in [7,11] as a movement problem. It
can be seen as a generalization of the standard k-median and facility location
problems [11]. The k-median and facility location problems have been widely
studied in both operations research and computer science [3,5,6,8,13,15]. In
[1,11], MFLP is modeled in such a way that the algorithm moves each facility
and client to a point where in the final configuration, each client is at a node
with some facility. The goal is to minimize the total movement cost of facilities
and clients. The movement cost between the clients and the final configuration
points could be interpreted as a service cost somewhat similar to what we use in
this paper. Note that since in our case, requests need to be permanently served,
we cannot model the service cost as a movement cost.

Classically, the cost of serving a request in the facility location problem is
given by the distance from the request to the facility to which it is assigned.
In a uniform metric, this corresponds to the most basic cost function that can
be studied in our framework (service cost is equal to the number of requests
at nodes with no servers). As described, we significantly generalize this basic
service cost model. In the context of facility location, a similar approach was
used in [14]. More concretely, in [14], it is assumed that the cost of a facility
increases as a function of the requests it needs to serve.
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There exist various natural models in which the locations of requests are not
known in advance, and a solution must be built or maintained gradually over
time without any knowledge about future requests like online facility location
problem. The first algorithm for online facility location was introduced in [19].
For a broad discussion of models and results on online facility location problem,
we refer to the survey in [10].

Finally, the problem studied in this paper has some resemblance to learning
problems [2,17,20]. Somewhat similarly to expert learning algorithms where in
essence, one converges to the “right set of experts”, our algorithm has to converge
to the “right set of nodes” to place its servers. However, in our case, the cost
will usually be dominated by the total movement cost, i.e., the total cost for
replacing the servers. In learning, switching to a different set of experts is usually
not considered a (main) cost.

2 Problem Statement

We are given a set V of n nodes and there is a set of k servers. Further, there are
requests 1, 2, . . . that adversarially arrive one at a time. Moreover two parameters
α and β are given such that

α ≥ 1 and max {α − 1, β} ≥ 1. (1)

We assume that at time t ≥ 1, request t arrives at node v(t) ∈ V . For a node
v ∈ V , let rv,t be the number of requests at node v after t requests have arrived,
i.e., rv,t := |{i ≤ t : v(i) = v}|. In order to keep the total service cost small, an
algorithm can move the servers between the nodes (if necessary, for answering
one new request, we allow an algorithm to also move more than one server).
However throughout the execution, each of the k servers is always placed at one
of the nodes v ∈ V . We define a configuration of servers by integers fv ∈ N0 for
each v ∈ V such that

∑

v∈V fv = k. We describe such a configuration by a set
of pairs as F := {(v, fv) : v ∈ V }. The initial configuration is denoted by F0.

Service Cost. We implicitly assume that if a node v has some servers, all
requests at v are served by these servers. This also implies that the “assignment”
of requests to servers can change over time and the service cost is not cumulative.
Depending on the number of servers and the number of requests at a node v ∈ V ,
an algorithm has to pay some service cost to serve the requests located at v.
This service cost of node v is defined by a service cost function σv such that
σv(x, y) ≥ 0 is the cost for serving y requests if there are x servers at node v.
For convenience, for t ≥ 1, we also define σv,t(x) := σv(x, rv,t) to be the service
cost with x servers at node v at time t. For some configuration F , we denote the
total service cost at time t by St(F ) :=

∑

v∈V σv,t(fv) =
∑

v∈V σv(fv, rv,t).

Feasible Configuration. We define a configuration F to be feasible at
time t iff

St(F ) < α · S∗
t + β (2)



744 A. Ghodselahi and F. Kuhn

where S∗
t is the optimal total service cost at time t, i.e. S∗

t := min
F

St(F ). Note

that S∗
t is not necessarily the same as the total service cost SO

t of an optimal
algorithm O at time t. We say that a configuration F ∗ is an optimal configuration
at time t if St(F ∗) = S∗

t .

Feasible Solution. For a given algorithm A, we denote the solution at time t
by FA

t :=
{

FA(i) : i ∈ [0, t]
}

, where FA(t) is the configuration after reacting to
the arrival of request t and where FA(0) = F0. Note that for two integers a ≤ b,
[a, b] := {a, . . . , b} denotes the set of all integers between a and b. Further, for
an integer a ≥ 1, we use [a] as a short form to denote [a] := [1, a]. The service
cost of an algorithm A at time t is denoted by SA

t := St(FA(t)).

Movement Cost. We define the movement cost MA
t of given algorithm A to

be the total number of server movements by time t. Generally, for two feasible
configurations, F = {(v, fv) : v ∈ V } and F ′ = {(v, f ′

v) : v ∈ V }, we define the
distance χ(F, F ′) between the two configurations as follows:

χ(F, F ′) :=
∑

v∈V

max {0, fv − f ′
v} =

1
2

·
∑

v∈V

|fv − f ′
v| . (3)

The distance χ(F, F ′) is equal to the number of movements that are needed
to get from configuration F to configuration F ′ (or vice versa). Based on the
definition of χ, we can express the movement cost of an algorithm A with solution
FA

t =
{

FA(i) : i ∈ [0, t]
}

as MA
t =

∑t
i=1 χ

(

FA(i − 1), FA(i)
)

.

2.1 Objective Functions

As described in Sect. 1, we consider two different objective functions.

Minimizing the Movement Cost. The goal is to keep the number of move-
ments as small as possible. In other words, the cost CostA

t of an algorithm A is
defined as CostA

t := MA
t .

Minimizing the Combined Cost. The goal here is to minimize the overall
cost of an algorithm A, that is, we aim to keep CostA

t := SA
t + MA

t as small as
possible.

2.2 Service Cost Function Properties

The service cost function σ has to satisfy a number of natural properties. First of
all, for every v ∈ V , σv(x, y) has to be monotonically decreasing in the number of
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servers x that are placed at node v and monotonically increasing in the number
of requests y at v.

∀v ∈ V ∀x, y ∈ N0 : σv(x, y) ≥ σv(x + 1, y) (4)
∀v ∈ V ∀x, y ∈ N0 : σv(x, y) ≤ σv(x, y + 1) (5)

Further, the effect of adding additional servers to a node v should become smaller
with the number of servers (convex property in x) and it should not decrease if
the number of requests gets larger. Therefore, for all v ∈ V and all x, y ∈ N0, we
have

σv(x, y) − σv(x + 1, y) ≥ σv(x + 1, y) − σv(x + 2, y) (6)
σv(x, y) − σv(x + 1, y) ≤ σv(x, y + 1) − σv(x + 1, y + 1) (7)

In the following, whenever clear from the context, we omit the superscript A
in the algorithm-dependent quantities defined above.

3 Contributions

The following theorem provides a lower bound for any deterministic online algo-
rithm that solves the problem of minimizing the total number of movements
as described in Sect. 2.1. We remark that this lower bound as well as the lower
bound in Theorem3 even holds for the simple (and natural) scenario, where the
service cost at a node with at least 1 server is 0 and the service cost at a node
with 0 servers is equal to the number of requests at that node.

Theorem 1 (Lower Bound). Assume that we are given parameters α and β
which satisfy (1) and assume that the objective is to minimize the number of
movements. Then, for any online algorithm A, there exist an execution and a
time t > 0 such that the competitive ratio between the number of movements by
A and the number of movements of an optimal offline algorithm is at least Ω(n).
More precisely for all MO

t > 0 and all Υ > 0, there is an execution such that
MA

t ≥ n
2 · MO

t + Υ .

Given the large lower bound of Theorem1, we adapt the objective function
to also include the service cost. The following Theorems 2 and 3 upper and lower
bound the achievable competitive ratio in this case. In Sect. 5.1, we describe a
simple, deterministic online algorithm A with the following properties. For two
given parameters α and β, A guarantees that at all times t ≥ 0, (2) is met.
Algorithm A guarantees (2) while keeping the total movement cost small. More
precisely, we prove the following main theorem.

Theorem 2 (Upper Bound). There is a deterministic algorithm A such that
for all times t ≥ 0, the following statements hold.

– If α = 1 and β = Ω
(

k + k
ε

)

for an abitrary ε > 0,

CostA
t ≤ (1 + ε)CostO

t + O(β + k log k).
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– If α = 1 and β = Ω
(

k·log k
log log k

)

, for every ε ≥ log log k/ log1−δ k and any
constant 0 < δ ≤ 1,

CostA
t ≤ (1 + ε)CostO

t + O (β) .

We also prove an almost matching lower bound. The total cost of both online
and optimal offline algorithms are bounded by functions of the optimal service cost.

Theorem 3 (Lower Bound). Given α ≥ 1 and β satisfying (1), consider
any deterministic online algorithm A and assume that O is an optimal offline
algorithm. Then, when considering the combined objective function, there exist
an execution and a time t > 0 such that the total costs of A and O can be
bounded as follows.

– For α = 1 and β = Ω(k/ε) for any ε > 0, it holds that

CostA
t ≥

(

1 + ε

(

1 − 1 + ε

k

))

CostO
t + Ω(β + k log k).

– For α = 1 and β = Ω
(

k·log k
log log k

)

for every ε ≥ log log k/ log1−δ k and any
constant 0 < δ ≤ 1 we obtain

CostA
t ≥

(

1 + ε

(

1 − 1 + ε

k

))

CostO
t + Ω

(

k · log k

log log k

)

.

Choosing α > 1: The results of the above theorems all hold for α = 1, i.e.,
an algorithm is always forced to move to a configuration which is optimal up to
the additive term β. Even if α is chosen to be larger than 1, as long as we want
to guarantee a reasonably small multiplicative competitive ratio (of order o(k)),
an additive term of order Ω(k) is unavoidable. In fact, in order to reduce the
additive term to O(k), α has to be chosen to be of order kδ for some constant
δ > 0. Note that in this case, the multiplicative competitive ratio grows to at
least α � 1. However, it might still be desirable to choose α > 1. In that case,
it can be shown that the movement cost MA

t of our simple greedy algorithm A
only grows logarithmically with the optimal service cost S∗

t (where the basis of
the logarithm is α). As an application, this for example allows to be (1 + ε)-
competitive for any constant ε > 0 against an objective function of the form
γ · SA

t + MA
t even if γ is chosen of order k−O(1).

4 Minimizing the Number of Movements

In this section we sketch the proof of Theorem 1. For a formal proof, we refer
to [12]. For a given sequence of requests Σ, we first fix A as any deterministic
online algorithm and O as an optimal offline algorithm. We distinguish two cases
and we construct different executions for the two cases. We define iterations as
subsequences of requests such that A needs to move at least once per iteration.
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The number of movements by A is therefore at least the number of iterations of
the execution.

Case k ≤ �n/2�. To start, we place a large number of requests on any k − 1
nodes that initially have servers. We choose this number large enough so that no
algorithm can ever move any of these k − 1 servers. This essentially reduces the
problem to k = 1 and n − k + 1 nodes. To bound the number of movements by
O, we then consider intervals of n − k iterations such that A is forced to move
in each iteration. During each interval, the requests are distributed in such a
way that at the beginning of the i-th iteration of the interval there are at least
n − k − i + 1 nodes such that if O places a server on one of them, then (2)
remains satisfied within the whole interval. Hence, O moves at most once per
each interval.

Case k > �n/2�. In this case there is some resemblance between the constructed
execution and lower bound constructions for the paging problem. For simplicity
assume that there are n = k + 1 nodes (we let requests arrive at only k + 1
nodes). At the beginning of each iteration we locate a sufficiently large number
of requests on the node without any server of A such that (2) is violated. Thus,
while in each iteration, A has to move at least one server to keep (2) satisfied,
O only needs to move a server once in at least k iterations.

5 Minimizing Movements and Service Cost

We will now extend the objective function used in Sect. 4 by also including the
service cost. We will see that this allows us to be able to compete against an
optimal offline algorithm O. In the rest of this section, first we devise a simple and
natural online greedy algorithm. We then sketch the analysis of the algorithm in
Sect. 5.2 and provide an almost tight lower bound in Sect. 5.3. For formal proofs,
we refer to the full version of the paper [12].

5.1 Algorithm Description

The goal of our algorithm is two-fold. On the one hand, we have to guarantee
that the service cost of the algorithm is always within some fixed bounds of the
optimal service cost. On the other hand, we want to achieve this while keeping
the overall movement cost low. Specifically, as we are given α and β in which
(1) holds, we guarantee that at all times (2) remains satisfied. Condition (2) is
maintained in the most straightforward greedy manner. Whenever after a new
request arrives, (2) is not satisfied, the algorithm greedily moves servers until (2)
holds again. Hence, as long as (2) does not hold, the algorithm moves a server
that reduces the total service cost as much as possible. The algorithm stops
moving any server as soon as the validity of (2) is restored.

Whenever the algorithm moves a server, it does a best possible move, i.e.,
a move that achieves the best possible service cost improvement. Thus, the
algorithm always moves a server from a node where removing a server is as
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cheap as possible to a node where adding a server reduces the cost as much as
possible. Therefore, for each movement m, we have

vsrc
m ∈ arg min

v∈V
{σv,τm(fv,m−1 − 1) − σv,τm(fv,m−1)} and (8)

vdst
m ∈ arg max

v∈V
{σv,τm(fv,m−1) − σv,τm(fv,m−1 + 1)} , (9)

where arg minv and arg maxv denote the sets of nodes minimizing and maximiz-
ing the respective terms.

5.2 Analysis Overview

While the algorithm itself is quite simple, its analysis turns out relatively tech-
nical. We thus first describe the key steps of the analysis by discussing a simple
case. We assume that the service cost at any node is equal to 0 if there is at least
one server at the node and the service cost is equal to the number of requests at
the node, otherwise. Further, we assume that we run the algorithm of 5.1 with
parameters α = 1 and β = 0, i.e. after each request arrives, the algorithm moves
to a configuration with optimal service cost. Note that these parameter settings
violate Condition (1) and we will therefore get a weaker bound than the one
promised by Theorem 2.

First, note that in the described simple scenario, the algorithm clearly never
puts more than one server to the same node. Further, whenever the algorithm
moves a server from a node u to a node v, the overall service cost has to strictly
decrease and thus, the number of requests at node v is larger than the number
of requests at node u. Consider some point in time t and let

rmin(t) := min
v∈V :fv,t=1

rv,t

be the minimum number of requests among the nodes v with a server at time t.
Hence, whenever at a time t, the algorithm moves a server from a node u to a
node v, node u has at least rmin(t) requests and consequently, node v has at least
rmin(t) + 1 requests. Further, if at some later time t′ > t, the server at node v
is moved to some other node w, because the algorithm always removes a server
from a node with as few requests as possible, we have rmin(t′) ≥ rmin(t) + 1.
Consequently, if in some time interval [t1, t2], there is some server that is moved
more than once, we know that rmin(t1) < rmin(t2). In our analysis, we partition
time into phases, where the first phase starts at time 0 and where phases are
maximal time intervals in which each server is moved at most once (cf. Defini-
tion 5.1 in [12]).

The above argument implies that after each phase rmin increases by at least
one and therefore at any time t in phase p, we have rmin(t) ≥ p − 1 and at
the end of phase p, we have rmin(t) ≥ p. In [12], the more general form of
this statement appears in Lemma 5.1. There, γp is defined to be the smallest
service cost improvement of any movement in phase p (γp = 1 in the simple
case considered here), and Lemma 5.1 shows that rmin grows by at least γp in
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phase p. Assume that at some time t in phase p, a server is moved from a node u
to a node v. Because node u already had its server at the end of phase p − 1, we
have ru,t = rmin(t) ≥ p−1. Consequently, at the end of phase p, there is at least
one node (the source of the last movement) that has no server and at least p− 1
requests. The corresponding (more technical) statement in the general analysis
appears in Lemma 5.3 in [12].

We will bound the total cost of the online algorithm and an optimal offline
algorithm from above and below, respectively, as a function of the optimal service
cost. Hence, the ratio between these two total costs provides the desired compet-
itive factor. Our algorithm guarantees that at all times, the service cost is within
fixed bounds of the optimal service cost (in the simple case here, the service cost
is always equal to the optimal service cost). Knowing that there are nodes with
many requests and no servers, therefore allows to lower bound the optimal service
cost. In the general case, this is done by Lemmas 5.6 and 5.7 in [12]. In the simple
case, considered here, as at the end of phase p, there are k nodes with at least p
requests (the nodes that have servers) and there is at least one additional node
with at least p − 1 requests, we know that at the end of phase p, the optimal ser-
vice cost is at least p − 1. Consequently, the online algorithm (in the simple case)
pays exactly the optimal service cost (as mentioned before, in the general case,
the service cost is within fixed bounds of the optimal service cost) and at most
(p − 1)k as movement cost. Hence, the total cost paid by online algorithm is at
most a factor k +1 times the optimal service cost since the optimal service cost is
at least p− 1. By choosing α which is slighly larger than 1 and a larger β (β ≥ k),
the algorithm becomes more lazy and one can show that the difference between
the number of movements of A and the optimal service cost becomes significantly
smaller. Also note that by construction, the service cost of A is always at most
αS∗

t + β ≤ αSO
t + β.

When analyzing our algorithm, we mostly ignore to take into account the
movement cost of an optimal offline algorithm. We only exploit the fact that by
the time A decides to move a server for the first time, any other algorithm must
also move at least one server and therefore the optimal offline cost becomes at
least 1.

5.3 Lower Bound

The aim of this section is to prove our lower bound theorem stated in Sect. 3. As
discussed in Sect. 3, the lower bound even holds for a natural special case where
each node v ∈ V can only have either 0 or 1 servers.

Assume that we are given parameters α ≥ 1 and β such that (1) holds and
an algorithm A which guarantees that (2) remains satisfied at all times t. In
the following, let O be any optimal offline algorithm. Given A, we construct an
execution in which A has to perform a large number of movements while the
optimal service cost does not grow too much. Analogously to the analysis of
the upper bound, we divide time into phases such that in each phase, A has
to move Ω(k) servers and the optimal service cost grows as slowly as possible.
For p phases, we define a sequence of integers k/3 ≥ n1 ≥ n2 ≥ . . . np ≥ 1 and
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values Γ1 < Γ2 < · · · < Γp. In the following, let v be a free node if v does not
have a server. Roughly, at the beginning of a phase i, we choose a set Ni of ni

(ideally) free nodes and make sure that all these nodes have Γi requests. Note
that constructing an execution means to determine where to add the request in
each iteration. The value Γi is chosen large enough such that throughout Phase
i a service cost of niΓi is sufficiently large to force an algorithm to move. Hence,
whenever there are ni free nodes with Γi requests, A has to move at least one
server to one of these nodes. For each such movement, we pick another free node
that currently has less than Γi requests and make sure it has Γi requests. We
proceed until there are k nodes with Γi requests at which point the main part of
the phase ends. Except for the nodes in Ni, each of the k nodes with Γi requests
leads to a movement of A and therefore, A has to move at least k − ni = Ω(k)
servers in Phase i. At the end of Phase i, we can guarantee that there are exactly
k nodes with Γi requests, ni nodes with Γi−1 requests, ni−1−ni nodes with Γi−2

requests, etc. Assuming that for all v, σv(x, y) = (1 − x)y, we can then compute
the optimal service cost after Phase p as npΓp−1 +

∑p
i=3(ni−1 − ni)Γi−2. The

service cost paid by A at time t can not be smaller than S∗
t . By contrast, the

optimal offline algorithm moves at most ni−1 − ni + 1 times in each Phase i > 1
(in the first phase it moves just once) and at most np at the end of the last phase
to locate its servers in the optimal configuration. Therefore by the end of Phase
p, O has to pay at most O(n1 + p) as the total movement cost. If we choose
p ≥ k, the total movement cost paid by O is O(p) by end of Phase p, while the
online algorithm has to pay Θ(pk) in total by this time. The service cost of O
equals the optimal service cost at the end of Phase p. By choosing the values ni

appropriately, we obtain the claimed bounds.

6 Future Work

A possible way to extend the work of this paper could be to study an online
version of MFLP [11] (OMFLP). In [4], it is shown that by exploiting the ran-
domized low-stretch hierarchical tree decomposition of [9], it is possible to obtain
a polylogarithmic competitive ratio for the k-server problem. Combined with the
general cost functions studied in the present paper, a similar approach could work
for OMFLP. On each level of the hierarchical decomposition, the cost of each
subtree can potentially be modeled using a cost function similar to what we use
in the present paper. Note that the lower bound of Theorem3 already applies
to OMFLP, even for a uniform underlying metric.
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Abstract. We revisit the exact shortest unique substring (SUS) find-
ing problem, and propose its approximate version where mismatches are
allowed, due to its applications in subfields such as computational biol-
ogy. We design a generic in-place framework that fits to solve both the
exact and approximate k-mismatch SUS finding, using the minimum 2n
memory words plus n bytes space, where n is the input string size. By
using the in-place framework, we can find the exact and approximate k-
mismatch SUS for every string position using a total of O(n) and O(n2)
time, respectively, regardless of the value of k. Our framework does not
involve any compressed or succinct data structures and thus is practical
and easy to implement.

Keywords: String pattern matching · Shortest unique substring ·
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1 Introduction

We consider a string S[1..n], where each character S[i] is drawn from an alpha-
bet Σ = {1, 2, . . . , σ}. We say the character S[i] occupies the string position
i. A substring S[i..j] of S represents S[i]S[i + 1] . . . S[j] if 1 ≤ i ≤ j ≤ n, and
is an empty string if i > j. We call i the start position and j the ending
position of S[i..j]. We say the substring S[i..j] covers the kth position of S,
if i ≤ k ≤ j. String S[i′..j′] is a proper substring of another string S[i..j] if
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i ≤ i′ ≤ j′ ≤ j and j′ − i′ < j − i. The length of a non-empty substring S[i..j],
denoted as |S[i..j]|, is j − i + 1. We define the length of an empty string as zero.

The Hamming distance of two non-empty strings A and B of equal length,
denoted as H(A,B), is defined as the number of string positions where the
characters differ. A substring S[i..j] is k-mismatch unique, for some k ≥ 0, if
there does not exist another substring S[i′..j′], such that i′ �= i, j − i = j′ − i′,
and H(S[i..j], S[i′..j′]) ≤ k. A substring is a k-mismatch repeat if it is not
k-mismatch unique.

Definition 1 (k-mismatch SUS). For a particular string position p in S and
an integer k, 0 ≤ k ≤ n − 1, the k-mismatch shortest unique substring (SUS)
covering position p, denoted as SUSk

p, is a k-mismatch unique substring S[i..j],
such that (1) i ≤ p ≤ j, and (2) there does not exist another k-mismatch unique
substring S[i′..j′], such that i′ ≤ p ≤ j′ and j′ − i′ < j − i.

We call 0-mismatch SUS as exact SUS, and the case k > 0 as approximate
SUS. For any k and p, SUSk

p must exist, because at least S itself can be SUSk
p, if

none of its proper substrings is SUSk
p. On the other hand, there might be multiple

choices for SUSk
p. For example, if S = abcbb, SUS 0

2 can be either S[1, 2] = ab or
S[2, 3] = bc, and SUS 1

2 can be either S[1..3] = abc or S[2..4] = bcb. Note that
in Definition 1, we require k < n, because finding SUSn

p is trivial: SUSn
p ≡ S for

any string position p.

Problem (k-mismatch SUS Finding). Given the string S, the value of k ≥ 0,
and two empty integer arrays A and B, we want to work in the place of S, A,
and B, such that, in the end of computation: (1) S does not change. (2) Each
(A[i], B[i]) pair saves the start and ending positions of the rightmost1 SUSk

i , i.e.,
S

[

A[i]..B[i]
]

= SUSk
i , using a total of O(n) time for k = 0 and O(n2) time for

any k ≥ 1.

1.1 Prior Work and Our Contribution

Exact SUS finding was proposed and studied recently by Pei et al. [7], due to its
application in locating snippets in document search, event analysis, and bioin-
formatics, such as finding the distinctness between closely related organisms [3],
polymerase chain reaction (PCR) primer design in molecular biology, genome
mapability [2], and next-generation short reads sequencing [1]. The algorithm
in [7] can find all exact SUS in O(n2) time using a suffix tree of O(n) space.
Following their proposal, there has been a sequence of improvements [5,8] for
exact SUS finding, reducing the time cost from O(n2) to O(n) and alleviating
the underlying data structure from suffix tree to suffix array of O(n) space. Hu
et al. [4] proposed an RMQ (range minimum query) technique based indexing
structure, which can be constructed in O(n) time and space, such that any future
exact SUS covering any interval of string positions can be answered in O(1) time.
In this work, we make the following contributions:
1 It is our arbitrary decision to resolve the ties by picking the rightmost choice. Our

solution can also be easily modified to find the leftmost choice.



An In-place Framework for Exact and Approximate SUS Queries 757

(1) We revisit the exact SUS finding problem and also propose its approximate
version where mismatches are allowed, which significantly increases the diffi-
culty as well as the usage of SUS finding in subfields such as bioinformatics,
where approximate string matching is unavoidable due to genetic mutation
and errors in biological experiments.

(2) We propose a generic in-place algorithmic framework that fits to solve both
the exact and approximate k-mismatch SUS finding, using 2n words plus
n bytes space. It is worth mentioning that 2n words plus n bytes is the
minimum memory space needed to save those n calculated SUSes: (1) It
needs 2 words to save each SUS by saving its start and ending positions (or
one endpoint and its length) and there are n SUSes. (2) It needs another n
bytes to save the original string S in order to output the actual content of
any SUS of interest from queries. Note that all prior work [4,5,7,8] use O(n)
space but there is big leading constant hidden within the big-oh notation
(see the experimental study in [5]).

(3) After the suffix array is constructed, all the computation in our solution
happens in the place of two integer arrays, using non-trivial techniques. It is
worth noting that our solution does not involve any compressed or succinct
data structures, making our solution practical and easy to implement. Our
preliminary experimental study shows that our solution for exact SUS finding
is even faster than the fastest one among [5,7,8]2, in addition to a lot more
space saving than them, enabling our solution to handle larger data sets.
Due to page limit, we will deliver the details of our experimental study in
the journal version of this paper.

2 Preparation

A prefix of S is a substring S[1..i], 1 ≤ i ≤ n. A proper prefix S[1..i] is a
prefix of S where i < n. A suffix of S is a substring S[i..n], denoted as Si,
1 ≤ i ≤ n. Si is a proper suffix of S, if i > 1.

For two strings A and B, we write A = B (and say A is equal to B), if
|A| = |B| and H(A,B) = 0. We say A is lexicographically smaller than B,
denoted as A < B, if (1) A is a proper prefix of B, or (2) A[1] < B[1], or (3)
there exists an integer k > 1 such that A[i] = B[i] for all 1 ≤ i ≤ k − 1 but
A[k] < B[k].

The suffix array SA[1..n] of S is a permutation of {1, 2, . . . , n}, such that
for any i and j, 1 ≤ i < j ≤ n, we have S[SA[i]..n] < S[SA[j]..n]. That is,
SA[i] is the start position of the ith smallest suffix in the lexicographic order.
The rank array RA[1..n] is the inverse of the suffix array, i.e., RA[i] = j iff
SA[j] = i. The k-mismatch longest common prefix (LCP) between two
strings A and B, k ≥ 0, denoted as LCPk(A,B), is the LCP of A and B within
Hamming distance k. For example, if A = abc and B = acb, then: LCP0(A,B)

2 Note that the work of [4] studies a different problem and its computation is of the
query-answer model, and thus is not comparable with [5,7,8] and ours.
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is A[1] = B[1] = a and |LCP0(A,B)| = 1; LCP1(A,B) is A[1..2] = ab and
B[1, 2] = ac and |LCP1(A,B)| = 2.

Definition 2 (k-mismatch LSUS). For a particular string position p in S
and an integer k, 0 ≤ k ≤ n − 1, the k-mismatch left-bounded shortest unique
substring (LSUS) starting at position p, denoted as LSUSk

p, is a k-mismatch
unique substring S[p..j], such that either p = j or any proper prefix of S[p..j] is
not k-mismatch unique.

We call 0-mismatch LSUS as exact LSUS, and the case k > 0 as approx-
imate LSUS. Observe that for any k, LSUSk

1 = SUSk
1 always exists, because

at least S itself can be LSUSk
1 . However, for any k ≥ 0 and p ≥ 2, LSUSk

p may
not exist. For example, if S = dabcabc, none of LSUS 0

i and LSUS 1
j exists, for

all i ≥ 5, j ≥ 4. It follows that some string positions may not be covered by any
k-mismatch LSUS. For example, for the same string S = dabcabc, positions 6
and 7 are not covered by any exact or 1-mismatch LSUS. On the other hand, if
any LSUSk

p does exist, there must be only one choice for LSUSk
p, because LSUSk

p

has its start position fixed on p and need to be as short as possible. Note that in
Definition 2, we require k < n, because finding LSUSn

p is trivial as LSUSn
1 ≡ S

and LSUSn
p does not exist for all p > 1.

Definition 3 (k-mismatch SLS). For a string position p in S and an integer
k, 0 ≤ k ≤ n−1, we use SLSk

p to denote the shortest k-mismatch LSUS covering
position p.

We call 0-mismatch SLS as exact SLS, and the case k > 0 as approximate
SLS. SLSk

p may not exist, since position p may not be covered by any k-mismatch
LSUS at all. For example, if S = dabcabc, then none of SLS 0

p and SLS 1
p exists,

for all p ≥ 6. On the other hand, if SLSk
p exists, there might be multiple choices

for SLSk
p. For example, if S = abcbac, SLS 0

2 can be either LSUS 0
1 = S[1..2] or

LSUS 0
2 = S[2..3], and SLS 1

3 can be any one of LSUS 1
1 = S[1..3], LSUS 1

2 = S[2..4],
and LSUS 1

3 = S[3..5]. Note that in Definition 3, we require k < n, because finding
SLSn

p is trivial as SLSn
p ≡ S for all p.

Lemma 1. For any k and p: (1) LSUSk
1 always exists. (2) If LSUSk

p exists,
then LSUSk

i exists, for all i ≤ p. (3) If LSUSk
p does not exist, then none of

LSUSk
i exists, for all i ≥ p.

Lemma 2. For any k and p, |LSUSk
p| ≥ |LSUSk

p−1| − 1, if LSUSk
p exists.

Lemma 3. For any k and p, SUSk
p is either SLSk

p or S[i..p], for some i, i +
|LSUSk

i | − 1 < p. That is, SUSk
p is either the shortest k-mismatch LSUS that

covers position p, or a right extension (through position p) of a k-mismatch
LSUS.
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For example, let S = dabcabc, then: (1) SUS 0
3 can be either S[3..5] = LSUS 0

3,
or S[1..3], which is a right extension of LSUS 0

1 = S[1]. (2) SUS 0
5 = S[4..5] =

LSUS 0
4. (3) SUS 0

6 = S[4..6], which is a right extension of LSUS 0
4 = S[4..5]. (4)

SUS 1
4 = S[3..5] = LSUS 1

3. (5) SUS 1
6 = S[3..6], which is a right extension of

LSUS 1
3.

The next lemma further says that if SUSk
p is an extension of an k-mismatch

LSUS, SUSk
p can be quickly obtained from SUSk

p−1.

Lemma 4. For any k and p, if SUSk
p = S[i..p] and i + |LSUSk

i | − 1 < p, i.e.,
SUSk

p is a right extension (through position p) of LSUSk
i , then the following

must be true: (1) p > 2; (2) the rightmost character of SUSk
p−1 is S[p − 1]; (3)

SUSk
p = SUSk

p−1S[p], the substring SUSk
p−1 appended by the character S[p].

3 The High-Level Picture

In this section, we present an overview of our in-place framework for finding both
the exact and approximate SUS. The framework is composed of three stages,
where all computation happens in the place of three arrays, S, A, and B, each of
size n. Arrays A and B are of integers, whereas array S always saves the input
string. The following table summarizes the roles of A and B at different stages
by showing their content at the end of each stage.

Stages A[i] B[i]

1 Used as temporary workspace during
stage 1, but the content is useless for
stages 2 and 3.

Ending position of LSUSk
i , if

LSUSk
i exists; otherwise, NIL.

2 The largest j, such that LSUSk
j is an

SLSk
i , if SLSk

i exists; otherwise, NIL.
Ending position of LSUSk

i , if
LSUSk

i exists; otherwise, NIL.

3 Start position of the rightmost SUSk
i Ending position of the rightmost

SUSk
i

Stage 1 (Sect. 4). We take the array S that saves the input string as input to
compute LSUSk

i for all i, in the place of A and B. At the end of the stage, each
B[i] saves the ending position of LSUSk

i , if LSUSk
i exists. Since each existing

LSUSk
i has its start position fixed at i, at the end of stage 1, each existing

LSUSk
i = S

[

i..B[i]
]

. For those non-existing k-mismatch LSUSes, we assign NIL
to the corresponding B array elements. The time cost of this stage is O(n) for
exact LSUS finding (k = 0), and is O(n2) for approximate LSUS finding, for any
k ≥ 1.

Stage 2 (Sect. 5). Given the array B (i.e., the k-mismatch LSUS array of S)
from stage 1, we compute the rightmost SLSk

i , the rightmost shortest LSUS
covering position i, for all i, in the place of A and B. At the end of stage 2,
each A[i] saves the largest j, such that LSUSk

j is an SLSk
i , i.e., the rightmost

SLSk
i = S

[

A[i]..B[A[i]]
]

, if SLSk
i exists; otherwise, we assign A[i] = NIL. Array
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B does not change during stage 2. The time cost of this stage is O(n), for any
k ≥ 0.

Stage 3 (Sect. 6). Given A and B from stage 2, we compute SUSk
i , for all i,

in the place of A and B. At the end of stage 3, each (A[i], B[i]) pair saves the
start and ending positions of the rightmost SUSk

i , i.e., SUSk
i = S

[

A[i]..B[i]
]

.
The time cost of this stage is O(n), for any k ≥ 0.

The arXiv version of this paper has the pseudocode of the in-place procedures
that we will describe in Sects. 4.1, 4.2, 5, and 6.

4 Finding k-mismatch LSUS

The goal of this section is that, given the input string S and two integer arrays A
and B, we want to work in the place of A and B, such that B[i] saves the ending
position of LSUSk

i for all existing LSUSk
i ; otherwise, B[i] is assigned NIL. We

take different approaches in finding the exact LSUS (k = 0) and approximate
LSUS (k ≥ 1).

4.1 Finding Exact LSUS (k = 0)

Lemma 5 (Lemma 7.1 in [6]). Given a string S of size n, drawn from an
alphabet of size σ, we can construct the suffix array SA of S in O(n) time, using
n + σ words plus n bytes, where the space of n bytes saves S, the space of n
words saves SA, and the extra space of σ words is used as the workspace for the
run of the SA construction algorithm.

Given the input string S, we first use the O(n)-time suffix array construction
algorithm from [6] to create the SA of S, where the array A is used to save the
SA and the array B is used as the workspace. Note that σ ≤ n is always true,
because otherwise we will prune from the alphabet those characters that do not
appear in the string. After SA (saved in A) is constructed, we can easily spend
another O(n) time to create the rank array RA of S (saved in B): RA[SA[i]] ← i
(i.e., B[A[i]] ← i), for all i. Next, we use and work in the place of A (i.e., SA)
and B (i.e., RA) to compute the ending position of each existing LSUS 0

i and
save the result in B[i], using another O(n) time.

Definition 4.

xi =
{∣

∣ LCP0
(

S[i..n], S [SA [RA[i] − 1] ..n]
) ∣

∣, if RA[i] > 1
0, otherwise

yi =
{∣

∣ LCP0
(

S[i..n], S [SA [RA[i] + 1] ..n]
) ∣

∣, if RA[i] < n
0, otherwise

That is, xi (yi, resp.) is the length of the LCP of S[i..n] and its lexicographi-
cally preceding (succeeding, resp.) suffix, if the preceding (succeeding, resp.) suffix
exists.
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Fact 1. For every string position i, 1 ≤ i ≤ n:

LSUS 0
i =

{

S [i..i + max{xi, yi}] , if i + max{xi, yi} ≤ n
not existing, otherwise.

First, observe that in the sequence of xi’s, if xi > 0, then xi+1 ≥ xi − 1 must
be true, because at least S[SA[RA[i] − 1] + 1..n] can be the lexicographically
preceding suffix of S[i+1..n], and they share the leading xi −1 characters. That
means, when we compute xi+1, we can skip over the comparisons of the first
xi − 1 pair of characters between S[i + 1..n] and its lexicographically preceding
suffix. It follows that, given the SA and RA of S and using the above observation,
we can compute the sequence of xi’s in O(n) time. Using the similar observation,
we can compute the sequence of yi’s in O(n) time, provided that S and its SA
and RA are given.

Second, since we can compute the sequences of xi’s and yi’s in parallel
(i.e., compute the sequence of (xi, yi) pairs), we can use Fact 1 to compute the
sequence of LSUS 0

i in O(n) time. Further, since RA[i] is used only for retrieving
the lexicographically preceding and succeeding suffixes of S[i..n] when we com-
pute the pair (xi, yi), we can save each computed LSUS 0

i (indeed, i+max{xi, yi},
the ending position of LSUS 0

i ) in the place of RA[i] (i.e., B[i]). In the case
i + max{xi, yi} > n, meaning LSUS 0

i does not exist,we will assign NIL to RA[j]
(i.e., B[j]) for all j ≥ i (Lemma 1). The overall time cost for computing the
sequence of LSUS 0

i is thus O(n), yielding the following lemma.

Lemma 6. Given the character array S of size n that saves the input string,
and the integer arrays A and B, each of size n, we can work in the place of S,
A, and B, using O(n) time, such that at the end of the computation, S does not
change, B[i] saves the ending of position of LSUS 0

i , if LSUS 0
i exists (otherwise,

B[i] = NIL).

4.2 Finding Approximate LSUS (k ≥ 1)

Definition 5. For a particular string position p in S and an integer k, 0 ≤ k ≤
n − 1, the k-mismatch left-bounded longest repeat (LLR) starting at position
p, denoted as LLRk

p, is a k-mismatch repeat S[p..j], such that either j = n or
S[p..j + 1] is k-mismatch unique.

Fact 2. (1) If |LLRk
p| < n − p + 1, i.e., the ending position of LLRk

p is less
than n, then LSUSk

p = S
[

p..p+ |LLRk
p|

]

, the substring of LLRk
p appended by the

character following LLRk
p. (2) Otherwise, LSUSk

p does not exist.

Our high-level strategy for finding LSUSk
i for all i is as follows. We first find

LLRk
i for all i. Then we use Fact 2 to find each LSUSk

i from LLRk
i : If LLRk

i does
not end on position n, we will extend it for one more character on its right side
and make the extension to be LSUSk

i ; otherwise, LLRk
i does not exist. Next, we

explain how to find LLRk
i , for all i.
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Clearly, |LLRk
i | = max{|LCPk(Si, Sj)|, j �= i}, for all i. The way we calculate

|LLRk
i | for all i is simply to let every pair of two distinct suffixes to be compared

with each other. In order to do so, we work over n − 1 phases, named as P1

through Pn−1. On a particular phase Pδ, we compare suffixes Si and Si−δ for
all i = n, n − 1, . . . , δ + 1. Obviously, over these n − 1 phases, every pair of
distinct suffixes have been compared with each other exactly once. Over these
n − 1 phases, we simply record in B[i], which is initialized to be 0, the length of
the longest k-mismatch LCP that each suffix Si has seen when compared with
any other suffixes. Next, we explain the details of a particular phase Pδ.

On a particular phase Pδ, 1 ≤ δ ≤ n−1, we compare suffixes Si and Si−δ for
all i = n, n− 1, . . . , δ + 1. When we compare Si and Si−δ, we save in A[1..k + 1],
which is initialized to be empty at the beginning of each phase, the leftmost
mismatched k + 1 positions in Si. We will see later how to update A[1..k + 1]
efficiently over the progress of a particular phase and use it to update the B
array.

We treat A[1..k + 1] as a circular array, i.e., i − 1 = k + 1 when i = 1, and
i+1 = 1 when i = k+1. Let size, which is initialized to be 0 at the beginning of
each phase, denote the number of mismatched positions being saved in A[1..k+1]
so far in Pδ. We can describe the work of phase Pδ, inductively, as follows.

1. We compare Sn and Sn−δ by only comparing S[n] and S[n − δ], since Sn =
S[n].
(a) If S[n] �= S[n − δ]: Save n in any position in A[1..k + 1]; size ← 1.
(b) B[n] ← max{B[n], 1}; B[n − δ] ← max{B[n − δ], 1}.

2. Suppose we have finished the comparison between the suffixes Si+1 and
Si+1−δ, for some i, δ+1 ≤ i ≤ n−1. The leftmost k+1 mismatched positions
(if existing) between them have been saved in the circular array A[1..k + 1].
Let A[cursor] be the element that is saving the first mismatched position (if
existing) between the two suffixes.

3. Next, we compare the suffixes Si and Si−δ by only comparing S[i] and S[i−δ],
since Si+1 and Si+1−δ have been compared. Remind that cursor − 1 below
is in its cyclic manner.
(a) If S[i] �= S[i−δ]: cursor ← cursor−1; Save i in A[cursor] and overwrite

the old content in A[cursor] if there is; size ← min{size + 1, k + 1}.
(b) If size < k+1: B[i] ← max{B[i], n− i+1}; B[i−δ] ← max{B[i−δ], n−

i + 1}.
(c) Else: B[i] ← max{B[i], A[cursor − 1] − i}; B[i − δ] ← max{B[i −

δ], A[cursor − 1] − i}. Note that A[cursor − 1] is saving the (k + 1)th
mismatched position between Si and Si−δ.

After the computation of all LLRk
i is finished, using the above n − 1 phases,

each B[i] is saving |LLRk
i |. Next, we can use Fact 2 to convert each LLRk

i to
LSUSk

i by simply checking each B[i]: If i+B[i]−1 < n, i.e., LLRk
i does not end

on position n, then we assigne B[i] = i + B[i], the ending position of LSUSk
i ;

otherwise, we assign B[i] = NIL, meaning LSUSk
i does not exist.
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The computation of all LLRk
i takes n − 1 phases and each phase clearly has

no more than n comparisons, giving a total of O(n2) time cost. The procedure of
converting each LLRk

i to LSUSk
i spends another O(n) time. Altogether, we get

an O(n2)-time in-place procedure for finding approximate LSUS, for any k ≥ 1.

Lemma 7. Given the character array S of size n that saves the input string,
the integer arrays A and B, each of size n, and the value of integer k ≥ 1, we
can work in the place of S, A, and B, using O(n2) time, such that at the end of
the computation, S does not change, B[i] saves the ending of position of LSUSk

i ,
i.e., LSUSk

i = S[i..B[i]], if LSUSk
i exists; otherwise, B[i] = NIL.

5 Finding k-mismatch SLS

Now we are given the array B, where each B[i] saves the ending position of
LSUSk

i if LSUSk
i exists and NIL otherwise. In this section, we want to work in

the place of A and B, such that in the end of computation: A[i] saves j, such
that LSUSk

j is the rightmost SLSk
i , if such j exists; otherwise, A[i] = NIL. That

means, in the end of this section, the rightmost SLSk
i = S

[

A[i]..B[A[i]]
]

, if SLSk
i

exists; otherwise, A[i] = B[i] = NIL.
Recall that some k-mismatch LSUS may not exist and some positions may

not be covered by any k-mismatch LSUS (see the examples after Definition 2).
Further, due to Lemmas 1 and 2, we know such positions that are not covered
by any k-mismatch LSUS must comprise a continuous chunk on the right end of
string S.

Definition 6. Let LSUSk
r , 1 ≤ r ≤ n, be the rightmost existing k-mismatch

LSUS of the input string S. Let z, 1 ≤ z ≤ n, be the rightmost string position
that is covered by any k-mismatch LSUS of the string S.

Again, due to Lemmas 1 and 2, it is trivial to find the values of r and z in
O(n) time: scan array B (i.e. LSUS array) from right to left, and stop when
seeing the first non-NIL B array element, which is exactly B[r], then z = B[r].
If z < n, we can then simply set A[i] = NIL for all i > z. Recall that B[i] = NIL
already for all i > z from stage 1. In the rest of this section, we only need to
work with the two subarrays A[1..z] and B[1..z], making A[i] to be the start
position of the rightmost SLSk

i , for all i ≤ z.
Let B[1..z] and an integer r, 1 ≤ r ≤ z, be the input, where (1) B[1..r] is of

monotonically nondecreasing integers (Lemma 2), with i ≤ B[i], (2) B[r + 1..z]
are all NIL, if r < z, and (3) B[r] = z.

We can use each B[i], i ≤ r, as a compact representation of the interval
Ii = (i, B[i]). Let I = { Ii | i ∈ [1..r] }, and �i = |B[i] − i + 1| be the length of
Ii. Let A[1..z] be an output array such that A[j] = i, where Ii is the rightmost
shortest interval in I that covers j.
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Definition 7. For an interval Ii, we define the effective covering region with
respect to the previous intervals I<i = { Ik | k < i } to be

[

ti, B[i]
]

where

ti = max
{

i, max {B[k] + 1 | Ik is shorter than Ii, k < i }
}

.

We call ti the starting point of the effective covering region of Ii.

The effective covering region of Ii is exactly those regions that would set Ii as
the answer, provided that all the intervals I<i before Ii are present, and all the
intervals I>i = { Ik | k > i } are absent.

We next define t−1
i as a list3, such that j ∈ t−1

i if and only if tj = i. Observe
that since ti ≥ i by definition, any value j in t−1

i must have j ≤ i, and the
effective region of Ij must cover i.

Lemma 8. For i = 1, 2, . . . , z: A[i] = max
⋃i

k=1 t−1
k = max { A[i −

1], max t−1
i }.

Lemma 9. Suppose that all ti, 1 ≤ i ≤ r, can be generated incrementally in
O(n) time. Then, we can obtain all max t−1

i , 1 ≤ i ≤ z, in O(n) time.

Indeed, we may scan ti from right to left, i.e., i = r, r − 1, . . . , 1, and update
max t−1

i as we proceed. Firstly, if ti > i, we set t−1
i = undefined. Else, let j = ti

(whose value is at least i), and we check if t−1
j is defined: If not, simply set

t−1
j = i; otherwise, no update is needed.

The advantage of the ‘right-to-left’ approach is that we can construct t−1
i

in-place, by re-using the memory space of ti. To see why it is so, by the time
we need to update a certain entry j = ti at step i, the information tj has been
used (and will never be used), so that we can safely overwrite the original entry,
storing tj , to store t−1

j instead. This gives the following corollary.

Corollary 1. Suppose that all ti’s are generated, and are stored in a certain
array A[1..z]. Then, we can obtain max t−1

i for all i’s, in-place, by storing the
results in the same array A[1..z]; the time cost is O(n).

Our goal is to make our algorithm in-place. Suppose that we can have in-
place incremental generation of ti. Then, by the above lemma, we may store
max t−1

i temporarily at A[i]; afterwards, by the second equality of Lemma8, we
can compute the correct output A by a simple scan of A from left to right.

Thus, to make the whole process in-place, it remains to show how ti can be
computed in O(n) time, in-place. For this, we define pred[i] to be the largest
j (if it exists) such that j < i and length of Ij is shorter than Ii. It is easy to
check that if pred[i] = j is defined, then ti = max { B[j] + 1, i } (and ti = i
otherwise).4 Moreover, pred[i] for all i’s can be computed incrementally, with
3 In actual run, t−1

i saves the largest number in that list, as we will see more clearly
later.

4 For each j′ < j, if Ij′ covers i, Ij would also cover i; in such a case, B[j]+1 ≥ B[j′]+1.
For each j′ ∈ [pred[i], i − 1], Ij′ is longer than Ii.
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a way analogous to the construction of the failure function in KMP algorithm:
we check pred[i − 1], pred[pred[i − 1]], pred[pred[pred[i − 1]], and so on, until
we obtain j in the process such that Ij is shorter than Ii, and set pred[i] := j.5

If such j does not exist, we set pred[i] = NIL. The running time is bounded by
O(n).

This gives the following O(n)-time in-place algorithm (where B is read-only):

1. Compute pred[i], i = 1, 2, . . . , r, and store this in A[i]. Note that this step
requires the length information of the intervals of Ii, which can be obtained
in O(1) time, on the fly, from B[i] .

2. Scan A[1..r] (i.e., pred) incrementally, and obtain ti from the above discus-
sion. Save the value of ti in A[i]. Note that this step requires the access to
the original B.

3. Scan A[1..r] (i.e., ti) from right to left, and obtain max t−1
i decrementally

(stored in A[i]) by Corollary 1.
4. Scan A[1..z] (i.e., max t−1

i ) incrementally (i = 1, 2, . . . , z), and obtain the
desired A[i] by the second equality in Lemma 8.

Lemma 10. Given the integer array A and B, each of size n, where each B[i]
saves the ending position of LSUSk

i , if LSUSk
i exists and NIL otherwise, we can

work in the place of array A and B, using O(n) time, such that, in the end
of computation, array B does not change, and A[i] saves j, where LSUSk

j is
the rightmost SLSk

i , if such j exists; otherwise, A[i] = NIL. That is, SLSk
i =

S
[

A[i]..B[A[i]]
]

, if SLSk
i exists; otherwise, A[i] = B[i] = NIL.

6 Finding k-mismatch SUS

Now we have array A, where A[i] = j, such that LSUSk
j is the rightmost SLSk

i , if
position i is covered by any k-mismatch LSUS; otherwise, A[i] = NIL. Note that
A[i] = j is recording the start position of the rightmost SLSk

i already, because
LSUSk

j starts on position j. We also have array B, where B[i] = i+ |LSUSk
i |−1,

the ending position of LSUSk
i , if LSUSk

i exists; otherwise, B[i] = NIL.

Step I. We want to transform A and B, such that each (A[i], B[i]) pair saves
the start and ending positions of SLSk

i , if SLSk
i exists; otherwise, (A[i], B[i]) =

(NIL, NIL). Since each A[i] is already recording the start position of SLSk
i already,

as we have explained at the beginning of this section, we only need to make
changes to array B. We first set B[i] = NIL for all i > z (Definition 6). Then, we
scan array B from right to left, starting from position z through 1, and set each
B[i] = B[A[i]], the ending position of the rightmost SLSk

i . Because the leftmost
position that any existing LSUSk

i can cover is position i, we know A[i] ≤ i and
we no longer need B[i] (i.e., the information of LSUSk

i ) after SLS i is computed.
Therefore, it is safe to record SLSk

i by overwriting B[i] by B[A[i]] (i.e., the
ending position of SLSk

i ), in this right-to-left scan.

5 Intuitively, pred defines the shortcuts so that we can skip some intervals in I<i to
compute ti.
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Step II. We use arrays A and B to calculate SUSk
i for each i and save the result

in the place of A and B, i.e., each (A[i], B[i]) pair saves the start and ending
position of SUSk

i . Because of Lemmas 3 and 4, we can use arrays A and B to
compute each SUSk

i inductively, as follows:

1. SUSk
1 = LSUSk

1 = SLSk
1 = S

[

A[1]..B[1]
]

.
2. For i = 2, 3, . . . , n, we compute SUSk

i :
(a) If (A[i], B[i]) = (NIL, NIL), meaning SLSk

i does not exist, we set SUSk
i to

be SUSk
i−1 appended by the character S[i], i.e., SUSk

i = S
[

A[i−1]..B[i−
1] + 1

]

, and save SUSk
i by setting (A[i], B[i]) = (A[i − 1], B[i − 1] + 1);

(b.) Else, if SUSk
i−1 ends at position i − 1 and SUSk

i−1S[i] = S
[

A[i − 1]..
B[i − 1] + 1

]

is shorter than SLSk
i = S

[

A[i]..B[i]
]

, we set (A[i], B[i]) =
(A[i − 1], B[i − 1] + 1);

(c) Else, SUSk
i = SLSk

i and thus we leave A[i] and B[i] unchanged.

Lemma 11. Given arrays A and B:

– A[i] = j, such that LSUSk
j is the rightmost SLSk

i , if SLSk
i exists; otherwise,

A[i] = NIL.
– B[i] = i + |LSUSk

i | − 1, the ending position of LSUSk
i , if LSUSk

i exists; oth-
erwise, B[i] = NIL.

we can work in the place of A and B, using O(n) time, such that, in the end of
computation, each (A[i], B[i]) saves the start and ending positions of SUSk

i , i.e.,
SUSk

i = S
[

A[i]..B[i]
]

, i = 1, 2, . . . , n.

By concatenating the claims in Lemmas 6, 7, 10, and 11, we get the final result.

Theorem 1. Given an array S of size n that saves the input string, two integer
arrays A and B, each of size n, and the value of integer k ≥ 0, we can work in
the place of arrays S, A, and B, using a total of O(n) time for k = 0 and O(n2)
time for any k ≥ 1, such that in the end of computation, S does not change,
each (A[i], B[i]) pair represents the start and ending positions of the rightmost
SUSk

i , i.e., SUSk
i = S

[

A[i]..B[i]
]

.
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Abstract. Strings u, v are said to be Abelian equivalent if u is a per-
mutation of the characters appearing in v. A string w is said to have a
full Abelian period p if w = w1 · · ·wk, where all wi’s are of length p each
and are all Abelian equivalent. This paper studies reverse-engineering
problems on full Abelian periods. Given a positive integer n and a set D
of divisors of n, we show how to compute in O(n) time the lexicograph-
ically smallest string of length n which has all elements of D as its full
Abelian periods and has the minimum number of full Abelian periods
not in D. Moreover, we give an algorithm to enumerate all such strings
in amortized constant time per output after O(n)-time preprocessing.
Also, we show how to enumerate the strings which have all elements of
D as its full Abelian periods in amortized constant time per output after
O(n)-time preprocessing.

1 Introduction

A positive integer p is said to be a period of a string w of length n if w[i] = w[i+p]
for all 1 ≤ i ≤ n − p. Periodicity of strings is one of the most classical topics
in combinatorics on words, and has been extensively studied in the literature,
from both the combinatorics point of view (e.g., see [8,13]) and the algorithmics
point of view (e.g., see [10,12]).

Among a number of extensions and generalizations of periods of strings,
this paper deals with Abelian periodicity of strings. Strings u, v are
said to be Abelian equivalent if u is a permutation of the characters
appearing in v. For instance, aabbc and bacba are Abelian equivalent.
A string w is said to have a full Abelian period p, if w = w1 · · · wk, where k = n

p
and all wi’s are Abelian equivalent. A string w is said to have an Abelian period
p if w = yz, where y has a full Abelian period p, and z is a string shorter than
p s.t. the number of occurrences of each character c in z is no more than that
in the prefix y[1..p] of length p of y. A string w is said to have a weak Abelian
period p if w = xy, where y has an Abelian period p, and x is a string shorter
than p s.t. the number of occurrences of each character in x is no more than that
in the prefix y[1..p] of length p of y. The prefix x of w is called the head w.r.t.
the weak Abelian period p.

c© Springer-Verlag Berlin Heidelberg 2015
K. Elbassioni and K. Makino (Eds.): ISAAC 2015, LNCS 9472, pp. 768–779, 2015.
DOI: 10.1007/978-3-662-48971-0 64
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Fici et al. [6] proposed an O(n log log n)-time algorithm to compute all full
Abelian periods and an O(n2)-time algorithm to compute all Abelian periods
for a given string of length n. Recently, Kociumaka et al. [11] showed an opti-
mal O(n)-time algorithm to compute all full Abelian periods, and an improved
O(n(log log n + log σ))-time algorithm to compute all Abelian periods, where σ
is the alphabet size. Fici et al. [7] presented an O(n2σ)-time algorithm to com-
pute all weak Abelian periods, and later Crochemore et al. [5] gave an improved
O(n2)-time solution to the problem.

This paper studies “reverse-engineering” problems on full Abelian periods.
Namely, given a positive integer n and a set D of divisors of n, the task is to find a
string on alphabet Σ of length n which has all elements of D as its full Abelian peri-
ods. Let S(n,D,Σ) denote the set of possible solutions to the problem. It is trivial
if we do not restrict the number of full Abelian periods the string contains, since
string cn with any character c is a solution to any given set D. On the other hand,
it is not always possible to construct a string such that D is exactly the set of its
full Abelian periods. Hence, we will identify the smallest superset of D (which will
be denoted by QD) that represents the set of inevitable elements to have all ele-
ments of D as full Abelian periods and consider the problem of computing a string
having the smallest superset as the set of full Abelian periods. Let S ′(n,D,Σ)
denote the set of possible solutions to this problem. Firstly, we present an O(n)-
time algorithm to compute the lexicographically smallest string in S ′(n,D,Σ)
(see Problem 1 and Theorem 1). Next, we show how to enumerate S(n,D,Σ) in
amortized constant delay after O(n)-time preprocessing (see Problem 2 and The-
orem 2). Finally, we show how to enumerate S ′(n,D,Σ) in amortized constant
delay after O(n)-time preprocessing (see Problem 3 and Theorem 3).

These results can be obtained by discovering and/or utilizing combinator-
ial properties on full Abelian periods. Particularly, it is non-trivial to achieve
amortized constant-time delay enumerations since we are not even allowed to
output strings naively, which takes Θ(n) time per output. In order to overcome
this difficulty, we show that our search tree, which is well-controllable by mul-
tiset permutations, can represent output strings effectively while designing an
efficient pruning method for S ′(n,D,Σ) enumeration.

Related Work. Reverse-engineering strings from given string data structures
and from regularities on strings is a well-studied class of problems, see [3,9,14,16]
for some of the recent developments.

Blanchet-Sadri et al. [2] described an algorithm which, given two positive
integers p, q, computes a string of length 2lcm(p, q) − 2 or 2lcm(p, q) − 3 having
both p, q as its weak Abelian periods and containing gcd(p, q) + 1 distinct char-
acters, where lcm(p, q) and gcd(p, q) denote the least common multiple and the
greatest common divisor of p, q, respectively. They also extend their algorithm
to compute a string containing don’t-care symbols (or holes). Unfortunately, the
running times of their algorithms are not analyzed in [2]. Our results in this
paper are different from theirs at least in that (1) we deal with full Abelian
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periods, (2) our input D can contain more than two positive integers, and (3)
we give an enumeration algorithm to output all solutions.

2 Preliminaries

Let Σ be an ordered alphabet of size σ, and ci be the ith lexicographically
smallest character in Σ for each 1 ≤ i ≤ σ. We assume that for each ci ∈ Σ,
its rank i in Σ is already known and can be computed in constant time. An
element of Σ∗ is called a string. The length of a string w is denoted by |w|. The
empty string ε is the string of length 0, namely, |ε| = 0. For a string w = xyz,
strings x, y, and z are called a prefix, substring, and suffix of w, respectively.
The ith character of a string w of length n is denoted by w[i] for 1 ≤ i ≤ n. For
1 ≤ i ≤ j ≤ n, let w[i..j] = w[i] · · · w[j], i.e., w[i..j] is the substring of w starting
at position i and ending at position j in w.

Two strings u, v are said to be Abelian equivalent iff u is a permutation of
v, which we denote by u � v. Note that � is an equivalence relation. A Parikh
vector [15] of a string u ∈ Σ∗, denoted Pu, is an array of length σ such that for
any 1 ≤ i ≤ σ, Pu[i] stores the number of occurrences of character ci in u. We
define Pu = Pv iff Pu[i] = Pv[i] for all 1 ≤ i ≤ σ. Clearly, two strings u � v
are Abelian equivalent iff Pu = Pv. For any two Parikh vectors P and Q, let ⊕
and � be the operators such that P ⊕ Q = 〈P[1] + Q[1], . . . ,P[σ] + Q[σ]〉 and
P � Q = 〈P[1] − Q[1], . . . ,P[σ] − Q[σ]〉, respectively. For any Parikh vector P
and rational r, let rP = 〈rP[i], . . . , rP[σ]〉.

Let w be any non-empty string of length n. A divisor p of n is said to be a
full Abelian period of w if the substrings w[(k − 1)p + 1..kp] for all 1 ≤ k ≤ n/p
are Abelian equivalent. Let FAP(w) denote the set of full Abelian periods of
string w. For instance, FAP(abcabcacbbaccacbba) = {6, 9, 18}.

For any positive integer n, let Div(n) denote the set of divisors of n. We will
use the following result to analyze the efficiency of our algorithms.

Lemma 1 (E.g. see Theorem 13.12 of [1]). Let δ > 0 be any constant.
Then, there exists an integer nδ such that |Div(n)| = n(1+δ) ln 2/ ln lnn for any
n ≥ nδ, where ln x denotes the natural logarithm of x.

For any set S of positive integers, let gcd(S) denote the greatest common
divisors of all elements in S. Let Nn = {1, . . . , n} denote the set of positive
integers up to n. Kociumaka et al. [11] showed that Nn can be preprocessed
in O(n) time so that later, given two integers x, y ∈ Nn, gcd({x, y}) can be
answered in O(1) time. The next corollary is then immediate.

Corollary 1. Nn can be preprocessed in O(n) time so that later, given a subset
S ⊆ Nn, gcd(S) can be answered in O(|S|) time.

We consider reverse-engineering problems on full Abelian periods. A simplest
kind of such problems would be: Given a subset D of divisors of a positive integer
n, compute a string of length n which has every element of D as its full Abelian
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period. However, this problem is uninteresting, since string cn for any character
c ∈ Σ is a solution to the problem (note that D ⊆ FAP(cn) = Div(n) always
holds). To make it more interesting and meaningful, we restrict the number of
elements of FAP(w) that do not belong to a given D, and consider the following
problem.

Problem 1. Given a positive integer n and D ⊆ Div(n), compute the lexico-
graphically smallest string w of length n s.t. D ⊆ FAP(w) and |FAP(w)−D| is
smallest possible.

We also deal with the two following enumerating problems:

Problem 2. Given a positive integer n, D ⊆ Div(n), and an ordered alphabet Σ,
compute the set S(n,D,Σ) of all strings w of length n over Σ s.t. D ⊆ FAP(w).

Problem 3. Given a positive integer n, D ⊆ Div(n), and an ordered alphabet Σ,
compute the set S ′(n,D,Σ) of all strings w of length n over Σ s.t. D ⊆ FAP(w)
and |FAP(w) − D| is smallest possible.

3 Algorithms

In this section, we present our algorithms to solve Problems 1–3.

3.1 New Properties on Full Abelian Periods

We begin with some properties of full Abelian periods of strings, which are useful
to solve the problems.

The next lemma shows a necessary-and-sufficient condition for p ∈ Div(n)
to be a full Abelian period of a string of length n.

Lemma 2. Let n be a positive integer and let p ∈ Div(n). For any string w of
length n, p ∈ FAP(w) iff Pw[1..pi] = pi

n Pw for any 1 ≤ i ≤ n
p .

Proof. (⇒) If p ∈ FAP(w), then Pw[1..p] = Pw[p+1..2p] = · · · = Pw[n−p+1..n].
Hence, Pw[1..pi] = pi

n Pw for any 1 ≤ i ≤ n
p .

(⇐) If Pw[1..pi] = pi
n Pw for any 1 ≤ i ≤ n

p , then Pw[p(i−1)+1..pi] = pi
n Pw �

p(i−1)
n Pw = p

nPw. Namely, Pw[1..p] = Pw[p+1..2p] = · · · = Pw[n−p+1..n] = p
nPw,

and hence, p is a full Abelian period of w. �

Lemma 2 motivates us to consider the positions x where Pw[1..x] = x
nPw.

Definition 1. Let n be a positive integer and let D ⊆ Div(n) be a subset of
divisors of n. Let SD = {kp | p ∈ D, 1 ≤ k ≤ n

p } and m = |SD|. The multiples
factorization of interval [1, n] w.r.t. D, denoted MFD, is a sequence g1, . . . , gm

of non-empty intervals such that
⋃m

i=1 gi = [1, n] and for each 1 ≤ i ≤ m,
gi = [si−1 + 1, si] where s0 = 0 and si is the ith smallest element of SD.
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For instance, if n = 18 and D = {6, 9}, then SD = {6, 9, 12, 18} and hence
MFD = [1, 6], [7, 9], [10, 12], [13, 18].

The strings in S(n,D,Σ) can be characterized by SD or MFD as follows:

Corollary 2. Let n be a positive integer and let D ⊆ Div(n).

– For any string w, w ∈ S(n,D,Σ) iff Pw[1..x] = x
nPw for any x ∈ SD.

Pw[1..x] = x
nPw.

– For any string w, w ∈ S(n,D,Σ) iff Pw[si−1+1..si] = |gi|
n Pw for any gi =

[si−1 + 1, si] ∈ MFD.

For any positive integer n and D ⊆ Div(n), let QD = {�p ∈ Div(n) | p ∈
D, 1 ≤ � ≤ n

p }, i.e., QD is the set of multiples of elements of D which divide n.
It is easy to see from Lemma 2 that if p is a full Abelian period of string w

of length n then �p ∈ Div(n) with 1 ≤ � ≤ n
p is also a full Abelian period of w.

Then, we get the following lemma:

Lemma 3. For any string w of length n and D ⊆ FAP(w), QD ⊆ FAP(w).

By Lemma 3, if {w ∈ Σn | QD = FAP(w)} is not empty, {w ∈ Σn | QD =
FAP(w)} is the solution to Problem 3. In Sect. 3.2, we will show that the lexico-
graphically smallest string in {w ∈ Σn | QD = FAP(w)} can be achieved by a
binary string, implying that {w ∈ Σn | QD = FAP(w)} is not empty if |Σ| ≥ 2.
Since there is no point in considering reverse-engineering problems on a unary
alphabet, we assume |Σ| ≥ 2.

Let us now consider the relationship between the number of different char-
acters in strings that are solutions to the problems, and gcd(D). Ilie and
Constantinescu [4] showed that if a string w of length n has weak Abelian peri-
ods p, q with gcd(p, q) = 1 and satisfies n ≥ 2pq−1, then w is a unary string (see
Sect. 1 for the definition of weak Abelian periods). Assume a string w has weak
Abelian periods p, q such that gcd(p, q) ≥ 2 and ||xp| − |xq|| = y gcd(p, q) for
some non-negative integer y, where xp, xq denote the heads of the weak Abelian
periods p, q, respectively. Blanchet-Sadri et al. [2] showed that if the above string
w satisfies n ≥ 2lcm(p, q)−1, then w contains at most gcd(p, q) different charac-
ters, where lcm(p, q) denotes the least common multiple of p, q. Since full Abelian
periods are special cases of weak Abelian periods, these results can be applied
to our problems when n is sufficiently long. However, in our case n can be as
small as lcm(D), where lcm(D) is the least common multiple of all elements of
D. Hence their results cannot be applied directly to our problems for a short
string length n. In what follows, we give a lemma which is specialized for full
Abelian periods and holds for any n divisible by lcm(D).

Lemma 4. For any positive integer n, let D ⊆ Div(n). Then, any string w of
length n satisfying D ⊆ FAP(w) can contain at most gcd(D) different characters.

Proof. Let Σw be the set of characters occurring in w and let σw = |Σw|. Let
d = gcd(D) and P′ = d

nPw.
First, we show that every element of P′ is a non-negative integer. Assume

on the contrary that, for some 1 ≤ j ≤ σ, P′[j] = x
y where both x ≥ 1 and
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y ≥ 2 are integers, and the fraction x
y is irreducible. By assumption, for any

p ∈ D, p ∈ FAP(w). It follows from Lemma 2 that 1
pPw[1..p][j] = 1

nPw[j], which
yields d

pPw[1..p][j] = d
nPw[j] = P′[j] = x

y , and thus Pw[1..p][j] = px
dy . Since both

Pw[1..p][j] and p
d are integers and since y is relatively prime to x, y must be a

divisor of p
d . This implies that dy is a divisor of p. Since the above argument

holds for any p ∈ D and since y ≥ 2, we have gcd(D) ≥ dy > d, a contradiction.
Hence every element of P′ is a non-negative integer.

Since the sum of entries of P′ is d and each entry is a non-negative integer,
there are at most d entries in P′ that are positive integers. As P′ = d

nPw, w can
contain at most d distinct characters. �

The following corollary is immediate from Lemma 4.

Corollary 3. Let n be a positive integer and D ⊆ Div(n). If gcd(D) = 1, then
{cn

i | 1 ≤ i ≤ σ} is the solution to Problems 2 and 3.

Due to Corollaries 1 and 3, we can solve the problems in O(n) time in the case
where gcd(D) = 1. In what follows, we consider the case where gcd(D) ≥ 2.

3.2 Inferring the Lexicographically Smallest String

In this subsection, we show how, given D ⊆ Div(n), to compute the lexicograph-
ically smallest string w with FAP(w) = QD, which is the solution to Problem 1.

Lemma 5. Assume d = gcd(D) ≥ 2. Let w be the string of length n such
that w = f1 · · · fm, where f0 = ε, m = |MFD|, and for each 1 ≤ i ≤ m,
fi = c

|fi|−|fi|/d
1 c

|fi|/d
2 and [|f1 · · · fi−1| + 1, |f1 · · · fi|] is the ith subinterval of

MFD. Then, this string w is the solution to Problem1.

Proof. Firstly, we show that w satisfies FAP(w) = QD. Let B = 〈d −
1, 1, 0, . . . , 0〉, then Pw = n

dB. Notice that Pw[1..x] = x
nPw = x

dB iff x ∈ SD.
Then by Lemma 2, FAP(w) = QD.

Next, we show that w is the lexicographically smallest string of length n such
that FAP(w) = QD. In so doing, consider any string u of length n such that
Pu = QD. By the definition of MFD, for any gi ∈ MFD there exist pi, qi ∈ D
such that gi = [�pi +1..kqi] for some � ≥ 0 and k ≥ 1. Let hi = u[gi−1 +1..gi] for
any 1 ≤ i ≤ m. If every element of D belongs to FAP(u), then using Corollary 2
we get Phi

= |hi|
n Pu, and hence 1

|hi|Phi
= 1

nPu for any 1 ≤ i ≤ m. Thus, if
1

|hi|Phi
�= 1

nPu for some 1 ≤ i ≤ m, then some element of D does not belong to
FAP(u). Now, let us consider to edit the string w = f1 · · · fm to another string w′

without changing the set of full Abelian periods, namely, FAP(w′) = FAP(w).
By the above arguments, we cannot edit each factor fi of w so that 1

|fi|Pfi
�=

1
nPw, and hence the only allowed edit operations on w is swapping characters

inside each fi. However, since each fi = c
|fi|− |fi|

d
1 c

|fi|
d

2 is the lexicographically
smallest string satisfying 1

|fi|Pfi
= 1

nPw, swapping characters inside fi only



774 M. Nishida et al.

increases the lexicographical rank of the string. Hence, w = f1 · · · fm is the
lexicographically smallest string such that FAP(w) = QD. �

In order to compute the string w of Lemma 5, we use the following lemma:

Lemma 6. For any positive integer n and D ⊆ Div(n), QD and MFD can be
computed in O(n) time and space.

Proof. We compute QD as follows: For every 1 ≤ x ≤ n with x ∈ Div(n), scan D
and check if there is an element in D that divides x. It takes O(n+|D||Div(n)|) =
O(n + |Div(n)|2) = O(n + no(1)) = O(n) time thanks to Lemma 1.

To compute MFD in O(n) time, we use the following fact: An integer x is
a multiple of d ∈ D iff gcd(x, n) is a multiple of d ∈ D. That is, x ∈ MFD iff
gcd(x, n) ∈ QD. Hence, given QD, we can check if x ∈ MFD or not in constant
time after O(n)-time preprocessing for gcd queries [11]. �

The next theorem is immediate from Lemmas 5 and 6.

Theorem 1. Problem 1 can be solved in O(n) time.

3.3 Enumerating S(n, D, Σ)

In this subsection, we show how to solve Problem2. Assume d = gcd(D) ≥ 2,
since otherwise, Corollary 3 gives an optimal solution. Furthermore, it suffices to
consider an alphabet Σ of size σ ≤ d due to Lemma 4.

We consider the set Bd = {Pu | u ∈ Σd} of Parikh vectors for strings on
Σ of length d. Our algorithm enumerates, for every Parikh vector B ∈ Bd, the
solutions w in S(n,D,Σ) with d

nPw = B. Since d
nPw ∈ Bd holds for any solution

w, all the solutions can be output without omission by this approach.
One of the components of our algorithm is to enumerate the permutations

of a given multiset. We denote by E(P) an enumerator of the permutations of
a multiset represented by a Parikh vector P. Although there are several sophis-
ticated algorithms to enumerate multiset permutations (e.g. see [17,18]), we
employ a simple backtracking algorithm: E(P) chooses a character c in P and
invokes E(P′) recursively, where P′ is the Parikh vector obtained by decreasing
the entry for c by one in P. By using a linked list to represent the non-zero
values in P, each backtracking can be done in O(1) time. In addition, we allow
E(P) to dump all characters at once if P contains no more than one distinct
characters, i.e., for any character c and any integer k ≥ 1, E(Pck) discards ck

in constant time. By doing so, the multiset permutations can be enumerated in
constant time per output.

One application of E is the enumeration of Bd. Observe that there is a one-
to-one correspondence between a binary string x of length d + σ − 1 containing
d 0’s and σ − 1 1’s and a Parikh vector P for a string of length d: We can define
P such that, for any 1 ≤ i ≤ σ, P[i] is the number of 0’s between the ith 1 and
the (i + 1)th 1 in 1x1. Hence, E(P0d1σ−1) can enumerate Bd in O(σ + d) time
per output.
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When B is fixed, we compute w with d
nPw = B in the common backtracking

approach, i.e., we traverse strings by determining characters from left to right.
In the end, the output strings are represented by the search tree.

Let MFD = g1, . . . , gm. We consider a backtracking program P(n,D,B)
that is composed of a series of m multiset permutation enumerators
E( |g1|

d B), . . . , E( |gm|
d B). For any position k ∈ gi = [si−1 + 1, si], w[k] is com-

puted by the ith enumerator, i.e., w[k] is the (k − si−1)th character of outputs
of the ith enumerator. Note that the output of P(n,D,B) is the strings w such
that Pw[si−1+1..si] = |gi|

d B = |gi|
n Pw for any gi = [si−1 + 1, si] ∈ MFD. Hence

the next lemma is immediate from Corollary 2.

Lemma 7. The output of P(n,D,B) is {w ∈ S(n,D,Σ) | d
nPw = B}.

Theorem 2. Problem 2 can be solved in O(n + |S(n,D,Σ)|) time and O(n)
working space.

Proof. Firstly, we compute QD in O(n) time and space using Lemma 6. By
Lemma 7, P(n,D,B) enumerates all solutions with d

nPw = B. Then, S(n,D,Σ)
can be enumerated by running P(n,D,B) for every B ∈ Bd. If B contains only
a single character c, we just output cn. If B contains more than two distinct
characters, we take the search tree of P(n,D,B) as a representation of the
output strings. While most internal nodes of the search tree are branching, some
exceptions appear when a single kind of character remains in an enumerator.
However, this enumerator discards all these same characters at once, and thus,
its single child becomes either a leaf or a branching node. Therefore the size of
the search tree is bounded by a constant factor of the number of leaves (output
strings). Since each backtracking can be done in O(1) time, S(n,D,Σ) can be
enumerated in O(1) time per output. The working space is O(n) since only the
information on the current node and its ancestors is needed for the traversal. �

3.4 Enumerating S′(n, D, Σ)

In this subsection, we modify the algorithm of Sect. 3.3 to solve Problem 3.
Recall that we assume d = gcd(D) ≥ 2. Since cn is not a solution, we only

consider B containing more than two distinct characters.
The task is to prune unnecessary search space leading to strings with QD ⊂

FAP(w). Namely, we must prevent any element in Div(n) − QD from being a
full Abelian period of the enumerated strings. The next observation claims that,
in so doing, we do not have to care about all the elements in Div(n) − QD.

Observation 1. Let w be a string of length n. For any p, p′ ∈ Div(n) such that
p is divisible by p′, p′ is not a full Abelian period of w if p is not a full Abelian
period of w.

Let ED = {p ∈ Div(n)−QD | no p′ ∈ Div(n)−QD exists of which p is a proper
divisor}. In what follows, we focus on how to prevent any element in ED from
being a full Abelian period.
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It follows from Lemmas 2 and 7 that for any output string w of P(n,D,B)
and p ∈ Div(n), p ∈ FAP(w) iff Pw[1..hp] = hp

d B = hp
n Pw for any 1 ≤ h < n/p.

The point is that we can notice whether p ∈ FAP(w) or not when w[1..n − p] is
determined. Note that for any output string w of P(n,D,B) and any position
j ∈ SD, Pw[1..j] = j

dB holds (see Definition 1 for the definition of SD). For any
p ∈ ED, let Cp = {kp | 1 ≤ k < n

p } − SD. By the definition of SD, p and n − p
are always in Cp. Then, our pruning method is based on the next corollary:

Corollary 4. For any output string w of P(n,D,B) and p ∈ ED, p ∈ FAP(w)
iff Pw[1..j] = j

dB for any j ∈ Cp.

Based on Corollary 4, we can prune the traversal at w[1..n − p] when p ∈
ED satisfies the right-hand condition of Corollary 4. However, a naive checking
procedure would take O(n) time whenever we come to a string of length n − p
for some p ∈ ED. Our time bound is achieved by showing that

– a data structure can be maintained during the traversal so that we can check
the condition in constant time, and

– the size of the pruned search tree is bounded by a constant factor of the
number of outputs.

A Data Structure to Check the Condition in Constant Time. First, we
show the following lemma:

Lemma 8. Let n be a positive integer and let D ⊆ Div(n). For any p ∈ ED,
Cp = {j | gcd(j, n) = p}.

Proof. By definition, any positive integer j is in Cp iff j is divisible by p, but not
divisible by some q ∈ QD. We show that the right-hand condition is equivalent
to gcd(j, n) = p.

If gcd(j, n) = p, it is clear that j is divisible by p. It also tells that j is not
divisible by some q ∈ QD, since otherwise, there must be some q ∈ QD that
divides p, which contradicts that p ∈ ED.

For the opposite direction, assume on the contrary that gcd(j, n) �= p, i.e., p
is a proper divisor of gcd(j, n) as x is divisible by p. Since j is not divisible by
some q ∈ QD, neither is gcd(j, n). However, this implies that gcd(x, n) ∈ ED,
which contradicts that p ∈ ED. �

Lemma 8 implies that each position j corresponds to at most one element p
in ED with gcd(j, n) = p. Then, in the preprocessing phase, we do the following:

Lemma 9. For any positive integer n and D ⊆ Div(n), we can compute ED

and for every j ∈ ED with j �= minCp its predecessor max{j′ | j > j′ ∈ Cp} in
O(n) time and space.

While traversing strings, we maintain a bit vector V of length n dynamically.
When we come to a string w[1..i], V [j] = 1 iff j ≤ i, there is p ∈ ED with j ∈ Cp,
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and Pw[1..j′] = j′

d B for any j′ ∈ Cp with j′ ≤ j. Now consider P(n,D,B) extends
w[1..i] to w[1..i]c. Provided that we know if Pw[1..i]c = i+1

d B or not, it is easy
to update the bit vector in constant time: We only need to update V [i + 1] to
be 1 iff Pw[1..i]c = i+1

d B, there is p ∈ ED with i + 1 ∈ Cp, and V [j′] = 1, where
j′ is a predecessor of i + 1 in Cp (the last condition is ignored if i + 1 does not
have a predecessor).

Using V we can check the right-hand condition of Corollary 4 in constant
time: The condition holds iff V [n − p] becomes 1 for some p ∈ ED.

We have two issues left: How to update V when P(n,D,B) extends w[1..i]
to w[1..i]ck with k > 1; how to check if Pw[1..i]c = i+1

d B or not in constant time.
Regarding the former issue, note that the situation occurs only when

|w[1..i]ck| ∈ SD, and thus, Pw[1..i]ck = i+k
d B. Since B contains at least two

distinct characters, Pw[1..i]ck′ = i+k
d B � Pck−k′ �= i+k′

d B for any k′ < k. Then,
actually we do nothing on V in this case, i.e., leave V [i + 1..i + k] as 0’s.

Regarding the latter issue: When we come to a string w[1..i], we maintain the
maximum value in {Pw[1..i][h]/B[h] | ch is a character in B} and the number of
distinct characters achieving this value. We can notice that Pw[1..i] = i

dB when
all characters in B achieve the maximum value. It is easy to maintain these
values during the traversal as the values may only increase. We use O(n) space
to store the values for all ancestors.

The Size of the Pruned Search Tree. We estimate the size of the search tree
of P ′(n,D,B), which is an augmented version of P(n,D,B) with the pruning
method based on Corollary 4. The nodes at which we pruned the traversal are
said to be bad, and the other nodes are said to be good. We identify a node by
its corresponding string. A good leaf corresponds to an output string.

The following two lemmas give properties on good/bad nodes.

Lemma 10. Let u be a good node with |u| < n. At most one child of u is bad.

Lemma 11. Let u be a good node with |u| < n. At least one child of u is good.

Lemma 11 implies that a good node contains at least one output in its subtree.
Further, we can bound the size of the pruned search tree as follows:

Lemma 12. The size of the search tree of P ′(n,D,B) is bounded by a constant
factor of the number of good leaves.

Proof. We consider the tree obtained by deleting bad nodes from the search tree
and show that three non-branching nodes in the tree cannot be in a row. For any
non-branching node u, one of the following conditions holds for some character
c; (1) its child is uck with k ≥ 1 and |uck| = SD, (2) there is a bad node uc (in
the original search tree). Assume that the child of u is not a leaf.

– Case (1): The next character will be generated by a fresh enumerator having
at least two distinct characters. Since Puck = |uck|

d B, Puckc′ �= |uckc′|
d B for

any character c′, and hence, uck is a branching node.
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– Case (2): Since Puc = |uc|
d B, Puc′c′′ �= |uc′c′′|

d B for any characters c′ and c′′.
Hence, the child of u cannot be a non-branching node of Case (2).

By the above argument, a path of non-branching nodes can be of length two,
which is composed of nodes of Case (2) followed by Case (1), but cannot be
longer. Therefore, the number of internal nodes is bounded by a constant factor
of the number of good leaves. By Lemma 10, the number of bad nodes is at most
the number of internal nodes, and hence, the statement holds. �

Complexities. Putting all together, we get the following result:

Theorem 3. Problem 3 can be solved in O(n + |S ′(n,D,Σ)|) time and O(n)
working space.

Proof. We use Lemma 9 to preprocess the input in O(n) time so that each back-
tracking can be conducted in O(1) time. We enumerate S ′(n,D,Σ) by running
P ′(n,D,B) for every B ∈ Bd (excluding B consisting of a single kind of char-
acters). By Lemma 12, the size of the search tree is bounded by the number
of output strings. By taking the search trees as a representation of the output
strings, we achieve the time complexity. We only need O(n) working space. �
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Abstract. We explore a method of designing algorithms using two types
of DNA strands, namely rule strands (rules) and input strands. Rules
are fixed in advance, and their task is to bind with the input strands in
order to produce an output. We present algorithms for divisibility and
primality testing as well as for square root computation. We measure the
complexity of our algorithms in terms of the necessary rule strands. Our
three algorithms utilize a super-constant amount of complex rules.

Can one solve interesting problems using only few—or at least
simple—rule strands? Our main result proves that restricting oneself
to a constant number of rule strands is equivalent to deciding regular
languages. More precisely, we show that an algorithm (possibly using
infinitely many rule strands of arbitrary length) can merely decide regu-
lar languages if the structure of the rules themselves is simple, i.e., if the
rule strands constitute a regular language.

1 Introduction

DNA is sometimes considered as an alternative to orthodox silicon-based tech-
nologies for computing. But how powerful can a DNA-based computer be? In
this paper, we analyze the computational expressiveness of toehold DNA com-
puting, c.f. [15,20]. In the toehold method, a DNA computation takes place in
a soup, i.e., a container filled with solution, in which DNA strands are floating
around and binding with each other. Designing a DNA algorithm is equivalent to
designing a set of DNA strands (the rule strands) such that, when strands rep-
resenting an input (input strands) are added, a desired output, e.g., an indicator
for yes or no, is produced. An “execution” of a DNA algorithm corresponds
to multiple steps of strand binding, where initially only rule and input strands
bind, incrementally forming larger and larger molecules that become available
for binding. To ensure that bindings occur in the desired manner, special care
must be taken when designing the DNA strands. The details are explained in
Sect. 2, where we also define how DNA algorithms formally operate.

Using DNA programming techniques described in Sect. 3, DNA algorithms
for square root computing and primality testing can be implemented. Our algo-
rithms (presented in the full version) use a super-constant amount of rules.

All algorithms and proofs are presented in the full version of this paper, available at
http://disco.ethz.ch/publications/ISAAC2015-dna.pdf.
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Moreover, the rules are rather complex in the sense that the description of each
strand relies on the ability to count, and on the knowledge of an upper bound
for the input. It is therefore natural to ask whether this complexity is necessary.
Our main contribution is to answer this question affirmatively. Specifically, in
Sect. 4 we show that if the rule strands describing some algorithm A form a
regular language (i.e., are not complex), then A decides some regular language.
We further establish that a constant number of rules is sufficient to express any
DNA algorithm deciding a regular language.

Related Work. Utilizing DNA for the purpose of computation was first
explored by Adleman [2], who solved a seven-city instance of the Hamiltonian
path problem, and Lipton [10], who suggested a method to solve the Satisfi-
ability problem. After these first algorithmic usages of DNA, the idea to use
the computational capacity to control devices on a molecular level emerged (see,
e.g., [5]). These early techniques rely on enzymes to perform the desired task.

Our studies are motivated by the rise of the toehold exchange method [15],
which is a way to perform DNA computations without relying on enzymes. The
benefit of this method is that synthesizing the DNA strands needed for it (see,
e.g., [19], in particular the supplementary material) is a simpler process than
producing the building blocks for enzyme-based DNA computations. Strand dis-
placement using toehold exchange is described thoroughly in [20] and simulated
in [9]. The toehold technique enables the design of DNA circuits using only
DNA strands, thus disposing of the necessity of other molecules, like enzymes.
An essential building block in toehold-based computation is the seesaw gate [14],
which allows the design of arbitrary DNA circuits. The seesaw gate was used to,
e.g., compute approximate majority [6] with a protocol analyzed in [3]. Following
this line of work, we utilize toeholds to initiate strand binding.

It is well understood that DNA molecules can form complex structures (see,
e.g., [12,16] for an overview). For instance, Winfree [18] investigated how DNA
strands can bind to form linear duplex strands, or duplex “tree” strands using
junctions, which connect more than one strand in one point. He found that the
linear strands correspond to a transition sequence in a finite automaton, whereas
the trees correspond to a derivation tree of a context-free grammar. Note that
these two structures do not return an output in the classical sense—the only
“output” is a DNA molecule in which every base is bound. In contrast to that,
in our work, we add input to the strand binding process, and are interested in
an output, e.g., in the form of a yes or no answer.

The techniques used in Adleman’s construction inspired the study of so-called
sticker systems [7], which are a generalized version of binding processes where the
binding relation is not necessarily symmetric. Other studied language operations
that are motivated by DNA interactions encompass the superposition [4], the
PA-matching [8], and the hairpin [11,13] operator. This line of work examines
the effect of these operations on a language’s classification within the Chomsky
hierarchy. In our studies, we also utilize methods from formal language theory in
order to describe the strand binding process, which ultimately allows us to derive
a lower bound on the complexity of DNA algorithms for non-regular languages.
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2 Model

DNA Basics. DNA strands consist of nucleotides (or bases), linked together in a
specific order. There are four types of nucleotides: Adenine, Cytosine, Guanine
and Thymine (or simply A, C, G, and T ). At an atomic level, DNA strands
have two types of extremities: a so-called 5’ end on one side, and a 3’ end on
the other side. The two extremities assign a direction to a DNA strand, and
throughout this paper we orient nucleotide sequences of DNA strands from the
5’ end towards the 3’ end. When displayed, an arrow indicates the direction from
the 5’ end to the 3’ end, as in Fig. 1a.

An A can bind (via hydrogen bonds) with a T on a different strand, and sim-
ilarly a G can bind with a C. This is the process that gives DNA its stability, and
its helicoidal structure. Pairs of nucleotides which are able to bind in this manner
are called Watson-Crick-complementary (or simply WK-complementary). That
is, A and T are WK-complementary, and G and C are WK-complementary.
Sequences of nucleotides can bind as well, given that those sequences have oppo-
site directions and are complementary. For instance, the strands ATCG and
CGAT from Fig. 1a can bind completely, whereas the two strands ATCG and
TAGC (reversed CGAT) cannot.

Notation. To ease readability, sequences of nucleotides are commonly grouped
into so-called domains. A domain is represented by a single character displayed
in teletype font. Two domains g and h are complementary to each other if the
nucleotide sequence of g is the WK-complement of h’s sequence. Complementary
domains will be represented as overlined, e.g., g = h̄. Note that for a sequence
gh, the WK-complementary gh is hg. Please refer to Fig. 1b for an illustration.

For a set S of strands we denote by S̄ the set containing all WK-complements
of strands in S. For two strands σ, τ , the (concatenated) strand στ is the strand
obtained from concatenating the nucleotide sequences of σ and τ . For two sets
S, T of strands we write ST for the set {στ : σ ∈ S, τ ∈ T}. Similarly, when σ is
a strand, we also write σS and Sσ for the sets {σ}S and S{σ}, respectively. For
positive integers i, we write Si for the set SSi−1, and by convention S0 contains
only the empty strand ε. We denote by S∗ the set ∪i≥0S

i. The notation for sets
of strands naturally extends to sets of domains, which can be viewed as sets
containing the corresponding strands.

ATCG

TAGC

(a)

ATCGATTCTC

TAGCTAAGAG

abc

abc cba abc

≡
≡ ≡ ≡

(b)

Fig. 1. (a) Two complementary DNA strands. The arrowhead shows the 3’ end. (b)
The strand abc composed of the three domains a ≡ ATCG, b ≡ ATT, and c ≡ CTC
binds with its complement abc.
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+
ι

x x x x x x x ø

+

ρ1

x x x
++

ρ2

x x x
+

Fig. 2. Checking whether 7 is divisible by 3 using DNA strands. The upper strand ι
represents the input in unary. Both strands ρ1 and ρ2 of the form ρ = +x̄3+̄ bind to ι,
first ρ1 and then ρ2. The unmatched domains +xø represent the remainder

Example. Consider, as an example, the question whether some integer d is
divisible by another integer q (see Fig. 2). To answer this question, let +, ø, and
x be domains, and denote by ι = +xdø the strand composed of d repetitions of
x, delimited by + and ø. We refer to ι as the input strand for our question.

The idea is to successively let ι bind with multiple copies of the strand ρ =
+x̄q+̄. Note that ρ can only partially bind to ι. In particular, the first copy of
ρ interacting with ι will bind with one + and q x domains. Since DNA is not
completely rigid, the unmatched + domain of ρ becomes available for binding.
Next, a second copy of ρ binds with the + part from the previous ρ-strand and
the next q x domains of the input strand. Each step corresponds to subtracting
q, and we end the process when the remainder of the division is left. An “output”
can now be obtained by checking for all possible remainders of the division.

Rule Strands and DNA Algorithms. Let U be a universe of domains so
that U ∩ Ū = ∅, i.e., if some domain x is in U , then x̄ is not. Let Σ∪̇Δ∪̇Λ be a
partition of U . We refer to Σ as the set of input domains, to Δ ∪ Δ as the set of
delimiter domains (delimiters for short), and to Ψ = Σ ∪Σ ∪Λ∪Λ as the set of
rule domains. In the strand binding process, the delimiter domains will function
as toeholds that initiate the binding. A strand ρ ∈ d1Ψ∗d2, where d1 and d2 are
delimiters, is referred to as a rule strand. A collection A of rule strands is called
a DNA algorithm. The input to a DNA algorithm is specified in the form of an
input strand, which is a strand ι of the form +Σ∗ø, where + and ø are two fixed
delimiters chosen from the set Δ.

A DNA algorithm is “executed” in a soup, i.e., a container filled with solution,
in which the rule strands of some algorithm A are floating around. The execution
is initiated by adding the input strand ι. We assume that all strands in the soup,
i.e., the rule strands and the input strand, are present sufficiently many times.

All strands in the soup share the property of starting and ending with delim-
iters, and that delimiters appear only at the ends of a strand. When two strands
σ and τ meet, they may bind and form a new strand which we call an effective
strand, see Fig. 3. The binding occurs along some prefix of σ and a corresponding
complementary suffix of τ (or the other way around, when the roles of σ and τ
are switched). This means that two strands always bind (at least) at two com-
plementary delimiters. The effective strand resulting of this binding is composed
of the unmatched prefix of τ and the unmatched suffix of σ, in this order. Note
that the new effective strand also has the form of a rule strand. Effective strands
behave like any other strand, and from now on we will not distinguish between
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+ a b c c d e f ø

+ a b c

c

x

+

Effective
strand

+ a b c c d e f ø

+ a b c c

x

+

Effective
strand

Fig. 3. Two examples of strand binding. On the left, not all possible domain bindings
are involved, since one more c on the upper strand could bind with one more c̄ of the
lower strand; the resulting effective strand is +xc̄cdefø. On the right, all domains have
bound; the resulting effective strand is +xdefø;

r

t1
+

+

abc

abc

c
c

t2

de
fø

de
fø t3

OPENyzø

x OPEN

+ OPEN
ρ1

ρ2 ρ3

σ

)(kcab)(htrof

Fig. 4. An assembly T for σ = +xyzø with root r. The strands read in a pre-order
traversal between the leaf pairs (r, t1), (t1, t2), and (t2, t3) are ρ1 = +xccba+, ρ2 =
+abccdefø, and ρ3 = øfedyzø, respectively.

strands and effective strands. We will use the terms rule strand and input strand
to stress when a strand is not an effective one.

The process of strands binding with each other represents the computation
performed by A. The resulting structure can be described as a tree, see Fig. 4.

Definition 1. Fix a set S of strands. Let T = (V,E, forth,back) be a rooted
ordered1 tree, with nodes and edges in V and E, respectively, and two functions
forth,back, each assigning a label from (U ∪ Ū)∗∪̇{OPEN} to every edge in E,
where OPEN is a special value. Denote by r the root of t, and for convenience
consider r to be a leaf. We say that T is an S-assembly for σ (or just assembly
for σ when S is clear from the context) if T satisfies the following conditions.

(i) For all e ∈ E, if back(e) �= OPEN, then back(e) = forth(e).
(ii) There is a unique path p from r to its rightmost descendant, s.t. the con-

catenated forth labels on p are σ, all edges e on p have the label back(e) =
OPEN, and no other edges in T have an OPEN label.

1 A tree is ordered if the children of every node are ordered, e.g., from left to right.
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(iii) Consider any two leafs t1, t2 with t2 �= r, so that t1 is the last leaf visited
before t2 in a pre-order traversal of T , and denote by t1,2 their nearest common
ancestor. The word g obtained by concatenating the back labels on the path
from t1 to t1,2 and the forth labels on the path from t1,2 to t2 is in S.

In this work, we focus on decision problems, i.e., problems where the output
is either yes or no. Let ι be an input strand. We say that A accepts ι if there is a
(A∪{ι})-assembly for +ø. Thus, the ability to produce the strand +ø corresponds
to a yes output of A, whereas the absence thereof corresponds to a no output.
We denote by L(A) the set of input strands accepted by A, and say that A decides
L(A). In practice, the strand +ø can be detected using fluorescence techniques [1].

Finite Automata. For a deterministic finite automaton (DFA) B we denote by
L(B) the regular language accepted by B. Please refer to a standard textbook
(e.g., [17]) for a thorough introduction to formal languages.

3 DNA Algorithms

When designing (DNA) algorithms it is convenient to use building blocks for
solving reoccurring tasks. We will now introduce three such building blocks which
we use in our algorithms, namely gluing, substituting, and aggregating. For that,
in the remainder of this section, let di, 1 ≤ i ≤ 4, be delimiters, and let p, x, s, y
be arbitrary sequences of domains from Ψ∗.

Gluing. The gluing building block transforms the two strands σ1 = d1pxd2 and
σ2 = d3ysd4 into the new strand d1psd4, formed of the prefix d1p of σ1 and the
suffix sd4 of σ2. This is achieved by using the gluing strand d2xyd3. The strand
binding is illustrated in Fig. 5a.

Substituting. The purpose of the substituting building block is to substitute a
whole strand σ1 = d1xd2 with a strand σ2 = d3yd4. In general, this cannot be
achieved with a single rule strand since more than two delimiter domains would
be required to appear on it. Instead, in our algorithms, we introduce two new
domains u and v for every substitution from x to y of the above form.

The replacement is now performed in three steps using three rule strands
τ1, τ2, and τ3 (illustrated in Fig. 5b) as follows. First, the strand τ1 = d3uxd1
binds with σ1 to form the intermediate strand ι1 = d3ud2. Next, the strand
τ2 = d2uvd4 is used to form the intermediate strand ι2 = d3vd4 by binding with
ι1. In the last step, the strand τ3 = d3yvd3 binds with ι2 to form the desired
strand σ2. As a short-hand for these three rule strands, we write the substitution
rule σ1 → σ2, e.g., +abcø → +zø.

The above rule strands ensure that if only τ1, or only τ1 and τ2 are applied,
but not τ3, then either u or v remain on the effective strand. Since for each
substitution rule new domains u and v are introduced, they cannot be matched
by any strand that is not from this substitution. Thus, we may assume that
substitutions are either applied in full, or not at all. (The strands obtained by
applying at most two of the three rules have no effect on the soup’s output.)
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Fig. 5. (a) Gluing the two strands σ1 and σ2 with ødw+ yields the effective strand σ3.
(b) Substituting the strand σ1 = +abcø by σ2 = +zø using the three strands τ1, τ2, and
τ3. The effective strand indicated by the dashed line is σ2, as desired.

Aggregating. By combining the two building blocks, it is possible to aggregate
two whole strands σ1 = d1xd2 and σ2 = d3yd4 into a strand σ3 = d5zd6, i.e.,
σ3 is only obtained if both σ1 and σ2 are present. For that, let u and v be new
domains. We add the following strands: (1) the substitution σ1 → +uzd6, (2)
the substitution σ2 → d5vø, and (3) the gluing strand øvu+. We abbreviate this
set of rules by writing σ1 ∧ σ2 → σ3, and note that also larger aggregations are
possible by applying the principle inductively.

Synopsis. Using the above techniques, the idea for divisibility testing explained
in Sect. 2 can be extended to obtain a DNA algorithm for primality testing. The
details are deferred to the full version of this paper. In its unary version the
algorithm consists of O(n) rules. Note that with this many rules it is possible to
describe a simple DNA algorithm that matches every strand ιp, with p prime,
to produce a yes-output. With binary inputs it is possible to devise a primality
testing algorithm using O(

√
n log n) rules, i.e., less than the number of primes

p ≤ n, which is Θ(n/ log n). Regardless of the way the input is presented, enu-
merating the rules for our primality testing algorithm requires knowledge of

√
n.

In the full version we also present an algorithm to actually compute
√

n using
DNA strands.

4 Regular DNA Algorithms

The rule sets corresponding to our algorithms form context-free or even context-
sensitive languages, i.e., the rules for the two algorithms are “complex”. One
might hope that this complexity is not necessary. However, in this section we
show that such complex rule sets cannot be avoided (for the aforementioned
problems), and that in fact rule sets that form a regular language are not very
powerful algorithms. Specifically, we are going to establish the following theorem.

Theorem 1. Let A be a DNA algorithm. If A, interpreted as a set of strands,
is a regular language, then L(A) is regular.
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For the remainder of this section, fix some DNA algorithm A such that A
is a regular language. It will be convenient to assume that ++̄ and ø̄ø are both
in A. While this changes neither the language detected by A nor the fact that
A is a regular language, the assumption allows us to consider only (A ∪ {ι})-
assemblies for +ø that begin and end with strands from A. We denote by B =
(Q,U ∪ Ū , δ, s, F ) a DFA satisfying L(B) = A.

Consider any accepted input strand ι and an (A ∪ {ι})-assembly T of +ø.
Note that forth(e) contains a delimiter if and only if one endpoint of e is a leaf
or the root. By definition, in a pre-order traversal of T the paths between two
successive leafs are labeled with strands (ρ1, . . . , ρl) in A. For each strand ρi ∈ A
there is an accepting transition sequence in B, which consequently corresponds
to the path in T from which ρi was obtained. Our life would be simple if ρi ∈ A
for all i, since we would have to deal only with strands from a regular language.
The main difficulty in our proof of Theorem1 is to handle the case where ρi = ι.

In our proof of Theorem1 we use assemblies to investigate how exactly the
strands from A and the input strands bind to form +ø. To describe the language
L(A), we consider all possible assemblies for +ø that can be formed with some
input strand and strands from A. More precisely, we ask the question: What are
the possible input strands with which +ø can be assembled? A key ingredient to
answering this question is the notion of a junction, which will allow us to answer
the question in a recursive manner.

Definition 2. Let Q be a set of states, let v, w ∈ Q, and let J ⊆ Q × Q with
(v, w) �∈ J . The triple (v, w, J) is called a junction. An instance of the junction
(v, w, J) is a sequence q = (q1, . . . , q�) with entries in Q∪̇{NULL}, where NULL
is a special value not contained in Q, satisfying

(i) q1 = v and q� = w,
(ii) for all i, if qi �= NULL, then either (qi, qi+1) ∈ J∪{(v, w)}, or qi+1 = NULL

and (qi, qi+2) ∈ J ∪ {(v, w)}, and
(iii) all entries in q are pairwise distinct, except possibly q1 and q� (when v = w).

The basic idea behind our proof is to define a language I such that (1) I
is regular, (2) every ι ∈ I is accepted by A, and (3) every ι accepted by A is
in I. The definition of I is encapsulated in the recursive sealing operator X ,
which we will define shortly. Claim (1) will then be established by the fact that
the recursion X is finite. Claims (2) and (3) will be confirmed by relating the
recursion X with appropriate assemblies, for which we will identify nodes in an
assembly with junctions.

For the definition of X , we set the empty union to ∅ and the empty intersec-
tion to +Σ∗ø, i.e., all valid input strands. Let I(v, w, J) be the set of instances
of the junction (v, w, J). The sealing operator is defined using two sub-operators
C and D as follows.

X (v, w, J) :=
⋃

q∈I(v,w,J)

⎛

⎜

⎜

⎝

⋂

(qi,qi+1):
qi �=NULL�=qi+1

C(qi, qi+1, J) ∩
⋂

i:qi=NULL

D(qi−1, qi+1, J)

⎞

⎟

⎟

⎠
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For C(x, y, J), we denote by Hx,y,J the set of pairs (z1, z2) ∈ J \ {(x, y)} for
which there are two transition sequences x → z1, z2 → y in B such that the
corresponding words w1 and w2 satisfy w1 = w2. Note that in particular Hx,y,J

is finite, since it is contained in J . Now, the sets C are defined as follows.

C(x, y, J) :=

⎧

⎨

⎩

+Σ∗ø , if ∃(z1, z2) ∈ Hx,y,J s.t. z2 = s and z1 ∈ F
⋃

(z1,z2)∈Hx,y,J

X (z1, z2, J \ {(x, y), (z1, z2)}) , otherwise.

For D(x, y, J), we construct a finite automaton BK,x,y with ε-transitions
as follows: Let BK be the automaton B supplemented with the transitions
δ(k1, ε) = k2 for all (k1, k2) ∈ K. Next, let B′

K be a copy of BK , and denote
by x′ the copy of the state x in B′

K . The automaton BK,x,y is now obtained
by taking BK ’s starting state, B′

K ’s accepting states, and adding the transition
δ(y, ε) = x′. With this, the sets D are defined as follows.

D(x, y, J) :=
⋃

K⊆J\{(x,y)}

⎛

⎝L(BK,x,y) ∩
⋂

(z1,z2)∈K

X (z1, z2, J \ {(x, y), (z1, z2)})

⎞

⎠ .

Basically, X assigns a language to any junction (v, w, J). The intricate choice
of X provides that X (v, w, J) contains exactly the input strands that “seal” the
junction (v, w, J) with a sub-tree T ′ of some assembly T , such that in T ′ only
junctions (v′, w′, J ′) with (v′, w′) �∈ J and J ′ = J \ {(v′, w′)} appear.

We set the language I to

I :=
⋃

w:δ(w,ø)∈F

X (δ(s, +), w,Q × Q \ {(δ(s, +), w)}),

and follow the plan to prove Theorem1 as outlined above. The first step is to
show that I is regular, which is asserted by the following lemma.

Lemma 1. For any v, w ∈ Q and J ⊆ Q×Q\{(v, w)}, the language X (v, w, J)
is regular.

Our proofs for Lemma1 and all remaining lemmas and theorems are pre-
sented in the full version of this paper. In our effort to establish Theorem1, the
following lemma confirms the aforementioned claim (2).

Lemma 2. If ι ∈ I, then ι is accepted by A.

To obtain the opposite direction of the statement in Lemma2, consider any
(A ∪ {ι})-assembly T for +ø. We now describe a procedure that assigns an addi-
tional label to T , thus obtaining the state-marked assembly T ′. Specifically, to
each node u in T , we assign deg(u)+1 labels qmark(u, 1), . . . , qmark(u,deg(u)+
1) from Q∪̇{NULL}, where deg(u) denotes the number of u’s children.

To obtain the labels, we traverse T “together with B”, feeding to B the
forth labels when traversing an edge to the ith child the first time (in forward
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direction), and set qmark(u, i) to B’s current state. On the way back to u’s
parent, we assign the label qmark(u,deg(u)+1), respectively. At leaf nodes, the
DFA B is reset to its starting state.

We will later use the sequence defined for a node u by the qmark labels
to obtain junctions and junction instances corresponding to u. For that, it is
convenient to define two short-hands for reading the labels qmark. Consider any
node u and denote by u1, . . . , udeg(u) the children of u. The first short-hand,
qpair, assigns to each edge (u, ui) a pair of states as follows.

qpair(u, ui) :=

⎧

⎪

⎨

⎪

⎩

(qmark(u, i − 1), qmark(u, i + 1)), if qmark(u, i) = NULL
(qmark(u, i), qmark(u, i + 2)), if qmark(u, i + 1) = NULL
(qmark(u, i), qmark(u, i + 1)), otherwise,

where we set qmark(u, 0) = qmark(u,deg(u) + 2) = NULL.
The second short-hand junct(u) assigns a junction to every node u. If u is a

leaf, then the assignment depends on qmark(u′, i + 1), where u′ is the parent of
u, and u is the ith child of u′. Specifically, junct(u) = (qmark(u), x, ∅), where x
is s if qmark(u′, i + 1) ∈ Q and NULL otherwise. If u is not a leaf, denote by v
and w the first and the last non-NULL entry in the sequence of qmark labels for
node u, respectively. Let further p be the path from T ’s root to u, and denote
by P ⊆ Q × Q the set {qpair(e) : e ∈ p and qpair(e) has no NULL entries}. The
junction junct(u) is now (v, w,Q × Q \ (P ∪ {(v, w)})).

Lemma 3. Let T be a state-marked assembly for some strand σ. There is a
state-marked assembly T ′ for σ such that

(i) all nodes v in T have deg(v) �= 1, except the root,
(ii) at every node v in T ′, the sequence (qmark(v, i), . . . , qmark(v, j)) is an

instance of the junction (qmark(v, i), qmark(v, j), J) for some J , where i
and j are the first and last index for which qmark(v, i) and qmark(v, j) are
not NULL, and i ∈ {1, 2}, j ∈ {deg(v),deg(v) + 1}, and

(iii) on every simple path P in T ′ from the root to a leaf, for every two edges e, e′

on P , if all entries in qpair(e) and qpair(e′) are from Q (i.e., not NULL),
then it holds that qpair(e) �= qpair(e′).

The above technical Lemma 3 essentially states the existence of a normal
form for assemblies. This normal form is key in our proof for the next lemma,
which establishes the missing part of Theorem 1.

Lemma 4. If ι ∈ L(A), then ι ∈ I.

Theorem 1 is now established with help of Lemmas 1, 2 and 4. Since finite
languages are regular, it follows from Theorem 1 that L(A) is regular if the size
of A is finite. Lastly, in the full version we also establish the following.

Theorem 2. Let L be a language over the alphabet Σ with ε �∈ L. If L is regular,
then there is a constant size DNA algorithm that decides +Lø.
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7. Kari, L., Păun, G., Rozenberg, G., Salomaa, A., Yu, S.: DNA computing, sticker
systems, and universality. Acta Informatica 35(5), 401–420 (1998)
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