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Preface

This volume contains the papers presented at the 20th International Conference on
Logic for Programming, Artificial Intelligence and Reasoning (LPAR-20), held during
November 24–28, 2015, at the University of the South Pacific, Suva, Fiji.

Following the call for papers, LPAR-20 received 117 abstracts, materializing into 92
submissions. Each submission was reviewed by a panel of 53 Program Committee
(PC) members. The PC was assisted by 107 additional reviewers and decided to accept
43 papers. The EasyChair system provided an indispensible platform for all matters
related to the reviewing process, production of these proceedings, program and Web
page generation, and registration of participants.

Several workshops were collocated with LPAR-20. The first workshop on Models
for Formal Analysis of Real Systems (MARS 2015) was organized by Rob van
Glabbeek and Peter Hoefner of NICTA and Jan Friso Groote from Eindhoven
University of Technology. The First International Workshop on Focusing was orga-
nized by Iliano Cervesato of Carnegie Mellon University and Carsten Schuermann of
ITU Copenhagen and Demtech. The 11th International Workshop on the Implemen-
tation of Logics was organized by Boris Konev of the University of Liverpool, Stephan
Schulz of DHBW Stuttgart, and Laurent Simon of the University of Bordeaux. We
were fortunate to have Peter Baumgartner of NICTA as workshop chair.

The local conference organization was arranged by Geoff Sutcliffe and Ansgar
Fehnker, and together they put together an excellent event.

LPAR-20 is grateful for the generous support of Microsoft Research and University
of the South Pacific.

September 2015 Martin Davis
Ansgar Fehnker

Annabelle McIver
Andrei Voronkov
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Satisfiability: From Quality to Quantities
(Abstract of Invited Talk)

Nikolaj Bjørner

Microsoft Research
nbjorner@microsoft.com

Satisfiability Modulo Theories, SMT, solvers have in the past decade enabled a number
of software engineering tools thanks to improved theorem proving technologies, their
support for domains that are commonly used in software and a confluence of advances
in symbolic analysis methodologies. These methodologies are diverse and range from
bug localization, symbolic model checking algorithms, dynamic symbolic execution
for uncovering bugs and creating parametric unit tests, certified development using
program verification tools, compiler validation, biological modeling, model based
design tools, web sanitizers, and runtime analysis. The synergy with application
domains has lead to a constant stream of inspiration for improved domain support and
algorithmic advances. A simultaneous trend in applications is leading research on SMT
solvers into calculating with quantities. We believe this is part of an overall trend of
tools for checking and synthesizing quantitative, including probabilistic, properties.

Using Network Verification as a starting point, we describe how the SMT solver Z3
is used at scale in Microsoft Azure to check network access restrictions and router
configurations. Z3 is used in a monitoring system, called SecGuru, that continuously
checks configurations as they appear on routers. We learned early on that network
operators required a tool that could return a set of models in a compact way. This led us
to develop a domain specific algorithm, that works well for access control lists. It
enumerates models compactly in fractions of a second. A more ambitious effort is to
check reachability properties in large data-centers. Again, our experience was that the
domain called for special purpose data-structures and symmetry reduction methods that
turn analysis of data-centers with hundreds of routers and a million forwarding rules
into very small finite state systems that can be analyzed in fractions of a second.

Our experience with Network Verification is not unlike other domains as we are
reaching a point where qualitative analysis has shown its use, but a larger elephant is
lurking in the room: most systems rely on performance guarantees. Thus, the need for
cheking and synthesizing quantitative properties. To support SMT with quantities we
have embarked on long term projects on integrating optimization algorithms with Z3
and integrating methods for counting the number of solutions to constraints. In this
context we developed a new MaxSAT algorithm that exploits dualities between
unsatisfiable cores and correction sets and we illustrate some uses of the emerging
quantitative features in Z3.

The work rests on collaboration with a large number of colleagues including
Karthick Jayaraman, George Varghese, Nina Narodytska, Nuno Lopes, Andrey
Rybalchenko, Leonardo de Moura, Christoph Wintersteiger, Gordon Plotkin.
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Skolemization for Substructural Logics

Petr Cintula1, Denisa Diaconescu2,3(B), and George Metcalfe2

1 Institute of Computer Science, Czech Academy of Sciences, Prague, Czech Republic
cintula@cs.cas.cz

2 Mathematical Institute, University of Bern, Bern, Switzerland
{denisa.diaconescu,george.metcalfe}@math.unibe.ch

3 Faculty of Mathematics and Computer Science,
University of Bucharest, Bucharest, Romania

Abstract. The usual Skolemization procedure, which removes strong
quantifiers by introducing new function symbols, is in general unsound
for first-order substructural logics defined based on classes of complete
residuated lattices. However, it is shown here (following similar ideas
of Baaz and Iemhoff for first-order intermediate logics in [1]) that first-
order substructural logics with a semantics satisfying certain witnessing
conditions admit a “parallel” Skolemization procedure where a strong
quantifier is removed by introducing a finite disjunction or conjunction
(as appropriate) of formulas with multiple new function symbols. These
logics typically lack equivalent prenex forms. Also, semantic consequence
does not in general reduce to satisfiability. The Skolemization theorems
presented here therefore take various forms, applying to the left or right
of the consequence relation, and to all formulas or only prenex formulas.

1 Introduction

Skolemization is an important ingredient of automated reasoning methods in
(fragments of) first-order classical logic. Crucially, a sentence (∀x̄)(∃y)ϕ(x̄, y)
is classically satisfiable if and only if (∀x̄)ϕ(x̄, f(x̄)) is satisfiable, where f is a
function symbol not occurring in ϕ. The satisfiability of a sentence in prenex form
therefore reduces to the satisfiability of a universal sentence; Herbrand’s theorem
then permits a further reduction to the satisfiability of a set of propositional
formulas. For more details on the classical case, we refer the reader to [3].

For first-order non-classical logics, the situation is not so straightforward.
Formulas are not always equivalent to prenex formulas and semantic conse-
quence may not reduce to satisfiability, meaning that (non-prenex) sentences
should be considered separately as premises and conclusions of consequences.
A Skolemization procedure may in such cases be more carefully defined where
strong occurrences of quantifiers in subformulas are replaced on the left, and

P. Cintula–Supported by RVO 67985807 and Czech Science Foundation
GBP202/12/G061.
D. Diaconescu–Supported by Sciex grant 13.192.
G. Metcalfe–Supported by Swiss National Science Foundation grant 200021 146748.
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M. Davis et al. (Eds.): LPAR-20 2015, LNCS 9450, pp. 1–15, 2015.
DOI: 10.1007/978-3-662-48899-7 1



2 P. Cintula et al.

weak occurrences on the right. However, satisfiability or, more generally, seman-
tic consequence, may not be preserved. Notably, in first-order intuitionistic logic,
formulas such as ¬¬(∀x)P (x) → (∀x)¬¬P (x) do not skolemize (see, e.g., [2,15],
also for methods for addressing these problems).

The goal of this paper is to develop Skolemization theorems for first-order
substructural logics based on residuated lattices, a family that spans first-order
intermediate logics, exponential-free linear logic, relevance logics, fuzzy logics,
and logics without contraction (see, e.g., [7,9,11,14,17]). Although these logics
are in general undecidable, their (decidable) fragments provide foundations for
knowledge representation and reasoning methods such as non-classical logic pro-
gramming and description logics (see, e.g., [10,12,13,18]). The work reported
here aims to avoid duplicated research effort by providing a general approach to
the development of automated reasoning methods in the substructural setting.
A first step in this direction was taken in [6] which provides Herbrand theorems
for these logics. Skolemization was also considered (briefly) in that paper, but
unfortunately, the scope of the process was overstated in Theorem 1: the result
applies only to first-order substructural logics based on classes of chains (totally
ordered structures). An analysis of the failure of this theorem has, however, stim-
ulated the new more general approach described in this paper. Future work will
involve combining the various Herbrand and Skolem theorems obtained here and
in [6] to develop resolution methods for a wide class of substructural logics.

The key idea of “parallel Skolemization” is to remove strong occurrences
of quantifiers on the left of the consequence relation and weak occurrences of
quantifiers on the right by introducing disjunctions and conjunctions, respec-
tively, of formulas with multiple new function symbols. In particular, a sentence
(∀x̄)(∃y)ϕ(x̄, y) occurring as the conclusion of a consequence is rewritten for
some n ∈ N

+ as (∀x̄)
∨n

i=1 ϕ(x̄, fi(x̄)) where each function symbol fi is new for
i = 1 . . . n. Baaz and Iemhoff use this method in [1] to establish “full” Skolem-
ization results for first-order intermediate logics whose Kripke models (with or
without the constant domains condition) admit a finite model property. In this
paper, we obtain full parallel Skolemization results for first-order substructural
logics admitting certain new variants of the witnessed model property intro-
duced by Hájek in [12]. We also obtain complete characterizations of full parallel
Skolemization when these logics have a finitary consequence relation. We then
turn our attention to first-order substructural logics that only partially satisfy a
witnessing property and hence do not admit full parallel Skolemization. We show
that under certain weaker conditions, these logics admit parallel Skolemization
for prenex sentences occurring on the left or right of the consequence relation.

2 First-Order Substructural Logics

Predicates, interpreted classically as functions from the domain of a structure to
the two element Boolean algebra 2, are interpreted in first-order substructural
logics as functions from the domain to algebras with multiple values that may
represent, e.g., degrees of truth, belief, or confidence. For convenience, we con-
sider here algebras for the full Lambek calculus with exchange – equivalently,
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intuitionistic linear logic without exponentials and additive constants – noting
that a more general algebraic setting would lead to similar results, but compli-
cate the presentation somewhat.

An FLe-algebra is an algebraic structure A = 〈A,&,→,∧,∨, 0, 1〉 such that:

1. 〈A,∧,∨〉 is a lattice with an order defined by x ≤ y ⇔ x ∧ y = x;
2. 〈A,&, 1〉 is a commutative monoid;
3. → is the residuum of &, i.e. x & y ≤ z ⇔ x ≤ y → z for all x, y, z ∈ A.

A is called complete if
∨

X and
∧

X exist in A for all X ⊆ A, and an FLe-chain
if either x ≤ y or y ≤ x for all x, y ∈ A.

Example 1. Complete FLe-chains A = 〈[0, 1], ∗,→∗,min,max, d, e∗〉 based on
the real unit interval [0, 1] with the usual order have been studied intensively in
mathematical fuzzy logic [7,11,14]. In this setting, ∗ is a residuated uninorm: an
associative and commutative binary function on [0, 1] that is increasing in both
arguments and has a unit e∗ and residuum →∗. (d is an arbitrary element in
[0, 1]). Fundamental examples include the �Lukasiewicz t-norm max(x+ y − 1, 0),
the Gödel t-norm min(x, y), and the product t-norm x · y.

The class FLe of FLe-algebras may be defined equationally and hence forms
a variety: a class of algebras closed under taking homomorphic images, subalge-
bras, and products. Subvarieties of FLe provide algebraic semantics for a broad
spectrum of substructural logics, including those defined via extensions of the
sequent calculus for FLe. In particular, FLew-algebras for FLe with weakening
are FLe-algebras satisfying 0 ≤ x ≤ 1, and FLewc-algebras for intuitionistic logic
(term-equivalent to Heyting algebras) are FLew-algebras satisfying x&x = x.
Further varieties consist of “involutive” FLe-algebras satisfying (x → 0) → 0 = x
(corresponding to multiple-conclusion sequent calculi) and “semilinear” FLe-
algebras satisfying ((x → y) ∧ 1) ∨ ((y → x) ∧ 1) = 1 (corresponding to hyperse-
quent calculi). In particular, semilinear FLe-algebras, FLew-algebras, and FLewc-
algebras provide algebraic semantics for, respectively, uninorm logic, monoidal
t-norm logic, and Gödel logic (see [4,5,9,14]).

A (countable) predicate language P is a triple 〈P,F,ar〉 where P and F are
non-empty countable sets of predicate and function symbols, respectively, and
ar is a function assigning to each predicate and function symbol � an arity
ar(�) = n ∈ N (� is called n-ary); nullary function symbols are called object
constants and nullary predicate symbols are called propositional atoms. P-terms
s, t, . . ., and (atomic) P-formulas ϕ,ψ, χ, . . . are defined as in classical logic using
a fixed countably infinite set OV of object variables x, y, . . ., quantifiers ∀ and
∃, binary connectives &,→,∧,∨, and logical constants 0, 1. Also ¬ϕ is defined
as ϕ → 0 and ϕ ↔ ψ as (ϕ → ψ) ∧ (ψ → ϕ).

Bound and free variables, closed terms, sentences, and substitutability are
defined in the standard way. Instead of ξ1, . . . , ξn (where the ξi’s are terms or
formulas and n is arbitrary or fixed by the context) we sometimes write just ξ̄.
By the notation ϕ(z̄) we indicate that all free variables of ϕ occur in the list of
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distinct object variables z̄. If ϕ(x1, . . . , xn, z̄) is a formula and all free occurrences
of xi’s are replaced in ϕ by terms ti, the resulting formula is denoted simply by
ϕ(t1, . . . , tn, z̄). We write χ[ϕ] for a formula χ with a distinguished subformula ϕ
and understand χ[ψ] as the result of replacing ϕ in χ with the formula ψ. A set
of P-formulas is called a P-theory.

Classical notions of structure, evaluation, and truth are generalized relative
to a complete FLe-algebra A as follows: a P-structure S = 〈A,S〉 consists of
a complete FLe-algebra A and a triple S = 〈S,

〈
PS

〉
P∈P

,
〈
fS

〉
f∈F

〉 where S

is a non-empty set, PS is a function Sn → A for each n-ary predicate symbol
P ∈ P, and fS : Sn → S is a function for each n-ary function symbol f ∈ F. An
S-evaluation is a mapping v : OV → S. By v[x→a] we denote the S-evaluation
where v[x→a](x) = a and v[x→a](y) = v(y) for each object variable y �= x.
Terms and formulas are evaluated in S as follows:

‖x‖Sv = v(x)
‖f(t1, . . . , tn)‖Sv = fS(‖t1‖Sv , . . . , ‖tn‖Sv ) for f ∈ F
‖P (t1, . . . , tn)‖Sv = PS(‖t1‖Sv , . . . , ‖tn‖Sv ) for P ∈ P

‖ϕ ◦ ψ‖Sv = ‖ϕ‖Sv ◦A ‖ψ‖Sv for ◦ ∈ {&,→,∧,∨}
‖�‖Sv = �A for � ∈ {0, 1}

‖(∀x)ϕ‖Sv = inf≤A
{‖ϕ‖Sv[x→a] | a ∈ S}

‖(∃x)ϕ‖Sv = sup≤A
{‖ϕ‖Sv[x→a] | a ∈ S}.

A P-structure M = 〈A,M〉 is a P-model of a P-theory T , written M |= T , if
for each ϕ ∈ T and M-evaluation v, ‖ϕ‖Mv ≥ 1A.

Let us now fix an arbitrary class K of complete FLe-algebras. A P-formula
ϕ is a semantic consequence of a P-theory T in K, written T |=P

K
ϕ, if M |= ϕ

for each A ∈ K and each P-model M = 〈A,M〉 of T . We omit the prefixes for
the class K or language P when known from the context.

To simplify notation, for a formula ϕ(x1, . . . , xn) and an S-evaluation v with
v(xi) = ai, we write ‖ϕ(a1, . . . , an)‖S instead of ‖ϕ(x1, . . . , xn)‖Sv . Observe
that, as in classical logic, the truth value of a sentence does not depend on an
evaluation. Also, M |= ϕ → ψ iff for each evaluation v, ‖ϕ‖Mv ≤ ‖ψ‖Mv , and
M |= ϕ ↔ ψ iff for each evaluation v, ‖ϕ‖Mv = ‖ψ‖Mv .

The next lemma collects together some useful facts for FLe-algebras.

Lemma 1 ([7,14,16]). Given formulas ϕ,ψ, χ, a variable x not free in χ, and
a term t substitutable for x in ϕ:

1. |=K (∀x)ϕ(x) → ϕ(t) 8. |=K (∃x)(χ → ϕ) → (χ → (∃x)ϕ)
2. |=K ϕ(t) → (∃x)ϕ(x) 9. |=K (∃x)(ϕ → χ) → ((∀x)ϕ → χ)
3. |=K (∀x)(χ → ϕ) ↔ (χ → (∀x)ϕ) 10. |=K (χ & (∃x)ϕ) ↔ (∃x)(χ & ϕ)
4. |=K (∀x)(ϕ → χ) ↔ ((∃x)ϕ → χ) 11. |=K (∃x)(ϕ ∨ ψ) ↔ ((∃x)ϕ ∨ (∃x)ψ)
5. {ϕ,ϕ → ψ} |=K ψ 12. |=K (χ ∨ (∀x)ϕ) → (∀x)(χ ∨ ϕ)
6. {ϕ} |=K ϕ ∧ 1 13. |=K ((∀x)ϕ ∧ (∀x)ψ) ↔ (∀x)(ϕ ∧ ψ)
7. {ϕ} |=K (∀x)ϕ 14. |=K (∃x)(χ ∧ ϕ) → (χ ∧ (∃x)ϕ).
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0̄

a 1̄ b

�

Fig. 1. Example of an FLe-algebra

Moreover, if K is a class of complete FLe-chains:

15. |=K (∀x)(χ ∨ ϕ) ↔ χ ∨ (∀x)ϕ 16. |=K (∃x)(χ ∧ ϕ) ↔ χ ∧ (∃x)ϕ.

Let us emphasize that some quantifier shifts (8–14) are available for every choice
of K, and two more (15–16) if K consists of FLe-chains, but that, in general, the
formulas (χ → (∃x)ϕ) → (∃x)(χ → ϕ), ((∀x)ϕ → χ) → (∃x)(ϕ → χ), and
(∀x)(χ&ϕ) → (χ&(∀x)ϕ) (where x is not free in χ) are not valid (see, e.g., [7]).

3 Parallel Skolemization

Skolemization fails in many first-order substructural logics. Consider, for exam-
ple, a language with a binary predicate symbol P and object constants r and s,
and a structure M = 〈A,M〉 of this language where

– A is the FLe-algebra 〈A,&,→,∧,∨, 0, 1〉 depicted in Fig. 1 with

x & y =

⎧
⎪⎨

⎪⎩

x ∧ y if x, y ∈ {0, a, b,�}
x if y = 1̄
y if x = 1̄

and → is the residuum of &;
– M = {r, s} with rM = r, sM = s, PM(s, s) = PM(r, s) = a, PM(r, r) = 1̄,

and PM(s, r) = b.

Then M is a model of (∀x)(∀z)(P (x, r) ∨ P (z, s)), but not of (∃y)(∀x)P (x, y),
since ‖(∃y)(∀x)P (x, y)‖M = a �≥ 1̄, so

(∀x)(∀z)(P (x, r) ∨ P (z, s)) �|=A (∃y)(∀x)P (x, y).

On the other hand, for any unary function symbol f , we have

(∀x)(∀z)(P (x, r) ∨ P (z, s)) |=A (∃y)P (f(y), y).

Hence “ordinary” Skolemization in this case is not sound. Suppose, however,
that we introduce two new unary function symbols f1 and f2. Then extending
the same structure M with interpretations fM

1 (r) = fM
1 (s) = r and fM

2 (r) =
fM
2 (s) = s, we obtain ‖(∃y)(P (f1(y), y) ∧ P (f2(y), y))‖M = a �≥ 1̄ and

(∀x)(∀z)(P (x, r) ∨ P (z, s)) �|=A (∃y)(P (f1(y), y) ∧ P (f2(y), y)).
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More generally (see Lemma 4) for any theory T ∪ {(∃ȳ)(∀x)ϕ(x, ȳ)} of this
language and new function symbols f1, f2 of arity |ȳ|,

T |=A (∃ȳ)(∀x)ϕ(x, ȳ) ⇔ T |=A (∃ȳ)(ϕ(f1(ȳ), ȳ) ∧ ϕ(f2(ȳ), ȳ)).

We investigate here this “parallel Skolemization” procedure, introduced by Baaz
and Iemhoff in [1] for intermediate logics, in the context of substructural logics.

Let us first recall some useful notions. An occurrence of a subformula ψ in a
formula ϕ is positive (negative) if, inductively, one of the following holds:

1. ϕ is ψ;
2. ϕ is ϕ1 ∧ ϕ2, ϕ2 ∧ ϕ1, ϕ1 ∨ ϕ2, ϕ2 ∨ ϕ1, ϕ1 & ϕ2, ϕ2 & ϕ1, (∀x)ϕ1, (∃x)ϕ1, or

ϕ2 → ϕ1, and ψ is positive (negative) in ϕ1[ψ];
3. ϕ is ϕ1 → ϕ2 and ψ is negative (positive) in ϕ1[ψ].

The following result is easily established by induction on formula complexity.

Lemma 2. For P-formulas ϕ, ψ, χ where ψ has the same free variables as χ:
(i) If ψ occurs positively in ϕ[ψ], then {χ → ψ} |=K ϕ[χ] → ϕ[ψ].
(ii) If ψ occurs negatively in ϕ[ψ], then {ψ → χ} |=K ϕ[χ] → ϕ[ψ].

An occurrence of a quantified subformula (Qx)ψ in a formula ϕ is called strong
if either it is positive and Q = ∀, or it is negative and Q = ∃, weak otherwise.

Fix n ∈ N
+ and consider a P-sentence ϕ with a subformula (Qx)ψ(x, ȳ) and

function symbols f1, . . . , fn �∈ P of arity |ȳ|. Replace this subformula in ϕ by
∨n

i=1 ψ(fi(ȳ), ȳ) if Q = ∃ and
∧n

i=1 ψ(fi(ȳ), ȳ) if Q = ∀.

The replacement strictly decreases the multiset of depths of occurrences of quan-
tifiers according to the standard multiset well-ordering described in [8]. Hence
applying this process repeatedly to leftmost strong occurrences of quantifiers
in an arbitrary P-sentence ϕ results in a unique (up to renaming of function
symbols) P ′-sentence skr

n(ϕ) for some extension P ′ of P that contains only weak
occurrences of quantifiers. Similarly, let skl

n(ϕ) be the result of applying this
process repeatedly to leftmost weak occurrences of quantifiers in ϕ.

Example 2. Consider a sentence ϕ = (∀x)((∃y)P (x, y) → (∃z)Q(x, z)). Taking
n = 1, the above process leads to

skl
1(ϕ) = (∀x)((∃y)P (x, y) → Q(x, g(x))) and skr

1(ϕ) = P (c, d) → (∃z)Q(c, z).

On the other hand, considering n = 2 and applying the procedure to weak
occurrences of quantifiers in ϕ, we produce the formula skl

2(ϕ)

(∀x)((∃y)P (x, y) → (Q(x, g1(x)) ∨ Q(x, g2(x)))),

while applying it to strong occurrences, we obtain first

((∃y)P (c1, y) → (∃z)Q(c1, z)) ∧ ((∃y)P (c2, y) → (∃z)Q(c2, z)),

and then a formula skr
2(ϕ) of the form

((P (c1, d11)∨P (c1, d12)) → (∃z)Q(c1, z))∧((P (c2, d21)∨P (c2, d22)) → (∃z)Q(c2, z)).
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Let us fix an arbitrary class of complete FLe-algebras K. We say that the
consequence relation |=K admits parallel Skolemization right of degree n, for a
P-sentence ϕ if for any P-theory T ,

T |=K ϕ ⇔ T |=K skr
n(ϕ).

Similarly, we say that |=K admits parallel Skolemization left of degree n for a
P-sentence ϕ if for any P-theory T ∪ {ψ},

T ∪ {ϕ} |=K ψ ⇔ T ∪ {skl
n(ϕ)} |=K ψ.

Note that there exists the following relationship between the left and right
forms of parallel Skolemization.

Lemma 3. If |=K admits parallel Skolemization left of degree n for all sen-
tences, then |=K admits parallel Skolemization right of degree n for all sentences.

Proof. For any P-theory T , P-sentence ϕ, and propositional atom P not occur-
ring in T ∪ {ϕ}:

T |=K ϕ ⇔ T ∪ {ϕ → P} |=K P (1)
⇔ T ∪ {skl

n(ϕ → P )} |=K P (2)
⇔ T ∪ {skr

n(ϕ) → P} |=K P (3)
⇔ T |=K skr

n(ϕ). (4)

Equivalences (1) and (4) follow from [6, Corollary 1], (2) follows from the assump-
tion that |=K admits parallel Skolemization left of degree n for all P-sentences,
and (3) follows inductively from the definitions of skl

n(·) and skr
n(·). ��

We are unable to prove the converse direction to this lemma. Suppose, however,
that |=K admits the weaker version of the classical deduction theorem stating
that for any P-theory T ∪ {ψ} and P-sentence ϕ:

T ∪ {ϕ} |=K ψ ⇔ T |=K (ϕ ∧ 1) → ψ.

Then if |=K admits parallel Skolemization right of degree n for all P-sentences,
also |=K admits parallel Skolemization left of degree n for all P-sentences. Just
note that for any P-theory T ∪ {ψ} and P-sentence ϕ:

T ∪ {ϕ} |=K ψ ⇔ T |=K (ϕ ∧ 1) → ψ (1)
⇔ T |=K skr

n((ϕ ∧ 1) → ψ) (2)
⇔ T |=K (skl

n(ϕ) ∧ 1) → skr
n(ψ) (3)

⇔ T ∪ {skl
n(ϕ)} |=K skr

n(ψ) (4)
⇔ T ∪ {skl

n(ϕ)} |=K ψ. (5)

Equivalences (1) and (4) follow from the deduction theorem, (2) and (5) follow
from the fact that |=K admits parallel Skolemization right of degree n for all P-
sentences, and (3) follows inductively from the definitions of skl

n(·) and skr
n(·).
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. . .

(a) (b) (c)

Fig. 2. Examples of 2-compact and 3-compact systems

4 Parallel Skolemization for All Formulas

In this section, we investigate consequence relations |=K that admit parallel
Skolemization of some fixed degree on the left and right for any sentence. This is
a rather strong property for a consequence relation, but includes all cases where
|=K is equivalent to |=K′ for some finite class K

′ of finite algebras, as well as
certain non-finite cases.

The crucial requirement for this form of Skolemization is the completeness of
|=K with respect to models based on algebras exhibiting some degree of “com-
pactness”. Let L be a lattice and X ⊆ P(L). We say that X is n-compact for
some n ∈ N

+ if for each A ∈ X ,
∨

A = a1 ∨ . . . ∨ an for some a1, . . . , an ∈ A∧
A = a1 ∧ . . . ∧ an for some a1, . . . , an ∈ A.

Example 3. It is easily seen that if the lattice L has height (the cardinality of a
maximal chain in L) smaller than n + 1, then any X ⊆ P(L) is n-compact. If
L contains no infinite chain and has width (the cardinality of a maximal anti-
chain in L) smaller than m, then any X ⊆ P(L) is m-compact. For example, the
powerset of a lattice, as depicted in Fig. 2(a), that consists of a (finite or infinite)
set of incomparable elements together with a top element and a bottom element,
is 2-compact (but not 1-compact). The powerset of the lattice in Fig. 2(b), which
may also be generalized by repeating many times the internal elements, is 3-
compact (but not 2-compact). On the other hand, the powerset of the lattice in
Fig. 2(c) is 2-compact.

It is not necessary for parallel Skolemization that all sets of subsets of the
algebras in K be n-compact, only that the set of definable sets of elements in
a given P-structure have this property. Let us call a P-structure S = 〈A,S〉
n-witnessed if the following system is n-compact:

{{||ϕ(b, ā)||S | b ∈ S} | ϕ(x, ȳ) a P-formula and ā ∈ S}.

We say that the consequence relation |=K has the n-witnessed model property if
for any P-theory T ∪ {ϕ},

T |=K ϕ ⇔ each n-witnessed model M of T is a model of ϕ.
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Note that this new notion generalizes the (1-)witnessed model property intro-
duced by Hájek in [12] (see also [7]).

Example 4. Suppose that K is a class of FLe-algebras whose underlying lattices
either have height bounded by some fixed n + 1, or contain no infinite chain
and have width bounded by some fixed n (see Example 3). Then |=K has the
n-witnessed model property.

Example 5. Let us emphasize that it is not necessary for parallel Skolemization
that all sets of subsets of the algebras in the class K are n-compact. Suppose,
for example, that K consists of the standard �Lukasiewicz algebra on [0, 1]. The
powerset of [0, 1] is clearly not n-compact for any n ∈ N

+. However, |=K has the
1-witnessed model property, as shown by Hájek in [12].

We turn our attention now to the relationship between the n-witnessed model
property and parallel Skolemization left and right of degree n. We begin with a
crucial lemma which can be seen as “one step” Skolemization on the left.

Lemma 4. Suppose that |=K has the n-witnessed model property.

(a) For any P-theory T ∪{χ, ψ[(∃x)ϕ(x, ȳ)]} where (∃x)ϕ(x, ȳ) occurs positively
in ψ, for function symbols f1, . . . , fn /∈ P of arity |ȳ|,

T ∪ {ψ[(∃x)ϕ(x, ȳ)]} |=K χ ⇔ T ∪ {ψ[
n∨

i=1

ϕ(fi(ȳ), ȳ)]} |=K χ.

(b) For any P-theory T ∪{χ, ψ[(∀x)ϕ(x, ȳ)]} where (∀x)ϕ(x, ȳ) occurs negatively
in ψ, for function symbols f1, . . . , fn /∈ P of arity |ȳ|,

T ∪ {ψ[(∀x)ϕ(x, ȳ)]} |=K χ ⇔ T ∪ {ψ[
n∧

i=1

ϕ(fi(ȳ), ȳ)]} |=K χ.

Proof. For the left-to-right directions for both (a) and (b), note that

|=K

n∨

i=1

ϕ(fi(ȳ), ȳ) → (∃x)ϕ(x, ȳ) and |=K (∀x)ϕ(x, ȳ) →
n∧

i=1

ϕ(fi(ȳ), ȳ),

and hence, by Lemma 2, for (a) and (b), respectively,

|=K ψ[
∨n

i=1 ϕ(fi(ȳ), ȳ)] → ψ[(∃x)ϕ(x, ȳ)]
and |=K ψ[

∧n
i=1 ϕ(fi(ȳ), ȳ)] → ψ[(∀x)ϕ(x, ȳ)].

We prove the right-to-left direction contrapositively just for (a), as (b) is very
similar. Suppose that T ∪ {ψ[(∃x)ϕ(x, ȳ)]} �|=K χ. So there is an n-witnessed
model M = 〈A,M〉 of T ∪ {ψ[(∃x)ϕ(x, ȳ)]} such that M �|=K χ. Because M is
n-witnessed, for each m̄ ∈ M , there are um̄

1 , . . . , um̄
n ∈ M such that

‖(∃x)ϕ(x, m̄)‖M = ‖ϕ(um̄
1 , m̄)‖M ∨ . . . ∨ ‖ϕ(um̄

n , m̄)‖M.

Using the axiom of choice, we define fi(m̄) = um̄
i for each i ∈ {1, . . . , n}. Then

M, with these new interpretations, is a model of T ∪ {ψ[
∨n

i=1 ϕ(fi(ȳ), ȳ)]} and
not χ. ��
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Theorem 1. If |=K has the n-witnessed model property, then |=K admits parallel
Skolemization left and right of degree n for all sentences. Moreover, the converse
implication also holds whenever |=K is finitary, i.e., for any P-theory T ∪ {ϕ},

T |=K ϕ ⇔ T ′ |=K ϕ for some finiteT ′ ⊆ T.

Proof. Suppose that |=K has the n-witnessed model property. Parallel Skolemiza-
tion left of degree n for all P-sentences follows from Lemma 4 and an induction
on the multiset of depths of quantifier occurrences according to the standard
multiset well-ordering from [8]. Parallel Skolemization right of degree n for all
P-sentences then follows from Lemma 3.

Next we prove the converse: suppose that |=K is finitary and admits parallel
Skolemization left of degree n for all P-sentences. (Note that only Skolemization
for certain formulas is needed for the proof). First we establish the following:
Claim. For each P-theory T ∪ {ϕ} such that T �|=K ϕ, there exist a language
P ′ ⊇ P and a P ′-theory T ′ ⊇ T such that T ′ �|=K ϕ and, for each P-formula
(Qx)χ(x, ȳ):

T ′ |=K (∀ȳ)((Qx)χ(x, ȳ) ↔ ©n
i=1χ(fχ

i (ȳ), ȳ)),

where © =
{∨

if Q = ∃∧
if Q = ∀ , and fχ

1 , . . . , fχ
n are function symbols from P ′ \ P.

Proof of the claim. Let ϕ0, ϕ1, . . . be an enumeration of all P-formulas of the
form (∀x)χ(x, ȳ) or (∃x)χ(x, ȳ) (recalling that P is always a countable language).
We construct an increasing series of languages Pi and Pi-theories Ti such that
Ti �|=K ϕ. Let T0 = T and P0 = P. If ϕj has the form (∀x)χ(x, ȳ), then as |=K

admits parallel Skolemization left of degree n for all P-sentences,

Tj |=K ϕ ⇔ Tj ∪ {(∀ȳ)((∀x)χ(x, ȳ) → (∀x)χ(x, ȳ))} |=K ϕ

⇔ Tj ∪ {(∀ȳ)(
n∧

i=1

χ(fχ
i (ȳ), ȳ) → (∀x)χ(x, ȳ))} |=K ϕ.

We define Pj+1 as the extension of Pj with the function symbols fχ
1 , . . . , fχ

n and

Tj+1 = Tj ∪ {(∀ȳ)(
n∧

i=1

χ(fχ
i (ȳ), ȳ) → (∀x)χ(x, ȳ))}.

The case where ϕj has the form (∃x)χ(x, ȳ) is dealt with similarly. We then let
P ′ =

⋃
j<ω Pj and T ′ =

⋃
j<ω Tj . Because |=K is finitary, T ′ �|=K ϕ. Moreover,

for a formula (Qx)χ(x, ȳ) = ϕj for some j and assuming that Q = ∃, we have
(∀ȳ)((∃x)χ(x, ȳ) → ∨n

i=1 χ(fχ
i (ȳ), ȳ)) ∈ T ′ and as the converse implication is

always provable the claim follows.
To complete the proof of the theorem, we just iterate the above claim over

ω. We obtain a theory T̂ whose models are clearly n-witnessed and T̂ �|=K ϕ. ��
A natural question to ask at this point is whether the requirement that |=K

be finitary is really necessary to obtain an equivalence in the previous theo-
rem. We do not have an answer. Observe, however, that this requirement could
be avoided if we allow Skolemization of infinitely many formulas on the left
simultaneously .



Skolemization for Substructural Logics 11

Theorem 1 and Example 4 establish parallel Skolemization of some finite
degree for |=K for a broad family of classes K of FLe-algebras. Also, using
Example 5, first-order �Lukasiewicz logic based on the standard �Lukasiewicz alge-
bra on [0, 1] admits parallel Skolemization of degree 1. However, the consequence
relation of this logic is not finitary, so we cannot obtain the 1-witnessed model
property directly from the fact that it admits Skolemization left of degree 1.

5 Parallel Skolemization for Prenex Formulas

In the previous section, we proved that consequence relations satisfying a rather
strong witnessed model property admit parallel Skolemization to some degree
for all formulas. In this section, we investigate the (broader) scope of parallel
Skolemization restricted to prenex formulas.

First we show that parallel Skolemization for prenex formulas on the right
holds in the presence of a weaker witnessed model property. Let L be a lattice
and consider X ⊆ P(L). We say that X is n-∧-precompact for some n ∈ N

+ if
for all A ∈ X and b ∈ L,

∧
A < b =⇒ a1 ∧ . . . ∧ an < b for some a1, . . . , an ∈ A.

Example 6. The powerset of the (infinite) lattice depicted in Fig. 3(a) is 1-∧-
precompact (but not n-compact for any n), while the powerset of the (infinite)
lattice in Fig. 3(b) is 2-∧-precompact (but neither n-compact for any n, nor
1-∧-precompact).

We call a P-structure S = 〈A,S〉 n-∧-prewitnessed if the following system
is n-∧-precompact:

{{||ϕ(b, ā)||S | b ∈ S} | ϕ(x, ȳ) a P-formula and ā ∈ S}.

Then |=K has the n-∧-prewitnessed model property if for any P-theory T ∪ {ϕ},

T |=K ϕ ⇔ every n- ∧ -prewitnessed model M of T is a model of ϕ.

Example 7. If L is a chain, then P(L) is 1-∧-precompact and hence any logic
based on chains enjoys the 1-∧-prewitnessed model property.

We show first that the n-∧-prewitnessed model property suffices to guarantee
“one step” parallel Skolemization of degree n for formulas of a certain form
occurring on the right of the consequence relation.

Theorem 2. If |=K has the n-∧-prewitnessed model property, then for any P-
theory T ∪ {ϕ(x, ȳ), ψ} and function symbols f1, . . . , fn /∈ P of arity |ȳ|:

T |=K (∃ȳ)(∀x)ϕ(x, ȳ) ⇔ T |=K (∃ȳ)(
n∧

i=1

ϕ(fi(ȳ), ȳ)).
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(a) (b)

Fig. 3. Examples of 1-∧-precompact and 2-∧-precompact systems

Proof. The left-to-right direction follows directly using Lemma 2. We prove the
right-to-left direction contrapositively, assuming without loss of generality that T
consists of P-sentences. Suppose that T �|=K (∃ȳ)(∀x)ϕ(x, ȳ). Then there is an n-
∧-prewitnessed model M = 〈A,M〉 of T such that V = ‖(∃ȳ)(∀x)ϕ(x, ȳ)‖M �≥ 1,
i.e., V < V ∨ 1.

Suppose first that V < V ′ < V ∨1 for some V ′ ∈ A. Clearly, for each m̄ ∈ M ,
‖(∀x)ϕ(x, m̄)‖M ≤ V < V ′. Since M is n-∧-prewitnessed, for each m̄ ∈ M , there
are um̄

1 , . . . , um̄
n ∈ M such that ‖ϕ(um̄

1 , m̄)‖M ∧ . . . ∧ ‖ϕ(um̄
n , m̄)‖M < V ′. Now

for i ∈ {1, . . . , n}, define, using the axiom of choice, fi(m̄) = um̄
i . But then

‖(∃ȳ)(
∧n

i=1 ϕ(fi(ȳ), ȳ))‖M =
∨

m̄∈M

∧n
i=1 ‖ϕ(fi(m̄), m̄)‖M ≤ V ′ < V ∨ 1.

So ‖(∃ȳ)(
n∧

i=1

ϕ(fi(ȳ), ȳ))‖M �≥ 1.

Now suppose that no V ′ ∈ A satisfies V < V ′ < V ∨ 1. Clearly, for each
m̄ ∈ M , ‖(∀x)ϕ(x, m̄)‖M ≤ V < V ∨ 1. If ‖(∀x)ϕ(x, m̄)‖M < V , then, as M
is n-∧-prewitnessed, we have um̄

1 , . . . , um̄
n ∈ M such that ‖ϕ(um̄

1 , m̄)‖M ∧ . . . ∧
‖ϕ(um̄

n , m̄)‖M < V. If ‖(∀x)ϕ(x, m̄)‖M = V , then for some um̄
1 , . . . , um̄

n ∈ M ,

‖(∀x)ϕ(x, m̄)‖M = V ≤ ‖ϕ(um̄
1 , m̄)‖M ∧ . . . ∧ ‖ϕ(um̄

n , m̄)‖M < V ∨ 1.

Hence, by assumption, V = ‖ϕ(um̄
1 , m̄)‖M ∧ . . . ∧ ‖ϕ(um̄

n , m̄)‖M. In both cases,
for each i ∈ {1, . . . , n}, define, using the axiom of choice, fi(m̄) = um̄

i . But then

‖(∃ȳ)(
∧n

i=1 ϕ(fi(ȳ), ȳ))‖M =
∨

m̄

∧n
i=1 ‖ϕ(fi(m̄), m̄)‖M ≤ V < V ∨ 1.

So ‖(∃ȳ)(
n∧

i=1

ϕ(fi(ȳ), ȳ))‖M �≥ 1. ��

In order to repeat this one step Skolemization process and obtain skolemized
formulas for any prenex formula, we require an additional assumption, satisfied
in particular whenever all algebras in K are frames (e.g., chains).

Theorem 3. Suppose that |=K has the n-∧-prewitnessed model property and for
all P-formulas ϕ and χ such that x is not free in χ:

|=K (χ ∧ (∃x)ϕ) → (∃x)(χ ∧ ϕ).

Then |=K admits parallel Skolemization right of degree n for prenex sentences.
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Proof. First we define ∧-prenex P-formulas as follows: every quantifier-free P-
formula is ∧-prenex, and if ϕ,ψ are ∧-prenex, then so are ϕ ∧ ψ, (∃x)ϕ, and
(∀x)ϕ for any variable x.

Now consider a P-theory T and a ∧-prenex P-sentence χ with a leftmost
strong quantifier occurrence (∀x)ϕ(x, ȳ). Rewriting variables if necessary and
using quantifier shifts, χ is equivalent to a sentence of the form

(∃ȳ)(∀x)(ϕ(x, ȳ) ∧ ϕ′(ȳ))

and by Theorem 2,

T |=K (∃ȳ)(∀x)(ϕ(x, ȳ) ∧ ϕ′(ȳ)) ⇔ T |=K (∃ȳ)(
n∧

i=1

ϕ(fi(ȳ), ȳ) ∧ ϕ′(ȳ)).

But then, shifting the existential quantifiers back to their original positions,

T |=K χ[(∀x)ϕ(x, ȳ)] ⇔ T |=K χ[
n∧

i=1

ϕ(fi(ȳ), ȳ)].

Note that χ[∧n
i=1ϕ(fi(ȳ), ȳ)] is also a ∧-prenex formula. Hence, the claim follows

by an induction on the multiset of depths of quantifier occurrences according to
the standard multiset well-ordering from [8]. ��

Now we turn our attention to parallel Skolemization for prenex formulas on
the left, using again a further weaker witnessed model property. Let L be a
lattice and consider X ⊆ P(L). We say that an element b in L is n-∨-compact
for some n ∈ N

+ if for all A ∈ X ,
∨

A ≥ b =⇒ a1 ∨ . . . ∨ an ≥ b for some a1, . . . , an ∈ A.

We will call a P-structure S = 〈A,S〉 n-(∃)-witnessed if the element 1A is
n-∨-compact in the following system:

{{||ϕ(b, ā)||S | b ∈ S} | ϕ(x, ȳ) a P-formula and ā ∈ S}.

Then |=K has the n-(∃)-witnessed model property if for any P-theory T ∪ {ϕ},

T |=K ϕ ⇔ every n-(∃)-witnessed model M of T is a model of ϕ.

Example 8. It is easy to generate examples of FLe-algebras A whose powerset is
not n-compact for any n but where 1 is n-∨-compact: e.g., it would be sufficient
to assume that 1A is the top element in A, that the set {a ∈ A | a < 1A}
has a maximal element, and that there is an infinite chain in A. These examples
would then naturally yield logics with the n-(∃)-witnessed model property which
in general do not have the n-witnessed model property.

The next proposition (which follows directly from [7, Corollary 4.3.10 and
Theorem 4.5.5]) presents an important class of logics with the 1-(∃)-witnessed
model property given by algebras where, in general, 1 is not 1-∨-compact.
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Proposition 1. Let K be a class of complete chains that generates a variety in
which the class of all chains admits regular completions, i.e., each such chain can
be embedded into a complete one by an embedding preserving all (even infinite)
existing joins and meets. Then |=K has the 1-(∃)-witnessed model property.

Theorem 4. If |=K has the n-(∃)-witnessed model property, then for each P-
theory T ∪ {ϕ(x, ȳ), ψ} and function symbols f1, . . . , fn /∈ P of arity |ȳ|,

T ∪ {(∀ȳ)(∃x)ϕ(x, ȳ)} |=K ψ ⇔ T ∪ {(∀ȳ)
n∨

i=1

ϕ(fi(ȳ), ȳ)} |=K ψ.

Proof. The left-to-right direction is easy. For the right-to-left direction, suppose
that T ∪ {(∀ȳ)(∃x)ϕ(x, ȳ)} �|=K ψ. By assumption, there is an n-(∃)-witnessed
model M of T ∪ {(∀ȳ)(∃x)ϕ(x, ȳ)} such that M �|= ψ. Since for each m̄ ∈ M ,
‖(∃x)ϕ(x, m̄)‖M ≥ 1, there are um̄

1 , . . . , um̄
n ∈ M such that

‖ϕ(um̄
1 , m̄)‖M ∨ · · · ∨ ‖ϕ(um̄

n , m̄)‖M ≥ 1.

But then, using the axiom of choice, we can define functions fi and expand the
model M into a model M′ such that for each P-formula χ and m̄, s̄ ∈ M ,

‖
n∨

i=1

ϕ(fi(m̄), m̄)‖M′ ≥ 1 and ‖χ(s̄)‖M′
= ‖χ(s̄)‖M.

So M′ is a model of T ∪ {(∀ȳ)
∨n

i=1 ϕ(fi(ȳ), ȳ)} and M′ �|= ψ. ��
As in the case of Skolemization on the right, this “one step” theorem extends

to all prenex formulas, assuming the additional quantifier shift condition, satis-
fied in particular whenever all algebras in K are co-frames (e.g., chains).

Theorem 5. Suppose that |=K has the n-(∃)-witnessed model property and for
all P-formulas ϕ and χ such that x is not free in χ:

|=K (∀x)(χ ∨ ϕ) → (χ ∨ (∀x)ϕ)

Then |=K admits parallel Skolemization left of degree n for prenex sentences.

Finally, putting together the results of this section for the special case of
first-order substructural logics based on classes of chains, we obtain:

Corollary 1. Suppose that K is a class of complete FLe-chains. Then |=K admits
parallel Skolemization right of degree 1 for all prenex sentences. Moreover, if K
is a class of complete chains that generates a variety in which the class of all
chains admits regular completions, then |=K admits parallel Skolemization left
of degree 1 for all prenex sentences.

It follows in particular from this corollary that any logic axiomatized relative to
the first-order version of the logic MTL (the logic of all FLew-chains, see [5]) by
adding axioms from the class P3 introduced in [4] admits parallel Skolemization
left and right of degree 1 for all prenex sentences.
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12. Hájek, P.: Making fuzzy description logic more general. Fuzzy Sets Syst. 154(1),
1–15 (2005)

13. Meghini, C., Sebastiani, F., Straccia, U.: A model of multimedia information
retrieval. J. ACM 48(5), 909–970 (2001)

14. Metcalfe, G., Olivetti, N., Gabbay, D.M.: Proof Theory for Fuzzy Logics. vol. 36
of Applied Logic Series. Springer, Heidelberg (2008)

15. Minc, G.E.: The Skolem method in intuitionistic calculi. Proc. Steklov Inst. Math.
121, 73–109 (1974)

16. Ono, H.: Crawley completions of residuated lattices and algebraic completeness of
substructural predicate logics. Stud. Logica 100(1–2), 339–359 (2012)

17. Restall, G.: An Introduction to Substructural Logics. Routledge, New York (2000)
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Using Inclusion Dependencies
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Abstract. The implication problem for the class of embedded depen-
dencies is undecidable. However, this does not imply lackness of a proof
procedure as exemplified by the chase algorithm. In this paper we present
a complete axiomatization of embedded dependencies that is based on
the chase and uses inclusion dependencies and implicit existential quan-
tification in the intermediate steps of deductions.

Keywords: Axiomatization · Chase · Implication problem · Depen-
dence logic · Embedded dependency · Tuple generating dependency ·
Equality generating dependency · Inclusion dependency

1 Introduction

Embedded dependencies generalize the concept database dependencies within
the framework of first-order logic. Their implication is undecidable but how-
ever recursively enumerable, thus enabling complete axiomatizations. A standard
example of such a proof procedure is the chase that was invented in the late 1970 s
[1,2], and then soon extended to equality and tuple generating dependencies [3].
In this paper we present an axiomatization for the class of embedded dependen-
cies that simulates the chase at the logical level using inclusion dependencies. In
particular, completeness of the rules is obtained by constructing deductions in
which all the intermediate steps are inclusion dependencies, except for the first
and the last step. These inclusion dependencies consist of attributes of which
some are new, i.e., such that they are not allowed to appear at any earlier stage
of the deduction.

As a background example, consider the combined class of functional and
inclusion dependencies. It is well known that the corresponding implication prob-
lem is undecidable, lacking hence finite axiomatization [4,5]. One strategy in
such situations has been to search for axiomatizations within a more general
class of dependencies, and partly for this reason many different dependency
notions were introduced in the 1980 s. For instance, a textbook on dependency
theory from 1991 considers more than 80 different dependency classes [6]. In
[7] Mitchell proposed another strategy by presenting an axiomatization of func-
tional and inclusion dependencies using a notion of new attributes which should
c© Springer-Verlag Berlin Heidelberg 2015
M. Davis et al. (Eds.): LPAR-20 2015, LNCS 9450, pp. 16–30, 2015.
DOI: 10.1007/978-3-662-48899-7 2



Reasoning About Embedded Dependencies Using Inclusion Dependencies 17

be thought of as implicitly existentially quantified. In this paper we take an
analogous approach, and present an axiomatization for embedded dependencies
where new attributes correspond to new values obtained from an associated
chasing sequence. These attributes can be thought of as implicitly existentially
quantified in the sense of team semantics, that is, a semantic framework that
has teams, i.e., sets of assignments, as its underlying concept [8]. Team semantics
is compositionally applicable to logics that extend first-order logic with various
database dependencies [9,10]. In this setting, inclusion logic, i.e., first-order logic
with additional inclusion dependencies, captures the positive fragment of great-
est fixed-point logic and hence all PTIME recognizable classes of finite, ordered
models [11–13]. Therefore, inclusion dependencies with new attributes can be
thought of as greatest fixed-point logic expressions. This may in part enable
succinct intermediate steps in deductions in contrast to axiomatic systems that
simulate the chase by composing first-order definable dependencies.

The methods described in this paper generalize the axiomatization of condi-
tional independence and inclusion dependencies presented in [14]. It is also worth
noting that extending relations with new attributes reminds of algebraic depen-
dencies, that are, typed embedded dependencies defined in algebraic terms. The
complete axiomatization of algebraic dependencies presented in [15] involves also
an extension schema that introduces new copies of attributes.

2 Preliminaries

For two sets A and B, we write AB to denote their union, and for two sequences
ab, we write ab to denote their concatenation. For a sequence a = (a1, . . . , an)
and a mapping f , we write f(a) for (f(a1), . . . , f(an)). We denote by id the
identity function and by pri the function that maps a sequence to its ith pro-
jection. For a function f and A ⊆ Dom(f), we write f |A for the restriction of f
to A, and for a set of mappings F , we write F |A for {f |A : f ∈ F}.

We start by fixing two countably infinite sets Val and Att, the first denoting
possible values of relations and the second attributes. For notational convenience,
we will assume that Val = Att. For R ⊆ Att, a tuple over R is a mapping R → Val,
and a relation over R is a set of tuples over R. We may sometimes write r[R]
to denote that r is a relation over R. Values of a relation r over R are denoted
by Val(r), i.e., Val(r) := {t(A) : t ∈ r,A ∈ R}. Let f be a valuation, i.e., a
mapping Val → Val. Then for a tuple t, we write f(t) := f ◦ t, and for a relation
r, f(r) := {f(t) : t ∈ r}. A valuation f embeds a relation r (a tuple t) to r′ if
f(r) ⊆ r′ (f(t) ∈ r). Since we are usually interested only valuations of a relation,
we say that f : Val(r) → Val is a valuation on r. For a valuation f on r, we say
that g is an extension of f to another relation r′ if g is a valuation on r′ such
that it agrees with f on values of Val(r) ∩ Val(r′).

Embedded dependencies (ed’s) can be written using first-order logic in the
following way.
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Definition 1 (Embedded Dependency). Embedded dependency is a first-
order sentence of the form

∀x1, . . . , xn

(
φ(x1, . . . , xn) → ∃z1 . . . ∃zkψ(y1, . . . , ym)

)

where {z1, . . . , zk} = {y1, . . . , ym} \ {x1, . . . , xn} and

– φ is a (possibly empty) conjunction of relational atoms using all of the vari-
ables x1, . . . , xn;

– ψ is a conjunction of relational and equality atoms using all of the variables
z1, . . . , zk;

– there are no equality atoms in ψ involving existentially quantified variables.

If at most one relation symbol occurs in an ed, then we say that the ed is
unirelational, and otherwise it is multirelational. An ed is called typed if there
is an assignment of variables to column positions such that variables in relation
atoms occur only in their assigned position, and each equality atom involves
a pair of variables assigned to the same position. Otherwise we say that an
ed is untyped. If ψ contains only one atom, then we say that the ed is single-
head, and otherwise it is multi-head. A single-head ed where ψ is an equality is
called an equality generating dependency (egd). If ψ is a conjunction of relational
atoms, then the ed is called a tuple generating dependency (tgd). For notational
simplicity, we restrict attention to unirelational ed’s. It is easy to se that any ed
is equivalent to a set of tgd’s and egd’s, and hence we restrict attention to ed’s
that belong to either of these subclasses.

The following alternative tableau presentation for egd’s and tgd’s are used
in this paper.

Definition 2. Let T and T ′ be finite relations over R, and x, y ∈ Val(T ). Then
(T, x = y) and (T, T ′) are an egd and a tgd over R, respectively, with the below
satisfaction relation for a relation r over S ⊇ R:

– r |= (T, x = y) ⇔ for all valuations f such that f(T ) ⊆ r|R, it holds that
f(x) = f(y).

– r |= (T, T ′) ⇔ for all valuations f on T such that f(T ) ⊆ r|R, there is an
extension g of f to T ′ such that g(T ′) ⊆ r|R.

Sometimes we write σ[R] to denote that σ is a dependency over R. If T or T ′

is a singleton, then we may omit the set braces in the notation, e.g., write (T, t)
instead of (T, {t}).

We also extend valuations to dependencies. For an egd σ = (T, x = y) we
write Val(σ) = Val(T ), and for a tgd τ = (T, T ′) we write Val(σ) = Val(T ) ∪
Val(T ′). Moreover, if f is a valuation, then f(σ) = (f(T ), f(x) = f(y)) and
f(τ) = (f(T ), f(T ′)).

Example 1. Consider the relation r and the tgd’s σ1 := ({t, t′}, {u}) and σ2 :=
({t, t′}, {v, v′}) obtained from Fig. 1.1 We notice that there are two valuations
1 In a tableau presentation of a dependency σ, the distinct values of σ are sometimes
denoted by blank cells.
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r =

A B C

s0 0 1 2

s1 3 0 1

s2 2 3 0

s3 1 4 3

σ1 =

A B C

t x y z
t′ x y

u z x

σ2 =

A B C

t x y z
t′ x y

v z a x
v′ a

Fig. 1. Relation r and tgd’s σ1, σ2

on {t, t′} that embed {t, t′} to r, namely f := {(x, 0), (y, 1), (z, 2)} and g :=
{(x, 3), (y, 0), (z, 1)}. Then r |= σ1 since f and g embed u into r, witnessed
by tuples s2 and s3, respectively. We also notice that r �|= σ2 since, although
f ∪ {(a, 3)} embeds {v, v′} into r, no extension of g does the same.

Next we define inclusion dependencies which are examples of possibly
untyped tgd’s.

Definition 3 (Inclusion Dependency). Let A1, . . . , An and B1, . . . , Bn be
(not necessarily distinct) tuples of attributes. Then A1 . . . An ⊆ B1 . . . Bn is an
inclusion dependency (ind) over R = {Ai, Bi : i = 1, . . . , n} with the following
semantic rule for a relation r over S ⊇ R:

r |= A1 . . . An ⊆ B1 . . . Bn ⇔ ∀s ∈ r∃s′ ∈ r∀i = 1, . . . , n : s(Ai) = s′(Bi).

The axiomatization presented in the next section involves inclusion dependencies
that introduce new attributes. These attributes are here interpreted as existen-
tially quantified in lax team semantics sense [9]:

r |= ∃Aφ ⇔ r[f/A] |= φ for some f : r → P(Val) \ {∅}, (1)

where r[f/A] := {t(x/A) : x ∈ f(A)} and t(x/A) is the mapping that agrees with
t everywhere except that it maps A to x. Interestingly, inclusion logic formulae
with this concept of existential quantification can be characterized with positive
greatest fixed-point logic formulae (see Theorem 15 in [11]).

3 Axiomatization

In this section we present an axiomatization for the class of all embedded depen-
dencies. The axiomatization contains an identity rule and three rules for the
chase. We also involve conjunction in the language and therefore incorporate its
usual introduction and elimination rules in the definition. Regarding the equal-
ities that appear in the rules, note that both AB ⊆ AA and AB ⊆ BB indicate
that the values of A and B coincide in each row. Therefore, we use A = B to
denote ind’s of either form. For a tgd (an egd) σ, we say that x ∈ Val(σ) is
distinct if it appears at most once as a value in σ. Namely,

– for a tgd σ = (T, T ′)[R], x is distinct if for all t, t′ ∈ T ∪ T ′ and A,B ∈ R, if
t(A) = x = t′(B), then t = t′ and B = B′;
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– for an egd σ = (T, y = z)[R], x is distinct if x �∈ {y, z} and for all t, t′ ∈ T
and A,B ∈ R, if t(A) = x = t′(B), then t = t′ and B = B′.

Lastly, note that in the following rules we assume that values can appear as
attributes and vice versa.

Definition 4. In addition to the below rules we adopt the usual introduction
and elimination rules for conjunction. In the last three rules, we assume that A
is a sequence listing the attributes of R.

EE Equality Exchange:
if A = B ∧ σ, then τ.

where σ is an ind and τ is obtained from σ by replacing any number of
occurrences of A by B and any number of occurrences of B by A.

CS Chase Start:
(T ∗, id)[RS] ∧

∧

t∈T

t(A) ⊆ A

where T = T ∗|R, S = Val(T ) consists of new attributes, and R consists of
distinct values.

CR Chase Rule:

tgd: if (T, T ′)[R] ∧
∧

t∈T

f ◦ t(A) ⊆ A, then
∧

t′∈T ′
f ◦ t′(A) ⊆ A,

egd: if (T, x = y)[R] ∧
∧

t∈T

f ◦ t(A) ⊆ A, then f(x) = f(y),

where tgd: f is a valuation that it is 1-1 on Val(T ′) \ Val(T ), and f(x) is a
new attribute for x ∈ Val(T ′) \ Val(T ).

CT Chase Termination:

tgd: if (T ∗, id)[RS] ∧
∧

t′∈T ′
u ◦ t′(A) ⊆ A, then (T, T ′)[R],

egd: if (T ∗, id)[RS] ∧ x = y, then (T, x = y)[R],

where T = T ∗|R, S = Val(T ), and Val(T ∗|S) consists of distinct values.
Moreover, tgd: u is a mapping Val(T ′) → Att that is the identity on Val(T )∩
Val(T ′), and egd: x, y ∈ Val(T ).

For a dependency σ over R, we let Att(σ) := R, and for a set of dependencies
Σ, we let Att(Σ) :=

⋃
σ∈Σ Att(σ) .

Definition 5. A deduction from Σ is a sequence (σ1, . . . , σn) such that:

1. Each σi is either an element of Σ, an instance of [CS], or follows from one
or more formulae of {σ1, . . . , σi−1} by one of the rules presented above.

2. For each A ∈ Att(σi), if A is new in σi, then A �∈ Att(Σ ∪ {σ1, . . . , σi−1}),
and otherwise A ∈ Att(Σ ∪ {σ1, . . . , σi−1}).
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We say that σ is provable from Σ, written Σ � σ, if there is a deduction
(σ1, . . . , σn) from Σ with σ = σn and such that no attributes in σ are new
in σ1, . . . , σn.

We will also use the following rules that are derivable from [EE]:

ES Equality Symmetry:
if A = B, then B = A.

ET Equality Transitivity:

if A = B ∧ B = C, then A = C.

One may find the chase rules slightly convoluted at first sight. However, the ideas
behind the rules are relatively simple as illustrated in the following examples.

Example 2 (Chase Start). Let σ0 := ({t0, t1}, {u0})[RS] be as in Fig. 2, for
R := {A,B,C} and S := {x, y, z}. Then

σ0 =

A B C x y z
t0 x y z
t1 x y
u0 x y z

σ1 =

A B C
t0 x y z
t1 x y
u1 z x

σ2 =

A B C
t0 x y z
t1 x y
u2 z v
u3 v z

Fig. 2. Dependencies σ0, σ1, σ2

τ := σ0 ∧ xyz ⊆ ABC ∧ xy ⊆ BC

is an instance of [CS]. Here x, y, z are interpreted either as values or as new
attributes. By the latter we intuitively mean that any relation r[ABC] can be
extended to some r′[ABCxyz] such that r′ |= τ . For instance, one can define
r′ := q(r) where q is the following SPJR query

ABC �� (πxyz(σxy=BC(ρxyz/ABC(ABC) �� ABC)))

where σ refers to (S)election, π to (P)rojection, �� to (J)oin, and ρ to (R)ename
operator. Then q(r) is a relation over RS such that its restriction to xyz lists
all abc for which there exist s, s′ ∈ r such that s(ABC) = abc and s′(BC) = ab.
Let σ1 = ({t0, t1}, {u1})[R] be as in Fig. 2. Now,

r |= σ1 ⇔ q(r) |= zx ⊆ AC.

Hence proving Σ |= σ1 reduces to showing that Σ ∪ {τ} |= zx ⊆ AC.
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Example 3 (Chase Rule). Assume

σ2 ∧ xyz ⊆ ABC ∧ xy ⊆ BC (2)

where σ2 = ({t0, t1}, {u2, u3})[R] is as in Fig. 2, for R := {A,B,C}. Then,
interpreting f as id, one can derive with one application of [CR]

zv ⊆ AC ∧ vz ⊆ AC (3)

from (2). Note that in (3) v is interpreted as a new attribute, and the idea is that
any relation r[R] satisfying (2) and with v �∈ R can be extended to a relation
r′[R ∪ {v}] satisfying (3) by introducing suitable values for v.

Example 4 (Chase Termination). Assume

σ0 ∧ zx ⊆ AC (4)

where σ0 = ({t0, t1}, {u0})[RS] is as in Fig. 2, for R := {A,B,C} and S :=
{x, y, z}. Then, letting u = id, one can derive σ1 as in Fig. 2 from (4) with one
application of [CT].

4 Soundness Theorem

In this section we show that the axiomatization presented in the previous section
is sound. First note that the next lemma follows from the definitions of egd’s,
tgd’s and ind’s.

Lemma 1. Let σ be a dependency over R, and let r and r′ be relations over
supersets of R and with r|R = r′|R. Then r |= σ ⇔ r′ |= σ.

Then we prove the following lemma which implies soundness of the axioms. For
attribute sets R,R′ with R ⊆ R′ and a relation r over R, we say that a relation
r′ over R′ is an extension of r to R′ if r′|R = r. Recall from Eq. 1 that exactly
such extensions are used in the existential quantification of lax team semantics.

Lemma 2. Let r be a relation over Att(Σ) such that r |= Σ, and let (σ1, . . . , σn)
be a deduction from Σ. Then there exists an extension r′ of r to Att(Σ ∪
{σ1, . . . , σn}) such that r′ |= Σ ∪ {σ1, . . . , σn}.
Proof. We prove the claim by induction on n. We denote by Rn the set Att(Σ ∪
{σ1, . . . , σn}). Assuming the claim for n−1, we first find an extension rn−1 of r to
Rn−1 such that rn−1 |= Σ ∪ {σ1, . . . , σn−1}. If σn is obtained by an application
of a conjunction or some ind rule, then it is easy to see that we may choose
rn := rn−1. Hence, it suffices to consider the cases where σn is obtained by using
one of the chase rules. Due to Lemma 1, it suffices to find an extension rn of
rn−1 to Rn such that rn |= σn. In the following cases, A denotes a sequence
listing the attributes of R ⊆ Rn−1.
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Case [CS]. Assume that σn is obtained by [CS] and is of the form

(T ∗, id)[RS] ∧
∧

t∈T

t(A) ⊆ A

where T = T ∗|R, S = Val(T ) consists of new attributes and R of distinct values.
Let rn := rn−1 �� r be an extension of rn−1 to Rn = Rn−1S, where

r := {h : h is a valuation on T such that h(T ) ⊆ rn−1|R}.

We claim that rn |= σn. Consider the first conjunct of σn, and let h be a valuation
on T ∗ such that h(T ∗) ⊆ rn|RS . Then h|S is is a valuation on T such that
h(T ) ⊆ rn|R = rn−1|R, i.e., h|S = t0|S for some t0 ∈ rn. Since R consists of
distinct values and thus R ∩ Dom(h) = ∅, we may define h′ as an extension
of h with A �→ t0(A), for A ∈ R. Then h′|RS = t0|RS ∈ rn|RS , and therefore
rn |= (T ∗, id)[RS].

Consider then t(A) ⊆ A, for t ∈ T , and let t0 ∈ rn. By the definition,
t0|S = h for some valuation h on T such that h(T ) ⊆ rn|R, and hence we obtain
that t0 ◦ t(A) = h ◦ t(A) = t1(A) for some t1 ∈ rn. Therefore, rn |= t(A) ⊆ A.
Case [CR]. Assume that σn is of the form (i)

∧
t′∈T ′ f ◦ t′(A) ⊆ A or (ii)

f(x) = f(y), and is obtained by [CR] from

(i) (T, T ′)[R] ∧ ∧
t∈T f ◦ t(A) ⊆ A,

(ii) (T, x = y)[R] ∧ ∧
t∈T f ◦ t(A) ⊆ A,

where in case (ii) f is a valuation on T ∪ T ′ such that it is 1-1 on S := Val(T ′) \
Val(T ) and f(x) is a new attribute for x ∈ S. Let s ∈ rn−1. Since rn−1 |=∧

t∈T f ◦ t(A) ⊆ A, we first obtain that s ◦ f(T ) ⊆ rn−1|R.

(i) Since rn−1 |= (T, T ′)[R] we find a mapping g : S → Val such that h(T ′) ⊆
rn−1|R, for h = g ∪ (s ◦ f). Since f is 1-1 on S, we can now define rn as the
relation obtained from rn−1 by extending each s ∈ rn−1 with f(x) �→ g(x)
for x ∈ S. Then for each s ∈ rn, s ◦ f(T ′) ⊆ rn|R, and hence we obtain that
rn |= ∧

t′∈T ′ f ◦ t′(A) ⊆ A.
(ii) It suffices to show that rn−1 |= f(x) = f(y). Since s ◦ f(x) = s ◦ f(y) by

rn−1 |= (T, x = y)[R], this follows immediately.

Case [CT]. Assume that σn is of the form (i) (T, T ′)[R] or (ii) (T, x = y)[R]
and is obtained by [CT] from

(i) (T ∗, id)[RS] ∧ ∧
t′∈T ′ u ◦ t′(A) ⊆ A, where u is a mapping Val(T ′) → Att

that is the identity on Val(T ) ∩ Val(T ′),
(ii) (T ∗, id)[RS] ∧ x = y, where x, y ∈ Val(T ).

Moreover, in both cases T = T ∗|R, S = Val(T ), and Val(T ∗|S) consists of distinct
values. It suffices to show that rn−1 |= σn, so let h be a valuation on T such that
h(T ) ⊆ rn−1|R. Since Val(T ∗|S) consists of disctinct values, h can be extended
to a valuation h′ on T ∗ such that h′(T ∗) ⊆ rn−1|RS . Since rn−1 |= (T ∗, id)[RS],
there is an extension h′′ of h′ to attributes in R such that h′′|RS ∈ rn−1|RS .
Hence, we obtain that h|S ∈ rn−1|S . Let then s ∈ rn−1 be such that it agrees
with h on S.
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(i) Since rn−1 |= ∧
t′∈T ′ u ◦ t′(A) ⊆ A, we obtain that s ◦ u(T ′) ⊆ rn−1|R.

Moreover, we notice that s ◦ u = h on Val(T ) ∩ Val(T ′).
(ii) Since rn−1 |= x = y, we obtain that s(x) = s(y). Then h(x) = h(y) since

x, y ∈ S.

Hence, in both cases we obtain that rn−1 |= σn. This concludes the [CT] case
and the proof. ��

Using the previous lemma, soundness of the rules follows.

Theorem 1. Let Σ ∪{σ} be a finite set of egd’s and tgd’s over R. Then Σ |= σ
if Σ � σ.

Proof. Let r be a relation such that r |= Σ, and assume that (σ1, . . . , σn) is a
deduction from Σ where σ = σn contains no attributes that appear as new in
σ1, . . . , σn. If R′ := Att(Σ∪{σ1, . . . , σn}), then by Lemma 2 we find an extension
r′ of r|R to R′ such that r′ |= σ. Then using Lemma 1 we obtain that r |= σ. ��

5 Chase Revisited

In this section we define the chase for the class of egd’s and tgd’s. The chase
algorithm was generalized to typed egd’s and tgd’s in [3], and here we present
the chase using notation similar to that in [16]. First let us assume, for nota-
tional convenience, that there is a total, well-founded order < on the set Val,
e.g., x1 < x2 < x3 < . . . for Val = {x1, x2, x3, . . .}. Let Σ ∪ {σ} be a set of
egd’s and tgd’s over R. A chasing sequence of σ over Σ is a (possibly infinite)
sequence σ0, σ1, . . . , σn, . . . where σ0 = σ, and σn+1 is obtained from σn, with
T := pr1(σn), according to either of the following rules.

Let τ ∈ Σ be of the form (S, x = y), and suppose that there is a valuation f
on S such that f(S) ⊆ T but f(x) �= f(y). Then τ (and f) can be applied to σn

as follows:

– egd rule: Let σn+1 := g(σn) where g : Val → Val is the identity everywhere
except that it maps f(y) to f(x) if f(x) < f(y), and f(x) to f(y) if f(y) <
f(x).

Let τ ∈ Σ be of the form (S, S′), and suppose that there is a valuation f on
S such that f(S) ⊆ T , but there exists no extension f ′ of f to S′ such that
f(S′) ⊆ T . Then τ can be applied to σn as follows:

– tgd rule: List all f1, . . . , fn that have the above property, and for each fi

choose a distinct extension to S′, i.e., an extension f ′
i to S′ such that each

variable in Val(S′) \ Val(S) is assigned a distinct new value greater than any
value in Val(σ0) ∪ . . . ∪ Val(σn). Moreover, no new value is assigned by two
f ′

i , f
′
j where i �= j. Then we let σn+1 : (T ∪ f ′

1(S
′) ∪ . . . ∪ f ′

m(S′),pr2(σn)).

Construction of a chasing sequence is restricted with the following two con-
ditions:
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(i) Whenever an egd is applied, it is applied repeatedly until it is no longer
applicable.

(ii) No dependency is starved, i.e., each dependency that is applicable infinitely
many times is applied infinitely many times.

Let (Σ, σ) = σ0, σ1, . . . be a chasing sequence of σ over Σ. Due to the possibility
of applying egd’s, a chasing sequence may not be monotone with respect to ⊆.
Hence, depending on whether σ is a tgd or an egd, we define

– egd: chase(Σ, σ) := (T 1, x = y),
– tgd: chase(Σ, σ) := (T 1, T 2),

where T i := {u : ∃m∀n ≥ m(u ∈ pri(σn))} and x = y is pr2(σn) for n ∈ N such
that pr2(σn) = pr2(σm) for all m ≥ n. Note that “newer” values introduced
by the tgd rule are always greater than the “older” ones, and values may only
be replaced with smaller ones. Hence, no value can change infinitely often, and
therefore chase(Σ, σ) is always well defined and non-empty.

We also associate each chasing sequence with the following descending val-
uations ρn, for n ≥ 0. We let ρ0 = id, ρn+1 = g ◦ ρn if σn+1 is obtained by an
application of the egd rule where σn+1 = g(σn), and ρn+1 = id ◦ ρn otherwise.
We then define ρ(x) = limn→∞ ρn(x), i.e., ρ(x) = ρn(x) if n ∈ N such that
ρm(x) = ρn(x) for all m ≥ n. Then we obtain that

chase(Σ, σ) =
∞⋃

n=0

ρ(σn).

A dependency τ is trivial if

– τ is of the form (T, x = x), or
– τ is of the form (T, T ′) and there is a valuation f on T ′ such that f is the

identity on Val(T ) ∩ Val(T ′) and f(T ′) ⊆ T .

It is well-known that the chase algorithm captures unrestricted implication
of dependencies. For the proof of the following proposition, see Appendix of the
arXiv version of the paper [17].

Proposition 1. Let Σ ∪ {σ} be a set of egd’s and tgd’s over R. Then the fol-
lowing are equivalent:

(i) Σ |= σ,
(ii) there is a chasing sequence (Σ, σ) = σ0, σ1, . . . of σ over Σ such that

chase(Σ, σ) is trivial,
(iii) there is a chasing sequence (Σ, σ) = σ0, σ1, . . . of σ over Σ such that σn is

trivial, for some n.
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6 Completeness Theorem

In this section we show that the rules presented in Definition 4 are complete for
the implication problem of embedded dependencies. Let us first illustrate the
use of the axioms in the following simple example.

Example 5. Consider the implication problem {σ, σ′} |= τ where σ, σ′, τ are
illustrated in Fig. 3, e.g., σ = (T, t) where T consists of the top two rows of σ and
t is the bottom row. Note that σ and τ are embedded multivalued dependencies
of the form A � B|C and A � B|CD, respectively, and σ′ is a functional
dependency of the form C → D. It is easy to see that the implication holds, and
this can be also verified by a chasing sequence τ0, τ1, τ2 of τ over {σ, σ′} where τ2
is trivial (Fig. 4). In the chasing sequence, τ0 = τ and τ1 is the result of applying
σ to τ0. For this, note that there exists two valuations on T that embed T to
pr1(τ0) but has no extension that embeds t into pr1(τ0). These valuations are
the identity and the function f that swaps the values of the top and bottom row
of T . Then τ1 is obtained by adding to pr1(τ0) id∗(t) and f∗(t) where id∗ and
f∗ are distinct extensions of id and f to t, e.g., id∗ = id also on d2 and f∗ maps
d2 to d3. Also, τ2 is the result of applying σ′ to τ1 two times, i.e., τ2 is obtained
from τ1 by replacing d3 with d0 and d2 with d1. Clearly τ2 is trivial, and hence
we obtain the claim by Proposition 1.

σ =

A B C D

a0 b0 c0 d0

a0 b1 c1 d1

a0 b0 c1 d2

σ′ =

A B C D

a0 b0 c0 d0

a1 b1 c0 d1

d0 = d1

τ =

A B C D

a0 b0 c0 d0

a0 b1 c1 d1

a0 b0 c1 d1

Fig. 3. Dependencies σ, σ′, τ

This procedure can now be simulated with our axioms as follows. First, with
one application of [CS] we derive

(T, id)[RS] ∧ a0b0c0d0 ⊆ ABCD ∧ a0b1c1d1 ⊆ ABCD

where T = {t, t′}, R = {A,B,C,D}, and S = {a0, b0, b1, c0, c1, d0, d1} is a set
of values that are interpreted as new attributes. Here t(x) and t′(x), for x ∈ S,

τ0 =

A B C D

a0 b0 c0 d0

a0 b1 c1 d1

a0 b0 c1 d1

τ1 =

A B C D

a0 b0 c0 d0

a0 b1 c1 d1

a0 b0 c1 d2

a0 b1 c0 d3

a0 b0 c1 d1

τ2 =

A B C D

a0 b0 c0 d0

a0 b1 c1 d1

a0 b0 c1 d1

a0 b1 c0 d0

a0 b0 c1 d1

Fig. 4. Chasing sequence τ0, τ1, τ2
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A B C D a0 b0 b1 c0 c1 d0 d1

t a0 b0 c0 d0

t′ a0 b1 c1 d1

id a0 b0 b1 c0 c1 d0 d1

Fig. 5. (T, id)[RS]

and A,B,C,D are interpreted as distinct values. (T, t)[RS] is illustrated in Fig. 5
where all the distinct values are hidden. Now with one application of [CR], letting
f = id, we derive a0b0c1d2 ⊆ ABCD from

σ ∧ a0b0c0d0 ⊆ ABCD ∧ a0b1c1d1 ⊆ ABCD (5)

Note that in this step, d2 is interpreted as a new attribute. Let then f be the
valuation that is the identity on a0, b0, b1, d1, and otherwise maps a1 �→ a0,
c0 �→ c1, and d0 �→ d2. We notice that f(a0b0c0d0) = a0b0c1d2 and f(a1b1c0d1) =
a0b1c1d1. Hence, we may derive with one application of [CR] f(d0) = f(d1), i.e.,
d2 = d1 from

σ′ ∧ f(a0b0c0d0) ⊆ ABCD ∧ f(a1b1c0d1) ⊆ ABCD.

Then we apply [EE] and derive a0b0c1d1 ⊆ ABCD from

d2 = d1 ∧ a0b0c1d2 ⊆ ABCD

Finally, we may apply [CT] and derive τ from (T, id)[RS] ∧ a0b0c1d1 ⊆ ABCD.

The following lemma shows that the above technique extends to all chasing
sequences. The proof is straightforward and hence omitted here (see Appendix
of the arXiv version of the paper [17]).

Lemma 3. Let (Σ, σ) = σ0, σ1, . . . be a chasing sequence of σ over Σ, where
Σ ∪ {σ} is a finite set of egd’s and tgd’s over R, let A be a sequence listing
the attributes of R, let T := pr1(σ) and Ti := pr1(σi), and let n ∈ N. Then
there exists a deduction from Σ, with attributes from R ∪ ⋃

i∈N
Val(Ti), listing

the following dependencies:

(i) (T ∗, id)[RS] where T ∗|R = T , S = Val(T ), and T ∗|S consists of distinct
values,

(ii) f(x) = f(y), for each application of (S, x = y) and f to σm, for m < n,
(iii) t(A) ⊆ A, for t ∈ Tm where m ≤ n.

With the lemma, we can now show completeness.

Theorem 2. Let Σ ∪ {σ} be a finite set of egd’s and tgd’s over R. Then Σ |=
σ ⇔ Σ � σ.
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Proof. Assume that Σ |= σ, and let A be a sequence listing R. Then by
Proposition 1 there is a chasing sequence (Σ, σ) = σ0, σ1, . . . of σ over Σ such
that σn is trivial for some n. Let D = (τ1, . . . , τl) be a deduction from Σ obtained
by Lemma 3, and let T := pr1(σ) and Ti := pr1(σi).

Assume first that σ is an egd of the form (T, x = y). Then σn is (Tn, z = z)
where z = ρn(x) = ρn(y). Now, either ρi+1(x) is ρi(x), or the equality ρi+1(x) =
ρi(x) (or its reverse) is listed in D by item (ii). Hence, using repeatedly [ES,ET]
we may further on derive z = x. Since z = y is derivable analogously, we therefore
obtain x = y by [ES,ET]. Then with one application of [CT], we derive (T, x = y)
from (T ∗, id)[RS] ∧ x = y where T ∗|R = T . Note that the (T ∗, id)[RS] of the
correct form is listed in D by item (i) of Lemma 3.

Assume then that σ is a tgd of the form (T, T ′), and let T ′
i := pr2(σi). Then

σn is (Tn, T ′
n), and there is a valuation f on T ′

n such that f is the identity on
Val(Tn) ∩ Val(T ′

n) and f(T ′
n) ⊆ Tn. Let t′ ∈ T ′. Then ρn ◦ t′ ∈ T ′

n and by item
(iii) of Lemma 3 we obtain that f ◦ ρn ◦ t′(A) ⊆ A is listed in D. For A ∈ R, we
have then two cases :

– If t′(A) ∈ Val(T ′) ∩Val(T ), then we first notice that f ◦ ρn ◦ t′(A) is ρn ◦ t′(A)
since ρn◦t′(A) ∈ Val(T ′

n)∩Val(Tn). Also we notice that the equality ρn◦t′(A) =
t′(A) can be derived analogously to the egd case.

– If t′(A) ∈ Val(T ′)\Val(T ), then f ◦ρn ◦t′(A) = f ◦t′(A) since by the definition
of the chase ρn is the identity on Val(T ′) \ Val(T ).

Now, letting f∗ be the mapping Val(T ′) → Att which is the identity on Val(T ′)∩
Val(T ) and agrees with f on Val(T ′) \ Val(T ), we can by the previous reasoning
and using repeatedly [EE] derive f∗ ◦ t′(A) ⊆ A from f ◦ρn ◦ t′(A) ⊆ A. Finally,
we can then with one application of [CT] derive (T, T ′) from

(T ∗, id)[RS] ∧
∧

t′∈T ′
f∗ ◦ t′(A) ⊆ A.

��

7 Typed Dependencies

Consider then the class of typed embedded dependencies. In this setting [CS] and
[CT] can be replaced with rules that involve only embedded join dependencies
(ejd’s) and inclusion dependencies. We define ejd’s over tuples of attributes as
follows.

Definition 6. Let A1, . . . ,An be tuples of attributes listing R1, . . . , Rn, respec-
tively, and let R :=

⋃n
i=1 Ri. Then �� (Ai)n

i=1 is an embedded join dependency
with the semantic rule

– r |= ��(Ai)n
i=1 if and only if r|R = r|R1

�� . . . �� r|Rn
.

The two alternative rules for the chase are now the following. We call a relation
typed if none of its values appears in two distinct columns.
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CS* Chase Start∗:
∧

t∈T

A ⊆ t(A)∧ ��(t(A))t∈T ∧
∧

t∈T

t(A) ⊆ A

where T is a typed relation and Val(T ) is a set of new attributes.
CT* Chase Termination∗:

tgd : if
∧

t∈T

A ⊆ t(A)∧ ��(t(A))t∈T ∧
∧

t′∈T ′
u ◦ t′(A) ⊆ A, then (T, T ′)[R],

egd : if
∧

t∈T

A ⊆ t(A)∧ ��(t(A))t∈T ∧ x = y, then (T, x = y)[R],

where tgd: u is a mapping Val(T ′) → Att that is the identity on Val(T ′) ∩
Val(T ′), and egd: x, y ∈ Val(T ).

The first rule is sound for typed dependencies since, for arbitrary r with
Dom(r) ∩Val(T ) = ∅, an instance of [CS*] is satisfied by r �� q(r) where q is the
SPJR query

ρt1(A)/AA �� . . . �� ρtn(A)/AA,

where ρ is the rename operator and T = {t1, . . . , tn}. However, a counter example
for soundness can be easily constructed for untyped dependencies. If T and r
are the relations illustrated in Fig. 6, then no extension r′ of r to Val(T ) satisfies∧

t∈T t(AB) ⊆ AB.

T =

A B

t x y
t′ y x

r =
A B

s 0 1

Fig. 6. Relations T and r

Soundness of [CT*] is obtained analogously to that of [CT]. Also, com-
pleteness is obtained by deriving exactly in the same way as in the general
case,

∧
t′∈T ′ u ◦ t′(A) ⊆ A (in the tgd case) or x = y (in the egd case) from∧

t∈T t(A) ⊆ A. Let us then write Σ �∗ σ if σ is deduced from Σ in the sense
of Definition 5 and using rules [EE,CS*,CR,CT*] together with elimination and
introduction of conjunction. Then we obtain the following theorem.

Theorem 3. Let Σ ∪ {σ} be a finite set of typed egd’s and tgd’s over R. Then
Σ |= σ ⇔ Σ �∗ σ.

Acknowledgement. The author was supported by grant 264917 of the Academy of
Finland.
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Abstract. We propose a general framework for modelling and solving
deductive games, where one player selects a secret code and the other player
strives to discover this code using a minimal number of allowed experi-
ments that reveal some partial information about the code. The framework
is implemented in a software tool Cobra, and its functionality is demon-
strated by producing new results about existing deductive games.

1 Introduction

Deductive games (also known as codebreaking games) are played by two players,
the codemaker and the codebreaker, where the codemaker selects a secret code
from a given finite set, and the codebreaker strives to reveal the code through a
series of experiments whose outcomes give some partial information about the
code. A codebreaker’s strategy is a recipe how to assemble the next experiment
depending on the outcomes of the previous experiments so that the code is even-
tually discovered. The efficiency of a given strategy is measured either by the
maximal number of experiments required to discover the code in the worst case,
or by the expected number of experiments required to discover the code assuming
the uniform probability distribution over the secret codes. Although various spe-
cial types of deductive games have been deeply analyzed at both theoretical and
experimental level (see below), to the best of authors’ knowledge there is no soft-
ware tool which inputs a description of a deductive game (written in a suitable
high-level language) and then computes optimal strategies automatically. In this
paper, we present a software tool Cobra (COde-BReaking game Analyser [1])
which achieves this functionality. Despite its versatility, Cobra can fully ana-
lyze non-trivial deductive games where the number of admissible experiments is
very large (1064 or even more). Note that one cannot even enumerate all of these
experiments in reasonable time, and Cobra implements advanced methods for
identifying and bypassing families of experiments that are equivalent to already
considered ones (up to some symmetry) without considering them explicitly.
This is perhaps the most advanced part of Cobra’s design which is based on
nontrivial concepts and observations (see Sect. 2). Using Cobra, we were able
to produce results about some standard deductive games that were not known
before (see Sect. 3).
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Existing Works. Simple examples of well-studied deductive games include var-
ious board games and puzzles such as Mastermind and the counterfeit coin
problem (CCP), which are also used as running examples in this paper. In
Mastermind, the codemaker chooses a secret sequence of n code pegs of c col-
ors (repetitions allowed). The codebreaker tries to reveal the code by making
guesses (experiments) which are evaluated by a certain number of black and
white markers. A black marker is received for each code peg from the guess
which is correct in both color and position. A white marker indicates the exis-
tence of a correct color code peg placed in the wrong position. For the classi-
cal variant with four pegs and six colors, Knuth [17] demonstrated a strategy
that requires five guesses in the worst case and 4.478 guesses on average. Later,
Irving [14], Neuwirth [20], and Koyama and Lai [19] presented strategies which
improve the expected number of guesses to 4.369, 4.364, and 4.34, respectively
(the bound 4.34 is already optimal). More recently, strategies for Mastermind
were constructed semi-automatically by using evolutionary algorithms [2], simu-
lated annealing [4], genetic algorithms (see, e.g., [3] and the references therein),
or clustering techniques [7].

In the basic variant of the counterfeit coin problem (CCP), one is given N
coins, all identical in appearance, and all identical in weight except for one,
which is either heavier or lighter than the remaining N − 1 coins. The goal is to
devise a procedure to identify the counterfeit coin using a minimal number of
weighings with a balance. This basic variant was considered by Dyson [8] who
proved that CCP can be solved with w weighings (experiments) iff 3 ≤ N ≤
(3w−3)/2. There are numerous modifications and generalizations of the basic
variant (higher number of counterfeit coins, additional regular coins, multi-pan
balance scale, parallel weighing, etc.) which are harder to analyze and in some
cases only partial results exist. We refer to [13] for an overview.

Deductive games can also model certain types of attacks in modern security
systems based on information leakage, where an unauthorized attacker reveals a
part of secret information in some unexpected way. For example, in ATM net-
works, hardware security modules (HSMs) are used to perform sensitive crypto-
graphic operations such as checking a PIN entered by a customer. These HSMs
are controlled by a strictly defined API to enforce security. API-level attacks
are sequences of unanticipated API calls aiming to determine the PIN value;
after each call, a piece of information about the PIN value is leaked, and the
whole sequence collects enough data to reconstruct the PIN. One such attack,
described in [6,21], can be modeled as a deductive game similar to Mastermind.
Clearly, the problem of synthesizing an optimal codebreaker’s strategy is highly
interesting in this context.

Other examples of deductive games include string matching games, where the
secret code is a sequence of letters and the codebreaker repeatedly tries to guess
the string. Each guess is evaluated by revealing the total number of matching
letters. This game was studied already by Erdös and Rényi [10] who gave some
asymptotic results about the worst-case number of guesses. Recently, this game
found an application in genetics for selecting a subset of genotyped individuals
for phenotyping [11,12].
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Due to space constraints, some proofs and tables describing the outcomes of
experimental results achieved by Cobra are omitted. These can be found in [16].

2 Cobra: The Underlying Principles

Given a finite or countable set A, the set of all propositional formulae over A
is denoted by Form(A). Apart of standard Boolean connectives, we also use
the operator exactlyi, where i ∈ N, such that exactlyi(ϕ1, . . . , ϕm) is true
iff exactly i of the formulae ϕ1, . . . , ϕm are true. For technical convenience, we
assume that all Boolean connectives used in formulae of Form(A) are com-
mutative. That is, we allow for ¬,∧,∨,exactlyi, . . ., but we forbid implica-
tion which must be expressed using the allowed operators. For a given formula
ϕ ∈ Form(A), we use Val(ϕ) to denote the set of all valuations of A satisfying
ϕ. We write ϕ ≈ ψ and ϕ ≡ ψ to denote that ϕ and ψ are semantically and
syntactically equivalent, respectively, and we extend this notation also to sets
of formulae. Hence, if Φ, Ψ are sets of formulae, then Φ ≈ Ψ and Φ ≡ Ψ means
that the two sets are the same up to the respective equivalence. The syntactic
equivalence ≡ is considered modulo basic identities such as commutativity or
associativity.

Our formal model of deductive games is based on propositional logic. Infor-
mally, a deductive game is given by

– a finite set X of propositional variables and a propositional formula ϕ0 over
X such that every secret code c can be represented by a unique valuation vc

of X, and for every valuation v of X we have that v(ϕ0) = true iff v = vc for
some secret code c;

– a finite set of allowed experiments T .

To model CCP with N coins, we put X = {x1, . . . , xN , y}, and we represent a
secret code c where the i-th coin is heavier by a valuation vc where vc(xi) = true,
vc(xj) = false for all j �= i, and vc(y) = true (i.e., y is set to true iff the
different coin is heavier). The formula ϕ0 says that precisely one of the variables
x1, . . . , xN is set to true. In Mastermind with n pegs and m colors, the set X
contains variables xi,j for all 1 ≤ i ≤ n and 1 ≤ j ≤ m; the variable xi,j is set to
true iff the i-th peg has color j. The formula ϕ0 says that each peg has precisely
one color.

Typically, the number of possible experiments is large but many of them differ
only in the concrete choice of participating objects. For example, in CCP with
6 coins there are essentially three types of experiments (we can weight either
1+1, 2+2, or 3+3 coins) which are instantiated by a concrete selection of coins.
In Mastermind, we perform essentially only one type of experiment (a guess)
which is instantiated by a concrete tuple of colors. In general, we use a finite set
Σ of parameters to represent the objects (such as coins and colors) participating
in experiments. A parameterized experiment t ∈ T is a triple (k, P, Φ) where k
is the number of parameters, P ⊆ Σk is the set of admissible instances, and Φ
are possible outcomes given as abstract propositional formulae (see below).
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Definition 1. A deductive game is a tuple G = (X,ϕ0, Σ, F, T ), where X is
a finite set of (propositional) variables, ϕ0 ∈ Form(X) is a satisfiable initial
constraint, Σ is a finite set of parameters, and

– F ⊆ XΣ is a set of attributes such that for all f, f ′ ∈ F where f �= f ′ we
have that the images of f and f ′ are disjoint,

– T is a finite set of parameterized experiments of the form (k, P, Φ) where
k ∈ N is the number of parameters, P ⊆ Σk is a set of instances, and Φ is a
finite subset of Form(X ∪ {f($j) | f ∈ F, 1 ≤ j ≤ k}). The elements of Φ are
called outcomes.

The intuition behind X, ϕ0, and Σ is explained above. Each attribute f ∈ F
corresponds to some “property” that every object a ∈ Σ either does or does not
satisfy, and f(a) is the propositional variable of X which encodes the f -property
of a. In CCP with N coins, the objects are the coins (i.e., Σ = {coini | 1 ≤
i ≤ N}), and for each coin we need to encode the property of “being different”.
So, there is just one attribute d which maps coini to xi for all 1 ≤ i ≤ N . In
Mastermind with n pegs and m colors, each object (color) has the property of
“being the color of peg i”, where i ∈ {1, . . . , n}. Hence, there are n attributes
peg1, . . . , pegn where peg i(color j) = xi,j .

Now consider a parameterized experiment t = (k, P, Φ). An instance of t is a
k-tuple p ∈ P ⊆ Σk of parameters. For every instance p ∈ P and every outcome
ψ ∈ Φ, we define the p-instance of ψ as the formula ψ(p) ∈ Form(X) obtained
from ψ by substituting each atom f($j) with the variable f(pj). Hence, f($j)
denotes the variable which encodes the f -attribute of pj . In the rest of this
paper, we typically use ϕ,ψ to range over outcomes, and ξ, χ to range over their
instances. We also use E to denote the set of all experiment instances (or just
experiments) defined by E = {(t,p) | t ∈ T, p is an instance of t}. Further, for
every experiment e = (t,p), we use Φ(e) to denote the set of p-instances of all
outcomes of t. An evaluated experiment is a pair (e, ξ), where ξ ∈ Φ(e). The set
of all evaluated experiments is denoted by Ω.

Example 2. CCP with four coins can be modeled as a game G = (X,ϕ0, Σ, F, T )
where X = {x1, x2, x3, x4, y}, ϕ0 = exactly1(x1, x2, x3, x4), Σ = {coin1, coin2,
coin3, coin4}, F = {d} where d(coini) = xi for every 1 ≤ i ≤ 4, and T = {t1, t2}
where t1 = (2, Σ〈2〉, {ϕ<, ϕ=, ϕ>}), t2 = (4, Σ〈4〉, {ψ<, ψ=, ψ>}), and

ϕ< = (d($1) ∧ ¬y) ∨ (d($2) ∧ y)
ϕ= = ¬d($1) ∧ ¬d($2)
ϕ> = (d($1) ∧ y) ∨ (d($2) ∧ ¬y)
ψ< = ((d($1) ∨ d($2)) ∧ ¬y) ∨ ((d($3) ∨ d($4)) ∧ y)
ψ= = ¬d($1) ∧ ¬d($2) ∧ ¬d($3) ∧ ¬d($4)
ψ> = ((d($1) ∨ d($2)) ∧ y) ∨ ((d($3) ∨ d($4)) ∧ ¬y)

Here, Σ〈k〉 ⊆ Σk consists of all w ∈ Σk such that every letter of Σ appears
at most once in w. Note that t1 and t2 correspond to weighings of 1 + 1 and
2+2 coins, respectively. The formulae ϕ<, ϕ=, and ϕ> encode the three possible
outcomes of weighing 1 + 1 coins. In particular, ϕ< describes the outcome when
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the left pan is lighter; then we learn that either the first coin is different and
lighter, or the second coin is different and heavier. If we put p = (coin4, coin3),
then ϕ<(p) is the formula (x4 ∧ ¬y) ∨ (x3 ∧ y).

For the rest of this section, we fix a deductive game G = (X,ϕ0, Σ, F, T ). We
assume that G is well-formed, i.e., for every valuation of Val(ϕ0), each experi-
ment produces exactly one valid outcome (deductive games that correctly encode
meaningful problems are well-formed, so this condition is not restrictive). Intu-
itively, the game G is played as follows:

1. The codemaker selects a secret code v ∈ Val(ϕ0).
2. The codebreaker selects the next experiment e ∈ E.
3. The codemaker evaluates e for v and returns the resulting evaluated experi-

ment (e, ξ).
4. If the codemaker has enough information to determine v, the play ends. Oth-

erwise, it continues with Step 2.

We assume that the only information available to the codebreaker is the history
of evaluated experiments played so far. Hence, a strategy is a (total) function
σ : Ω∗ → E which specifies the next experiment for a given finite history of
evaluated experiments.

Every strategy σ determines the associated decision tree, denoted by Treeσ,
where the internal nodes are labeled by experiments, the leaves are labeled by
valuations of Val(ϕ0), and the edges are labeled by evaluated experiments. For
every node u of Treeσ, let λσ

u = (e1, ξ1), . . . , (en, ξn) be the unique sequence of
evaluated experiments that label the edges of the unique finite path from the
root of Treeσ to u (note that if u is the root, then λσ

u = ε). We also use Ψσ
u

to denote the formula ϕ0 ∧ ξ1 ∧ · · · ∧ ξn. The structure of Treeσ is completely
determined by the following conditions:

– Every node u of Treeσ is either an internal node labeled by σ(λσ
u), or a leaf

labeled by the only valuation of Val(Ψσ
u ), depending on whether |Val(Ψσ

u )| > 1
or not, respectively.

– Every internal node u of Treeσ labeled by e has a unique successor uξ for
each ξ ∈ Φ(e) such that the formula Ψσ

u ∧ ξ is still satisfiable. The edge from
u to uξ is labeled by (e, ξ).

Note that different nodes/edges may have the same labels, and Treeσ may con-
tain infinite paths in general.

Example 3. Consider the game G of Example 2. A decision tree for a simple
strategy σ is shown in Fig. 1 (we write just i instead of coini, and we use i, 
(or i, h) to denote the valuation of Val(ϕ0) which sets xi to true and y to false
(or to true, respectively)). Note that σ discovers the secret code by performing
at most three experiments. Also note that some internal nodes have only two
successors, because the third outcome is impossible.

Since G is well-formed, every strategy σ and every v ∈ Val(ϕ0) determine
a unique (finite or infinite) path u1, u2, u3, . . . initiated in the root of Treeσ,
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e1 = (t1, (1, 2))

e2 = (t1, (1, 3)) e2 = (t1, (1, 3)) e3 = (t1, (2, 4))

e4 = (t1, (1, 4))

1, � 2, h

3, h 3, �

2, � 1, h

4, h 4, �

(e1, ϕ<(1, 2)) (e1, ϕ=(1, 2)) (e1, ϕ>(1, 2))

(e2, ϕ=(1, 3))(e2, ϕ<(1, 3)) (e3, ϕ<(2, 4)) (e3, ϕ=(2, 4))

(e2, ϕ<(1, 3)) (e2, ϕ>(1, 3))(e2, ϕ=(1, 3))

(e4, ϕ<(1, 4)) (e4, ϕ>(1, 4))

Fig. 1. A decision tree for a simple strategy.

which intuitively correspond to a play of G where the codemaker selects the
secret code v. We use λσ

v = (e1, ξ1), (e2, ξ2), (e3, ξ3), . . . to denote the associated
sequence of evaluated experiments, i.e., (ei, ξi) is the label of (ui, ui+1). The
length of λσ

v is denoted by #λσ
v . Further, for every k ≤ #λσ

v , we use Ψσ
v [k]

to denote the formula Ψσ
uk

which represents the knowledge accumulated after
evaluating the first k experiments.

Now we can define the worst/average case complexity of σ, denoted by
Cworst(σ) and Cavg(σ), in the following way:

Cworst(σ) = max{#λσ
v | v ∈ Val(ϕ0)} Cavg(σ) =

∑
v∈Val(ϕ0)

#λσ
v

|Val(ϕ0)|
Note that the worst/average case complexity of σ is finite iff every v ∈ Val(ϕ0) is
discovered by σ after a finite number of experiments. We say that G is solvable iff
there exists a strategy σ with a finite worst/average case complexity. Further, we
say that a strategy σ is worst case optimal iff for every strategy σ′ we have that
Cworst(σ) ≤ Cworst(σ′). Similarly, σ is average case optimal iff Cavg(σ) ≤ Cavg(σ′)
for every strategy σ′.

In general, a codebreaker’s strategy may depend not only on the outcomes
of previously evaluated experiments, but also on their order. Now we show that
the codebreaker can select the next experiment only according to the semantics
of the knowledge accumulated so far.

Definition 4. A strategy σ is knowledge-based if for all v1, v2 ∈ Val(ϕ0) and
k1, k2 ∈ N such that Ψσ

v1
[k1] ≈ Ψσ

v2
[k2] we have that σ(λσ

v1
(1), . . . , λσ

v1
(k1)) =

σ(λσ
v2

(1), . . . , λσ
v2

(k2)).
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The next theorem says that knowledge-based strategies are equally powerful as
general strategies.

Theorem 5. Let G be a well-formed deductive game. For every strategy σ there
exists a knowledge-based strategy τ such that for every v ∈ Val(ϕ0) we have that
#λτ

v ≤ #λσ
v .

In the proof of Theorem5, we show that the only reason why σ might not be
knowledge-based is that σ schedules completely useless experiments which can
be safely omitted. Thus, we transform σ into τ .

Since the codebreaker may safely determine the next experiment just by
considering the currently accumulated knowledge, we can imagine that he some-
how “ranks” the outcomes of available experiments and then chooses the most
promising one. More precisely, let Know ⊆ Form(X) be the set of all formulae
representing an accumulated knowledge, i.e., Know consists of all Ψσ

v [k] where σ
is a strategy, v ∈ Val(ϕ0), and k ∈ N. For every ϕ ∈ Know and every experiment
e ∈ E, we define the set

Updates [ϕ, e] = {ϕ ∧ ξ | ξ ∈ Φ(e)}
which represents possible “updates” in the accumulated knowledge that can be
obtained by performing e. Further, let r : 2Know → R be a ranking function, and
� (some) total ordering over the set E of all experiments.

Definition 6. A ranking strategy determined by r and � is a function τ [r ,�] :
Know → E such that τ [r ,�](ϕ) is the least element of {e ∈ E | r(Updates[ϕ, e]) =
Min} w.r.t. �, where Min = min{r(Updates [ϕ, e′]) | e′ ∈ E}.

Note that every ranking strategy can be understood as a “general” strategy,
and hence all notions introduced for general strategies (such as the decision
tree) make sense also for ranking strategies. Further, for every knowledge-based
strategy τ there is an “equivalent” ranking strategy τ [r ,�] where, for all ϕ ∈
Know and e ∈ E, the value of r(Updates[ϕ, e]) is either 0 or 1, depending
on whether Updates[ϕ, e] is equal to Updates[ϕ, τ(ϕ)] or not, respectively. The
ordering � can be chosen arbitrarily. One can easily show that for every v ∈
Val(ϕ0) we have that #λτ

v = #λ
τ [r,�]
v . So, ranking strategies are equally powerful

as knowledge-based strategies and hence also general strategies by Theorem 5. In
particular, there exist worst/average case optimal ranking strategies, but it is not
clear what kind of ranking functions they need to employ. Since optimal strategy
synthesis is computationally costly, one may also fix some r and �, synthesize
τ [r,�], and evaluate its worst/average case complexity. Thus, by experimenting
with different r and �, one may obtain various strategies that solve the game,
and then choose the most efficient one.

Now we introduce several distinguished ranking functions (all of them are
implemented in Cobra). They generalize concepts previously used for solving
Mastermind, and there are also two new rankings based on the number of fixed
variables. The associated ranking strategies always use the lexicographical order-
ing over E determined by some fixed linear orderings over the sets T and Σ.
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– max-models(Ψ) = maxψ∈Ψ |Val(ψ)|. The associated ranking strategy mini-
mizes the worst-case number of remaining secret codes. For Mastermind, this
was suggested by Knuth [17].

– exp-models(Ψ) =
∑

ψ∈Ψ |Val(ψ)|2
∑

ψ∈Ψ |Val(ψ)| . The associated ranking strategy minimizes
the expected number of remaining secret codes. For Mastermind, this was
suggested by Irwing [14].

– ent-models(Ψ) =
∑

ψ∈Ψ
|Val(ψ)|

N · log( |Val(ψ)|
N ), where N =

∑
ψ∈Ψ |Val(ψ)|.

The associated ranking strategy minimizes the entropy of the numbers of
remaining secret codes. For Mastermind, this was suggested by Neuwirth [20].

– parts(Ψ) = −|{ψ ∈ Ψ | ψ is satisfiable}|. The associated ranking strategy
minimizes the number of satisfiable outcomes. For Mastermind, this was sug-
gested by Kooi [18].

We say that a variable x ∈ X is fixed in a formula ϕ ∈ Form(X) if x is set to the
same value by all valuations satisfying ϕ (i.e., for all v, v′ ∈ Val(ϕ) we have that
v(x) = v′(x)). The set of all variables that are fixed in ϕ is denoted by Fix (ϕ).
We consider two ranking functions based on the number of fixed variables.

– min-fixed(Ψ) = −minψ∈Ψ |Fix (ψ)|. The associated ranking function maxi-
mizes the number of fixed variables.

– exp-fixed(Ψ) = −
∑

ψ∈Ψ |Val(ψ)|·|Fix(ψ)|
∑

ψ∈Ψ |Val(ψ)| . The associated ranking function max-
imizes the expected number of fixed variables.

Intuitively, a “good” ranking function should satisfy two requirements:

– The associateted ranking strategy should have a low worst/average case com-
plexity. Ideally, this strategy should be optimal.

– The ranking function should be easy to evaluate for a given experiment e.
This is crucial for automatic strategy synthesis.

Obviously, there is a conflict in these two requirement. For example, the max-
models ranking often produces a rather efficient strategy, but the number of
satisfying valuations of a given propositional formula is hard to compute. On the
other hand, min-fixed ranking produces a good ranking strategy only in some
cases (e.g., for CCP and its variants), but it is relatively easy to compute with
modern SAT solvers even for large formulae.

Example 7. Consider again the game G of Example 2 formalizing CCP with four
coins. Further, consider the experiments

– e1 = (t1, (coin1, coin2)),
– e2 = (t2, (coin1, coin2, coin3, coin4))

for the first step (i.e., when the current accumulated knowledge is just ϕ0). In e1,
we weight coin1 against coin2. The number of satisfying assignments is 2 for the
outcomes ϕ< and ϕ>, and 4 for the outcome ϕ=. For the outcomes ϕ< and ϕ>,
we know that the counterfeit coin is not among coin3 and coin4, and for the ϕ=
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Table 1. A table summarizing the outcomes of ranking functions.

max-models exp-models ent-models parts min-fixed exp-fixed

e1 4 3 −1.04 −3 −2 −2

e2 4 4 −0.69 −2 0 0

outcome, we know it is not among coin1 and coin2. Hence, every outcome fixes
2 variables. Similarly, we can evaluate e2 and the other ranking functions. The
results are summarized in Table 1. Observe that all of the considered ranking
strategies would prefer e1 to e2 in the first step, possibly except for the max-
models ranking strategy where the choice depends on the chosen liner ordering
over T and Σ (it t1 is smaller that t2, this strategy also prefers e1).

Although computing τ [r,�] for given r and � appears computationally easier
than synthesizing an optimal strategy, we still need to (repeatedly) compute the
least element of {e ∈ E | r(Updates [ϕ, e]) = Min} w.r.t. �, where Min =
min{r(Updates [ϕ, e′]) | e′ ∈ E}, which is not achievable by enumerating all
experiments. For example, in CCP with 60 coins, there are more than 1063

ways of instantiating the parameterized experiment t formalizing the weighing
of 20+20 coins. However, observe that if t is performed in the first step, i.e., when
the accumulated knowledge is just ϕ0, then all instances of t are “equivalent”
in the sense that the knowledge learned by these instances is the same up to
a permutation of coins. Hence, it suffices to consider only one instance of t
and disregard the others. Cobra implements an algorithm which can efficiently
recognize and exploit such symmetries. Now we briefly explain the main ideas
behind this algorithm.

A permutation of X is a bijection π : X → X. We use Perm(X) to denote
the set of all permutations of X. Given a formula ϕ ∈ Form(X) and a permu-
tation π ∈ Perm(X), we use π(ϕ) to denote the formula obtained from ϕ by
simultaneously substituting every occurrence of every x ∈ X with π(x). For a
given Φ ⊆ Form(X), we use π(Φ) to denote the set {π(ϕ) | ϕ ∈ Φ}.

Definition 8. Let e, e′ ∈ E and π ∈ Perm(X). We say that e′ is π-symmetrical
to e if π(Φ(e)) ≈ Φ(e′). A symmetry group of G, denoted by Π, consist of all
π ∈ Perm(X) such that for every e ∈ E there is a π-symmetrical e′ ∈ E.

We say that e, e′ ∈ E are equivalent w.r.t. a given ϕ ∈ Know, written
e ∼ϕ e′, if there is π ∈ Π such that {ϕ ∧ ψ | ψ ∈ Φ(e)} ≈ {π(ϕ ∧ �) | � ∈ Φ(e′)}.
Note that Π is indeed a group, i.e., Π contains the identity and if π ∈ Π, then
the inverse π−1 of π also belongs to Π.

Example 9. Consider the game of Example 2. Then Π = {π ∈ Perm(X) | π(y) =
y}. Hence, for all p, q ∈ Σ〈4〉 we have that (t2,p) ∼ϕ0 (t2, q), and the partition
E/∼ϕ0 has only two equivalence classes corresponding to t1 and t2. For ϕ = ϕ0 ∧
¬(x1 ∨ x2), we have that (t1(coin4, coin3)) ∼ϕ (t2, (coin3, coin1, coin2, coin4)).
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The core of Cobra are the algorithms for synthesizing worst/average case
optimal strategies, and for analyzing the efficiency of τ [r,�]. For a current accu-
mulated knowledge ϕ ∈ Know, these algorithms need to consider at least one
experiment for each equivalence class of E/∼ϕ. This is achieved by invoking a
function Experiments(ϕ) parameterized by ϕ which computes a set of exper-
iments Sϕ ⊆ E such that for every e ∈ E there is at least one e′ ∈ Sϕ where
e ∼ϕ e′. A naive approach to constructing Sϕ is to initialize Ŝϕ := ∅ and
then process every t = (k, P, Φ) ∈ T as follows: for every p ∈ Σk, we check
whether p ∈ P and (t,p) �∼ϕ e for all e ∈ Ŝϕ; if this test is positive, we put
Ŝϕ := Ŝϕ ∪ {(t,p)}, and continue with the next p. When we are done with all
t ∈ T , we set Sϕ := Ŝϕ. Obviously, this trivial algorithm is inefficient for at least
two reasons.

1. The size of Σk can be very large (think again of CCP with 60 coins), and it
may not be possible to go over all p ∈ Σk.

2. The problem of checking ∼ϕ is computationally hard.

Now we indicate how Cobra overcomes these issues. Intuitively, the first issue is
tackled by optimizing the trivial backtracking algorithm which would normally
generate all elements of Σk lexicographically using some total ordering � over Σ.
We improve the functionality of this algorithm as follows: when the backtracking
algorithm is done with generating all k-tuples starting with a given prefix ua ∈
Σm, where m ∈ {1, . . . , k}, and aims to generate all k-tuples starting with ub,
we first check whether ub is dominated by ua w.r.t. ϕ and t. The dominance
by ua guarantees that all of the experiments that would be obtained by using
the k-tuples starting with ub are equivalent to some of the already generated
ones. Hence, if ub is dominated by ua w.r.t. ϕ and t, we continue immediately
with the �-successor c of b, i.e., we do not examine the k-tuples starting with
ub at all (note that uc is again checked for dominance by ua). This can lead to
drastic improvements in the total number of generated instances which can be
much smaller than |Σ|k. The set of all experiments generated in the first phase
is denoted by S1

ϕ.
The second issue is tackled by designing an algorithm which tries to decide

∼ϕ for a given pair of experiments e1, e2 by first removing the fixed variables
in ϕ and the outcomes of e1, e2 using a SAT solver, and then constructing two
labeled graphs Bϕ,e1 and Bϕ,e1 which are checked for isomorphism (here Cobra
relies on existing software tools for checking graph isomorphism). If the graphs
are isomorphic, we have that e1 ∼ϕ e2, and we can safely remove e1 or e2 from
S1

ϕ. When the experiments are ordered by some �, we prefer to remove the larger
one. Thus, we produce the set Sϕ. Now we explain both phases in greater detail.

Let t = (k, P, Φ) be a parameterized experiment, and let i, j ∈ {1, . . . , k}
be two positions. We say that i, j are closely dependent if i = j or there exists
an attribute f ∈ F such that both f($i) and f($j) occur in the formulae of Φ.
Further, we say that i, j are dependent if they are related by the transitive closure
of close dependence relation. Note that the set {1, . . . , k} can be partitioned into
disjoint subsets of mutually dependent indexes. Further, for every i ∈ {1, . . . , k}
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we define the set Fi consisting of all f ∈ F such that f($j) occurs in some
formula of Φ where j ∈ {1, . . . , k} and i, j are dependent.

As an example, consider the parameterized experiment t2 in the game of
Example 2. Then all indexes are mutually dependent and Fi = {d} for every
i ∈ {1, 2, 3, 4}. In Mastermind with n pegs and m colors, there is only one para-
meterized experiment t = (n, {color1, . . . , colorm}n, Φ), and all indexes are again
mutually dependent. We have that Fi = {peg1, . . . , pegn} for all i ∈ {1, . . . , n}.

We say that r ∈ Σi, where 1 ≤ i ≤ k, is t-feasible if there is s ∈ Σk−i such
that rs ∈ P . Further, for all p ∈ Σk, m ∈ {1, . . . , k}, and a, b ∈ Σ, we denote
by p[m,a↔b] the element of Σk obtained from p by simultaneously substituting
every occurrence of a with b and every occurrence of b with a at all positions j
where m and j are dependent.

Definition 10. Let ϕ ∈ Know, t = (k, P, Φ) ∈ T , and let ua ∈ Σm be a
t-feasible tuple, where 1 ≤ m < k. We say that ub ∈ Σm is dominated by ua
w.r.t. ϕ and t if the following conditions are satisfied:

– for every v where p = ubv ∈ P we have that p[m,a↔b] ∈ P and p[m,a↔b] � p;
– for every f ∈ Fm, the variables f(a) and f(b) do not occur in the formulae of Φ;
– the permutation π, defined by π(f(a)) = f(b), π(f(b)) = f(a) for all f ∈ Fm,

and π(y) = y for the other variables, is a symmetry of ϕ, i.e., ϕ ≡ π(ϕ).

Theorem 11. Let ϕ ∈ Know, t = (k, P, Φ) ∈ T , and let ua ∈ Σm be a
t-feasible tuple, where 1 ≤ m < k. If ub is dominated by ua w.r.t. ϕ and t,
then for every v ∈ Σk−m such that p = ubv ∈ P we have that p[m,a↔b] ∈ P
and (t,p) ∼ϕ (t,p[m,a↔b]).

Proof. Let q = p[m,a↔b], and let π be the permutation introduced in
Definition 10. We show that {ϕ ∧ ψ | ψ ∈ Φ((t,p))} ≡ {π(ϕ ∧ �) | � ∈ Φ((t, q))}.
Since ϕ ≡ π(ϕ), it suffices to prove that Ψ(p) ≡ π(Ψ(q)) for all Ψ ∈ Φ. Let us fix
some Ψ ∈ Φ. Observe that the formulae Ψ(p) and π(Ψ(q)) are the same except
that all f($i) are evaluated either to f(pi) or to π(f(qi)), respectively. Let us
examine possible cases.

– If a �= pi �= b, then pi = qi and π(f(qi)) = π(f(pi)) = f(pi) by Definition 10.
– If i and m are independent, then again pi = qi and π(f(qi)) = π(f(pi)) =

f(pi) by Definition 10 (note that f �∈ Fm).
– If i,m are dependent and pi = a, then π(f(pi)) = π(f(a)) = f(b) = f(qi)

because f ∈ Fi. The case when i,m are dependent and pi = b is symmetric. ��
Theorem 11 fully justifies the correctness of the improved backtracking algorithm
discussed above in the sense that the resulting set S1

ϕ indeed contains at least
one representative for each equivalence class of E/∼ϕ.

Now we describe the second phase, when we try to identify and remove some
equivalent experiments in S1

ϕ. The method works only under the condition that
for every t = (k, P, Φ) ∈ T we have that P is closed under all permutations
of Σ (note that this condition is satisfied when P = Σk or P = Σ〈k〉). Possible
generalizations are left for future work. The method starts by constructing a
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labeled base graph B = (V,E,L) of G, where the set of vertices V is X ∪ F (we
assume X ∩ F = ∅) and the edges of E are determined as follows:

– (f, x) ∈ E, where f ∈ F and x ∈ X, if there is a ∈ Σ such that f(a) = x;
– (x, y) ∈ E, where x, y ∈ X, if there are a ∈ Σ, f, g ∈ F , t ∈ T , some outcome

ψ of T , such that f(a) = x, g(a) = y, and both f($i) and g($i) appear in ψ
for some i ∈ {1, . . . , k}.

The labeling L : V → X ∪ F ∪ {var}, where var �∈ X ∪ F , assigns var to every
variable x ∈ X such that x does not appear in any outcome of any parameterized
experiment of T . For the other vertices v ∈ V , we have that L(v) = v. The base
graph B represents a subset of Π in the following sense:

Theorem 12. Letπ be anautomorphismofB.Thenπ restricted toX belongs toΠ.

Now, let ϕ ∈ FormX be a formula representing the accumulated knowledge,
and let e1 = (t1,p) and e2 = (t2, q) be experiments. We show how to construct
two labeled graphs Bϕ,e1 and Bϕ,e2 such that the existence of an isomorphism
between Bϕ,e1 and Bϕ,e2 implies e1 ∼ϕ e2.

For every formula ψ ∈ FormX , let Stree(ψ) be the syntax tree of ψ, where
every inner node is labeled by the associated Boolean operator, the leaves are
labeled by the associated variables of X, and the root is a fresh vertex root(ψ)
with only one successor which corresponds to the topmost operator of ψ (the
label of root(ψ) is irrelevant for now). Recall that we only allow for commutative
operators, so the ordering of successors of a given inner node of Stree(ψ) is not
significant. Each such Stree(ψ) can be attached to any graph B′ which subsumes
B by taking the disjoint union of the vertices of B′ and the inner vertices of
Stree(ψ), and identifying all leaves of Stree(ψ) labeled by x ∈ X with the unique
node x of B′. All edges and labels are preserved.

The graph Bϕ,e1 is obtained by subsequently attaching the formulae Stree(ϕ),
Stree(ψ1(p)), . . . ,Stree(ψn(p)) to the base graph of B, where ψ1, . . . , ψn are the
outcomes of t1, and for every ψ ∈ Form(X), the formula ψ is obtained from ψ by
removing its fixed variables (see above) using a SAT solver. The root of Stree(ϕ)
is labeled by acc, and the roots of Stree(ψ1(p)), . . . ,Stree(ψn(p)) are labeled
by out . The graph Bϕ,e2 is constructed in the same way, again using the labels
acc and out .

Theorem 13. If Bϕ,e1 , Bϕ,e2 are isomorphic, then e1 ∼ϕ e2.

The procedure Experiments(ϕ) is used to compute decision trees for ranking
strategies and optimal worst/average case strategies in the following way. Let
τ [r,�] be a ranking strategy such that for all e1, e2 ∈ E and ϕ ∈ Know we have
that e1 ∼ϕ e2 implies r(e1) = r(e2). Note that all ranking functions introduced
in this section satisfy this property. The decision tree Treeτ [r,�] is computed
top-down. When we need to determine the label of a given node u where the
associated accumulated knowledge is Ψu, we first check whether |Val(Ψu)| = 1
using a SAT solver. If it is the case, we label u with the only valuation of
Val(Ψu). Otherwise, we need to compute the experiment τ [r,�](Ψu). It follows
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1 Function Optimal(ϕ, upper)
2 if |Val(ϕ)| = 1 then return 〈v, 0〉 where v ∈ Val(ϕ)
3 if ϕ is cached then return the cached result

4 [W] if �logOut(|Val(ϕ)|)� > upper then return 〈err , ∞〉
5 Sϕ := Experiments(ϕ)
6 best := upper ; eϕ := some element of Sϕ

7 for e ∈ Sϕ do
8 val := 0
9 for ψ ∈ Φ(e) do

10 if SAT (ϕ ∧ ψ) then
11 〈eψ, Cψ〉 := Optimal(ϕ ∧ ψ, best − 1)
12 [W] val := max(val, 1 + Cψ)
13 [A] val := val + |Val(ϕ ∧ ψ)| · (1 + Cψ)

14 [A] val := val / |Val(ϕ)|
15 if val ≤ best then best := val; eϕ := e

16 Cache the result 〈eϕ, best〉 for ϕ
17 return 〈eϕ, best〉

Fig. 2. Computing optimal strategies.

immediately that τ [r,�](Ψu) is contained in SΨu
:= Experiments(Ψu). Hence,

we label u with the least element of {e ∈ SΨu
| Updates[Ψu, e] = Min} w.r.t. �,

where Min = min{Updates [Ψu, e′] | e′ ∈ SΨu
}. This element is computed with

the help of a SAT solver.
The way of computing a decision tree for an optimal worst/average case strat-

egy is more involved. Let WoptG and AoptG be the sets of all knowledge-based
strategies which are worst case optimal and average case optimal, respectively.
First, observe that if τ ∈ WoptG and τ(ϕ) = e for some ϕ ∈ Know, then for
every e′ ∈ E where e ∼ϕ e′ there is τ ′ ∈ WoptG such that τ ′(ϕ) = e′. Hence, we
can safely restrict the range of τ(ϕ) to Experiments(ϕ). Further, if τ(ϕ) = e
and ϕ′ ≡ π(ϕ) for some π ∈ Π, we can safely put τ(ϕ′) = π(e). The same
properties hold also for the strategies of AoptG .

A recursive function for computing a worst/average case optimal strategy
is shown in Fig. 2. The function is parameterized by ϕ ∈ Know and an upper
bound on the worst/average number of experiments performed by an optimal
strategy for the initial knowledge ϕ. The function returns a pair 〈eϕ, Cϕ〉 where
eϕ is the experiment selected for ϕ and Cϕ is the worst/average number of
experiments that are needed to solve the game for the initial knowledge ϕ. Hence,
the algorithm is invoked by Optimal(ϕ0,∞). Note that the algorithm caches
the computed results and when it encounters that ϕ is π-symmetric to some
previously processed formula, it uses the cached results immediately (line 3).
The lines executed only when constructing the worst (or average) case optimal
strategy are prefixed by [W ] (or [A], respectively). At line 4, the constant Out
is equal to max(k,P,Φ)∈T |Φ(t)|. Obviously, we need at least �logOut(|Val(ϕ)|)�
experiments to distinguish among the remaining |Val(ϕ)| alternatives.
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3 Cobra: The Tool and Experimental Results

Cobra [1] is a command-line tool envoked as follows:

cobra [-m <mode>] [-s <sat solver>] [other options] <file>

The <file> contains a deductive game description (the syntax implements
Definition 1). The <mode> can be either overview, analysis, optimal-worst,
or optimal-average. The overview mode serves for basic consistency checks (in
particular, the well-formed condition is verified, see Sect. 2). The analysis mode
allows to analyze the worst/average case complexity of ranking strategies for sev-
eral ranking functions. Currently, Cobra supports max-models, exp-models,
ent-models, part, min-fixed, and exp-fixed ranking functions, where the
first four functions minimize the worst-case number of remaining secret codes,
the expected number of remaining secret codes, the entropy of the numbers of
remaining secret codes, and the number of satisfiable outcomes, respectively,
and the last two functions maximize the (expected) number of fixed variables.
Finally, the optimal-worst and optimal-average are the modes where Cobra
computes the worst and the average case optimal strategies, respectively. The
optional -s switch allows to specify the SAT solver used by Cobra for evalu-
ating the supported ranking functions (currently available options are MiniSat
[9] and PicoSAT [5]). Cobra also uses the tool Bliss [15] for checking graph
isomorphism to determine equivalent experiments. The source code, installation
instructions, examples, and a more detailed specification of Cobra’s function-
ality are available freely at GitHub [1].

In the rest of this section we briefly describe some experimental results
achieved with Cobra. In the first part, we demonstrate the efficiency of the
algorithm for eliminating symmetric experiments discussed at the end of Sect. 2.
In the second part, we show that Cobra is powerful enough to produce new
results about existing deductive games and their variants.

The functionality of Experiments(ϕ) can be well demonstrated on CCP and
Mastermind. Consider CCP with 26, 39, and 50 coins. Table 2 (top) shows the aver-
age size of S1

ϕ and Sϕ when computing the i-th experiment in the decision tree
for the max-models ranking strategy. The total number of experiments for 26, 39
and 50 coins is larger than 1026, 1046, and 1064, respectively. Observe that for 26
and 39 coins, only four experiments are needed to reveal the counterfeit coin, and
hence the last row is empty. Note that in the first round, all equivalent experiments
are discovered already in the first phase, i.e., when computing S1. These experi-
ments correspond to the number of coins that can be weighted (e.g., for 50 coins
we can weight 1+1, . . . , 25+25 coins, which gives 25 experiments). In the second
round, when we runExperiments(ϕ) for three different formulae ϕ ∈ Know, the
average size of S1

ϕ is already larger, and the second phase (eliminating equivalent
experiments) further reduces the average size of the resulting Sϕ.

A similar table for Mastermind is shown in Table 2 (bottom). Here we con-
sider three variants with 3/8, 4/6, and 5/3 pegs/colors. The table shows the
average size of Sϕ when computing the i-th experiment in the decision trees
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Table 2. The size of S1
ϕ and Sϕ for selected deductive games.

CCP 26 CCP 39 CCP 50
(≈ 1026 exp.) (≈ 1046 exp.) (≈ 1064 exp.)

Exp.No. Phase 1 Phase 2 Phase 1 Phase 2 Phase 1 Phase 2

hline 1 13.0 13.0 19.0 19.0 25.0 25.0
2 4,365.0 861.7 26,638.7 3,318.0 83,625.0 8,591.0
3 603.0 36.4 2,263.0 88.1 5,733.4 172.2
4 76.3 4.2 214.7 7.2 405.1 10.4
5 - - - - 153.2 4.1

MM 3x8 (512 exp.) MM 4x6 (1296 exp.) MM 5x3 (243 exp.)
max-models parts max-models parts max-models parts

Exp.No. Phase 1Phase 2 Phase 1Phase 2 Phase 1Phase 2 Phase 1Phase 2 Phase 1Phase 2 Phase 1Phase 2
1 5.00 3.00 5.00 3.00 15.00 5.00 15.00 5.00 41.00 5.00 41.00 5.00
2 70.13 17.38 70.13 17.38 144.82 34.91 337.23 106.62 243.00 59.25 243.00 59.25
3 144.50 72.31 147.29 87.83 587.54 243.40 819.49 580.03 243.00 121.45 243.00 186.90
4 134.25 71.54 155.14 87.98 791.30 344.02 819.68 417.02 - - - -
5 91.36 25.36 100.46 31.97 - - 334.33 95.83 - - - -

Table 3. The average/worst case complexity of selected deductive games.

Average-case
Size MM MM+col MM+pos
2x8 3.67187 3.64062 2
3x6 3.19444 3.18981 3
4x4 2.78516 2.74609 2.78516

Worst-case
Size MM MM+col MM+pos
2x8 5 5 2
3x6 4 4 3
4x4 3 3 3

for max-models and parts ranking strategies. Note that for Mastermind, the
reduction is more efficient for more colors and less pegs, and that the values for
the two ranking strategies significantly differ, which means that they divide the
solution space in a rather different way.

Now we present examples of results obtained by running our tool that, to
the best of our knowledge, have not yet been published in the existing literature
about deductive games. Our first example concerns CCP. While the worst case
complexity of CCP is fully understood [8], we are not aware of any results about
the average case complexity of CPP. Using Cobra, we were able to compute
the average-case optimal strategy for up to 60 coins. Further, we can compare
the average-case complexity of an optimal strategy with the average-case com-
plexities of various ranking strategies, which can be synthesized for even higher
number of coins (more than 80). The results are summarized in the graph of
Table 3 (left). The precise values shown in the plot can be found in [16].

As the last example, we consider two variants of Mastermind: MM+col, where
we can also ask for all pegs colored by a given color, and MM+pos, where we
can also ask for the color of a given peg. These extensions are inspired by the
API-level attacks mentioned in Sect. 1. Using Cobra, we can compute the opti-
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mal worst/average case complexity for 2/8, 3/6, and 4/4 pegs/colors. The results
are summarized in Table 3 (right). When comparing these results to “classical”
results about Mastermind, the following subtle difference in game rules must
be taken into account: Plays of “our” deductive games terminate as soon as we
obtain enough information to reveal the secret code. The “classical” Mastermind
terminates when the secret code is “played”, which may require an extra exper-
iment even if the code is already known. Our numbers are valid for the first
setup.

4 Conclusions

The results produced by Cobra witness that non-trivial deductive games can
be solved by a generic tool. The main advantage of Cobra is its versatility ;
small changes in the structure of the secret code and/or experiments can easily
be reflected in the input description, which greatly simplifies the analysis of new
versions of security protocols, new forms of attacks, etc. The challenge is to
push the frontiers of fully automatic analysis of deductive games even further.
Obviously, there are many ways of improving the functionality of Cobra by
elaborating the concepts presented in this paper. The interface to SAT solvers
can also be tuned, there is a lot of space for parallelism, etc. One may also
try alternative approaches to modeling and solving deductive games based on
constraint solving or artificial intelligence techniques.
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Abstract. The anti-subsumptive enforcement of a clause δ in a set of
clauses Δ consists in extracting one cardinality-maximal satisfiable sub-
set Δ′ of Δ ∪ {δ} that contains δ but that does not strictly subsume δ.
In this paper, the computational issues of this problem are investigated
in the Boolean framework. Especially, the minimal change policy that
requires a minimal number of clauses to be dropped from Δ can lead
to an exponential computational blow-up. Indeed, a direct and natural
approach to anti-subsumptive enforcement requires the computation of
all inclusion-maximal subsets of Δ ∪ {δ} that, at the same time, con-
tain δ and are satisfiable with ¬δj where δj is some strict sub-clause
of δ. On the contrary, we propose a method that avoids the computa-
tion of this possibly exponential number of subsets of clauses. Interest-
ingly, it requires only one single call to a Partial-Max-SAT procedure
and appears tractable in many realistic situations, even for very large Δ.
Moreover, the approach is easily extended to take into account a pref-
erence pre-ordering between formulas and lay the foundations for the
practical enumeration of all optimal solutions to the problem of making
δ subsumption-free in Δ under a minimal change policy.

Keywords: Preemption · Subsumption · Belief change · Partial-Max-
SAT · Boolean logic

1 Introduction

Preemption is a reasoning paradigm that enforces the derivability of some given
knowledge1 δ and blocks the inference of some other given information. The
study of preemption has been ubiquitous in Artificial Intelligence for decades:
early seminal works that had to cope with this issue can be traced back for
example in rule-based expert systems [1], reasoning with inheritance hierarchies
[2] and non-monotonic reasoning dealing with exceptions [3,4]. In this paper,
we are concerned with preemption in the clausal Boolean framework when the
blocked formulas are all the strict sub-clauses of a given clause δ that is intended
to prevail. Note that any sub-clause of δ subsumes -and thus entails- δ: this
form of preemption mechanism thus blocks the inference of clauses that are
logically strictly stronger than δ. It is a required mechanism when δ is encoding
1 In this paper, no distinction is made between belief, knowledge and information.

c© Springer-Verlag Berlin Heidelberg 2015
M. Davis et al. (Eds.): LPAR-20 2015, LNCS 9450, pp. 48–62, 2015.
DOI: 10.1007/978-3-662-48899-7 4



On Anti-subsumptive Knowledge Enforcement 49

some contents that is considered accurate whereas its strict sub-clauses are not.
Indeed, through additional disjuncts, δ can express some more detailed, precise
or specific information that must prevail.

For example [5], assume that a set of clauses Δ contains some information
about John’s current location, namely John is at home or in his office. Now
assume that a new piece of information δ comes in and must prevail: δ translates
that a third possible location for John must also be taken into account with a
same level of confidence, for example δ = John is at home or in his office or
in his car. Clearly, this new piece of information does not logically contradict
the previous one. Furthermore, δ is a logical consequence of Δ. However, in this
specific situation, we do not want δ to be merely inserted within Δ since the
resulting set of formulas would still allow John is at home or in his office to be
deduced. Actually, we need to trim Δ ∪ {δ} to yield a set Δ′ that entails δ and
that does not allow any strict sub-clause of δ to be deduced, like for example
John is at home and John is at home or in his car.

As another example, assume that δ is the clause not(accepted) or not(in-time)
or published encoding the rule If the paper is accepted and the final version is
sent in time then it will be included in the proceedings. Clearly, we might want
this rule to prevail over the sub-clause δ′ of δ that is encoding If the paper is
accepted then it will be included in the proceedings, at least when sending the
final version in time is assumed to be a necessary condition for the paper to be
included in the proceedings.

From now on, δ is a non-tautologous and satisfiable clause and Δ is a set
of clauses which is not necessarily satisfiable but is made of clauses that are
individually satisfiable and non-tautologous.

In the paper, the enforcement of subsumption-free δ in Δ follows a minimal
change policy and is defined as the extraction of one maximum-cardinality subset
Δ′ of Δ ∪ {δ} such that δ is derivable from Δ′ whereas no strict sub-clause δ′

of δ is derivable from Δ′. Equivalently, the last condition amounts to ensuring
that δ is a prime implicate of Δ′.

Note that Δ′ might not be unique: in this study, we concentrate on extracting
one such Δ′, with no specific preference on which set to select when several of
them exist. However, we will comment on extending this study to the extraction
of one preferred Δ′ and to the enumeration of all Δ′ later in the paper.

In the Boolean framework, when δ is an incoming piece of information and
when Δ is satisfiable, the anti-subsumptive enforcement of δ departs from usual
belief revision paradigms [6,7] in the fundamental following way: when δ is not
contradictory with Δ, the anti-subsumptive enforcement of δ in Δ yields a set Δ′

that is not necessarily (the deductive closure of) Δ ∪ {δ} since Δ′ cannot allow
any strict sub-clause of δ to be inferred. On the contrary, according to belief
revision techniques, the result should be (the deductive closure of) Δ∪{δ} since
this set is non-contradictory.

Quite surprisingly, the logical properties of anti-subsumptive enforcement of
clauses have only been investigated recently [5]. Rationality postulates have been
discussed in [8] and the extension of this paradigm to non-monotonic frameworks
has been proposed in two different directions [9,10].
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The focus in this paper is on addressing the practical computational chal-
lenges in the extraction of one Δ′ and on investigating the scalability issue by
considering very large Δ. As the number of clauses from Δ ∪ {δ} to be dropped
in order to yield Δ′ must be minimal, we will see that a direct approach to this
problem requires the computation, for every longest strict sub-clause δ′ of δ, of
all the inclusion-maximal subsets (in short MSS⊆) of Δ∪{δ} that are satisfiable
with the negation of δ′. As the number of MSS⊆ can be exponential in the num-
ber of clauses of Δ ∪ {δ}, this approach is clearly intractable in the worst-case.
Accordingly, we propose an approach that avoids the computation of all these
MSS⊆ and yields Δ′ by extracting in a direct way one cardinality-maximal (in
short MSS#) of Δ ∪ {δ} that is satisfiable with the negation of any of the afore-
mentioned δ′. The approach is experimentally tested on very large Δ. It is easily
extended to take into account a preference pre-ordering between clauses and lays
down the foundations for the practical enumeration of all optimal solutions to
the problem of making δ subsumption-free in Δ under a minimal change policy.

The paper is organized as follows. The preliminaries present basic logical
concepts, including subsumption and implicates, as well as maximal satisfiable
subsets and Partial-Max-SAT. The problem at hand is defined formally in Sect. 3.
In Sect. 4, a natural -but highly intractable- approach is presented. Our approach
is then introduced step by step in Sect. 5. Computational complexity issues are
addressed in Sect. 6 and our experimental study is presented in Sect. 7. In the
conclusion, extensions of the approach are sketched as paths for further studies.

2 Preliminaries

2.1 Logical Framework

We use standard clausal Boolean logic. Let L be a language of formulas over
a finite alphabet of Boolean variables, also called atoms. Atoms are denoted
by a, b, c, . . . ∧,∨,¬,→ and ≡ represent the standard conjunctive, disjunctive,
negation, material implication and equivalence connectives, respectively. A literal
is an atom or a negated atom. Formulas are built in the usual way from atoms,
connectives and parentheses; they are denoted by α, β, γ, . . . Sets of formulas
are denoted by Δ,Γ, . . . An interpretation is a truth assignment function that
assigns values from {true, false} to every Boolean variable, and thus, following
usual compositional rules, to all formulas of L. A formula δ is consistent (also
called satisfiable) when there exists at least one interpretation that satisfies δ,
i.e., that makes δ become true: such an interpretation is called a model of δ.
|= denotes deduction, i.e., Δ |= δ denotes that δ is a logical consequence of Δ,
namely that δ is satisfied in all models of Δ. |= α means that α is tautologous
(i.e., true in all interpretations) and |= ¬α that α is a contradiction. A set
of formulas Δ is consistent iff Δ �|= ⊥, where ⊥ stands for a contradiction.
Without loss of generality, formulas can be represented in Conjunctive Normal
Form (CNF), equivalent with respect to satisfiability. A CNF is a conjunction
of clauses, where a clause is a disjunction of literals. We always assume that
any clause contains at most one occurrence of a given literal. The empty clause
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denotes ⊥ and is thus unsatisfiable; on the contrary, an empty set of clauses is
satisfiable. A unit clause is a clause made of a single literal. For convenience,
a clause can be identified with the set of its literals. The cardinality or size of a
clause α refers to the set-theoretic representation of α and is denoted card(α): a
maximal strict sub-clause of α is a strict sub-clause of α of maximal cardinality
according to this representation. Deduction in clausal Boolean logic is co-NP-
complete. Indeed, Δ |= α iff Δ ∪ {¬α} is unsatisfiable and checking whether a
finite set of Boolean clauses is satisfiable is NP-complete.

The form of preemption paradigm that is addressed in this study is deep-
rooted in the concepts of subsumption and prime implicates, which are well-
studied in Boolean logic. In the following definitions, we assume that Δ is a
satisfiable non-tautologous CNF, that α, β and δ are satisfiable non-tautologous
clauses and that Δ ∪ {δ} is satisfiable.

Definition 1. α strictly subsumes β iff α |= β but β �|= α.

Definition 2. Δ strictly subsumes β iff Δ |= α for some α such that α strictly
subsumes β.

By abuse of words, we will write “subsume” in place of “strictly subsume”.
When α and β are under their set-theoretical representation, α subsumes β

iff α is a strict subset of β. When β is made of n > 1 literals, β is not subsumed
by Δ iff none of the n maximal-inclusion strict sub-clauses of β can be deduced
from Δ. Indeed, making sure that none of these latter sub-clauses is derivable in
Δ is sufficient to ensure that no smaller strict sub-clause of δ is derivable in Δ.

Definition 3. A prime implicate of Δ is any clause δ such that

1. Δ |= δ, and
2. |= (δ′ ≡ δ) for every clause δ′ such that Δ |= δ′ and δ′ |= δ.

Prime implicates have already been investigated in belief change mainly
because they provide a compact and syntax-independent representation of a
belief base that is complete (see [11,12]) and because useful computational tasks
(like satisfiability checking and deduction) are polynomial tasks in this setting
[13]. In the worst case, computing the set of prime implicates of Δ containing a
clause β is however not in polynomial total time unless P=NP (it is in polynomial
total time when for example the clause is positive or Δ is Horn) [14].

2.2 Forms of Maximal Satisfiable Subsets, Partial-Max-SAT

We make use of both the concepts of inclusion-maximal and cardinality-maximal
satisfiable subsets of clauses, which have widespread roles in A.I. The condition
that Δ is satisfiable is now dropped.

Definition 4. Φ is an inclusion-Maximal Satisfiable Subset of Δ, in short, Φ is
an MSS⊆(Δ), iff Φ is satisfiable and ∀α ∈ Δ \ Φ, Φ ∪ {α} is unsatisfiable.



52 É. Grégoire and J.-M. Lagniez

Definition 5. Φ is a cardinality-Maximal Satisfiable Subset of Δ, in short, Φ is
an MSS#(Δ), iff Φ is an MSS⊆(Δ) and � Φ′ s.t. Φ′ is an MSS⊆(Δ) and card(Φ)
< card(Φ′).

A Co-MSS of Δ is the set-theoretic complement in Δ of the corresponding MSS.
For convenience, we write (Co-)MSS instead of (Co-)MSS⊆ and (Co-)MSS# and
omit their argument when the context does not make this ambiguous or when
no such distinction is necessary.

Definition 6. Ψ is a Minimal Correction Subset (MCS or Co-MSS) of Δ iff
Ψ = Δ \ Φ where Φ is an MSS of Δ.

Accordingly, Δ can always be partitioned into a pair made of one MSS⊆ and
one Co-MSS⊆. Unless P=NP, extracting one such partition is intractable in the
worst case since it belongs to the FPNP [wit,log] class: namely, the set of function
problems that can be computed in polynomial time by executing a logarithmic
number of calls to an NP oracle that returns a witness for the positive outcome
[15]. Techniques to compute one such partition that prove very often efficient
are described in [16,17]. Note that in the worst case the number of MSSes is
exponential in the number of clauses in Δ: it is in O(2n/2) where n is the number
of clauses in Δ.

MSS⊆ and Co-MSS⊆ share strong relationships with MUSes, which are the
inclusion-minimal unsatisfiable subsets of a set of clauses. Especially, Co-MSS⊆
can be computed as hitting sets on all MUSes.

Definition 7. Γ ⊆ Δ is a Minimal Unsatisfiable Subset (in sort, MUS) of Δ
iff Γ is unsatisfiable and ∀α ∈ Γ , Γ \ {α} is satisfiable.

The instance of the Max-SAT problem w.r.t. Δ consists in delivering the cardi-
nality of any MSS#(Δ). In the following, we consider the variant of Max-SAT
that does not only deliver this cardinality but also one such MSS#(Δ). Actually,
we make use of the following variant definition of Partial-Max-SAT.

Definition 8. Let ΣS and ΣH be two sets of clauses. Partial-Max-SAT(ΣS , ΣH)
computes one cardinality-maximal subset of ΣS that is satisfiable with ΣH . ΣS

and ΣH are called the sets of soft and hard constraints, respectively.

By convention and for convenience in this paper, we assume that when ΣH is
unsatisfiable, Partial-Max-SAT yields the empty set, which is satisfiable. This
variant of (Partial-)Max-SAT belongs to the Opt-P class of intractable problems
[18], i.e., the class of functions computable by taking the maximum of the output
values over all accepting paths of an NP machine.

3 Anti-subsumptive Enforcement: Definition

Recall that Δ is a (non-necessarily satisfiable) set of clauses, each of them being
non-tautologous and satisfiable, and that δ is a satisfiable non-tautologous clause.
Let Δ′ be a set of clauses.
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Definition 9. Δ′ is one anti-subsumptive enforcement of δ iff

1. Δ′ ⊆ (Δ ∪ {δ}), and
2. Δ′ |= δ, and
3. Δ′ is satisfiable, and
4. � δ′ such that δ′ ⊂ δ and Δ′ |= δ′, and
5. � Δ′′ obeying conditions 1. to 4. such that card(Δ′′) > card(Δ′).

We say that δ prevails in Δ′.

Notice that conditions 2 and 4 entail that δ is a prime implicate of Δ′. It is
also easy to see that δ belongs to Δ′ and that there always exists at least one
anti-subsumptive enforcement Δ′ of δ in Δ: however, the unicity of Δ′ is not
guaranteed in the general case. Notice also that in condition 4, the δ′ = ∅ case
is already handled by condition 3.

Although Δ′ might not be one MSS#(Δ∪{δ}), by abuse of notation we write
that Δ′ is one MSS# of (Δ∪{δ}) where δ prevails, denoted MSS#(Δ∪{δ}Prevail).
In [8], this definition is refined by taking into account additional possibly desired
properties for Δ′. Note that this definition involves some syntactic flavor as Δ′ is
defined as a subset of Δ ∪ {δ} vs. a subset of the deductive closure of (Δ ∪ {δ}).
An alternative definition based on the deductive closure of (Δ ∪ {δ}) would
require computational treatments and concepts that are additional to the ones
described in this paper.

Note that the anti-subsumptive enforcement of δ encompasses the handling
of inconsistent information within Δ ∪ {δ}. Indeed, it yields one satisfiable set
of clauses that contains δ. To some extent, this policy towards contradictory
information is a form of credulous attitude that opts for δ since it yields one
kind of maximal satisfiable subset of clauses containing δ among several possible
ones, and discards every subset of clauses that does not contain δ.

4 Direct Approach

A simple situation is when δ is a unit clause. In this case, by definition, Partial-
Max-SAT(Δ ∪ {δ},δ) yields one anti-subsumptive enforcement of δ in Δ. Let us
now consider the case where δ is not a unit clause. Let δ′ be any strict non-empty2

sub-clause of δ. By Definition 8, Partial-Max-SAT(Δ ∪ {δ}, {¬δ′}) extracts one
satisfiable subset of Δ∪{δ} that does not entail δ′ such that this set is cardinality-
maximal. Let us note Δδ′ and Γδ′ this extracted set and the complement of Δδ′

in (Δ ∪ {δ}), i.e., (Δ ∪ {δ}) \ Δδ′ , respectively. Clearly, computing one such Γδ′

for every strict sub-clause (or for every maximal strict sub-clause) δ′ of δ and
set-theoretic unioning the elements of these sets to form a set noted Γ would
not ensure that Δ′ = (Δ∪{δ}) \Γ is always one MSS#(Δ∪{δ}Prevail). Indeed,
although card(Γδ′) is the minimal number of clauses to be rejected to guarantee
2 From now on, we only consider non-empty sub-clauses δ′ of δ and omit the “non-

empty” term. Indeed, considering the empty clause δ′ is not useful since Δ′ must be
satisfiable and thus never entails the empty clause.
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that (Δ∪{δ})\Γδ′ does not entail δ′, there might exist several such sets Γδ′ and
card(Γ ) might be minimal for only some of them. Moreover, not computing all
Γδ′ can lead to a wrong result.

Example 1. Assume Δ = {a ∨ ¬b, b} and δ = a ∨ ¬b. Clearly, there is only one
MSS# of Δ ∪ {δ} where δ prevails, namely {a ∨ ¬b}. Indeed, δ = a ∨ ¬b has two
maximal strict sub-clauses, namely a and ¬b. For δ′ = a, there are two possible
Γδ′ , namely Γ 1

a = {a ∨ ¬b} and Γ 2
a = {b}. Assume that we extract Γ 1

a , only.
There is a unique Γδ′ for δ′ = ¬b, which is Γ 1

¬b = ∅ as Δ does not entail ¬b.
(Δ ∪ {δ}) \ (Γ 2

a ∪ Γ 1
¬b) yields {b}, which is not intended result {a ∨ ¬b}.

Actually, a correct direct approach requires for each δ′ the computation of
all Γδ′ . Then, a selection of one Γδ′ per δ′ needs to be computed in such a
way that the total number of different clauses to be dropped is minimal. Not
surprisingly, this so-called direct approach proves intractable in the worst case
since for each δ′ the number of Δδ′ can be exponential in the number of clauses
in Δ ∪ {δ}. As our experimentations illustrate, it is often intractable even in
simple situations, too.

5 Transformational Approach

By itself Partial-Max-SAT does not provide a solution to our problem when
δ is not a unit clause. Indeed, we need to block the inference of any maximal
strict sub-clause of δ while we allow the derivation of δ. Partial-Max-SAT(Δ ∪
{δ},

⋃
δ′ ¬δ′) would expel δ from the solution since {δ} ∪ ⋃

δ′ ¬δ′ is unsatisfiable.

Fig. 1. Transformation into one instance of Partial-Max-SAT.
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input :
Δ = {α1, α2, . . . , αn}: a set of n non-tautologous Boolean clauses where each
individual clause is satisfiable;
δ = {�1, �2, . . . , �m}: a satisfiable non-tautologous clause represented through a

set of m literals;
output:
Δ′: one anti-subsumptive enforcement of δ in Δ.

1 if δ is not a unit clause then
/* ΣS will be a set of soft clauses */

2 ΣS ← {εi s.t. i ∈ [1..n]} /* every εi is a fresh new atom */

/* ΣH will be a set of hard clauses */

3 ΣH ← ∅;
4 Ω ← {αi ∨ ¬εi s.t. αi ∈ Δ};
5 foreach �j ∈ δ do
6 δj ← δ \ {�j};

/* δj is a maximal strict sub-clause of δ */

7 if Δ ∪ {¬δj} ∪ {δ} is unsatisfiable then
/* Φj is related to the sub-problem of blocking the

inference of δj */

8 Φj ← Ω ∪ {¬δj} ∪ {δ};
9 Rename all atoms in Φj (except the εi) with fresh new atoms;

10 ΣH ← ΣH ∪ Φj ;

11 end

12 end
13 Ψ ← Partial-Max-SAT(ΣS ,ΣH);
14 Δ′ ← {αi s.t. αi ∈ Δ and εi ∈ Ψ} ∪ {δ};

15 else
16 Δ′ ← Partial-Max-SAT(Δ ∪ {δ}, {δ})
17 end
18 return Δ′;

Algorithm 1. Extraction of one anti-assumptive enforcement of δ in Δ.

As a simple example, consider δ = a ∨ b, δ has two maximal strict sub-clauses:
namely, a and b. {a∨b,¬a,¬b} is unsatisfiable. Unfortunately, we cannot simply
compute Partial-Max-SAT(Δ \ {δ},

⋃
δ′ ¬δ′) and then insert δ in the solution

since this latter insertion can reinstate strict subsets of δ [5], meaning that the
introduction of δ can lead strict sub-clauses of δ to become derivable.

To avoid the so-called reinstatement problem, the formal approach to pre-
emption from [5,8] requires a multiple contraction [19] of Δ by δ → δ′, con-
sidering all δ′, to be achieved before δ is inserted. However, translated into
satisfiability terms, the multiple contraction of Δ by δ → δ′ is equivalent to the
extraction of maximal subsets that are satisfiable at the same time with δ and⋃

δ′ ¬δ′: Partial-Max-SAT remains thus inappropriate so far.
To break this deadlock and benefit from the practical efficiency of SAT tech-

nology, in particular of Partial-Max-SAT solvers, we transform the enforcement
problem into an equivalent one that is solved by means of one single call to
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Partial-Max-SAT. The idea is to create a specific sub-problem for each maximal
strict sub-clause of δ′ of δ that is entailed by Δ∪{δ} and merge the sub-problems
in an appropriate way so that one call to a Partial-Max-SAT solver delivers the
result. Such a transformation is best described using Fig. 1. Let us explain it
intuitively.

First, an arbitrary ranking between the n clauses from Δ is selected and
used throughout. The set of soft constraints ΣS is a set of n new atoms αi that
are representing the n clauses from Δ. Note that Δ might already contain δ.
Partial-Max-SAT will try to satisfy all these unit clauses, while satisfying at the
same time a set of hard constraints ΣH . Whenever one αi is not satisfied in the
solution to Partial-Max-SAT, this means that the corresponding ith clause in
Δ must be dropped from Δ to yield Δ′ (which is finally augmented with {δ}).
This will occur when it appears that α must be falsified in order for a clause in
ΣH to be satisfiable. ΣH is made of the set-theoretic union of several subsets of
clauses and is built in such a way that it is always satisfiable. Each such subset of
clauses represents one given sub-problem: namely, for one given maximal strict
sub-clause of δi of δ, when Δ∪{¬δi}∪{δ} is unsatisfiable, satisfy as many clauses
as possible. This sub-problem is created and made independent from the other
sub-problems (that are related to other δj ’s) by rewriting Δ∪{¬δi}∪{δ} with all
new variables. Now, the “glue” between the sub-problems and the soft constraints
is made through the following use of additional ¬αi disjuncts. Within each sub-
problem, each ith clause coming from Δ is augmented with an additional disjunct
¬αi. In this way, each sub-problem is satisfiable but this might require some ¬αi’s
to be true, which entails that the corresponding unit clauses αi’s from the soft
clauses are falsified in any solution to Partial-Max-SAT.

Algorithm 1 depicts the pseudo-code for the transformational approach.

Theorem 1. Let Δ be a possibly unsatisfiable set of non-tautologous clauses
where each clause is satisfiable. Let δ be a satisfiable non-tautologous clause.
Let Δ′ be the output of Algorithm1. We have that Δ′ is one anti-subsumptive
enforcement of δ in Δ.

6 Computational Complexity Issues

Let n be the number of clauses in Δ and k be the number of literals in δ.
The direct approach is exponential since the number of MSSes of Δ is O(2n/2)

in the worst case. As mentioned earlier, the extraction of one MSS is itself
intractable in the worst case since this task belongs to the FPNP [wit,log] class;
notice that the cardinality of each of the sets of clauses in which MSSes are
extracted is n + k since we augment the n clauses of Δ with δ and with the
k − 1 unit literals corresponding to ¬δj . In practice, several approaches have
been proposed to enumerate all MSSes of an unsatisfiable set of Boolean clauses
when the number of MSSes remains low (see e.g., [17] for a survey). However,
an explicit enumeration of MSSes is often out of reach: for example, when a set
of clauses contains m MUSes of size s with empty intersections, there are sm

MSSes. Hence, we expect the direct approach to be out of reach, very often.
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Unless P = NP, the transformational approach is intractable in the worst
case, too: it belongs to the Opt-P class, due to the call to our variant of Partial-
Max-SAT. Fortunately, many large-size instances are solved by SAT and Partial-
Max-SAT solvers [20] and we rely on this in proposing the transformational
approach. Now, clearly the size of the sets of hard and soft constraints can be
effective limiting parameters. In the call to Partial-Max-SAT, the cardinality of
the set of soft constraints is n and the worst-case cardinality of the set of hard
clauses is k(n + k). When δ is intended to represent a rule, it seems natural
to expect k to remain low, as k expresses the number of literals in the rule
that must prevail. The actual cardinality of the set of hard clauses is k′(n + k)
where k′ ≤ k is the number of maximal strict sub-clauses of δ that are actually
entailed by Δ ∪ {δ}. Note also that k′ can be actually replaced by a lower
number when a pre-processing step expels from Δ all strict sub-clauses of δ that
are explicitly present in Δ: accordingly, the corresponding maximal strict sub-
clauses might not require the creation of sub-problems for preventing them from
being inferable. In the same vein, when δ is explicitly present in Δ, there is no
need to create a soft constraint corresponding to δ since δ must belong to any
solution Δ′: in such a case, n need thus be decremented by 1 in all the above
results.

7 Experimental Illustration

Even when SAT checking is performed quickly, the direct approach thus suf-
fers from a combinatorial blow-up threat due a potential exponential number
of MSS⊆. Illustrating through experimentations how this exponential number
can actually occur is not much informative by itself: indeed, it is easy to build
instances such that δ and/or the negation of strict sub-clauses of δ conflict with Δ
in s totally different minimal ways, leading to a number of MSS⊆ that increases
exponentially with s. Nevertheless it might be interesting to illustrate the actual
numbers of MSS⊆ that the direct approach manages to extract as a necessary
part of its global task on some realistic instances. But the more interesting
question to be investigated from an experimental side is the extent to which
Partial-Max-SAT solvers can handle the cardinality increase of the sets of con-
straints due to the kind of replication, for each maximal strict sub-clause of δ,
of the problem of blocking the derivability of one such sub-clause. Obviously,
the most informative cases would occur when the direct approach fails due to a
combinatorial blow-up of the number of MSS⊆.

In order to conduct such an illustration, we have made extensive experimen-
tations, using a wide range of usual benchmarks Δ from the planning area as
a case study (actually, 248 of them). They represent the domain knowledge,
the initial and goal states and some time-horizon for a given planning problem.
They include a wide range of such problems with varying horizon lengths, like
for example, “Blocks right x” for the usual blocks-world problem with x blocks;
“Bomb bx by” involves neutralizing bx bombs in by locations. “Coins px” is
about px coins that must be tossed for heads and tails such that they reach a
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same state. “Comm px” is an IPC5 problem about communication signals with
several stages, packets, and actions. “Empty-room dx dy” is about navigating
inside a room of size dx and containing dy objects. “Safe n” is about opening
a safe that has n possible combinations. “sort num s x” is about proposing cir-
cuits of compare-and-swap gates to sort x Boolean variables. Finally, “uts kx” is
about a network routing for mobile ad-hoc networks where a broadcast from an
unknown node must reach all other nodes; the topology of the network is par-
tially known and each node has a fixed number kx of connected neighbors. They
were translated into CNF from their initial PDDL 1.2 (Planing Domain Defi-
nition Language) and STRIPS format, using H. Palacios’ translator, available
from http://www.plg.inf.uc3m.es/∼hpalacio/.

For each instance, all this information formed a satisfiable Δ. Note that
considering an unsatisfiable Δ could have resulted in an increased number of
MSS⊆ since the related minimal proofs of unsatisfiability on which they are
built would not necessarily contain δ and/or some of the negation of strict sub-
clauses of δ. The size of the instances (namely, of Δ) ranged from 44 to 45087
clauses, and from 22 to 6744 variables (with 4320 clauses and 1155 variables, on
average).

Then, for each Δ, we have randomly generated one δ using variables occurring
in Δ in such a way that the following conditions were met.

1. Δ ∪ {δ} is satisfiable. In this way, we focused on the pure issue of block-
ing subsumption itself, not augmented with the problem of recovering from
unsatisfiability when Δ ∪ {δ} is unsatisfiable. As already indicated, if unsat-
isfiable Δ had been selected then the number of MSS⊆ could have been even
larger.

2. k = card(δ) ∈ {5, 7, 10} as we consider these values as realistic for represent-
ing some information that must not be subsumed in the planning problem:
for example, a clause representing a planning decision rule that should not
be subsumed and that involves various detailed pre-conditions, like “if these
k − 1 preconditions are true then do this” where, additionally, we want to
make sure that the action is in no way done when some of the preconditions
are not met.

3. The number of maximal strict sub-clauses of δj of δ that are entailed by
Δ ∪ {δ} is k′ ≥ (k div 2).

Accordingly, we considered 744 instances since for each of the 248 initial instances,
we considered 3 values for card(δ). We generated δ randomly from the variables
occurring in Δ to express some possible information that should preempt any
of its strict sub-clauses. As a random generation might lead to very specific
non-representative instances, we have mitigated this risk as follows. 3 different
random generations of δ satisfying the above conditions were actually made for
each of the 744 instances and we recorded the average results for the exper-
imentations on the three corresponding Δ ∪ {δ}. However, when time-out or
memory-overflow was reached for at least one of the 3 runs for any of the 744
instances, we have recorded this time-out or memory-overflow as the “average”

http://www.plg.inf.uc3m.es/~hpalacio/
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Fig. 2. Time to solve: direct vs. transformational approaches.

value as result for corresponding instance, being thus in that way over-pessimistic
on the actual performance of the methods.

All experimentations have been conducted on Intel Xeon E5-2643 (3.30 GHz)
processors with 8 Gb RAM on Linux CentOS. For the MSS⊆ extractions, we used
the CMP method from [16]. Camus [21] http://sun.iwu.edu/∼mliffito/camus/ was
used to enumerate all MSS⊆ and Co-MSS⊆. MSUnCore [22] http://logos.ucd.

ie/wiki/doku.php?id=msuncore and MiniSAT [23] http://minisat.se/ were selected
as Partial-Max-SAT and SAT solvers, respectively. Time out was set to 1800 s
for each single anti-subsumptive enforcement.

All data and detailed results for each instance are available at http://www.
cril.fr/anti-subsumptive.

Algorithm 1 solved 735 instances on a total of 744; each solved instance,
except 10 of them, required less than 10 s and 607 less than one second. The
approach was thus most often able to cope with the increase of size of the
set of constraints: the cardinality of the set of hard constraints was (k div 2)
times the size of the initial instance, were k ∈ {5, 7, 10}. As we assume that
k = 10 is a maximum size for a clause that is expected to represent either a pure
disjunctive information where each strict sub-clause cannot be derived, or a rule
that must not be subsumed, these results are strong points for the viability of
the approach. The 10 instances that were solved in more than 10 s and the 9
unsolved ones belonged to the same planning problem, namely “blocks right x”,
they were not among the largest instances but appeared harder than the other
ones with respect to our problem.

The direct approach solved 514 instances, only. The maximal number of
MSS⊆ computed for an instance was 601 261 (but the direct approach failed to
solve the related problem (namely, ring2-r6-p-t3, which is about closing a series
of windows in several connected rooms forming a ring) whereas the transforma-
tional approach solved it in less than 0.5 s).

http://sun.iwu.edu/~mliffito/camus/
http://logos.ucd.ie/wiki/doku.php?id=msuncore
http://logos.ucd.ie/wiki/doku.php?id=msuncore
http://minisat.se/
http://www.cril.fr/anti-subsumptive
http://www.cril.fr/anti-subsumptive
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Fig. 4. Number of MSS⊆ computed by the direct approach.

The cactus plots using logarithmic scales given in Fig. 2 depict the
time-efficiency of both approaches: the results do not come as a surprise: the
transformational approach proved more efficient, most often. Figure 3 show
the cumulated number of solved instances according to the time spent. The
cactus plots in Fig. 4 show that the number of MSS⊆ and their handling was
manageable for many instances in our benchmarks. But the upper right corner
shows the numerous instances where combinatorial blow-up made the task out of
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scope for the direct approach. Obviously enough, in the general case, we cannot
predict the number of MSS⊆ that need to be extracted for one given δ, without
computing them.

The number of clauses to be dropped in Δ ∪ {δ} by the transformational
approach in order to yield Δ′ ranged from 1 to 9, with an average of 3.65.

The full results for each instance are available in table form at http://www.
cril.fr/anti-subsumptive. These experimental results thus illustrate the actual
viability of the transformational approach, which should be preferred over the
direct one.

8 Conclusion and Perspectives

Although it is a very natural and ubiquitous reasoning paradigm, the anti-
subsumptive enforcement of knowledge has received little attention in the A.I.
research and automated reasoning areas. In this study, we have proposed a
method to compute one solution in the Boolean framework that is optimal in
terms of the minimization of the number of clauses to be discarded. Interestingly,
it proves more effective than a direct approach that requires inclusion-maximal
satisfiable subsets to be extracted. Let us conclude this paper by introducing sev-
eral promising directions according to which it is possible to push the envelope
and extend the scope of the transformational approach. Firstly, the approach
remains appropriate when one needs to deliver one cardinality-maximal satis-
fiable subset that obeys a preference pre-ordering between clauses, should this
pre-order translate various credibility, uncertainty or preference levels amongst
the information. Weighted Max-SAT should be used instead of Partial-Max-SAT
and the weights of clauses should reflect the pre-ordering. In the transformation,
the soft clauses become clauses with the lowest possible weight whereas δ and the
unit clauses that encode the negation of the largest sub-clauses δj of δ receive the
highest ranking. Secondly, the transformational approach could easily accommo-
date the anti-subsumptive enforcement of a CNF formula. Indeed, this amounts
to making sure that the formula can be deduced whereas no strict non-empty
sub-clause of any clause in the formula can be deduced. Finally, the extraction of
one enforcement Δ′ to is the first step towards computing all such enforcements.
Hence, Partial-Max-SAT could be iterated and already extracted enforcements
could be marked to avoid duplicate extractions. Techniques described in [16,17]
can prove useful to that end. Obviously enough, the complete enumeration can-
not always be achieved since the number of possible Δ′ is exponential in the
worst case.
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Abstract. Much progress has recently been made on information flow
control, enabling the enforcement of increasingly rich policies for increas-
ingly expressive programming languages. This has resulted in tools for
mainstream programming languages as JavaScript, Java, Caml, and Ada
that enforce versatile security policies. However, a roadblock on the way
to wider adoption of these tools has been their limited permissiveness
(high number of false positives). Flow-, context-, and object-sensitive
techniques have been suggested to improve the precision of static infor-
mation flow control and dynamic monitors have been explored to leverage
the knowledge about the current run for precision.

This paper explores value sensitivity to boost the permissiveness of
information flow control. We show that both dynamic and hybrid informa-
tion flow mechanisms benefit from value sensitivity. Further, we introduce
the concept of observable abstract values to generalize and leverage the
power of value sensitivity to richer programming languages. We demon-
strate the usefulness of the approach by comparing it to known disciplines
for dealing with information flow in dynamic and hybrid settings.

1 Introduction

Much progress has recently been made on information flow control, enabling
the enforcement of increasingly rich policies for increasingly expressive program-
ming languages. This has resulted in tools for mainstream programming lan-
guages as FlowFox [16] and JSFlow [20] for JavaScript, Jif [26], Paragon [9]
and JOANA [17] for Java, FlowCaml [30] for Caml, LIO [31] for Haskell, and
SPARK Examiner [5] for Ada that enforce versatile security policies. However, a
roadblock on the way to wider adoption of these tools has been their limited per-
missiveness i.e. secure programs are falsely rejected due to over-approximations.
Flow-, context-, and object-sensitive techniques [17] have been suggested to
improve the precision of static information flow control, and dynamic and hybrid
monitors [19,20,22,27,32] have been explored to leverage the knowledge about
the current run for precision. Dynamic and hybrid techniques are particularly
promising for highly dynamic languages such as JavaScript. With dynamic lan-
guages as longterm goal, we focus on fundamental principles for sound yet per-
missive dynamic information flow control with possible static enhancements.
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In dynamic information flow control, each value is associated with a runtime
security label representing the security classification of the value. These labels
are propagated during computation to track the flow of information through
the program. There are two basic kinds of flows: explicit and implicit [14]. The
former is induced by data flow, e.g., when a value is copied from one location
to another, while the latter is induced by control flow. The following example of
implicit flow leaks the boolean value of h into l with no explicit flow involved:
l = false;if (h) l = true;

Dynamic information flow control typically enforces termination-insensitive
non-interference (TINI) [33]. Under a two-level classification into public and
secret values, TINI demands that values labeled public are independent of val-
ues labeled secret in terminating runs of a program. Note that this demand
includes the label itself, which has the effect of constraining how security labels
are allowed to change during computation. This is a fundamental restriction:
freely allowing labels to change allows circumventing the enforcement [27].

A common approach to securing label change is the no secret upgrade (NSU)
restriction that forbids labels from changing under secret control, i.e., when the
control flow is depending on secrets [2]. In the above example, NSU would stop
the execution when h is true. This enforces TINI because in all terminating
runs the l is untouched and hence independent of h.

Unfortunately, his limitation of pure dynamic information flow control often
turns out to be too restrictive in practice [20], and various ways of lifting the
restriction have been proposed [3,8]. They aim to enhance the dynamic analy-
sis with information that allows the label of write target to be changed before
entering secret control, thus decoupling the label change from secret influence.
For instance, a hybrid approach [19,22,27,32] is to apply a static analysis on the
bodies of elevated contexts, e.g., secret conditionals, to find all potential write
targets and upgrade them before the body is executed.

This paper investigates an alternative approach that improves both pure
and hybrid dynamic information flow control as well as other approaches rely-
ing on upgrading labels before elevated contexts. The approach increases the
precision of the labeling, hence reducing the number of elevated contexts. In a
pure dynamic analysis this has the effect of reducing the number of points in
the program where execution is stopped with a security error, while in a hybrid
approach this reduces the number of places the static analysis invoked further
improving the precision by not unnecessarily upgrading write targets.

Resting on a simple core, the approach is surprisingly powerful. We call
the mechanism value sensitive, since it considers the previous target value of a
monitored side-effect and, if that value remains unchanged by the update, the
security label is left untouched. Consider the program in Listing 1.1. It is safe

Listing 1.1.

l = false;

if (h) {l = false;}

to allow execution to continue even when h
is true by effectively ignoring the update of l
in the body of the conditional. This still satis-
fies TINI because all runs of the program leaves
l untouched and independent of h.
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t = 2L;

t = 1H;

l = typeof(t);

The generalization of the idea boosts permis-
siveness when applied to other notions of values,
e.g. the type of a variable, as exemplified on the
right. In a dynamically typed language the value
of t changes from a public to a secret value, but the (dynamic) type of t remains
unchanged. By value of t changes from a public to a secret value, but the
(dynamic) type of t remains unchanged. By tracking the type of t indepen-
dently of its value (for example as 〈valueσ, typeσ′〉), it is possible to leverage
value sensitivity and allow the security label of the type to remain public. Thus,
l is tagged L, which is safe and more precise than under traditional monitoring.

Similarly, if we consider a language with records, the following snippet illus-
trates that the field existence of a property can be observable independently.

o = { p: 2L };

o[‘p’] = 1H;

l =‘p’ in o;

In a language with observable existence (in this case
through the primitive in) a monitor might gain preci-
sion by labeling this feature independently of the value.
The label does not need to be updated when the prop-
erty assignment is run, since the existence of the property
remains the same.

The type and the existence are two examples of properties of runtime values
that can be independently observed and change less often than the values. We
refer to such properties as Observable Abstract Values (OAV). Value sensitivity
can be applied to any OAVs. The synergy between these two concepts has the
power to improve existing purely dynamic and hybrid information flow moni-
tors, as well as improving existing techniques to handle advanced data types as
dynamic objects. The main contributions of this paper are

– the introduction of the concept of value sensitivity in the setting of observable
abstract values, realized by systematic use of lifted maps,

– showing how the notion of value sensitivity naturally entails the notion of
existence and structure labels, frequently used in the analysis of dynamic
objects in addition to improving the precision of previous techniques while
significantly simplifying the semantics and correctness proofs.

– the application of value sensitivity to develop a novel approach to hybrid
information flow control, where not only the underlying dynamic analysis but
also the static counterpart is improved by value sensitivity.

We believe that systematic application of value sensitivity on identified
observable abstract values can serve as a method when designing dynamic and
hybrid information flow control mechanism for new languages and language con-
structs. The full version [1] of the paper contains the full details and proofs.

2 The Core Language L
We illustrate the power of the approach on a number of specialized languages
formulated as extensions to a small while language L, defined as follows.

e:: = l
∣
∣ e ⊕ e

∣
∣ x

∣
∣ x = e s:: = if(e){s}{s} ∣

∣ while(e){s} ∣
∣ s;s

∣
∣ skip

∣
∣ e
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The expressions consist of literal values l, binary operators abstractly repre-
sented by ⊕, variables and variable assignments. The statements are built up by
conditional branches, while loops, sequencing and skip, with expressions lifted
into the category of statements.

S : string → LabeledValue v:: = bool
∣
∣ integer

∣
∣ string

∣
∣ undef

v̇ ∈ LabeledValue:: = vσ C:: = 〈S, v̇〉 ∣
∣ S pc, σ, ω ∈ Label

The semantics of the core language is a standard dynamic monitor. The
primitive values are booleans, integers, strings and the distinguished undef value
returned when reading a variable that has not been initialized. The values are
labeled with security labels drawn from a lattice of security labels, Label. Let
⊥ ∈ Label denote the least element. Unless indicated otherwise, in the examples,
a two-point lattice L � H is used, representing low for public information and
high for secret. The label operator 	 notates the least-upper-bound in the lattice.

Assign
〈S1, e〉 →pc 〈S2, v̇〉 S2[x

undef⊥←−−−−v̇]↓pc S3

〈S1, x = e〉 →pc 〈S3, v̇〉
If

〈S1, e〉 →pc 〈S2, v
σ〉 〈S2, sv〉 →pc�σ S3

〈S1, if(e){strue}{sfalse}〉 →pc S3

Var
Sundef⊥(x) = v̇

〈S, x〉 →pc 〈S, v̇〉

Fig. 1. Partial L semantics

The semantics is a big-step semantics of the form 〈S, s〉 →pc C read as: the
statement s executing under the label of the program counter pc and initial state
S results in the configuration C. The states are partial maps from variable names
to labeled values and the configurations are either states or pairs of states and
values.

The main elements of the semantic are described in Fig. 1, with the remain-
ing rules in the [1] for space reasons. The selected rules illustrate the interplay
between conditionals, the pc and assignment. The If rule elevates the pc to the
label of the guard and evaluates the branch taken under the elevated pc. The Var
rule and the Assign rule, for variable look up and side effects, use operations
on the lifted partial map, Sundef⊥ , to read and write to variables respectively. In
the latter case, this is where the pc constrains the side effects.

Lifted partial maps provide a generic way to safely interact with partial maps
with labeled codomains. For example, as shown in Fig. 1, a lifted partial map is
used to interact with the variable environment. In general, lifted partial maps
are very versatile and in Sect. 3 will be used to model a variety of aspects.

A lifted partial map is a partial map with a default value. For a partial map
M : X → Y , the map MΔ : X → Y ∪ Δ is the lifted map with default value

Δ, where MΔ(x) =

{
M(x) x ∈ dom(M)
Δ otherwise

This defines the reading operation.
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For writing, M[x Δ←−v̇] ↓pc M′ denotes that x is safely updated with the value
v̇ in the partial map M, resulting in the new partial map M′. Formally, the
MUpdate rule governs this side-effect as follows:

MUpdate
MΔ(x) = wω pc � ω

M[x Δ←−v̇]↓pc M[x → v̇pc]

To update the element x of a
lifted partial map with a labeled
value v̇, the current value of x needs
to be fetched. To block implicit leaks, the label of this value, ω, has to be above
the level of the context, pc. In terms of the variable environment above, if a
variable holds a low value, it cannot be updated in a high context. If the update
is allowed, the label of the new value is lifted to the pc (v̇pc) before being stored
in x. This implements the standard NSU restriction.

However, there is a situation where this restriction can be relaxed: when the
variable to update already holds the value to write, i.e., when the side-effect is
not observable. In this case, the update can be safely ignored rather than causing
a security error, even if the target of the side-effect is not above the level of the
context.

MUpdate-VS

MΔ(x) = wω

pc �� ω w = v

M[x Δ←−v̇]↓pc M

The MUpdate-VS rule extends
the permissiveness of the monitor in
cases where pc ��: ω, like in Listing 1.1.
Intuitively, the assignment statement
does not break the NSU invariant and it is safe to allow it. We call an enforcement
that takes the previous value of the write target into account value-sensitive.

Note that, in the semantics, security errors are not explicitly modeled - rather
they are manifested as the failure of the semantics to progress. In a semantics
with only the MUpdate rule, any update that does not satisfy the demands
will cause execution to stop. The addition of MUpdate-VS however allows the
special case, where the value does not change, to progress.

3 Observable Abstract Values

The notion of value sensitivity naturally scales from values to other properties of
the semantics. Any property that can act as mutable state, i.e., that can be read
and written, is a potential candidate. In the case where the property changes
less frequently than the value, such a modeling may increase the precision. In
particular, assuming that the property is modeled with a security label of its
own, the NSU label check can be omitted when an idempotent operation, with
respect to the property, is performed. We refer to such properties as Observable
Abstract Values (OAV). Consider the following examples of OAVs:

– Dynamic Types. It is common that the value held by a variable is secret,
while its type is not. In addition, values of variables change more frequently
than types which means that most updates of variables do not change the
type.

– Property Existence. The existence of properties in records or objects can
be observed independently of their value. Changing a value in a property does
not affect its existence.
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– List or Array Length. Related to property existence, the length of a list
or array is independent of the values. Mutating the list or the array without
adding or deleting values does not affect the length.

– Graph/Tree Structure. More generally, not only the number of nodes in a
data structure, but any observable structural characteristic can be modeled
as OAVs, such as tree height.

– Security Labels. Sometimes [9,10] the labels on the values are observable.
Since they change less often than the value themselves, they can be modeled
as OAVs.

Different OAVs are not necessarily independent. In the same way an OAV is
an abstraction of a value, it is possible to find OAVs that are natural abstractions
of other OAVs. Such partial order is of interest both from an implementation
and proof perspective. For space reasons we refer the reader to the full version [1]
of the paper for more information.

The rest of this section explains the first two examples above as extensions of
the core language L. The extension with dynamic types Lt is detailed in Sect. 3.1,
and the extension with records modeling existence and structure Lr is detailed
in Sect. 3.2. The two latter extensions illustrate that the approach subsumes and
improves previous handling of records [18].

3.1 Dynamic Types Lt

Listing 1.2.

t = 〈1H , intL〉;
if (h) {t = 2;} else {t = 3;}

l = typeof(t);

Independent labeling of OAVs allows for
increased precision when combined with
value sensitivity. To illustrate this point,
consider the example in Listing 1.2 where
the types are independently observable
fromthevalues themselves, via the primitive
typeof(). Assuming that the value of t is initially secret while the type is not,
the example in the listing illustrates how the value of t is made dependent on h
while the type remains independent.

Listing 1.3.

if (typeof document.cookie

!==‘‘undefined’’) { ... }

The precision gain is significant for, e.g.,
JavaScript. A common defensive program-
ming pattern for JavaScript library code is
to probe for the presence of needed func-
tionality in order to fail gracefully in case
it is absent. Consider, for instance, a library that interacts with document.
cookie. Even if all browsers support this particular property, it is dangerous for
a library to assume that it is present, since the library might be loaded in, e.g.,
a sandbox that removes parts of the API. For this reason it is very common for
libraries to employ the defensive pattern shown in Listing 1.3, where the dots
represent the entire library code. While the value of document.cookie is secret
its presence is not. If no distinction between the type of a value and its actual
value is made this would cause the entire library to execute under secret control.
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To illustrate this scenario, we extend L with dynamic types and a typeof()
operation that given an expression returns a string representing the type of the
expression:

e:: = (· · · as in L)
∣
∣ typeof(e) s:: = (· · · as in L)

The semantics is changed to accommodate dynamically typed values. In partic-
ular typed values are pairs of a security labeled value, and a security labeled
dynamic type. Additionally, the state S is extended to a tuple holding the value
context V and the type context T .

V : string → LabeledValue T : string → LabeledType

TypedValue:: = 〈v̇, ṫ〉 t ∈ Type:: = bool
∣
∣ int

∣
∣ str

∣
∣ undef S ∈ State:: = 〈V, T 〉

A consequence of the extension with dynamic types is that the semantic
rules must be changed to operate on typed values. Figure 2 contains the most
interesting rules - the remaining rules can be found in the full version of this
paper [1].

Assignt

〈S1, e〉 →pc 〈〈V2, T2〉, 〈v̇, ṫ〉〉
V2[x

undef⊥←−−−−v̇]↓pc V3 T2[x
undef⊥←−−−−ṫ]↓pc T3

〈S1, x = e〉 →pc 〈〈V3, T3〉, 〈v̇, ṫ〉〉
Typeof

〈S1, e〉 →pc 〈S2, 〈v̇, ṫ〉〉
〈S1, typeof(e)〉 →pc 〈S2, 〈string(ṫ), str⊥〉〉

Vart

Vundef⊥(x) = v̇ Tundef⊥(x) = ṫ

〈〈V, T 〉, x〉 →pc 〈〈V, T 〉, 〈v̇, ṫ〉〉

Fig. 2. Partial Lt semantics

The typeof() operator (Typeof) returns a string representation of the type
of the given expression. The string inherits the security label of the type of the
expression, whereas the type of the result is always str and hence labeled ⊥.

Further, the rules for variable assignment (Assignt) and variable look-up
(Vart) require special attention. Notice that, for both maps V and T , the default
lookup value is undefined: undef⊥ and undef⊥ respectively. These maps are
independently updated through Assignt, which calls MUpdate and MUpdate-
VS accordingly. Variable look up is the reverse process: the type and value are
fetched independently from their respective maps.

If we return to the example in Listing 1.2, the value of t is updated but not
its type. Therefore, under a value-sensitive discipline, the execution is safe and
l will be assigned to 〈“int”L, strL〉 at the end of the execution.

Distinguishing between the type of a value and its actual value in combination
with value sensitivity is an important increase in precision for practical analyses.
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It allows the execution of the example of wild JavaScript from Listing 1.3, since
typeof document.cookie returns 〈“str”⊥, str⊥〉, which makes the result of the
guarding expression public.

3.2 Records and Observable Property Existence Lr

Previous work on information flow control for complex languages has used the
idea of tracking the existence of elements in structures like objects with an
independent existence label [18,24,28]. In this section, we show that the notion
of OAVs and the use of lifted partial maps are able to naturally express previous
models while significantly simplifying the rules. Further, systematic application
of those concepts allows us to improve previous models — in particular for
property deletion.

Listing 1.4.

o = {x:1};

if (h) {o[‘x’] = 0;}

l = ‘x’ in o;

Treating the property existence sepa-
rately increases the permissiveness of the
monitor. Consider, for instance, the exam-
ple in Listing 1.4. After execution, the value
of property x depends on h but not its exis-
tence. Since the existence changes less often
and is observable via the operator in, it can be seen as an OAV (of the record).

In order to reason about existence as an OAV, we create Lr by extending
L with record literals, property projection, property update and an in operator
that makes it possible to check if a property is present in a record.

e:: = (· · · as in L)
∣
∣ {e : e} ∣

∣ x[e]
∣
∣ x[e] = e

∣
∣ e inx s:: = (· · · L)

The records are implemented as tuples of maps 〈V, E〉ς decorated with a
structure security label ς.

V : string → LabeledValue E : string → LabeledBool

S : string → LabeledValue v:: = r
∣
∣ (· · · as in L) r:: = 〈V, E〉ς

The first map, V, stores the labeled values of the properties of the record, and
the second map E stores the presence (existence) of the properties as a labeled
boolean. As in previous work, the interpretation is that present properties carry
their own existence label while inexistent properties are modeled by the structure
label. As we will see below, the structure label is tightly connected to (the label
of) the default value of V and E . For clarity of exposition we let the records be
values rather than entities on a heap.

The semantics of property projection, assignment, and existence query are
detailed in Fig. 3. Property update (RecAssign) allows for the update of a
property in a record stored in a variable and the projection rule (Proj) reads
a property by querying only the map V. There are a number of interesting
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RecAssign

〈S1, e1〉 →pc 〈S2, f
σf 〉 〈S2, e2〉 →pc 〈S3, v̇〉

S3(x) = 〈V1, E1〉σx
ς σ = pc � σf

V1[f
undefς←−−−−v̇]↓σ V2 E1[f

falseς←−−−−true⊥]↓σ E2

〈S1, x[e1] = e2〉 →pc 〈S3[x → 〈V2, E2〉σx
ς ], v̇〉

Proj

〈S1, e〉 →pc 〈S2, f
σf 〉 S2(x) = 〈V, E〉σx

ς

Vundefς (f) = v̇ σ = σx � σf

〈S1, x[e]〉 →pc 〈S2, v̇
σ〉

In

〈S1, e〉 →pc 〈S2, f
σf 〉 S2(x) = 〈V, E〉σx

ς

Efalseς (f) = v̇ σ = σx � σf

〈S1, e inx〉 →pc 〈S2, v̇
σ〉

Fig. 3. Lr semantics extension over L

properties of these two rules. For RecAssign note the uniform treatment of
values and existence and how, in contrast to previous work, this simplifies the
semantics to only one rule. Further, note how the structure label is used as the
label of the default value in both rules and how this interacts with the rules for
lifted partial maps.

Listing 1.5.

0

1 o={ eL: 0L,

2 fL: 1M, gH: 2H}H;

3 if ( mM ) {

4 o[‘e’] = 0;

5 o[‘h’] = 0;

6 o[‘f’] = 0;

7 o[‘g’] = 0;

8 }

Consider Listing 1.5 in a L � M � H security
lattice to illustrate the logic behind this moni-
tor. In this example, the subindex label in the
key of the record denotes the existence label for
that property. When the true branch is taken, the
assignment o[‘e’]=0 (on line 4) is ignored, since
MUpdate-VS is applied. Although the context
is higher than the label of the value and its exis-
tence, no label change will occur.

The second assignment (o[‘h’]=0, on line 5) extends the record. This side
effect demands that the structure label of the record is not below M . The demand
stems from the MUpdate rule via the label of the default value and initiated by
the update of the existence map from false to true. Since the value changes only
MUpdate is applicable, which places the demand that the label of the previous
value (the structure label) is above the label of the control. The new value is
tainted with the label of the control, which in this case leads to an existence
label of M , resulting in { ..., hM:0M}H .

To contrast, consider the next property update (o[‘f’]=0, on line 6), which
writes to a previously existing property under M control. In this case no demands
will be placed on the structure label, since neither of the maps will trigger use
of the default value. The previous existence label is below M , but this does not
trigger NSU since the value of the existence does not change, which makes the
MUpdate-VS rule is applicable. This also means that the existence label is
untouched and the result after execution is { ..., fL: 0M, ...}H .
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Finally (o[‘g’]=0, on line 7), the previous existence and value labels are
both above M , and the MUpdate rule is applicable. This will have the effect of
lowering both the existence and value label to then current context in accordance
with flow-sensitivity. The result after execution is { ..., gM: 0M, ... }H

It is worth noting that the above example can be easily recast to illustrate
update using a secret property name, since the pc and the security label of the
property name form the security context, σ, of the writes in RecAssign.

With respect to reading, the existence label is not taken into account unless
reading a non-existent property, in which case the structure of the record is used
via the default value. Analogously, the rule In checks for property existence in
a record by performing the same action on the E map. This illustrates that the
lifted maps provide a natural model for existence tracking. The existence map
provides all the presence/absence information of a value in a particular property.
This generalization, in combination with value sensitivity, both simplifies previ-
ous work and increases the precision of the tracking. In particular, as shown in
the full version [1] of the paper, this is true when property deletion is considered.

4 Hybrid Monitors Lh

In the quest of more permissive dynamic information flow monitors, hybrid mon-
itors have been developed. Some perform static pre-analyzes, i.e., before the exe-
cution [13,21,25], or code inlining [6,12,23,29]. In other cases, the static analysis
is triggered at runtime by the monitor [19,22,27,32]. A value sensitivity crite-
rion can be applied in the static analysis of this second group. This means that
fewer potential write targets need to be considered by the static part of these
monitors.

Consider, for instance Listing 1.1, where a normal (i.e., value insensitive)
hybrid monitor would elevate the label of l to the label of h before evaluating
the branch. A value-sensitive hybrid analysis, on the other hand, is able to avoid
the elevation, since the value of l can be seen not to change in the assignment.

To illustrate how a hybrid value-sensitive monitor might work consider the
following hybrid semantics for the core language. Syntactically, Lh is identical to
L but, similar to [19] and [22], a static analysis is performed when a branching
is reached (Fig. 4).

Consider the rule for conditionals (Ifh) that applies a static analysis on the
body of the conditional in order to update any variables that are potential write
targets. In particular, assignments will be statically executed (S-Assign), which
elevates the target to the current context using static versions of MUpdate and
MUpdate-VS. This means that the NSU check of MUpdate no longer needs
to be performed — the static part of the analysis guarantees that all variables
are updated before execution. The static update and new dynamic update rules
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S-If
〈S1, e〉 ⇒pc 〈S2, v̇〉 〈S2, strue〉 ⇒pc St 〈S2, sfalse〉 ⇒pc Sf

〈S1, if(e){strue}{sfalse}〉 ⇒pc St � Sf

S-Assign
〈S1, e〉 ⇒pc 〈S2, v̇〉 S2[x

undef⊥←−−−−v̇]⇓pc S3

〈S1, x = e〉 ⇒pc 〈S3, v̇〉

Ifh

〈S1, e〉 →pc 〈S2, v
σ〉 〈S2, strue〉 ⇒pc�σ St

〈S2, sfalse〉 ⇒pc�σ Sf 〈St � Sf , sv〉 →pc�σ S3

〈S1, if(e){strue}{sfalse}〉 →pc S3

Fig. 4. Partial hybrid semantics

are formulated as follows.

S-MUpdate
MΔ(x) = ẇ w 
= v

M[x Δ←−v̇]⇓σ M[x �→ ẇσ]
MUpdateh

MΔ(x) = ẇ w 
= v

M[x Δ←−v̇]↓pc M[x �→ v̇pc]

S-MUpdateVS
MΔ(x) = ẇ w = v

M[x Δ←−v̇]⇓σ M
MUpdate-VSh

MΔ(x) = ẇ w = v

M[x Δ←−v̇]↓pc M

The value sensitivity of the static rules is manifested in the S-MUpdateVS
rule. In case the new value is equal to the value of the write target, no label
elevation is performed, which increases the permissiveness of the hybrid monitor
in the way illustrated in Listing 1.1. Note the similarity between the static and
the dynamic rules. In case it can be statically determined that the value does
not change we know that MUpdate-VSh will be run at execution time and
vice versa for MUpdateh. This allows for the increase in permissiveness while
still guaranteeing soundness. Naturally, this development scales to general OAVs
under hybrid monitors.

5 Permissiveness

Value-sensitive monitors are strictly more permissive than their value-insensitive
counterparts with respect to termination insensitive non-interference (TINI).
This means that value-sensitive discipline accepts more safe programs without
allowing insecure programs to be executed.

For space reasons, the soundness proof can be found in the full version of
this paper [1].

In this section we compare the value sensitive languages L, Lrd and Lh to the
value-insensitive counterparts. In particular L is comparable to the Austin and
Flanagan NSU discipline [2], Lrd is compared to the record subset of JSFlow [20]
and Lh is compared to the Le Guernic et al.’s hybrid monitor [22].

5.1 Comparison with Austin and Flanagan’s NSU [2]

The comparison with non-sensitive upgrade is relatively straight forward, since
L is essentially the NSU monitor of [2] with one additional value-sensitive rule,
MUpdate-VS.
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Let ��� denote reductions in the insensitive monitor obtained by removing
MUpdate-VS from L. To show permissiveness we will prove that every reduc-
tion ��� can be followed by a reduction →.

Theorem 1 (Value-Sensitive NSU is Strictly more Permissive than
Value-Insensitive NSU).

∀s ∈ L . 〈S1, s〉 ���pc S2 ⇒ 〈S1, s〉 →pc S2∧
∃s ∈ L . 〈S1, s〉 →pc S2 �⇒ 〈S1, s〉 ���pc S2

Proof ⇒: By contradiction, using that ��� is a strict subset of →. For space
reasons the proof can be found in the full version of this paper [1]. �⇒: The
program in Listing 1.1 proves the claim, since it is successfully executed by →
but not by ���.

5.2 Comparison with JSFlow [20]

Hedin et al. [20] present JSFlow, a sound purely-dynamic monitor for JavaScript.
JSFlow tracks property existence and object structure for dynamic objects with
property addition and deletion. The objects are represented as {x

ε−→ pσ}ς , i.e.,
objects are maps from properties, x, to labeled values, pσ, with properties car-
rying existence labels, ε, and objects structure labels, ς.

Listing 1.6.

0 o={}H

1 if (hH) {

2 o[‘x’]=0;

3 }

4 delete o[‘x’];

5 l = ‘x’ in o;

Consider the example in Listing 1.6 up to line 3, where
the property x is added under secret control. This places
the demand that the structure of o is below the pc. In
Lrd, this demand stems from the MUpdate rule via the
label of the default value and is initiated by the update of
the existence map from false to true. For Lrd the resulting
object is 〈{x → 0H}, {x → trueH}〉H , while for JSFlow
the resulting object would be {x H−→ 0H}H .

If we proceed with the execution, the deletion on line 5 is under pub-
lic context, which illustrates the main semantic difference between Lrd and
JSFlow. In the former, deletion under public control will have the effect of low-
ering the value and existence labels to the current context, which results in
〈{x → undefL}, {x → falseL}〉H . In the latter, property absence is not explic-
itly tracked and deleting a property simply removes it from the map resulting in
{}H . Therefore, at line 6, Lrd is able to use that the absence of x is independent
of secrets, while JSFlow will taint l with H based on the structure level. In this
way, Lrd both simplifies the rules of previous work and increases the precision
of the tracking.

5.3 Comparison with Le Guernic et al.’s Hybrid Monitor [22]

The hybrid monitor presented by Le Guernic et al. [22] is similar to Lh. In both
cases, a static analysis is triggered at the branching point to counter the inherent
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limitation of purely-dynamic monitors: that they only analyze one trace of the
execution.

In the case of Le Guernic et al., the static component of their monitor col-
lects the left-hand side of the assignments in the both sides of branches. Once
these variables are gathered their labels are upgraded to the label of the branch-
ing guard. Intuitively, the targets of assignments in branch bodies depend on
the guard, but as, e.g., Listing 1.1 shows this method is an over-approximation.
Such over-approximations lower the precision of the enforcement, and might, in
particular, when the monitor tracks OAVs rather than regular values, jeopardize
the practicability of the enforcement.

The hybrid monitor Lh subsumes the monitor by Le Guernic et al. (see
[1]). All variable side-effects taken into account by Le Guernic et al. are also
considered by the static part of Lh via the rule for static assignment, S-Assign.
More precisely, S-Assign updates the labels of the variables by applying either
S-MUpdate or S-MUpdateVS depending on the previous value. The case when
all variables are upgraded by S-MUpdate to the level of the guard (σ in the
rules of Fig. 4) corresponds to monitor by Le Guernic et al.

6 Related Work

This paper takes a step forward to improve the permissiveness of dynamic and
hybrid information flow control. We discuss related work, including work that
can be recast or extended in terms of value sensitivity and OAVs.

Permissiveness. Russo and Sabelfeld [27] show that flow-sensitive dynamic
information flow control cannot be more permissive than static analyses. This
limitation carries over to value-sensitive dynamic information flow analyses.

Austin and Flanagan extend the permissiveness of the NSU enforcement with
permissive upgrades [3]. In this approach, the variables assigned under high con-
text are tagged as partially-leaked and cannot be used for future branching.
Bichhawat et al. [7] generalize this approach to a multi-level lattice. Value sensi-
tivity can be applied to permissive upgrades (including the generalization) with
benefits for the precision.

Hybrid approaches are a common way to boost the permissiveness of enforce-
ments. There are several approaches to hybrid enforcement: inlining monitors
[6,12,23,29], selective tracking [13,25], and the application of a static analysis at
branch points [19,22,27,32]. Value sensitivity is particularly suitable for the latter
to reduce the number of upgrades and increase precision (cf. Sect. 4).

In Relation to OAVs. Some enforcements track other more abstract properties
in addition to standard values. These properties are typically equipped with a
dedicated security label, which makes them fit into our notion of OAV.

Buiras et al. [10] extend LIO [31] to handle flow-sensitivity. Their labelOf
function allows them to observe the label of values. To protect from leaks through
observable labels, their monitor implements a label on the label, which means that
the label itself can be seen as an OAV.
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Almeida Matos et al. [24] present a purely dynamic information flow monitor
for DOM-like tree structures. By including references and live collections, they
get closer to the real DOM specification but are forced to track structural aspects
of the tree, like the position of the nodes. Since the attacker can observe changes
in the DOM through live collections and, in order to avoid over-approximations,
they label several aspects of the node: the node itself, the value stored in it, the
position in the forest, and its structure. These aspects are OAVs, since some of
the operations only affect a subset of their labels. A value-sensitive version of
this monitor might not be trivial given its complexity, but the effort would result
in increased precision.

In Relation to Value-Sensitivity. The hybrid JavaScript monitor designed
by Just et al. [21] only alters the structure of objects and arrays when properties
or elements are inserted or removed. Similarly, Hedin et al. [19,20] track the pres-
ence and absence of properties and elements in objects and arrays changing the
associated labels on insertions or deletions. Both approaches can be understood
in terms of value-sensitivity. Indeed, in this paper we show how to improve the
latter by systematic modeling using OAVs in combination with value-sensitivity.

Secure multi-execution [11,15] is naturally value-sensitive. It runs the same
program multiple times restricting the input based on its confidentiality level. In
this way, the secret input is defaulted in the low execution, thus entirely decou-
pling the low execution from the secret input. Austin and Flanagan [4] present
faceted values: values that, depending of the level of the observer, can return
differently. Faceted values provide an efficient way of simulating the multiple
executions of secure multi-execution in a single execution.

7 Conclusion

We have investigated the concept of value sensitivity and introduced the key
concept of observable abstract values, which together enable increased permis-
siveness for information flow control. The identification of observable abstract
values opens up opportunities for value-sensitive analysis, in particular in richer
languages. The reason for this is that the values of abstract properties typi-
cally change less frequently than the values they abstract. In such cases, value-
sensitivity allows the security label corresponding to the abstract property to
remain unchanged.

We have shown that this approach is applicable to both purely dynamic
monitors, where we reduce blocking due to false positives, and to hybrid analysis,
where we reduce over-approximation.

Being general and powerful concepts, value sensitivity and observable
abstract values have potential to serve as a basis for improving state-of-the-art
information flow control systems. Incorporating them into the JSFlow tool [20]
is already in the workings.
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Abstract. We describe a tool that inputs a deterministic ω-automaton
with any acceptance condition, and synthesizes an equivalentω-automaton
with another arbitrary acceptance condition and a given number of states,
if such an automaton exists. This tool, that relies on a SAT-based encoding
of the problem, can be used to provide minimal ω-automata equivalent to
given properties, for different acceptance conditions.

1 Introduction

LTL Synthesis and Probabilistic LTL Model Checking (PMC) are two areas
where it is useful to express linear-time temporal properties as deterministic ω-
automata. Because it is well known that not all Büchi automata can be made
deterministic, these applications use other acceptance conditions such a Rabin
or Streett. The model checker PRISM [12], for instance, contains a reimplemen-
tation of ltl2dstar [8], a tool that converts non-deterministic Büchi automata
(obtained from an LTL formula) into deterministic Rabin or Streett automata,
using Safra’s construction [14].

In the past few years, there have been a blossoming of tools directly trans-
lating LTL formulas into Rabin automata, or generalized variants of Rabin
automata [3,5,9–11]. These tools usually give automata smaller than those
obtained with ltl2dstar via Safra’s construction, and it has been shown that
using the generalized Rabin condition can speed PMC up by orders of
magnitude [5,9].

The need for interaction between tools producing and consuming ω-automata
with various acceptance conditions has led to the introduction of the Hanoi
Omega-Automata (HOA) format [4], where the acceptance condition can be
specified using an arbitrary Boolean expression of sets that must be visited infi-
nitely often or finitely often. The current implementation of PRISM can perform
PMC using deterministic automata having any such arbitrary acceptance con-
dition, and to save memory it is preferable to have automata with as few states
as possible, even if this means having a more complex acceptance condition.

In this paper, we present a tool that inputs a deterministic automaton with
any acceptance condition, and uses a SAT-based technique to synthetize an
equivalent automaton with any given accepance condition and number of states
if such an automaton exists. As a consequence we also have a way to construct
c© Springer-Verlag Berlin Heidelberg 2015
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minimal equivalent deterministic automata for any given acceptance condition.
This SAT-based encoding is costly, so it is not suitable for routine simplification
of automata; however it is a very useful tool to provide lowerbounds for the size
of the deterministic automata that existing LTL translators (or actually, any
automaton transformation tool) could produce, so it should help authors of such
tools to find cases where there is room for improvement.

The SAT-based encoding we use for this synthesis with any acceptance is
an extension of our previous work that was restricted to generalized-Büchi
acceptance [2], and that was itself a generalization of the DBAminimizer of [7]
for Büchi acceptance.

2 Definitions and Encoding

2.1 Deterministic Transition-Based ω-Automaton

For a set S, Sω denotes the set of infinite sequences over S. Given such an infinite
sequence σ ∈ Sω, Inf(σ) denotes the subset of elements that occur infinitely often
in σ. We use B = {⊥,�} to denote the set of Boolean constants, and use [m] as
a shorthand for {1, 2, . . . ,m}.

Definition 1 (DTωA). A (complete) Deterministic Transition-based ω-
Automaton (DTωA) is a tuple A = 〈Q,Σ, ι, δ, (F1, F2, . . . , Fm),F 〉 where

– Q is a set of states, ι ∈ Q is the initial state,
– Σ is an alphabet,
– δ ⊆ Q×Σ ×Q is a transition relation that is deterministic and complete, i.e.,

such that ∀(s, �) ∈ Q × Σ, |{d ∈ Q | (s, �, d) ∈ δ}| = 1. By abuse of notation,
we shall also write δ(s) to denote the set {(�, d) ∈ Σ × Q | (s, �, d) ∈ δ}.

– (F1, F2, . . . , Fm) is a tuple of m acceptance sets of transitions Fi ⊆ δ. For con-
venience, we denote F̃ (t) = {i ∈ [m] | t ∈ Fi} the set of indices of acceptance
sets that contain t.

– F : 2[m] → B is a Boolean function that tells which combination of acceptance
sets should be visited infinitely often along a run for this run to be accepting.

A run of A is an infinite sequence of connected transitions ρ = (q1, �1, q2)(q2,
�2, q3)(q3, �3, q4) . . . ∈ δω such that q1 = ι. This run recognizes the infinite word
�1�2�3 . . . and is accepting iff F (

⋃
t∈Inf(ρ) F̃ (t)) = �. The language of A is the

set L (A) of all infinite words recognized by accepting runs of A.

For brevity, in the rest of this article we simply write automaton instead of
complete and deterministic ω-automaton.

In the HOA format [4], the acceptance function F is represented by a Boolean
expression over primitives of the form Inf(i) or Fin(i) meaning respectively that
the set Fi has to be visited infinitely often or finitely often. For instance Fin(0)∨
Inf(1) is an expression for Streett acceptance with one pair (a run is accepting
if it either visits F0 finitely often, or F1 infinitely often); in our definition of
DTωA, the corresponding F function would be such that F ({1}) = F ({0, 1}) =
F (∅) = �, and F ({0}) = ⊥.
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2.2 Synthesis of Equivalent DTωA

Given an automaton R = 〈QR, Σ, ιR, δR, (F1, F2, . . . , Fm′),F 〉, two integers n
and m, and an acceptance function G : 2[m] → B, we would like to construct (if
it exists) an automaton C = 〈QC , Σ, ιC , δC , (G1, G2, . . . , Gm),G 〉 with |QC | = n
states, and such that L (R) = L (C). We call R the reference automaton, and C,
the candidate automaton.

Since C and R are complete and deterministic, any word of Σω has a unique
run in R and C, and testing L (R) = L (C) can be done by ensuring that
each word is accepted by R iff it is accepted by C. In practice, this is checked
by ensuring that any cycle of the synchronous product C ⊗ R corresponds to
cycles that are either accepting in both C and R, or rejecting in both. To ensure
that property, the SAT-based encoding uses variables to encode the history of
acceptance sets visited between two states of the product C ⊗ R.

SAT Variables. We encode C with two sets of variables:

– The “triplet” variables {〈q1, �, q2〉 | (q1, q2) ∈ Q2
C , � ∈ Σ} encode the existence

of transitions (q1, �, q2) ∈ δC in the candidate automaton.
– The “quadruplet” variables {〈q1, �, i, q2〉 | (q1, q2) ∈ Q2

C , � ∈ Σ, i ∈ [m]}
encode the membership of these transitions to each acceptance set Gi of C.

For the product C ⊗ R, we encode the reachable states, and parts of paths that
might eventually be completed to become cycles. We use SCCR ⊆ 2QR to denote
the set of non-trivial strongly connected components of R.

– A variable in {〈q, q′, q, q′, ∅, ∅〉 | q ∈ QC , q′ ∈ QR} encodes the existence of a
reachable state (q, q′) in C ⊗R. The reason we use a sextuplet to encode such
a pair is that each (q, q′) will serve as a starting point for possible paths.

– A variable in {〈q1, q′
1, q2, q

′
2, I, I ′〉 | (q1, q2) ∈ Q2

C , S ∈ SCCR, (q′
1, q

′
2) ∈

S2, I ⊆ [m], I ′ ⊆ [m′]} denotes that there is a path between (q1, q′
1) and

(q2, q′
2) in the product, such that its projection on C visits the acceptance

sets Gi for all i ∈ I, and its projection on R visits the acceptance sets Fi

for all i ∈ I ′. This set of variables is used to implement the cycle equivalence
check, so the only q′

1 and q′
2 that need to be considered should belong to the

same non-trivial SCC of R.

SAT Contraints. With the above variables, C can be obtained as a solution
of the following SAT problem. First, C should be complete (i.e., δC is total):

∧

q1∈QC , �∈Σ

∨

q2∈QC

〈q1, �, q2〉 (1)

Then, the initial state of the product must exist. Furthermore, if (q1, q′
1) is a

state of the product, (q′
1, �, q

′
2) ∈ δR is a transition in the reference automaton,

and (q1, �, q2) ∈ δC is a transition in the candidate automaton, then (q2, q′
2) is a

state of the product too:

∧ 〈ιC , ιR, ιC , ιR, ∅, ∅〉 ∧
∧

(q1,q2)∈Q2
C , q′

1∈QR,

(�,q′
2)∈δR(q′

1)

〈q1, q′
1, q1, q

′
1, ∅, ∅〉 ∧ 〈q1, �, q2〉→〈q2, q′

2, q2, q
′
2, ∅, ∅〉 (2)
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Any transition of the product augments an existing path, updating the sets I
and I ′ of indices of acceptance sets visited in each automaton. Unfortunately,
we have to consider all possible subsets J ⊆ [m] of acceptances sets to which the
candidate transition (q2, �, q3) could belong, and emit a different rule for each J .

∧
∧

(q1,q2,q3)∈Q3
C ,

I⊆[m],J⊆[m],

S∈SCCR,(q′
1,q′

2)∈S2,

I′⊆[m′],(�,q′
3)∈δR(q′

2)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

〈q1, q′
1, q2, q

′
2, I, I ′〉

∧〈q2, �, q3〉
∧

∧

i∈J

〈q2, �, i, q3〉

∧
∧

i�∈J

¬〈q2, �, i, q3〉

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

→ 〈q1, q′
1, q3, q

′
3, I ∪ J,

I ′ ∪ F̃ ((q′
2, �, q

′
3))〉

(3)

If a path of the product is followed by a transition (q′
2, �, q

′
3) ∈ δR and a transition

(q2, �, q3) ∈ δC that both close a cycle (q3 = q1 ∧ q′
3 = q′

1), then the cycle formed
in the candidate automaton by (q2, �, q1) should have the same acceptance (i.e.,
rejecting or accepting) as the cycle of the reference automaton. In other words,
the transition (q2, �, q1) belongs to a subset J ⊆ [m] of acceptance sets only if
this J satisfies G (I ∪ J) = F (I ′ ∪ F̃ ((q′

2, �, q
′
1))).

∧
∧

(q1,q2)∈Q2
C , I⊆[m],

S∈SCCR, (q′
1,q′

2)∈S2, I′⊆[m′],
(�,q′

3)∈δR(q′
2), q′

3=q′
1

〈q1, q′
1, q2, q

′
2, I, I ′〉∧〈q2, �, q1〉 →

∨

J⊆[m]

G (I∪J)=F(I′∪F̃ ((q′
2,�,q′

1)))

(∧

i∈J

〈q2, �, i, q1〉∧
∧

i�∈J

¬〈q2, �, i, q1〉
)

(4)
Optimizations. A first optimization is to use the same symmetry breaking
clauses as suggested by [7], to restrict the search space of the SAT solver.
Nonetheless, the above encoding requires O(|QR|2 × |QC |2 × 2m+m′

) variables
and O(|QR|2 × |QC |3 × 22m+m′ × |Σ|) clauses. It is therefore very sensitive to
the number of acceptance sets used in the reference and candidate automata. To
mitigate this, we implement some additional optimizations:

1. For SCCs that are known to be weak (i.e., all cycles are accepting, or all
cycles are rejecting) it is not necessary to remember the history I ′ of the
acceptance sets seen by paths. The sets of variables {〈q1, q′

1, q2, q
′
2, I, I ′〉, . . .}

when q′
1 and q′

2 belong to a weak SCC can therefore be restricted to only
cases where I ′ = ∅.

2. In case an SCC S is not weak, it is possible that it does not intersect all the
sets F1, F2, . . . , Fm. Then the variables {〈q1, q′

1, q2, q
′
2, I, I ′〉, . . .} can have

their history I ′ restricted to the subset of [m′] that actually intersects S.
3. Simplifying histories. Consider a Rabin acceptance condition like Fin(0) ∧

Inf(1), where the set F0 has to be visited finitely often and F1 has to be
visited infinitely often. The histories I ⊆ [2] or I ′ ⊆ [2] involved in the
variables {〈q1, q′

1, q2, q
′
2, I, I ′〉, . . .} could take any value in {}, {0}, {1}, or

{0, 1} depending on which sets have been seen along this path. However
these variables are only used to detect cycles, and a cycle that contains 0 in
its history cannot be prolonged into an accepting cycle: the history {0, 1} can
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therefore be simplified into {0}, which is enough to ensure that the cycle will
be rejecting. Doing this reduces the number of variables and clauses needed.

4. Equation (4) is not directly expressed as a disjunction. To encode it more
efficiently, we use BDDs to express the right-hand side of the implication as
an irredundant product of sums: depending on whether F (I ′ ∪ F̃ ((q′

2, �, q
′
1))

is accepting, we encode the formula G or its negation as a BDD, assign to
true the BDD variables corresponding to the sets listed in I and obtain the
resulting product of sums by dualizing the Minato-Morreale algorithm [13].

State-BasedAcceptance.This encoding canbe tweaked to synthetize automata
with state-based acceptance by reducing the quadruplets 〈q1, �, i, q2〉 to pairs 〈q1, i〉
in all the above rules.

3 Implementation and Experiments

3.1 Tool Support

The above encoding is implemented in Spot 1.99.41, and can be used via the
command-line tool autfilt. Tools that produce deterministic ω-automata, such
as ltl2dstar [8], ltl3dra [3], and Rabinizer3 [9], have all been recently updated
to support the Hanoi Omega-Automata format [4], that autfilt can input.

The following example translates Gp0 ∨ FGp1 using ltl2dstar. The formula
is first passed to ltlfilt [6] for conversion into ltl2dstar’s input syntax.
ltl2dstar outputs its result in dra.hoa: it is a 5-state Rabin automaton with
two pairs of acceptance sets.2

% ltlfilt -f’Gp0 | FGp1’ -l | ltl2dstar --output-format=hoa - dra.hoa

% egrep’States:|acc-name:|Acceptance:’ dra.hoa

States: 5

acc-name: Rabin 2

Acceptance: 4 (Fin(0) & Inf(1)) | (Fin(2) & Inf(3))

Now we can minimize this automaton using our SAT-based approach. We pass
the dra.hoa to autfilt --sat-minimize, with additional options to require a
complete automaton (-C) with state-based acceptance (-S), in the HOA format
(-H). The result has only 3 states.
% autfilt -S -C --sat-minimize -H dra.hoa > dra-min.hoa

% egrep’States:|acc-name:|Acceptance:’ dra-min.hoa

States: 3

acc-name: Rabin 2

Acceptance: 4 (Fin(0) & Inf(1)) | (Fin(2) & Inf(3))

The --sat-minimize option can take additional parameters, for instance to
force a particular acceptance condition on the output (the default is the same
as for the input). As an example, the following command forces the production
of a minimal equivalent automaton with co-Büchi acceptance, which is enough
for this formula (and means only one Rabin pair was really necessary).
1 https://spot.lrde.epita.fr/.
2 In the HOA format [4] the Acceptance: line encodes the F function of Definition 1,

while the acc-name: just supplies a human-readable name when one is known.

https://spot.lrde.epita.fr/
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Table 1. Sizes of Rabin automata produced by ltl2dstar (L2), ltl3dra (L3),
Rabinizer (R3), or our SAT-based minimization procedure configured to produce
deterministic Rabin automata with a single acceptance pair (min), with either
state or transition-based acceptance. The notation “x (y)” denotes an automaton with
x states and y acceptances sets. (In Rabin automata, acceptance sets are used as pairs,
so y is always even). Timeouts after 1 h are denoted with “t.o”. “imp.” (for “impossi-
ble”) indicates that no Rabin automaton with a single pair where found. Finally “n.a.”
indicates that the formula falls out of the supported LTL fragment of ltl3dra.

state-based acceptance tr.-based acc.
L2 L3 R3 min R3 min

¬((FGp0 ∨ GFp1) ∧ (FGp2 ∨ GFp3)) 9 (4) 9 (4) 9 (8) t.o. 4 (4) imp.
¬((GFp1 ∧ GFp0) ∨ (GFp3 ∧ GFp2)) 270 (10) 10 (8) 11 (16) imp. 10 (8) imp.
¬F(G(p2∨(p1∧p2))∨(Xp1 U(p0∧Xp1))) 9 (2) n.a. 36 (12) 5 (2) 34 (6) 3 (2)
¬FG((p0∧GFp1∧XXp1)UG(XXp2∨XX(p0∧p1))) 4 (2) n.a. 16 (4) 2 (2) 16 (2) 1 (2)
¬(Fp0 ∧ (p1 ∨ Gp2) ∧ (p1 ∨ Fp2)) 9 (6) 8 (6) 15 (16) 8 (2) 13 (8) 8 (2)
¬(Fp0 ∧ GFp0 (3)8(4)4(3)4(4) 2) 2 (4) 2 (2)
¬(Fp0 ∧ GFp1) 5 (4) 4 (4) 4 (8) 3 (2) 2 (4) 2 (2)
¬(GFp1 ∧ GFp0 ∧ GFp2) 8 (6) 8 (6) 8 (12) 4 (2) 1 (6) 3 (2)
¬(GFp1 ∧ GFp0) 4 (4) 4 (4) 4 (8) 3 (2) 1 (4) 2 (2)
¬GFp0 2 (2) 2 (2) 2 (4) 2 (2) 1 (2) 1 (2)
¬(Xp0 UGp1) 7 (2) n.a. 6 (8) 5 (2) 6 (4) 5 (2)
(FGp0 ∨ GFp1) ∧ (FGp2 ∨ GFp3) 4385 (14) 18 (8) 19 (16) imp. 13 (8) imp.
F(G(p2∨(p1∧p2))∨(Xp1 U(p0∧Xp1))) 7 (4) 6 (4) 8 (8) 5 (2) 6 (4) 3 (2)
FG((p0∧GFp1∧XXp1)UG(XXp2∨XX(p0∧p1))) 3 (2) n.a. 7 (4) 2 (2) 6 (2) 1 (2)
Fp0 ∧ (p1 ∨ Gp2) ∧ (p1 ∨ Fp2) 8 (2) 8 (4) 9 (8) 8 (2) 9 (4) 8 (2)
Fp0 ∧ GFp0 3 (2) 3 (2) 3 (4) 3 (2) 3 (2) 2 (2)

% autfilt -S -C --sat-minimize=’acc="co-Buchi"’ -H dra.hoa > dra-min1.hoa

% egrep’States:|acc-name:|Acceptance:’ dra-min1.hoa

States: 3

acc-name: co-Buchi

Acceptance: 1 Fin(0)

The colored option requests that all transitions (or states) belong to exactly
one acceptance set. This is useful for instance when requesting parity acceptance:
% autfilt -S -C --sat-minimize=’acc="parity�max�even�2",colored’ -H \

dra.hoa >dpa.hoa

% egrep’States:|acc-name:|Acceptance:’ dpa.hoa

States: 3

acc-name: parity max even 2

Acceptance: 2 Fin(1) & Inf(0)

One section of the web page https://spot.lrde.epita.fr/satmin.html details
the usage of autfilt with more examples.

3.2 Minimization

To evaluate the usefulness and effectiveness of our tool, we built a benchmark of
LTL formulas to convert into deterministic ω-automata by the three translators
ltl2dstar 0.5.3, ltl3dra 0.2.2, and Rabinizer 3.1.

https://spot.lrde.epita.fr/satmin.html
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Table 2. Size of transition-based generalized Rabin automata produced by ltl3dra or
Rabinizer, and minimized by our procedure configured to keep the same accep-
tance condition. Acceptance conditions are indicated with “Rabin x” meaning Rabin
acceptance with x pairs, “gR x” for generalized-Rabin [3,5] with x pairs, or “gcB x”
for generalized-co-Büchi with x acceptance sets (one of these x sets has to be seen
finitely).

Rabinizer ltl3dra
orig. min orig. min

¬(p0∧((Gp0∧((Fp0∧Gp1)∨(Gp0∧Fp1)))∨(Fp0∧(Gp0∨Fp1)))) 6 (gR 3) 4 6 (gcB 3) 4
¬((XFp0∧(p1∨XGp0))∨(XGp0∧((p1∧XFp0)∨(p1∧XGp0)))) 5 (gR 2) 3 5 (gcB 2) 3
¬(Fp0 ∧ (p1 ∨ Gp2) ∧ (p1 ∨ Fp2 8)3Bcg(88)4Rg(8))
¬(Fp0 ∧ GFp1 2)2Bcg(22)2Bcg(2)
¬(p0 ∨ XG(p1 ∧ Fp0 )2Bcg(54)2Rg(4)) 4
p0∧((Gp0∧((Fp0∧Gp1)∨(Gp0∧Fp1)))∨(Fp0∧(Gp0∨Fp1))) 6 (gR 2) 4 6 (gcB 2) 4
F(G(p2 ∨ (p1 ∧ p2)) ∨ (Xp1 U(p0 ∧ Xp1))) 3 (gR 2) 3 4 (gcB 2) 3
Fp0 ∧ (p1 ∨ Gp2) ∧ (p1 ∨ Fp2 8)2Bcg(88)2Rg(8)
Gp0 ∧ XFp1 4 (gcB 1) 4 4 (gcB 1) 4
Fp0 ∧ Xp0 ∧ (Gp1 ∨ XFp0 )2Bcg(97)2Rg(7) 7
p0 ∨ XG(p1 ∧ Fp0 )2Rg(5) 4 4 (gR 3) 4

Table 1, shows the number states of deterministic Rabin automata produced
by the translators, as well as the size of the minimal Rabin automata that
autfilt --sat-minimize could produce using a single acceptance pair. The
table distinguishes the use of state-based acceptance or transition-based accep-
tance. All automata are complete. Because the SAT encoding is exponential in
the number of acceptance sets, but polynomial in the size of the automaton, the
input automaton supplied to autfilt --sat-minimize was chosen among the
automata output by the translators as the one with the fewest number of accep-
tance sets, and in case of equality the fewest number of states. For instance, for
¬(GFp1∧GFp0∧GFp2) in Table 1, the minimal transition-based automaton of size
“3 (2)” was obtained starting from the minimal state-based Rabin automaton of
size “4 (2)”, not starting from the “1 (6)” automaton produced by Rabinizer,
as it involves more acceptance sets.

Although this table only shows minimal automata with a single pair, our
technique can deal with more pairs (and different acceptance conditions) as
well. For instance the formula (FGp0 ∨ GFp1) ∧ (FGp2 ∨ GFp3) is translated by
ltl2dstar into a DRA with 4385 states (and 7 acceptance pairs), by ltl3dra
into a DRA with 18 states (and 4 pairs) and by Rabinizer into a transition-
based DRA with 13 states (and 4 pairs). Using autfilt --sat-minimize we
could reduce it to a transition-based DRA with 2 states and only 3 acceptance
pairs, and show that there is no transition-based DRA with 2 states and less
acceptance pairs (the problem becomes unsatisfiable).

Finally Table 2 shows minimization examples that use the transition-based
generalized Rabin acceptance introduced by ltl3dra and Rabinizer. Before
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minimizing the automaton we simplified the acceptance by removing all unused
sets, yielding the simpler acceptance conditions displayed in the table.

Complete results and instructions to reproduce this benchmark can be found
at https://www.lrde.epita.fr/∼adl/lpar15/. In particular, the CSV files include
run time information for the SAT solver we used (Glucose 4.0 [1]), and experi-
ments with 2 and 3-pair DRA.

4 Conclusion

We have presented a tool that can read any deterministic ω-automaton and
synthetize (if it exists) an equivalent deterministic ω-automaton with a given
number of states and arbitrary acceptance condition.

Although the SAT-based encoding is exponential in the number of acceptance
sets, our experience is that it is nonetheless usable for automata that have up to 8
acceptance sets. This is enough to cover a large spectrum of temporal properties.

By processing the output of existing translators, we were able to find sev-
eral cases where smaller automata exist, showing that there is still room for
improvement in tools that translate LTL into ω-automata.

As a final remark, we should point that our tool can find a minimal automaton
for a user-supplied acceptance condition. It might make sense to specify a more
complex acceptance condition in order to obtain a smaller automaton. Could
such a better acceptance condition be synthetized automatically?
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Abstract. FEMaLeCoP is a connection tableau theorem prover based
on leanCoP which uses efficient implementation of internal learning-
based guidance for extension steps. Despite the fact that exhaustive use
of such internal guidance can incur a significant slowdown of the raw
inferencing process, FEMaLeCoP trained on related proofs can prove
many problems that cannot be solved by leanCoP. In particular on the
MPTP2078 benchmark, FEMaLeCoP adds 90 (15.7 %) more problems to
the 574 problems that are provable by leanCoP. FEMaLeCoP is thus the
first AI/ATP system convincingly demonstrating that guiding the inter-
nal inference algorithms of theorem provers by knowledge learned from
previous proofs can significantly improve the performance of the provers.
This paper describes the system, discusses the technology developed, and
evaluates the system.

1 Introduction: Guiding Search by Learned Relevance

Intelligent guidance of the proof search is crucial for automated theorem prov-
ing (ATP). While complete ATP calculi such as resolution, superposition, and
tableau can in principle find a proof of arbitrary length and complexity, the prac-
tical strength of state-of-the-art ATP systems is nowhere near the performance
of expert mathematicians in most of mathematical domains.

In particular, experiments over large formal mathematical libraries [2,15]
show that current ATP calculi have practically no chance to find a more com-
plicated proof in large-theory mathematics unless they are equipped with exter-
nal axiom-selecting AI methods. Such AI methods are based on various ideas
estimating the relevance of the axioms to the conjecture based on sufficiently
descriptive features [9] of the axioms and conjectures. The strongest methods
are based on learning such relevance from the large libraries of previous related
proofs. This is not surprising for two reasons. First, mathematicians also grad-
ually learn their problem-solving expertise. Second, the chances of completely

C. Kaliszyk—Supported by the Austrian Science Fund (FWF): P26201.
J. Urban—Supported by NWO grant nr. 612.001.208 and ERC Consolidator grant
nr. 649043 AI4REASON.

c© Springer-Verlag Berlin Heidelberg 2015
M. Davis et al. (Eds.): LPAR-20 2015, LNCS 9450, pp. 88–96, 2015.
DOI: 10.1007/978-3-662-48899-7 7



FEMaLeCoP: Fairly Efficient Machine Learning Connection Prover 89

manually specifying the most efficient proof-search algorithm for all mathemat-
ical domains and problems seem very low.

Despite the ability of the AI/learning methods to focus the proof search
towards the most relevant axioms, the power of today’s ATPs in most of math-
ematics is still very limited. The automatically found proofs typically do not go
over 20 lines of formal proof-assistant code [8], and are usually easy for trained
mathematicians. This limited power is due to fast blow-up of the internal ATP
search, which is reminiscent of the blow-up incurred by off-the-shelf ATPs when
left to struggle alone with a very large number of axioms.

The success of the axiom-selection AI/learning methods in curbing such
search space motivates research in automated learning of smarter guidance of
the internal search. In the MaLeCoP (Machine Learning Connection Prover)
experiment [16] we have shown that in principle it is possible to significantly
prune the internal search space of leanCoP (lean Connection Prover) [13] when
guiding each extension step by an off-the-shelf machine learner trained on related
leanCoP proofs. However, the speed of the guiding machine learner in MaLe-
CoP was impractically (about 1000 times) slower [16] than the raw leanCoP
inferencing process, resulting in MaLeCoP’s low real-time performance.

2 Contributions

In this work, we devise much stronger learning-based guidance for connection
tableau by developing an AI/ATP system where the learning-based guidance is
an optimized and tightly integrated part of the core inferencing algorithm and
data structures. This in particular involves (i) developing very fast (online in the
machine-learning terminology) methods for characterizing the current proof state
on which the trained learner gives advice to the inferencing process, (ii) suitable
modification and integration of a machine learner whose advising speed is compa-
rable to the core deductive inference mechanisms, (iii) designing mechanisms that
suitably combine the learning-based guidance with semantic/deductive pruning
methods such as discrimination-tree indexing. The main nontrivial concern is to
provide strong proof-state characterization and AI/learning methods for guiding
the inference steps, while keeping the speed of such methods sufficiently high.

The rest of the paper is organized as follows. Section 3 briefly summarizes
leanCoP, its recent OCaml implementation, and the MaLeCoP prototype, which
are the basis for the current system. Then we describe the main techniques
developed and used in FEMaLeCoP (Sect. 4). In Sect. 5 we show that the raw
inference speed of the resulting AI/ATP system is reasonably high in comparison
to unguided leanCoP, and that the system indeed adds 15.7 % more MPTP2078
problems to the 574 problems provable by unguided leanCoP.

3 Background: leanCoP, MaLeCoP and OCAML-leanCoP

leanCoP [13] is an automated theorem prover implementing connected tableau
search with iterative deepening, written very economically in Prolog by Otten.
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The reduction rule of the connection calculus is applied before the extension rule,
and open branches are selected in a depth-first way. Additional inference rules
and strategies include regularity, lemmata, and restricted backtracking (cut) [12].
Given the very compact implementation, leanCoP’s performance is surprisingly
high, regularly outperforming much larger ATPs such as Metis and even Prover9
in the CASC competition and in particular on problems coming from large for-
mal libraries [10]. Its size/performance ratio makes leanCoP suitable for various
experiments and integration with other systems. Two such offsprings of leanCoP
relevant here are:

1. Its OCaml implementation (OCaml-leanCoP), which has been linked to the
HOL Light LCF-style kernel, resulting in the currently strongest internal
automation tactic for interactive theorem provers [10].

2. The MaLeCoP prototype [16], providing the original Prolog-based leanCoP
with a communication link to an external learning system (the SNoW system
[3]) which is trained on previous leanCoP proofs and guides the choice of the
extension steps. A large cache and a number of meta-strategies (e.g., advising
only when a large branching factor is encountered) were used to combine the
(very) slow external advice with the (much) faster raw inference process.
Large speed-ups in terms of the abstract time (number of inferences) were
measured, however the system was still too slow to be usable in practice.

4 FEMaLeCoP

4.1 Consistent Clausification, Indexing, and Basic Calculus

The basis of FEMaLeCoP is the OCaml version of leanCoP. As in MaLeCoP,
FEMaLeCoP starts by a consistent clausification (with relation to the symbols
used) of the FOL problem. This is done by using content-based names for Skolem
functions and for the names of the clauses (or rather for the contrapositives
created from the clauses - see below). For example, formula ?[X]: p(X) thus
becomes p(’skolem(?[A]:p(A),1)’) (involving also variable normalization),
and the name of this clause (contrapositive) is just its MD5 hash. Such consistent
naming is essential for good recall of similar proof situations and their solutions
from the previous problems.

As in leanCoP, the initial clauses and their literals are put into an indexing
datastructure – the lit matrix. The lit matrix keeps all literals L from all input
clauses C, remembering the rest of the clause (C − L). We call the entries in
the lit matrix (i.e., the pairs L, C − L) contrapositives. Contrapositives are the
main object of leanCoP’s search. The lit indexing is used for fast Prolog-style
unification of literals during the tableau search. While in leanCoP, the indexing
of lit is done automatically by Prolog, FEMaLeCoP uses indexing by the toplevel
predicate and optional discrimination-tree indexing of the literals.

The core theorem-proving function of leanCoP written in Prolog is shown
below, with Cla being the open subgoal and Path being the active path. For
simplicity, we omit here the code implementing regularity, lemmata, iterative
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deepening and restrictive backtracking. The main source of nondeterminism is
obviously the tableau extension rule, and this is where we will apply the learning-
based guidance.

1 % prove(Cla ,Path)

2 prove ([Lit|Cla],Path) :-

3 (-NegLit=Lit;-Lit=NegLit) ->

4 (

5 member(NegL ,Path),

6 unify_with_occurs_check (NegL ,NegLit)

7 ; % extension step

8 lit(NegLit ,NegL ,Cla1 ,Grnd1),

9 unify_with_occurs_check (NegL ,NegLit),

10 prove(Cla1 ,[Lit|Path])

11 ),

12 prove(Cla ,Path).

13 prove ([],_,).

4.2 Overview of the Learning-Based Guidance

We combine the above basic leanCoP algorithm with a learning-based system
that advises the inference process. The interesting choices in such AI setup are
what exactly should be advised, how should the advising algorithm work, and in
particular which features (properties, characteristics) of the proof state are best
for recalling similar past proof states that led (typically after some nontrivial
search effort) to successfully solved problems and their solutions are thus more
likely to lead to successful proof for the current proof state. All these questions
open interesting research topics: for example one could advise selection of high-
level problem-solving strategies rather than low-level reasoning steps, and the
advising algorithm could be interleaved with a gradual computation of more
and more advanced features. While such sophisticated designs will certainly be
built in the future, our goal here is to develop good-enough first solutions that
will show that learning-based guidance leads to significant improvement of the
unguided leanCoP. The summary of the choices that we make is as follows:

What Is Advised: We advise the selection of clause for every tableau extension
step. This means that each time there are multiple clauses (or rather contrapos-
itives) that unify with the current goal, the advise system is called to estimate
the candidates’ chances (relevance) for leading to a proof. The candidates are
then tried (backtracked over) in the order of their relevance. Advising every
extension step in this way is quite extreme and ambitious. It requires that the
advising system is comparably fast to the standard inference speed, because we
cannot assume that there will always be enough previous proof information to
completely avoid mistakes and subsequent backtracking.

How We Advise: We use a fast custom OCaml implementation [8] of the naive
Bayes algorithm that learns the association of the features of the proof states (see
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below) with the contrapositives that were used for the successful tableau exten-
sion steps in previous proofs. During each extension step the advising system
computes the features of the active proof state, and orders the contrapositives by
their estimated relevance for these proof-state features based on the contrapos-
itive’s performance on previous similar proof states. The exact computation of
the relevance and feature-based similarity depends on the machine-learning algo-
rithm used. The implementation details of our advising system and the related
infrastructure are described below 4.3.

Features Used: We characterize the proof state as a weighted vector of symbols
and/or (possibly generalized) terms extracted from all the literals on the active
path. We use frequency-based weighting of such features (the inverse document
frequency – IDF scheme [6]) which has turned out to work very well in the
related large-theory axiom-selection task [7], and we additionally experiment
with a simple decay factor (using maximum) for the features depending on the
distance of the path literals from the tip of the path. For example, given decay
factor of 0.8 and a term feature “1 + 2” extracted independently from two path
literals L1 : 1 + 2 = 3 and L2 : 1 + 2 = 2 + 1 with L1 being the active goal and
L2 being its grandparent on the active path, the (non-IDF) weight of the feature
“1 + 2” is w(“1 + 2”) = max(0.80, 0.82) = 1.

4.3 Learning-Based Advising System and Related Infrastructure

Collecting Training Data: First, the advising system needs to collect the training
data. To achieve this, FEMaLeCoP stores the complete information about the
proof by adding the prf argument to the prove function and returning and
printing it when a proof is found. prf is a list of tuples (examples), each consisting
of the current literal, the path, and the contrapositive used.

Data Indexing: The printed prf format is very general and verbose, allowing
experiments with different features and learning algorithms without re-running
the ATP. When extracted from many proofs, the number of printed tuples can
easily go over one million. For the naive-Bayes learning and advising we first turn
this data by a special program (hasher) into an efficient datastructures optimized
for the particular choice of features (constants and/or (generalized) subterms –
both are used by default). For the particular choice of features hasher extracts
the proof-state features from each example and maintains a hashtable cn pf no
keeping for each contrapositive a map of its aggregated (weighted) proof-state
feature frequencies. Additionally the following auxiliary data are maintained for
fast IDF and naive-Bayes processing: te num – the total number of training exam-
ples so far, pf no – a hashtable from features to floats storing the (weighted)
sum of occurrences of every feature in all the processed training examples, and
cn no – a hashtable storing the total number of occurrences for each contrapos-
itives in all training examples. This data extraction is fast, taking about 30 s for
10000 FEMaLeCoP proofs. Additionally, this also works incrementally, i.e. when
a new proof is found, this aggregated information can be very quickly updated
by the new training examples.
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Problem-Specific Data Preparation: Upon start, FEMaLeCoP reads the problem
to solve and the aggregated training data. The first task is to select only the
parts of these data that are relevant for the current problem. For this, after the
(consistent – Sect. 4.1) clausification the contrapositives and their features are
extracted and used for filtering out unnecessary parts of the aggregated training
data, resulting in the localized version of the aggregated data structures. The
cn pf no and cn no hashtables are then combined with the lit indexing (based
on the toplevel predicate or using a discrimination tree) of contrapositives. This
makes the aggregated previous proof-use information for each contrapositive
accessible right when the contrapositive is accessed in the main prove function
through the lit indexing. This typically allows reasonably fast computation of the
naive-Bayes score of the contrapositives that are considered by the lit indexing.

An optional problem-specific data-filtering step is to use the k-nearest neigh-
bor (k-NN) algorithm for further restriction of the relevant training data. If this
is used, we first find the k solved problems whose conjectures are (in the feature
metric) closest to the current conjecture, and extract the training examples only
from such problems. Such filtering introduces further parameters to optimize
and is not yet used in the Evaluation (Sect. 5).

Efficient Approximate Feature and Relevance Computation: To avoid costly
recomputation of the features of the path for each extension step, the prove func-
tion passes the proof-state features computed so far as an additional argument,
and the feature vector is only updated incrementally when an extension step is
to be performed. This means that the features may occasionally be approximate,
because the substitutions performed with the literals of the path (line 6 of the
simplified leanCoP algoprithm in Sect. 4.1) might not be taken into account. This
optimization may lose some constant features (e.g., if induced by a unification
at a reduce step), however it very significantly speeds up the advising. Given
that the features of the current path are f , the relevance of the eligible contra-
positives (pre-selected by the lit indexing) is then computed according to the
following modified naive-Bayes score (used by us for axiom selection in [11]):

r(t, s) = σ1 ln t +
∑

f∈(f∪s)

i(f) ln
σ2s(f)

t
+ σ3

∑

f∈(f−s)

i(f) + σ4

∑

f∈(s−f)

i(f) ln(1 − s(f)

t
)

Here t is the total number of times the contrapositive was used, s is its aggregated
feature vector, and i is the vector of IDF weights of all features. The score function
is parameterized by the following constants (chosen experimentally): σ1 – weight
of the total number of uses (default = 2), σ2 – weight of the overlapping features
(default = 2), σ3 – weight of the path-only features (default = −6), σ4 – weight
of the contrapositive-only features (default = −0.05).

5 Evaluation

The system’s main evaluation is done on the 2078 related problems coming from
the MPTP2078 large-theory benchmark [1] exported from Mizar. This bench-
mark has two categories: large (chainy) problems containing many redundant
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axioms, and small (bushy) problems that contain only the axioms used explic-
itly in the Mizar proofs plus additional “background” formulas encoding the
(typically typing) reasoning steps done by Mizar implicitly.

As explained in Sect. 1, in FEMaLeCoP we are interested in the problem
of guiding the internal ATP search once the right axioms have been (approx-
imately) chosen by one of today’s reasonably good (external) AI systems used
for axiom selection. This is why we evaluate FEMaLeCoP on the bushy (small)
problems rather than on the chainy (large) ones. Because the external axiom-
selectors are not perfect, it makes sense to evaluate FEMaLeCoP on problems
that still contain some redundant axioms, rather than evaluating it on problems
where the set of axioms is minimized in some way (see [1] for some discussion
of the minimization techniques and issues). The MPTP2078 bushy problems fit
this evaluation scenario quite well, because the “background” formulas included
in the problems are typically quite redundant [1].

The results are show in Table 1. Unaided OCaml-leanCoP is first run on all
the 2078 bushy problems with a time limit of 60 s.1 This solves 574 problems.
From the proofs of these problems we collect the training data from the success-
ful path decisions and preprocess them as described above. This step is done
once for all proofs and takes seconds. In the second round we run FEMaLeCoP
with these training data loaded, again with a time limit of 60 s, again attacking
all the 2078 problems. While the inference speed drops to about 40 % (for a
sample problem: 305098 inferences per second instead of 772208) of the unad-
vised OCaml-leanCoP, the advised system solves 635 problems, adding 90 (15.7 %
more) problems to the original solutions. This is a considerable improvement of
the ATP performance. As the union gives 664 solved problems, a portfolio app-
roach might also prove to be effective.

Table 1. OCaml-leanCoP and trained FEMaLeCoP on bushy problems in 60 s.

Prover Proved (%)

OCaml-leanCoP 574 (27.6 %)

FEMaLeCoP 635 (30.6 %)

Together 664 (32.0 %)

6 Conclusion and Future Work

To the best of our knowledge, FEMaLeCoP is the first ATP system with effi-
ciently integrated internal learning-based guidance that convincingly shows the
feasibility and benefits of such exhaustive knowledge re-use when compared to
the standard unguided ATP. While the MaLeCoP prototype has provided evi-
dence that large pruning of the ATP search space is possible in principle when
1 The hardware used is Intel Xeon E7-4870 2.30 GHz with 256 GB RAM.
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using such internal guidance, FEMaLeCoP shows that this is possible in prac-
tice, adding 15.7 % solutions to unguided OCaml-leanCoP in a fair evaluation
scenario.

We believe that this is a rather important step towards producing smart inte-
grated AI/ATP systems that do not try to attack each problem in complete iso-
lation, but instead re-use the vast problem-solving knowledge accumulated in the
formal ITP libraries by human mathematicians and machines. The immediate
future work includes similar modification of more complicated state-of-the-art
ATP systems based on resolution/superposition, developing better proof-state
features, more general learning setups, and combining with external axiom selec-
tion. For example, while the current learning is done on the (MD5) names of
normalized contrapositives, better transfer of knowledge (and thus recall) will
likely be achieved by abstracting away the symbol names, and advising also the
resulting abstract clause patterns [4,14]. Integrated machine learning could also
be used to reorder subgoals [5]. Similarly, it seems straightforward to modify
FEMaLeCoP for learning and advising the choice of higher-level tactics in ITP
systems.
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Abstract. We present a method to prove the decidability of provability
in several well-known inference systems. This method generalizes both
cut-elimination and the construction of an automaton recognizing the
provable propositions.

1 Introduction

The goal of this paper is to connect two areas of logic: proof theory and automata
theory, that deal with similar problems, using a different terminology.

To do so, we first propose to unify the terminology, by extending the notions
of introduction rule, automaton, cut, and cut-elimination to arbitrary inference
systems. An introduction rule is defined as any rule whose premises are smaller
than its conclusion and an automaton as any inference system containing intro-
duction rules only. Provability in an automaton is obviously decidable. A cut is
defined as any proof ending with a non-introduction rule, whose major premises
are proved with a proof ending with introduction rules. We show that a cut-
free proof contains introduction rules only. A system is said to have the cut-
elimination property if every proof can be transformed into a cut-free proof.
Such a system is equivalent to an automaton.

Using this unified terminology, we then propose a general saturation method
to prove the decidability of an inference system, by transforming it into a system
that has the cut-elimination property, possibly adding extra rules. The outline
of this method is the following. Consider a proof containing a non-introduction
rule and focus on the sub-proof ending with this rule

π1

s1 ...

πn

sn
non-intro

s

Assume it is possible to recursively eliminate the cuts in the proofs π1, ..., πn,
that is to transform them into proofs containing introduction rules only, hence
ending with an introduction rule. We obtain a proof of the form

c© Springer-Verlag Berlin Heidelberg 2015
M. Davis et al. (Eds.): LPAR-20 2015, LNCS 9450, pp. 97–111, 2015.
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ρ1
1

s11 ...

ρ1
m1

s1m1 intro
s1 ...

ρn
1

sn1 ...

ρn
mn

snmn intro
sn

non-intro
s

We may moreover tag each premise s1, ..., sn of the non-introduction rule as
major or minor. For instance, each elimination rule of Natural Deduction [14]
has one major premise and the cut rule of Sequent Calculus [12] has two. If the
major premises are s1, ..., sk and minor ones sk+1, ..., sn, the proof above can
be decomposed as

ρ1
1

s11 ...

ρ1
m1

s1m1 intro
s1 ...

ρk
1

sk1 ...

ρk
mk

skmk intro
sk

π′k+1

sk+1 ...

π′n

sn
non-intro

s

A proof of this form is called a cut and it must be reduced to another proof.
The definition of the reduction is specific to each system under consideration. In
several cases, however, such a cut is reduced to a proof built with the proofs ρ11,
..., ρ1m1

, ..., ρk
1 , ..., ρk

mk
, π′k+1, ..., π′n and a derivable rule allowing to deduce

the conclusion s from the premises s11, ..., s
1
m1

, ..., sk
1 , ..., s

k
mk

, sk+1, ..., sn. Adding
such derivable rules in order to eliminate cuts is called a saturation procedure.

Many cut-elimination proofs, typically the cut-elimination proofs for Sequent
Calculus [8], do not proceed by eliminating cuts step by step, but by proving
that a non-introduction rule is admissible in the system obtained by dropping
this rule, that is, proving that if the premises s1, ..., sn of this rule are provable in
the restricted system, then so is its conclusion s. Proceeding by induction on the
structure of proofs of s1, ..., sn leads to consider cases where each major premise
si has a proof ending with an introduction rule, that is also proofs of the form

ρ1
1

s11 ...

ρ1
m1

s1m1 intro
s1 ...

ρk
1

sk1 ...

ρk
mk

skmk intro
sk

πk+1

sk+1 ...

πn

sn
non-intro

s

In some cases, the saturation method succeeds showing that every proof
can be transformed into a proof formed with introduction rules only. Then, the
inference system under consideration is equivalent, with respect to provability, to
the automaton obtained by dropping all its non-introduction rules. This equiv-
alence obviously ensures the decidability of provability in the inference system.
In other cases, in particular when the inference system under consideration is
undecidable, the saturation method succeeds only partially: typically some non-
introduction rules can be eliminated but not all, or only a subsystem is proved
to be equivalent to an automaton.

This saturation method is illustrated with examples coming from both proof
theory and automata theory: Finite Domain Logic, Alternating Pushdown Sys-
tems, and three fragments of Constructive Predicate Logic, for which several
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formalizations are related: Natural Deduction, Gentzen style Sequent Calculus,
Kleene style Sequent Calculus, and Vorob’ev-Hudelmaier-Dyckhoff-Negri style
Sequent Calculus. The complexity of these provability problems, when they are
decidable, is not discussed in this paper and is left for future work, for instance
in the line of [1,13].

In the remainder of this paper, the notions of introduction rule, automa-
ton, and cut are defined in Sect. 2. Section 3 discusses the case of Finite State
Automata. In Sects. 4 and 5, examples of cut-elimination results are presented.
In the examples of Sect. 4, the non-introduction rules can be completely elim-
inated transforming the inference systems under considerations into automata,
while this elimination is only partially successful in the undecidable examples
of Sect. 5. The proofs, and some developments, are omitted from this extended
abstract. They can be found in the long version of the paper https://who.rocq.
inria.fr/Gilles.Dowek/Publi/introlong.pdf.

2 Introduction Rules, Automata, and Cuts

2.1 Introduction Rules and Automata

Consider a set S, whose elements typically are propositions, sequents, etc. Let
S∗ be the set of finite lists of elements of S.

Definition 1 (Inference rule, Inference system, Proof). An inference rule
is a partial function from S∗ to S. If R is an inference rule and s = R(s1, ..., sn),
we say that the conclusion s is proved from the premises s1, ..., sn with the rule
R and we write

s1 ... sn
R

s

Some rules are equipped with an extra piece of information, tagging each premise
s1, ..., sn as major or minor. An inference system is a set of inference rules.
A proof in an inference system is a finite tree labeled by elements of S such that
for each node labeled with s and whose children are labeled with s1, ..., sn, there
exists an inference rule R of the system such that

s1 ... sn
R

s

A proof is a proof of s if its root is labeled by s. An element of S is said to be
provable, if it has a proof.

Definition 2 (Introduction Rule, Pseudo-automaton). Consider a set S
and a well-founded order ≺ on S. A rule R is said to be an introduction rule
with respect to this order, if whenever

s1 ... sn
R

s

we have s1 ≺ s, ..., sn ≺ s. A pseudo-automaton is an inference system con-
taining introduction rules only.

https://who.rocq.inria.fr/Gilles.Dowek/Publi/introlong.pdf
https://who.rocq.inria.fr/Gilles.Dowek/Publi/introlong.pdf
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Except in the system D (Sect. 5.4), this order ≺ is always that induced by
the size of the propositions and sequents. It is left implicit.

Definition 3 (Finitely Branching System, Automaton). An inference
system is said to be finitely branching, if for each conclusion s, there is only a
finite number of lists of premises s1, ..., sp such that s can be proved from si with
a rule of the system. An automaton is a finitely branching pseudo-automaton.

2.2 Cuts

We define a general notion of cut, that applies to all inference systems considered
in this paper. More specific notions of cut will be introduced later for some
systems, and the general notion of cut defined here will be emphasized as general
cut to avoid ambiguity.

Definition 4 (Cut). A (general) cut is a proof of the form

ρ1
1

s11 ...

ρ1
m1

s1m1 intro
s1 ...

ρk
1

sk1 ...

ρk
mk

skmk intro
sk

πk+1

sk+1 ...

πn

sn
non-intro

s

where s1, ..., sk are the major premises of the non-introduction rule. A proof
contains a cut if one of its sub-proofs is a cut. A proof is cut-free if it contains
no cut. An inference system has the cut-elimination property if every element
that has a proof also has a cut-free proof.

Lemma 1 (Key Lemma). A proof is cut-free if and only if it contains intro-
duction rules only.

Proof. If a proof contains introduction rules only, it is obviously cut-free. We
prove the converse by induction over proof structure. Consider a cut-free proof.
Let R be the last rule of this proof and π1, ..., πn be the proofs of the premises
of this rule. The proof has the form

π1

s1 ...

πn

sn
R

s

By induction hypothesis, the proofs π1, ..., πn contain introduction rules only.
As the proof is cut-free, the rule R must be an introduction rule.

Consider a finitely-branching inference system I and the automaton A formed
with the introduction rules of I. If I has the cut-elimination property, then every
element that has a proof in I has a cut-free proof, that is a proof formed with
introduction rules of I only, that is a proof in A. Thus, I and A are equivalent
with respect to provability. Since A is decidable, so is I.
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axiomΓ, A � A

atom if L ∈ PΓ � L

�-introΓ � �
Γ � ⊥ ⊥-elimΓ � A

Γ � A Γ � B ∧-introΓ � A ∧ B
Γ � A ∧ B ∧-elimΓ � A
Γ � A ∧ B ∧-elimΓ � B

Γ � A ∨-introΓ � A ∨ B
Γ � A ∨ B Γ, A � C Γ, B � C ∨-elimΓ � C

Γ � B ∨-introΓ � A ∨ B

Γ � (c1/x)A ... Γ � (cn/x)A ∀-introΓ � ∀xA
Γ � ∀xA ∀-elimΓ � (ci/x)A

Γ � (ci/x)A ∃-introΓ � ∃x A
Γ � ∃x A Γ, (c1/x)A � C ... Γ, (cn/x)A � C ∃-elimΓ � C

Fig. 1. Finite domain logic

3 Finite State Automata

In this section, we show that the usual notion of finite state automaton is a
particular case of the notion of automaton introduced in Definition 3.

Consider a finite state automaton A. We define a language L in predicate logic
containing a constant ε; for each symbol γ of the alphabet of A, a unary function
symbol, also written γ; and for each state P of A a unary predicate symbol, also
written P . A closed term in L has the form γ1(γ2...(γn(ε))), where γ1, ..., γn are
function symbols. Such a term is called a word, written w = γ1γ2...γn. A closed
atomic proposition has the form P (w), where P is a state and w a word. We
build an inference system that consists of, for each transition rule P

γ−−→ Q of
A, the introduction rule

Q(x)

P (γ(x))

and, for each final state F of A, the introduction rule

F (ε)

It is routine to check that a word w is recognized by the automaton A in a state
I if and only if the proposition I(w) has a proof in the corresponding system.

4 From Cut-Elimination to Automata

In this section, we present two cut-elimination theorems, that permit to com-
pletely eliminate the non-introduction rules and prove, this way, the decidability
of Finite Domain Logic and of Alternating Pushdown Systems, respectively.
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P1(x) ... Pn(x) intro n ≥ 0
Q(γ(x))

P1(γ(x)) P2(x) ... Pn(x) elim n ≥ 1
Q(x)

introQ(ε)
P1(x) ... Pn(x) neutral n ≥ 0

Q(x)

Fig. 2. Alternating pushdown systems

4.1 Finite Domain Logic

We begin with a toy example, Finite Domain Logic, motivated by its simplicity:
we can prove a cut-elimination theorem, showing the system is equivalent to the
automaton obtained by dropping its non-introduction rules.

Finite Domain Logic is a version of Natural Deduction tailored to prove the
propositions that are valid in a given finite model M. The differences with the
usual Natural Deduction are the following: a proposition of the form A ⇒ B is
just an abbreviation for ¬A∨B and negation has been pushed to atomic propo-
sitions using de Morgan’s laws; the ∀-intro and the ∃-elim rules are replaced by
enumeration rules, and an atom rule is added to prove closed atomic propositions
and their negations valid in the underlying model.

If the model M is formed with a domain {a1, ..., an} and relations R1, ..., Rm

over this domain, we consider the language containing constants c1, ..., cn for the
elements a1, ..., an and predicate symbols P1, ..., Pm for the relations R1, ..., Rm.
The Finite Domain Logic of the model M is defined by the inference system
of Fig. 1, where the set P contains, for each atomic proposition Pi(cj1 , ..., cjk),
either the proposition Pi(cj1 , ..., cjk) if 〈aj1 , ..., ajk〉 is in Ri, or the proposition
¬Pi(cj1 , ..., cjk), otherwise.

In this system, the introduction rules are those presented in the first column:
the axiom rule, the atom rule, and the rules 
-intro, ∧-intro, ∨-intro, ∀-intro, and
∃-intro. The non-introduction rules are those presented in the second column.
Each rule has one major premise: the leftmost one. A cut is as in Definition 4.

Theorem 1 (Soundness, Completeness, and Cut-elimination). Let B be
a closed proposition, the following are equivalent:

(1) the proposition B has a proof,
(2) the proposition B is valid in M,
(3) the proposition B has a cut-free proof, that is a proof formed with introduction

rules only.

Therefore, provability in Finite Domain Logic is decidable, as the provable
propositions are recognized by the automaton obtained by dropping the non-
introduction rules. Since the introduction rules preserve context emptiness, the
contexts can be ignored and the axiom rule can be dropped. This automaton
could also be expressed in a more familiar way with the transition rules
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L ↪→ ∅ if L ∈ P A ∨ B ↪→ {A}
� ↪→ ∅ A ∨ B ↪→ {B}

A ∧ B ↪→ {A, B} ∀x A ↪→ {(c1/x)A, ..., (cn/x)A}
∃x A ↪→ {(ci/x)A} for each ci

4.2 Alternating Pushdown Systems

The second example, Alternating Pushdown Systems, is still decidable [2], but a
little bit more complex. Indeed these systems, in general, need to be saturated—
that is extended with derivable rules—in order to enjoy cut-elimination.

Consider a language L containing a finite number of unary predicate symbols,
a finite number of unary function symbols, and a constant ε. An Alternating
Pushdown System is an inference system whose rules are like those presented
in Fig. 2. The rules in the first column are introduction rules and those in the
second column, the elimination and neutral rules, are not. Elimination rules have
one major premise, the leftmost one, and all the premises of a neutral rule are
major. A cut is as in Definition 4.

Not all Alternating Pushdown Systems enjoy the cut-elimination property.
However, every Alternating Pushdown System has an extension with derivable
rules that enjoys this property: each time we have a cut of the form

ρ1
1

s11 ...

ρ1
m1

s1m1 intro
s1 ...

ρk
1

sk1 ...

ρk
mk

skmk intro
sk

πk+1

sk+1 ...

πn

sn
non-intro

s

we add a derivable rule allowing to deduce directly s from s11, ..., s1m1
, ..., sk

1 , ...,
sk

mk
, sk+1, ..., sn. This leads to the following saturation algorithm [3,9,10].

Definition 5 (Saturation). Given an Alternating Pushdown System,

– if it contains an introduction rule

P1(x) ... Pm(x)
intro

Q1(γ(x))

and an elimination rule
Q1(γ(x)) Q2(x) ... Qn(x)

elim
R(x)

then we add the neutral rule

P1(x) ... Pm(x) Q2(x) ... Qn(x)
neutral

R(x)

– if it contains introduction rules

P 1
1 (x) ... P 1

m1(x)
introQ1(γ(x)) ...

Pn
1 (x) ... Pn

mn
(x)

introQn(γ(x))
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and a neutral rule
Q1(x) ... Qn(x)

neutral
R(x)

then we add the introduction rule
P 1
1 (x) ... P 1

m1(x) ... Pn
1 (x) ... Pn

mn
(x)

intro
R(γ(x))

– if it contains introduction rules

introQ1(ε) ... introQn(ε)

and a neutral rule
Q1(x) ... Qn(x)

neutral
R(x)

then we add the introduction rule

intro
R(ε)

As there is only a finite number of possible rules, this procedure terminates.

It is then routine to check that if a closed proposition has a proof in a
saturated system, it has a cut-free proof [3], leading to the following result.

Theorem 2 (Decidability). Provability of a closed proposition in an Alter-
nating Pushdown System is decidable.

Example 1. Consider the Alternating Pushdown System S

Q(x)
i1P (ax)

T (x)
i2P (bx)

T (x)
i3R(ax) i4R(bx)

P (x) R(x)
n1Q(x) n2T (x)

P (ax)
e1S(x)

The system S′ obtained by saturating the system S contains the rules of the
system S and the following rules

Q(x)
n3S(x) i5T (ε) i6T (ax)

Q(x) T (x)
i7Q(ax)

Q(x) T (x)
i8S(ax) i9T (bx)

T (x)
i10Q(bx)

T (x)
i11S(bx)

The automaton S′′ contain the rules i1, i2, i3, i4, i5, i6, i7, i8, i9, i10, i11.
The proof in the system S

n2
T (ε)

i2
P (b)

i4
R(b)

n1
Q(b)

i1
P (ab)

n2
T (b)

i3
R(ab)

n1
Q(ab)

i1
P (aab)

e1
S(ab)

reduces to the cut-free proof in the system S′′
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i5
T (ε)

i10
Q(b)

i9
T (b)

i8
S(ab)

5 Partial Results for Undecidable Systems

In this section, we focus on Constructive Predicate Logic, leaving the case of
Classical Predicate Logic for future work. We start with Natural Deduction [14].
As provability in Predicate Logic is undecidable, we cannot expect to transform
Natural Deduction into an automaton. But, as we shall see, saturation permits
to transform first Natural Deduction into a Gentzen style Sequent Calculus [12],
then the latter into a Kleene style Sequent Calculus [12], and then the latter into
a Vorob’ev-Hudelmaier-Dyckhoff-Negri style Sequent Calculus [4,6,11,15]. Each
time, a larger fragment of Constructive Predicate Logic is proved decidable.

Note that each transformation proceeds in the same way: first, we identify
some general cuts. Then, like in the saturation procedure of Sect. 4.2, we add
some admissible rules to eliminate these cuts. Finally, we prove a cut-elimination
theorem showing that some non-introduction rules can be dropped.

5.1 Natural Deduction

In Natural Deduction (Fig. 3), the introduction rules are those presented in the
first column, they are the axiom rule and the rules 
-intro, ∧-intro, ∨-intro,
⇒-intro, ∀-intro, and ∃-intro. The non-introduction rules are those presented in
the second column, each of them has one major premise: the leftmost one.

Natural Deduction has a specific notion of cut: a proof ending with a ∧-
elim, ∨-elim, ⇒-elim, ∀-elim, ∃-elim rule, whose major premise is proved with
a proof ending with a ∧-intro, ∨-intro, ⇒-intro, ∀-intro, ∃-intro rule, respec-
tively. The only difference between this specific notion of cut and the general one
(Definition 4) is that the general notion has one more form of cut: a proof built
with an elimination rule whose major premise is proved with the axiom rule. For
instance

axiom
P ∧ Q 	 P ∧ Q ∧-elim

P ∧ Q 	 P

So proofs free of specific cuts can still contain general cuts of this form.
Saturating the system, like in Sect. 4.2, to eliminate the specific cuts, would

add derivable rules such as
Γ 	 A Γ 	 B

R∧
Γ 	 A

But they are not needed, as they are admissible in cut-free Natural Deduction.
The admissibility of some rules however are based on a substitution of proofs,

that may create new cuts on smaller propositions, that need in turn to be elimi-
nated. In other words, the termination of the specific cut-elimination algorithm
needs to be proved [14].
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axiomΓ, A � A

�-introΓ � �
Γ � ⊥ ⊥-elimΓ � A

Γ � A Γ � B ∧-introΓ � A ∧ B
Γ � A ∧ B ∧-elimΓ � A
Γ � A ∧ B ∧-elimΓ � B

Γ � A ∨-introΓ � A ∨ B

Γ � B ∨-introΓ � A ∨ B
Γ � A ∨ B Γ, A � C Γ, B � C ∨-elimΓ � C

Γ, A � B ⇒-introΓ � A ⇒ B
Γ � A ⇒ B Γ � A ⇒-elimΓ � B

Γ � A ∀-intro if x not free in ΓΓ � ∀xA
Γ � ∀xA ∀-elimΓ � (t/x)A

Γ � (t/x)A ∃-introΓ � ∃x A
Γ � ∃x A Γ, A � B ∃-elim if x not free in Γ, B

Γ � B

Fig. 3. Constructive natural deduction

As general cuts with an axiom rule are not eliminated, this partial cut-
elimination theorem is not sufficient to eliminate all elimination rules and to
prove the decidability of Constructive Natural Deduction, but it yields a weaker
result: a (specific-)cut-free proof ends with introduction rules, as long as the
context of the proved sequent contains atomic propositions only. To formalize
this result, we introduce a modality [ ] and define a translation that freezes the
non atomic left-hand parts of implications, f(A ⇒ B) = [A] ⇒ f(B), if A is not
atomic, and f(A ⇒ B) = A ⇒ f(B), if A is atomic, f(A ∧ B) = f(A) ∧ f(B),
etc., and the converse function u is defined in a trivial way.

Definition 6. Let A be the pseudo-automaton formed with the introduction
rules of Constructive Natural Deduction, including the axiom rule, plus the intro-
duction rule

delay
Γ, [A] 	 B

Theorem 3. Let Γ � A be a sequent such that Γ contains atomic propositions
only. If Γ � A has a (specific-)cut-free proof in Constructive Natural Deduction,
then Γ � f(A) has a proof in the pseudo-automaton A and for each leaf Δ � B
proved with the delay rule, the sequent u(Δ � B) has a proof in Constructive
Natural Deduction.

A first corollary of Theorem 3 is the decidability of the small fragment

A = P | 
 | ⊥ | A ∧ A | A ∨ A | P ⇒ A | ∀x A | ∃x A
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where the left-hand side of an implication is always atomic, that is no connective
or quantifier has a negative occurrence. As the pseudo-automaton obtained this
way is not finitely branching, we need, as well-known, to introduce meta-variables
to prove this decidability result.

A second corollary is that if A is a proposition starting with n connectors or
quantifiers different from ⇒, then a (specific-)cut-free proof of the sequent � A
ends with n+1 successive introduction rules. For n = 0, we obtain the well-known
last rule property of constructive (specific-)cut-free proofsḞor a proposition A of
the form ∀x (B1 ∨ B2), for instance, we obtain that a (specific-)cut-free proof of
� ∀x (B1 ∨ B2) ends with three introduction rules. Thus, it has the form

π′

	 Bi ∨-intro	 B1 ∨ B2 ∀-intro	 ∀x (B1 ∨ B2)

and π′ itself ends with an introduction rule. As a consequence, if the proposition
∀x (B1∨B2) has a proof, then either the proposition B1 or the proposition B2 has
a proof, thus the proposition (∀x B1) ∨ (∀x B2) has a proof. This commutation
of the universal quantifier with the disjunction is called a shocking equality [7].

5.2 Eliminating Elimination Rules: Gentzen Style Sequent Calculus

To eliminate the general cuts of the form

axiom
A ∧ B 	 A ∧ B ∧-elim

A ∧ B 	 A

we could add an introduction rule of the form

I
A ∧ B 	 A

But, this saturation procedure would not terminate.
A way to keep the number of rules finite is to add left introduction rules to

decompose the complex hypotheses, before they are used by the axiom rule: the
left rules of Sequent Calculus. However, this is still not sufficient to eliminate the
elimination rules of Constructive Natural Deduction. For instance, the sequent
∀x(P (x) ∧ (P (f(x)) ⇒ Q)) � Q has a proof using elimination rules

axiom
Γ � ∀x (P (x) ∧ (P (f(x)) ⇒ Q)) ∀-elim

Γ � P (c) ∧ (P (f(c)) ⇒ Q) ∧-elim
Γ � P (f(c)) ⇒ Q

axiom
Γ � ∀x (P (x) ∧ (P (f(x)) ⇒ Q)) ∀-elim
Γ � P (f(c)) ∧ (P (f(f(c))) ⇒ Q) ∧-elim

Γ � P (f(c)) ⇒-elim
Γ � Q

where Γ = ∀x (P (x) ∧ (P (f(x)) ⇒ Q)), but none using introduction rules only.
So, we need to add a contraction rule, to use an hypothesis several times

Γ, A, A 	 G
contraction

Γ, A 	 G
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axiom P atomicΓ, P � P
Γ, A, A � G

contractionΓ, A � G

�-right
Γ � �

⊥-leftΓ, ⊥ � G
Γ, A, B � G ∧-leftΓ, A ∧ B � G

Γ � A Γ � B ∧-right
Γ � A ∧ B

Γ, A � G Γ, B � G ∨-leftΓ, A ∨ B � G
Γ � A ∨-right

Γ � A ∨ B
Γ � B ∨-right

Γ � A ∨ B
Γ � A Γ, B � G ⇒-leftΓ, A ⇒ B � G

Γ, A � B ⇒-right
Γ � A ⇒ B

Γ, (t/x)A � G ∀-leftΓ, ∀xA � G
Γ � A ∀-right if x not free in Γ

Γ � ∀xA
Γ, A � G ∃-left if x not free in Γ, G

Γ, ∃x A � G
Γ � (t/x)A ∃-right
Γ � ∃x A

Fig. 4. Gentzen style Sequent Calculus: the system G

To prove that the elimination rules of Natural Deduction can now be eliminated,
we prove, using Gentzen’s theorem [8], that they are admissible in the system
G (Fig. 4), the Gentzen style Sequent Calculus, obtained by dropping the elimi-
nation rules of Constructive Natural Deduction. In this system, all the rules are
introduction rules, except the contraction rule. The system G does not allow to
prove the decidability of any larger fragment of Constructive Predicate Logic,
but it is the basis of the two systems presented in the Sects. 5.3 and 5.4.

5.3 Eliminating the Contraction Rule: Kleene Style Sequent
Calculus

In the system G, the proof
ρ

Γ, ∀x A, (t/x)A 	 B ∀-left
Γ, ∀x A, ∀x A 	 B

contraction
Γ, ∀x A 	 B

is a general cut and we may replace it by the application of the derivable rule

ρ

Γ, ∀x A, (t/x)A 	 B
contr-∀-left

Γ, ∀x A 	 B

which is a rule à la Kleene. The other general cuts yields similar derivable
rules. But, as noticed by Kleene, the derivable rules for the contradiction, the
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axiom P atomicΓ, P � P

�-right
Γ � �

⊥-leftΓ, ⊥ � G
Γ, A, B � G ∧-leftΓ, A ∧ B � G

Γ � A Γ � B ∧-right
Γ � A ∧ B

Γ, A � G Γ, B � G ∨-leftΓ, A ∨ B � G
Γ � A ∨-right

Γ � A ∨ B
Γ � B ∨-right

Γ � A ∨ B
Γ, A � B ⇒-right

Γ � A ⇒ B
Γ, A ⇒ B � A Γ, B � G

contr-⇒-leftΓ, A ⇒ B � G
Γ � A ∀-right if x not free in Γ

Γ � ∀x A
Γ, ∀x A, (t/x)A � G

contr-∀-leftΓ, ∀x A � G
Γ, A � G ∃-left if x not free in Γ, G

Γ, ∃x A � G
Γ � (t/x)A ∃-right
Γ � ∃x A

Fig. 5. Kleene style Sequent Calculus: the system K

conjunction, the disjunction and the existential quantifier can be dropped, while
that for the implication can be simplified to

Γ, A ⇒ B 	 A Γ, B 	 G
contr-⇒-left

Γ, A ⇒ B 	 G

The rules ⇒-left and ∀-left of the system G, that are subsumed by the rules contr-
⇒-left and contr-∀-left, can be also dropped. There are also other general cuts,
where the last rule is a contraction and the rule above is an introduction applied
to another proposition, but these cuts can be eliminated without introducing
any extra rule. In other words, after applying the contraction rule, we can focus
on the contracted proposition [5].

We get this way the system K (Fig. 5). In this system, all rules are introduc-
tion rules, except the rules contr-⇒-left and contr-∀-left. The system K plus the
contraction rule is obviously sound and complete with respect to the system G.
To prove that the contraction rule can be eliminated from it, and hence the sys-
tem K also is sound and complete with respect to the system G, we prove the
admissibility of the contraction rule in the system K—see the long version of the
paper for the full proof. The system K gives the decidability of a larger frag-
ment of Constructive Predicate Logic, where the implication and the universal
quantifier have no negative occurrences.

5.4 Eliminating the Contr-⇒-left Rule: Vorob’ev-Hudelmaier-
Dyckhoff-Negri Style Sequent Calculus

In order to eliminate the contr-⇒-left rule, we consider the general cuts where a
sequent Γ,A ⇒ B � G is proved with a contr-⇒-left rule whose major premise
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axiom P atomicΓ, P � P

�-right
Γ � �

⊥-leftΓ, ⊥ � G
Γ, A, B � G ∧-leftΓ, A ∧ B � G

Γ � A Γ � B ∧-right
Γ � A ∧ B

Γ, A � G Γ, B � G ∨-leftΓ, A ∨ B � G
Γ � A ∨-right

Γ � A ∨ B
Γ � B ∨-right

Γ � A ∨ B
Γ, P, B � G ⇒-leftaxiomΓ, P, P ⇒ B � G
Γ, B � G ⇒-left�Γ, � ⇒ B � G

Γ, C ⇒ B � C Γ, D ⇒ B � D Γ, B � G ⇒-left∧Γ, (C ∧ D) ⇒ B � G
Γ, C ⇒ B, D ⇒ B � C Γ, B � G ⇒-left∨Γ, (C ∨ D) ⇒ B � G
Γ, C ⇒ B, D ⇒ B � D Γ, B � G ⇒-left∨Γ, (C ∨ D) ⇒ B � G

Γ, D ⇒ B, C � D Γ, B � G ⇒-left⇒Γ, (C ⇒ D) ⇒ B � G
Γ, (∀x C) ⇒ B � C Γ, B � G ⇒-left∀

x not free in Γ, BΓ, (∀xC) ⇒ B � G
Γ, (∃x C) ⇒ B � (t/x)C Γ, B � G ⇒-left∃Γ, (∃x C) ⇒ B � G

Γ, A � B ⇒-right
Γ � A ⇒ B
Γ � A ∀-right

x not free in ΓΓ � ∀xA
Γ, ∀xA, (t/x)A � G

contr-∀-leftΓ, ∀xA � G
Γ, A � G ∃-left

x not free in Γ, GΓ, ∃x A � G
Γ � (t/x)A ∃-right
Γ � ∃x A

Fig. 6. The system D

Γ,A ⇒ B � A is proved with an introduction rule, applied to the proposition
A. This leads to consider the various cases for A, that is hypotheses of the form
P ⇒ B, 
 ⇒ B, (C ∧ D) ⇒ B, (C ∨ D) ⇒ B, (C ⇒ D) ⇒ B, (∀x C) ⇒ B,
and (∃x C) ⇒ B. The case A = P , atomic, needs to be considered because the
premise Γ,A ⇒ B � A may be proved with the axiom rule, but the case ⊥ ⇒ B
does not, because there is no right rule for the symbol ⊥. This enumeration of
the various shapes of A is the base of the sequent calculi in the style of Vorob’ev,
Hudelmaier, Dyckhoff, and Negri [4,6,11,15].

We obtain this way several types of general cuts that can be eliminated by
introducing derivable rules. These rules can be simplified leading to the system
D (Fig. 6). The system D plus the contr-⇒-left rule is obviously sound and
complete with respect to the system K. To prove that the contr-⇒-left rule can
be eliminated, and hence the system D also is sound and complete with respect to
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the system K, we use a method similar to that of [6], and prove the admissibility
of the contr-⇒-left rule—see the long version of the paper for the full proof.

This system D gives the decidability of a larger fragment of Constructive
Predicate Logic containing all connectives, shallow universal and existential
quantifiers—that is quantifiers that occur under no implication at all—and neg-
ative existential quantifiers. This fragment contains the prenex fragment of Con-
structive Predicate Logic, that itself contains Constructive Propositional Logic.
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Abstract. The goal of this work is to enhance Internet security by
applying formal analysis of traffic attraction attacks on the BGP routing
protocol. BGP is the sole protocol used throughout the Internet for inter-
domain routing, hence its importance. In attraction attacks an attacker
sends false routing advertisements to gain attraction of extra traffic in
order to increase its revenue from customers, drop, tamper, or snoop on
the packets. Such attacks are most common on the inter-domain routing.

We use model checking to perform exhaustive search for attraction
attacks on BGP. This requires substantial reductions due to scalability
issues of the entire Internet topology. Therefore, we propose static meth-
ods to identify and automatically reduce Internet fragments of interest,
prior to using model checking.

We developed a method, called BGP-SA, for BGP Security Analy-
sis, which extracts and reduces fragments from the Internet. In order to
apply model checking, we model the BGP protocol and also model an
attacker with predefined capabilities. Our specifications allow to reveal
different types of attraction attacks. Using a model checking tool we
identify attacks as well as show that certain attraction scenarios are
impossible on the Internet under the modeled attacker capabilities.

1 Introduction

In this work we combine static examination and model checking to examine
fragments of the Internet and either identify possible attacks on their routing
protocol or prove that specific attacks are not possible.

The Internet is composed of Autonomous Systems (ASes). Each AS is admin-
istered by a single entity (such as an Internet service provider, or an enterprise)
and it may include dozens to many thousands of networks and routers. Inter-
domain routing determines through which ASes packets will traverse. Routing
on this level is handled throughout the Internet by a single routing protocol
called the Border Gateway Protocol [16] (BGP).

It is well known that the Internet is vulnerable to traffic attacks [4,9]. In such
attacks malicious Autonomous Systems manipulate BGP routing advertisements
in order to attract traffic to, or through, their AS networks. Attracting extra

c© Springer-Verlag Berlin Heidelberg 2015
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DOI: 10.1007/978-3-662-48899-7 9



Analyzing Internet Routing Security Using Model Checking 113

traffic enables the AS to increase revenue from customers, drop, tamper, or snoop
on the packets. In the recent past, there have been frequent occurrences of traffic
attraction attacks on the Internet [12,13,18–21]. Some of those attacks allowed
oppressive governments to block their citizens from accessing certain websites.
In other attacks the perpetrators eavesdropped or altered the communications
of others, while in different attacks spammers sent millions of emails from IP
addresses they do not own. In one type of attack scenario the traffic is diverted
through the attacker’s AS network and then forwarded to its real destination,
which allows the attacker to become a “man-in-the-middle” between the source of
the traffic and its final destination. Such attacks are called interception attacks. In
another type of attack scenario, the traffic is not forwarded to its real destination,
which allows the attacker to impersonate the real destination or simply block
access to it. Such attacks are called attraction attacks. In the sequel, when we
refer to any attack of these types we call it a traffic attack.

Our goal is to provide insights to where and how BGP traffic attacks are
possible. Note that BGP is the sole protocol used throughout the Internet for
inter-domain routing, hence its importance. We develop a method that exploits
model checking to systematically reveal BGP traffic attacks on the Internet, or
prove their absence under certain conditions. Our method is based on powerful
reductions and abstractions that allow model checking to explore relatively small
fragments of the Internet, yet obtain relevant results. Reductions are essential
as the Internet nowadays includes roughly 50, 000 ASes.

A fragment includes a destination and an attacker AS nodes. The goal of
the attacker is to attract traffic sent to the destination while the goal of normal
nodes is to direct the traffic to the destination.

In a normal mode of the BGP operation, when no attacker is present, an
AS node receives from some of its neighbors their choice of routing path to
the destination. When AS A announces a routing update to its neighbor AS B
consisting of a target node n and a path π, it means that A announces to B
that it is willing to carry packets destined to n from B, and that packets will
traverse over the path π. From the announced routing paths, the node chooses
its most preferred route (according to business relationship between the entities
that administer the ASes, length of path, etc.) and sends it further to some of
its neighbors. Its announced path may, in turn, influence the choice of preferred
paths of its neighbors. In contrast, an attacker may send its neighbors faulty
routing paths whose goal is to convince them and other AS nodes in the Internet
to route through the attacker on their way to the destination.

Our static examination investigates the announcements flowing throughout
the Internet. The basic idea is that if announcements cannot flow from one
part of the Internet to another then nodes in the first part cannot influence the
routing decisions of nodes in the second part. Our first reduction is thus based on
BGP policies that determine the flow of announcements in the Internet. Given a
destination and an attacker, we statically identify on the full Internet topology a
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self-contained fragment S that consists of a set of nodes, including the destination
and attacker. S is defined so that nodes in S may send announcements inside
and outside of S, but nodes outside of S never send announcements to nodes in
S. Thus, the routing choices of nodes in S are not influenced by routing choices
of the rest of the Internet.

We can now isolate S from the rest of the Internet and apply model checking
only to it in order to search for an attack strategy that attracts traffic to the
attacker. Since routing decisions in S are made autonomically, an attack strategy
found on S will attract the same nodes from S when the full Internet is consid-
ered. This result allows to significantly reduce the processing burden on model
checking while searching for attacks on the Internet. Similarly, if we show that
no attack strategy manages to attract traffic from certain victims in S then the
attacker will not manage to attract traffic from those victims in the full Internet
as well. Thus, by searching a small fragment we find attacks on the full Internet
or show their absence.

The second reduction we suggest is applied within a self-contained fragment S
to further reduce it. We statically identify nodes in S that for all BGP runs choose
the same route to the destination (that does not pass through the attacker),
regardless of the attacker’s behavior. Such nodes are considered safe with respect
to the destination and the attacker of S.

The advantage of this reduction is twofold. First, safe nodes can be safely
removed from the model, thus easing the burden on model checking. Second,
nodes that wish to improve their routing security may decide to route through
safe nodes, thus avoiding traffic attacks from this specific attacker. We further
elaborate on the latter in Sect. 8.

Our third reduction is based on an abstraction. We can statically identify
a routing-preserving set of nodes that all make the same routing choices. Such
a set can be replaced by a single node with similar behavior without changing
routing decisions of other nodes in the network.

Note that all three reductions are computed statically by investigating the
Internet topology and are therefore easy to compute.

We implemented our method, called BGP-SA, for BGP Security Analysis.
We first extracted from the Internet self-contained fragments, which are defined
by a destination and an attacker nodes, and applied reductions to them. We
chose the attacker and the destination nodes either arbitrarily or in order to
reconstruct known recent attacks. In order to apply model checking, we modeled
the BGP protocol for each AS node. We also modeled an attacker with predefined
capabilities. The BGP model is written in C. We considered several specifications
which allow to reveal different types of attacks. We ran IBM’s model checking
tool ExpliSAT [7] on self-contained, reduced fragments.

We found interception attacks. One of those attacks reconstructs a recent
known attack where Syria attracted traffic destined to YouTube [18]. In other
cases we showed that some attraction scenarios are impossible under the mod-
eled attacker capabilities. In the latter case, model checking could also reveal
additional safe nodes.

To summarize, the contributions of this paper are:
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– Defining and implementing aggressive reductions of the Internet. The resulting
(relatively small) self-contained fragments enable an automatic analysis.

– Developing an automatic analysis that can reveal possible attacks on the
Internet and prove that certain attacks are not possible.

– Identifying safe nodes that are not amenable to traffic attacks and can be
exploited to reduce vulnerability of other nodes in the Internet.

2 Related Work

There are some past works that use formal methods to analyze convergence
properties of BGP. [3] uses a static model of BGP path selection and analyzes
configurations of BGP policy. [2] uses static and dynamic models to reason about
BGP convergence. [17] analyzes convergence of routing policies with an SMT
solver. We use a different modeling to reason about traffic attraction scenarios
on the Internet. Our modeling implements runs of the protocol until stabilization,
includes an attacker, and is based on the routing policy used by most ASes on
the Internet. Our model includes parts of BGP that are most relevant to the
analysis of traffic attraction, and is based on the model presented in [9].

Reference [9] discusses the security of BGP and its vulnerability to differ-
ent attacks. It shows that an attacker may employ non-trivial and non-intuitive
attack strategies in order to maximize its gain. This was shown by giving anec-
dotal evidence (obtained manually) for each attack strategy in specific parts
of the Internet. In our work we develop reductions and use model checking to
systematically and automatically search for BGP traffic attacks on the Internet.

3 BGP Background

The routers and networks of the Internet are clustered into connected sets. Each
such set is called an autonomous system (AS). As of the end of 2014, there are
roughly 50,000 autonomous systems on the Internet. An AS is usually adminis-
tered by a single network operator, such as an ISP (Internet service provider), an
enterprise, a university, etc. Each AS has a predefined routing policy determined
by the network operator. An autonomous system is assigned a globally unique
number, sometimes called an Autonomous System Number (ASN).

Routing of data packets on the Internet works in two levels:

1. Inter-domain routing that determines through which ASes the packets will
traverse. This level of routing is handled by a single routing protocol called
the Border Gateway Protocol [16] (BGP).

2. Intra-domain routing that determines the path taken by the packets within
each AS. This is determined independently in each AS. Each network operator
is free to choose any routing protocol to employ within its AS. The most
common examples of such routing protocols are OSPF [15], RIP [14], or
IS-IS [6].
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Note that BGP is the sole protocol used for inter-domain routing. In essence,
BGP is the glue that holds the Internet together and which allows to connect
between different ASes. The currently used version of BGP is number 4. The pro-
tocol’s standard is specified by the IETF (Internet Engineering Task Force) stan-
dardization body in [16]. The primary function of BGP is to exchange network
reachability information between different ASes. Each AS periodically announces
to all its neighboring ASes (i.e., the ASes to which it is directly connected) rout-
ing updates. A routing update consists of the identity of a target network and
a path that consists of a sequence of ASes that starts from the advertising AS
and leads to the AS in which the target network resides. Note that BGP adver-
tises routing updates pertaining to networks residing within ASes (not to ASes
themselves), while the routing path is at the AS level. When AS A advertises a
routing update to its neighbor AS B consisting of a target network n and a path
π, it means that A announces to B that it is willing to carry packets destined to
n from B, and that packets will traverse over the path π. This routing informa-
tion will then be propagated by AS B to its neighbors, after prepending itself
to π. The propagation of routing information by one AS to all its neighbors is
a matter of a policy determined by that AS. We shall elaborate on this in the
following.

Every AS stores the routing updates learned from its neighboring ASes in
a data structure called Adj-RIBs-In. If several routes were advertised for the
same target network by different neighboring ASes, then the AS must choose its
most preferable one. Once a route is chosen all packets destined to that target
network will be routed via the neighboring AS that announced the chosen route.
The chosen routes for all target networks on the Internet are stored in a data
structure called Loc-RIB. Choosing the most preferable route is a matter of
policy specific to each AS. In this paper we call it a preference policy.

As noted above, each AS propagates to its neighbors the routing updates
it receives. Only routes within the Loc-RIB may be propagated. Namely, an
AS can only propagate a route it has chosen as its most preferable one. Before
propagating a route the AS must prepend itself to that route. An AS may choose
a subset of its neighbors to which a route is propagated. This is a matter of policy
specific to each AS. We call it an export policy.

Preference and Export Policies. As noted above, the preference and export
policies are a local matter for each AS determined by the network operator.
These policies usually abide by business relationships and commercial agree-
ments between the different network operators. While in reality there are many
types of business relationships and agreements, the following two relationships
are widely believed to capture the majority of the economic relationships [8].

– Customer-provider – in such a relationship the customer pays the provider
for connectivity. Usually, the provider AS is larger and better connected than
the customer AS. For example, the AS administered by Sprint is a provider
of the AS of Xerox corporation. Xerox pays money to Sprint for connecting
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Xerox to the rest of the Internet through Sprint. In this paper we denote this
kind of relationship with arrow from customer to provider.

– Peer-peer – in such a relationship the two peer ASes agree to transit each
other’s traffic at no cost. Usually, the two ASes are of comparable size and
connectivity. For example, the ASes administered by Sprint and NTT are
peers. Each provides the other connectivity to parts of the Internet it may
not have access to. In this paper we denote this kind of relationship with an
undirected line between the two ASes.

Based on the above business relationships the following is a well-accepted model
for the preference and export policies [8].

Preference Policy. This policy is based on the following simple rationale. An AS
has an economic incentive to prefer forwarding traffic via customer (that pays
him) over a peer (where no money is exchanged) over a provider (that he must
pay). Combined with the fact that routing must be loop free and preferably on
short routes the following policy is defined:

1. Reject a routing update that contains a route if the AS itself already appears
on the announced route.

2. Prefer routes that were announced by a customer over routes announced by
a peer over routes announced by a provider.

3. Among the most preferable routes choose the shortest ones, i.e., the ones
which traverse the fewest ASes.

4. If there are multiple such paths, choose the one that was announced by the
AS with the lowest ASN.

Export Policy. This policy is based on the following simple rationale. An AS is
willing to carry traffic to or from other ASes only if it gets paid to do so. Based
on this rationale the following policy is defined:

– AS B will announce to AS A a route via AS C if and only if at least one of
A and C are customers of B.

To illustrate the above policies consider the topology depicted in Fig. 1. Let us
consider the routing of AS 9 to AS 0. There are three possible paths: (9,3,2,1,0),
(9,4,5,0), and (9,7,1,0). Due to the above preference policy 9 will favor the first
route over the second route which is favored over the third route. This is because
the first route is announced by a customer AS (i.e., 3), while the second and third
routes are announced by a peer (4) and provider (7) ASes, respectively. Note that
the chosen route (9,3,2,1,0) will be propagated to 7 and 4, according to the above
export policy.

4 BGP Modeling and Specifications

In this paper we use a BGP standard model acceptable in the literature [9]
to facilitate the analysis of traffic attacks using false route advertisements.
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The model includes all the relevant parts of the protocol that deal with the
dissemination and processing of route advertisements. In particular, the mecha-
nisms of route distribution and route preference are modeled, including malicious
routes originated by an attacker.

We assume a single destination, called Dest , such that the other ASes want
to send traffic to a target network within Dest . We can focus on a single des-
tination because routing announcements referring to different destinations flow
independently of each other. Namely, the routing to one destination does not
influence the routing to another destination. As a result, in our model a routing
update does not include the identity of the target network.

Fig. 1. BGP network example

Modeling the BGP Network. A
BGP network N is a tuple N =
(Nodes,Links ,Dest ,Attacker) where Nodes
is a set of Autonomous System (AS) nodes
in the network graph. Links is a set of
node pairs with one of the following types:
customer-provider or peer-to-peer, repre-
senting the business relationships between
ASes in the network. Dest is an AS from
Nodes representing a single destination node
that contains the target network to which all
other nodes build routing paths. Attacker
is a node from Nodes representing an AS
that can send false routing advertisements
to achieve traffic attraction or interception.

Dest and the Attacker are called the orig-
inators of N . All other nodes are called reg-
ular nodes.

Consider the BGP network presented in Fig. 1. Nodes = {0, 1, . . . 9}, Links
consists of customer-provider links such as (1 → 2) and (9 → 7), and also peer-
to-peer links such as (4 − 9) and (1 − 7).

A path in N is a sequence π = (n1, . . . , nk) of nodes in Nodes, such that for
every 1 ≤ i < k, ni and ni+1 are connected by an edge (of any kind) from Links .

Local States and Global Configurations. The local state of a regular AS n
consists of:

– A message queue Q(n) containing incoming route announcements.
– A Routing Information Base RIB(n) containing a set of possible routes to

Dest . The most preferred route is denoted chosen(n).

A (global) configuration of N consists of the local states of all nodes.
Next we define a run of the BGP protocol on network N . A run starts from

an initial configuration in which all queues and RIBs are empty. Initially Dest
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sends announcements to all its neighbors. The run terminates after all nodes in
N terminate their run and their queues are empty. In particular, the originators
have already sent out all their announcements. The final configuration of a run
is called stable.

We often will be interested in referring to export actions along a run. We
denote by export(n, n′) the action of node n exporting an announcement to its
neighbor n′.

4.1 Attack Definitions and Specifications

Attacker Goal. The goal of the attacker in our model is to achieve traffic
attraction or interception. We say that a node n is attracted by the attacker if
in the stable configuration chosen(n) is a path on which the attacker appears.
A node n is intercepted by the attacker if it is attracted, and in addition the
attacker has a routing path to the destination.

Successful Attack. A successful attack is a BGP run such that its final stable
configuration satisfies the attacker goal. The attack strategy can be represented
by the sequence of actions preformed by the attacker during the attack, where
each of its action contains the sent announcement and a set of neighbors to which
it was sent.

Normal Outcome. Is the final routing choices of all ASes in N when the
attacker acts like a regular AS.

Trivial Attack Strategy. In the trivial strategy the attacker sends a false
advertisement to all its neighbors and announces that the target network is
located within its own AS.

Specifications. To measure how successful a traffic attraction or interception
attack is, we suggest specifications that compare the result of the attack to the
normal outcome of the protocol run and to the result of the trivial attack, when
applicable. We define specifications of traffic attraction or interception from any
victim as follows: if the attacker can attract (or intercept) traffic from any victim,
while it fails to do so in the normal run and the trivial attack, the attraction (or
interception) specification is satisfied. We demonstrate how the specification is
implemented in our model on Sect. 6.3.

5 Reductions and Abstractions

The goal of our reductions is to obtain a manageable sized fragment of the
large network which is suitable for identifying BGP traffic attacks or show their
absence.
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5.1 Self-contained Fragments

The extraction of a self-contained fragment is our main reduction that signifi-
cantly reduces the initial network, such as the full Internet topology. The reduc-
tion is based on preserving the flow of announcements in the network during a
BGP run. The following is a central notion in our analysis of the flow. It directly
follows from the export policy (see Sect. 3). A path π = (n1, . . . , nk) in N is valid
if n1 is an originating node, no node is repeated on π, and for every 1 < i < k,
at least one of ni−1 and ni+1 is a customer of ni. Further, no ni is an origi-
nating node except n1 and possibly nk. Examples of valid paths in network N
of Fig. 1 are (0, 5, 4, 6, 8) and (0, 5, 4, 9, 3, 2, 1). Note that (0, 5, 4, 6, 8, 7) is not a
valid path, since both 6 and 7 are not customers of 8. The following is a key
observation about valid paths.

Lemma 1. If there is no valid path in N with edge from node n to node n′ then
there is no run in N along which export(n, n′) is performed.

Note, however, that the contrary is not true. There might be an edge (n, n′) on
a valid path but still no export(n, n′) is performed. This is due to the preference
policy of nodes.

We say that n cannot export to n′ if there is no run in which the action
export(n, n′) is performed.

Let N be a network and let S ⊆ Nodes be a subset of its nodes that includes
all originators of N . S is a self-contained fragment of N if for every n ∈ (Nodes \
S), n cannot export to any n′ ∈ S. This means that nodes outside of S cannot
change routing decisions of nodes in S.

The following lemma describes the significance of self-contained fragments.

Lemma 2. Let N be a network and let S be a self-contained fragment of N .
Then, any traffic attack found on S can occur on N as well. Moreover, if we
prove that a traffic attack is not possible in S then the corresponding attack is
not possible in N as well.

The lemma implies that instead of searching a huge network N (such as the
Internet) we can identify a (relatively small) self-contained fragment, isolate it
from the rest of the network, and search for possible attacks on it. Assume an
attacker (in S) can attract traffic from a node n′ in S. Then since nodes outside
of S do not send n′ alternative routing options, they cannot “convince” n′ to
change its routing choice and avoid the route through the attacker. Thus, a traffic
attack which is successful in S is also successful in N . Similarly, if a certain node
is definitely not routing through the attacker in S then the same holds in N
as well.

Fragment Importance. Following Lemma 2 , it should be noted that the
fragment concept is of great importance for applying significant reductions on
BGP networks. The set of announcements that a node within the fragment can
receive during any BGP run with an arbitrary attacker on the whole Internet
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is equal to its counterpart on a similar run that is applied to the fragment
only. Therefore, the set of chosen routing paths within the fragment is equal as
well, due to the deterministic preference policy of each node. Thus, the task of
applying model checking on the whole Internet is reduced to applying it on a self-
contained fragment when searching for BGP traffic attacks with our suggested
specifications. Additionally, the fragment concept may be useful for other BGP-
based formal analyses that require substantial reductions on large networks.

Computing Self-contained Fragments. Given a network N = (Nodes,
Links ,Dest ,Attacker), we describe the computation of a set of nodes which
forms a self-contained fragment. The resulting S includes Dest and Attacker
and excludes some of N ’s nodes that cannot export any announcement to S.

Initially, only the set of originators O = {Dest ,Attacker} and their neighbors
are in S. A node c outside of S is inserted to S if c is a neighbor of some n ∈ S,
and c is on a valid path from some originator in O to n. The algorithm terminates
when for every c �∈ S which is a neighbor of some n ∈ S, c is not on a valid path
from an originator to n and therefore (by Lemma 1) c cannot export to n.

Example for a Self-contained Fragment Extraction. Consider the 10-
nodes-sized network, presented in part A of Fig. 2. In practice the initial network
can be much larger. Applying the fragment extraction algorithm results in:

1. Initialization: Insert O and their neighbors. S = {22561, 48685, 209, 25934,
6677}

2. Add c = 3257, due to valid path : (o = 22561, 209, 3257, n = 6677)
3. Add c = 5580 , due to valid path : (o = 22561, 209, 5580, n = 25934)

The remaining nodes are not added. For example, 3303 does not appear
on any valid path in the original network, and is therefore dropped during the
construction of a self-contained fragment. After applying this phase we remain
with 7 nodes as presented in part B of Fig. 2.

5.2 Definite Routing Choice

In this reduction we identify nodes that never route via the attacker. If for all
runs of BGP on a network N , a node n chooses to route through a specific path π
originated by Dest that does not pass through the attacker, then π is the definite
routing choice of n, denoted drc(n). We consider such nodes as safe, since they
cannot be attracted by the attacker.

For example, in Fig. 1, drc(5) = (0) and drc(4) = (5, 0). Node 5 is a neighbor
of Dest and its link to Dest is more preferred than its other link. Therefore, since
the announcement from Dest is guaranteed to be sent to 5, it will always prefer
this path regardless of other paths it might get from 4. For a similar reason, and
since 5 is guaranteed to export its path to 4, node 4 will always prefer the route
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Fig. 2. Fragment Example. The grey node 48685 is the attacker. The yellow node
22561 is the destination. The thick lines in part A represent the arrow direction of the
customer-provider links (Color figure online).

via 5. On the other hand, drc(9) is undefined since on different runs its choice
of routing may change as a result of the announcements sent by the attacker
(which may change from run to run).

drc(n), when defined, is chosen(n) in every run, regardless of the attacker’s
actions. Consequently, the export actions of n are also determined. We can there-
fore eliminate such n from our network and initiate a BGP run from a configura-
tion in which the results of its export is already in the queues of the appropriate
neighbors. This may significantly reduce the network size to which model check-
ing is applied.

5.3 Routing-Preserving Path

Another source of reduction is the abstraction of routing-preserving paths.
A path π = (n1, . . . , nk) is routing-preserving if for every run r of N , in the final
(stable) configuration of r one of the two cases holds: either for all 1 < i ≤ k, ni

chooses to route through ni−1 , or for all 1 ≤ i < k, ni chooses to route through
ni+1.

Intuitively, for every run of the protocol, the nodes on a routing-preserving
path all agree on the same route to the destination. As a result, we can replace
such a path with a single node (an abstraction of the path) without changing
the routing of other nodes in the network. The protocol of an abstract node
is adjusted such that it exports announcements with lengths that match the
number of nodes in the path it represents. An example of a routing-preserving
path in Fig. 1 is (2, 3, 9).

6 The BGP-SA Method

Our suggested method, called BGP-SA, for BGP Security Analysis, uses reduc-
tions and model checking to apply a formal analysis of BGP attraction attacks
on a large network topology. We use model checking to perform a systematic
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Fig. 3. The BGP-SA method

search for traffic attacks. A systematic search is essential in order to reveal
non-trivial attraction strategies on topologies from the Internet. It has a major
advantage over simple testing techniques that randomly search for attacks. The
model checker we use can perform full verification, thus it can also prove that
no traffic attack is possible under certain conditions.

The BGP-SA method is composed of several stages, as depicted in Fig. 3.
Below we describe them in details.

6.1 Reducing the Network Topology

Fig. 4. Partition of node types in
the extracted fragment

The input to the BGP-SA method consists
of the full network topology, the chosen
attacker and destination ASN, and the cho-
sen specification. Given this input, we first
extract a self-contained fragment and apply
additional reductions and abstractions. (see
square 1 of Fig. 3). The extraction and reduc-
tion algorithms are explained in Sect. 5. The
output is a reduced fragment that contains
the nodes within the extracted fragment S,
without those for which drc is defined. (See
Fig. 4).

6.2 Simulating the Trivial Attack

Here we explain items 2–3 of Fig. 3. Given a reduced fragment, we run a simula-
tion of the trivial attack on it. If the chosen specification is traffic attraction and
if all the nodes in the reduced fragment are trivially attracted, then the attacker
cannot improve its attraction results. If the chosen specification is traffic inter-
ception and if the trivial attack satisfies the interception condition additionally
to attracting all nodes in the reduced fragment, then again the attacker cannot
improve its attraction results.
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In both cases it is considered a proof (denoted BT-proof for Best Trivial
attraction proof) that within the fragment the attacker does not have a strategy
which is better than the trivial one. When BT-proof is obtained, the analysis is
terminated and model checking is not needed. Otherwise, the nodes of interest for
searching attraction scenarios are the remaining nodes that are neither trivially
attracted nor have a defined drc, as presented in Fig. 4.

6.3 Generating the C Model

Given the reduced fragment and the chosen specification, we generate a model
written in C on which the analysis is applied (see square 4 of Fig. 3). Code 1.1-
1.3 depicts a pseudo-code of the generated code in high level, and below we give
more details of it.

– Code 1.1 describes the procedures that implement nodes in our model. AS
Proc is the procedure of a regular AS. Its path preference and export policy are
as explained in Sect. 3. The attacker has two procedures: Arbitrary Attacker
Proc is the procedure of an attacker that originates arbitrary path announce-
ments and sends them to arbitrary neighbors. Trivial Attacker Proc is the
procedure of an attacker that applies the trivial attack and announces itself
as the destination to all its neighbors. Dest Proc is the procedure of Dest , in
which it announces itself as the destination to all its neighbors.

– Code 1.2 describes the function implementing a BGP run in our model. The
input parameter of this function is the type of run: normal – where the attacker
acts as a regular AS, trivial – where the attacker applies the trivial attack, or
arbitrary - where the attacker acts arbitrarily. The function is composed of a
loop, where at each loop iteration each one of the AS procedures is activated
once. A stable state is achieved when no message is sent by any AS and
all the queues are empty. Convergence is guaranteed [11] due to the routing
policies that are used in the model and the finite number of announcements
that can be sent by the attacker. We bound the number of announcements
originated by the attacker by letting it export to each neighbor at most one
announcement. The function returns the routing results at the stable state
which include chosen(n) for each node n in the netwrok, where chosen(n) is
the preferred route of n.

– Code 1.3 describes the main function in the model and the assertion state-
ment that implements the specification. The main function is composed of
three calls to the function BGP run, with the three types of run: normal,
trivial, and arbitrary. The routing results of the three runs are saved. Then,
to implement the attraction specification, a boolean flag is set true if there
exists some victim that is attracted by the attacker only in the arbitrary
run, and not in the normal and trivial runs. The assertion requires that this
boolean flag is false. Therefore, if the assertion is violated, the violating run
represents a succesful attraction attack. To implement the interception specifi-
cation, a constraint that the attacker has a routing path to the real destination
should be added.
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Code 1.3. Main Function with Attraction Specification
Rout ing Results r e s u l t s [ 3 ] ;
int main (){

r e s u l t s [ normal ] = BGP run( normal ) ;
r e s u l t s [ t r i v i a l ] = BGP run( t r i v i a l ) ;
r e s u l t s [ a rb i t r a r y ] = BGP run( a rb i t r a r y ) ;
bool isSomeVictimAttracted = f a l s e ;
for (AS in fragment ){

i f (AS routes v ia a t tacke r in a rb i t r a r y run and not
in normal and t r i v i a l runs )
isSomeVictimAttracted = true ;

}
a s s e r t ( ! isSomeVictimAttracted ) ;

}

6.4 Applying Model Checking to the Implemented Model
Using ExpliSAT

Here we explain squares 5–7 of Fig. 3. After the C code of the model is generated
on the fragment, we apply model checking using ExpliSAT [7]. The model checker
systematically scans all possible execution paths of the C program. If it finds
a run that violates the assertion, it returns a counterexample that represents a
successful attack. If the model checker terminates without any counterexample,
it is considered a proof that our attacker cannot perform the specified attack on
the fragment. This is denoted as MC-proof.

7 Experimental Results

We applied our BGP-SA method on Internet fragments and used IBM’s model
checking tool ExpliSAT [7] to search for traffic attacks. The model checker can
run on multiple cores. The experiments were performed on a 64-cores machine
with AMD Opteron(tm) Processor 6376, 125 GB RAM, and 64-bit Linux. The
fragments and all model implementations we used in our experiments are avail-
able at [1].

ExpliSAT Model Checker. ExpliSAT [7] verifies C programs containing
assumptions and assertions. To use ExpliSAT we implement our model in C. Our
specifications are negated and added as assertions on stable states. The model
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Table 1. Results of BGP-SA application on fragments extracted from the full internet
topology

Fragment
size
(#nodes)

Reduced
size
(#nodes)

Trivial
attrac-
tion
(#nodes)

Specification Result Time
(min)

Dest
ASN

Attacker
ASN

1 16 11 9 attraction BT proof - 31132 16987

2 17 6 4 attraction BT proof - 9314 7772

3 22 10 8 attraction BT proof - 11669 36291

4 29 9 5 attraction MC proof 1.5 29117 15137

5 15 13 10 attraction MC proof 1 12431 18491

6 36 18 7 attraction MC proof 17 19969 13537

7 69 27 17 attraction MC proof 340 8296 20091

8 15 13 invalid interception counterexample 0.1 12431 18491

9 28 10 invalid interception counterexample 0.5 19361 32977

10 80 48 invalid interception counterexample 13 9218 43571

11 81 31 invalid interception counterexample 9 37177 40473

12 114 30 invalid interception counterexample 18 36040 29386

13 71 68 65 interception N/A >12h 30894 1290

14 10 - 4 interception counterexample 0.1 - -

checker returns a counterexample if there is a violating run, and it can also per-
form full verification and automatically prove that no violating run is possible.

ExpliSAT combines explicit state model checking and SAT-based symbolic
model checking. It traverses every feasible execution path of the program, and
uses a SAT solver to verify assertions. It performs as many loop iterations as
needed, and therefore full verification is possible and no loop bounds are required.

7.1 Results on Internet Fragments

We performed experiments on self-contained fragments extracted from the full
Internet topology. The ASes links from the Internet are from [5] and are relevant
to October 2014.

Table 1 presents the results of applying our method. The fragments in lines
1–13 are based on randomly chosen destination and attacker from the Internet,
with the exception of line 12 which is obtained by choosing the attacker and
destination according to a recent attack where Syria attracted traffic destined
to Youtube [18]. Line 14 is explained in Sect. 7.2. The first two columns spec-
ify the number of nodes in the extracted self-contained fragment and in the
reduced fragment. The third column specifies the amount of nodes attracted
by the attacker on the trivial attack. The value is invalid if the specification is
interception and the trivial attack does not satisfy the interception condition,
by which the attacker should have an available routing path to the destination.
The specification we used for each instance appears on the fourth column, and is
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either attraction or interception, which correspond to the specifications defined
in Sect. 4.1. Note that in the interception specification, if the trivial attack fails
to satisfy the interception condition, we only compare the attraction to the nor-
mal outcome. The result column specifies any of the possible results that are
described in Sect. 6. The N/A result describes ExpiSAT runs that did not ter-
minate. The last two columns specify the chosen ASN from the Internet of the
destination and attacker nodes, from which the fragment was extracted.

The experiments show that the reductions we apply are significant. The sim-
ple BGP simulations of the trivial attack allow us to avoid applying model check-
ing on fragments in which the attacker manages to achieve optimal attraction
results by the trivial attack.

When we used ExpliSAT with the attraction specification, we got proofs
that no better attack strategy exists. It can be explained by the fact that the
trivial attack strategy can be considered most efficient in many cases. Consider
for instance line 4 on which we got a proof by ExpliSAT. It should be noted
that 2 nodes in the fragment are not trivially attracted and do not have definite
routing choices, but still there is no attack strategy capable of attracting traffic
from them. Thus, these two nodes are also considered safe, in addition to the
nodes with definite routing choices.

For the interception instances in lines 8–12 the trivial attack failed to achieve
the interception goal and ExpliSAT found simple interception attacks. Line 12
was performed on a fragment from a recent attack [18]. The fragment reduction
was significant in this case. We found that the trivial attack attracted 12 nodes
but did not satisfy the interception condition. The model checker found an attack
strategy that achieved interception and attracted 11 nodes. The attacker sent
false announcements to 3 of its 4 neighbors in the found interception attack.

7.2 Example Demonstrating Model Checking Advantages

Here we explain line 14 in the table. The network is taken from Fig. 1. The
network is a variation of the one presented in [9], where the goal was to show a
non-trivial interception attack. We did not apply our reductions on this network
topology.

In the normal outcome and trivial attack, the attacker fails to attract traffic
from AS8. In the attack strategy suggested in [9] the attacker avoids exporting
its path to AS2, and only exports it to AS7. The result is that AS7 chooses a
shorter path directly via the attacker, and as a result AS8 prefers this shorter
path. Thus, the attacker manages to apply traffic interception on AS8.

Line 14 of Table 1 specifies the experiment we performed on this topol-
ogy with our BGP model. ExpliSAT automatically found a counterexample
with greater attraction. It returned a counterexample in which the attacker
exported announcements both to AS7 and to AS2. The announcement exported
to AS2 contained AS9 on the sent path. Therefore, AS9 ignored that announce-
ment, and did not export it to AS7. Thus, AS7 chose the shorter path via the
attacker. Eventually, the attacker managed to achieve attraction from AS8, AS2,
and AS3. Note that with the strategy suggested by [9] only AS8 is attracted.
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An alternative attack that could attract even more nodes to the attacker is to
export to AS2 an announcement that contains AS7 instead of AS9 on the sent
path. That way it can achieve attraction from AS9 as well.

From the above analysis we may conclude that by sending an announcement
that creates a loop an attacker can better control on where the propagation of
some path should be blocked in order to achieve better attraction results.

It should be noted that some versions of BGP are more secure [10] and may
prevent the attacker from sending paths that do not exist in the network. On
such versions the attacker cannot apply the loop strategy. Therefore, the loop
strategy may have an advantage over the no-export strategy only in the absence
of certain BGP security mechanisms.

Note that applying the fragment extraction and reductions would prevent
from getting the counterexample. However, by extending the specification and
defining that a scenario in which some node is routing via the attacker through
a shorter path is also considered a sucessful attack, we were able to find that
counterexample on the reduced topology as well. That shorter routing path
can potentially attract more nodes from outside the fragment. Given the coun-
terexample, a simulation can be applied on a larger topology. In our case, the
counterexample reveals that the routing path of AS7 via the attacker can be
shortened with respect to its length in the trivial attack, and a simulation of the
found attack on the larger topology reveals that AS8 is a new attracted node as
a result.

8 Conclusion

In this work we propose a method to reveal possible attacks on Internet routing
or prove that certain attacks are not possible. We develop substantial reduction
techniques that enable to apply model checking in order to formally analyze
BGP traffic attacks on the Internet. The use of model checking has a major
advantage due to the systematic search, by which it can reveal unexpected or
more sophisticated attacks. This is demonstrated in Sect. 7.2, where during an
experiment that was done to reconstruct a known attack, the model checker
automatically found a different attack strategy that achieved better attraction
results than expected.

One obvious implication of our work is a better understanding of the vul-
nerability of the Internet to traffic attacks. Nonetheless, our suggested method
can also be practical and useful for a network operator to increase its resilience
to such attacks. In some cases a network operator may fear a traffic attack
from potential attacking ASes. For example, telecommunication companies may
fear their traffic be attracted by ASes that belong to adversary governments.
Such governments can exploit these attacks in order to eavesdrop on traffic of
consumers of those telecommunication companies. In such cases, the network
operator can use our method in order to discover the identity of the ASes which
the attacking AS can not attract traffic from. Once these safe ASes are known
the network operator may form links to these ASes and prefer routes announced
by those ASes, thereby eliminate the chances to be attracted by the attacker.
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Abstract. The most dangerous security-related software errors, accord-
ing to CWE 2011, are those leading to injection attacks — user-provided
data that result in undesired database access and updates (SQL-injec-

tions), dynamic generation of web pages (cross-site scripting-injections),
redirection to user-specified web pages (redirect-injections), execution
of OS commands (command-injections), class loading of user-specified
classes (reflection-injections), and many others. This paper describes a
flow- and context-sensitive static analysis that automatically identifies if
and where injections of tainted data can occur in a program. The analy-
sis models explicit flows of tainted data. Its notion of taintedness applies
also to reference (non-primitive) types dynamically allocated in the heap,
and is object-sensitive and field-sensitive. The analysis works by translat-
ing the program into Boolean formulas that model all possible flows. We
implemented it within the Julia analyzer for Java and Android. Julia
found injection security vulnerabilities in the Internet banking service
and in the customer relationship management of a large Italian bank.

1 Introduction

Dynamic web pages and web services react to user input coming from the net-
work, and this introduces the possibility of an attacker injecting special text
that induces unsafe, unexpected behaviors of the program. Injection attacks are
considered the most dangerous software error [19] and can cause free database
access and corruption, forging of web pages, loading of classes, denial-of-service,
and arbitrary execution of commands. Most analyses to spot such attacks are
dynamic and unsound (see Sect. 3).

This article defines a sound static analysis that identifies if and where a
Java bytecode program lets data flow from tainted user input (including servlet
requests) into critical operations that might give rise to injections. Data flow is a
prerequisite to injections, but the user of the analysis must later gage the actual
risk of the flow. Namely, analysis approximations might lead to false alarms and
proper input validation might make actual flows harmless.

Our analysis works by translating Java bytecode into Boolean formulas that
express all possible explicit flows of tainted data. The choice of Java bytecode
c© Springer-Verlag Berlin Heidelberg 2015
M. Davis et al. (Eds.): LPAR-20 2015, LNCS 9450, pp. 130–145, 2015.
DOI: 10.1007/978-3-662-48899-7 10



Boolean Formulas for the Static Identification of Injection Attacks in Java 131

simplifies the semantics and its abstraction (many high-level constructs must
not be explicitly considered) and lets us analyze programs whose source code
is not available, as is typically the case in industrial contexts that use software
developed by third parties, such as banks.

Our contributions are the following:

– an object-sensitive formalization of taintedness for reference types, based on
reachability of tainted information in memory;

– a flow-, context- and field-sensitive static analysis for explicit flows of tainted
information based on that notion of taintedness, which is able to deal with
data dynamically allocated in the heap (not just primitive values);

– its implementation inside the Julia analyzer, through binary decision dia-
grams, and its experimental evaluation.

Section 6 shows that our analysis can analyze large real Java software. Com-
pared to other tools available on the market, ours is the only one that is sound,
yet precise and efficient. Our analysis is limited to explicit flows [25]; as is
common in the literature, it does not yet consider implicit flows (arising from
conditional tests) nor hidden flows (such as timing channels). In particular, con-
sidering implicit flows is relatively simple future work (we could apply our previ-
ous work [10], unchanged) but would likely degrade the precision of the analysis
of real software.

This article is organized as follows. Section 2 gives an example of injection
and clarifies the importance of a new notion of taintedness for values of reference
type. Section 3 discusses related work. Section 4 defines a concrete semantics for
Java bytecode. Section 5 defines our new object-sensitive notion of taintedness
for values of reference type and its use to induce an object- and field-sensitive
abstract interpretation of the concrete semantics. Section 6 presents experiments
with the implementation of the analysis. Extended definitions and proofs are in
a technical report [8].

2 Example

Figure 1 is a Java servlet that suffers from SQL-injection and cross-site scripting-
injection attacks. (For brevity, the figure omits exception-handling code.)

A servlet (lines 1 and 2) is code that listens to HTTP network connec-
tion requests, retrieves its parameters, and runs some code in response to each
request. The response (line 2) may be presented as a web page, XML, or JSON.
This is a standard way of implementing dynamic web pages and web services. The
user of a servlet connects to the web site and provides the parameters through
the URL, as in http://my.site.com/myServlet?user=spoto. Code retrieves
these through the getParameter method (line 5). Lines 9 and 10 establish a
connection to the database of the application, which is assumed to define a table
User (line 27) of the users of the service. Line 27 builds an SQL query from the
user name provided as parameter. This query is reported to the response (line 15)
and executed (line 17). The result is a relational table of all users matching the
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1 public class MyServlet extends HttpServlet {
2 protected void doGet(HttpServletRequest request, HttpServletResponse response) {
3 response.setContentType("text/html;charset=UTF-8");
4
5 String user = request.getParameter("user"), url = "jdbc:mysql://192.168.2.128:3306/";
6 String dbName = "anvayaV2", driver = "com.mysql.jdbc.Driver";
7 String userName = "root", password = "";
8
9 Class.forName(driver).newInstance();

10 try (Connection conn = DriverManager.getConnection(url + dbName, userName, password);
11 PrintWriter out = response.getWriter()) {
12
13 Statement st = conn.createStatement();
14 String query = wrapQuery(user);
15 out.println("Query : " + query);
16
17 ResultSet res = st.executeQuery(query);
18 out.println("Results:");
19 while (res.next())
20 out.println("\t\t" + res.getString("address"));
21
22 st.executeQuery(wrapQuery("dummy"));
23 }
24 }
25
26 private String wrapQuery(String s) {
27 return "SELECT * FROM User WHERE userId=’" + s + "’";
28 }
29 }

Fig. 1. A Java servlet that suffers from SQL and cross-site scripting-injections.

given criterion (the user parameter might be a specific name or a wildcard that
matches more users). This table is then printed to the response (lines 17–20).

The interesting point here is that the user of this servlet is completely free
to specify the value of the user parameter. In particular, she can provide a
string that actually lets line 17 run any possible database command, including
malicious commands that erase its content or insert new rows. For instance, if
the user supplies the string “’; DROP TABLE User; --” as user, the resulting
concatenation is an SQL command that erases the User table from the database.
In literature, this is known as an SQL-injection attack and follows from the fact
that user (tainted) input flows from the request source into the executeQuery
sink method. There is no SQL-injection at line 22, although it looks very much
like line 17, since the query there is not computed from user-provided input.

Another risk exists at lines 15 and 20. There, data is printed to the response
object, and is typically interpreted by the client as HTML contents. A malicious
user might have provided a user parameter that contains arbitrary HTML tags,
including tags that will let the client execute scripts (such as Javascript). This
might result in evil. For instance, if the user injects a crafted URL such as
“http://my.site.com/myServlet?user=<script>malicious</script>”, the
parameter user holds “<script>malicious</script>”. At line 15 this code is
sent to the user’s browser and interpreted as Javascript, running any malicious
Javascript. In literature, this is known as cross-site scripting-injection and fol-
lows from the fact that user (tainted) input from the request source flows into
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the sink output writer of the response object. The same might happen at line 20,
where the flow is more complex: in other parts of the application, the user might
save her address to the database and store malicious code instead; line 20 will
fetch this malicious code and send it to the browser of the client to run it.

Many kinds of injections exist. They arise from information flows from what
the user can specify (the parameter of the request, input from console, data on
a database) to specific methods, such as executeQuery (SQL-injection), print
(cross-site scripting-injection), reflection methods (that allow one to load any
class or execute any method and lead to a reflection-injection), execute (that
allows one to run any operating system command and leads to a command-
injection), etc. This article focuses on the identification of flows of tainted infor-
mation, not on the exact enumeration of sources and sinks. Our approach can
be instantiated from well-known lists of sources and sinks in the literature.

3 Related Work

The identification of possible injections and the inference of information flows
are well-studied topics. Nevertheless, no previous sound techniques work on real
Java code, even only for explicit flows. Most injection identification techniques
are dynamic and/or unsound. Existing static information-flow analyses are not
satisfactory for languages with reference types.

Identification of Injections. Data injections are security risks, so there is high
industrial and academic interest in their automatic identification. Here, we have
space to mention only the most recent works regarding SQL-injection. Almost
all techniques aim at the dynamic identification of the injection when it occurs
[7,12,14,18,21,28,30,35] or at the generation of test cases of attacks [1,17] or at
the specification of good coding practices [29].

By contrast, static analysis has the advantage of finding the vulnerabilities
before running the code, and a sound static analysis proves that injections only
occur where it issues a warning. A static analysis is sound if it finds all places
where an injection might occur (for instance, it must spot line 17 in Fig. 1); it
is precise if it minimizes the number of false alarms (for instance, it should not
issue a warning at line 22 in Fig. 1). Beyond Julia, static analyzers that iden-
tify injections in Java are FindBugs (http://findbugs.sourceforge.net), Google’s
CodePro Analytix (https://developers.google.com/java-dev-tools/codepro), and
HP Fortify SCA (on-demand web interface at https://trial.hpfod.com/Login).
These tools do not formalize the notion of taintedness (as we do in Definition 4).
For the example in Fig. 1, Julia is correct and precise: it warns at lines 15, 17,
and 20 but not at 22; FindBugs incorrectly warns at line 17 only; Fortify SCA
incorrectly warns at lines 15 and 17 only; CodePro Analytix warns at lines 15,
17, 20, and also, imprecisely, at the harmless line 22. Section 6 compares those
tools with Julia in more detail. We also cite FlowDroid [2], that however works
for Android packages, not on Java bytecode, and TAJ [33], that is part of a
commercial product. Neither comes with a soundness proof nor a definition of
taintedness for variables of reference type.

http://findbugs.sourceforge.net
https://developers.google.com/java-dev-tools/codepro
https://trial.hpfod.com/Login
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Modelling of Information Flow.Many static analyses model explicit and often
also implicit information flows [25] in Java-like or Java bytecode programs. There
are data/control-flow analyses [5,15,20,26]; type-based analyses [3,4,9,13,31,34]
and analyses based on abstract interpretation [10]. They are satisfactory for vari-
ables of primitive type but impractical for heap-allocated data of reference type,
such as strings. Most analyses [4,5,9,13,15,20,26,34] assume that the language
has only primitive types; others [3,10] are object-insensitive, i.e., for each field f ,
assume that a.f and b.f are both tainted or both untainted, regardless of the con-
tainer objects a and b. Even if a user specifies, by hand, which f is tainted (unrealis-
tic for thousands of fields, including those used in the libraries), object-insensitivity
leads to a very coarse abstraction that is industrially useless. Consider the String
class, which holds its contents inside a private final char[] value field. If any
string’s value field is tainted, then every string’s value field must be tainted, and
this leads to an alarm at every use of strings in a sensitive context in the program,
many of which may be false alarms. The problem applies to any data structure that
can carry tainted data, not just strings. Our analysis uses an object-sensitive and
deep notion of taintedness, that fits for heap-allocated data of reference type. It
can be considered as data-flow, formalized through abstract interpretation. This
has the advantage of providing its correctness proof in a formal and standard way.

4 Denotational Semantics of Java Bytecode

This section presents a denotational semantics for Java bytecode, which we will
use to define an abstraction for taintedness analysis (Sect. 5). The same semantics
has been used for nullness analysis [32] and has been proved equivalent [23] to
an operational semantics. The only difference is that, in this article, primitive
values are decorated with their taintedness.

We assume a Java bytecode program P given as a collection of graphs of basic
blocks of code, one for each method. Bytecodes that might throw exceptions
are linked to a handler starting with a catch, possibly followed by bytecodes
selecting the right kind of exception. For simplicity, we assume that the only
primitive type is int and the only reference types are classes; we only allow
instance fields and methods; and method parameters cannot be reassigned inside
their body. Our implementation handles full Java bytecode.

Definition 1 (Classes). The set of classes K is partially ordered w.r.t. the
subclass relation ≤. A type is an element of K ∪ {int}. A class κ ∈ K defines
instance fields κ.f : t (field f of type t defined in κ) and instance methods
κ.m(t1, . . . , tn) : t (method m with arguments of type t1, . . . , tn, returning a value
of type t, possibly void). We consider constructors as methods returning void.
If it does not introduce confusion, we write f and m for fields and methods.

A state provides values to program variables. Tainted values are computed from
servlet/user input; others are untainted. Taintedness for reference types (such as
string request in Fig. 1) will be defined later as a reachability property from
the reference (Definition 4); primitive tainted values are explicitly marked in the
state.
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Definition 2 (State). A value is an element of Z ∪ Z ∪ L ∪ {null}, where
Z are untainted integers, Z are tainted integers, and L is a set of locations.
A state is a triple 〈l || s || μ〉 where l are the values of the local variables, s the
values of the operand stack, which grows leftwards, and μ a memory that binds
locations to objects. The empty stack is written ε. Stack concatenation is ::with
s :: ε written as just s. An object o belongs to class o.κ ∈ K (is an instance of
o.κ) and maps identifiers (the fields f of o.κ and of its superclasses) into values
o.f . The set of states is Ξ. We write Ξi,j when we want to fix the number i of
local variables and j of stack elements. A value v has type t in a state 〈l || s || μ〉 if
v ∈ Z∪ Z and t = int, or v = null and t ∈ K, or v ∈ L, t ∈ K and μ(v).κ ≤ t.

Example 1. Let state σ = 〈[3, null, 4 , �] || 3 :: �′′ :: �′′ || μ〉 ∈ Ξ4,3, with μ =
[� �→ o, �′ �→ o′, �′′ �→ o′′], o.f = �′, o.g = 13, o′.g = 17 and o′′.g = 10.
Local 0 holds the integer 3 and local 2 holds the integer 4, marked as computed
from servlet/user input. The top of the stack holds 3, marked as computed from
servlet/user input. The next two stack elements are aliased to �′′. Location � is
bound to object o, whose field f holds �′ and whose field g holds the untainted
integer 13. Location �′ is bound to o′ whose field g holds a tainted integer 17 .
Location �′′ is bound to o′′ whose field g holds the untainted value 10.

The Java Virtual Machine (JVM) allows exceptions. Hence we distinguish
normal states σ ∈ Ξ, arising during the normal execution of a piece of code, from
exceptional states σ ∈ Ξ, arising just after a bytecode that throws an exception.
The latter have only one stack element, i.e., the location of the thrown exception
object, also in the presence of nested exception handlers [16]. The semantics of
a bytecode is then a denotation from an initial to a final state.

Definition 3 (JVM State and Denotation). The set of JVM states (from
now just states) with i local variables and j stack elements is Σi,j = Ξi,j ∪ Ξi,1.
A denotation is a partial map from an input or initial state to an output or final
state; the set of denotations is Δ or Δi1,j1→i2,j2=Σi1,j1→Σi2,j2 to fix the number
of local variables and stack elements. The sequential composition of δ1, δ2 ∈ Δ
is δ1; δ2 = λσ.δ2(δ1(σ)), which is undefined when δ1(σ) or δ2(δ1(σ)) is undefined.

In δ1; δ2, the idea is that δ1 describes the behaviour of an instruction ins1, δ2
that of an instruction ins2 and δ1; δ2 that of the execution of ins1 and then ins2.

At each program point, the number i of local variables and j of stack elements
and their types are statically known [16], hence we can assume the semantics of
the bytecodes undefined for input states of wrong sizes or types. Readers can find
the denotations of bytecode instructions in a technical report [8], together with
the construction of the concrete fixpoint collecting semantics of Java bytecode,
explicitly targeted at abstract interpretation, since it only requires to abstract
three concrete operators ;, ∪, and extend on ℘(Δ), i.e., on the subsets of Δ
and the denotation of each single bytecode distinct from call. The operator
extend plugs a method’s denotation at its calling point and implements call.
The concrete fixpoint computation is in general infinite, but its abstractions
converge in a finite number of steps if, as in Sect. 5, the abstract domain has no
infinite ascending chain.
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5 Taintedness Analysis

This section defines an abstract interpretation [6] of the concrete semantics of
Sect. 4, whose abstract domain is made of Boolean formulas whose models are con-
sistent with all possible ways of propagating taintedness in the concrete semantics.
The concrete semantics works over ℘(Δ) and is built from singletons (sets made
of a single δ ∈ Δ), one for each bytecode, with three operators ;, ∪, and extend .
Hence we define here correct abstractions of those sets and operators.

Our analysis assumes that three other analyses have been performed in
advance. (1) reach(v , v ′) is true if (the location held in) v′ is reachable from
(the location held in) v. (2) share(v, v′) is true if from v and v′ one can reach a
common location. (3) updatedM (lk) is true if some call in the program to method
M might ever modify an object reachable from local variable lk. All three analy-
ses are conservative overapproximations of the actual (undecidable) relations.
Our implementation computes these predicates as in [11,22,27], respectively.

Primitive values are explicitly marked as tainted (Definition 2), while tainted-
ness for references is indirectly defined in terms of reachability of tainted values.
Hence, this notion allows a.f and b.f to have distinct taintedness, depending of
the taintedness of variables a and b (object-sensitivity).

Definition 4 (Taintedness). Let v ∈ Z∪ Z ∪L∪{null} be a value and μ
a memory. The property of being tainted for v in μ is defined recursively as:
v ∈ Z or (v ∈ L and o = μ(v) and there is a field f such that o(f) is tainted
in μ).

A first abstraction step selects the variables that, in a state, hold tainted data.
It yields a logical model where a variable is true if it holds tainted data.

Definition 5 (Tainted Variables). Let σ ∈ Σi,j. Its tainted variables are

tainted(σ)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

{lk | l[k] is tainted in μ, 0≤k<i}∪{sk | vk is tainted in μ, 0≤k<j}
if σ = 〈l || vj−1 :: · · · ::v0 || μ〉

{lk | l[k] is tainted in μ, 0 ≤ k < i} ∪ {e}
if σ = 〈l || v0 || μ〉 and v0 is tainted in μ

{lk | l[k] is tainted in μ, 0 ≤ k < i}
if σ = 〈l || v0 || μ〉 and v0 is not tainted in μ.

Example 2. Consider σ from Example 1. We have tainted(σ) = {l2, l3, s2}, since
tainted data is reachable from both locations � and �′, but not from �′′.

To make the analysis flow-sensitive, distinct variables abstract the input
(marked with )̌ and output (marked with )̂ of a denotation. If S is a set of
identifiers, then Š = {v̌ | v ∈ S} and Ŝ = {v̂ | v ∈ S}. The abstract domain con-
tains Boolean formulas that constraint the relative taintedness of local variables
and stack elements. For instance, ľ1 → ŝ2 states that if local variable l1 is tainted
in the input of a denotation, then the stack element s2 is tainted in its output.
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(const v)
T
= U ∧ ¬ě ∧ ¬ê ∧ ¬ŝj (load k t)

T
= U ∧ ¬ě ∧ ¬ê ∧ (ľk ↔ ŝj)

(store k t)
T
= U ∧ ¬ě ∧ ¬ê ∧ (šj−1 ↔ l̂k) (add)

T
= U ∧ ¬ě ∧ ¬ê ∧ (ŝj−2 ↔ (šj−2 ∨ šj−1))

(throw κ)
T
= U ∧ ¬ě ∧ ê ∧ (ŝ0 → šj−1) (new κ)

T
= U ∧ ¬ě ∧ (¬ê → ¬ŝj) ∧ (ê → ¬ŝ0)

(catch)
T
= U ∧ ě ∧ ¬ê (getfield κ.f : t)

T
= U ∧ ¬ě ∧ (¬ê → (ŝj−1 → šj−1)) ∧ (ê → ¬ŝ0)

(putfield κ.f : t)
T
= ∧v∈LRj(v) ∧ (¬ê → ∧v∈SRj(v)) ∧ (ê → ¬ŝ0) ∧ ¬ě.

Fig. 2. Bytecode abstraction for taintedness, in a program point with j stack elements.
Bytecodes not reported in this figure are abstracted into the default U ∧ ¬ě ∧ ¬ê.

Definition 6 (Taintedness Abstract Domain T). Let i1, j1, i2, j2 ∈ N. The
taintedness abstract domain Ti1,j1→i2,j2 is the set of Boolean formulas over
{ě, ê}∪{ľk | 0 ≤ k < i1}∪{šk | 0 ≤ k < j1}∪{l̂k | 0 ≤ k < i2}∪{ŝk | 0 ≤ k < j2}
(modulo logical equivalence).

Example 3. φ=(ľ1 ↔ l̂1)∧(ľ2 ↔ l̂2)∧(ľ3 ↔ l̂3)∧¬ě∧¬ê∧(š0 ↔ l̂0)∈T4,1→4,0.

The concretization map γ states that a φ ∈ T abstracts those denotations
whose behavior, w.r.t. the propagation of taintedness, is a model of φ.

Proposition 1 (Abstract Interpretation). Ti1,j1→i2,j2 is an abstract inter-
pretation of ℘(Δi1,j1→i2,j2) with γ : Ti1,j1→i2,j2 → ℘(Δi1,j1→i2,j2) given by

γ(φ) =
{

δ ∈ Δi1,j1→i2,j2

∣
∣
∣
∣
for all σ ∈ Σi1,j1 s.t. δ(σ) is defined

ˇtainted(σ) ∪ ˆtainted(δ(σ)) |= φ

}

.

Example 4. Consider φ from Example 3 and bytecode store 0 at a program
point with i = 4 locals and j = 1 stack elements. Its denotation store 0 ∈ γ(φ)
since that bytecode does not modify locals 1, 2 and 3, hence their taintedness
is unchanged ((ľ1 ↔ l̂1) ∧ (ľ2 ↔ l̂2) ∧ (ľ3 ↔ l̂3)); it only runs if no exception is
thrown just before it (¬ě); it does not throw any exception (¬ê); and the output
local 0 is an alias of the topmost and only element of the input stack (š0 ↔ l̂0).

Figure 2 defines correct abstractions for the bytecodes from Sect. 4, but call.
A formula U (for unchanged) is a frame condition for input local variables and
stack elements, that are also in the output and with unchanged value: their
taintedness is unchanged. For the stack, this is only required when no exception
is thrown, since otherwise the only output stack element is the exception.

Definition 7. Let sets S (of stack elements) and L (of local variables) be the
input variables that after all executions of a given bytecode in a given program
point (only after the normal executions for S) survive with unchanged value.
Then U = ∧v∈L(v̌ ↔ v̂) ∧ (¬ê → ∧v∈S(v̌ ↔ v̂)).

Consider Fig. 2. Bytecodes run only if the preceding one does not throw any
exception (¬ě) but catch requires an exception to be thrown (ě). Bytecode
const v pushes an untainted value on the stack: its abstraction says that no
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variable changes its taintedness (U), the new stack top is untainted (¬ŝj) and
const v never throws an exception (¬ê). Most abstractions in Fig. 2 can be
explained similarly. The result of add is tainted if and only if at least one operand
is tainted (ŝj−2 ↔ (šj−2 ∨ šj−1)). For new κ, no variable changes its taintedness
(U), if its execution does not throw any exception then the new top of the stack
is an untainted new object (¬ê → ¬ŝj); otherwise the only stack element is
an untainted exception (ê → ¬ŝ0). Bytecode throw κ always throws an excep-
tion (ê); if this is tainted, then the top of the initial stack was tainted as well
(ŝ0 → šj−1). The abstraction of getfield says that if it throws no exception
and the value of the field is tainted, then the container of the field was tainted as
well (¬ê → (ŝj−1 → šj−1)). This follows from the object-sensitivity of our notion
of taintedness (Definition 4). Otherwise, the exception is untainted (ê → ¬ŝ0).
For putfield, we cannot use U and must consider each variable v to see if it
might reach the object whose field is modified (šj−2). If that is not the case, v’s
taintedness is not affected (v̌ ↔ v̂); otherwise, if its value is tainted then either
it was already tainted before the bytecode or the value written in the field was
tainted ((v̌ ∨ šj−1) ← v̂). In this last case, we must use ← instead of ↔ since our
reachability analysis is a possible approximation of actual (undecidable) reacha-
bility. This is expressed by formula Rj(v), used in Fig. 2, where Rj(v) = v̌ ↔ v̂
if ¬reach(v, sj−2), and Rj(v) = (v̌ ∨ šj−1) ← v̂, if reach(v, sj−2).

Example 5. According to Fig. 2, the abstraction of store 0 at a program point
with i = 4 local variables and j = 1 stack elements is the formula φ of Example 3.

Example 6. Consider a putfield f at a program point p where there are i = 4
local variables, j = 3 stack elements and the only variable that reaches the
receiver s1 is the underlying stack element s0. A possible state at p in Example 1.
According to Fig. 2, the abstraction of that bytecode at p is φ′ = (ľ0 ↔ l̂0) ∧
(ľ1 ↔ l̂1) ∧ (ľ2 ↔ l̂2) ∧ (ľ3 ↔ l̂3) ∧ (¬ê → ((š0 ∨ š2) ← ŝ0)) ∧ (ê → ¬ŝ0) ∧ ¬ě ∈
T4,3→4,1.

Proposition 2. The approximations in Fig. 2 are correct w.r.t. the denotations
of Sect. 4, i.e., for all bytecode ins distinct from call we have ins ∈ γ(insT).

Denotations are composed by ; and their abstractions by ;T. The definition of
φ1;T φ2 matches the output variables of φ1 with the corresponding input variables
of φ2. To avoid name clashes, they are renamed apart and then projected away.

Definition 8. Let φ1, φ2 ∈ T. Their abstract sequential composition φ1;T φ2 is
∃V (φ1[V /V̂ ] ∧ φ2[V /V̌ ]), where V are fresh overlined variables.

Example 7. Consider the execution of putfield f at program point p and then
store 0, as in Example 6. The former is abstracted by φ′ from Example 6; the lat-
ter by φ from Example 5. Their sequential composition is φ′;T φ = ∃V (φ′[V /V̂ ] ∧
φ[V /V̌ ]) = ∃V ([(ľ0 ↔ l0) ∧ (ľ1 ↔ l1) ∧ (ľ2 ↔ l2) ∧ (ľ3 ↔ l3) ∧ (¬e → ((š0 ∨ š2) ←
s0)) ∧ (e → ¬s0) ∧ ¬ě] ∧ [(l1 ↔ l̂1) ∧ (l2 ↔ l̂2) ∧ (l3 ↔ l̂3) ∧ ¬e ∧ ¬ê ∧ (s0 ↔ l̂0)])
which simplifies into (ľ1 ↔ l̂1)∧(ľ2 ↔ l̂2)∧(ľ3 ↔ l̂3) ∧ ((š0 ∨ š2) ← l̂0) ∧ ¬ě ∧ ¬ê.
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The second semantical operator is ∪ of two sets, approximated as ∪T = ∨.
The third is extend , that makes the analysis context-sensitive by plugging the
behavior of a method at each distinct calling context. Let φ approximate the
taintedness behaviour of method M = κ.m(t1, . . . , tn) : t; φ’s variables are among
ľ0, . . . , ľn (the actual arguments including this), ŝ0 (if M does not return void),
l̂0, l̂1 . . . (the final values of M ’s local variables), ě and ê. Consider a call M at a
program point where the n + 1 actual arguments are stacked over other b stack
elements. The operator plugs φ at the calling context: the return value ŝ0 (if
any) is renamed into ŝb; each formal argument ľk of the callee is renamed into
the actual argument šk+b of the caller; local variable l̂k at the end of the callee
is temporarily renamed into lk. Then a frame condition is built: the set SAb,M,v

contains the formal arguments of the caller that might share with variable v
of the callee at call-time and might be updated during the call. If this set is
empty, then nothing reachable from v is modified during the call and v keeps its
taintedness unchanged. This is expressed by the first case of formula Ab,M (v).
Otherwise, if v is tainted at the end of the call then either it was already tainted
at the beginning or at least one of the variables in SAb,M,v has become tainted
during the call. The second case of formula Ab,M (v) uses the temporary variables
to express that condition, to avoid name clashes with the output local variables of
the caller. The frame condition for the b lowest stack elements of the caller is valid
only if no exception is thrown, since otherwise the stack contains the exception
object only. At the end, all temporary variables {l0, . . . , li′} are projected away.

Definition 9. Let i, j ∈ N and M = κ.m(t1, . . . , tn) : t with j = b + n + 1 and
b ≥ 0. We define (extend i,j

M )T :Tn+1,0→i′,r → Ti,j→i,b+r with r = 0 if t = void

and r = 1 otherwise, as (extend i,j
M )T(φ) = ¬ě ∧ ∃{l0,...,li′ }

(
φ[ŝb/ŝ0][lk/l̂k | 0 ≤

k < i′][šk+b/ľk | 0 ≤ k ≤ n]∧∧
0≤k<i Ab,M (lk)∧(¬ê → ∧

0≤k<b Ab,M (sk)
))
, with

SAb,M,v = {lk | 0 ≤ k ≤ n, ¬share(v, sb+k) or ¬updatedM (lk)}, Ab,M (v) = v̌ ↔
v̂ if SAb,M,v = ∅ and Ab,M (v) = ((v̌ ∨ (

∨
w∈SAb,M,v

w)) ← v̂) otherwise.

Proposition 3. The operators ;T, extendT and ∪T are correct.

Since the number of Boolean formulas over a given finite set of variables is
finite (modulo equivalence), the abstract fixpoint is reached in a finite number
of iterations. Hence this abstract semantics is a static analysis tool if one specifies
the sources of tainted information and the sinks where it should not flow.

Sources. Some formal parameters or return values must be considered as sources
of tainted data, that can be freely provided by the external world. Our imple-
mentation uses a database of library methods for that, such as the request
argument of doGet and doPost methods of servlets and the return value of con-
sole and database methods. Moreover, it lets users specify their own sources
through annotations. The abstract denotation in Fig. 2 is modified at receiver is
(a special bytecode at the beginning of each method) and return to force to
true those formal arguments and return values that are injected tainted data,
respectively.
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Sinks. Our implementation has a database of library methods that need
untainted parameters (users can add their own through annotations). Hence it
knows which calls in P need an untainted parameter v (such as executeQuery
in Fig. 1). But a denotational semantics is an input/output description of the
behavior of P ’s methods and does not say what is passed at a call. For that, a
magic-sets transformation [23] of P adds new blocks of code whose denotation
gives information at internal program points, as traditional in denotational sta-
tic analysis. It computes a formula ψ that holds at the call. If ψ entails ¬v̂ then
the call receives untainted data for v. Otherwise, the analysis issues a warning.

5.1 Making the Analysis Field-Sensitive

The approximation of getfield f in Fig. 2 specifies that if the value of field f
(pushed on the stack) is tainted then the container of f must be tainted as well
(ŝj−1 → šj−1). Read the other way round, if the container is untainted then f ’s
value is untainted, otherwise it is conservatively assumed as tainted. This choice
is sound and object-sensitive, but field-insensitive: when šj−1 is tainted, both its
fields f and g are conservatively assumed as tainted. But if the program never
assigns tainted data to f , then f ’s value can only be untainted, regardless of
the taintedness of šj−1. If the analyzer could spot such situations, the resulting
analysis would be field-sensitive and hence more precise (fewer false positives).

We apply here a technique pioneered in [32]: it uses a set of fields O (the
oracle) that might contain tainted data. For getfield f , it uses a better approx-
imation than in Fig. 2: it assumes that f ’s value is tainted if its container is
tainted and f ∈ O. The problem is now the computation of O. As in [32], this is
done iteratively. The analyzer starts with O = ∅ and runs the analysis in Sect. 5,
but with the new abstraction for getfield f seen in this paragraph. Then it adds to
O those fields g such that there is at least one putfield g that stores tainted data.
The analysis is repeated with this larger O. At its end, O is further enlarged with
other fields g such that there is at least one putfield g that stores tainted data.
The process is iterated until no more fields are added to O. As proved in [32], this
process converges to a sound overapproximation of O and the last analysis of the
iteration is sound. In practice, repeated analyses with larger and larger O are
made efficient by caching abstract computations. On average, this process con-
verges in around 5 iterations, also for large programs. By using caching, this only
doubles the time of the analysis. Since preliminary analyses are more expensive
than information flow analysis, this technique increases the total time by around
25% on average. (Section 6 shows effects on cost and precision.) This technique
is not identical to statically, manually classifying fields as tainted and untainted,
as [3,10] do. The classification of the fields is here dynamic, depending on the
program under analysis, and completely automatic. Moreover, a field might be
in O (and hence be potentially tainted) but the analyzer might still consider its
value untainted, because its container is untainted.
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Test Tool True Positives False Positives False Negatives Analysis Time
C

W
E

89
CodePro Analytix 1332 0 888 20 minutes
FindBugs 1776 2400 444 2 minutes
Fortify SCA 700 0 1520 2.5 days
Julia fs/fi 2220/2220 0/0 0/0 79/65 minutes

W
eb

G
oa

t CodePro Analytix 26 7 1 1 minute
FindBugs 22 12 5 20 seconds
Fortify SCA 23 0 4 164 minutes
Julia fs/fi 27/27 14/15 0/0 3/2 minutes

Fig. 3. Experiments with the identification of SQL injections.

6 Experiments

We have implemented our analysis inside Julia (http://www.juliasoft.com/julia).
Julia represents Boolean formulas via BDDs (binary decision diagrams). We have
compared Julia with other tools that identify injections (Sect. 3). For Julia we
have compared a field-sensitive analysis with an oracle (Sect. 5.1, Julia fs) with
a field-insensitive analysis without oracle (Julia fi).

Test LoC
WebGoat 25070
CWE80 68967
CWE81 34317
CWE83 34317
CWE89 748962

Our experiments analyze third-party tests developed
to assess the power of a static analyzer to identify
injection attacks: WebGoat 6.0.1 (https://www.owasp.
org/index.php/Category:OWASP WebGoat Project) and
4 tests from the Samate suite (http://samate.nist.gov/
SARD/testsuite.php). The table on the right reports their
number of non-blank, non-comment lines of application
source code (LoC), without supporting libraries.

Figure 3 reports the evaluation for SQL injections using CWE89 and Web-
Goat. It shows that only Julia is sound (no false negatives: if there is an injection,
Julia finds it). Julia issued no false positives to CWE89: possibly these tests just
propagate information, without side-effects that degrade the precision of Julia
(Definition 9; we do not know if and how other tools deal with side-effects). Julia
issued 14 false alarms for WebGoat, often where actual information flows from
source to sink exist, but constrained in such a way to be unusable to build an
SQL-injection attack. Only here the field-insensitive version of Julia is slightly
less precise (one false positive more). In general, its cost is around 25% higher
than the field-sensitive version. The conclusion is that field sensitivity is not
relevant when object sensitivity is used to distinguish different objects. Analy-
sis time indicates the efficiency, roughly: CodePro Analytix and FindBugs work
on the client machine in Eclipse, Fortify SCA on its cloud like Julia, that is
controlled from an Eclipse client. Times include all supporting analyses.

We evaluated the same tools for the identification of cross-site scripting injec-
tions in CWE80/81/83, and WebGoat. As shown in Fig. 4, Julia is perfectly pre-
cise. It missed 11 cross-site scripting attacks in JSP (not in the main Java code
of the application), found only by Fortify SCA. If we translate JSP’s into Java
through Jasper (as a servlet container would do, automatically) and include its

http://www.juliasoft.com/julia
https://www.owasp.org/index.php/Category:OWASP_WebGoat_Project
https://www.owasp.org/index.php/Category:OWASP_WebGoat_Project
http://samate.nist.gov/SARD/testsuite.php
http://samate.nist.gov/SARD/testsuite.php
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Test Tool True Positives False Positives False Negatives Analysis Time
C

W
E

80

CodePro Analytix 180 0 486 9 minutes
FindBugs 19 0 647 18 seconds
Fortify SCA 282 0 384 590 minutes
Julia fs/fi 666/666 0/0 0/0 5/4 minutes

C
W

E
81

CodePro Analytix 0 0 333 10 seconds
FindBugs 19 0 314 4 seconds
Fortify SCA 141 0 192 303 minutes
Julia fs/fi 333/333 0/0 0/0 3/2 minutes

C
W

E
83

CodePro Analytix 90 0 243 5 minutes
FindBugs 19 0 314 4 seconds
Fortify SCA 141 0 192 296 minutes
Julia fs/fi 333/333 0/0 0/0 3/2 minutes

W
eb

G
oa

t CodePro Analytix 5 0 11 1 minute
FindBugs 0 0 16 20 seconds
Fortify SCA 15 21 1 164 minutes
Julia fs/fi 5/5 0/0 11/11 3/2 minutes

Fig. 4. Experiments with the identification of XSS injections.

bytecode in the analysis, Julia finds the missing 11 attacks. Nevertheless, this
process is currently manual and we think fairer to count 11 false negatives.

We have run Julia on real code from our customers. Julia found 6 real SQL-
injections in the Internet banking services (575995 LoC) of a large Italian bank,
and found 5 more in its customer relation management system (346170 LoC).
The analysis never took more than one hour. This shows that Julia is already
able to scale to real software and automatically find evidence of security attacks.

7 Conclusion

We have formalized an object-sensitive notion of taintedness that can be applied
to reference types. We have built a new, flow-, context- and field-sensitive static
taintedness analysis based on this notion, proved it sound, implemented it, and
evaluated it. It scales to real code and gives useful results. As far as we know,
this is the first object-sensitive taintedness analysis. As usual in static analysis,
soundness is jeopardized by the use of reflection or non-standard class load-
ers. However, soundness is still relevant since it increases the confidence on the
results, up to those features. Julia deals instead with the full bytecode generated
by Java 8, including the new invokedynamic.

The novelty of the approach stems from Definition 4 of a property of reference
types as a reachability property, whose relevance goes beyond the case of tainted-
ness analysis. Here, we mean reachability of data from a memory reference, which
is not reachability of abstract states through execution paths as in [24]. Defini-
tion 4 results in an object-sensitive analysis: the taintedness of an object deter-
mines that of its fields; a drawback is that a sound analysis must consider side-
effects at putfield and call. The analysis becomes then field sensitive through
an oracle-based approach (Sect. 5.1), already used for nullness analysis [32].
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Hence the oracle is a general technique for building sound field-sensitive sta-
tic analyses.

The extension of this work to implicit and hidden flows would provide a
stronger guarantee against injections of tainted information into a set of sinks.
The problem is complex: implicit flows in Java are not just due to conditionals
but also to exception branches and dynamic resolution of method calls. The risk
is that a sound analysis w.r.t. implicit flows would end up being very conserv-
ative and imprecise. Declassification might be helpful here, but its meaning for
reference types (not just primitive values) must be studied. The extension of this
work to the analysis of JSP, that are non-Java code mixed and interacting with
Java code, currently not analyzed by Julia (only partially by concurrent tools),
would avoid missed alarms, as Sect. 6 shows. It is also important to explain the
warnings to the users, with an execution trace where data flows from sources
into sinks. Fortify SCA already provides some support in that direction.

Acknowledgments. This material is based upon work supported by the United
States Air Force under Contract No. FA8750-12-C-0174.

References

1. Appelt, D., Nguyen, C.D., Briand, L.C., Alshahwan, N.: Automated testing
for SQL injection vulnerabilities: an input mutation approach. In: ISSTA,
pp. 259–269, San Jose, CA, USA (2014)

2. Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A., Klein, J., Le Traon, Y.,
Octeau, D., McDaniel, P.: Flowdroid: precise context, flow, field, object-sensitive
and lifecycle-aware taint analysis for android apps. In: PLDI, p. 29, Edinburgh,
UK, June 2014

3. Barthe, G., Pichardie, D., Rezk, T.: A certified lightweight non-interference java
bytecode verifier. Math. Struct. Comput. Sci. 23(5), 1032–1081 (2013)

4. Barthe, G., Rezk, T., Basu, A.: Security types preserving compilation. Comput.
Lang. Syst. Struct. 33(2), 35–59 (2007)

5. Clark, D., Hankin, C., Hunt, S.: Information flow for ALGOL-like languages. Com-
put. Lang. 28(1), 3–28 (2002)

6. Cousot, P., Cousot, R.: Abstract Interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL, pp.
238–252 (1977)

7. Doshi, J.C., Christian, M., Trivedi, B.H.: SQL FILTER – SQL Injection prevention
and logging using dynamic network filter. In: Mauri, J.L., Thampi, S.M., Rawat,
D.B., Jin, D. (eds.) SSCC 2014. CCIS, vol. 467, pp. 400–406. Springer, Heidelberg
(2014)

8. Ernst, M.D., Lovato, A., Macedonio, D., Spiridon, C., Spoto, F.: Boolean Formulas
for the Static Identification of Injection Attacks in Java. Technical Report UW-
CSE-15-09-03, University of Washington Department of Computer Science and
Engineering, Seattle, WA, USA, September 2015

9. Genaim, S., Giacobazzi, R., Mastroeni, I.: Modeling secure information flow with
boolean functions. In: Peter Ryan, editor, WITS 2004, April 2004

10. Genaim, S., Spoto, F.: Information flow analysis for java bytecode. In: Cousot, R.
(ed.) VMCAI 2005. LNCS, vol. 3385, pp. 346–362. Springer, Heidelberg (2005)



144 M.D. Ernst et al.

11. Genaim, S., Spoto, F.: Constancy Analysis. In: Huisman, M. (ed.), FTfJP, Paphos,
Cyprus, July 2008. Radboud University

12. Jang, Y.-S., Choi, J.-Y.: Detecting SQL injection attacks using query result size.
Comput. Secur. 44, 104–118 (2014)

13. Kobayashi, N., Shirane, K.: Type-based information flow analysis for low-level
languages. In: APLAS (2002)

14. Kumar, D.G., Chatterjee, M.: MAC based solution for SQL injection. J. Comput.
Virol. Hacking Tech. 11(1), 1–7 (2015)

15. Laud, P.: Semantics and program analysis of computationally secure informa-
tion flow. In: Sands, D. (ed.) ESOP 2001. LNCS, vol. 2028, pp. 77–91. Springer,
Heidelberg (2001)

16. Lindholm, T., Yellin, F., Bracha, G., Buckley, A.: The Java Virtual Machine Spec-
ification, Java SE 7 Edition. Addison-Wesley Professional, 1st edition (2013)

17. Liu, L., Xu, J., Li, M., Yang, J.: A Dynamic SQL injection vulnerability test case
generation model based on the multiple phases detection approach. In: COMPSAC,
pp. 256–261, Kyoto, Japan (2013)

18. Makiou, A., Begriche, Y., Serhrouchni, A.: Improving web application firewalls to
detect advanced SQL injection attacks. In: IAS, pp. 35–40. Okinawa, Japan 2014

19. MITRE/SANS. Top 25 Most Dangerous Software Errors. http://cwe.mitre.org/
top25, September 2011

20. Mizuno, M.: A least fixed point approach to inter-procedural information flow
control. In: NCSC, pp. 558–570 (1989)

21. Naghmeh, N.M., Sheykhkanloo, M.: Employing neural networks for the detection
of SQL injection attack. In: SIN, pp. 318, Glasgow, Scotland, UK (2014)
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Inria & LIX/École Polytechnique, Palaiseau, France
{kaustuv.chaudhuri,giselle.reis}@inria.fr

Abstract. In linear logic, formulas can be split into two sets: classical
(those that can be used as many times as necessary) or linear (those that
are consumed and no longer available after being used). Subexponentials
generalize this notion by allowing the formulas to be split into many sets,
each of which can then be specified to be classical or linear. This flex-
ibility increases its expressiveness: we already have adequate encodings
of a number of other proof systems, and for computational models such
as concurrent constraint programming, in linear logic with subexponen-
tials (SEL). Bigraphs were proposed by Milner in 2001 as a model for
ubiquitous computing, subsuming models of computation such as CCS
and the π-calculus and capable of modeling connectivity and locality
at the same time. In this work we present an encoding of the bigraph
structure in SEL, thus giving an indication of the expressive power of
this logic, and at the same time providing a framework for reasoning and
operating on bigraphs. Our encoding is adequate and therefore the oper-
ations of composition and juxtaposition can be performed on the logical
level. Moreover, all the proof-theoretical tools of SEL become available
for querying and proving properties of bigraph structures.

1 Introduction

Linear logic is excellent at counting elements of state since it interprets linear
hypotheses as resources that are consumed upon use, and every linear hypoth-
esis must be used in a proof. However, it is not particularly good at reasoning
about relationships between elements. For example, an office building can have
several rooms, with some rooms having a number of cubicles, and some cubicles
containing several persons and computers. A precise description of this building
must not only inventory all the rooms, cubicles, persons, and computers, but
also state which component occurs inside which other components. In ordinary
linear logic we can attempt to express the inclusion relation as a separate predi-
cate, say a binary predicate in(x, y) that expresses that the entity with index x
is contained in that with index y, but such predicates are nearly impossible to
treat linearly as they may be consulted and composed repeatedly. Yet, treating
them non-linearly is also problematic: if a person moves from one cubicle to

c© Springer-Verlag Berlin Heidelberg 2015
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another, for example, the old placement needs to be invalidated, but there is no
way to “consume” a non-linear resource in linear logic.

Recently, a family of logics called subexponential logics (SEL) has emerged
as a way to capture such intensional relationships between resources [12]. The
idea is fairly old [6]: the exponential connectives ! and ? can be split into several
different flavors, and the linear logic proof system would, a priori, make each
version of the connectives independent of every other. If we impose a pre-order
on them though, we can get a limited form of promotion where ?u A entails ?v A
assuming the u version of the exponentials are smaller than the v version. In this
view, ?u corresponds, roughly, to a placement in the zone u, while !u corresponds
to checking that every resource is placed in a zone larger than u. Subexponen-
tial logics are naturally much more expressive than just ordinary linear logic; for
instance, even the propositional additive-free fragment is undecidable [5]. More-
over, they can easily express a wide spectrum of other deductive systems at a
very high level of representational adequacy [4,13,14].

In this paper, we consider the use of SEL as a logical framework for specifying
bigraphs, a model of computation proposed by Milner in 2001 [10]. Bigraphs are
a very general model, subsuming standard process calculi such as CCS [9] and
the π-calculus [8]. Our use of SEL for this purpose has two primary goals:

– It gives a good formal indication of the expressive power of SEL as a logical
framework. If SEL can be used for bigraphs, it can probably also be used for
any location-aware formalism. A number of such formalisms exist in the liter-
ature, such as ambients [3], brane calculi [2], and membrane computing [15].

– It provides an adequate syntactic treatment for bigraph structure.1 By ade-
quate, we mean that any structural operation, such as composition and juxta-
position, can be performed directly on the syntactical representation. Bigraphs
certainly have a well developed categorical semantics, but formalizing that
semantics can be rather heavyweight. We show straightforward encoding and
decoding functions from bigraphs to SEL sequents. Such a representation of
bigraphs benefits from all the proof-theoretic tools available for querying and
proving properties.

In relation to the second goal, another syntactic treatment for bigraphs can
be found in [1]. The authors encode a bigraph and its reaction rules in the
Concurrent LF (CLF) type theory, where both the formation and the reactions
of bigraphs are encoded as rewrite rules. The encoding of locations is done by
using a (linear) predicate has child, and thus presents the problems previously
mentioned. In particular, their use of a multi-set of atoms for encoding a bigraph
makes it impossible to query a static structure, or prove its correctness, without
damaging the structure itself. The proof that a bigraph is valid in [1] indeed
consists of rewriting it to the empty set. Analogously, a containment check cannot
be made without consuming the atom(s) encoding the parent relations.

1 We posit that, given the way computer science is evolving, the lack of formal and
mechanized reasoning capabilities for any formalisms can be fatal.
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In principle, we could use the same approach with rewriting rules to check
for the correctness of bigraphs in our encoding, but we have decided to take
advantage of the expressiveness of subexponentials by having a more concise
and conservative approach. In this work, we will encode bigraphs using fewer
predicates than in [1] and in such a way that asking questions about the static
structure will not cause any modifications to it. Our bigraph encoding changes
only on actual operations, such as juxtaposition and compositions.

Our specific approach is to start with a sequent calculus for first-order clas-
sical SEL (Sect. 2.1). The classical dialect of SEL is used simply to keep the
proof systems simple; our results extend to the intuitionistic dialect without any
complications. The static definition of a bigraph is encoded in SEL as follows.
The place graph of the bigraph is given in terms of atomic formulas placed in
certain subexponential zones, and the subexponential signature encodes the par-
ent relationship. The link graph of the bigraph is given in terms of eigenvariable
parameters that are shared by every place that has a connection to a hyper-
edge. Finally, the inner and outer faces of the bigraph are expressed as purely
linear formulas that are placed in the default zone of the SEL. This encoding
will be an injection, i.e., it will have a left-inverse that will be able to extract the
original bigraph from its sequent encoding. Furthermore, the static structure of
the bigraph can be queried by trying to derive certain formulas. For example,
to check whether a given node occurs inside (perhaps with multiple levels of
nesting) a given place is tantamount to deriving a corresponding !-formula.

On top of this static description of a single bigraph, we define bigraph
composition by first moving to a focused proof system for SEL, called SELF
(Sect. 2.2) [11]. Focusing is a general mechanism for treating certain combina-
tions of inferences in a (well behaved) sequent calulus as atomic derived inference
rules. Bigraph juxtaposition in our encoding corresponds to a multiplicative com-
position of the two sequents describing the two bigraphs, and the composition of
the bigraphs is given as a small theory on these sequents. We then run focused
proof search on this sequent, extended with the composition theory, until quies-
cence, i.e., until no more focused steps are possible. The single unfinished leaf
of the proof will then be the representation of the composed bigraph. This gives
us the necessary representational adequacy theorem (Sect. 3.1).

2 Background

2.1 Subexponential Logic (SEL)

Subexponential logic (SEL) is a variant of linear logic with a family of expo-
nential connectives—called subexponentials (a term coined in [12])—that are
indexed and arranged in a pre-order [6,11]. To keep things simple, we will use
the classical dialect of SEL in this paper. The grammar of formulas (A,B, . . . )
is as follows:
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literal multiplicative additive quantified subexponential

A, B, . . . ::= a | A ⊗⊗⊗ B | 1 | A ⊕⊕⊕ B | 0 | ∃x. A | !u A

| ¬ a | A

&

B | ⊥⊥⊥ | A & B | ��� | ∀x. A | ?u A (1)

Each column in the grammar is a De Morgan dual pair, and we indicate the
dual of A by (A)⊥. The identifiers a, b, . . . range over atomic formulas, which
are formulas of the form p(t1, . . . , tn) where p stands for a predicate symbol
and t1, . . . , tn are first-order terms. Each term is either a variable (x, y, . . . ) or
an application of the form f(s1, . . . , sm) where f stands for a function symbol
and the s1, . . . , sm are terms. Variables, predicates, and function symbols are
assumed to be drawn from disjoint infinite sets and arities are fixed. We follow
the usual syntactic convention of dropping the parentheses when the arity of
a predicate or function symbol is 0. The subexponential connectives !u and ?u

are indexed by subexponential labels (u,w, . . . ) that belong to a subexponential
signature.

� ΓU , u:¬ a, a
init

� ΓU , Δ1, A � ΓU , Δ2, B

� ΓU , Δ1, Δ2, A ⊗⊗⊗ B
⊗⊗⊗

� ΓU , 1
1

� Γ, Ai

� Γ, A1 ⊕⊕⊕ A2
⊕⊕⊕i

� Γ, [t/x]A

� Γ, ∃x. A
∃

� Γ, A, B

� Γ, A

&

B

& � Γ
� Γ,⊥⊥⊥ ⊥⊥⊥

� Γ, A � Γ, B

� Γ, A & B
& � Γ,��� ���

� Γ, A

� Γ, ∀x. A
∀

� Γ, u:A

� Γ, ?u A
?

(u ≤ �v) ��v: �A, C

� ΓU , �v: �A, !u C
!

(u /∈ U) � Γ, A

� Γ, u:A
derelict

(u ∈ U) � Γ, u:A, A

� Γ, u:A
copy

Fig. 1. A cut-free, one-sided, and zoned sequent calculus formulation of SEL. In the
⊕⊕⊕i rules, i ∈ {1, 2}. In the ∀ rule, x is not free in Γ.

Definition 1. A subexponential signature Σ is a structure 〈Λ,U ,≤〉 where:

– Λ is a countable set of labels;
– U ⊆ Λ � {ε}, called the unbounded labels;
– ≤ is a pre-order on Λ�{ε}—i.e., it is reflexive and transitive—and ≤-upwardly

closed with respect to U , i.e., for any u,w ∈ Λ � {ε}, if u ∈ U and u ≤ w,
then w ∈ U ; and

– ε is ≤-minimal, i.e., for every u ∈ Λ � {ε}, ε ≤ u.

We say that any label in Λ � {ε} \ U is bounded.

Intuitively, unbounded labels indicate formulas which can be weakened or con-
tracted, while bound labels indicate linear formulas. We will assume an ambient
subexponential signature Σ unless we need to disambiguate particular instances
of SEL, in which case we will use Σ in subscripts. For instance, the set UΣ stands
for the unbounded labels of Σ.

The true formulas of SEL are derived from a sequent calculus proof system.
There are many variants of such calculi in the literature; here, to keep things
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simple, we will use a zoned formulation where the members of a sequent are
zoned formulas of the form u:A where A is a formula and u ∈ Λ � {ε}. When it
is unambiguous, we will drop the default zone label ε, i.e., write ε:A as just A.
A context (Γ,Δ, . . . ) is a non-empty multiset of zoned formulas, and Γ,Δ and
Γ, u:A stand as usual for the multi-set union of Γ with Δ and {u:A}, respectively.

The inference rules for SEL sequents are displayed in Fig. 1. Most of the rules
are shared between SEL and ordinary linear logic and will not be elaborated upon
here; we will therefore explain only the peculiarities of SEL.

Definition 2 (Notation). For �v = [v1, . . . , vn] and �A = [A1, . . . , An]:

– �v: �A stands for the context v1:A1, . . . , vn:An;
– u ≤ �v means that u ≤ v1, . . . , and u ≤ vn; and
– �v ∈ U stands for v1 ∈ U , . . . , and vn ∈ U .

We write ΓU for a context of the form �u: �A where �u ∈ U .

The rule for !, sometimes called promotion, has a side condition that checks
that the label of the principal formula is less than the labels of all the other
zoned formulas in the context that survive into the premise. This rule cannot
be used if there are non-zoned formulas in the context, nor if the labels of
some of the bound zoned-formulas are strictly smaller or incomparable with the
subexponential label of the principal formula.

Theorem 1. The following rules are admissible for SEL.

� u:(A)⊥
, A

init∗

(∀w:C ∈ ΓU ∪ Δ1 ∪ {u:A} , v ≤ w)

� ΓU ,Δ1, u:A � ΓU ,Δ2, v:(A)⊥

� ΓU ,Δ1,Δ2

cut

Proof (sketch). The init∗ rule can be shown to be derivable by a straightforward
structural induction on A, where reflexivity of ≤ is used in the cases for the
subexponentials. For cut-admissibility, the standard permutative cut-reduction
algorithm works. Transitivity of ≤ is used to justify the commutative cut case
for !, while upward closure of ≤ with respect to U is used to justify permuting
cuts past copy. ��
Subexponential logic is considerably more expressive than ordinary linear logic.
Even the propositional additive-free fragment can be undecidable with as few as
three subexponentials [5]. By choosing the appropriate signature it is possible to
encode many proof systems [14] and various models of concurrency in concurrent
constraint programming [13] in a natural way. This expressivity is a result of the
ability of the ! rule to “check” the emptiness of certain zones in the sequent.
Note that this rule can only be applied if all (linear) formulas are in bigger
zones, which means that smaller or unrelated zones must be empty. It is natural
then to view the zones in a sequent as locations where a formula has been stored
(by the ? rule).
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2.2 Focusing (SELF)

In our intended use of SEL as a specification logic for bigraphs, we will sometimes
need to reason about sequences of inference steps that happen atomically. These
derived or synthetic inference steps will be informed by focusing, which is a
general technique for determining a normal form for a sequent calculus that
eliminates many unnecessary branching points. A focused proof consists of an
alternation of two phases. The asynchronous phase uses2 the inference rules in
the second line of Fig. 1 that are invertible and can therefore always be safely
applied. When no such rule is applicable, the proof enters a synchronized phase
by selecting a formula for focus; this formula is decomposed under focus using
the rules in the first line of Fig. 1 until no such rule applies, in which case the
phase switches back to asynchronous again. To be a bit more explicit, we add a
new kind of focused sequent of the form � Γ; [A] where A is the focused formula.

Fig. 2. The SELF inference system, a focused version of SEL. The context Ω is such
that if A ∈ Ω then A is a positive formula or a negated atom.

The inference rules for the focused version of SEL, called SELF, are given in
Fig. 2. These rules are based on a division of the formulas of SEL into positive
formulas (P,Q, . . . ) that come from the first line of (1), and negative formu-
las (N,M, . . . ) that come from the second line. We use the convention that Ω
stands for a context that consists of zoned formulas where if the zone label is ε
then the corresponding formula is positive or a literal. As before ΩU stands for a
context of the form �u: �A where �u ∈ U . There are two decision rules, ldecide and
udecide, for focusing on a zoned formula with a bound label and an unbound
label respectively. The focus persists through to the immediate subformula in
the synchronous phase rules [⊗⊗⊗], [⊕⊕⊕i], and [∃]. Ultimately, the focused formula
becomes negative or a !-formula, in which case focus is released and the asyn-
chronous phase begins, where the inference rules are identical to those of SEL.
Finally, when no more asynchronous rules are available, a decision rule is used
to enter the focused phase again.

Theorem 2 (Soundness and Completeness of SELF). The sequent � Γ is
derivable in SELF if and only if it is derivable in SEL.
2 As usual in the view of the sequent calculus as a proof search formalism, we read

inference rules from conclusion to premises.
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Proof (sketch). Soundness is immediate, since if we interpret � Ω, [A] as � Ω, A
then we get a SEL proof from a SELF proof. For completeness, we can easily
adapt any of the existing proofs for related systems, such as [11, chapter 5]. ��

3 Bigraphs in SEL

Bigraphs were proposed by Milner [10] as a model for ubiquitous computing.
It tries to fill in a gap between the current state of computational systems,
which involves communications on a global scale and pervasive computing, and
the available tools to model and reason about such systems. In bigraphs, local-
ity and connectivity of agents are treated independently, and they might be
equipped with reaction rules (i.e., rewriting) for reconfiguration. It has been
shown that bigraphs subsume the calculus of communicating systems (CCS)
[9] and π-calculus [8]. Most definitions and examples in this section were taken
from [9].

A bigraph is a combination of two graphs (hence the name): a place graph
and a link graph. Both have in common the set of vertices, but the place graph
is a set of trees while the link graph is a hypergraph (i.e., one edge can connect
any number of nodes). Figure 3 is an example of a bigraph and its components,
each representing orthogonally the concepts of locality and connectivity.

Fig. 3. A bigraph and its place and link graphs.

Each node takes the role of a specific control that determines its ports. The
controls available for a bigraph are defined in its signature, which does not have
to be finite or even denumerable.

Definition 3 (Bigraph Signature). A signature K is a set of elements called
controls, each with an arity (ar(K)). The signature also determines which con-
trols are atomic and which of the non-atomic controls are active.

Depending on the system being represented, such signatures can be augmented
with, for example, sorts that enforce what kind of controls a non-atomic control
can contain, or signs that make sure only ports of opposite polarities are con-
nected. For a discussion on adding sorts to our encoding, see Sect. 4. Given a
signature, we can formally define a bigraph.
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Definition 4 (Bigraphs). A bigraph B over the signature K is defined as:

B = (V,E, ctrl , prnt , link) : 〈m,X〉 → 〈n, Y 〉 .

– V is a set of node names.
– E is a set of edge names.
– m is the number of sites (i.e., holes which can accommodate other bigraphs).
– X is a set of inner names.
– n is the number of roots (i.e., which can be accommodated in other bigraphs).
– Y is a set of outer names.
– ctrl : V → K defines the role of each node.
– prnt : m � V → n � V defines the parent relation, or the place graph.
– link : X � P → Y � E defines the connectivity, or the link graph, where

P = {(v, i)|1 ≤ i ≤ ar(ctrl(v))}, i.e., (v, i) is the ith port of node v.

The sets of names V , E, X, and Y must be pairwise disjoint. The terms m and
n are treated notationally as sets of all strictly smaller natural numbers, i.e., the
sites are numbered 0, 1, . . . ,m − 1, and likewise for the roots.

For the bigraph of Fig. 3, we have K = {A : 2,B : 4,C : 2} and:

V = {v0, v1, v2} E = {e0, e1} X = {x0, x1} Y = {y0, y1, y2} m = n = 2

ctrl prnt link

v0 	→ A 0 	→ v0 x0 	→ e0 (v1, 2) 	→ e1

v1 	→ C 1 	→ v2 x1 	→ y2 (v2, 1) 	→ y1

v2 	→ B v0 	→ 0 (v0, 1) 	→ y0 (v2, 2) 	→ y2

v1 	→ v0 (v0, 2) 	→ e0 (v2, 3) 	→ e0

v2 	→ 1 (v1, 1) 	→ y0 (v2, 4) 	→ e1

3.1 Encoding Bigraphs

Given a bigraph B, we will show in this section how to encode it using a SEL
sequent. Intuitively, each place is represented by a subexponential index; indices
are related according to prnt in the place graph. Next, each place which has
an assigned control (i.e., the actual nodes) will be represented by a predicate,
conveniently named control and placed in the zone corresponding to its parent.
The links are encoded by using constants or variables that are shared among the
controls if they are linked together. We will use a typewriter font to denote
constants in our encoding.

Definition 5 (Encoding Function). Let B = (V,E, ctrl , prnt , link) :
〈m,X〉 → 〈n, Y 〉 be a bigraph over a signature K, then:

– Term and atomic formulas:
• id is a unique identifier.
• Each element of V , E, and K is a constant.
• Each element of X and Y is a variable.
• control(K, v, L) is an atomic formula, where L is a list of size ar(K).
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• in(x, l, id) and out(y, id) are atomic formulas, where l is a constant or
variable corresponding to an element e ∈ E ∪ Y .

• site(id) and root(id) are atomic formulas.
– Subexponential signature Σ = 〈Λ, {∞} ,≤〉:

• Each node name is duplicated as a label, i.e., V ⊆ Λ.
• r0, . . . , rn−1 ∈ Λ \ V are subexponential variables representing the roots.
• ∀(a, b) ∈ prnt . b ≤ a ∈ Σ.3

The function E(−) maps B to the SELΣ sequent:

�Σ {in(x, link(x), id) | x ∈ X} , {out(y, id) | y ∈ Y } ,

{ri:root(id) | 0 ≤ i ≤ n − 1} , {prnt(i):site(id) | 0 ≤ i ≤ m − 1} ,

{prnt(v):control(ctrl(v), v, [link((v, 1)), . . . , link((v, ar(ctrl(v))))]) | v ∈ V } .

Note that all x, y and ri are free in the resulting sequent.

As an example, if B is the bigraph of Fig. 3, then E(B) is the sequent:

�Σ in(x0, e0, id), in(x1, y2, id),
out(y0, id), out(y1, id), out(y2, id),
r0:root(id), r1:root(id), v0:site(id), v2:site(id),
r0:control(A, v0, [y0, e0]), v0:control(C, v1, [y0, e1]),
r1:control(B, v2, [y1, y2, e0, e1])

where Σ = 〈{r0, r1, v0, v1.v2, 0, 1} , {∞} , {r0 ≤ v0 ≤ v1; v0 ≤ 0; r1 ≤ v2 ≤ 1}〉.
We will now show that it is possible to define a function that takes a sequent

encoding a bigraph and returns the bigraph itself. In order to be a bigraph
encoding, a SEL sequent must be of a specific shape and satisfy some conditions
which are specified in the definition that follows.

Definition 6 (Decoding Function). Let S be the following SEL sequent:

�Σ {in(xi, lxi
, id) | 0 ≤ i ≤ nx − 1} , {out(yi, id) | 0 ≤ i ≤ ny − 1} ,

{ri:root(id) | 0 ≤ i ≤ n − 1} , {pi:site(id) | 0 ≤ i ≤ nv − 1} ,

{pi:control(Kj , vi, Lj) | 0 ≤ i ≤ nv − 1, 0 ≤ j ≤ nk − 1}

for integers n, nx, ny, nv and nk, satisfying the following conditions:

– xi, yi and ri are free variables.
– Li is a list of variables and constants.
– lxi

is a variable that occurs as the first argument of an out predicate or a
constant that occurs in a Lj for some j.

– pi is either a variable that occurs as a label for some root, or a constant that
occurs as the second argument for some control predicate different than vi.

3 If a or b is a natural number 1 ≤ i ≤ m representing a root, than we map it to ri in
the subexponential signature.
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– pi ≤ vi ∈ Σ for each pi labeling a control(Kj , vi, Lj).
– pi ≤ i ∈ Σ for each pi labeling a site(id).
– the relation ≤ in Σ defines a tree.

Then, D(S) is a bigraph (V,E, ctrl , prnt , link) : 〈m,X〉 → 〈n, Y 〉 over a signa-
ture K, where:

– K contains all the Kj with ar(Kj) = |Lj |;
– V = {vi|0 ≤ i ≤ nv − 1};
– E is the set of constants occurring in the lists Li;
– ctrl(vi) = Kj if l:control(Kj , vi, L) ∈ S (for any L);
– prnt is the same as the ≤ relation in Σ \ {ε,∞};
– link(xi) = lxi

if in(xi, lxi
, id);

– link((v, i)) = l if control( , v, L) ∈ S and L[i] = l;
– X = {xi|0 ≤ i ≤ nx − 1};
– Y = {yi|0 ≤ i ≤ ny − 1}; and
– m is the number of site(id) predicates.

We will now show that D is a left-inverse of E.

Theorem 3 (Representational Adequacy). Let B be a bigraph, S = E(B)
and B′ = D(S). Then B = B′4.

Proof (sketch). For each element V,E, prnt , ctrl , link ,m, n,X and Y of a bigraph,
E maps it to a certain element of S and D maps it back. ��
Theorem 4. The function D is surjective, i.e., for every bigraph B, there exists
a SEL sequent S such that D(S) = B.

Proof. By the totality of E, we know that for every bigraph B, there exists a
sequent S = E(B). From Theorem 3, we know that D(S) = B. ��
An encoding of a bigraph in SEL will allow us to use the tools available in
the logic to reason about it. In particular, we can use the informations about
subexponentials to easily deduce when a node vi is contained in vj , even if vj is
not vi’s immediate parent.

Theorem 5. Let B be a bigraph over a signature K. Assume that Σ is the subex-
ponential signature generated by E(B). If the sequent �Σ !vj (A)⊥ &

?vi A is prov-
able for an arbitrary A, then the node vi is contained in node vj (with an arbitrary
number of nestings) in B.

Proof. While deriving this sequent in SEL, the promotion rule generates the side
condition vj ≤ vi. Since ≤ is transitive, and the parent relation is the kernel of
≤, we have prntk(vi) = vj for some k, so vi is contained in vj in B. ��

4 We always consider bigraphs to be equal up to the renaming of elements.
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3.2 Juxtaposition

One of the two basic combination mechanisms for bigraphs is juxtaposition,
which places two disjoint bigraphs “side-by-side”. The formal definition can be
found in [10, Definition 2.7]. At a basic level, this is easily achieved in terms of
SEL sequents as we merely have to take the multiset join of the two encodings
of the constituent bigraphs. However, it is not entirely trivial, since the roots
and sites need to be renumbered.

Definition 7 (Juxtaposition). Given Σ1 = 〈Λ1,U1,≤1〉 and Σ2 = 〈Λ2,U2,≤2〉
with Λ1 ∩ Λ2 = {∞} that are the subexponential signatures for the encoding
of two bigraphs with interfaces 〈n1,X1〉 → 〈m1, Y1〉 and 〈n2,X2〉 → 〈m2, Y2〉
respectively, the signature Σ1 | Σ2 with corresponding substitution on locations
σ is defined to be the structure 〈Λ,U ,≤〉 where:

– σ = {rn1+i/ri|0 ≤ i < n2}.5
– Λ = Λ1 ∪ Λ2σ and U = U1 ∪ U2σ.
– x ≤ y iff x ≤1 y or xσ ≤2 yσ.

(We use | instead of ⊗⊗⊗ to indicate juxtaposition to avoid confusion with the SEL
connective.)

Theorem 6 (Adequacy of juxtaposition). Given disjoint bigraphs B1 and
B2, let E(B1) be �Σ1 Γ1 and E(B2) be �Σ2 Γ2, such that both encodings use
the same identifier id. Let σ be the substitution for Σ1 | Σ2. Then: E(B1 |
B2) =�Σ1|Σ2 Γ1, (Γ2σ).

Proof Immediate by inspection.. ��
Note that we only need to renumber the roots, since the sites are implicitly
numbered in our encoding. This is a consequence of linearity (to distinguish
sites) and subexponentials (used to name the immediate parent of every site).

3.3 Composition

The interface of a bigraph, i.e., 〈m,X〉 → 〈n, Y 〉, determines the available links
and places for composition with another bigraph. A bigraph B1 : 〈m1,X1〉 →
〈n1, Y1〉 can be composed with a bigraph B2 : 〈m2,X2〉 → 〈n2, Y2〉 if n1 = m2 and
Y1 = X2. This means that B1 has n1 roots that will be placed inside B2’s m2 sites,
and all B1’s outer names Y1 will be connected with B2’s inner names X2. This
composition is denoted by B2◦B1. For a formal definition of bigraph composition,
see [10, Definition 2.5]. Such compositions can be adequately captured in our
framework by a focused derivation of formulas which will encode the operations
of (1) connecting links and (2) placing roots inside sites.

Let S1 = E(B1) be the sequent �Σ1 Γ1 and S2 = E(B2) be �Σ2 Γ2 such that
the names in S1 do not clash with those of S2.6. The composition of these into
one bigraph will require a common subexponential signature, defined below.
5 t/s denotes the substitution of s by t.
6 This is always possible due to renaming and α-equivalence.
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Definition 8 Let Σ1 = 〈Λ1,U1,≤1〉 and Σ2 = 〈Λ2,U2,≤2〉 be such that Λ1 ∩
Λ2 = {∞}. Then, Σ2 ◦ Σ1 is the signature 〈Λ,U ,≤〉 σ such that

Λ = Λ1 ∪ Λ2, U = U1 ∪ U2, ≤ =≤1 ∪ ≤2, σ = {vi/rj |vi ∈ Λ2 and rj ∈ Λ1} .

The substitution σ defines a map between sites and roots.7 In the subexponential
signature, this means that the root rj will be instantiated with the index vi at the
same time that one of its successors (i.e., a site) is removed, which is equivalent
to replacing a numeric successor of vi by the subtree of rj.

The composed subexponential signature yields the definition of the formulas
encoding the operations of linking and placing. Consider the sequent:

�Σ Γ1, Γ2,∞:∃e. (in(e, e, id2))⊥ ⊗⊗⊗ (out(e, id1))⊥ ⊗⊗⊗ ⊥⊥⊥
where all free variables are interpreted as existential variables, i.e., they are
unified with terms in applications of the [init] rule. We will henceforth denote this
existentially quantified formula in zone ∞ by CF(B1,B2). Focusing on CF(B1,B2)
will result on three premises:

P1 :�Σ Γ, (in(e, e, id2))⊥
P2 :�Σ Γ ′, (out(e, id1))⊥

P3 :�Σ Γ ′′,⊥⊥⊥
In order to prove P1 and P2 it must be the case that Γ = {in(x, e, id2)} and
Γ ′ = {out(y, id1)}. Since these are linear resources, they will not be in Γ ′′.
The unification of the atoms in the initial rule will generate the substitutions
[e/x] and [e/y], which will be propagated to the formulas in Γ ′′. While the
substitution on x will have no effect (each inner channel occurs only once in
the encoded sequent, see Definition 5), the substitution on y will rename an
outer channel to a concrete edge which is connected to another component. It
will instantiate variables in some control’s list of links L, i.e., a control in B1

which was connected to an outer channel y will become connected to a real edge
e in B2.

The constants id1 and id2 guarantee that such channels belong to different
bigraphs. Each time a focused derivation is performed on this formula, a con-
nection will be made. All connections will have been made once the formula can
no longer be derived.

It is also possible to perform the linking without using free variables and
unification by first guessing a linking and then performing proof search to ensure
that such a linking exists. Since the bigraphs are composable by assumption, a
valid instantiation for the variables always exists. Our search procedure will have
to check that all the in links of the outer bigraph have been instantiated in either
view of the linking procedure.

The next step is to place B1’s roots inside B2’s sites. For this operation, we will
need to reason on (and unify) subexponentials. The formula used for placement is
constructed according to the sites available in B2. Let L = {l|l:site(id2) ∈ Γ2};
7 Note that, by the definition of substitution, the rj must be pairwise distinct. In

contrast, vi can be repeated in case a node contains more than one site.
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then: �Σ Γ1, Γ2,
{

(?l site(id2))⊥⊥⊥ ⊗⊗⊗ (?l root(id1))⊥⊥⊥ ⊗⊗⊗ ⊥⊥⊥|l ∈ L
}

is derivable. We
will henceforth denote this defined set of formulas as PF(B1,B2). A focused
derivation on each of formulas in PF(B1,B2) will behave similarly to the case
of CF: three premises will be generated.

P1 :�Σ Γ, l:(site(id2))⊥
P2 :�Σ Γ ′, l:(root(id1))⊥

P3 :�Σ Γ ′′,⊥⊥⊥

And in order to prove P1 and P2 it is necessary that Γ = {l:site(id2)} and
Γ ′ = {r:root(id1)}. Since r is a variable, we obtain the substitution [l/r] when
proving P2 which is propagated to Γ ′′. The variable r represented a root in
B1, while l is the place where a site is located in B2. Note that Γ ′′ might have
occurrences of r as the label of other formulas, and by replacing it with l, we are
in fact changing the location of some formulas. They are moved from the root r
in B1 to a location l in B2, which is exactly what happens during composition of
places. The subexponential signature also needs to be changed accordingly, and
this is done by accumulating this substitution in Σ’s σ.

Note that, since PF is a linear set, the connection of roots to nodes will only be
complete once all formulas in the set are derived. Of course this will be composed
of many focused phases.

We can now combine the operations of linking and placement to obtain a
sequent whose derivation will result on a premise that encodes the composition
of two bigraphs. We will require that such derivation is exhaustive, meaning that
the formulas in ∞ are focused on until they can no longer be derived and there
are no positive formulas in ε.

Theorem 7 (Adequacy of Bigraph Composition). Let B1 and B2 be two
bigraphs such that their composition B2 ◦B1 = B is well defined. Let E(B1) =�Σ1

Γ1, E(B2) =�Σ2 Γ2 and Σ = Σ2 ◦ Σ1. Then the exhaustive focused derivation of
the sequent �Σ Γ1, Γ2, CF(B1,B1), PF(B1,B2) will have exactly one open premise
�Σ Γ,∞:Δ with D(�Σ Γ ) = B.

Proof (sketch). After exhaustive proof search, the failure to derive CF(B1,B2)
and the derivation of all formulas in PF(B1,B2) means that there are no more
in(x, e, id2), out(y, id1), site(id2) and root(id1) in the sequent. The fact that
the bigraphs were compatible for composition in the first place, and the unique
identifier in the atoms, guarantees that each of the predicates occurring in the
sequent have the same multiplicity (number of inner links and sites of B2 must
be the same as the number of outer links and roots of B1, respectively). The
unifications during the derivations of CF’s will ensure that outer links in B1 are
renamed to the proper edges or outer links of B2. The unifications during the
derivations of PF’s will ensure that all elements inside of a root in B1 are correctly
placed in the parent of the respective site in B2. Therefore, decoding the sequent
without the ∞-formulas produces a bigraph with the desired structure. ��
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Fig. 4. Bigraph composition

As an example, consider the composition depicted in Fig. 4. The encoding of
each operand will be:

E(B1) : Γ1 = out(y′, id1), r′
0:root(id1), r

′
0:control(B, v

′, [y′])
Σ1 = ({r′

0, v
′,∞} , {∞} , {r′

0 ≤1 v′})
E(B2) : Γ2 = in(x, e, id2), out(y, id2), r0:root(id2),

v:site(id2), r0:control(A, v, [y, e])
Σ2 = ({r0, v, 0,∞} , {∞} , {r0 ≤2 v ≤2 0})

The formulas encoding the operation are:

CF(B1,B2) : ∞:∃e. in(e, e, id2)⊥⊥⊥ ⊗⊗⊗ out(e, id1)⊥⊥⊥ ⊗⊗⊗ ⊥⊥⊥
PF(B1,B2) :

{
ε:(?v site(id2))⊥⊥⊥ ⊗⊗⊗ (?v root(id1))⊥⊥⊥ ⊗⊗⊗ ⊥⊥⊥

}

The formula CF can only be derived once, indeed there is only one formula of
each kind: in(x, e, id2) and out(y′, id1). As a result of this derivation, we will
obtain the following substitution: [e/x, y′]. The derivation of the only formula in
PF will provide the substitution σ = [v/r′

0] for the subexponentials and formula
labels. The resulting open sequent will be �Σ Γ , where:

Γ = ε : out(y, id2) , r0 : root(id2) , r0 : control(A, v, [y, e]) , v : control(B, v′, [e])

Σ = (
{
r0, v, 0, v′, ∞} , {∞} ,

{
r0 ≤ v ≤ v

′}).

4 Conclusions, Related Work, and Perspectives

Conclusions. Using the expressive power of subexponentials, we have given an
adequate encoding of pure bigraphs in SEL. We were able to reason about the
static structure of bigraphs with only the subexponential signature generated
from the encoding. With the full sequent encoding of two bigraphs, we can
easily simulate juxtaposition and we can emulate composition using a (focused)
derivation in SELF.
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Sorting. In [10, Chapter 6], Milner shows how to add sorts to links and places,
and to define formation rules that will restrict the possible structures of a
bigraph. Likewise the place and link graphs of a bigraph, the place and link
sorts (and their formation rules) are orthogonal. In our encoding, we would use
a multi-sorted version of SEL and assign the correct sorts for the variables and
constants. The formation rules, by definition, are preserved under composition
and juxtaposition, and as our encoding is adequate, they will also be preserved
when operating on the meta-level.

Link sorting assigns sorts for each member of the arity of the controls and
additionally to the inner and outer edges. The formation rules dictate what
sorts of links a hyperedge may have in its extremities. In our encoding, we could
transform each control K into a function symbol taking a list of arguments of
appropriate type. In this case, the predicates control( , K, [l1, . . . , ln]) become
control( , K(l1, . . . , ln)). Since K is always a constant in the encoding, this change
is harmless. As for the inner and outer edges, we simply need to assign the correct
types to the x and y variables. Unification will guarantee that the correct type
is used on the connections when operating on the encoded bigraphs.

Place sorting assigns sorts for each control K and formation rules determine
what sorts can be contained in others. In our encoding, controls are assigned
to vertices via the control predicate, but the containment relation is modeled
by the relation between subexponentials. For this reason, adding sorts to places
is a little more tricky then link sorting, but still possible. Sorts now have to
be assigned to the v constants, representing nodes and, consistently, to the v
subexponentials. Note that we bypass the sorts of controls and deal directly
with the nodes (except sites and roots).

Bigraphs with Sharing. The pure bigraphs (with or without sorting) presented
so far are sometimes not expressive enough; in particular, the tree-nature of the
place graph is often too restrictive. In [16], the place graph was generalized from
trees to arbitrary DAGs, allowing it to model an arbitrary Boolean combination
of places. For our encoding, supporting DAGs is no harder than trees: our ≤
relation simply needs to be generalized to partial orders. This is easy: the meta-
theory of SEL only requires ≤ to be a pre-order, so arbitrary directed graphs
(acyclic or not) can be supported. The rest of the encoding remains unchanged.

Directed Bigraphs. A comparatively non-trivial extension is to move from an
arbitrary (possibly sorted) hypergraph for the link graph to a directed link graph
with link names as nodes [7]. While such a change of perspective does not need
a modification of the encoding of bigraphs in this paper, adequacy is a bit more
delicate. Specifically, the decoding function D needs to know the exact signature
of link names since the encoding represents link names as constants and not
as linear resources. If we were to change the encoding to track the link names
linearly, then the composition operation will need to be extended with new rules
for pairing up the link names.

Perspectives. The most interesting followup to this work would be to develop the
necessary reasoning on SEL encodings in order to get a bisimulation of bigraph
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reactions. In this way, we would have a full syntactical description of bigraphs
with the advantage of having available automated proof theory tools.

Acknowledgment. This work was partially supported by the ERC Advanced Grant
ProofCert.
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Abstract. Quantitative extensions of temporal logics have recently
attracted significant attention. In this work, we study frequency LTL
(fLTL), an extension of LTL which allows to speak about frequencies of
events along an execution. Such an extension is particularly useful for
probabilistic systems that often cannot fulfil strict qualitative guarantees
on the behaviour. It has been recently shown that controller synthesis
for Markov decision processes and fLTL is decidable when all the bounds
on frequencies are 1. As a step towards a complete quantitative solution,
we show that the problem is decidable for the fragment fLTL\GU, where
U does not occur in the scope of G (but still F can). Our solution is
based on a novel translation of such quantitative formulae into equivalent
deterministic automata.

1 Introduction

Markov decision processes (MDP) are a common choice when modelling systems
that exhibit (un)controllable and probabilistic behaviour. In controller synthesis
of MDPs, the goal is then to steer the system so that it meets certain property.
Many properties specifying the desired behaviour, such as “the system is always
responsive” can be easily captured by Linear Temporal Logic (LTL). This logic
is in its nature qualitative and cannot express quantitative linear-time proper-
ties such as “a given failure happens only rarely”. To overcome this limitation,
especially apparent for stochastic systems, extensions of LTL with frequency
operators have been recently studied [7,8].

Such extensions come at a cost, and for example the “frequency until” oper-
ator can make the controller-synthesis problem undecidable already for non-
stochastic systems [7,8]. It turns out [19,30,31] that a way of providing sig-
nificant added expressive power while preserving tractability is to extend LTL
only by the “frequency globally” formulae G≥pϕ. Such a formula is satisfied if
the long-run frequency of satisfying ϕ on an infinite path is at least p. More

c© Springer-Verlag Berlin Heidelberg 2015
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formally, G≥pϕ is true on an infinite path s0s1 · · · of an MDP if and only if
1
n · |{i | i < n and sisi+1 · · · satisfies ϕ}| is at least p as n tends to infinity.
Because the relevant limit might not be defined, we need to consider two dis-
tinct operators, G≥p

inf and G≥p
sup, whose definitions use limit inferior and limit

superior, respectively. We call the resulting logic frequency LTL (fLTL).
So far, MDP controller synthesis for fLTL has been shown decidable for the

fragment containing only the operator G≥1
inf [19]. Our paper makes a significant

further step towards the ultimate goal of a model checking procedure for the
whole fLTL. We address the general quantitative setting with arbitrary frequency
bounds p and consider the fragment fLTL\GU, which is obtained from frequency
LTL by preventing the U operator from occurring inside G or G≥p formulas (but
still allowing the F operator to occur anywhere in the formula). The approach we
take is completely different from [19] where ad hoc product MDP construction is
used, heavily relying on existence of certain types of strategies in the G≥1

inf case.
In this paper we provide, to the best of our knowledge, the first translation of a
quantitative logic to equivalent deterministic automata. This allows us to take
the standard automata-theoretic approach to verification [33]: after obtaining
the finite automaton, we do not deal with the structure of the formula originally
given, and we solve a (reasonably simple) synthesis problem on a product of the
single automaton with the MDP.

Relations of various kinds of logics and automata are widely studied (see
e.g. [16,29,32]), and our results provide new insights into this area for quan-
titative logics. Previous work [31] offered only translation of a similar logic to
non-deterministic “mean-payoff Büchi automata” noting that it is difficult to
give an analogous reduction to deterministic “mean-payoff Rabin automata”.
The reason is that the non-determinism is inherently present in the form of
guessing whether the subformulas of G≥p are satisfied on a suffix. Our construc-
tion overcomes this difficulty and offers equivalent deterministic automata. It is
a first and highly non-trivial step towards providing a reduction for the complete
logic.

Although our algorithm does not allow us to handle the extension of the
whole LTL, the considered fragment fLTL\GU contains a large class of formulas
and offers significant expressive power. It subsumes the GR(1) fragment of LTL
[5], which has found use in synthesis for hardware designs. The U operator,
although not allowed within a scope of a G operator, can still be used for example
to distinguish paths based on their prefixes. As an example synthesis problem
expressible in this fragment, consider a cluster of servers where each server plays
either a role of a load-balancer or a worker. On startup, each server listens
for a message specifying its role. A load- balancer forwards each request and
only waits for a confirmation whereas a worker processes the requests itself.
A specification for a single server in the cluster can require, for example, that
the following formula (with propositions explained above) holds with probability
at least 0.95:
((

l U b
) → G≥0.99

(
r → X(f ∧Fc)

))∧
((

l Uw
) → G≥0.85

(
r → (Xp∨XXp)

))
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Related Work. Frequency LTL was studied in another variant in [7,8]
where a frequency until operator is introduced in two different LTL-like logics,
and undecidability is proved for problems relevant to our setting. The work [7]
also yields decidability with restricted nesting of the frequency until operator;
as the decidable fragment in [7] does not contain frequency-globally operator, it
is not possible to express many useful properties expressible in our logic. A logic
that speaks about frequencies on a finite interval was introduced in [30], but the
paper provides algorithms only for Markov chains and a bounded fragment of
the logic.

Model checking MDPs against LTL objectives relies on the automata-
theoretic approach, namely on translating LTL to automata that are to some
extent deterministic [15]. This typically involves translating LTL to non-
deterministic automata, which are then determinized using e.g. Safra’s con-
struction. During the determinization, the original structure of the formula is
lost, which prevents us from extending this technique to the frequency setting.
However, an alternative technique of translating LTL directly to deterministic
automata has been developed [17,25,26], where the logical structure is preserved.
In our work, we extend the algorithm for LTL\GU partially sketched in [25]. In
Sect. 6, we explain why adapting the algorithm for full LTL [17] is difficult. Trans-
lation of LTL\GU to other kinds of automata has been considered also in [22].

Our technique relies on a solution of a multi-objective mean-payoff problem
on MDP [9,13]. Previous results only consider limit inferior rewards, and so we
cannot use them as off-the-shelf results, but need to adapt them first to our
setting with both inferior and superior limits together with Rabin condition.
There are several works that combine mean-payoff objectives with e.g. logics or
parity objectives, but in most cases only simple atomic propositions can be used
to define the payoff [4,6,11]. The work [3] extends LTL with another form of
quantitative operators, allowing accumulated weight constraint expressed using
automata, again not allowing quantification over complex formulas. Further, [1]
introduces a variant of LTL with a discounted-future operator. Finally, tech-
niques closely related to the ones in this paper are used in [14,18,28].

Our Contributions. To our best knowledge, this paper gives the first decid-
ability result for probabilistic verification against linear-time temporal logics
extended by quantitative frequency operators with complex nested subformulas
of the logic. It works in two steps, keeping the same time complexity as for ordi-
nary LTL. In the first step, a fLTL\GU formula gets translated to an equivalent
deterministic generalized Rabin automaton extended with mean-payoff objec-
tives. This step is inspired by previous work [25], but the extension with auxil-
iary automata for G≥p requires a different construction. The second step is the
analysis of MDPs against conjunction of limit inferior mean-payoff, limit supe-
rior mean-payoff, and generalized Rabin objectives. This result is obtained by
adapting and combining several existing involved proof techniques [10,13].

The paper is organised as follows: the main algorithm is given in Sect. 3,
relegating details of the two steps above to Sects. 4 and 5. Full proofs are in [20].



Controller Synthesis for MDPs and Frequency LTL\GU 165

2 Preliminaries

We use N and Q to denote the sets of non-negative integers and rational numbers.
The set of all distributions over a countable set X is denoted by Dist(X). For a
predicate P , the indicator function 1P equals 1 if P is true, and 0 if P is false.

Markov Decision Processes (MDPs). An MDP is a tuple M =
(S,A,Act , δ, ŝ) where S is a finite set of states, A is a finite set of actions,
Act : S → 2A \ {∅} assigns to each state s the set Act(s) of actions enabled in
s, δ : A → Dist(S) is a probabilistic transition function that given an action
a gives a probability distribution over the successor states, and ŝ is the initial
state. To simplify notation, w.l.o.g. we require that every action is enabled in
exactly one state.

Strategies. A strategy in an MDP M is a “recipe” to choose actions. Formally,
it is a function σ : (SA)∗S → Dist(A) that given a finite path w, representing
the history of a play, gives a probability distribution over the actions enabled
in the last state. A strategy σ in M induces a Markov chain Mσ which is a
tuple (L,P, ŝ) where the set of locations L = (S × A)∗ × S encodes the history
of the play, ŝ is an initial location, and P is a probabilistic transition function
that assigns to each location a probability distribution over successor locations
defined by P (h)(h a s) = σ(h)(a) ·δ(a)(s) . for all h ∈ (SA)∗S, a ∈ A and s ∈ S.

The probability space of the runs of the Markov chain is denoted by P
σ
M and

defined in the standard way [20,21].

End Components. A tuple (T,B) with ∅ �= T ⊆ S and B ⊆ ⋃
t∈T Act(t) is an

end component of M if (1) for all a ∈ B, whenever δ(a)(s′) > 0 then s′ ∈ T ; and
(2) for all s, t ∈ T there is a path w = s1a1 · · · ak−1sk such that s1 = s, sk = t,
and all states and actions that appear in w belong to T and B, respectively. An
end component (T,B) is a maximal end component (MEC) if it is maximal with
respect to the componentwise subset ordering. Given an MDP, the set of MECs
is denoted by MEC. Finally, an MDP is strongly connected if (S,A) is a MEC.

Frequency Linear Temporal Logic (fLTL). The formulae of the logic fLTL
are given by the following syntax:

ϕ :: = tt | ff | a | ¬a | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | Fϕ | Gϕ | ϕUϕ | G��p
extϕ

over a finite set Ap of atomic propositions, �� ∈ {≥, >}, p ∈ [0, 1] ∩ Q, and
ext ∈ {inf, sup}. A formula that is neither a conjunction, nor a disjunction is
called non-Boolean. The set of non-Boolean subformulas of ϕ is denoted by sf(ϕ).

Words and fLTL Semantics. Let w ∈ (2Ap)ω be an infinite word. The ith
letter of w is denoted w[i], i.e. w = w[0]w[1] · · · . We write wij for the finite
word w[i]w[i + 1] · · · w[j], and wi∞ or just wi for the suffix w[i]w[i + 1] · · · . The
semantics of a formula on a word w is defined inductively: for tt, ff , ∧, ∨, and
for atomic propositions and their negations, the definition is straightforward, for
the remaining operators we define:
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w |= Xϕ ⇐⇒ w1 |= ϕ

w |= Fϕ ⇐⇒ ∃ k ∈ N : wk |= ϕ

w |= Gϕ ⇐⇒ ∀ k ∈ N : wk |= ϕ

w |= ϕUψ ⇐⇒ ∃ k ∈ N : wk |= ψ and
∀ 0 ≤ j < k : wj |= ϕ

w |= G��p
extϕ ⇐⇒ lrext(1w0 |= ϕ1w1 |= ϕ · · · ) �� p

where we set lrext(q1q2 · · · ) := lim exti→∞ 1
i

∑i
j=1 qi. By L(ϕ) we denote the set

{w ∈ (2Ap)ω | w |= ϕ} of words satisfying ϕ.
The fLTL\GU fragment of fLTL is defined by disallowing occurrences of U

in G-formulae, i.e. it is given by the following syntax for ϕ:

ϕ:: =a | ¬a | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ | Fϕ | Gξ | G��p
ext ξ

ξ:: =a | ¬a | ξ ∧ ξ | ξ ∨ ξ | Xξ | Fξ | Gξ | G��p
extξ

Note that restricting negations to atomic propositions is without loss of gener-
ality as all operators are closed under negation, for example ¬G≥p

inf ϕ ≡ G>1−p
sup ¬ϕ

or ¬G>p
supϕ ≡ G≥1−p

inf ¬ϕ. Furthermore, we could easily allow �� to range also over
≤ and < as G≤p

inf ϕ ≡ G≥1−p
sup ¬ϕ and G<p

inf ϕ ≡ G>1−p
sup ¬ϕ.

Automata. Let us fix a finite alphabet Σ. A deterministic labelled transition
system (LTS) over Σ is a tuple (Q, q0, δ) where Q is a finite set of states, q0 is
the initial state, and δ : Q × Σ → Q is a partial transition function. We denote
δ(q, a) = q′ also by q

a−→ q′. A run of the LTS S over an infinite word w is a
sequence of states S(w) = q0q1 · · · such that qi+1 = δ(qi, w[i]). For a finite word
w of length n, we denote by S(w) the state qn in which S is after reading w.

An acceptance condition is a positive boolean formula over formal variables

{Inf (S),Fin(S),MP��p
ext(r) | S⊆Q, ext∈{inf, sup}, ��∈{≥, >}, p∈Q, r : Q→Q}.

Given a run ρ and an acceptance condition α, we assign truth values as follows:

– Inf (S) is true iff ρ visits (some state of) S infinitely often,
– Fin(S) is true iff ρ visits (all states of) S finitely often,
– MP��p

ext(r) is true iff lrext(r(ρ[0])r(ρ[1]) · · · ) �� p.

The run ρ satisfies α if this truth-assignment makes α true. An automaton A is
an LTS with an acceptance condition α. The language of A, denoted by L(A),
is the set of all words inducing a run satisfying α. An acceptance condition α is
a Büchi, generalized Büchi, or co-Büchi acceptance condition if it is of the form
Inf (S),

∧
i Inf (Si), or Fin(S), respectively. Further, α is a generalized Rabin

mean-payoff, or a generalized Büchi mean-payoff acceptance condition if it is
in disjunctive normal form, or if it is a conjunction not containing any Fin(S),
respectively. For each acceptance condition we define a corresponding automa-
ton, e.g. deterministic generalized Rabin mean-payoff automaton (DGRMA).

3 Model-Checking Algorithm

In this section, we state the problem of model checking MDPs against fLTL\GU

specifications and provide a solution. As a black-box we use two novel routines
described in detail in the following two sections. All proofs are in the appendix.
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Given an MDP M and a valuation ν : S → 2Ap of its states, we say that
its run ω = s0a0s1a1 · · · satisfies ϕ, written ω |= ϕ, if ν(s0)ν(s1) · · · |= ϕ.
We use P

σ[ϕ] as a shorthand for the probability of all runs satisfying ϕ, i.e.
P

σ
M[{ω | ω |= ϕ}]. This paper is concerned with the following task:

Controller synthesis problem: Given an MDP with a valuation, an
fLTL\GU formula ϕ and x ∈ [0, 1], decide whether P

σ[ϕ] ≥ x for some strat-
egy σ, and if so, construct such a witness strategy.

The following is the main result of the paper.

Theorem 1. The controller synthesis problem for MDPs and fLTL\GU is decid-
able and the witness strategy can be constructed in doubly exponential time.

In this section, we present an algorithm for Theorem1. The skeleton of our
algorithm is the same as for the standard model-checking algorithm for MDPs
against LTL. It proceeds in three steps. Given an MDP M and a formula ϕ,

1. compute a deterministic automaton A such that L(A) = L(ϕ),
2. compute the product MDP M × A,
3. analyse the product MDP M × A.

In the following, we concretize these three steps to fit our setting.

1. Deterministic Automaton. For ordinary LTL, usually a Rabin automaton
or a generalized Rabin automaton is constructed [17,23,24,27]. Since in our
setting, along with ω-regular language the specification also includes quantitative
constraints over runs, we generate a DGRMA. The next theorem is the first black
box, detailed in Sect. 4.

Theorem 2. For any fLTL\GU formula, there is a DGRMA A, constructible
in doubly exponential time, such that L(A) = L(ϕ), and the acceptance condition
is of exponential size.

2. Product. Computing the synchronous parallel product of the MDP M =
(S,A,Act ,Δ, ŝ) with valuation ν : S → 2Ap and the LTS (Q, i, δ) over 2Ap

underlying A is rather straightforward. The product M × A is again an MDP
(S × Q,A × Q,Act ′,Δ′, (ŝ, q̂)) where1 Act ′((s, q)) = Act(s) × {q}, q̂ = δ(i, ν(ŝ)),
and Δ′((a, q)

)(
(s, q̄)

)
is equal to Δ(a)(s) if δ(q, ν(s)) = q̄, and to 0 otherwise.

We lift acceptance conditions Acc of A to M × A: a run of M × A satisfies Acc
if its projection to the component of the automata states satisfies Acc.2

3. Product Analysis. The MDP M × A is solved with respect to Acc, i.e.,
a strategy in M × A is found that maximizes the probability of satisfying Acc.
1 In order to guarantee that each action is enabled in at most one state, we have a

copy of each original action for each state of the automaton.
2 Technically, the projection should be preceded by i to get a run of the automaton,

but the acceptance does not depend on any finite prefix of the sequence of states.



168 V. Forejt et al.

Such a strategy then induces a (history-dependent) strategy on M in a straight-
forward manner. Observe that for DGRMA, it is sufficient to consider the setting
with

Acc =
k∨

i=1

(Fin(Fi) ∧ Acc′
i) (1)

where Acc′
i is a conjunction of several Inf and MP (in contrast with a Rabin

condition used for ordinary LTL where Acc′
i is simply of the form Inf (Ii)).

Indeed, one can replace each
∧

j Fin(Fj) by Fin(
⋃

j Fj) to obtain the desired
form, since avoiding several sets is equivalent to avoiding their union.

For a condition of the form (1), the solution is obtained as follows:

1. For i = 1, 2, . . . , k:
(a) Remove the set of states Fi from the MDP.
(b) Compute the MEC decomposition.
(c) Mark each MEC C as winning iff AcceptingMEC(C,Acc′

i) returns Yes.
(d) Let Wi be the componentwise union of winning MECs above.

2. Let W be the componentwise union of all Wi for 1 ≤ i ≤ k.
3. Return the maximal probability to reach the set W in the MDP.

The procedure AcceptingMEC(C,Acc′
i) is the second black box used in our

algorithm, detailed in Sect. 5. It decides, whether the maximum probability of
satisfying Acc′

i in C is 1 (return Yes), or 0 (return No).

Theorem 3. For a strongly connected MDP M and a generalized Büchi mean-
payoff acceptance condition Acc, the maximal probability to satisfy Acc is either
1 or 0, and is the same for all initial states. Moreover, there is a polynomial-time
algorithm that computes this probability, and also outputs a witnessing strategy
if the probability is 1.

The procedure is rather complex in our case, as opposed to standard cases such
as Rabin condition, where a MEC is accepting for Acc′

i = Inf (Ii) if its states
intersect Ii; or a generalized Rabin condition [12], where a MEC is accepting for
Acc′

i =
∧�i

j=1 Inf (Iij) if its states intersect with each Ij
i , for j = 1, 2, . . . , �i.

Finishing the Proof of Theorem 1. Note that for MDPs that are not strongly
connected, the maximum probability might not be in {0, 1}. Therefore, the prob-
lem is decomposed into a qualitative satisfaction problem in step 1.(c) and a
quantitative reachability problem in step 3. Consequently, the proof of correct-
ness is the same as the proofs for LTL via Rabin automata [2] and generalized
Rabin automata [12]. The complexity follows from Theorems 2 and 3. Finally, the
overall witness strategy first reaches the winning MECs and if they are reached
it switches to the witness strategies from Theorem 3.

Remark 1. We remark that by a simple modification of the product construction
above and of the proof of Theorem3, we obtain an algorithm synthesising a
strategy achieving a given bound w.r.t. multiple mean-payoff objectives (with a
combination of superior and inferior limits) and (generalized) Rabin acceptance
condition for general (not necessarily strongly connected) MDP.
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4 Automata Characterization of fLTL\GU

In this section, we prove Theorem 2. We give an algorithm for translating a
given fLTL\GU formula ϕ into a deterministic generalized Rabin mean-payoff
automaton A that recognizes words satisfying ϕ. For the rest of the section, let
ϕ be an fLTL\GU formula. Further, F,G,G��, and sfs denote the set of F-, G-,
G��p

ext-, and non-Boolean subformulas of ϕ, respectively.
In order to obtain an automaton for the formula, we first need to give a more

operational view on fLTL. To this end, we use expansions of the formulae in a
very similar way as they are used, for instance, in tableaux techniques for LTL
translation to automata, or for deciding LTL satisfiability. We define a symbolic
one-step unfolding (expansion) Unf of a formula inductively by the rules below.
Further, for a valuation ν ⊆ Ap, we define the “next step under ν”-operator. This
operator (1) substitutes unguarded atomic propositions for their truth values,
and (2) peels off the outer X-operator whenever it is present. Formally, we define

Unf(ψ1 ∧ ψ2) = Unf(ψ1) ∧ Unf(ψ2)
Unf(ψ1 ∨ ψ2) = Unf(ψ1) ∨ Unf(ψ2)

Unf(Fψ1) = Unf(ψ1) ∨ XFψ1

Unf(Gψ1) = Unf(ψ1) ∧ XGψ1

Unf(ψ1Uψ2) = Unf(ψ2)∨
(
Unf(ψ1)∧X(ψ1Uψ2)

)

Unf(G��p
extψ1) = tt ∧ XG��p

extψ1

Unf(ψ) = ψ for any other ψ

(ψ1 ∧ ψ2)[ν] = ψ1[ν] ∧ ψ2[ν]
(ψ1 ∨ ψ2)[ν] = ψ1[ν] ∨ ψ2[ν]

a[ν] =

{
tt if a ∈ ν

ff if a /∈ ν

¬a[ν] =

{
ff if a ∈ ν

tt if a /∈ ν

(Xψ1)[ν] = ψ1

ψ[ν] = ψ for any other ψ

Note that after unfolding, a formula becomes a positive Boolean combination
over literals (atomic propositions and their negations) and X-formulae. The
resulting formula is LTL-equivalent to the original formula. The formulae of
the form G��p

extψ have “dummy” unfolding; they are dealt with in a special way
later. Combined with unfolding, the “next step”-operator then preserves and
reflects satisfaction on the given word:

Lemma 1. For every word w and fLTL\GU formula ϕ, we have w |= ϕ if and
only if w1 |= (Unf(ϕ))[w[0]].

The construction of A proceeds in several steps. We first construct a “master”
transition system, which monitors the formula and transforms it in each step to
always keep exactly the formula that needs to be satisfied at the moment. How-
ever, this can only deal with properties whose satisfaction has a finite witness,
e.g. Fa. Therefore we construct a set of “slave” automata, which check whether
“infinitary” properties (with no finite witness), e.g., FGa, hold or not. They
pass this information to the master, who decides on acceptance of the word.
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4.1 Construction of Master Transition System M
We define a LTS M = (Q,ϕ, δM) over 2Ap by letting Q be the set of positive
Boolean functions3 over sf, by letting ϕ be the initial state, and by letting the
transition function δM, for every ν ⊆ Ap and ψ ∈ Q, contain ψ

ν−→ (Unf(ψ))[ν].
The master automaton keeps the property that is still required up to date:

Lemma 2 (Local (Finitary) Correctness of Master LTS). Let w be a
word and M(w) = ϕ0ϕ1 · · · the corresponding run. Then for all n ∈ N, we have
w |= ϕ if and only if wn |= ϕn.

Example 1. The formula ϕ = a ∧ X(bUa) yields a master LTS depicted below.

One can observe that for an fLTL formula ϕ with no G- and G��p
ext-operators,

we have w |= ϕ iff the state tt is reached while reading w. However, for formulae
with G-operators (and thus without finite witnesses in general), this claim no
longer holds. To check such behaviour we construct auxiliary “slave” automata.

4.2 Construction of Slave Transition Systems S(ξ)

We define a LTS S(ξ) = (Q, ξ, δS) over 2Ap with the same state space as M and
the initial state ξ ∈ Q. Furthermore, we call a state ψ a sink, written ψ ∈ Sink,
iff for all ν ⊆ Ap we have ψ[ν] = ψ. Finally, the transition relation δS , for every
ν ⊆ Ap and ψ ∈ Q \ Sink, contains ψ

ν−→ ψ[ν].

Example 2. The slave LTS for the formula ξ = a∨b∨X(b∧GFa) has a structure
depicted in the following diagram:

Note that we do not unfold any inner F- and G-formulae. Observe that if we start
reading w at the ith position and end up in tt, we have wi |= ξ. Similarly, if we
end up in ff we have wi � |= ξ. This way we can monitor for which position ξ holds
and will be able to determine if it holds, for instance, infinitely often. But what
about when we end up in GFa? Intuitively, this state is accepting or rejecting

3 We use Boolean functions, i.e. classes of propositionally equivalent formulae, to
obtain a finite state space. To avoid clutter, when referring to such a Boolean func-
tion, we use some formula representing the respective equivalence class. The choice
of the representing formula is not relevant since, for all operations we use, the propo-
sitional equivalence is a congruence, see [20]. Note that, in particular, tt,ff ∈ Q.
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depending on whether GFa holds or not. Since this cannot be checked in finite
time, we delegate this task to yet another slave, now responsible for GFa. Thus
instead of deciding whether GFa holds, we may use it as an assumption in the
automaton for ξ and let the automaton for GFa check whether the assumption
turns out correct.

Let Rec := F∪G∪G
��. This is the set of subformulas that are potentially dif-

ficult to check in finite time. Subsets of Rec can be used as assumptions to prove
other assumptions and in the end also the acceptance. Given a set of formulae
Ψ and a formula ψ, we say that Ψ (propositionally) proves ψ, written Ψ � ψ, if
ψ can be deduced from formulae in Ψ using only propositional reasoning (for a
formal definition see [20]). So, for instance, {GFa}�GFa ∨ Gb, but GFa ��Fa.

The following is the ideal assumption set we would like our automaton to
identify. For a fixed word w, we denote by R(w) the set

{Fξ ∈ F | w |= GFξ} ∪ {Gξ ∈ G | w |= FGξ} ∪ {G��p
extξ ∈ G

�� | w |= G��p
extξ}

of formulae in Rec eventually always satisfied on w. The slave LTS is useful
for recognizing whether its respective formula ξ holds infinitely often, almost
always, or with the given frequency. Intuitively, it reduces this problem for a
given formula to the problems for its subformulas in Rec:

Lemma 3 (Correctness of Slave LTS). Let us fix ξ ∈ sf and a word w. For
any R ∈ Rec, we denote by Sat(R) the set {i ∈ N | ∃j ≥ i : R � S(ξ)(wij)}.
Then for any R,R ⊆ Rec such that R ⊆ R(w) ⊆ R, we have

Sat(R) is infinite =⇒ w |= GFξ =⇒ Sat(R) is infinite (2)
N \ Sat(R) is finite =⇒ w |= FGξ =⇒ N \ Sat(R) is finite (3)

lrext(
(
1i∈Sat(R)

)∞
i=0

) �� p =⇒ w |= G��p
extξ =⇒ lrext(

(
1i∈Sat(R)

)∞
i=0

) �� p (4)

Before we put the slaves together to determine R(w), we define slave
automata. In order to express the constraints from Lemma 3 as acceptance
conditions, we need to transform the underlying LTS. Intuitively, we replace
quantification over various starting positions for runs by a subset construction.
This means that in each step we put a token to the initial state and move all
previously present tokens to their successor states.

Büchi. For a formula Fξ ∈ F, its slave LTS S(ξ) = (Q, ξ, δS), and R ⊆ Rec, we
define a Büchi automaton SGF(ξ,R) = (2Q, {ξ}, δ) over 2Ap by setting

Ψ
ν−→ {δS(ψ, ν) | ψ ∈ Ψ \ Sink} ∪ {ξ} for every ν ⊆ Ap

and the Büchi acceptance condition Inf ({Ψ ⊆ Q | ∃ψ ∈ Ψ ∩ Sink : R� ψ}).
In other words, the automaton accepts if infinitely often a token ends up in

an accepting sink, i.e., element of Sink that is provable from R. For Example 2,
depending on whether we assume GFa ∈ R or not, the accepting sinks are tt
and GFa, or only tt, respectively.

Co-Büchi. For a formula Gξ ∈ G, its slave LTS S(ξ) = (Q, ξ, δS) and R ⊆ Rec,
we define a co-Büchi automaton SFG(ξ,R) = (2Q, {ξ}, δ) over 2Ap with the same
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LTS as above. It differs from the Büchi automaton only by having a co-Büchi
acceptance condition Fin({Ψ ⊆ Q | ∃ψ ∈ Ψ ∩ Sink : R �� ψ}).

Mean-payoff. For a formula G��p
extξ ∈ G

��, its slave LTS S(ξ) = (Q, ξ, δS), and
R ⊆ Rec we define a mean-payoff automaton SG��p

ext
(ξ,R) = (|Q|Q,1ξ, δ) over

2Ap so that for every ν ⊆ Ap, we have f
ν−→ f ′ where

f ′(ψ′) = 1ξ(ψ′) +
∑

δS(ψ,ν)=ψ′
f(ψ).

Intuitively, we always count the number of tokens in each state. When a step is
taken, all tokens moving to a state are summed up and, moreover, one token is
added to the initial state. Since the slave LTS is acyclic the number of tokens in
each state is bounded.

Finally, the acceptance condition is MP��p
ext(r(R)) where the function r(R)

assigns to every state f the reward:
∑

ψ∈Sink,R 
 ψ

f(ψ).

Each state thus has a reward that is the number of tokens in accepting sinks.
Note that each token either causes a reward 1 once per its life-time when it
reaches an accepting sink, or never causes any reward in the case when it never
reaches any accepting state.

Lemma 4 (Correctness of Slave Automata). Let ξ ∈ sf, w, and R,R ⊆
Rec be such that R ⊆ R(w) ⊆ R. Then

w ∈ L(SGF(ξ,R)) =⇒ w |= GFξ =⇒ w ∈ L(SGF(ξ,R)) (5)
w ∈ L(SFG(ξ,R)) =⇒ w |= FGξ =⇒ w ∈ L(SFG(ξ,R)) (6)

w ∈ L(SG��p
ext

(ξ,R)) =⇒ w |= G��p
extξ =⇒ w ∈ L(SG��p

ext
(ξ,R)) (7)

4.3 Product of Slave Automata

Observe that the LTS of slave automata never depend on the assumptions R. Let
S1, . . . ,Sn be the LTS of automata for elements of Rec = {ξ1, . . . , ξn}. Further,
given R ⊆ Rec, let Acci(R) be the acceptance condition for the slave automaton
for ξi with assumptions R.

We define P to be the LTS product S1×· · ·×Sn. The slaves run independently
in parallel. For R ⊆ Rec, we define the acceptance condition for the product4

Acc(R) =
∧

ξi∈R
Acci(R)

4 An acceptance condition of an automaton is defined to hold on a run of the automata
product if it holds on the projection of the run to this automaton. We can still write
this as a standard acceptance condition. Indeed, for instance, a Büchi condition for
the first automaton given by F ⊆ Q is a Büchi condition on the product given by
{(q1, q2, . . . , qn) | q1 ∈ F, q2, . . . , qn ∈ Q}.
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and P(R) denotes the LTS P endowed with the acceptance condition Acc(R).
Note that Acc(R) checks that R is satisfied when each slave assumes R.

Lemma 5 (Correctness of Slave Product). For w and R ⊆ Rec, we have

(soundness) whenever w ∈ L(P(R)) then R ⊆ R(w);
(completeness) w ∈ L(P(R(w))).

Intuitively, soundness means that whatever set of assumptions we prove with P
it is also satisfied on the word. Note that the first line can be written as

w ∈ L(P(R)) =⇒ w |=
∧

Fξ∈R
GFξ ∧

∧

Gξ∈R
FGξ ∧

∧

G��p
extξ∈R

G��p
extξ

Completeness means that for every word the set of all satisfied assumptions can
be proven by the automaton.

4.4 The Final Automaton: Product of Slaves and Master

Finally, we define the generalized Rabin mean-payoff automaton A to have the
LTS M × P and the acceptance condition

∨
R⊆Rec AccM(R) ∧ Acc(R) where

AccM(R) = Fin
({(

ψ, (Ψξ)ξ∈Rec

) ∣
∣
∣ R ∪

⋃

Gξ∈R
Ψξ[(Rec \ R)/ff ] � � ψ

})

eventually prohibits states where the current formula of the master ψ is not
proved by the assumptions and by all tokens of the slaves for Gξ ∈ R. Here
Ψ [X/ff ] denotes the set of formulae of Ψ where each element of X in the Boolean
combination is replaced by ff . For instance, {a∨Fa}[{a}/ff ] = ff∨Fa = Fa. (For
formal definition, see [20].) We illustrate how the information from the slaves in
this form helps to decide whether the master formula holds or not.

Example 3. Consider ϕ = G(Xa ∨ GXb), and its respective master transition
system as depicted below:

Assume we enter the second state and stay there forever, e.g., under words {a}ω

or {a, b}ω. How do we show that ϕ∧(a∨(b∧GXb)) holds? For the first conjunct,
we obviously have R� ϕ for all R containing ϕ. However, the second conjunct
is more difficult to prove.

One option is that we have GXb ∈ R and want to prove the second disjunct.
To this end, we also need to prove b. We can see that if GXb holds then in its
slave for Xb, there is always a token in the state b, which is eventually always



174 V. Forejt et al.

guaranteed to hold. This illustrates why we need the tokens of the G-slaves for
proving the master formula.

The other option is that GXb is not in R, and so we need to prove the first
disjunct. However, from the slave for G(Xa∨GXb) we eventually always get only
the tokens Xa ∨GXb, a ∨GXb, and tt. None of them can prove a ∨ (b ∧GXb).
However, since the slave does not rely on the assumption GXb, we may safely
assume it not to hold here. Therefore, we can substitute ff for GXb and after the
substitution the tokens turn into Xa, a, and tt. The second one is then trivially
sufficient to prove the first disjunct.

Proposition 1 (Soundness). If w ∈ L(A), then w |= ϕ.

The key proof idea is that for the slaves of G-formulae in R, all the tokens
eventually always hold true. Since also the assumptions hold true so does the
conclusion ψ. By Lemma 2, ϕ holds true, too.

Proposition 2 (Completeness). If w |= ϕ, then w ∈ L(A).

The key idea is that subformulas generated in the master from G-formulae closely
correspond to their slaves’ tokens. Further, observe that for an F-formula χ, its
unfolding is a disjunction of χ and other formulae. Therefore, it is sufficient to
prove χ, which can be done directly from R. Similarly, for G��p

ext-formula χ, its
unfolding is just χ and is thus also provable directly from R.
Complexity. Since the number of Boolean functions over a set of size n is 22

n

,
the size of each automaton is bounded by 22

|sf|
, i.e., doubly exponential in the

length of the formula. Their product is thus still doubly exponential. Finally,
the acceptance condition is polynomial for each fixed R ⊆ Rec. Since the whole
condition is a disjunction over all possible values of R, it is exponential in the
size of the formula, which finishes the proof of Theorem2.

5 Verifying Strongly Connected MDPs Against
Generalized Büchi Mean-Payoff Automata

Theorem 3 can be obtained from the following proposition.

Proposition 3. Let M = (S,A,Act , δ, ŝ) be a strongly connected MDP, and Acc
an acceptance condition over S given by:

∧k

i=1
Inf (Si) ∧

∧m

i=1
MP��vi

inf (ri) ∧
∧n

i=1
MP��ui

sup (qi))

The constraints from Fig. 1 have a non-negative solution if and only if there is
a strategy σ and a set of runs R of non-zero probability such that Acc holds true
on all ω ∈ R. Moreover, σ and R can be chosen so that R has probability 1.

Intuitively, variables xi,a describe the frequencies of using action a. Equation (9)
is Kirchhof’s law of flow. Equation (10) says the inferior limits must be satisfied
by all flows, while Eq. (11) says that the ith limit superior has its own dedicated
ith flow. Note that L does not dependent on the initial state ŝ.
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Fig. 1. Linear constraints L of Proposition 3

Proof (Sketch). Existing results for multi-objective mean payoff MDPs would
only allow to establish the proposition in absence of supremum limits, and so we
need to extend and combine results of several works to prove the proposition.
In the direction ⇒, [13, Corollary 12] gives a strategy σi for every i such that
for almost every run s0a0s1a1 . . . we have lrinf((1at=a)∞

t=0) = xi,a, and in fact
the corresponding limit exists. Hence, for the number p =

∑
s∈S,a∈Act(s) r(s) ·

xi,a the predicates MP≥p
inf (r) and MP≥p

sup(r) almost surely holds, for any reward
function r. Hence, our constraints ensure that σi satisfies MP��vj

inf (rj) for all j,
and MP��ui

sup (qi). Moreover, σi is guaranteed to visit every state of M infinitely
often almost surely. The strategy σ is then constructed to take these strategies
σi, 1 ≤ i ≤ n in turn and mimic each one of them for longer and longer periods.

For the direction ⇐, we combine the ideas of [9,10,13] and select solutions
to xi,a from “frequencies” of actions under the strategy σ.

6 Conclusions

We have given an algorithm for computing the optimal probability of satisfying
an fLTL\GU formula in an MDP. The proof relies on a decomposition of the
formula into master and slave automata, and on solving a mean-payoff problem
in a product MDP. The obvious next step is to extend the algorithm so that it
can handle arbitrary formulae of fLTL. This appears to be a major task, since
our present construction relies on acyclicity of slave LTS, a property which is
not satisfied for unrestricted formulae [17]. Indeed, since G��p-slaves count the
number of tokens in each state, this property ensures a bounded number of
tokens and thus finiteness of the slave automata.
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Abstract. Incremental SAT and QBF solving potentially yields improve-
ments when sequences of related formulas are solved. An incremental
application is usually tailored towards some specific solver and decomposes
a problem into incremental solver calls. This hinders the independent com-
parison of different solvers, particularly when the application program is
not available. As a remedy, we present an approach to automated bench-
marking of incremental SAT and QBF solvers. Given a collection of formu-
las in (Q)DIMACS format generated incrementally by an application pro-
gram, our approach automatically translates the formulas into instructions
to import and solve a formula by an incremental SAT/QBF solver. The
result of the translation is a program which replays the incremental solver
calls and thus allows to evaluate incremental solvers independently from
the application program. We illustrate our approach by different hardware
verification problems for SAT and QBF solvers.

1 Introduction

Incremental solving has contributed to the success of SAT technology and
potentially yields considerable improvements in applications where sequences
of related formulas are solved. The logic of quantified Boolean formulas
(QBF) extends propositional logic (SAT) by explicit existential and univer-
sal quantification of variables and lends itself for problems within PSPACE.
Also for QBFs, incremental solving has been successfully applied in different
domains [4,7,12,13].

The development of SAT and QBF solvers has been driven by competitive
events like the SAT Competitions, QBF Evaluations (QBFEVAL), or the QBF
Galleries. These events regularly result in publicly available benchmarks sub-
mitted by the participants which help to push the state of the art in SAT and
QBF solving. In the past, the focus was on non-incremental SAT solving, and
the evaluation of incremental solvers does not readily benefit from competitions
and available benchmark collections.

Benchmarking incremental solvers requires to solve a sequence of related for-
mulas. To this end, the formulas must be incrementally imported to the solver

This work was supported by the Austrian Science Fund (FWF) under grant S11409-
N23. An extended version with proofs and detailed experimental results can be found
in [8].
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and solved by means of API calls. The API calls are typically generated by
an application program, like a model checker or a formal verification or plan-
ning tool, for example, which tackles a problem by encoding it incrementally
to a sequence of formulas. In order to compare different incremental solvers on
that sequence of formulas, the solvers must be tightly coupled with the applica-
tion program by linking them as a library. Hence benchmarking of incremental
solvers relies on the application program used to generate the sequence of for-
mulas which, however, often is not available. Even if the application program
is available, it has to be adapted to support different solvers, where each solver
might come with its own API. Further, the same sequence of formulas must be
generated multiple times by the application program to compare different solvers.

To remedy this situation, we present an approach to automated benchmark-
ing of incremental SAT and QBF solvers which decouples incremental SAT/QBF
solving from incremental generation of formulas using an application program.
This is achieved by translating a sequence of related CNFs and QBFs in prenex
CNF (PCNF) into API calls of incremental solvers. Such a sequence might be the
output of an application program or it was taken from existing benchmark col-
lections. The formulas are then syntactically analyzed and instructions to incre-
mentally import and solve them are generated. For CNFs, the instructions are
function calls in the IPASIR API, which has been proposed for the Incremental
Library Track of the SAT Race 2015.1 For PCNFs, the instructions correspond
to calls of the API of the QBF solver DepQBF,2 which generalizes IPASIR and
allows to update quantifier prefixes. The result of translating a sequence of for-
mulas to solver API calls is a standalone benchmarking program which replays
the incremental solver calls. Any incremental SAT/QBF solver supporting the
IPASIR API or its QBF extension as implemented in DepQBF can be integrated
by simply linking it to the program. This allows to compare different solvers
independently from an application.

In some applications, the sequence of formulas depends on the used solver,
e.g., if truth assignments are used to guide the process. Even then, our approach
allows to compare different incremental solvers on the fixed sequences gener-
ated with one particular solver. However, then it is important to note that this
comparison is limited to this particular fixed sequence, it would be unfair to
conclude something about the performance of the solvers would they have been
genuinely used within the application. This problem occurs also in sequences of
formulas which are already present in benchmark collections. For experiments
in this paper, we only considered applications where the sequences of generated
formulas do not depend on intermediate truth assignments.

As our approach is also applicable to already generated formulas that are part
of existing benchmark collections, such collections become available to developers
of incremental solvers. Furthermore, comparisons between solvers in incremental
and non-incremental mode are made possible. In addition, since the input for
the benchmarking program describes only the differences between consecutive
formulas, we obtain a quite succinct representation of incremental benchmarks.

1 http://baldur.iti.kit.edu/sat-race-2015/.
2 http://lonsing.github.io/depqbf/.

http://baldur.iti.kit.edu/sat-race-2015/
http://lonsing.github.io/depqbf/
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Our approach to automated benchmarking of incremental SAT and QBF solvers
underpins the goal of the Incremental Library Track of the SAT Race 2015. We
have generated benchmarks and submitted them to this competition.

2 Background

We consider propositional formulas in CNF and identify a CNF with the set
of its clauses. A sequence σ = (F1, . . . , Fn) of formulas represents the formulas
that are incrementally generated and solved by an application program. A QBF
ψ = P.F in prenex CNF (PCNF) extends a CNF F by a quantifier prefix P .
The prefix P = Q1, . . . , Qn of a QBF is a sequence of pairwise disjoint quantified
sets Qi. A quantified set Q is a set of variables with an associated quantifier
quant(Q) ∈ {∃,∀}. We consider only closed PCNFs. For adjacent quantified sets
Qi and Qi+1, quant(Qi) �= quant(Qi+1). Given a prefix P = Q1, . . . , Qn, index
i is the nesting level of Qi in P .

Our automated benchmarking approach is based on solving under
assumptions [5,6] as implemented in modern SAT [1,10,14] and QBF solvers [11–
13]. When solving a CNF under assumptions, the clauses are augmented with
selector variables. Selector variables allow for temporary variable assignments
made by the user via the solver API. If the value assigned to a selector variable
satisfies the clauses where it occurs, then these clauses are effectively removed
from the CNF. This way, the user controls which clauses appear in the CNF
in the forthcoming incremental solver run. The IPASIR API proposed for the
Incremental Library Track of the SAT Race 2015 consists of a set of functions
for adding clauses to a CNF and handling assumptions. A disadvantage of this
approach is that the user has to keep track of the used selector variables and
assumptions manually.

For incremental QBF solving, additional API functions are needed to remove
quantified sets and variables from and add them to a prefix. For QBF solvers,
we generate calls in the API of DepQBF which generalizes IPASIR by functions
to manipulate quantifier prefixes. Additionally, it allows to remove and add
clauses in a stack-based way by push/pop operations where selector variables
and assumptions are handled internal to the solver and hence are invisible to
the user [11]. For details on the IPASIR and DepQBF interfaces, we refer to the
respective webpages mentioned in the introduction.

3 Translating Related Formulas into Incremental
Solver Calls

We present the workflow to translate a given sequence σ = (ψ1, . . . , ψn) of related
(P)CNFs into a standalone benchmarking program which calls an integrated
solver via its API to incrementally solve the formulas from ψ1 up to ψn:

1. First, the formulas in σ are analyzed and the syntactic differences between
each ψi and ψi+1 are identified. This includes clauses and quantified sets that
have to be added or removed to obtain ψi+1 from ψi. Also, variables may be
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added to or removed from quantified sets. For CNFs, the prefix analysis is
omitted.

2. The differences between the formulas identified in the first step are expressed
by generic update instructions and are written to a file. A clause set is rep-
resented as a stack which can be updated via push and pop operations. The
update instructions for quantifier prefixes are adding a quantified set at a
nesting level and adding new variables to quantified sets already present in
the prefix. Unused variables are deleted from the prefix by the solver.

3. Files that contain generic update instructions are then interpreted by a bench-
marking program which translates them into calls of the IPASIR API (for
CNFs) or QBF solver calls (for PCNFs). For the latter, calls of DepQBF’s API
are generated.

The benchmarking program is standalone and independent from the application
program used to generate σ. It takes the files containing the generic update
instructions as the only input. Multiple solvers may be integrated in the bench-
marking program by linking them as libraries. Files containing the update
instructions can serve as standardised benchmarks for incremental SAT and
QBF solvers.

Analyzing CNFs. The algorithm to analyze sequences σ = (F1, . . . , Fn) of clause
sets relies on a stack-based representation of Fi which allows for simple deletion
of clauses that have been added most recently. A clause c which appears in
some Fi and is removed later at some point to obtain Fj with i < j ≤ n is
called volatile in Fi. A clause which appears in some Fi for the first time and
also appears in every Fj with i < j ≤ n and hence is never deleted is called
cumulative in Fi.

The algorithm to analyze sequence σ identifies volatile and cumulative clauses
in all clause sets in σ. Cumulative clauses are pushed first on the stack repre-
senting the current clause set because they are not removed anymore after they
have been added. Volatile clauses are pushed last because they are removed at
some point by a pop operation when constructing a later formula in σ. For illus-
tration, consider the following sequence σ = (F1, . . . , F4) of clause sets Fi along
with their respective sets Ci of cumulative clauses and sets Vi of volatile clauses:

F1 = {c1, c2, v1} C1 = {c1, c2} V1 = {v1}
F2 = {c1, c2, c3, v1, v2} C2 = {c3} V2 = {v1, v2}
F3 = {c1, c2, c3, c4, v1, v3} C3 = {c4} V3 = {v1, v3}
F4 = {c1, c2, c3, c4, c5} C4 = {c5} V4 = ∅

After the sets of cumulative and volatile clauses have been identified for each
Fi, the clause sets can be incrementally constructed by means of the following
operations on the clause stack: adding a set C of clauses permanently to a formula
by add(C), pushing a set C of clauses on the stack by push(C), and popping
a set of clauses from the stack by pop(). The sequence σ = (F1, . . . , F4) from
the example above is generated incrementally by executing the following stack
operations:
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Input : Clause sets F1, F2, . . . , Fn (at least two sets are required)
Output: C1, . . . , Cn (sets of cumulative clauses to be added)

V1, . . . , Vn (sets of volatile clauses to be pushed or popped)

V1 ←− F1 \ F2; C1 ←− F1 \ V1;1

for i ← 2 to n − 1 do2

Vi ←− Fi \ Fi+1;3

Ci ←− (Fi \ Fi−1) \ Vi;4

foreach c ∈ Vi ∩ Fi−1 do5

for j ← 1 to i − 1 do6

if c ∈ Cj then7

Cj ←− Cj \ {c};8

for k = j to i − 1 do9

Vk ←− Vk ∪ {c};10

break ;11

Cn ←− Fn \ Fn−1; Vn ←− ∅;12

Algorithm 1. Identifying cumulative and volatile clauses.

add(C1) push(V1)
pop() add(C2) push(V2)
pop() add(C3) push(V3)
pop() add(C4) push(V4)

Note that the above schema of stack operations generalises to arbitrary
sequences of clause sets, i.e., we need at most one push, one add, and one pop
operation in each step, provided that the clauses have been classified as volatile
or cumulative before.

The algorithm for identifying cumulative and volatile clauses in a sequence of
clause sets appears as Algorithm 1. For SAT solvers supporting the IPASIR API,
stack frames for volatile clauses pushed on the clause stack are implemented by
selector variables. Our current implementation of the benchmarking program
includes DepQBF as the only incremental QBF solver which supports push/pop
operations natively via its API [11]. Note that the relevant part of the input that
potentially limits scalability of Algorithm1 is the number of variables and clauses
in the formulas. The number of formulas is usually relatively low. The operations
on clause sets are implemented such that set intersection and difference are in
O(m · log m), searching an element is in O(m), and adding or deleting elements
are in O(1), where m is the maximal number of clauses in any formula.

Analyzing PCNFs. For sequences of QBFs, additionally the differences between
quantifier prefixes must be identified. Two quantified sets Q and Q′ are matching
iff Q ∩ Q′ �= ∅. Prefix R is update-compatible to prefix S iff all of the following
conditions hold: (i) for any quantified set of R, there is at most one matching
quantified set in S; (ii) if P is a quantified set of R and Q is a matching quantified
set in S, then quant(P ) = quant(Q); and (iii) for any two quantified sets P1 and
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Input : Prefix R and S (R has to be update-compatible to S)
Output: Instructions to update R to S

n ←− 0; m ←− 0;1

foreach quantified set Q in S from left to right do2

if Q has a matching quantified set M in R then3

m ←− n + nesting level of M in R;4

print “Add literals Q \ M to quantified set at nesting level m.”;5

6

else7

n ←− n + 1;8

m ←− m + 1;9

print “Add quantified set Q at nesting level m.”;10

Algorithm 2. Generating update instructions for quantifier prefixes.

P2 in S with matching quantified sets Q1 and Q2 in R, respectively, if the nesting
level of P1 is less than the nesting level P2, then the nesting level of Q1 is less
than the nesting level of Q2.

The instructions to update quantifier prefixes are adding a quantified set at
a given nesting level or adding a variable to a quantified set at a given nesting
level. Update compatibility between prefixes R and S guarantees that there is
a sequence of instructions to turn R into S after unused variables and empty
quantified sets have been deleted by the QBF solver. In particular, Condition
(i) guarantees that there is no ambiguity when mapping quantified sets from the
prefixes, (ii) expresses that quantifiers cannot change, and (iii) states that quan-
tified sets cannot be swapped. The algorithm to generate update instructions
first checks if two quantifier prefixes R and S are update-compatible. If this is
the case, then update instructions are computed as illustrated by Algorithm2.

4 Case Studies

In this section, we showcase our approach using different hardware verifica-
tion problems for both SAT and QBF solvers. Benchmark problems consist of
sequences of formulas that were either generated by a model-checking tool or that
were taken from existing benchmark collections where the original application is
not available.

SAT: Bounded-Model Checking for Hardware Verification. We consider bench-
marks used for the single safety property track of the last Hardware Model
Checking Competition (HWMCC 2014)3. Based on the CNFs generated by the
BMC-based model checker aigbmc4, we use our tools to generate incremen-
tal solver calls and compare different SAT solvers that implement the IPASIR
interface. We used the SAT solvers MiniSAT (v.220) [5], PicoSAT (v.961) [2], and
3 http://fmv.jku.at/hwmcc14cav/.
4 Part of the AIGER package (http://fmv.jku.at/aiger/).

http://fmv.jku.at/hwmcc14cav/
http://fmv.jku.at/aiger/
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Table 1. Summary of different SAT solvers on hardware verification problems.

#problems MiniSAT PicoSAT Lingeling DepQBF

BMC problems unrolled by
50 steps

11 284 / 7 216 / 3 276 / 7 190 / 1

BMC problems unrolled by
100 steps

28 905 / 14 754 / 4 872 / 19 491 / 2

Lingeling (v.ayv) [3] as well as the QBF solver DepQBF (v.4) for the considered
problems. All experiments were performed on an AMD Opteron 6238 at 2.6 GHz
under 64-bit Linux with a time limit of 3600 s and a memory limit of 7 GB.

Table 1 summarises the results. For each solver and problem class, numbers
m / n mean that m formulas in total were solved within the time limit, and
n is the number of problems where the maximal number of formulas among all
other solvers could be solved. For example, the first line summarises the results
for BMC problems that were unrolled by 50 steps. There are 11 problems in this
class, thus 550 formulas in total. From these formulas, MiniSAT could solve 284
formulas, and for 7 out of 11 problems, no other solver could solve more formulas
than MiniSAT. Not surprisingly, all SAT solvers outperform the QBF solver
DepQBF but there are few cases where DepQBF can compete. MiniSAT solves most
formulas in total while Lingeling dominates on most benchmarks. More detailed
experimental results can be found in [8]. The average time for our analyzing
algorithm was 522 s. The number of clauses in the original sequences ranged from
2.3 to 56.3 million with an average of around 19 million clauses. The inputs for
the benchmarking program that represent only the update instructions comprise
only 1.2 million clauses on average which shows that we obtain a quite compact
representation of incremental benchmarks. We have submitted all problems from
Table 1 to the Incremental Library Track of the SAT Race 2015.

Table 2. QBF solvers on incomplete design prob-
lems.

Benchmark k Non-incremental Incremental

QuBE DepQBF QuBE (fwd) QuBE (bwd) DepQBF

enc04 17 3 3 3 2 1

enc09 17 7 5 7 4 3

enc01 33 31 17 28 24 5

enc03 33 33 16 289 28 27

enc05 33 64 24 61 46 7

enc06 33 29 26 28 24 10

enc07 33 75 16 76 69 5

enc08 33 108 16 110 79 5

enc02 65 271 106 TO 269 175

tlc01 132 26 68 133 130 17

tlc03 132 24 160 8 8 17

tlc04 132 769 2196 1204 27 25

tlc05 152 1330 4201 2057 38 34

tlc02 258 MO TO MO 98 1908

QSAT: Partial Design Prob-
lems. To illustrate our app-
roach in the context of QBF
solving, we consider the prob-
lem of verifying partial designs,
i.e., sequential circuits where
parts of the specification are
black-boxed. In recent work [12,
13], the question whether a
given safety property can be
violated regardless of the imple-
mentation of a black-box has
been translated to QBFs which
are solved incrementally by a
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version of the QBF solver QuBE [9]. Benchmarks are available from QBFLIB,5

however neither the solver used in [12,13] nor the application program used to
generate sequences of QBFs are publicly available. Marin et al. [12] introduced
two encoding strategies: forward incremental and backward incremental reason-
ing. In a nutshell, the quantifier prefix is always extended to the right in the
former approach, while it is extended to the left in the latter approach. Both
strategies yield the same sequences of formulas up to renaming [12]. We used
the publicly available instances from the forward-incremental encoding with-
out preprocessing to evaluate DepQBF. Instances from the backward-incremental
approach are not publicly available.

Table 2 shows the comparison between QuBE and DepQBF. Runtimes are in
seconds, k is the index of the first satisfiable formula, TO and MO refer to a
timeout and memout, respectively. The maximal runtime of Algorithms 1 and 2
was 95 s. Runtimes for QuBE in Table 2 are the ones reported in [12]. There, exper-
iments were carried out on an AMD Opteron 252 processor running at 2.6 GHz
with 4 GB of main memory and a timeout of 7200 s. Experiments for DepQBF
were performed on a 2.53 GHz Intel Core 2 Duo processor with 4 GB of main
memory with OS X 10.9.5 installed. Thus runtimes are not directly comparable
because experiments were carried out on different machines, they give, however,
a rough picture of how the solvers relate. Like QuBE, DepQBF benefits from the
incremental strategy on most instances. The backward-incremental strategy is
clearly the dominating strategy for QuBE. A quite eye-catching observation is
that forward-incremental solving, while hardly improving the performance of
QuBE compared to the non-incremental approach, works quite well for DepQBF.

5 Conclusion

We presented an approach to automated benchmarking of incremental SAT and
QBF solvers by translating sequences of formulas into API calls of incremental
SAT and QBF solvers executed by a benchmarking program. Several incremen-
tal solvers may be tightly integrated into the benchmarking program by linking
them as libraries. Thus, we decouple the generation of formulas by an appli-
cation from the solving process which is particularly relevant when application
programs are not available. Additionally, we make sequences of formulas which
already exist in public benchmark collections available for benchmarking and
testing. We illustrated our approach to automated benchmarking of incremen-
tal SAT and QBF solvers on instances from hardware verification problems. To
improve the performance of incremental QBF solving on these problems, we
want to integrate incremental preprocessing into DepQBF. As shown in [12,13],
preprocessing potentially improves the performance of incremental workflows
considerably.

5 http://www.qbflib.org.

http://www.qbflib.org
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Abstract. Intuitionistic Public Announcement Logic (IntPAL) propo-
sed by Ma et al. (2014) aims at formalizing changes of an agent’s knowl-
edge in a constructive manner. IntPAL can be regarded as an intuition-
istic generalization of Public Announcement Logic (PAL) whose modal
basis is the intuitionistic modal logic IK by Fischer Servi (1984) and
Simpson (1994). We also refer to IK for the basis of this paper. Mean-
while, Nomura et al. (2015) provided a cut-free labelled sequent calculus
based on the study of Maffezioli et al. (2010). In this paper, we introduce
a labelled sequent calculus for IntPAL (we call it GIntPAL) as both an
intuitionistic variant of GPAL and a public announcement extension of
Simpson’s labelled calculus, and show that all theorems of the Hilbert
axiomatization of IntPAL are also derivable in GIntPAL with the cut
rule. Then we prove the admissibility of the cut rule in GIntPAL and
also the soundness result for birelational Kripke semantics. Finally, we
derive the semantic completeness of GIntPAL as a corollary of these
theorems.

1 Introduction

Public Announcement Logic (PAL) presented by Plaza [22] is a logic for formally
expressing changes of human knowledge, and has been the basis of Dynamic
Epistemic Logics. A proof system for PAL has also been provided in terms of
Hilbert-style axiomatization in [22], and some other proof systems have been
given to it, one of which is a labelled sequent calculus1 by Maffezioli et at. [15]
and its revised version by Balbiani et al. [2] and Nomura et al. [19]. In [19], we
provide a cut-free labelled sequent calculus, called GPAL.

Epistemic logics including PAL usually employ classical logic as their under-
lying logic, but we may consider a weaker logic as a basis for expressing dif-
ferent type of knowledge. Intuitionistic modal logic is one of prospects for the
purpose; especially, in the context of epistemic logic, knowledge defined in an
intuitionistic system can be regarded as knowledge with verification or evidence
1 Labelled sequent calculus (cf. [17]) is one of the most uniform approaches for sequent

calculus for modal logic, where each formula has a label corresponding to an element
(sometimes called a possible world) of a domain in Kripke semantics for modal logic.
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(cf. [1,25]). The area of intuitionistic modal logics, since Fitch [9] proposed, have
been developed historically by efforts of several logicians (e.g., [5,8,20,23,24]).
Intuitionistic PAL (IntPAL) is both an intuitionistc variant of PAL and a public
announcement extension of an intuitionistic modal logic; and on the foundation
of the past studies, Ma et al. [14] have recently given a Hilbert-style axiomatiza-
tion of IntPAL (we called it HIntPAL, based on intuitionistic modal logic IK (or
IntK) by Fischer Servi [8] and Simpson [24]) which is shown to be semantically
complete for birelational Kripke semantics via algebraic semantics.

Meanwhile, it is well-known, since Gentzen [11], that the sequent calculus
LJ for intuitionistic logic is obtained from the sequent calculus LK of classical
logic, by restricting the right-hand side of a sequent to at most one formula. It
is quite natural to ask if we can obtain an intuitionistic version of GPAL by
using the same restriction. Therefore, our target of this paper is to construct a
labelled sequent calculus (we call it GIntPAL and GIntPAL+ if it has the cut
rule) for HIntPAL.

In the recent studies of knowledge representation, several constructive descrip-
tion logics [4,6,16] are proposed to investigate possibly incomplete knowledge.
Since constructive description logics are technically regarded as intuitionistic
multi-modal logics, our Gentzen-style calculus for IntPAL could be applied to a
dynamic extension of these constructive description logics which allows an under-
lying ontology in the semantics to be dynamically changed. It is our expectation
that the sequent calculus brings abundant benefits especially for constructive
knowledge requiring verification, since such a calculus is usually feasible in com-
putation, compared with a Hilbert-style axiomatizaion.

The outline of the paper is as follows. Section 2 provides the birelational
Kripke semantics and the Hilbert-style axiomatization HIntPAL for IntPAL.
Section 3 introduces our calculus GIntPAL (with the cut rule) and shows that
all theorems of HIntPAL are derivable in GIntPAL+ (Theorem 1). Section 4
establishes the cut elimination theorem of GIntPAL+ (Theorem 2) and, as a
corollary of the theorem, shows that GIntPAL+ is consistent. Section 5 tackles
the soundness theorem of GIntPAL+ (Theorem 3), and it should be noted
that its soundness is not straightforward at all by the following two reasons.
First, it depends on a non-trivial choice of the notions of validity of a sequent
as suggested in [19]. Second, there is another difficulty, pointed out in [24],
which is peculiar to intuitionist modal logic. Then the semantic completeness of
GIntPAL (Corollary 3) is shown through the proven theorems. The last section
concludes the paper.

2 Birelational Kripke Semantics and Axiomatization
of IntPAL

First of all, we address the syntax of IntPAL. Let Prop = {p, q, r, . . .} be a
countably infinite set of propositional variables and G = {a, b, c, . . .} a nonempty
finite set of agents. Then the set Form = {A,B,C, . . .} of formulas of IntPAL is
inductively defined as follows:



A Labelled Sequent Calculus for Intuitionistic Public Announcement Logic 189

A ::= p | ⊥ | (A ∧ A) | (A ∨ A) | (A → A) | �aA | ♦aA | [A]A | 〈A〉A,

where p ∈ Prop, a ∈ G. We define ¬A := A → ⊥, and also define 	 := ⊥ → ⊥.
The formula A ↔ B is an abbreviation of (A → B) ∧ (B → A). �aA is to read
‘agent a knows that A’, and [A]B is to read ‘after public announcement of A, it
holds that B’.

Example 1. Let us consider a propositional variable p to read ‘it will rain tomor-
row’. Then a formula ¬(�ap∨�a¬p) means that a does not know whether it will
rain tomorrow or not, and [¬p]�a¬p means that after a public announcement
(e.g., a weather report) of ¬p, a knows that it will not rain tomorrow.

Let us go on to the next subject, the semantics of IntPAL. We mainly follow
the birelational Kripke semantics introduced in Ma et al. [14], which is based on
intuitionistic version of modal logic K. We call F = 〈W,�, (Ra)a∈G〉 an IntK-
frame if (W,�) is a nonempty poset (W is also denoted by D(M)), (Ra)a∈G

is a G-indexed family of binary relations on W 2 such that the following two
conditions (F1) and (F2) from Simpson [24, p.50] are satisfied:

(F1) : (� ◦Ra) ⊆ (Ra◦ �), (F2) : (Ra◦ �) ⊆ (� ◦Ra),

where ◦ is the composition of relations.
Moreover, a pair M = 〈F, V 〉 is an IntK-model if F is an IntK-frame and

V :Prop → P↑(W ) is a valuation function where

P↑(W ) := {X ∈ P(W ) | x ∈ X and x � y jointly imply y ∈ X for all x, y ∈ W},

that is, P↑(W ) is the set of all upward closed sets. Next, let us define the satis-
faction relation M, w � A. Given an IntK-model M, a world w ∈ D(M), and a
formula A ∈ Form, we define M, w � A as follows:

M, w � p iff w ∈ V (p),
M, w � ⊥ Never,
M, w � A ∧ B iff M, w � A and M, w � B,
M, w � A ∨ B iff M, w � A or M, w � B,
M, w � A → B iff for all v ∈ W : w � v and M, v � A jointly imply M, v � B,
M, w � �aA iff for all v ∈ W : w(� ◦Ra)v implies M, v � A,
M, w � ♦aA iff for some v ∈ W : wRav and M, v � A,
M, w � [A]B iff for all v ∈ W : w � v and M, v � A jointly imply MA, v � B,
M, w � 〈A〉B iff M, w � A and MA, w � B,

where MA, in the definition of the announcement operators, is the restricted
IntK-model to the truth set of A, defined as MA = 〈[[A]]M,�A, (RA

a )a∈G, V A〉
with

2 Epistemic logics are basically based on the modal system S5, but the most primitive
modal system K is usually the starting point in the case of constructing a proof
system of a modal logic; and we also follow the custom and employ IntK for its
semantics.
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[[A]]M := {w ∈ W | M, w � A}
�A := � ∩([[A]]M × [[A]]M)
RA

a := Ra ∩ ([[A]]M × [[A]]M)
V A(p) := V (p) ∩ [[A]]M (p ∈ Prop).

We note that the conditions (F1) and (F2) are still satisfied in MA. Added
to these, the restriction of the composition (� ◦Ra)A is defined by (� ◦Ra) ∩
([[A]]M × [[A]]M).

Definition 1. A formula A is valid in an IntK-model M if M, w � A for all
w ∈ D(M).

By the above semantics, the important semantic feature of hereditary may be
preserved as follows.3

Proposition 1 (Hereditary). For all IntK-models M, for all w, v ∈ D(M),
if M, w � A and w � v, then M, v � A, for any formula A.

Besides, the following proposition is also significant.

Proposition 2. (� ◦Ra)A = (�A ◦RA
a )

Proof. We briefly look at the direction of ⊆. Fix any v, u ∈ D(M) such that
v(� ◦Ra)Au. We show x(�A ◦RA

a )u. By the above definition, we have v(� ◦Ra)u
and (v, u) ∈ [[A]]M × [[A]]M, and then there exists some t, such that v � t and
tRau. Take such t, and by Proposition 1, we get t ∈ [[A]]M. Therefore, we conclude
x(�A ◦RA

a )u. ��
We denote finite lists (A1, ..., An) of formulas by α, β, etc., and do the empty
list by ε. As an abbreviation, for any list α = (A1, A2, ..., An) of formulas, we
naturally define Mα inductively as: Mα := M (if α = ε), and Mα := (Mβ)An =
〈W β,An , (Rβ,An

a )a∈G, V β,An〉 (if α = β,An). We may also denote (Mβ)An by
Mβ,An for simplicity. From Proposition 2, the next corollary may be easily shown
by induction on the length of α.

Corollary 1. (� ◦Ra)α = (�α ◦Rα
a )

Probably, the reader who is not familiar with IntPAL may not easily see what
it is, so the following example might help for understanding the heart of IntPAL.

Example 2. Example 1 can be semantically modeled as follows. Let us consider
G = {a} and the following two models such as: M := 〈W,�, Ra, V 〉 where W :=
{w1, w2},�:= {(w1, w1), (w2, w2)}, Ra := {w1, w2}2 and V (p) = {w1},4 and,

3 Two conditions, (F1) and (F2), are required to show hereditary (and validity of
axioms) in IntK on which GIntPAL is based. In fact, one more condition is added
to the two in [14] for some specific purpose in their paper. That is Ra = (� ◦Ra) ∩
(Ra◦ �).

4 Note that the above IntK frame satisfies the conditions since (Ra◦ �) = (� ◦Ra) =
(� ◦Ra) = (Ra◦ �) = {w1, w1}2.
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M¬p = 〈{w2}, {(w2, w2)}, {(w2, w2)}, V ¬p〉 where V ¬p(p) = ∅. These models
are shown in graphic forms as follows.

M �������	w1a,�
��

a ��

�p

�������	w1 a,�
��

��

��p

[¬p] �������� �������	w2 a,�
��

��p

M¬p

In M, agent a does not know whether p or ¬p (i.e., ¬(�ap∨�a¬p) is valid in M).
But after an announcement of ¬p, agent a comes to know ¬p in the restricted
model M to ¬p.

Hilbert-style axiomatization of intuitionistic modal logic IntK consists of
axioms of IntK in Table 1 and the rules (MP ) and (Nec�a) in Table 1. Hilbert-
style axiomatization of IntPAL (HIntPAL), is defined in Table 1, where the
axiom (from (RA1) to (RA14)), called recursion axioms, and one inference rule
(Nec[.]) are added to the axiomatization of IntK. Through the axioms and rules,
each theorem of HIntPAL may be reduced into a theorem of the axiomatiza-
tion of IntK. And the previous work [14] has shown the completeness theorem
of HIntPAL.

Fact 1 (Completeness of HIntPAL). For any formula A, A is valid in all
IntK-models iff A is a theorem of HIntPAL.

Table 1. Hilbert-style axiomatization of IntPAL: HIntPAL

Axioms of IntK Recursion Axioms

all instantiations of theorems of (RA1) [A]⊥ ↔ ¬A

intuitionistic propositional logic (RA2) 〈A〉⊥ ↔ ⊥
(IK1) �a(p → q) → (�ap → �aq) (RA3) [A]p ↔ (A → p)

(IK2) ♦a(p ∨ q) → (♦ap ∨ ♦aq) (RA4) 〈A〉p ↔ (A ∧ p)

(IK3) ¬♦a⊥ (RA5) [A](B ∨ C) ↔ A → 〈A〉B ∨ 〈A〉C
(FS1) ♦a(p → q) → (�ap → ♦aq) (RA6) 〈A〉(B ∨ C) ↔ (〈A〉B ∨ 〈A〉C)

(FS2) (♦ap → �aq) → �a(p → q) (RA7) [A](B ∧ C) ↔ [A]B ∧ [A]C

(RA8) 〈A〉(B ∧ C) ↔ 〈A〉B ∧ 〈A〉C
Inference Rules (RA9) [A](B → C) ↔ 〈A〉B → 〈A〉C
(MP ) From A and A → B, infer B (RA10) 〈A〉(B → C) ↔ A ∧ (〈A〉B → 〈A〉C)

(Nec�a) From A, infer �aA (RA11) [A]�aB ↔ (A → �a[A]B)

(Nec[.]) From A, infer [B]A, for any B (RA12) 〈A〉�aB ↔ (A ∧ �a[A]B)

(RA13) [A]♦aB ↔ (A → ♦a[A]B)

(RA14) 〈A〉♦aB ↔ (A ∧ ♦a〈A〉B)
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3 Labelled Sequent Calculus for IntPAL

As we have mentioned in the introduction, a labelled sequent calculus for PAL
has been provided by Maffezioli et at. [15], and its revised version GPAL by
Nomura et al. [19]. And GIntPAL is basically the same as GPAL but the
number of labelled expressions in the right-hand side of a sequent is restricted
to at most one.

Now we introduce GIntPAL. Let Var = {x, y, z, ...} be a countably infinite
set of variables. Then, given any x, y ∈ Var, any list α of formulas and any
formula A, we say x:αA is a labelled formula, and that, for any agent a ∈ G,
xRα

ay is a relational atom. Intuitively, the labelled formula x:αA corresponds to
‘Mα, x � A’ and is to read ‘after a sequence α of public announcements, x still
exists (survives) in the restricted domain and A holds at x’, and the relational
atom xRα

ay is to read ‘after a sequence α of public announcements both x and y
exist (survive) and there is a accessibility relation of a from x to y’. We also use
the term, labelled expressions to indicate that they are either labelled formulas
or relational atoms and we denote labelled expressions by A,B, etc. A sequent
Γ ⇒ Δ is a pair of finite multi-sets of labelled expressions, where at most one
labelled expression can appear in Δ. The set of inference rules of GIntPAL is
shown in Table 2. Hereinafter, for any sequent Γ ⇒ Δ, if Γ ⇒ Δ is derivable in
GIntPAL, we write GIntPAL � Γ ⇒ Δ.

Moreover, GIntPAL+ is GIntPAL with the following rule (Cut):

Γ ⇒ A A, Γ ′ ⇒ Δ

Γ,Γ ′ ⇒ Δ
(Cut),

where A in (Cut) is called a cut expression. And, we use the term principal
expression of an inference rule of GIntPAL+ if a labelled expression is newly
introduced on the left uppersequent or the right uppersequent by the rule of
GIntPAL+.

In this section, we show the set of derivable formulas in HIntPAL is equal to
the set derivable formulas in GIntPAL+. Let us define the length of a labelled
expression A in advance.

Definition 2. For any formula A, len(A) is defined to be the number of the
propositional variables and the logical connectives in A.

len(α) =

{
0 if α = ε

len(β) + len(A) if α = β, A,
len(A) =

{
len(α) + len(A) if A= x:αA

len(α) + 1 if A= xRα
a y.

The following lemma is helpful to make our presentation of derivations shorter.

Lemma 1. For any labelled expression A and any finite multi-set of labelled
expressions Γ , GIntPAL � A, Γ ⇒ A.

Next, we define the notion of substitution of variables in labelled expressions.
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Table 2. Gentzen-style sequent calculus GIntPAL

Definition 3. Let A be any labelled expression. Then the substitution of x for
y in A, denoted by A[x/y], is defined by

z[x/y] := z (if y �= z), (z:αA)[x/y] := (z[x/y]):αA,
z[x/y] := x (if y = z), (zRα

aw)[x/y] := (z[x/y])Rα
a (w[x/y]).



194 S. Nomura et al.

Substitution [x/y] to a multi-set Γ of labelled expressions is defined as

Γ [x/y] := {A[x/y] | A ∈ Γ}.

For a preparation of Theorem 1, we show the next lemma.

Lemma 2.

(i) GIntPAL � Γ ⇒ Δ implies GIntPAL � Γ [x/y] ⇒ Δ[x/y] for any x, y ∈
Var.

(ii) GIntPAL+ � Γ ⇒ Δ implies GIntPAL+ � Γ [x/y] ⇒ Δ[x/y] for any
x, y ∈ Var.

Proof. By induction on the height of the derivation. We go through almost the
same procedure in the proof as in Negri et al. [18, p.194]. ��
Theorem 1. For any formula A, if HIntPAL � A, then GIntPAL+ �⇒ x:εA
(for any x ∈ Var).

Proof. The proof is carried out by induction on the height of the derivation in
HIntPAL. Let us take (FS2) and one direction of (RA14) of HIntPAL to
prove as significant base cases (the derivation height of HIntPAL is equal to 0).

The case of (FS2)

Lemma 1
y:εp, xRε

ay ⇒ xRε
ay

Lemma 1
y:εp, xRε

ay ⇒ y:εp

y:εp, xRε
ay ⇒ x:ε♦ap

(R♦a)

Initial Seq.

xRε
ay ⇒ xRε

ay
Lemma 1

y:εq, xRε
ay ⇒ y:εq

x:ε�aq, xRε
ay ⇒ y:εq

(L�a)

x:ε�aq, y:εp, xRε
ay ⇒ y:εq

(Lw)

x:ε♦ap → �aq, y:εp, xRε
ay ⇒ y:εq

(L →)

x:ε♦ap → �aq, xRε
ay ⇒ y:εp → q

(R →)

x:ε♦ap → �aq ⇒ x:ε�a(p → q)
(R�a)

⇒ x:ε(♦ap → �aq) → �a(p → q)
(R→)

The case of (RA14): left to right

Initial Seq.

x:εA ⇒ x:εA

x:ε〈A〉♦aB ⇒ x:εA
(L〈.〉1)

Lemma 1

y:AB, y:εA, xRε
ay ⇒ xRε

ay

Lemma 1

y:AB, y:εA ⇒ y:εA

Lemma 1

y:AB, y:εA ⇒ y:AB

y:AB, y:εA ⇒ y:ε〈A〉B
(L〈.〉)

y:AB, y:εA, xRε
ay ⇒ y:ε〈A〉B

(Lw)

y:AB, y:εA, xRε
ay ⇒ x:ε♦a〈A〉B

(R♦a)

y:AB, y:εA, xRA
a y ⇒ x:ε♦a〈A〉B

(Lrela3)

y:AB, xRA
a y, xRA

a y ⇒ x:ε♦a〈A〉B
(Lrela2)

y:AB, xRA
a y ⇒ x:ε♦a〈A〉B

(Lc)

x:A♦aB ⇒ x:ε♦a〈A〉B
(L♦a)

x:ε〈A〉♦aB ⇒ x:ε♦a〈A〉B
(L〈.〉2)

x:ε〈A〉♦aB ⇒ x:εA ∧ ♦a〈A〉B
(R∧)

⇒ x:ε〈A〉♦aB → A ∧ ♦a〈A〉B
(R →)
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In the inductive step, we show the admissibility of HIntPAL’s inference rules,
(MP ), (Nec�a) and (Nec[.]), by GIntPAL+.
The case of (MP ): It is shown with (Cut).
The case of (Nec�a): It is shown by (R�a), (Lw) and Lemma 2.
The case of (Nec[.]): In the case, we show the admissibility of the following
rule:

⇒ x:εA
⇒ x:ε[B]A

(Nec[.])
.

Suppose GIntPAL �⇒ x:εA. It is obvious that GIntPAL �⇒ x:εA implies
GIntPAL �⇒ x:BA since if there is a derivation of ⇒ x:εA, there can also be
a derivation of ⇒ x:BA where B is added to the most left side of restricting
formulas of each labelled expression appeared in the derivation. Therefore, we
obtain GIntPAL �⇒ x:BA, and by the application of (Lw) and (R[.]), we
conclude GIntPAL � ⇒ x:ε[B]A. ��

4 Cut Elimination of GIntPAL+

Now, we show the rule (Cut) of GIntPAL+ is admissible. For a preparation of
the cut elimination theorem, we show the following lemma.

Lemma 3. If a sequent Γ ⇒ x:α⊥ can be derivable without using (Cut), then
Γ ⇒ can also be derivable without using (Cut).

Proof. By induction on the height of the derivation. And every case in the induc-
tive step, in which the last applied rule is either (Rw) or one of left rules, can
be shown straightforwardly with inductive hypothesis and the same rule as the
last rule applied. We only look at the base case.

In the base case, since Γ ⇒ x:α⊥ is the initial sequent, Γ must be the
singleton {x:α⊥}. Then x:α⊥ ⇒ is also the initial sequent and so derivable. ��
Here we prove one of contributions of the paper, the syntactic cut elimination
theorem of GIntPAL+.

Theorem 2 (Cut elimination of GIntPAL+ ). For any sequent Γ ⇒ Δ, if
GIntPAL+ � Γ ⇒ Δ, then GIntPAL � Γ ⇒ Δ.

Proof. The proof is carried out in Ono and Komori’s method [21] introduced
in the reference [12] by Kashima where we employ the following rule (Ecut).
We denote the n-copies of the same labelled expression A by An, and (Ecut) is
defined as follows:

Γ ⇒ An Am, Γ ′ ⇒ Δ

Γ,Γ ′ ⇒ Δ
(Ecut)

where 0 ≤ n ≤ 1 and m ≥ 0. The theorem is shown by double induction on the
height of the derivation and the length of the cut expression A of (Ecut). The
proof is divided into four cases: (1) at least one of uppersequents of (Ecut) is an
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initial sequent; (2) the last inference rule of either uppersequents of (Ecut) is a
structural rule; (3) the last inference rule of either uppersequents of (Ecut) is a
non-structural rule, and the principal expression introduced by the rule is not
a cut expression; (4) the last inference rules of two uppersequents of (Ecut) are
both non-structural rules, and the principal expressions introduced by the rules
used on the uppersequents of (Ecut) are both cut expressions. We look at one of
base cases and one of significant subcases of (4) in which principal expressions
introduced by non-structural rules are both cut expressions.
A case of (1): The right uppersequent is an initial sequent x:α⊥ ⇒ : In
this case, the form of the derivation is like following:

....
Γ ⇒ x:α⊥

Initial Seq.

x:α⊥ ⇒
Γ ⇒ (Ecut)

From the left uppersequent Γ ⇒ x:α⊥, we get, without (Ecut), the lowersequent
Γ ⇒ by Lemma 3.
A case of (4): principal expressions are xRα,A

a y: Let us consider the case
where both sides of A are xRα,A

a y and principal expressions. When we obtain
the derivation:

.... D1

Γ ⇒ x:αA

.... D2

Γ ⇒ y:αA

.... D3

Γ ⇒ xRα
a y

Γ ⇒ xRα,A
a y

(Lrela)

.... D4

x:αA, (xRα,A
a y)m-1, Γ ′ ⇒ Δ

(xRα,A
a y)m, Γ ′ ⇒ Δ

(Lrela1)

Γ, Γ ′ ⇒ Δ
(Ecut)

,

it is transformed into the following derivation:

.... D1

Γ ⇒ x:αA

.... D′
123

Γ ⇒ xRα,A
a y

.... D4

x:αA, (xRα,A
a y)m-1, Γ ′ ⇒ Δ

x:αA, Γ, Γ ′ ⇒ Δ
(Ecut)

Γ, Γ, Γ ′ ⇒ Δ
(Ecut)

Γ, Γ ′ ⇒ Δ
(Lc)

where the upper application of (Ecut) is possible by the induction hypothesis,
since the derivation height of (Ecut) is reduced by comparison with the original
derivation. Besides, the lower application of (Ecut) is also allowed by induction
hypothesis, since the length of the cut expression is reduced, namely len(x:αA) <
len(xRα,A

a y). ��
As a corollary of Theorem 2, the consistency of GIntPAL+ is shown.

Corollary 2. The empty sequent ‘⇒’ cannot be derived in GIntPAL+.

Proof. Suppose for contradiction that GIntPAL+ � ⇒ . By Theorem 2,
GIntPAL � ⇒ is obtained. However, there is no inference rule in GIntPAL
which can derive the empty sequent. A contradiction. ��
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5 Soundness of GIntPAL

Now, we switch the subject to the soundness theorem of GIntPAL. At first,
we define the notion of the satisfaction relation for the labelled expressions, i.e.,
lift the satisfaction relation for the non-labelled formulas to that of the labelled
expressions. Let us say that f : Var → D(M) is an assignment, where we recall
that Var is the set of all labells.

Definition 4. Let M be an IntK-model and f : Var → D(M) an assignment.

M, f � x:αA iff Mα, f(x) � A and f(x) ∈ D(Mα)
M, f � xRε

ay iff 〈f(x), f(y)〉 ∈ Ra

M, f � xRα,A
a y iff 〈f(x), f(y)〉 ∈ Rα

a and Mα, f(x) � A and Mα, f(y) � A

In this definition, we have to be careful of the notion of surviveness as suggested
in [19]. In brief, f(x) and f(y) above must be defined in D(Mα) which may be
smaller than D(M). In the clause M, f � x:αA, for example, f(x) should survive
in the restricted IntK -model Mα. Taking into account of the fact, it is essential
that we pay attention to the negation of M, f � x:αA.

Proposition 3. M, f � x:αA iff f(x) /∈ D(Mα) or (f(x) ∈ D(Mα) and Mα,
f(x) � A).

We introduce at first the notion of validity for sequents which is defined in a
natural and usual way, called s-validity, but the definition will soon turn out to
be inappropriate for showing the soundness theorem.

Definition 5 (s-validity). Γ ⇒ Δ is s-validity in M if for all assignments
f : Var → D(M) such that M, f � A for all A ∈ Γ , there exists B ∈ Δ such that
M, f � B.

If we follow s-validity, then we come to a deadlock on the way to prove the
soundness theorem, as we can see the following proposition.

Proposition 4. There is an IntK-model M such that (R→) of GIntPAL does
not preserve s-validity in M.

Proof. We use the same models as in Example 2:

M �������	w1a,�
��

a ��

�p

�������	w1 a,�
��

��

��p

[¬p] �������� �������	w2 a,�
��

��p

M¬p,

where we note that V ¬p(p) = ∅. Then we consider a particular instance of
(R→):5

x:¬pp ⇒ x:¬p⊥
⇒ x:¬p¬p

(R→)

5 Note that ¬p is an abbreviation of p → ⊥.
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We show that the uppersequent is s-valid in M but the lowersequent is not s-
valid in M, and so (R→) does not preserve s-validity in this case. Note that
w0 does not survive after ¬p, i.e., w0 /∈ D(M¬p) = {w2}. We also note that
the semantic clause for ‘→’ at a state w becomes classical when w is a single
reflexive point.

First, we show that x:¬pp ⇒ is s-valid in M, i.e., M, f � x:¬pp for any
assignment f : Var → D(M). So, we fix any f : Var → D(M). We divide our
argument into: f(x) = w1 or f(x) = w2. If f(x) = w1, f(x) does not survive
after ¬p, and so M, f � x:¬pp by Proposition 3. If f(x) = w2, f(x) survives after
¬p but f(x) /∈ V ¬p(p)(= ∅), which implies M¬p, f(x) � p hence M, f � x:¬pp
by Proposition 3. Therefore, in either case, the uppersequent is valid.

Second, we show that ⇒ x:¬p¬p is not s-valid in M, i.e., M, f � x:¬p¬p
for some assignment f : Var → W . We fix some f such that f(x) = w1. Since
f(x) /∈ D(M¬p) (f(x) does not survive after ¬p), M, f � x:p¬p by Proposition
3, as desired. ��
Proposition 4 is a counter-example of the soundness theorem with s-validity, and
so it forces us to change the definition of validity, A key idea of finding another
candidate here is that we read Γ ⇒ Δ as ‘it is impossible that all of Γ hold
and all of Δ fail.’ We define the notion of failure for the labelled expressions
explicitly by requiring surviveness of states as follows (we read ‘M, f � A’ by
‘labelled expression A fails under M and f ’).

Definition 6. Let M be an IntK-model and f : Var → D(M) an assignment.

M, f � x:αA iff Mα, f(x) �� A and f(x) ∈ D(Mα),
M, f � xRε

ay iff 〈f(x), f(y)〉 /∈ Ra,

M, f � xRα,A
a y iff M, f � xRα

ay or M, f � x:αA or M, f � y:αA.

Note that the first item means that f(x) survives at the domain of the restricted
model Mα and A is false at the survived world f(x) in Mα.

Definition 7 (t-validity). Γ ⇒ Δ is t-valid in M if there is no assignment
f : Var → D(M) such that M, f � A for all A ∈ Γ , and M, f � B for all
B ∈ Δ.

Let us denote by V ar(Γ ⇒ Δ) the set of all labels occurring in Γ ⇒ Δ. Then,
we note that the domain Var of an assignment f in Definition 7 can be restricted
to V ar(Γ ⇒ Δ). The following proposition shows that the clauses for relational
atoms and negated form of them characterize what they intend to capture.

Proposition 5. For any IntK-model M, assignment f , and x, y ∈ Var,

(i) M, f � xRα
a y iff 〈f(x), f(y)〉 ∈ Rα

a , (ii) M, f � xRα
a y iff 〈f(x), f(y)〉 �∈ Rα

a .

Proof. Both are easily shown by induction of α. Let us consider the case of
α = (α′, A) in the proof of (ii). We show M, f �� xRα,A

a y iff 〈f(x), f(y)〉∈Rα,A
a .

M, f �� xRα
a y is, by Definition 6 and the induction hypothesis, equivalent to

〈f(x), f(y)〉 ∈ Rα
a and Mα, f(x) � A and Mα, f(y) � A. That is also equivalent

to 〈f(x), f(y)〉 ∈ Rα,A
a . ��



A Labelled Sequent Calculus for Intuitionistic Public Announcement Logic 199

In order to establish the soundness of GIntPAL for birelational Kripke
semantics, we basically employ Simpson’s argument [24, p. 153–155] for the
soundness of a natural deduction system for IntK with some modifications for
the notion of public announcement. Given any sequent Γ ⇒ Δ, we may extract
a directed graph with the help of the relational atoms in Γ as follows.

Definition 8. The derived graph Gr(Γ ⇒ Δ) from a sequent Γ ⇒ Δ is a
(labelled) directed graph (L, (Ea)a∈G) where L is the set V ar(Γ ⇒ Δ) of all
labels in Γ ⇒ Δ and Ea ⊆ V × V is defined as follows: xEay iff xRα

ay ∈ Γ for
some list α (a ∈ G).

Next we recall the notion of tree for a finite directed graph.

Definition 9 (Tree). Given any finite directed graph 〈L, (Ea)a∈G〉, we say that
〈L, (Ea)a∈G〉 is a tree if the graph is generated with the root x0 and, for every node
x, there is a unique sequence (x1, . . . , xm) from L such that, for all 0 ≤ k < m,
there exists an agent ak ∈ G such that xkEak

xx+1 and x = xm.

In order to prove the soundness of some rules such as (R�a) and (R[.]), our
attention must be restricted to the sequents whose derived graphs are trees.
And, the following lemma (cf. [24, Lemma 8.1.3]) plays a key role in establishing
the soundness of the above two rules, where we also note that the restrictions
(F1) and (F2) in birelational Kripke semantics are necessary to prove the lemma.

Lemma 4 (Lifting Lemma). Let Γ ⇒ Δ be a sequent such that Gr(Γ ⇒ Δ)
is a tree, M = (W,�, (Ra)a∈G, V ) an IntK-model, and f an assignment from
V ar(Γ ⇒ Δ) to W such that M, f � A for all A ∈ Γ . Then, for all labels
x ∈ V ar(Γ ⇒ Δ) and w ∈ W with f(x) � w, there exists an assignment
f ′ from V ar(Γ ⇒ Δ) to W such that f ′(x) = w, f(z) � f ′(z) for all labels
z ∈ V ar(Γ ⇒ Δ) and M, f ′ � A for all A ∈ Γ .

Now, we are ready to prove a stronger form of the soundness theorem of GIntPAL
with the notion of tree for derived graphs from sequents.

Theorem 3 (Soundness of GIntPAL). Given any sequent Γ ⇒ Δ such that
Gr(Γ ⇒ Δ) is a finite tree, if GIntPAL � Γ ⇒ Δ, then Γ ⇒ Δ is t-valid in
every IntK-model M.

Proof. Suppose GIntPAL � Γ ⇒ Δ such that Gr(Γ ⇒ Δ) is a finite tree. Then
the proof is carried out by induction on the height of the derivation of Γ ⇒ Δ
in GIntPAL. We confirm the following cases alone.

Base case: we show that xRα
av ⇒ xRα

av is t-valid. Suppose for contradiction
that M, f � xRα

av and M, f � xRα
av. By Proposition 5, this is impossible.

The case where the last applied rule is (R[.]): In this case, we have a
derivation of x:αA,Γ ⇒ x:α,AB in GIntPAL, and since Gr(x:αA,Γ ⇒
x:α,AB) = Gr(Γ ⇒ x:α[A]B), it is trivially a finite tree. Let us denote the
graph by 〈L, (Ea)a∈G〉. Suppose for contradiction that there is an assignment
f :L → D(M) such that M, f � A for all A ∈ Γ and M, f � x:α[A]B. Fix such
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f :L → D(M). Then, it suffices to show that there is an assignment f ′:L →
D(M) such that M, f ′ � x:αA and M, f ′ � A for all A ∈ Γ and M, f ′ �
x:α,AB, since this gives us a contradiction with our induction hypothesis to
x:αA,Γ ⇒ x:α,AB. By the supposition, M, f � x:α[A]B, which is equivalent
to: f(x) ∈ D(Mα) and there is some v ∈ D(Mα) such that f(x) �α v and
Mα, v � A and Mα,A, v �� B. By Lemma 4 and the supposition that M, f � A
for all A ∈ Γ , we obtain an assignment f ′:L → D(M) such that f ′(x) = v
and f(z) � f ′(z) for all z ∈ L and M, f ′ � A for all A ∈ Γ . It also follows
that M, f ′ � x:αA and M, f ′ � x:α,AB, as desired.

The case where the last applied rule is (R�a): In this case, we have a
derivation of xRα

ay, Γ ⇒ y:αA in GIntPAL. Let us denote a tree Gr(Γ ⇒
x:α�aA) by 〈L, (Eb)b∈G〉. Since y is a fresh variable, Gr(xRα

ay, Γ ⇒ y:αA) =
〈L ∪ {y}, Ea ∪ {(x, y)}, (Eb)b∈G\{a}〉 is still a finite tree. Suppose for contra-
diction that there is an assignment f :L → D(M) such that M, f � A for all
A ∈ Γ and M, f � x:α�aA. Fix such assignment f :L → D(M). It suffices
to show that there is an assignment g:L ∪ {y} → D(M) such that M, g � A
for all A ∈ Γ and M, g � xRα

ay and M, g � y:αA, since this gives us a con-
tradiction with our induction hypothesis to xRα

ay, Γ ⇒ y:αA. Then, by the
supposition of M, f � x:α�aA, we have f(x) ∈ D(Mα) and there are some
v, u ∈ D(Mα) such that f(x)�αu, uRα

a v and Mα, v �� A. By the supposition
that M, f � A for all A ∈ Γ , we apply Lemma 4 to the sequent Γ ⇒ x:α�aA
to find an assignment f ′:L → D(Mα) such that f ′(x) = u, f(z) � f ′(z) for
all z ∈ L and M, f ′ � A for all A ∈ Γ . Now, f ′ can be extend to a new
assignment g:L∪{y} → D(M) such that g is the same as f ′ except g(y) = v.
Then, we obtain M, g � A for all A ∈ Γ , M, g � xRα

ay and M, g � y:αA, as
desired. ��

Proposition 6. If ⇒ x:εA is t-valid in an IntK-model M, then A is valid in M.

Proof. Suppose that ⇒ x:εA is t-valid. So, it is not the case that there exists
some assignment f such that M, f � x:εA. Equivalently, for all assignments f ,
M, f �� x:εA. For any assignment f , M, f �� x:εA is equivalent to M, f(x) � A
because f(x) ∈ D(M). So, it follows that M, f(x) � A for all assignments f .
Then, it is immediate to see that A is valid in M, as required. ��
Finally, we may establish the completeness theorem as follows.

Corollary 3 (Completeness of GIntPAL). Given any formula A and label
x ∈ Var, the following are equivalent: (i) A is valid on all IntK-models; (ii)
HIntPAL � A; (iii) GIntPAL+ �⇒ x:εA; (iv) GIntPAL �⇒ x:εA.

Proof. The direction from (i) to (ii) is established by Fact 1 and the direction
from (ii) to (iii) is shown by Theorem 1. Then, the direction from (iii) to (iv)
is established by the admissibility of cut, i.e., Theorem 2. Finally, the direction
from (iv) to (i) is shown by Theorem 3 and Proposition 6, since Gr( ⇒ x:εA)
is a tree (a single point-tree) and therefore Theorem 3 is applicable, and then
Proposition 6 may be applied to its conclusion. ��
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6 Conclusion

This paper provided a sequent calculus GIntPAL for PAL within an intuitionis-
tic framework, and a sequent calculus that is easy to handle may be particularly
significant for intuitionistic epistemic logics that regard verification or evidence
as important. However, while GIntPAL has no frame conditions of an accessi-
bility relation, it should be expanded to satisfy the conditions such as seriality,
reflexivity, transitivity and/or symmetricity. It is easily done to impose such
conditions to the “modal fragment” of GIntPAL by adding an inference rule
corresponding to each frame condition (cf, [18, p. 192]); nevertheless, in the case
of GIntPAL (and also GPAL), the situation might gets more involved. For
example, seriality might not be preserved under taking public annoucements
(i.e., submodels). Although we employ Gentzen’s traditional approach, there is
another well-known approach for an intuitionistic labelled sequent calculus such
as the intuitionistic G3-style system by Dyckhoff et al. [7]. G3-style system is
a sequent calculus in which all structural rules including contraction rules are
height-preserving admissible (cf, [18]). Since G3-style system has such outstand-
ing features, the possibility of employing it is worth being considered in the
future.

Finally, we add two future directions of GIntPAL. First, our calculus of
this paper for logic of constructive knowledge and its classical variant [19] may
be applicable to other intuitionistic and classical Dynamic Epistemic Logics.
For example, we may apply our method to construct a calculus for Action
model logic [3] (dynamic epistemic logic in a narrow range of the meaning) and
its intuitionistic variant. Second, a combined formal treatment of agents and
their knowledge naturally leads us to the notion of quantification over agents.
Although ordinary epistemic logics and PAL do not have an explicit device for
that, Term-modal logic [10] was proposed to deal with the quantification of
agents property in the level of object language. We may extend and/or modify
our strategy in this paper and [19] to study labelled sequent calculi for Term-
modal logic, and its dynamic extension, Dynamic term-modal logic [13]. These
are issues to be addressed in the future.6
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Abstract. We define a call-by-value variant of Gödel’s System T with
references, and equip it with a linear dependent type and effect system,
called d�T, that can estimate the complexity of programs, as a function
of the size of their inputs. We prove that the type system is intentionally
sound, in the sense that it over-approximates the complexity of execut-
ing the programs on a variant of the CEK abstract machine. Moreover,
we define a sound and complete type inference algorithm which criti-
cally exploits the subrecursive nature of d�T. Finally, we demonstrate the
usefulness of d�T for analyzing the complexity of cryptographic reduc-
tions by providing an upper bound for the constructed adversary of the
Goldreich-Levin theorem.

1 Introduction

Developing automated analyses that accurately over-approximate the complex-
ity of (stateful) higher-order programs is a challenging task. Sophisticated type
systems such as d�PCF [10,11] almost achieve this goal for a (pure) higher-order
language with unbounded recursion, using a combination of linear dependent
types and constraint solving. However, the type inference algorithm of d�PCF
produces in output a conditional bound, in the sense that the bound is only
meaningful under the condition that the equational program generated from
the original term for computing the bound is terminating. One possible way to
achieve automated complexity analysis would be to perform an automated ter-
mination analysis of the equational program; however, this approach is impracti-
cal, because the type inference algorithm of d�PCF generates complex equational
programs, and unsatisfactory, because one would like to avoid verifying termina-
tion of equational programs when the original terms are themselves terminating.
Hence, it is natural to consider the following question: is there a normalizing
higher-order language for which one can automatically compute accurate and
unconditional complexity bounds? The first main contribution of this paper is to
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answer the question positively for a call-by-value higher-order language with ref-
erences and primitive recursion in the style of Gödel’s system T—a paradigmatic
higher-order language with inductive types and higher-order primitive recur-
sion. The second main contribution of the paper is to show that the language is
sufficiently expressive to model constructed adversaries from the cryptographic
literature. More precisely, we make the following contributions:

• we introduce in Sect. 2 a variant of Gödel’s system T with references and define
an operational semantics based on a variant of the CEK abstract machine;

• we define in Sect. 3 a type system d�T which conservatively approximates
the cost of executing a program. The key ingredients of our type system
are: linear types, which we use to ensure that higher-order subexpressions
cannot be duplicated; indexed types, which we use to keep track of the size
of expressions—thus, our use of indexed types is somewhat different from
other works on refinement types, which support finer-grained assertions about
expressions, e.g. assertions about their values; indexed effects, which are used
to track the size of references throughout computation;

• we show in Sect. 4 that d�T is intensionally sound, i.e. correctly overapproxi-
mates the complexity of evaluating typable programs;

• we define in Sect. 5 a type inference algorithm and prove its soundness and
completeness. Our algorithm critically exploits the constrained form of pro-
grams to deliver an equational program that is provably terminating. Inter-
estingly, the proof of termination is based on a reducibility argument;

• we demonstrate in Sect. 6 that d�T can be used to analyze the complexity
of the constructed adversary in the Goldreich-Levin theorem, which proves
the existence of hardcore predicates. This example is particularly challenging,
since it involves computations that are not hereditiraly polytime.

2 Setting

We consider a simply typed λ-calculus with references and higher-order primitive
recursion, with a call-by-value evaluation strategy. For the sake of readability, we
consider a minimalistic language with natural numbers, booleans, and lists. For
the sake of applicability, we allow the set of expressions to be parameterized by a
set of function symbols; these functions can be used in cryptographic applications
to model random sampling, one-way trapdoor permutations, oracles, etc.

The semantics of programs is defined by an abstract machine, which we use
to characterize the complexity of programs. We assume that function symbols
come equipped with a semantics, and with a cost; thus, the abstract machine
and the associated cost of programs are parametrized by the semantics and cost
functions. This is formalized through the notion of a function setting, which we
defined below.

Language. We assume given denumerable sets V of variables and L of loca-
tions, and a set F of function symbols. Terms and values are defined mutually
recursively:
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M ::= V | x | succ(M) | cons(M, N) | let M be 〈x, y〉 in N

| M N | f(M) | !r | r:=M ;

V ::= ∗ | zero | tt | ff | nil | succ(V ) | cons(V, W ) | 〈M, N〉 | λx.M

| iter(V, W ) | fold(V, W ) | if(V, W ) | ifz(V, W ) | ifn(V, W );

where the last five clauses for values correspond to iterators and selectors (note
that the latter have a function type). The constructions map(V ) and map2(V )
are defined in a standard way, using fold(X,Z) for suitable X,Z. The fol-
lowing constructions used in the examples are also standard syntactic sugar:
if M then V else W , λ〈x, y〉.M , let x = M in N , as well as M ;N . The
expression M stands for a sequence of terms.

Linear Type System. We first equip the language with a (non-dependent) linear
type system. The sets of base types and types are defined as follows:

T ::= unit | B | N | L(T ); A,B ::= T | A ⊗ A | A
a

� A;

where a ranges over sets of locations. The types B, N and L(T ) stand respectively
for booleans, integers, and lists over the type T . If a is the empty set, we write
A � B for A

a
� B. First-order types are types in which for any subformula

A
a

� B, A does not contain any � connective. Each function symbol f is
assumed to have an input type Tf and an output type Sf. The set T (T ) of those
values which can be given type T can be easily defined by induction on the
structure of T .

Variable contexts (resp. reference contexts) are denoted as Γ (resp. Θ) and
are of the shape Γ = x1 : A1, . . . , xn : An (resp. Θ = r1 : A1, . . . , rn : An).
A ground variable context is a variable context in the form {x1 : T1, . . . , xn : Tn},
and is denoted with metavariables like �Γ . Ground reference contexts are defined
similarly and are denoted with metavariables like �Θ.

Typing judgements are of the form Γ ;Θ � M : A; a . This judgement means
that when assigning to free variables types as from Γ and to references types
as from Θ, the term M can be given type A, and during its evaluation the set
of references that might be read is included in a. The union Γ � Δ of variable
contexts is defined only if the variables in common are attributed the same base
type. Similarly the union a�b of sets of locations (in a judgement) is defined only
if the locations in common are attributed the same base type in the reference
context Θ of the judgement.

A selection on the typing rules are in Fig. 1. Let us briefly comment on them.
When typing a dereference, note that r must belong to the set a. In the rule
for pairs, if M and N share a variable x, then this variable must have a base
type; similarly if they can both read a reference r, then this reference must be
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Fig. 1. Linear typing rules — selection

in a, b and a � b, and hence have a base type. The same holds in applications.
When reading the rule for abstraction top-down, the set a is “moved” from the
judgement to the type A

a
� B, and can in this way be used later in the derivation

if λx.M is applied to an argument. In rule for iter(V,W ), the variable context
�Γ and the reference context �Θ can only contain base types. Consider the
following two examples:

M = r:=zero; cons(!r, cons(!r,nil)); N = (r:=λx.x); !r(!r∗).

Both terms read a reference r twice, but M is typable, while N is not. Indeed,
in M the reference r is read twice, but it is of base type N; we can derive:

∅; r : N � M : L(N); {r}

On the contrary, an attempt to type N fails because of the rule for Application
and the condition on the sets of locations, since r does not have a base type.

Let us now give another example for computing addition and multiplication
on natural numbers, in an imperative style:

incrr = λx.r:=succ(!r) (increments the content of r)
addr,r1 = λx.iter(incrr, ∗)!r1 (adds the content of r1 to that of r)
multr,r1,r2 = λx.(r:=0; iter(addr,r1 , ∗)!r2) (multiplies the contents of r1 and r2 and

assigns the result to r)

The language we have just defined, then, can be seen as an affine variation on
Gödel’s T with pairs, references, and inductive types, called �T.

Function Settings. The behavior of functions is not specified a priori, because
such functions are meant to model calls to oracles in cryptography. Everything in
the following, then, will be parametrized by a so-called function setting, which is
a pair ({Sf}f, {Cf}f), where Sf is a relation between base type values matching
f’s input and output types and modeling its (possibly probabilistic) extensional
behaviour, while Cf is a function from N to N expressing a bound to the cost of
evaluating f on arguments of a given length. In the rest of this paper, we assume
that a function setting has been fixed, keeping in mind that type inference can
be done independently on a specific function setting, as we will explain in Sect. 5.
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Abstract Machine. We consider a variant of Felleisen and Friedman’s CEK. As
such, our machine will be given as a transition system on configurations, each
of them keeping track of both the term being evaluated and the values locations
map to. From now on, for the sake of simplicity, we consider natural numbers as
the only base type, keeping in mind that all the other base types can be treated
similarly. Closures, environments, and stacks are defined as follows, where M
denotes a sequence of terms:

c ::= (M, ξ); ξ ::= ε | ξ · (x 	→ c); π ::= ε | δ · π;

where δ ranges over stack elements:

δ ::= lft(c) | rgt(c) | let(c, x, x) | letlft(c, c, x, x) | letrgt(c, c, x, x)

| fun(c) | arg(c) | succ | sel(c) | iter(c) | ufun(f) | :=(r).

Machine stores are finite, partial maps of locations to value closures, i.e., closures
in the form (V, ξ). A machine store S is said to be conformant with a reference
context Θ if the value closure S(r) can be given type A, where r : A is in Θ.
Configurations are triples in the form C = (c, π,S), where c is a closure, π is a
stack and S is a machine store. Machine transitions are of the form C �n D ,
where n is a natural number denoting the cost of the transition. This is always
defined to be 1, except for function calls, which are attributed a cost depending
on the underlying function setting:

((t, ξ), ufun(f) · π,S) �Cf(|t|) ((Sf(t), ξ), π,S).

(The other rules are given in [2]). The way we label machine transitions induces
a cost model: the amount of time a program takes when executed is precisely
the sum of the costs of the transitions the machine performs while evaluating it.
This can be proved to be invariant, i.e. to correspond to the costs of ordinary
models of computation (TMs, RAMs, etc.), modulo a polynomial overhead.

3 Linear Dependent Types

There is nothing in �T types which allows to induce complexity bounds for the
programs; in fact, �T can express at least all the primitive recursive functions [9].
This is precisely the role played by linear dependency [10], whose underlying idea
consists in decorating simple types with some information about the identity of
objects that programs manipulate. This takes the form of so-called index terms,
following in spirit Xi’s DML [22]. Differently from [10], what indices keep track
of here is the length, rather than the value, of ground-type objects. The fact that
higher-order objects cannot be duplicated, on the other hand, greatly simplifies
the type system.

Given a set IV of index variables, and a set IF of index functions (each
with an arity), index terms over IV and IF are defined as follows I ::=
a | f(I, . . . , I), where a ∈ IV and f ∈ IF . Index functions are interpreted
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as total functions from (n-uples of) positive natural numbers to positive nat-
ural numbers, by way of an equational program E , which can be specified as,
e.g., an orthogonal, terminating, term rewriting system or a primitive recursive
Herbrand-Gödel scheme. We often write |=E I ≤ J , by which we mean that the
semantics E assigns to I is smaller or equal to the semantics E assigns to J , this
for every value of the index variables occurring in either I or J . We will assume
that IF contains at least 0 (of arity 0), s (for the successor, of arity 1) and +, ·
(addition and multiplication, of arity 2, used with infix notation), with adequate
equations in E .

We now define types and effects. Indexed base types U , indexed reference
contexts Θ, indexed types D and indexed effects α are defined, respectively, as
follows:

U ::= unit | B | NI | LI(U); Θ ::= {r1 : D1, . . . , rn : Dn};
α ::= Θ ⇒ Θ; D ::= U | D ⊗ D | D

α
� D.

where I ranges over index terms. The empty effect ∅ ⇒ ∅ is denoted as 0. Given
two effects α = Θ ⇒ Ξ and β = Ξ ⇒ Υ , their composition α;β is Θ ⇒ Υ .
An effect Θ ⇒ Ξ is meant to describe how references are modified by terms: if
the store is conformant to Θ before evaluation, it will be conformant to Ξ after
evaluation. So in particular an effect Θ ⇒ ∅ does not provide any information.

If D is an indexed type, [D] is the type obtained from D by: (i) forgetting
all the index information (ii) replacing on arrows

α
� the effect α by the set of

locations that appear in it. E.g., if D = NI1
α
� NI2 where α = {r1 : D1, r2 :

D2} ⇒ {r1 : D4, r3 : D3}, then [D] = N
{r1,r2,r3}

� N.
Given t ∈ T (T ), we write that |=E t ∈ U iff [U ] = T and the size of t is

bounded by the index terms in U , independently on the values of index variables.
Similarly, |=E f ∈ U � V stands for |=E s ∈ V whenever |=E t ∈ U and
(t, s) ∈ Sf. As an example, any lists t whose three elements are natural numbers
less or equal to 4 is such that |=E t ∈ L7(N4+a).

A subtyping relation � on indexed types and effects is defined in Fig. 2. Note
that we have �E 0 � α iff α is of the shape α = Ξ1, Υ,Ξ2 ⇒ Π, where �E Υ � Π.
Suppose that r is a reference and that D is an indexed type. Then ER(r,D)

Fig. 2. Subtyping Rules
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Fig. 3. Typing Rules, Part I

is defined to be just {r : D} ⇒ {r : D} if D is an indexed base type, and
{r : D} ⇒ ∅ otherwise.

Typing contexts and terminology on them are the same as the one we used
in the linear type system (Sect. 2) where, of course, indexed types plays the
role of types. A typing judgement has the form Γ �E M : D;α. Let us denote
α = Θ ⇒ Ξ. The intended meaning of the judgement is that if term variables are
assigned types in Γ , then M can be typed with D, and if initially the contents
of the references are typed as in Θ, then after evaluation of M the contents
of the references can be typed as in Ξ. So while the former type system of
Sect. 2 only provided information about which references might have been read
during evaluation, this new system will also provide information about how the
contents of references might have been modified, more specifically how the size
of the contents might have changed.

Now, the typing rules are given in Figs. 3 and 4. A term M is dependently
linearly typable if there exists a derivation of a judgement Γ �E M : D;α. Before
analyzing the type system, let us make a few comments:

• As in the linear type system, all rules treat variables of ground types differently
than variables of higher-order types: the former can occur free an arbitrary
number of times, while the latter can occur free at most once. Similarly for
references. As a consequence, if a term is dependently linearly typable, then
it is linearly typable.

• We should also take note of the fact that values can all be typed with the 0
effect. This is quite intuitive, since values are meant to be terms which need
not be further evaluated.

• The rules typing assignments and location references (two bottom rules in
Fig. 3) show how higher-order references are treated. While an assignment
simply overwrites the type attributed to the assigned location, a reference is
typed with the location effect of the referenced location.
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Fig. 4. Typing Rules, Part II

As an example, we can derive for the term M of Sect. 2:

�E M : La+3(Nb+1); r : Nc ⇒ r : Nb+1

As to the terms of Sect. 2 for increment, addition and multiplication, we obtain:

�E incrr : unit
r:Na⇒r:Na+1

� unit;0

�E addr,r1 : unit
r:Na,r1:N

b⇒r:Na+b,r1:N
b

� unit;0

�E multr,r1,r2 : unit
α
� unit;0

where α = (r : Nc, r1 : Na, r2 : Nb) ⇒ (r : Na·b, r1 : Na, r2 : Nb).

4 Intensional Soundness

Once a term M has been typed by a derivation π, one can assign a weight W(π)
to π (and thus indirectly to M) in the form of an index term I. It is meant
to estimate the time complexity of M . W(π) is defined by induction on the
structure of π; interesting cases are those for iteration and function:

ρ � Γ �E M : NI ;α

π � Γ �E f(M) : U ;α
W(π) = W(ρ) +Cf(I)

ρ � �Γ �E W : D{a/1};0
σ � �Γ �E V :

(
D

Ξ⇒Ξ{a/a+1}
� D{a/a + 1}

)
;0

π � �Γ �E iter(V, W ) : NI
Θ⇒Φ� F ;α

W(π) = W(ρ) +
∑

1≤a<I W(σ) + I



Implicit Computational Complexity of Subrecursive Definitions 211

It is important to note that the definition of W(π) in the case of iter(V,W )
involves a summation, but W(σ) is computed only once and the summation itself
is not evaluated. Other cases are defined in the standard way, i.e. the weight
of a derivation is the weight of the sum of its subderivations plus 1. The full
definition is given in [2].

The weight of a derivation decreases along machine transition rules, as
defined in Sect. 2. This can be proved by generalizing d�T to a type system
for machine configurations. Following the same ideas, one can also define the
weight W(S) of any conformant store S. By a careful analysis of the reduction
rules, one gets Subject Reduction for configurations:

Lemma 1. If �E (c, π) : U ;Θ ⇒ Ξ, the store S is conformant with Θ, and
(c, π,S) �n (d, ρ,R), then �E (d, ρ) : U ;Υ ⇒ Ξ, the store R is conformant with
Υ , and W(π) + W(S) ≥ W(ρ) + W(R) + n.

Proof. One only needs to carefully analyze each of the machine transition rules.
Indeed, the way the type system has been extended to configurations and the
way the weight of a type derivation has been defined make the task easy. ��
As an easy consequence, we obtain intensional soundness.

Theorem 1 (Intensional Soundness). If π� �E M : U ;Θ ⇒ Ξ, the store S
is conformant with Θ, and (M, ε,S) �n C , then n ≤ W(π) + W(S).

So this theorem shows that the weight of a d�T program is indeed a bound on
its evaluation time. But how can we type an �T program so as to obtain a d�T
type derivation? This is the subject of the next Section.

5 Type Inference

The type inference procedure is defined quite similarly to the one in [11], where
the language at hand, called d�PCF, is more general than the one described here
(apart from effects). As a consequence, we will only describe the general scheme
of the algorithm, together with the most important cases (noticeably, iteration).
For simplification we will also omit the effects, as anyway they don’t present
specific difficulties

A tree whose nodes are labelled by typing judgements, but which is not
necessarily built according to our type system is said to be a pseudo-derivation.
This is to be contrasted with a proper type derivation. Similarly, an incomplete
set of rewrite rules which, contrarily to proper equational programs, does not
univocally define all the function symbols that occur in them is said to be a
pseudo-program.

The type inference algorithm TI takes in input a linearly typable term M ,
together with a finite sequence of index variables φ = a1, . . . , an, and returns:

• A pseudo-derivation π with conclusion Γ � M : D;α where the types in Γ
and D match the ones of M .

• A pseudo-program E .
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In other words, TI(MA, φ) = (π, E). The understanding here is that the
undefinded function symbols in E are those which occur in negative positions
in the conclusion of π, and the termination of symbols in E is necessary and
sufficient for π to be a correct type derivation (once symbols not defined in E
are properly defined).

The algorithm TI is recursive, and proceeds by pattern matching on its first
argument. Let us just consider the case when the input term is an iteration,
i.e. suppose that M is iter(V,W ) and has linear type N � A. For the sake
of simplicity, suppose that A is N � N, and that V and W are closed. The
algorithm proceeds by recursively calling itself on V (and φ, a, b) and on W
(and φ, a), obtaining that TI(V, φ, a, b) = (πV , EV ) and TI(W,φ, a) = (πW , EW ),
where: πV � � V : (Nf(φ,a,b) � Ng(φ,a,b)) � (Nj(φ,a,b) � Nh(φ,a,b));0 and
πW � � W : Nk(φ,a) � Np(φ,a);0. Moreover, by construction, EV defines f and
h (but not g and j), while EW defines p (but not k). The algorithm then returns
the pseudo-derivation obtained by assembling πV and πW by way of the typing
rule for iter(·). About the output equational program, of course we need to
return at least the equations in EV ∪ EW , but we also need something more,
namely the following equations (where q, r are fresh function symbols):

k(φ, 0) = q(φ); k(φ, a + 1) = f(φ, a, 0);
g(φ, a, 0) = p(φ, a); g(φ, a, b + 1) = h(φ, a + 1, b);
j(φ, 0, b) = q(φ); j(φ, a + 1, b) = f(φ, a, b + 1);

r(φ) = max
b≤s(φ)

h(φ, 0, b).

The type of M can then be set to be Ns(φ) � Nq(φ) � Nr(φ). Note how the
typing rule for iter(·) can indeed be applied using the type above, by choosing
E = Nq(φ) � Nmaxb≤a h(φ,0,b).

The way we define TI, and in particular the fact that the output program
is only a pseudo-program and not a proper equational program, has the conse-
quence of allowing TI to be defineable by recursion. What TI produces in output,
however, is not a type derivation but a pseudo-derivation: E does not give mean-
ing to all function symbols, and in particular not to the symbols occurring in
negative position. Getting a proper type derivation, then, requires giving mean-
ing to those symbols. This is the purpose of the algorithm CTI which, given in
input a term M , proceeds as follows:

• It calls TI(M,φ), where the variables in φ are in bijective correspondence to
the negative occurrences of base types in M .

• Once obtained (π, E) in output, it complements E with equations in the form
fi(φ) = ai where ai is the variable corresponding to fi.

• In the conclusion of π, replace fi(φ) by just ai.

Soundness and Completeness. The way the type-inference algorithm CTI is
defined makes its output correct mostly by definition.

Theorem 2 (Soundness). If CTI(M) = (π, E), then E is completely specified
and π is a correct type derivation, i.e., all proof obligations in π are true in E.
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Proof. First of all, one can prove, by induction on M , that any completion
of the equational program obtained from TI(M,φ) turns the obtained pseudo-
derivation into a correct type derivation. Then, one can observe that CTI simply
completes TI in the obvious way. ��
Since the CTI algorithm, contrarily to what happens traditionally in the context
of type-inference, never fails when fed with terms which can be linearly typed
as from Sect. 2, it means that it is also complete by design:

Theorem 3. (Completeness). The algorithm CTI is total.

5.1 Termination

We now prove that the equational program E produced in output by type infer-
ence (i.e. CTI(M) = (π, E)) is indeed terminating. Importantly, this cannot be
proved directly, i.e. by induction on M , merely following the way TI is defined.
Indeed, a reducibility-like argument is needed, which goes as follows: given an
equational program E and an assignment ρ of natural numbers to some free index
variables, we write E , ρ |= D if for the value of variables as in ρ, E is reducible
in D, where reducible is a concept defined by induction on D. As an example,
if D is just NI , then I is given a meaning by the equational program E when
the variables occurring free in I are given values according to ρ. Then, as usual,
one proves that all equational programs output by TI are reducible, but for all
assignments ρ.

Theorem 4. (Termination). If CTI(M) = (π, E), then E is terminating.

Proof. The proof is structured as follows:

• On the one hand, one needs to prove that any equational program E that
TI(M,φ) produces in output is indeed reducible for every assignment ρ over
φ. This property can indeed be proved by induction on the structure of M .

• On the other hand, one also proves that all reducible programs, when com-
pleted like in CTI, are terminating.

6 Application to Cryptographic Proofs

This section presents an application of d�T to cryptographic proofs. Typically,
such proofs reduce the security of a cryptographic construction to computa-
tional assumption(s), and consist of three steps. The first step is the definition
of an algorithm B, hereby called the constructed adversary, that breaks the
computational assumption(s), using as a subroutine the adversary A against
the cryptographic construction. The second step exhibits and formally justifies
upper bounds on the winning probability of the constructed adversary B, as
an expression of the winning probability of the adversary A against the cryp-
tographic construction. This step can be carried out formally using tools such
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as e.g. CryptoVerif [8] or EasyCrypt [6]. Finally, the third step formally justifies
upper bounds for the execution time of the constructed adversary B as a function
of the execution time of the adversary A. We use d�T for the third step. Specifi-
cally, we consider the constructed adversary from the Goldreich-Levin theorem,
which shows the existence of hardcore predicates for a class of one-way functions.
This example is particularly challenging, because some of the intermediate com-
putations are not polytime w.r.t. the size of their inputs. Another example of
application, that of a padding-based encryption (BR93, [7]) is described in [2].
We also believe that we can handle such schemes as RSA-FDH (see [19] Sect.
13.3) but this is left for future work.

Notation. In d�T we will freely use the combinators map and fold and map2
on lists. Combinators map and fold are defined in the usual way, whereas
map2 f (a1, . . . , an) (b1, . . . , bm) returns the list (f a1 b1, . . . , f ap bp) where
p = min(n,m). Moreover, we let app denote concatenation of lists, and ∗k denote
the list that repeats k times the constant ∗.

Furthermore, we model bits and bitstrings as booleans and lists of booleans,
respectively. In order to increase readability, we often use {0, 1} as a synonym for
B and {0, 1}k to denote the set of bitstrings of length k. Moreover, we use stan-
dard notations for bitstrings: we let ⊕ and ⊗ respectively denote the exclusive or
operator and multiplication operators (both of type {0, 1} → {0, 1} → {0, 1}),
and 0k denote the 0-bitstring of length k. Using operators on maps, one can
define exclusive or on bitstrings, and scalar multiplication of a bitstring by a
bit. Moreover, we assume given a probabilistic operator flip : unit → {0, 1} that
samples a bit uniformly at random. Again using standard operators on maps,
one can define an operator flipk : unitk → {0, 1}k.

Finally, we can define an operator pow0 which takes as input a natural num-
ber k and outputs the list of non-empty subsets of {1, . . . , k}—we model each
subset as a list of bitstrings of length k.

Recall that a one-way function is a function that is easy to compute but hard
to invert. Although it seemingly contradicts the definition, one-way functions
can also leak information about their inputs. Thus, a natural question is to
characterize the amount of information that one-way functions hide from their
inputs. This hiding property is captured by the notion of hardcore predicate;
informally, a predicate p is a hardcore predicate for a function f if p can be
computed efficiently and an efficient adversary with access to f x has a small
probability to guess correctly whether p x holds, where the value x is sampled
uniformly over the domain of f. The existence of a hardcore predicate for every
one-way function is a long-standing open problem in cryptography. However,
the celebrated Goldreich-Levin theorem proves that for every one-way function
f over bitstrings of length n, there exists a hardcore predicate p for the one-
way function g over bitstrings of length 2n, where g is defined by the clause
g(app x y) = app (f x) y, and p is defined by the clause:

p(app x y) =
n⊕

i=1

xi ⊗ yi
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where xi denotes the i-th bit of x and we recall that app is the concatenation of
strings.

The theorem is proved by showing that for every adversary A with a non-
negligible probability of guessing the value of the hardcore predicate on a ran-
domly chosen value x, there exists a probabilistic polytime inverter I with a
non-negligible probability of guessing the pre-image of f on a randomly sampled
value x. Informally, the inverter is given as input a bitstring y of length n, and
outputs a bitstring x of length n as follows:

1. it sets � to �log(n + 1)�;
2. it defines zerobut as the function that takes as inputs a natural number i and

a bitstring w of length n and returns the bitstring z such that zj = 0 for j �= i
and zi = wi (note that z also has length n);

3. it samples uniformly at random � bitstrings z1 . . . z� of length n, and � bits
r1 . . . r�;

4. for every non-empty subset X of {1 . . . �}, it computes the bitstrings zX and
the bit rX , respectively as

⊕
i∈X zi and ⊕i∈Xri;

5. for every non-empty subset X of {1 . . . �} and for every i ∈ {1 . . . n}, it com-
putes the bit xX

i = rX ⊕A(app y (zerobut i zX)), and sets xi = majority(xX
i ),

where X is drawn from the set of non-empty subsets of {1 . . . �}.

The formal definition of the inverter I in �T is given in Fig. 5. It uses two
functions, both defined recursively in the expected way: the majority function
majority : L({0, 1}) → {0, 1} which returns the most frequent bit from a list, and
the function zerobut : N → L({0, 1}) → L({0, 1}) which takes as input a natural
number n and a list l and zeroes all elements of l but the nth one.

We refer to e.g. [19, Sect. 6.3] for a proof of the validity of the reduction, and
focus on analyzing the complexity of the inverter I. Let us first carry an informal

Fig. 5. Inverter I against hardcore predicate, with helper functions
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analysis. For each function zerobut(i, ·), the inverter invokes the adversary 2� −1
times, since the lists RP and ZP both have length 2� − 1. So the inverter calls
the adversary n · (2� − 1) times, i.e. tI ∼ n2 · tA. Hence I executes in polytime,
assuming that A does. This example is particularly interesting because it is not
hereditarily polytime: the function pow0 has an output of exponential size (and
so is not polytime), but in the program I it is applied only to a small input (�, of
logarithmic size). It does not use references, but it illustrates how higher-order
can be used to write concise code.

Now let us sketch how we can type the inverter I. We need for that to extend
IF with two new function symbols log, e with the following equations in E :

log(1) → 0, log(2 · a) → s log(a), e(0) → 1, e(sa) → 2 · e(a).

As examples of types for subterms we obtain, where J = log(sn):

pow0 : Na � Le(a)(La(B)), P : Le(J)(LJ(B)), gr : LJ(B) � B

Finally the inverter I can be given a type derivation π of conclusion Ln(B) �
Ln(B) (see [2]). If we denote as g the index function representing the time
complexity of the adversary A, we obtain as weight for the derivation: W(π) =
O(n2g(1 + 2n) + n2 log(n + 1)). As we can assume that log(n + 1) is dominated
by g(1+2n), we finally obtain W(π) = O(n2g(1+2n)). By Theorem 1 this yields
a bound for the running time of I, so this result confirms the informal analysis
carried out above.

7 Related Work

There exist many verification techniques for analysing the complexity of pro-
grams. What is specific about our proposal is the presence of both higher-order
functions and imperative features, which allows a reasonable degree of flexibility,
coupled with a nice way to accomodate probabilistic effects and oracles.

Type Systems. To our best knowledge, none of the (many) type systems char-
acterizing polytime from the literature (e.g. [3,16,17,20]) are able to capture
non-hereditarily polytime programs. Technically, our type system can be seen
as a variation and a simplification of linear dependent types [10,11]. The main
novelty is the presence of effects, which allow to deal with imperative features.
Duplication of higher-order values is restricted, and this renders the type system
simpler. Subrecursivity, in turn, enforces termination of equational programs
obtained through type inference. All these aspects were simply missing in pre-
vious works on linear dependent types. Other related works are [12,14], which
however only deal with linear bounds or with first-order definitions.

Static Analysis. Among the static analysis methodologies for complexity analy-
sis, those based on abstract interpretation [1,15] deserve to be cited. These can
be very effective on imperative programs, but are not able to handle higher-order
features. It is moreover not clear whether relatively complicated examples like
the ones we presented here could be handled. This is even more evident in, e.g.,
matrix-based calculi for imperative programs [18].
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Computer-aided Cryptography. Few tools for computer-aided cryptography sup-
port complexity analyses of programs. CryptoVerif [8] ensures that processes are
executed in probabilistic polynomial time, but cannot prove that the constructed
adversary for the Goldreich-Levin theorem is polytime. CertiCrypt [5] formalizes
an instrumented semantics that tracks the execution time of probabilistic pro-
gram, and allows users to reason about the complexity of programs directly at
the level of the instrumented operational semantics. A similar apporach is taken
in the Foundational Cryptographic Framework (FCF) [21]. Such an approach
is cumbersome. Computational Indistinguishability Logic (CIL) [4] carries an
implicit complexity analysis in its judgments but it reasons about mathematical
functions rather than programs.

8 Conclusion

We have defined a sound type and effect system for analyzing the complexity
of executing higher-order, stateful, programs on a variant of the CEK abstract
machine. We have also given a sound and complete type inference algorithm
which does not require to check termination of the equational program, which is
ensured. There are several interesting avenues for further research. One direction
is to implement d�T and integrate it in a system for computer-aided cryptog-
raphy. Another direction is to develop automated approaches to reason about
expected complexity of programs. Several noteworthy reductions in cryptography
are based on constructed adversaries that execute in expected, rather than strict,
probabilistic polynomial time; the main challenge here is not only to come up
with a type system for expected complexity, but also a definitional one; see [13]
for a recent account of the subtleties with existing definitions.
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Abstract. TIP is a toolbox for users and developers of inductive
provers. It consists of a large number of tools which can, for example,
simplify an inductive problem, monomorphise it or find counterexam-
ples to it. We are using TIP to help maintain a set of benchmarks for
inductive theorem provers, where its main job is to encode aspects of the
problem that are not natively supported by the respective provers. TIP
makes it easier to write inductive provers, by supplying necessary tools
such as lemma discovery which prover authors can simply import into
their own prover.

1 Introduction

More and more people are making inductive theorem provers. Besides tradi-
tional systems such as ACL2 [14], new provers such as Zeno [18], HipSpec [9],
Hipster [13], Pirate [19] and Graphsc [12] have appeared, and some formerly
non-inductive provers such as CVC4 [16] and Dafny [15] can now do induction.

To make it easier to scientifically compare these provers, we recently compiled
a benchmark suite of 343 inductive problems [10]. We ran into a problem: all
of the provers are very different. Some expect the problem to be monomorphic,
some expect it to be first-order, some expect it to be expressed as a functional
program rather than a logic formula. If we stuck only to features supported by
all the provers, we would have very little to work with.

Instead, we designed a rich language which can express a wide variety of
problems. The TIP format (short for Tons of Inductive Problems) is an extension
of SMT-LIB [2] and includes inductive datatypes, built-in integers, higher-order
functions, polymorphism, recursive function definitions and first-order logic.

The TIP Tools. In this paper, we demonstrate a set of tools for transforming and
processing inductive problems. The tools are based around the TIP format that
we used for our benchmark suite, and provide a wide variety of operations that
are useful to users and developers of inductive provers. The tools can currently:

– Convert SMT-LIB and Haskell to TIP.
– Convert TIP to SMT-LIB, TPTP TFF, Haskell, WhyML or Isabelle/HOL.
– Remove features from a problem that a prover does not support, such as

higher-order functions or polymorphism.
c© Springer-Verlag Berlin Heidelberg 2015
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– Instantiate an induction schema: given a conjecture and a set of variables to
do induction over, generate verification conditions for proving the conjecture
by induction.

– Model check a problem, to falsify conjectures in it.
– Use theory exploration to invent new conjectures about a theory.

We describe the TIP format itself in Sect. 2, and many of the available trans-
formations in Sect. 3. TIP improves the ecosystem of inductive provers in two
ways:

– Interoperability Between Provers. Almost all existing inductive theorem
provers are incompatible. They all use different input syntax but, more impor-
tantly, support entirely different sets of features. This makes it difficult to
scientifically compare provers.
TIP provides conversion tools which allow us to write one problem and try
it on several provers. The conversion is not just syntactic but uses tools such
as defunctionalisation [17] and monomorphisation to mask the differences
between provers. We are using TIP to convert our inductive benchmarks to
various provers’ input formats.

– Easier to Make New Provers. There are many ingredients to a good inductive
prover: it must instantiate induction schemas, perform first-order reasoning to
discharge the resulting proof obligations, and discover the necessary lemmas
to complete the proof. This makes it hard to experiment with new ideas.
TIP provides many parts of an inductive prover as ready-made components,
so that an author who has—say—an idea for a new induction principle can
implement just that, leaving the first-order reasoning and lemma discovery
to TIP. This is analogous to first-order logic where a tool author might use,
for example, an off-the-shelf clausifier instead of writing their own. In Sect. 4
we demonstrate the versatility of the TIP tools by stitching them together to
make a simple inductive prover as a shell script!

We are continually adding more tools and input and output formats to TIP.
We are working to make TIP a universal format for induction problems, backed
by a powerful toolchain which can be used by prover authors and users alike. We
describe our plans for improving TIP further in Sect. 6. TIP is publicly available
and can be downloaded from https://github.com/tip-org/tools.

2 The TIP Format

The TIP format is a variant of SMT-LIB. The following problem about lists illus-
trates all of its features. We first declare the polymorphic list datatype (list a),
using the widely supported declare-datatypes syntax.

(declare-datatypes (a) ((list (nil) (cons (head a) (tail (list a))))))

https://github.com/tip-org/tools
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We then define the list map function by pattern matching. The par con-
struct is used to introduce polymorphism. The match expression provides pat-
tern matching and is proposed for inclusion in SMT-LIB 2.6. To support partial
functions like head, a match expression may have missing branches, in which case
its value is unspecified. The syntax for higher-order functions is a TIP extension
and we discuss it below.

(define-fun-rec (par (a b)
(map ((f (=> a b)) (xs (list a))) (list b)

(match xs
(case nil (as nil (list b)))
(case (cons x xs) (cons (@ f x) (map f xs)))))))

Finally, we conjecture that mapping the identity function over a list gives
the same list back. As in SMT-LIB we assert the negation of the conjecture and
ask the prover to derive false. Many inductive provers treat the goal specially,
so TIP uses the syntax (assert-not p), which is semantically equivalent to
(assert (not p)) but hints that p is a conjecture rather than a negated axiom.

(assert-not (par (a) (forall ((xs (list a)))
(= xs (map (lambda ((x a)) x) xs)))))

(check-sat)

To summarise, the TIP format consists of:

– SMT-LIB plus declare-datatypes (inductive datatypes), define-funs-rec
(recursive function definitions), match (pattern matching) and par (polymor-
phism), which are all standard or proposed extensions to SMT-LIB.

– Our own TIP-specific extensions: higher-order functions, and assert-not for
marking the conjecture.

Our tools also understand the SMT-LIB theory of integer arithmetic. We
intend TIP to be compatible with the standard theories of SMT-LIB.

First-class Functions. TIP supports higher-order functions, as these often crop
up in inductive problems. We chose to make all use of these syntactically explicit:
they must be written explicitly as a lambda function and are applied with the
operator @. There is no implicit partial application. If succ is a function from
Int to Int, we cannot write (map succ xs), but instead write (map (lambda
((x Int)) (succ x)) xs). And in the definition of map, we use (@ f x) to
apply f to the list element. There is a type (=> a b) of first-class functions
from a to b; lambda introduces values of this type and @ eliminates them. This
design allows us to keep the bulk of TIP first-order.
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3 Transforming and Translating TIP

TIP is structured as a large number of independent transformations. This is
true even for our file format conversions. When TIP and the target prover have
different feature sets, our approach is to keep the problem in TIP as long as
possible, running many small transformations to reduce the problem to some
fragment of TIP which we can translate directly. For example, many formats do
not support pattern matching, so we must translate it to if-then-else, or if the
format does not support that either, we can transform each function definition
into a series of axioms. This happens as a TIP-to-TIP transformation.

This approach makes TIP quite modular. It is quite easy to add a new con-
verter as most of the hard work is taken care of by existing transformations.
Furthermore, many of those transformations are useful in their own right. In
this section we illustrate many of the available transformations; we will use as a
running example the conversion of the map example to SMT-LIB.

Although TIP is a variant of SMT-LIB, the two are quite different. SMT
solvers often do not support polymorphism, higher-order functions or pattern-
matching so our converter must remove those features. Here is what our tool
produces when asked to translate the map example to vanilla SMT-LIB. It has
monomorphised the problem, used defunctionalisation to eliminate the lambda
and is using is-cons/head/tail instead of pattern matching.

(declare-sort sk_a 0)

(declare-sort fun 0)

(declare-datatypes () ((list (nil) (cons (head sk_a) (tail list)))))

(declare-const lam fun)

(declare-fun apply (fun sk_a) sk_a)

(declare-fun map (fun list) list)

(assert (forall ((x sk_a)) (= (apply lam x) x)))

(assert (forall ((f fun) (xs list))

(= (map f xs)

(ite (is-cons xs) (cons (apply f (head xs)) (map f (tail xs))) nil))))

(assert (not (forall ((xs list)) (= xs (map lam xs)))))

(check-sat)

3.1 Defunctionalisation

To support theorem provers that have no support for first-class functions and
lambdas, a TIP problem can be defunctionalised [17]. This replaces all λ-functions
in the problem with axiomatised function symbols. Defunctionalisation is sound
but incomplete: if the goal existentially quantifies over a function, it may be ren-
dered unprovable. We expect this to be rare for typical inductive problems.
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In the example above, defunctionalisation has introduced the new abstract
sort fun which stands for functions taking one argument. The identity function
is replaced by a constant lam of sort fun. The @ operator has been replaced by
the function apply, together with an axiom which states that (apply lam x)
is x.

3.2 Monomorphisation

Many functional programs are naturally expressed using polymorphism. How-
ever, most provers do not support polymorphism. Though there has been work
on supporting polymorphism natively in FO provers and SMT solvers, in partic-
ular Alt-Ergo [4], and also initial work for CVC4, it is not yet standard practice.
Thus, we provide a monomorphisation transformation that removes polymorphic
definitions by cloning them at different ground types.

As calculating the required instances is undecidable [6], our monomorphiser
is heuristic. It generates a set of rules, in the form of first-order Horn clauses,
which say when we should generate various instances. The minimal model of
these Horn clauses then tells us which instances are required. The reason we
use rules is that it makes it easy to adjust the behaviour of the monomorphiser:
different settings may include or omit instantiation rules.

For a function definition, the principle is that when we instantiate the func-
tion, we should also instantiate everything required by the function. For map,
some of the rules will be:

map(a,b) -> cons(a)
map(a,b) -> cons(b)
map(a,b) -> map(a,b)

In the snippet above, a and b are the type arguments to map. The first two
lines make sure that when we instantiate map at types a and b in the program,
we will also instantiate the cons constructor at a and at b. For data types, we
have other rules that make sure that if cons is needed at some type, we also
instantiate list at that type. We also generate rules for lemmas.

The last line is present because map calls itself. In general, when f calls
g, we add a rule that when we instantiate f we must instantiate g. The rule
makes no difference for this example, but is problematic for polymorphically
recursive functions, which call themselves at a larger type. This is an obstacle
for monomorphisation as the set of instances is infinite. A similar problem can
occur when instantiating lemmas. To curb this, our procedure gives up after a
predefined number of steps.
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To start the procedure, we first Skolemise any type variables in the conjecture,
and then add facts to the rule set for the functions called in the conjecture. These
seed the procedure, which will either return with a set of ground instances that
cover the problem, or give up. The transformation succeeds on all but one of our
benchmarks; the failing one has a polymorphically recursive data type.

3.3 Eliminating Pattern matching

TIP provides two passes for eliminating pattern matching. The first one is used
in the translated map function above, and replaces match with if-then-else (ite),
discriminators (is-nil and is-cons) and projection functions (head and tail).
For converting SMT-LIB to TIP format, we also provide a reverse transformation
which replaces discriminators and projection functions with match expressions.

For some theorem provers, using if-then-else is not an option. We can also
translate a function definition using match into several axioms, one for each case.
Using this transformation, the map function turns into the following two axioms,
which specify its behaviour on nil and cons:

(assert (forall ((f fun)) (= (map f nil) nil)))
(assert (forall ((f fun) (x sk_a) (xs list))

(= (map f (cons x xs)) (cons (apply f x) (map f xs)))))

The transformation works by first lifting all match expressions to the outer-
most level of the function definition. A function with an outermost match can
easily be split into several axioms.

3.4 Applying Structural induction

We also supply a transformation that applies structural induction to the conjec-
ture. It requires the conjecture to start with a ∀-quantifier, and does induction
on the variables quantified there. It splits the problem into several new problems,
one for each proof obligation. When using the command line tool, the problems
are put in separate files in a directory specified as a command line argument.

The transformation can do induction on several variables and induction of
arbitrary depth, depending on what the user chooses. There is some choice about
how strong the induction hypothesis should be: we copy HipSpec in assuming
the induction hypothesis for all strict syntactic subterms of the conclusion. For
example, if p is a binary predicate on natural numbers, proving (p x y) by
induction on x and y gives the following proof obligation (among others):

(assert-not (forall ((x nat) (y nat))
(=> (p x y) (p x (succ y)) (p (succ x) y)

(p (succ x) (succ y)))))
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This works well in practice: it can for instance prove commutativity of the
normal natural number plus without lemmas by doing induction on both vari-
ables.

3.5 Other Transformations and External tools

Minor Transformations. TIP also includes simplification passes including inlin-
ing, dead code elimination and merging equivalent functions. Another transfor-
mation partially axiomatises inductive data types for provers and formats that
lack built-in support for them, such as TPTP TFF. This is useful for sending
proof obligations to a first-order prover after applying an induction schema.

Theory Exploration. TIP is integrated with the theory exploration system
QuickSpec [11]. QuickSpec only accepts Haskell input, so TIP is used to trans-
late the problem to Haskell, and QuickSpec’s conjectures are translated back
into TIP formulas. This allows theorem provers to easily use theory exploration.

Counterexamples to Non-theorems. TIP properties can also be randomly tested
with QuickCheck [8], via the Haskell converter. Furthermore, the Haskell
Bounded Model Checker, HBMC, can read TIP files. These tools can be useful
to identify non-theorems among conjectures.

4 Rudimentocrates, a Simple Inductive Prover

Rudimentocrates1 is a rudimentary inductive theorem prover, using the E the-
orem prover for first-order reasoning and QuickSpec for lemma discovery. It is
a rough caricature of HipSpec, but while HipSpec is 6000 lines of Haskell code,
Rudimentocrates is a 100-line shell script built on top of TIP.

The source code of Rudimentocrates is found in AppendixA, and an example
run in AppendixB. It works as follows:

– Run QuickSpec to find conjectures about the input problem.
– Pick a conjecture, and a variable in that conjecture.

• Generate proof obligations for proving the conjecture by induction.
• Translate each obligation to TPTP and send it to E (with a timeout).
• If all obligations are proved, add the conjecture as an axiom to the problem

for use in proving further conjectures.
– Repeat this process until no more conjectures can be proved.

The result is the input problem, but with each proved conjecture (taken
either from the input problem or QuickSpec) added as an extra axiom.

1 Named after the lesser-known Ancient Greek philosopher.
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Each of the steps—discovering conjectures, generating proof obligations, and
translating them to TPTP—is performed by calling TIP. Rudimentocrates is not
intended as a serious inductive theorem prover, but it demonstrates how easy it
is to experiment with new inductive tools with the help of TIP.

5 Related Work

The system most obviously connected to ours is Why3 [5]. Like us, they have
a language for expressing problems and a set of transformations and prover
backends. The main difference is that Why3 emphasises imperative program
verification with pre- and postconditions. There is a functional language like
TIP inside Why3 but it mostly used to write the specifications themselves. By
contrast, TIP is specialised to induction and recursive function definitions. This
smaller domain allows us to provide more powerful tools, such as theory explo-
ration, random testing and model checking, which would be difficult in a larger
language. Another difference is that Why3 manages the entire proof pipeline,
taking in a problem and sending it to provers. We intend TIP as a modular col-
lection of tools which can be combined however the user wishes. Nonetheless, on
the inside the systems have some similarities and we expect there to be fruitful
exchange of ideas between them.

6 Future Work and Discussion

We are experimenting with heuristics for monomorphisation. A particular prob-
lem is what to do when the set of instances is infinite. One possibility is to limit
the depth of instantiations by using fuel arguments [1], guaranteeing termination
and predictability. Function definitions that could not be instantiated because
of insufficient fuel would be turned into uninterpreted functions.

Monomorphisation is inherently incomplete. A complete alternative is to
encode polymorphic types [3]. These encodings introduce overhead that slows
down the provers, but we would like to add them as an alternative. We would
also like to extend our monomorphiser so that it can specialise higher-order func-
tions, generating all their first-order instances that are used in the problem [7].
This would be a low-overhead alternative to defunctionalisation.

We want to add more, stronger, kinds of induction, including recursion-
induction and well-founded induction. We would also like to extend the format
by adding inductive predicates, as well as coinduction.

Inductive theorem proving has seen a new lease of life recently and we believe
it has more potential for growth. With TIP we hope to encourage that growth
by fostering competition between provers and providing tools.
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A Rudimentocrates Source Code
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B Example Run of Rudimentocrates

Here is an example showing the output of Rudimentocrates on a simple theory
of append and reverse. The input file has a single conjecture that reverse
(reverse xs) = xs:

(declare-datatypes (a)
((list (nil) (cons (head a) (tail (list a))))))

(define-fun-rec (par (a)
(append ((xs (list a)) (ys (list a))) (list a)

(match xs
(case nil ys)
(case (cons z zs) (cons z (append zs ys)))))))

(define-fun-rec (par (a)
(reverse ((xs (list a))) (list a)
(match xs

(case nil (as nil (list a)))
(case (cons y ys)

(append (reverse ys) (cons y (as nil (list a)))))))))
(assert-not (par (a)
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(forall ((xs (list a))) (= (reverse (reverse xs)) xs))))
(check-sat)

Rudimentocrates first runs QuickSpec to discover likely lemmas about
append and reverse:

Dreaming up conjectures...
append x Nil = x
append Nil x = x
append (Cons x y) z = Cons x (append y z)
append (append x y) z = append x (append y z)
reverse Nil = Nil
reverse (reverse x) = x
reverse (Cons x Nil) = Cons x Nil
append (reverse y) (reverse x) = reverse (append x y)

It then goes into a proof loop, taking one conjecture at a time and trying to
prove it. It prints :( when it failed to prove a conjecture, :) when it proved a
conjecture without induction, and :D when it proves a conjecture with the help
of induction:

Trying to prove conjectures...
:( :D :) :) :D :) :( :) :D
:D :)

Rudimentocrates prints a newline when it has tried all conjectures, then
goes back and retries the failed ones (in case it can now prove them with the
help of lemmas). In this case it manages to prove all the discovered conjectures,
and prints out the following final theory. Notice that: (a) the property (= xs
(reverse (reverse xs))) is now an axiom (assert) rather than a conjecture
(assert-not), indicating that it has been proved, and (b) several other proved
lemmas have been added to the theory file.

(declare-datatypes (a)

((list (nil) (cons (head a) (tail (list a))))))

(define-fun-rec

(par (a)

(append

((xs (list a)) (ys (list a))) (list a)

(match xs

(case nil ys)

(case (cons z zs) (cons z (append zs ys)))))))

(define-fun-rec

(par (a)

(reverse

((xs (list a))) (list a)

(match xs

(case nil (as nil (list a)))
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(case (cons y ys)

(append (reverse ys) (cons y (as nil (list a)))))))))

(assert

(par (x)

(forall ((y (list x))) (= (append y (as nil (list x))) y))))

(assert

(par (x)

(forall ((y (list x)) (z (list x)) (x2 (list x)))

(= (append (append y z) x2) (append y (append z x2))))))

(assert

(par (x)

(forall ((y (list x)) (z (list x)))

(= (append (reverse z) (reverse y)) (reverse (append y z))))))

(assert

(par (a) (forall ((xs (list a))) (= (reverse (reverse xs)) xs))))

(check-sat)
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5. Bobot, F., Filliâtre, J.C., Marché, C., Paskevich, A.: Why3: Shepherd your herd of
provers. In: In Workshop on Intermediate Veri cation Languages, Boogie, August
2011

6. Bobot, F., Paskevich, A.: Expressing polymorphic types in a many-sorted language.
In: Tinelli, C., Sofronie-Stokkermans, V. (eds.) FroCoS 2011. LNCS, vol. 6989, pp.
87–102. Springer, Heidelberg (2011)

7. Chin, W.N., Darlington, J.: A higher-order removal method. LISP Symbolic Com-
put. 9(4), 287–322 (1996)

8. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of
Haskell programs. In: ICFP 2000 Proceedings of the Fifth ACM SIGPLAN Inter-
national Conference on Functional Programming, pp. 268–279, ACM, New York
(2000)

9. Claessen, K., Johansson, M., Rosén, D., Smallbone, N.: Automating inductive
proofs using theory exploration. In: Bonacina, M.P. (ed.) CADE 2013. LNCS, vol.
7898, pp. 392–406. Springer, Heidelberg (2013)

10. Claessen, K., Johansson, M., Rosén, D., Smallbone, N.: TIP: tons of inductive
problems. In: Kerber, M., Carette, J., Kaliszyk, C., Rabe, F., Sorge, V. (eds.)
CICM 2015. LNCS, vol. 9150, pp. 333–337. Springer, Heidelberg (2015)

http://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.5-r2015-06-28.pdf
http://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.5-r2015-06-28.pdf


232 D. Rosén and N. Smallbone

11. Claessen, K., Smallbone, N., Hughes, J.:QuickSpec: guessing formal specifications
using testing. In: Fraser, G., Gargantini, A. (eds.) TAP 2010. LNCS, vol. 6143, pp.
6–21. Springer, Heidelberg (2010)

12. Grechanik, S.A.: Proving properties of functional programs by equality saturation.
Program. Comput. Softw. 41(3), 149–161 (2015)

13. Johansson, M., Rosén, D., Smallbone, N., Claessen, K.: Hipster: integrating theory
exploration in a proof assistant. In: Watt, S.M., Davenport, J.H., Sexton, A.P.,
Sojka, P., Urban, J. (eds.) CICM 2014. LNCS, vol. 8543, pp. 108–122. Springer,
Heidelberg (2014)

14. Kaufmann, M., Panagiotis, M., Moore, J.S.: Computer-Aided Reasoning: An App-
roach. Kluwer Academic Publishers, Norwell (2000)

15. Leino, K.R.M.: Automating induction with an SMT solver. In: Kuncak, V.,
Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148, pp. 315–331. Springer,
Heidelberg (2012)

16. Reynolds, A., Kuncak, V.: Induction for SMT solvers. In: D’Souza, D., Lal, A.,
Larsen, K.G. (eds.) VMCAI 2015. LNCS, vol. 8931, pp. 80–98. Springer, Heidelberg
(2015)

17. Reynolds, J.C.: Definitional interpreters for higher-order programming languages.
In: The ACM Annual Conference, vol. 2 (1972)

18. Sonnex, W., Drossopoulou, S., Eisenbach, S.: Zeno: an automated prover for prop-
erties of recursive data structures. In: Flanagan, C., König, B. (eds.) TACAS 2012.
LNCS, vol. 7214, pp. 407–421. Springer, Heidelberg (2012)

19. Wand, D., Weidenbach, C.: Automatic induction inside superposition. https://
people.mpi-inf.mpg.de/∼dwand/datasup/draft.pdf

https://people.mpi-inf.mpg.de/~dwand/datasup/draft.pdf
https://people.mpi-inf.mpg.de/~dwand/datasup/draft.pdf


Verification of Concurrent Programs Using
Trace Abstraction Refinement

Franck Cassez1(B) and Frowin Ziegler2

1 Macquarie University, NICTA/UNSW, Sydney, Australia
franck.cassez@mq.edu.au

2 Augsburg University, Augsburg, Germany

Abstract. Verifying concurrent programs is notoriously hard due to the
state explosion problem: (1) the data state space can be very large as the
variables can range over very large sets, and (2) the control state space is
the Cartesian product of the control state space of the concurrent com-
ponents and thus grows exponentially in the number of components. On
the one hand, the most successful approaches to address the control state
explosion problem are based on assume-guarantee reasoning or model-
checking coupled with partial order reduction. On the other hand, the
most successful techniques to address the data space explosion problem
for sequential programs verification are based on the abstraction/refine-
ment paradigm which consists in refining an abstract over-approximation
of a program via predicate refinement. In this paper, we show that we
can combine partial order reduction techniques with trace abstraction
refinement. We apply our approach to standard benchmarks and show
that it matches current state-of-the-art analysis techniques.

1 Introduction

Multi-core architectures enable hardware consolidation i.e., less weight and less
space which is highly desirable for embedded systems. Multi-threaded (or con-
current) programs are designed to take full advantage of the available computing
power of the multi-cores. This is very appealing performance-wise but comes at a
price: concurrent programs are a lot more difficult to reason about than sequen-
tial programs. They need to synchronise or share variables and this gives rise
to a multitude of subtle bugs, among them deadlocks or data races that are
sources of critical defects. At the same time, more and more control tasks are
now implemented in software which results in large multi-threaded code bases.
The major obstacle to the deployment of multi-threaded software in embed-
ded safety critical systems is the difficulty of ensuring the absence of major
critical defects. This calls for scalable automated verification techniques that
can analyse multi-threaded software. Unfortunately, as witnessed by the latest
Software Verification Competition (SV-COMP 2015) [1], there are only a few
software verification tools that can analyse concurrent software. Most of them
are bug finding tools and fall short of being able to establish the correctness of
a program. Their applicability is often limited to rather small programs.
c© Springer-Verlag Berlin Heidelberg 2015
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This is in stark contrast to the state-of-the-art for verification of sequential
programs. One of the major breakthrough for verifying sequential programs is
probably the counter-example guided predicate-abstraction refinement (CEGAR)
technique [2]. CEGAR enables one to address the data state explosion problem
by abstracting away the data into predicates. This has resulted in scalable and
practicable techniques to analyse sequential programs, culminating in the design
of industrial-strength tools like Slam [3]. For concurrent programs, the control
state explosion problem adds up to the data state explosion problem: the state
space of a concurrent program is exponential in the size of the program.

Verification of Concurrent Programs. Two main techniques were designed
to combat the state explosion problem in concurrent programs: assume-guarantee
reasoning [4] and partial order reduction techniques [5–7]. An assume-guarantee
property is a pair of predicates (A,G) (similar to pre and postconditions): a com-
ponent guarantees to satisfy G if its environment satisfies A. Assume-guarantee
reasoning consists in combining the assume-guarantee properties of each com-
ponent to derive a property of the composition of the components in a modu-
lar way. Partial order reduction techniques on the other hand aim at reducing
the state space to be explored in concurrent programs by removing equivalent
interleavings. Both techniques have proved very useful in the context of finite
state concurrent programs [8,9]. Combining assume-guarantee reasoning with
predicate abstraction refinement for proving properties of multi-threaded C-like
programs was first investigated in [10]. However the scope of the approach was
limited to modular properties and was later extended to more general properties
in [11]. The recent work in [12] introduced a combination of predicate abstrac-
tion refinement and partial order reduction. In this paper, we propose a method
to combine trace abstraction refinement and partial order reduction techniques.

Trace Abstraction Refinement. The core principle of trace abstraction [13,14]
for single-threaded program is to separate the data and the control flows. The
abstraction of a program P is a set of traces e.g., sequences of instructions
obtained by viewing the control flow graph of P as an automaton. The instruc-
tions are uninterpreted and should be viewed as mere letters in the abstraction.
A trace t is feasible if there is at least one input of the program the trace of
which is t. This is where the data flow comes into play. Some traces of a pro-
gram abstraction are error traces e.g., leading to an error control location in
the control flow graph. For instance if the program contains an assert(cond)
statement, there is an edge in the control flow graph labelled not(cond) to the
error location. The language of the program abstraction, LP , is composed of
these error traces. Proving correctness of the program P amounts to proving
that every trace in LP is infeasible. This can be done by an iterative refinement
algorithm as depicted in Fig. 1. A refinement of a program abstraction is also a
language Lr composed exclusively of infeasible traces. One important result in
[13] is that a refinement, Lr(t), can be computed for each infeasible trace t: this
refinement contains t and other infeasible traces that are infeasible for the same
reason as t is. Moreover, the refinement Lr(t) is a regular language. For sequen-
tial programs, the trace abstraction refinement algorithm refines the program
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abstraction by computing larger and larger sets of infeasible traces, ∪i=1..kLri
.

As a candidate feasible error trace must be in LP \ (∪i=1..kLri
) a larger set

∪i=1..kLri
of infeasible traces narrows down the search at each iteration of the

algorithm and in this respect refines the trace abstraction. If at some point all
the error traces of the program abstraction are infeasible, the program can be
declared error-free. Of course the algorithm is not guaranteed to terminate for
C-like programs (with more than two counters) but it is sound and relatively
complete (see [13]).

Fig. 1. Trace abstraction refinement algorithm

Trace Abstraction Refinement for Concurrent Programs. The trace
abstraction refinement algorithm can be used for concurrent programs, say P1 ‖
P2, by considering the language LP1‖P2 . However, the algorithm may need mul-
tiple iterations to rule out infeasible traces that are equivalent in the sense that
some instructions along a trace may be swapped without altering the correctness
of the concurrent program, e.g., deadlock freedom.

The solution proposed in [15] is to extend the expressiveness of the trace
abstraction refinements: instead of building an automaton that accepts a regu-
lar language Lr(t), the authors define a new refinement device: Inductive Data
Flow Graphs (iDFGs). One of the nice features of iDFGs is that they can repre-
sent infeasibility reasons on sequences of actions while capturing some indepen-
dence between the ordering of actions. The trace refinement algorithm of Fig. 1
can be adapted to this setting because: (1) iDFGs are closed under union, and
(2) language inclusion between regular languages (LP ) and iDFGs is decidable.
The approach of [15] is elegant and versatile as it applies to a large spectrum
of properties of concurrent programs (Owicki-Gries proof statements which are
invariance properties closed under multi-threaded Cartesian abstraction). How-
ever the core operation of the algorithm is rather expensive: language inclusion
between a parallel composition of n threads and an iDFG is in PSPACE. To the
best of our knowledge this technique has not been implemented yet.

Our Contribution. In this work we propose a simple and powerful combina-
tion of trace abstraction refinement and partial order reduction. It turns out
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that combining trace abstraction refinement with partial order (or symmetry)
reduction techniques is simplified when instead of proving general Owicki-Gries
style statements one restricts to reachability properties1. This is supported by
our main result, Theorem 3. We also argue that combining partial order reduc-
tion techniques with refinement techniques is easier and more natural with trace
abstraction refinement (trace based) rather than predicate abstraction refine-
ment (state based). The advantages of our combination are manifold. First,
the refinement algorithm is simple and builds on two distinct and orthogonal
techniques: partial order reduction algorithms and trace abstraction refinement.
Second, the combination is even valid with any reasonable reduction e.g., sym-
metry reduction. More importantly, our technique goes beyond discovering bugs
and is able to establish program correctness: this is in contrast to state-of-the-art
tools (e.g., Mu-Cseq [16], lazy-CSeq [17]) for analysing concurrent programs
that are based on bounded model checking techniques.

Outline of the Paper. In Sect. 2 we define the model of concurrent programs.
Section 3 shows how to reduce the existence of a feasible trace in a concurrent
program to the existence of a trace in a reduced concurrent program (partial
order reduction). Section 4 presents an algorithm that combines trace abstraction
refinement with partial order reduction. Experimental results are presented in
Sect. 5. Section 6 is devoted to related work.

2 Reachability Checking in Concurrent Programs

In this section we define concurrent programs. For the sake of clarity and fol-
lowing [10], we restrict to 2-threaded programs but all the definitions and proofs
carry over to the general setting of n-threaded programs with n ≥ 2 (see [18]).

2.1 Notations

Let V be a fixed finite set of integer variables. A valuation ν is a mapping
ν : V → Z and we write ZV for the set of valuations. We let Σ be a fixed set
of instructions with variables in V . Instructions can be either assignments with
side effects or conditions that are side-effect free. Σ∗ is the set of finite sequences
of instructions and ε is the empty sequence. We write v.w for the concatenation
of two words v, w ∈ Σ∗. We let |w| be the length of w ∈ Σ∗ (|ε| = 0). Given
i ∈ Σ, R(i) ⊆ V (resp. W(i) ⊆ V ) is the set of read-from (resp. written-to)
variables. We let V(i) = R(i) ∪ W(i).

The semantics of an instruction i ∈ Σ is given by a relation [[i]] ⊆ ZV ×
ZV . The post operator is defined for each instruction as follows: given U ⊆
ZV , post(i, U) = {u′ | ∃u ∈ U, (u, u′) ∈ [[i]]}. The post operator extends to
sequences of instructions: let v ∈ Σ∗, i ∈ Σ, post(v.i, U) = post(i, post(v, U))
with post(ε, U) = U . Given a sequence of instructions w ∈ Σ∗, w is feasible iff

1 Without loss of generality we focus on reachability of control locations as reachability
of a specific data state can easily be encoded in this setting.
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post(w, ZV ) 	= ∅. Otherwise w is infeasible. Sets of valuations can be defined by
predicates e.g., as Boolean combinations of terms in a given logic (e.g., Linear
Integer Arithmetic). The predicate True denotes the set of all valuations and
False the empty set of valuations. Feasibility of a trace w ∈ Σ∗ thus reduces to
post(w, True) 	⊆ False.

A transition system S is a tuple (S, S0, δ) with S a set of states, S0 ⊆ S the
set of initial states and δ ⊆ S × Σ × S the transition relation.

An instruction i ∈ Σ is enabled in s if (s, i, s′) ∈ δ for some s′. A path
in S from s0 to sn, n ≥ 0, is a sequence s0 i0 s1 i1 · · · sn−1 in−1 sn with
∀0 ≤ k ≤ n−1, (sk, ik, sk+1) ∈ δ. The trace of a path s0 i0 s1 i1 · · · sn−1 in−1 sn

is i0.i1. · · · .in−1. We write s0
i0.i1.··· .in−1−−−−−−−−→ sn when there is a path from s0 to sn

with trace i0.i1. · · · .in−1. A state s is reachable if s0
t−−→ s for some s0 ∈ S0 and

t ∈ Σ∗. We let Reach(S) be the set of reachable states in S.

1 shared i n t x, y, d, m;
2 // thread T1

3 thread T1
4 x = 0;
5 lock(m);
6 i f (x == y) {
7 unlock(m);
8 d = 3;
9 } e l s e {

10 unlock(m);
11 }
12 /* end */
13
14 // Thread T2

15 thread T2
16 y = 1;
17 lock(m);
18 i f (x <= y) {
19 unlock(m);
20 d = 2;
21 } e l s e {
22 unlock(m);
23 }
24 /* end */

Listing 1. Two Simple Threads Fig. 2. Program automata for T1, T2

2.2 2-Threaded Programs

A program automaton P is a tuple (L, ι, T ) where: L is a finite set of program
locations, ι ∈ L is the initial location, T ⊆ L × Σ × L is the control flow graph
relation. The set of variables of P is V(P ) =

⋃
(�,i,�′)∈T V(i).

A state of P is a pair (�, ν) ∈ L × ZV . Each program automaton induces
a transition system S(P ) = (L × ZV , {ι} × ZV , δ(P )) with δ(P ) defined by:
((�, ν), i, (�′, ν′)) ∈ δ(P ) ⇐⇒ (�, i, �′) ∈ T, (ν, ν′) ∈ [[i]].

A 2-threaded program is a pair (P1, P2) with Pk = (Lk, ιk, Tk), k = 1, 2 two
program automata. The shared variables of (P1, P2) are V(P1) ∩ V(P2) and the
other variables V(Pk)\(V(P1)∩V(P2)) are the local variables for each Pk, k = 1, 2.
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A 2-threaded program induces a transition system S(P1, P2) = (L1 × L2 ×
ZV , {ι1} × {ι2} × ZV , δ(P1, P2)) where δ(P1, P2) is the interleaving of δ(P1) and
δ(P2): ((�1, �2, ν), i, (�′

1, �
′
2, ν

′)) ∈ δ(P1, P2) iff either ((�1, ν), i, (�′
1, ν

′)) ∈ δ(P1)
and �2 = �′

2 or ((�2, ν), i, (�′
2, ν

′)) ∈ δ(P2) and �1 = �′
1. A state of S(P1, P2) is a

triple (�1, �2, ν) where �k ∈ Lk and ν is a valuation for V . Given a set of states
E ⊆ L1×L2×ZV , the reachability problem asks whether Reach(S(P1, P2))∩E 	=
∅ and Reach(S(P1, P2)) may be infinite. For C-like 2-threaded programs this
problem is undecidable as the reachability problem for single threaded programs
with more than two variables (two-counter machines) is already undecidable. In
the sequel, we thus consider semi-algorithms based on abstraction refinement to
solve the reachability problem for multi-threaded programs.

Example 1. Listing 1, page 5, shows a 2-threaded C-like program. The program
automata P (T1) and P (T2) for the threads T1 and T2 are given in Fig. 2. The
lock and unlock C-like instructions are interpreted as guarded instructions the
semantics of which is “When (m == 0) then m = 1” and the test and assign-
ment happen in an atomic step. If a state of the form (8, 20, ν) is reachable in
S(P (T1), P (T2)) then the shared variable d can be written by the two threads.
This is commonly referred to as a data race. (P (T1), P (T2)) is data race free (for
variable d) iff Reach(S(P (T1), P (T2))) ∩ ({(8, 20)} × Z{x,y,d,m}) = ∅. �

Let E ⊆ L1 × L2. We define the finite (product) automaton P1 × P2 = (L1 ×
L2, {(ι1, ι2)}, T, E) with T ⊆ (L1 × L2) × (L1 × L2) defined by:

((�1, �2), i, (�′
1, �

′
2)) ∈ T ⇐⇒ (�k, i, �′

k) ∈ Tk for k ∈ {1, 2} and �′
3−k = �3−k.

E is the set of accepting states of P1 × P2. S(P1 × P2) = (L1 × L2, (ι1, ι2), T )
is a finite transition system. A path � in P1 × P2 is a path in S(P1 × P2). The
language LE(P1 × P2) is the set of traces t ∈ Σ∗ such that (ι1, ι2)

t−−→ (�1, �2)
for (�1, �2) ∈ E. When E is clear from the context we write L for LE .

From the definitions of S(P1, P2), the semantics of instructions [[·]], the defi-
nition of the post operator for instructions, and the construction of the product
of automata P1 × P2, we straightforwardly get:

Fact 1. (�0, ν0) i0 (�1, ν1) i1 · · · in−1 (�n, νn) with (νk, νk+1) ∈ [[ik]], 0 ≤ k < n is
a path in S(P1, P2) if and only if �0 i0 �1 · · · in−1 �n is a path in P1 × P2 and
post(i0.i1. · · · .in−1, T rue) 	⊆ False.

Given E ⊆ L1×L2, we use the shorthand E×ZV for {(�1, �2, ν), (�1, �2) ∈ E, ν ∈
ZV }. The following theorem is a direct consequence of Fact 1:

Theorem 1. Let E ⊆ L1 × L2. Then

Reach(S(P1, P2)) ∩ (E × ZV ) �= ∅ ⇐⇒ ∃t ∈ LE(P1 × P2), post(t, T rue) �⊆ False.

Remark 1. S(P1, P2) includes the data part of the program and can be infinite
whereas S(P1 × P2) includes only the locations of the CFG and is always finite.
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3 Partial-Order Reduction

In this section we show that checking for the existence of a feasible trace in
L(P1 × P2) can be reduced to checking for the existence of a feasible trace in
a reduced product automaton (P1 × P2)R. The reduced automaton (P1 × P2)R

is obtained by using standard partial order reduction algorithms that preserve
properties of interest e.g., reachability of a location in a thread.

3.1 Independent Transitions

Partial order reduction techniques [5–7] were developed to address the state
explosion problem in the analysis of concurrent systems.

These reductions rely on the notion of dependency and the complementary
notion of independency between transitions. The intuition is that two reads on
the same variable are independent whereas two writes or a write and a read
to the same variable are dependent. For independent transitions the order of
execution is irrelevant for certain properties and one representative order can be
chosen to represent many interleavings.

Let i, j ∈ Σ be two instructions. According to our definition, the same
instruction can appear in two different threads or in the same thread. Instruc-
tions within the same sequential component are dependent and thus we have to
differentiate these two cases. We assume that Σ = Σ1 � Σ2, i.e., is partitioned
into instructions for thread P1 and P2. i and j are independent, denoted i ‖ j,
when i ∈ Σk, j ∈ Σ3−k for k ∈ {1, 2} and W(i) ∩ V(j) = ∅. By definition of
the independency relation the following properties hold [5] for any i ‖ j and any
state s of S(P1, P2):

Enabledness if i is enabled in s and s
i−−→ s′, then j is enabled in s iff it is

enabled in s′ (independent transitions do not enable nor disable each other);

Commutativity if i and j are enabled in s, then s
i.j−−−→ s′ and s

j.i−−−→ s′,
i.e., the order of i and j does not change the final target state (we assume
here that the transition relations in P1, P2 are deterministic).

The independency relation induces a trace equivalence relation ∼ ⊆ Σ∗ × Σ∗

which is the least congruence in the free monoid (Σ∗, ., ε) that satisfies: i ‖ j =⇒
i.j ∼ j.i. The equivalence classes of ∼ are called Mazurkiewicz traces.

Example 2. The instructions x = 0 and y = 1 in the automata of Fig. 2 are
independent. Instructions d = 3 and d = 2 are not independent. �

3.2 Selective Search Algorithm

We consider now a generic selective search algorithm SelectSearch. The purpose
of such an algorithm is to explore a finite graph by avoiding to explore all the
interleavings of ∼-equivalent sequences of transitions. We do not refer to a spe-
cific selective search algorithm but rather consider the minimum requirements
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needed to fit in our framework. Such a SelectSearch algorithm uses the inde-
pendency relation ‖ defined in the previous paragraph to prune out some edges
(and states) during the exploration of the set of reachable states of S(P1, P2). If
S(P1, P2) is finite, SelectSearch(S(P1, P2)) generates a finite transition system,
called a trace automaton in [5]. We only require the SelectSearch algorithm to
preserve the reachability of local states2. Assume S(P1, P2) is finite.

Theorem 2 (Theorem 6.14, [5]). Let �1 ∈ L1, �2 ∈ L2 and ν ∈ ZV . The state
(�1, �2, ν) is reachable in S(P1, P2) iff there exists �′

1 ∈ L1, ν′ ∈ ZV such that
state (�′

1, �2, ν
′) is reachable in SelectSearch(S(P1, P2)).

Actual implementations of the SelectSearch algorithms can be based on the selec-
tive search algorithm using persistent sets, sleep sets and proviso defined in [5,
Figure 6.2, Chap. 6] or recent (optimal) algorithms as proposed in [19,20].

Let � = (ι1, ι2, ν0) i0 (�11, �
2
1, ν1) i1 (�12, �

2
2, ν2) i2 · · · in−1 (�1n, �2n, νn) be a path

in SelectSearch(S(P1, P2)). SelectSearch is a control location based selective search
if the set of transitions selected to be explored after � only depends on the
history (ι1, ι2)(�11, �

2
1) · · · (�1n, �2n) of control locations of �. Obtaining a location

based selective search can be achieved by using a standard dependency relation
as defined by ‖ above. Notice that the selective search algorithm using persis-
tent sets, sleep sets and proviso [5, Figure 6.2, Chap. 6] makes use of conditional
dependency relation ‖s that can vary according to the current state s and may
depend on the value of ν in our 2-threaded programs. We disable this feature to
obtain a control location based selective search algorithm and use an uncondi-
tional dependency relation like ‖ above. This implies we may miss some pruning
as our dependency relation is stronger than the conditional dependency one.

We now assume that the set of reachable states of S(P1, P2) may be infinite
and show that Theorem 2 can be extended to infinite systems. Let SelectSearch
be a control location based selective search algorithm. Let P1 × P2 = (L1 ×
L2, (ι1, ι2), T, E) with E = L1 × {�2}. Define SelectSearch(S(P1 × P2)) to be the
finite transition system obtained by applying SelectSearch on S(P1×P2). We can
assume the selective search algorithm is Depth-First Search based and explores
each state of P1 × P2 at most once. We write LE

R(P1 × P2) for the set of traces
t ∈ Σ∗ such that (ι1, ι2)

t−−→ � in SelectSearch(S(P1 × P2)) with � ∈ E. Using
Theorem 2 we can prove the following:

Lemma 1. ∃t ∈ LE(P1 × P2), post(t, T rue) 	⊆ False ⇐⇒ ∃t′ ∈ LE
R(P1 ×

P2), post(t′, T rue) 	⊆ False.

Proof. The If direction is easy as LE
R(P1 × P2) ⊆ LE(P1 × P2).

To prove the Only if direction, let t ∈ LE(P1×P2) and post(t, T rue) 	⊆ False.
Let n = |t|. As post(t, T rue) 	⊆ False, there is some valuation ν0 ∈ ZV such that
post(t, {ν0}) 	= False. Using Fact 1 (If direction), this implies that there exists a
path of length n in S(P1, P2) that reaches a state (�1, �2, ν) from q0 = (ι1, ι2, ν0).

2 We define it here for local states of P2 but the property holds for each component
of a multi-threaded program.
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Let Dagn(q0) (we omit P1, P2 in the notation Dagn() for clarity) be the
Direct Acyclic Graph (DAG), that is obtained by building a depth-first search
tree for S(P1, P2), from q0, up to depth n. As this DAG is a finite transition
system, and E = L1 × {�2}, we can apply Theorem 2. This implies that a
state (�′

1, �2, ν
′) is reachable in SelectSearch(Dagn(q0)). Thus there exists a path

q0 i0 q1 · · · im−1 qm in SelectSearch(Dagn(q0)) such that qm = (�′
1, �2, ν

′). This
path is in S(P1, P2) and we can apply Fact 1 (Only If direction): there exists
t′ = i0.i1. · · · .im with post(t′, T rue) 	⊆ False. It remains to prove that t′ ∈
LE

R(P1 ×P2). As SelectSearch is control location based, this follows directly from
the fact that t′ is a path in SelectSearch(Dagn(q0)). ��
Lemma 1 together with Theorem 1 yield the following result:

Theorem 3. Let E = L1 ×{�2}. Reach(S(P1, P2))∩ (E ×ZV ) 	= ∅ ⇐⇒ ∃t ∈
LE

R(P1 × P2), post(t, T rue) 	⊆ False.

This reduces reachability of local states in the infinite system S(P1, P2) to the
existence of a feasible trace in a finite reduced product SelectSearch(S(P1×P2)).

In the next section, we show how to use trace refinement to determine
whether a feasible trace exists in LE

R(P1 × P2). In the sequel we assume E is
fixed and omit it as a superscript.

4 Trace Abstraction Refinement for Concurrent Programs

In this section, we combine the trace refinement algorithm from [13] with partial
order reduction. We first recall the trace abstraction refinement method and
second present our algorithm that combines trace abstraction refinement and
partial order reduction.

4.1 Interpolant Automata

The trace abstraction refinement algorithm from [13] relies on two keys condi-
tions: (a) given a sequence of instructions t = i0.i1. · · · .in ∈ Σ∗, we can decide
whether t is feasible (this can be done using SMT-solvers and decidable theories
e.g., Linear Integer Arithmetic) and (b) if t is infeasible there is an explanation in
the form of an inductive interpolant i.e., a sequence of predicates I0, I1, · · · , In+1

such that (1) I0 = True and In+1 = False, (2) ∀0 ≤ k ≤ n, post(ik, Ik) ⊆ Ik+1.
Let P = (L, ι, T ) be a program automaton. Let � = �0 i0 �1 i1 · · · in−1 �n

be a path in P i.e., ∀0 ≤ k ≤ n − 1, (�k, ik, �k+1) ∈ T . The trace of the path � is
t = i0.i1. · · · in−1 and when the trace t is infeasible, the method introduced in [13]
consists in building a finite automaton IA(t), called an interpolant automaton
that accepts t and many other traces that are infeasible for the same reason.

A set of interpolant automata IA1, IA2, · · · , IAl each of which only accepts
infeasible traces is a refinement. As regular languages are closed under union, it
can actually be collapsed into one automaton that accepts ∪k=1..lL(IAk).

We do not develop the theory of interpolant automata here and refer the
reader to [13,14] for a more detailed explanation of the construction of IA(t).
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4.2 Combining Trace Refinement and Partial Order Reduction

Using Theorem 3 we can design an iterative algorithm to check the control
location reachability problem in 2-threaded programs. The input of the prob-
lem is (P1, P2) and a set of local states E = L1 × {�2}. (P1, P2) is safe if
Reach(S(P1, P2)) ∩ (E × ZV ) = ∅, otherwise it is unsafe. In the latter case
we want the algorithm to return a witness trace t to reach a state in E × ZV .

Fig. 3. Trace abstraction refinement algorithm

By Theorem 3, determining whether Reach(S(P1, P2)) ∩ (E × ZV ) 	= ∅ is
equivalent to determining whether ∃t ∈ LE

R(P1 × P2) such that t is feasible.
This can be done by adapting the generic iterative trace abstraction refinement
algorithm of Fig. 1. The new algorithm that combines partial order reduction
and trace refinement is given in Fig. 3. As pointed out in the previous paragraph,
we can assume that a refinement is composed of one automaton A that accepts
infeasible traces. Every time a new interpolant automaton IA(t) is obtained from
an infeasible trace t we combine it with the previous refinement automaton A
by computing A ⊕ IA(t) where A ⊕ B denotes a finite automaton that accepts
L(A) ∪ L(B). LR(P1 × P2) is a finite graph and can be viewed as an automaton
with accepting locations in L1×{�2}. Checking emptiness of LR(P1×P2)∩L(A)
reduces to a standard emptiness check in a synchronised product of automata.
Notice that the reduce language LR(P1 × P2) should be constant during the
iterative refinement. If we choose to generate different representatives of the
same ∼-equivalent class at different iterations we may need to compute another
interpolant automaton to reject the new representative. In our implementation
we make sure that the same representative is generated at each refinement step.
Ideally, we should compute the closure of an interpolant automaton under the
equivalence relation ∼. This is one direction of future work to use asynchronous
automata [31] to represent ∼-closures.

4.3 Beyond Reachability of Local States

Reachability of local states is general enough to encode reachability of global
states which is needed to detect data races for instance. It suffices to add an
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extra component M , a monitor, and possibly extra shared variables. M has only
one transition to a special location d and the condition to fire the transition is
true iff there is a data race. Consider the 3-threaded program (P1, P2,M). There
is a data race in S(P1, P2) iff a state (�1, �2, d, ν) is reachable in S(P1, P2,M)
which is a local state reachability problem.

Deadlocks in S(P1, P2) can also be checked for if they are mapped to deadlock
states in the product P1 ×P2 (independent of the data part of the system). This
is usually the case, as deadlocks occur on lock/unlock operations or wait/signal
that can be explicitly encoded in S(P1 × P2). A deadlock in S(P1, P2) is then
equivalent to the reachability of a global state.

Finally, a general reachability problem depending on data, e.g., specified by
a statement of the form assert(c) in a multi-threaded program, can be checked
using a monitor as well: the monitor has one transition to a location d, and the
label of the edge to d is ¬c.

5 Implementation and Experiments

Implementation. We have implemented our combined partial order reduction
and trace abstraction refinement algorithm in a prototype Raptor. The proto-
type is written is Scala and is comprised of: (1) a module to perform the partial
order reduction implementing an algorithm based on [5, Figure 6.2, Chap. 6]; (2)
a module to compute the automata accepting infeasible traces; this module uses
a wrapper around SMTInterpol [21] to check feasibility of traces and get
inductive interpolants when a trace is infeasible. The details of the algorithms
and implementation are available in [18].

Our early prototype parses programs in a simple language of our own with
integer variables and thread construct. Listing 1, page 5, is an example of such
a program. As of now, it does not support C programs, arrays nor pointers
yet. However, our language and product construction supports synchronisation
and wait/signal primitives. We can then model mutexes directly as program
automata. Another important implementation detail is that we do not compute
A but rather determinise A on-the-fly.

Benchmarks. We used some examples from the Concurrency category [1] from
the 4th Competition on Software Verification (SV-COMP 2015). They contain
typical concurrent algorithms (Dekker, Lamport, Peterson) some of them coming
in two flavours: safe and unsafe (column Safe in Table 1). Safety amounts to
checking the reachability of a local state in one thread. We have translated
(for now manually) the C programs of some of the benchmarks into our input
language to analyse them. LOC, #T and #V contain respectively the number
of lines of code in the source C program, the number of threads and the number
of shared variables. Our simple language is very similar to C and the number
of lines in the translated version is identical to the C version. Red gives the
reduction in terms of explored states when partial order reduction is switched
on compared to no reduction.
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Table 1. Raptor results on the SV-COMP benchmarks.

Program Safe Steps States Red LOC #T #V Raptor Mu-Cseq Threader Impara

stateful01 no 0 22 0% 34 3 6 1.1s/20 0.9s/1027 0.6s N/A5

stateful01 yes 10 1628 17% 34 3 6 6.1s TO 2.6s N/A5

lazy01 no 1 11 0% 22 3 2 1.3s/9 0.6s/641 4.1s 0.16s

peterson yes 29 1200 8% 31 2 4 5.7s TO 4.6s 0.5s

dekker yes 9 1276 7% 46 2 4 6.6s TO 3.3s 0.7s

szymanski yes 47 9811 13% 59 2 3 10s TO 12s 1.43s

read write lock no 11 2178 16% 65 4 5 6s/26 0.9s/992 55s 3.9s

read write lock yes 38 10216 24% 63 4 5 9.5s TO 57s 15s

time var mutex yes 5 67 38% 33 2 5 0.69s TO 4.9s 0.2s

fib bench false no 284 10082 77% 25 3 2 29s/37 3.58s/949 TO TO

ext-spin2003 yes 1 203 0% 44 4 2 3.4s TO 176s 5.5s

Comparison with Other Tools. We compared our results with one of the
leadingtools in the category: Mu-Cseq [16] (silver medal at SV-COMP 2015),
Threader 0.92 (winner of SV-COMP 2013 (winner of SV-COMP 2013), and
Impara 0.2 [12]. We would have liked to compare with the winner tool lazy-
CSeq [17] but the competition version is not available any more. We ran the
analyses for Raptor and Mu-Cseq on an Virtual Linux Machine, running
Ubuntu 13.10 64-bit on a MacBook Pro, Intel Core i5, 2.6 GHz, 8 GB of RAM.

Table 1 shows the results of Raptor on the selected benchmarks. Column
Steps gives the number of refinement steps performed by Raptor. States is the
(cumulative) total number of explored states in all the selective searches per-
formed at each refinement step. The column Raptor contains the analysis time
in seconds and, when the program is unsafe, the length of the counterexample
(in terms of number of instructions in the program specified using our inter-
nal language). The column Mu-Cseq contains similar information for the tool
Mu-Cseq [16]. For Threader and Impara we collected only the run times.3

In Table 1, “TO” stands for TimeOut with a time out bound set to 600 s for
Mu-Cseq. Notice that both Mu-Cseq and lazy-CSeq use a bounded model
checking back-end (CBMC) and cannot formally establish the correctness of
programs in most cases. In the SV-COMP 2015, Mu-Cseq and lazy-CSeq
applied a strategy [16,17] to interpret the time out as “the program is safe”.
The result should rather be interpreted as “no bug was found” instead of a
formal proof of correctness. In contrast, our method and tool can find bugs or
establish program correctness (provided termination) even when programs have
loops. This is a key feature of the trace abstraction refinement method that it
can discover loop invariants and use them to reject infeasible traces.

On the negative instances (safe column is “no”) we incur some overhead com-
pared to Mu-Cseq to discover a counterexample. This can partially be explained
by the fact that our Scala implementation is compiled into an executable Java

3 In our experiments, Impara 0.2 failed to yield the correct analysis result.
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jar file. Every analysis with Raptor thus needs to first spawn out the JVM.
On the other hand our counterexamples are fairly short and easily mapped to
the original programs. For the positive instances (safe column is “yes”) we can
prove all of them within seconds which is a clear advantage.

The rough estimate of the distribution of the execution time for Raptor is
30 % in the SMT-solver and the rest in the computation of the refinements and
language inclusion check.

6 Related Work

Assume-guarantee reasoning for concurrent programs was first implemented in
the Calvin model checker [22] to check concurrent Java programs. However,
program refinement had to be done manually. To the best of our knowledge, the
first paper to combine assume-guarantee reasoning with an automated abstrac-
tion refinement technique for multi-threaded programs is [10]. The proposed
method is modular and can prove correctness for programs that admit a modu-
lar proof (the predicates on one thread never involve a local variable of another
thread). As the authors point out (Sect. 4 in [10]) “[. . . ] the tool ignores thread
interleavings [. . . ] and may return false positives”. Another limitation of [10] is
intrinsic to the modular approach: not all multi-threaded programs admit mod-
ular proofs. This means that the algorithm may terminate because no better
refinement can be derived and in this case might miss some bugs i.e., generate
false negatives. This approach was later refined in [23]. Thread modular CEGAR
was re-considered in [24] and compared against Spin. Threader [11,25] com-
bines predicate abstraction and constraint solving but does not implement any
symmetry or reduction techniques that deal with interleavings. Threader did
not participate in the last two editions of SV-COMP 2014 and 2015. Recent
work [26] by A. Miné introduced a big-step interference-based thread-modular
static analysis as abstract interpretation based on assume-guarantee reasoning.

Partial order reduction techniques have long been recognised as effective for
checking concurrent programs and tools implementing the techniques are numer-
ous. The most-well known might be Spin [8] and VeriSoft [27]. Surprisingly
enough, the combination of state-of-the-art predicate abstraction techniques like
lazy abstraction (known as the Impact algorithm) with partial order reduction
techniques has only been achieved recently in [12,28]. It turns out that obtain-
ing a sound algorithm when combining lazy abstractions with partial order tech-
niques is not trivial and it is not clear how other reduction techniques (e.g., sym-
metry reduction) can be accommodated for in these frameworks. Impara imple-
ments this technique and according to [12] outperforms all other tools. However,
Impara did not participate in the SV-COMP 2015 and this is why we have not
compared our results against it.

In [29,30], the authors address the verification problem for multi-threaded
programs composed of threads executing the same procedure. They show how
to derive constraints with shared and local variables, so-called mixed predicates
but this comes at a rather expensive cost. Indeed, concurrency implies that the
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abstraction of a program is a concurrent boolean broadcast program for which
the image computation of the broadcast assignment is expensive.

Other race checkers tools based on lock-set or type-set are limited in scope:
they check for some conformance to generic patterns at the syntactic level when
using mutexes (e.g., if a variable is used within a mutex m in one thread, it
should be always used within the same mutex m in all other threads). On the
programs we considered, they either report false positives or false negatives (do
not detect the bug).

7 Conclusion and Ongoing Work

We have proposed a new method for verifying concurrent programs based on
trace abstraction refinement and partial order reduction techniques. The results
on some standard benchmarks from the Software Verification Competition (SV-
COMP 2015) show that our approach compares favourably to existing techniques
for finding bugs and is able to establish the correctness of the positive instances.

The combination we have proposed is very natural which is witnessed by
the brevity of the correctness proofs (e.g., Lemma 1 and Theorem 3). This is in
contrast with the combination of predicate abstraction refinement and partial
order reduction [12] which is more involved. It is also clear that our approach
extends to other reduction techniques, e.g., symmetry reduction.

Our current work is two-fold: (i) on the theoretical side, we aim to compute
refinements that are asynchronous automata [31] to capture infeasible traces
and the all their equivalent traces. A second line of work is to design a modular
algorithm (to avoid in-lining of function calls) in the spirit of our recent results
[32,33]. (ii) on the implementation side, we aim to add more capabilities to our
tool, e.g., support for arrays, parsing for C programs and (iii) implement recent
optimal partial order reduction techniques [19,20].
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Abstract. We present synchronized recursive timed automata (SRTA)

that extend timed automata with a stack. Each frame of a stack is
composed of rational-valued clocks, and SRTA synchronously increase
the values of all the clocks within the stack. Our main contribution is
to show that the reachability problem of SRTA is ExpTime-complete.
This decidability contrasts with the undecidability for recursive timed

automata (RTA) introduced by Trivedi and Wojtczak, and Benerecetti
et al. Unlike SRTA, the frames below the top are frozen during the com-
putation at the top frame in RTA.

Our construction of the decidability proof is based on the region
abstraction for dense timed pushdown automata (TPDA) of Abdulla
et al. to accommodate together diagonal constraints and fractional con-
straints of SRTA. Since SRTA can be seen as an extension of TPDA with
diagonal and fractional constraints, our result enlarges the decidable class
of pushdown-extensions of timed automata.

1 Introduction

The paper presents a new pushdown-extension of timed automata synchronized
recursive timed automata (SRTA), and we study its expressiveness and the decid-
ability of the reachability problem. Timed automata are a model of real-time sys-
tems, and recently several pushdown-extensions of timed automata have been
introduced [1,3,8,12]. Among these pushdown-extensions, our formalization of
SRTA has novel constraints fractional constraints—formulae of the form {x} = 0
and {x} < {y}—for checking fractional parts of clocks. These fractional con-
straints play important roles. First, fractional constraints enlarge the language
class of (decidable) pushdown-extensions of timed automata timed pushdown
automata (TPDA) of Abdulla et al. [1] and TPDA with diagonal constraints of
Clemente and Lasota [8]. Indeed, we show that the following SRTA language Lex

cannot be recognized by any TPDA or TPDA with diagonal constraints because
of lack of fractional constraints:

Lex � {(a, t1)(a, t2) . . . (a, tn)(b, t′n) . . . (b, t′2)(b, t
′
1) : t′i − ti ∈ N} .

Next, fractional constraints are needed to achieve the theoretical result: For any
SRTA, we can remove diagonal constraints—formulae of the form x − y = k—
c© Springer-Verlag Berlin Heidelberg 2015
M. Davis et al. (Eds.): LPAR-20 2015, LNCS 9450, pp. 249–265, 2015.
DOI: 10.1007/978-3-662-48899-7 18
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while preserving the language. Removal of diagonal constraints is one of impor-
tant results in the theory of timed automata [2,4], and recently Clemente and
Lasota showed that in the context of TPDA [8].

Timed automata are a model of real-time systems that includes rational-
valued clocks where a configuration 〈q, η〉 is a pair of a control location q and
a clock valuation η : X → Q

+ from clocks to the non-negative rationals. In
timed automata, timed transitions evolve the values of all the clocks at the same
rate: 〈q, η〉 δ� 〈q, η + δ〉. Despite the unboundedness and denseness of rationals,
the reachability problem of timed automata was shown decidable by the region
abstraction technique in [2].

The two equivalent models, recursive timed automata (RTA) and timed recur-
sive state machines, were independently introduced by Trivedi and Wojtczak [12]
and Benerecetti et al. [3]. A configuration of RTA 〈q, 〈γ1, η1〉 . . . 〈γn, ηn〉〉 is a pair
of a location q and a stack where each frame is a pair 〈γi, ηi〉 of a symbol γi and
a valuation ηi : X → Q

+. In RTA, timed transitions evolve the values of the
clocks only at the top frame: 〈q, 〈γ1, η1〉 . . . 〈γn, ηn〉〉 δ� 〈q, 〈γ1, η1〉 . . . 〈γn, ηn+δ〉〉.
Unfortunately, the reachability problem of RTA is undecidable because RTA can
simulate two-counter machines [3,12].

Abdulla et al. introduced dense timed pushdown automata (TPDA) [1], and
recently Clemente and Lasota extended TPDA to allow diagonal constraints.
A configuration of TPDA 〈q, η, 〈γ1, r1〉 . . . 〈γn, rn〉〉 is a triple of a location q,
a valuation of clocks η : X → Q

+, and a timed stack where each element 〈γi, ri〉
is a pair of a symbol γi and its age ri ∈ Q

+. TPDA differ from RTA in the
following point: In TPDA, timed transitions evolve synchronously the values
of all the clocks within the stack at the same rate: 〈q, η, 〈γ1, r1〉 . . . 〈γn, rn〉〉 δ�
〈q, η + δ, 〈γ1, r1+δ〉 . . . 〈γn, rn+δ〉〉. Surprisingly, Abdulla et al. showed the reach-
ability problem of TPDA is decidable and ExpTime-complete [1]. To show this,
they designed a region abstraction for pushdown-extensions of timed automata.

Our SRTA are described as synchronized RTA; thus a configuration is the
same as RTA. But, timed transitions synchronously evolve the values of all the
clocks within the stack: 〈q, 〈γ1, η1〉 . . . 〈γn, ηn〉〉 δ� 〈q, 〈γ1, η1+ δ〉 . . . 〈γn, ηn+ δ〉〉.
Compared to TPDA, the formalization of SRTA provides both diagonal con-
straints and fractional constraints. These constraints make SRTA more expres-
sive than TPDA (with diagonal constraints). Even though SRTA extend TPDA,
we show that the reachability problem of SRTA remains ExpTime-complete. Our
decidability proof is separated into two stages.

At the first stage, we translate SRTA into SRTA without diagonal con-
straints by effectively using fractional constraints. In TPDA, Clemente and
Lasota showed that TPDA with diagonal constraints collapse to TPDA with
an untimed stack whose configurations are 〈q, η, γ1 . . . γn〉 in [8]. This implies
that adding diagonal constraints does not enlarge the language class. However,
we cannot apply their untiming technique to SRTA because the above men-
tioned language Lex requires unboundedly many clocks, and this contrasts with
Clemente’s result.
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At the second stage, we adapt the region abstraction of Abdulla et al. [1]
to show the ExpTime-completeness of the reachability problem of SRTA with-
out diagonal constraints. Interestingly, our fractional constraints are obtained by
investigating the region abstraction of Abdulla et al. [1], and thus, our construc-
tion is based on their region abstraction. We find out that Abdulla’s proof struc-
ture is essentially a backward-forward simulation of Lynch and Vaandrager [11],
and this mixed simulation makes their proof involved. From this insight, we
introduce an intermediate semantics to separate the mixed simulation into two
simple simulations, and this makes entire proof easy to follow.

Concrete Valuations. The set of non-negative rationals Q
+ is defined by:

Q
+ � {r ∈ Q : r ≥ 0}. For a rational r ∈ Q

+, we use �r� and {r} to denote the
integral and fractional part of r, respectively: e.g., �1.5� = 1 and {1.5} = 0.5.

Let X be a clock set. A function η : X → Q
+ is called a concrete valuation on

X and we write XV for the set of valuations on X. We define basic operations:

η[x � r](y) �
{

r if y = x

η(y) otherwise,
η[x � y] � η[x � η(y)], (η + r)(y) � η(y) + r,

where x, y ∈ X and r ∈ Q
+. The zero valuation on X is defined by: 0X(x) � 0 for

x ∈ X. For η ∈ XV and Y ⊆ X, we write η|Y ∈ YV to denote the restriction of η
to Y . We define the ordering η ≤ η′ on valuations by: η ≤ η′ if ∃r ∈ Q

+.η′ = η+r.

Pushdown Systems. A pushdown system (PDS) is a triple (Q,Γ, ↪→) where
Q is a finite set of control locations, Γ is a (possibly infinite) stack alphabet,
and ↪→ ⊆ (Q × Γ∗) × (Q × Γ∗) is a set of transition rules. A configuration is
a pair 〈q, w〉 of a location q ∈ Q and a stack w ∈ Γ∗. The one-step transition
〈q, w v〉→〈q′, w v′〉 is defined if 〈q, v〉 ↪→〈q′, v′〉. We also write w → w′ by omitting
locations if the locations are irrelevant. A PDS is called finite-PDS if the set of
transition rules is finite. Otherwise, it is called infinite-PDS. The reachability
problem from qinit to qfinal decides if 〈qinit, ε〉→∗ 〈qfinal, w〉 holds for some stack
w, and the reachability problem of finite-PDS is in PTime [5,7,9].

2 Synchronized Recursive Timed Automata

First, we introduce synchronized recursive timed automata (SRTA) where the
values of all the clocks in the stack are increased synchronously at the same rate.
Next, we study the expressiveness of SRTA by brief comparisons with recursive
timed automata and timed pushdown automata. Finally, we see the overview of
our decidability proof.

Clock Constraints. We write I ∈ I for an interval: I � {(i, j), [i, j] : i, j ∈ N}.
Let X be a clock set. Then, the set ΦX of clock constraints is given by:

ϕ ::= x ∈ I | x �	 y | {x} = 0 | {x} �	 {y} | ϕ ∧ ϕ | ¬ϕ
where x, y ∈ X, I ∈ I, �� ∈ {<, =, >}.

For ϕ ∈ ΦX and η ∈ XV , we write η |= ϕ if ϕ holds when clocks are replaced by
values of η: e.g., η |= x∈I if η(x) ∈ I, η |= {x}=0 if {η(x)} = 0. The fractional
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constraints {x} = 0 and {x} �	 {y} are novel and are used to recognize the
language Lex and remove diagonal constraints later on.

Definition 1 (Synchronized Recursive Timed Automata). A synchro-
nized recursive timed automaton is a tuple s = (Q, qinit, qfinal,Σ,Γ,X ,Δ) where
Q is a finite set of control locations, qinit and qfinal are the initial and accepting
locations respectively, Σ is a finite input alphabet, Γ is a finite set of stack sym-
bols, X is a finite set of clocks, and Δ ⊆ Q × (Σ ·∪ {ε}) × Op × Q is a finite set
of discrete transition rules. The operations τ ∈ Op are given by:

τ ::= push(γ,X) | pop(γ,X) | x ← I | check(ϕ)
where γ ∈ Γ,X ⊆ X , x ∈ X , I ∈ I, and ϕ ∈ ΦX .

We define the standard semantics Stnd of SRTA as a transition system.

Definition 2 (Semantics Stnd). A configuration is a pair 〈q, w〉 of a location
q and a stack w where each frame 〈γ, η〉 consists of a stack symbol γ and a
concrete valuation η ∈ XV . The set of configurations of Stnd is Q × (Γ × XV )∗.

For τ ∈ Op, we define a discrete transition w
τ−→ w′ for w,w′ ∈ (Γ × XV )∗ by

case analysis on τ :

η2 = 0X [X � η1]
w 〈γ, η1〉 → w 〈γ, η1〉 〈γ′, η2〉 push(γ′,X)

r ∈ I η′ = η[x � r]
w 〈γ, η〉 → w 〈γ, η′〉 x ← I

η′
1 = η1[X � η2]

w 〈γ, η1〉 〈γ′, η2〉 → w 〈γ, η′
1〉

pop(γ′,X)
η |= ϕ

w 〈γ, η〉 → w 〈γ, η〉 check(ϕ)

where η[{x1, . . . , xn} � η′] � η[x1 � η′(x1), . . . , xn � η′(xn)].
In addition to discrete transitions, we allow timed transitions:

〈γ1, η1〉〈γ2, η2〉 . . . 〈γn, ηn〉 δ� 〈γ1, η1 + δ〉〈γ2, η2 + δ〉 . . . 〈γn, ηn + δ〉

where δ ∈ Q
+. These transitions for a stack are extended to configurations:

〈q, w〉 α−→〈q′, w′〉 if w
τ−→w′ for some 〈q, α, τ, q′〉∈Δ and 〈q, w〉 δ�〈q, w′〉 if w

δ�w′.

Timed Languages. A run π is a finite alternating sequence of timed and dis-
crete transitions. From a run π = c0

δ0� c′
0

α0−→ c1
δ1� c′

1
α1−→ · · · δn� cn

αn−−→ c′
n, we

define the timed trace tt(π) � (α0, δ0)(α1, δ0 + δ1) . . . (αn,Σn
i=0δi) ∈ ((Σ ·∪{ε})×

Q
+)∗ and the timed word tw(π) ∈ (Σ × Q

+)∗ by removing all the (ε, t) pairs
from tt(π). The timed language of s is defined by the runs from qinit to qfinal:

L(s) � {tw(π) : π = 〈qinit, 〈⊥,0X 〉〉 � · · · → 〈qfinal, w〉} .

(For the initial configuration 〈qinit, 〈⊥,0X 〉〉, the special stack symbol ⊥ ∈ Γ is needed.)

Timed Language Example. We consider the following timed language:

Lex � {(a, t1)(a, t2) . . . (a, tn)(b, t′n) . . . (b, t′2)(b, t
′
1) : t′i − ti ∈ N} .
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Note that if we forget the time stamps from Lex then the language {anbn : n ≥ 1}
is a typical context-free language.

We consider a SRTA ({q0, . . . , q4} , q0, q4, {a, b} , {⊥, , �} , {x} ,Δ) where Δ is
defined as follows:

Let us consider the timed word (a, 0.1)(a, 1.2)(b, 2.2)(b, 3.1) ∈ Lex and the
following run that accepts the word:

〈q0, 〈⊥, 0〉〉 0.1� a−→ 〈q1, 〈⊥, 0.1〉〈, 0〉〉 1.1� a−→ 〈q1, 〈⊥, 1.2〉〈, 1.1〉〈�, 0〉〉 1.0�
〈q1, 〈⊥, 2.2〉〈, 2.1〉〈�, 1〉〉 b−−−−−−−−→

check({x}=0)
〈q2, 〈⊥, 2.2〉〈, 2.1〉〈�, 1〉〉 0.5� ε−→

〈q3, 〈⊥, 2.7〉〈, 2.6〉〉 0.4� b−→ 〈q2, 〈⊥, 3.1〉〈, 3〉〉 0� ε−→ 〈q4, 〈⊥, 3.1〉〉.
The action τ2 (i.e., check({x} = 0)) checks if the fractional part of t′i − ti is
zero, hence it excludes a run such that 〈q0, 〈⊥, 0〉〉0.1� a−→0.2� 〈q1, 〈⊥, 0.3〉〈, 0.2〉〉 � b−→
〈q2, 〈⊥, 0.3〉〈, 0.2〉〉.
Simulating Diagonal Constraints x − y �	 k. In SRTA, every update x ← I is
bounded because I is an interval. This enables us to encode diagonal constraints
of the form x − y �	 k where k ∈ Z.

Let us see an idea of encoding the constraint x − y �	 1. We prepare an
auxiliary clock y+1 for denoting y + 1 and check x �	 y+1 instead of x − y �	 1.
In order to keep y + 1 = y+1, when we update y ← (i, i + 1), we also execute
y+1 ← (i + 1, i + 2) and check({y} = {y+1}). In the case of y ← [i, i], we do
y+1 ← [i+1, i+1]. Since any updates y ← I can be decomposed into the forms of
y ← (i, i + 1) and y ← [j, j] by nondeterminism of SRTA, our decidability result
extends even if we consider general diagonal constraints of the form x − y �	 k.

Then, this decidability result is analogous to one of Bouyer et al. for timed
automata with bounded updates and diagonal constraints [6].

Compare to Recursive Timed Automata. The formulation of recursive timed
automata (RTA) [3,12] differs from SRTA in timed transitions: RTA increase
only the top of a stack: 〈q, 〈γ1, η1〉 . . . 〈γn, ηn〉〉 δ� 〈q, 〈γ1, η1〉 . . . 〈γn, ηn + δ〉〉
where δ ∈ Q

+. The difference of timed transitions between SRTA and RTA
is crucial because RTA can simulate two-counter machines [3,12] by effectively
using the timed transitions.

Krishna et al. considered the subset of RTA called RTARN in [10] and showed
that the reachability problem of RTARN is decidable. RTARN are subsumed by
our SRTA because RTARN are SRTA without diagonal and fractional constraints.
They adapted Abdulla’s construction and proof to RTARN by closely following
the details. On the other hand, we give a simpler proof by restructuring Abdulla’s
proof.
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Compare to Timed Pushdown Automata. Timed pushdown automata of Abdulla
et al. [1] are a pushdown extension of timed automata. Clemente and Lasota [8]
equipped TPDA with diagonal constraints and showed that the expressiveness
of TPDA with diagonal constraints is equivalent to that of TPDA with respect
to languages.

Let us briefly see the formulation of Clemente and Lasota. The constraints
ψ ∈ ΨX in their system are given as follows:

ψ ::= x �	 k | x − y �	 k | ψ ∧ ψ where x, y ∈ X and k ∈ Z.

Since there are no fractional constraints ({x} = 0 or {x} �	 {y}), we cannot
inspect the fractional parts of clocks. A TPDA is a tuple (Q, qinit, qfinal,Σ,Γ,X ,Δ)
and a configuration 〈q, X, 〈γ1, r1〉〈γ2, r2〉 . . . 〈γn, rn〉〉 is a triple of a location q, a
(global) valuation X on X , and a stack where 〈γi, ri〉 ∈ Γ × Q

+. There are four
kinds of discrete operations for Δ:

push(γ) : 〈p, X, w〉 → 〈q, X, w〈γ, 0〉〉, reset(x) : 〈p, X, w〉 → 〈q, X[x � 0], w〉,
pop(γ, ψ′) : 〈p, X, w〈γ, r〉〉 → 〈q, X, w〉 if X ·∪ {z �→ r} |= ψ′ where ψ′ ∈ ΨX ·∪{z},
check(ψ) : 〈p, X, w〉 → 〈q, X, w〉 if X |= ψ where ψ ∈ ΨX .

Since a valuation X of TPDA is simulated by using the value-copying mechanism
of push(γ,X ) and pop(γ,X ) in SRTA, we obtain the following result.

Theorem 1. For a TPDA T = (Q, qinit, qfinal,Σ,Γ,X ,Δ), we can build a SRTA
s = (Q′, q′

init, q
′
final,Σ,Γ ·∪ {⊥},X ·∪ {z, x},Δ′) such that L(T ) = L(s).

Proof (Sketch). A push transition 〈p, X, ε〉 α,push(γ)−−−−−−→ 〈q, X, 〈γ, 0〉〉 is simulated by

〈p, 〈⊥, η〉〉 α,push(γ,X )−−−−−−−→ 〈q, 〈⊥, η〉〈γ, η′〉〉 where X(x) = η(x) for all x ∈ X .

To simulate a pop transition 〈p, X, 〈γ, r〉〉 α,pop(γ,ψ′)−−−−−−−→ 〈q, X, ε〉 atomically in s,
we use the extra clock x as follows:

〈p, 〈⊥, η〉〈γ, η′〉〉 ε,x←[0,0]−−−−−−→〈p′, 〈⊥, η〉〈γ, η′[x � 0]〉〉 δ1� ε,check(ψ′)−−−−−−−→ δ2� α,pop(γ,X ·∪{x})−−−−−−−−−−→
〈q′, 〈⊥, η′′〉〉 δ3� ε,check(x∈[0,0])−−−−−−−−−−→ 〈q, 〈⊥, η′′〉〉

where X(x) = η′(x) for x ∈ X and η′(z) = r. By using the clock x as a stopwatch,
we ensure the atomicity of these transitions and δ1 = δ2 = δ3 = 0.0. ��
Furthermore SRTA have the major advantage over TPDA, namely we can inspect
the fractional parts of clocks by fractional constraints. Indeed, the language class
of SRTA is strictly larger than TPDA with diagonal constraints.

Theorem 2. The above timed language Lex cannot be recognized by TPDA with
diagonal constraints.

Intuitively, unboundedly many clocks are needed to keep the exact fractional
values to recognize the language Lex. The proof of this theorem can be found in
the long version of the paper [13].
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This suggests that fractional constraints play a crucial role in pushdown
extensions of timed automata. Interestingly, the constraints are obtained by
studying Abdulla’s proof [1]. Unlike standard regions of timed automata,
Abdulla’s regions carry the fractional part ordering of clocks even their values
are beyond the bound that the maximal constant appears in interval constraints.

As an overview of the rest of the paper, we see the proof of our main theorem.

Main Theorem. The reachability problem of SRTA, which decides if there is a
run from 〈qinit, 〈⊥,0〉〉 to 〈qfinal, w〉 for some stack w, is ExpTime-complete.

Proof. The ExpTime-hardness is shown from the result of Abdulla et al. that the
reachability problem of TPDA is ExpTime-hard [1] and the above Theorem 1.

Next, to show the reachability problem is decidable and in ExpTime, we
build the finite-PDS semantics Digi through Sects. 3 and 4:

where each step preserves the reachability and especially Theorem 3 states that
we can safely remove clock comparisons while preserving languages of SRTA.

The obtained finite-PDS Digi is basically equivalent to the symbolic push-
down automaton of Abdulla et al. [1] and they proved the reachability prob-
lem of that is in ExpTime by using the PTime algorithm for the reachability
problem of finite-PDS [5,7,9]. Hence, the reachability problem of SRTA is in
ExpTime. ��

3 Language-Preserving Removal of Comparison
Constraints

We show that comparison constraints x �	 y can be removed from SRTA without
losing its expressiveness. Namely, from a given SRTA s, we construct a SRTA
s′ without comparison constraints such that L(s) = L(s′).

We say that a SRTA s = (Q, qinit, qfinal,Σ,Γ,X ,Δ) is M-bounded if M ≥ j
holds for any intervals (i, j) and [i, j] in Δ. As a running example of this section,
we consider the following run of a 2-bounded SRTA:

η1
push({u,z})−−−−−−−→ η1 η2

y←[1,2]−−−−−→ η1 η′
2

1.3� η′
1 η′′

2
u←[0,1]−−−−−→ η′

1 η′′′
2

pop({u,y,z})−−−−−−−−→ η3

where

η1 = {x1 �→ 0.1;x2, u �→ 1.2; z �→ 2.6} , η′
1 = {x1 �→ 1.4;x2, u �→ 2.5; z �→ 3.9} ,

η2 = {y �→ 0.0;u �→ 1.2; z �→ 2.6} , η′
2 = {u �→ 1.2; y �→ 1.4; z �→ 2.6} ,

η′′
2 = {u �→ 2.5; y �→ 2.7; z �→ 3.9} , η′′′

2 = {u �→ 0.3; y �→ 2.7; z �→ 3.9} .

From the definition, η3 = {u �→ 0.3;x1 �→ 1.4;x2 �→ 2.5; y �→ 2.7; z �→ 3.9}. For
the sake of readability, we only write relevant clocks for an explanation as above.
Also, we omit zero timed transitions 0.0�, locations, input alphabet, and stack
symbols.



256 Y. Uezato and Y. Minamide

Our basic idea is to encode the liner order between clocks into a stack symbol:
e.g., the linear order of η1 is represented symbolically by x1 < �x2, u� < z as a
stack symbol. Hence, the above run is encoded as follows:

ν1
push({u,z})−−−−−−−→ ν1 ν2

y←[1,2]−−−−−→ ν1 ν′
2

1.3� ν′
1 ν′′

2
u←[0,1]−−−−−→ ν′

1 ν′′′
2

pop({u,y,z})−−−−−−−−→ ν3

where

ν1 =
(
η1, x1 < �x2, u�<z

)
, ν2 =

(
η2, y <u<z

)
, ν′

2 =
(
η′
2, u<y <z

)
,

ν′
1 =

(
η′
1, x1 < �x2, u�<z

)
, ν′′

2 =
(
η′′
2 , u<y <z

)
, ν′′′

2 =
(
η′′′
2 , u<y <z

)
.

For this encoding we do the following calculation at each step:

1. At push({u, z}), we extract the order of u and z in ν1 and pass u<z to ν2.
2. At update y ← [1, 2], first we actually perform y ← [1, 2] and set y �→ 1.4,

so we obtain (η′
2, y < u < z). Next, we reconstruct the correct order u < y of y

and u in η′
2. Since our updates y ← [i, j] or y ← (i, j) are M-bounded (i.e.,

j ≤ 2), we can calculate the correct order by using M-bounded interval con-
straints and fractional constraints. After check(u ∈ (1, 2)), check(y ∈ (1, 2)),
and check({u}<{y}), we find out u<y.

3. At time transition 1.3�, we do not need to modify any orderings.
4. At update u ← [0, 1], we also perform u ← [0, 1] first and next we reconstruct

the correct ordering of η′′′
2 .

Finally, we consider the pop({u, y, z}) transition. As above, first we actually
perform pop({u, y, z}) and obtain (η3, ν′

1 : (x1 < �x2, u� < z) & ν′′′
2 : (u < y < z)).

However we have no ways to determine the correct ordering u < x1 < x2 < y < z
because both η3(x2) and η3(y) are larger than M = 2 and x2 < y cannot be
understood with 2-bounded interval constraints. Of course, if we take M = 3
then this matter is solved. But, this ad-hoc solution fails when ν1 ν′

2
2.3� ν′

1 ν′′
2 .

To solve this, we introduce auxiliary clocks
•
�i and •�j as follows:

λ1
push({u,z})−−−−−−−→ λ1 λ2

y←[1,2]−−−−−→ λ1 λ′
2

1.3� λ′
1 λ′′

2
u←[0,1]−−−−−→ λ′

1 λ′′′
2

pop({u,y,z})−−−−−−−−→ λ3

where

λ1 =
(
η1 ·∪ {•

�0 �→ 0.0;
•
�1 �→ 1.0;

•
�2 �→ 2.0},

•
�0 <x1 <

•
�1 < �x2, u�<

•
�2 <z

)
,

λ2 =
(
η2 ·∪ {•�0 �→ 0.0; •�1 �→ 1.0; •�2 �→ 2.0}, �y, •�0�< •�1 <u< •�2 <z

)
,

λ′
2 =

(
η′
2 ·∪ {•�0 �→ 0.0; •�1 �→ 1.0; •�2 �→ 2.0}, •�0 < •�1 <u<y < •�2 <z

)
,

λ′
1 =

(
η′
1 ·∪ {•

�0 �→ 1.3;
•
�1 �→ 2.3;

•
�2 �→ 3.3},

•
�0 <x1 <

•
�1 < �x2, u�<

•
�2 <z

)
,

λ′′
2 =

(
η′′
2 ·∪ {•�0 �→ 1.3; •�1 �→ 2.3; •�2 �→ 3.3}, •�0 < •�1 <u<y < •�2 <z

)
,

λ′′′
2 =

(
η′′′
2 ·∪ {•�0 �→ 1.3; •�1 �→ 2.3; •�2 �→ 3.3}, u< •�0 < •�1 <y < •�2 <z

)
.

When taking push({u, z}), we set the clocks
•
�i by

•
�i ← [i, i] in the next frame

λ1 and also set the clocks •�i by •�i ← [i, i] in the top frame λ2. Hence,
•
�i of λ1

and •�i of λ2 have the same values. We require two kinds of the auxiliary clocks•
� and •� because if we push a new frame on top of the current frame λ2, we also
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set
•
�i ← [i, i] in λ2. To compute the correct ordering in λ3 at pop({u, y, z}), the

auxiliary clocks
•
� of λ′

1 and •� of λ′′′
2 behave as separators as follows.

Determine x2 < y. With the auxiliary clocks, we determine x2 < y. Performing
pop({u, y, z}) makes (η3 ·∪ {•

�0 �→ 1.3,
•
�1 �→ 2.3,

•
�2 �→ 3.3}, λ′

1 : o1 & λ′′′
2 : o2)

where o1 =
•
�0 <x1 <

•
�1 < �x2, u�<

•
�2 <z and o2 = u< •�0 < •�1 <y < •�2 <z.

It is easily understood that
•
�1 < x2 <

•
�2 and

•
�1 < y <

•
�2 from o1 and o2.

We also obtain {•
�1} < {x2} < {y} by using fractional constraints because of

{•
�1} = 0.3, {x2} = 0.5, and {y} = 0.7. Then

•
�1 <x2 <y <

•
�2 follows from: 1) the

fractional part ordering {•
�1} < {x2} < {y}, 2) x2 and y are in between

•
�1 and•

�2, and 3) the fact
•
�1 + 1.0 =

•
�2 obtained by the construction.

Treating clocks <
•
�0 or >

•
�M. From the above argument, in general, we can

reconstruct the correct ordering of clocks between
•
�0 and

•
�M. Here we consider

the other clocks: 1) clocks that are smaller than
•
�0 and 2) clocks that are larger

than
•
�M.

(1) We consider u < •�0 in o2. This implies that u was updated after push({u, z})
because the only way to make a clock smaller than •�0 is updating. Hence,
we take x<

•
�0 in λ3 if x< •�0 in o2. And also we take x�x′ in λ3 if x�x′ < •�0

in o2 where � ∈ {<,=}. As the result, we obtain u<
•
�0 in λ3.

(2) We consider •�M <z in o2. This states that z was copied by push({u, z}) and
never updated because our updates are bounded by M=2 and the bounded
updates cannot make a clock larger than •�M. Thus, we take

•
�M < x in λ3 if

•�M < x in o2 and x � x′ in λ3 if
•
�M < x � x′ in o1. As the result, we obtain•

�M < z in λ3. Finally, we find out u <
•
�0 < x1 <

•
�1 < x2 < y <

•
�2 < z and it

reflects the correct ordering u<x1 <x2 <y <z in η3.

In general, when performing pop(X) for (η1,o1) and (η2,o2), we build the order-
ing o3 of η3 (= η1[X � η2]) in the following steps from 1. to 4.:

We write X� for X ·∪ {•
�i, •�i : i ∈ [0..M]} and Y for {y ∈ X : y ≤ •�M in o2}.

1. For x1, x2 ∈ X� \ Y , if x1 �	 x2 in o1 then add x1 �	 x2 to o3.
2. For y ∈ Y , if y �	 •�i in o2, then add y �	

•
�i to o3.

3. For z1, z2 ∈ X� such that
•
�i < z1 <

•
�i+1 and

•
�i < z2 <

•
�i+1 in o3,

– add z1 < z2 to o3 if η3 |= {•
�i} < {z1} < {z2}, η3 |= {z2} < {•

�i} < {z1},
or η3 |= {z1}<{z2}<{•

�i}.
– add z1 = z2 to o3 if η3 |= {z1} = {z2}.

4. For y1, y2 ∈ Y , if y1 � y2 < •�0 in o2, then add y1 � y2 in o3 where � ∈ {<,=}.

Note that the computation of o3 only requires o1, o2, and fractional constraints.
Then the lemma below holds for well-formed simulating stacks.

A stack (η1,o1)(η2,o2) . . . (ηn,on) is a well-formed simulating stack if

– For any i ∈ [1..n], ηi |= x �	 y iff x �	 y in oi;
– For any i ∈ [1..(n − 1)], ηi(

•
�j) = ηi+1( •�j), ηi(x) = ηi+1(x) if •�M < x in oi+1,

and
•
�0 is the smallest in ηi.
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Lemma 1. Let w (η1,o1) (η2,o2) be a well-formed simulating stack. The simu-

lated pop(X) transition w (η1,o1) (η2,o2)
pop(X)−−−−→ w (η1[X � η2],o3) (where o3

is obtained by the above steps) preserves well-formedness of the stack.

Since well-formedness is also preserved under the other transitions, the main
result of the present section follows.

Theorem 3. From a SRTA s, we can build a SRTA s′ without comparison
constraints such that L(s) = L(s′). The size of locations and stack symbols of
s′ are exponential in |X | and M of s. However, the size of clocks of s′ is linear
in M of s.

Proof (Sketch). In simulated transitions of pop, we use the ordering o2 in the top
frame and o1 in the next frame within a stack at the same time. This operation,
however, is not allowed in the formalization of SRTA. Hence we use extended
locations qo with a symbolic ordering o to realize transitions as follows:

a push transition: 〈q0, w〈γ1, η1,o1〉〉 α1,push(γ2,X)−−−−−−−−−→ 〈q1, w〈γ1, η1,o1〉〈γ2, η2,o2〉〉

is realized by

〈qo1
0 , w′〈(γ1,o), η1〉〉 α1,push((γ2,o1),X)−−−−−−−−−−−−→ 〈qo2

1 , w′〈(γ1,o), η1〉〈(γ2,o1), η2〉〉.

Also, a pop transition

〈q2, w〈γ1, η1,o1〉〈γ2, η2,o2〉〉 α2,pop(γ2,X)−−−−−−−−→ 〈q3, w〈γ1, η1[X � η2],o3〉〉

is realized by

〈qo2
2 , w′〈(γ1,o), η1〉〈(γ2,o1), η2〉〉 α2,pop((γ2,o1),X)−−−−−−−−−−−→ 〈qo3

3 , w′〈(γ1,o), η1[X � η2]〉〉.

To compute o3 correctly by using fractional constraints, we need multi-step
ε-transitions that are performed atomically. To ensure this atomicity, we again
employ the technique in the proof of Theorem 1. ��

4 Collapsed and Digital Semantics for Reachability
Problem

Based on the result of the previous section, hereafter we consider SRTA without
comparison constraints. In this section, we consider three techniques and combine
them to translate the standard semantics Stnd into a finite-PDS semantics Digi
via an infinite-PDS semantics Coll. We compare Abdulla’s and our proofs of
the soundness property that for any transition in the abstract semantics Digi,
there is a corresponding transition in the concrete semantics Stnd.
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W W ′

C C ′∃ ∀

∀ ∃

≈ ≈
w w′

∈ ∈

The proof of Lemma 4 of Abdulla et al. [1] can be sum-
marized schematically as the left diagram: if W → W ′ and
C ′ ≈ W ′, then there exists C such that for all w ∈ C there
exists w′ ∈ C ′ with w → w′. We find out that this elaborate
simulation is called backward-forward simulations in Lynch

and Vaandrager [11]. It is a source of complications in their proof to simulta-
neously handle the backward direction (choosing C from C ′) and the forward
direction (finding w′ from w ∈ C). In addition, the stack correspondence ≈ was
defined indirectly through a flatten operator, and it is another source of compli-
cations in their proof. For example, the operator flat flattens a stack of Stnd

η1η2η3 to a single valuation η where η = η
(1)
1 ·∪ η

(2)
2 ·∪ η

(3)
3 is uniquely obtained

by introducing x(i) for x at i-th frame: η
(i)
i (x(i)) � ηi(x). However, for a stack of

the abstract semantics Digi, flat behaves nondeterministically because as we
will see later on we dismiss exact fractional values to obtain a finite-PDS. Then
there are many ways to arrange clocks in a linear order.
W W ′

w w′∃ ∀

w w′∀ ∃

|= |=
∼

In contrast, we clearly solve these problems as Lem-
mas 3 and 6 by considering the intermediate semantics
Coll. This allows us to completely separate the above
mixed simulation into two simple simulations and directly
define correspondences ∼ and |= in a componentwise

manner.
We use the following run of Stnd as a running example of this section:

η1 η2
push(∅)−−−−→ η1 η2 0X

x←[1,2]−−−−−→ η1 η2 η3
2.0� η′

1 η′
2 η′

3
pop({x})−−−−−→ η′

1 η4 where

η1 = {x �→ 0.5}, η2 = {x �→ 2.0}, η3 = {x �→ 1.5}, η′
i = ηi + 2, η4 = η′

3 = {x �→ 3.5}.

4.1 Collapsed Semantics

Removing the unboundedness. Since we consider SRTA without comparison con-
straints, we can safely collapse the integral parts of clocks which are larger than
M where M ≥ max{j : (i, j) or [i, j] appears in interval constraints}. For exam-
ple, if M = 2, we cannot distinguish {x �→ 2.5; y �→ 2.6} and {x �→ 3.5; y �→ 4.6}
by any constraints. The above run is collapsed as follows (if M = 2):

λ1 λ2
push(∅)−−−−→ λ1 λ2 0X

x←[1,2]−−−−−→ λ1 λ2 λ3
2.0� λ′

1 λ′
2 λ′

3
pop({x})−−−−−→ λ′

1 λ4 where

λi = ηi (i = 1, 2, 3), λ′
1 = {x �→ ∞.5}, λ′

2 = {x �→ ∞.0}, λ′
3 = {x �→ ∞.5}, λ4 = λ′

3.

Definition 3. We define the collapse function to formalize the above argument:

C : Q+ → ({0, 1, . . . ,M,∞}) × (
Q

+ ∩ [0, 1)
)
; C(r) �

{
(�r�, {r}) if r ≤ M

(∞, {r}) otherwise.

We write v.r to denote (v, r). Moreover, �v.r� and {v.r} denote v and r, respec-
tively. For a concrete valuation η on X, we define the collapsed valuation of η by
C(η)(x) � C(η(x)). We use Greek letters λ, . . . to denote a collapsed valuation.
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Proposition 1. Let η1 and η2 be concrete valuations on X. If C(η1) = C(η2),

Validity. η1 |= ϕ iff η2 |= ϕ for any constraint ϕ.
Copying. C(η1[x � y]) = C(η2[x � y]) for any x, y ∈ X.
Restriction. C(η1|Y ) = C(η2|Y ) for any Y ⊆ X.
Updating. C(η1[x � r]) = C(η2[x � r]) for any x ∈ X and r ∈ [0,M].
Evolve. C(η1 + δ) = C(η2 + δ) for any δ ∈ Q

+.

By Proposition 1, we define several notions for collapsed valuations as fol-
lows. Let X be a clock set, η and λ be concrete and collapsed valuations on X,
respectively, such that C(η) = λ. For a constraint ϕ, we write λ |= ϕ if η |= ϕ.
Then λ |= ϕ is well-defined because Proposition 1 ensures that the result does
not depend on the choice of a witness η for λ. We also define copying λ[x � y],
restriction λ|Y , updating λ[x � r], and evolve λ + δ in the same way.

We define a quasi-ordering for collapsed valuations. Let λ, λ′ be collapsed
valuations and η be a concrete valuation such that C(η) = λ. We write λ � λ′ if
there exists η′ such that η ≤ η′ and C(η′) = λ′.

Removing entire stack modifications. Collapsed valuations are effective to reduce
the unboundedness of the nonnegative rational numbers. However, they are inef-
fective to reduce entire stack modifications of timed transitions in Stnd and
translate Stnd into an infinite-PDS semantics.

To obtain a corresponding infinite-PDS semantics, we adopt the lazy time
elapsing technique of Abdulla et al. [1]. Then the above collapsed run is simu-
lated as follows:

λ1
push(∅)−−−−→ λ1 λ2

x←[1,2]−−−−−→ λ1 λ′
2

2.0� λ1 λ′′
2

pop({x})−−−−−→ λ,

where λ1 = {•x �→ 0.5; •x �→ 2.0}, λ2 = {•x �→ 2.0; •x �→ 0.0}, λ′
2 = {•x �→ 2.0; •x �→

1.5}, and λ′′
2 = {•x �→ ∞.0; •x �→ ∞.5}.

Although we do not evolve the frames below the top frame during the timed
transition, we lazily evolve λ1 when performing the pop({x}) transition. To
correctly evolve λ1, we use the marked clocks •x of λ1 and •x of λ′′

2 and increase
λ1 + δ until they are compatible: λ1(

•x) + δ = λ′′
2( •x).

However, there are two possibilities for compatibility:

– δ1 = 1.0: λ1 + δ1 = {•x �→ 1.5; •x �→ ∞.0} is compatible with λ′′
2 .

– δ2 = 2.0: λ1 + δ2 = {•x �→ ∞.5; •x �→ ∞.0} is compatible with λ′′
2 .

The ambiguity happens because we collapse the integral parts of clocks. In order
to overcome this problem, we use the reference clock � and it is inserted as the
value 0.0 when a push transition is taken as follows:

Λ1
push(∅)−−−−→ Λreset

1 Λ2
x←[1,2]−−−−−→ Λreset

1 Λ′
2

2.0� Λreset
1 Λ′′

2
pop({x})−−−−−→ Λ,

Λreset
1 = {•x �→ 0.5; •x �→ 2.0;

•
� �→ 0.0}, Λ2 = {•x �→ 2.0; •x �→ 0.0; •� �→ 0.0},

Λ′
2 = {•x �→ 2.0; •x �→ 1.5; •� �→ 0.0}, Λ′′

2 = {•x �→ ∞.0; •x �→ ∞.5; •� �→ 2.0}.

The clock � enables us to find the correct corresponding valuation Λ′
1 of Λreset

1 as
Λ′
1 = Λreset

1 +2.0 (c.f. Lemma 2) and it also appeared in Abdulla’s construction.
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To formalize the above lazy time elapsing technique, we define the notion of
clock marking and extended clock set.

Definition 4. Let X be a clock set. We define the marked clock sets
•

X and •X
of X by marking every clock x as •x and •x, respectively. For a valuation η ∈ XV ,
the renamed valuation •η ∈ •

XV is defined by •η( •x) � η(x) for all x ∈ X. We also
define the renamed valuation •η ∈ •XV . Furthermore, for a constraint ϕ ∈ ΦX ,
we define •ϕ ∈ Φ •

X by renaming every clock x in ϕ to •x.
We extend the clock set X to X by X � X ·∪ {�}. We use C for the set of

collapsed valuations on •X ·∪ •
X and use capital Greek letters Λ, . . . to denote a

collapsed valuation in C.

Let Λ1 and Λ2 be collapsed valuations on •X ·∪ •
X. Then,

– the two valuations are compatible Λ1 ‖ Λ2 if Λ1(
•x) = Λ2( •x) for all x ∈ X.

– If two valuations are compatible, then the glued valuation Λ1 ⊕ Λ2 ∈ C is
defined by (Λ1 ⊕ Λ2)( •x) � Λ1( •x) and (Λ1 ⊕ Λ2)(

•x) � Λ2(
•x) for x ∈ X.

Collapsed valuations lead to the collapsed semantics Coll, which removes
the unboundedness of rationals and entire stack modifications of Stnd.

Definition 5 (Collapsed Semantics). We define the infinite-PDS (Q,Γ ×
C, ↪→) where 〈q,w〉 ↪→ 〈q′,w′〉 if there is 〈q, τ, q′〉 ∈ Δ and w

τ
↪−→ w′.

For τ ∈ Op, we define the action w
τ

↪−→ w′ by case analysis on τ as follows:

Λr
1 = Λ1[

•
� � 0] Λr

1 ‖ Λ2 Λ2| •
X = C(0 •

X)

〈γ, Λ1〉 ↪→ 〈γ, Λr
1〉〈γ′, U(X, Λ2)〉 push(γ′, X)

r ∈ I Λ′ = Λ[ •x � r]

〈γ, Λ〉 ↪→ 〈γ, Λ′〉 x ← I

Λ1 � Λ′
1 Λ′

1 ‖ Λ2 Λ = Λ′
1 ⊕ U(X \ X, Λ2)

〈γ, Λ1〉 〈γ′, Λ2〉 ↪→ 〈γ, Λ〉 pop(γ′, X)
Λ |= •ϕ

〈γ, Λ〉 ↪→ 〈γ, Λ〉 check(ϕ)

where U({x1, . . . , xn} ,Λ) � Λ[ •x1 � •x1, . . . ,
•xn � •xn] and this intuitively means

that copying the values of clocks xi in the next to the top frame into the top
frame. Hence, we use U(X,Λ2) to define push(γ′,X). Also, from the fact that
η1 η2→η1[X � η2] is equal to η1 η2 → η2[(X \X) � η1], we employ U(X \X,Λ2)
to define pop(γ′,X) for fitting the definition of gluing ⊕.

In addition, the rules 〈q, 〈γ,Λ〉〉 ↪→ 〈q, 〈γ,Λ′〉〉 are added for all q ∈ Q, γ ∈ Γ,
and Λ � Λ′ to reflect timed transitions in Stnd.

A stack 〈γ1,Λ1〉〈γ2,Λ2〉 . . . 〈γn,Λn〉 is well-formed WF if for all i ∈ [1..(n−1)]

– Λi |= •
� ∈ [0, 0] and there exists Λ′

i such that Λi � Λ′
i and Λ′

i ‖ Λi+1.

It can be easily shown that transitions preserve well-formedness. As we men-
tioned above, the condition Λi |= •

�∈ [0, 0] of the well-formedness is key to ensure
the following property and the determinacy of pop transitions.

Lemma 2 If WF(w〈γ1,Λ1〉〈γ2,Λ2〉), then there exists the unique Λ′
1 such that

Λ � Λ′
1 and Λ′

1 ‖ Λ2.

This defines the stack correspondence w ∼ w of Stnd and Coll with WF(w):
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– 〈γ, η〉 ∼ 〈γ,Λ〉 if C( •η) = Λ| •X .
– w〈γ1, η1〉〈γ2, η2〉∼w〈γ1,Λ1〉〈γ2,Λ2〉 if C(•η1 ·∪ •η2) = Λ2|( •X ·∪ •X ) and w〈γ1, η1〉∼

w〈γ1,Λ′
1〉 where Λ′

1 is uniquely determined from Λ1 and Λ2 by Lemma 2.

This correspondence forms a bisimulation of Stnd and Coll.

Lemma 3. Let 〈q, w〉 and 〈q,w〉 be configurations of Stnd and Coll, respec-
tively, with w ∼ w and WF(w). If 〈q, w〉 � 〈q′, w′〉, then there exists w′ such
that 〈q,w〉 → 〈q′,w′〉 and w′ ∼ w′. Conversely, if 〈q,w〉 → 〈q′,w′〉, then there
exists 〈q′, w′〉 such that 〈q, w〉 � 〈q′, w′〉 and w′ ∼ w′. We use c1 � c2 to denote
a timed transition c1

δ� c2 or discrete transition c1
α−→ c2 in Stnd.

4.2 Digital Valuations and Finite-PDS Semantics

The Coll semantics cannot be formalized as finite-PDS for the denseness of
rationals. To remove the denseness, we define digital valuations and give the
digital semantics Digi. The definition is based on regions of Abdulla et al. in [1].

Definition 6 (Digital Valuations). Let X be a clock set. A sequence of sets
d = d0 d1 . . . dn, where di ⊆ X × {0, . . . ,M,∞}, is a digital valuation on X if d
satisfies the following conditions:

– Every clock in X appears in d exactly once.
– Except d0, all the sets di are not empty: di �= ∅ for all i ∈ [1..n].
– The constant M only appears at d0: if (x,M) ∈ di, then i = 0.

Let λ be a collapsed valuations on X. We write λ |= d if the following hold:

– d reflects collapsed integrals: for all x ∈ X, (x, �λ(x)�) ∈ di holds for some i.
– For all x ∈ X, {λ(x)} = 0.0 iff x is in d0.
– Fractional order: {λ(x)}�	{λ(y)} iff x is in di and y is in dj for some i �	 j.

The realization relation |= is functional: for a collapsed valuation λ, there exists
the unique digital valuation D(λ) such that λ |= D(λ).

Let us see an example with M = 1:

{x �→ 0.0; y �→ 0.3} � {x �→ 0.5; y �→ 0.8} � {x �→ 0.7; y �→ 1.0} � {x �→ 0.9; y �→ ∞.2}|= |= |= |=

{(x, 0)}{(y, 0)} � ∅{(x, 0)}{(y, 0)} � {(y, 1)}{(x, 0)} � ∅{(y,∞)}{(x, 0)}

The relation d � d′ and other operations are defined just as collapsed valuations.

Proposition 2. Let λ1 and λ2 be collapsed valuations on X. If D(λ1) = D(λ2),

Validity. λ1 |= ϕ iff λ2 |= ϕ for any constraint ϕ.
Copying. D(λ1[x � y]) = D(λ2[x � y]) for any x, y ∈ X.
Restriction. D(λ1|Y ) = D(λ2|Y ) for any Y ⊆ X.
Integer Update. D(λ1[x � n]) = D(λ2[x � n]) for any x ∈ X and n ∈ [0..M].
Elapse. If λ1 � λ′

1, then there exists λ′
2 such that λ2 � λ′

2 and D(λ′
1) = D(λ′

2).
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We define validity d |= ϕ, copying d[x := y], restriction d|Y , and quasi-ordering
d � d′ similarly as collapsed valuations. Moreover, we define discrete updates
d[x � n] for x ∈ X and n ∈ [0..M] by: d[x � n] � D(λ[x � n]) where λ is a
witness λ |= d. These are well-defined by Proposition 2. We define the update
d[x ← I] � { D(λ[x � r] ) : r ∈ I, λ |= d } for a clock x and an interval I.

Lemma 4. If d � d′ and λ′ |= d′, then there is λ such that λ � λ′ and λ |= d.

This lemma is crucial for the backward simulation lemma, Lemma 6, and peculiar
to collapsed valuations. Indeed, this fails if we consider η |= d of concrete and
digital valuations. Let us consider d = {(y, 1)}{(x, 0)} � ∅{(y,∞)}{(x, 0)} = d′

and take η′ = {x �→ 0.9; y �→ 2.2} for η′ |= d′. There are no concrete valuations
η such that η ≤ η′ and η |= d because y − x < 1 in d but y − x = 1.3 in η′.

Digital Semantics. We use D, . . . to denote a digital valuation on •X ·∪ •
X. As

the semantics Coll, we define the compatibility and gluing as follows:

– We write D1 ‖ D2 if ∃Λ1,Λ2. Λ1 |= D1, Λ2 |= D2, and Λ1 ‖ Λ2;
– The glued valuations are defined by:

D1 ⊕ D2 � {D(Λ) : Λ1 |= D1, Λ2 |= D2, Λ1 ‖ Λ2, Λ ∈ Λ1 ⊕ Λ2} .

Non-determinism Example. We revisit our running example to see the essential
non-determinism of the gluing in pop.

D1
push(∅)−−−−→ Dr

1 D2
x←[1,2]−−−−−→ Dr

1 D
′
2

2.0� Dr
1 D

′′
2

pop({x})−−−−−→ D,

Dr
1 = D(Λreset

1 ) = {(
•
�, 0), ( •x, 2)}{( •x, 0)}, D2 = {( •�, 0), ( •x, 0), ( •x, 2)},

D′
2 = {( •�, 0), ( •x, 2)}{( •x, 1)}, D′′

2 = {( •�, 2), ( •x,∞)}{( •x,∞)}.

To perform pop({x}), we compute D′
1 such that Dr

1 � D′
1 and D′

1 ‖ D′′
2 and

obtain D′
1 = {(

•
�, 2), ( •x,∞)}{( •x,∞)}. Then,

D′
1 ⊕ U(∅,D′′

2) =
({(

•
�, 2), ( •x,∞)}{( •x,∞)}) ⊕ ({( •�, 2), ( •x,∞)}{( •x,∞)})

= { ∅{( •x,∞), ( •x,∞)}, ∅{( •x,∞)}{( •x,∞)}, ∅{( •x,∞)}{( •x,∞)} } .

Namely there are three choices for D in the order of •x and •x because we dismiss
the fractional values from digital valuations to remove the denseness of rationals.

Digital valuations lead to the digital semantics Digi as finite-PDS. Since the
definition is given by the same way as the Coll semantics, we give it in the long
version [13]. The definition of the well-formedness WF(W ) is also omitted.

Lemma 5. The following properties hold for well-formed stacks.

– If WF(W ) and 〈q,W 〉 → 〈q′,W ′〉, then W ′ is also well-formed.
– If WF(W ), then there exists w such that WF(w) and w |= W .

The realization Λ1 . . . Λn |= D1 . . .Dn holds if Λi |= Di for all i ∈ [1..n].
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Let W be a well-formed stack, then there is a well-formed stack WF(w) such that
w |= W by Lemma 5. Since digital valuations are an abstraction of collapsed
valuations, if 〈q,w〉 → 〈q′,w′〉 then there exists W ′ such that 〈q,W 〉 → 〈q′,W ′〉
and w′ |= W ′. By contrast, the counterpart does not hold for the nondetermin-
ism of pop rule in Digi (c.f. the above example). However, we can show the
following backward-direction simulation by Lemma 4.

Lemma 6. If WF(W ), 〈q,W 〉 → 〈q′,W ′〉, w′ |= W ′, and WF(w′), then there
exists a well-formed stack w such that 〈q,w〉 → 〈q′,w′〉 and w |= W .

Finally, Lemmas 3 and 6 imply our main theorem.

Theorem 4. The following are equivalent:

(1) In Stnd, there is a run from 〈qinit, 〈⊥,0X 〉〉 to 〈qfinal, w〉 for some stack w;
(2) In Digi, there exists W such that 〈qinit, 〈⊥, (D◦C)(0

•X
·∪0 •

X
)〉〉 →∗ 〈qfinal,W 〉.

5 Conclusion and Future Works

We have studied synchronized recursive timed automata (SRTA) and shown
that the reachability problem of SRTA is ExpTime-complete. Our SRTA are
described from the two perspectives: (1) SRTA are a variant of recursive timed
automata (RTA) of Trivedi and Wojtczak, and Benerecetti et al. [3,12] because
SRTA are obtained by synchronizing timed transitions of RTA, (2) SRTA extend
timed pushdown automata of Abdulla et al. [1] because SRTA are obtained by
adding bounded updates (x ← [i, j] and x ← (i, j)), diagonal constraints, and
fractional constraints to their automata. We have also introduced an intermedi-
ate semantics to simplify our decidability proof of the reachability problem.

In the formalization of SRTA, we adopt bounded updates. Since our updates
are performed within an interval, we can simulate diagonal constraints x−y �	 k
in Sect. 2 by using comparisons x �	 y and fractional constraints {x} �	 {y}. As
already proved by Bouyer et al. in [6], the presence of both unbounded updates
x ← [i,∞) and diagonal constraints enables timed automata to simulate two-
counter machines. However, up to the authors’ knowledge, the combination of
unbounded updates, comparison constraints, and fractional constraints has not
been studied yet. We think that this combination further enlarges the decidable
class of pushdown-extensions of timed automata.
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Abstract. Focused proofs are sequent calculus proofs that group infer-
ence rules into alternating positive and negative phases. These phases
can then be used to define macro-level inference rules Gentzen’s origi-
nal and tiny introduction and structural rules. We show here that the
inference rules of labeled proof systems for modal logics can similarly be
described as pairs of such phases within the LKF focused proof system for
first-order classical logic. We consider the system G3K of Negri for the
modal logic K and define a translation from labeled modal formulas into
first-order polarized formulas and show a strict correspondence between
derivations in the two systems, i.e., each rule application in G3K corre-
sponds to a bipole—a pair of a positive and a negative phases—in LKF .
Since geometric axioms (when properly polarized) induce bipoles, this
strong correspondence holds for all modal logics whose Kripke frames
are characterized by geometric properties. We extend these results to
present a focused labeled proof system for this same class of modal log-
ics and show its soundness and completeness. The resulting proof system
allows one to define a rich set of normal forms of modal logic proofs.

1 Introduction

What is an inference rule? If we try to answer this question in the setting of
the sequent calculus, then it seems that we should ask that inference rules have
duals and that all occurrences of cut rules and non-atomic initial rules can be
eliminated. In a two-sided sequent system, dual inference rules are typically
pairs of left and right introduction rules for a given connective. In a one-side
sequent system, dual inference rules are usually based on introduction rules
for de Morgan dual connectives. Such a definition of inference rules has been
suggested by Girard in [9, Section F.5] and formalized by Miller and Pimentel
in [13].

In recent years, focused proof systems have been introduced as a means of
building large scale synthetic inference rules from Gentzen’s original, small scale
introduction rules. In particular, Andreoli introduced a focused proof system for
linear logic [1] and described cut-free proofs as alternating phases of inference
rules: a negative phase is a collection of invertible inference rules and a positive
phase is a collection of inference rules that are dual to those in negative phases.
This same kind of focused proof system has also been extended to both intu-
itionistic and classical logic in the LJF and LKF proof systems [10]: the LKF
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proof system will play a central role in this paper. In all of these focused proof
systems, phases can be used to describe synthetic inference rules by identifying
them with either an entire positive or negative phase. In all these cases, cuts
and non-atomic initial rules can be eliminated at the level of synthetic inference
rules.

In this paper, we look at focused proof systems and their possible relationship
to modal logic proof systems based on labeled sequents. We shall show that it is
possible to emulate precisely the G3K proof system [14] using a simple encoding
of modal formulas and inference rules into classical first-order logic in such a way
that one inference rule of G3K exactly corresponds to one phase in the translated
logic. Such tight emulation means that if one does proof search or proof checking
on the focused version of the translated formulas, one is modeling nothing more
or less than proof search in G3K.

One alternation of a positive followed by a negative phase (reading from
conclusion to premises) is a natural unit of inference in a focused proof system:
such a pair of phases is called a bipole. A formula that induces a bipole is a bipolar
formula and examples of such formulas are geometric formulas, when properly
polarized. As a result, we are able to show that we can use focused classical proofs
to precisely emulate modal proofs whenever Kripke frames are characterized by
geometric properties. Since every (infinitary) first-order theory has a geometric
conservative extension [6], the limitation to geometric theories is not restrictive.
We also present a focused proof system for any classical propositional modal
logic whose Kripke frames are described using geometric theories.

2 Background

2.1 Modal Logic

The language of (propositional) modal formulas consists of a functionally com-
plete set of classical connectives (here we will use a minimal one, but other
connectives, defined as usual, will be sometimes employed in the rest of the
paper), a modal operator � (here we will also use explicitly its dual ♦) and a
denumerable set P of propositional symbols, according to the following grammar:

A ::= P | ⊥ | A ⊃ A | �A | ♦A ,

where P ∈ P. The semantics is usually defined by means of Kripke frames,
i.e., pairs F = (W,R) where W is a non empty set of worlds and R is a binary
relation on W . A Kripke model is a triple M = (W,R, V ) where (W,R) is a
Kripke frame and V : W → 2P is a function that assigns to each world in W a
(possibly empty) set of propositional symbols.

Truth of a modal formula at a point w in a Kripke structure M = (W,R, V )
is the smallest relation |= satisfying:

M, w |= P iff p ∈ V (w)
M, w |= A ⊃ B iff M, w |= A implies M, w |= B

M, w |= �A iff M, w′ |= A for all w′ s.t. wRw′

M, w |= ♦A iff there exists w′ s.t. wRw′ and M, w′ |= A.
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By extension, we write M |= A when M, w |= A for all w ∈ W and we write |= A
when M |= A for every Kripke structure M. The former definition characterizes the
basic modal logic K. Several further modal logics can be defined as extensions of K
by simply restricting the class of frames we consider. Many of the restrictions we are
interested in are definable as formulas of first-order logic where the binary predicate
R(x, y) refers to the corresponding accessibility relation. Table 1 summarizes some of
the most common frame logics, describing the corresponding frame property, together
with the modal axiom capturing it [17]. We will refer to the logic satisfying the axioms
F1, . . . , Fn as KF1 . . . Fn.

Table 1. Axioms and corresponding first-order conditions on R.

Axiom Condition First-order formula

T:�A ⊃ A Reflexivity ∀x.R(x, x)

4:�A ⊃ ��A Transitivity ∀x, y, z.(R(x, y) ∧ R(y, z)) ⊃ R(x, z)

5:�A ⊃ �♦A Euclideaness ∀x, y, z.(R(x, y) ∧ R(x, z)) ⊃ R(y, z)

B:A ⊃ �♦A Symmetry ∀x, y.R(x, y) ⊃ R(y, x)

3:�(�A ⊃ B) ∨ �(�B ⊃ A) Connectedness ∀x, y, z.(R(x, y) ∧ R(x, z)) ⊃ (R(y, z) ∨ R(z, y))

D:�A ⊃ ♦A Seriality ∀x∃y.R(x, y)

2:♦�A ⊃ �♦A Directedness ∀x, y, z.(R(x, y) ∧ R(x, z)) ⊃ ∃t(R(y, t) ∧ R(z, t))

2.2 A Labeled Proof System for Modal Logic

The basic idea behind labeled proof systems for modal logic is to internalize elements of
the corresponding Kripke semantics (namely, the worlds of a Kripke structure and the
accessibility relation between such worlds) into the syntax. As a concrete example of
such a system, here we will consider the system G3K presented in [14]. G3K formulas

are either labeled formulas of the form x : A or relational atoms of the form xRy,
where x, y range over a set of variables and A is a modal formula (here we consider also
∧ and ∨ as primitive connectives). In the following, we will use ϕ, ψ to denote G3K
formulas. G3K sequents have the form Γ � Δ, where Γ and Δ are multisets containing
labeled formulas and relational atoms. In Fig. 1, we present the rules of G3K, which is
proved to be sound and complete for the basic modal logic K [14]. The system is then
extended to cover all modal logics whose Kripke frames are determined by geometric
axioms (note that all the logics in Table 1 fall inside this class), i.e., axioms of the form:

∀z(P1 ∧ . . . ∧ Pm ⊃ (∃x1(Q11 ∧ . . . ∧ Q1k1) ∨ . . . ∨ ∃xn(Qn1 ∧ . . . ∧ Qnkn)))

where each Pi and Qjk is a relational atom1. As described in [14], the following general
rule scheme

Q1(y1/x1), P , Γ � Δ . . . Qn(yn/xn), P , Γ � Δ

P, Γ � Δ
GRS

can be used instead of the geometric axiom above: here Qj and P denote the multisets
of relational atoms Qj1, . . . , Qjkj and P1, . . . , Pm, respectively, and the eigenvariables

1 Note that, for simplicity, as in [14], we restrict to the case where only a single variable
is bound to each existential quantifier.
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y1, . . . , yn do not occur free in the conclusion. In Fig. 2, the rules for capturing the
frame properties of Table 1 are shown. By modularly adding such rules to the base
system G3K, we get a system for the corresponding logic. In the following, we will
denote by G3K∗ any extension of G3K with rules following the geometric rule scheme.
We remark that all structural rules (cut included) are admissible in G3K∗ [14].

Fig. 1. G3K: a labeled proof system for the modal logic K

Fig. 2. Rules for capturing relational properties.

2.3 The Standard Translation from Modal Logic into Classical
Logic

The following standard translation (see, e.g., [2]) provides a bridge between proposi-
tional modal logic and first-order classical logic:

STx(P ) = P (x) STx(A ⊃ B) = STx(A) ⊃ STx(B)
STx(⊥) = ⊥ STx(�A) = ∀y(R(x, y) ⊃ STy(A))

STx(♦A) = ∃y(R(x, y) ∧ STy(A))

where x is a free variable denoting the world in which the formula is evaluated. The
first-order language into which modal formulas are translated is usually referred to as
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first-order correspondence language [2] and consists of a binary predicate symbol R and
a unary predicate symbol P for each P ∈ P. When a modal operator is translated, a
new fresh variable2 is introduced. It is easy to show that for any modal formula A, any
model M and any world w, we have that M, w |= A if and only if M |= STx(A)[x ← w].

2.4 A Focused Proof System for First-Order Classical Logic

Figure 3 presents the LKF proof system presented in [10] (where some inference rules
have been renamed). This system involves polarized formulas, built using atomic for-
mulas, the usual first-order quantifiers ∀ and ∃, and polarized versions of the logical
connectives and constants t−, t+, f−, f+, ∨−, ∨+, ∧−, and ∧+. The positive and nega-
tive versions of connectives and constants have identical truth conditions but different
inference rules inside the polarized proof system. For example, the introduction rule
for ∨− is invertible while the introduction rule for ∨+ is not. All polarized formulas are
(as the name implies) either positive or negative. In particular, if a formula’s top-level
connective is t+, f+, ∨+, ∧+, or ∃, then that formula is positive. Dually, if a formula’s
top-level connective is t−, f−, ∨−, ∧−, or ∀, then it is negative. In this way, every
polarized formula is classified except for literals: to polarize them, we are allowed to
fix the polarity of atomic formulas in any way we see fit. We may ask that all atomic
formulas are positive, that they are all negative, or we can mix polarity assignments.
In any case, if A is a positive atomic formula, then it is a positive formula and ¬A is
a negative formula: conversely, if A is a negative atomic formula, then it is a negative
formula and ¬A is a positive formula.

We shall find it important to break a sequence of negative or positive connectives
by inserting delays: if B is a polarized formula then we define ∂−(B) to be (the always
negative) B∧−t− and ∂+(B) to be (the always positive) B∧+t+. From such a definition,
the following rules can be derived:

� Θ ⇑ B, Γ

� Θ ⇑ ∂−(B), Γ
∂− � Θ ⇓ B

� Θ ⇓ ∂+(B)
∂+

Returning to the proof system in Fig. 3, we note that the inference rules there
involve two kinds of sequents: � Θ ⇑ Γ and � Θ ⇓ B, where Θ is a multiset of polarized
formulas, B is a polarized formula, and Γ is a list of polarized formulas. (It is possible
to relax the list structure of Γ to be a multiset but that relaxation is not useful in this
paper). The formula occurrence B in the ⇓ sequent is called the focus of that sequent.
The completeness of LKF can be stated as follows [10]: if B is an (unpolarized) classical
logic theorem and B̂ is any polarization of B, then � · ⇑ B̂ is provable in LKF. Clearly,
the choice of polarization does not affect provability but it can have a big impact on
the structure of proofs.

To illustrate the use of delays, notice that the sequent � Θ ⇓ ∃x∃y.B(x, y) must
be the result of applying (at least) two ∃-introduction rules. In contrast, the sequent
� Θ ⇓ ∃x∂−(∃y.B(x, y)) must be the conclusion of only one ∃-introduction rule: a
separate instantiation of ∃y can take place elsewhere in the proof.

A polarized formula B is a bipolar formula if B is a positive formula and no positive
subformula occurrence of B is in the scope of a negative connective in B. A bipole is

2 In fact, it is possible to show that every modal formula can be translated into a
formula in the fragment of first-order logic which uses only two variables [2]. By the
decidability of such a fragment, an easy proof of the decidability of propositional
modal logic follows.
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a pair of a negative phase below a positive phase within LKF: thus, bipoles are macro
inference rules in which the conclusion and the premises are ⇑-sequents with no formulas
to the right of the up-arrow.

Fig. 3. The LKF focused proof systems for classical logic (minor differences from [10]).

3 Labeled Proof Systems and Focused Proof Systems

In this section, we compare derivations in G3K (and its extensions) and LKF . In
particular, we show that there is a strict correspondence between rule applications in
the former and bipoles in the latter. In order to do that, we will define a translation
from labeled modal formulas into first-order polarized formulas.

3.1 From Labeled Modal Formulas to Polarized First-Order
Formulas

Note that the set of connectives used in the language of G3K differs from that of LKF ,
where formulas are assumed to be in negation normal form. Given a modal formula A,
we denote with A◦ its negation normal form. In our translation into polarized formulas,
we sometimes put a delay in front of a formula only if it is not a literal. For that purpose,

we define A∂+
(when A is a first-order formula in negation normal form) to be A if A

is a literal and ∂+(A) otherwise. We extend such a notion to a multiset Γ of formulas

by defining Γ ∂+
= {A∂+ |A ∈ Γ}.

We are now in a position to present our translation from the language of G3K
into the language of LKF . Such a translation is based on the standard translation
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recalled in Sect. 2. Given a world x, we define the translation [.]x from modal formulas
in negation normal form into polarized first-order formulas as:

[P ]x = P (x) [A◦ ∧ B◦]x = [A◦]x
∂+ ∧− [B◦]x

∂+

[¬P ]x = ¬P (x) [A◦ ∨ B◦]x = [A◦]x
∂+ ∨− [B◦]x

∂+

[⊥]x = f− [♦A◦]x = ∃y(R(x, y) ∧+ ∂−([A◦]y
∂+

))

[�A◦]x = ∀y(¬R(x, y) ∨− [A◦]y
∂+

)

Based on this, we define the translation [.] from labeled formulas and relational atoms
into polarized first-order formulas as [x : A] = [A◦]x and [xRy] = R(x, y). In the
following, we will sometimes use the natural extension of this notion to multisets of
labeled formulas, i.e., [Γ ] = {[ϕ] | ϕ ∈ Γ}. Note that predicates of the form P (x) and
R(x, y) are considered as having positive polarity.

Finally, we define a translation from G3K sequents into LKF sequents:

[(ϕ1, . . . , ϕn � ψ1, . . . , ψm)] = � [¬ϕ1]
∂+

, . . . , [¬ϕn]∂
+

, [ψ1]
∂+

, . . . , [ψm]∂
+ ⇑ ·

where [¬ϕ] is [(¬A)◦]x if ϕ = x : A and is ¬R(x, y) if ϕ = xRy. We will sometimes
write ¬Γ to denote {¬A | A ∈ Γ}.

3.2 From G3K to LKF

Given two multisets of LKF formulas Γ and Γ ′, we say that Γ ′ extends Γ if Γ ′ contains
Γ and FV (Γ ) = FV (Γ ′), where FV (Δ) denotes the set of free variables occurring free
in Δ. We say that an LKF sequent � Γ ⇑· extends an LKF sequent � Γ ′ ⇑· if Γ extends
Γ ′.

Lemma 1. Let
S1

S
r
(
S1 S2

S
r
)

be an application of a rule in G3K. Then for any

LKF sequent S′ that extends [S], there exists a derivation

S′
1....

S′

⎛

⎝
S′
1 S′

2....
S′

⎞

⎠ in LKF ,

which is a bipole, and such that S′
1 extends [S1] (S′

1 and S′
2 extend [S1] and [S2],

respectively). Furthermore, if S
r is a rule application in G3K, then for any LKF

sequent S′ that extends [S], there exists a proof of S′ that is a bipole.

Proof. The proof proceeds by considering all the rules of G3K. For example, the trans-
lation of the R� from Fig. 1 is given by following derivation in LKF :

� ¬Γ ′, Δ′, ∂+([�A◦]x), ¬R(x, y), [A◦]y∂+ ⇑ ·
� ¬Γ ′, Δ′, ∂+([�A◦]x), ¬R(x, y) ⇑ [A◦]y∂+

store

� ¬Γ ′, Δ′, ∂+([�A◦]x) ⇑ ¬R(x, y), [A◦]y∂+
store

� ¬Γ ′, Δ′, ∂+([�A◦]x) ⇑ ¬R(x, y) ∨− [A◦]y∂+ ∨−

� ¬Γ ′, Δ′, ∂+([�A◦]x) ⇑ ∀y(¬R(x, y) ∨− [A◦]y∂+
)

∀

� ¬Γ ′, Δ′, ∂+([�A◦]x) ⇓ ∀y(¬R(x, y) ∨− [A◦]y∂+
)

release

� ¬Γ ′, Δ′, ∂+([�A◦]x) ⇓ ∂+(∀y(¬R(x, y) ∨− [A◦]y∂+
))

∂+

� ¬Γ ′, Δ′, ∂+([�A◦]x) ⇑ · decide

Here Γ ′ is any extension of [Γ ]∂
+

and Δ′ is any extension of [Δ]∂
+
. Note that the

condition on free variables in the definition of extension ensures that ∀ can be applied
in the derivation above, as the constraint on eigenvariables is satisfied.
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Theorem 2. Let Π be a G3K derivation of a sequent S from the sequents S1, . . . , Sn.

Then there exists an LKF derivation Π ′ of [S] from [S1], . . . , [Sn] (such that each rule

application in Π corresponds to a bipole in Π ′).

Proof. We proceed bottom-up by starting from the root of Π and build Π ′ by repeat-
edly applying Lemma 1. At each step, we get leaves that are extensions of the ones in
Π, so that Lemma 1 can be applied again.

3.3 From LKF to G3K

Given two multisets of LKF formulas Γ and Γ ′, we say that Γ ′ is a contraction of Γ
if Γ contains Γ ′ and for each formula A in Γ there is at least one occurrence of A in
Γ ′, i.e., Γ and Γ ′ contain the same set of formulas but Γ can have more occurrences.
We say that an LKF sequent � Γ ′ ⇑ · is a contraction of an LKF sequent � Γ ⇑ · if Γ ′

is a contraction of Γ .

Lemma 3. Let S′ be an LKF sequent of the form � Γ ′ ⇑ · such that each formula in

S′ is the translation [ϕ] of some G3K formula ϕ. For each derivation of the form

S′
1....

S′⎛

⎝
S′
1 S′

2....
S′

⎞

⎠ in LKF that is a bipole, there exist:

(i) a G3K sequent S, such that S′ is a contraction of [S]; and

(ii) a rule application
S1

S

(
S1 S2

S

)
in G3K such that S′

1 = [S1] (S′
1 = [S1] and

S′
2 = [S2]).

Furthermore, for each proof of S′ that is a bipole, there exist a G3K sequent S,

such that S′ is a contraction of [S], and a rule application S
init

in G3K.

Proof. We have one case for each possible G3K formula ϕ on the translation of which
a decide is applied. Let us consider one representative case.

Let ϕ = x : ♦A. Then we have the following derivation in LKF :

� ¬Γ ′, Δ′, ∂+([♦A◦]x) ⇓ R(x, y)
init

� ¬Γ ′, Δ′, ∂+([♦A◦]x), [A◦]y∂+ ⇑ ·
� ¬Γ ′, Δ′, ∂+([♦A◦]x) ⇑ [A◦]y∂+

store

� ¬Γ ′, Δ′, ∂+([♦A◦]x) ⇑ ∂−([A◦]y∂+
)

∂−

� ¬Γ ′, Δ′, ∂+([♦A◦]x) ⇓ ∂−([A◦]y∂+
)

release

� ¬Γ ′, Δ′, ∂+([♦A◦]x) ⇓ R(x, y) ∧+ ∂−([A◦]y∂+
)

∧+

� ¬Γ ′, Δ′, ∂+([♦A◦]x) ⇓ ∃y(R(x, y) ∧+ ∂−([A◦]y∂+
))

∃

� ¬Γ ′, Δ′, ∂+([♦A◦]x) ⇓ ∂+(∃y(R(x, y) ∧+ ∂−([A◦]y∂+
)))

∂+

� ¬Γ ′, Δ′, ∂+([♦A◦]x) ⇑ · decide

Note that in order to be able to apply the rule init, and thus have indeed a bipole, the
multiset ¬Γ ′ must contain the formula ¬R(x, y). But then, in G3K, we can have the
following corresponding rule application:
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xRy, Γ � Δ, x : ♦A, y : A

xRy, Γ � Δ, x : ♦A
R♦

where Γ ′ = [Γ ]∂
+

and Δ′ = [Δ]∂
+
.

Theorem 4. Let Π ′ be a proof of a sequent S′ in LKF such that S′ = [S] for some

G3K-sequent S. Then there exists a proof Π of S in G3K (such that each bipole in Π ′

corresponds to a single rule application in Π).

Proof. We proceed top-down starting from the leaves of Π ′ and build Π by repeatedly
applying Lemma 3. At each step, we get as the conclusion of a G3K rule application a
sequent S∗ such that the one obtained in the corresponding step of Π ′ is a contraction
of [S∗]. By observing that the contraction rule is (height-preserving) admissible in
G3K, we can transform the G3K derivation built so far in order to remove possible
undesired multiple occurrences of a formula.

The strong correspondence between labeled rule applications and LKF bipoles can
also be used to get an immediate proof of the completeness of G3K.

Corollary 5. The system G3K is complete.

Proof. Follows from the completeness of LKF , the adequacy of the standard trans-
lation from the modal language into the first-order classical language (on which our
translation is based) and Theorem 4.

3.4 Extensions of K

Here we show how the results of the previous section can be extended to modal logics
whose Kripke frames are characterized by properties expressible by means of geometric
axioms.

We recall from Sect. 2 that a geometric axiom has the form:

∀z(P1 ∧ . . . ∧ Pm ⊃ (∃x1(Q11 ∧ . . . ∧ Q1k1) ∨ . . . ∨ ∃xn(Qn1 ∧ . . . ∧ Qnkn)))

In LKF , we can consider geometric extensions of the logic K by adding the corre-
sponding geometric axioms in the left-side of the sequent to be derived. We propose
the following translation, involving polarization of connectives, for axioms G having
the form shown above3:

∃z((P1 ∧+. . .∧+Pm) ∧+(∀x1(¬Q11∨−. . . ∨−¬Q1k1) ∧−. . . ∧− ∀xn(¬Qn1 ∨−. . . ∨−¬Qnkn)))

As recalled in Sect. 2, the system G3K can be extended to capture all the modal
logics characterized by geometric axioms, by modularly adding to the base system rules
defined according to a proper scheme [14]. Each application of such a rule corresponds
to a single bipole in LKF , as shown in Fig. 4. This fact ensures that the statements of
Theorems 2 and 4 (as well as Corollary 5) hold also for any geometric extension of K
and any system G3K∗.

3 Note that in LKF we consider one-sided sequents and the one we propose is in fact
a polarization of the negation of the axiom.
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Fig. 4. LKF derivation (bipole) corresponding to a geometric rule application in
G3K∗.

3.5 Checking G3K Proofs via LKF

The results in this section can be immediately applied to the ProofCert project [4,11],
where a general proof checker, based on LKF (or on its intuitionistic version LJF )
and implemented in λProlog [12], is used to check proofs in a wide range of formats. To
this aim, LKF is augmented as follows [3]: (i) a proof certificate term, which describes
the proof evidence to be checked, is added to every sequent; (ii) every inference rule
of LKF has an additional premise using either an expert or a clerk predicate; and (iii)
formulas to the left of ⇑ and ⇓ are now associated to an index, used to regulate the
mechanism of storing and deciding.

A foundational proof certificate for a given proof format consists in the definition
of a translation of formulas from the original language into the language of LKF and
in the definition of expert and clerk predicates. Expert predicates are used to drive
the checking process during the synchronous phase (e.g., by specifying which term
has to be used to instantiate an existential), while clerk predicates are used in the
asynchronous phase not to extract information from the certificates but only to do
routine computations. (The full augmented system LKFa is available in the extended
version of this paper). To illustrate the idea, we show here the augmented version of
the decide rule:

Ξ′ � Θ ⇓ P decidee(Ξ, Ξ′, l) 〈l, P 〉 ∈ Θ positive(P )

Ξ � Θ ⇑ · decidea

Here Ξ and Ξ′ are certificates, l is the index specifying the formula on which to decide
and the expert predicate decidee extracts Ξ′ and l from Ξ.

By using the encoding proposed in this section and by exploiting the shown corre-
spondence between inference rules and bipoles, G3K proof evidence can be described
(and then checked in LKFa) by using very simple proof certificates, basically consisting
in the sequence of (translated and polarized) formulas on which to decide. The expert
for the decide rule simply decides on the formula on top of the certificate and removes
it from the certificate itself. A simple version of it can have the following λ Prolog form:

∀A∀Γ. decidee([A|Γ ], Γ, A).
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where we use the formula A itself as an index. The other clerk and expert predicates
are either empty or only used to “propagate” information.4

4 Focused Labeled Proof Systems for Modal Logic

4.1 A Focused System for the Logic K

We have shown how the standard translation from modal logic into classical logic,
when enriched with a proper polarization, allows one to define a strong correspondence
between labeled modal derivations and focused classical derivations. Here we go further
and define a focused labeled system (LMF) for modal logic.

The basic idea is to define a restriction of LKF targeting the formulas arising from
the modal language, i.e., such that the quantifier rules are only applied to formulas that
represent the translation of modal formulas of the form �A or ♦A. LMF is defined
over a labeled modal language: formulas have the form x : A, xRy or ¬xRy, where A
is a polarized modal formula in negation normal form. Note that here, differently from
G3K, since we consider one-sided sequents, relational atoms can also occur negated.
The following LKF derivations show the way we extract the modal rules, from ∀ and ∃,
by restricting the use of the first-order quantifiers to only express (a proper polarization
of) the standard translation of formulas having � or ♦ as the main connective:

� Θ, ¬R(x, y) ⇑ A(y), Γ

� Θ ⇑ ¬R(x, y), A(y), Γ
store

� Θ ⇑ ¬R(x, y) ∨− A(y), Γ
∨−

� Θ ⇑ ∀y(¬R(x, y) ∨− A(y)), Γ
∀

� Θ ⇓ R(x, y) � Θ ⇓ A(y)

� Θ ⇓ R(x, y) ∧+ A(y)
∧+

� Θ ⇓ ∃y(R(x, y) ∧+ A(y))
∃

From such derivations, we get the following rules �K and ♦K , respectively:

� Θ, ¬xRy ⇑ y : B, Γ

� Θ ⇑ x : �B, Γ
�K

� Θ ⇓ xRy � Θ ⇓ y : B

� Θ ⇓ x : ♦B
♦K

where, in analogy with the side-condition on the ∀ rule, we have that in �K , y is not
free in Θ nor in Γ . The whole system LMF is presented in Fig. 5.

The notion of polarizing an (unpolarized) propositional modal formula in the LMF
setting is essentially the same as it was in the LKF setting. In particular, the polarities
of ♦B and �B are, respectively, positive and negative. The propositional constants
and the conjunction and disjunction are ambiguous and can be made either positive
or negative. Finally, the atomic formulas that result from translating propositional
constants in modal formulas are also ambiguous and can be given any arbitrary but
fixed polarization. In the case of LMF, we shall fix the polarity of relational atoms
to be positive. This latter choice is important for us in the next section to properly
describe the geometric-axioms-as-inference-rules.

Theorem 6. The system LMF is sound and complete with respect to the logic K, for

any polarization of formulas.

4 We note that in this way, we provide no information on which substitution term
to use in case of existential quantifiers, and let such terms be reconstructed by the
checker. In order to obtain a completely faithful encoding of the original G3K proof,
the label term used for instantiating ♦-formulas should also be contained in the proof
certificate and the expert predicate for the ∃ should take that into account.
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Fig. 5. LMF: a focused labeled proof system for the modal logic K

Proof. If we read a labeled formula x : A as the first-order formula A(x) and a relational
atom xRy as R(x, y), we have that LMF is just obtained by LKF by replacing the
rules ∀ and ∃ by �K and ♦K , respectively (note that the rule init is just split into
initK and initRK). We have shown that �K and ♦K are simply restrictions of ∀ and
∃ to the first-order translation of modalities. Soundness and completeness of LMF
then easily follow from soundness and completeness, with respect to any polarization
of formulas, of LKF (see Sect. 2) and by the adequacy of the standard translation from
propositional modal logic into first-order classical logic.

As it was the case for linear, classical and intuitionistic logic, this focused system
allows for obtaining a normal form of cut-free modal derivations. We can illustrate
that with a simple example: a proof of the labeled formula x : ♦♦¬P ∨ ��P can have
several forms in G3K, as we can alternate applications of R� and R♦, while there
is only one cut-free proof of its polarization x : ♦♦¬P ∨− ��P in LMF , which first
applies (in a single phase) all the �K and then (in another phase) all the ♦K .

4.2 Focused Systems for Extensions of K

We can extend LMF to a focused system for any geometric extension of K by replacing
the first-order axioms with rules manipulating the relational atoms. Namely, given a
geometric axiom of the form ∀z(P1∧ . . .∧Pm ⊃ (∃x1(Q11∧ . . .∧Q1k1)∨ . . .∨∃xn(Qn1∧
. . . ∧ Qnkn))), we can extract, from an LKF derivation analogous to the one in Fig. 4,
the following rule scheme:

� ¬Q1(y1/x1), ¬P , Γ ⇑ · . . . � ¬Qn(yn/xn), ¬P , Γ ⇑ ·
� ¬P , Γ ⇑ · GF
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where Qj and P denote the multisets of relational atoms Qj1, . . . , Qjkj and P1, . . . , Pm,
respectively, and the eigenvariables y1, . . . , yn do not occur free in the conclusion. Note
that in order to build a complete bipole once we focus on the formula representing
the geometric axiom (polarized as in Fig. 4), the literals P must be present in the
context. Given a set of geometric frame properties F1, . . . , Fn, by adding modularly
the corresponding GF -based rules to the base system LMF , we get a focused labeled
system for the logic KF1, . . . , Fn. Soundness and completeness of any such extended
system directly follows from the way we have derived the rule.

The rule scheme GF comes along the lines of the one given in [14] (see Sect. 2).
We notice that in the more specific case of universal axioms (described and treated in
the context of sequent systems in [15]), i.e., axioms of the form ∀z(P1 ∧ . . . ∧ Pm ⊃
Q1 ∨ . . . ∨ Qn) the following rule scheme could also be used:

� P1, Q, Γ ⇑ · . . . � Pm, Q, Γ ⇑ ·
� Q, Γ ⇑ · UF

where Q denotes the multiset of relational atoms Q1, . . . , Qn. Such a rule scheme is
justified by the following LKF derivation, where the formula on the right-side of the
root sequent is a proper polarization of (the negation of) a universal axiom:

� Q, Γ, P1 ⇑ ·
� Q, Γ ⇑ P1

store
. . .

� Q, Γ, Pm ⇑ ·
� Q, Γ ⇑ Pm

store

� Q, Γ ⇑ P1 ∧− . . . ∧− Pm

∧−∗

� Q, Γ ⇓ P1 ∧− . . . ∧− Pm

release
� Q, Γ ⇓ ¬Q1

init
. . . � Q, Γ ⇓ ¬Qn

init

� Q, Γ ⇓ ¬Q1 ∧+ . . . ∧+ ¬Qn

∧+∗

� Q, Γ ⇓ (P1 ∧− . . . ∧− Pm) ∧+ (¬Q1 ∧+ . . . ∧+ ¬Qn)
∧+

� Q, Γ ⇓ ∃z((P1 ∧− . . . ∧− Pm) ∧+ (¬Q1 ∧+ . . . ∧+ ¬Qn))
∃

where in ∗, for simplicity, we have applied several instances of the same rule in a single
step. Note that, in this case, relational atoms need to be assigned negative polarity
(and small adjustments should be made to the base system LMF in order to deal with
this fact).

The rule scheme UF cannot be applied in the general case of geometric axioms. In
fact, with regard to the derivation shown above, one can notice that in the presence of
a geometric axiom, the conjunction of negated Qi atoms would occur under the scope
of a universal quantification and we would not be able to process the whole formula
inside a single bipole.

The different formulation of the GF and UF rule schemes seems to be related to
two different approaches present in the literature of labeled (natural deduction) systems
for modal logics. As an example, we show here two couples of natural deduction rules
for expressing the (universal) property of transitivity and the (non-universal) property
of seriality:

xRy yRz

[xRz]
....

w : A

w : A
trans1

[xRy]
....

w : A
w : A

ser1
xRy yRz

xRz
trans2

xRf(x)
ser2

where y is fresh in ser1. The rules trans1 and ser1 (from [18], in the style of GF ) follow
a pattern that allows capturing all geometric properties and is used in the context of
a natural deduction system where no rule has a relational atom in the conclusion. The
rules trans2 and ser2 (from [19], in the style of UF ) express relational properties in
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a more direct fashion (only capturing Horn formulas) where the “freshness” of the
variable to be introduced, in the case of a truly geometric axiom, is recovered by using
Skolem functions (as in ser2).

5 Conclusion and Future Work

The approach to describing modal logic proof systems via labeled sequents provides
a way to reduce provability in modal logic to provability in first-order logic. This
reduction is also modular: different modal logics can be presented using different the-
ories describing the structure of their Kripke frames. When these theories—taken as
assumptions—are also geometric, their use can be understood, instead, as inference
rules [14]. Our work here using focused proof systems takes this connection one step
further: we are able to faithfully encode the inference rules of labeled modal logic as
bipoles in focused proofs in first-order logic. We note that in [16], an encoding of the
same labeled modal proof system into a framework based on linear logic with subex-
ponentials was proposed, with the aim of checking meta-properties of the system. The
kind of encoding that we propose here is useful for the ProofCert project [3,11], where
a general proof checker for focused first-order classical (and intuitionistic) logic is used
to check proofs in a wide range of different formats: the encoding in Sect. 3 is all that is
needed for that general purpose proof checker to check labeled sequent calculus proofs
of modal logic formulas. We also believe that the simple foundational proof certificate
sketched there for labeled modal sequent systems can be easily adapted and extended
to work with prefixed tableaux for modal logic [7]. As a next step, we plan to define
and implement, in the context of ProofCert, foundational proof certificates for theorem
provers based on such an approach.

Another natural future direction is to consider a version of the focused calculus
LMF but for intuitionistic modal logic (as, e.g., the ones considered in [18]) by using
as a basis (instead of LKF) the focused proof system LJF for intuitionistic logic [10].
Similarly, this work could be extended to investigate the relationship between focused
proof systems and labeled proof systems for other non-classical logics [8,19], such as
intermediate logics [5]. Another interesting direction consists in considering non-labeled
deduction systems for modal logic (see [7] for a general account), and in particular
modal proof systems based on generalizations/extensions of sequents, such as hyper-
sequents or nested sequents. In that setting, more sophisticated focusing mechanisms
seem to be necessary in order to get an appropriate correspondence between modal
inference rules and bipoles.

Acknowledgments. This work was carried out during the tenure of an ERCIM Alain
Bensoussan Fellowship Programme by the second author and was funded by the ERC
Advanced Grant ProofCert.

References

1. Andreoli, J.-M.: Logic programming with focusing proofs in linear logic. J. Logic
Comput. 2(3), 297–347 (1992)

2. Blackburn, P., Van Benthem, J.: Modal logic: a semantic perspective. In: Handbook
of Modal Logic, pp. 1–82. Elsevier (2007)



280 D. Miller and M. Volpe

3. Chihani, Z., Miller, D., Renaud, F.: Foundational proof certificates in first-order
logic. In: Bonacina, M.P. (ed.) CADE 2013. LNCS, vol. 7898, pp. 162–177. Springer,
Heidelberg (2013)

4. Chihani, Z., Libal, T., Reis, G.: The Proof Certifier Checkers. To appear in
Tableaux, System Description (2015)

5. Dyckhoff, R., Negri, S.: Proof analysis in intermediate logics. Arch. Math. Logic
51(1–2), 71–92 (2012)

6. Dyckhoff, R., Negri, S.: Geometrisation of first-order logic. Bull. Symbolic Logic
21, 123–163 (2015)

7. Fitting, M.: Modal proof theory. In: Wolter, F., Blackburn, P., van Benthem, J.
(eds.) Handbook of Modal Logic, pp. 85–138. Elsevier, New York (2007)

8. Gabbay, D.M.: Labelled Deductive Systems. Clarendon Press, Oxford (1996)
9. Girard, J.-Y.: On the meaning of logical rules I: syntax vs. semantics. In: Berger, U.,

Schwichtenberg, H. (eds.) Computational Logic. NATO ASI, pp. 215–272. Springer,
Heidelberg (1999)

10. Liang, C., Miller, D.: Focusing and polarization in linear, intuitionistic, and clas-
sical logics. Theo. Comput. Sci. 410(46), 4747–4768 (2009)

11. Miller, D.: A proposal for broad spectrum proof certificates. In: Jouannaud, J.-P.,
Shao, Z. (eds.) CPP 2011. LNCS, vol. 7086, pp. 54–69. Springer, Heidelberg (2011)

12. Miller, D., Nadathur, G.: Programming with Higher-Order Logic. Cambridge Uni-
versity Press, Cambridge (2012)

13. Miller, D., Pimentel, E.: A formal framework for specifying sequent calculus proof
systems. Theo. Comput. Sci. 474, 98–116 (2013)

14. Negri, S.: Proof analysis in modal logic. J. Philos. Logic 34(5–6), 507–544 (2005)
15. Negri, S., von Plato, J.: Cut elimination in the presence of axioms. Bull. Symbolic

Logic 4(4), 418–435 (1998)
16. Nigam, V., Pimentel, E., Reis, G.: An extended framework for specifying and rea-

soning about proof systems. J. Logic Comput. (2014). doi:10.1093/logcom/exu029
17. Sahlqvist, H.: Completeness and correspondence in first and second order semantics

for modal logic. In: Kanger, S., (ed.) Proceedings of the Third Scandinavian Logic
Symposium, pp. 110–143, North Holland (1975)

18. Simpson, A.K.: The Proof Theory and Semantics of Intuitionistic Modal Logic.
Ph.D. thesis, School of Informatics, University of Edinburgh (1994)
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Abstract. Graded path modalities count the number of paths satisfy-
ing a property, and generalize the existential (E) and universal (A) path
modalities of CTL∗. The resulting logic is denoted GCTL∗, and is a
very powerful logic since (as we show) it is equivalent, over trees, to
monadic path logic. We settle the complexity of the satisfiability prob-
lem of GCTL∗, i.e., 2ExpTime-Complete, and the complexity of the
model checking problem of GCTL∗, i.e., PSpace-Complete. The lower
bounds already hold for CTL∗, and so we supply the upper bounds. The
significance of this work is two-fold: GCTL∗ is much more expressive
than CTL∗ as it adds to it a form of quantitative reasoning, and this is
done at no extra cost in computational complexity.

1 Introduction

Quantitative Verification and Graded Modalities. Temporal logics are the
cornerstone of the field of formal verification. In recent years, much attention has
been given to extending these by quantitative measures of function and robust-
ness, e.g., [18]. Unfortunately, these extensions often require one to reason about
weighted automata for which much is undecidable [1,2,10]. One way to extend
classical temporal logics at a lower cost is by counting quantifiers, known as
graded modalities. Graded world modalities were introduced in formal verifica-
tion as a useful extension of the standard existential and universal quantifiers in
branching-time modal logics [7,16,19,23]. These modalities allow one to express
properties such as “there exist at least n successors satisfying a formula” or “all
but n successors satisfy a formula”. A prominent example is the extension of
μ-calculus called Gμ-calculus [7,19].

Despite its high expressive power, the μ-calculus (which extends modal
logic by least and greatest fixpoint operators) is a low-level logic, making it
“unfriendly” for users, who usually find it very hard to understand, let alone
write, formulas involving even very modest nesting of fixed points. In contrast,
CTL and CTL∗ are much more intuitive and user-friendly. An extension of CTL
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with graded path modalities called GCTL was defined in [5,6]. Although there
are several positive results about GCTL this logic suffers from similar limitations
as CTL, i.e., it cannot nest successive temporal operators and so cannot express
fairness constraints. This dramatically limits the usefulness of GCTL and so we
turn instead to GCTL∗ in which one can naturally and comprehensibly express
complex properties of systems. Although the syntax and semantics of GCTL∗

were defined and justified in [6], only a rudimentary study of it was made. In
particular, the complexity of the satisfiability and model checking problem for
this logic was never established, and remained open since its introduction in
2009. Instead, research has focused on the much simpler fragment of GCTL.

Our Results. We establish the exact complexity of the satisfiability and
model checking problems for GCTL∗ to be 2ExpTime-Complete and PSpace-
Complete, respectively. Thus, in both cases, the problems for GCTL∗ are not
harder than for CTL∗. This is very good news indeed since, as we also show,
GCTL∗ is expressively equivalent, over trees, to monadic path logic, and is thus
a powerful, yet relatively friendly logic. Along the way, we prove that GCTL∗

has the bounded-degree tree-model property, i.e., a satisfiable formula is satis-
fied in a tree whose branching degree is at most exponential in the size of the
formula.

The Importance of Our Results. We obtain that GCTL∗ has the following
desirable combination of attributes:

(a) GCTL∗ can Naturally Express Properties of Paths as well as Count
Them. For example, the formula E≥2G(request → (request U granted)) says:
“there are at least two ways to schedule the computation such that every request
is eventually granted”. This cannot be expressed in CTL∗ nor in GCTL.

The naive semantics for E≥nψ which states that “there are at least n different
paths satisfying ψ” while at first glance may seem natural and desirable, when
examined more carefully turns out to be undesirable, and less informative. For
example, consider a faulty program in which requests are sometimes not granted.
In GCTL∗ (unlike the naive counting) the formula E≥2[F(request∧¬Fgranted)]
requires at least two incomparable sequences of operations, each causing this
faulty behaviour. Hence, it indicates whether the faulty behaviour is the result
of multiple underlying problems, and is not confused by multiple paths that are
extensions of a single faulty prefix. Furthermore, the naive counting very quickly
leads to unnatural interpretations, as convincingly argued in [6].

This ability to easily count paths is a natural fit in various application
domains. For example, in databases there is a close relationship between model-
checking CTL* and XML navigation (see [4]). The logic GCTL∗ allows one to
express quantitative requirements such as” client has at least 5 items in last-
month orders”. More generally, graded operators are common in description
logics, which are prominently used for formal reasoning in AI (e.g., knowledge
querying, planning with redundancies).

(b) GCTL∗ is Extremely Expressive. Not only does GCTL∗ extend CTL∗

(and thus, unlikeCTL, it can reason about fairness),weprove that it is expressively
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equivalent, over trees, to Monadic Path Logic (MPL) which is Monadic Second-
Order Logic (MSOL) interpreted over trees but with set quantification restricted
to branches.

(c) GCTL∗ has Relatively Low Complexity of Satisfiability. Unfortu-
nately, the complexity of satisfiability of MPL is non-elementary (this is already
true for FOL). In sharp contrast, we prove that the complexity of satisfiability
of GCTL∗ is 2ExpTime, and thus is no harder than for CTL∗.

Technical Contributions. The upper bounds are obtained by exploiting an
automata-theoretic approach for branching-time logics, combined with game the-
oretic reasoning at a crucial point. The automata-theoretic approach is suitable
because GCTL∗ turns out to have the tree-model property. It is very hard to
see how other techniques for deciding questions in logic (e.g. effective quantifier
elimination, tableaux, composition) can be used to achieve optimal complexity
results for GCTL∗. Our proof is not just an easy adaptation of the classical
decision procedure. We relate GCTL∗ to a new model of automata, i.e., Graded
Hesitant Tree Automata (GHTA). These automata work on finitely-branching
trees (not just k-ary trees) and their transition relations can count up to a given
number (usual alternating automata only count up to 1).

Related Work. Counting modalities were first introduced by Fine [16] under
the name graded world modalities. A systematic treatment of the complexity of
various graded modal logics followed [9,14,21,23,24]. The extension of μ-calculus
by graded world modalities was investigated in [7,19]. Although these articles
introduce automata that can count, our GHTA are more complicated since they
have to deal with graded path modalities and not just graded world modalities.
The extension of CTL∗ by the ability to say “there exist at least n successors
satisfying ψ”, called counting-CTL∗, was defined in [22], and its connection with
Monadic Path Logic studied using the composition method. It is unclear if that
method, although elegant, can yield the complexity bounds we achieve (even for
counting-CTL∗). As shown in [6], Gμ-calculus cannot succinctly reason about
paths, or even grandchildren of a given node (the same goes for counting-CTL∗).
The first work to deal with graded path modalities is [5] that introduced GCTL,
the extension of CTL by these modalities. Graded path modalities over CTL
were also studied in [15], using a different semantics than GCTLwhich is tailored
for extending CTL, and it is unclear how one can extend their work to CTL∗.

2 The GCTL∗ Temporal Logic

Let N denote the positive integers, and [d] = {1, 2, . . . , d} for d ∈ N. An LTS
(Labeled Transition System/Kripke structure) is a tuple S = 〈Σ,S,E, λ〉, where
Σ is a set of labels, S is a countable set of states, E ⊆ S × S is the transition
relation, and λ : S �→ Σ is the labeling function. Typically, Σ = 2AP where AP
is a finite set of atomic propositions. The degree of a state s is the cardinality
of the set {t ∈ S : (s, t) ∈ E} of its successors. We assume that E is total,
i.e., that every state has a successor. A path in S is a finite or infinite sequence
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π0π1 · · · ∈ (S∗)∪(Sω) such that (πi−1, πi) ∈ E for all 1 ≤ i < |π| (|π| is the length
of π). The set of (finite and infinite) paths in S is written pth(S), and the set of
(finite and infinite) paths in S that start in a given state q ∈ S is written pth(S,
q). Let � be the prefix ordering on paths. If π � π′ say that π′ is an extension of
π. For a set of paths X, denote by min(X) the minimal elements of X according
to �. A Σ-labeled tree T is a pair 〈T, V 〉 where T ⊆ N

∗ is a ≺-downward closed
set of strings over N, and V : T → Σ is a labeling. We implicitly view a tree
T = 〈T, V 〉 as the LTS 〈Σ,T,E, V 〉 where (t, s) ∈ E iff s is a son of t. If every
node of a tree T has a finite degree then T is finitely branching. If every node has
at most degree k ∈ N, then T is boundedly branching or has branching degree k.

2.1 Syntax and Semantics of GCTL∗

GCTL∗ extends CTL∗ by graded path quantifiers of the form E≥g. We follow
the definition of GCTL∗ from [6], but give a slightly simpler syntax. We assume
that the reader is familiar with the logics CTL∗, LTL, and CTL (see [20,25]).

The semantics of GCTL∗ is defined for an LTS S. The GCTL∗ formula
E≥gψ, for GCTL∗ path formula ψ, can be read as “there exist at least g (mini-
mal ψ-conservative) paths”. Minimality was defined above, and so we now say,
informally, what it means for a path to be ψ-conservative. An infinite path of S
is ψ-conservative if it satisfies ψ, and a finite path of S is ψ-conservative if all
its (finite and infinite) extensions in S satisfy ψ. Note that this notion uses a
semantics of GCTL∗ over finite paths, and thus the semantics of GCTL∗ needs
to be defined for finite paths (as well as infinite paths). As in [6], we use the
weak-version of semantics of temporal operators for finite paths (defined in [11]).
Intuitively, temporal operators are interpreted pessimistically (with respect to
possible extensions of the path), e.g., (S, π) |= Xψ iff |π| ≥ 2 and (S, π≥1) |= ψ.

Syntax of GCTL∗. Fix a set of atoms AP. The GCTL∗state (ϕ) and path (ψ)
formulas are built inductively from AP using the following grammar: ϕ:: = p |
¬ϕ | ϕ ∨ ϕ | E≥gψ and ψ:: = ϕ | ¬ψ | ψ ∨ ψ | Xψ | ψUψ | ψRψ.

In the first part, p varies over AP and g varies over N (and thus, technically,
there are infinitely many rules in this grammar). As usual, X,U and R are called
temporal operators and E≥g (for g ∈ N) are called path modalities (also called
path quantifiers). We write Fϕ instead of trueUϕ, and Gϕ instead of falseRϕ.
The class of GCTL∗ formulas is the set of state formulas generated by the above
grammar. The simpler class of Graded CTL formulas (GCTL) is obtained by
requiring each temporal operator to be immediately preceded by a path quan-
tifier. The logic LTL is the class of path formulas in which no path quantifier
appears. The degree of the quantifier E≥g is the number g. The degree deg(ϕ),
of a state formula ϕ, is the maximum of the degrees of the quantifiers appearing
in ϕ. The length |ϕ|, of a formula ϕ, is defined inductively on the structure of ϕ
as usual, and using |E≥gψ| equal to g + 1 + |ψ| (i.e., g is coded in unary).

Semantics of GCTL∗. Given an LTS S and a state s ∈ S, the definition of
(S, s) |= ϕ is done inductively on the structure of ϕ, exactly as for CTL∗,
with the only change concerning the new path quantifier E≥g. For ϕ = E≥gψ,
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where ψ is a GCTL∗ path formula, let (S, s) |= ϕ iff the cardinality of the
set min(Con(S, s, ψ)) is at least g, where Con(S, s, ψ) := {π ∈ pth(S, s) | ∀π′ ∈
pth(S, s) : π � π′ implies (S, π′) |= ψ}. The paths in Con(S, s, ψ) are called
ψ-conservative (in S starting at s), and paths in min(Con(S, s, ψ)) are called
minimal ψ-conservative. It is not hard to see that, for total LTSs, the classic
logic CTL∗coincides with the fragment of GCTL∗ in which the degree g of all
quantifiers E≥g is 1.

If ψ is an LTL formula, we may write π |= ψ instead of (S, π) |= ψ. This is
justifiable since the truth of ψ depends only on the path π independently of the
rest of S. Two state formulas φ, φ′ are equivalent if for all S and s ∈ S, we have
(S, s) |= φ iff (S, s) |= φ′. Two path formulas ψ,ψ′ are equivalent if for all S
and π ∈ pth(S), we have that (S, π) |= ψ if and only if (S, π) |= ψ′. An LTS
S with a designated state q ∈ S is a model of a GCTL∗ formula ϕ, sometimes
denoted S |= ϕ, if (S, q) |= ϕ. For a labeled tree T, the designated node is
by default the root, and thus, T |= ϕ means that (T, ε) |= ϕ (recall that ε
designates the root of T). A GCTL∗ formula ϕ is satisfiable iff it has a model.

Example 1. We unpack the meaning of the GCTL∗ formula from the introduc-
tion E≥2[F(request ∧ ¬Fgranted)]. Let ψ denote the path formula F(request ∧
¬Fgranted). First, a finite or infinite path π satisfies ψ if at some point t the
atom request holds, and at no later point on π does the atom granted hold.
A finite π is ψ-conservative if and only if it satisfies ψ and the atom granted
does not hold in any node of the subtree rooted at the end of π; and an infinite
path is ψ-conservative if and only if it satisfies ψ. Thus, E≥2ψ holds if and only
if there exist two possibly finite paths, say π1 and π2, neither one a prefix of the
other, both satisfying ψ (i.e., πi has a request that is never granted on πi), and
such that if πi is finite then that path has a request that is not granted in any
possible extension of πi.

2.2 Important Properties of GCTL∗

Like CTL∗ (see [20]), one can think of a GCTL∗ path formula ψ over atoms AP
as an LTL formula Ψ over atoms which themselves are GCTL∗ state formulas,
as follows. A formula ϕ is a state sub-formula of ψ if i) ϕ is a state formula, and ii)
ϕ is a sub-formula of ψ. A formula ϕ is a maximal state sub-formula of ψ if ϕ is a
state sub-formula of ψ, and ϕ is not a proper sub-formula of any other state sub-
formula of ψ. Let max(ψ) = {ϕ | ϕ is a maximal state sub-formula of ψ}, and
let max(ψ) =

⋃
ϕ∈max(ψ){ϕ,¬ϕ} be the set of all maximal state sub-formulas

of ψ and their negations. Every GCTL∗ path formula ψ can be viewed as
the formula Ψ whose atoms are elements of max(ψ). Note that Ψ is an LTL
formula. For example, for ψ = ((Xp) U (E≥2Xq)) ∨ p, the state sub-formulas
are {p, q,E≥2Xq}, and max(ψ) = {p,E≥2Xq}, and thus Ψ is the LTL formula
(Xp U E≥2Xq) ∨ p over the atoms {p,E≥2Xq} (here we underline sub-formulas
that are treated as atoms). Given an LTS S =

〈
2AP, S, E, λ

〉
and a GCTL∗ path

formula ψ, we define the relabeling of the LTS S by the values of the formulas in
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max(ψ) as Sψ = 〈max(ψ), S, E, L〉 where L(s) is the union of λ(s) and the set
of ϕ ∈ max(ψ) such that (S, s) |= ϕ.

Lemma 1. For every GCTL∗ path formula ψ over AP there is an LTL for-
mula Ψ over max(ψ) such that for all S and all paths π in S: (S, π) |= ψ iff
(Sψ, π) |= Ψ .

It is not hard to see that GCTL∗ is not invariant under bisimulation (cf. [6]),
and that it is invariant under unwinding (cf. [6]). The next theorem shows that
GCTL∗ is a powerful logic. Indeed, it is equivalent, over trees, to Monadic Path
Logic (MPL) which is MSO with quantification restricted to branches. Note
that MPL is only defined over trees, while GCTL∗ (like CTL∗) is defined over
arbitrary LTS. This is the reason we compare their expressiveness over trees.

Theorem 1. GCTL∗ is equivalent, over trees, to Monadic Path Logic.

3 Graded Hesitant Tree Automata

In this section we define a new kind of automaton called Graded Hesitant
Tree Automata. We also make use of the classical non-deterministic finite word
automata (NFW) and non-deterministic Büchi word automata (NBW) (see
[25]), alternating parity tree automata (APTA) (see [12]), and alternating hesi-
tant tree automata (AHTA) (see [20]). We write 〈Σ,Q, q0, δ,G〉 for NBWs and
〈Σ,Q, q0, δ, F 〉 for NFWs where Σ is the input alphabet, Q is the set of states,
q0 is the initial state, δ ⊆ Q×Σ×Q is the transition relation, G ⊆ Q is the set of
accepting states and F ⊆ Q the set of final states. For a set X, let B+(X) be the
set of positive Boolean formulas over X, including the constants true and false.
A set Y ⊆ X satisfies a formula θ ∈ B+(X), written Y |= θ, if assigning true to
elements in Y and false to elements in X \Y makes θ true. Graded hesitant tree
automata (GHTA) generalise AHTA1: (a) they can work on finitely-branching
trees (not just k-ary branching trees), and (b) their transition relation allows
the automaton to send multiple copies into the successors of the current node in
a much more flexible way. Below we formally define AHTA and GHTA.

Definition of AHTA. An Alternating Hesitant Tree Automaton (AHTA) is a
tuple A = 〈Σ,D,Q, q0, δ, 〈G,B〉, 〈part, type,�〉〉 where Σ is a non-empty finite
set of input letters; D ⊂ N is a finite non-empty set of directions, Q is the non-
empty finite set of states, q0 ∈ Q is the initial state; the pair 〈G,B〉 ∈ 2Q × 2Q

is the acceptance condition2 (we sometimes call the states in G good states
1 Strictly speaking, GHTA generalise the symmetric variant of AHTA. That is, for

every language accepted by an AHTA and that is closed under the operation of
permuting siblings, there is a GHTA that accepts the same language.

2 The combination of a Büchi and a co-Büchi condition that hesitant automata use can
be thought of as a special case of the parity condition with 3 colors. Thus, we could
have defined Graded Parity Tree Automata instead (using the parity condition, our
automata strictly generalise the ones in [5,19]) However, we do not need the full
power of the parity condition, and in order to achieve optimal complexity for model
checking of GCTL∗ we need to be able to decide membership of our automata in a
space efficient way, which cannot be done with the parity acceptance condition.
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and the states in B bad states); δ : Q×Σ → B+(D×Q) is the alternating transi-
tion function; part ⊂ 2Q is a partition of Q, type : part → {trans, exist, univ} is
a function assigning the label transient, existential or universal to each element
of the partition, and �⊂ 2Q ×2Q is a partial order on part. Moreover, the transi-
tion function δ is required to satisfy the following hesitancy condition: for every
Q ∈ part, every q ∈ Q, and every σ ∈ Σ: (i) for every Q

′ ∈ part and q′ ∈ Q
′, if q′

occurs in δ(q, σ) then Q
′ � Q; (ii) if type(Q) ∈ trans then no state of Q occurs in

the formula δ(q, σ); (iii) if type(Q) ∈ exist (resp., type(Q) ∈ univ) then there is
at most one element of Q in each disjunct of the DNF (resp., conjunct of CNF)
of δ(q, σ).

An input tree (for AHTA) is a Σ-labeled tree T = 〈T, V 〉 with T ⊆ D∗. Since
D is finite, such trees have fixed finite branching degree. A run (or run tree) of
an alternating tree automaton A on input tree T = 〈T, V 〉 is a (T × Q)-labeled
tree 〈Tr, r〉, such that (a) r(ε) = (ε, q0) and (b) for all y ∈ Tr, with r(y) = (x, q),
there exists a minimal set S ⊆ D × Q, such that S |= δ(q, V (x)), and for every
(d, q′) ∈ S, it is the case that x · d is a son of x, and there exists a son y′ of y,
such that r(y′) = (x · d, q′).

Note that if δ(q, V (x)) = true then S = ∅ and the node y has no children;
and if there is no S as required (for example if x does not have the required
sons) then there is no run-tree with r(y) = (x, q). Observe that disjunctions in
the transition relation are resolved into different run trees, while conjunctions
give rise to different sons of a node in a run tree. If v is a node of the run tree,
and r(v) = (u, q), call u the location associated with v, denoted loc(v), and call
q the state associated with v, denoted state(v).

We now discuss the acceptance condition. Fix a run tree 〈Tr, r〉 and an infinite
path π in it. Say that the path visits a state q at time i if state(πi) = q. The hesi-
tancy restriction (i) guarantees that the path π eventually gets trapped and visits
only states in some element of the partition, i.e., there exists Q ∈ part such that
from a certain time i on, state(πj) ∈ Q for all j ≥ i. The condition (ii) ensures
that this set is either existential or universal, i.e., type(Q) ∈ {exist, univ}. Thus,
we say that the path π gets trapped in an existential set if type(Q) = exist, and
otherwise we say that it gets trapped in a universal set. We can now define what
it means for a path in a run tree to be accepting. A path that gets trapped in
an existential set is accepting iff it visits some state of G infinitely often, and a
path that gets trapped in a universal set is accepting iff it visits every state of B
finitely often. A run 〈Tr, r〉 of an AHTA is accepting iff all its infinite paths are
accepting. An automaton A accepts an input tree 〈T, V 〉 iff there is an accepting
run of A on 〈T, V 〉. The language of A, denoted L(A), is the set of Σ-labeled
D-trees accepted by A. We say that A is nonempty iff L(A) �= ∅.

The membership problem of AHTA is the following decision problem: given
an AHTA A with direction set D, and a finite LTS S in which the degree of each
node is at most |D|, decide whether or not A accepts S. The depth of the AHTA
is the size of the longest chain in ≺. The size ||δ|| of the transition function is
the sum of the lengths of the formulas it contains. The size ||A|| of the AHTA is
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|D| + |Q| + ||δ||. The partition, partial order and type function are not counted
in the size of the automaton. The following is implicit in [20]:

Theorem 2. The membership problem for AHTA can be solved in O(∂ log2(|S| ·
||A||)) space where ∂ is the depth of A and S is the state set of S.

Definition of GHTA. We now introduce Graded Hesitant Tree Automata
(GHTA). These can run on finitely-branching trees (not just trees of a fixed
finite degree), and the transition function is graded, i.e., instead of a Boolean
combination of direction-state pairs, it specifies a Boolean combination of dis-
tribution operations. There are two distribution operations: ♦(q1,..., qk) and its
dual �(q1,..., qk). Intuitively, ♦(q1,..., qk) specifies that the automaton picks k
different sons s1,..., sk of the current node and, for each i ≤ k, sends a copy in
state qi to son si. Note that the states q1,..., qk are not necessarily all different.

A GHTA A is a tuple 〈Σ,Q, q0, δ, 〈G,B〉, 〈part, type,�〉〉 where all elements
but δ are defined as for AHTA, and δ : Q × Σ → B+(♦Q ∪ �Q) is a tran-
sition function that maps a state and an input letter to a positive Boolean
combination of elements in ♦Q = {♦(q1,..., qk) | (q1,..., qk) ∈ Qk, k ∈ N} and
�Q = {�(q1,..., qk) |(q1,..., qk) ∈ Qk, k ∈ N}.

We show how to define the run of a GHTA A on a Σ-labeled finitely-branching
tree T = 〈T, V 〉 by (locally) unfolding every ♦Q and �Q in δ(q, V (t)) into a
formula in B+([d]×Q) where d is the branching-degree of node t. For k, d ∈ N, let
S(k, d) be the set of all ordered different k elements in [d], i.e., (s1,..., sk) ∈ S(k, d)
iff for every i ∈ [k] we have that si ∈ [d], and that if i �= j then si �= sj . Observe
that if k > d then S(k, d) = ∅. For every d ∈ N, define the function expandd :
B+(♦Q ∪ �Q) → B+([d] × Q) that maps formula φ to the formula formed from
φ by replacing every occurrence of a sub-formula of the form ♦(q1,..., qk) by
the formula

∨
(s1,...,sk)∈S(k,d)(

∧
(si, qi)), and every occurrence of a sub-formula

of the form �(q1,..., qk) by the formula
∧

(s1,...,sk)∈S(k,d)(
∨

(si, qi)). Observe that
if k > d then ♦(q1,..., qk) becomes the constant formula false, and �(q1,..., qk)
becomes the constant formula true. The run of a GHTA A is defined as for an
alternating tree automaton, except that one uses expandn(δ(q, V (x))) instead of
δ(q, V (x)) for nodes x of T of degree n. Finally, the hesitancy condition defined
above for AHTA is required to apply to the expanded transition function, i.e.,
insert the phrase “every n ∈ N,” before the phrase “and every σ ∈ Σ”, and in
items (i)-(iii) replace δ(q, σ) by expandn(δ(q, σ)). Acceptance is as for AHTA.

Lemma 2. The emptiness problem for GHTA A over trees of branching degree
at most d is decidable in time 2O(d·|Q|3), where Q is the state set of A.

Proof. Given a GHTA A with state set Q, convert it into an AHTA A′ with the
same state space by using the function expandd defined above to transform its
transition relation into a non-graded one. This is possible since we assumed a
bound d on the branching degree of the input trees, and thus the transformation
expandd can be used in advance. This construction takes time that is 2O(|Q| log d).
Recall that AHTA are a special case of alternating parity tree automata (APTA)
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with 3 priorities. Now apply the fact that the emptiness problem for APTA with
p priorities over d-ary trees can be solved in time 2O(d·|Q|p) [12].

4 From GCTL∗ to Graded Hesitant Automata

Elegant and optimal algorithms for solving the satisfiability and model-checking
problems of CTL∗ were given using the automata-theoretic approach for
branching-time temporal logics [20]. Using this approach, one reduces satisfi-
ability to the non-emptiness problem of a suitable tree automaton accepting all
tree-models of a given temporal logic formula. We follow the same approach here,
by reducing the satisfiability problem of GCTL∗ to the non-emptiness problem
of GHTA. By Theorem 1, a GCTL∗ formula is satisfiable (in some, possibly
infinite, labeled transition system) iff it has a finitely branching (though possi-
bly unboundedly branching) tree model, which exactly falls within the abilities
of GHTA. Our main technical result states that every GCTL∗ formula can be
compiled into an exponentially larger GHTA (the rest of this section provides
the proof):

Theorem 3. Given a GCTL∗ formula ϑ, one can build a GHTA Aϑ that accepts
all the finitely-branching tree-models of ϑ. Moreover, Aϑ has 2O(|ϑ|·deg(ϑ)) states,
depth O(|ϑ|), and transition function of size 2O(|ϑ|·deg(ϑ)).

An important observation that allows us to achieve an optimal construc-
tion is the following. Suppose that the formula E≥gψ holds at some node w
of a tree. Then, by definition, there are at least g different paths ρ′1,..., ρ′g ∈
min(Con(S, w, ψ)). Look at any g infinite extensions ρ1,..., ρg of these paths in
the tree, and note that by the definition of ψ-conservativeness all these exten-
sions must satisfy ψ. Also observe that for every i �= j, the fact that ρ′i, ρ′j are
different and minimal implies that the longest common prefix ρ′ij of ρi and ρj is
not ψ-conservative. As it turns out, the other direction is also true, i.e., if there
are g infinite paths ρ1,..., ρg satisfying ψ, such that for every i �= j the common
prefix ρ′ij is not ψ-conservative, then there are g prefixes ρ′1,..., ρ′g of ρ1,..., ρg

respectively, such that ρ′1,..., ρ′g ∈ min(Con(S, w, ψ)). Note that this allows us
to reason about the cardinality of the set min(Con(S, w, ψ)), by considering only
the infinite paths ρ1,..., ρg and their common prefixes, without actually looking
at the minimal ψ-conservative paths ρ′1,..., ρ′g. In reality, we do not even have to
directly consider the common prefixes ρ′ij . Indeed, since the property of being
ψ-conservative is upward closed (with respect to the prefix ordering � of paths),
showing that ρ′ij is not ψ-conservative can be done by finding any extension of
ρ′ij that is not ψ-conservative. The following proposition formally captures this.

Proposition 1. Given a GCTL∗ path formula ψ and a 2AP-labeled tree T =
(T, V ), then T |= E≥gψ iff there are g distinct nodes y1,..., yg ∈ T (called
breakpoints) such that for every 1 ≤ i, j ≤ g we have: (i) if i �= j then yi is
not a descendant of yj; (ii) the path from the root to the father xi of yi is not
ψ-conservative; (iii) there is an infinite path ρi in T, starting at the root and
going through yi, such that ρi |= ψ.
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We are in a position to describe our construction of a GHTA accepting all
finitely-branching tree-models of a given GCTL∗ formula. Naturally, the main
difficulty lies in handling the graded modalities. The basic intuition behind the
way our construction handles formulas of the form ϕ = E≥gψ is the following.
Given an input tree, the automaton Aϕ for this formula has to find at least g
minimal ψ-conservative paths. At its core, Aϕ runs g pairs of copies of itself in
parallel. The reason these copies are not run independently is to ensure that
the two members of each pair are kept coordinated, and that different pairs
do not end up making the same guesses (and thus overcounting the number of
minimal ψ-conservative paths). The task of each of the g pairs is to detect some
minimal ψ-conservative path that contributes 1 to the count towards g. This is
done indirectly by using the characterization given by Proposition 1. Since this
proposition requires checking if certain paths satisfy ψ, the automaton Aϕ will
access certain classic NBWs. We begin by establishing the existence of these:

Theorem 4. Given an LTL formula ζ, there is an NBW Aζ (resp. NFW Bζ),
both of size 2O(ζ), accepting exactly all infinite (resp. finite) words that satisfy ζ.

Lemma 3. Given an LTL formula ζ, there is an NBW A
ζ (of size 2O(ψ)) such

that A
ζ accepts a word w iff w |= ζ, or u |= ζ for a prefix u of w. Moreover,

A
ζ has an accepting sink �, such that if r0, r1,... is an accepting run of Aζ on

w, and i ≥ 0 satisfies ri �= �, then a (finite or infinite) prefix u of w, of length
|u| > i, satisfies ζ, and vice-versa (i.e., if a prefix u of w satisfies ζ, then there
is an accepting run on w with ri �= � for all i < |u|).

We can now finish the intuitive description of the construction of the automa-
ton Aϕ associated with a formula ϕ = E≥gψ. Let Ψ be the LTL formula resulting
from applying Lemma 1 to ψ. In essence, Aϕ guesses the g descendants y1, . . . , yg

of the root of the input tree as given in Proposition 1. For every 1 ≤ i ≤ g, the
automaton uses one copy of A¬Ψ to verify that the path π, from the root to the
father of yi, is not ψ-conservative (by guessing some finite or infinite extension
π � π′ of it such that π′ |= ¬Ψ), and one copy of AΨ to guess an infinite path
π′′ from the root through yi such that π′′ |= Ψ (and is thus ψ-conservative).

4.1 The Construction of GHTA Aϑ for a GCTL∗ Formula ϑ

We induct on the structure of ϑ. Given a state sub-formula φ of ϑ (possibly
including ϑ), for every formula θ ∈ max φ, let Aθ = 〈Σ,Qθ, qθ

0 , δ
θ, 〈Gθ, Bθ〉,

〈partθ, typeθ,�θ〉〉 be a GHTA accepting the finitely-branching tree-models of θ.
The proof of correctness plus the definition of the hesitancy structure, i.e., of
〈partθ, typeθ,�θ〉, is in the full version (recall that the hesitancy structure is only
used to decide in a space-efficient way membership, which is needed for our result
that model-checking of GCTL∗ is in PSpace). We build the GHTA Aφ accepting
all finitely-branching tree-models of φ by suitably composing the automata of
its maximal sub-formulas and their negations. Note that when composing these
automata, we assume w.l.o.g. that the states of any occurrence of a constituent
automaton of a sub-formula are disjoint from the states of any other occurrence
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of a constituent automaton (of the same or of a different sub-formula), as well
as from any newly introduced states3. Formally:

1. If φ = p ∈ AP , then Aφ = 〈Σ, {q}, q, δ, 〈∅, ∅〉, 〈part, type,�〉〉 where δ(q, σ) =
true if p ∈ σ and false otherwise.

2. If φ = ϕ0∨ϕ1 then Aφ is obtained by nondeterministically invoking either Aϕ0

or Aϕ1 . Thus, Aφ = 〈Σ,
⋃

i=0,1 Qϕi ∪ {q0}, q0, δ, 〈
⋃

i=0,1 Gϕi ,
⋃

i=0,1 Bϕi〉, β〉,
where β = 〈part, type,�〉, and for every i ∈ {0, 1}, every σ ∈ Σ, and every q ∈
Qϕi we have that: δ(q, σ) = δϕi(q, σ), and δ(q0, σ) = δϕ0(qϕ0

0 , σ)∨δϕ1(qϕ1
0 , σ).

3. If φ = ¬ϕ, then Aφ is obtained by dualizing the automaton Aϕ. Formally, the
dual of a GHTA A is the GHTA obtained by dualizing the transition function
of A (i.e., switch ∨ and ∧, switch � and ⊥, and switch � and ♦), replacing
the acceptance condition 〈G,B〉 with 〈B,G〉 (and toggling types).

Finally we deal with the case that φ = E≥gψ. Observe that ψ is a path for-
mula and, by Lemma 1, reasoning about ψ can be reduced to reasoning about
the LTL formula Ψ whose atoms are elements of max ψ. Let Σ′ = 2max(ψ). By
Theorem 4, there is an NBW AΨ = 〈Σ′, Q+, q+0 , δ+, G+〉 accepting all infi-
nite words in Σ′ω satisfying Ψ . By Lemma 3, there is an NBW A

¬Ψ =
〈Σ′, Q¬, q¬

0 , δ¬, G¬〉 accepting all infinite words in Σ′ω that either satisfy ¬Ψ
or have a prefix that does. Note that the states of these automata are denoted
Q+ and Q¬. We let Aφ be 〈Σ,Q, q0, δ, 〈G,B〉, 〈part, type,�〉〉, whose structure
we now define.

The Set of States. Q = Q1∪Q2, where Q1 = (Q+∪{⊥})g×(Q¬∪{⊥})g\{⊥}2g,
and Q2 =

⋃
θ∈maxψ Qθ. The Q1 states are used to run g copies of A¬Ψ and g

copies of AΨ in parallel. Every state in Q1 is a vector of 2g coordinates where
coordinates 1,..., g (called Ψ coordinates) contain states of AΨ , and coordinates
g + 1,..., 2g (called ¬Ψ coordinates) contain states of A

¬Ψ . In addition, each
coordinate may contain the special symbol ⊥ indicating that it is disabled,
as opposed to active. We disallow the vector {⊥}2g with all coordinates dis-
abled. States in Q2 are all those from the automata Aθ for every maximal
state subformula of ψ, or its negation. These are used to run Aθ whenever
Aφ guesses that θ holds at a node. Also, for every 1 ≤ i ≤ g, we denote by
Qi

single = {(q1,..., q2g) ∈ Q1 | qi �= ⊥, and for all j ≤ g, if j �= i then qj = ⊥}
the set of all states in Q1 in which the only active Ψ coordinate is i.

The Initial State. q0 = (q1,..., q2g) where for every 1 ≤ i ≤ g we have that
qi = q+0 and for every g + 1 ≤ i ≤ 2g we have that qi = q¬

0 .

The Acceptance Condition. B = ∪θ∈maxψBθ and G = G′ ∪ G′′ ∪
(∪θ∈maxψGθ), where G′ = {(q1,..., q2g) ∈ Qi

single | qi ∈ G+} is the set of all states
in Q1 in which the only active Ψ coordinate contains a good state, and G′′ =

3 For example, when building an automaton for φ = ϕ0 ∨ ϕ1, in the degenerate case
that ϕ0 = ϕ1 then Aϕ1 is taken to be a copy of Aϕ0 with its states renamed to
be disjoint from those of Aϕ0 . Also, the new state q0 may be renamed to avoid a
collision with any of the other states.
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{(q1, . . . , q2g) ∈ Q1 | ∀i.1 ≤ i ≤ g → qi = ⊥, and ∃j.g +1 ≤ j ≤ 2g ∧ qj ∈ G¬} is
the set of all states in Q1 in which all the Ψ coordinates are inactive, and some
¬Ψ coordinate contains a good state.

The Transition Function. δ is defined, for every σ ∈ Σ, as follows:

– For every q ∈ Q2, let θ ∈ max(ψ) be such that q ∈ Qθ, and define δ(q, σ) =
δθ(q, σ). I.e., for states in Q2, follow the rules of their respective automata.

– For every q ∈ Q1, we define δ(q, σ) :=
∨

σ′∈Σ′(J ∧ K ∧ L) where J =
∨

X∈Legal(q,σ′) ♦(X), K =
∧

θ∈σ′ δθ(qθ
0 , σ), L =

∧
θ �∈σ′ δ¬θ(q¬θ

0 , σ), where
Legal(q, σ′) is the set of all legal distributions of (q, σ′), and is defined later.

Informally, the disjunction
∨

σ′∈Σ′ corresponds to all possible guesses of the
set of maximal subformulas of ψ that currently hold. Once a guess σ′ is made,
the copies of A

¬Ψ and AΨ simulated by the states appearing in Legal(q, σ′)
proceed as if the input node was labeled by the letter σ′. The conjunction
(∧θ∈σ′δθ(qθ

0 , σ))∧(∧θ �∈σ′δ¬θ(q¬θ
0 , σ)) ensures that a guess is correct by launching

a copy of Aθ for every subformula θ ∈ σ′ that was guessed to hold, and a copy
of A¬θ for every subformula θ guessed not to hold.

We define legal distribution. Intuitively, a legal distribution of (q, σ′) is a
sequence q1,..., qm of different states from Q1 that “distribute” among them,
without duplication, the coordinates active in q, while making sure that for every
1 ≤ i ≤ g coordinate i (which simulates a copy of AΨ ) does not get separated
from the coordinate i + g (which simulates its partner copy of A¬Ψ ) for as long
as i is not the only active Ψ coordinate. As expected, every active coordinate j,
in any of the states q1,..., qm, follows from qj by using the transitions available
in the automaton it simulates: AΨ if j ≤ g, or A

¬Ψ if j > g.
More formally, given a letter σ′ ∈ Σ′, and a state q = (q1,...q2g) ∈ Q1 in

which the active coordinates are {i1,..., ik}, we say that a sequence X = q1,..., qm

(for some m ≥ 1) of distinct states in Q1 is a legal distribution of (q, σ′) if the
following conditions hold: (i) the coordinates active in the states q1,..., qm are
exactly i1,..., ik, i.e., {i1,..., ik} = ∪{i ∈ {1,..., 2g} | ∃1 ≤ l ≤ m s.t. ql

i �= ⊥}.
(ii) if a coordinate ij is active in some q′ ∈ X then it is not active in any other
q′′ ∈ X; (iii) if 1 ≤ ij < il ≤ g are two active Ψ coordinates in some q′ ∈ X,
then q′

ij+g, q
′
il+g ∈ Q¬ \ {�}, i.e., the coordinates ij + g, il + g are also active

in q′ and do not contain the accepting sink of A¬Ψ ; (iv) if ij is active in some
q′ ∈ X then (qij

, σ′, q′
ij

) ∈ δ+ if ij ≤ g, and (qij
, σ′, q′

ij
) ∈ δ¬ if ij > g. I.e.,

active Ψ coordinates evolve according to the transitions of AΨ , and active ¬Ψ
coordinates according to the those of A¬Ψ .

Remark 1. We make two observations. First, the 2g copies of A¬Ψ and AΨ can
not simply be launched from the root of the tree using a conjunction in the tran-
sition relation. The reason is that if this is done then there is no way to enforce
property (i) of Proposition 1. Second, a cursory look may suggest that different
copies of A¬Ψ and AΨ that are active in the current vector may be merged. Unfor-
tunately, this cannot be done since A

¬Ψ and AΨ are nondeterministic, and thus,
different copies of these automata must be able to make independent guesses in
the present in order to accept different paths in the future.
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Proposition 2. The automaton Aϑ is a GHTA with depth O(|ϑ|) and
2O(|ϑ|·deg(ϑ)) many states, and the size of its transition function is 2O(|ϑ|·deg(ϑ)).

5 Complexity of Satisfiability and MC of GCTL∗

Theorem 5. A satisfiable GCTL∗ formula ϑ has a tree model of branching
degree at most 2O(|ϑ|·deg(ϑ)).

Proof. Suppose ϑ is satisfiable. By Theorem 1, ϑ has a finitely-branching tree
model. Observe, by Theorem 3, that |Q| = 2O(|ϑ|·deg(ϑ)), where Q is the state set
of the automaton Aϑ defined in that proof. Hence, it is enough to prove that
every tree model of ϑ has a subtree of branching degree |Q|2 that also models ϑ.

To prove this claim, we use the membership game GT,Aϑ
of the input tree T

and the automaton Aϑ. There are two players, automaton and pathfinder. Player
automaton moves by resolving disjunctions in the transition relation of Aϑ, and
is trying to show that T is accepted by Aϑ. Player pathfinder moves by resolving
conjunctions, and is trying to show that T is not accepted by Aϑ. The game uses
auxiliary tree structured arenas to resolve each transition of the automaton. This
is a simple case of a hierarchical parity game [3]. As usual, player automaton has
a winning strategy if and only if T |= Aϑ. By memoryless determinacy of parity
games on infinite arenas, player automaton has a winning strategy if and only if
he has a memoryless winning strategy. For a fixed memoryless strategy str, one
can prove, by looking at the transition function of Aϑ, that every play consistent
with str, and every node t of the input tree T, only visits at most |Q|2 sons of t,
thus inducing a subtree which is the required boundedly-branching tree model.

Theorem 6. The satisfiability problem for GCTL∗ over LTSs is 2ExpTime-
Complete, and model checking GCTL∗ for finite LTSs is PSpace-Complete.

Proof. The lower-bounds already hold for CTL∗. Theorems 3 and 5 and Lemma 2
give the upper-bound for satisfiability. For the upper-bound for model check-
ing, given an LTS S (with largest degree d), and a GCTL∗ formula ϑ, using
Theorem 3 construct the GHTA A¬ϑ, which has 2O(|ϑ|·deg(ϑ)) states, transition
function of size 2O(|ϑ|·deg(ϑ)), and depth O(|ϑ|). As in the proof of Lemma2,
build an equivalent AHTA A′ of size d + (2O(|ϑ|·deg(ϑ)) · |Q|d) + 2O(|ϑ|·deg(ϑ)) =
2O(|ϑ|·deg(ϑ)+d·|ϑ|·deg(ϑ)), and of depth ∂ = O(|ϑ|). By Theorem 2, the member-
ship problem of the AHTA A′ on S can be solved in space O(∂ log2(|S| · ||A′||))
which is polynomial in |ϑ| and |S| (using deg(ϑ) ≤ |ϑ| and d ≤ |S|).

6 Discussion

This work shows that GCTL∗ is an expressive logic (it is equivalent, over trees,
to MPL and can express fairness and counting over paths) whose satisfiability
and model-checking problems have the same complexity as that of CTL∗.

GCTL∗ was defined in [5]. However, only the fragment GCTL was studied.
As the authors note in the conference version of that paper, their techniques,
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that worked for GCTL, do not work for GCTL∗. Moreover, they also suggested
a line of attack that does not seem to work; indeed, it was left out of the journal
version of their paper [6]. Instead, our method is a careful combination of the
automata-theoretic approach to branching-time logics [20], a characterization of
the graded path modality (Proposition 1), and a boundedly-branching tree model
property whose proof uses game-theoretic arguments (Theorem 5). Moreover,
our technique immediately recovers the main results about GCTL from [5],
i.e., satisfiability for GCTL is ExpTime-Complete and the model checking
problem for GCTL is in PTime (Indeed, consider the construction in Theorem3
of Aϑ when ϑ it taken from the fragment GCTL of GCTL∗, and in particular
where it comes to a subformula φ of the form φ = E≥gψ. Since ψ is either of
the form pBq or Xp, the number of new states added at this stage is a constant.
Thus, the number of states of Aϑ is linear in the size of ϑ). In other words, our
technique suggests a powerful new way to deal with graded path modalities.

When investigating the complexity of a logic with a form of counting quan-
tifiers, one must decide how the numbers in these quantifiers contribute to the
length of a formula, i.e., to the input of a decision procedure. In this paper we
assume that these numbers are coded in unary, rather than binary. There are a
few reasons for this. First, the unary coding naturally appears in description and
predicate logics [8]. As pointed out in [19], this reflects the way in which many
decision procedures for these logics work: they explicitly generate n individuals
for ∃≥n. Second, although the complexity of the binary case is sometimes the
same as that of the unary case, the constructions are significantly more compli-
cated, and are thus much harder to implement [6,7]. At any rate, as the binary
case is useful in some circumstances we plan to investigate this in the future.

Comparison with (Some) Other Approaches. Although showing that satis-
fiability of GCTL∗ is decidable is not hard (for example, by reducing to MSOL),
identifying the exact complexity is much harder. Indeed, there is no known
satisfiability-preserving translation of GCTL∗ to another logic that would yield
the optimal 2ExpTime upper bound. We discuss two such candidate transla-
tions. First, in this article we show a translation from GCTL∗ to MPL. Unfortu-
nately, the complexity of satisfiability of MPL is non-elementary. Second, there
is no reason to be optimistic that a translation from GCTL∗ to Gμ-calculus
(whose satisfiability is ExpTime-Complete) would yield the optimal complex-
ity since (a) already the usual translation from CTL∗ to μ-calculus does not
yield optimal complexity [13], and (b) the translation given in [6] from GCTL
to Gμ-calculus does not yield optimal complexity. Moreover, the usual transla-
tion from CTL∗ to μ-calculus uses automata, and thus automata for GCTL∗

(from which we get our results directly) have to be developed anyway.

Future Work. Recall that the graded μ-calculus was used to solve questions
(such as satisfiability) for the description logic μALCQ [7]. Similarly, our tech-
niques for GCTL∗ might be useful for solving questions in ALCQ combined with
temporal logic, such as for the graded extension of CTL∗ALC [17]. Second, the
GCTL model checking algorithm from [6] has been implemented in the NuSMV
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model-checker to provide more than one counter-example when a GCTL
formula is not satisfied. We are thus optimistic that existing CTL∗ model-
checkers can be fruitfully extended to handle GCTL∗.
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Abstract. We construct a partially-ordered hierarchy of delimited con-
trol operators similar to those of the CPS hierarchy of Danvy and Filinski
[5]. However, instead of relying on nested CPS translations, these opera-
tors are directly interpreted in linear logic extended with subexponentials
(i.e., multiple pairs of ! and ?). We construct an independent proof the-
ory for a fragment of this logic based on the principle of focusing. It is
then shown that the new constraints placed on the permutation of cuts
correspond to multiple levels of delimited control.

1 Introduction

This paper formulates a system, motivated by linear logic with multiple pairs
of exponentials, with the intent of giving a Curry-Howard style basis for multi-
ple levels of delimited control operators similar to those of Danvy and Filinski
[5]. The computational interpretation of classical logic that began with Griffin
[8] and Parigot [17] can already explain undelimited control operators such as
call/cc. However, there is nothing in classical logic that can explain directly why
the capturing of a continuation should be stopped by a delimiter. Continuation
capture is reflected in classical proof theory by the phenomenon of contraction
and scope extrusion, which are restricted in intuitionistic logic. The fine-grained
control over the capture of continuations suggests a combination of classical logic
with intuitionistic logic. In [9], delimitation is explained by a transition from an
intuitionistic to a non-intuitionistic mode of derivation, which necessitates a cut-
elimination strategy to deal with these transitions. However, it is known that
multiple levels of delimitation can be used to block control operators from cross-
ing programming boundaries and interfering with control operators in different
modules (see [10]). We may even wish to have a partially ordered hierarchy of
operators. For example, in the term (f �i(g �j [controlj c. . . . controlkc.s]))
we can require that controlj is not delimited by �j but is delimited by �i if i
is stronger or unrelated to j. Suppose also that an external procedure is then
called that contains a controlk construct. We may wish to specify what, if any,
part of the continuation of the calling program can be captured by this operator
by designating the relationship of i and j to k.

c© Springer-Verlag Berlin Heidelberg 2015
M. Davis et al. (Eds.): LPAR-20 2015, LNCS 9450, pp. 297–312, 2015.
DOI: 10.1007/978-3-662-48899-7 21
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At the proof-theoretic level, subexponential linear logic alone is not enough.
Simply adding more pairs of ? and ! does not fundamentally change the cut-
elimination algorithm of linear logic. We construct a stand-alone fragment of
linear logic by using the principle of focusing (focalisation) in formulating syn-
thetic connectives. The existing definitions of focusing [1,15] in linear logic are
inadequate for fully exploiting the power of exponentials. Thus a new proof
theory is needed.

Previous studies of Curry-Howard interpretations of classical logic using lin-
ear logic are exemplified by the systems LKT and LKQ [3]. These systems rep-
resent different focusing strategies for eliminating non-determinism in reduction
(call-by-value for LKQ, by name for LKT). These uses of focusing are by now well
understood and we shall not reconstruct them. What we emphasize in this paper
is a different effect of subexponentials on reduction that can operate orthogo-
nally to the elimination of nondeterminism with focusing. The use of focusing in
this paper is at a deeper level.

To motivate the need for subexponentials, a naive attempt at combining clas-
sical and intuitionistic logics can easily result in a collapse into the former even
within the context of linear logic. The single-conclusion characterization of intu-
itionistic logic was inherited by linear logic. Unfortunately, this characterization
leaves little in between intuitionistic and classical logic. The representation of
intutionistic implication as !A −◦ B is not modular. Since −◦ is equivalent to
a disjunction (�), its intuitionistic strength evaporates in the in the presence
of multiple conclusions. However, multiple conclusions represent saved continu-
ations in classical computation. Fortunately, there are also multiple conclusion
characterizations of intuitionistic logic:

Γ � A,A,Δ

Γ � A,Δ
C

Γ � Δ

Γ � A,Δ
W

A,Γ � B

Γ � A → B,Δ
IL

A, Γ � B,Δ

Γ � A → B,Δ
CL

Structural rules are allowed and the distinction between classical and intuitionis-
tic logics rests on the → introduction rule: the “IL” rule prevents scope extrusion
since it enforces the scope of A to include only B and not also the formulas in
Δ. This perspective offers a new opportunity for combining classical and intu-
itionistic logics. Informally, we can hope for something of the form

A,Γ � B,Δ2

Γ � A
2→ B,Δ1Δ2

Here, the indices 1 and 2 represent different levels of modality. Introducing an
implication at level 2 can require forgetting level 1 conclusions while keeping
those at level 2 or higher. This is the kind of system that we can build with
subexponentials.

2 Subexponential Linear Logic

Subexponential, or multi-colored linear logic was suggested by Girard and first
described in [4]. Given a preordered set of indices, there is a !i for each index i
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with ?i as it’s dual: ?iA = (!iA⊥)⊥. A ?i does not need to admit contraction or
weakening. However, the availability of these structural rules must respect the
ordering relation: if j ≥ i then ?j must admit all the structural rules admitted
by ?i. This restriction is required to preserve the cut elimination procedure of
linear logic. For all indices k, the usual dereliction rule is allowed for ?k on the
right and !k on the left. The promotion rule is generalized as follows, which we
display in two forms:

�?n1A
1, . . .?nk

Ak, B

�?n1A
1, . . .?nk

Ak, !jB
j ≤ n1, . . . nk

!n1A
1, . . .!nk

Ak � B

!n1A
1, . . .!nk

Ak �!jB
j ≤ n1, . . . nk

The single sided rule is equivalent to the two-sided version with a single con-
clusion. The second form is closer to what we use. The promotion rule applies
dually on the left-hand side since !jA on one side is equivalent to ?jA⊥ on the
other side.

The term subexponential was introduced in [15] along with a focused proof
system for them. Semantically, subexponentials can be characterized as restric-
tions to subspaces. In phase semantics it is easily seen that !k restricts a fact to
a submonoid that corresponds to k, with the ordering of submonoids determined
by inclusion.

Subexponentials appear to be a simple generalization of linear logic save for
one significant fact. In most proof systems for ordinary linear logic, and for
classical and intuitionistic logics, weakening can be pushed to the initial rules.
There is never a need to force weakening at other points in a proof and, therefore,
it can be ignored. With indexed exponentials, however, weakening cannot be
pushed to the initial rules. The sequent !1A, !2B �!2C may only be provable if
!1A is weakened away. If a proof of !1A−◦ !2B−◦ !2C is represented by λxλy.t,
then x cannot appear free in t. This represents a form of resource control: not
how many times but where a resource can appear.

3 Extending the Focusing Principle

A central goal of this paper is to derive a refinement of classical logic from
subexponential linear logic that is well-behaved and self-contained with respect
to cut-elimination. In this regard, the principle of focusing remains important
even though our target here is not a focused sequent calculus for cut-free proofs
but a natural deduction system for writing programs with possibly many cuts.
We wish to synthesize new connectives by combining linear logic connectives,
but not every combination can be used. An important test for the integrity
of synthetic introduction rules is initial elimination: that A � A is provable
(in sequent calculus). Attempts to create synthetic connectives that ignore the
focusing principle generally end in failure. For example, we may naively wish
to consider (A ⊗ B) & C as a ternary connective with the following introduc-
tion rules:

Γ1 � A Γ2 � B Γ1Γ2 � C

Γ1Γ2 � (A ⊗ B) & C
⊗&R
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A,B, Γ � D
(A ⊗ B) & C,Γ � D ⊗&L1

C,Γ � D
(A ⊗ B) & C,Γ � D ⊗&L2

Here, ⊗ is positive but & is negative. But it is easily seen that

(A ⊗ B) & C � (A ⊗ B) & C

is not provable with these introduction rules. In contrast, connectives of the
same polarity can be combined to form synthetic connectives (e.g. (A ⊗ B) ⊕
C). While this principle is clear with regard to the binary connectives, with
exponentials there is more flexibility. In terms of focusing, ? builds a negative
formula and ! builds a positive formula because they have the following properties
(with implied duals for !) with respect to the negative (dually positive) binary
connectives:

?(?A �?B) ≡ ?A �?B ?(?A &?B) ≡ ?A &?B

These properties are not ordinary logical equivalences: they express an important
property in the structure of proofs, e.g., a contraction on ?(?A � ?B) can be
recursively replaced by contraction on its immediate subformulas. This is the
basis of focusing in classical logic. To explain focusing in intuitionistic logic in
terms of linear logic [12], we also have the following property: !(!A −◦ B) ≡
!(!A −◦ !B). Intuitionistic implication is usually translated as !A −◦ B, but it is
better to regard it as !(!A −◦ B): the outer ! is excluded because promotion on
the right is always possible in simulations of LJ sequents. With subexponentials,
however, this promotion may not always be possible. One can regard focusing
proof systems as the application of these properties in one direction: removing as
many exponentials as possible. Our usage of them is rather in the other direction:
adding more exponentials harmlessly. A contraction-enabled ? must be present
for a programmer to use call/cc or similar control operations.

In our system it is of crucial importance to identify the conditions under
which the following properties are preserved in the presence of subexponentials:

– ?i′(?kA � ?j′B) ≡ ?kA � ?j′B if and only if i′ ≤ k and i′ ≤ j′

– !i(!kA−◦!jB) ≡ !i(!kA −◦ B) if and only if j ≤ k and j ≤ i.

The index names are chosen to correspond to formulas in Sect. 4. A consideration
of the cut-free proofs of these properties shows that the restrictions on indices are
necessary and sufficient. Although our use of subexponentials will be effusive,
we only admit formulas that satisfy these restrictions.

Proof theoretically, the core of this paper is a rather bold proposition: a
formula of the form !i?i′(!k?k′A−◦!j?j′B), provided that i′ ≤ k, j′ and j ≤ i, k,
forms a valid synthetic connective. Clearly it cannot be seen as such according to
the current definitions of focusing and the polarities of ! and ?. The consequence
of this boldness is that we can no longer rely on the proof theory of (subex-
ponential) linear logic. Although we use linear logic formulas, cut-elimination
within our system cannot inherit the cut-elimination procedure of linear logic
(the cut-free proofs will not stay within the fragment). What’s needed is a new,
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unique proof theory that is suitable to this new sense of synthetic connective,
with its own procedure for cut-elimination that is sensitive to the index restric-
tions on formulas. The proof theory, presented in a longer version of this paper
[13], allows our system to stand independently of linear logic.

4 The Fragment MC: Multi-colored Classical Logic

For our purpose, all subexponentials ?i admit both weakening and contraction
(on the right). The aspect of linear logic that prevents resources from being
reused is an orthogonal issue. For clarity, we assume that subexponential indices
form a partial order, although some of our examples will simply use natural
numbers as indices. We also assume the existence of finite joins and meets and
that there is a maximum index mx and a minimum 0. We write min(a, b) for
meets and max(a, b) for joins.

With a single pair of exponentials there are seven equivalence classes of expo-
nential prefixes or modalities: ?, !, ?!, !?, ?!?, !?! and the empty prefix. This prop-
erty extends to any pair of subexponentials !i and ?k. For any prefix ν, νν ≡ ν.
For example, !i?k!i?kA ≡ !i?kA. Most studies of linear logic consider only a few
of these modalities. The LC fragment of linear logic [7], for example, uses only
! and ? although ?! and !? may appear applied to atoms.

Since our main connective is implication and we wish to capture (at least)
classical computations, let us review how classical implication can be represented
in linear logic. The most straightforward translation is !A−◦?B (equivalently
?A⊥�?B). This representation is sufficient for cut-free proofs, but for proofs
with cuts it is clearly inadequate: one cannot form a cut with a right-side ?B
and a left-side !B. In the terminology of [3], we require an adequate inductive
decoration. Two well-known ones are the T-translation: !?A−◦?B, and the Q-
translation !A−◦?!B. In each case one modality is a suffix of the other. With
subexponentials however, we need a more flexible way to switch between left
and right modalities because a promotion of ?kB to !i?kB may not always be
possible.

The modalities we use will be !i?k and ?k!i?k (for every pair of i and k). Note
that since !i?k!i?kA ≡ !i?kA, each modality can be seen as a suffix of the other.
Promotion and dereliction will be restricted to forms that render them inverse
operations:

!i?kA
?k!i?kA

derelict

!i?kA
promote

Adding a !i or ?k before !i?k or ?k!i?k will still result in something equivalent to
one of the two forms. We only use equivalence classes of modalities and never
write !i?k!i?k.

The T and Q translations gave rise to LKT and LKQ respectively, which are
semi-focused sequent calculi, and cut-elimination for these systems distinguish
between a call-by-name (T) and call-by-value (Q) strategies. On the surface, our
system does not have such properties because we rely on logical equivalences,
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such as between !i?kA and !i?k!i?kA, and between ?A�?B and ?(?A�?B). The
correspondence between our system and (subexponential) linear logic exists only
at the level of provability, but not in the structure of cut-elimination and cut-free
proofs. However, our “fragment” of linear logic in fact forms a logical system in
its own right, with its own notion of what “cut free proof” means. As we show in
the longer version of this paper [13], cut-elimination within this fragment requires
a more delicate procedure than for unrestricted subexponential linear logic. The
non-determinism eliminated by polarization and focusing can also be achieved
here, but that is not the purpose of this paper. Rather it is to demonstrate the
effect on cut permutation of something quite different from polarity information.

Only the form !i?k may appear on the left side of −◦ (left-side of sequents),
thus we effectively use three modalities for each pair of indices i and k (?i!k as
well).

As already indicated, our “arrow” appears as follows:

!i?i′(!k?k′A−◦!j?j′B) or ?i′ !i?i′(!k?k′A−◦!j?j′B) such that i′ ≤ k, j′ and j ≤ k, i

The index restrictions are not ad-hoc: they are motivated by focusing. Under
these restrictions, we can show that the above formula is equivalent to several
other forms:

!i?i′(!k?k′A−◦!j?j′B) ≡ !i(!k?k′A−◦!j?j′B) ≡ !i(!k?k′A−◦?j′B)

The first condition, i′ ≤ k, j′, makes ?i′ gratuitous and allows us to write a
synthetic introduction rule as long as the rule does not break apart !k?k′ in
the premise. The second condition, j ≤ k, i, means that a conclusion ?j′ !j?j′B
can always be promoted to !j?j′B (thus it does not matter if we write !j?j′B
or ?j′ !j?j′B on the right of −◦). All of these conditions are required for cut
elimination.

The following also hold: !j?j′(!k?k′A−◦!m?m′B) −◦ (!k?k′A−◦!m?m′B) (to
construct a proof bottom-up, first promote !m, then derelict !j , then promote
?j′). This will allow us to form an adequate →-elimination rule.

For this presentation we restrict to the adequately decorated arrow as
our only connective, although other connectives can be added along simi-
lar lines1. It is also possible to interpret sequents as formulas: a (two-sided)
sequent such as Γ, !k?k′A �!j?j′B can be interpreted recursively as Γ �
!mx?min(k,j′)(!k?k′A−◦!j?j′B). This being overly cumbersome, we simplify the
interpretation of sequents by also using the empty modality and the connective
�, but only for sequents. To formally define the language of MC, we use the
following grammar:
1 Adding second-order quantifiers will, however, encounter problems similar to

those found in polarized settings: how can one enforce the index restrictions
on the bound variable when they are instantiated. First-order ∀ can be repre-
sented by !i?i′∀x.!k?k′A where i′ ≤ k′ and k ≤ i. These restrictions guarantee
?i′∀x.?k′A ≡ ∀x.?k′A and !i∀x.!kA ≡ !i∀x.A.
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S −→ F | F⊥
1 | F⊥

1 � S | F2 � S
F −→ F1 | F2

F1 −→ !i?i′C. F2 −→ ?i′ !i?i′C
C −→ (!k?k′C−◦!j?j′C) | p

The syntactic variable p ranges over atomic formulas; S ranges over formulas
that represent sequents; F ranges over formulas preceded by the modalities !i?i′
or ?i′ !i?i′ for any i, i′; and C ranges over formulas that are not preceded by
these modalities. It is also required that the restrictions on implication i′ ≤ k, j′

and j ≤ k, i are imposed recursively on !i?i′C and on all ?i′ !i?i′C. Furthermore,
all end-sequents are of the form � F . When we speak of a formula of the MC
fragment, we are referring to a F -generated formula of the above grammar, since
such formulas form end-sequents. Notice that the grammar generates at most
one F1 formula in a sequent, which means there is at most one !i?i′C on the
right-hand side (left side occurrences are represented by F⊥

1 ). This is the only
kind of sequent that will appear in proofs starting from valid end-sequents.

Informally speaking, the index of an exponential operator indicates a resource
class. A proof of !kA can only contain resources (free variables) of class k or
higher. One useful analogy is that ? represents a producer and ! represents a
consumer. A formula prefixed by !i?kA or ?k!i?kA has both a consumer level i
and a producer level k. The special forms of promotion and dereliction switch
the formula between the producer and consumer modes. For example, a level-2
consumer will not consume level-1 products. As long as ?k hides behind !i, it
does not affect what can be consumed. But once revealed, it produces a resource,
which can only be used by consumers at level k or below, i.e., appear in subproofs
outside of the context of a promotion to a level higher than k. A producer has the
ability to replicate itself (contraction). On the left hand side of −◦, !i?k becomes
a level i producer.

For example, the equivalence between !i(!kA−◦!jB) and !i(!kA−◦B) when j ≤
k, i can be understood using this analogy as follows. In a term λx.t representing
the proof of a formula such as !3(!4A−◦!2B), the outer !3 states that no products
lower than level-3 will be consumed by λx.t. The only new product in t is the
variable x, which is at level 4. So of course stating that t does not use products
lower than level 2 is redundant.

5 Natural Deduction and Proof Terms in MC

In the following we adopt the convenient notations !ij =!i,j =!i?j and ?jij =
?j,i,j =?j !i?j . So ?jijA promotes to !ijA, for example. We revert to the unabbre-
viated forms for clarity when needed.

Single sided sequents suffice for classical linear logic. However, since our
principal connective is an arrow, using one-sided sequents will appear awk-
ward. Thus we shall make a small concession to Gentzen style systems and
use two sided sequents with at most one formula on the right. This means that
instead of Γ �?ikiA, ?jmjB we write !j?m!jB⊥, Γ �?ikiA. This concession is
superficial since negation in linear logic is involutive. The interpretation of a
sequent A1, A2, . . . , An � B is the formula A⊥

1 � A⊥
2 , . . . ,�A⊥

n � B, or just
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A⊥
1 �A⊥

2 , . . . ,�A⊥
n if the right side is empty. The concession is only one of nota-

tion. In this two-sided scenario the modalities that can appear to the right of �
are !i?k and ?k!i?k while those that can appear on the left are !i?k and !k?i!k.
We store multiple conclusions on the left. Since contractions are allowed, the
left-hand side of a sequent can be considered a set. The notation B,Γ does not
preclude the possibility that B ∈ Γ . Certain rules, such as explicit weakening
and the renaming of variable indices are excluded from the system because they
can be shown to be admissible. The set Γ consists of formulas !n1A1, . . .!nm

Am.
We write Γ (k) to indicate that k is the smallest ni. In other words, a promotion
(on the right) to !m is allowed by Γ (k) if m ≤ k. We write Γ (n1,...,nk) to mean
Γ (min(n1,...,nk)). We refer to n and m as the maximum promotion level of their
contexts. The empty context has maximum promotion level mx. The natural
deduction style proof system for MC, along with their term annotations, appear
in Fig. 1.

Fig. 1. Natural deduction in MC

We prefer natural deduction to present delimited controls operators in direct
style. We refer to the implication introduction and elimination rules as Abs and
App. Because of the index restrictions already imposed on formulas, no further
conditions are required in App. In addition to the Produce rule, promotion has
been folded into App and, implicitly, the Id rule. Produce does not cross !i?k but
switches the formula from consumer to producer mode going upward. In each rule
that requires promotion, implicit or otherwise, weakening is also folded in. The
dereliction rule Consume can also be simulated by Name followed immediately
by Unname. However, we have included it as a separate rule for convenience.
The !DR rule is only needed for atoms. The restrictions on implication means
that the ?i′ in !i?i′(!k?k′A−◦!j?j′B) does not interfere with its introduction rule
(i.e., it does not destroy focus, despite appearance). However, !a?bq when q is
an atom posses a slight problem. This is the only rule that violates focusing
boundaries, but it is required for completeness, by which we mean the following
(see [13] for proof):
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Theorem 1. A formula of the MC fragment is provable by natural deduction
in MC if and only if it is provable in subexponential linear logic.

The correctness of MC depends on not just this theorem but on proof theoretic
results for its sequent calculus, with the most important difference being the
restriction of Id to atoms C, plus the replacement of App with a left introduction
rule:

Γ (n) �!k?k′A !j?j′B,Γ (n) � C
!i?i′(!k?k′A−◦!j?j′B), Γ (n) � C

Cut elimination in this system requires all the index restrictions on formulas to
succeed. Furthermore, one can check that instances of this rule can be stacked,
i.e., focused (consider B to be another implication), by verifying the initial elimi-
nation test for synthetic connectives. These results are presented in detail in [13].

Despite the index restrictions on implication formulas, it is possi-
ble to have Γ contain formulas preceded by any !i. For example,
!4?0(!5?1A−◦!3?2(!8?6B−◦!2?2C)) is a legal formula. Observe that in the sequent

� !i?i′(!k?k′A−◦!j?j′(!m?m′C−◦!r?r′D)),

the restriction j ≤ k, i means that the second, inner −◦ can be introduced imme-
diately above the introduction of the first, because the addition of !k?k′A to
the left-side context will not prevent the promotion of !j . Thus instances of Abs
can always be stacked, i.e., focused as well. Thus focusing is possible should one
pursue the extension of the proof system in that direction.

The proof terms here are referred to as bounded λμ-terms because we have
adopted several aspects of the original λμ calculus as presented in [17]. First,
we prefer to associate the proof term with the entire subproof, and not just the
single formula on the right of a sequent. Secondly, Parigot referred to [d]t as
a named term, which is then unnamed, or bound, by μ. If one wishes to make
sense of λμ calculus in terms of intuitionistic logic, then μ must be considered
a non-logical constant of type ((A → ⊥) → ⊥) → A, which would of course
require a double negation/CPS translation to become intuitionistically admis-
sible. Under this interpretation, [d]t is just (d t) where d is of type A → ⊥.
This means that the answer type of a captured continuation can only be ⊥,
which is a problem if the continuation is to be used as a procedure. In a logic
with involutive negation, such an interpretation becomes unnecessary. The only
meaningful operation that Name embeds is a dereliction2. We have adopted
the strategy that neither promotion nor dereliction are reflected in proof terms:
they do not appear to serve any purpose. The only extra notation we add are
the bounded μk binder, superscripted by the producer class/level of its type, and
the bounded reset indicator �n, which is used to decorate every application term,
with its subscript index indicating whether this continuation may be captured
by some μk. Unlike in other formulations of delimited control operators, �n is
not an independent operator but a form of type annotation.
2 When restricted to the modalities !i?i′ and ?i′ !i?i′ , dereliction can be expressed by

the axiom !A → A: this is an intuitionistic implication, which surely has proof λx.x.



306 C. Liang and D. Miller

To illustrate the system we show a generalized proof of a Peirce-like formula:

. . . �!jj′(!kk′(!aa′P−◦!bb′Q)−◦!aa′P )

!b′?b!b′Q⊥, !aa′P �!aa′P

!b′?b!b′Q⊥, !a′?a!a′P ⊥, !aa′P � Name

!a′?a!a′P ⊥, !aa′P �?b′ !b?b′Q
Unname

!a′?a!a′P ⊥, !aa′P �!bb′Q
Produce, b ≤ a, a′

!a′?a!a′P ⊥ �!kk′(!aa′P−◦!bb′Q)
Abs, k ≤ a′

!a′?a!a′P ⊥, !jj′(!kk′(!aa′P−◦!bb′Q)−◦!aa′P ) �!aa′P
App

!jj′(!kk′(!aa′P−◦!bb′Q)−◦!aa′P ) �?a′,a,a′P
Name − Unname

!jj′(!kk′(!aa′P−◦!bb′Q)−◦!aa′P ) �!aa′P
Produce, a ≤ j (automatic)

�!ii′(!jj′(!kk′(!aa′P−◦!bb′Q)−◦!aa′P )−◦!aa′P )
Abs, i ≤ max

There are only a few restrictions in addition to those already imposed on for-
mulas (k ≤ a′ and b ≤ a′). One can easily choose indices that would make
this proof valid, including using the same index everywhere. The proof term is
λx.μa′

d.[d](x �m(λy.μb′
e.[d]y)) where m ≤ min(j, a′). As we shall show, the μa′

term is guaranteed to be able to catch continuations up to the nearest �n with
n �≥ a′. In a linear ordering, if n = k − 1, for example, then capturing the con-
tinuation beyond �n would mean that the promotion to !k (as part of the upper
Produce rule) cannot be duplicated in the proof.

6 Intuitionistic Logic in MC

The resource control aspect of MC generalizes intuitionistic logic. Restrict all
formulas to use only the modalities !2?1 and ?1!2?1. Then any copies of ?1!2?1
must be weakened away before an implication can be introduced with the Abs
rule. This corresponds to the multiple-conclusion version of intuitionistic sequent
calculus, at least when restricted to the → fragment. Indeed that proof system
shares the rare property with subexponential linear logic that weakening is forced
beneath initial rules. Peirce’s formula, ((P → Q) → P ) → P , cannot be proved
using only !ik and ?kik with i �≤ k:

!21(!21(!21(!21P−◦!21Q)−◦!21P )−◦!21P )

Although promotion is applicable (backwards) on !21P , any copy of P created
by contraction, which will appear as ?1!2?1P (or !1?2!1P⊥ on the left), must be
weakened away upon introduction of !21(!21P−◦!21Q). The only producers that
do not labor in vain are those on the left side of (an odd number of occurrences
of) −◦. In terms of the generalized proof of Peirce’s formula shown earlier, the
condition k ≤ a′ would fail. Contracting the entire formula first will similarly fail.

It is simple to verify that any formula where the maximum producer level is
lower than the minimum consumer level can only have an intuitionistic proof.
From this perspective, classical and intuitionistic logics are at opposite ends of
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a spectrum. Intuitionistic logic allows no scope extrusion, whereas classical logic
make no such restrictions. With the appropriate indexing scheme in MC, we can
choose to extrude into the scope of some → while keeping others intact. MC
represents a new way to combine these logics without one collapsing into the
other.

7 Reductions for Bounded λμ

When proofs are combined by cut, the potential danger of merging two contexts
Γ

(n)
1 and Γ

(m)
2 into Γ1Γ

(n,m)
2 is that the lowering of the maximum promotion

level will mean that some promotions can no longer be duplicated. To determine
what remains as valid reduction strategies, first we note the following, which is
easily proved:

Lemma 2. If Γ (n) �!i?kA is provable without weakening (all formulas in Γ
appear as free variables in the proof term), then i ≤ n.

Using this property, first we verify that β-reduction is still a valid strategy:

s : !uu′Ax, Γ
(n,u)
1 �!rr′B

λx.s : Γ
(n)
1 �!vv′(!uu′A−◦!rr′B)

v ≤ n
t : Γ

(m)
2 �!uu′A

s[t/x] : Γ1Γ
(n,m)
2 �!rr′B

We are only concerned with those branches of the left subproof where !uu′A
persists (has not been weakened away). Clearly in these branches there cannot
be any promotion higher than to !u. But by Lemma 2, the right subproof either
ends in weakening, which permutes easily with cut, or it holds that u ≤ m, and
thus min(n,m) is not lower than min(n, u), which means these promotions can
still occur after Γ

(m)
2 has been added to the left subproof. Thus β-reduction is

still a valid strategy.
The restriction n′ ≤ min(n, j′) on the App rule can be strengthened to

n′ ≤ min(i, j′) since i ≤ n by Lemma 2.
Next, we examine the possibility of capturing the continuation in the style

of the original λμ calculus. In order to not clash with β-reduction, the original
λμ calculus only allowed the continuation to the right of μ to be captured, by
which we mean the following scenario:

w : Γ ′ �!vv′(!uu′A−◦!rr′B)

[d]w : (!v′vv′(!uu′A−◦!rr′B)⊥)d, Γ ′ �
...

s : (!v′vv′(!uu′A−◦!rr′B)⊥)d, Γ (n)
1 �

μv′
d.s : Γ

(n)
1 �?v′vv′(!uu′A−◦!rr′B)

Γ
(n)
1 �!vv′(!uu′A−◦!rr′B)

v ≤ n
t : Γ

(m)
2 �!uu′A

μv′
d.s{[d]wt/[d]w} : Γ1Γ

(n,m)
2 �!rr′B
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Again relevant are the branches of the left subproof that contains
!v′vv′(!uu′A−◦!rr′B)⊥, which means that there can only be promotions up to
level !v′ . But v′ ≤ u is required of well-formed formulas and by Lemma 2, u ≤ m.
So once again substituting Γ

(m)
2 into the left subproof will not prevent any pro-

motions from being duplicated. This type of continuation capture is also
valid.

However, it was soon recognized (e.g., [16]) that continuation capture need
not clash with β-reduction as long as we define a (call-by-value) reduction strat-
egy carefully. The resulting form of continuation capture can be generalized to
the capture of an entire evaluation context:

f : Γ
(n)
1 �!vv′(!uu′A−◦!rr′B)

t : Γ ′ �!uu′A

[d]t : (!u′uu′A⊥)d, Γ ′ �
...

s : (!u′uu′A⊥)d, Γ (m)
2 �

μu′
d.s : Γ

(m)
2 �?u′uu′A

μu′
d.s : Γ

(m)
2 �!uu′A

u ≤ m

(f �k μu′
d.s) : Γ1Γ

(n,m)
2 �!rr′B

In order to permute the cut with f into the right subproof, we need to be able
to retain promotions up to level !u′ . Unlike the two previous cases, however, now
it would possible for this condition to be violated if n or r′ is smaller than u′

(see the proof of Peirce’s formula). Thus here we mark the redex with �k where
k ≤ min(n, r′) (or k ≤ min(v, r′)). The continuation f can be captured by μu′

only if min(n, r′) ≥ u′. We allow k to be less than min(n, r′) because we may
decide to force β-reduction anyway. We can reserve the minimum index 0 for
this purpose, and require k > 0 in all terms μkd.t. Then (f �0s) will always force
β-reduction: we can just write (f s) in that case. If capturing f is legal, then
the resulting proof can have the following form:

(f �kt) : Γ
(n)
1 Γ ′ �!rr′B

!r′rr′B⊥, Γ
(n)
1 Γ ′ �

Consume

...
!r′rr′B⊥, Γ1Γ

(n,m)
2 �

Γ1Γ
(n,m)
2 �?r′rr′B

null

s{(f �kt)/[d]t} : Γ1Γ
(n,m)
2 �!rr′B

r ≤ m,n

Recall that merely moving a formula from one side of the sequent to the other is
a null operation in linear logic due to involutive negation. It is important to note
that the final promotion from ?r′ !r?r′B to !r?r′B is always valid because it is
required of legal formulas that r ≤ u, v in !vv′(!uu′A−◦!rr′B). But by Lemma 2,
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v ≤ n and u ≤ m, and thus r ≤ n,m which makes the promotion valid. This
is a consequence of the focusing-related property !(!A−◦!B) ≡!(!A −◦ B) when
generalized to subexponentials.

8 A Call-by-Value Reduction Strategy

In a term such as (f �2(g �5(h �4 μ3d.s))), μ3 should be able to capture both h
and g but not f . To formalize an evaluation strategy, we define the following.

Terms and Values:

λ-variables x, . . . and μ-variables d, . . .
Values V −→ x | λx.T
Terms T −→ V | (T1 �iT2) | μkd.T | [d]T

Evaluation Contexts:

F k −→ [ ] | (F k �nT ) | (V �jF
k) (j ≥ k)

E −→ [ ] | (V �mE) | (E �nT )

E is an evaluation context while F k is a level-k context that represents a contin-
uation that be captured by μkd.t in the “hole” of the context. Note that in the
definition of F k there is no restriction on the index n, because forward capture
is always allowed. The rules for F k implies that terms such as (μmd.s) �i(μkd.t)
will have the form Fm[μmd.s] where Fm = [ ]�i(μkd.t) since μ-terms are not
values: the μk term will be part of the context captured by μm regardless of
whether i ≥ k.

Evaluation Rules:

E[(λx.t) �nV )] −→ E[t{V/x}]
E[V �iF

k[μkd.t]] −→ E[V �i t{F k[u]/[d]u}] (i �≥ k)

A term of the form (λx.u) �nV or (V �iF
k[μkd.r]) with i �≥ k is called a redex.

There is no evaluation rule for when i ≥ k, which forces F k to represent the
maximum context that can be captured. If no μk appears in a term, then the
second evaluation rule will never be used, the �k labels are universally ignored
and standard call-by-value reduction takes place.

All application terms include a �i, which can act as a delimiter, stopping
the capture of continuations by μk with i �≥ k. Instead of a null evaluation rule
�i(V ) −→ V , which is found in most other systems, in our system β-reduction
simply ignores the symbol.

We are missing an evaluation rule for when the entire term is of the form
Fn[μnd.t]. However, a λx.x can always be added in front of such a term. We can
require that the minimum index 0, or some reserved index unrelated to any k
that may appear in μkd.t, is reserved for the purpose of forcing β-reduction. For
example, (λx.x) �0 μnd.t, with n > 0, reduces to (λx.x) �0 t{u/[d]u} (because
here Fn = [ ]). In other words it simply deletes the annotations placed on t.
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The following key lemma illustrates the workings of the contexts and evalua-
tion rules. A proof term is closed if all variables are bound by some λ or μ. Our
results are for closed terms (which are the only proofs possible for end-sequents
of the form � F ), but they can also be generalized.

Lemma 3. Decomposition. For all non-value, closed terms T , either T is of the
form F k[μkd.s] or of the form E[r] where r is a redex. Furthermore, E or F k is
uniquely determined.

The proof is by induction on the structure of T . It follows easily from the property
established by the lemma that if we placed an extra λx.x before a term t then all
non-value, closed terms have uniquely determined redexes. If t has type !k?k′A,
then (λx.x) �n t is well-typed for all n ≤ k′. The lemma also implies the following:

Corollary 4. Progress. If s = (λx.x) �0 t is a closed proof term, then s = E[r]
where r is a redex. Furthermore, r is unique.

Thus evaluation is deterministic. The following lemma shows that evaluation is
type-safe, and forms part of the Subject Reduction proof.

Lemma 5. Let C represent either a context E or F k,

1. if s : Γ � A, s′ : Γ � A and C[s] : Γ ′ � A′ are provable, then C[s′] : Γ ′ � A′

is also provable.
2. if F k[μkd.s] : Γ � A is provable, then s{F k[w]/[d]w} : Γ � A is also provable.

Each part is proved by induction on the context. The difference between sequents
Γ � A and A⊥, Γ � is merely notational in classical linear logic. The central
argument is similar to the reductions at the end of Sect. 7. Type soundness then
follows:

Theorem 6. Subject Reduction. If s : Γ � A is provable and s −→ t using the
evaluation rules, then t : Γ � A is also provable.

In terms of the existing literature on delimited control operators, the behav-
ior of our operators is dynamic as opposed to static: they are closer to the
control/prompt of [6]. Since we do not interpret �k as an independent operator,
we cannot use it to guarantee a static behavior. How μ-terms in the body of
the substitution term F k[u] is to be delimited would depend on its surrounding
context, which is not statically known. It is known that such dynamic, delimited
control operators can have non-terminating behavior, even in a typed setting
(see [2,11]). The following term, adopted from [11], confirms this:

(λx.x)�0((λz.μid.(λy.[d]t)�i[d]t)�i(μid.(λy.[d]t)�i[d]t))

Here, t can be any value of type !j?iA while y and z are vacuous. Let V represent
the value λz.(μid.(λy.[d]t) �i[d]t), then F i = V �i[ ] and the term reduces to

(λx.x) �0 ((λy.V �it) �i(μid.(λy.[d]t) �i[d]t))
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leading to an infinite sequence of reductions. However, the term is well-typed.
Also, it does have a normal form, namely t, but this is not reachable using the
call-by-value strategy. This phenomenon does not contradict cut-elimination.
The reduction steps still correspond to valid proof transformations. The possi-
bility of non-termination is hardly cause for alarm from a programming perspec-
tive, and it is entirely consistent with what we already know to be possible with
delimited control operators. A static behavior can be simulated using (λx.x)�0[ ],
changing the continuation capture rule to:

E[V �iF
k[μkd.t]] −→ E[V �i t{(λx.x)�0F k[u]/[d]u}] (i �≥ k)

A call-by-name strategy can likewise avoid non-termination but then we can
only capture continuations in the form of the original λμ-calculus, which is very
limited for direct style programs. Call-by-value offers a much more general way
to capture continuations. Forcing a particular evaluation strategy proof theoret-
ically can be accomplished through focusing and this is well known. What we
have shown here is that, however a continuation capturing strategy was chosen,
the presence of subexponentials in MC forces it to be delimited.

9 Conclusion

The casual reader who opens this article to an arbitrary page may become dis-
mayed by the large numbers of ?i!k?i and !j?j′ that appear in formulas. Beneath
this apparent chaos, however, are the fundamental proof-theoretic principles of
adequate inductive decoration, cut-elimination, and focusing. We have extended
these principles to a fragment of subexponential linear logic that enhances clas-
sical logic. In the MC fragment intuitionistic logic is found not as a restriction
on proofs but as a restriction on formulas. This represents a new way to combine
classical with intuitionistic logic which is quite different from the polarization
approach of other systems. Although MC is defined using the formulas of subex-
ponential linear logic, and is consistent with it in terms of provability, it is
self-contained as a logical system, with its own, rather unique proof theoretic
properties. The hierarchy of subexponentials naturally leads to a hierarchy of
delimited control operators.
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Abstract. We study foundational problems regarding the expressive
power of parameterised systems. These (infinite-state) systems are com-
posed of arbitrarily many finite-state processes that synchronise using a
given communication primitive, i.e., broadcast, asynchronous rendezvous,
broadcast with message loss, pairwise rendezvous, or disjunctive guards.
With each communication primitive we associate the class of parame-
terised systems that use it. We study the relative expressive power
of these classes (can systems in one class be simulated by systems in
another?) and provide a complete picture with only a single question left
open. Motivated by the question of separating these classes, we also study
the absolute expressive power (e.g., is the set of traces of every parame-
terised system of a given class ω-regular?). Our work gives insight into
the verification and synthesis of parameterised systems, including new
decidability and undecidability results for model checking parameterised
systems using broadcast with message loss and asynchronous rendezvous.

1 Introduction

Parameterised systems are composed of arbitrarily many copies of the same
finite-state process. The processes in a system run independently, but are given
a mechanism by which they can synchronise, e.g., in broadcast systems one
process can send a message to all the other processes, while in a rendezvous
system the message is received by a single process [12,17]. Examples of such
systems abound in theoretical computer science (e.g., distributed algorithms
[18]) and biology (e.g., cellular processes [15]).

Problem Statement. Different synchronisation mechanisms, or communication
primitives as we call them here, yield systems with different capabilities. For
instance, broadcast is at least as expressive as rendezvous since in two steps
broadcast may simulate a rendezvous (I broadcast “I want to rendezvous”, and
someone broadcasts the reply “I will rendezvous with you”, illustrated in Fig. 5).
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On the other hand, intuitively, broadcast is more expressive than rendezvous
(since to simulate a broadcast a process would have to rendezvous with all other
processes before anyone made a different move). The motivation of this paper is
to formalise such reasoning and make such intuitions precise.

Communication Primitives. This paper focuses on representative primitives from
the literature on formal methods for parameterised systems: Broadcast (bc), like
CBP message passing can model ethernet-like broadcast, GSM’s cell-broadcast,
or the notifyAll method in Concurrent Java [5,12,20]; Asynchronous Rendezvous
(ar) can model the notify method in Concurrent Java [5]; Broadcast with Mes-
sage Loss (bcml) can model mobile ad hoc networks (MANETS) and systems
that use selective broadcast with nodes that can be activated or deactivated at
any time [6–8]; and Pairwise Rendezvous (pr), like CSP message passing, can
model population protocols [4,17]. For comparison we also consider a primitive
that admits cutoffs, i.e., disjunctive guards (dg) [10], a property not shared by
the previous primitives.1

Executions of Parameterized Systems. We systematically compare communica-
tion primitives using the standard notion of executions from the point of view of
single processes. Indeed, many papers (e.g. [2,3,5–7,9,11–13,17]) consider speci-
fications from the point of view of single processes — important examples of such
specifications are safety specifications like coverability and liveness specifications
like repeated coverability and termination. Given a process P , and a communi-
cation primitive cp, let Pn

cp be the finite-state system composed of n copies of P
that synchronise using cp (note that there is no special “controller” process). An
execution is a (finite or infinite) sequence of labels2 of states of a single process
in Pn

cp. In many applications (e.g., in parameterised verification), one needs to
consider systems of all sizes. Thus, we let P∞

cp denote the infinite-state system
consisting of the (disjoint) union of the systems Pn

cp for each n ∈ N.

Relative Expressive Power. We define the natural comparison cp ≤IE cp′ as fol-
lows: for every process P that uses cp there is a process Q that uses cp′, such
that P∞

cp and Q∞
cp′ have the same set of infinite executions. Similarly, we write

≤FE if considering only finite executions. The informal meaning of these compar-
isons ≤ is that cp′ can simulate cp, with respect to linear-time specifications. All
of our simulations (except of ar by pr) have the added properties that they also
hold for systems of a fixed finite size, and that they are efficiently computable.
This latter fact is useful for example for model checking (MC) classes of parame-
terised systems with respect to linear-time specifications (over a single process),
i.e., if cp ≤ cp′ and the translation from P to Q is efficient, then MC cp-systems
is (immediately) reduced to MC cp′-systems. We remark that most decidability
results for MC parameterised systems are for linear-time specifications, whereas
for branching-time specifications it is typically undecidable [2,3,11,17].

1 A cutoff is a maximal number of processes that needs to be model checked in order
to guarantee correct behaviour of any number of processes. Our results show that,
indeed, having a cutoff lowers the expressive power.

2 Typically, each label is a set of atomic propositions.
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Absolute Expressive Power. Motivated by the problem of comparing commu-
nication primitives, we also study their absolute expressive power. That is, a
communication primitive cp determines a class of languages Lcp, i.e., the sets
of executions of such systems. How does the class Lcp relate to canonical classes
of languages, such as regular, context-free, ω-regular, etc.? Answers to such
questions allow one to deduce that certain communication primitives cannot be
simulated by certain others, as well as directing one’s choice of communication
primitive for modeling and synthesis of distributed systems.

Our contributions.3

Relative Expressive Power. We provide a full picture of the relative expressive
power of these communication primitives, see Figs. 1 and 2 — an arrow from cp
to cp′ means cp′ ≤ cp,4 and a mark across an arrow means that cp < cp′.

Section 3 establishes all but three of the arrows in Figs. 1 and 2: we get pr ≤IE

bcml from Theorems 6 and 4, pr ≤FE dg from Theorem 2 and Proposition 5,
and ar ≤FE pr from Proposition 5 and Theorem 3.

bc

ar

prbcml

dg

Fig. 1. ≤FE

bc

ar

prbcml

dg

Fig. 2. ≤IE

pREG

ar,pr,bcml,dg

bc

pCF

Fig. 3. Finite executions
of P ∞

cp

lim(REG)
dg

bc

ar

ihcüB-oc

pr, bcml

ihcüB

Fig. 4. Infinite executions
of P ∞

cp

Absolute Expressive Power. The classes of languages of finite executions gener-
ated by the different primitives are illustrated in Fig. 3. bc can generate lan-
guages that are not context free, whereas dg,pr,bcml,ar generate exactly the
prefix-closed regular languages (pREG). However, no communication primitive
can generate all prefix-closed context-free languages (pCF). The case of infinite
executions is illustrated in Fig. 4. We show that dg can generate exactly limits
of regular languages, bcml,pr can generate exactly co-Büchi languages, ar,bc
can generate non ω-regular languages, whereas no communication primitive can
generate all ω-regular languages. We present our results on absolute expressive
power in Sect. 5. The strictness of the arrows in Figs. 1 and 2 follow from our
results on absolute expressive power. To get dg <IE pr (and thus also deduce
dg <IE bcml) use Theorems 4 and 7 (and the fact that there are co-Büchi lan-
guages that are not the limit of any regular language, e.g., all words over {a, b}
3 For lack of space, some proofs are missing or only sketched and can be found in the

full version of this paper.
4 We note that the transitivity of the relations ≤ gives rise to additional simulations

that, for clarity, are not drawn in the figures.
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with finitely many as). To get pr <IE ar use Proposition 9 and Theorem 6.
To get ar <FE bc use Proposition 6 and Theorem 3. To get ar <IE bc use
Proposition 8 and Theorem 5.

Model Checking Linear-Time Specifications. Our techniques yield new results
about model checking (MC) ar and bcml parameterised systems for liveness
properties.5 In particular, even the simplest liveness property (i.e., does there
exist an infinite run) is undecidable for ar systems (Sect. 4). Also, liveness prop-
erties are decidable in PTime for systems using bcml (a problem that was not
even known to be decidable); this follows because bcml can be efficiently simu-
lated by pr (Proposition 2), and the fact that MC of pr-systems can be done in
PTime (which itself follows from [17, Section 4]).

2 Definitions and Preliminaries

Tuples f over a set X may be written (x1, · · · , xk) or in functional notation
f ∈ X [k], i.e., f(i) = xi. Given a set Σ, we denote by Σ∗, Σ+, Σω the sets of all
finite strings, all non-empty finite string, and all infinite strings, respectively, over
Σ. Let ui denote the ith letter of u. We write pre(L) for the set of finite prefixes
of some language L ⊆ Σ∗ or L ⊆ Σω. A language L ⊆ Σ∗ is prefix closed if
L = pre(L). The limit of a language L ⊆ Σ∗ is the language lim L ⊆ Σω such that
α ∈ lim L if and only if infinitely many prefixes of α are in L. A labeled transition
system (LTS) is a tuple 〈Ω,A,Q,Q0, δ, λ〉 where Ω is a set of letters (also called
observables),6 A is a set of edge labels, Q is a finite set of states, Q0 ⊆ Q are
the initial states, δ ⊆ Q × A × Q is the transition relation, and λ : Q → Ω
is the labeling function. For τ = (q, a, q′) we write src(τ) = q, des(τ) = q′ and
edglab(τ) = a, and we also write q

a−→ q′. A path of an LTS is a (finite or
infinite) string of transitions π := π1π2 . . . of δ such that src(πi+1) = des(πi) for
every i. We write src(π) := src(π1), and if π is finite we write des(π) := des(π|π|).
A run is a path π where src(π) ∈ Q0. We write edglab(π) for the sequence
edglab(π1)edglab(π2) . . . . Typically the edge-labels will carry information, i.e.,
an action (e.g., send message m), and whether or not the edge is visible. See [22]
for basic notions about automata. In particular, we use the following acronyms:
NFW, NBW and NCW where N stands for “nondeterministic”, F for “finite”, B
for “Büchi”, C for “co-Büchi”, and W for “word automata”. Counter machines
CM are standard variations of Minsky Machines, i.e., they have a fixed number
of counters that can be incremented, decremented if not zero, and tested for zero.
In the rest of this paper, the word “simulation” is used as in ordinary natural
language, and not as part of the technical term “(bi)simulation relation”.

A note about simulations and visibility. In order to reason about simulations we
have to be able to hide some of the inner steps involved. Consider the follow-
ing motivating example. All the x86 family of processes support the same basic
5 As in [9,12] we formalise safety properties as regular sets (of finite words) and liveness

properties as ω-regular sets (of infinite words).
6 In applications one typically takes Ω := 2AP where AP is a set of atomic predicates.
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instruction set, but they implement each instruction using their own sequences of
microcode instructions. This is fine since to the running software these sequences
of microcode are invisible and it can only see their effect on the observables, i.e.,
the values of the registers. In order to capture this basic trait of simulations, our
definition of local process labels each transition with a Boolean flag indicating
whether it is visible or not, with the added condition that invisible transitions
do not change the observables7. To demonstrate, in the introduction we illus-
trated that bc (effectively) simulates pr by replacing every pr transition by two
(successive) bc transitions. Thus, in order to preserve the set of executions, we
have to hide one of these two transitions (see Fig. 5).

System Model. For a set Σ, let Σsync = {m!, m? | m ∈ Σ} be the synchronisation-
actions. Let Π be a set of internal-actions, disjoint from Σ. A local process is
a finite LTS P = 〈Ω,A, S, S0, δ, λ〉 where A := (Σsync ∪ Π) × B and for every
(q, (σ, b), q′) ∈ δ, if b = false then we must have that λ(q) = λ(q′). A transition
τ = (q, (σ, b), q′) is called visible if b = true and invisible if b = false. Thus, an
invisible transition may change the state but not what is observed.

Define functions act, vis such that act(τ) = σ and vis(τ) = b. A state s ∈ S is
able to receive (resp. able to send) message m ∈ Σ if there is a transition τ ∈ δ
with src(τ) = s and act(τ) = m? (resp. act(τ) = m!). States and transitions of
P are called local states and local transitions. Informally, local transitions with
σ ∈ Π are transitions that a single process must take alone, and are called
local internal transitions, whereas local transitions with σ ∈ Σsync may involve
synchronising with other processes, and are called local synchronising transitions.

For a local process P we now define the global system, i.e., the composition Pn
cp

of n-many copies of P that communicate using cp. A global state of Pn
cp is an n-

tuple of elements of S, collectively Sn. For f = (s1, · · · , sn), f ′ = (s′
1, · · · , s′

n) ∈
Sn a global transition τ = (f, ν, f ′) ∈ Sn × (Σ ∪ Π) × Sn satisfies:

1. If ν ∈ Π then there exists i and b ∈ B such that si
ν,b−→ s′

i, and s� = s′
� for

 	= i (internal transition).
2. If ν = m ∈ Σ:

– If cp = bc: there exist i and bi ∈ B such that si
m!,bi−→ s′

i and letting R
be the set of processes j 	= i that are able to receive m, we must have

that R is non-empty and sj
m?,bj−→ s′

j for all j ∈ R (and some bj ∈ B), and
s� = s′

� for  	∈ R ∪ {i} (broadcast transition).8

– If cp = ar: there exist i and bi ∈ B such that si
m!,bi−→ s′

i and either: there

exists j 	= i such that sj
m?,bj−→ s′

j and s� = s′
� for  	= i, j; or there is no

7 It is common to allow specifications (e.g., the LTL formula Gp) to be satisfied by
computations that loop forever in the same state. Thus, we don’t consider every
transition in which the observables don’t change to be invisible. In particular, we
can have both visible and invisible self loops. Using the CPU analogy, the former
corresponds to a NOP in the instruction set, and the latter to a NOP in microcode.

8 A slightly different version of bc, in which R is also allowed to be empty, also appears
in the literature [12]. Our results also hold for this version.
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j 	= i such that j is able to receive m, and s� = s′
� for  	= i (asynchronous

rendezvous transition).

– If cp = pr: there exist i 	= j and bi, bj ∈ B such that si
m!,bi−→ s′

i and

sj
m?,bj−→ s′

j , and s� = s′
� for  	= i, j (rendezvous transition).

– If cp = bcml: there exist i and bi ∈ B such that si
m!,bi−→ s′

i and there
is some, possibly empty, set R of processes (not containing i) such that

sj
m?,bj−→ s′

j for all j ∈ R (and some bj ∈ B), and s� = s′
� for  	∈ R ∪ {i}

(broadcast with message loss transition).

– If cp = dg: there exist j 	= i and b ∈ B such that si
sj?,b−→ s′

i and

sj
sj !,false−→ sj , and s� = s′

� for  	= i, j (guarded transition). 9

A process k is said to be involved in a global transition τ if it takes a local
transition γ from sk to s′

k (e.g., in all cases above process i is involved in τ).
Moreover, it is visibly involved if vis(γ) = true.

Finally, Pn
cp is the LTS 〈Ωn, Σ ∪ Π,Sn, Sn

0 ,Δ,Λ〉 where Δ consists of the
global transitions (just defined), and Λ(f)(i) := λ(f(i)) for every i ∈ [n]. The
infinite state LTS P∞

cp is the disjoint union of Pn
cp for n ∈ N, and it is called a

parameterised system, or just a system.

Executions. Let π be a path of Pn
cp. We will relate π to paths in P corresponding

to a single process. Fix a process index k ∈ [n]. Let i1 < i2 < . . . be the
set of indices such that process k is visibly involved in the global transition
πij , and define sj := Λ(src(πij ))(k) ∈ Ω (for all j). If there are only finitely
many indices i1 < i2 < · · · < il, we let visletk(π) be the concatenation of
s1s2 . . . sl with the additional letter Λ(des(πil))(k) at the end. Otherwise, we set
visletk(π) := s1s2 . . . . We define the set of 1-executions of Pn

cp by

Exec(Pn
cp) := {visletk(π) : k ∈ [n], π is a run of Pn

cp} ⊆ Ωω ∪ Ω∗

and the set of 1-executions of P∞
cp as Exec(P∞

cp ) := ∪n∈N+Exec(Pn
cp). We denote

the infinite (resp. finite) elements of Exec(·) by InfExec(·) (resp. FinExec(·)).
It is worth noting that if a run π is infinite, but visletk(π) is finite, then process k
was only doing finitely many meaningful moves in π (which is akin, in a system
with only visible transitions, to it being scheduled only finitely many times)
which is why we do not include such traces in InfExec.

3 Relative Expressive Power

For communication primitives cp,cp′, write cp ≤IE cp′ if for every local process
P there is a local process Q (computable from P ) such that InfExec(P∞

cp ) =
9 If cp = dg then we also assume Σ = S (i.e., the synchronization alphabet is the set

of local states), and for every local state s ∈ S there is a transition s
t!,a−→ r if and

only if s = r = t and a = false (i.e., the only transition τ with act(τ) = s! is an
invisible self-loop on state s).
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InfExec(Q∞
cp′). Similarly, define ≤FE with FinExec replacing InfExec. For

x ∈ {IE,FE}, if cp ≤x cp′ ≤x cp then write cp ≡x cp′. If cp ≤x cp′ and
cp 	≡x cp′ then write cp <x cp′ (and define <x similarly). Informally, if cp ≤x

cp′ we say that cp′ simulates cp. Note that, in the definition of ≤x, if there is a
PTime algorithm that given P produces the corresponding Q then we say that
cp′ efficiently simulates cp. All the simulation results cp ≤x cp′ in this paper
(except for ar ≤FE pr) are efficient simulations.

Relationship with Verification. Every regular language of finite words is
called a safety property, and every ω-regular language of infinite words is called a
liveness property, cf. [12]. The model checking problem for parameterised systems
using cp for a given safety (resp. liveness) property L over Ω is the following:
given P , decide whether or not FinExec(P∞

cp ) ⊆ L (resp. InfExec(P∞
cp ) ⊆

L). This model checking problem is sometimes called the “parameterised model
checking problem” or “parameterised verification”, e.g., [11]. If cp′ effectively
simulates cp then the parameterised verification problem for systems using cp
is reducible to the parameterised verification problem for systems using cp′.

3.1 Simulations

The simulations dg ≤x pr ≤x bc, with x ∈ {FE, IE}, have already been dis-
covered in the literature [9]; we illustrate pr ≤x bc in Fig. 5. These results are
the starting point for our fine-grained analysis. In this section we establish the
simulations dg ≤x bcml ≤x pr ≤x ar ≤x bc for x ∈ {IE,FE}. All these
simulations were not previously known. In all the proofs we efficiently construct,
given a local process P , a local process Q such that Exec(Pn

cp) = Exec(Qn
cp′).

q q′ q · q′

r r′ r · r′

(m!,a) (ms!,a) (ackm?,false)

(m?,b) (ms?,false) (ackm!,b)

(ackm?,false)

Fig. 5. Simulation of pr (left) by bc (right)

Proposition 1. ar ≤x bc, for x ∈ {FE, IE}.
Proof. Recall that the difference between pr and ar is only that in ar a process
can send a message m even if there is no other process to receive it (but if there is,
then one such process must receive m). We divide the global transitions of an ar
system into three types: internal transitions, synchronous transitions involving
two processes, and those involving only one process. Given local process P , we
build local process Q such that Qn

bc simulates Pn
pr (for every n > 2), by using

a sequence (called a transaction) of 1 or 2 global transitions. Simulating the
internal transitions is done directly, the synchronous transitions involving two
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processes are simulated by a 2-step transaction as in the simulation of pr by bc,
and the synchronous transitions in which there is only a sender are simulated
by a single-step transaction as follows: let e = (p, (m!, b), q) be a local transition
in P ; in Q, a process can take the local transition (p, (msolo!, b), q) broadcasting
the message that it is simulating a send of m that should have no receivers, and
every process that is in a state that is able to receive m in P , receives msolo and
invisibly moves to a new special “disabled” copy of its current state from which
it can no longer do anything; all other processes simply receive msolo and invisibly
self-loop. The intuition is that by sending msolo process i guessed that there is
no process able to receive m in the simulated system, and thus we disable the
processes that witness the fact that the guess is wrong — effectively making it
right. Note that if we do not disable them then one of these processes will be in
the wrong state (since in the ar system one of them must receive m and move,
but in the simulating system none moved) and will be able to later allow moves
in the simulating system that are not possible in the simulated one. ��

p q p ue ve q

p′ q′ p′ ue′ q′

(m!,b) (int,false)

(ms!,false)

(int,b)

(mr?,false)

(int,false)

(m?,b′) (ms?,false) (mr !,b
′)

Fig. 6. Simulation of bcml (left) by pr (right)

Proposition 2. bcml ≤x pr, for x ∈ {FE, IE}.
Proof. Given a local process P , we build a local process Q such that Qn

ar sim-
ulates Pn

pr (see Fig. 6). A global transition where i sends m by taking a local
transition of the form e := (p, (m!, b), q), and a set R of processes receive, is simu-
lated by a multi-step transaction. The transaction needs multiple steps because
in pr only two processes move in every step. The main difficulty, and the reason
the transaction is complicated, is that we must be careful not to introduce new
executions that are not possible in the bcml system.

The simulation of sending the lossy broadcast message m is done in three
stages: (a) process i internally and invisibly moves from state p to the new
intermediate state ue; state ue has an invisible self-loop that sends message ms

(indicating it is trying to simulate sending m); the self-loop enables the message
to be sent to an arbitrary number of processes; (b) process i internally moves
from state ue to the new intermediate state ve with visibility b; state ve has an
invisible self-loop that receives message mr; the self-loop allows to acknowledge
that an arbitrary number of processes have received the message; (c) process i
internally and invisibly moves from state ve to state q.

The simulation of receiving message m, by taking a local transition of the
form e′ := (p′, (m?, b′), q′), is in two stages: (a) process j invisibly moves from
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state p′ to the new intermediate state ue′ receiving message ms. (b) process j
moves from state ue′ to state q′ with visibility b′ sending message mr.

Unfortunately, we can not guarantee that this transaction is atomic, i.e.,
that no other global transitions intertwine with the simulation of a single lossy
broadcast. We can not even guarantee that if a process j has received a message
ms from process k, then it is going to send mr to process k, and not to another
process. The solution is to consider the processes that performed the second stage
with some process k as the ones which received the lossy broadcast message
m from k. This works since, for each process j, the first stage of receiving a
lossy broadcast message is invisible, and after that it can not do anything but
participate in a second stage of receiving a message. ��
Proposition 3. pr ≤x ar, for x ∈ {FE, IE}.
Proposition 4. dg ≤x bcml, for x ∈ {FE, IE}.

Remark: There is a version of broadcast, lets call it abc, where a process can
broadcast a message even when no other process is able to receive it. All our
results about bc hold also for abc since bc ≡x abc, for x ∈ {FE, IE}.

4 Model Checking Asynchronous-Rendezvous Systems

The theorem below states that model checking even the most basic liveness prop-
erties of ar systems is undecidable. The proof of the theorem is an adaptation
of the one used in [12] to prove a similar result for bc. Unfortunately, there is
a serious complication: [12] makes central use of the fact that bc systems can
elect a controller, but ar systems are not powerful enough to do that.

Fortunately, we can make do with a temporary controller, which ar can elect:
from the initial state a process can send the message “I am now the controller”
and enter the initial state of the “controller” component of the process template.
If later on another process sends this message then it becomes the new controller,
and the current controller, who receives this message, enters a special state D,
from which it can do nothing. Thus, there are never two controllers at the same
time, and at most n controller switches in a system with n processes.

The ability of ar to elect a temporary controller allows us not only to prove
the theorem below, it also allows us to later show (see Fig. 4) that ar systems
have an expressive power that is in between pr (which cannot elect even a tem-
porary controller) and bc (which can elect a permanent controller). However,
interestingly enough, this is only true for infinite traces. For finite traces, hav-
ing a temporary controller, in contrast to a permanent one, provides no extra
expressive power (see Fig. 3).

Theorem 1. (i) Model checking liveness properties of parameterised systems
communicating via ar is undecidable. (ii) In particular, the following problem
is undecidable: given local process P , decide if InfExec(P∞

ar ) is empty or not.
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Proof. For the first item, it is enough to reduce the halting problem for input-free
deterministic counter machines CM (which is undecidable [19]) to the existence
of a run in an ar system P∞

ar that visits a halting state infinitely often. It is
convenient to assume that when (and if) the halting location is reached then
the CM resets itself, i.e., it decrements all its counters until they become zero
and then loops back to the initial state. The basic encoding for the simulation is
from [12]. It uses one process called the controller to orchestrate the simulation
and store the line of the CM, and many memory processes. Each memory process
stores one bit for each counter, and the value of a counter is the number of
processes having a non-zero bit for it. Each process has a special dead state D,
which once entered cannot be exited.

A process may, from the initial state, nondeterministically become either the
temporary controller or a memory process. The transitions in a memory process
are, for each counter c ∈ C: if the stored c-bit is 0, then it can send the message
“inc(c)” and set the c-bit to 1; if the stored c-bit is 1, then it can send the
message “notzero(c)” and leave c unchanged, or send the message “dec(c)” and
set c to 0, or receive the message “iszero(c)” and go to state D. From every state
of the controller there is a complementary send/receive transition as specified by
the CM line that this state represents. Thus, for example, an “increment c” is
simulated by the controller receiving an “inc(c)” and moving to the next line of
the CM (or to the state D, if the current command to simulate is not “increment
c”), and an “if c = 0 goto l1 else goto l2” command is simulated by the controller
either receiving “notzero(c)” and moving to state l2; or moving to state l1 and
sending an “iszero(c)” which, if counter c is zero, is not received, and otherwise
is received by a memory process with a 1 c-bit which then enters state D.

It is not hard to show that Pn
ar can faithfully simulate the CM as long as

the counters stay below n − 1. Thus, if the CM reaches the halting location h
then there is an infinite run of Pn

ar, for a large enough n, in which the process
playing the controller is in h infinitely often. For the reverse direction, the key
point is that whenever the simulation makes an error (such as replacing the
temporary controller in mid simulation, or having the controller guess a counter
is zero when it is not, or when a memory process simulates a command that is
not what the controller wants to simulate) one process dies (i.e., enters state D).
Thus, since there are only finitely many processes participating in any execution
of P∞

ar , in every infinite run of P∞
ar , from some point on, no more processes die,

and thus from that point on the simulation is correct. It follows that if there
is a run of P∞

ar in which a process is in state h infinitely often then the run of
the CM reaches the halting location. This completes the sketch of the proof of
the first item. The second item uses a standard trick (see e.g. [12]) of adding an
extra counter that increases in every step, and gets reset only when the halting
state is reached. Thus, the system will run out of its finite number of memory
processes and hang unless the CM reaches h. ��
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5 Absolute Expressive Power

Finite Executions. First note that, since every prefix of a finite run is a run,
for every cp and P we have that FinExec(P∞

cp ) is prefix-closed.10

Proposition 5. For every cp and prefix-closed regular language L there exists
P such that FinExec(P∞

cp ) = L.

Proof. Transform an automaton for L into P by pushing letters into states (i.e.,
by changing L so that it remembers the last read input-letter in its state, labeling
each state by this letter, and adjusting the initial states), and making all local
transitions of P internal (i.e., not synchronisation transitions) and visible. ��
Proposition 6 (cf. [16]). (i) There is a P s.t. FinExec(P∞

bc ) = pre({anbn |n ≥
1}). Moreover, bc can generate non-context free languages; (ii) None of our com-
munication primitives can generate all prefix-closed context-free languages.

Theorem 2 ([17]). For every P , the language FinExec(P∞
pr ) is regular.

Theorem 3. For every P , the language FinExec(P∞
ar ) is regular.

Proof. Let P = 〈Ω,A, S, S0, δ, λ〉 be some local process. We will construct a
finite automaton (NFW) A that accepts exactly the traces in FinExec(P∞

ar ).
We call a local state s ∈ S unbounded if for every k ∈ N there is an n ∈ N, and
a reachable global state f in Pn

ar, such that |f−1(s)| ≥ k. We denote by U ⊆ S
the set of unbounded states of P and by B = S \ U the set of bounded states.
Observe that S0 ∩ B = ∅, and that there is a K ∈ N such that |f−1(s)| ≤ K for
every s ∈ B, and every global state f in P∞

ar .
We now define an automaton A. States of A are pairs 〈s, f〉, where s ∈ S

is the state of the process whose execution we are observing, and f ∈ S →
{0, 1, . . . ,K}∪{∞}, is such that f(u) = ∞ for every u ∈ U . Intuitively, for each
state in B, f keeps track of the number the other processes in that state. A state
〈s, f〉 of A is initial iff: s ∈ S0 and f(u) = 0 for all u ∈ B. A has a transition
from 〈s, f〉 to 〈s′, f ′〉 if there is a local transition τ ∈ δ where the counter values
of f change to f ′ according to τ (and any possible matching transition if τ is a
synchronising transition), and if s is involved in τ then s changes to s′. Such a
transition is labeled by λ(s) if s was involved in the transition and vis(τ) = true,
and otherwise by ε. For example, if τ = (p, (m?, true), p′) then, together with the
any transition of the form (q, (m!, b), q′) in δ, it induces the following transitions

in A: (i) a transition 〈p, f〉 λ(p)−→ 〈p′, f ′〉 for every f, f ′ such that f(q) 	= 0, and f ′

is obtained from f by decrementing the value assigned to q and incrementing the
value assigned to q′; (ii) a transition 〈s, f〉 ε−→ 〈s, f ′〉 for every s and every f, f ′

such that f(p) 	= 0, f(q) 	= 0, and f ′ is obtained from f by decrementing the
values assigned to p, q and incrementing the values assigned to p′, q′ (as usual,
∞ − 1 = ∞ = ∞ + 1).
10 Although distributed systems are routinely studied this way, one may also introduce

final states to the local process and restrict to runs that end in final states [16].
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Clearly, A is a finite automaton. We show that A (with all states accepting)
accepts exactly the traces in FinExec(P∞

ar ). For every n ∈ N, every execution
obtained from some path of FinExec(Pn

ar) is accepted by a run of A that “sim-
ulates” this execution by correctly updating the components s, f of its states.

It remains to prove that every word accepted by A is in FinExec(P∞
ar ). We

claim (*): for every k there exists nk ∈ N and a path πk of FinExec(Pnk
ar )

reaching a global state such that there are at least k processes in every local
state s ∈ U . To see that (*) yields L(A) ⊆ FinExec(P∞

ar ), let π be some run
of A, and take k ≥ 2|π|. Observe that in such a run at most k processes are
involved. We build a corresponding run in Pnk

ar . First, (†): using (*) we take a
path that results in at least k processes in every local state s ∈ U . Recall that
S0 ∩ B = ∅ and thus, in particular, there is at least one process in each of the
initial states. Then,(‡): the process we want to observe starts from the relevant
initial state and we imitate the run π of A step by step. This is indeed possible
since whenever a step of ‡ requires a process with a state in U then such a process
is available, and the same for processes in B. The former is guaranteed by ‡, and
the latter since (by induction on the step number) the number of processes with
states in B is at least as specified by the function f of the mimicked point in π.

We now prove (*). Let u1, ..., um be the states in U . Inducting on 0 ≤ i ≤
m, we construct paths πi in systems FinExec(Pni

ar ) such that load at least k
processes in states u1, ..., ui. We start with the empty run π0 in FinExec(P 1

ar).
Clearly, π0 satisfies the inductive claim. Given πi, we construct πi+1 as follows:
Let li be the length of πi. By the definition of U , there is a path π in some
system FinExec(Pn

ar) that ends with at least li + k processes in state ui+1 and
at least one process in each of the initial states (thus, executing π in a larger
system does not force any of the additional processes out of the initial states).
We set ni+1 = n + ni and define πi+1 to be the concatenation of π and πi in
the system FinExec(Pni+1

ar ). Clearly, πi+1 loads at least k processes in states
u1, ..., ui+1 (since πi can remove at most li states from ui+1). ��
It is open if there is a constructive proof of Theorem3.

Infinite Executions.

Theorem 4. For every co-Büchi language L, and for cp ∈ {pr,bcml,ar,bc},
there is a local process P s.t. InfExec(P∞

cp ) = L.

Proof. Given an NCW A recognizing L we build a local process P , in which all
transitions are visible, such that InfExec(P∞

cp ) = L. The local process P has
exactly the same structure, when viewed as a graph, as A, with an added special
sink state. In order to take a transition to a co-Büchi state (i.e., a state that an
accepting run of A can only visit finitely many times) the process has to receive
a message. A process that sends a message enters the sink state, and can not
send again. Thus, in a system with n processes a process can visit a co-Büchi
state up to n−1 times. Transitions to other states are internal transitions of the
process, and can always be taken. ��
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We now show that not all ω-regular languages can be generated by our parame-
terised systems. In fact, the proof is general enough to apply to any reasonable
notion of communication primitive (not only those defined in this paper), unless
some additional fairness conditions are imposed. The proof employs a standard
pumping argument to derive a contradiction by showing that if ab1ab2a . . . is in
Exec(Pn

cp) then so is ab1ab2 . . . abcabω, where c is the number of states in Pn
cp.

Proposition 7. For every local process P , primitive cp, and n ∈ N∪ {∞}, the
set InfExec(Pn

cp) is not equal to the ω-regular language L ⊆ {a, b}ω consisting
of all infinite sequences that contain infinitely many occurrences of a.

The following is not hard to see:

Proposition 8. There is a bc-system that can generate the non co-Büchi lan-
guage {albmcω | l ≥ m ≥ 1}).

We use a variation of the proof of Theorem1 to show that ar-systems can
generate languages that are not ω-regular:

Proposition 9. There is an ar-system that can generate a language L ⊂ {a, b}ω

that has the property that

1. every string α ∈ L has a suffix (anbn)ω for some integer n ∈ N, and
2. every string (anbn)ω is the suffix of some string in L.

In particular, the language L is not co-Büchi.

Proof. Standard fooling arguments show that any L with the properties described
is not Büchi (and thus not co-Büchi). We now describe an ar-system that can
generate a language L with the properties stated in the lemma. The idea follows
that in the proof of Theorem1: a controller starts in mode a; in mode a it repeat-
edly increments a counter c; at some point it checks if all memory processes are 1
by issuing an “allone(c)” message (which can be implemented symmetric to the
“iszero(c)” message), and moves to mode b; in mode b it repeatedly decrements
the counter c; at some point it checks if all memory processes are 0 by issuing
a “iszero(c)” message, and moves back to mode a to repeat the computation.
Build the local process P based on M and note that a process that becomes a
controller forever in P l

ar does not err from some point on, and thus traces a path
whose suffix is (anbn)ω with n ≤ l. Note that an abdicating controller does not
trace an infinite path (since the dead state is a dead-end). ��
The following is proved in almost the same way as Theorem 3:

Theorem 5. For every P , the language pre(InfExec(P∞
ar )) is regular.

Model checking safety and liveness properties (given as automata) of parame-
terised systems communicating via pr is decidable in PTime [17]. Actually:

Theorem 6 (Implicit in [17]). For every local process P , one can compute, in
PTime, a non-deterministic co-Büchi automaton for the set InfExec(P∞

pr ).
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Theorem 7. Every InfExec(P∞
dg) is the limit of a regular language.

Proof. By [10] there exists N ∈ N such that InfExec(P∞
dg) = InfExec(PN

dg)
(the idea is to pick N large enough such that every reachable state can be reached
and adding one extra process; this choice of N ensures that every reachable
self-loop (s, (s!, false), s) can always be fired; the extra process can therefore
move unrestrained). The language L := FinExec(PN

dg) is regular (because it
is the projection of the finite-state machine PN

dg). It is sufficient to prove that
InfExec(PN

dg) = lim L. Clearly InfExec(PN
dg) ⊆ lim L. To see the converse let

α ∈ lim L. So there exists k ∈ [N ] and an infinite set I ⊆ N such that for every
i ∈ I there exists a run ρi of PN

dg such that the prefix of α of length i is equal to
visletk(ρi). The set pre{ρi : i ∈ I} is an infinite tree (under the prefix-ordering)
that is finitely-branching (this is where we use the fact that the ρis are in PN

dg

and not P∞
dg), and thus by Kőnig’s Lemma, it has an infinite branch ρ. Clearly

ρ is an infinite run of PN
dg and visletk(ρ) = α. Thus α ∈ InfExec(PN

dg). ��

6 Related Work and Conclusion

Related Work. The absolute and relative expressive power of Petri nets and
their extensions were studied for finite and infinite executions, e.g., [1,14,16].
They show a strict hierarchy of relative expressive power: Petri nets (PN) are
less expressive than Petri nets with non-blocking arcs (PN+NBA), which are
less expressive than Petri nets with transfer arcs (PN+T). Translating these
results into the language of parameterised systems, one finds that these exten-
sions roughly correspond to a very powerful model of parameterised systems
with a controller and in which processes can be created and destroyed at any
time. By this translation, PNs correspond to communication by pr, PN+NBA
to communication by ar, and PN+T to communication by bc. In contrast, we
focus on the setting with no controller and with no process creation or destruc-
tion. Thus, neither their simulation nor separation results are directly applicable
to our more restricted setting.

The paper [9] organises communication primitives by whether or not model
checking (MC) is decidable. Although they do have a notion of simulation, that
notion is based on reducing the MC problem of systems using one primitive to
systems using another primitive. In particular, their reduction transforms, while
ours preserves, the set of behaviours. For instance, despite their result that MC
safety properties of dg- and pr-systems are inter-reducible, we prove that there
is a set of traces of a pr system that can’t be generated by any dg system.

It was previously known that MC safety properties for systems using each
of the primitives in this paper is decidable, liveness for bc is undecidable, and
liveness for pr and dg is decidable [6,9,10,12,17]. We complete the picture,
and prove, in particular, that for ar systems liveness is undecidable. The result
in [9] on the undecidability of liveness for ar systems makes the additional
assumption that there exists a unique “leader” process. The presence of a leader
usually dramatically increases the expressive power, cf. [11,17], and makes it
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easier to establish undecidability than in our fully symmetric case. A number
of papers focus on supplying the exact complexity of MC various parameterised
systems, e.g., [2,6–8,11,17,21].

Conclusion. Comparing the expressive power of various models of computation
is a central theme in theoretical computer science. In our case, such comparisons
can be used to transfer results from one model to another. For instance, we
prove that ar can be effectively simulated by bc, and thus the fact that safety
is decidable for bc (cf. [12]) implies that safety is decidable for ar [9]. We also
deduced the new result, using [17] and the fact that bcml can be efficiently
simulated by pr, that liveness for bcml is decidable in PTime.

The results about absolute expressive power are useful not only to show,
e.g., that pr can not simulate ar, but also to point to the inherent limitations
of each communication primitive. Such results can be used in synthesis to show
that certain specifications are not realisable. As a concrete example, a minor
variation of our proof that no system can generate the language “infinitely many
a’s” (Proposition 7) yields that there is no parameterised system (and thus no
point in trying to synthesise one without adding external fairness conditions)
that satisfies the conjunction of the properties “every run has infinitely many
grants” and “some run has arbitrarily large gaps between successive grants”.
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Abstract. The choice of data structures for the internal representation
of terms in logical frameworks and higher-order theorem provers is a cru-
cial low-level factor for their performance. We propose a representation
of terms based on a polymorphically typed nameless spine data structure
in conjunction with perfect term sharing and explicit substitutions.

In related systems the choice of a β-normalization method is usually
statically fixed and cannot be adjusted to the input problem at runtime.
The predominant strategies are hereby implementation specific adap-
tions of leftmost-outermost normalization. We introduce several different
β-normalization strategies and empirically evaluate their performance by
reduction step measurement on about 7000 heterogeneous problems from
different (TPTP) domains.

Our study shows that there is no generally best β-normalization strat-
egy and that for different problem domains, different best strategies
can be identified. The evaluation results suggest a problem-dependent
choice of a preferred β-normalization strategy for higher-order reasoning
systems.

1 Introduction

Higher-order (HO) automated theorem proving (ATP) is, in many ways, more
complex and involved than ATP in first-order or propositional logic. This addi-
tional complexity can be found on the proof search layer as well as on the layer of
terms respectively formulas. However, one advantage is that the increased prac-
tical expressiveness of higher-order logic often enables more intuitive and concise
problem representations and solutions. Many interactive and automated theo-
rem provers for higher-order logic are based on Church’s simple type theory [7] –
also called classical higher-order logic (HOL) – or extensions of it.

In automated reasoning systems, terms are the most general and common
pieces of information that are accessed, manipulated and created by most rou-
tines of the reasoning system. It is therefore not surprising, that the internal
representation of terms is a crucial detail which has direct consequences on the
efficiency of the whole system.
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We present a combination of term representation techniques for HO ATP
systems that is based on locally nameless spine terms [4] and explicit treatment
of substitutions [1]. These base choices are appropriately adjusted to meet the
requirements of HO ATP systems. In particular, our representation natively
admits an expressive typing system, efficient term operations and reasonable
memory consumption through term sharing in a combination that is novel to
HO reasoners.

The support for efficient term operations hereby not only covers those
adopted from the first-order universe, but also the essential operation of β-
normalization. To this end, we differ from prominent other reasoning systems
in proposing several new (modified) β-normalization strategies that allow a
problem-dependent handling of β-reduction. Thus, we do not hard-wire a single,
preferred β-normalization strategy that we anticipate to perform best over all
possible problem inputs. We think that this approach can in fact increase the
overall performance of HO ATP systems in which β-(re-)normalization has to
be repeatedly carried out during proof search.

This research is motivated by previous observations [18] that suggest that
there is no single best normalization strategy. The here proposed strategies have
been empirically evaluated using a representative set of benchmark problems
for theorem proving. This evaluation confirms that there are problem classes at
which the de-facto standard leftmost-outermost strategy is outperformed by our
rather simple alternative strategies. The evaluation has been conducted within
the LeoPARD [21] system platform for HOL reasoners.1

2 HOL Term Representation

HOL is an elegant and expressive formal system that extends first-order logic
with quantification over arbitrary sets and functions. We consider Alonzo
Church’s simple type theory [7] which is a formulation of HOL that is built
on top of the simply typed λ-calculus [5,6].

The simply typed λ-calculus, denoted λ→, augments the untyped λ-calculus
with simple types, which are freely generated from a set of base types and the
function type constructor →. In HOL, the set of base types is usually taken as
a superset of {ι, o} with ι and o for individuals and truth values, respectively.

The work presented here focuses on an extended variant of λ→ that natively
supports parametric polymorphism and incorporates a locally nameless represen-
tation using de-Bruijn indices for bound variables [3]. The notion of de-Bruijn
indices is extended for nameless type variables to keep up the guarantee of syn-
tactical uniqueness of α-equivalent terms. Types (denoted by τ or ν) are thus
given by

τ, ν ::= s ∈ T | i ∈ N | τ → ν | ∀. τ

where T is a non-empty set of base type symbols and i is a nameless type variable.

1 The LeoPARD framework is freely available under BSD license and can be down-
loaded at https://github.com/cbenzmueller/LeoPARD.

https://github.com/cbenzmueller/LeoPARD
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The term data structure presented next adopts, combines and extends tech-
niques that are employed in state-of-the-art HO reasoning systems, such as Teyjus
λProlog [12] (which is based on explicit substitutions of the Suspension Calculus
[11]), the logical frameworks TWELF [13] and Beluga [14], and the interactive
Abella prover [8]. In particular, the combination of techniques for term data struc-
tures presented here is, up to our knowledge, novel in the context of HO ATP and
not employed in any modern system.

On the basis of nameless terms, spine notation [4] in conjunction with explicit
substitutions [1] is employed. The first technique allows quick head access and
a left-to-right traversal method that is more efficient than in classical curried
representation. The latter method’s explicit treatment of substitutions enables
the combination of substitution runs which in turn permits a more efficient β-
normalization procedure.

More specifically, the internal representation of polymorphic HOL syntax is
given by (types are partially omitted for simplicity):

s ::= (h · S) | (s · S) | (λτ . s) | (Λ. s) | s[σ]
h ::= iτ | cτ | h[σ]
S ::= Nil | sτ ;S | τ ;S | S[σ]

σterm ::= ↑i | sτ · σterm σtype:: = ↑i | τ · σtype

where the terms s are either roots, redexes, term and type abstraction, or clo-
sures (respectively) with heads h (that are bound indices i, constants cτ ∈ Σ
from the signature Σ or itself closures) and spines S. We support defined con-
stants cτ and their expansion using directed equation axioms (cτ := dτ ). The
spines collect arguments in a linear sequence, concatenated by the ; constructor.
A substitution σ = (σterm, σtype) is internally represented by a pair of a term-
and a type substitution, for which each individual substitution exclusively con-
tains substitutes for the corresponding de-Bruijn indices. In the current version,
closures cannot occur within types. This is because the number of type variables
within current common ATP problems is typically very low (often zero), and,
hence, merging of substitution runs in types is not crucial.

We extend the notion of β-normalization to substitutions σ = (σterm, σtype)
by σ

�

β = (σterm

�

β , σtype) where σterm

�

β denotes the substitution ρ for which
it holds that ρ(i) = σterm(i)

�

β , i.e. all components of the substitution are β-
normalized individually.

The type abstraction mechanism (Λ. s) is due to Girard and Reynolds, who
independently developed a polymorphically typed λ-calculus today widely known
as System F [9,16]. We use a Church-style λ-calculus in which each type is
considered a part of the term’s name and thus intrinsic to it. This has several
advantages over the extrinsic, or Curry-style, interpretation, but comes with
some downsides, e.g., wrt. typing flexibility.

3 Normalization Strategies

We now introduce corresponding strategies, two of them novel (wrt. earlier exper-
iments in [18]), and present them along with a brief discussion of possible benefits
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(and downsides). Subsequently, these strategies are empirically evaluated using
an extensive benchmark set. The strategies are:

1. DEFAULT (Leftmost-outermost): This normalization method corresponds
to the standard normal-order strategy, that is, the leftmost-outermost redex
is processed first at each step during β-normalization. We use DEFAULT
as starting point for the presentation and explanation of further strategies
below. The complete rules for DEFAULT can be found in Fig. 1. Here, s

� σ
β

denotes β-normalization relative to substitution σ. The computation of the β-
normal form of term s is initiated by s

�

β := s

� (id,id)
β , where id is the identity

substitution id := ↑0.
2. HSUBSTn (n > 0, Heuristic application of substitution in RxApp): If the

size of the term to be prepended onto the substitution is smaller than n, it is
normalized strictly. Otherwise, the substitution is postponed using closures
as before. The rule RxApp from Fig. 1 is thus replaced by the two rules

(s · t;Stail)

� σ,σ′

β s = λτ . s′ |t| ≥ n
RxApp≥

(s′ · Stail)

� (t[σ]·σterm,σtype),σ
′

β

(s · t;Stail)

� σ,σ′

β s = λτ . s′ |t| < n
RxApp<

(s′ · Stail)

� (t

� σ

β
·σterm,σtype),σ

′

β

where |t| denotes the size of term t (i.e. the number of term nodes in internal
representation).

3. WHNF (Normalize substitution once WHNF is obtained): When arrived at
weak head normal form c·S of the current (sub-)term during β-normalization,
the substitution σ is normalized and then used to further β-normalize the
spine S. Thus, the rule RAtom (cf. Fig. 1) is replaced by

(c · S)

� σ
β c ∈ Σ σ′ = σ

�

β
RAtom′

c · S

� σ′

β

4. STRCOMP (Strict composition of term-substitutions): The standard (meta-
operation) of term-substitution composition with closures is given by

(sτ · σterm) ◦ ρterm −→ sτ [ρterm] · (σterm ◦ ρterm) (1)

In STRCOMP it is instead calculated strictly:

(sτ · σterm) ◦ ρterm −→ sτ

� (ρterm,id)
β · (σterm ◦ ρterm) (2)

In contrast to (1), the application of substitution ρterm in (2) is not postponed
using closures but applied immediately by β-normalization.
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Root rules
(c · S)

� σ
β c ∈ Σ

RAtom
c · S

� σ
β

(iτ · S)

� σ
β σterm(i) = j

RBndSub
jτ [σtype] · S

� σ
β

(i · S)

� σ
β σterm(i) = s

RTermSub

(s · S)

� (id,σtype),σ

β

(h[ρ′][ρ] · S)

� σ
β

RClosClos
(h[ρ′ ◦ ρ] · S)

� σ
β

(c[ρ] · S)
� σ

β c ∈ Σ
RAtomClos

c · S

� σ
β

(iτ [ρ] · S)

� σ
β (ρterm ◦ σterm)(i) = j

RBndClos
jτ [ρtype◦σtype] · S

� σ
β

(i[ρ] · S)

� σ
β (ρterm ◦ σterm)(i) = s

RTermClos

(s · S)

� (id,ρtype◦σtype),σ

β

Abstraction/Closure rule

(λτ . s)
� σ

β
Abs

λτ [σtype]. s
� (1·σterm◦↑,σtype)

β

(Λ. s)

� σ
β

TyAbs

Λ. s

� (σterm,1·σtype◦↑)
β

(s[σ′])

� σ
β

Clos

s

� σ′◦σ
β

Redex rules

(s · Nil)

� σ,σ′
β

RxSpNil
s

� σ
β

(s · S[ρ])

� σ,σ′
β

RxSpClos

(s · S)

� σ,ρ◦σ′
β

(s · t; Stail)

� σ,σ′
β s = λτ . s′

RxApp

(s′ · Stail)

� (t[σ]·σterm,σtype),σ
′

β

(s · τ ; Stail)

� σ,σ′
β s = Λ. t

RxTyApp

(t · Stail)

� (σterm,τ [σ′
type]·σtype),σ

′

β

(s · S)

� σ,σ′
β s = h · S′

RxRMrg

(h[σ] · S′[σ] ++ S[σ′])

� (id,id)
β

(s · S)

� σ,σ′
β s = t · S′

RxRxMrg

(t · S′[σ] ++ S[σ′])

� σ,(id,id)
β

(s · S)

� σ,σ′
β s = t[ρ]

RxClos

(t · S)

� ρ◦σ,σ′
β

Spine rules

Nil

� σ
β

SpNil
Nil

(S[ρ])

� σ
β

SpClos
S

� ρ◦σ
β

(s0; Stail)

� σ
β

SpApp
(s0

� σ
β); Stail

� σ
β

(τ ; Stail)

� σ
β

SpTyApp
(τ [σtype]); Stail

� ρ◦σ
β

Fig. 1. β-normalization strategy DEFAULT
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5. WEAK (Weakly normalize substitutions on demand): Before application of
RTermSub or RTermClos, β-normalize the term before substituting, and
update σ accordingly. This means that each time a term is supposed to be
substituted, its β-normal form is substituted instead. Also, in order to avoid
re-computations, the original term is replaced by its β-normal form in the
substitution σ, too. Thus, rule RTermSub from Fig. 1 is replaced by

(i · S)

� σ
β σterm(i) = s s′ = s

�
β

RTermSub′

(s′ · S)

� (id,σtype),(σterm[i←t

�

β
],σtype)

β

and RTermClos is replaced analogously. Here, when term t is substituted
for de-Bruijn index i, the substitution σ is updated to hold the normalized t
at position i, i.e. σ′(j) = t

�

β iff j = i and σ′(j) = σ(j) otherwise.

4 Evaluation and Further Work

In order to estimate the expected effects of using different β-normalization strate-
gies in practical scenarios of automated reasoning, a worst-case analysis seems
inappropriate and is therefore omitted. In lieu thereof, a representative set of
problems for (HO) theorem proving has been chosen for which the number of β-
normalization reduction steps has been compared empirically between all strate-
gies. Since the proposed strategies do not include costly heuristics (e.g. based
on structural properties of terms), a decrease in reduction counts can directly
be translated to a speed-up with respect to actual time consumption. The eval-
uation has been conducted with the LeoPARD system platform, in which the
term data structures from Sect. 2 and the strategies from Sect. 3 have been imple-
mented.

The Benchmarks. The benchmark problems were chosen from a relatively broad
field of diversity: The first three benchmark domains are the sets denoted
Church I, Church II and Church III that contain reducible arithmetic terms
(of the form mult(i, i), power(i, 3), power(3, i) respectively) in polymorphic
Church numerals encoding [17]. The domains S4E and S4F contain a total of
3480 HO problems, converted from propositional and first-order modal logic
problems from the QMLTP library [15]. Both domains differ wrt. to the details
of the employed semantic embedding of logic S4 in HOL [2].2

The remaining benchmarks (a total of 3246 problems) are (typed) first-order
and HO problems from the TPTP problem library [19,20]. These benchmark
domains are denoted according to their problem domain name as given by the
TPTP library. Generally, first-order CNF problems, as well as TPTP domains
that only contain them, were not considered for the evaluation, since the con-
tained formulae are already given in clause normal form which results in likewise
β-normalized internal clause representations in LeoPARD.
2 The archive of semantically embedded S4-formulae from QMLTP can be found at

http://page.mi.fu-berlin.de/cbenzmueller/papers/THF-S4-ALL.zip.

http://page.mi.fu-berlin.de/cbenzmueller/papers/THF-S4-ALL.zip
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Fig. 2. Evaluation results

The benchmark problem selection embodies, in its sum, a representative set
of nearly 7000 practical inputs for reasoning systems and a heterogeneous set of
(syntactic and semantic) term characteristics is covered.

Results and Discussion. Figure 2a shows the number of benchmark problems
(throughout all domains) that were β-normalized (uniquely) best using the given
strategy. It can be seen that, in our benchmark set, the DEFAULT strategy
has the higher number of problems normalized with minimal reduction count
(compared to the other strategies). Nevertheless, HSUBST4 and WHNF are
competitive alternatives, and there are even problems that are uniquely nor-
malized best in the remaining strategies. It should be pointed out again that
the competing strategies are relatively simple, since they do not use sophis-
ticated term structure heuristics and yet already admit a fair effectiveness in
certain domains.

In order to give a brief idea of the amount of potential reduction count sav-
ings, a quantitative comparison of 14 problems from KRS with highest reduc-
tion count differences between default leftmost-outermost and the alternative
WHNF strategy is shown in Fig. 2b. These difference are, in the most striking
cases, up to factor 4.5 which is considerable in magnitudes of 106 reduction steps
and above.

More detailed results that underline our observations can be found in Table 1.
Here, for selected problem domains3, and each relevant β-normalization strategy,
the number of problems that performed best and worst are displayed (i.e. the
number of problems that had the lowest respectively highest overall reduction
count for this strategy). Additionally, the number of unique problems – denoted
(u) – which normalized strictly faster in this strategy than in any other strat-
egy within the domain is given. The sum of all reduction steps, denoted Σri,
throughout the whole problem domain, as well as the maximal number of reduc-
tion steps (for a single problem) are given. The remaining three values, r̃i, ri and
3 The complete evaluation results can be found at http://inf.fu-berlin.de/∼lex/files/

betaresults.pdf.

http://inf.fu-berlin.de/~lex/files/betaresults.pdf
http://inf.fu-berlin.de/~lex/files/betaresults.pdf
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Table 1. Selected results of reduction count measurements

Strategy Best (u) Worst (u) Σri min ri max ri ri r̃i σ

STRCOMP 88 (88) 3 (3) 1151350 79 32650 11·103 9014.5 9·103

DEFAULT 12 (0) 0 (0) 1712750 17 50408 17127.5 12962.5 15·103

WHNF 12 (0) 0 (0) 1712750 17 50408 17127.5 12962.5 15·103

HSUBST4 0 (0) 0 (0) 1712850 18 50409 17128.5 12963.5 15·103

HSUBST6 0 (0) 0 (0) 1733050 22 50809 17330.5 13165.5 15·103

WEAK 0 (0) 97 (0) 39838425 33 1546215 398384.2 205336.5 445·103

(a) Domain CHURCH1 (100 problems)

Strategy Best (u) Worst (u) Σri min ri max ri ri r̃i σ

STRCOMP 17 (17) 0 (0) 147516 150 25782 7764.0 4704.0 7·103

DEFAULT 2 (0) 0 (0) 236075 80 42110 12425.0 7325.0 12·103

WHNF 2 (0) 0 (0) 236075 80 42110 12425.0 7325.0 12·103

HSUBST6 0 (0) 0 (0) 1262759 107 271331 66461.0 27665.0 80·103

HSUBST4 0 (0) 0 (0) 1262759 107 271331 66461.0 27665.0 80·103

WEAK 0 (0) 1 (0) 1359621 171 289215 71559.0 30483.0 86·103

(b) Domain CHURCH2 (19 problems)

Strategy Best (u) Worst (u) Σri min ri max ri ri r̃i σ

WHNF 14 (0) 0 (0) 704503 511 14846 5636.0 5378.0 3·103

HSUBST6 0 (0) 0 (0) 834604 513 22883 6676.8 5475.0 5·103

DEFAULT 80 (16) 0 (0) 848536 511 23663 6788.3 5472.0 5·103

HSUBST4 50 (0) 0 (0) 848599 513 23663 6788.8 5472.0 5·103

STRCOMP 14 (0) 3 (0) 8443020 511 419068 67544.2 13622.0 106·103

WEAK 0 (0) 14 (0) 23354287 913 1069897 186834.3 89193.0 252·103

(c) Domain GRA (125 problems)

Strategy Best (u) Worst (u) Σri min ri max ri ri r̃i σ

WHNF 173 (14) 95 (0) 35695447 0 6106161 129801.6 689.0 67·104

HSUBST6 96 (0) 85 (0) 106292434 0 15011396 386517.9 835.0 206·104

DEFAULT 254 (12) 95 (0) 106316948 0 15028663 386607.1 689.0 206·104

HSUBST4 239 (0) 109 (14) 106317316 0 15028665 386608.4 689.0 206·104

STRCOMP Unfeasible

WEAK Unfeasible

(d) Domain KRS (275 problems)

σ, denote the arithmetic mean, the median value and the standard derivation of
the measurement results (respectively).

As an example, in benchmark domain Church I (cf. Table 1a) STRCOMP
performs drastically better than in any other domain: Although DEFAULT and
WHNF have the lowest minimum value, STRCOMP is by far the best strategy
(in problem count and overall reduction sum) with 88 of 100 problems (uniquely)
normalized best. In terms of reduction steps per problem, STRCOMP takes
only roughly 70 % of the number of steps required by DEFAULT (in both
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average and mean). Similar results also apply for the remaining Church domains.
Also, in the GRA domain (cf. Table 1c), the mean normalization step count ri is
more than 100 steps lower in the WHNF strategy than when using DEFAULT.
These results demonstrate that the alternative normalization strategies can in
fact perform better (wrt. reduction count per problem) than default leftmost-
outermost in certain problem domains.

Further Work. While the present evaluation grouped problems by a (given, prac-
tically motivated) semantic classification, further investigations need to identify
syntactic criteria in order to group problems with similar properties (with respect
to β-normalization performance) for a specific strategy.

Based on observation and some preliminary experiments, we are positive that
methods based on syntactic criteria such as the following can be employed for
choosing an appropriate normalization strategy at runtime:

– Recognition of regular patterns in terms
– The term’s size and depth
– The number of abstractions not occurring at top-level
– The number of bound indices

For future work, not only concrete (syntactical) heuristics but also machine
learning techniques could be employed to study representative sets of problems.

5 Conclusion

A sophisticated internal representation mechanism for (second-order) polymor-
phically typed HO terms, including a locally nameless spine notation combined
with explicit substitutions and perfect term sharing, has been presented.

Using the above representation, several new β-normalization strategies have
been introduced. These strategies vary in their extent of laziness and strictness in
certain normalization rules, e.g. during composition of substitutions. They have
subsequently been implemented and evaluated within the LeoPARD frame-
work. The conducted evaluation was based on a representative benchmark set.

For logical frameworks and meta languages, the representation of objects such
as programs and proofs in λProlog has previously been studied [10]. However,
a fine-grained evaluation of normalization strategies in context of HO ATP as
reported here has not been carried out before. Extending previous studies in
a rather orthogonal manner (wrt. application domain, granularity, and system
of explicit substitutions), our benchmarks reveal that there is no single best
β-normalization strategy for a relevant set of problem classes. In particular,
our findings show that the performance of a strategy rather depends on some
(syntactic) characteristics of the input problem. The reduction count difference
between the default leftmost-outermost strategy and the leading strategy can,
in fact, be as high as factor four.
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Abstract. Many high-level verification tools rely on SMT solvers to
efficiently discharge complex verification conditions. Some applications
require more than just a yes/no answer from the solver. For satisfiable
quantifier-free problems, a satisfying assignment is a natural artifact.
In the unsatisfiable case, an externally checkable proof can serve as a
certificate of correctness and can be mined to gain additional insight
into the problem. We present a method of encoding and checking SMT-
generated proofs for the quantifier-free theory of fixed-width bit-vectors.
Proof generation and checking for this theory poses several challenges,
especially for proofs based on reductions to propositional logic. Such
reductions can result in large resolution subproofs in addition to requiring
a proof that the reduction itself is correct. We describe a fine-grained
proof system formalized in the LFSC framework that addresses some
of these challenges with the use of computational side-conditions. We
report results using a proof-producing version of the CVC4 SMT solver
on unsatisfiable quantifier-free bit-vector benchmarks from the SMT-LIB
benchmark library.

1 Introduction

SMT solvers are often used to reason in theories whose satisfiability problem
ranges in complexity from NP-complete to undecidable. To be able to do this,
they implement complex algorithms combining efficient SAT solving with theory-
specific reasoning, requiring many lines of highly optimized code.1 Because the
solvers’ code base changes frequently to keep up with the state of the art, bugs
are still found in mature tools: during the 2014 SMT competition, five SMT
solvers returned incorrect results. In a field where correctness is paramount, this
is particularly problematic. While great progress has been made in verifying

Work partially supported by DARPA award FA8750-13-2-0241 and ERC
project 280053 (CPROVER).

1 For example, the CVC4 code base consists of over 250K lines of C++ code.
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complex software systems [18,19], the verification of SAT and SMT solvers still
remains a challenge [20].

One approach for addressing this concern is to instrument an SMT solver to
emit a certificate of correctness. If the input formula is satisfiable and quantifier-
free, a natural certificate is a satisfying assignment to its variables. Correctness
can be checked by evaluating the input formula under that assignment. In the
unsatisfiable case, the solver could emit an externally-checkable proof of unsat-
isfiability. Proof checkers usually consist of a small trusted core that implements
a set of simple rules. These can be composed to prove complex goals, while
maintaining trustworthiness.

Proof-producing SMT solvers have been successfully used to improve the per-
formance of sceptical proof assistants, as shown in several recent papers [1,5,6,
8,9,14]. The proof assistant can discharge complex sub-goals to the SMT solver.
It can then check or reconstruct the proof returned by the solver without hav-
ing to trust the result. In some applications, such as interpolant generation [26]
and certified compilation [11], the proof object itself is used for more than just
establishing correctness.

Proofs for the theory of fixed-width bit-vectors are of particular practi-
cal importance, with applications in both hardware and software verification.
Previous work [7] shows how to reconstruct proofs from the Z3 SMT solver in
HOL4 and Isabelle/HOL. However, due to the lack of detail in the Z3 bit-vector
proofs, proof reconstruction is not always successful. In this paper, we seek to
address this limitation by presenting a method of encoding and checking fine-
grained SMT-generated proofs for the theory Tbv of bit-vectors as formalized in
the SMT-LIB 2 standard [3]. Proof generation and checking for the bit-vector
theory poses several unique challenges. Algebraic reasoning is typically not suf-
ficient by itself to decide most bit-vector formulas of practical interest, so often
bitvector (sub)-problems are solved by reduction to SAT. However, such reduc-
tions usually result in very large propositional proofs. In addition, the reduction
itself must be proven correct. LFSC is a meta-logic that was specifically designed
to serve as a unified proof format for SMT solvers. Encoding the Tbv proof rules
in LFSC helps address some of these challenges.

We make the following contributions: (i) we develop an LFSC proof system
for the quantifier-free theory of fixed-width bit-vectors that includes proof rules
for bit-blasting and allows for a two-tiered DPLL(T ) proof structure; (ii) we
instrument the CVC4 SMT solver to output proofs in this proof system; and
(iii) we report experimental results on an extensive set of unsatisfiable SMT-
LIB benchmarks in the QF BV logic.

We start with a discussion of related work in Sect. 2. Section 3 explains the
structure of SMT-generated proofs, while Sect. 4 introduces the LFSC proof
language and illustrates how to use it to encode the kinds of inferences routinely
done by SMT solvers. We discuss how bit-vector constraints are decided in CVC4
and how to generate proofs for them in Sect. 5. Section 6 introduces the LFSC
proof rules that are specific to the bit-vector theory. We show experimental
results in Sect. 7 and conclude with future work in Sect. 8.
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2 Related Work

Early approaches to proof-checking for SMT relied on using interactive theorem
provers to certify proofs produced by SMT solvers. One effort [21] used HOL
Light to certify proofs generated by the CVC Lite SMT solver. Another [13]
generated proofs for quantifier-free problems in the logic of equality with unin-
terpreted symbols using the haRVey SMT solver and translated these into
Isabelle/HOL. A contrasting approach [22] traded off assurance for speed by
using a special-purpose external checker to check proofs generated by the Fx7
solver. Our approach aims to balance trust and efficiency by using LFSC. Using a
logical framework with a generic proof checker provides both trust and flexibility,
while LFSC’s computational side-conditions increase performance.

None of the work mentioned above supports proofs for the theory of bit-
vectors. The work in [15] targets SMT-generated proofs for the theory of bit-
vectors for the purpose of generating interpolants. It is similar to ours in that
it uses a lazy bit-vector solver, integrated into a DPLL(T ) framework and in
that if algebraic reasoning fails, it falls back on a resolution proof generated by
the SAT solver. However, the work is different in that its focus is on producing
interpolants rather than proof-checking. They do not address the correctness of
bit-blasting, for instance.

The work whose scope is most similar to ours is an effort that was under-
taken to reconstruct bit-vector proofs produced by Z3 within Isabelle/Hol [7].
The main difference in that work is that Z3 does not produce full proofs, but
rather “proof sketches.” Specifically, Z3 provides some “large-step” inferences,
lemmas that are valid in the theory of bit-vectors, without proof. As the authors
remark, the coarse granularity of Z3’s proofs makes proof reconstruction particu-
larly challenging. A significant part of the proof checking time is spent re-proving
large-step inferences that Z3 does not provide details for. In contrast, our app-
roach is more fine-grained as it provides full details for every step. As we show
below, this enables our approach to check more proofs.

The LFSC meta-framework has been successfully used for encoding proofs
generated by SMT solvers for other theories in [24,25,28]. The current paper
extends this line of work to support LFSC proofs for the bit-vector theory. In [26]
the authors show how to use LFSC to compute interpolants from unsatisfiability
proofs in the theory of equality and uninterpreted function symbols. We believe
this approach can be extended to generate bit-vector interpolants from LFSC
bit-vector proofs.

3 Proofs in SMT

In the rest of the paper, we assume some familiarity with automated reasoning,
many-sorted first-order logic, and the syntax of simply-typed lambda calculus.
Let P be an abstraction operator that replaces each atom (a predicate symbol
applied to one or more terms) in a formula with a unique propositional variable.
Most SMT solvers are based on some variant of the DPLL(T ) architecture [23],
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which combines Boolean reasoning on the abstraction ϕP of a quantifier-free
input formula ϕ with theory-specific reasoning in order to determine the sat-
isfiability of ϕ with respect to a background theory T .2 Boolean reasoning on
ϕP is performed by a SAT solver, while theory-specific reasoning is delegated
to a theory solver for T (or T -solver). The SAT solver enumerates satisfying
assignments AP for ϕP. The T -solver checks whether the corresponding set of
T -literals A is T -satisfiable. If A is not T -satisfiable, a T -valid clause is added
that blocks the assignment AP, and the process continues until either a satisfying
assignment is found or a contradiction can be derived purely at the propositional
level. From a proof-theoretic perspective, one can think of the T -solver as refin-
ing the propositional abstraction ϕP with the addition of selected theory lemmas
(clauses valid in T ) until a propositionally unsatisfiable formula is obtained [4].

The resolution calculus is refutationally complete for propositional clause
logic [27] and has been successfully used as the basis for a common proof format
for SAT solvers [30]. However, as we describe below, SMT proofs are significantly
more sophisticated than SAT proofs (see, e.g., [2] for more details). First, SMT
solvers convert their input to CNF; thus, a proof object produced by an SMT
solver must incorporate a proof establishing that the CNF clauses used internally
by the solver follow from the input formula. Second, the Boolean abstraction of
the input formula is obtained by replacing T -atoms with propositional variables.
Hence, SMT proof generation must also rely on a mechanism that maintains a
connection between input atoms and the propositional variables representing
them in the SAT solver. Finally, each theory lemma generated by the theory
solver must have a proof expressed in terms of T -specific proof rules.

As a consequence, SMT proofs typically have a three-tiered structure: (i)
a derivation of the internal CNF formula ψ from the input formula ϕ;3 (ii) a

Fig. 1. DPLL(T ) architecture, SMT proof structure, and proof checker.

2 For simplicity, we will ignore here the issue of whether the background theory is the
combination of several more basic theories or not.

3 This step typically also includes the application of simplifying rewrite rules, which we
ignore in this paper. Extending the approach here to include the many pre-processing
rewrite rules used in real solvers is tedious but straightforward.
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resolution refutation of ψ in the form of a resolution tree whose root is the
empty clause and whose leaves are either clauses from ψ or theory lemmas; and
(iii) theory proofs of all the theory lemmas occurring in the resolution tree.

Figure 1 depicts the DPLL(T ) architecture and how it relates to the structure
of SMT proofs. In this paper, we consider proofs with this structure expressed
as terms in the LFSC framework, which we discuss next.

4 LFSC

LFSC is an extension of the Edinburgh Logical Framework (LF) [17], a meta-
framework based on a extension of simply-typed lambda calculus with dependent
types. LF has been used extensively to encode various kinds of deductive systems.
In general, a specific proof system P can be defined in LF by representing its
proof rules as LF constants and encoding their premises and conclusions as a
type. In this setting, a formal proof in the encoded proof system is represented
as an LF term whose constants (in the sense of higher-order logic) are proof-rule
names. A collection of type and term constant declarations is called a signature
in LF. Checking the correctness of a proof then reduces to type checking: an
LF proof checker takes as input both a signature S defining a proof system P
and a proof term t encoding a proof in P . It verifies the correctness of the proof
by checking that t is well-typed with respect to S. For example, the equality
transitivity proof rule:

t1 = t2 t2 = t3
t1 = t3

trans (1)

in (unsorted) first-order logic can be encoded in LF as a constant with type:

trans : Πt1, t2, t3:tr.Πp1:holds (eq t1 t2).Πp2:holds (eq t2 t3). holds (eq t1 t3)
(2)

where Π is the binder for the dependently typed product, tr is the type of first-
order terms, eq is a binary function of type tr × tr → form (where form is the type
of first-order formulas), and holds is a unary (dependent) type parametrized by a
first-order formula.4 As a proof constructor, the proof rule (1) takes as arguments
terms t1, t2 and t3, as well as proofs p1 of t1 = t2 and p2 of t2 = t3, and returns
a proof of t1 = t3. The LF declaration in (2) encodes this in the type of the
constant trans. One possible proof that a = d follows from the premises a = b,
b = c, and c = d is represented by the (well-typed) term:

λa, b, c, d:term. λp1:holds (eq a b). λp2:holds (eq b c). λp3:holds (eq c d).
(trans a c d (trans a b c p1 p2) p3)

Using the wild-card symbol , the body of the innermost lambda term can be
simplified to (trans (trans p1 p2) p3), since the omitted arguments can
be inferred automatically during type-checking.
4 Intuitively, an LF expression of dependent type Πϕ:form. holds(ϕ) represents a proof

that the formula ϕ holds.



Fine Grained SMT Proofs for the Theory of Fixed-Width Bit-Vectors 345

Purely declarative proof systems like those defined in LF cannot always effi-
ciently model the kind of complex reasoning usually employed by SMT solvers.
LFSC addresses this issue by extending LF types with computational side condi-
tions, explicit computational checks defined as programs in a small but expressive
functional first-order programming language. The language has built-in types for
arbitrary precision integers and rationals, ML-style pattern matching over LFSC
type constructors, recursion, limited support for exceptions, and a very restricted
set of imperative features. A proof rule in LFSC may optionally include a side
condition written in this language. When checking the application of such a proof
rule, an LFSC checker computes actual parameters for the side condition and
executes its code. If the side condition fails, the LFSC checker rejects the rule
application.

As shown in Fig. 1, when using LFSC, the trusted core includes both the
(generic) LFSC checker and the specific LFSC signature which consists of a set
of proof rules, each of which may have side conditions.

We refer the reader to [28] for a detailed description of the LFSC language and
its formal semantics. Here we introduce LFSC syntax via examples to illustrate
the main features of the framework.

Example 1. An inference rule at the heart of SAT and SMT solvers is the propo-
sitional resolution rule:

l1 ∨ . . . ln ∨ l ¬l ∨ l′1 ∨ . . . l′m
l1 ∨ . . . ln ∨ l′1 ∨ . . . ∨ l′m

Res

where l’s are literals. This rule alone is actually not enough to express resolution
derivations as formal objects, since one also has to account for the associativity,
commutativity and idempotency of the ∨ operator. In LF, this problem can be
addressed only by adding additional proof rules for those properties. Doing so
makes it possible to move literals around in a clause and remove duplicate literals,
but at the cost of requiring many proof rules for each resolution step, resulting in
the generation of very large proofs. Alternative solutions [31] eschew the generic,
declarative approach provided by meta-frameworks like LF and instead hard-
code the clause data structure in the proof checker, requiring a proof-checker
with higher complexity and lower generality.

In contrast, an LFSC proof rule for resolution can use a side condition to
encode that the resulting clause is computed by removing the complementary

unit, var, lit, clause : type holds : clause → type cln : clause

ok : unit pos, neg : var → lit clc : lit → clause → clause

resolve (c1, c2:clause, v:var):clause = let p (pos v) in let n (neg v) in

let _ (occurs p c1) in let _ (occurs n c2) in merge (remove p c1) (remove n c2)

Res : Πc, c1, c2:clause. holds c1 → holds c2 → Πv:var {(resolve c1 c2 v) ↓ c}. holds c

Fig. 2. LFSC declarations encoding propositional resolution.
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literals in the two input clauses and then merging the remaining literals. One
encoding of the rule and its side condition, together with all the necessary types
and constants, is shown in Fig. 2. In the figure and in the remainder of the paper,
we write τ1 → τ2 to abbreviate as usual a type of the form Πx:τ1. τ2 where τ2
contains no occurrences of x. Clauses are encoded essentially as nil-terminated
lists of literals. They are built with the constructors cln, for the empty clause,
and clc, for non-empty clauses. Literals are built from propositional variables
using the constructors pos and neg, for positive and negative literals. Variables
do not have constructors because LFSC variables can be used directly.

The resolution rule Res takes as input the clauses c1, c2, and c, together with
a proof of c1 of type holds c1, one of c2 of type holds c2, and a variable v to
be used as the resolved atom. The resolve side condition function computes the
resolvent of clause c1 with c2, provided that c1 contains at least one occurrence of
the positive literal (pos v) and c2 contains at least one occurrence of the negative
literal (neg v). The side condition {(resolve c1 c2 v) ↓ c} succeeds if c is the result
of resolving c1 and c2 on v. In that case, the proof rule returns a proof of c. The
definitions of the auxiliary functions occurs, remove, and merge are omitted from
Fig. 2 due to space constraints. (occurs l c) does nothing if the literal l is in the
clause c; otherwise, it raises a failure exception; (remove l c) returns the result
of removing the literal l from the clause c; (merge c1 c2) returns the clause with
no repeated literals resulting from merging clauses c1 and c2. ��
LFSC has previously been successfully used to encode the constructs necessary
for Boolean resolution, CNF conversion, and propositional abstraction of theory
lemmas [28]. In this paper, we will not cover these constructs, but instead focus
on how to encode bit-vector specific reasoning in LFSC.

5 Bit-Vector Proof Generation in CVC4

Decision procedures for the theory Tbv of bit-vectors almost always involve a
reduction to propositional logic. One approach for encoding a bit-vector formula
ϕ into an equisatisfiable propositional formula ϕBB is known as bit-blasting. For
each variable v denoting a bit-vector of size n, bit-blasting introduces n fresh
propositional variables, v0, . . . vn−1, to represent each bit in the vector. To be
able to encode this mapping in Tbv, we extend the Tbv signature with a family
of interpreted predicate symbols (bitOfi : BVn �→ bool)0≤i<n, where bitOfi takes
a bit-vector x of width n and returns true iff the ith bit of x is 1. Let ϕ be
a bit-vector formula. For each atom a appearing in ϕ, let bbAtom(a) denote
a propositional formula consisting of the circuit representation of a. Let CBB

denote the conjunction of bit-blasting clauses obtained from converting to CNF
the atom definitions:

C
BB ≡ CNF

⎛

⎝
∧

a∈Atoms(ϕ)

aBB ⇔ bbAtom(a)

⎞

⎠ ,
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where aBB is a fresh propositional variable representing atom a and CNF repre-
sents conversion to CNF. The formula ϕBB := ϕ[a �→ aBB ]a∈Atoms(ϕ) ∧ CBB is
a propositional formula equisatisfiable with ϕ. Most state-of-the-art solvers for
Tbv generate a formula like ϕBB and then rely on a single query to a SAT solver
to check its satisfiability. Thus, a proof of unsatisfiability for ϕ could consist of:
(i) a proof that ϕ is equisatisfiable with ϕBB in Tbv, (ii) a propositional proof
that ϕBB is equisatisfiable with CNF (ϕBB ), and (iii) a monolithic, potentially
very large, resolution-based refutation of CNF (ϕBB ).

CVC4 incorporates an eager bit-vector decision procedure (cvcE) based on the
approach sketched above. It also provides, as an alternative, a lazy DPLL(T )-
style bit-vector solver (cvcLz) that maintains the word-level structure of the
input terms and separates reasoning over the propositional structure of the input
formula ϕ from bit-vector term reasoning [16]. In cvcLz, the bit-vector theory is
treated like any other theory: the main DPLL(T ) SAT engine SATmain reasons on
the propositional abstraction ϕP whereas a Tbv-solver BV decides conjunctions A
of Tbv-literals. Essentially, BV corresponds to the T -solver box in the DPLL(T )
diagram in Fig. 1.

Recall from Sect. 3 that the Tbv solver BV must repeatedly decide the satisfi-
ability of the Tbv-literals A and return a Tbv-valid clause over the atoms of A if A
is Tbv-unsatisfiable. We achieve this by relying on a second SAT solver, SATbb, to
decide the satisfiability of each assignment A. It does this by checking the propo-
sitional formula ABB ∧ CBB , where ABB = A[a �→ aBB ]a∈Atoms(A). Note that
this may be significantly smaller than the formula ϕ[a �→ aBB ]a∈Atoms(ϕ) ∧CBB

checked in the eager approach.
If ABB ∧ CBB is unsatisfiable, SATbb returns a set of literals LBB ⊆ ABB

that is inconsistent with CBB . The clause ¬L is a Tbv-valid lemma, and the
¬LP clause is added to SATmain. We can efficiently use SATbb to check the
satisfiability of CBB with different assumptions ABB by using the solve with
assumptions feature of SAT solvers [12].

The lazy solver cvcLz in CVC4 also has several algebraic word-level sub-
solvers. However, we do not yet support proof production for these sub-solvers,
so in this paper, we focus on the Tbv-lemmas generated by SATbb.

6 LFSC Bit-Vector Signature

In this section, we discuss proof generation for the lazy bit-vector solver cvcLz

described in Sect. 5. Figure 3 shows the overall structure of the Tbv proof by
zooming in on the Tbv-lemmas that occur as leaves in the resolution SAT proof
in Fig. 1. We start with the bit-blasting proofs that each atom a is equivalent
to its bit-blasted formula: a ⇔ bbAtom(a). These proofs require no assumptions
as a ⇔ bbAtom(a) is Tbv-valid.5 Next, the CNF proof establishes that the bit-
blasting clauses CBB follow from the atom definitions.6 Note that this step also
5 Recall that bbAtom(a) is a propositional formula encoding the semantics of atom a,

and contains bitOfi applications on the bit-vector variables in a.
6 For details on how to use LFSC to encode proofs for CNF conversion, see [28].
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Fig. 3. Bit-vector proof structure.

establishes the mapping from the Tbv-atom a to the abstract Boolean variable
aBB used in the SATbb SAT solver.

Each Tbv-lemma has a corresponding resolution proof in SATbb with CBB

as leaves. The resolution proof constructs a clause over the aBB SAT variables.
To use this in SATmain, we need to map the lemma to Tbv atoms, and then to
the SAT variables aP in SATmain. In the figure, circles denote Tbv-atoms and
diamonds the propositional variables that abstract them (either in SATbb or in
SATmain).

6.1 Encoding Bit-Vector Formulas

Figure 4 shows the LFSC constructs needed to represent formulas in the theory
of bit-vectors. Note that the encoding distinguishes between formulas and terms:
formulas are represented by the simple type form and terms by the dependent
type term, parametrized by the sort of the term: Πs:sort. term s. Formulas are
constructed with the usual logical operators and with an equality operator over
terms which is parametric in the terms’ sort. The int type is LFSC’s own built-in
infinite precision integer type. Bit-vector sorts are represented by the dependent

sort : type term : sort → type BV : int → sort

form : type true, false : form and, or, impl, iff : form → form → form

not : form → form = : Πs:sort. term s → term s → form

varBV : type var2BV : Πn:int. varBV → term (BV n)

bit : type b0, b1 : bit const2BV : Πn:int. constBV → term (BV n)

constBV : type bvn : constBV bvc : bit → constBV → constBV

Fig. 4. Partial LFSC signature for the theory Tbv of bit-vectors.
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type Πn:int.BV n where n is the width of the bit-vector. Bit-vector constants
are represented as lists of bits using the constBV type with the two constructors
bvn and bvc, for the empty sequence and the list cons operator respectively. The
constBV bit-vector constants are converted to bit-vector terms with the const2BV
function. Bit-vector variables are represented as LFSC variables of type varBV
and converted to terms with var2BV.

Example 2. The bit-wise conjunction operator is encoded in LFSC as:

bvand : Πn:int. term (BV n) → term (BV n) → term (BV n)

Similarly, the unsigned comparison operator < is encoded as:

bvult : Πn:int. term (BV n) → term (BV n) → form

The Tbv formula (t1 = t2 & t3) ∨ (t1 < 0[3]) where & is bvand, 0[3] is the zero
bit-vector of size 3, and t1, t2, t3 have type (term (BV 3)) can be encoded in
LFSC as

(or (= t1 (bvand t2 t3))
(bvult t1 (const2BV 3 (bvc b0 (bvc b0 (bvc b0 bvn)))))),

with b0 representing the zero bit. ��

6.2 Bit-Blasting

Recall that a bit-blasting proof (see Fig. 3) makes the connection between a
bit-vector formula and its propositional logic encoding by proving for each bit-
blasted atom a in the input formula, the following formula:

a ⇔ bbAtom(a).

We represent a bit-blasted bit-vector term of width n as a sequence of n for-
mulas, with the ith formula in the sequence corresponding to the ith bit. The
bbt type encodes bit-blasted terms and has two type constructors bbtn and bbtc
as shown in Fig. 5. We introduce the dependent type constructor bbTerm to
encode the fact that the bit-vector term x:BV n. corresponds to a bit-blasted
term y:bbt. For example, the following term encodes that 15[4] is bit-blasted as
[true, true, true, true]:

(bbTerm (const2BV 4 (bvc b1 (bvc b1 (bvc b1 (bvc b1 bvn)))))
(bbtc true (bbtc true (bbtc true (bbtc true bbtn)))))

We can define proof rules for each piece of syntax in bit-vector terms and compose
them in order to build up arbitrary bit-blasted terms. Figure 5 shows several such
bit-blasting rules. The bbVar rule takes a bit-vector variable v, its width n, and a
sequence of bit-blasted terms vb, and checks that the sequence computed by the
side condition code in bb-var matches vb. The side condition code just builds a
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bbt : ntbbepyt : bbt bbtc : formula → bbt → bbt

bitOf : varBV → int → form bbTerm : Πn:int. term (BV n) → bbt → type

bb-var (v : varBV, n : int) : bbt =
if n < 0 then bbtn else (bbtc (bitOf v n) (bb-var v (n − 1)))

bbVar : Πn:int. Πv:varBV.
Πvb:bbt {(bb-var v (n − 1)) ↓ vb}. (bbTerm n (var2BV n v) vb)

bbAnd : Πn:int. Πx, y:term (BV n). Πxb, yb, rb:bbt.
Πxbb:bbTerm n x xb.
Πybb:bbTerm n y xb {(bb-bvand xb yb) ↓ rb}. bbTerm n (bvand n x y) rb

bbEq : Πn:int. Πx, y:term (BV n). Πbx , by :bbt. Πf :form.
Πbbx :bbTerm n x bx .
Πbby :bbTerm n y by {(bb-eq bx by) ↓ f}. thHolds (iff (= (BV n) x y) f)

Fig. 5. Partial list of the LFSC bit-blasting rules for Tbv.

sequence of applications of the bitOf operator to v—with (bitOf v i) representing
the Tbv predicate bitOfi introduced at the beginning of Sect. 5. Similarly, the
rule that establishes how to bit-blast bit-wise conjunction (&) takes a proof xbb
that xb is the bit-blasted term corresponding to x as well as a proof ybb for
yb corresponding to y and returns a proof that x&y is bit-blasted to rb. The
rb term is constructed by the side condition code bb-bvand (not shown) which
works similarly to bb-var. The bbEq rule for equality Tbv-atoms follows a similar
pattern, but returns a formula instead of a bbTerm. Note that bit-blasting proof
rules do not take any Tbv-assertions as assumptions: their conclusions are Tbv-
valid.

Example 3. Encoding in LFSC the bit-blasting proof for the formula a[8] =
x[8]&y[8] requires the following proof rule applications:

(bbEq (bbVar 8 a ) (bbAnd (bbVar 8 x ) (bbVar 8 y )))

Assuming previously defined variables a, x, and y, the above term has type
thHolds(ϕ) where ϕ is:

(a[8] = x[8]&y[8]) ⇔
∧

0≤i<8

(ai ⇔ (bitOf v i) ∧ (bitOf v i)) .

The bit-blasting LFSC proof rules rely on the side-condition code to build up
the bit-blasted terms. This side-condition code thus becomes part of the trusted
core and offers an efficient way to encode bit-blasting proofs.

6.3 Resolution in SATbb

A resolution refutation can be obtained from a SAT solver by instrumenting it
to store resolution proofs of all the clauses learned during search. The empty



Fine Grained SMT Proofs for the Theory of Fixed-Width Bit-Vectors 351

clause is then derived by resolving input clauses and learned clauses. Recall
that SATbb uses “solve with assumptions” to identify a subset LBB ⊆ ABB that
is inconsistent with CBB and thereby produce the theory lemma ¬L. Because
the assumption literals are implemented as decisions in SATbb, all clauses learned
in SATbb follow from the bit-blasting clauses alone and can thus be reused in
subsequent checks by SATbb. In particular, we can retrieve a resolution proof
of the ¬LBB clause from SATbb starting from the bit-blasting clauses CBB and
using the stored resolutions of the learned clauses. We are careful to reuse the
resolution proofs of learned clauses in multiple Tbv lemmas.

Stepping back and examining the overall Tbv proof structure, it looks like we
could obtain one big resolution proof if we could plug the SATbb resolution trees
into the SATmain resolution tree. However, this cannot be done directly as the
SAT variable aBB abstracting Tbv-atom a in the resolution proof in SATbb is
not the same as the aP variable used to abstract the same atom in SATmain.
Therefore, we need a proof construct to map the proof of a clause cBB to cP (the
dashed lines between SATmain and SATbb in Fig. 3).

In previous work on encoding SMT proofs in LFSC [28], we developed a
specialized proof rule assump used to transform a T -proof of

∧n
i=0 ¬li |=T ⊥

to a proof of the clause cP = [lP1 , . . . , lPn ] where we use the square brackets as
a shorthand for the LFSC syntax for clauses. Chaining assump rules turns a
term of type thHolds(¬l1) → . . . → thHolds(¬ln).holds cln into a term of type
holds [lP1 . . . lPn ]. Our goal here is to build a proof that takes as assumptions the
negation of each literal li as well as a proof of the clause cBB = [lBB

1 , . . . , lBB
n ]

and returns a term of type holds cln. We will do this using the introUnit rule:7

introUnit : Πf :form.Πv:var.Πc:clause.
thHolds f → atom v f → (holds [v] → holds c) → holds c

This natural deduction style rule states that if formula f holds (thHolds f) and
is abstracted by propositional variable v (atom v f), and if we can derive clause
c from the unit clause corresponding to f (holds [v] → holds c), then we can
derive clause c.

Example 4. We show how to put these rules together to lift a proof of a clause
in SATbb to a proof of the corresponding clause in SATmain. In the sub-expression
below, assume c has type holds [¬aBB

1 ,¬aBB
2 ] and that at1 and at2 have types

atom(aBB
1 , a1) and atom(aBB

2 , a2), respectively. The two resolution steps between
the assumption unit clauses u1 and u2 derive the empty clause from c. Therefore,
the computed type of the following term is thHolds(not a1) → thHolds(not a2) →
holds cln, which is exactly what the assump rule requires:

λh1 : thHolds(not a1). λh2 : thHolds(not a2).
(introUnit h1 at1 (λu1 : (holds[aBB

1 ]).
(introUnit h2 at2 (λu2 : (holds[aBB

2 ]).
(Res (Res c u1 v1) u2 v2)))))

7 For simplicity, introUnit only introduces literals in positive polarity. In reality, we
also use a dual version that introduces literals in negative polarity.
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7 Experimental Results

All the experiments in this section were run on the StarExec [29] cluster
infrastructure with a timeout of 600 seconds and a memory limit of 200 GB.8

We selected all of the 17,172 unsatisfiable QF BV benchmarks used in the 2015
SMT-COMP competition and evaluated the overhead of proof generation for
both the lazy cvcLz and the eager cvcE configurations of CVC4. CVC4 is a com-
petitive bit-vector solver that placed second in the QF BV division of the 2015
SMTCOMP by running cvcLz and cvcE in parallel.9 The proof generated by cvcE

uses the same proof signature as cvcLz but has a single monolithic resolution
proof as opposed to the modular two-tiered structure of cvcLz proofs.

Table 1 shows the results for both solvers. We ran the following configu-
rations: solving with proof generation disabled (default); solving with proofs
enabled (i.e., the solver logs the information needed to produce the proof) but
without actually producing proofs (+log); solving with proof generation includ-
ing writing the proof object to disk (+log + proof); and solving with proof gener-
ation as well as proof checking (+log + proof + check). For the lazy solver cvcLz,
the overhead of proof logging results in 2 fewer problems solved while adding
an 11 % overhead to solving time.10 The additional overhead of stitching the
proof together and outputting it to a file is only 3 % of the solving time. For
the eager solver cvcE, proof logging adds a higher overhead of 19 % and solves
18 fewer problems than the default configuration of cvcE. The overhead of proof
generation is higher for the eager solver than for the lazy one.

Table 1. Overhead of proof generation and its impact on the number of problems
solved.

default +log +log+proof +log+proof+check
solved time (s) solved time (s) % solved time (s) % solved time (s) %

cvcLz 16665 38575 16663 43684 11 16662 43729 14 14063 118544 973
cvcE 16601 65009 16583 78187 19 16582 78256 22 13734 137931 737

To ensure the correctness of the proofs we generated, we checked them using
our LFSC proof checker. Within the 600 s time limit, we were able to succesfully
check 84% of the problems we could solve with cvcLz and 82% of the ones solved
with cvcE. Proof checking failed due to unsupported proof steps in our generated
proof for 33 problems attempted by cvcLz, and for 92 attempted by cvcE. The
other failures in proof checking were due to timeouts: proof checking is an order

8 Experiments were run on the queue all.q consisting of Intel(R) Xeon(R) CPU E5-
2609 0 @ 2.40 GHz machines with 268 GB of memory.

9 CVC4 solved 26001 problems in that division compared to 26260 problems solved
by the winning solver, Boolector [10].

10 Overhead in each column is measured by comparing the time taken to solve only
those problems solved by both the default and the column configuration.
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(a) Size of generated proofs. (b) Distribution of proof sizes.

Fig. 6. Proof sizes both cvcLz and cvcE

of magnitude slower than solving. We believe that with additional work on the
LFSC proof checker, this can be improved.

Despite the slow checking times, we achieve higher proof checking rates for
QF BV than the proof reconstruction approach in Böhme et al. [7]. In that work,
proofs could be produced for 735 of the 1377 QF BV benchmarks available at
the time. Out of these, the produced proofs were successfully checked only for
38.5% of the total; 48.4% timed out and 13.1 % produced errors. The authors
attribute the timeouts to the long time taken to reprove large-step Z3 inferences.
Our experimental results indicate that fine-granularity bit-vector proofs enable
proof checking for a significantly larger number of problems.

Finally, we compared the sizes of the proof files generated. Figure 6(a) is
a log-scale scatter plot comparing the sizes of the proofs generated by the two
solvers. Overall, the proofs generated by the two-tiered lazy approach are smaller:
adding the sizes of all the lazy generated proofs results in 276 GB while for the
eager solver it is 328 GB. Figure 6(b) shows, with the y-axis in log-scale, the
distribution of the proof sizes over the benchmark selection. The majority of the
benchmarks have relatively small proofs, well under 1 GB.

8 Conclusion and Future Work

We have discussed a fine-grained LFSC proof system for the quantifier-free the-
ory of bit-vectors. Our proof system takes advantage of LFSC’s support for side
conditions to efficiently check large resolution proofs and proofs of bit-blasting-
based encodings to SAT. Used in the context of a lazy bit-vector solver, this
proof system allows for modular two-tiered proofs that are smaller and more
efficiently checked than a monolithic resolution proof, as shown by our experi-
mental evaluation on a large set of QF BV benchmarks.

The two-tiered proofs have several additional advantages we plan to inves-
tigate further in future work. For instance, it simplifies proof generation in the
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combination of Tbv with other theories and allows more compact proofs through
the use of algebraic proof rules for Tbv conflicts. In addition to SAT reasoning,
cvcLz also incorporates several word-level sub-solvers that use algebraic reason-
ing and equation solving to identify word-level conflicts. These conflicts can be
expressed using proof rules that are bit-width independent and do not require
reasoning about the bit-blasted terms.

One of the trade-offs of using side condition code in LFSC rules is that it
becomes part of the trusted core. For future work we plan to look at a systematic
approach for verifying the correctness of proof rules and their side condition
code with the aid of theorem proving assistants such as Coq or Isabelle/HOL.
Furthermore, we plan to develop infrastructure to export LFSC proofs to these
tools as a way to integrate SMT solvers into interactive theorem provers and
increase their level of automation.
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Abstract. When constructing complex program analyses, it is often
useful to reason about not just individual values, but collections of val-
ues. Symbolic set abstractions provide building blocks that can be used
to partition elements, relate partitions to other partitions, and determine
the provenance of multiple values, all without knowing any concrete val-
ues. To address the simultaneous challenges of scalability and precision,
we formalize and implement an interface for symbolic set abstractions
and construct multiple abstract domains relying on both specialized data
structures and off-the-shelf theorem provers. We develop techniques for
lifting existing domains to improve performance and precision. We eval-
uate these domains on real-world data structure analysis problems.

1 Introduction

The verification of program properties that involve data structures is a chal-
lenging problem [2,9,10,12,13,16,19]. One key reason for this is that if a data
structure is unbounded, there is a potentially unbounded number of constraints
on its elements. Since these constraints often affect important properties such as
memory safety [16], functional correctness [19], or basic program behavior [9], it
is vital to develop techniques for efficiently reasoning about relationships between
unbounded numbers of elements.

This paper focuses on the use of set constraints to reason about unbounded
collections of elements. Set constraints can be used to dynamically partition
data structures, correlate collections of elements with one another, or determine
analysis case splits. They are useful for representing data and pointer relation-
ships in structures such as maps, graphs, lists, sets, and arrays. They can be
combined with other techniques such as separation logic [9,16] and numerical
analyses [8] to enhance those analyses.

For example, consider the program in Fig. 1 that copies one map on top of
another. Within the loop, there is a complex relationship between the sets of keys
of src and dst. At the specified point, the keys of src can be partitioned into three
parts. The keys already visited Xv by the loop, the element currently being visited
{x} by the loop, and the keys not visited Xn by the loop. The keys of dst can be
partitioned into those keys(dst)0 originally in dst that have not been overwritten,
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Fig. 1. Set constraints can relate portions of data structures

and those Xv that have been overwritten or added from src. This set reasoning
allows precise symbolic tracking of the provenance of map partitions.

This paper focuses on abstractions for states described by the logic for sym-
bolic sets. The logic consists of a Boolean algebra over the set variables with
singleton sets. We find that this subset is sufficiently large to be useful and we
believe that it serves as a good starting point for extensions to the logic, such
as reasoning about explicit set contents or more precise cardinality.

However, despite the fact that we are not reasoning about the values con-
tained in sets or complex cardinalities, Boolean algebras, by themselves, are
challenging for invariant generation. Naive approaches such as saturation and
pattern matching rarely work without complex heuristics [10,19]. It is unavoid-
able that the worst-case time for precise invariant generation will be exponential
because of the Boolean algebra. However, it is desirable that invariant genera-
tion should be efficient in the common cases, and unlike systems that involve
complex heuristics, lose precision only in understandable and predictable ways.

In this paper we aim to design scalable, precise, and predictable abstractions
for symbolic sets by combining new abstract domains with performance/precision-
enhancing functors that lift existing set abstractions to new set abstractions.
Specifically, we make the following contributions:

– We define a common interface for symbolic set abstractions that is designed
to meet the needs of static analyzers (Sect. 3).

– Using specialized data structures, we construct a battery of symbolic set
abstract domains and performance-/precision-enhancing functors designed to
target real-world data structure verification problems (Sect. 4).

– We adapt an off-the-shelf satisfiability-modulo-theories solver to the set
abstraction interface (Sect. 5).

– We compare abstractions for symbolic sets, finding that, while specialized
abstractions are preferable, binary decision diagrams lifted with dynamic
packing is a good compromise in scalability, performance, and predictabil-
ity (Sect. 6).

2 Overview

In this section, we present two static analyses that make use of set reasoning
in order to compute high-level semantic properties of programs. These analyses
rely on abstract interpretation [6] and on an abstraction of program states that
describes data structures and their contents. An abstract domain defines a set
of predicates that an analysis may use, as well as operators to over-approximate
the effect of program behaviors on these predicates, and their implementation.
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Inference of properties of open objects. Dynamic programming languages such
as JavaScript feature open objects that support dynamic addition and deletion
of attributes and iteration over them. The analysis presented in [9] verifies
open-object-/map-manipulating programs such as the one in Fig. 1, by infer-
ring relations between the sets of attributes of distinct objects. Since objects
may have an unbounded number of attributes, the analysis must abstract the
attributes and their contents. Figure 2 represents a simplified state at the indi-
cated point in Fig. 1 after two iterations (thus two fields were copied). We
focus on the set of attributes of each object and ignore their contents (which
could be described using similar techniques). To precisely abstract the relations
between the attributes of both objects (e.g. copied attributes are common to
both objects), we partition the attributes into a series of attribute sets and
express relations among these sets. The purpose of the set abstract domain is
to represent such set relations. Figure 2b depicts such an abstract state, where
Xn,Xr,Xv stand for sets of attributes, which are made explicit in Fig. 2a, the
concrete state.

(a) Concrete state

src a �→ ...

b �→ ...
x �→ ...

u �→ ...

v �→ ...

dst a �→ ...

b �→ ...

d �→ ...

Xv ={a,b}Xr ={d}
Xn ={u,v}

(b) Abstract state

src
Xv

{x}
Xn

dst
Xv

Xr

keys(src )=
Xv �{x}�Xn

keys(dst )=Xr �Xv

Xr =keys(dst )0\Xv

Fig. 2. Open objects and their abstraction

Moreover, to infer these invariants, the analysis needs to reason about both
object structures and attribute sets. Initially it assumes no set relations, and the
fields of each object should be associated to an arbitrary set of attributes. When
the analysis enters the body of the loop, it needs to single out attribute x, i.e.
to replace set Xv by Xv � {x},which produces the equalities of Fig. 2. When it
exits the loop, the analysis should generalize both the object and set constraints
abstractions, which requires eliminating the singleton {x} from the equations (it
is visible only in the loop body) and synthesizing a new, more general collection
of constraints. To allow these steps, the set abstraction should provide basic
operations over set predicates, including (1) the addition of a set constraint, (2)
the proving of a set constraint, (3) the removal of a set variable, and (4) the
generalization of two set abstract states.

Shape Analysis in Presence of Unstructured Sharing. The shape analysis for
data-structures with unbounded sharing presented in [16] relies on separation
logic [20] to describe memory states and on inductive definitions to summarize
unbounded structures such as lists. Unstructured sharing is very challenging as it
cannot be described using conventional inductive definitions. Figure 3a displays
the representation of a three nodes graph using an adjacency list data-structure.
To summarize such a structure using inductive predicates in separation logic,
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[16] augments the list inductive predicates with set information, which express
where edges may point to. Figure 3b shows this representation in a form where
the first node is kept materialized. It asserts that the edges of that node and
other nodes point to the address of a valid node, namely an element of {n0} � E .
The analysis of [16] introduces a summary predicate graph(n0,N ) where n0 is
the address of the first node and N the set of all node addresses. This predicate
is defined by induction over the “backbone” of the structure, and fully takes
into account the property that all edges point to a valid node address in N .
Henceforth, abstract states comprise both a memory part (which consists of a
formula in separation logic with inductive predicates) and a set abstraction.

(a) A concrete memory state

0

n0

1

n1

2

n2
0x0

0x0

(b) Abstract memory state

0

n0
summarized tail of
the adjacency list
(nodes and edges)

node addresses: E
outoing edges pointing

into {n0}�E
summarized
list of edges
of node n0

pointing into
{n0}�E

Fig. 3. Summarization of an adjacency list-based graph representation

To compute such summaries, the analysis needs to perform similar operations
as the analysis for open objects, in order to add set constraints to the set abstract
state, prove set constraints, remove set variables, and generalize abstract states.

3 Logic and Set Abstraction

We now define the elements and operators of a set abstract domain that meets
the needs of all the analyses shown in Sect. 2.

Concrete States. In this paper, we use symbols W , X, Y , and Z as set variables
and let Xs represent the set of all such variables. We are interested in purely
symbolic set relations, and do not make any assumption on the type of the set
elements (in practice these are pointers or scalars). We let V denote the set of
all these elements. A concrete state is a function σ : Xs → P(V). We write S for
the set of such elements.

Symbolic Sets. Before we set up the signature of abstract domains, we fix a
language of set predicates, that will be used as a basis for abstract elements,
and for the communication with the set abstract domain.
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Definition 1 (Symbolic Sets). Symbolic sets are defined by the grammar:

L(∈ C) ::= L ∧ L | E ⊆ E | |X| = 1 | � | ⊥ E ::= ∅ | X | Ec | E ∪ E | E � E

The meaning of these constraints is straightforward, but we give a formal defin-
ition in Fig. 4 for clarity. A model of a set expression E is a concrete state σ and
a set of concrete values c. A model of a logical expression L is a concrete state σ.
The concretization is γ(L) = { σ | σ |= L } and we use (|L|) for abstract states
with the same concretization. We shall also use the following derived logical
forms for simplicity:

E1 ∩ E2
def
= (E1

c ∪ E2
c)c E1 = E2

def
= E1 ⊆ E2 ∧ E2 ⊆ E1 E1 \ E2

def
= E1 ∩ E2

c

σ,c |=∅ iff c=∅ σ,c |=X iff c=σ(X) σ,c |=Ec iff σ,c′ |=E and ∀v∈V.v∈c⇔v �∈c′

σ,c |=E1∪E2 iff σ,c1 |=E1 and σ,c2 |=E2 and ∀v∈V.v∈c⇔v∈c1∨v∈c2

σ,c |=E1 �E2 iff σ,c1 |=E1 and σ,c2 |=E2 and ∀v∈V.v∈c⇔v∈c1∨v∈c2 and c1∩c2 =∅
σ |=L1∧L2 iff σ |=L1 and σ |=L2 σ |= |E|=1 iff σ,c |=E and ∃v∈V. c={v}
σ |=E1 ⊆E2 iff σ,c1 |=E1 and σ,c2 |=E2 and ∀v∈V.v∈c1 →v∈c2 σ |=� σ �|=⊥

Fig. 4. Symbolic set constraint language

Set Abstraction. A set abstract domain is defined by a set of abstract elements D�

which describe the family of logical properties it can express and a concretization
function γ : D� → P(S) that maps each element of D� into the set of concrete
states that satisfy it. Abstract elements are characterized by (1) the symbolic
sets they describe and (2) their machine representation. The latter is usually
very different from the formulas, and will be discussed in Sect. 4.

Example 1 ((Non-)Emptiness set domain). A very basic example of such a
domain is the (non-)emptiness domain that comprises the following elements:

– ⊥, which denotes the unsatisfiable abstract constraint (i.e., γ(⊥) = ∅));
– the functions from Xs into {[= ∅], [�= ∅],�}, which map each set variable into

its emptiness value.

For instance, {X �→ �;Y �→ [= ∅]} stands for (|Y ⊆ ∅|) and concretizes into
γ(Y ⊆ ∅).

Operations over Set Abstractions. We now formalize the main operations and
logical elements needed so that we can use a set abstract D� domain for either
of the static analyses shown in Sect. 2.

– Basic logical elements. Static analyses typically start with an unconstrained
state. This is indicated by a �D� ∈ D� element with full concretization, i.e.,
γ(�D�) = S. Similarly, the abstract element ⊥D� ∈ D� should describe the unsat-
isfiable abstract constraint (i.e., γ(⊥D�) = ∅). In Example 1, ⊥D� is ⊥ and �D�
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is λ(x ∈ Xs) ·�. Moreover, a static analysis often has to determine if an abstract
state describes unsatisfiable constraints. Thus, D� should provide an operator
isbotD� : D� → {true, false} such that isbotD�(σ�) = true =⇒ γ(σ�) = ∅.

– Forgetting a set variable. Static analysis tools drop set variables that
become redundant. In the open object example of Sect. 2, this occurs when the
singleton symbol is eliminated at the end of the loop. To do this, we require the
set abstract domain D� to provide an operator forgetD� : D� × Xs → D� that
discards a symbol from the abstract state.

– Assuming set constraints. As noted in Sect. 2, an important set reasoning
step restricts an abstract state with set constraints, thus set domain D� should
provide an operator assumeD� : D� ×C → D�, which conservatively represents a
constraint into an abstract state, i.e. ensures that, for all σ�, L, γ(σ�) ∩ γ(L) ⊆
γ(assumeD�(σ�, L)). Note that this operator also makes use of the symbolic set
language of Definition 1 in order to describe constraints communicated to the
domain.

– Verifying set constraints. Similarly, set reasoning should allow verifying
set constraints, thus the set domain D� should provide an operator proveD� :
D� ×C → {true, false}, which conservatively attempts to verify that a symbolic
set constraint holds under some abstract states, i.e. ensures that, for all σ�, L,
proveD�(σ�, L) = true implies that γ(σ�) ⊆ γ(L).

– Generalizing set abstractions. The analysis of loops is commonly based on
the computation of abstract post-fixpoints [6], thus D� should provide sound over-
approximation of the union of sets concrete states. In the logical point of view,
this amounts to computing a common weakening for two abstract constraints.
This is performed by an operator joinD� : D� ×D� → D� such that, for all σ�

0, σ
�
1,

γ(σ�
0) ∪ γ(σ�

1) ⊆ γ(joinD�(σ�
0, σ

�
1)). Widening operator widenD� should satisfy

the same property and ensure termination of any sequence of abstract iterates.
– Deciding entailment over set abstractions. Finally, the operator is leD� :

D� × D� → {true, false} conservatively decides implication among abstract set
constraints (by ensuring that is leD�(σ�

0, σ
�
1) = true =⇒ γ(σ�

0) ⊆ γ(σ�
1)), and

allows verifying the convergence of abstract iterates.

4 Constructed Set Abstractions

An abstract domain is defined by a class of set constraints, their machine repre-
sentation, and the abstract operations following the signatures given in Sect. 3.
In this section, we introduce three basic set abstract domains (respectively based
on linear constraints, QUIC graphs, and BDDs) and two set abstract domain
functors, that lift a set domain into another, more expressive or efficient one.

4.1 Linear Set Constraints

Abstract elements and their concretization. Our first set abstract domain relies on
linear set equality constraints, of the form (|X = {y0, . . . , yk} � Z0 � . . . � Zl|).
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The advantage of such constraints is to provide a rather straightforward normal-
ization of the representation of constraints. Note they also include emptiness con-
straints. Our implementation of abstract domain D�

l describes three kinds of
constraints:

– acyclic linear constraints of the form (|X = Y0 � . . . � Yk � Z0 � . . . � Zl|),
where Y0, . . . , Yk are singletons (containing y0, . . . , yk respectively). In the
implementation, each variable may appear at most once as the left-hand side
of such a constraint, to enable normalization;

– inclusion constraints of the form (|Y ⊆ X|);
– equality constraints of the form (|Y = X|).
Thus, an element of D�

l is either ⊥ or a conjunction of such constraints. The asso-
ciated concretization γl : D�

l → P(S) is of the same form as that of the symbolic
sets language of Definition 1 (thus, we do not formalize it in full details). The
machine representation utilizes persistent dictionaries, that stand for functions
over a finite domain. This reduces basic queries for facts (such as, “does abstract
state σ� entail that X ⊆ Y � Z ?”) to dictionary searches.

Abstract operators. The core algorithm of D�
l normalizes abstract values by

expanding nested linear constraints. For instance, (|X0 = X1 � X2 ∧ X1 = X3 �
X4|) is rewritten into (|X0 = X2 � X3 � X4 ∧ X1 = X3 � X4|) at the machine
representation level. This process terminates as constraints represented in D�

l do
not contain cycles. It is performed incrementally by all abstract operations.

Abstract operations isbotD� ,assumeD� ,proveD� are all made very fast by
this normalization. Operation forgetD� simply drops all constraints that involve
a given set variable. Finally, joinD� and widenD� need to generalize constraints.

Example 2. Let us assume that σ�
0 (resp., σ�

1) stands for the set of constraints
(|X0 = X1 � X2 ∧ X3 = ∅|) (resp., (|X0 = X1 � X2 � X3|)). Then joinD�(σ�

0, σ
�
1)

returns an element that represents the constraint (|X0 = X1 � X2 � X3|).
MemCAD [16] relies on D�

l to represent set constraints since it mainly needs to
express constraints over set partitions. On the other hand, D�

l is not adapted to
the precise description of non disjoint unions.

4.2 QUIC Graphs

A QUIC graph [10] is a directed hypergraph data structure used to represent
relational set constraints. Each edge in the hypergraph corresponds to a subset
constraint and each hypergraph is a conjunction of subset constraints where each
constraint is of the form (|X1 ∩ . . . ∩ Xn ⊆ Y1 ∪ . . . ∪ Ym|). Each variable can
also be constrained to be a singleton, with constraints such as (||X| = 1|). The
concretization γq : D�

q → P(S) is of the same form as that of the symbolic sets
language of Definition 1.

QUIC graphs are designed for efficiently performing two operations: (1)
forgetD� , which matches edges containing the symbol to be forgotten with each
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other to produce new edges without that symbol; and (2) content reasoning,
which is not a design goal for symbolic sets. The joinD� and widenD� operations
are primarily based on saturation heuristics. They keep common conjunctions
from both arguments. To aid this process, they use a form of saturation that
produces new conjuncts based on pattern matches. A sufficiently large set of
patterns must be provided to attain precision, but additional patterns increase
the cost of joins.

Example 3 (QUIC graph join). Consider the following join operation:

σ�
0 = (|W ⊆ X ∧ X ⊆ Z|) σ�

1 = (|W ⊆ Y ∧ Y ⊆ Z|) joinD�(σ�
0, σ

�
1)

There is an obvious result: (|W ⊆ Z|). Whether or not QUIC graphs derive this
result or (|�|) is determined by the pattern matches that are installed. If the
pattern that takes (|X ⊆ Y ∧ Y ⊆ Z|) and generates (|X ⊆ Z|) is used, the
pattern will be applied to both sides and then common conjuncts kept, getting
the desired result. Without that pattern or a similar substitute, QUIC graphs
derive (|�|).

4.3 BDD-based Set Constraints

Binary decision diagrams (BDDs) [21] are a canonical representation of Boolean
algebraic functions. There are three basic syntactic elements of a BDD. The
True and False elements represent the obvious constants, but ITE(X,Bt, Be)
is an if-then-else structure. If the variable X is true, the result of evaluating Bt

is returned, otherwise the result of evaluating Be is returned.

B ::=True | False | ITE(X,Bt, Be)

What makes BDDs canonical is that we only consider reduced, ordered BDDs,
where it is assumed that there is a total order ≺ on the variables. An ITE(X,Bt, Be)
can only be constructed if X ≺ X ′ for all variables X ′ in Bt or Be. Additionally,
structural sharing is mandated, so the reuse of the same syntax is referentially
identical to any other use of that syntax.

The encoding of constraints maps operators from their constraint form (as
in Definition 1) to their Boolean algebraic form: ∪ �→ ∨, ∩ �→ ∧, c �→ ¬, ⊆�→→
, =�→↔. All but singleton set constraints are directly and exactly represented
by the BDD. Singleton constraints are not currently used by the BDD-based
abstraction.

Domain operations are straightforward: joinD� and widenD� are implemented
with the ∨ operation, which is precise and does not need any rules or heuristics;
forgetD� takes advantage of reasonably efficient quantifier elimination provided
by BDDs and uses existential quantifier elimination to drop variables. Queries
such as is leD� are easily implemented using validity checking functionality pro-
vided by BDDs. Critically, because BDDs are a canonical form, many operations
such as forgetD� and assumeD� become much more efficient, whereas the oper-
ation isbotD� becomes an O(1) check.
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Example 4 (BDD-based join). Consider the same inputs as Example 3. Encoding
them to BDDs (and using some Boolean-algebraic notation as shorthand) yields
the following results:

σ�
0 = (|W ⊆ Y ∧ Y ⊆ X|) = ITE(W,X ∧ Y, ITE(X,True,¬Y ))

σ�
1 = (|W ⊆ Z ∧ Z ⊆ X|) = ITE(W,X ∧ Z, ITE(X,True,¬Z))

joinD�(σ�
0, σ

�
1) = ITE(W,X ∧ ITE(Y,True, Z),

ITE(X,True, ITE(Y,¬Z,True)))

The result of this join is equivalent to the set constraints (|W ⊆ X|), (|W ⊆
Y ∪Z|), and (|Y ∩Z ⊆ X|), which includes not only the obvious result of (|W ⊆ X|),
but also other, possibly useful results. It is a precise join.

We implement the BDD abstraction on top of the CU decision diagrams
package [22], which is high performance and offers the ability to extract prime
implicants (as in [5]). The prime implicants of the negation of the Boolean func-
tion are easily converted to conjuncts of the form used by QUIC graphs.

4.4 The Equalities Domain Functor: Compact Equality Constraints

When analyzing real programs, in addition to complex set constraints, there are
often many very simple equality constraints of the form (|X = Y |). These can be
a problem in several ways. For example, equalities are normalized and handled
precisely in BDDs, but they can grow the size of the representation significantly.
This results in significantly increased memory usage and decreased efficiency
since many BDD operations rebuild the BDD. In QUIC graphs, equalities grow
the size of the graph, and place significantly more load on the pattern matching
system, potentially causing an explosion in the number of constraints. This is
because QUIC graphs can represent each variant of an expression rewritten using
all available equalities. In linear set abstractions, there are similar potential
problems.

As a result, abstractions like QUIC graphs and the linear set abstraction
have special handling for equality. This improves performance and precision at
the cost of complexity. Instead, much of this complexity can be moved outside
the abstraction and handled by lifting the abstraction to one that keeps track
of equalities separately from other kinds of constraints.

The equality functor serves as an intermediary between the domain interface
and the abstract domain that is being lifted. It intercepts equality constraints
and handles them externally, preventing them from being seen by the underlying
abstract domain. This saves the domain from the cost and complexity of handling
the equalities.

The equality functor defines a set of equivalence classes Q. The set of equiv-
alence classes is a map Xs → Xs that maps each variable to the chosen repre-
sentative for the equivalence class. The functor then lifts an abstract state D�

into a tuple (D�, Q). In the lifting, D� is restricted to only have symbols that are
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representatives for the equivalence class. Therefore, when an equality is added
that merges two equivalence classes, the resulting representative replaces the two
previous representatives in D�.

The concretization ensures that all symbols in the same equivalence class
map to the same concrete set:

γ((Q,D�)) = {σ | σ ∈ γ(D�) ∧ ∀X,Y ∈ X2
s . Q(X) = Q(Y ) → σ(X) = σ(Y ) }

Domain operations joinD� , widenD� , and is leD� unify their corresponding
Qs, pushing any non-common equalities into the underlying domain. This ensures
that the underlying domain determines the precision, but it is not required to
handle most of the load of the equalities. The assumeD� operation rewrites the
constraint, extracting the equalities and rewriting remaining variables to their
representatives before passing the constraint to the underlying domain.

Example 5 (Equality functor join). Consider the following two abstract states,
where the underlying domain is just shown as symbolic set constraints:

σ�
0 = ([W �→ W, X �→ W, Y �→ W ], (|W ⊆ Z|)) σ�

1 = ([X �→ X, Y �→ X], (|W ⊆ X ∧ X ⊆ Z|))

In the join, the equivalence classes are unified, producing the resulting Q: [X �→
X,Y �→ X]. The equality (|W = X|) from σ�

0 is not represented in the unification,
so it is added back to the underlying domain in σ�

0. The result is therefore

([X �→ X,Y �→ X], joinD�((|W = X ∧ W ⊆ Z|), (|W ⊆ X ∧ X ⊆ Z|)))

4.5 The Packing Domain Functor: Sparse Constraints

Most relational domains have a complexity that is related to the number of
variables constrained by the abstract state. For example, BDDs, in the worst
case, are exponential in the number of variables. However, in many programs,
there are relatively small clusters of variables that are related. Therefore it is
possible to increase the efficiency of an analysis by representing each cluster of
variables by a separate abstract state [1].

If each of m clusters of n variables is represented by a separate abstract
state, rather than operations having a complexity of, for example, O(2m·n), they
can have complexity O(m · 2n). To do this, all variables are initially assumed
to be in their own cluster. Clusters are merged whenever variables from each
cluster occur in the same constraint. In this way the clusters are dynamically
determined, which is required when an abstract domain is used as a library and
thus a pre-analysis cannot be performed.

An abstract state in the packing functor consists of one of three values: �,
⊥, or a map M : #M → D� that maps cluster ids in #M to abstract states from
the domain being lifted. The � and ⊥ values concretize as they do in Fig. 4. The
map concretizes as follows:

γ(M) = {σ | ∀σ� ∈ Range(M). σ ∈ γ(σ�)}
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Example 6 (Constraining a packed abstract state).Consider the following abstract
state represented by the logic from Definition 1, lifted into two packs with ids 0 and
1: σ�

0 = [0 �→ (|X0 ⊆ X1|); 1 �→ (|Y0 ⊆ Y1|)]. The operation assumeD�(σ�
0, Y1 ⊆

Y2) operates only on pack id 1. It does not have to involve any computation on
pack 0. The resulting pack 1 is: 1 �→ assumeD�((|Y0 ⊆ Y1|), Y1 ⊆ Y2).

5 Solver-Based Abstractions

Because one of the core components of set abstraction is the Boolean algebra, it
is possible to construct abstract domains from off-the-shelf satisfiability solvers.
The construction relies upon the fact that the standard Boolean algebra is a
finite height lattice ordered by implication. This means that no specific invariant
generation procedure is required.

The syntax of the abstraction is the standard Boolean algebra with existential
quantification. There are two reasons this is a good logic to use. First, it is a
fairly well-supported logic for which there are efficient solvers. Second, it remains
finite height and thus needs no specialized invariant generation procedure as
would be required with a set logic such as BAPA [14]. Since cardinality is not a
key requirement for symbolic sets, the analysis can often be sufficient without it.

Domain operations are translated into Boolean algebra formulas: joinD�(σ�
1, σ

�
2)

translates into σ�
1 ∨ σ�

2; assumeD�(σ�, L) translates into σ� ∧ conv(L), assuming
that conv(L) converts the constraint L into its Boolean algebra equivalent as in
Sect. 4.3; forgetD�(σ�,X) translates into ∃X. σ�. These are accumulated across
the whole analysis and thus may grow arbitrarily deep. It is possible that on-the-
fly simplification could be used, but we elect to use whatever internal functionality
is provided by the solver (in this case Z3 [11]).

Query operations are translated into solver queries. The implication test
is leD�(σ�

1, σ
�
2) translates to Valid(σ�

1 → σ�
2). This is implemented incrementally

by conditionally adding constraints for each query and checking satisfiability
under assumptions. The isbotD�(σ�) query translates into Valid(¬σ�).

Example 7 (Solver-based abstraction operations). Domain operations accumu-
late constraints, so simplification is performed by the solver when a query hap-
pens. In the following sequence, there are no queries, so constraints only
accumulate.

σ�
0 = � = True

σ�
1 = assumeD�(σ�

0,X ⊆ Y ∧ Y ⊆ Z) = True ∧ X → Y ∧ Y → Z

σ�
2 = forgetD�(σ�

1, Y ) = ∃Y. True ∧ X → Y ∧ Y → Z

If the query proveD�(σ�
2,X ⊆ Z) is performed, the following check is made:

Valid((∃Y. True ∧ X → Y ∧ Y → Z) → (X → Z)). This holds trivially.

6 Evaluation

In this section, we evaluate the set abstractions. We aim to answer the following
questions about set abstractions. Can set abstractions be sufficiently precise to
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be useful? Can precision be made available while providing scalability? What
trade-offs are necessary to achieve scalability? To evaluate these questions we
implemented all of the aforementioned abstractions as an OCaml library and
then evaluated the abstractions using three different sets of problems: (1) traces
of set domain operations as used in Memcad to perform shape analysis in the
presence of unstructured sharing (from [16]), totaling 4521 domain operations;
(2) traces of set domain operations as used in JSAna to verify functions in
selected JavaScript libraries (from [7,9]), totaling 23086 domain operations; and
(3) the expressible subset of tests of the Python set data structure (as used for
QUIC graphs [10]), totaling 207 lines of code. Results are shown in Table 1.

Table 1. Number of proved properties (proveD�), average aggregate run time for
non-timed-out benchmarks (Time), and number of timed-out benchmarks (TO) for 24
Memcad benchmarks, 5 JSAna benchmarks, and 24 Python benchmarks.

Config Memcad(24) JSAna(5) Python(24)

proveD� Time(TO) proveD� Time(TO) proveD� Time(TO)

lin 612/1366 0.036(0) 0/525 0.435(0) 4/42 0.004(0)

eq 608/1366 0.035(0) 0/525 0.235(0) 4/42 0.007(0)

pack 612/1366 0.049(0) 0/525 0.652(0) 4/42 0.006(0)

eq+pack 609/1366 0.045(0) 0/525 0.785(0) 4/42 0.011(0)

pack+eq 608/1366 0.067(0) 0/525 0.393(0) 4/42 0.011(0)

bdd 612/1366 0.021(0) 176/525 21.793(0) 34/42 0.105(0)

eq 612/1366 0.041(0) 176/525 1.206(0) 34/42 0.112(0)

pack 612/1366 0.052(0) 176/525 0.262(0) 34/42 0.109(0)

eq+pack 612/1366 0.055(0) 176/525 1.692(0) 34/42 0.116(0)

pack+eq 612/1366 0.086(0) 176/525 1.796(0) 34/42 0.119(0)

quic 596/1366 4.299(1) 155/525 54.616(0) 20/39 0.412(2)

eq 549/1366 2.289(0) 116/525 4.633(0) 18/39 0.416(2)

pack 605/1366 5.556(0) 155/525 48.517(0) 20/39 0.454(2)

eq+pack 549/1366 2.307(0) 121/525 8.201(0) 18/39 0.456(2)

pack+eq 55/58 0.080(10) 121/525 9.307(0) 17/38 0.362(3)

smt 177/315 44.995(4) 12/23 0.0389(4) 34/41 0.296(1)

eq 416/927 35.798(1) 62/152 5.753(2) 31/41 0.294(1)

pack 177/315 16.329(4) 12/23 0.787(4) 34/41 5.553(1)

eq+pack 438/927 40.621(1) 27/73 9.355(3) 31/41 10.884(1)

pack+eq 231/458 12.027(3) 12/23 0.609(4) 31/41 10.838(1)

Because the definition of necessary precision depends on the use of a domain,
we measure precision by comparing against a standard for precision. For Mem-
cad, the linear set abstraction (lin) was designed to be as precise as is needed
for the Memcad benchmarks. This means that any abstraction that achieves the
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same number of proofs without timeout is sufficiently precise. It is important to
note that many of these proofs are not intended to succeed. They are used as
queries internally with the analysis, so it is not possible to achieve 100 %. From
the results, we see that all of the BDD-based abstractions (bdd) achieve this.
We can also see that the equality (eq) and packing (pack) functors, regardless
of the order in which they are applied, do not change precision when applied to
the BDD. However, when applied to the linear set abstraction, they sometimes
change precision. This is because they affect internal representation and may
affect the heuristics used within the abstract domain. QUIC graphs (quic) and
SMT (smt) do not perform as well under any configuration. The reason is that
QUIC graphs do not employ appropriate heuristics for all of the cases needed
by Memcad and both have performance problems that cause them to time out
before completing some benchmarks.

For the JSAna benchmarks, the BDD abstraction was designed to meet its
precision needs and adding the equality or packing functor does not affect preci-
sion in any way. It only affects performance. However, the linear sets abstraction
is not able to cope with the non-disjoint-union constraints that arise frequently
in the JSAna benchmarks and thus loses all precision rapidly. By comparison,
QUIC graphs perform well. They are unable to prove as many properties as is
needed by JSAna, but they are still able to prove many properties. Once again,
tuning the heuristics could improve this precision, but possibly at the cost of
performance. SMT, once again, does not perform well because of efficiency prob-
lems. On the benchmarks where it completes, it is identical in precision to BDDs.

The Python benchmarks are slightly different because they are an analysis
of programs rather than traces of domain operations. Each program contains a
couple of properties to verify, so the target is 100 %. Here we see that none of the
abstractions are able to achieve 100 %. The linear set abstraction cannot achieve
this because it is unable to represent the non-disjoint-union constructs. The BDD
and SMT abstractions cannot achieve 100 % because they do not support full
cardinality reasoning. Once again, QUIC graphs are insufficient because of the
limited heuristics they employ as well as some performance problems.

The scalability of the abstractions can be seen in Table 1 in the total analy-
sis time, which measures the time to run the full benchmark suite, on average.
The times are only directly comparable if there are no time outs, which happens
after 60 seconds per benchmark. We first see that the linear domain is reli-
ably fast. Applying the equality and packing functors generally does not affect
performance significantly. By comparison, BDDs are less reliable. While they
perform well in the Memcad benchmarks, nearly matching the linear domain,
we see significant variability in the JSAna benchmarks. In fact, without any of
the functors as in [10], performance can be unacceptably slow at almost 22 s to
analyze five functions. However, the addition of the packing functor, in particu-
lar, makes a significant difference. It lowers the cost of the analysis to a fraction
of a second without losing any precision. However, the variability here indicates
that, depending on the particular benchmark (or, in fact, the BDD implementa-
tion), the optimum combination of functors may vary. Regardless, selecting the
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packing functor seems to be a benefit without significant risk. The QUIC graphs
performance is unreliable. Due to the expensive pattern matching machinery, it
does not compare in terms of performance, though it is helped significantly by
the equality functor, at the cost of precision. The SMT domain fails to perform,
timing out on at least one test in each benchmark suite. This is because the SMT
solver is failing to operate incrementally. In essence, it has the same workload
as the BDD, but it discharges its proofs lazily. This laziness is not necessarily a
problem if work can be reused from one proof to the next, but it appears that
this is not the case right now. We suspect that the combination of doing validity
proofs (instead of satisfiability queries) with quantifiers is preventing this reuse.

The results make four things clear. First, if it is possible to design a targeted
abstraction as the linear abstraction is for Memcad, it is worth it. The perfor-
mance is reliable and the precision is predictable. Second, if it is not clear what
the constraints may be, BDDs provide a good alternative that gives excellent (if
not perfect due to the insufficient cardinality reasoning) precision with the risk
of less reliable performance. Third, much of the risk can be eliminated through
the use of functors. For equality heavy loads, the equality functor provides a sig-
nificant benefit. The packing functor seems to reliably improve performance by
simply lowering the cost of each BDD operation without any measurable impact
on precision. Lastly, unless the content-centric reasoning of QUIC graphs is nec-
essary, it does not make sense to use it due to both unreliable performance and
precision. Similarly, with the current state of SMT, this is not an appropriate use.
It may be possible to fix this, but today it remains impractical for performance
reasons.

7 Conclusions and Related Work

The problem of creating scalable, precise, and predictable abstractions for sets
remains challenging. This paper introduced several ways of approaching this
problem and showed that for symbolic set abstractions, binary decision diagrams
offer good performance, precision, and predictability trade-offs. However, it is
preferable to craft a custom abstraction such as the linear abstraction. This
offers more predictable performance by only having the necessary precision.

There are other set abstractions available. They all offer different functional-
ity at different costs. The QUIC graphs abstraction [8,10] focuses on combining
reasoning about contents with symbolic set reasoning. This comes at the cost
of performance, precision, and predictability when it comes to purely symbolic
set reasoning. The FixBag abstraction [19] attacks the problems of multisets or
bags offering cardinality reasoning as well as symbolic set reasoning. Similar to
QUIC graphs, it exchanges performance, precision, and predictability for this
functionality. The linear and the BDD-based abstractions we present here are
designed to be scalable, precise, and predictable rather than complex.

There are several decision procedures for sets. Bradley et al. [3] introduced
a decision procedure for set contents and relationships (without cardinality).
BAPA [13,14] is a decision procedure for sets with cardinality. Z3 [11] also
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includes a decision procedure for sets with contents. None of these decision
procedures are designed for invariant generation. It is possible that interpola-
tion procedures [18] could be designed based upon these procedures, but to our
knowledge this has not been done. Regardless, without invariant generation that
is compatible with static analysis, it is difficult to use this work as a component
of an existing analysis.

Due to the prevalence of Boolean algebra in the algorithms presented here,
there is a natural correspondence to hardware model checking [4] and predicate
abstraction [15]. However, one significant difference is the composability of the
abstractions presented here. The equality and packing functors alter the under-
lying abstractions, making problems that were previously intractable, tractable.
Additionally, because these are abstract domains, there is no conflation of control
flow with data flow and as a result, many of the analysis problems are changed.

Additionally, the use of BDDs is similar to [17], where BDDs are extended
to be possibly-cyclic graphs. These are used to represent tree structures.

As a result, we find that for now, abstractions that construct normal forms,
such as the linear abstraction and binary decision diagrams, offer the best way
of handling sets in static analysis. We have shown that depending on the appli-
cation, both of these techniques offer sufficient performance and precision, espe-
cially when combined with functors for performing packing and managing equal-
ities. The end result is that these abstractions are scalable, precise, and pre-
dictable in their behavior.
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Abstract. New proof assistant developments often involve concepts
similar to already formalized ones. When proving their properties, a
human can often take inspiration from the existing formalized proofs
available in other provers or libraries. In this paper we propose and
evaluate a number of methods, which strengthen proof automation by
learning from proof libraries of different provers. Certain conjectures can
be proved directly from the dependencies induced by similar proofs in
the other library. Even if exact correspondences are not found, learning-
reasoning systems can make use of the association between proved the-
orems and their characteristics to predict the relevant premises. Such
external help can be further combined with internal advice. We eval-
uate the proposed knowledge-sharing methods by reproving the HOL
Light and HOL4 standard libraries. The learning-reasoning system
HOL(y)Hammer, whose single best strategy could automatically find
proofs for 30% of the HOL Light problems, can prove 40 % with the
knowledge from HOL4.

1 Introduction

As Interactive Theorem Prover (ITP) libraries were developed for decades, today
their size can often be measured in tens of thousands of facts [4,19]. The theorem
provers typically differ in their logical foundations, interfaces, functionality, and
the available formalized knowledge. Even if the logic and the interface of the
chosen prover are convenient for a user’s purpose, its library often lacks some
formalizations already present in other provers’ libraries. Her only option is then
to manually repeat the proofs inside her prover. She will then take ideas from the
previous proofs and adapt them to the specifics of her prover. This means that in
order to formalize the desired theory, the user needs to combine the knowledge
already present in the library of her prover, with the knowledge present in the
other formalization.

We propose an approach to automate this time-consuming process: It consists
of overlaying the two libraries using concept matching and using learning-assisted
automated reasoning methods [15], modified to learn from multiple libraries and
able to predict advice based on multiple libraries. In this research we will focus
on sharing proof knowledge between libraries of proof assistants based on higher-
order logic, in particular HOL4 [23] and HOL Light [9]. Extending the approach
to learning from developments in provers that do not share the same logic lies
beyond the scope of this paper.
c© Springer-Verlag Berlin Heidelberg 2015
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Once a sufficient number of matching concepts is discovered, theorems and
proofs about these concepts can be found in both libraries, and we can start to
implement methods for using the combined knowledge in future proofs. To this
end, we will use the AI-ATP system HOL(y)Hammer [15]. We will propose various
scenarios augmenting the learning and prediction phases of HOL(y)Hammer to
make use of the combined proof library. In order to evaluate the approach, we
will simulate incrementally reproving a prover’s library given the knowledge of
the library of the other prover. The use of the combined knowledge significantly
improves the proof advice quality provided by HOL(y)Hammer. Our description
of the approach focuses on HOL Light and HOL4, but the method can be applied
to any pair of provers for which a mapping between the logics is known.

1.1 Related Work

As reuse of mathematical knowledge formalizations is an important problem, it
has already been tackled in a number of ways. In the context of higher-order logic,
OpenTheory [12] provides cross-prover packages, which allow theory sharing and
simplify development. These packages provide a high-quality standard library,
but need to be developed manually. The Common HOL Platform [1] provides a
way to re-use the proof infrastructure across HOL provers.

Theory morphisms provide a versatile way to prove properties of objects of
the same structure. The idea has been tried across Isabelle formalizations in
the AWE framework by Bortin et al. [5]. It also serves as a basis for the MMT
(Module system for Mathematical Theories) framework [22].

With our method, this principle was developed in both directions. We first
search for similar properties of structures to find possible morphism between dif-
ferent fields. We then use these conjectured morphisms to translate the properties
between the two fields. Our main idea is that we don’t prove the isomorphism
which is often a complex problem but we learn from the knowledge gained from
the derived properties. Moreover, even when the two fields are not completely
isomorphic, the method often gives good advice. Indeed, suppose the set of reals
in one library were incorrectly matched to the set of rationals in the other, we
can still rely on properties of rationals that are also true for reals.

A direct approach is to create translations between formal libraries. This can
only be applied when the defined concepts have the same or equivalent defini-
tions. The HOL/Import translation from HOL4 and HOL Light to Isabelle/HOL
implemented by Obua and Skalberg [20] already mapped a number of concepts.
This was further extended by the second author [13] to map 70 concepts, includ-
ing differently defined real numbers. HOL Light has also been translated into
Coq by Keller and Werner [18]. It is the first translation between systems based
on significantly different logics. In each of these imports, the mapping of the
concepts has been done manually.

Compared with manually defined translations, our approach can find the
mappings and the knowledge that is shared automatically. It can also be used to
prove statements that are slightly different and in some cases even more general.
Additionally, the proof can use preexisting theorems in the target library. On the
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other hand, when a correct translation is found by hand, it is guaranteed to
succeed, while our approach relies on AI-ATP methods which fail for some goals.
The possibility of combining the two approaches is left open.

Overview. The rest of this paper is organized as follows. In Sect. 2, we intro-
duce the AI-ATP system HOL(y)Hammer and describe automatic recognition
of similar concepts in different formal proof developments. In Sect. 3, we pro-
pose a number of scenarios for combining the knowledge of multiple provers.
In Sect. 4, we evaluate the ability to reprove the HOL4 and HOL Light libraries
using the combined knowledge. In Sect. 5 we conclude and present an outlook
on the future work.

2 Preliminaries

2.1 HOL(y)Hammer

HOL(y)Hammer [16] is an AI-ATP proof advice system for HOL Light and HOL4.
Given a user conjecture, it uses machine learning to select a subset of the accessi-
ble facts in the library, that are likely to prove the conjecture. It then translates
the conjecture together with the selected facts to the input language of one of
the available ATP systems to find the exact dependencies necessary to prove
the theorem in higher-order logic. This method is also followed by the system
Sledgehammer [21].

In this section we shortly describe how HOL(y)Hammer processes conjectures,
as we will augment some of these steps in Sect. 3. First, we describe how libraries
are exported. Then, we explain how the exported objects and dependencies are
processed to find suitable lemmas. Finally, we briefly show how the conjecture
can be proven from these lemmas. More detailed descriptions of these steps are
presented in [7,15].

Export. We will associate each ITP library with the set of constants and theo-
rems that it contains. In particular, the type constructors will also be regarded
as constants in this paper. As a first step, we define a format for representing
formulas in type theory, as we aim to support formulas from various provers.
A subset of this format is chosen to represent the higher-order logic statements
in HOL Light and HOL4. Each object is exported in this format with additional
information about the theory where it was created. The theory information will
let us export incompatible developments (i.e. ones that can not be loaded into the
same ITP session or even originate from different ITPs) into HOL(y)Hammer [14].
Additionally, we can fully preserve the names of the original constants in the
export. Finally, the dependencies of each theorem (i.e. the set of theorems which
were directly used to proved it) are extracted. This last step is achieved by
patching the kernels of HOL4 and HOL Light.
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Premise Selection. The premise selection algorithm takes as input an (often
large) set of accessible theorems, a conjecture, and the information about previous
successful proofs. It returns a subset of the theorems that is likely to prove the
conjecture. It involves three phases: feature extraction, learning, and prediction.

The features of a formula are a set of characteristics of the theorem, which
we represent by strings. Depending on the choice of characterization, it can
simply be the list of the constants and types present in the formula, or the string
representation of the normalized sub-terms of the formula, or even features based
on formula semantics [17]. The feature extraction algorithm takes a formula as
input and computes this set.

A relation between the features of conjectures and their dependencies is
inferred from the features of all proved theorems and their dependencies by
the learning algorithm. This step effectively finds a function that given con-
jecture characteristics finds the premises that are likely to be useful to prove
this conjecture. Prediction refers to the evaluation of this function on a given
conjecture.

These phases will be influenced by the concept matching (see Sect. 2.2) and
differentiated in each of the scenarios (see Sect. 3).

Translation and Reconstruction. A fixed number of most relevant predicted
lemmas (all the experiments in this paper fix this number to 128, as it has given
best results for HOL in combination with E-prover [7]) are translated together
with the conjecture to an ATP problem. If an ATP prover is able to find a proof,
various reconstruction methods are attempted. The most basic reconstruction
method is to inspect the ATP proof for the premises that were necessary to
prove the conjecture. This set is usually sufficiently small, so that certified ITP
proof methods (such as MESON [8] or Metis [11]) can prove the higher-order
counterpart of the statement and obtain an ITP theorem.

2.2 Concept Matching

Concept matching [6] allows the automatic discovery of concepts from one proof
library or proof assistant in another. An AI-ATP method can benefit from the
library combination only when some of the concepts in the two libraries are
related: Without such mappings the sets of features of the theorems in each
library are disjoint and premise selection can only return lemmas from the library
the conjecture was stated in. As more similar concepts are matched (for example
we conjecture that the type of integers in HOL4 h4/int and the type of integers in
HOL Light hl/int describe the same type), the feature extraction mechanism will
characterize theorems talking about the matched concepts by the same features.
As a consequence, we will also get predicted lemmas from the other library. We
will discuss how such theorems from a different library can be used without
sacrificing soundness in Sect. 3.

For a step by step of the concept matching algorithm, we will refer to our
previous work [6] and only present here a short summary and the changes that
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improve the matching for the scenarios proposed in this paper. Our algorithm is
implemented for HOL4 and HOL Light, but we believe the procedure can work
for any pair of provers based on similar logics such as Coq [10] and Matita [2].

Summary. Our matching algorithm is based on the properties (such as associa-
tivity, commutativity, nilpotence, . . . ) of the objects of our logic (constants and
types). If two objects from two libraries share a large enough number of relevant
properties, they will eventually be matched, even though they may have been
defined or represented differently. In the description of the procedure, we will
consider every type as a constant. Initially, the set of matched constants con-
tains only logical constants. First, we give a highest weight for rare properties
with a lot of already matched constants. Second, we look at all possible pairs
of constants and find their shared properties. The final score for a pair of con-
stant is the sum of their weights amortised by the total number of properties of
each constant. The two constants with the highest similarity score are matched.
The previous two steps are repeated until there are no more shared properties
between unmatched constants.

Improvements and Limitations. The similarity scoring heuristic can be eval-
uated more efficiently than the ones presented in [6] and is able to map more
constants correctly: Thanks to a better representation of the data the time taken
to run our implementation of the matching algorithm on the standard library
of HOL Light (including complex and multivariate) and the standard library of
HOL4 was decreased from 1 h to 5 min. By computing only the initial property
frequencies and using them together with the proportion of matched constants
to influence the weight of each property in the iterative part the time can be fur-
ther decreased to 2 min. The algorithm now returns 220 correct matches instead
of the 178 previously obtained and 15 false positives (pairs that are matched
but do not represent the same concept) instead of 32. The better results are a
consequence of the inclusion of types in the properties and the updated scoring
function.

The proposed approach can only match objects that have the same structure.
In the case of the two proof assistants we focus on, it can successfully match the
types of natural numbers, integers or real number, however it is not able to
match the dedicated HOL Light type hl/complex to the complex numbers of
HOL4 represented by pairs of real numbers h4/pair(h4/real,h4/real). This
issue could be partially solved by the introduction of a matching between sub-
terms combined with a directed matching. The type hl/complex could then be
considered as pair of reals in HOL4. For the reverse direction, we would need to
know if the pair of reals was intended to represent a pair of reals or a complex.
One idea to solve this problem could be to create a matching substitution that
also depends on the theorems. These general ideas could form a basis for a future
extension of the matching algorithm.
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3 Scenarios

In this section we propose four ways an AI-ATP system can benefit from the
knowledge contained in a library of a different prover. We will call these methods
“scenarios” and we will call the library of a different prover “external”. All
four scenarios require the base libraries to already be matched. This means,
that we have already computed a matching substitution from the theorems of
both libraries and in all the already available facts in the libraries, the matched
constants are replaced by their common representatives.

Throughout our scenarios, we will rely on the notion of equivalent theorems
to map lemmas from one library to the other. This notion is defined below, as
well as some useful notations.

Definition 1 (Equivalent Theorems). Two theorems are considered equiva-
lent if their conjunctive normal forms are equal modulo the order of conjuncts,
disjuncts, and symmetry of equality. Given a theorem t, the set of the theorems
equivalent to it in the library lib will be noted E(lib, t).

Remark 1. This definition only makes sense if the two libraries can be repre-
sented in the same logic. This is straightforward if the two share the same logic.

Definition 2 (Notations).
Given a library, we define the following notations:

– Dep(t) stands for the set of lemmas from which a theorem t was proved. We
call them the dependencies of t. This definition is not recursive, i.e. the set
does not include theorems used to prove these lemmas.

– The function Learn() infers a relation between conjectures and sets of relevant
lemmas from the relation between theorems and their dependencies.

– Pred(c, L) is the set of lemmas related to a conjecture c predicted by the rela-
tion L.

In each scenario, each library plays an asymmetric role. In the following,
the library where we want to prove the conjecture, is called the internal or the
initial library. In contrast, the library from which we get extra advice from, is
called the external library. In this context, using HOL(y)Hammer alone without
any knowledge sharing is our default scenario, naturally named “internal predic-
tions”. We illustrate each selection method by giving an example of a theorem
that could only be reproved by its strategy. These examples are extracted from
our experiments described in Sect. 4.

Scenario 1: External Dependencies. The first scenario assumes that the
proof libraries are almost identical. We compute the set of theorems equivalent
to the conjecture in the external library. For all of their dependencies, we return
the lemmas in the library equivalent to these dependencies. The scenario is
presented in Fig. 1. This scenario would work very well, if the corresponding
theorem is present in the external library and a sufficient corresponding subset
of its dependencies is already present in the initial library. As this is often not
the case (see Sect. 4), we will use an AI-ATP method next.
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Fig. 1. Finding lemmas from dependencies in the external library.

Example 1. The theorem REAL SUP UBOUND in HOL4 asserts that each element
of a bounded subset of reals is less than its supremum. The equivalent theorem
in HOL Light has 3 dependencies: the relation between < and ≤ REAL NOT LT,
the antisymmetry of < REAL LT REFL and the definition of supremum REAL SUP.
Each of them have one equivalent in HOL4. The resulting problem was translated
and solved by an ATP and the 3 lemmas appeared in the proof.

Fig. 2. Learning and predicting lemmas in the external library

Scenario 2: External Predictions. The next scenario is depicted in Fig. 2.
The steps are as follows: We translate the conjecture to the external library (step
1). We predict the relevant lemmas in the external library (steps 2 and 3). We
map the predicted lemmas back to the initial library using their equivalents (step
4). To sum up, this scenario proposes an automatic way of proving a conjecture
providing that the external library contains relevant lemmas that have equiva-
lents in the internal library. One advantage of this scenario over the standard
“internal predictions” is that the relation between features and dependencies is
fully developed in the external library, yielding better predictions.

In our experiments, the translation step is not needed because the matching
is already applied and the logic of our provers are the same.

Example 2. The theorem LENGTH FRONT from the HOL4 theory rich list states
that the length of a non-empty list without its last element is equal to its length
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Fig. 3. Learning in both libraries and predicting lemmas in the internal library.

minus one. The subset of predicted lemmas used by the ATP were 6 theorems
about natural numbers and 6 theorems about list. These theorems are HOL4
equivalents of selected HOL Light lemmas.

Scenario 3: Combined Learning. In this and the next scenario we will
combine the knowledge from the external library with the information already
present in the internal library. The scenario is presented in Fig. 3. First, the
conjecture is translated to the external prover. Second, the features suitable for
proving the conjecture are learned from the dependencies between the theorems
in both systems. Third, lemmas from the original library containing these fea-
tures are predicted. In a nutshell, this scenario defines an automatic method,
that enhances the standard “internal predictions” by including advice from the
external library about the relevance of each feature.

Example 3. This example and the next one are using advice from HOL4 in HOL
Light which means that the roles of the two provers are reversed compared to the
first two examples. The HOL Light theorem SQRT DIV asserts that the square root
of the quotient of two non-negative reals is equal to the quotient of their square
roots. In this scenario no external theorems are translated but learning form the
HOL4 proofs still improved the predictions directly made in HOL Light. The proof
found for this theorem is based on the dual theorems for multiplication SQRT MUL
and inversion SQRT INV and basic properties of division real div, multiplication
REAL MUL SYM, inversion REAL LE INV EQ and absolute value REAL ABS REFL.

Scenario 4: Combined Predictions. The last and most developed scenario,
shown in Fig. 4, associate the strategies from the two preceding scenarios, effec-
tively learning and predicting lemmas from both libraries. The first and second
steps are the same as in “combined learning”. The third step predicts lemmas
in both libraries from the whole learned data. Finally, we map back the external
predictions and return them together with the internal predictions.
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Fig. 4. Learning and predicting lemmas from both libraries.

Example 4. Let n,m, p be natural numbers.
The HOL Light theorem HAS SIZE DIFF declares that if a set A has n elements
and B is a subset of A that has m elements then the difference B \A has n−m
elements. The first two lemmas necessary for the proof were directly found in
HOL Light. One is the definition of the constant HAS SIZE which asserts that a
set has size p if and only if it is finite and has cardinality p. The other CARD DIFF
is almost the same as the theorem to be proved but stated for the cardinality of
finite sets. The missing piece FINITE DIFF is predicted inside the HOL4 library.
Its equivalent in HOL Light declares that the difference of two finite sets is a
finite set, which allows the ATP to conclude.

3.1 Unchecked Scenarios

In each of the previous scenarios, the final predicted lemmas come from the ini-
tial library. This means that our approach is sound with respect to the internal
prover. The application of the matching substitution on one library renames
the constants in all theorems injectively because no non-trivial matching is per-
formed between two constants of the same library.

We will now consider the possibility of returning matched lemmas from the
external library even if they do not have an equivalent in the internal one. This
means giving advice to the user in the form: “your conjecture can be proved
using the theorems th1 and th2 that you already have and an additional hypoth-
esis with the given statement which you should be able to prove.” To verify
that these scenarios are well-founded, a user would need to prove the proposed
hypotheses. That could be achieved by either importing the theorems or apply-
ing the approach recursively. If a constant contained in these lemmas is matched
inconsistently then each method would fail to reprove the lemmas, preserving the
coherence of the internal library. We do not yet have an import mechanism from
HOL4 to HOL Light (and conversely) or a recursive mechanism for our scenarios.
In this recursive approaches, the predicted facts in the external library should be
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restricted to those proved before the conjecture when it has an equivalent in the
external library. Otherwise, a loop in the recursive algorithm may be created.

We will still evaluate the “unchecked” scenarios to see what is the maximum
added value such mechanisms could generate.

4 Evaluation

We perform all the experiments on a subset of the standard libraries of HOL
Light and HOL4. The HOL4 dataset includes 15 type constructors, 509 constants,
and 3935 theorems. The HOL Light dataset contains 21 type constructors, 359
constants and 4213 theorems. The subsets were chosen to include a variety of
fields ranging from list to real analysis. The most similar pairs of theories are
listed by their number of common equivalent classes of theorems in Table 1. The
number of theorems in each theory is indicated in parenthesis.

Table 1. The seven most similar pairs of theories by their number of common equiv-
alent classes of theorems according to our matching

HOL4 theory HOL Light theory Common theorems

pred set(434) sets(490) 128

real(469) real(291) 81

poly(87) poly(142) 72

bool(177) theorems(90) 61

transc(229) transc(355) 58

arithmetic(385) arith(245) 57

integral(83) transc(355) 48

The matching, predictions, and the preparation of the ATP problems have
been done on a laptop with 4 Intel Core i5-3230M 2.60 GHz processors and
3.6 GB RAM. All ATP problems are evaluated on a server with 48 AMD Opteron
6174 2.2 GHz CPUs, 320 GB RAM and 0.5 MB L2 cache per CPU. A single core
is assigned to each ATP problem. The ATP used is E-prover version 1.8 running
in the automatic mode with a time limit of 30 s.

Simulation. We will try to prove each theorem in an environment, where infor-
mation is restricted to the one that was available when this theorem was proved.
This amounts to:

– forgetting that it is a theorem and the knowledge of its dependencies,
– finding the subset of facts in the library that are accessible from this theorem,
– computing the matching with the other library based on this subset only,
– predicting lemmas from this subset (plus the other library in the “unchecked”

scenarios).
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Fig. 5. Evolution of the number of matched constants in the HOL4 theory list and
in the HOL Light theory lists

For the purpose of our simulation, the external library is always completely
known, as we suppose that it was created previously. In reality, the two libraries
were developed in parallel, with many HOL4 theories available before similar
formalizations in HOL Light have been performed.

In Fig. 5, we show the evolution of the number of matched constants and com-
pare it to the number of declared constants in the theory during the incremental
reproving of two theories. The first graph shows that the number of matched
constants stagnate whereas the declared constants continue to increase in the
second half of the theory. This suggests that theories formalizing the same con-
cepts may be developed in different directions for each prover. The second graph
indicates a better coverage of the HOL Light theory lists. In the beginning,
the number of matched constants grows even more rapidly than the number
of declared constants because new matches are found for constants defined in
previous theories.

Table 2. Percentage of reproved theorems in the HOL4 library (internal) with the
knowledge from the HOL Light library (external).

Scenario checked(%) unchecked(%)

empty 4.19

external dependencies 5.06 (23.50) 10.75 (49.94)

external predictions 17.49 34.42

external any 18.07 34.74

internal predictions 43.57

combined learning 44.03

combined predictions 44.59 53.46

any 50.06 55.73

any checked or unchecked 62.80
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Table 3. Percentage of reproved theorems in the HOL Light library (internal) with the
knowledge from the HOL4 library (external).

Scenario checked(%) unchecked(%)

empty 3.14

external dependencies 6.08 (29.22) 10.11 (48.63)

external predictions 12.74 33.94

external any 13.55 34.32

internal predictions 30.92

combined learning 35.13

combined predictions 35.56 44.06

any 40.19 47.07

any checked or unchecked 54.71

In the first column, scenarios are listed based on their predicted lem-
mas.
empty: no lemmas.
external dependencies: dependencies of equivalent external theo-
rems.
external predictions: external lemmas from external advice.
external any: problems solved by any of the two previous scenarios.
internal predictions: internal lemmas from internal advice.
combined learning: internal lemmas from external and internal
advice.
combined predictions: external and internal lemmas from external
and internal advice.
any: problems solved by at least one scenario of the same column.
In the second column, we restrict ourself from using external theorems
that do not have an internal equivalent, where as we allow it in the
third column. The last line combines all the problems solved by at
least one checked or unchecked scenario.

Results. The success rates for each scenario and each proof assistant are com-
piled in Tables 2 and 3. The scenario “empty” gives the number of facts provable
without lemmas and is fully subsumed by the other methods.

The external dependencies scenario is the only one that is not directly com-
parable to the others, as it was performed only on the theorems that have an
equivalent in the other library (876 in HOL Light and 847 in HOL4). The per-
centage of theorems proved by this strategy relative to its experimental subset
is shown in parentheses. This strategy is quite efficient on its subset but con-
tributes weakly to the overall improvement. These results are combined with the
“external predictions” scenario to evaluate what can be reproved with external
help only. In HOL4, the combined learning and predictions increases the num-
ber of problems solved over the initial “internal predictions” approach only by
one percent. The improvement is sharper in HOL Light. It suggests that HOL4
provides a better set for the learning algorithm. The improvement provided by
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all scenarios can be combined to yield a significant gain compared to the perfor-
mance of HOL(y)Hammer alone, namely additional 6.5 % of all HOL4 and 9.3 %
of all HOL Light theorems. Another 10–15 % could be added by the “unchecked”
scenarios.

Results by Theory. In Table 4, we investigate the performance of the “external
dependencies” scenario on the largest theories in our dataset. Some theories
only minimally benefit from the external help. This is the case for rich list
and iterate, where only few correct mappings could be found. We can see
asymmetric results in pairs of similar theories. For example, the real theory
in HOL Light can be 72.16 % reproved from HOL4 theories whereas the similar
theory in HOL4 does not benefit as much. This suggest that the real theory
HOL4 is more dense than its counterpart. A similar effect is observed for the
transc formalization. The theories pred set and sets seem to be comparably
dense.

Table 4. Reproving success rate in the six largest theories in HOL4 using HOL Light
and the “checked external dependencies” scenario, as well as in the six largest HOL
Light theories using HOL4.

Scenario real pred set list arithmetic rich list transc

external dependencies 30.91 24.65 10.23 18.18 1.52 5.24

Scenario sets analysis transc int iterate real

external dependencies 25.51 27.1 25.91 52.61 5.47 72.16

5 Conclusion

We proposed several methods for combining the knowledge of two ITP systems
in order to prove more theorems automatically. The methods adapt the premise
selection and proof advice components of the HOL(y)Hammer system to include
the knowledge of an external prover. In order to do it, the concepts defined in
both libraries are related through an improved matching algorithm. As the con-
stants in two libraries become related, so are the statements of the theorems.
Machine learning algorithms can combine the information about the dependen-
cies in each library to predict useful dependencies more accurately.

We evaluated the influence of an external library on the quality of advice,
by reproving all the theorems in a large subset of the HOL4 and HOL Light
standard libraries. External knowledge can improve the success from 43 % to
50 % in HOL4 and from 30 % to 40 % in the number of HOL Light solved goals.
This number could reach 54 % for HOL4 and 62 % for HOL Light if we include the
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“unchecked” scenarios, where the user is not only suggested known theorems,
but also hypotheses left to prove. Proving such proposed lemmas, either with the
help of a translation or by calling an AI-ATP method with shared knowledge is
left as future work.

The proposed approach evaluated the influence of an external proof assistant
library for the quality of learning and prediction. An extension of the approach
could be used inside a single library: mappings of concepts inside a single library,
such as those the work of Autexier and Hutter [3], could provide additional
knowledge for a learning-reasoning system.
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Abstract. Probabilistic coupling is a powerful tool for analyzing pairs of
probabilistic processes. Roughly, coupling two processes requires finding
an appropriate witness process that models both processes in the same
probability space. Couplings are powerful tools proving properties about
the relation between two processes, include reasoning about convergence
of distributions and stochastic dominance—a probabilistic version of a
monotonicity property.

While the mathematical definition of coupling looks rather complex
and cumbersome to manipulate, we show that the relational program
logic pRHL—the logic underlying the EasyCrypt cryptographic proof
assistant—already internalizes a generalization of probabilistic coupling.
With this insight, constructing couplings is no harder than constructing
logical proofs. We demonstrate how to express and verify classic examples
of couplings in pRHL, and we mechanically verify several couplings in
EasyCrypt.

1 Introduction

Probabilistic couplings [7,9,10] are a powerful mathematical tool for reasoning
about pairs of probabilistic processes: streams of values that evolve randomly
according to some rule. While the two processes may be difficult to analyze
independently, a probabilistic coupling arranges processes {ui}, {vi} in the same
space—typically, by viewing the pair of processes as randomly evolving pairs of
values {(ui, vi)}, coordinating the samples so that each pair of values are related.
In this way, couplings can reason about the relation between the two processes.

From the point of view of program verification, a coupling is a relational
program property, since it describes the relation between two programs (perhaps
one program run on two different inputs, or two completely different programs).
However, couplings are particularly interesting for several reasons.

Useful Consequences. Couplings imply many other relational properties, and are
a powerful tool in mathematical proofs.

c© Springer-Verlag Berlin Heidelberg 2015
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A classic use of coupling is showing that the distribution of the value of two
random processes started in different locations eventually converges to the same
distribution if we run the processes long enough. This property is a kind of mem-
orylessness—or Markovian—property: The long-term behavior of the process is
independent of its starting point. To prove memorylessness, the typical strategy
is to couple the two processes so that their values move closer together; once the
values meet, the two processes move together, yielding the same distribution.

A different use of couplings is showing that one (numeric-valued) process
is, in some sense, bigger than the other. This statement has to be interpreted
carefully—since both processes evolve independently, we can’t guarantee that
one process is always larger than the other on all traces. Stochastic domination
turns out to be the right definition: for any k, we require Pr[u ≥ k] > Pr[v ≥ k].
This property follows if we can demonstrate a coupling of a particular form.

Relational from Non-relational. Often, the behavior of the second coupled process
is completely specified by the behavior of the first; for instance, the second process
may mirror the first process. In such cases, the coupling allows us to reason just
about the first process. In other words, a coupling allows us to prove certain rela-
tional properties by proving properties of a single program.

Compositional Proofs. Typically, couplings are proved by coordinating corre-
sponding samples of the two processes, step by step; paper proofs call this process
“building a coupling”, reflecting the piecewise construction of the coupled dis-
tribution. As a result, couplings can be proved locally by considering small
pieces of the programs in isolation, enabling convenient mechanical verification of
couplings.

Contributions

In this paper, we apply relational program verification to probabilistic couplings.
While the mathematical definition of coupling is seemingly far from program
verification technology, our primary insight is that the logic pRHL from Barthe,
Grégoire, and Zanella-Béguelin [1] already internalizes coupling in disguise. More
precisely, pRHL is built around a lifting construction, which turns a relation R
on two sets A and B into a relation R† over the set of sub-distributions over
A and the set of sub-distributions over B. Two programs are related by R†

precisely when there exists a coupling of their output sub-distributions whose
support only contains pairs of values (u, v) which satisfy R.

This observation has three immediate consequences. First, by selecting the
relation R appropriately, we can express a wide variety of coupling properties,
like distribution equivalence and stochastic domination. Second, by utilizing the
proof system of pRHL, we can constructing and manipulate couplings while
abstracting away the mathematical details. Finally, we can leverage EasyCrypt,
a proof assistant implementing pRHL, to mechanically verify couplings.
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2 Preliminaries

Probabilistic Coupling. We begin by giving an overview of probabilistic coupling.
As we described before, a coupling places two probabilistic processes (viewed as
probability distributions) in the same probabilistic space.

We will work with sub-distributions over discrete (finite or countable) sets.
A sub-distribution μ over a discrete set A is a function A → [0, 1] such that∑

a∈A μ(a) ≤ 1, and its support supp(μ) is the pre-image of (0, 1]. We let
Distr(A) denote the set of sub-distributions over A. Every sub-distribution
can be given a monadic structure; the unit operator maps every element a
in the underlying set to its Dirac distribution δa and the monadic composi-
tion Mlet(μ, F ) ∈ Distr(B) of μ ∈ Distr(A) and F : A → Distr(B) is
Mlet(μ, F )(b) =

∑
a∈A μ(a) × F (a)(b).

When working with sub-distributions over tuples, the probabilistic versions
of the usual projections on tuples are called marginals. The first and second
marginals π1(μ) and π2(μ) of a distribution μ over A × B are defined by
π1(μ)(a) =

∑
b∈B μ(a, b) and π2(μ)(b) =

∑
a∈A μ(a, b). We can now formally

define coupling.

Definition 1. The Frechet class F(μ1, μ2) of two sub-distributions μ1 and μ2

over A and B respectively is the set of sub-distributions μ over A × B such that
π1(μ) = μ1 and π2(μ) = μ2. Two sub-distributions μ1, μ2 are said to be coupled
with witness μ if μ ∈ F(μ1, μ2), i.e. μ is in the Frechet class of μ1, μ2.

Lifting Relations. Before introducing pRHL, we describe the lifting construc-
tion. This operation allows pRHL to make statements about pairs of (sub-)
distributions, and is a generalized form of probabilistic coupling.

The idea is to define a family of couplings based on the support of the witness
distribution. Given a relation R ⊆ A × B and two distributions μ1 and μ2 over
A and B respectively, we let LR(μ1, μ2) denote the subset of sub-distributions
μ ∈ F(μ1, μ2) such that supp(μ) ⊆ R. Given a ground relation R, we view
distributions in LR as witnesses for a lifted relation on distributions.

Definition 2. The lifting of a relation R ⊆ A × B is the relation R† ⊆
Distr(A) × Distr(B) with μ1 R† μ2 iff LR(μ1, μ2) �= ∅.

Before turning to the definition of pRHL, we give some intuition for why
lifting is useful. Roughly, if we know two distributions are related by a lifted
relation R†, we can treat two samples from the distribution as if they were related
by R. In other words, the lifting machinery gives a powerful way to translate
between information about distributions and information about samples. Deng
and Du [6] provide an excellent introductory exposition to lifting, and give several
equivalent characterizations of lifting.

2.1 A pRHL Primer

We are now ready to present pRHL, a relational program logic for probabilis-
tic computations. In its original form [1], implemented in the EasyCrypt proof
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assistant [4], pRHL reasons about programs written in an imperative language
extended with random assignments with the following syntax of commands:

c::=x ← e | x $← d | if e then c else c | while e do c | skip | c; c

where e ranges over expressions, d ranges over distribution expressions, and
x $← d stores a sample from d into x. Commands are interpreted as functions
from memories to distributions over memories; using the fixed point theorem
for Banach spaces, one can define for each command c a function [[c]] : Mem →
Distr(Mem), where Mem is the set of well-typed maps from program variables
to values.

Assertions in the language are first-order formulae over generalized expres-
sions. The latter are built from tagged variables x1 and x2, which correspond to
the interpretation of the program variable x in the first and second memories.
Assertions in pRHL are deterministic and do not refer to probabilities.

Definition 3. A pRHL judgment is a quadruple of the form � c1 ∼ c2 : Ψ ⇒ Φ,
where Ψ and Φ are assertions, and c1 and c2 are separable statements, i.e. they
do not have any variable in common. A judgment is valid iff for all memories
m1 and m2, we have (m1,m2) |= Ψ ⇒ ([[c1]](m1), [[c2]](m2)) |= Φ† .

Judgments can be proved valid with a variety of rules.

Two-sided and One-sided Rules. The pRHL logic features two-sided rules (Fig. 1)
and one-sided rules (Fig. 2). Roughly speaking, two-sided rules relate two com-
mands with the same structure and control flow, while one-sided rules relate two
commands with possibly different structure or control flow; the latter rules allow
pRHL to express asynchronous couplings between programs that may exhibit
different control flow.

We point out two rules that will be especially important for our purposes.
The rule [Sample] is used for relating two sampling commands. Note that it
requires an injective function f : T1 → T2 from the domain of the first sampling
command to the domain of the second sampling command. When the two sam-
pling commands have the same domain—as will be the case in our examples—f
is simply a bijection on T = T1 = T2. This bijection gives us the freedom to
specify the relation between the two samples when we couple the samples.

The rule [While] is the standard while rule adapted to pRHL. Note that we
require the guard of the two commands to be equal—so in particular the two
loops must make the same number of iterations—and Φ plays the role of the
while loop invariant as usual.

Structural and Program Transformation Rules. pRHL also features structural
rules that are very similar to those of Hoare logic, including the rule of conse-
quence and the case rule. In addition, it features a rule for program transforma-
tions, based on an equivalence relation � that provides a sound approximation
of semantical equivalence. For our examples, it is sufficient that the relation �
models loop range splitting and biased coin splitting, as given by the following
clauses:
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Fig. 1. Two-sided proof rules (selection)

Fig. 2. One-sided proof rules (selection)

while e do c � while e ∧ e′ do c;while e do c
x $← Bern(p1 · p2) � x1

$← Bern(p1);x2
$← Bern(p2);x ← x1 ∧ x2

Figure 3 provides a selection of structural and program transformation rules.

Fig. 3. Structural and program transformation rules (selection)

2.2 From pRHL Judgments to Probability Judgments

We will derive two kinds of program properties from the existence of an appropri-
ate probabilistic coupling. We will first discuss the mathematical theorems, where
the notation is lighter and the core idea more apparent, and then demonstrate
how the mathematical version can be expressed in terms of pRHL judgments.

Total Variation and Coupling. The first principle bounds the distance between
two distributions in terms of a probabilistic coupling. We first define the total
variation distance, also known as statistical distance, on distributions.
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Definition 4. Let X and X ′ be distributions over a countable set A. The total
variation (TV) distance between X and X ′ is defined by
‖X − X ′‖tv � 1

2

∑
a∈A |X(a) − X ′(a)| .

To bound the distance between two distributions, it is enough to find a
coupling and bound the probability that the two coupled variables differ.

Theorem 1 (Total Variation, See [7]). Let X and X ′ be distributions over
a countable set. Then for any coupling Y = (X̂, X̂ ′), we have

‖X − X ′‖tv ≤ Pr(x,x′)∼Y [x �= x′].

This theorem is useful for reasoning about convergence of distributions.
To describe a pRHL analog of this theorem, we first introduce some useful

notation. For all memories m and expressions e, we write m(e) for the interpre-
tation of e in memory m. For all expressions e of type T and distribution μ over
memories, let [[e]]µ be defined as Mlet m = μ in unit m(e); note that [[e]]µ denotes
a distribution over T . Similarly, for all events E (modeled as a boolean expres-
sion encoding a predicate over memories) and distribution μ over memories, let
[[E]]µ be defined as Mlet m = μ in unit E(m). Thus, [[E]]µ is the probability of
event E holding in the distribution μ. Then, Theorem 1 can be written in terms
of pRHL.

Proposition 1. If � c1 ∼ c2 : Ψ ⇒ Φ ⇒ v1 = v2, where Φ exclusively refers
to variables in c1, then for all initial memories m1 and m2 that satisfy the
precondition, the total variation distance between [[v1]][[c]](m1) and [[v2]][[c]](m2) is
at most [[¬Φ]][[c]](m1), i.e. ‖[[v1]][[c1]](m1) − [[v2]][[c2]](m2)‖tv ≤ [[¬Φ]][[c]](m1) .

This proposition underlies the “up-to-bad” reasoning in EasyCrypt.

Stochastic Domination and Coupling. A second relational property of distribu-
tions is stochastic domination.

Definition 5. Let X and X ′ be distributions over set A with an order relation
≥. We say X stochastically dominates X ′, written X ≥sd X ′, if for all a ∈ A,

Prx∼X [x ≥ a] ≥ Prx′∼X′ [x′ ≥ a].

Intuitively, stochastic domination defines a partial order on distributions over A
given an order over A. Strassen’s theorem shows that stochastic dominance is
intimately related to coupling.

Theorem 2 (Strassen’s Theorem, See [7]). Let X and X ′ be distributions
over a countable ordered set A. Then X ≥sd X ′ if and only if there is a coupling
Y = (X̂, X̂ ′) with Y ∈ L≥(X,X ′).

The forward direction is usually the more useful direction; we can express it
in the following pRHL form.

Proposition 2. If � c1 ∼ c2 : Ψ ⇒ v1 ≥ v2, then for all initial memories m1

and m2 that satisfy the precondition, [[v1]][[c]](m1) ≥sd [[v2]][[c]](m2).
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Fig. 4. Two random walks

3 Warming Up: Random Walks

We warm up with couplings for random walks. These numeric processes model
the evolution of a token over a discrete space: at each time step the token will
choose its next movement randomly. We will show that if the two initial positions
satisfy some property, the distributions of the two positions converge.

3.1 The Basic Random Walk

Our first example is a random walk on the integers. Starting at an initial position,
at each step we flip a fair coin. If heads, we move one step to the right. Otherwise,
we move one step to the left. The code for running process k steps is presented
in the left side of Fig. 4. The variable H stores the history of coin flips. While
this history isn’t needed for computation of the result (it is ghost code), we will
state invariants in terms of this history.

We consider two walks that start at locations start1 and start2 that are an even
distance apart: start2 − start1 = 2n ≥ 0. We want to show that the distribution
on end positions in the two walks converges as k increases. From Theorem 1,
it suffices to find a coupling of the two walks, i.e., a way to coordinate their
random samplings.

The basic idea is to mirror the two walks. When the first process moves
towards the second process, we have the second process also move closer; when
the first process moves away, we have the second process move away too. When
the two processes meet, we have the two processes make identical moves.

To carry out this plan, we define Σ(H) to be the number of true in H minus
the number of false; in terms of the random walk, Σ(H) measures the net change
in position of a process with history H. Then, we define a predicate such that
P (H) holds when H contains a prefix H’ such that Σ(H’) = n.

Accordingly, P (H1) holds when the first process has moved at least n spots
to the right. Under the coupling, this means that the second process must have
moved at least n spots to the left since the two particles are mirrored. Since



394 G. Barthe et al.

the first process starts out exactly 2n to the left of the second process, P (H1) is
true exactly when the coupled processes have already met. If the processes start
out an odd distance apart, then they will never meet under this coupling—the
coupling preserves the parity of the distance between the two positions.

To formalize this coupling in pRHL, we aim to couple two copies of the
program above, which we denote c1 and c2. We relate the two while loops with
rule [While] using the following invariant:

(pos1 �= pos2 ⇒ pos1 = i1 + Σ(H1) ∧ pos2 = i2 − Σ(H1)) ∧ (P (H1) ⇒ pos1 = pos2).

The loop invariant states that before the two particles meet, their trajectories
are mirrored, and that once they have met, they coincide forever.

To prove that this is an invariant, we need to relate the loop bodies. The
key step is relating the two sampling operations using the rule [Sample]; note
that we must provide a bijection f from booleans to booleans. We choose the
bijection based on whether the two coupled walks have met or not.

More precisely, we perform a case analysis on pos1 = pos2 with rule [Case]. If
they are equal then the walks move together, so we use the identity map for f ;
this has the effect of forcing both processes to see the same sample. If the walks
are at different positions, we use the negation map (¬) for f , so as to force the
two processes to take opposite steps.

Putting everything together, we can prove the following judgment in pRHL:

� c1 ∼ c2 : start1 + 2n = start2 ⇒ (P (H1) ⇒ pos1 = pos2).

By Theorem 1, we can bound the TV distance between the final positions. If
two memories m1,m2 satisfy m1(start) + 2n = m2(start), we have

‖[[pos1]][[c1]](m1) − [[pos2]][[c2]](m2)‖tv ≤ [[¬P (H1)]][[c1]](m1).

Note that the right hand side depends only on the first program. In other words,
proving this quantitative bound on two programs is reduced to proving a quan-
titative property on a single program—this is the power of coupling.

3.2 Lazy Random Walk on a Torus

For a more interesting example of a random walk, we can consider a walk on a
torus. Concretely, the position is now a d-tuple of integers in [0, k −1]. The walk
first flips a fair coin; if heads it stays put, otherwise it moves. If it moves, the
walk chooses uniformly in [1, d] to choose the coordinate to move, and a second
fair coin to determine the direction (positive, or negative). The positions are
cyclic: increasing from k − 1 leads to 0, and decreasing from 0 leads to k − 1.

We can simulate this walk with the program in the right side of Fig. 4, where
u(i) is the i-th canonical base vector in (Z/kZ)d. As before, we store the trace
of the random walk in the list H. All arithmetic is done modulo k.

Like the simple random walk, we start this process at two locations start1 and
start2 on the torus and run for k iterations. We aim to prove that the distributions
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of the two walks converge as k increases by coupling the two walks, iteration by
iteration. Each iteration, we first choose the same coordinate crd and the same
direction dir in both walks. If the two positions coincide in coordinate crd, we
arrange both walks to select the same movement flag mov, so that the walks
either move together, or both stay put. If the two positions differ in crd, we
arrange the walks to select opposite samples in mov so that exactly one walk
moves.

As in the basic random walk, we can view our coupling as letting the first
process evolve as usual, then coordinating the samples of the second process to
perform the coupling. In other words, given a history H1 of samples for the first
process, the behavior of the second coupled process is completely specified.

Thus, we can define operators to extract the movements of each walk from
the trace H1 of the samplings of the first process: Σ1(i,H1) is the drift of the ith
coordinate of the first process, and Σ2(i,H1) is the drift of the second process.
Essentially, these operators encode the coupling by describing how the second
process moves as a function of the first process’s samples.

In pRHL, we will use the rule [While] with the following invariant:

∀i ∈ [1, d]. (Σ1(i,H1) − Σ2(i,H1) = Δ[i] ⇒ pos1[i] = pos2[i])

∧ (pos1[i] �= pos2[i] ⇒ pos1[i] = start1[i] + Σ1(i,H1) ∧ pos2[i] = start2[i] + Σ2(i,H1)),

where Δ is the vector start2 − start1. The first conjunct states that the walks
move together in coordinate i once they couple in coordinate i, while the second
conjunct describes the positions in terms of the history H1.

To prove that the invariant is preserved, we encode the coupling described
above into pRHL, via three uses of the rule [Sample]. The first two samples—
for crd and dir—are coupled with f being identity bijections (on [1, d] and on
booleans), ensuring that the processes make identical choices. When sampling
mov, we inspect the history H1 to see whether the two walks agree in position
crd. If so, we choose the identity bijection for mov; if not, we choose negation.
This coupling is sufficient to verify the loop invariant.

To conclude our proof, the first conjunct in the invariant implies that we can
prove the pRHL judgment � c1 ∼ c2 : start2 − start1 = Δ ⇒ Φ, where

Φ � (∀i ∈ [1, d]. Σ1(i,H1) − Σ2(i,H1) = Δ[i]) ⇒ ∀i ∈ [1, d]. pos1[i] = pos2[i].

Finally, Theorem 1 implies that for any two initial memories m1,m2 with
m2(start) − m1(start) = Δ, we have

‖[[pos1]][[c1]](m1) − [[pos2]][[c2]](m2)‖tv ≤ [[∃i ∈ [1, d]. Σ1(i,H1) − Σ2(i,H1) �= Δ[i]]][[c1]](m1).

Again, proving a quantitative bound on the convergence of two distributions is
reduced to proving a quantitative bound on a single program.

4 Combining Coupling with Program Transformation

So far, we have seen examples where the coupling is proved directly on the two
original programs c1 and c2. Often, it is convenient to introduce a third program
c∗ that is equivalent to c1, and then couple c∗ to c2. Applying transitivity (rule
[Equiv]), this gives a coupling between c1 and c2. Let’s consider two examples.
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4.1 Two Biased Coins

Consider a coin flipping process that flips a coin k times, and returns the number
of heads observed. We consider this process run on two different biased coins:
The first coin has probability q1 of coming up heads, while the second coin has
probability q2 of coming up heads with q1 ≥ q2. Let the distribution on the
number of heads be μ1 and μ2 respectively.

Intuitively, it is clear that the first process is somehow bigger than the second
process: it is more likely to see more heads, since the first coin is biased with
a higher probability. Stochastic dominance turns out to be the proper way to
formalize our intuition. To prove it, Proposition 2 implies that we just need to
find an appropriate coupling of the two processes.

While it is possible to define a coupling directly by carefully coordinating
the corresponding coin flips, we will give a simpler coupling that proceeds in
two stages. First, we will couple a program c1 computing μ1 to an intermediate
program c∗. Then, we will show that c∗ is equivalent to a program c2 computing
μ2, thus exhibiting a coupling between μ1 and μ2. Letting r = q2/q1 and denoting
the coin flip distribution with probability p of sampling true by Bern(p), we give
the programs in Fig. 5.

For the first step, we want to couple c1 and c∗. For a rough sketch, we want
to use rule [While] with an appropriate loop invariant; here, n1 ≥ n∗. To show
that the invariant is preserved, we need to relate the loop bodies. We use the
two-sided rule [Sample] when sampling x and y (taking the bijection f to be the
identity), the one-sided rule [Sample-L] to relate sampling nothing (skip) in c1
with sampling z in c∗, and the one-sided rule [IfL] to relate the two conditionals.
(The one-sided rule is needed, since the two conditionals may take different
branches.) Thus, we can prove the judgment � c1 ∼ c∗ : q1 ≥ q2 ∧ r = q2/q1 ⇒
n1 ≥ n∗.

For the second step, we need to prove that c∗ is equivalent to c2. Here, we use a
sound approximation � to semantic equivalence as described in the preliminaries.
Specifically, we have x $← Bern(q1 · r) � y $← Bern(q1); r $← Bern(r); x ← y ∧ z

for the loop bodies; showing equivalence of c∗ and c2 is then straightforward.
Thus, we can show � c∗ ∼ c2 : q1 ≥ q2 ∧ r = q2/q1 ⇒ n∗ = n2. Applying rule
[Equiv] gives the final judgment � c1 ∼ c2 : q1 ≥ q2 ∧ r = q2/q1 ⇒ n1 ≥ n2,
showing stochastic domination by Proposition 2.

4.2 Balls into Bins: Asynchronous Coupling

The examples we have seen so far are all synchronous couplings: they relate the
iterations of the while loop in lock-step. For some applications, we may want to
reason asynchronously, perhaps allowing one side to progress while holding the
other side fixed. One example of an asynchronous coupling is analyzing the balls
into bins process. We have two bins, and a set of n balls. At each step, we throw
a ball into a random bin, returning the count of both bins when we have thrown
all the balls. The code is on the left side in Fig. 6.
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Fig. 5. Coupling for biased coin flips

Fig. 6. Coupling balls into bins

Now, we would like to consider what happens when we run two processes with
different numbers of balls. Intuitively, it is clear that if the first process throws
more balls than the second process, it should result in a higher load in the bins;
we aim to prove that the first process stochastically dominates the second with
the following coupling. Assume that the first process has more balls (n1 ≥ n2).
For the first n2 balls, we have the two process do the same thing—they choose
the same bucket for their tosses. For the last n1 − n2 steps, the first process
throws the rest of the balls. Evidently, this coupling forces the bins in the first
run to have higher load than the bins in the second run.

To formalize this example, we again introduce a program c∗, proving equiv-
alence with c1 and showing a coupling with c2. The code for c∗ is on the right
side in Fig. 6; we require the dummy input m to be equal to n2.

Proving equivalence with program c1 is direct, using the loop range splitting
transformation in EasyCrypt: while e do c � while e ∧ e′ do c;while e do c. Once
this is done, we simply need to provide a coupling between c∗ and c2. By our
choice of m, we can trivially couple the first loop in c∗ to the (single) loop in c2,
ensuring that Φ � binA∗ ≥ binA2 ∧ binB∗ ≥ binB2 after the first loop.
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Then, we can apply the one-sided rules to couple the second loop in c∗ with
a skip statement in c2. It is straightforward to show that Φ is an invariant in
rule [WhileL], from which we can conclude � c∗ ∼ c2 : n1 ≥ n2 ∧ m = n2 ⇒
binA∗ ≥ binA2 ∧ binB∗ ≥ binB2, and by equivalence of c1 and c∗ we have � c1 ∼
c2 : n1 ≥ n2 ⇒ binA1 ≥ binA2 ∧ binB1 ≥ binB2, enough for stochastic domination
by Proposition 2.

5 Non-deterministic Couplings: Birth and Death

So far, we have seen deterministic couplings, which reuse randomness from the
coupled processes in the coupling; this can be seen in the [Sample] rule, when
we always choose a deterministic bijection. In this section, we will see a more
sophisticated coupling that injects new randomness.

For our example, we consider a classic Markov process. Roughly speaking, a
Markov process moves within a set of states each transition depending only on
the current state and a fresh random sample. The random walks we saw before
are classic examples of Markov processes.

A more complex Markov process is the birth and death chain. The state space
is Z, and the process starts at some integer x. At every time step, if the process
is at state i, the process has some probability bi of increasing by one, and some
probability ai of decreasing by one. Note that ai and bi may add up to less than
1: there can be some positive probability 1−ai−bi where the process stays fixed.

To model this process, we define a sum type Move with three elements (Left,
Right and Still) which correspond to the possible moves a process can make. Then,
the chains are modeled by the code in the left of Fig. 7, where the distribution
bd(state) is the distribution of moves from state.

Just like the biased coin and balls into bins processes, we want to prove sto-
chastic domination for two processes started at states start1 ≥ start2 via coupling.
The difficulty is that if the processes become adjacent and they both move, the
two processes may swap positions, losing stochastic domination.

The solution is to use a special coupling when the two processes are on two
adjacent states as in Mufa [8]. Unlike the previous examples, the coupling is
not deterministic: the behavior of one process is not fully determined by the
randomness of the other. Our loop invariant is the usual one for stochastic dom-
ination: state1 ≥ state2. To show that this invariant is preserved, we perform a
case analysis on whether state1 = state2, state1 = state2 + 1 or state1 > state2 + 1.

We focus on the interesting middle case, when the states are adjacent. Here,
we perform a trick: we switch c1, c2 for two equivalent intermediate programs
c∗
1, c

∗
2, and prove a coupling on the two intermediate programs. The two inter-

mediate programs each sample from dcouple, a distribution on pairs of moves,
and project out the first or second component as dir; in other words, we explic-
itly code c∗

1, c
∗
2 as sampling from the two marginals of a common distribution

dcouple. By proving that the marginals are indeed distributed as bd(state1) and
bd(state2), we can prove equivalences c1 � c∗

1 and c2 � c∗
2. The code is in the

right side of Fig. 7, where proj [1—2] is the first and second projections in c1 and
c2, respectively.
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All that remains is to prove a coupling between c∗
1 and c∗

2 satisfying the loop
invariant state1 ≥ state2. With adjacent states, dcouple is given by the following
function from pairs of moves to probabilities:

op d i s t r - ad jacent ai ai+1 bi bi+1 ( x : Move * Move) =
i f x = (Right , Le f t ) then min (bi+1, ai ) e l s e

i f x = ( S t i l l , Le f t ) then (bi+1 − ai)
+ e l s e

i f x = (Right , S t i l l ) then (ai − bi+1)
+ e l s e

i f x = ( S t i l l , Right ) then ai+1 e l s e
i f x = ( Le f t , S t i l l ) then bi e l s e
i f x = ( S t i l l , S t i l l ) then

1 - min (bi+1, ai ) - ai+1 - bi - |bi+1 − ai| e l s e
i f x = ( ˙ , ˙ ) then 0 .

where x+ denotes the positive part of x: simply x if x ≥ 0, and 0 otherwise. Note
that the case (Left, Right) has probability 0: this forbids the first process from
skipping past the second process.

Now the coupling is easy: we simply require both samples from dcouple to be
the same. Since state1 = state2 +1 and the distribution never returns (Left,Right),
the loop invariant is trivially preserved. This shows the desired coupling, and
stochastic domination by Proposition 2.

Fig. 7. Coupling the birth and death chain

6 Conclusion and Future Work

We have established the connection between relational verification of probabilis-
tic programs using pRHL, and probabilistic couplings. Furthermore, we have
used the connection by using pRHL to verify several well-known examples of
couplings from the literature on randomized algorithms. More broadly, our work
is a blend between the two main approaches to relational verification: (i) reason-
ing about a single program combining the two programs (e.g. cross-products [12],
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self-composition [3], and product programs [2]); and (ii) using a program logic
to reason directly about two programs (e.g. relational Hoare logic [5], relational
separation logic [11], and pRHL [1]). We have only scratched the surface in
verifying couplings; we see three natural directions for future work.

A more General Verification Framework. When we construct a coupling, the
core data is encoded by the bijection f for the rule [Sample], which specifies
how the two samples are to be coupled. A careful look at the rule reveals that
the coupling is a deterministic coupling, as defined by Villani [10]. While such
couplings are already quite powerful, there are many examples of couplings that
cannot be verified using deterministic couplings. We have worked around this
difficulty by using program transformation rules, but an alternative approach
could be interesting: allow more general binary relations when relating samples,
rather than just bijections. This generalization could enable a more general class
of couplings and yield cleaner proofs.

Moreover, it would be interesting to extend EasyCrypt with mechanisms for
handling the non-relational reasoning in couplings. To prove quantitative bounds
on total variation in the random walk example, we need to bound the time it
takes for a single random walk to reach a certain position. Proving such bounds
requires more complex, non-relational reasoning. We are currently developing a
program logic for this purpose, but it has not yet been integrated into EasyCrypt.

Extending to Shift and Path Coupling. The couplings realized in the random
walks are instances of exact couplings, where we reason about synchronized sam-
ples: we relate the first samples, the second samples, etc. A more general notion
of coupling is shift-coupling, where we are allowed to first shift one process by a
random number of samples, then couple. The general theory of path couplings
provides similar-shaped inequalities as the ones in exact coupling, allowing pow-
erful mathematical-based reasoning inside the logic with the [Conseq] rule.
These coupling notions are complex, and it is not yet clear how they can be
verified.

Other Examples. There are many other examples of couplings, in particular
the proof of the constructive Lovasz Local Lemma, a fundamental tool used in
the probabilistic method, a powerful proof technique for showing existence in
combinatorics.
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Abstract. A new logical framework with explicit linear contexts and
names is presented with the purpose of enabling direct and flexible
manipulation of contexts, both for representing systems and meta-
properties. The framework is a conservative extension of the logical
framework LF, and builds on linear logic and contextual modal type
theory. We prove that the framework admits canonical forms, and that
it possesses all desirable meta-theoretic properties, in particular heredi-
tary substitutions.

As proof of concept, we give an encoding of the one-sided sequent
calculus for classical linear logic and the corresponding cut-admissibility
proof, as well as an encoding of parallel reduction of lambda terms with
the corresponding value-soundness proof.

1 Introduction

The Logical Framework (LF) [3] has successfully served as a meta-language for
representing languages with binders, in particular programming languages and
logics, type systems, and operational semantics. It forms the basis of several
proof assistants, such as Twelf [6], Delphin [10] and Beluga [8], all of which
support reasoning about LF representations.

However, representing and reasoning about systems which are resource aware
and require linearity is challenging in LF. In this paper we describe XLF, an
extension of LF with explicit linear conteXts, which supports elegant higher-
order representation of such systems and their meta-theory. Linear logics and
the corresponding linear type theories are known to support representations of
state, communication, processes, and multi-set rewriting. Having a framework
which can deliver both, representation of such systems and their meta-theory, is
therefore useful and one of the main contributions of this paper.

As a motivating example, consider the simply typed linear λ-calculus with
intrinsic typing. The syntax for terms is t, s ::= xτ | λxτ .s | s t, where terms use
their variables linearly, i.e. exactly once. Borrowing notation from Twelf (except
λ-abstraction, which we write as \x.) we represent this language in XLF as:

tp: type. arrow : tp -> tp -> tp. tm : tp -> type.
lam: (n [G, n : tm T] tm S) -> [G] tm (arrow T S).
app: [G]tm (arrow T S) -> [D]tm T -> [G, D]tm S.

While we are getting a bit ahead of ourselves, the central idea underlying this
work is that we can control the linear context explicitly, using a modal box
c© Springer-Verlag Berlin Heidelberg 2015
M. Davis et al. (Eds.): LPAR-20 2015, LNCS 9450, pp. 402–417, 2015.
DOI: 10.1007/978-3-662-48899-7 28
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type that is inspired by that of Contextual Modal Type Theory (CMTT) [4].
Observe that [D]tm T and [G, D]tm S are both instances of this box type. The
occurrences of G and D are context variables, that are here implicitly universally
bound. The variable n is a name variable that ranges over names of linear vari-
ables and should not be confused with a variable bound by λ-abstraction. n is
bound by an explicit name abstraction operator {n} that occurs in a negative
position in the type of lam. As an example, the identity function is represented
in XLF as lam \n. box n, where box is the introduction form for the box type.

Since we want to support adequate representations, we will design XLF in
such a way that the box type is agnostic to re-orderings of its linear context.
We only consider linear contexts up to exchange. In particular, this means that
in XLF the type [m : tm S, n : tm (arrow S T)] tm T is equivalent to the
type [n : tm (arrow S T), m : tm S] tm T. Furthermore, we would like to
point out that by having exchange, we can always reorder the context in such a
way that any particular assumption that we wish to work on can be permuted
to the right of the context. See, for example, n : tm T in the declaration of
lam. Also, there is no need to explicitly interleave contexts, as a standard union
suffices. An instance of this is G, D in the app rule. The downside of having
exchange in the linear context is that it forces us to talk about names, which
renders the system more complicated.

The contributions of this paper are: A logical framework XLF with heredi-
tary substitutions (see Sect. 2) and canonical forms (see Sect. 3) that we apply
in two examples in Sect. 4: Cut elimination for a one-sided sequent calculus for
Multiplicative-Additive Linear Logic (MALL) and value soundness for the par-
allel λ-calculus.

2 The Logical Framework XLF

In this section we define the syntax and semantics of the logical framework XLF.
We assume some familiarity with the with the original logical framework LF [3],
as well as linear logic [2].

We begin our exposition with the two most important type constructors of
LF: A,B ::= Πx :B.A | a · S. Here, a refers to a type family, and S to a spine,
the list of arguments of the type family. We have chosen to disregard the type
level λ-abstraction as it is mostly of theoretical interest.

Next, we add a the box type, a modal operator that is indexed by a linear
context Δ.

A,B ::= . . . | [Δ]A Δ ::= · | Δ,n : A

In this definition, n is a name variable or simply a name. This is necessary, as
we will need to quantify over names, as we have already discussed in the intro-
duction. We can think of the context Δ as a record type, as found in functional
programming languages, for example, Haskell or SML.

Next, we will increase the expressiveness of XLF by quantifying over lin-
ear contexts. We add variables for linear contexts, and denote them by ϕ, and
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a suitable “context variable” quantifier. Let us try to define a quantifier that
resembles that of [7]. Returning to our intuition of records, we may think of this
as a form of row polymorphism.

A,B ::= . . . | Πϕ :lctx. A Δ ::= · | Δ,ϕ | Δ,n : A

If we had such a quantifier, we could make the type of app from the motivating
example from the introduction more precise. Note that for better readability, we
continue to use G and D as context variables.

Π G :lctx. Π D :lctx. [G]tm (arrow T S) → [D]tm T → [G, D]tm S

However, there is a problem. Consider, for a moment, that if both context
variables G and D are instantiated with the same context, say for example, n
: tm T, then the resulting type is ill formed, as G, D becomes n : tm T, n :
tm T, declaring n twice! Just quantifying over context variables is therefore too
naive. In order to solve this apparent problem, we introduce a new quantifier
over names, and restrict the context variable quantifiers in a clever way.

A,B ::= . . . | Πϕ :lctx(δ). A | Πn :lvar(δ). A
δ ::= ∅ | δ0 ∪ δ1 | {n} | dom(ϕ)

The purpose of δ is to denote a set of names from which a context ought to be dis-
joint. Therefore δ can be empty, the union of two of those sets, singleton names,
or even the domain of a context variable. Both, the newly introduced quantifica-
tion over names and the quantification over context variables, are restricted by δ:
One may only eliminate such a quantifier in the case that the names used in the
linear context (resp. linear variable name) is disjoint from (resp. not in) δ. Draw-
ing intuition from nominal logic, the quantifier over contexts can be thought of
as ∀ϕ : lctx. ϕ#δ → A, and similar for quantifying over names. Notice that in
XLF, there are no name constants, only name variables.

Syntactic Categories. We summarize now the syntactic categories of XLF.
Since we are really only interested in canonical terms, we will — as is now
standard — give a canonical presentation of XLF, where all well-typed terms are
forced to be β-normal and η-long. Consequently, there will be no β-redexes. The
typing system will enforce η-long forms. The syntactic categories are depicted
in Fig. 1. ϕ range over context variables, and n range over name variables. We
let a range over type family constants, c range over object level constants, and
x range over object level variables, which is common in LF.

The term language is a variant of the λ-calculus, denoted by M . In our
presentation, we use spines [11] to represent iterated applications, corresponding
to a sequence of eliminations. This means that an atomic term H, called a head,
applied to a list of arguments S, called a spine, is written H · S. We proceed
as follows. For each new type, we will add an introduction form to M and an
elimination form to S.
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Fig. 1. Syntax.

We have atomic types a ·S, with the corresponding term H ·S, i.e. a variable,
constant or linear variable applied to a spine, and we have the dependent function
space from A to B, Πx : A.B, with λx.M as its introduction form, and M :: S
as the elimination form.

The first new type for the framework is Πn : lvar(δ). A, which we can see
from the choice of syntax, is a kind of dependent function space. It ranges over
names that do not occur in δ (where δ is a set of names, described below). It is
best thought of as quantification over names. The introduction form is λn.M ,
and the elimination form is n :: S, which replaces the name in the type with n.

In a similar fashion, the new type Πϕ :lctx(δ). A, is also a dependent func-
tion space, where the domain is linear contexts with domain disjoint from δ. The
introduction form is λϕ.M , and the elimination form is Δ :: S, which replaces
the context variable with Δ.

Finally, we add the contextual modal type operator [Δ]A. The introduction
form is box(M), and it means that the term M is of type A and valid Δ (using
each variable from Δ exactly once). The elimination form is σ :: S, where σ is a
substitution for the variables in Δ. It is important to note that the term box(M)
doesn’t contain and binders, although the type would suggest this. The reason
for this is that we are presenting a canonical presentation of XLF, where the
omitted context Δ can always be inferred, as the box introduction occurs in the
checking phase.

A linear context Δ is defined to be either empty, ·, the union of two contexts,
Δ0,Δ1, a linear assumption, n : A where A is not a box type1, or a linear
context variable, ϕ. A linear substitution σ is either the empty substitution, ·,
the combination of two substitutions, σ0, σ1, a single substitution M/n, or the
identity substitution id(ϕ). Finally, the set of names δ that we discussed earlier,
is either empty set ∅, the union of two sets δ0 ∪ δ1, the singleton set of a name
{n}, or the domain of a context variable, dom(ϕ).

The definitions of Δ, σ, and δ, follow a similar pattern, which makes it easy
to define equalities modulo exchange, assuming (in the interest of brevity) that

1 This is the same restriction as in traditional CMTT for LF, since it would lead to
commuting conversions.
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for 〈X; ι; ◦〉 ∈ {〈Δ; ·; , 〉, 〈σ; ·; , 〉, 〈δ; ∅;∪〉}, the following equalities hold:

X = X ◦ ι X0 ◦ X1 = X1 ◦ X0 (X0 ◦ X1) ◦ X2 = X0 ◦ (X1 ◦ X2)

Furthermore, we assume the that δ ∪ δ = δ, which guarantees that δ always
denotes a set.

Fig. 2. Judgments related to names.

Typing Rules. Next we turn to the static semantics of XLF. The typing judg-
ments are defined relative to a signature (which contains the declaration of all
type level and object level constants), and an intuitionistic, ordered LF context:

Σ::= · | Σ, a : K | Σ, c : A 
 Σ sig

Γ ::= · | Γ, x : A | Γ, ϕ : lctx(δ) | Γ, n : lvar(δ) 
 Γ ctx

The two judgments to the right check that the signature and context, respec-
tively, are well formed. In the interest of space, we omit the defining rules; they
can be inferred from the typing rules that we give below. We implicitly assume
that both Σ and Γ are always valid, which means that we will omit 
 Σ sig
and 
 Γ sig from XLF’s axioms that we introduce next.

Types and Kinds. The complete set of typing rules for types and kinds is given
in Fig. 2. But first, we introduce some auxiliary judgments. Names are always
variables, they must be bound in Γ . This is expressed by the judgment Γ 

n nom(δ). This judgment will also check that n does not occur in δ. For a set
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of names to be well formed, it simply needs to check that all the variables are
bound, which is captured by the judgment Γ 
 δ nom-set.

The judgment Γ 
 δ0 ⊥ δ1 captures the fact that the sets δ0 and δ1 are
disjoint. The conclusion is symmetric, i.e. if Γ 
 δ0 ⊥ δ1, then Γ 
 δ1 ⊥ δ0. The
axiom rules state that the empty set is disjoint from any set, and that a set
assumed to be disjoint from a set δ, is also disjoint from subsets of δ. Finally,
union preserves disjointness. Note that this judgment does not provide proof
terms and can therefore be regarded as external to the definition of XLF.

Next, we discuss the individual judgments depicted in Fig. 3 in turn, com-
menting only on the most important rules.

Fig. 3. Type checking kinds and types.
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The judgment Γ 
 A type checks that a type is well formed. The most
interesting rule is the formation rule for the box type requiring that the type A
must not depend on any linear assumptions (by requiring the linear context to
be empty). Furthermore, note that this rule forces Δ to be well formed, but it
need not be disjoint from any other names.

The judgment Γ 
 S � K type checks the well-formedness of the elimina-
tions described by the spine S. When applied to any type family of kind K the
result must be of kind type. We remark that the two new rules for quantifying
names and contexts are straightforward.

The judgment Γ 
 K kind checks that a kind is well formed, and should not
need any explanation, given the description of Γ 
 A type.

The judgment for checking whether a linear context Δ is well-formed and
disjoint from δ is Γ 
 Δ lctx(δ). It is used, for example, when eliminating a
type Πϕ :lctx(δ). A. Checking that the types in the context are well formed is
straightforward again, but to check whether the domain is well-defined requires
some more work. Consider the context Δ = n0 : A,n1 : B in a context n0 :
lvar(∅), n1 : lvar(∅). Even though no name occurs twice in Δ, it is not well
formed, since n0 and n1 may stand for the same name. On the other hand, in
the context n0 : lvar(∅), n1 : lvar({n0}) the context Δ is well-defined, since it
is assumed that n1 is different from n0. In general, to check that a context Δ is
well-formed it is sufficient to show Γ 
 Δ lctx(∅).

Terms, Spines, and Substitutions. The typing rules on the type and kind level
are only defined relative to the LF context Γ , but not a linear context Δ. This is
because neither types nor kinds may depend on linear variables, as it is standard
practice in linear logical frameworks, such as LLF [5], for example. In contrast,
terms may depend on linear variables, which we will discuss next. The rules
defining the judgments for typing terms, spines, and substitutions are given in
Fig. 4. Note, that all these judgments are defined relative to a context Δ in
addition to Γ .

The judgment for type checking a term is Γ ;Δ 
 M : A obj. The rules for
the three quantifiers for names, contexts, and terms are straightforward. Since
we assume the type that we are checking against to be well-formed, we can just
add the new assumption to the LF context, and continue to check the body.

The introduction form for the box type is box(M). As discussed earlier, we
omit the Δ from the proof term. For a non-canonical system, one would need to
make the Δ an explicit binding occurrence and replace box(M) by box(Δ;M).
Note that the linear context in the conclusion of the box introduction is empty,
resembling the standard box introduction rule for modal logic.

To check that a spine application is well formed is expressed by the judgments
Γ ;Δ 
 H : A head, which checks that H has type A in either Σ, Γ , or Δ (and of
course makes sure that Δ is used linearly), and the judgment Γ ;Δ 
 S � A : B,
which applies the elimination forms in S to A, which results in B. The elimina-
tion rules for the quantifiers over names, contexts, and spines are straightforward.
In the case of the box type, the spine must provide substitution as argument.
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Both substitution, and remaining spine are may consume different sets of vari-
ables, which explains the use of context splitting in the conclusion of the rule.

A substitution σ translates one linear context into another, captured by the
judgment Γ ;Δ0 
 σ : Δ1 sub. We give the rules for all four constructors of
substitutions: The empty substitution satisfies the empty context; to combine to
substitutions requires us to distribute the linear resources accordingly. Contexts
that consist only of one context variable can only be instantiated by the identity
substitution, which must have the same context variable in its codomain, because
of linearity. XLF provides three kinds of substitutions: substitutions for names,
contexts, and terms.

Fig. 4. Type checking canonical objects.
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Substitution of Names. We write {n/n′}X for the substitution of a name n
for a name n′ in the term X. The substitution is naive, capture avoiding, and
terminating.

Substitution of Contexts. We write {Δ/ϕ}X for the substitution of a context Δ
for a context variable ϕ in X. Substitutions for contexts variables are defined in
a straightforward, capture-avoiding way, with two notable exceptions (note the
different fonts),

{Δ/ϕ}(id(ϕ′)) = id({Δ/ϕ}ϕ′) {Δ/ϕ}(dom(ϕ′)) = dom({Δ/ϕ}ϕ′)

where the functions id(Δ) [4] and dom(Δ) constructs the identity substitution
and domain. They are defined as:

dom(·) = ∅
dom(Δ0,Δ1) = dom(Δ0) ∪ dom(Δ1)

dom(n : A) = {n}
dom(ϕ) = dom(ϕ)

id(·) = ·
id(Δ0,Δ1) = id(Δ0), id(Δ1)

id(n : A) = η(n : A)/n
id(ϕ) = id(ϕ)

Substitution of Terms and Application of Substitutions. We present here the
canonical version of XLF, which means that we need to define a hereditary
substitutions for terms, to remain within the canonical fragment. Otherwise,
substitution application may create redexes that are not part of any of our
syntactic categories. Since we eventually wish to argue that any application of
such a hereditary substitution is terminating, we define erased types τ ::= • |
τ → τ | [θ]τ and erased contexts θ ::= · | θ, θ | • | n : τ . Type erasure is defined
as follows:

(a · S)− = •
(Πx :A.B)− = A− → B−

(Πϕ :lctx(δ). A)− = • → A−

(Πn :lvar(δ). A)− = • → A−

([Δ]A)− = [Δ−]A−

(·)− = ·
(Δ0,Δ1)− = Δ−

0 ,Δ−
1

(ϕ)− = •
(n : A)− = n : A−

In XLF, substitution application is defined similarly to a standard hereditary
substitution application on terms and spines. When the substitution reaches an
application of a head to a spine, it will check if the head will be substituted, and
if so, it will start reducing the head until it is atomic again. We need to define
both substitution application to terms and substitutions simultaneously, since
both are mutually recursive. As usual for hereditary substitution, the erased
type will either decrease, or remain unchanged and the term decreases (this is
easy to see; the only difficult case is if we transition from substitution to head
reduction, but after one reduction step, we can see that it really holds).

{M/x}τ (x · S) = M@τ{M/x}τS
{M/x}τ (H · S) = H · {M/x}τS

{M/n, σ}n:τ,θ(n · S) = M@τ{σ}θS

{σ}θ(H · S) = H · {σ}θS

M@•ε = M
(λx.M)@τ0→τ1(N ::S) = ({N/x}τ0)@τ1S
(λϕ.M)@•→τ (Δ ::S) = ({Δ/ϕ}M)@τS
(λn.M)@•→τ (n′ ::S) = ({n′/n}M)@τS

box(M)@[θ]τ (σ ::S) = ({σ}θM)@τS
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3 Meta Theory

XLF has canonical forms and conservatively extends LF. In the previous section
we introduced hereditary substitutions for name, context, term, and linear sub-
stitutions variables. Here we show that when we substitute one entity for another
that all types will be preserved. In the interest of brevity, let J be an intuition-
istic judgment and L a linear judgment. All the theorems follow from standard
induction proofs.

Theorem 1 (Substitution, Names). Assume Γ0 
 n0 nom(δ), then:

1. If Γ0, n1 : lvar(δ), Γ1 
 J , then Γ0, {n0/n1}Γ1 
 {n0/n1}J ; and
2. If Γ0, n1 : lvar(δ), Γ1;Δ 
 L, then Γ0, {n0/n1}Γ1; {n0/n1}Δ 
 {n0/n1}L.
Theorem 2 (Substitution, Context). Assume Γ0 
 Δ lctx(δ), then:

1. If Γ0, ϕ : lvar(δ), Γ1 
 J , then Γ0, {Δ/ϕ}Γ1 
 {Δ/ϕ}J ; and
2. If Γ0, ϕ : lvar(δ), Γ1;Δ′ 
 L, then Γ0, {Δ/ϕ}Γ1; {Δ/ϕ}Δ′ 
 {Δ/ϕ}L.
Theorem 3 (Substitution, Term). Assume Γ0; · 
 M : A obj, then:

1. If Γ0, x : A,Γ1 
 J , then Γ0, {M/x}A−
Γ1 
 {M/x}A−J ; and

2. If Γ0, x : A,Γ1;Δ 
 L, then Γ0, {M/x}A−
Γ1; {M/x}A−

Δ 
 {M/x}A−L.
Theorem 4 (Substitution, Linear Substitution). Assume Γ ;Δ0 
 σ : Δ1

sub, and Γ ;Δ1,Δ 
 L, then Γ ;Δ0,Δ 
 {σ}Δ−
1 L.

It follows implicitly that XLF satisfies the weak normalization property,
which means, that there exists a particular reduction order to reduce XLF terms
to canonical form. Conversely, we have shown that is that for each type A inhab-
ited by M , the form of M is uniquely determined.

Theorem 5 (Inversion). We have:

1. If Γ ;Δ 
 M : a · S obj, then M = H · S for some H and S.
2. If Γ ;Δ 
 M : Πx :A.B obj, then M = λx.M ′ for some x and M ′.
3. If Γ ;Δ 
 M : Πϕ :lctx(δ). A obj, then M = λϕ.M ′ for some ϕ and M ′.
4. If Γ ;Δ 
 M : Πn :lvar(δ). A obj, then M = λn.M ′ for some n and M ′.
5. If Γ ;Δ 
 M : [Δ′]A obj, then M = box(M ′) for some M ′.

4 Examples

In this section, we give some illustrative examples, on how to use XLF to encode
languages, meta-theorems, and their proofs. As we assume that the reader may
be familiar with Twelf, we will employ the same syntactic conventions. For exam-
ple, we write {x : A} B for the dependent type Πx :A.B, and we will use the
same syntax for the other dependent types for names and contexts. We will
abbreviate this type with {x} B if the type A is inferable. Furthermore, in order
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not to get over-whelmed by syntax, all uppercase variables are assumed implic-
itly bound and their type can always be inferred. We only support the standard
notation for application that will be internally translated into spine notation as
follows: (H M1 M2) stands for H · (M1 :: M2 :: nil).

We want to remark, even though neither a computational interpretation of LF
signatures as logic programs nor and algorithm for determining if such signatures
correspond to real meta-theorems was given in this paper, it is still meaningful
to represent meta-theorems as relations, and logic programs as their proofs. The
totality proof has to be carried out on paper.

4.1 Multiplicative Additive Linear Logic

Our first example is classical Multiplicative-Additive Linear Logic (MALL) [2].
We give an adequate representation of MALL in XLF and encode the meta-proof
that cut is admissible. The formulas, F , G, of MALL are atoms and negation of
atoms (a and a⊥), binary connectives “tensor” (⊗), “par” (�), “plus” (⊕), and
“and” (&), with the units 1, ⊥, 0, 1, and � respectively. An adequate encoding
can be defined as follows. We declare a type for atoms: atom:type and a type
prop:type for propositions. With a slight abuse of notation we declare multiple
constants (separated by commas) of the same type.

at, ~at : atom -> prop.
tensor, plus, par, with : prop -> prop -> prop.
one, zero, bot, top : prop.

We work with a one-sided sequent calculus, defined by the judgment 

F0, . . . , Fn. MALL does neither admit weakening nor contraction. In XLF, we
represent this judgment as [h0 : conc F0, ..., h1 : conc Fn]pf, where
conc : prop -> type and pf : type. Next, we give a selection of the MALL
rules together with their representations.

These rules illustrate important aspects of the representation. The first rule
shows that we can force the context to have exactly two assumptions. The second
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rule requires that we split a context. Recall, that there is no need to merge
contexts and that we can always assume the principal formula to be rightmost.
The third rule illustrates how to duplicate a context. Finally, the fourth rule
shows how to quantify over an arbitrary context.

The way the final rule is stated, it is not necessary adequate unless we are
sure what form G has. This could be achieved by extending XLF with regular
worlds, which would allow us to express that G must be in the world (∃N :
prop.conc N)∗. Proposing such an extension, however, is beyond the scope of
this paper.

We now show that cut is an admissible rule. The formulation of cut in MALL
and the corresponding lemma is defined as,

where F⊥ is the dual formula of F . Duality can be easily captured as a binary
relation (and hence an XLF type family) relating two MALL formulas. We omit-
ted some cases, because of space limitations.

dual : prop -> prop -> type.
dual/at : dual (at A) (~at A). dual/~at : dual (~at A) (at A).
dual/tensor: dual F G -> dual H R -> dual (tensor F H) (par G R).

We can now start inhabiting the cut family with constants, where each con-
stant represents one case of the proof. There are a total of 26 cases and each case
takes about 2–3 lines (omitting several implicit quantifiers). Since the cut-rule
is symmetric, each case appears twice. Here are a few selected cases.

- : cut H dual/at (pf/ax H H’) D box(D {id(Delta), H’/H}).
- : cut H (dual/tensor P0 P1) (pf/tensor H D0 D1) (pf/par H E) Res

<- ({h’} cut H P0 D0 (E H h’) (R h’))
<- cut H P1 D1 (R H) Res.

- : cut H P (pf/with H D0 D1) E (pf/with H R0 R1)
<- cut H P D0 E R0
<- cut H P D1 E R1.

The first is the axiom case with an atomic cut-formula. The second declaration
depicts the an essential case with tensor as a cut-formula. And finally, the third
declaration describes a commuting conversion.

On paper, we proved that under a suitable logic programming interpretation
of XLF that the type family cut is total, since either the evidence for duality
(or equivalently, the cut formula) decreases, or, it remain unchanged and one of
the derivations decrease and the other remains unchanged.
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4.2 Parallel λ-calculus

The final example is a parallel operational semantics for the λ-calculus. In order
not to clutter the presentation too much, we present the calculus in its untyped
form. Types can be easily added, for example through extrinsic typing. Proof
terms are formed from variables, λ-abstractions, and application. When we eval-
uate, we always evaluate a closed term. To express the operational semantics,
we use destinations that denote a location where an expression is executed, and
from where the result can be recovered. We define the following judgments:

eval (e1 e2) @ d

∃d1.∃d2.eval e1 @ d1 ⊗ eval e2 @ d2 ⊗ fr d d1 d2
evapp

eval (λx.e) @ d

ret (λx.e) @ d
evlam

ret (λx.e) @ d1 ⊗ ret v @ d2 ⊗ fr d d1 d2
eval [v/x]e @ d

evframe

The encoding of these rules in XLF is as follows where we declare # : type as the
type of valid traces. We represent judgements as types, for example, “eval e@ d”
is represented by ev E D (where E and D are the respective representations of e
and v).

evapp : {D} {h} {E1:exp} {E2:exp} {d:dest}
({d1 d2:dest} {h0 h1}

[D, h0: ev E1 d1, h1: ev E2 d2, h: fr d d1 d2] #)
-> [D, h: ev (app E1 E2) d] #.

evlam : {D} {h} {E:exp -> exp} {d:dest}
[D, h : ret (lam \x.E x) d] #
-> [D, h : ev (lam \x. E x) d] #.

evframe: {D} {h h0 h1} {E:exp -> exp} {V: exp} {d1 d2 d:dest}
[D, h: ev (E V) d] # ->
[D, h0: ret (lam \x. E x) d1, h1: ret V d2, h: fr d d1 d2] #.

Note, that compared to the rules above, their representation appears to be up-
side-down. It is easy to see that the representation is adequate.

Here is an example for a forward chaining evaluation of (λx.x) (λx.x) using
the rules, which we express using multi-set rewriting notation, disregarding the
declaration of new destinations.

eval (λx.x) (λx.x) @ d given
→ eval λx.x@ d1, eval λx.x@ d2, fr d d1 d2 by evapp
→ ret λx.x@ d1, eval λx.x@ d2, fr d d1 d2 by evlam
→ ret λx.x@ d1, ret λx.x@ d2, fr d d1 d2 by evlam
→ eval λx.x@ d by evframe
→ ret λx.x@ d by evlam

When we express this derivation formally, assuming that the context provides
a destination d : dest, we obtain
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\n.\u. evapp (\d1. \d2. (evlam (evlam (evframe (evlam u))))) :
{n}[n:ret (lam \x.x) d]# -> [n:ev (app (lam \x.x) (lam \x.x)) d]#

Next, we look at a simple meta-theorem that we wish to establish: Any
expression that is returned from the evaluation is a λ-abstraction.

We begin the discussion with defining an invariant for the linear contexts.
This invariant simply states that each return declaration provides a value. In
XLF, this invariant is represented as inv:type, and the different cases as con-
structors.

inv/empty : [] inv.
inv/ret : {d:dest} [D] inv -> [D, H: ret (lam \x. E x) d] inv.
inv/eval : {d:dest} [D] inv -> [D, H: ev E d] inv.
inv/frame : {d}{d1}{d2} [D] inv -> [D, H: fr d d1 d2] inv.

Using this invariant, we can now formally state the value soundness theorem: If
e evaluates to v (at destination d), then v is a value (also at destination d).

vs : {D0} {D1} ([D1] # -> [D0] #) -> [D0] inv -> [D1] inv -> type.

The two first arguments to vs should be read as input, and the third as output.
To apply this theorem, simply instantiate D1 to n:ret v d and D0 to n:ev e d
and provide an encoding of the trace and a proof that the invariant is satisfied.

To prove the theorem, we will need to prove three lemmas to establish that
if the invariant holds for a context, it also holds for any sub-context. We only
state the lemma in the case of ev assumptions, noting that the formulation and
proofs of the other cases of fr and ret are similar.

inv-drop-ev : {d} {D} {H} [D, H : ev E d]inv -> [D]inv -> type.

Here, the first three arguments are inputs, while the last is an output. The proof
goes by induction on the third argument (i.e. the proof of the invariant).

Returning to our main theorem, it is done by induction over the argument
[D1]# -> [D0]# and consists of four cases. We give two representative cases.

vs/base : vs D D (\h. h) I I.
vs/evlam : {d:dest}

vs (D0, H : ev (lam E) d) D1 (\t. evlam (TR t)) I0 I1
<- inv-drop-ev d D0 H I0 I0’
<- vs (D0, H : re (lam E) d) D1 TR (inv/ret I0’) I1.

The vs/base case is straightforward. vs/evlam covers the case when we apply
the theorem to an evaluation ending in evlam. We have that invariant I0 holds
for the context D0, H : ev (lam E) D1. Before making the inductive call, we
use lemma inv-drop-ev to establish the invariant I0’ for the sub-context D0.
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5 Conclusion and Further Work

In this paper, we develop the logical framework XLF, a conservative extension
of LF with explicit linear contexts. We prove that XLF has all the desired meta-
properties, and we give several examples that show how such a system can be
used to represent and reason about linear systems. In future work, we plan to
develop a proof assistant based on XLF.

Extending LF with linearity is not new. The Linear Logical Framework
(LLF) [5] and its extension the Concurrent Logical Framework (CLF) [12] pro-
vide linear types. While they have been successfully used as representation lan-
guages, it has been difficult to design meta-logics for these frameworks. We
hope to have alleviated this problem with the design of XLF. We leave a more
detailed analysis to future work. XLF differs from LLF in that LLF works with
one implicit ambient linear context whereas XLF supports explicit context quan-
tification. In the case of CLF, it is worth noting that is also supports true concur-
rency. CLF provides a concurrency monad where terms are considered equivalent
modulo interleavings. It appears that XLF can also be used to represent concur-
rent systems, however, a detailed study of concurrent equality in XLF is left to
future work.

Another direction of research is the Hybrid Logical Framework (HLF) [11],
which can represent linear systems, interesting properties of such systems, and
prove these properties, all implemented as an extension of Twelf. Different from
XLF, HLF is built on hybrid logic, not linear logic, and the linear connectives
are defined in terms of hybrid logic.

While our modal type operator is inspired by that of traditional CMTT, it
differs in that the context no longer needs to be ordered. Instead, we consider lin-
ear contexts up to exchange using names. In traditional CMTT, one cannot have
exchange for contexts occurring in types, since the introduction form for box-
types is a binder, and uses the position in the context to associate each variable
in the context with the local variable used in the term. Further research about
the connections to other systems with names and nominals, such as Abella [1]
and Nominal Logic [9] is needed.
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back. This work is funded by the DemTech grant 10-092309 of the Danish Council for
Strategic Research on Democratic Technologies.
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Abstract. Among preprocessing techniques for quantified Boolean for-
mula (QBF) solving, quantified blocked clause elimination (QBCE) has
been found to be extremely effective. We investigate the power of dynam-
ically applying QBCE in search-based QBF solving with clause and cube
learning (QCDCL). This dynamic application of QBCE is in sharp con-
trast to its typical use as a mere preprocessing technique. In our dynamic
approach, QBCE is applied eagerly to the formula interpreted under the
assignments that have been enumerated in QCDCL. The tight integra-
tion of QBCE in QCDCL results in a variant of cube learning which is
exponentially stronger than the traditional method. We implemented our
approach in the QBF solver DepQBF and ran experiments on instances
from the QBF Gallery 2014. On application benchmarks, QCDCL with
dynamic QBCE substantially outperforms traditional QCDCL. More-
over, our approach is compatible with incremental solving and can be
combined with preprocessing techniques other than QBCE.

1 Introduction

Quantified Boolean formulas (QBF) extend propositional logic with universal
and existential quantifiers over propositional variables. QBFs potentially allow
for exponentially more succinct encodings compared to plain propositional logic
and provide a natural representation of applications which can be seen as two-
player games [22] as found, e.g., in program synthesis or formal verification [2].

A typical representation of QBFs is prenex conjunctive normal form (PCNF),
consisting of a quantifier prefix and a propositional CNF. In the game-based
QBF semantics a universal and an existential player play against each other.
The players assign truth values to the respective variables in the order enforced
by the quantifier prefix. The universal player aims to falsify the formula while
the existential player aims to satisfy it. PCNF allows to detect more easily when

Supported by the Austrian Science Fund (FWF) under grants S11408-N23 and
S11409-N23.

c© Springer-Verlag Berlin Heidelberg 2015
M. Davis et al. (Eds.): LPAR-20 2015, LNCS 9450, pp. 418–433, 2015.
DOI: 10.1007/978-3-662-48899-7 29



Enhancing Search-Based QBF Solving 419

the universal player has won. Once the literals of one clause are all set to false,
a conflict is detected and the universal player wins the current round of the
game. In contrast, all clauses must be satisfied before we can detect a win for
the existential player. This bias is reflected in the sizes of clauses (small) and
cubes (large) derived by search-based QBF solvers with clause and cube learning
(QCDCL) [8,16,28].

While the uniformity of a CNF representation simplifies reasoning [6], it
also blurs information essential for solving [1]. As a remedy, structural solvers
directly operate on non-CNF formulas [5,9,15]. Dual propagation approaches
combine structural and CNF-based reasoning and consider both a CNF and a
DNF representation at the same time. This can be done explicitly so that a DNF
and a CNF encoding of a problem are solved independently in parallel [25] or
it can be directly integrated in a solver [10,15,27]. However, these approaches
require a structural formulation of the problem that is often not available.

Another option is preprocessing, e.g., [3,7,11,21,26] which uses alternative
techniques to recover structural information from a CNF φ. The goal is to rewrite
φ into a new CNF that is easier to solve. For most QBF solvers preprocessing is
vital and has been integrated in most QBF-based solving tool chains. Modern
SAT solvers go even further and interleave preprocessing and standard search.
In this approach called inprocessing [13], preprocessing is applied in bounded
fashion to the formula simplified by unit clauses derived during the search. Until
this work inprocessing had not found its way into modern QBF solvers.

The QBF solver StruQS heuristically combines search-based solving and
variable elimination [17]. The latter is a complete decision procedure poten-
tially exponential in space. Its bounded variant is a powerful preprocessing
technique [11]. Preprocessing, however, can only recover structural information
before search. Structural solvers, on the other hand, can exploit such informa-
tion during search. Hence in this work we investigate a tighter integration of
blocked clause elimination (QBCE) [11] in QCDCL-based QBF solvers. While
QBCE originally is a preprocessing technique applied to QBFs in CNF, here we
apply it dynamically during the search process of QCDCL. This way, we leverage
the power of QBCE as a technique to simulate structural reasoning on CNFs
in QCDCL. In our dynamic approach, QBCE is applied to the CNF interpreted
under the assignment that has currently been enumerated in QCDCL. We show
that this tight integration of QBCE in QCDCL results in cube learning that is
exponentially stronger than its traditional variant. Dynamic QBCE also influ-
ences clause learning in that clauses identified as redundant by QBCE are not
used to produce learned clauses in the current search context. In addition to
dynamic QBCE we also investigate inprocessing in a QBF solver using QBCE.

We implemented inprocessing based on QBCE and dynamic QBCE in the
QCDCL-based QBF solver DepQBF. On application benchmarks from the QBF
Gallery 2014, QCDCL with dynamic QBCE substantially outperforms tradi-
tional QCDCL in terms of solved instances, run time and backtracks. We also
observed a performance gain with inprocessing. We report on the details of our
implementation of dynamic QBCE. Since QBCE is applied frequently during the
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search in QCDCL, sophisticated data structures are necessary to limit the com-
putational costs. Dynamic QBCE is compatible with incremental solving and is
extensible in that it can be combined with preprocessing techniques other than
QBCE.

2 Preliminaries

We consider QBFs in prenex conjunctive normal form (PCNF). A QBF Π.ψ
in PCNF consists of a prefix Π and a matrix ψ. The prefix Π has the form
Q1X1Q2X2 . . . QnXn with disjoint variable sets Xi and Qi ∈ {∀,∃}. Further-
more, Qi �= Qi+1 and var(Π) = X1 ∪ . . . ∪ Xn. We consider only closed QBFs:
the matrix ψ of a QBF Π.ψ contains only variables that occur in Π. The matrix
ψ is a propositional formula in conjunctive normal form, i.e., a conjunction of
clauses. A clause (cube) is a disjunction (conjunction) of literals. A literal is
either a variable x or a negated variable x̄. The negation of a literal l is denoted
by l̄. If convenient, we consider clauses and cubes as sets of literals. The variable
of a literal is denoted by var(l) where var(l) = x if l = x or l = x̄. The quantifier
Q(Π, l) of a literal l is Qi if var(l) ∈ Xi. Let Q(Π, l) = Qi and Q(Π, k) = Qj ,
then l ≤Π k iff i ≤ j.

A set of literals A = {l1, . . . , ln} is called assignment of the QBF Π.ψ if
{var(li) | li ∈ A} ⊆ var(Π) and for any li, lj ∈ A with li �= lj , var(li) �= var(lj).
By φ[A] we denote the QBF φ under assignment A, i.e., for l ∈ A, all clauses
containing l are removed, all occurrences of l̄ are deleted, and var(l) is removed
from the prefix. The empty matrix is satisfiable, the matrix containing the empty
clause is unsatisfiable. If the matrix of φ[A] is empty, then A is a satisfying
assignment (written as φ[A] = T). If the matrix of φ[A] contains the empty
clause, then A is a falsifying assignment (written as φ[A] = F). For a cube
C = (l1 ∧ . . . ∧ ln), the set {l1, . . . , ln} is the assignment defined by C. We
write φ[C] to denote φ under the assignment defined by C. A closed QBF Π.ψ
with Q1 = ∃ (resp. Q1 = ∀) is satisfiable iff Π.ψ[{x}] or (resp. and) Π.ψ[{x̄}]
is satisfiable where x ∈ X1. Two PCNFs φ and φ′ are satisfiability-equivalent,
written as φ ≡sat φ′, if and only if φ is satisfiable whenever φ′ is satisfiable.

We introduce the Q-resolution calculus as a proof system which underlies
search-based QBF solving with clause and cube learning [8,14,16,28].

Definition 1 (Q-Resolution Calculus). Let φ = Π.ψ be a PCNF. The rules
of the Q-resolution calculus (QRES) are as follows.

C1 ∪ {p} C2 ∪ {p̄}
C1 ∪ C2

if {x, x̄} �⊆ (C1 ∪ C2), p̄ �∈ C1, p �∈ C2

and either
(1) C1,C2 are clauses and Q(Π, p) = ∃ or
(2) C1,C2 are cubes and Q(Π, p) = ∀

(res)

C ∪ {l}
C

if {x, x̄} �⊆ (C ∪ {l}) and either
(1) C is a clause, Q(Π, l) = ∀,

l′ <Π l for all l′ ∈ C with Q(Π, l′) = ∃ or
(2) C is a cube, Q(Π, l) = ∃,

l′ <Π l for all l′ ∈ C with Q(Π, l′) = ∀

(red)
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C

if {x, x̄} �⊆ C and either
(1) C is a clause and C ∈ ψ or
(2) C is a cube and φ[C] = ∅

(init)

Note that φ[C] = ∅ in case (2) of rule init means that the matrix of φ[C] is
empty. We write Π.ψ � C to denote that a clause or cube C is derivable from
the PCNF Π.ψ by rules init, red, and res. In a derivation of a clause (cube), the
rules init, red, and res operate only on clauses (cubes). Q-resolution of clauses [14]
is a generalization of propositional resolution, which is given by rules init and res
when applied to clauses. Q-resolution of cubes was introduced in the context of
solving satisfiable PCNFs [8,16,28]. Applications of rule red to clauses (cubes)
are called universal (existential) reduction. We write UR(C) (ER(C)) to denote
the clause (cube) resulting from universal (existential) reduction of C. The PCNF
UR(φ) is obtained by universal reduction of all clauses in the PCNF φ.

QRES is sound and refutationally complete for PCNFs [8,14,16,28]. The
empty clause (cube) C = ∅ is derivable from a PCNF φ if and only if φ is
unsatisfiable (satisfiable). A derivation of the empty clause (cube) from φ is a
clause (cube) resolution proof of φ. The clausal variant of rule res is the basis
for the definition of blocked clauses which is as follows.

Definition 2 (Blocked Clause). A literal l with Q(Π, l) = ∃ in a clause C ∈ ψ
of a QBF φ = Π.ψ is a blocking literal if for all C ′ ∈ ψ with l̄ ∈ C ′, a literal
l′ with l′ ≤Π l exists such that l′, l̄′ ∈ C ∪ (C ′ \ {l̄}). A clause is blocked if it
contains a blocking literal.

Note that blocking literal l in Definition 2 must be existential whereas literals l′, l̄′

can be existential or universal. Blocked clause elimination (QBCE) [11] removes
blocked clauses from a PCNF φ until completion and takes time polynomial in
the size of φ. The resulting PCNF is satisfiability-equivalent to φ.

3 Search-Based QBF Solving with Learning

In order to present our approach of dynamically applying QBCE in search-based
QBF solvers, which results in a powerful variant of cube learning, we review the
basic concepts of search-based QBF solving with learning.

Search-based QBF solving is based on a QBF-specific variant of the DPLL
algorithm [4]. Similar to conflict-driven clause learning (CDCL) in SAT solv-
ing [23], search-based QBF solving has been equipped with clause and cube
learning [8,16,28], called QCDCL. We briefly describe QCDCL based on the
pseudo code shown in Fig. 1.

In QCDCL, assignments to the variables in a given input PCNF φ = Π.ψ
are successively generated. Initially, the current assignment A is empty. During
a run, φ is interpreted under A and φ[A] is simplified in a QBF-specific variant
of Boolean constraint propagation (QBCP) in function qbcp. Additionally, in
QBCP universal reduction according to rule red is applied to all clauses C ∈ φ[A],
resulting in the PCNF UR(φ[A]) with potentially shortened clauses UR(C) ⊆ C.
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Fig. 1. Pseudo code of QCDCL.

Assignment A is extended based on
the detection of unit and pure literals in
UR(φ[A]). A clause UR(C[A]) = (l), with
UR(C[A]) ∈ UR(φ[A]) containing the sin-
gle literal l and Q(Π, l) = ∃, is unit in
UR(φ[A]). Given such a unit clause, A is
extended to A := A∪{l} and C is recorded
as the antecedent clause of the assignment
{l}. A literal l is pure in UR(φ[A]) if l̄
does not occur in UR(φ[A]). Given a pure
literal l, A is extended to A := A ∪ {l}
if Q(Π, l) = ∃ and to A := A ∪ {l̄}
if Q(Π, l) = ∀. Simplifications of φ[A]
and unit and pure literal detection are
always applied until completion in QBCP.
Assignments li in A = {l1, . . . , ln} are
ordered chronologically.

If φ[A] �= F and φ[A] �= T, then the
satisfiability of φ[A] is still undetermined
(R == UNDET). Some variable from the

leftmost quantifier block of φ[A] is selected and tentatively assigned a value,
thus extending A. Making tentative assignments is also called decision making.

If φ[A] = F then φ[A] contains a clause C so that UR(C[A]) = ∅ is empty. If
φ[A] = T, then φ[A] reduces to the empty matrix under A. In either case, the
satisfiability of φ[A] has been determined (R == UNSAT or R == SAT). Assign-
ment A is analyzed based on whether φ[A] = F or φ[A] = T. A subset B ⊆ A
of assignment A is identified and retracted during backtracking. The run pro-
ceeds with the new, current assignment A obtained by backtracking. QCDCL
generates assignments which have the following properties.

Definition 3 (QCDCL Assignment). Given a QBF φ = Π.ψ. Let assign-
ment A = A′ ∪ A′′ where A′ are variables assigned in decision making and A′′

are variables assigned by unit/pure literal detection. A is a QCDCL assignment if
(1) for a maximal l ∈ A′ with ∀l′ ∈ A′ : l′ ≤Π l it holds that ∀x <Π l : x ∈ var(A)
and (2) all l ∈ A′′ are unit/pure in φ[A′] after applying QBCP until completion.

Clause and cube learning is carried out in function analyze. If φ[A] = F then
by rules init, red, and res the clause C where UR(C[A]) = ∅ is resolved with
antecedent clauses to derive a learned clause C ′.

If φ[A] = T, then a new learned cube is derived similarly to clause learning.
However, rule init is special for cube learning in that cubes to be resolved later
must be first derived from satisfying assignments. In contrast to that, clauses
present in the input PCNF φ can be simply selected by rule init. QBCP is also
applied to learned clauses and cubes. Related to unit clauses, a cube ER(C[A]) =
(l) containing the single literal l with Q(Π, l) = ∀ is unit under A and existential
reduction. Existential reduction is also applied in QBCP. Given a unit cube
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ER(C[A]) = (l), A is extended to A := A∪{l̄} and C is recorded as the antecedent
cube of the assignment {l̄}. In cube learning, resolution by rule res is applied to
cubes derived by rule init and to antecedent cubes.

Learned clauses (cubes) C ′ are constructed so that UR(C ′[A]) (ER(C ′[A]))
is unit after backtracking. QCDCL terminates if the empty learned clause (cube)
C ′ = ∅ is derived (B == INVALID). The derivations of learned clauses (cubes)
up to C ′ = ∅ are a clause (cube) resolution proof of φ. The application of the
rules of QRES is driven by the assignments generated in QCDCL.

In practice, the set θ of learned clauses is added conjunctively to φ = Π.ψ and
we have φ ≡sat Π.(ψ∧∧

C∈θ C). The set γ of learned cubes is added disjunctively
to φ = Π.ψ and we have φ ≡sat Π.(ψ ∨ (

∨
C∈γ C)). These equivalence are due to

the soundness of QRES. In general, a formula φ′ = Π ′.ψ′ with ψ′ =
∨

C∈γ C in
prenex disjunctive normal form can be derived by rule init so that φ ≡sat φ′ [8].

Preprocessing [3,7,11,21,26] aims at transforming the input PCNF φ into a
simplified PCNF φ′ with φ ≡sat φ′ so that φ′ is solved faster than φ. In QCDCL,
preprocessing can be applied once to φ before entering the while-loop (Fig. 1).

Inprocessing [13] combines preprocessing techniques and formula simplifica-
tion under assignments which were fixed during a run of QCDCL. An assignment
to a variable x is fixed if a unit clause (cube) C = (l) with var(l) = x is learned.
Inprocessing can be applied after QBCP each time a unit clause (cube) is learned.

4 Improved Cube Learning by Dynamic QBCE

We take a closer look at cube learning by QRES. It is well known that in the worst
case an exponential number of cubes must be derived by rule init even on PCNFs
with a simple syntactic structure. The PCNFs in the following example are hard
for QCDCL based on QRES. We develop a generalization of QRES which allows
to solve these PCNFs easily by tightly integrating QBCE in QCDCL.

Example 1. Let Φ(n) = ∃z1,z
′
1∀u1∃y1, . . . ,∃zn,z′

n∀un∃yn.
∧n

i=1

[C0(i) ∧ C1(i) ∧
C2(i)

]
, where C0(i) = (ui ∨ ȳi) ∧ (ūi ∨ yi), C1(i) = (zi ∨ ui ∨ ȳi) ∧ (z′

i ∨ ūi ∨ yi),
and C2(i) = (z̄i ∨ ūi ∨ ȳi) ∧ (z̄′

i ∨ ui ∨ yi) be a family of satisfiable PCNFs.
Clauses in C0(i) encode the equivalence of ui and yi. In general, PCNFs

of the form Ψ(n) = ∀u1∃y1, . . . ,∀un∃yn.
∧n

i=1 C0(i) are typical examples where
every cube resolution proof requires an exponential number of applications of
rule init [12,16,18]. Since Ψ(n) is a subformula of Φ(n), this also holds for every
cube resolution proof of Φ(n). No clause is blocked in Φ(n), hence QBCE alone
cannot solve Φ(n), in contrast to Ψ(n) [12].

Consider n = 1 and Φ(n) = ∃z1, z
′
1∀u1∃y1.(u1 ∨ ȳ1) ∧ (ū1 ∨ y1) ∧ (z1 ∨ u1 ∨

ȳ1) ∧ (z′
1 ∨ ū1 ∨ y1) ∧ (z̄1 ∨ ū1 ∨ ȳ1) ∧ (z̄′

1 ∨ u1 ∨ y1). By rule init, we derive
C0 = (z̄1 ∧ z̄′

1 ∧ ū1 ∧ ȳ1) and C1 = (z̄1 ∧ z̄′
1 ∧ u1 ∧ y1). By existential reduction

we get C2 = ER(C0) = (z̄1 ∧ z̄′
1 ∧ ū1) and C3 = ER(C1) = (z̄1 ∧ z̄′

1 ∧ u1). By
resolving C2 and C3 we get C4 = (z̄1 ∧ z̄′

1) and finally C5 = ER(C4) = ∅.

The PCNFs Φ(n) in Example 1 can be solved by preprocessing by eliminating
subsumed clauses and QBCE. In practice, however, preprocessing might not be
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fully applicable to QBF-based workflows involving advanced techniques such as,
e.g., incremental QBF solving. Hence we aim at improving QCDCL with clause
and cube learning also in the absence of preprocessing.

The application of rule init to derive cubes from satisfying assignments is
also called model generation [8]. Model generation derives cubes C from a PCNF
φ = Π.ψ such that φ[C] = ∅. The PCNFs Φ(n) in Example 1 only have cube
resolution proofs in QRES whose size is exponential in n since an exponential
number of cubes must be derived by rule init [12,16,18]. Hence the run time of
QCDCL with cube learning by QRES scales exponentially in n.

In the following, we generalize model generation by rule init by relaxing the
condition φ[C] = ∅. This way, we obtain a variant of QRES for cube learning
which is exponentially stronger than the traditional variant from Definition 1.
The stronger calculus allows for cube resolution proofs of the PCNFs Φ(n) in
Example 1 whose size is polynomial in n.

To show the soundness of generalized model generation, we first show that a
cube C which contains only variables assigned in decision making in QCDCL is
derivable by QRES if φ[C] is satisfiable. To this end, we introduce the notion of
cubes obtained from assignments generated in QCDCL.

Definition 4 (QCDCL Cube). Given a QBF φ = Π.ψ. The QCDCL cube C
of QCDCL assignment A is defined by C = (

∧
l∈A l). Then C = C ′∪C ′′ where C ′

is the maximal subset of C such that X1 ∪ . . .∪Xi−1 ⊂ var(C ′) and C ′ ∩Xi �= ∅.
The literals in C ′ are the first |C ′| consecutive variables of Π which are assigned,
i.e., C ′ contains all the variables in C assigned in decision making.1 The literals
in C ′′ are assigned due to pure and unit literal detection and may occur anywhere
in Π starting from Xi+1. For QCDCL cube C we further define dec(C) = C ′

and der(C) = C ′′.

Lemma 1. Given the satisfiable PCNF φ = Π.ψ with |var(Π)| = n and a
QCDCL cube C with dec(C) = C. If φ[C] is satisfiable, then φ � C.

Proof. We argue that φ � C by induction over k = n − m where m = |C| and
the rules of QRES shown in Definition 1.

If k = 0, then φ � C by rule init. Consider k > 0. Let l ∈ C with var(l) ∈ Xi

be maximal in C w.r.t. <Π . Let h, h̄ �∈ C and var(h) ∈ Xi if Xi\var(C) �= ∅ and
var(h) ∈ Xi+1 otherwise.

Suppose that φ[C] is satisfiable. If Q(Π,h) = ∀ then both φ[C ∪ {h}] and
φ[C ∪{h̄}] are satisfiable. By induction hypothesis it holds that φ � C ∪{h} and
φ � C ∪ {h̄}, so φ � C by the application of rule res (cf. Theorem 1 in [20]).

If Q(Π,h) = ∃ then at least one of φ[C ∪ {h}] and φ[C ∪ {h̄}] is satisfiable.
W.l.o.g. assume that φ[C ∪ {h}] is satisfiable. Then by induction hypothesis it
holds that φ � C ∪ {h}, so φ � C by the application of rule red. ��

1 C′ can also contain literals assigned by pure/unit literal detection, but as they are left
to the maximal decision variable in the prefix, we treat them like decision variables.
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Definition 5 (Generalized Model Generation). Given a PCNF φ and a
QCDCL assignment A according to Definition 3. If φ[A] is satisfiable, then the
QCDCL cube C = (

∧
l∈A l) is obtained by generalized model generation.

Condition φ[C] = ∅ in case (2) of rule init is a special case of the condition in
Definition 5 that φ[A] is satisfiable to obtain C. In general φ � C in QRES.

Example 2. Given a satisfiable PCNF φ = ∃x1, x2∀u1∃x3.(x1∨u1∨x̄3)∧(x1∨u1∨
x3)∧(x̄1∨x̄2∨ū1∧x3)∧(x2∨x̄3), where no variable is pure initially. Let A = {x1}
by decision making. Then u1 becomes pure and φ[A] = ∃x2, x3.(x̄2∨x3)∧(x2∨x̄3)
is satisfiable under A = {x1, u1}, so C = (

∧
l∈A l) = (x1 ∧ u1) is obtained by

generalized model generation. However, φ � C since rule res is not applicable as
this would eliminate u1. Further, any cube C ′ ⊃ C derived by rule init contains
also a literal of x2 which cannot be reduced by rule red.

Theorem 1. Given PCNF φ = Π.ψ and a QCDCL cube C obtained from φ by
generalized model generation. Then it holds that Π.ψ ≡sat Π.(ψ ∨ C).

Proof (Sketch). Let C = C ′ ∪C ′′ as defined in Definition 4 with C ′ = dec(C) and
C ′′ = der(C). Recall that φ[C] is satisfiable, because C is obtained by generalized
model generation.

First, assume that φ[C ′] is unsatisfiable. The literals in C ′′ are assigned
according to pure and unit literal detection in φ[C ′] which is sound. There-
fore, these assignments do not change the satisfiability status of the formula.
Hence, φ[C ′] has to be satisfiable.

According to Lemma 1, it holds that Π.ψ � C ′ and due to the soundness of
QRES it holds that Π.ψ ≡sat Π.(ψ ∨C ′). Because of subsumption, it holds that
Π.ψ ≡sat Π.(ψ ∨ (C ′ ∧ C ′′)). ��
Corollary 1. By Theorem1, a cube C obtained from PCNF Π.ψ by generalized
model generation can be used as a learned cube in QCDCL.

Definition 6. Let φ = Π.ψ be a PCNF. The Q-resolution calculus with general-
ized model generation (QRES-GMG) is obtained by replacing condition φ[C] = ∅
in case (2) of rule init in Definition 1 by the condition that φ[C] is satisfiable.

QRES-GMG can be used as a proof system underlying QCDCL to derive learned
clauses and cubes. For generalized model generation as part of rule init, it is
necessary to check whether φ[A] is satisfiable based on the current assignment A
enumerated in QCDCL. Since φ[A] is a PCNF in general, such check is as hard
as solving the original PCNF φ (i.e., PSPACE-complete).

In order to combine QRES-GMG and QCDCL in practice, we apply QBCE
dynamically to φ[A], i.e., with respect to the current assignment A. If all clauses
in φ[A] are blocked then QBCE reduces φ[A] to the empty matrix, thus showing
that φ[A] is satisfiable in time which is polynomial in the size of φ[A]. This way,
we apply QBCE as an incomplete decision procedure inside QCDCL to efficiently
check if φ[A] is satisfiable. To this end, in general any sound decision procedure
can be applied. However, QBCE is appealing since it only removes clauses and
can be implemented using data structures which fit in the QCDCL framework.
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Generalized model generation in QRES-GMG is related to sign abstraction
(Proposition 7 in [16]). Based on a previously derived learned cube C ′, sign
abstraction allows to detect whether φ[A] is satisfiable in polynomial time based
on the sets of clauses satisfied by C ′ and by A. However, our approach to checking
φ[A] based on dynamic QBCE is independent from previously learned cubes.

In contrast to QRES, the PCNFs Φ(n) in Example 1 have short cube reso-
lution proofs in QRES-GMG. Hence QCDCL with QRES-GMG and dynamic
QBCE allows for more powerful cube learning than with QRES.

Example 3 (Continues Example 1). For n = 2 consider Φ(n) = ∃z1,z
′
1∀u1∃y1,∃z2,

∃z′
2∀u2∃y2.C0(1)∧C1(1)∧C2(1)∧C0(2)∧C1(2)∧C2(2). We solve Φ(n) by QCDCL

with QRES-GMG and dynamic QBCE. We start with the empty assignment
A = ∅. No clause is blocked in the PCNF Φ(n)[A] and hence rule init is not
applicable. By decision making we assign variables from left to right in prefix
ordering and extend A to A = A ∪ {z̄1, z̄

′
1}. The clauses in the subformula

(C0(1) ∧ C1(1))[A] = (u1 ∨ ȳ1) ∧ (ū1 ∨ y1) of Φ(n)[A] are blocked since all clauses
in C2(1)[A] are satisfied under A.

Before making further assignments, the PCNF Φ(n) is simplified to Φ(n)′ =
∃z2, z

′
2∀u2∃y2.C0(2) ∧ C1(2) ∧ C2(2) under A and QBCE. No clause is blocked

in Φ(n)′[A] and A is extended to A ∪ {z̄1, z̄
′
1, z̄2, z̄

′
2}. Like before, clauses in the

subformula (C0(2) ∧ C1(2))[A] = (u2 ∨ ȳ2) ∧ (ū2 ∨ y2) of Φ(n)′[A] are blocked
since all clauses in C2(2)[A] are satisfied under A. We have Φ(n)[A] = ∅ under
A = {z̄1, z̄

′
1, z̄2, z̄

′
2} and QBCE. By rule init of QRES-GMG, we derive the learned

cube C = (z̄1 ∧ z̄′
1 ∧ z̄2 ∧ z̄′

2) and finally the empty cube C ′ = ER(C) = ∅ by
existential reduction, after which QCDCL terminates.

Note that on the PCNFs Φ(n) from Example 1, for any value of n QCDCL
with QRES-GMG based on dynamic QBCE learns exactly one cube by rule init
which is reduced to the empty cube immediately. Hence in this special case the
actual run time of QCDCL depends on how efficiently QBCE is applied to Φ(n).

5 Integrating Dynamic QBCE in QCDCL

We implemented QCDCL with clause and cube learning based on QRES-GMG in
our solver DepQBF.2 DepQBF is a QCDCL-based solver which originally relies
on QRES [8,16,28]. For efficient generalized model generation in QRES-GMG,
we apply QBCE dynamically as illustrated by Example 3.

QBCE is carried out eagerly as part of QBCP (function qbcp in Fig. 1). After
the current assignment A has been extended in QBCP by unit and pure literal
detection, QBCE is applied to φ[A] until completion. If all clauses in φ[A] are
blocked, then a cube is learned by rule init in QRES-GMG. Otherwise, A is fur-
ther extended by decision making and again QBCP including QBCE is applied.
All clauses containing a literal of a variable x may be blocked in φ[A] and x may be
removed from the prefix of φ[A]. Hence in decision making variables are selected
from the left end of the prefix of φ[A] simplified under A and QBCE.

2 http://lonsing.github.io/depqbf/.

http://lonsing.github.io/depqbf/
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Clause learning works as in traditional QCDCL based on QRES. Clauses
currently blocked with respect to A are ignored when it comes to the detec-
tion of unit clauses and empty clauses in QBCP. Consequently, such blocked
clauses are not used to derive learned clauses. However, since QBCE preserves
unsatisfiability, QCDCL will eventually find a clause resolution proof of φ if φ is
unsatisfiable even if dynamic QBCE effectively removes blocked clauses. Hence
we apply QBCE in a fully dynamic way where QCDCL with clause and cube
learning operates on the PCNF φ[A] simplified under A and QBCE. QBCE is
applied only to clauses in the input PCNF φ, not to learned ones.

5.1 Witness Clauses for Efficient Dynamic QBCE

Dynamic QBCE is part of QBCP and hence is applied frequently in QCDCL.
Our implementation of dynamic QBCE relies on watched data structures like
QBCP [6]. In the following, let A be the current assignment in QCDCL.

Dynamic QBCE is carried out based on a working set of pairs (C, l) of a
clause C and a literal l ∈ C to be checked whether l is a blocking literal in C.
The working set is fully processed as part of QBCP. Variable assignments made
in QBCP might trigger further applications of QBCE, which causes the working
set to be filled based on watched data structures as described in the following.

For each clause C in the input PCNF φ a notification list is maintained. The
notification list of C contains pairs (C ′, l′) of clauses C ′ and an existential literal
l′ ∈ C ′ such that l̄′ ∈ C and C is a witness that l′ ∈ C ′ is not a blocking literal
by Definition 2 in C ′ under A. The witness C is neither blocked nor satisfied
under A. If C becomes either blocked or satisfied, then the pair (C ′, l′) is put in
the working set to be checked whether l′ ∈ C ′ is a blocking literal in C ′.

Each variable v has two lists Lv and Lv̄ containing clauses C ∈ φ with a
positive and negative literal of v, respectively. Each clause C in Lv or Lv̄ is a
witness that some other clause C ′ ∈ φ is not blocked with a blocking literal
l ∈ C ′, l̄ ∈ C, and var(l) = v. If v is assigned true (false), then previously non-
satisfied witness clauses C ∈ Lv (C ∈ Lv̄) are satisfied. All pairs (C ′, l′) in the
notification list of the now satisfied witness C are put in the working set.

Watched data structures based on witness clauses allow to carry out dynamic
QBCE precisely when a witness clause becomes blocked or satisfied under A.
Superfluous checks of Definition 2 are entirely avoided.

5.2 Dynamic QBCE Limits

The input PCNF φ may contain clauses with a large number of literals or vari-
ables whose literals appear in a large number of clauses (called occurrences). In
these cases, the performance of dynamic QBCE may deteriorate with respect
to run time and memory footprint since the working set and the notification
lists become prohibitively large. To control the computational costs of dynamic
QBCE, we implemented a limit max lits on the size |C| (i.e. number of literals)
of a clause and a limit max occs on the number of occurrences of variables.
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For all pairs (C, l) ever put in the working set it holds that |C| ≤ max lits.
Clauses C whose size |C| exceeds max lits are permanently ignored in dynamic
QBCE. Additionally, the size |C ′| of each occurrence C ′ with l̄ ∈ C ′ of vari-
able var(l) must not exceed max lits. This way, literals of variables with occur-
rences larger than max lits are never checked as potential blocking literals. Limit
max lits allows to avoid inspecting large clauses when checking Definition 2.

For all pairs (C, l) ever put in the QBCE working set the number of occur-
rences of literal l̄ does not exceed max occs. This way, no more than max occs
occurrences of var(l̄) have to be inspected when checking whether l ∈ C is a
blocking literal in C by Definition 2.

QCDCL based on QRES-GMG is sound in the presence of limits max lits
and max occs. For generalized model generation, clauses ignored in dynamic
QBCE due to the limits must be satisfied under the current assignment A.

In our implementation of dynamic QBCE we used limits of max lits = 50
and max occs = 50 which we determined empirically.

6 Experiments

We evaluated our implementation of QCDCL with QRES-GMG based on
dynamic QBCE in the solver DepQBF. To this end, we compared three variants
of DepQBF. The plain version of DepQBF (no-qbce) is based on traditional
QCDCL with QRES. As a first step towards dynamic QBCE, we implemented
QBCE as inprocessing in DepQBF (qbce-inp) where the input PCNF φ is simpli-
fied by QBCE only with respect to fixed assignment due to learned unit clauses
and unit cubes. This variant of DepQBF is still based on QRES. Finally, we
implemented QCDCL with QRES-GMG based on fully dynamic QBCE (qbce-
dyn) as presented in Sect. 5. To focus on dynamic QBCE, we used the linear
quantifier ordering given by the prefix of the input PCNF φ and hence disabled
advanced analysis of variable dependencies [19] in all variants of DepQBF.

Further, we consider the solvers GhostQ (ghostq) and RAReQS (rareqs)
which were both among the winning solvers of the QBF Gallery 2014 and which
are publicly available. All experiments reported in the following were run on
an AMD Opteron 6238 at 2.6 GHz under 64-bit Linux with time and memory
limits of 1800 s and 7 GB. We use the benchmarks in the applications set of the
QBF Gallery consisting of 735 formulas.3 We do not consider structural solvers
because the benchmarks are not available in a structural, non-CNF format.

First, we consider the original applications set without preprocessing. The
results are shown in Table 1 and Fig. 2. The combinations of QBCE and QCDCL
in qbce-inp and qbce-dyn considerably outperform DepQBF (no-qbce) by solved
instances and run time. Moreover, qbce-dyn performs best among the variants
of DepQBF and outperforms RAReQS, an expansion-based solver. Whereas the
variants of DepQBF did not run out of memory, RAReQS did on 115 instances.

In order to evaluate the impact of preprocessing on solver performance, we
applied the preprocessor Bloqqer [11] prior to solving. The results are shown in
3 http://qbf.satisfiability.org/gallery.

http://qbf.satisfiability.org/gallery
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Table 1. Total solved instances, solved
unsatisfiable, and solved satisfiable ones
of the original applications set of the
QBF Gallery 2014 without preprocessing.
Reported times are total run times includ-
ing time outs. Running out of memory is
counted as a time out.

Solver Solved Unsat Sat Time

qbce-dyn 441 222 219 573,142

rareqs 414 272 142 611,742

qbce-inp 360 161 199 735,073

ghostq 347 166 181 752,950

no-qbce 278 128 150 880,485
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Fig. 2. Sorted run times (y-axis) of
instances (x-axis) related to Table 1.

Table 2 and Fig. 4. RAReQS and DepQBF (no-qbce) benefit from preprocessing.
RAReQS ran out of memory on 34 instances. DepQBF (no-qbce) solves as many
formulas as qbce-inp. Among the variants of DepQBF, qbce-dyn still solves the
largest number of instances. However, preprocessing has an overall negative effect
on qbce-dyn as only 405 instances are solved with preprocessing compared to
441 instances without preprocessing (Tables 1 and 2 are comparable since no
instance was solved by preprocessing).
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Fig. 3. Related to Table 1: sorted num-
bers of backtracks (log10 scale y-axis) by
DepQBF, qbce-inp, and qbce-dyn on 262
instances solved by all three (x-axis).

Preprocessing by Bloqqer, which
includes QBCE among other tech-
niques, changes the formula structure
such that dynamic QBCE (qbce-dyn)
does not pay off any more. Although
RAReQS solves 142 instances more,
DepQBF with dynamic QBCE solves
25 instances not solved by RAReQS.

In additional experiments, we
found out that the actual selection
of techniques applied for preprocess-
ing by Bloqqer has a considerable
impact on the number of instances
solved by RAReQS and DepQBF with
dynamic QBCE (qbce-dyn). Limited
preprocessing is beneficial for qbce-
dyn whereas it has a negative impact
on RAReQS compared to full pre-

processing (Table 2). We preprocessed the applications set by Bloqqer using
only QBCE and expansion of universal variables [3]. On this preprocessed set,
RAReQS solves only 471 instances compared to 547 with full preprocessing
(Table 2). In contrast to that, qbce-dyn solves 463 instances compared to 405
with full preprocessing. Hence limited preprocessing reduces the gap between
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Table 2. Like Table 1, but on the appli-
cations set of the QBF Gallery 2014 with
preprocessing by Bloqqer prior to solving.
No instance was solved in preprocessing.

Solver Solved Unsat Sat Time

rareqs 547 314 233 379,916

qbce-dyn 405 201 204 624,719

no-qbce 390 205 185 651,909

qbce-inp 390 205 185 655,329

ghostq 350 176 174 739,294
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Fig. 4. Sorted run times (y-axis) of
instances (x-axis) related to Table 2.

RAReQS and qbce-dyn from 142 (Table 2) to eight solved instances. This is due
to the fact that RAReQS performs worse with limited preprocessing than with
full preprocessing.

In addition to solved instances, the benefits of dynamic QBCE are also
reflected by backtracks in QCDCL. DepQBF with dynamic QBCE backtracks
less frequently than the other variants of DepQBF. Figure 3 illustrates the num-
bers of backtracks on those 262 instances which were solved by all three variants
of DepQBF. The average (median) number of backtracks is 160,597 (3,119) by
no-qbce, 133,919 (1,793) by qbce-inp, and 66,372 (350) by qbce-dyn. We made
similar observations when comparing only qbce-inp and qbce-dyn.

A comparison of no-qbce and qbce-dyn in Table 3 shows that dynamic QBCE
results in fewer redundant backtracks in QCDCL with respect to resolution
proofs. For example, when solving an unsatisfiable PCNF φ by QCDCL, we
consider backtracks from satisfiable subcases (i.e., R == SAT in Fig. 1) redun-
dant because these backtracks result in learned cubes. However, learned cubes
are irrelevant to the clause resolution proof of φ produced by QCDCL. On unsat-
isfiable instances, the numbers of redundant backtracks by no-qbce and qbce-dyn
differ by a factor of 24 (54,078 vs. 2,199). These results indicate the potential

Table 3. Related to Table 1: average run time in seconds (T) and number of backtracks
resulting from satisfiable (SB) and unsatisfiable (UB) subcases in QCDCL (i.e. R ==

UNSAT/SAT in Fig. 1) on instances solved by both DepQBF without QBCE (no-qbce)
and DepQBF with dynamic QBCE (qbce-dyn). Statistics are shown based on all solved
instances (265) and separately for solved satisfiable (141) and unsatisfiable (124) ones.

ALL (265) SAT (141) UNSAT (124)

T SB UB T SB UB T SB UB

no-qbce 181 59,044 103,080 81 63,412 17,356 295 54,078 200,557

qbce-dyn 80 22,805 42,969 51 40,927 15,979 114 2,199 73,660
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benefits of generalized model generation in QRES-GMG for deriving learned
cubes to prune the search space tackled by QCDCL. On satisfiable instances,
the difference in redundant backtracks is less pronounced (17,356 vs. 15,979).

We also ran experiments on the preprocessing and QBFLIB tracks of the QBF
Gallery 2014. Dynamic QBCE (qbce-dyn) does not pay off on the massively
preprocessed instances in the preprocessing track. There, RAReQS solves the
largest number of instances (107) and qbce-dyn solves 95 compared to 101 solved
by no-qbce and qbce-inp. On the QBFLIB track, both qbce-inp (108 solved)
and qbce-dyn (104) clearly outperform no-qbce (83) and RAReQS (80), where
GhostQ solves 139 instances. On the QBFLIB track with full preprocessing by
Bloqqer, the performance of qbce-dyn (131 solved), no-qbce (130), and qbce-inp
(129) is close to each other, where RAReQS solves 134 instances.

7 Conclusion

We presented dynamic blocked clause elimination (QBCE) in QCDCL-based
QBF solvers as an approach to overcome the bias towards unsatisfiability in
solving that is due to the CNF structure of QBFs. Thereby, QBCE is applied
eagerly to the QBF interpreted under the assignments generated in QCDCL.
Dynamic QBCE results in a variant of cube learning by QRES-GMG in QCDCL
which is exponentially stronger than the traditional variant.

On application instances, we observed a considerable performance boost
with dynamic QBCE—despite its computational overhead—in terms of solved
instances, run time, and backtracks. Without preprocessing, our approach out-
performs expansion-based QBF solving. Depending on the selection of tech-
niques, preprocessing may have a negative impact on the performance of dynamic
QBCE since formula structure is blurred. However, dynamic QBCE may improve
the performance of QCDCL solvers in workflows involving incremental solving,
which cannot yet be combined with full-scale preprocessing. Dynamic QBCE is
compatible with incremental solving, in contrast to expansion-based solving.

Our approach is extensible in that techniques other than QBCE like bounded
variable elimination or expansion can be applied dynamically for generalized
model generation. Further, dynamic QBCE can be readily combined with any
variant of Q-resolution like QU-resolution [24] and long-distance resolution [28]
as part of rule res in QRES-GMG. We also aim at combining our approach with
full generation of proofs and certificates.
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3. Bubeck, U., Kleine Büning, H.: Bounded universal expansion for preprocessing
QBF. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp.
244–257. Springer, Heidelberg (2007)



432 F. Lonsing et al.

4. Davis, M., Logemann, G., Loveland, D.W.: A machine program for theorem-
proving. Commun. ACM 5(7), 394–397 (1962)

5. Egly, U., Seidl, M., Woltran, S.: A solver for QBFs in negation normal form.
Constraints 14(1), 38–79 (2009)

6. Gent, I.P., Giunchiglia, E., Narizzano, M., Rowley, A.G.D., Tacchella, A.: Watched
data structures for QBF solvers. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003.
LNCS, vol. 2919, pp. 25–36. Springer, Heidelberg (2004)

7. Giunchiglia, E., Marin, P., Narizzano, M.: sQueezeBF: an effective preprocessor for
QBFs based on equivalence reasoning. In: Strichman, O., Szeider, S. (eds.) SAT
2010. LNCS, vol. 6175, pp. 85–98. Springer, Heidelberg (2010)

8. Giunchiglia, E., Narizzano, M., Tacchella, A.: Clause/term resolution and learning
in the evaluation of quantified boolean formulas. JAIR 26, 371–416 (2006)

9. Goultiaeva, A., Bacchus, F.: Exploiting circuit representations in QBF solving. In:
Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 333–339. Springer,
Heidelberg (2010)

10. Goultiaeva, A., Seidl, M., Biere, A.: Bridging the gap between dual propagation
and CNF-based QBF solving. In: Järvisalo, M., Van Gelder, A. (ed.) DATE, pp.
811–814. ACM (2013)

11. Heule, M., Järvisalo, M., Lonsing, F., Seidl, M., Biere, A.: Clause elimination for
SAT and QSAT. JAIR 53, 127–168 (2015)

12. Janota, M., Grigore, R., Marques-Silva, J.: On QBF proofs and preprocessing. In:
McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR-19 2013. LNCS, vol.
8312, pp. 473–489. Springer, Heidelberg (2013)

13. Järvisalo, M., Heule, M.J.H., Biere, A.: Inprocessing rules. In: Gramlich, B., Miller,
D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 355–370. Springer, Hei-
delberg (2012)
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Abstract. We describe symbol elimination and consequence finding
in the first-order theorem prover Vampire for automatic generation of
quantified invariants, possibly with quantifier alternations, of loops with
arrays. Unlike the previous implementation of symbol elimination in
Vampire, our work is not limited to a specific programming language
but provides a generic framework by relying on a simple guarded com-
mand representation of the input loop. We also improve the loop analysis
part in Vampire by generating loop properties more easily handled by
the saturation engine of Vampire. Our experiments show that, with our
changes, the number of generated invariants is decreased, in some cases,
by a factor of 20. We also provide a framework to use our approach
to invariant generation in conjunction with pre- and post-conditions of
program loops. We use the program specification to find relevant invari-
ants as well as to verify the partial correctness of the loop. As a case
study, we demonstrate how symbol elimination in Vampire can be used
as an interface for realistic imperative languages, by integrating our tool
in the KeY verification system, thus allowing reasoning about loops in
Java programs in a fully automated way, without any user guidance.

1 Introduction

Reasoning about the (partial) correctness of programs with loops requires loop
invariants. Typically, loop invariants are provided by the user as annotations
to the program, see e.g. [2,5,14]. Providing such annotations requires a consid-
erable amount of work by highly qualified personnel and often makes program
analysis prohibitively expensive. Therefore, automation of invariant generation
is invaluable in making program analysis scale to large, realistic examples.

In [11], the symbol elimination method for generating invariants was intro-
duced. The approach uses first-order theorem proving, in particular the Vampire
prover [12]. Symbol elimination allows the generation of quantified invariants,
possibly with quantifier alternations, for programs with unbounded data struc-
tures, such as arrays. While experiments of invariant generation in Vampire show
that symbol elimination generates non-trivial invariants, the initial implemen-
tation [7] of program analysis and invariant generation in Vampire has various
disadvantages: it can only be used with programs written in C, the number of
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generated invariants is too large, and generating relevant invariants did not take
into account the program specification. Moreover, the process of invariant gen-
eration was not integrated, nor evaluated in a verification framework, making it
hard to assess the quality and practical impact of invariant generation by symbol
elimination. In this paper we address these limitations, as follows.

We provide a new and fully automated tool for invariant generation, by using
symbol elimination in Vampire (Sect. 2). To this end, we re-implemented pro-
gram analysis and invariant generation in Vampire. Our implementation is fully
compatible with the most recent development changes in Vampire. It is designed
to be independent of any particular programming language: inputs to our tool
are program loops written in a simple guarded command language. We also
improved program analysis in Vampire by generating loop properties that are
more easily handled by the saturation engine of Vampire. We also show that
symbol elimination can be used not only to produce invariants, but also as a
(incomplete) direct method to prove the correctness of the loop. Our work pro-
vides an alternative approach to Hoare-style loop verification and cancels the
need for explicitly stated invariants as program annotations.

Reasoning about real programming languages poses several challenges, e.g.
using machine integers instead of mathematical ones or reasoning about out-of-
bound array accesses. In order to showcase the relevance of our implementation
in real applications, we integrated our approach to loop reasoning in Vampire into
the KeY verification system [2], thus allowing automatic reasoning about loops
in Java programs (Sect. 3). We experimentally evaluate invariant generation in
Vampire on realistic examples (Sect. 4).

The main advantage of our tool comes with its full automation for generating
invariants, possibly with quantifier alternations. Unlike [8,9], where user-given
invariant templates are used, we require no user guidance and infer first-order
invariants with arbitrary quantifiers. Contrary to [4], we do not use specialized
abstract domains, but use saturation theorem proving to generate quantified
invariants. Theorem proving, in the form of SMT solving, is also used in [13] to
automatically compute loop invariants, however only with universal quantifiers.

Our implementation of invariant generation in Vampire1 required 3000 lines
of C++ code. The integration of Vampire with KeY required about 1000 lines of
Java code.

2 Invariant Generation in Vampire

In this section, we describe our tool to generate quantified loop invariants in
a fully automatic manner. Our work uses symbol elimination and consequence
finding in Vampire and extends Vampire with a new framework for reasoning
about loops. Compared to the earlier implementation [7] of invariant genera-
tion in Vampire, our tool is independent of the language in which the loops
are expressed, simplifies symbol elimination in saturation theorem proving,

1 available at www.cse.chalmers.se/∼simrob.

www.cse.chalmers.se/~simrob
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and provides various ways to generate a relevant set of loop invariants. The
overall workflow of our tool is given in Fig. 1 and detailed below.

Fig. 1. Loop reasoning in Vampire.

Input. Inputs to our tool are loops with nested conditionals, written in a simple
guarded command language. Optionally, pre- and post-conditions can also be
specified. We use standard arithmetical function symbols +,−, ·,÷ and predicate
symbols ≤,≥.

Loops may contain scalar variables and arrays ranging over Boolean values
and (unbounded) integers. We write A[p] to mean (an access to) the array ele-
ment at position p in the array A. We describe loops by a loop condition and an
ordered collection of guarded assignments; the loop condition is a quantifier-free
Boolean formula over program variables. A guarded assignment is a pair of a
guard (also a Boolean formula) and a collection of assignments. In our setting, a
guarded assignment cannot contain two assignments to the same scalar variable
v. If two array assignments A[i] := e and A[j] := e′ occur in a guarded assign-
ment, the condition i �= j is added to the guard. Figure 2 gives an example of a
loop using the syntax supported by our tool.

Loop Semantics. We assume basic knowledge about program states and tran-
sition relations. We use n to denote the upper bound on the number of loop
iterations and write σ0 and σn to respectively speak about the initial and final
state of the loop. For any loop iteration i we have 0 ≤ i ≤ n. Given a program
state σi describing the value of each program variable after a loop iteration i, the
semantics of the loop is as follows. If the loop condition is valid in σi, the first
guarded assignment whose guard is valid is executed: its assignments are applied
simultaneously to σi. This way the state σi+1 corresponding to the loop iteration
i + 1 is obtained from σi. For example, executing the guarded assignment true
-> x = 0; y = x; in a state where x = 1 holds, yields a state in which y = 1.
If the loop condition is not valid, or if none of the guards hold, σi becomes the
final state of the loop σn.

Loop Assertions and Invariants. For each loop variable v, we denote by
vinit the value of v at the initial state σ0 of the loop. Those symbols belong
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to the language of loop assertions denoted by Lasrt. An invariant is a formula
that uses symbols from Lasrt and is valid for any state σi. The pre- and post-
conditions of the loops are formulas in Lasrt that are required to hold at σ0 and
σn, respectively. Note that assertions, including invariants, may be universally
and existentially quantified.

Extended Loop Properties. For every (scalar and array) variable v, we intro-
duce a function v(i) denoting the values of v at states σi corresponding to loop
iterations i. Note that v(0) is vinit. We call v(i) an extended expression and denote
the language of loop properties with extended expressions by Lextd. Formulas
in Lextd that are valid at any loop iteration are called extended loop proper-
ties. Compared to [7], we simplified Lextd as we do not use extended expressions
describing loop iteration properties or update predicates over arrays. This simpli-
fication brought a significant performance increase to using symbol elimination
for invariant generation (see Sect. 4).

Fig. 2. Example of an input to our tool. This example loop is composed of two guarded
assignments, computes the maximum of elements in arrays B and C at every position
and writes it in the corresponding position in the array A. The program specification
is given by the pre- (requires) and post-conditions (ensures).

Loop Analysis. In the first step of our invariant generation procedure, we
perform simple static analysis to generate extended loop properties. These for-
mulas express (i) monotonicity properties of scalars; (ii) the transition relation
of the loop by translating the guarded assignments into logical formulas; (iii)
update properties of the array, and (iv) the validity of the loop condition at
arbitrary loop iterations. For the loop in Fig. 2, the following formula describ-
ing a monotonically increasing behavior of k is one of the generated properties:
(∀i)(0 ≤ i < n =⇒ k(i+1) = k(i) + 1).

Compared to [7], we simplified and improved loop analysis in Vampire. In
particular, array update properties expressing last updates to array positions
and extended properties using loop conditions are now formulated in a way that
makes them easier to handle by a first-order theorem prover, for example by
introducing fewer Skolem functions. With these improvements, we generate a
significantly smaller number of invariants, without loss of interesting properties
(see Sect. 4).
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Symbol Elimination. While the properties in Lextd are valid at arbitrary
loop iterations, they are not yet invariants as they use symbols that are not
in Lasrt (they use extended expressions). The next step in our invariant gener-
ation process is to eliminate the symbols that are not in Lasrt, by generating
formulas that only use symbols from Lasrt and are logical consequences of the
properties in Lextd. To this end we use the prover to perform symbol elimination
and generate invariants in Lasrt. For more details on symbol elimination we refer
to [11].

Invariant Filtering. As a result of symbol elimination, a set of loop invariants
is computed. While [7] returned all invariants discovered during symbol elimi-
nation, we note that not all generated invariants are relevant to the user when
proving the partial correctness of the loop. In our work, we provide additional
options to control the process of invariant generation, as follows. If the user
provides a loop post-condition φ, we add an invariant filtering step to symbol
elimination by proving ¬ψ ∧ I1 ∧ . . . ∧ Ik =⇒ φ, where ψ is the loop condi-
tion and I1, . . . , Ik are the invariants generated so far by symbol elimination. If
proving this implication succeeds, the invariants that were effectively used in the
proof are reported to the user.

Recall that invariants are logical consequences of extended loop properties,
hence the loop post-condition can be proved directly from the extended loop
properties. We therefore also extended loop analysis in Vampire by proving par-
tial correctness of loops using extended loop properties, without the need for
generating loop invariants by symbol elimination.

Output. We provide three options regarding the output of our tool. It can
consist of (i) the set of all invariants generated by symbol elimination, (ii) the
set of relevant invariants after filtering using the loop specification, or (iii) a
partial correctness proof of the loop.

3 Integration with the KeY System

In this section we describe the integration of our invariant generation method
to the KeY verification system. We discuss the modularity afforded by our tool
and its applicability to realistic examples.

Dynamic Logic. KeY [2] is a deductive verifier for functional correctness prop-
erties of Java source code. It uses dynamic logic (DL), a modal logic for reasoning
about programs. DL extends first-order logic with the modality [p]φ, where p is a
program and φ is another DL formula; [p]φ is true in a state from which running
the program p, in case of termination, results in a state where φ is true.

Symbolic Execution. KeY uses symbolic execution. For that, DL is extended
by “explicit substitutions”, called updates. During the symbolic execution of a
program p, the effects of p are gradually, from the front, turned into updates,
and applied to each other. After some proof steps, an intermediate proof node
may look like Γ � U [p′]φ, where a certain prefix of p has turned into update
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U , representing the effects so far, while a “remaining” program p′ is yet to be
executed. Note that most proofs branch over case distinctions, usually triggered
by Boolean expressions in the source code. The semantics of the Γ � U . . . part
of a sequent is in many ways close to those of a guarded assignment in Vam-
pire’s programming model. Γ can be understood in the same way as Vampire’s
guards, while updates and Vampire’s assignments share the same semantics of
simultaneous application. We therefore use symbolic execution to perform the
translation of Java programs to Vampire’s guarded command language, as fol-
lows. Given a program p containing a loop, we apply symbolic execution to all
instructions preceding the loop, leading to a sequent:

Γ � U [while (se) {b};p′]φ

where se is a side effect-free Java expression2. As a step towards employing
Vampire, we launch a separate KeY proof at this point, starting from the sequent:
Γ, se′ � UV[b]ψ. Here, se′ is the result of applying U to se, V is an anonymizing
update [3] meant to remove information on variables modified by the loop body
b, and ψ is an uninterpreted predicate. This side proof is not meant to prove
anything, but only to carry out symbolic execution of any iteration (hence V)
of the loop body b. Since ψ is uninterpreted, the side proof started with this
sequent cannot be completed; however, assuming that they do not themselves
contain an unannotated loop, instructions of b can be symbolically executed. We
are then left with a proof tree containing one or more open nodes, all of which
have the form: Γ ′ � {v1 := e1; . . . ; vk := ek}[ ]ψ. Each of these nodes corresponds
to a possible path of symbolic execution, which is transformed into a guarded
assignment:

Gamma’ -> v1 = e1; ... ; vk = ek;

The translation of Java programs to Vampire’s model has limitations how-
ever. It is for example not yet possible to fully express heap-related properties
in Vampire. Another limitation is the lack of support for unannotated loops
within b.

Integration. If the user is satisfied with delegating the proof of correctness of
the loop to Vampire, when the Vampire proof succeeds, it is possible to simply
complete the main KeY proof by applying a dedicated axiomatic rule. If more
transparency is desired, it is of course possible to import the invariants produced
by Vampire (with or without invariant filtering) into KeY and use these invariants
in the KeY inference rule normally used with user-annotated invariants. KeY
will however need to prove that the invariants generated by Vampire are indeed
invariants.

4 Experimental Results

We evaluated our tool on 19 challenging array benchmarks taken from academic
papers [6,7] and the C standard library. Our benchmarks are listed in Table 1.
2 More complex Boolean expressions are transformed away by KeY rules.
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The program absolute computes the absolute value of every element in an array,
whereas copy, copyOdd and copyPositive copy (some) elements of an array to
another. The example find searches for the position of a certain value in an array,
returning -1 if the value is absent. The program findMax locates the maximum
in an unsorted array. The examples init, initEven, and initPartial initialize
(some) array elements with a constant, whereas initNonConstant sets the value
of array elements to a value depending on array positions. inPlaceMax replaces
every negative value in an array by 0, and max computes the maximum of two
arrays at every position. mergeInterleave interleaves the content of two arrays,
whereas partition copies negative and non-negative values from a source array
into two different destination arrays. reverse copies an array in reverse order,
and swap exchanges the content of two arrays. Finally, strcpy and strlen are
taken from the standard C library. Each benchmark contains a loop together
with its specification. Our benchmarks are available at the URL of our tool.

We carried out two sets of experiments: (i) invariant generation, by using
a guarded command representation of the benchmarks as inputs to our tool;
(ii) loop analysis of realistic Java programs, by specifying the examples as Java

Table 1. Experimental results on loop reasoning using Vampire.

Name Cond Δdirect Δfilter N5 Nfilter

absolute yes 0.271 2.358 19 3

copy no 0.043 2.194 9 (37) 1

copyOdd no 0.122 2.090 9 (214) 1

copyPartial no 0.042 3.145 9 1

copyPositive yes 9

find yes 123

findMax yes 3

init no 0.035 2.059 9 (35) 1

initEven no 10

initNonConstant no 0.114 2.054 9 (104) 1

initPartial no 0.042 3.129 9 1

inPlaceMax yes 39

max yes 0.696 3.535 20 2

mergeInterleave no 20

partition yes 164 (647)

partitionInit yes 98 (169)

reverse no 0.038 9 (42)

strcpy no 0.036 2.126 9 1

strlen no 0.018 2.023 2 (26) 1

swap no 26
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methods with JML contracts as inputs to our tool and using our integration
of invariant generation in KeY. All experiments were performed on a computer
with a 2.1 GHz quad-core processor and 8 GB of RAM.

Table 1 summarizes our results. The second column indicates whether the
benchmark loops contain conditionals. Column Δdirect shows the time required
to prove the partial correctness of the benchmarks, by proving the loop specifi-
cation from the extended properties generated by program analysis in Vampire.
On the other hand, column Δfilter gives the time needed by our tool to gener-
ate the relevant invariants from which the loop post-condition can be proved.
The time results are given in seconds. Where no time is given, a correctness
proof/filtering of relevant invariants was not successful. Column N5 shows the
number of all invariants generated by our tool with a time limit of 5 s (before
filtering of relevant invariants). The figure listed in parentheses gives the number
of invariants produced by a previous implementation [7] of invariant generation
in Vampire. Finally, column Nfilter reports the number of invariants selected as
relevant invariants; the conjunction of these invariants is the relevant invariant
from which the loop specification can be derived.

Invariant Generation. Note that for all examples, our tool successfully gener-
ated quantified loop invariants. Moreover, when compared to the previous imple-
mentation [7] of invariant generation in Vampire, our tool brings a significant
performance increase: in all examples where the implementation of [7] succeeded
to generate invariants, the number of invariants generated by our tool is much
less than in [7]. For example, in the case of the program copyOdd, the number of
invariants generated by our tool has decreased by a factor of 24 when compared
to [7]. This increase in performance is due to our improved program analysis
for generating extended loop properties. For the examples where the number
of invariants generated by [7] is missing, the approach of [7] failed to generate
quantified loop invariants over arrays. We also note that invariants generated
by [7] are logical consequences of the invariants generated by our tool.

Invariant Filtering. When evaluating our tool for proving correctness of the
examples, we succeeded for 11 examples out of 19, as shown in column Δdirect of
Table 1. For these 11 examples, the partial correctness of the loop was proved by
Vampire by using the extended loop properties generated by our tool. Further, for
10 out of these 11 examples, our tool successfully selected the relevant invariants
from which the loop specification could be proved. For the example reverse
the relevant invariants could not be selected within a 5 s time, even though the
partial correctness of the loop was established using the extended properties of
the loop. The reason why the relevant invariants were not generated lies in the
translation of the Java method into our guarded command representation: due
to the limited representation of heap-related properties, the post-condition given
to Vampire is weaker than the original proof obligation in KeY. This causes the
invariant relevance filter to miss properties required to carry out the proof within
KeY, even though the relevant invariants were generated by our tool.

When analyzing the 8 examples for which our tool failed to generate relevant
invariants and to prove partial correctness, we noted that these examples involve
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non-trivial arithmetic and array reasoning. We believe that improving reasoning
with full first-order theories in Vampire would allow us to select the relevant
invariants from those generated by our tool.

5 Conclusion

We provide a new and fully automated tool for invariant generation, by re-
implementing and improving program analysis and symbol elimination in Vam-
pire. We also extend symbol elimination to prove partial correctness of loops. We
integrated our tool with the KeY verification system, allowing automatic reason-
ing about realistic Java programs using first-order proving. We experimentally
evaluated our tool on a number of examples coming from KeY. For future work,
we intend to improve theory reasoning in Vampire. We believe that our exam-
ples coming from invariant filtering are challenging benchmarks for reasoning
with quantifiers and theories, and intend to add these examples to the CASC
theorem proving competition. We are also interested in analyzing more complex
programs and support the translation of the full semantics of a programming
language such as Java into our program analysis framework. For doing so, new
features and extensions of the TPTP language supported by first-order theorem
provers are needed, for example the use of a first class Boolean sort as described
in [10]. Finally, in order to target a greater number of programming languages, it
would be useful to provide a front-end to an intermediate verification language,
e.g. Boogie [1].

Acknowledgments. We wish to thank Martin Hentschel for his help with KeY.
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12. Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In:
Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35. Springer,
Heidelberg (2013)
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Abstract. Many hard-combinatorial problems have only be solved by
SAT solvers in a massively parallel setting. This reduces the trust one
has in the final result as errors might occur during parallel SAT solving
or during partitioning of the original problem. We present a new frame-
work to produce clausal proofs for cube-and-conquer, arguably the most
effective parallel SAT solving paradigm for hard-combinatorial problems.
The framework also provides an elegant approach to parallelize the vali-
dation of clausal proofs efficiently, both in terms of run time and memory
usage. We evaluate the presented approach on some hard-combinatorial
problems and validate constructed clausal proofs in parallel.

1 Introduction

Several long-standing open problems have recently been solved with SAT solvers,
including the Erdős discrepancy conjecture [1], van der Waerden numbers [2,3],
and optimal sorting networks [4]. These problems have been open for decades
and only SAT techniques were able to make progress. Ever since the four-color
theorem was solved using heavy computer assistance [5], there have been doubts
about the correctness of such results as it is impossible for humans to verify the
proof [6]. For most impressive applications of SAT technology, proofs are not
provided, since their size would be enormous and due to the absence of validation
tools. We present a method and tools to generate and validate compositional
propositional proofs to increase confidence in the results for such problems.

Unsatisfiability proofs (or refutations) are traditionally expressed as either
resolution proofs [7] or clausal proofs [8]. A proof is a sequence of lemmas, i.e.,
redundant clauses, which when added to the formula preserve satisfiability. Reso-
lution proofs explicitly state which clauses should be resolved to derive a lemma,
making them too verbose for hard problems. This detailed information is absent
in clausal proofs, leaving it up to the clausal proof checker to determine why a
lemma is redundant. Practically all top-tier SAT solvers support clausal proof
logging in the DRAT format [9], which was used to check the SAT Competition
2014 results. This paper focuses on how to make compositional DRAT proofs.
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Classical propositional proof systems, such as resolution, are of course com-
positional, in the sense that concatenating two proofs derives the union of the
conclusions of both proofs. However, clausal proofs also support clause deletion
to realize efficient validation [10] and expressing techniques that do not pre-
serve logical equivalence — in contrast to resolution proofs. Thus, we must come
up with a compositional proof system for clausal proofs that includes deletion
information and operations that do not preserve logical equivalence.

One of the major obstacles for checking proofs obtained from parallel solvers,
such as the proofs from portfolio solvers [11], is the huge gap between the time
to solve a problem and time to validate the corresponding proof — even with
deletion information. One reason for this gap is that the solver runs on all cores of
a machine, while a checker uses only one. We address this problem by partitioning
proofs in such a way that the validation can be performed in parallel.

The recent SAT result on the Erdős discrepancy conjecture [1] produced a 13
gigabyte clausal proof —comparable to the compressed size of all English text on
Wikipedia— and validated it using the DRATtrim checker [9]. The ability to verify
that result significantly increased the confidence with regards to its correctness.
However, for most hard-combinatorial problems that have been solved with SAT
solvers no such proof exists: e.g., van der Waerden number W (2, 6) [2] and the
optimality result of sorting networks with nine wires [4]. These problems require
enormous SAT solving time resulting in proofs that are terabytes in size.

One of the leading parallel SAT solving paradigms is cube-and-conquer [12],
which uses a lookahead solver to generate millions of cubes for a conflict-driven
clause learning (CDCL) solver. Cube-and-conquer is particularly effective on
hard-combinatorial problems where it can heavily outperform both lookahead
and CDCL solvers, even on a single core machine. We present a method which
allows to produce proofs for problems solved by parallel cube-and-conquer.

Our paper proceeds by presenting some preliminaries in Sect. 2. Section 3
introduces rules regarding compositional propositional proofs. We provide in
Sect. 4 a method to validate clausal proofs in parallel. In Sect. 5, we show how
to log proofs in parallel for cube-and-conquer solvers. Our tools are presented in
Sect. 6. We give an evaluation in Sect. 7, and we conclude in Sect. 8.

2 Preliminaries

CNF Satisfiability. For a Boolean variable x, there are two literals, the positive
literal x and the negative literal x̄. A clause is a disjunction of literals and a
CNF formula a conjunction of clauses. A clause can be seen as a finite set of
literals and a CNF formula as a finite set of clauses. A truth assignment is a
function τ that maps literals to {f , t} under the assumption τ(x) = v if and
only if τ(x̄) = ¬v. A clause C is satisfied by τ if τ(l) = t for some literal l ∈ C.
An assignment τ satisfies F if it satisfies every clause in F . Two formulas are
logically-equivalent if they are satisfied by exactly the same set of assignments,
and satisfiability-equivalent if both formulas are satisfiable or both unsatisfiable.
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Resolution and Extended Resolution. The resolution rule states that, given
two clauses C1 = (x ∨ a1 ∨ . . . ∨ an) and C2 = (x̄ ∨ b1 ∨ . . . ∨ bm), the clause
C = (a1 ∨ . . . ∨ an ∨ b1 ∨ . . . ∨ bm), can be inferred by resolving on variable x.
We say C is the resolvent of C1 and C2. C is logically implied by any formula
containing C1 and C2. For a given CNF formula F , the extension rule [13] allows
one to iteratively add definitions of the form x := a ∧ b by adding the extended
resolution clauses (x ∨ ā ∨ b̄) ∧ (x̄ ∨ a) ∧ (x̄ ∨ b) to F , where x is a new variable
and a and b are literals in the current formula.

Unit Propagation. For a CNF formula F , unit propagation simplifies F based
on unit clauses ; that is, it repeats the following until fixpoint: if there is a unit
clause (l) ∈ F , remove all clauses that contain the literal l from the set F \ {(l)}
and remove the literal l̄ from all clauses in F . If unit propagation on formula F
produces complementary units (l) and (l̄), we say that unit propagation derives
a conflict and write F �1 ε with ε referring to the (unsatisfiable) empty clause.

Example 1. Consider the formula F = (a) ∧ (ā ∨ b) ∧ (b̄ ∨ c) ∧ (b̄ ∨ c̄). We have
(a) ∈ F , so unit propagation removes literal ā, resulting in the new unit clause
(b). After removal of the literals b̄, two complementary unit clauses (c) and (c̄)
are created. From these two units the empty clause can be derived: F �1 ε.

Clause Redundancy. A clause C is called redundant with respect to a formula
F if F ∧ {C} is satisfiability equivalent to F . A tautology is a redundant clause
that contains literals x and x̄ for some variable x. A clause C ∈ F is also
redundant if there exists a clause D ∈ F such that D ⊆ C, i.e., D subsumes C.

Asymmetric tautologies, also known as reverse unit propagation (RUP)
clauses, are the most common redundant (learned) clauses in CDCL SAT solvers.
Let C denote the conjunction of unit clauses that falsify all literals in C. A clause
C is an asymmetric tautology with respect to a CNF formula F if F ∧ C �1 ε.
Resolution asymmetric tautologies (or RAT clauses) [14] are a generalization of
both asymmetric tautologies and extended resolution clauses. A clause C has
RAT on l ∈ C (referred to as the pivot literal) with respect to a formula F if
for all D ∈ F with l̄ ∈ D, it holds that F ∧ C ∧ (D \ {(l)}) �1 ε.

Not only can RAT be computed in polynomial time, but all preprocess-
ing, inprocessing, and solving techniques in state-of-the-art SAT solvers can be
expressed in terms of addition and removal of RAT clauses [14].

Clausal Proofs. A proof of unsatisfiability (also called a refutation) is a sequence
of redundant clauses, called lemmas, containing the empty clause. There are two
prevalent types of unsatisfiability proofs: resolution proofs and clausal proofs.
Several formats have been designed for resolution proofs [7,15,16], but they all
share the same disadvantages. Resolution proofs are often huge, and it is hard
to express important techniques, such as conflict clause minimization, with res-
olution steps. Other techniques, such as bounded variable addition [17], cannot
be polynomially-simulated by resolution. Clausal proof formats [9,18,19] are
syntactically similar; they involve a sequence of clauses that are claimed to be
redundant with respect to a given formula. It is important that the redundancy
property of clauses can be checked in polynomial time.
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A DRUP proof, short for Deletion Reverse Unit Propagation, is a sequence of
addition and deletion steps of RUP clauses. A DRAT proof, short for Deletion
Resolution Asymmetric Tautology, is a sequence of addition and deletion steps
of RAT clauses. A DRAT refutation is a DRAT proof that contains the empty
clause. Figure 1 shows an example DRAT refutation.

Fig. 1. Left, a formula in DIMACS CNF format, the conventional input for SAT solvers
which starts with p cnf to denote the format, followed by the number of variables and
the number of clauses. Right, a DRAT proof for that formula. Each line in the proof
is either an addition step (no prefix) or a deletion step identified by the prefix “d”.
Spacing in both examples is used to improve readability. Each clause in the proof should
be an asymmetric tautology or a RAT clause using the first literal as the pivot.

Example 2. Consider the CNF formula F = (a∨ b∨ c̄)∧ (ā ∨ b̄ ∨ c)∧ (b∨ c∨ d̄)∧
(b̄ ∨ c̄ ∨ d) ∧ (a ∨ c ∨ d) ∧ (ā ∨ c̄ ∨ d̄) ∧ (ā ∨ b ∨ d) ∧ (a ∨ b̄ ∨ d̄), shown in DIMACS
format in Fig. 1 (left), where 1 represents a, 2 is b, 3 is c, 4 is d, and negative
numbers represent negation. The first clause in the proof, (ā), is a RAT clause
with respect to F because all possible resolvents are asymmetric tautologies:

F ∧ (a) ∧ (b̄) ∧ (c) �1 ε using (a ∨ b ∨ c̄)
F ∧ (a) ∧ (c̄) ∧ (d̄) �1 ε using (a ∨ c ∨ d)
F ∧ (a) ∧ (b) ∧ (d) �1 ε using (a ∨ b̄ ∨ d̄)

3 Rules

In this section, we introduce rules for composing propositional proofs. We first
establish a notation to describe operations, or derivations on formulas and proofs,
and then continue with basic rules for addition or deletion of a clause/lemma.
Finally, we propose compositional rules that address merging proofs produced
in parallel and validating proofs that have been produced in parallel.

Throughout this section, we will use © to express a CNF formula and �
to express a proof composed of a sequence of proof steps. Note that a formula
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is a multi-set of clauses as elements may be duplicated by some of the oper-
ations below. Furthermore, a formula may be treated as a part of a proof by
treating each clause as an added lemma. Concatenation of proofs is simply the
concatenation of the sequences of their proof steps. The union of two formulas
is interpreted as multi-set union. Both operations are denoted by juxtaposition.

3.1 The Base Rules

Each element of a derivation is either the addition of a clause C, denoted by
a(C) or the deletion of a clause C, denoted by d(C). Given a formula ©i, a
clause C and a modification m ∈ {a, d}, a proof step is denoted as

©i
m(C)−−−−−→ ©i+1

We introduce two base rules Add and Del which produce atomic proof steps.

Add:
© a(C)−−−−→ © C

where C has RAT on l ∈ C w.r.t. ©

Del:
© C

d(C)−−−−→ ©
(no side condition)

The Add rule has the precondition that there exists a literal l ∈ C such that
C had RAT on l with respect to the formula ©. The correctness of the Add
rule follows from the observation that the addition of RAT clauses preserves
satisfiability. Practically all techniques used in modern CDCL SAT solvers can
be simulated by these rules bas they can be expressed as a RAT derivation1 [14].

The Del rule has no precondition, and the removal of clauses from a formula
is always allowed. We are only interested in proofs of unsatisfiability and dele-
tion of a clause trivially preserves satisfiability. For proofs of satisfiability, the
situation is reversed: the (same) precondition is required for the Del rule, while
the Add rule has no precondition. The most important function of the Del rule
is to facilitate fast validation of proofs. Without clause deletion, validation costs
can be two orders of magnitude larger on reasonable-sized proofs. The achievable
speed-up factor increases for larger proofs.

A DRAT derivation is a sequence of proof steps that consists for each step i
of a clause Ci and a modification mi ∈ {a, d}. Applying a DRAT derivation of
n steps to a CNF formula ©0 results in ©n by applying each step in the order
in which they occur in the derivation. A DRAT derivation of n steps is valid for
a given formula ©0 if for all steps i ∈ {1..n} holds that Ci has RAT on a l ∈ Ci

w.r.t. ©i−1 if mi = a and Ci occurs in ©i−1 if mi = d. Consider the proof:

©0
m1(C1)−−−−−−→ ©1

m2(C2)−−−−−−→ ©2 . . . ©n−1
mn(Cn)−−−−−−→ ©n

1 All solver techniques can be expressed as a RAT derivation. For some techniques,
such as symmetry-breaking, the construction of a RAT derivation is complex [20].
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We say, the proof � = m1(C1)m2(C2) · · · mn(Cn) gives a derivation from ©0 to
©n, or in symbols

©0

�
︷ ︸︸ ︷
m1(C1)m2(C2) . . . mn(Cn)−−−−−−−−−−−−−−−−−−−−−−→ ©n or ©0

�−−→ ©n

We also represent rules as a triple containing: a pre-CNF ©pre, a proof �, and
a post-CNF ©post, denoting that proof � is a derivation from ©pre to ©post.

Definition 1. (©pre,�,©post) is valid iff ©pre
�−−→ ©post is a derivation.

The addition of RAT clauses preserves satisfiability [14], as does the deletion of
any clause. Thus, we get the following soundness result for valid compositional
triples and derivations respectively.

Proposition 1. Given a valid composition triple (©pre,�,©post), if ©pre is
satisfiable then ©post is satisfiable as well.

In practice, we focus on the contrapositive, e.g., if ©post contains the empty
clause then ©pre is unsatisfiable, and we consider � to be a proof (refutation)
for the unsatisfiability of ©pre.

3.2 The Composition Rules

In this section, the notion of a satisfiability-preserving derivation, as defined in
the previous section, will be lifted to the compositional case.

In addition to the two base rules Add and Del, we propose two composition
rules which combine two compositional triples into one. The first rule Seq, short
for “sequential”, combines two compositional triples for which the post-CNF of
one triple equals the pre-CNF of the other triple. The second rule Par, short
for “parallel”, combines two compositional triples for which the two pre-CNFs
are equal. Visualizations of the Seq rule Par rule can be found in Fig. 2.

The Seq rule has no preconditions and can be used for any two valid compo-
sitional triples for which one pre-CNF is equal to the other post-CNF. We will
use this rule to develop a method to validate DRAT derivations in parallel. The
soundness result for Seq follows directly from the definition of how proofs are
concatenated and formulas are joined.

Proposition 2. Given two valid compositional triples as antecedents, then the
Seq rule produces a valid compositional triple as consequent.

Note that validity of a compositional triple is still defined in terms of basic
derivations which are sequences of addition and deletion steps. Thus these com-
positional rules allow one to generate a basic derivation from a “compositional
proof”, which in turn is sound.

The Par rule expresses how to merge DRUP (not DRAT) derivations which
are obtained by running multiple solvers running on the same pre-CNF in par-
allel. Notice that the merged derivation by the Par rule start with a copy of
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Fig. 2. Visualization of Seq and Par rules (S = Solve, F = Fork, J = Join). A solver
(S) takes a formula as input and produces a modified formula as well as a derivation
that describes the modifications. Forking (F) can be used to let two solvers work on
the same formula. Internally this means that the formula is duplicated. If all added
clauses preserve logical equivalence (DRUP), the resulting formulas can be joined (J).

the pre-CNF. The pre-CNF is included because both derivations may delete the
same clause from the original formula.

Notice that the DRUP proof ©0 �1 �2 in the conclusion of the Par rule
cannot be replaced by �1 ©0 �2, because �1 may have eliminated clauses from
©0 in such a way that a clause C ∈ ©0 no longer has DRUP w.r.t. ©1. For
example consider an unsatisfiable formula ©0, let ©1 be the empty formula, and
let �1 simply remove all clauses from ©0 (without adding anything). Clearly,
�1©1 is a valid DRUP proof for ©0 as it contains only deletion information.
However, it is not possible to create a valid DRUP proof by appending ©0 to
�1©1 because ©1 is satisfiable and ©0 unsatisfiable.

Proposition 3. Given two valid compositional triples as antecedents with
DRUP proofs, then the Par rule produces a valid compositional triple with DRUP
proof as consequent.

Proof. (sketch) All the added ©0 clauses in the combined proof are valid DRUP
clauses (since they occur in the pre-CNF ©0 and are even subsumed). Further
note, that DRUP is monotonic, in the sense, that if a clause has the DRUP
property w.r.t. © it will also have DRUP w.r.t. all ©′ with © ⊆ ©′ (as multi-
sets). Thus adding ©0 in front of �1 does not destroy the property of �1 to
be a derivation. Because we use a multi-set interpretation for formulas all the
clauses in �1 are still in the intermediate formula reached after the sub-proof
©0�1 and �2 just works as before, also keeping all the derived ©1 clauses in
the post-CNF in addition to deriving all its own ©2 clauses. 
�
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The above argument does not hold for DRAT proofs (instead of DRUP), because
DRAT is not monotonic: A clause C can have RAT w.r.t. a formula F , but not
with respect to F ∧ G for some formula G. Hence, �1 may add a clause which
breaks the RAT property of a clause addition step in �2.

As an optimization, to avoid the duplication of the original clauses in the Par
rule, one can consider a modified rule, which has a side condition that neither
�1 nor �2 eliminate clauses from ©0.

4 Parallel Proof Checking

Existing tools to validate clausal proofs, such as DRATtrim [9] and our new
proof checker DRABT, can check proofs of reasonable size (dozens of gigabytes)
efficiently (within in a day). Yet existing tools are not well-equipped to deal with
huge proofs because they keep the full proof in memory and validation is done
on a single core. In this section, we present a method to validate DRAT proofs
in parallel effectively with only a few changes to existing proof-checking tools.

4.1 Proofs Checking Optimizations

There are several optimizations that make the efficient, serial validation of clausal
proofs possible. The most significant gains can be realized by exploiting deletion
information in proofs. Ignoring deletion information can increase the validation
costs by two orders of magnitude on reasonable-sized proofs of say several giga-
bytes [10,21]. We will provide an example of the impact of deletion information
on the validation costs in the introduction of Sect. 7.

One, so far unpublished, optimization in DRATtrim and DRABT is ignoring
deletion information of unit clauses or pseudo-unit clauses, i.e., clauses that have
become unit under the top-level assignment. For example, (a) is a unit clause
in formula F := (a) ∧ (ā ∨ b), while (ā ∨ b) is a pseudo-unit clause. Deleting
(pseudo-)unit clauses during proof checking can be very costly as the checker
has to unassign all variables and compute a new top-level assignment. When a
proof claims to show unsatisfiability, the deletion of unit clauses is not useful.

Enhancing a clausal proof with deletion information can be somewhat tricky.
While working on this paper, we discovered that there is a bug in the proof
logging of several CDCL SAT solvers. The bug is caused by deleting pseudo-unit
clauses without first adding the corresponding unit clauses to the proof. Due
to this bug, many clausal proofs produced by these solvers are invalid, which
would have been reported by the checker if it did not ignore the deletion of
(pseudo-)unit clauses. We even observed cases where the intermediate formula
becomes satisfiable after the invalid deletion of a pseudo-unit clause. Appendix A
offers details and a fix for this bug for the SAT solver Glucose.

4.2 Backward Checking of Derivations

The validation of a clausal proof for a given formula requires checking the validity
of each clause addition step, i.e., the precondition of the Add rule. This can be
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implemented using forward checking: go over the proof from the start to end,
modify the formula at each step, and check the validity of addition steps.

A refutation can also be validated using backward checking [8]: First, mark
the empty clause as a core lemma, i.e., a lemma that needs to be validated.
Second, process the proof in reverse order and only validate the addition of
core lemmas, assuming that all added lemmas occurring earlier in the proof —
and that are not deleted prior to the checked core lemma — can be validated.
Checking a core lemma may mark other lemmas occurring earlier in the proof as
core. Successful backward checking does not imply that the original proof was
valid, but that a new valid proof was obtained that consists of the sequence of
added and deleted core lemmas. The order of the lemmas in the new proof will
match the order of the lemmas in the original proof. Backward checking enables
optimizating deletion information, i.e., the clause deletion steps in the proof [21].

Backward checking can be generalized for arbitrary derivations to check the
validness of compositional triples efficiently. Instead of marking the empty clause
as core, initially all lemmas occurring in the derivation that are not deleted will
be marked as core. Furthermore, it is allowed to unmark a marked lemma if it is
subsumed by another marked lemma or by a clause in the pre-CNF which will not
be deleted. This can be computed efficiently using backward subsumption [22].
Notice that when this restriction is applied, backward checking for refutations is
unaffected, because the empty clause subsumes all other lemmas. Recall, success-
ful backward checking does not guarantee that the original derivation is valid,
but only that a new valid derivation was obtained.

4.3 Parallel Proof Checking via Seq Rule

The Seq rule provides an elegant method for validating DRAT proofs in parallel:
given a CNF formula ©0 and DRAT refutation �, partition � into k derivations
such that �1�2. . . �k = �. Second, compute the pre- and post-CNFs ©i, where
©i denotes the result of applying derivation �i to formula ©i−1. Notice that
this cannot be done in parallel because the computation of ©i+1 depends on the
existence of ©i. Finally, check that all (©i−1,�i,©i) with i ∈ {1..k} are valid
compositional triples and that ε ∈ ©k. When all checks are successful, the Seq
rule states that � is a valid refutation for ©0. Below it is shown in symbols how
to deduce the validness of refutation � by applying the Seq rule k − 1 times:

©0
�1−−−→ ©1 ©1

�2−−−→ ©2 . . . ©k−1
�k−−−→ ε

©0
�1�2...�k−−−−−−−−→ ε

4.4 Validating the Post-CNF

One method to check that (©pre,�,©post) is a valid compositional triple is to
check that � is a valid derivation for ©pre and assumes that the computation
of the ©post was done correctly. As partitioning problems can easily result in
errors, confidence in the correctness of the complete proof checking chain can be
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improved by fully validating compositional triples. One can explicitly check that
©post is derived from ©pre by applying �. This is implemented in our checker
DRABT by hashing, which requires ©post to be provided as a third input file.

Alternatively, one can increase confidence in the tool chain by checking that
�©post is a valid derivation for ©pre. This validates that there exists a valid
compositional triple (©pre,�′,©post) and the checker should able to produce
�′. In practice, appending � with ©post can significantly increase the costs
of validating proofs as many clauses in post-CNF ©post occur also in pre-CNF
©pre. Validating such clauses will mark the equivalent clauses in the pre-CNF as
core, which will obstruct the core-first optimization of proof checking [21]. If the
computation of the post-CNFs was done correctly, all clauses in the post-CNFs
will be unmarked and hence not be validated.

5 Parallel Proof Generation

Traditionally, proof generation has only been supported by non-parallel SAT
solvers. A recent study [11] presented an approach to construct clausal proofs
from clause-sharing portfolio parallel SAT solvers. The proofs constructed with
that method were very costly to validate. In this section, we present a method
to construct clausal proofs from parallel SAT solvers based on the cube-and-
conquer paradigm, such as march cc+iLingeling. The experimental evaluation
shows that these proofs can be validated in parallel efficiently.

In short, cube-and-conquer solvers consist of two parts: a lookahead (or cube)
solver and a CDCL (or conquer) solver. First, the cube solver partitions the
problem into many subproblems, frequently millions. Each of the subproblems is
represented by a cube, i.e., a conjunction of literals. In the second phase, one or
more CDCL solvers will use these cubes to guide their search. Clauses learned
while solving a cube are typically not useful for solving other cubes. One can
solve cubes massively in parallel and obtain almost a linear time speed-up with
the number of solvers — assuming that there are as many cores as solvers.

We now show how to construct a DRUP refutation for cube-and-conquer
solvers. First, the cube solver computes cubes for the input formula. guide the
conquer solvers. Assume that we have k conquer solvers Si with i ∈ {1..k}.
Each solver Si gets a set of cubes ©i. After solver Si refutes all of its cubes, it
generates a DRUP proof �i that expresses how to produce all clauses ©i from
the original formula ©0 and deletes all the other learned and original clauses.
Then, a refutation is computed for the conjunction of all cubes ©1 ©2 . . . ©k,
the conquer proof �c.

The composition rules explain how to merge these derivations in a refutation
for the input formula. First, all �i derivations are merged using the Par rule, by
starting with the k−1 copies of the input formula and adding the concatenation
of the derivations. Second, the merged derivation is combined with the conquer
proof using the Seq rule.
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©0
�1−−−→ ©1 ©0

�2−−−→ ©2 . . . ©0
�k−−−→ ©k

©0
©0...©0�1�2...�k−−−−−−−−−−−−−−→ ©1 ©2 . . . ©k ©1 ©2 . . . ©k

�c−−→ ε

©0
©0...©0�1�2...�k�c−−−−−−−−−−−−−−−−→ ε

6 Tools

We have implemented several tools to support compositional proof generation
and validation, which are available at www.cs.utexas.edu/∼marijn/cpp and at
http://fmv.jku.at/drabt. The DRATtrim proof checking tool [9] was enhanced
to support backward checking [8] for arbitrary DRAT derivations. The previous
version only supported backward checking of refutations. We improved the speed
of validating DRAT derivations by unmarking all lemmas that are subsumed by
other marked lemmas or undeleted clauses in the pre-CNF, see Sect. 4.2.

We also added a new feature, called proof application, to DRATtrim: Given an
input formula (the pre-CNF) and a DRAT proof , the tool computes the post-
CNF formula that would be the result of applying the proof to pre-CNF. In other
words, the post-CNF contains all clauses in pre-CNF that are not deleted in the
proof together with all lemmas in proof that are added (and not deleted). Proof
application facilitates parallel proof checking via the Seq rule, see Sect. 4.3.

To further increase confidence in the results, the second author independently
implemented a new clausal proof checker, called DRABT. The current version
of DRABT supports forward checking of DRUP proofs and implements checking
validity of compositional triples natively in contrast to DRATtrim which checks
it implicitly by appending the post-CNF to the proof. The DRABT tool puts
also much more focus on proper error messages as well as improved diagnostic
capabilities if an error occurs. It is, however, missing core generating features.

The SAT solver march cc [12] can be used in a cube-and-conquer setting to
produce cubes to guide a conquer solver. We had to slightly change march cc
in order to use it for compositional propositional proofs. The change consists
of extending the cube output with all the branches that march cc was able to
refute using lookahead techniques. Without those cubes, the cube output does
not cover the entire search space — which would cause the proof checker to fail.
We observed that the cubes which can be refuted by lookahead techniques are
also easy for a CDCL solver to refute. Consequently, adding these cubes to the
cube output hardly increases the overall performance.

The CDCL solver iLingeling [12] is a parallel SAT solver that solves bench-
marks in the iCNF format2, which combines a CNF formula with a sequence of
cubes that guide the solver. We extended iLingeling with DRUP proof logging
support. The iLingeling solver runs multiple Lingeling solvers in parallel and
guides them using the cubes. Each of these Lingeling solvers emits its own
DRUP proof. Additionally, a separate Lingeling solver computes a proof for
the cube file, the so-called conquer proof.

2 see http://www.siert.nl/icnf/ for details.

www.cs.utexas.edu/~marijn/cpp
http://fmv.jku.at/drabt
http://www.siert.nl/icnf/
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7 Evaluation

In this section, we evaluate parallel proof generation based on the Par rule and
parallel proof validation based on the Seq rule. All experiments were performed
on the Stampede cluster of the Texas Advanced Computing Center (TACC)
which has two 8-core Xeon E5 processors and 32 GB of memory per node.

Before describing the experiments, we want to reiterate the importance of
deletion information in clausal proofs: on the smaller proofs discussed in this
section, ignoring the deletion information would increase the validation costs by
a factor of 20. For the large proofs, this increases to two orders of magnitude.

7.1 Parallel Compositional Proof Checking

We evaluated our parallel proof checking method on some existing DRAT proofs
focusing on the speed-up in wall-clock time. Our method consists of multiple
phases, some of which can be parallelized while other cannot. The first phase
is partitioning a given proof � into k derivations: �1, . . . ,�k. This can simply
be realized by the Unix utility split, the computational costs of which are
practically ignorable. In the second phase, we need to compute the pre- and
post-CNFs for proof checking, which is performed by DRATtrim using the new
“proof application” mode. As described in Sect. 4.3, this part cannot be done in
parallel. However, one could preprocess the derivations in parallel by removing
all lemmas that are added and deleted within the same partial proof, because
these lemmas will not influence the creation of the pre- and post-CNFs. Since
most lemmas are added and deleted in the same proof, such preprocessing could
significantly reduce the cost of this phase. This is not yet implemented. The
third phase consists of checking that all (©i−1,�i,©i) are valid compositional
triples. We checked all proofs running k = 16 DRATtrim executables in parallel
in the default mode, which validates a partial proof using backward checking
and checks the post-CNFs implicitly via subsumption.

Table 1 shows the usefulness of parallel proof checking of proofs express-
ing symmetry-breaking techniques3. There are several interesting observations.
First, the speed-up of checking derivations in parallel (on a 16-core machine)
compared to checking them in serial is about a factor of nine on all instances
when ignoring the initialization cost of splitting the proof and computing the
pre- and post CNF. Taking these costs into account clearly reduces the speed-
up on the smaller proofs. However, parallel proof checking is only interesting
for large proofs. Second, checking derivations sequentially is more costly than
checking the original refutation if the proofs are small. However, for the larger
proofs the opposite happens. Third, computing the pre- and post-CNFs is quite
costly for small proofs, but becomes relatively cheaper for larger proofs.

3 available on http://www.cs.utexas.edu/∼marijn/sbp/.

http://www.cs.utexas.edu/~marijn/sbp/
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Table 1. Sequential versus parallel proof checking of DRAT proofs expressing
symmetry-breaking techniques. The first column shows the benchmark name. The
second and third column shows size of the original proof (in MB) and the DRATtrim

checking time (in seconds). The fourth and fifth column show the time to split the
proofs and to compute the pre- and post-CNFs, respectively. The last four columns
show the costs to validate the derivations, sequentially, in parallel, and the speed-up
with and without initialization costs on a 16-core machine.

benchmark size DRATtrim split CNFs seq-chk par-chk seq+init
par+init

seq
par

EDP2 1161 2,180.98 3331.73 2.91 85.70 3288.78 455.93 6.20 7.21

R 4 4 18 20.01 2.55 0.04 1.91 4.19 0.43 2.58 9.74

tph6 2.78 0.61 0.01 1.25 2.03 0.22 2.22 9.23

tph7 5.09 1.30 0.02 1.39 2.70 0.29 2.41 9.31

tph8 10.68 2.98 0.03 1.61 4.29 0.46 2.82 9.32

tph9 34.18 6.17 0.04 1.98 7.33 0.83 3.28 8.83

tph10 19.86 11.78 0.06 2.51 12.67 1.32 3.92 9.60

tph11 56.49 22.96 0.09 3.39 22.64 2.85 4.13 7.94

tph12 92.29 39.42 0.15 4.73 39.07 3.89 5.01 10.04

7.2 Parallel Proof Generation

For the evaluation of parallel proof generation based on the Par rule, we used the
cube-and-conquer solver march cc+iLingeling. We picked a notoriously hard
benchmark eq.atree.braun.12.unsat.cnf which has been used in several SAT
competitions. This formula is a miter (a circuit equivalence-checking benchmark)
which cannot be solved by sequential SAT solvers in hours and by very few
parallel SAT solvers.

Figure 3 shows the results of the experiments, which were performed on a
16-core cluster node using 1, 2, 4, 8, or 16 cores. The solving process time is
very stable, close to 6,000 seconds. The wall-clock solving time of the conquer
phase by iLingeling almost scales linearly in the number of cores. iLingeling
emits a separate proof for each used Lingeling solver (one per core). For the
experiment with k cores, each core validated one compositional triple consisting
of the original formula (as pre-CNF), one of the proof files, and the precomputed
post-CNF based on the pre-CNF and the proof. The size of the full proof is the
concatenation of all these proofs together with the duplication of the original
clauses due to the Par rule.

We validated the proofs with both DRABT and DRATtrim. Figure 3 reports the
DRATtrim times. The Drabt times, both process and wall-clock, were about twice
as long. Notice that both the process and wall-clock time significantly drop when
increasing the number of cores. The process time decreases by about a factor
of 1.5 when doubling the number of cores. For the wall-clock time, the speed-
up is close to a factor of 3 when doubling the number of cores. This indicates a
super-linear speed-up to validate proofs. Apparently, DRATtrim slows down when
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Fig. 3. A log-log plot of the effect of the number of cores (x-axis) on the wall-clock
and process time (y-axis in seconds) to solve eq.atree.braun.12.unsat.cnf using
march cc+iLingeling and validate the emitted proof in parallel using DRATtrim. All
experiments were performed on a single 16-core cluster node.

dealing with larger and larger proofs. This may be caused by an increase in the
number of cache misses. Studying the reasons for the super-linear speed-up will
be focus of future research.

8 Conclusion

SAT solvers have recently been used to tackle long-standing open problems.
These problems are frequently solved in a massively parallel setting without
emitting proofs to validate these results. Clausal proofs with deletion informa-
tion are easy to emit from state-of-the-art, non-parallel SAT solvers, they are
relatively compact, and they can be checked in a reasonable amount of time.
However, for long-standing open problems, we need to construct clausal proofs
of solvers based on arguably the most effective parallel SAT solving paradigm:
cube-and-conquer. Additionally, we need tools to validate these proofs in parallel
and bridge the gap between the solving and validation costs.

We presented the concept of compositional clausal proofs with deletion infor-
mation. Following this concept, we developed and implemented an algorithm to
validate clausal proofs in parallel effectively. Moreover, we show how to obtain
clausal proofs from cube-and-conquer solvers and demonstrate how to validate
those proofs in parallel. The experiments show that the speed-up can be super-
linear in the number of cores.

Acknowledgements. The authors thank Nathan Wetzler for his helpful comments to
improve the paper and acknowledge the Texas Advanced Computing Center (TACC)
at The University of Texas at Austin for providing grid resources that have contributed
to the research results reported within this paper.
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A Proof-Logging Bug in CDCL Solvers

We observed a bug in the clausal proof logging of Glucose version 3.0, which
actually occurs in all MiniSAT-based solvers — which is the majority of state-
of-the-art solvers these days. The bug consists of deleting pseudo-unit clauses.
This bug can simply be fixed by adding the following lines to Solver.cc:

if (certifiedUNSAT)
for (int i = 0; i < c.size(); i++)

if (reason(var(c[i])) == cr && level(var(c[i])) == 0)
return;

just below the beginning of the removeClause procedure

void Solver::removeClause(CRef cr) {
Clause& c = ca[cr];
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Abstract. We present a new interpreter for λProlog that runs consis-
tently faster than the byte code compiled by Teyjus, that is considered
the best available implementation of λProlog. The key insight is the
identification of a fragment of the language, which we call reduction-free
fragment (Lβ

λ), that occurs quite naturally in λProlog programs and that
admits constant time reduction and unification rules.

1 Introduction

λProlog is a logic programming language based on an intuitionistic fragment of
Church’s Simple Theory of Types. An extensive introduction to the language
with examples can be found in [9]. Teyjus [7,10] is a compiler for λProlog that
is considered to be the fastest implementation of the language. The main dif-
ference with respect to Prolog is that λProlog manipulates λ-tree expressions,
i.e. syntax containing binders. Therefore, the natural application of λProlog is
meta-programming (see [11] for an interesting discussion), including: automatic
generation of programs from specifications; animation of operational semantics;
program transformations and implementation of type checking algorithms.

Via the Curry-Howard isomorphism a type-checker is a proof-checker, the
main component of an interactive theorem prover (ITP). The motivation of our
interest in λProlog is that we are looking for the best language to implement
the so called elaborator component of an ITP. The elaborator is used to type
check the terms input by the user. Such data, for conciseness reasons, is typically
incomplete and the elaborator is expected to infer what is missing. The possi-
bility to extend Coq’s built-in elaborator with user provided “logic programs”
(in the form of Canonical Structures [1,4] or Type Classes [12]) to help it infer
the missing data, turned out to be a key ingredient in successful formalizations
like [3]. Embedding a λProlog interpreter in an ITP would enable the elaborator
and its extensions to be expressed in the same, high level, language. A crucial
requisite for this plan to be realistic is the efficiency of the λProlog interpreter.

In this paper we introduce ELPI, a fast λProlog interpreter written in OCaml
that can be easily embedded in OCaml softwares, like Coq. In particular we focus
on the insight that makes ELPI fast when dealing with binders by identifying a
reduction-free fragment (Lβ

λ) of λProlog that, if implemented correctly, admits
c© Springer-Verlag Berlin Heidelberg 2015
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constant-time unification and reduction operations. We analyze the role of
β-reduction in Sect. 2 and higher order unification in Sect. 3; we discuss bound
names representations in Sect. 4; we define Lβ

λ in Sect. 5 and we assess the results
in Sect. 6.

2 The Two Roles of β-reduction in λProlog

Example 1 implements type-checking and reduction for λ-terms represented in
λ-tree syntax. For instance, the object-level encoding of (λx.xx) is the term
(lam (x\ app x x)) of type T . The syntax (x\ F) denotes the λ-abstraction
of λProlog, that binds x in F; lam is the constructor for object-level abstraction,
that builds a term of type T from a function of type T → T ; app takes two
terms of type T and builds their object-level application of type T . Following
the tradition of Prolog, capitals letters denote unification variables.

The second clause for the of predicate shows a recurrent pattern in λProlog:
in order to analyze an higher order term, one needs to recurse under a binder.
This is achieved combining the forall quantifier, written pi x\ G, with logical
implication H => I. The operational semantics implements the standard intro-
duction rules of implication and the universal quantifier: the forall quantifier
declares a new local constant x, meant to be fresh in the entire program; logical
implication temporarily augments the program with the new axiom H about x.

In Example 1, line 4, the functional (sub-)term F is applied to the fresh con-
stant x. Since F is a function, the β-redex (F x), once reduced, denotes the body
of our object-level function where the bound variable is replaced by the fresh con-
stant x. The implication is used to assume A to be the type of x, in order to prove
that the body of the abstraction has type B and therefore the whole abstraction
has type (arr A B) (i.e. A → B). Note that, unlike in the standard presentation
of the typing rules, we do not need to manipulate an explicit context Γ to type
the free variables. Instead the assumptions of the form (of x A) are just added
to the program’s set of clauses, and λProlog takes care of dropping them when
x goes out of scope. Example: if the initial goal is (of (lam (w\ app w w)) T)
by applying the second clause we assign (arr A B) to T and generate a new
goal (of (app c c) B) (where c is the fresh constant substituted for w) to be
solved with the extra clause (of c A) at disposal.

In the type-checking example, the meta-level β-reduction is only employed
to inspect a term under a binder by replacing the bound name with a fresh
constant. The reduction example in line 6 shows instead a radically different

1 of (app M N) B :-

2 of M (arr A B), of N A.

3 of (lam F) (arr A B) :-

4 pi x\ of x A => of (F x) B.

5 cbn (lam F) (lam F).

6 cbn (app (lam F) N) M :- cbn (F N) M.

7 cbn (app M N) R :-

8 cbn M (lam F), cbn (app (lam F) N) R.

Example 1: Type checker and Weak CBN for simply typed λ-calculus.
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pattern: in order to implement object-level substitution — and thus object-level
β-reduction — we use the meta-level β-reduction. E.g. if F is (w\ app w w) then
(F N) reduces to (app N N). Note that in this case β-reduction is fully general,
because it replaces a name with a general term, not constrained to be a fresh
constant. This distinction is crucial in the definition of Lβ

λ in Sect. 5.

3 Higher Order Unification

Higher order (HO) unification admits no most general unifiers (MGUs), forcing
implementations to enumerate all solutions or delay the flexible-rigid and the
flexible-flexible problems. Moreover, the presence of binders requires a way to
avoid captures, i.e. to check that unification variables are instantiated with terms
containing only bound variables in their scope.

To cope with the absence of MGUs, Dale Miller identified in [8] a well-
behaved fragment (Lλ) of higher-order unification that admits MGUs and that
is stable under λProlog resolution. The restriction defining Lλ is that unification
variables can only be applied to (distinct) variables (i.e. not arbitrary terms)
that are not already in the scope of the variable. Such fragment can effectively
serve as a primitive for a programming language and indeed Teyjus 2.0 is built
around this fragment: no attempt to enumerate all possible unifiers is performed,
and unification problems falling outside Lλ are just delayed. Many interesting
λProlog programs can be rewritten to fall in the fragment. For example, we can
make cbn of Example 1 stay in Lλ by replacing line 6 (that contains the offending
(F N) term) with the following code:

1 cbn (app (lam F) N) M :- subst F N B, cbn B M.

2 subst F N B :- pi x\ copy x N => copy (F x) B.

3 copy (lam F1) (lam F2) :- pi x\ copy x x => copy (F1 x) (F2 x).

4 copy (app M1 N1) (app M2 N2) :- copy M1 M2, copy N1 N2.

The idea of subst is that the term F is recursively copied in the following way:
each bound variable is copied in itself but for the top one that is replaced by N.
The interested reader can find a longer discussion about copy in [9, page 199].
The of program falls naturally in Lλ, since F is only applied to the fresh variable x
(all unification variables in a λProlog program are implicitly existentially bound
in front of the clause, so F does not see x). The same holds for copy.

In λProlog unification takes place under a mixed prefix of ∀ and ∃ quantifiers.
Their order determines if a unification variable (an existential) can be assigned
to a term that contain a universally quantified variable. E.g. ∀x,∃Y, Y = x is
provable while ∃Y,∀x, Y = x is not. An implementation can keep track of the
scoping constraints using levels. When a clause’s head is unified with the goal
in a context of length n, the universally quantified variables of the clause are
instantiated to unification variables Xn where the level n records that X has
only visibility of the initial prefix of length n of the context. If later a fresh
constant is added by the pi rule, the constant occupies position n+1 (its level is
n + 1) and it will not be allowed to occur in instances of the variable Xn. From
now on we will write levels in superscript.
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If we run the program (of (lam f\lam w\app f w) T0), after two steps
the goal becomes (of (app c1 d2) B0). Concretely, Teyjus replaces the bound
names f and w with the level-annotated fresh constants c1 and d2 performing
the β-reductions. As a crucial optimization [7] Teyjus implements reductions in a
lazy way using an explicit substitution calculus. The reader can find this example
developed in full details at page 6, where we demonstrate how substitutions of
bound names by fresh level-annotated constants can be avoided in Lβ

λ.

4 Bound Variables

The last missing ingredient to define Lβ
λ and explain why it can be imple-

mented efficiently is to see how systems that manipulate λ-terms accommodate
α-equivalence. Bound variables are not represented by using real names, but
canonical “names” (hence α-equivalence becomes syntactic equality). De Bruijn
introduced two, dual, naming schemes for λ-terms in [2]: depth indexes (DBI)
and levels (DBL). In the former, that is the most widely adopted one, a variable
is named n if its binder is found by crossing n binders going in the direction
of the root. In the latter a variable named n is bound by the n-th binder one
encounters in the path from the root to the variable. Below we write the term
λx.(λy.λz.f x y z) x and its reduct in the two notations:

Indexes: λx.(λy.λz.f x2 y1 z0) x0 →β λx.λz.f x1 x1 z0
Levels: λx.(λy.λz.f x0 y1 z2) x0 →β λx.λz.f x0 x0 z1

In both notations when a binder is removed and the corresponding variable
substituted some “renaming” (called lifting) is performed. Teyjus follows a third
approach that mixes the two, using indexes for variables bound in the terms,
and levels for variables bound in the context. The advantage is that no lifting is
required when moving a term under additional binders. However, an expensive
substitution of a level for an index is required to push a binder to the context.

In ELPI we crucially chose DBL because of the following three properties:

DBL1 xi in Γ keeps the same name xi in any extended context Γ,Δ
DBL2 the variables bound by Γ in a β-redex keep their name in the reduct
DBL3 when a binder is pushed to the context, the bound occurrences keep their

name: no lifting is required to move from Γ � ∀xi, p(xi) to Γ, xi � p(xi)

Another way to put it is that variables already pushed in the context are
treated exactly as constants, and that the two notions of level — De Bruijn’s
and the position in the context introduced in Sect. 3 — coincide.

5 The Reduction-Free Fragment Lβ
λ

λProlog is a truly higher order language: even clauses can be passed around,
unified, etc. Nevertheless this plays no role here, so we exclude formulas from
the syntax of terms. Therefore, our terms are defined just by:

t : : = xi | Xj | λxi.t | t t



464 C. Dunchev et al.

Since variables follow the DBL representation, we do not have a case for con-
stants like app or lam, that are represented as xi for some negative i. Since the
level of a variable completely identifies it, when we write xi . . . xi+k we mean
k distinct bound (i.e. i ≥ 0) variables. The superscript j annotates unification
variables with their visibility range (0 ≤ j, since all global constants are in
range). A variable Xj has visibility of all names strictly smaller than j. E.g. X1

has visibility only of {. . . , x−1, x0}, and X3 has visibility of {. . . , x−1, x0, x1, x2}.
Technically, when following the De Bruijn convention, we could just write λxi.t
as λ.t. We keep writing the name xi to ease reading.

Definition 1 (Lβ
λ). A term is in the reduction-free fragment Lβ

λ iff every occur-
rence of a unification variable Xj is applied to xj . . . xj+k−1 for k ≥ 0.

We allow k = 0 to accept variables that are not applied. A consequence of
the definition is that if a term is in Lβ

λ then all occurrences of applications of
unification variables can be instantiated with a term closed in an initial segment
of the λProlog context seen as a ordered list. Examples: X2 x2 x3 and X2 are in
the fragment; X2 x3 and X2 x3 x2 are not; X2 x2 x3 can be instantiated with
any term closed in {. . . , x0, x1, x2, x3}.

Observe that the programs in Example 1 (when cbn is rewritten to be in
the pattern fragment as in Sect. 3) are in Lβ

λ. Also, every Prolog program is in
Lβ

λ. As we will see in Sect. 6, a type-checker for a dependently typed language
and evaluator based on a reduction machine are also naturally in Lβ

λ. Thus, in
practice, the fragment is quite expressive and is expressive enough to specify a
realistic verifier, a first step towards the specification of a full-fledged elaborator.

Property 1 (Decidability of HO Unification). Being Lβ
λ included in the

pattern-fragment Lλ, higher order unification is decidable for Lβ
λ.

The most interesting property of Lβ
λ, which also justifies its name, is:

Property 2 (Constant Time Head β-Reduction). Let σ be a valid substi-
tution for existentially quantified variables. Then the first k − 1 head reductions
of (Xj xj . . . xj+k−1)σ can be computed in constant time.

A valid substitution assigns to Xj a term t of the right type (as in simply
typed λ-calculus) and such that the free variables of t are all visible by Xj (all
xi are such that i < j). Therefore Xjσ = λxj . . . . λxj+n.t for some n. Then

(Xj xj . . . xj+k−1)σ =
{

t xj+n+1 . . . xj+k−1 if n + 1 < k
λxj+k. . . . λxj+n.t otherwise (1)

Thanks to property DBL2, Eq. 1 is syntactical : no lifting of t is required. Hence
the β-reductions triggered by the substitution of Xj take constant time.

Property 3 (Constant Time Unification). A unification problem of the
form Xj xj . . . xj+k−1 ≡ t can be solved in constant time when no occur-check
is needed for X.
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The unification problem Xj xj . . . xj+k−1 ≡ t can always be rewritten as
two simpler problems: Xj ≡ λxj . . . . λxj+k−1.Y

j+k and Y j+k ≡ t for a fresh
Y . The former is a trivial assignment that requires no check. The latter can be
implemented in constant time iff no occur-check is needed for X and if the level
of the highest free variable in t can be recovered in O(1) and is smaller than j+k.
The recovery can be economically implemented caching the maximum level in
the term, that is something often pre-computed on the input term in linear time.
Avoiding useless occur-check is a typical optimization of the Warren Abstract
Machine (WAM), e.g. when X occurs linearly in the head of a clause. These
properties enable us to implement the operational semantics of pi in constant
time for terms in Lβ

λ.
We detail an example. The first column gathers the fresh constants and extra

clauses. The second one shows the current goal(s) and the program clause that
is used to back chain.

Test ELPI Teyjus ELPI/Teyjus

time (s) space (Kb) time (s) space (Kb) time space

crypto-mult 3.48 27,632 6.59 18,048 0.52 1.53

µ-puzzle 1.82 5,684 3.62 50,076 0.50 0.11

queens 1.41 108,324 2.02 69,968 0.69 1.54

zebra 0.85 7,008 1.89 8,412 0.44 0.83

typeof 0.27 8,872 5.64 239,892 0.04 0.03

reduce cbv 0.15 7,248 11.11 57,404 0.01 0.12

reduce cbn 0.33 8,968 0.81 102,896 0.40 0.08

SKI 1.32 15,472 2.68 8,896 0.49 2.73

After the first step we obtain F0:= x0 \lam x1\app x0 x1; T0:= arr A0 B0;
the extra clause about x0 in the context and a new subgoal. Thanks to property
DBL3, x0 has been pushed to the context in constant time. Note that the
redex (F0 x0) is in Lβ

λ and thanks to Eq. 1 head normalizes in constant time to
(lam x1\app x0 x1). The same phenomenon arises in the second step, where
we obtain G1:= x1 \app x0 x1 and we generate the redex (G1 x1). Unification
variables are refreshed in the context under with the clause is used, e.g. C is
placed at level 1 initially, but in consequence to a unification step they may be
pruned when occurring in a term assigned to a lower level unification variable.
Example: unifying B0 with (arr C 1 D1) prunes C and D to level 0.

The choice of using DBL for bound variables is both an advantage and a com-
plication here. Clauses containing no bound variables, like (of x0 A0), require
no processing thanks to DBL1: they can be indexed as they are, since the name
x0 is stable. The drawback is that clauses with bound variables, like the one used
in the first two back chains, need to be lifted: the first time the bound variable is
named x0, while the second time x1. Luckily, this renaming, because of property
DBL1, can be performed in constant time using the very same machinery one
uses to refresh the unification variables. E.g. when the WAM unifies the head
of a clauses it assigns fresh stack cells: the clause is not really refreshed and
the stack pointer is simply incremented. One can represent the locally bound
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variable as an extra unification variable, and initialize, when pi is crossed, the
corresponding stack cell to the first xi free in the context.

Stability of Lβ
λ. Unlike Lλ, Lβ

λ is not stable under λProlog resolution: a clause
that contains only terms in Lβ

λ may generate terms outside the fragment. There-
fore an implementation must handle both terms in Lβ

λ, with their efficient com-
putation rules, and terms outside the fragment. Our limited experience so far,
however, is that several programs initially written in the fragment remains in
the fragment during computation, or they can be slightly modified to achieve
that property.

6 Assessment and Conclusions

We assess ELPI on a set of synthetic benchmarks and a real application. Syn-
thetic benchmarks are divided into three groups: first order programs from the
Aquarius test suite (crypto-multiplication, μ-puzzle, generalized eight queens
problem and the Einstein’s zebra puzzle); higher order programs falling in Lβ

λ;
and an higher order program falling outside Lβ

λ taken from the test suite of
Teyjus normalizing expressions in the SKI calculus.

The programs in Lβ
λ are respectively type checking lambda terms using the of

program of Example 1 and reducing expressions like 55 in the syntax of Church
numerals using a call by value/name (CBV/CBN) strategy. The typeof test was
specifically conceived to measure the cost of moving under binders: the type
checked terms, projections, are mainly made of lam nodes.

Test ELPI Teyjus ELPI/Teyjus

time (s) space (Kb) time (s) space (Kb) time space

crypto-mult 3.48 27,632 6.59 18,048 0.52 1.53

µ-puzzle 1.82 5,684 3.62 50,076 0.50 0.11

queens 1.41 108,324 2.02 69,968 0.69 1.54

zebra 0.85 7,008 1.89 8,412 0.44 0.83

typeof 0.27 8,872 5.64 239,892 0.04 0.03

reduce cbv 0.15 7,248 11.11 57,404 0.01 0.12

reduce cbn 0.33 8,968 0.81 102,896 0.40 0.08

SKI 1.32 15,472 2.68 8,896 0.49 2.73

The data in the table shows that ELPI shines on programs in Lβ
λ, and

compares well outside it. The alternating performance Teyjus on the reduc-
tion tests has to be attributed to the explicit substitutions (ES) machinery [7]
when employed to cross binders: by its very nature ES fit well a lazy reduction
strategy like CBN (even if some space overhead is visible). On the contrary ES
are counterproductive in the CBV case since the program, by fully traversing
the redex argument, systematically pushes the suspended substitution to the
leaves of the term, completely defeating the purpose of the entire machinery
(i.e. if the substitution has to be performed, there is no gain in delaying it). If
one makes Teyjus artificially push explicit substitutions in the CBN case too,
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it halves memory consumption but degrades the performances by 10 seconds,
confirming the time we see in the CBV case is dominated by the overhead of ES.
By avoiding substitution when crossing binders ELPI is not only faster, but also
more predictable performance wise: as one expects CBV is faster than CBN in
computing the normal form of 55 since it avoids duplicating non-normal terms.

The real application we present is a checker for the formal system λδ [5,6].
Such checker is able to validate the proof terms of the formalization of Lan-
dau’s “Grundlagen” [13] done in Automath. The reference checker for λδ, named
Helena, has been implemented in OCaml. Our λProlog implementation follows it
closely, and naturally falls in Lβ

λ. Nevertheless, the λProlog code is much simpler
than the corresponding OCaml code and consists of just 50 clauses.

The “Grundlagen” is a theory comprising definitions and proofs for a total
of 6911 items (circa 8MB of data). Teyjus seems to have a fixed maximum heap
size of 256MB that in turn limits it to the verification of the first 2615 items.
In the table we compare pre-processing (Pre) time like parsing, compilation or
elaboration, and verification (Ver). We compare ELPI with Helena, Teyjus, and
Coq. The Coq system implements a type checker for a λ-calculus strictly more
expressive than λδ, hence can check the proof terms directly but surely incurs
in some overhead. We use its timings as a reference for the order of magnitude
between the performance of ELPI and the ones of a state-of-the-art ITP. We
compare native code against interpreted code where applicable.

Time (s) for 2615 items only

ELPI Teyjus ELPI/Teyjus

Pre 2.55 49.57 0.05

Ver 3.06 203.36 0.02

RAM (Mb) 91,628 1,072,092 0.09

Time (s) for all 6911 items

Task Helena ELPI Coq

interp. comp. interp. interp. comp.

Pre 2.42 0.41 9.04 49.28 8.83

Ver 4.40 0.33 13.90 7.21 1.19

Our conclusion is that Lβ
λ admits a very efficient implementation and is large

enough to express realistic programs like a type checker for a dependently typed
λ-calculus. ELPI is under active development at http://lpcic.gforge.inria.fr.
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Abstract. Usual normalization by evaluation techniques have a strong
relationship with completeness with respect to Kripke structures. But
Kripke structures is not the only semantics that fits intuitionistic logic:
Heyting algebras are a more algebraic alternative.

In this paper, we focus on this less investigated area: how completeness
with respect to Heyting algebras generate a normalization algorithm for
a natural deduction calculus, in the propositional fragment. Our main
contributions is that we prove in a direct way completeness of natural
deduction with respect to Heyting algebras, that the underlying algo-
rithm natively deals with disjunction, that we formalized those proofs in
Coq, and give an extracted algorithm.

1 Introduction

In logic, a restriction to cut-free proofs makes analysis of a theory and proof-
search significantly simpler. Evaluating programs boils down to finding efficient
ways to reach a normal form, in order to produce a result.

Through the proof-as-programs paradigms, those two processes can be
reduced to a single one: reduction steps of lambda-terms, such as β reduction,
can be seen as a way to remove cuts from proofs expressed in natural deduction.
Under this correspondence, a proof is cut-free when the associated proof-term is
in normal form.

But there exist other, semantic, ways to eliminate cuts from proofs [15],
through a completeness theorem that produces cut-free proofs, hereafter strong
completeness, in combination with soundness. When those proofs can be made
constructive [3,10,17], a natural question arises: what is the computational con-
tent of such proofs?

A link has already been exhibited. A line of research in program normaliza-
tion, dubbed normalisation by evaluation, aims at evaluating a program in a
type-directed fashion, by reusing the reduction mechanisms at hand at the meta

c© Springer-Verlag Berlin Heidelberg 2015
M. Davis et al. (Eds.): LPAR-20 2015, LNCS 9450, pp. 469–482, 2015.
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level1 through a pair of reflection/reification functions [2]. Soon after, Coquand
noticed a strong similarity with completeness proofs [4].

This seminal work has been extended to more complex types [1,5], and also
studied from the point of view of the completeness theorem for intuitionistic
natural deduction with respect to Kripke-like structures [6,8,9]. But when it
comes to incorporating disjunction, one must be very careful, in particular
because Kripke structures require worlds to decide between both members of the
conjunction - from a pure normalization by evaluation point of view, dealing with
sum types also requires special care.

In this paper, we follow this line, relating constructive completeness proofs
and normalization procedures. But, instead of considering Kripke semantics, as
has been done in the works described above, we consider Heyting algebras:

– completeness theorems for the cut-free system (strong completeness), and
therefore cut elimination [7,11] can be proved constructively;

– handling disjunction is straightforward, and hence we get cut elimination for
sum types.

An adaptation of existing completeness proofs with respect to Heyting alge-
bras is required, since all the known proofs, starting from Okada’s contribution
to linear logic [12], use sequent calculus.

To support these claims, we have formalized the proofs of this paper
in Coq, and used extraction to get an executable interpreter. To keep the
complexity of the formalization reasonable, we remained in the propositional
fragment. The Coq sources are available at https://github.com/SkySkimmer/
NormalisationByCompleteness.

The organization of this paper is the following: in Sect. 2 we recall natural
deduction, in particular the notion of cut, and show basic lemmas. In Sect. 3, we
develop the strong completeness proof, and discuss its Coq formalization in the
next Sect. 4.1, where we also devise the behavior of the extracted algorithm on
examples. Section 5 concludes the paper.

2 Natural Deduction

Definition 1 (Terms and formulas). Let V be an infinite set of variables,
S be a set of function symbols along with an arity and P be a set of predicate
symbols along with an arity. The set of terms T is defined by:

t ::= x | f(t1, ..., tn)

where x ∈ V and f ∈ S has arity n. The set of formulas F is defined by:

A,B ::= P (t1, ..., tn) | A ∧ B | A ∨ B | A ⇒ B | � | ⊥ | ∀x.A | ∃x.A

where P ∈ P has arity n.

1 namely, the programming language in which the evaluation function is written.

https://github.com/SkySkimmer/NormalisationByCompleteness
https://github.com/SkySkimmer/NormalisationByCompleteness
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Definition 2 (Substitutions). A substitution σ is a partial function from vari-
ables to terms, with finite domain.
We expand it inductively to a function from terms to terms and formulas to
formulas, letting σ(x) = x for x /∈ dom(σ).

Notably for Q ∈ {∀,∃}, σ(Q x.A) :=Qx.σ(A), assuming x fresh w.r.t. the
image of σ by α-conversion. This is always possible since dom(σ) is finite, and
so the image of σ is also finite.

Definition 3 (Updated Substitution). Let σ be a substitution, x ∈ V and
t ∈ T , σ[x 
→ t] is the substitution with domain dom(σ) ∪ {x} such that for all
y = x, σ[x 
→ t](y) = σ(y) and σ[x 
→ t](x) = t.

The substitution with the empty set as domain is denoted ∅. For t a term
(resp. A a formula), x a variable and u a term, we abbreviate ∅[x 
→ u](t) (resp.
∅[x 
→ u](A)) as t[u/x] (resp. A[t/x]).

Definition 4 (Contexts). A context Γ is a list of formulas [A1, ..., An]. We let
Γ,A be the concatenation of A and Γ . Membership is denoted B ∈ Γ . Inclusion,
denoted Γ ⊆ Σ, holds when any B ∈ Γ is also in Σ.

Remark 1. The relation ⊆ is a preorder, but not an order. Indeed, it strictly
subsumes contraction (Γ,A,A ⊆ Γ,A) as well as reordering of premises.

Definition 5 (Cut-Free Proofs). Figure 1 defines the relations �ne (neutral
proof) and �∗ (cut-free proof) by mutual induction.

In Fig. 1, rules on the left are introduction rules and produce cut-free proofs,
while rules on the right are elimination rules and produce neutral proofs. FV
denotes the set of free variables. The usual natural deduction calculus NJ is
a merge of both relations. For two contexts Γ,Σ and any relation �′, Σ �′ Γ
denotes Σ �′ A for all A ∈ Γ .

Definition 6 (Natural Deduction). The judgment Γ � A has the same rules
as both Γ �∗ A and Γ �ne A.

Therefore, if Γ �∗ A or Γ �ne A, then Γ � A.

Lemma 1 (Weakening). Let Γ,Σ be contexts such that Γ ⊆ Σ. Let A be a
formula. The three following rules are admissible:

Γ �∗ A

Σ �∗ A

Γ �ne A

Σ �ne A

Γ � A

Σ � A

Proof. By mutual induction on Γ �∗ A and Γ �ne A, and by induction on
Γ � A. ��
Corollary 1 (Contraction). For any context Γ and any formula B, if
Γ,A,A � B then Γ,A � B.
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Fig. 1. Rules of natural deduction

Neutral proofs are such that they can replace axioms in cut-free proofs with-
out introducing any cut.

Lemma 2 (Axiom Replacement). Let Γ,Σ be contexts and A be a formula.
The three following rules are admissible:

Σ �ne Γ Γ �∗ A

Σ �∗ A

Σ �ne Γ Γ �ne A

Σ �ne A

Σ � Γ Γ � A

Σ � A

Proof. By mutual induction on Γ �∗ A and Γ �ne A, and by induction on
Γ � A. Note that we need the weakening lemma (Lemma 1) when the context is
modified in a premise of a rule.

Consider for instance the ⇒I case of Fig. 1. Γ,A �∗ B is derivable. Σ,A �ne

Γ,A holds, by weakening for Γ and by ax for A. By induction hypothesis, Σ,A �∗

B and by ⇒I we conclude Σ �∗ A ⇒ B. ��
Lemma 3 (Kleene’s Inversion Lemma). Let Γ be a context, A and B be
formulas.
If Γ �ne A ⇒ B (resp. Γ �∗ A ⇒ B) then Γ,A �ne B (resp. Γ,A �∗ B).

Proof. If Γ �ne A ⇒ B, then by weakening Γ,A �ne A ⇒ B. By ax and coerce
we have Γ,A �∗ A. Then by ⇒E , Γ,A �ne B.

If Γ �∗ A ⇒ B, we analyze the last rule of the derivation:

– it is coerce: the premiss is Γ �ne A ⇒ B, then Γ,A �ne B and by coerce,
Γ,A �∗ B.

– otherwise it is ⇒I : the premiss is Γ,A �∗ B. ��
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3 Strong Completeness by Heyting Algebras

3.1 Heyting Algebras

Definition 7 (Complete Lattice). A complete lattice is a tuple

A = (A,≤,
∧

,
∨

)

such that (A,≤) is a partial order with arbitrary meet
∧

and join
∨
.

In the sequel, we distinguish the binary meet ∧, join ∨ and the global maxi-
mum � (empty meet) and minimum ⊥ (empty join).

Definition 8 (Complete Heyting Algebra). A Heyting algebra is a structure
H = (H,≤,∧,∨,⇒,�,⊥,

∧
,
∨

) such that (H,≤,
∧

,
∨

) is a complete lattice and
verifies the implication property

∀a b c, a ≤ b ⇒ c if and only if a ∧ b ≤ c

Lemma 4. In a Heyting algebra, binary meet and join distribute over each
other.

Proof. Let a, b, c ∈ H

– a∧(b∨c) ≤ (a∧b)∨(a∧c): we have a∧b ≤ (a∧b)∨(a∧c) and a∧c ≤ (a∧b)∨(a∧c).
By the implication property,

b ≤ a ⇒ ((a ∧ b) ∨ (a ∧ c)) and c ≤ a ⇒ ((a ∧ b) ∨ (a ∧ c))

Then b ∨ c ≤ a ⇒ ((a ∧ b) ∨ (a ∧ c)) and we conclude by the implication
property.

– (a ∧ b) ∨ (a ∧ c) ≤ a ∧ (b ∨ c): holds in all lattices
– a ∨ (b ∧ c) ≤ (a ∨ b) ∧ (a ∨ c): holds in all lattices
– (a ∨ b) ∧ (a ∨ c) ≤ a ∨ (b ∧ c): By the implication property, this is equivalent

to a ∨ b ≤ (a ∨ c) ⇒ (a ∨ (b ∧ c))
⇐⇒ a ≤ (a ∨ c) ⇒ (a ∨ (b ∧ c)) and b ≤ (a ∨ c) ⇒ (a ∨ (b ∧ c))
⇐⇒ a ∧ (a ∨ c) ≤ a ∨ (b ∧ c) (trivial) and b ∧ (a ∨ c) ≤ a ∨ (b ∧ c)
⇐⇒ a ∨ c ≤ b ⇒ (a ∨ (b ∧ c))
⇐⇒ a ≤ b ⇒ (a ∨ (b ∧ c)) and c ≤ b ⇒ (a ∨ (b ∧ c))
⇐⇒ a ∧ b ≤ a ∨ (b ∧ c) (trivial) and c ∧ b ≤ a ∨ (b ∧ c) (trivial) ��

Definition 9 (Interpretation). A valuation on a set D, called the domain,
is a partial function ϕ : V → D with finite support. The syntax for updating
valuations is the same as in Definition 3.

A model on a Heyting algebra H is given by a domain D, and for each function
symbol f ∈ S (resp. predicate symbol P ∈ P) of arity n a function �f� : Dn → D
(resp. a function �P � : Dn → H).

Let ϕ be a valuation, t a term and A a formula, such that FV (t)∪FV (A) ⊆
dom(ϕ). The interpretations �t�ϕ ∈ D and �A�ϕ ∈ H are defined in the usual
inductive way.
We define interpretation for contexts to be �Γ �ϕ ::=

∧
C∈Γ �C�ϕ.
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Notably:
�P (t1, ..., tk)�ϕ := �P �(�t1�ϕ, ..., �tk�ϕ)

�∀x.A�ϕ :=
∧

v∈D{�A�ϕ[x�→v]}
�∃x.A�ϕ :=

∨
v∈D{�A�ϕ[x�→v]}

Theorem 1 (Soundness). Let Γ be a context and A be a formula. If Γ � A
is derivable, then for any Heyting algebra H, for any model on H and valuation
ϕ, �Γ �ϕ ≤ �A�ϕ

Proof. Standard induction [14]. ��

3.2 Completeness

We now proceed to the construction of a universal Heyting algebra, that is
suitable for cut-free, or strong, completeness, that is to say, that produces cut-
free proofs [13]. This contrasts with more usual Lindenbaum algebras [14], formed
with (provability-)equivalence classes of formulas.

Definition 10 (Extraction). Let A be a formula. We define �A� (the extrac-
tion of A) to be {Γ, Γ �∗ A}.

�A� is the set of contexts that prove A without cut, and will represent an
upper bound for the interpretation of A, and as well the basis of our Heyting
algebra below.

Definition 11 (Universal Heyting Algebra). The underlying set of the uni-
versal Heyting algebra (aka the context algebra) is:

Ω ::= {
⋂

�Ai�, (Ai)i∈I family of formulas}
That is to say, the closure by arbitrary intersections of formula extractions.

The partial order is inclusion and the operations are:

a ≤ b := a ⊆ b
a ∧ b := a ∩ b∧

A :=
⋂

A
a ∨ b :=

⋂{ω ∈ Ω, a ∪ b ≤ ω}∨
A :=

⋂{ω ∈ Ω,
⋃

A ≤ ω}
a ⇒ b :=

∨{c ∈ Ω, a ∧ c ≤ b}
� := {Γ, Γ context} = ���
⊥ := {Γ,∀A,Γ � A} = �⊥�

By abuse of notation, we also denote this algebra as Ω.
∧

and
∨

are clearly
greatest lower and lowest upper bounds, respectively. We can also simplify a bit
lowest upper bounds, thanks to the following lemma:

Lemma 5. The following identities are verified:

a ∨ b =
⋂{�D�, a ∪ b ≤ �D�,D ∈ F}∨

A =
⋂{�D�,⋃ A ≤ �D�,D ∈ F}

a ⇒ b =
⋂{�D�,⋃{c ∈ Ω, a ∧ c ≤ b} ≤ �D�,D ∈ F}
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Proof. We focus on the first identity. The two other have a similar proof, as a∨b,∨
A and a ⇒ b are all defined as lowest upper bound.
By definition of ∨, a ∨ b ≤ ⋂{�D�, a ∪ b ≤ �D�,D ∈ F}. Conversely, let ω

such that a ∪ b ≤ ω. Since ω ∈ Ω, ω =
⋂

i∈I �Ci� for some (Ci)i∈I . For all i ∈ I,
a ∨ b ≤ �Ci�, and therefore ω ≤ ⋂{�D�, a ∪ b ≤ �D�}.

Lemma 6. Let ω ∈ Ω, and Γ ∈ ω. Then, for any context Δ, Δ, Γ ∈ ω.

Proof. By applying Lemma 1 to Definitions 10 and 11. ��
Lemma 7. Ω forms a Heyting algebra.

Proof. Ω is closed by arbitrary intersection and for all A, �A� ∈ Ω, so the
operations produce values in Ω. As already said, ≤ is an order for which ∧ and∧

are greatest lower bounds, and ∨ and
∨

are lowest upper bounds. � and ⊥
are trivially is the greatest and least element, respectively. It remains to check
the implication property:

– Assume a ≤ b ⇒ c, with c =
⋂

k∈K �Ck�. Let Γ ∈ a ∧ b and k ∈ K, we want
to show Γ ∈ �Ck�, that is to say Γ �∗ Ck.
Γ ∈ a so Γ ∈ b ⇒ c and we have for any D, if

⋃{e ∈ Ω, b ∧ e ≤ c} ≤ �D�
then Γ ∈ �D�.
Let us show that D ::=Γ ⇒ Ck verifies this hypothesis, where Γ ⇒
B ::= A1 ⇒ ... ⇒ An ⇒ B (with Γ = A1, ..., An and B formula).
Let e ∈ Ω with b∧e ≤ c. Let Δ ∈ e, {Δ, Γ} ∈ b∧e by Lemma 1, then Δ, Γ ∈ c,
and Δ, Γ �∗ Ck.
By ⇒I , Δ �∗ Γ ⇒ Ck, that is to say Δ �∗ D. This holds for any such Δ, so
e ≤ �D�, and D verifies the desired hypothesis.
Therefore Γ �∗ Γ ⇒ Ck and by repeated application of Lemmas 1 and 3
Γ �∗ Ck.
Finally, Γ ∈ c.

– Conversely, assume a ∧ b ≤ c, then a ≤ ∨{e, e ∧ b ≤ c} = b ⇒ c. ��
Definition 12 (Interpretation in the Context Algebra). The domain D
of the model on Ω is defined as the set of terms. If f is a function symbol of
arity n, P is a predicate symbol of arity n, we let:

�f� := (t1, ..., tn) 
→ f(t1, ..., tn)
�P � := (t1, ..., tn) 
→ �P (t1, ..., tn)�

A consequence of this lemma is the following, where we implicitly coerce
valuations with their underlying substitution.

Lemma 8. For any t and valuation ϕ, �t�ϕ = ϕ(t).

Proof. By induction. ��
Definition 13 (Closure). Let A be a formula. We define the closure of A to be

cl(A) ::=
⋂

{d ∈ Ω, [A] ∈ d}
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Remind that [A] is the one-formula context, containing only A (Definition 4).

Lemma 9. For any A, cl(A) ∈ Ω.

Proof. Ω is stable by arbitrary intersection. ��
Lemma 10. [A] ∈ cl(A)

Proof. cl(A) is the greatest lower bound of all d containing [A]. ��
Lemma 11. For any A, cl(A) =

⋂{�D�, [A] ∈ �D�}.
Proof. Similar to the proof of Lemma 5. ��

Then Γ ∈ cl(A) means for all formulas D, if [A] �∗ D then Γ �∗ D. In a
sense, the members of cl(A) verify the axiom replacement lemma, except that
this new operation does not necessarily preserve the structure of the derivation.
Γ ∈ cl(A) is a weaker statement than Γ �ne A:

Lemma 12. For Γ context and A formula, if Γ �ne A then Γ ∈ cl(A).

Proof. By Lemma 2, considering the previous Lemma 11. ��
Theorem 2 (Key Theorem). For any formula A and valuation σ into Ω, σ
is also a substitution and

cl(σ(A)) ≤ �A�σ ≤ �σ(A)�
Proof. For clarity, we omit the valuation/substitution σ when it plays no role.
The proof is done by induction on A:

– A is atomic: �A� = �A�, so we only need to check cl(A) ≤ �A�. Let Γ ∈ cl(A).
as we have A �∗ A, by definition of cl(A), we have Γ �∗ A and therefore
Γ ∈ �A�.

– cl(A∧B) ≤ �A∧B�: by induction hypothesis we only need to show cl(A∧B) ≤
cl(A) ∩ cl(B).
Let Γ ∈ cl(A∧B) and D such that A �∗ D (resp. B �∗ D). Since A∧B �ne A
(resp. A ∧ B �ne B), by Lemma 2 we have Γ �∗ D and Γ ∈ cl(A) (resp.
Γ ∈ cl(B)).

�A∧B� ≤ �A∧B�: by the induction hypothesis we have �A∧B� ≤ �A�∩�B�.
The ∧I rule concludes the proof.

– cl(A∨B) ≤ �A∨B�: consider C such that �A�∪ �B� ≤ �C�. We have to show
[A ∨ B] ∈ �C�.
Since, by Lemma 10 and induction hypothesis, [A] ∈ cl(A) ≤ �C� (resp. [B] ∈
cl(B) ≤ �C�), we have A �∗ C (resp. B �∗ C). Then by ∨E and coerce we
have A ∨ B �∗ C.

�A∨B� ≤ �A∨B�: by definition of �A�∨�B�, we need to show that �A�∪�B� ≤
�A ∨ B�.
By induction hypothesis, �A� ∪ �B� ≤ �A� ∪ �B�, then the ∨I rule concludes.
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– cl(A ⇒ B) ≤ �A ⇒ B�: by the implication rule we need cl(A ⇒ B) ∧ �A� ≤
�B�, and by induction hypothesis, it is sufficient to show cl(A ⇒ B) ∧ �A� ≤
cl(B).
Let Γ ∈ cl(A ⇒ B) ∧ �A�, that is to say:

Γ �∗ A and for any C, if A ⇒ B �∗ C then Γ �∗ C

Let D such that B �∗ D. To show Γ �∗ D, we first show that Γ �∗ Γ ⇒ D.
We have, by hypothesis and Lemma 1, the following proof:

A ⇒ B,Γ �ne A ⇒ B A ⇒ B,Γ �∗ A

A ⇒ B,Γ �ne B

So, by Lemma 2, A ⇒ B,Γ �∗ D, and by repeated ⇒I , A ⇒ B �∗ Γ ⇒ D.
By hypothesis on Γ , Γ �∗ Γ ⇒ D. By a repeated application of Lemmas 1
and 3, we get Γ �∗ D.

�A ⇒ B� ≤ �A ⇒ B�: by induction hypothesis, �B� ≤ �B�, so �A� ⇒ �B� ≤
�A� ⇒ �B� by the intersection (with �A�) and the implication properties. By
induction hypothesis also, cl(A) ≤ �A�, and therefore cl(A) ∧ (�A� ⇒ �B�) ≤
�A� ∧ (�A� ⇒ �B�) ≤ �B�, that is to say �A� ⇒ �B� ≤ cl(A) ⇒ �B�.
All in all, �A ⇒ B� ≤ cl(A) ⇒ �B�, and showing cl(A) ⇒ �B� ≤ �A ⇒ B�
suffices.
Let c such that cl(A) ∧ c ≤ �B�, we show that �A ⇒ B� is an upper bound
for c, so let Γ ∈ c. By Lemma 1 A,Γ ∈ cl(A) ∧ c, and A,Γ �∗ B, so by ⇒I ,
Γ �∗ A ⇒ B. This holds for any c, so cl(A) ⇒ �B� ≤ �A ⇒ B�.

– � and ⊥ are trivial cases.
– cl(σ(∀x.A)) ≤ �∀x.A�σ:

Without loss of generality, we assume σ(∀x.A) = ∀x.σ(A) (see Definition 2).
Let Γ ∈ cl(σ(∀x.A)).
We need to prove that for any term d, Γ ∈ �A�σ[x�→d]. Let d a term, showing
Γ ∈ cl(σ[x 
→ d](A)) suffices by induction hypothesis.
Let D such that σ[x 
→ d](A) �∗ D. As x does not appear in the image of σ,
σ[x 
→ d](A) = (σ(A))[d/x], and we have:

ax
[∀x.σ(A)] �ne ∀x.σ(A) ∀E[∀x.σ(A)] �ne σ[x 
→ d](A)

Then by Lemma 2, [∀x.σ(A)] �∗ D. As we assumed Γ ∈ cl(∀x.σ(A)), the claim
follows.

�∀x.A�σ ≤ �σ(∀x.A)�:
Let Γ ∈ �∀x.A�σ, where by α-conversion we assume x fresh.
By Definition 9, Γ ∈ �A�σ[x�→x]. By induction hypothesis we conclude Γ ∈
�σ[x 
→ x](A)�.
Finally, by the ∀I rule Γ �∗ ∀x.σ[x 
→ x](A), and by freshness of x, Γ �∗

σ(∀x.A).
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– cl(σ(∃x.A)) ≤ �∃x.A�σ:
Let Γ ∈ cl(σ(∃x.A)), assuming x fresh. By Lemma 5, Γ ∈ �∃x.A�σ if and only
if for any D, such that for each term d �A�σ[x�→d] ≤ �D�, then Γ �∗ D. Let
such a D, we give a derivation of [∃x.σ(A)] �∗ D, which allows to conclude
by assumption on Γ .
By induction hypothesis, [σ(A)] ∈ cl(σ(A)) ≤ �A�σ , and by hypothesis
on D, [σ(A)] ∈ �D�. With Lemma 1, we get a derivation of the sequent
∃x.σ(A), σ(A) �∗ D. As ∃x.σ(A) �ne ∃x.σ(A) has a neutral proof, we can
build the desired derivation:

∃x.σ(A), σ(A) �∗ D ∃x.σ(A) �ne ∃x.σ′(A) ∃E∃x.σ(A) �ne D

�∃x.A�σ ≤ �σ(∃x.A)�, assuming x fresh in the image of σ:
We show that �σ(∃x.A)� is an upper bound for all �A�σ[x�→d], where d is any
term. This allows to conclude.
Let d, Γ , such that Γ ∈ �A�σ[x�→d]. By induction hypothesis Γ ∈ �σ[x 
→
d](A)�.
σ[x 
→ d](A) = (σ(A))[d/x], so Γ �∗ (σ(A))[d/x] and by the ⇒I rule, Γ �∗

∃x.σ(A), i.e. Γ �∗ σ(∃x.A). ��
Theorem 3 (Strong Completeness). Let Γ be a context and A a formula.
If for any Heyting algebra, any model and any valuation ϕ, �Γ �ϕ ≤ �A�ϕ, then
Γ �∗ A.

Proof. We apply the hypothesis on the universal algebra of Definition 11, the
interpretation of Definition 12 and the empty valuation/substitution.

Consider C ∈ Γ . C ∈ cl(C) by Lemma 10. By Lemma 6 and Theorem 2,
Γ ∈ cl(C) ≤ �C�. So Γ ∈ �Γ � ≤ �A�. By Theorem 2, �A� ≤ �A�. Finally Γ �∗ A.

Theorem 4 (Cut Elimination). Let Γ be a context and A a formula. If
Γ � A, then Γ �∗ A.

Proof. By soundness (Theorem 1) and strong completeness (Theorem 3).

4 The Algorithm in Practice

This work has been formalized in Coq for the propositional fragment, so as to
focus on the core of the algorithm, without dealing with binders.

4.1 Formalization: The Algorithm

Ω contains arbitrary intersections of extractions. To define it, we need to range
over index predicates for the formulas Ai, that have type form → Prop and let Ω
be {{Γ : context,∀A,P(A) → Γ �∗ A} | P : form → Prop}. We cannot range
over predicates of type form → Type, because of the need for impredicativity.
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As a consequence, the predicate Γ �∗ A lives in Prop, which prevents us
to extract a program due to proof irrelevance. Nevertheless, we can apply the
theorem to a derivation and use Eval compute to observe the behavior of the
algorithm. However, since formulas are processed by Theorem2 which performs
case analysis, computation stalls if the derivation involves formula variables.

To have both impredicativity and extraction, we considered using an impred-
icative Set type, but we were not able to extract a program due to internal limi-
tations. As a last resort, we relaxed the universe constraint, deliberately making
the system inconsistent, but gaining an impredicative Type type and a (possibly
unsound) algorithm.

Three difficulties obfuscate the investigation of the algorithm (see the proofs
of Theorems 3 and 4):

– the Γ ∈ cl(Γ ) step involves a conjunction of formula closures, and calls
technical lemmas. This step can be avoided by considering empty contexts,
i.e. Γ = [] and �Γ � = �.

– the �A� ⊆ �A� and cl(Γ ) ⊆ �Γ � steps, i.e. calling Theorem 2, the key theo-
rem, that in many cases makes a very indirect use of the NJ rules, potentially
appealing to inversion results (Lemma 3).

– the �Γ � ⊆ �A� step, i.e. soundness of NJ with respect to Ω. It involves
in particular the proof that Ω is a Heyting algebra, which is non-trivial
especially for the ⇒ operator, and then composes these properties somehow.

Simplifying those steps is necessary for a further analysis. For the time being,
we are only able to investigate the behavior of the algorithm by observational
means, applying it to specific derivations, as shown below.

4.2 Examples

Implication cut. When applied to a simple implication cut, the algorithm does
what expected.

Initial proof Reduct
ax

A,A � A ⇒I
A � A ⇒ A

ax
A � A ⇒E

A � A

ax
A � A

Disjunction cut. A disjunction cut is also properly reduced:

Initial proof Reduct
ax

A � A ∨Il
A � A ∨ A

ax
A,A � A ∨Ir

A,A � A ∨ A

ax
A,A � A ∨Il

A,A � A ∨ A ∨E
A � A ∨ A

ax
A � A ∨Ir

A � A ∨ A
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Eta expansion. As the algorithm is type-directed, it is not neutral on elementary
proofs, when formulas are not atomic:

Initial proof Reduct

ax
A ⇒ B � A ⇒ B

ax
A ⇒ B,A � A ⇒ B

ax
A ⇒ B,A � A ⇒E

A ⇒ B,A � B ⇒I
A ⇒ B � A ⇒ B

ax
A ∧ B � A ∧ B

ax
A ∧ B � A ∧ B ∧El

A ∧ B � A

ax
A ∧ B � A ∧ B ∧Er

A ∧ B � B ∧I
A ∧ B � A ∧ B

ax
A ∨ B � A ∨ B

ax
A ∨ B � A ∨ B

ax
A ∨ B,A � A ∨Il

A ∨ B,A � A ∨ B

ax
A ∨ B,B � B ∨Ir

A ∨ B,B � A ∨ B ∨E
A ∨ B � A ∨ B

When applying iteratively the theorem once again to those proofs, one can
notice that we already have reached a fixed point in the ⇒ and ∧ cases, while we
continue reducing in the disjunction case, where we can notice that the context
is abstracted via a ⇒I rule, that introduces a commutative cut:

ax
A ∨ B � A ∨ B

ax
A ∨ B,A,A ∨ B � A ∨Il

A ∨ B,A,A ∨ B � A ∨ B ⇒I
A ∨ B,A � (A ∨ B) ⇒ (A ∨ B)

ax
A ∨ B,B,A ∨ B � B ∨Ir

A ∨ B,B,A ∨ B � A ∨ B ⇒I
A ∨ B,B � (A ∨ B) ⇒ (A ∨ B) ∨E

A ∨ B � (A ∨ B) ⇒ (A ∨ B)
ax

A ∨ B � A ∨ B ⇒E
A ∨ B � A ∨ B

5 Conclusion

Strong completeness with respect to Heyting algebras has a constructive proof.
In this paper, we have applied this result to natural deduction, and formalized
it in Coq, so as to produce an algorithm for proof normalization. This argument
can also be lifted to classical logic, using Boolean algebras instead, although we
would have to carefully choose a classical natural deduction calculus. Obviously,
this also applies to sequent calculus, in an even more straightforward way.

Our algorithm can be studied by evaluating it on specific derivations and
by Printing the Coq function to review the generated code. However, simpli-
fying Coq proofs, via more general inversion (Kleene) or weakening lemmas for
instance, is still necessary for a more in-depth understanding. Moreover, we still
have to show that the normal proof obtained is really a reduct of the original
proof. This could be done by carrying the original proof along soundness and
completeness, as a for of proof-relevant version of those theorems.

It would also be interesting to compare the algorithm that we obtain with the
ones that come from completeness with respect to Kripke structure [6,8,9], and in
particular the produced normal proofs. One of the interests of our methodology
is that we deal with disjunction (sum types) without requiring any modification
of the semantics.

Semantic transformations could help in the study of the relationship between
both algorithms. In particular, turning a Heyting algebra into a Kripke struc-
ture is not purely constructive [16]. Applied to the particular universal Heyting
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algebra/Kripke structure, translations may also be more informative and con-
structive [8].

As for disjunction, we did not focus on commutative cuts, and more work is
required in this direction. It theoretically possible, as we can always eliminate
those cuts by translating back and forth natural deduction into sequent calculus,
semantically normalizing there. But a direct study is much more preferable.

Strong completeness for higher-order logic is also within reach, which, besides
giving a normalization algorithm for a powerful logic, would give another way
of studying disjunction, through their higher-order encoding.

Acknowledgments. The authors would like to thanks the reviewers for their insight-
ful and constructive comments and pointers. Unfortunately we lacked time to include
them all.
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Abstract. In this paper, we propose a unified framework for designing
static analysers based on program synthesis. For this purpose, we identify
a fragment of second-order logic with restricted quantification that is
expressive enough to capture numerous static analysis problems (e.g.
safety proving, bug finding, termination and non-termination proving,
superoptimisation). We call this fragment the synthesis fragment. We
build a decision procedure for the synthesis fragment over finite domains
in the form of a program synthesiser. Given our initial motivation to
solve static analysis problems, this synthesiser is specialised for such
analyses. Our experimental results show that, on benchmarks capturing
static analysis problems, our program synthesiser compares positively
with other general purpose synthesisers.

1 Introduction

Fundamentally, every static program analysis is searching for a program proof.
For safety analysers this proof takes the form of a program invariant [1], for bug
finders it is a counter-model [2], for termination analysis it can be a ranking
function [3], whereas for non-termination it is a recurrence set [4]. Finding each
of these proofs was subject to extensive research resulting in a multitude of
specialised techniques.

In this paper, we propose a unified framework for designing static analy-
sers. This framework allows implementing new analyses easily by only providing
a description of the corresponding program proofs. This essentially enables a
declarative way of designing static analyses, where we specify what we want to
achieve rather than the details of how to achieve it.

The theoretical basis for this framework is a fragment of second-order logic
with restricted quantification that is expressive enough to capture numerous
static analysis problems (e.g. safety proving, bug finding, termination and non-
termination proving, superoptimisation). This fragment is decidable over finite
domains and we build a decision procedure for it based on program synthesis.
Accordingly, we call this fragment the synthesis fragment.
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In our framework, finding a program proof for some static analysis problem
amounts to finding a satisfying model for a synthesis formula, where the second-
order entities denote the program proofs. If the synthesis formula is satisfiable,
a solution consists of a satisfying assignment from the second order variables to
functions over finite domains. Every function over finite domains is computed
by some program that can be synthesised.

Our program synthesiser is specialised for program analysis in the following
three dimensions (identified as the three key dimensions in program synthesis [5]):

1. Expression of User Intent: Our specification language is a fragment of C,
which results in concise specifications of static analyses. Using our tool to build a
program analyser only requires providing a generic specification of the problem
to solve. The programs to be analysed do not need to be modified, symbolically
executed or compiled to an intermediate language. Our experiments show that
this results in specifications that are an order of magnitude smaller than the
equivalent specifications with other general purpose program synthesisers.

2. Space of Programs Over Which to Search: The language in which we
synthesise our programs is universal, i.e. every finite function is computed by
at least one program in our language. Our solution language also has first-class
support for programs computing multiple outputs, as well as constants. The for-
mer allows the direct encoding of lexicographic ranking functions of unbounded
dimension, whereas the latter improves the efficiency when synthesising pro-
grams with non-trivial constants (as shown by our experimental results).

3. The Search Technique: An important aspect of our synthesis algorithm is
how we search the space of candidate programs. We parameterise the solution
language, which induces a lattice of progressively more expressive languages. As
well as giving us an automatic search procedure, this parametrisation greatly
increases the efficiency of our system since languages low down the lattice are
very easy to decide safety for. Consequently, our solver’s runtime is heavily
influenced by the length of the shortest proof, i.e. the Kolmogorov complexity of
the problem. If a short proof exists, then the solver will find it quickly. This is
particularly useful for program analysis problems, where, if a proof exists, then
most of the time many proofs exist and some are short ([6] relies on a similar
remark about loop invariants).

Our Contributions.

– We define the synthesis fragment and show that its decision problem over
finite domains is NEXPTIME-complete (Sect. 2).

– By using program synthesis, we design a decision procedure for the syn-
thesis fragment. The resulting program synthesiser uses a combination of
bounded model checking, explicit-state model checking and genetic program-
ming (Sect. 5).

– We propose the use of second-order tautologies for avoiding unsatisfiable
instances when solving program analysis problems with program synthesis
(Sect. 8).
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– We implemented the program synthesiser and tried it on a set of static analysis
problems. Our experimental results show that, on benchmarks generated from
static analysis, our program synthesiser compares positively with other general
purpose synthesisers (Sect. 9).

Related Work. A recent successful approach to program synthesis is Syntax
Guided Synthesis (SyGuS) [7]. The SyGuS synthesisers supplement the logi-
cal specification with a syntactic template that constrains the space of allowed
implementations. Thus, each semantic specification is accompanied by a syntac-
tic specification in the form of a grammar. In contrast to SyGuS, our program
synthesiser is optimised for program analysis according to the three aforemen-
tioned key dimensions.

Other second-order solvers are introduced in [8,9]. As opposed to ours, these
are specialised for Horn clauses and the logic they handle is undecidable.
Wintersteiger et al. present in [10] a decision procedure for a logic related to
the synthesis fragment, the Quantified bit-vector logic, which is a many sorted
first-order logic formula where the sort of every variable is a bit-vector sort. It
is possible to reduce formulae in the synthesis fragment over finite domains to
Effectively Propositional Logic [11], but the reduction would require additional
axiomatization and would increase the search space, thus defeating the efficiency
we are aiming to achieve.

2 The Synthesis Fragment

In this section, we identify a fragment of second-order logic with a constrained
use of quantification that is expressive enough to encode numerous static analysis
problems. We will suggestively refer to the fragment as the synthesis fragment :

Definition 1 (Synthesis Fragment (SF )). A formula is in the synthesis
fragment iff it is of the form

∃P1 . . . Pm.Q1x1 . . . Qnxn.σ(P1, . . . , Pm, x1, . . . , xn)

where the Pi range over functions, the Qi are either ∃ or ∀, the xi range over
ground terms and σ is a quantifier-free formula.

If a pair (�P , �x) is a satisfying model for the synthesis formula, then we write
(�P , �x) |= σ. For the remainder of the presentation, we drop the vector notation
and write x for �x, with the understanding that all quantified variables range over
vectors.

3 Program Analysis Specifications in the Synthesis
Fragment

Program analysis problems can be reduced to the problem of finding solutions
to a second-order constraint [8,12,13]. The goal of this section is to show that



486 C. David et al.

the synthesis fragment is expressive enough to capture many interesting such
problems. For brevity reasons, we will only express safety, termination and non-
termination. When we describe analyses involving loops, we will characterise
each loop as having initial state I, guard G and transition relation B.

Safety Invariants. Given a safety assertion A, a safety invariant is a set of
states S which is inductive with respect to the program’s transition relation,
and which excludes an error state. A predicate S is a safety invariant iff it
satisfies the following criteria:

∃S.∀x, x′.I(x) → S(x) ∧ (1)
S(x) ∧ G(x) ∧ B(x, x′) → S(x′) ∧ (2)
S(x) ∧ ¬G(x) → A(x) (3)

(1) says that each state reachable on entry to the loop is in the set S, and in
combination with (2) shows that every state that can be reached by the loop is
in S. The final criterion (3) says that if the loop exits while in an S-state, the
assertion A is not violated.

Termination and Non-termination. As shown in [13], termination of a loop can
be encoded as the following formula, where W is an inductive invariant of the
loop that is established by the initial states I if the loop guard G is met, and R
is a ranking function as restricted by W :

∃R,W.∀x, x′.I(x) ∧ G(x) → W (x) ∧
G(x) ∧ W (x) ∧ B(x, x′) → W (x′) ∧ R(x)>0 ∧ R(x)>R(x′)

Similarly, non-termination can be expressed in the synthesis fragment as follows:

∃N,C, x0.∀x.N(x0) ∧ N(x) → G(x) ∧ N(x) → B(x,C(x)) ∧ N(C(x))

Here, N denotes a recurrence set, i.e. a nonempty set of states such that for
each s ∈ N there exists a transition to some s′ ∈ N , and C is a Skolem function
that chooses the successor x′. More details on the formulations for termination
and non-termination can be found in [13].

4 The Synthesis Fragment over Finite Domains

When interpreting the ground terms over a finite domain D, the synthesis frag-
ment is decidable and its decision problem is NEXPTIME-complete. We use the
notation SFD to denote the synthesis fragment over a finite domain D.

Theorem 1 (SFD is NEXPTIME-Complete). For an instance of
Definition 1 with n first-order variables, where the ground terms are interpreted
over D, checking the truth of the formula is NEXPTIME-complete.

Proof. In the extended version [14].
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Next, we are concerned with building a solver for SFD. A satisfying model for
a formula in SFD is an assignment mapping each of the second-order variables
to some function of the appropriate type and arity. When deciding whether a
particular SFD instance is satisfiable, we should think about how solutions are
encoded and in particular how a function is to be encoded. The functions all
have a finite domain and co-domain, so their canonical representation would
be a finite set of ordered pairs. Such a set is exponentially large in the size of
the domain, so we would prefer to work with a more compact representation if
possible.

We will generate finite state programs that compute the functions and repre-
sent these programs as finite lists of instructions in SSA form. This representa-
tion has the following properties, proofs for which can be found in the extended
version [14].

Theorem 2. Every total, finite function is computed by at least one finite state
program.

Theorem 3. Furthermore, this representation as finite lists of instructions in
SSA form is optimally concise – there is no encoding that gives a shorter repre-
sentation to every function.

Finite State Program Synthesis. To formally define the finite state synthesis
problem, we need to fix some notation. We will say that a program P is a finite
list of instructions in SSA form, where no instruction can cause a back jump,
i.e. our programs are loop free and non-recursive. Inputs x to the program are
drawn from some finite domain D. The synthesis problem is given to us in the
form of a specification σ which is a function taking a program P and input
x as parameters and returning a boolean telling us whether P did “the right
thing” on input x. Basically, the finite state synthesis problem checks the truth
of Definition 2.

Definition 2 (Finite Synthesis Formula).

∃P.∀x ∈ D.σ(P, x)

To express the specification σ, we introduce a function exec(P, x) that returns
the result of running program P with input x. Since P cannot contain loops or
recursion, exec is a total function.

Example 1. The following finite state synthesis problem is satisfiable:

∃P.∀x ∈ N8.exec(P, x) ≥ x

One such program P satisfying the specification is return 8, which just
returns 8 for any input.

We now present our main theorem, which says that satisfiability of SFD can
be reduced to finite state program synthesis. The proof of this theorem can be
found in the extended version [14].
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Theorem 4 (SFD is Polynomial Time Reducible to Finite Synthesis).
Every instance of Definition 1, where the ground terms are interpreted over D
is polynomial time reducible to a finite synthesis formula (i.e. an instance of
Definition 2).

Corollary 1. Finite-State Program Synthesis is NEXPTIME-Complete.

We are now in a position to sketch the design of a decision procedure for SFD: we
will convert the SFD satisfiability problem to an equisatisfiable finite synthesis
problem, which we will then solve with a finite state program synthesiser. This
design will be elaborated in Sect. 5.

5 Deciding SFD via Finite-State Program Synthesis

In this section we will present a sound and complete algorithm for finite-state
synthesis that we use to decide the satisfiability of formulae in SFD. We begin by
describing a general purpose synthesis procedure (Sect. 5.1), then detail how this
general purpose procedure is instantiated for synthesising finite-state programs.
We then describe the algorithm we use to search the space of possible programs
(Sects. 5.3 and 6).

5.1 General Purpose Synthesis Algorithm

Algorithm 1. Abstract refinement algorithm

1: function synth(inputs)
2: (i1, . . . , iN ) ← inputs
3: query ← ∃P.σ(i1, P )∧. . .∧σ(iN , P )
4: result ← decide(query)
5: if result.satisfiable then
6: return result.model
7: else
8: return UNSAT

9: function verif(P)
10: query ← ∃x.¬σ(x, P )
11: result ← decide(query)
12: if result.satisfiable then
13: return result.model
14: else
15: return valid

16: function refinement loop
17: inputs ← ∅
18: loop
19: candidate ← synth(inputs)
20: if candidate = UNSAT then
21: return UNSAT
22: res ← verif(candidate)
23: if res = valid then
24: return candidate
25: else
26: inputs ← inputs ∪ res

We use Counterexample Guided Inductive Synthesis (CEGIS) [15,16] to find
a program satisfying our specification. Algorithm1 is divided into two proce-
dures: synth and verif, which interact via a finite set of test vectors inputs.
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The synth procedure tries to find an existential witness P that satisfies the
partial specification: ∃P.∀x ∈ inputs.σ(x, P )

If synth succeeds in finding a witness P , this witness is a candidate solution
to the full synthesis formula. We pass this candidate solution to verif which
determines whether it does satisfy the specification on all inputs by checking
satisfiability of the verification formula: ∃x.¬σ(x, P )

If this formula is unsatisfiable, the candidate solution is in fact a solution to
the synthesis formula and so the algorithm terminates. Otherwise, the witness x
is an input on which the candidate solution fails to meet the specification. This
witness x is added to the inputs set and the loop iterates again. It is worth
noting that each iteration of the loop adds a new input to the set of inputs
being used for synthesis. If the full set of inputs is finite, this means that the
refinement loop can only iterate a finite number of times.

5.2 Finite-State Synthesis

We will now show how the generic construction of Sect. 5.1 can be instantiated to
produce a finite-state program synthesiser. A natural choice for such a synthesiser
would be to work in the logic of quantifier-free propositional formulae and to
use a propositional SAT or SMT-BV solver as the decision procedure. However
we propose a slightly different tack, which is to use a decidable fragment of C
as a “high level” logic. We call this fragment C−.

The characteristic property of a C− program is that safety can be decided
for it using a single query to a Bounded Model Checker. A C− program is just
a C program with the following syntactic restrictions:

(i) all loops in the program must have a constant bound;
(ii) all recursion in the program must be limited to a constant depth;
(iii) all arrays must be statically allocated (i.e. not using malloc), and be of

constant size.

C− programs may use nondeterministic values, assumptions and arbitrary-width
types.

Since each loop is bounded by a constant, and each recursive function call
is limited to a constant depth, a C− program necessarily terminates and in fact
does so in O(1) time. If we call the largest loop bound k, then a Bounded Model
Checker with an unrolling bound of k will be a complete decision procedure for
the safety of the program. For a C− program of size l and with largest loop
bound k, a Bounded Model Checker will create a SAT problem of size O(lk).
Conversely, a SAT problem of size s can be converted trivially into a loop-free
C− program of size O(s). The safety problem for C− is therefore NP-complete,
which means it can be decided fairly efficiently for many practical instances.

5.3 Candidate Generation Strategies

A candidate solution P is written in a simple RISC-like language L, whose syntax
is given in the extended version [14]. We supply an interpreter for L which is
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written in C−. The specification function σ will include calls to this interpreter,
by which means it will examine the behaviour of a candidate L program.

For the synth portion of the CEGIS loop, we construct a C− program
synth.c which takes as parameters a candidate program P and test inputs.
The program contains an assertion which fails iff P meets the specification for
each of the inputs. Finding a new candidate program is then equivalent to check-
ing the safety of synth.c. There are many possible strategies for finding these
candidates; we employ the following strategies in parallel:

(i) Explicit Proof Search. The simplest strategy for finding candidates is to just
exhaustively enumerate them all, starting with the shortest and progressively
increasing the number of instructions.
(ii) Symbolic Bounded Model Checking. Another complete method for generating
candidates is to simply use BMC on the synth.c program.
(iii) Genetic Programming and Incremental Evolution. Our final strategy is
genetic programming (GP) [17,18]. GP provides an adaptive way of searching
through the space of L-programs for an individual that is “fit” in some sense. We
measure the fitness of an individual by counting the number of tests in inputs
for which it satisfies the specification.

To bootstrap GP in the first iteration of the CEGIS loop, we generate a
population of random L-programs. We then iteratively evolve this population
by applying the genetic operators crossover and mutate. Crossover com-
bines selected existing programs into new programs, whereas mutate randomly
changes parts of a single program. Fitter programs are more likely to be selected.

Rather than generating a random population at the beginning of each sub-
sequent iteration of the CEGIS loop, we start with the population we had at
the end of the previous iteration. The intuition here is that this population con-
tained many individuals that performed well on the k inputs we had before,
so they will probably continue to perform well on the k + 1 inputs we have
now. In the parlance of evolutionary programming, this is known as incremental
evolution [19].

6 Searching the Space of Possible Solutions

An important aspect of our synthesis algorithm is the manner in which we search
the space of candidate programs. The key component is parametrising the lan-
guage L, which induces a lattice of progressively more expressive languages. We
start by attempting to synthesise a program at the lowest point on this lattice
and increase the parameters of L until we reach a point at which the synthesis
succeeds. Note that this parametrisation applies to all three strategies in the
previous section.

As well as giving us an automatic search procedure, this parametrisation
greatly increases the efficiency of our system since languages low down the lattice
are very easy to decide safety for. If a program can be synthesised in a low-
complexity language, the whole procedure finishes much faster than if synthesis
had been attempted in a high-complexity language.
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Fig. 1. Decision tree for increasing parameters of L.

6.1 Parameters of Language L
Program Length: l. The first parameter we introduce is program length, denoted
by l. At each iteration we synthesise programs of length exactly l. We start with
l = 1 and increment l whenever we determine that no program of length l can
satisfy the specification. When we do successfully synthesise a program, we are
guaranteed that it is of minimal length since we have previously established that
no shorter program is correct.

Word Width: w. An L-program runs on a virtual machine (the L-machine) that
is parametrised by the word width, that is, the number of bits in each internal
register and immediate constant.

Number of Constants: c. Instructions in L take up to three operands. Since any
instruction whose operands are all constants can always be eliminated (since its
result is a constant), we know that a loop-free program of minimal length will
not contain any instructions with two constant operands. Therefore the number
of constants that can appear in a minimal program of length l is at most l. By
minimising the number of constants appearing in a program, we are able to use
a particularly efficient program encoding that speeds up the synthesis procedure
substantially.

6.2 Searching the Program Space

The key to our automation approach is to come up with a sensible way in
which to adjust the L-parameters in order to cover all possible programs. Two
important components in this search are the adjustment of parameters and the
generalisation of candidate solutions. We discuss them both next.
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Adjusting the Search Parameters. After each round of synth, we may need to
adjust the parameters. The logic for these adjustments is given as a tree in Fig. 1.

Whenever synth fails, we consider which parameter might have caused the
failure. There are two possibilities: either the program length l was too small,
or the number of allowed constants c was. If c < l, we just increment c and try
another round of synthesis, but allowing ourselves an extra program constant. If
c = l, there is no point in increasing c any further. This is because no minimal
L-program has c > l, for if it did there would have to be at least one instruction
with two constant operands. This instruction could be removed (at the expense
of adding its result as a constant), contradicting the assumed minimality of the
program. So if c = l, we set c to 0 and increment l, before attempting synthesis
again.

If synth succeeds but verif fails, we have a candidate program that is
correct for some inputs but incorrect on at least one input. However, it may be
the case that the candidate program is correct for all inputs when run on an
L-machine with a small word size. Thus, we try to generalise the solution to a
bigger word size, as explained in the next paragraph. If the generalisation is able
to find a correct program, we are done. Otherwise, we need to increase the word
width of the L-machine we are currently synthesising for.

Generalisation of Candidate Solutions. It is often the case that a program which
satisfies the specification on an L-machine with w = k will continue to satisfy
the specification when run on a machine with w > k. For example, the program
in Fig. 2 isolates the least-significant bit of a word. This is true irrespective of
the word size of the machine it is run on – it will isolate the least-significant bit
of an 8-bit word just as well as it will a 32-bit word. An often successful strategy
is to synthesise a program for an L-machine with a small word size and then to
check whether the same program is correct when run on an L-machine with a
full-sized word.

The only wrinkle here is that we will sometimes synthesise a program con-
taining constants. If we have synthesised a program with w = k, the constants
in the program will be k-bits wide. To extend the program to an n-bit machine
(with n > k), we need some way of deriving n-bit-wide numbers from k-bit ones.
We have several strategies for this and just try each in turn. Our strategies are
shown in Fig. 3. BV(v, n) denotes an n-bit wide bitvector holding the value v
and b · c means the concatenation of bitvectors b and c. For example, the first
rule says that if we have the 8-bit number with value 8, and we want to extend
it to some 32-bit number, we’d try the 32-bit number with value 32. These six
rules are all heuristics that we have found to be fairly effective in practice.

Fig. 2. A tricky bitvector program
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Fig. 3. Rules for extending an m-bit wide number to an n-bit wide one.

6.3 Stopping Condition for Unsatisfiable Specifications

If a specification is unsatisfiable, we would still like our algorithm to terminate
with an “unsatisfiable” verdict. To do this, we can observe that any total function
taking n bits of input is computed by some program of at most 2n instructions
(a consequence of Theorems 2 and 3). Therefore every satisfiable specification
has a solution with at most 2n instructions. This means that if we ever need to
increase the length of the candidate program we search for beyond 2n, we can
terminate, safe in the knowledge that the specification is unsatisfiable.

Although this gives us a theoretical termination condition for unsatisfiable
instances, in practice the program synthesiser may not terminate. In order to
avoid such cases, we use the approach described in Sect. 8.

7 Soundness, Completeness and Efficiency

We will now state soundness and completeness results for the SFD solver. Proofs
for each of these theorems can be found in the extended version [14].

Theorem 5. Algorithm1 is sound – if it terminates with witness P , then P |= σ.

Theorem 6. Algorithm1 with the stopping condition described in Sect. 6.3 is
complete when instantiated with C− as a background theory – it will terminate
for all specifications σ.

Since safety of C− programs is decidable, Algorithm 1 is sound and complete when
instantiated with C− as a background theory and using the stopping condition of
Sect. 6.3. This construction therefore gives as a decision procedure for SFD.

Runtime as a Function of Solution Size. We note that the runtime of our solver
is heavily influenced by the length of the shortest program satisfying the spec-
ification, since we begin searching for short programs. We will now show that
the number of iterations of the CEGIS loop is a function of the Kolmogorov
complexity of the synthesised program. Let us first recall the definition of the
Kolmogorov complexity of a function f :

Definition 3 (Kolmogorov Complexity). The Kolmogorov complexity K(f)
is the length of the shortest program that computes f .

We can extend this definition slightly to talk about the Kolmogorov complexity
of a synthesis problem in terms of its specification:
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Definition 4 (Kolmogorov Complexity of a Synthesis Problem). The
Kolmogorov complexity of a program specification K(σ) is the length of the short-
est program P such that P is a witness to the satisfiability of σ.

Let us consider the number of iterations of the CEGIS loop n required for a
specification σ. Since we enumerate candidate programs in order of length, we
are always synthesising programs with length no greater than K(σ) (since when
we enumerate the first correct program, we will terminate). So the space of
solutions we search over is the space of functions computed by L-programs of
length no greater than K(σ). Let’s denote this set L(K(σ)). Since there are
O(2K(σ)) programs of length K(σ) and some functions will be computed by
more than one program, we have |L(K(σ))| ≤ O(2K(σ)).

Each iteration of the CEGIS loop distinguishes at least one incorrect function
from the set of correct functions, so the loop will iterate no more than |L(K(σ))|
times. Therefore another bound on our runtime is NTIME

(
2K(σ)

)
.

8 Avoiding Unsatisfiable Instances

As described in the previous section, our program synthesiser is efficient at find-
ing satisfying assignments, when such assignments have low Kolmogorov com-
plexity. However, if a formula is unsatisfiable, the procedure may not terminate in
practice. This illustrates one of the current shortcomings of our program synthe-
sis based decision procedure: we can only conclude that a formula is unsatisfiable
once we have examined candidate solutions up to a very high length bound.

However, we note that many interesting properties of programs can be
expressed as tautologies. For illustration, let us consider that we are trying to
prove that a loop L terminates. Thus, as shown in Sect. 3, we can construct two
formulae: one that is satisfiable iff L is terminating and another that is satisfi-
able iff L is non-terminating. We will call these formulae φ and ψ, respectively,
and we denote by PN and PT the proofs of non-termination and termination,
respectively: ∃PT .∀x, x′.φ(PT , x, x′) and ∃PN .∀x.ψ(PN , x).

We can combine these: (∃PT .∀x, x′.φ(PT , x, x′)) ∨ (∃PN .∀x. ψ(PN , x)).
Which simplifies to: ∃PT , PN .∀x, x′, y. φ(PT , x, x′) ∨ ψ(PN , y).
Since L either terminates or does not terminate, this formula is a tautology

in the synthesis fragment. Thus, either PN or PT must exist. Similarly, when
proving safety, a program is either safe of has a bug. In this manner we avoid the
bad case where we try to synthesise a solution for an unsatisfiable specification.

9 Experiments

We implemented our decision procedure for SFD as the Kalashnikov tool. We
used Kalashnikov to solve formulae generated from a variety of problems taken
from superoptimisation, code deobfuscation, floating point verification, ranking
function and recurrent set synthesis, safety proving, and bug finding. The super-
optimisation and code deobfuscation benchmarks were taken from the experi-
ments of [20]; the termination benchmarks were taken from SVCOMP’15 [21]
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Table 1. Experimental results.

Category #Benchmarks #Solved Avg.
solution
size

Avg. iterations Avg.
time
(s)

Total
time
(s)

Superoptimisation 29 22 4.1 2.7 7.9 166.1

Termination 47 35 5.7 14.4 11.2 392.9

Safety 20 18 8.3 7.1 11.3 203.9

Total 96 75 5.9 9.2 10.3 762.9

Table 2. Statistics about the experimental results.

and they include the experiments of [13]; the safety benchmarks are taken from
the experiments of [22].

We ran our experiments on a 4-core, 3.30 GHz Core i5 with 8 GB of RAM.
Each benchmark was run with a timeout of 180 s. The results are shown in
Table 1. For each category of benchmarks, we report the total number of bench-
marks in that category, the number we were able to solve within the time limit,
the average solution size (in instructions), the average number of iterations of
the CEGIS loop, the average time and total time taken. The deobfuscation and
floating point benchmarks are considered together with the superoptimisation
ones.

For the termination benchmarks, Kalashnikov must prove that the input
program is either terminating or non-terminating, i.e. it must synthesise either
ranking functions and supporting invariants, or recurrence sets. For the safety
benchmarks, Kalashnikov must prove that the program is either safe or unsafe.
For this purpose, it synthesises either a safety invariant or a compact represen-
tations of an error trace.

Discussion of the Experimental Results. The timings show that for the instances
where we can find a satisfying assignment, we tend to do so quite quickly (on
the order of a few seconds). Furthermore the programs we synthesise are often
short, even when the problem domain is very complex, such as for liveness and
safety.

To help understand the role of the different solvers involved in the synthesis
process, we provide a breakdown of how often each solver “won”, i.e. was the
first to return an answer. This breakdown is given in Table 2a. We see that GP
and explicit account for the great majority of the responses, with the load spread
fairly evenly between them. This distribution illustrates the different strengths
of each solver: GP is very good at generating candidates, explicit is very good at
finding counterexamples and CBMC is very good at proving that candidates are
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correct. The GP and explicit numbers are similar because they are approximately
“number of candidates found” and “number of candidates refuted” respectively.
The CBMC column is approximately “number of candidates proved correct”.
The spread of winners here shows that each of the search strategies is contribut-
ing something to the overall search and that the strategies are able to co-operate
with each other.

To help understand where the time is spent in our solver, Table 2b how much
time is spent in synth, verif and constant generalization. Note that generaliza-
tion counts towards verif’s time. We can see that synthesising candidates takes
much longer than verifying them, which suggests that improved procedures for
candidate synthesis will lead to good overall performance improvements. How-
ever, the times considered for this table include all the runs that timed out, as
well as those that succeeded. We have observed that runs which time out spend
more time in synthesis than runs which succeed, so the distribution here is biased
by the cost of timeouts.

9.1 Comparison to SyGuS

In order to compare Kalashnikov to other program synthesisers, we translated
the 20 safety benchmarks into the SyGuS format [7] (for the bitvector theory)
and ran the enumerative CEGIS solver eSolver, winner of the SyGuS 2014
competition (taken from the SyGuS Github repository on 5/7/2015), as well as
the program synthesiser in CVC4 [23] (the version for the SyGuS 2015 competi-
tion on the StarExec platform [24]), winner of the SyGuS 2015 competition. We
could not compare against ICE-DT [25], the winner of the invariant generation
category in the SyGuS 2015 competition, as it does not seem to offer support
for bitvectors. Our comparison only uses 20 of the 96 benchmarks as we had to
manually convert from our specification format (a subset of C) into the SyGuS
format. Moreover, our choice of benchmarks was also restricted by the fact that
we could not express lexicographic ranking functions of unbounded dimension
in the SyGuS format, which we require for our termination benchmarks.

The results of these experiments are given in Table 3, which contains the
number of benchmarks solved correctly, the number of timeouts, the number of
crashes (exceptions thrown by the solver), the mean time to successfully solve
and the total number of lines in the 20 specifications.

Since the eSolver tool crashed on many of the instances we tried, we reran
the experiments on the StarExec platform to check that we had not made mis-
takes setting up our environment, however the same instances also caused excep-
tions on StarExec.

An important point to notice in Table 3 is that Kalashnikov specifications
are significantly more concise than SyGuS specifications, as witnessed by the
total size of the specifications: the Kalashnikov specifications are around 11 %
of the size of the SyGuS ones. Overall, we can see that Kalashnikov performs
better on these benchmarks than eSolver and CVC4, which validates our claim
that Kalashnikov is suitable for program analysis problems.
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Table 3. Comparison of Kalashnikov, eSolver and CVC4 on the safety benchmarks.

#Solved #TO #Crashes Avg. time (s) Spec. size

Kalashnikov 18 2 0 11.3 341

eSolver 7 5 8 13.6 3140

CVC4 5 13 2 61.7 3140

We noticed that for a lot of the cases in which eSolver and CVC4 timed out,
Kalashnikov found a solution that involved non-trivial constants.
Since the SyGuS format represents constants in unary (as chains of additions),
finding programs containing constants, or finding existentially quantified first
order variables is expensive. Kalashnikov’s strategies for finding and general-
ising constants make it much more efficient at this subtask.

10 Conclusions

We have shown that the synthesis fragment is well-suited for program verification
by using it to directly encode safety, liveness and superoptimisation properties.

We built a decision procedure for SFD via a reduction to finite state pro-
gram synthesis. The synthesis algorithm is optimised for program analysis and
uses a combination of symbolic model checking, explicit state model checking
and stochastic search. An important strategy is generalisation – we find simple
solutions that solve a restricted case of the specification, then try to generalise to
a full solution. We evaluated the program synthesiser on several static analysis
problems, showing the tractability of the approach.
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Abstract. Inconsistent code is an important class of program abnor-
malities that appears in real-world code bases and often reveals serious
bugs. A piece of code is inconsistent if it is not part of any safely ter-
minating execution. Existing approaches to inconsistent code detection
scale to programs with millions of lines of code, and have lead to patches
in applications like the web-server Tomcat or the Linux kernel. How-
ever, the ability of existing tools to detect inconsistencies is limited by
gross over-approximation of looping control-flow. We present a novel app-
roach to inconsistent code detection that can reason about programs with
loops without compromising precision. To that end, by leveraging recent
advances in software model checking and Horn clause solving, we demon-
strate how to encode the problem as a sequence of Horn clauses queries
enabling us to detect inconsistencies that were previously unattainable.

1 Introduction

Static analysis techniques can be insufficient to eliminate all false alarms in
large-code bases. In an effort to build static analyzers that report close to zero
false alarms, we have seen an increasing interest in inconsistent code detection.
Broadly speaking, inconsistent code comprises code where two program loca-
tions make contradicting assumptions about the execution of the program. This
includes, for example, checking if a chunk of memory is properly allocated only
after it has already been dereferenced, or accessing an array at an index that is
guaranteed to be out of bounds.

Formally, inconsistent code is defined as a program location that only occurs
on executions that must reach an error state. In other words, a code fragment is
said to be inconsistent if it is never part of a “normal” execution of the program.
For example, unreachable code is inconsistent because it has no execution. Pre-
vious techniques have demonstrated that inconsistent code is a very practical
methodology to find likely bugs in a scalable fashion. For example, in [11] incon-
sistent code is used to reveal bugs in the Linux kernel, and in [27] the authors
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found inconsistent code in the web-server Tomcat and the project management
Maven.

Inconsistent code detection algorithms (e.g., [11,18,22,27,34]) share the same
basic architecture. They analyze a program one procedure at a time. For each
procedure, they over-approximate the feasible executions and try to enumerate
the feasible control-flow paths. Everything that cannot be covered is provably
inconsistent code.

So far, all implementations that detect inconsistent code or subsets of it use
very coarse abstractions to handle looping control-flow which limits their ability to
detect inconsistencies significantly. All of these approaches over-approximate the
effect of loops, by simply replacing them with non-deterministic assignments to
the variables modified inside the loop body. Some of the approaches additionally
add an unwinding of the last loop iteration (to detect typical off-by-one errors).

In this paper, we present a novel algorithm to detect inconsistent code that
is able to reason more effectively about looping control-flow. To that end, we
follow the recent trend and reformulate the problem of detecting inconsistencies
as a problem of solving a system of constrained Horn clauses (CHC). Instead of
unwinding looping control-flow, we allow for recursive Horn clause definitions.
As in previous approaches that detect inconsistencies, we encode programs into
logic such that a model for this Horn clause system can be mapped to a feasible
control-flow path in the program, but, unlike existing approaches, our encoding
does not require loop elimination.

Each time we find such a feasible path, we block it and check for the existence
of another model that exercises a different control-flow path. However, since our
Horn clause definitions may be recursive, enumerating all feasible path may not
be possible as there may be infinitely many. For this case, we make use of the
recent developments in software model checking for solving Horn clause systems
which may be able to prove unsatisfiability by inferring local invariants using,
for example, property-directed reachability (PDR)/IC3 [7]. For cases where such
a proof exists, our analysis can find inconsistencies that existing tools could not
find. For cases where such a proof does not exist, we can still fall back to previous
approaches by abstracting the looping control-flow.

As a side effect, the invariants produced by our Horn clause solver can be used
to implement existing fault localization techniques for inconsistent code [32].

We evaluate our approach on a set of handcrafted problems which we made
available on-line. In our experiments, our approach only times out in a single
case and finds several inconsistencies that cannot be detected with current tools
that checks for inconsistency.

2 Related Work

The idea that code inconsistencies represent an interesting class of possible
defects goes back to Engler et al. [11]. Their technique to detect inconsisten-
cies was mostly based on syntactic comparison but it is already able to find
bugs in the Linux kernel and other major pieces of software. The work by
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Dillig et al. [10] uses the term semantic inconsistencies to refer to contradicting
assumptions on control-flow paths. While their work also detects inconsistencies
as defined by Engler et al., they also include inconsistencies on individual paths
(even though each statement on these paths might have a feasible execution).
That is, they scan for a larger class of errors but introduce possible false alarms
as they cannot guarantee that the inconsistent paths they report are in fact
feasible in a larger context.

The idea of using deductive verification to prove inconsistencies has been
presented in [18,22,34]. Janota et al. [22] use a variation of the Boogie tool [2] to
verify that code is unreachable in an annotated program. This is only a subset
of inconsistent code, but the detection algorithm could easily be extended to
detect inconsistent code. Hoenicke et al. [18] prove the existence of inconsistent
code but use the term doomed program points. Tomb et al. [34] use a very similar
approach and also give a definition of inconsistent code that we are going to reuse
in this paper. In our earlier work, we have developed a tool to detect inconsistent
code [27] and demonstrated that it finds relevant bugs in popular open-source
Java applications.

In [6], the authors use inconsistency detection to prioritize error messages
produced by a static analyzer. Their approach post-processes static analysis
warnings and gives them a high priority if the warning contains an abstract
semantic inconsistency bug, which is inconsistent code on an abstract model of
the code.

An approach that is similar in spirit but not immediately related is the
work by Wang et al. [35] where the authors try to identify local invariants to
detect undefined behavior of C programs. While the class of errors that we want
to detect are not immediately comparable, we share the idea of searching for
invariants to prove the presence of errors while accepting false negatives in return
for a low false positive rate.

The local invariants computed by our approach when proving code to be
inconsistent can be seen as error invariants [12] which can be used for fault
localization. The approach presented in [32] shows how these invariants can be
used to explain inconsistent code.

Constraint Horn clauses have been used as the basis for software model
checking [9,13] of concurrent systems and its use in software verification tools is
rapidly growing. For example, they have been adopted in Threader [29], UFO [1],
SeaHorn [16], HSF [14], VeriMAP [8], Eldarica [31], and TRACER [21]. Our tool
has many similarities with some of these tools and in fact, our current imple-
mentation is built on the top of SeaHorn. However, ours is the first available
implementation based on Horn clauses that detects inconsistent code.

3 Running Example

We illustrate the different steps of our approach along the running code example
in Fig. 1. The procedure foo takes an integer x as input and computes the
sum of 10/i, for all i between -x and x. That is, for any x less or equal to
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Fig. 1. Illustrative example. The procedure foo takes an integer x as input and sums
up the integer divisions 10/i for all i between −x and x. For any x > 0, the division in
line 4 must raise an exception once the iterator i becomes zero. For any x ≤ 0, line 4
cannot be reached.

zero, the procedure skips the loop and returns 0 immediately. For any x greater
zero, however, the procedure will perform a division by zero once the iterator i
becomes zero resulting in undefined behavior. Executing this undefined behavior
causes the program to terminate with an exception (when compiled with gcc).
Since the loop is iterating from -x to x, any execution that enters the loop
must raise this exception. Hence, line 4 is inconsistent code. We acknowledge
that this is a fairly artificial example but it is designed so that its Horn clause
representation and the invariants used to prove the inconsistency are succinct
for presentation reasons.

Let us quickly discuss the concepts of reachability, feasibility, and inconsis-
tency using this example. Every line in this procedure is (forward) reachable,
meaning that, for each statement of the procedure, we can find a sequence of
statements that reaches it from the entry of the procedure and is feasible. That
is, assuming that x can take arbitrary values, there exist a concrete value for
x that triggers an execution ending in the statement. If, on the other hand, we
would assume that x ≤ 0, then the body of the for-loop would not have any
feasible executions and would thus be unreachable. However, every feasible exe-
cution of line 4 must terminate exceptionally later due to unavoidable division
by 0. Hence, we declare line 4 as inconsistent because any feasible execution
containing this line must terminate exceptionally.

Now, we want to use formal techniques to prove the inconsistency in line 4. In
the literature one finds several algorithms that (among other things) prove the
existence of inconsistencies (e.g., [10,18,22,34]). However, none of the existing
algorithms would be able to detect the inconsistency because of their inability to
handle looping control-flow. Unwinding the loop is not an option either in this
example because the bounds are unknown at compile time. Even though each
unwinding would reveal the error, this is not sufficient to prove the inconsistency
(because, for the statement to be inconsistent, the error has to occur on every
iteration). Hence, we need an approach that is able to infer an inductive invariant
that allows us to prove that every feasible execution containing line 4 must
terminate exceptionally.
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In the following sections, we first describe how we encode the running example
from Fig. 1 as a system of constrained Horn clauses and then we present an
algorithm to prove that line 4 is in fact inconsistent.

4 Horn Clause Encoding

In this section, we describe how we encode the example from Fig. 1, as a system
of constrained Horn clauses. First, we describe the syntax and semantics of Horn
clauses.

Given a set F of function symbols (e.g., +, =, etc.), a set P of predicate
symbols, and a set V of variables, a Constrained Horn Clause (CHC) is a formula:

∀V.(p[X] ← φ ∧ p1[X1] ∧ . . . ∧ pk[Xk])

for k ≥ 0, where φ is a constraint over F and V. Each pi[Xi] is the application
of a predicate pi ∈ P for first-order terms constructed from F and V. We refer
to the left-hand side of the implication as head and to the right-hand side as
the body of the Horn clause. A clause is called a query if its head is P-free, and
otherwise, it is called a rule. We say a clause is linear if its body contains at
most one predicate symbol P, otherwise, it is called non-linear. For scalability
reasons, our algorithm, described in Sect. 6, for detecting inconsistencies is intra-
procedural. As a result, all of our CHCs will be linear1. Finally, we will follow
the CLP convention of writing Horn clauses as h[X] ← φ, p1[X1], . . . , pk[Xk].

A system of CHCs is satisfiable if there exists an interpretation J of the
predicate symbols P such that each constraint φ is true under J . If satisfiable,
we assume that the CHC solver (e.g., GPDR [17], Eldarica [31], or Spacer [25])
also returns a model : assignments of values to variables.

We assume that the reader is familiar with the basic concepts of how to encode
programs using Horn clauses (see e.g., [5,16,30] for details). For simplicity, we use
in this presentation an encoding based on small-step operational semantics [28]
and describe informally how to translate programs to CHCs. Note that our app-
roach is not limited to a particular encoding and we can also use other encodings,
for instance, large-step [4,15] (a.k.a. Large Block Encoding, or LBE).

Thinking in terms of programs and basic blocks (sequence of statements
without branching), the predicates p1 . . . pk encode the control-location where a
program could have been before reaching the current basic block. The constraint
φ encodes the transition relation of the statements in this basic block, and the
predicate p in the head of the Horn clause indicates where control flows if the
transition relation φ allows for a feasible execution of the basic block.

Figure 2 shows a CHC encoding of our running example from Fig. 1. Each
predicate p0, . . . , p4 corresponds to a control location in our program. The pred-
icate p0 in the first line is the procedure entry encoding that the entry of the
1 In presence of function calls, a CHC will have at least two predicate symbols in its

body: one that represents the callee and the other modelling the successor. If callsites
are ignored then CHCs will have only one predicate symbol modelling the successor.
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Fig. 2. Constrained Horn clause representation of the example from Fig. 1. The i �= 0
colored in red is the implicit runtime assertion introduced by the division in line 4 of
our running example (Color figure online).

function is always reachable. The second line states that if we are at the pro-
cedure entry p0 and ret′ = 0 and i′ = −x can be established, we are allowed
to proceed to the loop head p1. The next two lines state that, if we are at the
loop head and the loop condition i < x holds, we proceed into the loop body p2,
or otherwise, we go to the loop exit p3. The next line represents the loop body.
Note the i �= 0 colored in red. This is the implicit run-time assertion that needs
to hold when executing the division in the loop body of our running example in
Fig. 1. We assume that these assertions have been introduced during the trans-
lation. If the loop body is executed successfully, control moves back to the loop
head p1. The last line is the loop exit. For brevity, we do not model the return
statement and just assume that ret is visible to the outside.

Once obtained the system of constrained Horn clauses representing a program,
we can add a query. A typical query for our example from Fig. 2 would be:

p4(x, ret, i) (1)

which checks if the control location associated p4 at the end of the procedure is
reachable. If this query is satisfiable, the CHC solver produces a model. For our
encoding, a model also encodes a program state, and the existence of this state
witnesses that there is a feasible path reaching the associated control-location.
For short: if a model for p4 exists then foo has a feasible complete path.

If no such model exists, the CHC solver provides a proof that the program
has no feasible execution (that reaches the end of foo). For our example, we
can find a model that sets x to a value less or equal to zero. For this input, the
execution of the procedure skips the loop and terminates normally.

The challenge now is, how do we check if there is another model that executes
a different path? Let us assume that our previous query provided us with a path
through p0, p1, p3, and p4. Now we want to check if there is also a path through
p2. It would be tempting to build the following query

p4(x, ret, i) ∧ p2(x, ret, i). (2)

Unfortunately, this query does not ask for a path that passes through p2 and
p4. Instead, it asks whether p2 and p4 are reachable (not necessarly on the same
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execution) with the same values for x, ret, and i. Even if we rename the variables
of p2 and p4 to disjoint sets of variables the same problem remains. The reason
is that our Horn clause encoding allows only for checking forward reachability.
However, our aim is to check if a particular location can be passed during an
execution that reaches the end of a procedure. Hence, we have to extend our
encoding to capture which locations have been visited on a path.

Fig. 3. Constrained Horn clause representation of the example from Fig. 1 with crumb
variables. Each crumb variable ri corresponds the a program location associated
with the predicate pi. In the head of each clause, we can see that the crumb vari-
able for that predicate is set to true (�) which corresponds to updating the variable
to � when the location is reached. For p0 all the crumb variables are set to false (⊥)
except the one that corresponds to the entry of the procedure (r0).

5 Crumb Variables

To extend our encoding in a way that allows us to extract a feasible path directly
from the model returned by the Horn clause solver while blocking paths that we
have already covered, we add auxiliary Boolean variables to our encoding. Our
approach is inspired by a similar approach using Integer variables that has been
presented in [3]. Thinking in terms of programs and executions, the idea is to add
one Boolean variable ri per control location (i.e., per predicate pi in the Horn
clause system). All these variables are initially set to false. If a control location is
reached, the corresponding Boolean variable is set to true. Now, we can obtain a
path from a model by looking at the values of these Boolean variables at the last
program location. Throughout the rest of this paper, we refer to these variables
as crumb variables because we disperse them in the encoding so that the Horn
clause solver can find a path while constructing a model.

Figure 3 shows how we encode the procedure foo from our running example
into another system of Horn clauses. For each predicate p0 . . . p4 we introduced
a crumb variable r0, . . . r4. In the head of each Horn clause, we enforce that the
crumb variable ri is set to true when transferring control to pi (alternatively,
we could update ri in the body of the Horn clause like a proper assignment, but
this representation is shorter).
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Note that, in practice, we do not need one crumb variable per location. It is
sufficient to add crumb variables for the minimal subset of locations that need
to be covered to ensure that all locations can be covered (in our example this
would be p2 and p3). The definition of this minimal set is given in [3].

For example, using crumb variables, the incorrect query from (2) in previous
section, is encoded correctly as follows:

p4(x, ret, i,	, r1,	, r3,	) (3)

That is we are asking if it is possible to reach the end of the procedure (by
enforcing that p4 has to hold) in a state where r0, r2, and r4 have been set
to true. Thus, we only allow models representing executions of complete paths
that visit p2 at least once.

Lemma 1. Given a system of CHCs for a program P with a set of predicates
p0 . . . pn and a set of crumb variables r0 . . . rn, and pi(−→v , r0, . . . , rn), where −→v is
a vector of program variables. A query pi(−→v , r0, . . . , rn) has a model m if and only
if there exists a feasible path in P that reaches the control location associated with
pi. Further m(ri) is true for all ri associated with control-locations on this path.

From Lemma 1 follows that querying the predicate that represents the exit of
a program allows us to check for the existence of a feasible path. Further, by
adding additional conjuncts to the query that certain crumb variables have to
be true, we can check if a feasible path through certain locations exists.

Also note that, unlike in encodings that eliminate loops, a model m encodes
paths with loops (that is a path rather than a walk in terms of graph theory).
Hence, if m(ri) is true we know that there exists a feasible path through pi, but
we do not know how often pi is visited when executing this path.

A proof of Lemma 1 in the context of programs and control-flow graphs is
given in [3]. Assuming that our Horn clause representation captures the seman-
tics of this control-flow graph as described in [16], this proof also holds for our
Horn clause representation of programs.

Fault Localization. In query (3), we checked for the existence of a feasible path
that passes through the loop body (represented by p2). Since no such path exists,
the query is unsatisfiable and a Horn clause solver will give us an invariant for
each predicate. Such invariants can be used to apply static fault localization
techniques such as [32] or [23].

For our running example, a Horn clause solver would provide us the following
invariants2:

p0(x, ret, i) ← true, p1(x, ret, i) ← i < 0, p2(x, ret, i) ← i < 0,
p3(x, ret, i) ← false, p4(x, ret, i) ← false

The first statement proofs that the program location p0 is valid. Once we
enter the loop at p1, the invariant i < 0 holds and takes us into the loop body
2 For clarity, we have eliminated from the invariants all crumb variables.
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at p2 where the invariant still holds. Further, for p3 and p4 the invariant is false
meaning that the execution of the program must end once the invariant i < 0
does not hold anymore. This exactly describes the error. If we enter the loop, we
must have a negative i. We can iterate the loop until i becomes zero and then
we crash.

One can think of different ways of presenting this information to a program-
mer. For example, using automaton based representation as described in [32], or
a compressed trace with annotations. In summary, using a Horn clause solver
to detect inconsistent code provides us a fault localization for free. This is a
significant improvement over previous approaches where the fault localization
had to be computed manually.

6 Inconsistency Detection Through Horn Clause
Coverage

Using our Horn clause encoding with the crumb variables from the previous
section, we are able to ask for any location in a program whether it is incon-
sistent or not. However, in practice, we want to know if a procedure contains
any inconsistencies. Checking each location individually would not be very effi-
cient (see [3]). Instead, we propose an algorithm that repeatedly asks the solver
for a feasible path and then blocks this path to ensure that, in the next query,
the solver will exercise a different path that visits at least one control location
that has not been visited previously. In a nutshell, we want to compute a path
coverage for the generated system of Horn clauses.

Algorithm 1. Horn clause coverage algorithm.
Input: HC : constrained Horn clause encoding of a program with crumb

variables.
Output: feasible : Crumb that can occur on a feasible path.

1 begin
2 crumbs ← getCrumbs(HC) ;
3 psink ← getSink(HC) ;
4 feasible ← ∅;
5 blocking ← true ;
6 while query(psink ∧ blocking) do
7 model ← getModel(psink) ;
8 blocking ← blocking ∧ getBlockingClause(model);
9 feasible ← feasible ∪ {r|r ∈ crumbs ∧ model(r)};

10 end while
11 return feasible;

12 end

Algorithm 1 shows our covering algorithm for Horn clause systems. The algo-
rithm takes a program encoded as system of constrained Horn clauses HC aug-
mented with crumb variables as input and returns the set of crumb variables
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feasible that occurred on feasible paths. To that end, the algorithm first uses
the helper function getCrumbs to collect all crumb variables from the input Horn
clauses. Then, the algorithm calls getSink to get the predicate associated with
the last control location psink in the program encoded by HC. This location
is needed later on to query if there exists a feasible complete path (that is a
path reaching psink). Further, the algorithm uses the helper variable blocking,
which is initially true to exclude all models representing program paths that have
already been visited.

The main loop of Algorithm1 repeatedly checks if psink in conjunction with
the blocking clause blocking has a model. It uses the helper function query which
either returns true or false (or runs forever). If query returns false, we have a
proof from the solver that no feasible path exists and we return the set feasible.
If query returns true, we use the helper function getModel to obtain a model
from the solver that assigns each variable in psink to a value. In particular,
model contains an assignment for each crumb variable r such that set of crumb
variables assigned to true represent a feasible path.

Using the model obtained from the solver, we now extend our blocking clause
blocking to exclude the feasible path represented by model. To that end, we use
the function getBlockingClause which constructs a conjunction of all crumb
variables where the variables that are assigned to false in model occur in negated
form, and the ones assigned to true in positive form:

getBlockingClause(model) = ¬
( ∧

r∈getCrumbs(HC)

{
r if model(r) = true

¬r if model(r) = false

)

One important difference between computing such a blocking clause for Horn
clause systems with loops compared to Horn clause systems without loops is
that our blocking clause also must include conjunctions for the crumb variables
that are assigned to false in the model. If we would only include those crumb
variables set to true by the model, we would also block all paths that visit a
superset of the locations visited on this path. Think, for example, of a program
containing a single loop with one conditional choice in its body. Let us further
assume the then-branch must be visited in the first iteration of the loop, and the
else-branch must be visited in all other iterations. If our Horn clause solver gives
us a model in which the then-branch is visited but not the else-branch, and we
would add a blocking clauses containing only the crumb variables that are true
in model, we would also block all feasible paths through the else-branch. This is
because any path through the else-branch must go through the then-branch in
the first iteration of the loop. Hence it must set all crumb variables to true that
are true in model and, in addition to that, the crumb variable for the else-branch.

After updating our blocking clause, Algorithm1 adds all crumb variables
assigned to true by model to the set feasible. This loop is iterated until no new
model can be found. Then, the algorithm returns the set feasible of all crumb
variables which correspond to feasible control locations in the program. All other
control locations in the program are inconsistent.
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Note that Algorithm 1 is guaranteed to terminate if query terminates: each
iteration of the loop extends the blocking clause in a way that the next iteration
has to visit at least one new control location. Since the number of control loca-
tions is finite (even if the number of paths is not), the loop must reach a point
where all control locations that occur on feasible paths have been visited. Then
it is up to query to prove that there is no more feasible path (this, however, is
undecidable).

Remarks on soundness and completeness. Since finding inconsistent code is not
safety checking, let us briefly clarify what soundness means in the context of
inconsistent code detection: An inconsistent code detection algorithm is sound,
if every inconsistency reported in HC is in fact an inconsistency in the program
it encodes (i.e., a proof that no feasible paths through a control location exists in
the Horn clause encoding also is a proof that no such path exists in the original
program). So, to be sound, our Horn clause encoding must over-approximate
the feasible executions of the original program (which is usually easier than
over-approximating the failing executions which is needed to prove safety). Our
implementation for C is not sound as we will discuss later. Further, our algo-
rithm is only sound if our Horn clause solver is sound. That is, Algorithm1 does
not introduce unsoundness, but our implementation used in the evaluation is
unsound.

Completeness in the context of inconsistent code detection means that an
algorithm detects all inconsistencies. Our algorithm is complete if the employed
Horn clause solver is complete - which is not the case since the problem is
undecidable. Further, we lose completeness during the translation into Horn
because we cannot guarantee that the translation preserves all feasible executions
of the original program which we will discuss later.

7 Experimental Evaluation

We have implemented our technique on top of the SeaHorn framework [16]. Our
tool uses SeaHorn capabilities for translating LLVM-based programs into a set of
recursive Horn clauses. This saved us a huge amount of work since SeaHorn deals
with the translation from C to LLVM bitecode, performs LLVM optimizations
and runs some useful transformations (e.g. mixed-semantics transformation) as
well as a pointer analysis. This also allowed us to support programs with point-
ers and arrays without extra effort. We implemented a variant of the small-step
encoding in order to accommodate the crumb variables. We leave for future work
the extension to more efficient encoding such as Large-Block Encoding (LBE).

We have implemented the algorithm described in Sect. 6 in Python. The code
that is publicly available at [33]. The algorithm is applied on each function sepa-
rately rather than the whole program. Although our prototype analyzes several
functions concurrently one important limitation is that it generates the Horn
clauses for the whole program. This has limited us significantly with real appli-
cations. For future work, we will instead generate Horn clauses for each function.
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Table 1. Results of applying our inconsistent code detection on a set of benchmarks.
The benchmarks are handcrafted in the spirit of SV-COMP benchmarks challenge
the algorithm with different categories of loops. We check for each benchmark if the
inconsistency can be detected by our approach (with loops) and by an approach where
loops are abstracted (with abstraction). We further record the number of iterations of
our algorithm (i.e., number of feasible paths) and the computation time.

For this purpose we will still need a scalable and precise pointer analysis that
can analyze the whole program in presence of pointers and arrays. Fortunately,
SeaHorn relies on a heap analysis called Data Structure Analysis (DSA) which
has been very effective for real applications [26].

Experimental setup. To evaluate our approach we handcraft a set of benchmark
problems. The idea is to create a set of small but hard benchmarks in the spirit
of what is being used in the software verification competition that will allow
us to compare different Horn clause solving strategies in the future. All our
benchmarks are available online3 and contain different kinds of inconsistencies
which we will describe below in more detail.

For the experiments we used SeaHorn running Spacer [24] in the backend
to solve the generated CHCs. All experiments are run on a Macbook Pro with
2.4 Ghz and 8 GB or memory.

Discussion. Table 1 shows the results of running our tool on the set of hand-
crafted benchmarks. The first column shows the name of our benchmark, the
second column shows a if our tool detects the inconsistency in the benchmark,
and a if it fails to do so.

All examples contain inconsistent code. Example 1 is our running example.
The other examples represent different challenging problems for Horn clause
solvers. The examples 2 and 3 do not contain loops, and hence can be solved by
3 https://github.com/seahorn/seahorn/tree/inconsistency/play/inconsistency.

https://github.com/seahorn/seahorn/tree/inconsistency/play/inconsistency
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approaches that abstract loops. The examples 6, 8, 9, and 10 are taken from [20],
a Wikipedia list of common loop errors, and [27]. They represent cases where
inconsistencies in code can be found even with abstraction. Example 6 is an
inconsistency that must happen in the first iteration of the loop. For 8 and 9,
the inconsistency is local to the loop body and thus can be detected without
considering the loop. Example 10 is a typical off-by-one error that can still be
detected using, e.g., the loop abstraction in [19] or [34].

Our approach fails on the examples 4, and 13. Example 4 is a faulty imple-
mentation of binary search that sets the mid point in a way that leads to an
endless loop. Our Horn clause solver is not able to infer a suitable invariant to
prove this and infinitely unwinds the loop. Example 13 contains two loops. The
first loop allocates a two dimensional matrix but erroneously iterates over the
wrong variable which results in unallocated fields in the matrix. The second loop
assigns all fields leading to an inevitable segmentation fault. SeaHorn currently
does not check if memory is allocated, hence we cannot find this inconsistency.

For all other examples, our approach is able to find inductive invariants that
are sufficient to prove the existence of the inconsistency. That is, our approach
only times out on a single example and is able to identify six instances of incon-
sistent code that went undetected before. Hence, we believe that our approach of
using CHCs to detect inconsistencies is viable in practice (in particular because
we can always fall back to abstraction-based approaches in case of a timeout).

Comparing the computation time of our approach with inconsistent code
detection that abstracts loops shows that our approach is not significantly slower
on examples that can be solved by both, and sometimes even faster. On examples
that can only be solved by our approach, the overhead is sometimes significant
(e.g., 8, 11, and 12) but we believe that there is still room for improvement.

Threats to Validity. We report on several threats to validity. Our internal validity
is affected by choosing SeaHorn as a frontend to translate C into CHCs, and by
using Spacer as a backend to solve those CHCs. Using different frontends or
backends may give completely different results. However, we do not claim that
our setup is more effective than others. In fact, we encourage readers to try
other setups that outperform our approach. The other obvious internal threat to
validity is selection bias. We cannot guarantee that our handcrafted benchmarks
resemble real inconsistencies. However, we believe that, as a first step, these
experiments are sufficient to motivate that inconsistent code detection in the
presence loops is an interesting problem, and that our benchmark programs can
serve as a baseline for researchers.

A threat to external validity (i.e., generalizibility of the results) for any incon-
sistent code detection algorithm is that we cannot quantify the number of false
negatives (because it is undecidable). Hence, we cannot quantify how much bet-
ter our approach performs at finding inconsistencies than previous approaches.
However, by design, we can say that it finds at least the same inconsistencies as
previous approaches and maybe more. A suitable way to evaluate this would be
by injecting inconsistencies into real code. However, there is no related empirical
work on how realistic inconsistencies can be injected into code. Another way to
reduce the threat to external validity is to run our tool on industrial benchmarks.
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8 Conclusion

In this paper, we have presented a novel approach to detect inconsistent code
in the presence of looping control-flow. Our approach encodes the problem of
detecting inconsistent code into the problem of solving a system of constrained
Horn clauses. Unlike existing approaches, we do not need to abstract looping
control-flow in a preprocessing step. Hence, our ability to detect inconsistencies
is only limited by the employed Horn clause solver. This allows us to detect
a larger class of inconsistencies than any existing techniques. Moreover, this
represents an interesting novel application of Horn clause solving.

We propose a set of benchmark programs containing inconsistent code that
we made available online. Our experiments show that our implementation is able
to detect several inconsistencies in these programs that could not be detected
by other tools at a reasonable overhead. In particular, we can always fall back
to abstraction-based approaches if our technique does not converge. In fact, to
achieve better scalability we envision a technique that integrates our method
with abstraction-based approaches. In the future we also plan to validate our
approach to industrial scale code base.
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Abstract. Rule-based languages are being used for ever more ambi-
tious applications. As program size grows however, so does the over-
head of team-based development, reusing components, and just keeping
a large flat collection of rules from interfering. In this paper, we propose
a module system for a small logically-motivated rule-based language.
The resulting modules are nothing more than rewrite rules of a spe-
cific form, which are themselves just logic formulas. Yet, they provide
some of the same features found in advanced module systems such as
that of Standard ML, in particular name space separation, support for
abstract data types, and parametrization (functors in ML). Our modules
also offer essential features for concurrent programming such as facilities
for sharing private names. This approach is directly applicable to other
rule-based languages, including most forward-chaining logic program-
ming languages and many process algebras.

1 Introduction

Rule-based programming, a model of computation by which rules modify a global
state by concurrently rewriting disjoint portions of it, is having a renaissance as a
number of domains are finding a use for its declarative and concise specifications,
natural support for concurrency, and relative ease of reasoning [2,8,12,14,15].
Furthermore, the asynchronous state transformation model it embodies has been
shown to subsume various models of concurrency [6], in particular multiset
rewriting, Petri nets and process algebra [20], and several general-purpose lan-
guages based on it have been proposed [3,10].

As languages gain popularity, the need for modularity emerges, since the over-
head associated with writing code grows with program size. Modularity tames
complexity. In traditional programming languages, it addresses the challenges of
breaking a large program into a hierarchy of components with clear interfaces,
swappable implementations, team-based development, dependency management,
code reuse, and separate compilation. Yet, even rule-based languages used for
sizable applications [10,15] provide no support for modular programming.

Programming-in-the-large in a rule-based languages brings about additional
challenges not typically found in imperative or functional languages. First, lan-
guages such as Datalog [12] and CHR [10] have a flat name space which gives
no protections against accidentally reusing a name. Moreover, each rule in them
adds to the definition of the names it contains rather than overriding them.
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Second, these languages tend to have an open scope, meaning that there is no
support for local definitions or private names. Finally, a rule can apply as soon
as its prerequisites enter the global state, as opposed to when a procedure is
called in a conventional language. This, together with the pitfalls of concur-
rency, makes writing correct code of even moderate size difficult. These chal-
lenges make enriching rule-based languages with a powerful module system all
the more urgent if we want them to be used for large applications.

In this paper, we develop a module system for a small rule-based program-
ming language. This language, L1 , subsumes many languages founded on mul-
tiset rewriting, forward-chaining proof search and process algebra [6]. Moreover,
L1 is also a syntactic fragment of intuitionistic linear logic in that state transi-
tions map to derivable sequents. In fact, the transition rules for each operator
of L1 correspond exactly to the left sequent rules of this logic, and furthermore
the notion of a whole-rule rewriting step originates in a focused presentation of
proof search for it [21].

We engineer a module system for L1 by observing that certain programming
patterns capture characteristic features of modularity such as hiding implemen-
tation details, providing functionalities to client code through a strictly defined
interface, parametricity and the controlled sharing of names. We package these
patterns into a handful of constructs that we provide to the programmer as a
syntactic extension of L1 we call LM . The module system of LM supports many
of the facilities for modular programming found in Standard ML [19], still con-
sidered by many an aspirational gold standard, in particular fine-grained name
management and module parametricity (functors). Furthermore, LM naturally
supports idioms such as higher-order functors and recursive modules, which are
not found in [19]. Yet, because the modular constructs of LM are just pro-
gramming templates in L1 , programs in LM can be faithfully compiled into L1 .
Moreover, since L1 subsumes the model of computation of a variety of rule-based
languages (including those founded on forward-chaining, multiset rewriting and
process algebra), it provides a blueprint for enriching these languages with a
powerful, yet lightweight and declarative, module system.

With a few exceptions such as [17], research on modularity for rule-based
languages has largely targeted backward-chaining logic programming [4]. Pop-
ular open-source and commercial implementations of Prolog (e.g., SWI Prolog
and SICStus Prolog) do provide facilities for modular programming although
not in a declarative fashion. The present work is inspired by several attempts
at understanding modularity in richer backward-chaining languages. In partic-
ular [18] defines a module system for λProlog on the basis of this language’s
support for embedded implication, while [1] achieves a form of modularization
via a mild form of second-order quantification [11].

The main contributions of this paper are threefold. First, we define a lan-
guage, L1 , that resides in an operational sweet spot between the stricture of
traditional rule-based languages and the freedom of the rewriting reading of
intuitionistic linear logic [6]. Second, we engineer a powerful module system on
top of this core language with support for name space separation, parametricity,
and controlled name sharing. Third, we show that this module infrastructure is
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little more than syntactic sugar over the core language, and can therefore be
compiled away. In fact, this work provides a logical foundation of modularity in
rule-based languages in general.

The remainder of this paper is organized as follows: Sect. 2 defines the
language L1 , Sect. 3 introduces our modular infrastructure through examples,
Sect. 4 collects the resulting language LM and elaborates it back into L1 , and
Sect. 5 outlines future developments. Further details can be found in the com-
panion technical report [5].

2 Core Language

This section develops a small, logically-motivated, rule-based language that will
act as the core language in which we write (non-modular) programs. It is also
the language our modular infrastructure will compile into.

2.1 Multiset Rewriting with Existentials and Nested Rules

Our core formalism, which we call L1 , is a first-order multiset rewriting language
extended with dynamic name generation and support for nested rewrite rules.
As such, it is a fragment of the logically-derived language of ω-multisets studied
in [6]. Because we are interested in writing actual programs, we consider a simply-
typed variant.

The syntax of L1 is specified by the following grammar (the productions on
the far right — in blue — will be discussed in Sect. 2.3):

Types τ ::= ι | o | τ → τ | τ × τ | �
Terms t ::= x | f t | (t, t) | () | X | p
Atoms A ::= p t | X t
LHS l ::= · | A, l
Rules R ::= l � P | ∀x : ι. R | ∀X : τ → o.R

Programs P ::= · | P, P | A | R | !R | ∃x : τ → ι. P | ∃X : τ → o. P

Terms, written t, are built from other terms by pairing and by applying function
symbols, f . The starting point is either the unit term () or a term variable,
generically written x. In examples, we abbreviate f () to just f . We classify
terms by means of simple types, denoted τ . We consider two base types, the
type of terms themselves, denoted ι, and the type of formulas, denoted o. Type
constructors match term constructors, with the type of () written �. This mini-
mal typing infrastructure can be considerably enriched with additional type and
term constructors, as done in some examples of Sect. 3.

Programs are built out of rules, left-hand sides, and ultimately atoms. An
atom A is a predicate symbol p applied to a term. A rule, R, is the universal
closure of a rewrite directive of the form l � P . The left-hand side l is a multiset
of atoms, where we write “·” for the empty multiset and “A, l” for the extension
of l with atom A. We consider “,” commutative and associative with unit “·”.
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The right-hand side P of a rewrite directive is a multiset of either atoms A,
single-use rules R or reusable rules !R. A right-hand side can also have the
form ∃x : τ → ι. P , which, when executed, will have the effect of creating a
new function symbol for x of type τ → ι for use in P . As rules consist of a
rewrite directive embedded within a layer of universal quantifiers, generically
∀x1 : τ1. . . . ∀xn : τn. (l � P ) with τi equal to ι for the time being, we will
occasionally use the notation ∀�x : �τ . (l → P ) where �x stands for x1, . . . , xn and
�τ for τ1, . . . , τn. A program is what we just referred to as a right-hand side.
A program is therefore a collection of atoms, single-use and reusable rules, and
existentially quantified programs.

The quantifiers ∀x : τ.R and ∃x : τ. P are binders in L1 . We adopt the stan-
dard definitions of free and bound variables, closed expressions (called ground
in the case of terms and atoms), and α-renaming. Given a syntactic entity O
possibly containing a free variable x, we write [t/x]O for the capture-avoiding
substitution of term t of the same type for every free occurrence of x in O.
Given sequences �x and �t of variables and terms of the same length, we denote
the simultaneous substitution of every term ti in �t for the corresponding variable
xi in �x in O as [�t/�x]O. We write θ for a generic substitution �t/�x and Oθ for its
application.

Function and predicate symbols have types of the form τ → ι and τ → o
respectively. The symbols in use during execution together with their type are
collected in a signature, denoted Σ. We treat free existential variables as symbols
and account for them in the signature. The type of free universal variables are
collected in a context Γ . Signatures and contexts are defined as follows (again,
ignore the rightmost production):

Signatures Σ ::= · | Σ, f : τ → ι | Σ, p : τ → o
Contexts Γ ::= · | Γ, x : ι | Γ,X : τ → o

We write Γ �Σ t : τ to mean that term t has type τ in Γ and Σ. The routine
typing rules for this judgment can be found in [5], together with the straightfor-
ward definition of validity for the other entities of the language. Valid rewrite
directives l � P are also subject to the safety requirement that the free variables
in P shall occur in l or in the left-hand side of an enclosing rule.

Computation in L1 takes the form of state transitions. A state is a pair
Σ.Π consisting of a closed program Π and a signature Σ that accounts for all
the function and predicate symbols in Π. We emphasize that the program must
be closed by writing it as Π rather than P . Since rules R in Π are closed, we
further abbreviate ∀�x : �τ . (l � P ) as ∀(l � P ). Observe that a state contains
both atoms, which carry data, and rules, which perform computation on such
data.

We give two characterizations of the rewriting semantics of L1 , each rooted in
the proof theory of linear logic as discussed in Sect. 2.2. The unfocused rewriting
semantics interprets each operator in L1 as an independent state transformation
directive. It is expressed by means of a step judgment of the form

Σ.Π �→ Σ′.Π ′ State Σ.Π transitions to state Σ′.Π ′ in one step
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In this semantics, each operator in the language is understood as a directive to
carry out one step of computation in the current state. Therefore, each operator
yields one transition rule, given in the following table (please, ignore the starred
entries in blue):

Σ. (Π, l, l � P ) �→ Σ. (Π,P )
Σ. (Π,∀x : ι. R) �→ Σ. (Π, [t/x]R) if · �Σ t : ι

Σ. (Π,∀X : τ → o.R) �→ Σ. [p/X]R if p : τ → o in Σ (∗)
Σ. (Π, !R) �→ Σ. (Π, !R,R)

Σ. (Π,∃x : τ → ι. P ) �→ (Σ, x : τ → ι). (Π,P )
Σ. (Π,∃X : τ → o. P ) �→ (Σ,X : τ → o).Π, P (∗)

In words, � is a rewrite directive which has the effect of identifying its left-hand
side atoms in the surrounding state and replacing them with the program in its
right-hand side. The operator ∀ is an instantiation directive: it picks a term of
the appropriate type and replaces the bound variable with it. Instead, ! is a
replication directive, enabling a reusable rule to be applied while keeping the
master copy around. Finally, ∃ is a name generation directive which installs a
new symbol of the appropriate type in the signature.

The rules of this semantics are pleasantly simple as they tease out the specific
behavior of each individual language construct. However, by considering each
operator in isolation, this semantics falls short of the expected rewriting behav-
ior. Consider the state Σ.Π = (p : ι → o, q : ι → o, a : ι, b : ι). (pa,∀x : ι. px � qx).
From it, the one transition sequence of interest is Π �→ p a, (p a � q a) �→ q a,
where we have omitted the signature Σ for succinctness. However, nothing pre-
vents picking the “wrong” instance of x and taking the step Π �→ pa, (pb � q b)
from where we cannot proceed further. This second possibility is unsatisfactory
as it does not apply the rule fully.

The focused rewriting semantics makes sure that rules are either fully applied,
or not applied at all. It corresponds to the standard operational semantics of most
languages based on multiset rewriting, forward chaining and process transfor-
mation. It also leverages the observation that some of the state transformations
associated with individual operators, here the existential quantifier, never pre-
empt other transitions from taking place, while others do (here both the universal
instantiation and the rewrite directive).

A closed program without top-level existential quantifiers is called stable. We
write Π for a state program Π that is stable. A stable state has the form Σ.Π.
The focused operational semantics is expressed by two judgments:

Σ.Π �⇒ Σ′.Π ′ Non-stable state Σ.Π transitions to state Σ′.Π ′ in one step
Σ.Π �⇒ Σ′.Π ′ Stable state Σ.Π transitions to state Σ′.Π ′ in one step

The first judgment is realized by selecting an existential program component in
Π and eliminating the quantifier by creating a new symbol. A finite iteration
yields a stable state. At this point, the second judgment kicks in. It selects
a rule and fully applies it. To fully apply a rule ∀(l � P ), the surrounding
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state must contain an instance lθ of the left-hand side l. The focused semantics
replaces it with the corresponding instance Pθ of the right-hand side P . The
resulting state may not be stable as Pθ could contain existential components.
The following (non-starred) transitions formalize this insight.

Σ. (Π,∃x : τ → ι. P ) �⇒ (Σ, x : τ → ι). (Π,P )
Σ. (Π,∃X : τ → o. P ) �⇒ (Σ,X : τ → o). (Π,P ) (∗)

Σ.Π, lθ, ∀(l � P ) �⇒ Σ. (Π , P θ)
Σ.Π, lθ, !∀(l � P ) �⇒ Σ. (Π, !∀(l � P ), P θ)

Both the focused and unfocused semantics transform valid states into valid
states [5]. Furthermore, any transition step achievable in the focused seman-
tics is also achievable in the unfocused semantics, although possibly in more
than one step in the case of rules.

Theorem 1.

1. If Σ.Π �⇒ Σ′.Π ′, then Σ.Π �→ Σ′.Π ′.
2. If Σ.Π �⇒ Σ′.Π ′, then Σ.Π �→∗ Σ′.Π ′.

where �→∗ is the reflexive and transitive closure of �→. This property is proved
in [5]. The reverse does not hold, as we saw earlier.

The language L1 is a syntactic fragment of the formalism of ω-multisets
examined in [6] as a logical reconstruction of multiset rewriting and some forms
of process algebra. The main restriction concerns the left-hand side of rules,
which in L1 is a multiset of atoms, while in an ω-multiset it can be any formula
in the language. This restriction makes implementing rule application in L1

much easier than in the general language, is in line with all rule-based languages
we are aware of, and is endorsed by a focusing view of proof search. Therefore, L1

occupies a sweet spot between the freewheeling generality of ω-multiset rewriting
and the implementation simplicity of many rule-based languages. L1 also limits
the usage of the ! operator to just rules. This avoids expressions that are of
little use in programming practice (for example doubly reusable rules !!R or
left-hand side atoms of the form !A). This is relaxed somewhat in [5] where we
allow reusable atoms in the right-hand side of a rule. We also left out the choice
operator of ω-multisets (written &) because we did not need it in any of the
examples in this paper. Adding it back is straightforward.

Syntactic fragments of L1 correspond to various rule-based formalisms. First-
order multiset rewriting, as found for example in CHR [10], relies on reusable
rules whose right-hand side is a multiset of atoms, and therefore corresponds to
L1 rules of the form !∀�x. (l1 � l2). Languages such as MSR additionally permit
the creation of new symbols in the right-hand side of a rule, which is supported
by L1 rules of the form !∀�x. (l1 � ∃�y. l2).

As shown in [6], ω-multiset rewriting, and therefore L1 , also subsumes many
formalisms based on process algebra. Key to doing so is the possibility to nest
rules (thereby directly supporting the ability to sequentialize actions), a facility
to create new symbols (which matches channel restriction), and the fact that
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multisets are commutative monoids (like processes under parallel composition).
For example, the asynchronous π-calculus [20] is the fragment of L1 where rule
left-hand sides consist of exactly one atom (corresponding to a receive action —
send actions correspond to atoms on the right-hand side of a rule).

Our language, like ω-multiset rewriting itself, contains fragments that
correspond to both the state transition approach to specifying concurrent com-
putations (as multiset rewriting for example) and specifications in the process-
algebraic style. It in fact supports hybrid specifications as well, as found in the
Join calculus [9] and in CLF [22].

2.2 Logical Foundations

The language L1 , like ω-multisets [6], corresponds exactly to a fragment of intu-
itionistic linear logic [13]. In fact, not only can we recognize the constructs of our
language among the operators of this logic, but L1 ’s rewriting semantics stem
directly from its proof theory.

The operators “,” and “·”, �, !, ∀ and ∃ of L1 correspond to the logical
constructs ⊗, 1, �, !, ∀ and ∃, respectively, of multiplicative-exponential intu-
itionistic linear logic (MEILL). We write the derivability judgment of MEILL
as Γ ;Δ −→Σ ϕ, where ϕ is a formula, the linear context Δ is a multiset of
formulas that can be used exactly once in a proof of ϕ, while the formulas in the
persistent context Γ can be used arbitrarily many times, and Σ is a signature
defined as for L1 .

The transitions of the unfocused rewriting semantics of L1 can be read off
directly from the left sequent rules of the above connectives. Consider for example
the transition for an existential L1 program and the left sequent rule ∃L for the
existential quantifier:

Σ. (Π,∃x : τ → ι. P ) �→ (Σ, x : τ → ι). (Π,P ) �
Γ ;Δ,ϕ −→Σ,x : τ→ι ψ

Γ ;Δ,∃x : τ → ι. ϕ −→Σ ψ
∃L

The antecedent Π,∃x : τ → ι. P of the transition corresponds to the linear con-
text Δ,∃x : τ → ι. ϕ of the rule conclusion, while its consequent (Π,P ) matches
the linear context of the premise (Δ,ϕ) and the signatures have been updated in
the same way. A similar correspondence applies in all cases, once we account for
shared structural properties of states and sequents. In particular, multiplicative
conjunction ⊗ and its unit 1 are the materialization of the formation operators
for the linear context of a sequent, context union and the empty context. This
means that linear contexts can be interpreted as the multiplicative conjunction
of their formulas. There is a similar interplay between persistent formulas !ϕ
and the persistent context Γ [6]. Altogether, this correspondence is captured
by the following property, proved in [5,6], where �Π� is the MEILL formula
corresponding to state Π and ∃Σ′. �Π ′� is obtained by prefixing �Π ′� with an
existential quantification for each declaration in the signature Σ′.

Theorem 2. If Σ.Π is valid and Σ.Π �→ Σ′.Π ′, then ·; �Π� −→Σ ∃Σ′. �Π ′�.
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The transitions of the focused rewriting semantics of L1 originate from the
focused presentation of linear logic [16], and specifically of MEILL. Focusing is
a proof search strategy that alternates two phases: an inversion phase where
invertible sequent rules are applied exhaustively and a chaining phase where it
selects a formula (the focus) and decomposes it maximally using non-invertible
rules. Focusing is complete for many logics of interest, in particular for traditional
intuitionistic logic [21] and for linear logic [16], and specifically for MEILL [5].
Transitions of the form Σ.Π �⇒ Σ′.Π ′ correspond to invertible rules and are
handled as in the unfocused case. Instead, transitions of the form Σ.Π �⇒ Σ′.Π ′

correspond to the selection of a focus formula and the consequent chaining phase.
Consider for example the transition for a single-use rule ∀(l � P ). The deriva-
tion snippet below selects a context formula ∀(ϕl � ϕP ) of the corresponding
form from a sequent where no invertible rule is applicable (generically written
Γ ;Δ =⇒Σ ψ), puts it into focus (indicated as a red box), and then applies
non-invertible rules to it exhaustively. In the transcription of L1 into MEILL,
the formula ϕlθ is a conjunction of atomic formulas matching lθ, which allows
continuing the chaining phase in the left premise of � L into a complete deriva-
tion when Δ2 consists of those exact atoms. The translation ϕP of the program
P re-enables an invertible rule and therefore the derivation loses focus in the
rightmost open premise.

Σ.Π, lθ, ∀(l � P )
�⇒

Σ. (Π , P θ)
�

· · · Γ ;Aθ =⇒Σ Aθ · · ·
· · ·

Γ ;Δ2 =⇒Σ ϕlθ

Γ ;Δ1, ϕP θ =⇒Σ ψ

Γ ;Δ1, ϕP θ =⇒Σ ψ
blurL

Γ ;Δ1, Δ2, ϕlθ � ϕP θ =⇒Σ ψ
�L

Γ ;Δ1, Δ2, ∀(ϕl � ϕP ) =⇒Σ ψ
∀L(repeated)

Γ ;Δ1, Δ2, ∀(ϕl � ϕP ) =⇒Σ ψ
focusL

Reusable L1 rules !∀(l � P ) are treated similarly. The correspondence is for-
malized in the following theorem, proved in [5].

Theorem 3. Let Σ.Π state be a valid state.

1. If Π is stable and Σ.Π �⇒ Σ′.Π ′, then ·; �Π� =⇒Σ ∃Σ′. �Π ′�.
2. If Π is not stable and Σ.Π �⇒ Σ′.Π ′, then ·; �Π� =⇒Σ ∃Σ′. �Π ′�.

In focused logics, the formula patterns involved in a chaining phase can be
viewed as synthetic connectives and are characterized by well-behaved derived
rules. The generic single-use rules ∀(l � P ) and reusable rules !∀(l � P ) define
such synthetic connectives, and their transitions match exactly the derived left
sequent rule in the focused presentation of MEILL.

2.3 Mild Higher-Order Quantification

As we prepare to modularize L1 programs, it is convenient to give this language
a minor second-order flavor. Doing so significantly improves code readability
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with only cosmetic changes to the underlying formalism and its logical interpre-
tation. In fact, programs in this extended language, that we call L1.5 , are readily
transformed into L1 programs, as shown in [5].

The language L1.5 is obtained by taking into account the snippets written in
blue throughout the earlier definitions. It extends L1 with second-order variables
and a very weak form of quantification over them. Second-order variables, written
X, allow us to define atoms of the form Xt that are parametric in their predicate.
However, we permit these variables to be replaced only with predicate names,
which are now legal ingredients in terms. The second-order universal quantifier
∀X carries out this substitution by drawing an appropriate predicate name from
the signature. The second-order existential quantifier ∃X extends the signature
with new predicate names. This use of second-order entities is closely related to
Gabbay and Mathijssen’s “one-and-a-halfth-order logic” [11]. It comes short of
the expressiveness (and complexity) of a traditional second-order infrastructure
(which in our case would permit instantiating a variable X with a parametric
program rather than just a predicate name).

The notions of free and bound variables, ground atoms, closed rules and
programs, and substitution carry over from the first-order case, and so does the
safety requirement. Second-order universal variables are subject to an additional
requirement: if a parametric atom X t with X universally quantified occurs in
the left-hand side of a rule, then X must occur in a term position either in the
same left-hand side or in an outer left-hand side. This additional constraint is
motivated by the need to avoid rules such as

!∀X : τ → o.∀x : τ. X x � ·

which would blindly delete any atom pt for all p of type τ → o. Instead, we want
a rule to be applicable only to atoms it “knows” something about, by requiring
that their predicate name be passed to it in a “known” atom. The following rule
is instead acceptable

!∀X : τ → o.∀x : τ. delete all(X),X x � ·

as only the predicate names marked to be deleted through the predicate delete all
can trigger this rule. A type system that enforces this restriction is given in [5].

Both the focused and unfocused rewriting semantics of L1 are extended to
process the second-order quantifiers. The notion of state remains unchanged.
The properties seen for L1 , in particular the preservation of state validity, also
hold for L1.5 .

3 Adding Modularity

In this section, we synthesize a module system for L1.5 by examining a number of
examples. In each case, we will write rules in a way as to emulate characteristics of
modularity, and then develop syntax to abstract the resulting linguistic pattern.
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For readability, types will be grayed out throughout this section. In most cases,
they can be automatically inferred from the way the variables they annotate are
used.

Name Space Separation. Consider the problem of adding two unary numbers —
we write z and s(n) for zero and the successor of n, respectively, and refer to the
type of such numerals as nat. Addition is then completely defined by the single
rule

!∀x: nat.∀y: nat. add(s(x), y) � add(x, s(y))

For any concrete values m and n, inserting the atom add(m,n) in the state
triggers a sequence of applications of this rule that will end in an atom of the form
add(z, r), with r the result of adding m and n. The way this adding functionality
will typically be used is by having one rule generate the request in its right-hand
side and another retrieve the result in its left-hand side, as in the following client
code snippet:

∀m: nat. ∀n: nat. · · · � · · · , add(n, m)

∀r: nat. add(z, r), · · · � · · ·

This code is however incorrect whenever there is the possibility of two clients
performing an addition at the same time. In fact, any concurrent use of add will
cause an interference as the clients have no way to sort out which result (r in
add(z, r)) is who’s.

We obviate to this problem by using a second-order existential quantifier to
generate the predicate used to carry out the addition, as in the following code
snippet where we nested the rule that uses the result inside the rule that requests
the addition so that they share the name add .

∀m: nat. ∀n: nat. · · · � ∃add : nat × nat → o.⎡

⎣
!∀x: nat. ∀y: nat. add(s(x), y) � add(x, s(y)),
· · · , add(n, m),

∀r: nat. add(z, r), · · · � · · ·

⎤

⎦

The safety constraint on second-order variables prevents a rogue programmer
from intercepting the freshly generated predicate out of thin air. In fact, the
rule

∀X: nat × nat → o.∀m: nat.∀n: nat. X(m,n) � X(z, s(z))

is invalid as X does not appear in a term position in the left-hand side.
While the above approach eliminates the possibility of interferences, it forces

every rule that relies on addition to embed its definition. This goes against
the spirit of modularity as it prevents code reuse, reduces maintainability, and
diminishes readability.

We address this issue by providing a public name for the addition function-
ality, for example through the predicate adder, but pass to it the name of the
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private predicate used by the client code (add). Each client can then generate
a fresh name for it. The definition of addition, triggered by a call to adder, can
then be factored out from the client code. The resulting rules are as follows:

!∀add : nat × nat → o. adder(add) �
[
!∀x: nat. ∀y: nat. add(s(x), y) � add(x, s(y))

]

∀m: nat. ∀n: nat. · · · � ∃add : nat × nat → o.

⎡

⎣
adder(add),
· · · , add(n, m),
∀r: nat. add(z, r), · · · � · · ·

⎤

⎦

Observe that, as before, the client generates a fresh name for its private adding
predicate (∃add : nat × nat → o. ). It now passes it to adder, which has the effect
of instantiating the rule for addition with the private name add . The client can
then retrieve the result by having add(z, r) in the left-hand side of an embedded
rule like before.

This idea will be the cornerstone of our approach to adding modules to L1.5 .
We isolate it in the following derived syntax for the exported module (first rule
above):

module adder
provide add : nat × nat → o

!∀m: nat. ∀n: nat. add(s(m), n) � add(m, s(n))
end

Here, the public name adder is used as the name of the module. The names of
the exported operations, the module’s interface, are introduced by the keyword
provide. By isolating the public predicate name adder in a special position (after
the keyword module), we can statically preempt one newly-introduced problem
with the above definition: that a rogue client learn the private name through the
atom adder(X). We shall disallow predicates used as module names (here adder)
from appearing in the left-hand side of other rules.

We also provide derived syntax for the client code to avoid the tedium of cre-
ating a fresh predicate name and using it properly. Our client is re-expressed as:

∀m: nat. ∀n: nat. · · · � A as adder.
[ · · · , A.add(n, m),

∀r: nat. A.add(z, r), · · · � · · ·
]

Here, A is a module reference name introduced by the line “A as adder. ”. This
syntactic artifact binds A in the right-hand side of the rule. The name A allows
constructing compound predicate names, here A.add , which permits using the
exact same names exported by the provide stanza of a module. Uses of com-
pound names and the “as” construct are elaborated into our original code, as
described in Sect. 4.

Modes. In the face of it, our adder module is peculiar in that it requires client
code to use an atom of the form add(z, r) to retrieve the result r of an addition.
A better approach is to split add into a predicate add req for issuing an addition



526 I. Cervesato and E.S.L. Lam

request and a predicate add res for retrieving the result. However, uses of add req
in the left-hand side of client rules would intercept requests, while occurrences
of add res on their right-hand side could inject forged results. We prevent such
misuses by augmenting the syntax of modules with modes that describe how
exported predicates are to be used. The mode in in the provide stanza forces
a (compound) predicate to be used only on the left-hand side of a client rule,
while the mode out enables it on the right-hand side only. A declaration without
either, for example add earlier, can be used freely. The updated adder module
is written as follows in the concrete syntax:

module adder′

provide out add req : nat × nat → o in add res : nat → o

!∀x: nat. ∀y: nat. add req(s(x), y) � add req(x, s(y))
∀z: nat. add req(z, z) � add res(z)

end

and the client code assumes the following concrete form:

∀m: nat. ∀n: nat. · · · � A as adder′.
[ · · · , A.add req(n, m),

∀r: nat. A.add res(r), · · · � · · ·
]

Abstract Data Types. The infrastructure we developed so far already allows us
to write modules that implement abstract data types. Our next module defines a
queue with two operations: enqueuing a data item (for us a nat) and dequeuing
an item, which we implement as a pair of request and result predicates. An
empty queue is created when a queue module is first invoked. We give a name,
here QUEUE, to the exported declarations as follows

interface QUEUE
out enq : nat → o
out deq req : o in deq : nat → o

end

The module queue uses linked lists built from the local predicates head(d′′),
tail(d′) anddata(n, d′, d′′), where the terms d′ and d′′ identify the predecessor
and the successor element, respectively. Such a list will start with atom head(d0),
continue as series of atoms data(ni, di, di+1) and end with the atom tail(dn).

module queue
provide QUEUE

local head : ι → o tail : ι → o data: nat × ι × ι → o
· � ∃d: ι. head(d), tail(d)

!∀e: nat. ∀d: ι. enq(e), head(d) � ∃d′: ι. data(e, d′, d), head(d′)

!∀e: nat. ∀d: ι. ∀d′: ι. deq req , tail(d′), data(e, d, d′) � deq(e), tail(d)
end

A second implementation based on a term representation of lists can be found
in [5].
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Sharing Private Names. As our next example, we define a module that provides
the functionalities of a reference cell in a stateful language. The initial value
of the cell will be a parameter v to the module itself, which will be an actual
value when the module is instantiated. This corresponds to a functor that takes
a value as an argument in Standard ML. This form of parametricity is achieved
in L1.5 by simply passing v as an argument to the public predicate used to call
the module, in addition to the normal interface predicates [5]. In the concrete
syntax, we simply supply v as an argument to the module declaration, as in the
following code snippet:

module cell (v: nat)
provide out get : o in got : nat → o

out set : nat → o

local content : nat → o

· � content(v)

∀v: nat. get , content(v) � got(v), content(v)

∀v: nat. ∀v′: nat. set(v′), content(v) � content(v′)
end

Reference cells are often shared by various subcomputations. One way to do
so is to pass the exported predicates to the subcomputations, after instantiation.
In the following example, the client code (first rule) creates a cell C initialized
with the value s(z). It then passes the setter to the second rule through the
predicate p and passes the getters to the third rule through the predicate q. The
second rule can only write to the cell. The third rule can only read the content
of the cell (here, it then outputs it through predicate s).

· � C as cell(s(z)).
[

p(C.set),
q(C.get , C.got)

]

∀write: nat → o. p(write) � write(z)
[ ∀read req : o.
∀read : nat → o.

]
q(read req , read) �

[
read req ,
∀r: nat. read(r) � s(r)

]

This example shows how the private names obtained through a module invoca-
tion can be shared with other rules. Furthermore this sharing can be selective.

Reference cells can be implemented in a much simpler way by exporting
just the predicate content that holds the content of the cell [5]. By doing so,
however, we prevent the client code from passing distinct capabilities to its
subcomputations.

Parametric Modules. As our last example, we define a producer-consumer mod-
ule. We rely on a queue, as defined earlier, to act as the buffer where the producer
deposits data and the consumer retrieves them from.

Now, rather than selecting a priori which implementation of queues to use,
we make the producer-consumer module parametric with respect to the imple-
mentation of queues. This corresponds a functor parametrized by a structure in
Standard ML.
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module prodcons(Q:QUEUE)
provide in produce : nat → o

in consume req : o out consume : nat → o

· � B as Q .

⎡

⎣
!∀e: nat. produce(e) � B.enq(e)

! consume req �
[

B.deq req ,
∀e: nat. B.deq(e) � consume(e)

]
⎤

⎦

end

The argument Q of prodcons is the name of a module with interface QUEUE.
The following code uses queue defined earlier, and triggers two producers and
one consumer by passing them the appropriate interface predicates exported by
the module.

· � B as prodcons(queue).
[
p1(B.produce), p2(B.produce),
c1(B.consume req , B.consume)

]

Modules in our language can do a lot more than taking other modules as argu-
ments. For example, a networking module may itself make use of the functional-
ities of our producer-consumer module. We may therefore make the networking
module parametric with respect to the specific implementation of the producer-
consumer module. In ML parlance, this would be a functor that takes another
functor as a parameter — a higher-order functor (something that is available in
some extensions of Standard ML, but not in the official definition [19]). By the
same token, nothing prevents us from defining a module that uses an instance
of itself in some of its rules — a recursive module.

4 Multiset Rewriting with Modules

The module infrastructure we developed in the previous section had two parts:

1. We introduced convenience syntax for the programming patterns of L1.5

that realized module definitions (module . . . end), module instantiations
(N as p t. . . .), and the use of exported names (e.g., N.add).

2. We imposed a series of restrictions on where and how predicates can be used
(through the in and out markers), as well as a correspondence between the
names exported by a module and the compound names used in client code.

We call the extension of L1.5 with both aspects LM . In this section, we describe
how the added syntax (1) can be compiled away, thereby showing that LM

is just syntactic sugar for L1.5 — L1.5 has already all the ingredients to write
modular code. We call this process elaboration. We handle the restrictions (2) by
typechecking LM code directly, as a user could violate them even if her code
elaborates to a valid L1.5 program. In [5] we describe an extension of the typing
infrastructure of L1.5 that checks that these restrictions as satisfied at the level
of LM . Our module language is actually more flexible than what we saw in the
examples of Sect. 3.



Modular Multiset Rewriting 529

Once an LM program has been typechecked, it is elaborated into an L1.5

program by compiling the module-specific constructs into native syntax. We
then execute this L1.5 program.

The general syntax of a module definition has the form

module p (Σpar )
provide Σexport

local Σlocal

P
end

Module name and parameters
Exported names
Local predicates and constructors
Module definition

The module interface is Σexport . The modes of the exported predicate names (in
and out in Sect. 3) are irrelevant after type checking — we ignore them. Let Σ∗

denote the tuple of the names declared in signature Σ. Then this construct is
elaborated into the L1.5 rule

∀Σpar .∀Σexport . p (Σ∗
par , Σ

∗
export ) � ∃Σlocal . P

where the notation ∀Σ.R prefixes the rule R with one universal quantification
for each declaration in Σ, and similarly for ∃Σ.P .

Let Σexport be the interface exported by the module p, defined as in the
previous paragraph. For convenience, we express Σexport as �X : �τ , where the
i-th declaration in Σexport is Xi : τi. Then, we elaborate the derived syntax for
module instantiation,

N as p t. P into ∃Σexport . p(t, �X), [ �X/N. �X]P

where [ �X/N. �X]P replaces each occurrence of N.Xi in P with Xi. We implicitly
assume that variables are renamed as to avoid capture.

Elaboration transforms a valid LM program into a valid L1.5 program, ready
to be executed. In particular, it removes all compound names of the form N.X.

5 Future Work and Conclusions

In this paper, we developed an advanced module system for L1 , a small rule-
based programming language. L1 corresponds to a large fragment of polarized
intuitionistic linear logic under a derivation strategy based on focusing. Modules
are rewrite rules of a specific form and can therefore be compiled away. Yet,
they share many of the features of the module system of Standard ML, and
provide several more. L1 incorporates key features of languages based on multiset
rewriting [10,22], forward-chaining logic programming [2,7,8,12,14], and many
process algebras [9,20]. Therefore, the module infrastructure developed in this
paper can be applied directly to any of these formalisms.

Our immediate next step will be to implement our module system in the
CoMingle system [15]. CoMingle is a rule-based framework aimed at simplify-
ing the development of applications distributed over multiple Android devices.
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CoMingle programs are compiled, and one of the most interesting challenges of
extending it with modules will be to support separate compilation, one of the key
feature of advanced module systems à la Standard ML. We also intend to further
study the languages defined in this paper. In particular, we want to investigate
uses of second-order quantification to support reflection and runtime rule con-
struction without sacrificing performance. We are also keen on adapting reason-
ing techniques commonly used in process calculi, for example bi-simulation [20],
to our language as L1 supports many of their features.
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Abstract. In this paper, we investigate the use of high-level action lan-
guages for representing and reasoning about ethical responsibility in goal
specification domains. First, we present a simplified Event Calculus for-
mulated as a logic program under the stable model semantics in order to
represent situations within Answer Set Programming. Second, we intro-
duce a model of causality that allows us to use an answer set solver to
perform reasoning over the agent’s ethical responsibility. We then extend
and test this framework against the Trolley Problem and the Doctrine of
Double Effect. The overarching aim of the paper is to propose a general
and adaptable formal language that may be employed over a variety of
ethical scenarios in which the agent’s responsibility must be examined
and their choices determined. Our fundamental ambition is to displace
the burden of moral reasoning from the programmer to the program
itself, moving away from current computational ethics that too easily
embed moral reasoning within computational engines, thereby feeding
atomic answers that fail to truly represent underlying dynamics.

1 Introduction

The study of morality from a computational point of view has attracted a grow-
ing interest from researchers in artificial intelligence; as reviewed in [1]. This
endeavour can help us better understand morality, and reason more clearly about
ethical concepts that are employed throughout philosophical, legal and even tech-
nological domains. Confronting ethical theories and philosophical works with the
systematicity and logical constraints of programming languages indeed forces us
to think about, and make explicit, the underlying mechanisms that characterize
those works. It also sheds light on the possible inconsistencies or ambiguities
that they may contain. In addition, as the autonomy of artificial agents grows
and as an increasing amount of tasks are delegated to them, it becomes vital
to equip them with the capacity to process moral restrictions and goals, be it
within their own reasoning scheme or for interaction with human users.

The challenge therefore is to shift the burden of moral reasoning from the user
or programmer to the program itself. Current works in computational ethics too
often tend to embed moral factors within their computational engine, without
generating moral reasoning to speak of. The moral worth and causal implica-
tions of actions are atomically afforded, rather than extracted and ‘understood’
c© Springer-Verlag Berlin Heidelberg 2015
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from facts and rules. In contrast, our aim is to provide a general and adaptable
framework that enables the artificial agent to both understand the situation in
which the dilemma arises and the ethical rules that constrain its actions, so as
to determine from these only the correct course of action. To achieve this, we
combine an entirely ethics-free model of the world with an ethical over-layer
that the agent can understand and apply back onto its knowledge of the world.
What is particularly important to note here is that at the centre of this process
lies the notion of causality, for only when the agent can reason about causes
and consequences can he begin to reason about moral choice and responsibility.
Therefore, our model of moral reasoning and responsibility pivots around our
discussion of causal models, which we implement in Event Calculus.

Formally, we chose the use of nonmonotonic logic as its study has been put
forward by A.I. researchers as a way to handle the kind of defeasible generali-
sations that pervade much of our commonsense reasoning, and that are poorly
captured by classical logic systems [11]. The term covers a family of formal frame-
works devised to apprehend the kind of inference in which conclusions stay open
to modification in the light of new information. On a regular basis it seems we
draw conclusions from bodies of data that can be dropped when faced with new
data. For example, we will hold that a certain bird can fly, until we learn that it is
a penguin. This kind of default based reasoning is significantly present in ethical
reasoning: we may determine the moral value of an action, for example theft, dif-
ferently depending on surrounding information. Such factors as the presence of
alternative options, indirect consequences, or extenuating circumstances might
overthrow our ethical judgement. Accordingly, nonmonotonic goal specification
languages are particularly well suited to modelling ethical reasoning.

The Doctrine of Double Effect (DDE) introduces fundamentally nonmonotonic
precepts. It is a set of ethical criteria that was put forward most prominently by
Philippa Foot for evaluating the ethical permissibility of an action that has both
good and bad consequences [5]. It allows that while actions with negative conse-
quences are morally prohibited a priori, there may be instances in which they are
morally permissible. We therefore chose the DDE as the basis for moral recom-
mendation, and applied it onto the dilemma of Trolley. Moreover, the DDE has
been the focus of research in cognitive science, and was shown to be consistently
corroborated by demographically different groups [21]; we aim to computation-
ally explain but also test these intuitions. We begin by introducing the DDE and
related current works in computational ethics, then lay out the basic tenets of
ASP and the Event Calculus [Sects. 2 and 3]. Next, we expose our extension of
the Event Calculus that enables us to handle issues pertaining to causal paths,
and introduce our representation of the planning domain and problem [Sects. 4
and 5]. We then discuss the definitions and models of the notions of responsibility
and prevention [Sect. 6], and describe the ethical motor and implementation of the
Doctrine of Double Effect [Sect. 7], before concluding [Sect. 8].
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2 Motivation

2.1 The Doctrine of Double Effect and the Trolley Problem

The DDE specifies four conditions that must be satisfied in order to render
morally permissible an action that has both a good and a bad effect:

1. Nature-of-the-act. The action itself must either be morally good or indifferent.
2. Means-end. The good effect must not be reached by means of the bad effect.
3. Right-intention. Only the good effect must be intended, while the bad effect

may only be an unintended side effect.
4. Proportionality. The good effect must be at least equivalent to the bad effect.

The DDE draws a distinction between intending harm and merely foreseeing
harm, and can justify departures from purely consequentialist thinking in which
only the proportionality condition operates. Significantly, it provides a reading
of the Trolley Problem, an ethical dilemma formulated in Foot’s 1967 paper.
Consider the following scenario:

(switch) A train is running towards five workmen repairing train tracks.
If the agent does nothing, the train will run over and kill them. However,
the agent has the option of actioning a switch that will deviate the train
off the tracks and onto side tracks along which one person is walking.
This will kill that person.

Intuitively, respondents tend to agree that this action (actioning the switch),
is ethically admissible [29]. This fits with the utilitarian notion that killing one
person to save five is the better option (the other option being no action at all).
Now take another case,

(push) There is no switch button, instead there is a bridge above the
tracks on which stands an onlooker. Here, the agent knows that if they
push the onlooker onto the tracks, the train will hit and kill the onlooker,
stop as a result of the crash, and spare the five workmen.

Respondents have significantly deemed this action ethically impermissible [29],
and are motivated by something other than utilitarian reasoning, since they
choose the death of five over the death of one. The DDE successfully interprets
this dilemma by justifying these seemingly inconsistent intuitions. Indeed, in the
second case (push), while the nature-of-the-act and proportionality conditions
are met, the means-end and right-intention conditions are violated: the death of
the onlooker is used as a means to preventing the death of the five workmen, and
as such is not just a foreseen side-effect but an intended act. About the nature-of-
the-act condition it is important to note that only the intrinsic nature of the act
itself is considered: even though pushing someone off a bridge is morally wrong,
the act of pushing alone is not, unlike, for instance, stealing or lying. Looking
back at the first case (switch), the death of the person walking on the other track
plays no upstream causal role in the saving of the five: they are saved whether
or not that one person dies, as long as the train leaves its original tracks.
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2.2 Existing Works

In order to make clear the contribution of the present paper, it is necessary to
first look at existing approaches in computational ethics before discussing our
own. Pereira and Saptawijaya, in particular, also modelled the Trolley Problem
and the DDE using prospective logic [26].
They represent the situation in which the agent throws the switch as follows:

turnSide ← consider(throwingSwitch).
kill(1) ← human(X), onSide(X), turnSide.
end(saveMen, niKill(N)) ← turnSide, kill(N).
observedEnd ← end(X,Y).

In parallel, the case in which the agent pushes a person on the tracks is modelled
as follows:

onTrack(X) ← consider(shove(X)).
stopTrain(X) ← onTrack(X), heavy(X).
kill(1) ← human(X), onTrack(X).
kill(0) ← inanimateObject(X), onTrack(X).
end(saveMen,iKill(N)) ← human(X), stopTrain(X), kill(N).

In order to ascribe ethical criteria, they employ a priori constraints which rule
out impermissible actions according to a particular ethical rule (corresponding
to the means-end condition of the DDE) and a posteriori preferences that elim-
inate those solutions with worse consequences (the proportionality condition).
The means end condition, importantly, is obtained via the two rules ‘falsum ←
intentionalKilling.’ and ‘intentionalKilling ← end(saveMen,iKill(Y)).’

The difficulty with this kind of formalization is that it directly embeds the
moral requirement into the model of the situation by indicating whether the
killing is intentional (‘iKill(N)’ ), or not (‘niKill(N)’ ). The program is ‘told’
whether the outcome of the action fits with the ethical rules in place, through
atomic statements of the form ‘end(saveMen,iKill(N)) ← human(X), stopTrain
(X), kill(N)’. This is problematic for a number of reasons. First, it fails to rep-
resent the actual reasoning that underpins moral decision making, in particular
concerning what constitutes intentionality. Second, because it atomically spec-
ifies the ethical character of the situation’s outcome, it requires the creation
of a different program for each new case. Therefore, even situations that share
common features must be modelled independently, as is the case with trolley
variations. This is redundant and can also lead to inconsistencies. Because rules
lack expressive power, two identical expressions might refer to diverging stories,
for example there is nothing in ‘human(X), stopTrain(X), kill(N)’ that indicates
whether the killing is intentional or not, and as such could be employed in either
case (here it is used for the push case). Moreover, there is no account of causal-
ity, such that the action and its consequences are not dynamically linked; the
relationship between them is stated rather than inferred. Therefore, no account
of ethical responsibility can be discussed on its basis. Finally, the model can-
not logically confront ethical theories so as to make explicit their assumptions
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and give insight into them, nor can it enable us to explore and generate new
ethical dilemmas for further testing. Even though it successfully points to the
expressive power of nonmonotonic logic for ethical reasoning, it seems that this
account fails to “provide a general framework to model morality computation-
ally” [26]. These remarks also apply to other current works in computational
ethics, including models concerned with the Belief Desire Intention framework
[15,27]. Instead, establishing an unchanging and ethics-free account of the world
atop which can fit changeable ethical restrictions allows for generalisation, flex-
ibility and automation. Separating the ethical constraints from the facts of the
world is imperative if we are to model general ethical rules instead of performing
case by case discrimination that resembles ethical judgement more than it does
ethical theory.

3 Preliminaries

3.1 ASP

Answer Set Programming is a form of declarative logic programming suited
for representing different Artificial Intelligence problems, particularly those that
relate to knowledge representation and automated reasoning with incomplete
information. Problems are encoded as extended disjunctive programs, finite logic
theories from which are extracted stable models (answer sets) that declaratively
identify the solutions to these problems [6].

We give here a very succinct overview of the answer set semantics for a pro-
gram defined over a set of literals Lit (see [7] for more details). An extended dis-
junctive program (EDP) is a set of rules of the form: L1; · · · ;

Ll ← Ll+1, . . . , Lm, not Lm+1, . . . , not Ln (n ≥ m ≥ l ≥ 0) where each Li ∈ Lit
is a positive/negative literal, namely, A or ¬A for an atom A. not is negation
as failure (NAF), and not L is called an NAF-literal. The symbol “;” represents
disjunction. For each rule r of the above form, head(r), body+(r), body−(r),
and not body−(r) denote the sets of (NAF-)literals {L1, . . . , Ll}, {Ll+1, . . . , Lm},
{Lm+1, . . . , Ln}, and {not Lm+1, . . . , not Ln}, respectively. A rule r is an integrity
constraint if head(r) = ∅; and r is a fact if body(r) = ∅. A program P with vari-
ables is semantically identified with its ground instantiation. The semantics of
EDPs is given by the answer set semantics [7]. A set S ⊆ Lit satisfies a rule
r if body+(r) ⊆ S and body−(r) ∩ S = ∅ imply head(r) ∩ S �= ∅. S satisfies a
ground program P if S satisfies every rule in P . Let P be a program such that
∀r ∈ P, body−(r) = ∅. Then, a set S ⊂ Lit is a (consistent) answer set of P if S
is a minimal set such that (i) S satisfies every rule from the ground instantiation
of P , and (ii) S does not contain a pair of complementary literals L and ¬L.
Next, let P be any EDP and S ⊆ Lit. For every rule r in the ground instanti-
ation of P , the rule rS : head(r) ← body+(r) is included in the reduct PS if
body−(r) ∩ S = ∅. Then, S is an answer set of P if S is an answer set of PS .
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3.2 The Event Calculus

The “Event Calculus” was first introduced in a 1986 paper by Bob Kowalski
and Marek Sergot [16] as a logic programming framework used to represent and
reason about the effects of events or actions [23]. First employed in database
applications, it has since then been integrated into other forms of logic pro-
gramming, classical logic and modal logic, and used in wider contexts such as
planning, abductive reasoning or cognitive robotics [17,18,22].

The Event Calculus typically states that fluents (which are time-varying
properties of the world) are true or false depending on whether they have been
initiated or terminated by action occurrences. For the purpose of simplicity and
to make the study of causality clearer, discrete time is employed, and is repre-
sented by integers. To fit the requirements of modeling ethical dilemmas per-
taining to complex and realistic scenarios, one of our contributions has been to
introduce automatic events in addition to actions. These automatic events occur
when all their preconditions, in the form of fluents, hold, without direct input
from the agent. Actions additionally require that the agent carries them out.
As such, there are two types of events: actions and automatic events. We have
made a further distinction between what we have called inertial fluents and non
inertial fluents [22]. Once initiated by an event occurrence (or if initially true),
inertial fluents remain true until they are terminated by another event occur-
rence. Non inertial fluents are only true at the point in time at which they have
been initiated by an event occurrence, or at time T0 if they were true initially.
An action is performed by the agent when the course of events begins, at time
T0. A maximum of one automatic event can occur at each time point.

4 Adapted Event Calculus

Domain dependent axioms describe which events initiate and terminate which
fluents, and which fluents are preconditions to which events. The dynamic domain
given here is composed as follows: T is a set of time points (as integers, variables
T1, T2, T3...), P]is a set of positive fluents (variables P1, P2, P3...), F ]is a set of
fluents, composed of the items in the set P and of their negation (variables F1,
F2, F3...), E ]is a set of events (variables E1, E2, E3...). Our calculus is based on
eight primary predicates. Holds(F, T) indicates that F is true at T; Initially(F)
means that F is true at T0; NonInertial(F) points out the special kinds of fluents
that are non inertial. Occurs(E, T) indicates that E occurs at T; Automatic(E)
points out the special kinds of events that occur without direct agent input - all
events that are not automatic are actions by default and require the agent’s voli-
tion in addition to fluent preconditions. Priority(E1, E2) allows for prioritisation
among automatic events but also among goals, i.e. between actions undertaken
by the agent in cases where it is required to act more than once. Effect(E, F)
expresses that F is an effect of E and Precondition(F, E) expresses that F is a
precondition for E.

Fluents. In order to capture the behaviour of fluents relative to the occurrence
of events, we define auxiliary predicates in terms of primary predicates. Initiates



538 F. Berreby et al.

(E, P, T) indicates that E occurs and initiates P at T; Terminates(E, P, T) indi-
cates that E occurs and terminates P at T; Clipped(P, T) indicates that a fluent
which has been terminated by an occurrence of an event at T is clipped at T.

Initiates(E, P, T) ← Effect(E, P), Occurs(E, T).
Terminates(E, P, T) ← Effect(E, neg(P)), Occurs(E, T).
Clipped(P, T) ← Terminates(E, P, T).

We can now axiomatize the principles that govern fluents. A fluent which has
been initiated by an occurrence of an event at T, or was initially true, continues
to hold until the occurrence of another event which terminates it. However, if
it is non inertial, it holds at T only (or T0 if it was true initially). If it is not
stated that a fluent holds, then its negation is true.

Holds(P, T+1) ← Initiates(E, P, T).
Holds(P, T0) ← Initially(P).
Holds(P, T+1) ← Holds(P, T), not Clipped(P, T), not NonInertial(P).
Holds(neg(S), T) ← not Holds(S, T).

Events. In order to capture the behaviour of events relative to the truth values
of fluents (their preconditions), we first define a number of auxiliary predicates
that constrain this mechanism. MissingPrecondition(F, E, T) means that there
exists a precondition fluent F for E that does not hold at T; Incomplete(E, T)
expresses that E is incomplete at T if it is missing one or more preconditions;
Possible(E, T) expresses that E is possible at T if it is not missing any precon-
ditions. Overtaken(E, T) expresses the fact that an event E has been overtaken
by another event at T. This axiom must ensure that only one automatic event
occurs at each time point, while an infinite number of events might be possible
at any given time.

MissingPrecondition(F, E, T) ← Precondition(F, E), not Holds(F, T).
Incomplete(E, T) ← MissingPrecondition(F, E, T).
Possible(E, T) ← not Incomplete(E, T).
Overtaken(E1, T) ← Possible(E1, T), Possible(E2, T), Priority(E2, E1), E1!=E2.

We can now axiomatize the principles that govern the occurrence of events.
Occurs(E, T) denotes that E occurs at T if all its preconditions are true at T
and no other event that has priority over it is also possible at T. We also specify
that an event can only occur if it is possible.

Occurs(E, T) ← Possible(E, T), not Overtaken(E, T), Automatic(E).
← Occurs(E, T), not Possible(E, T).

5 Representing the Planning Domain and Problem

Defining the Domain and Problem. In order to represent the situation onto
which ethical constraints are to be applied, we must hierarchize and specify a
number of facts about the world we are aiming to represent. Within the present
model, the simulation of a situation is characterised by (a) An initial situation
that is composed by the truth values of all fluents at time T0; (b) A specification
of the actions available to the agent, and of their causal powers over fluents; (c)
A specification of automatic events, and of their causal powers over fluent; (d)
A specification of the precondition fluents for events.
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.)5,1puorg(snosrePbN.))G(evila(yllaitinI
Initially(on(group1, main(4))). NbPersons(group2, 1).
Initially(on(group2, side(3))). NbPersons(group3, 1).
Initially(on(train, main(0))). NonInertial(trainOn(B)).
Initially(on(group3, bridge)).

Fig. 1. The Trolley Problem

Representing the Trolley Problem. Initial Situation. Because our model
aims at handling a general account of the world, it allows for the fact that both
switch and push are actions that the agent can carry out in a single situational
environment, rather than in two separate ones. As such, the initial situation
states that all persons are alive, that there are 5 people on the 4th section of the
main tracks and one person on the 3rd section of the side tracks (the sections
of the tracks on which the people are stationed were chosen arbitrarily), and
that the train is stationed on section 0 of the main tracks (see Fig. 1). There is
a consequentialist specification in the DDE’s proportionality condition, namely
that the good effect must be at least equivalent to the bad effect. Therefore,
people who are involved in the dilemma are organised in numbered groups.
Moreover, on(train, B) is NonInertial since the train only stays on a section of
the tracks for one time point.

Event Preconditions and Effects. We determine the actions push and switch, and
the automatic events run and crash. Crash has priority over Run; therefore the
train stops as its preconditions for running are no longer fulfilled. In the follow-
ing statements, N refers to numbers, G denotes groups of people, M denotes
sections of the main tracks, L denotes sections of the side tracks, B denotes both
tracks (B = K ∪ L).

Precondition(on(train, B), run(train, B)). Precondition(on(G, bridge), push(G, B))
Precondition(on(G, B), crash(G, B)). Precondition(on(train, main(0), switch))
Precondition(on(train, B), crash(G, B))

Effect(push(G, B), on(G, B)). Effect(crash(G, B), neg(on(train, B)))
Effect(switch, neg(on(train, main(0)))). Effect(crash(G, B), neg(alive(G)))
Effect(switch, on(train, side(0))). Priority(crash(G, B), run(B))

Effect(run(train, main(N)), on(train, main(N+1)))
Effect(run(train, side(N)), on(train, side(N+1))).
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6 Modelling Responsibility

6.1 Agent Responsibility Regarding Caused Events

Defining Causation. Causality is a subtle notion that has been widely dis-
cussed in the philosophy literature, from Hume [12] to present day works [8,25,30].
But the challenge of defining causality reaches far beyond philosophy, and is for
instance highly pertinent to legal decision making, such as in the event of a road
accident in which legal responsibility must be determined. Causality is also central
to the notion of ethical responsibility and decision making [3]. Agents are typically
held responsible for (some of) their actions, but also for some external states of
affairs that belong in the world. The question, when attributing responsibility, is
therefore to determine what these states of affairs are and why. As far as the causal
powers of an agent’s actions seem to constitute the only links between them and
the world, it is natural to suggest that agents are responsible for those states of
affairs which they have caused [4]. But there are also cases in which an agent can be
held responsible for something they didn’t cause, say by failing to rescue a drown-
ing child. Here, the fact that they may be in a position to interact with the world
and prevent a certain outcome still involves the notion of causality. As such, this
notion must be investigated and defined.

Going back to Hume, we may be tempted to suggest a definition of causality
in terms of counter-factual dependence: α is a cause of β, if, had α not happened,
then β would not have happened. However, this naive definition fails to capture
a number of subtleties present in causality, as it cannot deal with cases of pre-
emption and over determination (when one cause may be replaced by another or
when there are more causes than are necessary to produce the effect). Consider
the following: Suzy throws a rock at a bottle (s-throws), and shatters it (shatters).
Billy was standing by with a second rock. Had Suzy not thrown her rock, Billy
would have shattered the bottle by throwing his rock (b-throws) [14]. Here, it is
not the case that if (s-throws) had not happened, then (shatters) would not have
happened, since (b-throws) would have made (shatters) happen. This definition
therefore fails to capture the fact that something might have a cause while not
being counter-factually dependent on it. This is particularly problematic when
we want to address questions of responsibility: surely Suzy is responsible for
shattering the bottle regardless of Billy’s volitions.

Another branch of research has focused on structural causal models [9,24,25].
These have been particularly effective in assessing causal relationships between
variables. However, while they handle well issues of counter-factual dependency,
they fail to capture some of the intricacies emanating from the fact that causal
relations hold in dynamically changing situations [10]. In particular, they cannot
distinguish between conditions and transitions, or between actions and omissions
[9], yet these distinctions are central to the study of responsibility (for instance,
causal weight is not equally divided between acting and omitting to act). Reversely,
as argued by Hopkins and Pearl in [10], the formal semantics of Situation Calculus
succeed in handling these issues. This is also true of Event Calculus, and further
motivates our choice of this particular formalism. The fluent/event distinction in
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Event Calculus allows us to model the condition/transition divide, and the facts
that events occur and fluents hold or fail to hold provide the adequate tools for
addressing the action/omission distinction. These formal objects that correspond
in natural ways to the situations at hand. For more, see [10]. In the next section,
we present our corresponding account of causation.

Modelling Causation. We consider a fluent P to be a consequence of an event
E1 if E1 initiates P (or terminates neg(P)), regardless of whether another event
E2 would have initiated P in the absence of E1. Likewise, an event E1 is a
consequence of a fluent P if P is a precondition to E1, and both are true. This
accommodates for the possibility that there may be more than one precondition
for the occurrence of E1, and that P be not considered a cause of E1 if E1
does not occur (say because the other preconditions were not fulfilled). Our
model considers the causal links that hold between events and fluents (i.e. the
consequences that these would have on the world were they to obtain), separately
from whether they actually obtain. This, and our choice to define causality in
terms of consequences, affords us with a useable trace of causal paths and allows
us to dynamically assess causal relationships.

We first define a domain D such that D ≡ F ∪ E . Consequence(D1, D2) indi-
cates that D2 is a consequence of D1. The reflexivity of consequences is necessary
to simplify the definitions of predicates that contain the Consequence predicate.
For the sake of simplifying rules that pertain to causal chains, all fluents and
events that hold or occur are also considered consequences of themselves. As
such:

Consequence(E, F) ← Effect(E, F), Occurs(E, T), Holds(F, T+1).
Consequence(F, E) ← Precondition(F, E), Holds(F, T), Occurs(E, T).
Consequence(D1, D3) ← Consequence(D1, D2), Consequence(D2, D3).
Consequence(D, D) ← Holds(D, T).
Consequence(D, D) ← Occurs(D, T).

Now that we have established a model of causality, we can see that formulating
the bottle example in terms of an Event Calculus model, rather than via counter-
factual dependence, is unproblematic: If Suzy throws and hits the bottle, then
she is considered responsible for its shattering. If she doesn’t throw, and it is
specified that ‘b-throw ← not s-throw’, then Billy will throw and be considered
responsible.

6.2 Agent Responsibility Regarding Prevented Events

Defining Prevention. Ethical responsibility is most often associated with the
occurrence of events, for example pertaining to the number of deaths caused by
an air strike or the amount of aid given to a relief centre. Yet agent responsi-
bility is equally a question of avoided or prevented harms; think of lives saved
by a particular military strategy or medical investment, or of people rescued
from falling beneath the poverty threshold. Works in the computational ethics
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literature often fail to even address this fact, or consider prevention uniformly
with causation [15,26]. However, these two concepts rely on severely different
mechanisms, and make different computational demands. In particular, unlike
causality which is concerned with the actual state of affairs of the world, preven-
tion requires that we be able to represent possible, but untrue worlds: we must
account for what could have happened - but didn’t. We must be able to say why
it didn’t happen, and whether the agent is truly responsible for this. Thus, to
model the fact that an agent prevents an event from occurring by performing
an action A, we must be in a position to compare the actual chain of events
with the hypothetical chain of events in which the agent does not perform A.
Within ASP, one way to achieve this is to simulate both cases and compare
the results, however, this solution requires post processing the individual answer
sets. The action theory architecture that specifies preconditions for events and
fluents allows us to avoid this procedure, and provides us with the traceable
account of causal paths needed to model ethical responsibility.

An event E1 prevents an event E2 if all three of the following are true:
(a) E1 terminates a fluent F that is a precondition to an event E3 of which
E2 is a consequence (note that it is possible that E2 ≡ E3); (b) all other pre-
conditions of E2 hold; (c) E2 does not occur. (a) ensures that the E1 may
break the causal chain between E1 and E2 at any point. For example E1 may
impede a precondition to E2, or impede the precondition to a precondition to E2.
(b) ensures that E2 would have happened had E1 not happened: it guarantees
the counter-factual dependency of E2 on ¬E1. (c) ensures that if E2 occurs as
a result of being caused by another event through another causal path, then E1
cannot be said to succeed in preventing E2.

Modelling Prevention. We model the Prevents predicate, which accounts for
the causal relations that exist but that have not been executed. We define the
predicate HypConsequence (D1, D2), which denotes that a fluent and an event
are causally linked, but says nothing about the actual state of the world, i.e.,
about whether this causal link has been instantiated. Hypothetical consequences,
like consequences, are transitive (and reflexive).

HypConsequence(E, F) ← Effect(E, F).
HypConsequence(F, E) ← Precondition(F, E).
HypConsequence(D1,D3) ← HypConsequence(D1,D2), HypConsequence(D2,D3).
HypConsequence(D,D).

Next, we define a number of prior predicates: TransTerminates(E1, F2)
denotes that an event E transterminates a fluent F2 if it terminates a fluent
F1 that is causally linked, and causally anterior to F2. This definition allows for
indirect cases where E affects a non contiguous fluent further down the causal
chain. NotPrevents(E1, E2) identifies the cases in which an event E1 causes
the termination of a precondition fluent to an event E2, but where at least one
other precondition for E2 is missing (i.e., one that has not been transterminated
by E1). Finally, in order to preclude the possibility that the event occurs via
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another causal path, it is necessary to define the Happens(E) predicate that
characterises any event that has occurred at some point in time.

TransTerminates(E, F2) ← Terminates(E, F1, T), HypConsequence(F1, F2).
NotPrevents(E1, E2) ← TransTerminates(E1, F1), Precondition(F1, E2), Miss-
ingPrecondition(F2, E2, T1), not TransTerminates(E1, F2), F1!=F2.
Happens(E) ← Occurs(E, T).

We can now define the pivot predicate Prevents(E1, E2), which states that an
event E1 prevents and event E2 if E1 transterminates a precondition for E2, all
other preconditions for E2 hold and E2 does not happen.

Prevents(E1, E2) ← Occurs(E1, T), TransTerminates(E1, F), Precondition(F,
E2), not NotPrevents(E1, E2), not Happens(E2).

7 Ethical Implementation

7.1 Determining the Desirability of Events

In order to implement the DDE, which places additional ethical valuation on
actions with already determined desirable and undesirable effects, we must first
have an account of which events are desirable and which are not. One way of
doing this is by simply stating that, for instance, a train crash is undesirable
and that people staying alive is desirable. Within our semantics, however, it is
fitting to evaluate the desirability of events in terms of the effect they have on
ethically relevant fluents. Indeed, an event can only be measured relative to the
effect it has on the world. For instance, a collision is significant only in so far
as it changes the state or condition of the parties involved in it. We therefore
are interested in the moment at which events, atomically and independently of
surrounding factors, become desirable or undesirable.

Rights-based ethical theories are particularly well suited to this task, as they
make moral claims over the permissibility of actions depending on whether these
respect certain rights, which can be likened to states of affairs, such as, for exam-
ple, the right to property or the right to safety [20,28]. We base ourselves on
Beauchamp and Childress’s account of a right which they define as a “justified
claim that individuals and groups can make upon other individuals or upon soci-
ety; to have a right is to be in a position to determine by one’s choices, what
others should do or need not do” [2]. This definition captures well the fact that a
right denotes both a state of affairs for the person concerned (the exercise of the
right) and a constraint on others (which they can respect or violate through their
actions). We therefore chose to define an undesirable event as one that clips (vio-
lates) a right, which is here a special kind of fluent. We specify the corresponding
situational domain R as a set of rights, and the definitional axioms:

Undesirable(E) ← Effect(E, neg(R)).
Desirable(E) ← Effect(E, R).
Indifferent(E) ← not Desirable(E), not Undesirable(E).
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7.2 The Doctrine of Double Effect

The Nature-of-the-act Condition. The first axiom of the DDE is modelled
as such: Impermissible(A) ← not Desirable(A), not Indifferent(A).

The Means-end and the Right-intention Conditions. These two axioms
are collapsed into one rule within our model, for we consider that using an
event as a means to an end (i.e. for the occurrence or prevention of another
event), is equivalent to intending that event. Correspondingly, unintended side
effects cannot be means to ends. It follows that the two axioms are analogous
computationally, unless intentions are explicitly modelled. A good effect may be
reached in one of two ways, either by causing a desirable event or by preventing
an undesirable one. The reverse is true for bad effects, therefore, four rules must
be specified.

Impermissible(A, T) ← Occurs(A, T), Consequence(A, E1), Consequence(E1,
E2), Undesirable(E1), Desirable(E2).
Impermissible(A, T) ← Occurs(A, T), Consequence(A, E1), Prevents(E1, E2),
Undesirable(E1), Undesirable(E2).
Impermissible(A, T) ← Occurs(A, T), Prevents(A, E1), Prevents(E1, E2),
Desirable(E1), Undesirable(E2).
Impermissible(A, T) ← Occurs(A, T), Prevents(A, E1), Consequence(E1, E2),
Desirable(E1), Desirable(E2).

The Proportionality Condition. The fourth axiom of the DDE introduces a
consequentialist requirement, as it demands the weighing against each other of
the action’s good and bad effects. There are numerous ways in which effects can
be measured, both quantitatively and qualitatively. We chose to gauge events in
terms of the number of people involved in them and define the predicate Weight
⊆ E × N , determined for each event by rules of the type “Weight(crash(G, B),
N) ← NbPersons(G, N)”. As such, performing an action A at T is not permissible
if it causes two automatic events E1 and E2, which respectively involve N1 and
N2 numbers of people, and where E1 is undesirable and E2 is desirable, if N1 is
greater than N2.

Impermissible(A, T) ← Occurs(A, T), Consequence(A, E1), Consequence(A,
E2), Undesirable(E1), Desirable(E2), Weight(E1, N1), Weight(E2, N2), N1>N2.

Because of the combination of causation and prevention, as with the means-
end condition, three other axioms are also necessary to represent every possible
situation that might result from an action with both a good and bad effect,
corresponding to the Consequence x Prevents matrix (as with the previous con-
dition). In the model, if we reverse the number of people on the side and main
tracks, the switch action becomes impermissible, since more people will die if
the agent pushes the switch. The modular nature of the model allows us to play
around with the characteristics of the dilemma and explore the DDE.
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7.3 Ethical Choice

The agent selects one and only one action (here either push or switch) to carry
out in separate scenarios, resulting in different answer sets, then only chooses to
perform the actions that are not impermissible.

1{Occurs(push(group3, main(2)), T), Occurs(switch, T)}1 ← T=0.
← Occurs(A, T), Impermissible(A, T).

We are then left with no, one or a number of stable models that each represent
an action that is permissible in regards to the specified situation and the ethical
rules that regulate the agent’s behaviour. In our model of the Trolley Problem
and consistently with experimental findings [21], the unique stable model repre-
sents the choice of the switch action (see Appendix A). Note that for now, this
is a mostly non disjunctive stratified problem that could be programmed with
logic programming tools other than ASP. However, the extensions we envisage
for the model will make full use of the properties of ASP, in particular regarding
ethical plans.

8 Conclusion

Computing ethical theories allows us to reach a greater understanding of the
concepts at play, both formally in relation to the predicates and formalisms
employed, and in relation to notions used by philosophers and law-makers. Using
ASP to model the DDE has shed light on the importance and difficulty of han-
dling causal paths in order to justify claims of ethical responsibility. In particular,
it has exposed the necessity to tackle both caused and prevented events. More-
over, in the case of prevention, it has made clear the requirement of adequately
handling situational circumstances: an agent can only prevent an event that
would have occurred had he not acted. This underlines the fact that responsibil-
ity concerns not just the effect of actions, but is to be apprehended from the state
of the world itself. While these remarks belong in the realm of common sense
for human agents, they are remarkably heavy in repercussion for the modelling
of autonomous agents faced with ethical challenges.

The model we have presented here adapts the Event Calculus to facilitate
the examination and resolving of ethical dilemmas within a nonmonotonic logic
domain. While its present focus is on the Trolley Problem and the DDE, its scope
is extensive and adaptable. In order to develop our model, we therefore envision
a number of future avenues. First, we believe that we need to further explore
ways of expressing intentionality so as to enable artificial agents to evaluate their
own moral choices as well as those of others. This will enable the study of other
ethical theories that are concerned with agent intention, such as the Doctrine of
Triple Effect, put forward by Kamm as a response to dilemmas that the DDE
fails to properly handle [13,19]. Staying within the Trolley Problem, we are also
currently working on the generation of ethical dilemmas based on the situational
domain. The aim of this is to test the DDE on numerous and novel variations of
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the problem, with the possible adjunction of new empirical data. Creating new
dilemmas opens avenues for testing ethical theories and refining them. Finally, we
intend to model different ethical criteria such as Kant’s categorical imperative or
value-based ethics, thereby extending our framework to other ethical traditions
and applicative domains. This might also include the formulation of ethical plans
of action, working up towards a true planning domain.

A Appendix

The rules ‘1{occurs(push(group3, main(2)), T), occurs(switch, T)}1:- T=0.’ and
‘:- occurs(A, T), impermissible(A, T).’ generate one stable model that corre-
sponds to the permissible switch action.

initiates(switch, on(train, side(0)), 0).
initiates(run(train, main(0)), on(train, main(1)), 0).
initiates(run(train, side(0)), on(train, side(1)), 1).
initiates(run(train, side(1)), on(train, side(2)), 2).
initiates(run(train, side(2)), on(train, side(3)), 3).
occurs(switch, 0).
occurs(run(train, main(0)), 0).
occurs(run(train, side(0)), 1).
occurs(run(train, side(1)), 2).
occurs(run(train, side(2)), 3).
occurs(crash(group2, side(3)), 4).
overtaken(run(train, main(1)), 1).
overtaken(run(train, side(3)), 4).
prevents(switch, crash(group1, main(4))).
terminates(switch, on(train, main(0)), 0).
terminates(crash(group2, side(3)), alive(group2), 4).
terminates(crash(group2, side(3)), on(train, side(3)), 4).
permissible(switch, 0).

Disabling the second rule (‘:- occurs(A, T), impermissible(A, T).’) allows us
to look at the stable model for the impermissible push action:

initiates(push(group3, main(2)), on(group3, main(2)), 0).
initiates(run(train, main(0)), on(train, main(1)), 0).
initiates(run(train, main(1)), on(train, main(2)), 1).
occurs(run(train, main(0)), 0).
occurs(push(group3, main(2)), 0).
occurs(run(train, main(1)), 1).
occurs(crash(group3, main(2)), 2).
overtaken(run(train, main(2)), 2).
prevents(crash(group3, main(2)), crash(group1, main(4))).
terminates(crash(group3, main(2)), alive(group3), 2).
terminates(crash(group3, main(2)), on(train, main(2)), 2).
impermissible(push(group3, main(2)), 0).
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Abstract. This paper discusses Ctrl, a tool to analyse – both auto-
matically and manually – term rewriting with logical constraints. Ctrl
can be used with TRSs on arbitrary underlying logics, and automat-
ically analyse various properties such as termination, confluence and
quasi-reductivity. Ctrl also offers both a manual and automatic mode
for equivalence tests using inductive theorem proving, giving support for
and verification of “hand-written” term equivalence proofs.

1 Introduction

Given the prevalence of computer programs in modern society, an important
role is reserved for program analysis. Such analysis could take the form of for
instance termination (“will every program run end eventually, regardless of user
input?”), productivity (“will this program stay responsive during its run?”) and
equivalence (“will this optimised code return the same result as the original?”).

In recent years, there have been several results which transform a real-world
program analysis problem into a query about term rewriting systems (TRSs).
Such transformations are used to analyse termination of small, constructed lan-
guages (e.g. [2]), but also real code, like Java Bytecode [13], Haskell [7] or
LLVM [4]. Similar transformations are used to analyse code equivalence in [3,5].

In these works, constraints arise naturally. Where traditional term rewrit-
ing systems generally consider well-founded sets like the natural numbers, more
dedicated techniques are necessary when dealing with for instance integers or
floating point numbers. This is why, typically, extensions of basic term rewriting
are considered, adding a (usually infinite) number of predefined symbols and
rules – for instance including all integers as constant symbols, and rules such as
1+ 0 → 1, 1+ 1 → 2, . . . – along with some way of specifying constraints. The
Logically Constrained Term Rewriting Systems (LCTRSs) from [10] take this a
step further, by not limiting interest to a fixed theory (such as the integers with
standard functions and relations), but rather allowing an arbitrary underlying
theory. This makes it possible to define systems corresponding to (and imme-
diately obtain theoretical results for), e.g., imperative programs with arrays,
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or to functional programs with advanced data structures. As observed in [10],
LCTRSs conservatively extend many typical forms of constrained rewriting.

To analyse LCTRSs automatically, we have created the tool Ctrl. Like the
general LCTRS framework, Ctrl can be equipped with an arbitrary underly-
ing theory, provided an SMT-solver is given to solve its satisfiability and validity
problems. The tool has the functionality to test confluence and quasi-reductivity,
extensive capability to verify termination, and both automatic and manual sup-
port for inductive theorem proving, by which one may prove equivalence of two
different functions. Ctrl participated in the Integer Transition Systems and Inte-
ger TRS categories of the 2014 termination competition (no corresponding cat-
egories for other theories were present). Ctrl is open-source, and available at:

http://cl-informatik.uibk.ac.at/software/ctrl/

Contribution. Compared to other tools on forms of constrained rewriting
(e.g. AProVE [6]), Ctrl is unique in supporting arbitrary theories. Of the tool’s
many features, only automatic equivalence proving has been presented before [11].

Structure. In this paper, we will consider the various aspects of Ctrl. In Sect. 2,
we start by recalling the definition of LCTRSs. In Sect. 3, we show how these
notions translate to Ctrl, and in Sect. 4 we discuss the problems Ctrl can solve.
The next sections treat the two most sophisticated options: termination (Sect. 5)
and term equivalence (Sect. 6). Experiments and practical usage, where relevant,
are explained in the corresponding sections. Finally, we conclude in Sect. 7.

2 Logically Constrained Term Rewriting Systems

The full definition of LCTRSs is given in [10,11]. We will here explain by example.
In LCTRSs, many-sorted term rewriting is combined with pre-defined func-

tions and values over arbitrary sets, along with constraints to limit reduction.
For example, we might define an LCTRS to calculate the Fibonacci numbers:

fib(n) → 1 [n ≤ 1] fib(n) → fib(n − 1) + fib(n − 2) [n > 1]

Here, the integers are added to term rewriting, along with functions for addition,
subtraction and comparison. To be precise, we have the following symbols:

values theory functions TRS functions
true, false : Bool +,− : [Int × Int] ⇒ Int fib : [Int] ⇒ Int

0, 1,−1, 2, . . . : Int ≤, > : [Int × Int] ⇒ Bool

The values and theory functions each have a pre-defined meaning in the
underlying theory of the booleans and integers. The TRS functions are used to
define custom functions, like in a functional programming language (although
at the moment, higher-order functions such as map are not permitted), but also
for constructors, which make it possible to define inductive types.

Rewriting is constrained as follows: a rule may only be applied if the variables
in its constraint are all instantiated by values, and the constraint evaluates to

http://cl-informatik.uibk.ac.at/software/ctrl/


Constrained Term Rewriting tooL 551

true in the theory. In addition, theory functions occurring inside terms are
evaluated step by step. For example, fib(2+(0+1)) cannot be reduced with the
second rule, as 2+(0+1) is not a value. Instead, fib(2+(0+1)) → fib(2+1) →
fib(3) by two calculation steps, and fib(3) → fib(3 − 1) + fib(3 − 2).

A key feature of LCTRSs is that we do not fix the underlying sets, theory
functions or values, nor their meanings. Predicates, too, are merely functions
mapping to booleans, which could be anything according to need. For instance,
to model an implementation of the strlen function in C, we might use

slen(s) → u(s, 0) u(s, i) → err [i < 0 ∨ size(s) ≤ i]
u(s, i) → ret(i) [0 ≤ i < size(s) ∧ get(s, i) = c0]
u(s, i) → u(s, i + 1) [0 ≤ i < size(s) ∧ get(s, i) �= c0]

and the following signature, where Carr is interpreted as the set {0, . . . , 255}∗

and Int as the set {−215, . . . , 215 − 1}, with addition subject to overflow:

values TRS functions
true, false : Bool slen : [Carr] ⇒ X

−32768, . . . , 32767 : Int u : [Carr × Int] ⇒ X
c0, c1, . . . , c255 : Char err : X

{}, {0}, {1, 0}, . . . : Carr ret : [Int] X

It is common to assume
that at least all the
usual boolean operators
(∧,∨, not) are present in
Σlogic and have the stan-
dard interpretation.

theory functions
+ : [Int × Int] ⇒ Int

≤, <,=, �= : [Int × Int] ⇒ Bool
∨,∧ : [Bool × Bool] ⇒ Bool
not : [Bool] ⇒ Bool

size : [Carr] ⇒ Int
get : [Carr × Int] ⇒ Char

Quantifiers are not supported directly,
but can typically be replaced by a
theory function; e.g., turning ∀x ∈
{0, size(a)}[select(a, x) > 0] into
positive(a), with positive : [IntArray]
⇒ Bool a new theory function with the
meaning “all elements of the argument are
greater than 0”.

3 Fundamentals

Ctrl is invoked with an input file defining an LCTRS and a query, using the format
in Fig. 1. Each of the fields (e.g. SOLVER solver) can be omitted.

THEORY theory

LOGIC logic

SOLVER solver

SIGNATURE
signature

RULES
rules

QUERY query

Fig. 1. Input file

Ctrl follows the core idea of LCTRSs by not using a
pre-defined theory; instead, theory functions and values
are defined in a theory file, which is included using the
THEORY field. The underlying logic is handled by an external
SMT-solver (as given by the SOLVER field), which uses the
input and output format of SMT-LIB (see http://smtlib.cs.
uiowa.edu/). The LOGIC field provides the name of an SMT-
LIB logic following http://smtlib.cs.uiowa.edu/logics.shtml
or any other logic supported by the SMT-solver. For the
fib example of Sect. 2, we would for instance use QF LIA.

http://smtlib.cs.uiowa.edu/
http://smtlib.cs.uiowa.edu/
http://smtlib.cs.uiowa.edu/logics.shtml
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The signature is given by listing TRS function symbols, along with their
type declaration and separated by commas or semi-colons, e.g., err : X ; u :
Carr * Int => X. Type declarations may be omitted (writing, e.g., err, u), in
which case types are derived automatically; if this fails, Ctrl aborts. Rules have
the form term1->term2 [constraint] where both term1 and term2 are well-
typed terms on variables and declared symbols (values, theory functions or TRS
functions), and constraint is a term of sort Bool, not containing TRS functions.
Rules must be separated by semi-colons, and constraints may be omitted. For
example: slen(s) -> u(s,0) ; u(s,i) -> err [i < 0 or size(s) <= i].

Finally, query determines the action Ctrl should take, as detailed in Sect. 4.

INCLUDE theories

DECLARE
signature

WELLFOUNDED names

CHAIN chainings

SMT-TRANSLATIONS
translations

Fig. 2. Theory file

The shape of a theory file is given in Fig. 2. Theory files,
in order to be used, are expected to be in the theories/
subdirectory in the program folder. A theory can
extend another theory (effectively including all its
symbols) using the INCLUDE field, e.g. INCLUDE ints;
it is recommended to include at least core, which con-
tains symbols like true, false, and, or and not. The
DECLARE field corresponds to SIGNATURE in an input
file; here, all theory functions and values must be listed,
along with their type declaration. The symbols listed
after WELLFOUNDED should all be well-founded relations, i.e. symbols R : [ι× ι] ⇒
Bool such that no infinite sequence s1Rs2R . . . exists; this is used for termi-
nation analysis. CHAIN is used to define syntactic sugar, allowing, e.g., x > y
> z to be shorthand for x > y and y > z. Finally, SMT-TRANSLATIONS allows
users to assign a meaning to custom symbols. That is, if a theory symbol was
declared which is not typically supported by SMT-solvers for this theory – such
as positive(a) from the previous section – we may instead express its meaning
as an SMT-term (e.g. (forall ((x Int)) (or (< x 0) (>= x (size a)) (>
(select a x) 0))); of course, in this case the LOGIC must support quantifiers).

Note that Ctrl itself does not know much theory: aside from basic properties
on the core theory (i.e. symbols like and and or) and minor reasoning on integers,
all calculations and validity questions which arise during a program run are
passed to the given SMT-solver (which must be present in the folder from which
Ctrl is invoked), along with the given LOGIC field. This makes it possible to handle
arbitrary theories. If no solver is given, the default SMT-solver called smtsolver
in the program directory is automatically used; this is currently Z3 [1].

To support realistic systems, Ctrl provides three constructions to declare
infinitely many values at once. A declaration !INTEGER : sort causes all integer
symbols to be read as values with sort sort . Similarly, !ARRAY!α, with α the
name of a sort, includes all sequences of the form {a1:. . . :an} where each ai

is a value sort α. !MIXED!o!c, with o and c strings, includes all strings of the
form o〈string〉c1. The string values are passed to the SMT-solver without the

1 However, to avoid ambiguity in the input parser, the brackets and individual strings
in the input file may not use the protected symbols [, , and ;, or spaces.
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“bracketing” o, c. As it is not needed that each integer/array/string represents
a value, these constructions allow you to support arbitrary types; for instance:

– !INTEGER : Byte (but users should make sure the input file only includes
integers in {0, . . . , 255}, and the SMT-solver only returns such numbers);

– !ARRAY!ARRAY!Int : Matrix (values would be, e.g., {{1,3}:{2:1}});
– !MIXED!"!" : Real (values would be, e.g., "3.14", and passed to the SMT-

solver as 3.14; Ctrl does not assume all values can be represented).

To demonstrate how the various fields and constructions are used, the Ctrl down-
load at http://cl-informatik.uibk.ac.at/software/ctrl/ contains both example
input files (in the examples/ folder) and theories (in theories/).

Comment: Instead of an external SMT-solver, users might set the SOLVER
to manual, which indicates that they will manually perform calculations and
satisfiability or validity checks; or to internal, which causes Ctrl to attempt
simplifying formulas with booleans, integers and integer arrays itself before
passing any remaining problems to smtsolver. This gives a speedup by avoid-
ing external calls in many cases. The internal solver is consistent with the
core and ints theories in http://smtlib.cs.uiowa.edu/theories.shtml.

4 Queries

Ctrl is a generic tool for constrained rewriting, designed to solve a variety of
problems (as requested by the QUERY field). We consider the possibilities. Note
that example uses of all queries are available in the Ctrl download.

Simplifying. The literature offers several translations from restricted imper-
ative programs to constrained rewriting (see e.g. [2,12]), enabling the analy-
sis of imperative languages with rewriting techniques. Initially, this often gives
large and somewhat impractical systems. Ctrl’s simplification module (invoked
using simplification [f1 . . . fn]) simplifies such LCTRSs, chaining together
rules and removing unused arguments, but leaving the symbols fi untouched.
For instance, {f(x, y) → g(x, 0) [ϕ], g(x, y) → h(x + y, x, x ∗ y), h(x, 0, y) →
f(x, x) [x < 0]} becomes {f(x, y) → h(x + 0, x) [ϕ], h(x, 0) → f(x, x) [x < 0]}.

Reducing. Ctrl can reduce both terms (using the SMT-solver to test whether
constraints are satisfied and to do calculations), and constrained terms, which
intuitively indicates how groups of terms are reduced, following [11, Sec. 2.1].
For example, fib(n) [n > 3] → fib(n - 1) + fib(n - 2) [n > 3] proves
that all terms fib(s) with s a value > 3 can be reduced as given. Ctrl reduces
(constrained) terms using an innermost strategy to normal form, or until the
SMT-solver simply fails to verify that any specific rule can be applied2. In a
non-terminating LCTRS, it is possible that evaluation never ends.
2 This failure is not unlikely, as constrained reduction following [11] requires validity

of quantified formulas ∃x[ϕ(x)], which is hard for most solvers. To improve perfor-
mance, Ctrl uses default choices for x; this method is omitted here for space reasons.

http://cl-informatik.uibk.ac.at/software/ctrl/
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Boolean Properties. Ctrl tests three properties which apply to the full LCTRS:

– Confluence: ∀s, u, v[(s →∗ u ∧ s →∗ v) ⇒ ∃w[u →∗ w ∧ v →∗ w]]; put
differently, how we reduce a term does not affect the results we can obtain.

– Quasi-reductivity: all irreducible ground terms are built entirely of constructor
symbols: values and TRS functions f where no rule f(�) → r [ϕ] exists.

– Termination: there is no infinite reduction s1 → s2 → s3 → . . . .

All three are undecidable yet commonly studied properties in the world of (uncon-
strained) TRSs. Techniques to verify them often extend naturally to LCTRS.

For confluence, Ctrl tests the sufficient condition of orthogonality [10]. This
property is straightforward to check – testing satisfiability of formulas which
are little more complicated than the rule constraints – yet captures a large and
natural collection of LCTRS, as typical functional programs are orthogonal.
LCTRSs obtained from imperative programs and simplified are usually orthog-
onal as well, provided variables are obviously instantiated before they are used.

For quasi-reductivity, Ctrl uses the nameless but powerful algorithm described
in [12]. Termination uses a combination of techniques, described in Sect. 5.

Equivalence. Finally, Ctrl has a module on inductive theorem proving, which can
help a user prove reducibility between two groups of terms, either automatically
or in an interactive mode. This is explained in more detail in Sect. 6.

5 Termination

Termination is the property that, regardless of the order and position in which
rules are applied, evaluation of every term ends eventually. Many termination
methods for unconstrained TRSs rely on the dependency pair framework [8],
a powerful approach which enables modular use of many sub-techniques.

While this framework extends naturally to constrained rewriting [9], the
ordering methods which form a core part unfortunately do not – or rather,
they are useful in theory, but automation fails in the presence of infinitely many
values. Consider for example a TRS with a rule f(x,y) → f(x - 1, y + 2) [x
> 0]. To see that it terminates, we must know that there is no infinite sequence
x1, x2, . . . where each xi > xi+1 and xi > 0. This we cannot express as a con-
straint over integer arithmetic: rather, it requires domain-specific knowledge.

Here, the WELLFOUNDED declaration comes in. Ctrl will test whether arguments
decrease with respect to any given well-founded relation. To handle the example
above, we may introduce a custom symbol >! : [Int×Int] ⇒ Bool, and translate
x >! y to x > y ∧ x ≥ 0. Currently, the stronger polynomial interpretations are
limited to the integers, but we intend to generalise this in the near future.

Practical Results. There is no database of LCTRS termination problems, but
there are large collections of integer TRSs (ITRSs) and transition systems (ITSs)
in the termination problem database (see http://termination-portal.org/wiki/
TPDB), both of which can be translated to LCTRSs3. Figure 3 shows Ctrl’s
3 The translation for integer transition systems uses a variation of Marc

Brockschmidt’s SMT-Pushdown tool at https://github.com/mmjb/SMTPushdown.

http://termination-portal.org/wiki/TPDB
http://termination-portal.org/wiki/TPDB
https://github.com/mmjb/SMTPushdown
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power on these benchmarks, evaluated with a 1-minute timeout. Here, Time
indicates the average runtime in seconds, disregarding timeouts. Ctrl currently
has no non-termination functionality.

ITRSs ITSs
Yes 85 371

Maybe 29 455
Timeout 3 396

Time 0.85 6.88

Fig. 3. Results on the TPDB

Ctrl’s apparent weakness on ITSs is partly
caused by the greater size of many bench-
marks, and partly due to non-termination: many
of them only terminate if you fix a given
start symbol. Ctrl proves the stronger property
of termination for all terms. Consequently, it
performs somewhat worse than dedicated tools
for ITSs like T2 (http://research.microsoft.com/
en-us/projects/t2/). In addition, neither integer rewriting nor termination are
the main focus of Ctrl: the primary goal is generality. In the future, we hope to
add further termination techniques; both general and theory-specific ones.

6 Equivalence

Finally, equivalence studies the question whether two groups of terms are
reducible to each other; this is done in the form of equations s ≈ t [ϕ]. For
instance f(x, y) ≈ g(x, z) [x > y ∧x > z] is an inductive theorem if for all values
x, y, z such that x > y∧x > z holds in the underlying theory, f(x, y) ↔∗

R g(x, z).
In a confluent, terminating system, this exactly means that they reduce to the
same normal form. If f(x1, . . . , xn) ≈ g(x1, . . . , xn) [ϕ] is an inductive theorem,
then f and g define the same function (under the conditions dictated by ϕ),
which could be used in practice to replace (parts of) functions by optimised
variations.

Unfortunately, this is a hard problem to solve automatically, even for quite sim-
ple systems. Ctrl uses rewriting induction [11], a method introduced in [14] which
relies on termination of →R for the induction principle. There are a number of
inference rules to simplify equations, but the key to successful rewriting induction
is guessing suitable lemma equations, for which no single obvious method exists
(although many techniques exist to capture certain kinds of systems).

Ctrl offers two ways of testing equivalence: automatic and interactive. In
interactive mode, the user manually chooses inference rules to apply, using Ctrl
to guard applicability of these steps and allowing “auto” steps to do obvious
simplifications. Beside the basic steps, a lemma generation method is included:

ft1(x) → 1 [x ≤ 0]
ft1(x) → x ∗ ft1(x − 1) [x > 0]
ft2(x) → u(x, 1, 1)

u(x, i, z) → u(x, i + 1, z ∗ i) [i ≤ x]
u(x, i, z) → z [i > x]

Goal: ft1(x) ≈ ft2(x) [true]

Fig. 4. Example LCTRS problem.

generalise, which is especially useful for
the LCTRSs obtained from imperative
programs, by focusing on loop counters.
Figure 4 shows an example LCTRS compar-
ing a recursive and iterative calculation of
the factorial function. The Ctrl solution is:
auto, swap, expand, auto, auto, expand,
auto, generalise, expand, auto, auto. To
see these commands in action, download the
tool and run it on examples/ft.ctrs.

http://research.microsoft.com/en-us/projects/t2/
http://research.microsoft.com/en-us/projects/t2/
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The automatic mode requires no user interaction (although lemma equations
can be added in the input file), but combines some heuristics with backtracking
to obtain a proof. Ctrl can automatically handle quite complicated examples, as
evidenced by the results in [11] (http://cl-informatik.uibk.ac.at/software/ctrl/
aplas14/): on 7 groups of manually translated student homework programs, Ctrl
could automatically prove correctness of two thirds. This includes array / string
functions such as strcpy or summing array elements. To our knowledge, there
are no other provers which can handle systems like Fig. 4.

7 Conclusions

We have discussed Ctrl, a versatile tool for constrained rewriting. A key focus
of Ctrl is generality : the functionality is not limited to, e.g., linear integer arith-
metic, but supports almost any theory, provided an SMT-solver is available for
it. This makes it possible to use Ctrl in many different settings; once support is
available, we could for instance use it to analyse confluence of oriented mathe-
matical equations over the real number field, termination of functional programs
with mappings as core objects, or equivalence of imperative string functions.

What is more, the techniques themselves are designed with extension in mind,
allowing for more sophisticated techniques to be added in the future. Another
obvious future work (which is already in progress) is to translate reasonable
subsets of certain imperative languages into LCTRSs automatically.

The version of Ctrl used in this work, and evaluation pages for the experi-
mental results on termination and equivalence, are available at:

http://cl-informatik.uibk.ac.at/software/ctrl/lpar15/
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Abstract. We propose a notion of focusing for nested sequent calculi for
modal logics which brings down the complexity of proof search to that of
the corresponding sequent calculi. The resulting systems are amenable to
specifications in linear logic. Examples include modal logic K, a simply
dependent bimodal logic and the standard non-normal modal logics. As
byproduct we obtain the first nested sequent calculi for the considered
non-normal modal logics.

1 Introduction

A main concern in proof theory for modal logics is the development of philo-
sophically and, at the same time, computationally satisfying frameworks to cap-
ture large classes of logics in a uniform and systematic way. Unfortunately the
standard sequent framework satisfies these desiderata only partly. Undoubtedly,
there are sequent calculi for a number of modal logics exhibiting many good
properties (such as analyticity), which can be used in complexity-optimal deci-
sion procedures. However, their construction often seems ad-hoc, they are usually
not modular, and they mostly lack philosophically relevant properties such as
separate left and right introduction rules for the modalities. These problems are
often connected to the fact that the modal rules in such calculi usually introduce
more than one connective at a time. For example, in the rule

Γ � A

Γ ′,�Γ � �A,Δ
k

for modal logic K [4], the context Γ could contain an arbitrary finite number of
formulae. Hence this rule can also be seen as an infinite set of rules

{
B1, . . . , Bn � A

Γ ′,�B1, . . . ,�Bn � �A,Δ
kn | n ≥ 0

}

each with a fixed number of principal formulae. Both of these perspectives are
somewhat dissatisfying: the first since it requires modifying the context, and the
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second since it explicitly discards the distinction between left and right rules for
the modal connective.

One way of solving this problem is to consider extensions of the sequent
framework that are expressive enough for capturing these modalities using sep-
arate left and right introduction rules. This is possible e.g. in the frameworks of
labelled sequents [14] or in that of nested sequents or tree-hypersequents [2,17,18].
Intuitively, in the latter framework a single sequent is replaced with a tree of
sequents, where successors of a sequent are interpreted under a modality. The
modal rules of these calculi govern the transfer of (modal) formulae between
the different sequents, and it can be shown that it is sufficient to transfer only
one formula at a time. However, the price to pay for this added expressivity
is that the obvious proof search procedure is of suboptimal complexity since it
constructs potentially exponentially large nested sequents [2].

In this work, we reconcile the added superior expressiveness and modularity of
nested sequents with the computational behaviour of the standard sequent frame-
work by proposing a focusing discipline for linear nested sequents [9], a restricted
form of nested sequents where the tree-structure is restricted to that of a line. The
result is a notion of normal derivations in the linear nested setting, which directly
correspond to derivations in the standard sequent setting. Moreover, the resulting
calculi lend themselves to specification and implementation in linear logic follow-
ing the approach in [13]. Since we are interested in the connections to the stan-
dard sequent framework, we concentrate on logics which have a standard sequent
calculus, with examples including normal modal logic K and simple extensions,
the exemplary simply dependent bimodal logic KT⊕⊆ S4 [5], but also several non-
normal modal logics, i.e., standard extensions of classical modal logic [4]. As a side
effect we obtain, to the best of our knowledge, the first nested sequent calculi for
all the considered non-normal modal logics.

2 Linear Nested Sequent Systems

We briefly recall the basic notions of the linear nested sequent framework [9],
essentially a reformulation of Masini’s 2-sequents [11] in the nested sequent
framework (also compare the G-CKn sequents of [12]). In the following, we con-
sider a sequent to be a pair Γ � Δ of multisets and adopt the standard con-
ventions and notations (see e.g. [14]). In the linear nested sequent framework,
the tree structure of nested sequents is restricted to a line, i.e., a linear nested
sequent is simply a finite list of sequents. This data structure matches exactly
the history in a backwards proof search in an ordinary sequent calculus, a fact
we will heavily use in what follows.

Definition 1. The set LNS of linear nested sequents is given recursively by:

1. if Γ � Δ is a sequent then Γ � Δ ∈ LNS
2. if Γ � Δ is a sequent and G ∈ LNS then Γ � Δ//G ∈ LNS.
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Fig. 1. System LNSG for classical propositional logic. In the init rule, p is atomic.

Fig. 2. The modal rules of the linear nested sequent calculus LNSK for K.

We will write S{Γ � Δ} for denoting a context G//Γ � Δ//H where G,H ∈ LNS
or G,H = ∅. We call each sequent in a linear nested sequent a component and
slightly abuse notation and abbreviate “linear nested sequent” to LNS.

In this work we consider only modal logics based on classical propositional
logic, and we take the system LNSG (Fig. 1) as our base calculus. Note that the
initial sequents are atomic, contraction, weakening and cut are admissible and
all rules are invertible.

Figure 2 presents the modal rules for the linear nested sequent calculus LNSK
for K, essentially a linear version of the standard nested sequent calculus from
[2,17]. Conceptually, the main point is that the sequent rule k is split into the
two rules �L and �R, which permit to simulate the sequent rule treating one
formula at a time. This piecewise treatment could be seen as one of the main
features of nested sequent calculi and deep inference in general [7]. In particular,
it is the key to modularity for nested and linear nested sequent calculi [9,18].
Completeness of LNSK w.r.t. modal logic K is shown by simulating a sequent
derivation bottom-up in the last two components of the linear nested sequents,
marking applications of transitional rules by the nesting // and simulating the
k-rule by a block of �L and �R rules [9]. E.g., an application of k on a branch
with history captured by the LNS G is simulated by:

Γ � A

Γ ′, �Γ � �A, Δ
k

.... G
�

G//Γ ′ � Δ//Γ � A

G//Γ ′, �Γ � Δ// � A
�L

G//Γ ′, �Γ � �A, Δ
�R

where the double line indicates multiple rule applications. Observe that this
method relies on the view of linear nested sequents as histories in proof search. It
also simulates the propositional sequent rules in the rightmost component of the
linear nested sequents. This gives a different way of looking at system K, where
formulas in the context can be handled separately. However, the modal rules do
not need to occur in a block corresponding to one application of the sequent rule
anymore. For instance, one way of deriving the instance �(p ⊃ q) ⊃ (�p ⊃ �q)
of the normality axiom for modal logic K is as follows.
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�p � //q � q
init

� //p � p, q
init

�p � // � p, q
�L

�p � //p ⊃ q � q
⊃L

�(p ⊃ q), �p � �q
�R, �L

� �(p ⊃ q) ⊃ (�p ⊃ �q)
⊃R

Note that the propositional rule ⊃L is applied between two modal rules. Hence
there are many derivations in LNSK which are not the result of simulating a
derivation of the sequent calculus for K. Thus, while the linear nested sequent
calculus LNSK has conceptual advantages over the standard sequent calculus for
K, its behaviour in terms of proof search is worse: there are many more possible
derivations with the same conclusion, when compared to the sequent calculus.
We will address this issue by proposing a focusing discipline [1] similar to that
of [3] to restrict proof search to a smaller class of derivations, while retaining the
conceptual advantages of the framework.

3 Labelled Line Sequent Systems

For simplifying the notation of the focused systems and also for encoding linear
nested sequent calculi in linear logic (see Sect. 6), we follow the correspondence
between nested sequents and labelled tree sequents given in [6], and consider the
labelled sequents [14] corresponding to linear nested sequents. Intuitively, the
components of a LNS are labelled with variables and their order is encoded in a
relation.

Formally, a (possibly empty) set of relation terms (i.e. terms of the form
xRy) is called a relation set. For a relation set R, the frame Fr(R) defined by
R is given by (|R|,R) where |R| = {x | xRv ∈ R or vRx ∈ R for some state v}.
We say that a relation set R is treelike if the frame defined by R is a tree or R is
empty. A treelike relation set R is called linelike if each node in R has at most
one child.

Definition 2. A labelled line sequent LLS is a labelled sequent R,X � Y where

1. R is linelike;
2. if R = ∅ then X has the form x : A1, . . . , x : An and Y has the form x :

B1, . . . , x :Bm for some state variable x;
3. if R �= ∅ then every state variable x that occurs in either X or Y also occurs

in R.

Observe that, in LLS, if xRy ∈ R then uRy /∈ R and xRv /∈ R for any u �= x
and v �= y.

Definition 3. A labelled line sequent calculus is a labelled sequent calculus
whose initial sequents and inference rules are constructed from LLS.
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Fig. 3. Labelled line sequent calculus LLSG.

In Fig. 3 we present the rules for the labelled line classical calculus LLSG.
Since linear nested sequents form a particular case of nested sequents, the

algorithm given in [6] can be used for generating LLS from LNS, and vice versa.
However, one has to keep the linearity property invariant through inference rules.
For example, the following rule (here considered more generally as a labelled
sequent rule)

R, xRy,X � Y, y :A
R,X,� Y, x :�A

�′
R

where y is fresh, is not adequate w.r.t. the system LNSK, since there may exist
z ∈ |R| such that xRz ∈ R. That is, for labelled sequents in general, freshness
alone is not enough for guaranteeing unicity of x in R. And it does not seem
to be trivial to assure this unicity by using logical rules without side conditions.
To avoid this problem, we slightly modify the framework by restricting R to
singletons, that is, R = {xRy} will record only the two last components, in
this case labelled by x and y, and by adding a base case R = {y0Rx0} for
x0, y0 different state variables when there are no nested components. The rule
for introducing �R then is

xRy,X � Y, y :A
zRx,X,� Y, x :�A

�R

with y fresh. Note that this solution corresponds to recording the history of the
proof search up to the last two steps. We adopt the following terminology for
calculi where this restriction is possible.

Definition 4. A LNS calculus is end-active if in all its rules the rightmost com-
ponents of the premisses are active and the only active components (in pre-
misses and conclusion) are the two rightmost ones. An end-active LLS is a
singleton relation set R together with a sequent X � Y of labelled formulae,
written R,X � Y . The rules of an end-active LLS calculus are constructed
from end-active labelled line sequents such that the active formulae in a pre-
miss xRy,X � Y are labelled with y and the labels of all active formulae in the
conclusion are in its relation set.

Observe that the completeness proof for LNSK via simulating a sequent derivation
in the last component actually shows that the end-active version of the calculus
LNSK is complete for K [9]. From now on, we will use the end-active version
of the propositional rules (see Fig. 4). Note that, in an end-active LLS, state
variables might occur in the sequent and not in the relation set. Such formulae
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Fig. 4. The end-active version of LLSG. In rule init, p is atomic.

will remain inactive towards the leaves of the derivation. In fact, a key property
of end-active LNS calculi is that rules can only move formulas “forward”, that
is, either an active formula produces other formulae in the same component or
in the next one. Hence one can automatically generate LLS from LNS. In the
following we write x :Γ if the label of every labelled formula in Γ is x.

Definition 5. For a state variable x, define the mapping TLx from LNS to end-
active LLS as follows

TLx0 (Γ0 � Δ0) = y0Rx0, x0 :Γ0 � x0 :Δ0

TLxn (Γ0 � Δ0//. . .//Γn � Δn) = xn−1Rxn, x0 :Γ0, . . . , xn :Γn � x0 :Δ0, . . . , xn :Δn n > 0

with all state variables pairwise distinct.

It is straightforward to use TLx in order to construct a LLS inference rule from
an inference rule of an end-active LNS calculus. The procedure, that can be
automatised, is the same as the one presented in [6], as we shall illustrate it
here.

Example 6. Consider the following application of the rule �R of Fig. 2:

Γ0 � Δ0//. . .//Γn−1 � Δn−1//Γn � Δn// � A

Γ0 � Δ0//. . .//Γn−1 � Δn−1//Γn � Δn,�A
�R

Applying TLx to the conclusion we obtain xn−1Rxn,X � Y, xn : �A, where
X = x1 : Γ1, . . . , xn : Γn and Y = x1 : Δ1, . . . , xn : Δn. Applying TLx to the
premise we obtain xnRxn+1,X � Y, xn+1 :A. We thus obtain an application of
the LLS rule

xnRxn+1,X � Y, xn+1 :A
xn−1Rxn,X � Y, xn :�A

TLx(�R)

which is the rule �R presented in Fig. 5.

The following result follows readily by transforming derivations bottom-up.

Fig. 5. The modal rules of LLSK.
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Theorem 7. Γ � Δ is provable in a certain end-active LNS calculus if and only
if TLx0(Γ � Δ) is provable in the corresponding end-active LLS calculus.

The end-active labelled line sequent calculus LLSK for K is given in Fig. 5. The
following is immediate from completeness of the end-active version of LNSK.

Corollary 8. A sequent Γ � Δ has a proof in LNSK if and only if yRx, x :Γ �
x :Δ has a proof in LLSK for some different state variables x, y.

4 Focused Labelled Line Sequent Systems

Although adding labels and restricting systems to their end-active form enhance
proof search a little, this is still not enough for guaranteeing that modal rules
occur in a block.

In [1], Andreoli introduced a notion of normal form for cut-free proofs in linear
logic. This normal form is given by a focused proof system organised around two
“phases” of proof construction: the negative phase for invertible inference rules
and the positive phase for non-necessarily-invertible inference rules. Observe that
a similar organisation is adopted when moving from LNSK to LLSK: invertible
rules are done eagerly while the non invertible ones (�R + �L) are done only in
the last two components.

We will now define FLLSK, a focused system for LLSK. Sequents in FLLSK
have one of the following shapes:

1. zRx ⇑ Γ ;X � Y ;Δ is an unfocused sequent, where Γ contains only modal
formulae and Δ contains only modal or atomic formulae.

2. zR[x] ⇓ Γ ;X � ·;Δ is a sequent focused on a right boxed or atomic formula.
3. [x]Ry ⇓ Γ ;X � Y ;Δ is a sequent focused on a left boxed formula.

In the negative phase sequents have the shape (1) above and all invertible propo-
sitional or modal rules are applied eagerly on formulae labelled with the variable
x until there are only atomic or boxed formulae left. Some of those are moved to
special contexts Γ,Δ using store rules. These contexts store the formulae that
can be chosen for focusing. When this process terminates, the positive phase
starts by deciding on one of the formulae in Δ, indicated by a sequent of the
form (2). If this formula is an atom, then the proof should terminate. Otherwise,
the focusing is over a modal formula, and the rule �R creates a fresh label y and
moves the unboxed part of the formula to this new label, resulting in a sequent
of the form (3). The positive phase then continues by possibly moving boxed
formulae in Γ , labelled with x, to the label y. Finally, focusing is lost and we
come back to the negative phase, now inside the component labelled by y. Note
that this procedure gives a forward-chaining flavor to the system.

The rules for FLLSK are presented in Fig. 6. Note that the rule storeR sys-
tematically moves all atomic and boxed formulae from Y to Δ, and hence Y will
be eventually empty. This is the trigger for switching from the negative to the
positive phase. Note also that the contexts may carry some “garbage”, i.e., for-
mulae which will never be principal. In fact, since the calculus is end-active, only
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formulae in one of the two last components can be principal. Similar to standard
systems where weakening is admissible, these formulae are then absorbed by
the initial sequents init. Since the focusing procedure described above is just a

Fig. 6. Focused labelled line sequent calculus FLLSK for K. Ab is atomic or a boxed
formula, Bb is a boxed formula. As usual, the negative phase is marked by ⇑, the
positive by ⇓.

systematic organisation of proofs, soundness and completeness proofs are often
straightforward permutation-of-rules arguments.

Theorem 9. The system FLLSK is sound and complete w.r.t. modal logic K, i.e.,
a formula A is a theorem of K iff the sequent zRx ⇑ ·; · � x :A; · is derivable in
FLLSK.

Proof. Observe that propositional rules permute up over the �L rule. Hence all
the applications of �L can be done in sequence, just after the �R rule. ��
Example 10. The normality axiom is derived as shown in Fig. 7. Note that the
modal rules occur in a block corresponding to an application of the sequent rule
k. That is, focusing effectively blocks derivations where propositional rules are
applied between modal ones.

Fig. 7. The derivation of the normality axiom in FLLSK
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5 Some More Involved Examples

It is straightforward to see that the method described above apply to any sequent
calculus which can be written as an end-variant linear nested sequent calculus,
in particular to extensions of K with combinations of the axioms D,T, 4 or to
the multi-succedent calculus for intuitionistic logic [9]. We now consider some
less trivial examples.

5.1 Simply Dependent Bimodal Logics

As a first example, we consider a bimodal logic with a simple interaction between
the modalities. While we only treat one example, our method is readily adapted
to other such logics. The language of simply dependent bimodal logic KT ⊕⊆ S4
from [5] contains two modalities � and ♥, and the axioms are the KT axioms
for � together with the S4 axioms for ♥ and the interaction axiom ♥A ⊃ �A
(Fig. 8). Using the methods in [10], these axioms are easily converted into the
sequent system GKT⊕⊆S4 extending the standard propositional rules with the
modal rules of Fig. 9. It is straightforward to check that these rules satisfy the
criteria for cut elimination from [10], and hence GKT⊕⊆S4 is cut-free.

Fig. 8. The modal axioms for logic KT ⊕⊆ S4.

Fig. 9. The modal rules of the sequent calculus GKT⊕⊆S4 for KT ⊕⊆ S4

To obtain a focused system, we again convert the sequent calculus into a LNS
calculus. However, since now we have two different non-invertible right rules (�R

and ♥R), we need to modify the linear nested setting slightly, introducing the
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two different nesting operators//�and//♥ for the rules �R resp. ♥R. The intended
interpretation is

ι(Γ � Δ) :=
∧

Γ ⊃
∨

Δ

ι(Γ � Δ//�H) :=
∧

Γ ⊃
∨

Δ ∨ �ι(H)

ι(Γ � Δ//♥H) :=
∧

Γ ⊃
∨

Δ ∨ ♥ι(H)

The modal sequent rules are then converted into the rules of Fig. 10. The propo-
sitional rules are those of LNSG (Fig. 1). Cut-free completeness of (the end-active
variant of) this calculus again follows from simulating sequent derivations in the
rightmost two components.

Fig. 10. The modal linear nested sequent rules for KT ⊕⊆ S4. Here ∗ ∈ {�, ♥}.

Lemma 11 (Soundness). The rules of LNSKT⊕⊆S4 preserve validity of the for-
mula interpretation of the sequents with respect to KT ⊕⊆ S4 frames.

Proof. By showing that if the negation of the interpretation of the conclusion of
a rule is satisfiable in a KT⊕⊆ S4 frame, then so is its conclusion, using that in
such frames the accessibility relation R� for � is contained in the accessibility
relation R♥ for ♥. ��
Note that this also shows that the obvious adaption of this calculus to the full
nested sequent setting is sound and cut-free complete for KT⊕⊆ S4. For propos-
ing a focused version for the linear nested sequent rules we essentially follow
the method given in Sect. 4, adapting the framework slightly to the multimodal
setting by introducing two different kinds of relation terms xR�y and xR♥y cor-
responding to the accessibility relations of the modalities � and ♥ respectively.
The frame Fr(R) is defined as (|R�∪R♥|, R�∪R♥) and linelike relation sets are
defined using this definition. The FLLS rules then are defined straightforwardly
(Fig. 11). Soundness and completeness of the resulting system FLLSKT⊕⊆S4 follow
as above. Summing up we have:

Theorem 12. LNSKT⊕⊆S4 and FLLSKT⊕⊆S4 are sound and complete forKT⊕⊆S4.

5.2 Non-normal Modal Logics

The same ideas also yield LNS calculi and their focused versions for some non-
normal modal logics, i.e., modal logics that are not extensions of modal logic K
(see [4] for an introduction). The calculi themselves are of independent interest
since, to the best of our knowledge, nested sequent calculi for the logics below
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have not been considered before in the literature. The most basic non-normal
logic, classical modal logic E, is given Hilbert-style by stipulating only the rule
(E) (or congruence rule) for the connective �

A ⊃ B B ⊃ A

�A ⊃ �B
(E)

which allows exchanging logically equivalent formulae under the modality. Some
of the better known extensions of this logic are formulated by the addition of
axioms from

M �(A ∧ B) ⊃ (�A ∧ �B) C (�A ∧ �B) ⊃ �(A ∧ B) N ��

Figure 12 shows the modal rules of the standard cut-free sequent calculi for these
logics [8], where in addition weakening is embedded in the conclusion. Extensions
of E are written by concatenating the names of the axioms, and in presence of
the monotonicity axiom M, the initial E is dropped. E.g., the logic MC is the
extension of E with axioms M and C. Its sequent calculus GMC is given by the
standard propositional and structural rules together with the rule (E) as well as
the rules (Mn) for n ≥ 1.

We first consider monotone logics, i.e., extensions of M. To simulate the
rules from Fig. 12 in the linear nested setting, we introduce an auxiliary nesting
operator //m to capture a state where a sequent rule has been partly processed.
In contrast, the intuition for the original nesting // is that the simulation of a
rule is finished. In view of end-active systems, we restrict the occurrences of //m

Fig. 11. The modal rules of FLLSKT⊕⊆S4. Here ∗ ∈ {�, ♥} and y is fresh in rules �R�

and �R♥. Rule t♥ is analogous to t� and is omitted. The propositional rules are as in
Fig. 4 with R∗ instead of R.

Fig. 12. Sequent rules and calculi for some non-normal modal logics
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to the end of the structures. Linear nested sequents for monotonic non-normal
modal logics then are given by:

LNSm::=Γ � Δ | Γ � Δ//mΣ � Π | Γ � Δ//LNSm

The modal linear nested sequent rules are given in Fig. 13. The propositional
rules are those of the end-active version of LNSG (Fig. 1) with the restriction
that they cannot be applied inside //m. The sequent rule (Mn) is then simulated
by the following derivation

Fig. 13. Modal linear nested sequent rules for some monotone non-normal modal logics.

Fig. 14. Modal linear nested sequent rules for some non-monotone non-normal modal
logics

A1, . . . , An � B

�A1, . . . ,�An � �B
(Mn)

.... G
�

G//�//A1, . . . , An−1, An � B

G//�//mA1, . . . , An−1 � B
�m

L

G//�A1, . . . ,�An �//m � B
�c

L

G//�A1, . . . ,�An � �B
�m

R

For extensions of classical modal logic E not containing the monotonicity axiom
M we need to store more information about the unfinished premisses. Thus
instead of //m we introduce a binary nesting operator //e(.; .). Linear nested
sequents then are given by

LNSe::=Γ � Δ | Γ � Δ//e(Σ � Π;Ω � Θ) | Γ � Δ//LNSe
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Figure 14 shows the modal rules for these logics, where again the propositional
rules are those of end-active LNSG (Fig. 1) with the restriction that they are not
applied inside the nesting //e. The derivation simulating the rule (En) then is

G//Γ � Δ//A1, . . . , An � B G//Γ � Δ//B � An

G//Γ, �An � Δ//e (A1, . . . , An−1 � B;B � )
�e

L

.

.

.

.
G//Γ, �A2, . . . , �An � Δ//e (A1 � B;B � ) G//Γ, �A2, . . . , �An � Δ//B � A1

G//Γ, �A1, . . . , �An � Δ//e ( � B;B � )
�ec

L

G//Γ, �A1, . . . , �An � �B, Δ
�e

R

Theorem 13 (Completeness). The linear nested sequent calculi of Figs. 13
and 14 are complete w.r.t. the corresponding logics.

For showing soundness of such calculi we need a different method, though.
This is due to the fact that, unlike for normal modal logics, there is no clear
formula interpretation for linear nested sequents for non-normal modal logics.
However, since the propositional rules cannot be applied inside the auxiliary
nestings//m resp.//e, the modal rules can only occur in blocks. Together with the
fact that the (end-variant) propositional rules can only be applied in the last
component, this means that we can straightforwardly translate LNS derivations
back into sequent derivations.

Theorem 14 (Soundness). If a sequent Γ � Δ is derivable in LNSL for L one
of the logics presented in this section, then it is derivable in the corresponding
sequent calculus.

Proof. By translating a LNSL derivation into a GL derivation, discarding every-
thing apart from the last component of the linear nested sequents, and trans-
lating blocks of modal rules into the corresponding modal sequent rules. E.g.,
a block consisting of an application of �m

L followed by n applications of �c
L

and an application of �m
R is translated into an application of the rule (Mn). The

propositional rules only work on the last component and never inside the nesting
//m resp. //e and are translated easily by the corresponding sequent rules. ��
Remark 15. It is possible to consider linear nested sequent calculi for these non-
normal modal logics in which the propositional rules are not restricted to their
end-active versions. In this case, soundness can be shown by a permutation-of-
rules argument, similar to the argument for levelled derivations in [11], using
“levelling-preserving” invertibility of the propositional rules.

The modal FLLS rules for the non-monotone non-normal modal logics are given in
Fig. 15, writing Re for the relation corresponding to //e. The propositional rules
are those of FLLSK (Fig. 6). The systems for monotone logics are constructed
similarly.
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Fig. 15. The modal FLLS rules for non-monotone non-normal modal logics

6 Automatic Proof Search in Linear Nested Sequents

The method for constructing focused systems from Sect. 4 generates optimal
systems, in the sense that proof search complexity matches exactly that of the
original sequent calculi. We will now go one step further and exploit the fact that
these calculi sport separate left and right introduction rules for the modalities
to present a systematic way of encoding labelled line nested sequents in linear
logic. This enables us to both: (i) use the rich linear logic meta-level theory in
order to reason about the specified systems; and (ii) use a linear logic prover in
order to do automatic proof search in those systems.

Observe that, while the goal in (ii) is also achieved by implementing the
focused versions of the various systems case by case, using a meta-level frame-
work like linear logic allows the use of a single prover for various logics: all one
has to do is to change the theory, i.e., the specified introduction clauses. The
implementation of a number of specified systems is available online at http://
subsell.logic.at/nestLL/.

6.1 From Sequent Rules to Linear Logic Clauses

We now consider focused linear logic (LLF) as a “meta-logic” and the formulae
of a labelled modal logic as the “object-logic” and then illustrate how sets of
bipoles in linear logic can be used to specify sequent calculi for the object-logic.
Since we follow mostly the procedure of [13], here we only give a general idea.

Specifying Sequents. Let obj be the type of object-level formulae and let
�·� and �·� be two meta-level predicates on these, i.e., both of type obj → o.
Object-level sequents of the form B1, . . . , Bn � C1, . . . , Cm (where n,m ≥ 0) are
specified as the multiset �B1�, . . . , �Bn�, �C1�, . . . , �Cm� within the LLF proof
system. The �·� and �·� predicates identify which object-level formulas appear
on which side of the sequent – brackets down for left (useful mnemonic: � for
“left”) and brackets up for right. Finally, binary relations R are specified by a
meta-level atomic formula of the form R(·, ·).

Specifying Inference Rules. Inference rules are specified by a re-writing
clause that replaces the active formulae in the conclusion by the active for-
mulae in the premises. The linear logic connectives indicate how these object

http://subsell.logic.at/nestLL/
http://subsell.logic.at/nestLL/
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level formulae are connected: contexts are copied (&) or split (⊗), in different
inference rules (⊕) or in the same sequent (..

...............................................
............
.................................. ). For example, the specification of

(a representative sample of) the rules of LLSK are

(init) ∃A, x.�x :A�⊥ ⊗ �x :A�⊥ ⊗ atomic(A)

(∧l) ∃A, B, x.�x :A ∧ B�⊥ ⊗ �x :A� � �x :B�
(∧r) ∃A, B, x.�x :A ∧ B�⊥ ⊗ �x :A� & �x :B�
(�R) ∃A, B, x.�x :�A�⊥ ⊗ ∀y.(�y :A� .................................................

............
.................................. R(x, y)) ⊗ ∃z.R(z, x)⊥

(�L) ∃A, B, x.�x :�A�⊥ ⊗ ∃y.(�y :A� .................................................
............
.................................. R(x, y)) ⊗ R(x, y)⊥

The correspondence between focusing on a formula and an induced big-step
inference rule is particularly interesting when the focused formula is a bipole.
Roughly speaking, bipoles are positive formulae in which no positive connective
can be in the scope of a negative one (see [13, Definition 3]). Focusing on such
a formula will produce a single positive and a single negative phase. This two-
phase decomposition enables the adequate capturing of the application of an
object-level inference rule by the meta-level logic. For example, focusing on the
bipole clause (�R) will produce the derivation

π1

Ψ ;Δ′, �y :A�, R(x, y)) ⇑
Ψ ;Δ′ ⇓ ∀y.(�y :A� .................................................

............
.................................. R(x, y))

[R ⇓,∀,
.................................................

............
.................................. , R ⇑]

π2

Ψ ;Δ ⇓ ∃A,B.�x :�A�⊥ ⊗ ∀y.(�y :A� .................................................
............
.................................. R(x, y)) ⊗ ∃z.R(z, x)⊥ [∃,⊗]

where Δ = �x :�A� ∪ R(z, x) ∪ Δ′, and π1 and π2 are, respectively,

Ψ ; �x :�A� ⇓ �x :�A�⊥ I1
Ψ ;R(z, x) ⇓ ∃z.R(z, x)⊥ [∃, I1]

This one-step focused derivation will: (a) consume �x : �A� and R(z, x); (b)
create a fresh label y; and (c) add �y : A� and R(x, y) to the context. Observe
that this matches exactly the application of the object-level rule �R.

When specifying a system (logical, computational, etc.) into a meta level
framework, it is desirable and often mandatory that the specification is faithful,
that is, one step of computation on the object level should correspond to one
step of logical reasoning in the meta level. This is what is called adequacy [15].

Fig. 16. The LLF specification of the modal rules of LLSEC for the logic EC from
Sect. 5.2.

Definition 16. A specification of an object sequent system is adequate if prov-
ability is preserved for (open) derivations, such as inference rules themselves.
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Figure 16 shows adequate specifications in LLF of the labelled systems for the
logic EC. These specifications can be used for automatic proof search as illus-
trated by the following theorem which is shown readily using the methods in [13].

Theorem 17. Let L be a LLS system and let L be the theory given by the clauses
of an adequate specification of the inference rules of L. A sequent R, Γ � Δ is
provable in L if and only if L;R ⇑ �Γ �, �Δ� is provable in LLF.

It is an easy task to show that all the specifications shown in this paper are
adequate.

Specifying Modalities. The reason why the specifications in LLF and the
construction of focused systems for LLS systems work rather well is the fact that
the LNS modal rules only manipulate a fixed number of principal formulae, i.e.,
one can choose some formulae and replace them with some other formulae. If
there are no principal formulae, or if the object rule is context dependent, then
proposing such encodings or a neat notion of focusing becomes tricky, as it is
often the case with sequent systems for modal logics. In [16] linear logic with
subexponentials (SELL) was used as a framework for specifying a number of
modal logics. Unfortunately, the encodings are far from natural, and cannot be
automated. Thus, in our opinion, the use of linear nested systems constitutes a
significant step towards defining efficient methods for proof search, but also the
construction of automatic provers for modal logics.

7 Concluding Remarks and Future Work

In this work we used the correspondence between linear nested sequents and
labelled line sequents to (a) propose focused nested sequent systems for a num-
ber of modal logics (including a non-trivial bimodal logic and non-normal log-
ics) which match the complexity of existing sequent calculi; and (b) specify the
labelled systems in linear logic, thereby obtaining automatic provers for all of
them. This not only constitues a significant step towards a better understanding
of proof theory for modal logics in general, but also opens an avenue for research
in proof search for a broad set of systems (not only modal).

One natural line of investigation concerns the applicability of this approach
to logics based on non-classical propositional logic such as constructive modal
logics. Moreover, we would like to understand whether our methods work for
“proper” nested sequent calculi, i.e., calculi for logics which are not based on a
cut-free sequent calculus, such as the calculi for K5 or KB [2]. Finally, it might
be possible to automatically extract focused systems from LLF specifications. It
would be rather interesting to compare these systems with ours.
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Abstract. Semantics-based applications encapsulate commonly a set
of ontologies which represent knowledge formalized from different data
sources. Some of these ontologies may change over time since, not only
data would be updated but also our understanding on application domain
would evolve. To ensure that ontologies remain usable, it is needed to
revise ontologies in such a way that takes into account new knowledge and
guarantees the principle of minimal change. In this paper, we propose an
ontology revision approach which uses finite structures equipped with a
total pre-order to characterize a set of models of an ontology. This allows
us to introduce a revision operation that satisfies all revision postulates.
Moreover, we propose a procedure for revising an ontology expressed
in an expressive description logic, namely SHIQ, and show that the
resulting ontology remains expressible in SHIQ.

1 Introduction

Formalisms based on Description Logics (DLs) such as OWL are widely used to
represent ontologies encapsulated in semantics-based applications. An interest-
ing feature of ontologies expressed in DLs (called DL ontologies) is to support
automated inference services which allow designers to detect possible errors and
allow users to entail new knowledge from ontologies. However, ontologies are not
static but evolve over time. If we consider an ontology as a set of statements
that describe our understanding about an application domain, it is needed to
revise ontology to take into account new knowledge about the domain.

The problem of revising a DL ontology is closely related to the problem of
belief revision which has been widely discussed in the literature. Among early
works on belief revision, Alchourrón, Gärdenfors and Makinson (AGM) [1] intro-
duced intuitive and plausible constraints (namely AGM postulates) which should
be satisfied by any rational belief revision operator. These classical belief revi-
sion approaches can be classified into syntax-based and model-based (semantic)
approaches [5].

Syntax-based approaches manipulate directly syntactical entities such as for-
mulas of a knowledge base. To take into account a new formula in preserv-
ing consistency, these approaches try to identify other formulas which should
be removed. The main issues are that (i) the procedures resulting from these
approaches heavily depend on the syntax of knowledge bases, and (ii) the princi-
ple of minimal change is not guaranteed since it refers to logical consequences of a
c© Springer-Verlag Berlin Heidelberg 2015
M. Davis et al. (Eds.): LPAR-20 2015, LNCS 9450, pp. 575–590, 2015.
DOI: 10.1007/978-3-662-48899-7 40
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knowledge base. Despite these issues, there are some syntax-based belief revision
operators which have been adapted to revise DL ontologies. Qi and colleagues
[10] reformulated the AGM postulates for DL ontologies and they proposed two
revision operators by weakening assertion axioms and GCIs. However, none of
their operators satisfies all the AGM postulates. Ribeiro and Wassermann [11]
investigated ontology contraction with Levy identity (i.e. removing an axiom).
The absence of axiom negation in DLs has leaded the authors to study ontology
semi-revision with two different constructions for revising a knowledge base K
by an axiom α. The first one ensures that the resulting revised KB is always
consistent but α is not necessarily entailed from the resulting revised KB, i.e.,
success of the revision does not hold. In the second construction, success always
holds but consistency of the resulting revised KB is not guaranteed. Thus, the
postulates about success and consistency are not simultaneously guaranteed.

Contrary to syntax-based approaches, semantic approaches investigate and
manipulate models of ontologies rather than their syntactical entities. The main
issues in adapting semantic approaches to DL ontologies are how to define a
distance between models and how to compute a revision ontology from the mod-
els selected according to the defined distance. In addition, other problems may
arise from dealing with models of DL ontologies. First, DL ontologies may have
infinitely many models which make impossible to construct a revision ontology
from models. Second, models of a DL ontology have usually (possibly infinite)
complex structures, which may require a complex definition of distance between
two models. Third, there may not exist a unique ontology that admits exactly a
given set of models. Despite these problems, there have been many attempts to
adapt classical model-based revision approaches to DL ontologies. Qi and Du [9]
adapted the well-known Dalal’s revision operator [2] for revising terminologies
in DL. Their operators that do not depend on a specific DL are defined by using
sets of models of KBs. They also showed that their operators satisfy the AGM
postulates. However, the authors have not proposed any procedure for computing
a revision ontology. Wang and colleagues [13] adapted Satoh’s revision operator
[12] for revision over DL-Lite ontologies. The authors have introduced a finite
structure, namely feature, for representing a possibly infinite model.

We will present in this paper a new model-based approach for revision of
ontologies in SHIQ, which is an expressive DL. To address the mentioned issues,
we use a finite set of finite structures, namely completion tree, to represent a pos-
sibly infinite set of models of a SHIQ ontology. These finite structures equipped
with a total pre-order allow one to determine semantic difference between two
ontologies represented as two sets of models. Indeed, revising an ontology O by
another ontology O′ can be reduced to selecting “appropriate” models from a
set of all models admitted by O′ such that the selected models are as close as
possible to models of O. The selected models are employed to build a revision
ontology of O by O′. To illustrate the idea behind the construction, we consider
the following running example.

Example 1. Let O be an ontology that contains a unique axiom:

� � Train � Carriage � ∃isPartOf.Train (1)
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This axiom says that “everything is a train and also a carriage which is a part
of a train”. A better understanding about the railway domain may lead us to add
the following axioms from another ontology O′:

¬Carriage � ∀isPartOf.(¬Train) (2)
Train � Carriage � ∀isPartOf.(¬Train) (3)

The new axioms stipulate that “something that is not a carriage is not a part
of any train”, and “a train is a carriage which is not a part of any train”. The
ontology O ∪ O′ is inconsistent since (3) contradicts (1). The goal is to build a
new ontology O∗ which is “compatible” with the axioms from O′ such that O∗

is semantically as close as possible to O, that means minimal change. We can
check that the following completion tree T1 yields a model of O.

Similarly, we can check that the two following completion trees yield models
of O′.

If we define a distance between completion trees based on structural similarity,
it would be plausible to say that T ′

1 is closer to T1 than T ′
2. Therefore, a resulting

revision ontology O∗ should admit T ′
1 rather than T ′

2.

Another issue our approach has to deal with is that there may not exist a revision
ontology such that (i) it is expressible in the logic that is used for expressing initial
ontologies O,O′, and (ii) it admits exactly a set of completion trees as models. For
this reason, we borrow from De Giacomo and colleagues the notion of maximal
approximation [4] which enables us to generate a semantically minimal revision
ontology such that it admits a precise set of models built from O and O′.

The present paper is organized as follows. Section 2 describes the DL SHIQ.
In Sect. 3 we present a novel tableau algorithm for building a set of completion
trees which represents all models of a SHIQ ontology. Section 4 introduces a
distance over a set of completion trees. This distance provides a means to equip
a set of completion trees with a total pre-order. This is a crucial point allowing
for defining a revision operation which satisfies all revision postulates reformu-
lated for DL ontologies. Based on the defined revision operation, we introduce in
Sect. 5 the notion of maximal approximation which allows us to propose a proce-
dure for computing a revision ontology from a set of completion trees. Section 6
describes some techniques for optimizing our procedure. Finally, Sect. 7 consists
of a discussion on how to extend our approach to deal with individuals.
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2 Preliminaries

In this section, we begin by presenting the syntax and the semantics of SHIQ.
Next, we describe some notations which will be useful for constructing a new
version of tableau algorithm in the next section.

Definition 1 (Role Hierarchy). Let R be a non-empty set of role names and
R+ ⊆ R be a set of transitive role names. We use RI = {R− | R ∈ R} to denote
a set of inverse roles. Each element of R∪RI is called a SHIQ-role. To simplify
notations for nested inverse roles, we define a function Inv(S) = R− if S = R;
and Inv(S) = R if S = R− where R ∈ R.

• A role inclusion axiom is of the form R � S for two (possibly inverse) SHIQ-
roles R and S. A role hierarchy R is a finite set of role inclusion axioms. A sub-
role relation ∗� is defined as the transitive-reflexive closure of � on R+ = R ∪
{Inv(R) � Inv(S) | R � S ∈ R}. We define a function Trans(R) which returns
true iff R is a transitive role. More precisely, Trans(R) = true iff R ∈ R+ or
Inv(R) ∈ R+. A role R is called simple w.r.t. R if Trans(R) = false.
• An interpretation I = (ΔI , ·I) consists of a non-empty set ΔI (domain)
and a function·I which maps each role name to a subset of ΔI × ΔI such that
R−I = {〈x, y〉 ∈ ΔI × ΔI | 〈y, x〉 ∈ RI} for all R ∈ R, and 〈x, z〉 ∈ SI , 〈z, y〉 ∈
SI implies 〈x, y〉 ∈ SI for each S ∈ R+. An interpretation I satisfies a role
hierarchy R if RI ⊆ SI for each R � S ∈ R. Such an interpretation is called a
model of R, denoted by I |= R. �
Definition 2 (Ontology). Let C be a non-empty set of concept names. The
set of SHIQ-concepts is inductively defined as the smallest set containing all C
in C, �, C � D, C  D, ¬C, ∃R.C, ∀R.C, (≤ nS.C) and (≥ nS.C) where n
is a positive integer, C and D are SHIQ-concepts, R is a SHIQ-role and S
is a simple role w.r.t. a role hierarchy. We write ⊥ for ¬�. The interpretation
function ·I of an interpretation I = (ΔI , ·I) maps each concept name to a
subset of ΔI such that �I = ΔI , (C � D)I = CI ∩ DI , (C  D)I = CI ∪ DI ,
(¬C)I = ΔI\CI , (∃R.C)I = {x ∈ ΔI | ∃y ∈ ΔI , 〈x, y〉 ∈ RI and y ∈ CI},

(∀R.C)I = {x ∈ ΔI | ∀y ∈ ΔI , 〈x, y〉 ∈ RI ⇒ y ∈ CI}, (≥ nS.C)I = {x ∈
ΔI | |{y ∈ CI | 〈x, y〉 ∈ SI}| ≥ n}, (≤ nS.C)I = {x ∈ ΔI | |{y ∈ CI |
〈x, y〉 ∈ SI}| ≤ n} where |S| stands for the cardinality of a set S. An axiom
C � D is called a general concept inclusion (GCI) where C,D are (possibly
complex) SHIQ-concepts, and a finite set of GCIs is called a terminology T . An
interpretation I satisfies a GCI C � D, denoted I |= (C � D), if CI ⊆ DI and
I satisfies a terminology T if I satisfies each GCI in T . Such an interpretation
is called a model of T , denoted by I |= T .

A pair (T ,R) is called a SHIQ ontology, denoted O = (T ,R) if R is a
SHIQ role hierarchy and T is a SHIQ terminology. An ontology O = (T ,R)
is said to be consistent if there is a model I of both T and R, i.e., I |= T and
I |= R. Additionally, we use Mod(O) to denote all the models of an ontology
O, and S(O) = R ∪ C to denote the signature of an ontology O where R is the
set of role names occurring in O, and C is the set of concept names occurring
in T . �
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For the ease of construction, we assume all concepts to be in negation normal
form (NNF), i.e., negation occurs only in front of concept names. Any SHIQ-
concept can be transformed to an equivalent one in NNF by using De Morgan’s
laws and some equivalences [6]. For a concept C, we denote the nnf of C by
nnf(C) and the nnf of ¬C by ¬̇C. In the remaining of this section, we introduce
some notations which will be useful for the next sections.

Definition 3 (Sub-concepts). Let O = (T ,R) be a SHIQ ontology with
S(O) = R ∪ C. A set sub(O) is inductively defined as follows:

sub(O) = sub(T ) ∪ {¬̇C | C ∈ sub(T )};
sub(T ) =

⋃

C�D∈T
sub(nnf(¬C  D));

sub(C) = {C} if C ∈ C; sub(¬C) = sub(¬̇C);
sub(C) = sub(E) ∪ sub(F ) if C ∈ {E � F,E  F};
sub(C) = {C} ∪ {∃R′.E | R∗�R′} ∪ sub(E) if C = ∃R.E;
sub(C) = {C} ∪ {∀R′.E | R∗�R′} ∪ sub(E) if C = ∀R.E;
sub(C) = {C} ∪ {≥ nR′.E | R∗�R′} ∪ sub(E) if C = (≥ nR.E);
sub(C) = {C} ∪ sub(E) if C = (≤ nR.E). �

Note that all concepts in the form of disjunctions and of conjunctions are replaced
with their disjuncts and conjuncts. Additionally, sub(O) includes (i) all sub-
concepts occurring in O, (ii) concepts of the form ∃R′.C, (resp. ∀R′.C and
(≥ nR′.E)) if ∃R.C (resp. ∀R.C, (≥ nR.E)) occurs in O with R∗�R′, and (iii)
the negation of each concept added to sub(O).

To avoid processing conjunctions and disjunctions at top-level of a concept C
(i.e. those that do not appear in the filler of a universal, existential, numbering
restrictions occurring in C) when constructing a completion tree for an ontology,
we need a function Flat(C) which returns a set of subsets of sub(C).

Definition 4 (Flattening). Let C be a SHIQ concept. We define a function
Flat(C) which returns a set of subsets of sub(C) as follows:

1. If C is a concept name or C is neither any conjunction nor any disjunction,
i.e., C = ∃R.D, or C = ∀R.D, or C = (≤ nR.D), or C = (≥ nR.D), we
define Flat(C) = {{C}};

2. If C = E � F such that E and F are not a disjunction, we define Flat(C) =
{Ser(Flat(E)) ∪ Ser(Flat(F ))} where Ser(Flat(F )) =

⋃
W∈Flat(F ) W ;

3. If C = E  F , we define Flat(C) = Flat(E) ∪ Flat(F );
4. If C = E � F such that X = E′  E′′ and Y is not a disjunction with

X,Y ∈ {E,F} and X �= Y , we define Flat(C) = Flat(Y � E′) ∪ Flat(Y � E′′);
5. Otherwise, i.e., C = E � F such that E = E′  E′′ and F = F ′  F ′′, we

define Flat(C) = Flat(F ′ �E′)∪Flat(F ′′ �E′)∪Flat(F ′ �E′′)∪Flat(F ′′ �E′′).

�

We can check that (i) each element X ∈ Flat(C) is a subset of sub(C) and
does not contain any conjunction and disjunction at top-level; (ii) if C does not
contain any conjunction and disjunction at top-level, Flat(C) = {{C}}; (iii) if C
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does not contain any disjunction at top-level, Flat(C) contains a unique subset
of sub(C) that includes all conjuncts of C at top-level; (iv) if C does not contain
any conjunction at top-level and C is a disjunction, all disjuncts of C must
appear in distinct elements of Flat(C).

3 A New Tableau Algorithm for SHIQ
Horrocks, Sattler and Tobies [6] have proposed a tableau algorithm for checking
consistency of a SHIQ ontology O. This algorithm attempts to construct a finite
labeled graph, namely completion tree, from which one can devise a model for
O. The algorithm returns “YES” if such a completion tree is built, and returns
“NO” if it fails to build such a completion tree after considering all possibly
non-deterministic cases. In this section, we present an algorithm with new rules
which allow for constructing a set of all completion trees from each of which one
can devise a model for O.

Definition 5 (Completion Tree). Let O = (T ,R) be a SHIQ ontology.
A completion tree for O is a tree T = 〈V,E,L, x̂〉 where

• V is a set of nodes containing a root node x̂ ∈ V . Each node x ∈ V is labeled
with a function L such that L(x) ⊆ sub(O). In addition, � .= is a symmetric binary
relation over V . E is a set of edges. Each edge 〈x, y〉 ∈ E is labeled with a set
L(〈x, y〉) which contains (possibly inverse) SHIQ roles occurring in O.
• If two nodes x and y are connected by an edge 〈x, y〉, then y is called a successor
of x, denoted y ∈ succ(x), and x is called a predecessor of y, denoted y ∈
pred(x); ancestor is the transitive closure of predecessor. A node y is called
an R-successor of x, denoted y ∈ succR(x) if, for some role R′ with R′ ∗�R,
R′ ∈ L(〈x, y〉); x is called an R-predecessor of y, denoted x = predR(y), if y is
an R-successor of x. A node y is called an R-neighbor of x if y is an R-successor
or x is an Inv(R)-successor of y. For a node x and a role S, we define the set
ST (x,C) of x’s S-neighbors as follows: ST (x,C) = {y ∈ V | y is an S-neighbor
of x and X ⊆ L(y) for some X ∈ Flat(C)}.
• A node x is called blocked by y if it has ancestors x′, y and y′ such that (i) x
is a successor of x′ and y is a successor of y′, (ii) L(x) = L(y), L(x′) = L(y′),
and (iii) L(〈x′, x〉) = L(〈y′, y〉).
• T is said to contain a clash if (i) there is some node x ∈ V such that either
{A,¬A} ⊆ L(x) for some concept name A ∈ C, or (ii) (≤ nS.C) ∈ L(x) and
there are (n + 1) S-neighbors y1, · · · , yn+1 of x with yi � .= yj and X ⊆ L(yi) for
some X ∈ Flat(C) and all 1 ≤ i < j ≤ (n + 1). �

New Tableau Algorithm. Based on the work of Horrocks, Sattler and Tobies
[6], we design a new tableau algorithm by using the expansion rules in Fig. 1.
This algorithm starts by creating a root node and applies the sat-rule to the
root node (sat stands for saturate). Applications of generating rules (∃- and
≥-rules) can create fresh nodes whose label is entirely filled by an application
of the sat-rule to each one, or partially filled by one of the ∀-, ∀+-rules. The
algorithm applies the sat-rule to a node x by choosing a set S ⊆ sub(O) and



Tableau-Based Revision over SHIQ TBoxes 581

∃-rule: if 1. ∃S.C ∈ L(x), x is not blocked, and
2. x has no S-neighbor y s.t. X ⊆ L(y) for some X ∈ Flat(C)

then create a new node y with L(〈x, y〉) := {S} and L(y) := X for some X ∈ Flat(C).

∀-rule: if 1. ∀S.C ∈ L(x), and
2. there is an S-neighbor y of x s.t. X �⊆ L(y) for all X ∈ Flat(C)

then L(y) := L(y) ∪ X for some X ∈ Flat(C).

∀+-rule: if 1. ∀S.C ∈ L(x),
2. there is an R with Trans(R) s.t. R∗S, and
3. there is an R-neighbor y of x s.t. ∀R.C /∈ L(y)

then L(y) := L(y) ∪ {∀R.C}.

≥-rule: if 1. (≥ nS.C) ∈ L(x), x is not blocked, and
2. x has no n S-neighbors y1, · · · , yn such that X ⊆ L(yi) for some X ∈ Flat(C)

and yi � .= yj for 0 ≤ i < j ≤ n
then create n new nodes y1, · · · , yn with L(〈x, yi〉) := {S},

L(yi) := X for some X ∈ Flat(C) and yi � .= yj for 1 ≤ i < j ≤ n.

≤-rule: if 1. (≤ nS.C) ∈ L(x),
2. x has n + 1 S-neighbors y0, . . . , yn s.t. X ⊆ L(yi) for some X ∈ Flat(C),
3. there are two S-neighbors y, z of x with X1 ⊆ L(y), X2 ⊆ L(z)

for some X1, X2 ∈ Flat(C), y is not an ancestor of z, and not y � .= z            
then (i) L(z) := L(z) ∪ L(y) and L(〈x, y〉) := ∅

(ii) if z is an ancestor of x
then L(〈z, x〉) := L(〈z, x〉) ∪ {Inv(R) | R ∈ L(〈x, y〉)};

else L(〈x, z〉) := L(〈x, z〉) ∪ L(〈x, y〉), and
(iii) add u � .= z for all u such that u � .= y.

sat-rule: if sat-rule has never been applied to x
then choose a subset S ⊆ sub(O) s.t. L(x) ∪ ⋃

X∈Flat(nnf(¬C�D)),C�D∈T
X ⊆ S, and

set L(x) := S ∪ S̄ where S̄ = {¬̇C | C ∈ sub(O) \ S}

Fig. 1. Expansion rules for SHIQ

adding S to L(x) such that S covers the existing L(x) and a subset of concepts
being flattened from ¬C  D for each axiom C � D in O. After applying the
sat-rule to a node, its label is no longer changed. This explains why usual rules
in a standard tableau algorithm such as �- and ch-rules become useless when
allowing for the sat-rule. In addition, the procedure Flat makes the usual �-
and -rules unnecessary since the behavior of these rules is straightforwardly
integrated into Flat which is non-deterministic as well. A completion tree is
clash-free if none of its nodes contains a clash, and it is complete if no rule from
Fig. 1 is applicable. Note that the sat-rule in Fig. 1 can be extended in such
a way that it chooses a subset S from an arbitrary set sub including sub(O).
This flexibility is applied for building completion trees of an ontology O with
importing sub-concepts from another ontology O′, or inversely. This importing is
needed for revising O by O′ in a case where O′ contains symbols not included in
O, or where the information of O needs to be kept as much as possible in revision
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ontology. As a direct consequence of the sat-rule’s definition, its behavior is very
non-deterministic since the number of possibilities for choosing a subset from
sub is bounded by an exponential function in the cardinality of sub. Moreover,
completion trees constructed by the new tableau algorithm with the rules in
Fig. 1 allow us to efficiently define a distance between them since node labels
are optimized by removing unnecessary concepts (in the form of conjunction or
disjunction at top-level) from the procedure Flat.

Lemma 1 (Correctness and Completeness). Let O be a SHIQ ontology.

1. The tableau algorithm with the expansion rules in Fig. 1 terminates.
2. If the tableau algorithm with the expansion rules in Fig. 1 can be applied to

O such that it yields a complete and clash-free completion tree, then O is
consistent;

3. If O is consistent then the tableau algorithm with the expansion rules in Fig. 1
can be applied to O such that it yields a complete and clash-free completion
tree.

Proof Sketch. We use the same technique by Horrock, Sattler and Tobies [6]
to show termination, soundness and completeness of the algorithm. First, we
define a tableau for a SHIQ ontology O. Next, we show that O has a tableau
iff O is consistent. Termination of the algorithm is ensured by the blocking
condition and monotonicity of the construction of a completion tree T (i.e. we
never remove something from T ). From the blocking condition, it can be shown
that the size of T is bounded by a doubly exponential function in the size of
O. To prove soundness, one can devise a tableau from a completion tree T by
unraveling. This process generates descendants of blocked nodes by replicating
descendants of blocking nodes. The obtained tableau is of the tree-like structure
that may be infinite. To prove completeness, we use a tableau for O to guide
non-deterministic expansion rules to choose right concepts (or right successors)
for building a complete and clash-free completion tree T . �
The following theorem is a consequence of Lemma 1.

Theorem 1. Let O be a SHIQ ontology. The tableau algorithm with the expan-
sion rules in Fig. 1 can decide consistency of O in doubly exponential time in
the size of O.

Notation 1 (Tree-Like Model). Let O be a SHIQ ontology. A complete and
clash-free completion tree T that is built by applying the tableau algorithm with
the expansion rules in Fig. 1 to O is called a tree-like model. According to
Lemma 1, for each complete and clash-free completion tree T it is possible to
obtain a model, denoted I(T ), by unraveling. In this case, a node of T may be
replicated for an infinite number of individuals of the model. Given an axiom
C � D, define I(T ) |= (C � D) if CI(T ) ⊆ DI(T ).

Sets of Tree-Like Models. Contrary to standard tableau algorithms which ter-
minate when a tree-like model is found, the new tableau algorithm has to consider
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all non-deterministic cases and build all tree-like models for O. We use MT(O) to
denote a set of all tree-like models for a SHIQ ontology O. We can straightfor-
wardly extend MT(O) to MT(O, sub(O′)) as follows. The set MT(O, sub(O′)) is
built by the new tableau algorithm for O with an extra set of concepts sub(O′)
that is imported into sub(O) when applying the sat-rule. This enables one to
import additional concepts into node labels of a completion tree for O while
respecting the axioms of O. Note that we do not import any semantic constraint
from O′ to completion trees in MT(O) when building MT(O, sub(O′)). What we
really carry out in this construction is to import into O the signature of O′ with
formulas written in that signature. This importation may change MT(O) but
does never change consistency of O.

The following corollary is a direct consequence of Theorem 1.

Corollary 1. Let O and O′ be two consistent SHIQ ontologies. It holds that

1. MT(O) �= ∅ iff Mod(O) �= ∅.
2. MT(O ∪ O′) = MT(O, sub(O′)) ∩ MT(O′, sub(O)).

Corollary 1 affirms semantic equivalence between Mod(O) and MT(O). This
result allows us to replace a possibly infinite set Mod(O) with a finite set MT(O)
in constructions presented in the following sections.

4 Revision Operation

We begin this section by introducing a distance between two completion trees
which allows one to talk about similarity between two ontologies. This distance
is defined for two completion trees which are isomorphic.

Definition 6 (Isomorphism). Let T = 〈V,L,E, x̂〉 and T ′ = 〈V ′, L′, E′, x̂′〉
be two completion trees.

• T and T ′ are isomorphic if there is a bijection π from V to V ′ such that
π(x̂) = x̂′; and for each x ∈ V with π(x) = y, we have π(succ(x)) = succ(y). In
this case, we say that π is an isomorphism between T and T ′.
• T and T ′ are equivalent if there is an isomorphism π between T and T ′ s.t.
L(x) = L′(π(x)) for each x ∈ V , and L(〈x, y〉) = L′(〈π(x), π(y)〉) for each
〈x, y〉 ∈ E. �
Note that we can always obtain such an isomorphism between two completion
trees by adding empty nodes and edges to completion trees since node and edge
labels are ignored in the definition of isomorphisms. In the following, a distance
between two isomorphic completion trees can be computed by extending the
definition of symmetric difference �. Recall that S � S′ = (S ∪ S′) \ (S ∩ S′) for
any two sets S and S′.

Definition 7 (Distance). Let T = 〈V,L,E, x̂〉 and T ′ = 〈V ′, L′, E′, x̂′〉 be two
completion trees. Let Π(T, T ′) be the set of all isomorphisms between T and T ′.
A distance between T and T ′, denoted T � T ′, is defined as follows:

T � T ′ = minπ∈Π(T,T ′) {maxx∈V (|L(x) � L′(π(x))|) +
max〈x,y〉∈E(|L(〈x, y〉) � L′(〈π(x), π(y)〉)|)} �



584 T. Dong et al.

The function max in Definition 7 returns the greatest difference of node labels
(or edge labels) from all pairs of nodes x, π(x) with x ∈ V (or pairs of edges
〈x, y〉, 〈π(x), π(y)〉 with 〈x, y〉 ∈ E) for some isomorphism π between two trees. If
max is removed from Definition 7, a null distance does not imply identity of two
trees in question. We can check that � is a distance over a set of isomorphic trees.
Indeed, (symmetry) T � T ′ = T ′ � T is due to commutativity of the operator
S � S′; (identity) T � T ′ = 0 iff T = T ′ is a consequence of the fact that
S � S′ = ∅ iff S = S′ for all sets S, S′; (triangle inequality) T � T ′′ ≤ (T �
T ′)+ (T ′ � T ′′) is a consequence of the fact that S � S′′ ⊆ (S � S′)∪ (S′ � S′′)
for all sets S, S′, S′′. In addition, we can show that this distance yields a total
pre-order over a set of isomorphic completion trees. To do this, we define a
relation “T ≤ T ′” over a set of isomorphic completion trees, which includes a
tree T0 containing only empty labels, as follows: T ≤ T ′ if T0 � T ≤ T0 � T ′.
The relation “≤” is a total pre-order over a set of isomorphic completion trees
since it is transitive, total and reflexive.

All of the above notions provide sufficiently elements to define a revision oper-
ation for a SHIQ ontology O by another ontology O′. This operation determines
a set of models a revision ontology should admit. Under the hypothesis which
says that the semantics of an ontology O is characterized by Mod(O), Corollary 1
allows us to represent the semantics of O by using a finite set MT(O) instead of
a possibly infinite set Mod(O).

Definition 8 (Revision Operation). Let O and O′ be two consistent ontolo-
gies in SHIQ. A set of tree-like models of the revision of O by O′, denoted
MT(O,O′), is defined as follows:

MT(O, O′) =
{
T ∈ MT(O′, sub(O)) | ∃T0 ∈ MT(O, sub(O′)),

∀T ′ ∈ MT(O′, sub(O)), T ′′ ∈ MT(O, sub(O′)) : T � T0 ≤ T ′ � T ′′} �

Intuitively, among the tree-like models in MT(O′, sub(O)), MT(O,O′) retains
only those which are closest to tree-like models from MT(O, sub(O′)) thanks to
the operator T1 � T2 that characterizes the difference between T1 and T2.

Example 2. Reconsider Example 1. By applying the new tableau algorithm
for O, the set MT(O, sub(O′)) contains a unique tree-like model T1 as
described in Example 1. Similarly, the set MT(O′, sub(O)) contains 4 tree-
like models two of which are T ′

1 and T ′
2 described in Example 1, and

two others T ′
3 and T ′

4 have a unique root node {a′} whose label is
(T ′

3): L3(a′) = {¬Train,Carriage,∀isPartOf.(¬Train)}, and (T ′
4): L4(a′) =

{¬Train,¬Carriage,∀isPartOf.(¬Train)}. According to Definition 7 (distance), we
have T ′

1 � T1 = 2 that is minimal. Thus, MT(O,O′) contains a unique tree-like
model T ′

1.

As mentioned in Sect. 1, our goal is to propose a revision operation that ensures
the principle of minimal change introduced by Alchourrón, Gärdenfors and
Makinson [1] as postulates in belief revision framework. Katsuno and Mendelzon
[7] have rephrased these postulates for propositional knowledge bases, namely
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(R1)–(R6), and shown that the existence of a total pre-order over models of
a propositional knowledge base is equivalent to (R1)–(R6). The argument of
the proof has not required any specific structure of models of a propositional
knowledge base.

The revision operation according to Definition 8 that is based on the total
pre-order “≤” over tree-like models provides directly satisfaction of the prin-
ciple of minimal change. Indeed, MT(O,O′) retains only tree-like models in
MT(O′, sub(O)) which are closest to tree-like models in MT(O, sub(O′)) accord-
ing to the distance “�” yielding the total pre-order “≤”. This observation allows
us to get straightforwardly the result saying that revision postulates imply a
total pre-order “≤” over tree-like models, since we consider only models such as
tree-like models over which a total pre-order exists already. What remains to be
proved is that the revision operation in Definition 8 satisfies revision postulates.
To do this, we use the revision postulates (G1)–(G6) that were formulated by
Qi, Liu and Bell [9] for DL ontologies with sets of ontology models Mod(O) and
Mod(O′). To provide a precise idea about how the postulates (G1)–(G6) are
translated into those in our setting, the following postulate (G2) is taken from
the Qi, Liu and Bell’s paper [9]:

(G2) If Mod(O) ∩ Mod(O′) �= ∅, then Mod(O ◦ O′) = Mod(O) ∩ Mod(O′)
where revision ontology of O by O′ is denoted by O◦O′. According to Corollary 1
and Definition 8, we can replace Mod(O) and Mod(O ◦O′) with MT(O, sub(O′))
and MT(O,O′), respectively, to obtain revision postulates that refer only to
computable structures. Indeed, the postulates (G1)–(G6) by Qi, Liu and Bell
can be rephrased in our setting as follows.

(P1) I(T ) |= α for each tree-like model T ∈ MT(O,O′) and each axiom α ∈ O′

(P2) If MT(O, sub(O′)) ∩ MT(O′, sub(O)) �= ∅,
then MT(O,O′) = MT(O, sub(O′)) ∩ MT(O′, sub(O))

(P3) If O′ is consistent then MT(O,O′) �= ∅
(P4) If MT(O1, sub(O′

1)) = MT(O2, sub(O′
2)) and

MT(O′
1, sub(O1)) = MT(O′

2, sub(O2)), then MT(O1,O′
1) = MT(O2,O′

2)
(P5) MT(O,O′) ∩ MT(O′′, sub(O) ∪ sub(O′)) ⊆ MT(O,O′ ∪ O′′)
(P6) If MT(O,O′) ∩ MT(O′′, sub(O) ∪ sub(O′)) �= ∅,

then MT(O,O′ ∪ O′′) ⊆ MT(O,O′) ∩ MT(O′′, sub(O) ∪ sub(O′))

Intuitively, (P1) guarantees that all axioms in the new ontology O′ can be
inferred from the result of revision. (P2) says that the initial ontology O does not
be changed if there is no conflict. (P3) is a condition preventing a revision from
introducing unwarranted inconsistency. (P4) says that the revision operation
should be independent of the syntax of ontologies. The principle of minimal
change is ensured by (P5) and (P6) since they allow one to devise a total pre-
order over tree-like models [7]. We are able to prove that all postulates always
hold in our setting.

Theorem 2. The revision operation MT(O,O′) described in Definition 8 satis-
fies the postulates (P1)–(P6).
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Proof Sketch. (P1): it can be proved from Definition 8 that says that
MT(O,O′) ⊆ MT(O′, sub(O)). (P2): By Definition 8, if MT(O, sub(O′)) ∩
MT(O′, sub(O)) �= ∅, MT(O,O′) retains uniquely the tree-like models which
belongs to the intersection of MT(O, sub(O′)) and MT(O′, sub(O)) since T ′ �
T ′ = 0 for each T ′ belonging to this intersection. (P3): By Definition 8,
MT(O,O′) is never empty if MT(O′, sub(O)) is not empty. (P4): a direct conse-
quence of Definition 8. (P5): Let T ′ ∈ MT(O,O′)∩MT(O′′, sub(O)∪sub(O′)). By
Definition 8, T ′ ∈ MT(O′ ∪ O′′, sub(O) ∪ sub(O′) ∪ sub(O′′)) ⊆ MT(O′, sub(O) ∪
sub(O′) ∪ sub(O′′)), and there is a T ∈ MT(O, sub(O′)) which is closest to T ′

since T ′ ∈ MT(O,O′). (P6): Let T ∈ MT(O,O′ ∪ O′′). By Definition 8, we
have T ∈ MT(O′′, sub(O′) ∪ sub(O′)). To show that T ∈ MT(O,O′), we use
T0 ∈ MT(O,O′) ∩ MT(O′′, sub(O) ∪ sub(O′)) and the total pre-order over tree-
like models. �

5 Computing Revision Ontology

In this section, we present a procedure for constructing a SHIQ ontology O∗

that admits at least tree-like models in MT(O,O′). It has turned out [3] that
there may not exist a DL-lite ontology which admits exactly a given set of
models. By the following example, we show that it is also the case for SHIQ
ontologies.

Example 3.
Reconsider Example 2 with MT(O,O′) = {T ′

1}. Assume that there exists Ô with
sub(Ô) = {Carriage,¬Carriage,∃isPartOf.Train,∀isPartOf.(¬Train),Train, ¬Train}
which admits the unique T ′

1 as tree-like model. By applying the new tableau algo-
rithm for Ô, MT(Ô) must contain T ′

1 and another T ′
2 having one node {x} with

L(x) = {Train,Carriage,∀isPartOf.(¬Train)}, which is a contradiction.

To address this issue, we are borrowing the notion of maximal approximation
from the work of De Giacomo and colleagues [4]. This notion can be reformulated
in our setting as follows.

Definition 9 (Maximal Approximation). Let O and O′ be two consistent
SHIQ ontologies with revision operation MT(O,O′). We use S(O′′) to denote
the signature of an ontology O′′. An ontology O∗ is a maximal approximation
from MT(O,O′) if

1. S(O∗) ⊆ S(O) ∪ S(O′);
2. MT(O,O′) ⊆ MT(O∗);
3. There does not exist any ontology O′′ s.t. MT(O,O′) ⊆ MT(O′′)

⊂ MT(O∗). �

Definition 9 provides a best approximation of SHIQ ontologies we should build
such that it admits all models in MT(O,O′). An interesting point is that
if such a maximal approximation exists it is unique up to semantic equiv-
alence. In fact, assume that there exists a maximal approximation O′′ such
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that MT(O′′, sub(O∗)) �= MT(O∗, sub(O′′)). We can show that sub(O∗) =
sub(O′′) = sub(O∪O′). Then, by Lemma 1, MT(O′′ ∪O∗) = MT(O′′, sub(O∗))∩
MT(O∗, sub(O′′)), it follows MT(O′′ ∪ O∗) = MT(O′′) ∩ MT(O∗) ⊂ MT(O∗) or
MT(O′′ ∪ O∗) ⊂ MT(O′′), which contradicts Condition 3 in Definition 9. More-
over, the existence of O′′ in Condition 3 implies Condition 1, i.e., S(O′′) ⊆
S(O) ∪ S(O′). In the sequel, we show that such a maximal approximation actu-
ally exists and propose a procedure to build it.

Definition 10 (Revision Ontology). Let O = (T ,R) and O′ = (T ′,R′) be
two consistent SHIQ ontologies with MT(O,O′) = {T1, · · · , Tn} where Ti =
〈Vi, Li, Ei, x̂i〉 for 1 ≤ i ≤ n. A revision ontology O∗ = (T̂ , R̂) of O by O′ is
defined as follows:

– R̂ := R′

– T̂ := T ′ ∪ {� �
⊔

〈Vi,Li,Ei,x̂i〉∈MT(O,O′)

(
⊔

x∈Vi

(
�

C∈Li(x)

C))} �

The only difference between O′ and O∗ is the new axiom built from MT(O,O′).
This axiom allows for selecting from MT(O′, sub(O)) tree-like models that are
closest to MT(O, sub(O′)). The subsumer of the axiom contains all concepts
appearing in each node of each tree-like model Ti = 〈Vi, Li, Ei, x̂i〉 ∈ MT(O,O′).

Example 4. To continue Example 2, we construct from MT(O,O′) an ontology
O∗ which admits a unique tree-like model T ′

1 according to Definition 10. Thus,
O∗ contains the following axioms:

¬Carriage � ∀isPartOf.(¬Train), Train � Carriage 
 ∀isPartOf.(¬Train) (from O′), and � �
(Carriage � ∃isPartOf.Train � ¬Train) (Train � Carriage � ∀isPartOf.¬Train).
We formulate and show the most important result which affirms that the revision
ontology O∗ in Definition 10 satisfies the conditions of a maximal approximation.
Our argument relies heavily on the specific behavior of the sat-rule. In fact,
this rule allows one to know about a tree-like model built by the new tableau
algorithm without indicating a precise sequence of applications of expansion
rules.

Theorem 3. Let O and O′ be two consistent SHIQ ontologies. The revision
ontology O∗ of O by O′ is a maximal approximation from MT(O,O′). Addition-
ally, the size of O∗ is bounded by a doubly exponential function in the size of O
and O′.

Proof Sketch. By construction, S(O∗) ⊆ S(O) ∪ S(O′) and sub(O) ∪ sub(O′) =
sub(O∗). Let T ∈ MT(O,O′). Due to MT(O,O′) ⊆ MT(O′, sub(O)) there exists
a sequence SeqT of rule applications executed by the new tableau algorithm
for O′ with sub(O) such that SeqT allows for constructing T . We use SeqT to
guide the construction of a sequence SeqT ′ of rule applications executed by the
new tableau algorithm for O∗ such that SeqT ′ allows for constructing a tree-like
model T ′ = T . Thus, MT(O,O′) ⊆ MT(O∗). To prove Condition 3, we show
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that if there exists an ontology O′′ with MT(O,O′) ⊆ MT(O′′) ⊆ MT(O∗) then
MT(O′′) = MT(O∗). Firstly, we show that sub(O′′) = sub(O∗). The remainder
can be done by using the same argument over sequences of rule applications
executed by the new tableau algorithm for O′′ and O∗. The point is that when
we know SeqT with the specific behavior of the sat-rule (for building a tree-like
model T for O′′) and sub(O′′) = sub(O∗), it is possible to replicate that SeqT to
build the same tree-like model T ′ = T for O∗, and inversely. In addition, there
is at most a doubly exponential number of tree-like models in MT(O,O′), and
the size of each tree-like model is bounded by a doubly exponential function. �

Algorithm 1. Algorithm for computing the revision ontology O∗ of O by O′

Input : O = (T , R), O′ = (T ′, R′) : two consistent SHIQ ontologies

Output: O∗ = (T̂ , R̂): revision ontology of O by O′

1 Apply the new tableau algorithm to O and O′ for building MT(O, sub(O′)) and
MT(O′, sub(O));

2 Compute MT(O, O′) from MT(O, sub(O′)) and MT(O′, sub(O)) according to
Definition 8;

3 foreach α ∈ R′ do
4 Add α to R̂ ;

5 foreach α ∈ T ′ do
6 Add α to T̂ ;

7 Add to T̂ the concept axiom � �
⊔

〈Vi,Li,Ei,x̂i〉∈MT(O,O′)

(
⊔

x∈Vi

(
�

C∈Li(x)

C));

8 return O∗;

Based on Definition 10, one can devise a procedure (Algorithm 1) for com-
puting the revision ontology O∗ of O by O′. The construction of the axiom by
Line 7 is performed by traversing each completion tree Ti ∈ MT(O,O′) to get
node labels from Ti. Each disjunct at top-level of the subsumer of this axiom
corresponds to the label of each node x ∈ Vi with Ti = (VI , Li, Ei, x̂i).

6 Optimizing the Algorithm

Algorithm 1 for constructing a revision ontology O∗ of O by O′ requires to com-
pute in the worst case all tree-like models in MT(O, sub(O′)) and MT(O′, sub(O))
whose cardinality is bounded by a doubly exponential function in the size of O
and O′.

A first idea which can help to reduce the number of tree-like models to be
computed for building MT(O,O′) comes from an observation of Definition 8. For
each tree-like model T ′ ∈ MT(O′, sub(O)), if we get a “good” candidate T from
MT(O, sub(O′)) such that T � T ′ is small enough, we could avoid computing
all Tx ∈ MT(O, sub(O′)) such that Tx � T ′ ≥ T � T ′. Note that it is not
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needed to obtain the whole Tx for deciding whether Tx � T ′ ≥ T � T ′ since the
construction of Tx is monotonic. If we use T(T ′) ⊆ MT(O, sub(O′)) to denote
a set of such completion trees Tx for each T ′ ∈ MT(O′, sub(O)), it suffices to
compute just one Tx in T(T ′). Figure 2 depicts how MT(O, sub(O′)) is partitioned
into subsets T(T ′

i ) for each T ′
i ∈ MT(O′, sub(O)).

MT(O, sub(O′)) MT(O′, sub(O))

T(T ′
1)

T(T ′
2)

T(T ′
3)

•

•
•

• T ′
3

T ′
1

T ′
2

d(T ′
1)

d(T ′
2)

d(T ′
3)

Fig. 2. Optimizing the computation of MT(O, O′)

In addition, the computation of T(T ′) is independent from T(T ′′) with
T ′ �= T ′′. This allows us to parallelize the computation of all T(T ′) with
T ′ ∈ MT(O′, sub(O)).

A second optimization is related to the size of completion trees. It has turned
out that the size of each completion tree is bounded by a doubly exponential
function in the size of ontology. A method presented by Le Duc, Lamolle and
Curé [8] allows one to build a structure, namely a frame, which compresses
similar nodes of a completion tree instead of building whole completion tree. It
could be shown that the size of a frame is bounded by a (simply) exponential
function in the size of ontology. An advantage of this method is that almost all
optimization techniques designed for standard tableau algorithms remain usable.

7 Conclusion and Future Work

We have presented in this paper an approach for revising a SHIQ ontology. This
revision operation guarantees minimal change and the revised ontology remains
expressible in the logic of initial ontologies. An interesting feature of our app-
roach is to introduce finite structures, namely completion trees, for characterizing
a set of models of a SHIQ ontology. These structures are built by a tableau algo-
rithm with a new expansion rule, namely sat-rule. Although non-deterministic
behavior of this rule betrays good characteristics of standard tableau algorithms,
this disadvantage is justified by obtaining a revision operation that guarantees
all revision postulates (thus, the principle of minimal change), and a revision
ontology expressible in the logic of initial ontologies.

The main limitation of our approach in this paper is to omit individuals in
ontologies. However, our approach can be extended in a straightforward way in
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order to deal with individuals. This extension would be performed by extending
the distance given in Definition 7 to graphs. For this purpose, we plan to extend
our approach to the logic SHOIQ that includes individuals. In addition to
this limitation, we have not provided in this paper complexity result on the
SHIQ ontology revision problem. This would lead us to investigate complexity
of distance computation between completion trees.

Acknowledgements. This work was partially supported by FUI project “Learning
Café”.
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Abstract. Abstract interpretation is a powerful tool in program ver-
ification. Several commercial or industrial scale implementations of
abstract interpretation have demonstrated that this approach can verify
safety properties of real-world code. However, using abstract interpreta-
tion tools is not always simple. If no user-provided hints are available,
the abstract interpretation engine may lose precision during widening
and produce an overwhelming number of false alarms. However, manu-
ally providing these hints is time consuming and often frustrating when
re-running the analysis takes a lot of time.

We present an algorithm for program verification that combines
abstract interpretation, symbolic execution and crowdsourcing. If verifi-
cation fails, our procedure suggests likely invariants, or program patches,
that provide helpful information to the verification engineer and makes it
easier to find the correct specification. By complementing machine learn-
ing with well-designed games, we enable program analysis to incorporate
human insights that help improve their scalability and usability.

1 Introduction

Abstract interpretation [1] is a powerful technique for program verification. Tools
like Astrée [2] and Frama-C [11] have successfully demonstrated not only that
abstract interpretation is able to prove the absence of run-time errors in real-
world C programs, but also that it is commercially viable to do so.

To verify a given program P , abstract interpretation approximates the seman-
tics of P based on monotonic functions. The analysis symbolically executes P
keeping a set of possible states at each program point. If an error is not reachable
in this abstraction, we have a proof that this error is also not reachable in the
original program.

Unfortunately, even if these tools are fully automated, it does not mean that
using them is simple. Sometimes, in particular when analyzing looping control-
flow, abstract interpretation loses precision and the set representing the possible
states of the analyzed program becomes too imprecise. This can result in a large
number of false alarms, up to a point where the only option is to abort the analy-
sis. In these cases, to help the analysis regain precision, a verification engineer
c© Springer-Verlag Berlin Heidelberg 2015
M. Davis et al. (Eds.): LPAR-20 2015, LNCS 9450, pp. 591–605, 2015.
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has to step in and provide hints in the form of code annotations or custom para-
meterizations. In the case of large programs, writing these annotations can be a
painful experience. The process tends to be incremental because an annotation
that was used to drive the analysis forward may be insufficient a few statements
later. In other words, previous annotations which were considered sufficient may
have to be revised because they were either too weak or too strong to continue
the analysis at a later point in the program. This leads to a labor intensive
process that is also costly because, in order to provide useful annotations, the
analyst not only has to understand the analyzed code, but also the details of the
abstraction used by the verification engine.

In an effort to lower the cost of applying abstract interpretation, we have seen
a new trend of using machine learning to identify likely invariants. The idea is
to collect two sets of concrete program states that are either part of a successful
execution (good states) or failing executions (bad states), and use machine learn-
ing to find a classifier that separates those sets. Approaches such as Daikon [5],
ICE [8], and work by Sharma et al. [15–17], have successfully demonstrated that
machine learning can be used to learn likely invariants. Unlike widening, which
is commonly used in abstract interpretation to generalize program behavior,
machine learning can also provide generalization guarantees.

However, there are limitations to using machine learning for finding likely
invariants. First, collecting good states and bad states is expensive (if it were
easy to enumerate them, we would not need abstraction) and thus the machine
learner has to operate on a small data set. This increases the risk of over-fitting.
Second, learners have a tendency to produce large invariants that are not fit
for “human consumption.” And third, machine learners operate on a hypothesis
space which allows them to express certain kinds of knowledge and empowers
them with the ability to generalize. However, there can be mismatches in the
type of representation strength of a classifier and the domain of the program
under analysis.

We present an approach that combines abstract interpretation, machine
learning, and crowdsourcing to learn likely invariants. We have developed a sys-
tem called Chekofv that maintains three values at each program point:

1. a set of states, which represents our current estimate of the likely invariant
at that program point,

2. a set of good states, which are concrete states such that executions starting
from those states do not cause any assertion violations, and

3. a set of bad states, which are concrete states such that executions starting
from those states cause an assertion violation.

None of these sets is necessarily a strict over- or under-approximation of the
reachable set at that program point. We use abstract interpretation to initialize
the first set, but later update it with likely invariants learnt using machine learn-
ing or crowdsourcing. The set of good and bad states are collected using testing
and symbolic execution, and they form the inputs for the machine learning and
crowdsourced games. In particular, Chekofv complements machine learning pro-
cedures by using two games, Xylem [14] and Binary Fission1. These games enable
1 http://chekofv.net/.

http://chekofv.net/
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the non-expert crowd to solve the problem of finding likely invariants. The first
game, Xylem, resembles Daikon: for a given set of states, the player has to find
a predicate that describes all states. The second game, Binary Fission, gamifies
a decision tree learning procedure: the player is presented with a set of good
states and bad states, and she has to generate a classifier to separate these sets.

The intuition is that crowdsourcing has three major benefits over machine
learning: (1) invariants are not limited by a particular kernel function or hypoth-
esis space; instead, we can obtain a very diverse set of solutions from different
players; (2) humans tend to produce invariants that are readable (unlike the
machine, which can produce illegible predicates); (3) given our natural limita-
tions handling large amounts of data, we believe that humans are less likely to
produce a solution that overfits. The crowdsourced experiment has to run long
enough for a reasonable set of solutions to be available. However, compared to
the several man-months of effort of verifying a real system, this may still be
a cheap preprocessing step. Another potential problem is that human intuition
breaks at high dimensions, and the dimensionality of the data to be classified
depends on the number of variables in scope at a particular program point. This
is why, when designing a verification game, the choices of visualization and data
representation are important.

Our tool Chekofv shares several similarities with machine learning based
approaches such as [16]. We perform an abstract interpretation of a given C
program using the plug-in Value of Frama-C. Each time when we reach a program
location where Value loses precision (e.g., due to widening or unspecified inputs),
we use dynamic or symbolic execution to collect good and bad states. Unlike
previous approaches, we use these sets as input to the two games described
above. The games produce likely invariants which are then inserted as assertions
into the program. This process is iterated until we cannot find any bad state
that satisfies our current invariant and we cannot find a good state that violates
this invariant. Unlike [16] where the focus is on verification, we use the approach
to also generate preconditions and checks as suggestive program patches for the
developer.

In the following, we discuss our infrastructure, provide a motivating example
and an overview of our crowdsourcing game. Our main contribution is the pro-
gram analysis and patching procedure that combines abstraction interpretation
with machine learning and crowdsourcing via gamification. A secondary goal is
to increase the visibility of our games and get feedback from the community.
We hope to collect enough data this way to perform a statistically significant
study that compares the quality of crowdsourced invariants with the quality of
machine learned ones.

2 Related Work

The idea of learning likely invariants from program states goes back to Daikon [5].
Daikon learns likely invariants from a given set of (good) program states by
working with a fixed set of grammar patterns. Numerous approaches have used
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Daikon; for example, iDiscovery [18] uses symbolic execution to improve on
Daikon’s invariants. Similar to our approach, it inserts the learned invariants
back in the code under analysis and then uses symbolic execution to confirm or
break these candidate invariants. This process generates new states that can be
fed to Daikon and can be iterated until either an inductive invariant is found,
or symbolic execution fails to generate new states.

Sharma et al. [16] formulate the problem of extrapolation in static analy-
sis as a classification problem in machine learning. They also use good and bad
states and a greedy set cover algorithm to obtain loop invariants. In a follow up
work, a similar algorithm to detect likely invariants using randomized search is
described [15]. While our approach is similar in the sense that we learn invari-
ants from good and bad examples, our application is different. Rather than
finding accurate loop invariants, we are interested in finding human-readable
annotations using crowdsourcing that prevent abstract interpretation from los-
ing precision.

The architecture of our approach strongly resembles the decision tree learn-
ing based approach of DTInv [12]. In fact, the authors of that paper kindly
provided their implementation which we use to test our approach. The key dif-
ference between the two techniques is that we use gamification instead of machine
learning to find invariants.

Another popular approach for learning likely invariants is the ICE-learning
framework [8]. Similar to Daikon, ICE-based algorithms search for invariants by
iterating through a set of templates. Unlike Daikon, ICE does not discard likely
invariants that are inductive. Instead, it checks a set of implications to decide if
the counterexample is a new good or bad state.

Predicate abstraction [9] based on abstract interpretation has also been used
to learn universally-quantified loop invariants [7] and was implemented in ESC/-
Java [6]. This approach may require manual annotations to infer smart invari-
ants. It is a 100 % correct technique but at the price of precision. Counterexample
driven refinement has been used to automatically refine predicate abstractions
and reduce false errors [10]. Fixpoint-based approaches have also been stud-
ied [3]; however they do not explicitly generate bad states, unlike the work we
describe here.

An approach to gamify type checking has been presented by Dietl et al. [4].

3 Motivating Example

We explain how Chekofv works by dissecting the famous Heartbleed bug in
OpenSSL.2 The code snippet that caused the bug is sketched in Fig. 1. For
space reasons, we omit a few lines from the original code which are not relevant
to understanding the bug.

2 http://blog.cryptographyengineering.com/2014/04/attack-of-week-openssl-heart
bleed.html.

http://blog.cryptographyengineering.com/2014/04/attack-of-week-openssl-heartbleed.html
http://blog.cryptographyengineering.com/2014/04/attack-of-week-openssl-heartbleed.html
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1 int dtls1_process_heartbeat(SSL *s)

2 {

3 unsigned char *p = &s->s3->rrec.data[0], *pl;

4 unsigned short hbtype;

5 unsigned int payload; // message size

6 unsigned int padding = 16;

7
8 hbtype = *p++;

9 n2s(p, payload); // read message size from input

10 pl = p;

11
12 if (hbtype == TLS1_HB_REQUEST)

13 {

14 unsigned char *buffer , *bp;

15 buffer = OPENSSL_malloc (1 + 2 + payload +

padding);

16 bp = buffer;

17
18 *bp++ = TLS1_HB_RESPONSE;

19 s2n(payload , bp);

20
21 memcpy(bp, pl, payload);

Fig. 1. Heartbleed bug in OpenSSL. The problem in this snippet is that, when calling
memcpy in line 21, we cannot guarantee that pl is actually of size payload. That is,
by providing a wrong payload, an attacker is able to read a few bytes of arbitrary
memory.

The bug is a missing bounds check in the heartbeat extension inside the
transport layer security protocol implementation. A heartbeat essentially estab-
lishes whether another machine is still alive by sending a message containing
a string (called payload) and expecting to receive that exact same message in
response. The bug is that, although the message also contains the size of this
payload, the receiver does not check if this size is correct. Therefore, an attacker
can read arbitrary memory by sending a message that declares a payload size
that is greater than the actual message.

Figure 1 shows the part of the code that processes a heartbeat message. On
line 3, the pointer p is set to point to the beginning of the message. Then,
on line 8, the message type is read, and on line 9, the size of the payload is
read through the macro n2s which reads two bytes from p and put them into
payload. However, since the whole incoming message might be controlled by an
attacker, there is no guarantee that this payload really correspond to its actual
length and there is no check in the code. Indeed payload might be as much as
216 − 1 = 65535. Line 10 then puts the heartbeat data into pl.

In line 15, a buffer is allocated and its size is actually as much as 1 + 2 +
65535 + 16 = 65554. Then lines 18 and 19 fill the first bytes of the buffer with
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the type and the size of the response message. Finally, line 21 attempts to copy
the heartbeat data from the incoming message to the response through a call to
memcpy. Since the payload can be longer than the actual size of pl, close-by data
in the memory (included potential confidential user data) may be inadvertently
copied.

Frama-C can detect this bug. It adds an implicit assertion just before the
memcpy that enforces bp and pl to be at least of size payload. Since it cannot
prove this property, it warns about a potential bug. However, since this is not
the only warning emitted by Frama-C, chances are it will go unnoticed.

Let us now see how our approach can make it easier for a human ana-
lyst who is employing Frama-C to notice this bug. First, even if it does not
appear in Fig. 1, the length of &s->s3->rrec.data[0] is fixed and equal to
SSL3 RT HEADER LENGTH. Starting with the abstract state computed by value
analysis at line 10, the abstract state looks roughly as follows:

hbtype ∈ [0, 255] (a one-byte positive integer)

payload ∈ [0, 216 − 1] (a two-byte positive integer)
sizep = SSL3 RT HEADER LENGTH − 3

padding = 16

For readability, we use this abbreviated version of the abstract state com-
puted by Frama-C. The actual abstract state would contain a lot more informa-
tion about the input parameter s, about the value of p, pl, and about other
global variables. The important thing to note in this abstract state is that
payload can be an arbitrary two-byte unsigned integer, while the size of the
allocated memory for pointer p is fixed and equal to SSL3 RT HEADER LENGTH−3.

Since none of the variables in the abstract state depicted above is modified by
any statement until line 21, these variables will have the same intervals. Hence,
the implicit assertion that payload ≤ sizep which is required by memcpy does
not hold.

Now, we use symbolic execution to refine our abstract state just before line 10.
We pick this program point because it assigns a value from an unknown source
to a variable. Chekofv refines all states where we receive unknown inputs (user
input, files, network, etc.), or we lost information due to widening (e.g., after
loops).

First, we collect bad states that lead to assertion violations. To that end, we
construct a precondition that ensures that the symbolic execution may only pick
initial values that are in our current abstract state. The symbolic execution will
then search for concrete states from which the assertion can be violated. Next,
we need to collect good states from which the assertion is not violated. We can
either use the same symbolic execution approach that we used to collect bad
states or fall back on data from previously recorded test cases, if available.

Figure 2 shows the distribution of the collected data points for payload and
sizep. As discussed above, all good states (depicted by a plus sign) are states
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Fig. 2. Data points collected by our symbolic execution for payload and sizep. A plus
indicates a good state and a minus indicates a bad state.

where sizep is greater or equal to payload. All bad states (shown as a minus
sign) are states where payload is greater than sizep. Using these data points,
we can now employ our crowdsourcing games (or a machine learner) to find a
classifier (that is a likely invariant) that separates the good states from the bad
states. The ideal classifier would be payload ≤ sizep. However, let us assume
that our symbolic execution picked extreme values and we get an over-fitted
invariant 2 ∗ payload ≤ sizep.

We merge the invariant 2 ∗ payload ≤ sizep into the program at line 10
and re-run our Value analysis. The invariant refines the abstract state at line 10
such that payload is in the interval [0, sizep/2]. Hence, the assertion violation in
line 21 is now gone and we know that we cannot find new bad states that violate
this assertion. However, we still have to ensure that the inserted invariant did
not throw away too many good states. Thus, we start our symbolic execution
again, this time with the precondition that the invariant does not hold (i.e.,
2 ∗ payload > sizep and thus the abstract value of payload is [size p/2 +
1, 216 − 1]). This will reveal new good states that ensure that we cannot find the
same invariant again. This loop is repeated until we cannot find new good or bad
states. We mark likely invariants where this is the case as potential solutions.
However, we do not stop the crowdsourcing immediately because there might be
several invariants that have this property.

Eventually, Chekofv finds the invariant payload ≤ sizep for line 10 which is
sufficient to prove the assertion in line 21. Note that we cannot actually prove
that this is an invariant (in fact it is not an invariant because there is a bug). It
is a likely invariant that shall help the verification engineer when verifying the
program. In the remainder of this paper, we show the architecture of Chekofv
and how it finds likely invariants using crowdsourcing.

4 Overview of the Chekofv System

Our approach to learn likely invariants to assist abstract interpretation is imple-
mented as part of the Chekofv system outlined in Fig. 3. The system takes a
given terminating C program as input and returns either a proof of correctness
or a copy of the input program annotated with the learned invariants and a set
of assertions that could not be verified.

Our procedure for program analysis is as follows:
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C Program

Frama-C
Value Analysis

Crowdsourcing Good and Bad
Program States

Abstract
States

Symbolic and
Dynamic Execution

Annotations

Fig. 3. Overview of our Chekofv system. Chekofv takes a C program as input and per-
forms an abstract interpretation. If abstract interpretation fails to verify the program,
the computed abstract states are passed to a symbolic execution engine to sample con-
crete good and bad states. These sets are then passed to our crowdsourcing games to
compute likely invariants which are inserted back into the program. This loop termi-
nates if either the program is verified or the invariants cannot be improved further.

1. Initialize: At every program point, initialize the likely invariant to true, good
states to ∅ and bad states to ∅.

2. Update1: Update the likely invariant at each program point using abstract
interpretation. Terminate with success if all assertions are verified. If the
likely invariants are left unchanged, goto Terminate.

3. Update2: Find new good states that lie outside the current likely invariant,
and new bad states that lie inside the current likely invariant. If such states
are found, add them to the set of good and bad states at each program point.
Otherwise, goto Terminate.

4. Update3: Use the current set of good and bad states to learn an invariant,
using either machine learning or crowdsourcing, and use it to update the
likely invariant at each program point. If we fail to separate good and bad
states, then goto Terminate, else goto Update1.

5. Terminate: Terminate with the likely invariants as hints for the verification
engineer.

We now describe the different pieces of the procedure above as implemented
in Chekofv.

Abstract Interpreter. Chekofv uses the Frama-C plug-in Value to perform
abstract interpretation, which computes, at each program point, an abstract
state that over-approximates the set of all possible states the program may be
at that point. The abstract state is a mapping from every memory location to
the set of possible values that this location may have at the current program
point. If the value is an integer, possible values are represented using an interval
and a modulo as soon as the number of such values becomes too large (small sets
are represented in an exact way). If the value is a floating point, only an interval
is used. Pointers are represented using an interval per memory region where the
pointer may point. Frama-C emits a warning if it cannot prove that the execu-
tion of an (implicit) assertion always succeeds from the current abstract state.
If Frama-C does not emit any warning, we have a proof that the program is safe
and our analysis terminates.
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If we fail to prove that the given program is safe, the program either has a
genuine error, or some of our abstract states were too imprecise to prove the
program’s safety. To refine this result, we try to learn likely invariants for each
program point.

Fig. 4. Example of abstract states, concrete states, and likely invariants. Assuming
a program over two variable x and y, the possible values of these variables form a
two-dimensional space. The parallelogram describes a possible abstract state. Plus and
minus refer to known concrete good and bad states. A likely invariant is a plane that
cuts the parallelogram in two parts, one containing only good states, one containing
only bad states.

Good and Bad States. For a given program point in our input program, Frama-
C gives us the corresponding abstract state. This abstract state, as depicted in
Fig. 4, contains a subset of good states and bad states. Good states are program
states from which the program terminates normally. Bad states are (possibly
unreachable) program states which lead to an assertion violation. Further, the
abstract state may contain states that are not reachable but also do not violate
any assertion and states that are reachable but lead to non-termination (we do
not handle non-termination). Our goal is to learn an invariant for this program
point that excludes all bad states and preserves all good states.

Note that, if the program is actually unsafe, such an invariant cannot be
established because there exists a reachable bad state starting from this program
point. That is, these invariants (when violated) can help the verification engineer
to trace a safety property violation back to its origin.

Unfortunately, we cannot compute the set of good and bad states automati-
cally (otherwise we would not need abstract states), so we can only approximate
the invariant that we are looking for. To that end, we use symbolic execution
to sample good and bad states. As sampling the good and bad states is only an
under-approximation, the likely invariants that we learn may be too strong or
too weak. Hence, we may need several passes through the program until we find
a suitable likely invariant.

Sampling Bad States. To find a state which results in an assertion violation, we
employ a symbolic execution tool to check if an error state is reachable from
any state in the abstract domain of the current program point. That is, we turn
the current abstract state into a precondition (or an assume statement) for the
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symbolic execution. For each variable v with an abstract domain v ∈ [min,max],
we add a conjunct min ≤ v ≤ max to the precondition. If symbolic execution
finds a reachable error state under this precondition, we add it to the set of bad
states. If the program point we are analyzing is the program entry, or if we know
that our precondition only describes reachable states, we have found a genuine
error.

Sampling Good States. The easiest way to collect good states is to run the pro-
gram and monitor its state with a debugger. If no test cases are available, finding
good states is more challenging and we can instead employ symbolic execution
(similar to how we have described the generation of bad state above). However,
since we might have inserted a too strong invariant in a previous iteration of
a loop, symbolic execution may fail because the set of possible states to start
from is, for example, empty. To avoid this problem, we also check if there exists
a state outside the current abstract domain from which an execution terminates
normally. Here, we proceed in a similar way as for the bad states but we com-
pute a precondition for the complement of the current abstract state. This step
is important to prevent the machine learning from producing overly strong likely
invariants.

Once we have collected the sets of good and bad states, we can start look-
ing for a likely invariant. Finding this likely invariant can be seen as a binary
classification problem in machine learning. We are looking for an approximation
of a function that labels all good states as good and all bad states as bad. The
connection between invariant generation and classification has been explored in
many recent works [8,12,15–17]. Instead of using machine learning, we propose
a crowdsourcing solution to perform this classification.

Gamification of Machine Learning. The main contribution of this paper is the
use of crowdsourcing as an alternative to machine learning. The motivation is
to avoid two problems that are inevitable when using machine learning: over-
fitting, and limited expressiveness of the kernel function. Over-fitting is an inher-
ent problem to machine learning when operating on small data sets. If only a
small number of points is available, the machine learner may find a formula that
describes exactly this set, resulting in a large formula with no predictive power.
This is in particular relevant because we cannot collect arbitrary large sets of
good and bad states. Gamification reduces this risk because different players
may come up with different solutions, and humans are usually good at finding
the easiest solution.

The second issue that we are trying to tackle by gamifying machine learning
is the limitation of using a fixed kernel function in machine learning. Fixing a
kernel function (e.g., conjunctions of linear inequalities) is vital for a machine
learner to find a good solution, but it is not clear a priori which kernel function
to pick. By gamifying machine learning, we do not have to fix a kernel function
and can allow players to come up with arbitrary invariants.
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We have developed two games, Xylem and Binary Fission, that crowdsource
the machine learning aspect of Chekofv. Xylem is a gamification of Daikon while
Binary Fission is a gamification of decision tree learning. These games are dis-
cussed in detail in Sect. 5. Both games interface with Chekofv in the same way
as a machine learner would. They receive sets of good and bad states and return
likely invariants. We merge the learned (likely) invariants into the program and
start over with the first step of our analysis by recomputing the abstract states
with value analysis.

Termination. Chekofv terminates if either the system is verified, or one of fol-
lowing situation occurs:

– Failure to find new good and bad states: Symbolic execution can fail to find
new states. This may happen because the problem of finding good and bad
states is undecidable in general and very expensive in practice. In this case,
we terminate with the last learned invariants as a hint for the verification
engineer.

– Failure to classify good and bad states: For crowdsourcing this may happen
because the games do not have enough players, or the needed invariant is not
expressible with the tools offered by the game. The latter case is equivalent to
the case where a machine learner fails due to the choice of the kernel functions.
Assuming that the language of the game or the kernel function of the machine
learner are strictly more expressive than the abstract domain of Frama-C, we
can terminate reporting the last learned invariants.

– Failure to improve abstract domain with the learned invariants: This may
happen because the language of the likely invariants is more expressive than
what can be expressed in the abstract domain. In this case, we know that
there are bad states that cannot be excluded in the current abstract domain
and we can report a warning that the current abstract domain is not sufficient
to verify the program.

5 Crowdsourcing Games

To crowdsource the problem of finding likely invariants, we have developed
two games, Xylem [14] and Binary Fission. Both games are available online
at chekofv.net.

Xylem. The goal of Xylem is to generate new predicates that can be used for
invariant construction. Players are presented with a sequence of (good or bad)
program states and are asked to find a non-linear inequality that is satisfied
by these states. In that sense, Xylem can be seen as a crowdsourced version
of Daikon. To cap the cognitive load on players, Xylem splits the predicate
construction problem into several game levels, with each level being composed
of a limited number of states and a subset of variables. To ensure that we obtain
a diverse set of solutions, Xylem gives different subsets of states and variables
to different players.

http://chekofv.net/


602 D. Fava et al.

Fig. 5. Screenshot from Xylem

Figure 5 shows a scene of the game.
Players takes on the role of a botanist
exploring new forms of plant life on a
mysterious island. Program states are
presented as growth phases of a plant in
the top half of the screen. Each variable
in the state is presented as a blossom
of distinct color. The number of petals
per blossom represents a variable value
in the current state. At each level, play-
ers are presented between four and ten
states and are asked to create a predi-
cate that holds on all of the states. The
bottom half of the screen contains a toolbox that is used to assemble the pred-
icate; the toolbox contains variables (i.e., blossoms), numbers, operators, and
helper functions such as array length. This toolbox was a challenging part of
the game design and remains an open area of research. The major difficulty is in
striking a balance between user interface simplicity at the same time as providing
sufficiently expressive constructs with which players can generate predicates. As
players assemble predicates from the elements in the toolbox, the growth phases
that satisfy the current predicate turn green while others turn red. Players can
submit a predicate once all growth phases are green. That is, the game guaran-
tees that the resulting predicate is a valid invariant for the given subset of states
and variables (note that the predicate does not have to be an invariant on the
data as a whole).

Binary Fission. In Binary Fission, players construct likely invariants from a
fixed set of predicates. To that end, players are presented with good and bad
states represented by blue and brown dots as shown in Fig. 6. The objective
is to separate the two sets by building a decision tree. All states are initially
mixed together in a single root node. The player can then choose a predicate
from the given set and apply it to the root. Applying a predicate to a node
generates two child nodes, one containing all states that satisfy the applied
predicate and another containing all states that falsify it. The player grows this
decision tree until each leaf becomes pure (i.e., contains only good or only bad
states), or until a depth limit is reached. Loosely speaking, Binary Fission is the
gamification version of DTInv, a decision tree based invariant learner [12]. Once
a tree is built, we can trace down from the root to a pure good node (a node
composed of good states only) taking the conjunction of predicates along the
way. A conjunction of predicates from the root of the tree to a leaf containing
only good states is a likely invariant for our program. Note that there may be
several leaf nodes containing only good states. We combine them into one likely
invariant by forming a disjunction.
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Fig. 6. Screenshot from Binary Fission

The set of predicates available to
player can be obtained from different
sources. Ideally, they are generated by
Xylem as discussed previously. Cur-
rently we seed this set using Daikon.

If the available predicates are not
sufficient to separate the good from the
bad states within a given tree-depth,
some leaf nodes will contain both good
and bad states. These states are then
taken aside and re-entered as input into
Xylem and/or Daikon. Since these sets
are smaller than the initial set, Xylem
and Daikon are allowed to search for
more complex likely invariants (which
would otherwise be computationally expensive and lead to many useless
candidates).

Implementation Notes. The Chekofv system provides both games with sets of
states and collects the predicates and candidate invariants provided by the play-
ers. Chekofv uses Frama-C for abstract interpretation and extends it by several
plugins to extract the abstract state at particular program points, and to insert
likely invariants. This implements the steps Initialize and Update1 from our
abstract algorithm in Sect. 4. Note that Chekofv only samples states at entry
points of procedures and before procedure calls that precede Frama-C warnings.
As shown in Sect. 3 this is sufficient to find real bugs.

For practical reasons, we use the bounded model checker CBMC [13] instead
of symbolic execution to implement step Update2 from Sect. 4. We perform
minor program transformations (e.g., insert assumptions and non-determinism)
to make the result resemble a symbolic execution. The collected good and bad
states are stored in a database and serve as input to both games.

For testing, we also seed or database the sets of good and bad states from the
experiments in [12,18] to our database. The sets of good and bad states differ
greatly between the benchmarks. For example, the TCAS benchmark in [18]
comes with hundreds of states collected from dynamic execution, while other
benchmarks come with less than a dozen states obtained by symbolic execution.

Step Update3 from Sect. 4 is realized by the two games; each game has its
own web server that pulls program states from the database and presents them
to the game client. Predicates produced by the players are sent back to the
server and stored in a database. Likely invariants generated from game play are
post-processed and then used by Frama-C, thus closing the loop in Fig. 3.

6 Conclusion

We have presented an approach that uses crowdsourcing to learn likely invari-
ants that assist abstract interpretation. Our approach extends previous machine
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learning based techniques by reformulating the machine learning problem of
finding a classifier that separates two sets as puzzle games.

Crowdsourcing the invariant learning has several potential benefits over
machine learning: finding good and bad states is expensive and often only possi-
ble to a limited extend. Hence, these sets are small which often causes machine
learning to over-fit and find correlations that may be true on the observed data,
but irrelevant (or even wrong) in the program. Crowdsourcing can avoid this
problem. First, given our natural limitations handling large amounts of data, we
believe that humans prefer shorter solutions that are less likely to overfit. Sec-
ond, crowdsourcing returns a diverse set of different likely invariants from which
we can choose. Beyond that, crowdsourcing is not limited by a set of templates
or kernel functions when constructing likely invariants. That is, unlike machine
learning, we do not have to limit the search space for likely invariants a priori.
This may lead to a more diverse set of invariants and allow us to discover invari-
ants and requires less interaction through the verification engineer, like trying
different kernel functions.

The games are now open to the public. We hope that the interested reader
will enjoy playing them and help us to collect valuable data along the way.

Acknowledgement. This work was supported in part by the National Science Foun-
dation under grant contracts CCF 1423296 and CNS 1423298, and DARPA under
agreement number FA8750-12-C-0225.

We gratefully acknowledge the contributions of our collaborators at UCSC
especially Kate Compton, Heather Logas, Joseph Osborn, Zhongpeng Lin, Dylan
Lederle-Ensign, Joe Mazeika, Afshin Mobrabraein, Chandranil Chakrabortii,
Johnathan Pagnutti, Kelsey Coffman, Richard Vallejos, Lauren Scott, John Thomas
Murray, Orlando Salvatore, Huascar Sanchez, Michael Shavlovsky, Daniel Cetina,
Shayne Clementi, Chris Lewis, Dan Shapiro, Michael Mateas, E. James Whitehead
Jr., at SRI John Murray, Min Yin, Natarajan Shankar, Sam Owre, and at CEA Flo-
rent Kirchner, Boris Yakobowski.

References

1. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL
(1977)

2. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival,
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Abstract. The paper presents SimAbs, the first fully automated SMT-
based approach to synthesize an abstraction of one program (called tar-
get) that simulates another program (called source). SimAbs iteratively
traverses the search space of existential abstractions of the target and
choses the strongest abstraction among them that simulates the source.
Deciding whether a given relation is a simulation relation is reduced to
solving validity of ∀∃-formulas iteratively. We present a novel algorithm
for dealing with such formulas using an incremental SMT solver. In addi-
tion to deciding validity, our algorithm extracts witnessing Skolem rela-
tions which further drive simulation synthesis in SimAbs. Our evaluation
confirms that SimAbs is able to efficiently discover both, simulations and
abstractions, for C programs from the Software Verification Competition.

1 Introduction

Simulation is one of the oldest logical concepts behind program analysis. Intro-
duced by Milner in his seminal paper [15], a simulation relation is used to rep-
resent a condition under which the complete set of behaviors of one program
(called source and denoted by S) is included into the set of behaviors of another
program (called target and denoted by T ). The programs can, however, be sub-
stantially different, thus making the task of finding an appropriate simulation
relation difficult.

A lesson learnt from Milner suggests to abstract some irrelevant details from
the target program and thus to improve the chances of the simulation relation to
be found. In this paper, we propose a solution to the problem known for the past
half century, and in particular: (1) the challenge of constructing automatically
a total simulation relation between two programs, and (2) whenever the target
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Fig. 1. (a) SimAbs and (b) its search space.

T does not simulate the source S, the challenge of finding an abstraction of the
target T that simulates the source S.

We present SimAbs, a novel iterative abstraction-refinement algorithm to
find an abstraction of the target T that simulates the source S. The flow of the
algorithm is illustrated in Fig. 1(a). Initially, in the step, SimAbs
guesses a relation ρ between S and T . Then, in the step, SimAbs checks
whether T simulates S via ρ. If the check fails, SimAbs iteratively performs
the step to find an abstraction αT of T and a simulation relation ρα

between S and αT . Finally, in the step, SimAbs refines both αT and ρα.
The algorithm terminates when either no refinement or no abstraction is possible.
The search space of the algorithm is shown in Fig. 1(b): SimAbs explores the
space of abstractions of T , starting with the most general abstraction αT that
simulates S via ρα, and iteratively refines it to α(n)T that simulates S via ρα(n) .

In contrast to existing algorithms for checking whether T simulates S via a
relation ρ (e.g., [11,15,18]), we reduce the problem to deciding validity of ∀∃-
formulas. Intuitively, the formulas say “for each behavior of S there exists a
corresponding behavior of T”. We present a novel decision procedure, AE-VAL,
for deciding validity of ∀∃-formulas over Linear Real Arithmetic. Our procedure
is similar to [16,19]. However, in addition to deciding validity, it extracts a
Skolem relation to witness the existentially-quantified variables of the formula.
This Skolem relation (represented by Sk in Fig. 1) is the key to the and
the steps of SimAbs.

We implemented SimAbs and AE-VAL on the top of the UFO framework
[1,12] and the SMT solver Z3 [4], respectively. We evaluated SimAbs by discover-
ing total simulation relations between programs and their LLVM optimizations.
Our results show that SimAbs is able to efficiently synthesize abstractions and
simulations between original and optimal programs in both directions. The appli-
cation of SimAbs, however, is not limited to optimizations. It is able to deal with
any program transformations preserving the program loop structures. In addi-
tion to checking optimizations, we also applied it to mutation testing.
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int a = *;
int b = *;
while(*){

a = a + b;
}

(a) The source

int a = *;
int b = *;
while(*){

int c = a - b;
a = c;

}

(b) The target

int a = *;
while(*){

int b = *;
int c = a - b;
a = c;

}

(c) Abstraction of the target

Fig. 2. Three programs in C.

In the rest of the paper we elaborate on the following key points that indicate
our main contributions:

– A formulation of the simulation-relation-discovery problem as deciding valid-
ity of ∀∃-formulas and extracting Skolem relations (presented in Sect. 3).

– The first, to the best of our knowledge, SMT-based decision procedure AE-
VAL for ∀∃-formulas that extracts Skolem relations (presented in Sect. 4).

– The algorithm SimAbs, driven by AE-VAL, to automatically synthesize
abstractions and simulations between S and T (presented in Sect. 5)

– A prototype implementation of SimAbs which deals with LLVM-preprocessed
programs and several LLVM optimizations (presented in Sect. 6).

2 Background and Notation

Our approach inductively iterates over individual loop-free program fragments.
Without loss of generality, in Sects. 2 and 3, we describe simulation relations for
loop-free programs, but in Sect. 5, we extend this to the case of programs sharing
the same loop structure. Throughout the paper (but except Sect. 4), we use the
same three example programs shown in Fig. 2. For demonstration purposes, we
focus on their loop bodies in an arbitrary iteration.

We use vector notation to denote sets of real and boolean variables (and
set-theoretic operations of subset �u ⊆ �x, complement �x�u = �x \ �u, union �x =
�u ∪ �x�u). For the first-order formulas ϕ(�x) ∈ Expr in the paper, we assume
that all free variables �x are implicitly universally quantified. For simplicity, we
omit the arguments and simply write ϕ when the arguments are clear from the
context. Furthermore, for a model m of ϕ ∈ Expr we write m |= ϕ, and for an
implication between ϕ,ψ ∈ Expr we write ϕ =⇒ ψ.

Definition 1. A program P is a tuple 〈Var , Init ,Tr〉, where Var ≡ V ∪ L ∪ V ′

is a set of input, local and output variables; Init ∈ Expr encodes the initial states
over V; and Tr ∈ Expr encodes the transition relation over Var .

A state �s ∈ S is a valuation to all variables in V . While Tr encodes an
entire computation between initial and final states, the values of variables in L
explicitly capture all intermediate states along the computation. If for states �s, �s′
there exists a valuation �l to the local variables in L, such that (�s ∪�l ∪ �s′) |= Tr ,
we call the pair (�s, �s′) computable. V ′ is used to denote the values of variables in
V at the end of the computation. We write �s′ for �s(x′) and S ′ for {�s′ | �s ∈ S}.
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Definition 2. Given a program P = 〈Var , Init ,Tr〉, a transition system T (P ) =
〈S, I,R〉, where I = {�s ∈ S | �s |= Init} is the set of initial states, R = {(�s, �s′) |
�s∈S, �s′ ∈S ′ . (�s, �s′) is computable} is a transition relation.

Throughout, we use programs and their transition systems interchangeably.

Definition 3. Program P1 = 〈V1 ∪ L1 ∪ V ′, Init1,Tr1〉 is an abstraction of
program P2 = 〈V2 ∪ L2 ∪ V ′

2 , Init2,Tr2〉 iff (1) V1 ⊆ V2, (2) Init2 =⇒ Init1,
(3) each (�s, �s′) that is computable in Tr2, is also computable in Tr1.

Consider an example in Fig. 2(b)–(c). The loop bodies of the concrete and
abstract programs differ in the sets of input variables: for the abstract one V1 =
{a, b}, for the concrete one: V2 = {a}; and the sets of local variables: L1 = {c},
L2 = {b, c}, respectively. The difference in the initial states and the transition
relations of both programs can be seen in Examples 1, 2.

Definition 4. Given transition systemsS andT , a left-total relation ρ ⊆ SS × ST

is a simulation relation if (1) every state in IS is related by ρ to some state in
IT , and (2) for all states �s, �s′ and �t, such that (�s,�t) ∈ ρ and (�s, �s′) ∈ RS there
is some state �t′, such that (�t, �t′) ∈ RT and (�s′, �t′) ∈ ρ.

We write S �ρ T to denote that the source S is simulated by the target T
via a simulation relation ρ. We write S � T to indicate existence of a simu-
lation between S and T . The identity relation id , i.e., pairwise-equivalence of
values of common variables, is an example of ρ. Each program S is simulated
by a universal abstraction U of any other program T (which is in fact the only
common abstraction to all possible programs). Since such cases do not provide
any practical significance, in our approach they are algorithmically disqualified.

Note that the programs in scope of the paper are not required to have an
error location. Thus, the approach proposed in the following sections is not
limited to dealing only with safe programs.

3 From Simulation to Validity

In this section we show that deciding whether a given relation ρ is a simula-
tion relation is reducible to deciding validity of ∀∃-formulas. We then show how
Skolem functions witnessing the existential quantifiers are used to refine ρ.

3.1 Deciding Simulation Symbolically

Let S(�s, �x, �s′), T (�t, �y, �t′)∈Expr encode transition relations of programs, where �s

and �t, �s′ and �t′, �x and �y are input, output, and local variables, respectively. Let
InitS(�s), InitT (�t)∈Expr encode the initial states in S and T , respectively. Let
ρ(�s,�t)∈Expr encode a left-total relation between variables in S and T .
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Lemma 1. T simulates S via relation ρ iff

InitS(�s) =⇒ ∃�t . ρ(�s,�t) ∧ InitT (�t) (1)

ρ(�s,�t) ∧ ∃�x . S(�s, �x, �s′) =⇒ ∃�t′, �y . T (�t, �y, �t′) ∧ ρ(�s′, �t′) (2)

Implication (1) reflects the matching of initial states in S and T via ρ. The
left-hand-side of implication (2) reflects the set of all behaviors in S and the set
of all input conditions matched via ρ. The right-hand-side of (2) reflects the
existence of a behavior in T and an output condition matched via ρ.

Example 1. Consider two programs in Fig. 2(a) and (b). Assume that constants
X, Y are assigned to the input variables as in (3), so the computation starts at
the identical states. The fragments of the transition relation corresponding to
the single loop body are encoded into (4):

InitS ≡ (aS = X) ∧ (bS = Y ) InitT ≡ (aT = X) ∧ (bT = Y ) (3)

S ≡ (a′
S = aS + bS) T ≡ (cT = aT − bT ) ∧ (a′

T = cT ) (4)

where the subscript indicates in which program the variables are defined.
Let ρ be a relation between variables in S and T :

ρ ≡ (aS = aT ) ∧ (bS = bT ) ρ′ ≡ (a′
S = a′

T ) ∧ (bS = bT ) (5)

ρ is a simulation relation iff the two formulas are valid:

InitS =⇒ ∃aT , bT . InitT ∧ ρ ρ ∧ S =⇒ ∃cT , a′
T . T ∧ ρ′ (6)

Note that since T is deterministic, the existential quantifiers in (6) are eliminated
trivially by substitution. In our example, the left implication of (6) is valid, but
the second implication of (6) simplifies to 0 = 1. Hence, S �ρ T . �

3.2 Abstract Simulation

If the complete simulation relation between S and T is not found, we can proceed
with checking whether S is simulated by an abstraction αT of T via relation
ρα. As a key result, we show that such abstract-simulation checking can be
done without constructing an abstraction explicitly. We focus on an existential
abstraction α∃

�uT of T that abstracts away a subset of variables �u ⊆ �t of T [2].

Definition 5. Init∃
�u

T ≡ ∃�u . InitT (�t), and α∃
�uT ≡ ∃�u, �u′ . T (�t, �y, �t′).

Deciding whether α∃
�uT simulates S via ρα(�s,�t�u) (where �t�u is the complement

of �u in �t) can be done if the variables �u are treated as locals in T .

Lemma 2. α∃
�uT simulates S via relation ρα iff

InitS(�s) =⇒ ∃�t�u, �u . ρα(�s,�t�u) ∧ InitT (�t) (7)

ρα(�s,�t�u) ∧ ∃�x . S(�s, �x, �s′) =⇒ ∃�u, �y, �t′�u′ , �u′ . T (�t, �y, �t′) ∧ ρα(�s′, �t′�u′) (8)
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Recall that in Example 1, the loop body T was shown to not simulate the
loop body S via identity relation. Interestingly, this result is still useful to obtain
a simulation relation between S and T by creating an implicit abstraction of T
and further refining it. We demonstrate this 2-steps procedure in Example 2.

Example 2. As the first (abstraction) step, we create an abstraction of T by
choosing a variable (say b) to be existentially quantified. Note that the produced
abstraction is equivalent to the program in Fig. 2(c). Instead of encoding ini-
tial states InitαT and a transition relation of αT from scratch (similarly to (3)
and (4)), we let InitαT ≡ ∃bT . InitT and αT ≡ ∃bT . T . Relation (5) (disproven
to be a simulation between S and T ) is weakened in correspondence with αT :

ρα ≡ (aS = aT ) ρ′
α ≡ (a′

S = a′
T ) (9)

ρα is a simulation relation between S and αT iff the following formulas are valid:

InitS =⇒ ∃aT , bT . InitT ∧ ρα ρα ∧ S =⇒ ∃cT , a′
T , bT . T ∧ ρ′

α (10)

Clearly, (10) are valid iff there is a Skolem function for the existentially quantified
variable bT . Note that sk bT

(bS) = −bS is such function, and (11) are valid.

InitS =⇒ (bT = −bS) =⇒ ∃aT . InitT ∧ ρα

ρα ∧ S =⇒ (bT = −bS) =⇒ ∃cT , a′
T . T ∧ ρ′

α

(11)

As the second (refinement) step, sk bT
is used to strengthen the simulation rela-

tion (9) between S and αT to become (12).

ρextα ≡ (aS = aT ) ∧ (bS = −bT ) ρ′ext
α ≡ (a′

S = a′
T ) ∧ (bS = −bT ) (12)

Note that ρextα is a simulation relation between S and T . �

3.3 Refining Simulation by Skolem Relations

Definition 6. Given a formula ∃y . f(x, y), a relation Sky(x, y) is a Skolem rela-
tion for y iff (1) Sky(x, y) =⇒ f(x, y), (2) ∃y .Sky(x, y) ⇐⇒ ∃y . f(x, y).

In Definition 6, we allow Sky to be a relation between x and y such that
(1) Sky maps each x to a value of y that makes f true, (2.1) if for a given x,
Sky maps x to some value of y then there is a value of y that makes f valid
for this value of x, (2.2) if for a given x, there is a value of y such that f
holds, then Sky is not empty. A Skolem relation Sky is functional iff it is of
the form Sky(x, y) ≡ y = fy(x) (also known as Skolem function, as in [20]).
Sk�y is Cartesian iff it is a Cartesian product of Skolem relations of individual
variables from �y. Sk�y is guarded iff it is a guarded disjunction of Cartesian Skolem
relations.

In other words, validity of a ∀∃-formula is equivalent to existence of an appro-
priate total Skolem relation. As sketched in Example 2, our use of a Skolem rela-
tion Sk witnessing the validity of the formulas (7, 8) is to refine an abstract
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S(�x)

m2

m3

m1

T1(�x)

T2(�x)

T3(�x)

∃�y.T (�x, �y)

Fig. 3. (a) S and T for �x ≡ {a, b},
�y ≡ {a′, b′}, models of S ∧T and (b)
the correspondent Venn diagram.

simulation relation ρα to ρextα = ρα ∧ Sk . However, ρextα is guaranteed to be a
simulation relation only in case if the corresponding formulas (7, 8) are valid,
thus requiring an extra simulation-check.

In Sect. 5, we continue building the iterative algorithm for discovering sim-
ulation relations based on the abstraction-refinement reasoning, described here.
However, in the next section, we restrict our attention on the main solving rou-
tine that makes the simulation discovery possible.

4 Validity and Skolem Extraction

We present AE-VAL, a novel algorithm for deciding validity of ∀∃-formulas
and constructing witnessing Skolem relations. Without loss of generality, we
restrict the input formula to have the form S(�x) =⇒ ∃�y . T (�x, �y), where S has
no universal quantifiers, and T is quantifier-free.

4.1 Deciding Validity of ∀∃-formulas

Our algorithm is based on a notion of Model-Based Projection (MBP), intro-
duced in [12], that under-approximates existential quantification. An MBP�y is
a function from models of T (�x, �y) to �y-free formulas iff:

if m |= T (�x, �y) then m |= MBP�y(m,T ) (13)
MBP�y(m,T ) =⇒ ∃�y . T (�x, �y) (14)
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There are finitely many MBPs for fixed �y and T and different models m1, . . . , mn

(for some n): T1(�x), . . . , Tn(�x), such that ∃�y . T (�x, �y) =
∨n

i=1 Ti(�x). In our imple-
mentation, we are using an MBP-algorithm from [12] for Linear Rational Arith-
metic (LRA) based on Loos-Weispfenning [14] quantifier elimination.

Additionally, we assume that for each projection Ti, the MBP-algorithm gives
a condition φi under which T is equisatisfiable with Ti:

φi(�x, �y) =⇒ (
Ti(�x) ⇐⇒ T (�x, �y)

)
(15)

Such a relation φi is a natural by-product of the MBP-algorithm in [12]. Intu-
itively, each φi captures the substitutions made in T to produce Ti. We assume
that each φi is in the Cartesian form, i.e., a conjunction of terms, in which each
y ∈ �y appears at most once. That is, for y ∈ �y and ∼∈ {<,≤,=,≥, >},

φi(�x, �y) =
∧

y∈�y

(
y ∼ fy(�x)

)
(16)

We write (Ti, φi) ← GetMBP(�y,mi, T (�x, �y)) for the invocation of the MBP-
algorithm that takes a formula T , a model mi of T and a vector of variables �y,
and returns a projection Ti of T based on mi and the corresponding relation φi.

AE-VAL is shown in Algorithm 1. Given formulas S(�x) and ∃�y . T (�x, �y),
it decides validity of S(�x) =⇒ ∃�y.T (�x, �y). AE-VAL enumerates the models of
S ∧ T and blocks them from S. In each iteration i, it first checks whether S is
non-empty (line 3) and then looks for a model mi of S ∧ T (line 11). If mi is
found, AE-VAL gets a projection Ti of T based on mi (line 12) and blocks all
models contained in Ti from S (line 14). The algorithm iterates until either it
finds a model of S that can not be extended to a model of T (line 9), or all
models of S are blocked (line 5). In the first case, the input formula is invalid. In
the second case, every model of S has been extended to some model of T , and
the formula is valid.

Three possible iterations of AE-VAL are depicted graphically in Fig. 3. In the
first iteration, AE-VAL selects a model m1 and generalizes it to a projection
MBP�y(m1, T ) = T1. Then, it picks a model m2 that is not contained in T1

and generalizes it to MBP�y(m2, T ) = T2. Finally, it picks a model m3 that is
contained neither in T1 nor in T2, and generalizes it to MBP�y(m3, T ) = T3. At
this point, all models of S are covered by �y-free implicants of ∃�y . T (�x, �y), and
the algorithm terminates. We demonstrate this further in the following example.

Example 3. Let S and T be as defined in Fig. 3. We use Φi to denote the formula
in the SMT context at the beginning of iteration i of AE-VAL. Initially, Φ1 = S.
The first model is m1 , and GetMBP(�y,m1, T ) returns:

T1 ≡ (b �= 1) ∧ (b �= 2) φ1 ≡ (a′ > a) ∧ (b′ < b)

In the iteration 2, Φ2=Φ1∧¬T1, GetMBP(�y,m2, T ) returns:

T2 ≡ (b �= 1) ∧ (b �= 3) φ2 ≡ (a′ > a) ∧ (b′ > b)
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In the iteration 3, Φ3=Φ2∧¬T2, GetMBP(�y,m3, T ) returns:

T3 ≡ (b �= 2) ∧ (b �= 3) φ3 ≡ (a′ > a) ∧ (b′ = b)

In the iteration 4, Φ4 = Φ3 ∧¬T3 is unsatisfiable, and consequently AE-VAL
returns valid and terminates. �

4.2 Extracting Skolem Relation

AE-VAL is designed to construct a Skolem relation Sk�y(�x, �y), that maps each
model of S(�x) to a corresponding model of T (�x, �y). We use a set of projections
{Ti(�x)} for T (�x, �y) and a set of conditions {φi(�x, �y)} that make the corresponding
projections equisatisfiable with T (�x, �y).

Lemma 3. For each i, the relation φi(�x, �y) is a Skolem relation for �y in formula
S(�x) ∧ Ti(�x) =⇒ ∃�y . T (�x, �y).

Intuitively, φi maps each model of S ∧Ti to a model of T . However, {Ti} are
not disjoint (e.g., see Fig. 3), and each conjunction S ∧Ti could be simplified and
minimized. Thus, to define the Skolem relation Sk , we need to find a partitioning
{Ii}n

i=1 of S, such that each partition Ii must be associated with an appropriate
φi. The constraints on the partitions Ii are as follows. First, a partition Ii must
cover all models of Ti that are not already covered by I1 . . . Ii−1. Second, it should
not include any models that are not contained in Ti. Writing these requirements
formally, we get the system of constraints (17).

Note that in (17), S and {Ti} are the first-order formulas, and {Ii} are
the uninterpreted predicates. The set of constrains corresponds to a system of
second-order recursion-free Horn clauses. Thus, we can find an interpretation of
the predicates {Ii} using a Horn-clause solver. In our implementation, we use
the solver of Z3, but other solutions, for example, based on interpolation, are
also possible. The guarded Skolem relation Sk�y(�x, �y) is defined in (18).
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The following theorem states that Sk�y(�x, �y) satisfies Definition 6 for the cho-
sen model of �x, and Sk�y(�x, �y) is defined for all models of �x. It follows immediately
from the constraints of (17) and Lemma 3 that in turn follows from (14, 15, 16).

Theorem 1. (Soundness and Completeness). If the set {Ii(�x)} is a solution
to (17), and Sk�y(�x, �y) is as in (18) then: (1) Sk�y(�x, �y) is a Skolem relation for
�y in formula S(�x) =⇒ ∃�y . T (�x, �y), (2) S(�x) =⇒ ∨n

i Ii(�x).

Example 4. A partitioning I1, I2, I3 that determines a Skolem relation for
Example 3 is: I1 ≡ (b �= 1) ∧ (b �= 2), I2 ≡ b ≥ 2, and I3 ≡ b = 1. �

Any solution to (17) creates a Skolem relation. But not all Skolem relations
are equal. In practice, we often like a Skolem relation that minimizes the number
of variables on which each partition depends. For example, in Example 4, we have
chosen a partition that only depends on the variable b alone. A simple way to
find a minimal solution is to iteratively restrict the number of variables in each
partition in (17) until no smaller solution can be found. We leave the problem
of finding the minimum partitioning for future work.

5 Simulation-Abstraction-Refinement Loop

This section generalizes the approach of the symbolic simulation discovery to
programs with non-trivial Control Flow Graphs. Assuming that programs S and
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T are loop-free, αT is an abstraction of T and ρα encodes a relation between
S and αT (as in Sect. 3), the check S �ρα

αT is done by constructing two ∀∃-
formulas of the form (7) and (8), and by applying the AE-VAL algorithm to
decide validity (as in Sect. 4.1). Furthermore, ρα and αT might be refined by
means of a Skolem relation (whose extraction is shown in Sect. 4.2).

In contrast to the programs with simplified structure considered in Sect. 3,
realistic programs involve communication of two or more components with
independent transition relations. Simulation relations should be discovered inde-
pendently for each pair of the matched components and then inductively checked
for the compatibility with the pairs of the remaining components. We pro-
pose an algorithm SimAbs that implements a complete Simulation-Abstraction-
Refinement Loop and enables such inductive reasoning.

We use the Cut Point Graph (CPG) representation of a program and treat
each program as a graph 〈CP , E〉. Here CP is the set of locations which represent
heads of the loops (called cutpoints), and E ⊆ CP × CP is the set of longest
loop-free program fragments. For example, CPGs of programs in Fig. 2(a)–(b)
are shown in Fig. 4(a)–(b) respectively. We assume that the considered programs
S and T share the graph 〈CP , E〉, but might have different labeling of the edges
by first-order formulas τS , τT : E → Expr encoding the transition relations of S
and T respectively: τS �= τT .

SimAbs (outlined in Algorithm 2) gets as input programs S and T , and
delivers an abstraction αT . If αT �= U and αT satisfies some quality metric Q
(e.g., if it preserves some safety property of T ), SimAbs also returns a simulation
relation ρextα , such that S �ρext

α
αT . SimAbs uses Abstract (which in turn uses

Synthesize) to guess an initial relation ρ. The initial guess can be an arbitrary
total relation between the CPGs of S and T . In our implementation (line 2 of
Abstract), for every cutpoint v, we take ρ(v) to be a conjunction of equalities
between the live variables of S and T at v that have identical names.

Abstract (outlined in Algorithm 3) iteratively checks for each edge (u, v)∈
E (line 3), whether the labeling of (u, v) in T , τT (u, v), simulates the labeling
of (u, v) in S, τS(u, v), via the guessed relation ρ. If the check succeeds for all
edges, ρ is returned to the main loop of SimAbs to be further refined. Other-
wise, Abstract chooses an abstraction αT of T using the method Weaken
(line 4), and repeats the check for S and αT (line 6). Weaken introduces non-
determinism to τT , and in our implementation (shown in Algorithm 6), it exis-
tentially abstracts away a subset of input variables of the edge (u, v) for which
the simulation check has failed. Note that in the next iteration of Abstract,
ρ will be weakened correspondingly, since Synthesize in that iteration is given
S and αT .

Refine (outlined in Algorithm 4) constructs a refinement ρextα of simula-
tion relation ρα, and the corresponding strengthening αextT of abstraction αT .
Refine maintains a work-list WL of the CPG-edges to be processed. Initially,
WL is populated with E (line 1). In each iteration, while processing the edge
(u, v), Refine adds a Skolem relation Sk to ρα(u) (line 6). Sk is produced for
the existentially abstracted input variables in (u, v) and furthermore is used to
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a:=a+bb:= ∗a:= ∗
en CP0

(a)

c:=a-b
a:=c

b:= ∗a:= ∗
en CP0

(b)

Fig. 4. CPGs of programs in Fig. 2(a)–(b).

strengthen αextT (line 7). Finally, Refine updates WL with the outgoing edges
from u and other incoming edges to u (line 8) and iterates until WL is empty
(line 10). If in some iteration a strengthening is impossible, Refine returns the
last successful values for ρextα and αextT (line 9).

It is worth reminding that for every iteration of Abstract, as well as for
every iteration of Refine, there is a need to decide validity of simulation-
abstraction-checking formulas (7) and (8). For this goal, SimAbs invokes
AE-VAL (Algorithm 1). Algorithm Skolem, used as a subroutine of Refine,
is an essential extension of AE-VAL that produces a Skolem relation as in (18).
Notably, it does not extract a Skolem relation for local variables, but does it
only for existentially abstracted input variables in the current CPG-edge (in
particular, it constrains the sets of variables over which the partitions {Ii} are
expressed).

For the progress of the algorithm, it is enough to note that in each iteration
of SimAbs, Abstract is given a concrete program T , and always constructs a
new abstraction from scratch. Thus, if the space of possible abstractions is finite
(which is the case for existential abstraction) the algorithm always terminates.

Theorem 2. Given the implementation of Weaken (Algorithm 6), SimAbs
always terminates.

Recall the source and the target programs from Fig. 2(a)–(b). In Example 2,
we found simulation relation between their loop bodies. In the following, we show
how SimAbs is used to discover a simulation relation between whole programs.

Example 5. The programs share the set of cutpoints CP = {en,CP0}, and the
set of CPG-edges E = {(en,CP0), (CP0,CP0)}. First, Abstract considers the
CPG-edge (en,CP0), and synthesizes an identity relation ρ ≡ (aS = aT ) ∧
(bS = bT ) which is then proven to be a simulation relation for the current edge.
Then Abstract considers the CPG-edge (CP0,CP0) and checks whether ρ
(and its variant ρ′) is an inductive simulation relation for the current edge. Since
this check does not succeed (recall Example 1), Weaken produces an implicit
abstraction of the target, by eliminating a subset of variables (e.g., {b} ⊂ {a,b}),
and Abstract recursively calls itself.

In the second iteration of Abstract, E is traversed again, and relation
ρα ≡ (aS = aT ) is checked w.r.t. the source and the abstraction of the target.
Since the check succeeds for all edges, Refine extracts a Skolem relation and
creates ρextα ≡ (aS = aT ) ∧ (bS = −bT ). Finally, the abstraction of the target is
strengthened and becomes the target itself. SimAbs successfully terminates. �
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6 Evaluating SimAbs and AE-VAL

We implemented SimAbs and AE-VAL in the UFO framework. As an SMT and
Horn solver AE-VAL uses Z3. We evaluated them on the Software Verification
Competition (SVCOMP) benchmarks and constprop, globalopt, instcombine,
simplifycfg, adce, and mem2reg optimizations of LLVM. The constprop per-
forms constant propagation, the globalopt transforms global variables, the
instcombine simplifies local arithmetic operations, the simplifycfg performs
dead code elimination and basic block merging, the adce performs aggressive
dead code elimination, and mem2reg promotes memory references to be register
references. Notably, combinations of the optimizations provide more aggressive
optimizations than each individual optimization, thus increasing a semantic gap
between the original and the optimized programs. In our evaluation, we aim at
synthesizing concrete or abstract simulation relations for programs with a big-
ger semantic gap and empirically demonstrate the power of AE-VAL (that is
expected to have a higher number of AE-VAL iterations in such cases).

For each of the 228 considered source programs S (300 - 5000 lines of source
code), we created an optimized program1 T , and applied SimAbs to discover
abstractions and simulations in two directions: S � [α]T and T � [α]S. We
present the results2 in two diagrams in Fig. 5. Each diagram is a pie chart and
a collection of SimAbs execution times for each benchmark in the spherical
coordinate system. The pie chart in Fig. 5(a) represents a proportion of four
main classes of SimAbs results:

: T simulates S via identity relation;
: T simulates S via some Skolem-relation-based ρ;
: some abstraction αT simulates S;
: we did not find an abstraction αT that simulates S.

Each dot represents a runtime of SimAbs on a single benchmark. It is placed
in one of the circular sectors, , , or , with respect to the outcome, and
is assigned the radial distance to represent time in seconds. For example, a
benchmark on which S �idT solved in 20 s is placed in the sector in a distance
20 from the center. Being closer to the center means being faster. Runs that took
longer than 60 s are placed on the boundary. Figure 5(b) is structured similarly,
but with inverse order of S and T .

The experiment shows that SimAbs is able to effectively discover abstrac-
tions and simulations between S and T in both directions. While in many cases
(101 in Fig. 5(a), and 65 in Fig. 5(b)) it proved simulation by identity, in the
remaining cases SimAbs goes deeper into the abstraction-refinement loop and
delivers either a concrete or abstract simulation in 124 and 160 cases respec-
tively. SimAbs terminates with a positive result in all, but 3 pairs of programs.
The 3 negative cases can be exaplained by the fact that T happened to have
some CPG-edge (u, v) with the inconsistent labeling τT (u, v).
1 We combined the optimizations in the following order to create each T : -constprop

-globalopt -instcombine -simplifycfg -mem2reg -adce -instcombine -simplifycfg.
2 Full results are available at http://www.inf.usi.ch/phd/fedyukovich/niagara.

http://www.inf.usi.ch/phd/fedyukovich/niagara
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Fig. 5. Pie chart and running times in the spherical coordinate system.

The core solving engine, AE-VAL, invoked on the low level of SimAbs was
shown to be effective while eliminating quantifiers. Overall, it solved 84587 for-
mulas (each formula contains up to 1055 existentially quantified variables, and
requires up to 617 iterations to terminate), and extracted 3503 Skolem relations.

7 Related Work

The first symbolic automatic construction of simulation relations was proposed
by Dill et al. in [5]. However, that work was based on BDDs, so quantifiers are
eliminated directly. We target to solve this problem by exploiting recent advance-
ments in SMT and thus allowing synthesis of non-trivial simulation relations.

The classical approach to check simulation relations is game-theoretic: the
state space of the source and the target programs is traversed by the evader and
the pursuer players. For instance, Henzinger et al. [11] apply it to prove validity
of a simulation relation between infinite graphs. In our setting, this result can
be used to extend SimAbs to deal with programs with different CPGs.

The problem of constructing and checking simulation relations arises when
there is a need to prove equivalence between two programs. Necula [18] pro-
poses to check correctness of compiler optimizations by constructing simulation
relations heuristically. Namjoshi et al. in [10,17] propose a more precise way
to construct simulation relations, which requires augmenting a particular opti-
mizer. Ciobâcă et al. [3] develop a parametric proof system for proving mutual
simulation between programs written in different programming languages. These
approaches do not deal with cases when programs are not equivalent (i.e., there
exists only an abstract simulation or when there is some other form of simulation
relation rather than identity). SimAbs goes beyond these limitations.
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Simulation relation is a sort of relative specifications: it describes how the
behaviors of programs relate to each other, but not how they behave individu-
ally. Inferring other types of relative specifications were studied in [7,13]. Lahiri
et al. [13] propose to search for differential errors: whether there exist two behav-
iors of S and T starting from the same input, such that the former is non-failing
and the latter is failing. The proposed solution is by composing S and T into one
program and running an off-the-shelf invariant generator on it. Felsing et.al [7]
aims at synthesizing coupling predicates, a stronger relationship than a simula-
tion relation, since it does not allow programs to have unmatched behaviors. In
contrast to SimAbs, their synthesis method is restricted to deal only with deter-
ministic and terminating programs and does not require quantifier elimination.

Reliance on quantifier elimination makes our approach similar to template-
based synthesis which applications include but not limited to [9,21,22]. Synthesis
aims at constructing a program that fulfils a given specification represented by a
template formula. While instantiating existential quantifiers, synthesis is filling
placeholders in this template. While discovering a Skolem relation from a valid
simulation-relation-checking formula, AE-VAL also performs synthesis, but does
not require any template for it.

8 Conclusion and Future Work

We proposed a solution to the problem of automated discovery of simulations
between programs. Our main contribution is SimAbs, a novel algorithm to auto-
matically synthesize both, abstractions and simulations, between the source and
the target programs. If the target does not simulate the source, SimAbs iter-
atively performs abstraction-refinement reasoning to detect an abstraction of
the target that simulates the source. In contrast to existing techniques, SimAbs
operates by deciding validity of ∀∃-formulas iteratively. The second contribu-
tion of the paper is AE-VAL, a novel decision procedure that extracts Skolem
relations from valid ∀∃-formulas in Linear Rational Arithmetic. The third con-
tribution is our implementation of SimAbs and AE-VAL that supports (and
not limited by) different LLVM optimizer and mutator passes.

In future, we plan to use simulation relations produced by SimAbs to migrate
the safe inductive invariants across program transformations, thus achieving a
property-directed equivalence between programs [6]. AE-VAL can be used as a
stand-alone solver. We believe, it has a great potential, and in future we plan to
apply it for other tasks (e.g., [8]) of realizability and synthesis.
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Abstract. We present a new method for solving problems in intuition-
istic propositional logic, which involves the use of an incremental SAT-
solver. The method scales to very large problems, and fits well into an
SMT-based framework for interaction with other theories.

1 Introduction

Let us take a look at intuitionistic propositional logic. Its syntax looks just like
classical propositional logic:

A ::= a | b | c | . . | q -- atoms
| A1 ∧ A2 -- conjunction
| A1 ∨ A2 -- disjunction
| A1 → A2 -- implication
| ⊥ | � -- false/true

However, its definition of truth is considerably weaker than for classical logic.
In Fig. 1, we show a Hilbert-style proof system for intuitionistic propositional
logic. In the figure, we use A1, . ., An � B as a short-hand for A1 → . .(An → B).
Only “computationally valid” derivations can be made in intuitionistic logic. For
example, the classical law of the excluded middle a∨¬ a does not hold. Here,
we use ¬ a as a short-hand for a → ⊥.

In this paper, we are interested in building a modern, scalable, automated
method for proving formulas in intuitionistic propositional logic. By modern,
we mean that we would like to make use of the enormous recent advances in
automated theorem proving in the form of SAT and SMT techniques. We do not
want to reinvent the wheel, rather we would like to investigate if there exists an
SMT-like way of building an intuitionistic theorem prover on top of an existing
SAT-solver. The hope is that this also results in a scalable method.

It is perhaps surprising that we ask this question, because at first sight it
does not seem natural to embed intuitionistic logic into classical logic; after all,
we can derive much more in classical logic than intuitionistic logic.

The key insight we make use of comes from Barr [1]. Given a set S of propo-
sitional clauses of the shape:

(a1 ∧ . . ∧ an) → (b1 ∨ . . ∨ bm)

c© Springer-Verlag Berlin Heidelberg 2015
M. Davis et al. (Eds.): LPAR-20 2015, LNCS 9450, pp. 622–637, 2015.
DOI: 10.1007/978-3-662-48899-7 43
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A A → B

B
(MP)

A,B � A (K )
A → B → C ,A → B � A → C (S)

A ∧ B � A (FST )
A ∧ B � B (SND)
A,B � A ∧ B (PAIR)

A � A ∨ B (INL)
B � A ∨ B (INR)

A → C , B → C � (A ∨ B) → C (CASE)

⊥ � A (BOT )
A � � (TOP)

Fig. 1. A Hilbert-style proof system for intuitionistic propositional logic

Here, ai and bj are propositional atoms. Now, the remarkable insight is this: The
question of whether or not a given other clause of that same shape is derivable
from the set S is oblivious to which logic we are in: classical or intuitionistic.
The derivation power of these two logics on this subset is equivalent!

In other words, if we have an intuitionistic logic problem that we are inter-
ested in solving, we would like to “distill” this problem into two parts: The first,
and hopefully largest, part would be expressible using clauses of the above shape,
and the second, hopefully tiny, part would consist of the part of the problem not
expressible using clauses of the above shape. We can then use a standard SAT-
solver to solve the first part, and an extra theory on the side to deal with the
second part.

Indeed, it turns out that clauses of the above shape are not quite enough to
represent all intuitionistic formulas. We also need clauses of the following shape:

(a → b) → c

Here, a, b, c are propositional atoms. We call these clauses implication clauses,
and clauses of the first kind are called flat clauses.

Finally, we need one more rule that tells us how flat clauses interact with
implication clauses:

(p1 ∧ . . ∧ pn ∧ a) → b (a → b) → c

(p1 ∧ . . ∧ pn) → c
(IMPL)

From one implication clause and one flat clause, we can generate a new flat
clause. This rule, together with any complete proof system for classical logic
applied to flat clauses, turns out to be a complete proof system for intuitionistic
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logic. The fact that no new implication clauses are generated during a proof is
an extra bonus that alleviates automated proof search even more: Rule (IMPL)
can be implemented as an SMT-style theory on top of a SAT-solver.

Thus, we ended up constructing a simple, scalable, automated theorem prover
for intuitionistic propositional logic based on a SAT-solver.

To our knowledge, this is the first paper to take an SMT-based approach on
top of a SAT-solver to intuitionistic logic. As we shall see, the implementation of
the theory of intuitionistic implications turns out to be rather unconventional,
because it has a recursive structure (calling the theorem prover itself!). But the
overall design of the prover is quite simple; only one SAT-solver is needed to do
all the reasoning, and no extra quantification is necessary. The result is a robust
prover that performs very well on existing as well as new benchmarks.

2 The Procedure

In this section, we describe our procedure for proving (and disproving) formulas
in intuitionistic propositional logic.

2.1 Canonical Form

The first thing we do when trying to prove a formula A, is to transform it into
canonical form, by a process called clausification. A problem in canonical form is
characterized by two sets of different kinds of clauses R and X, plus an atom q:

(
∧
R ∧ ∧

X ) → q

Here, the set R only contains so-called flat clauses r, which are of the following
shape:

r ::= (a1 ∧ . . ∧ an) → (b1 ∨ . . ∨ bm)

In the above, ai and bj denote atoms. When n = 0, the left-hand side is �; when
m=0, the right-hand side is ⊥. The set X only contains implication clauses i,
which have the following shape:

i ::= (a → b) → c

Here, a, b, c are atoms or the constants ⊥ or �.
Any formula A can be rewritten into a provability-equivalent formula in

canonical form. As an example, consider the formula a ∨¬ a. Its canonical
form is:
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((a → q) ∧ ((a → ⊥) → q)) → q

We can see that the canonical form consists of one flat clause a → q and one
implication clause (a → ⊥)→ q, and a final goal q.

The procedure we use to rewrite any formula into canonical form is very sim-
ilar to the Tseitin method for clausification of formulas in classical propositional
logic [6], but adapted to be sound for intuitionistic logic.

We start by assuming that A is of the shape B → q, for some atom q. If it
is not, we can make it so by introducing a new atom q and using (A → q) → q
(where B would thus be A → q) instead1.

Next, we transform B into the two sets of clauses R and X. We can do
this using a number of transformation steps of the shape A � B1, . ., Bn, which
transform an assumption A into an equivalent set of assumptions Bi. Most of
these transformations assume that the formulas they work on are implications.
However, the first transformation step can be used when a formula is not already
an implication:

A � � → A

The next 3 transformations can be used when the left-hand or right-hand side
of an implication does not have the right shape, as dictated by the clause being
a flat clause or an implication clause:

(A ∨ B) → a � A → a, B → a
a → (A ∧ B) � a → A, a → B
A → (B → C ) � (A ∧ B) → C

In the above, a stands for either a regular atom, or one of the constants ⊥ or
�. In order to have atoms appear at the right places, we can use the following 5
transformation steps:

A → (. . ∨ B ∨ . .) � A → (. . ∨ b ∨ . .), b → B
(. . ∧ A ∧ . .) → B � (. . ∧ a ∧ . .) → B ,A → a

(A → B) → C � (a → B) → C , a → A
(A → B) → C � (A → b) → C , B → b
(A → B) → C � (A → B) → c, c → C

In the above rules, a, b and c appearing on the right-hand side of a rule denotes
a fresh atom not appearing anywhere else.

The above rules are a complete set of rules to turn any formula B into a set
of flat clauses R and implication clauses X. The combined size of the clauses in
R and X can be kept to at most twice the size of the size of the original formula
B, because we never copy whole formulas, and we only need to introduce a fresh
atom b for any subformula at most once.
1 provability-equivalent to A because (1) A implies the formula, and (2) if we take

q:=A, the formula implies A.
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-- flat clauses R

-- implication clauses X

-- proof goal q

procedure prove (R,X , q)
s = newSolver ();
for r ∈ R :

addClause (s, r);
for i ∈ X :

let (a → b) → c = i
addClause (s, b → c);

return intuitProve (s,X , ∅, q);

Fig. 2. Top-level procedure for intuitionistic proving

2.2 The SAT-Solver

The proving procedure makes use of a standard off-the-shelf (classical) SAT-
solver s, that supports the following operations:

procedure newSolver ();
procedure addClause (s, r);
procedure satProve (s,A, q);

The procedure newSolver creates a new, unconstrained SAT-solver. The proce-
dure addClause takes a SAT-solver s and a flat clause r, and adds the clause r
as a constraint to s.

The procedure satProve takes a SAT-solver s, a set of assumptions A, and
a goal q. The assumptions A as well as the goal q are atoms. The procedure
satProve tries to prove the goal q, from the assumptions A and all flat clauses
that have been added so far. It produces one of two results:

– No (M), if no proof could be found. Here, M is a model that is found by the
SAT-solver represented as a set of true atoms. The model M is guaranteed to
satisfy all added clauses, all assumptions, but it makes the goal q false. So,
we know A ⊂ M and q /∈ M .

– Y es (A′), if a proof could be found. Here, A′ is the subset of the assumptions
that were actually used in the proof of q from the clauses. So, we know that
A′ ⊂ A.

The set A′ in the Yes answer can be produced by most modern SAT-solvers.
Some solvers (such as MiniSAT [2] which we use in our implementation) support
this operation directly in their API. Other solvers support the construction of
an unsatisfiable core, which can be used to get the same information.
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-- SAT-solver s

-- implication clauses X

-- assumptions A

-- proof goal q

procedure intuitProve (s,X ,A, q)
loop

switch satProve (s,A, q)
case Yes (A′) :

return Yes (A′);
case No (M ) :

if intuitCheck (s,X ,M ) then
return No (M );

Fig. 3. Standard CEGAR-loop for intuitionistic proving

2.3 Proving Procedure

The complete proving procedure (after transformation to canonical form) is pic-
tured in ≈25 lines of code in Figs. 2–4.

The top-level procedure prove is shown in Fig. 2. Its arguments are a set of
flat clauses R, a set of implication clauses X, and a goal q. It first creates a
SAT-solver s, and adds all flat clauses r to it. Furthermore, for each implication
clause (a → b) → c from X, it adds the flat clause b → c (which is implied by the
implication clause). Finally, it calls the main proving procedure intuitProve.

The main proving procedure intuitProve is shown in Fig. 3. Its arguments
are a SAT-solver, a set of implication clauses X, a set of assumptions A, and a
goal q. The procedure has the standard shape of a CEGAR-loop. First, it tries
to find a classical proof, using the SAT-solver only on the flat clauses. If this
succeeds, we are done. If not, there is a classical model M which is going to be
checked by the procedure intuitCheck, explained in the next subsection.

If intuitCheck determines that the found model indeed corresponds to an intu-
itionistic model, it returns True, and we return the model as the answer. If intuit
Check finds the model inadequate, it will have generated an extra flat clause in
the SAT-solver, and it returns False. In this case, we simply loop and try again.

2.4 Checking Procedure

When we find a classical model M , which is guaranteed to satisfy all flat clauses,
we have to check whether or not it corresponds to an intuitionistic model. This
means that, for each implication clause (a → b) → c in X, we have to check that
if a → b is true under M , then c should also be true under M .

In order to help us decide which implication clauses should be investigated,
let us take a look at the following table, where we consider an implication clause
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a b c (a → b) → c

(1) - - 1 Yes

(2) - 1 0 No

(3) 1 0 0 Yes

(4) 0 0 0 ?

(a → b) → c, and we have partitioned the 23 possibilities for valuations of a, b, c
into 4 separate cases.

In case (1), the implication clause is fulfilled, since c is true, and so the
whole implication is also true. Case (2) is definitely something that contradicts
the implication clause; b is true and therefore also a → b, but c is not true.
Fortunately, for each implication clause (a → b) → c, we have already added
the flat clause b → c (see Fig. 2) which excludes this case. In case (3), a → b is
definitely not true, and so c does not have to be true either.

The only case that is left that we have to check is case (4). Here, a → b is
classically true, but intuitionistically, we do not know whether or not it is true,
and therefore we do not know whether or not c should be true.

Thus, what we have to do is check whether or not we can prove a → b using
the true atoms from the current model M . If we can, then surely the current
model was wrong since c was not true. If we cannot not, the current model fulfills
the implication clause also.

As we can see in Fig. 4, the way we check whether or not a → b is provable
under the current model, is to call intuitProve recursively, using M ∪ {a} as
assumptions, and b as the proof goal. If the answer is No (–), everything is fine.
If the answer is Y es (A′), we generate a new flat clause, using the following proof
rule (IMPL):

-- SAT-solver s

-- implication clauses X

-- model M

procedure intuitCheck (s,X ,M )
for i ∈ X :

let (a → b) → c = i
if a, b, c /∈ M then

switch intuitProve (s,X − {i},M ∪ {a }, b)
case Yes (A′) :

addClause (s, (
∧

A′ − {a }) → c)
return False;

return True;

Fig. 4. Checking whether or not a SAT-model is also an intuitionistic model
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(p1 ∧ . . ∧ pn ∧ a) → b (a → b) → c
(p1 ∧ . . ∧ pn) → c

(IMPL)

When the answer is Y es (A′), it means that we have proved that
∧
A′ → b (left-

hand premise) and using the implication clause (right-hand premise), we can
conclude

∧
A′ − {a} → c (conclusion), which is the flat clause we then add to

the SAT-solver.
We would like to note here that the efficiency of our algorithm is mainly

brought by reducing the assumptions M ∪{a} from the question to the assump-
tions A′ in the answer. It is the actually needed assumptions A′ that are used
when constructing the new flat clause, not the originally given assumptions
M ∪ {a}!

Rule (IMPL) allows us to create a new flat clause from an existing flat clause
and an implication clause. It is the only extra proof rule we use (apart from clas-
sical resolution on flat clauses), and thus the total number of implication clauses
during proof search remains constant. It is easy to see that (IMPL) is sound
once one realizes that the left-hand side premise is equivalent to (p1 ∧. .∧ pn) →
(a → b); then (IMPL) is simply an instance of the cut rule:

A → B B → C
A → C

(CUT )

The three procedures prove, intuitProve, intuitCheck together completely make
up the proving algorithm.

2.5 Correctness

Correctness of the algorithm consists of three parts: Termination (the algorithm
terminates on all inputs), soundness (when the algorithm claims to have proven
a formula, there indeed is a proof), and completeness (when the algorithm claims
the unprovability of a formula, it indeed is not provable).

Termination. There are two possible causes of non-termination: The loop in
intuitProve, and the mutual recursion between intuitProve and intuitCheck.

The loop in intuitProve terminates, because in each loop iteration, a clause
is added to the SAT-solver that is false in the model M that made all previously
added clauses true. Thus, each loop iteration strictly reduces the number of
models that satisfy all clauses in the SAT-solver. Eventually, the loop must
terminate.

The mutual recursion between intuitProve and intuitCheck terminates
because in each recursive call to intuitProve, the set X shrinks by one element i.

Soundness. If the algorithm terminates with a Y es (–) answer, the SAT-solver
will have proved the goal from the flat clauses and the assumptions. Soundness
is thus argued based on two arguments: (1) classical inference may be used to
intuitionistically conclude flat clauses from sets of flat clauses, and (2) all flat
clauses in the SAT-solver are implied by the original clauses R and X.
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As to (1), this observation was already made by Barr [1], but we briefly
restate the argument here. Any classical inference of a flat clause from a set of
flat clauses can be simulated by the resolution rule:

A → (C ∨ a) (a ∧ B) → D
(A ∧ B) → (C ∨ D)

(RES )

The resolution rule (RES) as stated above also holds intuitionistically. Thus,
any classical proof deriving a flat clause from a set of flat clauses also admits an
intuitionistic proof.

As to (2), all flat clauses in the SAT-solver either directly come from the set
R, or they are derived using the rule (IMPL), which we have already argued is
sound.

Completeness. We show that when the algorithm terminates with a No (M)
answer, there exists an intuitionistic Kripke model with a “starting world” w0

that satisfies all flat clauses, all implication clauses, and in which the proof goal
q is false. We construct this Kripke model below.

Consider the last top-level call to intuitCheck, the call that validated the
last model that was found. It executed many (recursive) calls to intuitCheck,
each of them returning True. Now, let each of these calls be a unique world w
in the set of worlds W . The valuation M (w) associated with each world w is
the model M with which the corresponding call of intuitCheck was given. The
world w0 is associated with the top-level call to intuitCheck.

Define the call-relation C as follows: w1 C w2 if and only if the call w1 made
the call w2. The accessibility relation � on W is defined to be the reflexive,
transitive closure of C. The relation � satisfies the persistency condition: each
call to intuitCheck makes the set of true atoms larger by adding the atom a to
M in the calls to intuitProve.

All flat clauses in R are satisfied by the valuations of all w, because all of
these are models of the SAT-solver s, which guarantees that all flat clauses are
made true by all models. This also means that all flat clauses are true in all w.

The proof goal q is false in w0, because the top-level call to intuitProve
generated a counter-model to q.

All implication clauses in X are true in w0. To see this, consider an implica-
tion clause i = (a → b)→ c from X and a world w in which a → b is true, but c
is false. If c is false in w, then so is b, because we have the flat clause b → c that
we added to s. If b is false in w, then so is a, because a → b is true in w by our
assumption. Every world is reachable by C-steps from w0, and thus so is w. By
persistency, a, b, c must be false in every world on the C-path from w0 to w. This
means that the implication clause i is still part of the set of implication clauses
that belonged to the intuitCheck-call represented by w. This means that a call
to intuitProve will be made from w in which a will be added to the assump-
tions, and with b as the goal, and which furthermore returns with No (–). This
contradicts our assumption that a → b is true in w. So, all original implication
clauses are true in w0.
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3 Optimizations

In this section, we discuss a number of possible optimizations that can be made
to the basic algorithm, and their perceived effect on efficiency.

Keep Checking After Finding an Offending Implication Clause. The
procedure intuitCheck only generates one new clause when something is wrong
with a found model. Typically, a CEGAR-loop may benefit from generating
multiple clauses that indicate what is wrong with a proposed model. The reason
is that if we find k unrelated reasons for why a found model is wrong, we may
save time by not having to find k different models, each triggering that reason.

-- SAT-solver s

-- implication clauses X

-- model M

procedure intuitCheck2 (s,X ,M )
okay = True;
for i ∈ X :

let (a → b) → c = i
if a, b, c /∈ M then

switch intuitProve (s,X − {i},M ∪ {a }, b)
case Yes (A′) :

satAddClause (s, (
∧

A′ − {a }) → c)
okay = False;

return okay ;

Fig. 5. Checking whether or not a SAT-model is also an intuitionistic model

In Fig. 5, we present a slightly adapted version of intuitCheck that checks for
all implication clauses whether or not they are content with the currently found
model, instead of aborting after finding the first offending implication clause.

We implemented this adapted method, and compared it experimentally
against the simple first version. The change made some running times of the
benchmarks worse, others better. All running times remained in the same order
of magnitude. There were slightly more cases in which the running time was
improved, so we decided to keep this variant.

Conclusion: The balance in favor of this optimization was not completely con-
vincing, and it may change with more different benchmarks.

Minimize the Number of Offending Implication Clauses. It is obvious
that the running time of the algorithm is affected mostly by the number of
implication clauses that need to be checked. So, instead of just finding any
model M , we considered adding an optimization phase that tried to minimize
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the number of implication clauses that needed to be investigated (i.e. the number
of implication clauses where a = b = c = 0).

The experimental results showed that this method was worse in every case
where a difference could be observed. The reason was that the minimization
methods we tried were slowing things down very much, and the final effect on
the number of implications that had to be checked was not as great as we hoped
for. We tried global minimization methods (minimizing the number of offend-
ing implication clauses) as well as local optimization methods (using subset-
minimization).

Conclusion: We are still interested in minimization, but we need to (1) find
better suited minimization methods, and (2) more suitable benchmarks where
this would make an actual difference.

Reuse of Already Found Models. From the correctness proof, it becomes
clear that a Kripke model can be constructed from a run of the algorithm that
results in a No (–) answer. Currently, this Kripke model always has a tree-shape.
Some trees can be compacted into directed acyclic graphs (DAGs), enabling a
possible exponential speed-up.

The algorithm can be adapted to keep a table of already found and checked
models, which grows during calls of intuitCheck. Whenever we call intuitProve,
we can consult the table of models to see if we can immediately see that the
answer is going to be No (–).

We have implemented this optimization, but have not thoroughly evaluated
it. This remains future work.

4 Related Work and Experimental Results

In this section, we compare our method against other, existing methods for
automated proving of intuitionistic propositional formulas.

Competing Tools. The main competitors for automated proof for intuitionistic
propositional logic are IntHistGC [4] and fCube [3]. Both are provers that per-
form a backtracking search directly on a proof calculus, and are therefore rather
different from the approach taken here. IntHistGC implements clever backtrack-
ing optimizations that avoid recomputations in many cases. fCube implements
several pruning techniques on a tableau-based calculus.

Benchmarks. We have used three different benchmark suites to compare the
provers experimentally.

– ILTP [5], these are 12 problems parametrized by a size. Being from 2006,
this is a quite old set of benchmarks now. We used the extended version that
was used in the evaluation of IntHistGC. In this version, two problems were
generated up to size 38 and all other problems up to size 100, leading up to a
total of 555 problem instances.
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– IntHistGC benchmarks, these are 6 problems parametrized by a natural num-
ber. These benchmarks are newer. They are carefully constructed sequences
of formulas that separate classical and intuitionistic logic. The total number
of instances here is 610.

– API solving, these are 10 problems where a rather large API (set of functions
with types) is given, and the problem is to construct a new function of a
given type. Each problem has variants with API sizes that vary in size from a
dozen to a few thousand functions. These problems were constructed by the
authors in an attempt to create practically useful problems. The total number
of instances here is 35.

The total number of benchmark problems we used is 1200. We did not have
access to these benchmarks when we developed our tool.

Experimental Set-up. The experiments were run on a 2013 laptop computer
with an Intel Xeon E3-1200 v2 processor and the processes were allowed 7 GB
of RAM. IntHistGC was run with its best flags (-b -c -c3). We used the latest
versions of the tools: fCube version 11.1 and IntHistGC 1.29. We used a 300 s
timeout.

Results. All three tools eventually solve a good portion of the benchmarks: our
tool intuit solved all but 37 benchmarks, fCube solved all but 38 benchmarks,
and IntHistGC all but 39. More interesting is to compare the running times. We
compare our tool intuit against IntHistGC and fCube for provable problems
(Valid) and unprovable problems (CoSat) in Fig. 6. All time axes are logarith-
mic.

We can see that intuit outperforms both IntHistGC and fCube significantly
on virtually all provable problems. The comparison for unprovable problems is
in favor of intuit as well, although there are a few outliers demanding further
scrutiny. We show a table of “interesting” problems (problems that were out of
reach for at least one tool but not for all tools) in Fig. 7.

The problems cross2x – mapf3x are all instances of the API benchmark
suite. They contain relatively large sets of axioms, of which typically only a
few are needed for a proof, which is representative for automatically generated
verification problems in general. Our tool intuit does well on these.

The problems SYJ202 are pigeon-hole problems. In fact, after generating
clauses in the fashion described in this paper, there were no implication clauses
generated, and thus the problems became purely classical! No surprise that
intuit does well on these, given that it uses a state-of-the-art SAT-solver
internally.

The problems that intuit struggled with (and which are the outliers in the
scatterplots in Fig. 6) are all instances of SYJ212. These are problems that are
all counter-satisfiable, and consist of long chains of nested equivalences. Inter-
estingly, on these problems, the running time of intuit was not increasing as
a function of the size of the problem. Hence there are some gaps in the figure:
only the instances where intuit times out are shown. The reason for this is not
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Fig. 6. Comparison. Runtimes in seconds, timeout was 300 s.

completely obvious to us; it seems that intuit seems particularly sensitive to
exactly what models are found by the SAT-solver on these problems. Sometimes,
the models indicate just the right implications to check, leading to intuitionistic
models quickly, and other times, the models lead the prover astray, and it takes
a long time.

5 Future Work

The main reason for initiating the work described in this paper was to understand
how to build a scalable prover for a logic like intuitionistic propositional logic.
However, the number of practical applications of intuitionistic propositional logic
is limited. We believe that our insights can benefit two other kinds of logic that
have more applications: classical modal logics and intuitionistic first-order logic.
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Benchmark Our Tool IntHistGC fCube Status
cross2x 0.05 − 0.69 Valid

cross3x 0.13 − 4.39 Valid

jm_cross3x 0.13 − 6.84 CoSat

jm_lift2x 0.31 − 9.38 Valid

lift2x 0.23 − 9.50 Valid

mapf3x 0.69 − − CoSat

SYJ202+1.006 0.01 − 0.67 Valid

SYJ202+1.007 0.09 − 3.61 Valid

SYJ202+1.008 0.22 − 27.47 Valid

SYJ202+1.009 2.43 − 241.06 Valid

SYJ202+1.010 62.79 − − Valid

SYJ208+1.031 0.70 38.22 − CoSat

SYJ208+1.032 0.75 47.12 − CoSat

SYJ208+1.033 0.83 49.82 − CoSat

SYJ208+1.034 0.88 69.35 − CoSat

SYJ208+1.035 0.95 76.12 − CoSat

SYJ208+1.036 1.02 96.03 − CoSat

SYJ208+1.037 1.07 119.56 − CoSat

SYJ208+1.038 1.17 140.49 − CoSat

SYJ212+1.030 − 0.03 0.19 CoSat

SYJ212+1.038 − 0.08 0.15 CoSat

SYJ212+1.041 − 0.10 0.37 CoSat

SYJ212+1.043 − 0.12 0.30 CoSat

SYJ212+1.046 − 0.15 0.36 CoSat

SYJ212+1.047 − 0.17 0.41 CoSat

SYJ212+1.048 − 0.18 0.35 CoSat

SYJ212+1.049 − 0.19 0.41 CoSat

SYJ212+1.050 − 0.21 0.37 CoSat

Fig. 7. Interesting problems (where one tool failed but not all). Runtimes are in
seconds. A hyphen indicates that the time limit of 300 s was exceeded.

Generalization to Modal Logic. We are currently building a theorem prover for
classical modal logic based on the same ideas as presented in this paper. When we
want to prove a formula A, we generate a fresh literal q, and generate constraints
that represent the formula � (A → q). The insight is that, in order to do so, it
is enough to consider constraints of one of the following three shapes:

1. �p, for a propositional logic formula p,
2. �(a → �b), for propositional logic literals a and b, and
3. �(a → ♦b), for propositional logic literals a and b.

Just like the prover we have described in this paper, the theorem prover for
modal logic uses one SAT-solver that stores all constraints that hold in all worlds,
which are the formulas p above. If q can be proven from these, the proof is done.
Otherwise, we get a counter-model which satisfies all p but not q, and we have
to investigate whether or not constraints of type 2. and 3. are fulfilled. If the
answer is yes, we have found a counter model to A, otherwise, more constraints
of type 1. will be generated and we start over.
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Generalization to Intuitionistic First-Order Logic. We also have started to look
at building an automated prover for intuitionistic first-order logic. There are
two strands of work here. The first basically augments a standard SMT-solver
with implication clauses. Most SMT-solvers have a heuristic for instantiating
universal quantifiers. After that, the implication clauses are dealt with in the
same way as in this paper.

However, this can only deal with a fragment of first-order logic. To cope
with the full logic, we analyze intuitionistic first-order logic and come to the
conclusion that we only have to support “clauses” of the following three shapes:

1. ∀ x.(A1 ∧. . ∧ An) → (B1 ∨ . . ∨ Bm), also called flat clauses,
2. ∀ x.(A → B) → C , also called implication clauses, and
3. ∀ x.(∀ y.A) → B , called quantification clauses.

The idea is to let a model-generating first-order prover (SMT-solver) take care of
the flat clauses. Every so often, we investigate the (partial) models that are gen-
erated, and use the implication clauses and the quantification clauses to generate
more flat clauses, and we continue.

The main difficulties here are: (1) first-order logic is only semi-decidable, so
we cannot expect to get either a model or a proof from the set of flat clauses,
which means that we have to settle for a heuristic method based on partial
models, and (2) most representations of partial models use some kind of ground
model which makes it hard to deal with the universally quantified variables x in
the implication clauses and quantification clauses.

6 Conclusions

We presented a new method for automated proving and disproving of formulas
in intuitionistic propositional logic. The method makes use of a single instance of
an incremental SAT-solver, and implements an SMT-style theory of intuitionistic
implication clauses on top of it. The result is a robust theorem prover that can
easily tackle most existing benchmarks.

Intuitionistic propositional logic seems to have limited practical applications,
as indicated by the (un)availability of standard benchmark sets. Our hope is that
the method described in this paper can give rise to scalable and robust methods
for related logics with more clear practical applications, such as various modal
logics and intuitionistic first-order logic.

Acknowledgments. We thank Thierry Coquand and Rajeev Gore for feedback on
earlier versions of this work.
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