
Compositional Propositional Proofs

Marijn J.H. Heule1(B) and Armin Biere2

1 Department of Computer Science, The University of Texas, Austin, USA
marijn@cs.utexas.edu

2 Institute for Formal Models and Verification, JKU, Linz, Austria
biere@jku.at

Abstract. Many hard-combinatorial problems have only be solved by
SAT solvers in a massively parallel setting. This reduces the trust one
has in the final result as errors might occur during parallel SAT solving
or during partitioning of the original problem. We present a new frame-
work to produce clausal proofs for cube-and-conquer, arguably the most
effective parallel SAT solving paradigm for hard-combinatorial problems.
The framework also provides an elegant approach to parallelize the vali-
dation of clausal proofs efficiently, both in terms of run time and memory
usage. We evaluate the presented approach on some hard-combinatorial
problems and validate constructed clausal proofs in parallel.

1 Introduction

Several long-standing open problems have recently been solved with SAT solvers,
including the Erdős discrepancy conjecture [1], van der Waerden numbers [2,3],
and optimal sorting networks [4]. These problems have been open for decades
and only SAT techniques were able to make progress. Ever since the four-color
theorem was solved using heavy computer assistance [5], there have been doubts
about the correctness of such results as it is impossible for humans to verify the
proof [6]. For most impressive applications of SAT technology, proofs are not
provided, since their size would be enormous and due to the absence of validation
tools. We present a method and tools to generate and validate compositional
propositional proofs to increase confidence in the results for such problems.

Unsatisfiability proofs (or refutations) are traditionally expressed as either
resolution proofs [7] or clausal proofs [8]. A proof is a sequence of lemmas, i.e.,
redundant clauses, which when added to the formula preserve satisfiability. Reso-
lution proofs explicitly state which clauses should be resolved to derive a lemma,
making them too verbose for hard problems. This detailed information is absent
in clausal proofs, leaving it up to the clausal proof checker to determine why a
lemma is redundant. Practically all top-tier SAT solvers support clausal proof
logging in the DRAT format [9], which was used to check the SAT Competition
2014 results. This paper focuses on how to make compositional DRAT proofs.

This work was supported by the Austrian Science Fund (FWF) through the national
research network RiSE (S11408-N23), DARPA contract number N66001-10-2-4087,
and the National Science Foundation under grant number CCF-1526760.

c© Springer-Verlag Berlin Heidelberg 2015
M. Davis et al. (Eds.): LPAR-20 2015, LNCS 9450, pp. 444–459, 2015.
DOI: 10.1007/978-3-662-48899-7 31



Compositional Propositional Proofs 445

Classical propositional proof systems, such as resolution, are of course com-
positional, in the sense that concatenating two proofs derives the union of the
conclusions of both proofs. However, clausal proofs also support clause deletion
to realize efficient validation [10] and expressing techniques that do not pre-
serve logical equivalence — in contrast to resolution proofs. Thus, we must come
up with a compositional proof system for clausal proofs that includes deletion
information and operations that do not preserve logical equivalence.

One of the major obstacles for checking proofs obtained from parallel solvers,
such as the proofs from portfolio solvers [11], is the huge gap between the time
to solve a problem and time to validate the corresponding proof — even with
deletion information. One reason for this gap is that the solver runs on all cores of
a machine, while a checker uses only one. We address this problem by partitioning
proofs in such a way that the validation can be performed in parallel.

The recent SAT result on the Erdős discrepancy conjecture [1] produced a 13
gigabyte clausal proof —comparable to the compressed size of all English text on
Wikipedia— and validated it using the DRATtrim checker [9]. The ability to verify
that result significantly increased the confidence with regards to its correctness.
However, for most hard-combinatorial problems that have been solved with SAT
solvers no such proof exists: e.g., van der Waerden number W (2, 6) [2] and the
optimality result of sorting networks with nine wires [4]. These problems require
enormous SAT solving time resulting in proofs that are terabytes in size.

One of the leading parallel SAT solving paradigms is cube-and-conquer [12],
which uses a lookahead solver to generate millions of cubes for a conflict-driven
clause learning (CDCL) solver. Cube-and-conquer is particularly effective on
hard-combinatorial problems where it can heavily outperform both lookahead
and CDCL solvers, even on a single core machine. We present a method which
allows to produce proofs for problems solved by parallel cube-and-conquer.

Our paper proceeds by presenting some preliminaries in Sect. 2. Section 3
introduces rules regarding compositional propositional proofs. We provide in
Sect. 4 a method to validate clausal proofs in parallel. In Sect. 5, we show how
to log proofs in parallel for cube-and-conquer solvers. Our tools are presented in
Sect. 6. We give an evaluation in Sect. 7, and we conclude in Sect. 8.

2 Preliminaries

CNF Satisfiability. For a Boolean variable x, there are two literals, the positive
literal x and the negative literal x̄. A clause is a disjunction of literals and a
CNF formula a conjunction of clauses. A clause can be seen as a finite set of
literals and a CNF formula as a finite set of clauses. A truth assignment is a
function τ that maps literals to {f , t} under the assumption τ(x) = v if and
only if τ(x̄) = ¬v. A clause C is satisfied by τ if τ(l) = t for some literal l ∈ C.
An assignment τ satisfies F if it satisfies every clause in F . Two formulas are
logically-equivalent if they are satisfied by exactly the same set of assignments,
and satisfiability-equivalent if both formulas are satisfiable or both unsatisfiable.



446 M.J.H. Heule and A. Biere

Resolution and Extended Resolution. The resolution rule states that, given
two clauses C1 = (x ∨ a1 ∨ . . . ∨ an) and C2 = (x̄ ∨ b1 ∨ . . . ∨ bm), the clause
C = (a1 ∨ . . . ∨ an ∨ b1 ∨ . . . ∨ bm), can be inferred by resolving on variable x.
We say C is the resolvent of C1 and C2. C is logically implied by any formula
containing C1 and C2. For a given CNF formula F , the extension rule [13] allows
one to iteratively add definitions of the form x := a ∧ b by adding the extended
resolution clauses (x ∨ ā ∨ b̄) ∧ (x̄ ∨ a) ∧ (x̄ ∨ b) to F , where x is a new variable
and a and b are literals in the current formula.

Unit Propagation. For a CNF formula F , unit propagation simplifies F based
on unit clauses ; that is, it repeats the following until fixpoint: if there is a unit
clause (l) ∈ F , remove all clauses that contain the literal l from the set F \ {(l)}
and remove the literal l̄ from all clauses in F . If unit propagation on formula F
produces complementary units (l) and (l̄), we say that unit propagation derives
a conflict and write F �1 ε with ε referring to the (unsatisfiable) empty clause.

Example 1. Consider the formula F = (a) ∧ (ā ∨ b) ∧ (b̄ ∨ c) ∧ (b̄ ∨ c̄). We have
(a) ∈ F , so unit propagation removes literal ā, resulting in the new unit clause
(b). After removal of the literals b̄, two complementary unit clauses (c) and (c̄)
are created. From these two units the empty clause can be derived: F �1 ε.

Clause Redundancy. A clause C is called redundant with respect to a formula
F if F ∧ {C} is satisfiability equivalent to F . A tautology is a redundant clause
that contains literals x and x̄ for some variable x. A clause C ∈ F is also
redundant if there exists a clause D ∈ F such that D ⊆ C, i.e., D subsumes C.

Asymmetric tautologies, also known as reverse unit propagation (RUP)
clauses, are the most common redundant (learned) clauses in CDCL SAT solvers.
Let C denote the conjunction of unit clauses that falsify all literals in C. A clause
C is an asymmetric tautology with respect to a CNF formula F if F ∧ C �1 ε.
Resolution asymmetric tautologies (or RAT clauses) [14] are a generalization of
both asymmetric tautologies and extended resolution clauses. A clause C has
RAT on l ∈ C (referred to as the pivot literal) with respect to a formula F if
for all D ∈ F with l̄ ∈ D, it holds that F ∧ C ∧ (D \ {(l)}) �1 ε.

Not only can RAT be computed in polynomial time, but all preprocess-
ing, inprocessing, and solving techniques in state-of-the-art SAT solvers can be
expressed in terms of addition and removal of RAT clauses [14].

Clausal Proofs. A proof of unsatisfiability (also called a refutation) is a sequence
of redundant clauses, called lemmas, containing the empty clause. There are two
prevalent types of unsatisfiability proofs: resolution proofs and clausal proofs.
Several formats have been designed for resolution proofs [7,15,16], but they all
share the same disadvantages. Resolution proofs are often huge, and it is hard
to express important techniques, such as conflict clause minimization, with res-
olution steps. Other techniques, such as bounded variable addition [17], cannot
be polynomially-simulated by resolution. Clausal proof formats [9,18,19] are
syntactically similar; they involve a sequence of clauses that are claimed to be
redundant with respect to a given formula. It is important that the redundancy
property of clauses can be checked in polynomial time.



Compositional Propositional Proofs 447

A DRUP proof, short for Deletion Reverse Unit Propagation, is a sequence of
addition and deletion steps of RUP clauses. A DRAT proof, short for Deletion
Resolution Asymmetric Tautology, is a sequence of addition and deletion steps
of RAT clauses. A DRAT refutation is a DRAT proof that contains the empty
clause. Figure 1 shows an example DRAT refutation.

Fig. 1. Left, a formula in DIMACS CNF format, the conventional input for SAT solvers
which starts with p cnf to denote the format, followed by the number of variables and
the number of clauses. Right, a DRAT proof for that formula. Each line in the proof
is either an addition step (no prefix) or a deletion step identified by the prefix “d”.
Spacing in both examples is used to improve readability. Each clause in the proof should
be an asymmetric tautology or a RAT clause using the first literal as the pivot.

Example 2. Consider the CNF formula F = (a∨ b∨ c̄)∧ (ā ∨ b̄∨ c)∧ (b∨ c∨ d̄)∧
(b̄ ∨ c̄ ∨ d) ∧ (a ∨ c ∨ d) ∧ (ā ∨ c̄ ∨ d̄) ∧ (ā ∨ b ∨ d) ∧ (a ∨ b̄ ∨ d̄), shown in DIMACS
format in Fig. 1 (left), where 1 represents a, 2 is b, 3 is c, 4 is d, and negative
numbers represent negation. The first clause in the proof, (ā), is a RAT clause
with respect to F because all possible resolvents are asymmetric tautologies:

F ∧ (a) ∧ (b̄) ∧ (c) �1 ε using (a ∨ b ∨ c̄)
F ∧ (a) ∧ (c̄) ∧ (d̄) �1 ε using (a ∨ c ∨ d)
F ∧ (a) ∧ (b) ∧ (d) �1 ε using (a ∨ b̄ ∨ d̄)

3 Rules

In this section, we introduce rules for composing propositional proofs. We first
establish a notation to describe operations, or derivations on formulas and proofs,
and then continue with basic rules for addition or deletion of a clause/lemma.
Finally, we propose compositional rules that address merging proofs produced
in parallel and validating proofs that have been produced in parallel.

Throughout this section, we will use © to express a CNF formula and �
to express a proof composed of a sequence of proof steps. Note that a formula



448 M.J.H. Heule and A. Biere

is a multi-set of clauses as elements may be duplicated by some of the oper-
ations below. Furthermore, a formula may be treated as a part of a proof by
treating each clause as an added lemma. Concatenation of proofs is simply the
concatenation of the sequences of their proof steps. The union of two formulas
is interpreted as multi-set union. Both operations are denoted by juxtaposition.

3.1 The Base Rules

Each element of a derivation is either the addition of a clause C, denoted by
a(C) or the deletion of a clause C, denoted by d(C). Given a formula ©i, a
clause C and a modification m ∈ {a, d}, a proof step is denoted as

©i
m(C)−−−−−→ ©i+1

We introduce two base rules Add and Del which produce atomic proof steps.

Add:
© a(C)−−−−→ ©C

where C has RAT on l ∈ C w.r.t. ©

Del:
©C

d(C)−−−−→ ©
(no side condition)

The Add rule has the precondition that there exists a literal l ∈ C such that
C had RAT on l with respect to the formula ©. The correctness of the Add
rule follows from the observation that the addition of RAT clauses preserves
satisfiability. Practically all techniques used in modern CDCL SAT solvers can
be simulated by these rules bas they can be expressed as a RAT derivation1 [14].

The Del rule has no precondition, and the removal of clauses from a formula
is always allowed. We are only interested in proofs of unsatisfiability and dele-
tion of a clause trivially preserves satisfiability. For proofs of satisfiability, the
situation is reversed: the (same) precondition is required for the Del rule, while
the Add rule has no precondition. The most important function of the Del rule
is to facilitate fast validation of proofs. Without clause deletion, validation costs
can be two orders of magnitude larger on reasonable-sized proofs. The achievable
speed-up factor increases for larger proofs.

A DRAT derivation is a sequence of proof steps that consists for each step i
of a clause Ci and a modification mi ∈ {a, d}. Applying a DRAT derivation of
n steps to a CNF formula ©0 results in ©n by applying each step in the order
in which they occur in the derivation. A DRAT derivation of n steps is valid for
a given formula ©0 if for all steps i ∈ {1..n} holds that Ci has RAT on a l ∈ Ci

w.r.t. ©i−1 if mi = a and Ci occurs in ©i−1 if mi = d. Consider the proof:

©0
m1(C1)−−−−−−→ ©1

m2(C2)−−−−−−→ ©2 . . . ©n−1
mn(Cn)−−−−−−→ ©n

1 All solver techniques can be expressed as a RAT derivation. For some techniques,
such as symmetry-breaking, the construction of a RAT derivation is complex [20].



Compositional Propositional Proofs 449

We say, the proof � = m1(C1)m2(C2) · · · mn(Cn) gives a derivation from ©0 to
©n, or in symbols

©0

�
︷ ︸︸ ︷

m1(C1)m2(C2) . . . mn(Cn)−−−−−−−−−−−−−−−−−−−−−−→ ©n or ©0
�−−→ ©n

We also represent rules as a triple containing: a pre-CNF ©pre, a proof �, and
a post-CNF ©post, denoting that proof � is a derivation from ©pre to ©post.

Definition 1. (©pre,�,©post) is valid iff ©pre
�−−→ ©post is a derivation.

The addition of RAT clauses preserves satisfiability [14], as does the deletion of
any clause. Thus, we get the following soundness result for valid compositional
triples and derivations respectively.

Proposition 1. Given a valid composition triple (©pre,�,©post), if ©pre is
satisfiable then ©post is satisfiable as well.

In practice, we focus on the contrapositive, e.g., if ©post contains the empty
clause then ©pre is unsatisfiable, and we consider � to be a proof (refutation)
for the unsatisfiability of ©pre.

3.2 The Composition Rules

In this section, the notion of a satisfiability-preserving derivation, as defined in
the previous section, will be lifted to the compositional case.

In addition to the two base rules Add and Del, we propose two composition
rules which combine two compositional triples into one. The first rule Seq, short
for “sequential”, combines two compositional triples for which the post-CNF of
one triple equals the pre-CNF of the other triple. The second rule Par, short
for “parallel”, combines two compositional triples for which the two pre-CNFs
are equal. Visualizations of the Seq rule Par rule can be found in Fig. 2.

The Seq rule has no preconditions and can be used for any two valid compo-
sitional triples for which one pre-CNF is equal to the other post-CNF. We will
use this rule to develop a method to validate DRAT derivations in parallel. The
soundness result for Seq follows directly from the definition of how proofs are
concatenated and formulas are joined.

Proposition 2. Given two valid compositional triples as antecedents, then the
Seq rule produces a valid compositional triple as consequent.

Note that validity of a compositional triple is still defined in terms of basic
derivations which are sequences of addition and deletion steps. Thus these com-
positional rules allow one to generate a basic derivation from a “compositional
proof”, which in turn is sound.

The Par rule expresses how to merge DRUP (not DRAT) derivations which
are obtained by running multiple solvers running on the same pre-CNF in par-
allel. Notice that the merged derivation by the Par rule start with a copy of



450 M.J.H. Heule and A. Biere

Fig. 2. Visualization of Seq and Par rules (S = Solve, F = Fork, J = Join). A solver
(S) takes a formula as input and produces a modified formula as well as a derivation
that describes the modifications. Forking (F) can be used to let two solvers work on
the same formula. Internally this means that the formula is duplicated. If all added
clauses preserve logical equivalence (DRUP), the resulting formulas can be joined (J).

the pre-CNF. The pre-CNF is included because both derivations may delete the
same clause from the original formula.

Notice that the DRUP proof ©0 �1 �2 in the conclusion of the Par rule
cannot be replaced by �1 ©0 �2, because �1 may have eliminated clauses from
©0 in such a way that a clause C ∈ ©0 no longer has DRUP w.r.t. ©1. For
example consider an unsatisfiable formula ©0, let ©1 be the empty formula, and
let �1 simply remove all clauses from ©0 (without adding anything). Clearly,
�1©1 is a valid DRUP proof for ©0 as it contains only deletion information.
However, it is not possible to create a valid DRUP proof by appending ©0 to
�1©1 because ©1 is satisfiable and ©0 unsatisfiable.

Proposition 3. Given two valid compositional triples as antecedents with
DRUP proofs, then the Par rule produces a valid compositional triple with DRUP
proof as consequent.

Proof. (sketch) All the added ©0 clauses in the combined proof are valid DRUP
clauses (since they occur in the pre-CNF ©0 and are even subsumed). Further
note, that DRUP is monotonic, in the sense, that if a clause has the DRUP
property w.r.t. © it will also have DRUP w.r.t. all ©′ with © ⊆ ©′ (as multi-
sets). Thus adding ©0 in front of �1 does not destroy the property of �1 to
be a derivation. Because we use a multi-set interpretation for formulas all the
clauses in �1 are still in the intermediate formula reached after the sub-proof
©0�1 and �2 just works as before, also keeping all the derived ©1 clauses in
the post-CNF in addition to deriving all its own ©2 clauses. 
�



Compositional Propositional Proofs 451

The above argument does not hold for DRAT proofs (instead of DRUP), because
DRAT is not monotonic: A clause C can have RAT w.r.t. a formula F , but not
with respect to F ∧ G for some formula G. Hence, �1 may add a clause which
breaks the RAT property of a clause addition step in �2.

As an optimization, to avoid the duplication of the original clauses in the Par
rule, one can consider a modified rule, which has a side condition that neither
�1 nor �2 eliminate clauses from ©0.

4 Parallel Proof Checking

Existing tools to validate clausal proofs, such as DRATtrim [9] and our new
proof checker DRABT, can check proofs of reasonable size (dozens of gigabytes)
efficiently (within in a day). Yet existing tools are not well-equipped to deal with
huge proofs because they keep the full proof in memory and validation is done
on a single core. In this section, we present a method to validate DRAT proofs
in parallel effectively with only a few changes to existing proof-checking tools.

4.1 Proofs Checking Optimizations

There are several optimizations that make the efficient, serial validation of clausal
proofs possible. The most significant gains can be realized by exploiting deletion
information in proofs. Ignoring deletion information can increase the validation
costs by two orders of magnitude on reasonable-sized proofs of say several giga-
bytes [10,21]. We will provide an example of the impact of deletion information
on the validation costs in the introduction of Sect. 7.

One, so far unpublished, optimization in DRATtrim and DRABT is ignoring
deletion information of unit clauses or pseudo-unit clauses, i.e., clauses that have
become unit under the top-level assignment. For example, (a) is a unit clause
in formula F := (a) ∧ (ā ∨ b), while (ā ∨ b) is a pseudo-unit clause. Deleting
(pseudo-)unit clauses during proof checking can be very costly as the checker
has to unassign all variables and compute a new top-level assignment. When a
proof claims to show unsatisfiability, the deletion of unit clauses is not useful.

Enhancing a clausal proof with deletion information can be somewhat tricky.
While working on this paper, we discovered that there is a bug in the proof
logging of several CDCL SAT solvers. The bug is caused by deleting pseudo-unit
clauses without first adding the corresponding unit clauses to the proof. Due
to this bug, many clausal proofs produced by these solvers are invalid, which
would have been reported by the checker if it did not ignore the deletion of
(pseudo-)unit clauses. We even observed cases where the intermediate formula
becomes satisfiable after the invalid deletion of a pseudo-unit clause. Appendix A
offers details and a fix for this bug for the SAT solver Glucose.

4.2 Backward Checking of Derivations

The validation of a clausal proof for a given formula requires checking the validity
of each clause addition step, i.e., the precondition of the Add rule. This can be



452 M.J.H. Heule and A. Biere

implemented using forward checking: go over the proof from the start to end,
modify the formula at each step, and check the validity of addition steps.

A refutation can also be validated using backward checking [8]: First, mark
the empty clause as a core lemma, i.e., a lemma that needs to be validated.
Second, process the proof in reverse order and only validate the addition of
core lemmas, assuming that all added lemmas occurring earlier in the proof —
and that are not deleted prior to the checked core lemma — can be validated.
Checking a core lemma may mark other lemmas occurring earlier in the proof as
core. Successful backward checking does not imply that the original proof was
valid, but that a new valid proof was obtained that consists of the sequence of
added and deleted core lemmas. The order of the lemmas in the new proof will
match the order of the lemmas in the original proof. Backward checking enables
optimizating deletion information, i.e., the clause deletion steps in the proof [21].

Backward checking can be generalized for arbitrary derivations to check the
validness of compositional triples efficiently. Instead of marking the empty clause
as core, initially all lemmas occurring in the derivation that are not deleted will
be marked as core. Furthermore, it is allowed to unmark a marked lemma if it is
subsumed by another marked lemma or by a clause in the pre-CNF which will not
be deleted. This can be computed efficiently using backward subsumption [22].
Notice that when this restriction is applied, backward checking for refutations is
unaffected, because the empty clause subsumes all other lemmas. Recall, success-
ful backward checking does not guarantee that the original derivation is valid,
but only that a new valid derivation was obtained.

4.3 Parallel Proof Checking via Seq Rule

The Seq rule provides an elegant method for validating DRAT proofs in parallel:
given a CNF formula ©0 and DRAT refutation �, partition � into k derivations
such that �1�2. . . �k = �. Second, compute the pre- and post-CNFs ©i, where
©i denotes the result of applying derivation �i to formula ©i−1. Notice that
this cannot be done in parallel because the computation of ©i+1 depends on the
existence of ©i. Finally, check that all (©i−1,�i,©i) with i ∈ {1..k} are valid
compositional triples and that ε ∈ ©k. When all checks are successful, the Seq
rule states that � is a valid refutation for ©0. Below it is shown in symbols how
to deduce the validness of refutation � by applying the Seq rule k − 1 times:

©0
�1−−−→ ©1 ©1

�2−−−→ ©2 . . . ©k−1
�k−−−→ ε

©0
�1�2...�k−−−−−−−−→ ε

4.4 Validating the Post-CNF

One method to check that (©pre,�,©post) is a valid compositional triple is to
check that � is a valid derivation for ©pre and assumes that the computation
of the ©post was done correctly. As partitioning problems can easily result in
errors, confidence in the correctness of the complete proof checking chain can be



Compositional Propositional Proofs 453

improved by fully validating compositional triples. One can explicitly check that
©post is derived from ©pre by applying �. This is implemented in our checker
DRABT by hashing, which requires ©post to be provided as a third input file.

Alternatively, one can increase confidence in the tool chain by checking that
�©post is a valid derivation for ©pre. This validates that there exists a valid
compositional triple (©pre,�′,©post) and the checker should able to produce
�′. In practice, appending � with ©post can significantly increase the costs
of validating proofs as many clauses in post-CNF ©post occur also in pre-CNF
©pre. Validating such clauses will mark the equivalent clauses in the pre-CNF as
core, which will obstruct the core-first optimization of proof checking [21]. If the
computation of the post-CNFs was done correctly, all clauses in the post-CNFs
will be unmarked and hence not be validated.

5 Parallel Proof Generation

Traditionally, proof generation has only been supported by non-parallel SAT
solvers. A recent study [11] presented an approach to construct clausal proofs
from clause-sharing portfolio parallel SAT solvers. The proofs constructed with
that method were very costly to validate. In this section, we present a method
to construct clausal proofs from parallel SAT solvers based on the cube-and-
conquer paradigm, such as march cc+iLingeling. The experimental evaluation
shows that these proofs can be validated in parallel efficiently.

In short, cube-and-conquer solvers consist of two parts: a lookahead (or cube)
solver and a CDCL (or conquer) solver. First, the cube solver partitions the
problem into many subproblems, frequently millions. Each of the subproblems is
represented by a cube, i.e., a conjunction of literals. In the second phase, one or
more CDCL solvers will use these cubes to guide their search. Clauses learned
while solving a cube are typically not useful for solving other cubes. One can
solve cubes massively in parallel and obtain almost a linear time speed-up with
the number of solvers — assuming that there are as many cores as solvers.

We now show how to construct a DRUP refutation for cube-and-conquer
solvers. First, the cube solver computes cubes for the input formula. guide the
conquer solvers. Assume that we have k conquer solvers Si with i ∈ {1..k}.
Each solver Si gets a set of cubes ©i. After solver Si refutes all of its cubes, it
generates a DRUP proof �i that expresses how to produce all clauses ©i from
the original formula ©0 and deletes all the other learned and original clauses.
Then, a refutation is computed for the conjunction of all cubes ©1 ©2 . . . ©k,
the conquer proof �c.

The composition rules explain how to merge these derivations in a refutation
for the input formula. First, all �i derivations are merged using the Par rule, by
starting with the k−1 copies of the input formula and adding the concatenation
of the derivations. Second, the merged derivation is combined with the conquer
proof using the Seq rule.



454 M.J.H. Heule and A. Biere

©0
�1−−−→ ©1 ©0

�2−−−→ ©2 . . . ©0
�k−−−→ ©k

©0
©0...©0�1�2...�k−−−−−−−−−−−−−−→ ©1 ©2 . . . ©k ©1 ©2 . . . ©k

�c−−→ ε

©0
©0...©0�1�2...�k�c−−−−−−−−−−−−−−−−→ ε

6 Tools

We have implemented several tools to support compositional proof generation
and validation, which are available at www.cs.utexas.edu/∼marijn/cpp and at
http://fmv.jku.at/drabt. The DRATtrim proof checking tool [9] was enhanced
to support backward checking [8] for arbitrary DRAT derivations. The previous
version only supported backward checking of refutations. We improved the speed
of validating DRAT derivations by unmarking all lemmas that are subsumed by
other marked lemmas or undeleted clauses in the pre-CNF, see Sect. 4.2.

We also added a new feature, called proof application, to DRATtrim: Given an
input formula (the pre-CNF) and a DRAT proof , the tool computes the post-
CNF formula that would be the result of applying the proof to pre-CNF. In other
words, the post-CNF contains all clauses in pre-CNF that are not deleted in the
proof together with all lemmas in proof that are added (and not deleted). Proof
application facilitates parallel proof checking via the Seq rule, see Sect. 4.3.

To further increase confidence in the results, the second author independently
implemented a new clausal proof checker, called DRABT. The current version
of DRABT supports forward checking of DRUP proofs and implements checking
validity of compositional triples natively in contrast to DRATtrim which checks
it implicitly by appending the post-CNF to the proof. The DRABT tool puts
also much more focus on proper error messages as well as improved diagnostic
capabilities if an error occurs. It is, however, missing core generating features.

The SAT solver march cc [12] can be used in a cube-and-conquer setting to
produce cubes to guide a conquer solver. We had to slightly change march cc
in order to use it for compositional propositional proofs. The change consists
of extending the cube output with all the branches that march cc was able to
refute using lookahead techniques. Without those cubes, the cube output does
not cover the entire search space — which would cause the proof checker to fail.
We observed that the cubes which can be refuted by lookahead techniques are
also easy for a CDCL solver to refute. Consequently, adding these cubes to the
cube output hardly increases the overall performance.

The CDCL solver iLingeling [12] is a parallel SAT solver that solves bench-
marks in the iCNF format2, which combines a CNF formula with a sequence of
cubes that guide the solver. We extended iLingeling with DRUP proof logging
support. The iLingeling solver runs multiple Lingeling solvers in parallel and
guides them using the cubes. Each of these Lingeling solvers emits its own
DRUP proof. Additionally, a separate Lingeling solver computes a proof for
the cube file, the so-called conquer proof.

2 see http://www.siert.nl/icnf/ for details.

www.cs.utexas.edu/~marijn/cpp
http://fmv.jku.at/drabt
http://www.siert.nl/icnf/


Compositional Propositional Proofs 455

7 Evaluation

In this section, we evaluate parallel proof generation based on the Par rule and
parallel proof validation based on the Seq rule. All experiments were performed
on the Stampede cluster of the Texas Advanced Computing Center (TACC)
which has two 8-core Xeon E5 processors and 32 GB of memory per node.

Before describing the experiments, we want to reiterate the importance of
deletion information in clausal proofs: on the smaller proofs discussed in this
section, ignoring the deletion information would increase the validation costs by
a factor of 20. For the large proofs, this increases to two orders of magnitude.

7.1 Parallel Compositional Proof Checking

We evaluated our parallel proof checking method on some existing DRAT proofs
focusing on the speed-up in wall-clock time. Our method consists of multiple
phases, some of which can be parallelized while other cannot. The first phase
is partitioning a given proof � into k derivations: �1, . . . ,�k. This can simply
be realized by the Unix utility split, the computational costs of which are
practically ignorable. In the second phase, we need to compute the pre- and
post-CNFs for proof checking, which is performed by DRATtrim using the new
“proof application” mode. As described in Sect. 4.3, this part cannot be done in
parallel. However, one could preprocess the derivations in parallel by removing
all lemmas that are added and deleted within the same partial proof, because
these lemmas will not influence the creation of the pre- and post-CNFs. Since
most lemmas are added and deleted in the same proof, such preprocessing could
significantly reduce the cost of this phase. This is not yet implemented. The
third phase consists of checking that all (©i−1,�i,©i) are valid compositional
triples. We checked all proofs running k = 16 DRATtrim executables in parallel
in the default mode, which validates a partial proof using backward checking
and checks the post-CNFs implicitly via subsumption.

Table 1 shows the usefulness of parallel proof checking of proofs express-
ing symmetry-breaking techniques3. There are several interesting observations.
First, the speed-up of checking derivations in parallel (on a 16-core machine)
compared to checking them in serial is about a factor of nine on all instances
when ignoring the initialization cost of splitting the proof and computing the
pre- and post CNF. Taking these costs into account clearly reduces the speed-
up on the smaller proofs. However, parallel proof checking is only interesting
for large proofs. Second, checking derivations sequentially is more costly than
checking the original refutation if the proofs are small. However, for the larger
proofs the opposite happens. Third, computing the pre- and post-CNFs is quite
costly for small proofs, but becomes relatively cheaper for larger proofs.

3 available on http://www.cs.utexas.edu/∼marijn/sbp/.

http://www.cs.utexas.edu/~marijn/sbp/


456 M.J.H. Heule and A. Biere

Table 1. Sequential versus parallel proof checking of DRAT proofs expressing
symmetry-breaking techniques. The first column shows the benchmark name. The
second and third column shows size of the original proof (in MB) and the DRATtrim

checking time (in seconds). The fourth and fifth column show the time to split the
proofs and to compute the pre- and post-CNFs, respectively. The last four columns
show the costs to validate the derivations, sequentially, in parallel, and the speed-up
with and without initialization costs on a 16-core machine.

benchmark size DRATtrim split CNFs seq-chk par-chk seq+init
par+init

seq
par

EDP2 1161 2,180.98 3331.73 2.91 85.70 3288.78 455.93 6.20 7.21

R 4 4 18 20.01 2.55 0.04 1.91 4.19 0.43 2.58 9.74

tph6 2.78 0.61 0.01 1.25 2.03 0.22 2.22 9.23

tph7 5.09 1.30 0.02 1.39 2.70 0.29 2.41 9.31

tph8 10.68 2.98 0.03 1.61 4.29 0.46 2.82 9.32

tph9 34.18 6.17 0.04 1.98 7.33 0.83 3.28 8.83

tph10 19.86 11.78 0.06 2.51 12.67 1.32 3.92 9.60

tph11 56.49 22.96 0.09 3.39 22.64 2.85 4.13 7.94

tph12 92.29 39.42 0.15 4.73 39.07 3.89 5.01 10.04

7.2 Parallel Proof Generation

For the evaluation of parallel proof generation based on the Par rule, we used the
cube-and-conquer solver march cc+iLingeling. We picked a notoriously hard
benchmark eq.atree.braun.12.unsat.cnf which has been used in several SAT
competitions. This formula is a miter (a circuit equivalence-checking benchmark)
which cannot be solved by sequential SAT solvers in hours and by very few
parallel SAT solvers.

Figure 3 shows the results of the experiments, which were performed on a
16-core cluster node using 1, 2, 4, 8, or 16 cores. The solving process time is
very stable, close to 6,000 seconds. The wall-clock solving time of the conquer
phase by iLingeling almost scales linearly in the number of cores. iLingeling
emits a separate proof for each used Lingeling solver (one per core). For the
experiment with k cores, each core validated one compositional triple consisting
of the original formula (as pre-CNF), one of the proof files, and the precomputed
post-CNF based on the pre-CNF and the proof. The size of the full proof is the
concatenation of all these proofs together with the duplication of the original
clauses due to the Par rule.

We validated the proofs with both DRABT and DRATtrim. Figure 3 reports the
DRATtrim times. The Drabt times, both process and wall-clock, were about twice
as long. Notice that both the process and wall-clock time significantly drop when
increasing the number of cores. The process time decreases by about a factor
of 1.5 when doubling the number of cores. For the wall-clock time, the speed-
up is close to a factor of 3 when doubling the number of cores. This indicates a
super-linear speed-up to validate proofs. Apparently, DRATtrim slows down when



Compositional Propositional Proofs 457

Fig. 3. A log-log plot of the effect of the number of cores (x-axis) on the wall-clock
and process time (y-axis in seconds) to solve eq.atree.braun.12.unsat.cnf using
march cc+iLingeling and validate the emitted proof in parallel using DRATtrim. All
experiments were performed on a single 16-core cluster node.

dealing with larger and larger proofs. This may be caused by an increase in the
number of cache misses. Studying the reasons for the super-linear speed-up will
be focus of future research.

8 Conclusion

SAT solvers have recently been used to tackle long-standing open problems.
These problems are frequently solved in a massively parallel setting without
emitting proofs to validate these results. Clausal proofs with deletion informa-
tion are easy to emit from state-of-the-art, non-parallel SAT solvers, they are
relatively compact, and they can be checked in a reasonable amount of time.
However, for long-standing open problems, we need to construct clausal proofs
of solvers based on arguably the most effective parallel SAT solving paradigm:
cube-and-conquer. Additionally, we need tools to validate these proofs in parallel
and bridge the gap between the solving and validation costs.

We presented the concept of compositional clausal proofs with deletion infor-
mation. Following this concept, we developed and implemented an algorithm to
validate clausal proofs in parallel effectively. Moreover, we show how to obtain
clausal proofs from cube-and-conquer solvers and demonstrate how to validate
those proofs in parallel. The experiments show that the speed-up can be super-
linear in the number of cores.

Acknowledgements. The authors thank Nathan Wetzler for his helpful comments to
improve the paper and acknowledge the Texas Advanced Computing Center (TACC)
at The University of Texas at Austin for providing grid resources that have contributed
to the research results reported within this paper.



458 M.J.H. Heule and A. Biere

A Proof-Logging Bug in CDCL Solvers

We observed a bug in the clausal proof logging of Glucose version 3.0, which
actually occurs in all MiniSAT-based solvers — which is the majority of state-
of-the-art solvers these days. The bug consists of deleting pseudo-unit clauses.
This bug can simply be fixed by adding the following lines to Solver.cc:

if (certifiedUNSAT)
for (int i = 0; i < c.size(); i++)

if (reason(var(c[i])) == cr && level(var(c[i])) == 0)
return;

just below the beginning of the removeClause procedure

void Solver::removeClause(CRef cr) {
Clause& c = ca[cr];

References

1. Konev, B., Lisitsa, A.: Computer-aided proof of Erdős discrepancy properties.
Artif. Intell. 224, 103–118 (2015)

2. Kouril, M., Paul, J.L.: The van der waerden number W(2, 6) is 1132. Exp. Math.
17(1), 53–61 (2008)

3. Kouril, M.: Computing the van der Waerden number w(3, 4) = 293. Integers 12
(2011) Paper A46, 13 p., electronic only

4. Codish, M., Cruz-Filipe, L., Frank, M., Schneider-Kamp, P.: Twenty-five compara-
tors is optimal when sorting nine inputs (and twenty-nine for ten). In: ICTAI 2014,
pp. 186–193. IEEE Computer Society (2014)

5. Appel, K., Haken, W.: The solution of the four-color-map problem. Sci. Am.
237(4), 108–121 (1977)

6. Aron, J.: Wikipedia-size maths proof too big for humans to check. New Sci.
221(2957), 11 (2014)

7. Zhang, L., Malik, S.: Validating SAT solvers using an independent resolution-based
checker: Practical implementations and other applications. In: DATE 2003, pp.
10880–10885 (2003)

8. Goldberg, E.I., Novikov, Y.: Verification of proofs of unsatisfiability for CNF for-
mulas. In: DATE, pp. 10886–10891 (2003)

9. Wetzler, N., Heule, M.J.H., Hunt, W.A., Jr.: DRAT-trim: efficient checking and
trimming using expressive clausal proofs. In: Sinz, C., Egly, U. (eds.) SAT 2014.
LNCS, vol. 8561, pp. 422–429. Springer, Heidelberg (2014)

10. Heule, M.J.H., Hunt, W.A., Jr., Wetzler, N.: Bridging the gap between easy gen-
eration and efficient verification of unsatisfiability proofs. Softw. Test. Verification
Reliab. (STVR) 24(8), 593–607 (2014)

11. Heule, M.J.H., Manthey, N., Philipp, T.: Validating unsatisfiability results of clause
sharing parallel SAT solvers. In: Pragmatics of SAT, pp. 12–25 (2014)

12. Heule, M.J.H., Kullmann, O., Wieringa, S., Biere, A.: Cube and conquer: guiding
CDCL SAT solvers by lookaheads. In: Eder, K., Lourenço, J., Shehory, O. (eds.)
HVC 2011. LNCS, vol. 7261, pp. 50–65. Springer, Heidelberg (2012)



Compositional Propositional Proofs 459

13. Tseitin, G.S.: On the complexity of derivation in propositional calculus. In:
Siekmann, J.H., Wrightson, G. (eds.) Automation of Reasoning 2, pp. 466–483.
Springer, Heidelberg (1983)

14. Järvisalo, M., Heule, M.J.H., Biere, A.: Inprocessing rules. In: Gramlich, B.,
Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 355–370. Springer,
Heidelberg (2012)

15. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

16. Biere, A.: Picosat essentials. JSAT 4(2–4), 75–97 (2008)
17. Manthey, N., Heule, M.J.H., Biere, A.: Automated reencoding of boolean formu-

las. In: Biere, A., Nahir, A., Vos, T. (eds.) HVC. LNCS, vol. 7857, pp. 102–117.
Springer, Heidelberg (2013)

18. Van Gelder, A.: Verifying RUP proofs of propositional unsatisfiability. In: ISAIM
(2008)

19. Heule, M.J.H., Hunt, W.A., Jr., Wetzler, N.: Verifying refutations with extended
resolution. In: Bonacina, M.P. (ed.) CADE 2013. LNCS, vol. 7898, pp. 345–359.
Springer, Heidelberg (2013)

20. Heule, M.J.H., Hunt, W.A., Jr., Wetzler, N.: Expressing symmetry breaking in
DRAT proofs. In: Felty, A.P., Middeldorp, A. (eds.) Automated Deduction -
CADE-25. LNCS, vol. 9195, pp. 591–606. Springer, Heidelberg (2015)

21. Heule, M.J.H., Hunt, W.A., Jr., Wetzler, N.: Trimming while checking clausal
proofs. In: Formal Methods in Computer-Aided Design, pp. 181–188. IEEE (2013)

22. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause
elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp.
61–75. Springer, Heidelberg (2005)


	Compositional Propositional Proofs
	1 Introduction
	2 Preliminaries
	3 Rules
	3.1 The Base Rules
	3.2 The Composition Rules

	4 Parallel Proof Checking
	4.1 Proofs Checking Optimizations
	4.2 Backward Checking of Derivations
	4.3 Parallel Proof Checking via Seq Rule
	4.4 Validating the Post-CNF

	5 Parallel Proof Generation
	6 Tools
	7 Evaluation
	7.1 Parallel Compositional Proof Checking
	7.2 Parallel Proof Generation

	8 Conclusion
	A Proof-Logging Bug in CDCL Solvers
	References


