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Abstract Most studies analysing the instability of a cantilevered flexible plate in an

axial flow are based on models assuming an inviscid flow and uniform properties

for the plate. However, for some applications, such as biomechanical fluid-structure

interaction (FSI) systems, these simplifications may not be valid due the scale of

the problems and the non-uniform geometric and mechanical properties of the soft

tissue. In this study, a parametric investigation is conducted to determine the condi-

tions leading to flutter instability of a cantilevered flexible plate with a non-uniform

thickness immersed in a two-dimensional viscous channel flow. It is shown that,

depending on the mass ratio, the thinning and thickening of the plate free-end can

stabilise or destabilise the FSI system and change the critical mode at instability

onset.

1 Introduction

The stability of a cantilevered flexible plate in an axial flow is a fundamental fluid-

structure interaction (FSI) problem with applications in many fields of engineering,

both long-established and emerging, such as energy harvesting (Tang et al. 2009) and

biomechanics. When immersed in a two-dimensional channel flow, a cantilevered

flexible plate can constitute a model analogue of the soft-palate in the upper air-

way, of which the flutter instability represents the occurrence of snoring (Elliott

et al. 2011; Cisonni et al. 2014). While the mechanisms and the conditions leading

to flutter remain unclear, recent investigations have shown that the critical velocity
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at which a single-mode instability is triggered is mainly determined by the fluid-

to-plate mass and time-scale ratios (Eloy et al. 2008). Further, investigations taking

into account the fluid viscosity in the FSI model have provided a better understand-

ing of the energy exchange between the fluid and the flexible structure, particularly

for a cantilevered plate in a confined flow (Balint and Lucey 2005). Hitherto, in the

vast majority of studies, the properties of the plate have been assumed to be uni-

form. However, anatomical structures, such as soft tissue, in biomechanical systems

can have non-uniform geometric and mechanical properties. Therefore, in this study,

a parametric investigation is conducted to determine the conditions leading to flutter

instability of a cantilevered flexible plate with a non-uniform thickness immersed in

a two-dimensional viscous channel flow.

2 Method

The FSI system is composed of a cantilevered flexible plate immersed in a viscous

channel flow, as depicted in Fig. 1. The flow with mean inlet velocity U∗
in a two-

dimensional channel of height H∗
and length L∗ is governed by the non-dimensional

Navier–Stokes and continuity equations. Using the principle of virtual displace-

ments, the deformation of the flexible plate of length L∗P and thickness h∗ is governed

by the one-dimensional Kirchhoff–Love beam equation allowing for geometric non-

linearity. The problem is formulated using the open-source finite-element library

oomph-lib (Heil and Hazel 2006). The flexible plate is spatially discretised using

two-node Hermite beam elements and the fluid domain using nine-node quadrilateral

Taylor-Hood elements with adaptive mesh refinement capabilities. Time stepping is

done with a Newmark scheme for the solid and a BDF2 scheme for the fluid. The

FSI problem is discretised monolithically and the Newton-Raphson method is used

to solve the non-linear system of equations, employing the SuperLU direct linear

solver within the Newton iteration.

The numerical experiments are carried out at constant Reynolds number Re =
𝜌
∗
f U

∗ H∗∕𝜇∗ = 100 and plate-to-channel aspect ratio LP∕H = L∗P∕H
∗ = 2. The

analysis of the stability/instability of the FSI system is conducted for variations of

Fig. 1 Description of the

FSI system modelling a

cantilevered flexible plate

immersed in a viscous

channel flow, and the

physical quantities of the

problem



Stability of a Cantilevered Flexible Plate with Non-uniform . . . 335

Fig. 2 Flexible plate

thickness profiles showing

the two distinct sections for

the three cases considered:

uniform thickness (black
solid line), thinner free-end

(dark gray dotted line) and

thicker free-end (light gray
dashed line)

mass ratio M = (𝜌∗f L
∗
P)∕(𝜌

∗
s h

∗) and reduced flow velocity U = U∗∕(L∗Pf
∗
P ), where

𝜌
∗
f is the fluid density, 𝜇

∗
the fluid dynamic viscosity, 𝜌

∗
s the plate density, f ∗P =

√
B∗∕(𝜌∗s h∗)∕L

∗2
P the plate characteristic frequency, and B∗

the plate flexural rigid-

ity. The non-uniform flexural rigidity and mass are varied locally through a plate

thickness function (see Fig. 2) dividing the plate into two sections (1 and 2 denoting

the fixed-end and the free-end, respectively) of equal length (L∗1 = L∗2 = L∗P∕2) and

keeping the total plate mass, and hence the mass ratio M, constant. Three cases are

considered is this study, namely: (i) the reference system including a flexible plate

of uniform thickness (h2∕h1 = 1), (ii) a system including a flexible plate with a thin-

ner free-end (h2∕h1 = 0.5) and (iii) a system including a flexible plate with a thicker

free-end (h2∕h1 = 2).

3 Results and Discussion

The amplitude decay/amplification of the plate motion for the three cases is deter-

mined through the analysis of the exponential growth rate in time of the span-wise

deflection 𝜂
∗

of the oscillating plate tip. Figure 3 shows the exponential growth

rate normalized by the oscillation frequency as a function of the mass ratio M and

reduced flow velocity U for the uniform thickness plate (h2∕h1 = 1). This growth

rate “map” illustrates the complex influence of the interactions of the flow with

the different structural modes on the stability of the system. The neutral stability

curve corresponding to a zero growth rate, as shown in Fig. 3, is characterized by

different branches corresponding to different flutter modes. For low mass ratios

(M < 1), Mode 2 dominates the FSI system behaviour and the growth rate con-

sistently increases as the reduced flow velocity increases. For higher mass ratios

(M > 1), higher mode (n > 2) instabilities start to predominate successively the FSI

system behaviour as the mass ratio increases. Moreover, it can be observed that the

variation of the pre-critical growth rate as a function of the reduced flow velocity

becomes non-monotonic, denoting the changes between predominant flutter modes.

The introduction of a non-uniform thickness produces a shift of the neutral sta-

bility curve along both the mass ratio and the reduced flow velocity axes, as can
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Fig. 3 Exponential growth rate of the tip displacement amplitude during the flexible cantilevered

plate oscillation as a function of the mass ratio M and reduced flow velocity U for the uniform thick-

ness plate (h2∕h1 = 1). A higher growth rate (normalized by the oscillation frequency) indicates a

more unstable system and a negative growth rate indicates a stabilisation of the FSI system. Neutral

stability of the system is indicated with the black solid line
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Fig. 4 Critical reduced flow velocity as a function of the mass ratio for the three cases considered:

uniform thickness (black solid line), thinner free-end (dark gray dotted line) and thicker free-end

(light gray dashed line)

be seen in Fig. 4. For the flexible plate with a thinner free-end, the predominance

of the higher mode instabilities is triggered for lower mass ratios, in comparison

to the uniform thickness plate. In addition, all the different modal branches of the



Stability of a Cantilevered Flexible Plate with Non-uniform . . . 337

neutral stability curve are characterized by lower critical reduced flow velocities, in

comparison to the uniform thickness plate. Conversely, for the flexible plate with

a thicker free-end, the predominance of the higher mode instabilities is triggered

for higher mass ratios and all the different modal branches of the neutral stability

curve are characterized by higher critical reduced flow velocities. Despite the similar

shapes of the neutral stability curves corresponding to the three cases, the thinning

and thickening of the plate free-end greatly influence the motion of the cantilevered

flexible plate. The altered plate dynamics result in drastically contrasting effects on

the flutter instability thresholds and induce non-linear modifications of the pre- and

post-critical behaviours. Thus, depending on the mass ratio, the thinning and thick-

ening of the plate free-end can stabilise or destabilise the FSI system and change the

critical mode in which the system first becomes unstable.
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