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Abstract. In this paper, we propose a unified framework for designing
static analysers based on program synthesis. For this purpose, we identify
a fragment of second-order logic with restricted quantification that is
expressive enough to capture numerous static analysis problems (e.g.
safety proving, bug finding, termination and non-termination proving,
superoptimisation). We call this fragment the synthesis fragment. We
build a decision procedure for the synthesis fragment over finite domains
in the form of a program synthesiser. Given our initial motivation to
solve static analysis problems, this synthesiser is specialised for such
analyses. Our experimental results show that, on benchmarks capturing
static analysis problems, our program synthesiser compares positively
with other general purpose synthesisers.

1 Introduction

Fundamentally, every static program analysis is searching for a program proof.
For safety analysers this proof takes the form of a program invariant [1], for bug
finders it is a counter-model [2], for termination analysis it can be a ranking
function [3], whereas for non-termination it is a recurrence set [4]. Finding each
of these proofs was subject to extensive research resulting in a multitude of
specialised techniques.

In this paper, we propose a unified framework for designing static analy-
sers. This framework allows implementing new analyses easily by only providing
a description of the corresponding program proofs. This essentially enables a
declarative way of designing static analyses, where we specify what we want to
achieve rather than the details of how to achieve it.

The theoretical basis for this framework is a fragment of second-order logic
with restricted quantification that is expressive enough to capture numerous
static analysis problems (e.g. safety proving, bug finding, termination and non-
termination proving, superoptimisation). This fragment is decidable over finite
domains and we build a decision procedure for it based on program synthesis.
Accordingly, we call this fragment the synthesis fragment.

This research was supported by ERC project 280053 (CPROVER).

c© Springer-Verlag Berlin Heidelberg 2015
M. Davis et al. (Eds.): LPAR-20 2015, LNCS 9450, pp. 483–498, 2015.
DOI: 10.1007/978-3-662-48899-7 34



484 C. David et al.

In our framework, finding a program proof for some static analysis problem
amounts to finding a satisfying model for a synthesis formula, where the second-
order entities denote the program proofs. If the synthesis formula is satisfiable,
a solution consists of a satisfying assignment from the second order variables to
functions over finite domains. Every function over finite domains is computed
by some program that can be synthesised.

Our program synthesiser is specialised for program analysis in the following
three dimensions (identified as the three key dimensions in program synthesis [5]):

1. Expression of User Intent: Our specification language is a fragment of C,
which results in concise specifications of static analyses. Using our tool to build a
program analyser only requires providing a generic specification of the problem
to solve. The programs to be analysed do not need to be modified, symbolically
executed or compiled to an intermediate language. Our experiments show that
this results in specifications that are an order of magnitude smaller than the
equivalent specifications with other general purpose program synthesisers.

2. Space of Programs Over Which to Search: The language in which we
synthesise our programs is universal, i.e. every finite function is computed by
at least one program in our language. Our solution language also has first-class
support for programs computing multiple outputs, as well as constants. The for-
mer allows the direct encoding of lexicographic ranking functions of unbounded
dimension, whereas the latter improves the efficiency when synthesising pro-
grams with non-trivial constants (as shown by our experimental results).

3. The Search Technique: An important aspect of our synthesis algorithm is
how we search the space of candidate programs. We parameterise the solution
language, which induces a lattice of progressively more expressive languages. As
well as giving us an automatic search procedure, this parametrisation greatly
increases the efficiency of our system since languages low down the lattice are
very easy to decide safety for. Consequently, our solver’s runtime is heavily
influenced by the length of the shortest proof, i.e. the Kolmogorov complexity of
the problem. If a short proof exists, then the solver will find it quickly. This is
particularly useful for program analysis problems, where, if a proof exists, then
most of the time many proofs exist and some are short ([6] relies on a similar
remark about loop invariants).

Our Contributions.

– We define the synthesis fragment and show that its decision problem over
finite domains is NEXPTIME-complete (Sect. 2).

– By using program synthesis, we design a decision procedure for the syn-
thesis fragment. The resulting program synthesiser uses a combination of
bounded model checking, explicit-state model checking and genetic program-
ming (Sect. 5).

– We propose the use of second-order tautologies for avoiding unsatisfiable
instances when solving program analysis problems with program synthesis
(Sect. 8).
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– We implemented the program synthesiser and tried it on a set of static analysis
problems. Our experimental results show that, on benchmarks generated from
static analysis, our program synthesiser compares positively with other general
purpose synthesisers (Sect. 9).

Related Work. A recent successful approach to program synthesis is Syntax
Guided Synthesis (SyGuS) [7]. The SyGuS synthesisers supplement the logi-
cal specification with a syntactic template that constrains the space of allowed
implementations. Thus, each semantic specification is accompanied by a syntac-
tic specification in the form of a grammar. In contrast to SyGuS, our program
synthesiser is optimised for program analysis according to the three aforemen-
tioned key dimensions.

Other second-order solvers are introduced in [8,9]. As opposed to ours, these
are specialised for Horn clauses and the logic they handle is undecidable.
Wintersteiger et al. present in [10] a decision procedure for a logic related to
the synthesis fragment, the Quantified bit-vector logic, which is a many sorted
first-order logic formula where the sort of every variable is a bit-vector sort. It
is possible to reduce formulae in the synthesis fragment over finite domains to
Effectively Propositional Logic [11], but the reduction would require additional
axiomatization and would increase the search space, thus defeating the efficiency
we are aiming to achieve.

2 The Synthesis Fragment

In this section, we identify a fragment of second-order logic with a constrained
use of quantification that is expressive enough to encode numerous static analysis
problems. We will suggestively refer to the fragment as the synthesis fragment :

Definition 1 (Synthesis Fragment (SF )). A formula is in the synthesis
fragment iff it is of the form

∃P1 . . . Pm.Q1x1 . . . Qnxn.σ(P1, . . . , Pm, x1, . . . , xn)

where the Pi range over functions, the Qi are either ∃ or ∀, the xi range over
ground terms and σ is a quantifier-free formula.

If a pair (�P , �x) is a satisfying model for the synthesis formula, then we write
(�P , �x) |= σ. For the remainder of the presentation, we drop the vector notation
and write x for �x, with the understanding that all quantified variables range over
vectors.

3 Program Analysis Specifications in the Synthesis
Fragment

Program analysis problems can be reduced to the problem of finding solutions
to a second-order constraint [8,12,13]. The goal of this section is to show that
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the synthesis fragment is expressive enough to capture many interesting such
problems. For brevity reasons, we will only express safety, termination and non-
termination. When we describe analyses involving loops, we will characterise
each loop as having initial state I, guard G and transition relation B.

Safety Invariants. Given a safety assertion A, a safety invariant is a set of
states S which is inductive with respect to the program’s transition relation,
and which excludes an error state. A predicate S is a safety invariant iff it
satisfies the following criteria:

∃S.∀x, x′.I(x) → S(x) ∧ (1)
S(x) ∧ G(x) ∧ B(x, x′) → S(x′) ∧ (2)
S(x) ∧ ¬G(x) → A(x) (3)

(1) says that each state reachable on entry to the loop is in the set S, and in
combination with (2) shows that every state that can be reached by the loop is
in S. The final criterion (3) says that if the loop exits while in an S-state, the
assertion A is not violated.

Termination and Non-termination. As shown in [13], termination of a loop can
be encoded as the following formula, where W is an inductive invariant of the
loop that is established by the initial states I if the loop guard G is met, and R
is a ranking function as restricted by W :

∃R,W.∀x, x′.I(x) ∧ G(x) → W (x) ∧
G(x) ∧ W (x) ∧ B(x, x′) → W (x′) ∧ R(x)>0 ∧ R(x)>R(x′)

Similarly, non-termination can be expressed in the synthesis fragment as follows:

∃N,C, x0.∀x.N(x0) ∧ N(x) → G(x) ∧ N(x) → B(x,C(x)) ∧ N(C(x))

Here, N denotes a recurrence set, i.e. a nonempty set of states such that for
each s ∈ N there exists a transition to some s′ ∈ N , and C is a Skolem function
that chooses the successor x′. More details on the formulations for termination
and non-termination can be found in [13].

4 The Synthesis Fragment over Finite Domains

When interpreting the ground terms over a finite domain D, the synthesis frag-
ment is decidable and its decision problem is NEXPTIME-complete. We use the
notation SFD to denote the synthesis fragment over a finite domain D.

Theorem 1 (SFD is NEXPTIME-Complete). For an instance of
Definition 1 with n first-order variables, where the ground terms are interpreted
over D, checking the truth of the formula is NEXPTIME-complete.

Proof. In the extended version [14].
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Next, we are concerned with building a solver for SFD. A satisfying model for
a formula in SFD is an assignment mapping each of the second-order variables
to some function of the appropriate type and arity. When deciding whether a
particular SFD instance is satisfiable, we should think about how solutions are
encoded and in particular how a function is to be encoded. The functions all
have a finite domain and co-domain, so their canonical representation would
be a finite set of ordered pairs. Such a set is exponentially large in the size of
the domain, so we would prefer to work with a more compact representation if
possible.

We will generate finite state programs that compute the functions and repre-
sent these programs as finite lists of instructions in SSA form. This representa-
tion has the following properties, proofs for which can be found in the extended
version [14].

Theorem 2. Every total, finite function is computed by at least one finite state
program.

Theorem 3. Furthermore, this representation as finite lists of instructions in
SSA form is optimally concise – there is no encoding that gives a shorter repre-
sentation to every function.

Finite State Program Synthesis. To formally define the finite state synthesis
problem, we need to fix some notation. We will say that a program P is a finite
list of instructions in SSA form, where no instruction can cause a back jump,
i.e. our programs are loop free and non-recursive. Inputs x to the program are
drawn from some finite domain D. The synthesis problem is given to us in the
form of a specification σ which is a function taking a program P and input
x as parameters and returning a boolean telling us whether P did “the right
thing” on input x. Basically, the finite state synthesis problem checks the truth
of Definition 2.

Definition 2 (Finite Synthesis Formula).

∃P.∀x ∈ D.σ(P, x)

To express the specification σ, we introduce a function exec(P, x) that returns
the result of running program P with input x. Since P cannot contain loops or
recursion, exec is a total function.

Example 1. The following finite state synthesis problem is satisfiable:

∃P.∀x ∈ N8.exec(P, x) ≥ x

One such program P satisfying the specification is return 8, which just
returns 8 for any input.

We now present our main theorem, which says that satisfiability of SFD can
be reduced to finite state program synthesis. The proof of this theorem can be
found in the extended version [14].
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Theorem 4 (SFD is Polynomial Time Reducible to Finite Synthesis).
Every instance of Definition 1, where the ground terms are interpreted over D
is polynomial time reducible to a finite synthesis formula (i.e. an instance of
Definition 2).

Corollary 1. Finite-State Program Synthesis is NEXPTIME-Complete.

We are now in a position to sketch the design of a decision procedure for SFD: we
will convert the SFD satisfiability problem to an equisatisfiable finite synthesis
problem, which we will then solve with a finite state program synthesiser. This
design will be elaborated in Sect. 5.

5 Deciding SFD via Finite-State Program Synthesis

In this section we will present a sound and complete algorithm for finite-state
synthesis that we use to decide the satisfiability of formulae in SFD. We begin by
describing a general purpose synthesis procedure (Sect. 5.1), then detail how this
general purpose procedure is instantiated for synthesising finite-state programs.
We then describe the algorithm we use to search the space of possible programs
(Sects. 5.3 and 6).

5.1 General Purpose Synthesis Algorithm

Algorithm 1. Abstract refinement algorithm

1: function synth(inputs)
2: (i1, . . . , iN ) ← inputs
3: query ← ∃P.σ(i1, P )∧. . .∧σ(iN , P )
4: result ← decide(query)
5: if result.satisfiable then
6: return result.model
7: else
8: return UNSAT

9: function verif(P)
10: query ← ∃x.¬σ(x, P )
11: result ← decide(query)
12: if result.satisfiable then
13: return result.model
14: else
15: return valid

16: function refinement loop
17: inputs ← ∅
18: loop
19: candidate ← synth(inputs)
20: if candidate = UNSAT then
21: return UNSAT
22: res ← verif(candidate)
23: if res = valid then
24: return candidate
25: else
26: inputs ← inputs ∪ res

We use Counterexample Guided Inductive Synthesis (CEGIS) [15,16] to find
a program satisfying our specification. Algorithm1 is divided into two proce-
dures: synth and verif, which interact via a finite set of test vectors inputs.
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The synth procedure tries to find an existential witness P that satisfies the
partial specification: ∃P.∀x ∈ inputs.σ(x, P )

If synth succeeds in finding a witness P , this witness is a candidate solution
to the full synthesis formula. We pass this candidate solution to verif which
determines whether it does satisfy the specification on all inputs by checking
satisfiability of the verification formula: ∃x.¬σ(x, P )

If this formula is unsatisfiable, the candidate solution is in fact a solution to
the synthesis formula and so the algorithm terminates. Otherwise, the witness x
is an input on which the candidate solution fails to meet the specification. This
witness x is added to the inputs set and the loop iterates again. It is worth
noting that each iteration of the loop adds a new input to the set of inputs
being used for synthesis. If the full set of inputs is finite, this means that the
refinement loop can only iterate a finite number of times.

5.2 Finite-State Synthesis

We will now show how the generic construction of Sect. 5.1 can be instantiated to
produce a finite-state program synthesiser. A natural choice for such a synthesiser
would be to work in the logic of quantifier-free propositional formulae and to
use a propositional SAT or SMT-BV solver as the decision procedure. However
we propose a slightly different tack, which is to use a decidable fragment of C
as a “high level” logic. We call this fragment C−.

The characteristic property of a C− program is that safety can be decided
for it using a single query to a Bounded Model Checker. A C− program is just
a C program with the following syntactic restrictions:

(i) all loops in the program must have a constant bound;
(ii) all recursion in the program must be limited to a constant depth;
(iii) all arrays must be statically allocated (i.e. not using malloc), and be of

constant size.

C− programs may use nondeterministic values, assumptions and arbitrary-width
types.

Since each loop is bounded by a constant, and each recursive function call
is limited to a constant depth, a C− program necessarily terminates and in fact
does so in O(1) time. If we call the largest loop bound k, then a Bounded Model
Checker with an unrolling bound of k will be a complete decision procedure for
the safety of the program. For a C− program of size l and with largest loop
bound k, a Bounded Model Checker will create a SAT problem of size O(lk).
Conversely, a SAT problem of size s can be converted trivially into a loop-free
C− program of size O(s). The safety problem for C− is therefore NP-complete,
which means it can be decided fairly efficiently for many practical instances.

5.3 Candidate Generation Strategies

A candidate solution P is written in a simple RISC-like language L, whose syntax
is given in the extended version [14]. We supply an interpreter for L which is
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written in C−. The specification function σ will include calls to this interpreter,
by which means it will examine the behaviour of a candidate L program.

For the synth portion of the CEGIS loop, we construct a C− program
synth.c which takes as parameters a candidate program P and test inputs.
The program contains an assertion which fails iff P meets the specification for
each of the inputs. Finding a new candidate program is then equivalent to check-
ing the safety of synth.c. There are many possible strategies for finding these
candidates; we employ the following strategies in parallel:

(i) Explicit Proof Search. The simplest strategy for finding candidates is to just
exhaustively enumerate them all, starting with the shortest and progressively
increasing the number of instructions.
(ii) Symbolic Bounded Model Checking. Another complete method for generating
candidates is to simply use BMC on the synth.c program.
(iii) Genetic Programming and Incremental Evolution. Our final strategy is
genetic programming (GP) [17,18]. GP provides an adaptive way of searching
through the space of L-programs for an individual that is “fit” in some sense. We
measure the fitness of an individual by counting the number of tests in inputs
for which it satisfies the specification.

To bootstrap GP in the first iteration of the CEGIS loop, we generate a
population of random L-programs. We then iteratively evolve this population
by applying the genetic operators crossover and mutate. Crossover com-
bines selected existing programs into new programs, whereas mutate randomly
changes parts of a single program. Fitter programs are more likely to be selected.

Rather than generating a random population at the beginning of each sub-
sequent iteration of the CEGIS loop, we start with the population we had at
the end of the previous iteration. The intuition here is that this population con-
tained many individuals that performed well on the k inputs we had before,
so they will probably continue to perform well on the k + 1 inputs we have
now. In the parlance of evolutionary programming, this is known as incremental
evolution [19].

6 Searching the Space of Possible Solutions

An important aspect of our synthesis algorithm is the manner in which we search
the space of candidate programs. The key component is parametrising the lan-
guage L, which induces a lattice of progressively more expressive languages. We
start by attempting to synthesise a program at the lowest point on this lattice
and increase the parameters of L until we reach a point at which the synthesis
succeeds. Note that this parametrisation applies to all three strategies in the
previous section.

As well as giving us an automatic search procedure, this parametrisation
greatly increases the efficiency of our system since languages low down the lattice
are very easy to decide safety for. If a program can be synthesised in a low-
complexity language, the whole procedure finishes much faster than if synthesis
had been attempted in a high-complexity language.
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Fig. 1. Decision tree for increasing parameters of L.

6.1 Parameters of Language L
Program Length: l. The first parameter we introduce is program length, denoted
by l. At each iteration we synthesise programs of length exactly l. We start with
l = 1 and increment l whenever we determine that no program of length l can
satisfy the specification. When we do successfully synthesise a program, we are
guaranteed that it is of minimal length since we have previously established that
no shorter program is correct.

Word Width: w. An L-program runs on a virtual machine (the L-machine) that
is parametrised by the word width, that is, the number of bits in each internal
register and immediate constant.

Number of Constants: c. Instructions in L take up to three operands. Since any
instruction whose operands are all constants can always be eliminated (since its
result is a constant), we know that a loop-free program of minimal length will
not contain any instructions with two constant operands. Therefore the number
of constants that can appear in a minimal program of length l is at most l. By
minimising the number of constants appearing in a program, we are able to use
a particularly efficient program encoding that speeds up the synthesis procedure
substantially.

6.2 Searching the Program Space

The key to our automation approach is to come up with a sensible way in
which to adjust the L-parameters in order to cover all possible programs. Two
important components in this search are the adjustment of parameters and the
generalisation of candidate solutions. We discuss them both next.
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Adjusting the Search Parameters. After each round of synth, we may need to
adjust the parameters. The logic for these adjustments is given as a tree in Fig. 1.

Whenever synth fails, we consider which parameter might have caused the
failure. There are two possibilities: either the program length l was too small,
or the number of allowed constants c was. If c < l, we just increment c and try
another round of synthesis, but allowing ourselves an extra program constant. If
c = l, there is no point in increasing c any further. This is because no minimal
L-program has c > l, for if it did there would have to be at least one instruction
with two constant operands. This instruction could be removed (at the expense
of adding its result as a constant), contradicting the assumed minimality of the
program. So if c = l, we set c to 0 and increment l, before attempting synthesis
again.

If synth succeeds but verif fails, we have a candidate program that is
correct for some inputs but incorrect on at least one input. However, it may be
the case that the candidate program is correct for all inputs when run on an
L-machine with a small word size. Thus, we try to generalise the solution to a
bigger word size, as explained in the next paragraph. If the generalisation is able
to find a correct program, we are done. Otherwise, we need to increase the word
width of the L-machine we are currently synthesising for.

Generalisation of Candidate Solutions. It is often the case that a program which
satisfies the specification on an L-machine with w = k will continue to satisfy
the specification when run on a machine with w > k. For example, the program
in Fig. 2 isolates the least-significant bit of a word. This is true irrespective of
the word size of the machine it is run on – it will isolate the least-significant bit
of an 8-bit word just as well as it will a 32-bit word. An often successful strategy
is to synthesise a program for an L-machine with a small word size and then to
check whether the same program is correct when run on an L-machine with a
full-sized word.

The only wrinkle here is that we will sometimes synthesise a program con-
taining constants. If we have synthesised a program with w = k, the constants
in the program will be k-bits wide. To extend the program to an n-bit machine
(with n > k), we need some way of deriving n-bit-wide numbers from k-bit ones.
We have several strategies for this and just try each in turn. Our strategies are
shown in Fig. 3. BV(v, n) denotes an n-bit wide bitvector holding the value v
and b · c means the concatenation of bitvectors b and c. For example, the first
rule says that if we have the 8-bit number with value 8, and we want to extend
it to some 32-bit number, we’d try the 32-bit number with value 32. These six
rules are all heuristics that we have found to be fairly effective in practice.

Fig. 2. A tricky bitvector program
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Fig. 3. Rules for extending an m-bit wide number to an n-bit wide one.

6.3 Stopping Condition for Unsatisfiable Specifications

If a specification is unsatisfiable, we would still like our algorithm to terminate
with an “unsatisfiable” verdict. To do this, we can observe that any total function
taking n bits of input is computed by some program of at most 2n instructions
(a consequence of Theorems 2 and 3). Therefore every satisfiable specification
has a solution with at most 2n instructions. This means that if we ever need to
increase the length of the candidate program we search for beyond 2n, we can
terminate, safe in the knowledge that the specification is unsatisfiable.

Although this gives us a theoretical termination condition for unsatisfiable
instances, in practice the program synthesiser may not terminate. In order to
avoid such cases, we use the approach described in Sect. 8.

7 Soundness, Completeness and Efficiency

We will now state soundness and completeness results for the SFD solver. Proofs
for each of these theorems can be found in the extended version [14].

Theorem 5. Algorithm1 is sound – if it terminates with witness P , then P |= σ.

Theorem 6. Algorithm1 with the stopping condition described in Sect. 6.3 is
complete when instantiated with C− as a background theory – it will terminate
for all specifications σ.

Since safety of C− programs is decidable, Algorithm 1 is sound and complete when
instantiated with C− as a background theory and using the stopping condition of
Sect. 6.3. This construction therefore gives as a decision procedure for SFD.

Runtime as a Function of Solution Size. We note that the runtime of our solver
is heavily influenced by the length of the shortest program satisfying the spec-
ification, since we begin searching for short programs. We will now show that
the number of iterations of the CEGIS loop is a function of the Kolmogorov
complexity of the synthesised program. Let us first recall the definition of the
Kolmogorov complexity of a function f :

Definition 3 (Kolmogorov Complexity). The Kolmogorov complexity K(f)
is the length of the shortest program that computes f .

We can extend this definition slightly to talk about the Kolmogorov complexity
of a synthesis problem in terms of its specification:
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Definition 4 (Kolmogorov Complexity of a Synthesis Problem). The
Kolmogorov complexity of a program specification K(σ) is the length of the short-
est program P such that P is a witness to the satisfiability of σ.

Let us consider the number of iterations of the CEGIS loop n required for a
specification σ. Since we enumerate candidate programs in order of length, we
are always synthesising programs with length no greater than K(σ) (since when
we enumerate the first correct program, we will terminate). So the space of
solutions we search over is the space of functions computed by L-programs of
length no greater than K(σ). Let’s denote this set L(K(σ)). Since there are
O(2K(σ)) programs of length K(σ) and some functions will be computed by
more than one program, we have |L(K(σ))| ≤ O(2K(σ)).

Each iteration of the CEGIS loop distinguishes at least one incorrect function
from the set of correct functions, so the loop will iterate no more than |L(K(σ))|
times. Therefore another bound on our runtime is NTIME

(
2K(σ)

)
.

8 Avoiding Unsatisfiable Instances

As described in the previous section, our program synthesiser is efficient at find-
ing satisfying assignments, when such assignments have low Kolmogorov com-
plexity. However, if a formula is unsatisfiable, the procedure may not terminate in
practice. This illustrates one of the current shortcomings of our program synthe-
sis based decision procedure: we can only conclude that a formula is unsatisfiable
once we have examined candidate solutions up to a very high length bound.

However, we note that many interesting properties of programs can be
expressed as tautologies. For illustration, let us consider that we are trying to
prove that a loop L terminates. Thus, as shown in Sect. 3, we can construct two
formulae: one that is satisfiable iff L is terminating and another that is satisfi-
able iff L is non-terminating. We will call these formulae φ and ψ, respectively,
and we denote by PN and PT the proofs of non-termination and termination,
respectively: ∃PT .∀x, x′.φ(PT , x, x′) and ∃PN .∀x.ψ(PN , x).

We can combine these: (∃PT .∀x, x′.φ(PT , x, x′)) ∨ (∃PN .∀x. ψ(PN , x)).
Which simplifies to: ∃PT , PN .∀x, x′, y. φ(PT , x, x′) ∨ ψ(PN , y).
Since L either terminates or does not terminate, this formula is a tautology

in the synthesis fragment. Thus, either PN or PT must exist. Similarly, when
proving safety, a program is either safe of has a bug. In this manner we avoid the
bad case where we try to synthesise a solution for an unsatisfiable specification.

9 Experiments

We implemented our decision procedure for SFD as the Kalashnikov tool. We
used Kalashnikov to solve formulae generated from a variety of problems taken
from superoptimisation, code deobfuscation, floating point verification, ranking
function and recurrent set synthesis, safety proving, and bug finding. The super-
optimisation and code deobfuscation benchmarks were taken from the experi-
ments of [20]; the termination benchmarks were taken from SVCOMP’15 [21]
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Table 1. Experimental results.

Category #Benchmarks #Solved Avg.
solution
size

Avg. iterations Avg.
time
(s)

Total
time
(s)

Superoptimisation 29 22 4.1 2.7 7.9 166.1

Termination 47 35 5.7 14.4 11.2 392.9

Safety 20 18 8.3 7.1 11.3 203.9

Total 96 75 5.9 9.2 10.3 762.9

Table 2. Statistics about the experimental results.

and they include the experiments of [13]; the safety benchmarks are taken from
the experiments of [22].

We ran our experiments on a 4-core, 3.30 GHz Core i5 with 8 GB of RAM.
Each benchmark was run with a timeout of 180 s. The results are shown in
Table 1. For each category of benchmarks, we report the total number of bench-
marks in that category, the number we were able to solve within the time limit,
the average solution size (in instructions), the average number of iterations of
the CEGIS loop, the average time and total time taken. The deobfuscation and
floating point benchmarks are considered together with the superoptimisation
ones.

For the termination benchmarks, Kalashnikov must prove that the input
program is either terminating or non-terminating, i.e. it must synthesise either
ranking functions and supporting invariants, or recurrence sets. For the safety
benchmarks, Kalashnikov must prove that the program is either safe or unsafe.
For this purpose, it synthesises either a safety invariant or a compact represen-
tations of an error trace.

Discussion of the Experimental Results. The timings show that for the instances
where we can find a satisfying assignment, we tend to do so quite quickly (on
the order of a few seconds). Furthermore the programs we synthesise are often
short, even when the problem domain is very complex, such as for liveness and
safety.

To help understand the role of the different solvers involved in the synthesis
process, we provide a breakdown of how often each solver “won”, i.e. was the
first to return an answer. This breakdown is given in Table 2a. We see that GP
and explicit account for the great majority of the responses, with the load spread
fairly evenly between them. This distribution illustrates the different strengths
of each solver: GP is very good at generating candidates, explicit is very good at
finding counterexamples and CBMC is very good at proving that candidates are
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correct. The GP and explicit numbers are similar because they are approximately
“number of candidates found” and “number of candidates refuted” respectively.
The CBMC column is approximately “number of candidates proved correct”.
The spread of winners here shows that each of the search strategies is contribut-
ing something to the overall search and that the strategies are able to co-operate
with each other.

To help understand where the time is spent in our solver, Table 2b how much
time is spent in synth, verif and constant generalization. Note that generaliza-
tion counts towards verif’s time. We can see that synthesising candidates takes
much longer than verifying them, which suggests that improved procedures for
candidate synthesis will lead to good overall performance improvements. How-
ever, the times considered for this table include all the runs that timed out, as
well as those that succeeded. We have observed that runs which time out spend
more time in synthesis than runs which succeed, so the distribution here is biased
by the cost of timeouts.

9.1 Comparison to SyGuS

In order to compare Kalashnikov to other program synthesisers, we translated
the 20 safety benchmarks into the SyGuS format [7] (for the bitvector theory)
and ran the enumerative CEGIS solver eSolver, winner of the SyGuS 2014
competition (taken from the SyGuS Github repository on 5/7/2015), as well as
the program synthesiser in CVC4 [23] (the version for the SyGuS 2015 competi-
tion on the StarExec platform [24]), winner of the SyGuS 2015 competition. We
could not compare against ICE-DT [25], the winner of the invariant generation
category in the SyGuS 2015 competition, as it does not seem to offer support
for bitvectors. Our comparison only uses 20 of the 96 benchmarks as we had to
manually convert from our specification format (a subset of C) into the SyGuS
format. Moreover, our choice of benchmarks was also restricted by the fact that
we could not express lexicographic ranking functions of unbounded dimension
in the SyGuS format, which we require for our termination benchmarks.

The results of these experiments are given in Table 3, which contains the
number of benchmarks solved correctly, the number of timeouts, the number of
crashes (exceptions thrown by the solver), the mean time to successfully solve
and the total number of lines in the 20 specifications.

Since the eSolver tool crashed on many of the instances we tried, we reran
the experiments on the StarExec platform to check that we had not made mis-
takes setting up our environment, however the same instances also caused excep-
tions on StarExec.

An important point to notice in Table 3 is that Kalashnikov specifications
are significantly more concise than SyGuS specifications, as witnessed by the
total size of the specifications: the Kalashnikov specifications are around 11 %
of the size of the SyGuS ones. Overall, we can see that Kalashnikov performs
better on these benchmarks than eSolver and CVC4, which validates our claim
that Kalashnikov is suitable for program analysis problems.
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Table 3. Comparison of Kalashnikov, eSolver and CVC4 on the safety benchmarks.

#Solved #TO #Crashes Avg. time (s) Spec. size

Kalashnikov 18 2 0 11.3 341

eSolver 7 5 8 13.6 3140

CVC4 5 13 2 61.7 3140

We noticed that for a lot of the cases in which eSolver and CVC4 timed out,
Kalashnikov found a solution that involved non-trivial constants.
Since the SyGuS format represents constants in unary (as chains of additions),
finding programs containing constants, or finding existentially quantified first
order variables is expensive. Kalashnikov’s strategies for finding and general-
ising constants make it much more efficient at this subtask.

10 Conclusions

We have shown that the synthesis fragment is well-suited for program verification
by using it to directly encode safety, liveness and superoptimisation properties.

We built a decision procedure for SFD via a reduction to finite state pro-
gram synthesis. The synthesis algorithm is optimised for program analysis and
uses a combination of symbolic model checking, explicit state model checking
and stochastic search. An important strategy is generalisation – we find simple
solutions that solve a restricted case of the specification, then try to generalise to
a full solution. We evaluated the program synthesiser on several static analysis
problems, showing the tractability of the approach.
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25. Garg, P., Löding, C., Madhusudan, P., Neider, D.: ICE: a robust frame-

work for learning invariants. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS,
vol. 8559, pp. 69–87. Springer, Heidelberg (2014)

http://sv-comp.sosy-lab.org/2015/
https://www.starexec.org

	Using Program Synthesis for Program Analysis
	1 Introduction
	2 The Synthesis Fragment
	3 Program Analysis Specifications in the Synthesis Fragment
	4 The Synthesis Fragment over Finite Domains
	5 Deciding SFD via Finite-State Program Synthesis
	5.1 General Purpose Synthesis Algorithm
	5.2 Finite-State Synthesis
	5.3 Candidate Generation Strategies

	6 Searching the Space of Possible Solutions
	6.1 Parameters of Language L
	6.2 Searching the Program Space
	6.3 Stopping Condition for Unsatisfiable Specifications

	7 Soundness, Completeness and Efficiency
	8 Avoiding Unsatisfiable Instances
	9 Experiments
	9.1 Comparison to SyGuS

	10 Conclusions
	References


