
A Synthetic Indifferentiability Analysis
of Interleaved Double-Key

Even-Mansour Ciphers

Chun Guo1,2 and Dongdai Lin1(B)

1 State Key Laboratory of Information Security,
Institute of Information Engineering,

Chinese Academy of Sciences, Beijing 100093, China
2 University of Chinese Academy of Sciences, Beijing, China

{guochun,ddlin}@iie.ac.cn

Abstract. Iterated Even-Mansour scheme (IEM) is a generalization of
the basic 1-round proposal (ASIACRYPT ’91). The scheme can use one
key, two keys, or completely independent keys.

Most of the published security proofs for IEM against relate-key and
chosen-key attacks focus on the case where all the round-keys are derived
from a single master key. Whereas results beyond this barrier are relevant
to the cryptographic problem whether a secure blockcipher with key-size
twice the block-size can be built by mixing two relatively independent
keys into IEM and iterating sufficiently many rounds, and this strategy
actually has been used in designing blockciphers for a long-time.

This work makes the first step towards breaking this barrier and con-
siders IEM with Interleaved Double independent round-keys:

IDEMr((k1, k2), m) = ki ⊕ (Pr(. . . k1 ⊕ P2(k2 ⊕ P1(k1 ⊕ m)) . . .)),

where i = 2 when r is odd, and i = 1 when r is even. As results, this
work proves that 15 rounds can achieve (full) indifferentiability from an
ideal cipher with O(q8/2n) security bound. This work also proves that 7
rounds is sufficient and necessary to achieve sequential-indifferentiability
(a notion introduced at TCC 2012) with O(q6/2n) security bound, so
that IDEM7 is already correlation intractable and secure against any
attack that exploits evasive relations between its input-output pairs.

Keywords: Blockcipher · Ideal cipher · Indifferentiability · Key-
alternating cipher · Even-mansour cipher · Correlation intractability

1 Introduction

Blockciphers are arguably the most important primitives in cryptography.
A blockcipher BC[κ, n] : {0, 1}κ × {0, 1}n → {0, 1}n maps a κ-bit key K and

D. Lin—A full version is available [GL15b].

c© International Association for Cryptologic Research 2015
T. Iwata and J.H. Cheon (Eds.): ASIACRYPT 2015, Part II, LNCS 9453, pp. 389–410, 2015.
DOI: 10.1007/978-3-662-48800-3 16

390 C. Guo and D. Lin

an n-bit input x to an n-bit output y. For each key K, the map BC[κ, n](K, ·) is
a permutation, and is efficiently invertible.

Most of the existing blockcipher designs can be roughly split into two fam-
ilies, namely Feistel ciphers and substitution-permutation networks. The latter
are known as the structure of AES, and can be generalized as key-alternating
ciphers [DR02]/iterated Even-Mansour ciphers (IEM for short). An r-round IEM
cipher IEMr consists of r fixed n-bit permutations Pi separated by key addition

IEMr(K,m) = kr ⊕ Pr(. . . k2 ⊕ P2(k1 ⊕ P1(k0 ⊕ m)) . . .).

The single round Even-Mansour (the case r = 1) was developed in 1991 [EM93]
in an attempt to turn a single permutation into a family of permutations (block-
cipher). IEM1 has been proved pseudorandom when the underlying permutation
is random and public while the keys are secret. Since then, a soar of studies on
IEM has been witnessed (especially in the recent half decade), for instance, on
minimization [DKS13,CLL+14], on pseudorandomness [BKL+12,Ste12,LPS12,
CS14], on related-key (RK) security [FP15,CS15], and on attacks (notable exam-
ples include [DKS13,DDKS15,DDKS14]). The pseudorandomness results showed
that IEM is provably secure in traditional single secret key settings.

Indifferentiability of IEM. The studies on indifferentiability and sequential-
indifferentiability (seq-indifferentiability) of IEM are mainly motivated by fur-
ther validating the SPN-based blockcipher design methodology by proving IEM
secure against known-key and chosen-key (CK) attacks, in which the adversary
knows and chooses keys and tries to exhibit non-randomness. Roughly speak-
ing, indifferentiability of IEM means that IEM can be as secure as an ideal
cipher [MRH04], whereas seq-indifferentiability of IEM implies that IEM is cor-
relation intractable [CGH04], and there is no relation between the inputs and out-
puts of IEM that can be exploited by an attack (even a chosen-key one) [MPS12].
Here the ideal cipher IC[κ, n] : {0, 1}κ × {0, 1}n → {0, 1}n is taken randomly
from the set of (2n!)2

κ

possible choices of BC[κ, n]. In this work, IC[2n, n] will
be referred by E.

As to (seq-)indifferentiability, we have been aware of four works: [ABD+13],
[LS13], [CS15], and [Ste15]. [ABD+13] showed that IEM5 is indifferentiable from
IC[κ, n], if the round-key is derived from a preimage-aware key derivation func-
tion (KDF). On the other hand, [LS13] and [CS15] concentrated on single-key
EM (SEM) in which the user-provided n-bit master key is directly used at
each round: [LS13] proved that SEM12 (12-round SEM; similarly for SEM4 and
SEM9) is indifferentiable, while [CS15] proved that SEM4 is seq-indifferentiable.
In [Ste15], Steinberger proved the indifferentiability of SEM9. Results on SEM
are closer to concrete designs, since they can be easily generalized to the case
where each round-key is derived by an efficiently invertible permutation.

Problem: Even-Mansour with Two Keys. Existing works on provable secu-
rity of IEM in RK and CK settings almost all focus on the SEM context: [LS13]
(ASIACRYPT 2013), [FP15] (FSE 2015), [CS15] (EUROCRYPT 2015) (except
for those considered random oracle modeled KDF, e.g. [ABD+13]). This work

A Synthetic Indifferentiability Analysis 391

makes the first step towards breaking this barrier and considers the following
problem: can we obtain an ideal cipher by mixing two independent keys into
IEM and iterating enough rounds? (a problem left open by Lampe and Seurin
(LS) [LS13])1. This problem is far from being trivial because all the works
on SEM (in RK and CK settings) crucially rely on the correlation between
all round-keys, so that they cannot be directly generalized to double-key case.
Also, the independence between round-keys may bring in weakness – the most
extreme case is IEM with completely independent round-keys, which is vulner-
able to trivial related-key attacks. This problem is also practical since the idea
is really used in existing designs such as AES-256 [DR02], Serpent [ABK98],
and LED-128 [GPPR11] – note that they (certainly) mix the keys into the state
by lightweight and efficient operations and iterate, rather than use some very
complex hash function to seal the 2n key bits first. The intuition is that by
iterating enough rounds, such designs will be “secure”; but the fact that the dif-
fusion of the 2n key bits is relatively slow brings in doubts (e.g. doubts on AES-
256 [KHP07,BDK+10]). The fact that among the three AES variants, AES-256
was the first that is theoretically broken [BK09] seems to support such doubts,
and this attack raises a problem whether there exists a BC[2n, n] design behav-
ing like IC[2n, n];2 due to this, it is necessary to either validate (using a security
proof) or negate (using a generic attack) this intuitive methodology.

To dig out a solution, note that using one key in the first n/2 rounds while
using the other in the last n/2 rounds is trivially insecure [LS13]. Instead, a
(seemingly) more promising approach to mixing two keys into IEM is the idea
behind LED-128 [GPPR11], that is, interleaving the xoring of them: we name it
interleaved double-key Even-Mansour cipher (IDEM for short; see Fig. 1 for an
illustration). More formally, the r-round variant is written as follows:

IDEMr((k1, k2),m) = kt ⊕ Pr(. . . k2 ⊕ P3(k1 ⊕ P2(k2 ⊕ P1(k1 ⊕ m)))),

where t = 2 when r is odd, and t = 1 when r is even. LS viewed IDEM as
a promising solution to the problem mentioned before, and gave an extremely
preliminary analysis, which led to the conjecture that 15 rounds is sufficient to
achieve indifferentiability; but no concrete proof exists. Moreover, the provable
security of IDEM with shorter rounds has not been considered yet.

Contributions. We give the first indifferentiability proof for 15-round IDEM.
This is the first main result of this work. Interestingly, this matches LS’s conjec-
ture, but the proof is obtained by an approach quite different from they expected.

To obtain security guarantees for shorter round cases, we prove that IDEM7 is
seq-indifferentiable from IC[2n, n]; therefore, IDEM7 is also correlation
intractable in the random permutation model [MPS12], and resists all attacks

1 A trivial solution to building IC[2n, n] by IEM is hash-than-encrypt, which has been
included in [ABD+13]. It was also discussed in [CDMS10]. But this solution imposes
strong burden on the key derivation and is far from practical designs.

2 Please see [CDMS10], page 275: as of 2009 it is unclear if we have a candidate
block-cipher with key-size larger than block-size that behaves like an ideal cipher.

392 C. Guo and D. Lin

that exploit evasive relation between its inputs and outputs. We also find a
sequential distinguisher against IDEM6 (which is actually an easy extension of
LS’s attack against SEM3 [LS13]), so that 7 rounds is also necessary. All the
results are summarized by the following informal theorem.

Theorem. For the construction IDEM based on completely independent
random permutations, 6 rounds is not (seq-)indifferentiable; 7 rounds is seq-
indifferentiable from IC[2n, n] with O(q6/2n) security bound, and is also corre-
lation intractable in the random permutation model; 15 rounds is indifferentiable
from IC[2n, n] with O(q8/2n) security bound.

Due to the independence between the two n-bit round keys, at current time, we
are not sure whether the results can be generalized to IEM with “very general”
key schedules; however, for the first time, these results indeed validate the (seem-
ingly long standing) design principle to some extent in the open-key model, i.e.
a secure blockcipher BC[2n, n] can be built from key-alternating ciphers with-
out using very complex KDFs, or even without any KDF. Especially, they show
that the intuition behind the key schedule of LED-128 is sound. However, they
certainly cannot provide direct security guarantee for LED-128 – in fact, as
theoretical results, they do not guarantee the security of ANY concrete blockci-
pher. As already mentioned, whether there exist some designs that “behave like”
IC[2n, n] have to be supported by more (cryptanalysis) works.

Techniques. To prove indifferentiability and seq-indifferentiability, one first
builds a simulator to mimic the behaviors of all the underlying permutations.
Taking IDEM15 as an example, consider a sequence of pairs of input and out-
put (IO for short) (x1, y1), . . . , (x15, y15) (called a computation path/chain) of
the 15 permutations simulated by the simulator, which satisfies yi ⊕ xi+1 = k2
when i is odd, and yi ⊕ xi+1 = k1 when i is even. The simulator should ensure
that each such chain simulated by it matches the ideal cipher E, i.e. E((k1, k2),
x1 ⊕ k1) = y15 ⊕ k2. The basic idea to reach this goal is Coron et al.’s sim-
ulation via chain completion technique [CHK+14], which has achieved success
in (weaker) indifferentiability proofs for a variety of idealized blockciphers. It
requires the simulator S to detect partial computation chains formed by the
queries of the distinguisher, and completes the chains in advance by querying
the ideal cipher E, such that S is ready for answering queries in the future. To
simulate answers that are consistent with E, S has to use the answer from E to
define some simulated answers; this action is called adaptation.

Detect Chains. To detect the so-called partial chains, note that the construction
IDEM has the following property: given 4 values of 3 permutations yi, xi+1, yi+1,
and xi+2 (namely, an output of Pi, a pair of IO of Pi+1, and an input to Pi+2),
the two associated keys can be derived as k = yi ⊕ xi+1 and k′ = yi+1 ⊕ xi+2,
and it is possible to move forward and backward along the path. By this, at
some place, using three rounds for chain detection is necessary – this idea has
already appeared in [LS13].

A Synthetic Indifferentiability Analysis 393

Overall Strategy of the Simulators. As to the overall strategy, the simulator
used to prove seq-indifferentiability of IDEM7 is quite close to those for 6-round
Feistel [MPS12] and SEM4 [CS15]: the simulator detects partial chains at the
three middle round of IDEM7, completes them forward or backward, and finally
adapts them at the first or last round – depending on concrete contexts.

On the other hand, the simulator used to prove the indifferentiability of
IDEM15 is motivated by Steinberger’s illustration of indifferentiability proof for
SEM9 [Ste15]. The overall strategy requires detecting chains both at the two sides
and at the middle – which is similar to several previous works (e.g. [CHK+14]).
The core idea in this part is a so-called “pureness” property which is different
from [CHK+14]: the simulator may fall into a recursive chain completion process;
however, during each such recursive completion process, all the partial chains are
to be adapted at the same round ; as a consequence, when a partial chain is to be
completed, its extending is necessarily due to simulator defining new simulated
answers to random ones rather than the adaptation of some other chains, so
that the “endpoints” of this chain are always random. Whereas in the context
of IDEM, to uniquely specify a chain requires at least 3 values of 3 consecutive
permutations, so that the adversary has more freedom to choose values and make
different chains collide. With this in mind, we arrange two rounds to surround
each adaptation zone to ensure different chains diverge in the adaptation zone;
following an old convention [CHK+14], we call them buffer rounds.3 For a more
detailed overview of the simulator, we refer to Sect. 3.1.

In the indifferentiability proof for IDEM15, we used an active-chain-oriented
bad events define strategy, which is motivated by the analysis of IDEM7: we
directly define some bad events to be with respect to the chains that are active
during the completion process. This helps us achieving the O(q8/2n) indifferen-
tiability security bound in spite of the complex character of IDEM. Albeit loose,
this bound has been quite well-looking compared to similar (full) indifferentia-
bility proofs for idealized blockciphers (the best non-flawed one(s) among them
reached the level of O(q10/2n) [ABD+13]).

Summary: What are Inherited and What are Novel? Technically speaking, we
inherit the simulation via chain completion technique, the randomness mapping
argument, and the basic idea for simulator termination argument from [CHK+14];
we also inherit (and adapt) the overall frameworks of Steinberger (which dates
back to Seurin [Seu09]) and Cogliati et al. [CS15] (which dates back to Mandal
et al. [MPS12]). Our novelties mainly lie in the proof for IDEM15: first, we use a
bad event to establish a slightly tighter bound on the size of the history (O(q2/2n))
and the simulator’s complexity; second, we define the bad events to be so-called
active-chain-oriented, so that the probability can be very low (O(q6/2n)). They
two together enable to establish the O(q8/2n) security bound.

3 But our “buffer” rounds deviate from those in [CHK+14], in the sense that the
values in them can be defined when the simulator is completing other chains.

394 C. Guo and D. Lin

Organization. Section 2 presents preliminaries. Section 3 contains the first main
result – the indifferentiability of IDEM15, and the proof sketch. Section 4 con-
tains the second main result – the seq-indifferentiability of IDEM7. Section 5
concludes. Due to page constraints, the full proofs of the two main results have
to be deferred to the full version of this paper [GL15b].

2 Preliminaries and Notations

This work focuses on BC[2n, n], say, blockciphers with n-bit blocks and 2n-bit
keys. Throughout the remaining, the n-bit round-keys are denoted by lower-case
letters, i.e. k1 and k2, while the 2n-bit master key is interchangeably denoted by
the capital letter K or the concatenation (k1, k2) (as the reader has seen).

An n-bit random permutation is a permutation that is uniformly selected
from all (2n)! possible choices. In this work, the notation P = (P1, . . . ,Pj)
is used to denote a tuple of random permutations (j = 15 in the context of
IDEM15, and j = 7 in the context of IDEM7), and we let P provide a unified
interface, i.e. P.P(i, δ, z) := {1, . . . , j} × {+,−} × {0, 1}n → {0, 1}n, i indicates
the index, δ ∈ {+,−} indicates direct query or inverse query, and z ∈ {0, 1}n

is the queries value). On the other hand, the interface of the ideal cipher E is
E.E(δ,K, z) := {+,−} × {0, 1}2n × {0, 1}n → {0, 1}n.

Indifferentiability. The indifferentiability framework [MRH04] addresses the
idealized construction in settings where the underlying parameters are exposed
to the adversary. For concreteness, consider IDEMP

15: a distinguisher DIDEMP
15,P

with oracle access to the cipher and the underlying primitives is trying to dis-
tinguish IDEMP

15 from E. Then the formal definition is as follows.

Definition 1 (Indifferentiability). The idealized blockcipher IDEMP
15 with

oracle access to ideal primitives P is said to be statistically and strongly (q, σ, t, ε)-
indifferentiable from an ideal cipher E if there exists a simulator SE s.t. S makes
at most σ queries to E, runs in time at most t, and for any distinguisher D which
issues at most q queries, it holds

∣
∣
∣Pr[DIDEMP

15,P = 1] − Pr[DE,SE

= 1]
∣
∣
∣ ≤ ε

Such a result means that IDEMP
15 can safely replace E in most “natural” settings –

although this belief does not necessarily hold when the resource of the adver-
sary is limited [RSS11,DGHM13]. Since introduced, indifferentiability framework
has been applied to various constructions, including variants of Merkle-Damg̊ard,
Feistel [CHK+14], Sponge [BDPVA08], and IEM [ABD+13,LS13].

To formally define seq-indifferentiability, we first specify a restricted distin-
guisher class, namely the sequential distinguisher (seq-distinguisher) [MPS12].
Consider IDEMP

7 and DIDEMP
7 ,P. D is sequential if it issues queries in a specific

order: (1) queries the underlying primitives P as it wishes; (2) queries IDEMP
7

as it wishes; (3) outputs, and cannot query P again. This order is illustrated
in the italic numbers in Fig. 3. We then define the notion total oracle query

A Synthetic Indifferentiability Analysis 395

cost of D, which equals the total number of queries received by P (from D or
IDEMP

7) when D interacts with (IDEMP
7 ,P) [MPS12]. Then, the definition of

seq-indifferentiability can be obtained by tweaking the definition of (full) indif-
ferentiability by restricting the distinguisher to the range of sequential ones, and
replacing the query cost of the distinguisher by the total oracle query cost.

Definition 2 (Seq-indifferentiability). The idealized blockcipher IDEMP
7

with oracle access to ideal primitives P is said to be statistically and strongly
(q, σ, t, ε)-seq-indifferentiable from an ideal cipher E if there exists a simulator
SE s.t. S makes at most σ queries to E, runs in time at most t, and for any
sequential distinguisher D of total oracle query cost at most q, it holds

∣
∣
∣Pr[DIDEMP

7 ,P = 1] − Pr[DE,SE

= 1]
∣
∣
∣ ≤ ε

Sequential-indifferentiability implies correlation intractability [MPS12,CS15].

3 Indifferentiability for 15-Round IDEM

We prove the first main theorem of this paper in this section, which is:

Theorem 1. The 15-round Even-Mansour cipher IDEM15 from fifteen indepen-
dent random permutations P = (P1, . . . ,P15) and two n-bit keys (k1, k2) alter-
natively xored is strongly and statistically (q, σ, t, ε)-indifferentiable from an ideal
cipher IC[2n, n], where σ = 210 · q8, t = O(q8), and ε ≤ 211·q8

2n + 214·q6

2n = O(q8

2n).

As usual, we first present the simulator, then sketch the proof.

3.1 The Simulator

To build the simulator, we borrow a variant of the explicit randomness tech-
nique [CHK+14] from [CS15], that is, letting the simulator S query P as explicit
randomness. We denote by SE,P the simulator for IDEM15 which takes P as ran-
domness source and interacts with E. SE,P provides an interface S.P(i, δ, z) (i ∈
{1, . . . , 15}) which is exactly the same as P. As argued [ABD+13,CS15], using
such explicit randomness is actually equivalent to lazily sampling in advance
before the experiment.

We now give a high-level overview of the simulator SE,P (depicted in Fig. 1
(left)). S maintains a history for each simulated permutation under the form
of fifteen sets P1, . . . , P15. Each of the sets has entries in the form of (x, y) for
x, y ∈ {0, 1}n. S will ensure that for any z ∈ {0, 1}n and i ∈ {1, . . . , 15}, there
is at most one z′ ∈ {0, 1}n such that (z, z′) ∈ Pi, and vice versa; once such
consistency cannot be kept, S aborts (will be discussed later). By this, the sets
{P} = {P1, . . . , P15} are expected to define fifteen partial permutations, and we
denote by P+

i (P−
i , resp.) the (time-dependent) set of all n-bit values x (y, resp.)

satisfying that ∃z ∈ {0, 1}n s.t. (x, z) ∈ Pi ((z, y) ∈ Pi, resp.); denote by P+
i (x)

(P−
i (y), resp.) the corresponding value of z (as mentioned the uniqueness of z

is ensured by S).

396 C. Guo and D. Lin

Queries that have already appeared in the history will be instantly answered
with the contents in {P}. Upon a new query SE,P.P(i, δ, z), SE,P queries P to
draw z′ = P.P(i, δ, z) as the answer and calls a procedure ForceVal(z, z′, δ, i)
to add z and z′ to Pi – inside this procedure, if z′ is found already in P δ

i ,
SE,P aborts due to the broken consistency (as mentioned). Then, if (i, δ) ∈
{(2,+), (6,−), (10,+), (14,−)} it satisfies the chain detection conditions, so that
SE,P enqueues and completes chains formed by previous queries to ensure that
it is ready to simulate answers consistent with those of E in the future.

The cases (i, δ) equals (2,+) and (14,−) are similar: taking the former
P(2,+, x2) as an example, SE,P considers all tuples (x1, y1, x14, y14, x15, y15)
such that (xj , yj) ∈ Pj for j ∈ {1, 14, 15}, recovers two keys k2 := y1 ⊕ x2 and
k1 := y14 ⊕ x15, computes y0 := x1 ⊕ k1 and x16 := y15 ⊕ k2, checks whether
E.E(+, (k1, k2), y0) = x16 via an inner procedure S.Check and enqueues a
5-tuple (y0, k1, k2, 0, 4) into a queue ChainQueue when this is the case. In this
tuple, the 4-th value 0 informs S that the first value of the tuple is y0, and the
last value 4 describes that when completing the chain characterized by the tuple
(y0, k1, k2, 0), S should add the adapted pair to P4 to ensure consistency with E.
The action towards answering new query P(14,−, y14) is symmetric: S considers
all tuples (x1, y1, x2, y2, x15, y15) such that (xj , yj) ∈ Pj for j ∈ {1, 2, 15}, recov-
ers the two keys, calls S.Check and enqueues (y0, k1, k2, 0, 12) into ChainQueue
when Check returns true. The chain represented by this 5-tuple will be adapted
at P12, which is different from the case (i, δ) = (2,+).

The other two cases P(6,−, y6) and P(10,+, x10) are similar by symmetry:
in each case, S considers all tuples (x7, y7, x8, y8, x9, y9) such that (xj , yj) ∈ Pj

for j ∈ {7, 8, 9}, computes k1 := y8 ⊕ x9 and k2 := y7 ⊕ x8, checks whether
x7 ⊕k1 = y6 ∧y9 ⊕k2 ∈ P+

10 (in case P(6,−, y6)) or x7 ⊕k1 ∈ P−
6 ∧y9 ⊕k2 = x10

(in case P(10,+, x10)), and enqueues (y7, k1, k2, 7, l) into ChainQueue when this
is the case, where l = 4 in case P(6,−, y6) and l = 12 in case P(10,+, x10).

After enqueuing, S starts an execution of RecursiveCompletion, during
which it continues taking the tuples out of ChainQueue and completing the
associated partial chains till ChainQueue is empty again. More clearly, for each
chain C dequeued from the queue, S evaluates in the IDEM15 computation
path both forward and backward and queries E once to “wrap” around, until
obtaining xl (when moving forward) or yl (when moving backward). S then calls
ForceVal(xl, yl,⊥, l) to add (xl, yl) to Pl as a newly defined pair of IO, so that
the entire computation path is consistent with the answers of E. Inside this call
to ForceVal, if xl ∈ P+

l or yl ∈ P−
l before they are to be added, S aborts (also

as mentioned).
During the completion of a chain, S adds new entries to Pi which are neces-

sary for its evaluation. Such new values also trigger new chains to be enqueued
when they satisfy the chain detection conditions mentioned before. For this, note
that S continues dequeuing and completing chains till ChainQueue is empty
again. To avoid re-completing the same chain, S maintains a set CompSet to

A Synthetic Indifferentiability Analysis 397

keep a record of what it has completed, and a chain C dequeued from the queue
will be completed only if C /∈ CompSet. After all the works above are finished,
S answers the original query with P δ

i (z).
Note that throughout the process, the entries in S.{P} are never overwritten;

once S finds itself unable to maintain consistency any more, S just aborts.
The pseudocode of SE,P and a modified simulator S̃

˜EE,P (please see Sect. 3.2)
is presented as follows. When a line has a boxed variant next to it, SE,P uses
the original code, whereas S̃

˜EE,P uses the boxed one.

3.2 The Key Points of the Proof

As in previous works, for any fixed, deterministic,4 and computationally
unbounded distinguisher D, we first show that the complexity of SE,P is poly-
nomial except with negligible probability, then show that the simulated system
Σ1(E,SE,P) and the real system Σ3(IDEMP

15,P) are indistinguishable.

Intermediate System. The proof uses an intermediate system Σ2(ẼE, S̃
˜EE,P)

which consists of two modified constructions ẼE and S̃
˜EE,P. ẼE can be seen as

an ideal cipher E enhanced with a history maintaining mechanism and a Check
procedure. More clearly, ẼE offers the same interface as E, relays the answers of
E except that it uses a set ES to keep the history of these queries. The entries in
ES are of the form (x, y, (k1, k2)). ẼE provides an additional interface Check

to S̃; upon a call to Check(x, y,K), ẼE checks whether (x, y,K) ∈ ES and
answers accordingly. On the other hand, the modified simulator S̃

˜EE,P shares
the same main strategy with SE,P except that it queries ẼE – particularly, it
calls ẼE.Check whenever necessary. The code of S̃ is presented along with S in
Sect. 3.1. The three systems are depicted in Fig. 2.

Since all the entries of ES actually come from (an ideal cipher) E, ES always
defines a partial cipher, and we use a notation system similar to that for {P}.
More clearly, we denote by ES+ the set of tuples (K,x) s.t. ∃y : (x, y,K) ∈
ES, and denote by ES+(K,x) the corresponding y. Similarly for ES− and
ES−(K, y). Finally, denote by |Ẽ.ES| the size of Ẽ.ES.

Complexity of S̃ in Σ2, and Transition from Σ1 to Σ2. The starting
point is the same as [CHK+14]: the number of “external” chains (y0, k1, k2, 0)
completed by S̃ is bounded by the number of queries of D to Ẽ, which is at most
q; by this, for i ∈ {6, 7, 8, 9, 10}, Pi consists of entries due to D’s queries and S̃
completing chains (y0, k1, k2, 0), so that |Pi| ≤ 2q.

Then the argument deviates from [CHK+14]: by construction, S̃ enqueues
a “middle” chain (y7, k1, k2, 7, l) only if there are 5 entries (xi, yi) ∈ Pi for
i = 6, 7, 8, 9, 10 s.t. y6 = x7⊕y8⊕x9 and y7⊕x8⊕y9 = x10. Consider a bad event
BadLockMid, which happens in DΣ2 if any call to InnerP creates a new pair of

4 This is wlog since the advantage of any probabilistic distinguisher cannot exceed the
advantage of the corresponding optimal deterministic version.

398 C. Guo and D. Lin

1: Simulator SE,P: Simulator ˜S
˜EE,P:

2: Variables
3: Sets {P} = {P1, . . . , P15} and CompSet, initially empty
4: Queue ChainQueue, initially empty
5: public procedure P(i, δ, z)
6: z′ := InnerP(i, δ, z) // Chains are enqueued in this step
7: RecursiveCompletion()
8: return z′

9: // The recursive completion process is extracted as an individual procedure.
10: private procedure RecursiveCompletion()
11: while ChainQueue �= ∅ do
12: (yj , k1, k2, j, l) := ChainQueue.Dequeue()
13: if (yj , k1, k2, j) /∈ CompSet then
14: Complete(yj , k1, k2, j, l)
15: // The “inner” permutation interface used by S itself.
16: private procedure InnerP(i, δ, z)
17: if z /∈ P δ

i then
18: z′ := P.P(i, δ, z)
19: ForceVal(z, z′, δ, i)
20: EnqueueChains(i, δ, z)
21: return P δ

i (z)
22: // Procedure that enqueues chains.
23: private procedure EnqueueChains(i, δ, z)
24: if (i, δ) = (2, +) then
25: forall ((x1, y1), x2, y14, (x15, y15)) ∈ P1 × {z} × P −

14 × P15 do
26: k2 := y1 ⊕ x2

27: k1 := y14 ⊕ x15

28: y0 := x1 ⊕ k1

29: x16 := y15 ⊕ k2

30: flag := Check(y0, x16, (k1, k2)) flag := ˜EE.Check(y0, x16, (k1, k2))

31: if flag = true then
32: ChainQueue.Enqueue(y0, k1, k2, 0, 4)
33: else if (i, δ) = (14, −) then
34: forall ((x1, y1), x2, y14, (x15, y15)) ∈ P1 × P+

2 × {z} × P15 do
35: k2 := y1 ⊕ x2

36: k1 := y14 ⊕ x15

37: y0 := x1 ⊕ k1

38: x16 := y15 ⊕ k2

39: flag := Check(y0, x16, (k1, k2)) flag := ˜EE.Check(y0, x16, (k1, k2))

40: if flag = true then
41: ChainQueue.Enqueue(y0, k1, k2, 0, 12)
42: else if (i, δ) = (6, −) ∨ (i, δ) = (10, +) then
43: forall ((x7, y7), (x8, y8), (x9, y9)) ∈ P7 × P8 × P9 do
44: k1 := y8 ⊕ x9

45: k2 := y7 ⊕ x8

46: if (i, δ) = (6, −) ∧ z = x7 ⊕ k1 ∧ y9 ⊕ k2 ∈ P+
10 then

47: ChainQueue.Enqueue(y7, k1, k2, 7, 4)

A Synthetic Indifferentiability Analysis 399

48: else if z = y9 ⊕ k2 ∧ x7 ⊕ k1 ∈ P −
6 then // (i, δ) = (10, +)

49: ChainQueue.Enqueue(y7, k1, k2, 7, 12)
50: private procedure Complete(yj , k1, k2, j, l)
51: (yl−1, k1, k2, l − 1) := EvalFWD(yj , k1, k2, j, l − 1)
52: (yl, k1, k2, l) := EvalBWD(yj , k1, k2, j, l)
53: ForceVal(yl−1 ⊕ k2, yl, ⊥, l) // Always k2, since l ∈ {4, 12}.
54: (y0, k1, k2, 0) := EvalFWD(yj , k1, k2, j, 0)
55: (y7, k1, k2, 7) := EvalFWD(y0, k1, k2, 0, 7)
56: CompSet := CompSet ∪ {(y0, k1, k2, 0), (y7, k1, k2, 7)}
57: // Procedure that adds entries to {P}.
58: private procedure ForceVal(z, z′, δ, l)
59: // When δ = ⊥ then it’s an adaptation

60: if z ∈ P δ
l ∨ z′ ∈ P δ

l then abort
61: else if δ = − then Pl := Pl ∪ {(z′, z)}
62: else Pl := Pl ∪ {(z, z′)} // δ = + or ⊥
63: private procedure Check(x, y, K) // ˜S does not own such a procedure
64: return E.E(+, K, x) = y
65: // Two procedures that help evaluate forward and backward respectively in IDEM.
66: private procedure EvalFWD(yj , k1, k2, j, l)
67: while j �= l do
68: if j = 15 then
69: x16 := y15 ⊕ k2

70: y0 := E.E(−, (k1, k2), x16) y0 := ˜EE.E(−, (k1, k2), x16)

71: j := 0
72: else
73: if j is odd then
74: yj+1 := InnerP(j + 1, +, yj ⊕ k2)
75: else
76: yj+1 := InnerP(j + 1, +, yj ⊕ k1)
77: j := j + 1
78: return (yl, k1, k2, l)
79: private procedure EvalBWD(yj , k1, k2, j, l)
80: while j �= l do
81: if j = 0 then

82: x16 := E.E(+, (k1, k2), y0) x16 := ˜EE.E(+, (k1, k2), y0)

83: y15 := x16 ⊕ k2

84: j := 15
85: else
86: if j is odd then
87: yj−1 := InnerP(j, −, yj) ⊕ k1

88: else
89: yj−1 := InnerP(j, −, yj) ⊕ k2

90: j := j − 1
91: return (yl, k1, k2, l)

400 C. Guo and D. Lin

P1

x1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

P12

P13

P14

P15

k2

k1

k1

k2

k1

k1

k2

k1

k2

k2

k1

k2

k1

k2

k1

k2

x/y0

y1
x2

y2

x3

y3

(2,+, x2)

buffer

y6

x6

y9

x9

y10

x10

y/x16

y11

x11

adapt

y14

x14

adapt

(4,+, x4)

(3,−, y3)

(3,+, x3)

(4,−, y4)

P1

x1

P2

P3

P4

P5

P6

P7

k2

k1

k1

k2

k1

k1

k2

k2

x/y0

y1
x2

y2

x3

y3

y6

x6

adapt

x4

y4

x5

y5

x7

y7

y/x8

adapt

(5,+, x5)

(5,−, y5)

buffer

detect

detect

buffer

buffer

detect

(6,−, y6)

(10,+, x10)

(14,−, y14)

buffer

buffer

y4

x4

y5

x5

y15

x15

y13

x13

y12

x12

x8

y8

x7

y7

Fig. 1. (left) IDEM15 with the zones where the simulator detects chains and adapts
them; (right) IDEM7 and how the simulator for sequential indifferentiability works.

A Synthetic Indifferentiability Analysis 401

D

0/1

Σ1

E S

D

0/1

Σ2

E S

D

0/1

Σ3

IDEM15 P

P E P

Fig. 2. Systems used in the indifferentiability proof for IDEM15.

3-tuples ((x7, y7), (x8, y8), (x9, y9))∈ P7×P8×P9 and ((x′
7, y

′
7), (x

′
8, y

′
8), (x

′
9, y

′
9)) ∈

P7×P8×P9 such that x7⊕y8⊕x9 = x′
7⊕y′

8⊕x′
9 and y7⊕x8⊕y9 = y′

7⊕x′
8⊕y′

9. Tak-
ing all possibilities into consideration, its overall probability is at most 27·q6

2n +
26·q4

2n + 25·q4

2n ≤ 28·q6

2n ; and conditioned on ¬BadLockMid, each pair (y6, x10) ∈
P−
6 × P+

10 corresponds to at most one tuple ((x7, y7), (x8, y8), (x9, y9)) ∈ P7 ×
P8 × P9 s.t. y6 = x7 ⊕ y8 ⊕ x9 and y7 ⊕ x8 ⊕ y9 = x10, hence S̃ enqueues at most
|P6| · |P10| ≤ 4q2 “middle” chains (y7, k1, k2, 7, l). By this, each |Pi| is bounded
to O(q2), |Ẽ.ES| to 5q2, and S̃ issues at most (5q2)4 queries to Ẽ.Check.

The rest part of the first transition is very close to [CHK+14] (and is almost
the same as [GL15a]): for two executions DΣ1 and DΣ2 which share the same
random primitives (E,P), conditioned on ¬BadLockMid, if the first (5q2)4 calls
to S.Check in DΣ1 obtain the same answers as the first (5q2)4 calls to Ẽ.Check
in DΣ2 (Pr ≥ 1 − 1250q8/2n), then D outputs the same in DΣ1 and DΣ2 .

Lemma 1. For any distinguisher D which issues at most q queries, it holds:

(i) |Pr[DΣ1(E,S) = 1] − Pr[DΣ2(˜E,˜S) = 1]| ≤ 211·q8

2n ;
(ii) during the execution DΣ1(E,S), with probability at least 1 − 211·q8

2n , S issues
at most 210 · q8 queries to E, and runs in time at most O(q8).

The most difficult part of the proof is the transition from Σ2 to Σ3, which
will be presented in the next paragraph.

Transition from Σ2 to Σ3: Non-abortion Argument for S̃ . S̃ is built with
the expectation that if it does not abort, then the outputs of Σ2 and Σ3 are
indistinguishable; we will see that this intuition is true, so that the first (and
actually core) step of the transition is to show that the abort probability of S̃ is
negligible. For this, we introduce several notions and (improbable) bad events,
then show that if neither of them happens, then S̃ does not abort.

Random Assignments. Similarly to [LS13], we use the notion random forward
assignment in set Pi (random backward assignment in set Pi, resp.) to refer to
line 62 inside any execution of ForceVal(z, z′,+, i) (line 61 inside any execution
of ForceVal(z, z′,−, i), resp.), and use the notion random forward (backward,
resp.) assignment in set ES to refer to any operation sequence z′ := E.E(+,K, z)

402 C. Guo and D. Lin

(z′ := E.E(−,K, z), resp.) and then adding z and z′ to ES. We also use random
assignments to indifferently refer to the forward or backward case.
Partial Chains. In this paper, the partial chains are characterized by 4-tuples
(yi, k1, k2, i) ∈ {0, 1}n × {0, 1}n × {0, 1}n × {0, . . . , 15}. Besides this notion, we
borrow two helper functions val+l and val−l from previous works: w.r.t. the values
in the given sets ES and {P}, val+l and val−l take a partial chain as input,
and evaluate forward and backward respectively (wrap around through ES if
necessary) until obtaining the corresponding input value xl to Pl and input value
yl to P−1

l respectively, or the evaluation is blocked by some missed entry (in the
sets), and return xl and yl respectively in the former case while ⊥ in the latter
case. Based on val+l and val−l , we borrow (and redefine) the notion of equivalent
partial chains: w.r.t. {P} and Ẽ.ES, two partial chains C = (yi, k1, k2, i) and
D = (yj , k1, k2, j) (with the same keys) are equivalent (denoted C ≡ D) if
yi = val−i (D) or yj = val−j (C).5

Bad Events, and Non-abortion. A random answer from P or E is bad if it col-
lides with some value relevant to the “active” chains. To specify such “active”
chains, we define a notion history for partial chains CH from the sets ES and
{P7, P8, P9} at the moment where the random answer is drawn: CH is the union
of two sets ECH and MCH, where ECH includes all the tuples (y0, k1, k2, 0)
with ((k1, k2), y0) ∈ ES+, and MCH includes all (y7, k1, k2, 7) with y7 ∈ P−

7 ,
x8 = y7 ⊕ k2 ∈ P+

8 , and x9 = P+
8 (x8) ⊕ k1 ∈ P+

9 . By the complexity analysis,
conditioned on ¬BadLockMid, |CH| ≤ 5q2 + (2q)3 ≤ 13q3.

We then list the bad events (more precisely, their ideas). Due to space con-
straints, we have to defer their formal definitions to the full version [GL15b].

– BadHitAdapt: an answer from P collides with a previous adapted value;
– BadE: an answer from E collides with a value in P1 or P15 xored the key, i.e.

E.E(−, (k1, k2), x16) ⊕ k1 ∈ P+
1 , or E.E(+, (k1, k2), y0) ⊕ k2 ∈ P−

15;
– BadP: extension of some chain C meets an old P-tuple after a random assign-

ment in {P} with the same direction, i.e. ∃C ∈ CH s.t. for more than one
value i, val+i (C) (val−i (C), resp.) differs after a random forward (backward,
resp.) assignment in {P} from before the assignment;

– BadInvP: some chain C extends after a random assignment in {P} with the
opposite direction, i.e. ∃C ∈ CH s.t. for some value i, val+i (C) (val−i (C),
resp.) differs after a random backward (forward, resp.) assignment in {P}
from before the assignment;

– BadMidP: a random assignment in P7, P8, or P9 creates a new 5-tuple (y6,
(x7, y7), (x8, y8), (x9, y9), x10) ∈ P−

6 × P7 × P8 × P9 × P+
10 such that y6 ⊕ x7 =

y8 ⊕ x9 and y7 ⊕ x8 = y9 ⊕ x10;
– BadlyCollide (a term from [CHK+14]): two chains C, D ∈ CH that are not

equivalent suddenly satisfies valδi (C) = valδi (D) after a random assignment.

The overall probability (the event BadLockMid included) cumulates to 213.4·q6

2n .

5 Note that if C = D then both yi = val−i (D) and yj = val−j (C).

A Synthetic Indifferentiability Analysis 403

We call a pair of primitive (E,P) a good Σ2-tuple if none of the bad events

above (BadLockMid included) happens during the execution DΣ2(˜E
E,˜S

˜EE,P), and
call DΣ2 with good Σ2-tuples good Σ2 executions. During good Σ2 executions,
S̃ never aborts due to calls to ForceVal(xi, yi,+, i)/ForceVal(xi, yi,−, i), as
otherwise BadHitAdapt happens. We then proceed to argue that S̃ never aborts
due to calls to ForceVal(xl, yl,⊥, l) (i.e. adaptations: l ∈ {4, 12}), to complete
the non-abortion argument.

Lemma 2. In a good execution D
Σ2 , before any call to ForceVal(xl, yl,⊥, l)

(l ∈ {4, 12}), xl /∈ P+
l ∧ yl /∈ P−

l must hold.

Proof. The proof flow is very similar to [CHK+14], while some ideas slightly
deviate. Let’s sketch the flow: wlog consider a call ForceVal(x4, y4,⊥, 4), and
suppose that it is made during an execution of Complete(C, 4). We argue that
val+4 (C) /∈ P+

4 right before the call to ForceVal(x4, y4,⊥, 4), and the argument
for val−4 (C) /∈ P−

4 is similar by symmetry. The ideas are as follows:
First, before C is enqueued, val+3 (C) = ⊥ (this implies val+4 (C) = ⊥ /∈ P+

4):
if C = (y0, k1, k2, 0) is enqueued by InnerP(2,+, x2), then val+3 (C) = ⊥ is clear;
if C = (y7, k1, k2, 7) is enqueued by InnerP(6,−, y6), then if val+3 (C) �= ⊥,
a chain (y0, k1, k2, 0) equivalent to C must have been previously enqueued and
completed due to the call to InnerP(2,+, val+2 (C)), and C would have been
in CompletedSet when C is dequeued, as a consequence the purported call to
ForceVal(x4, y4,⊥, 4) would not happen.

Second, if val+4 (C) ∈ P+
4 when C is dequeued, it can only be that for another

chain D enqueued before C is enqueued and dequeued after C is enqueued, it
holds val+4 (D) = val+4 (C) �= ⊥ so that val+4 (C) was added to P+

4 during D’s
completion.

Then, we argue that val+4 (D) = val+4 (C) �= ⊥ is not possible for any such
chain D, so that when C is dequeued, either val+4 (C) = ⊥, or val+4 (C) �= ⊥ ∧
val+4 (C) /∈ P+

4 . To argue about this, we exclude the possibility for each of the
following cases:

(i) if val+2 (C) �= val+2 (D) at some point, then val+3 (C) �= val+3 (D). Otherwise,
consider the last assignment before val+3 (C) = val+3 (D) �= ⊥ holds. This
assignment happens earliest right before C is enqueued, at which point
both C and D have been in CH (by construction and definition). Then:
– it cannot have been in ES, otherwise BadE happens;
– it cannot have been a random backward assignment in {P}, otherwise

BadInvP happens;
– it cannot have been a random forward assignment in {P}, otherwise

BadlyCollide happens;
– it cannot have been due to a previous adaptation, since by construction,

when C is enqueued, all the chains in ChainQueue are to be adapted
at P4 which is the same as C, so that it cannot be that val+3 (C) = ⊥ or
val+3 (D) = ⊥ due to a missed entry in P12 which is later added by an
adaptation in this period.

404 C. Guo and D. Lin

Then a similar discussion further establishes val+4 (C) �= val+4 (D);
(ii) if val+2 (C) = val+2 (D) �= ⊥ while val+3 (C) �= val+3 (D) at some point, then

similarly to Case (i), val+4 (C) �= val+4 (D) will hold;
(iii) if val+2 (C) = val+2 (D) �= ⊥ and val+3 (C) = val+3 (D) �= ⊥, then val+4 (C) �=

val+4 (D) otherwise C ≡ D and C ∈ CompletedSet when C is dequeued.

Finally, after C is dequeued, if val+4 (C) = ⊥, then since ¬BadP, it can only be
changed non-empty by a random forward assignment in P3 which occurs during
the completion of C, after which val+4 (C) /∈ P+

4 . These complete the proof. �

The Rest Part. During DΣ2 , if S̃ does not abort, then the answers are consistent
with some Σ3 executions. By a randomness mapping argument [CHK+14], the
advantage of D in distinguishing Σ2 and Σ3 is bounded.

Lemma 3. For any distinguisher D which issues at most q queries, it holds:

∣
∣
∣Pr[DΣ3(IDEM15,P) = 1] − Pr[DΣ2(˜E,˜S) = 1]

∣
∣
∣ ≤ 214 · q6

2n
.

4 Seq-indifferentiability for 7-Round IDEM

According to [LS13,ABD+13], there is a seq-distinguisher for SEM3. Consider
IDEM6. If we fix the key k2 to an arbitrary value, then the construction is
reduced to a 3-round single-key Even-Mansour. By this, a seq-distinguisher for
IDEM6 is easily obtained.

It is natural to ask whether the additional n-bit key offers more freedom to
the adversary and enable to attack more than this trivial 2 × 3 rounds. The
second main result – also the main theorem of this section – provides a negative
answer, and is as follows:

Theorem 2. The 7-round Even-Mansour cipher IDEM7 from seven indepen-
dent random permutations P = (P1, . . . ,P7) and two n-bit keys (k1, k2) alter-
natively xored is strongly and statistically (q, σ, t, ε)-seq-indifferentiable from E,
where σ = q3, t = O(q3), and ε ≤ 27q6

2n = O(q6

2n).

Proof. The proof is much simpler than that of Theorem1, since there is no
recursive chain completion. In the following, we first present the simulator, then
sketch the proof. The full proof is deferred to the full version [GL15b].

Simulator for IDEM 7. To make a distinction from the notations used in Sect. 3,
we denote by SE,P the simulator for IDEM7 with access to E and P. Similarly to
SE,P, SE,P also offers an interface P(i, δ, z) where (i, δ, z) ∈ {1, . . . , 7}×{+,−}×
{0, 1}n and maintains a set Pi for each i to keep the already defined pairs of IO.
The other notations P+

i , P−
i , and |Pi| are all similar to those introduced in the

context of IDEM15. SE,P uses an additional set ES to maintain the history of
its queries to E, which is similar to the set of ẼE introduced in Sect. 3. We also
use the notations ES+, ES−, and |ES| similar to Sect. 3.

A Synthetic Indifferentiability Analysis 405

Upon a query to SE,P.P(i, δ, z), SE,P calls an inner procedure SE,P.Pin,
and SE,P.Pin answers with P δ

i (z) if x ∈ P δ
i , or queries P.P(i, δ, z) to obtain the

answer z′ and adds z and z′ to Pi if z′ /∈ P δ
i while aborts otherwise.

The chain completing mechanism of SE,P is much simpler than that of SE,P,
and is somehow close to that appeared in [CS15]: SE,P completes the potential
partial chains upon receiving a new query SE,P.P(i, δ, x) with i ∈ {3, 4, 5}.
More clearly, when the query is of the form SE,P.P(3,+, x), SE,P.P(4,−, y), or
SE,P.P(5,+, x), SE,P considers all newly created tuples (x3, x4, x5) ∈ P+

3 ×P+
4 ×

P+
5 , and computes k1 := P+

4 (x4) ⊕ x5, k2 := P+
3 (x3) ⊕ x4. SE,P then evaluates

in IDEM7 both backward and forward until obtaining the corresponding y7 and
x7, that is, computing the following values by calling SE,P.Pin and querying
E, in the order: (1) y2 := x3 ⊕ k1; (2) y1 := SE,P.Pin(2,−, y2) ⊕ k2; (3) y0 :=
SE,P.Pin(1,−, y1)⊕k1; (4) y7 := E.E(+, (k1, k2), y0)⊕k2; (5) x6 := P+

5 (x5)⊕k2;
(6) x7 := SE,P.Pin(6,+, x6) ⊕ k1. SE,P finally aborts if x7 ∈ P+

7 or y7 ∈ P−
7 ,

otherwise adds (x7, y7) to P7 as a newly defined pair of IO.
When the query is SE,P.P(3,−, y), SE,P.P(4,+, x), or SE,P.P(5,−, y), SE,P

considers all newly created tuples (x3, x4, x5) ∈ P+
3 × P+

4 × P+
5 , computes k1

and k2, evaluates in IDEM7 both forward and backward until obtaining the
corresponding x1 and y1, and finally adds (x1, y1) to P1 or aborts if x1 ∈ P+

1 or
y1 ∈ P−

1 . The strategy is illustrated in Fig. 1 (right).
To simplify the reasoning, we introduce a modified simulator T E,P, which is

obtained by embedding two early abort conditions into SE,P:

(i) when a chain C is to be adapted at P1 (P7, resp.), right after the assign-
ment (lines 13 or 16 in the code below) inside the call to Pin which led
to C being detected, if the value y2 (x6, resp.) corresponding to C has
been in P−

2 (P+
6 , resp.), then T aborts. This is captured by the procedure

CheckFreeBuffer;
(ii) right after an assignment in P3, P4, or P5 (lines 13/16), T aborts if the assign-

ment creates a “lock” in the middle three rounds: for (i, j) ∈ {(3, 4), (4, 5)},
if ∃(xi, yi), (x′

i, y
′
i) ∈ Pi and (xj , yj), (x′

j , y
′
j) ∈ Pj such that xi ⊕ yj = x′

i ⊕ y′
j

and yi ⊕ xj = y′
i ⊕ x′

j . This is captured by the procedure CheckLock. This
situation is harmful for the procedure CompChain in some cases.

With all the above in mind, we have the pseudocode of S and T as follows. Note
that the underlined lines only exist in T (say, S does not early abort).

Intermediate System Σ′
2. Denote by Σ′

1(E,SE,P) the simulated system, and by
Σ′

3(IDEMP
7 ,P) the real system. As a quite standard first step, we introduce

an intermediate system Σ′
2(IDEMT E,P

7 , T E,P), in which the cipher IDEM7 calls
the interfaces of T to compute (as done in [MPS12,CS15]). The three systems
involved in this proof are depicted in Fig. 3.

Complexity of S/T . By construction, for i ∈ {3, 4, 5}, |Pi| can be enlarged by at
most 1 only if S/T receives a query P(i, δ, ·). Hence for any seq-distinguisher D
of total oracle query cost at most q, S/T completes at most |P3| · |P4| · |P5| ≤ q3

chains, and queries E at most q3 times (say, |ES| ≤ q3).

406 C. Guo and D. Lin

1: Simulator SE,P: Simulator T E,P:
2: Variables: Sets {P} = {P1, . . . , P7} and ES, initially empty
3: public procedure P(i, δ, z)
4: return Pin(i, δ, z)
5: private procedure Pin(i, δ, z)
6: if z /∈ P δ

i then
7: z′ := P.P(i, δ, z)

8: if z′ ∈ P δ
i then // when i = 1, 7

9: abort
10: CheckFreeBuffer(i, δ, z′)
11: if δ = + then
12: CheckLock(i, z, z′)
13: Pi := Pi ∪ {(z, z′)}
14: else // δ = −
15: CheckLock(i, z′, z)

16: Pi := Pi ∪ {(z′, z)}
17: if i = 3 ∧ δ = + then
18: forall (x4, x5) ∈ P+

4 × P+
5 do

19: CompChain(z, x4, x5, 3, 7)

20: else if i = 4 ∧ δ = + then
21: forall (x3, x5) ∈ P+

3 × P+
5 do

22: CompChain(x3, z, x5, 4, 1)
23: else if i = 5 ∧ δ = + then
24: forall (x3, x4) ∈ P+

3 × P+
4 do

25: CompChain(x3, x4, z, 5, 7)
26: else if i = 3 ∧ δ = − then
27: forall (x4, x5) ∈ P+

4 × P+
5 do

28: CompChain(z′, x4, x5, 3, 1)
29: else if i = 4 ∧ δ = − then
30: forall (x3, x5) ∈ P+

3 × P+
5 do

31: CompChain(x3, z
′, x5, 4, 7)

32: else if i = 5 ∧ δ = − then
33: forall (x3, x4) ∈ P+

3 × P+
4 do

34: CompChain(x3, x4, z
′, 5, 1)

35: return P δ
i (z)

36: private procedure CompChain(x3, x4, x5, i, l)
37: k1 := P+

4 (x4) ⊕ x5

38: k2 := P+
3 (x3) ⊕ x4

39: if l = 1 then
40: x6 := P+

5 (x5) ⊕ k2

41: x7 := Pin(6, +, x6) ⊕ k1

42: x8 := Pin(7, +, x7) ⊕ k2

43: y0 := E.E(−, (k1, k2), x8)
44: ES := ES ∪ {(y0, x8, (k1, k2))}
45: x1 := y0 ⊕ k1

46: y2 := x3 ⊕ k1

47: y1 := Pin(2, −, y2) ⊕ k2

48: if x1 ∈ P+
1 ∨ y1 ∈ P −

1 then
49: abort

50: P1 := P1 ∪ {(x1, y1)}
51: else // l = 7
52: y2 := x3 ⊕ k1

53: y1 := Pin(2, −, y2) ⊕ k2

54: y0 := Pin(1, −, y1) ⊕ k1

55: x8 := E.E(+, (k1, k2), y0)
56: ES := ES ∪ {(y0, x8, (k1, k2))}
57: y7 := x8 ⊕ k2

58: x6 := P+
5 (x5) ⊕ k2

59: x7 := Pin(6, +, x6) ⊕ k1

60: if x7 ∈ P+
7 ∨ y7 ∈ P −

7 then
61: abort
62: P7 := P7 ∪ {(x7, y7)}

63: private procedure CheckFreeBuffer(i, δ, z′)
64: if (i, δ) = (3, +) ∧ ∃(x4, y5) ∈ P+

4 × P −
5 s.t. z′ ⊕ x4 ⊕ y5 ∈ P+

6 then
65: abort
66: else if (i, δ) = (4, +) ∧ ∃(x3, x5) ∈ P+

3 × P+
5 s.t. x3 ⊕ z′ ⊕ x5 ∈ P −

2 then
67: abort
68: else if (i, δ) = (5, +) ∧ ∃(y3, x4) ∈ P −

3 × P+
4 s.t. y3 ⊕ x4 ⊕ z′ ∈ P+

6 then
69: abort
70: else if (i, δ) = (3, −) ∧ ∃(y4, x5) ∈ P −

4 × P+
5 s.t. z′ ⊕ y4 ⊕ x5 ∈ P −

2 then
71: abort
72: else if (i, δ) = (4, −) ∧ ∃(y3, y5) ∈ P −

3 × P −
5 s.t. y3 ⊕ z′ ⊕ y5 ∈ P+

6 then
73: abort
74: else if (i, δ) = (5, −) ∧ ∃(x3, y4) ∈ P+

3 × P −
4 s.t. x3 ⊕ y4 ⊕ z′ ∈ P −

2 then
75: abort
76: private procedure CheckLock(i, x, y)
77: if i = 3 ∧ ∃((x3, y3), (x4, y4), (x

′
4, y

′
4)) ∈ P3 × P4 × P4

A Synthetic Indifferentiability Analysis 407

78: s.t. x ⊕ y′
4 = x3 ⊕ y4 ∧ y ⊕ x′

4 = y3 ⊕ x4 then abort
79: if i = 5 ∧ ∃((x5, y5), (x4, y4), (x

′
4, y

′
4)) ∈ P5 × P4 × P4

80: s.t. x4 ⊕ y5 = x′
4 ⊕ y ∧ y4 ⊕ x5 = y′

4 ⊕ x then abort
81: if i = 4 ∧ ∃((x3, y3), (x

′
3, y

′
3), (x4, y4)) ∈ P3 × P3 × P4

82: s.t. x3 ⊕ y4 = x′
3 ⊕ y ∧ y3 ⊕ x4 = y′

3 ⊕ x then abort
83: if i = 4 ∧ ∃((x5, y5), (x

′
5, y

′
5), (x4, y4)) ∈ P5 × P5 × P4

84: s.t. x4 ⊕ y5 = x ⊕ y′
5 ∧ y4 ⊕ x5 = y ⊕ x′

5 then abort

D

0/1

Σ1 Σ2

E
Σ3

E S IDEM7 T

P

D

0/1

IDEM7 P

D

0/1

12 2 1 2 1

P

3 3 3

Fig. 3. Systems used in the seq-indifferentiability proof for IDEM7. The number in red
and italic illustrates the order of the queries/actions (of the sequential distinguisher)
(Color figure online).

The running time of S is clearly dominated by the executions of CompChain,
the number of which is O(q3). Therefore, S runs in time O(q3).

Indistinguishability of Outputs. We first upper bound the abort probability of
T . Consider the two early abort conditions first:

(i) The overall probability that T aborts during CheckFreeBuffer is at most
2q6

2n−q ;

(ii) The overall probability that T aborts during CheckLock is at most 2q4

2n−q ;

Then the two types of main abortions of T are as follows:

(i) a random answer from P1 or P7 collides with a previously added adapted
value. The overall probability is at most 4q6

2n−2q3 ;

(ii) T aborts due to adaptations. The overall probability is at most 5q6

2n−2q3 ; this
is obtained by carefully analyzing each case. A key point is that the buffer
rounds ensure that any two chains completed during the same call to Pin

will diverge at the adaptation round – the case is slightly similar to IDEM15.

These cumulate to 26q6

2n (assuming q3 < 2n

4). For a tuple (E,P), if T does not

abort in Σ′
2(IDEMT E,P

7 , T E,P), then S does not abort in Σ′
1(E,SE,P); and then

the final bound 27q6

2n = 26q6

2n + q6

2n is obtained by a randomness mapping argument,
where the statistical distance q6

2n is due to |ES| ≤ q3 random values from E. �

408 C. Guo and D. Lin

5 Conclusion

As a first step towards understanding the security of iterated Even-Mansour with
key-length larger than the block-size, this work analyzes (seq-)indifferentiability
of Even-Mansour with two independent round-keys alternatively xored, and
proves that 7 rounds is necessary and sufficient to achieve sequential indiffer-
entiability while 15 rounds is sufficient to achieve full indifferentiability.

Acknowledgements. We deeply thank the anonymous referees of FSE 2015 and ASI-
ACRYPT 2015, for their useful comments and corrections. We thank Meicheng Liu and
Jianghua Zhong for their suggestions. We also thank Yu Chen, Jian Guo, and Wentao
Zhang, for their encouragements.

This work is partially supported by National Key Basic Research Project of China
(2011CB302400), National Science Foundation of China (61379139) and the “Strategic
Priority Research Program” of the Chinese Academy of Sciences, Grant No.
XDA06010701.

References

[ABD+13] Andreeva, E., Bogdanov, A., Dodis, Y., Mennink, B., Steinberger, J.P.:
On the indifferentiability of key-alternating ciphers. In: Canetti, R., Garay, J.A.
(eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 531–550. Springer, Heidelberg
(2013). http://eprint.iacr.org/2013/061.pdf

[ABK98] Anderson, R., Biham, E., Knudsen, L.: Serpent: A proposal for the advanced
encryption standard. NIST AES Proposal 174, 1–23 (1998)

[BDK+10] Biryukov, A., Dunkelman, O., Keller, N., Khovratovich, D., Shamir, A.:
Key recovery attacks of practical complexity on AES-256 variants with up to 10
rounds. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 299–319.
Springer, Heidelberg (2010)

[BDPVA08] Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the indifferen-
tiability of the sponge construction. In: Smart, N.P. (ed.) EUROCRYPT 2008.
LNCS, vol. 4965, pp. 181–197. Springer, Heidelberg (2008)

[BK09] Biryukov, A., Khovratovich, D.: Related-key cryptanalysis of the full AES-192
and AES-256. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 1–18.
Springer, Heidelberg (2009)

[BKL+12] Bogdanov, A., Knudsen, L.R., Leander, G., Standaert, F.-X., Steinberger,
J., Tischhauser, E.: Key-alternating ciphers in a provable setting: encryption using
a small number of public permutations. In: Pointcheval, D., Johansson, T. (eds.)
EUROCRYPT 2012. LNCS, vol. 7237, pp. 45–62. Springer, Heidelberg (2012)

[CDMS10] Coron, J.-S., Dodis, Y., Mandal, A., Seurin, Y.: A domain extender for the
ideal cipher. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 273–289.
Springer, Heidelberg (2010)

[CGH04] Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revis-
ited. J. ACM 51(4), 557–594 (2004)

[CHK+14] Coron, J.-S., Holenstein, T., Künzler, R., Patarin, J., Seurin, Y.,
Tessaro, S.: How to build an ideal cipher: the indifferentiability of the
feistel construction. J. Cryptology, 1–54 (2014). http://link.springer.com/
article/10.1007/s00145-014-9189-6

http://eprint.iacr.org/2013/061.pdf
http://springerlink.bibliotecabuap.elogim.com/article/10.1007/s00145-014-9189-6
http://springerlink.bibliotecabuap.elogim.com/article/10.1007/s00145-014-9189-6

A Synthetic Indifferentiability Analysis 409

[CLL+14] Chen, S., Lampe, R., Lee, J., Seurin, Y., Steinberger, J.: Minimizing the
Two-Round Even-Mansour Cipher. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014, Part I. LNCS, vol. 8616, pp. 39–56. Springer, Heidelberg (2014)

[CS14] Chen, S., Steinberger, J.: Tight security bounds for key-alternating ciphers.
In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp.
327–350. Springer, Heidelberg (2014)

[CS15] Cogliati, B., Seurin, Y.: On the provable security of the iterated even-mansour
cipher against related-key and chosen-key attacks. In: Oswald, E., Fischlin, M.
(eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 584–613. Springer, Heidelberg
(2015). http://eprint.iacr.org/2015/069.pdf

[DDKS14] Dinur, I., Dunkelman, O., Keller, N., Shamir, A.: Cryptanalysis of iterated
even-mansour schemes with two keys. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT
2014. LNCS, vol. 8873, pp. 439–457. Springer, Heidelberg (2014)

[DDKS15] Dinur, I., Dunkelman, O., Keller, N., Shamir, A.: Key recovery attacks
on iterated even-mansour encryption schemes. J. Cryptology, 1–32 (2015).
http://link.springer.com/article/10.1007/s00145-015-9207-3

[DGHM13] Demay, G., Gaži, P., Hirt, M., Maurer, U.: Resource-restricted indifferen-
tiability. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol.
7881, pp. 664–683. Springer, Heidelberg (2013)

[DKS13] Dunkelman, O., Keller, N., Shamir, A.: Slidex attacks on the even-mansour
encryption scheme. J. Cryptology 28, 1–28 (2013)

[DR02] Daemen, J., Rijmen, V.: The Design of Rijndael: AES-The Advanced Encryp-
tion Standard. Springer, Heidelberg (2002)

[EM93] Even, S., Mansour, Y.: A construction of a cipher from a single pseudorandom
permutation. In: Imai, H., Rivest, R.L., Matsumoto, T. (eds.) ASIACRYPT 1991.
LNCS, vol. 739, pp. 210–224. Springer, Heidelberg (1993)

[FP15] Farshim, P., Procter, G.: The related-key security of iterated even–mansour
ciphers. In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp. 342–363. Springer,
Heidelberg (2015). http://eprint.iacr.org/2014/953.pdf

[GL15a] Guo, C., Lin, D.: On the indifferentiability of key-alternating feistel ciphers
with no key derivation. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part I. LNCS,
vol. 9014, pp. 110–133. Springer, Heidelberg (2015). http://eprint.iacr.org/

[GL15b] Guo, C., Lin, D.: A synthetic indifferentiability analysis of interleaved double-
key even-mansour ciphers. Cryptology ePrint Archive, Report 2015/861 (2015).
http://eprint.iacr.org/

[GPPR11] Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED block cipher.
In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 326–341.
Springer, Heidelberg (2011)

[KHP07] Kim, J.-S., Hong, S.H., Preneel, B.: Related-key rectangle attacks on reduced
AES-192 and AES-256. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp.
225–241. Springer, Heidelberg (2007)

[LPS12] Lampe, R., Patarin, J., Seurin, Y.: An asymptotically tight security analysis
of the iterated even-mansour cipher. In: Wang, X., Sako, K. (eds.) ASIACRYPT
2012. LNCS, vol. 7658, pp. 278–295. Springer, Heidelberg (2012)

[LS13] Lampe, R., Seurin, Y.: How to construct an ideal cipher from a small
set of public permutations. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT
2013, Part I. LNCS, vol. 8269, pp. 444–463. Springer, Heidelberg (2013).
http://eprint.iacr.org/2013/255.pdf

[MPS12] Mandal, A., Patarin, J., Seurin, Y.: On the public indifferentiability and
correlation intractability of the 6-round feistel construction. In: Cramer, R. (ed.)
TCC 2012. LNCS, vol. 7194, pp. 285–302. Springer, Heidelberg (2012)

http://eprint.iacr.org/2015/069.pdf
http://springerlink.bibliotecabuap.elogim.com/article/10.1007/s00145-015-9207-3
http://eprint.iacr.org/2014/953.pdf
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/2013/255.pdf

410 C. Guo and D. Lin

[MRH04] Maurer, U.M., Renner, R.S., Holenstein, C.: Indifferentiability, impossibility
results on reductions, and applications to the random oracle methodology. In:
Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004)

[RSS11] Ristenpart, T., Shacham, H., Shrimpton, T.: Careful with composition: limita-
tions of the indifferentiability framework. In: Paterson, K.G. (ed.) EUROCRYPT
2011. LNCS, vol. 6632, pp. 487–506. Springer, Heidelberg (2011)

[Seu09] Seurin, Y.: Primitives et protocoles cryptographiques àsécurité prouvée. Ph.D.
thesis, Université de Versailles Saint-Quentin-en-Yvelines, France (2009)

[Ste12] Steinberger, J.: Improved security bounds for key-alternating ciphers via
hellinger distance. Cryptology ePrint Archive, Report 2012/481 (2012). http://
eprint.iacr.org/

[Ste15] Steinberger, J.: Block ciphers: from practice back to theory. In: TCC 2015
Invited Talk (2015)

http://eprint.iacr.org/
http://eprint.iacr.org/

	A Synthetic Indifferentiability Analysis of Interleaved Double-Key Even-Mansour Ciphers
	1 Introduction
	2 Preliminaries and Notations
	3 Indifferentiability for 15-Round IDEM
	3.1 The Simulator
	3.2 The Key Points of the Proof

	4 Seq-indifferentiability for 7-Round IDEM
	5 Conclusion
	References

