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Abstract. We propose a notion of focusing for nested sequent calculi for
modal logics which brings down the complexity of proof search to that of
the corresponding sequent calculi. The resulting systems are amenable to
specifications in linear logic. Examples include modal logic K, a simply
dependent bimodal logic and the standard non-normal modal logics. As
byproduct we obtain the first nested sequent calculi for the considered
non-normal modal logics.

1 Introduction

A main concern in proof theory for modal logics is the development of philo-
sophically and, at the same time, computationally satisfying frameworks to cap-
ture large classes of logics in a uniform and systematic way. Unfortunately the
standard sequent framework satisfies these desiderata only partly. Undoubtedly,
there are sequent calculi for a number of modal logics exhibiting many good
properties (such as analyticity), which can be used in complexity-optimal deci-
sion procedures. However, their construction often seems ad-hoc, they are usually
not modular, and they mostly lack philosophically relevant properties such as
separate left and right introduction rules for the modalities. These problems are
often connected to the fact that the modal rules in such calculi usually introduce
more than one connective at a time. For example, in the rule

I'FA
I'',Or-o04,A
for modal logic K [4], the context I" could contain an arbitrary finite number of

formulae. Hence this rule can also be seen as an infinite set of rules

Bi,...,B, A
I[',0B,,...,0B, F OA, A

kn|n20}

each with a fixed number of principal formulae. Both of these perspectives are
somewhat dissatisfying: the first since it requires modifying the context, and the
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second since it explicitly discards the distinction between left and right rules for
the modal connective.

One way of solving this problem is to consider extensions of the sequent
framework that are expressive enough for capturing these modalities using sep-
arate left and right introduction rules. This is possible e.g. in the frameworks of
labelled sequents [14] or in that of nested sequents or tree-hypersequents [2,17,18].
Intuitively, in the latter framework a single sequent is replaced with a tree of
sequents, where successors of a sequent are interpreted under a modality. The
modal rules of these calculi govern the transfer of (modal) formulae between
the different sequents, and it can be shown that it is sufficient to transfer only
one formula at a time. However, the price to pay for this added expressivity
is that the obvious proof search procedure is of suboptimal complexity since it
constructs potentially exponentially large nested sequents [2].

In this work, we reconcile the added superior expressiveness and modularity of
nested sequents with the computational behaviour of the standard sequent frame-
work by proposing a focusing discipline for linear nested sequents [9], a restricted
form of nested sequents where the tree-structure is restricted to that of a line. The
result is a notion of normal derivations in the linear nested setting, which directly
correspond to derivations in the standard sequent setting. Moreover, the resulting
calculi lend themselves to specification and implementation in linear logic follow-
ing the approach in [13]. Since we are interested in the connections to the stan-
dard sequent framework, we concentrate on logics which have a standard sequent
calculus, with examples including normal modal logic K and simple extensions,
the exemplary simply dependent bimodal logic KT @c S4 [5], but also several non-
normal modal logics, i.e., standard extensions of classical modal logic [4]. As a side
effect we obtain, to the best of our knowledge, the first nested sequent calculi for
all the considered non-normal modal logics.

2 Linear Nested Sequent Systems

We briefly recall the basic notions of the linear nested sequent framework [9],
essentially a reformulation of Masini’s 2-sequents [11] in the nested sequent
framework (also compare the G-CK,, sequents of [12]). In the following, we con-
sider a sequent to be a pair I' = A of multisets and adopt the standard con-
ventions and notations (see e.g. [14]). In the linear nested sequent framework,
the tree structure of nested sequents is restricted to a line, i.e., a linear nested
sequent is simply a finite list of sequents. This data structure matches exactly
the history in a backwards proof search in an ordinary sequent calculus, a fact
we will heavily use in what follows.

Definition 1. The set LNS of linear nested sequents is given recursively by:

1. if '+ A is a sequent then I' = A € LNS
2. if ' Ais a sequent and G € LNS then I' = AJ/G € LNS.
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Fig. 1. System LNS¢ for classical propositional logic. In the init rule, p is atomic.

SUr-A)Z AR GITvrA] +A
SILoArAJZrIT) - G/ T+ 4,04

Fig. 2. The modal rules of the linear nested sequent calculus LNSk for K.

We will write S{I" = A} for denoting a context G//I" + AJJ'H where G, H € LNS
or G, H = 0. We call each sequent in a linear nested sequent a component and
slightly abuse notation and abbreviate “linear nested sequent” to LNS.

In this work we consider only modal logics based on classical propositional
logic, and we take the system LNSg (Fig. 1) as our base calculus. Note that the
initial sequents are atomic, contraction, weakening and cut are admissible and
all rules are invertible.

Figure 2 presents the modal rules for the linear nested sequent calculus LNSyk
for K, essentially a linear version of the standard nested sequent calculus from
[2,17]. Conceptually, the main point is that the sequent rule k is split into the
two rules Oy and Op, which permit to simulate the sequent rule treating one
formula at a time. This piecewise treatment could be seen as one of the main
features of nested sequent calculi and deep inference in general [7]. In particular,
it is the key to modularity for nested and linear nested sequent calculi [9,18].
Completeness of LNSk w.r.t. modal logic K is shown by simulating a sequent
derivation bottom-up in the last two components of the linear nested sequents,
marking applications of transitional rules by the nesting / and simulating the
k-rule by a block of Oy, and Og rules [9]. E.g., an application of k on a branch
with history captured by the LNS G is simulated by:

r-A G)I' AT+ A

~orroa A K o
F,DFIZ—DA,A ~ G/ I",0CF AJF A DL
P g G/I'",0r+0A, A

where the double line indicates multiple rule applications. Observe that this
method relies on the view of linear nested sequents as histories in proof search. It
also simulates the propositional sequent rules in the rightmost component of the
linear nested sequents. This gives a different way of looking at system K, where
formulas in the context can be handled separately. However, the modal rules do
not need to occur in a block corresponding to one application of the sequent rule
anymore. For instance, one way of deriving the instance O(p D ¢) D (Op D Og)
of the normality axiom for modal logic K is as follows.
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—— init
init " pt P Or
Opt Jatq Opk /| Fp,q
Opk /lpDqtq
Ry“L

O(p D ¢q),0pt+ Og
FD(p D ¢q) D (Op D 0Og)

Note that the propositional rule D, is applied between two modal rules. Hence
there are many derivations in LNSk which are not the result of simulating a
derivation of the sequent calculus for K. Thus, while the linear nested sequent
calculus LNSk has conceptual advantages over the standard sequent calculus for
K, its behaviour in terms of proof search is worse: there are many more possible
derivations with the same conclusion, when compared to the sequent calculus.
We will address this issue by proposing a focusing discipline [1] similar to that
of [3] to restrict proof search to a smaller class of derivations, while retaining the
conceptual advantages of the framework.

3 Labelled Line Sequent Systems

For simplifying the notation of the focused systems and also for encoding linear
nested sequent calculi in linear logic (see Sect. 6), we follow the correspondence
between nested sequents and labelled tree sequents given in [6], and consider the
labelled sequents [14] corresponding to linear nested sequents. Intuitively, the
components of a LNS are labelled with variables and their order is encoded in a
relation.

Formally, a (possibly empty) set of relation terms (i.e. terms of the form
zRy) is called a relation set. For a relation set R, the frame Fr(R) defined by
R is given by (|R|,R) where |R| = {z | ztRv € R or vRx € R for some state v}.
We say that a relation set R is treelike if the frame defined by R is a tree or R is
empty. A treelike relation set R is called linelike if each node in R has at most
one child.

Definition 2. A labelled line sequent LLS is a labelled sequent R, X Y where

1. R is linelike;
2. if R = 0 then X has the form x : Ay,...,xz: A, and Y has the form x :
By,...,x:B,, for some state variable x;

3. if R # () then every state variable x that occurs in either X orY also occurs
in R.

Observe that, in LLS, if xRy € R then uRy ¢ R and zRv ¢ R for any u # x
and v # y.

Definition 3. A labelled line sequent calculus is a labelled sequent calculus
whose initial sequents and inference rules are constructed from LLS.
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init R X, x:A,x:B+Y A RXFEx:AY RXrx:BY A
RXxprxp? ™  RXxAABrY - RX+x:AAB,Y K

N RXEY,x:A RX,x:B+Y R X, x:Ar Y, x:B
RX,x:Lry * RX,x:ADBrY L RXrYxAoDB ¥

Fig. 3. Labelled line sequent calculus LLSg.

In Fig. 3 we present the rules for the labelled line classical calculus LLSg.

Since linear nested sequents form a particular case of nested sequents, the
algorithm given in [6] can be used for generating LLS from LNS, and vice versa.
However, one has to keep the linearity property invariant through inference rules.
For example, the following rule (here considered more generally as a labelled
sequent rule)

R,zRy, X FY,y: A o
R, X,FY,z:04 F

where y is fresh, is not adequate w.r.t. the system LNSk, since there may exist
z € |R| such that xRz € R. That is, for labelled sequents in general, freshness
alone is not enough for guaranteeing unicity of  in R. And it does not seem
to be trivial to assure this unicity by using logical rules without side conditions.
To avoid this problem, we slightly modify the framework by restricting R to
singletons, that is, R = {zRy} will record only the two last components, in
this case labelled by z and y, and by adding a base case R = {yoRxo} for
To, o different state variables when there are no nested components. The rule
for introducing Ok then is

zRy, X FY,y: A
zRx, X,F Y, z:0A

R

with y fresh. Note that this solution corresponds to recording the history of the
proof search up to the last two steps. We adopt the following terminology for
calculi where this restriction is possible.

Definition 4. A LNS calculus is end-active if in all its rules the rightmost com-
ponents of the premisses are active and the only active components (in pre-
misses and conclusion) are the two rightmost ones. An end-active LLS is a
singleton relation set R together with a sequent X 'Y of labelled formulae,
written R, X F Y. The rules of an end-active LLS calculus are constructed
from end-active labelled line sequents such that the active formulae in a pre-
miss Ry, X F'Y are labelled with y and the labels of all active formulae in the
conclusion are in its relation set.

Observe that the completeness proof for LNSk via simulating a sequent derivation
in the last component actually shows that the end-active version of the calculus
LNSk is complete for K [9]. From now on, we will use the end-active version
of the propositional rules (see Fig.4). Note that, in an end-active LLS, state
variables might occur in the sequent and not in the relation set. Such formulae
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o ZRx, X, x:A,x:B+ Y A ZRx, X+ x:A,Y zZRx,X‘+ x:B)Y
ReXxprrpy ™ ReX<AABrY * Re,Xrx:AANB,Y R
N ZRx, X+ Y, x:A zZRx,X,x:B+Y 5 ZRx, X, x:A+ Y, x:B 5
R, X,x:LrY F ZRx,X,x:ADBFY b RxXrYxA>B F

Fig. 4. The end-active version of LLSg. In rule init, p is atomic.

will remain inactive towards the leaves of the derivation. In fact, a key property
of end-active LNS calculi is that rules can only move formulas “forward”, that
is, either an active formula produces other formulae in the same component or
in the next one. Hence one can automatically generate LLS from LNS. In the
following we write z:I" if the label of every labelled formula in I" is z.

Definition 5. For a state variable x, define the mapping TL, from LNS to end-
active LLS as follows

TLeo (I F Ap) = yoRzo,x0: 10 F z0: Ao
TLe,(IoF Ao/)...[[Tnt An) = n—1Rxn,z0:L0,...,2n:In b xo:Ao,...;2n: Ay n>0

with all state variables pairwise distinct.

It is straightforward to use TIL, in order to construct a LLS inference rule from
an inference rule of an end-active LNS calculus. The procedure, that can be
automatised, is the same as the one presented in [6], as we shall illustrate it
here.

Ezample 6. Consider the following application of the rule Op of Fig. 2:

Lot Aoff- fTus b Do fTu - Anff HA
ToFAof).  [Tni bk Ayt fJTnF A, 04 &

Applying TLL, to the conclusion we obtain z,,_1Rx,, X F Y,x, : OA, where
X=ux:In,...;0p: [y and Y = 2y : Ay,... 2, : A,. Applying TL, to the
premise we obtain x, Rxpy1, X F Y, 2,41 : A. We thus obtain an application of

the LLS rule
TpRxpy1, X FY 1A

Tp_1Rx,, X FY x,:04
which is the rule Of presented in Fig. 5.

TL.(Og)

The following result follows readily by transforming derivations bottom-up.

xRy, X,y:ArY xRy, X FY,y:A

XLy ar? g0 ARV is a fresh variabl
Ry, XxDArY ' RuXr Yxoa Dk (isafreshvariable)

Fig. 5. The modal rules of LLSk.



564 B. Lellmann and E. Pimentel

Theorem 7. I' = A is provable in a certain end-active LNS calculus if and only
if TLyo (I = A) is provable in the corresponding end-active LLS calculus.

The end-active labelled line sequent calculus LLSk for K is given in Fig.5. The
following is immediate from completeness of the end-active version of LNSk.

Corollary 8. A sequent I' = A has a proof in LNSk if and only if yRz,x:I" +
x: A has a proof in LLSk for some different state variables x,y.

4 Focused Labelled Line Sequent Systems

Although adding labels and restricting systems to their end-active form enhance
proof search a little, this is still not enough for guaranteeing that modal rules
occur in a block.

In [1], Andreoli introduced a notion of normal form for cut-free proofs in linear
logic. This normal form is given by a focused proof system organised around two
“phases” of proof construction: the negative phase for invertible inference rules
and the positive phase for non-necessarily-invertible inference rules. Observe that
a similar organisation is adopted when moving from LNSk to LLSk: invertible
rules are done eagerly while the non invertible ones (O + Oy) are done only in
the last two components.

We will now define FLLSk, a focused system for LLSk. Sequents in FLLSk
have one of the following shapes:

1. zRz f I'; X F Y; A is an unfocused sequent, where I" contains only modal
formulae and A contains only modal or atomic formulae.
2. zR[z] |} I'; X+ +; Ais a sequent focused on a right boxed or atomic formula.

3. [z]Ry | I'; X FY; A s a sequent focused on a left boxed formula.

In the negative phase sequents have the shape (1) above and all invertible propo-
sitional or modal rules are applied eagerly on formulae labelled with the variable
2 until there are only atomic or boxed formulae left. Some of those are moved to
special contexts I', A using store rules. These contexts store the formulae that
can be chosen for focusing. When this process terminates, the positive phase
starts by deciding on one of the formulae in A, indicated by a sequent of the
form (2). If this formula is an atom, then the proof should terminate. Otherwise,
the focusing is over a modal formula, and the rule Op creates a fresh label y and
moves the unboxed part of the formula to this new label, resulting in a sequent
of the form (3). The positive phase then continues by possibly moving boxed
formulae in I' , labelled with x, to the label y. Finally, focusing is lost and we
come back to the negative phase, now inside the component labelled by y. Note
that this procedure gives a forward-chaining flavor to the system.

The rules for FLLSk are presented in Fig. 6. Note that the rule storeg sys-
tematically moves all atomic and boxed formulae from Y to A, and hence Y will
be eventually empty. This is the trigger for switching from the negative to the
positive phase. Note also that the contexts may carry some “garbage”, i.e., for-
mulae which will never be principal. In fact, since the calculus is end-active, only
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formulae in one of the two last components can be principal. Similar to standard
systems where weakening is admissible, these formulae are then absorbed by
the initial sequents init. Since the focusing procedure described above is just a

ZRx T I'; X, x:A,x:B+ Y;4 A ZRx T I X, x:Av Y, x:B;4
RN X xLrYid " Rx I X, xAABRY; A ' ZRx 1 [LXF Y, x:AD B4

R

ZRx f I'; X+ x:AY;4 zRx f I Xk x:B, Y 4 A ZRx N I X v Y, x:A;4 zRx | [; X, x:Bvr Y4
R

L

ZRx N I'’ X+ x:AANB,Y; 4 ZRx N\ I'; X, x:ADB+Y;4
ZRx M ILx:By; X+ Y54 store, ZRx N I X v Y;4,x:A, storeg
ZRx N I'; X, x:B,+ Y4 ZRx N I X v Y, x:Ap 4
init ZR[x] U I';X v 54 XRy 1 5 X+Y;4
R U GXxArdcA ™ ZRx ) [3Xr 4 xRy I X+ ¥;4
[xIRy U I'; X v y:Az;4 o [xIRy U I'; X,y:AvrY;4
L

ZR[x] U I'; X+ 54, x:0A * [xIRy | Ix:0A; X+ Y34

Fig. 6. Focused labelled line sequent calculus FLLSk for K. A, is atomic or a boxed
formula, Bj is a boxed formula. As usual, the negative phase is marked by 1, the
positive by J}.

systematic organisation of proofs, soundness and completeness proofs are often
straightforward permutation-of-rules arguments.

Theorem 9. The system FLLSk is sound and complete w.r.t. modal logic K, i.e.,

a formula A is a theorem of K iff the sequent zRx { -;-+ x: A;- is derivable in
FLLSk.

Proof. Observe that propositional rules permute up over the Op, rule. Hence all
the applications of Oy, can be done in sequence, just after the Og rule. a

Example 10. The normality axiom is derived as shown in Fig. 7. Note that the
modal rules occur in a block corresponding to an application of the sequent rule
k. That is, focusing effectively blocks derivations where propositional rules are
applied between modal ones.

init init
XR[yl U y:q,y:pt+yiq XR[y1 U sy:pryiqy:p
storeg, D storeg, D

XRy N 5y:q,y:pryiq;- XRy T 5y:pty:p,y:q- >

XRy  5y:pDqy:pryiq-

[xIRy | 5y:pDq,y:pry:q:
[x]Ry U x:O(p D q),x:0p; -+ yiq;-
ZR[x] | x:0(p D @), x:0Op;- + -;x:0q
ZRx 1 x:0(p D q), x:0Op;- F -5 x:0¢q

O
Or

storer, storey
zZRx - x:0(p D q),x:0p + x:0q; -

)
Rx i 5 +x:0(ppD¢)>@poOg:-

Fig. 7. The derivation of the normality axiom in FLLSk
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5 Some More Involved Examples

It is straightforward to see that the method described above apply to any sequent
calculus which can be written as an end-variant linear nested sequent calculus,
in particular to extensions of K with combinations of the axioms D, T,4 or to
the multi-succedent calculus for intuitionistic logic [9]. We now consider some
less trivial examples.

5.1 Simply Dependent Bimodal Logics

As a first example, we consider a bimodal logic with a simple interaction between
the modalities. While we only treat one example, our method is readily adapted
to other such logics. The language of simply dependent bimodal logic KT @&¢c S4
from [5] contains two modalities O and ©, and the axioms are the KT axioms
for O together with the S4 axioms for © and the interaction axiom ©A D OA
(Fig. 8). Using the methods in [10], these axioms are easily converted into the
sequent system Ggrg.ss extending the standard propositional rules with the
modal rules of Fig.9. It is straightforward to check that these rules satisfy the
criteria for cut elimination from [10], and hence Gkrgsa is cut-free.

VAS>DA k,O(ADB)>(@DA>OB) t,OADA %necm

ke WADB)D(VADVB) 1t VADA 4, 9AD VA %4 necs
Fig. 8. The modal axioms for logic KT &¢ S4.
I,02,2,00,0+r 4 OI,0X, 2,0+ A O+ A
I,0%,00F 4 Q.oL,oX,00FOAE | QorroAz *

Fig. 9. The modal rules of the sequent calculus Gkrgss for KT d¢ S4

To obtain a focused system, we again convert the sequent calculus into a LNS
calculus. However, since now we have two different non-invertible right rules (dg
and QOg), we need to modify the linear nested setting slightly, introducing the
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two different nesting operators //” and //¥ for the rules Og resp. ¥ . The intended

interpretation is
rea)y=Ar-\/a
LAY H) = NI D\ AV OuH)
U HAYOH) == \NT 5\ AV OuH)

The modal sequent rules are then converted into the rules of Fig. 10. The propo-
sitional rules are those of LNS¢ (Fig. 1). Cut-free completeness of (the end-active
variant of) this calculus again follows from simulating sequent derivations in the
rightmost two components.

GITraP A _ SUrAPL AT S{I+ AJ°PX,9A + IT)

GI'TrA4,0A °  SILoArAffxvlly - SILoArAfPE ey 5

GI'TFAI° + A S{rrA)°X, QA+ IT} o S{I,0A, A + 4} S{I,0A, A + 4}
Lo

RO v

GI'TFA,9A S{IL9AF A)°% v IT} SILoArA) °  SITL,OAF A)

Fig. 10. The modal linear nested sequent rules for KT &c S4. Here * € {0, Q}.

Lemma 11 (Soundness). The rules of LNSktqsa preserve validity of the for-
mula interpretation of the sequents with respect to KT @c S4 frames.

Proof. By showing that if the negation of the interpretation of the conclusion of
a rule is satisfiable in a KT @¢ 5S4 frame, then so is its conclusion, using that in
such frames the accessibility relation Rg for O is contained in the accessibility
relation Ro for . a

Note that this also shows that the obvious adaption of this calculus to the full
nested sequent setting is sound and cut-free complete for KT @®¢ S4. For propos-
ing a focused version for the linear nested sequent rules we essentially follow
the method given in Sect. 4, adapting the framework slightly to the multimodal
setting by introducing two different kinds of relation terms xRgy and zRoy cor-
responding to the accessibility relations of the modalities O and O respectively.
The frame Fr(R) is defined as (|Ro URo|, RoURo) and linelike relation sets are
defined using this definition. The FLLS rules then are defined straightforwardly
(Fig. 11). Soundness and completeness of the resulting system FLLSkTgs4 follow
as above. Summing up we have: -

Theorem 12. LNSktgs4 and FLLSkTgs4 are sound and complete for KT S4.

5.2 Non-normal Modal Logics

The same ideas also yield LNS calculi and their focused versions for some non-
normal modal logics, i.e., modal logics that are not extensions of modal logic K
(see [4] for an introduction). The calculi themselves are of independent interest
since, to the best of our knowledge, nested sequent calculi for the logics below
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have not been considered before in the literature. The most basic non-normal
logic, classical modal logic E, is given Hilbert-style by stipulating only the rule
(E) (or congruence rule) for the connective O

A>DB BDOA
0A>OB

(E)

which allows exchanging logically equivalent formulae under the modality. Some
of the better known extensions of this logic are formulated by the addition of
axioms from

M O(AAB)D(OAAOB) C (DAANOB)DO(AAB) N OT

Figure 12 shows the modal rules of the standard cut-free sequent calculi for these
logics [8], where in addition weakening is embedded in the conclusion. Extensions
of E are written by concatenating the names of the axioms, and in presence of
the monotonicity axiom M, the initial E is dropped. E.g., the logic MC is the
extension of E with axioms M and C. Its sequent calculus Gy is given by the
standard propositional and structural rules together with the rule (E) as well as
the rules (Mn) for n > 1.

We first consider monotone logics, i.e., extensions of M. To simulate the
rules from Fig. 12 in the linear nested setting, we introduce an auxiliary nesting
operator /™ to capture a state where a sequent rule has been partly processed.
In contrast, the intuition for the original nesting // is that the simulation of a
rule is finished. In view of end-active systems, we restrict the occurrences of /™

[xIRgy U I'; X Fy:Az4 O [x]Roy J I'; X Fy:As4
ZR.x] U I'; X+ 54, x:0A ko ZR.x] U I X k54, x:0A ko
[x]Roy U INy:9A; X+ Y34 [xIRay U I X,y:A+ Y54

Q7LD [m)3

[xIRgy U ILx:QA; X + Y354 [xX]IRay U INx:OA; X+ Y34
[x]Roy U INy:QA; X+ Y34 Rx 0 [Lx:0A; X, x:Av Y4
XRoy U LLx:0A; X+ Y4 % Rx I [LX, x:0A+ V34

o

Fig. 11. The modal rules of FLLSKT@§54. Here x € {0, 0} and y is fresh in rules Ogg
and Ogro. Rule to is analogous to to and is omitted. The propositional rules are as in
Fig. 4 with R. instead of R.

ArB BFA A+ B A

I OA +0OB, 4 ® I,O0A +0OB, 4 M) I'+0OA,4 N
Ay,...,A,+B BrA, --- BFA, Ay, ..., A, + B

I,oA,,...,0A,+0B,4 Em) I,0A,,...,04,+0B,4 (Mn)

Ge {(B)} Gec {(En):nx1} Gun  {(M),(N) }
Gu {(M)} Guc {(Mn):n>1} Guen {(Mn):n>0}

Fig. 12. Sequent rules and calculi for some non-normal modal logics
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to the end of the structures. Linear nested sequents for monotonic non-normal
modal logics then are given by:

INSpi=I'F A | TFA)™S 1T | T'+ AJ/LNS,,

The modal linear nested sequent rules are given in Fig. 13. The propositional
rules are those of the end-active version of LNS¢g (Fig.1) with the restriction
that they cannot be applied inside /™ The sequent rule (Mn) is then simulated
by the following derivation

GITv4™+B GITvA)2,Av 1T gm
G/r+oB4 X GITLOAr A" 1T *
GITrA4)"2AvIT GITv4) v+B
GITLOAvA)"2 v+ * G/l roB4 X

LNSy {of.of' } LNSywc {Of.o7.0f } LNSuyy {Of.o7.0p} LNSwen { OF. 07,07, 0O }

Fig. 13. Modal linear nested sequent rules for some monotone non-normal modal logics.

GITvA)°(F B;B+) e GITvAJZ,AvII GIT+A)QFA,O e

G/ T v 0B, 4 R GITLOAF A+ IT;QF O) L
GIT A ARIT;QF0O) GT+-4)Q2+A,0O e
GITOA+-A)ErIT;Q+ O) L

LNSe {of,of } LNSgc  { o, 0,08 }

Fig. 14. Modal linear nested sequent rules for some non-monotone non-normal modal
logics

/)AL, .. An1, A - B
94, . ..0A, o M) 9/ A o
XY G/BAr,....04,F)" B .
. g//DAlaaDAn}_DB R

For extensions of classical modal logic E not containing the monotonicity axiom
M we need to store more information about the unfinished premisses. Thus
instead of /™ we introduce a binary nesting operator //%.;.). Linear nested
sequents then are given by

LNSei=I'F A | THAJ(SF ;2 6) | T'FAJLNS,
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Figure 14 shows the modal rules for these logics, where again the propositional
rules are those of end-active LNSg (Fig. 1) with the restriction that they are not
applied inside the nesting /¢ The derivation simulating the rule (En) then is

GJI+AJfAy,...,An+ B GJT+A/BF A,

e

G/, OA, - AJf(Ay,...,An_1+FB;BF) L
G/ I0As,...,0A, F AJF (AL F B;BF) G/ T,0A, ..., BAEAYBF AL
G/T,0Ay,...,0A, - A/F(+B;BF) L
G/ T,0A,,...,0A, -0OB, A R

Theorem 13 (Completeness). The linear nested sequent calculi of Figs. 13
and 14 are complete w.r.t. the corresponding logics.

For showing soundness of such calculi we need a different method, though.
This is due to the fact that, unlike for normal modal logics, there is no clear
formula interpretation for linear nested sequents for non-normal modal logics.
However, since the propositional rules cannot be applied inside the auxiliary
nestings /™ resp. /¢ the modal rules can only occur in blocks. Together with the
fact that the (end-variant) propositional rules can only be applied in the last
component, this means that we can straightforwardly translate LNS derivations
back into sequent derivations.

Theorem 14 (Soundness). If a sequent I' b A is derivable in LNS. for £ one
of the logics presented in this section, then it is derivable in the corresponding
sequent calculus.

Proof. By translating a LNS, derivation into a G, derivation, discarding every-
thing apart from the last component of the linear nested sequents, and trans-
lating blocks of modal rules into the corresponding modal sequent rules. E.g.,
a block consisting of an application of OT followed by n applications of O¢
and an application of OF is translated into an application of the rule (Mn). The
propositional rules only work on the last component and never inside the nesting
/™ resp. //¢ and are translated easily by the corresponding sequent rules. O

Remark 15. Tt is possible to consider linear nested sequent calculi for these non-
normal modal logics in which the propositional rules are not restricted to their
end-active versions. In this case, soundness can be shown by a permutation-of-
rules argument, similar to the argument for levelled derivations in [11], using
“levelling-preserving” invertibility of the propositional rules.

The modal FLLS rules for the non-monotone non-normal modal logics are given in
Fig. 15, writing R. for the relation corresponding to /¢ The propositional rules
are those of FLLSk (Fig.6). The systems for monotone logics are constructed
similarly.



Proof Search in Nested Sequent Calculi 571

YRmlz,wl § I X, wiA v z2:A4 YRz M I X,z A+ Y4 yRw ) INX P Y,w:Asd

xRyl U I;X F4,y:0A k YRmlzow] U I,y:0A; X+ Y3 4 L
YRmlzowl U I';X,2:Ar Y54 yRw M I Xk Y,w:A 4 e
YRulz,w] | Iy:0A; X+ Y;4 L

FLLSe {og0Op}  FLLSgc {og 07,0 )

Fig. 15. The modal FLLS rules for non-monotone non-normal modal logics

6 Automatic Proof Search in Linear Nested Sequents

The method for constructing focused systems from Sect.4 generates optimal
systems, in the sense that proof search complexity matches exactly that of the
original sequent calculi. We will now go one step further and exploit the fact that
these calculi sport separate left and right introduction rules for the modalities
to present a systematic way of encoding labelled line nested sequents in linear
logic. This enables us to both: (i) use the rich linear logic meta-level theory in
order to reason about the specified systems; and (ii) use a linear logic prover in
order to do automatic proof search in those systems.

Observe that, while the goal in (ii) is also achieved by implementing the
focused versions of the various systems case by case, using a meta-level frame-
work like linear logic allows the use of a single prover for various logics: all one
has to do is to change the theory, i.e., the specified introduction clauses. The
implementation of a number of specified systems is available online at http://
subsell.logic.at/nestLL/.

6.1 From Sequent Rules to Linear Logic Clauses

We now consider focused linear logic (LLF) as a “meta-logic” and the formulae
of a labelled modal logic as the “object-logic” and then illustrate how sets of
bipoles in linear logic can be used to specify sequent calculi for the object-logic.
Since we follow mostly the procedure of [13], here we only give a general idea.

Specifying Sequents. Let obj be the type of object-level formulae and let
|-] and [-] be two meta-level predicates on these, i.e., both of type obj — o.
Object-level sequents of the form By, ..., B, F Cy,...,Cy, (where n,m > 0) are
specified as the multiset |B1],...,[Bn],[C1],...,[Cp] within the LLF proof
system. The |-] and [-] predicates identify which object-level formulas appear
on which side of the sequent — brackets down for left (useful mnemonic: | for
“left”) and brackets up for right. Finally, binary relations R are specified by a
meta-level atomic formula of the form R(, ).

Specifying Inference Rules. Inference rules are specified by a re-writing
clause that replaces the active formulae in the conclusion by the active for-
mulae in the premises. The linear logic connectives indicate how these object
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level formulae are connected: contexts are copied (&) or split (®), in different
inference rules (®) or in the same sequent (%). For example, the specification of
(a representative sample of) the rules of LLSk are

(init) 3A,z.|z:A]T ® [z:A]* ® atomic(A)

(N HA,B,I.I_Q}:A/\BJL@L(TIAJ ® |z: B

(Ar) 3A,B,z.Jx: A/\31L ® [z:A] & [z:B]

(Or) 3A,B,x.[z:04]" ®Vy.([y: A] BR(x,y)) ® I2.R(z, )"
(Or) 3A,B,x.|z:0A" @ 3y.(ly: Al BR(z,y)) ® R(z,y)*

The correspondence between focusing on a formula and an induced big-step
inference rule is particularly interesting when the focused formula is a bipole.
Roughly speaking, bipoles are positive formulae in which no positive connective
can be in the scope of a negative one (see [13, Definition 3]). Focusing on such
a formula will produce a single positive and a single negative phase. This two-
phase decomposition enables the adequate capturing of the application of an
object-level inference rule by the meta-level logic. For example, focusing on the
bipole clause (Og) will produce the derivation

;A Ty Al R(,y))
m BN LA BR@y) CRRERN
U; A 3A, B.[x:0A1 @ Vy.([y: A] BR(z,y)) ® 32.R(z,7)*

3. €]

where A = [2:0A] U R(z,2) U A’, and m and 7o are, respectively,

Il [3311]

U [2:0A] |} [z:0A]* VU R(z,7) | 32.R(z,z)*

This one-step focused derivation will: (a) consume [z : OA] and R(z,x); (b)
create a fresh label y; and (c) add [y: A] and R(z,y) to the context. Observe
that this matches exactly the application of the object-level rule Og.

When specifying a system (logical, computational, etc.) into a meta level
framework, it is desirable and often mandatory that the specification is faithful,
that is, one step of computation on the object level should correspond to one
step of logical reasoning in the meta level. This is what is called adequacy [15].

@) [x:oB1*e@VyWz.(y: B] Blz: Bl BRe(x,y,2) ® z.R(z, x)*
@)  |lx:DAlt ®Iydz.((ly : OA] BR(x,y)® ([z: 0A1 BR(x,2) ® Re(x,y,2)*Y)
(0%  Lx:DAl* @ Iydz.((ly : DA] B R:(x,,2) ® ([z : OAT B R(x,2)) ® Ro(x,y,2)")

Fig.16. The LLF specification of the modal rules of LLSgc for the logic EC from
Sect. 5.2.

Definition 16. A specification of an object sequent system is adequate if prov-
ability is preserved for (open) derivations, such as inference rules themselves.
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Figure 16 shows adequate specifications in LLF of the labelled systems for the
logic EC. These specifications can be used for automatic proof search as illus-
trated by the following theorem which is shown readily using the methods in [13].

Theorem 17. Let L be a LLS system and let L be the theory given by the clauses
of an adequate specification of the inference rules of L. A sequent R,I' = A 1is
provable in L if and only if L; R A | '], [A] is provable in LLF.

It is an easy task to show that all the specifications shown in this paper are
adequate.

Specifying Modalities. The reason why the specifications in LLF and the
construction of focused systems for LLS systems work rather well is the fact that
the LNS modal rules only manipulate a fixed number of principal formulae, i.e.,
one can choose some formulae and replace them with some other formulae. If
there are no principal formulae, or if the object rule is context dependent, then
proposing such encodings or a neat notion of focusing becomes tricky, as it is
often the case with sequent systems for modal logics. In [16] linear logic with
subexponentials (SELL) was used as a framework for specifying a number of
modal logics. Unfortunately, the encodings are far from natural, and cannot be
automated. Thus, in our opinion, the use of linear nested systems constitutes a
significant step towards defining efficient methods for proof search, but also the
construction of automatic provers for modal logics.

7 Concluding Remarks and Future Work

In this work we used the correspondence between linear nested sequents and
labelled line sequents to (a) propose focused nested sequent systems for a num-
ber of modal logics (including a non-trivial bimodal logic and non-normal log-
ics) which match the complexity of existing sequent calculi; and (b) specify the
labelled systems in linear logic, thereby obtaining automatic provers for all of
them. This not only constitues a significant step towards a better understanding
of proof theory for modal logics in general, but also opens an avenue for research
in proof search for a broad set of systems (not only modal).

One natural line of investigation concerns the applicability of this approach
to logics based on non-classical propositional logic such as constructive modal
logics. Moreover, we would like to understand whether our methods work for
“proper” nested sequent calculi, i.e., calculi for logics which are not based on a
cut-free sequent calculus, such as the calculi for K5 or KB [2]. Finally, it might
be possible to automatically extract focused systems from LLF specifications. It
would be rather interesting to compare these systems with ours.
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