
Verification of Concurrent Programs Using
Trace Abstraction Refinement

Franck Cassez1(B) and Frowin Ziegler2

1 Macquarie University, NICTA/UNSW, Sydney, Australia
franck.cassez@mq.edu.au

2 Augsburg University, Augsburg, Germany

Abstract. Verifying concurrent programs is notoriously hard due to the
state explosion problem: (1) the data state space can be very large as the
variables can range over very large sets, and (2) the control state space is
the Cartesian product of the control state space of the concurrent com-
ponents and thus grows exponentially in the number of components. On
the one hand, the most successful approaches to address the control state
explosion problem are based on assume-guarantee reasoning or model-
checking coupled with partial order reduction. On the other hand, the
most successful techniques to address the data space explosion problem
for sequential programs verification are based on the abstraction/refine-
ment paradigm which consists in refining an abstract over-approximation
of a program via predicate refinement. In this paper, we show that we
can combine partial order reduction techniques with trace abstraction
refinement. We apply our approach to standard benchmarks and show
that it matches current state-of-the-art analysis techniques.

1 Introduction

Multi-core architectures enable hardware consolidation i.e., less weight and less
space which is highly desirable for embedded systems. Multi-threaded (or con-
current) programs are designed to take full advantage of the available computing
power of the multi-cores. This is very appealing performance-wise but comes at a
price: concurrent programs are a lot more difficult to reason about than sequen-
tial programs. They need to synchronise or share variables and this gives rise
to a multitude of subtle bugs, among them deadlocks or data races that are
sources of critical defects. At the same time, more and more control tasks are
now implemented in software which results in large multi-threaded code bases.
The major obstacle to the deployment of multi-threaded software in embed-
ded safety critical systems is the difficulty of ensuring the absence of major
critical defects. This calls for scalable automated verification techniques that
can analyse multi-threaded software. Unfortunately, as witnessed by the latest
Software Verification Competition (SV-COMP 2015) [1], there are only a few
software verification tools that can analyse concurrent software. Most of them
are bug finding tools and fall short of being able to establish the correctness of
a program. Their applicability is often limited to rather small programs.
c© Springer-Verlag Berlin Heidelberg 2015
M. Davis et al. (Eds.): LPAR-20 2015, LNCS 9450, pp. 233–248, 2015.
DOI: 10.1007/978-3-662-48899-7 17

234 F. Cassez and F. Ziegler

This is in stark contrast to the state-of-the-art for verification of sequential
programs. One of the major breakthrough for verifying sequential programs is
probably the counter-example guided predicate-abstraction refinement (CEGAR)
technique [2]. CEGAR enables one to address the data state explosion problem
by abstracting away the data into predicates. This has resulted in scalable and
practicable techniques to analyse sequential programs, culminating in the design
of industrial-strength tools like Slam [3]. For concurrent programs, the control
state explosion problem adds up to the data state explosion problem: the state
space of a concurrent program is exponential in the size of the program.

Verification of Concurrent Programs. Two main techniques were designed
to combat the state explosion problem in concurrent programs: assume-guarantee
reasoning [4] and partial order reduction techniques [5–7]. An assume-guarantee
property is a pair of predicates (A,G) (similar to pre and postconditions): a com-
ponent guarantees to satisfy G if its environment satisfies A. Assume-guarantee
reasoning consists in combining the assume-guarantee properties of each com-
ponent to derive a property of the composition of the components in a modu-
lar way. Partial order reduction techniques on the other hand aim at reducing
the state space to be explored in concurrent programs by removing equivalent
interleavings. Both techniques have proved very useful in the context of finite
state concurrent programs [8,9]. Combining assume-guarantee reasoning with
predicate abstraction refinement for proving properties of multi-threaded C-like
programs was first investigated in [10]. However the scope of the approach was
limited to modular properties and was later extended to more general properties
in [11]. The recent work in [12] introduced a combination of predicate abstrac-
tion refinement and partial order reduction. In this paper, we propose a method
to combine trace abstraction refinement and partial order reduction techniques.

Trace Abstraction Refinement. The core principle of trace abstraction [13,14]
for single-threaded program is to separate the data and the control flows. The
abstraction of a program P is a set of traces e.g., sequences of instructions
obtained by viewing the control flow graph of P as an automaton. The instruc-
tions are uninterpreted and should be viewed as mere letters in the abstraction.
A trace t is feasible if there is at least one input of the program the trace of
which is t. This is where the data flow comes into play. Some traces of a pro-
gram abstraction are error traces e.g., leading to an error control location in
the control flow graph. For instance if the program contains an assert(cond)
statement, there is an edge in the control flow graph labelled not(cond) to the
error location. The language of the program abstraction, LP , is composed of
these error traces. Proving correctness of the program P amounts to proving
that every trace in LP is infeasible. This can be done by an iterative refinement
algorithm as depicted in Fig. 1. A refinement of a program abstraction is also a
language Lr composed exclusively of infeasible traces. One important result in
[13] is that a refinement, Lr(t), can be computed for each infeasible trace t: this
refinement contains t and other infeasible traces that are infeasible for the same
reason as t is. Moreover, the refinement Lr(t) is a regular language. For sequen-
tial programs, the trace abstraction refinement algorithm refines the program

Verification of Concurrent Programs Using Trace Abstraction Refinement 235

abstraction by computing larger and larger sets of infeasible traces, ∪i=1..kLri
.

As a candidate feasible error trace must be in LP \ (∪i=1..kLri
) a larger set

∪i=1..kLri
of infeasible traces narrows down the search at each iteration of the

algorithm and in this respect refines the trace abstraction. If at some point all
the error traces of the program abstraction are infeasible, the program can be
declared error-free. Of course the algorithm is not guaranteed to terminate for
C-like programs (with more than two counters) but it is sound and relatively
complete (see [13]).

Fig. 1. Trace abstraction refinement algorithm

Trace Abstraction Refinement for Concurrent Programs. The trace
abstraction refinement algorithm can be used for concurrent programs, say P1 ‖
P2, by considering the language LP1‖P2 . However, the algorithm may need mul-
tiple iterations to rule out infeasible traces that are equivalent in the sense that
some instructions along a trace may be swapped without altering the correctness
of the concurrent program, e.g., deadlock freedom.

The solution proposed in [15] is to extend the expressiveness of the trace
abstraction refinements: instead of building an automaton that accepts a regu-
lar language Lr(t), the authors define a new refinement device: Inductive Data
Flow Graphs (iDFGs). One of the nice features of iDFGs is that they can repre-
sent infeasibility reasons on sequences of actions while capturing some indepen-
dence between the ordering of actions. The trace refinement algorithm of Fig. 1
can be adapted to this setting because: (1) iDFGs are closed under union, and
(2) language inclusion between regular languages (LP) and iDFGs is decidable.
The approach of [15] is elegant and versatile as it applies to a large spectrum
of properties of concurrent programs (Owicki-Gries proof statements which are
invariance properties closed under multi-threaded Cartesian abstraction). How-
ever the core operation of the algorithm is rather expensive: language inclusion
between a parallel composition of n threads and an iDFG is in PSPACE. To the
best of our knowledge this technique has not been implemented yet.

Our Contribution. In this work we propose a simple and powerful combina-
tion of trace abstraction refinement and partial order reduction. It turns out

236 F. Cassez and F. Ziegler

that combining trace abstraction refinement with partial order (or symmetry)
reduction techniques is simplified when instead of proving general Owicki-Gries
style statements one restricts to reachability properties1. This is supported by
our main result, Theorem 3. We also argue that combining partial order reduc-
tion techniques with refinement techniques is easier and more natural with trace
abstraction refinement (trace based) rather than predicate abstraction refine-
ment (state based). The advantages of our combination are manifold. First,
the refinement algorithm is simple and builds on two distinct and orthogonal
techniques: partial order reduction algorithms and trace abstraction refinement.
Second, the combination is even valid with any reasonable reduction e.g., sym-
metry reduction. More importantly, our technique goes beyond discovering bugs
and is able to establish program correctness: this is in contrast to state-of-the-art
tools (e.g., Mu-Cseq [16], lazy-CSeq [17]) for analysing concurrent programs
that are based on bounded model checking techniques.

Outline of the Paper. In Sect. 2 we define the model of concurrent programs.
Section 3 shows how to reduce the existence of a feasible trace in a concurrent
program to the existence of a trace in a reduced concurrent program (partial
order reduction). Section 4 presents an algorithm that combines trace abstraction
refinement with partial order reduction. Experimental results are presented in
Sect. 5. Section 6 is devoted to related work.

2 Reachability Checking in Concurrent Programs

In this section we define concurrent programs. For the sake of clarity and fol-
lowing [10], we restrict to 2-threaded programs but all the definitions and proofs
carry over to the general setting of n-threaded programs with n ≥ 2 (see [18]).

2.1 Notations

Let V be a fixed finite set of integer variables. A valuation ν is a mapping
ν : V → Z and we write Z

V for the set of valuations. We let Σ be a fixed set
of instructions with variables in V . Instructions can be either assignments with
side effects or conditions that are side-effect free. Σ∗ is the set of finite sequences
of instructions and ε is the empty sequence. We write v.w for the concatenation
of two words v, w ∈ Σ∗. We let |w| be the length of w ∈ Σ∗ (|ε| = 0). Given
i ∈ Σ, R(i) ⊆ V (resp. W(i) ⊆ V) is the set of read-from (resp. written-to)
variables. We let V(i) = R(i) ∪ W(i).

The semantics of an instruction i ∈ Σ is given by a relation [[i]] ⊆ Z
V ×

Z
V . The post operator is defined for each instruction as follows: given U ⊆

Z
V , post(i, U) = {u′ | ∃u ∈ U, (u, u′) ∈ [[i]]}. The post operator extends to

sequences of instructions: let v ∈ Σ∗, i ∈ Σ, post(v.i, U) = post(i, post(v, U))
with post(ε, U) = U . Given a sequence of instructions w ∈ Σ∗, w is feasible iff

1 Without loss of generality we focus on reachability of control locations as reachability
of a specific data state can easily be encoded in this setting.

Verification of Concurrent Programs Using Trace Abstraction Refinement 237

post(w, ZV) 	= ∅. Otherwise w is infeasible. Sets of valuations can be defined by
predicates e.g., as Boolean combinations of terms in a given logic (e.g., Linear
Integer Arithmetic). The predicate True denotes the set of all valuations and
False the empty set of valuations. Feasibility of a trace w ∈ Σ∗ thus reduces to
post(w, True) 	⊆ False.

A transition system S is a tuple (S, S0, δ) with S a set of states, S0 ⊆ S the
set of initial states and δ ⊆ S × Σ × S the transition relation.

An instruction i ∈ Σ is enabled in s if (s, i, s′) ∈ δ for some s′. A path
in S from s0 to sn, n ≥ 0, is a sequence s0 i0 s1 i1 · · · sn−1 in−1 sn with
∀0 ≤ k ≤ n−1, (sk, ik, sk+1) ∈ δ. The trace of a path s0 i0 s1 i1 · · · sn−1 in−1 sn

is i0.i1. · · · .in−1. We write s0
i0.i1.··· .in−1−−−−−−−−→ sn when there is a path from s0 to sn

with trace i0.i1. · · · .in−1. A state s is reachable if s0
t−−→ s for some s0 ∈ S0 and

t ∈ Σ∗. We let Reach(S) be the set of reachable states in S.

1 shared i n t x, y, d, m;
2 // thread T1

3 thread T1
4 x = 0;
5 lock(m);
6 i f (x == y) {
7 unlock(m);
8 d = 3;
9 } e l s e {

10 unlock(m);
11 }
12 /* end */
13
14 // Thread T2

15 thread T2
16 y = 1;
17 lock(m);
18 i f (x <= y) {
19 unlock(m);
20 d = 2;
21 } e l s e {
22 unlock(m);
23 }
24 /* end */

Listing 1. Two Simple Threads Fig. 2. Program automata for T1, T2

2.2 2-Threaded Programs

A program automaton P is a tuple (L, ι, T) where: L is a finite set of program
locations, ι ∈ L is the initial location, T ⊆ L × Σ × L is the control flow graph
relation. The set of variables of P is V(P) =

⋃
(�,i,�′)∈T V(i).

A state of P is a pair (�, ν) ∈ L × Z
V . Each program automaton induces

a transition system S(P) = (L × Z
V , {ι} × Z

V , δ(P)) with δ(P) defined by:
((�, ν), i, (�′, ν′)) ∈ δ(P) ⇐⇒ (�, i, �′) ∈ T, (ν, ν′) ∈ [[i]].

A 2-threaded program is a pair (P1, P2) with Pk = (Lk, ιk, Tk), k = 1, 2 two
program automata. The shared variables of (P1, P2) are V(P1) ∩ V(P2) and the
other variables V(Pk)\(V(P1)∩V(P2)) are the local variables for each Pk, k = 1, 2.

238 F. Cassez and F. Ziegler

A 2-threaded program induces a transition system S(P1, P2) = (L1 × L2 ×
Z

V , {ι1} × {ι2} × Z
V , δ(P1, P2)) where δ(P1, P2) is the interleaving of δ(P1) and

δ(P2): ((�1, �2, ν), i, (�′
1, �

′
2, ν

′)) ∈ δ(P1, P2) iff either ((�1, ν), i, (�′
1, ν

′)) ∈ δ(P1)
and �2 = �′

2 or ((�2, ν), i, (�′
2, ν

′)) ∈ δ(P2) and �1 = �′
1. A state of S(P1, P2) is a

triple (�1, �2, ν) where �k ∈ Lk and ν is a valuation for V . Given a set of states
E ⊆ L1×L2×Z

V , the reachability problem asks whether Reach(S(P1, P2))∩E 	=
∅ and Reach(S(P1, P2)) may be infinite. For C-like 2-threaded programs this
problem is undecidable as the reachability problem for single threaded programs
with more than two variables (two-counter machines) is already undecidable. In
the sequel, we thus consider semi-algorithms based on abstraction refinement to
solve the reachability problem for multi-threaded programs.

Example 1. Listing 1, page 5, shows a 2-threaded C-like program. The program
automata P (T1) and P (T2) for the threads T1 and T2 are given in Fig. 2. The
lock and unlock C-like instructions are interpreted as guarded instructions the
semantics of which is “When (m == 0) then m = 1” and the test and assign-
ment happen in an atomic step. If a state of the form (8, 20, ν) is reachable in
S(P (T1), P (T2)) then the shared variable d can be written by the two threads.
This is commonly referred to as a data race. (P (T1), P (T2)) is data race free (for
variable d) iff Reach(S(P (T1), P (T2))) ∩ ({(8, 20)} × Z

{x,y,d,m}) = ∅. �

Let E ⊆ L1 × L2. We define the finite (product) automaton P1 × P2 = (L1 ×
L2, {(ι1, ι2)}, T, E) with T ⊆ (L1 × L2) × (L1 × L2) defined by:

((�1, �2), i, (�′
1, �

′
2)) ∈ T ⇐⇒ (�k, i, �′

k) ∈ Tk for k ∈ {1, 2} and �′
3−k = �3−k.

E is the set of accepting states of P1 × P2. S(P1 × P2) = (L1 × L2, (ι1, ι2), T)
is a finite transition system. A path � in P1 × P2 is a path in S(P1 × P2). The
language LE(P1 × P2) is the set of traces t ∈ Σ∗ such that (ι1, ι2)

t−−→ (�1, �2)
for (�1, �2) ∈ E. When E is clear from the context we write L for LE .

From the definitions of S(P1, P2), the semantics of instructions [[·]], the defi-
nition of the post operator for instructions, and the construction of the product
of automata P1 × P2, we straightforwardly get:

Fact 1. (�0, ν0) i0 (�1, ν1) i1 · · · in−1 (�n, νn) with (νk, νk+1) ∈ [[ik]], 0 ≤ k < n is
a path in S(P1, P2) if and only if �0 i0 �1 · · · in−1 �n is a path in P1 × P2 and
post(i0.i1. · · · .in−1, T rue) 	⊆ False.

Given E ⊆ L1×L2, we use the shorthand E×Z
V for {(�1, �2, ν), (�1, �2) ∈ E, ν ∈

Z
V }. The following theorem is a direct consequence of Fact 1:

Theorem 1. Let E ⊆ L1 × L2. Then

Reach(S(P1, P2)) ∩ (E × Z
V) �= ∅ ⇐⇒ ∃t ∈ LE(P1 × P2), post(t, T rue) �⊆ False.

Remark 1. S(P1, P2) includes the data part of the program and can be infinite
whereas S(P1 × P2) includes only the locations of the CFG and is always finite.

Verification of Concurrent Programs Using Trace Abstraction Refinement 239

3 Partial-Order Reduction

In this section we show that checking for the existence of a feasible trace in
L(P1 × P2) can be reduced to checking for the existence of a feasible trace in
a reduced product automaton (P1 × P2)R. The reduced automaton (P1 × P2)R

is obtained by using standard partial order reduction algorithms that preserve
properties of interest e.g., reachability of a location in a thread.

3.1 Independent Transitions

Partial order reduction techniques [5–7] were developed to address the state
explosion problem in the analysis of concurrent systems.

These reductions rely on the notion of dependency and the complementary
notion of independency between transitions. The intuition is that two reads on
the same variable are independent whereas two writes or a write and a read
to the same variable are dependent. For independent transitions the order of
execution is irrelevant for certain properties and one representative order can be
chosen to represent many interleavings.

Let i, j ∈ Σ be two instructions. According to our definition, the same
instruction can appear in two different threads or in the same thread. Instruc-
tions within the same sequential component are dependent and thus we have to
differentiate these two cases. We assume that Σ = Σ1 � Σ2, i.e., is partitioned
into instructions for thread P1 and P2. i and j are independent, denoted i ‖ j,
when i ∈ Σk, j ∈ Σ3−k for k ∈ {1, 2} and W(i) ∩ V(j) = ∅. By definition of
the independency relation the following properties hold [5] for any i ‖ j and any
state s of S(P1, P2):

Enabledness if i is enabled in s and s
i−−→ s′, then j is enabled in s iff it is

enabled in s′ (independent transitions do not enable nor disable each other);

Commutativity if i and j are enabled in s, then s
i.j−−−→ s′ and s

j.i−−−→ s′,
i.e., the order of i and j does not change the final target state (we assume
here that the transition relations in P1, P2 are deterministic).

The independency relation induces a trace equivalence relation ∼ ⊆ Σ∗ × Σ∗

which is the least congruence in the free monoid (Σ∗, ., ε) that satisfies: i ‖ j =⇒
i.j ∼ j.i. The equivalence classes of ∼ are called Mazurkiewicz traces.

Example 2. The instructions x = 0 and y = 1 in the automata of Fig. 2 are
independent. Instructions d = 3 and d = 2 are not independent. �

3.2 Selective Search Algorithm

We consider now a generic selective search algorithm SelectSearch. The purpose
of such an algorithm is to explore a finite graph by avoiding to explore all the
interleavings of ∼-equivalent sequences of transitions. We do not refer to a spe-
cific selective search algorithm but rather consider the minimum requirements

240 F. Cassez and F. Ziegler

needed to fit in our framework. Such a SelectSearch algorithm uses the inde-
pendency relation ‖ defined in the previous paragraph to prune out some edges
(and states) during the exploration of the set of reachable states of S(P1, P2). If
S(P1, P2) is finite, SelectSearch(S(P1, P2)) generates a finite transition system,
called a trace automaton in [5]. We only require the SelectSearch algorithm to
preserve the reachability of local states2. Assume S(P1, P2) is finite.

Theorem 2 (Theorem 6.14, [5]). Let �1 ∈ L1, �2 ∈ L2 and ν ∈ Z
V . The state

(�1, �2, ν) is reachable in S(P1, P2) iff there exists �′
1 ∈ L1, ν′ ∈ Z

V such that
state (�′

1, �2, ν
′) is reachable in SelectSearch(S(P1, P2)).

Actual implementations of the SelectSearch algorithms can be based on the selec-
tive search algorithm using persistent sets, sleep sets and proviso defined in [5,
Figure 6.2, Chap. 6] or recent (optimal) algorithms as proposed in [19,20].

Let � = (ι1, ι2, ν0) i0 (�11, �
2
1, ν1) i1 (�12, �

2
2, ν2) i2 · · · in−1 (�1n, �2n, νn) be a path

in SelectSearch(S(P1, P2)). SelectSearch is a control location based selective search
if the set of transitions selected to be explored after � only depends on the
history (ι1, ι2)(�11, �

2
1) · · · (�1n, �2n) of control locations of �. Obtaining a location

based selective search can be achieved by using a standard dependency relation
as defined by ‖ above. Notice that the selective search algorithm using persis-
tent sets, sleep sets and proviso [5, Figure 6.2, Chap. 6] makes use of conditional
dependency relation ‖s that can vary according to the current state s and may
depend on the value of ν in our 2-threaded programs. We disable this feature to
obtain a control location based selective search algorithm and use an uncondi-
tional dependency relation like ‖ above. This implies we may miss some pruning
as our dependency relation is stronger than the conditional dependency one.

We now assume that the set of reachable states of S(P1, P2) may be infinite
and show that Theorem 2 can be extended to infinite systems. Let SelectSearch
be a control location based selective search algorithm. Let P1 × P2 = (L1 ×
L2, (ι1, ι2), T, E) with E = L1 × {�2}. Define SelectSearch(S(P1 × P2)) to be the
finite transition system obtained by applying SelectSearch on S(P1×P2). We can
assume the selective search algorithm is Depth-First Search based and explores
each state of P1 × P2 at most once. We write LE

R(P1 × P2) for the set of traces
t ∈ Σ∗ such that (ι1, ι2)

t−−→ � in SelectSearch(S(P1 × P2)) with � ∈ E. Using
Theorem 2 we can prove the following:

Lemma 1. ∃t ∈ LE(P1 × P2), post(t, T rue) 	⊆ False ⇐⇒ ∃t′ ∈ LE
R(P1 ×

P2), post(t′, T rue) 	⊆ False.

Proof. The If direction is easy as LE
R(P1 × P2) ⊆ LE(P1 × P2).

To prove the Only if direction, let t ∈ LE(P1×P2) and post(t, T rue) 	⊆ False.
Let n = |t|. As post(t, T rue) 	⊆ False, there is some valuation ν0 ∈ Z

V such that
post(t, {ν0}) 	= False. Using Fact 1 (If direction), this implies that there exists a
path of length n in S(P1, P2) that reaches a state (�1, �2, ν) from q0 = (ι1, ι2, ν0).

2 We define it here for local states of P2 but the property holds for each component
of a multi-threaded program.

Verification of Concurrent Programs Using Trace Abstraction Refinement 241

Let Dagn(q0) (we omit P1, P2 in the notation Dagn() for clarity) be the
Direct Acyclic Graph (DAG), that is obtained by building a depth-first search
tree for S(P1, P2), from q0, up to depth n. As this DAG is a finite transition
system, and E = L1 × {�2}, we can apply Theorem 2. This implies that a
state (�′

1, �2, ν
′) is reachable in SelectSearch(Dagn(q0)). Thus there exists a path

q0 i0 q1 · · · im−1 qm in SelectSearch(Dagn(q0)) such that qm = (�′
1, �2, ν

′). This
path is in S(P1, P2) and we can apply Fact 1 (Only If direction): there exists
t′ = i0.i1. · · · .im with post(t′, T rue) 	⊆ False. It remains to prove that t′ ∈
LE

R(P1 ×P2). As SelectSearch is control location based, this follows directly from
the fact that t′ is a path in SelectSearch(Dagn(q0)). ��
Lemma 1 together with Theorem 1 yield the following result:

Theorem 3. Let E = L1 ×{�2}. Reach(S(P1, P2))∩ (E ×Z
V) 	= ∅ ⇐⇒ ∃t ∈

LE
R(P1 × P2), post(t, T rue) 	⊆ False.

This reduces reachability of local states in the infinite system S(P1, P2) to the
existence of a feasible trace in a finite reduced product SelectSearch(S(P1×P2)).

In the next section, we show how to use trace refinement to determine
whether a feasible trace exists in LE

R(P1 × P2). In the sequel we assume E is
fixed and omit it as a superscript.

4 Trace Abstraction Refinement for Concurrent Programs

In this section, we combine the trace refinement algorithm from [13] with partial
order reduction. We first recall the trace abstraction refinement method and
second present our algorithm that combines trace abstraction refinement and
partial order reduction.

4.1 Interpolant Automata

The trace abstraction refinement algorithm from [13] relies on two keys condi-
tions: (a) given a sequence of instructions t = i0.i1. · · · .in ∈ Σ∗, we can decide
whether t is feasible (this can be done using SMT-solvers and decidable theories
e.g., Linear Integer Arithmetic) and (b) if t is infeasible there is an explanation in
the form of an inductive interpolant i.e., a sequence of predicates I0, I1, · · · , In+1

such that (1) I0 = True and In+1 = False, (2) ∀0 ≤ k ≤ n, post(ik, Ik) ⊆ Ik+1.
Let P = (L, ι, T) be a program automaton. Let � = �0 i0 �1 i1 · · · in−1 �n

be a path in P i.e., ∀0 ≤ k ≤ n − 1, (�k, ik, �k+1) ∈ T . The trace of the path � is
t = i0.i1. · · · in−1 and when the trace t is infeasible, the method introduced in [13]
consists in building a finite automaton IA(t), called an interpolant automaton
that accepts t and many other traces that are infeasible for the same reason.

A set of interpolant automata IA1, IA2, · · · , IAl each of which only accepts
infeasible traces is a refinement. As regular languages are closed under union, it
can actually be collapsed into one automaton that accepts ∪k=1..lL(IAk).

We do not develop the theory of interpolant automata here and refer the
reader to [13,14] for a more detailed explanation of the construction of IA(t).

242 F. Cassez and F. Ziegler

4.2 Combining Trace Refinement and Partial Order Reduction

Using Theorem 3 we can design an iterative algorithm to check the control
location reachability problem in 2-threaded programs. The input of the prob-
lem is (P1, P2) and a set of local states E = L1 × {�2}. (P1, P2) is safe if
Reach(S(P1, P2)) ∩ (E × Z

V) = ∅, otherwise it is unsafe. In the latter case
we want the algorithm to return a witness trace t to reach a state in E × Z

V .

Fig. 3. Trace abstraction refinement algorithm

By Theorem 3, determining whether Reach(S(P1, P2)) ∩ (E × Z
V) 	= ∅ is

equivalent to determining whether ∃t ∈ LE
R(P1 × P2) such that t is feasible.

This can be done by adapting the generic iterative trace abstraction refinement
algorithm of Fig. 1. The new algorithm that combines partial order reduction
and trace refinement is given in Fig. 3. As pointed out in the previous paragraph,
we can assume that a refinement is composed of one automaton A that accepts
infeasible traces. Every time a new interpolant automaton IA(t) is obtained from
an infeasible trace t we combine it with the previous refinement automaton A
by computing A ⊕ IA(t) where A ⊕ B denotes a finite automaton that accepts
L(A) ∪ L(B). LR(P1 × P2) is a finite graph and can be viewed as an automaton
with accepting locations in L1×{�2}. Checking emptiness of LR(P1×P2)∩L(A)
reduces to a standard emptiness check in a synchronised product of automata.
Notice that the reduce language LR(P1 × P2) should be constant during the
iterative refinement. If we choose to generate different representatives of the
same ∼-equivalent class at different iterations we may need to compute another
interpolant automaton to reject the new representative. In our implementation
we make sure that the same representative is generated at each refinement step.
Ideally, we should compute the closure of an interpolant automaton under the
equivalence relation ∼. This is one direction of future work to use asynchronous
automata [31] to represent ∼-closures.

4.3 Beyond Reachability of Local States

Reachability of local states is general enough to encode reachability of global
states which is needed to detect data races for instance. It suffices to add an

Verification of Concurrent Programs Using Trace Abstraction Refinement 243

extra component M , a monitor, and possibly extra shared variables. M has only
one transition to a special location d and the condition to fire the transition is
true iff there is a data race. Consider the 3-threaded program (P1, P2,M). There
is a data race in S(P1, P2) iff a state (�1, �2, d, ν) is reachable in S(P1, P2,M)
which is a local state reachability problem.

Deadlocks in S(P1, P2) can also be checked for if they are mapped to deadlock
states in the product P1 ×P2 (independent of the data part of the system). This
is usually the case, as deadlocks occur on lock/unlock operations or wait/signal
that can be explicitly encoded in S(P1 × P2). A deadlock in S(P1, P2) is then
equivalent to the reachability of a global state.

Finally, a general reachability problem depending on data, e.g., specified by
a statement of the form assert(c) in a multi-threaded program, can be checked
using a monitor as well: the monitor has one transition to a location d, and the
label of the edge to d is ¬c.

5 Implementation and Experiments

Implementation. We have implemented our combined partial order reduction
and trace abstraction refinement algorithm in a prototype Raptor. The proto-
type is written is Scala and is comprised of: (1) a module to perform the partial
order reduction implementing an algorithm based on [5, Figure 6.2, Chap. 6]; (2)
a module to compute the automata accepting infeasible traces; this module uses
a wrapper around SMTInterpol [21] to check feasibility of traces and get
inductive interpolants when a trace is infeasible. The details of the algorithms
and implementation are available in [18].

Our early prototype parses programs in a simple language of our own with
integer variables and thread construct. Listing 1, page 5, is an example of such
a program. As of now, it does not support C programs, arrays nor pointers
yet. However, our language and product construction supports synchronisation
and wait/signal primitives. We can then model mutexes directly as program
automata. Another important implementation detail is that we do not compute
A but rather determinise A on-the-fly.

Benchmarks. We used some examples from the Concurrency category [1] from
the 4th Competition on Software Verification (SV-COMP 2015). They contain
typical concurrent algorithms (Dekker, Lamport, Peterson) some of them coming
in two flavours: safe and unsafe (column Safe in Table 1). Safety amounts to
checking the reachability of a local state in one thread. We have translated
(for now manually) the C programs of some of the benchmarks into our input
language to analyse them. LOC, #T and #V contain respectively the number
of lines of code in the source C program, the number of threads and the number
of shared variables. Our simple language is very similar to C and the number
of lines in the translated version is identical to the C version. Red gives the
reduction in terms of explored states when partial order reduction is switched
on compared to no reduction.

244 F. Cassez and F. Ziegler

Table 1. Raptor results on the SV-COMP benchmarks.

Program Safe Steps States Red LOC #T #V Raptor Mu-Cseq Threader Impara

stateful01 no 0 22 0% 34 3 6 1.1s/20 0.9s/1027 0.6s N/A5

stateful01 yes 10 1628 17% 34 3 6 6.1s TO 2.6s N/A5

lazy01 no 1 11 0% 22 3 2 1.3s/9 0.6s/641 4.1s 0.16s

peterson yes 29 1200 8% 31 2 4 5.7s TO 4.6s 0.5s

dekker yes 9 1276 7% 46 2 4 6.6s TO 3.3s 0.7s

szymanski yes 47 9811 13% 59 2 3 10s TO 12s 1.43s

read write lock no 11 2178 16% 65 4 5 6s/26 0.9s/992 55s 3.9s

read write lock yes 38 10216 24% 63 4 5 9.5s TO 57s 15s

time var mutex yes 5 67 38% 33 2 5 0.69s TO 4.9s 0.2s

fib bench false no 284 10082 77% 25 3 2 29s/37 3.58s/949 TO TO

ext-spin2003 yes 1 203 0% 44 4 2 3.4s TO 176s 5.5s

Comparison with Other Tools. We compared our results with one of the
leadingtools in the category: Mu-Cseq [16] (silver medal at SV-COMP 2015),
Threader 0.92 (winner of SV-COMP 2013 (winner of SV-COMP 2013), and
Impara 0.2 [12]. We would have liked to compare with the winner tool lazy-
CSeq [17] but the competition version is not available any more. We ran the
analyses for Raptor and Mu-Cseq on an Virtual Linux Machine, running
Ubuntu 13.10 64-bit on a MacBook Pro, Intel Core i5, 2.6 GHz, 8 GB of RAM.

Table 1 shows the results of Raptor on the selected benchmarks. Column
Steps gives the number of refinement steps performed by Raptor. States is the
(cumulative) total number of explored states in all the selective searches per-
formed at each refinement step. The column Raptor contains the analysis time
in seconds and, when the program is unsafe, the length of the counterexample
(in terms of number of instructions in the program specified using our inter-
nal language). The column Mu-Cseq contains similar information for the tool
Mu-Cseq [16]. For Threader and Impara we collected only the run times.3

In Table 1, “TO” stands for TimeOut with a time out bound set to 600 s for
Mu-Cseq. Notice that both Mu-Cseq and lazy-CSeq use a bounded model
checking back-end (CBMC) and cannot formally establish the correctness of
programs in most cases. In the SV-COMP 2015, Mu-Cseq and lazy-CSeq
applied a strategy [16,17] to interpret the time out as “the program is safe”.
The result should rather be interpreted as “no bug was found” instead of a
formal proof of correctness. In contrast, our method and tool can find bugs or
establish program correctness (provided termination) even when programs have
loops. This is a key feature of the trace abstraction refinement method that it
can discover loop invariants and use them to reject infeasible traces.

On the negative instances (safe column is “no”) we incur some overhead com-
pared to Mu-Cseq to discover a counterexample. This can partially be explained
by the fact that our Scala implementation is compiled into an executable Java

3 In our experiments, Impara 0.2 failed to yield the correct analysis result.

Verification of Concurrent Programs Using Trace Abstraction Refinement 245

jar file. Every analysis with Raptor thus needs to first spawn out the JVM.
On the other hand our counterexamples are fairly short and easily mapped to
the original programs. For the positive instances (safe column is “yes”) we can
prove all of them within seconds which is a clear advantage.

The rough estimate of the distribution of the execution time for Raptor is
30 % in the SMT-solver and the rest in the computation of the refinements and
language inclusion check.

6 Related Work

Assume-guarantee reasoning for concurrent programs was first implemented in
the Calvin model checker [22] to check concurrent Java programs. However,
program refinement had to be done manually. To the best of our knowledge, the
first paper to combine assume-guarantee reasoning with an automated abstrac-
tion refinement technique for multi-threaded programs is [10]. The proposed
method is modular and can prove correctness for programs that admit a modu-
lar proof (the predicates on one thread never involve a local variable of another
thread). As the authors point out (Sect. 4 in [10]) “[. . .] the tool ignores thread
interleavings [. . .] and may return false positives”. Another limitation of [10] is
intrinsic to the modular approach: not all multi-threaded programs admit mod-
ular proofs. This means that the algorithm may terminate because no better
refinement can be derived and in this case might miss some bugs i.e., generate
false negatives. This approach was later refined in [23]. Thread modular CEGAR
was re-considered in [24] and compared against Spin. Threader [11,25] com-
bines predicate abstraction and constraint solving but does not implement any
symmetry or reduction techniques that deal with interleavings. Threader did
not participate in the last two editions of SV-COMP 2014 and 2015. Recent
work [26] by A. Miné introduced a big-step interference-based thread-modular
static analysis as abstract interpretation based on assume-guarantee reasoning.

Partial order reduction techniques have long been recognised as effective for
checking concurrent programs and tools implementing the techniques are numer-
ous. The most-well known might be Spin [8] and VeriSoft [27]. Surprisingly
enough, the combination of state-of-the-art predicate abstraction techniques like
lazy abstraction (known as the Impact algorithm) with partial order reduction
techniques has only been achieved recently in [12,28]. It turns out that obtain-
ing a sound algorithm when combining lazy abstractions with partial order tech-
niques is not trivial and it is not clear how other reduction techniques (e.g., sym-
metry reduction) can be accommodated for in these frameworks. Impara imple-
ments this technique and according to [12] outperforms all other tools. However,
Impara did not participate in the SV-COMP 2015 and this is why we have not
compared our results against it.

In [29,30], the authors address the verification problem for multi-threaded
programs composed of threads executing the same procedure. They show how
to derive constraints with shared and local variables, so-called mixed predicates
but this comes at a rather expensive cost. Indeed, concurrency implies that the

246 F. Cassez and F. Ziegler

abstraction of a program is a concurrent boolean broadcast program for which
the image computation of the broadcast assignment is expensive.

Other race checkers tools based on lock-set or type-set are limited in scope:
they check for some conformance to generic patterns at the syntactic level when
using mutexes (e.g., if a variable is used within a mutex m in one thread, it
should be always used within the same mutex m in all other threads). On the
programs we considered, they either report false positives or false negatives (do
not detect the bug).

7 Conclusion and Ongoing Work

We have proposed a new method for verifying concurrent programs based on
trace abstraction refinement and partial order reduction techniques. The results
on some standard benchmarks from the Software Verification Competition (SV-
COMP 2015) show that our approach compares favourably to existing techniques
for finding bugs and is able to establish the correctness of the positive instances.

The combination we have proposed is very natural which is witnessed by
the brevity of the correctness proofs (e.g., Lemma 1 and Theorem 3). This is in
contrast with the combination of predicate abstraction refinement and partial
order reduction [12] which is more involved. It is also clear that our approach
extends to other reduction techniques, e.g., symmetry reduction.

Our current work is two-fold: (i) on the theoretical side, we aim to compute
refinements that are asynchronous automata [31] to capture infeasible traces
and the all their equivalent traces. A second line of work is to design a modular
algorithm (to avoid in-lining of function calls) in the spirit of our recent results
[32,33]. (ii) on the implementation side, we aim to add more capabilities to our
tool, e.g., support for arrays, parsing for C programs and (iii) implement recent
optimal partial order reduction techniques [19,20].

References

1. Beyer, D.: International software verification competition. http://sv-comp.
sosy-lab.org/2015/

2. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003)

3. Ball, T., Levin, V., Rajamani, S.K.: A decade of software model checking with
SLAM. Commun. ACM 54(7), 68–76 (2011)

4. Jones, C.B.: Tentative steps toward a development method for interfering pro-
grams. ACM Trans. Program. Lang. Syst. 5(4), 596–619 (1983)

5. Godefroid, P. (ed.): Partial-Order Methods for the Verification of Concurrent Sys-
tems: An Approach to the State-Explosion Problem. LNCS, vol. 1032. Springer,
Heidelberg (1996)

6. Peled, D.: All from one, one for all: on model checking using representatives. In:
Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 409–423. Springer, Heidel-
berg (1993)

http://sv-comp.sosy-lab.org/2015/
http://sv-comp.sosy-lab.org/2015/

Verification of Concurrent Programs Using Trace Abstraction Refinement 247

7. Valmari, A.: Stubborn sets for reduced state space generation. Applications and
Theory of Petri Nets. LNCS, vol. 483, pp. 491–515. Springer, Heidelberg (1989)

8. Holzmann, G.J.: Software model checking with spin. Adv. Comput. 65, 78–109
(2005)

9. Flanagan, C., Qadeer, S., Seshia, S.A.: A modular checker for multithreaded pro-
grams. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp.
180–194. Springer, Heidelberg (2002)

10. Henzinger, T.A., Jhala, R., Majumdar, R., Qadeer, S.: Thread-modular abstraction
refinement. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725,
pp. 262–274. Springer, Heidelberg (2003)

11. Gupta, A., Popeea, C., Rybalchenko, A.: Predicate abstraction and refinement for
verifying multi-threaded programs. In: POPL, pp. 331–344. ACM (2011)

12. Wachter, B., Kroening, D., Ouaknine, J.: Verifying multi-threaded software with
impact. In: FMCAD, pp. 210–217. IEEE (2013)

13. Heizmann, M., Hoenicke, J., Podelski, A.: Refinement of trace abstraction. In:
Palsberg, J., Su, Z. (eds.) SAS 2009. LNCS, vol. 5673, pp. 69–85. Springer,
Heidelberg (2009)

14. Heizmann, M., Hoenicke, J., Podelski, A.: Software model checking for people who
love automata. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp.
36–52. Springer, Heidelberg (2013)

15. Farzan, A., Kincaid, Z., Podelski, A.: Inductive data flow graphs. In: POPL, pp.
129–142. ACM (2013)

16. Tomasco, E., Inverso, O., Fischer, B., La Torre, S., Parlato, G.: MU-CSeq 0.3:
Sequentialization by read-implicit and coarse-grained memory unwindings. In:
Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 436–438. Springer,
Heidelberg (2015)

17. Inverso, O. et al.: Lazy-CSeq 0.6c: An improved lazy sequentialization tool for C.
In: SV-COMP, (TACAS) 2015

18. Ziegler, F.: Verification of concurrent programs via partial-order reduction and
trace refinement. MSc, Institut für Software & Systems Engineering, University of
Ausgburg, Germany (2014)

19. Abdulla, P.A., Aronis, S., Jonsson, B., Sagonas, K.F.: Optimal dynamic partial
order reduction. In: POPL, pp. 373–384. ACM (2014)

20. Kahlon, V., Wang, C., Gupta, A.: Monotonic partial order reduction: an optimal
symbolic partial order reduction technique. In: Bouajjani, A., Maler, O. (eds.) CAV
2009. LNCS, vol. 5643, pp. 398–413. Springer, Heidelberg (2009)

21. Christ, J., Hoenicke, J., Nutz, A.: SMTInterpol: An interpolating SMT solver.
In: Donaldson, A., Parker, D. (eds.) SPIN 2012. LNCS, vol. 7385, pp. 248–254.
Springer, Heidelberg (2012)

22. Flanagan, C., Qadeer, S.: Thread-modular model checking. In: Ball, T., Rajamani,
S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 213–224. Springer, Heidelberg (2003)

23. Henzinger, T.A., Jhala, R., Majumdar, R.: Race checking by context inference. In:
PLDI 2004, pp. 1–13. ACM (2004)

24. Malkis, A., Podelski, A., Rybalchenko, A.: Thread-modular counterexample-guided
abstraction refinement. In: Cousot, R., Martel, M. (eds.) SAS 2010. LNCS, vol.
6337, pp. 356–372. Springer, Heidelberg (2010)

25. Gupta, A., Popeea, C., Rybalchenko, A.: Threader: A constraint-based verifier for
multi-threaded programs. [34] 412–417

26. Miné, A.: Static analysis by abstract interpretation of concurrent programs. Habil-
itation à Diriger les Recherches, ENS, France (2013)

248 F. Cassez and F. Ziegler

27. Godefroid, P.: Software model checking: The verisoft approach. Form. Methods
Syst. Des. 26(2), 77–101 (2005)

28. Cimatti, A., Narasamdya, I., Roveri, M.: Boosting lazy abstraction for system C
with partial order reduction. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011.
LNCS, vol. 6605, pp. 341–356. Springer, Heidelberg (2011)

29. Donaldson, A.F., Kaiser, A., Kroening, D., Wahl, T.: Symmetry-aware predicate
abstraction for shared-variable concurrent programs. [34] 356–371

30. Donaldson, A.F., Kaiser, A., Kroening, D., Tautschnig, M., Wahl, T.:
Counterexample-guided abstraction refinement for symmetric concurrent pro-
grams. Form. Methods Syst. Des. 41(1), 25–44 (2012)

31. Zielonka, W.: Notes on finite asynchronous automata. ITA 21(2), 99–135 (1987)
32. Cassez, F., Müller, C., Burnett, K.: Summary-based inter-procedural analysis via

modular trace refinement. In: FSTTCS 2014, pp. 545–556 (2014)
33. Cassez, F., Matsuoka, T., Pierzchalski, E., Smyth, N.: Perentie: modular trace

refinement and selective value tracking. In: Baier, C., Tinelli, C. (eds.) TACAS
2015. LNCS, vol. 9035, pp. 439–442. Springer, Heidelberg (2015)

	Verification of Concurrent Programs Using Trace Abstraction Refinement
	1 Introduction
	2 Reachability Checking in Concurrent Programs
	2.1 Notations
	2.2 2-Threaded Programs

	3 Partial-Order Reduction
	3.1 Independent Transitions
	3.2 Selective Search Algorithm

	4 Trace Abstraction Refinement for Concurrent Programs
	4.1 Interpolant Automata
	4.2 Combining Trace Refinement and Partial Order Reduction
	4.3 Beyond Reachability of Local States

	5 Implementation and Experiments
	6 Related Work
	7 Conclusion and Ongoing Work
	References

