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Preface

This volume contains the papers presented at the 20th International Conference on
Logic for Programming, Artificial Intelligence and Reasoning (LPAR-20), held during
November 24-28, 2015, at the University of the South Pacific, Suva, Fiji.

Following the call for papers, LPAR-20 received 117 abstracts, materializing into 92
submissions. Each submission was reviewed by a panel of 53 Program Committee
(PC) members. The PC was assisted by 107 additional reviewers and decided to accept
43 papers. The EasyChair system provided an indispensible platform for all matters
related to the reviewing process, production of these proceedings, program and Web
page generation, and registration of participants.

Several workshops were collocated with LPAR-20. The first workshop on Models
for Formal Analysis of Real Systems (MARS 2015) was organized by Rob van
Glabbeek and Peter Hoefner of NICTA and Jan Friso Groote from Eindhoven
University of Technology. The First International Workshop on Focusing was orga-
nized by Iliano Cervesato of Carnegie Mellon University and Carsten Schuermann of
ITU Copenhagen and Demtech. The 11th International Workshop on the Implemen-
tation of Logics was organized by Boris Konev of the University of Liverpool, Stephan
Schulz of DHBW Stuttgart, and Laurent Simon of the University of Bordeaux. We
were fortunate to have Peter Baumgartner of NICTA as workshop chair.

The local conference organization was arranged by Geoff Sutcliffe and Ansgar
Fehnker, and together they put together an excellent event.

LPAR-20 is grateful for the generous support of Microsoft Research and University
of the South Pacific.

September 2015 Martin Davis
Ansgar Fehnker

Annabelle Mclver

Andrei Voronkov
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Satisfiability: From Quality to Quantities
(Abstract of Invited Talk)

Nikolaj Bjerner

Microsoft Research
nbjorner@microsoft. com

Satisfiability Modulo Theories, SMT, solvers have in the past decade enabled a number
of software engineering tools thanks to improved theorem proving technologies, their
support for domains that are commonly used in software and a confluence of advances
in symbolic analysis methodologies. These methodologies are diverse and range from
bug localization, symbolic model checking algorithms, dynamic symbolic execution
for uncovering bugs and creating parametric unit tests, certified development using
program verification tools, compiler validation, biological modeling, model based
design tools, web sanitizers, and runtime analysis. The synergy with application
domains has lead to a constant stream of inspiration for improved domain support and
algorithmic advances. A simultaneous trend in applications is leading research on SMT
solvers into calculating with quantities. We believe this is part of an overall trend of
tools for checking and synthesizing quantitative, including probabilistic, properties.

Using Network Verification as a starting point, we describe how the SMT solver Z3
is used at scale in Microsoft Azure to check network access restrictions and router
configurations. Z3 is used in a monitoring system, called SecGuru, that continuously
checks configurations as they appear on routers. We learned early on that network
operators required a tool that could return a set of models in a compact way. This led us
to develop a domain specific algorithm, that works well for access control lists. It
enumerates models compactly in fractions of a second. A more ambitious effort is to
check reachability properties in large data-centers. Again, our experience was that the
domain called for special purpose data-structures and symmetry reduction methods that
turn analysis of data-centers with hundreds of routers and a million forwarding rules
into very small finite state systems that can be analyzed in fractions of a second.

Our experience with Network Verification is not unlike other domains as we are
reaching a point where qualitative analysis has shown its use, but a larger elephant is
lurking in the room: most systems rely on performance guarantees. Thus, the need for
cheking and synthesizing quantitative properties. To support SMT with quantities we
have embarked on long term projects on integrating optimization algorithms with Z3
and integrating methods for counting the number of solutions to constraints. In this
context we developed a new MaxSAT algorithm that exploits dualities between
unsatisfiable cores and correction sets and we illustrate some uses of the emerging
quantitative features in Z3.

The work rests on collaboration with a large number of colleagues including
Karthick Jayaraman, George Varghese, Nina Narodytska, Nuno Lopes, Andrey
Rybalchenko, Leonardo de Moura, Christoph Wintersteiger, Gordon Plotkin.
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Skolemization for Substructural Logics

Petr Cintula', Denisa Diaconescu?®3®™)  and George Metcalfe?

! Institute of Computer Science, Czech Academy of Sciences, Prague, Czech Republic
cintula@cs.cas.cz
2 Mathematical Institute, University of Bern, Bern, Switzerland
{denisa.diaconescu,george.metcalfe}@math.unibe.ch
3 Faculty of Mathematics and Computer Science,
University of Bucharest, Bucharest, Romania

Abstract. The usual Skolemization procedure, which removes strong
quantifiers by introducing new function symbols, is in general unsound
for first-order substructural logics defined based on classes of complete
residuated lattices. However, it is shown here (following similar ideas
of Baaz and Iemhoff for first-order intermediate logics in [1]) that first-
order substructural logics with a semantics satisfying certain witnessing
conditions admit a “parallel” Skolemization procedure where a strong
quantifier is removed by introducing a finite disjunction or conjunction
(as appropriate) of formulas with multiple new function symbols. These
logics typically lack equivalent prenex forms. Also, semantic consequence
does not in general reduce to satisfiability. The Skolemization theorems
presented here therefore take various forms, applying to the left or right
of the consequence relation, and to all formulas or only prenex formulas.

1 Introduction

Skolemization is an important ingredient of automated reasoning methods in
(fragments of) first-order classical logic. Crucially, a sentence (VZ)(Jy)p(Z,y)
is classically satisfiable if and only if (VZ)p(Z, f(Z)) is satisfiable, where f is a
function symbol not occurring in ¢. The satisfiability of a sentence in prenex form
therefore reduces to the satisfiability of a universal sentence; Herbrand’s theorem
then permits a further reduction to the satisfiability of a set of propositional
formulas. For more details on the classical case, we refer the reader to [3].

For first-order non-classical logics, the situation is not so straightforward.
Formulas are not always equivalent to prenex formulas and semantic conse-
quence may not reduce to satisfiability, meaning that (non-prenex) sentences
should be considered separately as premises and conclusions of consequences.
A Skolemization procedure may in such cases be more carefully defined where
strong occurrences of quantifiers in subformulas are replaced on the left, and

P. Cintula—Supported by RVO 67985807 and Czech Science Foundation

GBP202/12/G061.

D. Diaconescu—Supported by Sciex grant 13.192.

G. Metcalfe-Supported by Swiss National Science Foundation grant 200021_146748.
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2 P. Cintula et al.

weak occurrences on the right. However, satisfiability or, more generally, seman-
tic consequence, may not be preserved. Notably, in first-order intuitionistic logic,
formulas such as == (Vz)P(z) — (Va)-—P(z) do not skolemize (see, e.g., [2,15],
also for methods for addressing these problems).

The goal of this paper is to develop Skolemization theorems for first-order
substructural logics based on residuated lattices, a family that spans first-order
intermediate logics, exponential-free linear logic, relevance logics, fuzzy logics,
and logics without contraction (see, e.g., [7,9,11,14,17]). Although these logics
are in general undecidable, their (decidable) fragments provide foundations for
knowledge representation and reasoning methods such as non-classical logic pro-
gramming and description logics (see, e.g., [10,12,13,18]). The work reported
here aims to avoid duplicated research effort by providing a general approach to
the development of automated reasoning methods in the substructural setting.
A first step in this direction was taken in [6] which provides Herbrand theorems
for these logics. Skolemization was also considered (briefly) in that paper, but
unfortunately, the scope of the process was overstated in Theorem 1: the result
applies only to first-order substructural logics based on classes of chains (totally
ordered structures). An analysis of the failure of this theorem has, however, stim-
ulated the new more general approach described in this paper. Future work will
involve combining the various Herbrand and Skolem theorems obtained here and
in [6] to develop resolution methods for a wide class of substructural logics.

The key idea of “parallel Skolemization” is to remove strong occurrences
of quantifiers on the left of the consequence relation and weak occurrences of
quantifiers on the right by introducing disjunctions and conjunctions, respec-
tively, of formulas with multiple new function symbols. In particular, a sentence
(VZ)(Jy) (T, y) occurring as the conclusion of a consequence is rewritten for
some n € N as (Vz) /I, ¢(, f;(Z)) where each function symbol f; is new for
i =1...n. Baaz and Iemhoff use this method in [1] to establish “full” Skolem-
ization results for first-order intermediate logics whose Kripke models (with or
without the constant domains condition) admit a finite model property. In this
paper, we obtain full parallel Skolemization results for first-order substructural
logics admitting certain new variants of the witnessed model property intro-
duced by Héjek in [12]. We also obtain complete characterizations of full parallel
Skolemization when these logics have a finitary consequence relation. We then
turn our attention to first-order substructural logics that only partially satisfy a
witnessing property and hence do not admit full parallel Skolemization. We show
that under certain weaker conditions, these logics admit parallel Skolemization
for prenex sentences occurring on the left or right of the consequence relation.

2 First-Order Substructural Logics

Predicates, interpreted classically as functions from the domain of a structure to
the two element Boolean algebra 2, are interpreted in first-order substructural
logics as functions from the domain to algebras with multiple values that may
represent, e.g., degrees of truth, belief, or confidence. For convenience, we con-
sider here algebras for the full Lambek calculus with exchange — equivalently,
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intuitionistic linear logic without exponentials and additive constants — noting
that a more general algebraic setting would lead to similar results, but compli-
cate the presentation somewhat.

An FLe-algebra is an algebraic structure A = (A, &, —, A, V,0,1) such that:

1. (A, A,V) is a lattice with an order defined by z <y < x Ay = x;
2. (A, &,1) is a commutative monoid;

3. — is the residuum of &, ie. 2 &y <z & <y —z foral z,y,z € A.

A is called complete if \/ X and A X exist in A for all X C A, and an FL,-chain
if either z <y or y <z for all z,y € A.

Ezample 1. Complete FLe-chains A = ([0, 1], %, —, min, max, d, e,) based on
the real unit interval [0, 1] with the usual order have been studied intensively in
mathematical fuzzy logic [7,11,14]. In this setting, * is a residuated uninorm: an
associative and commutative binary function on [0, 1] that is increasing in both
arguments and has a unit e, and residuum —.,. (d is an arbitrary element in
[0,1]). Fundamental examples include the Lukasiewicz t-norm max(z +y —1,0),
the Godel t-norm min(z,y), and the product t-norm x - y.

The class FL, of FL.-algebras may be defined equationally and hence forms
a variety: a class of algebras closed under taking homomorphic images, subalge-
bras, and products. Subvarieties of FIL, provide algebraic semantics for a broad
spectrum of substructural logics, including those defined via extensions of the
sequent calculus for FL.. In particular, FLey-algebras for FL, with weakening
are FL-algebras satisfying 0 < x < 1, and FLcyc-algebras for intuitionistic logic
(term-equivalent to Heyting algebras) are FL.y-algebras satisfying z&z = .
Further varieties consist of “involutive” FLc-algebras satisfying (z — 0) - 0 ==
(corresponding to multiple-conclusion sequent calculi) and “semilinear” FLc-
algebras satisfying ((x — y) A1)V ((y — x) A1) =1 (corresponding to hyperse-
quent calculi). In particular, semilinear FLe-algebras, FLy-algebras, and FLeye-
algebras provide algebraic semantics for, respectively, uninorm logic, monoidal
t-norm logic, and Godel logic (see [4,5,9,14]).

A (countable) predicate language P is a triple (P, F, ar) where P and F are
non-empty countable sets of predicate and function symbols, respectively, and
ar is a function assigning to each predicate and function symbol * an arity
ar(x) = n € N (x is called n-ary); nullary function symbols are called object
constants and nullary predicate symbols are called propositional atoms. P-terms
8, t, ..., and (atomic) P-formulas p,1, X, . .. are defined as in classical logic using
a fixed countably infinite set OV of object variables x,y, ..., quantifiers V and
3, binary connectives &,—, A, V, and logical constants 0,1. Also —¢ is defined
as ¢ — 0 and p < ¢ as (p = Y) A (Y — ¢).

Bound and free variables, closed terms, sentences, and substitutability are
defined in the standard way. Instead of &1, ..., &, (where the &/s are terms or
formulas and n is arbitrary or fixed by the context) we sometimes write just &.
By the notation ¢(Z) we indicate that all free variables of ¢ occur in the list of
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distinct object variables z. If (1, ..., zy, Z) is a formula and all free occurrences
of z/s are replaced in ¢ by terms t;, the resulting formula is denoted simply by
o(t1, ..., tn, 2). We write x[g] for a formula y with a distinguished subformula ¢
and understand x[¢] as the result of replacing ¢ in y with the formula . A set
of P-formulas is called a P-theory.

Classical notions of structure, evaluation, and truth are generalized relative
to a complete FLc-algebra A as follows: a P-structure & = (A, S) consists of
a complete FLe-algebra A and a triple S = (S, <PS>P€P , <fs>feF> where S
is a non-empty set, PS is a function S” — A for each n-ary predicate symbol
PcP,and f5: S — S is a function for each n-ary function symbol f € F. An
GS-evaluation is a mapping v: OV — S. By v[z—a] we denote the G-evaluation
where v[z—al(xz) = a and v[z—a|(y) = v(y) for each object variable y # .
Terms and formulas are evaluated in & as follows:

S

lzlly = v(=)
£t ota)lly = U, - tallS)  for fEF
IP(ty, .. t )Y = PSS, ., [tallS)  for PeP
lp oIl = llelly o Illy for o € {&, —, A, V}
[#][S =« for x € {0,1}

I(V2)elly = inf< o {ll @iy a | @ € S}
S
1G2)@lly = sup , {Iellepa | @ € S}

A P-structure M = (A, M) is a P-model of a P-theory T, written 9 = T, if

for each ¢ € T and M-evaluation v, ||<,0H3Jt >1

Let us now fix an arbitrary class K of complete FLc-algebras. A P-formula
¢ is a semantic consequence of a P-theory T in K, written T' L o, if M | ¢
for each A € K and each P-model MM = (A, M) of T. We omit the prefixes for
the class K or language P when known from the context.

To simplify notation, for a formula ¢(x1, ..., z,) and an G-evaluation v with
v(z;) = a;, we write ||@(ay,...,a,)|° instead of ||g0(x1,,xn)||f Observe
that, as in classical logic, the truth value of a sentence does not depend on an
evaluation. Also, M = ¢ — ¢ iff for each evaluation v, ||<p||3Jt < Hw||3ﬁ, and
M |= ¢ « ¢ iff for each evaluation v, ||<p||3n = ||1/1||3ﬁ

The next lemma collects together some useful facts for FL¢-algebras.

Lemma 1 ([7,14,16]). Given formulas p,4,x, a variable x not free in x, and
a term t substitutable for x in p:

Lk (Vr)p(z) — o(t) 8. Fx (3r)(x = ¢) — (x = (Fr)p)

2. Fx p(t) — (3z)p(x) 9. Fx (3z)(¢ = x) = (Vo)p — x)

3. Ex (Vo) (x = ¢) < (x = (Vo)) 10. Ex (x & (Fz)p) < (Fz)(x & »)

4. Ex (Vz)(p = x) < (Br)p —x) 1. Fx (F2)(p V) < ((Fr)p Vv (F2)¢)
5 {p,o =V} Er ¢ 12. Fx (x V (Vz)p) — (Vo) (X V )

6. {p} Fr Al 13. Ex (Vo)p A (Vo)) < (V) (9 AY)
7. {¢} Fx (Vo)p 4. Ex Fr)(x A ) = (XA (B2)p).
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Fig. 1. Example of an FLe-algebra

Moreover, if K is a class of complete FLe-chains:

15. Fx (Vo)(x V@) < x V (Vr)p 16. Fx (3z)(x A @) < x A (3z)ep.

Let us emphasize that some quantifier shifts (8-14) are available for every choice
of K, and two more (15-16) if K consists of FL.-chains, but that, in general, the

formulas (x — (3z)p) — (Fz)(x — ), ((Vr)p — x) — (3z)(¢ — X), and
(Va)(x & ) — (x & (Vz)) (where x is not free in ) are not valid (see, e.g., [7]).

3 Parallel Skolemization

Skolemization fails in many first-order substructural logics. Consider, for exam-
ple, a language with a binary predicate symbol P and object constants r and s,
and a structure 9t = (A, M) of this language where

— A is the FLc-algebra (A, &, —,A,V,0,1) depicted in Fig. 1 with
xAy ifx,ye{0,a,b T}
z&y=<z ify=1
Yy ifr=1

and — is the residuum of &;
- M = {r,s} with tM = M
and PM(s,r) = b.

Then 9 is a model of (Vz)(Vz)(P(x,r) V P(z,s)), but not of (y)(Vz)P(z,y),
since ||(3y)(Vz)P(z,y)||™ = a # 1, so
(V) (V2)(P(x,7) V P(z,5)) Fa (Jy) (Vo) P(z, y).

On the other hand, for any unary function symbol f, we have

(V) (V2)(P(z,7) V P(z,5)) Fa () P(f(y),y).

Hence “ordinary” Skolemization in this case is not sound. Suppose, however,

that we introduce two new unary function symbols f; and fo. Then extending

the same structure 9 with interpretations fM(r) = fM(s) = r and fM(r) =
. E)j’t —

f2"(s) = s, we obtain [|(3y)(P(f1(y).y) A P(f2(y), )| =a # 1 and

(Vo) (Vz)(P(z,7) V P(2,5)) Fa (By)(P(f1(y),y) A P(f2(y),v))-

s, PM(s,s) = PM(r,s) = a, PM(r,r) = 1,
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More generally (see Lemma 4) for any theory T U {(37)(Vz)p(z,7)} of this
language and new function symbols fi, fo of arity |g],

T l=a Fy)(Va)e(z,y) < Tla @Y)(e(f1(®)9) Ae(f2(9),9))

We investigate here this “parallel Skolemization” procedure, introduced by Baaz

and Tembhoff in [1] for intermediate logics, in the context of substructural logics.
Let us first recall some useful notions. An occurrence of a subformula % in a

formula ¢ is positive (negative) if, inductively, one of the following holds:

1. ¢ is ¢y

2. @is 1 A2, P2 A1, P11V @2, P2V o1, o1 & @2, w2 & o1, (VT)p1, (3)¢r, Or
p2 — 1, and ¢ is positive (negative) in 1 [1)];

3. ¢ is 1 — w2 and 9 is negative (positive) in ¢1[¢)].

The following result is easily established by induction on formula complexity.

Lemma 2. For P-formulas ¢, ¥, x where 1 has the same free variables as x:

(1) If ¢ occurs positively in p[], then {x — ¥} Ex ¢[x] — ©[¢¥].
(ii) If ¢ occurs negatively in @[], then {¢ — x} Ex ¢[x] — ¢[¥].

An occurrence of a quantified subformula (Qx) in a formula ¢ is called strong

if either it is positive and @) =V, or it is negative and @) = 3, weak otherwise.
Fix n € NT and consider a P-sentence ¢ with a subformula (Qz)v(x,y) and

function symbols fi,..., f, & P of arity |g|. Replace this subformula in ¢ by

Vi, o(fi().9) Q=3 and Al ¢(fi(5).y) if Q=V.

The replacement strictly decreases the multiset of depths of occurrences of quan-
tifiers according to the standard multiset well-ordering described in [8]. Hence
applying this process repeatedly to leftmost strong occurrences of quantifiers
in an arbitrary P-sentence ¢ results in a unique (up to renaming of function
symbols) P’-sentence sk, (¢) for some extension P’ of P that contains only weak
occurrences of quantifiers. Similarly, let sk’ (¢) be the result of applying this
process repeatedly to leftmost weak occurrences of quantifiers in (.

Ezample 2. Consider a sentence ¢ = (Vz)((Jy)P(x,y) — (F2)Q(z, z)). Taking
n = 1, the above process leads to

ski(p) = (V2)(By) P(z,y) — Q(z, g(z))) and sk (p) = P(e,d) — (32)Q(c, 2)-

On the other hand, considering n = 2 and applying the procedure to weak
occurrences of quantifiers in ¢, we produce the formula sk (y)

(V) ((Fy) Pz, y) — (Q(z, 91(2)) V Q(z, g2()))),

while applying it to strong occurrences, we obtain first

(By)P(er,y) = (B32)Q(er,2)) A((By) Plez, y) — (32)Qc2; 2)),
and then a formula skf(¢) of the form

((P(er,di)VP(cr,dy)) — (32)Q(cr, ) A((P(ez, di)V P(ez, d3)) — (32)Q(c2, 2)).



Skolemization for Substructural Logics 7

Let us fix an arbitrary class of complete FL.-algebras K. We say that the
consequence relation g admits parallel Skolemization right of degree n, for a
P-sentence ¢ if for any P-theory T,

TExy < TExsk (o).

Similarly, we say that =g admits parallel Skolemization left of degree n for a
P-sentence ¢ if for any P-theory T U {¢},

TU{e} Exy & TU{skl(9)} Ex v

Note that there exists the following relationship between the left and right
forms of parallel Skolemization.

Lemma 3. If g admits parallel Skolemization left of degree n for all sen-
tences, then Ex admits parallel Skolemization right of degree n for all sentences.

Proof. For any P-theory T', P-sentence ¢, and propositional atom P not occur-
ring in T U {¢}:

TExky & TuUu{p—PiExP (1)
& TU{skl(p— P)}Ex P (2)
& TU{sky(p) — P} Fx P (3)
& T fx sky(p). (4)

Equivalences (1) and (4) follow from [6, Corollary 1], (2) follows from the assump-
tion that g admits parallel Skolemization left of degree n for all P-sentences,
and (3) follows inductively from the definitions of sk (-) and sk (-). O

We are unable to prove the converse direction to this lemma. Suppose, however,
that =g admits the weaker version of the classical deduction theorem stating
that for any P-theory T'U {1} and P-sentence ¢:

Tu{elExv & TEk(pAl) =9

Then if g admits parallel Skolemization right of degree n for all P-sentences,
also =k admits parallel Skolemization left of degree n for all P-sentences. Just
note that for any P-theory T'U {¢} and P-sentence ¢:

Tulet kv & Thr(pAl) =9 (1)

& Thxsk((@Al) =) (2)

& T Ex (sky(9) AT) — sk;, (1) 3)

& TU{sky (o)} b sk, (¥) (4)

& TU{skn(9)} Fx v. ()

Equivalences (1) and (4) follow from the deduction theorem, (2) and (5) follow

from the fact that =g admits parallel Skolemization right of degree n for all P-
sentences, and (3) follows inductively from the definitions of skl (-) and sk (-).
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(a) (b) ()

Fig. 2. Examples of 2-compact and 3-compact systems

4 Parallel Skolemization for All Formulas

In this section, we investigate consequence relations =g that admit parallel
Skolemization of some fixed degree on the left and right for any sentence. This is
a rather strong property for a consequence relation, but includes all cases where
Ek is equivalent to =g/ for some finite class K’ of finite algebras, as well as
certain non-finite cases.

The crucial requirement for this form of Skolemization is the completeness of
=k with respect to models based on algebras exhibiting some degree of “com-
pactness”. Let L be a lattice and X C P(L). We say that X' is n-compact for
some n € NT if for each A € X,

VA=a;V...Va, for someay,...,a, € A
NA=a; A...Na, for some aq,...,a, € A.

Ezample 3. It is easily seen that if the lattice L has height (the cardinality of a
maximal chain in L) smaller than n + 1, then any X C (L) is n-compact. If
L contains no infinite chain and has width (the cardinality of a maximal anti-
chain in L) smaller than m, then any X C (L) is m-compact. For example, the
powerset of a lattice, as depicted in Fig. 2(a), that consists of a (finite or infinite)
set of incomparable elements together with a top element and a bottom element,
is 2-compact (but not 1-compact). The powerset of the lattice in Fig. 2(b), which
may also be generalized by repeating many times the internal elements, is 3-
compact (but not 2-compact). On the other hand, the powerset of the lattice in
Fig.2(c) is 2-compact.

It is not necessary for parallel Skolemization that all sets of subsets of the
algebras in K be n-compact, only that the set of definable sets of elements in
a given P-structure have this property. Let us call a P-structure & = (A, S)
n-witnessed if the following system is n-compact:

{lle(b,a)||® | be S} | (x,7) a P-formula anda € S}.

We say that the consequence relation =g has the n-witnessed model property if
for any P-theory T' U {¢},

TEk ¢ & each n-witnessed model 91 of T is a model of .
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Note that this new notion generalizes the (1-)witnessed model property intro-
duced by Héjek in [12] (see also [7]).

Example 4. Suppose that K is a class of FL.-algebras whose underlying lattices
either have height bounded by some fixed n + 1, or contain no infinite chain
and have width bounded by some fixed n (see Example 3). Then g has the
n-witnessed model property.

Example 5. Let us emphasize that it is not necessary for parallel Skolemization
that all sets of subsets of the algebras in the class K are n-compact. Suppose,
for example, that K consists of the standard Lukasiewicz algebra on [0, 1]. The
powerset of [0,1] is clearly not n-compact for any n € N*. However, =k has the
1-witnessed model property, as shown by Héjek in [12].

We turn our attention now to the relationship between the n-witnessed model
property and parallel Skolemization left and right of degree n. We begin with a
crucial lemma which can be seen as “one step” Skolemization on the left.

Lemma 4. Suppose that =g has the n-witnessed model property.

(a) For any P-theory TU{x, ¥[(3x)¢(z,7)]} where (3z)p(x, ) occurs positively
in 1, for function symbols fi,..., fn & P of arity |7,

n

TUED)e@ gl Frx < TU{yl\/ (i@, 9]} Fx x-

i=1
(b) For any P-theory TU{x, ¥[(Vz)p ( )]} where (Vx)p(z, ) occurs negatively
in 1, for function symbols fi,..., fn &€ P of arity |7,

n

TU V)o@l Fxx & TUIA e(fi®, 9} Fx x.
i=1
Proof. For the left-to-right directions for both (a) and (b), note that

n

= Vol 0) = Goleen) and - (a)o(od) — A ol

=1

and hence, by Lemma 2, for (a) and (b), respectively,

Fx VIV o(fi(@), 7)] = ©[(Bx) ez, §)]
and g YAy o(fi(9), )] — [(Va)o(z, 7).

We prove the right-to-left direction contrapositively just for (a), as (b) is very
similar. Suppose that T U {¢[(3x)¢(x,7)]} ¥k x. So there is an n-witnessed
model M = (A, M) of T'U {¢[(Jz)¢(z,y)]} such that M [~k x. Because M is
n-witnessed, for each m € M, there are u7",...,u]" € M such that

1(32)p(, m)[[™" = I\w(’u’fﬂm)llEm VeV (g, m) |7

Using the axiom of choice, we define f;(m) = u for each i € {1,...,n}. Then
90, with these new interpretations, is a model of T'U {¢[V/;_, ¢(fi(¥),y)]} and
not x. O
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Theorem 1. If |k has the n-witnessed model property, then |=x admits parallel
Skolemization left and right of degree n for all sentences. Moreover, the converse
implication also holds whenever |=x is finitary, i.e., for any P-theory T U {y},

TExe < T Ex¢ forsome finiteT" CT.

Proof. Suppose that =k has the n-witnessed model property. Parallel Skolemiza-
tion left of degree n for all P-sentences follows from Lemma 4 and an induction
on the multiset of depths of quantifier occurrences according to the standard
multiset well-ordering from [8]. Parallel Skolemization right of degree n for all
P-sentences then follows from Lemma 3.

Next we prove the converse: suppose that |=x is finitary and admits parallel
Skolemization left of degree n for all P-sentences. (Note that only Skolemization
for certain formulas is needed for the proof). First we establish the following:
Claim. For each P-theory T U {¢} such that T }£x ¢, there exist a language
P’ O P and a P’-theory T" 2O T such that T" £k ¢ and, for each P-formula

(Qz)x(z,7):
T = (V) (Qr)x(x,9) < OLax(f(®), 1)),

where O = {X i g B 3 ,and fX, ..., fX are function symbols from P’ \ P.
Proof of the claim. Let g, ¢1,... be an enumeration of all P-formulas of the
form (Vz)x(z, ) or (3x)x(x,§) (recalling that P is always a countable language).
We construct an increasing series of languages P; and P;-theories T; such that
T; Fx . Let To = T and Py = P. If ¢; has the form (Vz)x(z,y), then as =x
admits parallel Skolemization left of degree n for all P-sentences,

TjExe & Tu{(v)((Va)x(@,g) — (Vo)x(z.9)} Fr ¢
< T; U {(sz)(i/z\lx(ff‘(z?%zj) — (Yo)x(z,9))} Ex ¢

We define P; 41 as the extension of P; with the function symbols f{, ..., fX and

=

Tjr1 = T; U{(V9)(\ x(£(@),5) — (Vo)x(z, 9))}-

i=1

The case where ¢, has the form (3z)x(z,7) is dealt with similarly. We then let
P’ =Ujc, Pjand T" = U, T} Because [=x is finitary, 7" £k ¢. Moreover,
for a formula (Qz)x(x,§) = ¢; for some j and assuming that Q = 3, we have
(Vo) ((Bz)x(z,y) — Vi, x(fX(¥),y)) € T’ and as the converse implication is
always provable the claim follows.

To complete the proof of the theorem, we just iterate the above claim over
w. We obtain a theory T whose models are clearly n-witnessed and T Ek p. O

A natural question to ask at this point is whether the requirement that =g
be finitary is really necessary to obtain an equivalence in the previous theo-
rem. We do not have an answer. Observe, however, that this requirement could
be avoided if we allow Skolemization of infinitely many formulas on the left
simultaneously.
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Theorem 1 and Example 4 establish parallel Skolemization of some finite
degree for |k for a broad family of classes K of FLc-algebras. Also, using
Example 5, first-order Lukasiewicz logic based on the standard Lukasiewicz alge-
bra on [0, 1] admits parallel Skolemization of degree 1. However, the consequence
relation of this logic is not finitary, so we cannot obtain the 1-witnessed model
property directly from the fact that it admits Skolemization left of degree 1.

5 Parallel Skolemization for Prenex Formulas

In the previous section, we proved that consequence relations satisfying a rather
strong witnessed model property admit parallel Skolemization to some degree
for all formulas. In this section, we investigate the (broader) scope of parallel
Skolemization restricted to prenex formulas.

First we show that parallel Skolemization for prenex formulas on the right
holds in the presence of a weaker witnessed model property. Let L be a lattice
and consider X C PB(L). We say that X is n-A-precompact for some n € NT if
forall A€ X and b € L,

/\A<b = a1 A...Nay <b for some ay,...,a, € A.

Ezample 6. The powerset of the (infinite) lattice depicted in Fig.3(a) is 1-A-
precompact (but not n-compact for any n), while the powerset of the (infinite)
lattice in Fig.3(b) is 2-A-precompact (but neither n-compact for any n, nor
1-A-precompact).

We call a P-structure & = (A, S) n-A-prewitnessed if the following system
is n-A-precompact:

{llp(b,a)]|® | b e S} | ¢(x, ) a P-formula and @ € S}.
Then =k has the n-A-prewitnessed model property if for any P-theory T U {¢},
T Exk ¢ < every n- A -prewitnessed model 9 of T is a model of ¢.

Ezample 7. If L is a chain, then B(L) is 1-A-precompact and hence any logic
based on chains enjoys the 1-A-prewitnessed model property.

We show first that the n-A-prewitnessed model property suffices to guarantee
“one step” parallel Skolemization of degree n for formulas of a certain form
occurring on the right of the consequence relation.

Theorem 2. If =g has the n-A-prewitnessed model property, then for any P-
theory T U {p(z,7),v} and function symbols f1,..., fn & P of arity |y|:

n

T Ex 39)(Vo)e(e,§) & T Fx DN (fiH),9)-

i=1
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Fig. 3. Examples of 1-A-precompact and 2-A-precompact systems

Proof. The left-to-right direction follows directly using Lemma 2. We prove the
right-to-left direction contrapositively, assuming without loss of generality that T’
consists of P-sentences. Suppose that T F&g (37)(Vz)p(z, ). Then there is an n-
A-prewitnessed model 9t = (A, M) of T such that V = ||(3y)(Vz)p(z, §)||™* # 1,
ie,V<VVL

Suppose first that V < V’ < V V1 for some V' € A. Clearly, for each m € M,
|(Va)p(x, m)Hm <V <V’ Since M is n-A-prewitnessed, for each m € M, there
are uf,...,u™ € M such that ||o(u,m)|™ A ... Allp(u™ )HDJI < V’ Now
for i € {1,...,n}, define, using the axiom of ch01ce fi(m) = u!". But then

H(Hﬂ)(/\?ﬂ P(fi@) I = Vimen Niza lle(fi(m), m) [P < V' <V VL

So @) ( A #(fi(5).5) ™ £ T.

Now suppose that no V’ € A satisfies V < V' < V Vv 1. Clearly, for each
m e M, |(Vz)p(z,m)|™ <V < VvV 1 If ||(Vz)p(z,m)||™ < V, then, as M
is n-A-prewitnessed, we have u{’,...,up* € M such that [|o(uf’, m)|[|TA LA
lo(um, m)||™ < V. If ||(Vz)p(z, m)| ™ = V then for some v, ..., u™ € M,

[(V2)p(z, m) [ =V < Jo(ui,m) " AL A llp(uy,m)[ <V VI

Hence, by assumption, V = [[p(uf*, m)||™ A ... A [[p(u™,m)||™. In both cases,

for each i € {1,...,n}, define, using the axiom of choice, f;(m) = u?. But then
137 (A= e(fi@), DI = Vo Nz lle(fi(m), m)|[ <V <V VI
So @) A ¢(fia).0)I™ £ T o

In order to repeat this one step Skolemization process and obtain skolemized
formulas for any prenex formula, we require an additional assumption, satisfied
in particular whenever all algebras in K are frames (e.g., chains).

Theorem 3. Suppose that =k has the n-A-prewitnessed model property and for
all P-formulas ¢ and x such that x is not free in x:

Fr (x A (F2)p) — Bz)(x A ).

Then |Ex admits parallel Skolemization right of degree n for prenex sentences.
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Proof. First we define A-prenex P-formulas as follows: every quantifier-free P-
formula is A-prenex, and if 1) are A-prenex, then so are ¢ A ¥, (3x)¢, and
(Vz)p for any variable x.

Now consider a P-theory T and a A-prenex P-sentence y with a leftmost
strong quantifier occurrence (Vz)p(z,§). Rewriting variables if necessary and
using quantifier shifts, x is equivalent to a sentence of the form

(F9)(v2)(o(z,5) A ¢’ (1))
and by Theorem 2,
Tlx (3)(V2) (@, ) AP @) & Tex G0N\ e(i@,9) A ¢ @)
i=1
But then, shifting the existential quantifiers back to their original positions,

n

Tex x(Y2)e(x,9)] & TExxl/\ e(fi@).9).

i=1

Note that x[A_;¢(fi(7),7)] is also a A-prenex formula. Hence, the claim follows
by an induction on the multiset of depths of quantifier occurrences according to
the standard multiset well-ordering from [8]. O

Now we turn our attention to parallel Skolemization for prenex formulas on
the left, using again a further weaker witnessed model property. Let L be a
lattice and consider X C PB(L). We say that an element b in L is n-V-compact
for some n € N if for all A € X,

\/Azb — a1 V...Va, >b for some ay,...,a, € A.

We will call a P-structure & = (A,S) n-(3)-witnessed if the element % is
n-V-compact in the following system:

Hllp(b,a)]|® | b€ S} | ¢(x, ) a P-formula and @ € S}.
Then =k has the n-(3)-witnessed model property if for any P-theory T U {¢},
TExk ¢ & every n-(3)-witnessed model 9 of T is a model of .

Ezxample 8. Tt is easy to generate examples of FL.-algebras A whose powerset is
not n-compact for any n but where 1 is n-V-compact: e.g., it would be sufficient
to assume that T is the top element in A, that the set {a € A | a < TA}
has a maximal element, and that there is an infinite chain in A. These examples
would then naturally yield logics with the n-(3)-witnessed model property which
in general do not have the n-witnessed model property.

The next proposition (which follows directly from [7, Corollary 4.3.10 and
Theorem 4.5.5]) presents an important class of logics with the 1-(3)-witnessed
model property given by algebras where, in general, 1 is not 1-V-compact.
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Proposition 1. Let K be a class of complete chains that generates a variety in
which the class of all chains admits reqular completions, i.e., each such chain can
be embedded into a complete one by an embedding preserving all (even infinite)
existing joins and meets. Then =g has the 1-(3)-witnessed model property.

Theorem 4. If =g has the n-(3)-witnessed model property, then for each P-
theory T U {o(x,§), ¥} and function symbols f1,..., fn ¢ P of arity ||,

n

TU{(vp)Fo)e(x 9} Frv < TU{(vy) \/ v} Fx ¢

Proof. The left-to-right direction is easy. For the right-to-left direction, suppose
that T U {(V§)(3z)p(z,7)} ¥k ¢. By assumption, there is an n-(3)-witnessed
model M of T'U {(vVy)(3z)p(z,y)} such that M [~ ¢. Since for each m € M,
|(3x)p(z, m)||™ > 1, there are ul,...,u™ € M such that

? n
lp@, m)[™* V- o uy, m) [P > T

But then, using the axiom of choice, we can define functions f; and expand the
model 9 into a model M’ such that for each P-formula x and m,5 € M,

II\/so fitm),m)|™ =T and  x(8)|™ = Ix(®)|™

So M’ is a model of T U{(Vy) Vi_, o(fi(y),y)} and I’ |~ . 0

As in the case of Skolemization on the right, this “one step” theorem extends
to all prenex formulas, assuming the additional quantifier shift condition, satis-
fied in particular whenever all algebras in K are co-frames (e.g., chains).

Theorem 5. Suppose that =g has the n-(3)-witnessed model property and for
all P-formulas ¢ and x such that x is not free in x:

Fr (Vo) (x V) = (x V (Vz)p)
Then =k admits parallel Skolemization left of degree n for prenex sentences.

Finally, putting together the results of this section for the special case of
first-order substructural logics based on classes of chains, we obtain:

Corollary 1. Suppose that K is a class of complete FLe-chains. Then =g admits
parallel Skolemization right of degree 1 for all prenex sentences. Moreover, if K
is a class of complete chains that generates a variety in which the class of all
chains admits reqular completions, then =x admits parallel Skolemization left
of degree 1 for all prenex sentences.

It follows in particular from this corollary that any logic axiomatized relative to
the first-order version of the logic MTL (the logic of all FL.,-chains, see [5]) by
adding axioms from the class P3 introduced in [4] admits parallel Skolemization
left and right of degree 1 for all prenex sentences.
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Reasoning About Embedded Dependencies
Using Inclusion Dependencies
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Abstract. The implication problem for the class of embedded depen-
dencies is undecidable. However, this does not imply lackness of a proof
procedure as exemplified by the chase algorithm. In this paper we present
a complete axiomatization of embedded dependencies that is based on
the chase and uses inclusion dependencies and implicit existential quan-
tification in the intermediate steps of deductions.

Keywords: Axiomatization - Chase - Implication problem - Depen-
dence logic - Embedded dependency - Tuple generating dependency *
Equality generating dependency - Inclusion dependency

1 Introduction

Embedded dependencies generalize the concept database dependencies within
the framework of first-order logic. Their implication is undecidable but how-
ever recursively enumerable, thus enabling complete axiomatizations. A standard
example of such a proof procedure is the chase that was invented in the late 1970's
[1,2], and then soon extended to equality and tuple generating dependencies [3].
In this paper we present an axiomatization for the class of embedded dependen-
cies that simulates the chase at the logical level using inclusion dependencies. In
particular, completeness of the rules is obtained by constructing deductions in
which all the intermediate steps are inclusion dependencies, except for the first
and the last step. These inclusion dependencies consist of attributes of which
some are new, i.e., such that they are not allowed to appear at any earlier stage
of the deduction.

As a background example, consider the combined class of functional and
inclusion dependencies. It is well known that the corresponding implication prob-
lem is undecidable, lacking hence finite axiomatization [4,5]. One strategy in
such situations has been to search for axiomatizations within a more general
class of dependencies, and partly for this reason many different dependency
notions were introduced in the 1980s. For instance, a textbook on dependency
theory from 1991 considers more than 80 different dependency classes [6]. In
[7] Mitchell proposed another strategy by presenting an axiomatization of func-
tional and inclusion dependencies using a notion of new attributes which should

© Springer-Verlag Berlin Heidelberg 2015
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be thought of as implicitly existentially quantified. In this paper we take an
analogous approach, and present an axiomatization for embedded dependencies
where new attributes correspond to new values obtained from an associated
chasing sequence. These attributes can be thought of as implicitly existentially
quantified in the sense of team semantics, that is, a semantic framework that
has teams, i.e., sets of assignments, as its underlying concept [8]. Team semantics
is compositionally applicable to logics that extend first-order logic with various
database dependencies [9,10]. In this setting, inclusion logic, i.e., first-order logic
with additional inclusion dependencies, captures the positive fragment of great-
est fixed-point logic and hence all PTIME recognizable classes of finite, ordered
models [11-13]. Therefore, inclusion dependencies with new attributes can be
thought of as greatest fixed-point logic expressions. This may in part enable
succinct intermediate steps in deductions in contrast to axiomatic systems that
simulate the chase by composing first-order definable dependencies.

The methods described in this paper generalize the axiomatization of condi-
tional independence and inclusion dependencies presented in [14]. It is also worth
noting that extending relations with new attributes reminds of algebraic depen-
dencies, that are, typed embedded dependencies defined in algebraic terms. The
complete axiomatization of algebraic dependencies presented in [15] involves also
an extension schema that introduces new copies of attributes.

2 Preliminaries

For two sets A and B, we write AB to denote their union, and for two sequences
ab, we write ab to denote their concatenation. For a sequence a = (a1, ..., a,)
and a mapping f, we write f(a) for (f(a1),..., f(an)). We denote by id the
identity function and by pr; the function that maps a sequence to its ith pro-
jection. For a function f and A C Dom(f), we write f|, for the restriction of f
to A, and for a set of mappings F', we write F'|, for {f|,: f € F}.

We start by fixing two countably infinite sets Val and Att, the first denoting
possible values of relations and the second attributes. For notational convenience,
we will assume that Val = Att. For R C Att, a tuple over R is a mapping R — Val,
and a relation over R is a set of tuples over R. We may sometimes write 7[R]
to denote that r is a relation over R. Values of a relation r over R are denoted
by Val(r), i.e., Val(r) :== {t(4) : t € r,A € R}. Let f be a valuation, i.e., a
mapping Val — Val. Then for a tuple ¢, we write f(t) := f ot, and for a relation
r, f(r) == {f(t) : t € r}. A valuation f embeds a relation r (a tuple t) to r" if
f(r) C v’ (f(t) € r). Since we are usually interested only valuations of a relation,
we say that f: Val(r) — Val is a valuation on r. For a valuation f on r, we say
that g is an extension of f to another relation r’ if ¢ is a valuation on 7’ such
that it agrees with f on values of Val(r) N Val(r').

Embedded dependencies (ed’s) can be written using first-order logic in the
following way.
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Definition 1 (Embedded Dependency). Embedded dependency is a first-
order sentence of the form

Vaq,... ,xn(gf)(xl, cenyTp) — Jz1 3z, - 7ym))

where {z1,..., 2k} ={y1,- -, Ym} \ {Z1, ..., 20} and

— ¢ is a (possibly empty) conjunction of relational atoms using all of the vari-
ables x1,...,Tn;

- 9 is a conjunction of relational and equality atoms using all of the variables
Rlye--sRks

— there are no equality atoms in ¥ involving existentially quantified variables.

If at most one relation symbol occurs in an ed, then we say that the ed is
unirelational, and otherwise it is multirelational. An ed is called typed if there
is an assignment of variables to column positions such that variables in relation
atoms occur only in their assigned position, and each equality atom involves
a pair of variables assigned to the same position. Otherwise we say that an
ed is untyped. If 1) contains only one atom, then we say that the ed is single-
head, and otherwise it is multi-head. A single-head ed where 1 is an equality is
called an equality generating dependency (egd). If ¢ is a conjunction of relational
atoms, then the ed is called a tuple generating dependency (tgd). For notational
simplicity, we restrict attention to unirelational ed’s. It is easy to se that any ed
is equivalent to a set of tgd’s and egd’s, and hence we restrict attention to ed’s
that belong to either of these subclasses.

The following alternative tableau presentation for egd’s and tgd’s are used
in this paper.

Definition 2. Let T and T’ be finite relations over R, and x,y € Val(T). Then
(T,x =vy) and (T, T") are an egd and a tgd over R, respectively, with the below
satisfaction relation for a relation r over S 2 R:

-r = (T,x = y) & for all valuations f such that f(T) C r|g, it holds that
f(@) = f(y).

-r = (T,T") < for all valuations f on T such that f(T) C r|g, there is an
extension g of f to T such that g(T") C 7.

Sometimes we write o[R] to denote that o is a dependency over R. If T or T”
is a singleton, then we may omit the set braces in the notation, e.g., write (7', t)
instead of (T, {t}).

We also extend valuations to dependencies. For an egd o = (T,2 = y) we
write Val(o) = Val(T), and for a tgd 7 = (T,T") we write Val(c) = Val(T) U
Val(T"). Moreover, if f is a valuation, then f(o) = (f(T), f(x) = f(y)) and
£(7) = (F(T), £(T")).

Example 1. Consider the relation r and the tgd’s o1 := ({¢,t'}, {u}) and 09 :=
({t,t'}, {v,v'}) obtained from Fig.1.! We notice that there are two valuations

! In a tableau presentation of a dependency o, the distinct values of o are sometimes
denoted by blank cells.
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A B C A B C A B C

so| 0 1 2 iz v =z tlx vy =z
r= 1513 0 1 oL = r oy oy =t Y
s212 3 0 vlz a x
s3|1 4 3 Ll r v a

Fig. 1. Relation r and tgd’s o1, 02

on {t,t'} that embed {¢,t'} to r, namely f := {(z,0),(y,1),(2,2)} and g :=
{(z,3), (y,0),(2,1)}. Then r E oy since f and g embed w into r, witnessed
by tuples s and ss, respectively. We also notice that r [~ o2 since, although
fU{(a,3)} embeds {v,v'} into r, no extension of g does the same.

Next we define inclusion dependencies which are examples of possibly
untyped tgd’s.

Definition 3 (Inclusion Dependency). Let Ay,..., A, and By,...,B, be
(not necessarily distinct) tuples of attributes. Then Ay ... A, C By ... By, is an
inclusion dependency (ind) over R = {A;,B; : i = 1,...,n} with the following
semantic rule for a relation r over S 2 R:

r=EA ... A, CB..B,&Vserds erVi=1,...,n:s(A;) = s (B;).

The axiomatization presented in the next section involves inclusion dependencies
that introduce new attributes. These attributes are here interpreted as existen-
tially quantified in lax team semantics sense [9]:

r | JA¢ & r[f/A] E ¢ for some f:r — P(Val)\ {0}, (1)

where r[f/A] == {t(z/A) : x € f(A)} and t(x/A) is the mapping that agrees with
t everywhere except that it maps A to z. Interestingly, inclusion logic formulae
with this concept of existential quantification can be characterized with positive
greatest fixed-point logic formulae (see Theorem 15 in [11]).

3 Axiomatization

In this section we present an axiomatization for the class of all embedded depen-
dencies. The axiomatization contains an identity rule and three rules for the
chase. We also involve conjunction in the language and therefore incorporate its
usual introduction and elimination rules in the definition. Regarding the equal-
ities that appear in the rules, note that both AB C AA and AB C BB indicate
that the values of A and B coincide in each row. Therefore, we use A = B to
denote ind’s of either form. For a tgd (an egd) o, we say that = € Val(o) is
distinct if it appears at most once as a value in o. Namely,

— for a tgd o = (T,T")[R], = is distinct if for all ¢,¢’ € TUT’ and A, B € R, if
t(A) =x =t(B), then t =t and B = B’;
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— for an egd 0 = (T,y = 2)[R], z is distinct if & {y, 2} and for all t,t' € T
and A,B € R, if t(A) =x =t/(B), thent =t and B=B’.

Lastly, note that in the following rules we assume that values can appear as
attributes and vice versa.

Definition 4. In addition to the below rules we adopt the usual introduction
and elimination rules for conjunction. In the last three rules, we assume that A
s a sequence listing the attributes of R.

EFE FEquality Exchange:
if A= B Ao, then 7.

where o is an ind and T is obtained from o by replacing any number of
occurrences of A by B and any number of occurrences of B by A.
CS Chase Start:
(T*,id)[RS]A N\ t(A) C A
teT
where T' = T*|,, S = Val(T') consists of new attributes, and R consists of

distinct values.
CR Chase Rule:

tgd: if (T,T")[R] A /\ fot(A) C A, then /\ fot'(A)C A,

teT t'eT’

egd: if (T,x =y)[RIA J\ fot(A) C A, then f(x) = f(y),
teT
where tgd: f is a valuation that it is 1-1 on Val(T") \ Val(T'), and f(x) is a
new attribute for z € Val(T") \ Val(T).
CT Chase Termination:

tgd: if (T*,id)[RS] A J\ uot'(A)C A, then (T,T')[R],
t'eT’

egd: if (T*,id)[RS]| Ax =y, then (T,x =y)[R],

where T = T*|,, S = Val(T), and Val(T*|y) consists of distinct values.
Moreover, tgd: u is a mapping Val(T") — Att that is the identity on Val(T)N
Val(T"), and egd: z,y € Val(T).

For a dependency o over R, we let Att(o) := R, and for a set of dependencies

X, we let Att(X) := J, 5 Att(o) .

Definition 5. A deduction from X is a sequence (o1,...,0,) such that:

1. Each o; is either an element of X, an instance of [CS], or follows from one
or more formulae of {o1,...,0,—1} by one of the rules presented above.

2. For each A € Att(o;), if A is new in o;, then A & Att(X U {o1,...,0,-1}),
and otherwise A € Att(X' U {o1,...,0,-1}).
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We say that o is provable from X, written X F o, if there is a deduction
(01,...,00) from X with 0 = o, and such that no attributes in o are new
M O1y...,0n.

We will also use the following rules that are derivable from [EE]:
ES Equality Symmetry:
if A= B, then B = A.
ET Equality Transitivity:
if A= BAB=C, then A=C.

One may find the chase rules slightly convoluted at first sight. However, the ideas
behind the rules are relatively simple as illustrated in the following examples.

Example 2 (Chase Start). Let o¢ := ({to,t1}, {uo})[RS] be as in Fig. 2, for
R:={A,B,C} and S := {z,y, z}. Then

ABC 2z y = ABC A BC
\ tolx vy =z
tolx vy =z tolx vy =z
oo = g1 — O’2=tl xr Yy
t1 x y! t1 T Yy w2 ”
Uo ‘x Yy 2 u| z x uiv .

Fig. 2. Dependencies op, 01,02

T:=09Nayz C ABC Nxzy C BC

is an instance of [CS]. Here x,y, z are interpreted either as values or as new
attributes. By the latter we intuitively mean that any relation r[ABC] can be

extended to some r'[ABCzyz] such that ' |= 7. For instance, one can define
/

r’ = q(r) where q is the following SPJR query
ABC (ﬂ-ﬂcyz (ny:BC (szz/ABC’ (ABC) > ABC)))

where o refers to (S)election, m to (P)rojection, i to (J)oin, and p to (R)ename
operator. Then ¢(r) is a relation over RS such that its restriction to zyz lists
all abc for which there exist s, s’ € r such that s(ABC) = abc and s'(BC) = ab.
Let 01 = ({to, t1}, {u1})[R] be as in Fig. 2. Now,

rEo; < q(r) Eze C AC.

Hence proving X' |= 07 reduces to showing that X' U {7} = za C AC.
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Example 3 (Chase Rule). Assume
oo ANxyz C ABC AN xy C BC (2)

where o3 = ({to,t1}, {uz,us})[R] is as in Fig.2, for R := {4, B,C}. Then,
interpreting f as id, one can derive with one application of [CR]

zv C AC ANvz C AC (3)

from (2). Note that in (3) v is interpreted as a new attribute, and the idea is that
any relation r[R] satisfying (2) and with v € R can be extended to a relation
r'[R U {v}] satisfying (3) by introducing suitable values for v.

Example 4 (Chase Termination). Assume
oo N\ zx C AC (4)

where o9 = ({to,f1}, {uo})[RS] is as in Fig.2, for R := {A,B,C} and S :=
{z,y, z}. Then, letting u = id, one can derive o1 as in Fig.2 from (4) with one
application of [CT].

4 Soundness Theorem

In this section we show that the axiomatization presented in the previous section
is sound. First note that the next lemma follows from the definitions of egd’s,
tgd’s and ind’s.

Lemma 1. Let o be a dependency over R, and let r and r' be relations over
supersets of R and with r|p =1'|z. Thenr =0 &1’ =o.

Then we prove the following lemma which implies soundness of the axioms. For
attribute sets R, R’ with R C R’ and a relation r over R, we say that a relation
r’ over R is an extension of r to R if 7’|, = r. Recall from Eq. 1 that exactly
such extensions are used in the existential quantification of lax team semantics.

Lemma 2. Letr be a relation over Att(X) such thatr = X, and let (o1, ...,05)
be a deduction from X. Then there exists an extension r' of r to Att(X U
{01,...,00}) such that v’ = X U{o1,...,0n}.

Proof. We prove the claim by induction on n. We denote by R,, the set Att(X U
{o1,...,0,}). Assuming the claim for n—1, we first find an extension r,,_ of r to
R, 1 such that r,_1 = X U{o1,...,0n-1}. If 0y, is obtained by an application
of a conjunction or some ind rule, then it is easy to see that we may choose
7y := rp—1. Hence, it suffices to consider the cases where o,, is obtained by using
one of the chase rules. Due to Lemma 1, it suffices to find an extension r, of
rn—1 to R, such that r, | o0,. In the following cases, A denotes a sequence
listing the attributes of R C R,,_1.
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Case [CS]. Assume that o, is obtained by [CS] and is of the form
(T*,id)[RS]A N\ t(A) C A

teT

where T' = T*|, S = Val(T) consists of new attributes and R of distinct values.
Let r,, := 7,1 1 be an extension of r,_1 to R,, = R,,_1S, where

r:={h: his a valuation on T" such that h(T) C r,,_1|g}.

We claim that r,, = 0,,. Consider the first conjunct of o,,, and let h be a valuation
on T* such that h(T*) C ry|gg- Then h|g is is a valuation on T such that
MT) C rolp = rn-1lg, i-e., hlg = to|g for some ¢y € ry,. Since R consists of
distinct values and thus R N Dom(h) = @, we may define h’ as an extension
of h with A + to(A), for A € R. Then 1|, = to|pg € Tnlpg, and therefore
rn = (T*,1d)[RS].

Consider then t(A) C A, for t € T, and let ty € r,. By the definition,
to|g = h for some valuation h on T' such that h(T) C r,| 5, and hence we obtain
that tgot(A) = hot(A) =t1(A) for some ¢; € r,. Therefore, r, = t(A) C A.
Case [CR]. Assume that o, is of the form (i) A, fot'(A) € A or (ii)
f(z) = f(y), and is obtained by [CR] from

(i) (T, THR] A /\teTf ot(A) C A,
(ii) (T,z =y)[R] A /\teT fot(A) C A,

where in case (ii) f is a valuation on T"UT"” such that it is 1-1 on S := Val(T") \
Val(T) and f(z) is a new attribute for x € S. Let s € r,_1. Since r,_1
Nier fot(A) C A, we first obtain that s o f(T) C rp_1]p.

(i) Since r,,—1 = (T,T")[R] we find a mapping ¢ : S — Val such that h(T") C
Tn—1|g, for h =gU (so f). Since f is 1-1 on S, we can now define 7, as the
relation obtained from r,_; by extending each s € r,_; with f(z) — g(x)
for € S. Then for each s € ry,, so f(T") C 7|, and hence we obtain that
™ /\t’ET/ fot'(A) C A.

(ii) It suffices to show that r,_1 = f(x) = f(y). Since so f(z) = so f(y) by
rn—1 E (T, z = y)[R], this follows immediately.

Case [CT]. Assume that o, is of the form (i) (T,T")[R] or (ii) (T,z = y)[R]
and is obtained by [CT] from

(1) (T*,id)[RS] A Npepruot'(A) C A, where u is a mapping Val(T') — Att
that is the identity on Val(T') N Val(T"),
(ii) (T*,id)[RS] Az =y, where z,y € Val(T).

Moreover, in both cases T' = T™*| 5, S = Val(T'), and Val(T*|4) consists of distinct
values. Tt suffices to show that r,_; = o, so let h be a valuation on T such that
h(T) C rp—_1|p. Since Val(T™|) consists of disctinct values, h can be extended
to a valuation A’ on T* such that h'(T*) C rp_1|pg. Since 1,1 = (T*,1d)[RS],
there is an extension h” of A’ to attributes in R such that h"|pq € rn_1|ps-
Hence, we obtain that h|g € 7,_1|g. Let then s € 7,_; be such that it agrees
with h on S.
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(i) Since 11 = Apepuot'(A) € A, we obtain that s o u(T") C rp_1p.
Moreover, we notice that s owu = h on Val(T) N Val(T").

(ii) Since r,—1 E x = y, we obtain that s(x) = s(y). Then h(xz) = h(y) since
x,y €S.

Hence, in both cases we obtain that r,_; = o,. This concludes the [CT] case
and the proof. a

Using the previous lemma, soundness of the rules follows.

Theorem 1. Let X U{c} be a finite set of egd’s and tgd’s over R. Then X = o
if Xk o.

Proof. Let r be a relation such that r = X, and assume that (o1,...,0,) is a
deduction from X where ¢ = o,, contains no attributes that appear as new in
01y .00 U R := Att(XU{o1,...,0,}), then by Lemma 2 we find an extension
' of r|p to R' such that r’ |= 6. Then using Lemma 1 we obtain that r = 0. O

5 Chase Revisited

In this section we define the chase for the class of egd’s and tgd’s. The chase
algorithm was generalized to typed egd’s and tgd’s in [3], and here we present
the chase using notation similar to that in [16]. First let us assume, for nota-
tional convenience, that there is a total, well-founded order < on the set Val,
e.g., r1 < x9 < x3 < ... for Val = {z1,29,23,...}. Let ¥ U {0} be a set of
egd’s and tgd’s over R. A chasing sequence of o over X' is a (possibly infinite)
sequence 0,01, ...,0n,... where 09 = o, and 0,41 is obtained from o,, with
T := pry(oy,), according to either of the following rules.

Let 7 € X be of the form (S, z = y), and suppose that there is a valuation f
on S such that f(S) C T but f(z) # f(y). Then 7 (and f) can be applied to oy,
as follows:

— egd rule: Let 0,41 := g(0,) where g : Val — Val is the identity everywhere
except that it maps f(y) to f(x) if f(z) < f(y), and f(z) to f(y) if f(y) <
f(@).

Let 7 € X be of the form (5,5’), and suppose that there is a valuation f on
S such that f(S) C T, but there exists no extension f’ of f to S’ such that
f(S") CT. Then 7 can be applied to o,, as follows:

— tgd rule: List all fi,..., f, that have the above property, and for each f;
choose a distinct extension to S, i.e., an extension f/ to S’ such that each
variable in Val(S’) \ Val(S) is assigned a distinct new value greater than any
value in Val(og) U ... U Val(o,). Moreover, no new value is assigned by two

1, f; where i # j. Then we let oy, 11 : (T U f{(S")U... U f},(S),pra(on))-

Construction of a chasing sequence is restricted with the following two con-
ditions:
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(i) Whenever an egd is applied, it is applied repeatedly until it is no longer
applicable.

(ii) No dependency is starved, i.e., each dependency that is applicable infinitely
many times is applied infinitely many times.

Let (¥, 0) = 09, 01,. .. be a chasing sequence of o over Y. Due to the possibility
of applying egd’s, a chasing sequence may not be monotone with respect to C.
Hence, depending on whether ¢ is a tgd or an egd, we define

— egd: chase(X,0) := (T, z = y),
— tgd: chase(X, o) := (T, T?),

where T := {u : ImVn > m(u € pr;(c,))} and z = y is pry(o,,) for n € N such
that pry(oy,) = pro(oy,) for all m > n. Note that “newer” values introduced
by the tgd rule are always greater than the “older” ones, and values may only
be replaced with smaller ones. Hence, no value can change infinitely often, and
therefore chase(X, o) is always well defined and non-empty.

We also associate each chasing sequence with the following descending val-
uations p,, for n > 0. We let pg = id, pp+1 = ¢ o py, if 0,41 is obtained by an
application of the egd rule where o,,11 = g(0,,), and p,41 = id o p,, otherwise.
We then define p(z) = lim, . pn(x), ie., p(x) = pup(x) if n € N such that
pm(x) = pn(x) for all m > n. Then we obtain that

chase(X,0) = U plon).
n=0

A dependency T is trivial if

— 7 is of the form (T,x = x), or
— 7 is of the form (T,7") and there is a valuation f on 7" such that f is the
identity on Val(T) NVal(T”) and f(T") CT.

It is well-known that the chase algorithm captures unrestricted implication
of dependencies. For the proof of the following proposition, see Appendix of the
arXiv version of the paper [17].

Proposition 1. Let X' U {o} be a set of egd’s and tgd’s over R. Then the fol-
lowing are equivalent:

(i) £k o,

(ii) there is a chasing sequence (X,0) = 09,01,... of o over X such that
chase(X, o) is trivial,
(iii) there is a chasing sequence (X,0) = 0¢,01,... of 0 over X such that o, is

trivial, for some n.
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6 Completeness Theorem

In this section we show that the rules presented in Definition 4 are complete for
the implication problem of embedded dependencies. Let us first illustrate the
use of the axioms in the following simple example.

Example 5. Consider the implication problem {o,0’'} = 7 where o,0',7 are
illustrated in Fig. 3, e.g., 0 = (T, t) where T consists of the top two rows of o and
t is the bottom row. Note that ¢ and 7 are embedded multivalued dependencies
of the foorm A — B|C and A — B|CD, respectively, and ¢’ is a functional
dependency of the form C' — D. It is easy to see that the implication holds, and
this can be also verified by a chasing sequence 79, 71, 72 of 7 over {0, 0’} where 7
is trivial (Fig. 4). In the chasing sequence, 7o = 7 and 77 is the result of applying
o to 7. For this, note that there exists two valuations on T that embed T to
pry (7o) but has no extension that embeds ¢ into pry(7g). These valuations are
the identity and the function f that swaps the values of the top and bottom row
of T. Then 77 is obtained by adding to pry(79) id*(¢) and f*(t) where id* and
f* are distinct extensions of id and f to ¢, e.g., id* = id also on d> and f* maps
ds to d3. Also, 75 is the result of applying ¢’ to 71 two times, i.e., 75 is obtained
from 71 by replacing ds with dy and ds with d;. Clearly 75 is trivial, and hence
we obtain the claim by Proposition 1.

A B C D A B C D A B C D
o — |0 bo co do o — | @0 bo co do L |ao bo co do
ap b1 c1 di a1 b1 co di ap b1 c1 di
ag by c1 do do = di ag bo c1 di

Fig. 3. Dependencies o, 0, T

This procedure can now be simulated with our axioms as follows. First, with
one application of [CS] we derive

(T7 ld)[RS] A agbgcodg € ABCD A agbicidy € ABCD

where T' = {t,t'}, R = {A,B,C, D}, and S = {ao, bo, b1, co,¢1,do,d1} is a set
of values that are interpreted as new attributes. Here ¢(z) and t'(z), for x € S,

A B C D A B C D

A B C D ao bo Co do ao bo Co do

To = ao bo Co do = _a_o _b1_ _01_ C£1_ - ao b1 C1 d1
ao bl C1 d1 ao bo C1 d2 ao bo C1 dl

ao bo C1 d1 ao b1 Co d3 ap b1 Co do

ao bo C1 dl ao bo C1 d1

Fig. 4. Chasing sequence 7o, 71, T2
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A B C D;ao bo b1 Co Ci1 do d1
t|ao bo co do
t ap b1 c1 di!
id jao bo bl Cop C1 do d1

Fig. 5. (T,id)[RS]

and A, B, C, D are interpreted as distinct values. (T, t)[RS] is illustrated in Fig. 5
where all the distinct values are hidden. Now with one application of [CR], letting
f =1id, we derive agbyc1ds € ABCD from

o A aopbgcodyg € ABCD A agbieidi € ABCD (5)

Note that in this step, ds is interpreted as a new attribute. Let then f be the
valuation that is the identity on ag,bg, b1,d;, and otherwise maps a; — ag,
¢o — c1, and dy — dy. We notice that f(aobocodn) = agboerds and f(a1bicody) =
apbicidy. Hence, we may derive with one application of [CR] f(dy) = f(d1), i.e.,
d2 = d1 from

o A f(aonCOdo) C ABCD A f(a1b160d1> C ABCD.
Then we apply [EE] and derive agbgc1d; € ABCD from
dg = d1 N a0b061d2 Q ABOD

Finally, we may apply [CT] and derive 7 from (T, id)[RS] A agboc1dy € ABCD.

The following lemma shows that the above technique extends to all chasing
sequences. The proof is straightforward and hence omitted here (see Appendix
of the arXiv version of the paper [17]).

Lemma 3. Let (X,0) = 0¢,01,... be a chasing sequence of o over X, where
Y U{o} is a finite set of egd’s and tgd’s over R, let A be a sequence listing
the attributes of R, let T := pry(o) and T; := pry(o;), and let n € N. Then
there exists a deduction from X, with attributes from R U J;cy Val(T;), listing
the following dependencies:

(1) (T*,id)[RS] where T*|, = T, S = Val(T'), and T*|y consists of distinct
values,
(i) f(z) = f(y), for each application of (S,x =1y) and f to o, for m <n,
(i11) t(A) C A, fort € T, where m < n.

With the lemma, we can now show completeness.

Theorem 2. Let X U {c} be a finite set of egd’s and tgd’s over R. Then X |=
ce Yo
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Proof. Assume that ¥ = o, and let A be a sequence listing R. Then by
Proposition 1 there is a chasing sequence (X, 0) = 09, 01,... of o over X' such
that o, is trivial for some n. Let D = (71,...,7;) be a deduction from X obtained
by Lemma 3, and let T := pr, (o) and T; := pr; (0;).

Assume first that o is an egd of the form (7,2 = y). Then o, is (Ty, 2z = 2)
where z = p, () = pn(y). Now, either p;11(x) is p;(z), or the equality p;y1(z) =
pi(z) (or its reverse) is listed in D by item (ii). Hence, using repeatedly [ES,ET]
we may further on derive z = . Since z = y is derivable analogously, we therefore
obtain z = y by [ES,ET]. Then with one application of [CT], we derive (T, x = y)
from (T*,id)[RS] A @ = y where T*|, = T. Note that the (T™,id)[RS] of the
correct form is listed in D by item (i) of Lemma 3.

Assume then that o is a tgd of the form (T,7"), and let T} := pry(o;). Then
o is (Ty,T)), and there is a valuation f on 7T, such that f is the identity on
Val(T,,) N Val(T}) and f(T}) C T,. Let ¢ € T'. Then p,, ot’ € T, and by item
(iii) of Lemma 3 we obtain that fop,ot'(A) C A is listed in D. For A € R, we
have then two cases :

— If t/(A) € Val(T") N Val(T), then we first notice that fop, ot’(A) is p, ot'(A)
since p,ot’(A) € Val(T))NVal(T,). Also we notice that the equality p,ot’ (A) =
t'(A) can be derived analogously to the egd case.

— Ift/(A) € Val(T")\Val(T), then fop,ot'(A) = fot'(A) since by the definition
of the chase p,, is the identity on Val(T") \ Val(T).

Now, letting f* be the mapping Val(T’) — Att which is the identity on Val(T")N
Val(T) and agrees with f on Val(T”) \ Val(T), we can by the previous reasoning
and using repeatedly [EE] derive f*ot’(A) C A from fop,ot'(A) C A. Finally,
we can then with one application of [CT] derive (T,7”) from

(T*,id)[RS]A N\ f*ot'(A) C A.

teT’ D

7 Typed Dependencies

Consider then the class of typed embedded dependencies. In this setting [CS] and
[CT] can be replaced with rules that involve only embedded join dependencies
(ejd’s) and inclusion dependencies. We define ejd’s over tuples of attributes as
follows.

Definition 6. Let A,,..., A, be tuples of attributes listing Ry, ..., Ry, respec-
tively, and let R :=J!", R;. Then 1(A;)" is an embedded join dependency
with the semantic rule

- rEX(A)iL, if and only if r|g =7|p, ... T .

The two alternative rules for the chase are now the following. We call a relation
typed if none of its values appears in two distinct columns.
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CS* Chase Start*:

/\ A Ct(A)Ax(t(A))er A \ H(A) C A

teT teT

where T is a typed relation and Val(T) is a set of new attributes.
CT* Chase Termination*:

tgd :if \ A Ct(A)Aa(t(A))er A [\ uot'(A) C A, then (T,T")[R],
teT t'eT’

egd : if /\ A Ct(AN(t(A))ter Nz =y, then (T, z = y)[R],

teT

where tgd: u is a mapping Val(T”) — Att that is the identity on Val(T”) N
Val(T"), and egd: z,y € Val(T).

The first rule is sound for typed dependencies since, for arbitrary r with
Dom(r)NVal(T) = 0, an instance of [CS*] is satisfied by r > ¢(r) where ¢ is the
SPJR query

Pty (A)/AA DL X py (ay a4,
where p is the rename operator and T = {t1, ..., t, }. However, a counter example
for soundness can be easily constructed for untyped dependencies. If 7" and r

are the relations illustrated in Fig. 6, then no extension ' of r to Val(T') satisfies
Nier t(AB) C AB.

A B

y r=
X

A B
0 1

tlz
|y

Fig. 6. Relations T and r

Soundness of [CT*] is obtained analogously to that of [CT]. Also, com-
pleteness is obtained by deriving exactly in the same way as in the general
case, Npycpuot'(A) C A (in the tgd case) or x = y (in the egd case) from
Niert(A) € A. Let us then write ¥ =* ¢ if o is deduced from X in the sense
of Definition 5 and using rules [EE,CS* CR,CT*] together with elimination and
introduction of conjunction. Then we obtain the following theorem.

Theorem 3. Let X U {c} be a finite set of typed egd’s and tgd’s over R. Then
YEos Yo
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Abstract. We propose a general framework for modelling and solving
deductive games, where one player selects a secret code and the other player
strives to discover this code using a minimal number of allowed experi-
ments that reveal some partial information about the code. The framework
is implemented in a software tool COBRA, and its functionality is demon-
strated by producing new results about existing deductive games.

1 Introduction

Deductive games (also known as codebreaking games) are played by two players,
the codemaker and the codebreaker, where the codemaker selects a secret code
from a given finite set, and the codebreaker strives to reveal the code through a
series of experiments whose outcomes give some partial information about the
code. A codebreaker’s strategy is a recipe how to assemble the next experiment
depending on the outcomes of the previous experiments so that the code is even-
tually discovered. The efficiency of a given strategy is measured either by the
maximal number of experiments required to discover the code in the worst case,
or by the expected number of experiments required to discover the code assuming
the uniform probability distribution over the secret codes. Although various spe-
cial types of deductive games have been deeply analyzed at both theoretical and
experimental level (see below), to the best of authors’ knowledge there is no soft-
ware tool which inputs a description of a deductive game (written in a suitable
high-level language) and then computes optimal strategies automatically. In this
paper, we present a software tool COBRA (COde-BReaking game Analyser [1])
which achieves this functionality. Despite its versatility, COBRA can fully ana-
lyze non-trivial deductive games where the number of admissible experiments is
very large (104 or even more). Note that one cannot even enumerate all of these
experiments in reasonable time, and COBRA implements advanced methods for
identifying and bypassing families of experiments that are equivalent to already
considered ones (up to some symmetry) without considering them explicitly.
This is perhaps the most advanced part of COBRA’s design which is based on
nontrivial concepts and observations (see Sect.2). Using COBRA, we were able
to produce results about some standard deductive games that were not known
before (see Sect. 3).
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Existing Works. Simple examples of well-studied deductive games include var-
ious board games and puzzles such as Mastermind and the counterfeit coin
problem (CCP), which are also used as running examples in this paper. In
Mastermind, the codemaker chooses a secret sequence of n code pegs of ¢ col-
ors (repetitions allowed). The codebreaker tries to reveal the code by making
guesses (experiments) which are evaluated by a certain number of black and
white markers. A black marker is received for each code peg from the guess
which is correct in both color and position. A white marker indicates the exis-
tence of a correct color code peg placed in the wrong position. For the classi-
cal variant with four pegs and six colors, Knuth [17] demonstrated a strategy
that requires five guesses in the worst case and 4.478 guesses on average. Later,
Irving [14], Neuwirth [20], and Koyama and Lai [19] presented strategies which
improve the expected number of guesses to 4.369, 4.364, and 4.34, respectively
(the bound 4.34 is already optimal). More recently, strategies for Mastermind
were constructed semi-automatically by using evolutionary algorithms [2], simu-
lated annealing [4], genetic algorithms (see, e.g., [3] and the references therein),
or clustering techniques [7].

In the basic variant of the counterfeit coin problem (CCP), one is given N
coins, all identical in appearance, and all identical in weight except for one,
which is either heavier or lighter than the remaining N — 1 coins. The goal is to
devise a procedure to identify the counterfeit coin using a minimal number of
weighings with a balance. This basic variant was considered by Dyson [8] who
proved that CCP can be solved with w weighings (experiments) iff 3 < N <
(3" —3)/2. There are numerous modifications and generalizations of the basic
variant (higher number of counterfeit coins, additional regular coins, multi-pan
balance scale, parallel weighing, etc.) which are harder to analyze and in some
cases only partial results exist. We refer to [13] for an overview.

Deductive games can also model certain types of attacks in modern security
systems based on information leakage, where an unauthorized attacker reveals a
part of secret information in some unexpected way. For example, in ATM net-
works, hardware security modules (HSMs) are used to perform sensitive crypto-
graphic operations such as checking a PIN entered by a customer. These HSMs
are controlled by a strictly defined API to enforce security. API-level attacks
are sequences of unanticipated API calls aiming to determine the PIN value;
after each call, a piece of information about the PIN value is leaked, and the
whole sequence collects enough data to reconstruct the PIN. One such attack,
described in [6,21], can be modeled as a deductive game similar to Mastermind.
Clearly, the problem of synthesizing an optimal codebreaker’s strategy is highly
interesting in this context.

Other examples of deductive games include string matching games, where the
secret code is a sequence of letters and the codebreaker repeatedly tries to guess
the string. Each guess is evaluated by revealing the total number of matching
letters. This game was studied already by Erdés and Rényi [10] who gave some
asymptotic results about the worst-case number of guesses. Recently, this game
found an application in genetics for selecting a subset of genotyped individuals
for phenotyping [11,12].
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Due to space constraints, some proofs and tables describing the outcomes of
experimental results achieved by COBRA are omitted. These can be found in [16].

2 Cobra: The Underlying Principles

Given a finite or countable set A, the set of all propositional formulae over A
is denoted by FORM(A). Apart of standard Boolean connectives, we also use
the operator EXACTLY;, where ¢ € N, such that EXACTLY;(®1, ..., @m) is true
iff exactly ¢ of the formulae ¢1,..., ¢, are true. For technical convenience, we
assume that all Boolean connectives used in formulae of FORM(A) are com-
mutative. That is, we allow for —, A, V, EXACTLY;, ..., but we forbid implica-
tion which must be expressed using the allowed operators. For a given formula
» € FOrRM(A), we use Val(p) to denote the set of all valuations of A satisfying
p. We write ¢ ~ ¢ and ¢ = 1 to denote that ¢ and v are semantically and
syntactically equivalent, respectively, and we extend this notation also to sets
of formulae. Hence, if &, ¥ are sets of formulae, then ® ~ ¥ and ¢ = ¥ means
that the two sets are the same up to the respective equivalence. The syntactic
equivalence = is considered modulo basic identities such as commutativity or
associativity.

Our formal model of deductive games is based on propositional logic. Infor-
mally, a deductive game is given by

— a finite set X of propositional variables and a propositional formula ¢y over
X such that every secret code ¢ can be represented by a unique valuation v,
of X, and for every valuation v of X we have that v(pg) = true iff v = v, for
some secret code c;

— a finite set of allowed experiments 7.

To model CCP with N coins, we put X = {x1,...,2n,y}, and we represent a
secret code ¢ where the i-th coin is heavier by a valuation v, where v.(x;) = true,
ve(z;) = false for all j # i, and v.(y) = true (ie., y is set to true iff the
different coin is heavier). The formula g says that precisely one of the variables
T1,...,xN is set to true. In Mastermind with n pegs and m colors, the set X
contains variables z; ; for all 1 <4 <n and 1 < j < m; the variable z; ; is set to
true iff the i-th peg has color j. The formula ¢, says that each peg has precisely
one color.

Typically, the number of possible experiments is large but many of them differ
only in the concrete choice of participating objects. For example, in CCP with
6 coins there are essentially three types of experiments (we can weight either
141, 242, or 343 coins) which are instantiated by a concrete selection of coins.
In Mastermind, we perform essentially only one type of experiment (a guess)
which is instantiated by a concrete tuple of colors. In general, we use a finite set
X of parameters to represent the objects (such as coins and colors) participating
in experiments. A parameterized experiment t € T is a triple (k, P,®) where k
is the number of parameters, P C X* is the set of admissible instances, and &
are possible outcomes given as abstract propositional formulae (see below).
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Definition 1. A deductive game is a tuple G = (X, o, X, F,T), where X is
a finite set of (propositional) variables, ¢o € FORM(X) is a satisfiable initial
constraint, X' is a finite set of parameters, and

~ F C X% is a set of attributes such that for all f, f' € F where f # f' we
have that the images of f and f' are disjoint,

- T is a finite set of parameterized experiments of the form (k, P,®) where
k € N is the number of parameters, P C X* is a set of instances, and & is a
finite subset of FORM(X U{f($j) | f € F,1 < j <k}). The elements of & are
called outcomes.

The intuition behind X, g, and X is explained above. Each attribute f € F
corresponds to some “property” that every object a € X' either does or does not
satisfy, and f(a) is the propositional variable of X which encodes the f-property
of a. In CCP with N coins, the objects are the coins (i.e., ¥ = {coin; | 1 <
1t < N}), and for each coin we need to encode the property of “being different”.
So, there is just one attribute d which maps coin; to x; for all 1 < i < N. In
Mastermind with n pegs and m colors, each object (color) has the property of
“being the color of peg i”, where ¢ € {1,...,n}. Hence, there are n attributes
pegq, - - ., peg,, where peg,(color;) = x; ;.

Now consider a parameterized experiment ¢t = (k, P, ®). An instance of t is a
k-tuple p € P C X% of parameters. For every instance p € P and every outcome
1 € @, we define the p-instance of 1 as the formula ¥ (p) € FORM(X) obtained
from ¢ by substituting each atom f($;) with the variable f(p;). Hence, f($)
denotes the variable which encodes the f-attribute of p;. In the rest of this
paper, we typically use ¢, to range over outcomes, and &, x to range over their
instances. We also use F to denote the set of all experiment instances (or just
experiments) defined by E = {(¢t,p) | t € T, pisaninstanceof t}. Further, for
every experiment e = (¢, p), we use @(e) to denote the set of p-instances of all
outcomes of t. An evaluated experiment is a pair (e, ), where & € ®(e). The set
of all evaluated experiments is denoted by {2

Ezample 2. CCP with four coins can be modeled as a game G = (X, g, X, F, T)
where X = {z1, 22, 3, 24,y}, o = EXACTLY1 (21, X2, T3,24), X = {coin, coina,
coins, coing}, F' = {d} where d(coin;) = z; for every 1 < i < 4,and T = {t1,t2}
where tl = (2a E<2>’ {90<7 P=; §0>})a t2 = (4a E<4>a {1/’<, 1/}:7 1/}>})7 and

o< = (d(S1) A—~y) Vv (d($2) Ay)
o = —d($1) A —d($2)
g ($2) A

P> = (d($1) Ay) v )
1 A=y) v ((d($3) V d(34)) Ay)
3

Y = ((d(81) Vv d(82)
== —d(31) A =d(32) A —d(33) A —d(34)
P> = ((d($1) Vv d($2)) Ay) v ((d(83) vV d(34)) A —y)

Here, X*) C X* consists of all w € X* such that every letter of X appears
at most once in w. Note that t; and o correspond to weighings of 1 + 1 and
2+ 2 coins, respectively. The formulae o, ¢o—, and ¢~ encode the three possible
outcomes of weighing 1+ 1 coins. In particular, ¢ describes the outcome when
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the left pan is lighter; then we learn that either the first coin is different and
lighter, or the second coin is different and heavier. If we put p = (coing, coing),
then w«(p) is the formula (z4 A —y) V (x3 Ay).

For the rest of this section, we fix a deductive game G = (X, ¢o, X, F,T). We
assume that G is well-formed, i.e., for every valuation of Val(pg), each experi-
ment produces exactly one valid outcome (deductive games that correctly encode
meaningful problems are well-formed, so this condition is not restrictive). Intu-
itively, the game G is played as follows:

1. The codemaker selects a secret code v € Val(p).

2. The codebreaker selects the next experiment e € F.

3. The codemaker evaluates e for v and returns the resulting evaluated experi-
ment (e, ).

4. If the codemaker has enough information to determine v, the play ends. Oth-
erwise, it continues with Step 2.

We assume that the only information available to the codebreaker is the history
of evaluated experiments played so far. Hence, a strategy is a (total) function
o : 2 — FE which specifies the next experiment for a given finite history of
evaluated experiments.

Every strategy o determines the associated decision tree, denoted by Tree,,
where the internal nodes are labeled by experiments, the leaves are labeled by
valuations of Val(yp), and the edges are labeled by evaluated experiments. For
every node u of Tree,, let A7 = (e1,&1),..., (en,&n) be the unique sequence of
evaluated experiments that label the edges of the unique finite path from the
root of Tree, to u (note that if u is the root, then A7 = ¢). We also use ¥7
to denote the formula wg A & A -+ A &,. The structure of Tree, is completely
determined by the following conditions:

— Every node u of Tree, is either an internal node labeled by o(\7), or a leaf
labeled by the only valuation of Val(¥7), depending on whether | Val(¥7)| > 1
or not, respectively.

— Every internal node u of Tree, labeled by e has a unique successor ug for
each & € ®(e) such that the formula ¥J A ¢ is still satisfiable. The edge from
u to ug is labeled by (e, §).

Note that different nodes/edges may have the same labels, and Tree, may con-
tain infinite paths in general.

Example 3. Consider the game G of Example2. A decision tree for a simple
strategy o is shown in Fig.1 (we write just ¢ instead of coin;, and we use i, ¢
(or 4, h) to denote the valuation of Val(po) which sets z; to true and y to false
(or to true, respectively)). Note that o discovers the secret code by performing
at most three experiments. Also note that some internal nodes have only two
successors, because the third outcome is impossible.

Since G is well-formed, every strategy o and every v € Val(pg) determine
a unique (finite or infinite) path wy,us,ug,... initiated in the root of Tree,,
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€] = (tl, (1, 2))

i

(61,<p<(172)) (61,<p=(1,2)) (61)‘P>(1#2))

4, h 4,4

Fig. 1. A decision tree for a simple strategy.

which intuitively correspond to a play of G where the codemaker selects the
secret code v. We use \J = (e1,&1), (e2,82), (e3,&3), ... to denote the associated
sequence of evaluated experiments, i.e., (e;,&;) is the label of (u;,u;+1). The
length of A7 is denoted by #AZ. Further, for every k < #M\J, we use W7 [k]
to denote the formula ¥y which represents the knowledge accumulated after
evaluating the first k£ experiments.

Now we can define the worst/average case complexity of o, denoted by

Cuworst(0) and Cayg (o), in the following way:

Zvé Val(vo) #Ag
| Val(o)|

Note that the worst/average case complexity of o is finite iff every v € Val(ypg) is
discovered by o after a finite number of experiments. We say that G is solvable iff
there exists a strategy o with a finite worst/average case complexity. Further, we
say that a strategy o is worst case optimal iff for every strategy o’ we have that
Cuworst(0) < Cuorst(0”). Similarly, o is average case optimal iff Cqpg(0) < Cang(0”)
for every strategy o’.

In general, a codebreaker’s strategy may depend not only on the outcomes
of previously evaluated experiments, but also on their order. Now we show that
the codebreaker can select the next experiment only according to the semantics
of the knowledge accumulated so far.

Cuworst(0) = max{#XJ | v € Val(pp)} Cang(o) =

Definition 4. A strategy o is knowledge-based if for all vi,vo € Val(po) and
ki,ky € N such that W7 [k1] = W7 [ks] we have that o(A] (1),...,)] (k1)) =
0-()"?12(1)’ SRR} )\gg (k2))
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The next theorem says that knowledge-based strategies are equally powerful as
general strategies.

Theorem 5. Let G be a well-formed deductive game. For every strategy o there
exists a knowledge-based strategy T such that for every v € Val(pg) we have that

BT < H#AT.

In the proof of Theorem 5, we show that the only reason why o might not be
knowledge-based is that ¢ schedules completely useless experiments which can
be safely omitted. Thus, we transform o into 7.

Since the codebreaker may safely determine the next experiment just by
considering the currently accumulated knowledge, we can imagine that he some-
how “ranks” the outcomes of available experiments and then chooses the most
promising one. More precisely, let KNow C FOrRM(X) be the set of all formulae
representing an accumulated knowledge, i.e., KNOW consists of all ¥ [k] where o
is a strategy, v € Val(go), and k € N. For every ¢ € KNOW and every experiment
e € E, we define the set

Updates|p,e] = {p A& | € € Ple)}

which represents possible “updates” in the accumulated knowledge that can be
obtained by performing e. Further, let r : 2KN0W _ R be a ranking function, and
= (some) total ordering over the set E of all experiments.

Definition 6. A ranking strategy determined by r and =< is a function 7[r, <] :
KNOW — E such thatT[r, <]|(p) is the least element of {e € E | r(Updates|p, e]) =
Min} w.r.t. <, where Min = min{r(Updates[p,€']) | ¢’ € E}.

Note that every ranking strategy can be understood as a “general” strategy,
and hence all notions introduced for general strategies (such as the decision
tree) make sense also for ranking strategies. Further, for every knowledge-based
strategy 7 there is an “equivalent” ranking strategy 7[r, <] where, for all ¢ €
KNnow and e € E, the value of r(Updates|p,e]) is either 0 or 1, depending
on whether Updates[p, €] is equal to Updates|p, T(¢)] or not, respectively. The
ordering = can be chosen arbitrarily. One can easily show that for every v €
Val(po) we have that #\7 = #)\Z[T’ﬂ. So, ranking strategies are equally powerful
as knowledge-based strategies and hence also general strategies by Theorem 5. In
particular, there exist worst/average case optimal ranking strategies, but it is not
clear what kind of ranking functions they need to employ. Since optimal strategy
synthesis is computationally costly, one may also fiz some r and =, synthesize
7[r, %], and evaluate its worst/average case complexity. Thus, by experimenting
with different r and =<, one may obtain various strategies that solve the game,
and then choose the most efficient one.

Now we introduce several distinguished ranking functions (all of them are
implemented in COBRA). They generalize concepts previously used for solving
Mastermind, and there are also two new rankings based on the number of fixed
variables. The associated ranking strategies always use the lexicographical order-
ing over E determined by some fixed linear orderings over the sets T" and X.
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— max-models(¥) = maxyew | Val(¢)|. The associated ranking strategy mini-
mizes the worst-case number of remaining secret codes. For Mastermind, this
was suggested by Knuth [17].

Val(4)|? . . .
— exp-models(¥) = % The associated ranking strategy minimizes
Yew

the expected number of remaining secret codes. For Mastermind, this was
suggested by Irwing [14].

- ent-models(¥) = 3° |Va1l\§w)| -log(“/a]l\gw)l)7 where N = 37 | Val()].
The associated ranking strategy minimizes the entropy of the numbers of
remaining secret codes. For Mastermind, this was suggested by Neuwirth [20].

— parts(¥) = —|{¢ € ¥ | Yissatisfiable}|. The associated ranking strategy
minimizes the number of satisfiable outcomes. For Mastermind, this was sug-
gested by Kooi [18].

We say that a variable z € X is fized in a formula ¢ € FORM(X) if x is set to the
same value by all valuations satisfying ¢ (i.e., for all v,v" € Val(p) we have that
v(z) = v'(x)). The set of all variables that are fixed in ¢ is denoted by Fiz(p).
We consider two ranking functions based on the number of fixed variables.

— min-fixed(¥) = —minyew |Fiz(y)|. The associated ranking function maxi-
mizes the number of fixed variables.

— exp-fixed(¥) = — Z“ijp:jﬁ@;i!iﬁ(wl . The associated ranking function max-

imizes the expected number of fixed variables.
Intuitively, a “good” ranking function should satisfy two requirements:

— The associateted ranking strategy should have a low worst/average case com-
plexity. Ideally, this strategy should be optimal.

— The ranking function should be easy to evaluate for a given experiment e.
This is crucial for automatic strategy synthesis.

Obviously, there is a conflict in these two requirement. For example, the max-
models ranking often produces a rather efficient strategy, but the number of
satisfying valuations of a given propositional formula is hard to compute. On the
other hand, min-fixed ranking produces a good ranking strategy only in some
cases (e.g., for CCP and its variants), but it is relatively easy to compute with
modern SAT solvers even for large formulae.

Example 7. Consider again the game G of Example 2 formalizing CCP with four
coins. Further, consider the experiments

— ey = (1, (coiny, coing)),
— ey = (ta, (coiny, coing, coing, coing))

for the first step (i.e., when the current accumulated knowledge is just ¢g). In ey,
we weight coing against coing. The number of satisfying assignments is 2 for the
outcomes ¢ and ¢~ , and 4 for the outcome ¢_. For the outcomes p. and ¢,
we know that the counterfeit coin is not among coinsg and coing, and for the p_
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Table 1. A table summarizing the outcomes of ranking functions.

max-models | exp-models | ent-models | parts | min-fixed | exp-fixed
e1 |4 3 —1.04 -3 | -2 -2
e2 |4 4 —0.69 -2 0 0

outcome, we know it is not among coin; and coins. Hence, every outcome fixes
2 variables. Similarly, we can evaluate e; and the other ranking functions. The
results are summarized in Table1. Observe that all of the considered ranking
strategies would prefer e; to e in the first step, possibly except for the max-
models ranking strategy where the choice depends on the chosen liner ordering
over T and X (it 1 is smaller that t5, this strategy also prefers e;).

Although computing 7[r, <] for given r and < appears computationally easier
than synthesizing an optimal strategy, we still need to (repeatedly) compute the
least element of {e € E | r(Updates|p,e]) = Min} w.r.t. <, where Min =
min{r(Updates[p,€']) | ¢ € E}, which is not achievable by enumerating all
experiments. For example, in CCP with 60 coins, there are more than 1053
ways of instantiating the parameterized experiment ¢ formalizing the weighing
of 204-20 coins. However, observe that if ¢ is performed in the first step, i.e., when
the accumulated knowledge is just g, then all instances of ¢ are “equivalent”
in the sense that the knowledge learned by these instances is the same up to
a permutation of coins. Hence, it suffices to consider only one instance of ¢
and disregard the others. COBRA implements an algorithm which can efficiently
recognize and exploit such symmetries. Now we briefly explain the main ideas
behind this algorithm.

A permutation of X is a bijection 7 : X — X. We use PERM(X) to denote
the set of all permutations of X. Given a formula ¢ € FORM(X) and a permu-
tation m € PERM(X), we use 7(p) to denote the formula obtained from ¢ by
simultaneously substituting every occurrence of every x € X with «(z). For a
given @ C FORM(X), we use 7(®P) to denote the set {m(p) | ¢ € P}

Definition 8. Lete,e¢’ € E and m € PERM(X). We say that ' is m-symmetrical
to e if m(P(e)) ~ P(e'). A symmetry group of G, denoted by II, consist of all
m € PERM(X) such that for every e € E there is a w-symmetrical €' € E.

We say that e,e’ € E are equivalent w.r.t. a given ¢ € KNOW, written
e~y €, if there is m € I such that {o N | € P(e)} = {m(pAo)| o€ P(e)}.

Note that IT is indeed a group, i.e., II contains the identity and if 7 € I, then
the inverse 7—! of 7 also belongs to IT.

Ezample 9. Consider the game of Example 2. Then IT = {7 € PERM(X) | (y) =
y}. Hence, for all p,q € X% we have that (to, p) ~y, (t2,q), and the partition
E/~, has only two equivalence classes corresponding to t; and to. For ¢ = ¢g A
(21 V x2), we have that (t1(coing, coing)) ~, (t2, (coins, coini, coing, coing)).
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The core of COBRA are the algorithms for synthesizing worst/average case
optimal strategies, and for analyzing the efficiency of 7[r, X]. For a current accu-
mulated knowledge ¢ € KNOW, these algorithms need to consider at least one
experiment for each equivalence class of E/~,. This is achieved by invoking a
function EXPERIMENTS(p) parameterized by ¢ which computes a set of exper-
iments S, C E such that for every e € E there is at least one €' € S, where
e ~, €. A naive approach to constructing S, is to initialize Sw := 0 and
then process every t = (k, P,®) € T as follows: for every p € X* we check
whether p € P and (t,p) 7, e for all e € S}O; if this test is positive, we put
S, := S, U{(t,p)}, and continue with the next p. When we are done with all
teT,weset S, := Sw Obviously, this trivial algorithm is inefficient for at least
two reasons.

1. The size of £* can be very large (think again of CCP with 60 coins), and it
may not be possible to go over all p € X*.
2. The problem of checking ~ is computationally hard.

Now we indicate how COBRA overcomes these issues. Intuitively, the first issue is
tackled by optimizing the trivial backtracking algorithm which would normally
generate all elements of X* lexicographically using some total ordering < over X.
We improve the functionality of this algorithm as follows: when the backtracking
algorithm is done with generating all k-tuples starting with a given prefix ua €
Xm where m € {1,...,k}, and aims to generate all k-tuples starting with ub,
we first check whether ub is dominated by ua w.r.t. ¢ and ¢t. The dominance
by wa guarantees that all of the experiments that would be obtained by using
the k-tuples starting with ub are equivalent to some of the already generated
ones. Hence, if ub is dominated by wa w.r.t. ¢ and ¢, we continue immediately
with the <-successor ¢ of b, i.e., we do not examine the k-tuples starting with
ub at all (note that uc is again checked for dominance by wa). This can lead to
drastic improvements in the total number of generated instances which can be
much smaller than |X|*. The set of all experiments generated in the first phase
is denoted by S}a.

The second issue is tackled by designing an algorithm which tries to decide
~, for a given pair of experiments e;,es by first removing the fized variables
in ¢ and the outcomes of ey, e5 using a SAT solver, and then constructing two
labeled graphs By, ., and B, ., which are checked for isomorphism (here COBRA
relies on existing software tools for checking graph isomorphism). If the graphs
are isomorphic, we have that e; ~ ez, and we can safely remove e; or ez from
S 30. When the experiments are ordered by some =<, we prefer to remove the larger
one. Thus, we produce the set S,. Now we explain both phases in greater detail.

Let t = (k,P,®) be a parameterized experiment, and let i,5 € {1,...,k}
be two positions. We say that ¢, j are closely dependent if ¢ = j or there exists
an attribute f € F such that both f($i) and f(37) occur in the formulae of .
Further, we say that i, j are dependent if they are related by the transitive closure
of close dependence relation. Note that the set {1,...,k} can be partitioned into
disjoint subsets of mutually dependent indexes. Further, for every i € {1,...,k}
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we define the set F; consisting of all f € F such that f($j) occurs in some
formula of @ where j € {1,...,k} and ¢, are dependent.

As an example, consider the parameterized experiment ¢, in the game of
Example2. Then all indexes are mutually dependent and F; = {d} for every
i €{1,2,3,4}. In Mastermind with n pegs and m colors, there is only one para-
meterized experiment t = (n, {colory, ..., color,,}",P), and all indexes are again
mutually dependent. We have that F; = {peg,,...,peg,} for all i € {1,...,n}.

We say that r € X%, where 1 < i < k, is t-feasible if there is s € X*~% such
that rs € P. Further, for all p € ¥* m € {1,...,k}, and a,b € X, we denote
by p[m, a«b] the element of X* obtained from p by simultaneously substituting
every occurrence of a with b and every occurrence of b with a at all positions j
where m and j are dependent.

Definition 10. Let ¢ € Know, t = (k,P,®) € T, and let ua € X™ be a
t-feasible tuple, where 1 < m < k. We say that ub € X™ is dominated by ua
w.r.t. ¢ and t if the following conditions are satisfied:

— for everyv wherep = ubv € P we have that p[m, a—b] € P andp[m, a—b] < p;

~ forevery f € F,,, the variables f(a) and f(b) do not occur in the formulae of ®;

— the permutation m, defined by w(f(a)) = f(b), w(f(b)) = f(a) for all f € Fp,,
and 7(y) =y for the other variables, is a symmetry of ¢, i.e., ¢ = 7(p).

Theorem 11. Let ¢ € KNow, t = (k,P,®) € T, and let ua € X™ be a
t-feasible tuple, where 1 < m < k. If ub is dominated by ua w.r.t. ¢ and t,
then for every v € X*~™ such that p = ubv € P we have that p[m,a«b] € P
and (tap) ~eo (tap[m7a<_>b])

Proof. Let ¢ = p[m,a<?b], and let m be the permutation introduced in
Definition 10. We show that {p A | € &((¢t,p))} ={r(p A o) |0 € P((t,q))}.
Since ¢ = 7(p), it suffices to prove that ¥(p) = n(¥(q)) for all ¥ € P. Let us fix
some ¥ € @. Observe that the formulae ¥(p) and m(¥(q)) are the same except
that all f($i) are evaluated either to f(p;) or to m(f(q;)), respectively. Let us
examine possible cases.

~ If a # p; # b, then p; = q; and 7(f(q:)) = 7(f(p:)) = f(pi) by Definition 10.

— If i and m are independent, then again p; = ¢; and 7(f(q;)) = 7(f(pi)) =
f(p;) by Definition 10 (note that f & Fy,).

— If i,m are dependent and p; = a, then n(f(p;)) = 7(f(a)) = f(b) = f(q:)
because f € F;. The case when i, m are dependent and p; = b is symmetric. O

Theorem 11 fully justifies the correctness of the improved backtracking algorithm
discussed above in the sense that the resulting set S}D indeed contains at least
one representative for each equivalence class of E/~.

Now we describe the second phase, when we try to identify and remove some
equivalent experiments in Sé. The method works only under the condition that
for every t = (k,P,®) € T we have that P is closed under all permutations
of X (note that this condition is satisfied when P = X* or P = X(¥)). Possible

generalizations are left for future work. The method starts by constructing a
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labeled base graph B = (V, E, L) of G, where the set of vertices V is X U F' (we
assume X N F = @) and the edges of E are determined as follows:

— (f,z) € E, where f € F and x € X if there is a € X such that f(a) = z;

— (z,y) € E, where z,y € X, if there are a € X, f,g € F, t € T, some outcome
1 of T, such that f(a) =z, g(a) =y, and both f($i) and g($i) appear in ¢
for some i € {1,...,k}.

The labeling L : V — X U F U {var}, where var ¢ X U F, assigns var to every
variable € X such that « does not appear in any outcome of any parameterized
experiment of T'. For the other vertices v € V, we have that L(v) = v. The base
graph B represents a subset of IT in the following sense:

Theorem 12. Letn be an automorphism of B. Then restricted to X belongsto I1.

Now, let ¢ € FORMy be a formula representing the accumulated knowledge,
and let e; = (¢1,p) and e = (t2, q) be experiments. We show how to construct
two labeled graphs B, ., and B, ., such that the existence of an isomorphism
between B, ., and B, ., implies e; ~ €.

For every formula ) € FORMy, let Stree(i)) be the syntax tree of 1, where
every inner node is labeled by the associated Boolean operator, the leaves are
labeled by the associated variables of X, and the root is a fresh vertex root(v)
with only one successor which corresponds to the topmost operator of ¢ (the
label of oot (1)) is irrelevant for now). Recall that we only allow for commutative
operators, so the ordering of successors of a given inner node of Stree(t) is not
significant. Each such Stree(1) can be attached to any graph B’ which subsumes
B by taking the disjoint union of the vertices of B’ and the inner vertices of
Stree(1)), and identifying all leaves of Stree(y) labeled by x € X with the unique
node z of B’. All edges and labels are preserved.

The graph B, ., is obtained by subsequently attaching the formulae Stree(%),
Stree(1(p)), . .., Stree(,(p)) to the base graph of B, where ¥4, ..., 1, are the
outcomes of 1, and for every ¢ € FORM(X), the formula v is obtained from 1 by
removing its fized variables (see above) using a SAT solver. The root of Stree(p)
is labeled by acc, and the roots of Stree(¢1(p)), ..., Stree(y,(p)) are labeled
by out. The graph B is constructed in the same way, again using the labels
acc and out.

Pp,e2

Theorem 13. If B, .,, By e, are isomorphic, then e; ~ ea.

The procedure EXPERIMENTS(¢) is used to compute decision trees for ranking
strategies and optimal worst/average case strategies in the following way. Let
7[r, <] be a ranking strategy such that for all e;,es € F and ¢ € KNOW we have
that ey ~, ey implies r(e1) = r(e2). Note that all ranking functions introduced
in this section satisfy this property. The decision tree Tree,(, <) is computed
top-down. When we need to determine the label of a given node u where the
associated accumulated knowledge is ¥, we first check whether | Val(¥,)| = 1
using a SAT solver. If it is the case, we label u with the only valuation of
Val(¥,,). Otherwise, we need to compute the experiment 7[r, <|(¥,). It follows
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1 Function OPTIMAL(p, upper)
2 if |Val(¢)| =1 then return (v,0) where v € Val(y)
3 if ¢ is cached then return the cached result
4 [W] if [logo,, (] Val(v)|)] > upper then return (err, co)
5 S, := EXPERIMENTS(¢)
6 best := upper; e, := some element of S,
7 for e € S, do
8 val :=0
9 for i) € P(e) do
10 if SAT (¢ A1) then
11 (e, Cy) := OPTIMAL(p A 1, best — 1)
12 [W] val := max(val, 1+ Cy)
13 [A] val :==val + | Val(e A)| - (1 4+ Cy)
14 [A] val :=val / | Val(y)|
15 if val < best then best := val;e, :=e€

16 Cache the result (e, best) for ¢
17 | return (e, best)

Fig. 2. Computing optimal strategies.

immediately that 7[r, <](¥,) is contained in Sy, := EXPERIMENTS(¥,,). Hence,
we label u with the least element of {e € Sy, | Updates[¥,,e] = Min} w.r.t. =<,
where Min = min{Updates[¥,,e'] | ¢ € Sy, }. This element is computed with
the help of a SAT solver.

The way of computing a decision tree for an optimal worst/average case strat-
egy is more involved. Let WopPTg and AOPTg be the sets of all knowledge-based
strategies which are worst case optimal and average case optimal, respectively.
First, observe that if 7 € WoprTg and 7(¢) = e for some ¢ € KNOw, then for
every € € E where e ~, €' there is 7/ € WOPTg such that 7/(¢) = €’. Hence, we
can safely restrict the range of 7(¢) to EXPERIMENTS(¢). Further, if 7(p) = e
and ¢’ = w(p) for some m € II, we can safely put 7(¢’) = 7(e). The same
properties hold also for the strategies of AOPTg.

A recursive function for computing a worst/average case optimal strategy
is shown in Fig. 2. The function is parameterized by ¢ € KNOW and an upper
bound on the worst/average number of experiments performed by an optimal
strategy for the initial knowledge ¢. The function returns a pair (e,, C,,) where
e, is the experiment selected for ¢ and Cy, is the worst/average number of
experiments that are needed to solve the game for the initial knowledge . Hence,
the algorithm is invoked by OPTIMAL(pg,00). Note that the algorithm caches
the computed results and when it encounters that ¢ is m-symmetric to some
previously processed formula, it uses the cached results immediately (line 3).
The lines executed only when constructing the worst (or average) case optimal
strategy are prefixed by [W] (or [4], respectively). At line 4, the constant Out
is equal to max pg)er |P(t)|. Obviously, we need at least [logg,,(|Val(p)])]
experiments to distinguish among the remaining | Val(p)| alternatives.
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3 Cobra: The Tool and Experimental Results

COBRA [1] is a command-line tool envoked as follows:
cobra [-m <mode>] [-s <sat solver>] [other options] <file>

The <file> contains a deductive game description (the syntax implements
Definition 1). The <mode> can be either overview, analysis, optimal-worst,
or optimal-average. The overview mode serves for basic consistency checks (in
particular, the well-formed condition is verified, see Sect. 2). The analysis mode
allows to analyze the worst/average case complexity of ranking strategies for sev-
eral ranking functions. Currently, COBRA supports max-models, exp-models,
ent-models, part, min-fixed, and exp-fixed ranking functions, where the
first four functions minimize the worst-case number of remaining secret codes,
the expected number of remaining secret codes, the entropy of the numbers of
remaining secret codes, and the number of satisfiable outcomes, respectively,
and the last two functions maximize the (expected) number of fixed variables.
Finally, the optimal-worst and optimal-average are the modes where COBRA
computes the worst and the average case optimal strategies, respectively. The
optional -s switch allows to specify the SAT solver used by COBRA for evalu-
ating the supported ranking functions (currently available options are MINISAT
[9] and P1coSAT [5]). COBRA also uses the tool BLiss [15] for checking graph
isomorphism to determine equivalent experiments. The source code, installation
instructions, examples, and a more detailed specification of COBRA’s function-
ality are available freely at GitHub [1].

In the rest of this section we briefly describe some experimental results
achieved with COBRA. In the first part, we demonstrate the efficiency of the
algorithm for eliminating symmetric experiments discussed at the end of Sect. 2.
In the second part, we show that COBRA is powerful enough to produce new
results about existing deductive games and their variants.

The functionality of EXPERIMENTS(¢) can be well demonstrated on CCP and
Mastermind. Consider CCP with 26, 39, and 50 coins. Table 2 (top) shows the aver-
age size of Si, and S, when computing the i-th experiment in the decision tree
for the max-models ranking strategy. The total number of experiments for 26, 39
and 50 coins is larger than 10%%, 1046, and 1054, respectively. Observe that for 26
and 39 coins, only four experiments are needed to reveal the counterfeit coin, and
hence the last row is empty. Note that in the first round, all equivalent experiments
are discovered already in the first phase, i.e., when computing S7. These experi-
ments correspond to the number of coins that can be weighted (e.g., for 50 coins
we can weight 141, ...,25425 coins, which gives 25 experiments). In the second
round, when we run EXPERIMENTS () for three different formulae ¢ € KNow, the
average size of S}p is already larger, and the second phase (eliminating equivalent
experiments) further reduces the average size of the resulting S,,.

A similar table for Mastermind is shown in Table2 (bottom). Here we con-
sider three variants with 3/8, 4/6, and 5/3 pegs/colors. The table shows the
average size of S, when computing the i-th experiment in the decision trees
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Table 2. The size of S} and S,, for selected deductive games.

CCP 26 CCP 39 CCP 50
(=~ 10%° exp.) (=~ 10*°® exp.) (=~ 10%* exp.)
Exp.No.| Phase 1 Phase 2| Phase 1 Phase 2| Phase 1 Phase 2

hline 13.0 13.0 19.0 19.0 25.0 25.0
4,365.0 861.7|26,638.7 3,318.0(83,625.0 8,591.0

1
2
3 603.0 36.4] 2,263.0 88.1] 5,733.4 172.2
4
5

76.3 4.2 214.7 7.2 405.1 10.4

- - - - 153.2 4.1
MM 3x8 (512 exp.) MM 4x6 (1296 exp.) MM 5x3 (243 exp.)
max-models parts max-models parts max-models parts

Exp.No||Phase 1 Phase 2 Phase 1 Phase 2 |Phase 1 Phase 2 Phase 1 Phase 2|Phase 1 Phase 2 Phase 1 Phase 2|
1 5.00 3.00 5.00 3.00{| 15.00 5.00] 15.00 5.00(| 41.00 5.00] 41.00 5.00
2| 70.13 17.38| 70.13 17.38|| 144.82 34.91| 337.23 106.62|| 243.00 59.25| 243.00 59.25
3|| 144.50 72.31| 147.29 87.83|| 587.54 243.40| 819.49 580.03|| 243.00 121.45| 243.00 186.90
4
5

134.25 71.54| 155.14 87.98|| 791.30 344.02| 819.68 417.02 - - - -
91.36 25.36| 100.46 31.97 - -] 334.33  95.83 - - - -

Table 3. The average/worst case complexity of selected deductive games.

I trivial bound max-mod [l exp-mod, ent-mod [l optimal

“ 5 Average-case

5 5 Size]  MM|[MM+col[MM+pos

'g 9 i 2x8(3.67187| 3.64062 2

25 4 3x6(3.19444| 3.18981 3

9,§ 4x4|2.78516| 2.74609| 2.78516

S8 35 Worst-case

13 3 ’ Size MM [MM-+col| MM+pos

8 3 2x8 5 5 2

< 3x6 4 4 3
4x4 3 3 3

10 20 30 40 50 60 70 80
Number of coins

for max-models and parts ranking strategies. Note that for Mastermind, the
reduction is more efficient for more colors and less pegs, and that the values for
the two ranking strategies significantly differ, which means that they divide the
solution space in a rather different way.

Now we present examples of results obtained by running our tool that, to
the best of our knowledge, have not yet been published in the existing literature
about deductive games. Our first example concerns CCP. While the worst case
complexity of CCP is fully understood [8], we are not aware of any results about
the average case complexity of CPP. Using COBRA, we were able to compute
the average-case optimal strategy for up to 60 coins. Further, we can compare
the average-case complexity of an optimal strategy with the average-case com-
plexities of various ranking strategies, which can be synthesized for even higher
number of coins (more than 80). The results are summarized in the graph of
Table 3 (left). The precise values shown in the plot can be found in [16].

As the last example, we consider two variants of Mastermind: MM+col, where
we can also ask for all pegs colored by a given color, and MM+pos, where we
can also ask for the color of a given peg. These extensions are inspired by the
API-level attacks mentioned in Sect. 1. Using COBRA, we can compute the opti-
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mal worst/average case complexity for 2/8, 3/6, and 4/4 pegs/colors. The results
are summarized in Table3 (right). When comparing these results to “classical”
results about Mastermind, the following subtle difference in game rules must
be taken into account: Plays of “our” deductive games terminate as soon as we
obtain enough information to reveal the secret code. The “classical” Mastermind
terminates when the secret code is “played”, which may require an extra exper-
iment even if the code is already known. Our numbers are valid for the first
setup.

4 Conclusions

The results produced by COBRA witness that non-trivial deductive games can
be solved by a generic tool. The main advantage of COBRA is its versatility;
small changes in the structure of the secret code and/or experiments can easily
be reflected in the input description, which greatly simplifies the analysis of new
versions of security protocols, new forms of attacks, etc. The challenge is to
push the frontiers of fully automatic analysis of deductive games even further.
Obviously, there are many ways of improving the functionality of COBRA by
elaborating the concepts presented in this paper. The interface to SAT solvers
can also be tuned, there is a lot of space for parallelism, etc. One may also
try alternative approaches to modeling and solving deductive games based on
constraint solving or artificial intelligence techniques.
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Abstract. The anti-subsumptive enforcement of a clause § in a set of
clauses A consists in extracting one cardinality-maximal satisfiable sub-
set A" of AU {§} that contains § but that does not strictly subsume .
In this paper, the computational issues of this problem are investigated
in the Boolean framework. Especially, the minimal change policy that
requires a minimal number of clauses to be dropped from A can lead
to an exponential computational blow-up. Indeed, a direct and natural
approach to anti-subsumptive enforcement requires the computation of
all inclusion-maximal subsets of A U {4} that, at the same time, con-
tain § and are satisfiable with —J; where d; is some strict sub-clause
of §. On the contrary, we propose a method that avoids the computa-
tion of this possibly exponential number of subsets of clauses. Interest-
ingly, it requires only one single call to a Partial-Max-SAT procedure
and appears tractable in many realistic situations, even for very large A.
Moreover, the approach is easily extended to take into account a pref-
erence pre-ordering between formulas and lay the foundations for the
practical enumeration of all optimal solutions to the problem of making
0 subsumption-free in A under a minimal change policy.

Keywords: Preemption + Subsumption - Belief change - Partial-Max-
SAT - Boolean logic

1 Introduction

Preemption is a reasoning paradigm that enforces the derivability of some given
knowledge' § and blocks the inference of some other given information. The
study of preemption has been ubiquitous in Artificial Intelligence for decades:
early seminal works that had to cope with this issue can be traced back for
example in rule-based expert systems [1], reasoning with inheritance hierarchies
[2] and non-monotonic reasoning dealing with exceptions [3,4]. In this paper,
we are concerned with preemption in the clausal Boolean framework when the
blocked formulas are all the strict sub-clauses of a given clause ¢ that is intended
to prevail. Note that any sub-clause of § subsumes -and thus entails- §: this
form of preemption mechanism thus blocks the inference of clauses that are
logically strictly stronger than §. It is a required mechanism when ¢ is encoding

! In this paper, no distinction is made between belief, knowledge and information.
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some contents that is considered accurate whereas its strict sub-clauses are not.
Indeed, through additional disjuncts, § can express some more detailed, precise
or specific information that must prevail.

For example [5], assume that a set of clauses A contains some information
about John’s current location, namely John is at home or in his office. Now
assume that a new piece of information § comes in and must prevail: § translates
that a third possible location for John must also be taken into account with a
same level of confidence, for example § = John is at home or in his office or
in his car. Clearly, this new piece of information does not logically contradict
the previous one. Furthermore, § is a logical consequence of A. However, in this
specific situation, we do not want ¢ to be merely inserted within A since the
resulting set of formulas would still allow John is at home or in his office to be
deduced. Actually, we need to trim AU {d} to yield a set A’ that entails 6 and
that does not allow any strict sub-clause of § to be deduced, like for example
John is at home and John is at home or in his car.

As another example, assume that ¢ is the clause not(accepted) or not(in-time)
or published encoding the rule If the paper is accepted and the final version is
sent in time then it will be included in the proceedings. Clearly, we might want
this rule to prevail over the sub-clause ¢’ of § that is encoding If the paper is
accepted then it will be included in the proceedings, at least when sending the
final version in time is assumed to be a necessary condition for the paper to be
included in the proceedings.

From now on, ¢ is a non-tautologous and satisfiable clause and A is a set
of clauses which is not necessarily satisfiable but is made of clauses that are
individually satisfiable and non-tautologous.

In the paper, the enforcement of subsumption-free § in A follows a minimal
change policy and is defined as the extraction of one maximum-cardinality subset
A" of AU {6} such that § is derivable from A’ whereas no strict sub-clause ¢’
of § is derivable from A’. Equivalently, the last condition amounts to ensuring
that § is a prime implicate of A’.

Note that A’ might not be unique: in this study, we concentrate on extracting
one such A’, with no specific preference on which set to select when several of
them exist. However, we will comment on extending this study to the extraction
of one preferred A’ and to the enumeration of all A’ later in the paper.

In the Boolean framework, when § is an incoming piece of information and
when A is satisfiable, the anti-subsumptive enforcement of § departs from usual
belief revision paradigms [6,7] in the fundamental following way: when ¢ is not
contradictory with A, the anti-subsumptive enforcement of § in A yields a set A’
that is not necessarily (the deductive closure of) AU {6} since A’ cannot allow
any strict sub-clause of § to be inferred. On the contrary, according to belief
revision techniques, the result should be (the deductive closure of) AU{d} since
this set is non-contradictory.

Quite surprisingly, the logical properties of anti-subsumptive enforcement of
clauses have only been investigated recently [5]. Rationality postulates have been
discussed in [8] and the extension of this paradigm to non-monotonic frameworks
has been proposed in two different directions [9,10].
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The focus in this paper is on addressing the practical computational chal-
lenges in the extraction of one A’ and on investigating the scalability issue by
considering very large A. As the number of clauses from AU {0} to be dropped
in order to yield A’ must be minimal, we will see that a direct approach to this
problem requires the computation, for every longest strict sub-clause ¢’ of §, of
all the inclusion-maximal subsets (in short MSSc) of AU{d} that are satisfiable
with the negation of ¢’. As the number of MSSc can be exponential in the num-
ber of clauses of AU {d}, this approach is clearly intractable in the worst-case.
Accordingly, we propose an approach that avoids the computation of all these
MSSc and yields A’ by extracting in a direct way one cardinality-maximal (in
short MSS) of AU{¢} that is satisfiable with the negation of any of the afore-
mentioned ¢’. The approach is experimentally tested on very large A. It is easily
extended to take into account a preference pre-ordering between clauses and lays
down the foundations for the practical enumeration of all optimal solutions to
the problem of making d subsumption-free in A under a minimal change policy.

The paper is organized as follows. The preliminaries present basic logical
concepts, including subsumption and implicates, as well as maximal satisfiable
subsets and Partial-Max-SAT. The problem at hand is defined formally in Sect. 3.
In Sect. 4, a natural -but highly intractable- approach is presented. Our approach
is then introduced step by step in Sect.5. Computational complexity issues are
addressed in Sect.6 and our experimental study is presented in Sect.7. In the
conclusion, extensions of the approach are sketched as paths for further studies.

2 Preliminaries

2.1 Logical Framework

We use standard clausal Boolean logic. Let £ be a language of formulas over
a finite alphabet of Boolean variables, also called atoms. Atoms are denoted
by a,b,c,... N\,V,—,— and = represent the standard conjunctive, disjunctive,
negation, material implication and equivalence connectives, respectively. A literal
is an atom or a negated atom. Formulas are built in the usual way from atoms,
connectives and parentheses; they are denoted by «, 3,7,... Sets of formulas
are denoted by A, I',... An interpretation is a truth assignment function that
assigns values from {true, false} to every Boolean variable, and thus, following
usual compositional rules, to all formulas of £. A formula § is consistent (also
called satisfiable) when there exists at least one interpretation that satisfies 4,
i.e., that makes § become true: such an interpretation is called a model of §.
E denotes deduction, i.e., A |= é denotes that J is a logical consequence of A,
namely that J is satisfied in all models of A. = « means that « is tautologous
(i.e., true in all interpretations) and | —a that « is a contradiction. A set
of formulas A is consistent iff A = 1, where L stands for a contradiction.
Without loss of generality, formulas can be represented in Conjunctive Normal
Form (CNF), equivalent with respect to satisfiability. A CNF is a conjunction
of clauses, where a clause is a disjunction of literals. We always assume that
any clause contains at most one occurrence of a given literal. The empty clause
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denotes | and is thus unsatisfiable; on the contrary, an empty set of clauses is
satisfiable. A wunit clause is a clause made of a single literal. For convenience,
a clause can be identified with the set of its literals. The cardinality or size of a
clause « refers to the set-theoretic representation of « and is denoted card(a): a
maximal strict sub-clause of « is a strict sub-clause of a of maximal cardinality
according to this representation. Deduction in clausal Boolean logic is co-NP-
complete. Indeed, A = « iff AU {—a} is unsatisfiable and checking whether a
finite set of Boolean clauses is satisfiable is NP-complete.

The form of preemption paradigm that is addressed in this study is deep-
rooted in the concepts of subsumption and prime implicates, which are well-
studied in Boolean logic. In the following definitions, we assume that A is a
satisfiable non-tautologous CNF, that «, 8 and § are satisfiable non-tautologous
clauses and that AU {d} is satisfiable.

Definition 1. « strictly subsumes § iff o = 8 but 5} «.

Definition 2. A strictly subsumes f iff A = « for some « such that o strictly
subsumes (3.

By abuse of words, we will write “subsume” in place of “strictly subsume”.
When a and 3 are under their set-theoretical representation, o subsumes (3
iff v is a strict subset of 8. When [ is made of n > 1 literals, 3 is not subsumed
by A iff none of the n maximal-inclusion strict sub-clauses of 8 can be deduced
from A. Indeed, making sure that none of these latter sub-clauses is derivable in
A is sufficient to ensure that no smaller strict sub-clause of § is derivable in A.

Definition 3. A prime implicate of A is any clause 6 such that

1. AES, and
2. = (0" = 0) for every clause &' such that A = § and é' = 6.

Prime implicates have already been investigated in belief change mainly
because they provide a compact and syntax-independent representation of a
belief base that is complete (see [11,12]) and because useful computational tasks
(like satisfiability checking and deduction) are polynomial tasks in this setting
[13]. In the worst case, computing the set of prime implicates of A containing a
clause 3 is however not in polynomial total time unless P=NP (it is in polynomial
total time when for example the clause is positive or A is Horn) [14].

2.2 Forms of Maximal Satisfiable Subsets, Partial-Max-SAT

We make use of both the concepts of inclusion-maximal and cardinality-maximal
satisfiable subsets of clauses, which have widespread roles in A.I. The condition
that A is satisfiable is now dropped.

Definition 4. @ is an inclusion-Mazimal Satisfiable Subset of A, in short, @ is
an MSSc (4Q), iff D is satisfiable and Yoo € A\ @, & U {«a} is unsatisfiable.
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Definition 5. @ is a cardinality-Maximal Satisfiable Subset of A, in short, @ is
an MSS4(A), iff @ is an MSSc(A) and B &' s.t. &' is an MSSc(A) and card(®)
< card(P’).

A Co-MSS of A is the set-theoretic complement in A of the corresponding MSS.
For convenience, we write (Co-)MSS instead of (Co-)MSSc and (Co-)MSS. and
omit their argument when the context does not make this ambiguous or when
no such distinction is necessary.

Definition 6. ¥ is a Minimal Correction Subset (MCS or Co-MSS) of A iff
U = A\ P where P is an MSS of A.

Accordingly, A can always be partitioned into a pair made of one MSSc and
one Co-MSSc. Unless P=NP, extracting one such partition is intractable in the
worst case since it belongs to the FPN P [wit,log] class: namely, the set of function
problems that can be computed in polynomial time by executing a logarithmic
number of calls to an NP oracle that returns a witness for the positive outcome
[15]. Techniques to compute one such partition that prove very often efficient
are described in [16,17]. Note that in the worst case the number of MSSes is
exponential in the number of clauses in A: it is in O(2"/2) where n is the number
of clauses in A.

MSSc and Co-MSSc share strong relationships with MUSes, which are the
inclusion-minimal unsatisfiable subsets of a set of clauses. Especially, Co-MSSc
can be computed as hitting sets on all MUSes.

Definition 7. I' C A is a Minimal Unsatisfiable Subset (in sort, MUS) of A
iff ' is unsatisfiable and Voo € T, T'\ {a} is satisfiable.

The instance of the Max-SAT problem w.r.t. A consists in delivering the cardi-
nality of any MSSx(A). In the following, we consider the variant of Max-SAT
that does not only deliver this cardinality but also one such MSS4(A). Actually,
we make use of the following variant definition of Partial-Max-SAT.

Definition 8. Let Xs and X'y be two sets of clauses. Partial-Maz-SAT(Xg, X'pr)
computes one cardinality-mazimal subset of X that is satisfiable with Xg. Xg
and Xg are called the sets of soft and hard constraints, respectively.

By convention and for convenience in this paper, we assume that when Xy is
unsatisfiable, Partial-Max-SAT yields the empty set, which is satisfiable. This
variant of (Partial-)Max-SAT belongs to the Opt-P class of intractable problems
[18], i.e., the class of functions computable by taking the maximum of the output
values over all accepting paths of an NP machine.

3 Anti-subsumptive Enforcement: Definition

Recall that A is a (non-necessarily satisfiable) set of clauses, each of them being
non-tautologous and satisfiable, and that ¢ is a satisfiable non-tautologous clause.
Let A’ be a set of clauses.
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Definition 9. A’ is one anti-subsumptive enforcement of & iff

1. A C (AU{éd}), and

2. AEJ6, and

3. A’ is satisfiable, and

4. B8 such that &' C § and A’ =6, and

5. h A" obeying conditions 1. to 4. such that card(A") > card(A’).

We say that § prevails in A’.

Notice that conditions 2 and 4 entail that § is a prime implicate of A’. It is
also easy to see that J belongs to A’ and that there always exists at least one
anti-subsumptive enforcement A’ of ¢ in A: however, the unicity of A’ is not
guaranteed in the general case. Notice also that in condition 4, the 8’ = @ case
is already handled by condition 3.

Although A’ might not be one MSS.4(AU{d}), by abuse of notation we write
that A’ is one MSS. of (AU{d}) where § prevails, denoted MSS.4 (AU{d} prevair)-
In [8], this definition is refined by taking into account additional possibly desired
properties for A’. Note that this definition involves some syntactic flavor as A’ is
defined as a subset of AU{d} vs. a subset of the deductive closure of (AU{d}).
An alternative definition based on the deductive closure of (A U {§}) would
require computational treatments and concepts that are additional to the ones
described in this paper.

Note that the anti-subsumptive enforcement of § encompasses the handling
of inconsistent information within A U {d§}. Indeed, it yields one satisfiable set
of clauses that contains §. To some extent, this policy towards contradictory
information is a form of credulous attitude that opts for § since it yields one
kind of maximal satisfiable subset of clauses containing § among several possible
ones, and discards every subset of clauses that does not contain 4.

4 Direct Approach

A simple situation is when J is a unit clause. In this case, by definition, Partial-
Max-SAT(AU{6},9) yields one anti-subsumptive enforcement of ¢ in A. Let us
now consider the case where § is not a unit clause. Let ¢’ be any strict non-empty?
sub-clause of ¢. By Definition 8, Partial-Max-SAT(A U {d§}, {—d’}) extracts one
satisfiable subset of AU{¢} that does not entail ¢’ such that this set is cardinality-
maximal. Let us note As and Iy, this extracted set and the complement of Ag
in (AU{d}), i.e., (AU{d})\ Ay, respectively. Clearly, computing one such s/
for every strict sub-clause (or for every maximal strict sub-clause) ¢’ of § and
set-theoretic unioning the elements of these sets to form a set noted I would
not ensure that A" = (AU{6})\ I is always one MSS4(AU{d} prevair)- Indeed,
although card(Is/) is the minimal number of clauses to be rejected to guarantee

2 From now on, we only consider non-empty sub-clauses ¢’ of § and omit the “non-
empty” term. Indeed, considering the empty clause ¢ is not useful since A’ must be
satisfiable and thus never entails the empty clause.
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that (AU{d})\ I's does not entail ¢’, there might exist several such sets I'sr and
card(I") might be minimal for only some of them. Moreover, not computing all
I's: can lead to a wrong result.

Ezample 1. Assume A = {a V —b,b} and § = a V —b. Clearly, there is only one
MSS. of AU{d} where § prevails, namely {a V —b}. Indeed, § = a VV —b has two
maximal strict sub-clauses, namely a and —b. For §' = a, there are two possible
T/, namely I'! = {aV —b} and I'? = {b}. Assume that we extract I}, only.
There is a unique Iy for & = —b, which is I'!;, = () as A does not entail —b.
(AU{s})\ (I2UTIl,) yields {b}, which is not intended result {a VV —=b}.

Actually, a correct direct approach requires for each §’ the computation of
all I's;. Then, a selection of one I's: per &' needs to be computed in such a
way that the total number of different clauses to be dropped is minimal. Not
surprisingly, this so-called direct approach proves intractable in the worst case
since for each ¢’ the number of As can be exponential in the number of clauses
in AU {é}. As our experimentations illustrate, it is often intractable even in
simple situations, too.

5 Transformational Approach

By itself Partial-Max-SAT does not provide a solution to our problem when
0 is not a unit clause. Indeed, we need to block the inference of any maximal
strict sub-clause of ¢ while we allow the derivation of ¢. Partial-Max-SAT (A U
{0},Us —0") would expel ¢ from the solution since {6} U(J; =0 is unsatisfiable.

Foreach AU {6} U {—-6/.} that is UNSAT

where &; is a maximal strict sub-clause of &
Create {-8;}U {8} U{(y;v —a;) s.t. y; EA using all new fresh variables

Hard constraints

= L \

[dw ‘7 \ "7
Soft constraints = {a;s.t. ie[1..n] and A ={y,,...,v,}}

(=

W« Pa rtiaI-Max-SAT(ZS,ZH)

v
={ y;s.t. (vjeA) and (ajeLIJ) U {6}

Fig. 1. Transformation into one instance of Partial-Max-SAT.
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input
A ={ai1,a2,...,an}: a set of n non-tautologous Boolean clauses where each
individual clause is satisfiable;

0 = {l1,02,...,0n}: a satisfiable non-tautologous clause represented through a
set of m literals;
output:

A’: one anti-subsumptive enforcement of § in A.
1 if 0 is not a unit clause then

/* Ys will be a set of soft clauses */
2 Ys «— {e; s.t. i € [1.n]} /* every ¢; is a fresh new atom */
/* Xg will be a set of hard clauses */
3 Xy — @;
4 2 — {ai V —e€; s.b. a; € A},
5 foreach ¢; € § do
6 5 — o\ {6}
/* §; is a maximal strict sub-clause of § */
7 if AU{=d;}U{0} is unsatisfiable then
/* &; is related to the sub-problem of blocking the
inference of J; */
8 D; — RU{=5;}U{d};
9 Rename all atoms in @; (except the €;) with fresh new atoms;
10 g — X Udy;
11 end
12 end
13 VU «— Partial-Max-SAT(Xs,Xx);
14 A —{a;st. ;€ Aandg; € ¥} U{5};

15 else

16 | A’ Partial-Max-SAT(A U {6}, {6})
17 end

18 return A’;

Algorithm 1. Extraction of one anti-assumptive enforcement of ¢ in A.

As a simple example, consider § = a V b, 6 has two maximal strict sub-clauses:
namely, a and b. {a Vb, —a, —b} is unsatisfiable. Unfortunately, we cannot simply
compute Partial-Max-SAT(A \ {¢},U; —¢") and then insert ¢ in the solution
since this latter insertion can reinstate strict subsets of § [5], meaning that the
introduction of § can lead strict sub-clauses of § to become derivable.

To avoid the so-called reinstatement problem, the formal approach to pre-
emption from [5,8] requires a multiple contraction [19] of A by 6 — ¢’, con-
sidering all §’, to be achieved before ¢ is inserted. However, translated into
satisfiability terms, the multiple contraction of A by § — ¢’ is equivalent to the
extraction of maximal subsets that are satisfiable at the same time with é and
Uy —0’: Partial-Max-SAT remains thus inappropriate so far.

To break this deadlock and benefit from the practical efficiency of SAT tech-
nology, in particular of Partial-Max-SAT solvers, we transform the enforcement
problem into an equivalent one that is solved by means of one single call to
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Partial-Max-SAT. The idea is to create a specific sub-problem for each maximal
strict sub-clause of ¢’ of § that is entailed by AU{d} and merge the sub-problems
in an appropriate way so that one call to a Partial-Max-SAT solver delivers the
result. Such a transformation is best described using Fig.1. Let us explain it
intuitively.

First, an arbitrary ranking between the n clauses from A is selected and
used throughout. The set of soft constraints Yg is a set of n new atoms «; that
are representing the n clauses from A. Note that A might already contain §.
Partial-Max-SAT will try to satisfy all these unit clauses, while satisfying at the
same time a set of hard constraints X g. Whenever one «; is not satisfied in the
solution to Partial-Max-SAT, this means that the corresponding i" clause in
A must be dropped from A to yield A’ (which is finally augmented with {¢}).
This will occur when it appears that o must be falsified in order for a clause in
XYy to be satisfiable. X'y is made of the set-theoretic union of several subsets of
clauses and is built in such a way that it is always satisfiable. Each such subset of
clauses represents one given sub-problem: namely, for one given maximal strict
sub-clause of §; of §, when AU{=4; }U{d} is unsatisfiable, satisfy as many clauses
as possible. This sub-problem is created and made independent from the other
sub-problems (that are related to other d,’s) by rewriting AU{—=d, }U{d} with all
new variables. Now, the “glue” between the sub-problems and the soft constraints
is made through the following use of additional —c; disjuncts. Within each sub-
problem, each i clause coming from A is augmented with an additional disjunct
—cv;. In this way, each sub-problem is satisfiable but this might require some —a;’s
to be true, which entails that the corresponding unit clauses a;’s from the soft
clauses are falsified in any solution to Partial-Max-SAT.

Algorithm 1 depicts the pseudo-code for the transformational approach.

Theorem 1. Let A be a possibly unsatisfiable set of non-tautologous clauses
where each clause is satisfiable. Let § be a satisfiable non-tautologous clause.
Let A’ be the output of Algorithm 1. We have that A’ is one anti-subsumptive
enforcement of § in A.

6 Computational Complexity Issues

Let n be the number of clauses in A and k be the number of literals in §.

The direct approach is exponential since the number of MSSes of A is O(2"/2)
in the worst case. As mentioned earlier, the extraction of one MSS is itself
intractable in the worst case since this task belongs to the FPV P [wit,log] class;
notice that the cardinality of each of the sets of clauses in which MSSes are
extracted is n + k since we augment the n clauses of A with § and with the
k — 1 unit literals corresponding to —d;. In practice, several approaches have
been proposed to enumerate all MSSes of an unsatisfiable set of Boolean clauses
when the number of MSSes remains low (see e.g., [17] for a survey). However,
an explicit enumeration of MSSes is often out of reach: for example, when a set
of clauses contains m MUSes of size s with empty intersections, there are s™
MSSes. Hence, we expect the direct approach to be out of reach, very often.
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Unless P = NP, the transformational approach is intractable in the worst
case, too: it belongs to the Opt-P class, due to the call to our variant of Partial-
Max-SAT. Fortunately, many large-size instances are solved by SAT and Partial-
Max-SAT solvers [20] and we rely on this in proposing the transformational
approach. Now, clearly the size of the sets of hard and soft constraints can be
effective limiting parameters. In the call to Partial-Max-SAT, the cardinality of
the set of soft constraints is n and the worst-case cardinality of the set of hard
clauses is k(n + k). When 0 is intended to represent a rule, it seems natural
to expect k to remain low, as k expresses the number of literals in the rule
that must prevail. The actual cardinality of the set of hard clauses is k'(n + k)
where k' < k is the number of maximal strict sub-clauses of ¢ that are actually
entailed by A U {0}. Note also that k&’ can be actually replaced by a lower
number when a pre-processing step expels from A all strict sub-clauses of § that
are explicitly present in A: accordingly, the corresponding maximal strict sub-
clauses might not require the creation of sub-problems for preventing them from
being inferable. In the same vein, when § is explicitly present in A, there is no
need to create a soft constraint corresponding to J since § must belong to any
solution A’: in such a case, n need thus be decremented by 1in all the above
results.

7 Experimental Illustration

Even when SAT checking is performed quickly, the direct approach thus suf-
fers from a combinatorial blow-up threat due a potential exponential number
of MSSc. Illustrating through experimentations how this exponential number
can actually occur is not much informative by itself: indeed, it is easy to build
instances such that ¢ and/or the negation of strict sub-clauses of § conflict with A
in s totally different minimal ways, leading to a number of MSSc that increases
exponentially with s. Nevertheless it might be interesting to illustrate the actual
numbers of MSSc that the direct approach manages to extract as a necessary
part of its global task on some realistic instances. But the more interesting
question to be investigated from an experimental side is the extent to which
Partial-Max-SAT solvers can handle the cardinality increase of the sets of con-
straints due to the kind of replication, for each maximal strict sub-clause of 4,
of the problem of blocking the derivability of one such sub-clause. Obviously,
the most informative cases would occur when the direct approach fails due to a
combinatorial blow-up of the number of MSSc.

In order to conduct such an illustration, we have made extensive experimen-
tations, using a wide range of usual benchmarks A from the planning area as
a case study (actually, 248 of them). They represent the domain knowledge,
the initial and goal states and some time-horizon for a given planning problem.
They include a wide range of such problems with varying horizon lengths, like
for example, “Blocks_right_z” for the usual blocks-world problem with = blocks;
“Bomb_bzx_by” involves neutralizing bx bombs in by locations. “Coins_pz” is
about px coins that must be tossed for heads and tails such that they reach a
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same state. “Comm_pz” is an IPC5 problem about communication signals with
several stages, packets, and actions. “Empty-room_dz_dy” is about navigating
inside a room of size dxr and containing dy objects. “Safe_n” is about opening
a safe that has n possible combinations. “sort_num_s_z” is about proposing cir-
cuits of compare-and-swap gates to sort z Boolean variables. Finally, “uts_kz” is
about a network routing for mobile ad-hoc networks where a broadcast from an
unknown node must reach all other nodes; the topology of the network is par-
tially known and each node has a fixed number kx of connected neighbors. They
were translated into CNF from their initial PDDL 1.2 (Planing Domain Defi-
nition Language) and STRIPS format, using H. Palacios’ translator, available
from http://www.plg.inf.uc3m.es/~hpalacio/.

For each instance, all this information formed a satisfiable A. Note that
considering an unsatisfiable A could have resulted in an increased number of
MSSc since the related minimal proofs of unsatisfiability on which they are
built would not necessarily contain § and/or some of the negation of strict sub-
clauses of §. The size of the instances (namely, of A) ranged from 44 to 45087
clauses, and from 22 to 6744 variables (with 4320 clauses and 1155 variables, on
average).

Then, for each A, we have randomly generated one § using variables occurring
in A in such a way that the following conditions were met.

1. AU {4} is satisfiable. In this way, we focused on the pure issue of block-
ing subsumption itself, not augmented with the problem of recovering from
unsatisfiability when AU {d} is unsatisfiable. As already indicated, if unsat-
isfiable A had been selected then the number of MSSc could have been even
larger.

2. k= card(d) € {5,7,10} as we consider these values as realistic for represent-
ing some information that must not be subsumed in the planning problem:
for example, a clause representing a planning decision rule that should not
be subsumed and that involves various detailed pre-conditions, like “if these
k — 1 preconditions are true then do this” where, additionally, we want to
make sure that the action is in no way done when some of the preconditions
are not met.

3. The number of maximal strict sub-clauses of §; of § that are entailed by
AU{o} is k' > (k div 2).

Accordingly, we considered 744 instances since for each of the 248 initial instances,
we considered 3 values for card(d). We generated ¢ randomly from the variables
occurring in A to express some possible information that should preempt any
of its strict sub-clauses. As a random generation might lead to very specific
non-representative instances, we have mitigated this risk as follows. 3 different
random generations of § satisfying the above conditions were actually made for
each of the 744 instances and we recorded the average results for the exper-
imentations on the three corresponding A U {d}. However, when time-out or
memory-overflow was reached for at least one of the 3 runs for any of the 744
instances, we have recorded this time-out or memory-overflow as the “average”
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Fig. 2. Time to solve: direct vs. transformational approaches.

value as result for corresponding instance, being thus in that way over-pessimistic
on the actual performance of the methods.

All experimentations have been conducted on Intel Xeon E5-2643 (3.30 GHz)
processors with 8 Gb RAM on Linux CentOS. For the MSSc extractions, we used
the CMP method from [16]. CAMUS [21] http://sun.iwu.edu/~mliffito/camus/ was
used to enumerate all MSSc and Co-MSSc. MSUNCORE [22] http://logos.ucd.
ie/wiki/doku.php?id=msuncore and MINISAT [23] http://minisat.se/ were selected
as Partial-Max-SAT and SAT solvers, respectively. Time out was set to 1800s
for each single anti-subsumptive enforcement.

All data and detailed results for each instance are available at http://www.
cril.fr/anti-subsumptive.

Algorithm 1 solved 735 instances on a total of 744; each solved instance,
except 10 of them, required less than 10s and 607 less than one second. The
approach was thus most often able to cope with the increase of size of the
set of constraints: the cardinality of the set of hard constraints was (k div 2)
times the size of the initial instance, were k € {5,7,10}. As we assume that
k = 10 is a maximum size for a clause that is expected to represent either a pure
disjunctive information where each strict sub-clause cannot be derived, or a rule
that must not be subsumed, these results are strong points for the viability of
the approach. The 10 instances that were solved in more than 10s and the 9
unsolved ones belonged to the same planning problem, namely “blocks_right_z”,
they were not among the largest instances but appeared harder than the other
ones with respect to our problem.

The direct approach solved 514 instances, only. The maximal number of
MSSc computed for an instance was 601 261 (but the direct approach failed to
solve the related problem (namely, ring2-r6-p-t3, which is about closing a series
of windows in several connected rooms forming a ring) whereas the transforma-
tional approach solved it in less than 0.5s).
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The cactus plots using logarithmic scales given in Fig.2 depict the
time-efficiency of both approaches: the results do not come as a surprise: the
transformational approach proved more efficient, most often. Figure3 show
the cumulated number of solved instances according to the time spent. The
cactus plots in Fig.4 show that the number of MSSc and their handling was
manageable for many instances in our benchmarks. But the upper right corner
shows the numerous instances where combinatorial blow-up made the task out of
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scope for the direct approach. Obviously enough, in the general case, we cannot
predict the number of MSSc that need to be extracted for one given §, without
computing them.

The number of clauses to be dropped in A U {6} by the transformational
approach in order to yield A’ ranged from 1 to 9, with an average of 3.65.

The full results for each instance are available in table form at http://www.
cril.fr/anti-subsumptive. These experimental results thus illustrate the actual
viability of the transformational approach, which should be preferred over the
direct one.

8 Conclusion and Perspectives

Although it is a very natural and ubiquitous reasoning paradigm, the anti-
subsumptive enforcement of knowledge has received little attention in the A.IL
research and automated reasoning areas. In this study, we have proposed a
method to compute one solution in the Boolean framework that is optimal in
terms of the minimization of the number of clauses to be discarded. Interestingly,
it proves more effective than a direct approach that requires inclusion-maximal
satisfiable subsets to be extracted. Let us conclude this paper by introducing sev-
eral promising directions according to which it is possible to push the envelope
and extend the scope of the transformational approach. Firstly, the approach
remains appropriate when one needs to deliver one cardinality-maximal satis-
fiable subset that obeys a preference pre-ordering between clauses, should this
pre-order translate various credibility, uncertainty or preference levels amongst
the information. Weighted Max-SAT should be used instead of Partial-Max-SAT
and the weights of clauses should reflect the pre-ordering. In the transformation,
the soft clauses become clauses with the lowest possible weight whereas ¢ and the
unit clauses that encode the negation of the largest sub-clauses d; of § receive the
highest ranking. Secondly, the transformational approach could easily accommo-
date the anti-subsumptive enforcement of a CNF formula. Indeed, this amounts
to making sure that the formula can be deduced whereas no strict non-empty
sub-clause of any clause in the formula can be deduced. Finally, the extraction of
one enforcement A’ to is the first step towards computing all such enforcements.
Hence, Partial-Max-SAT could be iterated and already extracted enforcements
could be marked to avoid duplicate extractions. Techniques described in [16,17]
can prove useful to that end. Obviously enough, the complete enumeration can-
not always be achieved since the number of possible A’ is exponential in the
worst case.
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Abstract. Much progress has recently been made on information flow
control, enabling the enforcement of increasingly rich policies for increas-
ingly expressive programming languages. This has resulted in tools for
mainstream programming languages as JavaScript, Java, Caml, and Ada
that enforce versatile security policies. However, a roadblock on the way
to wider adoption of these tools has been their limited permissiveness
(high number of false positives). Flow-, context-, and object-sensitive
techniques have been suggested to improve the precision of static infor-
mation flow control and dynamic monitors have been explored to leverage
the knowledge about the current run for precision.

This paper explores value sensitivity to boost the permissiveness of
information flow control. We show that both dynamic and hybrid informa-
tion flow mechanisms benefit from value sensitivity. Further, we introduce
the concept of observable abstract values to generalize and leverage the
power of value sensitivity to richer programming languages. We demon-
strate the usefulness of the approach by comparing it to known disciplines
for dealing with information flow in dynamic and hybrid settings.

1 Introduction

Much progress has recently been made on information flow control, enabling
the enforcement of increasingly rich policies for increasingly expressive program-
ming languages. This has resulted in tools for mainstream programming lan-
guages as FlowFox [16] and JSFlow [20] for JavaScript, Jif [26], Paragon [9]
and JOANA [17] for Java, FlowCaml [30] for Caml, LIO [31] for Haskell, and
SPARK Examiner [5] for Ada that enforce versatile security policies. However, a
roadblock on the way to wider adoption of these tools has been their limited per-
missiveness i.e. secure programs are falsely rejected due to over-approximations.
Flow-, context-, and object-sensitive techniques [17] have been suggested to
improve the precision of static information flow control, and dynamic and hybrid
monitors [19,20,22,27,32] have been explored to leverage the knowledge about
the current run for precision. Dynamic and hybrid techniques are particularly
promising for highly dynamic languages such as JavaScript. With dynamic lan-
guages as longterm goal, we focus on fundamental principles for sound yet per-
missive dynamic information flow control with possible static enhancements.
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In dynamic information flow control, each value is associated with a runtime
security label representing the security classification of the value. These labels
are propagated during computation to track the flow of information through
the program. There are two basic kinds of flows: explicit and implicit [14]. The
former is induced by data flow, e.g., when a value is copied from one location
to another, while the latter is induced by control flow. The following example of
implicit flow leaks the boolean value of h into [ with no explicit flow involved:
1 = false;if (h) 1 = true;

Dynamic information flow control typically enforces termination-insensitive
non-interference (TINI) [33]. Under a two-level classification into public and
secret values, TINI demands that values labeled public are independent of val-
ues labeled secret in terminating runs of a program. Note that this demand
includes the label itself, which has the effect of constraining how security labels
are allowed to change during computation. This is a fundamental restriction:
freely allowing labels to change allows circumventing the enforcement [27].

A common approach to securing label change is the no secret upgrade (NSU)
restriction that forbids labels from changing under secret control, i.e., when the
control flow is depending on secrets [2]. In the above example, NSU would stop
the execution when h is true. This enforces TINI because in all terminating
runs the [ is untouched and hence independent of h.

Unfortunately, his limitation of pure dynamic information flow control often
turns out to be too restrictive in practice [20], and various ways of lifting the
restriction have been proposed [3,8]. They aim to enhance the dynamic analy-
sis with information that allows the label of write target to be changed before
entering secret control, thus decoupling the label change from secret influence.
For instance, a hybrid approach [19,22,27,32] is to apply a static analysis on the
bodies of elevated contexts, e.g., secret conditionals, to find all potential write
targets and upgrade them before the body is executed.

This paper investigates an alternative approach that improves both pure
and hybrid dynamic information flow control as well as other approaches rely-
ing on upgrading labels before elevated contexts. The approach increases the
precision of the labeling, hence reducing the number of elevated contexts. In a
pure dynamic analysis this has the effect of reducing the number of points in
the program where execution is stopped with a security error, while in a hybrid
approach this reduces the number of places the static analysis invoked further
improving the precision by not unnecessarily upgrading write targets.

Resting on a simple core, the approach is surprisingly powerful. We call
the mechanism value sensitive, since it considers the previous target value of a
monitored side-effect and, if that value remains unchanged by the update, the
security label is left untouched. Consider the program in Listing1.1. It is safe
to allow execution to continue even when h

is true by effectively ignoring the update of [ Listing 1.1.
in the body of the conditional. This still satis- 1 = false;
fies TINI because all runs of the program leaves if (h) {1 = false;}

[ untouched and independent of h.
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The generalization of the idea boosts permis- t = oL,
siveness when applied to other notions of values, t = 14,
e.g. the type of a variable, as exemplified on the 1 = typeof (t);
right. In a dynamically typed language the value
of t changes from a public to a secret value, but the (dynamic) type of ¢ remains
unchanged. By value of ¢ changes from a public to a secret value, but the
(dynamic) type of ¢ remains unchanged. By tracking the type of ¢ indepen-
dently of its value (for example as (value“,type”/)), it is possible to leverage
value sensitivity and allow the security label of the type to remain public. Thus,
[ is tagged L, which is safe and more precise than under traditional monitoring.

Similarly, if we consider a language with records, the following snippet illus-
trates that the field existence of a property can be observable independently.
In a language with observable existence (in this case
through the primitive in) a monitor might gain preci-
sion by labeling this feature independently of the value.
The label does not need to be updated when the prop-
erty assignment is run, since the existence of the property
remains the same.

The type and the existence are two examples of properties of runtime values
that can be independently observed and change less often than the values. We
refer to such properties as Observable Abstract Values (OAV). Value sensitivity
can be applied to any OAVs. The synergy between these two concepts has the
power to improve existing purely dynamic and hybrid information flow moni-
tors, as well as improving existing techniques to handle advanced data types as
dynamic objects. The main contributions of this paper are

o={p: 2}
olp’] = 17;
1 =‘p’ in o;

— the introduction of the concept of value sensitivity in the setting of observable
abstract values, realized by systematic use of lifted maps,

— showing how the notion of value sensitivity naturally entails the notion of
existence and structure labels, frequently used in the analysis of dynamic
objects in addition to improving the precision of previous techniques while
significantly simplifying the semantics and correctness proofs.

— the application of value sensitivity to develop a novel approach to hybrid
information flow control, where not only the underlying dynamic analysis but
also the static counterpart is improved by value sensitivity.

We believe that systematic application of value sensitivity on identified
observable abstract values can serve as a method when designing dynamic and
hybrid information flow control mechanism for new languages and language con-
structs. The full version [1] of the paper contains the full details and proofs.

2 The Core Language [

We illustrate the power of the approach on a number of specialized languages
formulated as extensions to a small while language £, defined as follows.

ex=l|ede|x|r=e s:=1if(e){s}{s}|while(e){s}|s;s|skip|e
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The expressions consist of literal values [, binary operators abstractly repre-
sented by @, variables and variable assignments. The statements are built up by
conditional branches, while loops, sequencing and skip, with expressions lifted
into the category of statements.

S : string — LabeledValue v:: = bool ’ integer ‘ string | undef
0 € LabeledValue:: = v7  C::=(S,0) ‘ S pe,o,w € Label

The semantics of the core language is a standard dynamic monitor. The
primitive values are booleans, integers, strings and the distinguished undef value
returned when reading a variable that has not been initialized. The values are
labeled with security labels drawn from a lattice of security labels, Label. Let
L € Label denote the least element. Unless indicated otherwise, in the examples,
a two-point lattice L C H is used, representing low for public information and
high for secret. The label operator LI notates the least-upper-bound in the lattice.

st (516 e (S2,8) Salo il S
<817 = €> —pec <S37 ’U>
[ SL€) =pe (52,07) (S2,80) —petio S5 L Sunert (2) =0
<81, if(e) {Strue}{sfalse}> —pc S3 <S7 33> —pc <87 U)

Fig. 1. Partial £ semantics

The semantics is a big-step semantics of the form (S, s) —,. C read as: the
statement s executing under the label of the program counter pc and initial state
S results in the configuration C. The states are partial maps from variable names
to labeled values and the configurations are either states or pairs of states and
values.

The main elements of the semantic are described in Fig. 1, with the remain-
ing rules in the [1] for space reasons. The selected rules illustrate the interplay
between conditionals, the pc and assignment. The IF rule elevates the pc to the
label of the guard and evaluates the branch taken under the elevated pc. The VAR
rule and the ASSIGN rule, for variable look up and side effects, use operations
on the lifted partial map, Sypges , to read and write to variables respectively. In
the latter case, this is where the pc constrains the side effects.

Lifted partial maps provide a generic way to safely interact with partial maps
with labeled codomains. For example, as shown in Fig. 1, a lifted partial map is
used to interact with the variable environment. In general, lifted partial maps
are very versatile and in Sect. 3 will be used to model a variety of aspects.

A lifted partial map is a partial map with a default value. For a partial map
M : X — Y, the map Mp : X — Y U A is the lifted map with default value

M(z) z € dom(M)

A, where Ma(z) = A otherwise

This defines the reading operation.
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For writing, M[ZL'A’U] Ipe M’ denotes that z is safely updated with the value
© in the partial map M, resulting in the new partial map M’. Formally, the
MUPDATE rule governs this side-effect as follows:

To update the element z of a Ma(z) =w¥ pcCw

. . . MUPDATE
lifted .partlal map with a labeled M[xéi)]lpc Mz — 7]
value 0, the current value of x needs
to be fetched. To block implicit leaks, the label of this value, w, has to be above
the level of the context, pc. In terms of the variable environment above, if a
variable holds a low value, it cannot be updated in a high context. If the update
is allowed, the label of the new value is lifted to the pe (0P¢) before being stored
in z. This implements the standard NSU restriction.

However, there is a situation where this restriction can be relaxed: when the
variable to update already holds the value to write, i.e., when the side-effect is
not observable. In this case, the update can be safely ignored rather than causing
a security error, even if the target of the side-effect is not above the level of the
context.

The MUPDATE-VS rule extends Mp(z) = w¥
the permissiveness oi.' thg mogltor in MUPDATE-VS —P¢ Lw w=v
cases where pc [Z: w, like in Listing 1.1. M[xﬁv] Lpe M

Intuitively, the assignment statement
does not break the NSU invariant and it is safe to allow it. We call an enforcement
that takes the previous value of the write target into account value-sensitive.
Note that, in the semantics, security errors are not explicitly modeled - rather
they are manifested as the failure of the semantics to progress. In a semantics
with only the MUPDATE rule, any update that does not satisfy the demands
will cause execution to stop. The addition of MUPDATE-VS however allows the
special case, where the value does not change, to progress.

3 Observable Abstract Values

The notion of value sensitivity naturally scales from values to other properties of
the semantics. Any property that can act as mutable state, i.e., that can be read
and written, is a potential candidate. In the case where the property changes
less frequently than the value, such a modeling may increase the precision. In
particular, assuming that the property is modeled with a security label of its
own, the NSU label check can be omitted when an idempotent operation, with
respect to the property, is performed. We refer to such properties as Observable
Abstract Values (OAV). Consider the following examples of OAVs:

— Dynamic Types. It is common that the value held by a variable is secret,
while its type is not. In addition, values of variables change more frequently
than types which means that most updates of variables do not change the
type.

— Property Existence. The existence of properties in records or objects can
be observed independently of their value. Changing a value in a property does
not affect its existence.
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— List or Array Length. Related to property existence, the length of a list
or array is independent of the values. Mutating the list or the array without
adding or deleting values does not affect the length.

— Graph/Tree Structure. More generally, not only the number of nodes in a
data structure, but any observable structural characteristic can be modeled
as OAVs, such as tree height.

— Security Labels. Sometimes [9,10] the labels on the values are observable.
Since they change less often than the value themselves, they can be modeled
as OAVs.

Different OAVs are not necessarily independent. In the same way an OAV is
an abstraction of a value, it is possible to find OAVs that are natural abstractions
of other OAVs. Such partial order is of interest both from an implementation
and proof perspective. For space reasons we refer the reader to the full version [1]
of the paper for more information.

The rest of this section explains the first two examples above as extensions of
the core language £. The extension with dynamic types L; is detailed in Sect. 3.1,
and the extension with records modeling existence and structure £, is detailed
in Sect. 3.2. The two latter extensions illustrate that the approach subsumes and
improves previous handling of records [18].

3.1 Dynamic Types L;

Independent labeling of OAVs allows for
increased precision when combined with
value sensitivity. To illustrate this point,
consider the example in Listing 1.2 where
the types are independently observable
from the values themselves, via the primitive
typeof (). Assuming that the value of ¢ is initially secret while the type is not,
the example in the listing illustrates how the value of ¢ is made dependent on h
while the type remains independent.

Listing 1.2.

t = (17 inth);
if (h) {t = 2;} else {t = 3;}
1 = typeof (t);

The precision gain is significant for, e.g., Listing 1.3.
JavaScript. A common defensive program- if (typeof document.cookie
ming pattern for JavaScript library code is I==‘‘yndefined’’) { ... }

to probe for the presence of needed func-
tionality in order to fail gracefully in case

it is absent. Consider, for instance, a library that interacts with document.
cookie. Even if all browsers support this particular property, it is dangerous for
a library to assume that it is present, since the library might be loaded in, e.g.,
a sandbox that removes parts of the API. For this reason it is very common for
libraries to employ the defensive pattern shown in Listing 1.3, where the dots
represent the entire library code. While the value of document.cookie is secret
its presence is not. If no distinction between the type of a value and its actual
value is made this would cause the entire library to execute under secret control.
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To illustrate this scenario, we extend £ with dynamic types and a typeof ()
operation that given an expression returns a string representing the type of the
expression:

e =(---asin £) | typeof(e) s:=(---asin L)

The semantics is changed to accommodate dynamically typed values. In partic-
ular typed values are pairs of a security labeled value, and a security labeled
dynamic type. Additionally, the state S is extended to a tuple holding the value
context V and the type context 7.

V : string — LabeledValue 7T : string — LabeledType
TypedValue:: = (0,1) ¢ € Type:: = bool | int | str | undef S € State:: = (V,T)

A consequence of the extension with dynamic types is that the semantic
rules must be changed to operate on typed values. Figure2 contains the most
interesting rules - the remaining rules can be found in the full version of this
paper [1].

(S1,€) =pe (V2, To), (0, 1))
Vw2 )1 Vs Ta[wc )], T,
(S1,z=€) —pe ((Vs,Ts), (0,1))
(S1,€) —pe (S2, (0, 1))
(S1,typeof (€)) —pe (Sa, (string(L), str))

Vanger L (T) = 0 Tondest (z) = i

(V,T),x) —pe <<V7 T>7 <U7t>>

ASSIGN;

TYPEOF

VAR:

Fig. 2. Partial £; semantics

The typeof () operator (T'YPEOF) returns a string representation of the type
of the given expression. The string inherits the security label of the type of the
expression, whereas the type of the result is always str and hence labeled L.

Further, the rules for variable assignment (ASSIGN;) and variable look-up
(VARy) require special attention. Notice that, for both maps V and 7, the default
lookup value is undefined: undef® and undefl respectively. These maps are
independently updated through AssiGN;, which calls MUPDATE and MUPDATE-
VS accordingly. Variable look up is the reverse process: the type and value are
fetched independently from their respective maps.

If we return to the example in Listing 1.2, the value of ¢ is updated but not
its type. Therefore, under a value-sensitive discipline, the execution is safe and
1 will be assigned to (“int” %, strl’) at the end of the execution.

Distinguishing between the type of a value and its actual value in combination
with value sensitivity is an important increase in precision for practical analyses.
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It allows the execution of the example of wild JavaScript from Listing 1.3, since
typeof document.cookie returns <“St7’”J‘, stTJ‘>, which makes the result of the
guarding expression public.

3.2 Records and Observable Property Existence L,

Previous work on information flow control for complex languages has used the
idea of tracking the existence of elements in structures like objects with an
independent existence label [18,24,28]. In this section, we show that the notion
of OAVs and the use of lifted partial maps are able to naturally express previous
models while significantly simplifying the rules. Further, systematic application
of those concepts allows us to improve previous models — in particular for
property deletion.

Treating the property existence sepa-
rately increases the permissiveness of the
monitor. Consider, for instance, the exam-
ple in Listing 1.4. After execution, the value
of property = depends on h but not its exis-
tence. Since the existence changes less often
and is observable via the operator in, it can be seen as an OAV (of the record).

In order to reason about existence as an OAV, we create L, by extending
L with record literals, property projection, property update and an in operator
that makes it possible to check if a property is present in a record.

Listing 1.4.
o = {x:1};
if (h) {o[‘x’] = 0;}
1= ‘x’ in o;

e:=(---asin £) | {eve} |zle]l |alel=e|eina su=(---L)

The records are implemented as tuples of maps (V, ). decorated with a
structure security label <.

V : string — LabeledValue & : string — LabeledBool
S : string — LabeledValue vi:=r|(---asin £) r:=(V,&)

The first map, V, stores the labeled values of the properties of the record, and
the second map & stores the presence (existence) of the properties as a labeled
boolean. As in previous work, the interpretation is that present properties carry
their own existence label while inexistent properties are modeled by the structure
label. As we will see below, the structure label is tightly connected to (the label
of) the default value of V and £. For clarity of exposition we let the records be
values rather than entities on a heap.

The semantics of property projection, assignment, and existence query are
detailed in Fig.3. Property update (RECASSIGN) allows for the update of a
property in a record stored in a variable and the projection rule (PROJ) reads
a property by querying only the map V. There are a number of interesting
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(S1,e1) —pe (S2, f77)  (S2,e2) —pe (S3,0)
Sz(z) = (V1,6){" o =pcUoy
Vi[f e i]1, Voo E[f 22 truet]|, &
(Sr,wler] =e2) —pe (Ss[z — (V2,E2)"],0)
(S1,€) —pe (S2, f7F)  Sao(x) = (V,E)¢"
vundefg(f):i) U:UIUUf
<S1,$[€]> —pe <827’[}J>
(S1,€) —pe (S2, f77)  Sa(x) = (V,E)¢"
gfalse"(f):i] Uzaxl_laf

(S1,einz) —pe (S2,07)

RECASSIGN

ProJ

Fig. 3. £, semantics extension over £

properties of these two rules. For RECASSIGN note the uniform treatment of
values and existence and how, in contrast to previous work, this simplifies the
semantics to only one rule. Further, note how the structure label is used as the
label of the default value in both rules and how this interacts with the rules for
lifted partial maps.

Consider Listing1.5ina L C M C H security
lattice to illustrate the logic behind this moni-
tor. In this example, the subindex label in the
key of the record denotes the existence label for

Listing 1.5.

o={ er: OL,
fr: 1M, gy 293y,

N S -]

. M
that property. When the true branch is taken, the lfo E ,:,] )= E)
assignment o[‘e’]1=0 (on line 4) is ignored, since s o[‘h’] = O;
MUPDATE-VS is applied. Although the context R o[‘£°] = 0;
is higher than the label of the value and its exis- . ol‘g’] = 0;
tence, no label change will occur. s )

The second assignment (o[“h’]1=0, on line 5) extends the record. This side
effect demands that the structure label of the record is not below M. The demand
stems from the MUPDATE rule via the label of the default value and initiated by
the update of the existence map from false to true. Since the value changes only
MUPDATE is applicable, which places the demand that the label of the previous
value (the structure label) is above the label of the control. The new value is
tainted with the label of the control, which in this case leads to an existence
label of M, resulting in { ..., hy:0M}g.

To contrast, consider the next property update (o[“£’1=0, on line 6), which
writes to a previously existing property under M control. In this case no demands
will be placed on the structure label, since neither of the maps will trigger use
of the default value. The previous existence label is below M, but this does not
trigger NSU since the value of the existence does not change, which makes the
MUPDATE-VS rule is applicable. This also means that the existence label is
untouched and the result after execution is { ..., fr: 0™, ...}x.
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Finally (o[‘g’]=0, on line 7), the previous existence and value labels are
both above M, and the MUPDATE rule is applicable. This will have the effect of
lowering both the existence and value label to then current context in accordance
with flow-sensitivity. The result after execution is { ..., gum: 0M, ... }nu

It is worth noting that the above example can be easily recast to illustrate
update using a secret property name, since the pc and the security label of the
property name form the security context, o, of the writes in RECASSIGN.

With respect to reading, the existence label is not taken into account unless
reading a non-existent property, in which case the structure of the record is used
via the default value. Analogously, the rule IN checks for property existence in
a record by performing the same action on the £ map. This illustrates that the
lifted maps provide a natural model for existence tracking. The existence map
provides all the presence/absence information of a value in a particular property.
This generalization, in combination with value sensitivity, both simplifies previ-
ous work and increases the precision of the tracking. In particular, as shown in
the full version [1] of the paper, this is true when property deletion is considered.

4 Hybrid Monitors L

In the quest of more permissive dynamic information flow monitors, hybrid mon-
itors have been developed. Some perform static pre-analyzes, i.e., before the exe-
cution [13,21,25], or code inlining [6,12,23,29]. In other cases, the static analysis
is triggered at runtime by the monitor [19,22,27,32]. A value sensitivity crite-
rion can be applied in the static analysis of this second group. This means that
fewer potential write targets need to be considered by the static part of these
monitors.

Consider, for instance Listing1.1, where a normal (i.e., value insensitive)
hybrid monitor would elevate the label of [ to the label of h before evaluating
the branch. A value-sensitive hybrid analysis, on the other hand, is able to avoid
the elevation, since the value of [ can be seen not to change in the assignment.

To illustrate how a hybrid value-sensitive monitor might work consider the
following hybrid semantics for the core language. Syntactically, £}, is identical to
£ but, similar to [19] and [22], a static analysis is performed when a branching
is reached (Fig.4).

Consider the rule for conditionals (IFj) that applies a static analysis on the
body of the conditional in order to update any variables that are potential write
targets. In particular, assignments will be statically executed (S-ASSIGN), which
elevates the target to the current context using static versions of MUPDATE and
MUPDATE-VS. This means that the NSU check of MUPDATE no longer needs
to be performed — the static part of the analysis guarantees that all variables
are updated before execution. The static update and new dynamic update rules
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<5‘17 €> ﬁpc <82, U> <827 Strue> :>pc St <827 Sfalse> :>pc Sf
<817 if (6) {Strue}{sfalse}> :>pc St [ Sf
(S1,€) = pe (S, 8)  Salz ™ 5]Upe S
<817 €= 6> = pe <S37 U>
<817 e> —pec <827 UU> <827 Strue) = pelo St
<827 Sfalse> = pelo Sf <$t [ Sf; 5v> —pcllo S3
<$17 if (6) {strue}{sfalse}> —pc 53

S-Ir

S-ASSIGN

IF,

Fig. 4. Partial hybrid semantics

are formulated as follows.

S-MUPDATE Ma(z) = w#v MUPDATE, Ma(@)=w w#v
Mz illo Mz — u°) Mz 6] e Mo — 7]
S-MUPDATEVS Ma@)=w w=v MUPDATE-VS,, Ma(z)=wv w=v
Mz =il M Mz i)l M

The value sensitivity of the static rules is manifested in the S-MUPDATEV'S
rule. In case the new value is equal to the value of the write target, no label
elevation is performed, which increases the permissiveness of the hybrid monitor
in the way illustrated in Listing 1.1. Note the similarity between the static and
the dynamic rules. In case it can be statically determined that the value does
not change we know that MUPDATE-VS;, will be run at execution time and
vice versa for MUPDATEy,. This allows for the increase in permissiveness while
still guaranteeing soundness. Naturally, this development scales to general OAVs
under hybrid monitors.

5 Permissiveness

Value-sensitive monitors are strictly more permissive than their value-insensitive
counterparts with respect to termination insensitive non-interference (TINI).
This means that value-sensitive discipline accepts more safe programs without
allowing insecure programs to be executed.

For space reasons, the soundness proof can be found in the full version of
this paper [1].

In this section we compare the value sensitive languages £, L,.q and Ly to the
value-insensitive counterparts. In particular £ is comparable to the Austin and
Flanagan NSU discipline [2], £,4 is compared to the record subset of JSFlow [20]
and Ly, is compared to the Le Guernic et al.’s hybrid monitor [22].

5.1 Comparison with Austin and Flanagan’s NSU [2]

The comparison with non-sensitive upgrade is relatively straight forward, since
L is essentially the NSU monitor of [2] with one additional value-sensitive rule,
MUPDATE-VS.
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Let --» denote reductions in the insensitive monitor obtained by removing
MUPDATE-VS from £. To show permissiveness we will prove that every reduc-
tion --» can be followed by a reduction —.

Theorem 1 (Value-Sensitive NSU is Strictly more Permissive than
Value-Insensitive NSU).

Vs € L. <81,S> ~~?pe 82 = <81,S> —pc 82/\
ds € L. <81,S> —pc 82 7£> <Sl7s> ~~?pc 82

Proof =: By contradiction, using that --» is a strict subset of —. For space
reasons the proof can be found in the full version of this paper [1]. #: The
program in Listing 1.1 proves the claim, since it is successfully executed by —
but not by --».

5.2 Comparison with JSFlow [20]

Hedin et al. [20] present JSFlow, a sound purely-dynamic monitor for JavaScript.
JSFlow tracks property existence and object structure for dynamic objects with
property addition and deletion. The objects are represented as {z = po}., i.e.,
objects are maps from properties, x, to labeled values, p”, with properties car-
rying existence labels, €, and objects structure labels, <.

Consider the example in Listing 1.6 up to line 3, where Listing 1.6.
the property x is added under secret control. This places -0

the demand that the structure of o is below the pc. In (1) zf (}I;IH) {
L4, this demand stems from the MUPDATE rule via the ol‘x’1=0;
label of the default value and is initiated by the update of , 1

the existence map from false to true. For £,4 the resulting , delete o[‘x’];
object is ({x — 0%}, {x — true’})y, while for JSFlow s 1 = ‘x’ in o;

the resulting object would be {x ELR o} y.

If we proceed with the execution, the deletion on line 5 is under pub-
lic context, which illustrates the main semantic difference between L,; and
JSFlow. In the former, deletion under public control will have the effect of low-
ering the value and existence labels to the current context, which results in
({x — undef’}, {x — false®})y. In the latter, property absence is not explic-
itly tracked and deleting a property simply removes it from the map resulting in
{}z. Therefore, at line 6, L4 is able to use that the absence of z is independent
of secrets, while JSFlow will taint [ with H based on the structure level. In this
way, L.q both simplifies the rules of previous work and increases the precision
of the tracking.

5.3 Comparison with Le Guernic et al.’s Hybrid Monitor [22]

The hybrid monitor presented by Le Guernic et al. [22] is similar to £p,. In both
cases, a static analysis is triggered at the branching point to counter the inherent
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limitation of purely-dynamic monitors: that they only analyze one trace of the
execution.

In the case of Le Guernic et al., the static component of their monitor col-
lects the left-hand side of the assignments in the both sides of branches. Once
these variables are gathered their labels are upgraded to the label of the branch-
ing guard. Intuitively, the targets of assignments in branch bodies depend on
the guard, but as, e.g., Listing 1.1 shows this method is an over-approximation.
Such over-approximations lower the precision of the enforcement, and might, in
particular, when the monitor tracks OAVs rather than regular values, jeopardize
the practicability of the enforcement.

The hybrid monitor £; subsumes the monitor by Le Guernic et al. (see
[1]). All variable side-effects taken into account by Le Guernic et al. are also
considered by the static part of £ via the rule for static assignment, S-ASSIGN.
More precisely, S-ASsSIGN updates the labels of the variables by applying either
S-MUPDATE or S-MUPDATEV'S depending on the previous value. The case when
all variables are upgraded by S-MUPDATE to the level of the guard (o in the
rules of Fig.4) corresponds to monitor by Le Guernic et al.

6 Related Work

This paper takes a step forward to improve the permissiveness of dynamic and
hybrid information flow control. We discuss related work, including work that
can be recast or extended in terms of value sensitivity and OAVs.

Permissiveness. Russo and Sabelfeld [27] show that flow-sensitive dynamic
information flow control cannot be more permissive than static analyses. This
limitation carries over to value-sensitive dynamic information flow analyses.

Austin and Flanagan extend the permissiveness of the NSU enforcement with
permissive upgrades [3]. In this approach, the variables assigned under high con-
text are tagged as partially-leaked and cannot be used for future branching.
Bichhawat et al. [7] generalize this approach to a multi-level lattice. Value sensi-
tivity can be applied to permissive upgrades (including the generalization) with
benefits for the precision.

Hybrid approaches are a common way to boost the permissiveness of enforce-
ments. There are several approaches to hybrid enforcement: inlining monitors
[6,12,23,29], selective tracking [13,25], and the application of a static analysis at
branch points [19,22,27,32]. Value sensitivity is particularly suitable for the latter
to reduce the number of upgrades and increase precision (cf. Sect. 4).

In Relation to OAVs. Some enforcements track other more abstract properties
in addition to standard values. These properties are typically equipped with a
dedicated security label, which makes them fit into our notion of OAV.

Buiras et al. [10] extend LIO [31] to handle flow-sensitivity. Their labelOf
function allows them to observe the label of values. To protect from leaks through
observable labels, their monitor implements a label on the label, which means that
the label itself can be seen as an OAV.
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Almeida Matos et al. [24] present a purely dynamic information flow monitor
for DOM-like tree structures. By including references and live collections, they
get closer to the real DOM specification but are forced to track structural aspects
of the tree, like the position of the nodes. Since the attacker can observe changes
in the DOM through live collections and, in order to avoid over-approximations,
they label several aspects of the node: the node itself, the value stored in it, the
position in the forest, and its structure. These aspects are OAVs, since some of
the operations only affect a subset of their labels. A value-sensitive version of
this monitor might not be trivial given its complexity, but the effort would result
in increased precision.

In Relation to Value-Sensitivity. The hybrid JavaScript monitor designed
by Just et al. [21] only alters the structure of objects and arrays when properties
or elements are inserted or removed. Similarly, Hedin et al. [19,20] track the pres-
ence and absence of properties and elements in objects and arrays changing the
associated labels on insertions or deletions. Both approaches can be understood
in terms of value-sensitivity. Indeed, in this paper we show how to improve the
latter by systematic modeling using OAVs in combination with value-sensitivity.

Secure multi-execution [11,15] is naturally value-sensitive. It runs the same
program multiple times restricting the input based on its confidentiality level. In
this way, the secret input is defaulted in the low execution, thus entirely decou-
pling the low execution from the secret input. Austin and Flanagan [4] present
faceted values: values that, depending of the level of the observer, can return
differently. Faceted values provide an efficient way of simulating the multiple
executions of secure multi-execution in a single execution.

7 Conclusion

We have investigated the concept of value sensitivity and introduced the key
concept of observable abstract values, which together enable increased permis-
siveness for information flow control. The identification of observable abstract
values opens up opportunities for value-sensitive analysis, in particular in richer
languages. The reason for this is that the values of abstract properties typi-
cally change less frequently than the values they abstract. In such cases, value-
sensitivity allows the security label corresponding to the abstract property to
remain unchanged.

We have shown that this approach is applicable to both purely dynamic
monitors, where we reduce blocking due to false positives, and to hybrid analysis,
where we reduce over-approximation.

Being general and powerful concepts, value sensitivity and observable
abstract values have potential to serve as a basis for improving state-of-the-art
information flow control systems. Incorporating them into the JSFlow tool [20]
is already in the workings.
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Abstract. We describe a tool that inputs a deterministic w-automaton
with any acceptance condition, and synthesizes an equivalent w-automaton
with another arbitrary acceptance condition and a given number of states,
if such an automaton exists. This tool, that relies on a SAT-based encoding
of the problem, can be used to provide minimal w-automata equivalent to
given properties, for different acceptance conditions.

1 Introduction

LTL Synthesis and Probabilistic LTL Model Checking (PMC) are two areas
where it is useful to express linear-time temporal properties as deterministic w-
automata. Because it is well known that not all Biichi automata can be made
deterministic, these applications use other acceptance conditions such a Rabin
or Streett. The model checker PRISM [12], for instance, contains a reimplemen-
tation of 1tl2dstar [8], a tool that converts non-deterministic Biichi automata
(obtained from an LTL formula) into deterministic Rabin or Streett automata,
using Safra’s construction [14].

In the past few years, there have been a blossoming of tools directly trans-
lating LTL formulas into Rabin automata, or generalized variants of Rabin
automata [3,5,9-11]. These tools usually give automata smaller than those
obtained with 1tl2dstar via Safra’s construction, and it has been shown that
using the generalized Rabin condition can speed PMC up by orders of
magnitude [5,9].

The need for interaction between tools producing and consuming w-automata
with various acceptance conditions has led to the introduction of the Hanoi
Omega-Automata (HOA) format [4], where the acceptance condition can be
specified using an arbitrary Boolean expression of sets that must be visited infi-
nitely often or finitely often. The current implementation of PRISM can perform
PMC using deterministic automata having any such arbitrary acceptance con-
dition, and to save memory it is preferable to have automata with as few states
as possible, even if this means having a more complex acceptance condition.

In this paper, we present a tool that inputs a deterministic automaton with
any acceptance condition, and uses a SAT-based technique to synthetize an
equivalent automaton with any given accepance condition and number of states
if such an automaton exists. As a consequence we also have a way to construct
© Springer-Verlag Berlin Heidelberg 2015
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minimal equivalent deterministic automata for any given acceptance condition.
This SAT-based encoding is costly, so it is not suitable for routine simplification
of automata; however it is a very useful tool to provide lowerbounds for the size
of the deterministic automata that existing LTL translators (or actually, any
automaton transformation tool) could produce, so it should help authors of such
tools to find cases where there is room for improvement.

The SAT-based encoding we use for this synthesis with any acceptance is
an extension of our previous work that was restricted to generalized-Biichi
acceptance [2], and that was itself a generalization of the DBAminimizer of [7]
for Biichi acceptance.

2 Definitions and Encoding

2.1 Deterministic Transition-Based w-Automaton

For a set S, S denotes the set of infinite sequences over S. Given such an infinite
sequence o € S¥, Inf(c) denotes the subset of elements that occur infinitely often
in 0. We use B = {L, T} to denote the set of Boolean constants, and use [m] as
a shorthand for {1,2,...,m}.

Definition 1 (DTwA). A (complete) Deterministic Transition-based w-
Automaton (DTwA) is a tuple A ={(Q, X, 1,6, (F1, Fa, ..., Fp), F) where

- @ is a set of states, L € Q is the initial state,

— 2 is an alphabet,

- 0 CQxXxQ is a transition relation that is deterministic and complete, i.e.,
such that V(s,£) € @ x X, |[{d € Q| (s,¢,d) € }| = 1. By abuse of notation,
we shall also write §(s) to denote the set {({,d) € ¥ x Q | (s,4,d) € §}.

~ (F1, Fy, ..., F,,) is a tuple of m acceptance sets of transitions F; C §. For con-
venience, we denote F(t) = {i € [m] |t € F;} the set of indices of acceptance
sets that contain t.

— Z : 2™ — B is a Boolean function that tells which combination of acceptance
sets should be visited infinitely often along a Tun for this run to be accepting.

A run of A is an infinite sequence of connected transitions p = (q1,41,q2)(q2,
l2,q3)(q3,¢3,q4) ... € 8“ such that g1 = ¢. This run recognizes the infinite word
lilals ... and is accepting iff F (Uyerme(p) F(t)) = T. The language of A is the
set L(A) of all infinite words recognized by accepting runs of A.

For brevity, in the rest of this article we simply write automaton instead of
complete and deterministic w-automaton.

In the HOA format [4], the acceptance function .% is represented by a Boolean
expression over primitives of the form Inf(7) or Fin(¢) meaning respectively that
the set F; has to be visited infinitely often or finitely often. For instance Fin(0) v
Inf(1) is an expression for Streett acceptance with one pair (a run is accepting
if it either visits Fy finitely often, or Fj infinitely often); in our definition of
DTwA, the corresponding .% function would be such that % ({1}) = #({0,1}) =
F0) =T, and F({0}) = L.
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2.2 Synthesis of Equivalent DTwA

Given an automaton R = (Qg, X, tg,0r, (F1,Fs, ..., Fy),F), two integers n
and m, and an acceptance function ¢ : 2™ — B, we would like to construct (if
it exists) an automaton C' = (Q¢, X, tc,dc, (G1,Ga,...,Gn),9) with |Qc| =n
states, and such that .Z(R) = .Z(C). We call R the reference automaton, and C,
the candidate automaton.

Since C and R are complete and deterministic, any word of X* has a unique
run in R and C, and testing Z(R) = Z(C) can be done by ensuring that
each word is accepted by R iff it is accepted by C. In practice, this is checked
by ensuring that any cycle of the synchronous product C' ® R corresponds to
cycles that are either accepting in both C' and R, or rejecting in both. To ensure
that property, the SAT-based encoding uses variables to encode the history of
acceptance sets visited between two states of the product C' ® R.

SAT Variables. We encode C with two sets of variables:

— The “triplet” variables {(g1,,q2) | (q1,q2) € Q%, ¢ € X} encode the existence
of transitions (g1, ¥, ¢2) € d¢ in the candidate automaton.

— The “quadruplet” variables {(q1,¢,4,q2) | (q1,q2) € Q%,¢ € X,i € [m]}
encode the membership of these transitions to each acceptance set G; of C.

For the product C'® R, we encode the reachable states, and parts of paths that
might eventually be completed to become cycles. We use SCCr C 297 to denote
the set of non-trivial strongly connected components of R.

— A variable in {{(q,¢,49,¢,0,0) | ¢ € Qc,q € Qr} encodes the existence of a
reachable state (¢, ¢’) in C' ® R. The reason we use a sextuplet to encode such
a pair is that each (g, ¢’) will serve as a starting point for possible paths.

~ A variable in {{q1,4},q2.¢5, L,I") | (q1,q2) € Q%,S € SCCr, (¢}, ¢5) €
S2, 1 C [m], I’ C [m']} denotes that there is a path between (qi,q}) and
(g2, 45) in the product, such that its projection on C' visits the acceptance
sets G; for all ¢ € I, and its projection on R visits the acceptance sets F;
for all ¢ € I’. This set of variables is used to implement the cycle equivalence
check, so the only ¢; and ¢4 that need to be considered should belong to the
same non-trivial SCC of R.

SAT Contraints. With the above variables, C' can be obtained as a solution
of the following SAT problem. First, C should be complete (i.e., ¢ is total):

A \VARCIRA™! (1)

¢1€Qc, X ¢2€Qc

Then, the initial state of the product must exist. Furthermore, if (¢1,47) is a
state of the product, (q1,4,q5) € dr is a transition in the reference automaton,
and (q1,¢,g2) € d¢ is a transition in the candidate automaton, then (g2, ¢}) is a
state of the product too:

A <LC7 LR, LCH LR, ®7 ®> A /\<an qia qlvqia 05 @> A <Q17£,q2>_> <QQ5 ql2a q27ql27 05 @> (2)

(q1,92)€QZ, ¢4 €EQr,
(£,95)€0R(47)
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Any transition of the product augments an existing path, updating the sets I
and I’ of indices of acceptance sets visited in each automaton. Unfortunately,
we have to consider all possible subsets J C [m] of acceptances sets to which the
candidate transition (go, ¢, g3) could belong, and emit a different rule for each J.

<q17Q£,q2aq/27]7[/>

A\ /\ /\<q2a€7Q3> - <Q17q/17(137Qé>IUJa (3)
5 . ~
Gaa)cde, WAXCCHANS I'UF((g5, . 45)))
SeSCCr,(q),95)€5?, ieJ

I'C[m'],(4,q93)€0r(q2) A /\ q27£ i, C]3

iZJ

If a path of the product is followed by a transition (g5, ¢, ¢5) € dr and a transition
(g2,%,q3) € d¢c that both close a cycle (g3 = ¢1 A ¢ = ¢), then the cycle formed
in the candidate automaton by (g2, ¢, ¢1) should have the same acceptance (i.e.,
rejecting or accepting) as the cycle of the reference automaton. In other words,
the transition (g2,¢,q1) belongs to a subset J C [m] of acceptance sets only if
this J satisfies (I U J) =.Z(I' U F((¢, 4, q}))).

A /\<Q1aQLQ%(I/Q,LI/W\(QQ;K’QQ - \/ (/\<q27€aiaQ1>/\/\_'<q27£77;7q1>)
(q1,92)€QE, IC[m], JC[m] €] iZJ
SESCCR, (4,q5)€8%, I'C[m/], GIUN=F (I'UF ((a3,4,41)))
(£,45)€6Rr(42), a3=4}

(4)
Optimizations. A first optimization is to use the same symmetry breaking
clauses as suggested by [7], to restrict the search space of the SAT solver.
Nonetheless, the above encoding requires O(|Qr|? x |Qc|? x 27F™') variables
and O(|Qg|? x |Qc|? x 22m+m" x |5]) clauses. It is therefore very sensitive to
the number of acceptance sets used in the reference and candidate automata. To
mitigate this, we implement some additional optimizations:

1. For SCCs that are known to be weak (i.e., all cycles are accepting, or all
cycles are rejecting) it is not necessary to remember the history I’ of the
acceptance sets seen by paths. The sets of variables {{q1, ¢}, 42,45, [, I'),...}
when ¢} and ¢} belong to a weak SCC can therefore be restricted to only
cases where I’ = ().

2. In case an SCC S is not weak, it is possible that it does not intersect all the
sets F1, Fy, ..., F,,. Then the variables {{q1,q1,¢2,45,1,1'),...} can have
their history I’ restricted to the subset of [m/] that actually intersects S.

3. Simplifying histories. Consider a Rabin acceptance condition like Fin(0) A
Inf(1), where the set Fy has to be visited finitely often and Fj has to be
visited infinitely often. The histories I C [2] or I’ C [2] involved in the
variables {(q1,4q1,q2,¢5,I,I'),...} could take any value in {}, {0}, {1}, or
{0,1} depending on which sets have been seen along this path. However
these variables are only used to detect cycles, and a cycle that contains 0 in
its history cannot be prolonged into an accepting cycle: the history {0,1} can
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therefore be simplified into {0}, which is enough to ensure that the cycle will
be rejecting. Doing this reduces the number of variables and clauses needed.
4. Equation (4) is not directly expressed as a disjunction. To encode it more
efficiently, we use BDDs to express the right-hand side of the implication as
an irredundant product of sums: depending on whether .#(I' U F((¢5, ¢, 4}))
is accepting, we encode the formula ¢ or its negation as a BDD, assign to
true the BDD variables corresponding to the sets listed in I and obtain the
resulting product of sums by dualizing the Minato-Morreale algorithm [13].

State-Based Acceptance. Thisencoding can be tweaked to synthetize automata
with state-based acceptance by reducing the quadruplets (g1, ¢, 7, ¢2) to pairs (g1, %)
in all the above rules.

3 Implementation and Experiments

3.1 Tool Support

The above encoding is implemented in Spot 1.99.4!, and can be used via the
command-line tool autfilt. Tools that produce deterministic w-automata, such
as 1tl2dstar [8], 1t13dra [3], and Rabinizer3 [9], have all been recently updated
to support the Hanoi Omega-Automata format [4], that autfilt can input.

The following example translates Gpg V FGp; using 1t12dstar. The formula
is first passed to 1tlfilt [6] for conversion into 1tl2dstar’s input syntax.
1tl2dstar outputs its result in dra.hoa: it is a 5-state Rabin automaton with
two pairs of acceptance sets.?

% 1tlfilt -£°Gp0 | FGpl’ -1 | 1ltl2dstar --output-format=hoa - dra.hoa
% egrep’States:|acc-name: |Acceptance:’ dra.hoa

States: 5

acc-name: Rabin 2

Acceptance: 4 (Fin(0) & Inf(1)) | (Fin(2) & Inf(3))

Now we can minimize this automaton using our SAT-based approach. We pass
the dra.hoa to autfilt --sat-minimize, with additional options to require a
complete automaton (-C) with state-based acceptance (-S), in the HOA format
(-H). The result has only 3 states.

% autfilt -S -C --sat-minimize -H dra.hoa > dra-min.hoa
% egrep’States:|acc-name: |Acceptance:’ dra-min.hoa
States: 3

acc-name: Rabin 2

Acceptance: 4 (Fin(0) & Inf(1)) | (Fin(2) & Inf(3))

The --sat-minimize option can take additional parameters, for instance to
force a particular acceptance condition on the output (the default is the same
as for the input). As an example, the following command forces the production
of a minimal equivalent automaton with co-Biichi acceptance, which is enough
for this formula (and means only one Rabin pair was really necessary).

! https://spot.Irde.epita.fr/.
2 In the HOA format [4] the Acceptance: line encodes the .# function of Definition 1,
while the acc-name: just supplies a human-readable name when one is known.
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Table 1. Sizes of Rabin automata produced by 1ltl2dstar (L2), 1tl3dra (L3),
Rabinizer (R3), or our SAT-based minimization procedure configured to produce
deterministic Rabin automata with a single acceptance pair (min), with either
state or transition-based acceptance. The notation “z (y)” denotes an automaton with
z states and y acceptances sets. (In Rabin automata, acceptance sets are used as pairs,
so y is always even). Timeouts after 1h are denoted with “t.0”. “imp.” (for “impossi-
ble”) indicates that no Rabin automaton with a single pair where found. Finally “n.a.”
indicates that the formula falls out of the supported LTL fragment of 1t13dra.

state-based acceptance tr.-based acc.
L2 L3 R3 min R3 min

—((FGpo V GFp1) A (FGp2 V GFp3)) 9

(4) 9(4) 908 to. 4(4) imp.
=((GFp1 A GFpo) V (GFps A GFp2)) 270 (10) 10 (8) 11 (16) imp. 10 (8) imp.
—F(G(p2V (prAP2))V(Xp1 U(poAXp1))) 9(2) mn.a 36(12)5(2) 34(6) 3(2)
—FG((poAGFp1 AXXp1) U G(XXp2VXX(poAp1)) 4 (2) mn.a. 16 (4) 2 (2) 16 (2) 1 (2)
=(Fpo A (p1V Gp2) A (1 V Fp2)) 9 (6) 8(6) 15 (16) 8 (2) 13 (8) 8(2)
~(Fpo A GFpo) 4(4) 3(4) 4(8)3(2) 2(4) 2(2)
=(Fpo A GFp1) 5(4) 4(4) 408)3(2) 24) 2(2)
—(GFp1 A GFpo A GFp2) 8(6) 8(6) 8(12)4(2) 1(6) 3(2)
—(GFp1 A GFpo) 4(4) 4(4) 418312 14 2(2
~GFpo 2(2) 2(2) 2()2(2) 1(2) 1(2)
(FGpo V GFp1) A (FGp2 V GFps) 4385 (14) 18 (8) 19 (16) imp. 13 (8) imp.
F(G(p2V (prAP2))V (Xp1 U(poAXp1))) 7(4) 6(4) 8(8)5(2) 6 (4) 3(2)
FG((poAGFp1 AXXp1) U G(XXp2VXX(poAp1))) 3(2) mna. 7(4)2(2) 6(2) 1(2)
Fpo A (p1V Gpz2) A (p1 V Fp2) 8(2) 8(4) 9(8)8(2) 9(4) 8(2)
Fpo A GFpo 3(2) 3(2) 3(4)3(12) 3(2) 2(2

% autfilt -S -C --sat-minimize=’acc="co-Buchi"’ -H dra.hoa > dra-minl.hoa
% egrep’States:|acc-name: |Acceptance:’ dra-minl.hoa
States: 3

acc-name: co-Buchi
Acceptance: 1 Fin(0)

The colored option requests that all transitions (or states) belong to exactly
one acceptance set. This is useful for instance when requesting parity acceptance:
% autfilt -S -C --sat-minimize=’acc="parity max even 2",colored’ -H \

dra.hoa >dpa.hoa
% egrep’States:|acc-name: |Acceptance:’ dpa.hoa
States: 3
acc-name: parity max even 2
Acceptance: 2 Fin(1) & Inf(0)

One section of the web page https://spot.Irde.epita.fr/satmin.html details

the usage of autfilt with more examples.

3.2 Minimization

To evaluate the usefulness and effectiveness of our tool, we built a benchmark of
LTL formulas to convert into deterministic w-automata by the three translators
1tl2dstar 0.5.3, 1t1l3dra 0.2.2, and Rabinizer 3.1.
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Table 2. Size of transition-based generalized Rabin automata produced by 1t13dra or
Rabinizer, and minimized by our procedure configured to keep the same accep-
tance condition. Acceptance conditions are indicated with “Rabin z” meaning Rabin
acceptance with x pairs, “gR z” for generalized-Rabin [3,5] with z pairs, or “gcB z”
for generalized-co-Biichi with = acceptance sets (one of these x sets has to be seen
finitely).

Rabinizer 1tl3dra

orig. min  orig. min
~(PoA(GpoA(FpoAGPT)V(GpoAFp1))V(FpoA(GpoVFp1)) 6 (gR 3) 4 6 (gcB 3) 4
= (XFpoA(p1VXGDo))V(XGPoA(PiAXFpo)V(p1AXGpo))) 5 (gR2) 3 5 (geB2) 3
—(Fpo A (p1 Vv Gp2) A (P1 V FP2)) 8(gR4) 8 8(gecB3) 8
—(Fpo A GFp1) 2(geB2) 2 2(geB2) 2
—(po V XG(p1 A Fpo)) 4(gR2) 4 5(gB2) 4
PoA((GPoA((FpoAGPL)V(GPoAFp1)))V(FpoA(GpoVFp1))) 6 (gR2) 4 6 (gcB2) 4
F(G(p2 V (P1 ADP2)) V (Xp1 U(po A Xp1))) 3(gR2) 3 4(gB2) 3
Fpo A (p1 Vv Gpz2) A (P1 V Fp2) 8(gR2) 8 8(geB2) 8
Gpo A XFp1 4(geB1l) 4 4(geB1) 4
Fpo A Xpo A (Gp1 V XFpo) T(ER2) 7 9(geB2) 7
po V XG(p1 A Fpo) 5(¢gR2) 4 4(gR3) 4

Table 1, shows the number states of deterministic Rabin automata produced
by the translators, as well as the size of the minimal Rabin automata that
autfilt --sat-minimize could produce using a single acceptance pair. The
table distinguishes the use of state-based acceptance or transition-based accep-
tance. All automata are complete. Because the SAT encoding is exponential in
the number of acceptance sets, but polynomial in the size of the automaton, the
input automaton supplied to autfilt --sat-minimize was chosen among the
automata output by the translators as the one with the fewest number of accep-
tance sets, and in case of equality the fewest number of states. For instance, for
—(GFp1 AGFpo AGFp3) in Table 1, the minimal transition-based automaton of size
“3 (2)” was obtained starting from the minimal state-based Rabin automaton of
size “4 (2)”, not starting from the “1 (6)” automaton produced by Rabinizer,
as it involves more acceptance sets.

Although this table only shows minimal automata with a single pair, our
technique can deal with more pairs (and different acceptance conditions) as
well. For instance the formula (FGpy V GFp1) A (FGps V GFps3) is translated by
1tl2dstar into a DRA with 4385 states (and 7 acceptance pairs), by 1t13dra
into a DRA with 18 states (and 4 pairs) and by Rabinizer into a transition-
based DRA with 13 states (and 4 pairs). Using autfilt --sat-minimize we
could reduce it to a transition-based DRA with 2 states and only 3 acceptance
pairs, and show that there is no transition-based DRA with 2 states and less
acceptance pairs (the problem becomes unsatisfiable).

Finally Table2 shows minimization examples that use the transition-based
generalized Rabin acceptance introduced by 1tl3dra and Rabinizer. Before
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minimizing the automaton we simplified the acceptance by removing all unused
sets, yielding the simpler acceptance conditions displayed in the table.

Complete results and instructions to reproduce this benchmark can be found
at https://www.lrde.epita.fr/~adl/lparl5/. In particular, the CSV files include
run time information for the SAT solver we used (Glucose 4.0 [1]), and experi-
ments with 2 and 3-pair DRA.

4 Conclusion

We have presented a tool that can read any deterministic w-automaton and
synthetize (if it exists) an equivalent deterministic w-automaton with a given
number of states and arbitrary acceptance condition.

Although the SAT-based encoding is exponential in the number of acceptance
sets, our experience is that it is nonetheless usable for automata that have up to 8
acceptance sets. This is enough to cover a large spectrum of temporal properties.

By processing the output of existing translators, we were able to find sev-
eral cases where smaller automata exist, showing that there is still room for
improvement in tools that translate LTL into w-automata.

As a final remark, we should point that our tool can find a minimal automaton
for a user-supplied acceptance condition. It might make sense to specify a more
complex acceptance condition in order to obtain a smaller automaton. Could
such a better acceptance condition be synthetized automatically?
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Abstract. FEMaLeCoP is a connection tableau theorem prover based
on leanCoP which uses efficient implementation of internal learning-
based guidance for extension steps. Despite the fact that exhaustive use
of such internal guidance can incur a significant slowdown of the raw
inferencing process, FEMalLeCoP trained on related proofs can prove
many problems that cannot be solved by leanCoP. In particular on the
MPTP2078 benchmark, FEMaLeCoP adds 90 (15.7 %) more problems to
the 574 problems that are provable by leanCoP. FEMaLeCoP is thus the
first AI/ATP system convincingly demonstrating that guiding the inter-
nal inference algorithms of theorem provers by knowledge learned from
previous proofs can significantly improve the performance of the provers.
This paper describes the system, discusses the technology developed, and
evaluates the system.

1 Introduction: Guiding Search by Learned Relevance

Intelligent guidance of the proof search is crucial for automated theorem prov-
ing (ATP). While complete ATP calculi such as resolution, superposition, and
tableau can in principle find a proof of arbitrary length and complexity, the prac-
tical strength of state-of-the-art ATP systems is nowhere near the performance
of expert mathematicians in most of mathematical domains.

In particular, experiments over large formal mathematical libraries [2,15]
show that current ATP calculi have practically no chance to find a more com-
plicated proof in large-theory mathematics unless they are equipped with exter-
nal axiom-selecting Al methods. Such AI methods are based on various ideas
estimating the relevance of the axioms to the conjecture based on sufficiently
descriptive features [9] of the axioms and conjectures. The strongest methods
are based on learning such relevance from the large libraries of previous related
proofs. This is not surprising for two reasons. First, mathematicians also grad-
ually learn their problem-solving expertise. Second, the chances of completely
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manually specifying the most efficient proof-search algorithm for all mathemat-
ical domains and problems seem very low.

Despite the ability of the Al/learning methods to focus the proof search
towards the most relevant axioms, the power of today’s ATPs in most of math-
ematics is still very limited. The automatically found proofs typically do not go
over 20 lines of formal proof-assistant code [8], and are usually easy for trained
mathematicians. This limited power is due to fast blow-up of the internal ATP
search, which is reminiscent of the blow-up incurred by off-the-shelf ATPs when
left to struggle alone with a very large number of axioms.

The success of the axiom-selection Al/learning methods in curbing such
search space motivates research in automated learning of smarter guidance of
the internal search. In the MalLeCoP (Machine Learning Connection Prover)
experiment [16] we have shown that in principle it is possible to significantly
prune the internal search space of leanCoP (lean Connection Prover) [13] when
guiding each extension step by an off-the-shelf machine learner trained on related
leanCoP proofs. However, the speed of the guiding machine learner in Male-
CoP was impractically (about 1000 times) slower [16] than the raw leanCoP
inferencing process, resulting in MalLeCoP’s low real-time performance.

2 Contributions

In this work, we devise much stronger learning-based guidance for connection
tableau by developing an AI/ATP system where the learning-based guidance is
an optimized and tightly integrated part of the core inferencing algorithm and
data structures. This in particular involves (i) developing very fast (online in the
machine-learning terminology) methods for characterizing the current proof state
on which the trained learner gives advice to the inferencing process, (ii) suitable
modification and integration of a machine learner whose advising speed is compa-
rable to the core deductive inference mechanisms, (iii) designing mechanisms that
suitably combine the learning-based guidance with semantic/deductive pruning
methods such as discrimination-tree indexing. The main nontrivial concern is to
provide strong proof-state characterization and Al/learning methods for guiding
the inference steps, while keeping the speed of such methods sufficiently high.

The rest of the paper is organized as follows. Section 3 briefly summarizes
leanCoP, its recent OCaml implementation, and the MalLeCoP prototype, which
are the basis for the current system. Then we describe the main techniques
developed and used in FEMaLeCoP (Sect.4). In Sect.5 we show that the raw
inference speed of the resulting AT/ATP system is reasonably high in comparison
to unguided leanCoP, and that the system indeed adds 15.7 % more MPTP2078
problems to the 574 problems provable by unguided leanCoP.

3 Background: leanCoP, MaLeCoP and OCAML-leanCoP

leanCoP [13] is an automated theorem prover implementing connected tableau
search with iterative deepening, written very economically in Prolog by Otten.
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The reduction rule of the connection calculus is applied before the extension rule,
and open branches are selected in a depth-first way. Additional inference rules
and strategies include regularity, lemmata, and restricted backtracking (cut) [12].
Given the very compact implementation, leanCoP’s performance is surprisingly
high, regularly outperforming much larger ATPs such as Metis and even Prover9
in the CASC competition and in particular on problems coming from large for-
mal libraries [10]. Its size/performance ratio makes leanCoP suitable for various
experiments and integration with other systems. Two such offsprings of leanCoP
relevant here are:

1. Its OCaml implementation (OCaml-leanCoP), which has been linked to the
HOL Light LCF-style kernel, resulting in the currently strongest internal
automation tactic for interactive theorem provers [10].

2. The MaleCoP prototype [16], providing the original Prolog-based leanCoP
with a communication link to an external learning system (the SNoW system
[3]) which is trained on previous leanCoP proofs and guides the choice of the
extension steps. A large cache and a number of meta-strategies (e.g., advising
only when a large branching factor is encountered) were used to combine the
(very) slow external advice with the (much) faster raw inference process.
Large speed-ups in terms of the abstract time (number of inferences) were
measured, however the system was still too slow to be usable in practice.

4 FEMaLeCoP

4.1 Consistent Clausification, Indexing, and Basic Calculus

The basis of FEMaLeCoP is the OCaml version of leanCoP. As in MaleCoP,
FEMaLeCoP starts by a consistent clausification (with relation to the symbols
used) of the FOL problem. This is done by using content-based names for Skolem
functions and for the names of the clauses (or rather for the contrapositives
created from the clauses - see below). For example, formula ?[X]: p(X) thus
becomes p(’skolem(?[A]:p(A),1)’) (involving also variable normalization),
and the name of this clause (contrapositive) is just its MD5 hash. Such consistent
naming is essential for good recall of similar proof situations and their solutions
from the previous problems.

As in leanCoP, the initial clauses and their literals are put into an indexing
datastructure — the lit matrix. The it matrix keeps all literals L from all input
clauses C, remembering the rest of the clause (C' — L). We call the entries in
the lit matrix (i.e., the pairs L, C' — L) contrapositives. Contrapositives are the
main object of leanCoP’s search. The lit indexing is used for fast Prolog-style
unification of literals during the tableau search. While in leanCoP, the indexing
of lit is done automatically by Prolog, FEMaLeCoP uses indexing by the toplevel
predicate and optional discrimination-tree indexing of the literals.

The core theorem-proving function of leanCoP written in Prolog is shown
below, with Cla being the open subgoal and Path being the active path. For
simplicity, we omit here the code implementing regularity, lemmata, iterative
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deepening and restrictive backtracking. The main source of nondeterminism is
obviously the tableau extension rule, and this is where we will apply the learning-
based guidance.

1 7% prove(Cla,Path)

2 prove([Lit|Clal],Path) :-

3 (-NegLit=Lit;-Lit=Neglit) ->

4 (

5 member (NegL ,Path),

6 unify_with_occurs_check (NegL ,6 NegLit)
7 ; X extension step

8 lit (NegLit ,NegL,Clal,Grndl),

9 unify_with_occurs_check (NegL,NegLit),
10 prove (Clal,[Lit|Pathl])

11 ),

12 prove (Cla,Path).

13 prove([]l,_,).

4.2 Overview of the Learning-Based Guidance

We combine the above basic leanCoP algorithm with a learning-based system
that advises the inference process. The interesting choices in such Al setup are
what exactly should be advised, how should the advising algorithm work, and in
particular which features (properties, characteristics) of the proof state are best
for recalling similar past proof states that led (typically after some nontrivial
search effort) to successfully solved problems and their solutions are thus more
likely to lead to successful proof for the current proof state. All these questions
open interesting research topics: for example one could advise selection of high-
level problem-solving strategies rather than low-level reasoning steps, and the
advising algorithm could be interleaved with a gradual computation of more
and more advanced features. While such sophisticated designs will certainly be
built in the future, our goal here is to develop good-enough first solutions that
will show that learning-based guidance leads to significant improvement of the
unguided leanCoP. The summary of the choices that we make is as follows:

What Is Advised: We advise the selection of clause for every tableau extension
step. This means that each time there are multiple clauses (or rather contrapos-
itives) that unify with the current goal, the advise system is called to estimate
the candidates’ chances (relevance) for leading to a proof. The candidates are
then tried (backtracked over) in the order of their relevance. Advising every
extension step in this way is quite extreme and ambitious. It requires that the
advising system is comparably fast to the standard inference speed, because we
cannot assume that there will always be enough previous proof information to
completely avoid mistakes and subsequent backtracking.

How We Advise: We use a fast custom OCaml implementation [8] of the naive
Bayes algorithm that learns the association of the features of the proof states (see
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below) with the contrapositives that were used for the successful tableau exten-
sion steps in previous proofs. During each extension step the advising system
computes the features of the active proof state, and orders the contrapositives by
their estimated relevance for these proof-state features based on the contrapos-
itive’s performance on previous similar proof states. The exact computation of
the relevance and feature-based similarity depends on the machine-learning algo-
rithm used. The implementation details of our advising system and the related
infrastructure are described below 4.3.

Features Used: We characterize the proof state as a weighted vector of symbols
and/or (possibly generalized) terms extracted from all the literals on the active
path. We use frequency-based weighting of such features (the inverse document
frequency — IDF scheme [6]) which has turned out to work very well in the
related large-theory axiom-selection task [7], and we additionally experiment
with a simple decay factor (using maximum) for the features depending on the
distance of the path literals from the tip of the path. For example, given decay
factor of 0.8 and a term feature “1 + 2” extracted independently from two path
literals Ly : 1+2 =3 and Ly : 1 +2 =2+ 1 with L; being the active goal and
L, being its grandparent on the active path, the (non-IDF) weight of the feature
“1+27 is w(“1 +27) = max(0.8°,0.8%) = 1.

4.3 Learning-Based Advising System and Related Infrastructure

Collecting Training Data: First, the advising system needs to collect the training
data. To achieve this, FEMalLeCoP stores the complete information about the
proof by adding the prf argument to the prove function and returning and
printing it when a proof is found. prf is a list of tuples (examples), each consisting
of the current literal, the path, and the contrapositive used.

Data Indezing: The printed prf format is very general and verbose, allowing
experiments with different features and learning algorithms without re-running
the ATP. When extracted from many proofs, the number of printed tuples can
easily go over one million. For the naive-Bayes learning and advising we first turn
this data by a special program (hasher) into an efficient datastructures optimized
for the particular choice of features (constants and/or (generalized) subterms —
both are used by default). For the particular choice of features hasher extracts
the proof-state features from each example and maintains a hashtable cn_pf no
keeping for each contrapositive a map of its aggregated (weighted) proof-state
feature frequencies. Additionally the following auxiliary data are maintained for
fast IDF and naive-Bayes processing: te_num — the total number of training exam-
ples so far, pf_no — a hashtable from features to floats storing the (weighted)
sum of occurrences of every feature in all the processed training examples, and
cn_no — a hashtable storing the total number of occurrences for each contrapos-
itives in all training examples. This data extraction is fast, taking about 30s for
10000 FEMaLeCoP proofs. Additionally, this also works incrementally, i.e. when
a new proof is found, this aggregated information can be very quickly updated
by the new training examples.
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Problem-Specific Data Preparation: Upon start, FEMalLeCoP reads the problem
to solve and the aggregated training data. The first task is to select only the
parts of these data that are relevant for the current problem. For this, after the
(consistent — Sect.4.1) clausification the contrapositives and their features are
extracted and used for filtering out unnecessary parts of the aggregated training
data, resulting in the localized version of the aggregated data structures. The
cn_pf no and cn_no hashtables are then combined with the lit indexing (based
on the toplevel predicate or using a discrimination tree) of contrapositives. This
makes the aggregated previous proof-use information for each contrapositive
accessible right when the contrapositive is accessed in the main prove function
through the /it indexing. This typically allows reasonably fast computation of the
naive-Bayes score of the contrapositives that are considered by the lit indexing.

An optional problem-specific data-filtering step is to use the k-nearest neigh-
bor (k-NN) algorithm for further restriction of the relevant training data. If this
is used, we first find the & solved problems whose conjectures are (in the feature
metric) closest to the current conjecture, and extract the training examples only
from such problems. Such filtering introduces further parameters to optimize
and is not yet used in the Evaluation (Sect.5).

Efficient Approximate Feature and Relevance Computation: To avoid costly
recomputation of the features of the path for each extension step, the prove func-
tion passes the proof-state features computed so far as an additional argument,
and the feature vector is only updated incrementally when an extension step is
to be performed. This means that the features may occasionally be approximate,
because the substitutions performed with the literals of the path (line 6 of the
simplified leanCoP algoprithm in Sect. 4.1) might not be taken into account. This
optimization may lose some constant features (e.g., if induced by a unification
at a reduce step), however it very significantly speeds up the advising. Given
that the features of the current path are f, the relevance of the eligible contra-
positives (pre-selected by the lit indexing) is then computed according to the
following modified naive-Bayes score (used by us for axiom selection in [11]):

r(ts) =ovint+ Y- i(f)ln%(fuas P GEEY i(f)lnu_@)

fe(fus) fe(f-s) feG=7

Here t is the total number of times the contrapositive was used, s is its aggregated
feature vector, and i is the vector of IDF weights of all features. The score function
is parameterized by the following constants (chosen experimentally): o1 — weight
of the total number of uses (default = 2), oo — weight of the overlapping features
(default = 2), o3 — weight of the path-only features (default = —6), o4 — weight
of the contrapositive-only features (default = —0.05).

5 Evaluation

The system’s main evaluation is done on the 2078 related problems coming from
the MPTP2078 large-theory benchmark [1] exported from Mizar. This bench-
mark has two categories: large (chainy) problems containing many redundant
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axioms, and small (bushy) problems that contain only the axioms used explic-
itly in the Mizar proofs plus additional “background” formulas encoding the
(typically typing) reasoning steps done by Mizar implicitly.

As explained in Sect. 1, in FEMal.eCoP we are interested in the problem
of guiding the internal ATP search once the right axioms have been (approx-
imately) chosen by one of today’s reasonably good (external) AT systems used
for axiom selection. This is why we evaluate FEMaLeCoP on the bushy (small)
problems rather than on the chainy (large) ones. Because the external axiom-
selectors are not perfect, it makes sense to evaluate FEMaLeCoP on problems
that still contain some redundant axioms, rather than evaluating it on problems
where the set of axioms is minimized in some way (see [1] for some discussion
of the minimization techniques and issues). The MPTP2078 bushy problems fit
this evaluation scenario quite well, because the “background” formulas included
in the problems are typically quite redundant [1].

The results are show in Table 1. Unaided OCaml-leanCoP is first run on all
the 2078 bushy problems with a time limit of 60s.! This solves 574 problems.
From the proofs of these problems we collect the training data from the success-
ful path decisions and preprocess them as described above. This step is done
once for all proofs and takes seconds. In the second round we run FEMaLeCoP
with these training data loaded, again with a time limit of 60s, again attacking
all the 2078 problems. While the inference speed drops to about 40 % (for a
sample problem: 305098 inferences per second instead of 772208) of the unad-
vised OCaml-leanCoP, the advised system solves 635 problems, adding 90 (15.7 %
more) problems to the original solutions. This is a considerable improvement of
the ATP performance. As the union gives 664 solved problems, a portfolio app-
roach might also prove to be effective.

Table 1. OCaml-leanCoP and trained FEMaLeCoP on bushy problems in 60s.

Prover Proved (%)
OCaml-leanCoP 574 (27.6 %)
FEMal.eCoP 635 (30.6 %)
Together 664 (32.0%)

6 Conclusion and Future Work

To the best of our knowledge, FEMalLeCoP is the first ATP system with effi-
ciently integrated internal learning-based guidance that convincingly shows the
feasibility and benefits of such exhaustive knowledge re-use when compared to
the standard unguided ATP. While the MaLeCoP prototype has provided evi-
dence that large pruning of the ATP search space is possible in principle when

! The hardware used is Intel Xeon E7-4870 2.30 GHz with 256 GB RAM.
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using such internal guidance, FEMaleCoP shows that this is possible in prac-
tice, adding 15.7 % solutions to unguided OCaml-leanCoP in a fair evaluation
scenario.

We believe that this is a rather important step towards producing smart inte-
grated AT/ATP systems that do not try to attack each problem in complete iso-
lation, but instead re-use the vast problem-solving knowledge accumulated in the
formal ITP libraries by human mathematicians and machines. The immediate
future work includes similar modification of more complicated state-of-the-art
ATP systems based on resolution/superposition, developing better proof-state
features, more general learning setups, and combining with external axiom selec-
tion. For example, while the current learning is done on the (MD5) names of
normalized contrapositives, better transfer of knowledge (and thus recall) will
likely be achieved by abstracting away the symbol names, and advising also the
resulting abstract clause patterns [4,14]. Integrated machine learning could also
be used to reorder subgoals [5]. Similarly, it seems straightforward to modify
FEMaLeCoP for learning and advising the choice of higher-level tactics in ITP
systems.
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Abstract. We present a method to prove the decidability of provability
in several well-known inference systems. This method generalizes both
cut-elimination and the construction of an automaton recognizing the
provable propositions.

1 Introduction

The goal of this paper is to connect two areas of logic: proof theory and automata
theory, that deal with similar problems, using a different terminology.

To do so, we first propose to unify the terminology, by extending the notions
of introduction rule, automaton, cut, and cut-elimination to arbitrary inference
systems. An introduction rule is defined as any rule whose premises are smaller
than its conclusion and an automaton as any inference system containing intro-
duction rules only. Provability in an automaton is obviously decidable. A cut is
defined as any proof ending with a non-introduction rule, whose major premises
are proved with a proof ending with introduction rules. We show that a cut-
free proof contains introduction rules only. A system is said to have the cut-
elimination property if every proof can be transformed into a cut-free proof.
Such a system is equivalent to an automaton.

Using this unified terminology, we then propose a general saturation method
to prove the decidability of an inference system, by transforming it into a system
that has the cut-elimination property, possibly adding extra rules. The outline
of this method is the following. Consider a proof containing a non-introduction
rule and focus on the sub-proof ending with this rule

ﬂ'l 7rn
1 -
non-intro
Assume it is possible to recursively eliminate the cuts in the proofs 7', ..., 7",

that is to transform them into proofs containing introduction rules only, hence
ending with an introduction rule. We obtain a proof of the form
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n U
p—l pml P1 pmn
s st s s
5711 intro L T intro
non-intro
S
We may moreover tag each premise s!, ..., s of the non-introduction rule as

magor or minor. For instance, each elimination rule of Natural Deduction [14]
has one major premise and the cut rule of Sequent Calculus [12] has two. If the
major premises are s, ..., s* and minor ones s¥*1, .. s", the proof above can
be decomposed as

1 1 k k
P1 Pmq P1 P,
1 1 k k 1k+1
S1 o Sy . ST v Sy . s predss
———1 intro — % intro — 7 —
S S S S .
non-intro

S

A proof of this form is called a cut and it must be reduced to another proof.
The definition of the reduction is specific to each system under consideration. In
several cases, however, such a cut is reduced to a proof built with the proofs p},

ey Phays s Y ey PR FFL L 7 and a derivable rule allowing to deduce
the conclusion s from the premises s}, ..., s}nl, e s’f, - sﬁlk,sk‘*‘l, ey 8. Adding

such derivable rules in order to eliminate cuts is called a saturation procedure.
Many cut-elimination proofs, typically the cut-elimination proofs for Sequent
Calculus [8], do not proceed by eliminating cuts step by step, but by proving
that a non-introduction rule is admissible in the system obtained by dropping
this rule, that is, proving that if the premises s', ..., s™ of this rule are provable in
the restricted system, then so is its conclusion s. Proceeding by induction on the
structure of proofs of s', ..., s™ leads to consider cases where each major premise
s’ has a proof ending with an introduction rule, that is also proofs of the form

1 1 k k
P1 pml & pmk
st s s% sk Ly
1 e my . 1 - my . k+1 Tn
—— intro —  intro ) —
s s s s .
non-intro

S

In some cases, the saturation method succeeds showing that every proof
can be transformed into a proof formed with introduction rules only. Then, the
inference system under consideration is equivalent, with respect to provability, to
the automaton obtained by dropping all its non-introduction rules. This equiv-
alence obviously ensures the decidability of provability in the inference system.
In other cases, in particular when the inference system under consideration is
undecidable, the saturation method succeeds only partially: typically some non-
introduction rules can be eliminated but not all, or only a subsystem is proved
to be equivalent to an automaton.

This saturation method is illustrated with examples coming from both proof
theory and automata theory: Finite Domain Logic, Alternating Pushdown Sys-
tems, and three fragments of Constructive Predicate Logic, for which several
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formalizations are related: Natural Deduction, Gentzen style Sequent Calculus,
Kleene style Sequent Calculus, and Vorob’ev-Hudelmaier-Dyckhoff-Negri style
Sequent Calculus. The complexity of these provability problems, when they are
decidable, is not discussed in this paper and is left for future work, for instance
in the line of [1,13].

In the remainder of this paper, the notions of introduction rule, automa-
ton, and cut are defined in Sect. 2. Section 3 discusses the case of Finite State
Automata. In Sects. 4 and 5, examples of cut-elimination results are presented.
In the examples of Sect.4, the non-introduction rules can be completely elim-
inated transforming the inference systems under considerations into automata,
while this elimination is only partially successful in the undecidable examples
of Sect.5. The proofs, and some developments, are omitted from this extended
abstract. They can be found in the long version of the paper https://who.rocq.
inria.fr/Gilles.Dowek /Publi/introlong.pdf.

2 Introduction Rules, Automata, and Cuts

2.1 Introduction Rules and Automata

Consider a set S, whose elements typically are propositions, sequents, etc. Let
S5* be the set of finite lists of elements of S.

Definition 1 (Inference rule, Inference system, Proof). An inference rule
is a partial function from S* to S. If R is an inference rule and s = R(s1, ..., 8,),
we say that the conclusion s is proved from the premises s, ..., s, with the rule

R and we write
S1 ... Sn

S

R

Some rules are equipped with an extra piece of information, tagging each premise
$1, ---, Sp as major or minor. An inference system is a set of inference rules.
A proof in an inference system is a finite tree labeled by elements of S such that
for each node labeled with s and whose children are labeled with sq, ..., $,, there
exists an inference rule R of the system such that

S1 ... Sn
S

R

A proof is a proof of s if its root is labeled by s. An element of S is said to be
provable, if it has a proof.

Definition 2 (Introduction Rule, Pseudo-automaton). Consider a set S
and a well-founded order < on S. A rule R is said to be an introduction rule
with respect to this order, if whenever

81 ... Sn
S

R

we have s1 < s, ..., s, < s. A pseudo-automaton is an inference system con-
taining introduction rules only.
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Except in the system D (Sect.5.4), this order < is always that induced by
the size of the propositions and sequents. It is left implicit.

Definition 3 (Finitely Branching System, Automaton). An inference
system is said to be finitely branching, if for each conclusion s, there is only a
finite number of lists of premises 31, ..., 5, such that s can be proved from 5; with
a rule of the system. An automaton is a finitely branching pseudo-automaton.

2.2 Cuts

We define a general notion of cut, that applies to all inference systems considered
in this paper. More specific notions of cut will be introduced later for some
systems, and the general notion of cut defined here will be emphasized as general
cut to avoid ambiguity.

Definition 4 (Cut). A (general) cut is a proof of the form

1 1 & k
P 1 Pmy 1 Py,
1 1 k %
S1 o Sy S Sy Tha1 T
—— 7 intro T mtro =y -
non-intro
where s',...,s* are the major premises of the non-introduction rule. A proof

contains a cut if one of its sub-proofs is a cut. A proof is cut-free if it contains
no cut. An inference system has the cut-elimination property if every element
that has a proof also has a cut-free proof.

Lemma 1 (Key Lemma). A proof is cut-free if and only if it contains intro-
duction rules only.

Proof. If a proof contains introduction rules only, it is obviously cut-free. We
prove the converse by induction over proof structure. Consider a cut-free proof.
Let R be the last rule of this proof and my, ..., m, be the proofs of the premises
of this rule. The proof has the form

™ k)
S1 Sn R
S
By induction hypothesis, the proofs 7y, ..., m, contain introduction rules only.

As the proof is cut-free, the rule R must be an introduction rule.

Consider a finitely-branching inference system Z and the automaton .4 formed
with the introduction rules of Z. If 7 has the cut-elimination property, then every
element that has a proof in Z has a cut-free proof, that is a proof formed with
introduction rules of Z only, that is a proof in A. Thus, Z and A are equivalent
with respect to provability. Since A is decidable, so is Z.
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T AFA axiom
FFLatomifLeT)
TFT T-intro
? t j 1-elim
r-A =B . I'HAAB .
TFAAB A-intro TFA A-elim
I'EAAB .
TE R /\-elim
I'HA . I'HrAvVB I'AEC I'BEC .
TFAVE V-intro TFEC V-elim
{ ; €B V-intro
I'F (ci/x)A ... I'k(cn/ax)A . I'FVzA
TFVzA V-intro T (e /)A Y-elim
F]L—}_(gm{IAA Jintro '3z A I(a QL').A}J—’_% .. I(cn/x)AEC Ielim

Fig. 1. Finite domain logic
3 Finite State Automata

In this section, we show that the usual notion of finite state automaton is a
particular case of the notion of automaton introduced in Definition 3.

Consider a finite state automaton A. We define a language £ in predicate logic
containing a constant ¢; for each symbol 7 of the alphabet of A, a unary function
symbol, also written ~y; and for each state P of A a unary predicate symbol, also
written P. A closed term in £ has the form 71 (y2...(7,(€))), where 41, ..., ¥, are
function symbols. Such a term is called a word, written w = ~y1y2...7,. A closed
atomic proposition has the form P(w), where P is a state and w a word. We
build an inference system that consists of, for each transition rule P —— Q of
A, the introduction rule

Q(z)
P(y(x))

and, for each final state F' of A, the introduction rule

F(e)

It is routine to check that a word w is recognized by the automaton A in a state
I if and only if the proposition I(w) has a proof in the corresponding system.

4 From Cut-Elimination to Automata

In this section, we present two cut-elimination theorems, that permit to com-
pletely eliminate the non-introduction rules and prove, this way, the decidability
of Finite Domain Logic and of Alternating Pushdown Systems, respectively.



102 G. Dowek and Y. Jiang

Ll 2 'W"xP" %) intro n >0 B (y(=) 1;2((;”)) = Pu®) i no> 1
(0]6) intro P—I(W neutral n >0

Fig. 2. Alternating pushdown systems

4.1 Finite Domain Logic

We begin with a toy example, Finite Domain Logic, motivated by its simplicity:
we can prove a cut-elimination theorem, showing the system is equivalent to the
automaton obtained by dropping its non-introduction rules.

Finite Domain Logic is a version of Natural Deduction tailored to prove the
propositions that are valid in a given finite model M. The differences with the
usual Natural Deduction are the following: a proposition of the form A = B is
just an abbreviation for =AV B and negation has been pushed to atomic propo-
sitions using de Morgan’s laws; the V-intro and the 3-elim rules are replaced by
enumeration rules, and an atom rule is added to prove closed atomic propositions
and their negations valid in the underlying model.

If the model M is formed with a domain {a1, ..., a5, } and relations Ry, ..., Ry,
over this domain, we consider the language containing constants ¢y, ..., ¢, for the
elements aq, ..., a, and predicate symbols P4, ..., P, for the relations Ry, ..., Ry,.
The Finite Domain Logic of the model M is defined by the inference system
of Fig. 1, where the set P contains, for each atomic proposition P;(cj,, ..., ¢j, ),
either the proposition P;(cj,, ..., ¢, ) if (a;,,...,aj,) is in R;, or the proposition
-Pi(cj,, .., ¢j,, ), otherwise.

In this system, the introduction rules are those presented in the first column:
the axiom rule, the atom rule, and the rules T-intro, A-intro, V-intro, V-intro, and
F-intro. The non-introduction rules are those presented in the second column.
Each rule has one major premise: the leftmost one. A cut is as in Definition 4.

Theorem 1 (Soundness, Completeness, and Cut-elimination). Let B be
a closed proposition, the following are equivalent:

(1) the proposition B has a proof,

(2) the proposition B is valid in M,

(3) the proposition B has a cut-free proof, that is a proof formed with introduction
rules only.

Therefore, provability in Finite Domain Logic is decidable, as the provable
propositions are recognized by the automaton obtained by dropping the non-
introduction rules. Since the introduction rules preserve context emptiness, the
contexts can be ignored and the axiom rule can be dropped. This automaton
could also be expressed in a more familiar way with the transition rules
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L—gifLeP AVB— {A}
T—o AV B — {B}
ANB — {A,B} Ve A — {(c1/z)A, ..., (cn/z)A}
Jz A — {(c;/x)A} for each ¢;

4.2 Alternating Pushdown Systems

The second example, Alternating Pushdown Systems, is still decidable [2], but a
little bit more complex. Indeed these systems, in general, need to be saturated—
that is extended with derivable rules—in order to enjoy cut-elimination.

Consider a language £ containing a finite number of unary predicate symbols,
a finite number of unary function symbols, and a constant €. An Alternating
Pushdown System is an inference system whose rules are like those presented
in Fig.2. The rules in the first column are introduction rules and those in the
second column, the elimination and neutral rules, are not. Elimination rules have
one major premise, the leftmost one, and all the premises of a neutral rule are
major. A cut is as in Definition 4.

Not all Alternating Pushdown Systems enjoy the cut-elimination property.
However, every Alternating Pushdown System has an extension with derivable
rules that enjoys this property: each time we have a cut of the form

1 k k

P P P Py

I 1 k k

S1 v Smy . S1 .o Smy, . Tk+1 Tn

——1 Intro 5 intro s —

s s s .
non-intro
S

we add a derivable rule allowing to deduce directly s from si, ..., s,lnl, oy 8N
sk, s"T1, .., s". This leads to the following saturation algorithm [3,9,10].

Definition 5 (Saturation). Given an Alternating Pushdown System,

— if it contains an introduction rule

and an elimination rule

then we add the neutral rule

Py(z) ... Pp(z) Q2(z) ... Qun(z)

— if it contains introduction Tules

Pi(@) .. Pp (z) intro e 2% intro
Q:1(v(2)) Qn(y(2))
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and a neutral rule

then we add the introduction rule
Pl(z) ... Py (z) ... P{"(z)..Pn (z)

R((2)) intro
— if it contains introduction rules
010 intro On @) intro
and a neutral rule
@i(z) ... @n( neutral
R(z)
then we add the introduction rule
% intro

As there is only a finite number of possible rules, this procedure terminates.

It is then routine to check that if a closed proposition has a proof in a
saturated system, it has a cut-free proof [3], leading to the following result.

Theorem 2 (Decidability). Provability of a closed proposition in an Alter-
nating Pushdown System is decidable.

Ezample 1. Consider the Alternating Pushdown System S

Qx) . T(x) . T(x) . .
P(ax i1 P(bx i2 R(ax i3 R(bx i4

P(z) R(z nl o P(az el
Q(z) T(z) S(x)

The system S’ obtained by saturating the system S contains the rules of the
system S and the following rules

ng} . . Q{x%Tx!.
S(x n3 T6i15 Tiaxilﬁ Qax i7
Q(x) T(x) .

. T(x) . T(z) .
S(az) 18 T(bz) 19 Q(bx i10 S(ba) 111

The automaton S” contain the rules i1, i2, i3, i4, i5, i6, i7, i8, i9, 110, i11.
The proof in the system S

e .,
(b) il () i3
P(ab) R(ab) ol
QWb
P(aab)
S(ab) L

reduces to the cut-free proof in the system S”
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T&ﬂ; ——i9
Q0™ !
S(ab)

5 Partial Results for Undecidable Systems

In this section, we focus on Constructive Predicate Logic, leaving the case of
Classical Predicate Logic for future work. We start with Natural Deduction [14].
As provability in Predicate Logic is undecidable, we cannot expect to transform
Natural Deduction into an automaton. But, as we shall see, saturation permits
to transform first Natural Deduction into a Gentzen style Sequent Calculus [12],
then the latter into a Kleene style Sequent Calculus [12], and then the latter into
a Vorob’ev-Hudelmaier-Dyckhoff-Negri style Sequent Calculus [4,6,11,15]. Each
time, a larger fragment of Constructive Predicate Logic is proved decidable.

Note that each transformation proceeds in the same way: first, we identify
some general cuts. Then, like in the saturation procedure of Sect. 4.2, we add
some admissible rules to eliminate these cuts. Finally, we prove a cut-elimination
theorem showing that some non-introduction rules can be dropped.

5.1 Natural Deduction

In Natural Deduction (Fig. 3), the introduction rules are those presented in the
first column, they are the axiom rule and the rules T-intro, A-intro, V-intro,
=-intro, V-intro, and 3-intro. The non-introduction rules are those presented in
the second column, each of them has one major premise: the leftmost one.

Natural Deduction has a specific notion of cut: a proof ending with a A-
elim, V-elim, =-elim, V-elim, 3-elim rule, whose major premise is proved with
a proof ending with a A-intro, V-intro, =-intro, V-intro, 3-intro rule, respec-
tively. The only difference between this specific notion of cut and the general one
(Definition 4) is that the general notion has one more form of cut: a proof built
with an elimination rule whose major premise is proved with the axiom rule. For
instance

axiom

PAQFPA
MA-QHH}

PAQF P

So proofs free of specific cuts can still contain general cuts of this form.
Saturating the system, like in Sect. 4.2, to eliminate the specific cuts, would

add derivable rules such as
I'EA I'+B

TFA Rn

But they are not needed, as they are admissible in cut-free Natural Deduction.

The admissibility of some rules however are based on a substitution of proofs,
that may create new cuts on smaller propositions, that need in turn to be elimi-
nated. In other words, the termination of the specific cut-elimination algorithm
needs to be proved [14].



106 G. Dowek and Y. Jiang

T AF A @xiom

TFT T-intro
? i JA 1-elim
I'-rA I'tB I'AAB .
TEAAB /\intro W/\—ellm
I'HAAB .
T FB A-elim
T 1': ‘: 3 B V-intro
I'-B . I'-rAvB IN'AHC I'BEC .
TFAVE V-intro TFC V-elim
I'A+B . I'HrA=B I'HFA .
TFA=B =-intro - T ~B =-elim
It A V-intro if z not free in I e V?A V-elim
I'FVzA T'F (t/2)A
%%%AM J-intro % J-elim if z not free in I, B

Fig. 3. Constructive natural deduction

As general cuts with an axiom rule are not eliminated, this partial cut-
elimination theorem is not sufficient to eliminate all elimination rules and to
prove the decidability of Constructive Natural Deduction, but it yields a weaker
result: a (specific-)cut-free proof ends with introduction rules, as long as the
context of the proved sequent contains atomic propositions only. To formalize
this result, we introduce a modality [ ] and define a translation that freezes the
non atomic left-hand parts of implications, f(A = B) = [A] = f(B), if A is not
atomic, and f(A = B) = A = f(B), if A is atomic, f(AA B) = f(4) A f(B),
etc., and the converse function u is defined in a trivial way.

Definition 6. Let A be the pseudo-automaton formed with the introduction
rules of Constructive Natural Deduction, including the axiom rule, plus the intro-
duction rule

m delay

Theorem 3. Let I' - A be a sequent such that I' contains atomic propositions
only. If I' = A has a (specific-)cut-free proof in Constructive Natural Deduction,
then I' = f(A) has a proof in the pseudo-automaton A and for each leaf A+ B
proved with the delay rule, the sequent u(A b B) has a proof in Constructive
Natural Deduction.

A first corollary of Theorem 3 is the decidability of the small fragment
A=P|T|L|ANA|AVA|P=A|Vz A|Tz A
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where the left-hand side of an implication is always atomic, that is no connective
or quantifier has a negative occurrence. As the pseudo-automaton obtained this
way is not finitely branching, we need, as well-known, to introduce meta-variables
to prove this decidability result.

A second corollary is that if A is a proposition starting with n connectors or
quantifiers different from =, then a (specific-)cut-free proof of the sequent - A
ends with n+1 successive introduction rules. For n = 0, we obtain the well-known
last rule property of constructive (specific-)cut-free proofsFor a proposition A of
the form Va (By V Bs), for instance, we obtain that a (specific-)cut-free proof of
FVz (B V Bs) ends with three introduction rules. Thus, it has the form

/
s

_ B
BV, -in .ro
) V-intro

Vo (Bl V Bo

and 7’ itself ends with an introduction rule. As a consequence, if the proposition
Va (B1V Bs) has a proof, then either the proposition B; or the proposition Bs has
a proof, thus the proposition (Vz By) V (Vz Bsg) has a proof. This commutation
of the universal quantifier with the disjunction is called a shocking equality [7].

5.2 Eliminating Elimination Rules: Gentzen Style Sequent Calculus

To eliminate the general cuts of the form

axiom

ANBFAANB .
——— 1 A\-elim

AANBFA

we could add an introduction rule of the form

ArBral

But, this saturation procedure would not terminate.

A way to keep the number of rules finite is to add left introduction rules to
decompose the complex hypotheses, before they are used by the axiom rule: the
left rules of Sequent Calculus. However, this is still not sufficient to eliminate the
elimination rules of Constructive Natural Deduction. For instance, the sequent
Va(P(x) A (P(f(x)) = Q)) F @ has a proof using elimination rules

axiom axiom

I'EVaz (P(x) A (P(f(2)) = Q))

I'F vz (P(x) A (P(f(z) = Q)

TrPEAPHN Q) , ™ TEPG@APTIEN = Q) o
TFP(f(0) = Q Py _
I'-Q

where I' = Va (P(x) A (P(f(z)) = @)), but none using introduction rules only.
So, we need to add a contraction rule, to use an hypothesis several times

DA ARG

m contraction
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TPFP axiom P atomic % contraction
s s

V-right if  not free in I"

ILAFG
T Iz AFG

3-left if  not free in I, G

Fig. 4. Gentzen style Sequent Calculus: the system G

To prove that the elimination rules of Natural Deduction can now be eliminated,
we prove, using Gentzen’s theorem [8], that they are admissible in the system
G (Fig.4), the Gentzen style Sequent Calculus, obtained by dropping the elimi-
nation rules of Constructive Natural Deduction. In this system, all the rules are
introduction rules, except the contraction rule. The system G does not allow to
prove the decidability of any larger fragment of Constructive Predicate Logic,
but it is the basis of the two systems presented in the Sects. 5.3 and 5.4.

5.3 Eliminating the Contraction Rule: Kleene Style Sequent
Calculus

In the system G, the proof

P

I'Vz A, (t/x)A+ B

I'vz AVx A+ B
I'Vx AF B

V-left
contraction

is a general cut and we may replace it by the application of the derivable rule

p
I'Vz A, (t/x)AF B
T'Vz AF B

contr-V-left

which is a rule a la Kleene. The other general cuts yields similar derivable
rules. But, as noticed by Kleene, the derivable rules for the contradiction, the
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TPFP axiom P atomic
TET T-right
TIFCQ 1-left
IA,BFG )
T, AABF G \left
LEA TEB, o
I'FANANB a
IAFG I,BFG
T,AVBFG  Vleft
'+ A .
TFAv B Vrieht
I'+-B .
TF AV Yright
FFF"L}LX;BB =-right LA :12 Z ;AB {’GB EG contr-=--left
Fl; ;xAA V-right if  not free in I" I V? ‘;1/% IEAI)—%F G contr-V-left
FFH’IA% 3-left if  not free in I, G

Fig. 5. Kleene style Sequent Calculus: the system K
conjunction, the disjunction and the existential quantifier can be dropped, while
that for the implication can be simplified to

INA=BrA I,BFG
I''A= BFG

contr-=--left

The rules =-left and V-left of the system G, that are subsumed by the rules contr-
=--left and contr-V-left, can be also dropped. There are also other general cuts,
where the last rule is a contraction and the rule above is an introduction applied
to another proposition, but these cuts can be eliminated without introducing
any extra rule. In other words, after applying the contraction rule, we can focus
on the contracted proposition [5].

We get this way the system K (Fig.5). In this system, all rules are introduc-
tion rules, except the rules contr-=--left and contr-V-left. The system K plus the
contraction rule is obviously sound and complete with respect to the system G.
To prove that the contraction rule can be eliminated from it, and hence the sys-
tem KC also is sound and complete with respect to the system G, we prove the
admissibility of the contraction rule in the system KC—see the long version of the
paper for the full proof. The system K gives the decidability of a larger frag-
ment of Constructive Predicate Logic, where the implication and the universal
quantifier have no negative occurrences.

5.4 Eliminating the Contr-=--left Rule: Vorob’ev-Hudelmaier-
Dyckhoff-Negri Style Sequent Calculus

In order to eliminate the contr-=--left rule, we consider the general cuts where a
sequent I A = B F G is proved with a contr-=--left rule whose major premise
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Fig. 6. The system D

I'’' A = B Ais proved with an introduction rule, applied to the proposition
A. This leads to consider the various cases for A, that is hypotheses of the form
P=B,T=B,(CAND)=B,(CVvD)= B, (C= D)= B, (Vz C)= B,
and (3z C') = B. The case A = P, atomic, needs to be considered because the
premise I A = B+ A may be proved with the axiom rule, but the case | = B
does not, because there is no right rule for the symbol L. This enumeration of
the various shapes of A is the base of the sequent calculi in the style of Vorob’ev,
Hudelmaier, Dyckhoff, and Negri [4,6,11,15].

We obtain this way several types of general cuts that can be eliminated by
introducing derivable rules. These rules can be simplified leading to the system
D (Fig.6). The system D plus the contr-=-left rule is obviously sound and
complete with respect to the system K. To prove that the contr-=--left rule can
be eliminated, and hence the system D also is sound and complete with respect to
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the system K, we use a method similar to that of [6], and prove the admissibility
of the contr-=--left rule—see the long version of the paper for the full proof.
This system D gives the decidability of a larger fragment of Constructive
Predicate Logic containing all connectives, shallow universal and existential
quantifiers—that is quantifiers that occur under no implication at all—and neg-
ative existential quantifiers. This fragment contains the prenex fragment of Con-
structive Predicate Logic, that itself contains Constructive Propositional Logic.
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Abstract. The goal of this work is to enhance Internet security by
applying formal analysis of traffic attraction attacks on the BGP routing
protocol. BGP is the sole protocol used throughout the Internet for inter-
domain routing, hence its importance. In attraction attacks an attacker
sends false routing advertisements to gain attraction of extra traffic in
order to increase its revenue from customers, drop, tamper, or snoop on
the packets. Such attacks are most common on the inter-domain routing.

We use model checking to perform exhaustive search for attraction
attacks on BGP. This requires substantial reductions due to scalability
issues of the entire Internet topology. Therefore, we propose static meth-
ods to identify and automatically reduce Internet fragments of interest,
prior to using model checking.

We developed a method, called BGP-SA, for BGP Security Analy-
sis, which extracts and reduces fragments from the Internet. In order to
apply model checking, we model the BGP protocol and also model an
attacker with predefined capabilities. Our specifications allow to reveal
different types of attraction attacks. Using a model checking tool we
identify attacks as well as show that certain attraction scenarios are
impossible on the Internet under the modeled attacker capabilities.

1 Introduction

In this work we combine static examination and model checking to examine
fragments of the Internet and either identify possible attacks on their routing
protocol or prove that specific attacks are not possible.

The Internet is composed of Autonomous Systems (ASes). Each AS is admin-
istered by a single entity (such as an Internet service provider, or an enterprise)
and it may include dozens to many thousands of networks and routers. Inter-
domain routing determines through which ASes packets will traverse. Routing
on this level is handled throughout the Internet by a single routing protocol
called the Border Gateway Protocol [16] (BGP).

It is well known that the Internet is vulnerable to traffic attacks [4,9]. In such
attacks malicious Autonomous Systems manipulate BGP routing advertisements
in order to attract traffic to, or through, their AS networks. Attracting extra
© Springer-Verlag Berlin Heidelberg 2015
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traffic enables the AS to increase revenue from customers, drop, tamper, or snoop
on the packets. In the recent past, there have been frequent occurrences of traffic
attraction attacks on the Internet [12,13,18-21]. Some of those attacks allowed
oppressive governments to block their citizens from accessing certain websites.
In other attacks the perpetrators eavesdropped or altered the communications
of others, while in different attacks spammers sent millions of emails from IP
addresses they do not own. In one type of attack scenario the traffic is diverted
through the attacker’s AS network and then forwarded to its real destination,
which allows the attacker to become a “man-in-the-middle” between the source of
the traffic and its final destination. Such attacks are called interception attacks. In
another type of attack scenario, the traffic is not forwarded to its real destination,
which allows the attacker to impersonate the real destination or simply block
access to it. Such attacks are called attraction attacks. In the sequel, when we
refer to any attack of these types we call it a traffic attack.

Our goal is to provide insights to where and how BGP traffic attacks are
possible. Note that BGP is the sole protocol used throughout the Internet for
inter-domain routing, hence its importance. We develop a method that exploits
model checking to systematically reveal BGP traffic attacks on the Internet, or
prove their absence under certain conditions. Our method is based on powerful
reductions and abstractions that allow model checking to explore relatively small
fragments of the Internet, yet obtain relevant results. Reductions are essential
as the Internet nowadays includes roughly 50,000 ASes.

A fragment includes a destination and an attacker AS nodes. The goal of
the attacker is to attract traffic sent to the destination while the goal of normal
nodes is to direct the traffic to the destination.

In a normal mode of the BGP operation, when no attacker is present, an
AS node receives from some of its neighbors their choice of routing path to
the destination. When AS A announces a routing update to its neighbor AS B
consisting of a target node n and a path 7, it means that A announces to B
that it is willing to carry packets destined to n from B, and that packets will
traverse over the path 7. From the announced routing paths, the node chooses
its most preferred route (according to business relationship between the entities
that administer the ASes, length of path, etc.) and sends it further to some of
its neighbors. Its announced path may, in turn, influence the choice of preferred
paths of its neighbors. In contrast, an attacker may send its neighbors faulty
routing paths whose goal is to convince them and other AS nodes in the Internet
to route through the attacker on their way to the destination.

Our static examination investigates the announcements flowing throughout
the Internet. The basic idea is that if announcements cannot flow from one
part of the Internet to another then nodes in the first part cannot influence the
routing decisions of nodes in the second part. Our first reduction is thus based on
BGP policies that determine the flow of announcements in the Internet. Given a
destination and an attacker, we statically identify on the full Internet topology a
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self-contained fragment S that consists of a set of nodes, including the destination
and attacker. S is defined so that nodes in S may send announcements inside
and outside of S, but nodes outside of S never send announcements to nodes in
S. Thus, the routing choices of nodes in S are not influenced by routing choices
of the rest of the Internet.

We can now isolate S from the rest of the Internet and apply model checking
only to it in order to search for an attack strategy that attracts traffic to the
attacker. Since routing decisions in .S are made autonomically, an attack strategy
found on S will attract the same nodes from S when the full Internet is consid-
ered. This result allows to significantly reduce the processing burden on model
checking while searching for attacks on the Internet. Similarly, if we show that
no attack strategy manages to attract traffic from certain victims in .S then the
attacker will not manage to attract traffic from those victims in the full Internet
as well. Thus, by searching a small fragment we find attacks on the full Internet
or show their absence.

The second reduction we suggest is applied within a self-contained fragment S
to further reduce it. We statically identify nodes in S that for all BGP runs choose
the same route to the destination (that does not pass through the attacker),
regardless of the attacker’s behavior. Such nodes are considered safe with respect
to the destination and the attacker of S.

The advantage of this reduction is twofold. First, safe nodes can be safely
removed from the model, thus easing the burden on model checking. Second,
nodes that wish to improve their routing security may decide to route through
safe nodes, thus avoiding traffic attacks from this specific attacker. We further
elaborate on the latter in Sect. 8.

Our third reduction is based on an abstraction. We can statically identify
a routing-preserving set of nodes that all make the same routing choices. Such
a set can be replaced by a single node with similar behavior without changing
routing decisions of other nodes in the network.

Note that all three reductions are computed statically by investigating the
Internet topology and are therefore easy to compute.

We implemented our method, called BGP-SA, for BGP Security Analysis.
We first extracted from the Internet self-contained fragments, which are defined
by a destination and an attacker nodes, and applied reductions to them. We
chose the attacker and the destination nodes either arbitrarily or in order to
reconstruct known recent attacks. In order to apply model checking, we modeled
the BGP protocol for each AS node. We also modeled an attacker with predefined
capabilities. The BGP model is written in C. We considered several specifications
which allow to reveal different types of attacks. We ran IBM’s model checking
tool ExpliSAT [7] on self-contained, reduced fragments.

We found interception attacks. One of those attacks reconstructs a recent
known attack where Syria attracted traffic destined to YouTube [18]. In other
cases we showed that some attraction scenarios are impossible under the mod-
eled attacker capabilities. In the latter case, model checking could also reveal
additional safe nodes.

To summarize, the contributions of this paper are:
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— Defining and implementing aggressive reductions of the Internet. The resulting
(relatively small) self-contained fragments enable an automatic analysis.

— Developing an automatic analysis that can reveal possible attacks on the
Internet and prove that certain attacks are not possible.

— Identifying safe nodes that are not amenable to traffic attacks and can be
exploited to reduce vulnerability of other nodes in the Internet.

2 Related Work

There are some past works that use formal methods to analyze convergence
properties of BGP. [3] uses a static model of BGP path selection and analyzes
configurations of BGP policy. [2] uses static and dynamic models to reason about
BGP convergence. [17] analyzes convergence of routing policies with an SMT
solver. We use a different modeling to reason about traffic attraction scenarios
on the Internet. Our modeling implements runs of the protocol until stabilization,
includes an attacker, and is based on the routing policy used by most ASes on
the Internet. Our model includes parts of BGP that are most relevant to the
analysis of traffic attraction, and is based on the model presented in [9].
Reference [9] discusses the security of BGP and its vulnerability to differ-
ent attacks. It shows that an attacker may employ non-trivial and non-intuitive
attack strategies in order to maximize its gain. This was shown by giving anec-
dotal evidence (obtained manually) for each attack strategy in specific parts
of the Internet. In our work we develop reductions and use model checking to
systematically and automatically search for BGP traffic attacks on the Internet.

3 BGP Background

The routers and networks of the Internet are clustered into connected sets. Each
such set is called an autonomous system (AS). As of the end of 2014, there are
roughly 50,000 autonomous systems on the Internet. An AS is usually adminis-
tered by a single network operator, such as an ISP (Internet service provider), an
enterprise, a university, etc. Each AS has a predefined routing policy determined
by the network operator. An autonomous system is assigned a globally unique
number, sometimes called an Autonomous System Number (ASN).
Routing of data packets on the Internet works in two levels:

1. Inter-domain routing that determines through which ASes the packets will
traverse. This level of routing is handled by a single routing protocol called
the Border Gateway Protocol [16] (BGP).

2. Intra-domain routing that determines the path taken by the packets within
each AS. This is determined independently in each AS. Each network operator
is free to choose any routing protocol to employ within its AS. The most
common examples of such routing protocols are OSPF [15], RIP [14], or
IS-IS [6].
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Note that BGP is the sole protocol used for inter-domain routing. In essence,
BGP is the glue that holds the Internet together and which allows to connect
between different ASes. The currently used version of BGP is number 4. The pro-
tocol’s standard is specified by the IETF (Internet Engineering Task Force) stan-
dardization body in [16]. The primary function of BGP is to exchange network
reachability information between different ASes. Each AS periodically announces
to all its neighboring ASes (i.e., the ASes to which it is directly connected) rout-
ing updates. A routing update consists of the identity of a target network and
a path that consists of a sequence of ASes that starts from the advertising AS
and leads to the AS in which the target network resides. Note that BGP adver-
tises routing updates pertaining to networks residing within ASes (not to ASes
themselves), while the routing path is at the AS level. When AS A advertises a
routing update to its neighbor AS B consisting of a target network n and a path
7, it means that A announces to B that it is willing to carry packets destined to
n from B, and that packets will traverse over the path 7. This routing informa-
tion will then be propagated by AS B to its neighbors, after prepending itself
to 7. The propagation of routing information by one AS to all its neighbors is
a matter of a policy determined by that AS. We shall elaborate on this in the
following.

Every AS stores the routing updates learned from its neighboring ASes in
a data structure called Adj-RIBs-In. If several routes were advertised for the
same target network by different neighboring ASes, then the AS must choose its
most preferable one. Once a route is chosen all packets destined to that target
network will be routed via the neighboring AS that announced the chosen route.
The chosen routes for all target networks on the Internet are stored in a data
structure called Loc-RIB. Choosing the most preferable route is a matter of
policy specific to each AS. In this paper we call it a preference policy.

As noted above, each AS propagates to its neighbors the routing updates
it receives. Only routes within the Loc-RIB may be propagated. Namely, an
AS can only propagate a route it has chosen as its most preferable one. Before
propagating a route the AS must prepend itself to that route. An AS may choose
a subset of its neighbors to which a route is propagated. This is a matter of policy
specific to each AS. We call it an export policy.

Preference and Export Policies. As noted above, the preference and export
policies are a local matter for each AS determined by the network operator.
These policies usually abide by business relationships and commercial agree-
ments between the different network operators. While in reality there are many
types of business relationships and agreements, the following two relationships
are widely believed to capture the majority of the economic relationships [8].

— Customer-provider — in such a relationship the customer pays the provider
for connectivity. Usually, the provider AS is larger and better connected than
the customer AS. For example, the AS administered by Sprint is a provider
of the AS of Xerox corporation. Xerox pays money to Sprint for connecting
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Xerox to the rest of the Internet through Sprint. In this paper we denote this
kind of relationship with arrow from customer to provider.

— Peer-peer — in such a relationship the two peer ASes agree to transit each
other’s traffic at no cost. Usually, the two ASes are of comparable size and
connectivity. For example, the ASes administered by Sprint and NTT are
peers. Each provides the other connectivity to parts of the Internet it may
not have access to. In this paper we denote this kind of relationship with an
undirected line between the two ASes.

Based on the above business relationships the following is a well-accepted model
for the preference and export policies [8].

Preference Policy. This policy is based on the following simple rationale. An AS
has an economic incentive to prefer forwarding traffic via customer (that pays
him) over a peer (where no money is exchanged) over a provider (that he must
pay). Combined with the fact that routing must be loop free and preferably on
short routes the following policy is defined:

1. Reject a routing update that contains a route if the AS itself already appears
on the announced route.

2. Prefer routes that were announced by a customer over routes announced by
a peer over routes announced by a provider.

3. Among the most preferable routes choose the shortest ones, i.e., the ones
which traverse the fewest ASes.

4. If there are multiple such paths, choose the one that was announced by the
AS with the lowest ASN.

Export Policy. This policy is based on the following simple rationale. An AS is
willing to carry traffic to or from other ASes only if it gets paid to do so. Based
on this rationale the following policy is defined:

— AS B will announce to AS A a route via AS C if and only if at least one of
A and C are customers of B.

To illustrate the above policies consider the topology depicted in Fig. 1. Let us
consider the routing of AS 9 to AS 0. There are three possible paths: (9,3,2,1,0),
(9,4,5,0), and (9,7,1,0). Due to the above preference policy 9 will favor the first
route over the second route which is favored over the third route. This is because
the first route is announced by a customer AS (i.e., 3), while the second and third
routes are announced by a peer (4) and provider (7) ASes, respectively. Note that
the chosen route (9,3,2,1,0) will be propagated to 7 and 4, according to the above
export policy.

4 BGP Modeling and Specifications

In this paper we use a BGP standard model acceptable in the literature [9]
to facilitate the analysis of traffic attacks using false route advertisements.
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The model includes all the relevant parts of the protocol that deal with the
dissemination and processing of route advertisements. In particular, the mecha-
nisms of route distribution and route preference are modeled, including malicious
routes originated by an attacker.

We assume a single destination, called Dest, such that the other ASes want
to send traffic to a target network within Dest. We can focus on a single des-
tination because routing announcements referring to different destinations flow
independently of each other. Namely, the routing to one destination does not
influence the routing to another destination. As a result, in our model a routing
update does not include the identity of the target network.

Modeling the BGP Network. A
BGP network N is a tuple N =
(Nodes, Links, Dest, Attacker) where Nodes
is a set of Autonomous System (AS) nodes
in the network graph. Links is a set of
node pairs with one of the following types:
customer-provider or peer-to-peer, repre-
senting the business relationships between
ASes in the network. Dest is an AS from
Nodes representing a single destination node
that contains the target network to which all
other nodes build routing paths. Attacker
is a node from Nodes representing an AS
that can send false routing advertisements
to achieve traffic attraction or interception.

Dest and the Attacker are called the orig-
inators of N. All other nodes are called reg-
ular nodes.

Consider the BGP network presented in Fig. 1. Nodes = {0, 1,...9}, Links
consists of customer-provider links such as (1 — 2) and (9 — 7), and also peer-
to-peer links such as (4 —9) and (1 —7).

A path in N is a sequence m = (nq,...,ny) of nodes in Nodes, such that for
every 1 < i < k, n; and n;y; are connected by an edge (of any kind) from Links.

Fig. 1. BGP network example

Local States and Global Configurations. The local state of a regular AS n
consists of:

— A message queue @(n) containing incoming route announcements.
— A Routing Information Base RIB(n) containing a set of possible routes to
Dest. The most preferred route is denoted chosen(n).

A (global) configuration of N consists of the local states of all nodes.
Next we define a run of the BGP protocol on network N. A run starts from
an initial configuration in which all queues and RIBs are empty. Initially Dest
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sends announcements to all its neighbors. The run terminates after all nodes in
N terminate their run and their queues are empty. In particular, the originators
have already sent out all their announcements. The final configuration of a run
is called stable.

We often will be interested in referring to export actions along a run. We
denote by export(n,n’) the action of node n exporting an announcement to its
neighbor n'.

4.1 Attack Definitions and Specifications

Attacker Goal. The goal of the attacker in our model is to achieve traffic
attraction or interception. We say that a node n is attracted by the attacker if
in the stable configuration chosen(n) is a path on which the attacker appears.
A node n is intercepted by the attacker if it is attracted, and in addition the
attacker has a routing path to the destination.

Successful Attack. A successful attack is a BGP run such that its final stable
configuration satisfies the attacker goal. The attack strategy can be represented
by the sequence of actions preformed by the attacker during the attack, where
each of its action contains the sent announcement and a set of neighbors to which
it was sent.

Normal Outcome. Is the final routing choices of all ASes in N when the
attacker acts like a regular AS.

Trivial Attack Strategy. In the trivial strategy the attacker sends a false
advertisement to all its neighbors and announces that the target network is
located within its own AS.

Specifications. To measure how successful a traffic attraction or interception
attack is, we suggest specifications that compare the result of the attack to the
normal outcome of the protocol run and to the result of the trivial attack, when
applicable. We define specifications of traffic attraction or interception from any
victim as follows: if the attacker can attract (or intercept) traffic from any victim,
while it fails to do so in the normal run and the trivial attack, the attraction (or
interception) specification is satisfied. We demonstrate how the specification is
implemented in our model on Sect. 6.3.

5 Reductions and Abstractions

The goal of our reductions is to obtain a manageable sized fragment of the
large network which is suitable for identifying BGP traffic attacks or show their
absence.
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5.1 Self-contained Fragments

The extraction of a self-contained fragment is our main reduction that signifi-
cantly reduces the initial network, such as the full Internet topology. The reduc-
tion is based on preserving the flow of announcements in the network during a
BGP run. The following is a central notion in our analysis of the flow. It directly
follows from the export policy (see Sect.3). A path 7 = (nq,...,ng) in N is valid
if ny is an originating node, no node is repeated on 7, and for every 1 < i < k,
at least one of n;_1 and n;y1 is a customer of n;. Further, no n; is an origi-
nating node except n; and possibly nj. Examples of valid paths in network NV
of Fig. 1 are (0,5,4,6,8) and (0,5,4,9,3,2,1). Note that (0,5,4,6,8,7) is not a
valid path, since both 6 and 7 are not customers of 8. The following is a key
observation about valid paths.

Lemma 1. If there is no valid path in N with edge from node n to node n’ then
there is no run in N along which export(n,n') is performed.

Note, however, that the contrary is not true. There might be an edge (n,n’) on
a valid path but still no export(n,n’) is performed. This is due to the preference
policy of nodes.

We say that n cannot export to n’ if there is no run in which the action
export(n,n’) is performed.

Let N be a network and let S C Nodes be a subset of its nodes that includes
all originators of N. S is a self-contained fragment of N if for every n € (Nodes \
S), n cannot export to any n’ € S. This means that nodes outside of S cannot
change routing decisions of nodes in S.

The following lemma describes the significance of self-contained fragments.

Lemma 2. Let N be a network and let S be a self-contained fragment of N.
Then, any traffic attack found on S can occur on N as well. Moreover, if we
prove that a traffic attack is not possible in S then the corresponding attack is
not possible in N as well.

The lemma implies that instead of searching a huge network N (such as the
Internet) we can identify a (relatively small) self-contained fragment, isolate it
from the rest of the network, and search for possible attacks on it. Assume an
attacker (in S) can attract traffic from a node n’ in S. Then since nodes outside
of S do not send n' alternative routing options, they cannot “convince” n’ to
change its routing choice and avoid the route through the attacker. Thus, a traffic
attack which is successful in S is also successful in N. Similarly, if a certain node
is definitely mot routing through the attacker in S then the same holds in IV
as well.

Fragment Importance. Following Lemma 2 , it should be noted that the
fragment concept is of great importance for applying significant reductions on
BGP networks. The set of announcements that a node within the fragment can
receive during any BGP run with an arbitrary attacker on the whole Internet
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is equal to its counterpart on a similar run that is applied to the fragment
only. Therefore, the set of chosen routing paths within the fragment is equal as
well, due to the deterministic preference policy of each node. Thus, the task of
applying model checking on the whole Internet is reduced to applying it on a self-
contained fragment when searching for BGP traffic attacks with our suggested
specifications. Additionally, the fragment concept may be useful for other BGP-
based formal analyses that require substantial reductions on large networks.

Computing Self-contained Fragments. Given a network N = (Nodes,
Links, Dest, Attacker), we describe the computation of a set of nodes which
forms a self-contained fragment. The resulting S includes Dest and Attacker
and excludes some of N’s nodes that cannot export any announcement to S.
Initially, only the set of originators O = {Dest, Attacker} and their neighbors
are in S. A node c outside of S is inserted to S if ¢ is a neighbor of some n € S,
and c is on a valid path from some originator in O to n. The algorithm terminates
when for every ¢ ¢ S which is a neighbor of some n € S, ¢ is not on a valid path
from an originator to n and therefore (by Lemma 1) ¢ cannot export to n.

Example for a Self-contained Fragment Extraction. Consider the 10-
nodes-sized network, presented in part A of Fig. 2. In practice the initial network
can be much larger. Applying the fragment extraction algorithm results in:

1. Initialization: Insert O and their neighbors. S = {22561, 48685, 209, 25934,
6677}

2. Add ¢ = 3257, due to valid path : (o = 22561, 209, 3257, n = 6677)

3. Add ¢ = 5580 , due to valid path : (o = 22561, 209, 5580, n = 25934)

The remaining nodes are not added. For example, 3303 does not appear
on any valid path in the original network, and is therefore dropped during the
construction of a self-contained fragment. After applying this phase we remain
with 7 nodes as presented in part B of Fig. 2.

5.2 Definite Routing Choice

In this reduction we identify nodes that never route via the attacker. If for all
runs of BGP on a network NV, a node n chooses to route through a specific path
originated by Dest that does not pass through the attacker, then 7 is the definite
routing choice of n, denoted drc(n). We consider such nodes as safe, since they
cannot be attracted by the attacker.

For example, in Fig. 1, dre(5) = (0) and dre(4) = (5,0). Node 5 is a neighbor
of Dest and its link to Dest is more preferred than its other link. Therefore, since
the announcement from Dest is guaranteed to be sent to 5, it will always prefer
this path regardless of other paths it might get from 4. For a similar reason, and
since 5 is guaranteed to export its path to 4, node 4 will always prefer the route
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Fig. 2. Fragment Example. The grey node 48685 is the attacker. The yellow node
22561 is the destination. The thick lines in part A represent the arrow direction of the
customer-provider links (Color figure online).

via 5. On the other hand, dre(9) is undefined since on different runs its choice
of routing may change as a result of the announcements sent by the attacker
(which may change from run to run).

drc(n), when defined, is chosen(n) in every run, regardless of the attacker’s
actions. Consequently, the export actions of n are also determined. We can there-
fore eliminate such n from our network and initiate a BGP run from a configura-
tion in which the results of its export is already in the queues of the appropriate
neighbors. This may significantly reduce the network size to which model check-
ing is applied.

5.3 Routing-Preserving Path

Another source of reduction is the abstraction of routing-preserving paths.
A path 7 = (nq,...,ng) is routing-preserving if for every run r of N, in the final
(stable) configuration of r one of the two cases holds: either for all 1 < i <k, n;
chooses to route through n;_; , or for all 1 < i < k, n; chooses to route through
MNi41-

Intuitively, for every run of the protocol, the nodes on a routing-preserving
path all agree on the same route to the destination. As a result, we can replace
such a path with a single node (an abstraction of the path) without changing
the routing of other nodes in the network. The protocol of an abstract node
is adjusted such that it exports announcements with lengths that match the
number of nodes in the path it represents. An example of a routing-preserving
path in Fig.1is (2,3,9).

6 The BGP-SA Method

Our suggested method, called BGP-SA, for BGP Security Analysis, uses reduc-
tions and model checking to apply a formal analysis of BGP attraction attacks
on a large network topology. We use model checking to perform a systematic
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Fig. 3. The BGP-SA method

search for traffic attacks. A systematic search is essential in order to reveal
non-trivial attraction strategies on topologies from the Internet. It has a major
advantage over simple testing techniques that randomly search for attacks. The
model checker we use can perform full verification, thus it can also prove that
no traffic attack is possible under certain conditions.

The BGP-SA method is composed of several stages, as depicted in Fig. 3.
Below we describe them in details.

6.1 Reducing the Network Topology

The input to the BGP-SA method consists
of the full network topology, the chosen
attacker and destination ASN, and the cho-
sen specification. Given this input, we first
extract a self-contained fragment and apply
additional reductions and abstractions. (see
square 1 of Fig. 3). The extraction and reduc-
tion algorithms are explained in Sect. 5. The
output is a reduced fragment that contains
the nodes within the extracted fragment S, Fig.4. Partition of node types in
without those for which dre is defined. (See the extracted fragment

Fig.4).

self-contained
fragment

Trivially
attracted

eattacker,

Full Internet topology

6.2 Simulating the Trivial Attack

Here we explain items 2-3 of Fig. 3. Given a reduced fragment, we run a simula-
tion of the trivial attack on it. If the chosen specification is traffic attraction and
if all the nodes in the reduced fragment are trivially attracted, then the attacker
cannot improve its attraction results. If the chosen specification is traffic inter-
ception and if the trivial attack satisfies the interception condition additionally
to attracting all nodes in the reduced fragment, then again the attacker cannot
improve its attraction results.
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In both cases it is considered a proof (denoted BT-proof for Best Trivial
attraction proof) that within the fragment the attacker does not have a strategy
which is better than the trivial one. When BT-proof is obtained, the analysis is
terminated and model checking is not needed. Otherwise, the nodes of interest for
searching attraction scenarios are the remaining nodes that are neither trivially
attracted nor have a defined drc, as presented in Fig. 4.

6.3 Generating the C Model

Given the reduced fragment and the chosen specification, we generate a model
written in C on which the analysis is applied (see square 4 of Fig. 3). Code 1.1-
1.3 depicts a pseudo-code of the generated code in high level, and below we give
more details of it.

— Code 1.1 describes the procedures that implement nodes in our model. AS_
Proc is the procedure of a regular AS. Its path preference and export policy are
as explained in Sect. 3. The attacker has two procedures: Arbitrary_Attacker_
Proc is the procedure of an attacker that originates arbitrary path announce-
ments and sends them to arbitrary neighbors. Trivial_Attacker_Proc is the
procedure of an attacker that applies the trivial attack and announces itself
as the destination to all its neighbors. Dest_Proc is the procedure of Dest, in
which it announces itself as the destination to all its neighbors.

— Code 1.2 describes the function implementing a BGP run in our model. The
input parameter of this function is the type of run: normal — where the attacker
acts as a regular AS, trivial — where the attacker applies the trivial attack, or
arbitrary - where the attacker acts arbitrarily. The function is composed of a
loop, where at each loop iteration each one of the AS procedures is activated
once. A stable state is achieved when no message is sent by any AS and
all the queues are empty. Convergence is guaranteed [11] due to the routing
policies that are used in the model and the finite number of announcements
that can be sent by the attacker. We bound the number of announcements
originated by the attacker by letting it export to each neighbor at most one
announcement. The function returns the routing results at the stable state
which include chosen(n) for each node n in the netwrok, where chosen(n) is
the preferred route of n.

— Code 1.3 describes the main function in the model and the assertion state-
ment that implements the specification. The main function is composed of
three calls to the function BGP_run, with the three types of run: normal,
trivial, and arbitrary. The routing results of the three runs are saved. Then,
to implement the attraction specification, a boolean flag is set true if there
exists some victim that is attracted by the attacker only in the arbitrary
run, and not in the normal and trivial runs. The assertion requires that this
boolean flag is false. Therefore, if the assertion is violated, the violating run
represents a succesful attraction attack. To implement the interception specifi-
cation, a constraint that the attacker has a routing path to the real destination
should be added.
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Code 1.1. Node Procedures Code 1.2. BGP Run

AS_Proc(){

check incoming announcement and set chosen path; enum RunType {normal, trivial , arbitrary} ;

if (chosen path was changed) typedef Map<Node,Path> Routing_Results :

export new chosen path: Topology fragment:

Arbitrary_Attacker-Proc(){ Routing-Results BGP.run(RunType type){

Path p = nondeterministic_path (); clear AS states;

Neighbors G = nondeterministic.neighbors (); Dest_Proc ():

foreach(n in G) while (! stable_state ()) {

send p to n; for (AS in fragment){

} if (AS is attacker and type == trivial)
Trivial_Attacker_Proc(){ Trivial_Attacker_Proc ():

//attacker pretends to be dest else if(AS is attacker and type == arbitrary)

Path p = <attacker >: Arbitrary_Attacker_Proc ():

send p to all neighbors: else
} AS_Proc ():
Dest-Proc(){ 3

Path p = <dest>;

send p to all neighbors : return routing results; //chosen paths of all nodes

}

Code 1.3. Main Function with Attraction Specification

Routing_Results results [3];
int main () {
results [normal] = BGP_run(normal);
results [trivial] = BGP_run(trivial);
results [arbitrary] = BGP_run(arbitrary );
bool isSomeVictimAttracted = false;
for (AS in fragment){
if (AS routes via attacker in arbitrary run and not
in normal and trivial runs)
isSomeVictimAttracted = true;

assert (!isSomeVictimAttracted );

6.4 Applying Model Checking to the Implemented Model
Using ExpliSAT

Here we explain squares 5—7 of Fig. 3. After the C code of the model is generated
on the fragment, we apply model checking using ExpliSAT [7]. The model checker
systematically scans all possible execution paths of the C program. If it finds
a run that violates the assertion, it returns a counterexample that represents a
successful attack. If the model checker terminates without any counterexample,
it is considered a proof that our attacker cannot perform the specified attack on
the fragment. This is denoted as MC-proof.

7 Experimental Results

We applied our BGP-SA method on Internet fragments and used IBM’s model
checking tool ExpliSAT [7] to search for traffic attacks. The model checker can
run on multiple cores. The experiments were performed on a 64-cores machine
with AMD Opteron(tm) Processor 6376, 125 GB RAM, and 64-bit Linux. The
fragments and all model implementations we used in our experiments are avail-

able at [1].

ExpliSAT Model Checker. ExpliSAT [7] verifies C programs containing
assumptions and assertions. To use ExpliSAT we implement our model in C. Our
specifications are negated and added as assertions on stable states. The model
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Table 1. Results of BGP-SA application on fragments extracted from the full internet
topology

Fragment | Reduced |Trivial Specification | Result Time |Dest |Attacker

size size attrac- (min) |ASN |ASN

(#nodes) | (#nodes) |tion

(#nodes)

1| 16 11 9 attraction BT proof - 31132 16987
2 | 17 6 4 attraction BT proof - 9314 | 7772
3 22 10 8 attraction BT proof - 11669 36291
4 | 29 9 5 attraction MC proof 1.5 29117 15137
5 15 13 10 attraction MC proof 1 12431 18491
6 | 36 18 7 attraction MC proof 17 19969 | 13537
7 | 69 27 17 attraction MC proof 340 8296 |20091
8 | 15 13 invalid interception |counterexample|0.1 12431 18491
9 | 28 10 invalid interception |counterexample|0.5 19361 |32977
10| 80 48 invalid interception |counterexample |13 9218 43571
11| 81 31 invalid interception |counterexample|9 37177 140473
12]114 30 invalid interception |counterexample |18 36040 29386
13, 71 68 65 interception |N/A >12h |30894 | 1290
14| 10 - 4 interception |counterexample|0.1 - -

checker returns a counterexample if there is a violating run, and it can also per-
form full verification and automatically prove that no violating run is possible.

ExpliSAT combines explicit state model checking and SAT-based symbolic
model checking. It traverses every feasible execution path of the program, and
uses a SAT solver to verify assertions. It performs as many loop iterations as
needed, and therefore full verification is possible and no loop bounds are required.

7.1 Results on Internet Fragments

We performed experiments on self-contained fragments extracted from the full
Internet topology. The ASes links from the Internet are from [5] and are relevant
to October 2014.

Table 1 presents the results of applying our method. The fragments in lines
1-13 are based on randomly chosen destination and attacker from the Internet,
with the exception of line 12 which is obtained by choosing the attacker and
destination according to a recent attack where Syria attracted traffic destined
to Youtube [18]. Line 14 is explained in Sect.7.2. The first two columns spec-
ify the number of nodes in the extracted self-contained fragment and in the
reduced fragment. The third column specifies the amount of nodes attracted
by the attacker on the trivial attack. The value is invalid if the specification is
interception and the trivial attack does not satisfy the interception condition,
by which the attacker should have an available routing path to the destination.
The specification we used for each instance appears on the fourth column, and is
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either attraction or interception, which correspond to the specifications defined
in Sect.4.1. Note that in the interception specification, if the trivial attack fails
to satisfy the interception condition, we only compare the attraction to the nor-
mal outcome. The result column specifies any of the possible results that are
described in Sect.6. The N/A result describes ExpiSAT runs that did not ter-
minate. The last two columns specify the chosen ASN from the Internet of the
destination and attacker nodes, from which the fragment was extracted.

The experiments show that the reductions we apply are significant. The sim-
ple BGP simulations of the trivial attack allow us to avoid applying model check-
ing on fragments in which the attacker manages to achieve optimal attraction
results by the trivial attack.

When we used ExpliSAT with the attraction specification, we got proofs
that no better attack strategy exists. It can be explained by the fact that the
trivial attack strategy can be considered most efficient in many cases. Consider
for instance line 4 on which we got a proof by ExpliSAT. It should be noted
that 2 nodes in the fragment are not trivially attracted and do not have definite
routing choices, but still there is no attack strategy capable of attracting traffic
from them. Thus, these two nodes are also considered safe, in addition to the
nodes with definite routing choices.

For the interception instances in lines 8-12 the trivial attack failed to achieve
the interception goal and ExpliSAT found simple interception attacks. Line 12
was performed on a fragment from a recent attack [18]. The fragment reduction
was significant in this case. We found that the trivial attack attracted 12 nodes
but did not satisfy the interception condition. The model checker found an attack
strategy that achieved interception and attracted 11 nodes. The attacker sent
false announcements to 3 of its 4 neighbors in the found interception attack.

7.2 Example Demonstrating Model Checking Advantages

Here we explain line 14in the table. The network is taken from Fig.1. The
network is a variation of the one presented in [9], where the goal was to show a
non-trivial interception attack. We did not apply our reductions on this network
topology.

In the normal outcome and trivial attack, the attacker fails to attract traffic
from AS8. In the attack strategy suggested in [9] the attacker avoids exporting
its path to AS2, and only exports it to AS7. The result is that AS7 chooses a
shorter path directly via the attacker, and as a result AS8 prefers this shorter
path. Thus, the attacker manages to apply traffic interception on ASS.

Line 14 of Table1l specifies the experiment we performed on this topol-
ogy with our BGP model. ExpliSAT automatically found a counterexample
with greater attraction. It returned a counterexample in which the attacker
exported announcements both to AS7 and to AS2. The announcement exported
to AS2 contained AS9 on the sent path. Therefore, AS9 ignored that announce-
ment, and did not export it to AS7. Thus, AS7 chose the shorter path via the
attacker. Eventually, the attacker managed to achieve attraction from ASS8, AS2,
and AS3. Note that with the strategy suggested by [9] only AS8 is attracted.
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An alternative attack that could attract even more nodes to the attacker is to
export to AS2 an announcement that contains AS7 instead of AS9 on the sent
path. That way it can achieve attraction from AS9 as well.

From the above analysis we may conclude that by sending an announcement
that creates a loop an attacker can better control on where the propagation of
some path should be blocked in order to achieve better attraction results.

It should be noted that some versions of BGP are more secure [10] and may
prevent the attacker from sending paths that do not exist in the network. On
such versions the attacker cannot apply the loop strategy. Therefore, the loop
strategy may have an advantage over the no-export strategy only in the absence
of certain BGP security mechanisms.

Note that applying the fragment extraction and reductions would prevent
from getting the counterexample. However, by extending the specification and
defining that a scenario in which some node is routing via the attacker through
a shorter path is also considered a sucessful attack, we were able to find that
counterexample on the reduced topology as well. That shorter routing path
can potentially attract more nodes from outside the fragment. Given the coun-
terexample, a simulation can be applied on a larger topology. In our case, the
counterexample reveals that the routing path of AS7 via the attacker can be
shortened with respect to its length in the trivial attack, and a simulation of the
found attack on the larger topology reveals that AS8 is a new attracted node as
a result.

8 Conclusion

In this work we propose a method to reveal possible attacks on Internet routing
or prove that certain attacks are not possible. We develop substantial reduction
techniques that enable to apply model checking in order to formally analyze
BGP traffic attacks on the Internet. The use of model checking has a major
advantage due to the systematic search, by which it can reveal unexpected or
more sophisticated attacks. This is demonstrated in Sect. 7.2, where during an
experiment that was done to reconstruct a known attack, the model checker
automatically found a different attack strategy that achieved better attraction
results than expected.

One obvious implication of our work is a better understanding of the vul-
nerability of the Internet to traffic attacks. Nonetheless, our suggested method
can also be practical and useful for a network operator to increase its resilience
to such attacks. In some cases a network operator may fear a traffic attack
from potential attacking ASes. For example, telecommunication companies may
fear their traffic be attracted by ASes that belong to adversary governments.
Such governments can exploit these attacks in order to eavesdrop on traffic of
consumers of those telecommunication companies. In such cases, the network
operator can use our method in order to discover the identity of the ASes which
the attacking AS can not attract traffic from. Once these safe ASes are known
the network operator may form links to these ASes and prefer routes announced
by those ASes, thereby eliminate the chances to be attracted by the attacker.
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Abstract. The most dangerous security-related software errors, accord-
ing to CWE 2011, are those leading to injection attacks — user-provided
data that result in undesired database access and updates (SQL-injec-
tions), dynamic generation of web pages (cross-site scripting-injections),
redirection to user-specified web pages (redirect-injections), execution
of OS commands (command-injections), class loading of user-specified
classes (reflection-injections), and many others. This paper describes a
flow- and context-sensitive static analysis that automatically identifies if
and where injections of tainted data can occur in a program. The analy-
sis models explicit flows of tainted data. Its notion of taintedness applies
also to reference (non-primitive) types dynamically allocated in the heap,
and is object-sensitive and field-sensitive. The analysis works by translat-
ing the program into Boolean formulas that model all possible flows. We
implemented it within the Julia analyzer for Java and Android. Julia
found injection security vulnerabilities in the Internet banking service
and in the customer relationship management of a large Italian bank.

1 Introduction

Dynamic web pages and web services react to user input coming from the net-
work, and this introduces the possibility of an attacker injecting special text
that induces unsafe, unexpected behaviors of the program. Injection attacks are
considered the most dangerous software error [19] and can cause free database
access and corruption, forging of web pages, loading of classes, denial-of-service,
and arbitrary execution of commands. Most analyses to spot such attacks are
dynamic and unsound (see Sect. 3).

This article defines a sound static analysis that identifies if and where a
Java bytecode program lets data flow from tainted user input (including servlet
requests) into critical operations that might give rise to injections. Data flow is a
prerequisite to injections, but the user of the analysis must later gage the actual
risk of the flow. Namely, analysis approximations might lead to false alarms and
proper input validation might make actual flows harmless.

Our analysis works by translating Java bytecode into Boolean formulas that
express all possible explicit flows of tainted data. The choice of Java bytecode

© Springer-Verlag Berlin Heidelberg 2015
M. Davis et al. (Eds.): LPAR-20 2015, LNCS 9450, pp. 130-145, 2015.
DOI: 10.1007/978-3-662-48899-7_10



Boolean Formulas for the Static Identification of Injection Attacks in Java 131

simplifies the semantics and its abstraction (many high-level constructs must
not be explicitly considered) and lets us analyze programs whose source code
is not available, as is typically the case in industrial contexts that use software
developed by third parties, such as banks.

Our contributions are the following:

— an object-sensitive formalization of taintedness for reference types, based on
reachability of tainted information in memory;

— a flow-, context- and field-sensitive static analysis for explicit flows of tainted
information based on that notion of taintedness, which is able to deal with
data dynamically allocated in the heap (not just primitive values);

— its implementation inside the Julia analyzer, through binary decision dia-
grams, and its experimental evaluation.

Section 6 shows that our analysis can analyze large real Java software. Com-
pared to other tools available on the market, ours is the only one that is sound,
yet precise and efficient. Our analysis is limited to explicit flows [25]; as is
common in the literature, it does not yet consider implicit flows (arising from
conditional tests) nor hidden flows (such as timing channels). In particular, con-
sidering implicit flows is relatively simple future work (we could apply our previ-
ous work [10], unchanged) but would likely degrade the precision of the analysis
of real software.

This article is organized as follows. Section 2 gives an example of injection
and clarifies the importance of a new notion of taintedness for values of reference
type. Section 3 discusses related work. Section 4 defines a concrete semantics for
Java bytecode. Section 5 defines our new object-sensitive notion of taintedness
for values of reference type and its use to induce an object- and field-sensitive
abstract interpretation of the concrete semantics. Section 6 presents experiments
with the implementation of the analysis. Extended definitions and proofs are in
a technical report [8].

2 Example

Figure 1 is a Java servlet that suffers from SQL-injection and cross-site scripting-
injection attacks. (For brevity, the figure omits exception-handling code.)

A serviet (lines 1 and 2) is code that listens to HTTP network connec-
tion requests, retrieves its parameters, and runs some code in response to each
request. The response (line 2) may be presented as a web page, XML, or JSON.
This is a standard way of implementing dynamic web pages and web services. The
user of a servlet connects to the web site and provides the parameters through
the URL, as in http://my.site.com/myServlet?user=spoto. Code retrieves
these through the getParameter method (line 5). Lines 9 and 10 establish a
connection to the database of the application, which is assumed to define a table
User (line 27) of the users of the service. Line 27 builds an SQL query from the
user name provided as parameter. This query is reported to the response (line 15)
and executed (line 17). The result is a relational table of all users matching the
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1 | public class MyServlet extends HttpServlet {

2 protected void doGet (HttpServletRequest request, HttpServletResponse response) {
3 response.setContentType ("text/html;charset=UTF-8") ;

4

5 String user = request.getParameter ("user"), url = "jdbc:mysql://192.168.2.128:3306/";
6 String dbName = "anvayaV2", driver = "com.mysql.jdbc.Driver";

7 String userName = "root", password = "";

8

9 Class.forName (driver) .newInstance () ;

10 try (Connection conn = DriverManager.getConnection (url + dbName, userName, password);
11 PrintWriter out = response.getWriter()) {

12

13 Statement st = conn.createStatement();

14 String query = wrapQuery (user);

15 out.println("Query : " + query);

16

17 ResultSet res = st.executeQuery(query);

18 out.println("Results:");

19 while (res.next())

20 out.println("\t\t" + res.getString("address"));

21

22 st.executeQuery (wrapQuery ("dummy") ) ;

23 }

24 }

25

26 private String wrapQuery (String s) {

27 return "SELECT * FROM User WHERE userId='" + s + "'";

28 }

29 }

Fig. 1. A Java servlet that suffers from SQL and cross-site scripting-injections.

given criterion (the user parameter might be a specific name or a wildcard that
matches more users). This table is then printed to the response (lines 17-20).
The interesting point here is that the user of this servlet is completely free
to specify the value of the user parameter. In particular, she can provide a
string that actually lets line 17 run any possible database command, including
malicious commands that erase its content or insert new rows. For instance, if
the user supplies the string “’; DROP TABLE User; --" as user, the resulting
concatenation is an SQL command that erases the User table from the database.
In literature, this is known as an SQL-injection attack and follows from the fact
that user (fainted) input flows from the request source into the executeQuery
sink method. There is no SQL-injection at line 22, although it looks very much
like line 17, since the query there is not computed from user-provided input.
Another risk exists at lines 15 and 20. There, data is printed to the response
object, and is typically interpreted by the client as HTML contents. A malicious
user might have provided a user parameter that contains arbitrary HTML tags,
including tags that will let the client execute scripts (such as Javascript). This
might result in evil. For instance, if the user injects a crafted URL such as
“http://my.site.com/myServlet?user=<script>malicious</script>”, the
parameter user holds “<script>malicious</script>”. At line 15 this code is
sent to the user’s browser and interpreted as Javascript, running any malicious
Javascript. In literature, this is known as cross-site scripting-injection and fol-
lows from the fact that user (fainted) input from the request source flows into
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the sink output writer of the response object. The same might happen at line 20,
where the flow is more complex: in other parts of the application, the user might
save her address to the database and store malicious code instead; line 20 will
fetch this malicious code and send it to the browser of the client to run it.

Many kinds of injections exist. They arise from information flows from what
the user can specify (the parameter of the request, input from console, data on
a database) to specific methods, such as executeQuery (SQL-injection), print
(cross-site scripting-injection), reflection methods (that allow one to load any
class or execute any method and lead to a reflection-injection), execute (that
allows one to run any operating system command and leads to a command-
injection), etc. This article focuses on the identification of flows of tainted infor-
mation, not on the exact enumeration of sources and sinks. Our approach can
be instantiated from well-known lists of sources and sinks in the literature.

3 Related Work

The identification of possible injections and the inference of information flows
are well-studied topics. Nevertheless, no previous sound techniques work on real
Java code, even only for explicit flows. Most injection identification techniques
are dynamic and/or unsound. Existing static information-flow analyses are not
satisfactory for languages with reference types.

Identification of Injections. Data injections are security risks, so there is high
industrial and academic interest in their automatic identification. Here, we have
space to mention only the most recent works regarding SQL-injection. Almost
all techniques aim at the dynamic identification of the injection when it occurs
[7,12,14,18,21,28,30,35] or at the generation of test cases of attacks [1,17] or at
the specification of good coding practices [29].

By contrast, static analysis has the advantage of finding the vulnerabilities
before running the code, and a sound static analysis proves that injections only
occur where it issues a warning. A static analysis is sound if it finds all places
where an injection might occur (for instance, it must spot line 17 in Fig. 1); it
is precise if it minimizes the number of false alarms (for instance, it should not
issue a warning at line 22 in Fig. 1). Beyond Julia, static analyzers that iden-
tify injections in Java are FindBugs (http://findbugs.sourceforge.net), Google’s
CodePro Analytix (https://developers.google.com/java-dev-tools/codepro), and
HP Fortify SCA (on-demand web interface at https://trial.hpfod.com/Login).
These tools do not formalize the notion of taintedness (as we do in Definition 4).
For the example in Fig. 1, Julia is correct and precise: it warns at lines 15, 17,
and 20 but not at 22; FindBugs incorrectly warns at line 17 only; Fortify SCA
incorrectly warns at lines 15 and 17 only; CodePro Analytix warns at lines 15,
17, 20, and also, imprecisely, at the harmless line 22. Section 6 compares those
tools with Julia in more detail. We also cite FlowDroid [2], that however works
for Android packages, not on Java bytecode, and TAJ [33], that is part of a
commercial product. Neither comes with a soundness proof nor a definition of
taintedness for variables of reference type.
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Modelling of Information Flow. Many static analyses model explicit and often
also implicit information flows [25] in Java-like or Java bytecode programs. There
are data/control-flow analyses [5,15,20,26]; type-based analyses [3,4,9,13,31,34]
and analyses based on abstract interpretation [10]. They are satisfactory for vari-
ables of primitive type but impractical for heap-allocated data of reference type,
such as strings. Most analyses [4,5,9,13,15,20,26,34] assume that the language
has only primitive types; others [3,10] are object-insensitive, i.e., for each field f,
assume that a.f and b. f are both tainted or both untainted, regardless of the con-
tainer objects a and b. Even if a user specifies, by hand, which f is tainted (unrealis-
tic for thousands of fields, including those used in the libraries), object-insensitivity
leads to a very coarse abstraction that is industrially useless. Consider the String
class, which holds its contents inside a private final char[] value field. If any
string’s value field is tainted, then every string’s value field must be tainted, and
this leads to an alarm at every use of strings in a sensitive context in the program,
many of which may be false alarms. The problem applies to any data structure that
can carry tainted data, not just strings. Our analysis uses an object-sensitive and
deep notion of taintedness, that fits for heap-allocated data of reference type. It
can be considered as data-flow, formalized through abstract interpretation. This
has the advantage of providing its correctness proof in a formal and standard way.

4 Denotational Semantics of Java Bytecode

This section presents a denotational semantics for Java bytecode, which we will
use to define an abstraction for taintedness analysis (Sect. 5). The same semantics
has been used for nullness analysis [32] and has been proved equivalent [23] to
an operational semantics. The only difference is that, in this article, primitive
values are decorated with their taintedness.

We assume a Java bytecode program P given as a collection of graphs of basic
blocks of code, one for each method. Bytecodes that might throw exceptions
are linked to a handler starting with a catch, possibly followed by bytecodes
selecting the right kind of exception. For simplicity, we assume that the only
primitive type is int and the only reference types are classes; we only allow
instance fields and methods; and method parameters cannot be reassigned inside
their body. Our implementation handles full Java bytecode.

Definition 1 (Classes). The set of classes K is partially ordered w.r.t. the
subclass relation <. A type is an element of KU {int}. A class k € K defines
instance fields k.f : t (field f of type t defined in k) and instance methods
km(t1, ..., tn) : t (method m with arguments of type t1, ..., t,, returning a value
of type t, possibly void). We consider constructors as methods returning void.
If it does not introduce confusion, we write f and m for fields and methods.

A state provides values to program variables. Tainted values are computed from
servlet/user input; others are untainted. Taintedness for reference types (such as
string request in Fig. 1) will be defined later as a reachability property from
the reference (Definition 4); primitive tainted values are explicitly marked in the
state.
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Definition 2 (State). A value is an element of Z U|Z |UL U {null}, where

Z are untainted integers, are tainted integers, and L is a set of locations.
A state is a triple (L] s|p) where I are the values of the local variables, s the
values of the operand stack, which grows leftwards, and p a memory that binds
locations to objects. The empty stack is written €. Stack concatenation is :: with
s € written as just s. An object o belongs to class 0.k € K (is an instance of
0.k) and maps identifiers (the fields f of 0.k and of its superclasses) into values
o.f. The set of states is 2. We write Z; ; when we want to fix the number i of
local variables and j of stack elements. A value v has type ¢ in a state (I | s | u) if

UEZU andt = int, orv=null andt €K, orv elL, t € K and u(v).x < t.

Ezample 1. Let state o = <[3,nu11,,£] || 2l 20 | p) € Egg, with p =
[l — ol — o 0" — 0], o.f =0, 09 =13, o.g = and o”.g = 10.
Local 0 holds the integer 3 and local 2 holds the integer 4, marked as computed
from servlet/user input. The top of the stack holds 3, marked as computed from
servlet/user input. The next two stack elements are aliased to £”. Location ¢ is
bound to object o, whose field f holds ¢ and whose field ¢ holds the untainted
integer 13. Location ¢’ is bound to o’ whose field g holds a tainted integer .
Location £’ is bound to o” whose field g holds the untainted value 10.

The Java Virtual Machine (JVM) allows exceptions. Hence we distinguish
normal states o € Z, arising during the normal execution of a piece of code, from
exceptional states o € Z, arising just after a bytecode that throws an exception.
The latter have only one stack element, i.e., the location of the thrown exception
object, also in the presence of nested exception handlers [16]. The semantics of
a bytecode is then a denotation from an initial to a final state.

Definition 3 (JVM State and Denotation). The set of JVM states (from
now just states) with i local variables and j stack elements is ¥; ; = Z; jUE, ;.
A denotation is a partial map from an input or initial state to an output or final
state; the set of denotations is A or As, j,—iy js=241,j1—Dis,j» L0 fix the number
of local variables and stack elements. The sequential composition of 41,52 € A

is 01592 = A0.02(01(0)), which is undefined when §1 (o) or d2(61(0)) is undefined.

In 01; 92, the idea is that §; describes the behaviour of an instruction insy, ds
that of an instruction ins, and d1; do that of the execution of ins; and then inss.

At each program point, the number i of local variables and j of stack elements
and their types are statically known [16], hence we can assume the semantics of
the bytecodes undefined for input states of wrong sizes or types. Readers can find
the denotations of bytecode instructions in a technical report [8], together with
the construction of the concrete fixpoint collecting semantics of Java bytecode,
explicitly targeted at abstract interpretation, since it only requires to abstract
three concrete operators ;, U, and extend on p(A), i.e., on the subsets of A
and the denotation of each single bytecode distinct from call. The operator
extend plugs a method’s denotation at its calling point and implements call.
The concrete fixpoint computation is in general infinite, but its abstractions
converge in a finite number of steps if, as in Sect. 5, the abstract domain has no
infinite ascending chain.
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5 Taintedness Analysis

This section defines an abstract interpretation [6] of the concrete semantics of
Sect. 4, whose abstract domain is made of Boolean formulas whose models are con-
sistent with all possible ways of propagating taintedness in the concrete semantics.
The concrete semantics works over p(A) and is built from singletons (sets made
of a single § € A), one for each bytecode, with three operators ;, U, and extend.
Hence we define here correct abstractions of those sets and operators.

Our analysis assumes that three other analyses have been performed in
advance. (1) reach(v,v’) is true if (the location held in) v’ is reachable from
(the location held in) v. (2) share(v,v’) is true if from v and v’ one can reach a
common location. (3) updated ,;(l}) is true if some call in the program to method
M might ever modify an object reachable from local variable ;. All three analy-
ses are conservative overapproximations of the actual (undecidable) relations.
Our implementation computes these predicates as in [11,22,27], respectively.

Primitive values are explicitly marked as tainted (Definition 2), while tainted-
ness for references is indirectly defined in terms of reachability of tainted values.
Hence, this notion allows a.f and b.f to have distinct taintedness, depending of
the taintedness of variables a and b (object-sensitivity).

Definition 4 (Taintedness). Let v € ZUU]LU{nulZ} be a value and
a memory. The property of being tainted for v in p is defined recursively as:
v e or (v €L and o = u(v) and there is a field f such that o(f) is tainted
in ).

A first abstraction step selects the variables that, in a state, hold tainted data.
It yields a logical model where a variable is true if it holds tainted data.

Definition 5 (Tainted Variables). Let o € ¥, ;. Its tainted variables are

{li | l[k] is tainted in p, 0<k<i}U{sk | vk is tainted in p, 0<k<j}
ifo={|vj—1:-zv0 | p)

{li | U[K] is tainted in p, 0 < k < i} U {e}
if o= {(l|vo|p) and vo is tainted in p

{li | L[K] is tainted in p, 0 < k < i}

if o = (L] vo | p) and vo is not tainted in .

tainted (o) =

Ezample 2. Consider o from Example 1. We have tainted (o) = {l2, 13, s2}, since
tainted data is reachable from both locations £ and ¢', but not from £”.

To make the analysis flow-sensitive, distinct variables abstract the input
(marked with ) and output (marked with *) of a denotation. If S is a set of
identifiers, then $={#|v € S} and S={0|v € S}. The abstract domain con-
tains Boolean formulas that constraint the relative taintedness of local variables
and stack elements. For instance, Zl — §9 states that if local variable {; is tainted
in the input of a denotation, then the stack element so is tainted in its output.
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(const v)T = U A =& A =& A —5; (load k t)T = U A =& A =e A (I < 35)
(store k )T = UA=EA=-EA (5;_1 < ) (add)" = UA=EA=EA(3j_2 — (§;_2 V 5j_1))
(throw k)" = U A=éNéEA (30 — 55-1) (new w)' =U A =& A (& — —3;) A (€ — —80)

(catch)T =UANen—e  (getfield k. f:t)" =UA—=EN (& — (85-1 — §;-1)) A (& — —&0)

(putfield r.f:t)" = Aper Rj(v) A (& — ApesR;j(v)) A (6 — —80) A —é.

Fig. 2. Bytecode abstraction for taintedness, in a program point with j stack elements.
Bytecodes not reported in this figure are abstracted into the default U A —é A —é.

Definition 6 (Taintedness Abstract Domain T). Let i1, j1,i2,j2 € N. The
taintedness abstract domain T;, j, i, j, 5 the set of Boolean formulas over
{e.e}Ufli |0<k <ii}U{s [0 <k <ji}U{lk |0 <k <ig}U{s |0 <k <o}
(modulo logical equivalence).

Erample 3. ¢= (Zl — il)/\(ZQ — ig)/\(l}), — Zg)/\ﬁé/\ﬁé/\(go — lA()) ET4,1H4,0.

The concretization map v states that a ¢ € T abstracts those denotations
whose behavior, w.r.t. the propagation of taintedness, is a model of ¢.

Proposition 1 (Abstract Interpretation). T;, ;, i, j, s an abstract inter-
pretation of @(Ai, j1—iys) With v Ty 51 —inis — 0(Aiy j1—is.jn) given by

’7(¢) = {6 € Ail,j1—>i2,j2

forall o € ¥;, ;, s.t. (o) is defined
tainted (o) U tainted(8(0)) = ¢

Example 4. Consider ¢ from Example3 and bytecode store 0 at a program
point with ¢ = 4 locals and j = 1 stack elements. Its denotation store 0 € v(¢)
since that bytecode does not modify locals 1, 2 and 3, hence their taintedness
is unchanged ((I; < 1) A (I < I3) A (I3 < I3)); it only runs if no exception is
thrown just before it (—¢); it does not throw any exception (—¢é); and the output
local 0 is an alias of the topmost and only element of the input stack (39 < Zo).

Figure 2 defines correct abstractions for the bytecodes from Sect. 4, but call.
A formula U (for unchanged) is a frame condition for input local variables and
stack elements, that are also in the output and with unchanged value: their
taintedness is unchanged. For the stack, this is only required when no exception
is thrown, since otherwise the only output stack element is the exception.

Definition 7. Let sets S (of stack elements) and L (of local variables) be the
input variables that after all executions of a given bytecode in a given program
point (only after the normal executions for S) survive with unchanged value.
Then U = Nyer (0 9) A (7€ = Nyes(0 < 0)).

Consider Fig.2. Bytecodes run only if the preceding one does not throw any
exception (=€) but catch requires an exception to be thrown (é). Bytecode
const v pushes an untainted value on the stack: its abstraction says that no
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variable changes its taintedness (U), the new stack top is untainted (—§;) and
const v never throws an exception (—é). Most abstractions in Fig.2 can be
explained similarly. The result of add is tainted if and only if at least one operand
is tainted (8;—2 <> (8j—2 V 3;_1)). For new &, no variable changes its taintedness
(U), if its execution does not throw any exception then the new top of the stack
is an untainted new object (mé — —§;); otherwise the only stack element is
an untainted exception (¢ — —8g). Bytecode throw x always throws an excep-
tion (é); if this is tainted, then the top of the initial stack was tainted as well
(80 — 3;-1). The abstraction of getfield says that if it throws no exception
and the value of the field is tainted, then the container of the field was tainted as
well (mé — (8;_1 — 3;_1)). This follows from the object-sensitivity of our notion
of taintedness (Definition4). Otherwise, the exception is untainted (¢ — —3o).
For putfield, we cannot use U and must consider each variable v to see if it
might reach the object whose field is modified (5;_2). If that is not the case, v’s
taintedness is not affected (v < ©0); otherwise, if its value is tainted then either
it was already tainted before the bytecode or the value written in the field was
tainted ((9V §;_1) < 0). In this last case, we must use « instead of < since our
reachability analysis is a possible approximation of actual (undecidable) reacha-
bility. This is expressed by formula R;(v), used in Fig. 2, where R;(v) =0 < ©
if ~reach(v, s;—2), and R;j(v) = (0 V §;_1) < 0, if reach(v, sj_2).

Example 5. According to Fig. 2, the abstraction of store 0 at a program point
with ¢ = 4 local variables and j = 1 stack elements is the formula ¢ of Example 3.

Example 6. Consider a putfield f at a program point p where there are i = 4
local variables, ;7 = 3 stack elements and the only variable that reaches the
receiver s is the underlying stack element sg. A possible state at p in Example 1.
According to Fig. 2, the abstraction of that bytecode at p is ¢/ = (I < lo) A
([1 — Zl) A\ ([2 — ZQ) A\ ([3 — Zg) A\ (ﬁé — ((50 \Y 52) — §0)) AN (é — ﬁ§()) N —é €
Taz-a,1-

Proposition 2. The approrimations in Fig. 2 are correct w.r.t. the denotations
of Sect. 4, i.e., for all bytecode ins distinct from call we have ins € V(insT).

Denotations are composed by ; and their abstractions by ;T. The definition of
é1;T ¢ matches the output variables of ¢; with the corresponding input variables
of ¢5. To avoid name clashes, they are renamed apart and then projected away.

Deﬁniiiog 8. Le£¢1v, ¢ € T. Their abstract sequential composition 61T g is
I (D1 [V /V] A 2]V /V]), where V are fresh overlined variables.

Example 7. Consider the execution of putfield f at program point p and then
store 0, as in Example 6. The former is abstracted by ¢’ from Example 6; the lat-
ter by ¢ from Example 5. Their sequential composition is T o =FF(P[V/ V] A
¢[V/V]) == av([(lo «— l()) /\ (ll > ll) /\ (lg < l2) /\ (13 — lg) /\ (_@ — ((50 \/ 52) —
50)) A (E — _\50) A _\é] 74\ [(Zl — il) A\ (Zg — ZQ) A\ (Zg — Zg) A—eN—eN (EO — le)])

which Simpliﬁes into (Zl > ll)/\(lz g lg)/\(ld s 13) A ((50 \Y 52) — lo) A —€E N\ —é.
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The second semantical operator is U of two sets, approximated as UT = V.
The third is extend, that makes the analysis context-sensitive by plugging the
behavior of a method at each distinct calling context. Let ¢ approximate the
taintedness behaviour of method M = k.m(t1,...,t,) : t; ¢’s variables are among
lo, ..., I, (the actual arguments including this), 3¢ (if M does not return void),
le, Ii... (the final values of M’s local variables), ¢ and é. Consider a call M at a
program point where the n 4 1 actual arguments are stacked over other b stack
elements. The operator plugs ¢ at the calling context: the return value ¢ (if
any) is renamed into ; each formal argument [}, of the callee is renamed into
the actual argument $;; of the caller; local variable Zk at the end of the callee
is temporarily renamed into Ij. Then a frame condition is built: the set SAp, M v
contains the formal arguments of the caller that might share with variable v
of the callee at call-time and might be updated during the call. If this set is
empty, then nothing reachable from v is modified during the call and v keeps its
taintedness unchanged. This is expressed by the first case of formula Ay ar(v).
Otherwise, if v is tainted at the end of the call then either it was already tainted
at the beginning or at least one of the variables in SA4 a7, has become tainted
during the call. The second case of formula A as(v) uses the temporary variables
to express that condition, to avoid name clashes with the output local variables of
the caller. The frame condition for the b lowest stack elements of the caller is valid
only if no exception is thrown, since otherwise the stack contains the exception
object only. At the end, all temporary variables {lo,...,l;} are projected away.

Definition 9. Leti,j € N and M = xk.m(t1,...,t,) : t with j =b+n+1 and
b > 0. We define (extend] ) :Tri1.0—irr — Tijmiprr with r = 0 if t = void
and v = 1 otherwise, as (extend])T(¢) = —¢é A 3{707---75i/}(¢[§b/§0] [0k/li 1 0 <
k< i,][ék_;,_b/Zk | 0<k< ”]/\/\ogk<i A(,7M(lk)/\ (ﬂé — /\0§k<b A@M(Sk))), with
SAp mw = {le | 0 < k <n, —share(v, sp1i) or ~updated y;(Ik)}, Apar(v) =0 <
0 if SApmw =0 and Ay n(v) = ((0V (Vyesa, ,,, W) < 0) otherwise.

Proposition 3. The operators ;*, extend” and UT are correct.

Since the number of Boolean formulas over a given finite set of variables is
finite (modulo equivalence), the abstract fixpoint is reached in a finite number
of iterations. Hence this abstract semantics is a static analysis tool if one specifies
the sources of tainted information and the sinks where it should not flow.

Sources. Some formal parameters or return values must be considered as sources
of tainted data, that can be freely provided by the external world. Our imple-
mentation uses a database of library methods for that, such as the request
argument of doGet and doPost methods of servlets and the return value of con-
sole and database methods. Moreover, it lets users specify their own sources
through annotations. The abstract denotation in Fig. 2 is modified at receiver_is
(a special bytecode at the beginning of each method) and return to force to
true those formal arguments and return values that are injected tainted data,
respectively.
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Sinks. Our implementation has a database of library methods that need
untainted parameters (users can add their own through annotations). Hence it
knows which calls in P need an untainted parameter v (such as executeQuery
in Fig.1). But a denotational semantics is an input/output description of the
behavior of P’s methods and does not say what is passed at a call. For that, a
magic-sets transformation [23] of P adds new blocks of code whose denotation
gives information at internal program points, as traditional in denotational sta-
tic analysis. It computes a formula ¢ that holds at the call. If ¢ entails =9 then
the call receives untainted data for v. Otherwise, the analysis issues a warning.

5.1 Making the Analysis Field-Sensitive

The approximation of getfield f in Fig.2 specifies that if the value of field f
(pushed on the stack) is tainted then the container of f must be tainted as well
(8j—1 — 3j_1). Read the other way round, if the container is untainted then f’s
value is untainted, otherwise it is conservatively assumed as tainted. This choice
is sound and object-sensitive, but field-insensitive: when §;_; is tainted, both its
fields f and g are conservatively assumed as tainted. But if the program never
assigns tainted data to f, then f’s value can only be untainted, regardless of
the taintedness of 5;_;. If the analyzer could spot such situations, the resulting
analysis would be field-sensitive and hence more precise (fewer false positives).

We apply here a technique pioneered in [32]: it uses a set of fields O (the
oracle) that might contain tainted data. For getfield f, it uses a better approx-
imation than in Fig.2: it assumes that f’s value is tainted if its container is
tainted and f € O. The problem is now the computation of O. As in [32], this is
done iteratively. The analyzer starts with O = () and runs the analysis in Sect. 5,
but with the new abstraction for getfield f seen in this paragraph. Then it adds to
O those fields g such that there is at least one putfield g that stores tainted data.
The analysis is repeated with this larger O. At its end, O is further enlarged with
other fields g such that there is at least one putfield g that stores tainted data.
The process is iterated until no more fields are added to O. As proved in [32], this
process converges to a sound overapproximation of O and the last analysis of the
iteration is sound. In practice, repeated analyses with larger and larger O are
made efficient by caching abstract computations. On average, this process con-
verges in around 5 iterations, also for large programs. By using caching, this only
doubles the time of the analysis. Since preliminary analyses are more expensive
than information flow analysis, this technique increases the total time by around
25% on average. (Section 6 shows effects on cost and precision.) This technique
is not identical to statically, manually classifying fields as tainted and untainted,
as [3,10] do. The classification of the fields is here dynamic, depending on the
program under analysis, and completely automatic. Moreover, a field might be
in O (and hence be potentially tainted) but the analyzer might still consider its
value untainted, because its container is untainted.
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Test || Tool True Positives | False Positives | False Negatives | Analysis Time
o CodePro Analytix 1332 0 888 20 minutes
S FindBugs 1776 2400 444 2 minutes
Z || Fortify SCA 700 0 1520 2.5 days
© | Julia fs/f 2220,/2220 0/0 0/0 79/65 minutes
2 CodePro Analytix 26 7 1 1 minute
3 FindBugs 22 12 5 20 seconds
2 Fortify SCA 23 0 4 164 minutes
= || Julia fs/fi 27/27 14/15 0/0 3/2 minutes

Fig. 3. Experiments with the identification of SQL injections.

6 Experiments

We have implemented our analysis inside Julia (http://www.juliasoft.com/julia).
Julia represents Boolean formulas via BDDs (binary decision diagrams). We have
compared Julia with other tools that identify injections (Sect.3). For Julia we
have compared a field-sensitive analysis with an oracle (Sect. 5.1, Julia fs) with
a field-insensitive analysis without oracle (Julia fi).

Our experiments analyze third-party tests developed Test LoC
to assess the power of a static analyzer to identify “WebGoat|25070
injection attacks: WebGoat 6.0.1 (https://www.owasp. CWES0 |68967
org/index.php/Category:OWASP_WebGoat_Project) and cwWES1 |34317
4 tests from the Samate suite (http://samate.nist.gov/ (CWES3 |34317
SARD /testsuite.php). The table on the right reports their ~ oWES9 |748962

number of non-blank, non-comment lines of application
source code (LoC), without supporting libraries.

Figure 3 reports the evaluation for SQL injections using CWE89 and Web-
Goat. It shows that only Julia is sound (no false negatives: if there is an injection,
Julia finds it). Julia issued no false positives to CWES89: possibly these tests just
propagate information, without side-effects that degrade the precision of Julia
(Definition 9; we do not know if and how other tools deal with side-effects). Julia
issued 14 false alarms for WebGoat, often where actual information flows from
source to sink exist, but constrained in such a way to be unusable to build an
SQL-injection attack. Only here the field-insensitive version of Julia is slightly
less precise (one false positive more). In general, its cost is around 25 % higher
than the field-sensitive version. The conclusion is that field sensitivity is not
relevant when object sensitivity is used to distinguish different objects. Analy-
sis time indicates the efficiency, roughly: CodePro Analytix and FindBugs work
on the client machine in Eclipse, Fortify SCA on its cloud like Julia, that is
controlled from an Eclipse client. Times include all supporting analyses.

We evaluated the same tools for the identification of cross-site scripting injec-
tions in CWE80/81/83, and WebGoat. As shown in Fig. 4, Julia is perfectly pre-
cise. It missed 11 cross-site scripting attacks in JSP (not in the main Java code
of the application), found only by Fortify SCA. If we translate JSP’s into Java
through Jasper (as a servlet container would do, automatically) and include its
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Test || Tool True Positives | False Positives | False Negatives | Analysis Time
- CodePro Analytix 180 0 486 9 minutes
%5 || FindBugs 19 0 647 18 seconds
= Fortify SCA 282 0 384 590 minutes
© || Julia fs/f 666,666 0/0 0/0 5/4 minutes
- CodePro Analytix 0 0 333 10 seconds
& || FindBugs 19 0 314 4 seconds
= || Fortify SCA 141 0 192 303 minutes
© || Julia fs/A 333/333 0/0 0/0 3/2 minutes
- CodePro Analytix 90 0 243 5 minutes
A FindBugs 19 0 314 4 seconds
Z || Fortify SCA 141 0 192 296 minutes
© || Julia fs/fi 333/333 0/0 0/0 3/2 minutes
2 CodePro Analytix 5 0 11 1 minute
3 FindBugs 0 0 16 20 seconds
2 Fortify SCA 15 21 1 164 minutes
= || Julia fs/fi 5/5 0/0 11/11 3/2 minutes

Fig. 4. Experiments with the identification of XSS injections.

bytecode in the analysis, Julia finds the missing 11 attacks. Nevertheless, this
process is currently manual and we think fairer to count 11 false negatives.

We have run Julia on real code from our customers. Julia found 6 real SQL-
injections in the Internet banking services (575995 LoC) of a large Italian bank,
and found 5 more in its customer relation management system (346170 LoC).
The analysis never took more than one hour. This shows that Julia is already
able to scale to real software and automatically find evidence of security attacks.

7 Conclusion

We have formalized an object-sensitive notion of taintedness that can be applied
to reference types. We have built a new, flow-, context- and field-sensitive static
taintedness analysis based on this notion, proved it sound, implemented it, and
evaluated it. It scales to real code and gives useful results. As far as we know,
this is the first object-sensitive taintedness analysis. As usual in static analysis,
soundness is jeopardized by the use of reflection or non-standard class load-
ers. However, soundness is still relevant since it increases the confidence on the
results, up to those features. Julia deals instead with the full bytecode generated
by Java 8, including the new invokedynamic.

The novelty of the approach stems from Definition 4 of a property of reference
types as a reachability property, whose relevance goes beyond the case of tainted-
ness analysis. Here, we mean reachability of data from a memory reference, which
is not reachability of abstract states through execution paths as in [24]. Defini-
tion 4 results in an object-sensitive analysis: the taintedness of an object deter-
mines that of its fields; a drawback is that a sound analysis must consider side-
effects at putfield and call. The analysis becomes then field sensitive through
an oracle-based approach (Sect.5.1), already used for nullness analysis [32].
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Hence the oracle is a general technique for building sound field-sensitive sta-
tic analyses.

The extension of this work to implicit and hidden flows would provide a
stronger guarantee against injections of tainted information into a set of sinks.
The problem is complex: implicit flows in Java are not just due to conditionals
but also to exception branches and dynamic resolution of method calls. The risk
is that a sound analysis w.r.t. implicit flows would end up being very conserv-
ative and imprecise. Declassification might be helpful here, but its meaning for
reference types (not just primitive values) must be studied. The extension of this
work to the analysis of JSP, that are non-Java code mixed and interacting with
Java code, currently not analyzed by Julia (only partially by concurrent tools),
would avoid missed alarms, as Sect. 6 shows. It is also important to explain the
warnings to the users, with an execution trace where data flows from sources
into sinks. Fortify SCA already provides some support in that direction.

Acknowledgments. This material is based upon work supported by the United
States Air Force under Contract No. FA8750-12-C-0174.
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Abstract. In linear logic, formulas can be split into two sets: classical
(those that can be used as many times as necessary) or linear (those that
are consumed and no longer available after being used). Subexponentials
generalize this notion by allowing the formulas to be split into many sets,
each of which can then be specified to be classical or linear. This flex-
ibility increases its expressiveness: we already have adequate encodings
of a number of other proof systems, and for computational models such
as concurrent constraint programming, in linear logic with subexponen-
tials (SEL). Bigraphs were proposed by Milner in 2001 as a model for
ubiquitous computing, subsuming models of computation such as CCS
and the m-calculus and capable of modeling connectivity and locality
at the same time. In this work we present an encoding of the bigraph
structure in SEL, thus giving an indication of the expressive power of
this logic, and at the same time providing a framework for reasoning and
operating on bigraphs. Our encoding is adequate and therefore the oper-
ations of composition and juxtaposition can be performed on the logical
level. Moreover, all the proof-theoretical tools of SEL become available
for querying and proving properties of bigraph structures.

1 Introduction

Linear logic is excellent at counting elements of state since it interprets linear
hypotheses as resources that are consumed upon use, and every linear hypoth-
esis must be used in a proof. However, it is not particularly good at reasoning
about relationships between elements. For example, an office building can have
several rooms, with some rooms having a number of cubicles, and some cubicles
containing several persons and computers. A precise description of this building
must not only inventory all the rooms, cubicles, persons, and computers, but
also state which component occurs inside which other components. In ordinary
linear logic we can attempt to express the inclusion relation as a separate predi-
cate, say a binary predicate in(xz,y) that expresses that the entity with index x
is contained in that with index y, but such predicates are nearly impossible to
treat linearly as they may be consulted and composed repeatedly. Yet, treating
them non-linearly is also problematic: if a person moves from one cubicle to
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another, for example, the old placement needs to be invalidated, but there is no
way to “consume” a non-linear resource in linear logic.

Recently, a family of logics called subexponential logics (SEL) has emerged
as a way to capture such intensional relationships between resources [12]. The
idea is fairly old [6]: the exponential connectives ! and ? can be split into several
different flavors, and the linear logic proof system would, a priori, make each
version of the connectives independent of every other. If we impose a pre-order
on them though, we can get a limited form of promotion where ?* A entails ?¥ A
assuming the u version of the exponentials are smaller than the v version. In this
view, ?“ corresponds, roughly, to a placement in the zone u, while !* corresponds
to checking that every resource is placed in a zone larger than u. Subexponen-
tial logics are naturally much more expressive than just ordinary linear logic; for
instance, even the pro