Limits of Extractability Assumptions
with Distributional Auxiliary Input

Elette Boyle! ™) and Rafael Pass?

! Technion Israel, Haifa, Israel
eboyle@alum.mit.edu
2 Cornell University, Ithaca, USA
rafael@cs.cornell.edu

Abstract. Extractability, or “knowledge,” assumptions have recently
gained popularity in the cryptographic community, leading to the study
of primitives such as extractable one-way functions, extractable hash
functions, succinct non-interactive arguments of knowledge (SNARKS),
and (public-coin) differing-inputs obfuscation ((PC-)diO), and spurring
the development of a wide spectrum of new applications relying on
these primitives. For most of these applications, it is required that the
extractability assumption holds even in the presence of attackers receiv-
ing some auziliary information that is sampled from some fized efficiently
computable distribution Z.

We show that, assuming the existence of public-coin collision-resistant
hash functions, there exists an efficient distributions Z such that either

— PC-diO for Turing machines does not exist, or
— extractable one-way functions w.r.t. auxiliary input Z do not exist.

A corollary of this result shows that additionally assuming existence of
fully homomorphic encryption with decryption in NC?, there exists an
efficient distribution Z such that either

— SNARKS for NP w.r.t. auxiliary input Z do not exist, or
— PC-diO for NC" circuits does not exist.
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To achieve our results, we develop a “succinct punctured program” tech-
nique, mirroring the powerful punctured program technique of Sahai and
Waters (STOC’14), and present several other applications of this new
technique. In particular, we construct succinct perfect zero knowledge
SNARGs and give a universal instantiation of random oracles in full-
domain hash applications, based on PC-diO.

As a final contribution, we demonstrate that even in the absence of
auziliary input, care must be taken when making use of extractability
assumptions. We show that (standard) di©O w.r.t. any distribution D over
programs and bounded-length auxiliary input is directly implied by any
obfuscator that satisfies the weaker indistinguishability obfuscation (iQ)
security notion and diO for a slightly modified distribution D’ of pro-
grams (of slightly greater size) and no auxiliary input. As a consequence,
we directly obtain negative results for (standard) diO in the absence of
auxiliary input.

1 Introduction

Extractability Assumptions. Extractability, or “knowledge,” assumptions (such
as the “knowledge-of-exponent” assumption), have recently gained in popu-
larity, leading to the study of primitives such as extractable one-way func-
tions, extractable hash-functions, SNARKS (succinct non-interactive arguments
of knowledge), and differing-inputs obfuscation:

— Extractable OWF: An extractable family of one-way (resp. collision-
resistant) functions [14,15,27], is a family of one-way (resp. collision-resistant)
functions {f;} such that any attacker who outputs an element y in the range
of a randomly chosen function f; given the index i must “know” a pre-image
x of y (i.e., fi(x) = y). This is formalized by requiring for every adversary A,
the existence of an “extractor” £ that (with overwhelming probability) given
the view of A outputs a pre-image = whenever A outputs an element y in the
range of the function.

For example, the “knowledge-of-exponent” assumption of Damgard [15] stip-
ulates the existence of a particular such extractable one-way function.

— SNARKS: Succinct non-interactive arguments of knowledge (SNARKSs)
[5,32,35] are communication-efficient (i.e., “short” or “succinct”) arguments
for NP with the property that if a prover generates an accepting (short) proof,
it must “know” a corresponding (potentially long) witness for the statement
proved, and this witness can be efficiently “extracted” out from the prover.

— Differing-Inputs Obfuscation: [1,2,10] A differing-inputs obfuscator O for
program-pair distribution D is an efficient procedure which ensures if any
efficient attacker A can distinguish obfuscations O(C) and O(Cs) of programs
C1, Cs generated via D given the randomness 7 used in sampling, then it must
“know” an input z such that Cy(z) # Cz(z), and this input can be efficiently
“extracted” from .A.
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A recently proposed (weaker) variant known as public-coin differing-inputs
obfuscation [30] additionally provides the randomness used to sample the pro-
grams (Cp, C1) < D to the extraction algorithm (and to the attacker A).

The above primitives have proven extremely useful in constructing cryptographic
tools for which instantiations under complexity-theoretic hardness assumptions
are not known (e.g., [1,5,10,16,24,27,30]).

Extraction with (Distribution-Specific) Auxiliary Input. In all of these applica-
tions, we require a notion of an auxiliary-input extractable one-way function
[14,27], where both the attacker and the extractor may receive an auxiliary
input. The strongest formulation requires extractability in the presence of an
arbitrary auxiliary input. Yet, as informally discussed already in the original
work by Hada and Tanaka [27], extractability w.r.t. an arbitrary auxiliary input
is an “overly strong” (or in the language of [27], “unreasonable”) assumption.
Indeed, a recent result of Bitansky, Canetti, Rosen and Paneth [7] (formalizing
earlier intuitions from [5,27]) demonstrates that assuming the existence of indis-
tinguishability obfuscators for the class of polynomial-size circuits' there cannot
exist auxiliary-input extractable one-way functions that remain secure for an
arbitrary auxiliary input.

However, for most of the above applications, we actually do not require
extractability to hold w.r.t. an arbitrary auxiliary input. Rather, as proposed
by Bitansky et al. [5,6], it often suffices to consider extractability with respect
to specific distributions Z of auxiliary input.? More precisely, it would suf-
fice to show that for every desired output length ¢(-) and distribution Z there
exists a function family Fz (which, in particular, may be tailored for Z) such
that Fz is a family of extractable one-way (or collision-resistant) functions
{0,1}* — {0,1}**) with respect to Z. In fact, for some of these results (e.g.,
[5,6]), it suffices to just assume that extraction works for just for the uniform
distribution.

In contrast, the result of [7] can be interpreted as saying that (assuming :0),
there do not exist extractable one-way functions with respect to every distribu-
tion of auxiliary input: That is, for every candidate extractable one-way function
family F, there exists some distribution Zx of auxiliary input that breaks it.

! The notion of indistinguishability obfuscation [2] requires that obfuscations O(Ch)
and O(C2) of any two equivalent circuits C1 and C> (i.e., whose outputs agree on
all inputs) from some class C are computationally indistinguishable. A candidate
construction for general-purpose indistinguishability obfuscation was recently given
by Garg et al. [18].

As far as we know, the only exceptions are in the context of zero-knowledge simula-
tion, where the extractor is used in the simulation (as opposed to being used as part
of areduction), and we require simulation w.r.t. arbitrary auxiliary inputs. Neverthe-
less, as pointed out in the works on zero-knowledge [26,27], to acheive “plain” zero-
knowledge [3,25] (where the verifier does not receive any auxiliary input), weaker
“bounded” auxiliary input assumptions suffice.

[
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Our Results. In this paper, we show limitations of extractability primitives with
respect to distribution-specific auxiliary input (assuming the existence of public-
coin collision-resistant hash functions (CRHF) [29]). Our main result shows a
conflict between public-coin differing-inputs obfuscation for Turing machines [30]
and extractable one-way functions.

Theorem 1 (Main Theorem — Informal). Assume the existence of public-
coin collision-resistant hash functions. Then for every polynomial £, there exists
an efficiently computable distribution Z such that one of the following two prim-
itives does not exist:

— eatractable one-way functions {0, 1} — {0, 1Y5) w.rt. auziliary input from Z.
— public-coin differing-inputs obfuscation for Turing machines.

By combining our main theorem with results from [5,30], we obtain the
following corollary:

Theorem 2 (Informal). Assume the existence of public-coin CRHF and fully
homomorphic encryption with decryption in NC'.3 Then there exists an effi-
ciently computable distribution Z such that one of the following two primitives
does not exist:

- SNARKs w.r.t. auziliary input from Z.
— public-coin differing-inputs obfuscation for NC' circuits.

To prove our results, we develop a new proof technique, which we refer to as the
“succinct punctured program” technique, extending the “punctured program”
paradigm of Sahai and Waters [34]; see Sect. 1.1 for more details. This technique
has several other interesting applications, as we discuss in Sect. 1.3.

As a final contribution, we demonstrate that even in the absence of auwil-
iary input, care must be taken when making use of extractability assumptions.
Specifically, we show that differing-inputs obfuscation (di©) for any distribu-
tion D of programs and bounded-length auxiliary inputs, is directly implied
by any obfuscator that satisfies a weaker indistinguishability obfuscation (:O)
security notion (which is not an extractability assumption) and di©O security
for a related distribution D’ of programs (of slightly greater size) which does
not contain auxiliary input. Thus, negative results ruling out existence of di©
with bounded-length auxiliary input directly imply negative results for diO in a
setting without auxiliary input.

Theorem 3 (Informal). Let D be a distribution over pairs of programs and
(-bounded auziliary input information P x P x {0,1}¢. There exists diO with
respect to D if there exists an obfuscator satisfying 1O in addition to diQO with
respect to a modified distribution D' over P’ x P’ for slightly enriched program
class P’, and no auxiliary input.

3 As is the case for nearly all existing FHE constructions (e.g., [13,21]).
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Our transformation applies to a recent result of Garg et al. [20], which shows
that based on a new assumption (pertaining to special-purpose obfuscation of
Turing machines) general-purpose di@ w.r.t. auxiliary input cannot exist, by
constructing a distribution over circuits and bounded-length auxiliary inputs for
which no obfuscator can be diO-secure. Our resulting conclusion is that, assum-
ing such special-purpose obfuscation exists, then general-purpose di© cannot
exist, even in the absence of auxiliary input.

We view this as evidence that public-coin differing inputs may be the “right”
approach definitionally, as restrictions on auxiliary input without regard to the
programs themselves will not suffice.

Interpretation of Our Results. Our results suggest that one must take care
when making extractability assumptions, even in the presence of specific distri-
butions of auxiliary inputs, and in certain cases even in the absence of auxiliary
input. In particular, we must develop a way to distinguish “good” distributions of
instances and auxiliary inputs (for which extractability assumptions may make
sense) and “bad” ones (for which extractability assumptions are unlikely to hold).
As mentioned above, for some applications of extractability assumptions, it in
fact suffices to consider a particularly simple distribution of auxiliary inputs—
namely the uniform distribution.* We emphasize that our results do not present
any limitations of extractable one-way functions in the presence of uniform aux-
iliary input, and as such, this still seems like a plausible assumption.

Comparison to [20]. An interesting subsequent® work of Garg et al. [19,20]
contains a related study of differing-inputs obfuscation. In [20], the authors pro-
pose a new “special-purpose” circuit obfuscation assumption, and demonstrate
based on this assumption an auxiliary input distribution (whose size grows with
the desired circuit size of circuits to be obfuscated) for which general-purpose
diO cannot exist. Using similar techniques of hashing and obfuscating Turing
machines as in the current work, they further conclude that if the new obfusca-
tion assumption holds also for Turing machines, then the “bad” auxiliary input
distribution can have bounded length (irrespective of the circuit size).

Garg et al. [20] show the “special-purpose” obfuscation assumption is a fal-
sifiable assumption (in the sense of [33]) and is implied by virtual black-box
obfuscation for the relevant restricted class of programs, but plausibility of the
notion in relation to other primitives is otherwise unknown. In contrast, our
results provide a direct relation between existing, studied topics (namely, diQO,
EOWFs, and SNARKS). Even in the case that the special-purpose obfuscation
assumption does hold, our primary results provide conclusions for public-coin
diO, whereas Garg et al. [20] consider (stronger) standard diO, with respect to
auxiliary input.

* Note that this is not the case for all applications; e.g. [11,23,26,27] require consid-
ering more complicated distributions.

5 A version of our paper with Theorems 1 and 2 for (standard) differing-inputs obfus-
cation in the place of public-coin diO has been on ePrint since October 2013 [12].



Limits of Extractability Assumptions with Distributional Auxiliary Input 241

And, utilizing our final observation (which occurred subsequent to [20]), we
show that based on their same special-purpose obfuscation assumption for Turing
machines, we can in fact rule out general-purpose diO for circuits even in the
absence of auxiliary input.

1.1 Proof Techniques

To explain our techniques, let us first explain earlier arguments against the
plausibility of extractable one-way functions with auxiliary input. For simplicity
of notation, we focus on extractable one-way function over {0,1}* — {0,1}* (as
opposed to over {0,1}* — {0,1}**) for some polynomial £), but emphasize that
the approach described directly extends to the more general setting.

Early Intuitions. As mentioned above, already the original work of Hada and
Tanaka [27], which introduced auxiliary input extractable one-way functions
(EOWFSs) (for the specific case of exponentiation), argued the “unreasonable-
ness” of such functions, reasoning informally that the auxiliary input could con-
tain a program that evaluates the function, and thus a corresponding extractor
must be able to “reverse-engineer” any such program. Bitansky et al. [5] made
this idea more explicit: Given some candidate EOWF family F, consider the
distribution Zz over auxiliary input formed by “obfuscating” a program IT°(:)
for uniformly chosen s, where IT%(-) takes as input a function index e from the
alleged EOWF family F = {f;}, applies a pseudorandom function (PRF) with
hardcoded seed s to the index ¢, and then outputs the evaluation f;(PRF(7)).
Now, consider an attacker A who, given an index 4, simply runs the obfuscated
program to obtain a “random” point in the range of f;. If it were possible to
obfuscate IT° in a “virtual black-box (VBB)” way (as in [2]), then it easily fol-
lows that any extractor £ for this particular attacker A can invert f;. Intuitively,
the VBB-obfuscated program hides the PRF seed s (revealing, in essence, only
black-box access to II®), and so if £ can successfully invert f; on A’s output
fi(PRF4(i)) on a pseudorandom input PRF(7), he must also be able to invert
for a truly random input. Formally, given an index i and a random point ¥ in
the image of f;, we can “program” the output of IT%(i) to simply be y, and thus
FE will be forced to invert y.

The problem with this argument is that (as shown by Barak et al. [2]), for
large classes of functions VBB program obfuscation simply does not exist.

The Work of [7] and the “Punctured Program” Paradigm of [34]. Intriguingly,
Bitansky, Canetti, Rosen and Paneth [7] show that by using a particular PRF
and instead relying on indistinguishability obfuscation, the above argument still
applies! To do so, they rely on the powerful “punctured-program” paradigm of
Sahai and Waters [34] (and the closely related work of Hohenberger, Sahai and
Waters [28] on “instantiating random oracles”). Roughly speaking, the punc-
tured program paradigm shows that if we use indistinguishability obfuscation
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to obfuscate a (function of) a special kind of “puncturable” PRF® [8,11,31],
we can still “program” the output of the program on one input (which was
used in [28,34] to show various applications of indistinguishability obfuscation).
Bitansky et al. [7] show that by using this approach, then from any alleged
extractor £ we can construct a one-way function inverter Inv by “program-
ming” the output of the program IT° at the input 7 with the challenge value y.
More explicitly, mirroring [28,34], they consider a hybrid experiment where £ is
executed with fake (but indistinguishable) auxiliary input, formed by obfuscat-
ing a “punctured” variant II;, of the program /I* that contains an é-punctured
PRF seed s* (enabling evaluation of PRF(j) for any j # ¢) and directly outputs
the hardcoded value y := f;(PRF;(4)) on input 4: indistinguishability of this aux-
iliary input follows by the security of indistinguishability obfuscation since the
programs II7, and II° are equivalent when y = f;(PRF;(i)) = I1°(i). In a sec-
ond hybrid experiment, the “correct” hardcoded value y is replaced by a random
evaluation f;(u) for uniform wu; here, indistinguishability of the auxiliary inputs
follows directly by the security of the punctured PRF. Finally, by indistinguisha-
bility of the three distributions of auxiliary input in the three experiments, it
must be that £ can extract an inverse to y with non-negligible probability in each
hybrid; but, in the final experiment this implies the ability to invert a random
evaluation, breaking one-wayness of the EOWF.

The Problem: Dependence on F. Note that in the above approach, the auxiliary
input distribution is selected as a function of the family F = {f;} of (alleged)
extractable one-way functions. Indeed, the obfuscated program IT® must be able
to evaluate f; given j. One may attempt to mitigate this situation by instead
obfuscating a universal circuit that takes as input both F and the index j,
and appropriately evaluates f;. But here still the size of the universal circuit
must be greater than the running time of f;, and thus such an auxiliary input
distribution would only rule out EOWFs with a-priori bounded running time.
This does not suffice for what we aim to achieve: in particular, it still leaves open
the possibility that for every distribution of auxiliary inputs, there may exist a
family of extractable one-way functions that remains secure for that particular
auxiliary input distribution (although the running time of the extractable one-
way function needs to be greater than the length of the auxiliary input).

A First Idea: Using Turing Machine Obfuscators. At first sight, it would appear
this problem could be solved if we could obfuscate Turing machines. Namely, by
obfuscating a universal Turing machine in the place of a universal circuit in the
construction above, the resulting program I7° would depend only on the size of
the PRF seed s, and not on the runtime of f; € F.

But there is a catch. To rely on the punctured program paradigm, we must be
able to obfuscate the program I7° in such a way that the result is indistinguishable

5 That is, a PRF where we can surgically remove one point in the domain of the
PRF, keeping the rest of the PRF intact, and yet, even if we are given the seed of
the punctured PRF, the value of the original PRF on the surgically removed point
remains computationally indistinguishable from random.
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from an obfuscation of a related “punctured” program II? ; in particular, the
size of the obfuscation must be at least as large as |II], |. Whereas the size of 11°
is now bounded by a polynomial in the size of the PRF seed s, the description of
this punctured program must specify a punctured input ¢ (corresponding to an
index of the candidate EOWF F) and hardcoded output value y, and hence must
grow with the size of F. We thus run into a similar wall: even with obfuscation
of Turing machines, the resulting auxiliary input distribution Z would only rule
out EOWF with a-priori bounded index length.

Our “Succinct Punctured Program” Technique. To deal with this issue, we
develop a “succinct punctured program” technique. That is, we show how to
make the size of the obfuscation be independent of the length of the input, while
still retaining its usability as an obfuscator. The idea is two-fold: First, we modify
the program II° to hash the input to the PRF, using a collision-resistant hash
function h. That is, we now consider a program II"*(j) = f;(PRFs(h(j))).
Second, we make use of differing-inputs obfuscation, as opposed to just indis-
tinguishability obfuscation. Specifically, our constructed auxiliary input distri-
bution Z will sample a uniform s and a random hash function h (from some
appropriate collection of collision-resistant hash functions) and then output a
differing-inputs obfuscation of 1T

To prove that this “universal” distribution Z over auxiliary input breaks all
alleged extractable one-way functions over {0,1}¥ — {0,1}*, we define a one-
way function inverter Inv just as before, except that we now feed the EOWF
extractor £ the obfuscation of the “punctured” variant II; h’s which contains a

PRF seed punctured at point k(7). The program H iy proceeds just as IT"*
except on all inputs j such that h(j) is equal to this special value h(i); for those
inputs it simply outputs the hardcoded value y. (Note that the index i is no
longer needed to specify the function H ) —rather, just its hash A(i)—but is
included for notational convenience). As before consider a hybrid experiment
where v is selected as y := IT"*(4).

Whereas before the punctured program was equivalent to the original, and
thus indistinguishability of auxiliary inputs in the different experiments followed
by the definition of 1nd1st1ngulshab1hty obfuscation, here it is no longer the
case that if y = II™*(i), then II; ;JS is equivalent to IT"*—in fact, they may
differ on many points. More precisely, the programs may differ in all points
j such that h(j) = h(3), but j # i (since f; and f; may differ on the input
PRF,(h(i))). Thus, we can no longer rely on indistinguishability obfuscation to
provide indistinguishability of these two hybrids.

We resolve this issue by relying differing-inputs obfuscation instead of just
indistinguishability obfuscation. Intuitively, if obfuscations of I1* and I1; h’s an
be distinguished when y is set to IT™*(), then we can efficiently recover some
input j where the two programs differ. But, by construction, this must be some
point j for which h(j) = h(i) (or else the two program are the same), and j # i
(since we chose the hardcoded value y = IT"*(i) to be consistent with I1™* on
input 4. Thus, if the obfuscations can be distinguished, we can find a collision in
h, contradicting its collision resistance.
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To formalize this argument using just public-coin diQ, we require that h is
a public-coin collision-resistant hash function [29].

1.2 Removing Auxiliary Input in diO

The notion of public-coin di© is weaker than “general” (not necessarily public-
coin) diO in two aspects: (1) the programs My, M; are sampled using only public
randomness, and (2) we consider only a very specific auxiliary input that is given
to the attacker—namely the randomness of the sampling procedure.

In this section, we explore another natural restriction of di© where we simply
disallow auxiliary input, but allow for “private” sampling of My, M;. We show
that “bad side information” cannot be circumvented simply by simply disallow-
ing auxiliary input, but rather such information can appear in the input-output
behavior of the programs to be obfuscated.

More precisely, we show that for any distribution D over P x P x {0,1}¢ of
programs P and bounded-length auxiliary input, the existence of diQ w.r.t. D is
directly implied by the existence of any indistinguishability obfuscator (¢OQ) that
is diO-secure for a slightly enriched distribution of programs D’ over P’ x P/,
without auxiliary input.

Intuitively, this transformation works by embedding the “bad auxiliary input”
into the input-output behavior of the circuits to be obfuscated themselves. That
is, the new distribution D’ is formed by sampling first a triple (Py, P, z) of pro-
grams and auxiliary input from the original distribution D, and then instead
considering the tweaked programs Fy, P{ that have a special additional input
x* (denoted later as “mode = %”) for which P§(z*) = Pf(z*) is defined to be
z. This introduces no new differing inputs to the original program pair Py, P,
but now there is no hope of preventing the adversary from learning z without
sacrificing correctness of the obfuscation scheme.

A technical challenge arises in the security reduction, however, in which we
must modify the obfuscation of the z-embedded program P} to “look like” an
obfuscation of the original program P,. Interestingly, this issue is solved by mak-
ing use of a second layer of obfuscation, and is where the O security of the
obfuscator is required. We refer the reader to the full version of this work for
details.

1.3 Other Applications of the “Succinct Punctured Program”
Technique

As mentioned above, the “punctured program” paradigm of [34] has been used
in multiple applications (e.g., [9,17,28,34]). Many of them rely on punctured
programs in an essentially identical way to the approach described above, and
in particular follow the same hybrids within the security proof. Furthermore, for
some of these applications, there are significant gains in making the obfuscation
succinct (i.e., independent of the input size of the obfuscated program). Thus, for
these applications, if we instead rely on public-coin differing-inputs obfuscation
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(and the existence of public-coin collision-resistant hash functions), by using our
succinct punctured program technique, we can obtain significant improvements.
For instance, relying on the same approach as above, we can show based on these
assumptions:

— “Succinct” Perfect Zero-Knowledge Non-Interactive Universal Argument Sys-
tem (with communication complexity k¢ for every €), by relying on the non-
succinct Perfect NIZK construction of [34].

— A universal instantiation of Random Oracles, for which the Full Domain Hash
(FDH) signature paradigm [4] is (selectively) secure for every trapdoor (one-
to-one) function (if hashing not only the message but also the index of the
trapdoor function), by relying on the results of [28] showing how to provide a
trapdoor-function specific instantiation of the random oracle in the FDH.”

1.4 Overview of Paper

We focus in this extended abstract on the primary result: the conflict between
public-coin differing inputs obfuscation and extractable OWFs (and SNARKS).
Further preliminaries, applications of our succinct punctured programs tech-
nique, and our transformation removing auxiliary input in differing-inputs obfus-
cation are deferred to the full version [12].

2 Preliminaries

2.1 Public-Coin Differing-Inputs Obfuscation

The notion of public-coin differing-inputs obfuscation (PC-di©Q) was introduced
by Ishai et al. [30] as a refinement of (standard) differing-inputs obfuscation [2]
to exclude certain cases whose feasibility has been called into question. (Note
that we also consider “standard” differing-inputs obfuscation as described in
Sect. 1.2. For a full treatment of the notion and our result, we refer the reader
to the full version of this work [12]).

We now present the PC-di© definition of [30], focusing only on Turing
machine obfuscation; the definition easily extends also to circuits.

Definition 1 (Public-Coin Differing-Inputs Sampler for TMs). An effi-
cient non-uniform sampling algorithm Samp = {Samp,} is called a public-coin
differing inputs sampler for the parameterized collection of TMs M = {My} if
the output of Samp,, is always a pair of Turing machines (Mo, M) € My x My,

" That is, [28] shows that for every trapdoor one-to-one function, there exists some way
to instantiate the random oracle so that the resulting scheme is secure. In contrast,
our results shows that there exists a single instantiation that works no matter what
the trapdoor function is.
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such that |Mp| = |M1| and for every efficient non-uniform algorithm A = { Ay}
there exists a negligible function € such that for all k € N,

Pr [ {0,113 (Mo, My) = Sampy (r): (1) = A (r)
- (Mo(z) # M) A (steps(Mo, z) = steps(Ml,x))} < e(k).

Definition 2 (Public-Coin Differing-Inputs Obfuscator for TMs).
A uniform PPT algorithm O is a public-coin differing-inputs obfuscator for the
collection M = { My} if the following requirements hold:

— Correctness: For every k € N, every M € My, and every x, we have that
Pr[M — O1%, M) : M(z) = M(z)] = 1.

- Security: For every public-coin differing-inputs sampler Samp = {Samp,}
for the ensemble M, every efficient non-uniform distinguishing algorithm D =
{Dy}, there exists a negligible function € such that for all k,

|PI‘[T — {07 1}*§ (M07M1) - Sampk(r); M — O(lkaMO) :Dk(Tv M) =
Pr[r — {0,1}*; (Mo, My) «— Samp,,(r); M — O(1%, My) :Dy(r, M
2.2 Extractable One-Way Functions

We present a non-uniform version of the definition, in which both one-wayness
and extractability are with respect to non-uniform polynomial-time adversaries.

Definition 3 (Z-Auxiliary-Input EOWF).  Let ¢,m be polynomially
bounded length functions. An efficiently computable family of functions

F={fi 0.1} = {0,1'® | i e {0,1}", k N},

associated with an efficient probabilistic key sampler Kz, is a Z-auxiliary-input
extractable one-way function if it satisfies:
— One-wayness: For non-uniform poly-time A and sufficiently large k € N,
Prlz «— 2 i — Kr(1%); o« {0,1}%; 2’ — A(, fi(2); 2)
: fi(a!) = fi(w)] < negl(k).

— Extractability: For any non-uniform polynomial-time adversary A, there
exists a mon-uniform polynomial-time extractor £ such that, for sufficiently
large security parameter k € N:

Pr(z« Z4; i« Kr(1%): y — A(i; 2); o' — E(i; 2)
(3w st fi(@) =y A fi(@) # y] < negl(k).
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2.3 Succinct Non-Interactive Arguments of Knowledge (SNARK3S)

We focus attention to publicly verifiable succinct arguments. We consider succinct
non-interactive arguments of knowledge (SNARKS) with adaptive soundness in
Sect. 3.2, and consider the case of specific distributional auxiliary input.

Definition 4 (Z-Auxiliary Input Adaptive SNARK). A triple of algo-
rithms (CRSGen, Prove, Verify) is a publicly verifiable, adaptively sound succinct
non-interactive argument of knowledge (SNARK) for the relation R if the fol-
lowing conditions are satisfied for security parameter k:

— Completeness: For any (z,w) € R,
Pr(crs < CRSGen(1%); 7 « Prove(x, w, crs) : Verify(x, 7, crs) = 1] = 1.

In addition, Prove(x,w,crs) runs in time poly(k, |y|,t).

— Succinctness: The length of the proof © output by Prove(z,w,crs), as well
as the running time of Verify(z, m, crs), is bounded by p(k + | X|), where p is
a universal polynomial that does not depend on R. In addition, CRSGen(1¥)
runs in time poly(k): in particular, crs is of length poly(k).

— Adaptive Proof of Knowledge: For any mon-uniform polynomial-size
prover P* there exists a non-uniform polynomial-size extractor Ep«, such that
for all sufficiently large k € N and auxiliary input z «— Z, it holds that

Pr[z « Z; crs « CRSGen(1%); (x,7) < P*(z,crs);
(x,w) «— Ep=(z,crs) : Verify(crs,z,m) = 1 Aw ¢R(x)] < negl(k).

In the full version of this work, we obtain as an application of our succinct
programs technique zero-knowledge (ZK) succinct non-interactive arguments
(SNARGSs), without the extraction property. We refer the reader to [12] for
a full treatment.

2.4 Puncturable PRFs

Our result makes use of puncturable PRFs; which are PRFs with an extra capa-
bility to generate keys that allow one to evaluate the function on all bit strings
of a certain length, except for any polynomial-size set of inputs. We focus on the
simple case of puncturing PRFs at a single point: that is, given a punctured key
k* with respect to input z, one can efficiently evaluate the PRF at all points
except x, whose evaluation remains pseudorandom. We refer the reader to [34]
for a formal definition.

As observed in [8,11,31], the GGM tree-based PRF construction [22] yields
puncturable PRF's, based on any one-way function.

Theorem 4 ([8,11,31]). If one-way functions exist, then for all efficiently com-
putable m/ (k) and €(k), there exists a puncturable PRF family that maps m/(k)
bits to L(k) bits, such that the size of a punctured key is O(m/ (k) - £(k)).
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3 Public-Coin Differing-Inputs Obfuscation
or Extractable One-Way Functions

In this section, we present our main result: a conflict between extractable one-
way functions (EOWF) w.r.t. a particular distribution of auxiliary information
and public-coin differing-inputs obfuscation (“PC—diO”) (for Turing Machines).

3.1 From PC-d:iO to Impossibility of Z-Auxiliary-Input EOWF

We demonstrate a bounded polynomial-time uniformly samplable distribution Z
(with bounded poly-size output length) and a public-coin differing-inputs sam-
pler for Turing Machines D (over TM x TM) such that if there exists public-coin
differing-inputs obfuscation for Turing machines (and, in particular, for the pro-
gram sampler D), and there exist public-coin collision-resistant hash functions
(CRHF), then there do not exist extractable one-way functions (EOWF) w.r.t.
auxiliary information sampled from distribution Z. In our construction, Z con-
sists of an obfuscated Turing machine.

We emphasize that we provide a single distribution Z of auxiliary inputs for
which all candidate EOWF families F with given output length will fail. This
is in contrast to the result of [7], which show for each candidate family F that
there exists a tailored distribution Z (whose size grows with |F|) for which F
will fail.

Theorem 5. For every polynomial £, there exists an efficient, uniformly sam-
plable distribution Z such that, assuming the existence of public-coin collision-
resistant hash functions and public-coin differing-inputs obfuscation for Turing

machines, then there cannot exist Z-auxiliary-input extractable one-way func-
tions {f; : {0,1}* — {0,1}¢®)},

Proof. We construct an adversary A and desired distribution Z on auxiliary
inputs, such that for any alleged EOWF family F, there cannot exist an efficient
extractor corresponding to A given auxiliary input from Z (assuming public-coin
CRHFs and PC — diO).

The Universal Adversary A. We consider a universal PPT adversary A that,
given (i,z) € {0,1}PoY(*) x {0, 1}™*) parses z as a Turing machine and returns
z(1). Note that in our setting, 7 corresponds to the index of the selected function
fi € F, and (looking ahead) the auxiliary input z will contain an obfuscated
program.

The Auxiliary Input Distribution Z. Let PRF = {PRF, : {0,1}"®*) —
{0,1}*}5e40,13+ be a puncturable pseudorandom function family, and H = {H;}
a public-coin collision-resistant hash function family with % : {0,1}* — {0, 1}™(*%)
for each h € Hy. (Note that by Theorem 4, punctured PRF's for these parameters
exist based on OWF's, which are implied by CRHF). We begin by defining two
classes of Turing machines:
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M= {Hh,s

se{0,1Y%, he My, keN},

e ={y

se {01}, ye {0,1Y®) heH,, ke N},

which we now describe. We assume without loss of generahty for each k that the
corresponding collection of Turing machines IT"* € My, IT j € Mj are of the
same size; this can be achieved by padding. (We address the size bound of each
class of machines below). In a similar fashion we may further assume that for
each k the runtime of each IT™* and H ® on any given input f; is equal.

At a high level, each machine IT"* accepts as input a poly-size circuit descrip-
tion of a function f; (with canonical description, including a function index 7),
computes the hash of the corresponding index ¢ w.r.t. the hardcoded hash func-
tion h, applies a PRF with hardcoded seed s to the hash, and then evaluates
the circuit f; on the resulting PRF output value z: that is, H;f ys( f:) outputs
Ui(fi, PRFs(h(i))), where Uy, is the universal Turing machine. See Fig. 1. Note
that each IT"* can be described by a Turing machine of size O(|s| + |h| + |Ux|),
which is bounded by p(k) for some fixed polynomial p.

Turing Machine I17*:

Hardwired: Hash function & : {0,1}* — {0,1}™*®) PRF seed s € {0, 1}*.
Inputs: Circuit description f;
1. Hash the index: v = h(7).
2. Compute the PRF on this hash: = PRFs(v).
3. Output the evaluation of the universal Turing machine on inputs f;, x: i.e.,
y = Uk(fi, ).

Fig. 1. Turing machines II™* € M.

Auxiliary Input Distribution Zj:

1. Sample a hash function lz < H;. and PRF seed s + ]Cpﬁ}‘(lk).
2. Output an obfuscation IT < PC-diO(IT"*).

Fig. 2. The auxiliary input distribution Zj.

The machines H iy * perform a similar task, except that instead of havmg the
entire PRF seed s hardcoded, they instead only have a punctured seed s* derived
from s by puncturing it at the point h() (i.e., enabling evaluation of the PRF
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on all points except h(7)). In addition, it has hardwired an output y to replace
the punctured result. More specifically, on input a circuit description f; (with
explicitly specified index j), the program IT Zh ; first computes the hash h = h(3),
continues computation as usual for any h # h(i) using the punctured PRF key,
and for h = h(i), it skips the PRF and Uy, evaluation steps and directly outputs
y. Note that because h is not injective, this puncturing may change the value
of the program on multiple inputs f; (corresponding to functions f; € F with
h(j) = h(i)). When the hardcoded value y is set to y = f;(PRFs(h(7))), then
Hi}f ; agrees with II™* additionally on the input f;, but not necessarily on the
other inputs f; for which h(j) = h(4). (Indeed, whereas the hash of their indices
collide, and thus their corresponding PRF outputs, PRF(h(j)), will agree, the
final step will apply different functions f; to this value).

We first remark that indistinguishability obfuscation arguments will thus not
apply to this scenario, since we are modifying the computed functionality. In
contrast, differing-inputs obfuscation would guarantee that the two obfuscated
programs are indistinguishable, since otherwise we could efficiently find one of
the disagreeing inputs, which would correspond to a collision in the CRHF. But,
most importantly, this argument holds even if the randomness used to sample the

program pair (IT"* th ys) is revealed. Namely, we consider a program sampler

that generates pairs (I1*, IT hys) of the corresponding distribution; this amounts
to sampling a hash functlon h, an EOWF challenge index i, and a PRF seed
s, and a h(i)-puncturing of the seed, s*. All remaining values specifying the
programs, such as y = f;(PRF(h(7))), are deterministically computed given
(h,i,s,s"). Now, since H is a public-coin CRHF family, revealing the randomness
used to sample h < H is not detrimental to its collision resistance. And, the
values 4, s, and s* are completely independent of the CRHF security (i.e., a CRHF
adversary reduction could simply generate them on its own in order to break h).
Therefore, we ultimately need only rely on public-coin diO.

We finally consider the size of the program(s) to be obfuscated. Note that each
Hl-h; can be described by a Turing machine of size O(|s*|+|h|+|y|+|Ux|). Recall
by Theorem 4 the size of the punctured PRF key |s*| € O(m/(k)¢(k)), where the
PRF has input and output lengths m’(k) and £(k). In our application, note that
the input to the PRF is not the function index ¢ itself (in which case the machine
I h.s iy would need to grow with the size of the alleged EOWF family), but rather
the hashed index h(i), which is of fixed polynomial length. Thus, collectively, we

have |II; | is bounded by a fixed polynomial p’(k), and finally that there exists a

single ﬁxed polynomial bound on the size of all programs I1"* € M, ths e M*.
This completely determines the auxiliary input distribution Z = {2}, described
in full in Fig. 2. (Note that the size of the auxiliary output generated by Z, which
corresponds to an obfuscation of an appropriately padded program I is thus
also bounded by a fixed polynomial in k).

A Has No Extractor. We show that, based on the assumed security of the
underlying tools, the constructed adversary A given auxiliary input from the
constructed distribution £ = {Zj}, cannot have an extractor £ satisfying
Definition 3:
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Turing Machine IT, Lh e

Hardwired: Hash function & : {0,1}* — {0,1}™® punctured PRF seed s* € {0,1}",
punctured point k(i), bit string y € {0, 1},
Input: Circuit description f; (containing index j)
1. Hash the index: v = h(j).
2. If v # h(i), compute z = PRF,« (v), and output Uk (f;, ).
3. If v = h(z), output y.

Fig. 3. “Punctured” Turing machines HZ’; € M*.

Auxiliary Input Distribution 2 (i, y):

Sample a hash function h < H; and PRF seed s « ICpr(lk).

Sample a punctured PRF seed s* < Punct(s, h(7)), punctured at point h(7).
Compute the “correct” punctured evaluation: y = f;(PRFs(h(7))).

Output an obfuscation M « PC-diO(HZ-’f;j), where thys is defined from (h, s*,y),
as in Figure 3.

Ll

Fig. 4. The “punctured” distribution Zj(,y).

Proposition 1. For any non-uniform polynomial-time candidate extractor £
for A, it holds that € fails with overwhelming probability: i.e.,

Pr [z — Zp; i Kr(1%); y — A(3;2); o' — E(i52)
:3x st fi(x) =y A fi(2!) # y} > 1 — negl(k).

Proof. First note that given auxiliary input z < Z;, A produces an element in
the image of the selected f; with high probability. That is,

Pr [z — Zpi — Kr(1%);y — A(i;2) : 3z s.t. fi(z) = y| > 1 —negl(k).

Indeed, by the definition of A and Zj, and the correctness of the obfuscator
PC — diO, then we have with overwhelming probability

A(is2) = M(f;) = I (f;) = fi(PRF(h(0))),

where z = M is an obfuscation of IT"* € M; i.e., z = M — PC — diO(II"").
Now, suppose for contradiction that there exists a non-negligible function

e(k) such that for all k£ € N the extractor £ successfully outputs a preimage

corresponding to the output A(i; z) € Range(f;) with probability e(k): i.e.,

Pr [z — Zp; i Ke(1F); o’ — E(i5 2)

: fi(@') = Al 2) = fi(PRF,(h(2)))] = e(k).
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where as before, s, h are such that z = PC — diO(II"*). We show that this
cannot be the case, via three steps.

Step 1: Replace Z with “punctured” distribution Z(i,y). For every index i of the
EOWF family F and k € N, consider an alternative distribution Z(i,y) that,
instead of sampling and obfuscating a Turing machine IT"* from the class M,
as is done for Z, it does so with a Turing machine IT hys € M* as follows. First,
it samples a hash function h «— Hj and PRF seed s as usual. It then generates
a punctured PRF key s* « Punct(s, h(4)) that enables evaluation of the PRF on
all points except the value h(7). For the specific index i, it computes the correct
full evaluation y := f;(PRFs(h(4))). Finally, Z(i,y) outputs an obfuscation of
the constructed program 11 -h as specified in Fig.3 from the values (h,s*,y):

ie., M «— PC — diO(II] ) See Fig. 4 for a full description of Z(i,y).
We now argue that the extractor £ must also succeed in extracting a preimage
when given a value z* «— Z(i,y) from this modified distribution instead of Zj.
Consider the Turing Machine program sampler algorithm Samp as in Fig. 5.

Program Pair Sampler Samp(1*,7):

Sample a hash function h = Hy(rp).

Sample an EOWF index i = K}-(lk;ri).

Sample a PRF seed s = KPRF(lk;TS).

Sample a punctured PRF seed s* = Punct(s, h(i); 7).

Lot y = fi(PRF, (h(i))).

Denote 17 := (Th, ri, Ts, s ).

Output program pair (11™* H;f;f), defined by h, i, s, s™, y as above (and padded to
equal length). '

N ot W

Fig.5. Program pair sampler algorithm, to be used in public-coin differing inputs
security step.

We first argue that, by the (public-coin) collision resistance of the hash family
‘H, the sampler algorithm Samp is a public-coin differing-inputs sampler, as per
Definition 1.

Claim. Samp is a public-coin differing-inputs sampler. That is, for all efficient
non-uniform Apc, there exists a negligible function € such that for all k € N,

Pr [7“ —{0,1}*; (Mo, My) < Samp(1%,7); (x,1%) «— Apc(1*,7) :
Mo(x) # Mi(x) A steps(Mo, ) = steps(Mi,z) = t] < e(k). (1)

Proof. Suppose, to the contrary, there exists an efficient (non-uniform) adver-
sary Apc and non-negligible function «(k) for which the probability in Eq. 1 is
greater than a(k). We show such an adversary contradicts the security of the
(public-coin) CRHF. Consider an adversary Acg in the CRHF security challenge.
Namely, for a challenge hash function h «— Hy(ry), the adversary Acg receives
h,rp, and performs the following steps:
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CRHF adversary Acr(1%, h,rp):

1. Imitate the remaining steps of Samp. That is, sample an EOWF index
i = Kr(1%;7;); a PRF seed s = Kprr(1¥;7,); and a punctured PRF seed
s* = Punct(s, h(7);r«). Define y = f;(PRFs(h(3))) and r = (rp, ri, 7s, 7% ),
and let My = IT"* and M; = HZh;

2. Run Apc (1%, ) on the collection of randomness r used above. In response,
Apc returns a pair (z,1%).

3. Acg outputs the pair (i,z) as an alleged collision in the challenge hash
function h.

Now, by assumption, the value x generated by Apc satisfies (in particular) that
My (z) # M (z). From the definition of My, M; (i.e., IT"*, HZ-}’L?’JSL this must mean
that h(i) = h(z) (since all values with h(x) # h(i) were not changed from IT"*
to Hi}f;), and that i # z (since thys(z) was specifically “patched” to the correct
output value I7"*(7)). That is, Acr successfully identifies a collision with the
same probability «(k), which must thus be negligible.

We now show that this implies, by the security of the public-coin di©O, that
our original EOWF extractor £ must succeed with nearly equivalent probability
in the EOWF challenge when instead of receiving (real) auxiliary input from
Z, both £ and A are given auxiliary input from the fake distribution Z(i,y).
(Recall that € is assumed to be &’s success in the same experiment as below but
with z «— Zj, instead of z* — Z;(i,y)).

Lemma 1. It holds that

Pr [z — Kr(1F); 2% «— Zi(i,y); o'« E(i;27)
file') = A(i; 2%) = fi(PRF, (h(i)))| = e(k) — negl(k). (2)

Proof. Note that given z* «— Z(i,y) (which corresponds to an obfuscated
program of the form thy‘s) our EOWF adversary A indeed will still output

1} (i) = y == fi(PRF,(h(i))) (see Figs.3,4).

Now, suppose there exists a non-negligible function «(k) for which the prob-
ability in Eq. (2) is less than e(k) — a(k). We directly use such £ to design
another adversary Ag;o to contradict the security of the public-coin di©® with
respect to the program pair sampler Samp (which we showed in Claim 3.1 to be
a void public-coin differing inputs sampler). Recall the diO challenge samples a
program pair (Hh’s,ﬂffj) « Samp(1*,r), selects a random M « {Hh"s?HZ;}
to obfuscate as M — PC — diO(1%, M), and gives as a challenge the pair (r, M)
of the randomness used by Samp and obfuscated program. Define 440 (who
wishes to distinguish which program was selected) as follows.
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PC-diO adversary Ago (1%, 7, M):

1. Parse the given randomness r used in Samp as r = (rp,,r;,7s,7«) (see
Fig.5).

2. Recompute the “challenge index” i = Kx(1%;r;). Let z* = M.

Run the extractor algorithm £(i; 2*), and receive an alleged preimage x’.

4. Recompute h = Hy(rn), s = Kpre(lirs), again using the randomness
from 7.

5. If f;(a’) = fi;(PRFs(h(i))) — i.e., if £ succeeded in extracting a preimage
— then Ago outputs 1. Otherwise, Ag4;0 outputs 0.

w

Now, if M is an obfuscation of II™*, then this experiment corresponds directly
to the EOWF challenge where £ (and A) is given auxiliary input z «— Zj.
On the other hand, if M is an obfuscation of th ?’f, then the experiment corre-
sponds directly to the same challenge where £ (and A) is given auxiliary input
z* — Z(i,y). Thus, Ageo will succeed in distinguishing these two cases with
probability at least [e(k)] — [e(k) — a(k)] = a(k). By the security of PC — diO, it
hence follows that a(k) must be negligible.

Step 2: Replace “correct” hardcoded y in Z(i,y) with random f; evaluation. Next,
we consider another experiment where Z (i, y) is altered to a nearly identical dis-
tribution Z (i, u) where, instead of hardcoding the “correct” i-evaluation value
y = fi(PRF4(h(7))) in the generated “punctured” program IT Zh Z’f, the distribution
Z(i,u) now simply samples a random f; output y = f;(u) for an independent
random u «+ {0, 1}*. We claim that the original EOWF extractor & still succeeds
in finding a preimage when given this new auxiliary input distribution:

Lemma 2. It holds that

Pr [z — Kr(1%); 2% — Z(i,u); o' — E(i;27) :
fi(x") = A(i;2*%) = fi(u)| > e(k) — negl(k). (3)

Proof. This follows from the fact that PRF4(h(7)) is pseudorandom, even given
the h(i)-punctured key s*.

Formally, consider an algorithm AR which, on input the security parameter
1%, a pair of values i, h, and a pair s*,z (that will eventually correspond to a
challenge punctured PRF key, and either PRF;(h(7)) or random u), performs the
following steps.

Algorithm A3gr (1%, i, h, s*, x):

ok

1. Take y = f;(z), and obfuscate the associated program H;f;j: ie., 2" «—
PC— diO(1%, 1I1).

2. Run the EOWF extractor given index ¢ and auxiliary input z**: 2’ «
E(1;2**).
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3. Output 0 if £ succeeds in extracting a valid preimage: i.e., if f;(z') =
y* = fi(x). Otherwise, output a random bit b < {0,1}.

Now, suppose Lemma 2 does not hold: i.e., the probability in Eq. (3) differs
by some non-negligible amount from e(k). Then, expanding out the sampling
procedure of Zi(i,y) and Zj(i,u), we have for some non-negligible function
a(k) that

Pr |:Z —Kr(1%); h— Hy; s Kprr(1¥); s* < Punct(s, h(i));
1
u— {0,137 — {0,1} : ASpr(1%,4,h, ) = b| > 5 tak), @

where zg := PRF4(h(7)) and x; := u. Indeed, in the case b = 0, the auxiliary
input z** generated by Aprr and given to &£ has distribution exactly Z(i,y),
whereas in the case b = 1, the generated z** has distribution exactly Z(i,u).

In particular, there exists a polynomial p(k) such that for infinitely many k,
there exists an index i, and hash function hy € Hj with

Pr |5 «— Kprr(1¥); s* < Punct(s, h(ig)); u < {0,1}%;
1

+p()’

b 0,1} Abge (1", ig, by ) = b > (5)

N | =

where xg, x; are as before.

Consider a non-uniform punctured-PRF adversary Algr (with the ensemble
I = {ig, hi} hardcoded) that first selects the challenge point hy(ix); receives
the PRF challenge information (s*,z) for this point; executes A3gr on input
(1% ik, by, s*, ), and outputs the corresponding bit b output by A%ge. Then by
(5), it follows that ALge breaks the security of the punctured PRF.

Step 3: Such an extractor breaks one-wayness of EOWF. Finally, we observe that
this means that £ can be used to break the one-wayness of the original function
family F. Indeed, given a random key i and a challenge output y = f;(u), an
inverter can simply sample a hash function h and h(i)-punctured PRF seed s*
on its own, construct the program I1 Zh ; with its challenge y hardcoded in, and

sample an obfuscation z** «+ PC — diO(H{f;). Finally, it runs £(7, 2**) to invert
y*, with the same probability e(k) — negl(k).
This concludes the proof of Theorem 5.

3.2 PC-diO or SNARKSs

We link the existence of public-coin differing-inputs obfuscation for NC! and
the existence of succinct non-interactive arguments of knowledge (SNARKs),
via an intermediate step of proximity extractable one-way functions (PEOWFS),
a notion related to EOWFs, introduced in [5]. Namely, assume the existence of
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fully homomorphic encryption (FHE) with decryption in NC* and public-coin
collision-resistant hash functions. Then, building upon the results of the previous
subsection, and the results of [5,30], we show:

1. Assuming SNARKSs for NP, there exists an efficient distribution Z such that
public-coin differing-inputs obfuscation for NC! implies that there cannot
exist PEOWFs {f : {0,1}F — {0,1}*} w.r.t. 2.

2. PEOWFs {f : {0,1}* — {0,1}*} w.r.t. this auxiliary input distribution Z
are implied by the existence of SNARKSs for NP secure w.r.t. a second efficient
auxiliary input distribution Z’, as shown in [5].

3. Thus, one of these conflicting hypotheses must be false. That is, there exists an
efficient distribution Z’ such that assuming existence of FHE with decryption
in NC! and collision-resistant hash functions, then either: (1) public-coin
differing-inputs obfuscation for NC! does not exist, or (2) SNARKS for NP
w.r.t. 2’ do not exist.

Note that we focus on the specific case of PEOWFs with k-bit inputs and
k-bit outputs, as this suffices to derive the desired contradiction; however, the
theorems following extend also to the more general case of PEOWF output length

(demonstrating an efficient distribution Z to rule out each potential output
length £(k)).

Proximity EOWFs. We begin by defining Proximity EOWFs.

Prozimity Extractable One-Way Functions (PEOWFs). In a Proximity EOWF
(PEOWTF), the extractable function family {f;} is associated with a “proximity”
equivalence relation ~ on the range of f;, and the one-wayness and extractabil-
ity properties are modified with respect to this relation. The one-wayness is
strengthened: not only must it be hard to find an exact preimage of v, but it is
also hard to find a preimage of any equivalent v ~ v’. The extractability require-
ment is weakened accordingly: the extractor does not have to output an exact
preimage of v, but only a preimage of of some equivalent value v’ ~ v.

As an example, consider functions of the form f : z — (fi(z), fo(x)) and
equivalence relation on range elements (a,b) ~ (a,b’) whose first components
agree. Then the proximity extraction property requires for any adversary A who
outputs an image element (a,b) € Range(f) that there exists an extractor £
finding an input z s.t. f(z) = (a,b’) for some b’ not necessarily equal to b.

In this work, we allow the relation ~ to depend on the function index 4,
but require that the relation ~ is publicly (and efficiently) testable. We further
consider non-uniform adversaries and extraction algorithms, and (in line with
this work) auxiliary inputs coming from a specified distribution Z.

Definition 5 (Z-Auxiliary-Input Proximity EOWFSs). Let ¢, m be poly-
nomially bounded length functions. An efficiently computable family of functions

F = {fl : {0, 1}k — {0, 1}5(’“) i € {0, 1}m(k)7k c N} :
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associated with an efficient probabilistic key sampler Kz, is a Z-auxiliary-input
proximity extractable one-way function if it satisfies the following (strong) one-
wayness, (weak) extraction, and public testability properties:

- (Strengthened) One-wayness: For non-uniform polynomial-time A and
sufficiently large security parameter k € N,

Pr [z — Zp i e Kp(1F); @ {0,1}% o/ — A, fi(2); )
s fi(a!) ~ fi(x) | < negl(k).

- (Weakened) Extractability: For any non-uniform polynomial-time adver-
sary A, there exists a non-uniform polynomial-time extractor € such that, for
sufficiently large security parameter k € N,

Pr |z« Zg; i — Kr(1%); y — A(5;2); 2’ < E(i; 2)
e st fi(a) =y A fi () 2 ] < negl(h).

— Publicly Testable Relation: There exists a deterministic polytime machine
T such that, given the function index i, T acceptsy,y’ € {0, 1}5(’“) if and only

ify ~ky'.

(PC — di© for NC' + PC-CRHF 4+ FHE + SNARK ) = No
Z-PEOWPF. We now show that, assuming the existence of public-coin collision-
resistant hash functions (CRHF) and fully homomorphic encryption (FHE) with
decryption in NC',® then for some efficiently computable distributions Zsnark,
ZpEoWF, if there exist public-coin differing-inputs obfuscators for NC! circuits,
and SNARKs w.r.t. auxiliary input Zsyark, then there cannot exist PEOWF's
w.r.t. auxiliary input Zpgowr. This takes place in two steps.

First, we remark that an identical proof to that of Theorem5 rules out
the existence of Z-auxiliary-input prozimity FOWFs in addition to standard
EOWTFs, based on the same assumptions: namely, assuming public-coin differing-
inputs obfuscation for Turing machines, and public-coin collision-resistant hash
functions. Indeed, assuming the existence of a PEOWF extractor £ for the adver-
sary A and auxiliary input distribution Z (who extracts a “related” preimage to
the target value), the same procedure yields a PEOWF inverter who similarly
extracts a “related” preimage to any challenge output. In the reduction, it is
merely required that the success of £ is efficiently and publicly testable (this is
used to construct a distinguishing adversary for the differing-inputs obfuscation
scheme, in Step 1). However, this is directly implied by the public testability of
the PEOWF relation ~, as specified in Definition 5.

8 As is the case for nearly all existing FHE constructions (e.g., [13,21]).
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Theorem 6. There exist an efficient, uniformly samplable distribution Z such
that, assuming the existence of public-coin collision-resistant hash functions and
public-coin differing-inputs obfuscation for polynomial-size Turing machines,
there cannot exist (publicly testable) Z-auziliary-input PEOWFs {f; : {0,1}F —
{0,1}%}.
Now, in [30], it was shown that public-coin differing-inputs obfuscation for the
class of all polynomial-time Turing machines can be achieved by bootstrapping
up from public-coin differing-inputs obfuscation for circuits in the class NC?,
assuming the existence of FHE with decryption in NC!, public-coin CRHF, and
public-coin SNARKSs for NP.

Putting this together with Theorem 6, we thus have the following corollary.

Corollary 1. There exists an efficient, uniformly samplable distribution Z s.t.,
assuming existence of public-coin SNARKs and FHE with decryption in NC*,
then assuming the existence of public-coin differing-inputs obfuscation for NC?,
there cannot exist PEOWFs {f; : {0,1}* — {0,1}*} w.r.t. auziliary input Z.

( SNARK + CRHF) — Z-PEOWF. As shown in [5], Proximity EOWFs
(PEOWFs) with respect to an auxiliary input distribution Z are implied by
collision-resistant hash functions (CRHF) and SNARKSs secure with respect to
a related auxiliary input distribution 2’.°

Loosely, the transformation converts any CRHF family F into a PEOWF by
appending to the output of each f € F a succinct SNARK argument 7, that
there exists a preimage x yielding output f(x). (If the Prover algorithm of the
SNARK system is randomized, then the function is also modified to take an
additional input, which is used as the random coins for the SNARK generation).
The equivalence relation on outputs is defined by (y,7) ~ (¢/,7') if y = v’ (note
that this relation is publicly testable). More explicitly, consider the new function
family F’ composed of functions

fles(@,r) = (f(x), Prove(1*, crs, f(x), z;7))

where a function f!, € F’ is sampled by first sampling a function f «— F from
the original CRHF family, and then sampling a CRS for the SNARK scheme,
crs «— CRSGen(1%).

Now (as proved in [5]), the resulting function family will be a PEOWF with
respect to auxiliary input Z if the underlying SNARK system is secure with
respect to an augmented auxiliary input distribution Zsnark := (Z,h), formed
by concatenating a sample from Z with a function index h sampled from the
collision-resistant hash function family F. (Note that we will be considering
public-coin CRHF, in which case h is uniform).

Theorem 7 ([5]). There exist efficient, uniformly samplable distributions
Z, Zsnark such that, assuming the existence of collision-resistant hash functions
and SNARKs for NP secure w.r.t. auziliary input distribution Zsnark, then there
exist PEOWFs {f; : {0,1}* — {0,1}*¥} w.r.t. Z.

o [5] consider the setting of arbitrary auxiliary input; however, their construction
directly implies similar results for specific auxiliary input distributions.
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Reaching a Standoff. Observe that the conclusions of Corollary1l and
Theorem 7 are in direct contradiction. Thus, it must be that one of the two
sets of assumptions is false. Namely,

Corollary 2. Assuming the existence of public-coin collision-resistant hash func-
tions and fully homomorphic encryption with decryption in NC', there exists an
efficiently samplable distribution Zsnark such that one of the following two objects
cannot exist:

— SNARKs w.r.t. auxiliary input distribution ZsNaRrk -
— Public-coin differing-inputs obfuscation for NC'.

More explicitly, we have that Zsyark = (Z,U), where Z is composed of an
obfuscated program, and U is a uniform string (corresponding to a randomly
sampled index from a public-coin CRHF family).

Acknowledgements. The authors would like to thank Kai-Min Chung for several
insightful discussions.
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