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Preface

ASIACRYPT 2015, the 21st Annual International Conference on Theory and Appli-
cation of Cryptology and Information Security, was held on the city campus of the
University of Auckland, New Zealand, from November 29 to December 3, 2015.
The conference focused on all technical aspects of cryptology, and was sponsored by
the International Association for Cryptologic Research (IACR).

The conference received 251 submissions from all over the world. The program
included 64 papers selected from these submissions by a Program Committee
(PC) comprising 43 leading experts of the field. In order to accommodate as many
high-quality submissions as possible, the conference ran in two parallel sessions, and
these two-volume proceedings contain the revised versions of the papers that were
selected. The revised versions were not reviewed again and the authors are responsible
for their contents.

The selection of the papers was made through the usual double-blind review pro-
cess. Each submission was assigned three reviewers and submissions by PC members
were assigned five reviewers. The selection process was assisted by a total of 339
external reviewers. Following the individual review phase, the selection process
involved an extensive discussion phase.

This year, the conference featured three invited talks. Phillip Rogaway gave the
2015 IACR Distinguished Lecture on “The Moral Character of Cryptographic Work,”
Gilles Barthe gave a talk on “Computer-Aided Cryptography: Status and Perspectives,”
and Masayuki Abe spoke on “Structure-Preserving Cryptography.” The proceedings
contain the abstracts of these talks. The conference also featured a traditional rump
session that contained short presentations on the latest research results of the field.

The best paper award was decided based on a vote by the PC members, and it was
given to “Improved Security Proofs in Lattice-Based Cryptography: Using the Rényi
Divergence Rather than the Statistical Distance” by Shi Bai, Adeline Langlois, Tan-
crède Lepoint, Damien Stehlé, and Ron Steinfeld. Two more papers, “Key-Recovery
Attacks on ASASA” by Brice Minaud, Patrick Derbez, Pierre-Alain Fouque, and Pierre
Karpman, and “The Tower Number Field Sieve” by Razvan Barbulescu, Pierrick
Gaudry, and Thorsten Kleinjung, were solicited to submit full versions to the Journal
of Cryptology.

ASIACRYPT 2015 was made possible by the contributions of many people. We
would like to thank the authors for submitting their research results to the conference.
We are deeply grateful to all the PC members and all the external reviewers for their
hard work to determine the program of the conference. We sincerely thank Steven
Galbraith, the general chair of the conference, and the members of the local Organizing
Committee for handling all the organizational work of the conference. We also thank
Nigel Smart for organizing and chairing the rump session.

We thank Shai Halevi for setting up and letting us use the IACR conference
management software. Springer published the two-volume proceedings and made these



available at the conference. We thank Alfred Hofmann, Anna Kramer, and their col-
leagues for handling the editorial process. Last but not least, we thank the speakers,
session chairs, and all the participants for coming to Auckland and contributing to
ASIACRYPT 2015.

December 2015 Tetsu Iwata
Jung Hee Cheon
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Structure-Preserving Cryptography

Masayuki Abe

NTT Secure Platform Laboratories, NTT Corporation, Tokyo, Japan
abe.masayuki@lab.ntt.co.jp

Bilinear groups has been a common ground for building cryptographic schemes since its
introduction in seminal works [3, 5, 6]. Not just being useful for directly designing
schemes for their rich mathematical structure, they aim to modular construction of
complex schemes from simpler building blocks that work over the same bilienar groups.
Namely, given a description of blinear groups, several building blocks exchange group
elements each other, and the security of the resulting scheme is proven based on the
security of the underlying building blocks. Unfortunately, things are not that easy in
reality. Building blocks often require grues that bridge incompatible interfaces or they
have to be modified to work together and the security has to be re-proved.

Structure-preserving cryptography [2] is a paradigm for designing cryptographic
schemes over bilinear groups. A cryptographic scheme is called structure preserving if its
all public inputs and outputs consist of group elements of bilinear groups and the func-
tional correctness can be verified only by computing group operations, testing group
membership and evaluating pairing product equations. Due to the regulated interface,
structure-preserving schemes are highly inter-operable as desired in modular construc-
tions. In particular, combination of structure-preserving signatures and noninteractive
proof system of [4] yields numerous applications that protect signers’ or receivers’ pri-
vacy. The required properties on the other hand make some important primitives such as
pseudo-random functions and collision resistant shrinking commitments unavailable in
the world of structure-preserving cryptography. Interestingly, however, the constraints on
the verification of correctness aim to argue non-trivial lower bounds in some aspects of
efficiency such as signature size in the structure-preserving signature schemes.

Since the first use of the term “structure-preserving” in [1] in 2010, intensive
research has been done for the area. In this talk, we overview state of the art on several
structure-preserving schemes including commitments and signatures with a careful
look about underlying assumptions, known bounds, and impossibility results. We also
show open questions and discuss promising directions for further research.

References

1. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-preserving
signatures and commitments to group elements. In: Advances in Cryptology - CRYPTO 2010,
30th Annual Cryptology Conference, Santa Barbara, CA, USA, 15–19 August 2010. Pro-
ceedings, pp. 209–236 (2010)
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Computer-Aided Cryptography:
Status and Perspectives

Gilles Barthe

IMDEA Software Institute, Madrid, Spain

Computer-aided cryptography is an emerging discipline which advocates the use of
computer tools for building and mechanically verifying the security of cryptographic
constructions. Computer-aided cryptography builds on the code-based game-based
approach to cryptographic proofs, and adopts a program verification approach to justify
common patterns of reasoning, such as equivalence up to bad, lazy sampling, or simply
program equivalence. Technically, tools like EasyCrypt use a program verification
method based on probabilistic couplings for reasoning about the relationship between
two probabilistic programs, and standard tools to reason about the probability of events
in a single probabilistic program. The combination of these tools, together with general
mechanisms to instantiate or combine proofs, can be used to verify many examples
from the literature.

Recent developments in computer-aided cryptography have explored two different
directions. On the one hand, several groups have developed fully automated techniques
to analyze cryptographic constructions in the standard model or hardness assumptions
in the generic group model. In turn, these tools have been used for synthesizing new
cryptographic constructions. Transformational synthesis tools take as input a crypto-
graphic construction, for instance a signature in Type I setting and outputs another
construction, for instance a batch signature or a signature in Type III setting. In con-
trast, generative synthesis tools take as input some size constraints and output a list of
secure cryptographic constructions, for instance padding-based encryption schemes,
modes of operations, or tweakable blockciphers, meeting the size constraints. On the
other hand, several groups are working on carrying security proofs to (assembly-level)
implementations, building on advances in programming languages, notably verified
compilers. These works open the possibility to reason formally about mitigations used
by cryptography implementers and to deliver strong mathematical guarantees, in the
style of provable security, for cryptographic code against more realistic adversaries.

For further background information, please consult: www.easycrypt.info.

http://www.easycrypt.info


The Moral Character of Cryptographic Work

Phillip Rogaway1

Department of Computer Science
University of California, Davis, USA

Abstract. Cryptography rearranges power: it configures who can do what, from
what. This makes cryptography an inherently political tool, and it confers on the
field an intrinsically moral dimension. The Snowden revelations motivate a
reassessment of the political and moral positioning of cryptography. They lead
one to ask if our inability to effectively address mass surveillance constitutes a
failure of our field. I believe that it does. I call for a community-wide effort to
develop more effective means to resist mass surveillance. I plea for a reinvention
of our disciplinary culture to attend not only to puzzles and math, but, also, to
the societal implications of our work.

Keywords: Cryptography · Democracy · Ethics · Mass surveillance · Privacy ·
Snowden revelations · Social responsibility

1 Work on the paper and talk associated to this abstract has been supported by NSF Grant CNS
1228828. Many thanks to the NSF for their continuing support.
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Abstract. The ASASA construction is a new design scheme introduced
at Asiacrypt 2014 by Biruykov, Bouillaguet and Khovratovich. Its ver-
satility was illustrated by building two public-key encryption schemes, a
secret-key scheme, as well as super S-box subcomponents of a white-box
scheme. However one of the two public-key cryptosystems was recently
broken at Crypto 2015 by Gilbert, Plût and Treger. As our main contri-
bution, we propose a new algebraic key-recovery attack able to break at
once the secret-key scheme as well as the remaining public-key scheme, in
time complexity 263 and 239 respectively (the security parameter is 128
bits in both cases). Furthermore, we present a second attack of indepen-
dent interest on the same public-key scheme, which heuristically reduces
its security to solving an LPN instance with tractable parameters. This
allows key recovery in time complexity 256. Finally, as a side result, we
outline a very efficient heuristic attack on the white-box scheme, which
breaks an instance claiming 64 bits of security under one minute on a
single desktop computer.

Keywords: ASASA · Algebraic cryptanalysis · Multivariate cryptogra-
phy · LPN

1 Introduction

The idea of creating a public-key cryptosystem by obfuscating a secret-key cipher
was proposed by Diffie and Hellman in 1976, in the same seminal paper that
introduced the idea of public-key encryption [DH76]. While the RSA cryptosys-
tem was introduced only a year later, creating a public-key scheme based on
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symmetric components has remained an open challenge to this day. The interest
of this problem is not merely historical: beside increasing the variety of available
public-key schemes, one can hope that a solution may help bridging the perfor-
mance gap between public-key and secret-key cryptosystems, or at least offer
new trade-offs in that regard.

Multivariate cryptography is one way to achieve this goal. This area of
research dates back to the 1980’s [MI88,FD86], and has been particularly active
in the late 1990’s and early 2000’s [Pat95,Pat96,RP97,FJ03, . . . ]. Many of the
proposed public-key cryptosystems build an encryption function from a struc-
tured, easily invertible polynomial, which is then scrambled by affine maps (or
similarly simple transformations) applied to its input and output to produce the
encryption function.

This approach might be aptly described as an ASA structure, which should be
read as the composition of an affine map “A”, a nonlinear transformation of low
algebraic degree “S” (not necessarily made up of smaller S-boxes), and another
affine layer “A”. The secret key is the full description of the three maps A,S,A,
which makes computing both ASA and (ASA)−1 easy. The public key is the
function ASA as a whole, which is described in a generic manner by providing
the polynomial expression of each output bit in the input bits (or group of n
bits if the scheme operates on F2n). Thus the owner of the secret key is able
to encrypt and decrypt at high speed, depending on the structure of S. The
downside is slow public key operations, and a large key size.

The ASASA Construction. Historically, attempts to build public-key encryp-
tion schemes based on the above principle have been ill-fated [FJ03,BFP11,
DGS07,DFSS07,WBDY98, . . . ]1. However several new ideas to build multivari-
ate schemes were recently introduced by Biryukov, Bouillaguet and Khovra-
tovich at Asiacrypt 2014 [BBK14]. The paradigm federating these ideas is
the so-called ASASA structure: that is, combining two quadratic mappings S by
interleaving random affine layers A. With quadratic S layers, the overall scheme
has degree 4, so the polynomial description provided by the public key remains
of reasonable size.

This is very similar to the 2R scheme by Patarin [PG97], which fell vic-
tim to several attacks [Bih00,DFKYZD99], including a powerful decomposition
attack [DFKYZD99,FP06], later developed in a general context by Faugère et al.
[FvzGP10,FP09a,FP09b]. The general course of this attack is to differentiate the
encryption function, and observe that the resulting polynomials in the input bits
live in a “small” space entirely determined by the first ASA layers. This essen-
tially allows the scheme to be broken down into its two ASA sub-components,
which are easily analyzed once isolated. A later attempt to circumvent this and
other attacks by truncating the output of the cipher proved insecure against
the same technique [FP06] — roughly speaking truncating does not prevent the
derivative polynomials from living in too small a space.

1 HFEv- seems to be an exception in this regard.
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In order to thwart attacks including the decomposition technique, the authors
of [BBK14] propose to go in the opposite direction: instead of truncating the
cipher, a perturbation is added, consisting in new random polynomials of degree
four added at fixed positions, prior to the last affine layer2. The idea is that
these new random polynomials will be spread over the whole output of the
cipher by the last affine layer. When differentiating, the “noise” introduced by
the perturbation polynomials is intended to drown out the information about
the first quadratic layer otherwise carried by the derivative polynomials, and
thus to foil the decomposition attack.

Based on this idea, two public-key cryptosystems are proposed. One uses
random quadratic expanding S-boxes as nonlinear components, while the other
relies on the χ function, most famous for its use in the SHA-3 winner Keccak.
However the first scheme was broken at Crypto 2015 by a decomposition attack
[GPT15]: the number of perturbation polynomials turned out to be too small
to prevent this approach. This leaves open the question of the robustness of the
other cryptosystem, based on χ, to which we answer negatively.

Black-Box ASASA. Besides public-key cryptosystems, the authors of [BBK14]
also propose a secret-key (“black-box”) scheme based on the ASASA structure,
showcasing its versatility. While the structure is the same, the context is entirely
different. This black-box scheme is in fact the exact counterpart of the SASAS
structure analyzed by Biryukov and Shamir [BS01]: it is a block cipher operating
on 128-bit inputs; each affine layer is a random affine map on Z

128
2 , while the

nonlinear layers are composed of 16 random 8-bit S-boxes. The secret key is the
description of the three affine layers, together with the tables of all S-boxes.

In some sense, the “public key” is still the encryption function as a whole;
however it is only accessible in a black-box way through known or chosen-
plaintext or ciphertext attacks, as any standard secret-key scheme. A major dif-
ference however is that the encryption function can be easily distinguished from
a random permutation because the constituent S-boxes have algebraic degree at
most 7, and hence the whole function has degree at most 49; in particular, it
sums up to zero over any cube of dimension 50. The security claim is that the
secret key cannot be recovered, with a security parameter evaluated at 128 bits.

White-Box ASASA. The structure of the black-box scheme is also used as a
basis for several white-box proposals. In that setting, a symmetric (black-box)
ASASA cipher with small block (e.g. 16 bits) is used as a super S-box in a design
with a larger block. A white-box user is given the super S-box as a table. The
secret information consists in a much more compact description of the super
S-box in terms of alternating linear and nonlinear layers. The security of the
ASASA design is then expected to prevent a white-box user from recovering the
secret information.

2 A similar idea was used in [Din04].
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1.1 Our Contribution

Algebraic Attack on the Secret-Key and χ-Based Public-Key Schemes.
Despite the difference in nature between the χ-based public-key scheme and the
black-box scheme, we present a new algebraic key-recovery attack able to break
both schemes at once. This attack does not rely on a decomposition technique.
Instead, it may be regarded as exploiting the relatively low degree of the encryp-
tion function, coupled with the low diffusion of nonlinear layers. Furthermore, in
the case of the public-key scheme, the attack applies regardless of the amount of
perturbation. Thus, contrary to the attack of [GPT15], there is no hope of patch-
ing the scheme by increasing the number of perturbation polynomials. As for the
secret-key scheme, our attack may be seen as a counterpart to the cryptanalysis
of SASAS in [BS01], and is structural in the same sense.

While the same attack applies to both schemes, their respective bottlenecks
for the time complexity come from different stages of the attack. For the χ
scheme, the time complexity is dominated by the need to compute the kernel
of a binary matrix of dimension 213, which can be evaluated to 239 basic linear
operations3. As for the black-box scheme, the time complexity is dominated by
the need to encrypt 263 chosen plaintexts, and the data complexity follows.

This attack actually only peels off the last linear layer of the scheme, reducing
ASASA to ASAS. In the case of the black-box scheme, the remaining layers can
be recovered in negligible time using Biryukov and Shamir’s techniques [BS01].
In the case of the χ scheme, removing the remaining layers poses non-trivial
algorithmic challenges (such as how to efficiently recover quadratic polynomials
A,B,C ∈ Z2[X1, . . . , Xn]/〈X2

i − Xi〉, given A + B · C), and some of the algo-
rithms we propose may be of independent interest. Nevertheless, in the end the
remaining layers are peeled off and the secret key is recovered in time complexity
negligible relative to the cost of removing the first layer.

LPN-Based Attack on the χ Scheme. As a second contribution, we present
an entirely different attack, dedicated to the χ public-key scheme. This attack
exploits the fact that each bit at the output of χ is “almost linear” in the input:
indeed the nonlinear component of each bit is a single product, which is equal to
zero with probability 3/4 over all inputs. Based on this property, we are able to
heuristically reduce the problem of breaking the scheme to an LPN-like instance
with easy-to-solve parameters. By LPN-like instance, we mean an instance of a
problem very close to the Learning Parity with Noise problem (LPN), on which
typical LPN-solving algorithms such as the Blum-Kalai-Wasserman algorithm
(BKW) [BKW03] are expected to immediately apply. The time complexity of
this approach is higher than the previous one, and can be evaluated at 256 basic

3 In practice, vector instructions operating on 128-bit inputs would mean that the
meaningful size of the matrix is 213−7 = 26, and in this context the number of basic
linear operations would be much lower. We also disregard asymptotic improvements
such as the Strassen or Coppersmith-Winograd algorithms and their variants. The
main point is that the time complexity is quite low — well within practical reach.
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operations. However it showcases a different weakness of the χ scheme, providing
a different insight into the security of ASASA constructions. In this regard, it is
noteworthy that the security of another recent multivariate scheme, presented
by Huang et al. at PKC’12 [HLY12], was also reduced to an easy instance of
LWE [Reg05], which is an extension of LPN, in [AFF+14] 4.

Heuristic Attack on the White-Box Scheme. Finally as a side result,
we describe a key-recovery attack on white-box ASASA. The attack technique is
unrelated to the previous ones, and its motivation relies on heuristics rather than
a theoretical model. On the other hand it is very effective on the smallest white-
box instances of [BBK14] (with a security level of 64 bits), which we break under
a minute on a laptop computer. Thus it seems that the security level offered by
small-block ASASA is much lower than anticipated.

The same attack on white-box schemes was found independently by Dinur,
Dunkelman, Kranz and Leander [DDKL15]. Their approach focuses on small-
block ASASA instances, and is thus only applicable to the white-box scheme of
[BBK14]. Section 5 of [DDKL15] is essentially the same attack as ours, minus
some heuristic improvements (see [MDFK15]). On the other hand, the authors
of [DDKL15] present other methods to attack small-block ASASA instances that
are less reliant on heuristics, but as efficient as our heuristically improved variant,
and thus provide a better theoretical basis for understanding small-block ASASA,
as used in the white-box scheme of [BBK14].

1.2 Structure of the Article

Section 3 provides a brief description of the three ASASA schemes under attack.
In Sect. 4, we present our main attack, as applied to the secret-key (“black-box”)
scheme. In particular, an overview of the attack is given in Sect. 4.1. The attack
is then adapted to the χ public-key scheme in Sect. 5.1, while the LPN-based
attack on the same scheme is presented in Sect. 5.2. Finally, our attack on the
white-box scheme is presented in Sect. 6.

1.3 Implementation and Full Version

Due to space constraints, some subordinate algorithms and proofs were removed
from the print version of this article. However none of the missing material is
essential to understanding the attacks. The full version is available on ePrint
[MDFK15]. It is also available at the following link, together with implementa-
tions of our attacks:

https://www.dropbox.com/sh/3glwc5x181fekre/AAASeG7D-CGKM2gLmr-UVBK9a

4 On this topic, the authors of [BBK14] note that “the full application of LWE to
multivariate cryptography is still to be explored in the future”.

https://www.dropbox.com/sh/3glwc5x181fekre/AAASeG7D-CGKM2gLmr-UVBK9a
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2 Notation and Preliminaries

The sign �= denotes an equality by definition. |S| denotes the cardinality of a set
S. The log() function denotes logarithm in base 2.

Binary Vectors. We write Z2 as a shorthand for Z/2Z. The set of n-bit vectors
is denoted interchangeably by {0, 1}n or Z

n
2 . However the vectors are always

regarded as elements of Zn
2 with respect to addition + and dot product 〈·|·〉. In

particular, addition should be understood as bitwise XOR. The canonical basis of
Z

n
2 is denoted by e0, . . . , en−1.

For any v ∈ {0, 1}n, vi denotes the i-th coordinate of v. In this context, the
index i is always computed modulo n, so v0 = vn and so forth. Likewise, if F is
a function mapping into {0, 1}n, Fi denotes the i-th bit of the output of F .

For a ∈ {0, 1}n, 〈F |a〉 is a shorthand for the function x �→ 〈F (x)|a〉.
For any v ∈ {0, 1}n, �v�k denotes the truncation (v0, . . . , vk−1) of v to its

first k coordinates.
For any bit b, b stands for b + 1.

Derivative of a Binary Function. For F : {0, 1}m → {0, 1}n and δ ∈ {0, 1}m,
we define the derivative of F along δ as ∂F/∂δ

�= x �→ F (x)+F (x+δ). We write
∂dF/∂v0 . . . ∂vd−1

�= ∂(. . . (∂F/∂v0) . . . )/∂vd−1 for the order-d derivative along
v0, . . . , vd−1 ∈ {0, 1}m. For convenience we may write F ′ instead of ∂F/∂v when
v is clear from the context; likewise for F ′′.

The degree of Fi is its degree as an element of F2[x0, . . . , xm−1]/〈x2
i − xi〉 in

the binary input variables. The degree of F is the maximum of the degrees of
the Fi’s.

Cube. A cube of dimension d in {0, 1}n is simply an affine subspace of dimen-
sion d. The terminology comes from [DS09]. Note that summing a function F
over a cube C of dimension d, i.e. computing

∑
c∈C F (c), amounts to comput-

ing the value of an order-d differential of F at a certain point: it is equal to
∂dF/∂v0 . . . ∂vd−1(a) for a, (vi) such that C = a + span{v0, . . . , vd−1}. In par-
ticular if F has degree d, then it sums up to zero over any cube of dimension
d + 1.

Bias. For any probability p ∈ [0, 1], the bias of p is |2p − 1|. Note that the bias
is sometimes defined as |p−1/2| in the literature. Our choice of definition makes
the formulation of the Piling-up Lemma more convenient [Mat94]:

Lemma 1 (Piling-up Lemma). For X1, . . . , Xn independent random binary
variables with respective biases b1, . . . , bn, the bias of X =

∑
Xi is b =

∏
bi.
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Learning Parity with Noise (LPN). The LPN problem was introduced in
[BKW03], and may be stated as follows: given (A,As + e), find s, where:

– s ∈ Z
n
2 is a uniformly random secret vector.

– A ∈ Z
N×n
2 is a uniformly random binary matrix.

– e ∈ Z
N
2 is an error vector, whose coordinates are chosen according to a

Bernoulli distribution with parameter p.

3 Description of ASASA schemes

3.1 Presentation and Notations

ASASA is a general design scheme for public or secret-key ciphers (or cipher
components). An ASASA cipher is composed of 5 interleaved layers: the letter
A represents an affine layer, and the letter S represents a nonlinear layer (not
necessarily made up of smaller S-boxes). Thus the cipher may be pictured as:

We borrow the notation of [GPT15] and write the encryption function F as:

F = Az ◦ Sy ◦ Ay ◦ Sx ◦ Ax

Moreover, x = (x0, . . . , xn−1) is used to denote the input of the cipher; x′ is the
output of the first affine layer Ax; and so on, as pictured above. The variables x′

i,
yi, etc., will often be viewed as polynomials over the input bits (x0, . . . , xn−1).
Similarly, F denotes the whole encryption function, while F y = Sx ◦ Ax is the
partial encryption function that maps the input x to the intermediate state y,
and likewise F x′

= Ax, F y′
= Ay ◦ Sx ◦ Ax, etc.

One secret-key (“black-box”) and two public-key ASASA ciphers are pre-
sented in [BBK14]. The secret-key and public-key variants are quite different in
nature, even though our main attack applies to both. We now present in turn the
black-box and white-box constructions and the public-key variant based on χ.

3.2 Description of the Black-Box Scheme

It is worth noting that the following ASASA scheme is the exact counterpart of
the SASAS structure analyzed by Biryukov and Shamir [BS01], with swapped
affine and S-box layers.

Black-box ASASA is a secret-key encryption scheme, parameterized by m,
the size of the S-boxes and k, the number of S-boxes. Let n = km be the number
of bits of the scheme. The overall structure of the cipher follows the ASASA
construction, with layers as follows:
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– Ax, Ay, Az are a random invertible affine mappings Zn
2 → Z

n
2 . Without loss of

generality, the mappings can be considered purely linear, because the affine
constant can be integrated into the preceding or following S-box layer. In the
remainder we assume the mappings to be linear.

– Sx, Sy are S-box layers. Each S-box layer consists in the application of k
parallel random invertible m-bit S-boxes.

All linear layers and all S-boxes are uniformly random among invertible elements,
and independent from each other.

In the concrete instance of [BBK14], each S-box layer contains k = 16
S-boxes over m = 8 bits each, so that the scheme operates on blocks of n =
128 bits. The secret key consists in three n-bit matrices and 2k m-bit S-boxes,
so the key size is 3 · n2 + 2k · m2m-bit long. With the previous parameters this
amounts to 14 KB.

It should be pointed out that the scheme is not IND-CPA secure. Indeed, an
8-bit invertible S-box has algebraic degree (at most) 7, so the overall scheme has
algebraic degree (at most) 49. Thus, the sum of ciphertexts on entries spanning a
cube of dimension 50 is necessarily zero. As a result the security claim in [BBK14]
is only that the secret key cannot be recovered, with a security parameter of
128 bits.

3.3 Description of the White-Box Scheme

As an application of the symmetric ASASA scheme, Biryukov et al. propose its
use as a basis for designing white-box block ciphers. In a nutshell, their idea is to
use ASASA to create small ciphers of, say, 16-bit blocks and to use them as super
S-boxes in e.g. a substitution-permutation network (SPN). Users of the cipher
in the white-box model are given access to super S-boxes in the form a table,
which allows them to encrypt and decrypt at will. Yet if the small ciphers used
in building the super S-boxes are secure, one cannot efficiently recover their keys
even when given access to their whole codebook, meaning that white-box users
cannot extract a more compact description of the super S-boxes from their tables.
This achieves weak white-box security as defined by Biryukov et al. [BBK14]:

Definition 1 (Key Equivalence [BBK14]). Let E : {0, 1}κ × {0, 1}n →
{0, 1}n be a (symmetric) block cipher. E(k) is called the equivalent key set of k if
for any k′ ∈ E(k) one can efficiently compute E′ such that ∀ p E(k, p) = E′(k′, p).

Definition 2 (Weak White-Box T -security [BBK14]). Let E : {0, 1}κ ×
{0, 1}n → {0, 1}n be a (symmetric) block cipher. W(E)(k, ·) is said to be a
T -secure weak white-box implementation of E(k, ·) if ∀ p W(E)(k, p) = E(k, p)
and if it is computationally expensive to find k′ ∈ E(k) of length less than T bits
when given full access to W(E)(k, ·).
Example 1. If S16 is a secure cipher with 16-bit blocks, then the full codebook
of S16(k, ·) as a table is a 220-secure weak white-box implementation of S16(k, ·).
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For their instantiations, Biryukov et al. propose to use several super S-boxes
of different sizes, among others:

– A 16-bit ASASA16 where the nonlinear permutations S are made of the parallel
application of two 8-bit S-boxes, with conjectured security of 64 bits against
key recovery.

– A 20-bit ASASA20 where the nonlinear permutations S are made of the parallel
application of two 10-bit S-boxes, with conjectured security of 100 bits against
key recovery.

– A 24-bit ASASA24 where the nonlinear permutations S are made of the parallel
application of three 8-bit S-boxes, with conjectured security of 128 bits against
key recovery.

3.4 Description of the χ-based Public-Key Scheme

The χ mapping was introduced by Daemen [Dae95] and later used for several
cryptographic constructions, including the SHA-3 competition winner Keccak.
The mapping χ : {0, 1}n → {0, 1}n is defined by:

χi(a) = ai + ai+1ai+2

The χ-based ASASA scheme presented in [BBK14] is a public-key encryption
scheme operating on 127-bit inputs, the odd size coming from the fact that χ is
only invertible on inputs of odd length. The encryption function may be written as:

F = Az ◦ (P + χ ◦ Ay ◦ χ ◦ Ax)

where:

– Ax, Ay, Az are random invertible affine mappings Z127
2 → Z

127
2 . In the remain-

der we will decompose Ax as a linear map Lx followed by the addition of a
constant Cx, and likewise for Ay, Az.

– χ is as above.
– P is the perturbation. It is a mapping {0, 1}127 → {0, 1}127. For 24 output

bits at a fixed position, it is equal to a random polynomial of degree 4. On
the remaining 103 bits, it is equal to zero.

Since χ has degree only 2, the overall degree of the encryption function is 4.
The public key of the scheme is the encryption function itself, given in the form
of degree 4 polynomials in the input bits, for each output bit. The private key
is the triplet of affine maps (Ax, Ay, Az).

Due to the perturbation, the scheme is not actually invertible. To circumvent
this, some redundancy is required in the plaintext, and the 24 bits of perturbation
must be guessed during decryption. The correct guess is determined first by
checking whether the resulting plaintext has the required redundancy, and second
by recomputing the ciphertext from the tentative plaintext and checking that it
matches. This is not relevant to our attack, and we refer the reader to [BBK14]
for more information.
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4 Structural Attack on Black-Box ASASA

Our goal in this section is to recover the secret key of the black-box ASASA
scheme, in a chosen-plaintext model. For this purpose, we begin by peeling off
the last linear layer, Az. Once Az is removed, we obtain an ASAS structure, which
can be broken using Biryukov and Shamir’s techniques [BS01] in negligible time.
Thus the critical step is the first one.

4.1 Attack Overview

Before progressing further, it is important to observe that the secret key of the
scheme is not uniquely defined. In particular, we are free to compose the input
and output of any S-box with a linear mapping of our choosing, and use the
result in place of the original S-box, as long as we modify the surrounding linear
layers accordingly. Thus, S-boxes are essentially defined up to linear equivalence.
When we claim to recover the secret key, this should be understood as recovering
an equivalent secret key; that is, any secret key that results in an encryption
function identical to the black-box instance under attack.

In particular, in order to remove the last linear layer of the scheme, it is
enough to determine, for each S-box, the m-dimensional subspace corresponding
to its image through the last linear layer. Indeed, we are free to pick any basis of
this m-dimensional subspace, and assert that each element of this basis is equal
to one bit at the output of the S-box. This will be correct, up to composing the
output of the S-box with some invertible linear mapping, and composing the
input of the last linear layer with the inverse mapping; which has no bearing on
the encryption output.

Thus, peeling off Az amounts to finding the image space of each S-box
through Az. For this purpose, we will look for linear masks a, b ∈ {0, 1}n over
the output of the cipher, such that the two dot products 〈F |a〉 and 〈F |b〉 of the
encryption function F along each mask are each equal to one bit at the output
of the same S-box in the last nonlinear layer Sy. Let us denote the set of such
pairs (a, b) by S (as in “solution”).

In order to compute S, the core property at play is that if masks a and b are
as required, then the binary product 〈F |a〉〈F |b〉 has degree only (m − 1)2 over
the input variables of the cipher (meaning that 〈F |a〉〈F |b〉 sums to zero over any
cube of dimension (m − 1)2 + 1), whereas it has degree 2(m − 1)2 in general.

We define the two linear masks a and b we are looking for as two vec-
tors of binary unknowns. Then f(a, b) = 〈F |a〉〈F |b〉 may be expressed as a
quadratic polynomial over these unknowns, whose coefficients are 〈F |ei〉〈F |ej〉
for (ei) the canonical basis of Zn

2 . Now, the fact that f(a, b) sums to zero over
some cube C gives us a quadratic condition on (a, b), whose coefficients are∑

c∈C〈F (c)|ei〉〈F (c)|ej〉.
By computing n(n − 1)/2 cubes of dimension (m − 1)2 + 1, we thus derive

n(n−1)/2 quadratic conditions on (a, b). The resulting system can then be solved
by relinearization. This yields the linear space K spanned by S.
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However we want to recover S, rather its linear combinations K. Thus in
a second step, we compute S as S = K ∩ P , where P is essentially the set of
elements that stem from a single product of two masks a and b. While P is not
a linear space, by guessing a few bits of the masks a, b, we can get many linear
constraints on the elements of P satisfying these guesses, and intersect these
linear constraints with K.

The first step may be regarded as the core of the attack, and it is also
the computationally most expensive: essentially we need to encrypt plaintexts
spanning n(n − 1)/2 cubes of dimension (m − 1)2 + 1. We recall that in the
actual black-box scheme of [BBK14], we have S-boxes over m = 8 bits, and the
total block size is n = 128 bits, covered by k = 16 S-boxes, so the complexity
is dominated by the computation of the encryption function over 213 cubes of
dimension 50, i.e. 263 encryptions.

4.2 Description of the Attack

We use the notation of Sect. 3.1: let F = Az ◦ Sy ◦ Ay ◦ Sx ◦ Ax denote the
encryption function. We are interested in linear masks a ∈ {0, 1}n such that
〈F |a〉 depends only on the output of one S-box. Since 〈F |a〉 = 〈Sy ◦ Ay ◦ Sx ◦
Ax|(Az)Ta〉, this is equivalent to saying that the active bits of (Az)Ta span a
single S-box.

In fact we are searching for the set S of pairs of masks (a, b) such that (Az)Ta
and (Az)Tb span the same single S-box. Formally, if we let (e0, . . . , en−1) be the
canonical basis of Zn

2 , and let Ot = span{ei : mt ≤ i < m(t + 1)} be the span of
the output of the t-th S-box, then:

S = {(a, b) ∈ {0, 1}n × {0, 1}n : ∃ t, (Az)Ta ∈ Ot and (Az)Tb ∈ Ot}
The core property exploited in the attack is that if (a, b) belongs to S, then

〈F |a〉〈F |b〉 has degree at most (m − 1)2, as shown by Lemma 2 below. On the
other hand, if (a, b) �∈ S, then 〈F |a〉〈F |b〉 is akin to the product of two indepen-
dent random polynomials of degree (m − 1)2, and it reaches degree 2(m − 1)2

with overwhelming probability.

Lemma 2. Let G be an invertible mapping {0, 1}m → {0, 1}m for m > 2. For
any two m-bit linear masks a and b, H = 〈G|a〉〈G|b〉 has degree at most m − 1.

Proof. It is clear that the degree cannot exceed m, since we depend on only m
variables (and we live in F2). What we show is that it is less than m− 1, as long
as m > 2. If a = 0 or b = 0 or a = b, this is clear, so we can assume that a, b are
linearly independent. Note that there is only one possible monomial of degree
m, and its coefficient is equal to

∑
x∈{0,1}m H(x). So all we have to show is that

this sum is zero.
Because G is invertible, G(x) spans each value in {0, 1}m once as x spans

{0, 1}m. As a consequence, the pair (〈G|a〉, 〈G|b〉) takes each of its 4 possible
values an equal number of times. In particular, it takes the value (1, 1) exactly
1/4 of the time. Hence 〈G|a〉〈G|b〉 takes the value 1 exactly 2m−2 times, which
is even for m > 2. Thus

∑
x∈{0,1}m H(x) = 0 and we are done. ��
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In the remainder, we regard two masks a and b as two sequences of n binary
unknowns (a0, . . . , an−1) and (b0, . . . , bn−1).

Step 1: Kernel Computation. If a, b are as desired, 〈F |a〉〈F |b〉 has degree at
most (m−1)2. Hence the sum of this product over a cube of dimension (m−1)2+1
is zero, as this amounts to an order-(m−1)2 +1 differential of a degree (m−1)2

function. Let then C denote a random cube of dimension (m − 1)2 + 1 – that is,
a random affine space of dimension (m − 1)2+1, over {0, 1}n. We have:

∑

c∈C

〈F (c)|a〉〈F (c)|b〉 =
∑

c∈C

∑

i<n

aiFi(c)
∑

j<n

bjFj(c)

=
∑

i,j<n

( ∑

c∈C

Fi(c)Fj(c)
)
aibj

=
∑

i<j<n

( ∑

c∈C

Fi(c)Fj(c)
)
(aibj + ajbi)

To deduce the last line, notice that
∑

c∈C FiFi = 0 since F has degree less
than dimC. Since the equation above really only says something about aibj+ajbi

rather than aibj (which is unavoidable, since the roles of a and b are symmetric),
we define E = Z

n(n−1)/2
2 , see its canonical basis as ei,j for i < j < n, and define

λ(a, b) ∈ E by: λ(a, b)i,j = aibj + ajbi. By convention we set λj,i = λi,j and
λi,i = 0. The previous equations tells us that knowing only the n(n − 1)/2 bits∑

c∈C Fi(c)Fj(c) yields a quadratic condition on (a, b), and more specifically a
linear condition on λ(a, b). Whence we proceed as follows:

Algorithm 1: GenerateCondition

Input: A random cube C of dimension (m − 1)2 + 1 over {0, 1}n

1 Let sum = (0, . . . , 0) ∈ E
2 for c ∈ C do
3 (x0, . . . , xn−1) ← F (c)
4 t ← (xixj for i < j < n) ∈ E
5 sum = sum + t

6 return sum

Let M be a binary matrix of size (n2/2) × (n(n − 1)/2), whose rows are
separate outputs of Algorithm 1. Let K be the kernel of this matrix. Then for
all (a, b) ∈ S, λ(a, b) is necessarily in K. Thus K contains the span of the λ(a, b)’s
for (a, b) ∈ S. Because M contains more than n(n − 1)/2, with overwhelming
probability K contains no other vector5. This is confirmed by our experiments.
5 This point is the only reason we pick n2/2 rows rather than only n(n− 1)/2; but we

may as easily choose n(n − 1)/2 plus some small constant. In practice it we can just
pick n(n − 1)/2 rows, and add more as required until the kernel has the expected
dimension km(m − 1)/2.
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Complexity Analysis. Overall, the dominant cost is to compute 2(m−1)2+1

encryptions per cube, for n2/2 cubes, which amounts to a total of n22(m−1)2

encryptions. With the parameters of [BBK14], this is 263 encryptions. In prac-
tice, we could limit ourselves to dimension-(m − 1)2 + 1 subcubes of a single
dimension-(m − 1)2 + 2 cube, which would cost only 2(m−1)2+2 encryptions.
However we would still need to sum (pairwise bit products of) ciphertexts for
each subcube, so while this approach would certainly be an improvement in
practice, we believe it is cleaner to simply state the complexity as n22(m−1)2

encryption equivalents.
Beside that, we also need to compute the kernel of a matrix of dimension

n(n − 1)/2, which incurs a cost of roughly n6/8 basic linear operations. With
the parameters of [BBK14], we need to invert a binary matrix of dimension 213,
costing around 239 (in practice, highly optimized) operations, so this is negligible
compared to the required number of encryptions.

Step 2: Extracting Masks. Let:

P = {λ ∈ E : ∃ a, b ∈ {0, 1}n, λ = λ(a, b)}
Clearly we have λ(S) ⊆ K ∩ P . In fact, we assume λ(S) = K ∩ P , which is
confirmed by our experiments. We now want to compute K ∩ P .

However we do not need to enumerate the whole intersection K ∩P directly:
for our purpose, it suffices to recover enough elements of λ(S) such that the
corresponding masks span the output space of all S-boxes. Indeed, recall that
our end goal is merely to find the image of all k S-boxes through the last linear
layer. Thus, in the remainder, we explain how to find a random element in K∩P .
Once we have found km linearly independent masks in this manner, we will be
done.

The general idea to find a random element of K ∩ P is as follows. We begin
by guessing the value of a few pairs (ai, bi). This yields linear constraints on
the λi,j ’s. As an example, if (a0, b0) = (0, 0), then ∀i, λ0,i = 0. Because the
constraints are linear and so is the space K, finding the elements of K satisfying
the constraints only involves basic linear algebra. Thus, all we have to do is
guess enough constraints to single out an element of S with constant probability,
and recover that element as the one-dimensional subspace of K satisfying the
constraints.

More precisely, assume we guess 2r bits of a, b as:

a0, . . . , ar−1 = α0, . . . , αr−1

b0, . . . , br−1 = β0, . . . , βr−1

We view pairs (αi, βi) as elements of Z2
2. Assume there exists some linear depen-

dency between the (αi, βi)’s: that is, for some (μi) ∈ {0, 1}r:

r−1∑

i=0

μi(αi, βi) = (0, 0)
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Then for all j < n, we have:

r−1∑

i=0

μiλi,j = bj

r−1∑

i=0

μiai + aj

r−1∑

i=0

μibi = 0 (1)

Now, since Z
2
2 has dimension only 2, we can be sure that there exist r − 2

independent linear relations between the (αi, βi)’s, from which we deduce as
above (r −2)n linear relations on the λi,j ’s. In the full version of this article (see
Sect. 1.3), we prove that at least (r − 2)(n − r) of these relations are linearly
independent.

Now, the cardinality of S is k(2m − 1)(2m − 2) ≈ k22m. Hence if we choose
r = �log(|S|)/2� ≈ m + 1

2 log k, and randomly guess the values of (ai, bi) for
i < r, then we can expect that with constant probability there exists exactly one
element in S satisfying our guess. More precisely, each element has a probability
(close to) 2−2�|S|/2� ≈ 2−|S| of fitting our guess of 2r bits, so this probability
is close to |S|(|S|−1(1 − |S|−1)|S|−1

) ≈ 1/e. Thus, if we denote by T the sub-
space of E of vectors satisfying the linear constraints induced by our guess, with
probability roughly 1/3, λ(S) ∩ T contains a single element.

On the other hand, K is generated by pairs of masks corresponding to distinct
bits for each S-box in Sy. Hence dim K = km(m−1)/2 = n(m−1)/2. As shown
earlier, from our 2r guesses, we deduce (at least) (r − 2)(n− r) linear conditions
on the (λi,j)’s, so codim T ≥ (r − 2)(n − r). Since we chose r = m + 1

2 log k, this
means:

codim T ≥ (m − 2 +
1
2

log k) · (n − m − 1
2

log k)

dim K = (m − 1) · (n/2)

Thus, having 1
2 log k ≥ 1, i.e. k ≥ 4, and m + 1

2 log k ≥ n/2, which is easily the
case with concrete parameters m = 8, k = 16, n = 128, we have codim T ≥
dim K, and so K ∩T is not expected to contain any extra vector beside the span
of λ(S) ∩ T . This is confirmed by our experiments.

In summary, if we pick r = m + 1
2 log k and randomly guess the first r pairs

of bits (ai, bi), then with probability close to 1/e, K ∩ T contains only a single
vector, which belongs to λ(S) ∩ T and in particular to λ(S). In practice it may
be worthwhile to guess a little less then m + 1

2 log k pairs to ensure K ∩ T is
nonzero, then guess more as needed to single out a solution. Once we have a
single element in λ(S), it is easy to recover the two masks (a, b) it stems from6.

In the end, we recover two masks (a, b) coming from the same S-box. If we
repeat this process n = km times on average, the masks we recover will span
the output of each S-box (indeed we recover 2 masks each time, so n tries is
more than enough with high probability). Furthermore, checking whether two
masks belong to the same S-box is very cheap (for two masks a, b, we only need
to check whether λ(a, b) is in K), so we recover the output space of each S-box.
6 It can be shown that λ is invertible except on its zero output, which is reached only

when a = 0, b = 0 or a = b. An inversion algorithm is given in the full version of
this article (cf. Sect. 1.3).
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Complexity Analysis. In order to get a random element in S, each guess of 2r
bits yields roughly 1/3 chance of recovering an element by intersecting linear
spaces K and T . Since K has dimension n(m − 1)/2, the complexity is roughly
(n(m − 1)/2)3 per try, and we need 3 tries on average for one success. Then the
process must be repeated n times. Thus the complexity may be evaluated to
roughly 3

8n4(m − 1)3 basic linear operations. With the parameters of [BBK14],
this amounts to 236 linear operations, so this step is negligible compared to
Step 1 (and quite practical besides).

Before closing this section, we note that our attack does not really depend
on the randomness of the S-boxes or affine layers. All that is required of the
S-boxes is that the degree of zizj vary depending on whether i and j belong to
the same S-box. This makes the attack quite general, in the same sense as the
structural attack of [BS01].

5 Attacks on the χ-based Public-Key Scheme

In this section, our goal is to recover the private key of the χ-based ASASA
scheme, using only the public key. For this purpose, we peel off one layer at a
time, starting with the last affine layer Az. We actually propose two different
ways to achieve this. The first attack is our main algebraic attack from Sect. 4,
with some modifications to account for the peculiarity of χ and the presence
of the perturbation. It is presented in Sect. 5.1. The second attack reduces the
problem to an instance of LPN, and is presented in Sect. 5.2. Once the last
affine layer has been removed with either attack, we move on to attacking the
remaining layers in Sect. 5.3.

5.1 Algebraic Attack on the χ Scheme

The χ scheme can be attacked in exactly the same manner as the black-box
scheme in Sect. 4. Using the notations of Sect. 3.1, we have:

zizi+1 = (y′
i + y′

i+1y
′
i+2) · (y′

i+1 + y′
i+2y

′
i+3)

= y′
iy

′
i+1 + y′

iy
′
i+2y

′
i+3

Here the crucial point is that y′
i+2 is shared by the only degree-4 term of both

sides. Thus the degree of zizi+1 is bounded by 6. Likewise, the degree of zi+1(zi+
zi+2) = zizi+1 + zi+1zi+2 is also bounded by 6, as the sum of two products
of the previous form. On the other hand, any product of linear combinations
(
∑

αizi)(
∑

βizi) not of the previous two forms does not share common y′
i’s in

its higher-degree terms, so no simplification occurs, and the product reaches
degree 8 with overwhelming probability.

As a result, we can proceed as in Sect. 4. Let n = 127 be the size of the
scheme, p = 24 the number of perturbation polynomials. The positions of the
p perturbation polynomials are not defined in the original paper; in the sequel
we assume that they are next to each other. Other choices of positions increase
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the tedium of the attack rather than its difficulty. A brief discussion of random
positions for perturbation polynomials is offered in the full version of this arti-
cle (see Sect. 1.3). Due to the rotational symmetry of χ, the positions of the
perturbed bits is only defined modulo rotational symmetry; for convenience, we
assume that perturbed bits are at positions zn−p to zn−1.

The full attack presented below has been verified experimentally for small
values of n.

Step 1: Kernel Computation. We fill the rows of an n(n−1)/2×n(n−1)/2
matrix with separate outputs of Algorithm 1, with the difference that the dimen-
sion of cubes in the algorithm is only 7 (instead of (m−1)2+1 = 50 in the black-
box case). Then we compute the kernel K of this matrix. Since n(n−1)/2 ≈ 213

the complexity of this step is roughly 239 basic linear operations.

Step 2: Extracting Masks. The second step is to intersect K with the set P
of elements of the form λ(a, b) to recover actual solutions (see Sect. 4, step 2). In
Sect. 4 we were content with finding random elements of K ∩P . Now we want to
find all of them. To do so, instead of guessing a few pairs (ai, bi) as earlier, we
exhaust all possibilities for (a0, b0) then (a1, b1) and so forth along a tree-based
search. For each branch, we stop when the dimension of K intersected with the
linear constraints stemming from our guesses of (ai, bi)’s is reduced to 1. Each
branch yields a solution λ(a, b), from which the two masks a and b can be easily
recovered.

Step 3: Sorting Masks. Let ai = ((Lz)T)−1ei be the linear mask such that
zi = 〈F |ai〉 (for the sake of clarity we first assume Cz = 0; this has no impact
on the attack until step 4 in Sect. 5.3 where we will recover Cz). At this point
we have recovered the set S of all (unordered) pairs of masks {ai, ai+1} and
{ai, ai−1 + ai+1} for i < n − p, i.e. such that the corresponding zi’s are not
perturbed. Now we want to distinguish masks ai−1 + ai+1 from masks ai. For
each i such that zi−1, zi, zi+1 are not perturbed, this is easy enough, as ai appears
exactly three times among unordered pairs in S: namely in the pairs {ai, ai−1},
{ai, ai+2} and {ai, ai−1 + ai+1}; whereas masks of the form ai−1 + ai+1 appear
only once, in {ai−1 + ai+1, ai}.

Thus we have recovered every ai for which zi−1, zi, zi+1 are not perturbed.
Since perturbed bits are next to each other, we have recovered all unperturbed
ai’s save the two ai’s on the outer edge of the perturbation, i.e. a0 and an−p−1.
We can also order all recovered ai’s simply by checking whether {ai, ai+1} is in S.
In other words, we look at S as the set of edges of a graph whose vertices are the
elements of pairs in S; then the chain (a1, . . . , an−p−2) is simply the longest path
in this graph. In fact we recover (a1, . . . , an−p−2), minus its direction: that is, so
far, we cannot distinguish it from (an−p−2, . . . , a1). If we look at the neighbours
of the end points of the path, we also recover {a0, a0+a2} and {an−p−1, an−p−3+
an−p−1}. However we are not equipped to tell apart the members of each pair
with only S at our disposal.
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To find a0 in {a0, a0 + a2} (and likewise an−p−2 in {an−p−1, an−p−3 +
an−p−1}), a very efficient technique is to anticipate a little and use the dis-
tinguisher in Sect. 5.2. Namely, in short, we differentiate the encryption function
F twice using two fixed random input differences δ1 �= δ2, and check whether
for a fraction 1/4 of possible choices of (δ1, δ2), 〈∂2F/∂δ1∂δ2|x〉 is equal to a
constant with bias 2−4: this property holds if and only if x is one of the ai’s.
This only requires around 216 encryptions for each choice of (δ1, δ2), and thus
completes in negligible time. Another more self-contained approach is to move
on to the next step (in Sect. 5.3), where the algorithm we use is executed sepa-
rately on each recovered mask ai, and fails for a0 + a2 but not a1. However this
would be slower in practice.

We assume either solution was chosen and we now know the whole ordered
chain (a0, . . . , an−p−1) of masks corresponding to unperturbed bits. At this
stage we are only missing the direction of the chain, i.e. we cannot distinguish
(a0, . . . , an−p−1) from (an−p−1, . . . , a0). This will be corrected at the next step.

As mentioned earlier, we propose two different techniques to recover the
first linear layer of the χ scheme: one algebraic technique, and another based on
LPN. We have now just completed the algebraic technique. In the next section we
present the LPN-based technique. Afterwards we will move on to the remaining
steps, which are common to both techniques, and fully break the cipher with
the knowledge of (a0, . . . , an−p−1), in Sect. 5.3.

5.2 LPN-based attack on the χ scheme

We now present a different approach to remove the last linear layer of the χ
scheme. This approach relies on the fact that each output bit of χ is almost
linear, in the sense that the only nonlinear component is the product of two
input bits. In particular this nonlinear component is zero with probability 3/4.
The idea is then to treat this nonlinear component as random noise. To achieve
this we differentiate the encryption function F twice. So the first ASA layers of
F ′′ yield a constant; then ASAS is a noisy constant due to the weak nonlinearity;
and ASASA is a noisy constant accessed through Az. This allows us to reduce the
problem of recovering Az to (a close variant of) an LPN instance with tractable
parameters.

We now describe the attack in detail. First, pick two distinct random differ-
ences δ1, δ2 ∈ {0, 1}n. Then compute the order 2 differential of the encryption
function along these two differences. That is, let F ′′ = ∂F/∂δ1∂δ2. This second-
order differential is constant at the output of F y′

= Ay ◦ χ ◦ Ax, since χ has
degree only two:

(F y′
)′′(x) �= ∂F y′

/∂δ1∂δ2 = C(δ1, δ2)

Now if we look at a single bit at the output of F z = χ ◦ F y′
, we have:

(F z)′′
i (x) = (F y′

)′′
i (x) + F y′

i+1F
y′
i+2(x) + F y′

i+1F
y′
i+2(x + δ1)

+ F y′
i+1F

y′
i+2(x + δ2) + F y′

i+1F
y′
i+2(x + δ1 + δ2) (2)
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That is, a bit at the output of (F z)′′ still sums up to a constant, plus the sum of
four bit products. If we look at each product as an independent random binary
variable that is zero with probability 3/4, i.e. bias 2−1, then by the Piling-up
Lemma (Lemma 1) the sum is equal to zero with bias 2−4.

Experiments show that modeling the four products as independent is not
quite accurate: a significant discrepancy is introduced by the fact that the four
inputs of the products sum up to a constant. For the sake of clarity, we will
disregard this for now and pretend that the four products are independent. We
will come back to this issue later on.

Now a single linear layer remains between (F z)′′ and F ′′. Let si ∈ {0, 1}n

be the linear mask such that 〈F |si〉 = F z
i (once again we assume Cz = 0, and

postpone taking Cz into account until step 4 of the attack). Then 〈F ′′|si〉 is
equal to a constant with bias 2−4. Now let us compute N different outputs of
F ′′ for some N to be determined later, which costs 4N calls to the encryption
function F . Let us stack these N outputs in an N × n matrix A.

Then we know that A·si is either the all-zero or the all-one vector (depending
on (F y′

)′′
i ) plus a noise of bias 2−4. Thus finding si is essentially an LPN problem

with dimension n = 127 and bias 2−4 (i.e. noise 1/2+2−5). Of course this is not
quite an LPN instance: A is not uniform, there are n solutions instead of one, and
there is no output vector b (although we could isolate the last column of A and
define it as the output vector). However in practice none of this should hinder
the performance of a BKW algorithm [BKW03]. Thus we make the heuristic
assumption that BKW performs here as it would on a standard LPN instance7.

In the end, we recover the masks si such that zi = 〈F |si〉. Before moving on to
the next stage of the attack, we go back to the earlier independence assumption.

Dependency Between the Four Products. In the reasoning above, we have
modeled the four bit products in Eq. 2 as independent binary random variables
with bias 2−1. That is, we assumed the four products would behave as:

Π = W1W2 + X1X2 + Y1Y2 + Z1Z2

where Wi,Xi, Yi, Zi are uniformly random independent binary variables. This
yields an expectancy E[Π] with bias 2−4. As noted above, this is not quite
accurate, and we now provide a more precise model that matches with our
experiments.

7 To the best of our knowledge, we have yet to see an LPN-like problem with a matrix A
on which BKW underperforms significantly compared to the uniform case, unless the
problem was specifically crafted for this purpose. The existence of multiple solutions
is also a notable difference in our case. However in a classic application of BKW with
a fast Fourier transform at the end, this only means that the Fourier transform will
output several solutions. Note that the dimension of the Fourier transform will be
close to 127/3 ≈ 42 [LF06], and we have only ≈ 214 solutions, so they are distinct
on their last 42 bits with very high probability.
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Since F y′
has degree two, (F y′

)′′ is a constant, dependent only on δ1 and δ2.
This implies that in the previous formula, we have W1+X1+Y1+Z1 = (F y′

)′′
i+1

and W2 + X2 + Y2 + Z2 = (F y′
)′′
i+2. To capture this, we look at:

E(c1, c2) = E[Π |W1 + X1 + Y1 + Z1 = c1,W2 + X2 + Y2 + Z2 = c2]

It turns out that E(0, 0) has a stronger bias, close to 2−3; while perhaps sur-
prisingly, E(a, b) for (a, b) �= (0, 0) has bias zero, and is thus not suitable for our
attack. Since G′′ is essentially random, this means that our technique will work
for only a fraction 1/4 of output bits. However, once we have recovered these
output bits, we can easily change δ1, δ2 to obtain a new value of G′′ and start
over to find new output bits.

After k iterations of the above process, a given bit at position i ≤ 127 will
have probability (3/4)k of remaining undiscovered. In order for all 103 unper-
turbed bits to be discovered with good probability, it is thus enough to perform
k = − log(103)/ log(3/4) ≈ 16 iterations.

In the end we recover all linear masks ai corresponding to unperturbed bits at
the output of the second χ layer; i.e. ai = ((Az)T)−1ei for 0 ≤ i < n−p. The ai’s
can then be ordered into a chain (a0, . . . , an−p−1) like in Sect. 5.1: neighbouring
ai’s are characterized by the fact that 〈F |ai〉〈F |ai+1〉 has degree 6. We postpone
distinguishing between (a0, . . . , an−p−1) and (an−p−1, . . . , a0) until Sect. 5.3.

Complexity Analysis. According to [LF06, Theorem 2], the number of samples
needed to solve an LPN instance of dimension 127 and bias 2−4 is N = 244

(attained by setting a = 3 and b = 43). This requires 4N = 246 encryptions.
Moreover the dominant cost in the time complexity is to sort the 244 samples a
times, which requires roughly 3 ·44 ·244 < 252 basic operations. Finally, as noted
above, we need to iterate the process 16 times to recover all unperturbed output
bits with good probability, so our overall time complexity is increased to 256

for BKW, and 250 encryptions to gather samples (slightly less with a structure
sharing some plaintexts between the 16 iterations).

5.3 Peeling Off the Remaining ASAS layers

Using either the algebraic attack from Sect. 5.1 or the LPN-based attack from
Sect. 5.2, we have recovered the ordered chain (a0, . . . , an−p−1) of linear masks
such that zi = 〈F |ai〉. More exactly we have recovered either (a0, . . . , an−p−1)
or (an−p−1, . . . , a0). For simplicity assume we have recovered (a0, . . . , an−p−1).
We will be able to distinguish between the two cases later on.

Essentially, this means we have peeled off the last affine layer Az — or more
accurately, its linear component, over the unperturbed bits. Note that we can-
not hope to recover Az over perturbed bits, as perturbed bits are by definition
uniformly random polynomials of degree 4, and a linear combination of uni-
formly random polynomials of degree 4 is still a uniformly random polynomial
of degree 4. In other words, the perturbation is essentially defined modulo affine
equivalence.
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We now move on to peeling off the remaining layers one by one. We point
out once again that all steps below have been verified experimentally.

Step 4: from ASAS to ASA. The next layer we wish to peel off is a χ layer,
which is entirely public. It may seem that applying χ−1 should be enough. The
difficulty arises from the fact that we do not know the full output of χ, but
only n − p bits. Furthermore, if our goal was merely to decrypt some specific
ciphertext, we could use other techniques, e.g. the fact that guessing one bit at
the input of χ produces a cascade effect that allows recovery of all other input
bits from output bits, regardless of the fact that the function has been truncated
[Dae95]. However our goal is different: we want to recover the secret key, not just
be able to decrypt messages. For this purpose we want to cleanly recover the
input of χ in the form of degree 2 polynomials, for every unperturbed bit. We
propose a technique to achieve this below.

From the previous step, we are in possession of (a0, . . . , an−p−1) as defined
above. Since by definition zi = 〈F |ai〉, this means we know zi for 0 ≤ i < n − p.
Note that y′

i has degree only 2, and we know that zi = y′
i + y′

i+1y
′
i+2. In order to

reverse the χ layer, we set out to recover y′
i, y

′
i+1, y

′
i+2 from knowledge of only

zi, by using the fact that y′
i, y

′
i+1, y

′
i+2 are quadratic.

This reduces to the following problem: given P = A+B ·C, where A,B,C are
degree-2 polynomials, recover A,B,C. A closer look reveals that this problem
is not possible exactly as stated, because P can be equivalently written in four
different ways as: A+B ·C, A+B +B ·C, A+C +B ·C, A + B + C +B ·C. On
the other hand, we assume that for uniformly random A,B,C, the probability
that P may be written in some unrelated way, i.e. P = C + D · E for C,D,E
distinct from the previous four cases, is overwhelmingly low. This situation has
never occurred in our experiments. Thus our problem reduces to:

Problem 1. Given P = A+B·C, where A,B,C are degree-2 polynomials, recover
degree-2 polynomials A′, B′, C ′ such that P = A′ + B′ · C ′.

Our previous assumption says A′ ∈ span{A,B,C, 1}; B′, C ′ ∈ span{B,C, 1}.
A straightforward approach to tackle this problem is to write B formally as
a generic degree-2 polynomial with unknown coefficients. This gives us k =
1 + n + n(n + 1)/2 ≈ n2/2 binary unknowns. Then we observe that B · P has
degree only 4 (since B2 = B). Each term of degree 5 in B · P must have a
zero coefficient, and thus each term gives us a linear constraint on the unknown
coefficients of B. Collecting the constraints takes up negligible time, at which
point we have a k × k matrix whose kernel is span{B,C, 1}. This gives us a
few possibilities for B′, C ′, which we can filter by checking that A′ = P − B′ ·
C ′ has degree 2. The complexity of this approach boils down to inverting a
k-dimensional binary matrix, which costs essentially 23k basic linear operations.
In our case this amounts to 239 basic linear operations. In the full version of this
article (cf. Sect. 1.3), we present a more elaborate, but faster algorithm to solve
Problem 1.
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At this point, we have essentially removed the first two ASASA layers (assum-
ing Cz = 0, but this actually has no impact up to this point). More work is
required to fully recover the layers, and analyze the remaining ASA layers. How-
ever the core of the attack is over. A detailed description of the remaining steps
to fully recover the remaining layers is provided in the full version of this article
(see Sect. 1.3).

6 A Practical Attack on White-Box ASASA

In this section we show that the actual security of small-block ASASA ciphers is
much lower than was estimated by Biryukov et al. We describe a procedure that
attempts to recover the secret components of the structure, thus breaking the
weak white-box security notion (Definition 2). Our algorithm relies rather heavily
on heuristics, and evaluating its efficiency requires actual implementation. We
focused on two instance, the 16-bit ASASA16 with claimed security of 64 bits
and the 20-bit ASASA20 with claimed security of 100 bits. A straightforward
implementation of our algorithm is able to recover the secret components of the
16-bit instance in under a minute and of the 20-bit instance in a few hours, when
running on a standard PC. We recall that the source code is publicly available
(see Sect. 1.3). For the remainder of the section, we implicitly use the 16-bit
instance when describing the attack.

6.1 Attack Overview

Our general black-box attack from Sect. 4 does not apply, because the block
size is too small to allow computing cubes of dimension 50. On the other hand,
the small block size makes it possible to compute the distribution of output
differences for a single input difference in very reasonable time. For instance,
one can compute and store the entire difference distribution table (DDT) of a
16-bit cipher in under a second using just a standard PC.

Remark 1. Our attack makes use of the full codebook of the ciphers, which in
general may be seen as a very strong requirement. This is however only natural in
the case of attacking white-box implementations, as the user is actually required
to be given the full codebook of the super S-boxes as part of the implementation.

From the results of Biryukov and Shamir [BS01], it is already enough to recover
only one of the external affine (or linear) layers in order to break the security
of ASASA. Indeed, this allows to reduce the cipher to either of ASAS or SASA,
which can then be attacked in practical time using their method. Thus we focus
on removing the first linear layer. In accordance with the opening remarks of
Sect. 4.1, this amounts to finding the image space of each S-box through (Ax)−1.

The general idea of the attack is to create an oracle able to recognize whether
an input difference δ activates one or two S-boxes in the first S-box layer Sx.
More accurately, we create a ranking function F such that F(δ) is expected to
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be significantly higher if δ activates only one S-box rather than two. We propose
two choices for F .

Both choices begin by computing the entire output difference distribution
D(δ) for the input difference δ, i.e. the row corresponding to δ in the DDT.
Then the value of F(δ) is computed from D(δ). Choices for F are heuristic, but
experiments show they are quite efficient. We now present our two choices for F .

Walsh Transform. The idea behind this version of the attack is quite intuitive.
If δ activates only one S-box, then after the first SA layers, two inner states
computed from any two plaintexts with input difference δ are equal on the output
of the inactive S-box. Hence after the first ASA layers, they are equal along 28−1
non-zero linear masks. Since these masks only traverse a single S-box layer before
the output of the cipher, linear cryptanalysis [Mat94] tells us that we can expect
some linear masks to be biased at the output of the cipher. On the other hand
if both S-boxes are active in the first round, no such phenomenon occurs, and
linear biases on the output differences are expected to be weaker.

In order to measure this difference, we propose to compute, for every output
mask a, the value f(a) = (

∑
x∈{0,1}16〈∂F∂δ(x)|a〉) − 215 (where the sum is

computed in Z). That is, 2−15f(a) is the bias of the output differences D(δ)
along mask a. The function f can be computed efficiently, since it is precisely
the Walsh transform of the characteristic function of D(δ), and we can use a fast
Fourier transform algorithm. Then as a ranking function F we simply choose
max(f), i.e. the highest bias among all output masks.

Number of Collisions. It turns out that performing the Walsh transform is
not truly necessary. Indeed, the number of collisions in D(δ) is higher when δ
activates only 1 S-box; where by number of collisions we mean 215 minus the
number of distinct values in D(δ). This may be understood as a consequence
of the fact that whenever δ activates a single S-box, only 27 output differences
are possible after the first ASA layers; and depending on the properties of the
active (random) S-box, the distribution between these differences may be quite
uneven. Whereas if both S-boxes are active, 215 differences are possible and the
distribution is expected to be less skewed. Thus we pick as ranking function F
the number of collisions in D(δ) in the previous sense.

Once we have chosen a ranking function F , we simply compute the ranking
of every possible input difference, sort the differences, and choose the highest 16
linearly independent differences according to our ranking. Our hope is that these
differences only activate a single S-box. In a second step, we will group together
differences that activate the same S-box. A more detailed description of the
attack, together with a discussion of the results, is provided in the full version
of this article (see Sect. 1.3).



Key-Recovery Attacks on ASASA 25

7 Conclusion

We presented a new algebraic attack able to efficiently break both the χ-based
public-key cryptosystem and the secret-key scheme of [BBK14]. In addition we
proposed another attack that heuristically reduces the key-recovery problem on
the χ scheme to an easy instance of LPN. In the case of the public-key scheme,
both attacks go through regardless of the amount of perturbation. For both
schemes, the attacks are quite structural (in the case of the black-box scheme, it
is in fact structural in the sense of [BS01]), and seem difficult to patch. Finally,
although the general attack on the black-box scheme does not carry over to the
small-block instances used for white-bow designs, we also showed a very efficient
dedicated attack on some of the small-block instances, casting a doubt on their
general suitability for that purpose.
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[GPT15] Gilbert, H., Plût, J., Treger, J.: Key-recovery attack on the ASASA cryp-
tosystem with expanding S-Boxes. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO
2015. LNCS, vol. 9215, pp. 475–490. Springer, Heidelberg (2015)

[HLY12] Huang, Y.-J., Liu, F.-H., Yang, B.-Y.: Public-key cryptography from new
multivariate quadratic assumptions. In: Fischlin, M., Buchmann, J., Manulis, M.
(eds.) PKC 2012. LNCS, vol. 7293, pp. 190–205. Springer, Heidelberg (2012)
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Abstract. The security of pairing-based crypto-systems relies on the
difficulty to compute discrete logarithms in finite fields Fpn where n is
a small integer larger than 1. The state-of-art algorithm is the number
field sieve (NFS) together with its many variants. When p has a special
form (SNFS), as in many pairings constructions, NFS has a faster vari-
ant due to Joux and Pierrot. We present a new NFS variant for SNFS
computations, which is better for some cryptographically relevant cases,
according to a precise comparison of norm sizes. The new algorithm is an
adaptation of Schirokauer’s variant of NFS based on tower extensions,
for which we give a middlebrow presentation.

Keywords: Discrete logarithm · Number field sieve · Pairings

1 Introduction

The discrete logarithm problem (DLP) in finite fields is a central topic in public
key cryptography. The case of Fpn where p is prime and n is a small integer
greater than 1, albeit less studied than the prime case, is at the foundation
of pairing-based cryptography. The number field sieve (NFS) started life as a
factoring algorithm but was rapidly extended to compute discrete logarithms in
Fp [19,20,33] and has today a large number of variants. In 2000 Schirokauer [34]
proposed the tower number field sieve (TNFS), as the first variant of NFS to
solve DLP in fields Fpn with n > 1. When n is fixed and the field cardinality
Q = pn tends to infinity, he showed that TNFS has the heuristic complexity
LQ(1/3, 3

√
64/9), where

LQ(α, c) = exp
(
(c + o(1))(log Q)α(log log Q)1−α

)
.

Schirokauer explicitly suggested that his algorithm might be extended to arbi-
trary fields Fpn with p = Lpn(α, c) and α > 2/3, while maintaining the same
complexity. Another question that he raised was whether his algorithm could
take advantage of a situation where the prime p has a special SNFS shape,
namely if it can be written p = P (u) for an integer u ≈ p1/d and a polynomial
c© International Association for Cryptologic Research 2015
T. Iwata and J.H. Cheon (Eds.): ASIACRYPT 2015, Part II, LNCS 9453, pp. 31–55, 2015.
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P ∈ Z[x] of degree d, with coefficients bounded by an absolute constant. By that
time, even for prime fields the answer was not obvious.

In 2006 Joux, Lercier, Smart and Vercauteren [21] presented a new variant
of NFS which applies to all finite fields Fpn with p = LQ(α, c) for some α ≥ 1/3
and c > 0, the JLSV algorithm. When α > 2/3, their variant has complex-
ity LQ(1/3, 3

√
64/9). The question of extending TNFS to arbitrary finite fields

became obsolete, because, in case of a positive answer, it would have the same
complexity as the JLSV algorithm.

In 2013 Joux and Pierrot [22] designed another variant of NFS which applies
to non-prime fields Fpn where p is an SNFS prime. Their algorithm has com-
plexity LQ(1/3, 3

√
32/9), which is the same as that of Semaev’s SNFS algorithm

for prime fields [35]. It shows that the pairing-based crypto-systems which use
primes of a special form are more vulnerable to NFS attacks than the gen-
eral ones. With this SNFS algorithm, the second question of Schirokauer lost its
appeal as well, because this is the complexity that one can expect if Schirokauer’s
algorithm can be adapted when p is an SNFS prime.

In 2014 Barbulescu, Gaudry, Guillevic and Morain improved the algorithm
in [21] and set a record computation in a field Fp2 of 180 decimal digits. However,
since their improvements do not apply to SNFS fields and since the algorithm
of Joux and Pierrot was never implemented, it is important to find a practical
algorithm for this case.

In this work, we wish to rehabilitate Schirokauer’s TNFS algorithm. First,
we show that indeed, the heuristic complexity carries over to the expected range
of finite fields. In order to make this analysis, we restate the original TNFS with
less technicalities than in the original presentation, taking advantage of tools
that were invented later (virtual logarithms).

We also show that for extension fields based on SNFS primes, the complexity
of TNFS drops as expected to LQ(1/3, 3

√
32/9).

Finally, going beyond the asymptotic formulae, we compute estimates that
strongly suggest that TNFS is currently the most efficient algorithm for solving
discrete logarithms in small degree extensions of SNFS prime fields, like the ones
arising naturally in several pairing constructions.

Outline. After a brief description of Schirokauer’s TNFS algorithm in Sect. 2,
we present it with sufficiently many details to get a proper asymptotic analysis
in Sect. 3. In Sect. 4, several variants are described and analyzed, in particular
the SNFS variant. This is followed, in Sect. 5 by more precise estimates for
cryptographically relevant sizes and comparisons with other methods. Further
technicalities about TNFS are given in an appendix; these are mostly details that
could be useful for an implementation but which do not change the complexities.

2 Overview of TNFS

To fix ideas, we consider the case of “large” characteristic, so that we target
fields FQ with Q = pn so that p = LQ(α, c) for some constants α > 2/3 and
c > 0.
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Pohlig and Hellman explained how to retrieve the discrete logarithm modulo
the group order N from the value of the discrete logarithms modulo each prime
factor � of N . Furthermore, Pollard’s rho algorithm allows to compute discrete
logarithms for small primes. Hence it is enough to explain how to use NFS
to compute discrete logarithms modulo prime factors � of #F

∗
pn larger that

Lpn(1/3, c) for some c > 0.
A classical variant of the NFS algorithm, e.g. one of the variants used for

factoring and DLP in prime fields, would involve two irreducible polynomials f
and g in Z[x] which have a common irreducible factor of degree n modulo p.
Here, in TNFS, we consider two polynomials f and g defined over a ring R
which is of the form R = Z[t]/(h(t)) for a monic irreducible polynomial h of
degree n. We ask furthermore that h remains irreducible modulo p, so that there
is a unique ideal p above p in R. Finally, we require that f and g are irreducible
over Q[t]/(h(t)) and have a common root modulo p in R.

(ι)

Kf Kg

h

f g

In the rest of the article, we denote by Kf the number field
Kf defined by f , and by Kg the one defined by g. Also we write
Q(ι) for the number field defined by h, so that Kf and Kg are
as in the figure aside.

The conditions imposed on f , g and h are such that there
exist two ring homomorphisms from R[x] to R/p = Fpn , one
going through R[x]/f(x), and the other through R[x]/g(x), and
for any polynomial in R[x], the resulting values in Fpn coincide,
so that we get a commutative diagram as in the classical NFS
algorithm. In Fig. 1, we recall this diagram, where we have denoted by αf (resp.
αg) a root of f (resp. of g) and by m the common root of f and g modulo p
in R. These notations will be used all along the article.

Among the constructions that we tried, the best one uses polynomials f and
g with coefficients in Z, so that Kf and Kg can also be seen as compositum of
two fields. If one could find a construction where f and g have coefficients in R
one might find a faster algorithm. In any case, it is interesting to consider f and

R[x]

Kf ⊃ R[x]/〈f(x)〉 R[x]/〈g(x)〉 ⊂ Kg

R/pR = pn

αf �→ m
R �→ R mod p

αg �→ m
R �→ R mod p

Fig. 1. Commutative diagram of TNFS for discrete logartihm in Fpn . In the classical
case, R = Z; here R = Z[ι] is a subring of a number field of degree n where p is inert.



34 R. Barbulescu et al.

g as polynomials in R[x], since this makes it easier to follow the analogy with
the classical NFS.

Once this setting is done, the TNFS algorithm proceeds as usual. For many
polynomials a(ι) − b(ι)x in R[x], we consider their two images in R[x]/f(x)
and R[x]/g(x), and test them for smoothness as ideals. Each time the images
are simultaneously smooth, we can write a relation: modulo the usual compli-
cations with principality defects and units that can be handled with the help
of Schirokauer maps, it is possible to convert a relation into a linear relation
between virtual logarithms of the factor base elements. Then follows a sparse
linear algebra step to deduce the values of these virtual logarithms. And finally,
the logarithm of an individual element of Fpn can be computed using a descent
step.

In the next section, we will enter into details, define more precisely the factor
base elements and the associated smoothness notion, and estimate the size of
the objects involved in the computation.

3 Detailed Description and Analysis

3.1 Polynomial Selection

In the overview of the previous section, nothing is said about the respective
degrees of f and g. In fact, there is some freedom here, and we could in principle
have balanced degrees and use for instance the algorithm of [20] or we can use a
linear polynomial g, both methods leading to the same asymptotic complexity.
The only difference comes in the individual logarithm stage. In order to keep
the exposition short, we will only present this stage in the case where g is linear,
but in practice one must take the one which minimizes the overall time.

To fix ideas, we take a linear polynomial g and a polynomial f with a degree
of the form

deg f = d = δ (log Q/ log log Q)1/3,

where the constant δ is to be fixed later, so that f and g have a common root
modulo p. They can be obtained by a simple base-m algorithm applied to p,
yielding coefficients for f and g of size

‖f‖∞ ≈ ‖g‖∞ ≈ p1/(d+1),

where the infinite norm of a polynomial with integer coefficients denotes the
infinite norm of the vector formed with the coefficients of a polynomial.

In practice, instead of a näıve base-m approach, one can use any of the
methods known for the polynomial selection of NFS, when tackling prime fields
or integer factorization [3,4,13,23,24].

What is left is to select a polynomial h of degree n with small coefficients
which is irreducible modulo p. This is done by testing polynomials with small
coefficients and, heuristically, we succeed after n trials, on average, because the
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proportion of irreducible polynomials modulo p is ≈ 1/n. As we will explain
later, rather than having the polynomial h with the smallest coefficients, we
might prefer some polynomial with slightly larger coefficients but with the addi-
tional property that the Galois group of h is cyclic of order n. For this, we test
polynomials in families with a cyclic Galois group; for example Foster [17] gives
a list of such families when deg h = 2, 3, 4, 5 or 6.

If one is interested in rigorous results and not in the most efficient polyno-
mials, then one can give a proof of existence based on Corollary 10 given in the
Appendix. Indeed, using cyclotomic fields one provably finds h with coefficients
upper bounded by (AnB log(pn)C)n for some effective constants A, B and C.

3.2 Relation Collection

In the top of the diagram of Fig. 1 one usually takes a − bx with a, b ∈ R.
However, in the most general version of NFS one considers polynomials in R[x]
of arbitrary degrees; this is in particular necessary for the medium characteristic
case [21]. In our study, we did not find any case where it was advantageous to
consider polynomials of degree more than 1. Therefore we stick to the traditional
(a, b)-pairs terminology for designating a linear polynomial a(ι) − b(ι)x in R[x]
that we consider as a candidate for producing a relation.

Ideals of Degree 1. In our case, just like in the classical NFS, only ideals of
degree 1 can occur in the factorizations of the elements in the number rings
(except maybe for a finite number of ideals dividing the discriminants). This is,
of course only true when thinking in the relative extensions; we formalize this in
the following proposition that holds for f , but is also true for g if it happens to
be non-linear.

Proposition 1. Let Q(ι) be a number field and let Oι be its ring of integers.
Let f be a monic irreducible polynomial in Oι[x], and denote by α one of its
roots. We denote by Kf = Q(ι, α) the corresponding extension field, and Of its
ring of integers.

If q is a prime ideal of Oι not dividing the index-ideal [Of : Oι[α]], then the
following statements hold.

(i) The prime ideals of Of above q are all the ideals of the form

Q = 〈q, T (α)〉,
where T (x) are the lifts to Oι[x] of the irreducible factors of f in Oι/q[x].
Moreover degQ = deg T .

(ii) If a(t), b(t) ∈ Z[t] are such that q divides NKf /Q(ι)(a(ι)−b(ι)α) and a(ι)Oι+
b(ι)Oι = Oι, then the unique ideal of Of above q which divides a(ι) − b(ι)α
is Q = 〈q, α − r(ι)〉 with r ≡ a(ι)/b(ι)(mod q).

Proof. (i) This is Proposition 2.3.9 of [14].

(ii) Let Q = 〈q, T (α)〉 be a prime ideal of K above q that divides a(ι)−b(ι)α. If
Q divides b(ι) then it also divides a(ι), and therefore we have a contradiction with
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the condition a(ι)Oι + b(ι)Oι = Oι. Therefore we can simplify valQ(a(ι)− b(ι)α)
by dividing out by b(ι):

valQ(a(ι) − b(ι)α) = valQ(b(ι)) + valQ(a(ι)/b(ι) − α) = valQ(α − r(ι)).

This expression is non-zero only when Q = 〈q, α − r(ι)〉, which proves the state-
ment.

Note that the coprimality condition is similar to the one we have in the classical
case, and the proportion of coprime pairs is

∏

q prime ideal in Q(ι)

(

1 − 1
N(q)2

)

=
1

ζQ(ι)(2)
,

replacing 1/ζQ(2) in the classical variant.

Factor Base. The consequence of this result is that we keep only the degree 1
ideals in the factor bases for each side. With the same notations as above, and
for a smoothness bound B, we define the factor base for f by

Ff (B) =
{

prime ideals of Of , coprime to Disc(Kf ), of norm less than B,
whose inertia degree over Q(ι) is one

}

.

We define Fg(B) similarly; if g is linear this is just the set of prime ideals of
Oι

∼= Og of norm less than B. Prime ideals that divide the ideal-index [Of :
Oι[α]] are not covered by Proposition 1, and can still occur in the factorization
of (a(ι)−b(ι)α). Moreover, since the index-ideal cannot be computed effectively,
we consider together all the ideals above Disc(f) and above the leading coefficient
of f . We denote them by Df on the f -side, and Dg on the g-side. The cardinalities
of these sets are bounded by a polynomial in log Q. Since Proposition 1 cannot
be used for detecting which elements of Df divide (a(ι) − b(ι)α), we have to use
general algorithms, and again, we refer to [14].

Finally, we join the two factor bases and these exceptional ideals in the global
factor base defined by

F = Ff (B) ∪ Fg(B) ∪ Df ∪ Dg.

We note that, as usual, the parameter B will be chosen of the form B =
LQ(1/3, β), for a constant β to be fixed later.

By the prime ideal theorem, the number of prime ideals in Q(ι) of norm
less than B is B

log B (1 + o(1)). Using Chebotarev’s density theorem, the average
number of roots of f (resp. g) modulo a random prime ideal q is one. Hence the
cardinality of the factor base is

#F =
B

log B
(2 + o(1)),

which is similar to its value in the classical variant of NFS. As usual, in the
complexity analysis, we approximate #F by the quantity LQ(1/3, β), since
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polynomial-time factors are, in the end, hidden in the o(1) added to the exponent
constant.

Finding Doubly-smooth (a, b)-pairs. Among various choices for the shape of
the a(t) and b(t) polynomials that we tried, the one giving the smallest norms is
that where a and b are of maximal degree, n− 1, and for which their coefficients
are all of more or less the same size.

Let us denote by A a bound on these coefficients of a(t) and b(t). In the end,
it will be chosen to be just large enough so that we get enough relations to get
a full-rank system by browsing through all the possible coprime (a, b)-pairs of
degree at most n − 1 fitting this bound.

In order to estimate the probability that an (a, b)-pair gives a relation, the
first step is to bound the size of the absolute norms on the f - and the g-side.
The main tool is the following bound on the resultant.

Theorem 2 [10, Thm 7]. If f, g ∈ C[c] have degree df and dg, then

|Res(f, g)| ≤ ‖f‖dg∞‖g‖df∞ (df + 1)dg/2(dg + 1)df /2.

We can now give the formula for the bound on the norm. We write it with the
notations of the f -side, but it applies also to the g-side, after replacing the degree
d by 1.

Theorem 3. Let h and f be monic irreducible polynomials over Z of respective
degrees n and d. Let K be the compositum of the number fields defined by h and
f , and let ι and αf be roots in K of h and f , respectively.

Let a(t) and b(t) be two polynomials of degree less than n and with coefficients
bounded by A. Then, the absolute norm of the element a(ι) − b(ι)αf of K is
bounded by

|NK/Q (a(ι) − b(ι)αf ) | < And‖f‖n
∞‖h‖d(n−1)

∞ C(n, d), (1)

where C(n, d) = (n + 1)(3d+1)n/2(d + 1)3n/2.

Proof. We have NK/Q = NQ(ι)/Q ◦NK/Q(ι) and, since f is monic, we get

NK/Q (a(ι) − b(ι)αf ) = NQ(ι)/Q

(
F (a, b)

)
,

where F (a, b) =
∑

i∈[0,d] fia(t)ib(t)d−i. The i-th term of this sum is a product
of fi and of d factors that are polynomials of degree less than n. Each term of
the sum is therefore a polynomial of degree less than or equal to d(n − 1) with
coefficients bounded by ‖f‖∞Adnd. Therefore, we have

‖F (a, b)‖∞ ≤ (d + 1)‖f‖∞Adnd.

Finally, since h is monic, we have NQ(ι)/Q(F (a, b)) = Res (h, F (a, b)) , and we
can apply Theorem 2 to get the following upper bound:

NQ(ι)/Q(F (a, b)) ≤ ‖F (a, b)‖n
∞‖h‖d(n−1)

∞ (n + 1)d(n−1)/2(d(n − 1) + 1)n/2

< ‖h‖d(n−1)
∞ And‖f‖n

∞(d + 1)
3
2n(n + 1)

(3d+1)n
2
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If the polynomials f , g or h are not monic, the theorem does not apply, since
the element a(ι)−b(ι)αf is not an integer anymore. However, the denominators,
that are powers of the primes dividing the leading coefficients are under control
in term of smoothness (it suffices to add a few prime ideals in the factor bases).
And in fact, the quantity based on resultants computed in the proof of the
theorem is the one that is really used for smoothness testing. Therefore, the
monic hypothesis is not a restriction, and is just there to avoid technicalities.

It remains to plug-in ‖h‖ = O(1) and the bounds for ‖f‖∞ and ‖g‖∞ coming
from our choice of polynomial selection and we get:

NKf /Q(a − bαf ) ≤ (And‖f‖n
∞)1+o(1) = (EdQ1/(d+1))1+o(1), (2)

and

NKg/Q(a − bαg) ≤ (An‖g‖n
∞)1+o(1) = (EQ1/(d+1))1+o(1), (3)

where we have set E = An, so that the quantity of pairs that are tested is E2,
just like in the classical NFS analysis. It is to be noted that the contribution of
C(n, d) remains negligible. Indeed, it would reach a value of the form LQ(2/3),
only when n gets larger than an expression of the form (log Q/ log log Q)1/3,
which is not the case, since we ask that p is larger than any expression of the
form LQ(2/3). It is worth noticing that the expressions for the norms are the
same as for the prime field case, where Q = p.

3.3 Writing and Solving Linear Equations

Mapping a factorization of ideals to a linear combination of logarithms is not
immediate unless the ring is principal and there are no units other than ±1; both
things are highly unlikely since the fields Kf and Kg have large degrees over Q.
Therefore, we have to resort to the notion of virtual logarithms, just like in the
classical case.

For this, it is easier to work with absolute extensions. Then, we can use the
same strategy as in Sect. 4.3 of [21], that we summarize in the following theorem
which can be applied to Kf and Kg.

Theorem 4 ([21, Section 4.3]). Let K = Q(θ) be a number field and P a non-
ramified ideal of its ring of integers OK , with residual field isomorphic to Fpn in
which we fix a generator t. Let � be a prime factor of pn − 1 and let U = {x ∈
K | ∀L above �, valL(x) = 0}.

We assume that there exists a Schirokauer function, i.e. an injective group
homomorphism λ = (λ1, . . . , λr) : (U/U �, ·) → (Z/�Z,+)r, where r is the unit
rank of OK .

Assuming furthermore that � neither divides the class number of K nor its
discriminant, the following holds.

There exists a map log : {ideals of OK coprime to P} → Z/�Z and a map
χ : {1, . . . , r} → Z/�Z called virtual logarithms, so that, for all φ ∈ Z[x], such
that φ(θ) is in U and coprime to P, we have
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logt φ(θ)
P

=
∑

Q prime ideal

valQ(φ(θ)) logQ +
r∑

j=1

λj(φ(θ))χj , (4)

where φ(θ)
P

is the projection of φ(θ) in the residual field Fpn of P.

In [33], Schirokauer explained how to construct an explicitly and efficiently
computable map λ as in the theorem and brought heuristics to support the
assumptions. These heuristics and the fact that the other hypothesis of the
theorem are expected to be true rely on the condition that � is not too small.
These are the main reasons why we asked that � grows at least like LQ(1/3) in
the beginning.

For each (a, b)-pair that gives two smooth ideals in Kf and Kg, the element
a(ι) − b(ι)αf can be expressed in the absolute representation of Kf = Q(θf ) by
a polynomial form φf (θf ), and similarly a(ι) − b(ι)αg can be written φg(θg) in
Kg = Q(θg). We refer for instance to [14] for algorithms to manipulate relative
extensions as absolute extensions. Then, applying Theorem 4 to φf in Kf and
φg in Kg, we obtain two linear expressions that must be equal, since they both
correspond to the logarithm of the same element in Fpn .

As a consequence, each relation is rewritten as a linear equation between the
virtual logarithms of the elements of the factor base and the χj for each field.
We make the now classical heuristic that collecting roughly the same number
of relations as the size of the factor base (say, a polynomial factor times more),
then the linear system obtained in such a manner has a kernel of dimension
one. A vector of this kernel is computed using Wiedemann’s algorithm [36] in a
quasi-quadratic time B2+o(1). This gives the logarithms of all the ideals in the
factor base.

3.4 Overall Complexity of the Main Phase

From the previous sections, we can now conclude about the complexity of the
main steps of the algorithm. In fact, with our choice for the polynomial selection,
and the kind of (a, b)-pairs that we test for smoothness, we have obtained exactly
the same expressions for the sizes of the norms as in the usual NFS complexity
analysis for prime fields, and in particular the same probability Prob that the
product of the norms is smooth. Also, since the linear algebra step is also similar,
the final complexity is the same: we have then to minimize B2 + E2 subject to
the condition E2 · Prob ≥ B1+o(1), and we refer for example to Conjecture 11.2

of [13]. Hence, the optimal values of the parameters are E = B = LQ(1/3, 3

√
8
9 )

and d = 3
√

3( log Q
log log Q )1/3, and the heuristic complexity of the main phase of

TNFS is LQ(1/3, 3

√
64
9 ).

3.5 Individual Logarithms

Let s be an element of F∗
pn for which we want to compute the discrete logarithm.

If s is very small, then it factors into ideals of the factor base, and its logarithm
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is easily retrieved. However, in general, this requires a 2-phase process that is
not so trivial, although negligible compared to the other steps.

First, in what we call a smoothing phase, the element s is randomized and
tested for B1-smoothness with the ECM algorithm. The bound B1 will be of the
form LQ(2/3), so that the cost of the smoothing test is in LQ(1/3).

Thereafter, each prime ideal Q which is not in the factor base is considered
as a special-q and we search for a relation involving Q and other smaller ideals.
Continuing recursively, we get a special-q descent tree, from which the logarithm
of s can be deduced.

Smoothing. The randomization is simple: we compute z = se in Fpn for random
values e, and test z for smoothness. The logarithm of s is just the logarithm of
z divided by e modulo �.

To be more precise, the smoothness is not tested for the element z as an
element of the finite field, but as the corresponding element in Kg. Indeed, in
our construction, z ∈ Fpn is represented by a polynomial of degree less than
n with coefficients modulo p. Lifting these coefficients to integers, we obtain a
polynomial which makes sense modulo h(t), therefore an element of Q(ι) = Kg

(this is where we use that g is linear). As usual, to test the smoothness of z as an
element of Q(ι), we test the smoothness of its norm as an integer. Using again
the estimate of Theorem 3, the size S of this norm is Q1+o(1).

The bound B1 can then be optimized w.r.t. this only step, like in the classical
NFS: if this is too small, the probability of being smooth is too small, while if it is
too large, the cost of testing the smoothness by ECM is prohibitive. The analysis
is the same as in [15] and gives a value B1 = LQ(2/3, ( 13 )1/3); the corresponding
cost for the smoothing phase is LQ(1/3, 31/3).

After the smoothing phase, the logarithm of s has been rewritten in terms
of the logarithms of small prime ideals of Kg for which the logarithm is already
known, and some largish prime ideals of Kg, of norm bounded by B1. The next
step is to compute the logarithms of these largish ideals.

Descent by Special-q. As in NFS, the algorithm is recursive: if Q is a prime
ideal of degree one in Kf (respectively Kg), then we write logQ as a formal
sum of virtual logs of ideals Q′ of Kf and Kg with norm less than N(Q)c, for
a positive parameter c < 1. For this, we consider the lattice of (a, b)-pairs for
which Q divides the element a − bαf (resp. a − bαg). A basis for this lattice
can be constructed and LLL-reduced. Small combinations of these basis vectors
are then formed and the norms of the corresponding (a, b) pairs are tested for
N(Q)c-smoothness. We refer to Appendix 7.1 for the description of this special-q
lattice technique, that is also used in practice during the collection of relations
in the main stage. When a relation is found, this gives a new node in the descent
tree, the children of it being the ideals of the relations that are still too large to
be in the factor base. The total number of nodes is quasi-polynomial.

The cost of each step is determined by the size of N(a(ι) − αfb(ι)) (resp.
N(a(ι) − αgb(ι))) which are tested during the computations. The matrix MQ of
the basis of the lattice has determinant detMQ = N(Q), so a short vector in the
LLL-reduced basis has coordinates of size ≈ N(Q)1/(2n). We make the heuristic
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assumption that all the vectors of the reduced basis, (a(k), b(k)) for k = 1, . . . , 2n,
have coordinates of the same size. The pairs (a, b) tested for smoothness are
linear combinations (a, b) =

∑2n
k=1 ik(a(k), b(k)) where ik are rational integers

with absolute value less than a parameter A′, we set E′ = (A′)n. By Theorem 3,
the size of the norms tested for smoothness is

NKf /Q(a − bαf ) ≤ (max(‖a‖∞, ‖b‖∞)nd‖f‖n
∞)1+o(1) = (N(Q)d/2(E′)dQ1/d)1+o(1),

NKg/Q(a − bαg) ≤ (max(‖a‖∞, ‖b‖∞)n‖g‖n
∞)1+o(1) = (N(Q)1/2E′Q1/d)1+o(1).

These expressions coincide with the ones in the analogous stage of the classical
variant (for example in Equation (7.11) in [5]) and we obtain a complexity of
LQ(1/3, 1.1338...) which is the same as in the classical case [15]. We conclude that
the overall complexity of individual logarithm is dominated by the LQ(1/3, 31/3)
complexity of the smoothing test.

4 Variants

Note on the Boundary Case. TNFS can be applied to the boundary case
p = LQ(2/3, cp), cp > 0, where one obtains a complexity LQ(1/3, c). The con-
stant c is strictly larger then 3

√
64/9 as the factor C(n, d) in Eq. (1) is not

negligible any more. Yet, for some values of cp, TNFS overcomes the method
of [21], which was state-of-art until recently. Using the generalized Joux-Lercier
method, the authors of [6,7] reduced the constant c to (64/9)1/3 ≈ 1.92 and
Pierrot [31] showed that a multiple fields variant allows to further reduce c to
≈ 1.90. Therefore, we do not reproduce here the tedious computations of the
complexity in the boundary case.

The Case of Primes of Special Form (SNFS). Given a positive integer
d, an integer p, not necessarily prime, is said to be a d-SNFS integer if it can
be written as p = P (u) for some integer u ≈ p1/d and a polynomial P ∈ Z[x]
such that ‖P‖∞ is small (say, bounded by a constant). We remark that when
a number is SNFS, then there can be several valid choices for d and P . This is
typically the case for integers of the form 2k + ε, for tiny ε.

When solving DLP in fields Fpn for d-SNFS primes p, we can follow the
classical SNFS construction [27] and set f(x) = P (x) and g(x) = x − u, which
is possible since f and g share the root u modulo p.

When evaluating the sizes of the norms, Eq. (2) can be restated with ‖f‖∞ =
O(1), so we obtain the following bound:

NKf /Q(a − bαf )NKg/Q(a − bαg) ≤ (Ed+1Q1/d)1+o(1). (5)

Following the analysis of Semaev [35], we obtain that if the degree d can be

chosen to grow precisely as d = 3

√
3
2

(
log Q

log log Q

)1/3, then the overall complexity of
SNFS is the same as that of factoring numbers from the Cunningham project,

namely LQ

(
1/3, 3

√
32
9

)
.
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Using Multiple Number Fields (MNFS). Given a choice of polynomials f
and g selected as in the first step of TNFS, one can construct a large number
of polynomials fi which share with f and g the root m modulo p. The idea
goes back to Coppersmith’s variant of NFS for factorization [16] and has been
used again in [8,28] and [31]. Let V be a parameter of size LQ(1/3, cv) for some
constant cv > 0. For all μ(t) and ν(t) ∈ Z[t] so that deg μ,deg ν ≤ n − 1 and
‖μ‖∞, ‖ν‖∞ ≤ V 1/(2n), we set

fμ,ν = μ(ι)f + ν(ι)g, (6)

keeping only those polynomials that are irreducible (most of them are, so we
expect that the correcting factor on the bounds for ‖μ‖∞ and ‖ν‖∞ are only
marginally adjusted). Let us denote by Kfμ,ν

the number field generated by fμ,ν

over Q(ι), and call αμ,ν a root of fμ,ν in its number field. For any pair (μ, ν) as
above and (a, b) in the sieving domain, by Theorem 3 we have

NKμ,ν (a − αμ,νb) ≤ And(V 1/(2n)‖f‖∞)n‖h‖nd
∞ C(n, d) = (V 1/2EdQ1/d)1+o(1). (7)

In the multiple number field sieve a relation is given by a pair (a, b) in the
sieving domain and a polynomial fμ,ν from the set constructed above so that
NKg/Q(a − bαg) is B-smooth and NKfμ,ν

(a − bαμ,ν) is B/V -smooth. We use as
factor base the set

F =
( ⋃

μ,ν

Ffμ,ν
(B/V )

) ⋃
Fg(B).

We collect relations as in Coppersmith’s modification: collect pairs (a, b) in the
sieving domain and keep only those for which NKg/Q(a−αgb) is B-smooth. Then,
for each surviving pair (a, b) we use ECM to collect polynomials fμ,ν such that
NKfμ,ν /Q(a − αμ,νb) is B/V -smooth.

We choose parameter E so that the number of collected pairs exceeds 2B,
which is an upper bound on #F . The same considerations as in [16] allow
us to find the optimal parameters: V = LQ(1/3, 1 − (

√
13−1
3 )1/3), E = B =

LQ(1/3, ( 46+13
√
13

108 )1/3) and d = δ(log Q/ log log Q)1/3 where δ = (32−2
√
13

9 )1/3;
the complexity of the multiple field variant of TNFS is LQ(1/3, ( 92+26

√
13

27 )1/3).

Automorphisms. Joux, Lercier, Smart and Vercauteren [21] proposed an
improvement based on the field automorphisms of the number fields occurring
in NFS. A recent preprint proves (a reformulation of) the following result:

Theorem 5 (Theorem 3.5(i) of [6]). Let σ be a field automorphism of K/Q.
Assume that P is a prime ideal of K above p such that σP = P. Fix a prime �
dividing N(P) − 1, coprime to the class number and the discriminant of K. Fix
a generator t of the residual field of P and, for any prime ideal Q, denote by
logQ the virtual logarithm of Q with respect to t and a set of explicit generators
so that γσ(Q) = σ(γQ). Then, there exists a constant κ ∈ [0, ord(σ) − 1] such
that for any Q we have

log(σQ) ≡ pκ log(Q) mod �.
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In Sect. 3.1 we noted that one might find ι so that Q(ι)/Q has n automor-
phisms over Q. All these automorphisms can be used to speed-up computations,
using the following result.

Corollary 6. Let σ be an automorphism of Q(ι)/Q and call σ̃ the unique field
automorphism of Kf such that σ̃(ι) = σ(ι) and σ̃(αf ) = αf . Assume that f has
small coefficients so that virtual logarithms are defined using explicit generators.
Then, there exists κ ∈ [0, ord(σ)− 1] such that, for all prime ideals Q of Kf , we
have

log(σ̃Q) ≡ pκ logQ mod �.

Proof. The only non-trivial condition, σ̃Pf = Pf , is tested directly:

σ̃Pf = σ̃〈pZ[ι], αf − m〉 = 〈σ̃(p)Z[ι], σ̃(αf ) − σ̃(m)〉 = 〈pZ[ι], αf − m〉 = Pf .

According to [7], automorphisms allow us to sieve n times faster and to speed-
up the linear algebra stage by a factor n2. Note that, contrary to the classical
variant of NFS where automorphisms were available only for certain values of n,
TNFS has no restrictions.

5 Comparison for Cryptographically Relevant Sizes

The complexity of NFS and its many variants is written in the form C1+o(1),
which can hide large factors, and therefore we cannot decide which variant to
implement based only on asymptotic complexity. We follow the methodology
of [7, Section 4.4] and do a more precise comparison by evaluating the upper
bound on the size of the integers which are tested for smoothness: the product
of the norms with respect to the two sides. In particular, we make explicit the
negligible terms of Eqs. (2) and (3) using Theorem 3.

5.1 The Case of General Primes

When p is not an SNFS number, we compare TNFS to the algorithm of Joux,
Lercier, Smart and Vercauteren(JLSV) [21]. From Eqs. (2) and (3) we find a
formula for the logarithm of the product of the norms in TNFS:

CTNFS = (d + 1) log2 E +
2

d + 1
log2 Q = CNFS,

where d = deg f can be chosen as desired (unlike the SNFS variant of the
algorithm where d might be imposed by the shape of p). It is remarkable that
this formula is the same as for NFS in the integer factorization case.

Since the JLSV algorithm comes with a variety of methods of polynomial
selection, we cannot give a unified formula for the size of norms’ product, so we
use the minimum of the formulae in [7]. Therefore, in the following, when we say
JLSV, this covers both variants explained in [21] as well as the Conjugation and
Generalized Joux-Lercier methods. The choice of the parameter E depends on
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Fig. 2. Comparison of TNFS (in black) and the best variant of JLSV algorithm
(in dashdotted blue). Vertical axis: bitlength of the norm’s product; horizontal axis:
bitlength of pn (Color figure online).

the size of the norms, but for a first comparison we can use the default values of
CADO-NFS [7, Table 2].

In Fig. 2 we compare TNFS to JLSV when p is a general prime (not SNFS),
for a range 400 ≤ log2 Q ≤ 1000. We conclude that in this range, when n ≥ 5,
TNFS is competitive and must be kept for an even more accurate comparison.

5.2 The Case of Primes of Special Shape (SNFS)

The Importance of the d Parameter. If we want to compute discrete log-
arithms in a field Fpn such that p is d-SNFS for a parameter d, then the first
question to ask is whether to use a general algorithm like TNFS and JLSV or
a specialized variant of these two, namely the SNFS variant of TNFS that we
denote STNFS or the Joux-Pierrot algorithm.

When d = 6 we can rely on a real-life example: Aoki et al. [2] factored a
1039-bit integer with SNFS, using sextic polynomials, i.e. d = 6. The current
record, hold by Kleinjung et al. [26], was obtained with a MNFS variant and
targeted d-SNFS integers for d = 8. Their computations were much faster than
the evaluated time to factor a 1024-bit RSA modulus, so it is safe to say that
SNFS is the best option when log2 Q ≈ 1024 and d = 6 or when d = 8 for slightly
larger targets. However, the value of d is fixed in most cases and can take very
different values among curves used in pairing-based crypto-systems, going from
d = 2 for MNT curves [29] to d = 56 in other constructions [18, Table 6.1],[30].
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If the polynomial P such that p = P (u) has a special shape, one can try to
reduce the value of d using techniques from the Cunningham project records.
On the one hand, if P = T (xa) with T ∈ Z[x] and a ∈ N, we can also write
p = T (v) with v = ua, so p is (deg T )-SNFS. This technique can be used for
example in the construction of Brezing-Weng [12, Section 3, item 3(b)] where
P (x) = μa2 + νb2 for some small constants μ and ν and where a, b ∈ Z[x5]
have degree 5 and respectively 15; we replace P of degree 30 by a polynomial of
degree 6.

On the other hand, a construction of Freeman, Scott and Teske [18, Con-
struction 6.4] allows to divide the degree by 2. Indeed, in that case the poly-
nomial P is almost a palindrome, in the sense that it can be written as
P (x) = 1

4x(deg P )/2T (x − 1
x ) with T ∈ Z[x]. Then we select f = T (x) and

g = ux − (u2 − 1), which share the root u − 1
u modulo p and are so that

‖f‖∞ = O(1) and ‖g‖∞ = p1/ deg f .

Modeling. A good comparison requires a precise estimation of the norms. How-
ever, several factors in Eq. (1) can be negligible in some cases but can also be
very large in the others:

negligible factors = C(n, d)‖f‖n
∞‖h‖d

∞.

The factor C(n, d) is itself a bad estimation of the number of terms in the
Sylvester discriminant, which can vary between 6 bits for n = 2 and d = 3 to 15
bits for n = 5 and d = 6. This determines us to restrict to n ≤ 5 and d ≤ 6. The
factor ‖f‖n

∞ equals 1 if ‖f‖∞ = 1 but can be as large as 262 when n = 12 and
‖f‖∞ = 36. Hence, it is impossible to plot the size of the norms for all SNFS
numbers, independently of the polynomial f .

For our modeling, we consider the case ‖f‖∞ = ‖h‖∞ = 1 and neglect
the combinatorial factor C(n, d) for small values of n and d. From Eq. (5) the
dominant factor in the product of the norms for STNFS is

CSTNFS(n, d) = log(Ed+1) + log(Q1/d).

Note again that this formula is the same as that of the complexity of the factoring
variant of SNFS.

The product of the norms in the Joux-Pierrot algorithm is bounded by
(n + 1)2t(log n)nd E2n(d+1)/t Q(t−1)/(nd) (discussion preceding Eq. (5) in [22]),
and for the comparison we keep only the logarithm of most important factors:

CJP(n, d, t) =
2n

t
log(Ed+1) +

t − 1
n

log(Q1/d).

Let us see two examples in which we tackle fields of about one kilobit, for
which we use the approximation log2 E = 30.4, as in [2].

A First Example. We target a 1024-bit field Fp2 for a 6-SNFS prime p and we
set the parameters equal to their value in the computation of Aoki et al. If one



46 R. Barbulescu et al.

chooses to forget that p has a special shape and uses JLSV with conjugation
method, then the product of the norms has bitsize ≈ 439. If instead one uses the
special shape of p, the product of the norms for STNFS has bitsize CSTNFS(n =
2, d = 6) ≈ 386, while the best parameters for the Joux-Pierrot algorithm yield
CJP(n = 2, d = 6, t = 3) ≈ 457. A probabilistic experiment suggests that our
model is quite precise, as the negligible factors do not add more than 6 bits.

Barreto-Naehrig. The elliptic curves proposed by Barreto and Naehrig [9] cor-
respond to finite fields of parameters n = 12 and d = 4. We tackle a field of
1024-bit cardinality and we will use a value of E close to the one in the fac-
torization record, i.e. log2 E = 30.4. If we forget that p is SNFS, then we can
choose the value of d in TNFS and we find CTNFS(n = 12, d = 7) = 500. If
instead we use the special shape of p we obtain CSTNFS(n = 12, d = 4) = 408
and CJP(n = 12, d = 4, t = 12) = 539.

In that case, the extension degree n (a.k.a. the embedding degree in the
pairing context) is already pretty large, so that we are not at all in the nominal
range of applicability of TNFS. As a consequence, our estimate for CTNFS is way
too optimistic, since the so-called negligible factors are no longer small. But in
fact, it is not that bad: computing explicitly the norms for a sample of typical
(a, b)’s of the appropriate size shows that the product of the norms for STNFS
is 60 to 80 bits larger than the ideal model when f = 36x4+12x3+16x2+2x+1
and h = x12 − x − 1. Therefore, it might still be better than Joux-Pierrot.

There are however examples when the specialized algorithms do not apply.

Fact 7. When d = 2, the JP and STNFS algorithms are not better than the
general ones, i.e.

CJLSV ≤ min(CJP, CSNFS),

where CJLSV is the complexity of the JLSV algorithm with conjugation method.

To see this, note first that the Joux-Pierrot algorithm keeps unchanged the
stages of JLSV once finished the polynomial selection. In the Joux-Pierrot algo-
rithm one constructs polynomials f and g such that deg(f) = nd, deg(g) = n,
‖f‖∞ = O(1) and ‖g‖∞ = Q1/(nd). However, when n = 2, they have the same
characteristics as the polynomials constructed by the Conjugation method, which
applies to arbitrary primes.

Also note that the STNFS uses a polynomial g with coefficients of size p1/d.
When d = 2 the norm of the g-side has bitsize larger than 1

2 log2 Q, which
is typical for algorithms of complexity LQ(1/2) and is larger than the norms
considered in the JLSV algorithm in the range log2 Q ≤ 1000 and n ≤ 5.

Plots. Let us plot the modelled bitsize of the norms product for STNFS and
Joux-Pierrot in the range which is currently feasible or might become in the near
future: 400 ≤ log2 Q ≤ 1000. Together with CSTNFS and CJP (Joux-Pierrot), we
also plot CNFS which represents the bitsize of the product of the norms in NFS
when factoring RSA numbers. We make separate graphs for each pair (n, d)
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Fig. 3. Comparison of CNFS (in dashed blue), CSTNFS (in black) and CJP (in dasdotted
red) in Fpn with n = 2, for d-SNFS primes. Vertical axis: bitlength of the norm’s
product; horizontal axis: bitlength of pn (Color figure online).
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Fig. 4. Comparison of CNFS (in dashed blue), CSTNFS (in black) and CJP (in dashdot-
ted red) in Fpn with n = 3, for d-SNFS primes. Vertical axis: bitlength of the norm’s
product; horizontal axis: bitlength of pn (Color figure online).
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Fig. 5. Comparison of CNFS (in dashed blue), CSTNFS (in black) and CJP (in dashdot-
ted red) in Fpn with n = 4, for d-SNFS primes. Vertical axis: bitlength of the norm’s
product; horizontal axis: bitlength of pn (Color figure online).
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Fig. 6. Comparison of CNFS (in dashed blue), CSTNFS (in black) and CJP (in dashdot-
ted red) in Fpn with n = 5, for d-SNFS primes. Vertical axis: bitlength of the norm’s
product; horizontal axis: bitlength of pn (Color figure online).
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where n is the degree of the target field and d is the parameter such that p is
d-SNFS, as those parameters are unique (in general) for each finite field: Fig. 3
(n = 2), Fig. 4 (n = 3), Fig. 5 (n = 4) and Fig. 6 (n = 5). Albeit the value of
E depends on the size of the norms, in a first approximation we can use the
formula E = c · LQ(1/3, (4/9)1/3) where c is a constant chosen such that the
formula fits the value of E in the example of Aoki et al.

We emphasize that our comparisons are imprecise since they are based only
on the product of the norms. Nevertheless, one might make two remarks:

– when d ≥ 3, the two algorithms specialized in fields of SNFS characteristic
have smaller norms than those of NFS when factoring RSA numbers;

– when d ≥ 4, STNFS is an important challenger for the Joux-Pierrot algorithm.

6 Cryptographic Consequences

The number field sieve algorithm is still far from being fully understood, in par-
ticular for extension fields that are so important for pairing-based cryptography.
In the past few years, several improvements have been made in the asymptotic
complexities in various scenarios, leading in particular to an L(1/3, 3

√
32/9) com-

plexity for small degree extensions of SNFS-prime fields, that are common in
pairing-friendly constructions.

We have shown, that in this setting, an old NFS variant due to Schi-
rokauer could compete and probably overcome the algorithm by Joux-Pierrot.
We acknowledge that the comparison is not perfect since it is based on a model
where the efficiency is directly linked to the size of product of the norms of the
elements that have to be tested for smoothness. Still, in some cases, the differ-
ence is large enough (a few dozens of bits), so that we are confident that this
should translate into a significant practical difference.

Of course, only a careful implementation of both algorithms could confirm
this. Unfortunately, this goes way beyond the scope of this paper. As far as
we know, Joux-Pierrot’s algorithm has not been used so far for a record-setting
computation, and Schirokauer’s TNFS would require even more implementa-
tion work to handle the sieve in higher dimension. And since doing experiments
with non-optimized implementations and small field sizes could lead to highly
misleading conclusions, we preferred to keep this for future work.

7 Appendix: Technicalities

7.1 Special-q Sieving

In practice for prime fields the relation collection phase is split in subtasks fol-
lowing the so-called special-q sieving strategy. It is expected, but no so obvious,
that this technique can be adapted to the case of TNFS.
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The General Case. Given a prime ideal Q of Kf (resp. of Kg), the special-q
algorithm collects (most of) the coprime pairs (a, b) ∈ Z[ι]2 which satisfy

– a − bαf ≡ 0 mod Q;
– NKf /Q(a − bαf )/NKf /Q(Q) and NKg/Q(a − bαg) are B-smooth,

and which have coefficients bounded by NKf /Q(Q)1/2nI for a parameter I.
In the main lines, the sieving is done by Algorithm 1, where a key role is

played by the lattice LQ of (a, b)-pairs such that Q | a − bαf :

LQ =
{

(a0, . . . , an−1, b0, . . . , bn−1) ∈ Z
2n | (

n−1∑
k=0

akιk)− αf

( n−1∑
k=0

bkιk) ≡ 0 mod Q
}

.

Algorithm 1. Special-q task
1: Compute an LLL-reduced basis of LQ , u(1), . . . , u(2n), and for each k define the

pair (a(k), b(k)) by a(k) =
∑n−1

i=0 u
(k)
i ιi and b(k) =

∑2n−1
i=n u

(k)
i ιi.

2: Initialize an array indexed by (i1, . . . , i2n) ∈ ∏2n
k=1[−I, I] with the value of

log2 NKf /Q(a − bαf ) where

a =
2n∑

k=1

ika(k) and b =
2n∑

k=1

ikb(k).

3: For each L in Ff update the entries of the array such that a − bαf ∈ L.
4: Collect yield(f), the coprime pairs (a, b) associated to entries of the array with

value less than a given threshold.
5: Repeat Steps 2-4 with f replaced by g, and collect yield(g).
6: return yield(f)

⋂
yield(g)

In more detail, if Q = 〈q, αf − ρQ(ι)〉 and q = 〈q, ϕq(ι)〉, we can assume that
ϕq is monic and define the matrix

MQ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q 0 · · · · · · 0

. . .
.
.
.

.

.

.
q

vector(ϕq)

. . .
.
.
.

.

.

.
vector(ϕq) 0 · · · · · · 0

vector(ρQ(ι)) 1

vector(ρQ(ι)ι)
. . .

.

.

.
. . .

vector(ρQ(ι)ιn−1) 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

One can check that the rows of MQ form a basis of LQ, and that det(LQ) =
qdeg(ϕq) = NQ(ι)/Q(q) = NKf /Q(Q) and dimLQ = 2n. Then, the coefficients
of the shortest vector in an LLL-reduced basis have size about NKf /Q(Q)1/(2n).
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We make the heuristic assumption that for a large proportion of ideals Q, all the
vectors in the reduced basis have coefficients of this size. Then, the coefficients
of the (a, b) pairs visited during Steps 3-4-5 of Algorithm 1 are approximatively
equal to I NKf /Q(Q)1/(2n).

The critical part of Algorithm 1 is Step 4., where we need to solve a problem
that Pollard [32] asked in the case m = 2.

Problem 1. Compute the intersection of a sub-lattice of Z
m with an interval

product
∏m−1

k=0 Ik.

Since the dimension is fixed or small enough, we can use a generic lattice enu-
meration algorithm like the Kannan-Fincke-Pohst algorithm. In the case m = 2,
Franke and Kleinjung [25, Appendix A] gave an elegant algorithm that proved
very efficient in practice. Extending this algorithm to higher dimension is still
an open problem.

The Particular Case of Gaussian Integers. When h = x2 + 1, ι = i and
we have a series of advantages. First of all, we have deg(h) = n = 2, so the
combinatorial overhead C(n, d) in Theorem 3 is small. Secondly, the ring Z[i] is
Euclidean, so that we can speed-up Step 1 of Algorithm 1.

Lemma 8. Let q and r be two elements of Z[i] such that q is irreducible and
r is not divisible by q. Assume that Q = 〈q, αf − r〉 is a prime ideal of Kf .
Let (uj , vj , dj)j≥0 be the sequence of Bezout coefficients such that ujq + vjr =
dj, obtained during the Extended Euclidean Algorithm(EEA). Let j ≥ 0 be an
integer. For k = 1, 2, 3, 4 we set

(a(1), b(1)) = (dj , vj), (a(2), b(2)) = (idj , ivj),
(a(3), b(3)) = (dj+1, vj+1), (a(4), b(4)) = (idj+1, ivj+1),

and define u(k) = (Re(a(k)), Im(a(k)),Re(b(k)), Im(b(k))). Then the vectors u(1),
u(2), u(3), u(4) form a basis of the lattice LQ.

Proof. Note first that if two elements e1, e2 form a basis for a Z[i]-module M ,
then the set {e1, ie1, e2, ie2} is a basis of M seen as a Z-module. We apply this
fact to M = {(a, b) ∈ Z[i] × Z[i] | a − br ≡ 0 mod q}, so it is sufficient to show
that (dj , vj) and (dj+1, vj+1) form a basis of M when seen as a Z[i]-module.

By construction of the sequence (uj , vj , dj)j≥0, there exist invertible matrices
I1, I2, . . . ∈ GL(Z[i], 2) so that, for all j ≥ 1,

(
uj+1 vj+1 dj+1

uj vj dj

)

= Ij

(
uj vj dj

uj−1 vj−1 dj−1

)

.

Therefore, for all j, the pairs (dj , vj) and (dj+1, vj+1) span the same Z[i]-module.
In particular, for j = 0, we have (d0, v0) = (q, 0) and (d1, v1) = (r, 1), which
is a basis of M , so that any pair in the sequence spans M . Finally, a pair
(a, b) ∈ Z[i]×Z[i] is in M if and only if the vector u = (Re(a), Im(a),Re(b), Im(b))
is in the lattice LQ, which completes the proof.
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We interrupt the execution of EEA at its middle point, i.e. for the least index
j where NQ(i)/Q(dj) <

√
NQ(i)/Q(q). As in the classical variant of NFS, we make

the heuristic that for all k ∈ [1, 4], we have ‖(a(k), b(k))‖∞ ≈ √|q|. Hence, we
replaced Step 1 in Algorithm 1 by EEA in Z[i].

Another advantage of Z[i] is that we can easily deal with the roots of unity.
Indeed, the roots of unity have a bad effect on the sieve since, for any pairs (a, b)
found during the sieve, one will also find (ua, ub) for all roots of unity u. For a
practical implementation one might prefer to choose h so that there are no roots
of unity other than ±1.

In the case h = x2+1, we can impose that we have no duplicates due to roots
of unity. For this, we modify Step 2 of Algorithm 1 so that the indices run in

(i1, i2, i3, i4) ∈ [0, I] × [0, I] × [−I, I] × [−I, I]

instead of [−I, I]4. By doing so we divide by four the number of pairs (a, b)
sieved in the special-q task associated to Q. Indeed, if a pair (a, b) is written as
(a, b) =

∑4
k=1 ik(a(k), b(k)), then when we multiply (a, b) by roots of unity we

use the following indices where exactly one of the pairs has i1, i2 ≥ 0:

(a, b) ↔ (i1, i2, i3, i4) (−a,−b) ↔ (−i1,−i2,−i3,−i4)
(ia, ib) ↔ (−i2, i1,−i4, i3) (−ia,−ib) ↔ (i2,−i1, i4,−i3).

7.2 Using a Cyclotomic Field for Q(ι)

Although we found no practical advantage for cyclotomic fields other than Q(i),
they allow us to give a poof of existence for the polynomial h, as required in the
TNFS construction of Sect. 3.1.

Theorem 9 ([1], Prop. 3). Assuming the Extended Riemann Hypothesis
(ERH), there is a constant c > 0, such that for all p, n ∈ N, p prime and
gcd(n, p) = 1, there exists a prime q such that q ≡ 1 (mod n), q < cn4 log(pn)2

and p is inert in the unique subfield K of Q(ζq) with [K : Q] = n.

Corollary 10. Under ERH, there exists a constant c > 0 such that, for any
integer n and any prime p > n, there exists an effectively constructible polyno-
mial h ∈ Z[x] such that:

– h is irreducible modulo p;
– ‖h‖∞ < (2cn4 log(np)2)n.

Proof. Let c be the constant of the theorem above. Let q be a prime associated
with p and n and let ζq be a primitive qth root of unity and η a Gaussian period:

η =
∑

x∈F∗
q/(F∗

q)
(q−1)/n

ζx
q .
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If r1, . . . , rn are a set of representatives of F∗
q/(F∗

q)
(q−1)/n, then the conjugates of

η are its images by the morphisms σi : ζq �→ ζri
q . Hence, the minimal polynomial

of η over Q is

h =
n−1∏

i=0

(x − σi(η)).

For k ∈ [0, n], a crude estimate of the kth coefficient of f is
(
n
k

)|η|k, which
is further upper bounded by 2n(q − 1)n, and finally by (2cn4 log(np)2)n. The
coefficients of h add a factor ‖h‖n(d−1)

∞ in Eq. (1). It remains negligible, i.e.
LQ(2/3)o(1), when n2 = o(d) or equivalently when p = LQ(α) for α > 5/6.

7.3 The Waterloo Improvement

At the beginning of the individual logarithm stage, the smoothing step can be
sped up in practice using the continued fraction method, also called “Waterloo
improvement”1. It allows to replace the probability of an integer of size S to
be smooth by the probability of two numbers of size

√
S to be simultaneously

smooth. This does not change the complexity, unless we make the o(1) expression
explicit, but has a measurable practical impact. A TNFS equivalent for the
continued-fraction method is to LLL-reduce the lattice generated by the rows of
the matrix

M(z) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

p
. . . 0

p
z 1
...

. . .
ιn−1z 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where z is a lift of the target element of the finite field, and z, . . ., ιn−1z are
written by their coordinates as elements of Q(ι). Since detM(z) = pn = Q, a
short vector (u0, . . . , un−1, v0, . . . , vn−1) has coordinates of size ≈ Q1/2n. The
quotient u/v where u =

∑n−1
k=0 ukιk and v =

∑n−1
k=0 vkιk is an element of Q(ι)

that reduces to the same element of Fpn as z. Therefore, instead of testing for
smoothness the norm of z, of size S = Q, we test whether the norms of u and v,
both of size

√
Q, are smooth.
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Abstract. Hash functions are often constructed based on permutations
or blockciphers, and security proofs are typically done in the ideal per-
mutation or cipher model. However, once these random primitives are
instantiated, vulnerabilities of these instantiations may nullify the secu-
rity. At ASIACRYPT 2007, Knudsen and Rijmen introduced known-key
security of blockciphers, which gave rise to many distinguishing attacks
on existing blockcipher constructions. In this work, we analyze the impact
of such attacks on primitive-based hash functions. We present and for-
malize the weak cipher model, which captures the case a blockcipher has
a certain weakness but is perfectly random otherwise. A specific instance
of this model, considering the existence of sets of B queries whose XOR
equals 0 at bit-positions C, where C is an index set, covers a wide range
of known-key attacks in literature. We apply this instance to the PGV
compression functions, as well as to the Grøstl (based on two permuta-
tions) and Shrimpton-Stam (based on three permutations) compression
functions, and show that these designs do not seriously succumb to any
differential known-key attack known to date.

Keywords: Hash functions · Known-key security · Knudsen-Rijmen ·
PGV · Grøstl · Shrimpton-Stam · Collision resistance · Preimage
resistance

1 Introduction

Cryptographic hash functions are conventionally built on top of compression
functions, and in turn on one or more blockciphers. Since the first appearance
of such compression function F(h,m) = DESm(h) by Rabin [49] in the late 70s,
many blockcipher-based functions appeared in the literature [23,25,29,30,40,43,
48,58]. These all enjoy security proofs in the ideal model, where the underlying
ciphers are assum ed to behave ideally. Characteristic to these designs is that the
key input to the cipher depends on the input to the compression function, and
that the key scheduling needs to be sufficiently strong. For instance, Biryukov
et al. [6] derived a related-key attack on AES and claimed that it invalidates the
security of the Davies-Meyer compression function when the underlying primitive
is instantiated with AES. A more recent approach to compression function design
c© International Association for Cryptologic Research 2015
T. Iwata and J.H. Cheon (Eds.): ASIACRYPT 2015, Part II, LNCS 9453, pp. 59–84, 2015.
DOI: 10.1007/978-3-662-48800-3 3
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is to base them on a limited number of permutations [8,41,42,51,57]. These
permutations could be designed from scratch, or obtained by fixing a small set
of keys and using a blockcipher for these keys only. Related- or chosen-key attacks
on blockciphers do not help the adversary here, as the keys are fixed.

Known-Key Security of Blockciphers. While in the classical security mod-
els for blockciphers the key is secret and randomly drawn and the adversary’s
target is to distinguish the instantiation of the cipher from a random permuta-
tion (also known as (strong) pseudorandom permutation security), this notion
does not apply if the key is known to the adversary. At ASIACRYPT 2007,
Knudsen and Rijmen [27] introduced known-key security of blockciphers. Here,
the key is presumed known, and the adversary succeeds in distinguishing if it
identifies a structural property of the cipher. Andreeva et al. [1] proposed a way
to formalize the known-key security of blockciphers based on the underlying
primitives. The model is derived from the indifferentiability framework [37] and
hence all composition results carry over. Intuitively: suppose some cryptosystem
F is proven to achieve a certain level of security in the ideal permutation model,
and consider F′ to be F with the permutations replaced by independent blockci-
pher instantiations. Then, F′ achieves the same level of security as F, up to the
known-key indifferentiability bound of the underlying blockciphers.

In [1], several blockcipher constructions are proven to be known-key indiffer-
entiable, such as the multiple Even-Mansour cipher and 14 rounds of balanced
Feistel with random functions (using a result of Holenstein et al. [24]). For such
ciphers, the above approach works well, although for Even-Mansour the com-
position is trivial (one essentially replaces an ideal permutation by an ideal
permutation) and for Feistel with 14 rounds security is only guaranteed up to
2n/32 queries, where n is the state size of the cipher.

Known-Key Attacks on Blockciphers. Knudsen and Rijmen also demon-
strated that the Feistel network on n bits with 7 rounds (called “Feistel7”) is not
known-key indifferentiable [1,27]: an adversary can generically find 2n/2 plain-
text/ciphertext tuples (m, c) and (m′, c′) satisfying Rin/2(m ⊕ c ⊕ m′ ⊕ c′) = 0
(where Rir(x) outputs the r rightmost bits of x). This result has lead to a
wave of other known-key attacks on practical constructions, including gener-
alized/extended variants of Feistel [1,27,47,53,56], reduced versions of AES
or Rijndael [22,27,38,44,52], reduced variants of the blockciphers underlying
SHA-2 and SHA-3 finalists BLAKE and Skein [2,7,31,34,60], and many more
[3,11,12,14,17,18,28,33,46,47,54,55]. This paper will mostly be concerned with
differential known-key attacks, including rebound- and boomerang-based attacks
(the majority of above-mentioned attacks). We highlight two results that are
among the best-known ones and that exemplify the idea of the other attacks.
Gilbert and Peyrin [22] used the rebound technique [39] to derive a known-key
attack on 8 rounds of AES (called “AES8”). It starts from the middle, and results
in a differential trail with four active words in the beginning, and four at the end.
These active words are overlapping at two positions, hence one could consider
this result as two tuples (m, c) and (m′, c′) satisfying m⊕c⊕m′⊕c′ = 0 at 10n/16
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bit-positions. The adversary has 215 ≤ 2n/8 degrees of freedom in the attack, and
for any choice it results in such a tuple with a certain probability. (The bound
of 2n/8 is used for simplicity later on.) The second attack we highlight is by
Yu et al. [60], who employ the boomerang technique [59] to attack 36 rounds of
the blockcipher Threefish-512 (called “Threefish36”) used in Skein. This attack
results in four tuples (m1, c1), . . . , (m4, c4) satisfying m1 ⊕ · · · ⊕ c4 = 0. The
adversary has 2n degrees of freedom, but any trial succeeds with probabil-
ity approximately 2−454. Therefore, the expected number of solutions is about
2n−454 ≤ 2n/8. This attack is in fact a known-related-key attack, where a fixed
difference in the key exists. For simplicity, we condone this, observing that an
attack with no key difference must logically be harder.

In any of these cases, the traditional and commonly employed ideal
cipher/permutation model falls short: results achieved in this model do not
necessarily hold if the primitives are instantiated with Feistel7, AES8,
Threefish36, or any other known-key distinguishable cipher.

1.1 Our Contributions

In their seminal work, Knudsen and Rijmen state: “In some cases blockciphers
are used with a key that is known to the adversary, and at least to a certain
extent, the key is under the adversary’s control. Our attacks are quite relevant to
this case.” We investigate this fundamental question whether known-key attacks
invalidate the security of primitive-based hash functions, but we do so in a much
more general way. At a high level, we present a model that goes beyond the tra-
ditional ideal cipher model as well as the principle of known-key attacks and that
allows to generically analyze the impact of various weaknesses of blockciphers
on various blockcipher- and permutation-based cryptosystems.

Model. A naive approach to analyzing the impact of known-key attacks would
be to simply plug a certain blockcipher construction into a hash function and
to analyze its security, but this would be a devious and complex combinatorial
task: for a function based on r permutations, plugging Feistel7 into it would lead
to 7r underlying primitive calls. Note that proving security of the Feistel con-
struction itself is already extraordinarily hard [16,24,32]. Instead, we model the
blockciphers in such a way that they behave randomly, except that an adversary
can exploit the particular relation. More formally, we pose a certain predicate
Φ, and we draw blockciphers randomly from the set of all ciphers that comply
with predicate Φ. Throughout, we refer to this model as the “weak cipher model
(WCM).” It corresponds to the ideal cipher model if Φ is trivial.

We present an explicit description of a random weak cipher for the
case where Φ implies for each key k the existence of A sets of B queries
{(k,m1, c1), . . . , (k,mB , cB)} that comply with a certain condition ϕ. These
ciphers are modeled to have three interfaces: forward queries, inverse queries,
and predicate queries. Forward and inverse queries are as usual; on a predicate
query, an adversary is given a set of B queries satisfying ϕ. Multiple technicali-
ties are involved in this formalization. Most importantly, predicate Φ applies to
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tuples of queries, rather than single queries only, and some query responses may
have a reduced entropy.

Above-mentioned known-key attacks are covered by our model if the condi-
tion ϕ states for some C ⊆ {1, . . . , n} that

BitsC
(
m1 ⊕ c1 ⊕ · · · ⊕ mB ⊕ cB

)
= 0 , (1)

where BitsC(x) outputs a string consisting of all bits of x whose index is in C. (In
fact, our model is much more general: above-mentioned attacks aim to generate
only one relation, while we allow an adversary to see multiple relations.) The
value A usually depends on n and C is regularly a large subset. We consider B
being a relatively small number (independent of n). For the above-mentioned
attack on Feistel7, A = 2n/2, B = 2, and C corresponds to the rightmost n/2
bits. Similarly, the attacks on AES8 (for A = 2n/8, B = 2, and C a certain
set of size 10n/16) and Threefish36 (for A = 2n/8, B = 4, and C = {1, . . . , n})
are covered, and so are almost all known differential (rebound- or boomerang-
based) known-key attacks. We remark that, on the other hand, the predicate is
not well-suited for integral-based known-key attacks: upon a predicate query an
attacker would receive B ≈ 2n queries.

The weak cipher model is similar to an approach followed by Bresson
et al. [15] for the indifferentiability analysis of the SHA-3 candidate Shabal if
the underlying blockcipher shows some non-random behavior, and by Bouillaguet
et al. [13] to analyze the indifferentiability security of SIMD when the underly-
ing compression function is distinguishable from a random function. However, in
both approaches, the underlying biased primitives were relatively easy to model.
For instance in [15] (using our terminology), predicate Φ is a relation that holds
for single queries only, and not for combinations of queries. This considerably
simplifies the analysis: one can derive a bias β to measure the distance between
primitive responses and fully random responses, and consider oracle responses
to be drawn from a set of size at least 2n−β , and the original indifferentiability
analysis carries over with minor modifications. The predicate used in the analy-
sis in [13], on the other hand, does apply to tuples of queries, but the model can
simply be described using two sampling algorithms, and an adversary cannot
hit a weak pair by accident (which is possible in our analysis). Liskov [35] used
a similar approach to prove indifferentiability security of the zipper hash if the
underlying compression function is invertible up to a certain degree. However,
the analysis is significantly simpler, as this primitive can be perfectly mod-
eled. We finally remark that Katz et al. [26] analyze the impact of related-key
attacks on blockciphers to hash functions. However, in their model, the differ-
ences Δk,Δx,Δy are fixed, an ideal cipher is generated for half of the key space,
and for the other half the cipher is adjusted as Ek(x, y) = Ek⊕Δk(x ⊕ Δx) ⊕ Δy.
This primitive can be easily modeled, but is also too generous to the attacker.

To our knowledge, this is the first attempt to formally analyze the effect
of a wide class of blockcipher attacks on higher level cryptographic functions.
Nonetheless, the weak cipher model is in essence still a model: we use an abstrac-
tion of the cryptanalytic known-key attacks in such a way that the ideal cipher
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Table 1. Security results for the PGV, Grøstl, and Shrimpton-Stam compression func-
tions in the weak cipher model. Ideal cipher/permutation model bounds match the ones
of B ≥ 3. All results are tight except for the case (B = 1, |C| > n/2) for Shrimpton-
Stam.

PGV Grøstl Shrimpton-Stam

B |C| collision preimage collision preimage collision preimage

1 ≤ n/2 2(n−|C|)/2 2n−|C| 2(n−|C|)/4 2(n−|C|)/2 2(n−|C|)/2 2n/2

> n/2 2(n−|C|)/2 2n−|C| 2(n−|C|)/4 2(n−|C|)/2 2(n−|C|)/2 2n−|C|

2 ≤ n/2 2n/2 2n 2n/4 2n/2 2n/2 2n/2

> n/2 2n−|C| 2n 2(n−|C|)/2 2n/2 2n−|C| 2n/2

≥ 3 arbitrary 2n/2 2n 2n/4 2n/2 2n/2 2n/2

model can be relaxed to cope them. A further discussion on the accuracy of the
model is given in Sect. 7.

Application to Blockcipher-Based Hash Functions. Preneel, Govaerts,
and Vandewalle (PGV) [48] classified the 64 most basic ways of constructing
a 2n-to-n-bit compression function from a blockcipher with n-bit key and n-
bit state, and claimed security of 12 of them. A formal security analysis of
these functions in the ICM has been performed by Black et al. [9], and later by
Duo and Li [19], Stam [58], and Black et al. [10]. In more detail, in the ICM
these constructions achieve tight collision security up to about 2n/2 queries and
preimage security up to about 2n queries. Baecher et al. [4] recently showed that
the 12 secure PGV functions can be divided into two classes, in such a way that
if a primitive makes one function secure it makes the entire class secure.

As first application of our model, we consider the PGV compression functions
in the WCM and derive collision and preimage bounds for general (A,B,C).
A schematic summary of the results for various B and C is given in Table 1
(we remark that A is merely a technical parameter that has no influence on
the results). We also show that the bounds are optimal, by providing matching
attacks. Some of these attacks are similar to methods used in [27,53,56] to detect
(near-)collisions in certain PGV modes of operations using known-key attacks.

Application to Permutation-Based Hash Functions. We also apply the
WCM to permutation-based compression functions. This is particularly interest-
ing for two reasons: (i) it allows us to understand the impact of distinguishers on
permutations that are used in hash functions, and (ii) a blockcipher with a fixed
and known key is a permutation and can be used as such. In more detail, we con-
sider the Grøstl compression function [21] and the permutation-based equivalent
of the Shrimpton-Stam compression function [57] (see also Fig. 4). In the IPM,
the former is proven to achieve collision security up to 2n/4 queries, where n is
the state size, and preimage security up to 2n/2 [20]. Rogaway and Steinberger
[51] showed via an automated analysis that the latter function is collision and
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preimage resistant up to 2n/2 queries (asymptotically). This has been confirmed
in the generalized work of Mennink and Preneel [41].

A summary of our findings for the Grøstl and Shrimpton-Stam compression
functions in the WCM is given in Table 1. All results are tight, except for the case
(B = 1, |C| > n/2) for Shrimpton-Stam, for which we leave proving tightness as
an open problem. We remark that the analysis for these schemes is much more
demanding as multiple primitives are involved.

Impact. An application of our formalization to the PGV functions and various
permutation-based functions shows that these achieve a comparable level of secu-
rity in the ideal and weak cipher model for a spectrum of choices for (A,B,C).
This result particularly implies that most relevant rebound-based (including
[12,22,28,38,52,53,56]) and boomerang-based (including [2,7,31,54,60]) known-
key attacks known to date do not invalidate the security of such functions, or
only have a little effect. For instance, the above-discussed attack on Feistel7 sat-
isfies B = 2 and |C| = n/2 and it does not affect the security; similarly for
Threefish36 for which B = 4. The attack on AES8 is covered for B = 2 and
|C| = 10n/16, which demonstrates a slight security degradation to 26n/16 for
the PGV functions, but this may in part be due to our over-generosity to the
adversary. We remark that, even though we focused on collision and preimage
resistance, the techniques can be generalized to other security notions, such as
near-collisions. This may entail differences in the security results.

We stress that these results do not mean that the analyzed functions are
secure when the underlying permutations are instantiated with, say, Feistel7
or Threefish36: it only means that existing known-key attacks, or more general
weaknesses such as relation (1), alone are not sufficient to invalidate the collision
and preimage security of the construction. Indeed, more sophisticated attacks
which are not yet covered by our application of the WCM may still invalidate
the security of certain modes [6]. It remains a challenging open research problem
to generalize the findings to underlying primitives that have multiple or different
weaknesses.

1.2 Outline

In Sect. 2, we formally present the “weak cipher model,” and in Sect. 3 we show
how it relates to known-key attacks. We apply the model to the PGV functions
in Sect. 4, to the Grøstl compression function in Sect. 5, and to Shrimpton-Stam
in Sect. 6. We conclude this work in Sect. 7.

2 Weak Cipher Model

If X is a set, by x
$←− X we denote the uniformly random sampling of an element

from X. By X
∪←− x, we denote X ← X ∪ {x}. For a bit string x, its bits are

numbered x = x|x| · · · x2x1. If C ⊆ {1, . . . , |x|}, the function BitsC(x) outputs a
string consisting of all bits of x whose index is in C. Abusing notation, BitsC(x)
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always denotes the remaining bits (technically, C = {1, . . . , |x|}\C). For 0 ≤ r ≤
|x|, we consider Rir(x) that outputs the r rightmost bits of x. In other words,
Rir(x) = Bits{1,...,r}(x). For a function f , by dom(f) and rng(f) we denote its
domain and range, respectively.

2.1 Security Model

For κ ≥ 0 and n ≥ 1, by BC(κ, n) we denote the set of all blockciphers with κ-bit
key operating on n bits. If κ = 0, BC(n) := BC(0, n) denotes the set of all n-bit
permutations. If Φ is a predicate, by BC[Φ](κ, n) we denote the subset of ciphers
of BC(κ, n) that satisfy predicate Φ. For π ∈ BC[Φ](κ, n), the input-output tuples
are denoted (k, x, z), where π(k, x) = πk(x) = z and π−1(k, z) = π−1

k (z) = x.
The key k is omitted in case κ = 0.

Let F : {0, 1}s → {0, 1}n be a compressing function instantiated with
� ≥ 1 primitives from BC[Φ](κ, n), for some predicate Φ. Throughout, we con-
sider security of F in an idealized model: we consider an adversary A that is
a probabilistic algorithm with oracle access to a randomly sampled primitive
π = (π1, . . . , π�)

$←− BC[Φ](κ, n)�. A is information-theoretic and its complexity
is only measured by the number of queries made to its oracles. The adversary
can make forward and inverse queries to its oracles, and these queries are stored
in a query history Q.

A collision-finding adversary A for F aims at finding two distinct inputs to F
that compress to the same range value. In more detail, we say that A succeeds
if it finds two distinct inputs X,X ′ such that F(X) = F(X ′) and Q contains all
queries required for these evaluations of F. We define by

Advcol
F (A) = Pr

(
π

$←− BC[Φ](κ, n)�, X,X ′ ← Aπ : X �= X ′ ∧ F(X) = F(X ′)
)

the probability that A succeeds in this. By Advcol
F (q) we define the maximum

collision advantage taken over all adversaries making q queries.
For preimage resistance, we focus on everywhere preimage resistance [50],

which captures preimage security for every point of {0, 1}n. Let Z ∈ {0, 1}n

be any range value. Then, we say that A succeeds in finding a preimage if it
obtains an input X such that F(X) = Z and Q contains all queries required for
this evaluation of F. We define by

Advepre
F (A) = max

Z ∈ {0,1}n
Pr

(
π

$←− BC[Φ](κ, n)�, X ← Aπ(Z) : F(X) = Z
)

the probability that A succeeds, maximized over all possible choices for Z. By
Advepre

F (q) we define the maximum (everywhere) preimage advantage taken over
all adversaries making q queries.

If Φ is a trivial relation, we have BC[Φ](κ, n) = BC(κ, n), and the above
definitions boil down to security in the ideal cipher model (ICM) if κ > 0 or
the ideal permutation model (IPM) if κ = 0. On the other hand, if Φ is a non-
trivial predicate, it strictly reduces the set BC(κ, n). In this case, we will refer
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to the model as the “weak cipher model (WCM),” for both κ > 0 and κ = 0.
Very informally, this model still involves random ciphers/permutations, with
the difference that an adversary may exploit a certain additional property. The
modeling of a randomly drawn weak ciphers is much more delicate.

2.2 Random Weak Cipher

For a certain class of predicates, we discuss how to model a randomly drawn
weak cipher π from BC[Φ](κ, n). Let A,B ∈ N. We will consider predicates
that imply, for every k ∈ {0, 1}κ, the existence of A sets of B distinct queries
{(x1, z1), . . . , (xB , zB)} that satisfy ϕk

({(x1, z1), . . . , (xB , zB)})
for some condi-

tion ϕ depending on key k. The predicate is denoted Φ(A,B,ϕ). A is merely a
technical parameter, and throughout we assume it is larger than q, the number of
oracle calls an adversary can make. This definition of Φ(A,B,ϕ) is fairly general.
Particularly, predicate B-sets may overlap and the condition ϕ can represent any
function on the inputs. We note that Φ can be easily generalized to tuples of
different length and/or to multiple types of conditions at the same time.

Traditionally, an adversary has only forward πk(x) and inverse π−1
k (z) query

access. In order for the adversary to be able to exploit the weakness present
in π, we give it additional access to π via a “predicate query” πΦ

k (y): on input
of y ∈ {1, . . . , A}, the adversary obtains a B-set {(x1, z1), . . . , (xB , zB)} that
satisfies ϕk

({(x1, z1), . . . , (xB , zB)})
.

A formal description of how to model π
$←− BC[Φ(A,B,ϕ)](κ, n) is given in

Fig. 1. Here, for every k ∈ {0, 1}κ, Pk is an initially empty list of πk-evaluations,
where a regular forward/inverse query adds one element (x, z) to Pk and a πΦ

k -
query may add up to B elements. Additionally, PΦ

k is an initially empty list of
queries to πΦ

k . We denote by Σk(Pk, PΦ
k ) ⊆ ({0, 1}n × {0, 1}n)B the set of all

tuples {(x1, z1), . . . , (xB , zB)} such that

(i) x1, . . . , xB are pairwise distinct and z1, . . . , zB are pairwise distinct;
(ii) ∀B

�=1 : x� ∈ dom(Pk) =⇒ z� = Pk(x�) and z� ∈ rng(Pk) =⇒ x� = P−1
k (z�);

(iii) ϕk

({(x1, z1), . . . , (xB , zB)})
holds;

(iv) {(xp(1), zp(1)), . . . , (xp(B), zp(B))} �∈ rng(PΦ
k ) for any permutation p on

{1, . . . , B}.

For a new query πΦ
k (y), the response is then randomly drawn from Σk(Pk, PΦ

k ).
Conditions (i–iii) are fairly self-evident; note particularly that an existing (x, z) ∈
Pk may appear in multiple predicate queries. Condition (iv) assures that the
drawing from Σk(Pk, PΦ

k ) is not just an old predicate query or a reordering
thereof. The usage of this set Σk(Pk, PΦ

k ) allows for a uniform behavior of πΦ
k for

every k, and in general of π
$←− BC[Φ(A,B,ϕ)](κ, n), modulo the known existence

of condition ϕ. This step is fundamental to our model and new compared with
previous approaches of [13,15,35]. We remark that the model allows adversaries
to make their queries at their own discretion, e.g., duplicate queries and regular
queries after predicate queries are allowed.
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procedure πk(x)

if Pk(x) = ⊥:

z
$←− {0, 1}n\rng(Pk)

Pk
∪←− (x, z)

end if
return Pk(x)

procedure π−1
k (z)

if P−1
k (z) = ⊥:

x
$←− {0, 1}n\dom(Pk)

Pk
∪←− (x, z)

end if
return P−1

k (z)

procedure πΦ
k (y)

if P Φ
k (y) = ⊥:

{(x1, z1), . . . , (xB , zB)} $←− Σk(Pk, P Φ
k )

for � = 1, . . . , B:

if (x�, z�) �∈ Pk:

Pk
∪←− (x�, z�)

end if
end for

P Φ
k

∪←− (y, {(x1, z1), . . . , (xB , zB)})
end if
return P Φ

k (y)

Fig. 1. Random weak cipher π. An adversary has access to π, π−1, and πΦ.

2.3 Random Abortable Weak Cipher

Security analyses in the WCM are significantly more complex than in the ICM
or IPM, which is in part because predicate queries may consist of older queries.
This will particularly be an issue once collisions among queries are investigated.
To suit the analysis for this case, we transform the WCM to an abortable weak
cipher model (AWCM), which we denote as BC[Φ(A,B,ϕ)](κ, n). At a high-
level, an abortable weak cipher responds to predicate queries with new query
tuples only, and aborts once it turns out that an older query appears in a newer
predicate query.

For any k ∈ {0, 1}κ and partial Pk and PΦ
k , define by Σ̄k(PΦ

k ) ⊆
({0, 1}n × {0, 1}n)B the set of all tuples {(x1, z1), . . . , (xB , zB)} such that

(iii) ϕk

({(x1, z1), . . . , (xB , zB)})
holds;

(iv) {(xp(1), zp(1)), . . . , (xp(B), zp(B))} �∈ rng(PΦ
k ) for any permutation p on

{1, . . . , B}.

Σ̄k(PΦ
k ) differs from Σ(Pk, PΦ

k ) in that conditions (i) and (ii) are omitted, and
particularly: it is independent of Pk. A formal description of a random cipher
π̄

$←− BC[Φ(A,B,ϕ)](κ, n) is given in Fig. 2. It deviates from Fig. 1 as follows: for
every key k, π̄Φ

k responds randomly from Σ̄k(PΦ
k ), and it aborts if the response

violates one of the two skipped conditions of Σk(Pk, PΦ
k ).

The next lemma shows that the WCM and AWCM are indistinguishable
as long as the abortable weak cipher does not abort, approximately up to the
birthday bound. Here, we assume that Σ̄k(PΦ

k ) is always large enough.

Lemma 1. Let π̄
$←− BC[Φ(A,B,ϕC)](κ, n). Consider an adversary that makes

q queries to π̄. Then,

Pr (π̄ sets abort) ≤ B2q(q + 1)
2n − B!q2n

|Σ̄k(∅)|
.
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procedure π̄k(x)

if Pk(x) = ⊥:

z
$←− {0, 1}n\rng(Pk)

Pk
∪←− (x, z)

end if
return Pk(x)

procedure π̄−1
k (z)

if P−1
k (z) = ⊥:

x
$←− {0, 1}n\dom(Pk)

Pk
∪←− (x, z)

end if
return P−1

k (z)

procedure π̄Φ
k (y)

if P Φ
k (y) = ⊥:

{(x1, z1), . . . , (xB , zB)} $←− Σ̄k(P Φ
k )

for � = 1, . . . , B:

if x� ∈ dom(Pk) ∧ z� �= Pk(x�): abort
if z� ∈ rng(Pk) ∧ x� �= P−1

k (z�): abort
if (x�, z�) ∈ {(x1, z1), . . . , (x�−1, z�−1)}: abort
if (x�, z�) �∈ Pk:

Pk
∪←− (x�, z�)

end if
end for

P Φ
k

∪←− (y, {(x1, z1), . . . , (xB , zB)})
end if
return P Φ

k (y)

Fig. 2. Random abortable weak cipher π̄. An adversary has access to π̄, π̄−1, and π̄Φ.

Proof. Consider the ith query, for i ∈ {1, . . . , q}, and assume it is a predicate
query π̄Φ

k (y). We will consider the probability that this query makes π̄ abort,
provided it has not aborted so far. Prior to this ith query, |Pk| ≤ B(i − 1) and
|PΦ

k | ≤ i. Basic combinatorics shows that

|Σ̄k(PΦ
k )| = |Σ̄k(∅)| − B! · |PΦ

k | ,

where we use that π̄ has not aborted so far. This ith query aborts only if for
some � ∈ {1, . . . , B}, the value x� equals an element in dom(Pk)∪{x1, . . . , x�−1}
or the value z� equals an element in rng(Pk) ∪ {z1, . . . , z�−1}.

Define by Σ̄abort
k (PΦ

k ) the set of all elements of Σ̄k(PΦ
k ) that would lead to

abort. We have 2B possible values to cause the abort (namely, x1, . . . , zB), and
it causes the abort if it equals an element in a set of size at most |Pk| + B. For
any of these 2B(|Pk| + B) choices, the number of tuples in Σ̄k(PΦ

k ) complying
with this choice is at most |Σ̄k(∅)|

2n . Thus,

Pr
(
π̄Φ(y) sets abort

)
=

|Σ̄abort
k (PΦ

k )|
|Σ̄k(PΦ

k )| ≤ 2B(|Pk| + B) · |Σ̄k(∅)|
2n

|Σ̄k(∅)| − B! · |PΦ
k | ≤ 2B2i

2n − B!q2n

|Σ̄k(∅)|
.

The proof is completed by summation over i = 1, . . . , q. ��

3 Modeling Known-Key Attacks

We next apply the WCM to known-key attacks. For the sake of explanation, we
first reconsider the Knudsen-Rijmen attack on Feistel7 [27]. (A detailed descrip-
tion of the attack is also given in the full version of this paper.) Let n ∈ N,
and let π := πk be an instance of Feistel7 with fixed key k. Knudsen and
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Rijmen revealed four functions f, f ′, g, g′ : {0, 1}n/2 → {0, 1}n such that for
all y ∈ {0, 1}n/2:

g(y) = π(f(y)) and g′(y) = π(f ′(y)) ,

Rin/2 (f(y) ⊕ g(y)) = Rin/2 (f ′(y) ⊕ g′(y)) . (2)

These four functions depend on the cryptographic primitive underlying Feistel7
in a complicated way. Therefore, we can safely assume that these functions
behave sufficiently random, besides this particular relation (2), and that they are
unknown to the adversary. f, f ′, g, g′ are all injective and satisfy f(y) �= f ′(y)
and g(y) �= g′(y) for all y. On the other hand, collisions of the form f(y) = f ′(y′)
and g(y) = g′(y′) may occur.

Generically, the attack demonstrates that for key k there exist 2n/2 possibly
overlapping sets of distinct queries {(x1, z1), (x2, z2)} that satisfy Rin/2

(
x1⊕z1⊕

x2 ⊕ z2
)

= 0. In other words, Feistel7 meets predicate Φ(2n/2, 2, ϕFeistel7), where

ϕFeistel7
k

({(x1, z1), (x2, z2)})
: Rin/2

(
x1 ⊕ z1 ⊕ x2 ⊕ z2

)
= 0 .

Here, we remark that the Knudsen-Rijmen attack works for any fixed but known
key k, and that condition ϕFeistel7

k is in fact independent of the key. In this
work, we will consider a more general predicate Φ(A,B,ϕC) for A,B ∈ N and
C ⊆ {1, . . . , n}, where

ϕC
k

({(x1, z1), . . . , (xB , zB)})
: BitsC

(
x1 ⊕ z1 ⊕ · · · ⊕ xB ⊕ zB

)
= 0 . (3)

This generalized predicate considers the case of arbitrary but fixed and known
keys, where the adversary can even choose the key every time it makes a pred-
icate query. Note that also the attacks on AES8 and Threefish36 (see Sect. 1)
are covered, as they satisfy Φ(2n/8, 2, ϕC) for certain C of size 10n/16 and
Φ(2n/8, 4, ϕ{1,...,n}), respectively. In general, all rebound- or boomerang-based
known-key attack in literature are covered by predicate Φ(A,B,ϕC) for some
A,B,C. Here, B is always a value independent of n (usually 2 or 4) and C is
regularly a large subset (of size at least n/4). Throughout, we consider A to be
sufficiently large.

Basic Computations for AWCM

For the specific condition ϕC of (3), we derive a simpler bound on the probabil-
ity that a primitive π̄

$←− BC[Φ(A,B,ϕC)](κ, n) aborts, along with some other
elementary observations for π̄. To this end, we define the notation “[X],” which
equals 1 if X holds and 0 otherwise. For conciseness, we introduce the function
δB,C [b] defined as

δB,C [b] = 2|C|[B = b] + [B > b] . (4)
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Lemma 2. Let π̄
$←− BC[Φ(A,B,ϕC)](κ, n). Consider an adversary that makes

q ≤ 2n−1/B queries to π̄. Then,

Pr (π̄ sets abort) ≤ B2q(q + 1)
2n − Bq

. (5)

Let k ∈ {0, 1}κ and let Z,Z ′, Z ′′ ∈ {0, 1}n. Consider any new query π̄Φ
k (y) and

assume it does not abort. Write the response as {(x1, z1), . . . , (xB , zB)}. Then,
(i) ∀ a ∈ {1, . . . , B} : Pr (xa = Z), Pr (za = Z) ≤ 1

2n−Bq ;

(ii) ∀ a ∈ {1, . . . , B} : Pr (xa ⊕ za = Z) ≤ δB,C

2n−Bq ;

(iii) ∀ {a, b} ⊆ {1, . . . , B} : Pr
(
xa ⊕ za = Z ∧ xb ⊕ zb = Z ′) ≤ δB,C [2]

22n−Bq ;
(iv) ∀ {a, b} ⊆ {1, . . . , B} :

Pr
(
xa = Z ∧ xb = Z ′ ∧ xa ⊕ za ⊕ xb ⊕ zb = Z ′′) ≤ δB,C [2]

23n−Bq .

Proof. Recall from the proof of Lemma 1 that

|Σ̄k(PΦ
k )| = |Σ̄k(∅)| − B!|PΦ

k | ,

where |PΦ
k | ≤ q. For the specific predicate analyzed in this lemma, |Σ̄k(∅)| =

(2n)2B−12n−|C|. In the remainder, we regularly bound B! ≤ B · (2n)2B−2 for
B ≥ 1 or B! ≤ B · (2n)2B−4 for B ≥ 2.

Probability of Abortion. The bound of (5) directly follows from Lemma 1,
the above-mentioned size of Σ̄k(∅), and the bound on B!.
Part (i). Define by Σ̄

(i)
k (PΦ

k ) the set of all elements of Σ̄k(PΦ
k ) that satisfy

xa = Z. Then, |Σ̄(i)
k (PΦ

k )| ≤ (2n)2B−22n−|C|, and

Pr (xa = Z) =
|Σ̄(i)

k (PΦ
k )|

|Σ̄k(PΦ
k )| ≤ 1

2n − Bq
.

A similar analysis applies to the case za = Z.
Part (ii). Define by Σ̄

(ii)
k (PΦ

k ) the set of all elements of Σ̄k(PΦ
k ) that satisfy

xa ⊕ za = Z. We make a distinction between B = 1 and B > 1. In case B > 1,
a similar reasoning as in (i) applies, and we have |Σ̄(ii)

k (PΦ
k )| ≤ (2n)2B−22n−|C|.

On the other hand, if B = 1, we have |Σ̄(ii)
k (PΦ

k )| = 0 if BitsC(Z) �= 0 and
|Σ̄(ii)

k (PΦ
k )| ≤ 2n if BitsC(Z) = 0. In any case,

|Σ̄(ii)
k (PΦ

k )| ≤ (2n)2B−22n−|C|δB,C [1] ,

and

Pr (xa ⊕ za = Z) =
|Σ̄(ii)

k (PΦ
k )|

|Σ̄k(PΦ
k )| ≤ δB,C [1]

2n − Bq
.
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Part (iii). This part only applies to B > 1; if B = 1 the probability equals
0 by construction. Define by Σ̄

(iii)
k (PΦ

k ) the set of all elements of Σ̄k(PΦ
k ) that

satisfy xa ⊕ za = Z and xb ⊕ zb = Z ′. We make a distinction between B = 2
and B > 2. In case B > 2, a similar reasoning as in (i) and (ii) applies, and
we have |Σ̄(iii)

k (PΦ
k )| ≤ (2n)2B−32n−|C|. On the other hand, if B = 2, we have

|Σ̄(iii)
k (PΦ

k )| = 0 if BitsC(Z⊕Z ′) �= 0 and |Σ̄(iii)
k (PΦ

k )| ≤ (2n)2 if BitsC(Z⊕Z ′) = 0.
In any case,

|Σ̄(iii)
k (PΦ

k )| ≤ (2n)2B−32n−|C|δB,C [2] ,

and

Pr
(
xa ⊕ za = Z ∧ xb ⊕ zb = Z ′) =

|Σ̄(iii)
k (PΦ

k )|
|Σ̄k(PΦ

k )| ≤ δB,C [2]
22n − Bq

.

Part (iv). The approach is fairly similar to case (iii). If B = 1 the probability
is 0 by construction. Define by Σ̄

(iv)
k (PΦ

k ) the set of all elements of Σ̄k(PΦ
k )

that satisfy xa = Z, xb = Z ′, and xa ⊕ za ⊕ xb ⊕ zb = Z ′′. In case B > 2,
we have |Σ̄(iv)

k (PΦ
k )| ≤ (2n)2B−42n−|C|. On the other hand, if B = 2, we have

|Σ̄(iv)
k (PΦ

k )| = 0 if BitsC(Z ′′) �= 0 and |Σ̄(iv)
k (PΦ

k )| ≤ 2n if BitsC(Z ′′) = 0. In any
case,

|Σ̄(iv)
k (PΦ

k )| ≤ (2n)2B−42n−|C|δB,C [2] ,

and

Pr
(
xa = Z ∧ xb = Z ′ ∧ xa ⊕ za ⊕ xb ⊕ zb = Z ′′) =

|Σ̄(iv)
k (PΦ

k )|
|Σ̄k(PΦ

k )| ≤ δB,C [2]
23n − Bq

.

��

4 Application to PGV Compression Functions

We consider the 12 blockcipher-based compression functions from Preneel, Gov-
aerts, and Vandewalle (PGV) [48]. In the ICM these constructions achieve tight
collision security up to about 2n/2 queries and preimage security up to about 2n

queries [9,10,19,58]. The 12 constructions are depicted in Fig. 3. Here, we follow
the ordering of [10], where PGV1, PGV2, and PGV5 are better known as the
Matyas-Meyer-Oseas [36], Miyaguchi-Preneel, and Davies-Meyer [45] compres-
sion functions.

Baecher et al. [4] analyzed the 12 PGV constructions under ideal cipher
reducibility, which at a high level covers the idea of two constructions being
equally secure for the same underlying idealized blockcipher. They divide the
PGV functions into two classes, in such a way that if some blockcipher makes
one of the constructions secure, it makes all functions in the corresponding class
secure. Applied to our WCM, the results of Baecher et al. imply the following:
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Group G1 Group G2

1 4

5 8

9 12

2 3

6 7

10 11

Fig. 3. The 12 PGV compression functions. When in iteration mode, the message
comes in at the top. The groups G1 and G2 refer to Lemma 3.

Lemma 3 (Ideal Cipher Reducibility of PGV [4], Informal). Let π
$←−

BC[Φ](n, n) for some predicate Φ. Let

G1 = {1, 4, 5, 8, 9, 12} , and G2 = {2, 3, 6, 7, 10, 11} .

For any α ∈ {1, 2} and i, j ∈ Gα, PGVi and PGVj achieve the same level of
collision and preimage security once instantiated with π.

Baecher et al. also derive a reduction between the two classes, but this reduction
requires a non-direct transformation on the ideal cipher π1, making it unsuitable
for our purposes. Thanks to Lemma 3, it suffices to only analyze PGV1 and
PGV2 in the WCM: the bounds carry over to the other 10 PGV constructions.
In Sect. 4.1 we analyze the collision security of these functions in the WCM. The
preimage security is considered in Sect. 4.2.

4.1 Collision Security

Theorem 1. Let n ∈ N. Let α ∈ {1, 2} and consider PGVα. Suppose π
$←−

BC[Φ(A,B,ϕC)](n, n). Then, for q ≤ 2n−1/B,

Advcol
PGVα(q) ≤ B2δB,C [1]q2

2n
+

(
B

2

)
2δB,C [2]q

2n
+

4B2q2

2n
.

1 If π makes the PGV constructions from group G1 secure, there is a transformation
τ such that τπ makes the constructions from G2 secure, and vice versa.
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Proof. We focus on PGV2. The analysis for PGV1 is a simplification due to
the absence of the feed-forward of the key. We consider any adversary that has
query access to π

$←− BC[Φ(A,B,ϕC)](n, n) and makes q queries. As a first step,
we move from π to π̄

$←− BC[Φ(A,B,ϕC)](n, n). By Lemma 2, this costs us an
additional term B2q(q+1)

2n−Bq .
A collision for PGV2 would imply the existence of two distinct query pairs

(k, x, z), (k′, x′, z′) such that k ⊕ x ⊕ z = k′ ⊕ x′ ⊕ z′. We consider the ith query
(i ∈ {1, . . . , q}) to be the first query to make this condition satisfied, and sum
over i = 1, . . . , q at the end. For regular (forward or inverse) queries, the analysis
of [9,10,58] mostly carries over. The analysis of predicate queries is a bit more
technical.

Query π̄k(x) or π̄−1
k (z). The cases are the same by symmetry, and we consider

π̄k(x) only. Denote the response by z. There are at most B(i − 1) possible
(k′, x′, z′). As z is randomly drawn from a set of size at least 2n −Bq, it satisfies
z = k ⊕ x ⊕ k′ ⊕ x′ ⊕ z′ with probability at most B(i−1)

2n−Bq .

Query π̄Φ
k (y). Denote the query response by {(k, x1, z1), . . . , (k, xB , zB)}. In

case the B-set contributes only to (k, x, z), the same reasoning as for regular
queries applies with the difference that any query of the B-set may be successful
and that the bound of Lemma 2 part (ii) applies: B2δB,C [1](i−1)

2n−Bq .
Now, consider the case the predicate query contributes to both (k, x, z) and

(k, x′, z′). There are
(
B
2

)
ways for the predicate query to contribute (or 0 if

B = 1). By Lemma 2 part (iii), which considers the success probability for any
such combination, the predicate query results in a collision with probability at
most

(
B
2

) δB,C [2]2n

22n−Bq .

Conclusion. Taking the maximum of all success probabilities, the ith query
is successful with probability at most B2δB,C [1](i−1)

2n−Bq +
(
B
2

) δB,C [2]2n

22n−Bq . Summation
over i = 1, . . . , q gives

Advcol
PGV2(q) ≤ B2δB,C [1]q2

2(2n − Bq)
+

(
B

2

)
δB,C [2]q
2n − Bq

+
B2q(q + 1)
2n − Bq

,

where the last part of the bound comes from the transition from WCM to
AWCM. The proof is completed by using the fact that 2n − Bq ≥ 2n−1 for
Bq ≤ 2n−1, and that q + 1 ≤ 2q for q ≥ 1. ��
We note that the bound gets worse for increasing values of B. This has a technical
cause: predicate queries are counted equally expensive as regular queries, but
result in up to B new query tuples. This leads to several factors of B in the
bound. As this work is mainly concerned with differential known-key attacks for
which B is regularly small, these factors are of no major influence.

The implications of the bound of Theorem 1 become more visible when con-
sidering particular choices of B and C.
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(i) If B = 1, then Advcol
PGVα(q) ≤ 2|C|q2

2n + 4q2

2n ;

(ii) If B = 2, then Advcol
PGVα(q) ≤ 20q2

2n + 4·2|C|q
2n ;

(iii) If B ≥ 3 (independent of n), then Advcol
PGVα(q) ≤ 5B2q2

2n + B2q
2n .

In other words, for B = 2 and C with |C| ≤ n/2, or for B ≥ 3 constant and
C arbitrary, the PGV functions achieve the same 2n/2 collision security level
as in the ICM. On the other hand, if B = 1, collisions can be found in about
2(n−|C|)/2 queries, and if B = 2 with |C| > n/2, in about 2n−|C| < 2n/2 queries.
See also Table 1.

Tightness

For the cases B = 1 and C arbitrary, and B = 2 and C arbitrary such that
|C| > n/2, we derive generic attacks that demonstrate tightness of the bound of
Theorem 1. Knudsen and Rijmen [27] and Sasaki et al. [53,56] already considered
how to exploit a known-key pair for the underlying blockcipher to find a colli-
sion for the Matyas-Meyer-Oseas (PGV1) and/or Miyaguchi-Preneel (PGV2)
compression functions. Their attacks correspond to our B = 2 case.

Proposition 1 (B = 1). Let n ∈ N. Let α ∈ {1, 2} and consider PGVα. Sup-
pose π

$←− BC[Φ(A, 1, ϕC)](n, n). Then, Advcol
PGVα(q) ≥ q2

2n−|C| .

Proof. We construct a collision-finding adversary A for PGV2. It fixes key k = 0,
and makes predicate queries to πΦ

k on input of distinct values y to obtain q
queries (k, xy, zy) satisfying BitsC(xy ⊕ zy) = 0. Any two such queries collide on
the entire state, k ⊕xy ⊕ zy = k ⊕xy′ ⊕ zy′ , with probability at least q2

2n−|C| . The
attack for PGV1 is the same as we have taken k = 0. ��
Proposition 2 (B = 2and |C| > n/2). Let n ∈ N. Let α ∈ {1, 2} and
consider PGVα. Suppose π

$←− BC[Φ(A, 2, ϕC)](n, n). Then, Advcol
PGVα(q) ≥

q
2n−|C| .

Proof. We construct a collision-finding adversary A for PGV2. It fixes key k = 0,
and makes predicate queries to πΦ

k on input of distinct values y to obtain q 2-sets
{(k, x1

y, z1y), (k, x2
y, z2y)} satisfying BitsC

(
x1

y ⊕ z1y
)

= BitsC
(
x2

y ⊕ z2y
)
. These two

queries collide on the entire state, k ⊕ x1
y ⊕ z1y = k ⊕ x2

y ⊕ z2y , with probability at
least 1

2n−|C| . If the adversary makes q predicate queries, we directly obtain our
bound. The attack for PGV1 is the same as we have taken k = 0. ��

4.2 Preimage Security

Theorem 2. Let n ∈ N. Let α ∈ {1, 2} and consider PGVα. Suppose π
$←−

BC[Φ(A,B,ϕC)](n, n). Then, for q ≤ 2n−2/B,

Advepre
PGVα(q) ≤

(
2Bq

2n

)B

+
2B2δB,C [1]q

2n
.
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The proof is given in Appendix A. It is much more involved than the one of
Theorem 1, particularly as we cannot make use of abortable ciphers. Entering
various choices of B and C shows that in the PGV functions remain mostly
unaffected in the WCM if B ≥ 2, and the same security level as in the ICM is
achieved [9,10,58]. A slight security degradation appears for B = 1 as preimages
can be found in about 2n−|C|. In the full version, we present a matching attack
in the WCM.

5 Application to Grøstl Compression Function

We consider the provable security of the compression function mode of operation
of Grøstl [21] (see also Fig. 4):

FGr∅stl(x1, x2) = x2 ⊕ π1(x1) ⊕ π2(x1 ⊕ x2) . (6)

The Grøstl compression function is in fact designed to operate in a wide-pipe
mode, and in the IPM, the function is proven collision secure up to about 2n/4

queries and preimage secure up to 2n/2 queries [20]. We consider the security
of FGr∅stl in the WCM, where (π1, π2)

$←− BC[Φ(A,B,ϕC)](n)2. We remark that
in this section we consider keyless primitives, hence κ = 0 and the k-input is
dropped throughout. We furthermore note that finding collisions and preimages
for FGr∅stl is equivalent to finding them for

F′
Gr∅stl(x1, x2) = x1 ⊕ x2 ⊕ π1(x1) ⊕ π2(x2) , (7)

as FGr∅stl(x1, x2) = F′
Gr∅stl(x1, x1⊕x2), and we will consider F′

Gr∅stl throughout.

5.1 Collision Security

Theorem 3. Let n ∈ N. Suppose (π1, π2)
$←− BC[Φ(A,B,ϕC)](n)2. Then, for

q ≤ 2n−1/B,

Advcol
F′
Gr∅stl

(q) ≤ B4δB,C [1]q4

2n
+
(B
2

)2δB,C [2](q2 + 2n/2−|C|q)
2n

+
B2q2

2 · 2n/2
+

4B2q2

2n
.

x1

x2 z

π1

π2

x1

x2 z

π1

π2 π3

Fig. 4. Grøstl compression function (left) and Shrimpton-Stam (right).
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The proof is given in the full version of the paper. If we enter particular choices
of B and C into the bound, we find results comparable to the case of Sect. 4.1.
In more detail, for B = 2 and C with |C| ≤ n/2, or for B ≥ 3 constant and C
arbitrary, FGr∅stl achieves the same 2n/4 collision security level as in the ICM
[20]. If B = 1, the bound guarantees security up to about 2(n−|C|)/4, and if
B = 2 with |C| > n/2, collisions can be found in about 2(n−|C|)/2 queries. See
also Table 1. In the full version, we also show that the bound is optimal, by
presenting tight attacks on F′

Gr∅stl in the WCM.

5.2 Preimage Security

Theorem 4. Let n ∈ N. Suppose (π1, π2)
$←− BC[Φ(A,B,ϕC)](n)2. Then, for

q ≤ 2n−1/B,

Advepre
F′
Gr∅stl

(q) ≤ 2B2δB,C [1](q2 + 2n/2−|C|q)
2n

+
Bq

2n/2
+

4B2q2

2n
.

The proof is given in the full version of the paper. As before, we find that FGr∅stl

remains unaffected in the WCM for most cases, the sole exception being B = 1
for which preimages can be found in about 2(n−|C|)/2. In the full version, we
also show that the bound is optimal, by presenting a tight attack on F′

Gr∅stl for
B = 1 in the WCM.

6 Application to Shrimpton-Stam Compression Function

In this section, we consider the provable security of the Shrimpton-Stam com-
pression function [57] (see also Fig. 4):

FSS(x1, x2) = x1 ⊕ π1(x1) ⊕ π3(x1 ⊕ π1(x1) ⊕ x2 ⊕ π2(x2)) . (8)

This function is proven asymptotically optimally collision and preimage secure
up to 2n/2 queries in the IPM [41,51,57]. We consider the security of FSS in
the WCM, where (π1, π2, π3)

$←− BC[Φ(A,B,ϕC)](n)3. (As in Sect. 5 we consider
keyless functions, hence κ = 0 and the key inputs are dropped throughout.) Our
findings readily apply to the generalization of FSS of [41]. The analysis of this
construction is significantly more complex than the ones of Sects. 4 and 5.

6.1 Collision Security

Theorem 5. Let n ∈ N. Suppose (π1, π2, π3)
$←− BC[Φ(A,B,ϕC)](n)3. Then,

(i) If B = 1 and C arbitrary, Advcol
FSS

(2(n−|C|)/2−nε) → 0 for n → ∞;
(ii) If B = 2 and C with |C| ≤ n/2, Advcol

FSS
(2n/2−nε) → 0 for n → ∞;

(iii) If B = 2 and C with |C| > n/2, Advcol
FSS

(2n−|C|−nε) → 0 for n → ∞;
(iv) If B ≥ 3 (independent of n) and C arbitrary, Advcol

FSS
(2n/2−nε) → 0 for

n → ∞.
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Due to the technicality of the proof, the results are expressed in asymptotic
terms. The proof is given in the full version of the paper. For B = 2 and C with
|C| ≤ n/2, or for B ≥ 3 constant and C arbitrary, FSS achieves the same security
level as in the IPM. On the other hand, if B = 1, or if B = 2 but |C| > n/2,
Theorem 5 results in a worse bound. See also Table 1. In the full version, we also
show that the bound is optimal, by presenting tight attacks on FSS in the WCM.

6.2 Preimage Security

Theorem 6. Let n ∈ N. Suppose (π1, π2, π3)
$←− BC[Φ(A,B,ϕC)](n)3. Then,

(i) If B = 1 and C with |C| ≤ n/2, Advepre
FSS

(2n/2−nε) → 0 for n → ∞;
(ii) If B = 1 and C with |C| > n/2, Advepre

FSS
(2n−|C|−nε) → 0 for n → ∞;

(iii) If B ≥ 2 (independent of n) and C arbitrary, Advepre
FSS

(2n/2−nε) → 0 for
n → ∞.

As for collision resistance, the results are expressed in asymptotic terms. The
proof is given in the full version of the paper. The bounds match the ones in
the IPM, except for the case of B = 1 and |C| > n/2. We leave it as an open
problem to prove tightness of Theorem 6 part (ii).

7 Conclusions

Since their formal introduction by Knudsen and Rijmen at ASIACRYPT 2007
[27], numerous known-key attacks on blockciphers have appeared in literature.
These attacks are often considered delicate, as it is not always clear to what
extent they influence the security of cryptographic functions based on these
known-key blockciphers. We presented the weak cipher model in order to inves-
tigate this impact. For a specific instance of this model, considering the exis-
tence of A sets of B queries that satisfy condition ϕC of (3), we proved that the
PGV compression functions [48], the Grøstl compression function [21], and the
Shrimpton-Stam compression function [57] remain mostly unaffected by the gen-
eralized weakness. Additionally, preimage security of the functions turned out to
be significantly less susceptible to these types of weaknesses than collision secu-
rity. The results can be readily generalized to other primitive-based functions,
such as the double block length compression functions Tandem-DM, Abreast-
DM, and Hirose’s compression functions [23,30], and to the permutation-based
sponge mode [5].

Our model is general enough to cover practically all differential known-
key attacks in literature, such as latest results based on the rebound attack
[12,22,28,38,52,53,56] and on the boomerang attack [2,7,31,54,60]. To our
knowledge, our work provides the first attempt to formally analyze the effect
of a wide class of cryptanalytic attacks from a modular and provable security
point of view. It is a step in the direction of security beyond the ideal model, con-
necting practical attacks from cryptanalysis with ideal model provable security.
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There is still a long way to go: in order to make the connection between the two
fields, we abstracted known-key attacks to a certain degree. It remains a highly
challenging open research problem to generalize our findings to multiple or dif-
ferent weaknesses, and to different permutation-based cryptographic functions.
These generalizations include the analysis of known-key based constructions for
more advanced conditions ϕ (such as arbitrary polynomials).
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A Proof of Theorem 2

We focus on PGV2. The analysis for PGV1 is a simplification due to the absence
of the feed-forward of the key. We consider any adversary that has query access
to π

$←− BC[Φ(A,B,ϕC)](n, n) and makes q queries. Let Z ∈ {0, 1}n. A preimage
for Z would imply the existence of a query (k, x, z) such that x ⊕ z = k ⊕ Z.
We consider the ith query (i ∈ {1, . . . , q}) to be the first query to make this
condition satisfied, and sum over i = 1, . . . , q at the end. For regular (forward
or inverse) queries, the analysis of [9,10,58] mostly carries over. The analysis
of predicate queries is a more technical, particularly as we cannot make use of
abortable ciphers.

Query πk(x) or π−1
k (z). The cases are the same by symmetry, and we consider

πk(x) only. Denote the response by z. As z is randomly drawn from a set of size
at least 2n − Bq, it satisfies z = x ⊕ k ⊕ Z with probability at most 1

2n−Bq .

Query πΦ
k (y). Denote the query response by {(k, x1, z1), . . . , (k, xB , zB)}. If all

tuples are old, the query cannot be successful as no earlier query was successful,
and so we assume it contains at least one new tuple. The response is drawn
uniformly at random from the set Σk(Pk, PΦ

k ). For � = 0, . . . , B, denote by
Σ�

k(Pk, PΦ
k ) the subset of all responses that have � new query tuples and B − �

old query tuples (which already appear in Pk). By construction,

Σk(Pk, PΦ
k ) =

B⋃

�=0

Σ�
k(Pk, PΦ

k ) . (9)

Define furthermore for � = 1, . . . , B by Σ�,pre
k (Pk, PΦ

k ) the subset of elements of
Σ�

k(Pk, PΦ
k ) for which one of the new query tuples satisfies x ⊕ z = k ⊕ Z (recall

that we have excluded the case of � = 0). The predicate query is successful with
probability

Pr
(
πΦ

k (y) sets pre(Qi)
)

=
B∑

�=1

|Σ�,pre
k (Pk, P

Φ
k )|

|Σk(Pk, PΦ
k )| . (10)



On the Impact of Known-Key Attacks on Hash Functions 79

Using (9), we bound (10) as

Pr
(
πΦ

k (y) sets pre(Qi)
) ≤ |Σ1,pre

k (Pk, PΦ
k )|

|ΣB
k (Pk, PΦ

k )| +
B∑

�=2

|Σ�,pre
k (Pk, PΦ

k )|
|Σ�

k(Pk, PΦ
k )| . (11)

The reason why � = 1 is treated differently, will become clear shortly.
We next bound all relevant sets. Here, for integers a ≥ b ≥ 1, we denote by

ab = a!
(a−b)! the falling factorial power. Starting with the numerators, for � = 1

we have

|Σ1,pre
k (Pk, PΦ

k )| ≤ B · |Pk|B−1 · (2n − |Pk|) .

Indeed, we have B positions for the sole new query to appear and |Pk|B−1 choices
for the old queries. For the new query, without loss of generality (k, xB , zB), it
needs to satisfy BitsC(xB ⊕ zB) = BitsC(x1 ⊕ · · · ⊕ zB−1) and xB ⊕ zB = k ⊕ Z.
We have 2n − |Pk| possible choices for xB , and any choice gives at most one
possible zB. We remark that |Σ1,pre

k (Pk, PΦ
k )| will probably be about a factor

2−|C| less, as we should only count all possible solutions for the B−1 old queries
that satisfy BitsC(x1 ⊕ · · · ⊕ zB−1) = BitsC(k ⊕ Z). Deriving a tighter bound
would be a cumbersome exercise, but fortunately there is no need to do so: the
fraction of elements in Σk(Pk, PΦ

k ) consisting of B −1 old tuples is already small
enough for the case B > 1. This is the reason why we use a special treatment
for the case of � = 1 in (11).

For � ∈ {2, . . . , B} we have

|Σ�,pre
k (Pk, PΦ

k )| ≤
(

B

�

)

· |Pk|B−� · (2n − |Pk|)� · � · (2n − |Pk|)�−2 · 2n−|C| .

Again, the first term comes from identifying at which positions the new queries
appear and the second term comes from the selection of old queries. Next, we
have (2n − |Pk|)� choices for the x-values and � positions for the “winning query”
to occur. For this particular winning query, the corresponding z-value is fixed
by the equation x ⊕ z = k ⊕ Z. For the remaining � − 1 z-values, there are
(2n − |Pk|)�−2 possibilities to freely fix the first � − 2 of them, and the last one
will be adapted to the predicate condition, and can take at most 2n−|C| values.

Regarding the denominators, for � ∈ {1, . . . , B} we have

|Σ�
k(Pk, PΦ

k )| ≥
(

B

�

)

· |Pk|B−� ·
(

(2n − |Pk|)� · (2n − |Pk|)�−1 · 2n−|C| −
Bq · (2n − |Pk|)�−1 · (2n − |Pk|)�−1 · 2n−|C|

)

,

which can be seen as follows. As before, we have
(
B
�

)
positions for the new

queries to appear and |Pk|B−� possible lists of old queries. Regarding the � new
queries, without loss of generality (k, x1, z1), . . . , (k, x�, z�), these need to satisfy
BitsC(x1 ⊕ · · · ⊕ z�) = BitsC(x�+1 ⊕ · · · ⊕ zB). We first compute the number of
choices for these new queries where z� is only used to adapt to this condition
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and does not need to satisfy that it is fresh. For this case, we have precisely
(2n − |Pk|)� · (2n − |Pk|)�−1 choices for x1, . . . , z�−1, x�, and 2n−|C| possibilities
for the adaption value z�.

Now, we subtract the cases where this adapted value happens to collide,
either with an older value in rng(Pk) or with any of the new z1, . . . , z�−1. Any of
these choices would fix z� (in total at most (|Pk| + � − 1) possibilities). Similarly
to the analysis for |Σ�,pre

k (Pk, PΦ
k )|, where now x� will be used to be adapted to

the predicate condition, there are at most

(|Pk| + � − 1) · (2n − |Pk|)�−1 · (2n − |Pk|)�−1 · 2n−|C|

choices for the fresh values. As � ≤ B, and additionally |Pk| ≤ B(i−1) ≤ B(q−1)
for the current query, we obtain our bound for |Σ�

k(Pk, PΦ
k )|. The bound can be

simplified to

|Σ�
k(Pk, P Φ

k )| ≥
(B

�

)
· |Pk|B−� · (2n − |Pk|)�−1 · (2n − |Pk|)�−1 · 2n−|C| · (2n − 2Bq) ,

using that (2n−|Pk|)�

(2n−|Pk|)�−1 = 2n − |Pk| − (� − 1) ≥ 2n − Bq.
Plugging these bounds into (11), we find for the case B = 1:

Pr
(
πΦ

k (y) sets pre(Qi)
) ≤ 2n − |Pk|

2n−|C| · (2n − 2q)
≤ 2|C|

2n − 2q
.

For the case B > 1 the computation is a bit more elaborate:

Pr
(
πΦ

k (y) sets pre(Qi)
)

≤ B · (2n − |Pk|)
(2n − |Pk|)B−1 · 2n−|C| · (2n − 2Bq)

· |Pk|B−1

(2n − |Pk|)B−1
+

B∑
�=2

(2n − |Pk|)� · (2n − |Pk|)�−2

(2n − |Pk|)�−1 · (2n − |Pk|)�−1
· �

2n − 2Bq
.

For the first fraction we use that 2n − |Pk| ≤ (2n − |Pk|)B−1 as B > 1, and
additionally that |C| ≤ n. For the falling factorial powers of the second fraction,
we use that |Pk|B−1 ≤ (Bq)B−1 and (2n − |Pk|)B−1 ≥ (2n−|Pk|−(B−1))B−1 ≥
(2n−2Bq)B−1. For the fraction in the sum, we use that (2n−|Pk|)�·(2n−|Pk|)�−2

(2n−|Pk|)�−1·(2n−|Pk|)�−1 =
2n−|Pk|−(�−1)
2n−|Pk|−(�−2) ≤ 1. We obtain:

Pr
(
πΦ

k (y) sets pre(Qi)
) ≤ B

2n − 2Bq
· (Bq)B−1

(2n − 2Bq)B−1
+

B∑

�=2

�

2n − 2Bq

≤ BBqB−1

(2n − 2Bq)B
+

B2

2n − 2Bq
.
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Conclusion. Taking the maximum of all success probabilities, the ith query
is successful with probability at most BBqB−1

(2n−2Bq)B + B2δB,C [1]
2n−2Bq . Summation over

i = 1, . . . , q gives

Advepre
PGV2(q) ≤ BBqB

(2n − 2Bq)B
+

B2δB,C [1]q
2n − 2Bq

.

The proof is completed by using the fact that 2n − 2Bq ≥ 2n−1 for Bq ≤ 2n−2.
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25. Jetchev, D., Özen, O., Stam, M.: Collisions are not incidental: a compression func-
tion exploiting discrete geometry. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194,
pp. 303–320. Springer, Heidelberg (2012)

26. Katz, J., Lucks, S., Thiruvengadam, A.: Hash functions from defective ideal ciphers.
In: Nyberg, K. (ed.) CT-RSA 2015. LNCS, vol. 9048, pp. 273–290. Springer,
Heidelberg (2015)

27. Knudsen, L.R., Rijmen, V.: Known-key distinguishers for some block ciphers. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 315–324. Springer,
Heidelberg (2007)

28. Koyama, T., Sasaki, Y., Kunihiro, N.: Multi-differential cryptanalysis on reduced
DM-PRESENT-80: collisions and other differential properties. In: Kwon, T., Lee,
M.-K., Kwon, D. (eds.) ICISC 2012. LNCS, vol. 7839, pp. 352–367. Springer,
Heidelberg (2013)

29. Kuwakado, H., Hirose, S.: Hashing mode using a lightweight blockcipher. In: Stam,
M. (ed.) IMACC 2013. LNCS, vol. 8308, pp. 213–231. Springer, Heidelberg (2013)

30. Lai, X., Massey, J.L.: Hash function based on block ciphers. In: Rueppel, R.A.
(ed.) Advances in Cryptology – EUROCRYPT 1992. LNCS, vol. 658, pp. 55–70.
Springer, Heidelberg (1992)

31. Lamberger, M., Mendel, F.: Higher-order differential attack on reduced SHA-256.
Cryptology ePrint Archive, Report 2011/037 (2011)



On the Impact of Known-Key Attacks on Hash Functions 83

32. Lampe, R., Seurin, Y.: Security analysis of key-alternating feistel ciphers. In: Cid,
C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp. 243–264. Springer,
Heidelberg (2015)

33. Lauridsen, M.M., Rechberger, C.: Linear distinguishers in the key-less setting:
application to PRESENT. In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp.
217–240. Springer, Heidelberg (2015)

34. Leurent, G., Roy, A.: Boomerang Attacks on Hash Function Using Auxiliary Dif-
ferentials. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 215–230.
Springer, Heidelberg (2012)

35. Liskov, M.: Constructing an ideal hash function from weak ideal compression func-
tions. In: Biham, E., Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356, pp. 358–375.
Springer, Heidelberg (2007)

36. Matyas, S., Meyer, C., Oseas, J.: Generating strong one-way functions with cryp-
tographic algorithm. IBM Techn. Disclosure Bull. 27(10A), 5658–5659 (1985)

37. Maurer, U.M., Renner, R.S., Holenstein, C.: Indifferentiability, impossibility results
on reductions, and applications to the random oracle methodology. In: Naor, M.
(ed.) TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004)

38. Mendel, F., Peyrin, T., Rechberger, C., Schläffer, M.: Improved cryptanalysis of
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Abstract. HMAC and its variant NMAC are the most popular appro-
aches to deriving aMAC(andmore generally, aPRF) froma cryptographic
hash function. Despite nearly two decades of research, their exact security
still remains far from understood in many different contexts. Indeed, recent
works have re-surfaced interest for generic attacks, i.e., attacks that treat
the compression function of the underlying hash function as a black box.

Generic security can be proved in a model where the underlying com-
pression function is modeled as a random function – yet, to date, the
question of proving tight, non-trivial bounds on the generic security of
HMAC/NMAC even as a PRF remains a challenging open question.

In this paper, we ask the question of whether a small modification to
HMAC and NMAC can allow us to exactly characterize the security of the
resulting constructions, while only incurring little penalty with respect to
efficiency. To this end, we present simple variants of NMAC and HMAC,
for which we prove tight bounds on the generic PRF security, expressed in
terms of numbers of construction and compression function queries neces-
sary to break the construction. All of our constructions are obtained via a
(near) black-box modification of NMAC and HMAC, which can be inter-
preted as an initial step of key-dependent message pre-processing.

While our focus is on PRF security, a further attractive feature of
our new constructions is that they clearly defeat all recent generic attacks
against properties such as state recovery and universal forgery. These
exploit properties of the so-called “functional graph”which are not directly
accessible in our new constructions.

Keywords: Message authentication codes · HMAC · Generic attacks ·
Provable security

1 Introduction

This paper presents new variants of the HMAC/NMAC constructions of message
authentication codes which enjoy provable security as a pseudorandom function
(PRF) against generic distinguishing attacks, i.e., attacks which treat the com-
pression function of the underlying hash function as a black-box. In particular,
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we prove concrete tight bounds in terms of the number of queries to the construc-
tion and to the compression function necessary to distinguishing our construction
from a random function. Our constructions are the first HMAC/NMAC variants
to enjoy such a tight analysis, and we see this as an important stepping stone
towards the understanding of the generic security of such constructions.

Hash-Based MACs. HMAC [3] is the most widely used approach to key a hash
function H to obtain a PRF or a MAC. It computes the output on message M
and a key K as

HMAC(K,M) = H(K ⊕ opad ‖H(K ⊕ ipad ‖M)),

where opad �= ipad are constants.1 Usually, H is a hash function like SHA-1,
SHA-256 or MD5, in particular following the Merkle-Damg̊ard paradigm [4,16].
That is, it extends a compression function f : {0, 1}c × {0, 1}b → {0, 1}c into
a hash function MDf

IV by first padding M into b-bit blocks M [1], . . . , M [�], and
then producing the output H(M) = S�, where

S0 ← IV , Si ← f(Si−1 ‖M [i]) for all i = 1, . . . , �. (1)

starting with the c-bit initialization value IV. A cleaner yet slightly less practical
variant of HMAC is NMAC, which instead outputs

NMACKin,Kout(M) = MDf
Kout

(MDf
Kin

(M)),

where Kin,Kout ∈ {0, 1}c are key values.

Security of HMAC/NMAC. The security of both constructions has been stud-
ied extensively, both by obtaining security proofs and proposing attacks. On the
former side, NMAC and HMAC were proven to be secure pseudorandom functions
(PRFs) in the standard model [3], later also using weaker assumptions [2] and via
a tight bound in the uniform setting [7]. However, as argued in [7], this standard-
model bound might be overly pessimistic, covering also very unnatural construc-
tions of the underlying compression function f (for example the one used in their
tightness proof). The authors hence argue for the need of an analysis of the PRF
security ofHMAC in the so-called ideal compression function model where the com-
pression function is modelled as an ideal random function and the adversary is
allowed to query it. This model was previously used by Dodis et al. [6] to study
indifferentiability of HMAC, which however only holds for certain key lengths.

This is also the model implicitly underlying many of the recently proposed
attacks on hash-based MACs [5,10,15,17,19,20,22]. These attacks are termed
generic, meaning they can be mounted for any underlying hash function as long
as it follows the Merkle-Damg̊ard (MD) paradigm. The complexity of such a
generic attack is then expressed in the number of key-dependent queries to the
construction (denoted qC) as well as the number of queries to the underlying
compression function (denoted qf). These two classes of queries are also often
referred to as online and offline, respectively.
1 Some details such as padding and arbitrary key length are addressed in Sect. 2.
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All iterated MACs are subject to the long-known Preneel and van Oorschot’s
attack [21] which implies a forgery (and hence also distinguishing) attack against
HMAC/NMAC making qC = 2c/2 construction queries (consisting of constant-
length messages) and no direct compression function queries (i.e., qf = 0). This
immediately raises two questions:

How does the security of HMAC and NMAC degrade (in terms of tolerable
qC) by increasing (1) the length � of the messages and (2) the number
qf of compression-function evaluations?

The first question has been partially addressed in [7]. Their result2 can be inter-
preted as giving tight bounds on the PRF security of NMAC against an attacker
making qC key-dependent construction queries (of length at most � < 2c/3

b-bit blocks) but no queries to the compression function. They show that both
constructions can only be distinguished from random function with advan-
tage roughly ε(qC, �) ≈ �1+o(1)qC

2/2c, improving significantly on the bound
ε(qC, �) ≈ �2qC

2/2c provable using standard folklore techniques. From our per-
spective, this bound can be read as a smooth trade-off: with increasing maximum
allowed query length � it tells us how many queries qC can be tolerated for any
acceptable upper bound on advantage.

Still, it is not clear how this trade-off changes when allowing extremely long
messages (� > 2c/3) and/or some queries to the compression function (qf > 0).
Note that while huge � can be prevented by standards, in practical settings qf is
very likely to be much higher than qC, as it represents cheap local (offline) com-
putation of the attacker. We therefore focus on capturing the trade-off between
qC and qf for values of qC that do not allow to mount the attack from [21]. How-
ever, as we argue below, getting such a tight trade-off for NMAC/HMAC seems
to be out of reach for now, we hence relax the problem by allowing for slight
modifications to the vanilla NMAC/HMAC construction.

Our Contributions. We ask the following question here, and answer it
positively:

Can we devise variants of HMAC/NMAC whose security provably
degrades gracefully with an increasing number of compression function
queries qf , possibly retaining security for qf being much larger than 2c?

The main contribution of this paper is the introduction and analysis of a
variant of NMAC (which we then adapt to the HMAC setting, as described
below) which uses additional key material to “whiten” message blocks before
being processed by the compression function. Concretely, our construction –
termed WNMAC (for “whitened NMAC”) uses an additional extra b-bit key Kw,
and given a message M padded as M [1], . . . , M [�], operates as NMAC on input
padded to blocks M ′[i] = M [i] ⊕ Kb, i.e., every message block is whitened with
the same key (see also Fig. 1).
2 Here we refer to Theorem 2 in [7] that formally considers a related construction
NI in the standard model. However, its proof starts by a transition to the ideal-
model analysis of a construction very closely related to NMAC, while disallowing
compression-function queries.
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The rationale behind WNMAC is two-fold. First, from the security viewpoint,
the justification comes from the rich line of research on generic attacks on hash-
based MACs. Most recent attacks [10,15,19,20] exploit the so-called “functional
graph” of the compression function f, i.e., the graph capturing the structure of
f when repeatedly invoked with its b-bit input fixed to some constant (say 0b).
Since our whitening denies the adversary the knowledge of b-bit inputs on which
f is invoked during construction queries, intuitively it seems to be the right way
to foil such attacks. Moreover, a recent work by Sasaki and Wang [22] suggests
that keying every invocation of f is necessary in order to prevent suboptimal
security against generic state recovery attacks. WNMAC arguably provides the
simplest and most natural such keying. Second, from the practical perspective,
WNMAC can be implemented on top of an existing implementation of NMAC,
using it as a black-box.

PRF-Security of WNMAC. Our main result shows that WNMAC is a secure
PRF; more precisely, no attacker making at most qC construction queries (for
messages padded into at most � blocks) and qf primitive queries can distinguish
WNMAC from a random function, except with distinguishing advantage

εWNMAC(qC, qf , �) ≤ qfqC
22c

+ 2 · �qCqf
2b+c

+
�qC

2

2c
·
(

d′(�) +
64�3

2c
+ 1

)

.

Here, d′(�) is the maximum, over all positive integers �′ ≤ �, of the number of
positive divisors of �′, and grows very slowly, i.e., d′(�) ≈ �1/ ln ln �. We also prove
that this bound is essentially tight. Namely, we give an attack that achieves
advantage roughly qCqf/22c, showing the first term above to be necessary. Addi-
tionally, we know from [7] that the third term is tight for � ≤ 2c/3.

Note that in the case of qf = 0, the bound matches exactly the bound from [7].
Moreover, observe that under the realistic assumption that � < min{2c/3, 2b−c},
the bound simplifies to

εWNMAC(qC, qf , �) ≤ 3
qfqC
22c

+ (d′(�) + 2) · �qC
2

2c
.

Ignoring d′(�) for simplicity, we see that we can tolerate up to qC ≈ 2c/2/
√

�
construction queries and up to qf ≈ 21.5c primitive queries. This corresponds to
the security threshold ranging from 2192 f-queries for MD5 up to 2768 f-queries for
SHA-512. The first term also clearly characterizes the complete trade-off curve
between qC < 2c/2/

√
� and qf for any reasonable upper bound on the message

length and acceptable distinguishing advantage.

Other Security Properties. Additionally, we also analyze the security level
WNMAC achieves with respect to other security notions frequently considered in
the attacks literature. By a series of reductions, we show that, roughly speaking,
εWNMAC also upper-bounds the adversary’s advantage for distinguishing-H and
state recovery. We believe that addressing these cryptanalytic notions also using
the traditional toolbox of provable security is important and see this paper as
taking the first step on that path.
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Lifting to HMAC. We then move our attention from NMAC to HMAC and pro-
pose two analogous modifications to it. The first one, called WHMAC, is obtained
from HMAC in the same way WNMAC is obtained from NMAC: by whitening
the padded message blocks with an independent key, The second one, termed
WHMAC+, additionally processes a fresh key K+ instead of the first block of the
message. Both variants can be implemented given only black-box access toHMAC,
and we prove that they maintain the same security level as WNMAC as long as the
parameters b, c of f satisfy b � 2c (for WHMAC) or b � c (for WHMAC+). Note
that for existing hash functions, the former condition is satisfied for both MD5 and
SHA-1, while the latter holds also for SHA-256 and SHA-512.

The Dual Construction. Motivated by the most restrictive term qCqf/22c in
εWNMAC, the final construction we propose in this paper is a “dual” version of
WNMAC denoted DWNMAC, that differs in the final, outer f-call. Instead of
f(K2, s ‖ 0b−c) for a c-bit key K2 and a c-bit state s padded with zeroes, the outer
call in DWNMAC computes f(s,K2) for a longer, b-bit key. As expected, we prove
that this tweak removes the need for the qCqf/22c term and replaces it by the
strictly favourable term qCqf/2b+c, proving that the zero-padding in the outer
call of WNMAC was actually responsible for the “bottle-neck” term in its security
bound.

Our Techniques. In our information-theoretic analysis of WNMAC we employ
the H-coefficient technique by Patarin [18], partially inheriting the notational
framework from the recent analysis of keyed sponges by Gaži, Pietrzak, and
Tessaro [8]. On a high level, the heart of our proof is a careful analysis of the
probability that two sets intersect in the ideal experiment: (1) the set of adversar-
ial queries to f, and (2) the set of inputs on which f is invoked when answering
the adversary’s queries to WNMAC. Obtaining a bound on the probability of
this event then allows us to exclude it and use the result from [7] that considers
qf = 0, properly adapted to the WNMAC setting.

Related Work. As mentioned above, the motivation for our work partially
stems from the recent line of work on generic attacks against iterated hash-based
MACs [5,10,15,17,19,20,22]. While our security bound for WNMAC does not
exclude attacks of the complexity (in terms of numbers of queries and message
lengths) considered in these papers, the design of WNMAC was partially guided
by the structure of these attacks and seems to prevent them. We find in particular
the work [22] to be a good justification for investigating the security of WNMAC
and related constructions. Iterated MAC that uses keying in every f-invocation
was already considered by An and Bellare [1], their construction NI was later sub-
ject to analysis [7] that we adapt and reuse. One can see WNMAC as a conceptual
simplification of NI where the key is simply used to whiten the b-bit input to the
compression function. Finally, our dual construction considered in Sect. 5 bears
resemblance to the Sandwich MAC analyzed by Yasuda [23], we believe that our
methods could be easily adapted to cover this construction as well.

Perspective and Open Problems. We stress that the reader should not con-
clude from this work that NMAC and HMAC are necessarily less secure than the
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constructions proposed in this paper, specifically with respect to PRF security.
In fact, we are not aware of any attacks showing a separation between the PRF
security of our constructions and that of the original NMAC/HMAC construc-
tions, finding one is an interesting open problem.

While obtaining a non-tight birthday-type bound for NMAC/HMAC is feasi-
ble (for most key-length values, a bound follow directly from the indifferentia-
bility analysis of [6]), proving tight bounds in terms of compression function and
construction queries on the generic PRF security of NMAC/HMAC is a challeng-
ing open problem, on which little progress has been made. The main challenge is
to understand how partial information in form of f-queries can help the attacker
to break security (i.e., distinguish) in settings with qC � 2c/2/

√
�, when the

attack from [7] does not apply. This will require in particular developing a bet-
ter understanding of the functional graph defined by queries to the function f.
Some of its properties have been indeed exploited in existing generic attacks,
but proving security appears to require a much deeper understanding: Most of
the recent attacks, which are probably still not tight, do not come with rigorous
proofs but instead rely on conjectures on the structure of these graphs [10]. The
difficulty of this question for NMAC/HMAC is also well documented by the fact
that even proving security of the whitened constructions presented in this paper
required some novel tricks and considerable effort.

Similarly, it remains equally challenging to prove that for the properties con-
sidered by the recent HMAC/NMAC attacks (such as distinguishing-H, state
recovery or various types of forgeries), the security of WNMAC/WHMAC is prov-
ably superior. Yet, we note that our construction invalidates direct application
of all existing attacks, and hence we feel confident conjecturing that its security
is much higher.

Black-box Instantiations. Throughout the paper we implicitly assume we
can add a key to each b-bit input block, even though we aim for a black-box
instantiation. For many MD-based hash functions, such fine-grained control of
the input to the compression function is generally not possible via a black-box
message pre-processing. Concretely, the functions from the SHA-family with 512-
bit blocks only allow to effectively control (via alterations of the message) the
first 447 bits of the last block, since the remaining 65 bits are reserved for the
64-bit length, and an additional 1-bit. Our analysis can be easily modified to take
this into account. The resulting bound will change very little, and will result in
the term �qCqf/2b+c being replaced by the term (�−1+2d)·qC ·qf/2b+c, where d is
the length of the non-controllable part of the input (for SHA-functions, d = 65).
Note that since d � b − c, this will not affect the tightness of the bounds for
concrete parameters.

2 Preliminaries

Basic Notation. We denote [n] := {1, . . . , n}. Moreover, for a finite set S
(e.g., S = {0, 1}), we let Sn, S+ and S∗ be the sets of sequences of elements
of S of length n, of arbitrary (but non-zero) length, and of arbitrary length,
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respectively (with ε denoting the empty sequence, as opposed to ε which is a
small quantity). As a shorthand, let {0, 1}b∗ denote

({0, 1}b
)∗. We denote by

S[i] the i-th element of S ∈ Sn for all i ∈ [n]. Similarly, we denote by S[i . . . j],
for every 1 ≤ i ≤ j ≤ n, the sub-sequence consisting of S[i], S[i + 1], . . . , S[j],
with the convention that S[i . . . i] = S[i]. Moreover, we denote by S ‖S′ the
concatenation of two sequences in S∗, and also, we let S |T be the usual prefix-
of relation: S | T :⇔ (∃S′ ∈ S∗ : S ‖S′ = T ).

For an integer n, d(n) = |{i ∈ N : i | n}| is the number of its positive
divisors and

d′(n) := max
n′∈{1,...,n}

|{d ∈ N : d | n′}| ≈ n1/ ln lnn

is the maximum, over all positive integers n′ ≤ n, of the number of positive divi-
sors of n′. More precisely, we have ∀ε > 0 ∃n0 ∀n > n0 : d(n) < n(1+ε)/ ln lnn [11].

We also let F(D,R) be the set of all functions from D to R; and with a
slight abuse of notation we sometimes write F(m,n) (resp. F(∗, n)) to denote
the set of functions mapping m-bit strings to n-bit strings (resp. from {0, 1}∗ to

{0, 1}n). We denote by x
$← X the act of sampling x uniformly at random from

X . Finally, we denote the event that an adversary A, given access to an oracle O,
outputs a value y, as AO ⇒ y. To emphasize the random experiment considered,
we sometimes denote the probability of an event A in a random experiment E
by PE[A]. Finally, the min-entropy H∞(X) of a random variable X with range
X is defined as − log (maxx∈X PX(x)).

Pseudorandom Functions. We consider keyed functions F : K×D → R taking
a κ-bit key (i.e., K = {0, 1}κ), a message M ∈ D as input, and returning an
output from R. For a keyed function F under a key k ∈ K we often write
Fk(·) instead of F(k, ·). One often considers the security of F as a pseudorandom
function (or PRF, for short) [9]. This is defined via the following advantage
measure, involving an adversary A:

AdvprfF (A) :=
∣
∣
∣P

[
K

$← {0, 1}κ : AFK ⇒ 1
]

− P
[
f

$← F(D,R) : Af ⇒ 1
]∣
∣
∣ .

Informally, we say that F is a PRF if this advantage is “negligible” for all “effi-
cient” adversaries A.

PRFs in the Ideal Compression Function Model. For our analysis below,
we are going to consider keyed constructions C[f] : {0, 1}κ × D → R which make

queries to a randomly chosen compression function f
$← F(c + b, c) which can

also be evaluated by the adversary (we sometimes write Cf instead of C[f]). For
this case, we use the following notation to express the PRF advantage of A:

AdvprfC[f](A) :=
∣
∣
∣P

[
K

$← {0, 1}κ, f
$← F(c + b, c) : ACf

K ,f ⇒ 1
]

− P
[
R

$← F(D,R), f $← F(c + b, c) : AR,f ⇒ 1
] ∣
∣
∣.
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We call A’s queries to its first oracle construction queries (or C-queries) and its
queries to the second oracle as primitive queries (or f-queries).

Note that the notion of PRF-security is identical to the notion of
distinguishing-R, first defined in [13] and often used in the cryptanalytic lit-
erature on hash-based MACs.

Distinguishing-H. A further security notion defined in [13] is the so-called
distinguishing-H security. Here, the goal of the adversary is to distinguish the
hash-based MAC construction CK [f] using its underlying compression function f
(say SHA-1) and a random key K, from the same construction CK [g] built on top
of an independent random compression function g. In the ideal compression func-
tion model, where we model already the initial compression function f as ideal,
this corresponds to distinguishing a pair of oracles (CK [f], f) from (CK [f], g).
Formally,

Advdist-HC (A) :=
∣
∣
∣P

[
K

$← {0, 1}κ, f
$← F(c + b, c) : ACf

K ,f ⇒ 1
]

− P
[
K

$← {0, 1}κ, f, g
$← F(c + b, c) : ACf

K ,g ⇒ 1
] ∣
∣
∣.

State Recovery. An additional notion considered in the literature is security
against state recovery. Since the definition of this notion needs to be tailored for
the concrete construction it is applied to, we postpone the formal definition of
security against state recovery to Sect. 3.10.

MACs and Unpredictability. It is well known that a good PRF also yields
a good message-authentication code (MAC). A concrete security bound for
unforgeability can be obtained from the PRF bound via a standard argument.

Iterated MACs. For a keyed function f : {0, 1}c × {0, 1}b → {0, 1}c we denote
with Cascf : {0, 1}c × {0, 1}b∗ → {0, 1}c the cascade construction (also known as
Merkle-Damg̊ard) built from f as

Cascf(K,m1‖ . . . ‖m�) := y� where y0 := K and for i ≥ 1 : yi := f(yi−1,mi),

in particular Cascf(K, ε) := K.
The construction NMACf : ({0, 1}c)2×{0, 1}b∗ → {0, 1}c is derived from Cascf

by adding an additional, independently keyed application of f at the end. It
assumes that the domain sizes of f satisfy b ≥ c and the output of the cascade
is padded with zeroes before the last f-call. Formally,

NMACf((K1,K2),M) := f(K2,Casc
f(K1,M)‖0b−c).

Note that practical MD-based hash functions take as input arbitrary-length bit-
strings and then pad them to a multiple of the block length, often including
the message length in the so-called MD-strengthening. This padding then also
appears in NMAC (and HMAC) but here we take the customary shortcut and
our definition of NMAC above (resp. HMAC below) actually corresponds to the
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generalized constructions denoted as GNMAC (resp. GHMAC) in [2] where this
step is also justified in detail.

HMACf is a practice-oriented version of NMACf , where the two keys (K1,K2)
are derived from a single key K ∈ {0, 1}b by xor-ing it with two fixed b-bit strings
ipad and opad. In addition, the keys are not given through the key-input of the
compression function f, but are prepended to the message instead. This allows
for the usage of existing implementations of hash functions that contain a hard-
coded initialization vector IV. Formally:

HMACf(K,m) := Cascf(IV,K2‖Cascf(IV,K1‖m)‖fpad)
where (K1,K2) := (K ⊕ ipad,K ⊕ opad)

and fpad is a fixed (b − c)-bit padding not affecting the security analysis. (Tech-
nically, [14] allows for arbitrary length of the key K: a key shorter than b bits
is padded with zeroes before applying the xor transformations, a longer key is
first hashed.)

3 The Whitened NMAC Construction

We now present our main construction called Whitened NMAC (or WNMAC
for short). To that end, let us first consider a modification of the cascade con-
struction Casc called whitened cascade and denoted WCasc. For a keyed function
f : {0, 1}c × {0, 1}b → {0, 1}c we denote with WCascf : ({0, 1}c × {0, 1}b) ×
{0, 1}b∗ → {0, 1}c the whitened cascade construction built from f as

WCascf((K1,Kw),m1‖ . . . ‖m�) := y�

where y0 := K1 and for i ≥ 1 : yi := f(yi−1,mi ⊕ Kw),

in particular WCascf((K1,Kw), ε) := K1.
The construction WNMAC is derived from NMAC, the only difference being

that the inner cascade Casc is replaced by the whitened cascade WCasc. More
precisely,

WNMACf((K1,K2,Kw),M) := f(K2,WCascf((K1,Kw),M)‖0b−c).

For a graphical depiction of WNMAC, see Fig. 1. We devote most of this section to
the proof of the following theorem that quantifies the PRF-security of WNMAC.

Theorem 1 (PRF-Security of WNMAC). Let A be an adversary making
at most qf queries to the compression function f and at most qC construction
queries, each of length at most � b-bit blocks. Let K = (K1,K2,Kw) ∈ {0, 1}c ×
{0, 1}c × {0, 1}b be a tuple of random keys. Then we have

Advprf
WNMACf

K

(A) ≤ qfqC
22c

+ 2 · �qCqf
2b+c

+
�qC

2

2c
·
(

d′(�) +
64�3

2c
+ 1

)

. (2)

Note that as observed in Sect. 2, this also covers the so-called distinguishing-
R security of WNMAC. Moreover, our analysis also implies security bounds for
distinguishing-H and state recovery, as we discuss later.
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f f fK1 f

⊕
m1

Kw ⊕
m2

Kw ⊕
m3

Kw ⊕
m�

Kw

fK2
WNMAC[f]K1,K2,Kw (m1‖ · · · ‖m�)

Fig. 1. The construction WNMAC[f]K1,K2,Kw .

3.1 Basic Notation, Message Trees and Repetition Patterns

Let us fix an adversary A. We assume that A is deterministic, it makes exactly
qf queries to f and qC construction queries, and it never repeats the same query
twice. All these assumptions are without loss of generality for an information-
theoretic indistinguishability analysis, since an arbitrary (possibly randomized)
adversary making at most this many queries can be transformed into one satis-
fying the above constraints and achieving advantage which is at least as large.

Let QC ⊆ ({0, 1}b
)∗ be any non-empty set of messages (later this will rep-

resent the set of A’s C-queries). Based on it, we now introduce the message tree
and its labeled version, which capture the inherent combinatorial structure of
the messages QC , as well as the internal values computed while these messages
are processed by WCascf inside of WNMACf . The message tree T (QC) = (V,E)
for QC is defined as follows:

– The vertex set is V :=
{

M ′ ∈ ({0, 1}b
)∗ : ∃M ∈ QC : M ′ |M

}
, where is the

prefix-of partial ordering of strings. In particular, note that the empty string
ε is a vertex and that QC ⊆ V .

– The set E ⊆ V × V of (directed) edges is

E :=
{
(M,M ′) : ∃m ∈ {0, 1}b : M ′ = M ‖m

}
.

To simplify our exposition, we also define the following two mappings based on
T (QC).

– The mapping π(v) : V \{ε} → V returns the unique parent node of v ∈ V \{ε};
i.e., the unique node u such that (u, v) ∈ E.

– The mapping μ(v) : V \ {ε} → {0, 1}b returns the unique message block
m ∈ {0, 1}b such that π(v) ‖μ(v) = v (intuitively, this will be the message
block that is processed when “arriving” in vertex v).

Alternatively, with a slight abuse of notation we will also refer to the vertices
in V as v1, . . . , v|V | which is an arbitrary ordering of them such that for all
1 ≤ i, j ≤ |V | it satisfies vi|vj ⇒ i ≤ j. Note that one obtains such an ordering
for example if one, intuitively speaking, processes the messages in QC block-wise
and labels the vertices by their “first appearance”: in particular v1 = ε is the
tree root.
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ε

K1

0f(K1,0 ⊕ Kw)

0 ‖0
f(λ(0),0 ⊕ Kw)

0

0 ‖1 f(λ(0),1 ⊕ Kw)

0 ‖1 ‖1
f(λ(0 ‖1),1 ⊕ Kw)

1

1

0

1

f(K1,1 ⊕ Kw)

1

Fig. 2. Labeled message tree. Example of a labeled message tree T f
K(QC) for four

messages QC = {0,0 ‖0,0 ‖1 ‖1,1}, where r = rb for r ∈ {0, 1}. The gray vertices
correspond to these four messages. Next to each vertex v and edge (u, v), we give the
label λ(v) and the value μ(v), respectively.

Additionally, for a mapping f : {0, 1}c × {0, 1}b → {0, 1}c and a key tuple
K = (K1,K2,Kw) ∈ {0, 1}c × {0, 1}c × {0, 1}b we also consider an extended
version of T (QC) which we call the labeled message tree and denote T f

K(QC) =
(V,E, λ), and which is defined as follows:

– The set of vertices V and edges E are defined exactly as for T (QC) above.
– The vertex-labeling function λ : V → {0, 1}c is defined iteratively: λ(ε) := K1

and for each non-root vertex v ∈ V \{ε} we put λ(v) := f(λ(π(v)), μ(v)⊕Kw).

An example of a labeled message tree is given in Fig. 2. Note that each vertex
label λ(v) is exactly the output of the inner, whitened cascade WCascfK1,Kw

(v)
in WNMACf

K (recall that v is actually a message from {0, 1}b∗).
For any message tree T (QC) = (V,E), a repetition pattern is any equivalence

relation ρ on V . For a labeled message tree T f
K(QC) = (V,E, λ) we say that a

repetition pattern ρ is induced by it if it satisfies

∀u, v ∈ V : λ(u) = λ(v) ⇔ ρ(u, v).

3.2 Interactions and Transcripts

Let QRC denote the set of qC pairs (x, r) such that x ∈ {0, 1}b∗ is a construction
query and r ∈ {0, 1}c is a potential response to it (what we mean by “potential”
will be clear from below). Similarly let QRf denote the set of qf pairs (x, r)
such that x ∈ {0, 1}c × {0, 1}b is an f-query and r ∈ {0, 1}c is a potential
response to it. Let QC ⊆ {0, 1}b∗ and Qf ⊆ {0, 1}c × {0, 1}b denote the sets
of first coordinates (i.e., the queries) in QRC and QRf , respectively; we have
|QC | = qC and |Qf | = qf .

We call the pair of sets (QRC ,QRf) valid if the adversary A would indeed
ask these queries throughout the experiment, assuming that each of her queries
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would be replied by the respective response in QRC or QRf (note that once
a deterministic A is fixed, this determines whether a given pair (QRC ,QRf) is
valid).

We then define a valid transcript to be of the form

τ =
(QRC ,QRf ,K = (K1,K2,Kw), T f

K(QC)
)
,

where (QRC ,QRf) is valid, f : {0, 1}c × {0, 1}b → {0, 1}c is a function and
K = (K1,K2,Kw) ∈ {0, 1}c × {0, 1}c × {0, 1}b is a key tuple.

We differentiate between the ways in which such valid transcripts are gener-
ated in the real and in the ideal worlds (or experiments), respectively, by defining
corresponding distributions Treal and Tideal over the set of valid transcripts:

Real World. The transcript Treal for the adversary A is obtained by sampling
f

$← F(c + b, c) and K = (K1,K2,Kw) ← {0, 1}c × {0, 1}c × {0, 1}b, and
letting Treal denote
(QRC = {(Mi, Yi)}qC

i=1 ,QRf = {(Xi, Ri)}qf
i=1 ,K = (K1,K2,Kw), T f

K(QC)
)
,

where we execute A, which asks construction queries M1, . . . , MqC answered
with Yi := WNMAC[f]K(Mi) for all i ∈ [qC]; and f-queries X1, . . . , Xqf

answered with Ri := f(Xi) for all i ∈ [qf ] (note that the C-queries and
f-queries may in general be interleaved adaptively, depending on A). Finally,
we let T f

K(QC) be the labeled message tree corresponding to QC , f and K.

Ideal World. The transcript Tideal for the adversary A is obtained similarly
to the above, but here, together with the random function f

$← F(c + b, c)
and the key tuple K = (K1,K2,Kw) ← {0, 1}c × {0, 1}c × {0, 1}b, we also
sample qC independent random values Y1, . . . , YqC ∈ {0, 1}r. Then we let
Tideal denote
(QRC = {(Mi, Yi)}qC

i=1 ,QRf = {(Xi, Ri)}qf
i=1 ,K = (K1,K2,Kw), T f

K(QC)
)
,

where we execute A, answer each its C-query Mi with Yi for all i ∈ [qC] and
each its f-query Xi with Ri := f(Xi) for all i ∈ [qf ]. Then we let T f

K(QC) be
the labeled message tree corresponding to QC , f and K.

Later we refer to the above two random experiments as real and ideal, respec-
tively. Note that the range of Treal is included in the range of Tideal by definition,
and that the range of Tideal is easily seen to contain all valid transcripts.

3.3 The H-Coefficient Method

We upper-bound the advantage A in distinguishing WNMAC[f]K for f
$←

F(c + b, c) from a random function in terms of the statistical distance of the
transcripts, i.e.,

AdvprfWNMAC(A) ≤ SD(Treal,Tideal) =
1
2

∑

τ

|P [Treal = τ ] − P [Tideal = τ ]| , (3)
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where the sum is over all valid transcripts. This is because an adversary for
Treal and Tideal, whose optimal advantage is exactly SD(Treal,Tideal), can always
output the same decision bit as A, ignoring any extra information provided by
the transcript.

We are going to use Patarin’s H-coefficient method [18]. This means that we
need to partition the set of valid transcripts into good transcripts GT and bad
transcripts BT and then apply the following lemma.

Lemma 1 (The H-Coefficient Method [18]). Let δ, ε ∈ [0, 1] be such that:

(a) P [Tideal ∈ BT] ≤ δ.
(b) For all τ ∈ GT,

P [Treal = τ ]
P [Tideal = τ ]

≥ 1 − ε.

Then,
AdvprfWNMAC(A) ≤ SD(Treal,Tideal) ≤ ε + δ.

More verbally, we want a set of good transcripts GT such that with very high
probability (i.e., 1 − δ) a generated transcript in the ideal world is going to be
in this set, and moreover, for each such good transcript, the probabilities that
it occurs in the real and in the ideal worlds are roughly the same, i.e., at most a
multiplicative factor 1 − ε apart.

3.4 Good and Bad Transcripts

Given a valid transcript τ we define the sets Lin,Lout ⊆ {0, 1}c × {0, 1}b as

Lin := {(λ(π(v)), μ(v) ⊕ Kw) : v ∈ V \ {ε}}
Lout :=

{(
K2, λ(v) ‖ 0b−c

)
: v ∈ QC

}
,

and let L = Lin ∪ Lout. Intuitively, L represents the set of inputs on which f is
evaluated while processing A’s construction queries in the real experiment. This
set is also well-defined in the ideal experiment by the above equations, and in
both experiments it is determined by the transcript. We refer to Lin as the set
of inner f-invocations, i.e., those invocations of f that were required to evaluate
the inner, whitened cascade WCascf in WNMAC; and similarly, Lout denotes the
outer invocations.

If there is an intersection between the adversary’s f-queries and the inputs
in Lin (resp. Lout), we call this an inner (resp., outer) C-f-collision. We then
denote by C-f-collin (resp., C-f-collout) the event that any inner (resp., outer)
C-f-collision occurs. Formally,

C-f-collin :⇔ (Qf ∩ Lin �= ∅) and C-f-collout :⇔ (Qf ∩ Lout �= ∅)

and let C-f-coll := C-f-collin ∪ C-f-collout. Furthermore, if the vertex labels λ(M)
collide for two messages M,M ′ ∈ QC , we call this a C-collision and denote such
an event by

C-coll :⇔ (∃M,M ′ ∈ QC : λ(M) = λ(M ′)) .
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Definition 1 ( Good Transcripts). Let

τ =
(QRC ,QRf ,K = (K1,K2,Kw), T f

K(QC) = (V,E, λ)
)

be a valid transcript. We say that the transcript is good (and thus τ ∈ GT) if
the following properties are true:

(1) The event C-f-collout has not occurred.
(2) The event C-coll has not occurred.
(3) For any v ∈ V we have λ(v) �= K2.

We denote as GT the set of all good transcripts, and BT the set of all bad
transcripts, i.e., transcripts which can possibly occur (i.e., they are in the range
of Tideal) and are not good. More specifically, we denote by BTi the set of all
bad transcripts that do not satisfy the i-th property in the definition of a good
transcript above, hence we have BT =

⋃3
i=1 BTi.

3.5 Probability of a C-f-collision

In this section we upper-bound the probability of C-f-coll by considering inner
and outer C-f-collisions separately.

Lemma 2. We have Pideal[C-f-collin] ≤ �qCqf/2b+c.

Proof. We start by modifying the ideal experiment to obtain an experiment
denoted ideal′ and the corresponding transcript distribution Tideal′ . The exper-
iment ideal′ is given in Fig. 3. Clearly, ideal′ differs from the ideal experiment
only in the way the vertex labeling function λ(·) is determined.

We now argue that Pideal[C-f-collin] = Pideal′ [C-f-collin]. To see this, consider
an intermediate experiment ideal′′ that is defined exactly as ideal except that it
uses a separate ideal compression function g to generate the vertex labels of the
tree contained in the transcript, where g is completely independent of f queried
by the adversary (i.e., the adversary queries f and the transcript contains QRf

and T g
K(QC)). It is now clear that Pideal[C-f-collin] = Pideal′′ [C-f-collin] since as

long as no inner C-f-collision happens, the experiments are identical.
The remaining equality Pideal′′ [C-f-collin] = Pideal′ [C-f-collin] follows from the

definition of ideal′. It is easy to see that the distribution of vertex labels sam-
pled in steps 2 and 3 of ideal′ and by labeling the tree T g

K(QC) in ideal′′ are the
same. In both cases, repeated inputs to the compression function lead to consis-
tent outputs, while fresh inputs lead to independent random outputs. The two
experiments only differ in the order of sampling: ideal′′ first samples g and then
performs the labeling, while ideal′ starts by sampling the repetition pattern, and
then chooses the actual labels correspondingly. The same distribution of vertex
labels in these two experiments then implies the same probability of C-f-collin
occurring.
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1. The adversary asks its C-queries and f-queries and these are
answered by independent random values. Once the qC queries in
QC are fixed, they also determine the message tree T (QC) and mappings
μ and π as defined in Section 3.1 (the labeling λ is so far undefined).

2. Sample a repetition pattern ρ. The equivalence relation ρ is deter-
mined indirectly by first iteratively defining a mapping ρ̂ : V → [|V |].
Recall the vertex ordering v1, . . . , v|V | defined in Section 3.1. First, set
ρ̂(v1) := 1. Then, for i taking values 2, . . . , |V |, determine ρ̂(vi) as fol-
lows. If there exists j ∈ [i − 1] such that μ(vj) = μ(vi) and ρ̂(π(vj)) =
ρ̂(π(vi)) then let ρ̂(vi) := ρ̂(vj) for the minimal such j. Otherwise let
z := maxj∈[i−1]{ρ̂(vj)} and sample ρ̂(vi) as

ρ̂(vi) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 with probability 2−c

...
...

z with probability 2−c

z + 1 with probability 1 − z · 2−c.

Finally, for all i, j ∈ [|V |] let ρ(vi, vj) :⇔ (ρ̂(vi) = ρ̂(vj)).
3. Sample a vertex labeling λ(·) according to ρ. Namely, sample |ρ|

distinct uniformly random values s1, . . . , s|ρ| ∈ {0, 1}c where |ρ| is the
number of equivalence classes of ρ, and let λ(vi) := sρ̂(vi) for all i ∈ [|V |].
Also let K1 := λ(ε).

4. Sample random keys (K2, Kw) ∈ {0, 1}c × {0, 1}b.

Fig. 3. The random experiment ideal′ for the proofs of Lemmas 2 and 3.

Finally, we upper-bound the probability Pideal′ [C-f-collin]. Conditioned on the
repetition pattern ρ taking some fixed value rp, in step 2, we have

Pideal′ [C-f-collin | ρ = rp] ≤
∑

v∈V \{ε}
Pideal′ [(λ(π(v)), μ(v) ⊕ Kw) ∈ Qf | ρ = rp]

=
∑

v∈V \{ε}
Pideal′ [

(sρ̂(π(v)), μ(v) ⊕ Kw) ∈ Qf | ρ = rp
]

=
∑

v∈V \{ε}
qf/2b+c ≤ �qCqf/2b+c

because the random variables si and Kw sampled in steps 3 and 4 are uniformly
distributed and independent of Qf . Since this bound holds conditioned on ρ
being any fixed repetition pattern rp, it remains valid also without conditioning
on it, hence concluding the proof. ��
We proceed by upper-bounding the probability of an outer C-f-collision.

Lemma 3. We have

Pideal[C-f-collout] ≤ �qCqf
2b+c

+
qCqf
22c

.
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Proof. Let us again consider the experiments ideal′ and ideal′′ defined in the
proof of Lemma 2. We start by the simple observation that for any event A we
have

Pideal [A] = Pideal [A ∧ C-f-collin] + Pideal [A ∧ ¬C-f-collin]

≤ �qCqf
2b+c

+ Pideal′′ [A ∧ ¬C-f-collin] ≤ �qCqf
2b+c

+ Pideal′′ [A] , (4)

which follows from Lemma 2 and the observation that ideal and ideal′′ only differ
if C-f-collin occurs.

Applying (4) to the event C-f-collout as A, it remains to bound the probability
Pideal′′ [C-f-collout]; for this we observe that Pideal′′ [C-f-collout] = Pideal′ [C-f-collout]
similarly as before: the repetition pattern ρ sampled in step 2 of ideal′ has the
same distribution as the repetition pattern induced by the tree T g

K(QC) in ideal′′,
and this together with the sampling performed in step 3 results in the same
distribution of vertex labels in ideal′′ and ideal′ and hence also in the same
probability of C-f-collout in both experiments.

Finally, to upper-bound the probability Pideal′ [C-f-collout], again conditioned
on the repetition pattern ρ sampled in step 2 taking some fixed value rp, we
have

Pideal′ [C-f-collout | ρ = rp] ≤
∑

v∈QC

Pideal′ [
(K2, λ(v) ‖ 0b−c) ∈ Qf | ρ = rp

]

≤
∑

v∈QC

Pideal′ [
(K2, sρ̂(v) ‖ 0b−c) ∈ Qf | ρ = rp

]

=
∑

v∈QC

qf/22c ≤ qCqf/22c

because the random variables si and K2 sampled in steps 3 and 4 are uniformly
distributed and independent of Qf . Since this bound holds conditioned on ρ
being any fixed repetition pattern rp, it remains valid also without conditioning
on it. ��

3.6 Probability of Repeated Outer Invocations

In this section we analyze the probability that any of the outer f -invocations
in the ideal experiment will not be fresh, in particular we upper-bound both
P[Tideal ∈ BT2] and P[Tideal ∈ BT3].

Lemma 4. We have

Pideal [C-coll] ≤ �qCqf
2b+c

+
�qC

2

2c
·
(

d′(�) +
64�3

2c

)

.
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Proof. Applying (4) to the event C-coll, we have Pideal [C-coll] ≤ �qCqf/2b+c +
Pideal′′ [C-coll]. Since the queries QC in the experiment ideal′′ are chosen non-
adaptively (with respect to the keys K1, Kw and the function g used to later
compute the tree labeling), we can obtain via a union bound that

Pideal′′ [C-coll] ≤ qC
2 · max

M1 �=M2
|M1|,|M2|≤�b

Pg,K1,Kw
[
WCascgK1,Kw

(M1) = WCascgK1,Kw
(M2)

]
.

Moreover, we have

max
M1 �=M2

|M1|,|M2|≤�b

Pg,K1,Kw

[
WCascgK1,Kw

(M1) = WCascgK1,Kw
(M2)

]

= max
M1 �=M2

|M1|,|M2|≤�b

∑

K1∈{0,1}c

Kw∈{0,1}b

1
2c+b

· Pg
[
WCascgK1,Kw

(M1) = WCascgK1,Kw
(M2)

]

≤
∑

K1∈{0,1}c

Kw∈{0,1}b

1
2c+b

· max
M1 �=M2

|M1,|M2|≤�b

Pg
[
WCascgK1,Kw

(M1) = WCascgK1,Kw
(M2)

]

=
∑

K1∈{0,1}c

Kw∈{0,1}b

1
2c+b

· max
M1 �=M2

|M1,|M2|≤�b

Pg
[
CascgK1

(M1⊕Kw) = CascgK1
(M2⊕Kw)

]

=
∑

K1∈{0,1}c

Kw∈{0,1}b

1
2c+b

· max
M1 �=M2

|M1,|M2|≤�b

Pg
[
CascgK1

(M1) = CascgK1
(M2)

]

︸ ︷︷ ︸
CascColl(�)

,

where the notation Mi⊕Kw denotes XOR-ing the key Kw to each of the
blocks of Mi.

The last maximization term above was already studied in the context of the
construction NI2 in [7], where it was denoted as CColl(�), but we will refer to it
as CascColl(�) to avoid confusion with the event C-coll considered here. It was
shown in [7] that

CascColl(�) ≤ � · d′(�)
2c

+
64�4

22c
. (5)

Putting all the above bounds together concludes the proof of Lemma4. ��
Lemma 5. We have

Pideal [∃v ∈ V : λ(v) = K2] ≤ �qC
2c

.

Proof. As is clear from the description of the ideal experiment, the key K2 is
chosen uniformly at random and independently of the rest of the experiment, in
particular of the labels λ(v). The lemma hence follows by a simple union bound
over all �qC vertices v ∈ V . ��
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3.7 Good Transcripts and Putting Pieces Together

Let us consider a good transcript τ . First, since τ �∈ BT1, there is no overlap
between the outer f-invocations and the f-queries issued by the adversary. Sec-
ond, since τ �∈ BT2, there is also no repetition between the outer f -invocations
themselves. Finally, since τ �∈ BT3, there is also no overlap between the outer
f-invocations and the inner f-invocations (all the outer invocations contain K2

as their first component). Altogether, this means that each outer f-invocation
in real is fresh and hence its outcome can be seen as freshly uniformly sampled
(since f is an ideal random function). Therefore, the distribution of these out-
comes will be the same as in ideal, where they correspond to the independent
random values Yi. Hence, for all τ ∈ GT, we have

P [Treal = τ ]
P [Tideal = τ ]

= 1.

Plugging this into Lemma 1, together with the bounds from Lemmas 3, 4
and 5, we obtain

AdvprfWNMAC(A) ≤
3∑

i=1

P [Tideal ∈ BTi]

≤ qfqC
22c

+ 2 · �qCqf
2b+c

+
�qC

2

2c
·
(

d′(�) +
64�3

2c

)

+
�qC
2c

≤ qfqC
22c

+ 2 · �qCqf
2b+c

+
�qC

2

2c
·
(

d′(�) +
64�3

2c
+ 1

)

,

which concludes the proof of Theorem1. ��

3.8 Tightness

We now argue that the qCqf/22c term in our bound on the security of WNMAC
as given in (2) is tight, by giving a matching attack (up to a linear factor O(c)).
For most practical parameters, this will be the dominating term in (2), and thus
for those parameters Theorem 1 gives a tight bound. Here we only describe an
attack for the case where qC = Θ(c) is very small, and defer the general case to
the full version.

The qC = Θ(c) Case. We must define an adversary AO,f who can distinguish
the case where the first oracle O implements a random function R from the case
where it implements WNMACf((K1,K2,Kw), ·) with random keys K1,K2,Kw

using the random function f : {0, 1}b+c → {0, 1}c which is given as the second
oracle.

AO,f first picks t := qf/2c keys K̃1, . . . , K̃t arbitrarily, and then uses its qf
function queries to learn the outputs

Zi = {f(K̃i, x‖0b−c) : x ∈ {0, 1}c}
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for all the keys. When throwing 2c balls randomly into 2c bins, we expect
a 1 − 1/e ≈ 0.63 fraction of the bins to be non-empty (and the value is
strongly concentrated around this expectation). We can think of evaluating
the random function f(K̃i, ·‖0b−c) : {0, 1}c → {0, 1}c as throwing 2c balls
(the inputs) to random bins (the outputs), and thus have |Zi| ≈ 0.63 · 2c.
Then AO,f queries O on Θ(c) random inputs, let Qc denote the correspond-
ing outputs. Now AO,f outputs 1 if and only if for some i we have Qc ⊂ Zi. If
O(·) = WNMACf((K1,K2,Kw), ·) = f(K2,WCascf((K1,Kw), ·)‖0b−c) and more-
over K2 = K̃i for some i – which happens with probability t/2c – then all the
outputs of O(·) are in the range of f(K̃i, .‖0b−c) and thus AO,f outputs 1.

On the other hand, if O(·) is a random function, then every single query will
miss the set Zi with constant probability 0.37. Using this, we get by a Chernoff
bound (and the union bound over all t keys) that

P[∃i : Qc ⊂ Zi] ≤ t

2Θ(qC)
.

Summing up we get for qC = Θ(c) and t = qf/2c

AdvprfWNMAC(AqC,t) ≥
∣
∣
∣
∣

t

2c
− t

2Θ(qC)

∣
∣
∣
∣ ≥ t

2c−1
≥ qf

22c−1
=

qfqC
22c · Θ(c)

which matches our term qfqC/22c from the lower bound up to a Θ(c) factor.

3.9 Distinguishing-H Security of WNMAC

The above results also imply a bound on the distinguishing-H security of
WNMAC. To capture this, we first introduce the notion of distinguishing-C,
which corresponds to PRF-security with the restriction that the distinguisher
only uses construction queries.

Definition 2 (Distinguishing-C). Let C[f] : {0, 1}κ × D → R be a keyed

construction making queries to a randomly chosen compression function f
$←

F(c + b, c). The distinguishing-C advantage of an adversary A is defined as

Advdist-CC[f] (A) :=
∣
∣
∣P

[
K

$← {0, 1}κ, f
$← F(c + b, c) : ACf

K ⇒ 1
]

− P
[
R

$← F(D,R) : AR ⇒ 1
] ∣
∣
∣.

The notion of distinguishing-C is useful for bridging distinguishing-H and PRF-
security, as the following lemma shows (we omit its simple proof).

Lemma 6. For every adversary A asking qC and qf construction and primitive
queries, respectively, there exists an adversary A′ asking qC queries to its single
oracle such that

Advdist-HC (A) ≤ AdvprfC[f](A) + Advdist-CC[f] (A′)
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and

AdvprfC[f](A) ≤ Advdist-HC (A) + Advdist-CC[f] (A′).

One can readily obtain a bound on the distinguishing-C security of WNMAC
using Theorem 1 with qf = 0.

Lemma 7 (Distinguishing-C Security of WNMAC). Let A be an adversary
making at most qC construction queries, each of length at most � b-bit blocks.
Let K = (K1,K2,Kw) ∈ {0, 1}c × {0, 1}c × {0, 1}b be a tuple of random keys.
Then we have

Advdist-CWNMACK
(A) ≤ �qC

2

2c
·
(

d′(�) +
64�3

2c
+ 1

)

.

By combining Theorem 1 and Lemmas 6 and 7, we get the following theorem.

Theorem 2 (Distinguishing-H Security of WNMAC). Let A be an adver-
sary making at most qf queries to the compression function and at most qC con-
struction queries, each of length at most � b-bit blocks. Let K = (K1,K2,Kw) ∈
{0, 1}c × {0, 1}c × {0, 1}b be a tuple of random keys. Then we have

Advdist-HWNMACK
(A) ≤ qfqC

22c
+ 2 · �qCqf

2b+c
+ 2 · �qC

2

2c
·
(

d′(�) +
64�3

2c
+ 1

)

.

3.10 State Recovery for WNMAC

We now formally define the notion of security against state recovery for WNMAC.
We consider the strong notion where the goal of the adversary is to output a
pair (M, s) such that the state s occurs at any point during the evaluation of
WCasc on M . Formally, we define AdvsrWNMAC[f](A) to be

P
[
K

$← K, f
$← F ,AWNMACf

K ,f ⇒ (M, s) :

∃M ′ ∈ {0, 1}b∗ s.t. M ′ |M ∧ WCascfK1,Kw
(M ′) = s

]

where K = {0, 1}c × {0, 1}c × {0, 1}b, K = (K1,K2,Kw) and F := F(c + b, c).

Theorem 3 (State-Recovery Security of WNMAC). Let A be an adversary
making at most qf queries to the compression function and at most qC construc-
tion queries, each of length at most � b-bit blocks. Let K = (K1,K2,Kw) ∈
{0, 1}c × {0, 1}c × {0, 1}b be a tuple of random keys. Then we have

AdvsrWNMACf
K

(A) ≤ qfqC
22c

+ 2 · �qCqf
2b+c

+ 2 · �qC
2

2c
·
(

d′(�) +
64�3

2c
+ 2

)

.
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Proof (sketch). First, we replace the compression function oracle f by an indepen-
dent random function g completely unrelated to WNMACf . The error introduced
by this is upper-bounded by Theorem2 and now, compression-function queries
are useless to the adversary, hence we can disregard them.

Let us denote by E the experiment where A interacts with WNMACf (without
direct access to f). Consider an alternative experiment E ′ given in Fig. 4. As
long as the key K2 chosen in step 4 does not hit any of the internal states
that occurred during the query evaluation, the experiment E ′ is identical to E .
Moreover, since K2 is chosen independently at random, such a hit can only occur
with probability at most �qC/2c. Since the vertex labels are only sampled after
the adversary makes its guess for the state, the probability that the guess will
be correct is at most �/2c. ��

1. The adversary asks its C-queries. For each of them, only the repe-
tition pattern for the state values belonging to this query is sampled (as
in the experiment ideal′ in Figure 3) and the query is answered with a
fresh random value, unless the outer f-invocation happens on a repeated
value, in which case the query is answered consistently. After answering
all queries, we have a complete repetition pattern ρ for all state values.

2. Let A output its guess (M, s).
3. Sample a vertex labeling λ(·) according to ρ, let K1 := λ(ε).
4. Sample random keys (K2, Kw) ∈ {0, 1}c × {0, 1}b.

Fig. 4. The random experiment E ′ for the proof of Theorem 3.

4 Whitening HMAC

HMAC is a “practice-oriented” variant of NMAC, see Sect. 2 for its definition.
In this section we consider a “whitened” variant WHMAC of HMAC which is
derived from HMAC in the same way as WNMAC was derived from NMAC,
i.e., by XORing a random key Kw to every message block. We also consider a
variant WHMAC+ where the first message block is a fresh key K+ ∈ {0, 1}b.
More precisely,

WHMACK,Kw [f](m) := f
(
K ′

2,WCascfK′
1,Kw

(m)‖fpad
)

where
K ′

1 := f(IV,K ⊕ ipad) and K ′
2 := f(IV,K ⊕ opad) (6)

and fpad is some fixed padding; and

WHMAC+
K,Kw,K+ [f](m) := f

(
K ′

2,WCascfK′
1,Kw

(m)‖fpad
)

,
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where this time

Z := f(IV,K ⊕ ipad) and K ′
1 := f(Z,K+) and K ′

2 := f(IV,K ⊕ opad)

and fpad is again some padding. Note that both variants, WHMAC and
WHMAC+, can be implemented given just black-box access to an implemen-
tation of HMAC.

The theorem below relates the security of WHMAC and WHMAC+ to the
security of WNMAC.

Theorem 4 (Relating Security of WHMAC to WNMAC). Consider any
xxx ∈ {prf, dist-H, sr}. Assume that for every adversary A making at most qf
queries to the compression function f and at most qC construction queries, each
of length at most � b-bit blocks, we have

AdvxxxWNMACK1,K2,Kw [f](A) ≤ ε,

where here and below, K1,K2 ∈ {0, 1}c and K,Kw,K+ ∈ {0, 1}b are uniformly
random keys. Then for every such adversary A we have

AdvxxxWHMACK,Kw [f](A) ≤ ε + 2− b−2c
2 (7)

and
AdvxxxWHMAC+

K,Kw,K+ [f](A) ≤ ε + 2 · 2− b−c
2 + 2−c. (8)

Proof. Intuitively, for WHMAC one can think of f as an extractor which extracts
keys K ′

1,K
′
2 from K, and the bound then readily follows by the leftover hash

lemma. For WNMAC+ one can roughly think of K ′
1 and K ′

2 as being extracted
from independent keys K+ and K, respectively. For the latter it is thus sufficient
that b (which is the length, and thus also the entropy of the uniform K and K+)
is sufficiently larger than c (the length of K ′

1,K
′
2), whereas for the former we

need b to be sufficiently larger than 2c. We now give the details of the proof for
WHMAC and postpone the treatment of WNMAC+ to the full version.

In order to prove the bound (7) it is sufficient to show that the statistical
distance between the transcripts (as seen by the adversary) when interacting
with WNMAC or WHMAC is at most 2− b−2c

2 . As the only difference between
WNMAC and WHMAC is that we replace the uniform keys K1,K2 with keys
K ′

1,K
′
2 derived according to (6), to bound the distance between the transcripts,

it is sufficient to bound the distance between the random and derived keys. As
K ′

1,K
′
2 are not independent of f, it is important to bound the distance when

given f, concretely, we must show that

SD ((K ′
1,K

′
2, f) , (K1,K2, f)) ≤ 2− b−2c

2 .

We will use the leftover hash lemma [12] which states that for any random vari-
able X ∈ {0, 1}m with min-entropy at least H∞(X) ≥ k and a hash function
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h : {0, 1}m → {0, 1}� chosen from a family of pairwise independent hash func-
tions we have (with U� being uniform over {0, 1}�)

SD ((h(X), h) , (U�, h)) ≤ 2
�−H∞(X)

2 ≤ 2
�−k
2 .

Since f : {0, 1}b+c → {0, 1}c is uniformly random, also the function

f′(K) = (f(IV,K ⊕ ipad), f(IV,K ⊕ opad))

is uniformly random, and thus also pairwise independent. Using H∞(K) =
H∞(K ⊕ ipad) = b and (K ′

1,K
′
2) = f′(K) we thus get

SD ((K ′
1,K

′
2, f

′) , (K1,K2, f
′)) = SD ((K ′

1,K
′
2, f) , (K1,K2, f)) ≤ 2− b−2c

2

as required. The first equality above holds as f defines all of f′ and vice versa. ��

5 The Dual WNMAC Construction

Looking at the security bounds for WNMAC given in Sect. 3 from a distance, it
seems that under reasonable assumptions the most restrictive term in the bounds
is qfqC/22c. Intuitively speaking, the reason for this term is the outer f-call in
WNMAC that only takes 2c bits of actual inputs and adds b − c padding zeroes.

In an attempt to overcome this limitation, we propose a variant of the
WNMAC construction that we call Dual WNMAC (DWNMAC). We prove the
PRF-security of DWNMAC that goes beyond the restrictive term qfqC/22c and
our proof again extends also to distinguishing-H and state-recovery security.
The price we pay for this improvement is a slight increase in the key length and
the fact that DWNMAC cannot be implemented using only black-box access to
NMAC. Similarly, if we apply the same modification to WHMAC, the resulting
construction can no longer be implemented using black-box access to HMAC.

The construction DWNMAC is derived from WNMAC, the only difference
being that the outer f-call is performed on the c-bit state and a b-bit key K2.
More precisely, for a key tuple (K1,K2,Kw) ∈ {0, 1}c × {0, 1}b × {0, 1}b and a
message M ∈ {0, 1}b∗, we define

DWNMACf((K1,K2,Kw),M) := f(WCascfK1,Kw
(M),K2).

Note that DWNMAC is slightly similar to what we would obtain by whitening
from the Sandwich MAC construction [23].

We now summarize the security of DWNMAC.

Theorem 5. (Security of DWNMAC). Let A be an adversary making at most
qf queries to the compression function f and at most qC construction queries, each
of length at most � b-bit blocks. Let K = (K1,K2,Kw) ∈ {0, 1}c×{0, 1}b×{0, 1}b

be a tuple of random keys. Then we have

AdvxxxDWNMACf
K

(A) ≤ 3 · �qCqf
2b+c

+ 2 · �qC
2

2c
·
(

d′(�) +
64�3

2c
+ 2

)

for all xxx ∈ {prf, dist-H, sr}.



108 P. Gaži et al.

Proof (sketch). The proofs are analogous to the proofs for WNMAC given in
Sect. 3, with the main modification needed in Lemma 3 where the probability
of an outer C-f-collision can be upper-bounded by qCqf/2b+c. Roughly speak-
ing, this is because the outer call in DWNMAC does not contain the 0b−c

padding and instead processes b+ c bits of input that are hard to predict for the
attacker. ��
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Abstract. It is well known that three and four rounds of balanced Feis-
tel cipher or Luby-Rackoff (LR) encryption for two blocks messages are
pseudorandom permutation (PRP) and strong pseudorandom permuta-
tion (SPRP) respectively. A block is n-bit long for some positive integer
n and a (possibly keyed) block-function is a nonlinear function map-
ping all blocks to themselves, e.g. blockcipher. XLS (eXtended Latin
Square) encryption defined over two block inputs with three blockcipher
calls was claimed to be SPRP. However, later Nandi showed that it is not
a SPRP. Motivating with these observations, we consider the following
questions in this paper: What is the minimum number of invocations of
block-functions required to achieve PRP or SPRP security over � blocks
inputs? To answer this question, we consider all those length-preserving
encryption schemes, called linear encryption mode, for which only
nonlinear operations are block-functions. Here, we prove the following
results for these encryption schemes:

1. At least 2� (or 2� − 1) invocations of block-functions are required to
achieve SPRP (or PRP respectively). These bounds are also tight.

2. To achieve the above bound for PRP over � > 1 blocks, either we need
at least two keys or it can not be inverse-free (i.e., need to apply the
inverses of block-functions in the decryption). In particular, we show
that a single-keyed inverse-free PRP needs 2� invocations of block
functions.

3. We show that 3-round LR using a single-keyed pseudorandom func-
tion (PRF) is PRP if we xor a block of input by a masking key.

Keywords: XLS · CMC · Luby-Rackoff · PRP · SPRP · Blockcipher

1 Introduction

Block function. For all symmetric key algorithms, domains (sometimes, also
ranges) are desired to be sets of bit-strings of variable sizes. However, almost
all known methodologies, known as modes, use one or more (usually keyed)
functions defined over small and fixed lengths (e.g., blockcipher, compression
function, permutations in sponge constructions etc.) in a black-box manner.
We call a function from In := {0, 1}n (elements of the set are called blocks)
to itself a block function. Throughout the paper we fix a positive integer n.
c© International Association for Cryptologic Research 2015
T. Iwata and J.H. Cheon (Eds.): ASIACRYPT 2015, Part II, LNCS 9453, pp. 113–133, 2015.
DOI: 10.1007/978-3-662-48800-3 5
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A keyed blockcipher is a popular example of block function. Multiplying (as a
field multiplication over In) an element by a secret key K can also be considered
to be a block function as it maps a block input x to K · x ∈ In. Outputs
of a streamcipher with one block seed, can also be viewed as a sequence of
execution of different block functions. In fact, any function mapping one block
to multiple blocks can be viewed as a sequence of executions of block functions.
Whereas, a function mapping multiple blocks to a single block can not be in
general expressed through block functions. For example, compression function,
or mapping (x, y) to (x + K) · (y + K) (known as pseudo dot-product) are not
examples of block functions as they take more than one block as an input.

Length-Preserving Encryption. An encryption algorithm is called length-
preserving if the the number of blocks in a plaintext and its corresponding
ciphertext are same. A length-preserving encryption is called an enciphering
scheme. In addition with the theoretical interest, an enciphering scheme has
some practical applications. Among others, a popular application is disk-sector
encryption addressed by the “IEEE Security in Storage” Work Group P1619.
An enciphering scheme is said to be (S)PRP or (strong) pseudorandom permu-
tation [34,35] if it is secure against adversaries making only plaintext queries (or
both plaintext, ciphertext queries respectively). The building block keyed block
function is assumed to be PRP or PRF (pseudorandom function [12]).

Linear Mode. In this paper we consider a wide class of enciphering schemes and
pseudorandom functions based on linear mode. Informally, a linear mode (LM)
is defined by an oracle algorithm which interacts with block functions (usually
keyed) as oracles such that all inputs of the block functions are computed through
some public linear functions (determined in the design) of the previous obtained
responses. Finally, the output is also computed through a public linear function
of all responses of block functions and the input.

This class is indeed a wide class of encryption algorithms. Most of the
known symmetric key encryptions, e.g., Luby-Rackoff (LR) [23,28], Feistel type
Encryption Schemes [6,17] CMC [15], EME [13,16] HCTR [9,51], TET [14],
HEH [47] etc. are some examples of enciphering schemes based on linear mode.
Almost all pseudorandom functions (e.g., CBC-MAC [5], PMAC [8], TMAC [22],
OMAC [18], DAG-based constructions [20], a sub-class of affine domain exten-
sion or ADE [29] etc.) are also based on linear mode. Thus, the linear mode
based keyed construction includes a wide class of symmetric key algorithms.

1.1 Brief Literature Survey

Now we briefly revisit the related results. Feistel structure is used to define
different blockciphers e.g., Lucifer [50], DES etc. Later, Luby-Rackoff provides
the PRP and SPRP security analysis of this type of ciphers and since then it is
also popularly known as Luby-Rackoff (LR) cipher. In particular it was shown
that three and four round LR cipher are PRP and SPRP secure respectively.
Each round invokes exactly one block function. There are many results known
for security analysis of different rounds of LR and for different forms of Feistel
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structures [6,28,39,40,48]. Many results are known for reducing the key-sizes (i.e.
reusing the round keys [37,38,42,46]). Nandi [28] has characterized that all secure
LR encryption schemes must have non-palindrome key-scheduling algorithms.
Thus, we cannot use one single key.

XLS [43] is proposed to construct a generic encryption scheme which takes
incomplete message blocks given that an encryption which can take complete
message blocks. A particular instantiation of XLS invokes three block functions
and claimed to be SPRP secure. However, the result is shown to be wrong [31]
and some of implications (e.g., COPA [2] which uses XLS) are shown very
recently [32]. Among all linear mode based length-preserving SPRP, the CMC
and four-round Luby-Rackoff require only 2� calls for encrypting � blocks and
others requires more (e.g., EME requires 2�+1 calls etc.). Understanding optimal-
ity of SPRP and PRP, in terms of the number of blockcipher or block function
calls, is our main motivation of this paper.

A class of authenticated encryption modes linear over the field was proposed
by Jutla [21]. This class is more restricted than our linear mode as the linearity
is considered over In instead of binary. In other words, only linear operation
is bit-wise xor (without having any rotation or permutation of bit positions,
multiplying by primitive element etc.). Jutla had shown that the number of
invocations of blockcipher calls plus the number of masking keys should be about
� + O(log2 �).

1.2 Our Contribution

(1) Optimality in PRP and SPRP. Lear Bahack in his submission of the
design called Julius [1] stated that 2�−1 blockcipher encryptions are required for
achieving “simple linear mode” PRP over � blocks. However, their result is still
unpublished and so formalizing the issue and proving such a statement is yet
to know. Moreover, no such claim is known for SPRP security. In this paper we
provide a formal definition of linear mode in Sect. 3. In Sect. 4, we formally show
that a linear mode based length-preserving PRP (or SPRP) over � blocks must
invoke block functions at least 2� − 1 (or respectively, 2�) times. This justifies
why XLS or three rounds of Luby-Rackoff are not SPRP. This bound is tight
as three and four-rounds LR, CMC (for arbitrary block messages) etc. achieve
these bounds.

(2) Optimality in Single-key Inverse-Free PRP. Inverse-free encryp-
tions [6,17,19,23] like LR cipher are useful in terms of implementation as we
do not need to implement the inverse of the building-block for the combined
implementation of encryption and decryption. In Sect. 5, we show that any linear-
mode based inverse-free single key length-preserving PRP over � blocks requires
at least 2� invocations (which is actually same for SPRP constructions). This
shows that PRP and SPRP becomes equally costly for single-keyed inverse-free
encryptions. Although all distinguishers of our paper are differential distinguish-
ers, the PRP distinguisher for an inverse-free single key construction is different
from the above SPRP attacks.
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(3) Three-Round Single-PRF Based LR with a Masking is PRP. The
above observation says that to achieve inverse-free double-block PRP with three
invocations, we can use two independent PRF (e.g., the constructions in [28]
are such examples). Two independent keyed PRF may be more costly than one
keyed PRF due to key-scheduling or key set-up algorithms [10,44]. In the later
part of the Sect. 5, we show that the single PRF based three round LR is indeed
PRP if we simply mask one block of the input by a masking key.

Significance. Our above two distinguishing attacks provide a limitation on the
performance of a (inverse-free) length-preserving encryption or pseudorandom
function or permutation. This applies to a wide class of encryption algorithms
including online encryption, authenticated encryption (without any nonce) etc.
and so it has impact on designs and analysis in symmetric key cryptography.

Novelty of The Attack Idea. In [30] the minimum number of multiplications
required to achieve Δ universal hash has been proposed. Like all other differential
attacks (where zero differences are exploited), our PRP distinguisher and the
ΔU attack from [30] basically finds zero differences in the input of non-linear
functions for some executions. Basic intuition of our SPRP distinguishing attack
is also similar to that of the distinguishing attack of XLS. However, to make
all these applicable for general constructions, we need to find an appropriate
difference in queries. For this, we adopt methodologies from linear algebra. The
PRP distinguisher for single keyed inverse-free construction also exploits zero
differential propagation. However, to achieve zero differential in one more block
than expected (for a PRP distinguisher) is the tricky part of the attack. This
essentially allows to achieve a PRP distinguisher even if we invoke one extra
block function compared to usual PRP construction.

2 Preliminaries

A block matrix is a binary square matrix of size n. Let Mn(a, b) denote the set
of all partitioned matrices Ea×b (of size a × b as a block partitioned matrix and
of size an×bn as a binary matrix) whose (i, j)th entry, denoted E[i, j], is a block-
matrix for all i ∈ [1..a] = {1, . . . , a} and j ∈ [1..b]. The transpose of E, denoted
Etr, is applied as a binary matrix. Thus, Etr[i, j] = E[j, i]tr. Conventionally,
any matrix Ea×b is written as the following block-wise partition matrices

E =

⎛

⎜
⎜
⎜
⎝

E[1, 1] E[1, 2] · · · E[1, b]
E[2, 1] E[2, 2] · · · E[2, b]

...
...

...
...

E[a, 1] E[a, 2] · · · E[a, b]

⎞

⎟
⎟
⎟
⎠

:=

⎛

⎜
⎜
⎜
⎝

E[1, ∗]
E[2, ∗]

...
E[a, ∗]

⎞

⎟
⎟
⎟
⎠

:=
(
E[∗, 1] E[∗, 2] · · · E[∗, b]

)

where E[i, ∗] and E[∗, j] denote ith block-row and jth block-column respectively.
For 1 ≤ i ≤ j ≤ a, we also write E[i..j ; ∗] to mean the sub-matrix consisting
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of all rows in between i and j. We simply write E[..j ; ∗] or E[i.. ; ∗] to denote
E[1..j ; ∗] and E[i..a ; ∗] respectively. Similar notation for columns are defined.

Definition 1. A (square) matrix E ∈ Mn(a, a) is called (block-wise) strictly
lower triangular if for all 1 ≤ i ≤ j ≤ a, E[i, j] = 0 (zero matrix).

For all x = (x1, . . . , xa) ∈ Ia
n, we define a linear function mapping a blocks to b

blocks as E ·x = (y1, . . . , yb). Here, we consider x and y as binary column vectors
(we follow this convention which should be understood from the context). So the
block matrix E[i, j] represents the contribution of xj to define yi. More formally,

yi = E[i, 1] · x1 + E[i, 2] · x2 + · · · + E[i, a] · xa, 1 ≤ i ≤ b.

If E is a strictly lower triangular matrix then yi is clearly functionally indepen-
dent of xi, . . . , xa, 1 ≤ i ≤ a. So if we associate yi uniquely to each xi (e.g.,
yi = ρ(xi) for some function ρ) then the choice of the vectors x and y satisfying
E ·x = y becomes unique. This observation is useful while we define intermediate
inputs and outputs of a black-box based construction.

2.1 Useful Properties of Matrices

It is well known that the maximum number of linearly independent (binary)
rows and columns of a matrix A ∈ Mn(s, t) are same and this number is called
rank of the matrix, denoted rank(A). So clearly we have rank(A) ≤ min{ns, nt}.
By using Gaussian elimination method, denoted x = solve(A, b), we can solve
for some x (not necessarily unique) of the system of solvable linear equations
A · x = b. By convention, whenever a non-zero solution exists it returns a non-
zero solution. Note that if wtr = solve(Atr, btr) then w · A = b (by applying
transpose). The following results are straightforward and so we skip the proofs.

Lemma 1. Let A ∈ Mn(s, t) and r := rank(A).

(1) If r < ns (i.e. presence of row-dependency) then solve(Atr, 0) returns a
non-zero solution.

(2) Similarly for r < nt (i.e. presence of column-dependency) solve(A, 0)
returns a non-zero solution.

(3) Finally, let r = nt (i.e., full column rank) and b := A · w. Then,
solve(A, b) = w (i.e., w is also the unique solution).

Lemma 2. Suppose A ∈ Mn(s, s) is a non-singular matrix, i.e., rank(A) = ns.
Let t < s and

B =

⎛

⎝
A[..t, ∗] 0

0 A[..t, ∗]
A[t + 1.., ∗] A[t + 1.., ∗]

⎞

⎠

where 0 denotes the zero matrix of appropriate size. Then, rank(B) = n(s + t)
(i.e., full row-rank).



118 M. Nandi

2.2 Security Definitions and Notation

In this section we quickly recall the security definitions of fixed length keyed con-
structions. One can also extend the definitions for variable length constructions.

PRF. We call an oracle algorithm A (t, q)-algorithm if it makes at most q queries
and runs in time t. Let K be a key-space and f : K × Ia

n → Ib
n be a (keyed)

function. We say that f is (q, t, ε)-PRF if for any (t, q)-algorithm A the prf-
distinguishing advantage

Advprf
f (A) := |Pr[AfK = 1;K $← K] − Pr[Ag = 1; g $← Func(a, b)]|

is at most ε where Func(a, b) denotes the set of all functions from Ia
n to Ib

n. We
call randomly chosen g to be the (uniform) random function.

Notation. For notational simplicity, we skip the time parameter t which is
irrelevant in this paper. We also simply write Func := Func(1, 1) and Perm to
mean the set of all functions and permutations over In.

(S)PRP. A keyed permutation g over Ia
n is a function g : K× Ia

n → Ia
n such that

for all key k ∈ K, gk := g(K, ·) ∈ Perm(a) (the set of all permutations over Ia
n).

We denote the uniformly chosen permutation by Πa and call uniform random
permutation. A keyed permutation g is called (q, ε)-PRP if for any q-algorithm
A the prp-distinguishing advantage

Advprp
g (A) := |Pr[AgK(·) = 1;K $← K] − Pr[AΠa = 1]|

is at most ε. By PRF-PRP switching lemma [4,49], it is well known that
|Advprf

f (A) − Advprp
f (A)| ≤ (

q
2

)
2−n. We define the sprp-distinguishing

advantage

Advsprp
f (A) := |Pr[AfK ,f−1

K = 1;K $← K] − Pr[AΠa,Π−1
a = 1]|

and (q, ε)-SPRP.

2.3 Tools for Proving Security

Given a q-algorithm A interacting with an oracle O we denote the
transcript τ(AO) by the random vector ((X1, Y1), . . . , (Xq, Yq)) where Xi ∈ Ia

n

and Yi ∈ Ib
n are the ith query made by and response obtained by A respectively.

The following theorem, known as coefficient-H technique [36,41] is very useful
to show a construction is PRP or SPRP. It has also been adapted in [7,25]

Theorem 1 (Coefficient-H Technique). Let f : K × Ia
n → Ib

n be a keyed
function and Vbad ⊆ (Ia

n × Ib
n)q. Suppose

1. for all q-algorithm B, Pr[τ(BΓa,b) ∈ Vbad] ≤ ε1 and
2. for all τ = ((x1, y1), . . . , (xq, yq)) �∈ Vbad,

Pr[fK(x1) = y1, . . . , fK(xq) = yq;K
$← K] ≥ (1 − ε2) × 2−nbq.

Then, for all q-algorithm A, Advprf
f (A) ≤ ε1 + ε2.
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3 Linear Mode

3.1 Linear Query and Mode

A block matrix U ∈ Mn(�, a+ �) is called (a, �)-query function if U [∗ ; a+1..]
is block-wise strictly lower triangular. Here � represents the number of queries
and a represents the number of blocks in the input. For any such query func-
tion, an input X ∈ Ia

n, (and a tuple of � functions ρ̃ = (ρ1, . . . , ρ�) over
In), we can uniquely define or associate u and v, called intermediate input
and output vector respectively, satisfying (1) U · (

X
v

)
= u and (2) ρ̃(u) :=

(ρ1(u1), . . . , ρ�(u�)) = v. This can be easily shown by recursive definitions of
ui’s and vi’s. More precisely, ui is uniquely determined by v1, . . . , vi−1 and X
(through the linear function) and vi is uniquely determined by ui through ρi, for
all 1 ≤ i ≤ �. Informally, a (a, b, �)-linear mode is a mode which takes a blocks
input and returns b blocks output based on executing block functions building
blocks (see Fig. 1 for an illustration of a linear mode). Formally, (a, b, �)-linear
mode is defined by a block matrix E ∈ Mn(� + b, � + a) where E[1..� ; ∗] is a
(a, �)-query function. For any �-tuple of functions ρ̃ ∈ Func�, the corresponding
linear-mode function Eρ̃ : Ia

n → Ib
n is defined as Eρ̃(X) = Y where

E ·
(

X
v

)

=
(

u
Y

)

, ρ̃(u) = v.

ρ1U [1, ∗]

X XX

u1 v1
ρ2

v1

u� v�u3
Yρ�

X

v1 · · · v�−1

u2 v2
U [2, ∗] U [3, ∗] U [� + 1.., ∗]

b11 1

Fig. 1. Linear Mode: Here U [i, ∗] means the ith block row which maps
(X, v1, . . . , vi−1, 0

�−i+1) to ui. Finally, U [�+1.. ; ∗] maps the input X and intermediate
output vector v to the output Y consisiting of b blocks.

So v is the intermediate output vector associated to the input X and the final
output Y := E[�+1.. ; ∗]·(X

v

)
, a linear function of v and X. Now we state a useful

differential property of linear mode. Note that the functions of ρ̃ are non-linear
and would be secret for the adversaries. So to obtain any information about
the intermediate input and output, we only can equate intermediate outputs
whenever two inputs collide for same function. Given any vectors x, x′ of same
size, we write Δx to mean x ⊕ x′ and Δa.bx to mean (xa ⊕ x′

a, . . . , xb ⊕ x′
b). We

simply write Δtx to mean Δ1..tx (the first t elements of Δx) (Fig. 2).

Lemma 3. Suppose E[..t ; ∗] ·X = E[..t ; ∗] ·X ′ (i.e., E[..t ; ∗] ·ΔX = 0). Let
Eρ̃(X) = Y , Eρ̃(X ′) = Y ′. Let v, v′ and u, u′ denote intermediate outputs and
inputs respectively associated with X and X ′ (for the function tuple ρ̃) respec-
tively. Then, Δtu = Δtv = 0t and

ΔY = E[� + 1.. ; ..a] · ΔX + E[� + 1.. ; a + t + 1..] · Δvt+1...
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ρ1U [1, ∗]

ΔX

Δ = 0
ρt Δv�

ρ�

ΔX

Δvt+1..�−1

U [� + 1.., ∗] ΔY
b

U [t, ∗]
11

Δv1 = 0

ΔX

Δvt−1 = 0

Δv..t−2 = 0

Δ = 0 Δvt = 0

Fig. 2. Differential patterm of the linear mode: we choose ΔX such that the first t input
differences of the ρ functions are zero. So the final difference ΔY can be expressed as
the linear function of the rest of the differences Δvt+1.. and ΔX.

Proof. Due to choice of X and X ′, by induction one can show that (u1, v1) =
(u′

1, v
′
1), . . . (ut, vt) = (u′

t, v
′
t) where u and u′ denote the intermediate inputs

associated with X and X ′ respectively (for the function tuple ρ̃). In other words,
Δtu = Δtv = 0t. Now, Y = E[�+1.. ; a+1..] ·v+E[�+1.. ; ..a] ·X and similarly
Y ′ = E[� + 1.. ; a + 1..] · v′ + E[� + 1.. ; ..a] · X ′. The result is followed after we
add these two equations and using that Δtv = 0t. ��

3.2 Keyed Constructions Based on Linear Mode

Keyed Linear Mode. Let F = F1 × · · · × Ff and k be a non-negative integer
where Fi ⊆ Func. A key-space K for any keyed function is of the form Ik

n × F .
We call F the function-key space and Ik

n masking-key space. Any function g is
also written as g+1.

Definition 2. Let μ : [1..�] → [1..f ], called key-assignment function, α :=
(α1, . . . , α�) ∈ {+1,−1}�, called inverse-assignment tuple. For any function-key
ρ = (ρ1, . . . , ρf ) ∈ F , we define ρα

μ := (ρα1
μ1

, . . . , ρα�
μ�

). We denote the set of all
functions ρα

μ by Fα
μ .

Here we implicitly assume that whenever αi = −1, ρμi
is a permutation. If

α = 1�, we simply skip the notation α. In general, the presence of inverse call of
building blocks may be required when we consider decryption of keyed function.
For the encryption, or a keyed function where decryption is not defined, w.l.o.g.
we may assume that α = 1�.

Definition 3. A (k, a, b) keyed linear mode with key-space K, key-assignment
function μ, is a (a+k, b, �) linear mode E. For each key κ := (L, ρ) ∈ K := Ik

n×F ,
we define a keyed function Eκ(P ) := Eρμ(L,P ).

Keyed linear mode E is actually a linear mode with a part of the input is the
masking key and function tuples are also derived by reusing some keyed block
functions.

Example 1. Consider the simple variant of PMAC [8,45] defined over Ia
n (see

Fig. 3 above). Let (p1, . . . , pa) be the input.

1 ≤ i ≤ a − 1, ui = pi and ua = pa ⊕ (
a−1⊕

i=1

vi).
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⊕

u1 = p1

ρ1

ua−1 = pa−1

⊕

ρa−1

v1 va−1

c1 = va

pa

ua

ρa

Fig. 3. The simplified structure of PMAC. The input is (p1, . . . , pa) and the output
is c1.

Finally the output is defined as c1 = va. Here � = a and b = 1. There is no
masking key, i.e. k = 0 and f = a (all function-keys are independently chosen).
The key-assignment function μ is an identity function.

In a single function-key version of PMAC (with independent masking key),
we have f = 1 = k. The ui = αi ·L⊕pi for 1 ≤ i < a and ua = pa⊕(

⊕a−1
i=1 vi)⊕L.

Here the key-assignment function maps all indices to the key-index 1 (as there
is only one choice of key).

Affine Domain Extension or ADE [29]. As defined in [29], affine domain
extension over Ia

n is nothing but a (a, 1, �)-linear mode keyed function E such
that the key-space is K = F ⊆ Func, i.e., f = 1 (single function-key) and k = 0
(no masking key). Moreover, the final output is the response of the last oracle
call, i.e. v�. Like PMAC, the key-assignment function for ADE maps all indices to
the key-index 1. One can consider an injective padding rule and sequence of such
constructions indexed by a to incorporate variable length inputs. CBC-MAC [5],
PMAC [8,24,33], TMAC [22], OMAC [18,27], DAG-based constructions [20] etc.
are some examples of ADE.

Length Preserving Linear Encryption Mode. A keyed linear mode E is
called length-preserving (LP) encryption if Eκ is encryption scheme and a = b.
In addition to these, we also assume that its decryption algorithm D is also a
keyed linear mode which is indeed true for all known linear encryption modes.
We first see an example below.

Example 2. As an example, consider Luby-Rackoff (LR) keyed function with
three rounds using two random functions ρ1, ρ2, i.e. f = 2, a = b = 2 and
� = 3 (three invocations of the underlying block functions). Consider the key-
assignment function π with π1 = 1, π2 = 1 and π3 = 2. So the function tuple
after applying the key-assignment is (ρ1, ρ1, ρ2). As there is no masking key, we
have k = 0. So the key-space is Func2. Given (p1, p2) ∈ I2n we define

u1 := p1, v1 = ρ1(u1), u2 = v1 + p2, v2 = ρ1(u2), u3 = v2 + p1, v3 = ρ2(u3).

Finally, the output is (c1, c2) where c1 := u3 and c2 = v3 + u2. This is clearly
decryptable. Consider ui’s, vi’s and pi’s as variables. The ciphertext provides
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two linear functions of these variables, namely u3 and v3 + u2. So u3 is in the
span. As u3 is in the span, v3 is also computable. Thus u2 is in the span of the
extended ciphertext including v3. Again v2 is computable and hence u1 := p1 is
in the extended span. Finally, p2 is in the span after including v1. So we see that
that decryption algorithm is also linear mode (Fig. 4).

⊕u1 = p1
ρ1

p2

ρ1 ⊕

p1

ρ2
u2 u3v1 v2 v3

c1 = u3 c2 = v3 + u2

Fig. 4. LR with three round.

Decryption Algorithm of a Keyed Linear Encryption Mode. From the
above example, it is clear that the intermediate input outputs for the building
blocks would be same if we encrypt and then decrypt as we do in the correctness
condition: Dκ(Eκ(P )) = P . Informally, if some input-output does not arise in
the decryption then either this input-output is redundant in the encryption
computation or the correctness condition does not hold (due to randomness of the
output which has influence in the encryption but is not used in the decryption).
We now describe the details of a length preserving linear encryption mode for
which all invocations of block function calls are not redundant.

Definition 4 (Reordering of Vectors). Let α := (α1, . . . , α�) ∈ {1,−1}�,
and β = (β1, . . . , β�) be a permutation over [1..�]. A pair of vectors (w, z) ∈ I2�

n

is (a, β)-reordering of a pair of vectors (u, v) ∈ I2�
n if

(wi, zi) =

{
(uβi

, vβi
) if αi = 1,

(vβi
, uβi

) if αi = −1.

Definition 5. A (k + a, a, �)-linear mode E is called linear-mode length-
preserving encryption with key-space K := Ik

n × F and key-assignment π if the
corresponding decryption algorithm D is also a (k + a, a, �)-linear mode with
(1) an inverse assignment-tuple α := (α1, . . . , α�) ∈ {1,−1}� and (2) key-
assignment π′ := π ◦ β where β = (β1, . . . , β�) is a permutation over [1..�].
Moreover, ∀P ∈ Ia

n, L ∈ Ik
n, ρ = (ρ1, . . . , ρf ) ∈ F ,

E ·
⎛

⎝
L
P
v

⎞

⎠ =
(

u
C

)

, ρπ1(u1) = v1, . . . ρπ�
(u�) = v� if and only if
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D ·
⎛

⎝
L
C
z

⎞

⎠ =
(

w
P

)

, ρα1
π′
1
(w1) = z1, . . . , ρ

α�

π′
�
(w�) = z�

where (w, z) is (a, β)-reordering of (u, v).

The above definition implies that correctness condition of an encryption
Dρα

π′ (L,Eρ(L,P )) = P . In addition with the correctness condition, the inter-
mediate inputs and outputs for both encryption and decryption are simply
reordered. In Example 2 (given above), we have a = b = f = 2, � = 3. For
the decryption algorithm, we execute the function in the reverse order and
so we set β1 = 3, β2 = 2, β1 = 3. So the key-assignment function for the
decryption is π′

1 = 2, π′
2 = 2, π′

3 = 1. We do not need to apply inverse for
the decryption (it is called inverse-free) and so inverse-assignment tuple is 13.
So if (u1, v1), (u2, v2) and (u3, v3) are the intermediate input-output pairs for
encryption then (u2, v3), (u2, v2) and (u1, v1) (reordering of the previous pairs)
are the intermediate input-output pairs for decryption.

Examples. EME [16], ELmE [11], AEZ [1], CMC [15] (these follow Encrypt-
Mix-Encrypt paradigm), Luby-Rackoff with a = b = 2, unbalanced Feistel [17,
48] etc. are some examples of length-preserving linear mode encryptions. HCBC1,
HCBC2 [3], Modified-HCBC’s, ELmD [1], MCBC [26], COPE [2] etc. are some
examples of online computable length-preserving encryptions based on linear
mode.

4 PRP and SPRP Distinguishing Attacks

Consider a length-preserving encryption scheme based on (k+a, a, �) linear mode
E. Now we show two main results in this section. Namely, we provide PRP
and SPRP distinguishing attacks on the encryption scheme if � ≤ 2a − 2. and
� ≤ 2a− 1 respectively. Thus, it gives lower bound on the number of invocations
of building blocks for achieving PRP and SPRP security.

4.1 PRP Distinguishing Attack on E with � = 2a − 2

Let us assume � = 2a − 2. The attack can be trivially extended to all those
constructions with � < 2a − 2. We recall that Eρ̃

L(P ) = C if and only if

E ·
⎛

⎝
L
P
v

⎞

⎠ =
(

u
C

)

, ρ̃(u) = v.

Distinguisher Dprp against (k + a, a, 2a − 2)-Linear mode E.

1. step-1 (finding a suitable difference in a pair of plaintext queries): Let d ∈ Ia
n

be the non-zero solution of solve(E[..a − 1 ; k + 1..k + a], 0), i.e. E[..a − 1 ;
k +1..k +a] ·d = 0. Such a non-zero solution exists as the number of columns
is more than that of rows (see lemma 1).
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2. step-2 (make the queries with the difference obtained in step-1): Now the
distinguisher makes two queries 0a and d and obtains corresponding responses
c = Eρ̃

L(0) and c′ = Eρ̃
L(d). Let

u1, v1, . . . , u2a−2, v2a−2, and u′
1, v

′
1, . . . , u

′
2a−2, v

′
2a−2

denote the intermediate inputs outputs for the two queries respectively. By
lemma 2, we have 1 ≤ i ≤ a − 1, ui = u′

i, vi = v′
i and

Δc = E[2a − 1.. ; k + 1..(a + k)] · d + E[2a − 1.. ; 2a + k..] · Δva..

while it is interacting with the keyed construction.
3. step-3 (find a nullifier of unknown intermediate values): As the matrix

E[2a − 1.. ; 2a + k..] is a × (a − 1) matrix, we find a non-zero binary vec-
tor w ∈ {0, 1}na such that w · E[2a − 1.. ; 2a + k..] = 0. In particular,
w = solve(E[2a − 1.. ; 2a + k..]tr, 0).

4. step-4 (the distinguisher event): If w · Δc = w · E[2a − 1.. ; k + 1..(a + k)] · d
then it returns 1 (decision for the keyed construction), else returns 0 (decision
for uniform random permutation).

The distinguishing advantage of the above distinguisher D is at least 1/2
since for a random permutation w · Δc = w · E[2a − 1.. ; k + 1..(a + k)] · d with
probability 1/2 whereas we have seen this holds with probability one for the
keyed construction. When a = 2, we know that LR with three rounds is PRP.
This shows the bound is tight at least for a = 2.

A Generalized Distinguisher Dgen
prp Against (k + a, a, �)-Linear Mode E.

Now we define a distinguisher against (k+a, a, �)-linear mode E assuming certain
singularities in the sub-matrices.
Assumption: Suppose there exists an integer t such that

1. rank(E[..t ; ..a]) < na and
2. rank(E[� + 1.. ; a + k + t + 1..]) < na.

Note the above assumption always holds for t = a − 1 when � ≤ 2a − 2.
However, if � ≥ 2a − 1, the both conditions not necessarily hold. Whenever
the assumptions hold, we have the following similar distinguisher as mentioned
before. This distinguisher would be used later on while describing SPRP distin-
guishers.

Distinguisher Dgen
prp Against (k + a, a, �)-linear Mode E.

1. step-1. Due to the assumptions, we can find d and w such that E[..t ; ..a]) ·
d = 0 and w · E[� + 1.. ; a + k + t + 1..] = 0.

2. step-2. Then we make two queries 0 and d and obtain responses c and c′.
3. step-3. The distinguisher returns 1 if w ·Δc = w ·E[�+1.. ; k+1..(a+k)] ·d,

else 0.
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4.2 SPRP Distinguishing Attack on E with � = 2a − 1

Now we show that if � < 2a then we have a SPRP distinguisher. In other words,
2a many invocations is minimum to achieve SPRP and which is tight as it is
achieved in CMC. The basic intuition of our attack is similar to that of XLS.
However, to complete the attack for any linear-mode encryption we need to
carefully set the queries and distinguishing event. Consider a length-preserving
(k, a, 2a − 1)-encryption scheme based on (k + a, a, 2a − 1)-linear mode E. Let
us denote the (k + a, a, 2a− 1)-linear mode for its decryption by D. We describe
three distinguishers depending on cases.

Case 1: Rank(E [2a.. ; 2a + k..]) < na. In this case, the two assumptions,
mentioned above, hold for t = a−1. So we can run the PRP-distinguisher Dgen

prp .

Case 2: Rank(D[..a ; k + 1..k + a]) < na. In this case, the two assump-
tions also hold for t = a for the decryption function. So we run our general PRP
distinguisher Dgen

prp applied to the decryption function.

Case 3: Rank(D[..a ; k + 1..k + a]) = na, rank(E [2a.. ; 2a + k..]) = na.

Here we describe a SPRP distinguisher. Briefly, it works as follows. It first
makes two queries as in step-2 (the first a − 1 intermediate input and outputs
are identical for two encryption queries). Using the invertible property we can
actually obtain all the differences of intermediate values. As the computation of
decryption algorithm must use same internal input and outputs of the building
blocks, we also know the differences of intermediate inputs and outputs if we
decrypt the first two encryption queries. Now we find another decryption query
for which the first a intermediate input and output differences with one of the
first two queries are fixed. So we can nullify the unknown a − 1 differences and
obtain a distinguishing event. The details are described below.

Distinguisher Dsprp Against (k + a, a, 2a − 1)-Linear Mode E.

1. step-1 (make two queries with a certain difference, same as PRP distin-
guisher): Let d ∈ Ia

n be the non-zero solution of solve(E[..a−1 ; k+1..k+a], 0),
i.e. E[..a− 1 ; k +1..k + a] · d = 0. It makes two queries 0a and d and obtains
corresponding responses c = Eρ̃

L(0) and c′ = Eρ̃
L(d).

Let u1, v1, . . . , u2a−1, v2a−1 and u′
1, v

′
1, . . . , u

′
2a−1, v

′
2a−1 denote the interme-

diate inputs outputs for the two queries respectively. By lemm 3, we have
1 ≤ i ≤ a − 1, ui = u′

i, vi = v′
i and

Δc = E[2a − 1.. ; k + 1..(a + k)] · d + E[2a.. ; 2a + k..] · Δva..

while it is interacting with the keyed construction.
2. step-2 (solve for Δu, Δv): Using the invertible property of E[2a.. ; 2a+k..],

we can actually solve Δva.. and hence Δua... Thus, we know Δu and Δv. Sup-
pose we make two (redundant) decryption queries c and c′ (whose responses
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must be 0 and d) and let w1, z1, . . . , w2a−1, z2a−1 and w′
1, z

′
1, . . . , w

′
2a−1, z

′
2a−1

denote the intermediate inputs outputs for the two queries respectively. Then
by the definition of decryption algorithm we also know Δw, Δz which are
nothing but (β, π)-reordering of (Δu,Δv).

3. step-3 (find a difference for the final decryption query): Now we find a dif-
ference d′ such that

D[..a ; k + 1..k + a + 1] ·
(

d′

Δz1

)

=
(

Δw1

0a−1

)

.

We can solve for a non-zero d′. This can be solved assuming that Δw1 �= 0 (see
the remark below). Note that the matrix D[..a ; k+1..k+a] is invertible. Now
we make two decryption queries c̄ and c̄′ = c̄ + d′. While we set two queries
we should ensure that none of these have been obtained in the first two
encryption queries (these are also called non-pointless or non-trivial queries).
Let w̄1, z̄1, . . . , w̄2a−1, z̄2a−1 w̄′

1, z̄
′
1, . . . , w̄

′
2a−1, z̄

′
2a−1 denote the intermediate

inputs outputs for these two queries respectively and let p̄ and p̄′ denote
the corresponding responses. By choice of d′ we know that z̄1 = z̄′

1 and
Δz̄2..a = 0a−1.

4. step-4 (find a nullifier of unknown intermediate values, same as PRP distin-
guisher): As D[2a.. ; 2a+k..] is a× (a− 1) matrix, we find a non-zero binary
vector w ∈ {0, 1}nb such that w · D[2a − 1.., 2a + k..] = 0.

5. step-5 (the distinguisher event): If w·(p̄⊕p̄′) = w·D[2a−1.. ; k+1..(a+k)]·d′

then it returns 1 (decision for the keyed construction), else returns 0 (decision
for uniform random permutation).

Remark 1. In the above attack we assume that Δw1 �= 0 since otherwise we
do not get a non-zero d′. Note that Δw1 can be written as a function of c and
c′. So for a random permutation, a function of c and c′ become zero has low
probability. So we may assume that the Δw1 �= 0.

5 Security Analysis of Inverse-Free Single Key
Construction

5.1 PRP Attack of Single-Key Inverse-Free Constructions
Without Masking

In the last section, we have seen that to obtain PRP, we need at least 2a − 1
invocations and this is tight as three rounds of LR achieves this bound.
Note that the three calls of the building block can not have same key. In [28],
it is also shown that three rounds of LR-type rounds with same key building
block can not be PRP. However, their result is applicable to a specific form of
encryption schemes. Now, we generalize this result and show that any inverse-
free single function-key (and no masking key) PRP requires at least 2a calls.
In [28], there is a construction of inverse-free SPRP over two blocks invoking
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underlying function (single keyed) four times. So the bound is tight. Interest-
ingly, the cost of PRP and SPRP become same when we want inverse-free single
function-key constructions.

Consider a length-preserving encryption scheme based on (a, a, 2a−1)-linear
mode E. Let us denote the (a, a, 2a−1)-linear mode for its decryption by D. Since
it is inverse-free the inverse-assignment for the decryption is β = (1, 1, . . . , 1).
As it is based on single function-key, the key-assignment is a constant function,
i.e., πi = π′

i = 1. However, there exists a permutation β over [1..2a − 1]. such
that w and z are π-reordering of u and v respectively where u, v denote the
intermediate input and output, respectively for Eρ(P ) = C and similarly w, z for
Dρ(C) = P . We first briefly describe how we can construct a PRP-distinguisher
(as like SPRP). The attack is similar to SPRP but we can not make decryption
queries. We see how we can manage even if we are not allowed to make decryption
queries.

We make two encryption queries such that Δa−1u = Δa−1v = 0a−1. This is
possible as we have a many plaintext blocks. Assuming some invertible property,
we can find out the whole differences Δu and Δv for these two queries. For these
two queries, if we look at the decryption computation then the first inputs, say
w1, w

′
1 and their corresponding output differences Δz1 (not the exact outputs)

for both decryption are known (as there is no masking key). So now we make
two encryption queries with the the following restrictions on intermediate values
u, v, u′ and v′: u1 = w1, u

′
1 = w′

1, Δ2..au = Δ2..au′, Δ2..av = Δ2..av′. As we have
obtained differences for the first a inputs in a determined manner, we can nullify
the remaining a − 1 intermediate differences and obtain a distinguishing event.
The more details of the attack is given below depending on different cases. Note
that the matrix E ∈ Mn(3a − 1, 3a − 1).

Distinguisher Dprp Against (a, a, 2a − 1)-Linear-Mode E
(with Corresponding Decryption Mode D.

Case 1: Rank(E [2a.. ; 2a..]) < na. In this case, the two assumptions, men-
tioned before, hold for t = a − 1. So we have our general PRP distinguisher.

Case 2: Rank(E [1..a ; ..a]) < na. In this case, the two assumptions also hold
for t = a. So we have our general PRP distinguisher.

Case 3: Rank(E [1..a ; ..a]) = na., rank(E [2a.. ; 2a..]) = na. Here we
describe a PRP distinguisher which works similar to SPRP distinguisher and as
described above.

1. step-1 (make two queries with a certain difference, same as PRP distin-
guisher): Let d ∈ Ia

n be the non-zero solution of solve(E[..a − 1 ; ..a], 0), i.e.
E[..a−1 ; ..a]·d = 0. It makes two queries 0a and d and obtains corresponding
responses c = Eρ(0) and c′ = Eρ(d).
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Let u1, v1, . . . , u2a−1, v2a−1 and u′
1, v

′
1, . . . , u

′
2a−1, v

′
2a−1 denote the inter-

mediate inputs outputs for the two queries respectively. By lemma 3, we have
1 ≤ i ≤ a − 1, ui = u′

i, vi = v′
i and

Δc = E[2a.. ; ..a] · d + E[2a.. ; 2a..] · Δva..

while it is interacting with the keyed construction.
2. step-2 (solve for Δu, Δv): Using the invertible property of E[2a.. ; 2a..], we

can actually solve Δva.. and hence Δua... Thus, we know Δu and Δv. Now
note that the first input of decryption D is only based on c and c′. Let β be the
permutation corresponding to the reordering of intermediate input outputs
for decryption. So the values of uβ1 and u′

β1
are known (as they depend only

on c and c′ due to no masking keys and inverse-free property). Moreover, we
know Δvβ1 . Here we assume the difference Δuβ1 is non-zero, otherwise, we
can have a different distinguishing event as zero difference can occur with low
probability for random permutation.

3. step-3 (find a difference for two more encryption queries): Now we find a
solution p and p′ such that

⎛

⎝
E[1, ∗] 0

0 E[1, ∗]
E[2..a, ∗] E[2..a, ∗]

⎞

⎠ ·
(

p
p′

)

=

⎛

⎝
uβ1

u′
β1

0

⎞

⎠ .

This can be solved as it has full column rank (see Lemma 2). Now we make
two encryption queries p and p′ and obtain outputs c and c′. Let u, v, u′ and
v′ be the intermediate inputs and outputs for these two queries respectively.
So u1 = uβ1 , u

′
1 = u′

β1
, Δv1 = Δvβ1 and Δ2..au = Δ2..av = 0a−1. Thus,

the a block output difference Δc depends only on the a − 1 blocks of the
intermediate output difference Δva+1...

4. step-4 (find a nullifier of unknown intermediate values, same as PRP distin-
guisher): As E[2a.. ; 2a+1..] is a× (a− 1) matrix, we find a non-zero binary
vector w ∈ {0, 1}nb such that w · E[2a.., 2a + 1..] = 0.

5. step-5 (the distinguisher event): If w · (p ⊕ d) = w · D[2a.. ; ..a] · d′ then
it returns 1 (decision for the keyed construction), else returns 0 (decision for
uniform random permutation).

5.2 PRP Security of Single-Key Luby-Rackoff with Masking

Define one round Luby-Rackoff LRf (a, b) = (b ⊕ f(a), a) where a, b ∈ In and
f ∈ Func(a, a). In [28] it was shown that three rounds of some variants LR
rounds with single function key is not PRP secure. In last section we have also
generalized and showed that any encryption making three calls over two blocks
input with key space K = F = Func(a) is not PRP secure. However, we now
show that a simple variant of LR with a masking key becomes PRP secure.

Definition 6. For any f ∈ Func(a), L ∈ In, we define (see the Fig. 5 below)

LRf,3
L (a, b) = LRf (LRf (LRf (a + L, b))).
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⊕

a

⊕

b

⊕

⊕
c d

L

f

f

f

x

a + L x + b

x + d

a + c + L

c

Fig. 5. LR-three rounds single function-key and one masking key.

Now we show that the above construction with key-space K = In × Func is
PRP. Note that we have constant key-assignment (i.e., we reuse the PRF for all
invocations) and also inverse assignment tuple is 13. Let f denote the uniform
random function on In. Given a tuple of elements c = (c1, . . . , ct) we say that
the event coll(c) holds if there exists i �= j such that ci = cj . We define

Vbad = {((a1, b1, c1, d1), . . . (aq, bq, cq, dq)) ∈ I4q
n : coll(c)}.

It is easy to see that for random function Γ2 and a q-algorithm A,

Pr[τ(AΓ2) ∈ Vbad] ≤
(

q

2

)

2−n.

Now we show the high interpolation probability of the variant of 3 round LR
construction.

Proposition 1. For all τ = ((a1, b1, c1, d1), . . . (aq, bq, cq, dq)) �∈ Vbad, we have

Pr[τ ] := Pr[LRf,3
L (ai, bi) = (ci, di), 1 ≤ i ≤ q] ≥ (1 − ε)2−2nq

where ε = 7q2

2n+1 .

Proof. We say that a tuple (L0, (xi)1≤i≤q) is admissible if

1. L0 �∈ {ai + cj ; 1 ≤ i, j ≤ q} ∪ {ai + xj ; 1 ≤ i, j ≤ q},
2. xi’s are distinct and xi �= cj , 1 ≤ i, j ≤ q and
3. whenever ai = aj , we have xi + xj = bi + bj .
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Let A denote the set of admissible tuples. Let q1 be the number of distinct
ai’s. The number of (L0, x = (x1, . . . , xq)), denoted N1,3, satisfying only (1) and
(3) is at least (2n − 2q2) × 2nq1 . So the number of admissible tuple is at least

(2n − 2q2) × 2nq1 − (2n − 2q2) × 2n(q1−1)3q2/2.

We mainly subtract the number of tuples satisfying (1) and (3) and not satisfying
(2) from N1,3. So the number of admissible tuple is at least 2n(q1+1)(1−ε) where
ε = 7q2

2n+1 .
Now, for any τ = ((a1, b1, c1, d1), . . . (aq, bq, cq, dq)) �∈ Vbad we have

Pr[τ ] ≥
∑

(L0,x)∈A
Pr[τ,Xi = xi, L = L0] =

∑

(L0,x)∈A
2−n(q1+2q+1).

By using the lower bound of the number of admissible tuples we have

Pr[LRf,3
L (ai, bi) = (ci, di), 1 ≤ i ≤ q] ≥ (1 − 7q2

2n+1
)2−2nq.

��
Theorem 2. For any q-adversary, the PRP advantage Advprp

LRf,3
L

against LRf,3
L

is at most 4q2

2n .

Proof. Armed with the above result and using Coefficient-H technique the the-
orem follows. ��

6 Conclusion

In this paper, we justify formally why we do not have any length-preserving
PRP constructions more efficient than LR three rounds and length-preserving
SPRP constructions more efficient than CMC or four round LR (in terms of the
number of building block calls). We note that this optimality holds for all linear
modes. We show that any such linear mode based constructions over � blocks
requires at leat 2� − 1 blockcipher calls against chosen plaintext adversaries and
at least 2� blockcipher calls against chosen plaintext-ciphertext adversaries. This
bounds are clearly tight as we know some constructions achieving the bound.
Then we look into inverse-free single-key PRP constructions. Nandi has shown
that three blockcipher call is no longer sufficient for LR-type constructions over
two blocks (note that three call is sufficient using two independent PRF). We
extend this result and show that any �-block single-key inverse-free PRP must
require 2� calls like SPRP constructions. However, if we are allowed to use one
masking key then we can have inverse-free PRP construction invoking only three
blockcipher calls. We actually show that the three round LR using same keyed
PRF is PRP if we mask a plaintext block by a masking key.
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Abstract. The iterated Even-Mansour construction defines a block
cipher from a tuple of public n-bit permutations (P1, . . . , Pr) by alter-
natively xoring some n-bit round key ki, i = 0, . . . , r, and applying
permutation Pi to the state. The tweakable Even-Mansour construction
generalizes the conventional Even-Mansour construction by replacing the
n-bit round keys by n-bit strings derived from a master key and a tweak,
thereby defining a tweakable block cipher. Constructions of this type
have been previously analyzed, but they were either secure only up to
the birthday bound, or they used a nonlinear mixing function of the
key and the tweak (typically, multiplication of the key and the tweak
seen as elements of some finite field) which might be costly to imple-
ment. In this paper, we tackle the question of whether it is possible to
achieve beyond-birthday-bound security for such a construction by using
only linear operations for mixing the key and the tweak into the state.
We answer positively, describing a 4-round construction with a 2n-bit
master key and an n-bit tweak which is provably secure in the Random
Permutation Model up to roughly 22n/3 adversarial queries.

Keywords: Tweakable block cipher · Iterated Even-Mansour cipher ·
Key-alternating cipher · Beyond-birthday-bound security

1 Introduction

Background. A block cipher with key space K and message space M is a family
of permutations of M indexed by the key k ∈ K. A tweakable block cipher
(TBC) takes an additional (potentially public) input parameter t ∈ T called a
tweak aiming at providing inherent variability in about the same way an IV or
nonce brings variability to an encryption scheme. Some block ciphers such as the
Hasty Pudding Cipher [35], Mercy [10], or Threefish (the block cipher underlying
the Skein hash function [15]) were designed so as to natively support tweaks.
The syntax and security requirements for tweakable block ciphers were formally
articulated in a seminal paper by Liskov, Rivest and Wagner [24]. Since then,
c© International Association for Cryptologic Research 2015
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TBCs have found multiple applications such as (tweakable) length-preserving
encryption modes [18,19], online ciphers [1,33], and authenticated encryption
modes [24,31,32].

Liskov et al. [24] also proposed two generic constructions of a TBC from a
standard block cipher, achieving security up to the so-called birthday bound,
i.e., when the adversary is allowed at most roughly 2n/2 queries to the encryp-
tion or decryption oracle, where n is the block size (that is, the message space
of the TBC is M = {0, 1}n). The “black-box” design strategy (i.e., building a
TBC on top of an existing standard block cipher, in a black-box way) has since
then been the main avenue of research. Earlier proposals, such as XEX [31] and
variants [4,26] were related to the second of the two original proposals of Liskov
et al., and were limited to birthday-bound security as well. Recently, a number
of constructions achieving beyond-birthday-bound security have emerged, such
as Minematsu’s construction [27], the CLRW construction [22,23,30], and two
constructions by Mennink [25]. All those constructions enjoy a security proof in
the standard model (i.e., assuming that the underlying block cipher is a pseudo-
random permutation), except for Mennink’s constructions that were analyzed in
the ideal cipher model.
Tweaking Even-Mansour Ciphers. Unfortunately, none of the currently
known black-box TBC constructions with beyond-birthday-bound security can
be deemed truly practical (even though some of them might come close to it [25]).
Hence, it might be beneficial to “open the hood” and to study how to build
a TBC from some lower level primitive than a full-fledged conventional block
cipher, e.g., a pseudorandom function or a public permutation. For example,
Goldenberg et al. [16] investigated how to include a tweak in Feistel ciphers. This
was extended to generalized Feistel ciphers by Mitsuda and Iwata [28]. Recently,
a similar study was undertaken for the second large class of block ciphers besides
Feistel ciphers, namely key-alternating ciphers [11], a super-class of Substitution-
Permutation Networks (SPNs). An r-round key-alternating cipher based on a
tuple of public n-bit permutations (P1, . . . , Pr) maps a plaintext x ∈ {0, 1}n to
the ciphertext defined as

y = kr ⊕ Pr(kr−1 ⊕ Pr−1(· · · P2(k1 ⊕ P1(k0 ⊕ x)) · · · )), (1)

where the n-bit round keys k0, . . . , kr are either independent or derived from a
master key k. When the Pi’s are modeled as public permutation oracles, con-
struction (1) is also referred to as the (iterated) Even-Mansour construction,
in reference to Even and Mansour who pioneered the analysis of this construc-
tion in the Random Permutation Model [13]. While Even and Mansour limited
themselves to proving birthday-bound security in the case r = 1, larger num-
bers of rounds were studied in subsequent works [3,21,36]. The general case has
been recently (tightly) settled by Chen and Steinberger [6], who proved that
the r-round iterated Even-Mansour cipher with r-wise independent round keys
ensures security up to roughly 2

rn
r+1 adversarial queries.

In order to incorporate a tweak t in the iterated Even-Mansour construction,
it is tantalizing to generalize (1) by replacing round keys ki by some function
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fi(k, t) of the master key k and the tweak t (see Fig. 1). We will refer to such a
construction as a Tweakable Even-Mansour (TEM) construction.1 This is exactly
the spirit of the TWEAKEY framework introduced by Jean et al. [20]. In fact,
these authors go one step further and propose to unify the key and tweak inputs
into what they dub the tweakey. The main topic of this paper being provable
security (in the traditional model where the key is secret and the tweak is chosen
by the adversary), we will not make such a bold move here, since we are not
aware of any formal security model adequately capturing what Jean et al. had
in mind.

The investigation of the theoretical soundness of this design strategy was
initiated in three recent papers. First, Cogliati and Seurin [8], and independently
Farshim and Procter [14], analyzed the simple case of an n-bit key k and an
n-bit tweak t simply xored together at each round, i.e., fi(k, t) = k ⊕ t for
each i = 0, . . . , r.2 They gave attacks up to two rounds, and proved birthday-
bound security for three rounds. In fact, the security of this construction caps
at 2n/2 queries independently of the number of rounds. Indeed, it can be written
Ẽ(k, t, x) = E(k ⊕ t, x), where E is the conventional iterated Even-Mansour
cipher with the trivial key-schedule (i.e., the same round key is xored between
each round), and by a result of Bellare and Kohno [2, Corollary 5.7], a tweakable
block cipher of this form can never offer more than κ/2 bits of security, where
κ is the key-length of E (i.e., κ = n in the case at hand). Hence, if we want
beyond-birthday-bound security, we have no choice but to consider more complex
functions fi (at the bare minimum, these functions, even if linear, should prevent
the TBC construction from being of the form E(k ⊕ t, x) for some block cipher
E with n-bit keys).

This was undertaken by Cogliati, Lampe, and Seurin [7], who considered
nonlinear ways of mixing the key and the tweak. More specifically, they studied
the case where fi(k, t) = Hki

(t), where the family of functions (Hk) is uniform
and almost XOR-universal, and the master key is k = (k0, . . . , kr). A classical
example is multiplication-based hashing, i.e., fi(k, t) = ki ⊗ t, where ⊗ denotes
the multiplication in the finite field F2n , the tweak t = 0 being forbidden. Cogliati
et al. showed that one round is secure up to the birthday bound, and that two
rounds are secure up to roughly 22n/3 adversarial queries.3 They also provided a

1 We warn that the naming Tweakable Even-Mansour construction was previously
used by the designers of Minalpher [34], a candidate to the CAESAR competition,
to designate a permutation-based variant of Rogaway’s XEX construction [31], i.e., a
1-round Even-Mansour construction where the derivation functions f0 and f1 applied
to (k, t) are allowed to depend on the internal permutation P1 (something we do not
consider in this paper).

2 Actually, the results of [8,14] were stated in terms of xor-induced related-key security
of the (conventional) iterated Even-Mansour cipher, but in this case this is equivalent
to standard (i.e., single-key) security of the corresponding tweakable construction.

3 More precisely, the birthday-bound result applies to the variant of the construction
were the same key is used before and after permutation P1, and the 22n/3-security
bound applies to the cascade of this construction with two independent keys and
two independent permutations.
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(non-tight) asymptotic security bound improving as the number of rounds grows.
However, implementing a xor-universal hash function might be costly, and linear
functions fi’s would be highly preferable for obvious efficiency reasons.
Our Results. In this paper, we ask whether it is possible to come with a
tweakable Even-Mansour construction achieving both:

1. a linear mixing of the tweak and the key to the state;
2. beyond-birthday-bound security.

We answer positively, by providing a construction with 2n-bit keys and n-bit
tweaks. The starting point is the 4-round iterated Even-Mansour construction
with a 2n-bit master key (k0, k1), k0 and k1 being both n bits, and what we
call the “alternating” key schedule, namely round keys are k0, k1, k0, etc. This
is for example how LED-128 is designed [17]. To turn this block cipher into a
tweakable Even-Mansour construction, we simply add the n-bit tweak t between
each permutation (see Fig. 2). In other words, if we denote E((k0, k1), x) the
conventional Even-Mansour cipher with alternating round keys, the tweakable
construction that we consider can be written

Ẽ((k0, k1), t, x) = E((k0 ⊕ t, k1 ⊕ t), x).

We prove that this construction is secure up to roughly 22n/3 adversarial
queries. Unsurprisingly, and as in many previous works, our proof uses Patarin’s
H-coefficients technique [6,29]. In particular, we rely on a key lemma by Cogliati
et al. [7] to analyze so-called good transcripts.
Application to Related-Key Security. Our result can be rephrased in terms
of related-key security [2] of the conventional Even-Mansour cipher: the 4-round
conventional Even-Mansour cipher with the alternating key-schedule is secure
up to roughly 22n/3 adversarial queries against related-key attacks for the set of
related-key deriving functions.

Φ2−⊕ def= {(k0, k1) �→ (k0 ⊕ Δ, k1 ⊕ Δ) : Δ ∈ {0, 1}n}.

Note that this set is more restrictive than the set Φ⊕ that would allow to xor an
arbitrary 2n-bit string to the master key (k0, k1). It remains an open problem
(already stated in [8]) to find an Even-Mansour construction provably secure
beyond the birthday bound against Φ⊕-related-key attacks.

Open Problems. We propose three challenging open problems, the first two
being restricted to the case of n-bit tweaks. First, what would be the analogue
of the Chen-Steinberger result [6] in the tweakable setting? In more details, we
know how to deliver n/2 bits of security with an n-bit master key [8,14] and
this paper shows how to reach 2n/3 bits of security with a 2n-bit master key.
Hence, it is natural to ask whether one can obtain rn/(r + 1) bits of security
from an rn-bit master key for r > 2, and what would be the adequate num-
ber of rounds and the corresponding (linear) “tweak-and-key” schedule. Second,
Chen et al. [5] showed that the 2-round conventional Even-Mansour construc-
tion can provably deliver 2n/3 bits of security even with an n-bit master key
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(for example, when the two inner permutations are independent, the trivial key-
schedule is sufficient). Again, what would be the analogue of this result in the
tweakable setting? Can we design a TEM construction with an n-bit master key
and an n-bit tweak delivering 2n/3 bits of security, or even more? Finally, it is
natural to ask whether one can extend the construction of this paper to handle
larger tweaks, in particular 2n-bit tweaks. We show in the full version of this
paper [9] that the naive way of proceeding, namely adding alternatively t0 and
t1, is insecure for four rounds. Hence, this seems to require at least five rounds.

We also remark that attacks against the (conventional) iterated Even-
Mansour cipher with the alternating key-schedule have been investigated by
Dinur et al. [12]. It would be interesting to study whether these attacks can be
adapted (and potentially improved) in the tweakable setting.

Organization. In Sect. 2, we introduce the notation, the security definitions,
and give some background on the H-coefficients technique. Our main result is
proved in Sect. 3.

2 Preliminaries

2.1 Notation and General Definitions

General Notation. In all the following, we fix an integer n ≥ 1 and denote
N = 2n. For integers 1 ≤ b ≤ a, we will write (a)b = a(a − 1) · · · (a − b + 1) and
(a)0 = 1 by convention. The set of all permutations of {0, 1}n will be denoted
P(n).

Tweakable Block Ciphers. A tweakable block cipher with key space K, tweak
space T , and message space M is a mapping Ẽ : K × T × M → M such that
for any key k ∈ K and any tweak t ∈ T , x �→ Ẽ(k, t, x) is a permutation of M.
We denote TBC(K, T , n) the set of all tweakable block ciphers with key space K,
tweak space T , and message space {0, 1}n. A tweakable permutation with tweak
space T and message space M is a mapping P̃ : T × M → M such that for any
tweak t ∈ T , x �→ P̃ (t, x) is a permutation of M. We denote TP(T , n) the set of
all tweakable permutations with tweak space T and message space {0, 1}n.

Tweakable Even-Mansour Constructions. Fix integers n, r ≥ 1. Let K and
T be two sets, and let f = (f0, . . . , fr) be a (r+1)-tuple of functions from K×T
to {0, 1}n. The r-round tweakable Even-Mansour construction TEM[n, r, f ] spec-
ifies, from an r-tuple P = (P1, . . . , Pr) of permutations of {0, 1}n, a tweakable
block cipher with key space K, tweak space T , and message space {0, 1}n, simply
denoted TEMP in the following (parameters [n, r, f ] will always be clear from the
context) which maps a key k ∈ K, a tweak t ∈ T , and a plaintext x ∈ {0, 1}n to
the ciphertext defined as (see Fig. 1):

TEMP(k, t, x) = fr(k, t) ⊕ Pr(fr−1(k, t) ⊕ Pr−1(· · · P1(f0(k, t) ⊕ x) · · · )).
We will denote TEMP

k the mapping taking as input (t, x) ∈ T × {0, 1}n and
returning TEMP(k, t, x).
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We will mostly be interested in the case where K = ({0, 1}n)a and T =
({0, 1}n)b for integers a, b ≥ 1. In this setting, we will denote k = (k0, . . . , ka−1)
and t = (t0, . . . , tb−1), all ki’s and tj ’s being n-bit strings, or simply k = k, resp.
t = t when a = 1, resp. b = 1. When all fi’s are linear over ({0, 1}n)a+b, we say
that the construction has linear tweak and key mixing.

Fig. 1. The r-round tweakable Even-Mansour construction based on a tuple of public
permutations (P1, . . . , Pr).

Previously Studied Constructions. Two types of TEM constructions have
already been studied. In [8], Cogliati and Seurin considered the simplest case
where a = b = 1 (n-bit keys and n-bit tweaks) and fi(k, t) = k ⊕ t for each
i = 0, . . . , r. This construction has linear tweak and key mixing, and is secure
up to 2n/2 adversarial queries starting from r = 3. (The results of [8] were for-
mulated in terms of xor-induced related-key attacks against the conventional
iterated Even-Mansour construction, but in this simple case the two security
notions are in fact equivalent.) In [7], Cogliati, Lampe, and Seurin studied a
large class of nonlinear mixing functions, in particular, for n-bit tweaks, finite
field multiplication-based ones, i.e., f(k, t) = k ⊗ t, or more generally, for
bn-bit tweaks, polynomial hashing-based functions, i.e., f(k, (t0, . . . , tb−1)) =
∑b−1

i=0 ki+1 ⊗ ti.

2.2 Security Definitions

Fix some family of functions f = (f0, . . . , fr) from K × T to {0, 1}n. To study
the security of the construction TEM[n, r, f ] in the Random Permutation Model,
we consider a distinguisher D which interacts with r + 1 oracles that we denote
generically (P̃0, P1, . . . , Pr), where syntactically P̃0 is a tweakable permutation
with tweak space T and message space {0, 1}n, and P1, . . . , Pr are permutations
of {0, 1}n. The goal of D is to distinguish two “worlds”: the so-called real world,
where D interacts with (TEMP

k ,P), where P = (P1, . . . , Pr) is a tuple of public
random permutations and the key k is drawn uniformly at random from K, and
the so-called ideal world (P̃0,P), where P̃0 is a uniformly random tweakable
permutation and P is a tuple of random permutations of {0, 1}n independent
from P̃0. We will refer to P̃0 as the construction oracle and to P1, . . . , Pr as the
inner permutation oracles.
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The distinguishing advantage of a distinguisher D is defined as

Adv(D)
def=

∣
∣
∣Pr

[
DTEMP

k ,P = 1
]

− Pr
[
DP̃0,P = 1

]∣
∣
∣ ,

where the first probability is taken over the random choice of k and P, and
the second probability is taken over the random choice of P̃0 and P. In all
the following, we consider computationally unbounded distinguishers, and hence
we can assume wlog that they are deterministic. We also assume that they
never make pointless queries (i.e., queries whose answers can be unambiguously
deduced from previous answers). The distinguisher is allowed to query all oracles
adaptively in both directions; this corresponds to adaptive chosen-plaintext and
ciphertext attacks (CCA).

For non-negative integers qc and qp, we define the insecurity of the
TEM[n, r, f ] construction against CCA-attacks as

Advcca
TEM[n,r,f ](qc, qp) = max

D
Adv(D),

where the maximum is taken over all distinguishers making exactly qc queries to
the construction oracle and exactly qp queries to each inner permutation oracle.

2.3 The H-Coefficients Technique

As in many previous works [5–8], our security proof will use the H-coefficients
technique [29], which we explain here.
Transcript. Recall that the distinguisher D interacts with a tuple of r+1 oracles
denoted (P̃0, P1, . . . , Pr). In the real world, the construction oracle P̃0 is TEMP

k

where P = (P1, . . . , Pr) and k is random, whereas in the ideal world it is a ran-
dom tweakable permutation independent from (P1, . . . , Pr). From the interaction
of D with these oracles, we define the queries transcript (QC ,QP1 , . . . ,QPr

) of
the attack as follows. The list QC records the queries to the construction oracle:
if D made either a direct query (t, x) to the construction oracle P̃0 which was
answered by y, or an inverse query (t, y) which was answered by x, then the
triple (t, x, y) ∈ T × {0, 1}n × {0, 1}n is added to QC . Similarly, for 1 ≤ i ≤ r,
QPi

contains all pairs (u, v) ∈ {0, 1}n ×{0, 1}n such that D made either a direct
query u to permutation Pi which was answered by v, or an inverse query v
which was answered by u. Note that queries are recorded in a directionless and
unordered way, but by our assumption that the distinguisher is deterministic,
the raw interaction of D with its oracles can unambiguously be reconstructed
from the queries transcript (see e.g. [6] for more details). Note also that by our
assumption that D never makes pointless queries, each query to the construc-
tion oracle results in a distinct triple in QC , and each query to Pi results in a
distinct pair in QPi

. Moreover, since we assume that the distinguisher always
makes the maximal number of allowed queries to each oracle, one has |QC | = qc

and |QPi
| = qp for 1 ≤ i ≤ r. In all the following, we also denote m the number

of distinct tweaks appearing in QC , and qi the number of queries for the i-th
tweak, 1 ≤ i ≤ m, ordering the tweaks arbitrarily. Note that one always has
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∑m
i=1 qi = qc, even though m may depend on the answers received from the

oracles.
A queries transcript is said attainable (with respect to some fixed distin-

guisher D) if there exists oracles (P̃0,P) such that the interaction of D with
(P̃0,P) results in this transcript (in other words, the probability to obtain this
transcript in the ideal world is non-zero). Moreover, in order to have a simple
definition of bad transcripts, the actual key k is revealed to the adversary at
the end of the experiment if we are in the real world, while in the ideal world,
a “dummy” key k ←$ K is simply drawn uniformly at random independently
from the answers of the oracle P̃0 (this is obviously without loss of generality
since this can only help the distinguisher and increase its advantage). All in all,
a transcript τ is a tuple τ = (QC ,QP1 , . . . ,QPr

,k), and we say that a tran-
script is attainable if the corresponding queries transcript (QC ,QP1 , . . . ,QPr

) is
attainable. We denote Θ the set of attainable transcripts. In all the following,
we denote Tre, resp. Tid, the probability distribution of the transcript τ induced
by the real world, resp. the ideal world (note that these two probability distrib-
utions depend on the distinguisher). By extension, we use the same notation to
denote a random variable distributed according to each distribution. The main
lemma of the H-coefficients technique is the following one (see e.g. [5,6] for the
proof).

Lemma 1. Fix a distinguisher D. Let Θ = Θgood
Θbad be a partition of the set
of attainable transcripts. Assume that there exists ε1 such that for any τ ∈ Θgood,
one has4

Pr[Tre = τ ]
Pr[Tid = τ ]

≥ 1 − ε1,

and that there exists ε2 such that Pr[Tid ∈ Θbad] ≤ ε2. Then Adv(D) ≤ ε1 + ε2.

Useful Observations. We end this section with some useful preliminary obser-
vations. First, we introduce some additional notation. Given a permutation
queries transcript Q and a permutation P , we say that P extends Q, denoted
P � Q, if P (u) = v for all (u, v) ∈ Q. By extension, given a tuple of permu-
tation queries transcripts QP = (QP1 , . . . ,QPr

) and a tuple of permutations
P = (P1, . . . , Pr), we say that P extends QP, denoted P � QP, if Pi � QPi

for
each i = 1, . . . , r. Note that for a permutation transcript of size qp, one has

Pr[P ←$ P(n) : P � Q] =
1

(N)qp

. (2)

Similarly, given a tweakable permutation transcript Q̃ and a tweakable permu-
tation P̃ , we say that P̃ extends Q̃, denoted P̃ � Q̃, if P̃ (t, x) = y for all
(t, x, y) ∈ Q̃. For a tweakable permutation transcript Q̃ with m distinct tweaks
and qi queries corresponding to the i-th tweak, one has

Pr[P̃ ←$ TP(T , n) : P̃ � Q̃] =
m∏

i=1

1
(N)qi

. (3)

4 Recall that for an attainable transcript, one has Pr[Tid = τ ] > 0.
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It is easy to see that the interaction of a distinguisher D with oracles
(P̃0, P1, . . . , Pr) yields any attainable queries transcript (QC ,QP) with QP =
(QP1 , . . . ,QPr

) iff P̃0 � QC and Pi � QPi
for 1 ≤ i ≤ r. In the ideal world, the

key k, the permutations P1, . . . , Pr, and the tweakable permutation P̃0 are all
uniformly random and independent, so that, by (2) and (3), the probability of
getting any attainable transcript τ = (QC ,QP,k) in the ideal world is

Pr[Tid = τ ] =
1

|K| ×
(

1
(N)qp

)r

×
m∏

i=1

1
(N)qi

.

In the real world, the probability to obtain τ is

Pr[Tre = τ ] =
1

|K| ×
(

1
(N)qp

)r

× Pr
[
P ←$ (P(n))r : TEMP

k � QC

∣
∣
∣P � QP

]
.

Let
p(τ)

def= Pr
[
P ←$ (P(n))r : TEMP

k � QC

∣
∣
∣P � QP

]
.

Then we have
Pr[Tre = τ ]
Pr[Tid = τ ]

= p(τ)
/ m∏

i=1

1
(N)qi

. (4)

Hence, applying Lemma 1 will require three steps: first, define good and bad
transcripts, then upper bound the probability of bad transcripts in the ideal
world, and finally lower bound the real world probability p(τ) when τ is good in
order to use Eq. (4).

2.4 An Extended Sum-Capture Lemma

To upper bound the probability of getting a bad transcript in the ideal world,
we will need a generalization of the sum-capture theorem from [5] (that applied
to a random permutation) to the case of a family of random permutations
(in other words, a random tweakable permutation).

We denote GL(n) the general linear group of degree n over F2, i.e., the set of
all automorphisms (linear bijective mappings) of Fn

2 .

Lemma 2. Fix an automorphism Γ ∈ GL(n) and a non-empty set T . Let P̃
be a uniformly random tweakable permutation in TP(T , n), and let A be some
probabilistic algorithm making exactly q (two-sided) adaptive queries to P̃ . Let
Q̃ = ((t1, x1, y1), . . . , (tq, xq, yq)) denote the transcript of the interaction of A
with P̃ . For any two subsets U and V of {0, 1}n, let

μ(Q̃, U, V ) = |{((t, x, y), u, v) ∈ Q̃ × U × V : x ⊕ u = Γ (y ⊕ v)}|.
Then, assuming 9n ≤ q ≤ N/2, one has

PrP̃ ,ω

[

∃U, V ⊆ {0, 1}n : μ(Q̃, U, V ) ≥ q|U ||V |
N

+
2q2

√|U ||V |
N

+ 3
√

nq|U ||V |
]

≤ 2
N

,
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where the probability is taken over the random choice of P̃ and the random coins
ω of A.

The proof of this lemma is a simple generalization of the one from [5] and can
be found in the full version of this paper [9].

3 Beyond-Birthday-Bound Security

3.1 Statement of the Result and Discussion

In this section, we consider the 4-round tweakable Even-Mansour construction
TEM[n, 4, f ] with 2n-bit keys and n-bit tweaks depicted on Fig. 2. The main
result of this paper is the following one:

Theorem 1. Let f = (f0, . . . , f4) where fi((k0, k1), t) = kimod 2 ⊕ t. Let qc, qp

be two integers such that 9n ≤ qc and qp + 3qc + 1 ≤ N/2. Then one has

Advcca
TEM[n,4,f ](qc, qp) ≤ 44q

3/2
c + 38qc

√
qp + (30 + 3

√
n)qp

√
qc + 4q

3/2
p + 2

N
.

Hence, this construction ensures CCA-security as long as qc and qp are small
compared to 22n/3, up to logarithmic terms in N = 2n.

The proof follows the H-coefficients method exposed in Sect. 2.3. In Sect. 3.2,
we begin by describing the set of bad transcripts and upper bound the proba-
bility to get such a transcript in the ideal world. Then, for any good attainable
transcript τ , we prove in Sect. 3.3 that the ratio between the probability to get
τ in the real world and in the ideal world is close enough to 1.

Fig. 2. The 4-round tweakable Even-Mansour construction with a 2n-bit key (k0, k1)
and an n-bit tweak t.

3.2 Definition and Probability of Bad Transcripts

The first step is to define the set of bad transcripts. Let τ = (QC ,QP1 , . . . ,
QP4 , (k0, k1)) be an attainable transcript, with |QC | = qc and |QPi

| = qp for
i = 1, . . . , 4. In all the following, we let, for i ∈ {1, . . . , 4},

Ui = {ui ∈ {0, 1}n : (ui, vi) ∈ QPi
}

Vi = {vi ∈ {0, 1}n : (ui, vi) ∈ QPi
}
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denote the domains and ranges of QPi
respectively. We also define three quan-

tities characterizing the transcript,

α1
def= |{((t, x, y), u1) ∈ QC × U1 : x ⊕ k0 ⊕ t = u1}|

α4
def= |{((t, x, y), v4) ∈ QC × V4 : y ⊕ k0 ⊕ t = v4}|

α2,3
def= |{((t, x, y), v2, u3) ∈ QC × V2 × U3 : v2 ⊕ k0 ⊕ t = u3}|.

We also define two quantities depending respectively on QP2 and QP3 :

ν2
def= |{((u2, v2), (u′

2, v
′
2)) ∈ (QP2)

2 : (u2, v2) �= (u′
2, v

′
2), u2 ⊕ v2 = u′

2 ⊕ v′
2}|

ν3
def= |{((u3, v3), (u′

3, v
′
3)) ∈ (QP3)

2 : (u3, v3) �= (u′
3, v

′
3), u3 ⊕ v3 = u′

3 ⊕ v′
3}|.

Definition 1. We say that a transcript τ is bad if at least one of the following
conditions is fulfilled:

(B-1) there exists (t, x, y) ∈ QC , (u1, v1) ∈ QP1 , and (u4, v4) ∈ QP4 such that
k0 ⊕ t = x ⊕ u1 = v4 ⊕ y;

(B-2) there exists (t, x, y) ∈ QC , (u1, v1) ∈ QP1 , and (u2, v2) ∈ QP2 such that
k0 ⊕ t = x ⊕ u1 and k1 ⊕ t = v1 ⊕ u2;

(B-3) there exists (t, x, y) ∈ QC , (u3, v3) ∈ QP3 , and (u4, v4) ∈ QP4 such that
k1 ⊕ t = v3 ⊕ u4 and k0 ⊕ t = v4 ⊕ y;

(B-4) α1 ≥ √
qc/2;

(B-5) α4 ≥ √
qc/2;

(B-6) α2,3 ≥ qp
√

qc;
(B-7) ν2 ≥ √

qp;
(B-8) ν3 ≥ √

qp.

Otherwise we say that τ is good.5 We denote Θgood, resp. Θbad the set of good,
resp. bad transcripts.

We start by upper bounding the probability of getting bad transcripts in the
ideal world.

Lemma 3. Assume that 9n ≤ qc ≤ N/2 and qp ≤ N/2. Then one has

Pr [Tid ∈ Θbad] ≤ 2q2cqp + 3qcq
2
p

N2
+

(5 + 3
√

n)
√

qcqp + 4q
3/2
p + 2

N
.

Proof. We upper bound the probability of each condition in turn. We denote
Θi the set of attainable transcripts satisfying condition (B-i). Recall that in the
ideal world, the key (k0, k1) is drawn independently from the queries transcript.

5 We define conditions (B-4) and (B-5) using
√

qc/2 rather than
√

qc in order to be
able later to directly apply a previous result by Cogliati et al. [7].



Beyond-Birthday-Bound Security for Tweakable Even-Mansour Ciphers 145

Condition (B-1). Let BadK1 be the set of keys k0 such that there exists (t, x, y) ∈
QC , (u1, v1) ∈ QP1 , and (u4, v4) ∈ QP4 such that k0 ⊕ t = x ⊕ u1 = y ⊕ v4. Note
that BadK1 only depends on the queries transcript, hence for any constant C we
have, since k0 is uniformly random,

Pr [Tid ∈ Θ1] ≤ Pr
[
P̃0 ←$ TP(T , n),P ←$ (P(n))4 : |BadK1| > C

]
+

C

N
. (5)

Moreover, if we let

μ(QC , U1, V4)
def= |{((t, x, y), u1, v4) ∈ QC × U1 × V4 : x ⊕ u1 = y ⊕ v4)}|,

then one clearly has
|BadK1| ≤ μ(QC , U1, V4).

Hence, we can use Lemma 2 in order to upper-bound |BadK1| with overwhelming
probability (we consider D with access to the inner permutations as a proba-
bilistic algorithm A interacting with the tweakable permutation P̃0, resulting in
the transcript QC , and we let Γ be the identity mapping). For

C =
qcq

2
p

N
+

2q2cqp

N
+ 3qp

√
nqc,

we obtain that

Pr
[
P̃0 ←$ TP(T , n),P ←$ (P(n))4 : |BadK1| > C

]
≤ 2

N
.

Using (5) gives

Pr [Tid ∈ Θ1] ≤ qcq
2
p

N2
+

2q2cqp

N2
+

3qp
√

nqc

N
+

2
N

.

Conditions (B-2) and (B-3). We consider (B-2). For each (t, x, y) ∈ QC ,
(u1, v1) ∈ QP1 , and (u2, v2) ∈ QP2 , the probability, over the random draw of
(k0, k1), that k0 ⊕ t = x ⊕ u1 and k1 ⊕ t = v1 ⊕ u2 is 1/N2 since (k0, k1) is
uniform and independent from the queries transcript. Summing over the qcq

2
p

possibilities for (t, x, y), (u1, v1), and (u2, v2) yields

Pr [Tid ∈ Θ2] ≤ qcq
2
p

N2
.

Similarly,

Pr [Tid ∈ Θ3] ≤ qcq
2
p

N2
.

Conditions (B-4) and (B-5). We consider (B-4). Seeing α1 as a random variable
over the random draw of (k0, k1), one has

E[α1] =
∑

(t,x,y)∈QC

∑

u1∈U1

Pr [k0 = x ⊕ u1 ⊕ t] ≤ qcqp

N
.
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Then, using Markov’s inequality,

Pr [Tid ∈ Θ4] = Pr
[

α1 ≥
√

qc

2

]

≤ 2E[α1]√
qc

≤ 2qp
√

qc

N
.

Similarly,

Pr [Tid ∈ Θ5] ≤ 2qp
√

qc

N
.

Condition (B-6). Again, we see α2,3 as a random variable over the random draw
of k0. Then

E[α2,3] =
∑

(t,x,y)∈QC

∑

v2∈V2

∑

u3∈U3

Pr [k0 = v2 ⊕ u3 ⊕ t] ≤ qcq
2
p

N
.

Then, using Markov’s inequality,

Pr [Tid ∈ Θ6] = Pr [α2,3 ≥ qp
√

qc] ≤ E[α2,3]
qp

√
qc

≤ qp
√

qc

N
.

Conditions (B-7) and (B-8). Consider (B-7). We see the distinguisher combined
with P̃0 and the inner permutations P1, P3, and P4 as a probabilistic algorithm
A interacting with P2, and we see ν2 as a random variable over the random
choice of P2 and the randomness of A. One has

E[ν2] =
∑

(i,j)
1≤i�=j≤qc

Pr [u2,i ⊕ v2,i = u2,j ⊕ v2,j ] ,

where the queries to P2 are ordered as they are issued by A. Consider the i-th
and the j-th query, and assume wlog that i < j. If the j-th is a direct query
u2,j , then v2,j is uniformly random in a set of size N − j + 1. Similarly, if this
is a inverse query v2,j , then u2,j is uniformly random in a set of size N − j + 1.
In all cases, the probability that u2,i ⊕ v2,i = u2,j ⊕ v2,j is at most 1/(N − qp).
Hence,

E[ν2] ≤ qp(qp − 1)
N − qp

≤ 2q2p
N

.

Using Markov’s inequality,

Pr [Tid ∈ Θ7] = Pr
[
ν2 ≥ √

qp

] ≤ 2q
3/2
p

N
.

Similarly,

Pr [Tid ∈ Θ8] ≤ 2q
3/2
p

N
.

The result follows by a union bound over all cases. �
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3.3 Analysis of Good Transcripts

In this section, we fix a good transcript τ = (QC ,QP1 , . . . ,QP4 , (k0, k1)). By (4),
we have to lower bound

p(τ)
def= Pr

[
P ←$ (P(n))4 : TEMP

k0,k1
� QC

∣
∣
∣P1 � QP1 ∧ . . . ∧ P4 � QP4

]
.

The proof will proceed in two steps: first, we will lower bound the probability
that permutations P1 and P4 satisfy some conditions given in the definition
below, and then, assuming (P1, P4) is good, we will lower bound the probability,
over the choice of P2 and P3, that TEMP

k0,k1
� QC . For this second step, we will

directly appeal to a previous result by Cogliati et al. [7].
We start by giving the conditions defining good pairs of permutations

(P1, P4). We stress that these conditions cannot be accommodated in the def-
inition of bad transcripts since they depend on values of P1 and P4 which do
not appear in the queries transcript, so that they cannot be defined from the
transcript τ alone. We also warn the reader upfront that conditions (C-5) and
(C-6) are “dummy” conditions that will easily be seen to be impossible to fulfill,
yet will allow us to cleanly use the previous result of Cogliati et al. [7].

Definition 2. A pair of permutations (P1, P4) such that P1 � QP1 and P4 � QP4

is said bad if at least one of the following conditions is fulfilled (see Fig. 3 for a
diagram of the first ten conditions):

(C-1) there exists (t, x, y) ∈ QC , u2 ∈ U2, and v3 ∈ V3 such that
{

P1(x ⊕ k0 ⊕ t) ⊕ k1 ⊕ t = u2

P−1
4 (y ⊕ k0 ⊕ t) ⊕ k1 ⊕ t = v3;

(C-2) there exists (t, x, y) ∈ QC , (u2, v2) ∈ QP2 , and u3 ∈ U3 such that
{

P1(x ⊕ k0 ⊕ t) ⊕ k1 ⊕ t = u2

v2 ⊕ k0 ⊕ t = u3;

(C-3) there exists (t, x, y) ∈ QC , (u3, v3) ∈ QP3 , and v2 ∈ V2 such that
{

P−1
4 (y ⊕ k0 ⊕ t) ⊕ k1 ⊕ t = v3

u3 ⊕ k0 ⊕ t = v2;

(C-4) there exists (t, x, y), (t′, x′, y′), (t′′, x′′, y′′) ∈ QC with (t, x, y) distinct from
(t′, x′, y′) and from (t′′, x′′, y′′) such that

{
P1(x ⊕ k0 ⊕ t) ⊕ t = P1(x′ ⊕ k0 ⊕ t′) ⊕ t′

P−1
4 (y ⊕ k0 ⊕ t) ⊕ t = P−1

4 (y′′ ⊕ k0 ⊕ t′′) ⊕ t′′;

(C-5) there exists (t, x, y, ) �= (t′, x′, y′) ∈ QC such that
{

P1(x ⊕ k0 ⊕ t) ⊕ t = P1(x′ ⊕ k0 ⊕ t′) ⊕ t′

t = t′;
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(C-6) there exists (t, x, y, ) �= (t′, x′, y′) ∈ QC such that
{

P−1
4 (y ⊕ k0 ⊕ t) ⊕ t = P−1

4 (y′ ⊕ k0 ⊕ t′) ⊕ t′

t = t′;

(C-7) there exists (t, x, y) �= (t′, x′, y′) ∈ QC and u2 ∈ U2 such that
{

P1(x ⊕ k0 ⊕ t) ⊕ k1 ⊕ t = u2

P−1
4 (y ⊕ k0 ⊕ t) ⊕ t = P−1

4 (y′ ⊕ k0 ⊕ t′) ⊕ t′;

(C-8) there exists (t, x, y) �= (t′, x′, y′) ∈ QC and v3 ∈ V3 such that
{

P−1
4 (y ⊕ k0 ⊕ t) ⊕ k1 ⊕ t = v3

P1(x ⊕ k0 ⊕ t) ⊕ t = P1(x′ ⊕ k0 ⊕ t′) ⊕ t′;

(C-9) there exists (t, x, y) �= (t′, x′, y′) ∈ QC and (u2, v2), (u′
2, v

′
2) ∈ QP2 such

that ⎧
⎨

⎩

P1(x ⊕ k0 ⊕ t) ⊕ k1 ⊕ t = u2

P1(x′ ⊕ k0 ⊕ t′) ⊕ k1 ⊕ t′ = u′
2

v2 ⊕ t = v′
2 ⊕ t′;

(C-10) there exists (t, x, y) �= (t′, x′, y′) ∈ QC and (u3, v3), (u′
3, v

′
3) ∈ QP3 such

that ⎧
⎨

⎩

P−1
4 (y ⊕ k0 ⊕ t) ⊕ k1 ⊕ t = v3

P−1
4 (y′ ⊕ k0 ⊕ t′) ⊕ k1 ⊕ t′ = v′

3

u3 ⊕ t = u′
3 ⊕ t′;

(C-11) α2 ≥ √
qc;

(C-12) α3 ≥ √
qc;

(C-13) β2 ≥ √
qc;

(C-14) β3 ≥ √
qc;

where

α2
def= |{(t, x, y) ∈ QC : P1(x ⊕ k0 ⊕ t) ⊕ k1 ⊕ t ∈ U2}|,

α3
def= |{(t, x, y) ∈ QC : P−1

4 (y ⊕ k0 ⊕ t) ⊕ k1 ⊕ t ∈ V3}|,
β2

def= |{(t, x, y) ∈ QC : ∃(t′, x′, y′) �= (t, x, y),
P1(x ⊕ k0 ⊕ t) ⊕ t = P1(x′ ⊕ k0 ⊕ t′) ⊕ t′}|,

β3
def= |{(t, x, y) ∈ QC : ∃(t′, x′, y′) �= (t, x, y),

P−1
4 (y ⊕ k0 ⊕ t) ⊕ t = P−1

4 (y′ ⊕ k0 ⊕ t′) ⊕ t′}|.
Otherwise we say that (P1, P4) is good. We denote Πgood, resp. Πbad the set of
good, resp. bad pairs of permutations (P1, P4) such that P1 � QP1 and P4 � QP4 .

In all the following, we denote Π the set of pairs of permutations (P1, P4) such
that P1 � QP1 and P4 � QP4 . The first step towards studying good transcripts
will be to upper bound the probability that the pair (P1, P4) is bad.
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Fig. 3. The ten “collision” conditions characterizing a bad pair of permutations
(P1, P4). Black dots correspond to pairs (u2, v2) ∈ QP2 or (u3, v3) ∈ QP3 . Note that for
(C-4) one might have (t′, x′) = (t′′, x′′), and for (C-9) (resp. (C-10)) one might have
x ⊕ t = x′ ⊕ t′ (resp. y ⊕ t = y′ ⊕ t′).
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Lemma 4. For any integers qc and qp such that qp + qc + 1 ≤ N/2, one has

Pr[(P1, P4) ∈ Πbad] ≤ 4q3c + 16q2cqp + 4qcq
2
p

N2
+

10q
3/2
c + 4qc

√
qp + 10

√
qcqp

N

where the probability is taken over the uniformly random draw of (P1, P4) in Π.

Proof. We upper bound the probabilities of the fourteen conditions in turn. We
denote Πi the set of pairs of permutations (P1, P4) ∈ Π satisfying condition
(C-i).

Condition (C-1). Fix (t, x, y) ∈ QC , u2 ∈ U2, and v3 ∈ V3. Note that if
x ⊕ k0 ⊕ t = u1 for some (u1, v1) ∈ QP1 , then v1 ⊕ k1 ⊕ t cannot be equal
to u2 since otherwise τ would satisfy (B-2). Similarly, if y ⊕ k0 ⊕ t = v4 for some
(u4, v4) ∈ QP4 , then u4 ⊕ k1 ⊕ t cannot be equal to v3 since otherwise τ would
satisfy (B-3). On the other hand, if x ⊕ k0 ⊕ t /∈ U1 and y ⊕ k0 ⊕ t /∈ V4, then
the probability over (P1, P4) ←$ Π that

{
P1(x ⊕ k0 ⊕ t) = u2 ⊕ k1 ⊕ t
P−1
4 (y ⊕ k0 ⊕ t) = v3 ⊕ k1 ⊕ t

is at most 1/(N −qp)2 ≤ 4/N2. (In more details, if u2⊕k1⊕t ∈ V1 or v3⊕k1⊕t ∈
U4, then this probability is zero, whereas otherwise it is exactly 1/(N − qp)2.)
Summing over the at most qcq

2
p possibilities for (t, x, y), u2, and v3 yields

Pr[(P1, P4) ∈ Π1] ≤ 4qcq
2
p

N2
.

Conditions (C-2) and (C-3). We consider (C-2), the reasoning for (C-3) is sim-
ilar. Fix (t, x, y) ∈ QC , (u2, v2) ∈ QP2 , and u3 ∈ U3. Note first that for (C-2)
to be satisfied, one must have v2 ⊕ k0 ⊕ t = u3, and there are by definition at
most α2,3 triplets ((t, x, y), v2, u3) satisfying this equality. If x ⊕ k0 ⊕ t = u1 for
some (u1, v1) ∈ QP1 , then v1 ⊕ k1 ⊕ t cannot be equal to u2 since otherwise τ
would satisfy (B-2). On the other hand, if x ⊕ k0 ⊕ t /∈ U1, then the probability
that P1(x ⊕ k0 ⊕ t) = u2 ⊕ k1 ⊕ t is at most 1/(N − qp) ≤ 2/N (it is zero if
u2 ⊕ k1 ⊕ t ∈ V1, and 1/(N − qp) otherwise). Summing over the at most α2,3

possibilities for (t, x, y), (u2, v2), and u3, with α2,3 ≤ qp
√

qc since otherwise τ
would satisfy (B-6), we obtain

Pr[(P1, P4) ∈ Π2] ≤ 2qp
√

qc

N
.

Similarly,

Pr[(P1, P4) ∈ Π3] ≤ 2qp
√

qc

N
.
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Condition (C-4). Fix (t, x, y), (t′, x′, y′), (t′′, x′′, y′′) ∈ QC with (t, x, y) distinct
from (t′, x′, y′) and from (t′′, x′′, y′′). First, note that if x ⊕ k0 ⊕ t = x′ ⊕ k0 ⊕ t′

or y ⊕ k0 ⊕ t = y′′ ⊕ k0 ⊕ t′′, then (C-4) cannot be satisfied. Hence, we assume
that none of these two equalities holds. We consider three cases. Assume first
that x ⊕ k0 ⊕ t = u1 for some (u1, v1) ∈ QP1 . Note that there are at most
α1 possibilities for (t, x, y), and α1 ≤ √

qc/2 since otherwise τ would satisfy
(B-4). Moreover y ⊕ k0 ⊕ t /∈ V4 since otherwise τ would satisfy (B-1). Hence,
the probability that

P−1
4 (y ⊕ k0 ⊕ t) ⊕ t = P−1

4 (y′′ ⊕ k0 ⊕ t′′) ⊕ t′′

is at most 1/(N − qp − 1) ≤ 2/N . (In more details, if y′′ ⊕ k0 ⊕ t′′ ∈ V4, then
this probability is either zero if P−1

4 (y′′ ⊕ k0 ⊕ t′′) ⊕ t ⊕ t′′ ∈ U4, or exactly
1/(N − qp) otherwise, whereas if y′′ ⊕ k0 ⊕ t′′ /∈ V4, then this probability is at
most 1/(N − qp − 1).) Summing over the at most

√
qc/2 × qc possibilities for

(t, x, y) and (t′′, x′′, y′′), the probability of this first case is at most q
3/2
c /N . The

second case where y ⊕ k0 ⊕ t ∈ V4 is handled similarly. Finally, consider the case
where x ⊕ k0 ⊕ t /∈ U1 and y ⊕ k0 ⊕ t /∈ V4. Then the probability that

{
P1(x ⊕ k0 ⊕ t) ⊕ t = P1(x′ ⊕ k0 ⊕ t′) ⊕ t′

P−1
4 (y ⊕ k0 ⊕ t) ⊕ t = P−1

4 (y′′ ⊕ k0 ⊕ t′′) ⊕ t′′;

is at most 1/(N −qp −1)2 ≤ 4/N2. Summing over the at most q3c possibilities for
(t, x, y), (t′, x′, y′), and (t′′, x′′, y′′), the probability of this third case is at most
4q3c/N2. Overall, we obtain

Pr[(P1, P4) ∈ Π4] ≤ 4q3c
N2

+
2q

3/2
c

N
.

Conditions (C-5) and (C-6). These conditions cannot be satisfied. Indeed,
assume that there exits (t, x, y) �= (t′, x′, y′) ∈ QC satisfying (C-5). Since t = t′,
then x �= x′ by the assumption that the distinguisher never makes pointless
queries. This obviously implies that P1(x ⊕ k0 ⊕ t) ⊕ t �= P1(x′ ⊕ k0 ⊕ t′) ⊕ t′, a
contradiction. The reasoning is similar for (C-6). Hence,

Pr[(P1, P4) ∈ Π5] = Pr[(P1, P4) ∈ Π6] = 0.

Conditions (C-7) and (C-8). We consider condition (C-7). Fix queries (t, x, y) �=
(t′, x′, y′) ∈ QC and u2 ∈ U2. We will consider two cases: first, the case where
y ⊕ k0 ⊕ t ∈ V4, and then the case where y ⊕ k0 ⊕ t /∈ V4. For both cases, note
that if x ⊕ k0 ⊕ t = u1 for some (u1, v1) ∈ QP1 , then v1 ⊕ k1 ⊕ t cannot be
equal to u2 since otherwise τ would satisfy (B-2). Hence, we can assume that
x ⊕ k0 ⊕ t �∈ U1. It follows that the probability that

P1(x ⊕ k0 ⊕ t) ⊕ k1 ⊕ t = u2

is at most 1/(N − qp) ≤ 2/N (it is zero if u2 ⊕ k1 ⊕ t ∈ V1, and 1/(N −
qp) otherwise). Summing over the at most α4 queries (t, x, y) ∈ QC such that



152 B. Cogliati and Y. Seurin

y ⊕ k0 ⊕ t ∈ V4, with α4 ≤ √
qc/2 since otherwise τ would satisfy (B-5), and

the qp possibilities for u2, we see that the first case happens with probability at
most qp

√
qc/N . Assume now that y ⊕ k0 ⊕ t /∈ V4. Then the probability that

P−1
4 (y ⊕ k0 ⊕ t) ⊕ t = P−1

4 (y′ ⊕ k0 ⊕ t′) ⊕ t′

is at most 1/(N −qp −1) ≤ 2/N . (In more details, if y⊕k0⊕ t = y′ ⊕k0⊕ t′, then
it can easily be seen that it cannot hold, whereas if y ⊕ k0 ⊕ t �= y′ ⊕ k0 ⊕ t′, the
equation holds with probability at most 1/(N − qp − 1).) Summing over the at
most q2cqp possibilities for (t, x, y), (t′, x′, y′), and u2, we see that the probability
of the second case is at most 4q2cqp/N

2. Overall,

Pr [(P1, P4) ∈ Π7] ≤ qp
√

qc

N
+

4q2cqp

N2
.

Similarly, one has

Pr [(P1, P4) ∈ Π8] ≤ qp
√

qc

N
+

4q2cqp

N2
.

Conditions (C-9) and (C-10). Consider condition (C-9). First note that, if the
condition is satisfied, we have x⊕k0⊕t �∈ U1, x′⊕k0⊕t′ �∈ U1, u2⊕k1⊕t �∈ V1 and
u′
2⊕k1⊕t′ �∈ V1, otherwise (B-2) is fulfilled. Moreover, if (u2, v2) = (u′

2, v
′
2), then

t = t′, thus x = x′, which is impossible. Hence we must have (u2, v2) �= (u′
2, v

′
2).

The condition can be divided into two conditions:

9.1 there exists (t, x, y) �= (t′, x′, y′) ∈ QC and (u2, v2) �= (u′
2, v

′
2) ∈ QP2 such

that x⊕t = x′⊕t′, P1(x⊕k0⊕t) = u2⊕k1⊕t and P1(x′⊕k0⊕t′) = u′
2⊕k1⊕t′

and v2 ⊕ t = v′
2 ⊕ t′;

9.2 there exists (t, x, y) �= (t′, x′, y′) ∈ QC and (u2, v2) �= (u′
2, v

′
2) ∈ QP2 such

that x⊕t �= x′⊕t′, P1(x⊕k0⊕t) = u2⊕k1⊕t and P1(x′⊕k0⊕t′) = u′
2⊕k1⊕t′

and v2 ⊕ t = v′
2 ⊕ t′.

In the first case, one has

u2 ⊕ k1 ⊕ t = P1(x ⊕ k0 ⊕ t) = P1(x′ ⊕ k0 ⊕ t′) = u′
2 ⊕ k1 ⊕ t′,

thus u2⊕u′
2 = t⊕t′ = v2⊕v′

2. Hence the first condition implies the following one:
there exists (t, x, y) ∈ QC and (u2, v2) �= (u′

2, v
′
2) ∈ QP2 such that P1(x⊕k0⊕t) =

u2 ⊕k1 ⊕ t and u2 ⊕u′
2 = v2 ⊕v′

2, with x⊕k0 ⊕ t �∈ U1 and u2 ⊕k1 ⊕ t �∈ V1. Since
ν2 <

√
qp, the number of suitable u2 ∈ U2 is lower than √

qp, and the probability

that this first condition is fulfilled is at most qc
√

qp
N−qp

≤ 2qc
√

qp
N . For the second

condition, fix any queries (t, x, y) �= (t′, x′, y′) ∈ QC such that x ⊕ t �= x′ ⊕ t′,
x ⊕ k0 ⊕ t �∈ U1, x′ ⊕ k0 ⊕ t′ �∈ U1 and (u2, v2) ∈ QP2 . If v2 ⊕ t ⊕ t′ �∈ V2, the
condition cannot be fulfilled. Otherwise let (u′

2, v
′
2) ∈ QP2 be the unique query

such that v2 ⊕ t = v′
2 ⊕ t′. Then the probability that P1(x⊕ k0 ⊕ t) = u2 ⊕ k1 ⊕ t

and P1(x′⊕k0⊕t′) = u′
2⊕k1⊕t′ is at most 1

(N−qp)(N−qp−1) . Finally, by summing
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over every possible tuple of queries, and by taking into account the condition
9.1, one has

Pr [(P1, P4) ∈ Π9] ≤ 2qc
√

qp

N
+

4q2cqp

N2
.

Similarly,

Pr [(P1, P4) ∈ Π10] ≤ 2qc
√

qp

N
+

4q2cqp

N2
.

Conditions (C-11) and (C-12). We see α2 (resp. α3) as a random variable over
the choice of P1 (resp. P4). Note that

α2 = |{(t, x, y) ∈ QC : P1(x ⊕ k0 ⊕ t) ⊕ k1 ⊕ t ∈ U2}|
= |{(t, x, y) ∈ QC : x ⊕ k0 ⊕ t �∈ U1, P1(x ⊕ k0 ⊕ t) ⊕ k1 ⊕ t ∈ U2}|,

because, if x⊕k0 ⊕ t ∈ U1 and P1(x⊕k0 ⊕ t)⊕k1 ⊕ t ∈ U2, then (B-2) is fulfilled.
We denote QC,1 the subset of queries (t, x, y) ∈ QC such that x ⊕ k0 ⊕ t �∈ U1.
Then

E[α2] =
∑

(t,x,y)∈QC,1

∑

u2∈U2

Pr [P1(x ⊕ k0 ⊕ t) = u2 ⊕ k1 ⊕ t]

≤
∑

(t,x,y)∈QC,1

∑

u2∈U2

1
N − qp

≤ 2qcqp

N
.

Using Markov’s inequality, we get

Pr [(P1, P4) ∈ Π11] ≤ 2qp
√

qc

N
.

Similarly,

Pr [(P1, P4) ∈ Π12] ≤ 2qp
√

qc

N
.

Conditions (C-13) and (C-14). Consider condition (C-13). Note that

β2 = |{(t, x, y) ∈ QC : ∃(t′, x′, y′) �= (t, x, y),
P1(x ⊕ k0 ⊕ t) ⊕ t = P1(x′ ⊕ k0 ⊕ t′) ⊕ t′}|

≤ α1 + |{(t, x, y) ∈ QC : x ⊕ k0 ⊕ t �∈ U1 and ∃(t′, x′, y′) �= (t, x, y),
P1(x ⊕ k0 ⊕ t) ⊕ t = P1(x′ ⊕ k0 ⊕ t′) ⊕ t′}|.

We denote β′
2 the last term of this sum. Thus

E[β′
2] =

∑

(t,x,y)∈QC,1

∑

(t′,x′,y′) �=(t,x,y)

Pr [P1(x ⊕ k0 ⊕ t) ⊕ t = P1(x′ ⊕ k0 ⊕ t′) ⊕ t′]

≤ q2c
N − qp − 1

≤ 2q2c
N

.
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This inequality holds because, if x⊕t = x′⊕t′, then t �= t′ since the distinguisher
never makes pointless queries, thus P1(x ⊕ k0 ⊕ t) ⊕ t = P1(x′ ⊕ k0 ⊕ t′) ⊕ t′

cannot be fulfilled. Otherwise,

Pr [P1(x ⊕ k0 ⊕ t) ⊕ t = P1(x′ ⊕ k0 ⊕ t′) ⊕ t′] ≤ 1
N − qp − 1

.

Finally, since (B-4) is not fulfilled, α1 <
√

qc/2. Thus β2 ≥ √
qc implies β′

2 ≥√
qc/2. Hence, using Markov’s inequality,

Pr [(P1, P4) ∈ Π13] ≤ Pr [β′
2 ≥ √

qc/2] ≤ 2E[β′
2]√

qc
≤ 4q

3/2
c

N
.

Similarly,

Pr [(P1, P4) ∈ Π14] ≤ 4q
3/2
c

N
.

The result follows by an union bound over all conditions. �

We are now ready for the second step of the reasoning.

Definition 3. Fix any pair of permutations (P1, P4) such that P1 � QP1 and
P4 � QP4 . We define a new query transcript Q′

C depending on (P1, P4) as

Q′
C = {(t, P1(x ⊕ k0 ⊕ t), P−1

4 (y ⊕ k0 ⊕ t)) : (t, x, y) ∈ QC}.

We also denote

p̃(τ, P1, P4) = Pr
[
P2, P3 ←$ P(n) : TEMP2,P3

k1,k0
� Q′

C

∣
∣
∣ (P2 � QP2) ∧ (P3 � QP3)

]
.

Lemma 5. One has

Pr [Tre = τ ]
Pr [Tid = τ ]

≥
∑

(P1,P4)∈Πgood

p̃(τ, P1, P4)
((N − qp)!)

2 ∏m
i=1 1/(N)qi

.

Proof. Clearly, once P1 and P4 are fixed, TEMP1,P2,P3,P4
k0,k1

� QC is equivalent to
TEMP2,P3

k1,k0
� Q′

C . Hence,

p(τ) =
∑

(P̄1,P̄4)∈Π

Pr
[
(P1, P4) ←$ Π : (P1 = P̄1) ∧ (P4 = P̄4)

]
p̃(τ, P̄1, P̄4)

≥
∑

(P̄1,P̄4)∈Πgood

p̃(τ, P̄1, P̄4)
((N − qp)!)2

.

The result follows from Eq. (4). �

We can now directly appeal to a previous result by Cogliati et al. [7].
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Lemma 6. Let qc and qp be two positive integers such that qp + 3qc ≤ N/2. Fix
any pair of permutations (P1, P4) ∈ Πgood. Then

p̃(τ, P1, P4)∏m
i=1 1/(N)qi

≥ 1 −
(

4qc(qp + 2qc)2

N2
+

14q
3/2
c + 4

√
qcqp

N

)

.

Proof. One can check that the queries transcript τ ′ = (Q′
C ,QP2 ,QP3) satisfies

exactly the conditions defining a good transcript as per [7, Definition 2]. More-
over, the ratio p̃(τ, P1, P4)/

∏m
i=1 1/(N)qi is exactly the ratio of the probabilities

to get τ ′ in the real and in the ideal world once a good pair (P1, P4) is fixed.
Hence, we can apply [7, Lemma 6] that directly yields the result.6 �


We are now ready to prove the main lemma of this section.

Lemma 7. Let qc and qp be two positive integers such that qp + 3qc + 1 ≤ N/2.
One has

Pr [Tre = τ ]
Pr [Tid = τ ]

≥ 1 − 20q3c + 32q2cqp + 8qcq
2
p

N2
− 24q

3/2
c + 4qc

√
qp + 14

√
qcqp

N
.

Proof. From Lemmas 5 and 6, one has

Pr [Tre = τ ]
Pr [Tid = τ ]

≥
∑

(P1,P4)∈Πgood

p̃(τ, P1, P4)
((N − qp)!)

2 ∏m
i=1 1/(N)qi

≥
(

1 − 4qc(qp + 2qc)2

N2
− 14q

3/2
c + 4

√
qcqp

N

)
∑

Πgood

1
((N − qp)!)

2

=

(

1 − 4qc(qp + 2qc)2

N2
− 14q

3/2
c + 4

√
qcqp

N

)
|Πgood|

((N − qp)!)
2

=

(

1 − 4qc(qp + 2qc)2

N2
− 14q

3/2
c + 4

√
qcqp

N

)

Pr [(P1, P4) ∈ Πgood] ,

where the last probability is taken over the random draw of (P1, P4) from Π, the
set of pairs of permutations satisfying P1 � QP1 and P4 � QP4 . Using Lemma 4,
one has

Pr [Tre = τ ]
Pr [Tid = τ ]

≥
(

1 − 4q3c + 16q2cqp + 4qcq
2
p

N2
− 10q

3/2
c + 4qc

√
qp + 10

√
qcqp

N

)

×
(

1 − 4qc(qp + 2qc)2

N2
− 14q

3/2
c + 4

√
qcqp

N

)

≥ 1 − 20q3c + 32q2cqp + 8qcq
2
p

N2
− 24q

3/2
c + 4qc

√
qp + 14

√
qcqp

N
. �


6 Even though this might not be apparent to the reader unfamiliar with [7], the proof
of Lemma 7 in that paper does not rely on the xor-universal hash functions h1 and
h2 appearing in the definition of good transcripts of [7].
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Concluding. We are now ready to prove Theorem1. Combining Lemmas 1, 3,
and 7, one has

Advcca
TEM[n,4,f ](qc, qp) ≤ 2q2cqp + 3qcq

2
p

N2
+

(5 + 3
√

n)
√

qcqp + 4q
3/2
p + 2

N

+
20q3c + 32q2cqp + 8qcq

2
p

N2
+

24q
3/2
c + 4qc

√
qp + 14

√
qcqp

N

≤ 20q3c + 34q2cqp + 11qcq
2
p

N2

+
24q

3/2
c + 4qc

√
qp + (19 + 3

√
n)

√
qcqp + 4q

3/2
p + 2

N
.

Since the result holds trivially when q3c > N2, q2cqp > N2, or qcq
2
p > N2, we can

assume that q3c ≤ N2, q2cqp ≤ N2, and qcq
2
p ≤ N2, so that

q3c
N2

≤ q
3/2
c

N
,

q2cqp

N2
≤ qc

√
qp

N
, and

qcq
2
p

N2
≤

√
qcqp

N
.

Thus

Advcca
TEM[n,4,f ](qc, qp) ≤ 44q

3/2
c + 38qc

√
qp + (30 + 3

√
n)qp

√
qc + 4q

3/2
p + 2

N
,

which concludes the proof of Theorem1.
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An Inverse-Free Single-Keyed Tweakable
Enciphering Scheme
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Abstract. In CRYPTO 2003, Halevi and Rogaway proposed CMC, a
tweakable enciphering scheme (TES) based on a blockcipher. It requires
two blockcipher keys and it is not inverse-free (i.e., the decryption algo-
rithm uses the inverse (decryption) of the underlying blockcipher). We
present here a new inverse-free, single-keyed TES. Our construction
is a tweakable strong pseudorandom permutation (TSPRP), i.e., it is
secure against chosen-plaintext-ciphertext adversaries assuming that the
underlying blockcipher is a pseudorandom permutation (PRP), i.e., secure
against chosen-plaintext adversaries. In comparison, SPRP assumption
of the blockcipher is required for the TSPRP security of CMC. Our
scheme can be viewed as a mixture of type-1 and type-3 Feistel cipher
and so we call it FMix or mixed-type Feistel cipher.

Keywords: (Tweakable strong) pseudorandom permutation · Coeffi-
cient H Technique · Encipher · CMC · Fiestel cipher

1 Introduction

A tweakable enciphering scheme (TES) is a length-preserving encryption
scheme that takes a tweak as an additional input. In other words, for each tweak,
TES computes a ciphertext preserving length of the plaintext. Preserving length
can be very useful in applications such as disk-sector encryption (as addressed
by the IEEE SISWG P1619), where a length-preserving encryption preserves
the file size after encryption. When a tweakable enciphering scheme is used,
the disk sectors can serve as tweaks. Other applications of enciphering schemes
could include bandwidth-efficient network protocols and security-retrofitting of
old communication protocols.
Examples based on Paradigms. There are four major paradigms of tweakable
enciphering schemes. Almost all enciphering schemes fall in one of the following
categories.

– Feistel Structure: 2-block Feistel design was used in early block ciphers
like Lucifer [4,22] and DES [23]. Luby and Rackoff gave a security proof of
Feistel ciphers [12], and later the design was generalised to obtain inverse-free
enciphering of longer messages [17]. Examples: Naor-Reingold Hash [16], GFN
[10], matrix representations [1].

c© International Association for Cryptologic Research 2015
T. Iwata and J.H. Cheon (Eds.): ASIACRYPT 2015, Part II, LNCS 9453, pp. 159–180, 2015.
DOI: 10.1007/978-3-662-48800-3 7
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– Hash-Counter-Hash: Two layers of universal hash with a counter mode of
encryption in between. Examples: XCB [13], HCTR [25], HCH [2].

– Hash-Encrypt-Hash: Two layers of universal hash with an ECB mode of
encryption in between. Examples: PEP [3], TET [6], HEH [21].

– Encrypt-Mix-Encrypt: Two encryption layers with a mixing layer in
between. Examples: EME [8], EME* [5] (with ECB encryption layer), CMC
[7] (with CBC encryption layer).

Among all these constructions, the examples from Feistel cipher and Encrypt-
mix-encrypt paradigms are based on blockciphers alone (i.e., no field multiplica-
tion or other primitive is used). Now we take a closer look at CMC encryption.

CMC. In CRYPTO 2003, Halevi and Rogaway proposed CMC, a tweakable
enciphering scheme (TES) based on a blockcipher (Fig. 1). It accepts only plain-
texts of size a multiple of n, the size of the underlying blockcipher. We call each
n-bit segment of the plaintext a block. The CMC construction has the following
problems:

– For an encryption using eK , the decryption needs e−1
K . In a combined hard-

ware implementation, the footprint size (e.g., the number of gates or slices)
goes up;

– The security proof of CMC relied on the stronger assumption SPRP (Strong
Pseudo-Random Permutation) on the underlying blockcipher;

– Tweak is processed using an independent key, and the proposed single-key
variant uses an extra call to the blockcipher.

P1 P2 P3 P4

C4 C3 C2 C1

eK eK eK eK

eK eK eK eK

e
˜K

T

M M M M

T

X Y

Fig. 1. CMC for four blocks, with tweak T and M = 2(X ⊕ Y ). Here 2 represents a
primitive element of a finite field over {0, 1}n.
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x1 x2 x3 x4

y1 y2 y3 y4

f

Feistel type-1

x1 x2 x3 x4

y1 y2 y3 y4

f f f

Feistel type-3

Fig. 2. The round function of two types of generalised Feistel networks for four block
inputs. Similar definition can be applied for any number of blocks.

Feistel Cipher: An Inverse-Free Cipher. To resolve the first issue mentioned
above, one can fall back on a Feistel network. For inverse-free constructions, the
main approach so far has been to generalise the classical 2-block Feistel network
to work for longer messages. Two of the interesting approaches were the type-
1 Feistel network and the type-3 Feistel network (Fig. 2). In [10], it is shown
that to encrypt � block plaintext, type-1 and type-3 need 4� − 2 and 2� + 2
rounds respectively for achieving birthday security, which translates to 4� − 2
and 2�2 − 2 invocations of the underlying blockcipher. However, their result is
meant for providing a security performance trade-off and there is a provision for
having beyond-birthday security.
One recent inverse-free construction based on Feistel networks is the AEZ-core,
which forms part of the implementation of AEZ [9]. It belongs to the Encrypt-
Mix-Encrypt paradigm, where the encryption uses a Feistel structure. It requires
five blockcipher calls for every two plaintext blocks, but is highly parallelizable.

1.1 Our Contribution

In this paper, we address all the issues present in CMC in our construction. We
use a mixture of type-1 and type-3 for our construction (hence the name FMix)
to have an inverse-free construction which minimizes the number of blockcipher
calls. FMix applies a simple balanced regular function b. Except for this, it looks
exactly like the composition of � + 1 rounds of type-1 and one round of type-3
Feistel cipher. The features of FMix can be summarized as follows (see Table 1
for a comparison study):

1. FMix is inverse-free, i.e., it needs the same f for both encryption and decryp-
tion, having low footprint in the combined hardware implementation.

2. Because it is inverse-free, an important improvement is on the security
requirement of eK . CMC relies upon an SPRP-secure eK , while our con-
struction just needs a PRF-secure eK . This can have significant practical
implications in reducing the cost of implementation.
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3. The tweak is processed through the same f , removing the requirement of an
extra independent blockcipher key.

4. To encrypt a message with � blocks and a tweak (a single block), CMC needs
2�+1 calls to the blockcipher e. Its variant (which eliminates the independent
key), however uses 2� + 2 calls to e. Our construction requires 2� + 1 calls,
without needing the independent key.

Table 1. A Comparison of some blockcipher based TES. The description of the columns
are as follows: (1) Number of blockcipher calls, (2) Number of keys, (3) How many
sequential layers with full parallelization, (4) Security assumption of the underlying
blockcipher, (5) Whether it is inverse-free. (CMC’ is a “natively tweakable” variant of
CMC, as described in [7]).

Schemes #BC #Key #Layers BC-security Inverse-free?

CMC 2� + 1 2 � + 2 SPRP NO

CMC’ 2� + 2 2 � + 2 SPRP NO

EME 2� + 3 1 4 SPRP NO

GFN-1 4� − 2 4� − 2 4� − 2 PRP YES

GFN-3 2�2 − 2 2�2 − 2 2� − 2 PRP YES

AEZ-core ∼ 5
2
� 1 5 PRP YES

FMix (this paper) 2� + 1 1 � + 3 PRP YES

2 Preliminaries

2.1 Tweakable Encryption Schemes

This paper proposes a new tweakable encryption scheme, so we begin by
describing what we mean by that. Formally, with a tweakable (deterministic)
encryption scheme we associate four finite sets of binary strings: the message
space M, the tweak space T , the ciphertext space C, and the key space K. The
encryption function e : K × T × M −→ C and the corresponding decryption
function d : K × T × C −→ M are required to satisfy the following (known as
the correctness requirement):

∀(K,T, P ) ∈ K × T × M, d(K,T, e(K,T, P )) = P.

We also write e(K,T, P ) by eK(T, P ) and d(K,T, C) by e−1
K (T, C). We call a

tweakable encryption scheme tweakable enciphering scheme (TES) if for all
plaintext P , key K ∈ K and tweak T ∈ T , |e(K,T, P )| = |P | (i.e., it preserves
length).

Random Function. In the heart of most encryption schemes lies the notion of
a random function. Given a domain D and a range R, a random function

f : D ∗−→ R
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is a function chosen uniformly from the class of all functions from D to R
(denoted RD). Some elementary calculations show that for distinct x1, ..., xn ∈
D, f(x1), ..., f(xn) are independent and uniformly distributed over R. More gen-
erally, we define the following:

Definition 1. Let C ⊆ RD be a class of functions from D to R. A random
C -function

f : D C−→ R
is a function chosen uniformly from C .

Note that choosing a function uniformly from a class {fα}α∈I indexed by some
finite set I can be achieved by choosing α0 uniformly from I and then picking
fα0 as the chosen function.

Tweakable Random Permutation. When R = D, a popular choice of C
is ΠD, the class of all permutations on D (i.e., bijections from D to itself).
A random permutation over D is a ΠD-random function. It is an ideal choice
corresponding to an encryption scheme over D. The ideal choice corresponding
to a tweakable enciphering scheme over D with tweak space T is called tweakable
random permutation π̃ which is chosen uniformly from the class ΠT

D . For each
tweak T ∈ T , we choose a random permutation πT independently, and π̃ is a
stochastically independent collection of random permutations {πT;T ∈ T }.

2.2 Pseudorandomness and Distinguishing Games

It should be noted that a random function or a random permutation is an ideal
concept, since in practice the sizes of RD or ΠD are so huge that the cost of
simulating a uniform random sampling on them is prohibitive. What is used
instead of a truly random function is a pseudorandom function (PRF), a
function whose behaviour is so close to that of a truly random function that
no algorithm can effectively distinguish between the two. An adversary for a
pseudorandom function f1 is a deterministic algorithm A that tries to distinguish
f1 from a truly random f0.

Security Notions. To test the pseudorandomness of f1, A plays the PRF
distinguishing game with an oracle O simulating (unknown to A) either f1 or
f0. For this, A makes q queries, in a deterministic but possibly adaptive manner.
It is well known that there is no loss in assuming a distinguisher deterministic
as unbounded time deterministic distinguisher is as powerful as a probabilistic
distinguisher. Thus, the first query x1 = q1() is fixed, and given the responses
yj = O(xj), j ∈ {1, ..., i − 1}, the i-th query becomes xi = qi(y1, ..., yi−1), where
qi is a deterministic function for choosing the i-th query for i ∈ {1, ..., q}. Finally,
a deterministic decision function examines y1, ..., yq and chooses the output b ∈
{0, 1} of A. A wins if O was simulating fb. An equivalent way to measure this
winning event is called prf-advantage defined as

ΔA(f0 ; f1) := Advprf
f1

(A) = |Prf0 [Af0 → 1] − Prf1 [Af1 → 1]|,
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where Prf [.] denotes the probability of some event when O imitates f . The above
definition can be extended for more than one oracles. We can analogously define
pseudorandom permutation (PRP) advantage Advprp

f1
(A) of f1 in which

case f0 is the random permutation. When f1 is an enciphering scheme and A
is interacting with both f1 and its inverse f−1

1 (or with f0 and f−1
0 ) we have

strong pseudorandom permutation (SPRP) advantage

Advsprp
f1

(A) = |Prf0 [Af0,f−1
0 → 1] − Prf1 [Af1,f−1

1 → 1]|.

Finally, for a tweakable enciphering schemes with the strong pseudorandom prop-
erty as above, we analogously define the tweakable strong pseudorandom
permutation (TSPRP) advantage Advtsprp

f1
(A).

Pointless Adversaries. In addition to the adversary being deterministic, we
also assume that it does not make any pointless queries. An adversary A making
queries to a tweakable encryption scheme f and f−1 is called pointless if either
it makes a duplicate query or it makes an f -query (T, P ) and obtains response C
and f−1-query (T, C) and obtains response P (the order of these two queries can
be reversed). We can assume that adversary is not pointless since the responses
are uniquely determined for these types of queries.

Theorem 1. [11] Let f1 be a TES over a message space M ⊆ {0, 1}∗ and f0
and f ′

0 be two independently chosen random functions. Then for any adversary
non-pointless distinguisher A making at most q queries, we have,

Advtsprp
f1

(A) ≤ ΔA((f1, f−1
1 ) ; (f0, f ′

0)) +
q(q − 1)
2m+1

where m = min{� : M ∩ {0, 1}� �= ∅}.
The above result says that an uniform length-preserving random permutation is
very close to an uniform length-preserving random function.

2.3 Domain Extensions and Coefficient H Technique

The notion of pseudorandomness, while giving us an approximate implementa-
tion of random functions, introduces a new problem. In general, it is very hard to
decide whether or not there is an adversary that breaks the pseudorandomness
of a particular function, since there is no easy way of exhaustively covering all
possible adversaries in an analysis, and since there is no true randomness in a
practically implemented function, probabilistic arguments cannot be used.

The common get-around is to assume we have PRFs f1, ..., fn each with
domain D and use them to obtain an F with domain D′ ⊃ D, such that a PRF-
attack on F leads to a PRF-attack on one of f1, ..., fn. Now, there are known func-
tions on small domains (like AES, for instance) which have withstood decades of
attempted PRF-attacks and are believed to be reasonably secure against PRF-
attacks. Choosing D suitably to begin with and using the known PRFs in our
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construction, we can find a PRF F with domain D′ that is secure as long as the
smaller functions are secure. This technique is known as a domain extension.

Here, the central step in a proving the security of F is the reduction of an
adversary of F to an adversary of one of f1, ..., fn. This reduction is achieved
by assuming f1, ..., fn to be truly random, and giving an information-theoretic
proof that the distinguishing advantage of any adversary at F is small. Thus, if
an adversary thus distinguish F from random with a reasonable advantage, we
must conclude that f1, ..., fn are not truly random. Thus, all we need to show
is that when the underlying functions are truly random, F behaves like a truly
random function.
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Fig. 3. The FMix construction for four blocks, with M = V4 + V ′
4

Patarin’s Coefficient H Technique. There are several techniques for showing
this. The one we use is based on the Coefficient H Technique, due to Jacques
Patarin, which we briefly describe here. We look at the queries x1, ..., xq and
the outputs y1, ..., yq, and note that the adversary’s decision will be based solely
on the 2q-tuple (x1, ..., xq, y1, ..., yq). Now, if F0 is the truly random function
F is trying to emulate, then F

(q)
0 is also truly random, so on input (x1, ..., xq),
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F
(q)
0 (x1, ..., xq) will be uniform over R′, R being the range of F . Thus when

D′ = R′ = {0, 1}m,

Pr[F (q)
0 (x1, ..., xq) = (y1, ..., yq)] =

1
2mq

.

If we can now show that Pr[F (q)(x1, ..., xq) = (y1, ..., yq)] (which we call its
interpolation probability after Bernstein) is “very close” to 1

2mq for most 2q-
tuples (x1, ..., xq, y1, ..., yq), we can conclude that no adversary can distinguish
F from F0 with a reasonable advantage. One way to formalize “very close” is
that the interpolation probability is at least (1−ε)2−mq. Moreover, this may not
happen for all possible views. (A view consists of all input and output blocks
taken together. Informally, it is the portion of the computations visible to the
adversary after completing all the queries.) So we may need to restrict the inter-
polation calculation on so called good views. This is the central idea of Patarin’s
technique.
Let view(AO) denote the the view obtained by the adversary A interacting
with O.

Theorem 2 (Coefficient H Technique[19]). Suppose the interpolation prob-
abilities follow the inequality

IPf
FMix(V) ≥ (1 − ε) · 2−nL

for all views V ∈ Vgood (set of good views). Then for an SPRP-adversary A, we
have

AdvA
SPRP(F ) ≤ ε + ε′

where ε′ denotes the probability Pr[view(AF0,F ) �∈ Vgood].

This technique was first introduced by Patarin’s PhD thesis [18] (as mentioned
in [24]). Later it has been formalized in [19].

3 The FMix Construction

We are now in a position to describe our encryption scheme FMix. We use
one underlying block function, chosen from a keyed family of PRFs {fK :
{0, 1}n −→ {0, 1}n}K∈K. The extended domain, which serves as both M and
C, is ∪l≥2{0, 1}ln, all strings consisting of two or more n-bit blocks. In addi-
tion to a key and a plaintext, the encryption algorithm also takes a tweak T as
input, which is also supplied to the decryption algorithm. Encryption is length-
preserving: for m ∈ {0, 1}l0m, e(K,m,T) ∈ {0, 1}l0m as well. The basic structure
of the construction is based on that of CMC: a CBC encryption layer, followed by
a layer of mixing, followed by a CBC decryption layer. However, using a gener-
alisation of the Feistel scheme, we eliminate the need for f−1

K during decryption,
making do with fK instead, thus making this construction inverse-free (Fig. 3).



An Inverse-Free Single-Keyed Tweakable Enciphering Scheme 167

input : A tweak T, an integer l ≥ 2, l plaintext blocks P1, ..., Pl

output: l ciphertext blocks C1, ..., Cl

begin
T ← f(T)

V0 ← T
for i ← 1 to l − 1 do

Ui ← Vi−1 ⊕ Pi

Vi ← f(Ui)

end
Ul ← b(Vl−1 ⊕ Pl)

Vl ← f(Ul)

U ′
l ← Vl ⊕ U1

V ′
l ← f(U ′

l)

M ← Vl ⊕ V ′
l

U ′
l−1 ← U2 ⊕ M

V ′
l−1 ← f(U ′

l−1)

Cl ← V ′
l−1⊕ b’(U ′

l)

for i ← 3 to l − 1 do
U ′

l+1−i ← Ui ⊕ M
V ′
l+1−i ← f(U ′

l+1−i)

Cl+2−i ← V ′
l+1−i ⊕ U ′

l+2−i

end
U ′

1 ← Ul + V ′
l

V ′
1 ← f(U ′

1)

V ′
0 ← T

C2 ← V ′
1 ⊕ U ′

2

C1 ← b(V ′
0)⊕U ′

1

end

Algorithm 1: FMix Encryption Algorithm. The decryption algorithm is
exactly same as the encryption except that the b(T ) is computed in the first
layer and only T is used in the second.

The details of the construction are demonstrated in the figure, which shows
a four-block FMix construction. The algorithm for general l is described in the
box. Here, b is a balanced linear permutation, which we define below, and b′ is
b−1. Decryption is almost identical, just with T and b(T ) switching roles.

Definition 2. A permutation b : {0, 1}n −→ {0, 1}n will be called a balanced
linear permutation if both t 
→ b(t) and t 
→ t + b(t) are linear permutations.

One choice of b could be multiplication by a primitive α, but this is not very
software-friendly. A more software-friendly choice is (t1, t2) 
→ (t1⊕t2, t1), where
t1 and t2 are the higher and lower halves of t.

Notation for Our Construction. For our analysis we will assume the underly-
ing PRF to be a truly random function f . We now model the encryption scheme
in terms of computations based on f . An encryption is a computation
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C ←− ef (T,P),

where T ∈ {0, 1}n, and P,C ∈ {0, 1}ln for some l ≥ 2. Similarly, a decryption is
a computation

P ←− df (T,C),

which inverts ef , for any tweak T. The plaintext P is denoted (P1, ..., Pl), where
each Pi is an n-bit block of P. Simlarly, the ciphertext C is denoted (C1, ..., Cl).

In the TSPRP game, the adversary makes q queries to the oracle O. Each query
is of the form (δ,T,X), where δ ∈ {e, d} denotes the direction of the query,
T ∈ {0, 1}n is the tweak, and X ∈ {0, 1}nl for some l is the input. If O is
imitating FMIX, O(e,T,X) returns Ef (T,X), and O(d,T,X) returns Df (T,X).
If O is imitating a tweaked PRP Π, O(e,T,X) returns Π(T,X), and O(d,T,X)
returns Π−1(T,X). The output of O is denoted Y.

All the queries and their outputs taken together form what we call a view. We
use the following notation in a view. For the i-th query, δi denotes the direction
of the query, Ti denotes the tweak, and li denotes the number of blocks in X.
When δi = e, the blocks of X are denoted P1, ..., Pli and those of Y are denoted
C1, ..., Cli . When δi = d, this notation is reversed, i.e., the blocks of Y are
denoted P1, ..., Pli and those of X are denoted C1, ..., Cli . In the analysis, the
tweak T is denoted both P i

0 and Ci
0.

4 TSPRP Security Analysis of FMix

4.1 Good Views and Interpolation

Our first task is to formulate the version of Patarin’s Coefficient H Technique
we shall use for our proof. We begin by restricting our attention to a particular
class of views.

Pointless View. A view is an indexed set of tuples

V = {(δi,Ti, li, P i
j , C

i
j)|1 ≤ i ≤ q, 1 ≤ j ≤ li}.

Here δi can take values e and d only. The li’s are positive integers and
Ti, P i

j , C
i
j ∈ {0, 1}n, called blocks. The P i

j and Ci
j mean the jth block of plaintext

and ciphertext respectively on the ith query. We denote Ti by both P i
0 and Ci

0.
For any 0 ≤ a ≤ b ≤ li, we write P i

a..b to represent the tuple (P i
a, . . . , P i

b ) and
P i to denote P i

0..li
. Similar notation for Ci and Ci

a..b. A view V is said to be
pointless if at least one of the followings holds:

1. ∃i �= i′ such that δi = δi′
= e, P i = P i′

.
2. ∃i �= i′ such that δi = δi′

= d, Ci = Ci′
.

3. ∃i′ < i such that δi = e, δi′
= d, P i = P i′

.
4. ∃i′ < i such that δi = d, δi′

= e, Ci = Ci′
.
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The first two cases are for duplicate queries. The third holds when we obtain
a response P i′

for some decryption query Ci′
and then make an encryption

query P i := P i′
. (The fourth case is the third case with the order of the queries

reversed.) It is easy to see that when an adversary A is interacting with a TES,
the view obtained is pointless if and only if A is pointless.

As we do not allow a pointless adversary we can restrict ourselves to non-
pointless views only. Now we define good and bad views among this class.

Definition 3. (Good and Bad Views). A view {(δi,Ti, li, P i
j , C

i
j)|1 ≤ i ≤

q, 1 ≤ j ≤ li} is said to be good if it is not pointless and

(∀i with δi = e)(�i′ < i)(Ci
1 = Ci′

1 ), and (∀i with δi = d)(�i′ < i)(P i
1 = P i′

1 ).

A view that is not good and not pointless is called bad.

The proof revolves around showing that the good views have a near-random
distribution, and the bad views occur with a low probability. For the rest of the
analysis, we fix a good view V.

Interpolation Probability. Now we consider the interpolation probability for
FMix construction. It is easy to see that

IPf
FMix(V) = Prf [FMixf (Ti, P i

1..li) = Ci
1..li , 1 ≤ i ≤ q]

where the probability is taken under the randomness of f chosen uniformly
from the set of all functions from {0, 1}n to itself. Similarly, the interpolation
probability for an ideal random function IP∗(V) is 2−nL where L =

∑q
i=1 li.

This corresponds to the case where O imitating a truly random function. Now
we state a result the proof of which is deferred to the next section.

Proposition 1. For any good view V,

IPf
FMix(V) ≥ (1 − ε) × 2−nL, where ε =

(
2L
2

)

2n
.

Armed with this result and the Coefficient H Technique, we are now ready to
state and prove the main result of this paper.

Theorem 3. For any SPRP-adversary A making q queries with L blocks in all,

AdvtsprpFMix (A) ≤
(
2L
2

)
+

(
q
2

)

2n
.

Proof. When a non-pointless adversary A is interacting with a pair of inde-
pendent random functions (f0, f ′

0), it obtains a bad view has probability upper
bounded by

(
q
2

)
. To see this, let the bad event occurs for the first time at the ith

query. If it is an encryption query (similar proof can be carried out for the decryp-
tion query) then Ci

1 is chosen randomly from {0, 1}n and so it matches with one
of the previous first ciphertext block is at most (i−1)/2n. So Prf0,f ′

0
[view(Af0,f ′

0)
is a bad view] ≤ ∑q

i=1
i−1
2n = q(q−1)

2n+1 . By using Coefficient H Technique (see in
Sect. 2.3) and the proposition stated above we have proved our theorem. ��
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Corollary 1. Let FMixK denote the FMix construction based on the keyed blcok-
cipher fK . For any TSPRP-adversary A making q queries with L blocks in all
there exists an adversary A′ making at most L encryption queries (and similar
time as A)

AdvtsprpFMixK
(A) ≤ AdvprpfK

(A′) +

(
2L
2

)
+

(
q
2

)

2n
.

This follows from the standard hybrid argument.

4.2 Extension of FMix for Partial Block Input

In Sect. 3, we define our construction only for complete block inputs. In practice,
messages-lengths m may not be a multiple of block-length n. For a complete enci-
phering scheme, our message space needs to be extended to include these partial
block inputs. Two known methods for message-space extension of a cipher were
XLS [20] and Nandi’s scheme [14]. XLS is now known to be insecure [15], so we
use Nandi’s generic scheme for extending the message-space. The generic con-
struction requires two additional blockcipher keys. We write these blockciphers
as f2 and f3. The blockcipher f1 is used in FMix. Given any partial block x,
1 ≤ |x| ≤ n − 1, we write pad(x) = x1‖0n−1−|x|. Similarly, chopr(x) denotes the
first r bits of x.

input : A tweak T, an integer l ≥ 2, l − 1 complete plaintext blocks
P1, ..., Pl−1, partial last plaintext block pl

output: l − 1 complete ciphertext blocks C1, ..., Cl−1, partial last ciphertext
block cl

begin
P ′
l−1 ← f2(pad(pl)) ⊕ Pl−1

(C1, . . . , Cl−2, C
′
l−1) ← FMixf1(P1, . . . , Pl−2, P

′
l−1)

cl ← chop|p′
l
|(f3(P

′
l−1 ⊕ C′

l−1)) ⊕ pl

Cl−1 ← f2(pad(cl)) ⊕ C′
l−1

end

Theorem 4. For any SPRP-adversary A making q queries with L blocks
(including incomplete) in all,

AdvtsprpFMix (A) ≤
(
2L
2

)
+

(
q
2

)

2n
+

3q(q − 1)
2n+1

.

The proof of the statement is immediate from Theorem 1 and the generic
conversion as described in [14].

5 Proof of Proposition 1

In this section we provide the proof of Proposition 1.
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Proposition. For any good view V,

IPf
FMix(V) ≥ (1 − ε) × 2−nL where ε =

(
2L
2

)

2n
.

We find a lower bound for the probability on the left by counting the choices of
f that give rise to V. For this counting, we find the number of internal states
(simulations) σ that can result in V, and for each σ, the number of choices of
f compatible with it. As it turns out, slightly undercounting the simulations
(counting only what we call admissible simulations) will suffice to prove our
security bound.

5.1 Simulations

We shall develop an effective way of calculating the interpolation probability
of V. We begin by introducing the notion of variables. Let E be the set of all
encryption query indices, i.e., E = {i|δi = e}. Similarly, let D be the set of all
decryption query indices. In identifying and labelling internal blocks, we continue
using superscripts to denote query indices. Thus, for a query i, the 2li inputs of
f (other than Ti) are denoted U i

1, ..., U
i
li , U

′i
1 , ..., U ′i

li , and the 2li +1 outputs of f
are denoted V i

0 , V i
1 , ..., V i

li , V
′i
1 , ..., V ′i

li . For ease of notation, we shall write both
U i
0 and U ′i

0 to denote Ti.

Variables and Derivables. We pick a set of output blocks

S = {V i
j |i ∈ E, j ∈ {1, ..., li}} ∪ {V ′i

j |i ∈ D, j ∈ {1, ..., li}}.

S will be our set of primary variables, or simply variables. Any non-trivial
linear combination of variables, optionally including blocks from V as well, will
be called a derivable. While the proof will be primarily depend on variables,
derivables will serve in the proof mainly to simplify notation and make the proof
easier to grasp. Examples of derivables would be U2

3 ,
∑

i V ′i
1 and V 2

2 + P 1
1 . Note

that a linear combination of view blocks alone, say C3
2+C2

3 , will not be considered
a derivable, since it’s value has already been fixed by choosing V.

Let us assume for now that the input block and its corresponding output
block are unrelated. We note that all input and output blocks of f are either
variables or derivables. Thus, if we assign values to the variables, all the inputs
and outputs of f over all queries are linearly determined. Thus, the variables
linearly generate the entire set of input and output blocks, while themselves
being linearly independent. We now formalise the notion of value assignment to
variables.

Definition 4. A transcript τ is a collection of variable-value pairs (Z, v) such
that no two pairs in the collection contain the same variable. For every (Z, v) ∈ τ ,
the variable Z is said to be assigned the value v under τ . We denote this as Z|τ = v.
The domain D(τ) of a transcript τ is defined as {Z|(∃v)(Z, v) ∈ τ}. Given a set
S of variables, a transcript τ with D(τ) = S is said to be an instantiation of S.
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For a transcript τ and a derivable Z ′ whose value only depends on the variables
in D(τ), τ effectively determines a value for Z ′. This value is denoted by Z ′||τ .
For ease of notation, for any view block X, X||τ will simply denote the value
of X fixed in V. An instantiation σ of S will be called a simulation, since it
determines all inputs and outputs of f and thus describes a complete simulation
of the internal computations that resulted in view S.

Not all simulations make sense, however, when we consider the connection
between and input block and its corresponding output block. A dependence now
creeps in among the variables, owing to the key observation below, which poses
the only non-trivial questions in the entire proof.

Wherever the inputs of f are identical, so are its outputs.

There can be simulations which violate this rule, and thus describe internal com-
putations that can never occur. A simulation which actually describes a possible
set of internal computations is called realisable. It is immediately clear that our
observation holds for all realisable simulations. The problem of calculating the
interpolation probability of V boils down to counting the number of realisable
simulations.

5.2 Admissibility

All realisable simulations can be difficult to count, however. We shall focus
instead on a smaller class of simulations, called admissible simulations, which
are easy to count and yet are abundant enough to give us the desired result.
Before that, we let us formulate in specific terms the ramifications of this obser-
vation. The immediate consequence is what we call pre-destined collisions. Let
I = ∪i{U i

0, U
i
1, ..., U

i
li , U

′i
1 , ..., U ′i

li
} be the set of all input blocks of f .

Definition 5. A pair of input blocks Z1, Z2 ∈ I is said to constitute a pre-
destined collision if for any realisable simulation σ,

Z1||σ = Z2||σ.

All other collisions between input blocks are called accidental collisions. Our
next task is to identify all pre-destined collisions. For that we’ll need some more
definitions.

Definition 6. Query indices i and i′ are called k-encryption equivalent for
some k < min(li, li

′
) if either i = i′, or

(P i
0, ..., P

i
k) = (P i′

0 , ..., P i′
k ).

This is denoted as i ∼ek
i′. Similarly, i and i′ are called k-decryption equiv-

alent for some k < min(li, li
′
) if either i = i′, or

(Ci
0, ..., C

i
k) = (Ci′

0 , ..., Ci′
k ).

This is denoted as i ∼dk
i′.
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Note that if i ∼ek
i′, then (∀k′ < k)(i ∼ek′ i′), and similarly for decryption

equivalence. Our choice of V as a good view ensures that i ∈ E whenever i ∼e1 i′

for some i′ < i, and i ∈ D whenever i ∼d1 i′ for some i′ < i. We can now make
a list of pre-destined collisions:

– (U i
k, U i′

k ), 0 ≤ k < min(li, li
′
), i ∼ek

i′

– (U ′i
k , U ′i′

k ), 0 ≤ k < min(li, li
′
), i ∼dk

i′

Substituting V i
k−1 + P i

k for U i
k and V ′i

k−1 + Ci
k for U ′i

k , we can re-write the pre-
destined collisions as

– (V i
k−1 + P i

k, V i′
k−1 + P i′

k ), 0 ≤ k < min(li, li
′
), i ∼ek

i′

– (V ′i
k−1 + Ci

k, V ′i′
k−1 + Ci′

k ), 0 ≤ k < min(li, li
′
), i ∼dk

i′

List of Pre-destined Collision. By our Observation, a pre-destined collision
on inputs naturally entails a collision on the corresponding outputs. This leads
to a corresponding set of pre-destined output collisions, which we write in
the form of equations over derivables and view blocks:

(a) (i ∼ek
i′) → (V i

k = V i′
k ), 0 ≤ k < min(li, li

′
),

(b) (i ∼dk
i′) → (V ′i

k = V ′i′
k ), 0 ≤ k < min(li, li

′
).

The pre-destined output collisions linearly follow from the pre-destined collisions,
but are formulated separately here, because they’ll later be useful as a class of
constraints on realisable simulations. Finally, we define the class of admissible
simulations.

Definition 7 (Admissible). A simulation σ is called admissible if, for any
Z1, Z2 ∈ I that do not constitute a pre-destined collision, Z1||σ �= Z2||σ.
Thus, in an admissible simulation, no two input blocks of f can accidentally
collide, and the only collisions are the pre-destined ones.

5.3 Basis and Extension

We now identify a subclass B of the variables which are linearly independent
under assumption of admissibility, and such that an instantiation τB of B admits
a unique extension E(τB) to a realisable simulation. We shall call B a basis of
X. First, we’ll need one more definition.

Definition 8. A query index i, 1 ≤ i ≤ q, is called k-fresh, k ≥ 0 if k = li, or
k < li and �i′ ≤ i with k < li

′
such that i ∼ek

i′ or i ∼dk
i′.

The set Ek of k-fresh encryption queries is defined as {i|δi = e, i k-fresh}. Simi-
larly, the set Dk of k-fresh decryption queries is defined as {i|δi = d, i k-fresh}.
Clearly, E = ∪kEk, and D = ∪kDk, since any i is li-fresh.
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We are now in a position to choose our basis B. Let l = maxi li. We define
the following:

Bj = {V i
j |i ∈ Ej}, 0 ≤ j ≤ l,

B′
j = {V ′i

j |i ∈ Dj}, 0 ≤ j ≤ l.

Finally, we define our basis as

B =
l⋃

j=0

(Bj ∪ B′
j).

We next show how to obtain σ = E(τB) given instantiation τB of B. To
simplify the description, we shall use a couple of new definitions.

Definition 9. The encryption k-ancestor of a query index i is defined as

Ae
k(i) = min

i∼ek
i′

i′.

Similarly, the decryption k-ancestor of a query index i is defined as

Ad
k(i) = min

i∼dk
i′

i′.

Clearly, if i is k-fresh, then i is its own k-ancestor.

Definition 10. For a query index i and a transcript τ , the query slice at i of
τ is defined as

Qi(τ) = {(Zi, v)|(Zi, v) ∈ τ}.

Thus, a query slice is the portion of a transcript that refers to a specific query.
The query slices of a transcript form a partition of it.

We are now ready to describe how to uniquely obtain σ. To begin with, for
all Z ∈ B, we set

Z|σ = Z|τB .

This gives us, among other things, the complete Q1(σ). (To see why, assume
without loss of generality that δ1 = e. Then 1 ∈ Ej for every j, so V 1

j ∈ B for 0 ≤
j ≤ l1.) We proceed inductively to determine Qi(σ) based on Q1(σ), ..., Qi−1(σ).

Suppose we have determined Qi′(σ) for all i′ < i. For 0 ≤ j ≤ li, let ij denote
Aδi

j (i). Clearly, {ij}j form a non-decreasing sequence, and ili = i. Let

k = min
ij=i

j.

Suppose without loss of generality that δi = d. Thus, for all j ≥ k, i ∈ Dj . So
V ′i

j ∈ B for every k ≤ j ≤ li. For 0 ≤ j < k, since i ∼dj
ij , and ij is decryption

j-fresh, we use 4.3 (b) to set

V ′i
j |σ = V

′ij
j ||σ.
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Finally, we set
V i
0 |σ = V ′i

0 ||σ.

This completes our extension of τB .
To show that σ indeed is a simulation, we just observe that if ∪i−1

1 Qi(σ)
is realisable, and δi = d, then Qi(σ) cannot violate 4.3 (a) (which concerns
encryption queries only), and Qi(σ) is chosen so as to conform to 4.3 (b).

5.4 Extension Equations

We observe that in extending τB to E(τB), once we’ve set the basis variables
in accordance with τB , none of the steps we perform thereafter depend on the
specific instantiation τB . Thus, for each variable we can identify an equation
relating it to the basis variables, so that a simulation can be obtained by sim-
ply plugging in an appropriate instantiation of B. We call these equations the
extension equations.

Pick i ∈ E, j ∈ {0, ..., li}. Then V i
j is a variable. Let b1 be j, and a1 be Ae

j(i).
Having obtained b1, ..., bk and a1, ..., ak, we stop if k is odd and ak ∈ E, or if k
is even and ak ∈ D. Otherwise, let bk+1 = lak − 1 − bk, and ak+1 be Aδak

bk+1
(ak).

Since ak+1 > ak, this terminates after finitely many steps, say upon obtaining
ak0 . Then we call ((b1, a1), ..., (bk0 , ak0)) the extension chain of V i

j , denoted
C(V i

j ).
To obtain the extension equation of V i

j from C(V i
j ), note that V i

j = V a1
j , and

for any even k ≤ k0, V ′ak
j = V

′ak−1
j , and (if k < k0) V

ak+1
j = V ak

j . To bridge
these equations, we just need to recall the equations relating V i′

j to V ′i′

li′ −1−j
for

arbitrary i′ with li
′ ≥ j.

From our algorithm, V ′i′
0 = V i′

0 , V ′i′

li′ = b(V i′

li′ −1
+ V i′

0 + P i′

li′ ) + Ci′
1 and

V ′i′

li′ −1
= b(V i′

li′ + V i′
0 + P i′

1 ) + Ci′

li′ .

For 1 ≤ j ≤ li
′ − 2, recall the masking equation

V ′i′
j = V i′

li−j−1 + V i′

li′ + V ′i′

li′ + P i′

li′ −j
+ Ci′

j+1.

On replacing V ′i′

li′ by b(V i′

li′ −1
+ V i′

0 + P i′

li′ ) + Ci′
1 , this becomes

V ′i′
j = V i′

li−j−1 + V i′

li′ + b(V i′

li′ −1
+ V i′

0 + P i′

li′ ) + Ci′
1 + P i′

li′ −j
+ Ci′

j+1.

The extension equations can be computed inductively using the above. Similarly,
for derivables, we can get the extension equations by writing it in terms of
variables, and expanding these variables through their corresponding extension
equations. We’ll mostly be interested in the set of basis variables appearing in
the extension equation of an input derivable Z, called the base B(Z) of Z.

We’ll show that whenever for two input derivables Z and Z ′, B(Z) = B(Z ′),
(Z,Z ′) is either a pre-destined collision, or Z and Z ′ cannot collide. This’ll show
that every accidental input collision corresponds to a linear equation on the basis
variables and view blocks. Note that this linear equation actually corresponds to
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n linear equations in terms of the bits, all of which should be dodged. For most
of the analysis, this distinction will not matter, and it’ll only become important
when we deal with two special cases in the very end.

Lemma 1. Every accidental input collision imposes a non-trivial linear equa-
tion on the basis variables.

The proof of the lemma is postponed to the end of this section. It basically
considers all cases for accidental collision and shows that it gives a non-trivial
linear equation.

5.5 Bringing It All Together

We are now ready to wrap up our proof of the proposition 1. Let L denote
∑

i li.

Let ε = (2L2 )
2n . The total number of output bits V in is nL, so clearly

IP∗(V) =
1

2nL
.

Now, let F ⊂ ({0, 1}n){0,1}n

be such that (f ∈ F) ←→ (choosing f results in V).
We see that

IPf
FMix(V) =

# choices of f which result in V
# choices of f in all

=
|F|

(2n)2n
.

Let A be the set of all admissible simulations. For an admissible simulation σ,
let Fσ denote the subset of F such that (f ∈ Fσ) ←→ (choosing f results in V
and σ). With this notation, we can write

|F| ≥
∑

σ∈A

|Fσ|.

To calculate |Fσ|, we note that σ fixes the values f for L + |B| distinct inputs.
Thus,

|Fσ| = (2n)2
n−L−|B|.

Since this does not depend on σ, we can write
∑

σ∈A

|Fσ| = |A| · (2n)2
n−L−|B|.

Now, each admissible simulation is E(τB) for some instantiation τB of B. To
ensure E(τB) ∈ A, we just have to choose τB such that it dodges all the linear
equations corresponding to accidental input collisions. As there can be at most(
2L
2

)
such equations, we conclude that

|A| ≥ 2n|B| −
(

2L

2

)

· 2n(|B|−1) = 2n|B|(1 − ε).

Putting all of this together, we get

|F| ≥ (2n)2
n−L · (1 − ε) = (1 − ε) · IP∗(V) · (2n)2

n

,

from which the Proposition follows.
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5.6 Proof of Lemma 1

Proof. We’ll divide the possible input pairs into several cases, which we’ll further
subdivide into groups, and we write out the proof only for the first case in each
group, and the rest follow from it. The classifying factors are as follows:

– Whether they both occur in the same layer (encryption layer {U i
j} or

decryption layer {U i
j}), or in different layers;

– Whether they occur in the right layer (encryption layer of an encryption
query, or decryption layer of decryption query) or the wrong layer;

– Whether their first-cross indices match (this would be the current query
index if in the wrong layer, and the index after the first backward jump during
extension if in the right layer).

We begin with an easy group of cases, where both occur in the right layer, and
their first-cross indices do not match:

Case 1a. (U i
j , U

i′
j′ ), i, i′ ∈ E, a = Ae

j−1(i) < Ae
j′−1(i

′) = a′

B(U i
j) = B(V i

j−1) can only contain basis variables with query indices ≤ a. Since
B(U i′

j′ ) = B(V i′
j′−1) will contain either V ′a′

la′ or V a′
j′ , B(U i

j) �= B(U i′
j′ ).

Case 1b. (U ′i
j , U ′i′

j′ ), i, i′ ∈ D, a = Ad
j−1(i) < Ad

j′−1(i
′) = a′

Case 1c. (U i
j , U

′i′
j′ ), i ∈ E, i′ ∈ D, a = Ae

j−1(i) < Ad
j′−1(i

′) = a′

Case 1d. (U ′i
j , U i′

j′ ), i ∈ D, i′ ∈ E, a = Ad
j−1(i) < Ae

j′−1(i
′) = a′

We next turn to another easy group, where exactly one of them is in the right
layer, and first-cross indices do not match:
Case 2a. (U i

j , U
′i′
j′ ), i, i′ ∈ E, a = Ae

j−1(i) �= i′

If a < i′, V i′

li′ is in B(U ′i′
j′ ) but not in B(U i

j). If a > i′, either V a
j−1 is in B(U i

j)
but not in B(U ′i′

j′ ), or V ′a
la is in B(U i

j) but not in B(U ′i′
j′ ).

Case 2b. (U i
j , U

′i′
j′ ), i, i′ ∈ D, i �= Ad

j′−1(i
′) = a′

Case 2c. (U i
j , U

i′
j′ ), i ∈ E, i′ ∈ D, a = Ae

j−1(i) �= i′

Case 2d. (U ′i
j , U ′i′

j′ ), i ∈ E, i′ ∈ D, i �= Ad
j′−1(i

′) = a′

The next group is even easier: both in the wrong layer, with non-matching first-
cross indices. This takes care of all cases with non-matching first-cross indices.

Case 3a. (U i
j , U

i′
j′ ), i, i′ ∈ D, i < i′

V ′i′

li′ is in B(U i′
j′ ) but not in B(U i

j).

Case 3b. (U ′i
j , U ′i′

j′ ), i, i′ ∈ E, i < i′

Case 3c. (U i
j , U

′i′
j′ ), i ∈ D, i′ ∈ E, i < i′

Case 3d. (U ′i
j , U i′

j′ ), i ∈ E, i′ ∈ D, i < i′
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Next we turn to a slightly trickier group, where they are in the same layer, both
in the right layer, and first-cross indices match.
Case 4. (U i

j , U
i′
j′ ), i, i′ ∈ E,Ae

j−1(i) = Ae
j′−1(i

′)

Consider C(V i
j−1) = ((b1, a1), ..., (bk0 , ak0)), C(V i′

j′−1) = ((b′
1, a

′
1), ..., (b

′
k′
0
, a′

k′
0
)). If

the chains follow the same query paths (i.e., if k0 = k′
0 and (∀k ≤ k0)(ak = a′

k)),
assuming without loss of generality k0 is odd and k0 ∈ E (from the chain-
termination condition), we have V

ak0
bk0

∈ B(U i
j), and V

ak0
b′
k0

∈ B(U i′
j′ ), all other

basis variables in the two extension equations being the same. Thus, if bk0 �=
b′
k0

,B(U i
j) �= B(U i′

j′ ), and if bk0 = b′
k0

, (U i
j , U

i′
j′ ) is either a pre-destined collision

(if P i
j = P i′

j′ ) or it cannot be a collision. If the chains do not follow the same
query path, we can find k such that ak �= a′

k, which reduces to one of the previous
cases.
Case 4a. (U ′i

j , U ′i′
j′ ), i, i′ ∈ D,Ad

j−1(i) = Ad
j′−1(i

′)
The next group is much simpler, where they are in different layers, both in the
right layer, and first-cross indices match.
Case 5. (U i

j , U
′i′
j′ ), i ∈ E, i′ ∈ D, a = Ae

j−1(i) = Ad
j′−1(i

′)

Without loss of generality, a ∈ E. So V a
la is in B(U i′

j′ ) but not in B(U i
j).

Case 5a. (U ′i
j , U i′

j′ ), i ∈ D, i′ ∈ E,Ad
j−1(i) = Ae

j′−1(i
′)

We’re almost done with the proof at this point. We wrap up with the few remain-
ing cases. In the next group, they come from different layers, exactly one of them
in the right layer, and first-cross indices match.
Case 6. (U i

j , U
′i′
j′ ), i, i′ ∈ E,Ae

j−1(i) = i′

Here, V i′

li′ is in B(U i′
j′ ) but not in B(U i

j).

Case 6a. (U i
j , U

′i′
j′ ), i, i′ ∈ D, i = Ad

j′−1(i
′)

The four cases of the final group can be proved using the extension-chain-
comparison technique of Case 4. In this group, they are in the same layer, at
least one in the wrong layer, and first-cross indices match. (If they are both in
the wrong layer, and first-cross indices match, they occur at the same query, so
they cannot be in different layers, so this wraps up the case analysis).
Case 7. (U i

j , U
i′
j′ ), i ∈ E, i′ ∈ D,Ae

j−1(i) = i′

Case 7a. (U ′i
j , U ′i′

j′ ), i ∈ E, i′ ∈ D, i = Ad
j′−1(i

′)

Case 7b. (U i
j , U

i
j′), i ∈ D

Case 7c. (U ′i
j , U ′i

j′), i ∈ E

This leaves only a few boundary cases (involving the likes of U i
li), which can be

easily verified. We just point out two special cases which underline the impor-
tance of choosing b as a balanced permutation. For the pair (U i

1, U
′i
1 ) for some

i, if P i
1 = Ci

1, the condition for an accidental collision becomes V i
0 + b(V i

0 ) = 0,
which is still n independent linear equations in terms of the bits, by choice of b.
Similarly, if i ∼eli−1

i′, and b(P i
li) = P i′

li , the pair (U i
li , U

i′
li ) yields the equation
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b(V i
li−1) + V i′

li−1 = 0, which again is n independent linear equations in terms of
the bits.
Thus we establish our lemma. ��

6 Conclusion and Future Works

In this paper we propose a new Feistel type length preserving tweakable encryp-
tion scheme. Our construction, called FMix, has several advantages over CMC
and other blockcipher based enciphering scheme. It makes an optimal number of
blockcipher calls using single keyed PRP blockcipher. The only drawback com-
pare to EME is that the first layer of encryption, like CMC, is sequential. We
can view our construction as a composition of type-1 and type-3 Feistel ciphers.

There are several possible scopes of future work. When we apply a generic
method to encrypt last partial block message, we need an independent key. (This
is always true for generic construction.) However, one can have a very specific way
to handle partial block message keeping only one blockcipher key. The presence
of the function b helps us to simplify the security proof. However, we do not
know of any attack if we do not use this function (except for handling the tweak
in the bottom layer - that use is necessary). So it would be interesting to see
whether our proof can be extended for the variant without using the function b.
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19. Patarin, J.: The “Coefficients H” technique. In: Avanzi, R.M., Keliher, L., Sica, F.
(eds.) SAC 2008. LNCS, vol. 5381, pp. 328–345. Springer, Heidelberg (2009)

20. Ristenpart, T., Rogaway, P.: How to enrich the message space of a cipher. In:
Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 101–118. Springer, Heidelberg
(2007)

21. Sarkar, P.: Improving upon the TET mode of operation. In: Nam, K.-H., Rhee, G.
(eds.) ICISC 2007. LNCS, vol. 4817, pp. 180–192. Springer, Heidelberg (2007)

22. Sorkin, A.: Lucifer, a cryptographic algorithm. Cryptologia 8(1), 22–42 (1984)
23. Data Encryption Standard: Fips pub 46. Federal Information Processing Standards

Publication, Appendix A (1977)
24. Vaudenay, S.: Decorrelation: a theory for block cipher security. In: Journal of

Cryptology, Lecture Notes in Computer Science, vol. 16(4), pp. 249–286. Springer-
Verlag, New York (2003)

25. Wang, P., Feng, D., Wu, W.: HCTR: a variable-input-length enciphering mode.
In: Feng, D., Lin, D., Yung, M. (eds.) CISC 2005. LNCS, vol. 3822, pp. 175–188.
Springer, Heidelberg (2005)



Foundations



On Black-Box Complexity of Universally
Composable Security in the CRS Model

Carmit Hazay1(B) and Muthuramakrishnan Venkitasubramaniam2

1 Faculty of Engineering, Bar-Ilan University, Ramat Gan, Israel
carmit.hazay@biu.ac.il

2 University of Rochester, Rochester, NY 14611, USA
muthuv@cs.rochester.edu

Abstract. In this work, we study the intrinsic complexity of black-
box Universally Composable (UC) secure computation based on general
assumptions. We present a thorough study in various corruption model-
ings while focusing on achieving security in the common reference string
(CRS) model. Our results involve the following:

– Static UC Secure Computation. Designing the first static UC
secure oblivious transfer protocol based on public-key encryption and
stand-alone semi-honest oblivious transfer. As a corollary we obtain
the first black-box constructions of UC secure computation assuming
only two-round semi-honest oblivious transfer.

– One-sided UC Secure Computation. Designing adaptive UC
secure two-party computation with single corruptions assuming
public-key encryption with oblivious ciphertext generation.

– Adaptive UC Secure Computation. Designing adaptively secure
UC commitment scheme assuming only public-key encryption with
oblivious ciphertext generation. As a corollary we obtain the first
black-box constructions of adaptive UC secure computation assum-
ing only (trapdoor) simulatable public-key encryption (as well as a
variety of concrete assumptions).
We remark that such a result was not known even under non-black-box
constructions.

Keywords: UC secure computation · Black-box constructions · Obliv-
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1 Introduction

Secure multi-party computation enables a set parties to mutually run a protocol
that computes some function f on their private inputs, while preserving a num-
ber of security properties. Two of the most important properties are privacy and
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correctness. The former implies data confidentiality, namely, nothing leaks by the
protocol execution but the computed output. The later requirement implies that
no corrupted party or parties can cause the output to deviate from the specified
function. It is by now well known how to securely compute any efficient function-
ality [2,4,24,45,50] in various models and under the stringent simulation-based
definitions (following the ideal/real paradigm). Security is typically proven with
respect to two adversarial models: the semi-honest model (where the adversary
follows the instructions of the protocol but tries to learn more than it should
from the protocol transcript), and the malicious model (where the adversary
follows an arbitrary polynomial-time strategy), and feasibility results are known
in the presence of both types of attacks. The initial model considered for secure
computation was of a static adversary where the adversary controls a subset
of the parties (who are called corrupted) before the protocol begins, and this
subset cannot change. In a stronger corruption model the adversary is allowed
to choose which parties to corrupt throughout the protocol execution, and as a
function of its view; such an adversary is called adaptive.

These feasibility results rely in most cases on stand-alone security, where
a single set of parties run a single execution of the protocol. Moreover, the
security of most cryptographic protocols proven in the stand-alone setting does
not remain intact if many instances of the protocol are executed concurrently
[40]. The strongest (but also the most realistic) setting for concurrent security is
known by Universally Composable (UC) security [4]. This setting considers the
execution of an unbounded number of concurrent protocols in an arbitrary and
adversarially controlled network environment. Unfortunately, stand-alone secure
protocols typically fail to remain secure in the UC setting. In fact, without
assuming some trusted help, UC security is impossible to achieve for most tasks
[7,8,40]. Consequently, UC secure protocols have been constructed under various
trusted setup assumptions in a long series of works; see [1,5,10,14,34,38] for few
examples.

In this work, we are interested in understanding the intrinsic complexity
of UC secure computation. Identifying the general assumptions required for a
particular cryptographic task provides an abstraction of the functionality and
the specific hardness that is exploited to obtain a secure realization of the task.
The expressive nature of general assumptions allows the use of a large number of
concrete assumptions of our choice, even one that may not have been considered
at the time of designing the protocols. Constructions that are based on general
assumptions are proven in two flavors:

Black-box Usage: A construction is black-box if it refers only to the
input/output behavior of the underlying primitives.

Non-black-box Usage: A construction is non-black box if it uses the code
computing the functionality of the underlying primitives.

Typically, non-black-box constructions have been employed to demonstrate
feasibility and derive the minimal assumptions required to achieve cryptographic
tasks. An important theoretical question is whether or not non-black-box usage
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of the underlying primitive is necessary in a construction. Besides its theoreti-
cal importance, obtaining black-box constructions is related to efficiency as an
undesirable effect of non-black-box constructions is that they are typically inef-
ficient and unlikely to be implemented in practice. Fortunately, a recent line
of works [25,26,32,47] has narrowed the gap between what is achievable via
non-black-box and black-box constructions under minimal assumptions.

More relevant to our context, the work of Ishai, Prabhakaran and Sahai
[33] provided the first black-box constructions of UC secure protocols assuming
only one-way functions in a model where all parties have access to an ideal
oblivious transfer (OT) functionality. Orthogonally, Choi et al. [12] provided a
compiler that transforms any semi-honest OT to a protocol that is secure against
malicious static adversaries in the stand-alone (i.e. not UC) while assuming that
all parties have access to the ideal commitment functionality. In the adaptive
setting, the work of Choi et al. provides a transformation from adaptively secure
semi-honest oblivious transfer to one that is secure in the stronger UC setting
against malicious adaptive adversaries while assuming that all parties have access
to the ideal commitment functionality. In essence, these works provide black-
box constructions, however, they fall short of identifying the necessary minimal
general computational assumptions in the UC setting.

Loosely speaking, a UC commitment scheme [7] is a fundamental building
block in secure computation which is defined in two phases: in the commit phase
a committer commits to a value while keeping it hidden, whereas in the decommit
phase the committer reveals the value that it previously committed to. In addi-
tion to the standard binding and hiding security properties that any commitment
must adhere, commitment schemes that are secure in the UC framework must
allow straight-line extraction (where a simulator should be able to extract the
content of any valid commitment generated by the adversary) and straight-line
equivocation (where a simulator should be able to produce many commitments
for which it can later decommit to both 0 and 1). We stress that even security
in the static setting requires some notion of equivocation. Due to these rigorous
requirements, it has been a real challenge to design black-box constructions of
UC secure commitment schemes.

In the context of realizing the UC commitments in the CRS model, Damg̊ard
and Nielsen introduced the notion of mixed-commitments in [16]. This construc-
tion requires a CRS that is linear in the number of parties and can be instan-
tiated under the N -residuosity and p-subgroup hardness assumptions. In the
global CRS model (where a single CRS is introduced for any number of exe-
cutions), the only known constructions are by Damg̊ard and Groth [15] based
on the Strong RSA assumption and Lindell [42] based on the DDH assump-
tion, where the former construction guarantees security in the adaptive setting
whereas the later construction provides static security.

Another fundamental building block in secure computation which has been
widely studied is oblivious transfer [21,49]. Semi-honest two-round oblivious
transfer can be constructed based enhanced trapdoor permutations [21] and
smooth projective hashing [28], and concretely under Discrete Diffie-Hellman
(DDH) [46]. Two-round protocols with malicious UC security are presented in
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the influential paper by Peikert et al. [48] that presents a black-box framework in
the common reference string (CRS) model for oblivious transfer, based on dual-
mode public-key encryption (PKE) schemes, which can be concretely instanti-
ated under the DDH, quadratic residuosity and Learning with Errors (LWE)
hardness assumptions. In a followup work [13], the authors present UC oblivious
transfer constructions in the global CRS model assuming DDH, N -residuosity
and the Decision Linear Assumption (DLIN). As pointed out in [13], the [48]
constructions require a distinct CRS per party. In the context of adaptive UC
oblivious transfer protocols, the works of [12] and [22] give constructions in the
UC commitment hybrid model where they additionally rely on an assumption
that implies adaptive semi-honest oblivious transfer.

It is worth noting that while the works of [48] and [13] provide abstrac-
tions of their assumptions, the assumptions themselves are not general enough
to help understand the minimal assumptions required to achieve static UC secu-
rity. In particular, when restricting attention to black-box constructions based
on general assumptions, the state-of-the-art literature seems to indicate that
achieving UC security in most trusted setup models reduces to constructing
two apparently incomparable primitives: semi-honest oblivious transfer and UC
commitment schemes. This leaves the following important question open:

What are the minimal (general) assumptions required to construct UC
secure protocols, given only black-box access to the underlying primi-
tives?

We note that this question is already well understood in the static setting
when relaxing the black-box requirement. Namely, in [18] Damg̊ard, Nielsen
and Orlandi showed how to construct UC commitments assuming only semi-
honest oblivious transfer in the global CRS model, while additionally assuming
a pre-processing phase where the parties participate in a round-robin manner1.
More recently, Lin, Pass and Venkitasubramaniam [39] improved this result by
removing any restricted pre-processing phase. In the same work the authors
showed how to achieve UC security in the global CRS model assuming only the
existence of semi-honest oblivious transfer. In particular, this construction shows
that static UC security can be achieved without assuming UC commitments
when relying on non-black-box techniques.

In the stand-alone (i.e. not UC) setting, assuming only the existence of semi-
honest oblivious transfer [26,27,32] show how to construct secure multiparty
computation protocols while relying on the underlying primitives in a black-box
manner. More recently, [12] provided black-box constructions that are secure
against static adversaries, again, in the stand-alone setting, where all parties
have access to an ideal commitment functionality (cf. Proposition 1 in [12]). The
latter construction achieves a stronger notion of straight-line simulation, however
falls short of achieving static UC security (see more details in Sect. 3).

1 In such a pre-processing phase, it is assumed that at most one party is allowed to
transmit messages in any round.
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In the adaptive setting, the only work that considers a single general assump-
tion that implies adaptive UC security using non-black-box techniques is the
result due to Dachman-Soled et al. [14], that shows how to obtain adaptive
UC commitments assuming simulatable PKE. Moreover, the best known gen-
eral assumptions required to achieve black-box UC security are adaptive semi-
honest oblivious transfer and UC commitments [12,17]. Known minimal general
assumptions that are required to construct these primitives are (trapdoor) sim-
ulatable PKE for adaptive semi-honest oblivious transfer [11] and mixed com-
mitments for UC commitments [17].

1.1 Our Results

In this paper we present a thorough study of black-box UC secure computation
in the CRS model; details follow.

Static UC Secure Computation. Our first result is given in the static set-
ting, where we demonstrate the feasibility of UC secure computation based on
semi-honest oblivious transfer and extractable commitments. More concretely,
we prove how to transform any statically semi-honest secure oblivious trans-
fer into one that is secure in the presence of malicious adversaries, giving only
black-box access to the underlying semi-honest oblivious transfer protocol. Our
approach is inspired by the protocols from [27] and [37], where we observe that
it is not required to use the full power of static UC commitments. Instead, we
employ a weaker primitive that only requires straight-line input extractability.
Interestingly, we prove that this weaker notion of security, denoted by extractable
commitments [44], can be realized based on any CPA secure PKE. More pre-
cisely, we prove the following theorem.

Theorem 11 (Informally). Assuming the existence of PKE and semi-honest
oblivious transfer, then any functionality can be realized in the CRS model with
static UC security, where the underlying primitives are accessed in a black-box
manner.

We remark here that this theorem makes a significant progress towards reducing
the general assumptions required to construct UC secure protocols. Previously,
the only general assumptions based on which we knew how to construct UC
secure protocols were mixed-commitments [16] and dual-mode PKE [48] both
of which were tailor-made for the particular application. Towards understanding
the required minimal assumptions, we recall the work Damg̊ard and Groth in [15]
who showed that the existence of UC commitments in the CRS model implies a
stand-alone key agreement protocol. Moreover, under black-box constructions,
the seminal work of Impagliazzo and Rudich [31] implies that key agreement
cannot be based on one-way functions. Thus, there is reasonable evidence to
believe that some public-key primitive is required for UC commitments. In that
sense, our assumption regarding PKE is close to being optimal. Nevertheless, it
is unknown whether the semi-honest oblivious transfer assumption is required.
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Our result is shown in two phases. At first we compile the semi-honest obliv-
ious transfer protocol into a new protocol with intermediate security properties
in the presence of malicious adversaries. This transformation is an extension of
the [27] transformation that is only proven for bit oblivious transfer, whereas our
proof works for string oblivious transfer. Next, we use the transformed oblivi-
ous transfer protocol in order to construct a maliciously fully secure oblivious
transfer. By combining our oblivious transfer with the [33] protocol we obtain a
statically generic UC secure computation.

An important corollary is deduced from the work by Gertner et al. [23],
who provided a black-box construction of PKE based on any two-round semi-
honest oblivious transfer protocol. Specifically, the combination of their result
with ours implies the following corollary, which demonstrates that two-round
semi-honest oblivious transfer is sufficient in the CRS model to achieve black-
box constructions of UC secure protocols.

Corollary 12 (Informally). Assuming the existence of two-round semi-honest
oblivious transfer, then any functionality can be UC realized in the CRS model,
where the oblivious transfer is accessed in a black-box manner.

Implications. In what follows, we make a sequence of interesting observations
that are implied by our result in the static UC setting.

– The important result by Canetti, Lindell, Ostrovsky and Sahai [9] presents
the first non-black-box constructions of static UC secure protocols assuming
enhanced trapdoor permutations. In fact, their result can be extended assum-
ing only PKE with oblivious ciphertext generation (which is PKE with the
special property that a ciphertext can be obliviously sampled without the
knowledge of the plaintext, and can be further realized using enhanced trap-
door permutation). In that sense, our result, assuming PKE with oblivious
ciphertext generation, can be viewed as an improvement of [9] when relying
on this primitive in a black-box manner.

– The pair of works by Damgard, Nielsen and Orlandi [18] and Lin, Pass and
Venkitasubramaniam [39] demonstrate that non-black-box constructions of
UC commitments, and more generally static UC secure computation, can be
achieved in the CRS model assuming only semi-honest oblivious transfer. In
comparison, our result shows that two-round semi-honest oblivious transfer
protocols are sufficient for obtaining black-box UC secure computation in the
CRS model. Note that most semi-honest oblivious transfer protocols anyway
require only two-round of communication, e.g., [21].

– In [38,39], Lin, Pass and Venkitasubramaniam provided a unified framework
for constructing UC secure protocols in any “trusted-setup” model. Their
result is achieved by capturing the minimal requirement that implies UC com-
putations in the setup model. More precisely, they introduced the notion of
a UC puzzle and showed that any setup model that admits a UC puzzle can
be used to securely realize any functionality in the UC setting, while addi-
tionally assuming the existence of semi-honest oblivious transfer. Moreover,
they showed how to easily construct such puzzles in most models. We remark
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that our approach can be viewed as providing a framework to construct black-
box UC secure protocols in other UC models. More precisely, we show that
any setup model that admits the extractable commitment functionality can
be used to securely realize any functionality assuming the existence of semi-
honest oblivious transfer. In fact, our result easily extends to the chosen key
registration authority (KRA) model [1], where it is assumed the existence of
a trusted authority that samples public key, secret key pairs for each party,
and broadcasts the public key to all parties. We leave it for future work to
instantiate our framework in other setup models.

– The fact that our construction only requires PKE and semi-honest oblivious
transfer allows an easy translation of static UC security to various efficient
implementations under a wide range of concrete assumptions. Specifically,
both PKE and (two-round) semi-honest oblivious transfer can be realized
under RSA, factoring Blum integers, LWE, DDH, N -residuosity, p-subgroup
and coding assumptions. This is compared to prior results that could be based
on the later five assumptions [13,19,20,48].

– Recently, Maji, Prabhakaran, and Rosulek [44] initiated the study of the cryp-
tographic complexity of secure computation tasks, while characterizing the
relative complexity of a task in the UC setting. Specifically, they established
a zero-one law that states that any task is either trivial (i.e., it can be reduced
to any other task), or complete (i.e., to which any task can be reduced to),
where a functionality F is said to reduce to another functionality G, if there
is a UC secure protocol for F using ideal access to G. More precisely, they
showed that assuming the existence of semi-honest oblivious transfer, every
finite two-party functionality is either trivial or complete. While their main
theorem relies on the minimal assumption of semi-honest oblivious transfer,
their use of the assumption is non-black-box and they leave it as an open
problem to achieve the same while relying on oblivious transfer in a black-box
manner. Our result makes progress towards establishing this.

In more details, their high-level approach is to identify complete functional-
ities using four categories, namely, (1) FXOR that abstracts a XOR-type func-
tionality, (2) FCC that abstracts a simple cut-and-choose functionality, (3) FOT

the oblivious transfer functionality, and (4) FCOM the commitment function-
ality. They then show that each category can be used to securely realize any
computational task2. Among these reductions, functionalities FXOR and FCC

rely on oblivious transfer in a non-black-box way. In this work we improve the
reduction of functionality FCC. That is, we obtain this improvement by show-
ing that the extractable commitment functionality FEXTCOM and semi-honest
oblivious transfer can be used in a black-box way to realize functionality FOT,
and combine this with a reduction presented in [44] that reduces FCC to the
FEXTCOM functionality in a black-box way.

One-Sided UC Secure Computation. In this stronger two-party setting,
where at most one of the parties is adaptively corrupted [29,35], we prove that
2 Where it suffices to realize the FOT functionality as it is known to be complete [36].
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one-sided adaptive UC security is implied by PKE with oblivious ciphertext gen-
eration. Here we combine two observations, one where our malicious static oblivi-
ous transfer from the previous result requires using the parties’ inputs in only one
phase, together with the fact that one-sided non-committing encryption (NCE)
can be designed based on PKE with oblivious ciphertext generation [6,16]. In
particular, NCE allow secure communication in the presence of adaptive attacks,
which implies that the communication can be equivocated once the real message
is handed to the simulator. Then, by encrypting part of our statically secure pro-
tocol using NCE, we obtain a generic protocol for any two-party functionality
under the assumption specified above3. Namely,

Theorem 13 (Informally). Assuming the existence of PKE with oblivious
ciphertext generation, then any two-party functionality can be realized in the CRS
model with one-sided adaptive UC security and black-box access to the PKE.

Adaptive UC Secure Computation. Our last result is in the strongest cor-
ruption setting, where any number of parties can be adaptively corrupted. Here
we design a new adaptively secure UC commitment scheme under the assump-
tion of PKE with oblivious ciphertext generation, which is the first construction
that achieves the stronger notion of adaptive security based on this hardness
assumption. Our construction makes a novel usage of such a PKE together with
Reed-Solomon codes, where the polynomial shares are encrypted using the PKE
with oblivious ciphertext generation. Plugging-in our UC commitment proto-
col into the transformation of [12] that generates adaptive malicious oblivious
transfer given adaptive semi-honest oblivious transfer and UC commitments,
implies an adaptively UC secure oblivious transfer protocol with malicious secu-
rity based on semi-honest adaptive oblivious transfer and PKE with oblivious
ciphertext generation, using only black-box access to the semi-honest oblivious
transfer and the PKE. That is,

Theorem 14 (Informally). Assuming the existence of PKE with oblivious
ciphertext generation and adaptive semi-honest oblivious transfer, then any func-
tionality can be realized in the CRS model with adaptive UC security, where the
underlying primitives are accessed in a black-box manner.

We further recall the work of Choi et al. [11] that shows that the weakest general
known assumption that is required to construct adaptively secure semi-honest
oblivious transfer is trapdoor simulatable PKE. Now, since such an encryption
scheme admits PKE with oblivious ciphertext generation, we obtain the follow-
ing corollary that unifies the two assumptions required to achieve adaptive UC
security.

Corollary 15. Assuming the existence of (trapdoor) simulatable PKE, then any
functionality can be realized in the CRS model with adaptive UC security and
black-box access to the PKE.
3 We note that while in the plain model any statically secure protocol can be compiled

into one-sided secure protocol by encrypting its entire communication using one-
sided NCE, it is not the case in the UC setting due to the additional setup.
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An additional interesting observation that is implied by our work is that
our UC commitment scheme implies a construction that is secure in the adap-
tive setting when erasures are allowed, and under the weaker assumption of
PKE. Specifically, instead of obliviously sampling ciphertexts in the commit-
ment phase, the committer encrypts arbitrary plaintexts and then erases the
plaintexts and randomness used for these computations. Our proof follows eas-
ily for this case as well. Combining our UC commitment scheme together with
the semi-honest with erasures OT from [41] and the transformation of [12], we
obtain the following result

Theorem 16 (Informally). Assuming the existence of PKE and semi-honest
oblivious transfer secure against an adaptive adversary assuming erasures, then
any functionality can be realized in the CRS model with adaptive UC security
assuming erasures, where the underlying primitives are accessed in a black-box
manner.

Noting that OT secure against adaptive adversaries assuming erasures can be
realized under assumptions sufficient for achieving the same with respect to the
weaker static adversaries, this theorem shows that achieving UC security against
adaptive adversaries in the presence of erasures does not require any additional
assumption beyond what is required to secure against static adversaries.

Implications. Next, we specify a sequence of interesting observations that are
implied by our result in the adaptive UC setting.

– Previously, Dachman-Soled et al. [14], showed that adaptive UC secure proto-
cols can be constructed in the CRS model assuming the existence of simulat-
able PKE. Our result improves this result in terms of complexity assumptions
by showing that trapdoor simulatable PKE is sufficient, and provides new
constructions based on concrete assumptions that were not known before.
Nevertheless, we should point out that while the work of Dachman-Soled et
al. is constructed in the global CRS model using a non-black-box construc-
tion, our result provides a black-box construction in a CRS model where the
length of the reference string is linear in the number of parties.

– Analogous to our result on static UC security, it is possible to extend this result
to the chosen key-registration authority (KRA) model, where we assume the
existence of a trusted-party that samples public keys and secret keys for each
party, and broadcasts the public key to all parties.

– Importantly, this result provides the first evidence that adaptively secure UC
commitment is theoretically easier to construct than stand-alone adaptively
secure semi-honest oblivious transfer. This is due to a separation from [43]
(regarding static vs. adaptive oblivious transfer), that proves that adaptive
oblivious transfer requires a stronger hardness assumption than enhanced
trapdoor permutation.

– Regarding concrete assumptions, previously, adaptive UC commitments with-
out erasures were constructed based on N -residuosity and p-subgroup hard-
ness assumptions [17] and Strong RSA [15]. On the other hand, our result
demonstrates the feasibility of this primitive under DDH, LWE, factoring
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Blum integers and RSA assumptions. When considering adaptive corruption
with erasures, the work of Blazy, et al. [3], extending the work of Lindell [42],
shows how to construct highly efficient UC commitments based on the DDH
assumption. On the other hand, assuming erasures, we are able to construct
an adaptive UC commitment scheme based on any CPA-secure PKE.

2 Preliminaries

We denote the security parameter by n. We use the abbreviation PPT to denote
probabilistic polynomial-time. We further denote by a ← A the random sampling
of a from a distribution A, and by [n] the set of elements {1, . . . , n}.

Definition 21 (PKEwith Oblivious Ciphertext Generation [16]). A PKE
Π with oblivious sampling generation is defined by the tuple (Gen,Enc,Dec,

Ẽnc, Ẽnc
−1

) and has the following additional property,

– Indistinguishability of Oblivious and Real Ciphertexts. For any mes-
sage m in the appropriate domain, consider the experiment (PK,SK) ←
Gen(1n), c1 ← ẼncPK(r1), c2 ← EncPK(m; r2), r′

1 ← Ẽnc
−1

PK(c2).
Then, (PK, r′

1, c1,m)
c≈ (PK, r2, c2,m).

To this end, we only employ PKE with perfect decryption. This merely simplifies
the analysis and can be relaxed by using PKE with a negligible decryption error
instead.

2.1 Oblivious Transfer

1-out-of-2 oblivious transfer (OT) is an important functionality in the context
of secure computation that is engaged between a sender Sen and a receiver Rec;
see Fig. 1 for the description of functionality FOT. In this paper we are interested
in reducing the hardness assumptions for general UC secure computation when
using only black-box access to the underlying cryptographic primitives, such as
the semi-honest OT. We use semi-honest OT as a building block for designing
UC secure protocols in both static and adaptive settings. In the static setting,
we refer to the two-round protocol of [21] that is based on PKE with oblivi-
ous ciphertext generation (or enhanced trapdoor permutation). In the adaptive
setting, we refer to the two-round protocol of [9] that is based on augmented
non-committing encryption scheme.

We next recall that any two-round semi-honest OT implies PKE. We demon-
strate that in two phases, starting with the claim that semi-honest OT implies
a key agreement (KA) protocol, where two parties agree on a secret key over
a public channel. This statement has already been proven in [23] in the static
setting, and holds for any number of rounds. The idea is simple, the parties
execute an OT protocol where the party that plays the sender picks two random
inputs s0, s1, whereas the party that plays the receiver enters 0. Finally, the par-
ties output s0 and security follows from the correctness and privacy of the OT.
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A simple observation shows that this reduction also holds in the adaptive setting.
Namely, starting with an adaptive semi-honest OT, the same reduction implies
an adaptively secure KA (where the protocol communication must be consis-
tent with respect to any key). Note that this reduction preserves the number of
rounds, thus if the starting point is a two-round OT then the reduction implies
a two-round KA. Next, a well established fact shows that in the static setting a
two-round key agreement implies PKE (in fact, these primitives are equivalent).
Formally,

Theorem 22. Assume the existence of two-round key agreement protocol with
static security, then there exists IND-CPA PKE.

Fig. 1. The oblivious transfer functionality.

Sender Private Oblivious Transfer. Sender privacy is a weaker notion than
malicious security and only requires that the receiver’s input be hidden even
against a malicious sender. It is weaker than malicious security in that it does
not require a simulation of the malicious sender that extracts the sender’s inputs.
In particular, we will only require that a malicious sender cannot distinguish the
cases where the receiver’s input is 0 or 1. Formally stated,

Definition 23 (Sender Private OT). Let π be a two-party protocol that is
engaged between a sender Sen and a receiver Rec. We say that π is a sender
private oblivious transfer protocol, if for every PPT adversary A that corrupts
Sen, the following ensembles are computationally indistinguishable:

– {ViewA,π[A(1n),Rec(1n, 0)]}n∈N

– {ViewA,π[A(1n),Rec(1n, 1)]}n∈N

where ViewA,π[A(1n),Rec(1n, b)] denotes A’s view within π whenever the
receiver Rec inputs the bit b.

We point out that sender privacy protects the receiver against a malicious sender
and should be read as privacy against a malicious sender.
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Defensibly Private Oblivious Transfer. The notion of defensible privacy
was introduced by Haitner in [26,27]. A defense in a two-party protocol π =
(P1, P2) execution is an input and random tape provided by the adversary after
the execution concludes. A defense for a party controlled by the adversary is
said to be good, if this party participated honestly in the protocol using this very
input and random tape, then it would have resulted in the exact same messages
that were sent by the adversary. In essence, this defense serves as a proof of
honest behavior. It could very well be the case that an adversary deviates from
the protocol in the execution but later provides a good defense. The notion of
defensible privacy says that a protocol is private in the presence of defensible
adversaries if the adversary learns nothing more than its prescribed output when
it provides a good defense.

We informally describe the notion of good defense for a protocol π; we refer
to [27] for the formal definition. Let trans = (q1, a1, . . . , q�, a�) be the transcript
of an execution of a protocol π that is engaged between P1 and P2 and let A
denote an adversary that controls P1, where qi is the ith message from P1 and ai

is the ith message from P2 (that is, ai is the response for qi). Then we say that
(x, r) constitutes a good defense of A relative to trans if the transcript generated
by running the honest algorithm for P1 with input x and random tape r against
P2’s messages a1, . . . , a� results trans.

The notion of defensible privacy can be defined for any secure computation
protocol. Nevertheless, since we are only interested in oblivious transfer proto-
cols, we present a definition below that is restricted to oblivious transfer proto-
cols. The more general definition can be found in [27]. At a high-level, an OT
protocol is defensibly private with respect to a corrupted sender if no adversary
interacting with an honest receiver with input b should be able to learn b, if at the
end of the execution the adversary produces any good defense. Similarly, an OT
protocol that is defensibly private with respect to malicious receivers requires
that any adversary interacting with an honest sender with input (s0, s1) should
not be able to learn s1−b, if at the end of the execution the adversary produces
a good defense with input b. Below we present a variant of the definition pre-
sented in [27]. We stress that while the [27] definition only considers bit OT (i.e.
sender’s inputs are bits) we consider string OT.

Definition 24 (Defensible-Private String OT). Let π be a two-party proto-
col that is engaged between a sender Sen and a receiver Rec. We say that π is a
defensibly-private string oblivious transfer protocol, if for every PPT adversary
A the following holds,

1. {Γ (ViewA[A(1n),Rec(1n, U)], U)} c≈ {Γ (ViewA[A(1n),Rec(1n, U)], U ′)},
where Γ (v, ∗) is set to (v, ∗) if following the execution A outputs a good defense
for π, and ⊥ otherwise, and U and U ′ are independent random variables uni-
formly distributed over {0, 1}. This property is referred to as defensibly private
with respect to a corrupted sender.

2. {Γ (ViewA[Sen(1n, (Un
0 , Un

1 )),A(1n)], Un
1−b)}

c≈ {Γ (ViewA[Sen(1n, (Un
0 ,

Un
1 )),A(1n)], Ūn)} where Γ (v, ∗) is set to (v, ∗) if following the execution
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A outputs a good defense for π, and ⊥ otherwise, b is the Rec’s input in
this defense and Un

0 , Un
1 , Ūn are independent random variables uniformly dis-

tributed over {0, 1}n. This property is referred to as defensibly private with
respect to a corrupted receiver.

In our construction from Sect. 3, we will rely on an OT protocol that is
sender private and defensibly private with respect to a corrupted receiver. In [27],
Haitner et al. showed how to transform any semi-honest bit-OT to one that is
defensibly private with respect to a corrupted receiver and malicious secure with
respect to a corrupted sender. More formally, the following Lemma is implicit in
the work of [27].

Lemma 21 (Implicit in Theorem 4.1 and Corollary 5.3 [27]). Assume
the existence of a semi-honest oblivious transfer protocol π. Then there exists
an oblivious transfer protocol π̂ that is defensible-private with respect to the
receiver and sender private that relies on the underlying primitive in a black-
box manner.

Now, since sender privacy is implied by malicious security with respect to a cor-
rupted sender, this transformation yields a bit OT protocol with the required
security guarantees. Nevertheless, our protocol crucially relies on the fact that
the underlying OT is a string OT protocol. We therefore show in the full ver-
sion [30] how to transform any bit OT to a string OT protocol while preserving
both defensible private with respect to a maliciously corrupted receiver and
sender privacy.

At a high-level, in order to convert any protocol from semi-honest security to
defensible privacy, Haitner et al. include a coin-tossing stage at the beginning of
the protocol that determines the parties’ random tapes. In fact, they let the coin-
tossing also determine the parties inputs as they only require OT secure with
respect to random inputs for both the sender and receiver. Now, if the receiver
has to provide a good defense, then it must reveal the input and randomness
used for the semi-honest OT protocol and prove consistency relative to the values
generated in the coin-tossing stage. Due to the fact that the commitment schemes
that are used in the coin-tossing stage are statistically-binding, the probability
that a malicious receiver can deviate from the protocol and provide a good
defense is negligible. Using this fact, Haitner et al. argued that the probability
that a malicious receiver outputs a good defense and guesses the other sender’s
input is negligible. Next, to obtain sender private oblivious transfer they first
transformed an OT protocol that is defensible-private against malicious receivers
to one that is maliciously secure, and then exploited the symmetry of OT in order
to obtain a protocol that is sender-private. The first transformation relies on the
cut-and-choose approach to ensure that the receiver provides a valid defense,
and then using the fact that defensible privacy hides the sender’s other input
they argued that it is receiver-private.

2.2 UC Commitment Schemes

The notion of UC commitments was introduced by Canetti and Fischlin in [7].
The formal description of functionality FCOM is depicted in Fig. 2.
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Fig. 2. The string commitment functionality.

2.3 Extractable Commitments

Our result in the static setting requires the notion of (static) extractable UC
commitments, which is a weaker security property than UC commitments in the
sense that it does not require equivocality. In what follows, we introduce the
definition for the ideal functionality FEXTCOM from [44]. Towards introducing
this definition, Maji et al. introduced some notions first. More concretely,

Definition 25. A protocol is a syntactic commitment protocol if:

– It is a two phase protocol between a sender and a receiver (using only plain
communication channels).

– At the end of the first phase (commitment phase), the sender and the receiver
output a transcript trans. Furthermore, the sender receives an output (which
will be used for opening the commitment).

– In the decommitment phase the sender sends a message γ to the receiver, who
extracts an output value opening(trans, γ) ∈ {0, 1}n ∪ {⊥}.

Definition 26. Two syntactic commitment protocols (ωL, ωR) form a pair of
complementary statistically binding commitment protocols if the following hold:

– ωR is a statistically binding commitment scheme (with stand-alone security).
– In ωL, at the end of the commitment phase the receiver outputs a string z ∈

{0, 1}n. If the receiver is honest, it is only with negligible probability that there
exists γ such that opening(trans, γ) �= ⊥ and opening(trans, γ) �= z.

As noted in [44], ωL by itself is not an interesting cryptographic goal, as the
sender can simply send the committed string in the clear during the commitment
phase. Nevertheless, in defining FEXTCOM below, there exists a single protocol
that satisfies both the security guarantees. We are now ready to introduce the
notion of extractable commitments in Fig. 3 that is parameterized by (ωL, ωR).
We also include a function pp that will be used as an initialization phase to set
up the public-parameters for ωL and ωR.
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Fig. 3. Extractable commitment functionality.

Implementing FEXTCOM in the CRS Model. We briefly sketch how to imple-
ment the extractable commitment functionality in the FCRS-hybrid based on the
CPA-security of any PKE. Namely, the CRS will be set to a public-key gener-
ated using the key-generation function of the PKE scheme. To commit, a sender
simply encrypts the message using the public-key in the CRS and sends the
ciphertext to the receiver. We can achieve extraction by setting the CRS to a
public-key for which the secret-key is available to the extractor (in this case, the
extractor is the FEXTCOM functionality). Hiding follows from the CPA-security of
the encryption scheme. A formal description and proof of this construction can
be found in the full version of this paper [30].
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3 Static UC Secure Computation

In this section we prove the feasibility of UC secure computation based on semi-
honest OT and extractable commitments, where the latter can be constructed
based on two-round semi-honest OT (see Sects. 2.1 and 2.3 for more details).
More concretely, we prove how to transform any statically semi-honest secure
OT into one that is secure in the presence of malicious adversaries, giving only
black-box access to the underlying semi-honest OT protocol. Our protocol is
a variant of the protocol by Lin and Pass from [37] (which in turn is a vari-
ant of the protocol of [27]). In particular, in [37], the authors rely on a strong
variant of a commitment scheme known as a CCA-secure commitment in order
to achieve extraction. We observe that it is not required to use the full power
of such commitments, or for that matter UC commitments. Specifically, using
a weaker primitive that only implies straight-line input extractability enables
to solely rely on semi-honest OT. An important weakening in our commitment
scheme compared to CCA-secure commitments from [37] is that we allow invalid
commitments to be made by the adversary. We remark here that the work of [37]
rely on string OT that are secure against malicious senders and state that the
work of [26] provides a black-box construction of such a protocol starting from
a semi-honest bit OT. However, the work of [26] only shows how to construct
a bit OT secure against malicious senders where the proof crucially relies on
the sender’s input being only bits. We provide a transformation and complete
analysis from bit OT to a string OT for the weaker notion of defensible privacy
as this is sufficient for our work. Finally, combining our UC OT protocol with
the [33] protocol, we obtain a statically UC secure protocol for any well-formed
functionality (see definition in [9]). Namely,

Theorem 31. Assume the existence of static semi-honest oblivious transfer.
Then for any multi-party well-formed functionality F , there exists a protocol that
UC realizes F in the presence of static, malicious adversaries in the FEXTCOM-
hybrid model using black-box access to the oblivious transfer protocol.

We remark here that the work of [12] shows how starting from a semi-honest
oblivious transfer it is possible to obtain a black-box construction of an OT
protocol that is secure against stand-alone static adversaries in the FCOM-hybrid
model. It is noted in [12] that the (high-level) analysis provided in the work might
be extendable to the UC-setting (cf. Footnote 10 in [12]). Furthermore, in the
static setting, it is conceivable that FCOM can be directly realized in the FEXTCOM-
hybrid using the notion of extractable trapdoor commitments [47]. We do not
pursue this approach and instead directly realize OT in the FEXTCOM-hybrid.
While the previous works of [12] and [27] require a three step transformation,
our transformation is one shot and therefore more direct.

It seems possible to generalize our theorem to multi-session functionalities.
Analogous to [7], this will allows us to extend our corollaries to the Global CRS
model by additionally assuming CCA encryption scheme and leave it as future
work.
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3.1 Static UC Oblivious Transfer

In the following, we discuss a secure implementation of the oblivious transfer
functionality (see Fig. 1) with static, malicious security in the FEXTCOM-hybrid
model (where FEXTCOM is stated formally in Fig. 3). Our goal in this section
is to show that the security of malicious UC OT can be based on UC semi-
honest OT, denoted by πSH

OT, and extractable commitments. Our result is shown
in two phases. At first we compile the semi-honest OT protocol πSH

OT into a new
protocol with the security properties that are specified in Sect. 2.1, extending
the [27] transformation into string OT; denote the compiled OT protocol by
π̂OT. Next, we use π̂OT in order to construct a new protocol πML

OT that is secure
in the presence of malicious adversaries. Details follow,

Protocol 1 (Protocol πML
OT with Static Security)

Input: The sender Sen has input (v0, v1) where v0, v1 ∈ {0, 1}n and the receiver Rec
has input u ∈ {0, 1}.
The protocol:

1. Coin Tossing:
– Receiver’s random tape generation: The parties use a coin tossing protocol in

order to generate the inputs and random tapes for the receiver.
• The receiver commits to 20n strings of appropriate length, denoted by

a1
Rec, . . . , a

20n
Rec, by sending FEXTCOM the message (commit, sid, s̃sidi, a

i
Rec)

for all i ∈ [n].
• The sender responds with 20n random strings of appropriate length

b1Rec, . . . , b
20n
Rec.

• The receiver computes ri
Rec = ai

Rec⊕bi
Rec and then interprets ri

Rec = ci||τ i
Rec

where ci determines the receiver’s input for the ith OT protocol, whereas τ i
Rec

determines the receiver’s random tape used for this execution.
– Sender’s random tape generation: The parties use a coin tossing protocol in

order to generate the inputs and random tapes for the sender.
• The sender commits to 20n strings of appropriate length, denoted by

a1
Sen, . . . , a20n

Sen , by sending FEXTCOM the message (commit, sid, s̃sid′
i, a

i
Sen)

for all i ∈ [n].
• The receiver responds with 20n random strings of appropriate length

b1Sen, . . . , b20n
Sen .

• The sender computes ri
Sen = ai

Sen ⊕ bi
Sen and then interprets ri

Sen =
s0i ||s1i ||τ i

Sen where (s0i , s
1
i ) determine the sender’s input for the ith OT pro-

tocol, whereas τ i
Sen determines the sender’s random tape used for this exe-

cution.
2. Oblivious Transfer:

– The parties participate in 20n executions of the OT protocol π̂OT with the corre-
sponding inputs and random tapes obtained from Stage 2. Let the output of the
receiver in the ith execution be s̃i.

3. Cut-and-choose:
– Sen chooses a random subset qSen = (q1Sen, . . . , qn

Sen) ∈ {1, . . . , 20}n and sends it
to Rec. The string qSen is used to define a set of indices ΓSen ⊂ {1, . . . , 20n} of
size n in the following way: ΓSen = {20i−qi

Sen}i∈[n]. The receiver then opens the
commitments from Stage 1 that correspond to the indices within ΓSen, namely,
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the receiver decommits ai
Rec for all i ∈ ΓSen. Sen checks that the decommitted

values are consistent with the inputs and randomness used for the OTs in Stage 2
by the receiver, and aborts in case of a mismatch.

– Rec chooses a random subset qRec = (q1Rec, . . . , q
n
Rec) ∈ {1, . . . , 20}n and sends it

to Sen. The string qRec is used to define a set of indices ΓRec ⊂ {1, . . . , 20n} of
size n in the following way: ΓRec = {20i− qi

Rec}i∈[n]. The sender then opens the
commitments from Stage 1 that correspond to the indices within ΓRec, namely,
the sender decommits ai

Sen for all i ∈ ΓRec. Rec checks that the decommitted
values are consistent with the inputs and randomness used for the OTs in Stage 2
by the sender, and aborts in case of a mismatch.

– Rec commits to another subset Γ ⊂ [20n] denoted by (Γ 1, . . . , Γ n), by sending
FEXTCOM the message (commit, sid, ssid′

i, Γ
i) for all i ∈ [n]. (The sender will

reveal its inputs and randomness that are used in Stage 2 that correspond to the
indices in Γ later in Stage 5.)

4. Combiner:
– Let Δ = [20n] − ΓRec − ΓSen. Then for every i ∈ Δ, the receiver computes

αi = u ⊕ ci and sends it to the sender.
– The sender computes a 10n-out-of-18n secret sharing of v0, denote the shares by

{ρ0
i }i∈Δ. Analogously, it computes a 10n-out-of-18n secret sharing of v1, denote

the shares by {ρ1
i }i∈Δ. The sender computes βb

i = ρb
i ⊕ sb⊕αi

i for all b ∈ {0, 1}
and i ∈ Δ, and sends the outcome to the receiver.

– The receiver computes ρ̃i = βu
i ⊕ s̃i for all i ∈ Δ. Denote by ρ these concatenated

bits.
5. Final cut-and-choose:

– The receiver decommits Γ and the sender sends the inputs and randomness it
used in Stage 2 for the coordinates that correspond to Δ ∩ Γ . (Note that the
sender need only reveal the indices that were not decommitted in Stage 3). Rec
checks that the sender’s values are consistent with the inputs and randomness
used for the OTs in Stage 2 by the sender, and aborts in case of a mismatch.

– The receiver checks whether (ρ̃i)i∈Δ agrees with some codeword w ∈ W18n,10n

on 17n locations (where the code W18n,10n is induced by the secret sharing con-
struction that we use in Stage 4). Recall that the minimum distance of the code
W18n,10n is at least 18n−10n > 8n, which implies that there will be at most one
such codeword w. Furthermore, since we can correct up to 18n−10n

2
= 4n errors,

any code that is 17n close to a codeword can be efficiently recovered using the
Berlekamp-Welch algorithm. The receiver outputs that w as its output in the
OT protocol. If no such w exists, the receiver returns a default value.

Theorem 32. Assume that πSH
OT is static semi-honest secure and that the com-

piled π̂OT is secure according to Lemma 21. Then Protocol 1 UC realizes FOT in
the presence of static malicious adversaries in the FEXTCOM-hybrid model using
black-box access to the oblivious transfer protocol.

Recalling that our protocol relies on the existence of semi-honest OT and
extractable commitments, and that the later can be constructed based on any
two-round semi-honest OT, e.g., [21], which implies PKE (see Sects. 2.1 and 2.3
for more details), an immediate corollary from Theorem 32 implies that,

Corollary 33. Assume the existence of two-round static semi-honest oblivious
transfer. Then there exists a protocol that securely realizes FOT in the presence
of static malicious adversaries in the CRS model using black-box access to the
oblivious transfer protocol.
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A High Level Proof. We first provide an overview of the security proof; the
complete proof is found in [30]. Loosely speaking, in case the receiver is corrupted
the simulator plays the role of the honest sender in Stages 1–4. Next in Stage 5,
the simulator extracts the receiver’s input u. Specifically, the simulator extracts
all the committed values of the receiver within Stage 1 (relying on the fact that
the commitment scheme is extractable), and then uses these values in order to
obtain the inputs for the OT executions in Stage 2. Upon completing Stage 2,
the simulator records the coordinates for which the receiver deviates from the
prescribed input and random tape chosen in the coin tossing phase. Denoting
these set of coordinates by Φ, we recall that a malicious receiver may obtain
both of the sender’s inputs with respect to the OT executions that correspond
to the coordinates within Φ and Γ . On the other hand, it obtains only one of
the two inputs with respect to the rest of the OT executions that correspond
to the coordinates within Δ − Φ − Γ . Consequently, the simulator checks how
many shares of v0 and v1 are obtained by the receiver and proceeds accordingly.
In more details,

– If the receiver obtains more than 10n shares of both inputs then the simulator
halts and outputs fail (we prove in Section [30] that this event only occurs
with negligible probability).

– If the receiver obtains less than 10n shares of both inputs then the simulator
picks two random values for v0 and v1 of the appropriate length and completes
the interaction, playing the role of the honest sender on these values. Note
that in this case the simulator does not need to call the ideal functionality.

– Finally, if the receiver obtains more than 10n shares for only one input u ∈
{0, 1}, then the simulator sends u to the ideal functionality FOT and obtains
vu. The simulator then sets v1−u as a random string of the appropriate length
and completes the interaction by playing the role of the honest sender on these
values.

Recall that the only difference between the simulation and the real execution is
in the way the messages in Stage 4 are generated. Specifically, in the simulation
a value u is extracted from the malicious receiver and then fed to the FOT

functionality. The simulation is then completed based on the output returned
from the functionality. Intuitively, the cut-and-choose mechanism ensures that
the receiver cannot deviate from the honest strategy in Stage 2 in more than n
OT sessions without getting caught with overwhelming probability. Moreover,
the defensible privacy of the OT protocol implies that the receiver can learn at
most one of the two inputs of the sender relative to the OT executions in Stage 2
for which the receiver proceeded honestly.

In case the sender is corrupted, the simulator’s strategy is to play the role
of the honest receiver until Stage 5 where the simulator extracts the sender’s
inputs. More specifically, the simulator first extracts the sender’s input for the
OT executions in Stage 1 (relying on the fact that the commitment scheme is
extractable). Next, the simulator extracts the shares {ρ0i }i∈Δ and {ρ1i }i∈Δ that
correspond to inputs v0 and v1. To obtain the actual values the simulator checks
if these shares agree with some codeword relative to 16n locations. That is,
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– Let w0 and w1 denote the corresponding codewords (if there are no such
codewords that agree with with v0 and v1 on 16n locations then the simulator
uses a default codeword instead). Next, the simulator checks w0 and w1 against
the final cut-and-choose. If any of the shares from wb are inconsistent with
the opened shares that are opened by the sender in the final cut-and-choose,
then vb is set to a default value, otherwise vb is the value corresponding to
the shared secret.

Finally, the simulator sends (v0, v1) to the ideal functionality for FOT. Security
in this case is reduced to the privacy of the receiver. In addition, the difference
between the simulation’s strategy and the honest receiver’s strategy is that the
simulator extracts the sender’s both inputs in all i ∈ Δ − Φ and then finds
codewords that are 16n-close to the extracted values, whereas the honest receiver
finds a codeword that is 17n-close based on the inputs it received in the Stages 2
and 5, and returns it. We thus prove that the value u extracted by the simulator
is identical the to the reconstructed output of the honest receiver relying on the
properties of the secret sharing scheme.

4 One-Sided Adaptive UC Secure Computation

In the two-party one-sided adaptive setting, at most one of the parties is adap-
tively corrupted [29,35]. In this section we provide a simple transformation of
our static UC secure protocol from Sect. 3 to a two-party UC-secure protocol
that is secure against one-sided adaptive corruption. Our first observation is
that in Protocol 1 the parties use their real inputs to the OT protocol only in
Phase 4. Therefore simulation of the first three phases can be easily carried out
by simply following the honest strategy. On the other hand, simulating messages
in Phase 4 requires some form of equivocation since if corruption takes place
after this phase is concluded then the simulator needs to explain this message
with respect to the real input of the corrupted party. On a high-level we will
transform the protocol so that if no party is corrupted until end of Phase 4, the
simulator can equivocate the message in Phase 4. We explain how to achieve
equivocation later. First, we describe our simulator: In case either party is stat-
ically corrupted the simulation for Protocol 1 follows the strategy of the honest
party until Phase 4, where the simulator extracts the corrupted party’s input
relying on the fact that it knows the adversary’s committed input in Phase 1.
Therefore, the same proof follows in case the adversary adaptively corrupts one
of the parties at any point before Phase 4, as the simulator can pretend that cor-
ruption took place statically. On the other hand, if corruption takes place after
Phase 4, then the simulator equivocates the communication. It is important to
note that while in the plain model any statically secure protocol can be compiled
into one-sided secure protocol by encrypting its entire communication, it is not
clear that this is the case in the UC setting due to the additional setup, e.g.,
a CRS that may depend on the identity of the corrupted party. Nevertheless,
in Phase 4 the parties only run a combiner for which the computation does not
involve any usage of the CRS (which is induced by the extractable commitment).
Therefore, the proof follows.
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A common approach to achieve equivocation is to rely on non-committing
encryption schemes (NCE) [6,11,16], that allow secure communication in the
presence of adaptive attacks. This powerful tool has been constructed while
relying on (a variant of) simulatable PKE schemes, which, roughly speaking,
allows for both the public-key and the ciphertexts to be generated obliviously
without the knowledge of the plaintext or the secret key [11,16]. Notably, these
constructions achieve a stronger notion of security where both parties may be
adaptively corrupted (also referred to as fully adaptive). Our second observation
is that it is sufficient to rely on a weaker variant of NCE, namely, one that is
secure against only one-sided adaptive corruption.

In particular, we take advantage of a construction presented in [6] and later
refined in [16], that achieves receiver equivocation under the assumption of semi-
honest OT. We will briefly describe it now. Recall that in the fully adaptive case,
the high-level idea is for the sender and receiver to mutually agree on a random
bit, which is then used by the sender to determine which of two random strings
to mask its message. The process of agreeing on a bit requires the ability to
both obliviously sample a public-key without the knowledge of the secret key,
as well as the ability to obliviously sample a ciphertext without the knowledge
of the corresponding plaintext. In the simpler one-sided scenario, Canetti et al.
observed that an oblivious transfer protocol can replace the oblivious generation
of the public-key. Specifically, the NCE receiver sends two public keys to the
sender, and then the parties invoke an OT protocol where the NCE receiver
plays the role of the OT sender and enters the corresponding secret keys. To allow
equivocation for the NCE sender, the OT must enable equivocation with respect
to the OT receiver. The [21] OT protocol is an example for such a protocol. Here
the OT receiver can pick the two ciphertexts so that it knows both plaintexts.
Then equivocation is carried out by declaring that the corresponding ciphertext
is obliviously sampled.

The advantage of this approach is that it removes the requirement of gen-
erating the public key obliviously, as now the randomness for its generation is
split between the parties, where anyway only one of them is corrupted. This
implies that the simulator can equivocate the outcome of the protocol execu-
tion without letting the adversary the ability to verify it. To conclude, it is
possible to strengthen the security of Protocol 1 into the one-sided setting by
simply encrypting the communication within the combiner phase using one-sided
NCE which in turn can be constructed based on PKE with oblivious ciphertext
generation. This implies the following theorem which further implies black-box
one-sided UC secure computation from enhanced trapdoor permutation.

Theorem 41. Assume the existence of PKE with oblivious ciphertext genera-
tion. Then for any two-party well-formed functionality F , there exists a protocol
that UC realizes F in the presence of one-sided adaptive, malicious adversaries
in the CRS model using black-box access to the PKE.
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5 Adaptive UC Secure Computation

In this section we demonstrate the feasibility of UC secure commitment schemes
based on PKE with oblivious ciphertext generation (namely, where it is possible
to obliviously sample the ciphertext without knowing the plaintext). Our con-
struction is secure even in the presence of adaptive corruptions and is the first to
achieve the stronger notion of adaptive security based on this hardness assump-
tion. Plugging-in our UC commitment protocol into the transformation of [12]
that generates adaptive malicious OT given adaptive semi-honest OT and UC
commitments, implies an adaptively UC secure oblivious transfer protocol with
malicious security based on semi-honest adaptive OT and PKE with oblivious
ciphertext generation using only black-box access to the semi-honest OT and
the PKE. Stating formally,

Theorem 51. Assume the existence of adaptive semi-honest oblivious transfer
and PKE with oblivious ciphertext generation. Then for any multi-party well-
formed functionality F , there exists a protocol that UC realizes F in the presence
of adaptive, malicious adversaries in the CRS model using black-box access to
the oblivious transfer protocol and the PKE.

Noting that simulatable PKE implies both semi-honest adaptive OT [9,11] and
PKE with oblivious ciphertext generation, we derive the following corollary
(where simulatable PKE implies oblivious sampling of both public keys and
ciphertexts),

Corollary 52. Assume the existence of simulatable PKE. Then for any multi-
party well-formed functionality F , there exists a protocol that UC realizes F in
the presence of adaptive, malicious adversaries in the CRS model using black-box
access to the simulatable PKE.

This in particular improves the result from [14] that relies on simulatable PKE in
a non-black-box manner. Note also that our UC commitment can be constructed
using a weaker notion than simulatable PKE where the inverting algorithms can
require a trapdoor. This notion is denoted by trapdoor simulatable PKE [11] and
can be additionally realized based on the hardness assumption of factoring Blum
integers. This assumption, however, requires that we modify our commitment
scheme so that the CRS includes 3n+1 public keys of the underlying PKE instead
of just one, as otherwise the reduction to the security of the PKE does not follow
for multiple ciphertexts. Specifically, at the cost of linear blowup (in the security
parameter) of the CRS, we obtain adaptively secure UC commitments under
a weaker assumption. Now, since trapdoor simulatable PKE implies adaptive
semi-honest OT [11] it holds,

Corollary 53. Assume the existence of trapdoor simulatable PKE. Then for any
multi-party well-formed functionality F , there exists a protocol that UC realizes
F in the presence of adaptive, malicious adversaries in the CRS model using
black-box access to the trapdoor simulatable PKE.
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Note that, since the best known general assumptions for realizing adaptive semi-
honest OT is trapdoor simulatable PKE, this corollary gives evidence that the
assumptions for adaptive semi-honest OT are sufficient for adaptive UC security
and makes a step towards identifying the minimal assumptions for achieving UC
security in the adaptive setting. To conclude, we note that enhanced trapdoor
permutations, which imply PKE with oblivious ciphertext generation, imply the
following corollary,

Theorem 54. Assume the existence of enhanced trapdoor permutation. Then
FCOM (cf. Fig. 2) can be UC realized in the CRS model in the presence of adaptive
malicious adversaries.

5.1 UC Commitments from PKE with Oblivious Ciphertext
Generation

In this section we demonstrate the feasibility of adaptively secure UC commit-
ments for the message space m ∈ {0, 1} from any public-key encryption scheme

Π = (Gen,Enc,Dec, Ẽnc, Ẽnc
−1

) with oblivious ciphertext generation (cf. Defi-
nition 21) in the common reference string (CRS) model. In this model [7] the
parties have access to a CRS chosen from a specified trusted distribution D.
This is captured via the ideal functionality FD

CRS (see [30] for the definition).
We note that we use Π in two places in our protocol. First, in the encoding
phase (where the commitments are computed by the sender) and then in the
coin-tossing phase (where the commitments are computed by the receiver). Our
complete construction can be found in Fig. 4. Next, we prove

Theorem 55. Assume that Π = (Gen,Enc,Dec, Ẽnc, Ẽnc
−1

) is a PKE with
oblivious ciphertext generation. Then protocol πCOM (cf. Fig. 4) UC realizes FCOM

in the CRS model in the presence of adaptive malicious adversaries.

A High Level Proof. Intuitively, security requires proving both hiding and
binding in the presence of static and adaptive corruptions. The hiding property
follows from the IND-CPA security of the encryption scheme combined with the
fact that the receiver only sees n shares in a n-out-of-3n+1 secret-sharing of the
message in the commit phase. On the other hand, proving binding is much more
challenging and reduces to the facts that a corrupted sender cannot successfully
predict exactly the n indices from {1, . . . , 3n + 1} that will be chosen in the
coin-tossing protocol. In fact, if it can identify these n indices, then it would be
possible for the adversary to break binding. An important information-theoretic
argument that we prove here is that for a fixed encoding phase, no adversary
can equivocate on two continuations from the encoding phase with different
outcomes of the coin-tossing phase. Saying differently, for any given encoding
phase there is exactly one outcome for the coin-tossing phase that will allow
equivocation. Given this claim, binding now follows from the IND-CPA security
of the encryption scheme used in the coin-tossing phase. In addition, recall that
in the UC setting the scheme must also support a simulation that allows straight-
line extraction and equivocation. At a high-level, the simulator sets the CRS to
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Fig. 4. UC adaptively secure commitment scheme.

public-keys for which it knows the corresponding secret-keys. This will allow
the simulator to extract all the values encrypted by the adversary. We observe
that the simulator can fix the outcome of the coin-tossing phase to any n-indices
of its choice by extracting the random string σ0 encrypted by the receiver and
choosing a random string σ1 so that σ0 ⊕ σ1 is a particular string. Next, the
simulator generates secret-sharing for both 0 and 1 so that they overlap in the
particular n shares. To commit, the simulator encrypts the n common shares
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within the n indices to be revealed (which it knows in advance), and for the rest
of the indices it encrypts two shares, one that corresponds to the sharing of 0 and
the other that corresponds to the sharing of 1. Finally, in the decommit phase,
the simulator reveals that shares that correspond to the real message m, and
exploits the invertible sampling algorithm to prove that the other ciphertexts
were obliviously generated.
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Abstract. The covert security model (Aumann and Lindell, TCC 2007)
offers an important security/efficiency trade-off: a covert player may arbi-
trarily cheat, but is caught with a certain fixed probability. This permits
more efficient protocols than the malicious setting while still giving mean-
ingful security guarantees. However, one drawback is that cheating can-
not be proven to a third party, which prevents the use of covert protocols
in many practical settings. Recently, Asharov and Orlandi (ASIACRYPT
2012) enhanced the covert model by allowing the honest player to gen-
erate a proof of cheating, checkable by any third party. Their model,
which we call the PVC (publicly verifiable covert) model, offers a very
compelling trade-off.

Asharov and Orlandi (AO) propose a practical protocol in the PVC
model, which, however, relies on a specific expensive oblivious transfer
(OT) protocol incompatible with OT extension. In this work, we improve
the performance of the PVC model by constructing a PVC-compatible
OT extension as well as making several practical improvements to the
AO protocol. As compared to the state-of-the-art OT extension-based
two-party covert protocol, our PVC protocol adds relatively little: four
signatures and an ≈ 67% wider OT extension matrix. This is a signifi-
cant improvement over the AO protocol, which requires public-key-based
OTs per input bit. We present detailed estimates showing (up to orders
of magnitude) concrete performance improvements over the AO protocol
and a recent malicious protocol.

Keywords: Secure computation · Publicly verifiable covert security

1 Introduction

Two-party secure computation addresses the problem where two parties need to
evaluate a common function f on their inputs while keeping the inputs private.
Several security models for secure computation have been proposed. The most
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basic is the semi-honest model, where the parties are expected to follow the pro-
tocol description but must not be able to learn anything about the other party’s
input from the protocol transcript. A much stronger guarantee is provided by
the malicious model, where parties may deviate arbitrarily from the protocol
description. This additional security comes at a cost. Recent garbled circuit-
based protocols [3,17] have an overhead of at least 40× that of their semi-honest
counterparts, and are considerably more complex.

Aumann and Lindell [8] introduced a very practical compromise between
these two models, that of covert security. In the covert security model, a party
can deviate arbitrarily from the protocol description but is caught with a fixed
probability ε, called the deterrence factor. In many practical scenarios, this guar-
anteed risk of being caught (likely resulting in loss of business and/or embar-
rassment) is sufficient to deter would-be cheaters. Importantly, covert protocols
are much more efficient and simpler than their malicious counterparts.

Motivating the Publicly Verifiable Covert (PVC) Model. At the same
time, the cheating deterrent introduced by the covert model is relatively weak.
Indeed, a party catching a cheater certainly knows what happened and can
respond accordingly, e.g., by taking their business elsewhere. However, the impact
is largely limited to this, since the honest player cannot credibly accuse the
cheater publicly. If, however, credible public accusation were possible, the deter-
rent for the cheater would be immeasurably greater: suddenly, all the cheater’s
customers would be aware of the cheating and thus any cheating may affect the
cheater’s global customer base.

The addition of credible accusation greatly improves the covert model even in
scenarios with a small number of players, such as those involving the government.
Consider, for example, the setting where two agencies are engaged in secure
computation on their respective classified data. The covert model may often be
insufficient here. Indeed, consider the case where one of the two players deviates
from the protocol, perhaps due to an insider attack. The honest player detects
this, but we are now faced with the problem of identifying the culprit across two
domains, where the communication is greatly restricted due to trust, policy, data
privacy legislation, or all of the above. On the other hand, credible accusation
immediately provides the ability to exclude the honest player from the suspect
list, and focus on tracking the problem within one organization/trust domain,
which is dramatically simpler.

PVC Definition and Protocol. Asharov and Orlandi [7] proposed a security
model, covert with public verifiability, and an associated protocol, addressing
these concerns. At a high level, they proposed that when cheating is detected, the
honest player is able to publish a “certificate of cheating” which can be checked
by any third party. In this work, we abbreviate their model as PVC: publicly
verifiable covert. Their proposed protocol (which we call the “AO protocol”) has
performance similar to the original covert protocol of Aumann and Lindell [8],
with the exception of requiring signed-OT, a special form of oblivious transfer
(OT). Their signed-OT construction is based on the OT of Peikert et al. [18],
and thus requires several expensive public-key operations.



212 V. Kolesnikov and A.J. Malozemoff

In this work, we propose several critical performance improvements to the
AO protocol. Our most technically involved contribution is a novel signed-OT
extension protocol which eliminates per-instance public-key operations. Before
discussing our contributions and technical approach in Sect. 1.1, we review the
AO protocol.

The Asharov-Orlandi (AO) PVC Protocol [7]. The AO protocol is based
on the covert construction of Aumann and Lindell [8]. Let P1 be the circuit
generator, P2 be the evaluator, and f(·, ·) be the function to be computed. Recall
the standard garbled circuit (GC) construction in the semi-honest model: P1

constructs a garbling of f and sends it to P2 along with the wire labels associated
with its input. The parties then run OT, with P1 acting as the sender and
inputting the wire labels associated with P2’s input, and P2 acting as the receiver
and inputting as its choice bits the associated bits of its input.

We now adapt this protocol to the PVC setting. Recall the “selective failure”
attack on P2’s input wires, where P1 can send P2 via OT an invalid wire label
for one P2’s two inputs and learn one of P2’s input bits based on whether P2

aborts. To protect against this attack, the parties construct f ′(x1,x1
2, . . . ,x

ν
2) =

f(x1,
⊕

i∈[ν] x
i
2), where ν is the XOR-tree replication factor, and compute f ′

instead of f . Party P1 then constructs λ (the GC replication factor) garblings of
f ′ and P2 checks that λ− 1 of the GCs are correctly constructed, evaluating the
remaining GC to derive the output. The main difficulty of satisfying the PVC
model is ensuring that neither party can improve its odds by aborting (e.g.,
based on the other party’s challenge). For example, if P1 could abort whenever
P2’s challenge would reveal P1’s cheating, this would enable P1 to cheat without
the risk of generating a proof of cheating. Thus, P1 sends the GCs to P2 through
a 1-out-of-λ OT; namely, in the ith input to the OT P1 provides openings for
all the GCs but the ith, as well as the input wire labels needed to evaluate GCi.
Party P2 inputs a random γ, checks that all GCs besides GCγ are constructed
correctly, and if so, evaluates GCγ .

Finally, it is necessary for P1 to operate in a verifiable manner, so that
an honest P2 has proof if P1 tries to cheat and gets caught. (Note that GCs
guarantee that P2 cannot cheat in the GC evaluation at all, so we only worry
about catching P1.) The AO protocol addresses this by having P1 sign all its
messages and the parties using signed -OT in place of all standard OTs (including
wire label transfers and GC openings). Informally, the signed-OT functionality
proceeds as follows: rather than the receiver R getting message mb from the
sender S for choice bit b, R receives ((b,mb), σ), where σ is S’s signature of
(b,mb). This guarantees that if R detects any cheating by S, it has S’s signature
on an inconsistent set of messages, which can be used as proof of this cheating.
Asharov and Orlandi show that this construction is ε-PVC-secure for ε = (1 −
1/λ)(1 − 2−ν+1).

1.1 Our Contribution

Our main contribution is a signed-OT extension protocol built on the recent
malicious OT extension of Asharov et al. [6]. Informally, signed-OT extension
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ensures that (1) a cheating sender S is held accountable in the form of a “cer-
tificate of cheating” that the honest receiver R can generate, and (2) a malicious
R cannot defame an honest S by presenting a false “certificate of cheating”.
Achieving the first goal is fairly straightforward by having S simply sign all its
messages. The challenge is in simultaneously protecting against a malicious R.
In particular, we need to commit R to its particular choices throughout the OT
extension protocol to prevent it from defaming an honest S, while maintaining
that those commitments do not leak any information about R’s choices.

Recall that in the standard OT extension protocol of Ishai et al. [12] (cf.
Fig. 3), R constructs a random matrix M , and S obtains a matrix M ′ derived
from M , S’s random string s and R’s vector of OT inputs r. The key challenge
of adapting this protocol to the signed variant is to efficiently prevent R from
submitting a malleated M as part of the proof without it ever explicitly revealing
M to S (as this would leak R’s choice bits). We achieve this by observing that
S does in fact learn some of M , as in the OT extension construction some of
the columns of M and M ′ are the same (i.e., those corresponding to zero bits of
S’s string s). We prevent R from cheating by having S include in its signature
carefully selected information from the columns in M which S sees. Finally, we
require that R generates each row of M from a seed, and that R’s proof of
cheating includes this seed such that the row rebuilt from the seed is consistent
with the columns included in S’s signature. We show that this makes it infeasible
for R to successfully present an invalid row in the proof of cheating. We describe
this approach in greater detail in Sect. 31.

As another contribution, we present a new more communication efficient PVC
protocol, building off of the AO protocol; see Sect. 4. Our main (simple) trick
there is a careful amendment allowing us to send GC hashes instead of GCs; this
is based on an idea from Goyal et al. [11].

We work in the random oracle model, a slight strengthening of the assump-
tions needed for standard OT extension and free-XOR, two standard secure
computation tools.

Comparison with Existing Approaches. The cost of our protocol is almost
the same as that of the covert protocol of Goyal et al. [11]; the only extra cost
is essentially a ≈ 67% wider OT extension matrix and four signatures. This
often negligible additional overhead (versus covert protocols) provides us with
dramatically stronger (than covert) deterrent. We believe that our PVC protocol
could be used in many applications where covert security is insufficient at the
order-of-magnitude cost advantage over previously-needed malicious protocols
or the PVC protocol of Asharov and Orlandi [7]. See Sect. 5 for more details.

Related Work. The only directly related work is that of Asharov and Orlandi [7],
already discussed at length. We also note a recent line of work on secure
1 Our construction is also interesting from a theoretical perspective in that we con-

struct signed-OT from any maliciously secure OT protocol, whereas Asharov and
Orlandi [7] build a specific construction based on the Decisional Diffie-Hellman
problem.
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computation with cheaters (including fairness violators) punished by an external
entity, such as the Bitcoin network [4,10,16]. Similarly to the PVC model and our
protocols, this line of work relies on generating proofs of misbehavior which could
be accepted by a third-party authority. However, these works address a different
setting and use different techniques; in particular, they build on maliciously-secure
computation and require the Bitcoin framework.

2 Preliminaries

Let κ denote the (computational) security parameter, let ρ denote the statistical
security parameter, and let τ denote the field size. When considering concrete
costs, we utilize the security parameter and field size settings for key lengths
recommended by NIST [9]; see Fig. 1. We use ppt to denote “probabilistic poly-
nomial time” and let negl(·) denote a negligible function in its input. We con-
sider two-party protocols between parties P1 and P2, and when we use subscript
i ∈ {1, 2} to denote a party we let subscript -i = 3 − i denote the other party.
We use i∗ ∈ {1, 2} to denote a malicious party and -i∗ = 3 − i∗ to denote the
associated honest party.

Security κ FCC ECC

Short 80 1024 160
Long 128 3072 256

Fig. 1. Settings for (computational) security parameter κ and field size τ for various
security settings as recommended by NIST [9]. FCC denotes the setting of τ when
using finite field cryptography and ECC denotes the setting of τ when using elliptic
curve cryptography.

We use bold lowercase letters (e.g., x) to denote bitstrings and use the nota-
tion x[i] to denote the ith bit in bitstring x. Likewise, we use bold uppercase
letters (e.g., T) to denote matrices over bits. We use [n] to denote {1, . . . , n}.
Let “a ← f(x1, x2, . . . )” denote setting a to be the deterministic output of f
on inputs x1, x2, . . . ; the notation “a←$ f(x1, x2, . . . )” is the same except that
f here is randomized. We abuse notation and let a←$ S denote selecting a uni-
formly at random from set S.

Our constructions are in the FPKI model, where each party Pi can register a
verification key, and other parties can retrieve Pi’s verification key by querying
FPKI on idi. We use the notation SignPi

(·) to denote a signature signed by Pi’s
secret key, and we assume that this signature can be verified by any third party.
We often leave off the subscript if the identity of the signing party is clear.

2.1 Publicly Verifiable Covert Security

We assume the reader is familiar with the covert security model; however,
we review the less familiar publicly verifiable covert (PVC) security model of
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Asharov and Orlandi [7] below. When we say a protocol is “secure in the covert
model,” we assume it is secure under the strong explicit cheat formulation with
ε-deterrent [8, §3.4], for some value of ε.

Let π be a two-party protocol between parties P1 and P2 implementing func-
tion f . Following Aumann and Lindell [8], we call π non-halting if for honest Pi

and fail-stop adversary2 P-i, the probability that Pi outputs corrupted-i is negli-
gible. Consider the triple of algorithms (π′,Blame, Judgment) defined as follows:

– Protocol π′ is the same as π except that if an honest party P-i∗ outputs
corruptedi∗ when executing π, it computes Cert ← Blame(idi∗ , key,View-i∗),
where key denotes the type of cheating detected, and sends Cert to Pi∗ .

– Algorithm Blame is a deterministic algorithm which takes as input a cheating
identity id, a cheating type key, and a view View of a protocol execution, and
outputs a certificate Cert.

– Algorithm Judgment is a deterministic algorithm which takes as input a cer-
tificate Cert and outputs either an identity id or ⊥.

Before proceeding to the definition, we first introduce some notation. Let
Execπ,A(z)(x1, x2; 1κ) denote the transcript (i.e., messages and output) produced
by P1 with input x1 and P2 with input x2 running protocol π, where adver-
sary A with auxiliary input z can corrupt parties before execution begins. Let
OutputPi

(Execπ,A(z)(x1, x2; 1κ)) denote the output of Pi on the input transcript.

Definition 1. We say that (π′,Blame, Judgment) securely computes f in the
presence of a publicly verifiable covert adversary with ε-deterrent (or, is ε-PVC-
secure) if the following conditions hold:

1. The protocol π′ is a non-halting and secure realization of f in the covert model
with ε-deterrent.

2. (Accountability) For every ppt adversary A corrupting party Pi∗ , there exists
a negligible function negl(·) such that if OutputP-i∗ (Execπ,A(z)(x1, x2; 1κ)) =
corruptedi∗ then Pr [Judgment(Cert) = idi∗ ] > 1−negl(κ), where Cert ← Blame
(idi∗ , key,View-i∗) and the probability is over the randomness used in the pro-
tocol execution.

3. (Defamation-free) For every ppt adversary A corrupting party Pi∗ and out-
putting a certificate Cert, there exists a negligible function negl(·) such that
Pr [Judgment(Cert) = id-i∗ ] < negl(κ), where the probability is over the ran-
domness used by A.

Note that, in particular, the PVC definition implicitly disallows Blame to reveal
P-i∗ ’s input. This is because π′ specifies that Cert is sent to Pi∗ .

2.2 Signed Oblivious Transfer

A central functionality for constructing PVC protocols is signed oblivious transfer
(signed-OT). Introduced by Asharov and Orlandi [7], we can define the basic
2 A fail-stop adversary is one which acts semi-honestly but may halt at any time.
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signed-OT functionality F as

(⊥, (mb,Signsk(b,mb)))←$ F((m0,m1, sk), (b, vk)),

where the signature scheme is assumed to be existentially unforgeable under
adaptive chosen message attack (EU-CMA). Namely, the sender S inputs two
messages m0 and m1 along with a signing key sk; the receiver R inputs a choice
bit b and a verification key vk; S receives no output whereas R receives mb

alongside a signature on (b,mb).
However, as in prior work [7], this definition is too strong for our signed-

OT extension construction to satisfy. We introduce a relaxed signed-OT variant
(slightly different from Asharov and Orlandi’s variant [7]) which is tailored for
OT extension and is sufficient for obtaining PVC-security. Essentially, we need
a signature scheme that satisfies a weaker notion than EU-CMA in which the
signing algorithm takes randomness, a portion of which can be controlled by the
adversary3. This is because in our signed-OT extension construction, a malicious
party can influence the randomness used in the signing algorithm. In addition,
we introduce an associated data parameter to the signing algorithm which allows
the signer to specify some additional information unrelated to the message being
signed but used in the signature. In our construction, we use the associated data
to tie the signature to a specific counter (such as a session ID or message ID),
preventing a malicious receiver from “mixing” properly signed values to defame
an honest sender.

Let Π = (Gen,Sign,Verify) be a tuple of ppt algorithms over message space
M, associated data space D, and randomness spaces R1 and R2, defined as
follows:

1. Gen(1κ): On input security parameter 1κ, output key pair (vk, sk).
2. Signsk(m,a; (r1, r2)): On input secret key sk, message m ∈ M, associated data

a ∈ D, and randomness r1 ∈ R1 and r2 ∈ R2, output signature σ = (a, σ′).
3. Verifyvk(m,σ): On input verification key vk, message m ∈ M, and signature

σ, output 1 if σ is a valid signature for m and 0 otherwise.

For security, we need the condition that unforgeability remains even if the adver-
sary inputs some arbitrary r1 or r2. However, the adversary is prevented from
inputting values for both r1 and r2. This reflects the fact that in our signed-OT
extension construction, a malicious sender can control only r1 and a malicious
receiver can control only r2. We place a further restriction that the choice of r1
must be consistent ; namely, all queries to Sign must use the same value for r1.
Looking ahead, this property exactly captures the condition we need (r1 cor-
responds to the zero bits in the sender’s column selection string in the OT
3 Our notion is similar to the ρ-EU-CMRA notion introduced by Asharov and

Orlandi [7]. It differs in that we allow different portions of the randomness to be
corrupted, but not both portions at once. Looking forward, this is needed because
the sender in our signed-OT functionality is only allowed to control some of the
randomness.
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extension), where the choice of r1 is made once and then fixed throughout the
protocol execution.

Towards our definition, we define an oracle Osk(·, ·, ·, ·) as follows. Let ⊥ be
a special symbol. On input (m,a, r1, r2), proceed as follows. If neither r1 nor r2
equal ⊥, output ⊥. Otherwise, proceed as follows. If r1 = ⊥ and r′

1 has not been
set, set r′

1 uniformly at random; if r1 �= ⊥ and r′
1 has not been set, set r′

1 = r1;
if r2 = ⊥, set r′

2 uniformly at random; otherwise, set r′
2 = r2. Finally, output

Signsk(m,a; (r′
1, r

′
2)).

Now, consider the following game Sig-forgeCMPRA
A,Π (κ) for signature scheme Π

between ppt adversary A and ppt challenger C.

1. C runs (vk, sk)←$Gen(1κ) and sends vk to A.
2. A, who has oracle access to Osk(·, ·, ·, ·), outputs a tuple (m, (a, σ′)). Let Q

be the set of messages and associated data pairs input to Osk(·, ·, ·, ·).
3. A succeeds if and only if (1) Verifyvk(m, (a, σ′)) = 1 and (2) (m,a) �∈ Q.

Definition 2. Signature scheme Π = (Gen,Sign,Verify) is existentially unforge-
able under adaptive chosen message and partial randomness attack (EU-CMPRA)
if for all ppt adversaries A there exists a negligible function negl(·) such that
Pr[Sig-forgeCMPRA

A,Π (κ)] < negl(κ).

Fig. 2. Signed oblivious transfer functionality.

Signed-OT Functionality. We are now ready to introduce our relaxed signed-
OT functionality. As is our EU-CMPRA signature, it is tailored for OT exten-
sion, and is sufficient for building PVC protocols. This functionality, denoted
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by FΠ
signedOT, is parameterized by an EU-CMPRA signature scheme Π and is

defined in Fig. 2. As in standard OT, the sender inputs two messages (of equal
length) and the receiver inputs a choice bit. However, in this formulation we allow
a malicious sender to specify some random value r∗

1 as well as signatures σ∗
0 and

σ∗
1 . Likewise, a malicious receiver can specify some random value r∗

2 . (Honest
players input ⊥ for these values.) If both players are honest, the functionality
computes σ ← Sign((b,mb); (r1, r2)) with uniformly random values r1 and r2
and outputs ((b,mb), σ) to the receiver. However, if either party is malicious and
specifies some random value, this is fed into the Sign algorithm. Likewise, if the
sender is malicious and specifies some signature σ∗

b �= ⊥, this value is used as
the signature sent to the receiver.

Note that FΠ
signedOT is nearly identical to the signed-OT functionality pre-

sented by Asharov and Orlandi [7, Functionality 2]; it differs in the use of EU-
CMPRA signature schemes instead of ρ-EU-CMRA schemes. We also note that it
is straightforward to adapt FΠ

signedOT to realize OTs with more than two inputs
from the sender. We let

(
λ
1

)
-FΠ

signedOT denote a 1-out-of-λ variant of FΠ
signedOT.

A Compatible Commitment Scheme. Our construction of an EU-CMPRA
signature scheme (cf. Sect. 3.3) uses a non-interactive commitment scheme, which
we define here. Our definition follows the standard commitment definition, except
we tweak the Com algorithm to take an additional associated data value.

Let ΠCom = (ComGen,Com) be a tuple of ppt algorithms over message space
M and associated data space D, defined as follows:

1. ComGen(1κ): On input security parameter 1κ, compute parameters params.
2. Com(m,a; r): On input message m ∈ M, associated data a ∈ D, and ran-

domness r, output commitment com.

A commitment can be opened by revealing the randomness r used to construct
that commitment.

We now define security for our commitment scheme. We only consider the
binding property; namely, the inability for a ppt adversary to open a commit-
ment to some other value than that committed to. Security is the same as for
standard commitment schemes, except we allow the adversary to control the
randomness used in ComGen.

Consider the game Com-bindA,ΠCom
(κ) for commitment scheme ΠCom between

a ppt adversary A and a ppt challenger C, defined as follows.

1. A sends randomness r to C.
2. C computes params ← ComGen(1κ; r) and sends params to A.
3. A outputs (com,m1, a1, r1,m2, a2, r2) and wins if and only if (1) m1 �= m2,

and (2) com = Com(params,m1, a1; r1) = Com(params,m2, a2; r2).

Definition 3. A commitment scheme ΠCom = (ComGen,Com) is (computation-
ally) binding if for all ppt adversaries A, there exists a negligible function negl(·)
such that Pr[Com-bindA,ΠCom

(κ)] < negl(κ).
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3 Signed Oblivious Transfer Extension

We now present our main contribution: an efficient instantiation of signed obliv-
ious transfer (signed-OT) extension. We begin in Sect. 3.1 by describing in detail
the logic of the construction, iteratively building it up from the passively secure
protocol of Ishai et al. [12]. We motivate the need for EU-CMPRA signature
schemes in Sect. 3.2 and present a compatible such scheme in Sect. 3.3. In Sect. 3.4
we present the proof of security.

3.1 Intuition for the Construction

Consider the OT extension protocol of Ishai et al. [12] in Fig. 3, run between
sender S and receiver R. This protocol is secure against a semi-honest R and
malicious S. We show how to convert this protocol into one which satisfies the
FΠ

signedOT functionality defined in Fig. 2. For clarity of presentation, we build
on the protocol of Fig. 3 and later discuss how to support a malicious R as well,
based on the malicious OT extension protocol of Asharov et al. [6].

S’s inputs: Message pairs {(x0
j ,x

1
j )}j∈[m]

, where each x0
j ,x

1
j ∈ {0, 1}n.

R’s inputs: Selection bits r = (r1, . . . , rm).
Common inputs: Security parameter κ; number of base OTs � (= κ); hash
function H : N × {0, 1}� → {0, 1}n; ideal functionality FOT.

1. Initial OT Phase:

S computes s←$ {0, 1}�.

R generates a random m × � matrix T, where the jth row is tj and the
ith column is ti. Likewise, R generates a random m × � matrix V, where
the jth row is vj and the ith column is vi.

S and R run FOT � times in parallel, where S acts as the receiver with
input si in the ith OT and R acts as the sender with input (ti,vi) in
the ith OT.

2. OT Extension Phase (Part I):

For i ∈ [m], R sets ui ← ti ⊕ vi ⊕ r, and sends ui to S.

3. OT Extension Phase (Part II):

Let Q be the m × � matrix where each column qi = (si · (ui ⊕ vi)) ⊕
((1 − si) · ti). Note that qi = (si · r) ⊕ ti and qj = (rj · s) ⊕ tj .

For j ∈ [m], S computes y0
j ← x0

j ⊕H(j,qj) and yi
j ← xi

j ⊕H(j,qj ⊕ s),
and sends y0

j and y1
j to R.

For j ∈ [m], R computes xj ← y
rj
j ⊕ H(j, tj).

4. Output:

S outputs ⊥ and R outputs {xj}j∈[m].

Fig. 3. Protocol implementing passively secure OT extension [5,12].
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As a first attempt, suppose S simply signs all its messages in Step 3. Recall
that we will use this construction to have P1 send the appropriate input wire
labels to P2; namely, P1 acts as S in the OT extension and inputs the wire labels
for P2’s input wires whereas P2 acts as R and inputs its input bits. Thus, our
first step is to enhance the protocol in Fig. 3 to have S send σ′ ←$ Sign((j,y0

j ))
and σ′′ ←$Sign((j,y1

j )) in Step 3.
Now, if P2 gets an invalid (with respect to a signed GC sent in the PVC proto-

col of Sect. 4) wire label xj , it can easily construct a certificate Cert which demon-
strates P1’s cheating. Namely, it outputs as its certificate the tuple

(
b, j,y0

j ,y
1
j ,

σ′, σ′′, tj) along with the (signed by P1 and opened) GC containing the invalid
wire label. A third party can (1) check that σ′ and σ′′ are valid signatures and
(2) compute xb

j ← H(j, tj)⊕yb
j and check that xb

j is indeed an invalid wire label
for the given garbled circuit.

This works for protecting against a malicious P1; however, note that P2 can
easily defame an honest P1 by outputting t∗

j �= tj as part of its certificate (in
which case xb

j ← H(j, t∗
j ) ⊕ yb

j will very likely be an invalid wire label). Thus,
the main difficulty in constructing signed-OT extension is tying P2 to its choice
of the matrix T generated in Step 1 of the protocol so it cannot blame an honest
P1 by using invalid rows t∗

j in its certificate.
Towards this end, consider the following modification. In Step 1, R now

additionally sends commitments to each tj to S, and S signs these and sends
them as part of its messages in Step 3. This prevents R from later changing tj

to blame S. This does not quite work, however, as R could simply commit to an
incorrect t∗

j in the first place! Clearly, R cannot send T to S, as this would leak
R’s selection bits, yet we still need R to somehow be committed to its choice of
the matrix T. The key insight is noting that S does in fact know some of the
bits of T; namely, it knows those columns at which si = 0 (as it learns ti in the
base OT). We can use this information to tie R to its choice of T such that it
cannot later construct some matrix T∗ �= T to defame S.

We do this by enhancing Step 3 as follows. Let I0 be the set of indices i such
that si = 0 (recall that s is the random selection bits of S input to the base OTs
in Step 1). Let tj,i denote the ith bit in row tj . Note that S knows the values
of tj,i for i ∈ I0, and could thus compute {(i, tj,i)}i∈I0 as a “binding” of R’s
choice of tj . By including this information in its signature, S enforces that any
t∗
j that R tries to use to blame S must match in the given positions. This brings

us closer to our goal; however, there are still two issues that we need to resolve:

1. Sending {(i, tj,i)}i∈I to R leaks s, which allows R to learn both of S’s inputs.
We address this by increasing the number of base OTs in Step 1 and having
S only send some subset I ⊆ I0 such that |I| = κ. Thus, while R learns that
si = 0 for i ∈ I, by increasing the number of base OTs enough, R does not
have enough information to recover s.

2. R can still flip one bit in tj and pass the check with high probability. We
fix this by having each tj be generated by a seed kj . Namely, R computes
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tj ← G(kj) in Step 1, where G is a random oracle4. Then, when blaming S, R
must reveal kj instead of tj . Thus, with high probability a malicious polytime
R cannot find some k∗

j �= kj such that the Hamming distance between G(k∗
j )

and G(kj) is small enough that the above check succeeds.

Finally, note that we have thus far considered the passively secure OT exten-
sion protocol, which is insecure against a malicious R. We thus utilize the mali-
ciously secure OT extension protocol of Asharov et al. [6]. The only way R can
cheat in passively secure OT extension is by using different r values in Step 2.
Asharov et al. add a “consistency check” phase between Steps 1 and 2 to enforce
that r is consistent. This does not affect our construction, and thus we can
include this step to complete the protocol5. We refer the reader to Asharov
et al. [6] for the justification and intuition of this step; as far as this work is
concerned we can treat this consistency check as a “black box”.

Observation 1 (OT Extension Matrix Size). We set �, the number of base
OTs, so that leaking κ bits to R does not allow it to recover s and thus both
messages. We do this as follows. Let �′ be the number of base OTs required in
malicious OT extension [6]. We set � = �′ +κ and require that when S chooses s,
it first fixes κ randomly selected bits to zero before randomly setting the rest of
the bits. Now, when S reveals I to R, the number of unknown bits in s is equal to
�′ and thus the security of the Asharov et al. scheme carries over to our setting.
Asharov et al. set �′ ≈ 1.6κ, and thus us using κ extra columns results in an
≈ 67% matrix size increase.

Observation 2 (Batching Signatures). The main computational cost of our
protocol is the signatures sent by S in Step 4. This cost can easily be brought to
negligible, as follows. Recall that when using our protocol for transferring the
input wire labels of a GC using free-XOR we can optimize the communication
slightly by setting x0

j ← H(j,qj) and y1
j ← x0

j ⊕ Δ ⊕ H(j,qj ⊕ s), where Δ is
the free-XOR global offset. Thus, S only needs to send (and sign) y1

j .
The most important idea, however, is to batch messages across OT executions

and have S sign (and send) only one signature which includes all the necessary
information across many OTs. Namely, using the free-XOR optimization above,
S signs and sends the tuple (I, {y1

j , {tj,i}i∈I}j∈[m]) to R. We note that the j
values need not be sent as they are implied by the protocol execution.

Figure 4 gives the full protocol for signed-OT extension. For clarity of presen-
tation, this description, and the following proof of security, does not take into
account the optimizations described in Observation 2.
4 Note that G cannot be a pseudorandom generator because the input to G is not

necessarily uniform as the inputs may be adversarially chosen by R.
5 The reason this does not affect our construction is because the consistency check

phase only involves R sending messages to S. A malicious R cannot defame S because
we are only enforcing that R’s value r is consistent.
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Fig. 4. Signed-OT extension, based on the OT extension protocol of Asharov et al. [6].

3.2 Towards a Proof of Security

Before presenting the security proof, we first motivate the need for EU-CMPRA
signature schemes. As mentioned in Sect. 3.1, ideally we could just have S sign
everything using an EU-CMA signature scheme; however, this presents opportu-
nities for R to defame S. Thus, we need to enforce that R cannot output an xb

j

value different from the one sent by S. We do so by using a binding commitment
scheme ΠCom = (ComGen,Com), and show that the messages sent by S in Step
4 are essentially binding commitments to the underlying xb

j values.
We define ΠCom as follows, where G : {0, 1}κ → {0, 1}� and H : N×{0, 1}� →

{0, 1}κ are random oracles, and � ≥ κ.
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1. ComGen(1κ): choose set I ⊆ [�] uniformly at random subject to |I| = κ;
output params ← I.

2. Com(params,m, j; r): On input parameters I ← params, message m, counter
j, and randomness r ∈ {0, 1}κ, proceed as follows. Compute t ← G(r), set
com ← (j,m ⊕ H(j, t), I, {ti}i∈I), and output com.

We make the assumption that given I, one can derive the randomness input
to ComGen. (We use this when defining our EU-CMPRA signature scheme below,
which uses a generic binding commitment scheme). We can satisfy this by simply
letting the randomness input to ComGen be the set I.

In our signed-OT extension protocol, the set I chosen by S is used as params
and the kj values chosen by R are used as the randomness to Com. The com-
mitment value com is exactly the message signed and sent by S in Step 4. Thus,
ignoring the signatures for now, we have an OT extension protocol that binds
S to its xb

j values, and thus prevents a malicious R from defaming an honest S.
Adding in the signatures (cf. Sect. 3.3) gives us an EU-CMPRA signature scheme.
Namely, S is tied to its messages due to the signatures and R is prevented from
“changing” the messages to defame S due to the binding property of the com-
mitment scheme.

We now prove that the commitment scheme described above is binding. We
actually prove something stronger than what is required in our protocol. Namely,
we prove that an adversary who can control both random values still cannot
win, whereas when we use this commitment scheme in our signed-OT extension
protocol, only one of the two random values can be controlled by any one party.

Theorem 1. Protocol ΠCom is binding according to Definition 3.

Proof. Adversary A needs to come up with choices of I, m, m′, j, j′, r, and
r′ such that (j,m ⊕ H(j, t), I, {ti}i∈I) = (j′,m′ ⊕ H(j′, t′), I, {t′i}i∈I′), where
t ← G(r) and t′ ← G(r′). Clearly, j = j′. Thus, A must find t and t′ such
that ti = t′i for all i ∈ I. However, by the property that G is a random oracle,
the values t and t′ are distributed uniformly at random in {0, 1}�. Thus, the
probability that A finds two bitstrings t and t′ that match in κ bits is negligible,
regardless of the choice of I. �

3.3 An EU-CMPRA Signature Scheme

We now show that the messages sent by S in Step 4 form an EU-CMPRA signature
scheme. Let Π ′ = (Gen′,Sign′,Verify′) be an EU-CMA signature scheme and
ΠCom = (ComGen,Com) be a commitment scheme satisfying Definition 3 (e.g.,
the scheme presented in Sect. 3.2). Consider the scheme Π = (Gen,Sign,Verify)
defined as follows.

1. Gen(1κ): On input 1κ, run (vk, sk)←$Gen′(1κ) and output (vk, sk).
2. Signsk(m, j; (r∗

1, r
∗
2)): On input message m ∈ {0, 1}κ, counter j ∈ N, and

randomness r∗
1 and r∗

2, proceed as follows. Compute params ← ComGen(1κ; r∗
1)

and com ← Com(params,m, j; r∗
2). Next, choose m′ ←$ {0, 1}κ and compute
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com′ ← Com(params,m′, j; r∗
2)

6. Output σ ← (j, params, r∗
2, com, com′,Sign′

sk

((params, com)),Sign′
sk((params, com′))).

3. Verifypk(m, σ): On input message m and signature σ, parse σ as (j, params, r,
com′, com′′, σ′, σ′′), and output 1 if and only if (1) Com(params,m; r) = com′,
(2) Verify′

vk((params, com′), σ′) = 1, and (3) Verify′
vk((params, com′′), σ′′) = 1;

otherwise output 0.

As explained in Sect. 3.2, this signature scheme exactly captures the behavior
of S in our signed-OT extension protocol. We now prove that this is indeed an
EU-CMPRA signature scheme.

Theorem 2. Given an EU-CMA signature scheme Π ′ = (Gen′,Sign′,Verify′)
and a commitment scheme ΠCom = (ComGen,Com) secure according to Defini-
tion 3, then Π = (Gen,Sign,Verify) described above is an EU-CMPRA signature
scheme.

Proof. Let A be a ppt adversary attacking Π. We construct an adversary B
attacking Π ′. Adversary B receives vk from the challenger and initializes A
with vk as input. Let (m, j, r∗

1, r
∗
2) be the input of A to its signing oracle.

Adversary B emulates the execution of A’s signing oracle as follows: it com-
putes params ← ComGen(1κ; r∗

1) and com ← Com(params,m, j; r∗
2), chooses m′

uniformly at random and computes com′ ← Com(params,m′, j; r∗
2), constructs

σ ← (j, params, r∗
2, com, com′,Sign′

sk((params, com)),Sign′
sk((params, com′))), and

sends σ to A. After each of A’s queries, B stores (m, j) in set QA and stores all
the messages it sent to its signing oracle in set QB.

Eventually, A outputs (m, (j, σ′)) as its forgery. Adversary B checks that
Verifyvk(m, (j, σ′)) = 1 and that (m, j) �∈ QA . If not, B outputs 0. Otherwise, B
parses σ′ as (params, r, com′, com′′, σ′, σ′′) and checks that com′ �∈ QB. If so, it
outputs (com′, σ′); otherwise it outputs 0.

Note that Sig-forgeCMPRA
A,Π (κ) = 1 and Sig-forgeCMA

B,Π′(κ) = 0 if and only if
Verifyvk(m, (j, params, r, com′, com′′, σ′, σ′′)) = 1 and (m, j) �∈ QA but com′ ∈
QB. Fix some (m, (j, params, r, com1, com1′ , σ1, σ1′)) such that this is the case.
Thus it holds that com1 ∈ QB. This implies that B queried Sign′ on com1,
which means that A queried its signing oracle on some (m′, j′, r∗

1, r
∗
2), where

m′ �= m, and received back (j′, params, r′, com1, com2′ , σ1′′ , σ2′). However, this
implies that Com(params, com1; r) = m and Com(params, com1; r′) = m′. Thus,
Pr[Sig-forgeCMPRA

A,Π (κ)] = Pr[Sig-forgeCMA
B,Π (κ)] + Pr[Com-bindB′,ΠCom

(κ)] for some
ppt adversary B′. We now bound Pr[Com-bindB′,ΠCom

(κ)].
Adversary B′ runs almost exactly like B. On the first query (m, j, r∗

1, r2) by
A, it sets r = r∗

1 if r∗
1 �= ⊥ and otherwise it sets r uniformly at random; B′ then

sends r to C, receiving back params.
Let (m1, j1, r∗

1, r
∗
2) and (m2, j2, r∗

1, r
∗′
2 ) be the two queries made by A result-

ing in a common commitment value. Let (j1, params, r1, com1, com
′
1, σ1, σ1′) and

(j2, params, r2, com1, com
′
2, σ1′′ , σ2′) be the corresponding signatures resulting

6 This extra commitment on a random message is needed for our signed-OT extension
proof.
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from A’s queries. Adversary B′ sends (com1,m1, j1, r∗
2,m2, j2, r∗′

2 ) to its chal-
lenger and wins with probability one, contradicting the security of the commit-
ment scheme. Thus, we have that Pr[Com-bindB′,ΠCom

(κ)] < negl(κ), completing
the proof. �

3.4 Proof of Security

We are now ready to prove the security of our signed-OT extension protocol.
Most of the proof complexity is hidden in the proofs of the associated EU-CMPRA
signature scheme and commitment scheme. Thus, the signed-OT extension sim-
ulator is relatively straightforward, and mostly involves parsing the output of
FΠ

signedOT and passing the correct values to the adversary. The analysis follows
almost exactly that of Asharov et al. [6] and thus we elide most of the details.

Theorem 3. Let Π = (Gen,Sign,Verify) be the EU-CMPRA signature scheme
in Sect. 3.3. Then the protocol in Fig. 4 is a secure realization of FΠ

signedOT in
the FOT-hybrid model.

Proof. We separately consider the case where S is malicious and R is malicious.
The case where the parties are either both honest or both malicious is straight-
forward.

Malicious S . Let A be a ppt adversary corrupting S. We construct a simulator
S as follows.

1. The simulator S acts as an honest R would in Step 1, extracting s from A’s
input to FOT.

2. The simulator S acts as an honest R would in Steps 2 and 3.
3. Let I and

(
j,y0

j ,y
1
j , {tj,i}i∈I , σ

′
j,0, σ

′
j,1

)
, for j ∈ [m], be the messages sent

by A in Step 4. If any of these are invalid, S sends abort to FΠ
signedOT and

simulates R aborting, outputting whatever A outputs.
4. For j ∈ [m], proceed as follows. The simulator S extracts x0

j ← y0
j ⊕H(j,qj)

and x1
j ← y1

j ⊕H(j,qj ⊕s), constructs σ∗
j,b ← (j, I,kj , (I, (j,yb

j , I, {tj,i}i∈I)),
(I, (j,y1−b

j , I, {tj,i}i∈I)), σ
′
j,b, σ

′
j,1−b) for b ∈ {0, 1}, and sends x0

j , x1
j , σ∗

j,0,
and σ∗

j,1 to FΠ
signedOT, receiving back either ((b,mb), σj,b) or abort.

5. If S received abort in any of the above iterations, it simulates R aborting, out-
putting whatever A outputs. Otherwise, for j ∈ [m], S parses σj,b as (j, I,kj ,
(I, (j,yb

j , I, {tj,i}i∈I)), (I, (j,y1−b
j , I, {tj,i}i∈I)), σ

′
j,b, σ

′
j,1−b), constructs mess-

age σj ← (j,y0
j ,y

1
j , {tj,i}i∈I , σ

′
j,0, σ

′
j,1), and acts as an honest R would when

receiving messages I and {σj}j∈[m].
6. The simulator S outputs whatever A outputs.

It is easy to see that this protocol perfectly simulates a malicious sender since S
acts exactly as an honest R would (beyond feeding the appropriate messages to
FΠ

signedOT).

Malicious R . Let A be a ppt adversary corrupting R. We construct a simulator
S as follows.
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1. The simulator S acts as an honest S would in Step 1, extracting matrices T
and V through S’s FOT inputs, and thus the values {kj}j∈[m].

2. The simulator S uses the values extracted above to extract selection bits r
after receiving the ui values from A in Step 2.

3. The simulator S acts as an honest S would in Step 3.
4. Let I0 be the indices at which s (generated in Step 1) is zero, and let I ⊆ I0 be

a set of size κ. For j ∈ [m], S sends rj , vk, and I to FΠ
signedOT, receiving back

((rj ,x
rj

j ), σj,rj
); S parses σj,rj

as (j, I, r, (I, (j, crj
, I, {tj,i}i∈I)), (I, (j, c1−rj

,
I, {tj,i}i∈I)), σ

′
j,rj

, σ′
j,1−rj

).
5. In Step 4, S sends I and (j, c0, c1, {tj,i′}i′∈I′ , σ′

j,0, σ
′
j,1), for j ∈ [m], to A.

6. The simulator S outputs whatever A outputs.

The analysis is almost exactly that of the malicious receiver proof in the con-
struction of Asharov et al. [6]; we thus give an informal security argument here
and refer the reader to the aforementioned work for the full details.

A malicious R has two main attacks: using inconsistent choices of its selection
bits r and trying to cheat in the signature creation in Step 4. This latter attack
is prevented by the security of our EU-CMPRA signature scheme. The former is
prevented by the consistency check in Step 3. Namely, Asharov et al. show that
the consistency check guarantees that: (1) most inputs are consistent with some
string r, and (2) the number of inconsistent inputs is small and thus allow R
to only learn a small number of bits of s. Thus, for specific choices of � and μ,
the probability of a malicious R cheating is negligible. Asharov et al. provide
concrete parameters for various settings of the security parameter [6, §3.2]; let
�′ denote the number of base OTs used in their protocol. Now, in our protocol
we set � = �′ + κ; S leaks κ bits of s when revealing the set I in Step 4, and
so is left with �′ unknown bits of s. Thus, the security argument presented by
Asharov et al. carries over into our setting. �

4 Our Complete PVC Protocol

As noted above, the main technical challenge of the PVC model is in the signed-
OT construction and model definitions. The AO protocol in the FΠ

signedOT-
hybrid model is relatively straightforward: the natural (but careful) combina-
tion of taking a non-halting covert protocol, having the GC generator P1 sign
appropriate messages, and replacing OTs with signed-OTs works. In particular,
our signed-OT extension can be naturally modified and used in place of the
signed-OT primitive in the AO protocol.

In this section we present a new PVC protocol based on signed-OT extension.
Our protocol is similar to the AO protocol in the FΠ

signedOT-hybrid model, but
with applying several simple yet very effective optimizations, resulting in a much
lower communication cost.

We present our protocol by starting off with the AO protocol and pointing
out the differences. We presented the AO protocol intuition in the Introduction;
see Fig. 5 for its formal description; due to lack of space, we omit the (straight-
forward) Blame and Judgment algorithms. In presenting our changes, we sketch
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Fig. 5. The AO PVC protocol [7, Protocol 3].

the improvement each of them brings. Thus, we start by reviewing the commu-
nication cost of the AO protocol.

Communication Cost of the AO Protocol. Using state-of-the-art optimiza-
tions [13,19,20], the size of each GC sent in Step 5 is 2κ|GC |, where |GC | is
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the number of non-XOR gates in circuit C (note that |GC | = |GC′ | for cir-
cuit C ′ generated in Step 1 since the XOR-tree only adds XOR gates to the
circuit, which are “free” [13]). Let τ be the field size (in bits), ν the XOR-
tree replication factor, λ the GC replication factor, and n the length of the
inputs, and assume that each signature is of length τ and the commitment and
decommitment values are of length κ. Using the signed-OT instantiations of
Asharov and Orlandi [7, Protocols 1 and 2], we get a total communication cost
of τ(7νn + 11) + 2λκνn + �(2κ|GC | + τ) + 2nλ(κ + τ) + τ(3 + 2λ + 11(λ − 1)) +
λκ(2(n + νn)(λ − 1) + 2n(λ − 1) + n).

As an example, consider the secure computation of AES(m,k), where P1

inputs message m ∈ {0, 1}128 and P2 inputs key k ∈ {0, 1}128, and suppose we
set both the GC replication factor λ and the XOR-tree replication factor ν to 3,
giving a cheating probability of ε = 1/2. Letting κ = 128 and τ = 256, we have
a total communication cost of 9.3 Mbit (where we assume that the AES circuit
has 9,100 non-XOR gates [15]).

Our Modifications. We make the following modifications to the AO protocol:

– In Step 6, instead of using a commitment scheme we can use a hash function.
This saves on communication in Step 7 as P1 no longer needs to send the
openings {oi

wp,b} to the commitments in the signed-OT, and is secure when
treating H as a random oracle since the keys are generated uniformly at
random and thus it is infeasible for P2 to guess the committed values. The
total savings are 2n(λ − 1)κλ bits; in our example, this saves us 196 kbit.

– In Step 3, we use a random seed to generate the input wire keys. Namely,
for all j ∈ [λ] we compute sj ←$ {0, 1}κ, and compute the input wire keys
for circuit j as kj

w1,0‖kj
w1,1‖ · · · ‖kj

wn+νn,0‖kj
wn+νn,1 ← G(sj), where G is a

pseudorandom generator. Now, in the 1-out-of-λ signed-OT in Step 7 we can
just send the seeds to the input wire keys rather than the input wire keys
themselves. The total savings are 2(n+νn)(λ−1)λκ−n(λ−1)λκ bits; in our
example, this saves us 688 kbit.

– In Step 5, P1 generates each GCj from a seed sj
GC. (This idea was first put

forward by Goyal et al. [11].) That is, sj
GC specifies the randomness used

to construct all wire keys except for the input wire keys which were set in
Step 3. Instead of P1 sending each GC to P2 in Step 5, P1 instead sends a
commitment cj

GC ← H(GCj). Now, in Step 7, P1 can send the appropriate
seeds {sj

GC}j∈[λ]\{j} in the jth input of the 1-out-of-λ signed-OT to allow P2

to check the correctness of the check GCs. We then add an additional step
where, if the checks pass, P1 sends GCγ (along with a signature on GCγ) to
P2, who can check whether H(GCγ) = cγ

GC. Note that this does not violate
the security conditions required by the PVC model because P2 catches any
cheating of P1 before the evaluation circuit is sent. If P1 tries to cheat here,
P2 already has a commitment to the circuit so can detect any cheating. The
total savings are (λ − 1)2κ|GC | − λτ − λκ(λ − 1) bits; in our example, this
saves us 4.6 Mbit.
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Fig. 6. Our PVC protocol.
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Our PVC Protocol and Its Cost. Fig. 6 presents our optimized protocol.
For simplicity, we sign each message in Steps 5 and 6 separately; however, we
note that we can group all the messages in a given step into a single signature
(cf. Observation 2). The Blame and Judgment algorithms are straightforward
and similar to the AO protocol (Blame outputs the relevant parts of the view,
including the cheater’s signatures, and Judgment checks the signatures). We
prove the following theorem in the full version.

Theorem 4. Let λ < p(κ) and ν < p(κ), for some polynomial p(·), be parame-
ters to the protocol, and set ε = (1−1/λ)(1−2−ν+1). Let f be a ppt function, let
H be a random oracle, let FΠ

signedOT and
(
λ
1

)
-FΠ

signedOT be the
(
2
1

)
-signed-OT

and
(
λ
1

)
-signed-OT ideal functionalities, respectively, where Π is an EU-CMPRA

signature scheme. Then the protocol in Fig. 6 securely computes f in the pres-
ence of (1) an ε-PVC adversary corrupting P1 and (2) a malicious adversary
corrupting P2.

Using our AES circuit example, we find that the total communication cost is
now 2.5 Mbit, plus the cost of signed-OT/signed-OT extension. In this particu-
lar example, signed-OT requires around 1 Mbit and signed-OT extension requires
around 1.4 Mbit. However, as we show below, as the number of OTs required
grows, signed-OT extension quickly outperforms signed-OT, both in communi-
cation and computation.

5 Comparison with Prior Work

We now compare our signed-OT extension construction (including optimizations,
and in particular, the signature batching of Observation 2) with the signed-OT
protocol of Asharov and Orlandi [7], along with a comparison of existing covert
and malicious protocols and our PVC protocol using both signed-OT and signed-
OT extension. All comparisons are done through calculating the number of bits
transferred and estimated running times based on the relative cost of public-key
versus symmetric-key operations. We use a very conservative (low-end) estimate
on the public/symmetric speed ratio. We note that this ratio does vary greatly
across platforms, being much higher on low power mobile devices, which often
employ a weak CPU but have hardware AES support. For such platforms our
numbers would be even better.

Recall that τ is the field size (in bits), ν is the XOR-tree replication factor,
λ is the GC replication factor, n is the input length, and we assume that each
signature is of length τ .

Communication Cost. We first focus on the communication cost of the two
protocols. The signed-OT protocol of Asharov and Orlandi [7] is based on the
maliciously secure OT protocol of Peikert et al. [18], and inherits similar costs.
Namely, the communication cost of executing � OTs each of length n is (6�+11)τ
if n ≤ τ , and (6� + 11)τ + 2n� if n > τ . Signed-OT requires the additional
communication of a signature per OT, adding an additional τ� bits. In the
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underlying secure computation protocol we have that n = λκ, where λ is the
garbled circuit replication factor. For simplicity, we set λ = 3 (which along with
an XOR-tree replication factor of three equates to a deterrence factor of ε = 1/2)
and thus n = 3κ. Thus, the total communication cost of executing t signed-OTs
is τ (7t + 11) bits if 3κ ≤ τ and τ (7t + 11) + 6κt bits otherwise.

On the other hand, the cost of signed-OT extension for t OTs is (6�+11)τ +
2�t + �t + μ� log � + 4μ�κ + κ log � + (n + κ)t + τ . Asharov et al. [6, §3.2] present
concrete choices of μ and � for various security parameters. However, in our
setting we need to increase � by κ bits. Thus, let �′ be the particular choice
of � specified by Asharov et al. We then set � = �′ + κ. Thus, for short secu-
rity parameter we set � = 133 + 80 = 213 and μ = 3, and for long security
parameter we set � = 190 + 128 = 318 and μ = 2. Thus, the total com-
munication cost of executing t signed-OTs when using signed-OT extension is
(6� + 12)τ + (3� +n+ κ)t + μ�log� + 4μ�κ + κlog� bits.

1,000 OTs 10,000 OTs

Security sOT sOT-ext Improvement sOT sOT-ext Improvement

Short (FFC) 7,179 2,539 2.8× 71,691 11,305 6.3×
Short (ECC) 1,602 1,398 1.1× 16,002 10,164 1.6×
Long (FFC) 21,538 7,694 2.8× 215,074 20,888 10.3×
Long (ECC) 2,563 2,288 1.1× 25,603 15,482 1.7×

Fig. 7. Communication cost (in kbits) of transferring the input wire labels for P2 when
using signed-OT (sOT) versus signed-OT extension (sOT-ext) for 1,000 and 10,000
OTs.

Figure 7 presents a comparison of the communication cost of both approaches
when executing 1,000 and 10,000 OTs, for various keylength settings and under-
lying public-key cryptosystems. We see improvements from 1.1–10.3×, depending
on the number of OTs, the underlying public-key cryptosystem, and the size of
the security parameter. Note that for a smaller number of OTs (such as 100),
signed-OT is more efficient, which makes sense due to the overhead of OT exten-
sion and the need to compute the base OTs. However, as the number of OTs
grows, we see that signed-OT extension is superior across the board.

Computational Cost. We now look at the computational cost of the two pro-
tocols. Let ξ denote the cost of a public-key operation (we assume exponentia-
tions and signing take the same amount of time), and let ζ denote the cost of
a symmetric-key operation (where we let ζ denote the cost of operating over κ
bits; e.g., hashing a 2κ-bit value costs 2ζ). We assume all other operations are
“free”. This is obviously a very coarse analysis; however, it gives a general idea
of the performance characteristics of the two approaches.

The cost of executing � OTs on n-bit messages is (14� + 12)ξ if n ≤ τ and
(14� + 12)ξ + 2�n

κ ζ if n > τ . Signed-OT requires an additional 2�ξ operations
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(for signing and verifying). We again set n = 3κ, and thus the cost of executing
t signed-OTs is (16t + 12)ξ if 3κ ≤ τ and (16t + 12)ξ + 6tζ otherwise.

The cost of our signed-OT extension protocol for t OTs (where we assume
t > κ and we hash the input prior to signing in Step 4) is �

κ tζ + (14� + 12)ξ +
2� t

κζ + 6�μ t
κζ + 2 log � + 2t �+n+κ

κ ζ + 2ξ. As above, we set � = 213 and μ = 3 for
short security parameter, � = 318 and μ = 2 for long security parameter, and
n = 3κ. Thus, the cost of executing t signed-OTs is (14� + 14)ξ+((5 + 6μ) �

κ
+8)tζ + 2log�ζ.

1,000 OTs 10,000 OTs

Security sOT sOT-ext Improvement sOT sOT-ext Improvement

Short (FFC) 16.0 3.1 5.1× 160.0 3.8 42.4×
Short (ECC) 5.3 1.1 4.9× 53.3 1.7 30.9×
Long (FFC) 144.1 40.2 3.6× 1440.1 40.7 35.4×
Long (ECC) 14.4 4.1 3.5× 144.1 4.5 31.9×

Fig. 8. Computation cost (in millions of “time units”) of transferring the input wire
labels for P2 when using signed-OT (sOT) versus signed-OT extension (sOT-ext) for
1,000 and 10,000 OTs. We assume symmetric-key operations take 1 “time unit”, FFC
(resp., ECC) operations take 1000 (resp., 333) “time units” for the short security
parameter, and FFC (resp., ECC) operations take 9000 (resp., 900) “time units” for
the long security parameter [1].

Figure 8 presents a comparison of the computational cost of both approaches
when executing 1,000 and 10,000 OTs, for various keylength settings and under-
lying public-key cryptosystems. Here we see that regardless of the number of
OTs and public-key cryptosystem used, signed-OT extension is (often much)
more efficient, and as the number of OTs increases so does this improvement.
For as few as 1,000 OTs we already see a 3.5–5.1× improvement, and for 10,000
OTs we see a 30.9–42.4× improvement.

Comparing Covert, PVC, and Malicious Protocols. We now compare
the computation cost of our PVC protocol in Fig. 6, using both signed-OT and
signed-OT extension, with the covert protocol of Goyal et al. [11] and the mali-
cious protocol of Lindell [17]7.

Figure 9 presents a comparison of the computation cost of our protocol using
both signed-OT (OurssOT) and signed-OT extension (OurssOT-ext), as well as
comparisons to the Goyal et al. protocol (GMS) and Lindell protocol (Lin). Due
to lack of space, the detailed cost formulas appear in the full version. We fix
κ = 128, λ = ν = 3 (giving a deterrence factor of ε = 1/2), and assume the
7 Lindell’s malicious protocol can also be adapted into a covert protocol; however, we

found that the computation cost is much more than that of Goyal et al., at least for
deterrence factor 1/2.



Public Verifiability in the Covert Model (Almost) for Free 233

f # inputs # gates GMS
OurssOT-ext

OurssOT

OurssOT-ext
Lin

OurssOT-ext

16384-bit Comp. 16,384 32,229 0.85–0.73 17.1–86.7 357.0–1887.2
Hamming 16000 16,000 97,175 0.90–0.79 11.0–67.0 224.7–1408.4
16×16 Matrix Mult. 8192 4,186,368 1.00–0.98 1.2–3.1 14.2–54.3
1024-bit Sum 1,024 2,977 0.71–0.61 6.7–10.2 166.6–258.2
1024-bit Mult. 1,024 6,371,746 1.00–0.99 1.0–1.2 10.1–13.9
1024-bit RSA 1,024 15,149,856,895 1.00–1.00 1.0–1.0 9.6–9.6

Fig. 9. Ratio of computation cost of various secure computation protocols with our
signed-OT extension construction, using a deterrence factor of 1/2 for the covert and
PVC protocols. GMS denotes the covert protocol of Goyal et al. [11], OurssOT denotes
the optimized Asharov-Orlandi protocol run using signed-OT, OurssOT-ext denotes
the same protocol using signed-OT extension, and Lin denotes Lindell’s malicious
protocol [17]. We let f denote the function being computed, # inputs denote the
number of input bits required as input by P2, and # gates denote the number of
non-XOR gates in the resulting circuit. All circuit information is taken from the PCF
compiler [14, Table5]. We report each ratio as a range; the first number uses ξ = 125
as the cost of public-key operations and the second number uses ξ = 1250, where we
assume a symmetric-key operation costs ζ = 1.

use of elliptic curve cryptography (and thus τ = 256). We expect public-key
operations to take between 125–1250× more than symmetric-key operations,
depending on implementation details, whether one uses AES-NI, etc. This range
is a very conservative estimate using the Crypto++ benchmark [2], experiments
using OpenSSL, and estimated ratios of running times between finite field and
elliptic curve cryptography [1].

When comparing against GMS, we find that OurssOT-ext is slightly more
expensive, due almost entirely to the larger number of base OTs in the signed-OT
extension. We note that in practice, however, a deterrence factor of 1/2 may not
be sufficient for a covert protocol but may be sufficient for a PVC protocol, due
to the latter’s ability to “name-and-shame” the perpetrator. When increasing
the deterrence factor for the covert protocol to ε ≈ .9, the cost ratios favor
OurssOT-ext. For example, for 16×16 matrix multiplication, the ratio becomes
3.60–3.53×, depending on the cost of public-key operations (versus 1.00–0.98×).

Comparing OurssOT-ext with OurssOT, we find that the former is 1.0–86.7×
more efficient, depending largely on the characteristics of the underlying circuit.
For circuits with a large number of inputs but a relatively small number of gates
(e.g., 16384-bit Comp., Hamming 16000, and 1024-bit Sum) this difference is
greatest, which makes sense, as the cost of the OT operations dominates. The
circuits for which the ratio is around 1.0 (e.g., 1024-bit RSA) are those that have
a huge number of gates compared to the number of inputs, and thus the cost of
processing the GC far outweighs the cost of signed-OT/signed-OT extension.

Finally, comparing OurssOT-ext with Lin, the former is 9.6–1887.2× more
efficient, again depending in a large part on the characteristics of the circuit.
We see that for circuits with a large number of inputs this difference is starkest;



234 V. Kolesnikov and A.J. Malozemoff

e.g., for the Hamming 16000 circuit, we get an improvement of 224.7–1408.4×.
The reason we see such large improvements for these circuits is that Lin requires
cut-and-choose oblivious transfer, which cannot take advantage of OT extension.
Thus, the number of public-key operations is huge compared to the circuit size,
and this cost has a large impact on the overall running time. Note, however, that
even for circuits where the number of gates dominates, we still see a relatively
significant improvement (e.g., 14.2–54.3× for 16×16 Matrix Mult.). These results
demonstrate that for settings where public shaming is enough of a deterrent from
cheating, OurssOT-ext presents a better choice than malicious protocols.
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To achieve our results, we develop a “succinct punctured program” tech-
nique, mirroring the powerful punctured program technique of Sahai and
Waters (STOC’14), and present several other applications of this new
technique. In particular, we construct succinct perfect zero knowledge
SNARGs and give a universal instantiation of random oracles in full-
domain hash applications, based on PC-diO.
As a final contribution, we demonstrate that even in the absence of
auxiliary input, care must be taken when making use of extractability
assumptions. We show that (standard) diO w.r.t. any distribution D over
programs and bounded-length auxiliary input is directly implied by any
obfuscator that satisfies the weaker indistinguishability obfuscation (iO)
security notion and diO for a slightly modified distribution D′ of pro-
grams (of slightly greater size) and no auxiliary input. As a consequence,
we directly obtain negative results for (standard) diO in the absence of
auxiliary input.

1 Introduction

Extractability Assumptions. Extractability, or “knowledge,” assumptions (such
as the “knowledge-of-exponent” assumption), have recently gained in popu-
larity, leading to the study of primitives such as extractable one-way func-
tions, extractable hash-functions, SNARKs (succinct non-interactive arguments
of knowledge), and differing-inputs obfuscation:

– Extractable OWF: An extractable family of one-way (resp. collision-
resistant) functions [14,15,27], is a family of one-way (resp. collision-resistant)
functions {fi} such that any attacker who outputs an element y in the range
of a randomly chosen function fi given the index i must “know” a pre-image
x of y (i.e., fi(x) = y). This is formalized by requiring for every adversary A,
the existence of an “extractor” E that (with overwhelming probability) given
the view of A outputs a pre-image x whenever A outputs an element y in the
range of the function.
For example, the “knowledge-of-exponent” assumption of Damgard [15] stip-
ulates the existence of a particular such extractable one-way function.

– SNARKs: Succinct non-interactive arguments of knowledge (SNARKs)
[5,32,35] are communication-efficient (i.e., “short” or “succinct”) arguments
for NP with the property that if a prover generates an accepting (short) proof,
it must “know” a corresponding (potentially long) witness for the statement
proved, and this witness can be efficiently “extracted” out from the prover.

– Differing-Inputs Obfuscation: [1,2,10] A differing-inputs obfuscator O for
program-pair distribution D is an efficient procedure which ensures if any
efficient attacker A can distinguish obfuscations O(C1) and O(C2) of programs
C1, C2 generated via D given the randomness r used in sampling, then it must
“know” an input x such that C1(x) �= C2(x), and this input can be efficiently
“extracted” from A.
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A recently proposed (weaker) variant known as public-coin differing-inputs
obfuscation [30] additionally provides the randomness used to sample the pro-
grams (C0, C1) ← D to the extraction algorithm (and to the attacker A).

The above primitives have proven extremely useful in constructing cryptographic
tools for which instantiations under complexity-theoretic hardness assumptions
are not known (e.g., [1,5,10,16,24,27,30]).

Extraction with (Distribution-Specific) Auxiliary Input. In all of these applica-
tions, we require a notion of an auxiliary-input extractable one-way function
[14,27], where both the attacker and the extractor may receive an auxiliary
input. The strongest formulation requires extractability in the presence of an
arbitrary auxiliary input. Yet, as informally discussed already in the original
work by Hada and Tanaka [27], extractability w.r.t. an arbitrary auxiliary input
is an “overly strong” (or in the language of [27], “unreasonable”) assumption.
Indeed, a recent result of Bitansky, Canetti, Rosen and Paneth [7] (formalizing
earlier intuitions from [5,27]) demonstrates that assuming the existence of indis-
tinguishability obfuscators for the class of polynomial-size circuits1 there cannot
exist auxiliary-input extractable one-way functions that remain secure for an
arbitrary auxiliary input.

However, for most of the above applications, we actually do not require
extractability to hold w.r.t. an arbitrary auxiliary input. Rather, as proposed
by Bitansky et al. [5,6], it often suffices to consider extractability with respect
to specific distributions Z of auxiliary input.2 More precisely, it would suf-
fice to show that for every desired output length �(·) and distribution Z there
exists a function family FZ (which, in particular, may be tailored for Z) such
that FZ is a family of extractable one-way (or collision-resistant) functions
{0, 1}k → {0, 1}�(k) with respect to Z. In fact, for some of these results (e.g.,
[5,6]), it suffices to just assume that extraction works for just for the uniform
distribution.

In contrast, the result of [7] can be interpreted as saying that (assuming iO),
there do not exist extractable one-way functions with respect to every distribu-
tion of auxiliary input: That is, for every candidate extractable one-way function
family F , there exists some distribution ZF of auxiliary input that breaks it.
1 The notion of indistinguishability obfuscation [2] requires that obfuscations O(C1)

and O(C2) of any two equivalent circuits C1 and C2 (i.e., whose outputs agree on
all inputs) from some class C are computationally indistinguishable. A candidate
construction for general-purpose indistinguishability obfuscation was recently given
by Garg et al. [18].

2 As far as we know, the only exceptions are in the context of zero-knowledge simula-
tion, where the extractor is used in the simulation (as opposed to being used as part
of a reduction), and we require simulation w.r.t. arbitrary auxiliary inputs. Neverthe-
less, as pointed out in the works on zero-knowledge [26,27], to acheive “plain” zero-
knowledge [3,25] (where the verifier does not receive any auxiliary input), weaker
“bounded” auxiliary input assumptions suffice.
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Our Results. In this paper, we show limitations of extractability primitives with
respect to distribution-specific auxiliary input (assuming the existence of public-
coin collision-resistant hash functions (CRHF) [29]). Our main result shows a
conflict between public-coin differing-inputs obfuscation for Turing machines [30]
and extractable one-way functions.

Theorem 1 (Main Theorem – Informal). Assume the existence of public-
coin collision-resistant hash functions. Then for every polynomial �, there exists
an efficiently computable distribution Z such that one of the following two prim-
itives does not exist:

– extractable one-way functions {0, 1}k →{0, 1}�(k) w.r.t. auxiliary input from Z.
– public-coin differing-inputs obfuscation for Turing machines.

By combining our main theorem with results from [5,30], we obtain the
following corollary:

Theorem 2 (Informal). Assume the existence of public-coin CRHF and fully
homomorphic encryption with decryption in NC1.3 Then there exists an effi-
ciently computable distribution Z such that one of the following two primitives
does not exist:

– SNARKs w.r.t. auxiliary input from Z.
– public-coin differing-inputs obfuscation for NC1 circuits.

To prove our results, we develop a new proof technique, which we refer to as the
“succinct punctured program” technique, extending the “punctured program”
paradigm of Sahai and Waters [34]; see Sect. 1.1 for more details. This technique
has several other interesting applications, as we discuss in Sect. 1.3.

As a final contribution, we demonstrate that even in the absence of auxil-
iary input, care must be taken when making use of extractability assumptions.
Specifically, we show that differing-inputs obfuscation (diO) for any distribu-
tion D of programs and bounded-length auxiliary inputs, is directly implied
by any obfuscator that satisfies a weaker indistinguishability obfuscation (iO)
security notion (which is not an extractability assumption) and diO security
for a related distribution D′ of programs (of slightly greater size) which does
not contain auxiliary input. Thus, negative results ruling out existence of diO
with bounded-length auxiliary input directly imply negative results for diO in a
setting without auxiliary input.

Theorem 3 (Informal). Let D be a distribution over pairs of programs and
�-bounded auxiliary input information P × P × {0, 1}�. There exists diO with
respect to D if there exists an obfuscator satisfying iO in addition to diO with
respect to a modified distribution D′ over P ′ × P ′ for slightly enriched program
class P ′, and no auxiliary input.
3 As is the case for nearly all existing FHE constructions (e.g., [13,21]).
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Our transformation applies to a recent result of Garg et al. [20], which shows
that based on a new assumption (pertaining to special-purpose obfuscation of
Turing machines) general-purpose diO w.r.t. auxiliary input cannot exist, by
constructing a distribution over circuits and bounded-length auxiliary inputs for
which no obfuscator can be diO-secure. Our resulting conclusion is that, assum-
ing such special-purpose obfuscation exists, then general-purpose diO cannot
exist, even in the absence of auxiliary input.

We view this as evidence that public-coin differing inputs may be the “right”
approach definitionally, as restrictions on auxiliary input without regard to the
programs themselves will not suffice.

Interpretation of Our Results. Our results suggest that one must take care
when making extractability assumptions, even in the presence of specific distri-
butions of auxiliary inputs, and in certain cases even in the absence of auxiliary
input. In particular, we must develop a way to distinguish “good” distributions of
instances and auxiliary inputs (for which extractability assumptions may make
sense) and “bad” ones (for which extractability assumptions are unlikely to hold).
As mentioned above, for some applications of extractability assumptions, it in
fact suffices to consider a particularly simple distribution of auxiliary inputs—
namely the uniform distribution.4 We emphasize that our results do not present
any limitations of extractable one-way functions in the presence of uniform aux-
iliary input, and as such, this still seems like a plausible assumption.

Comparison to [20]. An interesting subsequent5 work of Garg et al. [19,20]
contains a related study of differing-inputs obfuscation. In [20], the authors pro-
pose a new “special-purpose” circuit obfuscation assumption, and demonstrate
based on this assumption an auxiliary input distribution (whose size grows with
the desired circuit size of circuits to be obfuscated) for which general-purpose
diO cannot exist. Using similar techniques of hashing and obfuscating Turing
machines as in the current work, they further conclude that if the new obfusca-
tion assumption holds also for Turing machines, then the “bad” auxiliary input
distribution can have bounded length (irrespective of the circuit size).

Garg et al. [20] show the “special-purpose” obfuscation assumption is a fal-
sifiable assumption (in the sense of [33]) and is implied by virtual black-box
obfuscation for the relevant restricted class of programs, but plausibility of the
notion in relation to other primitives is otherwise unknown. In contrast, our
results provide a direct relation between existing, studied topics (namely, diO,
EOWFs, and SNARKs). Even in the case that the special-purpose obfuscation
assumption does hold, our primary results provide conclusions for public-coin
diO, whereas Garg et al. [20] consider (stronger) standard diO, with respect to
auxiliary input.

4 Note that this is not the case for all applications; e.g. [11,23,26,27] require consid-
ering more complicated distributions.

5 A version of our paper with Theorems 1 and 2 for (standard) differing-inputs obfus-
cation in the place of public-coin diO has been on ePrint since October 2013 [12].
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And, utilizing our final observation (which occurred subsequent to [20]), we
show that based on their same special-purpose obfuscation assumption for Turing
machines, we can in fact rule out general-purpose diO for circuits even in the
absence of auxiliary input.

1.1 Proof Techniques

To explain our techniques, let us first explain earlier arguments against the
plausibility of extractable one-way functions with auxiliary input. For simplicity
of notation, we focus on extractable one-way function over {0, 1}k → {0, 1}k (as
opposed to over {0, 1}k → {0, 1}�(k) for some polynomial �), but emphasize that
the approach described directly extends to the more general setting.

Early Intuitions. As mentioned above, already the original work of Hada and
Tanaka [27], which introduced auxiliary input extractable one-way functions
(EOWFs) (for the specific case of exponentiation), argued the “unreasonable-
ness” of such functions, reasoning informally that the auxiliary input could con-
tain a program that evaluates the function, and thus a corresponding extractor
must be able to “reverse-engineer” any such program. Bitansky et al. [5] made
this idea more explicit: Given some candidate EOWF family F , consider the
distribution ZF over auxiliary input formed by “obfuscating” a program Πs(·)
for uniformly chosen s, where Πs(·) takes as input a function index e from the
alleged EOWF family F = {fi}, applies a pseudorandom function (PRF) with
hardcoded seed s to the index i, and then outputs the evaluation fi(PRFs(i)).
Now, consider an attacker A who, given an index i, simply runs the obfuscated
program to obtain a “random” point in the range of fi. If it were possible to
obfuscate Πs in a “virtual black-box (VBB)” way (as in [2]), then it easily fol-
lows that any extractor E for this particular attacker A can invert fi. Intuitively,
the VBB-obfuscated program hides the PRF seed s (revealing, in essence, only
black-box access to Πs), and so if E can successfully invert fi on A’s output
fi(PRFs(i)) on a pseudorandom input PRFs(i), he must also be able to invert
for a truly random input. Formally, given an index i and a random point y in
the image of fi, we can “program” the output of Πs(i) to simply be y, and thus
E will be forced to invert y.

The problem with this argument is that (as shown by Barak et al. [2]), for
large classes of functions VBB program obfuscation simply does not exist.

The Work of [7] and the “Punctured Program” Paradigm of [34]. Intriguingly,
Bitansky, Canetti, Rosen and Paneth [7] show that by using a particular PRF
and instead relying on indistinguishability obfuscation, the above argument still
applies! To do so, they rely on the powerful “punctured-program” paradigm of
Sahai and Waters [34] (and the closely related work of Hohenberger, Sahai and
Waters [28] on “instantiating random oracles”). Roughly speaking, the punc-
tured program paradigm shows that if we use indistinguishability obfuscation



242 E. Boyle and R. Pass

to obfuscate a (function of) a special kind of “puncturable” PRF6 [8,11,31],
we can still “program” the output of the program on one input (which was
used in [28,34] to show various applications of indistinguishability obfuscation).
Bitansky et al. [7] show that by using this approach, then from any alleged
extractor E we can construct a one-way function inverter Inv by “program-
ming” the output of the program Πs at the input i with the challenge value y.
More explicitly, mirroring [28,34], they consider a hybrid experiment where E is
executed with fake (but indistinguishable) auxiliary input, formed by obfuscat-
ing a “punctured” variant Πs

i,y of the program Πs that contains an i-punctured
PRF seed s∗ (enabling evaluation of PRFs(j) for any j �= i) and directly outputs
the hardcoded value y := fi(PRFs(i)) on input i: indistinguishability of this aux-
iliary input follows by the security of indistinguishability obfuscation since the
programs Πs

i,y and Πs are equivalent when y = fi(PRFs(i)) = Πs(i). In a sec-
ond hybrid experiment, the “correct” hardcoded value y is replaced by a random
evaluation fi(u) for uniform u; here, indistinguishability of the auxiliary inputs
follows directly by the security of the punctured PRF. Finally, by indistinguisha-
bility of the three distributions of auxiliary input in the three experiments, it
must be that E can extract an inverse to y with non-negligible probability in each
hybrid; but, in the final experiment this implies the ability to invert a random
evaluation, breaking one-wayness of the EOWF.

The Problem: Dependence on F . Note that in the above approach, the auxiliary
input distribution is selected as a function of the family F = {fj} of (alleged)
extractable one-way functions. Indeed, the obfuscated program Πs must be able
to evaluate fj given j. One may attempt to mitigate this situation by instead
obfuscating a universal circuit that takes as input both F and the index j,
and appropriately evaluates fj . But here still the size of the universal circuit
must be greater than the running time of fj , and thus such an auxiliary input
distribution would only rule out EOWFs with a-priori bounded running time.
This does not suffice for what we aim to achieve: in particular, it still leaves open
the possibility that for every distribution of auxiliary inputs, there may exist a
family of extractable one-way functions that remains secure for that particular
auxiliary input distribution (although the running time of the extractable one-
way function needs to be greater than the length of the auxiliary input).

A First Idea: Using Turing Machine Obfuscators. At first sight, it would appear
this problem could be solved if we could obfuscate Turing machines. Namely, by
obfuscating a universal Turing machine in the place of a universal circuit in the
construction above, the resulting program Πs would depend only on the size of
the PRF seed s, and not on the runtime of fj ∈ F .

But there is a catch. To rely on the punctured program paradigm, we must be
able to obfuscate the program Πs in such a way that the result is indistinguishable
6 That is, a PRF where we can surgically remove one point in the domain of the

PRF, keeping the rest of the PRF intact, and yet, even if we are given the seed of
the punctured PRF, the value of the original PRF on the surgically removed point
remains computationally indistinguishable from random.
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from an obfuscation of a related “punctured” program Πs
i,y; in particular, the

size of the obfuscation must be at least as large as |Πs
i,y|. Whereas the size of Πs

is now bounded by a polynomial in the size of the PRF seed s, the description of
this punctured program must specify a punctured input i (corresponding to an
index of the candidate EOWF F) and hardcoded output value y, and hence must
grow with the size of F . We thus run into a similar wall: even with obfuscation
of Turing machines, the resulting auxiliary input distribution Z would only rule
out EOWF with a-priori bounded index length.

Our “Succinct Punctured Program” Technique. To deal with this issue, we
develop a “succinct punctured program” technique. That is, we show how to
make the size of the obfuscation be independent of the length of the input, while
still retaining its usability as an obfuscator. The idea is two-fold: First, we modify
the program Πs to hash the input to the PRF, using a collision-resistant hash
function h. That is, we now consider a program Πh,s(j) = fj(PRFs(h(j))).
Second, we make use of differing-inputs obfuscation, as opposed to just indis-
tinguishability obfuscation. Specifically, our constructed auxiliary input distri-
bution Z will sample a uniform s and a random hash function h (from some
appropriate collection of collision-resistant hash functions) and then output a
differing-inputs obfuscation of Πh,s.

To prove that this “universal” distribution Z over auxiliary input breaks all
alleged extractable one-way functions over {0, 1}k → {0, 1}k, we define a one-
way function inverter Inv just as before, except that we now feed the EOWF
extractor E the obfuscation of the “punctured” variant Πh,s

i,y which contains a
PRF seed punctured at point h(i). The program Πh,s

i,y proceeds just as Πh,s

except on all inputs j such that h(j) is equal to this special value h(i); for those
inputs it simply outputs the hardcoded value y. (Note that the index i is no
longer needed to specify the function Πh,s

i,y —rather, just its hash h(i)—but is
included for notational convenience). As before, consider a hybrid experiment
where y is selected as y := Πh,s(i).

Whereas before the punctured program was equivalent to the original, and
thus indistinguishability of auxiliary inputs in the different experiments followed
by the definition of indistinguishability obfuscation, here it is no longer the
case that if y = Πh,s(i), then Πh,s

i,y is equivalent to Πh,s—in fact, they may
differ on many points. More precisely, the programs may differ in all points
j such that h(j) = h(i), but j �= i (since fj and fi may differ on the input
PRFs(h(i))). Thus, we can no longer rely on indistinguishability obfuscation to
provide indistinguishability of these two hybrids.

We resolve this issue by relying differing-inputs obfuscation instead of just
indistinguishability obfuscation. Intuitively, if obfuscations of Πh,s and Πh,s

i,y can
be distinguished when y is set to Πh,s(i), then we can efficiently recover some
input j where the two programs differ. But, by construction, this must be some
point j for which h(j) = h(i) (or else the two program are the same), and j �= i
(since we chose the hardcoded value y = Πh,s(i) to be consistent with Πh,s on
input i. Thus, if the obfuscations can be distinguished, we can find a collision in
h, contradicting its collision resistance.
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To formalize this argument using just public-coin diO, we require that h is
a public-coin collision-resistant hash function [29].

1.2 Removing Auxiliary Input in diO
The notion of public-coin diO is weaker than “general” (not necessarily public-
coin) diO in two aspects: (1) the programs M0, M1 are sampled using only public
randomness, and (2) we consider only a very specific auxiliary input that is given
to the attacker—namely the randomness of the sampling procedure.

In this section, we explore another natural restriction of diO where we simply
disallow auxiliary input, but allow for “private” sampling of M0, M1. We show
that “bad side information” cannot be circumvented simply by simply disallow-
ing auxiliary input, but rather such information can appear in the input-output
behavior of the programs to be obfuscated.

More precisely, we show that for any distribution D over P × P × {0, 1}� of
programs P and bounded-length auxiliary input, the existence of diO w.r.t. D is
directly implied by the existence of any indistinguishability obfuscator (iO) that
is diO-secure for a slightly enriched distribution of programs D′ over P ′ × P ′,
without auxiliary input.

Intuitively, this transformation works by embedding the “bad auxiliary input”
into the input-output behavior of the circuits to be obfuscated themselves. That
is, the new distribution D′ is formed by sampling first a triple (P0, P1, z) of pro-
grams and auxiliary input from the original distribution D, and then instead
considering the tweaked programs P z

0 , P z
1 that have a special additional input

x∗ (denoted later as “mode = ∗”) for which P z
0 (x∗) = P z

1 (x∗) is defined to be
z. This introduces no new differing inputs to the original program pair P0, P1,
but now there is no hope of preventing the adversary from learning z without
sacrificing correctness of the obfuscation scheme.

A technical challenge arises in the security reduction, however, in which we
must modify the obfuscation of the z-embedded program P z

b to “look like” an
obfuscation of the original program Pb. Interestingly, this issue is solved by mak-
ing use of a second layer of obfuscation, and is where the iO security of the
obfuscator is required. We refer the reader to the full version of this work for
details.

1.3 Other Applications of the “Succinct Punctured Program”
Technique

As mentioned above, the “punctured program” paradigm of [34] has been used
in multiple applications (e.g., [9,17,28,34]). Many of them rely on punctured
programs in an essentially identical way to the approach described above, and
in particular follow the same hybrids within the security proof. Furthermore, for
some of these applications, there are significant gains in making the obfuscation
succinct (i.e., independent of the input size of the obfuscated program). Thus, for
these applications, if we instead rely on public-coin differing-inputs obfuscation
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(and the existence of public-coin collision-resistant hash functions), by using our
succinct punctured program technique, we can obtain significant improvements.
For instance, relying on the same approach as above, we can show based on these
assumptions:

– “Succinct” Perfect Zero-Knowledge Non-Interactive Universal Argument Sys-
tem (with communication complexity kε for every ε), by relying on the non-
succinct Perfect NIZK construction of [34].

– A universal instantiation of Random Oracles, for which the Full Domain Hash
(FDH) signature paradigm [4] is (selectively) secure for every trapdoor (one-
to-one) function (if hashing not only the message but also the index of the
trapdoor function), by relying on the results of [28] showing how to provide a
trapdoor-function specific instantiation of the random oracle in the FDH.7

1.4 Overview of Paper

We focus in this extended abstract on the primary result: the conflict between
public-coin differing inputs obfuscation and extractable OWFs (and SNARKs).
Further preliminaries, applications of our succinct punctured programs tech-
nique, and our transformation removing auxiliary input in differing-inputs obfus-
cation are deferred to the full version [12].

2 Preliminaries

2.1 Public-Coin Differing-Inputs Obfuscation

The notion of public-coin differing-inputs obfuscation (PC-diO) was introduced
by Ishai et al. [30] as a refinement of (standard) differing-inputs obfuscation [2]
to exclude certain cases whose feasibility has been called into question. (Note
that we also consider “standard” differing-inputs obfuscation as described in
Sect. 1.2. For a full treatment of the notion and our result, we refer the reader
to the full version of this work [12]).

We now present the PC-diO definition of [30], focusing only on Turing
machine obfuscation; the definition easily extends also to circuits.

Definition 1 (Public-Coin Differing-Inputs Sampler for TMs). An effi-
cient non-uniform sampling algorithm Samp = {Sampk} is called a public-coin
differing inputs sampler for the parameterized collection of TMs M = {Mk} if
the output of Sampk is always a pair of Turing machines (M0,M1) ∈ Mk × Mk

7 That is, [28] shows that for every trapdoor one-to-one function, there exists some way
to instantiate the random oracle so that the resulting scheme is secure. In contrast,
our results shows that there exists a single instantiation that works no matter what
the trapdoor function is.
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such that |M0| = |M1| and for every efficient non-uniform algorithm A = {Ak}
there exists a negligible function ε such that for all k ∈ N,

Pr
[
r ← {0, 1}∗; (M0,M1) ← Sampk(r); (x, , 1t) ← Ak(r)

:
(
M0(x) �= M(x)

) ∧ (
steps(M0, x) = steps(M1, x)

)] ≤ ε(k).

Definition 2 (Public-Coin Differing-Inputs Obfuscator for TMs).
A uniform PPT algorithm O is a public-coin differing-inputs obfuscator for the
collection M = {Mk} if the following requirements hold:

– Correctness: For every k ∈ N, every M ∈ Mk, and every x, we have that
Pr[M̃ ← O(1k,M) : M̃(x) = M(x)] = 1.

– Security: For every public-coin differing-inputs sampler Samp = {Sampk}
for the ensemble M, every efficient non-uniform distinguishing algorithm D =
{Dk}, there exists a negligible function ε such that for all k,

∣∣Pr[r ← {0, 1}∗; (M0, M1) ← Sampk(r); M̃ ← O(1k, M0) :Dk(r, M̃) = 1]−
Pr[r ← {0, 1}∗; (M0, M1) ← Sampk(r); M̃ ← O(1k, M1) :Dk(r, M̃) = 1]

∣∣ ≤ ε(k).

2.2 Extractable One-Way Functions

We present a non-uniform version of the definition, in which both one-wayness
and extractability are with respect to non-uniform polynomial-time adversaries.

Definition 3 (Z-Auxiliary-Input EOWF). Let �,m be polynomially
bounded length functions. An efficiently computable family of functions

F =
{

fi : {0, 1}k → {0, 1}�(k)
∣
∣
∣ i ∈ {0, 1}m(k), k ∈ N

}
,

associated with an efficient probabilistic key sampler KF , is a Z-auxiliary-input
extractable one-way function if it satisfies:

– One-wayness: For non-uniform poly-time A and sufficiently large k ∈ N,

Pr
[
z ← Zk; i ← KF (1k); x ← {0, 1}k; x′ ← A(i, fi(x); z)

: fi(x′) = fi(x)
] ≤ negl(k).

– Extractability: For any non-uniform polynomial-time adversary A, there
exists a non-uniform polynomial-time extractor E such that, for sufficiently
large security parameter k ∈ N:

Pr
[
z ← Zk; i ← KF (1k); y ← A(i; z); x′ ← E(i; z)

: ∃x s.t. fi(x) = y ∧ fi(x′) �= y
] ≤ negl(k).
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2.3 Succinct Non-Interactive Arguments of Knowledge (SNARKs)

We focus attention to publicly verifiable succinct arguments. We consider succinct
non-interactive arguments of knowledge (SNARKs) with adaptive soundness in
Sect. 3.2, and consider the case of specific distributional auxiliary input.

Definition 4 (Z-Auxiliary Input Adaptive SNARK). A triple of algo-
rithms (CRSGen,Prove,Verify) is a publicly verifiable, adaptively sound succinct
non-interactive argument of knowledge (SNARK) for the relation R if the fol-
lowing conditions are satisfied for security parameter k:

– Completeness: For any (x,w) ∈ R,

Pr[crs ← CRSGen(1k);π ← Prove(x,w, crs) : Verify(x, π, crs) = 1] = 1.

In addition, Prove(x,w, crs) runs in time poly(k, |y|, t).
– Succinctness: The length of the proof π output by Prove(x,w, crs), as well

as the running time of Verify(x, π, crs), is bounded by p(k + |X|), where p is
a universal polynomial that does not depend on R. In addition, CRSGen(1k)
runs in time poly(k): in particular, crs is of length poly(k).

– Adaptive Proof of Knowledge: For any non-uniform polynomial-size
prover P ∗ there exists a non-uniform polynomial-size extractor EP ∗ , such that
for all sufficiently large k ∈ N and auxiliary input z ← Z, it holds that

Pr[z ← Z; crs ← CRSGen(1k); (x, π) ← P ∗(z, crs);
(x,w) ← EP ∗(z, crs) : Verify(crs, x, π) = 1 ∧ w /∈R(x)] ≤ negl(k).

In the full version of this work, we obtain as an application of our succinct
programs technique zero-knowledge (ZK) succinct non-interactive arguments
(SNARGs), without the extraction property. We refer the reader to [12] for
a full treatment.

2.4 Puncturable PRFs

Our result makes use of puncturable PRFs, which are PRFs with an extra capa-
bility to generate keys that allow one to evaluate the function on all bit strings
of a certain length, except for any polynomial-size set of inputs. We focus on the
simple case of puncturing PRFs at a single point: that is, given a punctured key
k∗ with respect to input x, one can efficiently evaluate the PRF at all points
except x, whose evaluation remains pseudorandom. We refer the reader to [34]
for a formal definition.

As observed in [8,11,31], the GGM tree-based PRF construction [22] yields
puncturable PRFs, based on any one-way function.

Theorem 4 ([8,11,31]). If one-way functions exist, then for all efficiently com-
putable m′(k) and �(k), there exists a puncturable PRF family that maps m′(k)
bits to �(k) bits, such that the size of a punctured key is O(m′(k) · �(k)).
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3 Public-Coin Differing-Inputs Obfuscation
or Extractable One-Way Functions

In this section, we present our main result: a conflict between extractable one-
way functions (EOWF) w.r.t. a particular distribution of auxiliary information
and public-coin differing-inputs obfuscation (“PC−diO”) (for Turing Machines).

3.1 From PC-diO to Impossibility of Z-Auxiliary-Input EOWF

We demonstrate a bounded polynomial-time uniformly samplable distribution Z
(with bounded poly-size output length) and a public-coin differing-inputs sam-
pler for Turing Machines D (over TM×TM) such that if there exists public-coin
differing-inputs obfuscation for Turing machines (and, in particular, for the pro-
gram sampler D), and there exist public-coin collision-resistant hash functions
(CRHF), then there do not exist extractable one-way functions (EOWF) w.r.t.
auxiliary information sampled from distribution Z. In our construction, Z con-
sists of an obfuscated Turing machine.

We emphasize that we provide a single distribution Z of auxiliary inputs for
which all candidate EOWF families F with given output length will fail. This
is in contrast to the result of [7], which show for each candidate family F that
there exists a tailored distribution ZF (whose size grows with |F|) for which F
will fail.

Theorem 5. For every polynomial �, there exists an efficient, uniformly sam-
plable distribution Z such that, assuming the existence of public-coin collision-
resistant hash functions and public-coin differing-inputs obfuscation for Turing
machines, then there cannot exist Z-auxiliary-input extractable one-way func-
tions {fi : {0, 1}k → {0, 1}�(k)}.
Proof. We construct an adversary A and desired distribution Z on auxiliary
inputs, such that for any alleged EOWF family F , there cannot exist an efficient
extractor corresponding to A given auxiliary input from Z (assuming public-coin
CRHFs and PC − diO).

The Universal Adversary A. We consider a universal PPT adversary A that,
given (i, z) ∈ {0, 1}poly(k) × {0, 1}n(k), parses z as a Turing machine and returns
z(i). Note that in our setting, i corresponds to the index of the selected function
fi ∈ F , and (looking ahead) the auxiliary input z will contain an obfuscated
program.

The Auxiliary Input Distribution Z. Let PRF = {PRFs : {0, 1}m(k) →
{0, 1}k}s∈{0,1}k be a puncturable pseudorandom function family, and H = {Hk}
a public-coin collision-resistant hash function family with h : {0, 1}∗ → {0, 1}m(k)

for each h ∈ Hk. (Note that by Theorem4, punctured PRFs for these parameters
exist based on OWFs, which are implied by CRHF). We begin by defining two
classes of Turing machines:
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M =
{

Πh,s
∣
∣
∣ s ∈ {0, 1}k, h ∈ Hk, k ∈ N

}
,

M∗ =
{

Πh,s
i,y

∣
∣
∣ s ∈ {0, 1}k, y ∈ {0, 1}�(k), h ∈ Hk, k ∈ N

}
,

which we now describe. We assume without loss of generality for each k that the
corresponding collection of Turing machines Πh,s ∈ Mk, Πh,s

i,y ∈ M∗
k are of the

same size; this can be achieved by padding. (We address the size bound of each
class of machines below). In a similar fashion, we may further assume that for
each k the runtime of each Πh,s and Πh,s

i,y on any given input fi is equal.
At a high level, each machine Πh,s accepts as input a poly-size circuit descrip-

tion of a function fi (with canonical description, including a function index i),
computes the hash of the corresponding index i w.r.t. the hardcoded hash func-
tion h, applies a PRF with hardcoded seed s to the hash, and then evaluates
the circuit fi on the resulting PRF output value x: that is, Πh,s

i,y (fi) outputs
Uk(fi,PRFs(h(i))), where Uk is the universal Turing machine. See Fig. 1. Note
that each Πh,s can be described by a Turing machine of size O(|s| + |h| + |Uk|),
which is bounded by p(k) for some fixed polynomial p.

Turing Machine Πh,s:

Hardwired: Hash function h : {0, 1}∗ → {0, 1}m(k), PRF seed s ∈ {0, 1}k.
Inputs: Circuit description fi

1. Hash the index: v = h(i).
2. Compute the PRF on this hash: x = PRFs(v).
3. Output the evaluation of the universal Turing machine on inputs fi, x: i.e.,

y = Uk(fi, x).

Fig. 1. Turing machines Πh,s ∈ M.

Fig. 2. The auxiliary input distribution Zk.

The machines Πh,s
i,y perform a similar task, except that instead of having the

entire PRF seed s hardcoded, they instead only have a punctured seed s∗ derived
from s by puncturing it at the point h(i) (i.e., enabling evaluation of the PRF
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on all points except h(i)). In addition, it has hardwired an output y to replace
the punctured result. More specifically, on input a circuit description fj (with
explicitly specified index j), the program Πh,s

i,y first computes the hash h = h(j),
continues computation as usual for any h �= h(i) using the punctured PRF key,
and for h = h(i), it skips the PRF and Uk evaluation steps and directly outputs
y. Note that because h is not injective, this puncturing may change the value
of the program on multiple inputs fj (corresponding to functions fj ∈ F with
h(j) = h(i)). When the hardcoded value y is set to y = fi(PRFs(h(i))), then
Πh,s

i,y agrees with Πh,s additionally on the input fi, but not necessarily on the
other inputs fj for which h(j) = h(i). (Indeed, whereas the hash of their indices
collide, and thus their corresponding PRF outputs, PRF(h(j)), will agree, the
final step will apply different functions fj to this value).

We first remark that indistinguishability obfuscation arguments will thus not
apply to this scenario, since we are modifying the computed functionality. In
contrast, differing-inputs obfuscation would guarantee that the two obfuscated
programs are indistinguishable, since otherwise we could efficiently find one of
the disagreeing inputs, which would correspond to a collision in the CRHF. But,
most importantly, this argument holds even if the randomness used to sample the
program pair (Πh,s,Πh,s

i,y ) is revealed. Namely, we consider a program sampler
that generates pairs (Πh,s,Πh,s

i,y ) of the corresponding distribution; this amounts
to sampling a hash function h, an EOWF challenge index i, and a PRF seed
s, and a h(i)-puncturing of the seed, s∗. All remaining values specifying the
programs, such as y = fi(PRFs(h(i))), are deterministically computed given
(h, i, s, s∗). Now, since H is a public-coin CRHF family, revealing the randomness
used to sample h ← H is not detrimental to its collision resistance. And, the
values i, s, and s∗ are completely independent of the CRHF security (i.e., a CRHF
adversary reduction could simply generate them on its own in order to break h).
Therefore, we ultimately need only rely on public-coin diO.

We finally consider the size of the program(s) to be obfuscated. Note that each
Πh,s

i,y can be described by a Turing machine of size O(|s∗|+|h|+|y|+|Uk|). Recall
by Theorem 4 the size of the punctured PRF key |s∗| ∈ O(m′(k)�(k)), where the
PRF has input and output lengths m′(k) and �(k). In our application, note that
the input to the PRF is not the function index i itself (in which case the machine
Πh,s

i,y would need to grow with the size of the alleged EOWF family), but rather
the hashed index h(i), which is of fixed polynomial length. Thus, collectively, we
have |Πh,s

i,y | is bounded by a fixed polynomial p′(k), and finally that there exists a
single fixed polynomial bound on the size of all programs Πh,s ∈ M,Πh,s

i,y ∈ M∗.
This completely determines the auxiliary input distribution Z = {Zk}, described
in full in Fig. 2. (Note that the size of the auxiliary output generated by Z, which
corresponds to an obfuscation of an appropriately padded program Πh,s is thus
also bounded by a fixed polynomial in k).

A Has No Extractor. We show that, based on the assumed security of the
underlying tools, the constructed adversary A given auxiliary input from the
constructed distribution Z = {Zk}, cannot have an extractor E satisfying
Definition 3:
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Turing Machine Πh,s
i,y :

Hardwired: Hash function h : {0, 1}∗ → {0, 1}m(k), punctured PRF seed s∗ ∈ {0, 1}k,
punctured point h(i), bit string y ∈ {0, 1}�(k).

Input: Circuit description fj (containing index j)
1. Hash the index: v = h(j).
2. If v �= h(i), compute x = PRFs∗(v), and output Uk(fj , x).
3. If v = h(i), output y.

Fig. 3. “Punctured” Turing machines Πh,s
i,y ∈ M∗.

Fig. 4. The “punctured” distribution Zk(i, y).

Proposition 1. For any non-uniform polynomial-time candidate extractor E
for A, it holds that E fails with overwhelming probability: i.e.,

Pr
[
z ← Zk; i ← KF (1k); y ← A(i; z); x′ ← E(i; z)

: ∃x s.t. fi(x) = y ∧ fi(x′) �= y
]

≥ 1 − negl(k).

Proof. First note that given auxiliary input z ← Zk, A produces an element in
the image of the selected fi with high probability. That is,

Pr
[
z ← Zk; i ← KF (1k); y ← A(i; z) : ∃x s.t. fi(x) = y

] ≥ 1 − negl(k).

Indeed, by the definition of A and Zk, and the correctness of the obfuscator
PC − diO, then we have with overwhelming probability

A(i; z) = M̃(fi) = Πh,s(fi) = fi(PRFs(h(i))),

where z = M̃ is an obfuscation of Πh,s ∈ M; i.e., z = M̃ ← PC − diO(Πh,s).
Now, suppose for contradiction that there exists a non-negligible function

ε(k) such that for all k ∈ N the extractor E successfully outputs a preimage
corresponding to the output A(i; z) ∈ Range(fi) with probability ε(k): i.e.,

Pr
[
z ← Zk; i ← KF (1k); x′ ← E(i; z)

: fi(x′) = A(i; z) = fi(PRFs(h(i)))
]

≥ ε(k).
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where as before, s, h are such that z = PC − diO(Πh,s). We show that this
cannot be the case, via three steps.

Step 1: Replace Z with “punctured” distribution Z(i, y). For every index i of the
EOWF family F and k ∈ N, consider an alternative distribution Zk(i, y) that,
instead of sampling and obfuscating a Turing machine Πh,s from the class M,
as is done for Z, it does so with a Turing machine Πh,s

i,y ∈ M∗ as follows. First,
it samples a hash function h ← Hk and PRF seed s as usual. It then generates
a punctured PRF key s∗ ← Punct(s, h(i)) that enables evaluation of the PRF on
all points except the value h(i). For the specific index i, it computes the correct
full evaluation y := fi(PRFs(h(i))). Finally, Zk(i, y) outputs an obfuscation of
the constructed program Πh,s

i,y as specified in Fig. 3 from the values (h, s∗, y):
i.e., M̃ ← PC − diO(Πh,s

i,y ). See Fig. 4 for a full description of Z(i, y).
We now argue that the extractor E must also succeed in extracting a preimage

when given a value z∗ ← Zk(i, y) from this modified distribution instead of Zk.
Consider the Turing Machine program sampler algorithm Samp as in Fig. 5.

Program Pair Sampler Samp(1k, r):

1. Sample a hash function h = Hk(rh).
2. Sample an EOWF index i = KF (1k; ri).
3. Sample a PRF seed s = KPRF(1

k; rs).
4. Sample a punctured PRF seed s∗ = Punct(s, h(i); r∗).
5. Let y = fi(PRFs(h(i))).
6. Denote r := (rh, ri, rs, r∗).
7. Output program pair (Πh,s, Πh,s

i,y ), defined by h, i, s, s∗, y as above (and padded to
equal length).

Fig. 5. Program pair sampler algorithm, to be used in public-coin differing inputs
security step.

We first argue that, by the (public-coin) collision resistance of the hash family
H, the sampler algorithm Samp is a public-coin differing-inputs sampler, as per
Definition 1.

Claim. Samp is a public-coin differing-inputs sampler. That is, for all efficient
non-uniform APC, there exists a negligible function ε such that for all k ∈ N,

Pr
[
r ← {0, 1}∗; (M0,M1) ← Samp(1k, r); (x, 1t) ← APC(1k, r) :

M0(x) �= M1(x) ∧ steps(M0, x) = steps(M1, x) = t
] ≤ ε(k). (1)

Proof. Suppose, to the contrary, there exists an efficient (non-uniform) adver-
sary APC and non-negligible function α(k) for which the probability in Eq. 1 is
greater than α(k). We show such an adversary contradicts the security of the
(public-coin) CRHF. Consider an adversary ACR in the CRHF security challenge.
Namely, for a challenge hash function h ← Hk(rh), the adversary ACR receives
h, rh, and performs the following steps:
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CRHF adversary ACR(1k, h, rh):
1. Imitate the remaining steps of Samp. That is, sample an EOWF index

i = KF (1k; ri); a PRF seed s = KPRF(1k; rs); and a punctured PRF seed
s∗ = Punct(s, h(i); r∗). Define y = fi(PRFs(h(i))) and r = (rh, ri, rs, r∗),
and let M0 = Πh,s and M1 = Πh,s

i,y .
2. Run APC(1k, r) on the collection of randomness r used above. In response,

APC returns a pair (x, 1t).
3. ACR outputs the pair (i, x) as an alleged collision in the challenge hash

function h.

Now, by assumption, the value x generated by APC satisfies (in particular) that
M0(x) �= M1(x). From the definition of M0,M1 (i.e., Πh,s,Πh,s

i,y ), this must mean
that h(i) = h(x) (since all values with h(x) �= h(i) were not changed from Πh,s

to Πh,s
i,y ), and that i �= x (since Πh,s

i,y (i) was specifically “patched” to the correct
output value Πh,s(i)). That is, ACR successfully identifies a collision with the
same probability α(k), which must thus be negligible.

We now show that this implies, by the security of the public-coin diO, that
our original EOWF extractor E must succeed with nearly equivalent probability
in the EOWF challenge when instead of receiving (real) auxiliary input from
Zk, both E and A are given auxiliary input from the fake distribution Zk(i, y).
(Recall that ε is assumed to be E ’s success in the same experiment as below but
with z ← Zk instead of z∗ ← Zk(i, y)).

Lemma 1. It holds that

Pr
[
i ← KF (1k); z∗ ← Zk(i, y); x′ ← E(i; z∗) :

fi(x′) = A(i; z∗) = fi(PRFs (h(i)))
]

≥ ε(k) − negl(k). (2)

Proof. Note that given z∗ ← Zk(i, y) (which corresponds to an obfuscated
program of the form Πh,s

i,y ) our EOWF adversary A indeed will still output
Πh,s

i,y (i) = y := fi(PRFs(h(i))) (see Figs. 3,4).
Now, suppose there exists a non-negligible function α(k) for which the prob-

ability in Eq. (2) is less than ε(k) − α(k). We directly use such E to design
another adversary AdiO to contradict the security of the public-coin diO with
respect to the program pair sampler Samp (which we showed in Claim 3.1 to be
a void public-coin differing inputs sampler). Recall the diO challenge samples a
program pair (Πh,s,Πh,s

i,y ) ← Samp(1k, r), selects a random M ← {Πh,s,Πh,s
i,y }

to obfuscate as M̃ ← PC− diO(1k,M), and gives as a challenge the pair (r, M̃)
of the randomness used by Samp and obfuscated program. Define AdiO (who
wishes to distinguish which program was selected) as follows.
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PC-diO adversary AdiO(1k, r, M̃):

1. Parse the given randomness r used in Samp as r = (rh, ri, rs, r∗) (see
Fig. 5).

2. Recompute the “challenge index” i = KF (1k; ri). Let z∗ = M̃ .
3. Run the extractor algorithm E(i; z∗), and receive an alleged preimage x′.
4. Recompute h = Hk(rh), s = KPRF(1;rs), again using the randomness

from r.
5. If fi(x′) = fi(PRFs(h(i))) — i.e., if E succeeded in extracting a preimage

— then AdiO outputs 1. Otherwise, AdiO outputs 0.

Now, if M̃ is an obfuscation of Πh,s, then this experiment corresponds directly
to the EOWF challenge where E (and A) is given auxiliary input z ← Zk.
On the other hand, if M̃ is an obfuscation of Πh,s

i,y , then the experiment corre-
sponds directly to the same challenge where E (and A) is given auxiliary input
z∗ ← Zk(i, y). Thus, AdiO will succeed in distinguishing these two cases with
probability at least [ε(k)] − [ε(k) − α(k)] = α(k). By the security of PC− diO, it
hence follows that α(k) must be negligible.

Step 2: Replace “correct” hardcoded y in Z(i, y) with random fi evaluation. Next,
we consider another experiment where Zk(i, y) is altered to a nearly identical dis-
tribution Zk(i, u) where, instead of hardcoding the “correct” i-evaluation value
y = fi(PRFs(h(i))) in the generated “punctured” program Πh,s

i,y , the distribution
Zk(i, u) now simply samples a random fi output y = fi(u) for an independent
random u ← {0, 1}k. We claim that the original EOWF extractor E still succeeds
in finding a preimage when given this new auxiliary input distribution:

Lemma 2. It holds that

Pr
[
i ← KF (1k); z∗∗ ← Zk(i, u); x′ ← E(i; z∗∗) :

fi(x′) = A(i; z∗∗) = fi(u)
]

≥ ε(k) − negl(k). (3)

Proof. This follows from the fact that PRFs(h(i)) is pseudorandom, even given
the h(i)-punctured key s∗.

Formally, consider an algorithm A0
PRF which, on input the security parameter

1k, a pair of values i, h, and a pair s∗, x (that will eventually correspond to a
challenge punctured PRF key, and either PRFs(h(i)) or random u), performs the
following steps.

Algorithm A0
PRF(1

k, i, h, s∗, x):

1. Take y = fi(x), and obfuscate the associated program Πh,s
i,y : i.e., z∗∗ ←

PC − diO(1k,Πh,s
i,y ).

2. Run the EOWF extractor given index i and auxiliary input z∗∗: x′ ←
E(i; z∗∗).
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3. Output 0 if E succeeds in extracting a valid preimage: i.e., if fi(x′) =
y∗ = fi(x). Otherwise, output a random bit b ← {0, 1}.

Now, suppose Lemma 2 does not hold: i.e., the probability in Eq. (3) differs
by some non-negligible amount from ε(k). Then, expanding out the sampling
procedure of Zk(i, y) and Zk(i, u), we have for some non-negligible function
α(k) that

Pr
[
i ←KF (1k); h ← Hk; s ← KPRF (1k); s∗ ← Punct(s, h(i));

u ← {0, 1}k; b ← {0, 1} : A0
PRF(1

k, i, h, xb) = b
]

≥ 1
2

+ α(k), (4)

where x0 := PRFs(h(i)) and x1 := u. Indeed, in the case b = 0, the auxiliary
input z∗∗ generated by APRF and given to E has distribution exactly Z(i, y),
whereas in the case b = 1, the generated z∗∗ has distribution exactly Z(i, u).

In particular, there exists a polynomial p(k) such that for infinitely many k,
there exists an index ik and hash function hk ∈ Hk with

Pr
[
s ← KPRF (1k); s∗ ← Punct(s, h(ik)); u ← {0, 1}k;

b ← {0, 1} : A0
PRF(1

k, ik, h, xb) = b
]

≥ 1
2

+
1

p(k)
, (5)

where x0, x1 are as before.
Consider a non-uniform punctured-PRF adversary AI

PRF (with the ensemble
I = {ik, hk} hardcoded) that first selects the challenge point hk(ik); receives
the PRF challenge information (s∗, x) for this point; executes A0

PRF on input
(1k, ik, hk, s∗, x), and outputs the corresponding bit b output by A0

PRF. Then by
(5), it follows that AI

PRF breaks the security of the punctured PRF.

Step 3: Such an extractor breaks one-wayness of EOWF. Finally, we observe that
this means that E can be used to break the one-wayness of the original function
family F . Indeed, given a random key i and a challenge output y = fi(u), an
inverter can simply sample a hash function h and h(i)-punctured PRF seed s∗

on its own, construct the program Πh,s
i,y with its challenge y hardcoded in, and

sample an obfuscation z∗∗ ← PC− diO(Πh,s
i,y ). Finally, it runs E(i, z∗∗) to invert

y∗, with the same probability ε(k) − negl(k).
This concludes the proof of Theorem5.

3.2 PC-diO or SNARKs

We link the existence of public-coin differing-inputs obfuscation for NC1 and
the existence of succinct non-interactive arguments of knowledge (SNARKs),
via an intermediate step of proximity extractable one-way functions (PEOWFs),
a notion related to EOWFs, introduced in [5]. Namely, assume the existence of
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fully homomorphic encryption (FHE) with decryption in NC1 and public-coin
collision-resistant hash functions. Then, building upon the results of the previous
subsection, and the results of [5,30], we show:

1. Assuming SNARKs for NP, there exists an efficient distribution Z such that
public-coin differing-inputs obfuscation for NC1 implies that there cannot
exist PEOWFs {f : {0, 1}k → {0, 1}k} w.r.t. Z.

2. PEOWFs {f : {0, 1}k → {0, 1}k} w.r.t. this auxiliary input distribution Z
are implied by the existence of SNARKs for NP secure w.r.t. a second efficient
auxiliary input distribution Z ′, as shown in [5].

3. Thus, one of these conflicting hypotheses must be false. That is, there exists an
efficient distribution Z ′ such that assuming existence of FHE with decryption
in NC1 and collision-resistant hash functions, then either: (1) public-coin
differing-inputs obfuscation for NC1 does not exist, or (2) SNARKS for NP
w.r.t. Z ′ do not exist.

Note that we focus on the specific case of PEOWFs with k-bit inputs and
k-bit outputs, as this suffices to derive the desired contradiction; however, the
theorems following extend also to the more general case of PEOWF output length
(demonstrating an efficient distribution Z to rule out each potential output
length �(k)).

Proximity EOWFs. We begin by defining Proximity EOWFs.

Proximity Extractable One-Way Functions (PEOWFs). In a Proximity EOWF
(PEOWF), the extractable function family {fi} is associated with a “proximity”
equivalence relation ∼ on the range of fi, and the one-wayness and extractabil-
ity properties are modified with respect to this relation. The one-wayness is
strengthened: not only must it be hard to find an exact preimage of v, but it is
also hard to find a preimage of any equivalent v ∼ v′. The extractability require-
ment is weakened accordingly: the extractor does not have to output an exact
preimage of v, but only a preimage of of some equivalent value v′ ∼ v.

As an example, consider functions of the form f : x �→ (f1(x), f2(x)) and
equivalence relation on range elements (a, b) ∼ (a, b′) whose first components
agree. Then the proximity extraction property requires for any adversary A who
outputs an image element (a, b) ∈ Range(f) that there exists an extractor E
finding an input x s.t. f(x) = (a, b′) for some b′ not necessarily equal to b.

In this work, we allow the relation ∼ to depend on the function index i,
but require that the relation ∼ is publicly (and efficiently) testable. We further
consider non-uniform adversaries and extraction algorithms, and (in line with
this work) auxiliary inputs coming from a specified distribution Z.

Definition 5 (Z-Auxiliary-Input Proximity EOWFs). Let �,m be poly-
nomially bounded length functions. An efficiently computable family of functions

F =
{

fi : {0, 1}k → {0, 1}�(k)
∣
∣
∣ i ∈ {0, 1}m(k), k ∈ N

}
,
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associated with an efficient probabilistic key sampler KF , is a Z-auxiliary-input
proximity extractable one-way function if it satisfies the following (strong) one-
wayness, (weak) extraction, and public testability properties:

– (Strengthened) One-wayness: For non-uniform polynomial-time A and
sufficiently large security parameter k ∈ N,

Pr
[
z ← Zk; i ← KF (1k); x ← {0, 1}k; x′ ← A(i, fi(x); z)

: fi(x′) ∼ fi(x)
]

≤ negl(k).

– (Weakened) Extractability: For any non-uniform polynomial-time adver-
sary A, there exists a non-uniform polynomial-time extractor E such that, for
sufficiently large security parameter k ∈ N,

Pr
[
z ← Zk; i ← KF (1k); y ← A(i; z); x′ ← E(i; z)

: ∃x s.t. fi(x) = y ∧ fi (x′) �∼ y
]

≤ negl(k).

– Publicly Testable Relation: There exists a deterministic polytime machine
T such that, given the function index i, T accepts y, y′ ∈ {0, 1}�(k) if and only
if y ∼k y′.

(PC − diO for NC 1 + PC-CRHF + FHE + SNARK ) ⇒ No
Z-PEOWF. We now show that, assuming the existence of public-coin collision-
resistant hash functions (CRHF) and fully homomorphic encryption (FHE) with
decryption in NC1,8 then for some efficiently computable distributions ZSNARK,
ZPEOWF, if there exist public-coin differing-inputs obfuscators for NC1 circuits,
and SNARKs w.r.t. auxiliary input ZSNARK, then there cannot exist PEOWFs
w.r.t. auxiliary input ZPEOWF. This takes place in two steps.

First, we remark that an identical proof to that of Theorem5 rules out
the existence of Z-auxiliary-input proximity EOWFs in addition to standard
EOWFs, based on the same assumptions: namely, assuming public-coin differing-
inputs obfuscation for Turing machines, and public-coin collision-resistant hash
functions. Indeed, assuming the existence of a PEOWF extractor E for the adver-
sary A and auxiliary input distribution Z (who extracts a “related” preimage to
the target value), the same procedure yields a PEOWF inverter who similarly
extracts a “related” preimage to any challenge output. In the reduction, it is
merely required that the success of E is efficiently and publicly testable (this is
used to construct a distinguishing adversary for the differing-inputs obfuscation
scheme, in Step 1). However, this is directly implied by the public testability of
the PEOWF relation ∼, as specified in Definition 5.
8 As is the case for nearly all existing FHE constructions (e.g., [13,21]).
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Theorem 6. There exist an efficient, uniformly samplable distribution Z such
that, assuming the existence of public-coin collision-resistant hash functions and
public-coin differing-inputs obfuscation for polynomial-size Turing machines,
there cannot exist (publicly testable) Z-auxiliary-input PEOWFs {fi : {0, 1}k →
{0, 1}k}.
Now, in [30], it was shown that public-coin differing-inputs obfuscation for the
class of all polynomial-time Turing machines can be achieved by bootstrapping
up from public-coin differing-inputs obfuscation for circuits in the class NC1,
assuming the existence of FHE with decryption in NC1, public-coin CRHF, and
public-coin SNARKs for NP.

Putting this together with Theorem6, we thus have the following corollary.

Corollary 1. There exists an efficient, uniformly samplable distribution Z s.t.,
assuming existence of public-coin SNARKs and FHE with decryption in NC1,
then assuming the existence of public-coin differing-inputs obfuscation for NC1,
there cannot exist PEOWFs {fi : {0, 1}k → {0, 1}k} w.r.t. auxiliary input Z.

( SNARK + CRHF) =⇒ Z-PEOWF. As shown in [5], Proximity EOWFs
(PEOWFs) with respect to an auxiliary input distribution Z are implied by
collision-resistant hash functions (CRHF) and SNARKs secure with respect to
a related auxiliary input distribution Z ′.9

Loosely, the transformation converts any CRHF family F into a PEOWF by
appending to the output of each f ∈ F a succinct SNARK argument πx that
there exists a preimage x yielding output f(x). (If the Prover algorithm of the
SNARK system is randomized, then the function is also modified to take an
additional input, which is used as the random coins for the SNARK generation).
The equivalence relation on outputs is defined by (y, π) ∼ (y′, π′) if y = y′ (note
that this relation is publicly testable). More explicitly, consider the new function
family F ′ composed of functions

f ′
crs(x, r) =

(
f(x),Prove(1k, crs, f(x), x; r)

)
,

where a function f ′
crs ∈ F ′ is sampled by first sampling a function f ← F from

the original CRHF family, and then sampling a CRS for the SNARK scheme,
crs ← CRSGen(1k).

Now (as proved in [5]), the resulting function family will be a PEOWF with
respect to auxiliary input Z if the underlying SNARK system is secure with
respect to an augmented auxiliary input distribution ZSNARK := (Z, h), formed
by concatenating a sample from Z with a function index h sampled from the
collision-resistant hash function family F . (Note that we will be considering
public-coin CRHF, in which case h is uniform).

Theorem 7 ([5]). There exist efficient, uniformly samplable distributions
Z,ZSNARK such that, assuming the existence of collision-resistant hash functions
and SNARKs for NP secure w.r.t. auxiliary input distribution ZSNARK, then there
exist PEOWFs {fi : {0, 1}k → {0, 1}k} w.r.t. Z.
9 [5] consider the setting of arbitrary auxiliary input; however, their construction

directly implies similar results for specific auxiliary input distributions.
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Reaching a Standoff. Observe that the conclusions of Corollary 1 and
Theorem 7 are in direct contradiction. Thus, it must be that one of the two
sets of assumptions is false. Namely,

Corollary 2. Assuming the existence of public-coin collision-resistant hash func-
tions and fully homomorphic encryption with decryption in NC1, there exists an
efficiently samplable distribution ZSNARK such that one of the following two objects
cannot exist:

– SNARKs w.r.t. auxiliary input distribution ZSNARK.
– Public-coin differing-inputs obfuscation for NC1.

More explicitly, we have that ZSNARK = (Z, U), where Z is composed of an
obfuscated program, and U is a uniform string (corresponding to a randomly
sampled index from a public-coin CRHF family).

Acknowledgements. The authors would like to thank Kai-Min Chung for several
insightful discussions.
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Abstract. It takes time for theoretical advances to get used in practical
schemes. Anonymous credential schemes are no exception. For instance,
existing schemes suited for real-world use lack formal, composable defi-
nitions, partly because they do not support straight-line extraction and
rely on random oracles for their security arguments. To address this
gap, we propose unlinkable redactable signatures (URS), a new building
block for privacy-enhancing protocols, which we use to construct the first
efficient UC-secure anonymous credential system that supports multiple
issuers, selective disclosure of attributes, and pseudonyms. Our scheme
is one of the first such systems for which both the size of a credential
and its presentation proof are independent of the number of attributes
issued in a credential. Moreover, our new credential scheme does not rely
on random oracles. As an important intermediary step, we address the
problem of building a functionality for a complex credential system that
can cover many different features. Namely, we design a core building
block for a single issuer that supports credential issuance and presen-
tation with respect to pseudonyms and then show how to construct a
full-fledged credential system with multiple issuers in a modular way.
We expect this definitional approach to be of independent interest.

Keywords: Structure preserving signatures · Vector commitments ·
Anonymous credentials · Universal composability · Groth-Sahai proofs

1 Introduction

Digital signature schemes are a fundamental cryptographic primitive. Besides
their use for signing digital items, they are used as building blocks in more
complex cryptographic schemes such as blind signatures [6,42], group signa-
tures [15,52], direct anonymous attestation [20], electronic cash [40], voting
schemes [48], adaptive oblivious transfer [23,32], and anonymous credentials [12].
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For protocols constructed like this to be efficient, special properties are
demanded from a signature scheme, in particular when the protocol needs to
achieve strong privacy properties. The most important such properties seem to
be that the issuance of a signature and its later use in a protocol is unlinkable as
well as that the scheme is able to sign multiple messages (without employing a
hash function). The first signature scheme that met these requirements is a blind
signature scheme by Brands [18]. The drawback of blind signatures, however, is
that when using the signature later in a higher-level protocol it must typically be
revealed so that a third party can be convinced of its validity. Thus, a signature
can be used only once, which turns out to be quite limiting for applications such
as group signatures, multi-show anonymous credentials, and compact e-cash [25].

Camenisch and Lysyanskaya [30,31] were the first to design signature schemes
(CL-signatures) overcoming these drawbacks. Their schemes are secure under the
Strong RSA, the q-SDH, or the LRSW assumption, respectively, and allow for an
alternative approach when using a signature in a protocol: instead of revealing
the signature to a party, the user employs zero-knowledge proofs to convince the
party that she possesses a valid signature. While in theory this is possible for any
signature scheme, CL-signatures were the first that enabled efficient proofs using
generalized Schnorr proofs of knowledge. This is due to the algebraic properties of
CL-signatures, i.e., no hash function is applied to the message and the signature
and message values are either exponents or group elements.

Since the introduction of CL-signatures, the area of privacy preserving pro-
tocols flourished considerably and numerous new protocols based on them have
been proposed. This has also made it apparent, however, that CL-signatures still
have a number of drawbacks:

1. Random oracles. To make generalized Schnorr proofs of knowledge non-
interactive (which is often required), one needs to resort to the Fiat-Shamir
heuristic, i.e., to the random oracle model, and thus looses all provable secu-
rity guarantees when the oracle is instantiated by a hash function [36].

2. Straight-line extraction. When designing a protocol to be secure in the UC
model [35], rewinding can not be used to prove security. As a result, witnesses
in generalized Schnorr proofs of knowledge need to be encrypted under a
public key encoded in the common reference string (CRS). As the witnesses
(messages signed with CL-signatures) are discrete logarithms, this is rather
expensive [26] and may render the overall protocol impractical.

3. Linear size. When proving ownership of a CL-signature on many messages,
all of them are needed for the verification of the signature and therefore a
proof of possession of a signature will be linear in the number of messages.

A promising ingredient to overcome these drawbacks is the work by Groth
and Sahai [45], who for the first time constructed efficient non-interactive zero-
knowledge proofs (NIZK) without using random oracles, albeit for a limited set
of languages. Indeed, the set of languages covered by these so-called GS-proofs
does not include the ones covered by generalized Schnorr protocols and therefore
many authors started to look for a compatible CL-signatures replacement, i.e.,
structure-preserving signature schemes [1–3]. Together with GS-proofs, these
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new schemes can also be used as signatures of knowledge [39] and thus are
applicable in scenarios previously addressed with CL-signatures.

However, structure-preserving signatures still suffer in terms of performance
when signing multiple messages (cf. drawback (3)), which is a typical requirement
in applications such as anonymous credentials. Indeed, as for CL-signatures, the
size of proofs with structure-preserving signatures grows linearly with the num-
ber of messages. As the constant factor for GS-proofs is larger than for gener-
alized Schnorr proofs, structure-preserving signatures loose their attractiveness
as a building block for such applications.

Our Contribution. In this paper, our goal is to address the three drawbacks of
CL-signatures discussed above. To this end, we propose a new type of signa-
ture scheme, unlinkable redactable signatures (URS), in which one can redact
message-signature pairs and reveal only their relevant parts each time they
are used. Moreover, signatures in URS are unlinkable and the same message-
signature pair can be redacted and revealed multiple times without being linked
back to its origin. The real-world efficiency of URS is comparable to that of
CL-signatures when a single message is signed and becomes superior when the
number of messages signed grows. We view our contribution as threefold: First, in
Sect. 2, we formally define URS. We present property-based security definitions
for unlinkability and unforgeability and also a UC functionality for URS. Com-
paring the two definitions we find the seemingly common phenomenon that the
functionality-based definition requires a key-registration process (allowing for the
extraction of keys in the proof) while the property based definition per se does
not require that. We validate our definitions by showing that an URS scheme
satisfying strengthened property-based security definitions with key extraction
securely implements our UC functionality.

Second, in Sect. 3, we construct an efficient URS scheme from vector commit-
ments [37,51,56], structure-preserving signatures [2,3], and (a minimal dose of)
non-interactive proofs of knowledge (NIPoK), which in practice can be instanti-
ated by witness-indistinguishable Groth-Sahai proofs [45]. As we are interested
in practical efficiency, we instantiate our scheme with concrete building block
that deliberately rely on stronger assumptions (see Sect. 4.3). However, if one
is willing to accept a less efficient scheme, a CDH-based vector commitment
scheme [37] secure under less strong assumptions. We show how to make use of
algebraic properties in our building blocks to minimize the witness size of the
NIPoK.

Third, in Sect. 4, to demonstrate the versatility of our URS scheme as a
CL-signature scheme ‘replacement’, we employ it to design the first efficient uni-
versally composable anonymous credential system that supports multiple issuers,
pseudonyms, and selective disclosure of attributes.

Anonymous credential systems usually need to support an ecosystem of dif-
ferent features. Therefore, a single ideal functionality providing all the features
such as pseudonyms, selective attribute disclosure, predicates over attributes,
revocation, inspection, etc. would be very complex and hard to both create and
use in a modular way—not to mention credible security proofs.
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Nevertheless, ideal functionalities are very attractive for modeling the com-
plexity of anonymous credential schemes. Indeed an early seminal paper [29]
attempted exactly this, but was foiled by drawback (2)—as well as by the imma-
turity of the UC framework at the time. To overcome this complexity, we present
a flexible and modular approach for constructing UC-secure anonymous creden-
tials. Namely, we design a core building block for a single issuer that supports
credential issuance and presentation with respect to pseudonyms. We then show
how to compose multiple such blocks to construct in a modular way a full-fledged
credential system with multiple issuers.

Besides being composable, our system is also arguably one of the first schemes
to support efficient non-interactive attribute disclosure with cost independent of
the number of attributes issued without having to rely on random oracles. Even
in the random oracle model this has been an elusive goal. Therefore, because
of the composability and efficient selective disclose, our scheme is very attrac-
tive and quickly surpasses schemes based on blind signatures and CL-signatures
[19,31] when the number of attributes grows.

Related Work. We compare our signatures and credential schemes with other
related work, a full comparison is deferred to the full paper [9]. As there are a
multitude of papers on redactable, quotable, and sanitizable signatures [7,21,46,
58], we focus on the most influential definitional work and the most promising
approaches in terms of efficiency.

A variety of signature schemes with flexible signing capabilities and strong
privacy properties have been proposed [7,8,10,14,17,34,38]. While these works
provide a fresh definitional approach, their schemes are very inefficient, espe-
cially when redacting a message vector with a large number of attributes. Some
schemes built on vector commitments [51,55] achieve better efficiency but only
consider one-time-show credentials, and while the scheme in [51] is not defined
formally, the scheme in [55] involves interaction.

The first efficient multi-show anonymous credential scheme is [29]. It was
extended with efficient attribute disclosure [24] and had real-world exposure
[20,33]. It can, however, only be non-interactive in the random oracle model.
Non-interactive credentials in the standard model have been built from
P-signatures [12,13]. An instantiation of our URS scheme, however, is almost
twice more efficient than [12] despite the fact that the latter does not support
signing multiple messages. Belenkiy et al. [11] show how to use the randomiz-
ability of P-signatures for delegation and Chow et al. [41] extend the random-
izable group signatures scheme underlying [11] with a flexible attribute mecha-
nism. Izabachène et al. [50] extends the work of [12] with vector commitments;
their scheme is, however, not secure under our definitions. In independent work,
Hanser and Slamanig [47] present a credential system with efficient (indepen-
dent of the number of attributes) attribute disclosure. However, their system
is only secure in the generic group model [43]. Furthermore, it uses hash func-
tion to encode attributes and thus does not enable efficient protocol design.
None of these schemes is (universally) composable. Camenisch et al. [27] have
recently proposed property-based definitions of anonymous credentials and of
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the necessary building blocks, given a construction and proved it secure. Their
definitions turn out to be rather complex, indicating that for complex systems
functionality-based definitions might be easier to handle. Indeed, for their def-
inition of privacy, Camenisch et al. make use of what they call ‘filter’ which is
very reminiscent of an ideal functionality. Finally, the construction they provide
is based on CL-signatures and thus suffers from the drawbacks of that approach.

An important factor that is often neglected is the compatibility of schemes
with zero-knowledge proofs to enable efficient protocol design. Because of its
compatibility with Groth-Sahai proofs, efficiency and composability, immediate
further applications of our URS scheme include efficient e-cash, credential-based
key exchange, e-voting, auditing, and others.

2 Definitions of Unlinkable Redactable Signatures

Redactable signatures are an instance of homomorphic [7] or controlled-malleable
signatures [38]. For our credentials application the most useful redaction opera-
tion is to selectively white-list or quote a subset of messages and their positions
from a message vector of length n ([7] consider the quoting of sub-sentences).
We denote the message space of all valid message vectors as M. We also refer
to the redacted message as a quote of the original message. To distinguish the
original vector from the quote of all messages we denote the original vector as
m = (1,m1, . . . ,mn) and a quote as mI = (2,m′

1, . . . ,m
′
n). We represent each

valid quoting transformation by a set I ⊆ [1, n] of message positions and denote
quoting either by I(m) or mI . We denote the ith message element either by m [i]
or mi. A quote mI from m is of the form

mI [i] = m′
i =

{
mi i ∈ I

⊥ otherwise
.

Note that the message itself already reveals whether it is a quote. Chase et al.
[38] call such a scheme tiered and we refer to the vectors m and mI as Tier 1
and Tier 2 vectors respectively. The vector mI can be sparse and can have a
much shorter encoding than m . Finally, we define Zero(m , I) = (1, m̃1, . . . , m̃n),
with m̃j = mj for j ∈ I and m̃j = 0 for j /∈ I. This should not be confused with
the operator I that outputs a Tier 2 message.

2.1 Property-Based Definitions for Unlinkable
Redactable Signatures

One can define the security of redactable signatures by instantiating controlled-
malleable signature definitions for simulatability, simulation unforgeability, and
simulation context-hiding of Chase et al. [38] with the quoting transformation
class T = {I(·)|I ⊆ [1..n]} above. We prefer, however, to give our own unforge-
ability and unlinkability definitions that are more specific and do not rely on
simulation and extraction. This makes them simpler and easier to prove, and
thus more efficiently realizable. Together with key extractability they are never-
theless sufficient to realize the strong guarantees of our UC functionality.
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Definition 1 (Unlinkable Redactable Signatures). An unlinkable redac-
table signature scheme URS consists of the following algorithms:

URS.SGen(1κ) → SP . SGen takes the security parameter 1κ as input and outputs
the system parameters SP.

URS.Kg(SP) → (pk , sk). Kg takes the system parameters SP as an input and
outputs public verification and private signing keys (pk , sk). The verification
key pk defines the message space M.

URS.Sign(sk ,m) → σ. Sign takes the signing key sk and a message m ∈ M as
input and produces a signature σ.

URS.Derive(pk , I,m, σ) → σI . Derive takes the public key pk, a selection vector
I, a message m and a signature σ (both of Tier 1) as input. It produces a
Tier 2 signature σI for mI .

URS.Verify(pk , σ,m) → 0/1. Verify takes the verification key pk, a signature σ,
and a message m of Tier 1 or Tier 2 as input and checks the signature.

We omit the URS qualifier when it is clear from the context.

Correctness. Informally, correctness requires that for honestly generated keys,
both honestly generated and honestly derived signatures must always verify.

Unforgeability. Unforgeability captures the requirement that an attacker, who is
given Tier 1 and Tier 2 signatures on messages of his choice, should not be able
to produce a signature on a message that is not derivable from the set of signed
messages in his possession. More formally:

Definition 2 (Unforgeability). Let H output unique handles, for instance
implemented using a counter. For a redactable signature scheme URS.{SGen,
Kg,Sign,Derive,Verify}, tables Q1, Q2, Q3, and an adversary A, consider the
following game:

– Step 1. SP ← SGen(1k); (pk , sk) $←− Kg(SP); Q1, Q2, Q3 ← ∅.
– Step 2. (m∗

I , σ
∗) $←− AOSign(·),ODerive(·,·),OReveal(·)(pk), where OSign, ODerive, and

OReveal behave as follows:

OSign(m) ODerive(h, I) OReveal(h)
h ← H; σ ← Sign(sk ,m) if (h,m, σ) ∈ Q1 if (h,m, σ) ∈ Q1

add (h,m, σ) to Q1 σ′ ← Derive(pk , I,m, σ) add m to Q3

return h add mI to Q2; return σ′ return σ

A signature scheme URS satisfies unforgeability if for all such PPT algorithms A
there exists a negligible function ν(·) such that in the above game the probability
(over the random choices of Kg, Sign, Derive and A) that Verify(pk , σ∗,m∗

I) = 1
and ∀m ∈ Q3, m∗

I 	= mI , and m∗
I /∈ Q2 is less than ν(κ).

Note that we do not consider a Tier 1 signature itself as a forgery. However,
if the adversary manages to produce a valid Tier 1 signature on a message
m without calling Sign(m) and either Reveal(h) or Derive(h, I) on all subsets
I ⊆ [1..n] for the corresponding handle h, he can use this Tier 1 signature to
break unforgeability by deriving a Tier 2 signature from it.
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Unlinkability. Informally, unlinkability ensures that an adversarial signer cannot
distinguish which of two Tier 1 signatures of his choosing was used to derive a
Tier 2 signature. More formally:

Definition 3 (Unlinkability). For the signature scheme URS.{SGen,Kg,Sign,
Derive,Verify} and a stateful adversary A, consider the following game:

– Step 1. SP ← SGen(1k).
– Step 2. (pk , I,m(0),m(1), σ(0), σ(1)) $←− A(SP), where m

(0)
I = m

(1)
I ,

Verify(pk , σ(0),m(0)) = 1, and Verify(pk , σ(1),m(1)) = 1.
– Step 3. Pick b ← {0, 1} and form σ

(b)
I

$←− Derive(pk , I,m(b), σ(b)).

– Step 4. b′ $←− A(σ(b)
I ).

The signature scheme URS is unlinkable if for any polynomial time adversary A
there exists a negligible function ν(·) such that Pr[b = b′] < 1+ν(κ)

2 .

Note that this definition is very strong, as the adversary can even pick pk .

2.2 Ideal Functionality for Unlinkable Redactable Signatures

We now give an alternative characterization of unlinkable redactable signatures
using an ideal functionality FURS defined as follows:

Functionality FURS

The functionality maintains tables K and Q initialized to ∅ and flags kg and keyleak

which are initially unset.

– On input (keygen, sid) from S, verify that sid = (S, sid′) for some sid′ and that

flag kg is unset. If not, then return ⊥. Else, send (initF, sid) to SIM and wait

for a message (initF, sid,SP ,Kg, Sign,Derive,Verify) from SIM, where Kg,

Sign, and Derive are PPT algorithms and Verify is a deterministic algorithm.

Then, store SP , Kg, Sign, Derive, and Verify, run (pk , sk) ← Kg(SP), set flag

kg , store (pk , sk) in K, and return (verificationKey, sid , pk) to S.

– On input (checkPK, sid , pk ′) from some party P , verify that the flag kg is

set. Check whether pk′ = pk or whether (pk ′, sk ′) for some sk ′ was stored

in K. In this case, return (checkedPK, sid , true). Else, if (pk ′, ⊥) was stored in

K return (checkedPK, sid , false). Else, send (checkPK, sid , pk ′) to SIM, wait

for (checkedPK, sid , sk ′) from SIM, add (pk ′, sk ′) to K. If sk ′ �= ⊥, return

(checkedPK, sid , true) to P . Otherwise, return (checkedPK, sid , false) to P .

– On input (leakSK, sid) from S verify that sid = (S, sid′) for some sid′. If not,

return ⊥. Else, if flag kg is set, set flag keyleak and return (leakSK, sid , sk),

otherwise - abort.

– On input (sign, sid ,m) from S, verify that sid = (S, sid′) for some sid′

and that the flag kg is set. If not, return ⊥. Else, run σ ← Sign(sk ,m) and

Verify(pk , σ,m). If Verify is successful, return (signature, sid ,m , σ) to S and

add m to Q, otherwise return ⊥. (Continue on the next page.)



Composable and Modular Anonymous Credentials 269

– On input (derive, sid , pk ′, I,m , σ) from some party P , run Derive(pk ′, I,m , σ)

and if it fails, return ⊥. Otherwise, if the flag kg is set and pk = pk ′

then set sk tmp = sk. If there is an entry (pk ′, sk ′) ∈ K recorded,

set sk tmp = sk ′. If sk tmp was set run σ′ ← Sign(sk tmp,Zero(m , I))

and return Derive(pk ′, I,Zero(m , I), σ′). Otherwise, return the output of

Derive(pk ′, I,m , σ).

– On input (verify, sid , pk ′, σ,mI) from some party P , compute result ←
Verify(pk ′, σ,mI). If the flag kg is set, pk ′ = pk , flag keyleak is not set, and

� m ∈ Q such that mI = I(m), then output (verified, sid ,mI , 0). Otherwise,

output (verified, sid ,mI , result).

We point out some aspects of the ideal functionality. The functionality needs
to output concrete values as signatures of messages and redacted signatures, as
well as key material. To generate and verify these values, FURS requires the adver-
sary/simulator SIM to provide it with a number of polynomial-time algorithms.
This is in line with how ideal functionalities for signatures, and in particular blind
signatures, have been defined before [6,35,42,49,53]. We consider static corrup-
tions of protocol machines, but allow the simulator to request the signing key
at any time by sending the leakSK message. This allows us to ensure that the
privacy properties for users are still enforced even if the signer leaks its secret
key. The functional and security properties are enforced by the functionality no
matter how these (adversarial) algorithms compute the values. Unforgeability is
enforced by the fact that FURS will output false (0) for verification queries for
which the message (or a corresponding original message) has not been signed,
provided that the signer is not corrupted and the signing key not leaked. (If the
signer is corrupted statically, (keygen, sid) will not be sent and hence kg not set
and unforgeability not enforced.) Unlinkability of redacted signature is enforced
by FURS as follows. It generates a fresh redacted signature only from those parts
of the original message that are quoted, i.e., the hidden message parts are set
to zero, and thus redacted signatures from FURS do not contain any information
about the hidden parts of messages. More precisely, this is enforced for the keys
generated by FURS and for any keys that an honest party successfully checked
before generating a redacted signature. Unless mentioned otherwise, the reply
of the functionality upon a failed check or verification is ⊥.

2.3 Key Registration and UC Realizability

We now want to construct a protocol RURS that realizes FURS using a URS
scheme in the FCRS-hybrid model where SP is the reference string and each call
to FURS is essentially replaced by running one of the algorithms of URS. While
this can be done (the detailed description of RURS is given in the full version [9]),
there are a number of hurdles that need to be overcome. These hurdles are quite
typical and include, e.g., that we need to be able to extract the secret keys from
the adversary to be able to simulate properly. They are, however, often treated
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only informally in security proofs. Here we want to make them explicit and treat
them formally correct. So our goal is to prove a statement (Theorem) of the
form:

If URS is correct, unforgeable, unlinkable, and X then RURS securely
realizes FURS in the FCRS-hybrid model.

What do we have to require from X to make this theorem true? To prove the
theorem we have to show indistinguishability between the ideal world and the
real world. In the ideal world, an environment Z interacts with the simulator
SIM and functionality FURS. In the real world, the environment Z interacts
with the real adversary A and the protocol RURS.

We provide a tentative description of SIM in the ideal world: when receiv-
ing the (initF, sid) message from FURS, it generates a trapdoor td (in addi-
tion to SP) and returns (initF, sid ,SP ,Kg,Sign,Derive,Verify). On receiving
the (checkPK, sid , pk) message, is uses the trapdoor to extract the secret key sk
and returns sk to FURS.

To make this work, we extend URS with several algorithms: CheckPK is run
by RURS on receiving a message (checkPK, sid , pk). SGenT and ExtractKey are
the trapdoored parameter generation and key extraction algorithm for SIM.
CheckKeys is used to define what it means to extract a valid key.

URS.CheckPK(pk) → 0/1. CheckPK is a deterministic algorithm that takes a
public key pk as an input and checks that it is correctly formed. It outputs 1
if pk is correct, and 0 otherwise.

URS.SGenT(1κ) → (SP , td). SGenT is a system parameters generation algorithm
that takes the security parameter 1κ as input and outputs the system para-
meters SP and a trapdoor td for the key extraction algorithm.

URS.ExtractKey(pk , td) → sk . ExtractKey is an algorithm that takes a public key
pk and a trapdoor td as input. It extracts the corresponding secret key sk.

URS.CheckKeys(pk , sk) → 0/1. CheckKeys is an algorithm that takes a public pk
and a private sk keys and checks if they constitute a valid signing key pair.
It outputs 1 if they do, and 0 otherwise.

Strengthened Correctness requires that honestly generated keys, but also keys
for which predicate CheckKeys(pk , sk) holds can be used to create signatures
that will verify. It moreover guarantees that CheckPK(pk) holds for honestly
generated public keys.

Parameter Indistinguishability. Informally, parameter indistinguishability
ensures that the SP produced by SGenT and SGen are computationally indistin-
guishable. It is formally defined as follows:

Definition 4 (Parameter Indistinguishability). A redactable signature
scheme URS.{SGen,Kg,Sign,Derive,Verify} with alternative parameter genera-
tion SGenT is parameter indistinguishable if for any polynomial time adversary
A there exists a negligible function ν(·) such that Pr[(SP0 , td) ← SGenT(1k);
SP1 ← SGen(1k); b ← {0, 1}; b′ ← A(SPb) : b = b′] < 1+ν(κ)

2 .
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Key Extractability. Informally, the key extractability ensures that if SGenT was
run and if CheckPK outputs 1, then the extraction algorithm ExtractKey(pk , td)
will output a valid secret key sk , i.e. CheckKeys(pk , sk) = 1.

Definition 5 (Key Extractability). A redactable signature scheme URS.
{SGen,Kg,Sign,Derive,Verify} with additional algorithms (CheckPK, SGenT,
CheckKeys,ExtractKey) is key extractable if CheckKeys is correct and for any
polynomial time adversary A there exists a negligible function ν(·) such that
Pr[(SP , td) ← SGenT(1k); pk ← A(SP , td); sk ← ExtractKey(pk , td) : (CheckPK
(pk) = 1 ∧ CheckKeys(pk , sk) = 0))] < ν(κ).

Composable Unlinkability holds even when parameters in the unlinkability game
are generated using (SP , td) ← SGenT(1k) and A is handed td. This allows for
the use of the game in a hybrid argument when proving the security of the simu-
lator. We note that in such an adapted unlinkability game the trapdoor td must
only enable key-extraction, and crucially does not allow the adversary to extract
a Tier 1 signature from a Tier 2 signature (this would break unlinkability). In
our instantiation this is achieved by splitting SP into several parts. The trapdoor
is only generated for the part used for key extraction.

UC Realization. We prove that if an unlinkable redactable signature URS is cor-
rect, parameter indistinguishable, key extractable, unforgeable, and unlinkable,
then RURS securely realizes FURS. More formally, we have the following theorem
(which is proven in the full version of this paper [9]).

Theorem 1. Let URS be an unlinkable redactable signature scheme. If URS is
correct, parameter indistinguishable, key-extractable, unforgeable, and compos-
able unlinkable then RURS securely realizes FURS in the FCRS-hybrid model.

3 The Construction of Our Redactable Signature Scheme

As a first step toward our full solution, we will construct an unforgeable and
unlinkable URS scheme without key extraction. The scheme should be of inde-
pendent interest, in case universal composability is not a design requirement.
This isolation of key extraction, seemingly only needed for universal composi-
tion, is a nice feature of our definitions.

Let G be a bilinear group generator that takes as an input security parameter
1κ and outputs the descriptions of multiplicative groups grp = (p, G, G̃, Gt, e,
G , G̃) where G, G̃, and Gt are groups of prime order p, e is an efficient, non-
degenerating bilinear map e : G × G̃ → Gt, and G and G̃ are generators of the
groups G and G̃, respectively.

Our construction makes use of a structure preserving signature (SPS) scheme
SPS.{Kg,Sign,Verify} and a vector commitment scheme VC.{Setup,Commit,
Open,Check}. We recall that the structure-preserving property of the signature
scheme requires that verification keys, messages, and signatures are group ele-
ments and the verification predicate is a conjunction of pairing product equa-
tions. The intuition behind our construction is susceptibly simple: Use SPS.Kg
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to generate a signing key pair and VC.Setup to add commitment parameters to
the public key. To sign a vector m , first, commit to m and then sign the resulting
commitment C. To derive a quote for a subset I of the messages, simply open
the commitment to the messages in mI . We verify a signature on a quote by
verifying both the structure-preserving signature (SPS.Verify) and checking the
opening of the commitment (VC.Check).

Such a scheme has, however, several shortcomings. First, it is linkable, as
the same commitment is reused across multiple quotes of the same message.
Even if both the underlying SPS scheme and the commitment scheme are indi-
vidually re-randomizable, this seems hard to avoid as the unforgeability of the
SPS scheme prevents randomization of the message. Second, such a construction
is only heuristically secure. Existing vector commitments do not guarantee that
multiple openings cannot be combined and mauled into an opening for a different
sub-vector. We call vector commitment schemes that prevent this opening non-
malleable. (Recently, [47] constructed an SPS scheme allowing for randomization
within an equivalence class. However, their commitments cannot be opened to
arbitrary vectors of Zp and are not provably opening non-malleable.)

Our main design goal is to address both of these weaknesses while avoiding a
large performance overhead. Our main tool for this is an efficient non-interactive
proof-of-knowledge. Intuitively, we hide the commitments and their openings, as
well as a small part of the signature to achieve unlinkability. Hiding the com-
mitment opening also helps solve the malleability problems for commitments. To
achieve real-world efficiency we show how to exploit the re-randomizability of the
SPS (and optionally the commitment scheme as described in the full version [9]).

Before describing our redactable signature scheme in more detail, we present
a vector commitment scheme that uses a variant of polynomial commitments
from [51]. While our changes are partly cosmetic, they simplify the assumption
needed for opening non-malleability.

3.1 Vector Commitments Simplified

A vector of messages m ∈ Z
n
p is committed using a polynomial f(x) that

has a value f(i) = mi at the position i. In Lagrange form such a polynomial
is a linear combination f(x) =

∑n
i=1 mifi(x) of Lagrange basis polynomials

fi(x) =
∏n

j=0,j �=i
x−j
i−j . To batch-open a vector commitment for a position set

I ⊆ {1, . . . , n}, one uses a polynomial fI(x) =
∑

i∈I mifi(x). For such a poly-
nomial, it holds that fI(i) = mi for i ∈ I; and fI(0) = 0. (The additional root
at 0 is necessary to achieve opening non-malleability). The reuse of the same
Lagrange basis polynomials, which yields polynomials of not the lowest possible
degree, reduces the number of variable bases in the equation of Check below and
increases efficiency when used for the construction of bigger protocols such as
anonymous credential. Also, note that f(x)−fI(x) is divisible by the polynomial
pI(x) = x · ∏

i∈I(x − i). We use the polynomial p(x) = x · ∏n
i=1(x − i) which

is divisible by pI(x) for any I ⊆ {1, . . . , n} to randomize commitments to make
them perfectly hiding.
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Construction. We reuse the notation of Sect. 2 and use Tier 1 vectors m for the
vectors being committed and Tier 2 vectors mI for batch openings at positions
I. We also let grp = (p, G, G̃, Gt, e,G , G̃) be bilinear map parameters generated
by a bilinear group generator G(1κ).

VC.Setup(grp). Pick α ← Zp and compute (G1, G̃1, . . . ,Gn+1, G̃n+1), where
Gi = G(αi) and G̃i = G̃(αi). Output parameters pp = (grp, G1, G̃1, . . . ,
Gn+1, G̃n+1). Values G1, . . . , Gn+1 suffice to compute Gφ(α) for any polyno-
mial φ(x) of maximum degree n + 1 (and similarly for G̃φ(α)).
Furthermore, for the above defined fi(x), p(x), and pI(x), we implicitly define
Fi = Gfi(α), P = Gp(α), PI = GpI(α) , and P̃I = G̃pI(α) . These group elements
can be computed from the parameters pp.

VC.Commit(pp,m , r). Output C =
∏n

i=1 Fmi
i P r.

VC.Open(pp, I,m , r). Let w(x) = f(x)−fI(x)+r·p(x)
pI(x)

and compute the witness
W = Gw(α) using parameters pp.

VC.Check(pp, C,mI ,W ). Accept if e(C, G̃) = e(W, P̃I)e(
∏

i∈I Fmi
i , G̃).

Note that pI(x) always has the factor x. This is essential for achieving opening
non-malleability. If pI(x) would be 1 for I = ∅, as in the original polynomial
commitment scheme of [51], then C would be a valid batch opening witness for
the empty set of messages.

Security Analysis. We require the commitment scheme to be complete, batch
binding, and opening non-malleable. Completeness is standard for a commitment
scheme follows easily from the following equation: e(C, G̃) = e(G , G̃)f(α)+r·p(α)=

e(G , P̃I)
f(α)−fI (α)+r·p(α)

pI (α) e(G , G̃)fI(α) = e(W, P̃I)e(
∏

i∈I Fmi
i , G̃).

Next, we define the batch binding and opening non-malleability properties:

Definition 6 (Batch Binding). For a vector commitment scheme VC.{Setup,
Commit,Open,Check} and an adversary A consider the following game:

– Step 1. grp ← G(1κ) and pp ← VC.Setup(grp)
– Step 2. C,mI ,W,m′

I′ ,W ′ ← A(pp)

Then, the commitment scheme satisfies batch binding if for all such PPT algo-
rithms A there exists a negligible function ν(·) such that the probability (over
the choices of G,Setup, and A) that 1 = VC.Check(pp, C,mI ,W ) = VC.Check
(pp, C,m′

I′ ,W ′) and that there exist i ∈ I ∩ I ′ such that mi 	= m′
i is at most

ν(κ). (Note that mI and m′
I′ are Tier 2 vectors, and thus encode the sets I and

I ′ respectively.)

Definition 7 (Opening Non-malleability). For a vector commitment scheme
VC.{Setup,Commit,Open,Check} and an adversary A consider the following
game:

– Step 1. grp ← G(1κ) and pp ← VC.Setup(grp)
– Step 2. m, I ← A(pp)
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– Step 3. Pick random r, compute C ←VC.Commit(pp,m, r),
and W ←VC.Open(pp, I,m, r).

– Step 4. W ′, I ′ ← A(C,W )

Then the commitment scheme satisfies opening non-malleability if for all such
PPT algorithms A there exists a negligible function ν(·) such that the probability
(over the choices of G, Setup, Commit, and A that 1 = VC.Check(pp, C,mI′ ,W ′),
and I 	= I ′ is at most ν(κ).

In the following theorems we make use of the n-BSDH assumption [44] and
the n-RootDH assumption that are defined next. See the full version of this
paper [9] for its generic group model proof. (We note that this assumption is
only required for opening non-malleability, which is ignored by most existing
constructions of anonymous credentials from vector commitments.)

Definition 8 (n-SDH Assumption). The n-strong Diffie-Hellman (n-SDH)
assumption [16] states that there exists a G that for all algorithms A, the follow-
ing advantage

AdvnSDH
G (λ) = Pr

[
(p, e, G,G) $← G ; x, c

$← Zp ;

A(1λ, p, G, G,Gx, . . . , Gxn

) = (c,G1/(x+c))
] ≤ negl(λ).

The n-BSDH assumption is defined identically to n-SDH except that now A
is challenged to compute (c, e(G , G̃1/(x+c)). Note that the n-BSDH assumption
is already implied by the n-SDH assumption.

Definition 9 (n-RootDH Assumption).
For an adversary A consider the following game:

– Step 1. grp ← G(1κ)
– Step 2. Pick random α, r ← Z

∗
p, compute X = (Gα·∏n

i=1(α−i))r.
– Step 3. (J, state) ← A(G, G̃ , {Gαi

, G̃αi}n+1
i=1 ,X)

– Step 4. Compute Y = (G
∏

i∈J (α−i))r.
– Step 5. J ′, Z ← A(state, Y )

Then the group generator G satisfies the n-RootDH assumption if for all such
PPT algorithms A there exists a negligible function ν(·) such that the probability
(over the choices of G, α, r, and A that J and J ′ are subsets of [1..n], J ′ 	= J ,
and Z = (G

∏
i∈J′ (α−i))r is at most a negligible function ν(κ).

Theorem 2. The commitment scheme VC defined above is batch binding under
the (n + 1)-BSDH assumption. The proof is similar to that of [51] and can be
found in the full version [9].

Theorem 3. The commitment scheme VC defined above is opening non-
malleable under the n-RootDH assumption. The proofs can be found in the full
version [9].
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3.2 Non-interactive Zero-Knowledge and Witness Indistinguishable
Proof Systems

Let R be an efficiently computable binary relation. For pairs (W,Stmt) ∈ R we
call Stmt the statement and W the witness. Let L be the language consisting of
statements in R. A non-interactive zero-knowledge (NIZK) proof-of-knowledge
system for a language L consists of the following algorithms and protocols:

Π.Setup(grp) → CRS . On input grp ← (1κ), it outputs common parameters
(a common reference string) CRS for the proof system.

Π.Prove(CRS ,W,Stmt) → π. On input a statement Stmt and a witness W , it
generates a zero-knowledge proof π that the witness satisfies the statement.

Π.Verify(CRS , π,Stmt) → 0/1. On input Stmt and π, it outputs 1 if π is valid,
and 0 otherwise.

We explain the notation for the statements Stmt . We call extractable
(f -extractable [12]) witnesses that can be (only partially) extracted from the
corresponding proof, respectively. To express the “extractability” property of
the witnesses we use notation introduced by Camenisch et al. [28]. For the
extractable witnesses we use the “knowledge” notation ( K), and for the f -
extractable witnesses we use “existence” ( E) notation. (If function f is constant,
nothing can be extracted.) We define K as a set of extractable witnesses and E
as a set of the witnesses that we can only prove existence about. We only con-
sider proofs for multi-exponentiations (for existence) and pairing products (for
existence and knowledge) equations. The following is an examplary statement:

Stmt = K
{

Yi, Ỹi ∈ K
}n

i=1
; E{xj ∈ E}m

j=1 : z =
m∏

j=1

Gxj

∧ e(G , G̃) =
n∏

i=1

(
e(Yi, B̃i) · e(Ai, Ỹi)

)
.

For simplicity of presentation, we do not explicitly specify public values of a
statement as additional input to the algorithms, since they are clear from the
description of the statement and the list of witnesses.

We employ different proof systems that are either witness indistinguishable
or zero-knowledge in terms of privacy, and either extractable or simulation-
extractable in term of soundness. For the security proofs we introduce the
following algorithms:

Π.ExtSetup(grp) → (CRS , tdext). On input grp, it outputs a common reference
string CRS and a trapdoor tdext for extraction of valid witnesses from valid
proofs. This is for witness-indistinguishable extractable proofs.

Π.SimSetup(grp) → (CRS , tdext, tdsim) It outputs a CRS and the extraction
and simulation trapdoors. This is for proofs that are also zero-knowledge.

Π.SimProve(CRS , tdsim,Stmt) → π. On input CRS and a trapdoor tdsim, it
outputs a simulated proof π such that Π.Verify(CRS , π,Stmt) = 1.
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Π.Extract(CRS , tdext, π,Stmt) → W. On input a proof π and a trapdoor tdext,
it extracts a witness W that satisfies the statement Stmt of the proof π.

For simulation-extractable NIZK proofs (that are non-malleable) we also
allow an additional public input to the Prove,Extract,SimProve, and Verify algo-
rithms – a message (label) L, which is non-malleably attached to the proof (i.e.
the signature of knowledge is computed on this message). We provide a formal
definition below.

Definition 10 (Simulation Extractability). A proof system Π is called sim-
ulation extractable with labels if for any PPT adversary A and security parameter
λ there exists a negligible function negl(·) such that:

Pr[(CRS , tdsim, tdext)
$← SimSetup(1λ); (Stmt∗, L∗, π) ← AOSim(tdsim,·,·)(CRS ) ;

W ← Extract(CRS , tdext, π,Stmt∗, L∗) : Verify(CRS , π,Stmt∗, L∗) = 1∧
(W,Stmt∗) /∈ R ∧ OSim was never queried with (Stmt∗, L∗)] ≤ negl(λ).

3.3 Our Redactable Signature Scheme

We construct our redactable signature scheme URS from a structure-preserving
signature scheme SPS, a vector commitment scheme VC, and an extractable and
witness-indistinguishable non-interactive proof-of-knowledge system Π described
in the previous section. Some SPS and vector commitment schemes might also
support randomization; we already discussed such a property for vector com-
mitments in the last sub-section; for signatures we refer the reader to [2,3]. We
denote the randomization algorithm of signatures by SPS.Rand. We denote the
randomizable elements of a SPS signature Σ by ψrnd(Σ) and the other elements
by ψwit(Σ). (For a non-randomizable SPS signature ψwit(Σ) = Σ.)

Our construction does not utilize any randomizability in the vector commit-
ment scheme itself. In the full version [9] we analyze batch-binding and opening
non-malleability in presence of such a randomization algorithm.

Construction.

URS.SGen(1κ). Compute grp ← G(1κ), pp ← VC.Setup(grp), CRS ← Π.Setup
(grp), output SP = (grp, pp,CRS ).

URS.Kg(SP). Obtain grp from SP , generate (pksps, sksps) ← SPS.Kg(grp),
output pk = (pk sps ,SP) and sk = (sk sps , pk).

URS.Sign(sk ,m). Pick r ← Zp, compute C = VC.Commit(pp,m , r) and Σ ←
SPS.Sign(sksps, C), and return σ = (Σ,C, r).

URS.Derive(pk , I,m , σ). First, compute W = VC.Open(pp, I,m , r). Then, if a
SPS.Rand algorithm is present, randomize the signature as Σ′ ← SPS.Rand
(pk sps , Σ); otherwise, set Σ′ ← Σ. And compute the proof π ← Π.Prove
(CRS ;C,W,ψwit(Σ′); KC,W,ψwit(Σ′) : SPS.Verify(pksps, Σ

′, C)∧VC.Check
(pp, C,mI ,W ) ). Return σ = (ψrnd(Σ′), π) as the signature on mI .

URS.Verify(pk , σ,mI). Check that Π.Verify
(
CRS ;π; KC,W,ψwit(Σ′) : SPS.

Verify(pksps, Σ
′, C)

)
= VC.Check(pp, C,mI ,W ) = 1.
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Theorem 4. URS is an unforgeable redactable signature scheme, if the SPS
scheme is unforgeable, the vector commitment scheme satisfies the batch bind-
ing and opening non-malleability property, and the proof-of-knowledge system is
extractable and witness indistinguishable. The proofs of Theorems 4 is provided
in the full version [9].

Theorem 5. URS is an unlinkable redactable signature scheme if the proof-of-
knowledge system is witness indistinguishable. The proofs are given in the full
version of this paper [9].

Strengthened Scheme for an Universally Composable Construction. To be able
to satisfy the UC functionality, we require an additional key-extraction property.
We thus build an augmented redactable signature scheme URS from a redactable
signature scheme URS∗ (without key extraction) and a zero-knowledge non-inter-
active proof-of-knowledge system Π∗.

URS.SGen(1κ). Run SP∗ ← URS∗.SGen(1κ), get grp from SP∗, run CRS sk ←
Π∗.Setup(grp), and output SP = (SP∗,CRS sk).

URS.Kg(SP). Obtain SP∗ and CRS sk from SP , sample randomness r, and run
(pk∗, sk∗)← URS∗.Kg(SP∗; r). Compute the proof
πsk ← Π∗.Prove (CRS sk; (sk∗, r); Ksk∗ Er : (pk∗, sk∗) = URS∗.Kg(SP∗; r)) .
Output pk = (SP , pk∗, πsk) and sk = (sk∗, pk). We note that URS∗.Kg
(SP∗; r) fixes the randomness of the a key generation algorithm.

URS.CheckPK(SP , pk). Check Π∗.Verify(CRS sk;πsk; Ksk Er : (pk , sk) =
URS∗.Kg(SP∗; r)) = 1.

Sign, Derive, Verify are almost unchanged and use pk∗ internally. SGenT and
ExtractKey use the extraction setup and extractor of the proof system respec-
tively, while CheckKeys checks that the relation R holds for pk and sk .

Note that Groth-Sahai proofs can be used to implement key-extraction by
proving a binary, or n-ary decomposition of the secret key [57]. But this comes at
a huge cost of more than 61,000 group elements at 128-bit security, even if this
cost is only incurred once by every user per public key. We propose instead to use
fully structure-preserving signatures (FSPS) [5] such that sk consists of group
elements and can be easily extracted. FSPS for signing single group elements can
be as cheap as 15 elements per signature and proofs of key possession consist of
just 18 elements.

Theorem 6. The strengthened scheme URS is an unforgeable, unlinkable, and
key extractable redactable signature scheme, if the underlying redactable signature
scheme URS∗ is unforgeable and unlinkable, and the proof-of-knowledge system
Π∗ is zero-knowledge and extractable.

Unforgeability and unlinkability are corollaries of Theorem 4 and Theorem 5.
Key-extractability follows directly from the extractability of the proof system.
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Signing Group Elements as Additional Parts of the Message. While the presented
redactable signature scheme can sign and quote a large number of values in Zp

very efficiently, in certain applications, like the one presented in the next section,
one might also need to sign a small number of additional group elements. In the
Derive algorithm these elements will either be part of the derived message, and
given in the clear after derivation, or be treated as part of the witness, i.e.,
hidden from the verifier. The detailed construction and the security proofs are
given in the full version [9].

4 From Unlinkable Redactable Signatures to Anonymous
Credentials

As we designed our UC-secure URS scheme as a building block for privacy-
preserving protocols, anonymous credentials are a natural application. Indeed, an
(unlinkable) redactable signature scheme is already a simple selective-disclosure
credential system where the attributes issued to users are the messages signed
in Tier 1 signatures and a user can later reveal a subset of her attributes by
deriving a Tier 2 signature. However, in an anonymous credential system, users
also require secret keys and pseudonyms (pseudonymous public keys), on which
credentials can be issued and with respect to which credentials can be presented.
This allows users to prove that they possess several credentials issued from dif-
ferent parties on the same secret key [19,31].

In this section, we extend the functionality of URS in two ways: (1) we bind
Tier 1 signatures to user secret keys in a way that prevents the derivation of
signatures without knowledge of the secret and (2) we bind Tier 2 derived sig-
natures to the unique context, cxt (nonce), to prevent replay attacks in which
an attacker shows the same signature derived twice.

We first recall the algorithms of a multi-issuer anonymous credential system
and then provide an instantiation using URS. To be modular and to simplify the
analysis, we then provide an ideal functionality for a single issuer. The function-
ality is carefully designed to self-compose naturally into a full-fledged credential
system with multiple issuers. Finally, we provide a concrete instantiation of our
generic construction and analyze its efficiency.

4.1 Algorithms of Our Anonymous Credential System

Let us first introduce the parties and the algorithms of a multi-issuer anonymous
credential system supporting user attributes (cf. [19,31]). Its protagonists are
users (U), issuers (I), and verifiers (V). Each user has a secret key X , from
which she can derive (cryptographic) pseudonyms P . To get a credential issued,
a user sends to the issuer a pseudonym P together with a (non-interactive) proof
πX ,P that she is privy to the underlying secret key. The issuer will then issue her
a credential Cred on P containing the attributes a the issuer vouches for. The
user can then present the credential to a verifier under a potentially different
pseudonym P ′ by sending, together with P ′, a (non-interactive) proof πX ,Cred
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that she possesses a credential on the attributes aI . Recall that I defines which
attributes shall be revealed.

A credential system Cred defines a set of algorithms: a system parameters
generation algorithm SGen; an issuer setup algorithm Kg; a user secret generation
algorithm SecGen; algorithms for pseudonym generation and verification NymGen
and NymVerify, respectively; an algorithm to request a credential RequestCred; an
algorithm for issuing a credential IssueCred; an algorithm to check a newly issued
credential for correctness CheckCred; an algorithm to show a credential with
respect to a pseudonym (to create a credential proof) Prove; and an algorithm
to verify a credential proof Verify.

A more detailed discussion of these algorithms is given in the full version [9].
We instantiate these algorithms by adding support for user secrets, pseudonyms
and contexts to our redactable signature scheme. Besides the URS algorithms,
we use pseudonym generation and verification algorithms based on a structure
preserving commitment scheme SPC and a hard relation to generate credential
specific secrets. A hard relation has a generator KRgap that generates a wit-
ness (XCred and a public value YCred ), and a verification algorithm VRgap, such
that it is easy to verify (XCred , YCred ) but hard to compute XCred from YCred .
This hardness is used to prevent a network adversary that observes the issuing
protocol from impersonating the user.

Table 1 gives the construction of our credential scheme. We group the core
credential algorithms into those used for setup, issuing and presentation. In our
security definition and the proof we will make use of additional algorithms for
simulation and extraction.

4.2 Ideal Functionality for Credentials

To tame the complexity of definitions for credential systems with many different
issuers, we chose to give a definition FCred of a scheme for a single issuer only,
that then can be used as building block to a a full-fledged credential system
with multiple issuers. The single issuer functionally FCred will just allow users
to get a credential on a pseudonym from the issuer and to prove ownership of a
credential by the issuer w.r.t. a given pseudonym.

To serve as a secure building block, FCred must be carefully designed. On the
one hand it must deal with the unforgeability of credentials and on the other
hand it must provide the hooks such that colluding users cannot mix and match
credentials from different issuers. To address the former FCred binds issued cre-
dentials to the respective users’ secret key X and for the latter FCred will enforce
that credential proofs will not verify w.r.t. a pseudonym P unless a correspond-
ing credential got issued to the X underlying that pseudonym. Then, provided
adversarial users are unable to provide different X’s for the same pseudonym,
credentials from different issuers issued to different users (i.e., different X’s) can-
not be matched. As a consequence of this, the generation of user secret keys and
pseudonyms is not done inside FCred but users are require to input their secret
key X the pseudonym P (as cryptographic values) to FCred on the calls to get
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Table 1. Algorithms of our credential system
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credentials issued or to generate a credential proof. Thus we assume that algo-
rithms (SecGen,NymGen,NymVerify) to generate user secret keys, to generate
pseudonyms, and to verify pseudonyms are available. FCred is given NymVerify
as an input parameter and will use this algorithm, to check the relation between
P and X. For the security properties guaranteed by FCred, we do not make any
assumptions about the security properties of these algorithms. However, for the
security of the overall credential scheme, pseudonym need to be commitments
to X, i.e., to be binding and hiding w.r.t. X.

In the following we provide the definition of FCred and a protocol RCred that
realizes FCred using FCA and FCRS, assuming static corruptions.

Single Issuer Ideal Functionality. The starting point for our credential function-
ality is the ideal functionality of unlinkable redactable signatures, extended in a
number of ways. Similar to FURS (and in line with other UC-functionalities such
as Fsig that need to output cryptographic values), FCred is handed a number
of cryptographic algorithms by the simulator. These algorithms allow FCred to
produce cryptographic artifacts for proofs of credential ownership and attribute
disclosure, to verify such proofs (when they are coming from the adversary),
and to extract values from proofs. (We note that there are no artifacts for the
credentials themselves.) While these algorithms can be completely adversarial,
FCred will enforce that algorithms and the artifacts produced by them) satisfy
the required unforgeability and privacy properties. In fact, because of the privacy
properties, FCred needs to run these algorithms itself and cannot ask the simu-
lator for the artifacts as is sometimes done (cf. FURS and the UC-functionalities
for blind signatures [6,42]).

We now describe the steps of our ideal functionality FCred (cf. Fig. 1) and
explain the security properties it ensures and how it does so. Note that because
we consider static corruption, FCred and SIM are aware of which parties are
corrupted.

FCred maintains two tables for bookkeeping: MISS stores information about
issued credentials and MPRES stores information about credentials that pro-
duced presentation proofs. It then handles requests as follows. Upon receiving
a (keygen, sid) message, FCred performs a setup by asking the simulator for the
system parameters, the keys of the issuer, trapdoors, a set of algorithms and
a list of corrupted parties. The message (leakSK, sid) is handled in exactly the
same way as for redactable signatures.

Next, upon receiving a (issueCred, sid , qid ,U ,X ,P , aux (P)) message from
a user U , FCred initiates credential issuing by sending a corresponding message
to the issuer specified in sid = (I, sid ′). If I responds to the request with a list
of attributes a , FCred verifies that X ,P , and aux (P) form a valid pseudonym
(i.e., NymVerify outputs 1), and, if so, records in MISS that a credential with
attributes a to user U w.r.t. secret X has been issued.

Upon receiving a credential proof request in the form of a (proveCred, . . .)
message, FCred verifies whether the provided X ,P , and aux (P) form a valid
pseudonym and whether a credential with attributes a to user U w.r.t. secret X
has been issued. Then, FCred creates a cryptographic artifact for the proof using
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the Cred.SimProve algorithm where no information that must not be revealed is
input to the algorithm. This will guarantee the privacy properties of the creden-
tial proof for honest users. Furthermore, before outputting the proof to the user,
FCred will verify it using Cred.Verify as to ensure correctness.

Finally, upon receiving the (verifyCredProof, . . .) message, FCred has to
determine whether or not the proof should be accepted. Here we need to deal
with unforgeability of credential proofs (and thus of credentials) if the issuer is
honest and its secret key has not been leaked. Naturally, FCred should accept
proofs that it has generated itself. Apart from that, FCred could in principle just
accept all proofs for which the revealed attributes correspond to a credential
that was issued. This would allow the adversary to also produce proofs that
match credentials that were not issued to dishonest users but only to an honest
user. To prevent this, we require an extraction algorithm Cred.Extract which, on
input a credential proof, will generate a user secret. Then, FCred will accept a
credential proof only if the revealed attributes correspond to a credential that
was issued to a corrupted users w.r.t. the X ′ extracted from the proof. That,
however, would still allow (dishonest) users to mix and match their credentials.
Therefore, FCred will accept the proofs only if the extracted X ′ underlies the
pseudonym P ′ w.r.t. which the proof verifies. Therefore, FCred checks the latter
using NymVerify.
Realization of FCred. A protocol RCred that realizes FCred can be obtained from
the algorithms described in Sect. 4.1 in the (FCRS,FCA)-hybrid model where SP
is the reference string and each call to FCred is replaced by running the cor-
responding algorithms. The detailed description of RCred is given in the full
version [9].

For efficiency reasons related to the integration of pseudonyms (which requires
zero-knowledge proofs and thus whitebox techniques), RCred does not use RURS

as a (blackbox) subroutine. We will, however, carefully align the internals of FCred

and RCred with those of FURS and RURS respectively, such that we can use the UC
emulation theorem in one of the hybrid steps of our security proof.

Theorem 7. Let URS be an unlinkable redactable signature scheme according
to Definition 1, SPC be a structure-preserving commitment scheme, Rgap be
a verifiable relation, Π be a non-interactive proof of knowledge system. Then
RCred securely realizes FCred in the (FCRS,FCA)-hybrid model if URS is correct,
unlinkable, unforgeable, and key extractable, SPC is binding, the non-interactive
proof-of-knowledge system is zero-knowledge and simulation extractable, and the
Rgap relation is hard. The proof is provided in the full version [9].

Building a Full-Fledged Credential System with Multiple Issuers. We now explain
how to use our credential functionality to support multiple issuers using multiple
sessions of FCred, one for each issuer, together with algorithms (SecGen,NymGen,
NymVerify) to generate user secret keys, to generate pseudonyms, and to verify
pseudonyms. The pseudonyms are required to be both hiding and binding w.r.t.
the user secret to provide privacy to the honest users and to prevent colluding
users from sharing credentials unless they all user the same user secret. A user
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Functionality FCred(NymVerify)

The functionality maintains tables MISS and MPRES initialized to ∅ and flags kg

and keyleak which are initially unset.

– On input (keygen, sid) from I, verify that sid = (I, sid′) for some sid′ and

that flag kg is unset. If not, then return ⊥. Else, do the following:

1. Send (initF, sid) to SIM and wait for a message (initF, sid ,SP , sk , pk ,

tdsim, tdext,Cred.SimProve,Cred.Verify,Cred.Extract) from SIM, where

SP are the system parameters, tdsim and tdext are the simulation and

extraction trapdoors respectively, and the rest are polynomial-time

algorithms. Store all of these values and set flag kg .

2. Return (verificationKey, sid , pk) to I.

– On input (leakSK, sid) from I verify that sid = (I, sid ′) for some sid ′. If

not, return ⊥. Else, if flag kg is set, set flag keyleak and return

(leakSK, sid , sk), otherwise - abort.

– On input (issueCred, sid , qid ,X ,P , aux (P)) from U , check sid = (I, sid′)
for some sid ′, and that flag kg is set. If not, return ⊥. Else send a public

delayed output (issueCred, sid , qid ,P) to I.

– On input (issueCred, sid , qid ,a) from I, check for

(issueCred, sid , qid ,X ,P , aux (P)) from U , and verify that sid = (I, sid′) for

some sid ′ and that the flag kg is set. If not, return ⊥. Else, do the following:

1. Run b ← NymVerify(SP ,P ,X , aux (P)). If b = 0, return ⊥.

2. Add (ISS , ⊥,X ,a) to MISS .

3. Send a public delayed output (credIssued, sid , qid ,a) to U .

4. When (credIssued, sid , qid ,a) is delivered to U , update the issuance

record by adding the user to (ISS , U ,X ,a) of MISS .

– On input (proveCred, sid ,X ,P ′, aux (P)′, I,a, cxt) from U , do the following:

1. Check if kg is set. If not, return ⊥.

2. Check if NymVerify(SP ,P ′,X , aux (P)′) = 1. If not, return ⊥.

3. Check if (ISS , U ,X ,a) exists. If not, return ⊥.

4. πX ,Cred ← Cred.SimProve(SP , sk , tdsim,P ′,aI , cxt).

5. Check if Cred.Verify(SP , pk ,P ′, πX ,Cred ,aI , cxt) = 0, then output ⊥.

6. Add (PRES , U , cxt ,X ,P ′, aux (P)′,aI , πX ,Cred) to MPRES .

7. Return (credProved, sid ,aI , πX ,Cred) to U .

– On input (verifyCredProof, sid , pk ′,P ′, π′
X ,Cred ,a′

I , cxt
′) from some party

P, do the following:

1. Verify the proof result = Cred.Verify(SP , pk ′, P ′, π′
X ,Cred ,a′

I , cxt
′).

2. If pk �= pk ′, or keyleak is set, or I is dishonest, or result = 0, send

(verified, sid ,a′
I , result) to P.

3. Else, if there is a record (PRES , ∗, cxt ′, ∗,P ′, ∗,a′
I , π

′
X ,Cred) return

(verified, sid ,a′
I , 1) to P.

4. Else, run (X ′, aux (P)′) ← Cred.Extract(SP, tdext, pk ,P ′, π′
X ,Cred ,a′

I , cxt
′).

5. If NymVerify(SP ,P ′,X ′, aux (P)′) = 0, return (verified, sid ,a′
I , 0) to P.

6. Else, if there is a record (ISS , U ,X ′,a) in MISS for a corrupted user U
such that aI = a′

I , return (verified, sid ,a′
I , 1) to P.

7. Otherwise return (verified, sid ,a′
I , 0) to P.

Fig. 1. The ideal functionality for single issuer anonymous credentials
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now can generate a user secret and different pseudonyms on them and then use
multiple calls to the FCred instances for different issuers to get credentials on
her pseudonyms. To compose a presentation proof that reveals attributes from
different credentials, the user creates a pseudonym P ′ and uses the corresponding
FCred instances to generate the required proofs with respect to this pseudonym.
Because the pseudonym is the same in different proofs and each proof guarantees
the same underlying secret in the credential and the pseudonym, the collection of
these proofs together results in a single proof for multiple credentials. Each proof
block guarantees unlinkability and unforgeability, and because the pseudonym is
both binding and hiding this composed proof is also unforgeable and unlinkable
with respect to other proof collections. The verification is done by querying the
corresponding FCred instances for verification of each particular proof part and by
checking that the pseudonym is the same in each proof part. A formal definition
of a full-fledged credential scheme and proof that the scheme just sketched meets
it is left as future work.

4.3 Instantiation and Efficiency Analysis

To analyze the efficiency of our scheme we consider a concrete instantiation sce-
nario. We instantiate our non-interactive construction with Groth-Sahai proofs
[45], the structure-preserving commitment scheme of [4], and our unlinkable
redactable signature scheme presented in Sect. 3.3. We use disjunctive proofs
to make the proof system simulation-extractable [22], see [54] for the efficient
instantiation with 48 group elements overhead in the XDH setting that forms
the basis of our efficiency analysis. As a hard relation we pick the Computa-
tional Diffie-Hellman problem. The URS scheme is instantiate with the fully
structure-preserving signature scheme by Abe et al. [5], Groth-Sahai proofs, and
the vector commitment scheme from Sect. 3.1. The proof of Theorem 8 follows
from Theorems 6-7.

Theorem 8. The credential system described above securely realizes FCred defined
in Sect. 4.2 if the SXDH, n-RootDH, n-BSDH, q-SDH, XDLIN, co-CDH, and DBP
assumptions hold. Consult building blocks for definitions of assumptions.

We refer to the full version [9] for the comparison with prior work. We stress
that the complexity of the Prove and Verify algorithms is independent of the
number of all attributes contained in a credential.

The size of the credential proof is roughly 178 group elements (148 when using
the SPS of [2] instead of FSPS). This means that the communication efficiency
for showing a credential with respect to a pseudonym is around 11 KB (9 KB for
SPS) at 128-bit security level, which is close to Idemix credentials [31] as the size
of pairing groups is much smaller than the size of RSA groups and because the
size of Idemix credential proofs is linear in the number of attributes. Besides,
Idemix credentials do not provide such strong formal security guarantees, i.e.
they require random oracles for non-interactive proofs and are not universally
composable. Our non-UC scheme is comparable in efficiency with the credential
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system of Izabachène et al. [50] that has credential proofs of around 8 KB, while
our UC scheme has larger proof sizes. Our scheme is much less efficient than the
scheme of [47] but their scheme relies on hash functions in their construction
and thus does not enable efficient protocol design.

Open Questions. We leave the construction of a scheme that achieves the same
functionality as ours with the efficiency of [47]—perhaps using fully structure
preserving signatures of equivalence classes—as an interesting open problem.
Other interesting questions are exploiting the lack of opening non-malleability
for attacks on existing constructions and efficiently basing the opening non-
malleability property of vector commitments on a more standard cryptographic
assumption than the n-RootDH assumption of Definition 9.
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Programme for the project FutureID (grant agreement no. 318424).

References

1. Abe, M., Chase, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo, M.:
Constant-size structure-preserving signatures: generic constructions and simple
assumptions. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658,
pp. 4–24. Springer, Heidelberg (2012)

2. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-
preserving signatures and commitments to group elements. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010)

3. Abe, M., Groth, J., Haralambiev, K., Ohkubo, M.: Optimal structure-preserving
signatures in asymmetric bilinear groups. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 649–666. Springer, Heidelberg (2011)

4. Abe, M., Haralambiev, K., Ohkubo, M.: Group to group commitments do not
shrink. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol.
7237, pp. 301–317. Springer, Heidelberg (2012)

5. Abe, M., Kohlweiss, M., Ohkubo, M., Tibouchi, M.: Fully structure-preserving
signatures and shrinking commitments. In: Oswald, E., Fischlin, M. (eds.) EURO-
CRYPT 2015. LNCS, vol. 9057, pp. 35–65. Springer, Heidelberg (2015)

6. Abe, M., Ohkubo, M.: A framework for universally composable non-committing
blind signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
435–450. Springer, Heidelberg (2009)

7. Ahn, J.H., Boneh, D., Camenisch, J., Hohenberger, S., Shelat, a, Waters, B.: Com-
puting on authenticated data. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194,
pp. 1–20. Springer, Heidelberg (2012)

8. Attrapadung, N., Libert, B., Peters, T.: Computing on authenticated data: new
privacy definitions and constructions. In: Wang, X., Sako, K. (eds.) ASIACRYPT
2012. LNCS, vol. 7658, pp. 367–385. Springer, Heidelberg (2012)

9. Camenisch, J., Dubovitskaya, M., Haralambiev, K., Kohlweiss, K.: Composable &
Modular Anonymous Credentials: Definitions and Practical Constructions. IACR
Cryptology ePrint Archive, Report 2015/580



286 J. Camenisch et al.
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Abstract. We describe three contributions regarding the Soft Analyti-
cal Side-Channel Attacks (SASCA) introduced at Asiacrypt 2014. First,
we compare them with Algebraic Side-Channel Attacks (ASCA) in a
noise-free simulated setting. We observe that SASCA allow more efficient
key recoveries than ASCA, even in this context (favorable to the latter).
Second, we describe the first working experiments of SASCA against an
actual AES implementation. Doing so, we analyse their profiling require-
ments, put forward the significant gains they provide over profiled Dif-
ferential Power Analysis (DPA) in terms of number of traces needed
for key recoveries, and discuss the specificities of such concrete attacks
compared to simulated ones. Third, we evaluate the distance between
SASCA and DPA enhanced with computational power to perform enu-
meration, and show that the gap between both attacks can be quite
reduced in this case. Therefore, our results bring interesting feedback for
evaluation laboratories. They suggest that in several relevant scenarios
(e.g. attacks exploiting many known plaintexts), taking a small mar-
gin over the security level indicated by standard DPA with enumeration
should be sufficient to prevent more elaborate attacks such as SASCA. By
contrast, SASCA may remain the only option in more extreme scenarios
(e.g. attacks with unknown plaintexts/ciphertexts or against leakage-
resilient primitives). We conclude by recalling the algorithmic depen-
dency of the latter attacks, and therefore that our conclusions are specific
to the AES.

1 Introduction

State-of-the-art. Strategies to exploit side-channel leakages can be classified as
Divide and Conquer (DC) and analytical. In the first case, the adversary recovers
information about different bytes of (e.g.) a block cipher key independently, and
then combines this information, e.g. via enumeration [36]. In the second case,
she rather tries to recover the full key at once, exploiting more algorithmic
approaches to cryptanalysis with leakage. Rephrasing Banciu et al., one can see
these different strategies as a tradeoff between pragmatism and elegance [2].

In brief, the “DC+enumeration” approach is pragmatic, i.e. it is easy to
implement, requires little knowledge about the target implementation, and can
take advantage of a variety of popular (profiled and non-profiled) distinguishers,
c© International Association for Cryptologic Research 2015
T. Iwata and J.H. Cheon (Eds.): ASIACRYPT 2015, Part II, LNCS 9453, pp. 291–312, 2015.
DOI: 10.1007/978-3-662-48800-3 12
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such as Correlation Power Analysis (CPA) [6], Mutual Information Analysis
(MIA) [14], Linear Regression (LR) [34] or Template Attacks (TA) [8]. We will
use the term Differential Power Analysis (DPA) to denote them all [22].

By contrast, analytical approaches are (more) elegant, since they theoreti-
cally exploit all the information leaked by an implementation (vs. the leakages
of the first and/or last rounds independently for DC attacks). As a result, these
attacks can (theoretically) succeed in conditions where the number of measure-
ments available to the adversary is very limited. But this elegance (and the
power that comes with it) usually implies stronger assumptions on the target
implementation (e.g. most of them require some type of profiling). The Algebraic
Side-Channel Attacks (ASCA) described in [30] and further analyzed in [7,32]
are an extreme solution in this direction. In this case, the target block cipher and
its leakages are represented as a set of equations that are then solved (e.g. with
a SAT solver, or Groebner bases). This typically implies a weak resistance to the
noise that is usually observed in side-channel measurements. As a result, various
heuristics have been suggested to better deal with errors in the information leak-
ages, such as [24,39]. The Tolerant Algebraic Side-Channel Attacks (TASCA)
proposed in [25,26] made one additional step in this direction, by replacing the
solvers used in ASCA by an optimizer. But they were limited by their high mem-
ory complexity (since they essentially deal with noise by exhaustively encoding
the errors they may cause). More recently, two independent proposals suggested
to design a dedicated solver specialized to byte-oriented ciphers such as the
AES [16,27]. The latter ones were more efficient and based on smart heuris-
tics exploiting enumeration. Eventually, Soft Analytical Side-Channel Attacks
(SASCA) were introduced at Asiacrypt 2014 as a conceptually different way
to exploit side-channel leakages analytically [38]. Namely, rather than encoding
them as equations, SASCA describe an implementation and its leakages as a
code, that one can efficiently decode using the Belief Propagation (BP) algo-
rithm. As a result, they can directly exploit the (soft) information provided by
profiled side-channel attacks (such as LR or TA), in an efficient manner, with
limited memory complexity, and for multiple plaintexts. Concretely, this implies
that they provide a natural bridge between DC attacks and analytical ones.

Our Contribution. In view of this state-of-the-art, we consider three open
problems regarding DC and analytical strategies in side-channel analysis.

First, we observe that the recent work in [38] experimented SASCA in the
context of noisy AES leakages. While this context allowed showing that SASCA
are indeed applicable in environments where ASCA would fail, it leaves the
question whether this comes at the cost of a lower efficiency in a noise-free
context open. Therefore, we launched various experiments with noise-free AES
leakages to compare ASCA and SASCA. These experiments allowed us to confirm
that also in this context, SASCA are equally (even slightly more) efficient.

Second, the experiments in [38] exploited simulations in order to exhibit
the strong noise-resilience of SASCA (since the amount of noise can then be
used as a parameter of such simulations). But this naturally eludes the question
of the profiling of a concrete device, which can be a challenging task, and for
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which the leakage functions of different target intermediate values may turn out
to be quite different [13]. Therefore, we describe the first working experiments
of SASCA against an actual AES implementation, for which a bivariate TA
exploiting the S-box input/output leakages would typically be successful after
more than 50 measurements. We further consider two cases for the adversary’s
knowledge about the implementation. In the first one, she has a precise descrip-
tion in hand (i.e. the assembly code, typically). In the second one, she only knows
AES is running, and therefore only exploits the generic operations that one can
assume from the algorithm specification.1 Our experiments confirm that SASCA
are applicable in a simple profiled scenario, and lead to successful key recoveries
with less traces than a DC attack (by an approximate factor up to 5). They
also allow us to discuss the profiling cost, and the consequences of the different
leakage functions in our target implementation. A relevant observation regarding
them is that weak leakages in the MixColumns operations are especially damag-
ing for the adversary, which can be explained by the (factor) graph describing an
AES implementation: indeed, XORing two values with limited information sig-
nificantly reduces the information propagation of the BP algorithm execution.
This suggest interesting research directions for preventing such attacks, since
protecting the linear parts of a block cipher is usually easier/cheaper.

Third, we note that SASCA are in general more computationally intensive
than DC attacks. Therefore, a fair comparison should allow some enumeration
power to the DC attacks as well. We complement our previous experimental
attacks by considering this last scenario. That is, we compare the success rate
of SASCA with the ones of DC attacks exploiting a computational power corre-
sponding to up to 230 encryptions (which corresponds to more than the execu-
tion time of SASCA on our computing platform). Our results put forward that
SASCA remain the most powerful attack in this case, but with a lower gain.

Summary. These contributions allow answering the question of our title. First,
SASCA are in general preferable to ASCA, with both noise-free and noisy AES
leakages. Second, the tradeoff between SASCA and DC attacks is more balanced.
As previously mentioned, DC attacks are more pragmatic. So the interest of
SASCA essentially depends on the success rate gains it provides, which itself
depends on the scenarios. If multiple plaintexts/ciphertext pairs are available,
our experiments suggest that the gain of SASCA over DPA with enumeration is
somewhat limited, and may not justify such an elegant approach. This conclusion
backs up the results in [2], but in a more general scenario, since we consider
multiple-queries attacks rather than single-query ones, together with more a
powerful analytical strategy. By contrast, if plaintexts/ciphertexts are unknown
(which renders DPA [17] and enumeration more challenging to apply), or if the
number of plaintexts one can observe is very limited (e.g. by design, due to a
leakage-resilient primitive [10]), SASCA may be the best/only option.

1 Admittedly, such a generic scenario still assumes that the target implementation
closely follows the specifications given in [11] which may not always be the case, e.g.
for bitslice implementations [29], or T-table based implementations [9].
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Preliminary Remark. Our focus in this paper is on a couple of extreme
approaches to side-channel analysis, i.e. the most pragmatic DC attacks against
8-bit targets of the first AES round, and the most elegant ASCA/SASCA exploit-
ing most/all such targets in the implementation. Quite naturally, the other ana-
lytical attacks mentioned in this introduction would provide various tradeoffs
between these extremes. Besides, more computationally-intensive DPA attacks
(based on larger key hypotheses) are also possible, as recently discussed by
Mather et al. [23]. Such attacks are complementary and may further reduce
the gain of SASCA over DPA, possibly at the cost of increased computational
requirements (e.g. the latter work exploited high-performance computing
whereas all our experiments were carried out on a single desktop computer).

2 Background

In this section we first describe the measurement setup used in our experiments.
Then, we describe two tools we used to identify and evaluate information leakages
in the traces. Finally, we recall the basics of the different attacks we compare.

2.1 Measurement Setup

Our measurements are based on the open source AES FURIOUS implementa-
tion (http://point-at-infinity.org/avraes) run by an 8-bit Atmel ATMEGA644p
microcontroller at a 20 MHz clock frequency. We monitored the power consump-
tion across a 22Ω resistor. Acquisitions were performed using a Lecroy WaveRun-
ner HRO 66 ZI providing 8-bit samples, running at 400 Msamples/second. For
SASCA, we can exploit any intermediate values that appear during the AES
computation. Hence, we measured the full encryption. Our traces are composed
of 94 000 points, containing the key scheduling and encryption rounds. Our pro-
filing is based on 256 000 traces corresponding to random plaintexts and keys.
As a result, we expect around 1 000 traces for each value of each intermediate
computation. We use lin,x for the value x of the nth intermediate value in the ith

leakage trace, and lin,x(t) when we access at the tth point (sample) of this trace.

2.2 Information Detection Tools

Since SASCA can exploit many target intermediate values, we need to identify
the time samples that contain information about them in our traces, next referred
to as Points Of Interest (POI). We recall two simple methods for this purpose,
and denote the POI of the nth intermediate value in our traces with tn.

(a) Correlation Power Analysis (CPA) [6]. is a standard side-channel dis-
tinguisher that estimates the correlation between the measured leakages and
some key-dependent model for a target intermediate value. In its standard ver-
sion, an a-priori (here, Hamming weight) model is used for this purpose.

http://point-at-infinity.org/avraes
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In practice, this estimation is performed by sampling (i.e. measuring) traces
from a leakage variable L and a model variable Mk, using Pearson’s correlation
coefficient:

ρk(L,Mk) =
Ê[(L − μ̂L)(Mk − μ̂Mk

)]
√
v̂ar(L)v̂ar(Mk)

·

In this equation, Ê and v̂ar respectively denote the sample mean and variance
operators, and μ̂L is the sample mean of the leakage distribution L. CPA is a
univariate distinguisher and therefore launched sample by sample.

(b) The Signal-to-Noise Ratio (SNR) [21]. of the nth intermediate value
at the time sample t can be defined according to Mangard’s formula [21]:

SNRn(t) =
v̂arx

(
Êi

(
lin,x(t)

))

Êx

(
v̂ari

(
lin,x(t)

)) ·

Despite connected (high SNRs imply efficient CPA if the right model is used),
these metrics allow slightly different intuitions. In particular, the SNR cannot
tell apart the input and output leakages of a bijective operation (such as an
S-box), since both intermediate values will generate useful signal. This separation
can be achieved by CPA thanks to its a-priori leakage predictions.

2.3 Gaussian Templates Attacks

Gaussian TA [8] are the most popular profiled distinguisher. They assume that
the leakages can be interpreted as the realizations of a random variable which
generates samples according a Gaussian distribution and work in two steps.
In a profiling phase, the adversary estimates a mean μ̂n,x and variance σ̂2

n,x for
each value x of the nth intermediate computation. In practice, this is done for the
time sample tn obtained thanks to the previously mentioned POI detection tools.
Next, in the attack phase and for each trace l, she can calculate the likelihood
to observe this leakage at the time tn for each x as:

P̂r[l(tn)|x] ∼ N (μ̂n,x, σ̂2
n,x).

In the context of standard DPA, we typically have x = p ⊕ k, with p a known
plaintext and k the target subkey. Therefore, the adversary can easily calculate
P̂r[k∗|p, l(tn)] using Bayes theorem, for each subkey candidate k∗:

P̂r[k∗] =
∏

i

P̂r[k∗|p, li(tn)].

To recover the full key, she can run a TA on each subkey independently.
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By contrast, in the context of SASCA, we will directly insert the knowledge (i.e.
probabilities) about any intermediate value x in the (factor) graph describing
the implementation, and try to recover the full key at once.

Note that our SASCA experiments consider univariate Gaussian TA whereas
our comparisons with DPA also consider bivariate TA exploiting the S-box input
and output leakages (i.e. the typical operations that a divide-and-conquer adver-
sary would exploit). In the latter case, the previous means and variances just
have to be replaced by mean vectors and covariance matrices. This choice is
motivated by our focus on the exploitation of multiple intermediate AES com-
putations. It could be further combined with the exploitation of more samples
per intermerdiate computation, e.g. thanks to dimensionality reduction [1].

2.4 Key Enumeration and Rank Estimation

At the end of a DC side-channel attack (as the previous TA), the attacker has
probabilities on each subkey. If the master key is not the most probable one,
she can perform enumeration up to some threshold thanks to enumeration algo-
rithms, e.g. [36]. This threshold depends on the computational power of the
adversary, since enumerating all keys is computationally impossible. If the key is
beyond the threshold of computationally feasible enumeration, and in order to
gain intuition about the computational security remaining after an attack, key
rank estimation algorithms can be used [15,37]. A key rank estimation takes in
input the list of probabilities of all subkeys and the probability of the correct
key (which is only available in an evaluation context), and returns an estimation
on the number of keys that are more likely than the actual key. Rank estima-
tion allows to approximate dth-order success rates (i.e. the probability that the
correct key lies among the d first ones rated by the attack) efficiently and quite
accurately. The security graphs introduced in [37] provide a visual representation
of higher-order success rates in function of the number attack traces.

2.5 Algebraic Side-Channel Attacks

ASCA were introduced in [30] as one of the (if not the) first method to efficiently
exploit all the informative samples in a leakage trace. We briefly recall their three
main steps and refer to previous publications for the details.

1. Construction consists in representing the cipher as an instance of an algebraic
problem (e.g. Boolean satisfiability, Groebner bases). Because of their large mem-
ory (RAM) requirements, ASCA generally build a system corresponding to one
(or a few) traces only. For example, the SAT representation of a single AES trace
in [32] has approximatively 18, 000 equations in 10, 000 variables.

2. Information extraction consists in getting exploitable leakages from the mea-
surements. For ASCA, the main constraint is that actual solvers require hard
information. Therefore, this phase usually translates the result of a TA into
deterministic leakages such as the Hamming weight of the target intermediate
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values. Note that the attack is (in principle) applicable with any type of lekages
given that they are sufficiently informative and error-free.

3. Solving. Eventually, the side-channel information extracted in the second
phase is added to the system of equations constructed in the first phase, and
generic solvers are launched to solve the system and recover the key. In practice,
this last phase generally has large RAM requirements causing ASCA to be lim-
ited to the exploitation of one (or two) measurement traces.

Summarizing, ASCA are powerful attacks since they can theoretically recover a
key from very few leakage traces, but this comes at the cost of low noise-resilience,
which motivated various heuristic improvements listed in introduction. The next
SASCA are a more founded solution to get rid of this limitation.

2.6 Soft Analytical Side-Channel Attacks

SASCA [38] describe the target block cipher implementation and its leakages
in a way similar to a Low-Density Parity Check code (LDPC) [12]. Since the
latter can be decoded using soft decoding algorithms, it implies that SASCA
can directly use the posterior probabilities obtained during a TA. Similar to
ASCA, they can also be described in three main steps.

1. Construction. The cipher is represented as a so-called “factor graph” with
two types of nodes and bidirectional edges. First, variable nodes represent the
intermediate values. Second, function nodes represent the a-priori knowledge
about the variables (e.g. the known plaintexts and leakages) and the operations
connecting the different variables. Those nodes are connected with bidirectional
edges that carry two types of messages (i.e. propagate the information) through
the graph: the type q message are from variables to functions and the type r
messages are from functions to variables (see [20] for more details).

2. Information extraction. The description of this phase is trivial. The probabil-
ities provided by TA on any intermediate variable of the encryption process can
be directly exploited, and added as a function node to the factor graph.

3. Decoding. Similar to LDPC codes, the factor graph is then decoded using the
BP algorithm [28]. Intuitively, it essentially iterates the local propagation of the
information about the variable nodes of the target implementation.

Since our work is mostly focused on concrete investigations of SASCA, we now
describe the BP algorithm in more details. Our description is largely inspired
by the description of [20, Chapter 26]. For this purpose, we denote by xi the ith

intermediate value and by fi the ith function node. As just mentioned, the nodes
will be connected by edges that carry two types of messages. The first ones go
from a variable node to a function node, and are denoted as qvn→fm . The second
ones go from a function node to a variable node, and are denoted as rfn→vm

.
In both cases, n is the index of the sending node and m the index of the recipient
node. The messages carried correspond to the scores for the different values of
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the variable nodes. At the beginning of the algorithm execution, the messages
from variable nodes to function nodes are initialized with no information on the
variable. That is, for all n,m and for all xn we have:

qvn→fm(xn) = 1.

The scores are then updated according to two rules (one per type of messages):

rfm→vn
(xn) =

∑

xn′ ,n′ �=n

(
fm(xn′ , xn)

∏

n′
qvn′→fm(xn′)

)
. (1)

qvn→fm(xn) =
∏

m′ �=m

rfm′ →vn
(xn). (2)

In Eq. 2, the variable node vn sends the product of the messages about xn

received from the others function nodes (m′ �= m) to the function node fm,
for each value of xn. And in Eq. 1, the function node fm sends a sum over all
the possible input values of fm of the value of fm evaluated on the vector of
(xn′ , n′ �= n)’s, multiplied by the product of the messages received by fm for
the considered values of xn′ . The BP algorithm essentially works by iteratively
applying these rules on all nodes. If the factor graph is a tree (i.e. if it has no
loop), a convergence should occur after a number of iterations at most equal to
the diameter of the graph. In case the graph includes loops (e.g. as in our AES
implementation case), convergence is not guaranteed, but usually occurs after a
number of iterations slightly larger than the graph diameter. The main parame-
ters influencing the time and memory complexity of the BP algorithm are the
number of possible values for each variable (i.e. 28 in our 8-bit example) and the
number of edges. The time complexity additionally depends on the number of
inputs of the function nodes representing the block cipher operations (since the
first rule sums over all the input combinations of these operations).

3 Comparison with ASCA

ASCA and SASCA are both analytical attacks with very similar descriptions.
As previously shown in [38], SASCA have a clear advantage when only noisy
information is available. But when the information is noise-free, the advantage
of one over the other has not been studied yet. In this section, we therefore tackle
the question “which analytical attack is most efficient in noise-free scenario?”.
To this end, we compare the results of SASCA and ASCA against a simu-
lated AES implementation with noise-free (Hamming weight) leakages. We first
describe the AES representation we used in our SASCA (which will also be used
in the following sections), then describe the different settings we considered for
our simulated attacks, and finally provide the results of our experiments.

3.1 Our Representation for SASCA

As usual in analytical attacks, our description of the AES is based on its tar-
get implementation. This allows us to easily integrate the information obtained
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Fig. 1. Graph representation of one column of the first AES round.

during its execution. For readability purposes, we start by illustrating the graph
representation for the first round of one column of the AES in Fig. 1. To build
this graph for one plaintext, we start with 32 variable nodes (circles), 16 for
the 8-bit subplaintexts (pi), and 16 for the 8-bit subkeys (ki). We first add a
new variable node in the graph representation each time a new intermediate
value is computed in the AES FURIOUS implementation,2 together with the
2 Excluding memory copies which only increase the graph diameter.
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corresponding function nodes (rectangles). There are three different operations
that create intermediate values. First, the Boolean XOR takes two variables as
inputs and outputs a new variable that is equal to the bitwise XOR of the two
inputs. Next, two memory accesses to look-up tables are used for the S-box and
Xtimes operations, which take one variable as input, and create a new variable
as output. We finally add two types of leaf nodes to these three function nodes.
The P’s reflect the knowledge of the plaintext used, and the L’s give the posterior
probability of the value observed using Gaussian templates. A summary of the
different function nodes used in our AES factor graph is given in Table 1.

Table 1. Summary of the function nodes used in our AES factor graph.

XOR(a, b, c) =

{
1 if a = b ⊕ c,

0 otherwise.
SBOX(a, b) =

{
1 if a = sbox(b),

0 otherwise.

XTIMES(a, b) =

{
1 if a = xtimes(b),

0 otherwise.
P(xn) =

{
1 if xn = p,

0 otherwise.

L(xn) = Pr[xn|l(tn)].

The graph in Fig. 1 naturally extends to a full AES execution. And when
using several traces, we just keep a single description of the key scheduling, that
links different subgraphs representing the different plaintext encryptions. Our
description of the key scheduling requires 226 variable nodes and 210 function
nodes. Our description of the rounds requires 1036 variable nodes and 1020
function nodes. The key scheduling nodes are connected by 580 edges, and each
round of the encryption contains 292 edges. As a result and overall, the factor
graph for one plaintext contains 1262 variable nodes, 1230 function nodes and
3628 edges. On the top of that we finally add the leakage function nodes which
account for up to 1262 edges (if all leakages are exploited). Concretely, each
variable node represents an intermediate value that can take 28 different values.
Hence, if we represent each edge by two tables in single precision of size 256, the
memory required is: 256 × (3628 × 2 + 1262) × 4 bytes ≈ 8MB.3

3.2 Comparison Setup

Our noise-free evaluations of ASCA and SASCA are based on single-plaintext
attacks, which is due to the high memory requirements of ASCA (that hardly
extend to more plaintexts). In order to stay comparable with the previous work
in [32], we consider a Hamming weight (WH) leakage function and specify the
location of the leakages as follows:

– 16 WH ’s for AddRoundKey,
– 16 WH ’s for the output of SubBytes and ShiftRows,
– 36 WH ’s for the XORs and 16 WH for the look-up tables in MixColumns.
3 For the leakage nodes, messages from variable to function (qvn→fm) are not necessary.
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As previously mentioned, these leakages are represented by L boxes in Fig. 1.
We also consider two different contexts for the information extraction:

– Consecutive weights (cw), i.e. the WH ’s are obtained for consecutive rounds.
– Random weights (rw), i.e. we assume the knowledge of WH ’s for randomly

distributed intermediate values among the 804 possible ones.

Eventually, we analyzed attacks in a Known Plaintext (KP) and Unknown Plain-
text (UP) scenario. And in all cases, we excluded the key scheduling leakages, as
in [32]. Based on these settings, we evaluated the success rate in function of the
quantity of information collected, counted in terms of “rounds of information”,
where one round corresponds to 84 WH ’s of 8-bit values.

3.3 Experimental Results

The results of our SASCA with noise-free leakages are reported in Fig. 2, and
compared to the similar ASCA experiments provided in Reference [32].

We first observe that 2 consecutive rounds of WH ’s are enough to recover
the key for SASCA with the knowledge of plaintext and when the leakages are
located in the first rounds.4 Next, if we do not have access to the plaintext,
SASCA requires 3 consecutive rounds of leakage, as for ASCA. By contrast,
and as previously underlined, the solving/decoding phase is significantly more
challenging in case the leakage information is randomly distributed among the
intermediate variables. This is intuitively connected to the fact that the solver
and decoder both require to propagate information through the rounds, and
that this information can rapidly vanish in case some intermediate variables
are unknown. The simplest example is a XOR operation within MixColumns,
as mentioned in introduction. So accumulating information on closely connected
intermediate computations is always the best approach in such analytical attacks.
This effect is of course amplified if the leakages are located in the middle rounds
and the plaintext/ciphertext are unknown, as clear from Fig. 2.

Overall, and since both SAT-solvers and the BP algorithm with loops in the
factor graph are highly heuristic tools, it is of course difficult to make strong
statements about their respective leakage requirements. However, these experi-
ments confirm that at least in the relevant case-study of Hamming weight AES
leakages, the better noise-resilience of SASCA does not imply weaker perfor-
mances in a noise-free setting. Besides, and in terms of time complexity, the
attacks also differ. Namely, the resolution time for ASCA depends of the quan-
tity of information, whereas it is independent of this quantity in SASCA, and
approximately 20 times lower than the fastest resolution times for ASCA.

Note finally that moving to a noisy scenario can only be detrimental to ASCA.
Indeed, and as discussed in [26], ASCA requires correct hard information for the

4 We considered leakages for the two first rounds in this case, which seems more nat-
ural, and is the only minor differences with the experiments in [32], which considered
middle rounds. However, we note that by considering middle round leakages with
known plaintext, we then require three rounds of WH ’s, as for ASCA.
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Fig. 2. Experimental results of comparison of ASCA and SASCA.

key recovery to succeed. In case of noisy measurements, this can only be guar-
anteed by considering less informative classes of leakages or similar heuristics.
For example, previous works in this direction considered Hamming weights h’s
between h − d and h + d for increasing distances d’s, which rapidly makes the
attack computationally hard (and cannot be mitigated with multiple plaintext
leakages because of the high RAM requirements of ASCA). So the efficiency gain
of SASCA over ASCA generally increases with the measurement noise.

4 SASCA Against a Concrete AES Implementation

In this section, we complete the previous simulated experiments and explore
whether SASCA can be transposed in the more realistic context of measured
leakages. To the best of our knowledge, we describe the first uses of SASCA
against a concrete AES implementation, and take advantage of this case-study
to answer several questions such as (i) how to perform the profiling of the many
target intermediate values in SASCA?, (ii) what happens when the implementa-
tion details (such as the source code) are unknown?, and (iii) are there significant
differences (or even gaps) between concrete and simulated experiments?

4.1 Profiling Step

We first describe how to exploit the tools from Sect. 2.2 in order to detect POIs
for our 1230 target intermediate values (which correspond to 1262 variable nodes
minus 32 corresponding to the 16 bytes of plaintext and ciphertext). In this con-
text, directly computing the SNRs or CPAs in parallel for all our samples turns
out to be difficult. Indeed, the memory requirements to compute the mean trace
of an intermediate value with simple precision requires 94,000 (samples) × 256
(values) × 4 (bytes) ≈ 91MB, which means approximately 100 GB for the 1,230
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values. For similar reasons, computing all these SNRs or CPAs sequentially is
not possible (i.e. would require too much time). So the natural option is to trade
time and memory by cutting the traces in a number of pieces that fit in RAM.
This is easily done if we can assume some knowledge about the implementation
(which we did), resulting in a relatively easy profiling step carried out in a dozen
of hours on a single desktop computer. A similar profiling could be performed
without implementation knowledge, by iteratively testing the intermediate val-
ues that appear sequentially in an AES implementation.

A typical outcome of this profiling is given in Fig. 3, where we show the
SNR we observed for the intermediate value t1 from the factor graph in Fig. 1
(i.e. the value of the bitwise XOR of the first subkey and the first subplaintext).
As intuitively expected, we can identify significant leakages at three different
times. The first one, at t = 20, 779, corresponds to the computation of the value
t1, i.e. the XOR between p1 and k1. The second one, at t = 22, 077, corresponds
to the computation of the value s1, i.e. a memory access to the look-up table
of the S-box. The third one, at t = 24, 004, corresponds to memory copies of
s1 during the computation of MixColumns. Indeed, the SNR cannot tell apart
intermediate values that are bijectively related. So we used the CPA distinguisher
to get rid of this limitation (taking advantage of the fact that a simple Hamming
weight leakage model was applicable against our target implementation).

Fig. 3. SNR-based profiling of a single intermediate value.

A summary of the results obtained after our profiling step is given in Table 2,
where the most interesting observation is that the informativeness of the leakage
samples strongly depends on the target intermediate values. In particular, we
see that memory accesses allow SNRs over 2, while XOR operations lead to
SNRs below 0.4 (and this SNR is further reduced in case of consecutive XOR
operations). This is in strong contrast, with the simulated cases (in the previous
section and in [38]), where all the variables were assumed to leak with the same
SNR. Note that the table mentions both SNR and CPA values, though our



304 V. Grosso and F.-X. Standaert

Table 2. Summary of profiling step results.

Assembly code Graph description SNR ρ(WH)

Add round key

ld H1, Y+ * * *

eor ST11, H1 Xor t1 p1 k1 0.1493 0.5186

Sbox

ldi ZH, high(sbox<<1) * * *

mov ZL, ST11 * * *

lpm ST11, Z Sbox s1 t1 1.6301 0.4766

MixColumns

ldi ZH, high(xtime<<1) * * *

mov H1, ST11 * * *

eor H1, ST21 Xor h1 s1 s2 0.1261 0.6158

eor H1, ST31 Xor h2 h1 s3 0.0391 0.1449

eor H1, ST41 Xor h3 h2 s4 0.3293 0.5261

mov H2, ST11 * * *

mov H3, ST11 * * *

eor H3, ST21 Xor mc1 s1 s2 0.2802 0.6163

mov ZL, H3 * * *

lpm H3, Z Xtime xt1 mc1 2.8650 0.6199

eor ST11, H3 Xor cm1 xt1 s1 0.0723 0.2508

eor ST11, H1 Xor p17 cm1 h3 0.1064 0.3492

Key schedule

ldi H1, 1 * * *

ldi ZH, high(sbox<<1) * * *

mov ZL, ST24 * * *

lpm H3, Z Sbox sk14 k14 2.2216 0.5553

eor ST11, H3 Xor ak1 sk14 k1 0.1158 0.5291

eor ST11, H1 XorCste k17 ak1 1 0.3435 0.5140

selection of POIs was based on the (more generic) first criteria, and CPA was
only used to separate the POIs of bijectively related intermediate values.5

4.2 Experimental Results

Taking advantage of the previous POI detection, we now want to discuss the
consequences of different assumptions about the implementationknowledge.These
investigations are motivated by the usual gap between Kerckhoff’s laws [18], which

5 We used a relatively noisy setup on purpose (e.g. we did not filter our measurements),
in order to magnify the effectiveness of SASCA in such challenging contexts.
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advises to keep the key as only secret in cryptography, and thepractice in embedded
security, that usually takes advantage of some obscurity regarding the implemen-
tations. For this purpose, we considered three adversaries:

1. Informed. The adversary has access to the implementation details (i.e. source
code), and can exploit the leakages of all the target intermediate values.

2. Informed, but excluding the key scheduling. This is the same case as the pre-
vious one, but we exclude the key scheduling leakages as in the simulations
of the previous section (e.g. because round keys are precomputed).

3. Uninformed. Here the adversary only knows the AES is running, assumes it
is implemented following the specifications in [11], and only exploits generic
operations (i.e. the inputs and outputs of AddRoundKey, SubByte, ShiftRows
and MixColumns, together with the key rounds’ inputs and outputs).

In order to have fair comparisons, we used the same profiling for all three cases
(i.e. we just excluded some POIs for cases 2 and 3), and we used 100 sets of 30
traces with different keys and plaintexts to calculate the success rate of SASCA
in these different conditions. The results of our experiments are in Fig. 4. Our first
and main observation is that SASCA are applicable to actual implementations,
for which the leakages observed provide more or less information (and SNR)
depending on the intermediate values. As expected, the informed adversary is
the most powerful. But we also see that excluding the key scheduling leakages, or
considering an uninformed adversary, only marginally reduces the attack success
rates. Interestingly, there is a strong correlation between this success rate and the
number of leakage samples exploited, since excluding the key scheduling implies
the removal of 226 leakage function nodes, and the uninformed adversary has
540 leakage function nodes less than the informed one (mostly corresponding
to the MixColumns operation). So we can conclude that SASCA are not only
a threat for highly informed adversaries, and in fact quite generically apply to
unprotected software implementations with many leaking points.

Simulation Vs. Measurement. In view of the previous results, with infor-
mation leakages depending on the target intermediate values, a natural question
is whether security against SASCA was reasonably predicted with a simulated
analysis. Of course, we know that in general, analytical attacks are much harder
to predict than DPA [31], and do not enjoy simple formulas for the prediction of
their success rates [22]. Yet, we would like to study informally the possible con-
nection between simple simulated analyses and concrete ones. For this purpose,
we compare the results obtained in these two cases in Fig. 5. For readability, we
only report results for the informed and uninformed cases, and consider different
SNRs for the simulated attacks. In this context, we first recall Table 2 where the
SNRs observed for our AES implementation vary between 21 and 2−2. Interest-
ingly, we see from Fig. 5 that the experimental success rate is indeed bounded by
these extremes. (Tighter and more rigorous bounds are probably hard to obtain
for such heuristic attacks). Besides, we also observe that the success rates of the
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Fig. 4. Success rate in function of the # of traces for different adversaries: informed one
, informed one without key scheduling leakages and uninformed one .

measurements and simulations are closer in the case of the uninformed adver-
sary, which can be explained by the fact that we essentially ignore MixColumns
leakages in this case, for which the SNRs are lower.

5 Comparison with DPA and Enumeration

In this section, we start from the observation that elegant approaches to side-
channel analysis generally require more computational power than standard
DPA. Thus, a fair comparison between both approaches should not only look at
the success rate in function of the number of traces, but also take into account
the resolution time as a parameter. As a result, and in order to compare SASCA
and the pragmatic DPA on a sound basis, this section investigates the result of
DC attacks combined with computational power for key enumeration.

5.1 Evaluation of Profiled Template Attacks

In order to be as comparable as possible with the previous SASCA, our com-
parison will be based on the profiled TA described in Sect. 2.3.6 More precisely,
we considered a quite pragmatic DC attack exploiting the bivariate leakages
corresponding to the AddRoundKey and SubByte operations (i.e. {si}16i=1 and
{ti}16i=1 in Fig. 1). We can take advantage of the same detection of POIs as
described in the previous section for this purpose. This choice allows us to keep
the computational complexity of the TA itself very minimal (since relying only
on 8-bit hypotheses). As previously mentioned, it also aims to make comparison

6 We considered TA for our DPA comparison because they share the same profiled
setting as SASCA. Comparisons with a non-profiled CPA can only be beneficial to
SASCA. More precisely, we expect a typical loss factor of 2 to 5 between (WH -based)
CPA and TA, according to the results in [35] obtained on the same device.
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Fig. 5. Experimental results for SASCA for an informed adversary (a) and unin-

formed adversary (b). Red curves are for simulated cases for

SNR (21, 2−1, 2−2, 2−3). Blue curves are for experiments on real traces (Color
figure online).

as meaningful as possible (since we compare two attacks with one sample per
target operation that only differ by their number of target operations). Follow-
ing, we built the security graph of our bivariate TA, as represented in Fig. 6,
where the white (resp. black) curve corresponds to the maximum (resp. mini-
mum) rank observed, and the red curve is for the average rank. It indicates that
approximately 60 plaintexts are required to recover the key without any enu-
meration (which is in line with Footnote 5). But more interestingly, the graph
also highlights that allowing enumeration up to ranks (e.g.) 230 allows to reduce
the required number of measured traces down to approximately 10.

5.2 Comparing SASCA and DPA with Enumeration

In our prototype implementation running on a desktop computer, SASCA
requires roughly one second per plaintext, and reaches a success rate of one after
20 plaintexts (for the informed adversary). In order to allow reasonably fair com-
parisons, we first measured that the same desktop computer can perform a bit
more than 220 AES encryptions in 20 seconds. So this is typically the amount of
enumeration that we should grant the bivariate TA for comparisons with SASCA.7

For completeness, we also considered the success rates of bivariate TA without enu-
meration and with 230 enumeration power.8 The results of these last experiments
7 We omit to take the (time and memory) resources required for the generation of the

list of the most probable keys to enumerate into account in our comparisons, since
these resources remain small in the total enumeration cost. Using the state-of-the-art
enumeration algorithm [36], we required 2.7MB + 0.55 seconds to generate a list of
220 keys, and 1.8GB + 3130 seconds to generate a list of 232 keys.

8 Which is also more than allowed by the new suboptimal key enumeration in [3].
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Fig. 6. Security graph of a bivariate TA.

are in Fig. 7. Overall, they bring an interesting counterpart to our previous inves-
tigations. On the one hand, we see that SASCA remains the most powerful attack
when the adversary has enough knowledge of the implementation. By contrast in
the uninformed case, the gain over the pragmatic TA with enumeration is lower.
So as expected, it is really the amount and type of leakage samples exploitable
by the adversary that make SASCA more or less powerful, and determine their
interest (or lack thereof) compared to DC attacks. In this respect, a meaningful
observation is that the gap between SASCA and DPA without enumeration (here
approximately 5) is lower than the approximate factor 10 that was observed in
the previous simulations of [38]. This difference is mainly due to the lower SNRs
observed in the MixColumns transform.

Eventually, we note that in view of these results, another natural approach
would be to use enumeration for SASCA. Unfortunately, our experiments have
shown that enumeration is much less effective in the context of analytical attacks.
This is essentially caused by the fact that DC attacks consider key bytes inde-
pendently, whereas SASCA decode the full key at once, which implies that the
subkey probabilities are not independent in this case, and can be degraded when
running the loopy BP too long. Possible tracks to improve this issue include the
use of list decoding algorithms for LDPC codes (as already mentioned in [13]), or
enumeration algorithms that can better take subkey dependencies into account
(as suggested in [19] for elliptic curve implementations).

6 Conclusion and Open Problems

This paper puts forward that the technicalities involved in elaborate analytical
side-channel attacks, such as the recent SASCA, are possible to solve in prac-
tice. In particular, our results show that the intensive profiling of many target
intermediate values within an implementation is achievable with the same (SNR
&CPA) tools as any profiled attack (such as the bivariate TA we considered).
This profiling only requires a dozen of hours to complete, and then enables very
efficient SASCA that recover the key of our AES implementation in a couple
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of seconds and traces, using a single desktop computer. Furthermore, these suc-
cessful attacks are even possible in a context where limited knowledge about the
target implementation is available, hence mitigating previous intuitions regard-
ing analytical attacks being “only theoretical”. Besides this positive conclusion,
a fair comparison with DC attacks also highlights that the gap between a bivari-
ate TA and a SASCA can be quite reduced in case enumeration power is granted
to the DC adversary, and several known plaintexts are available. Intuitively, the
important observation in this respect is that the advantage of SASCA really
depends on the amount and type of intermediate values leaking information,
which highly depends on the algorithms and implementations analyzed.

The latter observation suggests two interesting directions for further research.
On the one hand, the AES Rijndael is probably among the most challenging tar-
gets for SASCA. Indeed, it includes a strong linear diffusion layer, with many
XOR operations through which the information propagation is rapidly amor-
tized. Besides, it also relies on a non-trivial key scheduling, which prevents the
direct combination of information leaked from multiple rounds. So it is not
impossible that the gap between SASCA and standard DPA could be larger
for other ciphers (e.g. with permutation based diffusion layers [4], and very min-
imum key scheduling algorithms [5]). On the other hand, since the propagation
of the leakage information through the MixColumns operation is hard(er), one
natural solution to protect the AES against such attacks would be to enforce
good countermeasures for this part of the cipher, which would guarantee that
SASCA do not exploit more information than the one of a single round. Ideally,
and if one can prevent any information propagation beyond the cipher rounds,
we would then have a formal guarantee that SASCA is equivalent to DPA.

Acknowledgements. F.-X. Standaert is a research associate of the Belgian Fund
for Scientific Research (FNRS-F.R.S.). This work has been funded in parts by the
European Commission through the ERC project 280141 (CRASH).



310 V. Grosso and F.-X. Standaert

References

1. Archambeau, C., Peeters, E., Standaert, F.-X., Quisquater, J.-J.: Template attacks
in principal subspaces. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol.
4249, pp. 1–14. Springer, Heidelberg (2006)

2. Banciu, V., Oswald, E.: Pragmatism vs. Elegance: comparing two approaches to
simple power attacks on AES. In: Prouff, E. (ed.) COSADE 2014. LNCS, vol. 8622,
pp. 29–40. Springer, Heidelberg (2014)

3. Bogdanov, A., Kizhvatov, I., Manzoor, K., Tischhauser, E., Witteman, M.: Fast
and memory-efficient key recovery in side-channel attacks. IACR Cryptol. ePrint
Arch. 2015, 795 (2015)

4. Bogdanov, A.A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher. In:
Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

5. Bogdanov, A., Knudsen, L.R., Leander, G., Standaert, F.-X., Steinberger, J., Tis-
chhauser, E.: Key-alternating ciphers in a provable setting: encryption using a
small number of public permutations. In: Pointcheval, D., Johansson, T. (eds.)
EUROCRYPT 2012. LNCS, vol. 7237, pp. 45–62. Springer, Heidelberg (2012)

6. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004)

7. Carlet, C., Faugère, J.-C., Goyet, C., Renault, G.: Analysis of the algebraic side
channel attack. J. Crypt. Eng. 2(1), 45–62 (2012)

8. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski Jr, B.S., Koç,
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Abstract. Side channels provide additional information to skilled
adversaries that reduce the effort to determine an unknown key. If suffi-
cient side channel information is available, identification of the secret key
can even become trivial. However, if not enough side information is avail-
able, some effort is still required to find the key in the key space (which
now has reduced entropy). To understand the security implications of
side channel attacks it is then crucial to evaluate this remaining effort
in a meaningful manner. Quantifying this effort can be done by looking
at two key questions: first, how ‘deep’ (at most) is the unknown key in
the remaining key space, and second, how ‘expensive’ is it to enumerate
keys up to a certain depth?

We provide results for these two challenges. Firstly, we show how to
construct an extremely efficient algorithm that accurately computes the
rank of a (known) key in the list of all keys, when ordered according to
some side channel attack scores. Secondly, we show how our approach
can be tweaked such that it can be also utilised to enumerate the most
likely keys in a parallel fashion. We are hence the first to demonstrate
that a smart and parallel key enumeration algorithm exists.

Keywords: Key enumeration · Key rank · Side channels

1 Introduction

Side channel attacks have proven to be a hugely popular research topic, as the
proliferation of new venues such as CHES, COSADE and HOST shows. Much of
the published research is about key recovery attacks utilising side channel infor-
mation. Key recovery attacks essentially take a number of side channel observa-
tions, colloquially referred to as ‘traces’, and apply a so-called distinguisher to
traces that assigns scores to keys. An attack is considered (first-order) successful
given a set of traces, if the actual secret key receives the highest score. Besides
describing methods (i.e. the distinguishers) that recover the secret key from the
available data, papers focus on the question of how many traces are required for
successful first-order attacks.

c© International Association for Cryptologic Research 2015
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The trade-off chosen in most work is, hence, to increase the number of traces
to ensure that the secret key is recovered successfully with almost certainty. As
observed by Veyrat-Charvillon et al. [13] in their seminal paper on optimal key
enumeration, this might not be the trade-off that a well resourced adversary
would choose. Suppose that access to the side channel is scarce or difficult. In
such a case the actual secret key might not have the highest score after utilising
the leakage traces, but it might still have a higher score than many other keys.
Now imagine that the adversary can utilise substantial computational resources.
This implies that by searching through the key space (in order of decreasing
scores; we call this smart key enumeration) the adversary would find the secret
key much faster than by a näıve brute-force search (i.e. one that treats all keys
as equally likely). Consequently, the true security level of an implementation
cannot be judged solely by its security against first-order side channel attacks.
Instead it is important to understand how the number of traces impacts on the
effort required for a smart key enumeration.

We now illustrate this motivation by linking it to evaluating the impact of
the most influential type of side channel attack: Differential Power Analysis.

1.1 Evaluating Resistance Against Differential Power Analysis

Differential Power Analysis (DPA) [9] consists of predicting a so-called target
function, e.g. the output of the Substitution Boxes, and mapping the output of
this function to ‘predicted side channel values’ using a power model. For this
process it is not necessary to know or guess the whole secret key, SK. One
only needs to make guesses about ‘enough bits’. The predicted values for a key
chunk are then ‘compared’ to the real traces (point-wise) using a distinguisher.
Assuming enough traces are available, the value that represents the correct key
guess will lead to a ‘higher’ distinguishing value. In Kocher et al.’s original
paper [9] this was illustrated for the DES cipher, but most contemporary research
uses AES as running example.

With respect to AES: Kocher’s attack consists of using a t-test statistic as a
distinguisher to compute scores for the values of each 8-bit chunk of the 128-bit
key; see Fig. 1 for a visual example. Here we have m = 16 chunks, each contain-
ing n = 256 values, with associated distinguishing scores as derived via a t-test
statistic. In the graphical illustration, the secret key values are marked out in grey.

If sufficient side information is available, the values of the chunks that corre-
spond to the secret key will have by far the highest distinguishing scores, such
as the majority of key chunks in our graphical illustration. In this case the secret
key can be trivially found (it is the concatenation of the chunks that lead to the
uniquely highest score). However, if less side information is available, the scores
may not necessarily favour a single key. Nevertheless, an adversary is still able to
utilise these scores to smartly enumerate and then test keys (by using a known
plaintext-ciphertext pair).
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Fig. 1. Score vectors for m key chunks. Each chunk can take values from 0 to n−1, and
scores di,j are on a scale that depends on the side channel distinguisher. The values
that correspond to the (hypothetical) secret key are highlighted in grey.

Security Evaluations. Considering the perspective of a security evaluator, it is
obviously important to characterise the remaining security of an implementation
after leakage. The evaluator (who can run experiments with a known key, and
a varying number of traces) wants to compute its position in a ranked list of all
keys. Knowing this position allows the evaluator to assess the amount of effort
required by an adversary performing a smart search (given some distinguishing
vectors). Ideally, the evaluator is able to compute the ranks of arbitrarily deep
keys.

Accuracy and Efficiency are Key Requirements: Naturally, because the evalua-
tor performs concrete statistical experiments, a single run of a single attack is
not sufficient to gather sound evidence. In practice, any side channel experiment
needs to be repeated multiple times by the evaluation lab, and many different
attacks need to be carried out, utilising different amounts of side channel traces.
Having the capability to determine the position of the key in a ranked list accu-
rately (rather than just giving an estimation), and efficiently, is crucial to cor-
rectly assess the effort of a real world adversary. Previous works’ algorithms [6,14]
were capable of estimating the key rank within some bound. We demonstrate
that we are accurate when enough precision is used, and importantly, we put
forward the first approach for parallel and smart key enumeration.

1.2 Problem Statement and Notation

We use a bold type face to denote multi-dimensional entities. Indices in super-
script refer to column vectors (we use the variable j for this purpose), and
indices in subscript refer to row vectors (we use i for this purpose). Two indices
i, j refer to an element in row i and column j. To maintain an elegant layout,
we sometimes typeset column vectors ‘in line’, and then indicate transposition
via a superscript k = (. . . )T .

We partition a key guessk intom chunks, each able to take one ofn possible val-
ues, i.e. k =

(
k0, . . . ,km−1

)
, and kj = (d0,j , d1,j , . . . , dn−1,j)

T . After exploiting
some leakage L all chunks kj have some corresponding score vectors, i.e. we know
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the score for each guess ki,j is di,j after leakage. For convenience we use the vari-
able skj to refer to the indices (in each chunk) that correspond to the correct key,
i.e. SK =

(
ksk1,1, ksk2,2, . . . , kskm−1,m−1

)
. The score D of the secret key is then

D =
∑m−1

j=0 dskj ,j . We will later map scores to (integer) weights and the weight of
the secret key will be W .

The rank of a key is defined as the position of the key in the ordering (of all
keys), where keys with the exact same weight are ranked ‘ex aequo’. In principle,
any order of these equally ranked keys is permissible, so one is free to make a
choice about this order. Assuming the correct key is ranked first among all keys of
the same weight requires us to count all keys with weight less than W. It implies
that the rank we return is conservative in the following sense: key ranking is used
to evaluate the security of side-channel attacks; our assumption on the ordering
implies we give a side-channel adversary the benefit of the doubt (and so we
deem it slightly more successful than it in reality can be). As an alternative,
one could assume the correct key is ranked last among all keys of the same
weight (since we use integer weights, this can be done by increasing the weight
by one, counting all keys according to the ranked-first method, and subtracting
one from the returned rank); ranking the candidate key both as first and last of
its weight will lead to an interval of ranks containing all keys of that rank. Thus
our choice (rank first) is effectively without loss of generality: run once it gives a
conservative estimate, run twice it gives the exact interval of possible ranks for
the candidate key.

Definition 1 (Key Rank Computation). Given m vectors of n distinguish-
ing scores, and the score D of the secret key SK, count the number of keys with
score strictly larger than D.

Definition 2 (Smart Key Enumeration). Given m vectors of n distinguish-
ing scores, list the B keys with the highest score.

1.3 Outline and Our Contributions

In a nutshell, we utilise an elegant mapping of the key rank computation problem
to a knapsack problem, which can be simplified and expressed as (efficient) path
counting. As a result, we can compute accurate key ranks, and importantly,
this enables us to put forward the first algorithm that can perform smart key
enumeration in a parallel manner.

Our contribution is structured in four main sections as follows:

Casting the Key Enumeration as an Integer Knapsack. In Sect. 2 we
show how to cast the key enumeration problem as a solution to counting
knapsack solutions. In particular, we develop the representation of key rank
as a multi-dimensional knapsack, and discuss its resulting graph representa-
tion. Whilst the final definition can be represented as an integer program-
ming problem, we choose to frame each step as an extension of the knapsack
problem, for intuition.
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A Key Rank Algorithm. In Sect. 3 we map the multi-dimensional knap-
sack to a directed acyclic graph. We can therefore count solutions to the
multi-dimensional knapsack problem by counting paths in the graph. The
restriction of picking one item per chunk keeps the number of vertices in
the directed acyclic graph small. As the graph is compact, and each node
has at most two outgoing edges, the path counting problem can be solved
efficiently in O

(
m2 · n · W · log n

)
.

Smart Key Enumeration. In Sect. 4, with the additional book-keeping of
storing the vertices we visit, we can enumerate the B most likely keys with
complexity O

(
m2 · n · W · B · log n

)
. We then show several techniques to

make this process as efficient as possible.
Practical Evaluation and Comparison with Previous Work. In Sect. 5

we discuss requirements around precision. The main factor that influences
performance is the size of the key rank graph, which is determined by the
precision of the initial mapping and the weight of the target key. We compare
our work with previous works in terms of precision and speed with regards
to the key rank algorithm, and in terms of speed with regards to smart key
enumeration.

A full version of this paper can be found on ePrint1, where we consider
additional alternative topological sorting methods and provide pseduo-code for
each. Also implementation details, and testing methodologies are considered in
greater depth.

1.4 Previous Work

Key Rank. An näıve approach is that by simply removing a number of the
least likely key values from each key chunk, the size of the search space is then
restricted as n is reduced. However there are inherit problems with the approach;
firstly this may be removing valid high ranking keys, as it is possible that a key
may be constructed from one very low ranked value in one key chunk, and very
high in others. Secondly, it is still reliant on a simple brute force approach, and
even with a reduced n value this approach is thus too expensive to be practical.
Finally, if the target key is deep, this approach won’t work at all as it is possible
that the correct key values have been removed.

Veyrat-Charvillon et al. [14] were the first to demonstrate an algorithm to
estimate the rank of the key without using full key enumeration. The search
space can be represented as a multidimensional space, with each dimension cor-
responding to a key chunk, sorted by decreasing likelihoods. The space can be
divided into two, those keys ranked above the target and those ranked below.
Using the property that the ‘frontier’ between these two spaces is convex, they
are able to ‘trim’ each space down until the key rank has been estimated to
within 10 bits of accuracy.

Bernstein et al. [1] propose two key ranking algorithms. The first is based
on [14] and adds a post processing phase which has been shown to tighten the
1 ePrint report: 2015/689.
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bounds from 10 bits to 5 bits. The second algorithm ranks keys using techniques
similar to those used to count all y-smooth numbers less than x. By having an
accuracy parameter they are able to get their bounds arbitrarily tight (at the
expense of run time).

Glowacz et al. [6] construct a novel rank estimation algorithm using convolu-
tion of histograms. Using the property that S1+S2 := {x1+x2|x1 ∈ S1, x2 ∈ S2}
can be approximated by histogram convolution, by creating a histogram per key
chunk and convoluting them all together, they are able to efficiently estimate
the key rank to within 1 bit of precision.

Duc et al. [4] perform key rank using a method inspired by Glowacz et al. [6].
They repeatedly ‘merge’ the data in one column at a time (as the histograms
were convoluted in one at a time). Each piece of information is downsampled to
one of a series of discrete values (similar to putting into a histogram bin). The
major difference is that instead of just downsampling the orginial data, they also
downsample after each key chunk is merged in.

Key Enumeration. Veyrat-Charvillon et al. [13] propose a deterministic algo-
rithm to enumerate keys based on a divide-and-conquer approach. Using a tree-
like recursion (starting with two subkeys, then four, all the way to sixteen) and
keeping track of what they call the frontier set (similarities can be drawn to the
frontier of Veyrat-Charvillon et al. [14]), they are able to efficiently enumerate
keys.

Ye et al. [15] present what they describe as a Key Space Finding algorithm. A
Key Space Finding algorithm takes in the distinguishing score vector and returns
two outputs: the minimum verification complexity to ensure a desired success
probability, along with the optimal effort distributor which achieves this lower
bound. Given this it is straightforward to run a (probabilistic) key enumeration
algorithm. The distinguisher intuitively moves the boundary of which subkeys
to enumerate until the desired probability is achieved.

Bogdanov et al. [2] create a score based key enumeration algorithm which
can be seen as a variation of depth first search. Potential keys are generated via
score paths, each of which has a score associated with them, which in conjunction
with a precomputed score table allows for efficient pruning of impossible paths.
From here it is possible to efficiently enumerate possible values.

Reflecting on the Approaches Taken by Previous Work. All of the previ-
ous work has treated key rank and key enumeration as two disjoint problems and
hence approached them using different techniques. For instance, it is unclear how
to extend the existing key rank algorithms to enumerate keys, and conversely, it is
not apparent how to simplify the enumeration algorithms to compute key ranks
efficiently (i.e. without just counting as you enumerate). We however believe
that both of these problems are highly similar in nature and by maintaining
some structure within the key rank it should be possible to enumerate without
making the ranking inefficient. In the remainder of the paper we explain how to
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do just that: efficient key ranking with enough structure to make (fully parallel)
enumeration possible.

2 Casting the Key Enumeration as a Knapsack

We now explain how the key enumeration problem can be formulated as a variant
of a knapsack problem. In its most basic form a knapsack problem takes a set
of n items that have a profit pi and a weight wi. A binary variable xi is used
to select items from the set. The objective is then to select items such that the
profit is maximised whilst the total weight of the items does not exceed a set
maximum W :

maximize:
n−1∑

i=0

pi · xi

subject to:
n−1∑

i=0

wi · xi ≤ W

xi ∈ {0, 1},∀i
The counting knapsack (#knapsack) problem is then understood to be the

associated counting problem: given a knapsack definition, count how many solu-
tions there are to the knapsack problem.

Intuitively, we should be able to frame the key rank computation problem as
a knapsack variant. In contrast to a basic knapsack, however, we have classes of
items (these are the distinguishing vectors kj), profits can be dropped since we
are counting the number of solutions, and we must take exactly one item from
each class. The weight wi,j for each item can be derived2 from the distinguishing
score wi,j = MapToWeight (di,j) in such a way that higher distinguishing scores
lead to lower weights3. We define the maximum weight W as the sum of the
weights associated with the secret key chunks, i.e. W =

∑m−1
j=0 wskj ,j . Recall

that we assume if several keys have weight W the secret key (which must be
among those) is listed first. This enforces W as a strict upper bound in the
knapsack definition.

The multiple-choice knapsack problem that identifies keys with weight lower
than W is then defined as follows:

m−1∑

j=0

n−1∑

i=0

wi,j · xi,j < W

n−1∑

i=0

xi,j = 1,∀j

xi,j ∈ {0, 1},∀i, j
2 For the sake of readability, we do not discuss the implications of needing to map

distinguishing scores (which are floating point values) to weights at this point, but
refer the reader to Sect. 5.1 for a discussion.

3 This ensures compatibility with knapsack notation.
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The first constraint ensures that all keys (i.e. selections of items) have a
weight lower than the secret key. The second constraint ensures that only one
item per distinguishing vector is selected. The counting version of this multiple-
choice knapsack equals to computing the key rank.

Counting solutions to knapsack problems in general is known to be a compu-
tationally hard problem, and known classical solutions [5] rely on combinations of
dynamic programming and rejection sampling to construct an FPRAS. Gopalan
et al. [7] more recently utilise branching programs for efficient counting, and
we took inspiration from this paper to approach the solution to our counting
problem.

To illustrate our solution, we have to slightly modify the knapsack repre-
sentation. It will be convenient to express the multiple-choice knapsack as a
multi-dimensional knapsack variation as follows. Each key chunk corresponds to
‘one dimension’. Each item ki,j has an associated weight vector wi,j of length
m + 1 of the form (wi,j , 0, . . . , 1, 0, . . . , 0), where the 1 is in position j. The
global weight is also expressed as a vector W = (W, 2, . . . , 2) of length m + 1.
The key rank problem is then to count the number of solutions (that satisfy all
constraints simultaneously) to

m−1∑

j=0

n−1∑

i=0

wi,j · xi,j < W

xi,j ∈ {0, 1},∀i, j

The constraint W ensures that all keys that are counted have a strictly lower
weight than the secret key. If the weight vector has a 1 in position j, it means
that this is a value for the jth key chunk. Since the weight limit is 2 in the
constraint vector W , it means that only a single value for any key chunk can be
chosen. We now illustrate this by a simple example.

Example 1. Our illustrative example, which will run throughout the paper, con-
sists of two distinguishing vectors with three elements each: k0 = (0, 1, 3)T , and
k1 = (0, 2, 3)T . We assume that the secret key, SK, is (2, 1). First we derive
the global weight constraint vector. In this case it has length m + 1 = 3 and
contains the maximum weight W = w0,2 + w1,1 = 3 + 2 = 5, which results in
W = (5, 2, 2). The weight vectors of the ki,j are:

w0,0 = (0, 1, 0), w0,1 = (1, 1, 0), w0,2 = (3, 1, 0)
w1,0 = (0, 0, 1), w1,1 = (2, 0, 1), w1,2 = (3, 0, 1)

Given that W = 5, all except two of the combinations are below this thresh-
old. Hence the solutions to the knapsack are:

(k0,0, k0,1), (k0,0, k1,1), (k0,0, k2,1),
(k1,0, k0,1), (k1,0, k1,1), (k1,0, k2,1),
(k2,0, k0,1)
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Notice that the knapsack solution will never contain the secret key itself, as
it returns all keys with weight strictly less than the weight of the secret key. For
the ranking problem this would give us that our secret key has rank 8.

For standard knapsack problems it is well known [3] that solutions can be
found via finding longest paths on a directed acyclic graph. In the following
section we will show that such a graph exists also for our knapsack, and impor-
tantly, that the resulting graph allows for a particularly efficient path counting
solution, which gives us a solution to the Key Rank problem.

3 An Accurate Key Rank Algorithm

In this section we first define the graph and illustrate how it relates to the multi-
dimensional knapsack via intuition and a working example. We then explain our
fast path counting algorithm for a compact representation of the graph.

3.1 Key Rank Graph

Recall that our multi-dimensional knapsack has m · n elements, and for each
element we have a weight vector. Also, a correct solution to the multi-dimensional
knapsack must have a weight that is strictly smaller than W . Since we need to
be able to represent all permissible solutions we need W extra vertices (per
element). This means that we ‘encode’ all solutions to the knapsack in a graph
with m · n · W vertices (plus an extra two for accept and reject nodes). The
vertices corresponding to item ki,j are labelled V w

i,j , where the variable w denotes
the ‘current weight’. The key rank graph contains a start node S, an accept node
A and a reject node R. The edges are constructed as follows:

–
(
V w

i,j , V
w
i+1,j

)
which corresponds to the item not being chosen in this set

–
(
V w

i,j , V
w+wi,j

0,j+1

)
if the item is chosen for this set and w + wi,j < W

–
(
V w

n−1,j , R
)

if no elements are chosen from the set
–

(
V w

i,m−1, A
)

if the item is chosen for the last set and w + wi,m−1 < W

–
(
V w

i,j , R
)

if the item is chosen for this set and w + wi,j ≥ W

– S = V 0
0,0 to set up the start node

When visualising the key rank graph it will be convenient to think of the
indices i, j as though they are ‘flattened’ (i.e. they are topologically sorted and
occur in a linear order). In this representation the graph is n ·m deep, W wide,
where the width of the key rank graph essentially tracks the current weight (of
the partial keys). Each vertex has exactly two edges coming out of it (with the
exception of A and R): either the vertex was ‘included’ (this corresponds to the
choice of selecting the corresponding value of the key chunk to become part of
the key) or not. If the answer is yes then the edge must point to the first item
in the next key chunk, as we can only choose one item per key chunk, and the
weight must be incremented by the weight of this key item. If the item/vertex is
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not chosen then the edge must go to the next item in the chunk (or reject if this
was the last item) and the weight must not be incremented as the item was not
selected. For any partial key, if a new key chunk is added and the new weight
exceeds W then this is not a valid key and thus the path will go to the reject
node R.

Graph Example. To illustrate the working principle we provide in Fig. 2 the
process of constructing the graph for the example provided above.

Initially the graph is constructed (top right) and the start node is initialised
based on the rule S = V 0

0,0. The width of the graph is set to be 5 (0–4) as this
matches our maximum weight (W = 5). The depth of the graph becomes 6 as
each chunk contains 3 items.

Next (middle left) the first two children from the start node are created.
The edge that denotes the chunk is, in fact, selected (the right child) is built
following the rule

(
V 0
0,0, V

0+0
0,1

)
, which creates the edge from the start node, to an

element in the next chunk. The edge that denotes the chunk is not selected (the
left child) is built following the rule

(
V 0
0,0, V

0
1,0

)
, which creates the edge from the

start node to the next item within the same chunk.
Moving onto the following step (middle right), children continue to be created

through the same set of rules. However, note that at the point a link is created to
the accept node based on the rule

(
V 0
0,1, A

)
, this demonstrates that the selection

of key chunk 0 followed by 0 is a valid solution to the problem.
In the following steps links continue to be created based on the rules until all

paths in the graph are created. Please note that throughout the construction of
the graph, the last item in each chunk will have a left child that points to reject
(as obviously there are no further chunks to select) but these have been omitted
from the example diagram for the sake of clarity.

All the greyed out nodes also have their children calculated. However, as they
do not alter the path count, we have excluded them from the example figures to
aid clarity.

Each path from S to A if, corresponds to a key with lower weight than our
secret key. Thus, counting these paths will yield the rank of the secret key. While
in general path counting is hard [12], we explain how our graph structure, having
at most two outgoing edges per node, lends itself to efficient counting.

3.2 Counting Valid Paths

Clearly our key rank graph is a directed acyclic graph. We have already men-
tioned that it is convenient to ‘flatten’ the graph (as it has been presented in the
example). This ‘flat’ graph is also more suited for an efficient counting algorithm.
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Fig. 2. An example showing the construction of the graph for the small example
instance provided
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Hence, from this point onwards we will now assume that the graph is topologi-
cally sorted4. The start node will be labelled 1 and the final node will be labelled
A. There are n ·m ·W + 2 vertices in the graph, we have that A = n ·m ·W + 2
and R = A − 1.

We also assume two constant time functions LC(·), RC(·) which return the
index of the left child and right child, respectively. The algorithmic descriptions
of these functions can be found in Fig. 4 for our particular graph. We therefore
have the following recurrence relation, where PC is a vector and PC[i] stores
the number of accepting paths from i to A:

sPC[c] =

⎧
⎪⎨

⎪⎩

1, if c = A.

0, if c = A − 1.
PC[LC(c)] + PC[RC(c)], otherwise.

The total number of paths between 1 (our start node) and A (our accept
node) is then simply PC[1]. This recurrence relation forms the algorithm given
in Algorithm 1, which assumes that LC,RC are globally accessible functions.

Algorithm 1. The key rank algorithm
PC[A] ← 1
for c = A − 1 to i = 1 do

PC[c] ← PC[LC(c)] + PC[RC(c)]
end for
return PC[1]

For an example of this, see Fig. 3. This figure shows that the vector is tra-
versed from the end back to the start, and cells are filled by summing the values
in their left and right children cells. For clarity in the figure, we only show
example links betwen two cells, whereas in practise they are present on all.

Correctness. The base case of PC[A] = 1 is self explanatory; there is exactly
one path from A to A, the path involving no edges. From an arbitrary node c,
it is possible to traverse the edge to the left child (and thus take however many
paths start there) or traverse the edge to the right child (and do the same) and
we conclude that PC[c] = PC[LC(c)] + PC[RC(c)]. We can iterate over all
nodes starting at the final node A and working backwards until we reach the
start node, and since our graph is topologically sorted when we are operating on

4 It turns out that because the path counting for the key rank graph is already
extremely fast and memory efficient, the choice of sorting is irrelevant, bar the
exception that S must be the first node and A must be the final node. However,
when it comes to key enumeration this will be an important consideration and thus
will be discussed in further detail in the corresponding section.
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RC
LC

RC
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Traverse vector

Fig. 3. Example demonstrating how the path count is calculated. Two nodes children
links have been included to demonstrate the process.

a node, the values for the nodes’ children will already have been calculated as
they come later in the topological sorting.

We note at this point that this counting algorithm is exact. However, as we
pointed out before, we need to convert floating point distinguishing scores to
integer weights, and this conversion may incur a loss of precision and hence
could cause a loss of accuracy. We discuss this in Sect. 5.

Time Complexity. The time complexity of the key rank algorithm depends on
the number of vertices in the key rank graph and their size. Our graph contains
A = m · n ·W vertices. The integers stored in the vertices could be up to O(2A)
(and thus be of size O(A)) because in the worst case each value can be double
the previous value (if PC[LC(i)] = PC[LC(i)]). Hence, given that we have A
vertices and perform an integer addition with an A-bit variable for each vertex,
we have worst-case time complexity of O(A2) = O(m2 · n2 · W 2).

However, whilst we touch each vertex once, we know that there are at most
O(nm) keys. Consequently, we need no more than O(m log n) bits to store the
path count (in contrast to the O(A) = O(m · n · W ) bits for the worst case).
Hence the time complexity for computing the key rank via the key rank graph
is O(m2 · n · W · log n).

It is worth noting that the key depth does not factor into the time complexity
and the following example will help to clarify this. Consider the target key which
has weight 1 in every column (which gives W = 16 and a grid with 65536 nodes).
If all other key chunks have weight 0 then the target key will have rank 2128 since
all other keys have a lower weight. However, if all other key chunks have weight
2, then our target key will have rank 0 because all other keys have a higher
weight. None of the other values affect the size of the graph and thus it is clear
that the runtime is not changed by the key depth.

In fact for AES-128 the values of m,n are also fixed and thus we get that
the algorithm runs in O(W ), that is to say it is linear in the weight of the secret
key. See Sect. 5.1 for experiments supporting this.
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Algorithm 2. The key enumeration algorithm
KL[A] ← ∅
for c = A to 1 do

KL[c] ← (value(c),KL[RC(c)]) ∪ KL[LC(c)]
end for
return KL[1]

4 Parallelisable Key Enumeration Algorithm

We are able to further modify our algorithm such that with minor (standard
book-keeping) adjustments, we are able to list all valid paths, as opposed to just
counting them, with reasonable efficiency. The algorithm is given in Algorithm2
and requires an additional (constant time) function call value which, given an
index c, returns the value of a vertex. We write (a, {xc}c) to mean {(a, xc)}c.
That is to say if we concatenate an item a with a set, we are really concatenating
the item a with every item in the set to form a new set.

It is now easy to use this for key enumeration. Assume we have the resources
to enumerate/test up to B keys. Then, we choose some weights (which corre-
spond to key guesses) and use the key rank algorithm to determine their ranks
and compare them to B. This allows us to quickly select the appropriate W for
the given B. Then, Algorithm 2 proceeds as follows: for any valid path (in the
key rank graph), every time a right child is taken (this can be determined by the
node indices) the corresponding value for the respective key chunk is chosen. A
left child means that we are not taking a particular value for key chunk. In this
manner the keys are effectively reconstructed from the key rank graph.

If one wanted to enumerate the keys in a smart order, this would simply be
a case of altering the construction of the tree which stores the valid key chunks
for enumeration. Currently the valid key chunks are stored in numerical order
within the tree, however if this was changed such that they were stored in order
of scores, the keys would be rebuilt in a near optimal order.

In the rest of this section we discuss run time and memory requirements.
Whilst the run time is bounded by the number of keys that we want to enumer-
ate, we show there are different strategies to improve the memory performance.
Finally, we show that with a further simple observation, we can parallelise the
key enumeration algorithm.

4.1 Time Complexity

We begin with a worst case analysis considering a general graph. In this case,
the enumeration algorithm would be exponential in the length of the number
of vertices, because to generate all paths (each vertex has two children) the
algorithm clearly must take O(2A) time.

However, in our key rank graph, each path corresponds to a valid key with
weight lower than W . Considering this, the run time of this algorithm is relative
to the rank (which is determined by W ) and not to the total number of keys;
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hence this algorithm can be used to enumerate keys for a given workload in time
O(m2 ·n ·W ·B · log n). This is because all O(n ·m ·W ) nodes are touched once,
and B keys are reconstructed which are of length m · log n.

4.2 Memory Efficiency

How we topologically sort the key rank graph has a major impact on the memory
efficiency of the key enumeration. While there are a variety of explicit topological
sorting algorithms in the literature [8,11], we are able to avoid explicit sorting
because we know our graph structure in advance. Hence, we show that our graph
can be sorted implicitly by how the nodes are numbered within the calculation
of the left and right child functions. The remaining question is what method of
sorting is the most desirable.

In Fig. 4 we demonstrate topologically sorting the example graph previously
considered in Fig. 2, as well as present the associated pseudo code. There are
alternative sorting methods available which were considered, and we discuss the
pros and cons of these in the extended version of this paper available on ePrint5.
We also discuss how to improve memory efficiency further by appropriately stor-
ing the generated keys.

Wide Sort. In this sorting the graph is numbered one chunk at a time, one
item at a time, along the weight in increasing order (see Fig. 4). Formally given
a chunk, item and weight (x, y, z) the index is i = x · W · n + y · W + z. This
is a valid topological sorting of the graph, since a nodes’ children will be either
one item lower in the same chunk (for the left child) or the first item in the next
chunk (right child) both of which have a higher number.

This is the topological sort we described for key rank. Note that, since key
rank is extremely fast we describe the most intuitive sort since it did not have
an impact on performance, while with enumeration this is no longer the case
and must now be taken into consideration.

The advantage of this sorting is that it is due to the fact an element will only
need to look at the item below and the item at the top of the next chunk; these
are the only things needing to be stored in memory. This makes it very memory
efficient requiring O(W ) memory.

The disadvantage of this method is that it is highly serial and it does not
seem possible to (easily) parallelise.

Key Storage. The topological sorting of the graph is clearly a crucial factor for
memory efficiency. The other factor is how keys are represented/stored within
our graph.

In the algorithm as described all (partial) keys are stored at each point in
the algorithm. This will become very inefficient. Consider, for example, the case
where you want to enumerate all keys. There are 2120 keys which have the first

5 https://eprint.iacr.org/2015/689.

https://eprint.iacr.org/2015/689
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if (n · W ) − (c mod (n · W )) ≤ W then
return R

else
return c + W

end if

w′ ← c mod W
i ← (c−w′) mod (n·W )

W

j ← c−w′−i·W
n·W

if w + wi,j ≥ W then
return R

else if i �= m − 1 then
return (i + 1) · n · w′ + W + wi,j

else
return A

end if

Fig. 4. Topological sorting of our previous example. Note that the deepest node in
each chunk will be guaranteed to have a left child leading to R; for clarity these paths
are omitted (top). Pseudo code of how the child indices are calculated for each node
in the tree (bottom).

key chunk set to zero (hence this chunk would be duplicated 2120 times). Clearly,
one needs to choose an appropriate data structure, and we use a tree, see Fig. 5.
This key tree is passed to a separate algorithm that converts it into a series of
keys for testing. The advantage of this is threefold. First, it greatly speeds up
the enumeration. Second, the conversion of the key tree into a list of keys is
trivially parallelisable, and third, the actual testing (in our case checking the
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Fig. 5. The key tree for all possible three character keys containing ‘A’ or ‘B’

AES encryption using a given plaintext/ciphertext pair) can be amortised into
this cost.

4.3 Parallelisation

We can achieve parallelisation with a simple observation: by adjusting the graph
such that instead of vertices with a weight lower than W going to the accept
state, we only allow vertices with weight in the range between the two weights
W1 and W2 to reach the accept state. The width of the graph is defined by
W2; W1 has no impact on the graph size. This results in an algorithm that
enumerates ‘batches’ of likely keys. Hence, one can run multiple instances of the
key enumeration algorithm in parallel, where each instance enumerates a unique
batch of keys.

All ranges of keys can be computed in parallel and require no communication
between threads except for the initial passing of the distinguishing scores and a
notification when the key has been found. It is hence trivial to utilise multiple
machines (or cores).

Setting W In an enumeration setting, the correct key, and therefore W is
unknown. We create a series of ‘steps’ in W (to bound using W1, W2 as intro-
duced previously), which are enumerated in order until the correct key is found.

Iterating across these W increments, we select the weights by first taking
the most probable across all distinguishing vectors, i.e. the weight at the top of
each column. If the correct key is not located, the weight limit is increased by
an amount equal to moving down by one key chunk in a column. The generation
of each W step is done according to the following:

More complex methods of bounding the weights could be used, such as binary
searches or similar, but this would increase the cost of calculating the capacities
before the enumeration begins, with little tangible benefit.

Also, it should be noted that if we simply incremented the capacity in the
smallest possible steps, then the algorithm would then be guaranteed to be
accurate, enumerating keys in the correct order. However, this would make par-
allelism nearly impossible as each unit of work would be too small causing the
overhead from the parallel computation to dominate the runtime.
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Algorithm 3. Generating W increments for enumeration when W is unknown
for k = 0 to m do

c ← 00,...,m

for i = k to m do
for j = 0 to n do

ci + 1
Calculate W of key chunks at depths c

end for
end for

end for

Further Speed Optimisations. Currently the algorithm operates on every node
of the graph. However, some of the nodes are not even reachable from the start
node (for example the greyed out nodes in Fig. 2). Hence any computation done
on these nodes is wasted because it will never be combined into a solution. By
precalculating the number of valid paths from S to all other nodes in the graph (a
reasonably cheap operation compared to a large key enumeration – this is done
using the key rank algorithm), we can skip over a node if the number of paths
from the start node to here is 0 because any work here will not be combined
with the final solution.

5 Practical Evaluation and Comparison with Previous
Work

Our key enumeration and key rank algorithms are both based on a graph rep-
resentation of a multi-dimensional knapsack. To define this multi-dimensional
knapsack it is necessary to map distinguishing scores, which typically are float-
ing point values, to integer weights. This is a very simple process of multiply-
ing the raw score di,j , of value most 2α, in the distinguishing vector by 2p−α

where p is the bit value of precision we wish to maintain. Then performing
an abs has the double effect of removing the negative sign, and making the
most probable (the most negative numbers) the smallest, meaning they have the
lightest weight which maps to our knapsack representation perfectly. Formally
wi,j = MapToWeight (di,j) where MapToWeight(di,j) = �abs(di,j · 2p−α)� for
p bits of precision.

This requirement has implications for the performance of our algorithms, as
the time complexities for both algorithms strongly depend on the parameters
m (the number of key chunks), n (the number of items per chunk), and W
(the maximum weight). In particular, for any fixed key size (and number of
chunks) the size of the graph (i.e. the width) grows with W , and W grows with
the precision that we allow for in the conversion from floating point values to
integers.
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We hence focus our practical evaluation on the impact of the precision6,
on accuracy7 and on performance. First, we discuss the precision requirements
for practical DPA outcomes. Second, we explore the practical impact on the
performance of key rank when we increase the precision. Third, assuming we
allow for sufficient precision, we ask what are the best performance results that
we can achieve on single but also many core platforms for the key enumeration.

It is clear that to answer these questions we need to be able to generate
many practically relevant distinguishing vectors in a manner that is comparable
to previous work. We hence decided to adopt the simulator used by Veyrat-
Charvillon et al. [13]. Veyrat-Charvillon et al. create distinguishing vectors based
on attacking the AES SubBytes output, assuming noisy Hamming weight leaks,
and using the Hamming weight as power model. Their DPA simulator allows us
to manipulate the level of noise, and the number of measurements. The simulator
then performs a standard DPA by utilising template matching as a distinguisher
(this has been shown by Mangard et al. [10] to be equivalent to performing a
correlation based DPA with a perfect model). They output ‘additive’ scores (by
taking the logarithm of the raw matching scores), which we pass directly to
our MapToWeight function. In all experiments we keep the number of traces
constant at 30 (which matches [13]) and changed the variance of the noise to
create ‘deeper’ keys.

5.1 Evaluating and Comparing Precision

In practical DPA attacks the combination of measured power traces, model val-
ues, number of traces and distinguisher will influence the effective precision of the
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Fig. 6. Impact of the distinguisher (left: correlation, right: Gaussian templates without
log2) on the precision requirements when considering up to 16 bits of precision.

6 Precision is the ability to reproduce a measurement result, i.e. if several measure-
ments of a variable give very close values then the measurement is precise.

7 Accuracy is the closeness of a measurement to a true value, i.e. this relates to the
‘trueness’ of a measurement.
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distinguisher scores8. We discuss the mentioned factors briefly. Then we experi-
mentally determine the necessary level of precision for our key rank algorithm,
and compare this to the number of bins for the method by Glowacz et al. [6].

Precision in Factors Influencing DPA Outcomes. Various factors can
influence the outcome of a DPA attack, and also have an affect on the amount
of precision required to accurately represent distinguishing scores. These can
include the resolution of the leakage traces, the power model used, and the
distinguisher applied. In our experiments we vary the precision from four to
sixteen bits.

Experimentally Measuring Precision for Key Rank and Glowacz et al.
We ran precision tests using Veyrat-Charvillon’s simulator, using N = 30 and
variance two) to determine the appropriate level of precision for further exper-
iments. We plot the difference in ranking outcomes for increasing precision in
Fig. 7 (left). In this figure, and in all figures that will follow, we plot outcomes of
individual experiments in gray, and average outcomes in black. The x-axis show
the precision in wi, j. The y-axis refers to the change in ranking outcomes when
increasing the precision by 0.1 bits from the previous step. From 11 bits onwards
the outcomes do not change anymore. Because our ranking method is exact with
enough precision, we can infer that with 11 bits of precision in wi,j we produce
exact ranks. Already from 4 bits of precision (on average, as plotted in black) we
are within five bits of accuracy from the real result. From about 8 bits onwards,
increasing the precision changes the ranking outcomes by just under a bit for
our algorithm.
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Fig. 7. Bits of precision for key rank (left) and number of bins for Glowacz et al.(right).

8 Veyrat’s simulator stores values in variables with double precision (i.e. one has 53 bits
of precision). But effectively, only a few of them are necessary to contain the effective
precision.
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We implemented the convolution based method by Glowacz et al. [6]. Their
method is essentially based on building m histograms (one from each of the
distinguishing vectors) and counting the keys by counting items in the ‘amal-
gamated’ histogram efficiently via convolution. Figure 7 (right) shows that they
achieve very high average precision (plotted in black) from about 50,000 bins
onward. We can therefore conclude that using 50,000 bins roughly corresponds
to 11 bits of precision in wi,j . Glowacz et al. [6] actually recommend to use
500,000 bins in their paper.

Recall that we hypothesised that different distinguishers would lead to differ-
ent precision requirements. To test this hypothesis we implemented two further
distinguishers for the simulator: one distinguisher was based on correlation and
one was based on Veyrat-Charvillon’s method but without applying the loga-
rithm. Figure 6 shows the results for them, this time we allowed up the 16 bit
precision. The plots show that indeed, different distinguishers require different
levels of precision, and that correlation has the least requirements.

To provide further evidence for the exactness of our ranking algorithm
(provided enough precision), we considered the difference between the key rank
output by our algorithm, and the key rank output by Glowacz et al. In this exper-
iment, we used 16 bits for our algorithm and 500,000 bins for Glowacz et al. Fig. 8
shows the identical trend as Fig. 1 (right panel) of Glowacz et al. Hence the dif-
ference between our ranking outcomes and their ranking outcomes are identical
to the rank estimation tightness that they measure, reinforcing the exactness of
our ranking outcomes.
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Fig. 8. Observed difference in calculated key rank between our algorithm and
Glowacz et al.

5.2 Evaluating and Comparing Run Times for Key Rank

We explained in Sect. 3 that the run time of the Key Rank algorithm is inde-
pendent of the actual depth of the key. The run time depends on the size of the
graph, which is fixed for a certain choice of m and n, and hence depends on the
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Fig. 9. Impact of the size of W (left) and precision in wi,j (right) on the run time of
Key Rank

size of W . Since W is derived from summing the weights of SK, its precision
will be determined by the precision that we allow during the conversion of the
distinguishing scores.

We hence experimented with the relationship between run time and size of W
and also precision. We did this by fixing all parameters for Veyrat-Charvillon’s
simulator and only varying the precision allowed in the function MapToWeight.
As in the previous graph, we upper bounded the precision in W at 16 bits.

Figure 9 shows how the run time increases for bigger W (left) and more
precision in W (right). The run times for sufficient precision (i.e. 8 bits for W )
are well below half a second. Even with 11 bits of precision (i.e. accurate ranking
outcomes) our average run time is around 4 s. The plot shows that this average
(black) is tracked well by the individual experiments (gray).

5.3 Evaluating and Comparing Run Times for Key Enumeration

The run time of the key enumeration algorithm (as referred to by KEA in the
graphs that will follow) is dominated by the depth to the key. Veyrat-Charvillon
et al. [13] presented the current state of the art for smart key enumeration, and
they kindly gave us access to the latest version of their implementation. We
were hence able to run their code alongside ours. Therefore for all graphs that
we provide in the following, the timings were obtained on identical platforms.
Note that for all experiements, as the toolbox provided a known secret key on
which the simulated attack was based, we knew at which point the enumeration
had found the correct key without needing to performm an AES operation on a
known plaintext/ciphertext pair (this is common within the literature).

Single Core vs Multi Core Comparisons. Figure 10 gives a comparison of run
times of Veyrat-Charvillon et al.’s algorithm and our algorithm on a single core
(left). We sampled multiple distinguishing scores for each key depth and ran our
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Fig. 10. Comparison between Veyrat-Charvillon et al.’s enumeration algorithm and our
algorithm for increasing key depths on a single core (left), and run times for parallel
instances of the key enumeration (right).

respective key rank algorithms. The graphs show that from key depths just under
30 bits onwards we clearly outperform Veyrat-Charvillon et al.’s algorithm, even
on a single core. On the right, we provide some performance graphs when running
our key enumeration algorithm on multiple cores. The graph shows that eight
cores can enumerate 240 keys in the same time as one core enumerates 237, which
is a vast difference. Also another result of note is a single core run enumerates
238 keys in 13.9 h and four cores performs the same enumeration in 6.4 h.
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A Computing Environment

All code was implemented using Java 1.7, with the exception of the Glowacz
et al.’s algorithm [6] which was implemented in Matlab to enable very fast
convolution of the histograms. The language difference here was not an issue
because key rank is so that fast we only ran accuracy comparisons and not
timing comparisons. The implementation of Veyrat-Charvillon et al.’s key enu-
meration algorithm [13] was provided by the author, and translated into Java
allowing for direct speed comparisons.

Running the single core enumeration tests, compared to Veyrat-Charvillon
which are plotted in Fig. 10 (left), took place on a system running Arch Linux,
with an Intel i7-4790S and 8 GB of system memory.

http://www.bris.ac.uk/acrc/
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Precision tests required larger memory capabilities and as such were carried
out on a system running Ubuntu, with an Intel Xeon E5-1650 and 32 GB of
system memory.

Finally the multiple core tests plotted in Fig. 10 (right) were run on a cluster
based environment, where each individual node provided 2 Intel E5-2670s and
64 GB of memory.
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Abstract. To design effective countermeasures for cryptosystems against
side-channel power analysis attacks, the evaluation of the system leakage
has tobe lightweight andoften timesat the early stage like oncryptographic
algorithm or source code. When real implementations and power leakage
measurements are not available, security evaluation has to be through
metrics for the information leakage of algorithms. In this work, we propose
such a general and unified metric, information leakage amount - ILA. ILA
has several distinct advantages over existing metrics. It unifies the mea-
sure of information leakage to various attacks: first-order and higher-order
DPA and CPA attacks. It works on algorithms with no mask protection
or perfect/imperfect masking countermeasure. It is explicitly connected
to the success rates of attacks, the ultimate security metric on physical
implementations. Therefore, we believe ILA is an accurate indicator of the
side-channel security level of the physical system, and can be used during
the countermeasure design stage effectively and efficiently for choosing the
best countermeasure.

Keywords: Information leakage amount · Side-channel security · Power
analysis attack

1 Introduction

In the past decade, various side channel attacks (SCAs) utilizing the system
power consumption information, such as differential power analysis (DPA) [16],
correlation power analysis (CPA) [5], mutual information (MI) attacks [14] and
template attacks [6], have been presented to exploit the weakness in crypto-
graphic implementations to recover the secret key. Masking is one of the most
popular SCA countermeasures used to randomize sensitive variables [7]. When
applying masking at a higher level, e.g., algorithmic or source code level, every
key-sensitive intermediate variable is masked with at least one random value
M by a carefully designed masking function f , e.g., normally exclusive OR or
c© International Association for Cryptologic Research 2015
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multiplication. Therefore, during the cryptographic execution, any intermediate
variable Z is substituted by its masked counterpart, f(Z,M), to prevent side-
channel leakage. Perfectly masked devices with appropriate masking functions
and unbiased random masks can eliminate first-order leakage, e.g., it is not fea-
sible to break the system by exploiting only one time point of the power leakage
traces which corresponds to one intermediate variable. However, they are still
susceptible to second-order and higher-order attacks which combine two or more
time points of power leakage to retrieve the secret key. Some practical masking
schemes with limited implementation resources are not perfect and may still
have some first-order leakage.

How to evaluate a system’s SCA vulnerability/resilience comprehensively and
accurately under different attacks is an important research issue. Sound quan-
titative metrics will be used to guide the implementation of countermeasures
and fairly compare the overall strength of countermeasures. One widely used
metric is success rate, the probability that an attack succeeds given a number
of side-channel leakage measurements [21]. This is indeed the ultimate practical
measure of a system’s SCA vulnerability/resilience, which depends on the cryp-
tographic algorithm, the specific implementation (with power measurement data
available), and the attack model (whether it is DPA, CPA, MIA, etc.) as illus-
trated in [12,18]. We classify this metric as one for measuring the system physical
leakage. In recent years, there are research interests in using other physical leak-
age metrics on instructions of cryptographic software and therefore pinpoint
the location of leakage to guide automatic implementation of countermeasures.
Bayrak et al. [2] introduced a methodology for detecting power leakage, using
an information theoretic metric - mutual information, MIL, between the key
and leakage measurements. Although not explicitly related to the success rate,
the metric MIL can be used to bound the success rate [10,21] in some mod-
els. However, it requires power consumption data. There are also other efforts in
evaluating the cryptosystem information leakage at an early stage, i.e., on source
code of cipher software or even algorithms and with no need of power measure-
ment data. The automatic software verification tools for SCA vulnerabilities [3,8]
employ mutual information between the secret key and intermediate variables,
denoted as MIA. The metric of quantitative masking strength, QMS, is defined
by [11] to quantify the software leakage amount under imperfect masking, and
a verification process is formulated to find the QMS value of cryptographic soft-
ware source code. However, none of the prior work has shown the relationship
between these system information leakage metrics and the success rate. It is not
easy to translate the bound on these information leakage (MIA and QMS) to the
final security measure of the implemented physical system, the success rate.

In this work, we propose a new unified metric, information leakage amount
(ILA), to quantify the system information leakage under various power analysis
attacks at the early cryptographic algorithm or software code level, whether the
cipher is unprotected or protected with masking. What is more, we also relate this
metric to the success rate of DPA/CPA attacks in analytic models. Note that in
this work we choose DPA/CPA because it has been shown both theoretically and
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empirically that the first-order and second-order CPA attacks are equivalent to
the strongest maximum-likelihood attacks under Gaussian noise models [9,13,15].
Our metric is unified, in the sense that it works on original algorithms with no
masking, perfect masking, or imperfect masking under first-order DPA/CPA or
second-order CPA. The success rate formulas are more general and simpler than
the formulas in [9,12,13], which are only for first-order DPA/CPA on unmasked
devices and for higher-order attacks on perfectly masked devices. Our explicit suc-
cess rate formulas in terms of ILA bridge the gap between the system information
leakage measure and the physical leakage measure. The metric ILA, as a great
indicator of the ultimate side-channel security level of the physical system, can
therefore be used during the countermeasure design stage (without real imple-
mentations and power measurements) effectively and efficiently for choosing the
best countermeasure.

Table 1 summarizes the properties of our metric and compares it with other
three metrics, QMS, MIA, and MIL. A question mark means that the metric on
the column may be able to achieve the objective on the row, but it has not been
demonstrated in literature. For example, work in [21] shows that the mutual
information MIL has a monotonic relationship with the success rate of an attack
with only two candidate keys, but generally the MIL may not be converted to
the success rate explicitly.

Table 1. Comparison among ILA, QMS and MI as leakage evaluation metrics

ILA QMS MIA MIL

1 First-order DPA/CPA Metric on Software Code/Algorithm
√ √ √ ×

2 Relate to First-order DPA Success Rate
√ √ √ √

3 Relate to First-order CPA Success Rate
√ × ? ?

4 Second-order DPA/CPA Metric on Software Code/Algorithm
√ × ? ×

5 Relate to Second-order DPA/CPA Success Rate
√ × ? ?

The rest of the paper is organized as follows. Section 2 gives an overview of the
existing leakage metrics and defines our proposed metric. Section 3 establishes
the success rate formula for CPAs in terms of our metrics. Section 4 presents
experimental results to evaluate the metrics and compare them with others.
Section 5 concludes the paper.

2 Leakage Metrics for Cryptosystems with Masking
Countermeasure

In this section, we first introduce the notations used and existing metrics, and
propose our unified metric ILA for first-order and second-order attacks on cryp-
tographic algorithm with imperfect/perfect masking. We then analyze these met-
rics in the case of Boolean masking.
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2.1 Notations and Existing First-Order Metrics

We denote sets by calligraphic letters (e.g., X ), denote random variables by cap-
ital letters (e.g., X) which take values on the set (X ), and denote observations of
the random variables by lowercase letters (e.g., x). We let X(i) denote the ith bit
of X. PX and EX are the notations for the probability and the expectation with
respect to X, respectively. For a cryptographic system with masking protection,
K, X, M denote the random variables for the key, the plaintext, and the mask,
respectively, and each takes values in sets X , K, M. Let F = f(X,K,M) denote
the algorithmic intermediate variable that possibly leaks, which is an algorith-
mic function of the known input X, unknown key K and the random mask M .
For a second-order attack on masked devices, there are two select functions. One
is V0(X,K,M) = g(F ), which works on a key-sensitive intermediate variable and
therefore is also a function of the input X, the key K and the mask M . Note
the select function for an attack is determined by the system’s power model, and
g(·) is usually Hamming weight or Hamming distance. Without loss of generality,
the other select function is V1 = g(M) which depends on the mask M only. The
mask may be biased, i.e., not following the uniform distribution. If the mask is
unbiased and the masking operation is appropriate, we call it perfect masking.
Let kc be the secret key, kg ∈ K\{kc} be any other possible key hypothesis, and
Nk = |K| be the dimension of the key set.

A first-order attack uses only one select function V0 that corresponds to one
time point on power traces. Therefore a first-order leakage metric measures the
leakage of one select function that can be sensitive to both key and mask. Given a
plaintext x, the secret key kc and a random number m, the target select function
is vc

0 = V0(x, kc,m). The information leakage is measured by the dependency of
vc
0 on kc. Under perfect masking, the distribution of vc

0 is independent of kc, and
hence the secret key could not be recovered from the leakage measurements of
vc
0. Otherwise, vc

0 is still vulnerable to first-order power analysis attacks. There
are mainly two existing first-order information leakage metrics.

Eldib et al. [11] proposed to quantify the masking strength under DPA by

QMS = (1 − Δqms), with Δqms = max
x,x′∈X ,k,k′∈K

|Dx,k(F ) − Dx′,k′(F )|, (1)

where Dx,k denotes the distribution of F given (x, k), and Δqms is the maximum
distribution difference. For perfect masking, QMS is maximum and reaches one,
which indicates that the key K and the intermediate variable F are statistically
independent. Without masking, QMS=0. For imperfect masking schemes, QMS
is in the range of (0,1).

The other metric uses the mutual information, an information theoretic quan-
tity commonly used for leakage evaluation. The mutual information between two
discrete random variables X and Y is defined as:

MI(X,Y ) =
∑

x∈X ,y∈Y
p(x, y) log

(
p(x, y)

p(x)p(y)

)

, (2)

where p(x, y) is the joint probability distribution function of X and Y, with
p(x) and p(y) as the corresponding marginal functions. For continuous random
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variables, the summation in definition (2) is replaced by integrations. Work in
[3,8] uses the mutual information between K and F to measure the information
leakage at the software code level. This mutual information only depends on the
algorithm and we denote it by MIA = MI(K,F ). In contrast, work in [2] uses
the mutual information between K and the leakage measurements L. We denote
it by MIL = MI(K,L), which is a physical leakage measure.

Note that there is no second-order system information leakage metric based
on QMS or MI shown in literature. In this work, we propose a general and
unified metric on the selection functions (V0 for first-order attacks, V0 and V1

for second-order attacks), which reflects the system susceptibility to attacks.

2.2 Our Proposed Information Leakage Metric

Eldib et al. empirically [11] showed that there is a relationship between QMS and
the number of traces needed in DPA. However, there is no theoretical proof for
such relation, and how QMS relates with multi-bit CPA or higher-order attacks
is unknown. We are seeking a new unified metric to reflect the information
leakage at the algorithm level, similar to QMS and MIA, and meanwhile can
explicitly relate to the success rate of different attacks, including DPA, CPA,
and high-order attacks.

Fei et al. [13] defined the confusion coefficient, for unmasked algorithm, as
κ(kc, kg) = EX{[V (X, kc) − V (X, kg)]2} for the selection function V and the
expectation being taken over X. Each confusion coefficient is defined between
two key values. They showed that the confusion coefficients and the implementa-
tion signal-noise-ratio (SNR) together explicitly determine the success rates for
DPA and CPA. However, these confusion coefficients do not reflect the masking
strength as they are defined for unmasked algorithms only. The confusion coef-
ficients are also used to model the success rates for higher-order attacks with
perfect masking in [9].

We propose to generalize the confusion coefficient definition for masked algo-
rithms (possibly imperfect). We then propose the new metric ILA based on the
generalized confusion coefficients. The ILA measures the information leakage of
V0 (and V1) under the protection of any masking countermeasure.

Definition 1. We define the new first-order confusion coefficient κ1O(kc, kg) of
masked algorithm as

κ1O(kc, kg) = EX{[EM (V0|(X, kc)) − EM (V0|(X, kg))]2}, (3)

where EM (V0|(X, k)) is the conditional expectation of V0 given (X, k) over M,
and EX is the expectation over X .

Definition 2. The first-order information leakage amount ILA1O is defined as

ILA1O = EK\{kc}[κ1O(kc, kg)], (4)

where EK\{kc} is the expectation over all possible key hypothesis kg in K\{kc}.
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ILA1O, MIA and QMS are all metrics for sensitivity evaluation at the algo-
rithm level that do not require leakage measurements. QMS focuses on the
extreme value among the differences of distributions of any pair (x, k), (x′, k′) ∈
(X ,K), but ignores the other differences. The extreme value indicates the prob-
ability distance between the secret key to the one guessed key which is easiest
to distinguish. However, the SCA succeeds only if the secret key is distinguished
from all other guessed keys, not just one. Hence the expectation would be a
better measure for information leakage than the extreme value. We can see that
ILA1O is an expectation of squared distances:

ILA1O =
∑

kg∈K\{kc}
p(kg)κ1O(kc, kg)

=
∑

kg∈K\{kc}
p(kg)

∑

x∈X
p(x) · {EM [V0|(x, kc)] − EM [V0|(x, kg)]}2. (5)

The calculation of ILA1O through Eq. (5) involves iterations over kg ∈ K\kc

and x ∈ X , which can be time-consuming for large sets of K and X . These
same iterations appear in MIA and QMS definitions too. As recommended for
MI calculations by [2,8], the exhaustive iterations in calculating ILA1O can be
replaced by averaging over a random subset of sufficiently large size. Thus the
computational complexity is similar for the three metrics ILA1O, MIA and QMS.

Different from MIA and QMS, we find that ILA1O can be related to the
success rates of DPA and CPA in explicit formulas, similar to the work in [13].
In addition, ILA1O can be extended to a second-order metric ILA2O as well,
while there is no such work on MIA and QMS yet.

A second-order attack retrieves the secret key by combining the information
leakage at two leakage points, V0(X,K,M) and V1(M). A second-order metric
measures the leakage under second-order CPA attacks.

Definition 3. For a key hypothesis kg ∈ K\{kc}, we define the second-order
confusion coefficient of masked algorithm as

κ2O(kc, kg) = EX{[EM (Ṽ0Ṽ1|(X, kc)) − EM (Ṽ0Ṽ1|(X, kg))]2}, (6)

where Ṽi = Vi − EX,M [Vi], i = 0, 1, are the centered select function values.

Definition 4. The second-order information leakage amount ILA2O is defined
as

ILA2O = EK\{kc}[κ2O(kc, kg)]. (7)

Comment: Although the definitions (4) and (7) of ILA depend on the correct key
kc, in many practical situations ILA is key-independent. The leaked intermediate
values often depend on key kc only through X ⊕ kc. In that case, for uniformly
distributed plaintext X, the ILA is in fact independent of kc since kg ⊕kc iterates
over the same values for all kc.
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2.3 Analysis of the Metrics Under Boolean Masking

To better understand the metrics ILA, MIA and QMS, we compare them in detail
for a specific setting of biased Boolean masking F = Z(X, k)⊕M as in [11], under
several commonly used assumptions on the distribution of unmasked Z(X, k) and
keys. Here Z(X, k) denotes an unmasked intermediate variable with X being the
random plaintext. Hence V0 = g(Z(X, k) ⊕ M).

Assumption 1 (Uniform Intermediate Variable). Given a key k ∈ K, for random
plaintext X, the unmasked intermediate variable Z(X, k) is uniformly distributed.
That is, Z(X, k) ∼ U(0, 2b − 1), for all k ∈ K, where U(0, 2b − 1) denotes the
discrete uniform distribution on {0, 1, ..., 2b −1} with b being the number of bits for
Z(X, k).

Let V ∗
0 (X, k) = g(Z(X, k)) denote the unmasked select function. Under

Assumption 1, EX [V ∗
0 (X, k)] is a constant independent of keys k. In general,

we would like the unmasked select function values under two different keys to
be uncorrelated.

Assumption 2 (Uncorrelated Keys). For any pair of keys k1, k2 ∈ K, and ran-
dom plaintext X, the select functions V ∗

0 (X, k1) and V ∗
0 (X, k2) are uncorrelated

so that EX [V ∗
0 (X, k1)V ∗

0 (X, k2)] = EX [V ∗
0 (X, k1)]EX [V ∗

0 (X, k2)].

Under Assumptions 1 and 2, EX [V ∗
0 (X, k1)V ∗

0 (X, k2)] = {EX [V ∗
0 (X, k1)]}2

will also be a constant independent of keys k1 and k2. Unfortunately, many select
functions (e.g., the Hamming weights of an AES S-Box output) do not satisfy
Assumption 2. However, for a random key k2, a weaker assumption often holds.

Assumption 3 (Weak Uncorrelated Keys). For any fixed key k1, let k2 be a
random key ∈ K\{k1}. For a random plaintext X, the intermediate variables
Z(X, k1) and Z(X, k2) are uncorrelated so that EX,k2 [V

∗
0 (X, k1)V ∗

0 (X, k2)] =
{EX [V ∗

0 (X, k1)]}2.
Under Assumptions 1 and 3, EX,k2 [V

∗
0 (X, k1)V ∗

0 (X, k2)] is a constant, which
helps us to derive simple explicit formulas of ILA in this section. Assumption
3 makes the calculation of the metrics easier here, as it removes ILA’s depen-
dence on many aspects of the algorithm including kc value. The leakage metrics
ILA under these assumptions reflect the masking strength only. In the next
section, Assumption 3 will not be assumed for DPA/CPA success rates deriva-
tions though.

We first consider the DPA attack, where V0 is on a single bit. Since ⊕ is
taken bit by bit, we can take both Z(X, kc) and M as variables with one single
bit, and V0 = Z ⊕M . Let the distribution of the mask bit be P(M = 1) = p and
P(M = 0) = 1 − p, we have the following property.

Property 1. For the DPA model under Assumptions 1 and 3, if P(M = 1) = p,
then
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– ILA1O = (1 − 2p)2/2,
– ILA2O = 2p2(1 − p)2,
– MIA = 1 + (1 − p) log2(1 − p) + p log2(p),
– QMS = 1 − |1 − 2p|.

The detailed calculations are given in Appendix A. Note that although the
generalized confusion coefficients κ1O(kc, kg) (Eq. 3) and κ2O(kc, kg) (Eq. 6) are
determined by the algorithm, their average terms ILA1O and ILA2O become
algorithm-independent and are only determined by the bias of the mask distri-
bution, p, according to Assumption 3. For perfect masking, p = 1/2; unmasked,
p = 0 or p = 1; imperfect masking, p takes other values. All metrics change
with p and have one-to-one correspondence between each other. Particularly,
ILA1O = (1−QMS)2/2. Work in [11] empirically finds that the number of traces
needed for DPA is approximately Ntrace = 1/(1 − QMS)2.2. In Sect. 4.1, we will
show that number of traces Ntrace ∝ 1/ ILA1O ∝ 1/(1 − QMS)2 instead.

Figure 1 shows the relationship between these metrics and the probability p.
It is symmetric about the x-axis which implies the same effect of the mask bit
being 0 and 1. From Fig. 1, we see that ILA1O and MIA have the same pattern,
but ILA1O increases from 0 to 1/2 and MIA increases from 0 to 1 as p goes
from 1/2 to 0 (or 1). When p = 0 or p = 1, the device is without any masking
protection, QMS = 0 while ILA1O and MIA both reach their maximum. When
p = 1/2, the devices is protected by perfect masking, ILA1O = MIA = 0 and
QMS = 1 which are consistent with no first-order information leakage. However,
the second-order leakage still exists under perfect masking, and actually reaches
its maximum (biggest leakage) 1/8. As the mask gets more biased, the first-order
leakage increases while the second-order leakage decreases.

Next we consider CPA in this setting. For CPA, V0 = HW (Z ⊕ M) is the
Hamming weight function of a b-bit variable. We assume that the bits in the mask

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p

Q
u
a
n
ti
ty

ILA
1O

ILA
2O

MI
A

QMS

Fig. 1. The quantities of several metrics under the biased masking for DPA.
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are independent from the same distribution with P(M(i) = 1) = p, i = 1, ..., b.
Here M(i) denotes the ith bit of the b-bit mask variable M .

Property 2. For the CPA model under Assumptions 1 and 3,

ILA1O = b(1 − 2p)2/2, ILA2O = 2bp2(1 − p)2. (8)

The proof is provided in Appendix B.
For the CPA model, the ILA1O and ILA2O follow the similar pattern as in the

DPA model, just differing by a factor of b, the number of bits. In fact, the DPA
model is a special case of the CPA model with b = 1. The other two metrics MIA
and QMS are harder to derive for CPA. It is hard, if not impossible, to relate
MIA and QMS to the success rate of CPA.

3 Relating ILA to DPA and CPA Success Rates

As shown in [9,12,13], the success rates of first-order DPA and CPA on unmasked
devices and second-order CPA on perfectly masked devices can all be expressed
in terms of the confusion coefficients and the implementation signal-to-noise-
ratio (SNR). Our metrics ILA1O and ILA2O are algorithmic properties like the
confusion coefficients. We generalize the results of [9,12,13] to masked imple-
mentations (possibly with imperfect masking), and show that the success rates
of CPA/DPA should be determined by the SNRs and our generalized confu-
sion coefficients. The formulas are further simplified to consist of ILA1O and
ILA2O. We show derivations for the success rates of first-order and second-order
DPA and CPA on masked devices in this section. We then use these metrics to
compare the first-order leakage and second-order leakage.

3.1 First-Order Power Analysis Attack Model

We assume a commonly used linear power consumption model with additive
noises for both DPA and CPA,

L0 = c0 + ε0V0 + σ0r0, (9)

where r0 is the unit noise variable (the mean is 0 and the variance is 1) and
ε0 is the single-bit unit power consumption. Hence the physical system SNR is
δ0 = ε0/σ0. We derive the success rate formulas for first-order CPA in terms of
SNR and ILA1O, and consider DPA as a special case of CPA with b = 1. Notice
that some other researchers defined SNR differently as SNR∗ = ε20V ar(V0)/σ2

0 ,
which includes the variance of intermediate value V0 also. We consider V ar(V0)
to be part of algorithmic leakage measured by ILA1O, since it depends on V0.
Our SNR reflects purely the physical system property, since ε0 reflects the power
consumption differential caused by one-bit.

The leakage measurements of L0 are denoted as L = {l1,0, l2,0, ..., ln,0}, where
n is the number of traces. For unmasked devices, the CPA exploits the corre-
lation between the leakage L and unmasked select function V ∗

0 = g(Z(X, k))
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to discover the secret key. For masked devices, the attacker does not know M
value, and therefore does not know the value of V0 = g(F (X, k,M)). To conduct
CPA, the attacker has to correlate L with EM [V0|(X, k,M)], the expectation of
V0 over all possible mask values. This value is V ∗

0 (X, k) for unmasked devices,
and is a constant (thus no leakage) for perfectly masked devices. Let vg

m,i,0

denote V0(xi, kg,mi) for the i-th power trace, the selection function value under
plaintext xi, guess key kg and the mask mi, EM [vg

m,i,0] denote the targeted
expectation of V0(xi, kg,m) over all m ∈ M, and E[V g

0 ] denote the expectation
of V0(x, kg,m) over all x ∈ X and m ∈ M. Under the power model (9) with
imperfect masking, the first-order CPA distinguishes the key kg by the Pearson’s
correlation:

ρ̂g =

n∑

i=1

(li,0 − l.,0)[EM (vg
m,i,0) − E(V g

0 )]
√

n∑

i=1

(li,0 − l.,0)2
n∑

i=1

[EM (vg
m,i,0) − E(V g

0 )]2
, (10)

where l.,0 =
n∑

i=1

li,0/n is the mean of power leakage.

The CPA succeeds when ρ̂c − ρ̂g > 0 for all kg ∈ K\{kc}. For a random plain-
text attack with a large number of traces, under Assumption 1, the denominator
of (10) converges to the same limit for all kg, since E[EM (vg

m,i,0)] = E(V g
0 ) =

E(V c
0 ) and E{EM [(vg

m,i,0)
2]} = E{EM [(vc

m,i,0)
2]}. Hence ρ̂c− ρ̂g > 0 is equivalent

to that the difference in the numerators of (10) is positive. That is, ρ̂c − ρ̂g > 0
when Δ1O

n (kc, kg) > 0, where

Δ1O
n (kc, kg) =

n∑

i=1

(li,0 − l.,0)
σ0

[EM (vc
m,i,0) − EM (vg

m,i,0)]. (11)

Let Δ1O
n denote the (Nk−1)-dimension vector consisting of these Δ1O

n (kc, kg)
for all kg ∈ K\{kc}. Let μ and Σ denote the mean and variance of Δ1O

1 (kc, kg).
Then following the work in [13,20], the success rate can be described with a
multivariate Gaussian distribution N(μ,Σ/n) using the Central Limit Theorem.
That is,

SR = ΦΣ(
√

nμ). (12)

where ΦΣ is the cumulative distribution function (CDF) of the Nk − 1 dimen-
sional Gaussian distribution with mean 0 and variance Σ.

For unmasked devices, the mean vector μ and the variance matrix Σ are
expressed by Fei et al. [13] in terms of their confusion coefficients κ. With imper-
fect masking, we show (in Appendix C) that similar expressions hold with our
generalized confusion coefficients κ1O.

Theorem 1. Under CPA leakage model (9), the success rate of the CPA is given
by Eq. (12). Under Assumption 1, the element in the mean vector μ correspond-
ing to key kgi is

μgi =
δ0
2

κ1O(kc, kgi); (13)
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And the elements of covariance matrix Σ are

σkgi,kgi
= κ1O(kc, kgi), σkgi,kgj

= κ1O(kc, kgi, kgj) for kgi �= kgj , (14)

where κ1O(kc, kgi, kgj) = EX{[EM (vc
m,1,0) − EM (vgi

m,1,0)][EM (vc
m,1,0) − EM (vgj

m,1,0)]}.

Similar to [13], we can get the above three-way generalized confusion coeffi-
cients κ1O(k1, k2, k3) from two-way generalized confusion coefficients κ1O(k1, k2)
(see more details in Appendix D).

Lemma 1. Given kc, kgi, kgj ∈ K,

κ1O(kc, kgi, kgj) =
1
2
[κ1O(kc, kgi) + κ1O(kc, kgj) − κ1O(kgi, kgj)]. (15)

The average of κ1O(kc, kgi) over all kgi is ILA1O. By Lemma 1, the average
of κ1O(kc, kgi, kgj) over all kgi �= kgj is ILA1O /2. Replacing all the confusion
coefficient terms in Eqs. (13) and (14) by their averages, we get an approximate
asymptotic success rate for first-order CPA on masked devices:

SR = Φ 1
2 [INk−1+JNk−1](

δ0
√

n
√

ILA1O

2
1Nk−1), (16)

where INk−1 is the (Nk − 1) × (Nk − 1) identity matrix with diagonal entries of
ones and off-diagonal entries of zeros, JNk−1 is the (Nk − 1) × (Nk − 1) matrix
with all entries of ones, and 1Nk−1 is the (Nk − 1) dimensional vector of ones.

The approximation SR formula (16) is very close to the SR formula (12) for
small SNR δ0. We will examine the approximation in Sect. 3.3.

3.2 Second-Order Power Analysis Attack Model

Second-order power analysis attack combines the two leakage measurements of
V0 and V1 at two different positions involving the same mask M to break the
masking protection. Similar to (9), we assume linear leakage for V1

L1 = c1 + ε1V1 + σ1r1, (17)

where r1 is the unit noise.
Second-order CPA uses n pairs of independent realizations of noisy physical

leakage (l1,0, l1,1), (l2,0, l2,1), ..., (ln,0, ln,1) for (L0, L1). Here li,j = cj + εjvi,j +
σjri,j , i = 1, ..., n, j = 0, 1. Denote the centered version of Lj and Vj by L̃j =
Lj −E(Lj) and Ṽj = Vj −E(Vj), for j = 0, 1. While the first-order CPA exploits
the correlation between L̃0 and Ṽ0, the second-order CPA exploits the correlation
between L̃0L̃1 and Ṽ0Ṽ1. That is, it uses the centered product statistic:

1
n

n∑

i=1

l̃i0 l̃i1EM [ṽg
m,i,0ṽm,1], (18)
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where l̃ij = (li,j − l̄.,j)/σj , j = 0, 1, is the centered leakage, ṽg
m,i,0 = vg

m,i,0−E[V g
0 ]

and ṽm,1 = vm,1 − E[V1] are the centered select functions values under guessed
key kg given mask m, and vm,1 = V1(m).

We denote the difference between the centered product statistics under secret
key kc and guessed key kg as

Δ2O
n (kc, kg) =

1
n

n∑

i=1

l̃i0 l̃i1[EM (ṽc
m,i,0ṽm,1) − EM (ṽg

m,i,0ṽm,1)]. (19)

The second-order CPA succeeds when Δ2O
n (kc, kg) > 0 for all kg ∈ K\{kc}.

Using derivations in [9,17,19], the success rate of second-order CPA also follows
Eq. (12): SR = ΦΣ(

√
nμ).

Ding et al. [9] expressed μ and Σ in terms of confusion coefficients κ under
perfect masking. With possibly imperfect masking, we generalize the formula in
terms of our generalized confusion coefficients κ2O (see details in Appendix E).

Theorem 2. Under CPA leakage model (9) and (24), the success rate of the
second-order CPA is given by Eq. (12). Under Assumption 1, the element in μ
corresponding to key kgi is

μgi =
δ0δ1
2

κ2O(kc, kgi); (20)

And the elements of covariance Σ are

σkgi,kgi
= κ2O(kc, kgi), σkgi,kgj

= κ2O(kc, kgi, kgj) for kgi �= kgj , (21)

where κ2O(kc, kgi, kgj) = EX{[EM (ṽc
m,1,0ṽm,1) − EM (ṽgi

m,1,0ṽm,1)][EM (ṽc
m,1,0ṽm,1) −

EM (ṽgj
m,1,0ṽm,1)]}.

Similar with Lemma 1, for kc, kgi, kgj ∈ K,

κ2O(kc, kgi, kgj) =
1
2
[κ2O(kc, kgi) + κ2O(kc, kgj) − κ2O(kgi, kgj)]. (22)

As in the first-order analysis, replacing the generalized confusion coefficients
κ2O by ILA2O, we get the approximate asymptotic success rate:

SR = Φ 1
2 [INk−1+JNk−1](

δ0δ1
√

n
√

ILA2O

2
1Nk−1). (23)

Next we evaluate the above approximations.

3.3 Approximation Errors in the Simple Success Rate Formulas

Work in [9,13] gives the explicit theoretical success rate formulas for two cases:
the first-order CPA on unmasked devices and the second-order CPA on perfectly
masked devices, respectively. By plugging ILA1O when p = 0 in (16) and ILA2O

when p = 1/2 in (23), we get the two corresponding simple success rate formulas.
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Compared to the formulas in [9,13], our simple formulas ignore some higher order
terms and replace the confusion coefficients by ILA. Here we study the effect of
the simplification for CPA on unmasked and perfect masked AES.

We show the difference between our simplified success rate formulas and
the explicit success rate formulas of [9,13] in Fig. 2. The average error-ratio is
defined as: ESR[|NExplicit,SR −NSimple,SR |/NExplicit,SR], where NExplicit,SR and
NSimple,SR are numbers of traces needed to achieve a fixed SR value by the
explicit and simplified theoretical success rate formulas respectively, and ESR is
the expectation over all success rate values SR ranging from 0 to 1. Here, we
take the expectation over discrete success rate values SR = [0.1, 0.2, 0.3, ..., 0.9].
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Fig. 2. The average error-ratio of number of measurements between explicit and sim-
plified success rate formulas on AES S-Box

Figure 2 shows that as the SNR grows, both error ratios increase. The error-
ratio≤ 10% when SNR ≤ 0.26 for the first-order attack, and when SNR ≤
0.16 for the second-order attack. Hence the simplified success rate formulas in
Eqs. (16) and (23) work well for small SNR values. For practical physical imple-
mentations, devices with large SNR values are very leaky and not considered
secure. The success rate analysis is only meaningful when the SNR is small.

3.4 Comparing Effectiveness of the First-Order Attack and the
Second-Order Attack

For unmasked devices, first-order leakage is sufficient to discover the secret key.
With perfect masking, only second-order leakage can be used to discover the
secret key. However, for imperfect masking implementations, both first-order
and second-order leakage exist. Which leakage is more effective to exploit? We
can compare them using the proposed metrics through formulas (16) and (23).

Property 3. For a masked implementation
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– The first-order attack is more effective when δ1 <
√

ILA1O
ILA2O

;

– The second-order attack is better when δ1 >
√

ILA1O
ILA2O

.

For very small SNR, the first order leakage will dominate. The threshold SNR
value to determine dominance by the first-order or the second-order leakage is
given by the square root of the ratio between the two information leakages:√

ILA1O
ILA2O

. If the typical SNR value is known for certain physical devices, we
can predict which type of leakage dominates and therefore guide the software
designer in effective leakage reduction.

3.5 Extension to Higher-Order Power Analysis Attack Model

We now consider a cryptography algorithm protected by J-th order masking,
with mask shares M1,M2, ...,MJ . A J-th order attack combines the information
leakage of V0(X,K,M1, ...,MJ ) and the leakage of V1(M1), ..., VJ (MJ ) to retrieve
the secret key. J-th order power analysis attack combines the J + 1 leakage
measurements of V0, V1, ..., VJ at J + 1 different positions to break the masking
protection. The leakage vector is l i = (li,0, ..., li,J ). Similar to (9) and (24), the
leakage model is now:

Lj = cj + ε1Vj + σjrj , j = 0, ..., J. (24)

where rj is the unit noise.
For a key hypothesis kg ∈ K\{kc}, we define the J-th order confusion coeffi-

cient of masked algorithm as

κJO(kc, kg) = EX{[EM (Ṽ0Ṽ1...ṼJ |(X, kc)) − EM (Ṽ0Ṽ1...ṼJ |(X, kgi))]2}, (25)

where Ṽi = Vi − EX,M [Vi], i = 0, 1, ..., J , are the centered select function values.

Definition 5. The J-th order information leakage amount ILAJO is defined as

ILAJO = EK\{kc}[κJO(kc, kg)]. (26)

As in [9] and in Sect. 3.2, we can derive the approximate asymptotic success
rate as:

SR = Φ 1
2 [INk−1+JNk−1](

√
n
√

ILAJO

J∏

j=0

δj

2
1Nk−1). (27)

4 Numerical Results

In this section, we first numerically investigate the relationship between success
rates of DPA/CPA and the metrics ILA, MIA and QMS on synthetic data exam-
ples. We also evaluate our metrics and the simplified success rates of DPA/CPA
on realistic measurement data.
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4.1 Numerical Comparison of Metrics Versus Success Rates

We first show, by numerical examples, that ILA1O measures the leakage infor-
mation amount under CPA, but MIA and QMS do not. We consider synthetic
data examples with biased masking on the outputs of an AES S-Box, where the
masking bits are independent with pi = P(M(i) = 1), i = 1, 2, ..., 8.

In the first example, the last 4-bits are perfectly masked with p5 = p6 =
p7 = p8 = 0.5, and the information leakage is through the Hamming weights
of the first 4-bits according to model (9). We consider two cases where −→p 4 =
[p1, p2, p3, p4] = [0.5, 0.2, 0.2, 0.1] and −→p 4 = [0, 0.4, 0.4, 0.4] respectively. We cal-
culate the values of the different metrics through definitions in Eqs. (1), (2) and
(5), rather than using specialized formulas in Properties 1 and 2 (which only
apply to Boolean masking with equal pi’s for each bit). Detailed algorithms are
provided in Appendix F. In both cases MIA = 1.09, but the information leak-
age amount differs with ILA1O = 0.68 and ILA1O = 0.56, respectively. Figure 3
(a) shows the success rates of CPA in both cases on synthetic data generated
from the power model (9) with SNR = 0.1. The empirical success rate for a fixed
number of measurements Ntrace is found by repeatedly randomly sampling Ntrace

traces for an attack, and calculating the proportion of attacks that retrieves the
correct secret key. We see that the ILA1O correctly predicts the two different
CPA success rates curves (with difference about 10 %), while by MIA the infor-
mation leakage should be the same in these two cases. Note that from Fig. 2,
the error ratio of our simplified SR formula under first-order CPAs is only 1.5 %
when SNR = 0.1.

In the second example, the last 6-bits are perfectly masked. For two cases of−→p 2 = [p1, p2] = [0.3, 0.3] and −→p 2 = [0.1, 0.5], QMS = 0.4, but ILA = 0.16 and
0.32 respectively. Figure 3 (b) shows that ILA1O correctly predicts the different
empirical CPA success rate curves, while QMS incorrectly labels the two cases
as equally leaky. Therefore, only ILA1O correctly measures the CPA leakage in
these examples.

The formulas (16) and (23) give the CPA success rates using ILA and SNR.
Figure 4 plots the number of traces Ntrace needed to achieve success rate of
SR = 80%, when ILA and SNR vary. Figure 4 (a) is for the first-order CPA
attack (16) and (b) is for the second-order CPA attack (23). As ILA increases or
SNR increases, less traces are needed to get SR = 80%. For a fixed SNR value,
the number of traces Ntrace is inverse proportional to ILA.

For the special case of single-bit DPA, all three metrics are monotonic func-
tions of each other (Property 1). Thus, MIA and QMS can predict the DPA suc-
cess rate through their relationship with ILA. Particularly, for DPA, ILA1O =
(1 − QMS)2/2 and the Ntrace traces needed for DPA is inverse proportional to
(1 − QMS)2.

4.2 Experimental Results on Physical Implementations

We next verify the prediction of success rates by ILA, and show that it also
correctly predicts the dominance by first-order or second-order CPA leakage on
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real physical systems. Two physical implementations of masked Keccak and AES
algorithms are considered. The masked AES [1] is implemented on an SASEBO-
GII board [22]. The protected Keccak implementation with secret sharing [4] is
on the 32-bit Microblaze processor of the SASEBO-GII board. All the power
traces are collected using a LeCroy WaveRunner 640Zi oscilloscope.

We get several power data sets with biased masking through choosing parts
of the fully masking data set according to biased masks distributions. The first
two data sets are on the same AES implementation with δ0 = 0.10, δ1 = 0.12
but with different biased masks. The leakage amount on the first data set is
ILA1O = 0.338, ILA2O = 13.8, while the leakage amount on the second data
set is ILA1O = 0.174, ILA2O = 15.7 for CPA attacks. For the third data set on
Keccak, δ0 = 0.10, δ1 = 0.10, ILA1O = 0.010, ILA2O = 0.006 for DPA attacks.
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For these three data sets,
√

ILA1O / ILA2O/δ1 = 1.3, 0.88, 2.02 respectively.
By Property 3, the first-order attack is more effective in the first and third data
sets, and the second-order attack is more effective in the second data set.

Figure 5 shows the success rates of CPAs on the first two data sets for
AES. Each figure plots four curves, the theoretical success rates for first-order
CPA (16) and the second-order CPA (23), and two corresponding empirical suc-
cess rate curves. The empirical success rates are close to the theoretical success
rates. The first-order leakage and second-order leakage are ranked in the order
predicted by Property 3.

Figure 6 shows the success rates of CPA on the Keccak data are also as
predicted by Eqs. (16) and (23).
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Fig. 5. The first-order CPA attack and second-order CPA attack on AES with different
masking biases.
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5 Conclusion

In this work, we propose a new unified metric, ILA, to measure the information
leakage at the early stage of cryptographic software under different power analy-
sis attacks. It quantifies the leakage amount of algorithms with various masking
strength to first-order or second-order power analysis attacks. Unlike existing
metrics, ILA relates to the attack success rate on the physical implementations
through a simple explicit formula. We demonstrate that it accurately quantifies
the leakage amount comparing to existing metrics on both synthetic data and
real physical implementation data. Therefore, it would be a reliable metric for
system designers to predict the system leakage and develop better protections.

Acknowledgments. This work is supported in part by the National Science Founda-
tion under grants CNS-1314655 and CNS-1337854.

Appendices

A Derivation of ILA, QMS and MIA for DPA Model

For the DPA model, Z is one single bit, as well as M . Under Assumption 1,
P(Z = 0) = P(Z = 1) = 1/2. For the Boolean masking, V0 = F = Z ⊕M . Hence
P(Z ⊕ M = 0) = P(Z ⊕ M = 1) = 1/2,

P(Z ⊕ M = 1|Z) = (1 − 2p)Z + p = p or 1 − p. (28)

Using Eq. (28), Dx,k(F ) = p or 1 − p, which implies max{|Dx,k(F ) −
Dx′,k′(F )|} = |1 − 2p|. Hence QMS = 1 − |1 − 2p|.

For MIA, we calculate the entropies first.

H(K) = −
∑

k∈K
p(k) log2 p(k) = −

∑

k∈K

1
Nk

log2
1

Nk
= log2 Nk.

H(K|V0) = − ∑

k∈K
p(k).

∑

x∈{0,1}
p(x).

∑

v0∈{0,1}
p(v0|k, x). log2 p(k|v0, x)

= − ∑

k∈K
1

Nk
.

∑

x∈{0,1}
1
2 .[p log2

p
2Nk
1
4

+ (1 − p) log2
1−p
2Nk
1
4

]

= log2 Nk − [1 + (1 − p) log2(1 − p) + p log2 p].

Therefore,

MIA = H(K) − H(V0|K) = 1 + (1 − p) log2(1 − p) + p log2 p. (29)
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We will derive the ILA1O and ILA2O expressions in the CPA model in
Appendix B. Plugging-in b = 1, we get their DPA model expressions.

B Derivation of ILA1O and ILA2O for CPA Model

For the CPA model, the selection is Hamming weights V0 = H(Z ⊕ M), V1 =
H(M), and both M and Z are b-bit variables. Since P(M(i) = 1) = p, i =
1, 2, ..., b, we have:

EM [H(M)] = bp, EM [H(M)2] = bp + b(b − 1)p2. (30)

Under Assumption 1, Z has uniform distribution for any key kg so that always

EX [H(Z)] = b/2, EX [H(Z)2] = (b2 + b)/4. (31)

Here V ∗
0 (X, k) = H[Z(X, k)]. Under Assumptions 1 and 3,

Ekg
κ(kc, kg) = Ekg

EX{[V ∗
0 (X, kc) − V ∗

0 (X, kg)]2}
= Ekg

EX [V ∗
0 (X, kc)2] + Ekg

EX [V ∗
0 (X, kg)2] − 2Ekg

EX [V ∗
0 (X, kc)V ∗

0 (X, kg)]
= 2EX [V ∗

0 (X, kc)2] − 2{EX [V ∗
0 (X, kc)]}2.

(32)
Using (31), this becomes

Ekg
κ(kc, kg) = 2( b2+b

4 ) − 2( b2

4 ) = b
2 . (33)

By the property 2 in [19], with ∧ denoting the bit-wise multiplication,

EM [H(Z ⊕ M)|(X, kc)] = EM [H(Z) + H(M) − 2H(Z ∧ M)|(X, kc)]
= (1 − 2p)H(Z) + bp.

(34)

Then for the first-order CPA, using Eqs. (34) and (33)

ILA1O = Ekg
[κ1O(kc, kg)]

= Ekg
[EX{[EM (H(Z ⊕ M)|(X, kc)) − EM (H(Z ⊕ M)|(X, kg))]2}]

= Ekg
[(1 − 2p)2κ(kc, kg)] = b(1−2p)2

2 .

(35)

Similar to (34), using (30),

EM{[H(Z ⊕ M) − b
2 ][H(M) − bp]|(X, kc)}

= EM{[H(Z ⊕ M)H(M) − bpH(Z ⊕ M)]|(X, kc)}
= EM{[H(Z)H(M) + H(M)2 − 2H(Z ∧ M)H(M) − bpH(Z ⊕ M)]|Z}
= H(Z)bp + [bp + b(b − 1)p2] − 2[p + (b − 1)p2]H(Z)

−bp[(1 − 2p)H(Z) + bp]
= −2p(1 − p)[H(Z) − b

2 ].

(36)

Hence for the second-order CPA, using Eqs. (36) and (33)

ILA2O = Ekg
[κ2O(kc, kg)]

= Ekg
[EX{[EM (Ṽ0Ṽ1|(X, kc)) − EM (Ṽ0Ṽ1|(X, kg))]2}]

= Ekg
[4p2(1 − p)2κ(kc, kg)] = 2bp2(1 − p)2.

(37)
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C Theorem 1: μ and Σ in the first-order CPA (12)

Denote vg
m,1,0 = V0(x1, kg,m) and v1,0 = V0(x1, kc,m1). Recall that, under

Assumption 1, E[vg
m,1,0] = E[V g

0 ] = E[V c
0 ] and EX{[EM (vg

m,1,0)]
2} =

EX{[EM (vc
m,1,0)]

2} for any kg. Hence we have an useful expression that will
be used later,

EX{EM (vc
m,1,0)[EM (vc

m,1,0) − EM (vg
m,1,0)]}

= 1
2EX{[EM (vc

m,1,0)]
2 + [EM (vg

m,1,0)]
2 − 2EM (vg

m,1,0)EM (vg
m,1,0)]}

= 1
2EX{[EM (vc

m,1,0) − EM (vg
m,1,0)]

2} = 1
2κ1O(kc, kg).

(38)

For large n, l.,0 = c0 + ε0E(v1,0) and l1,0 = c0 + ε0v1,0 +σ0r1,0, then Eq. (11)
becomes

Δ1O
1 (kc, kg) = {δ0[v1,0 − E(v1,0)] + r1,0}[EM (vc

m,1,0) − EM (vg
m,1,0)]. (39)

Since E[r1,0] = 0, we have:

μkg
= δ0E{(v1,0 − E[v1,0])(EM [vc

m,1,0] − EM [vg
m,1,0])}

= δ0E{v1,0(EM [vc
m,1,0] − EM [vg

m,1,0])} = δ0
2 κ1O(kc, kg).

(40)

The last equality uses the fact that EM [v1,0] = EM [vc
m,1,0] and Eq. (38).

The element in covariance Σ corresponding to kgi and kgj is:

σkgi,kgj
= COV (Δ1O

1 (kc, kgi), Δ
1O
1 (kc, kgj)) = E[Δ1O

1 (kc, kgi)Δ
1O
1 (kc, kgj)] − μkgi

μkgj
.

(41)
Since E[r21,0] = 1, keep the leading term (dropping the terms with δ0), we have

σkgi,kgj
= EX{(EM [vc

m,1,0] − EM [vgi
m,1,0])(EM [vc

m,1,0] − EM [vgj
m,1,0])} = κ1O(kc, kgi, kgj).

(42)

D Proof of Lemma 1

Similar to the derivation of (38),

κ1O(kc, kgi, kgj)
= EX{(EM [vc

m,1,0] − EM [vgi
m,1,0])(EM [vc

m,1,0] − EM [vgj
m,1,0])}

= EX{(EM [vc
m,1,0])

2 − EM [vc
m,1,0]EM [vgi

m,1,0]
−EM [vc

m,1,0]EM [vgj
m,1,0] + EM [vgi

m,1,0]EM [vgj
m,1,0]}

= 1
2EX{(EM [vc

m,1,0] − EM [vgi
m,1,0])

2 + (EM [vc
m,1,0] − EM [vgj

m,1,0])
2

−(EM [vgi
m,1,0] − EM [vgj

m,1,0])
2}

= 1
2 [κ1O(kc, kgi) + κ1O(kc, kgj) − κ1O(kgi, kgj)].

(43)
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E Theorem 2: μ and Σ in the Second-order CPA (12)

For large sample n, l.,j = cj + εjE[v1,j ], then l1,j = cj + εj ṽ1,j + σjr1,j , j = 0, 1,
where ṽ1,j = v1,j − E(v1,j) are the centered version of v1,0 = V0(x1, kc,m1) and
v1,1 = V1(m1). Similarly, let ṽm,1,0, ṽg

m,1,0, and ṽm,1 denote the centered versions
of corresponding quantities vm,1,0, vg

m,1,0, and vm,1. We have

Δ2O
1 (kc, kg) = (δ0ṽ1,0 + r1,0)(δ1ṽ1,1 + r1,1)(EM [ṽc

m,1,0ṽm,1] − EM [ṽg
m,1,0ṽm,1]).

(44)
Since E[r1,0] = E[r1,1] = 0,

μkg
= δ0δ1E{ṽ1,0ṽ1,1(EM [ṽc

m,1,0ṽm,1] − EM [ṽg
m,1,0ṽm,1])}

= δ0δ1EX{EM{ṽ1,0ṽ1,1(EM [ṽc
m,1,0ṽm,1] − EM [ṽg

m,1,0ṽm,1])}}. (45)

By assumption 1, E[ṽ1,0ṽ1,1] = E[ṽc
m,1,0ṽm,1] = E[ṽg

m,1,0ṽm,1]. Similar to the
derivation of (38),

μkg
= δ0δ1EX{EM [ṽ1,0ṽ1,1](EM [ṽc

m,1,0ṽm,1] − EM [ṽg
m,1,0ṽm,1])}

= δ0δ1
2 EX{{EM [ṽc

m,1,0ṽm,1] − EM [ṽg
m,1,0ṽm,1]}2}

= δ0δ1
2 κ2O(kc, kg).

(46)

The element in covariance Σ corresponding to kgi and kgj is:

σkgi,kgj
= COV (Δ1(kc, kgi),Δ1(kc, kgj)) = E[Δ1(kc, kgi)Δ1(kc, kgj)]−μkgi

μkgj
.

(47)
Since E[r21,0] = E[r21,1] = 1, the leading term (dropping terms with δ0 or δ1) is ,

σkgi,kgj

= EX{(EM [ṽc
m,1,0ṽm,1] − EM [ṽgi

m,1,0ṽm,1])(EM [ṽc
m,1,0ṽm,1] − EM [ṽgj

m,1,0ṽm,1])}
= κ2O(kc, kgi, kgj).

(48)

F Algorithms for Calculating ILA1O

Here, we describe the algorithm of computing ILA1O knowing the mask distrib-
ution. Algorithm 1 assigns the probability distribution of mask with the known
probability for each masking bit. Algorithm 2 calculates the first-order informa-
tion leakage amount based on this probability distribution. These algorithms are
used to calculate the ILA1O values in Sect. 4.1.
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Algorithm 1. Probability Distribution of Mask
Input: Probability distribution of masking bits −→p
Output: Probability distribution of mask fM
1: Nm ← size of key space |M|
2: Nbit ← size of byte |−→p |
3: for m = 0 → Nm − 1 do
4: fM [m] = 1
5: for i = 0 → Nbit − 1 do
6: if m(i) = 1 then � m(i) the (i + 1)th bit of m
7: fM [m] ← fM [m] ∗ pi � pi the (i + 1)th value of −→p
8: end if
9: if m(i) = 0 then

10: fM [m] ← fM [m] ∗ (1 − pi)
11: end if
12: end for
13: end for

Algorithm 2. Calculation of ILA1O

Input: Correct Key kc, probability distribution of mask fM , intermediate value V (a
Nk × Nx × Nm dimension matrix)
Output: ILA1O

1: Nk ← size of key space |K|
2: Nx ← size of plaintext (ciphertext ) |X |
3: Nm ← size of mask |M|
4: ILA1O ← 0
5: for kg = 0 → Nk − 1 do
6: E2[kg] ← 0
7: for x = 0 → Nx − 1 do
8: E1[kg][x] ← 0
9: for m = 0 → Nm − 1 do

10: E1[kg][x] ← E1[kg][x] + (V [kc][x][m] ∗ fM [m] − V [kg][x][m] ∗ fM [m])
11: end for
12: E2[kg] ← E2[kg] + E1[kg][x] ∗ E1[kg][x] ∗ 1

Nx
� E2[kg] = κ1O(kc, kg)

13: end for
14: ILA1O ← ILA1O +E2[kg] ∗ 1

Nk−1

15: end for
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Abstract. While traditionally cryptographic algorithms have been
designed with the black-box security in mind, they often have to deal
with a much stronger adversary – namely, an attacker that has some
access to the execution environment of a cryptographic algorithm. This
can happen in such grey-box settings as physical side-channel attacks or
digital forensics as well as due to Trojans.

In this paper, we aim to address this challenge for symmetric-key
cryptography. We study the security of the Advanced Encryption Stan-
dard (AES) in the presence of explicit leakage: We let a part of the inter-
nal secret state leak in each operation. We consider a wide spectrum
of settings – from adversaries with limited control all the way to the
more powerful attacks with more knowledge of the computational plat-
form. To mount key recoveries under leakage, we develop several novel
cryptanalytic techniques such as differential bias attacks. Moreover, we
demonstrate and quantify the effect of uncertainty and implementation
countermeasures under such attacks: black-boxed rounds, space random-
ization, time randomization, and dummy operations. We observe that the
residual security of AES can be considerable, especially with uncertainty
and basic countermeasures in place.

Keywords: Grey-box · Side-channel attacks · Leakage · AES · Bitwise
multiset attacks · Differential bias attacks · Malware · Mass surveillance

1 Introduction

1.1 Background: Black Box, Grey Box and White Box

It is symmetric-key algorithms that are in charge of bulk data encryption and
authentication in the field. Plenty of multiple wide-spread applications such as
mobile networks, access control, banking, content protection, and storage encryp-
tion often feature only symmetric-key algorithms, with no public-key cryptogra-
phy involved.

Traditionally, the security of symmetric-key cryptographic primitives has
been analyzed in the black-box model, where the adversary is mainly limited
to observing and manipulating the inputs and outputs of the algorithm, the
related-key model [2] being a notable extension. Multiple techniques have been
c© International Association for Cryptologic Research 2015
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extensively elaborated upon, such as differential and linear cryptanalysis, integral
and algebraic attacks, to call a small subset of the cryptanalytic tools available
today. Cryptographers have excelled at preventing those by design [8].

In late 1990s, with the introduction of timing attacks [13] by Kocher, differ-
ential fault analysis [1] by Boneh, DeMillo and Lipton, simple power analysis as
well as differential power analysis [14] by Kocher, Jaffe and Jun, the research
community has become aware of side-channel attacks that operate in the grey-box
model: Now the attacker has access to the physical parameters of cryptographic
implementations or can even inject faults into their execution. Numerous coun-
termeasures have been proposed to hamper those attacks, providing a practical
level of security in many cases.

Since mid 2000s, a trend of side-channel analysis has been towards analyti-
cal side-channel attacks that assume leakage of fixed values of variables instead
of stochastic variables and whose techniques border the black-box cryptanalysis.
So, collision attacks [22] by Shramm et al. observe an equation within one or sev-
eral executions of an algorithm. Algebraic side-channel attacks [21] by Renauld
and Standaert work under the assumption that the attacker can see the Ham-
ming weight of the internal variables of an algorithm. The attacker uses the
techniques of algebraic cryptanalysis to solve the systems of nonlinear equations
arising from collisions and algebraic side-channel attacks [5,19,20]. Dinur and
Shamir [9] apply integral and cube attacks to block ciphers in a setting where a
fixed bit after a round is leaked due to physical probing, power analysis or sim-
ilar. Also differential fault analysis uses elements of differential cryptanalysis.

As an extreme development of the grey-box setting, the white-box model [7]
by Chow et al. poses the assumption that the adversary has full control over
the implementation of the cryptographic algorithm. The major goal of white-
box cryptography is to protect the confidentiality of secret keys in such a white-
box environment. However, all published white-box implementations of standard
symmetric-key algorithms such as AES to date have been practically broken in
this model [18]. The white-box setting may be too strong for standard symmetric-
key algorithms such as AES, because such a cipher was designed with the black-
box security in mind.

1.2 Leakage and AES

In this paper, we enhance the Dinur-Shamir setting [9] and aim to bridge the
gap between the physical side-channel attacks, the techniques of provable leakage
resilience [17] and white-box setting (dealing with attackers too hard to protect
against). Namely, we let the AES implementation leak some information during
its execution which is defined as follows.

Definition 1 (Leakage Model). A malicious agent leaks a part of the interme-
diate internal secret state (including the key state) of a cryptographic algorithm
in each algorithm execution.

To apply this setting to AES (we will talk about AES-128 most of the time), we
make it more concrete and fix several important parameters of the leak:
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Frequency: There is a single leak per encryption/decryption. This simplifies com-
plexity estimations in our analysis. If more leaks are available in each execu-
tion, the complexities can be adjusted accordingly.

Granularity: A leak can only happen after a full round. This situation corre-
sponds e.g., to a 32-bit serial or round-based hardware implementation of
AES or a software implementation using an instruction set extension such as
AES-NI available on most Intel/AMD CPUs or the Cryptography Extension
on ARMv8.

Knowledge: The attacker does not have any knowledge of the location of leaked
bits, i.e., it does not know the bit position and the number of round of
leaked bits. He also does not know whether the leak is from the key schedule
or data processing part. This circumstance models the limited control of the
adversary over the platform.

We let several parameters vary in our analysis1:

Time and space: The location of the leak in terms of the round number (time)
and bit position within the round (space) can either be fixed or vary.

Known/chosen plaintext/ciphertext: We consider both known and chosen text
models. In case of a passive attacker, we talk about the known text setting.
Otherwise, the attacker is allowed to choose text.

Alignment: We consider single-bit leaks, byte leaks and multiple-bit leaks. While
single-bit leaks are more likely to happen due to physical probing, byte leaks
correspond more to software settings.

1.3 Our Contributions

The contributions of this paper are as follows. The cryptanalytic results are also
summarized in Table 1.

AES Under Basic Leakage and Bitwise Multiset Attacks. We develop a
bitwise multiset attack, which exploits relations of sets of plaintexts and internal
states, to evaluate the security of AES if the time and space of the leakage is
fixed. Our attack utilizes a bitwise multiset characteristic which is an extension
of Dinur-Shamir integral attacks [9]. Unlike their attacks, our attack is feasible
even if an attacker does not have any knowledge of the location of leaked bits.
See Sect. 2 and Table 1 for the details.
1 Further models are worth consideration as well. For instance, the Dinur-Shamir

model of the side-channel cube attacks [9] can be seen as a special case of our
leakage model, with the following differences: First, in the Dinur-Shamir model, the
adversary knows the location of the leak. Second, the Dinur-Shamir model does not
consider leaks of more that a single bit. Third, Dinur-Shamir do not allow for leaks
from the key schedule. Finally, the time and location of a leak are fixed, while we
allow for time and space uncertainty in our consideration.
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Fig. 1. AES with space and/or time uncertainty

AES Under Leakage with Space/Time Uncertainty and Differential
Bias Attacks. We let time, space or both be randomized. The space random-
ization makes the position of leaked bits random in each execution. The time
randomization makes the round number of leaked bits random in each execution.
A combination of time and space randomization is also an advanced model we
consider. See Fig. 1 for an illustration.

This setting takes account of a more realistic environment, such as the lack
of knowledge of the implementation, and the presence of countermeasures. Here,
our multiset attacks are infeasible, as no clean multiset is available. To cope
with that, we develop a differential bias attack and a biased state attack inspired
by techniques for distinguishing attacks against stream ciphers [15,16,23]. More
specifically, by properly choosing differences and values of plaintexts, we create
biased (differential) states, where the distribution of bitwise differences or value
is strongly biased only if the key is correctly guessed. Thus, we are able to dis-
tinguish the leak corresponding to the correct key. See Sect. 3 for the techniques
as well as Sect. 4 and Table 1 for the results.

AES Under Noisy Leakage. We consider leakage with noise, where the attacker
does not know exactly if the variable it accesses corresponds to the execution of
the algorithm under attack. For example, it can be the case if multiple instances of
encryption (with different keys) are run simultaneously or if the implementation
uses dummy operations to hide the AES execution. The differential bias attack
remains applicable in this setting, with adjusted complexities. See Sect. 6 and
Table 1 for details. To characterize noise, we define π to be the probability that
the leak is correctly read. The complexities of our attacks grow quadratically with
the increase of 1/π.

Further Results. We discuss the applicability of our attacks to AES-192 and
AES-256, multiple-bit leakage, and other granularities of the leaks in Sect. 8.
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Table 1. Security of AES-128 under leakage in various settings

Time and space of

leaked bits

BB round(s) Best attack Bit alignment Byte alignment

Time Data Section Time Data Section

Fixed time/space none MA∗2 218 28 CC Sect. 3 212 28 CC Sect. 7.1

round 9 MA∗1 244 234 CP Sect. 3 242 234 CP Sect. 7.1

rounds 1, 9 MA 247 28 CP Sect. 3 244 234 CP Sect. 7.1

Uncertain space none BSA 226 226 CC Sect. 5.1 223 223 CC Sect. 7.2

round 9 DBA 248 242 CP Sect. 5.1 241 239 CP Sect. 7.2

rounds 1, 2, 8, 9 DBA 263 242 CP Sect. 5.1 256 242 CP Sect. 7.2

Uncertain time none BSA 223 223 CC Sect. 5.2 223 223 CC Sect. 7.2

round 9 DBA 248 238 CP Sect. 5.2 244 238 CP Sect. 7.2

rounds 1, 2, 8, 9 DBA 261 237 CP Sect. 5.2 253 237 CP Sect. 7.2

Uncertain space and

time

none BSA 233 233 CC Sect. 5.3 224 224 CC Sect. 7.2

round 9 DBA 258 246 CP Sect. 5.3 247 243 CP Sect. 7.2

rounds 1, 2, 8, 9 DBA 272 245 CP Sect. 5.3 262 242 CP Sect. 7.2

Random space and

time w/ π = 2−10
none BSA 253 253 CC Sect. 6 244 244 CC Sect. 7.2

round 9 DBA 268 256 CP Sect. 6 257 253 CP Sect. 7.2

rounds 1, 2, 8, 9 DBA 282 255 CP Sect. 6 272 252 CP Sect. 7.2

Random space and

time w/ π = 2−20
none BSA 273 273 CC Sect. 6 264 264 CC Sect. 7.2

round 9 DBA 278 266 CP Sect. 6 267 263 CP Sect. 7.2

rounds 1, 2, 8, 9 DBA 292 265 CP Sect. 6 282 262 CP Sect. 7.2

*1 : 32-bit partial key recovery attack, *2 : 8-bit partial key recovery attack

BB round(s): Black-boxed round(s), KP: Known Plaintext, CP: Chosen Plaintext

CC: Chosen Ciphertext, MA: Multiset Attack, DBA: Differential Bias Attack

BSA: Biased State Attack, π is the probability to read a correct leak

Our Observations and Recommendations. To summarize the residual secu-
rity of AES under leakage in the various settings, we observe the following. First,
if no rounds are black-boxed and all intermediate internal states can be visible
to the attacker, there are practical attacks, even with uncertain time and space.
Second, to approach practical infeasibility of attacks in our leakage model with-
out black-boxing, a substantial level of noise are be needed, π = 2−10 and lower
when combined with randomized time and space.

On the other hand, the black-boxing of round 9 is very effective. Indeed, if
round 9 is black-boxed2 (i.e., when the state between round 9 and round 10 is
invisible to the attacker), the complexities of our attacks grow beyond 244 even
with fixed time and space. Third, if uncertainty in time and space is combined
with the black-boxed 9th round, our attacks require more than 258 operations,
even with clean leaks. Then, if more rounds (1,2,8, and 9) are black-boxed, the
complexities increase to 272. If noise is applied as countermeasure on top of that,
it is possible to attain security levels of 280 and beyond against our attacks.

Thus, black-boxed round 9, noise or both are needed to hamper our attacks
at a practical security level under leakage. Note that a high-budget organization
2 E.g., partly unrolled hardware implementations aimed to reduce latency [6] may

have this property.
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can practically afford an attack of complexity 280 and higher [12]. However, the
countermeasures considered here may still be effective against a mass surveillance
attacker.

2 Preliminaries

This section fixes AES notations that we will use throughout the paper and
describes the leakage attack by Dinur-Shamir on AES as a starting point.

2.1 Notations of AES

AES is a block cipher with a 128-bit internal state and a 128/192/256-bit key
K, referred to as AES-128, AES-192 and AES-256, respectively. In most parts of
this paper, we refer to AES-128 whenever speaking of AES. The internal state is
represented by a 4×4 byte matrix, and the key is represented by a 4×4/4×6/4×8
matrix. For example, a 4×4 internal state consisting of 16 byte cells is expressed
as follows.

S =

⎡

⎢
⎢
⎣

s0 s4 s8 s12
s1 s5 s9 s13
s2 s6 s10 s14
s3 s7 s11 s15

⎤

⎥
⎥
⎦

AES consists of a data processing part and a key schedule. The data processing
part adopts a substitution-permutation network whose round function consists
of four layers: SubBytes, ShiftRow, MixColumns and AddRoundKey. SubBytes is
a nonlinear transformation applying a 8-bit S-box to each cell. ShiftRow rotates
bytes in row r by r positions to the left. MixColumns is a linear transforma-
tion applying a 4 × 4 diffusion matrix with branch number 5 to each column.
AddRoundKey adds a 128-bit subkey to a 128-bit state by an XOR operation.
Note that AddRoundKey is also performed before the first round as whitening
and that MixColumns is omitted in the last round. Subkeys are generated by a
key schedule. For the details of the key schedule of AES, we refer to [11].

Two types of internal states in each round of AES-128 are defined as follows:
#1 is the state before SubBytes in round 1, #2 is the state after MixColumns
in round 1, #3 is the state before SubBytes in round 2,. . ., #19 is the state
before SubBytes in round 10, and #20 is the state after ShiftRow in round 10
(MixColumns is omitted in the last round). The states in the last round of AES-
192 are addressed as #23 and #24, and of AES-256 as #27 and #28. We let
#0 be a plaintext and #21, #25 and #29 be a ciphertext in AES-128/192/256,
respectively. 128-bit subkeys are denoted as $0 , $1, . . ., and so on. The i-th byte
in the state x is denoted as xi and the j-th bit in xi is represented as xi[j].

2.2 Dinur-Shamir Chosen-Plaintext Attack on AES-128 with
Leakage

As a starting point of our analysis, we outline the leakage attack proposed by
Dinur and Shamir in [9]. As explained above, the Dinur-Shamir model is differ-
ent from our leakage models as the adversary knows the time (round number)
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and space (bit position inside the round) of the leak, only single-bit leaks are
considered there, and no leaks from the key schedule are allowed.

In the attack of [9], one uses the following multiset properties of a byte: In set
A, all 28 values appear exactly once; In set C, all 28 values are fixed to a constant;
In set B, the XOR sum of all 28 values is zero; In set U, all 28 values is not A, C or
B. Let an N -round attack be an attack based on leaked bits after the N -th round
function, e.g., a 2-round attack is based on only leaked bits of #5.

In the first step, the attacker guesses 4 bytes of the key $0, and chooses a set
of 28 plaintexts, so that #2 consists of Λ-set in which only one byte is A and the
other 15 bytes are C. If 4 bytes of $0 are correctly guessed, #5 consists of 4 bytes
of A and 12 bytes of C, while in a wrong key, all bytes in #5 become U. Thus,
by checking whether the all 28 values of #5 are fixed, an attacker is able to sieve
wrong keys after 232 operations. The procedure can be repeated for three times
with the three 4-byte sets of the key $0 depending on the position of the leaked
bit. The remaining 4 bytes of $0 are exhaustively searched. Time complexity is
estimated as 242 (≈ (232 × 28 × 3)) encryptions and the required data is 234

(= 232 × 4) chosen plaintexts. The work [9] also proposes other types of 2-round
attack using cubes, with a time complexity of 235. However, the details are not
given.

The paper [9] mentioned that 3- and 4-round attacks were possible by using
similar techniques but omitted the details. As A expands into all state after 3
rounds even if the key is correctly guessed, at least the 2-round attack has a
limited application to 3 and 4 rounds.

3 AES Under Leakage with Fixed Time and Space

In this section, we present new key recovery attacks on AES under leakage with
fixed time and space. That is, a bit of the internal state is leaked whose location
(round and bit position) is unknown but fixed for the entire attack. Our attack is
an extension of the Dinur-Shamir integral attacks [9]. While their attack requires
the location of leaked bits in advance, our attack is feasible even if an attacker
does not have any knowledge of it. First, we describe a technique to detect
whether leaked bits come from the key schedule or the data transformation, and
show that leaked bits from the key schedule are of very limited use for a key
recovery attack in this setting. Then we introduce key recovery attacks based on
leaked bits from the data transformation. Our attacks utilize a bitwise multiset
characteristic.

Formalization of Fixed Time and Space. The fixed (unknown) location
setting assumes that each execution of encryption leaks only one bit of the
internal state at the fixed location. Specifically, leaked bits are assumed to
come from internal states after each round function of the data processing part:
#3,#5, . . . ,#19 or each state of the key schedule (i.e., subkeys): $0 , $1, . . ., $10
at the fixed position of the fixed rounds in each encryption, e.g., #911[2] or $58[5].
The adversary is able to access the encryption function with known/chosen plain-
texts/ciphertexts and obtain corresponding leaked bits.
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Leakage From Key Schedule. The states in the key schedule, $0 , $1, . . .,
$10, are deterministic with respect to the value of the key, i.e., if a key is fixed,
all states of the key schedule are fixed independently of the values of plaintexts.
On the other hand, the states in the data processing part depend on the values
of plaintexts. This difference allows us to detect whether leaked bits come from
the key schedule. More specifically, we encrypt N different plaintexts and obtain
N leaked bits. If all N bits are the same, they come from the key schedule with
probability (1 − 2−N ).

If the leaked bits come from the key schedule, information theoretically, the
attacker is able to get at most one bit of the subkey information, as each encryp-
tion leaks the same state information at the fixed location. In addition, since an
attacker does not know where leaked bits come from, leaked information from
the leaked bits is negligible. Therefore, we will focus on the case where leaked
bits come from the data processing part in the following.

3.1 Bitwise Multiset Characteristic

Our attacks utilize the following bitwise multiset property in the data transform.

Proposition 1 (Bitwise Zero-Sum Property). If only one byte of #2 is A
and the other 15 bytes are C (Λ set), the bitwise XOR-sum of 28 multiset of any
bits in #3 to #10 is zero.

Proof. As shown in Fig. 2, if #2 consists of a Λ set, #3 is also a Λ set, and #5
consists of 4 bytes of A and 12 bytes of C. Then, #7 and #9 consist of 16 bytes
of A and B, respectively. In the 28 multiset of each bit of A, C and B, the XOR
sum becomes zero [4]. ��
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Fig. 2. Bitwise multiset characteristics over 4-round AES-128
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3.2 Chosen-Plaintext Bitwise Multiset Attack

The bitwise zero-sum property allows us to develop chosen-plaintext key recovery
attacks using leaked bits at a fixed position in #3, #5, #7 or #9. Our attack
firstly guesses 4 bytes of the key $0, and chooses a set of 28 plaintexts resulting
in Λ set in #2. If 4 bytes of $0 are correctly guessed, the bitwise XOR sum of 28

leaked bits in any bit position of #3 to #10 is zero (Proposition 1). Otherwise,
the probability that the bitwise XOR sum of leaked bits of #5, #7 and #9 is
zero is 2−1. If this procedure repeats with N different sets of 28 plaintexts, wrong
keys can be detected with a probability of (1 − 2−N ).

First, we prepare a table of 232 plaintexts in which all values of #00, #05,
#010, #015 appear once and the other 12 bytes are fixed, and corresponding
leaked bits. Assuming that the leaked bits can come from any position of #5,
#7 or #9, our attack is performed as follows:

1. Guess $00, $05, $010, $015 (4 bytes ) and choose #21, #22, #23 (3 bytes).
2. Compute 28 the 4 bytes of #00, #05, #010, #015 backwards with all 28 values

of #20.
3. Get 28 leaked bits by accessing the prepared table, and compute the XOR

sum of 28 leaked bits.
4. Repeat steps 1 to 3 N times with different values of #21, #22, #23. If all N

sets of XOR-sums are zero, regard it as a correct key.
5. Repeat steps 1 to 4 with all 232 key candidates for $00, $05, $010, $015.
6. Repeat steps 1 to 5 for three times with the other three 4-byte sets of the key

$0 and corresponding bitwise multiset characteristics and tables.

The number of surviving keys after the above procedure is estimated as (1+2−N ×
(232 − 1))4. If the remaining key candidates are exhaustively searched, time com-
plexity is estimated as {(232 × 28 ×N)× 4}+(1+2−N × (232 − 1))4 encryptions.
When N = 22, the time complexity is estimated as 246.46 encryptions, the required
data is 234 (= 232×4) chosen plaintexts and the required memory is 234 bits. This
attack is successful if leaked bits come from any bits of #5, #7 and #9 without
any knowledge of the location of leaked bits.

3.3 Partial Key Recovery Attack Using Leaked Bits from #3

If leaked bits come from #3, a 32-bit partial key-recovery attack is feasible as
AES takes 2 rounds to achieve the full diffusion. If 4 bytes of keys $0 are guessed
correctly, 28 multiset in only one byte of #3 is not C as shown in Fig. 2, while
for a wrong key, 28 multisets in 4 bytes of one column are not C. We exploit the
gap of the number of C in #3 between a correct key and a wrong key.

We guess the column in #3 where leaked bits come from and then guess
corresponding 4 bytes of $0. We check whether the 28 multiset of leaked bits
is fixed with N different sets of 28 plaintexts. A correct key can be detected
with probability of (1 − 2−8N ) if leaked bits come from the byte which is C for
a correct key and B for a wrong key. We repeat this 4 × 4/3 times by guessing
different columns and the byte position of leaked bits in #3 and corresponding
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4 bytes of $0. The corresponding 32 bits of the key $0 can be recovered with
about 244 (≈ 232 × 28 × 4 × 4 × 4/3) encryptions when N = 4, 234 chosen
ciphertexts and 234 memory.

3.4 Chosen-Ciphertext Bitwise Multiset Attack

In the chosen-ciphertext setting, backward direction attacks are feasible by using
leaked bits from #13, #15, #17 or #19. As shown in Fig. 3, if 4 bytes of $10 are
correctly guessed and a set of ciphertexts is properly chosen, the XOR-sum of 28

multiset of any bit in #12 to #17 is zero (Proposition 1). Since states #13, #15
and #17 correspond to #7, #5 and #3, respectively, chosen-ciphertext attacks
using these bits are feasible in the same manner as for chosen-plaintext attacks.

Also, #19 is affected by only one byte of $10. Thus, one byte of $10 can be
recovered by the exhaustive search with 8 leaked bits from different ciphertexts
after guessing 128 positions of the leaked bit. Time complexity is estimated as
218 (= 28×128×8) encryptions, the required data is about 28 known ciphertexts,
and the memory consumption is negligible.
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Fig. 3. Bitwise multiset characteristics in 4-round AES-128 in backward direction

3.5 Combined Key Recovery Attacks on AES

Finally, we introduce a key recovery attack on the full AES-128 by combining
the forward and the backward direction attacks. Since we do not know in which
round the bits leak, we guess it and then mount each round attack in the following
order: #19 → #17 → #3 → #5 → #7 → #9 → #13 → #15, i.e., if a correct
key is not found by the guessed-round attack, the next round attack is applied
in that given order. Our attacks find a correct key successfully except the case
where the leaked bits come from #11. Thus the success probability without any
knowledge of locations of leaked bits is 0.899 (= 8/9).
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Time complexity is estimated as 248 (≈ 218 + 244 + 244 + 246.46 + 246.46)
encryptions. The required data is about 235 (= 234 + 234) chosen plaintexts and
234 chosen ciphertexts and the required memory is 234 bits. Note that if the
leaked bits come from #3, #17, #19, partial key recovery attacks are possible.

4 Uncertainty and Differential Bias Attacks

The attacker can also have limited control over the execution environment.
In particular, the time and space can be uncertain. We assume now that the
attacker does not know bit positions and/or the number of rounds of leaked bits.
Moreover, the values leaked can be incorrect due to noise or other operations
executed in parallel to encryption/decryption. This can happen both for purely
technical reasons on a complex multi-process platform and due to countermea-
sures. This section deals with these uncertainties and develops a cryptanalytic
technique that is coined differential bias attack.

In a nutshell, the technique works as follows. Let Zi be a leaked bit from
an i-th execution of the encryption function. Our attacks observe a stream of
leaked bits Z0, Z1, Z2, Z3, . . . and recover the correct key by applying techniques
of distinguishing attacks from the domain of stream ciphers [15,16,23]. More
specifically, we guess a part of the key $0, and set well-chosen differences for a
pair of plaintexts resulting in biased differential states, where the distribution of
bitwise differences is biased, if the part of key $0 is correctly guessed. As a leaked
bit stream from biased differential states is also biased, we are able to detect the
bit stream corresponding to the correct key by checking bias on the differences
of bits. Also, if leakage after round 9 is available, a more powerful attack, called
biased state attack, is feasible by using similar techniques.

Formalization of Uncertain Time and Space. Weassume a randomunknown
round (time) and/or bit position (space) within the round of the leak. Again, each
execution of encryptions leaks only one bit of internal states at the random loca-
tion. More formally, leaked bits are assumed to randomly come from the target
space of internal states. For example, if the target space consists of all states after
each round function of the data transform and key schedule, it is the leakage from
states #0,#3, . . . ,#19,#21 and states $0, $1, . . ., $10. A target space can be a
subset of those states if some rounds are black-boxed (and, thus, not visible to the
attacker).

4.1 Truncated Differential Characteristic

Our attacks utilize a bytewise truncated differential characteristic of Fig. 4, where
a colored-cell is a probability-one non-zero truncated difference, a blank cell is a
probability-one zero truncated difference, and ? is an unknown truncated differ-
ence. Define 4 bytes of differences {Δ#00, Δ#05, Δ#010, Δ#015} in a pair
of plaintexts as (Δ#00,Δ#05,Δ#010,Δ#015) = S−1(MC−1(Δ#20, 0, 0, 0)),
where S−1 and MC−1 are the inverses of SubBytes and MixColumns in a column,
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Fig. 4. Truncated differential characteristic over 3-round AES-128

respectively, and Δ#20 is an arbitrary byte difference in #20. Given {Δ#20,
#20, . . . ,#23} and {$00, $05, $010, $015}, {Δ#00,Δ#05,Δ#010,Δ#015} and
{#00,#05,#010,#015} are determined. Let #0′ be a plaintext having differ-
ences {Δ#00, Δ#05, Δ#010, Δ#015}, i.e., #0′

0 = #00 ⊕ Δ#00,#0′
5 = #05 ⊕

Δ#05,#0′
10 = #010 ⊕ Δ#010,#0′

15 = #015 ⊕ Δ#015. Also, let #′1, . . . ,#′21
be the corresponding states of #0′, and Z ′

0, Z
′
1, Z

′
2, Z

′
3, . . . be leaked bits of each

execution of #0′.

4.2 Biased Differential State

Choosing 4-byte differences {Δ#00, Δ#05, Δ#010, Δ#015} properly and guess-
ing the 4 bytes of {$00, $05, $010, $015} correctly, we are able to create biased
differential states in #3: consisting of 15 bytes of probability-one zero differences
and 1 byte of a probability-one non-zero difference, #5: consisting of 12 bytes
of probability-one zero differences and 4 bytes of probability-one non-zero dif-
ferences, and #7: consisting of 16 bytes of probability-one non-zero differences.
As shown in Fig. 4, a correct key has 27 bytes of probability-one zero differences
#31, . . . ,#315 and #54, . . . ,#515 and 21 bytes of probability-one non-zero dif-
ferences #31, #50, . . . ,#53, and #70, . . . ,#715, while a wrong key has only 12
bytes of probability-one zero differences #34, . . . ,#315 and does not have any
probability-one non-zero difference in the state of the data processing part.

In addition, a pair of plaintexts has 12 bytes of probability-one zero differ-
ences and 4 bytes of probability-one non-zero differences for both a correct key
and a wrong key. Also, the key schedule has 176 (= 16×11) bytes of probability-
one zero differences, as the subkeys are always fixed under the same key.

4.3 Bitwise Differential Bias in Biased Differential State

For a probability-one zero/non-zero truncated difference, we derive positive and
negative bitwise differential biases. Our attack exploits the gap of the number
of positive and negative biases between a correct key and a wrong key when a
pair of #0 and #′0 is encrypted.
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Positive Bitwise Bias for Probability-One Zero Truncated Difference.
If a bytewise pair #xy and #x′

y has a probability-one zero truncated differ-
ence, a bitwise difference at the same position is also zero with probability one:
Pr(Δ[#xy[j],#′xy[j]] = 0) = 1, 0 ≤ j ≤ 7, where Δ[a, b] = a ⊕ b. A correct key
has 1720 (= 27 × 8 + 176 × 8 + 12 × 8) positive bitwise differential biases, while
a wrong key has only 1600 (= 12 × 8 + 176 × 8 + 12 × 8) such biases.

Negative Bitwise Bias for Probability-One Non-zero Truncated
Difference. If a pair #xy and #x′

y has a probability-one non-zero truncated dif-
ference, the probability that a bitwise difference at the same bit position is zero is
estimated as follows: Pr(Δ[#xy[j],#′xy[j]] = 0) = 127/255 = 1/2 · (1 − 2−7.99)
In experiments with 240 randomly-chosen plaintexts and keys, we confirmed that
these negative biases toward zero exist in each bit of the probability-one non-zero
truncated difference, where the experimental value is Pr(Δ[#7i[j],#′7i[j]] =
0) = 1/2 · (1 − 2−7.92).

A correct key has 200 (= 21 × 8 + 4 × 8) negative bitwise differential biases,
while a wrong key has 32 (= 0 + 4 × 8) ones. The summary of bitwise posi-
tive/negative differential biases for the truncated differential of Fig. 4 is shown
in Table 2.

Table 2. Bitwise differential biases for truncated differential of Fig. 4

Positive biases toward zero Negative biases toward zero

Correct key #3i[j] (1 ≤ i ≤ 15, 0 ≤ j ≤ 7) #30[j] (0 ≤ j ≤ 7)

#5i[j] (4 ≤ i ≤ 15, 0 ≤ j ≤ 7) #5i[j] (0 ≤ i ≤ 3, 0 ≤ j ≤ 7)

#7i[j] (0 ≤ i ≤ 15, 0 ≤ j ≤ 7)

Wrong key #3i[j] (4 ≤ i ≤ 15, 0 ≤ j ≤ 7) -

Both keys #0i[j] (i �= 0, 5, 9, 15 ≤ j ≤ 7) #0i[j] (i = 0, 5, 9, 15, 0 ≤ j ≤ 7)

$xi[j](0 ≤ x ≤ 10, 1 ≤ i ≤ 15, 0 ≤ j ≤ 7)

4.4 Bitwise Differential Biases in the Stream of Leaked Bits

Suppose that values of the other bits of the states in the data processing part
and the key schedule are randomly distributed, i.e., the probability that differ-
ences of other bitwise pairs become zero is 2−1. Let Nall, Nbiasp

, Nbiasn
, and

Nrandom be the number of bitwise pairs in entire space, positive biased space
(toward zero), negative biased space (toward zero) and randomly-distributed
space, respectively, and xc and xw be those of a correct key and a wrong key,
respectively (see Fig. 5). The probabilities that a difference of a bitwise pair of
randomly-chosen leaked bits is zero (Δ[Zi, Z

′
j ] = 0) for a correct key and a wrong

key are estimated as follows:

Prc(Δ[Zi, Z
′
j ] = 0) = 1/2·(N c

random/Nall)+N c
biasn

/Nall ·(127/255)+N c
biasp

/Nall,
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Prw(Δ[Zi, Z
′
j ] = 0) = 1/2·(Nw

random/Nall)+Nw
biasn

/Nall·(127/255)+Nw
biasp

/Nall.

Our attack observes leaked bits Z0, Z1, Z2, Z3, . . . and Z ′
0, Z

′
1, Z

′
2, Z

′
3, . . ., and

then computes the probability of Δ[Zi, Z
′
j ] = 0 in order to distinguish a stream

coming from the distribution for a correct key from streams coming from the
distribution for a wrong key.

The number of required samples for distinguishing the two distributions with
probability of 1 − α is given by the following lemmata.

Lemma 1. [15,16] Let X and Y be two distributions and suppose that the inde-
pendent events E occur with probabilities PrX(E) = p in X and PrY (E) =
(1 + q) · p in Y. Then the discrimination D of the distributions is p · q2.

Lemma 2. [15] The number of samples Nsample that is required for distinguish-
ing two distributions that have discrimination D with success probability 1 − α
is (1/D) · (1 − 2α) · log2

1−α
α .

Assuming that the target event E is Δ[Zi, Z
′
j ] = 0 , X is the distribution for

a wrong key, and Y is the distribution for a correct key, p and q are estimated
as p = Prw(Δ[Zi, Z

′
j ] = 0) and

q =
−N c

biasn
+ Nw

biasn
+ 255(N c

biasp
− Nw

biasp
)

255Nall − Nw
biasn

+ 255Nw
biasp

.

For success probability 1 − 2−32, the estimated number of required samples is:

Nsample = (pq2)−1 · (1 − 2 · 2−32) · log2
1 − 2−32

2−32
≈ 2 · 32 · q−2 = 26 · q−2.

4.5 Chosen-Plaintext Differential Bias Attack

First, this attack prepares 232 chosen plaintexts in which all 232 values of #00,
#05, #010, #015 appear once and the other 12 bytes are fixed, and obtains Ns

leaked bits in each plaintext, i.e., each plaintext is encrypted Ns times. Given a
pair of P and P ′, N2

s (= Ns × Ns) pairs of leaked bits are obtained as shown
in Fig. 6. After we make a table of the values of {#00, #05, #010, #015} and
corresponding Ns leaked bits, our attack is performed as follows:

Nall

Nw
bias

Nw
random

Nall

Nc
bias

Nc
random

Correct keyWrong key

Bitwise pairs of leaked bits
Zi Z’j

Bitwise pairs of leaked bits
Zi Z’j

p pNw
bias n

Nc
bias n

Fig. 5. Bias in leaked stream

P

C

Z0, Z1,   Z2 ,…,  ZNs-1

AES-128

P’

C’

AES-128
Z’0  ,Z’1, Z’2, ,…, Z’Ns-1

Fig. 6. Bitwise pairs of leaked bits
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1. Guess the 4 bytes of key $00, $05, $010, $015, and choose Δ#20, #20, . . . ,#23.
2. Compute a pair of 4 bytes of plaintexts, #00, #05, #010, #015 and #0′

0, #0′
5,

#0′
10, #0′

15, resulting in biased #3, #5 and #7 states if a key is correctly
guessed.

3. Get N2
s pairs of leaked bits Δ[Zi, Z

′
j ], 0 ≤ i, j < Ns by accessing the prepared

table.
4. Repeat steps 2-3 Nsample/N

2
s times with different values of #2.

5. Check whether a distribution of Nsample pairs is the one for a correct key. If
so, regard it as a candidate for the correct key.

6. Repeat steps 1 to 5 with all 232 candidates of keys $00, $05, $010, $015.
7. Repeat steps 1 to 6 for three times with the other three 4-byte sets of the

key $0, corresponding truncated differential characteristics, and the tables of
plaintexts and leaked bits.

In steps 3 to 5, we check Nsample pairs to detect a stream coming from
the biased distribution for a correct key. In the step 3, we count the number
of the events Δ[Zi, Z

′
j ] = 0, and estimate the probability Pr(Δ[Zi, Z

′
j ] = 0).

The straight forward method requires N2
s operations to check all N2

s pairs.
To improve it, we first calculate the number of Zi = 0, 0 ≤ i < Ns, defined
as Nzero. Then the number of Δ[Zi, Z

′
j ] = 0 is estimated as

(
Nzero × (Z ′

0 + . . . ,+Z ′
Ns−1) + ((Ns − Nzero) × (Z ′

0 + . . . ,+Z ′
Ns−1)

)
/Nall,

where a is the complement of a. These costs are estimated as Ns + (Ns + Ns)
additions and multiplications. It is assumed to be less than Ns one-round encryp-
tions. The number of surviving keys after the above procedure is estimated as
(1+2−α ×(232−1))4. If the remaining key candidates are exhaustively searched,
the entire time complexity is estimated as (232 × 4 × Nsample/Ns × 1/10) + (1 +
2−32 × (232 − 1))4 ≈ 231 × Nsample/Ns encryptions and the required data is
234 × Ns (= 4 × 232 × Ns) chosen plaintexts with leaked bits. The memory
requirement is 234 × Ns bits.

4.6 Chosen-Ciphertext Differential Bias Attack

If the decryption function is accessible, chosen-ciphertext attacks are applicable.
Similarly to the setting of bitwise mutiset attacks before, the chosen-ciphertext
attacks are more efficient and it makes sense to black-box the output of round
9 also in the cases with time and space uncertainty.

As shown in Fig. 7, the states #13, #15 and #17 correspond to #7, #5
and #3, respectively. Since the state #19 consists of 12 probability-one zero
truncated differences and 4 probability-one non-zero truncated differences, both
for a correct key and a wrong key, one additionally has 96 positive and 32 negative
bitwise differential biases in the chosen-ciphertext attack.

Biased State Attack of #19: Leakage After Round 9. If leaked bits from
#19 are obtained, a more powerful attack is feasible. Each byte in #19 can
be controlled by one byte of $10 and one byte of a ciphertext. Thus, we are
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Fig. 7. Differential characteristic over 4-round AES-128 in backward direction

able to create a biased state in #19 whose one byte (8 bits) is fixed to 0, if the
corresponding byte of $10 is correctly guessed and the respective byte of the
ciphertext is property chosen. Suppose that the values of the other bits of the
states are randomly distributed. The probabilities that each leaked bit is zero
(Zi = 0) for a correct key is estimated as Prc(Zi = 0) = 1/2 · (N ′c

random/N ′
all) +

N ′c
biasp

/N ′
all, where N ′

all, N ′
biasp

, and N ′
random are the numbers of bits in entire

space, positive biased space and randomly-distributed space, respectively. Also,
Prw(Zi = 0) is assumed to be 1/2.

Assuming that the target event E is Zi = 0, p and q are estimated as p = 1/2
and q = N ′c

biasp
/N ′

all. For the success rate of 1 − 2−8 (α = 2−8), the sample
requirement is estimated as N ′

sample ≈ 2 · 8 · (q)−2 =24 · (q)−2. We repeat the
procedure for all 16 bytes of $10. Therefore, time complexity is estimated as
212 × N ′

sample (= 16 × 28 × N ′
sample) encryptions and the required data is 212 ×

N ′
sample (= 16 × 28 × N ′

sample) chosen ciphertexts. The memory requirement is
negligible.

4.7 Known-Plaintext Differential Bias Attack

Finally, we introduce a known-plaintext differential bias attack using a truncated
differential characteristic of Fig. 8. For a correct key, one has 24 (= 3×8) positive
bitwise differential biases toward zero and 8 negative bitwise differential biases
in #3, while for a wrong key, there are not such biases. The key schedule has
the same number of positive biases of chosen-plaintext attacks and the plaintext
has 32 (= 4 × 8) negative biases in both of a correct and a wrong key.

This attack prepares 233 known plaintexts and makes a table of #00, #05,
#010, #015 and the corresponding Ns leaked bits. The expected number of the
entries of each value of #00, #05, #010, #015 is more than 1. We mount key
recovery attacks for $00, $05, $010, $015 in the same manner as in the chosen-
plaintext attack. In step 3, the prepared table contains the corresponding val-
ues of #00, #05, #010, #015 with high probability. Thus, time complexity is
estimated as 231 × Nsample/Ns encryptions and the required data is 235 × Ns

(= 4 × 233 × Ns) known plaintexts with leaked bits and the required memory is
about 235 × Ns bits.
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Fig. 8. Differential characteristic over 3-round AES-128 for known plaintext attack

5 AES Under Leakage with Uncertainty in Time/Space

This section evaluates the security of AES if the attacker is uncertain about time
and space, that is, if the round of leak and/or the bit position of leak within the
round are randomized. Since the multiset of leaked bits at the fixed location is
not available in the random unknown setting, our bitwise multiset attacks are not
applicable to these variants. Thus, we estimate the costs of differential (state) bias
attacks on each variant of AES with countermeasures as shown in Fig. 1.

Formalization of Time/Space Uncertainty for AES. We speak of random-
ized time, when one bit of the state information is leaked at a fixed bit position
after a random number of rounds, e.g., #(2x + 1)10[7] (0 ≤ x ≤ 10) or $x3[4]
(0 ≤ x ≤ 10). We speak of randomized space, when one bit of the state infor-
mation is leaked at a random bit position after a fixed number of rounds, e.g.,
{#17i[j], $8i[j]} (0 ≤ i ≤ 15, 0 ≤ j ≤ 7). Randomized time and space occur,
when one bit of state information is leaked at a random bit position after a
random number of rounds, e.g., #(2x + 1)i[j] (0 ≤ x ≤ 10, 0 ≤ i ≤ 15 and
0 ≤ j ≤ 7) or $xi[j] (0 ≤ x ≤ 10, 0 ≤ i ≤ 15 and 0 ≤ j ≤ 7).

5.1 Uncertainty in Space

The space randomization makes the bit position of leaked bits random in each
execution, i.e., Zi and Z ′

i randomly come from two 256-bit spaces consisting of a
128-bit state in the data processing part and a 128-bit state in the key schedule
at the unknown fixed round, assuming encryptions are executed with a 256-bit
working memory for a internal state and a subkey.

Assuming that leaked bits come from the states after round 2, i.e., {#5i[j] and
$2i[j]} and {#’5i[j] and $’2i[j]} (0 ≤ i ≤ 15, 0 ≤ j ≤ 7), the parameters of our
differential bias attacks are chosen as Nall = (256)2, N

(c)
biasp

= 224 (= 96 + 128),
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N
(w)
biasp

= 128 (= 0 + 128), N
(c)
biasn

= 32 and N
(w)
biasn

= 0 (see Table 2). Then,
Prc(Δ[Zi, Z

′
j ] = 0) and Prw(Δ[Zi, Z

′
j ] = 0) are estimated as 1/2 · (1 + 2−8.192),

and 1/2 · (1 + 2−9.000), respectively, and q = 2−9.42. In our experiment with 240

randomly-chosen correct and wrong pairs of keys and plaintexts, Prc(Δ[Zi, Z
′
j ] =

0) and Prw(Δ[Zi, Z
′
j ] = 0) are 1/2·(1+2−8.191) and 1/2·(1+2−9.001), respectively,

and q = 2−9.42. The number of required samples to detect a stream for a correct key
is estimated as Nsample = 224.84 (= 26 × 29.42×2). We experimentally confirmed
that this number of samples is enough for a successful attack. With Ns = (Nall)1/2,
time complexity is estimated as 247.84 (= (231 × 224.84)/(28)) encryptions and the
required data is 242 (= 234 × 28) chosen plaintexts and corresponding leaked bits
with 242 bits of prepared tables.

The details of attacks for Ns = (Nall)1/2 are provided in Table 3, where q(e) is
our experimental value with 240 randomly-chosen correct and wrong pairs of keys
and plaintexts/ciphertexts, and T and D are time complexity and the amount
of the required data, respectively. Our theoretical values closely approximate
the experimental data in all cases. Since an attacker does not know the round
number of leaked bits, he firstly guesses the round of leaked bits and then mounts
an attack similar to the combined attack of the bitwise multiset attacks. If the
decryption is accessible, our attacks are successful except the case where leaked
bits come from states after 4 or 5 round only. Also, a known plaintext attack is
possible if leaked bits from #3 are available.

5.2 Uncertainty in Time

The time randomization makes the round number of leaked bits random in each
execution, i.e., Zi and Z ′

i come from the fixed bit position at a random round
of the data processing part. Additionally, we take into account the leaked bits
from plaintexts #0 or ciphertexts #21 in the data processing part. For instance,
assuming that leaked bits come from 33-th bits of the data processing part,
i.e., #04[1], #34[1], . . ., #194[1] or #214[1], the attack parameters are given as
Nall = 112, N

(c)
biasp

= 3, N
(w)
biasp

= 2, N
(c)
biasn

= 1, N
(w)
biasn

= 0. Then q = 2−6.45,
Nsample = 219.9, T = 247.44 and D = 237.46.

The details of our attacks using leaked bits from the data processing part are
provided in Table 4, where the attack parameters of chosen-plaintext differential
bias attacks depend on the positions of leaked bits, but time and data com-
plexities are almost same for each position. We also evaluate a chosen-plaintext
attack when round 9 and round 1, 2, 8 and 9 rounds are black-boxed. i.e., {#19,
$9} and {#3,#5,#17, #19, $1, $2, $8, $9} are not available, respectively. Other
black-boxed variants are also evaluated by properly choosing attack parameters.
Since an attacker does not know the bit position of leaked bits, he firstly guesses
it and then mounts an attack. If the decryption is accessible, our attacks are fea-
sible as long as leaked bits after round 1, 2, 3, 6, 7, 8 or 9 in the data processing
part are available. A known plaintext attack is applicable if leaked bits from #3
are obtained. However, it is a 32-bit key recovery attack, because a bit of #3 is
affected by 32 bits of $0.
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Table 3. Differential bias and biased state attacks for space randomization

Chosen-plaintext(ciphertext) differential bias attack

Round Nall Nc
biasp Nw

biasp Nc
biasn Nw

biasn q q(e) Nsample T D

1 (8) 2562 248 224 8 0 2−11.42 2−11.38 228.84 251.84 242.00 CP(CC)

2 (7) 2562 224 128 32 0 2−9.42 2−9.42 224.84 247.84 242.00 CP(CC)

3 (6) 2562 128 128 128 0 2−16.99 2−16.84 239.98 262.98 242.00 CP(CC)

Known-plaintext differential bias attack

1 2562 152 128 8 0 2−11.42 2−11.10 228.84 251.84 243.00 KP

Chosen-ciphertext biased state attack

Round N ′
all N ′c

biasp N ′w
biasp - - q q(e) N ′

sample T D

9 256 8 0 - - 2−5.00 2−5.00 214 226.00 226.00 CC

Table 4. Differential bias and biased state attacks for time randomization

Chosen-plaintext differential bias attack

BB round Nall Nc
biasp Nw

biasp Nc
biasn Nw

biasn q q(e) Nsample T D

None 112 3 2 1 0 2−6.95 2−6.94 219.90 247.44 237.46 CP

9 102 3 2 1 0 2−6.68 2−6.68 219.36 247.04 237.32 CP

1, 2, 8, 9 72 0 0 1 0 2−13.61 2−13.23 233.22 260.41 236.81 CP

Known-plaintext differential bias attack

None 112 1 0 0 0 2−6.92 2−7.30 219.84 247.38 238.46 KP

Chosen-ciphertext biased state attack

BB round N ′
all N ′c

biasp N ′w
biasp - - q q(e) N ′

sample T D

None 11 1 0 - - 2−3.46 2−3.45 210.92 222.92 222.92 CC

5.3 Uncertainty in Both Space and Time

The space and time randomization makes the both the bit position and the
round number of leaked bits random in each execution, i.e., Zi and Z ′

i randomly
come from any bit of any states in the data processing part {#0, #3, #5, . . .,
#19, #21} and in the key schedule {$0, . . ., $10}. The parameters of the chosen-
plaintext differential bias attacks are estimated as Nall = (256 × 11)2, N

(c)
biasp

=

1720 (= 27 × 8 + 176 × 8 + 12 × 8), N
(w)
biasp

= 1600 (= 12 × 8 + 176 × 8 + 12 × 8),

N
(c)
biasn

= 200 (= 21 × 8 + 0 + 4 × 8) and N
(w)
biasn

= 32 (= 0 + 0 + 4 × 8).
The details of our attacks are given in Table 5. We also provide a chosen-

plaintext attack when round 9 and round 1, 2, 8 and 9 are black-boxed. If the
decryption is accessible, our attacks work as long as leaked bits after round 1, 2,
3, 6, 7, 8 or 9 of the data processing part are available. Also, a known-plaintext
attack is applicable if leaked bits from #3 are observable.
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Table 5. Differential bias and biased state attacks for space and time randomization

Chosen-plaintext differential bias attack

BB round Nall Nc
biasp

Nw
biasp

Nc
biasn

Nw
biasn

q q(e) Nsample T D

None (256 · 11)2 1720 1600 200 32 2−16.02 2−15.92 238.04 257.58 245.46 CP

9 (256 · 10)2 1592 1472 200 32 2−15.75 2−15.70 237.49 257.17 245.32 CP

1, 2 8, 9 (256 · 7)2 896 896 128 0 2−22.61 2−23.07 251.22 271.41 244.81 CP

Known-plaintext differential bias attack

None (256 · 11)2 1440 1408 40 32 2−17.92 2−17.69 241.84 261.38 246.46 KP

Chosen-ciphertext biased state attack

BB round N′
all N′c

biasp
N′w

biasp
- - q q(e) N′

sample T D

None (256 · 11) 8 0 - - 2−8.46 2−8.44 220.92 232.92 232.92 CC

Table 6. Differential bias and biased state attacks for leakage with noise

BB round Time Data Time Data Time Data Time Data

π = 1 π = 2−10 π = 2−20 π = 2−30

Chosen-plaintext differential bias attack

None 257.58 245.46 CP 267.58 255.46 CP 277.58 265.46 CP 287.58 275.46 CP

1, 2, 8, 9 271.41 244.81 CP 281.41 254.81 CP 291.41 264.81 CP 2101.41 274.81 CP

Known-plaintext differential bias attack

None 261.38 246.46 KP 271.38 256.46 KP 281.38 266.46 KP 291.38 276.46 KP

Chosen-ciphertext biased state attack

None 232.92 232.92 CC 252.92 252.92 CC 272.92 272.92 CC 292.92 292.92 CC

6 AES Under Noisy Leakage

This section studies the effect of additional noise on top of the time and space
randomization. The noise can be due to the limited knowledge of the platform
by the adversary or due to the implemented countermeasures such as insertion
of dummy operations. In the differential bias attack, this reduces the rate of
positive/negative biased bits by adding noise bits into the space of the actually
leaked bits. To quantify the amount of noise present in the attack, we define
π as the probability that an observed bit is not a noise bit. Suppose that the
values of the noise bits are randomly distributed, the bias of a leaked bit stream
of the correct key with noise bits is estimated as q′ = q × π, and the required
number of sample bits to distinguish a stream for a correct key increases by the
multiple of (π2)−1 to N ′

sample = Nsample × (π2)−1. With Ns = (Nall)1/2 × π−1,
the time and data complexities of our known/chosen plaintext differential bias
attacks increase by the multiple of (π)−1 as T ≈ 231 × (Nsample × π−2)/Ns ×
π−1 = 231 × (Nsample × π−1)/Ns encryptions and D ≈ 234(235) × (Ns × π−1)
chosen/known-plaintexts with leaked bits. Also, the time and data complexities
of chosen-ciphertext biased state attacks increase by the multiple of (π)−2. The
detailed evaluations for each values of π are shown in Table 6.
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7 Towards More Alignment: Bytewise Leakage

Here we deal with the case where each execution leaks one byte of a byte-aligned
state. In other words, now we let aligned bytes of internal states leak. Such leaks
reflect the realities of a byte-oriented software implementation better.3 In both
settings – leakage with fixed and uncertain time/space – our techniques still
apply. However, some adjustments are needed, see below.

7.1 Fixed Time/space: Bytewise Multiset Attack

Our bitwise multiset attacks naturally extend to bytewise multiset attacks,
because the multiset characteristics are based on the bytewise XOR-sum prop-
erty. The success probability for detecting wrong keys increases from (1−2−1) to
(1 − 2−8) by using the bytewise zero-sum property. Then the time complexities
of 2, 3, 4, 6 and 7-round attacks are estimated as {(232 × 28 × N) × 4} + (1 +
2−8N × (232 − 1))4 encryptions. With N = 4, it is about 244. The time com-
plexities of 1 and 8-round attacks and the 9-round attack also improve to 242

(≈ 232 × 28 × 4 × 4/3) and 212 (= 28 × 16) encryptions, respectively. The time
complexity of the combined attack is 245 (≈ 212+242+242+244+244) encryptions
and the required data is 235 chosen plaintexts and 234 chosen ciphertexts.

7.2 Uncertain Time/Space: Differential Bias Attack

Our differential bias attacks also extend to bytewise attacks using bytewise dif-
ferential biases of truncated differential characteristics of Fig. 4, 7 and 8.

Chosen/Known-Plaintext Differential Bias Attack. Let a leaked byte
from the i-th execution be Z∗

i , and N∗
all, N∗

biasp
, N∗

biasn
, N∗

random be the number
of bytewise pairs in the entire space, positive biased space, negative biased space
and randomly-distributed space, respectively. The probabilities that a difference
of a bytewise pair of randomly chosen leaked bytes is zero (Δ[Z∗

i , Z ′∗
j ] = 0) for

a correct key and a wrong key are estimated as follows.

Prc(Δ[Z∗
i , Z ′∗

j ] = 0) = 1/28 · (N∗c
random/N∗

all) + N∗c
biasp

/N∗
all,

P rw(Δ[Z∗
i , Z ′∗

j ] = 0) = 1/28 · (N∗w
random/N∗

all) + N∗w
biasp

/N∗
all.

Assuming that the target event E is Δ[Z∗
i , Z∗

j ] = 0 , X is a distribution for
a wrong key, and Y is a distribution for a correct key, p and q are estimated

as p = Prw(Δ[Z∗
i , Z ′∗

j ] = 0) and q =
−Nc

biasn
+Nw

biasn
+255(Nc

biasp
−Nw

biasp
)

Nall−Nw
biasn

+255Nw
biasp

. For

the success probability of 1 − 2−32, the required sample size is estimated as
3 The stream cipher LEX can be regarded as a bytewise leakage model at the fixed

space [3] but the locations of leaked bytes are known for the attacker. Thus, the
attack against LEX [10] is not directly applicable to our unknown location model.
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Table 7. Evaluation for byte-aligned space randomization (Ns = (Nall)
1/2)

Chosen-plaintext(ciphertext) differential bias attack

Round Nall Nc
biasp Nw

biasp Nc
biasn Nw

biasn q q(e) Nsample T D

1 (8) 322 31 28 1 1 2−3.41 2−3.42 219.84 245.84 239.00 CP(CC)

2 (7) 322 28 16 4 4 2−0.74 2−0.74 214.48 240.48 239.00 CP(CC)

3 (6) 322 16 16 16 0 2−8.32 2−8.38 229.64 255.64 242.00 CP

Known-plaintext differential bias attack

1 322 19 16 1 0 2−2.74 2−2.74 218.48 244.48 240.00 KP

Chosen-ciphertext biased state attack

Round N ′
all N ′c

biasp N ′w
biasp - - q q(e) Nsample T D

9 32 1 0 - - 22.99 22.99 211.00 223.00 223.00 CC

Table 8. Evaluation for byte-aligned time randomization (Ns = (Nall)
1/2)

Chosen-plaintext differential bias attack

BB round Nall Nc
biasp Nw

biasp Nc
biasn Nw

biasn q q(e) Nsample T D

None 112 3 2 1 0 2−1.31 2−1.31 215.62 243.16 237.46 CP

9 102 3 2 1 0 2−1.26 2−1.26 215.52 243.19 237.32 CP

1, 2, 8, 9 72 0 0 1 0 2−5.61 2−5.50 224.22 252.41 236.81 CP

Known-plaintext differential bias attack

None (11)2 1 0 0 0 21.08 21.08 213.00 240.54 238.46 KP

Chosen-ciphertext biased state attack

BB round N ′
all N ′c

biasp N ′w
biasp - - q q(e) Nsample T D

None 11 1 0 - - 24.50 24.50 211.00 223.00 223.00 CP

N∗
sample ≈ 32·256·q2 = 213 ·q2. Time complexity is estimated as 231×Nsample/Ns

encryptions and the required data is 234(235)×Ns chosen/known plaintexts with
leaked bits.

Chosen-Ciphertext Biased-State Attack. Assuming that the target event
E is Zi = 0, p and q are estimated as p = 1/28 and q = (255×N c

biasp
)/Nall. The

number of required samples is estimated as Nsample ≈ 8 · 28 · (q)−2. We repeat
the procedure for all 16 byte of $10. Therefore, time complexity is estimated as
212 × Nsample (= 16 × 28 × Nsample) encryptions and the number of required
data is 212 × Nsample (= 16 × 28 × Nsample) chosen ciphertexts.

Security Under Time and Space Randomization and with Leakage
Noise. The results of security evaluations under time and space randomization
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Table 9. Evaluation for byte-aligned space and time randomization (Ns = (Nall)
1/2)

Chosen-plaintext differential bias attack

BB round Nall Nc
biasp

Nw
biasp

Nc
biasn

Nw
biasn

q q(e) Nsample T D

None (32 · 11)2 215 200 25 4 2−5.52 2−5.53 224.04 246.58 242.45 CP

9 (32 · 10)2 199 184 25 4 2−5.29 2−5.29 223.58 246.26 242.32 CP

1, 2, 8, 9 (32 · 8)2 112 112 16 0 2−12.52 2−12.58 238.04 261.23 241.80 CP

Known-plaintext differential bias attack

None (32 · 11)2 179 176 5 4 2−7.79 2−7.74 228.58 252.12 243.45 KP

Chosen-ciphertext biased state attack

BB round N′
all N′c

biasp
N′w

biasp
- - q q(e) Nsample T D

None (32 · 11) 1 0 - - 2−0.46 2−0.46 211.92 223.92 223.92 CC

Table 10. Evaluation for byte-aligned leakage with noise (Ns = (Nall)
1/2 × π−1)

BB round Time Data Time Data Time Data Time Data

π = 1 π = 2−10 π = 2−20 π = 2−30

Chosen-plaintext differential bias attack

None 246.58 242.45 CP 256.58 252.45 CP 266.58 262.45 CP 276.58 272.45 CP

1, 2, 8, 9 261.23 241.80 CP 271.23 251.80 CP 281.23 261.80 CP 291.23 271.80 CP

Known-plaintext differential bias attack

None 250.28 243.45 KP 260.28 253.45 KP 270.28 263.45 KP 280.28 273.45 KP

Chosen-ciphertext biased state attack

None 223.92 223.92 CC 243.92 243.92 CC 263.92 263.92 CC 283.92 283.92 CC

with noisy leakage are provided in Tables 7, 8, 9 and 10.4 In all cases, time
complexity and data requirements are improved compared to the bit-aligned
attacks.

8 Some Extensions

8.1 AES-192 and 256

Bitwise multiset attacks and differential bias attacks on AES-128 are directly
applicable to AES-192 and AES-256 in both fixed and random settings. In the
backward direction, 6- to 9- round attacks on AES-128 are corresponded to 8- to
11-round ones on AES-192 and 10- to 13- round ones on AES-256, respectively.

8.2 Multiple-Bit Leakage

Here we consider the case where M bits of the bit-aligned state information leak
in each execution for a small M . Let Zi

1, Z
i
2, . . . , Z

i
M be M leaked bits of the i-th

execution.
4 If q is not small, Lemmata 1 and 2 are not applicable [16]. In this case we estimate

Nsample = 211 and 213 for known-plaintext differential bias attacks and chosen-
ciphertext biased state attacks, respectively. We confirmed experimentally that these
numbers of samples were enough for successful attacks.
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Bitwise Multiset Attack: Assume that Zi
0, Z

i
1, . . . , Z

i
M−1 come from different

but fixed locations of the state. If the XOR sum of 28 multiset of each location
is zero, the XOR-sum of all set of 28 ×M bits is also zero. Thus, bitwise multiset
attacks are feasible as long as leaked bits come from space where each XOR sum
is zero only in a correct key. Time and date complexities are almost the same.

Differential Bias Attack: Assume that Zi
1, Z

i
2, . . . , Z

i
M come from randomly-

chosen different locations of the state. Since the attacker is able to obtain M
bits in each execution, the required data reduces by a factor of M .

8.3 Other Granularities

So far, we have assumed that a leak can only occur after a full round. However,
in other granularities such as leaks after SubBytes or MixColumns, our bitwise
multiset attacks and differential bias attack still work.

Bitwise Multiset Attack: According to Proposition 1, any bit of the states
between #3 and #10 has the zero-sum property if the key is correctly guessed.
Using the difference of zero-sum properties between correct and wrong key cases,
bitwise multiset attacks are applicable to other states in the same manner.

Differential Bias Attack: By properly choosing attack parameters, our differ-
ential bias attacks are also made feasible. For instance, if bits of the states after
SubBytes are additionally leaked, the parameters of chosen-plaintext differential
attacks on AES-128 with the space and time randomization are estimated as
Nall = (256 × 11 + 128 × 10)2, N

(c)
biasp

= 2032 (= 216 + 216 + 1408 + 96 + 96),

N
(w)
biasp

= 1792 (= 96+96+1408+96+96), N
(c)
biasn

= 400 (= 168+168+0+32+32),

N
(w)
biasn

= 64 (= 0 + 0 + 32 + 32), and q = 2−16.10. The number of required sam-
ples is estimated as Nsample = 238.02(= 26 ×216.01·2). With Ns = (Nall)1/2, time
complexity is 257.02 (= (231 × 238.02)/(256× 11+128× 10)) encryptions and the
required data is 246 (= 234 × (256 × 11 + 128 × 10)) chosen plaintexts.

References

1. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of eliminating errors
in cryptographic computations. J. Cryptol. 14(2), 101–119 (2001)

2. Biham, E.: New types of cryptanalytic attacks using related keys. J. Cryptol. 7(4),
229–246 (1994)

3. Biryukov, A.: The design of a stream cipher LEX. In: Biham, E., Youssef, A.M.
(eds.) SAC 2006. LNCS, vol. 4356, pp. 67–75. Springer, Heidelberg (2007)

4. Biryukov, A., Shamir, A.: Structural cryptanalysis of SASAS. J. Cryptol. 23(4),
505–518 (2010)

5. Bogdanov, A., Kizhvatov, I., Pyshkin, A.: Algebraic methods in side-channel col-
lision attacks and practical collision detection. In: Chowdhury, D.R., Rijmen,
V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365, pp. 251–265. Springer,
Heidelberg (2008)



How Secure is AES Under Leakage 385
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Abstract. Iterated Even-Mansour scheme (IEM) is a generalization of
the basic 1-round proposal (ASIACRYPT ’91). The scheme can use one
key, two keys, or completely independent keys.

Most of the published security proofs for IEM against relate-key and
chosen-key attacks focus on the case where all the round-keys are derived
from a single master key. Whereas results beyond this barrier are relevant
to the cryptographic problem whether a secure blockcipher with key-size
twice the block-size can be built by mixing two relatively independent
keys into IEM and iterating sufficiently many rounds, and this strategy
actually has been used in designing blockciphers for a long-time.

This work makes the first step towards breaking this barrier and con-
siders IEM with Interleaved Double independent round-keys:

IDEMr((k1, k2), m) = ki ⊕ (Pr(. . . k1 ⊕ P2(k2 ⊕ P1(k1 ⊕ m)) . . .)),

where i = 2 when r is odd, and i = 1 when r is even. As results, this
work proves that 15 rounds can achieve (full) indifferentiability from an
ideal cipher with O(q8/2n) security bound. This work also proves that 7
rounds is sufficient and necessary to achieve sequential-indifferentiability
(a notion introduced at TCC 2012) with O(q6/2n) security bound, so
that IDEM7 is already correlation intractable and secure against any
attack that exploits evasive relations between its input-output pairs.

Keywords: Blockcipher · Ideal cipher · Indifferentiability · Key-
alternating cipher · Even-mansour cipher · Correlation intractability

1 Introduction

Blockciphers are arguably the most important primitives in cryptography.
A blockcipher BC[κ, n] : {0, 1}κ × {0, 1}n → {0, 1}n maps a κ-bit key K and

D. Lin—A full version is available [GL15b].
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T. Iwata and J.H. Cheon (Eds.): ASIACRYPT 2015, Part II, LNCS 9453, pp. 389–410, 2015.
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an n-bit input x to an n-bit output y. For each key K, the map BC[κ, n](K, ·) is
a permutation, and is efficiently invertible.

Most of the existing blockcipher designs can be roughly split into two fam-
ilies, namely Feistel ciphers and substitution-permutation networks. The latter
are known as the structure of AES, and can be generalized as key-alternating
ciphers [DR02]/iterated Even-Mansour ciphers (IEM for short). An r-round IEM
cipher IEMr consists of r fixed n-bit permutations Pi separated by key addition

IEMr(K,m) = kr ⊕ Pr(. . . k2 ⊕ P2(k1 ⊕ P1(k0 ⊕ m)) . . .).

The single round Even-Mansour (the case r = 1) was developed in 1991 [EM93]
in an attempt to turn a single permutation into a family of permutations (block-
cipher). IEM1 has been proved pseudorandom when the underlying permutation
is random and public while the keys are secret. Since then, a soar of studies on
IEM has been witnessed (especially in the recent half decade), for instance, on
minimization [DKS13,CLL+14], on pseudorandomness [BKL+12,Ste12,LPS12,
CS14], on related-key (RK) security [FP15,CS15], and on attacks (notable exam-
ples include [DKS13,DDKS15,DDKS14]). The pseudorandomness results showed
that IEM is provably secure in traditional single secret key settings.

Indifferentiability of IEM. The studies on indifferentiability and sequential-
indifferentiability (seq-indifferentiability) of IEM are mainly motivated by fur-
ther validating the SPN-based blockcipher design methodology by proving IEM
secure against known-key and chosen-key (CK) attacks, in which the adversary
knows and chooses keys and tries to exhibit non-randomness. Roughly speak-
ing, indifferentiability of IEM means that IEM can be as secure as an ideal
cipher [MRH04], whereas seq-indifferentiability of IEM implies that IEM is cor-
relation intractable [CGH04], and there is no relation between the inputs and out-
puts of IEM that can be exploited by an attack (even a chosen-key one) [MPS12].
Here the ideal cipher IC[κ, n] : {0, 1}κ × {0, 1}n → {0, 1}n is taken randomly
from the set of (2n!)2

κ

possible choices of BC[κ, n]. In this work, IC[2n, n] will
be referred by E.

As to (seq-)indifferentiability, we have been aware of four works: [ABD+13],
[LS13], [CS15], and [Ste15]. [ABD+13] showed that IEM5 is indifferentiable from
IC[κ, n], if the round-key is derived from a preimage-aware key derivation func-
tion (KDF). On the other hand, [LS13] and [CS15] concentrated on single-key
EM (SEM) in which the user-provided n-bit master key is directly used at
each round: [LS13] proved that SEM12 (12-round SEM; similarly for SEM4 and
SEM9) is indifferentiable, while [CS15] proved that SEM4 is seq-indifferentiable.
In [Ste15], Steinberger proved the indifferentiability of SEM9. Results on SEM
are closer to concrete designs, since they can be easily generalized to the case
where each round-key is derived by an efficiently invertible permutation.

Problem: Even-Mansour with Two Keys. Existing works on provable secu-
rity of IEM in RK and CK settings almost all focus on the SEM context: [LS13]
(ASIACRYPT 2013), [FP15] (FSE 2015), [CS15] (EUROCRYPT 2015) (except
for those considered random oracle modeled KDF, e.g. [ABD+13]). This work
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makes the first step towards breaking this barrier and considers the following
problem: can we obtain an ideal cipher by mixing two independent keys into
IEM and iterating enough rounds? (a problem left open by Lampe and Seurin
(LS) [LS13])1. This problem is far from being trivial because all the works
on SEM (in RK and CK settings) crucially rely on the correlation between
all round-keys, so that they cannot be directly generalized to double-key case.
Also, the independence between round-keys may bring in weakness – the most
extreme case is IEM with completely independent round-keys, which is vulner-
able to trivial related-key attacks. This problem is also practical since the idea
is really used in existing designs such as AES-256 [DR02], Serpent [ABK98],
and LED-128 [GPPR11] – note that they (certainly) mix the keys into the state
by lightweight and efficient operations and iterate, rather than use some very
complex hash function to seal the 2n key bits first. The intuition is that by
iterating enough rounds, such designs will be “secure”; but the fact that the dif-
fusion of the 2n key bits is relatively slow brings in doubts (e.g. doubts on AES-
256 [KHP07,BDK+10]). The fact that among the three AES variants, AES-256
was the first that is theoretically broken [BK09] seems to support such doubts,
and this attack raises a problem whether there exists a BC[2n, n] design behav-
ing like IC[2n, n];2 due to this, it is necessary to either validate (using a security
proof) or negate (using a generic attack) this intuitive methodology.

To dig out a solution, note that using one key in the first n/2 rounds while
using the other in the last n/2 rounds is trivially insecure [LS13]. Instead, a
(seemingly) more promising approach to mixing two keys into IEM is the idea
behind LED-128 [GPPR11], that is, interleaving the xoring of them: we name it
interleaved double-key Even-Mansour cipher (IDEM for short; see Fig. 1 for an
illustration). More formally, the r-round variant is written as follows:

IDEMr((k1, k2),m) = kt ⊕ Pr(. . . k2 ⊕ P3(k1 ⊕ P2(k2 ⊕ P1(k1 ⊕ m)))),

where t = 2 when r is odd, and t = 1 when r is even. LS viewed IDEM as
a promising solution to the problem mentioned before, and gave an extremely
preliminary analysis, which led to the conjecture that 15 rounds is sufficient to
achieve indifferentiability; but no concrete proof exists. Moreover, the provable
security of IDEM with shorter rounds has not been considered yet.

Contributions. We give the first indifferentiability proof for 15-round IDEM.
This is the first main result of this work. Interestingly, this matches LS’s conjec-
ture, but the proof is obtained by an approach quite different from they expected.

To obtain security guarantees for shorter round cases, we prove that IDEM7 is
seq-indifferentiable from IC[2n, n]; therefore, IDEM7 is also correlation
intractable in the random permutation model [MPS12], and resists all attacks

1 A trivial solution to building IC[2n, n] by IEM is hash-than-encrypt, which has been
included in [ABD+13]. It was also discussed in [CDMS10]. But this solution imposes
strong burden on the key derivation and is far from practical designs.

2 Please see [CDMS10], page 275: as of 2009 it is unclear if we have a candidate
block-cipher with key-size larger than block-size that behaves like an ideal cipher.



392 C. Guo and D. Lin

that exploit evasive relation between its inputs and outputs. We also find a
sequential distinguisher against IDEM6 (which is actually an easy extension of
LS’s attack against SEM3 [LS13]), so that 7 rounds is also necessary. All the
results are summarized by the following informal theorem.

Theorem. For the construction IDEM based on completely independent
random permutations, 6 rounds is not (seq-)indifferentiable; 7 rounds is seq-
indifferentiable from IC[2n, n] with O(q6/2n) security bound, and is also corre-
lation intractable in the random permutation model; 15 rounds is indifferentiable
from IC[2n, n] with O(q8/2n) security bound.

Due to the independence between the two n-bit round keys, at current time, we
are not sure whether the results can be generalized to IEM with “very general”
key schedules; however, for the first time, these results indeed validate the (seem-
ingly long standing) design principle to some extent in the open-key model, i.e.
a secure blockcipher BC[2n, n] can be built from key-alternating ciphers with-
out using very complex KDFs, or even without any KDF. Especially, they show
that the intuition behind the key schedule of LED-128 is sound. However, they
certainly cannot provide direct security guarantee for LED-128 – in fact, as
theoretical results, they do not guarantee the security of ANY concrete blockci-
pher. As already mentioned, whether there exist some designs that “behave like”
IC[2n, n] have to be supported by more (cryptanalysis) works.

Techniques. To prove indifferentiability and seq-indifferentiability, one first
builds a simulator to mimic the behaviors of all the underlying permutations.
Taking IDEM15 as an example, consider a sequence of pairs of input and out-
put (IO for short) (x1, y1), . . . , (x15, y15) (called a computation path/chain) of
the 15 permutations simulated by the simulator, which satisfies yi ⊕ xi+1 = k2
when i is odd, and yi ⊕ xi+1 = k1 when i is even. The simulator should ensure
that each such chain simulated by it matches the ideal cipher E, i.e. E((k1, k2),
x1 ⊕ k1) = y15 ⊕ k2. The basic idea to reach this goal is Coron et al.’s sim-
ulation via chain completion technique [CHK+14], which has achieved success
in (weaker) indifferentiability proofs for a variety of idealized blockciphers. It
requires the simulator S to detect partial computation chains formed by the
queries of the distinguisher, and completes the chains in advance by querying
the ideal cipher E, such that S is ready for answering queries in the future. To
simulate answers that are consistent with E, S has to use the answer from E to
define some simulated answers; this action is called adaptation.

Detect Chains. To detect the so-called partial chains, note that the construction
IDEM has the following property: given 4 values of 3 permutations yi, xi+1, yi+1,
and xi+2 (namely, an output of Pi, a pair of IO of Pi+1, and an input to Pi+2),
the two associated keys can be derived as k = yi ⊕ xi+1 and k′ = yi+1 ⊕ xi+2,
and it is possible to move forward and backward along the path. By this, at
some place, using three rounds for chain detection is necessary – this idea has
already appeared in [LS13].
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Overall Strategy of the Simulators. As to the overall strategy, the simulator
used to prove seq-indifferentiability of IDEM7 is quite close to those for 6-round
Feistel [MPS12] and SEM4 [CS15]: the simulator detects partial chains at the
three middle round of IDEM7, completes them forward or backward, and finally
adapts them at the first or last round – depending on concrete contexts.

On the other hand, the simulator used to prove the indifferentiability of
IDEM15 is motivated by Steinberger’s illustration of indifferentiability proof for
SEM9 [Ste15]. The overall strategy requires detecting chains both at the two sides
and at the middle – which is similar to several previous works (e.g. [CHK+14]).
The core idea in this part is a so-called “pureness” property which is different
from [CHK+14]: the simulator may fall into a recursive chain completion process;
however, during each such recursive completion process, all the partial chains are
to be adapted at the same round ; as a consequence, when a partial chain is to be
completed, its extending is necessarily due to simulator defining new simulated
answers to random ones rather than the adaptation of some other chains, so
that the “endpoints” of this chain are always random. Whereas in the context
of IDEM, to uniquely specify a chain requires at least 3 values of 3 consecutive
permutations, so that the adversary has more freedom to choose values and make
different chains collide. With this in mind, we arrange two rounds to surround
each adaptation zone to ensure different chains diverge in the adaptation zone;
following an old convention [CHK+14], we call them buffer rounds.3 For a more
detailed overview of the simulator, we refer to Sect. 3.1.

In the indifferentiability proof for IDEM15, we used an active-chain-oriented
bad events define strategy, which is motivated by the analysis of IDEM7: we
directly define some bad events to be with respect to the chains that are active
during the completion process. This helps us achieving the O(q8/2n) indifferen-
tiability security bound in spite of the complex character of IDEM. Albeit loose,
this bound has been quite well-looking compared to similar (full) indifferentia-
bility proofs for idealized blockciphers (the best non-flawed one(s) among them
reached the level of O(q10/2n) [ABD+13]).

Summary: What are Inherited and What are Novel? Technically speaking, we
inherit the simulation via chain completion technique, the randomness mapping
argument, and the basic idea for simulator termination argument from [CHK+14];
we also inherit (and adapt) the overall frameworks of Steinberger (which dates
back to Seurin [Seu09]) and Cogliati et al. [CS15] (which dates back to Mandal
et al. [MPS12]). Our novelties mainly lie in the proof for IDEM15: first, we use a
bad event to establish a slightly tighter bound on the size of the history (O(q2/2n))
and the simulator’s complexity; second, we define the bad events to be so-called
active-chain-oriented, so that the probability can be very low (O(q6/2n)). They
two together enable to establish the O(q8/2n) security bound.

3 But our “buffer” rounds deviate from those in [CHK+14], in the sense that the
values in them can be defined when the simulator is completing other chains.
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Organization. Section 2 presents preliminaries. Section 3 contains the first main
result – the indifferentiability of IDEM15, and the proof sketch. Section 4 con-
tains the second main result – the seq-indifferentiability of IDEM7. Section 5
concludes. Due to page constraints, the full proofs of the two main results have
to be deferred to the full version of this paper [GL15b].

2 Preliminaries and Notations

This work focuses on BC[2n, n], say, blockciphers with n-bit blocks and 2n-bit
keys. Throughout the remaining, the n-bit round-keys are denoted by lower-case
letters, i.e. k1 and k2, while the 2n-bit master key is interchangeably denoted by
the capital letter K or the concatenation (k1, k2) (as the reader has seen).

An n-bit random permutation is a permutation that is uniformly selected
from all (2n)! possible choices. In this work, the notation P = (P1, . . . ,Pj)
is used to denote a tuple of random permutations (j = 15 in the context of
IDEM15, and j = 7 in the context of IDEM7), and we let P provide a unified
interface, i.e. P.P(i, δ, z) := {1, . . . , j} × {+,−} × {0, 1}n → {0, 1}n, i indicates
the index, δ ∈ {+,−} indicates direct query or inverse query, and z ∈ {0, 1}n

is the queries value). On the other hand, the interface of the ideal cipher E is
E.E(δ,K, z) := {+,−} × {0, 1}2n × {0, 1}n → {0, 1}n.

Indifferentiability. The indifferentiability framework [MRH04] addresses the
idealized construction in settings where the underlying parameters are exposed
to the adversary. For concreteness, consider IDEMP

15: a distinguisher DIDEMP
15,P

with oracle access to the cipher and the underlying primitives is trying to dis-
tinguish IDEMP

15 from E. Then the formal definition is as follows.

Definition 1 (Indifferentiability). The idealized blockcipher IDEMP
15 with

oracle access to ideal primitives P is said to be statistically and strongly (q, σ, t, ε)-
indifferentiable from an ideal cipher E if there exists a simulator SE s.t. S makes
at most σ queries to E, runs in time at most t, and for any distinguisher D which
issues at most q queries, it holds

∣
∣
∣Pr[DIDEMP

15,P = 1] − Pr[DE,SE

= 1]
∣
∣
∣ ≤ ε

Such a result means that IDEMP
15 can safely replace E in most “natural” settings –

although this belief does not necessarily hold when the resource of the adver-
sary is limited [RSS11,DGHM13]. Since introduced, indifferentiability framework
has been applied to various constructions, including variants of Merkle-Damg̊ard,
Feistel [CHK+14], Sponge [BDPVA08], and IEM [ABD+13,LS13].

To formally define seq-indifferentiability, we first specify a restricted distin-
guisher class, namely the sequential distinguisher (seq-distinguisher) [MPS12].
Consider IDEMP

7 and DIDEMP
7 ,P. D is sequential if it issues queries in a specific

order: (1) queries the underlying primitives P as it wishes; (2) queries IDEMP
7

as it wishes; (3) outputs, and cannot query P again. This order is illustrated
in the italic numbers in Fig. 3. We then define the notion total oracle query
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cost of D, which equals the total number of queries received by P (from D or
IDEMP

7 ) when D interacts with (IDEMP
7 ,P) [MPS12]. Then, the definition of

seq-indifferentiability can be obtained by tweaking the definition of (full) indif-
ferentiability by restricting the distinguisher to the range of sequential ones, and
replacing the query cost of the distinguisher by the total oracle query cost.

Definition 2 (Seq-indifferentiability). The idealized blockcipher IDEMP
7

with oracle access to ideal primitives P is said to be statistically and strongly
(q, σ, t, ε)-seq-indifferentiable from an ideal cipher E if there exists a simulator
SE s.t. S makes at most σ queries to E, runs in time at most t, and for any
sequential distinguisher D of total oracle query cost at most q, it holds

∣
∣
∣Pr[DIDEMP

7 ,P = 1] − Pr[DE,SE

= 1]
∣
∣
∣ ≤ ε

Sequential-indifferentiability implies correlation intractability [MPS12,CS15].

3 Indifferentiability for 15-Round IDEM

We prove the first main theorem of this paper in this section, which is:

Theorem 1. The 15-round Even-Mansour cipher IDEM15 from fifteen indepen-
dent random permutations P = (P1, . . . ,P15) and two n-bit keys (k1, k2) alter-
natively xored is strongly and statistically (q, σ, t, ε)-indifferentiable from an ideal
cipher IC[2n, n], where σ = 210 · q8, t = O(q8), and ε ≤ 211·q8

2n + 214·q6

2n = O( q8

2n ).

As usual, we first present the simulator, then sketch the proof.

3.1 The Simulator

To build the simulator, we borrow a variant of the explicit randomness tech-
nique [CHK+14] from [CS15], that is, letting the simulator S query P as explicit
randomness. We denote by SE,P the simulator for IDEM15 which takes P as ran-
domness source and interacts with E. SE,P provides an interface S.P(i, δ, z) (i ∈
{1, . . . , 15}) which is exactly the same as P. As argued [ABD+13,CS15], using
such explicit randomness is actually equivalent to lazily sampling in advance
before the experiment.

We now give a high-level overview of the simulator SE,P (depicted in Fig. 1
(left)). S maintains a history for each simulated permutation under the form
of fifteen sets P1, . . . , P15. Each of the sets has entries in the form of (x, y) for
x, y ∈ {0, 1}n. S will ensure that for any z ∈ {0, 1}n and i ∈ {1, . . . , 15}, there
is at most one z′ ∈ {0, 1}n such that (z, z′) ∈ Pi, and vice versa; once such
consistency cannot be kept, S aborts (will be discussed later). By this, the sets
{P} = {P1, . . . , P15} are expected to define fifteen partial permutations, and we
denote by P+

i (P−
i , resp.) the (time-dependent) set of all n-bit values x (y, resp.)

satisfying that ∃z ∈ {0, 1}n s.t. (x, z) ∈ Pi ((z, y) ∈ Pi, resp.); denote by P+
i (x)

(P−
i (y), resp.) the corresponding value of z (as mentioned the uniqueness of z

is ensured by S).
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Queries that have already appeared in the history will be instantly answered
with the contents in {P}. Upon a new query SE,P.P(i, δ, z), SE,P queries P to
draw z′ = P.P(i, δ, z) as the answer and calls a procedure ForceVal(z, z′, δ, i)
to add z and z′ to Pi – inside this procedure, if z′ is found already in P δ

i ,
SE,P aborts due to the broken consistency (as mentioned). Then, if (i, δ) ∈
{(2,+), (6,−), (10,+), (14,−)} it satisfies the chain detection conditions, so that
SE,P enqueues and completes chains formed by previous queries to ensure that
it is ready to simulate answers consistent with those of E in the future.

The cases (i, δ) equals (2,+) and (14,−) are similar: taking the former
P(2,+, x2) as an example, SE,P considers all tuples (x1, y1, x14, y14, x15, y15)
such that (xj , yj) ∈ Pj for j ∈ {1, 14, 15}, recovers two keys k2 := y1 ⊕ x2 and
k1 := y14 ⊕ x15, computes y0 := x1 ⊕ k1 and x16 := y15 ⊕ k2, checks whether
E.E(+, (k1, k2), y0) = x16 via an inner procedure S.Check and enqueues a
5-tuple (y0, k1, k2, 0, 4) into a queue ChainQueue when this is the case. In this
tuple, the 4-th value 0 informs S that the first value of the tuple is y0, and the
last value 4 describes that when completing the chain characterized by the tuple
(y0, k1, k2, 0), S should add the adapted pair to P4 to ensure consistency with E.
The action towards answering new query P(14,−, y14) is symmetric: S considers
all tuples (x1, y1, x2, y2, x15, y15) such that (xj , yj) ∈ Pj for j ∈ {1, 2, 15}, recov-
ers the two keys, calls S.Check and enqueues (y0, k1, k2, 0, 12) into ChainQueue
when Check returns true. The chain represented by this 5-tuple will be adapted
at P12, which is different from the case (i, δ) = (2,+).

The other two cases P(6,−, y6) and P(10,+, x10) are similar by symmetry:
in each case, S considers all tuples (x7, y7, x8, y8, x9, y9) such that (xj , yj) ∈ Pj

for j ∈ {7, 8, 9}, computes k1 := y8 ⊕ x9 and k2 := y7 ⊕ x8, checks whether
x7 ⊕k1 = y6 ∧y9 ⊕k2 ∈ P+

10 (in case P(6,−, y6)) or x7 ⊕k1 ∈ P−
6 ∧y9 ⊕k2 = x10

(in case P(10,+, x10)), and enqueues (y7, k1, k2, 7, l) into ChainQueue when this
is the case, where l = 4 in case P(6,−, y6) and l = 12 in case P(10,+, x10).

After enqueuing, S starts an execution of RecursiveCompletion, during
which it continues taking the tuples out of ChainQueue and completing the
associated partial chains till ChainQueue is empty again. More clearly, for each
chain C dequeued from the queue, S evaluates in the IDEM15 computation
path both forward and backward and queries E once to “wrap” around, until
obtaining xl (when moving forward) or yl (when moving backward). S then calls
ForceVal(xl, yl,⊥, l) to add (xl, yl) to Pl as a newly defined pair of IO, so that
the entire computation path is consistent with the answers of E. Inside this call
to ForceVal, if xl ∈ P+

l or yl ∈ P−
l before they are to be added, S aborts (also

as mentioned).
During the completion of a chain, S adds new entries to Pi which are neces-

sary for its evaluation. Such new values also trigger new chains to be enqueued
when they satisfy the chain detection conditions mentioned before. For this, note
that S continues dequeuing and completing chains till ChainQueue is empty
again. To avoid re-completing the same chain, S maintains a set CompSet to
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keep a record of what it has completed, and a chain C dequeued from the queue
will be completed only if C /∈ CompSet. After all the works above are finished,
S answers the original query with P δ

i (z).
Note that throughout the process, the entries in S.{P} are never overwritten;

once S finds itself unable to maintain consistency any more, S just aborts.
The pseudocode of SE,P and a modified simulator S̃ẼE,P (please see Sect. 3.2)

is presented as follows. When a line has a boxed variant next to it, SE,P uses
the original code, whereas S̃ẼE,P uses the boxed one.

3.2 The Key Points of the Proof

As in previous works, for any fixed, deterministic,4 and computationally
unbounded distinguisher D, we first show that the complexity of SE,P is poly-
nomial except with negligible probability, then show that the simulated system
Σ1(E,SE,P) and the real system Σ3(IDEMP

15,P) are indistinguishable.

Intermediate System. The proof uses an intermediate system Σ2(ẼE, S̃ẼE,P)
which consists of two modified constructions ẼE and S̃ẼE,P. ẼE can be seen as
an ideal cipher E enhanced with a history maintaining mechanism and a Check
procedure. More clearly, ẼE offers the same interface as E, relays the answers of
E except that it uses a set ES to keep the history of these queries. The entries in
ES are of the form (x, y, (k1, k2)). ẼE provides an additional interface Check

to S̃; upon a call to Check(x, y,K), ẼE checks whether (x, y,K) ∈ ES and
answers accordingly. On the other hand, the modified simulator S̃ẼE,P shares
the same main strategy with SE,P except that it queries ẼE – particularly, it
calls ẼE.Check whenever necessary. The code of S̃ is presented along with S in
Sect. 3.1. The three systems are depicted in Fig. 2.

Since all the entries of ES actually come from (an ideal cipher) E, ES always
defines a partial cipher, and we use a notation system similar to that for {P}.
More clearly, we denote by ES+ the set of tuples (K,x) s.t. ∃y : (x, y,K) ∈
ES, and denote by ES+(K,x) the corresponding y. Similarly for ES− and
ES−(K, y). Finally, denote by |Ẽ.ES| the size of Ẽ.ES.

Complexity of S̃ in Σ2, and Transition from Σ1 to Σ2. The starting
point is the same as [CHK+14]: the number of “external” chains (y0, k1, k2, 0)
completed by S̃ is bounded by the number of queries of D to Ẽ, which is at most
q; by this, for i ∈ {6, 7, 8, 9, 10}, Pi consists of entries due to D’s queries and S̃
completing chains (y0, k1, k2, 0), so that |Pi| ≤ 2q.

Then the argument deviates from [CHK+14]: by construction, S̃ enqueues
a “middle” chain (y7, k1, k2, 7, l) only if there are 5 entries (xi, yi) ∈ Pi for
i = 6, 7, 8, 9, 10 s.t. y6 = x7⊕y8⊕x9 and y7⊕x8⊕y9 = x10. Consider a bad event
BadLockMid, which happens in DΣ2 if any call to InnerP creates a new pair of

4 This is wlog since the advantage of any probabilistic distinguisher cannot exceed the
advantage of the corresponding optimal deterministic version.
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1: Simulator SE,P: Simulator S̃ẼE,P:
2: Variables
3: Sets {P} = {P1, . . . , P15} and CompSet, initially empty
4: Queue ChainQueue, initially empty
5: public procedure P(i, δ, z)
6: z′ := InnerP(i, δ, z) // Chains are enqueued in this step
7: RecursiveCompletion()
8: return z′

9: // The recursive completion process is extracted as an individual procedure.
10: private procedure RecursiveCompletion()
11: while ChainQueue �= ∅ do
12: (yj , k1, k2, j, l) := ChainQueue.Dequeue()
13: if (yj , k1, k2, j) /∈ CompSet then
14: Complete(yj , k1, k2, j, l)
15: // The “inner” permutation interface used by S itself.
16: private procedure InnerP(i, δ, z)
17: if z /∈ P δ

i then
18: z′ := P.P(i, δ, z)
19: ForceVal(z, z′, δ, i)
20: EnqueueChains(i, δ, z)
21: return P δ

i (z)
22: // Procedure that enqueues chains.
23: private procedure EnqueueChains(i, δ, z)
24: if (i, δ) = (2, +) then
25: forall ((x1, y1), x2, y14, (x15, y15)) ∈ P1 × {z} × P −

14 × P15 do
26: k2 := y1 ⊕ x2

27: k1 := y14 ⊕ x15

28: y0 := x1 ⊕ k1

29: x16 := y15 ⊕ k2

30: flag := Check(y0, x16, (k1, k2)) flag := ẼE.Check(y0, x16, (k1, k2))

31: if flag = true then
32: ChainQueue.Enqueue(y0, k1, k2, 0, 4)
33: else if (i, δ) = (14, −) then
34: forall ((x1, y1), x2, y14, (x15, y15)) ∈ P1 × P+

2 × {z} × P15 do
35: k2 := y1 ⊕ x2

36: k1 := y14 ⊕ x15

37: y0 := x1 ⊕ k1

38: x16 := y15 ⊕ k2

39: flag := Check(y0, x16, (k1, k2)) flag := ẼE.Check(y0, x16, (k1, k2))

40: if flag = true then
41: ChainQueue.Enqueue(y0, k1, k2, 0, 12)
42: else if (i, δ) = (6, −) ∨ (i, δ) = (10, +) then
43: forall ((x7, y7), (x8, y8), (x9, y9)) ∈ P7 × P8 × P9 do
44: k1 := y8 ⊕ x9

45: k2 := y7 ⊕ x8

46: if (i, δ) = (6, −) ∧ z = x7 ⊕ k1 ∧ y9 ⊕ k2 ∈ P+
10 then

47: ChainQueue.Enqueue(y7, k1, k2, 7, 4)
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48: else if z = y9 ⊕ k2 ∧ x7 ⊕ k1 ∈ P −
6 then // (i, δ) = (10, +)

49: ChainQueue.Enqueue(y7, k1, k2, 7, 12)
50: private procedure Complete(yj , k1, k2, j, l)
51: (yl−1, k1, k2, l − 1) := EvalFWD(yj , k1, k2, j, l − 1)
52: (yl, k1, k2, l) := EvalBWD(yj , k1, k2, j, l)
53: ForceVal(yl−1 ⊕ k2, yl, ⊥, l) // Always k2, since l ∈ {4, 12}.
54: (y0, k1, k2, 0) := EvalFWD(yj , k1, k2, j, 0)
55: (y7, k1, k2, 7) := EvalFWD(y0, k1, k2, 0, 7)
56: CompSet := CompSet ∪ {(y0, k1, k2, 0), (y7, k1, k2, 7)}
57: // Procedure that adds entries to {P}.
58: private procedure ForceVal(z, z′, δ, l)
59: // When δ = ⊥ then it’s an adaptation

60: if z ∈ P δ
l ∨ z′ ∈ P δ

l then abort
61: else if δ = − then Pl := Pl ∪ {(z′, z)}
62: else Pl := Pl ∪ {(z, z′)} // δ = + or ⊥
63: private procedure Check(x, y, K) // S̃ does not own such a procedure
64: return E.E(+, K, x) = y
65: // Two procedures that help evaluate forward and backward respectively in IDEM.
66: private procedure EvalFWD(yj , k1, k2, j, l)
67: while j �= l do
68: if j = 15 then
69: x16 := y15 ⊕ k2

70: y0 := E.E(−, (k1, k2), x16) y0 := ẼE.E(−, (k1, k2), x16)

71: j := 0
72: else
73: if j is odd then
74: yj+1 := InnerP(j + 1, +, yj ⊕ k2)
75: else
76: yj+1 := InnerP(j + 1, +, yj ⊕ k1)
77: j := j + 1
78: return (yl, k1, k2, l)
79: private procedure EvalBWD(yj , k1, k2, j, l)
80: while j �= l do
81: if j = 0 then

82: x16 := E.E(+, (k1, k2), y0) x16 := ẼE.E(+, (k1, k2), y0)

83: y15 := x16 ⊕ k2

84: j := 15
85: else
86: if j is odd then
87: yj−1 := InnerP(j, −, yj) ⊕ k1

88: else
89: yj−1 := InnerP(j, −, yj) ⊕ k2

90: j := j − 1
91: return (yl, k1, k2, l)
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Fig. 1. (left) IDEM15 with the zones where the simulator detects chains and adapts
them; (right) IDEM7 and how the simulator for sequential indifferentiability works.
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Fig. 2. Systems used in the indifferentiability proof for IDEM15.

3-tuples ((x7, y7), (x8, y8), (x9, y9))∈ P7×P8×P9 and ((x′
7, y

′
7), (x

′
8, y

′
8), (x

′
9, y

′
9)) ∈

P7×P8×P9 such that x7⊕y8⊕x9 = x′
7⊕y′

8⊕x′
9 and y7⊕x8⊕y9 = y′

7⊕x′
8⊕y′

9. Tak-
ing all possibilities into consideration, its overall probability is at most 27·q6

2n +
26·q4

2n + 25·q4

2n ≤ 28·q6

2n ; and conditioned on ¬BadLockMid, each pair (y6, x10) ∈
P−
6 × P+

10 corresponds to at most one tuple ((x7, y7), (x8, y8), (x9, y9)) ∈ P7 ×
P8 × P9 s.t. y6 = x7 ⊕ y8 ⊕ x9 and y7 ⊕ x8 ⊕ y9 = x10, hence S̃ enqueues at most
|P6| · |P10| ≤ 4q2 “middle” chains (y7, k1, k2, 7, l). By this, each |Pi| is bounded
to O(q2), |Ẽ.ES| to 5q2, and S̃ issues at most (5q2)4 queries to Ẽ.Check.

The rest part of the first transition is very close to [CHK+14] (and is almost
the same as [GL15a]): for two executions DΣ1 and DΣ2 which share the same
random primitives (E,P), conditioned on ¬BadLockMid, if the first (5q2)4 calls
to S.Check in DΣ1 obtain the same answers as the first (5q2)4 calls to Ẽ.Check
in DΣ2 (Pr ≥ 1 − 1250q8/2n), then D outputs the same in DΣ1 and DΣ2 .

Lemma 1. For any distinguisher D which issues at most q queries, it holds:

(i) |Pr[DΣ1(E,S) = 1] − Pr[DΣ2(Ẽ,S̃) = 1]| ≤ 211·q8

2n ;
(ii) during the execution DΣ1(E,S), with probability at least 1 − 211·q8

2n , S issues
at most 210 · q8 queries to E, and runs in time at most O(q8).

The most difficult part of the proof is the transition from Σ2 to Σ3, which
will be presented in the next paragraph.

Transition from Σ2 to Σ3: Non-abortion Argument for S̃ . S̃ is built with
the expectation that if it does not abort, then the outputs of Σ2 and Σ3 are
indistinguishable; we will see that this intuition is true, so that the first (and
actually core) step of the transition is to show that the abort probability of S̃ is
negligible. For this, we introduce several notions and (improbable) bad events,
then show that if neither of them happens, then S̃ does not abort.

Random Assignments. Similarly to [LS13], we use the notion random forward
assignment in set Pi (random backward assignment in set Pi, resp.) to refer to
line 62 inside any execution of ForceVal(z, z′,+, i) (line 61 inside any execution
of ForceVal(z, z′,−, i), resp.), and use the notion random forward (backward,
resp.) assignment in set ES to refer to any operation sequence z′ := E.E(+,K, z)
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(z′ := E.E(−,K, z), resp.) and then adding z and z′ to ES. We also use random
assignments to indifferently refer to the forward or backward case.
Partial Chains. In this paper, the partial chains are characterized by 4-tuples
(yi, k1, k2, i) ∈ {0, 1}n × {0, 1}n × {0, 1}n × {0, . . . , 15}. Besides this notion, we
borrow two helper functions val+l and val−l from previous works: w.r.t. the values
in the given sets ES and {P}, val+l and val−l take a partial chain as input,
and evaluate forward and backward respectively (wrap around through ES if
necessary) until obtaining the corresponding input value xl to Pl and input value
yl to P−1

l respectively, or the evaluation is blocked by some missed entry (in the
sets), and return xl and yl respectively in the former case while ⊥ in the latter
case. Based on val+l and val−l , we borrow (and redefine) the notion of equivalent
partial chains: w.r.t. {P} and Ẽ.ES, two partial chains C = (yi, k1, k2, i) and
D = (yj , k1, k2, j) (with the same keys) are equivalent (denoted C ≡ D) if
yi = val−i (D) or yj = val−j (C).5

Bad Events, and Non-abortion. A random answer from P or E is bad if it col-
lides with some value relevant to the “active” chains. To specify such “active”
chains, we define a notion history for partial chains CH from the sets ES and
{P7, P8, P9} at the moment where the random answer is drawn: CH is the union
of two sets ECH and MCH, where ECH includes all the tuples (y0, k1, k2, 0)
with ((k1, k2), y0) ∈ ES+, and MCH includes all (y7, k1, k2, 7) with y7 ∈ P−

7 ,
x8 = y7 ⊕ k2 ∈ P+

8 , and x9 = P+
8 (x8) ⊕ k1 ∈ P+

9 . By the complexity analysis,
conditioned on ¬BadLockMid, |CH| ≤ 5q2 + (2q)3 ≤ 13q3.

We then list the bad events (more precisely, their ideas). Due to space con-
straints, we have to defer their formal definitions to the full version [GL15b].

– BadHitAdapt: an answer from P collides with a previous adapted value;
– BadE: an answer from E collides with a value in P1 or P15 xored the key, i.e.

E.E(−, (k1, k2), x16) ⊕ k1 ∈ P+
1 , or E.E(+, (k1, k2), y0) ⊕ k2 ∈ P−

15;
– BadP: extension of some chain C meets an old P-tuple after a random assign-

ment in {P} with the same direction, i.e. ∃C ∈ CH s.t. for more than one
value i, val+i (C) (val−i (C), resp.) differs after a random forward (backward,
resp.) assignment in {P} from before the assignment;

– BadInvP: some chain C extends after a random assignment in {P} with the
opposite direction, i.e. ∃C ∈ CH s.t. for some value i, val+i (C) (val−i (C),
resp.) differs after a random backward (forward, resp.) assignment in {P}
from before the assignment;

– BadMidP: a random assignment in P7, P8, or P9 creates a new 5-tuple (y6,
(x7, y7), (x8, y8), (x9, y9), x10) ∈ P−

6 × P7 × P8 × P9 × P+
10 such that y6 ⊕ x7 =

y8 ⊕ x9 and y7 ⊕ x8 = y9 ⊕ x10;
– BadlyCollide (a term from [CHK+14]): two chains C, D ∈ CH that are not

equivalent suddenly satisfies valδi (C) = valδi (D) after a random assignment.

The overall probability (the event BadLockMid included) cumulates to 213.4·q6

2n .

5 Note that if C = D then both yi = val−i (D) and yj = val−j (C).
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We call a pair of primitive (E,P) a good Σ2-tuple if none of the bad events

above (BadLockMid included) happens during the execution DΣ2(Ẽ
E,S̃ẼE,P), and

call DΣ2 with good Σ2-tuples good Σ2 executions. During good Σ2 executions,
S̃ never aborts due to calls to ForceVal(xi, yi,+, i)/ForceVal(xi, yi,−, i), as
otherwise BadHitAdapt happens. We then proceed to argue that S̃ never aborts
due to calls to ForceVal(xl, yl,⊥, l) (i.e. adaptations: l ∈ {4, 12}), to complete
the non-abortion argument.

Lemma 2. In a good execution D
Σ2 , before any call to ForceVal(xl, yl,⊥, l)

(l ∈ {4, 12}), xl /∈ P+
l ∧ yl /∈ P−

l must hold.

Proof. The proof flow is very similar to [CHK+14], while some ideas slightly
deviate. Let’s sketch the flow: wlog consider a call ForceVal(x4, y4,⊥, 4), and
suppose that it is made during an execution of Complete(C, 4). We argue that
val+4 (C) /∈ P+

4 right before the call to ForceVal(x4, y4,⊥, 4), and the argument
for val−4 (C) /∈ P−

4 is similar by symmetry. The ideas are as follows:
First, before C is enqueued, val+3 (C) = ⊥ (this implies val+4 (C) = ⊥ /∈ P+

4 ):
if C = (y0, k1, k2, 0) is enqueued by InnerP(2,+, x2), then val+3 (C) = ⊥ is clear;
if C = (y7, k1, k2, 7) is enqueued by InnerP(6,−, y6), then if val+3 (C) �= ⊥,
a chain (y0, k1, k2, 0) equivalent to C must have been previously enqueued and
completed due to the call to InnerP(2,+, val+2 (C)), and C would have been
in CompletedSet when C is dequeued, as a consequence the purported call to
ForceVal(x4, y4,⊥, 4) would not happen.

Second, if val+4 (C) ∈ P+
4 when C is dequeued, it can only be that for another

chain D enqueued before C is enqueued and dequeued after C is enqueued, it
holds val+4 (D) = val+4 (C) �= ⊥ so that val+4 (C) was added to P+

4 during D’s
completion.

Then, we argue that val+4 (D) = val+4 (C) �= ⊥ is not possible for any such
chain D, so that when C is dequeued, either val+4 (C) = ⊥, or val+4 (C) �= ⊥ ∧
val+4 (C) /∈ P+

4 . To argue about this, we exclude the possibility for each of the
following cases:

(i) if val+2 (C) �= val+2 (D) at some point, then val+3 (C) �= val+3 (D). Otherwise,
consider the last assignment before val+3 (C) = val+3 (D) �= ⊥ holds. This
assignment happens earliest right before C is enqueued, at which point
both C and D have been in CH (by construction and definition). Then:
– it cannot have been in ES, otherwise BadE happens;
– it cannot have been a random backward assignment in {P}, otherwise

BadInvP happens;
– it cannot have been a random forward assignment in {P}, otherwise

BadlyCollide happens;
– it cannot have been due to a previous adaptation, since by construction,

when C is enqueued, all the chains in ChainQueue are to be adapted
at P4 which is the same as C, so that it cannot be that val+3 (C) = ⊥ or
val+3 (D) = ⊥ due to a missed entry in P12 which is later added by an
adaptation in this period.
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Then a similar discussion further establishes val+4 (C) �= val+4 (D);
(ii) if val+2 (C) = val+2 (D) �= ⊥ while val+3 (C) �= val+3 (D) at some point, then

similarly to Case (i), val+4 (C) �= val+4 (D) will hold;
(iii) if val+2 (C) = val+2 (D) �= ⊥ and val+3 (C) = val+3 (D) �= ⊥, then val+4 (C) �=

val+4 (D) otherwise C ≡ D and C ∈ CompletedSet when C is dequeued.

Finally, after C is dequeued, if val+4 (C) = ⊥, then since ¬BadP, it can only be
changed non-empty by a random forward assignment in P3 which occurs during
the completion of C, after which val+4 (C) /∈ P+

4 . These complete the proof. �


The Rest Part. During DΣ2 , if S̃ does not abort, then the answers are consistent
with some Σ3 executions. By a randomness mapping argument [CHK+14], the
advantage of D in distinguishing Σ2 and Σ3 is bounded.

Lemma 3. For any distinguisher D which issues at most q queries, it holds:

∣
∣
∣Pr[DΣ3(IDEM15,P) = 1] − Pr[DΣ2(Ẽ,S̃) = 1]

∣
∣
∣ ≤ 214 · q6

2n
.

4 Seq-indifferentiability for 7-Round IDEM

According to [LS13,ABD+13], there is a seq-distinguisher for SEM3. Consider
IDEM6. If we fix the key k2 to an arbitrary value, then the construction is
reduced to a 3-round single-key Even-Mansour. By this, a seq-distinguisher for
IDEM6 is easily obtained.

It is natural to ask whether the additional n-bit key offers more freedom to
the adversary and enable to attack more than this trivial 2 × 3 rounds. The
second main result – also the main theorem of this section – provides a negative
answer, and is as follows:

Theorem 2. The 7-round Even-Mansour cipher IDEM7 from seven indepen-
dent random permutations P = (P1, . . . ,P7) and two n-bit keys (k1, k2) alter-
natively xored is strongly and statistically (q, σ, t, ε)-seq-indifferentiable from E,
where σ = q3, t = O(q3), and ε ≤ 27q6

2n = O( q6

2n ).

Proof. The proof is much simpler than that of Theorem1, since there is no
recursive chain completion. In the following, we first present the simulator, then
sketch the proof. The full proof is deferred to the full version [GL15b].

Simulator for IDEM 7. To make a distinction from the notations used in Sect. 3,
we denote by SE,P the simulator for IDEM7 with access to E and P. Similarly to
SE,P, SE,P also offers an interface P(i, δ, z) where (i, δ, z) ∈ {1, . . . , 7}×{+,−}×
{0, 1}n and maintains a set Pi for each i to keep the already defined pairs of IO.
The other notations P+

i , P−
i , and |Pi| are all similar to those introduced in the

context of IDEM15. SE,P uses an additional set ES to maintain the history of
its queries to E, which is similar to the set of ẼE introduced in Sect. 3. We also
use the notations ES+, ES−, and |ES| similar to Sect. 3.
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Upon a query to SE,P.P(i, δ, z), SE,P calls an inner procedure SE,P.Pin,
and SE,P.Pin answers with P δ

i (z) if x ∈ P δ
i , or queries P.P(i, δ, z) to obtain the

answer z′ and adds z and z′ to Pi if z′ /∈ P δ
i while aborts otherwise.

The chain completing mechanism of SE,P is much simpler than that of SE,P,
and is somehow close to that appeared in [CS15]: SE,P completes the potential
partial chains upon receiving a new query SE,P.P(i, δ, x) with i ∈ {3, 4, 5}.
More clearly, when the query is of the form SE,P.P(3,+, x), SE,P.P(4,−, y), or
SE,P.P(5,+, x), SE,P considers all newly created tuples (x3, x4, x5) ∈ P+

3 ×P+
4 ×

P+
5 , and computes k1 := P+

4 (x4) ⊕ x5, k2 := P+
3 (x3) ⊕ x4. SE,P then evaluates

in IDEM7 both backward and forward until obtaining the corresponding y7 and
x7, that is, computing the following values by calling SE,P.Pin and querying
E, in the order: (1) y2 := x3 ⊕ k1; (2) y1 := SE,P.Pin(2,−, y2) ⊕ k2; (3) y0 :=
SE,P.Pin(1,−, y1)⊕k1; (4) y7 := E.E(+, (k1, k2), y0)⊕k2; (5) x6 := P+

5 (x5)⊕k2;
(6) x7 := SE,P.Pin(6,+, x6) ⊕ k1. SE,P finally aborts if x7 ∈ P+

7 or y7 ∈ P−
7 ,

otherwise adds (x7, y7) to P7 as a newly defined pair of IO.
When the query is SE,P.P(3,−, y), SE,P.P(4,+, x), or SE,P.P(5,−, y), SE,P

considers all newly created tuples (x3, x4, x5) ∈ P+
3 × P+

4 × P+
5 , computes k1

and k2, evaluates in IDEM7 both forward and backward until obtaining the
corresponding x1 and y1, and finally adds (x1, y1) to P1 or aborts if x1 ∈ P+

1 or
y1 ∈ P−

1 . The strategy is illustrated in Fig. 1 (right).
To simplify the reasoning, we introduce a modified simulator T E,P, which is

obtained by embedding two early abort conditions into SE,P:

(i) when a chain C is to be adapted at P1 (P7, resp.), right after the assign-
ment (lines 13 or 16 in the code below) inside the call to Pin which led
to C being detected, if the value y2 (x6, resp.) corresponding to C has
been in P−

2 (P+
6 , resp.), then T aborts. This is captured by the procedure

CheckFreeBuffer;
(ii) right after an assignment in P3, P4, or P5 (lines 13/16), T aborts if the assign-

ment creates a “lock” in the middle three rounds: for (i, j) ∈ {(3, 4), (4, 5)},
if ∃(xi, yi), (x′

i, y
′
i) ∈ Pi and (xj , yj), (x′

j , y
′
j) ∈ Pj such that xi ⊕ yj = x′

i ⊕ y′
j

and yi ⊕ xj = y′
i ⊕ x′

j . This is captured by the procedure CheckLock. This
situation is harmful for the procedure CompChain in some cases.

With all the above in mind, we have the pseudocode of S and T as follows. Note
that the underlined lines only exist in T (say, S does not early abort).

Intermediate System Σ′
2. Denote by Σ′

1(E,SE,P) the simulated system, and by
Σ′

3(IDEMP
7 ,P) the real system. As a quite standard first step, we introduce

an intermediate system Σ′
2(IDEMT E,P

7 , T E,P), in which the cipher IDEM7 calls
the interfaces of T to compute (as done in [MPS12,CS15]). The three systems
involved in this proof are depicted in Fig. 3.

Complexity of S/T . By construction, for i ∈ {3, 4, 5}, |Pi| can be enlarged by at
most 1 only if S/T receives a query P(i, δ, ·). Hence for any seq-distinguisher D
of total oracle query cost at most q, S/T completes at most |P3| · |P4| · |P5| ≤ q3

chains, and queries E at most q3 times (say, |ES| ≤ q3).
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1: Simulator SE,P: Simulator T E,P:
2: Variables: Sets {P} = {P1, . . . , P7} and ES, initially empty
3: public procedure P(i, δ, z)
4: return Pin(i, δ, z)
5: private procedure Pin(i, δ, z)
6: if z /∈ P δ

i then
7: z′ := P.P(i, δ, z)

8: if z′ ∈ P δ
i then // when i = 1, 7

9: abort
10: CheckFreeBuffer(i, δ, z′)
11: if δ = + then
12: CheckLock(i, z, z′)
13: Pi := Pi ∪ {(z, z′)}
14: else // δ = −
15: CheckLock(i, z′, z)

16: Pi := Pi ∪ {(z′, z)}
17: if i = 3 ∧ δ = + then
18: forall (x4, x5) ∈ P+

4 × P+
5 do

19: CompChain(z, x4, x5, 3, 7)

20: else if i = 4 ∧ δ = + then
21: forall (x3, x5) ∈ P+

3 × P+
5 do

22: CompChain(x3, z, x5, 4, 1)
23: else if i = 5 ∧ δ = + then
24: forall (x3, x4) ∈ P+

3 × P+
4 do

25: CompChain(x3, x4, z, 5, 7)
26: else if i = 3 ∧ δ = − then
27: forall (x4, x5) ∈ P+

4 × P+
5 do

28: CompChain(z′, x4, x5, 3, 1)
29: else if i = 4 ∧ δ = − then
30: forall (x3, x5) ∈ P+

3 × P+
5 do

31: CompChain(x3, z
′, x5, 4, 7)

32: else if i = 5 ∧ δ = − then
33: forall (x3, x4) ∈ P+

3 × P+
4 do

34: CompChain(x3, x4, z
′, 5, 1)

35: return P δ
i (z)

36: private procedure CompChain(x3, x4, x5, i, l)
37: k1 := P+

4 (x4) ⊕ x5

38: k2 := P+
3 (x3) ⊕ x4

39: if l = 1 then
40: x6 := P+

5 (x5) ⊕ k2

41: x7 := Pin(6, +, x6) ⊕ k1

42: x8 := Pin(7, +, x7) ⊕ k2

43: y0 := E.E(−, (k1, k2), x8)
44: ES := ES ∪ {(y0, x8, (k1, k2))}
45: x1 := y0 ⊕ k1

46: y2 := x3 ⊕ k1

47: y1 := Pin(2, −, y2) ⊕ k2

48: if x1 ∈ P+
1 ∨ y1 ∈ P −

1 then
49: abort

50: P1 := P1 ∪ {(x1, y1)}
51: else // l = 7
52: y2 := x3 ⊕ k1

53: y1 := Pin(2, −, y2) ⊕ k2

54: y0 := Pin(1, −, y1) ⊕ k1

55: x8 := E.E(+, (k1, k2), y0)
56: ES := ES ∪ {(y0, x8, (k1, k2))}
57: y7 := x8 ⊕ k2

58: x6 := P+
5 (x5) ⊕ k2

59: x7 := Pin(6, +, x6) ⊕ k1

60: if x7 ∈ P+
7 ∨ y7 ∈ P −

7 then
61: abort
62: P7 := P7 ∪ {(x7, y7)}

63: private procedure CheckFreeBuffer(i, δ, z′)
64: if (i, δ) = (3, +) ∧ ∃(x4, y5) ∈ P+

4 × P −
5 s.t. z′ ⊕ x4 ⊕ y5 ∈ P+

6 then
65: abort
66: else if (i, δ) = (4, +) ∧ ∃(x3, x5) ∈ P+

3 × P+
5 s.t. x3 ⊕ z′ ⊕ x5 ∈ P −

2 then
67: abort
68: else if (i, δ) = (5, +) ∧ ∃(y3, x4) ∈ P −

3 × P+
4 s.t. y3 ⊕ x4 ⊕ z′ ∈ P+

6 then
69: abort
70: else if (i, δ) = (3, −) ∧ ∃(y4, x5) ∈ P −

4 × P+
5 s.t. z′ ⊕ y4 ⊕ x5 ∈ P −

2 then
71: abort
72: else if (i, δ) = (4, −) ∧ ∃(y3, y5) ∈ P −

3 × P −
5 s.t. y3 ⊕ z′ ⊕ y5 ∈ P+

6 then
73: abort
74: else if (i, δ) = (5, −) ∧ ∃(x3, y4) ∈ P+

3 × P −
4 s.t. x3 ⊕ y4 ⊕ z′ ∈ P −

2 then
75: abort
76: private procedure CheckLock(i, x, y)
77: if i = 3 ∧ ∃((x3, y3), (x4, y4), (x

′
4, y

′
4)) ∈ P3 × P4 × P4
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78: s.t. x ⊕ y′
4 = x3 ⊕ y4 ∧ y ⊕ x′

4 = y3 ⊕ x4 then abort
79: if i = 5 ∧ ∃((x5, y5), (x4, y4), (x

′
4, y

′
4)) ∈ P5 × P4 × P4

80: s.t. x4 ⊕ y5 = x′
4 ⊕ y ∧ y4 ⊕ x5 = y′

4 ⊕ x then abort
81: if i = 4 ∧ ∃((x3, y3), (x

′
3, y

′
3), (x4, y4)) ∈ P3 × P3 × P4

82: s.t. x3 ⊕ y4 = x′
3 ⊕ y ∧ y3 ⊕ x4 = y′

3 ⊕ x then abort
83: if i = 4 ∧ ∃((x5, y5), (x

′
5, y

′
5), (x4, y4)) ∈ P5 × P5 × P4

84: s.t. x4 ⊕ y5 = x ⊕ y′
5 ∧ y4 ⊕ x5 = y ⊕ x′

5 then abort

D

0/1

Σ1 Σ2

E
Σ3

E S IDEM7 T

P

D

0/1

IDEM7 P

D

0/1

12 2 1 2 1

P

3 3 3

Fig. 3. Systems used in the seq-indifferentiability proof for IDEM7. The number in red
and italic illustrates the order of the queries/actions (of the sequential distinguisher)
(Color figure online).

The running time of S is clearly dominated by the executions of CompChain,
the number of which is O(q3). Therefore, S runs in time O(q3).

Indistinguishability of Outputs. We first upper bound the abort probability of
T . Consider the two early abort conditions first:

(i) The overall probability that T aborts during CheckFreeBuffer is at most
2q6

2n−q ;

(ii) The overall probability that T aborts during CheckLock is at most 2q4

2n−q ;

Then the two types of main abortions of T are as follows:

(i) a random answer from P1 or P7 collides with a previously added adapted
value. The overall probability is at most 4q6

2n−2q3 ;

(ii) T aborts due to adaptations. The overall probability is at most 5q6

2n−2q3 ; this
is obtained by carefully analyzing each case. A key point is that the buffer
rounds ensure that any two chains completed during the same call to Pin

will diverge at the adaptation round – the case is slightly similar to IDEM15.

These cumulate to 26q6

2n (assuming q3 < 2n

4 ). For a tuple (E,P), if T does not

abort in Σ′
2(IDEMT E,P

7 , T E,P), then S does not abort in Σ′
1(E,SE,P); and then

the final bound 27q6

2n = 26q6

2n + q6

2n is obtained by a randomness mapping argument,
where the statistical distance q6

2n is due to |ES| ≤ q3 random values from E. �
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5 Conclusion

As a first step towards understanding the security of iterated Even-Mansour with
key-length larger than the block-size, this work analyzes (seq-)indifferentiability
of Even-Mansour with two independent round-keys alternatively xored, and
proves that 7 rounds is necessary and sufficient to achieve sequential indiffer-
entiability while 15 rounds is sufficient to achieve full indifferentiability.
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Abstract. In the past few years, lightweight cryptography has become
a popular research discipline with a number of ciphers and hash func-
tions proposed. The designers’ focus has been predominantly to mini-
mize the hardware area, while other goals such as low latency have been
addressed rather recently only. However, the optimization goal of low
energy for block cipher design has not been explicitly addressed so far.
At the same time, it is a crucial measure of goodness for an algorithm.
Indeed, a cipher optimized with respect to energy has wide applications,
especially in constrained environments running on a tight power/energy
budget such as medical implants.

This paper presents the block cipher Midori (The name of the cipher
is the Japanese translation for the word Green.) that is optimized with
respect to the energy consumed by the circuit per bt in encryption or
decryption operation. We deliberate on the design choices that lead to
low energy consumption in an electrical circuit, and try to optimize each
component of the circuit as well as its entire architecture for energy.
An added motivation is to make both encryption and decryption func-
tionalities available by small tweak in the circuit that would not incur
significant area or energy overheads. We propose two energy-efficient
block ciphers Midori128 and Midori64 with block sizes equal to 128 and
64 bits respectively. These ciphers have the added property that a circuit
that provides both the functionalities of encryption and decryption can
be designed with very little overhead in terms of area and energy. We
compare our results with other ciphers with similar characteristics: it
was found that the energy consumptions of Midori64 and Midori128 are
by far better when compared ciphers like PRINCE and NOEKEON.

Keywords: Lightweight block cipher · Low energy circuits

1 Introduction

The field of lightweight cryptography has gone into overdrive as evident from the
number of cipher proposals that have emerged in the past few years, like CLEFIA
c© International Association for Cryptologic Research 2015
T. Iwata and J.H. Cheon (Eds.): ASIACRYPT 2015, Part II, LNCS 9453, pp. 411–436, 2015.
DOI: 10.1007/978-3-662-48800-3 17
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[32], KATAN [13], KLEIN [18], LED [19], PRESENT [11], Piccolo [31], PRINCE [12],
SIMON/SPECK [6] to name a few. However, the Advanced Encryption Standard
(AES) [16] still remains the de-facto standard when it comes to practical light-
weight encryption. The past few years have seen several low-power/area archi-
tectures for AES being reported in literature [17,27,30]. However, there has been
little work that goes on to determine the design choices that lead to the most
energy-efficient architecture. There are many parameters that contribute to the
efficiency of a given lightweight design, with area, power, throughput and energy
being the foremost among them. Power and energy, are correlated parameters,
as energy is essentially the time integral of power, and power is equivalent to
the energy consumed per unit time or simply the rate of energy consumption.
Energy consumption, thus, is a measure of the total work done by voltage source
during the execution of an operation. Hence, in many ways, energy rather than
power may be a more relevant parameter to measure the efficiency of a design.
Serial architectures of any block cipher that reduce the width of the datapath
and reuse components, have a smaller power footprint than round based imple-
mentations in which the data path is equal to the block length of the cipher.
However, serial implementations usually have high latency, that is, they take
much longer to compute the result of an encryption operation than their round
based counterparts, and as a result may end up consuming more energy. There-
fore, there is no guarantee that low power architectures would necessarily lead
to low energy architectures and vice versa.

In [5,21], an evaluation of several lightweight block ciphers with respect to
various hardware performance metrics, with a particular focus on the energy cost
was done. A formal model for energy consumption in any r-round unrolled block
cipher architecture was proposed in [3]. However these papers do not specifically
outline design choices that lead to energy-efficient designs.

1.1 Our Contributions

In this paper, we at first try to identify design choices that are energy-efficient
and the related tradeoffs that are involved as a result of it. We throw some
light at the design considerations that govern low energy circuits, and look at
several factors like clock frequency, architecture, loop unrolling and lay down
some general thumb rules that help in optimizing for energy. Then, we choose
components specifically tailored to meet the requirements of low energy design.
In particular, we develop energy-efficient linear layers and non-linear layers.

We use 4 × 4 almost MDS binary matrices which are more efficient than
4 × 4 MDS matrices in the terms of area and signal-delay. Note that the branch
numbers (the smallest nonzero sum of active inputs and outputs of the matrix)
of MDS and almost MDS matrices are 5 and 4, respectively. However, due to
a smaller branch number, ciphers employing almost MDS matrices are likely
to require the more number of rounds to guarantee its security against several
attacks. To address this issue, we propose optimal cell-permutation layers which
are aimed at improving diffusion speed and increasing the numbers of active
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S-boxes in each round with low implementation overheads. Our optimal cell-
permutations drastically improve the minimum number of differentially/linearly
active S-boxes in each round, and achieve faster diffusion compared to ShiftRow-
type permutation. We construct a lightweight and small-delay 4-bit S-box by
focusing on the dependency of the computation in S-boxes. The signal delay in
our S-boxes is 1.5 times and twice faster than those of PRINCE and PRESENT,
respectively. Since the S-box layer is one of the most critical and expensive
operations of the cipher, our new S-boxes sufficiently contribute to low energy
consumptions.

Combining those new constructions, we design a family of low energy block
ciphers Midori which is composed of two variants: Midori64 and Midori128. These
provide the functionality for both encryption and decryption with minimal area
and energy overhead. The two variants support a 128-bit secret key and a 64/128-
bit block, respectively. Security wise, Midori64 and Midori128 do not claim
related, known and chosen-key security as it is not relevant in our target applica-
tion. Using the STM 90 nm standard cell library, both these ciphers consume less
than 1.89 pJ/bit encrypted, which is by far better when compared ciphers like
PRINCE and NOEKEON [16]. These ciphers are particularly useful for applications
that run on tight energy budget, e.g. active RFID tags, sensor nodes, medical
implants and battery operated portable devices.

1.2 Organization of the Paper

In Sect. 2, we look at some design considerations that help to minimize energy
consumption in block cipher circuits. In Sect. 3, we outline the algorithmic spec-
ifications of the Midori128 and Midori64 ciphers. In Sect. 4, we explain our design
decisions vis-a-vis the observations of Sect. 2. In Sect. 5, we outline the security
analysis of the ciphers. Section 6 contains implementation results of our cipher
in hardware using the standard cell library of the STM 90 nm logic process.
Section 7 concludes the paper.

2 Design Considerations for Low Energy

For any given block cipher, three factors are likely to play a dominant role in
determining the quantity of energy dissipated in the circuit:

(a) Frequency of the Clock used to drive the circuit,
(b) Architecture of the individual components,
(c) Unrolling round functions in the circuit.

We will try to understand the significance of each of these parameters in the
context of energy consumption. Let us start with clock frequency. Two compo-
nents characterize the amount of energy dissipated in a CMOS circuit :
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– Dynamic dissipation due to the charging and discharging of load capacitances
and the short-circuit current,

– Static dissipation due to leakage current and other current drawn continuously
from the power supply.

The total energy dissipation for a CMOS gate can be written as

Egate = Eload + Esc + Eleakage

The quantity Eload is the energy dissipated for charging and discharging
the capacitive load CL of a gate when output transitions occur. The energy
dissipated per 0 → 1/1 → 0 transition is given as

E =
∫ t

0

vi dt =
∫ t

0

vCL
dv

dt
dt = CL

∫ VDD

0

vdv =
1
2
CLV 2

DD.

The energy due to the short-circuit current, Esc is dissipated in a CMOS gate,
when during a transition both the n and the p-transistors are on for a short
period of time. The energy due to leakage currents Eleakage is rather small,
and is mainly caused due to the sub-threshold leakage current, which is the
drain-source current in a CMOS gate when the transistor is OFF. This figure
is becoming increasingly important as the technology is scaling down making
the sub-threshold leakage more significant. However as pointed out in [3,21],
the effect of the leakage energy at high clock frequencies is minimal. As such,
energy becomes a metric which is a measure of the total switching activity of
a circuit during the process. For sufficiently high frequencies, the energy con-
sumption required to compute an encryption/decryption operation is essentially
independent of frequency of operation. In our experiments, for circuits imple-
mented using the standard cell library based on the STM 90 nm low leakage
process, at frequencies higher than 1 MHz, leakage energy is usually less than
1 % of the total energy dissipated in the circuit.

To understand the significance of the other parameters we performed the
following experiments. Consider a case in which two Rijndael S-boxes are placed
one after the other in a circuit as shown in Fig. 1. The signals to the input of
the first S-box, the second S-box, and the output of the 2nd S-box are named
S1xD, S2xD and S3xD respectively. Note that, analyzing this situation is particu-
larly useful for understanding the energy consumption trends of unrolled designs
where logic blocks are placed sequentially one after the other.

Let us assume that the signal S1xD comes from an 8-bit register, so that it
“cleanly” switches between successive byte values, i.e. all the bits of S1xD make
logic transitions at the same point of time which is usually the rising clock edge

Fig. 1. S-boxes placed sequentially
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0 τd 2τd

Total Time Range: 199742 - 204426 Page 1 of 1

# Desig. Signal Value Time: 199742 - 204426 X 1PS (C1: 2017812REF)

200000 201000 202000 203000 204000

SG Group 1

001 Sim S1xD [7:0] 8′hbb 70 bb

002 Sim S2xD [7:0] 8′hea 51 e5 65 ea

003 Sim S3xD [7:0] 8′h87 d1 6d ba 87

Fig. 2. The signals S1xD, S2xD, S3xD

for synchronous circuits. The signal S2xD will switch between various values in
a given time interval 0 → τd, before settling down to a stable value. The value
τd which is the delay experienced by the signal S1xD usually depends on the
cell library and the architecture adopted to implement the S-boxes. Another
parameter dependent on the logic process and architecture of the S-box is the
switching activity of S2xD which can be informally defined as the number of
logic transitions made by this signal in the period 0 → τd.

The second S-box S2, sees this signal S2xD, which is switching between var-
ious values in the time interval 0 → τd. Therefore, the switching activity of S2

is actually at least double that of S1, as it would continue switching for another
τd before producing a stable signal. Figure 2 provides an example in which, the
three signals for the pair of Rijndael S-boxes (implemented using the Canright
[14] architecture in the standard cell library of the STM 90 nm logic process, at
10 MHz) are shown. The synthesis for each S-box was done separately, so that
the synthesis tool would not group together gates from the first and the sec-
ond S-box in order to save area. Since the energy consumption of a logic block
depends on the switching activity of all its nodes, the S-box S2 should naturally
consume more energy than S1. Again the exact energy consumed by S2 relative
to S1 depends on factors like

(a) the logic process and hence the value of τd,
(b) the architecture of the S-box and hence the amount of “extra” switching

experienced by S2 and
(c) the algebraic structure of the S-box, i.e. its component Boolean functions.

The extra switching activity would be proportional to the average number of
gates that undergo a 0 → 1/1 → 0 transition during the period τd → 2τd

(the average is typically taken over all possible transitions of the signal S1xD).
Similarly if a third S-box S3 were placed after S2, then too it would experience an
increase in switching activity relative to S2 that would depend on the average
number of gates switched in the period 2τd → 3τd. The increase in switching
activity of S3 over S2 is likely to be roughly the same as that of S2 over S1,
since the number of gates in S2 that switch in τd → 2τd and those in S3 between
2τd → 3τd when averaged over

(
256
2

)
transitions of S1xD, is likely to be same.

And so if it so happens that S1, S2 and S3 drive the same amount of capacitive
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load, the difference between the energy consumed between S2 and S1 is likely to
be the same as between S3 and S2.

Taking these ideas forward, if we connect a series of n S-boxes sequentially,
the energy consumed by each S-box in a given period of time is likely to be more
than the previous S-box, as the switching activity of the S-boxes are likely to
increase from the first to the last. We tested three different architectures for the
Rijndael S-box. The first is the Canright [14] architecture which is acknowledged
to be smallest known implementation in terms of gate area. The second is the
Look-up Table (LUT) based architecture as synthesized by the Synopsys Design
Compiler. The LUT architecture, while larger than the Canright architecture in
terms of area, is much faster in terms of signal delay from the input to output
port. The third is a Decoder-Switch-Encoder (DSE) based architecture [7], which
is optimal in terms of power/energy consumption. Over the years there has
been much research on low power Rijndael S-boxes [28,34], but the DSE based
architecture is widely believed to be most power/energy-efficient on account of its
unique architecture. The 8-bit input is first decoded to a set of 256 wires. The
S-box functionality is achieved by a shuffling of wires after which the output
is produced by an encoding of the 256 shuffled wires (i.e. the inverse of the
decoding process). The entire circuit can be constructed by AND/NAND gates,
which have very low switching probability and since the S-box functionality is
provided by wire shuffling, all 8-bit S-boxes can be constructed in this manner.
The architecture offers very low switching per change of input bit: a maximum
of 25 % of the gates switch when one of the input bits is flipped.

We connected 10 instances of the S-box constructed using the Canright archi-
tecture (using the standard cell library of the STM 90 nm logic process) sequen-
tially and used the Synopsys Power Compiler to estimate the energy consumed
per clock cycle Ei in each of the successive S-boxes Si at a clock frequency of
10 MHz. We repeated the same experiment for the LUT and DSE based S-boxes.
The results can be seen in Fig. 3. It can be seen that the successive instances of
the LUT based S-box which has a delay of around 2.1 ns consumes much less
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energy as compared to the Canright S-box which has a delay of around 2.9 ns. In
both the LUT and Canright architectures, the switching activity in the circuit is
roughly proportional to the signal delay across the input and output ports. This
is however not the case for DSE S-box, which although has a delay of around
2.3 ns, experiences much lower increase in successive values of Ei because the
total switching activity in the delay period is much lower.

The above analysis is particularly relevant due to two reasons. The first
pertains to the structure of especially SPN based ciphers, in which each round
typically consists of a substitution, a linear layer and a key addition placed
sequentially. A substitution layer with low switching activity and signal delay
ensures that the linear layer consumes less energy. Similarly a linear layer with
similar characteristics ensures that any circuit placed after it consumes less
energy. The second pertains to the consideration of round unrolled circuits. An r-
round unrolled circuit for a block cipher is one in which, the circuit computes the
results of r successive round functions in a single clock cycle. So if the block cipher
specification calls for N executions of the round function, an r-round unrolled
circuit will compute the result of the encryption operation in

⌈
N
r

⌉
cycles. An

r-round unrolled architecture is constructed by placing the circuits for r round
functions sequentially, followed by a register. The above analysis suggests that
any multiple round unrolled circuit is unlikely to be efficient in terms of energy
consumption. In the above example, using the LUT based S-box, computing the
result of two S-box operations (i.e. S(S(x))) over 2 cycles costs 2 ∗ 1.88 = 3.76
pJ . Computing the same over one cycle by sequential placement of 2 S-boxes
will cost 1.88 + 3.91 = 5.79 pJ . Similarly computing three S-box operations
over three cycles takes 5.64 pJ , whereas the same over one cycle would take
1.88 + 3.91 + 6.40 = 12.39 pJ . Figure 4 shows the cumulative energy cost Ωn of
computing S10(x) using a sequence of n S-boxes (i.e. in 10

n cycles), for different
values of n. It can be seen that, irrespective of the architecture of the S-box, the
energy consumption is optimal for n = 1, i.e. computing the operation over 10
cycles using a single S-box, even if this involves updating the register 10 times
in the process.

2.1 S-Box: 4-Bit Vs 8-Bit

In light of the above analysis, it is clear that a design using a 4-bit S-box is
more efficient in terms of energy consumed per cycle than a design using an
8-bit S-box. This is primarily due to the fact that a 4-bit S-box will typically
have a lower signal delay as compared to an 8-bit S-box. However 8-bit S-boxes
offer higher non-linearity and lower values of the DP/LP co-efficient, and so in
order to sustain similar security margins, a design using a 4-bit S-box will typi-
cally need more executions of the round function. To put things, in perspective
we performed the energy evaluation of the circuit of the SPN round function
(with blocksize equal to 128 bits) in which we experimented with two differ-
ent substitution layers, one having sixteen 8-bit S-boxes and the other having
thirty two 4-bit S-boxes. The Rijndael MixColumn was used in both cases, and
the STM 90 nm cell library was used to synthesize the circuits. For this purpose
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Table 1. A comparison of energy per cycle for round functions constructed with (A)
16 8-bit S-boxes, (B) 32 4-bit S-boxes.

S-box Delay in S Energy per cycle

(ns) (pJ)

A DSE (8-bit) 2.25 14.00

Rijndael(LUT) 2.10 38.88

mCrypton 1.59 13.20

Whirlpool 1.33 16.38

B DSE (4-bit) 0.81 7.92

PRINCE 0.36 4.87

PRESENT 0.45 6.18

four different 8-bit S-boxes were chosen. Apart from the LUT and DSE based
Rijndael S-boxes, we chose the S-boxes used in mCrypton [24] and Whirlpool
[4]. Unlike AES, these S-boxes can be functionally defined in terms of smaller
4-bit S-boxes, and so can be implemented efficiently in hardware. Additionally
we chose three 4-bit S-boxes: the generic DSE based S-box (note that since the
S-box functionality is provided by a wire shuffle, all DSE S-boxes will have same
energy consumption), and the S-boxes used in PRINCE [12] and PRESENT [11].

Table 1 reports the energy per cycle figures at a frequency of 10 MHz. It can
be seen that the DSE architecture is not as effective as energy saving measure
for 4-bit S-boxes. It is also interesting to note that from the point of view of
energy 4-bit S-boxes out performs their 8-bit counterparts by a ratio of around
2:1. Thus, the use of 4-bit S-boxes seems to be an efficient configuration even if
the number of rounds in the encryption algorithm has to be increased in order
to maintain security margins.

2.2 Feistel Vs SPN and Complex Vs Simple Round Function

As far as designing lightweight ciphers is concerned, both SPN and Feistel archi-
tectures have their respective advantages and disadvantages. Feistel structures
(e.g. TWINE [33], Piccolo [31], SIMON [6]) usually apply a round function to
only one half of the state and as such structures can be implemented in hardware
with low average power. Also, implementing the inverse of Feistel constructions
is not very difficult and hence a circuit that provides functionalities for both
encryption and decryption can be designed with minimal overhead. However,
given the fact that Feistel structures introduce non-linearity in only one half
of the state in every round and hence, to maintain security margins, such con-
structions usually require more executions of the round functions as compared
to SPN structures. As such Feistel, constructions are not suited for low latency
implementations. Most SPN constructions, on the other hand, usually apply its
transformation function to the entire state and so can be implemented using
fewer rounds. In principle, if n rounds of SPN function and m rounds of Feis-
tel function (where m > n) have the same security margin and similar energy
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expenditure, then using the n round SPN function makes more sense since lesser
energy is consumed to update the state and key register for n rounds. A similar
argument can be used to resolve the choice between (a) Simple round functions
with more rounds (e.g. PRESENT [11]) and (b) Complex round functions with
lesser rounds.

2.3 Effect of Key Schedule

Generating separate round keys in each round by means of a key schedule oper-
ation can eat into the energy budget as it incurs the added cost of updating
the key register in every round. For example using the STM 90 nm standard cell
library, in AES (with DSE S-box), the key schedule consumes a total of 25 %
of the total energy consumed. For PRESENT, the key schedule consumes close to
32 % of the total energy. So designs meant primarily for low energy consumption,
designers should look to avoid the key schedule operation. This would also be
efficient in terms of area as it would not be necessary to include a key register
in the design.

2.4 Main Conclusion: Low-Energy Design Choices

We can now state some conclusions that will serve as pointers for a good low
energy block cipher design. From the point of view of energy, we know that a
round based architecture is usually optimal. Thus we concentrate on an effi-
cient round based construction that would with minimal overhead provide both
the functionalities of encryption and decryption. A cipher like PRINCE, although
provides both encryption/decryption functionalities with minimal tweak in the
circuit, does not have an equally energy-efficient round based construction [12],
as it needs to accommodate 3 different round functions in the same circuit.
We have also seen that components with low switching and delay tend to per-
form better energy wise. So another requirement is choosing components with
low area and delay. In this context, it makes sense to choose 4-bit S-boxes
over 8-bit S-boxes. We choose SPN architecture over Feistel to minimize the
number of rounds in the design. And since providing the functionalities of both
encryption and decryption is an added motivation, we try to include components
which in addition to having low area/delay, are also involutions. Having such
components would minimize any additional overhead required for providing the
functionalities of both encryption and decryption. We will now present the spec-
ifications for the proposed block cipher and in Sect. 4 we will explain the design
decisions in the context of the observations made in this Section.

3 Specification

Midori is a family of two block ciphers: Midori64 and Midori128. Both ciphers
accept 128-bit keys, and have a different block size n (n = 64 for Midori64 and
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Table 2. Parameters for Midori64 and Midori128

block size(n) key size cell size(m) number of rounds

Midori64 64 128 4 16

Midori128 128 128 8 20

n = 128 for Midori128). The basic parameters of Midori64 and Midori128 are
shown in Table 2.

Midori is a variant of a Substitution Permutation Network (SPN), which
consists of the S-layer and the P-layer, and uses the following 4 × 4 array called
state as a data expression:

S =

⎡

⎢
⎢
⎣

s0 s4 s8 s12

s1 s5 s9 s13

s2 s6 s10 s14

s3 s7 s11 s15

⎤

⎥
⎥
⎦,

where the sizes of each cell m are 4 and 8 bits for Midori64 and Midori128,
respectively, i.e., si ∈ {0, 1}m, m = 4 for Midori64 and m = 8 for Midori128.
A 64-bit or a 128-bit plaintext P is loaded into the state, and the i-th round
output state is defined as Si, namely S0 = P .

3.1 S-Boxes and Matrices

S-box: Midori utilizes two types of bijective 4-bit S-boxes, Sb0 and Sb1, where
Sb0, Sb1 : {0, 1}4 → {0, 1}4 (see Table 3). Sb0 and Sb1 are used in Midori64 and
Midori128, respectively. Note that Sb0 and Sb1 both have the involution property.

Midori128 utilizes four different 8-bit S-boxes SSb0, SSb1, SSb2 and SSb3,
where SSb0, SSb1, SSb2, SSb3 : {0, 1}8 → {0, 1}8 Mathematically, each SSbi

consists of input and output bit permutations and two Sb1’s as shown in Fig. 5.
Each output bit permutation is taken as the inverse of the corresponding input
bit permutation to keep the involution property. Let the input bit permutation
of each SSbi be referred to as pi. Let x[i] denote the i-th bit of x, where x[0] is
the most significant bit (MSB). Then denoting pi(x) = y(i), we have

y
(0)
[0,1,2,3,4,5,6,7] = x[4,1,6,3,0,5,2,7], y

(1)
[0,1,2,3,4,5,6,7] = x[1,6,7,0,5,2,3,4]

y
(2)
[0,1,2,3,4,5,6,7] = x[2,3,4,1,6,7,0,5], y

(3)
[0,1,2,3,4,5,6,7] = x[7,4,1,2,3,0,5,6]

Table 3. 4-bit bijective S-boxes Sb0 and Sb1 in hexadecimal form

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

Sb0[x] c a d 3 e b f 7 8 9 1 5 0 2 4 6

Sb1[x] 1 0 5 3 e 2 f 7 d a 9 b c 8 4 6
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The output permutation used in each SSbi is simply the inverse of the map pi.
Matrix: Midori utilizes an involutive binary matrix M defined as follows:

M =

⎛
⎜⎜⎝

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎞
⎟⎟⎠ .

The matrix M updates four m-bit values (x0, x1, x2, x3) as follows:

t(x0, x1, x2, x3) ← M · t(x0, x1, x2, x3),

where the operations between a matrix and a vector are performed over GF(2m).
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Fig. 5. SSb0, SSb1, SSb2 and SSb3

3.2 Round Function

The round function of Midori consists of an S-layer SubCell: {0, 1}n → {0, 1}n,
a P-layer ShuffleCell and MixColumn: {0, 1}n → {0, 1}n and a key-addition layer
KeyAdd: {0, 1}n × {0, 1}n → {0, 1}n. Each layer updates an n-bit state S as
follows.

SubCell (S): Sb0 and SSbi are applied to every 4 and 8-bit cell of the state S
of Midori64 and Midori128 in parallel, respectively. Namely, si ← Sb0[si] for
Midori64 and si ← SSb(i mod 4)[si] for Midori128, where 0 ≤ i ≤ 15.

ShuffleCell (S): Each cell of the state is permuted as follows:
(s0, s1, ..., s15) ← (s0, s10, s5, s15, s14, s4, s11, s1, s9, s3, s12, s6, s7, s13, s2, s8).

MixColumn (S): M is applied to every 4m-bit column of the state S, i.e.,
t(si, si+1, si+2, si+3) ← M t(si, si+1, si+2, si+3) and i = 0, 4, 8, 12.

KeyAdd (S, RKi): The i-th n-bit round key RKi is XORed to a state S.

3.3 Data Processing Part

The data processing part of Midori for encryption MidoriCore(R) performs as
follows:

MidoriCore(R) :
{{0, 1}16m × {0, 1}16m × {{0, 1}16m}R−1 → {0, 1}16m

(X,WK,RK0, ..., RKR−2) �→ Y
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Algorithm MidoriCore(R)(X, WK, RK0, ..., RKR−2) :
S ← KeyAdd(X, WK)
for i = 0 to R − 2 do

S ← SubCell(S)
S ← ShuffleCell(S)
S ← MixColumn(S)
S ← KeyAdd(S, RKi)

S ← SubCell(S)
Y ← KeyAdd(S, WK)

where R = 16 for Midori64 and R = 20 for Midori128. Similarly, the inverse
data processing part MidoriCore−1

(R) operates as follows:

MidoriCore−1
(R) :

{{0, 1}16m × {0, 1}16m × {{0, 1}16m}R−1 → {0, 1}16m

(Y,WK,RKR−2, ..., RK0) �→ X

Algorithm MidoriCore−1
(R)(Y, WK, RKR−2, ..., RK0) :

S ← KeyAdd(Y, WK)
for i = (R − 2) to 0 do

S ← SubCell(S)
S ← MixColumn(S)
S ← InvShuffleCell(S)
S ← KeyAdd(S, L−1(RKi))

S ← SubCell(S)
X ← KeyAdd(S, WK)

where L−1 (inverse of the linear layer) denotes the composition of the oper-
ations InvShuffleCell ◦ MixColumn, and InvShuffleCell permutes each cell of the
state as follows.

(s0, s1, ..., s15) ← (s0, s7, s14, s9, s5, s2, s11, s12, s15, s8, s1, s6, s10, s13, s4, s3).

3.4 Round Key Generation

For Midori64, a 128-bit secret key K is denoted as two 64-bit keys K0 and K1

as K = K0||K1. Then, WK = K0 ⊕ K1 and RKi = K(i mod 2) ⊕ αi, where
0 ≤ i ≤ 14. For Midori128, WK = K and RKi = K ⊕ βi, where 0 ≤ i ≤ 18. The
constants βi are defined in Table 4. It can be seen that the constants are in the
form of 4×4 binary matrices. They are added bitwise to the LSB of every round
key byte in Midori128 and round key nibble in Midori64 respectively. Note that
αi = βi for 0 ≤ i ≤ 14.

3.5 Midori Ciphers

Midori block ciphers are composed of two variants: Midori64 and Midori128 con-
sisting of MidoriCore(16) with m = 4 and MidoriCore(20) with m = 8, respectively.
MidoriCore(16) is depicted in Fig. 6 as an example.
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Table 4. The Round Constants βi

...
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Fig. 6. Overview of Midori64

4 Design Decision

Here, we explain our design decisions vis-a-vis the observations of Sect. 2.

4.1 Linear Layer

Linear layers of the each variant consist of a cell-permutation (ShuffleCell) and
four 4 × 4 matrix operations (MixColumn). Those operations are performed over
GF (24) and GF (28) for the 64 and 128-bit variants, respectively.

MDS Vs Almost MDS. Using the NanGate 45 nm open cell library, Table 5
compares three types of 4 × 4 matrices, involutive MDS (MA), non-involutive
MDS (MB) and involutive almost MDS matrices (MC) from implementation
aspects. These matrices are considered lightweight in each of the three afore-
mentioned criteria [26,31].

MA =

⎛
⎜⎜⎝

1 2 6 4
2 1 4 6
6 4 1 2
4 6 2 1

⎞
⎟⎟⎠,MB =

⎛
⎜⎜⎝

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

⎞
⎟⎟⎠,MC =

⎛
⎜⎜⎝

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎞
⎟⎟⎠.

From Table 5, MC is obviously preferable over the others in terms of the gate
size and the path delay. In fact, circulant-type almost MDS matrices are adopted



424 S. Banik et al.

Table 5. Comparison of three
matrices

MA MB MC

Area [GE] 108 104 48

Delay [ns] 0.93 0.68 0.37

Diffusion MDS MDS Almost MDS

Involution yes no yes

Table 6. Comparison of S-boxes

PRESENT PRINCE Sb0 Sb1

Area [GE ] 24.33 16 13.3 15.33

Delay [ns] 0.47 0.36 0.24 0.32

Involution No No Yes Yes

in PRINCE [12], PRIDE [1], FIDES [8] and CLOC [20]. Moreover, Khoo et al. showed
that, for a 64-bit block size employing the AES-like structure, the combination of
4 × 4 almost MDS matrices (M C) with ShiftRow and 16 4-bit S-boxes is the most
efficient in both a round-based and a serialized implementation by proposing a
new comparison metric FOAM (figure of adversarial merit), which combines the
inherent security provided by cryptographic structures and components along
with their implementation properties [22].

While MC has efficient implementation properties, its diffusion speed is
slower and the minimum number of active S-boxes in each round is smaller
than those of ciphers employing MDS matrices due to its lower branch number.
It has been known that those properties are directly related to the immunity
against several attacks including impossible differential, saturation, differential
and linear attacks. To improve security of the almost MDS with low imple-
mentation overheads, we adopt optimal cell-permutation layers which are aimed
at improving diffusion speed and increasing the number of active S-boxes in
each round. The diffusion speed is measured by the number of rounds taken to
attain full diffusion, which is the property that all output cells are affected by
all input cells. Importantly, changing cell-permutation patterns generally does
not require additional implementation costs in a round-based and an unrolled
hardware implementation.

Approach to Find Optimal Cell-Permutation Layers for Almost MDS.
Since it is computationally hard to exhaustively count the minimum number
of active S-boxes for all possible permutations (= 16! ≈ 244.25) by Matsui’s
search approach [9,25], we take the following two-step approach to reduce the
search space. In the fist step, we restrict the cell-permutations to row-based cell-
permutations which permute four cells in each row, e.g. ShiftRow in AES. The
number of possible row-based cell-permutations is estimated as 218.3 (= (4!)4).
This step is based on the fact that the full diffusion property relies on only row-
based property of the cell-permutation. As a result of our searches, we find that
a class of row-based cell-permutations achieves full diffusion in 3 rounds and its
necessary and sufficient condition is as follows.

Condition 1 (3-round full diffusion). For a 4 × 4 cell-array, after applying a
cell-permutation once and twice, each input cell in a column is mapped into a
cell in the different column.
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From our search, 576 row-based cell-permutations satisfy Condition 1. Interest-
ingly, ShiftRow-type permutation is not included in this class, i.e. it requires 4
rounds for full diffusion.

In the second step, we add a column-based cell-permutation, which permutes
four cells in each column, after applying the class of permutations satisfying
Condition 1. The target cell permutation consists of the combination of the
row-based and column-based permutations. Note that adding a column-based
cell-permutation to the row-based permutations satisfying Condition 1 does not
affect the full diffusion property. The number of all possible cell-permutations
of this class is estimated as 227.51 (= 576 × (4!)4). Consequently, we find a
class of cell-permutation achieving the largest number of active S-boxes in each
round and the smallest number of rounds to attain full diffusion when satisfying
Condition 1 and the following Condition 2 or 3.

Condition 2 (The number of active S-box). For a 4 × 4 cell-array, after apply-
ing a cell-permutation twice and twice inversely, each input cell in a column is
mapped into a cell in the same row.

Condition 3 (The number of active S-box). For a 4 × 4 cell-array, after apply-
ing a cell-permutation once and three times inversely, each input cell in a column
is mapped into a cell in the same row.

The numbers of cell-permutations satisfying Conditions 2 and 3 are both 576. We
define such 1152 cell-permutation as optimal cell-permutations. Table 7 shows
the minimum numbers of differentially/linearly active S-boxes of the optimal cell-
permutations and the ShiftRow-type permutation. Our optimal cell-permutations
drastically improve the minimum number of differentially/linearly active S-boxes
in each round while keeping the 3-round full diffusion property. Thus, our optimal
permutations achieve security against several attacks such as differential/linear
and impossible attacks in the same number of rounds compared to ShiftRow-type
permutation. Midori128 and Midori64 adopt one of optimal cell permutations
satisfying both Conditions 1 and 2 as follows.

(s0, s1, ..., s15) ← (s0, s10, s5, s15, s14, s4, s11, s1, s9, s3, s12, s6, s7, s13, s2, s8).

Starting from the state S0, each cell of S0 is mapped to S1, S2, S−1
1 and S−1

2

after applying the above cell-permutation once, twice, once inversely and twice
inversely, respectively, as follows.

S0 =

⎡

⎢
⎢
⎣

s0 s4 s8 s12

s1 s5 s9 s13

s2 s6 s10 s14

s3 s7 s11 s15

⎤

⎥
⎥
⎦, S1 =

⎡

⎢
⎢
⎣

s0 s14 s9 s7

s10 s4 s3 s13

s5 s11 s12 s2

s15 s1 s6 s8

⎤

⎥
⎥
⎦, S2 =

⎡

⎢
⎢
⎣

s0 s2 s3 s1

s12 s14 s15 s13

s4 s6 s7 s5

s8 s10 s11 s9

⎤

⎥
⎥
⎦,

S−1
1 =

⎡

⎢
⎢
⎣

s0 s5 s15 s10

s7 s2 s8 s13

s14 s11 s1 s4

s9 s12 s6 s3

⎤

⎥
⎥
⎦, S−1

2 =

⎡

⎢
⎢
⎣

s0 s2 s3 s1

s12 s14 s15 s13

s4 s6 s7 s5

s8 s10 s11 s9

⎤

⎥
⎥
⎦.
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Table 7. The number of minimum number of differentially/linearly active S-boxes
(AS) of Midori64 and Midori128

Round number 4 5 6 7 8 9 10 11 12 13 14 15 16

Min. # of AS (Optimal Cell-Permutation) 16 23 30 35 38 41 50 57 62 67 72 75 84

Min. # of AS (ShiftRow-type Permutation) 16 18 20 26 32 34 36 42 48 50 52 58 64

From those mappings, it is clear that the relation among S−1
2 , S0 and S2 satisfies

Condition 2. Similarly, all of the pairs (S−1
2 , S−1

1 ), (S−1
1 , S0), (S0, S1), (S1, S2)

satisfy Condition 1.

4.2 S-Box Layer

According to analysis of Sect. 2.1, 4-bit S-boxes are usually more efficient than
8-bit S-boxes in terms of energy consumption per cycle. Also, the small path
delay and the small gate area lead to low-energy implementation. To optimize
S-layer regarding energy consumption, we aim to develop a small-delay and
lightweight 4-bit S-box which fulfill the following requirements: (1) the maximal
probability of a differential is 2−2, (2) the maximal absolute bias of a linear
approximation is 2−2 and (3) involution. The requirement (3) enables us to
reduce the number of possible S-boxes from 244.25 to 225.5.

Approach to Find Small-Delay and Lightweight 4-Bit S-Box. Our app-
roach starts with a key observation that the path delay is highly related to the
dependency of the computation. We introduce a metric depth to estimate the
path delay of S-boxes.

Definition 1 (depth): The depth is defined as the sum of sequential path delays
of basic operations AND, OR, NAND, NOR and NOT.

Example. The depth of the computation of (x ⊕ y) · z is estimated as the sum of
path delays of XOR and AND, because “·z” operation is feasible only after the
computation of (x ⊕ y),

In our search, we assume that depths of XOR, AND/OR, NAND/NOR and
NOT are weighted as 2, 1.5, 1 and 0.5, respectively, based on the number of
the transistors to be sequentially proceeded in the operation. The required gates
of NOT, NAND/NOR, AND/OR and XOR/XNOR are estimated as 0.5, 1, 1.5
and 2 [GEs], respectively. We search all S-boxes whose depth is 1, 1.5, 2, . . . , and
check whether the S-boxes satisfy our security requirements. As a result, we can
find Sb0 (see Table 3) whose depth and gate size are the lowest and the smallest
ones in our search. Sb0 can be expressed as follows, where inputs and outputs
are defined as {a, b, c, d} and {a′, b′, c′, d′}, and a and a′ are the most significant
bits.
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Table 8. Input-output bit relations of each S-box

SSb0 SSb1 SSb2 SSb3

A (1, 3, 4, 6) (0, 1, 6, 7) (1, 2, 3, 4) (1, 2, 4, 7)

B (0, 2, 5, 7) (2, 3, 4, 5) (0, 5, 6, 7) (0, 3, 5, 6)

a′ =
(
c NAND (a NAND b)

)
NAND (a OR d)

b′ =
(
(a NOR d) NOR (b AND c)

)
NAND

(
(a AND c) NAND d

)

c′ = (b NAND d) NAND
(
(b NOR d) OR a

)

d′ =
(
a NOR (b OR c)

)
NOR

(
(a NAND b) NAND (c OR d)

)

For instance, let us consider the computation of c′. In this computation,
(b NAND d) and (b NOR d) can be done at first. After that, the computation
of (b NOR d) OR a is done. Then, the last operation of NAND is executable. Thus,
the depth of c′ is estimated as 3.5 ( = 1 + 1.5 + 1). The depths of the remaining
a′, b′ and d′ are also estimated as 3.0 or 3.5.

Considering additional requirement full diffusion property, we find Sb1 which
has the lowest depth and the smallest gate area among 4-bit bijective S-boxes
satisfying the requirements (1), (2), (3) and the full diffusion property. Sb1 is
expressed as follows :

a′ =
(
(b NAND c) NAND a

)
NAND

(
(a NOR d) NAND b

)

b′ =
(
(a XOR c) NOR b

)
NOR

(
(b NAND c) AND d

)

c′ = (c NAND d) NAND
(
(a XOR b) NAND (b OR d)

)

d′ =
(
(a NAND b) NAND c

)
NAND (b OR d)

Note that an S-box satisfies the full diffusion property if and only if any inputs
{a, b, c, d} of the S-box non-linearly affect all outputs {a′, b′, c′, d′}. This full
diffusion property enables us to ensure a 3-round property regarding the diffusion
in Midori128 (we will explain it in the end of this section).

Evaluation. Table 6 shows the comparison of S-boxes of PRESENT, PRINCE, Sb0

and Sb1 using NanGate 45 nm open cell library. The path delay of Sb0 is 1.5
times and twice smaller than PRINCE and PRESENT, respectively, and the gate
size is also smaller than the others. Those of Sb1 are comparable to PRINCE’s
S-box. Additionally Sb0 and Sb1 have the involution property.



428 S. Banik et al.

8-Bit S-Boxes Based on 4-Bit S-Boxes. From the observation in Sect. 2.1,
we adopt 8-bit S-boxes consisting of two 4-bit S-boxes processed in parallel to
minimize the path delay in the round-based implementation. Moreover, in order
to avoid having the unfavorable independent property exploited in the full-round
attack on KLEIN [23], we add properly-chosen bit-permutations to the begin
and the end of 8-bit S-boxes as shown in Fig. 5. As described in Sect. 3.1, each
output bit-permutation is the inverse of the corresponding input bit-permutation
to keep the involution property. With a property of our P-layer and those bit-
permutations, we claim that no independent property is found after 3 rounds in
Midori128. Since Sb1 has the full diffusion property, any input bit of SSbi affects
the corresponding 4 bits output as shown in Table 8. For example, in SSb1, any
of the i-th input bit affects all of the i-th output bits, where i ∈ {0, 1, 6, 7}. We
choose bit-permutations for SSb0, SSb1, SSb2 and SSb3 so that those satisfy the
following property.

Property 1. Affected 4-bit positions of outputs of an S-box are included in both
of two different input groups of the other three S-boxes.

For example, the group A of SSb1 is {0, 1, 6, 7}. Then, those bit positions are
found in the groups A and B of SSb0. This implies that the {0, 1, 6, 7}-th input
bits of SSb0 affect all 8 bits output. For the matrix operation t(y0, y1, y2, y3) ←
M t(x0, x1, x2, x3), we have the following property.

Property 2. Each input cell affects three cells in the different cell positions
from the input.

For instance, x0 deterministically affects y1, y2 and y3, and does not affect y0.
From Properties 1 and 2, we obtain the following theorem.

Theorem 1. In Midori128, any input bit nonlinearly affect all 128 bits of the
state after 3 rounds.

Proof. An input bit affects 4 bits in the corresponding cell after the first S-layer
due to the full diffusion property of Sb1. From Property 2, the affected 4 bits
in the cell are diffused to three cells in the same column but the different cell
position after MixColumn. Note that, in the affected three cells, the affected bit
positions are the same. From Property 1, in each affected three cells, the affected
4 bits are spreads over all 8 bits in the cell after the 2nd S-layer. Therefore, all
bits are affected by any input after 3 rounds (see Fig. 7). ��

4.3 Key Scheduling Function

To save energy, Midori128 does not employ any key scheduling function. The
same 128 bit key is used as the whitening key and to generate the round key. To
make an efficient circuit for decryption, the i-th round key is defined as L−1(K)⊕
L−1(β18−i), where L−1 denotes the inverse of the linear layer. Computation of
L−1(K) involves a one-time computation with the key at the beginning at the
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Fig. 7. Theorem 1 : 3-round full diffusion property

decryption function and so does not consume any significant energy. The round
key generation of Midori64, is slightly more complicated, as it involves selecting
K0 and K1, i.e. the most significant and least significant halves of the 128 bit
key in alternate rounds. This can be achieved by the use of a single multiplexer.
For efficient decryption, a one-time computation of L−1(K0) and L−1(K1) can
be done at the beginning of the algorithm, which again does not consume any
significant energy.

4.4 Round Constant

Both Midori128 and Midori64 use 4 × 4 binary matrices as round constants. The
constants have been derived from the hexadecimal encoding of the fractional
part of π = 3.243f 6a88 85a3 · · · . For example, the 1st, 2nd, 3rd, 4th rows
of β0 when read as a 4-bit binary constant, are the encoding of the hex values
2,4,3,f respectively. Similarly for the other β′

is. These are added bitwise to
the LSB of each round key byte in Midori128 and round key nibble in Midori64.
The round constants were chosen in this manner with a view to have an energy-
efficient decryption circuit. Both βi and L−1(βi) are 4 × 4 binary matrices, and
so in both Midori128 and Midori64, the round constant addition requires a total
of 16 XOR gates only. The constants βi and L−1(βi) can be stored in lookup
tables and filtered accordingly in each round.

5 Security Evaluation

5.1 Differential/Linear Cryptanalysis

The minimum number of differentially and linearly active S-boxes of each round
is estimated as shown in Table 7. The maximum differential and linear proba-
bilities of Sb0, SSb0, SSb1, SSb2 and SSb3 are 2−2, respectively. Midori64 and
Midori128 have more than 32 and 64 active S-boxes after 7 and 13 rounds.
Thus, we expect that variants of Midori64 and Midori128 reduced to 7 rounds
and 13 rounds do not have any differential and linear trails whose probabilities
are higher than 2−64 and 2−128.
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5.2 Boomerang-Type Attack

The boomerang-type attacks first divide the cipher into two sub-ciphers, then
find a boomerang quartet with high probability. The probability of construct-
ing a boomerang quartet is denoted as p̂2q̂2, where p̂ =

√∑
β Pr2[α → β], and

α and β are input and output differences for the first sub-cipher, and q̂ for
the second sub-cipher. p̂2 is bounded by the maximum differential trail prob-
ability, i.e., p̂2 ≤ maxβ Pr[α → β], and q̂2 as well. Let p, q be the maximum
differential trail probability for the first and the second sub-ciphers. Then, p, q
are bounded by multiplying the minimum number of active S-boxes in each
sub-cipher. From Table 7, any combination of two sub-ciphers for consisting of
Midori64 and Midori128 after 8 and 14 rounds has at least 32 and 64 active
S-boxes in total. Note that these bounds of boomerang attacks are very con-
servative ones, i.e., it requires unrealistic assumptions of p̂2 = p and q̂2 = q.
Actually, in our active S-box search, we did not find such special events. Thus,
we expect that much smaller rounds than 8 and 14 rounds are secure against
boomerang-type attacks.

5.3 Impossible Differential Attacks

Midori64 and Midori128 achieve the 3-round full diffusion property. Thus, dif-
ferences of all cells in a state becomes unknown after SubCell of 4 rounds, i.e.,
there is no any probability-one (truncated) differential characteristic. Following
the miss-in-the-middle approach, the maximum number of rounds of impossible
differential characteristics is estimated as 7 rounds.

In order to obtain the lower bound of rounds of impossible differential, we
try to find actual impossible differential characteristics. We utilize several deter-
ministic properties of four binary matrices M . This approach was also adopted
in the security evaluation of FIDES [8]. As a result, we find 6-round impossible
differentials such that if only one active cell is input, 6-rounds of Midori64 and
Midori128 never produces only one active cell. We believe that full rounds of
Midori64 and Midori128 have sufficient number of rounds as the security margin.

5.4 Meet-in-the-Middle Attacks

The 3-round full diffusion property with our S-boxes enable us to claim that any
inserted key bit of {K0, K1} or K non-linearly affects all bits of the state after
3 rounds in the forward and the backward directions in Midori64 and Midori128,
respectively. Thus, the number of rounds used for the partial matching (PM) [2] is
upper bounded by 5 (= (3−1)+(3−1)+1). The condition for the initial structure
(IS) [29], also called independent biclique [10], is that key differential trails in
the forward direction and those in the backward direction do not share active
non-linear components. For Midori64 and Midori128, since any key differential
affects all 16 S-boxes after at least 4 rounds in the forward and the backward
directions, there is no such differential which shares active S-box in more than 4
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rounds. Thus, the number of rounds used for IS is upper bounded by 3. Assuming
that the splice-and-cut technique allows an attacker to add more 3 rounds in
the worst case, at most 11-round (3 + 3 + 5) MitM attack may be feasible.
However, because of white keys in the begin and the end and the actual constraint
of key orders, we consider that it is difficult to construct 11-round attacks on
Midori64 and Midori128.

5.5 Other Attacks

We also consider other-types of attacks including a integral differential, a trun-
cated differential, a slide, a reflection, and an algebraic attack. Consequently, we
expect that none of them work better than brute force attacks.

6 Implementation

The main design objectives of Midori were first to achieve efficiency in energy
consumption and second to provide both the encryption and decryption func-
tionalities with minimal overhead. In this context, it is essential to have a round
based design optimal in terms of energy consumption, since unrolled designs are
unlikely to be efficient in terms of energy consumption. The S-box and the Mix-
Column layer were specifically chosen for their energy-efficiency and their invo-
lutive property. Both these layers have very small logic depth which makes the
energy consumption per round figure as small as possible. Structurally Midori-
Core and MidoriCore−1 differ only in the order of application of ShuffleCell, Mix-
Column and InvShuffleCell operations. And so, the circuit for the round based
implementation of the cipher, that accommodates both encryption and decryp-
tion can be realized in Fig. 8.

Since the ShuffleCell operation (Sh) and MixColumn (MC) do not commute,
the linear layer which is basically the composition of MC◦Sh (= L say), must
be inverted during the decryption by L−1 = Sh−1◦MC. In hardware, this can
be achieved in two ways. The first involves filtering the outputs of the L and
L−1 operations through a single multiplexer. This requires two instances of the
MixColumn logic in the circuit, and since this layer is the most expensive in

Fig. 8. The round based encryption/decryption architecture
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Table 9. A comparison of energy consumption of Midori with selected ciphers for the
STM 90 nm Logic Process. (Average Power reported at 10 MHz)

# Cipher Block Size Architecture Area Energy Energy/bit Average Power Critical Path

(in GE) pJ pJ (μW ) (ns)

1 AES 128 ED 21274 769.0 6.01 699.1 4.08

E 12459 350.7 2.74 318.8 3.32

2 NOEKEON 128 ED 3439 331.5 2.59 184.2 3.79

E 2284 338.0 2.64 187.8 3.38

3 SIMON 128/128 128 ED 3480 855.6 6.68 124.0 2.67

E 2420 664.1 5.19 96.2 2.66

4 Midori128 128 ED 3661 228.3 1.78 108.7 2.44

E 2522 187.3 1.46 89.2 2.25

5 PRESENT 64 ED 2186 250.2 3.91 75.8 2.32

E 1440 172.3 2.69 52.2 2.09

6 PRINCE 64 ED 2650 146.3 2.29 112.5 4.09

E 2286 144.7 2.26 111.3 4.06

7 Midori64 64 ED 2450 121.0 1.89 71.2 2.12

E 1542 103.0 1.61 60.6 2.06

terms of area and energy consumed, it is not the most efficient way to achieve
this functionality. The second method which is better in terms of both area
and energy is the one shown in Fig. 8. This involves using two multiplexers for
filtering the outputs of the Sh and Sh−1 operations and a single instance of the
MixColumn logic. To perform the decryption operation using this circuit, the
round key needs to be changed to L−1(K), and correspondingly the ith round
constant to L−1(β18−i). The first involves a cheap one-time change to the master
key, while keeping the whitening key constant. The round constant functionality
can be achieved by employing two lookup tables, one each for encryption and
decryption and filtering the appropriate round constant through a multiplexer.
The round constants have been chosen in a manner so that both βi and L−1(βi)
are 4×4 binary matrices, and so this layer requires a total of 16 XOR gates only.
The circuit for the 64-bit variant is the same as in Fig. 8, except that it requires
an extra filtering between K0 and K1 (the most and least significant halves of
the secret key) in alternate rounds.

6.1 Evaluation

All the designs were initially implemented in VHDL and the functional veri-
fication was done using Mentor Graphics ModelSim SE software. The designs
were then synthesized using the Synopsys Design Compiler for the Standard Cell
library of the STM 90 nm Logic Process: CORE90GPHVT v 2.1.a.

The switching activity file was then generated by performing a timing simu-
lation on the synthesized netlist using the Synopsys VCS Software. The energy
was then estimated with the Synopsys Power Compiler by using the switching
activity file. An operating frequency of 10 MHz was used in all the simulations
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since the effect of the leakage power is minimal at this frequency, and so the
energy consumed is more or less independent of the clock frequency. The results
of the simulation for the 90 nm logic process are presented in Table 9 along
with similar evaluations for AES, NOEKEON, SIMON 128/128, PRESENT, PRINCE.
It can be seen that Midori128/Midori64 performs better than NOEKEON/PRINCE
which were also designed to make the combined functionalities of encryption and
decryption easily available. In Fig. 9 we compare the energy/bit consumption of
the ED architectures all the seven ciphers along with the cumulative latency
figure (calculated as critical path × number of rounds). It can be seen that
Midori128 and Midori64 fare optimally with respect to both parameters.
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Fig. 9. Cumulative latency vs Energy/bit figures

7 Conclusion

In this paper we present the block ciphers Midori128 and Midori64, optimized
with respect to energy consumption. We first identify design choices that make
a given algorithm efficient in terms of energy. Thereafter we propose two design
components i.e. MixColumn matrix and S-box, that help us achieve the objectives
of low energy design. These components are additionally involutive, that makes it
easier to design a circuit with functionalities for both encryption and decryption.
The energy of the proposed design was then found to be optimal in comparison
with state of the art block ciphers available in literature.

Appendix A: Test Vectors

A. Midori128

1.
Plaintext : 00000000000000000000000000000000
Key : 00000000000000000000000000000000
Ciphertext : c055cbb95996d14902b60574d5e728d6
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2.
Plaintext : 51084ce6e73a5ca2ec87d7babc297543
Key : 687ded3b3c85b3f35b1009863e2a8cbf
Ciphertext : 1e0ac4fddff71b4c1801b73ee4afc83d

B. Midori64

1.
Plaintext : 0000000000000000
Key : 00000000000000000000000000000000
Ciphertext : 3c9cceda2bbd449a

2.
Plaintext : 42c20fd3b586879e
Key : 687ded3b3c85b3f35b1009863e2a8cbf
Ciphertext : 66bcdc6270d901cd
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family of small and efficient hardware-oriented block ciphers. In: Clavier, C., Gaj,
K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg (2009)

14. Canright, D.: A very compact S-box for AES. In: Rao, J.R., Sunar, B. (eds.) CHES
2005. LNCS, vol. 3659, pp. 441–455. Springer, Heidelberg (2005)

15. Daemen, J., Peeters, M., Assche, G.V., Rijmen, V.: Nessie Proposal: NOEKEON.
http://gro.noekeon.org/Noekeon-spec.pdf

16. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Springer, Heidelberg (2002)

17. Feldhofer, M., Wolkerstorfer, J., Rijmen, V.: AES implementation on a grain of
sand. IEEE Proc. Inf. Secur. 152(1), 13–20 (2005)

18. Gong, Z., Nikova, S., Law, Y.W.: KLEIN: a new family of lightweight block ciphers.
In: Juels, A., Paar, C. (eds.) RFIDSec 2011. LNCS, vol. 7055, pp. 1–18. Springer,
Heidelberg (2012)

19. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED block cipher. In:
Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 326–341. Springer,
Heidelberg (2011)

20. Iwata, T., Minematsu, K., Guo, J., Morioka, S.: CLOC: authenticated encryption
for short input. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp.
149–167. Springer, Heidelberg (2015)

21. Kerckhof, S., Durvaux, F., Hocquet, C., Bol, D., Standaert, F.-X.: Towards green
cryptography: a comparison of lightweight ciphers from the energy viewpoint.
In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 390–407.
Springer, Heidelberg (2012)

22. Khoo, K., Peyrin, T., Poschmann, A.Y., Yap, H.: FOAM: searching for hardware-
optimal SPN structures and components with a fair comparison. In: Batina, L.,
Robshaw, M. (eds.) CHES 2014. LNCS, vol. 8731, pp. 433–450. Springer,
Heidelberg (2014)

23. Lallemand, V., Naya-Plasencia, M.: Cryptanalysis of KLEIN. In: Cid, C.,
Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp. 451–470. Springer,
Heidelberg (2015)

24. Lim, C.H., Korkishko, T.: mCrypton – A lightweight block cipher for security of
low-cost RFID tags and sensors. In: Song, J.-S., Kwon, T., Yung, M. (eds.) WISA
2005. LNCS, vol. 3786, pp. 243–258. Springer, Heidelberg (2006)

25. Matsui, M.: On correlation between the order of S-Boxes and the strength of DES.
In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 366–375. Springer,
Heidelberg (1995)

26. Sim, S.M., Khoo, K., Oggier, F., Peyrin, T.: Lightweight MDS involution matrices.
In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp. 471–493. Springer, Heidelberg
(2015)

27. Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the limits: a
very compact and a threshold implementation of AES. In: Paterson, K.G. (ed.)
EUROCRYPT 2011. LNCS, vol. 6632, pp. 69–88. Springer, Heidelberg (2011)

28. Morioka, S., Satoh, A.: An optimized S-Box circuit architecture for low power AES
design. In: Kaliski, B.S., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 172–186.
Springer, Heidelberg (2003)

http://gro.noekeon.org/Noekeon-spec.pdf


436 S. Banik et al.

29. Sasaki, Y., Aoki, K.: Finding preimages in full MD5 faster than exhaustive search.
In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 134–152. Springer,
Heidelberg (2009)

30. Satoh, A., Morioka, S., Takano, K., Munetoh, S.: A compact Rijndael hardware
architecture with S-Box optimization. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS,
vol. 2248, pp. 239–254. Springer, Heidelberg (2001)

31. Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T., Shirai, T.: Piccolo:
An ultra-lightweight blockcipher. In: Preneel, B., Takagi, T. (eds.) CHES 2011.
LNCS, vol. 6917, pp. 342–357. Springer, Heidelberg (2011)

32. Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-bit blockci-
pher CLEFIA (Extended Abstract). In: Biryukov, A. (ed.) FSE 2007. LNCS, vol.
4593, pp. 181–195. Springer, Heidelberg (2007)

33. Suzaki, T., Minematsu, K., Morioka, S., Kobayashi, E.: TWINE : a lightweight
block cipher for multiple platforms. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012.
LNCS, vol. 7707, pp. 339–354. Springer, Heidelberg (2013)
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Abstract. Recent advances in block-cipher theory deliver security
analyses in models where one or more underlying components (e.g., a
function or a permutation) are ideal (i.e., randomly chosen). This paper
addresses the question of finding new constructions achieving the highest
possible security level under minimal assumptions in such ideal models.

We present a new block-cipher construction, derived from the Swap-
or-Not construction by Hoang et al. (CRYPTO ’12). With n-bit block
length, our construction is a secure pseudorandom permutation (PRP)
against attackers making 2n−O(log n) block-cipher queries, and 2n−O(1)

queries to the underlying component (which has itself domain size
roughly n). This security level is nearly optimal. So far, only key-
alternating ciphers have been known to achieve comparable security
using O(n) independent random permutations. In contrast, we only use
a single function or permutation, and still achieve similar efficiency.

Our second contribution is a generic method to enhance a block
cipher, initially only secure as a PRP, to additionally withstand related-
key attacks without substantial loss in terms of concrete security.

Keywords: Block-cipher theory · Related-key security

1 Introduction

Several recent works provide ideal-model security proofs for key-alternating
ciphers [2,14–17,19,23,25,26,31,50] and for Feistel-like ciphers [20,29,34,38,42].
In these proofs, the underlying components (wich are either permutations or
functions) are chosen uniformly at random, and are public, i.e., the attacker can
evaluate them. At the very least, these proofs target pseudorandom permutation
(PRP) security: The block cipher, under a secret key, must be indistinguishable
from a random permutation, provided the attacker makes at most q queries to
the cipher, and at most qF queries to the underlying component, for q and qF

as large as possible.
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Ideal-model proofs imply that the block cipher is secure against generic
attacks (i.e., treating every component as a black box). Heuristically, however,
one hopes for even more: Namely, that under a careful implementation of the
underlying component, the construction retains the promised security level.

Contributions. This paper contributes along two different axes:

– Weaker Assumptions. We present a new block-cipher design achieving
near-optimal security, i.e., it remains secure even when q and qF approach
the sizes of the block-cipher and component domains, respectively. Our con-
struction can be instantiated from a function or, alternatively, from a single
permutation. This is the first construction from a function with such secu-
rity level, and previous permutation-based constructions all relied on multiple
permutations to achieve such high security.

– Related-key Security. We show how to enhance our construction to achieve
related-key security without significantly impacting its efficiency and security.
This is achieved via a generic transformation of independent interest.

This work should not be seen primarily as suggesting a new practical block-cipher
construction, but rather as understanding the highest achievable security level in
the model block ciphers are typically analyzed. The resulting technical questions
are fairly involved, and resolving them is where we see our contributions.

Still, we hope that our approach may inspire designers. Our instantiation
from a permutation gives a possible path for a first proof-of-concept implemen-
tation, where one simply takes a single-round of AES as the underlying permu-
tation. (And in fact, even a simpler object may be sufficient).

1.1 First Contribution: Full-Domain Security

We start by explaining our construction from a (random) function. Concretely,
we consider block-cipher constructions BC with block length n and key length
κ using an underlying keyless function F with m-bit inputs. We say that BC is
(q, qF )-secure (as a PRP) if no attacker can distinguish with substantial advan-
tage the real world – where it can query qF times a randomly sampled function
F and overall q times the block cipher BCF

K (using the function F and a random
secret key K) – from an ideal world where BCF

K is replaced by an independent
random permutation of the n-bit strings. (In fact, we typically also allow inverse
queries to the block cipher and the permutation).

Our goal. Let us first look at what can we expect for q and qF when a cipher
is (q, qF )-secure. Clearly, qF ≤ 2m and q ≤ 2n, assuming queries are distinct.
However, one can also prove that (roughly) qF < 2κ is necessary, otherwise, the
adversary can mount a brute-force key search attack. Moreover, q ≤ 2m must
also hold (cf. e.g. [28] for a precise statement of these bounds).

Here, we target (near) optimal security, i.e., we would like to achieve security
for q and qF as close as possible to 2n and 2m, respectively, whenever m ≥ n.
That is, the construction should remain secure even if the adversary can query
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most of its domain, and of that of the underlying function F . We note that the
question is meaningful for every value of m ≥ n, but we specifically target the
case where m ≈ n, e.g., m = n, or m = n + O(log n).

Previous constructions from functions fall short of achieving this: Gentry
and Ramzan [29], and the recent generalization of their work by Lampe and
Seurin [38], use a Feistel-based approach with m = n/2, and this hence yields
(at best) (2n/2, 2n/2)-security. (The work of [38] approaches that security level
for increasing number of rounds). In contrast, key-alternating ciphers (KACs)
have been studied in several works [2,14–16,19,23,26,31,50], and the tightest
bounds show them to be (2n(1−ε), 2n(1−ε))-secure, when using O(1/ε) rounds
calling each an (independent) n-bit random permutation. However, there is no
way of making direct use of KACs given only a non-invertible function.

The WSN construction. Our construction – which we call Whitened Swap-
or-Not (WSN) – adds simple whitening steps to the Swap-or-Not construction by
Hoang, Morris, and Rogaway [33], which was designed for the (different) setting
where the component functions are secret-key primitives. Concretely, the WSN
construction, on input X = X0, iterates R times a very simple round structure
of the form

Xi+1 ← Xi ⊕ (Fb(i)(Wi ⊕ max{Xi,Xi ⊕ Ki}) · Ki) ,

where Wi and Ki are round keys, max of two strings returns the largest with
respect to lexicographic ordering, and Fb(i)(x) returns the first bit of F (x) in
the first half of the rounds, and the second bit in the second half. (Moreover,
· denotes simple scalar multiplication with a bit, i.e., b · X = X if b = 1, and
0n else). In particular, our construction requires F to only output 2 bits. The
round structure is very weak1, and it differs from the construction of [33] in that
the same round function is invoked over multiple rounds, and as this function is
public, we use a key Wi to whiten the input. We prove the following:

Main Theorem. (Informal) The WSN construction for R = O(n)
rounds is (2n−O(log n), 2n−O(1))-secure.

Note that O(n) rounds are clearly asymptotically optimal.2 For some parameter
cases, techniques from [47,49] can in fact be used to obtain a (2n, 2n(1−ε))-secure
PRP, at the cost of a higher number of rounds.

Functions vs. permutations. It is beyond the scope of this paper to assess
whether a function is a better starting point than a permutation in practice.
Independently of this, we believe that studying constructions from functions is
a fundamental theoretical problem for at least two reasons.

1 A single round can easily be distinguished from a random permutation with a con-
stant number of queries, as every input x is mapped to either x or x ⊕ Ki.

2 Even for one single query, every internal call to F can supply at most one bit of
randomness, and the output must be (information theoretically) indistinguishable
from a random n-bit string, and thus Ω(n) calls are necessary.
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Foremost, functions are combinatorially simpler than permutations, and thus,
providing constructions from them (and thus enabling a secure permutation
structure) is an important theoretical question, akin to (and harder than) the
problem of building PRPs from PRFs covered by a multitude of papers. Also,
practical designs from keyless round functions have been considered (cf. e.g. [1]).

In addition, our construction only requires c = 2 output bits, and it is worth
investigating whether such short-output functions are also harder to devise than
permutations. We in fact provide some theoretical evidence that this may not
be the case. We prove that an elegant construction by Hall, Wagner, Kelsey, and
Schneier [32] can be used to transform any permutation from n + c bits to n + c
bits into a function from n bits to c bits which is perfectly indifferentiable [44]
from a random function. This property ensures that the concrete security of
every cipher using a function F : {0, 1}n → {0, 1}c is preserved if we replace F
with the construction from π, and allow the adversary access to π and its inverse
π−1. The construction makes 2c permutation calls, and thus makes only sense for
small c. In contrast, it should be noted that the only indifferentiable construction
of a permutation from functions is complex and weakly secure [34], and that no
suitable constant-complexity high-security constructions of large-range functions
from permutations exist, the most secure construction being [41,46].

A single-permutation instantiation. With c = 2, combining the WSN con-
struction with the HWKS construction yields a secure cipher with n-bit block
length from a single permutation on (n + 2)-bit strings. In contrast, we are not
aware of any trick to instantiate KACs from a single permutation retaining prov-
able nearly-optimal security, even by enlarging the domain of the permutation.
The only exception is the work of [15], which however only considers two rounds
and hence falls short of achieving full-domain security.

The complexity of the resulting construction matches (asymptotically) that of
KACs when targeting (2n−O(log n), 2n−O(1))-security. Nonetheless, a clear advan-
tage of KACs is that their security degrades smoothly when reducing the amount
of rounds, whereas here O(n) rounds remain necessary even for (1, 0)-security.
We note that in the setting of functions constructions with such smooth security
degradations are not known, even in the simpler setting of [33].

Reducing the key length. Arguably, an obvious drawback of our construc-
tion is that the key length grows with the number of rounds. We note that this
is also true for key-alternating ciphers, and it is not unique to our construction.

It is worth noting that the key length can be reduced via standard techniques
without affecting security, by deriving the round keys from a single (n − d)-bit
master key K as Ki ← H(K ‖ 〈i−1〉) and Wi ← H(K ‖ 〈R+i−1〉) for all i ∈ [R]
and a function H : {0, 1}n → {0, 1}n (to be modeled as random in the proof),
where 〈·〉 denotes the (d = �log(2R) + 1
)-bit binary encoding of an integer in
[2R]. (Note that d = O(log n)). The security proof is fairly straightforward, and
omitted – it essentially accounts to excluding the event that H is queried on one
of the values related to the key, and the reducing the analysis to the one with
large keys. This adds an additional qH · R/2n−d term to the bound, where qH is
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the number of queries to H. H can in fact be built from the very same function
F , but this requires a slightly more involved analysis.

1.2 Second Contribution: Related-Key Security

In the second part, we show how to generically make any block-cipher construc-
tion secure against related-key attacks (or RKA secure, for short) while preserving
full-domain security and small input length of the underlying function.

On RKA security. Several attacks over the last two decades (cf. e.g. [8–13,
35]) have motivated RKA security as the new golden standard for block-cipher
security. As formalized by Bellare and Kohno [5], RKA security is parameterized
by a class of key transformations Φ. Then, pseudorandomness security defined
above is extended to allow the attacker for block-cipher queries of the form
(φ,+,X) or (φ,−, Y ) for φ ∈ Φ and X,Y ∈ {0, 1}n, resulting in BCφ(K)(X) and
BC−1

φ(K)(Y ).
It is easy to see that WSN is not RKA secure if the class Φ allows for XORing

chosen offsets to individual keys. Querying an input X (with the original key),
and querying X ⊕ Δ while adding Δ to K1 results in the same output with
probability 1/2. In the random permutation model, two recent works [19,26]
have shown that KACs are RKA secure (for appropriate key scheduling), yet
the resulting construction is only (2n/2, 2n/2)-secure. Here, in contrast, we target
full-domain security of the cipher.

Related-key secure key-derivation. We consider a generic approach to
shield ciphers from related-key attacks using related-key secure key-derivation
functions (or RKA-KDF, for short). These are functions KDF : {0, 1}κ → {0, 1}�

with the property that under a random secret key K, the outputs of KDF(φ(K)),
for different φ ∈ Φ, look random and independent. A similar concept was pro-
posed by Lucks [40], and further formalized by Barbosa and Farshim [3]. For any
secure block cipher BC, the new block cipher computes, for key K and input X,
the value BCKDF(K)(X), and is easily proved to be RKA-secure. Note that this
approach is very different from the one used for standard-model RKA-secure
PRF and PRP constructions (as in [4]), which leverage algebraic properties of
PRF constructions.3

Building RKA-KDFs in ideal models may appear too easy: A hash function
H : {0, 1}κ → {0, 1}�, when modeled as a random oracle [6], is a secure RKA-
KDF. However, such construction can be broken in 2κ/2 queries by a simple
collision argument.4 If our goal is to achieve security almost 2n to preserve
security of e.g. WSN above, then we need to set κ ≥ 2n. But what if we are

3 Also, our requirements are stronger than those for non-malleable codes and non-
malleable key-derivation [24,27].

4 For example, for Q := 2κ/2, and an additive RKA attack asking for random
Δ1, . . . , ΔQ, one of the values H(K ⊕ Δi) is going to collide with constant prob-
ability with one of the values H(Xi), for independent κ-bit strings X1, . . . , XQ,
allowing to distinguish.
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building our block cipher from a primitive with n-bit inputs, like the very same
primitive used to build the block cipher, as in the WSN setting above?

One approach is to use a domain extender in the sense of indifferentiability
[44]. The only known construction with (near) optimal security is due to Maurer
and Tessaro [45] (MT), and further abstracted by Dodis and Steinberger [22].
Unfortunately, instantiations of the MT construction are very inefficient, and
make O(nc) calls to the underlying function for some undetermined (and fairly
large) c.

MT-based RKA-KDFs. As our second contribution, we provide a highly paral-
lelizable construction of a RKA-KDF from a keyless function with nearly optimal
security, i.e., its outputs are pseudorandom even when evaluated on q = 2n(1−ε)

related keys, and the underlying function can be evaluated qF = 2n(1−ε) times,
where ε > 0. Our construction is a variant of the MT construction. However,
while the latter is inefficient as it relies on a complex combinatorial object, called
an input-restricting function family, here, we show that to achieve RKA-KDF
security it is sufficient to use a much simpler hitter [30], which can for instance
be built from suitable constant-degree expander graphs.

Overall, our construction needs O(n) calls to independent n-to-n-bit func-
tions. (It can also be reformulated to call a single n-to-n-bit function). We see
it as a challenging open problem to improve the complexity, but we note that
this already yields the most efficient known approach to ensure high related-key
security for block ciphers built from ideal primitives.

Indifferentiability. The question of building a block cipher from a random
function which is as secure as an ideal cipher (with respect to indifferentiability)
was studied and solved by [20,34]. In the same vein, indifferentiable KAC-like
cipher constructions from permutations have been given [2,31,37]. While these
constructions are related-key secure, their concrete security is fairly weak.

2 Preliminaries

2.1 Notation

Throughout this paper, we let [n] := {1, . . . , n}. Further, we denote by Fcs(m,n)
the set of functions mapping m-bit strings to n-bit strings, and by Fcs(∗, n) the
set of functions {0, 1}∗ → {0, 1}n. Similarly, we let Perms(n) ⊂ Fcs(n, n) be
the set of permutations on {0, 1}n. Given a string X ∈ {0, 1}m, we denote by
X[i . . . j] (for i < j) the sub-string consisting of bits i, i+1, . . . , j −1, j of X. We
also write X≤i instead of X[1 . . . i]. Further, given another string X ′ ∈ {0, 1}n,
we denote by X ‖X ′ the (m + n)-bit concatenation of X and X ′.

Algorithms, constructions, and adversaries in this paper are with respect to
some (not further specified) RAM model of computation. We explicitly denote by
C[F ] the fact that a construction C (implementing a function) makes queries to
another function F , and we denote by AO the fact that an adversary A accesses
an oracle O. We denote by x

$← S the process of sampling x from the set S
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uniformly at random, and by y
$← AO the process of running the randomized

algorithm A with access to a randomized oracle O, and sampling its output y.
Also, we denote by AO ⇒ y the event that the concrete value y is output in the
same experiment. In general, we use a notation close to the one of Bellare and
Rogaway’s Game Playing framework [7], which we hope to be self evident.

Additionally, we denote by Pr [X = x] the probability that the random
variable takes the value x, and by E[X] its expected value. Also, the sta-
tistical distance between two random variables X and X ′ is SD(X,X ′) =
1
2

∑
x |Pr [X = x] − Pr [X ′ = x] |, where the sum is over all values which can

be taken by X or X ′.

2.2 Ideal Models

Our analyses are in the random function model, where algorithms and adversaries
are relative to a randomly chosen function F

$← Fcs(m, �) for parameters m and �.
A variant of the model grants access to multiple independent random functions
F1, . . . , Ft

$← Fcs(m, �), but these can equivalently be implemented in the single
random function model for m′ = m+�log t
, where the individual functions Fi are
obtained as Fi(X) = F (〈i〉 ‖X), with 〈i〉 representing a �log t
-bit encoding of i.
We often denote F = (F1, . . . , Ft) to stress this dual representation explicitly.
Therefore, all upcoming definitions are in the single random function model
without loss of generality.

We also recall that we can build a function F from m bits to � bits by
making � calls to a function from m + �log �
 bits to a single bit, i.e., F (X) =
F ′(〈0〉 ‖X) ‖ · · · ‖F ′(〈� − 1〉 ‖X). The statement can be made precise via the
notion of perfect indifferentiability [44], which we review in AppendixA.

The definitions of this section also naturally extend to the random permu-
tation model, where adversaries and algorithms can query one or more random
permutations sampled uniformly from Perms(n). In particular, adversaries are
also allowed query the inverses of these permutations.

2.3 Block Ciphers and (related-Key) Pseudorandomness

Let BC[F ] : {0, 1}κ × {0, 1}n → {0, 1}n be an efficient construction making
calls to a function F ∈ Fcs(m, �). (We generally omit F whenever clear from
the context). We say that BC = BC[F ] is a (κ, n)-block cipher if BC(K, ·) is a
permutation for all κ-bit K and all F ∈ Fcs(m, �), and use the notation BCK

to refer to this permutation. Typically, we assume that BCK and BC−1
K are

very efficient to compute given K, where efficiency in particular implies a small
number of calls to F .

(Multi-user) PRPs. We require block ciphers to be secure pseudorandom per-
mutations (PRPs) [39]. In particular, we consider a multi-user version of PRP
security, which captures joint indistinguishability of an (a-priori unbounded)
number of block-cipher instantiations under different independent keys. The tra-
ditional (single-user) PRP notion is recovered by considering adversaries making
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queries for one single key. While the single- and multi-user versions are related by
a hybrid argument, sticking with the latter will allow potentially tighter bounds
in the second part of this paper, as the standard hybrid argument cannot be
made very tight given only an overall bound on the number of queries.

To this end, we consider two security games PRP-bA
BC,F for b ∈ {0, 1}. In both,

F
$← Fcs(m, �) is initially sampled, as well as independent keys K1,K2, . . .

$←
{0, 1}κ, and permutations P1, P2, . . .

$← Perms(n).5 Then, the adversary A is
executed, and is allowed to issue two types of queries:

– Function queries x, returning F (x)
– Construction queries (i, σ, z), where i ∈ N, σ ∈ {−,+}, z ∈ {0, 1}n. For

b = 1, the query returns BCKi
(z) (if σ = +, this is a forward query) or BC−1

Ki
(z)

(if σ = −, and this is a backward query). For b = 0, the query returns Pi(z)
or P−1

i (z), respectively.

Finally, A outputs a bit, which is also the game’s output. Then, PRP-security of
BC is defined via the following advantage metric

AdvPRP
BC,F (A) := Pr

[
PRP-1A

BC,F ⇒ 1
]− Pr

[
PRP-0A

BC,F ⇒ 1
]

.

We also denote by AdvPRP
BC,F (q, qF ) the maximal advantage of an adversary A

making at most q construction queries and qF function queries. Informally, we
say that BC is (q, qF )-secure if AdvPRP

BC,F (q, qF ) is “small”, i.e., negligible in κ.

Related-key secure PRPs. We target the traditional notion of a related-key
secure (or RKA-secure) PRP introduced by Bellare and Kohno [5]. In particular,
for a key length κ, we consider a family Φ ⊆ Fcs(κ, κ) of key transformations.
Given a (κ, n)-block cipher BC = BC[F ] as above, we define the following two
games RKA-PRP-1 and RKA-PRP-0. The game RKA-PRP-bA

BC,F,Φ proceeds as

follows: It first samples F
$← Fcs(m, �), a key K

$← {0, 1}κ, and 2κ independent

permutations Pk′
$← Perms(n) for all κ-bit k′. Then, A issues two types of queries:

– Function queries x, returning F (x)
– Construction queries (σ, φ,X), where σ ∈ {−,+}, φ ∈ Φ, z ∈ {0, 1}n. For

b = 1, the query returns BCφ(K)(z) (if σ = +, this is a forward query) or
BC−1

φ(K)(z) (if σ = −, and this is a backward query). For b = 0, the query
returns Pφ(K)(z) or P−1

φ(K)(z), respectively.

Finally, A outputs a bit, which is also the game’s output. We define the RKA-PRP
advantage as

AdvRKA-PRP
BC,F,Φ (A) = Pr

[
RKA-PRP-1A

BC,F,Φ ⇒ 1
]− Pr

[
RKA-PRP-0A

BC,F,Φ ⇒ 1
]

.

The advantage measure AdvRKA-PRP
BC,F,Φ (q, qF ) is defined by taking the maximum.

5 As we are sampling infinitely many objects, once can think of sampling these lazily
the first time they are needed.



Optimally Secure Block Ciphers from Ideal Primitives 445

3 The Whitened Swap-or-Not Construction

3.1 The Construction

We present a construction of a block cipher using a function F : {0, 1}n →
{0, 1}2, which we refer to as the Whitened Swap-or-Not construction, or WSN
for short. This construction naturally extends the Shuffle-or-Not construction by
Hoang, Morris, and Rogaway [33] to the keyless-function setting.

For any even round number R = 2r, the construction WSN = WSN(R)

expects round keys K1, . . . ,KR and whitening keys W1, . . . ,WR, which are all
n-bit strings. Its computation proceeds as follows, where j(i) = 1 if i ≤ r, and
j(i) = 2 else, and we interpret F as two functions F1 and F2 such that Fj(x)
returns the j-th bit of F (x) for j ∈ {1, 2}.

Construction WSN
(R)
K1,...,KR,W1,...,WR

(X): // X ∈ {0, 1}n

X0 ← X
For i = 1, . . . , R do
X ′

i−1 ← max{Xi−1,Xi−1 ⊕ Ki}
Bi ← Fj(i)(Wi ⊕ X ′

i−1)
If Bi = 1 then Xi ← Xi−1 ⊕ Ki else Xi ← Xi−1

Return XR

In the description, the max of two strings is with respect to the lexicographic
order, and note that its purpose is to elect a unique representant for every pair
{X,X ⊕ Ki}. As in [33], the construction extends naturally to domains which
are arbitrary abelian groups. However, we will stick with the special case of bit
strings in the following.

It is easy to see that the construction can efficiently be inverted given the
keys, simply by reversing the order of the rounds.

3.2 Security of the WSN Construction

Compared with the original Swap-or-Not construction, WSN adds at each round
a whitening key Wi to the input of a (publicly evaluable) round function Fj(i), as
opposed to using a secret independent random function Fi (which in particular
cannot be queried directly by the adversary). It is a well-known folklore fact
that for a function F : {0, 1}n → {0, 1}, the construction mapping a key W and
an input X to F (W ⊕ X) is indistinguishable from a random function under a
random secret key W when F is random and publicly evaluable.

However, the high security of WSN does not follow by simply composing
this folklore fact with the original analysis [33]. This is because the folklore
construction can easily be distinguished from a random function via Θ(2n/2)

queries to F (W ⊕·) (or a random function f
$← Fcs(n, 1)), and Θ(2n/2) queries to
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F .6 To overcome this, a valid black-box instantiation would use a more complex
construction mapping X to F (W1 ⊕X)⊕· · ·⊕F (Wk ⊕X) (analyzed in [28]) for
the round functions within Swap-or-Not. This would however result in roughly
Θ(n2) calls to F , as opposed to Θ(n) achieved by WSN.

Security of WSN. The following theorem establishes the concrete security of
the WSN construction with R = 2r rounds.

Theorem 1 (Security of WSN). For all q, qF > 0 and for all r ∈ N, we have

AdvPRP
WSN(2r),F (q, qF ) ≤ 2

√
2
√

q2n/4

(
1
2

+
q · r + qF

2 · 2n

)r/4

.

The proof of Theorem 1 is given in Sect. 3.3 below. Note that if r · q + qF =
(1 − α)2n, then the above term can be made to be 2−n for r = O(n/α). For
example, this allows to infer security for q = 2n−log n−O(1) and qF = 2n−2.

We also have no reason to believe that the construction would be insecure if
we used a function with a single output bit throughout the evaluation, but we
could not find a suitable proof and leave this analysis as an open problem.

Single-permutation instantiation. The WSN construction can be instan-
tiated from a single permutation if we are ready to enlarge the domain of the
permutation to n + 2 bits. This follows from a result of independent interest,
proved in AppendixB. Namely, we prove that a 2c-call construction of a function
Fπ ∈ Fcs(n, c) from any permutation π ∈ Perms(n + c) due to Hall, Wagner,
Kelsey, and Schneier [32] is perfectly indifferentiable [44] from a random function.
This in particular implies (by the composition theorem in AppendixA) that we
can replace the function F by our construction and still achieve the same security
bound in the random permutation model.

Full-domain security. Two recently published works [47,49] enhance swap-
or-not to full-domain security (i.e., security against q = 2n queries) at the cost
of making O(n2) calls to the construction in the worst-case. (The later work [47]
shows how to reduce the complexity to O(n) in the average case). One could hope
to use their results generically to obtain (2n, 2n(1−ε))-security in our setting.

Unfortunately, these results require security for q = 2n−1, which is unattain-
able by the above bound. By inspecting the proof of Theorem1, it is however
not hard to verify that a version of the WSN construction with independent
round functions F1, . . . , FR can be made to achieve (2n−1, 2n(1−ε))-security (in
essence, this is because one can easily reduce the exponential term in the bound
to
(
1
2 + qF +q

2·2n

)r/4
) and the results from [47,49] can be used in a black-box way.

Nevertheless, we point out that in contrast to the small-domain setting of [47,
49], here we are mostly targeting a large n (e.g., n = 128), for which 2n(1−ε)

security can be largely sufficient. The additional cost may thus not be necessary.
6 Roughly, pick X1, . . . , XQ, X ′

1, . . . , X
′
Q to be independent uniform n-bit strings of

length n−k, for some k = �log n� and Q ≈ 2n/2. Then one just queries Yz,i ← F (W ⊕
(Xi ‖ z)) and Y ′

z,j ← F (X ′
j ‖ z) for all i, j ∈ [Q] and z ∈ {0, 1}k. The distinguisher

finally outputs one if and only if there exist i and j such that Yi,z = Y ′
j,z for all

z ∈ {0, 1}k.
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3.3 Proof of Theorem 1

Our proof shares similarities with the original analysis of Swap-or-Not [33], but
dealing with the setting where the function F is public requires a careful exten-
sion and different techniques. To this end, we follow an approach used in previ-
ous works by Lampe, Patarin, and Seurin [36], and by Lampe and Seurin [38] to
reduce security analyses for PRP constructions in ideal models to a non-adaptive
analysis. (With some extra care due to the fact that we deal with the multi-user
PRP security notion). In particular, we are first going to prove that the WSN
construction, restricted to half of its rounds, satisfies a weaker non-adaptive
security requirement, which we introduce in the following paragraph.

Non-adaptive security. Let BC = BC[F ] be a (κ, n)-block cipher construc-
tion based on some function F : {0, 1}m → {0, 1}�. Now, let us fix a set of tuples
TF = {(xi, yi)}i∈[qF ] with xi ∈ {0, 1}m and yi ∈ {0, 1}� for all i ∈ [qF ], and such
that every xi appears only in one pair in TF . Moreover, let us fix a sequence X
of q distinct inputs such that X[j] = (ij ,Xj) for all j ∈ [q], where ij ∈ N and
Xj ∈ {0, 1}n.

Then we consider two processes – sampling two sequences Y and Y′ of q
n-bit strings – defined as follows:

– Y (the real world distribution) is obtained by sampling random κ-bit strings

K1,K2, . . .
$← {0, 1}κ, sampling a random F

$← Fcs(m, �) conditioned on sat-
isfying F (xi) = yi for all i ∈ [qF ], and finally letting Y[j] ← BC[F ]Kij

(Xj)
for all j ∈ [q].

– Y′ (the ideal world distribution) is obtained by sampling random permutations

P1, P2, . . .
$← Perms(n), and letting Y[j] ← Pij

(Xj) for all i ∈ [q].

Then, we define the advantage metric

AdvNCPAPRP
BC,F (X, TF ) := SD(Y,Y′) ,

where SD denotes statistical distance. Moreover, let AdvNCPAPRP
BC,F (q, qF ) be the

maximum of AdvNCPAPRP
BC,F (X, TF ) taken over all q-sequences X and all sets TF of

size qF .

From non-adaptive to adaptive security. We make use of the following
lemma. The proof is very similar to previous works [36,38] and makes crucial use
of Patarin’s H-coefficient method [48]. The main difference is that our version
deals with the multi-user PRP security notion. (A self-contained version of the
proof is found in the full version).

Given a (κ, n)-block cipher BC[F ] relying on a function F : {0, 1}m → {0, 1}�,
then let BC[F1] ◦ BC−1[F2] be the (2κ, n)-block cipher which relies on two func-
tions F1, F2 : {0, 1}m → {0, 1}�, and which on input X ∈ {0, 1}n and given key
K1 ‖K2 ∈ {0, 1}2κ, returns BC[F2]−1

K2
(BC[F1]K1(X)). The following lemma tells

us that if BC is non-adaptively secure (as in the above notion), then BC ◦ BC−1

is adaptively secure in the sense of being a secure PRP for attackers making both
forward and backward queries.
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Lemma 1 (Non-adaptive ⇒ Adaptive Security). For all q, qF , we have

AdvPRP
BC[F1]◦BC−1[F2],(F1,F2)

(q, qF ) ≤ 4 ·
√

AdvNCPAPRP
BC[F ],F (q, qF ) .

Note that a stronger version of this statement (essentially without the square
root) can be proved [18,43] in the setting where qF = 0.

Non-adaptive analysis of WSN. We first adopt a slightly different represen-
tation of the WSN construction. In particular, let WSN

(r)
= WSN

(r)
[F ] be the

construction relying on a function F : {0, 1}n → {0, 1} which operates as the
original WSN construction for r rounds, but always uses the the function F
(instead of using one function F1 for the first half, and the function F2 for the
second half of the evaluation). Then, it is easy to see that

WSN(2r)[F1, F2] = WSN
(r)

[F1] ◦
(
WSN

(r)
[F2]
)−1

, (1)

where in particular we have used the fact that the inverse of WSN is just the
WSN itself, with round and whitening keys scheduled in the opposite order.

The key element of our proof is the following lemma, which, combined with
Lemma 1 and Eq. (1) immediately yields Theorem 1.

Lemma 2 (Non-adaptive Security of WSN). For all q and qF , and N = 2n,

AdvNCPAPRP

WSN
(r)

[F ],F
(q, qF ) ≤ 1

2
q
√

N

(
1
2

+
q · r + qF

2N

)r/2

.

Proof (Of Lemma 2). We fix a sequence of q distinct queries X, as well as a set
TF of qF input-output pairs. For now, we only consider the single-key setting, i.e.,
all queries X[j] are of the same index ij = 1, and thus we omit these indices ij .
(We argue below how the multi-user case follows easily from our proof). Denote
the randomly chosen round keys as K = (K[1], . . . ,K[r]) and the corresponding
whitening keys as W = (W[1], . . . ,W[r]).

We are going to consider the evolution of the evaluation of WSN on these
inputs simultaneously, and denote the joint state after t ∈ {0} ∪ [r] rounds as
Xt = (Xt[1], . . . ,Xt[q]), with X0 = X. With U uniformly distributed on the set
of q distinct n-bit strings, we are going to upper bound

AdvNCPAPRP

WSN
(r)

[F ],F
(X, TF ) = SD(Xr,U) .

For any i ∈ [q], denote by Qt[i] the set of input-output pairs corresponding to
the t F queries made to compute Xt[i] from X0[i]. Let now Ut,i be a uniformly
distributed value on the set St,i := {0, 1}n \{Xt[1], . . . ,Xt[i−1]}, and let Ut,i to
be a uniform (q−i)-tuple of distinct strings from St,i+1. Then, for all t ∈ {0}∪[r],
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SD(Xt,U) ≤
q∑

i=1

SD((X≤i−1
t ,Ut,i−1), ((X

≤i
t ,Ut,i))

≤
q∑

i=1

SD((Q≤i−1
t ,X≤i−1

t , Ut,i,Ut,i), (Q
≤i−1
t ,X≤i

t ,Ut,i))

=
q∑

i=1

SD((Q≤i−1
t ,X≤i

t ), (Q≤i−1
t ,X≤i−1

t , Ut,i)) =
q∑

i=1

E [SD(Xt[i], Ut,i)] . (2)

since SD(f(X), f(Y )) ≤ SD(X,Y ) for all f,X, Y , and the i-th expectation in
the sum is over Q≤i−1

t , X≤i−1
t ,W≤t, and K≤t.

For all a ∈ St,i, we now we define the random variable pt,i(a) as the prob-
ability that Xt[i] = a conditioned on the actual values taken by the random
variables Q≤i−1

t , X≤i−1
t ,W≤t,K≤t. (In particular, pt,i(a) is a random variable

itself, as it is a function of these random variables). Also, let Ni := N − i + 1.
Then, by Cauchy-Schwarz and Jensen’s inequalities, we obtain

E [SD(Xt[i], Ut,i)] =
1
2

· E
⎡

⎣
∑

a∈St,i

∣
∣
∣
∣pt,i(a) − 1

Ni

∣
∣
∣
∣

⎤

⎦

≤ 1
2

·
√

N

√
√
√
√
√E

⎡

⎣
∑

a∈St,i

(

pt,i(a) − 1
Ni

)2
⎤

⎦ .

(3)

We are going to give a recursive formula for E[Δt,i], where

Δt,i :=
∑

a∈St,i

(

pt,i(a) − 1
Ni

)2

.

Note that Δ0,i = E[Δ0,i] = 1 − 1
Ni

. It is now convenient to assume that Q≤i−1
t ,

X≤i−1
t , K≤t, W≤t are fixed to some values (and thus so are Δt,i and pt,i(a)),

and we are going to study E[Δt+1,i], where the expectation is now over X≤i−1
t+1 ,

K[t + 1], W[t + 1] and Q≤i−1
t+1 . In particular, define Qb (for b ∈ {0, 1}) to be the

set of all inputs of queries to F for which we know the corresponding output,
i.e., x ∈ Qb if (x, b) ∈ TF or (x, b) ∈ Qt[j] for some j ∈ [i − 1]. Moreover let
Q := Q0 ∪ Q1 and Q := |Q|, and note that Q ≤ t · (i − 1) + qF .

With the above being fixed, we are now considering the random experiment
where we sample K[t + 1] and W[t + 1], and we are going to compute the
expectation of Δt+1,i in this experiment. More concretely, we define a function
ϕ : St,i → St+1,i (which is also a random variable, as it depends on St+1,i,
K[t + 1] and W[t + 1]) as follows:
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ϕ(a) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

a if (1)max{a ⊕ K[t + 1], a} ⊕ W[t + 1] ∈ Q0, or

(2) a ⊕ K[t + 1] /∈ St+1,i

andmax{a ⊕ K[t + 1], a} ⊕ W[t + 1] /∈ Q, or

(3) a ⊕ K[t + 1] ∈ St,iandmax{a ⊕ K[t + 1], a} ⊕ W[t + 1] /∈ Q,

a ⊕ K[t + 1] if (4) max{a ⊕ K[t + 1], a} ⊕ W[t + 1] ∈ Q1, or

(5) a /∈ St+1,iand max{a ⊕ K[t + 1], a} ⊕ W[t + 1] /∈ Q.

Note that ϕ is a bijection. Indeed, if Xt[i] = a implies Xt+1[i] = a′ (where
a′ ∈ {a, a ⊕ K[t + 1]}), then ϕ(a) = a′ (this corresponds to exactly one of the
first four cases), and otherwise we let ϕ(a) = a. Also note that ϕ does not depend
(directly) on Q≤i−1

t+1 , only on St+1,i, K[t + 1], W[t + 1], and Q≤i−1
t . Using both

the bijectivity of ϕ as well as the linearity of expectation,

E [Δt+1,i] =
∑

a∈St,i

E

[(

pt+1,i(ϕ(a)) − 1
Ni

)2
]

.

Recall that the expectation here is over the choice of Q≤i−1
t+1 , K[t + 1] and

W[t + 1]. We prove the following lemma in AppendixC.

Lemma 3. For all a ∈ St,i,

E

[(
pt+1,i(ϕ(a)) − 1

Ni

)2
]

=
(
1 − 3

4
Ni(N−Q)

4·N2

)(
pt,i(a) − 1

Ni

)2
+ 1

4
N−Q
N2 Δt,i .

We can thus replace E

[(
pt+1,i(ϕ(a)) − 1

Ni

)2
]

in the above, and using the fact

that Δt,i =
∑

a∈St,i
(pt,i(a) − 1

Ni
)2, this simplifies to

E [Δt+1,i] =
∑

a∈St,i

E

[(

pt+1,i(ϕ(a)) − 1
Ni

)2
]

≤
(

1 − Ni · (N − Qt)
2 · N2

)

Δt,i ,

where Qt = t(i−1)+qF . Now, we come back to thinking of X≤i−1
t , K≤t and W≤t

as being randomly chosen (rather than fixed), and evaluate E[Δt,i] recursively.

The above in particular implies that E[Δt,i] ≤
(
1 − Ni·(N−Q)

2·N2

)
E[Δt−1,i], and

thus

E[Δr,i] ≤
(

1 − Ni · (N − Qr−1)
2 · N2

)r

≤
(

1
2

+
r · q + qF

2N

)r

.

Now, we can put this together with (2) and (3), and see that

SD(Xr,Uq) ≤ 1
2
q ·

√
N ·
(

1
2

+
r · q + qF

2N

)r/2

.

Note that for the multi-user case, the proof is essentially the same, with slightly
more complex notation. The only difference is that we define St,i and all related
quantities only with respect to the previous queries for the same key / user. The
upper bounds are the same however, as they only depend on N , q and qF . This
concludes the proof of Lemma 2. ��
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4 Related-Key Security

4.1 Related-Key Secure Key Derivation

We consider the general notion of a related-key secure key-derivation function,
or RKA-KDF for short. Informally, for a class of key-transformation functions
Φ ⊆ Fcs(κ, κ), this is a function KDF : {0, 1}κ → {0, 1}� such that KDF(φ(K))
gives independent, pseudorandom values for every φ ∈ Φ. A similar notion was
considered by Lucks [40] and by Barbosa and Farshim [3].

Formal definition. Let KDF[F ] : {0, 1}κ → {0, 1}� be a construction that
calls a function F : {0, 1}m → {0, 1}n. In Fig. 1, we define the security games
RKA-KDF-0 and RKA-KDF-1 involving an adversary A and a class of key trans-
formations Φ ⊆ Fcs(κ, κ). In the real world (Game RKA-KDF-0), the adversary
A makes queries to a random function F via the F oracle and can obtain eval-
uations of KDF[F ](φ(K)) for multiple φ ∈ Φ of its choice via the Eval oracle,
and these values should be indistinguishable from random values, which are
returned by the Eval oracle in the ideal world (i.e., in Game RKA-KDF-1). The
RKA-KDF-advantage is then defined as

AdvRKA-KDF
KDF,F,Φ (A) = Pr

[
RKA-KDF-0A

KDF,F,Φ ⇒ 1
]− Pr

[
RKA-KDF-1A

KDF,F,Φ ⇒ 1
]

,

and AdvRKA-KDF
KDF,F,Φ (q, qF ) is obtained by maximizing the above over all adversaries

making q queries to Eval and making qF queries to F via the F oracle.

Procedure MAIN:

// Game RKA-KDF-b, b ∈ {0, 1}
F

$← Fcs(m, n), G
$← Fcs(∗, �)

K
$← {0, 1}κ

b′ $← AF,Eval

Return b′

Procedure Eval(φ):

// Game RKA-KDF-b, b ∈ {0, 1}
If b = 0 then
Return KDF[F ](φ(K))

Else return G(φ)

Procedure F(x):

Return F (x)

Fig. 1. RKA-KDF security. The procedure Eval, in both games, takes as input a
function φ ∈ Φ. Also, the notation G(φ) denotes G applied to some unique bit-encoding
of the function φ.

Remark 1. An alternative definition has the Eval oracle return G(φ(K)) for a

random function G
$← Fcs(κ, �). Our choice is better suited to the composition

theorem below, and shifts the burden of dealing with the combinatorics of Φ to
the RKA-KDF security proof.

The composition theorem. We can compose an arbitrary (�, n)-block cipher
construction BC[F ] and a key-derivation function KDF : {0, 1}κ → {0, 1}� using
the same function F , into a new (κ, n) block cipher BC = BC[F,KDF] such that

BCK(X) = BCKDF(K)(X) . (4)
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for every K ∈ {0, 1}κ and X ∈ {0, 1}n. The following theorem shows that if
BC is a secure PRP and KDF is RKA-KDF secure, then the composition BC is
a related-key secure PRP. Note that the fact that we consider multi-user PRP
security is central in allowing us a tight reduction.

Theorem 2 (The Composition Theorem). Let BC = BC[F,KDF] be the
(κ, n)-block cipher defined above, and assume that BC makes at most t calls to F
upon each invocation. Let Φ ⊂ Fcs(κ, κ) be a class of key transformations. Then,
for all q, qF ,

AdvRKA-PRP
BC,F,Φ

(q, qF ) ≤ 2 · AdvRKA-KDF
KDF,F,Φ (q, qF + q · t) + AdvPRP

BC,F (q, qF ) .

Proof (Sketch). One uses RKA-KDF security to transition from RKA-PRP-1 to a
setting where each query (φ, x) to the block cipher is replied with an independent
key Kφ as BCKφ

(x), i.e., we map every φ with an independent κ-bit key Kφ.
This is exactly PRP-1 (except that users are now identified by elements of Φ)
and results in the additive term AdvRKA-KDF

KDF (q, qF + q · t) in the bound by a
standard reduction. Similarly, one uses RKA-KDF security to transition from
RKA-PRP-0 to a setting where each query (φ, x) to the block cipher is replied
with an independent permutation Pφ, and this exactly maps to PRP-0, and
results in another additive term AdvRKA-KDF

KDF (q, qF +q ·t). The final bound follows
by the triangle inequality. ��
Note that in a similar way, if KDF and BC use different functions F and F ′, then
we can reduce AdvRKA-KDF

KDF,F,Φ (q, qF + q · t) to AdvRKA-KDF
KDF,F,Φ (q, qF ).

4.2 Efficient RKA-KDF-secure Construction

This section presents an RKA-KDF-secure construction from a (small number of)
random functions with n-bit domain approaching (2n(1−ε), 2n(1−ε))-security. (As
we argue below, this can be turned into a construction from a single function
F : {0, 1}n → {0, 1} with standard tricks). Our construction will guarantee Φ-
RKA-KDF-security for every class Φ ⊆ Fcs(κ, κ) with the following two properties
for (small) parameters γ, λ ∈ [0, 1]:

γ-collision resistance. Pr
[
K

$← {0, 1}κ : φ(K) = φ′(K)
]

≤ γ for any two dis-
tinct φ, φ′ ∈ Φ.

λ-uniformity. For any φ ∈ Φ, we have that SD(K,φ(K)) ≤ λ for K
$← {0, 1}κ,

i.e., φ(K) is λ-close to uniform for a random key K.

For example, Φ⊕ = {K �→ K ⊕ Δ : Δ ∈ {0, 1}κ} is both 0-collision-resistant and
0-uniform.

Combinatorial hitters. Our construction makes use of the standard com-
binatorial notion of a hitter [30], which we introduce with a slightly different
parameterization than what used in the literature. Consider a family of func-
tions E = (E1, . . . ,Et) such that Ei : {0, 1}κ → {0, 1}n.
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Definition 1 (Hitters). The functions E = (E1, . . . ,Et) with Ei : {0, 1}κ →
{0, 1}n are an (α, β)-hitter if for all subsets Q ⊆ {0, 1}n with |Q| ≤ β · 2n,
Pr [K ← {0, 1}κ : ∀i ∈ [t] : Ei(K) ∈ Q] ≤ α.

In our setting, we are going to have β = 2−nε (for some (small) ε > 0, and
in particular 1 − β ≥ 1

2 ) and α = 2−n. There are polynomially-computable
explicit constructions of hitters (cf. e.g. [30] for an overview) with sufficiently
good parameters for our purposes, where

κ = 2n + O(log(1/α)) = O(n) , t = O(log(1/α)) = O(n) . (5)

The full version gives further details about a concrete example of a “reasonably”
cheap construction relying on random walks on constant-degree expander graphs.
We will require our hitters to be injective, i.e., for any two inputs X and X ′,
there must exist i such that Ei(X) �= Ei(X ′). It is easy to enforce injectivity for
any hitter by just adding O(κ/n) functions to the family.

The MT Construction. We now present our construction of an RKA-KDF-
secure function, which follows the framework of Maurer and Tessaro [45]. Let E =
(E1, . . . ,Et) be such that Ei : {0, 1}κ → {0, 1}n. Moreover, let Fi,j : {0, 1}n →
{0, 1}2κ+n for i ∈ [t] and j ∈ [r], Gj : {0, 1}n → {0, 1}� for j ∈ [r]. For simplicity,
denote F = (Fi,j)i∈[t],j∈[r] and G = (Gi)i∈[t].

The MT[E, F,G] construction operates as follow. (Here, � denotes multiplica-
tion of (2κ+n)-bit-strings interpreted as elements of the corresponding extension
field F22κ+n).

Construction MT[F,G](K): // K ∈ {0, 1}κ

(1) For all j ∈ [r], compute

S[j] ←
(

t⊙

i=1

Fi,j(Ei(K))

)

[1 . . . n] .

(2) Compute K ′ ←⊕r
j=1 Gi(S[i]) .

(3) Return K ′.

RKA-KDF security. The above construction is indifferentiable from a random
oracle [22,45] whenever E is a so-called input-restricting function family. While
this combinatorial property would also imply RKA-KDF security, explicit con-
structions of such function families require a very large t = O(nc) for a large
constant c, as discussed in [22].

Here, in contrast, we show that for RKA-KDF security it is sufficient if E
is a good hitter. The following theorem summarizes the concrete parameters of
our result. The complete proof is deferred to the full version for lack of space.
We give some intuition further below.
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Theorem 3 (RKA-KDF-Security of MT). Let E be an (α, β = qF /2n)-injective
hitter. Moreover, let Φ ⊆ Fcs(κ, κ) be a (γ, λ)-well behaved set of key transfor-
mations. Then, for all adversaries A making q queries to Eval, qF queries to the
F -functions, and qG queries to the G-functions,

AdvRKA-KDF
MT,(F,G),Φ(A) ≤ 4rt

2n
+ q(α + λ) + q2γ + q ·

(
qG + q

2n

)r

.

Instantiations. Let us target security for qF = q = 2n(1−ε) (e.g., ε = O(1/n)),
� = n, and additive attacks Φ = Φ⊕ with γ = λ = 0. First note that because we
want α ≈ 2−n and β = 2−εn, then we can use E with κ = O(n) and t = O(n) by
(5). Moreover, we need to ensure that 2r(1−n) · 2n(1−ε)(r+1) < 1 or alternatively
r(nε − 1) > n(1 − ε), which is true for r = r(ε) = Ω(1−ε

ε ), and r = O(n) for
ε = O(1/n).

Therefore, the construction evaluates a linear number of functions with linear
output O(n), or alternatively, O(n2) single-bit functions {0, 1}n → {0, 1}. This
can be turned into evaluating O(n2) one single function {0, 1}n+2 log n+O(1) →
{0, 1}.7 Improving upon this appears to be a significant barrier.

The MT construction can be combined with the WSN construction above to
obtain an RKA-secure block cipher with (2n(1−ε), 2n(1−ε))-security via Theorem 2
for any class Φ with small λ, γ.

Overview of the proof of Theorem 3. We explain here the basic ideas
behind the proof of Theorem3.

To start with, it is convenient to first consider a toy construction, using
only t functions F = (Fi)i∈[t] with Fi ∈ Fcs(n, �), in conjunction with a hitter
E = (E1, . . . ,Et) as above. On input K ∈ {0, 1}κ, it outputs

⊕t
i=1 Fi(Ei(K)).

Also, let us only consider RKA-KDF attackers which make all qF of their F
queries beforehand, and only then query Eval on inputs φ1, . . . , φq, where the φi

functions are such that φi(K) is uniform for a uniform K.
Assume without loss of generality the uniform key K is sampled after the

F -queries have been made. Since E is an (α, β = qF /2n)-hitter, then by the
union bound, for every k ∈ [q] there exists some i∗(k) such that Ei∗(k)(φk(K))
was not queried to Fi∗(k) in the first phase, except with probability q · α. There-
fore, for all k ∈ [q], the value

⊕t
i=1 Fi(Ei(φk(K))) is individually uniform, even

given the transcript of the F queries, but unfortunately, this does not guar-
antee independence of these outputs. Indeed, for two k and k′, we may well
have i∗(k) = i∗(k′), and we cannot exclude that for all i �= i∗(k) both values
Fi(Ei(φk(K))) and Fi(Ei(φk′(K))) are known as part of the F -queries made in
the first phase. Then, the output values for k and k′ are clearly correlated.

Instead, by using two rounds with functions (Fi,j)i∈[t],j∈[r] and (Gj)j∈[r]

(where Fi,j ∈ Fcs(n, n) and Gj ∈ Fcs(n, �)), we would generate values Sk[j] ←
7 Note that we can play a bit with parameters, and given a function F : {0, 1}n →

{0, 1}, interpret it as a function {0, 1}n′+2 log(n′) → {0, 1} for a suitable n′ only
marginally smaller than n, and obtain an instantiation of our construction with
respect to n′ still making roughly O(n2) calls to F .
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⊕t
i=1 Fi,j(Ei(φk(K))) hoping that, in addition to being individually uniform as

above, Sk[j] and Sk′ [j] are unlikely to collide for any k �= k′.
If the final output of the construction is

⊕r
j=1 Gj(Sk[j]), the above would

imply security: Indeed, with very high probability, we can show that for every
k, there is going to always exist some j∗ such that Sk[j∗] was never queried to
Gj∗ previously directly by the attacker (because of the individual uniformity of
the value) and that no other k′ �= k is such that Sk′ [j∗] = Sk[j∗]. (Exploiting
independence of the Sk[j]’s, the probability that such j∗ does not exist can be
made very small, of the order

(
qG+q
2n

)r
).

There is a final catch. Imagine we are in the above “unfortunate” setting,
i.e., for two k and k′ and j ∈ [r], we have i∗(k) = i∗(k′), and for all i �=
i∗(k), Fi,j(Ei(φk(K))) and Fi,j(Ei(φk′(K))) are known. Then, the fact that Sk[j]
and Sk′ [j] collided is already determined by the transcript of the F queries,
independent of Fi∗(k),j(Ei∗(k)(φk(K))). Our approach to address this problem
is to make the output of the F -values larger (roughly 2κ + n bits) and to use
multiplication. This will make sure that given that any two partial product
defined by the F queries as above will not collide (over 2κ + n bits), and thus
(by the fact that multiplication with truncation gives a universal hash function),
the final products, truncated at n bits, will also be unlikely to collide.

A Indifferentiability

We briefly review the notion of indifferentiability by Maurer et al. [44] as needed
in this paper.

Let C[G] : {0, 1}m → {0, 1}� be a construction from a function G : {0, 1}a →
{0, 1}b. We say that C is indifferentiable from a random function if C[G], for G

$←
Fcs(a, b), is “as good as” a randomly chosen function F

$← Fcs(m, �) in a setting
where an adversary is given access to both C[G] and the underlying function
G. This is formalized by requiring the existence of a simulator S, accessing F ,
which mimics the behavior of G in a way that makes real and ideal worlds
indistinguishable.

Formal Definition. For an adversary A and a simulator S, the indifferentia-
bility advantage is

Advindiff
C[G],G,S(A) = Pr

[
G

$← Fcs(a, b) : AC[G],G ⇒ 1
]
−

−Pr
[
F

$← Fcs(m, �) : AF,SF ⇒ 1
]

.

Similarly, for a construction C[π] from a permutation π ∈ Perms(a), we define

Advindiff
C[π],π,S(A) = Pr

[
π

$← Perms(a) : AC[π],π,π−1 ⇒ 1
]
−

−Pr
[
F

$← Fcs(m, �) : AF,SF ⇒ 1
]

.
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Note that in the latter case, the simulator S simulates both the behavior of
π and π−1 queries. We are going to call queries to the first oracle (i.e., either
C[G], C[π] or F ) construction queries, and queries to the second oracle (either
G, π, π−1, or SF ) primitive queries.

In this paper, we are going to only consider an information-theoretic version
of indifferentiability.

Definition 2 (Indifferentiability). A construction C[Σ] (where Σ is either a
permutation or a function) is (ε, s)-indifferentiable from a random function if
there exists a simulator S such that for all adversary A making q construction
queries, and qΣ primitive queries, Advindiff

C[Σ],Σ,S(A) ≤ ε(q, qΣ), and where addi-
tionally, upon each invocation via a primitive queries, the simulator Σ makes at
most s queries. Moreover, the simulator answers each query in time polynomial
in qΣ.

We say that C[Σ] is perfectly indifferentiable if it is (0, 1)-indifferentiable.

Composition Theorem. We use the following fact below, which follows from
general composition theorems [21,44] adapted to the specific case of block ciphers
considered in this paper.

Theorem 4 (Composition Theorem for Block Ciphers). Let BC = BC[F ]
be a (κ, n)-block cipher making at most t calls to a function F : {0, 1}m → {0, 1}�,
and let C[Σ] be a construction using a primitive Σ which is (ε, s)-indifferentiable
from a random function. Consider the (κ, n)-block cipher BC′ = BC′[Σ] =
BC[C[Σ]], i.e., calls to F are replaced by calls to C[Σ]. Then,

AdvPRP
BC′[Σ],Σ(q, qΣ) ≤ AdvPRP

BC[F ],F (q, s · qΣ) + 2 · ε(t · q, qΣ) .

B From Permutations to Functions

In this section, we revisit the security of a construction by Hall, Wagner, Kelsey,
and Schneier [32] to build a random function F : {0, 1}n → {0, 1}c from a
permutation π : {0, 1}n+c → {0, 1}n+c. In particular, here we show that their
construction achieves the stronger notion of perfect indifferentiability defined
above in AppendixA, and thus can be used to replace (in a black-box way) the
function F in the WSN construction. Note that in [32], only indistinguishability
was shown. We believe that this result is of interest beyond the scope of this
paper.

The construction. Let π : {0, 1}n+c → {0, 1}n+c be a permutation. The
2c-query construction FC [π] : {0, 1}n → {0, 1}c proceeds as follows, on input
X ∈ {0, 1}n: It outputs the c-bit value Z∗ such that π(X ‖Z∗) is the smallest
element in {π(X ‖Z) : Z ∈ {0, 1}c}, where smallest is according to lexicographic
order. (Or any other total order on strings).
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Security. The following theorem establishes security of F in terms of indiffer-
entiability.8

Theorem 5 (Indifferentiability of F). The construction Fc = Fc[π] is per-
fectly indifferentiable from a random function.

Proof. We need to prove that there exists a simulator S such that Advindiff
F,π,S(A) =

0 for all adversaries A, and moreover, S simulates a permutation from Perms(n+
c), together with its inverse, and makes at most one single query to a given

function F
$← Fcs(n, c) upon each invocation.

To help with the definition of the simulator, for a function f ∈ Fcs(n, c)
and a permutation τ ∈ Perms(n + c), we define a new permutation π[τ, f ] ∈
Perms(n + c). To this end, for every x ∈ {0, 1}n, we define

y∗
x = min {τ(x ‖ z) : z ∈ {0, 1}c}

and yx = τ(x ‖ f(x)). Note that y∗
x is the output of τ on input x ‖Fc[τ ](x) and

thus if f = Fc[τ ], yx = y∗
x. The permutation π[τ, f ] is such that

π[τ, f ](x ‖ z) =

⎧
⎨

⎩

y∗
x if τ(x ‖ z) = yx, i.e., f(x) = z

yx if τ(x ‖ z) = y∗
x

τ(x ‖ z) else.

In other words, π[τ, f ] re-arranges τ to assign π[τ, f ](x ‖ f(x)) the smallest value
among τ(x ‖ z′) for z′ ∈ {0, 1}c. Clearly, given τ , π[τ, f ](x ‖ z) can be computed
with a single query to f and 2c queries to τ . Moreover, note that the inverse
π−1[τ, f ] is

π−1[τ, f ](y) =

⎧
⎨

⎩

τ−1(yx) if y = y∗
x

τ−1(y∗
x) if y = yx

τ−1(y) else.

Note that the check y = y∗
x and y = yx can be implemented by first computing

τ−1(y), which returns x ‖ z, and then querying τ(x ‖ z′) for all z′ �= z, as well as
f(x). In particular, π−1[τ, f ] can also be evaluated with one query to f , given τ .

The simulator S now simply does the following when given oracle access to
f : It maintains a random permutation τ

$← Perms(n + c) (implemented via lazy
sampling), and on a forward query x ‖ z, replies as π[τ, f ](x ‖ z), and on inverse
query y it replies as π−1[τ, f ](y). By the above, this requires one f query per
evaluation.

Therefore, to prove perfect indifferentiability, it is enough to prove that
(Fc[π], π) (for π

$← Perms(n + c)) and (f, π[τ, f ]) (for f
$← Fcs(n, c) and

τ
$← Perms(n + c)) are identically distributed. This can be done in two steps:

8 A previous version of this paper provided a somewhat more cumbersome yet equiva-
lent description of the simulator. The far more elegant description using π[τ, f ] was
suggested by an anonymous reviewer we wish to thank.
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1. First, note that Fc[π[τ, f ]] = f . This is because on input x, Fc outputs z such
that π[τ, f ](x ‖ z) is smallest. This must be z = f(x), because π[τ, f ] is such
that π[τ, f ](x ‖ f(x)) = y∗

x, which is the smallest value among τ(x ‖ z′), and
thus also among π[τ, f ](x ‖ z′).

2. Therefore, it suffices to show that the permutation π[τ, f ] is uniformly distrib-
uted. This is because π[τ, f ] is obtained by sampling a random permutation
τ , and then for all x, swapping y∗

x with the output of x ‖ z for a randomly
chosen z = f(x). This gives a uniform random permutation.

This concludes the proof. ��

C Proof of Lemma3

For every a ∈ St,i, we now define now two subsets partitioning {0, 1}n ×{0, 1}n,
i.e., the key space for round t + 1:

WK+
a := {(w, k) : a ⊕ k ∈ St,i ∧ max{a ⊕ k, a} ⊕ w /∈ Q}

WK−
a := {(w, k) : a ⊕ k /∈ St,i ∨ max{a ⊕ k, a} ⊕ w ∈ Q}

It is easy to see that
∣
∣WK+

a

∣
∣ = Ni · (N − Q) ,

∣
∣WK−

a

∣
∣ = N2 − Ni · (N − Q)

because for every a we have exactly |St,i| = Ni values of k such that a⊕k ∈ St,i,
and moreover, we have (for each such value k) exactly N − Q possible values of
w with max{a, a ⊕ k} ⊕ w /∈ Q. Also, note that for (w, k) ∈ WK−

a ,

E
[
(pt+1,i(ϕ(a)) − 1/Ni)

2
∣
∣
∣K[t + 1] = k,W[t + 1] = w

]
= pt,i(a)2 ,

whereas for (w, k) ∈ WK+
a ,

E

[(

pt+1,i(ϕ(a)) − 1
Ni

)2 ∣
∣
∣K[t + 1] = k,W[t + 1] = w

]

=

=
(

pt,i(a) + pt,i(a ⊕ k)
2

− 1
Ni

)2

.

Putting all of this together, we obtain

E

[(
pt+1,i(ϕ(a)) − 1

Ni

)2
]

=

= 1
N2

∑

k,w

E

[(
pt+1,i(ϕ(a)) − 1

Ni

)2 ∣∣
∣K[t + 1] = k,W[t + 1] = w

]

=
1

N2

⎡

⎣
∑

(w,k)∈WK−
a

(
pt,i(a) − 1

Ni

)2
+

∑

(w,k)∈WK+
a

(
pt,i(a)+pt,i(a⊕k)

2 − 1
Ni

)2
⎤

⎦

=
(
1 − Ni(N−Q)

N2

)(
pt,i(a) − 1

Ni

)2
+ N−Q

N2

∑

y∈St,i

(
pt,i(a)+pt,i(y)

2 − 1
Ni

)2
,
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where we have used the structure of WK+
a , and the fact that for every y ∈ St,i

there exists k such that a ⊕ k = y, and corresponding N − Q values of w. In
particular, we can expand

∑

y∈St,i

(
pt,i(a)+pt,i(y)

2 − 1
Ni

)2
= 1

4

∑

y∈St,i

((
pt,i(a) − 1

Ni

)
+
(
pt,i(y) − 1

Ni

))2

= Ni

4 ·
(
pt,i(a) − 1

Ni

)2
+ 1

4Δt,i ,

where we have used in passing the fact that
∑

y∈St,i
(pt,i(a)− 1

Ni
) = 0. When we

plug this back into the above, we then get

E

[(
pt+1,i(ϕ(a)) − 1

Ni

)2
]

=
(
1 − 3

4
Ni(N−Q)

4·N2

)(

pt,i(a) − 1
Ni

)2

+ 1
4

N−Q
N2 Δt,i .

This concludes the proof of Lemma 3.
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Abstract. We provide a security analysis for full-state keyed Sponge
and full-state Duplex constructions. Our results can be used for making
a large class of Sponge-based authenticated encryption schemes more effi-
cient by concurrent absorption of associated data and message blocks.
In particular, we introduce and analyze a new variant of SpongeWrap
with almost free authentication of associated data. The idea of using
full-state message absorption for higher efficiency was first made explicit
in the Donkey Sponge MAC construction, but without any formal secu-
rity proof. Recently, Gaži, Pietrzak and Tessaro (CRYPTO 2015) have
provided a proof for the fixed-output-length variant of Donkey Sponge.
Yasuda and Sasaki (CT-RSA 2015) have considered partially full-state
Sponge-based authenticated encryption schemes for efficient incorpora-
tion of associated data. In this work, we unify, simplify, and general-
ize these results about the security and applicability of full-state keyed
Sponge and Duplex constructions; in particular, for designing more effi-
cient authenticated encryption schemes. Compared to the proof of Gaži
et al., our analysis directly targets the original Donkey Sponge construc-
tion as an arbitrary-output-length function. Our treatment is also more
general than that of Yasuda and Sasaki, while yielding a more efficient
authenticated encryption mode for the case that associated data might
be longer than messages.

Keywords: Sponge construction · Duplex construction · Full-state
absorption · Authenticated encryption · Associated data

1 Introduction

Since its introduction, the Sponge construction by Bertoni, Daemen, Peeters and
Van Assche [4] has faced an immense increase in popularity. As “simple” hash
function mode, it is the fundament of the SHA-3 standard Keccak [5], but also its
keyed variants have become very popular modes of operation for a permutation
to build a wide spectrum of symmetric-key primitives: reseedable pseudoran-
dom number generators [7], pseudorandom functions and message authentica-
tion codes (PRFs/MACs) [9,11], Extendable-Output Functions (“XOFs”) [24]
c© International Association for Cryptologic Research 2015
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DOI: 10.1007/978-3-662-48800-3 19
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and authenticated encryption (AE) modes [10,11]. The keyed Sponge principle
also got adopted in Spritz, a new RC4-like stream cipher [26], and in 10 out
of 57 submissions to the currently running CAESAR competition on authen-
ticated encryption [1,3]. These use cases reinforce the fact that Sponge-based
constructions will continue to play an important role, not only in the new hash-
ing standard SHA-3, but in various next-generation cryptographic algorithms.

The classical Sponge construction consists of a sequential application of a
permutation p on a state of b bits. This state is partitioned into an r-bit rate or
outer part and a c-bit capacity or inner part, where b = r + c. In the absorption
phase, message blocks of size r bits are absorbed by the outer part and the
state is transformed using p, while in the squeezing phase, digests are extracted
from the outer part r bits at a time. In the indifferentiability framework of
Maurer, Renner and Holenstein [20], Bertoni et al. [6] proved that the Sponge
construction is secure up to the O(2c/2) birthday-type bound. The capacity
part is left untouched throughout the evaluation of the Sponge construction: a
violation of this paradigm would make the indifferentiability security result void.

In this work, we strive for optimality, and investigate the most efficient ways
of using Sponges for message authentication and authenticated encryption in a
provably secure manner. In both directions, we consider a generalization of the
currently known schemes to full-state absorption, the most efficient usage of the
underlying permutation, and we show that these schemes are secure. Due to the
full-state absorption, we cannot anymore rely on the classical indifferentiability
result of the Sponge (as was for instance done in [2,10]), and a new security
analysis is required. We will elaborate on both directions in the following.

Message Authentication. Bertoni et al. [9] introduced the keyed Sponge
as a simple evaluation of the Sponge function on the key and the message,
Sponge(K‖M), and proved security beyond O(2c/2). Chang et al. considered
a slight variant of the keyed Sponge where the key is processed in the inner
part of the Sponge, and observed that it can be seen as the Sponge based on
an Even-Mansour blockcipher. At FSE 2015, Andreeva, Daemen, Mennink and
Van Assche [2] considered a generic and improved analysis of both the outer-
and inner-keyed Sponge. So far, however, these constructions have only been
considered with the classical r-bit absorption.

The idea of using full-state message absorption for achieving higher efficiency
was first made explicit in the Donkey Sponge MAC construction [11],1 but with-
out any formal security proof. The recently introduced Donkey-inspired MAC
function Chaskey [22] did get a formal security analysis, but its proof is thwarted
towards Chaskey and does not apply to the Donkey Sponge.

A thorough analysis of the full-state message absorption keyed Sponge had to
wait for Gaži, Pietrzak and Tessaro [17], who prove nearly tight security up to
O(�q(q + N)/2b + q(q + � + N)/2c), where the adversary makes q queries of
maximal length �, and makes N primitive calls. However, their analysis only
applies to the fixed-output-length variant, and the proof does not directly seem
1 We note that apart from full-state absorption, the Donkey Sponge also uses less

rounds in the underlying permutation during the absorbing phase.
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to extend to the original arbitrary-output-length keyed Sponge. In this work, we
provide a direct proof for this more general case.

In more detail, we present a generalized scheme, dubbed Full-state Keyed
Sponge (FKS), whose security implies the security of Donkey Sponge in the
ideal permutation setting, and prove that it is secure up to approximately
2(q�)2

2b + 2q2�
2c + μN

2k , where k is the size of the key, and μ is a parameter called
the “multiplicity”. We note that usage of the outer-keyed Sponge makes no
longer any difference from the usage of the inner-keyed variant in the presence
of full-state absorption (see also Sect. 8). Our proof of FKS follows the modular
approach of Andreeva et al., but due to the full-state absorption, we cannot
rely on the indifferentiability result of [6], and present a new and more detailed
analysis.

Authenticated Encryption. Encryption via the Sponge can be done (and is
typically done) via the Duplex construction [10], a stateful construction con-
sisting of an initialization interface and a duplexing interface. The initialization
interface can be called to initialize an all-zero state; the duplexing interface
absorbs a message of size < r bits and squeezes ≤ r bits of the outer part.
The security of the Duplex traces back to the indifferentiability of the classical
Sponge, yielding a O(2c/2) security bound.

Bertoni et al. [10] showed that the Duplex, in turn, allows for authenticated
encryption in the form of SpongeWrap. This mode is, de facto, the basis of the
majority of Sponge-based submissions to the CAESAR competition. Jovanovic
et al. [18] re-investigated Sponge-based authenticated encryption schemes, star-
ring NORX, and derived beyond birthday-bound security. These results are, how-
ever, all for the usual r-bit absorption. Yasuda and Sasaki [27] have considered
several full-state and partially full-state Sponge-based authenticated encryption
schemes for efficient incorporation of associated data, directly lifting Jovanovic
et al.’s security proofs. The concurrent absorption mode proposed by Yasuda and
Sasaki (Fig. 3 in [27]) fails to utilize the full-state absorption when the associated
data becomes longer than the message, forcing the mode switch from a full-state
mode to the classical r-bit absorbing Sponge mode; hence, we refer to this as
a partially full-state AE mode. Full-state data absorption was also proposed by
Reyhanitabar, Vaudenay and Vizár [25] in their compression function based AE
mode p-OMD.

We generically aim to optimize the efficiency in Sponge-based authenticated
encryption. To this end, we first formalize the Full-state Keyed Duplex (FKD)
construction. It differs from the original Duplex in the fact that (i) the key is
explicitly used to initialize the state (In this, the FKD is similar to the Monkey
Duplex [11]) and (ii) the absorption is performed on the entire state. Note that
the possibility to absorb in the entire state enforces the explicit usage of the
key. Next, we prove that FKD is provably secure, i.e., indistinguishable from a
random oracle with the same interfaces. As before, we cannot rely on the classical
indifferentiability proof due to the full-state absorption; however, we show how
to adapt the FKS proof to a special case directly related to the security of FKD.
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We exemplify the better absorption capabilities of FKD by the introduction
of a Full-state SpongeWrap (FSW). The FSW construction is more general than
that of Yasuda and Sasaki, who only considered specific AE constructions, and
interestingly, our approach also yields a more efficient (truly full-state) authenti-
cated encryption mode irrespective of the relative lengths of messages and their
associated data.

Organization of the Paper. Notations and preliminary concepts are presented
in Sect. 2. We present the Full-state Keyed Sponge and Full-state Keyed Duplex
in Sect. 3. The security model is discussed in Sect. 4. In Sect. 5 we prove security
of FKS and in Sect. 6 of FKD. The introduction of the Full-state SpongeWrap,
and the application of FKD to this construction is given in Sect. 7. Section 8
provides a brief discussion on related-key security and our security models.

2 Notations and Conventions

The set of all strings of length b is denoted as {0, 1}b for any b ≥ 1 and the set
of all finite strings of arbitrary length is denoted as {0, 1}∗. We will denote the
empty string of length 0 as ε. For any positive b, we let {0, 1}<b =

⋃b−1
i=0{0, 1}i

denote set of all strings of length less than b including ε. For two strings X,Y ∈
{0, 1}∗ we let X ‖ Y denote the string obtained by concatenation of X and Y .
For a string X ∈ {0, 1}x we let left� (X) denote the � leftmost bits of X and
rightr (X) the r rightmost bits of X such that X = leftχ (X) ‖ rightx−χ (X) for
any 0 ≤ χ ≤ x. For integral b, r, c such that b = r + c, and for t ∈ {0, 1}b, we let
outer (t) = leftr (t) and inner (t) = rightc (t).

For a non-empty finite set S let a
$←− S denote sampling an element a from

S uniformly at random. We let |Z| denote the cardinality if Z is a set and the
length if Z is a string. We let Perm (b) denote the set of all permutations of b-bit
strings and Func (b) the set of all functions over b-bit strings.

Given two strings X,Y , let

llcpb (X,Y ) = max
i≥0

{i : leftib (X) = leftib (Y )}

denote the length of the longest common prefix between X and Y in b-bit blocks.
For a string X and a non-empty set of strings {Y1, . . . , Yn} let

llcpb (X;Y1, . . . , Yn) = max {llcpb (X,Y1) , . . . , llcpb (X,Yn)} .

For any two pairs of integers (i, j), (i′, j′), we say that (i′, j′) < (i, j) if either
i′ < i or if i′ = i and j′ < j. We say that (i′, j′) ≤ (i, j) if (i′, j′) < (i, j) or
if (i′, j′) = (i, j). In other words, we use lexicographical ordering to determine
ordering of integer-tuples.

3 Sponge Constructions

3.1 Full-State Keyed Sponge

We consider the Full-state Keyed Sponge (FKS) construction that is using a
public permutation p : {0, 1}b → {0, 1}b. It is furthermore parameterized with
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r, k, which are required to satisfy r < b and k ≤ b − r =: c. The parametrization
is sometimes left implicit if it is clear from the context. FKS gets as input a key
K ∈ {0, 1}k, a message M ∈ {0, 1}∗, and a natural number z, and it outputs a
string Z ∈ {0, 1}z:

FKSp(K,M, z) = FKSp
K(M, z) = Z .

It operates on a state t ∈ {0, 1}b, which is initialized using the key K. The
message M is first padded to a length a multiple of b bits, using padb(M) =
M‖10b−1−|M |modb, which is then viewed as m b-bit message blocks M1‖...‖Mm.2

These message blocks are processed one-by-one, interleaved with evaluations of p.
After the absorption of M , the outer r bits of the state are output and the state
is processed via p until a sufficient amount of output bits are obtained. FKS is
depicted in Fig. 1, and Algorithm 1 provides a formal specification of FKS.

K

p p pp p

M1 M2 Mm Z z/r 1Z1 Z z/r

0b
−
k

padb leftz

M Z

b

r

c

r

c

Fig. 1. The FKS construction.

Algorithm 1 . FKS[p, r, k](K,M, z)
1: t ← 0b−k ‖ K

2: M1 ‖ · · · ‖ Mm b←− padb(M)
3: for i = 1, . . . , m do
4: s ← t ⊕ M i

5: t ← p(s)

6: Z ← leftr (t)
7: while |Z| < z do
8: t ← p(t)
9: Z ← Z ‖ leftr (t)

10: return leftz (Z)

Algorithm 2 . FKD[p, r, k]
1: Interface FKD.initialize(K)
2: t ← 0b−k ‖ K

1: Interface FKD.duplexing(M, z)
2: if z > r or |M | ≥ b then
3: return ⊥
4: s ← t ⊕ padb(M)
5: t ← p(s)
6: return leftz (t)

2 In fact, any injective padding function works, as long as the last block is always
non-zero.
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Fig. 2. The FKD construction.

3.2 Full-State Keyed Duplex

We present the Full-state Keyed Duplex (FKD) construction, a generalization
of the Duplex of Bertoni et al. [8,10]. FKD is also parameterized by a public
permutation p : {0, 1}b → {0, 1}b and values r, k, which are required to satisfy
r < b and k ≤ b − r =: c. Again, the parametrization is sometimes left implicit
if clear from the context. An instance of FKD, denoted by D, consists of two
interfaces: D.initialize and D.duplexing. D.initialize gets as input a key K ∈
{0, 1}k and outputs nothing, while D.duplexing gets as input a message M ∈
{0, 1}<b and a natural number z ≤ r, and it outputs a string Z ∈ {0, 1}z. FKD
is depicted in Fig. 2, and the formal specification is given in Algorithm2. FKD
is a generalization of FKS where D.initialize is used to initialize the state, and
messages are absorbed into the state and/or digests are squeezed out of the state
using D.duplexing calls.

4 Security Models and Tools

Multiplicity. Let {(xi, yi)}σ
i=1 be a set of σ evaluations of a permutation p.

Following Andreeva et al. [2], we define the total maximal multiplicity as μ =
μfwd + μbwd, where

μfwd = max
a

|{i ∈ {1, . . . , σ} : outer (xi) = a}|,
μbwd = max

a
|{i ∈ {1, . . . , σ} : outer (yi) = a}|.

The multiplicity is a quantity that characterises the data that are available
to the adversary during the attack. We have 2 ≤ μ ≤ 2σ per definition, however
the upper bound 2σ is never reached in practical applications of sponge-based
constructions. Being a sum of forward and backward multiplicities, the total
multiplicity can be seen as a measure of adversary’s ability to control the outer
part of the permutation inputs and outputs respectively. In case of sponge-based
designs, the backward multiplicity can be expected to be approximately σ2−r

while the forward multiplicity varies with concrete applications [2].
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4.1 Adversaries and Patarin’s Coefficient-H Technique

We consider an information-theoretic adversary A that has access to one or
more oracles X; this is denoted by AX and the notation AX ⇒ 1 means that
A, after interaction with X, returns 1. It is a classical fact (for a simple proof
see [14]) that in the information-theoretic setting, adversaries can be assumed
to be deterministic without loss of generality.

We use Patarin’s Coefficient-H technique [23]; more precisely, a revisited
formulation of it by Chen and Steinberger [14]. Consider a deterministic
information-theoretic adversary A whose goal is to distinguish two oracles X
and Y :

ΔA (X;Y ) =
∣
∣
∣Pr

[
AX ⇒ 1

]
− Pr

[
AY ⇒ 1

]∣
∣
∣ .

Here, X and Y are randomized algorithms; the randomization depends on the
specific scenario and for now is left implicit. The interaction with any of the two
systems X or Y is summarized in a transcript τ . Denote by DX the probability
distribution of transcripts when interacting with X, and similarly, DY the distri-
bution of transcripts when interacting with Y . A transcript τ is called attainable
if Pr [DY = τ ] > 0, meaning that it can occur during interaction with Y . Denote
by T the set of all attainable transcripts. The Coefficient-H technique states the
following, for the proof of which we refer to [14].

Lemma 1 (Coefficient-H Technique [14,23]). Consider a fixed determinis-
tic adversary A. Let T = Tgood ∪ Tbad be a partition into good transcripts Tgood

and bad transcripts Tbad. If there exists an ε such that for all τ ∈ Tgood,

Pr [DX = τ ]
Pr [DY = τ ]

≥ 1 − ε,

then, ΔA (X;Y ) ≤ ε + Pr [DY ∈ Tbad].

The two partitions of T are labeled as Tgood and Tbad to aid the intuitiveness
of the proof. The transcripts in Tgood are “good” in the sense that they give
us a high value of Pr [DX = τ ]/Pr [DY = τ ] and thus small ε while the “bad”
transcripts from Tbad fail to do so.

4.2 Security Models for FKS and FKD

Let RO∞ : {0, 1}∗ → {0, 1}∞ be a random oracle which takes inputs of arbitrary
but finite length and returns random infinite strings, where each output bit is
selected uniformly and independently for every input M .

Let F be either FKS or FKD, which is based on a permutation p : {0, 1}b →
{0, 1}b and a key K ∈ {0, 1}k. We will define the security of F in two settings: the
public permutation setting, where the adversary has query access to the permu-
tation (security comes from the secrecy of K), and the secret permutation setting
(with no explicit key K), where the adversary has no access to the underlying
permutation and the security comes from the secrecy of the permutation.
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We use the notations F p
K and Fπ

0 to refer to the public permutation and
secret permutation based schemes, respectively; where, π is a secret random
permutation.

In both settings, we consider an adversary that aims to distinguish the real F
from an ideal (reference) primitive—an oracle RO with the same interface. For
F = FKS the corresponding ideal primitive RO is defined by ROFKS(M, z) =
leftz (RO∞(M)). For F = FKD the corresponding reference primitive ROFKD

is a stateful oracle with two interfaces: (1) ROr
FKD.initialize() that initializes

the state of the oracle, St, to the empty string, and (2) ROr
FKD.duplexing(M, z)

that, on input M ∈ {0, 1}<b and a natural number z, first updates the state as
St ← St||padb(M) and then outputs leftz (RO∞(St)).

We define the distinguishing advantage of any adversary A against F based
on a public permutation by

Advind
F p

K ,p(A) =
∣
∣
∣Pr

[
K

$←− {0, 1}k, p
$←− Perm (b) : AF p

K ,p,p−1 ⇒ 1
]
−

Pr
[
p

$←− Perm (b) : ARO,p,p−1 ⇒ 1
]∣
∣
∣ .

The distinguishing advantage of A against F based on a secret permutation is
defined by

Advind
F π

0
(A) =

∣
∣
∣Pr

[
π

$←− Perm (b) : AF π
0 ⇒ 1

]
− Pr

[
ARO ⇒ 1

]∣∣
∣ .

The resource parameterized advantage functions are defined as usual. Let
Advind

F p
K ,p(q, �, μ,N) = maxA Advind

F p
K ,p(A) be the maximum advantage over all

adversaries that make q queries to the left oracle, all of maximal length � per-
mutation calls if F = FKS or that make at most q initialize() calls to the left
oracle and issue at most � duplexing queries after each initialization if F = FKD
with total maximal multiplicity μ in both cases, and that make N direct queries
to the public permutation. To simplify the analysis, we assume that each of the
q oracle queries in fact consists of exactly � permutation (or that the adversary
indeed makes � duplexing calls after each initialization). This is without loss
of generality, it can simply be achieved by giving extra squeezing outputs to
the adversary. Similarly, we define Advind

F π
0
(q, �, μ) = maxA Advind

F π
0
(A), noticing

that in this case N = 0, thus it is omitted from the resources.

4.3 Security Model for Even-Mansour

Our proof relies on a reduction to the security of a low-entropy single-key
Even-Mansour construction [15,16]. In more detail, let p : {0, 1}b → {0, 1}b

be a permutation and K ∈ {0, 1}k be a key. The Even-Mansour blockcipher is
defined as

Ep
K(M) = p(M ⊕ (0b−k ‖ K)) ⊕ (0b−k ‖ K).
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We define the distinguishing advantage of any adversary A against E based on
a public permutation p as

Advprp
Ep

K ,p
(A) =

∣
∣
∣Pr

[
K

$←− {0, 1}k, p
$←− Perm (b) : AEp

K ,p,p−1 ⇒ 1
]
−

Pr
[
π, p

$←− Perm (b) : Aπ,p,p−1 ⇒ 1
]∣
∣
∣ .

Let Advprp
Ep

K ,p
(q, μ,N) = maxA Advprp

Ep
K ,p

(A) be the maximum advantage over all
adversaries that make q queries to the left oracle, with total maximal multiplicity
μ, and that make N direct queries to the public permutation.

5 Security Analysis of FKS

We prove the following result for FKS:

Theorem 1. Let b, r, c, k > 0 be such that b = r + c and k ≤ c. Let FKS be the
scheme of Sect. 3.1. Then,

Advind
FKSp

K ,p(q, �, μ,N) ≤ 2(q�)2

2b
+

2q2�

2c
+

μN

2k
.

The proof follows to a certain extent the modular approach of [2], and in par-
ticular also uses the observation that FKSp

K can alternatively be considered as

FKSEp
K

0 , a clever observation used before by Chang et al. [13]. Note that this
observation only works for k ≤ c: it consists of xoring two dummy keys K ⊕ K
in-between every two adjacent permutation calls, and if k > c this would entail a
difference in the squeezing blocks of FKS. This trick splits the security of FKSp

K

into the security of the Even-Mansour blockcipher and the security of FKS with
secret primitive. Looking back at [2], the security of Inner-keyed Sponge/Outer-
keyed Sponge [2] with secret permutations was simply reverted to the classical
indifferentiability result of [6]. Because this is a rather loose approach, and addi-
tionally because the indifferentiability bound cannot be used for FKS due to its
full-state absorption, we consider the security of FKS with secret primitive in
more detail and derive an improved bound.

Proof (Proof of Theorem 1). Consider any adversary A with resources (q, �,
μ,N). Note that FKSp

K = FKSEp
K

0 . Therefore, by a modular argument,

Advind
FKSp

K ,p(A) = ΔA

(
FKSEp

K
0 , p;ROFKS, p

)

≤ ΔB (FKSπ
0 , p;ROFKS, p) + ΔC (Ep

K , p;π, p)

= Advind
FKSπ

0
(B) + Advprp

Ep
K ,p

(C)

for some adversary B with resources (q, �, μ) and adversary C with resources
(q�, μ,N). Note that B also has access to p, but queries to this oracle are mean-
ingless as its left oracle (FKSπ

0 or ROFKS) is independent of p.
In [2], it is proven that Advprp

Ep
K ,p

(C) ≤ μN
2k for any C. In Lemma 2, we prove

that Advind
FKSπ

0
(B) ≤ 2(q�)2

2b + 2q2�
2c for any adversary B. �
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Lemma 2. Let b, r, c > 0 be such that b = r + c. Let FKS be the scheme of
Sect. 3.1. Then,

Advind
FKSπ

0
(q, �, μ) ≤ 2(q�)2

2b
+

2q2�

2c
.

Proof. Given that the padding is publicly known and injective, we can generalize
the setting, and assume that the ith query Mi has length divisible by b and that
Mmi

i �= 0b, i.e. we assume that all the queries are already padded. More detailed,
for 1 ≤ i ≤ q, we let mi = |Mi|/b and Mi = M1

i ‖ M2
i ‖ . . . ‖ Mmi

i s.t. |M j
i | = b

for 1 ≤ j ≤ mi. We further assume, that the adversary always asks for output of
length divisible by r and that every query induces exactly � primitive calls. This
is without loss of generality: we can simply output “free bits” to the adversary.
We will denote the b-bit state of FKS just before the jth application of π is made
when processing the ith query as sj

i for 1 ≤ j ≤ �. Similarly, we will denote
the b-bit state of FKS just after the jth application of π in ith query as tji for
1 ≤ j ≤ �. We will call the former in-states and the latter out-states. Note that
every in-state sj

i is determined by the out-state tj−1
i and the block of query M j

i

as sj
i = tj−1

i ⊕ M j
i in the absorbing phase or just by tji in the squeezing phase

as depicted in Fig. 3.
To aid the simplicity of further analysis we additionally define initial dummy

out-states t0i = 0b and extended queries M̄i = Mi ‖ 0(�−mi)b for 1 ≤ i ≤ q. Now
we can express every in-state, be it absorbing or squeezing, as sj

i = tj−1
i ⊕ M̄ j

i .
We will group the out-states of ith query as Ti = {t0i , t

1
i , . . . , t

�
i}. Because each

query induces exactly � calls to π, we know that a query Mi will be answered
by a string Zi = Z1

i ‖ . . . ‖ Zzi
i with zi = � − mi + 1 and |Zj

i | = r for 1 ≤ j ≤ zi.

In particular, we have that Zj
i = outer

(
tmi+j−1
i

)
.

The RP-RF Switch. We start by replacing the random permutation π
$←−

Perm (b) by a random function f
$←− Func (b) in the experiment. This will con-

tribute the term (q�)2/2b to the final bound by a standard hybrid argument so
we have Advind

FKSπ
0
(q, �, μ) ≤ Advind

FKSf
0
(q, �, μ) + (q�)2/2b.

π0b π π ππ π

M1
i M2

i Mmi−1
i Mmi

i

s1i s2i smi−1
i smi

i smi+1
i si

Z2
iZ1

i Z −mi+1
i

t1i t2i tmi−1
i tmi

i tmi+1
i ti

s +1
i

Fig. 3. Processing the ith query.
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Patarin’s Coefficient-H Technique. We will use the coefficient-H technique
to show that Advind

FKSf
0
(q, �, μ) ≤ (q�)2/2b + 2q2�/2c. The two systems an adver-

sary is trying to distinguish are FKSf
0 and ROFKS. We will refer to the former as

X and to the latter as Y . In either of the worlds, the adversary makes q queries
M1, . . . ,Mq and learns the responses Z1, . . . , Zq. The transition from queries Mi

to M̄i is injective, and additionally the length mi of Mi is implicit from M̄i.
Therefore, we can summarize the interaction of the adversary with its oracle (X
or Y ) with a transcript (M̄1, . . . , M̄q, Z1, . . . , Zq).

To facilitate the analysis, we will disclose additional information T1, . . . , Tq

to the adversary at the end of the experiment. In the real world, these are the
out-states Ti = {t0i , t

1
i , . . . , t

�
i} as discussed in the beginning of the proof. In

the ideal world, these are dummy variables that satisfy the following intrinsic
properties of the Sponge construction:

1. t0i = 0b for 1 ≤ i ≤ q,
2. if llcpb

(
M̄i, M̄i′

)
= n for 1 ≤ i, i′ ≤ q then tji = tji′ for 1 ≤ j ≤ n,

3. outer
(
tj+mi−1
i

)
= Zj

i for 1 ≤ i ≤ q and 1 ≤ j ≤ zi,

but are perfectly random otherwise. Note that in both worlds, Z1, . . . , Zq are fully
determined by T1, . . . , Tq, so we can drop them from the transcript. Thus a tran-
script of adversary’s interaction with FKS will be τ = (M̄1, . . . , M̄q, T1, . . . , Tq).

With respect to Lemma 1, we will show that there exists a definition of bad
transcripts Tbad, such that Pr [DX = τ ] /Pr [DY = τ ] = 1 for any τ ∈ Tgood =
T \Tbad, and thus Advind

FKSf
0
(q, �, μ) ≤ Pr [DY ∈ Tbad].

Definition of a Bad Transcript. Stated formally, a transcript τ is labeled as
bad if

∃(1, 1) ≤ (i, j), (i′, j′) ≤ (q, �) such that:

j �= j′ ∨ llcpb

(
M̄i, M̄i′

)
< j = j′ ≤ �,

tj−1
i ⊕ M̄ j

i = tj
′−1

i′ ⊕ M̄ j′
i′ .

(1)

This formalization of a bad transcript comes with an intuitive, informal inter-
pretation; as long as all relevant inputs sj

i = tj−1
i ⊕ M̄ j

i to the random function
f induced by the Sponge function are distinct the output of the Sponge will
be distributed uniformly. We do not require uniqueness of all in-states because
the adversary can trivially force their repetition by issuing queries with common
prefixes, as we have argued earlier. However these collisions are not a problem
because uniqueness of the queries implies that llcpb

(
M̄i, M̄i′

)
< max{mi,mi′}

for any two queries M̄i, M̄i′ . Even if the adversary truncates an old query and
thus forces an old absorbing in-state s to be squeezed for output, it is still not
a problem because the adversary has not seen the image f(s) before. Note that
albeit in-states do not exist in the ideal world, they can be defined by the same
relation as in the real world, i.e. sj

i = tj−1
i ⊕ M̄ j

i .

Bounding the Ratio of Probabilities of Good Transcripts. In the ideal
world, the out-states {t0i }q

i=0 are always assigned a value trivially. Beside that,
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we will also trivially assign a single randomly sampled value to multiple state
variables, that are affected by the common prefixes of the queries. The remaining
out-states are sampled uniformly at random. It follows that there are exactly
η(τ) =

∑q
i=1 � − llcpb (Mi;M1, . . . ,Mi−1) b-bit values in any transcript τ , that

are sampled independently and uniformly. We thus have Pr [DY = τ ] = 2−η(τ)b

for any τ .
Let ΩX be the set of all possible real-world oracles. We have that |ΩX | = 2b2b

.
Let compX (τ) ⊆ ΩX be the set of all oracles compatible with the transcript
τ , i.e. the set of the real-world oracles that are capable of producing τ in an
experiment. We will compute the probability of seeing τ in the real world as
Pr [DX = τ ] = |compX (τ) |/|ΩX |. Note that a real-world oracle is completely
determined by the underlying function f .

If τ ∈ Tgood, then every in-state sj
i = tj−1

i ⊕ M̄ j
i that does not trivially

collide with some other in-state sj′
i′ due to common prefix of M̄ j

i and M̄ j′
i′ must

be distinct. The number of domain points of f that have an image assigned by
τ is easily seen to be η(τ) =

∑q
i=1 � − llcpb (Mi;M1, . . . ,Mi−1). A compatible

function f can therefore have arbitrary image values on the remaining 2b − η(τ)
domain points. Thus we compute |compX (τ) | = 2b(2b−η(τ)) and

Pr [DX = τ ] =
|compX (τ) |

|ΩX | =
2b(2b−η(τ))

2b2b = 2−η(τ)b = Pr [DY = τ ] .

Bounding the Probability of a Bad Transcript in the Ideal World. We
can bound the probability of τ being bad (cf. (1)) by first bounding the collision
probability of an arbitrary but fixed pair of in-states sj

i , s
j′
i′ (i.e. the event sj

i = sj′
i′

occurs) and then summing this probability for all possible values of (i, j), (i′, j′)
with (i′, j′) �= (i, j). Because this probability varies significantly, we will split
all in-states into three classes and bound probabilities of individual collisions
between these classes.

We will associate to each in-state sj
i a label stampj

i . We set stampj
i = free

if 1 < j = llcpb

(
M̄i; M̄1, . . . , M̄i−1

)
+ 1 ≤ mi such that mi∗ < j for some

i∗ < i. We will set stamp1i = initial for 1 ≤ i ≤ q and stampj
i = fixed in

the remaining cases. Informally, we have stampj
i = free whenever the adver-

sary forces outer
(
tj−1
i

)
= Zj−mi∗ −1

i∗ by reusing exactly first j − 1 blocks of a

previous query M̄i∗ in M̄i and sets M̄ j
i �= M̄ j

i∗ = 0b. By doing this, it freely

but non-trivially chooses outer
(
sj

i

)
= outer

(
sj

i∗ ⊕ M̄ j
i∗ ⊕ M̄ j

i

)
. Note that if the

adversary puts M̄ j
i = M̄ j

i∗ , this is not counted as a free state (the states will in
fact be the same). We have stampj

i = initial for the initial in-state of every
query.

As the condition (1) is symmetrical w.r.t. (i, j) and (i′, j′), and as it cannot
be satisfied if (i, j) = (i′, j′), it can be rephrased as

∃(1, 1) ≤ (i′, j′) < (i, j) ≤ (q, �) such that:

llcpb

(
M̄i; M̄1, . . . , M̄i−1

)
< j ≤ �, sj

i = sj′
i′ .

(2)
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Doing so is without loss of generality, as each sj
i with j ≤ llcpb

(
M̄i; M̄1, . . . , M̄i−1

)

is identical with some previous state that has already been checked for collisions
with sj′

i′ for every possible (i′, j′). In the further analysis, we will be working with
(2) rather than with (1).

We will now bound the probability of collision of an arbitrary pair of in-
states (sj

i , s
j′
i′ ) = (tj−1

i ⊕M̄ j
i , tj

′−1
i′ ⊕M̄ j′

i′ ) with stampj
i = fixed. We fix arbitrary

i and investigate the following three cases for j. In each case we treat every
(i′, j′) < (i, j).

Case 1: llcpb
(
M̄i; M̄1, . . . , M̄i−1

)
+ 1 < j ≤ mi. In this case, tj−1

i is
undetermined when the adversary issues the query M̄i. This implies that it
will be independent from all tj

′−1
i′ for any (i′, j′) < (i, j). The probability of

the collision tj−1
i ⊕ M̄ j

i = tj
′−1

i′ ⊕ M̄ j′
i′ is easily seen to be 2−b.

Case 2: max
{
llcpb

(
M̄i; M̄1, . . . , M̄i−1

)
+ 1, mi

}
< j ≤ �. Here tj−1

i =

Zj−mi

i ‖ inner
(
tj−1
i

)
and M̄ j

i = 0b. Although the adversary learns the

value of Zj−mi

i during the experiment, this is independent of all sj′
i′ with

(i′, j′) < (i, j) (because j + 1 > llcpb

(
M̄i; M̄1, . . . , M̄i−1

)
). Even if stampj′

i′ ∈
{free, initial} and outer

(
sj′

i′

)
= α for some value α chosen by the adver-

sary, the collision Zj−mi

i ‖ inner
(
tj−1
i

)
= α ‖ inner

(
sj′

i′

)
happens with prob-

ability 2−b.
Case 3: j = llcpb

(
M̄i; M̄1, . . . , M̄i−1

)
+ 1. If j = llcpb

(
M̄i, M̄i′

)
+ 1, the

in-state sj′=j
i′ , call it a twin-state of sj

i , cannot collide with sj
i , as by the

second trivial property tj−1
i = tj−1

i′ and by j − 1 = llcpb

(
M̄i, M̄i′

)
we have

M̄ j
i �= M̄ j

i′ . Note that if there was an i∗ < i with mi∗ ≤ llcpb

(
M̄i, M̄i∗

)
= j−1

and j ≤ mi then we would have stampj
i = free. However if we had the

same situation but with j > mi then M̄i and M̄i∗ would be identical. So
outer

(
tj−1
i

)
has not been set and revealed to the adversary by any previous

output value and for any non-twin, in-state sj′
i′ , the probability of collision

is at most 2−b by a similar argument as in Case 1.

There are no more than q� choices for (i, j) and no more than q� possible (i′, j′)
for every (i, j) so the overall probability that the condition (2) will be evaluated
due to a pair of in-states with stampj

i = fixed is at most (q�)2/2b.

If stampj
i = free then outer

(
sj

i

)
is under adversary’s control. However the

value of inner
(
tj−1
i

)
is always generated at the end of the experiment. By a

case analysis similar to the previous one we can verify that the probability of a
collision due to a pair of in-states with stampj

i = free is not bigger than 2−c.
It is apparent from the definition of a free in-state that there is at most one
such in-state for each query. Having q� in-states in total, there are at most q(q�)
pairs with stampj

i = free and the probability of τ ∈ Tbad due to such a pair is
at most q2�/2c.
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If stampj
i = initial then sj

i cannot non-trivially collide with any other
initial in-state. A collision with a non-initial state sj′

i′ implies that tj
′−1

i′ =
M̄ j′

i′ ⊕M̄1
i . If j′ > mi′ or if there is some Mi∗ with mi∗ < j′ <= llcpb

(
Mi′ , M̄i∗

)
+1,

then outer
(
tj

′−1
i′

)
is known to the adversary. However inner

(
tj

′−1
i′

)
is always gen-

erated at the end of the experiment. By a case analysis similar to the one we carried
out earlier, it can be verified that the collision s1i = sj′

i′ occurs with probability no
bigger than 2−c. There is exactly one initial in-state in each query, so similarly
as with the free in-states, the overall probability of a transcript being bad due
to a pair with an initial in-state is at most q2�/2c. By summing all the partial
collision probabilities we obtain that Pr [DY ∈ Tbad] ≤ (q�)2/2b + 2q2�/2c. �


6 Security Analysis of FKD

For FKD, we prove the following result:

Theorem 2. Let b, r, c, k > 0 be such that b = r + c and k ≤ c. Let FKD be the
scheme of Sect. 3.2. Then,

Advind
FKDp

K ,p(q, �, μ,N) ≤ (q�)2

2b
+

(q�)2

2c
+

μN

2k
.

The proof uses Lemma 3 to transform a FKD adversary into an FKS adver-
sary, similarly to [8,10]. While this would be sufficient to prove the secu-
rity of the Duplex construction, the bound induced solely by Lemma3 suf-
fers from a quantitative degradation: we have that Advind

FKDp
K ,p(q, �, μ,N) ≤

Advind
FKSp

K ,p(q�, �, μ,N), resulting in a bound 2q2�4

2b + 2q2�3

2c + μN
2k according to

Theorem 1. In reality, there will be a quantitative gap between the security of
FKD construction and that of FKS present, but it will be smaller. This is because
an FKS adversary constructed from an FKD adversary issues queries of a spe-
cific structure which is far from general. In below proof for FKD, we use this
property. In more detail, we derive a specific class of “constrained adversaries”
and generalize the proof of Lemma 2 to these adversaries.

Proof (Proof of Theorem 2). Consider any adversary A with resources (q, �,
μ,N). We have that FKDp

K = FKDEp
K

0 . Therefore, by a modular argument,

Advind
FKDp

K ,p(A) = ΔA

(
FKDEp

K
0 , p;ROFKD, p

)

≤ ΔB (FKDπ
0 , p;ROFKD, p) + ΔC (Ep

K , p;π, p)

≤ Advind
FKDπ

0
(B) + Advsprp

Ep
K ,p

(C)

for some adversary B with resources (q, �, μ) and adversary C with resources
(q, �, μ,N). Note that B also has access to p, but these queries are meaningless
as its left oracle (FKDπ

0 or ROFKD) is independent of p.
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In [2], it is proven that Advsprp
Ep

K ,p
(C) ≤ μN/2k. In Corollory 3 we show that

any FKD adversary B can be turned into a special “constrained” adversary B′

against FKS with resources (q�, �, μ):

Advind
FKDπ

0
(B) ≤ Advind

FKSπ
0
(B′).

In Lemma 4, we prove that Advind
FKSπ

0
(B′) ≤ (q�)2/2b + (q�)2/2c for any such

adversary B′. �

For the remainder of the proof, we introduce the mapping QFKS : ({0, 1}<b)+ →
{0, 1}∗. For any b > 0 and for all X1, . . . , Xn ∈ {0, 1}<b we let

QFKS(X1, . . . , Xn) = padb(X1) ‖ . . . ‖ padb(Xn−1) ‖ Xn.

Lemma 3 (Duplexing Lemma [10]). Let b, r, c, k > 0 be such that b = r + c
and k ≤ c. Let D = FKDp as defined in Sect. 3.2. Then for the ith duplexing
query (Mi, zi) made after the last D.initialize(K) we have

Zi = D.duplexing (Mi, zi) = FKSp(K,QFKS(M1, . . . ,Mi), zi).

Moreover, the mapping QFKS : ({0, 1}<b)+ → {0, 1}∗ is injective.

The proof of the lemma uses similar arguments as that of Bertoni et al. [10].
A complete proof can be found in the full version of this paper [21].

The result of Lemma 3 can be used to reduce any FKD adversary to a con-
strained FKS adversary. More specifically, any adversary A against FKD that
makes q initialize calls and duplexes � blocks after each initialization can be
reduced to a constrained FKS adversary A′ = RFKS(A). To answer the jth

duplexing query (M j
i , zj

i ) made by A after the ith initialize call, A′ queries its
own oracle with (QFKS(M1

i , . . . ,M j
i ), zj

i ). A′ copies the output ofA at the end
of the experiment.

Corollary 3. Let A be an adversary against FKD that makes q initialize calls
and duplexes � blocks after each initialization and RFKS(A) the constrained
FKS adversary as defined above. It follows from Lemma3, that Advind

FKDπ
0
(A) ≤

Advind
FKSπ

0
(RFKS(A)).

We denote by A′
q,� the set of constrained adversaries against FKS, that were

induced by some FKD adversary that makes q initialize calls and duplexes �
blocks after each initialization:

A′
q,� = {RFKS(A) : A an FKD adversary with resources (q, �)}.

Lemma 4. Let b, r, c > 0 be such that b = r + c. Let FKS be the scheme of
Sect. 3.1. Then,

Advind
FKSπ

0
(A′) ≤ (q�)2

2b
+

(q�)2

2c
,

for any constrained adversary A′ ∈ A′
q,�.
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The proof follows to large extent the framework of the proof of Lemma2. We
show in particular, that although the constrained adversary makes q� queries,
each query induces only a single free or initial state; the remaining internal
in-states, if any, are always identical to the in-states of a previous query and
they thus do not contribute to the probability of observing a bad transcript.
This gives us at most q� free or initial in-states and the bound follows.
A complete proof can be found in the full version of this paper [21].

7 Full-State SpongeWrap and its Security

Our results from Sect. 6 can be used to prove security of modified, more effi-
cient versions of existing Sponge-based AE schemes. As an interesting instance,
we introduce Full-state SpongeWrap, a variant of the authenticated encryption
mode SpongeWrap [8,10], offering improved efficiency with respect to processing
of associated data (AD).

7.1 Authenticated Encryption for Sequences of Messages

We will focus on authenticated encryption schemes that act on sequences of AD-
message pairs. Following Bertoni et al.3 [8,10]we will think of an authenticated
encryption scheme as an object W surfacing three APIs:

– W.initialize(K,N): calling this function will initialize W with a secret key
from the set of keys K and a nonce from the set of nonces N .

– W.wrap(A,M): this function inputs an AD-message pair (A,M) and outputs
a ciphertext-tag pair (C, T ), where |C| = |M | and T is a τ -bit tag authen-
ticating (A,M) and all the queries processed by W so far (i.e. since the last
initialization call).

– W.unwrap(A,C, T ): this function accepts a triple of AD, ciphertext and tag,
and outputs a message M if C is an encryption of M and T is a valid tag
for (A,M), and all the previous queries processed by W so far; otherwise it
outputs an error symbol ⊥.

Here, the AD, messages and ciphertexts are finite strings and we have |C| = |M |.
τ is a positive integer and we call it the expansion of W . We require that W
is initialized before making the first wrapping or unwrapping call. For a given
key K, we will use WK to refer to the corresponding keyed instance, omitting
K from the list of inputs; that is, W.initialize(K,N) = WK .initialize(N).

Security of Authenticated Encryption. We follow Bertoni et al. [8,10] for
defining the security of AE. We split the twofold security goal of AE into two
separate requirements: privacy and authenticity.

Let W be a scheme for authenticated encryption, as described above, that
internally makes calls to a public random permutation p. We formalize the pri-
vacy of W by an experiment in which an adversary A is given access to p, p−1

3 Bertoni et al. do not consider an explicit nonce as we do; they rather require the
header of the first wrapping call to be unique.
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and an oracle O that provides two interfaces: O.initialize(N) and O.wrap(A,M).
We have O ∈ {WK ,ROW }, where WK is an instance of the real scheme with
the key K, and ROW is an ideal primitive that acts as follows: it keeps a list of
strings St ∈ ({0, 1}∗)∗ as its internal state. On calling ROW .initialize(N) the list
St is set to the empty list and then the nonce N is added to the list (denote this
operation by St ← St||N); now each call ROW .wrap(A,M) will first update the
list as St ← St||(A,M) and then will output left|M |+τ (RO∞(〈St〉)), where 〈St〉
denotes an injective encoding of the list St into a string in {0, 1}∗. (Note that
the list St preserves the boundaries between N and all the queried AD-message
pairs).

The adversary must distinguish between the two worlds: the real world where
it is interacting with WK and the ideal world where it is interacting with ROW .
The advantage of the adversary in doing so is defined as

Advpriv
W [p](A) =

∣
∣
∣Pr

[
K

$←− K : AWK ,p,p−1 ⇒ 1
]

− Pr
[
AROW ,p,p−1 ⇒ 1

]∣
∣
∣ .

It is assumed that the adversary meets the nonce-requirement, i.e. that every
initialize() it makes is done with a fresh nonce.

For the definition of authenticity property, consider an experiment where
an adversary A is given access to the oracle WK and is allowed to ask
the queries WK .initialize(N) and WK .wrap(A,M). It is assumed that A
respects the nonce-requirement in the wrapping queries. A is again allowed
to query p. The adversary can also attempt forgeries at any time during
the experiment; we say that the adversary forges if it outputs a sequence
(N, (A1, C1, T1), . . . , (An, Cn, Tn)) such that after calling W.initialize(K,N)
and then W.unwrap(Ai, Ci, Ti) for 1 ≤ i ≤ n − 1, W.unwrap(An, Cn, Tn)
does not return ⊥. The sequence (N, (A1, C1, T1), . . . , (An, Cn, Tn)) must be
such that the adversary has not obtained (Cn, Tn) from a wrapping query
that followed an initialization with N and a series of wrapping queries
(A1,M1), . . . , (An,Mn) with some M1, . . . ,Mn. The adversary does not have to
use a unique nonce in the forgery. Note that it can be assumed w.l.o.g. that every
forgery attempt is either a fresh nonce followed by a single AD-ciphertext-tag
triplet or of the form (N, (A1, C1, T1), . . . , (An, Cn, Tn)) with (N, (A1, C1, T1),
. . . , (An−1, Cn−1, Tn−1)) being learned by the adversary from a sequence of pre-
vious wrapping queries. We define the advantage of A as

Advauth
W [p](A) = Pr

[
K

$←− K : AWK ,p,p−1
forges

]
.

We let Advpriv
W [p](qv, q, �, μ,N) = maxA Advpriv

W [p](A) be the maximum advantage
over all adversaries that make q initialize queries to the left oracle, and after
each initialization do wrapping queries that induce at most � permutation calls
(including the initialization) and with total maximal multiplicity μ, and that
make N direct queries to the public permutation, and that make at most qv

forgery attempts. We similarly let Advauth
W [p](q, �, μ,N) = maxA Advauth

W [p](A).
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Algorithm 3 . Outline of an FSW[p, r, k, n, τ ] wrap/unwrap(A,M) query
1: while there are both AD and message bits to process do
2: take ≤ r bit block of M and ≤ c − 5 bit block of A
3: wrap/unwrap the message block
4: if both A and M end then
5: produce tag using frame bits F̄AM

6: else if only A ends or only M ends then
7: process the blocks using frame bits FAM|
8: else
9: process the blocks using frame bits FAM

10: while there are message bits to process do
11: take ≤ r bit block of M
12: wrap/unwrap the message block
13: if M ends then
14: produce tag using frame bits F̄M

15: else
16: process the blocks using frame bits FM

17: while there are AD bits to process do
18: take ≤ r + c − 5 bit block of A, split it into r bit and c − 5 bit parts
19: if A ends then
20: produce tag using frame bits F̄A

21: else
22: process the parts using frame bits FA

23: prepare r random bits for next query using frame bits FN

7.2 Full-State SpongeWrap

The Full-State SpongeWrap (FSW) is a permutation mode for authenticated
encryption of AD-message sequences as described in Sect. 7.1. It is parametrized
by a b-bit permutation p, the maximal message block size r, the key size k, the
nonce size n, and the tag size τ > 0. We require that k ≤ b − r =: c and n < r.
The set of keys is K = {0, 1}k and the set of nonces is N = {0, 1}n. The FSW
construction uses an instance of FKD internally to process the inputs block by
block. To ensure domain separation of different stages of processing a query, we
use three frame bits placed at the same position in each duplexing call to FKD
as explained in Table 1.

The main motivation of the FSW is concurrent absorption of message and AD
to achieve maximal efficiency in terms of minimizing the number of permutation
calls made. Since we can only process r bits of a message input at a time, we can
use the remainder of the state for the frame bits and a block of AD. This implies
the lengths of message and AD blocks processed with each permutation call;
r + 1 bits for padded message block, 3 frame bits and (having in mind that the
input to FKD is always padded) this leaves us at most (b−1)−(r+1)−3 = c−5
bits for a block of AD. To minimize the number of permutation calls made in
all possible situations, we further specify special treatment for the wrap/unwrap
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Table 1. Labeling and usage of the frame bits within FSW.

Label Value Usage

FN 000 process nonce, derive initial mask of a query

FAM 001 block of A and M inside query

FM 010 block of M inside query

FA 011 block of A inside query

FAM| 100 last block of A and M inside query

F̄AM 101 last block of A and M , query ends, produces tag

F̄M 110 last block of M , query ends, produces tag

F̄A 111 last block of A, query ends, produces tag

queries with more AD blocks than message blocks. An informal outline of a
wrap/unwrap query is given in Algorithm 3. This outline nicely illustrates how
the frame bits are used for domain separation.

We next give a complete algorithmic description of the FSW. To keep it com-
pact, we introduce the following notations. For any L ∈ {0, 1}≤r, R ∈ {0, 1}≤c−5

and F ∈ {0, 1}3, we let

Q(L,F,R) = padr+1(L) ‖ F ‖ R. (3)

Note that r+4 ≤ |Q(L,F,R)| ≤ b−1 for any L,F,R. We let (L,R) = lsplit(X,n)
for any X ∈ {0, 1}∗ such that L = leftmin(|X|,n) (X) and right|X|−|L| (X). We let
X1 ‖ X2 ‖ . . . ‖ Xm

r←− X denote partitioning a string X in such a way that
X = X1 ‖ X2 ‖ . . . ‖ Xm, |Xi| = r for 1 ≤ i < m and 0 < |Xm| ≤ r. Note
that m = �|X|/r�. We will use the abbreviation D.dpx(M, z) for the interface
D.duplexing (M, z) of an FKD D. The interfaces of FSW[p, r, k, n, τ ] are defined
in Algorithm 4. A schematic depiction of how the wrap interface processes various
types of inputs can be found in the full version of this paper [21].

7.3 Security of FSW

The security of FSW is relatively easy to analyze, thanks to the result from
Sect. 6.

Lemma 5. Let W = FSW[p, r, k, n, τ ] be an instance of FSW as described
in Sect. 7.2. Denote any query to W.initialize and a list of subsequent queries
to W.wrap by (N, (A1,M1), . . . , (An,Mn)). Then, FSW injectively maps this
sequence to a sequence of corresponding FKD duplexing queries (Q1, . . . , Qd).

We prove the injectivity of the mapping by showing how it can be inverted.
Thanks to the way the frame bits are used (Fig. 4), it is possible to determine
which duplexing calls belong to a single wrap query. More than that, we can also
determine the boundaries of message and AD using the frame bits and then we
can reconstruct them thanks to the use of the padding. The full proof can be
found in the full version of this paper [21].
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Algorithm 4 . FSW[p, r, k, n, τ ]

1: Interface W.initialize(K, N)
2: D.initialize(K)
3: S ← padr(N) ‖ 0 ‖ FN ‖ 0c−5

4: Z ← D.dpx(S, r)

1: Interface W.wrap(A, M)
2: M1 ‖ . . . ‖ Mm

r←−M
3: (A′, A∗) ← lsplit(A, m(c − 5))

4: A′
1 ‖ . . . ‖ A′

a′
c−5←−−A′

5: A∗
1 ‖ . . . ‖ A∗

a∗ b−5←−−A∗

6: if m = a′ = a∗ = 0 then
7: T ← ε
8: F ← F̄A

9: for i ← 1 to a′ − 1 do
10: Ci ← Mi ⊕ Z
11: Z ← D.dpx(Q(Mi, FAM, A′

i), r)

12: if 0 < a′ < m or 0 < a′, a∗ then
13: Ca′ ← Ma′ ⊕ left|Ma′ | (Z)
14: Z ← D.dpx(Q(Ma′ , FAM|, A

′
a′), r)

15: else if 0 < m = a′ and a∗ = 0 then
16: Ca′ ← Ma′ ⊕ left|Ma′ | (Z)
17: T ← D.dpx(Q(Ma′ , F̄AM, A′

a′), r)
18: F ← F̄AM

19: for i ← a′ + 1 to m − 1 do
20: Ci ← Mi ⊕ Z
21: Z ← D.dpx(Q(Mi, FM, ε), r)

22: if a′ < m then
23: Cm ← Mm ⊕ left|Mm| (Z)

24: T ← D.dpx(Q(Mm, F̄M, ε), r)
25: F ← F̄M

26: for i ← 1 to a∗ − 1 do
27: (L, R) ← lsplit(A∗

i , r)
28: D.dpx(Q(L, FA, R), 0)

29: if a∗ > 0 then
30: (L, R) ← lsplit(A∗

a∗ , r)
31: T ← D.dpx(Q(L, F̄A, R), r)
32: F ← F̄A

33: while |T | < τ do
34: T ← T ‖ D.dpx(Q(ε, F, ε), r)

35: Z ← D.dpx(Q(ε, FN, ε), r)
36: C ← C1 ‖ . . . ‖ Cm

37: return C, leftτ (T )

1: Interface W.unwrap(A, C, T )
2: C1 ‖ . . . ‖ Cm

r←−C
3: (A′, A∗) ← lsplit(A, m(c − 5))

4: A′
1 ‖ . . . ‖ A′

a′
c−5←−−A′

5: A∗
1 ‖ . . . ‖ A∗

a∗ b−5←−−A∗

6: if m = a′ = a∗ = 0 then
7: T ′ ← ε
8: F ← F̄A

9: for i ← 1 to a′ − 1 do
10: Mi ← Ci ⊕ Z
11: Z ← D.dpx(Q(Mi, FAM, A′

i), r)

12: if 0 < a′ < m or 0 < a′, a∗ then
13: Ma′ ← Ca′ ⊕ left|Ca′ | (Z)
14: Z ← D.dpx(Q(Ma′ , FAM|, A

′
a′), r)

15: else if 0 < m = a′ and a∗ = 0 then
16: Ma′ ← Ca′ ⊕ left|Ca′ | (Z)
17: T ′ ← D.dpx(Q(Ma′ , F̄AM, A′

a′), r)
18: F ← F̄AM

19: for i ← a′ + 1 to m − 1 do
20: Mi ← Ci ⊕ Z
21: Z ← D.dpx(Q(Mi, FM, ε), r)

22: if a′ < m then
23: Mm ← Cm ⊕ left|Cm| (Z)
24: T ′ ← D.dpx(Q(Mm, F̄M, ε), r)
25: F ← F̄M

26: for i ← 1 to a∗ − 1 do
27: (L, R) ← lsplit(A∗

i , r)
28: D.dpx(Q(L, FA, R), 0)

29: if a∗ > 0 then
30: (L, R) ← lsplit(A∗

a∗ , r)
31: T ′ ← D.dpx(Q(L, F̄A, R), r)
32: F ← F̄A

33: while |T ′| < τ do
34: T ′ ← T ′ ‖ D.dpx(Q(ε, F, ε), r)

35: Z ← D.dpx(Q(ε, FN, ε), r)
36: M ← M1 ‖ . . . ‖ Mm

37: if T = leftτ (T ′) then
38: return M
39: else
40: return ⊥
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Fig. 4. The tree of all possible frame bits sequences for a single AD-message pair
(top-left). The composition of an FKD query Qi (bottom-right).

Theorem 3. Let b, r, c, k, n, τ > 0 be such that b = r + c, k ≤ c and n < r. Let
FSW be the scheme of Sect. 7.2. Then,

Advpriv
FSW(q, �, μ,N) ≤ (q�)2

2b
+

(q�)2

2c
+

μN

2k
,

Advauth
FSW(q, �, μ,N) ≤ (q�)2

2b
+

(q�)2

2c
+

μN

2k
+

qv

2τ
.

We start by defining the ROFSW—an idealized FSW that internally uses the
ROr

FKD instead of FKD (and thus does not use p at all). By Thm. 2 we have
that

Advpriv
FSW(q, �, μ,N) ≤Advpriv

ROFSW(q, �, μ) +
(q�)2

2b
+

(q�)2

2c
+

μN

2k
,

Advauth
FSW(q, �, μ,N) ≤Advauth

ROFSW(q, �, μ) +
(q�)2

2b
+

(q�)2

2c
+

μN

2k
.

We consequently analyse the security of ROFSW, which is a relatively straightfor-
ward task because it internally uses a ROr

FKD. We obtain Advpriv
ROFSW(q, �, μ) = 0

and Advauth
ROFSW(qv, q, �, μ) ≤ qv/2τ . A complete proof can be found in the full

version of this paper [21].

8 Discussion

Related-Key Security. Our treatment of the security of the full-state con-
structions is in the traditional model where the adversary has no control over
selection of the secret keys or relations among different keys. If one considers the
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stronger model of related-key attack security then care must be taken in utilizing
these schemes. Indeed, if an adversary has access to two instances F1 = FKSp

K1

and F2 = FKSp
K2

, and it knows the relation Δ = K1 ⊕ K2, then it can make
the outputs of F1 and F2 collide trivially by asking two b-bit queries F1(M) and
F2(M ⊕ Δ).

Although it is outside the scope of this paper to treat related-key security
thoroughly, we informally propose some easy solutions to prevent trivial related-
key attacks like the one mentioned before. We start by noticing that the inner-
keyed Sponge construction [2] is not susceptible to this problem, as the secret key
and the adversarial data blocks never overlap; hence, a simple way of thwarting
such trivial related-key attacks is to always prepend the input data with a block
of b zeroes. Thus the adversary can no longer xor an arbitrary value directly to
the key prior to the application of the permutation. If the original adversarial
resources were (q, �, μ,N), we can without any further argumentation use the
bound with the resources (q, � + 1, μ,N) for this new construction.

Another possibility would be to slightly modify the constructions and parti-
tion the input data into an r-bit starting block and b-bit blocks afterward. The
initial block would be xored to the outer r bits of the initial state. Our security
analysis would carry over to this construction with minimal modifications.

Generalized Security Model. The security analyses of FKS and FKD cover
those of the original Sponge and Duplex constructions as special cases. Beyond
that, for the security analysis of FKD itself, we have generalized the security
model of the original Duplex construction from Bertoni et al. [9,10]. While in
the analysis of Bertoni et al. the analysis of the multiple-initializations scenario
is left rather implicit, we include it explicitly in our model.

This generalized setting seems more closely matching the use of the Duplex
construction in several AE schemes which do not require sessions and new session
keys, where one would initialize the Duplex (or FKD) construction for every
query. This is well demonstrated by the example of FSW. More precisely, the
way we design and analyze the security of FSW allows for a very versatile use.
FSW can be used to secure AD-message pairs in a single session [12], i.e. using
a single initialize call during the lifetime of the key or alternatively every AD-
message pair can be preceded by an initialize call with a unique nonce. In fact,
FSW can be used for anything between these two extremes; for example, a
setting where every AD-message pair is processed with a unique nonce, but can
get fragmented into smaller sub-pairs. The security analysis of FSW covers each
of these use cases.

On the Keying of the Sponge. As we have claimed in the introduction, the
difference in the security of the outer-keyed and inner-keyed Sponges vanishes
in presence of the full state absorption. On one hand, using a key of more than c
bits does not increase the security level, as the extra bits cannot be used by the
low-entropy Even-Mansour construction. On the other hand, absorbing several
b-bit blocks of the key only results into a derived key of effective length of c
bits. We remark that both the outer- and inner-keyed Sponges can be seen as



Security of Full-State Keyed Sponge and Duplex 487

special cases of FKS, by using more restrictive padding rules that only place the
message blocks in the outer part of the state.

Boosting Sponge-based AE. Out of 57 CAESAR candidates, 10 are using
a Sponge-based design. The method we used to enhance SpongeWrap can be
straightforwardly adjusted to boost the performance of five of these 10 schemes:
Keyak, Ketje, STRIBOB, CBEAM and ICEPOLE [3]. This is because all the
said designs are using frame bits for domain separation. The other designs cannot
benefit from our modifications, either due to a domain separation method relying
on intangibility of the inner part of the state (NORX), or due to producing tag
from the inner part of the state (Ascon, Primates), or because they are already
using the inner part of the state (Artemia) or because the designs do not follow
the general structure of the Sponge Wrap (Pi Cipher) [3]. We note that if Ketje
was to benefit from the technique we have introduced, it would be necessary to
increase the number of rounds of the underlying permutation.
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Abstract. Differential and linear cryptanalysis are the general purpose
tools to analyze various cryptographic primitives. Both techniques have in
common that they rely on the existence of good differential or linear char-
acteristics. The difficulty of finding such characteristics depends on the
primitive. For instance, AES is designed to be resistant against differential
and linear attacks and therefore, provides upper bounds on the probabil-
ity of possible linear characteristics. On the other hand, we have prim-
itives like SHA-1, SHA-2, and Keccak, where finding good and useful
characteristics is an open problem. This becomes particularly interesting
when considering, for example, competitions like CAESAR. In such com-
petitions, many cryptographic primitives are waiting for analysis. With-
out suitable automatic tools, this is a virtually infeasible job. In recent
years, various tools have been introduced to search for characteristics. The
majority of these only deal with differential characteristics. In this work,
we present a heuristic search tool which is capable of finding linear char-
acteristics even for primitives with a relatively large state, and without a
strongly aligned structure. As a proof of concept, we apply the presented
tool on the underlying permutations of the first round CAESAR candi-
dates Ascon, ICEPOLE, Keyak, Minalpher and Prøst.

Keywords: Linear cryptanalysis · Authenticated encryption ·
Automated tools · Guess-and-determine · CAESAR competition

1 Introduction

Research in symmetric cryptography in the last few years is mainly driven by
dedicated high-profile open competitions such as NIST’s AES and SHA-3 selec-
tion procedures, or ECRYPT’s eSTREAM project. While these focused com-
petitions in symmetric cryptography are generally viewed as having provided a
tremendous increase in the understanding and confidence in the security of these
cryptographic primitives, the impressive increase of submissions to such competi-
tions reveal major problems related to the analytical effort for the cryptographic
community. To better evaluate the security margin of the various submissions,
automatic tools are needed to assist cryptanalysts with their work.

One important class of attacks is linear cryptanalysis [15,25]. The success of
these attacks relies on the existence of suitable linear characteristics. The dif-
ficulty of finding such characteristics depends on the primitive. For example,
c© International Association for Cryptologic Research 2015
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the wide-trail design strategy [7] incorporated by AES provides lower bounds on
the minimum number of active S-boxes in a linear characteristic and therefore,
gives an upper bound on the highest possible bias. On the other hand, we have
primitives with weak alignment [1], such as the winner of the SHA-3 competition
Keccak, where finding good characteristics is an open problem, and heuristic
search results are required to evaluate the security margin of the primitive. This
is particularly interesting in the context of the CAESAR competition [26]. We
noticed that many first round submissions focus their analysis on differential
cryptanalysis, but provide only few results for linear cryptanalysis.

Our Contribution. The main contribution of this paper is a dedicated
automatic tool for linear cryptanalysis, which is available at github1. The tool
performs heuristic searches for good linear characteristics in cryptographic prim-
itives. It was designed for primitives based on substitution-permutation networks
(SP networks).

The modular design of the tool allows easy extension to other cryptographic
primitives. It also allows to easily develop and test new dedicated search strate-
gies. To facilitate further improvements and analysis, the tool is publicly avail-
able and its source code is published together with this paper. Such a tool is
particularly useful when designing new cryptographic primitives. It allows to
easily explore the effects of, for instance, different S-boxes and linear layers on
linear characteristics and reveals possible bad decisions in an early stage of the
design process. Even in wide-trail designs with provable bounds, it can be useful
to evaluate different choices for building blocks with respect to their long-term
behaviour over a larger number of rounds, where the quality of the best charac-
teristics can deviate significantly from the derived bounds (i.e., two algorithms
with the same bounds may behave quite differently in a heuristic search, which
can be a basis for the decision of choosing one design over the other).

As a proof of concept and to demonstrate the advantages of the tool, we have
chosen the first round CAESAR candidatesAscon [9], ICEPOLE [19],Keyak [4],
Minalpher [22] andPrøst [13] as analysis targets.Ascon, ICEPOLE, andKeyak
are sponge-based authenticated encryption schemes. All three primitives use per-
mutations that are not strongly aligned, making it hard to find good linear char-
acteristics. We demonstrate the capability of our automated search tool by giving
linear characteristics suitable for different attack scenarios. In comparison, the per-
mutations used in Minalpher and Prøst provide more “structure” by incorporat-
ing an “AES-like” design strategy. Hence, the designers of these two primitives are
able to give computer-aided bounds on the minimum number of active S-boxes by
using mixed-integer linear programming (MILP) for a number of rounds sufficient
to thwart attacks. For Minalpher and Prøst, we show that our tool is capable of
finding linear characteristics which match the provided bounds. Our results are
summarized in Table 1 (Sect. 4).

1 https://github.com/iaikkrypto/lineartrails.

https://github.com/iaikkrypto/lineartrails
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Related Work. While several automatic tools for differential cryptanalysis
have been published in the last few years [5,6,8,12,14,16,20,23], in particular
for hash functions, the work on automatic tools dedicated to linear cryptanalysis
is very limited. One example is a tool designed by Sun et al. [24], extending pre-
vious work of Mouha et al. [21]. They model the differential and linear behavior
of a block cipher as a mixed-integer linear program (MILP) and use general-
purpose MILP tools to solve the optimization problem (i.e., find the optimal
characteristics for the – often simplified – model of the cipher). This approach
works well for lightweight ciphers like Simon or Present, but faces problems when
it comes to large-state and less structured ciphers such as Ascon, ICEPOLE,
and Keyak. Hence, a dedicated search tool for linear characteristics will com-
plement the existing tools.

Outline. This paper is divided into two main parts: the description of our new
automated search tool for linear characteristics in Sect. 3, and its application
to the CAESAR candidates in Sect. 4. However, first, we start with a short
introduction to linear cryptanalysis and our notation in Sect. 2. Then, we deal
with the propagation of linear masks in Sect. 3.2 and discuss the proposed search
strategy for linear characteristics in Sect. 3.3. The application of the tool (Sect.
4) is first discussed in detail for Keyak in Sect. 4.1. Then, our results for the
other ciphers are summarized and briefly discussed in Sect. 4.2 to 4.5. Finally,
we conclude in Sect. 5.

2 Linear Cryptanalysis

The goal of linear cryptanalysis [15,25] is to identify good affine linear approxi-
mations for the target cipher. More specifically, we want to find linear equations
between the plaintext bits, ciphertext bits and key bits that hold with prob-
ability significantly different from 1

2 (bias). Then, in the actual attack phase,
these equations can be used to derive information on the key bits from known
plaintext-ciphertext pairs.

For linear cryptanalysis, the operation of the cipher, or building blocks of
the cipher, is considered as a vectorial boolean function f : Fm

2 → F
n
2 (where the

key bits might be part of Fm
2 ). A (probabilistic) linear relation between input

and output bits of f is then characterized by two linear masks α ∈ F
m
2 , β ∈ F

n
2 .

For x ∈ F
m
2 , y ∈ F

n
2 with y = f(x), the masks represent the relation

αt · x = βt · y,

where vt · w denotes the natural inner product of vectors. The quality of a
linear approximation α, β is measured by the probability that the corresponding
relation holds; or more precisely, by how far this probability deviates from the
average 1

2 . This deviation is referred to as the bias of the masks α, β:
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εα,β = biasf (α, β) =
∣
∣
∣
∣P

[
αt · x = βt · y | y = f(x)

] − 1
2

∣
∣
∣
∣

=
1

2m
·
∣
∣
∣
∣
∣
{
x ∈ F

m
2 | αt · x = βt · f(x)

}∣
∣ − 2m−1

∣
∣
∣.

If m is very small, the expression for εα,β can easily be evaluated explicitly for all
masks α, β to determine the best masks. This information is summarized in the
linear distribution table (LDT), where non-zero entries mark masks α, β with
non-zero bias.

However, this is obviously infeasible for the complete cipher at once. To
obtain an approximation of the complete cipher, it is split into smaller parts
that are easier to analyze. Matsui’s piling-up lemma [15] is used to combine the
individual biases of multiple building blocks to derive the overall bias (under the
assumption that the validity of the partial approximations is independent). If ε
denotes the bias of the overall approximation of the block cipher, Matsui [15]
showed that the necessary number of plaintext-ciphertext pairs to derive the bit
of key information from the approximation is proportional to 1

ε2 .
The difficult part is to find a network or “trail” of partial approximations

that are compatible with each other and give a good overall bias. In particular,
each involved approximation must have non-zero bias, otherwise the overall bias
becomes zero. For this reason, we refer to non-zero entries in the individual LDTs
as “valid transitions” of masks for this building block. In the the following, such
a “trail” of partial linear approximations is called linear characteristic.

Several algorithms and improvements thereof have been proposed for finding
characteristics with the highest overall bias, typically by a sort of branch-and-
bound algorithms. For more complex, modern ciphers, such a complete search
is not feasible. Two possible approaches to handle this situation are (a) to
design ciphers in a way to allow to prove bounds on the best possible bias, and
(b) to use heuristic search methods to find stronger biases (for reduced versions
of the cipher) to make better predictions on the security margin of the complete
cipher.

In the following, we will focus on the second approach, and heuristically
search for good characteristics. Unlike the original, complete search algorithms,
our search will not proceed in a “linear”, round-by-round manner. Instead, we
will take inspiration from similar searching tools for differential cryptanalysis [8],
and randomize the search order. This naturally implies that we will often start
building inconsistent characteristics, which will need to be fixed or discarded.

3 An Automated Tool for Linear Cryptanalysis

The proposed automated tool can be roughly split into two main parts. The
first part is described in Sect. 3.2 and deals with the description of crypto-
graphic primitives within the search tool, including the representation of linear
approximations and, most importantly, their propagation. The other part of the
tool is the choice of the search algorithm to find good linear characteristics (see
Sect. 3.3). Before we start with the description of the tool, we take a look at
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the requirements we have for the design and implementation of such a heuristic
search tool.

3.1 Implementation Requirements for the Search Tool

In order for any automatic cryptanalysis tool to be useful for general application,
for example to analyze the 57 first round CAESAR submissions, there are a
number of flexibility and usability requirements:

– Easy to Add New Primitives. This is one of the main goals for the cre-
ation of this tool. To fulfill this requirement, we have decided to put the focus
on primitives based on SP networks, i.e., with alternating S-box and linear
layers. This simplifies the design process of the tool, since we did not have to
consider every possible specialty, while still having a large group of applicable
primitives. The programming interface should be designed to require as little
effort as possible for converting, for example, a CAESAR reference implemen-
tation to a suitable cipher definition for the tool – ideally, it should possible
to just copy the corresponding code fragments for the round transformation
steps.

– An Easily Adaptable, Parameterized Search Algorithm. The linear
tool implements a heuristic guess-and-determine search algorithm. This algo-
rithm delivers good results for various primitives. However, the success of the
search is highly dependent on various different parameters, such as the config-
uration of the searching order and conflict-handling behavior. Therefore, it is
crucial that these parameters can be adjusted easily. For this reason, our stan-
dard guess-and-determine algorithm is parameterizable via an XML-file. This
XML-file specifies the search starting point and allows to configure various
other parameters.

– Easy to Add other Search Algorithms. The currently implemented,
stack-based guess-and-determine algorithm is certainly not the only possible
way to search for linear characteristics. To be open for new ideas and evaluate
other algorithms, we have designed the tool in a way that the search algo-
rithm is clearly separated from the description of the cipher and thus, can be
replaced easily. This opens the door for experiments with various alternative
search algorithms and will hopefully lead to new insights in this direction.

– Portability of the Code. We do not want the tool to require a specific oper-
ating system or platform to run. Therefore, we have reduced the dependence
from external libraries whenever possible, and omitted the use of platform-
specific instructions.

3.2 Propagation of Linear Masks

Our overall search strategy is based on the “guess-and-determine” approach.
We want to build a consistent linear characteristic with high bias step by step,
starting from a “mostly unknown” (undetermined) characteristic of masks, and
progressively deciding which bits should be selected (activated) by the final mask.
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For this purpose, we repeatedly “guess” the value of small parts of the masks,
and then “determine” the consequences of this guess (in particular, whether this
updated partial characteristic can still be completed to a “valid” characteristic).
We refer to the “determining” step as propagation of information.

Representation of Partial Linear Masks. The tool represents the linear
masks on bit-level. During the search, we work with partially-determined search
masks. We represent an active bit in the linear mask with 1 and an inactive bit of
a linear mask with 0. Mask bits that are not yet determined are represented by ?.

Propagation in SP Networks. We want to find linear characteristics for
SP networks. Such a network consists of iterative applications of a substitution
layer (consisting of relatively small S-boxes) and an (affine) linear layer (which
typically covers larger parts of the state at once). We use different techniques
for the propagation of information in these two layer types. The goal of the
propagation step is to investigate whether the guess allows to derive explicit
values for other (“neighbouring”) bits, and in particular whether this explicit
information is contradictory. The constraints that allow this propagation can be
derived from the linear distribution table of the involved functions, since the
characteristic must not contain any mask transitions with bias 0.

Propagation in the Non-linear Layer. We only deal with non-linear layers
which can be represented by parallel applications of S-boxes. So the propaga-
tion of the linear masks at the input and the output of the S-boxes can be
treated individually, since the parallel applications are considered independent
of each other (any dependencies induced by the linking linear layers are treated
separately). Therefore, we can do the propagation separately per S-box.

Many state-of-the-art ciphers use relatively small S-boxes. In many recent
cipher proposals, the S-boxes map 4- to 5-bit inputs to outputs of the same
size. Even the largest S-boxes hardly ever exceed a size of 8 bits. Therefore,
the propagation of the linear masks can be done in a brute-force manner, based
on the linear distribution table (LDT) of the S-box. The LDT is an exhaustive
list of all valid (biased) mask transitions from mask α to mask β. Our cur-
rent “knowledge” of the values of some input and output mask bits limits the
set of available transitions. Depending on the concrete values of α and β and
the remaining transition options, we have one of the following outcomes of the
propagation:

1. Contradiction: The LDT reveals that no valid, biased transitions remain
that satisfy the fixed mask bits; i.e., there is no linear relationship involving
the bits currently marked by α and β as 1 (and optionally the ? bits). In other
words, we have a contradiction. This means that the current, partially deter-
mined linear characteristic is in fact invalid. This situation has to be handled
by the search algorithm by, e.g., backtracking and resolving the contradiction.
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2. Updated Bits: The LDT reveals that one or more biased transitions respect-
ing the partially determined α and β remain. In addition, all remaining tran-
sitions share the same value (0 or 1) for one or more of the current ? bits.
Thus, we can refine some previously undefined bits in the masks to active
or inactive bits by using information from the LDT. Before taking any fur-
ther guesses, this newly-won information must in turn be propagated in all
connected function components.

3. No Updates: The LDT reveals that α and β are possible, but no additional
explicit bit-wise information can be won. Nothing else happens.

Propagation in the Linear Layer. There are two main differences between
the linear and non-linear layers from the propagation perspective: On the one
hand, the linear layer typically involves significantly more variables than individ-
ual S-boxes. On other hand, propagating partial linear masks for linear functions
can be achieved easily using basic linear algebra.

Assume that the function f : Fm
2 → F

n
2 is linear, i.e., f(x) = A · x = y for

some A ∈ F
n×m
2 . Note that we can include affine linear functions in the same

model, since the affine (constant) part is irrelevant for the bias of the linear
model if we do not consider the sign of the bias. Then, for a fully determined
mask α, β, the bias εα,β is either 0 (wrong model) or 1

2 (exact, correct model).
More specifically, α, β is a valid input-output mask if

∀x : αt · x = βt · f(x) ⇔ ∀x : αt · x = βt · (A · x)

⇔ ∀x : αt · x = (At · β)t · x

⇔ α = At · β.

If α and β are only partially determined, all propagation can be performed by
propagating the information in the linear system α = At · β. For this purpose,
we always keep the half-solved system in reduced row echelon form for all linear
layers. Whenever mask values in α or β are updated, we perform partial Gaussian
elimination to retain reduced row echelon form. If in the process, other bits of α
or β are determined (case 1 or 2 from above), this information is extracted from
the system and instead stored in the regular representation α, β of the mask bits
that is also used for S-box propagation.

Update Process. Every time the propagation step leads to new, explicit infor-
mation in the linear masks (i.e., mask bits that were previously undetermined
are now fixed, case 2), this information has to be propagated over the connected
linear or non-linear layers, which share those updated mask bits. In other words,
the propagation step needs to be iterated to update the neighbouring layers.
Since we require that every linear layer is only connected to non-linear layers and
vice versa, we can use a very simple update process scheduling: After each guess
or update, we first perform propagation on all non-linear layers (with updated
bits), then on all linear layers (with updated bits). This process is iterated until
the propagation process has converged and no additional explicit information
can be learned anymore, or a contradiction was detected.



Heuristic Tool for Linear Cryptanalysis with Applications 497

3.3 Search for Linear Characteristics

In this section, we discuss our proposed search strategy. The search strategy
guides the guessing behavior (choice of bits or bit sets to guess, and their val-
ues), as well as the backtracking behavior after detecting contradictions. We
currently implement a simple stack-based search algorithm, similar to the strat-
egy used in recent tools for differential characteristic search [16,17]. We first
give an algorithmic overview, before detailing the choices made for individual
ingredients.

Basic Search Algorithm. We start from a mostly-undetermined characteristic
A0 as a starting point, and incrementally guess more and more of its mask bits.
We refer to the current characteristic as A, and keep a history of the guesses
that led from A0 to A in the stack S. For each guess, we select a guessable item
X in the current characteristic A. Depending on the search strategy, this can
be a single bit, or all bits of an S-box input-output mask (unlike some tools for
differential characteristic search which only consider individual bits). The choice
of X is guided by the search and backtracking strategy. The characteristics
stored in S are used for backtracking, where some of the most recent guesses are
undone to resolve conflicts, i.e., we return to an older status stored in S. The
basic search algorithm is summarized in Algorithm 1.

Algorithm 1. Guess-and-determine search algorithm
choose characteristic A0 as starting point
loop

push A0 to empty stack S
repeat

get the topmost characteristic A from S
select a guessable item (bit or S-box) X in A
for all most preferable possible values x of X do

guess X to x
propagate information
if contradiction detected then

undo guess x and all resulting updates
else

push A to S and break
if no valid assignment x was found then

backtrack by popping characteristics from S
mark X critical

until exhausted or solution characteristic found

Choice of the Starting Point. The starting point is a linear characteristic,
in which most mask bits are still undetermined. The appearance of the starting
point depends highly on the scenario in which the linear characteristic will be
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used, since it can be used to define which bits of the resulting characteristic must
definitely be active or inactive.

For instance, consider the search for a linear characteristic for a block cipher
or a permutation. In principle, every bit of the input or the respective output
mask can be active in such a scenario. So, we can use a starting point where
nearly every bit of the respective input and output linear masks is free for guess-
ing during the search. On the other hand, if we consider sponge-like modes, we
have more restrictions on the characteristic. Here, the attacker can only observe
or control a fraction of the state on the input and the output. Depending on the
actual attack, it can be necessary that bits belonging to unknown parts of the
state remain inactive, and that only observable or controllable bits are active.

Besides defining the possible use-cases of the linear characteristic, the choice
of the starting point also greatly influences the expected success of the search.
By fixing parts of the starting point, it is possible to reduce the search space
significantly, and thus accelerate the search to quickly find results that would
otherwise be out of range. However, reducing the search space also has the
potential to exclude classes of good characteristics. Thus, the starting point
is usually not too much restricted at the beginning of the analysis of a certain
cipher. Instead, the choice of the starting point is an adaptive process based on
the cryptographer’s intuition and the cipher’s structure, using information from
previous searches.

Guessing Strategy. The guessing strategy specifies which undetermined bit
or S-box is picked next for guessing, and how it will be refined. In S-box-based
designs, the search success can profit significantly from guessing in an S-box-
oriented manner; that is, by guessing the value of all bits in an S-box input-
output mask at once. We refer to this as “guessing the S-box”. Even if guesses
are made S-box after S-box, the propagation procedure can produce half-guessed
S-boxes with some bits fixed and others undetermined. It is also possible to mix
S-box-wise and bit-wise guessing.

We refer to an S-box as “guessable” if the linear input and output masks
contain at least one remaining undetermined ?-bit, and “fixed” or “not guess-
able” otherwise. In addition, the search configuration may limit the selection
of S-boxes currently eligible for guessing, depending on the guessing progress.
The most important example for this is the “critical” status that is assigned
to an S-box after a failed attempt to find any valid assignment for this S-box,
and assigns top priority to this S-box. Additionally, it can be useful to impose
cipher-specific rules; for example, to demand that all S-boxes of the first few
rounds must be fixed before we start guessing values in the following rounds.

To guide the guessing procedure, each guessable S-box is assigned a proba-
bility for being selected as the next guessing target, for example based on the
criteria described above. In addition, all possible assignments for a guessable
S-box are ranked by how promising they are estimated to be for high-bias char-
acteristics. Of course, the primary guess for potentially inactive S-boxes (i.e.,
only with bits 0 and ? so far) is to keep them inactive (i.e., all 0). If this is not
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possible, the S-box is marked as active. If the selected guessable S-box is already
marked active, we rank all possible assignments of the linear masks according
to their linear bias and the number of active bits. We pick a random optimally
ranked assignment as primary guess. If the following propagation reveals that
this assignment is in fact impossible, we try other assignments until no alterna-
tive is left, or we have reached a predefined threshold on the number of trials.

Backtracking. If all alternative assignments fail (or a predefined threshold of
trials is reached), we need to backtrack. To resolve this conflict, we return to an
earlier version of the linear characteristic as stored on the stack S. Again, we try
to guess the same critical S-box that caused the conflict. If we cannot resolve
the conflict here, we jump further back, until it can be resolved.

Restarts. To better randomize the search process and avoid being “stuck” with
a few unhappy first guesses, it is helpful to occasionally restart the complete
search. For this purpose, we define a limit of “credits” or resources for one
search run. When this limit is exhausted before finding a valid, fully determined
characteristic, we clear the stack S and restart from scratch with the starting
point A0. Additionally, the search is also restarted after completing a successful
run, with the hope of finding new, better characteristics. If the cryptographer
detects promising patterns in the preliminary results, these can serve as a basis
for improved starting points for the next run.

4 Application to CAESAR Candidates

In this section, we demonstrate the advantages of our tool for linear cryptanaly-
sis by applying it to several first round CAESAR candidates: Keyak, Ascon,
ICEPOLE, Prøst, and Minalpher. All the analyzed candidates are permutation-
based (rather than based on block ciphers). This is, however, not a constraint
of the linear tool, which works just as well for block ciphers, since the typical
round-key additions do not influence the linear characteristics. Rather, it is rep-
resentative of the trend that a significant portion of CAESAR candidates with
new, dedicated SPN primitives are permutation-based, since most block-cipher
modes employ AES.

For each candidate, we first consider linear characteristics for the (round-
reduced) permutation. However, for many modes (in particular for sponges),
an attacker cannot influence the complete input to the permutation, or cannot
observe its complete output. For this reason, we also investigate characteristics
with additional constraints, where parts of the linear masks are fixed beforehand.
We define the following three types of linear characteristics:

– Type I (Permutation): For this type of characteristics, we do not require
any additional restrictions regarding the positions of active bits in the linear
characteristic. Hence, a characteristic of this type might not be usable in
a concrete attack on the duplex-like constructions of Keyak, Ascon, and
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ICEPOLE. Nevertheless, even for modes where Type-I characteristics allow
no direct attacks, they still give insights in the resistance of the cryptographic
primitive against linear attacks.

– Type II (Output Constrained): Linear characteristics of this type have
the restriction that all active bits at the end of the characteristic have to be
“observable”. For duplex-like constructions, this means that all active mask
bits have to be in the outer (rate) part of the state. Such linear characteristics
can be used to create key-stream distinguishers in known-plaintext scenarios
for duplex-like constructions, or even to perform key-recovery attacks.

– Type III (Input and Output Constrained): In addition to Type-II char-
acteristics, also all active bits of the input have to be in the outer (rate) part
of the state. This type of linear characteristic can act as a key-stream distin-
guisher in known-plaintext scenarios for duplex-like constructions, targeting
the encryption of the plaintext. A similar type of linear relations has been
used for instance by Minaud [18] to detect linear biases in the key-stream of
the CAESAR candidate AEGIS.

We first discuss our approach and our findings for Keyak in more detail, and
then briefly present our results for Ascon, ICEPOLE, Prøst, and Minalpher.

4.1 Keyak

Brief Description of Keyak. Keyak is a family of authenticated encryption
algorithms designed by Bertoni et al. [4] and is one of the 57 submissions to
the first round of the CAESAR competition. It is based on the round-reduced
Keccak-f permutation and follows the duplex construction [2]. The designers
have defined four instances of Keyak; all instances share the same capacity
c = 252 and use 12 rounds of the Keccak-f permutation, but differ in their
state size b and the degree of parallelism p:

– River Keyak: b = 800, p = 1 (serial),
– Lake Keyak: b = 1600, p = 1 (serial),
– Sea Keyak: b = 1600, p = 2 (parallel),
– Ocean Keyak: b = 1600, p = 4, (parallel).

The Keyak Duplex Mode. Figure. 1 sketches the encryption of serial Keyak
without associated data: The initialization takes as input the secret key K and
public nonce N , and applies the permutation f once. This ensures that one
always starts with a random-looking state at the beginning of the encryption of
the plaintext. Afterwards, the plaintext is processed by xoring it block-wise to
the internal state, separated by invocations of the permutation f . The ciphertext
blocks are extracted from the state after adding the plaintext. After all data is
processed, the finalization applies the permutation f once more and returns the
tag. For more details on Keyak, including the rules for processing associated
data, we refer to the specification [4].
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Fig. 1. Simplified sketch of Lake Keyak encryption (without associated data).

The Keyak Permutation. The Keyak permutation is a round-reduced version of
the Keccak-f permutation, reduced to 12 rounds. It operates on the 5×5 = 25
w-bit words (“lanes”) S[x][y][∗] of the state S, with w = 32 or 64. Each round
applies the five steps R = ι ◦ χ ◦ π ◦ ρ ◦ θ, where all steps except ι are equivalent
for each round.

– Step θ adds to every bit of the state S[x][y][z] the bitwise sum of the neigh-
bouring columns S[x − 1][∗][z] and S[x + 1][∗][z − 1]. This procedure can be
described by the following equation:

θ : S[x][y][z] ← S[x][y][z] +
4∑

y′=0

S[x − 1][y′][z] +
4∑

y′=0

S[x + 1][y′][z − 1].

– Step ρ rotates the bits in every lane by a constant value,

ρ : S[x][y][z] ← S[x][y][z + C(x, y)],

where C(x, y) is a constant value.
– Step π permutes the lanes using the following function:

π : S[x][y][∗] ← S[x′][y′][∗], where
(

x
y

)

=
(

0 1
2 3

)

·
(

x′

y′

)

.

– Step χ is the only non-linear step in Keccak and operates on each row of
5 bits:

χ : S[x][y][z] ← S[x][y][z] ⊕ ((¬S[x + 1][y][z]) ∧ S[x + 2][y][z]),

which can be seen as applying a 5-bit S-box in parallel to all rows.
– Step ι adds a round-dependent constant to the state. For the actual values of

the constants, we refer to the design document [4].

The designers provide some results on the linear properties of this permutation
online, as part of the KeccakTools package [3].
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Results for Keyak. For our analysis, we focus on the primary recommendation
Lake Keyak using state size b = 1600. Since Lake Keyak, in contrast to
Ascon and ICEPOLE, uses the same permutation (with the same number of
rounds) in the initialization, finalization, and plaintext-processing phase, Type-
III characteristics (to target plaintext-processing) offer no remarkable advantage
over Type-II characteristics (to target the initialization). For this reason, we only
consider Type-I and Type-II characteristics.

Type-I Characteristics (for 3 and 4 Rounds of the Permutation). We first con-
sider Type-I characteristics, i.e., linear characteristics for the underlying round-
reduced Keyak permutation (Keccak-f) without any additional restrictions.
We performed a search for linear characteristics for 4 rounds of the 1600-bit per-
mutation. The best linear characteristic we found has 33 active S-boxes, which
results in a bias of 2−34. The best linear characteristic for 3 rounds with 13 active
S-boxes and a bias of 2−14 can be obtained by omitting the first round of the
4-round linear characteristic. Our results are very similar to the characteristic
given in the KeccakTools package [3].

Type-II Characteristics (for 3 and 4 Rounds of the Initialization). The previous
3 and 4-round characteristics have active bits in the inner part (last four 64-bit
words) of the state after round 4. Therefore, we cannot use this characteristic in
an actual attack. For an attack on the initialization of round-reduced Keyak, we
have to apply additional restrictions on the linear characteristics. Since we can
only observe the outer (rate) part of the state at the output of the permutation
after the initialization, we apply the restriction that only this part is allowed to
contain active bits. Note that the input of the first permutation call is either
known or constant. Therefore, we have no problems with active bits there.

For the initialization reduced to 3, or 4 rounds, we found characteristics
which only have active S-boxes in the rate part of the state. Thus, considering
a known-plaintext attack, we know all the output bits of these S-boxes and can
invert them. This leads to the fact that the last round does not influence the
bias. So we have an expected bias of 2−13 for the 3-round version, and 2−49 for
the 4-round version of these characteristics. Taking the last S-box layer also into
account, the bias of those characteristics would be 2−26 and 2−70, respectively.
When inverting the last S-boxes, both characteristics result in trivial key-stream
distinguishers for round-reduced versions of Keyak with complexity 226 and 298,
respectively. Moreover, these distinguishers could also be used in a key-recovery
attack on round-reduced Keyak, resulting in similar complexities.

Configuration of the Search. As already mentioned, the proposed search tool is a
heuristic one and thus, the quality of the results heavily depends on the applied
heuristic search criteria, as well as on the definition of the starting points. For
the search process that led to the Type-II characteristics for 3 and 4 rounds of
Keyak, we used a quite natural starting point: For both starting points, the
only restriction is that the S-boxes of the last round which “belong” to the inner
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part of the state must be inactive. In addition, one S-box in the second round is
marked as active (to exclude the trivial, entirely inactive solution).

We split the search into two stages. In the first stage, we only pick poten-
tially inactive guessable S-boxes, and set them to the best possible assignment
(typically a completely inactive input and output linear mask). Which S-box is
picked and refined is determined by a heuristic that picks the S-boxes according
to a previously configured weight distribution. These weights can be manually
assigned in the search configuration file (the same file in which the starting
point is defined). In case of the search for the 3-round Type-II characteristic,
the weights were assigned so that S-boxes of the first and second round have a
50 times higher chance to be picked compared to an S-box of the last round.
The intention behind this distribution is that the majority of the active S-boxes
of the resulting linear characteristic should be located in the last round, because
their output is known in an attack. Hence, these active S-boxes can be inverted
and do not contribute to the bias. Our heuristic for the 4-round Type-II char-
acteristic prefers S-boxes from rounds 2 and 3 over S-boxes from rounds 1 and
4. Additionally, round 1 is favored over the last round 4. In the second stage,
after every guessable and potentially inactive S-box is already determined, we
continue by guessing active and yet not fully determined S-boxes until the linear
characteristic is fully determined.

As can be seen above, the choice of the starting point and search heuristic
depend on the structure of the target primitive, the planned use for the linear
characteristic, and on the intuition of the cryptographer. Thus, better search
strategies and starting points might exist, which may lead to better linear char-
acteristics than those given in this paper.

4.2 Ascon

Brief Description of Ascon. Ascon is a family of sponge-based candidates,
designed by Dobraunig et al. [9]. Compared to Keyak, it features a signifi-
cantly smaller state of 320 bits, and the linear layer is applied to each of the 5
64-bit words independently. The 5-bit S-box, on the other hand, is closely related
(affine equivalent) to that of Keyak. The primary proposal Ascon-128 has a
rate of 64 bits and hence, a capacity of 256 bits.

Results for Ascon. For the linear tool, the simple design of the linear layer
means that its linear model can be split into 5 separate, independent matrices.
Combined with a small state size, this property greatly reduces the cost for linear
algebra needed to perform the propagation compared to Keyak.

Our findings for Ascon are summarized in Table 1. The number of active
S-boxes of Type-I characteristics found with the help of this tool have already
been included in work presented at CT-RSA 2015 [10]. Note that the character-
istics given here are optimized for a minimum number of active S-boxes, rather
than minimal bias. For Ascon-128, we additionally search for Type-II and Type-
III characteristics. However, regarding Type-III characteristics, no meaningful
results were obtained.
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4.3 ICEPOLE

Brief Description of ICEPOLE. ICEPOLE is a family of authenticated
encryption schemes designed by Morawiecki et al. [19]. It consists of the three
proposals ICEPOLE-128, ICEPOLE-128a, and ICEPOLE-256a, which all use
the same underlying 1280-bit permutation. All variants use 12 rounds of the
permutation for initialization, and 6 rounds for processing of plaintext and final-
ization. However, they differ in details like size of the rate, key, nonce and tag.

The 1280-bit state of ICEPOLE is stored in 5 × 4 = 20 64-bit words. For
the linear layer, an MDS matrix over F25 is first applied 64 times in parallel (to
each 20-bit slice of the state). Then, each word is rotated, and the words swap
positions. The S-box layer applies 5-bit S-boxes (4 parallel row-wise applications
for each 20-bit slice).

ICEPOLE’s designers perform no dedicated linear analysis, but compare the
cipher’s resistance to linear cryptanalysis to its well-studied resistance against
differential cryptanalysis. They conclude that the attack complexity after 5–6
rounds should be “completely intractable” [19]. At FSE 2015, Huang et al. [11]
presented 3-round linear characteristics that they use in a differential-linear
attack on ICEPOLE.

Results for ICEPOLE. The Type-II and Type-III characteristics given in
Table 1 are constrained with respect to a capacity of 254 bits (due to padding,
256 bits are not observable), as defined for ICEPOLE-128 and ICEPOLE-128a.
In the case of ICEPOLE, we do not have an immediate output of a ciphertext
block right after the 12 rounds of the initialization. Before this happens, there is
the option to process a secret message number and at least an empty associated
data block is processed. Hence, 6 or even another 12 additional rounds have to
be passed before an output suitable for our Type-II characteristic is accessible.
Thus—in the worst case—our key-stream distinguisher using Type-II character-
istics works for round-reduced versions of ICEPOLE-128, where the initialization
plus the following processing is reduced to 5 out of 24 rounds with a complexity
of about 2120.

Type-III characteristics can be used to create distinguishers that target the
processing of the plaintext. Here, every version of ICEPOLE uses the 6 round
version of the ICEPOLE permutation. Thus, by using the Type-III characteristic
in Table 1, the key-stream produced by round-reduced variants of ICEPOLE-128,
where the permutation used in the plaintext processing is reduced to 4 (out of
6), rounds can be distinguished from a perfect randomly generated key-stream
with a complexity of about 288. The bias of the 5-round Type-III characteristic is
2−87.08 and hence, the complexity of a resulting key-stream distinguisher cannot
harm the 128-bit security of ICEPOLE-128. ICEPOLE-256a, on the other hand,
claims a security level of 256 bits regarding the confidentiality. However, it has a
higher capacity of 318 bits and therefore, the characteristics given in Table 1 can-
not be used directly. Taking the higher capacity of ICEPOLE-256a into account,
we get a Type-III characteristic with a bias of 2−89.49, which can be used to
distinguish the key-stream of a round-reduced variant of ICEPOLE-256a, where
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the permutation used during the encryption is reduced to 5 (out of 6 rounds).
Note that ICEPOLE-256a limits the number of blocks encrypted under a sin-
gle key by 262. However, this type of key-stream distinguishers exploit relations
between ciphertext block Ci and the key-stream used to generate the following
ciphertext block Ci+1. Thus, distinguishers using Type-III characteristics in this
way do not rely on the fact that always the same key is used.

Table 1 contains the results with the best bias, but not necessarily the mini-
mal number of active S-boxes we found. For example, for 6 rounds, we also found
a Type-I characteristic with only 103 active S-boxes, but a bias of 2−133.49 (com-
pared to 104 active S-boxes with bias 2−126.32 as in the table).

4.4 Minalpher

Brief Description of Minalpher. Minalpher is designed by Sasaki et al. [22].
In contrast to the previous 3 candidates, Minalpher is no sponge-based design.
Instead, the permutation is applied in a new tweakable block cipher construction,
called tweakable Even-Mansour. For this construction, the permutation size only
needs to be twice the security level, so for 128-bit security, Minalpher has the
smallest of all investigated permutation sizes with only 256 bits. This small state
is further divided into two halves, whose only interaction in each of the 17.5
rounds is that one half is once xored to the other half, and the two halves swap
places. Besides the interaction between the halves and some nibble reordering,
the linear layer features a near-MDS matrix multiplication over F24 . The S-box
size of 4 bits is also nibble-oriented.

For Minalpher’s construction, only Type-I characteristics are useful. We
understand our results as an analysis of the underlying permutation. However,
since Minalpher claims security in nonce misuse settings and under unverified
plaintext release, the Type-I characteristics could also be useful for attacks on
the cipher. In particular, for a fixed nonce, the construction allows to control
the entire permutation input (at least differentially, due to the Even-Mansour
construction, which xors a key- and nonce-dependent value before and after the
permutation) and observe the entire output (again, differentially).

The designers analyze the minimum number of active S-boxes (for differen-
tial cryptanalysis) theoretically, and prove a minimum number of 22 S-boxes for
4 rounds. For up to 7 rounds, they extend the bounds with the help of mixed
integer linear programming (MILP). The bounds obtained this way for the num-
bers of rounds r also covered by this work are 22 (r = 4), 41 (r = 5), and 58
(r = 6). The designers claim that the same bounds apply for linear cryptanalysis.

Results for Minalpher. The existing bounds serve as a kind of benchmark
for our tool to check its capabilities. As shown in Table 1, we were able to match
the given bounds for up to 6 rounds. For better comparability, we included our
results with the minimal number of active S-boxes, but not necessarily the best
bias, in the table. For example, for 6 rounds, we also found a Type-I characteristic
with a smaller bias of 2−61, but with 60 active S-boxes (compared to 58 active
S-boxes with bias 2−62 in the table).
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4.5 Prøst

Brief Description of Prøst. Prøst, designed by Kavun et al. [13], offers
both a sponge-based mode and two block-cipher-based modes, where the latter
use the Prøst permutation in a single-key Even-Mansour construction. Each
of the three modes offers two security levels: one based on the 256-bit Prøst-
128 permutation, and one based on the 512-bit Prøst-256 permutation. The
state is stored as 4 × 4 words of 16 or 32 bits, respectively. Both the 4-bit S-box
(row-wise) and the 16-bit linear mixing function (MDS over F24 are applied in a
bit-sliced way (using 1 bit of each word). Then, each word is rotated. The number
of rounds per permutation call is r = 16 (Prøst-128) or r = 18 (Prøst-256),
respectively.

Table 1. Results for Keyak, Ascon, ICEPOLE, Minalpher, and Prøst. The corre-
sponding linear characteristics can be found in the full version of this paper.

Cipher Type Rounds Active S-boxes Bias

Keyak I 3 13 2−14

4 33 2−34

II 3* 12 2−13

4* 43 2−49

Ascon I 3 13 2−15

4 43 2−50

5 67 2−94

II 2 6 2−8

3 23 2−30

4 61 2−83

ICEPOLE I 5 38 2−55.08

6 104 2−126.32

II 4 22 2−30.42

5 38 2−59.49

III 3 10 2−16.66

4 22 2−43.25

5 42 2−87.08

Minalpher I 4 22 2−23

5 41 2−42

6 58 2−62

Prøst-256 I 4 25 2−26

5 41 2−42

6 105 2−107

7 169 2−175

*Last S-box layer inverted.
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We focus our analysis on Prøst-256 (formally offering 128-bit security). Like
Minalpher, Prøst comes with a MILP-based proof for the minimum number of
active S-boxes for differential and linear characteristics. For Prøst-256, the
bounds for different round numbers are 25 (r = 4), 41 (r = 5), 105 (r = 6), and
169 (r = 7).

Results for Prøst. Again, we used the existing bounds as benchmarks for
our linear tool. The tool is able to match each bound, mostly with optimal or
near-optimal bias (2−26 for r = 4, 2−42 for r = 5, 2−107 for r = 6, and 2−175 for
r = 7).

5 Conclusion

We presented a dedicated tool for the automatic linear cryptanalysis of substi-
tution-permutation networks. The goal of the tool is to identify linear charac-
teristics for a cryptographic function, which can subsequently be used by the
cryptanalyst to mount key-recovery or distinguishing attacks. The heuristic
search is based on an efficient guess-and-determine approach, which has pre-
viously been proven successful for searching differential characteristics. We
described how to perform efficient propagation of linear masks in linear and
non-linear building blocks of a cipher.

From the cryptanalyst’s perspective, the tool is simple to use, flexible, and
easy to extend with regard to search strategies and target ciphers. The open-
source tool will be freely available to help analyze CAESAR candidates and other
symmetric cryptographic primitives. We hope that our work will be a valuable
contribution to get a better understanding of the security of these ciphers regard-
ing linear cryptanalysis. In particular, we hope to encourage experiments with
alternative, sophisticated search strategies optimized for different target ciphers.

We demonstrated the efficiency of our tool by applying it to several CAESAR
candidates. The results obtained by searching for linear characteristics for the
Minalpher and Prøst-256 permutation show that the presented heuristic search
tool can keep pace with MILP-based approaches. However, due to the heuristic
nature, we are not capable of providing bounds on the minimum number of
active S-boxes.

On the other side, when looking at the results obtained for Ascon, ICEPOLE
and Keyak– all designs with weak alignment – we have been able to find new
linear characteristics with a good bias that might be used in a key-recovery or
distinguishing attack on round-reduced versions of the ciphers in the future.
One highlight are the Type-III characteristics for round-reduced versions of
ICEPOLE, which can be used to distinguish the key-stream of ICEPOLE in
a nonce-respecting scenario.

Our results show that the existence of a publicly available analysis tool for lin-
ear characteristics will be of great help in the design of symmetric cryptographic
primitives, in order to evaluate the resistance against linear attacks already in an
early stage of the design. Thus, we think that this tool will facilitate new designs
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which are more balanced in their resistance against linear and differential attacks
than some of today’s designs.
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Abstract. In this paper we study authenticated encryption algorithms
inspired by the OCB mode (Offset Codebook). These algorithms use secret
offsets (masks derived from a whitening key) to turn a block cipher into a
tweakable block cipher, following the XE or XEX construction.

OCB has a security proof up to 2n/2 queries, and a matching forgery
attack was described by Ferguson, where the main step of the attack recov-
ers the whitening key. In this work we study recent authenticated encryp-
tion algorithms inspired by OCB, such as Marble, AEZ, and COPA. While
Ferguson’s attack is not applicable to those algorithms, we show that it is
still possible to recover the secret mask with birthday complexity. Recov-
ering the secret mask easily leads to a forgery attack, but it also leads to
more devastating attacks, with a key-recovery attack against Marble and
AEZ v2 and v3 with birthday complexity.

For Marble, this clearly violates the security claims of full n-bit secu-
rity. For AEZ, this matches the security proof, but we believe it is nonethe-
less a quite undesirable property that collision attacks allow to recover the
master key, and more robust designs would be desirable.

Our attack against AEZ is generic and independent of the internal
permutation (in particular, it still works with the full AES), but the key-
recovery is specific to the key derivation used in AEZ v2 and v3. Against
Marble, the forgery attack is generic, but the key-recovery exploits the
structure of the E permutation (4 AES rounds). In particular, we intro-
duce a novel cryptanalytic method to attack 3 AES rounds followed by 3
inverse AES rounds, which can be of independent interest.

Keywords: CAESAR competition · Authenticated encryption · Crypt-
analysis · Marble · AEZ · PMAC · Forgery · Key-recovery

1 Introduction

The purpose of an Authenticated Encryption scheme is to provide both privacy
and integrity with a single cryptographic algorithm. In 2014, the CAESAR com-
petition was launched with the goal to identify good Authenticated Encryption
schemes as better alternatives to current options such as AES-GCM [14]. 57
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candidates have been submitted to the CAESAR competition, and they must
now be analyzed carefully.

In this paper, we provide a security analysis of the AES-based candidates
Marble [5] and AEZ v3 [7]. Both designs are inspired by OCB [16], designed
in 2001 by Rogaway, Bellare, Black, and Krovetz. They are built as modes of
operation of a block cipher1, using secret offsets at the input and/or output of
the block cipher calls.

OCB. In OCB, a whitening key L is derived from the master key K, and the
i-th message block Mi is enciphered to Ci = EK(Mi ⊕ γi · L) ⊕ γi · L, where γi

is a (Gray) counter, · is a finite field multiplication, and γi · L is the i-th offset.
This design principle was later formalized as the XE and XEX construction [15],
and proved to turn efficiently a secure block cipher into a secure tweakable block
cipher [12]. OCB with a an n-bit block cipher is proven secure up to 2n/2 queries,
and Ferguson showed a collision attack matching the bound [3]. The attack uses
a long message M , so that there is a collision between two block cipher inputs:

Mi ⊕ γi · L = Mj ⊕ γj · L

The collision can be detected because Mi ⊕ Ci = Mj ⊕ Cj , and the value of L
is recovered as (γi ⊕ γj)−1 · (Mi ⊕ Mj). When L is known, it is easy to forge
messages.

Marble. Marble [5] is a CAESAR candidate by Jian Guo inspired by COPA [1].
COPA was designed in 2013, and combines OCB’s offsets with an internal depen-
dency chain in order to achieve some security in the case of nonce repetition.
Marble uses two internal chains in order to prevent birthday attacks on the
internal chain, and uses reduced-round AES as building blocks. Marble claims
security against nonce-repetition, and against release of unverified plaintexts,
but cannot hide common prefixes in case of nonce reuse (Marble is online).
As opposed to most CAESAR candidates, Marble claims full 128-bit security
(beyond the birthday bound). The structure of Marble can be seen in Fig. 2.

Results presented so far on Marble include a cipher-text distinguisher with
complexity 264, similar to the distinguisher against the counter mode [17].

AEZ. AEZ is a CAESAR candidate designed by Hoang, Krovetz, and Rogaway.
The authors define the security notion of Robust AE, which is the optimal secu-
rity achievable when nonces are repeated, and unverified plaintexts are released.
AEZ is claimed to achieve this security notion. In this paper, we focus on the
current version of AEZ, AEZ v3, as proposed on the crypto-competition mail-
ing list, and presented at DIAC [7]. AEZ v3 has also been accepted at Euro-
crypt 2015, and presented as one of the honorable mentions for the best papers
1 For efficiency reasons, Marble and AEZ actually use 4-rounds of AES rather than a

full block cipher.
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award [8]. Our result can also be applied to AEZ v2, but not to AEZ v1, because
of a different key expansion.

As far as we are aware, no cryptanalysis of AEZ as been published so far.

Our Results. In this paper, we describe generic collision attacks against Marble
and AEZ, allowing to recover the whitening key with about 2n/2 chosen message
queries. When the whitening key is known the security offered by Marble and
AEZ crumbles and we show a forgery attack using a single extra encryption
query. Moreover, we extend this result to key-recovery attacks using properties
of the internal permutations and/or the key scheduling.

Our results are summarized in Tables 1 and 2. The data complexity is listed
in number of message blocks (16 bytes). We now detail our results on each
Authenticated-Encryption with Associated-Data (AEAD) scheme.

Marble. Our attack against Marble uses queries with repeated nonces, which
should be secure according to the security claims of Marble. Since Marble claims
security beyond the birthday bound (allowing up to 2n block of data), the forgery
attack using collisions clearly violates the security claims. In addition, we show
that if unverified plaintexts are released, i.e. if we can obtain plaintexts from
ciphertexts without a valid tag, then we can further recover the master key K.
For this attack, we build special queries so that only 3 forward AES rounds and
3 backwards AES rounds are active, and we develop a novel method to attack
such a reduced cipher with only known plaintext/ciphertexts. Our attack can be
build upon two different distinguishers. the first one is based on the detection of
collision events, and the second one on a statistical property. In both cases, our
attack requires about 233 queries and its time complexity is 264; we believe this
result is also of independent interest.

Following the disclosure of this attack, Guo proposed a minor modification
of the specifications of Marble as version 1.2 [6]. However, our attack is still
applicable to the modified version, as shown independently by ourselves and
Lu [13]. Guo later decided to withdraw Marble from the CAESAR competition.

AEZ. Our analysis of AEZ v3 focuses on the processing of Associated Data.
In particular, if AEZ is used with an empty message and no nonce, it turns into
a variant of PMAC, and the security notion of Robust AE becomes the usual
MAC security notion. We show how to recover the whitening key of this variant
of PMAC with a collision attack (a collision attack is also possible against the
standard PMAC, e.g. following [11]). More importantly, the key derivation of
PMAC allows to recover the master key K from the whitening key.

This attack does not violate the security proof, but matches the security bound.
However, collision attacks usually have a more limited impact (e.g. only affecting
authenticity), and it seems quite unfortunate that a collision attack leads to a key-
recovery. This property should probably be avoided when possible2.
2 In AEZ v4, for the second round of the competition, the designers took into account

our result and modified the key derivation in order to prevent this property.
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Table 1. Our results against Marble.

Attack (Sec. claim) Data Time

Recover L 265 × 2 CP 264

Forgery (2128) 265 × 2 CP 264

Key-recovery (2128):

Collision-baseda 265 × 2 CP + 232.6 × 130 CC 264

Collision-based 265 × 2 CP + 233 × 130 CC 264

a The chosen ciphertexts use the decryption-misuse model.

Table 2. Our results against AEZ.

Attack Dataa Time Success probability

Key-recovery 266.6 1 1

Key-recovery 244 1 2−45.2

a The AEZ specification requires to rotate the
key after 244 blocks

COPA. After the release of an early version of this paper, Lu applied the same
techniques to COPA, and described an attack to recover the whitening key [13].
The main attack in this paper actually targets the associated data processing,
which uses PMAC, and can be applied to PMAC. However, the impact of this
result is unclear because COPA and PMAC do not claim security beyond the
birthday bound, and this attack cannot be turned into a key-recovery attack.

Outline of the Paper. Since our collision attack on AEZ is much simpler
than the attack against Marble, we first explain it in Sect. 2. Then we give a
short description of the Marble authenticated encryption algorithm in Sect. 3.
In Sect. 4, we show how to recover the whitening key L and describe our forgery
attack. Finally, we demonstrate in Sect. 5 how to recover the encryption key K
from decryption-misuse queries.

2 Collision Attack Against AEZ

We first explain the collision attack on AEZ and the resulting key-recovering
attack.

2.1 Short Description of AEZ

For simplicity, we consider AEZ used with only associated data, without any
nonce or message (the attack can easily be applied with a fixed nonce and mes-
sage if required). In this case, AEZ turns into a variant of PMAC, and the
security claim becomes the usual MAC security definition. A particularity of
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AEZ is that it allows a vector-valued input, i.e. it can authenticate a sequence
of strings rather than a single string.

More precisely, the MAC is computed as follow:

– The key derivation algorithm generates keys k0, k1 and whitening keys J, L
– Full data blocks Aj

i of the j-th string (indexed from 1) are processed as:

Xj
i = Ek0

(
Aj

i ⊕ (i mod 8) · J ⊕ 2�(i−1)/8� · L ⊕ 8j · J
)

– If the last block is partial, it is enciphered as:

Xj
i = Ek0(A

j
i ⊕ 8j · J)

– The first block to be processed is the ciphertext extension τ (corresponding
to the tag length). It is τ = 128 by default.

– The tag is computed as Ek1(
⊕

i,j Xj
i )

where E is a full or reduced-round AES. This is illustrated by Fig. 1.

Ek1

Ek0

9J

L

τ

Ek0 Ek0 Ek0

17J 18J 19J

L L L

A2
1 A2

2 A2
3

Ek0 Ek0

25J 26J

L L

A3
1 A3

2

Fig. 1. AEZ used as a MAC (no message, no nonce, two AD strings).

2.2 Collision Attack on AEZ

In order to mount a collision attack against AEZ, we consider two sets of mes-
sages, with C a fixed block:

– A = {Ax | x ∈ {0 . . . 264 − 1}}, with Ax =
(
τ ;C; (C ‖ [x] ‖ 064)

)

– B = {By | y ∈ {0 . . . 264 − 1}}, with By =
(
τ ; (C ‖ 064 ‖ [y]);C

)

All message are made of two separate strings; message in A have a string of one
block and a string of two blocks, while messages in B have a string of two blocks
and a string of one block. In particular, we have:
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– MAC(Ax) = Ek1

(
Ek0

(
τ ⊕ L ⊕ 9J

) ⊕ Ek0

(
C ⊕ L ⊕ 17J

)

⊕Ek0

(
C ⊕ L ⊕ 25J

) ⊕ Ek0

(
([x] ‖ 064) ⊕ L ⊕ 26J

))

– MAC(By) = Ek1

(
Ek0

(
τ ⊕ L ⊕ 9J

) ⊕ Ek0

(
C ⊕ L ⊕ 17J

)

⊕Ek0

(
(064 ‖ [y]) ⊕ L ⊕ 18J

) ⊕ Ek0

(
C ⊕ L ⊕ 25J

))

This leads to a simple collision attack: MAC(Ax) = MAC(By) if and only if
[x] ‖ [y] = 8 · J (where 8 = 18 ⊕ 26). With A and B of size 264 as defined above,
there is exactly one collision, and the collision immediately reveals the value of
J = 8−1 · ([x] ‖ [y]).

Key Recovery. Surprisingly, the key derivation of AEZ allows to recover the
master key K from the whitening key J . More precisely, if the master key K is
of length 128 bits or smaller, J is an encryption of K under a known constant
C: J = AES4C(K). This can easily be inverted: K = AES4−1

C (J). We note that
this is not the case in PMAC, where the whitening key is an encryption of 0
under the secret key K: L = AESK(0).

This attack matches the security proof of AEZ and does not violate the
security claims. However, a complete break of AEZ after the birthday bound is
not expected: most schemes with birthday-bound security are more resilient and
collision attacks don’t allow key-recovery.

It should be mentioned that the Eurocrypt version of AEZ does not explicitly
specify a key derivation algorithm, and leaves it as an open problem:

“The key K ∈ Byte∗ is mapped to three 16-byte subkeys (I, J, L) using
the key-derivation function (KDF) named Extract that is called at line
401. The definition of Extract is omitted from the figures and regarded
as orthogonal to the rest of AEZ. See the AEZ spec for the current
Extract : Byte∗ → Byte48. In our view, it is an unresolved matter
what the security properties (and even what signature) of a good KDF
should be. Work has gone off in very different directions, and the area is
currently the subject of a Password Hashing Competition (PHC) running
concurrently with CAESAR.”

Clearly, the key derivation of the AEZ v3 specification does not have the security
properties of a good KDF.

Data Limit. The AEZ specification requires users to change the key after
encrypting 248 bytes, i.e. 244 blocks. This prevents the attack as described above.
However, we can perform the attack with smaller sets A and B of size 241.4, with
a success probability of 2−45.2. This is still much more efficient than generic
attacks: with a time complexity of 244, a brute-force key search only succeeds
with a probability of 2−84.
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3 Description of Marble

Marble is an authenticated encryption algorithm designed by Guo [5] with key-
length and tag-length of both 128 bits. A plaintext and its associated data are
divided into blocks of 128 bits and are then proceeded consecutively. Its internal
permutation is based on a modified version of the AES block cipher. Unlike other
authenticated encryption algorithms, Marble does not require a nonce.

Marble has very strong security claims: it claims to offer full 128-bit security,
i.e. an attack should take time T = 2128 even after large amount of data have
been encrypted with the same key (up to D = 2128). This is in contrast to many
CAESAR candidates and classical modes of operations for block ciphers (e.g.
GCM), which only offer a birthday level of security, i.e. the ciphers are secure
as long as T · D < 2128.

In addition, Marble does not use nonces, and the security claim even holds if
unverified plaintexts are released, i.e. the adversary can request the decryption
of a ciphertext C without knowing a valid tag corresponding to C (decryption-
misuse oracle). A few other CAESAR candidate allow the release of unverified
plaintext (AEZ, POET, APE, Minalpher), but they only claim birthday security.

An overview of Marble is depicted in Fig. 2. The Marble mode of operation
makes use of two 128-bit chaining variables s1 and s2, initialized with constants
const1 and const2. The associated data and the plaintext are padded indepen-
dently, so both resulting fields A and P can be divided into 128 bit blocks. We
do not describe the padding function here, as it does not affect our attacks. We
will denote a message to encrypt by (AD ‖ M), where AD is a vector containing
lA 128-bit blocks of associated data and M is a vector containing lM 128-bit
blocks of plaintexts.

The internal primitive used is a modified block cipher, as intermediate val-
ues of the block are combined with the incoming chaining variables. Formally,
the primitive uses 3 internal keyed permutations E1, E2 and E3 and processes
128-bit blocks as follows. On input (P, s1, s2), (C, s′

1, s
′
2) is defined as

X = E1K(P )
(X ′, s′

1) = (3X + s1,X + s1)
Y = E2K(X ′)

(Y ′, s′
2) = (3Y + s2, Y + s2)
C = E3K(Y ′)

Note that additions and multiplications are performed in the binary Galois
Field F2128 defined by the primitive polynomial x128+x7+x2+x+1. Furthermore,
polynomials ΣaiX

i are denoted by the integers Σai2i. Therefore, please note
that additions and multiplications on such objects have to be interpreted as
operations in the binary field (and not on the integer ring) and have to be
handled carefully.

In the case of Marble, each one of the three permutations E1, E2 and E3,
is composed with 4 full-round of AES (i.e. SubByte, ShiftRow, MixColumn and
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AddRoundKey). One can notice that no key addition is performed at the begin-
ning of those permutations. 12 subkeys are therefore required. A 128-bit master
key K is derived into 11 subkeys using the AES-128 key-schedule algorithm.
The master key itself is used as the 12th subkey. For more information about
the AES block cipher, we refer to [2].

The Marble encryption then works as follows. First, a mask L is derived
from the key K by encrypting a constant const3 (which also sets key-dependent
s1[0], s2[0]). For each associated data block Ai (i ≥ 1), a pre-whitening key is
defined as 2i−132L. For each plaintext block Mi, a pre-whitening key and a
post-whitening key are defined as 2iL and 2i−13L. These blocks are processed
iteratively, starting with associated data, as follows:

1. Addition (i.e. xor) of the pre-whitening key;
2. Application of the internal primitive;
3. For plaintext blocks, application of the post whitening key, which results in

ciphertext blocks.

Finally, the tag is computed by encrypting an extra block defined as the
sum of all plaintext blocks and all encrypted additional data blocks, with pre-
whitening key 2�M 7L and post-whitening key 2�M −13L.

4 A Universal Forgery Attack on Marble

In this section, we first describe a method to find the mask L using about 265

chosen plaintext queries. Then, we use this knowledge to compute forgeries. Our
attack enables to modify the associated data field in a way that affects neither
the ciphertext nor the authentication tag. It can therefore be used to compute
universal forgeries in a chosen plaintext setting.

4.1 Recover the Mask L

The main idea of the attack is to build a pair of message M �= M ′ so that the
inputs to the E1 functions are the same for both messages. This is possible if
M and M ′ have the same total length, but the associated data and message
parts have different lengths. When the inputs to E1 collide, all the intermediate
computations collide, and we can detect this event on the resulting ciphertexts.
Please note that as different multiples of L are used for post-whitening, this
operation is more tricky than detecting a collision on ciphertexts. In the following
we use 2 blocks of AD and 1 block of message for M , but 1 block of AD and 2
blocks of message for M ′.

More precisely, we encrypt messages Mα and M ′
β , for different values α, β ∈

F2128 , defined as follows (where A ∈ F2128 is a constant value):

– Mα = (AD[1], AD[2] ‖ M [1]) = (A, 8α ‖ 6α);
– M ′

β = (AD[1] ‖ M ′[1],M ′[2]) = (A ‖ 8β, 6β).
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y

x x + y

3x + y

3x + y

x 2x + y

y

Fig. 3. The TRANS operation.

In the following, we consider sets of 264 values α and β so that α ⊕ β covers
all values in F2128 . The inputs to the E1 layer will be respectively (we note that
32 = 5 in F2128):

x1 = A ⊕ 5L x2 = 8α ⊕ 10L x3 = 6α ⊕ 2L for Mα

x′
1 = A ⊕ 5L x′

2 = 8β ⊕ 2L x′
3 = 6β ⊕ 4L for M ′

β

In particular, we have:
x1 ⊕ x′

1 = 0 x2 ⊕ x′
2 = 8(α ⊕ β ⊕ L) x3 ⊕ x′

3 = 6(α ⊕ β ⊕ L)

Therefore, the inputs to E1 collide when α ⊕ β = L.
We denote the output of the E3 layer as yi (respectively y′

i), and the corre-
sponding ciphertexts as Cα[1] (respectively (C ′

β [1], C ′
β [2])). We have:

Cα[1] = y3 ⊕ 3L C ′
β [1] = y′

2 ⊕ 3L C ′
β [2] = y′

3 ⊕ 6L

In particular, if α ⊕ β = L, we have xi = x′
i for i ≤ 3, therefore yi = y′

i for
i ≤ 3, and Cα[1] ⊕ C ′

β [2] = 5L (since 3 ⊕ 6 = 5). In order to detect this event
efficiently we match the set of values {Cα[1] ⊕ 5α} and {C ′

β [2] ⊕ 5β}. When
α ⊕ β = L, we have a match, and we can easily filter false positives using a new
message pair with a different value of the constant A. The full algorithm is given
by Algorithm 1, using 265 short encryption queries.

4.2 An Attack Against Marble 1.2

After the first release of our attack, Guo made a minor modification to the
specification of Marble [6]. Namely, the input mask for the last block of associated
data is changed from 2i−132L to 2i−133L. Our attacks can be adapted as follows.

The adversary needs to query an encryption oracle for messages Mα and M ′
β ,

defined as

– Mα = (AD[1], AD[2] ‖ M [1]) = (10α, 28α ‖ 6α);
– M ′

β = (AD[1] ‖ M ′[1],M ′[2]) = (10β ‖ 28β, 6β).

Using the notations of Sect. 4.1, the inputs to the E1 layer will be :

x1 = 10α ⊕ 5L x2 = 28α ⊕ 30L x3 = 6α ⊕ 2L for Mα

x′
1 = 10β ⊕ 15L x′

2 = 28β ⊕ 2L x′
3 = 6β ⊕ 4L for M ′

β
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Algorithm 1. Recover L from an encryption oracle E .
H ← ∅ � H is a hash table
for α ∈ {0, 1, . . . , 264 − 1} do

(C[1] ‖ T ) ← E(0, 8α ‖ 6α)
H{C[1] ⊕ 5α} ← α

end for
for β ∈ {0, 264, . . . , 2128 − 264} do

(C′[1], C′[2] ‖ T ) ← E(0 ‖ 8β, 6β)
if H{C′[2] ⊕ 5β} exists then

α ← H{C′[2] ⊕ 5β}
(D[1] ‖ T ) ← E(1, 8α ‖ 6α)
(D′[1], D′[2] ‖ T ) ← E(1 ‖ 8β, 6β)
if D[1] ⊕ 5α = D′[2] ⊕ 5β then

return α ⊕ β
end if

end if
end for

In particular, we have:

x1 ⊕ x′
1 = 10 · (α ⊕ β ⊕ L),

x2 ⊕ x′
2 = 28 · (α ⊕ β ⊕ L),

x3 ⊕ x′
3 = 6 · (α ⊕ β ⊕ L).

If for some (α, β), α ⊕ β = L, then xi = x′
i for i = 1, 2, 3. Then, the outputs of

E3 verify y1 = y′
1, y2 = y′

2 and y3 = y′
3 and therefore, Cα[1] ⊕ 3L = C ′

β [2] ⊕ 6L.
As 3 ⊕ 6 = 5, This can also be expressed as:

Cα[1] ⊕ 5α = C ′
β [2] ⊕ 5β.

Therefore, L has to be searched among the values (α⊕β) for which this relation
holds. As for our attack on the previous version of Marble, about 264 different
values of both α and β are required.

4.3 Computing Forgeries on Marble Without Whitening Keys

Once we have retrieved L, we can consider a simplified description of Marble
where the masks are removed, as depicted in Fig. 4. In its mask-less descrip-
tion, Marble possesses an interesting property as described in Fig. 5: a series of
identical input blocks X has a periodic effect on the internal state.

Indeed, if we let E1(X) = u, E2(3S1⊕u) = v and E2(3S1⊕2u) = w, it is easy
to see that after encrypting 4 blocks X, the internal states S1 and S2 remain
unchanged. Furthermore, if we use a series of 8 consecutive identical associated
data blocks X, the effect on τ also cancels out. This leads to a universal forgery
attack: for any associated data AD and plaintext M , the adversary computes
the masked value B of a chunk of 8 identical blocks of associated data after AD
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. . .

. . .

∑
i M [i]

τ

E1

E2

E3

T

Fig. 4. Mask-less description of Marble. S1 and S2 are unknown key-dependent values.

and queries the encryption oracle on ((A,B) ‖ M). The answer (C ‖ T ) to that
query is also a valid ciphertext for (AD ‖ M), therefore the adversary can return
(C ‖ T ) as a forgery. The attack is given as Algorithm 2.

Algorithm 2 . Compute the ciphertext (C ‖ T ) from (AD ‖ M) using
known L.

B ← (2l · 32 · L
)lA+7

l=lA

(C ‖ T ) ← AEK((AD, B) ‖ M) � Encryption oracle call
return (C ‖ T )

5 Key-Recovery Attack

We now show how to recover the master key once the mask L has been deter-
mined. In order to simplify the description of the attack, we now focus on the
mask-less variant of Marble; however the full attack can easily be adapted to the
full version of Marble with a known mask.

The main idea is to collect pairs of messages with a fixed difference in some
internal state variables. This will allow us to attack a reduced cipher composed
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S1 ⊕ u

S2 ⊕ w

Fig. 5. Collision on the internal state of the associated data.

by 4 AES rounds followed by 4 inverse AES rounds rather than a 12-round AES
(see details below). Moreover, we apply this strategy to E1 rather that to E3

because the whitening key of E1 is directly derived from L. Since L is known,
the first AES round of E1 is key-independent. Therefore we can peel it off, and
attack only 3 forward rounds and 3 inverse rounds. However, this requires us to
use decryption queries, but we can’t forge valid tags for an arbitrary ciphertext
yet, so we use a decryption-misuse oracle.

5.1 Gathering Pairs

The first step is to collect pairs of plaintext blocks that have the same difference
in the S1 lane (after the permutation E1). In order to construct such plaintexts,
we build pairs of ciphertexts with specific differences and values. More precisely,
we consider pairs of messages as follows (with the same associated data AD):

C̃x = (AD ‖ 0, 0120, 0, 0, 0, 0, 0, 0, 0, 0, x) Cx[i] = C̃x[i] ⊕ 2i−1 · 3 · L

C̃ ′
x = (AD ‖ 1, 0120, 1, 0, 0, 0, 0, 1, 1, 1, x) C ′

x[i] = C̃ ′
x[i] ⊕ 2i−1 · 3 · L

where 0 and 1 are constant one-block values and x takes a different value for
each pair. We decrypt these pairs and we collect the final plaintext blocks.
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We now study the differences in the S2 lane (before the permutation E3).
Using the definition of the TRANS operation as given in Fig. 3, S2 is updated as
follows during decryption:

S2[i + 1] = 2 · S2[i] ⊕ E−1
3 (C̃[i])

With the messages Cx and C ′
x, we have

S2[129] = 2129S2[0] ⊕ (1 ⊕ 2 ⊕ · · · ⊕ 2128)A,

S′
2[129]=2129S2[0] ⊕ (1 ⊕ 2 ⊕ · · · ⊕ 2128)A ⊕ (20 ⊕ 21 ⊕ 22 ⊕ 27 ⊕ 2128)(A ⊕ B),

where A = E−1
3 (0) and B = E−1

3 (1). Since 2128 = 20 ⊕ 21 ⊕ 22 ⊕ 27, we have
S2[129] = S′

2[129]. This is shown in Fig. 6, where δ = A ⊕ B.

E1

E2

2127δ ⊕ 26δ ⊕ 2δ ⊕ δ

E3

δ

0 ⊕ 1

. . .

Px[130] ⊕ P ′
x[130]

E1

E2

E3

x ⊕ x

Fig. 6. Difference propagation in decryption. A red arrow means that there is a fixed
unknown difference. A black arrow means that the difference is null.

We now consider the final plaintext block given by the decryption oracle.

P̃x[130] = Px[130] ⊕ 2130 · L

= E−1
1

(
E−1

2

(
E−1

3 (x) ⊕ 3 · S2[129]
) ⊕ 3 · S1[129]

)

P̃ ′
x[130] = P ′

x[130] ⊕ 2130 · L

= E−1
1

(
E−1

2

(
E−1

3 (x) ⊕ 3 · S2[129]
) ⊕ 3 · S′

1[129]
)

With Ux = E−1
2

(
E−1

3 (x) ⊕ 3 · S2[129]
)
, we have

P̃x[130] = E−1
1 (Ux) ⊕ 3 · S1[129]

P̃ ′
x[130] = E−1

1 (Ux) ⊕ 3 · S′
1[129]
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Therefore, the pair P̃x[130], P̃ ′
x[130] can be seen as a plaintext/ciphertext pair

for a cipher with 4 AES rounds, a middle key S1[129] ⊕ S′
1[129], and 4 inverse

AES rounds:

P̃x[130] E1 Ux E−1
1 P̃ ′

x[130]

S1[129] S′
1[129]

In addition, we can peel off the outer rounds since there is no whitening key
in E1.

5.2 Extracting the Key

We must now extract the key of a reduced cipher with 3 AES rounds, and 3
inverse AES rounds. First, we notice that the middle ShiftRow and MixCol-
umn operations can be removed, if we transform the middle key. In a basic
description, the operations in the middle are ShiftRow, MixColumn, AddKey, then
XORing the constant S1[129]⊕S′

1[129], AddKey, InverseMixColumn, and Inverse-
ShiftRow. Instead we move the (unknown) constant addition before ShiftRow,
using the linearity of ShiftRow and MixColumn, so that ShiftRow, MixColumn
and AddKey cancel out with AddKey, InverseMixColumn and InverseShiftRow. We
denote the addition of the modified constant as AddDeltaS, and its value as
δS = InverseShiftRow(InverseMixColumn(S1[129] ⊕ S′

1[129])). The middle rounds
are then reduced to byte-wise operations: AddRoundKey, SubByte, AddDeltaS,
InverseSubByte, AddRoundKey. This can be seen as a key-dependent Sbox layer.
These transformations are summarised on Fig.7.

AK
SB
SR
MC

AK
SB
SR
MC

AK
SB

ADS
ISB
AK

IMC
ISR
ISB
AK

IMC
ISR
ISB
AK

distinguisher

Fig. 7. Reduced cipher composed of 3 AES rounds, the addition of δS and 3 inverse
AES rounds. The distinguisher covers the middle part of this cipher.

The first step of our attack is to guess a diagonal of the first round key, which
allows to compute a column after the first round and before the last round. Next
we focus on the middle rounds. The middle rounds have only one MixColumn
operation, and one InverseMixColumn without byte shuffling in between. There-
fore it can be seen as four parallel 32-bit functions, acting on each diagonal
(similar to the Super-SBox technique [4]). Note that if the key guess is wrong,
the resulting function can not be decomposed into 4 parallel functions. For each
function, 1 input byte and 1 output byte are known. We describe below two
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different distinguishers for the middle rounds, that lead to key recovery attack
with similar complexities. The first one is based on a rare event that can easily
be detected, the second one relies on the detection of a statistical bias in the
generic case.

Collision-based Distinguisher. For our first distinguisher, we focus on the
constant δS . We only know that δS is non-zero on the full state. Considering that
it is distributed uniformly on non-zero constants, it cancels one of the diagonals3

with probability (296 − 1)/(2128 − 1) ≈ 2−32. Then, an average of 230 different
choices of AD are necessary to reach a value of δS that cancels on one of the
diagonals. Let us consider that it occurs on the first diagonal (w.l.o.g.), which
contains bytes 0, 7, 10, 13. Then, the value of these bytes collide before and after
the AddDeltaS operation. Then, the values of the first column of the block (bytes
0, 1, 2, 3) are not affected by the middle rounds. If we continue the decryption
process towards both ends of the modified version of the AES, the collision passes
through the InverseMixColumn operation. After undoing the ShiftRow, SubByte
and textsfAddKey operation, we notice that the values of bytes 0, 5, 10, 15 are
equal at the beginning and at the end of the middle part of the cipher.

For each choice of AD, we then generate 3 (plaintext-ciphertext) pairs (P̃x, P̃ ′
x)

for 3 values of x. Then, we proceed as follows.
In each of the 230 sets, we guess separately the 32 bits on each of the 4 anti-

diagonals4 of the first round key. This enables to compute one full column of the
state before and after the middle rounds, for each value of x. For each byte bi

in this column, we store a list Li of the key values such that the input byte and
the output byte of the middle rounds are equal for each x.

Then we consider the first diagonal before and after the middle rounds.
It contains bytes 0, 5, 10 and 15 of the block. Remember that the diagonals
contain the inputs and outputs of 4 independent functions Fi. From the 4 lists
of partial keys Lj , j = 0, 5, 10, 15, we can build all the keys such that the input
of Fi collides with the output for each value of x. Using the known plaintexts
and ciphertexts for the full cipher, we can try all these keys as candidates. Then,
we repeat the whole process with the other three diagonals.

We now explain why this attack works.

Filtering Keys. Following the analysis above, the right key can be decomposed
into 4 partial keys covering each diagonal of the block. If δS cancels on one
of the columns, then the partial values of the right key will appear on the four
corresponding lists Li, and the full key will be among the combination of elements
of the four lists. Therefore, the right key will be detected by our algorithm.

False Positives. For each wrong partial 32-bit key, it is stored in the correspond-
ing list Lj if the input and output of Fi collide on byte j, for each of the 3 values
of x. This occurs with probability 2−24, if we consider the input and output
3 defined as the images of columns by the ShiftRow operation.
4 defined as the pre-images of columns by the ShiftRow operation.
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byte computed for Fi as independent. Therefore, we have on average one false
positive of each of the 4 diagonals of the key. Considering that the number of
false positives are independent for each diagonal of the key, there are on average
(28)4 = 232 keys to try, for each of the 4 diagonals and each of the 230 sets
of values. The expected number of key candidates is marginally increased to
(28 + 1)4 ≈ 232 when the difference δS cancels on the diagonal, as each set of
partial keys at least contains the right key.
δS �= 0 on column i. As above, each wrong key guess is stored with probabil-
ity 2−24, which leads to (28)4 false positives on average, that are discarded by
exhaustive search.

Summary of the Attack. We focus on the key recovery attack on the mask-less
version of Marble. In the decryption-misuse setting, it requires the decryption of
6×230 ciphertexts composed of 130 blocks of plaintext and 1 block of associated
data, which correspond to 230 sets of 3 pairs. To build the lists of partial keys,
one has to perform 6 × 1/4 of an AES round for each partial key guess, leading
to a total of 3 × 231 AES rounds, for each set and each diagonal. The average
complexity of this step for the full attack is then 3 × 263 AES rounds. The most
time-consuming part of the attack is the exhaustive search among the remaining
candidates, which requires 264 AES encryptions on average (232 per column and
per set).

Linear Cryptanalysis. The method described in Sect. 5.1 leads to the knowl-
edge of plaintext-ciphertext pairs for a cipher that consists of 3 AES rounds, a
key addition and 3 inverse AES rounds. The adversary therefore targets a cipher
with a reduced number of rounds, in a known plaintext setting. Using linear
cryptanalysis therefore seems a natural idea. As shown above, one can guess 4
key bytes, which leads to the knowledge of 4 input and 4 output bytes of the
inner 4 rounds of this cipher.

In [9], Keliher and Sui demonstrate that the maximum expected linear prob-
ability over 2 AES rounds is about LP ≈ 1.638 × 2−28. In our case, we can
concatenate a linear trail with its inverse. When averaging over the possible
values of the key and of the intermediate difference δS , the maximum expected
probability for a 4-round characteristic would be about LP 2 ≈ 1.342 × 2−55.
This number also gives an estimation of the amount of data required for the
attack to work. Even by taking into account the possible bias due to the linear
hull effect, the complexity of the linear attack is expected to be far higher than
the one suggested by the experiments below.

A refinement of the linear attack consists in noticing that between the two
middle rounds, each byte of the block is affected only by a key byte and a byte
of δS , but not by other bytes of the block. Therefore, the two middle Sbox layers
could be expressed as one layer of 8-bit key-dependent Sboxes, leading to trails
with 6 active Sboxes instead of 10. Nevertheless, the best linear trail would
then depend on the unknown value of δS , which would make it hard to exploit.
Instead, we use the following statistical distinguisher.



Collision Attacks Against CAESAR Candidates 527

Statistical Distinguisher. Intuitively, if we have many partial input/output
pairs, we should detect some correlation between the inputs and output. Indeed,
when the key guess is wrong, the function composing the distinguisher behaves as
a 128-bit permutation instead of the parallel application of four 32-bit functions.
Hence, the input and output bytes are less correlated. We focus on a property
that does not require to know in advance which values are correlated, and works
for any function based on (four 32-bit) parallel permutations.

For each known plaintext/ciphertext, we partially encrypt/decrypt one round
on a specific diagonal and we denote one known input/output byte of the distin-
guisher by (α, β) respectively. It is possible to take into account the four known
input/output pairs, but the distinguisher presented below works with only one
position and is easier to explain. We use 216 counters cα,β to count how many
times each pair (α, β) occurs with D available data. If the key guess is correct,
there should be some correlation between α and β, which results in a higher
value for some counters (and lower values for the other counters). In order to
detect this effect, we compute the sample variance s2 of the 216 counters:

s2 = 2−16
∑

α,β

(cα,β − c)2, where c = 2−16
∑

α,β

cα,β .

We expect that s2 is higher when the key guess is correct, because of the corre-
lation between α and β. For a wrong key guess, the computation between α and
β can not be decomposed into 4 parallel functions, and this correlation should
vanish. The resulting attack is described by Algorithm 3.

Algorithm 3. Recover the key of a reduced AES (3 direct rounds and 3 inverse
rounds)
Input: Plaintext/ciphertext pairs (P, C)

for 0 ≤ K < 232 do � Partial key guess
Initialize cα,β = 0
for all (P, C) do

Compute α, β
cα,β ← cα,β + 1

end for
c ← 2−16∑

α,β cα,β

s2[K] ← 2−16∑
α,β(cα,β − c)2

end for
return arg maxK s2[K]

In order to analyze this algorithm, we model the counters using random
variables Cα,β , and the sample variance as S2 for a wrong key guess, and S2

∗
for the right key. Our goal is to show that when D is large enough, we have
Pr[S2 > S2

∗ ] negligible, i.e. the correct key is ranked first.
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Wrong key Guess. We know that starting from α, if we revert the initial round
with the wrong key, then compute three rounds forward with the correct keys,
add δS , compute three round backwards with the correct keys, and finally one
round forward with the wrong key, we reach a state with β. Therefore, α and β
are partial inputs/outputs of a 128-bit permutation.

If we model this function by a random 128-bit permutation, the number of
data matching a pair (α, β), in images and pre-images of this 128-bit function,
follows an hypergeometric distribution. Indeed, for each input which first byte
has value α, the output is drawn uniformly without replacement among all the
possible outputs of the function. The success is determined by whether the first
byte of the output equals β. The number of draws is 2120, and there are 2120

success cases among 2128 possible values.
(α, β) occurs with D data, knowing that the probability of success is p =

2120/2128 = 2−8. Let us call this variable Xα,β . Hence we have

E[Xα,β ] = (2120)2/2128 = 2112

Var[Xα,β ] = (2120)2/2128 × (1 − 2−8)2/(1 − 2−128) ≈ 2112 − 2105.

Next we study Yα,u the number of times each value α, u is reached with D
samples, for each possible value u of the remaining 15 bytes of the input of F .
The Yα,u follow a multinomial distribution, with:

E[Yα,u] = 2−128D,
Var[Yα,u] = 2−128(1 − 2−128)D,

Var[Yα,u, Yα′,u′ ] = −2−256D.

Let us denote by Sα,β the set of values u such that F (α, u) = (β, v) for some v.
It contains exactly Xα,β elements. The counters Cα,β can then be expressed as

Cα,β =
∑

u∈Sα,β

Yα,u.

The variables Yα,u all follow the same distribution. From the law of total
variance, we have:

Var[Cα,β ] = EXα,β

⎛
⎝Var

⎡
⎣ ∑

u∈Sα,β

Yα,u|Xα,β

⎤
⎦
⎞
⎠+VarXα,β

⎛
⎝E

⎡
⎣ ∑

u∈Sα,β

Yα,u|Xα,β

⎤
⎦
⎞
⎠

After expanding the sums and reordering the terms to make variances and
covariances of the Yα,u appear, we get:

Var[Cα,β ] = E
[
Xα,β Var[Yα,u] + (X2

α,β −Xα,β)Var[Yα,u, Yα,u′ ]
]
+Var

[
Xα,β E[Yα,u]

]

= E(Xα,β)Var(Yα,u) + E[X2
α,β −Xα,β ] Var(Yα,u, Yα,u′ ) + E[Yα,u]2 Var[Xα,β ]

= E(Xα,β)Var(Yα,u) +
(
Var[Xα,β ] + E[Xα,β ]

2 − E[Xα,β ]
)
Var(Yα,u, Yα,u′ )

+E[Yα,u]2 Var[Xα,β ]

We have numeric expressions for each term of this expression, therefore we
can compute the following approximation:
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Var[Cα,β ] ≈ 2−16D + 2−144D2.

Correct Key. Let us now assume that the key guess is correct, i.e. the pairs (α, β)
are valid partial input/output but of a 32-bit function this time. We can then re-
apply the above analysis by adjusting the parameters to fit the 32-bit function.
In this case, Xα,β denotes the number of partial values of the data matching
the pair (α, β) in the right column. In that case, we have an hypergeometric
distribution with 224 draws without replacement from a set of 232 values, among
which 224 define a success event.

Therefore, we have

E[Xα,β ] = (224)2/232 = 216

Var[Xα,β ] = (224)2/232 × (1 − 2−8)2/(1 − 2−32) ≈ 216 − 29.

Similarly, we can define variables Yα,u as the number of times a given input
of the 32-bit function F is reached among D samples, drawn uniformly. As in
the previous case, the Yα,u follow a multinomial distribution, with:

E[Yα,u] = 2−32D,
Var[Yα,u] = 2−32(1 − 2−32)D,

Var[Yα,u, Yα′,u′ ] = −2−64D.

The same formula can be used to compute the variance of the counters Cα,β .
We get approximately:

Var[Cα,β ] ≈ 2−16D + 2−48D2.

Distinguisher. We obtain an efficient distinguisher with D = 232: for a wrong
key guess, the variance of the counter is about 216, but it is about 217 for the
right key. In order to evaluate the probability that the correct key is ranked
first, we must evaluate how far the sample variance s2 is from the true variance
Var[Cα,β ].

For a wrong key guess, if we use a single counter and repeat the experiment
with 216 independent sets of D plaintexts, each counter Cα,β can be approx-
imated by a binomial distribution with parameters D and p = 2−16. If we
approximate them as a normal distribution with parameters μ = 2−16D and
σ =

√
2−16(1 − 216)D, we know that the distribution of the sample variance S2

for a wrong key guess follows a χ2 distribution [10, Proposition 2.11]:

S2 ∼ σ2

(n − 1)
χ2

n−1 ∼ 2−32Dχ2
216−1

In particular, we have Pr[S2 > 216 + 212] < 2−90, therefore we don’t expect
that the sample variance of a wrong key is above 216 + 212. In practice, we
use a single set of D plaintexts, and we evaluate the sample variance of the 216

counters; our experiments show that the distribution is close to a χ2 distribution
(the maximum value of s2 with 216 samples was 216 + 1420).
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For the right key, we don’t have an analytic expression of the distribution
of the sample variance, but we can perform experiments. Our experiments show
that with very high probability S2

∗ > 216 + 212, as seen in Fig. 8. Of our 216

experiments, the minimum value of s2∗ was 102795 ≈ 216 + 215. Using D = 232,
we have a large margin and we expect the attack to work with significantly less
data, but recovering L will be the bottleneck of the attack.

While this attack does not use any property of the parallel 32-bit function, we
expect that it can be improved in the specific case of AES rounds. In particular,
we notice a small peak around 3 × 216 in Fig. 8, which is due to zero bytes in δs,
and it should be possible to take advantage of this.

0 1 2 3 4 165 6 7 8 9 10 11 12 13 14 15
·214

0

S2
∗ : correct key

S2: wrong key

Fig. 8. Experimental results: distribution of the sample variance S2 and S2
∗ with D =

232 (216 experiments with random keys).

6 Conclusion

Our results show that collision attacks can have a strong impact on the security
of authenticated encryption schemes. It seems that extracting the whitening key
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using collisions is possible in many OCB-based designs, and this can sometimes
be extended into a full key-recovery attack.

On AEZ, we show how to recover the whitening key, and we point out that the
key derivation of AEZ v2 and v3 has the unfortunate property that the master
key can easily be recovered from the whitening key. This allows a complete break
after the birthday bound. Even with a limit on the amount of data processed
with a single key, this still gives an attack with a higher success probability than
generic attacks. While this does not violate the security proof of AEZ, we believe
it would be better to avoid this property.

Our results on Marble show that it does not provide the security features
claimed by the author, i.e. beyond birthday bound security and decryption-
misuse resistance. We note that Marble still offers a stronger security than many
CAESAR candidates and classical modes of operations when using nonces (or
unique AD). Once usage requirements are relaxed, our results also show that the
security of Marble is similar to the security of other misuse resistant CAESAR
candidates (e.g. APE-128, POET, AEZ, Minalpher) but it collapses badly after
the birthday bound under a decryption-misuse setting, even leading to a full key
recovery.

It seems that adding one extra operation on the state between the processing
of the associated data and of the message would avoid our attacks, but a thorough
analysis would be necessary to ensure that the resulting construction is secure.
As our attack heavily relies on the fact that S1 and S2 keep the same values
on two different plaintexts, one could xor a constant block (for example, 16
bytes encoding the byte positions in the block, (0, 1, . . . , 15)) on S1 and S2 after
processing the associated data.

In addition, our key-recovery attack of Marble suggests that 4 AES rounds in
the E functions are insufficient if the adversary can find a shortcut to target two
E functions instead of three. In particular, this suggest that a deeper investiga-
tion of the security of AEZ with a modified key schedule would be interesting.

Up to our knowledge, the statistical distinguisher presented to recover the
encryption key of a reduced-round AES, has never been used before. Although
it permits to attack few rounds, it seems that it is more efficient than a classical
linear attack. We believe that it is sufficient enough for this kind of distinguisher
to benefit from further research.
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Abstract. LowMC is a collection of block cipher families introduced at
Eurocrypt 2015 by Albrecht et al. Its design is optimized for instanti-
ations of multi-party computation, fully homomorphic encryption, and
zero-knowledge proofs. A unique feature of LowMC is that its internal
affine layers are chosen at random, and thus each block cipher family
contains a huge number of instances. The Eurocrypt paper proposed
two specific block cipher families of LowMC, having 80-bit and 128-bit
keys.

In this paper, we mount interpolation attacks (algebraic attacks intro-
duced by Jakobsen and Knudsen) on LowMC, and show that a practically
significant fraction of 2−38 of its 80-bit key instances could be broken 223

times faster than exhaustive search. Moreover, essentially all instances
that are claimed to provide 128-bit security could be broken about 1000
times faster. In order to obtain these results we optimize the interpo-
lation attack using several new techniques. In particular, we present an
algorithm that combines two main variants of the interpolation attack,
and results in an attack which is more efficient than each one.

Keywords: Block cipher · LowMC · High-order differential
cryptanalysis · Interpolation attack

1 Introduction

LowMC is a collection of block cipher families designed by Albrecht et al. and
presented at Eurocrypt 2015. The cipher is specifically optimized for practical
instantiations of multi-party computation, fully homomorphic encryption, and
zero-knowledge proofs. In such applications, non-linear operations result in a
heavy computational penalty compared to linear ones. The designers of LowMC
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took an extreme approach, combining very dense affine layers with simple non-
linear layers that have algebraic degree of 2.

Perhaps the most distinctive feature of LowMC is that its affine layers are
chosen at random, and thus each block cipher family contains a huge number
of instances. As this may enable a malicious party to instantiate LowMC with
a hidden backdoor, its designers propose to use the Grain stream cipher [3] as
a source of pseudo-random bits in order to restrict the freedom available in the
LowMC instantiation. The designers also mention that it is possible to use any
sufficiently random source to generate the affine layers, and this source does not
necessarily need to be cryptographically secure.

The Eurocrypt paper proposed two specific block cipher families of LowMC,
having 80-bit and 128-bit keys. The internal number of rounds in each family
was set in order to guarantee a security level that corresponds to its key size.
For this purpose, the resistance of LowMC was evaluated against a variety of
well-known cryptanalytic attacks. One of the main considerations in setting the
internal number of rounds was to provide resistance against algebraic attacks
(such as high-order differential cryptanalysis [7]). Indeed, LowMC is potentially
susceptible to algebraic attacks due to the low algebraic degree of its internal
round, but the designers argue that LowMC has sufficiently many rounds to
resist such attacks.

In this paper, we evaluate the resistance of LowMC against algebraic attacks
and refute the designers’ claims regarding its security level. Our results are given
in Table 1, and show that a fraction of 2−38 of the LowMC 80-bit key instances
could be broken in about 257 time, using 239 chosen plaintexts. The probability
of 2−38 is practically significant, namely, a malicious party can easily find weak
instances of LowMC by running its source of pseudo-random bits with sufficiently
many seeds, and checking whether the resultant instance is weak (which can be
done efficiently using basic linear algebra).

For LowMC with 128-bit keys, we describe an attack that breaks a fraction
of 2−122 of its instances in time 286 using 270 chosen plaintexts. We note that
this specific attack does not violate the formal security claims of the LowMC
designers, as they do not consider attacks that apply to less than 2−100 of the
instances as valid. Nevertheless, the designers of LowMC allow to instantiate it
using a pseudo-random source that is not cryptographically secure. Our result
shows that this is risky, as using an over-simplified source for pseudo-randomness
may give a malicious party additional control over the LowMC instantiation, and
allow finding weak instances much faster than exhaustively searching for them
in 2122 time.

Finally, we describe an attack that can break essentially all LowMC instances
with 128-bit keys. Although the attack is significantly slower than the weak-
instance attack, it is still about 1000 times faster than exhaustive search, and
uses 273 chosen plaintexts.

All of our results were obtained using the interpolation attack, which is an
algebraic attack introduced by Jakobsen and Knudsen in 1997 [4]. In an inter-
polation attack, the attacker considers some intermediate encryption value b as
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Table 1. Attacks on LowMC

Instance
Family

Number of
Rounds

Section Rounds
Attacked

Fraction of
Instances

Data† Time†† Memory†††

LowMC-80 11 6.1 9 1 235 238 235

6.2 10 1 239 257 239

6.3 all (11) 2−38 239 257 239

LowMC-128 12 7.1 11 1 270 286 270

7.1 all (12) 2−122 270 286 270

7.2 all (12) 1 273 2118 280

† Given in chosen plaintexts.
†† Given in LowMC encryptions.
††† Given in 256-bit words.

a polynomial in the ciphertext bits. The aim of the attacker is to interpolate the
algebraic normal form (ANF) of b by recovering its unknown coefficients, and
this typically allows to recover the secret key using ad-hoc techniques.

In order to recover the unknown coefficients, the attacker allocates a variable
for each one of them. Assuming that b has a low-degree representation in terms of
the plaintext bits, the attacker collects linear equations on the variables, typically
by using high-order differentials in a chosen plaintext attack. After obtaining
sufficiently many equations, the unknown variables are recovered by solving the
resultant linear equation system. The efficiency of the attack depends on the
algebraic degree of b in terms of the plaintext, but also on the number of allocated
variables which is determined by the number of unknown coefficients in the ANF
representation of b in terms of the ciphertext.

Although our results were obtained using the well-known interpolation
attack, its straightforward application does not seem to threaten the security
of LowMC. Therefore, we had to develop new techniques such as using carefully
chosen plaintext structures which allow to efficiently derive the linear system of
equations. However, our main new contribution is described next by considering
two variants of the interpolation attack.

In the original variant of the interpolation attack over GF (2) (which we refer
to as variant 1), the attacker views the ANF of some intermediate encryption bit
b as an initially unknown polynomial FK(C) in the ciphertext bits C = c1, . . . , cn,
where K = x1, . . . , xκ is the unknown (fixed) secret key. In a dual approach to the
interpolation attack, which we refer to as variant 2 (used, for example, in [8]), the
attacker interpolates the full polynomial F (K,C) by considering each monomial
in the key bits x1, . . . , xκ with a non-zero coefficient as a separate (linearized)
variable. For example, consider the polynomial

F (c1, c2, x1, x2, x3) = c1c2x1 + c1c2x2 + c1x1 + c1x2 + c2x1 + x1x2 + x3 + 1.

We can write

F(x1,x2,x3)(c1, c2) = α1c1c2 + α2c1 + α3c2 + α4,
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and thus in the first variant we have 4 variables: α1, α2, α3, α4. In this variant,
the actual representation of the variables in terms of the key is not considered.
In the dual variant, we write

F (c1, c2, x1, x2, x3) = x1x2(1) + x1(c1c2 + c1 + c2) + x2(c1c2 + c1) + x3(1) + 1,

and we have 4 variables: x1x2, x1, x2, x3.
The advantage of variant 2 over the first variant is that it directly recovers the

secret key, and furthermore, in some cases it may result in a smaller number of
variables in the equation system. At the same time, in order to derive the actual
equation system the attacker has to evaluate the polynomial F for each cipher-
text. This process is less efficient in variant 2, since each evaluation of F (K,C) is
expensive (it requires evaluating all the complex ciphertext expressions that are
multiplied with the variables), whereas in variant 1 each evaluation of FK(C)
is relatively simple (it requires evaluating simple monomials in the ciphertext).
Therefore, the choice of which variant to use in order to optimize the attack
depends on the underlying cryptosystem.

Our main idea is to combine the two dual variants of interpolations attacks:
we first derive the equation system efficiently using the original variant of [4].
Then, we transform a carefully chosen variable subset to variables which are
linearized monomials in the key bits, as in variant 2. This results in a mixed
variable set that is smaller than the variable sets of each variant. Consequently,
we obtain an attack which is more efficient than each one of the two variants.

In our example above, we can express α1 = x1 + x2, α2 = x1 + x2 and
α3 = x1, resulting in only 3 variables: x1, x2, α4. Obviously, our toy example
merely demonstrates the idea at a very high level, and the actual choice of
which variables to transform as well as the analysis of the resultant algorithm
are more involved.

The paper is organized as follows. In Sect. 2 we give some preliminaries, while
in Sect. 3 we give a brief description of LowMC. Our basic attack on 9-round
LowMC with an 80-bit key is described in Sect. 4, while our generic framework
for optimized interpolation attacks is described in Sect. 5. In Sects. 6 and 7 we
apply our optimized attack to LowMC with 80 and 128-bit keys, respectively.
Finally, we conclude the paper in Sect. 8.

2 Preliminaries

In this section, we describe preliminaries that are used in the rest of the paper.

2.1 Boolean Algebra

For a finite set S, denote by |S| its size. Given a vector u = (u1, . . . , un) ∈
GF (2n), let wt(u) denote its Hamming weight.

Any function F from GF (2n) to GF (2) can be described as a multivari-
ate polynomial, whose algebraic normal form (ANF) is unique and given as
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F (x1, . . . , xn) =
∑

u=(u1,...,un)∈GF (2n)

αuMu, where αu ∈ {0, 1} is the coefficient of

the monomial Mu =
n∏

i=1

xui
i , and the sum is over GF (2). The algebraic degree of

the function F is defined as deg(F ) � max{wt(u)|αu �= 0}. Therefore, a function

F with a degree bounded by d ≤ n can be described using
d∑

i=0

(
n
i

)
coefficients.

To simplify our notations, we define
(

n
≤d

)
�

d∑

i=0

(
n
i

)
.

The ANF coefficient αu of F can be interpolated by summing (over GF (2))
over 2wt(u) evaluations of F : define the set of inputs S to contain all the 2wt(u)

n-bit vectors whose bits set to 1 is a subset of the bits set to 1 in u1, . . . , un.
More formally, let S = {x = (x1, . . . , xn)|ū ∧ x = 0} (where ū is bitwise NOT
applied to u, and ∧ is bitwise AND), then αu =

∑

(x1,...,xn)∈S

F (x1, . . . , xn). Note

that this implies that a function F with a degree bounded by d ≤ n can be fully
interpolated given its evaluations on the set of

(
n

≤d

)
inputs whose Hamming

weight is at most d, namely {x = (x1, . . . , xn)|wt(x) ≤ d}.
Given the truth table of an arbitrary function F (as a bit vector of 2n entries),

the ANF of F can be represented as a bit vector of 2n entries, corresponding
to its 2n coefficients αu. This ANF representation can be efficiently computed
using the Moebius transform, which is an FFT-like algorithm. The Moebius
transform performs n iterations on its input vector (the truth table of F ), where
in each iteration, half of the array entries are XORed into the other half. In total,
its complexity is about n · 2n bit operations. For more details on the Moebius
transform, refer to [5].

2.2 High-Order Differential Cryptanalysis and Interpolation
Attacks

In this section, we give a brief summary of high-order differential cryptanalysis
and interpolation attacks.

High-Order Differential Cryptanalysis. High-order differential cryptanaly-
sis was introduced in [7] as an algebraic attack that is particularly efficient
against ciphers of low algebraic degree. The basic variant of high-order differen-
tial cryptanalysis over GF (2) considers some target bit b (which can be either a
ciphertext or an intermediate encryption value) and analyzes its ANF represen-
tation in terms of the plaintext P , denoted by FK(P ) (where K is the unknown
secret key). Given that deg(FK(P )) ≤ dg independently of K for dg (relatively)
small, then the attacker chooses an arbitrary linear subspace S of dimension
dg + 1, and evaluates the cipher (in a chosen plaintext attack) over its 2dg+1

inputs. Since every differentiation reduces the algebraic degree of the target bit
by 1 and deg(FK(P )) ≤ dg, the value of the high-order differential over S for
the target bit b (namely, the sum of evaluations of b over GF (2)) is equal to
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zero (refer to [7] for details). High-order differential properties may be used in
key recovery attacks, depending on the specification of the cipher (refer to [6]).
However, such key recovery methods are not part of the framework described in
this section.

Interpolation Attacks. The interpolation attack was introduced in 1997 by
Jakobsen and Knudsen as an algebraic attack on block ciphers [4]. The attack
is closely related to high-order differential cryptanalysis1 and (similarly to high-
order differential cryptanalysis) is particularly efficient against block ciphers
whose round function is of low algebraic degree. The interpolation attack has
several variants, and can be applied over a general finite field, exploiting known
or chosen plaintexts. Here, we give a high-level description of the chosen plaintext
interpolation attack over GF (2), as this is the variant we apply to LowMC.

The attack considers some intermediate encryption target bit b of the block
cipher, whose ANF representation can be expressed from the decryption side
in terms of the ciphertext and key as F (C,K). The key K is viewed as
an unknown constant, and thus we can write FK(C) = FK(c1, . . . , cn) =∑

u=(u1,...,un)∈GF (2n)

αuMu, where αu ∈ {0, 1} is the coefficient of the monomial

Mu =
n∏

i=1

cui
i . Therefore, the coefficients αu of FK(C) generally depend on the

secret key and are unknown in advance. The goal of the interpolation attack is
to recover (interpolate) the unknown coefficients of FK(C), and then use var-
ious ad-hoc techniques (which are not part of the framework described in this
section) in order to recover the actual secret key.

In order to deduce the unknown coefficients of FK(C), they are considered
as variables (i.e., linearized), and recovered by solving a linear equation system.
For the purpose of constructing the equation system, the attacker assumes that
the algebraic degree dg of the bit b in terms of the bits of the plaintext is
relatively small, which allows to use high-order differential cryptanalysis (as
described above). More specifically, a high-order differential property is devised
by encrypting a subspace S of plaintexts of dimension dg + 1, and performing
high-order differentiation with respect to this subspace, whose outcome is zero
on the bit b.

When expressed in terms of the ciphertexts C1, . . . , C2dg+1 (obtained by

encrypting the plaintexts of S), this gives the equation
2d+1
∑

t=1
FK(Ct) = 0. For

each ciphertext Ct, FK(Ct) is merely a linear expression in the variables αu (the
coefficient of αu in this expression is easily deduced by evaluating Mu on Ct),
and thus the subspace S gives rise to one linear equation in the variables αu.
In order to solve for the unknown variables αu, the attacker considers several
such subspaces, each giving one equation. In total, the number of equations (and

1 In fact, some of its variants directly exploit high-order differential properties, as we
describe next.
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subspaces considered) needs to be roughly equal to the number of the unknown
αu variables, assuming the equations are sufficiently “random”.

From the high-level description above, it is easy to conclude that the data
and time complexities of the attack depend on the value of the degree dg and
the number of unknown variables αu. Therefore, in order to mount efficient
interpolation attacks, the attacker tries to minimize these parameters, as we
demonstrate in our attacks on LowMC.

2.3 Model of Computation

Since an exhaustive key search attack (which evaluates the LowMC encryp-
tion function) and our attacks use different bitwise operations, comparing these
attacks cannot be done simply by counting the number of encryption function
evaluations. Instead, we compare the complexity of straight-line implementa-
tions of the algorithms, counting the number of bit operations (such as XOR,
AND, OR) on pairs of bits. This computation model ignores operations such
as moving a bit from one position to another (which only requires renaming
variables in straight-line programs). As calculated in Sect. 3, the straight-line
implementation of one encryption function evaluation of LowMC requires about
219 bit operations. Consequently, a straight-line implementation of exhaustive
search for 80-bit and 128-bit keys requires about 299 and 2147 bit operations,
respectively, and these are quantities of reference for our attacks.

3 Description of LowMC

LowMC is a collection of SP-network instances, proposed at Eurocrypt 2015 [1]
by Albrecht et al. The specification defined two specific instance families which
are analyzed in this paper, both having a block size of n = 256 bits, and are
characterized by their key size κ, which is either 80 or 128 bits. In this paper, we
refer to these instance families as LowMC-80 and LowMC-128. The encryption
function of LowMC applies a sequence of rounds to the plaintext, where each
round contains a (bitwise) round-key addition layer, an Sbox layer, and an affine
layer (over GF (2)). LowMC was designed with distinct features (as detailed
in the pseudocode below): it has a linear key schedule and its affine layers are
selected at random, where each selection defines a separate instance of the family.
The Sbox layer of LowMC is composed of 3-bit Sboxes with degree 2 over GF (2)
(the actual specification of the Sboxes is irrelevant for our analysis and is omitted
from this paper). Furthermore, the Sbox layers are only partial, namely, in each
Sbox layer, only 3m < n bits go through an Sbox (where m is a parameter),
while the rest of the n − 3m bits remain unchanged.

Each family instance of LowMC is also defined with a data limit lim, which
determines the maximal (recommended) data complexity before changing the
key. In other words, the cipher is guaranteed to offer security according to its key
size as long as the adversary cannot obtain more than 2lim plaintext-ciphertext
pairs. The parameters of the two instance families are given in Table 2.



542 I. Dinur et al.

Table 2. LowMC instance families

Instance Family key size κ Block Size n Sboxes m Data lim Rounds r

LowMC-80 80 256 49 64 11

LowMC-128 128 256 63 128 12

The pseudocode of the encryption function (taken from [1]) is given below.

ciphertext = encrypt (plaintext,key)
//initial whitening
state = plaintext + MultiplyWithGF2Matrix(KMatrix(0),key)
for (i = 1 to r)

//m computations of 3-bit Sbox, n-3m bits remain the same
state = Sboxlayer (state)
//affine layer
state = MultiplyWithGF2Matrix(LMatrix(i),state)
state = state + Constants(i)
//generate round key and add to the state
state = state + MultiplyWithGF2Matrix(KMatrix(i),state)

end
ciphertext = state

The matrices LMatrix(i) are chosen at random from all invertible binary
n × n matrices, while the matrices KMatrix(i) are chosen independently and
uniformly at random from all binary n × κ matrices of rank min(n, κ). The
constants Constants(i) are chosen independently and uniformly at random from
all binary vectors of length n.

In this paper, we denote the 256-bit state at the input to the i’th key addition
layer by Xi−1 (e.g., the plaintext is denoted X0), the input to the i’th Sbox layer
by Yi−1 and the input to the i’th affine layer by Zi−1. We refer to the 3m bits
of the state that go through Sboxes in the Sbox layer as the S-part, while the
remaining n − 3m bits are referred to as the I-part. Given a state W , denote by
W |SP and W |IP the S-part and I-parts of the state, respectively (e.g., Y5|IP
is the I-part of the input state to the 6’th Sbox layer).

It is common practice in cryptanalysis of block ciphers to exchange the order
of the final two affine operations over GF (2) (namely, the keyless affine transfor-
mation and key addition). This allows the attacker to “peel off” the last affine
transformation at a negligible cost by working with an equivalent last-round key
(obtained by an affine transformation on the original last-round key). For the
sake of simplicity, we assume in the following that we have already “peeled off”
the last affine transformation of the cipher. Therefore, the final states of the last
round r are denoted by Xr−1, Yr−1, Zr−1 and Yr, which denotes the ciphertext
(after “peeling off” the final affine transformation).

Each affine layer of LowMC involves multiplication of the 256 state with a
256 × 256 matrix. This multiplication requires roughly 216 bit operations, and
therefore a single encryption of LowMC (that contains more than 8 rounds)
requires more than 216 · 8 = 219 bit operations (as already noted in Sect. 2.3).
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4 A Basic 9-Round Attack on LowMC-80

In this section we describe our basic interpolation attack on 9-round LowMC,
which is given first without optimizations for the sake of clarity. We begin by
considering the elements that are required for the attack.

4.1 The High-Order Differential Property

We construct the high-order differential property used in the interpolation
attack. A similar property was described by the LowMC designers [1], but we
reiterate it here for the sake of completeness.

The algebraic degree of a single round of LowMC-80 over GF (2) is 2, and
therefore the algebraic degree of any bit at the input to the 6’th Sbox layer of
LowMC-80, Y5, in the input bits, X0, is at most 32. Moreover, as the bits of the
I-part of LowMC do not go through Sboxes in the first round, then the degree at
the input to the 7’th Sbox layer, Y6, in the bits of the I-part, X0|IP , (given that
the input bits of the S-part, X0|SP , are constant) is at most 32. Furthermore,
since the bits of the I-part of the 7’th Sbox layer do not go through an Sbox,
the degree of any bit of Z6|IP in the input bits of the I-part, X0|IP , is at most
32 (given that X0|SP is constant).

The last property implies that the value of a 33-order differential over any
33-dimensional subspace selected from X0|IP , (keeping X0|SP constant) is zero
for any bit of Z6|IP . Moreover, as we selected a subspace whose bits do not
go through an Sbox in the first round, the value of a 32-order differential for
any bit of Z6|IP over any 32-dimensional subspace from X0|IP , is a constant
(independent of the key). This observation implies that we can select several
32-dimensional subspaces, and compute in a preprocessing phase the constants
obtained by summing (over GF (2)) over a target bit of Z6|IP (for an arbitrary
fixed value of the key). Each such constant (derived from a 32-dimensional sub-
space) gives one bit of information that we will exploit as the constant value of
an equation in the interpolation attack.

4.2 Bounding the Number of Variables

In the interpolation attack on 9-round LowMC-80, we select a target bit from
Z6|IP and denote its ANF representation in the 256-bit ciphertext (obtained
after inverting the final affine transformation) and 80-bit key by F (C,K). We
consider K as an unknown constant, and write FK(C) = FK(c1, . . . , c256) =∑

u=(u1,...,u256)∈GF (2256)

αuMu, where αu ∈ {0, 1} is the coefficient of the monomial

Mu =
256∏

i=1

cui
i . As the complexity of the attack depends on the number of variables

αu, it is important to estimate their number with good accuracy. An initial
estimation can be made by observing that the algebraic degree of the (inverse)
round of LowMC-80 is 2,2 and thus deg(FK(C)) ≤ 4. This implies that αu = 0
2 The algebraic degree of any invertible 3-bit Sbox is (at most) 2.
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in case wt(u) > 4, and therefore the number of unknown variables is upper
bounded by

(
256
≤4

) ≈ 227.
The initial upper bound on the number of variables can be significantly

improved by considering the specific round function of LowMC-80. For this pur-
pose, it will be convenient to use additional notation to describe the variables αu

according to the degree of Mu, by defining the set of variables Ui for a positive
integer i as Ui = {αu that is not identically zero as a function of the key|wt(u) =
i
∧

u ∈ GF (2256)}. We have already seen that Ui is empty for i > 4 (as these
variables are identically zero independently of the key), and we now derive tighter
bounds on |Ui| for i ≤ 4. Thus, we analyze the symbolic representation of the state
variables in the decryption direction, starting from the ciphertext Y9, up to Z6, as
polynomials in the ciphertext bits c1, . . . , c256.

The ciphertext Y9 contains 256 bits of c1, . . . , c256, while in order to compute
Z8 we merely add (unknown) constants to these bits (recall that we “peeled off”
the last affine layer). Then, the inverse Sbox layer is applied to Z8 to obtain
the state Y8. Each 3-bit Sbox may contribute (up to) 3 quadratic monomials
to Y8, and 6 monomials in total, e.g., an Sbox corresponding to ciphertext bits
c1, c2, c3 may contribute the monomials c1, c2, c3, c1c2, c1c3, c2c3. Note that these
monomials may appear in the ANF of different bits of Y8 with different unknown
coefficients (e.g., c1x1 and c1x2 may appear in the ANF of two different bits of
Y8). However, in interpolation attacks, we consider the ANF of the target bit, in
which the coefficient αu of every monomial Mu in the ciphertext is linearized and
considered as a single variable. Therefore, the important quantity is the number
of possibilities to create the monomials Mu (for this reason, the monomial c1
is counted only once even if it appears in the ANF of different bits of Y8 with
different unknown coefficients).

Since there are 49 Sboxes, the total number of monomials Mu in the ANF of
the state bits of Y8 is bounded by |U2| ≤ 3 · 49 = 147, |U1| ≤ 256 (which is the
trivial bound) and |Ui| = 0 for i ≥ 3. As the affine and key addition mappings
do not influence the number of monomials Mu, this bound applies also to X8

and Z7.
Next, the inverse Sbox layer is applied to Z7 to obtain the state Y7, for which

we already know that |Ui| = 0 for i > 4. Since the Sbox layer is of degree
2, a trivial upper bound on the number of variables αu in Y7 is obtained by

multiplying the 147+256 = 403 monomials in unordered pairs, giving |
4⋃

i=1

Ui| ≤
(
403
2

)
+ 403 < 216.5. Since the key addition and affine layers do not influence the

number of monomials, the upper bound of 216.5 also applies to X7 and Z6, and
it is much smaller than our initial bound of about 227.

We denote the set of variables
4⋃

i=1

Ui by U , and note that the explicit set

{u|αu ∈ U} (which gives the relevant monomials Mu) can be easily derived dur-
ing preprocessing (which involves a more explicit computation of the monomial
set {Mu|αu ∈ U}, whose size is bounded above).
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4.3 Obtaining the Data

After deducing that the number of variables in the system of equations is |U | ≈
216.5, we conclude that we need to differentiate over about 216.5 32-dimensional
subspaces in order to obtain sufficiently many equations to solve the system.
A trivial way to do this is to select about 216.5 arbitrary linearly independent
32-dimensional subspaces from the 256− 3 · 49 = 109 bits of X0|IP . This results
in an attack with data complexity of 232+16.5 = 248.5, and is rather wasteful.
A more efficient approach (which was previously used in various papers such
as [2]), is to select a large 37-dimensional subspace S from X0|IP , containing(
37
32

)
> 218 linearly independent 32-dimensional subspaces, which should suffice

for the attack (assuming that the constructed system of equations is sufficiently
random). The subspaces are indexed according to 37 − 32 = 5 constant indexes
that are set to zero in S.

4.4 The Basic Interpolation Attack

We now describe a basic interpolation attack on 9-round LowMC-80. We note
that this attack is incomplete, as it only computes the |U | variables αu using
e ≈ |U | equations, without recovering the actual secret key. The details of this
final step will be given in the optimized attack in Sect. 5.2. For the sake of con-
venience, we describe the attack in two phases: the preprocessing phase (which
is independent of the data and secret key) and online phase. However, we take
into account both phases in the total complexity evaluation.

Assume we selected a target bit b from Z6|IP , a subspace S of dimension 37
from X0|IP , and e ≈ |U | 32-dimensional subspaces S1, . . . , Se in S. The detailed
attack is described below.

Preprocessing:

1. Compute an e-bit array of free coefficients for e ≈ |U | equations, denoted
by a0: evaluate b on the subset of inputs of S (with the key set to zero),
and obtain a bit array of size 237. Finally, calculate the free coefficients
by summing on b for the e 32-dimensional subspaces S1, . . . , Se in S,
and store the result in a0.

2. Calculate the |U | vectors {u|αu ∈ U}: This can be done by first calcu-
lating the 403 monomials Mu past the first Sbox layer, and multiplying
them in pairs (as described in Sect. 4.2).

Online:

1. Ask for the encryptions of the 237 plaintexts in S and store the cipher-
texts in a table.
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2. Allocate a 237×|U | matrix A, where row A[t] is a bit array that represents
the evaluation FK(Ct) (namely,

∑

{u|αu∈U}
αuMu(Ct)).

3. For each ciphertext Ct, calculate A[t] by evaluating FK(Ct):
(a) For each {u|αu ∈ U}, evaluate the monomial Mu(Ct) (the coefficient

of αu) and set the corresponding bit entry in A[t] according to the
result.

4. Allocate an e × |U | matrix E over GF (2), representing the equation
system on U .

5. For each 32-dimensional subspace Sj in S, namely S1, . . . , Se (that
match the subspaces considered in preprocessing Step 1):
(a) Populate the row (equation) E[j] by summing over the 232 rows of

A corresponding to Sj .
6. Solve the equation system Ex = a0, where x represents the vector

of variables of U and a0 is the vector of free coefficients calculated in
preprocessing Step 1.

The data complexity of the attack is 237 chosen plaintexts. The total time
complexity of the attack is about 265 bit operations, dominated by online Step
5 (for each of the e subspaces, we sum over 232 bit vectors of size |U |, requiring
about e · 232 · |U | ≈ 265 bit operations). The memory complexity of the attack is
about 237 · |U | ≈ 253.5 bits, dominated by the storage of the matrix A in online
Step 2.

We note that in the complexity evaluation of the attack we ignore indexing
issues that arise (for example) in Step 3.a (that maps between a variable αu ∈ U
and its corresponding column index in A[t]), and in Step 5 (that maps between
a subspace Sj in S and the corresponding 5 constant indexes of S). The reason
that we can ignore these mappings in the complexity evaluation is that they are
independent of the secret key and data, and therefore, they can be precomputed
and integrated into the straight-line implementation of the program.

5 The Optimized Interpolation Attack

In this section, we introduce three optimizations of the basic 9-round attack
above. The first optimization reorders the steps of the algorithm in order to
reduce the memory complexity, while the second optimization further exploits
the structure of chosen plaintexts to reduce the time complexity of the attack.
Finally the third optimization is based on a novel technique in interpolation
attacks, and allows to (further) reduce the data and time complexities. We first
describe informally how to apply the optimizations to the basic 9-round attack
on LowMC-80 above, and then devise a more formal and generic framework that
can be applied to other LowMC variants.
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The first two optimizations focus on online steps 2–5, which compute the
equation system E from the 237 ciphertexts. First, we reduce the memory com-
plexity by noticing that we do not need to allocate the matrix A. Instead, we
work column-wise and focus on a single column A[∗][�] at a time, corresponding
to some {u|αu ∈ U}. We evaluate Mu(Ct) for all ciphertexts (which gives an
array of 237 bits, a�) and then populate the corresponding column E[∗][�] by
summing over the 32-dimensional subspaces S1, . . . , Se on a�.

Next, we reduce the time complexity by optimizing the summation process:
given a bit array a� of 237 entries, the goal is to sum over many 32-dimensional
subspaces (indexed according to 5 bits which are set to zero). This can be done
efficiently using the Moebius transform (refer to Sect. 2.1). For this purpose,
we can view a� as evaluating a 37-variable polynomial over GF (2), and the
summation over a 32-dimensional subspace of a� is equal to the coefficient of its
corresponding 32-degree monomial. All these coefficients are computed by the
Moebius transform in about 37 · 237 bit operations. We stress that the reason
that we can use the Moebius transform in this case is purely combinatorial and is
due to the way that we selected the structure of subspaces for the interpolation
attack. Indeed, there does not seem to be any obvious algebraic interpretation
to a� when viewed as a polynomial.

Finally, we optimize the data complexity (and further reduce the time com-
plexity): In order to achieve this, examine the polynomial F (K,C) (as a function
of both the key and ciphertext) for the target bit b selected in Z6|IP . Due to the
linear key schedule of LowMC, this polynomial is of degree 4, similarly to FK(C)
(in which the key is treated as a constant). We consider a variable αu ∈ U and
analyze its ANF in terms of the 80 key bit variables. Since αu is multiplied with
Mu in F (K,C), then deg(αu) + deg(Mu) ≤ 4, implying that if deg(Mu) ≥ 2,
then deg(αu) ≤ 2. This simple observation is borrowed from cube attacks [2]
and can be used to significantly reduce the number of variables U , as described
next.

Consider all the variables in U2

⋃
U3

⋃
U4, and recall that their number was

upper-bounded in Sect. 4.2 by roughly 216.5. However, since all of these variables
are polynomials of degree (at most) 2 in the 80 key bits, they reside in a linear
subspace of monomials of dimension

(
80
2

)
+ 80 = 3240. This implies that we can

significantly reduce the total number of variables from ≈ 216.5 to 3240 + 256 =
3496 < 212 (including the 256 variables of U1) by considering linear relations
between the variables U2

⋃
U3

⋃
U4. An immediate consequence of the reduction

of variables is that we need less equations to solve the equation system, and
therefore, we require less subspaces (or data) to obtain these equations. More
specifically, a subspace of dimension 35 contains

(
35
32

)
= 6545 > 212 subspaces of

dimension 32, which should suffice for the attack.
Assuming that we interpolate the variables of U2

⋃
U3

⋃
U4 in terms of the

key and recover their values, then the key itself should be very easy to deduce,
as the variables of U3 are merely key bits.

We note that while the idea above exploits the linear key schedule of LowMC,
the technique is general and can be applied to block ciphers with arbitrary key
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schedules. In this case, it would consider each round key as independent. This
increases the number of variables in the (linearized) key, but not necessarily by a
significant factor. For example, if LowMC-80 had a non-linear key schedule, the
optimization above would interpolate U2

⋃
U3

⋃
U4 in terms of

(
80
2

)
+80 = 3240

monomials in the key of round 9, and only 80 additional linear monomials and
3 · 49 = 294 quadratic monomials in the key of round 8 that are created by
the inverse Sbox layer of round 8 (we can assume that the key of round 8 is
added right after the 8’th Sbox layer, as the key addition and affine layer are
interchangeable).

5.1 Transformation of Variables

In this section, we begin to describe our generic framework for interpolation
attacks on LowMC by formalizing the last optimization described above.

Given an instance of LowMC with a 256-bit block, a key size of κ, and m
Sboxes per layer, we assume that we want to interpolate a target bit b through
the final r1 rounds of the cipher. We first describe in a more generic way how
to calculate the initial set of variables U , and bound its size. As in the 9-round
attack, the number of monomials in the 256 ciphertext bits at Yr−1 (after invert-
ing the final Sbox layer) is bounded by 256+3m. The target bit b is a polynomial
of degree 2r1−1 in the state Yr−1, and thus it contains at most

(
256+3m
≤2r1−1

)
mono-

mials. Therefore, the set of monomials with (apriori) unknown coefficients can
be computed by multiplying the 256 + 3m monomials in unordered tuples (with
no repetition) of size up to 2r1−1. Thus,

|U | ≤
(

256 + 3m

≤ 2r1−1

)

,

and this set can be computed with |U | multiplications of tuples. Note again that
this bound is generally better than the trivial bound of |U | ≤ (

256
≤2r1

)
, which is

obtained due to the fact that b is a polynomial of degree 2r1 in the 256 ciphertext
bits.

We consider the target bit b as a polynomial in both the ciphertext and the
key, namely, F (K,C) = F (x1, . . . , xκ, c1, . . . , c256) =

∑

u=(u1,...,un)∈GF (2n)

αuMu,

where Mu =
n∏

i=1

cui
i and αu(x1, . . . , xκ) is a polynomial from GF (2κ) to GF (2).

We partition the variables of |U | into subsets according to the degree of their
monomials in the ciphertext, which is bounded by deg(FK(C)) = 2r1 . Denote

d = 2r1 and write U =
d⋃

i=1

Ui, where Ui = {αu ∈ U |deg(Mu) = i}. Due to

the linear key schedule of LowMC, we have deg(F (K,C)) = deg(FK(C)) = d,
and therefore deg(αu) + deg(Mu) ≤ d. This allows us to transform the variable
set U into a smaller variable set, considering internal linear relations due to the
fact that deg(αu) ≤ d − deg(Mu). We stress again that the variable transforma-
tion technique can be applied to block ciphers with arbitrary key schedules by
considering each round key as independent.
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We choose an integral splitting index 1 ≤ sp ≤ d+1 , and write U = U ′ ⋃ U ′′,

where U ′ =
sp−1⋃

i=1

Ui and U ′′ =
d⋃

i=sp

Ui. The observation above implies that

the algebraic degree of the variables in U ′′ (in terms of the key) is bounded
by d − sp, namely, deg(αu) ≤ d − sp, for each αu ∈ U ′′. Therefore, we
can interpolate each variable of U ′′ in terms of the key, and express it as
αu =

∑

{v=(v1,...,vκ)|wt(v)≤d−sp}
βuMv, where βv ∈ {0, 1} is the coefficient of the

monomial Mv =
κ∏

i=1

xvi
i . Note that the coefficients βv are independent of the key

and can be computed during preprocessing. This interpolation transforms the
set of variables U ′′ into the set of variables V , which are low degree monomials

in the key bits V = {Mv =
κ∏

i=1

xvi
i |v = (v1, . . . , vκ) ∧ wt(v) ≤ d − sp}. Similarly

to the partition of U , we partition the variables of V into subsets according to
the degree of their monomials in the key, namely Vi = {Mv ∈ V |deg(Mv) = i}.

In addition, we define V≤i =
i⋃

j=1

Vi. Note that αu ∈ Ui is a linear combination

of variables in V≤(d−i).
Recall that our initial set of variables is expressed as U = U ′ ⋃ U ′′, where

U ′ =
sp−1⋃

i=1

Ui and U ′′ =
d⋃

i=sp

Ui. This set of variables is transformed via interpo-

lation into a new set of variables W = U ′ ⋃ V .
We compute bounds on sizes of the variables sets as follows:

|U ′| ≤
(

256
≤ sp − 1

)

, |V | ≤
(

κ

≤ d − sp

)

,

|W | = |U ′| + |V | ≤
(

256
≤ sp − 1

)

+
(

κ

≤ d − sp

)

.

The Variable Transformation Algorithm. We now describe the algorithm
which interpolates a variable αu ∈ Ui in terms of the variable set V≤(d−i). For
the sake of efficiency, the algorithm is performed in two phases, where in the
first phase, we evaluate the polynomial αu in terms of the key for all relevant
keys of low Hamming weight and store the results. Note that each evaluation of
αu requires summing on 2i evaluations of the target bit b. In the second phase,
we use the evaluations to interpolate αu in terms of V≤(d−i).

1. Allocate a bit array a1 of size |V≤(d−i)| for the evaluations of αu.
2. Evaluate αu for each key with Hamming weight at most d − i. Namely,

for each key in the set {K|wt(K) ≤ d − i}:
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(a) Evaluate F (K,C) (the target bit) on the subset of 2i inputs (with
the fixed key K) {K,C|ū ∧ C = 0}, sum the result over GF (2), and
store it in a1.

3. Allocate a bit array a2 of size |V≤(d−i)| for interpolation of αu in terms
of V≤(d−i).

4. For each Mv ∈ V≤(d−i) (with index �), the coefficient βv of Mv in αu is
calculated as follows:
(a) Sum the 2wt(v) values of a1 calculated for the subset of keys {K|v̄ ∧

K = 0}, and store the result in a2[�].

The total number of evaluations of b in Step 2 is 2i · |V≤(d−i)|, each requiring
r1 · 216 bit operations. Therefore, the total complexity of this step is r1 · 216+i ·
|V≤(d−i)|. Step 4 requires less than |V≤(d−i)| · 2d−i bit operations. In total, the
interpolation of αu ∈ Ui requires |V≤(d−i)| · (r1 · 216+i + 2d−i) bit operations.

Since U ′′ =
d⋃

i=sp

Ui, we can write the complexity of interpolating all the

variables as
d∑

i=sp

|Ui| · |V≤(d−i)| · (r1 · 216+i + 2d−i). A simple way to bound this

complexity is

|U ′′| · |V | · (r1 · 216+d + 2d−sp) ≈ |U ′′| · |V | · r1 · 216+d.

In some cases, we can obtain a refined bound by writing the complexity as

|Usp| · |V≤(d−sp)| · (r1 ·216+sp +2d−sp)+
d∑

i=sp+1

|Ui| · |V≤(d−i)| · (r1 ·216+i +2d−i) ≤

|Usp| · |V≤(d−sp)| ·(r1 ·216+sp +2d−sp)+ |U ′′| · |V≤(d−sp−1)| ·(r1 ·216+d +2d−sp+1) ≈

|Usp| · |V | · (r1 · 216+sp + 2d−sp) + |U ′′| · |V≤(d−sp−1)| · r1 · 216+d.

Note that the bound is potentially better than the trivial one of |U ′′| · |V | ·r1 ·
216+d as |Usp| ≤ (

256
sp

)
, which may be smaller than |U ′′|. Moreover |V≤(d−sp−1)| ≤

(
κ

≤d−sp−1

)
, which is smaller than |V |.

Transformation of Equations. After computing the transformation of vari-
ables from U ′′ to V , we need to apply the actual transformation to every equa-
tion over U that we calculated. Namely, we are interested in transforming an
equation over the variable set U = U ′ ⋃ U ′′, into an equation over variable
set W = U ′ ⋃ V . Obviously, the coefficients of the variables of U ′ remain the
same, and we need to apply the transformation for every variable αu ∈ U ′′.
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The complexity of transforming a single variable αu ∈ Ui in a single equation
is simply equal to its number of coefficients over V , namely |V≤(d−i)|. There-
fore, the complexity of transforming all the variables αu ∈ U ′′ in an equation is

d∑

i=sp

|Ui| · |V≤(d−i)|. A simple upper bound on this complexity is

|U ′′| · |V |.

Similarly to the variable transformation algorithm, a refined upper bound can
be calculated as

|Usp| · |V | + |U ′′| · |V≤(d−sp−1)|.
In total, if we transform e equations, the complexity calculations above are
multiplied by e.

Finally, we observe that the splitting index determines the complexity of
the variable and equation transformation algorithms. Furthermore, the splitting
index also determines |W |, which in turn determines the number of equations e.
In general, we will choose sp in order to minimize |W |, which in turn minimizes
the data and time complexity of the attack.

5.2 Details of the Optimized Interpolation Attack

Given an instance of LowMC with a 256-bit block, a key size of κ, and m Sboxes
per layer, we interpolate a target bit b through the final r1 rounds of the cipher.
Let U , U ′, U ′′, V and W be as defined above, and let e ≈ |W | denote the number
of equations. Assume S is a sufficiently large subspace of plaintexts, such that
it contains e smaller subspaces S1, . . . , Se whose high-order differential on b is a
constant value (independent of the key).

The preprocessing phase of the optimized attack in described below.

Preprocessing:

1. Compute an e-bit array of free coefficients for e ≈ |U ′| equations,
denoted by a0: evaluate b on the subset of inputs (plaintexts) of S (with
the key set to zero), and obtain a bit array of size |S|. Then, calculate
the free coefficients by applying the Moebius transform to the bit array,
and copy the values of sums over S1, . . . , Se to a0.

2. Calculate the |U | vectors {u|αu ∈ U}: This is done by first calculating
the 256+3m monomials past the first Sbox layer, and multiplying them
in unordered tuples (with no repetition) of size up to 2r1−1(as described
in Sect. 5.1).

Step 1 involves |S| evaluations of the encryption scheme and one application
of the Moebius transform on a vector of size S. Altogether, it requires |S| ·
219 + log(|S|) · |S| ≈ |S| · 219 bit operations (as log(|S|) 	 219). Step 2 requires
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|U | monomial multiplications, each monomial can be represented with a 256-bit
array, and therefore this step requires 28 · |U | bit operations.

A summary of the complexity analysis of the preprocessing phase is as follows.

Step 1: 219 · |S|
Step 2: 28 · |U |

In terms of memory, Step 1 requires |S| bits, while Step 2 requires 28 · |U |
bits.

Online:

1. Ask for the encryptions of the plaintexts in S and store the ciphertexts
in a table.

2. Allocate a bit vector of size |S| for the storage of the vectors a� (the
�’th column of the matrix A in the basic attack).

3. Allocate an e × |W | matrix E over GF (2), representing the (reduced)
equation system on W . The matrix is vertically decomposed into two
smaller matrices: E1 of size e × |U ′| and E2 of size e × |V |.

4. For each {Mu|αu ∈ U} with an index �:
(a) For each ciphertext Ct, calculate a�[t] by evaluating Mu(Ct).
(b) Use the Moebius transform to sum over all subspaces of a�.
(c) If αu ∈ U ′, populate column � of E1: For each subspace Sj in S,

namely S1, . . . , Se, obtain its corresponding sum from a� and copy
it to E1[j][�].

(d) Otherwise, αu ∈ U ′′:
i. Given that αu ∈ Ui, interpolate the coefficients of V≤(d−i) in αu

as described in Sect. 5.1.
ii. For each subspace Sj in S, obtain its corresponding boolean sum

from a� (the coefficient of αu over U). If the sum is 1, then add
(over GF (2)) the interpolated coefficients into their indexes in
E2[j] (as described in Sect. 5.1).

5. Solve the equation system Ex = a0, where x represents the vector
of variables of W = U ′ ⋃ V and a0 is the vector of free coefficients
calculated in preprocessing Step 1.

6. Deduce the κ-bit secret key, which is simply given by the monomials V1

(namely, the monomials of degree 1 in V ).

The complexity of Step 1 is |S| encryptions, or |S| · 219 bit operations. In
Step 4, we iterate over |U | monomials, where for each one we first evaluate
Mu(Ct) for each ciphertext in Step 4.a. Each such evaluation can be performed
with d bit operations (as deg(Mu) ≤ d), and thus monomial evaluations require
about d · |S| · |U | bit operations. Next, we apply the Moebius transform in Step
4.b, requiring about log(|S|) · |S| bit operation, and therefore the complexity of
all the transforms is about log(|S|) · |S| · |U |. The complexity of interpolating
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all the variables in Step 4.d.i, is bounded in Sect. 5.1 by |U ′′| · |V | · r1 · 216+d.
The complexity of Step 4.d.ii (over all αu ∈ U ′′) is bounded in Sect. 5.1 by
e · |U ′′| · |V | ≈ |W | · |U ′′| · |V |.

The complexity of Step 5 is |W |3 bit operations using Gaussian elimination.
A summary of the complexity analysis of the online phase is as follows. Since we
generally do not have a good bound for |U ′′|, we simply replace it with |U | (as
|U ′′| ≤ |U |), and further assume that e ≈ |W |.
Step 1: |S| · 219

Step 2: |S|
Step 3: |W | · |W |
Step 4.a: d · |S| · |U |
Step 4.b: log(|S|) · |S| · |U |
Step 4.c: |U ′| · |W |
Step 4.d.i: |U | · |V | · r1 · 216+d

Step 4.d.ii: |W | · |U | · |V |
Step 5: |W |3
Step 6: negligible

Alternatively, we can use the refined complexity bounds for steps 4.d.i and
4.d.ii, as calculated in Sect. 5.1.

Step 4.d.i: |Usp| · |V | · (r1 · 216+sp + 2d−sp) + |U | · |V≤(d−sp−1)| · r1 · 216+d

Step 4.d.ii: |W | · (|Usp| · |V | + |U | · |V≤(d−sp−1)|)

The total data complexity of the algorithm is |S| chosen plaintexts. The total
time complexity is dominated by steps 4 and 5, as calculated above. The memory
complexity is potentially dominated by a few steps: the storage of variables in
preprocessing that requires 28 · |U | bits, the storage of ciphertexts in Step 1 that
requires 28 · |S| bits, and the storage of E in Step 3 that requires |W | · |W | bits.

6 Optimized Interpolation Attacks on LowMC-80

In this section we apply the optimized interpolation attack on LowMC-80, for
which κ = 80 and m = 49.

6.1 A 9-Round Attack

As in the basic attack described in Sect. 4.4, we select the target bit b in Z6|IP ,
using subspaces of dimension 32 to obtain the equations. We interpolate through
r1 = 2 rounds, implying that d = 2r1 = 4. Therefore |U | =

(
256+3m
≤2r1−1

)
=

(
403
≤2

) ≈
216.5.

As described at the beginning of Sect. 5, we use sp = 2. We compute the
size of the relevant variable sets |U ′| ≤ (

256
≤sp−1

)
=

(
256
≤1

) ≈ 28, |V | ≤ (
κ

≤d−sp

)
=

(
80
≤2

)
< 212, |W | = |U ′| + |V | < 212.
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We choose a subspace S of dimension 35 from X0|IP , containing
(
35
32

)
>

212 > |W | 32-dimensional subspaces, which should suffice for the attack.
In terms of time complexity, the analysis of the critical steps of the attack is

as follows:

Step 4.a: d · |S| · |U | ≈ 4 · 235 · 216.5 = 253.5

Step 4.b: log(|S|) · |S| · |U | ≈ 35 · 235 · 216.5 = 256.5

Step 4.c: |U ′| · |W | ≈ 28 · 212 = 220

Step 4.d.i: |U | · |V | · r1 · 216+d ≈ 216.5 · 212 · 2 · 220 = 249.5

Step 4.d.ii: |W | · |U | · |V | ≈ 212 · 216.5 · 212 = 240.5

Step 5: |W |3 ≈ 212·3 = 236

In total, the time complexity of the optimized 9-round attack is about 257 bit
operations (or 257−19 = 238 encryptions), mostly dominated by Step 4.b. The
data complexity is 235 chosen plaintexts. The memory complexity is dominated
by the storage of ciphertexts in Step 1, and is about |S| · 28 = 243 bits.

We note that while the improvement of the optimized attack compared to
the basic one is rather moderate for the 9-round attack, the effect of our opti-
mizations is more pronounced in the attacks described next, as the reduction in
the number of variables becomes more significant (a comparison for the attack
on full LowMC-128 is at the end of Sect. 7.2).

6.2 A 10-Round Attack

Similarly to the 9-round attack, in order to attack 10 rounds of LowMC-80, we
select the target bit b in Z6|IP , using subspaces of dimension 32 to obtain the
equations. We interpolate through r1 = 3 rounds, implying that d = 2r1 = 8.
Therefore |U | =

(
256+3m
≤2r1−1

)
=

(
403
≤4

)
< 230.5.

In this attack we use sp = 4, and compute the size of the relevant variable sets
|U ′| ≤ (

256
≤sp−1

)
=

(
256
≤3

) ≈ 221.5, |V | ≤ (
κ

≤d−sp

)
=

(
80
≤4

)
< 221, |W | = |U ′| + |V | <

222.5. We use the refined analysis for steps 4.d.i and 4.d.ii, and thus we also
calculate |Usp| = |U4| =

(
256
4

)
< 227.5 and |V≤(d−sp−1)| =

(
80
≤3

)
< 216.5.

We choose a subspace S of dimension 39 from X0|IP , containing
(
39
32

)
>

223 > |W | 32-dimensional subspaces.
In terms of time complexity, the analysis of the critical steps of the attack is

as follows (using the refined analysis for steps 4.d.i and 4.d.ii):

Step 4.a: d · |S| · |U | ≈ 8 · 239 · 230.5 = 272.5

Step 4.b: log(|S|) · |S| · |U | ≈ 39 · 239 · 230.5 ≈ 275

Step 4.c: |U ′| · |W | ≈ 221.5 · 222.5 = 244

Step 4.d.i: |Usp| · |V | · (r1 · 216+sp + 2d−sp) + |U | · |V≤(d−sp−1)| · r1 · 216+d ≈
227.5 · 221 · (3 · 220 + 24) + 230.5 · 216.5 · 3 · 224 ≈ 270 + 272.5 ≈ 273

Step 4.d.ii: |W |·(|Usp|·|V |+|U |·|V≤(d−sp−1)|) ≈ 222.5 ·(227.5 ·221+230.5 ·216.5) ≈
222.5 · (248.5 + 247) ≈ 271.5

Step 5: |W |3 ≈ 222.5·3 = 267.5
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In total, the time complexity of the optimized 10-round attack is about 276

bit operations (or 257 encryptions), mostly dominated by Step 4.b. The data
complexity is 239 chosen plaintexts. The memory complexity is dominated by
the storage of ciphertexts in Step 1, and is about 28 · |S| = 247 bits (note that
the storage of E requires 222.5·2 = 245 bits).

6.3 An Attack on Full LowMC-80 for Weak Instances

The 9 and 10-round attacks described above can be extended by an additional
round with negligible cost for a subset of weak instances containing a fraction
of about 2−38 of all instances. In particular, this implies that about 2−38 of the
instances of full 11-round LowMC-80 can be attacked significantly faster than
exhaustive search.

Consider the 10-round attack: as shown above, we can construct an efficient
high-order differential property for any choice of target bit of Z6|IP , and also
for any linear combination of the bits of Z6|IP . When considering interpolation
from the decryption side on a full 11-round instance, we can efficiently interpolate
the polynomial FK(C) for any bit of Z7|IP , or any linear combination of the
bits of Z7|IP . Assume that there exists a linear dependency between the 109
bits of Z6|IP and the 109 bits of Z7|IP . In this case, the linear combination
in terms of Z6|IP does not go through an Sbox in round 8. Therefore, it is
possible to extend the high-order differential property on this linear combination
by another round with essentially no extra cost, and choose the target bit for
interpolation to be the corresponding linear combination on the bits of Z7|IP .
The existence of this linear dependency is determined by the affine layer of round
7 (the transformation between Z6 and X7), and assuming that random invertible
matrices behave roughly the same (with respect to the event considered) as
random matrices, the probability of this event is about 2109+109−256 = 2−38

(over the choice of the 7’th affine layer).
We note that there exists an additional subset of weak instances of about

the same size since the described attacks can also be mounted using chosen
ciphertexts (where interpolation is performed on the decrypted plaintexts). In
this case, the weakness of a given instance is determined by the choice of the
third affine layer.

7 Optimized Interpolation Attacks on LowMC-128

In this section we apply the optimized interpolation attack on LowMC-128, for
which κ = 128 and m = 63.

7.1 An 11-Round Attack and Weak Instances of LowMC-128

We describe our attack on 11-round LowMC-128 and then extend it to full
LowMC-128 for weak instances. We select the target bit b in Z7|IP , and
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interpolate through r1 = 3 rounds, implying that d = 2r1 = 8. Therefore
|U | =

(
256+3m
≤2r1−1

)
=

(
445
≤4

)
< 231.

In this attack we use sp = 4, and compute the size of the relevant variable
sets |U ′| ≤ (

256
≤sp−1

)
=

(
256
≤3

) ≈ 221.5, |V | ≤ (
κ

≤d−sp

)
=

(
128
≤4

) ≈ 223.5, |W | =
|U ′| + |V | ≈ 224.

For the high-order differential property, we use subspaces of dimension 26 =
64 whose bits are not multiplied together in the first round. The outcome of
such a high-order differential is a constant (independent of the key) for 1+6 = 7
rounds, and this property can be extended beyond the 8’th Sbox layer when
selecting the target bit from Z7|IP .

Since |W | ≈ 224, we require roughly the same number of 64-dimensional
subspaces to construct the equation system and mount the attack. Therefore,
we take a larger subspace of dimension 70, containing

(
70
64

)
> 224 ≈ |W | 64-

dimensional subspaces. As X0|IP contains only 67 bits, we choose the subspace
from these 67 bits and additional 3 bits in X0|SP , contained in 1 active Sbox.
Since the active Sbox is non-linear, we guess the 3 linear key expressions that are
added to its input, which allow us to construct the required ≈ 224 64-dimensional
subspaces from a 70-dimensional subspace after the first Sbox layer.

The guess of the 3 key bits can be avoided by selecting the 70 − 64 = 6
constant bits of the 64-dimensional subspaces from the 67 bits of X0|IP in the
70-dimensional subspace. This restriction keeps the selected Sbox fully active
in all subspaces, and thus the linear subspace after the first Sbox layer (at Z0)
is independent of the key bits. The number of such restricted 64-dimensional
subspaces is

(
67
6

)
> 224 ≈ |W |, and hence they should suffice for the attack.

Finally, we notice that the Moebius transforms (Step 4.b) can be optimized
due to the way that we chose the subspaces in S, as for all of them, 3 specific bits
of X0|SP are active. In order to exploit this, we perform the Moebius transform
on a 270 bit vector in two phases: in the first phase, we partition the 270 big
subspace into 267 3-dimensional subspaces according to the 67 bits of X0|IP ,
and sum on all of them in time 270, obtaining a vector of size 267. In the second
phase, we perform the Moebius transform on the 267 vectors computed in the
first phase. Therefore, the complexity of a single Moebius transform is reduced
from 70 ·270 ≈ 276 to 270 +67 ·267 ≈ 273. The complexity of online Step 4.b now
becomes |U | · 273 ≈ 2104 bit operations.

The time complexity analysis of the critical steps of the attack is as follows:

Step 4.a: d · |S| · |U | ≈ 8 · 270 · 231 = 2104

Step 4.b: 2104 (as noted above)
Step 4.c: |U ′| · |W | ≈ 221.5 · 224 = 245.5

Step 4.d.i: |U | · |V | · r1 · 216+d ≈ 231 · 223.5 · 3 · 224 ≈ 280.5

Step 4.d.ii: |W | · |U | · |V | ≈ 224 · 231 · 223.5 = 278.5

Step 5: |W |3 ≈ 224·3 = 272

In total, the time complexity of the attack is about 2105 bit operations,
dominated by steps 4.a and 4.b. The data complexity is 270 chosen plaintexts.
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The memory complexity is dominated by the storage of ciphertexts in Step 1,
and is about |S| · 28 = 278 bits.

Extending the Attack to Full LowMC-128 for Weak Instances. Simi-
larly to the attacks on LowMC-80, the 11-round attack on LowMC-128 can be
extended by an additional round with no increase in complexity for a subset
of weak instances. However, the fraction of these instances is much smaller, as
the I-part of LowMC-128 contains only 67 bits, and is smaller than the one of
LowMC-80. A similar analysis to the one of Sect. 6.3 shows that the fraction of
such weak instances for LowMC-128 is roughly 267+67−256 = 2−122. As noted in
the Introduction, this attack does not violate the formal security claims of the
LowMC designers.

7.2 An Attack on Full LowMC-128

We now describe our attack on full (12-round) LowMC-128. This attack is more
marginal than the previous attacks, and we have to use essentially all of our
previously described optimizations, as well as new ones in order to obtain an
attack which is faster than exhaustive search.

In order to attack 12 rounds of LowMC-128, we extend the interpolation of
the 11-round attack past another round, interpolating Z7|IP through r1 = 4
Sbox layers, and hence d = 24 = 16, |U | =

(
256+3m
≤2r1−1

)
=

(
445
≤8

) ≈ 255.
In this attack we use sp = 8, and compute the size of the relevant variable

sets |U ′| ≤ (
256

≤sp−1

)
=

(
256
≤7

) ≈ 243.5, |V | ≤ (
κ

≤d−sp

)
=

(
128
≤8

) ≈ 240.5, |W | =
|U ′| + |V | ≈ 244. We use the refined analysis for steps 4.d.i and 4.d.ii, and thus
we also calculate |Usp| = |U8| =

(
256
8

)
< 248.5 and |V≤(d−sp−1)| =

(
128
≤7

)
< 236.5.

The High-Order Differential Property. We can try to mount the attack
with high-order differentials on subspaces of dimension 64 for the target bit in
Z7|IP , but this results in an attack which is at best very marginally faster than
exhaustive search. The main new optimization introduced in this attack is the
use of reduced subspaces of dimension 60. Obviously, the result of a high-order
differentiation over such a subspace is not a constant, but (as we show next)
its algebraic degree in the key bits is bounded by 8. Consequently, the resul-
tant function (polynomial) of each high-order differentiation can be expressed in
terms of our reduced variable set V = |V≤(8)|. This polynomial can be interpo-
lated during preprocessing and does not contribute additional variables to the
equation system.

We select a big subspace S of dimension 73 that contains all the 67 bits of
X0|IP and 6 additional bits of 2 active Sboxes in X0|SP , and (similarly to the 11-
round attack) define the 60-dimensional subspaces according to their 73−60 = 13
constant bits in X0|IP . The number of such subspaces is

(
67
13

)
> 244 ≈ |W |, and

therefore they should suffice for the attack.
In order to show that the result of a high-order differentiation of the target

bit in Z7|IP over a selected 60-dimensional is of degree 8 in the key bits, consider
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the state Z0 obtained after the first Sbox layer. The algebraic degree of the target
bit b (selected from Z7|IP ) in Z0 is bounded by 26 = 64. As the linear subspace
undergoes a one-to-one transformation in the first Sbox layer (through the fully
active 2 Sboxes), it remains a linear subspace in Z0. Therefore, the algebraic
degree of the high-order differentiation in the bits of Z0 and the key is upper-
bounded by 64−60 = 4. Since each bit of Z0 is a polynomial in the key of degree
(at most) 2, the algebraic degree of the high-order differentiation in the bits of
the key is upper-bounded by 4 · 2 = 8, as claimed.

The Preprocessing Phase. The main change in this attack compared to the
one of Sect. 5.2 is in preprocessing Step 1, where in addition to interpolating
the e ≈ |W | free coefficients, we interpolate the e · |V | ≈ |W | · |V | coefficients
of V (since we selected 60-dimensional subspaces instead of 64-dimensional sub-
spaces). The modified preprocessing step is described below. It is similar to the
variable transformation algorithm of Sect. 5.1, interpolating first over the plain-
texts and then over the keys. Note that the matrix E of linear equations is
allocated and initialized already at this stage.

1. Allocate an e × |W | matrix E over GF (2), representing the (reduced)
equation system on W . The matrix is vertically decomposed into two
smaller matrices: E1 of size e × |U ′| and E2 of size e × |V |.

2. Allocated an e · |V | evaluation matrix EV .
3. Allocate a |S| = 273 bit array a1 for the evaluations of the target bit b.
4. For each key in the set {K|wt(K) ≤ 8} (with index �):

(a) Evaluate b (the target bit) on the set S of 273 inputs (with the fixed
key K) and store the result in a1.

(b) Apply the Moebius transform on a1.
(c) Populate column � of EV : For each subspace Sj in S, namely

S1, . . . , Se, obtain its corresponding sum from a1 and copy it to
E1[j][�].

5. For each equation 1, . . . , e (with index j):
(a) For each Mv ∈ V≤8 = V (with index �):

i Sum the 2wt(v) values of EV [j] calculated for the subset of keys
{K|v̄ ∧ K = 0}, and store the result in E2[j][�].

We first note that similarly to the 11-round attack, the complexity of the
Moebius transform can be optimized (due to the way that we selected the sub-
spaces) in a 2-step process from 73 · 273 to 273 + 67 · 267 ≈ 274.

We analyze the complexity of the computationally heavy steps 4 and 5. The
complexity of Step 4.a (for all {K|wt(K) ≤ 8}) is |V | · |S| ·219 ≈ 240.5 ·273 ·219 =
2132.5. The complexity of Step 4.b (using the optimized Moebius transform) is
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|V | · 274 ≈ 2114.5. The complexity of Step 4.c is e · |V | ≈ |W | · |V | ≈ 244 · 240.5 =
284.5. The complexity of Step 5.a.i is bounded by e · |V | · 28 ≈ 244 · 240.5 · 28 =
292.5. In total, Step 4.a dominates the time complexity, which is about 2132.5 bit
operations.

Analysis of the Full Attack. In terms of time complexity, the analysis of
the critical steps of the online attack is as follows (using the optimized Moebius
transform and the refined analysis for steps 4.d.i and 4.d.ii):

Step 4.a: d · |S| · |U | ≈ 16 · 273 · 255 = 2132

Step 4.b: |U | · 274 ≈ 2129

Step 4.c: |U ′| · |W | ≈ 243.5 · 244 = 287.5

Step 4.d.i: |Usp| · |V | · (r1 · 216+sp + 2d−sp) + |U | · |V≤(d−sp−1)| · r1 · 216+d ≈
248.5 · 240.5 · (4 · 224 + 28) + 255 · 236.5 · 4 · 232 ≈ 2115 + 2125.5 ≈ 2125.5

Step 4.d.ii: |W | ·(|Usp| · |V |+ |U | · |V≤(d−sp−1)|) ≈ 244 ·(248.5 ·240.5+255 ·236.5) ≈
244 · (289 + 291.5) ≈ 2136

Step 5: |W |3 ≈ 244·3 = 2132

The online phase complexity is about 2136 dominated by3 Step 4.d.ii. The
total complexity of the attack is less than 2137 bit operations, which is about
2128+19−137 = 210 times faster than exhaustive search (including the preprocess-
ing phase, whose complexity is about 2132.5). The data complexity of the attack
is 273 chosen plaintexts. The memory complexity is dominated by the storage of
E, whose size is about |W | · |W | ≈ 288 bits.

Note that without the variable transformation, merely Step 5 (Gaussian elim-
ination) would require about 255·3 = 2165 bit operations, which is much slower
than exhaustive search.4

8 Conclusions

In this paper, we introduced new techniques for interpolation attacks, including
a new variable transformation algorithm that can lead to savings in their data
and time complexities. We applied the optimized interpolation attack to LowMC,
and refuted the claims of the designers regarding the security level of both the 80
and 128-bit key variants. As a future work item, it will be interesting to optimize
our techniques further and apply them to additional block ciphers.

3 We note that the analysis of Step 4.d.ii can be refined further, and its actual com-
plexity is lower by a factor between 2 and 4. Moreover, the actual algorithm of this
step can be optimized, but we do not consider such low-level optimizations here for
the sake of simplicity.

4 Solving the equation system remains slower than exhaustive search even when using
more advanced algorithms which are based on Strassen’s algorithm [9], requiring
about 255·2.8 = 2154 bit operations. While there are known algorithms that perform
better in theory, most of them are very complex and inefficient in practice.
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Abstract. Sprout is a new lightweight stream cipher with shorter inter-
nal state proposed at FSE 2015, using key-dependent state updating in
the keystream generation phase. Some analyses have been available on
eprint so far. In this paper, we extend the design paradigm in general
and study the security of Sprout-like ciphers in a unified framework. Our
new penetration is to investigate the k-normality of the augmented func-
tion, a vectorial Boolean function derived from the primitive. Based on
it, a dedicated time/memory/data tradeoff attack is developed for such
designs. It is shown that Sprout can be broken in 279−x−y time, given[
c · (2x + 2y − 58) · 271−x−y

]
-bit memory and 29+x+y-bit keystream,

where x/y is the number of forward/backward steps and c is a small
constant. Our attack is highly flexible and compares favorably to all
the previous results. With carefully chosen parameters, the new attack
is at least 220 times faster than Lallemand/Naya-Plasencia attack at
Crypto 2015, Maitra et al. attack and Banik attack, 210 times faster
than Esgin/Kara attack with much less memory.

Keywords: Cryptanalysis · Stream ciphers · Sprout · Tradeoff

1 Introduction

Design of secure lightweight stream ciphers for constrained hardware environ-
ments is important both in theory and practice. The most area/power consuming
component in a lightweight design is the number of memory gates, which corre-
sponds to the internal state size of the primitive. On the other hand, a common
rule of thumb for stream cipher design is that the internal state size should be
at least twice as long as the key size to resist against time/memory/data (TMD)
tradeoff attacks [4].

This design principal indeed works, and security analysis of the eSTREAM
finalists, e.g., Grain v1, Mickey v2 and Trivium [7] evolves rather slowly. At FSE
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2015, another design paradigm for stream ciphers is proposed and instantiated
by a new design, called Sprout, aiming to reduce the internal state size, thus
the hardware area size by using key-dependent state updating in the keystream
generation phase [2]. It is expected that the immunity against TMD tradeoff
attacks will not be compromised.

Surprisingly, there have been some cryptanalysis of Sprout appearing on the
IACR eprint monthly after ESC 2015 and FSE 2015. In the time order of the
open literature, a related key chosen IV attack on Sprout is presented in [9], but
the designers have already ruled out the related key model in [2]. Then the first
attack in the single key model is found in [12] by using a list merging technique
with a time complexity around 269 Sprout encryptions at Crypto 2015. In [13],
another attack based on a SAT solver is given with a complexity of 254 attempts,
where each attempt takes a time equivalent to 6.6 · 254 · 2e encryptions which
is more than 280 if e > 23. Thus, it is questionable whether this work in [13]
translates into a feasible attack on Sprout or not. To directly challenging the
design rationale, Esgin and Kara presented a TMD tradeoff attack in [8] with an
online time complexity of 233 Sprout encryptions and 770 TB of memory after
a pre-computation around 253 basic operations. Finally in [3], a key recovery
attack is launched against Sprout with a complexity of 266.7 Sprout encryptions
together with some other analysis results.

In this paper, we extend the design paradigm in general and study the secu-
rity of Sprout-like ciphers in a unified framework. The model involves the secret
key not only in the initialization process but also in the non-linear state updating
in a Sprout-like manner during the keystream generation phase. Then based on
the notion of normality first introduced by Dobbertin in [6], we investigate the
k-normality of the augmented function [5], a vectorial Boolean function derived
from the underlying primitive. This property is relevant for the design and analy-
sis of cryptosystems. In [14] and [15], security implications of k-normal Boolean
functions are considered when they are employed in certain stream ciphers. We
make a systematic security analysis based on this property for Sprout-like stream
ciphers and develop a dedicated TMD tradeoff attack framework for such designs.
In particular, it is shown that Sprout can be broken in 279−x−y time, given[
c · (2x + 2y − 58) · 271−x−y

]
-bit memory and 29+x+y-bit keystream, where x is

the number of forward steps, y is the number of backward steps and c is a small
constant. Our attack is highly flexible and compares favorably to all the previous
attacks on Sprout. With carefully chosen attack parameters, our method is at
least 220 times faster than Lallemand/Naya-Plasencia attack at Crypto 2015,
Maitra et al. attack and Banik attack, 210 times faster than Esgin/Kara attack
with much less memory. Practical simulations confirmed our analysis.

This paper is structured as follows. In Sect. 2, the stream cipher Sprout is
described and generalized to a generic Sprout-like model. In Sect. 3, based on
a natural extension of normality from Boolean functions to vectorial Boolean
functions, a generic TMD cryptanalysis framework of such ciphers is formalized
with complexity analysis. In Sect. 4, the framework is applied to Sprout with
comparisons to other attacks. Section 5 provides the experimental results. Finally,
some conclusions are given in Sect. 6.
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2 Sprout-Like Stream Ciphers

In this section, a brief description of Sprout that is relevant to our work and
a generic Sprout-like model that inherits the design spirit are presented. The
following notations will be used throughout the paper.

– Lt = [lt, lt+1, ..., lt+39], the internal state of the LFSR at time t.
– N t = [nt, nt+1, ..., nt+39], the internal state of the NFSR at time t.
– [a, b] Δ= {a, a + 1, ..., b}, for two positive integers a, b (a < b).
– N t

[a,b]

Δ= {nt+a, nt+a+1, ..., nt+b} and Lt
[a,b]

Δ= {lt+a, lt+a+1, ..., lt+b}, for two
positive integers a, b (a < b).

– IV = (iv0, iv1, ..., iv69), the 70-bit initialization vector.
– K = (k0, k1, ..., k79), the 80-bit secret key.
– k∗

t , the round key bit generated at time t.
– zt, the keystream bit generated at time t.
– c4t , the round constant at time t, generated by a counter.

2.1 Description of Sprout

Sprout adopts a structure similar to the Grain family of stream ciphers [1,10,11],
which consists of four parts, an 80-bit fixed key register, a 40-bit NFSR with a
linked 40-bit LFSR, and a counter register, depicted in Fig. 1. Since storing a
fixed key requires less area size than realizing a register of the same length, it is
reported in [2] that the hardware area of Sprout is significantly less compared
to the existing lightweight stream ciphers.

,

Fig. 1. Keystream generation of sprout

Denote the feedback functions of the NFSR, the LFSR and the nonlinear filter
function by g, f and h respectively. There is a 9-bit counter register in Sprout, of
which the lower 7 bits are a modulo 80 counter, denoted by (c6t , c

5
t , c

4
t , c

3
t , c

2
t , c

1
t , c

0
t )
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at time t. The 4-th LSB c4t of the counter is employed in the keystream genera-
tion. It should be noted that, c4t has a cycle of length 80, i.e., in each cycle, this
bit takes the values 0, 0, ..., 0

︸ ︷︷ ︸
16

1, 1, ..., 1
︸ ︷︷ ︸

16

0, 0, ..., 0
︸ ︷︷ ︸

16

1, 1, ..., 1
︸ ︷︷ ︸

16

0, 0, ..., 0
︸ ︷︷ ︸

16

.

The 40-bit LFSR is updated recursively by f as lt+40 = lt ⊕ lt+5 ⊕ lt+15 ⊕
lt+20 ⊕ lt+25 ⊕ lt+34. The NFSR is updated recursively by a non-linear feedback
function g as

nt+40 = k∗
t ⊕ lt ⊕ c4t ⊕ g(N t)

= k∗
t ⊕ lt ⊕ c4t ⊕ nt ⊕ nt+13 ⊕ nt+19 ⊕ nt+35 ⊕ nt+39

⊕ nt+2nt+25 ⊕ nt+3nt+5 ⊕ nt+7nt+8 ⊕ nt+14nt+21 ⊕ nt+16nt+18

⊕ nt+22nt+24 ⊕ nt+26nt+32 ⊕ nt+33nt+36nt+37nt+38

⊕ nt+10nt+11nt+12 ⊕ nt+27nt+30nt+31.

Let ut = lt+4 ⊕ lt+21 ⊕ lt+37 ⊕ nt+9 ⊕ nt+20 ⊕ nt+29, then

k∗
t =

{
kt, 0 ≤ t ≤ 79
kt(mod 80) · ut, otherwise.

Given the internal state at time t, the keystream bit is generated as

zt = h(nt+4, lt+6, lt+8, lt+10, lt+32, lt+17, lt+19, lt+23, nt+38) ⊕ lt+30 ⊕
(⊕

i∈A
nt+i

)
,

where A = {1, 6, 15, 17, 23, 28, 34}, and the filter function is

h(·) = nt+4lt+6 ⊕ lt+8lt+10 ⊕ lt+32lt+17 ⊕ lt+19lt+23 ⊕ nt+4lt+32nt+38.

During the key/IV setup phase, since the key is fixed, first load the IV in the
following way: ni = ivi, 0 ≤ i ≤ 39; li = ivi+40, 0 ≤ i ≤ 29 and li = 1, 30 ≤ i ≤
38, l39 = 0. Then run the cipher 320 rounds as follows.

– the LFSR update function is changed to lt+40 = zt ⊕ f(Lt).
– the NFSR update function is changed to nt+40 = zt ⊕ k∗

t ⊕ lt ⊕ c4t ⊕ g(Nt).
– no keystream bit is generated.

After the initialization phase, the keystream generation phase starts and there
is no feedback keystream anymore.

2.2 A Model for Sprout-Like Stream Ciphers

There are three functions involved in the model: a non-linear function G(x),
a linear function F (x) and a non-linear filter function h(·).

The internal state of the model consists of the non-linear state N and the
linear state L. At each step, the function G(·) is applied to N and F (·) to
L, respectively. Besides, there may also be some other mixing procedure that
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xoring some bits of N into L, and vice versa. Further, the secret key is involved
in the non-linear state updating selectively by a function u(·). The output of the
current state is also computed as the xoring of the bits from both N and L and
a non-linear filter function h(·), which takes some input values from both N and
L, respectively. Some notations that will be used in the description are listed
here.

– Lt = [Lt
0, L

t
1, ..., L

t
l1−1], the internal state of the linear component.

– N t = [N t
0, N

t
1, ..., N

t
l2−1], the internal state of the non-linear component.

– rLt = {Lt
γ1

, Lt
γ2

, ..., Lt
γa1

}, a subset of Lt and the linear part of u(·).
– rN t = {N t

δ1
, N t

δ2
, ..., N t

δa2
}, a subset of N t and the non-linear part of u(·).

– pLt = {Lt
α1

, Lt
α2

, ..., Lt
αn1

}, a subset of Lt with the variables of the filter
function h(·) coming from the LFSR.

– pN t = {N t
β1

, N t
β2

, ..., N t
βn2

}, a subset of N t with the variables of the filter
function h(·) coming from the NFSR.

– qLt = {Lt
σ1

, Lt
σ2

, ..., Lt
σm1

}, a subset of Lt and the linear masking in the
keystream generation function.

– qN t = {N t
τ1 , N

t
τ2 , ..., N

t
τm2

}, a subset of N t and the non-linear masking in the
keystream generation function.

– pqN t = pN t ∪ qN t, the variables used in the keystream generation coming
from the NFSR.

The general framework is specified by the following items (we only focus on
the keystream generation phase).

1. Components

– The linear component is Lt = [Lt
0, L

t
1, ..., L

t
l1−1] ∈ F l1

2 , whose initial state
is denoted by L0. It is updated recursively as Lt+1 = F (Lt). Without loss
of generality, we assume this process is invertible, and the inverse process is
Lt−1 = F ′(Lt).

– The non-linear component is N t = [N t
0, N

t
1, ..., N

t
l2−1] ∈ F l2

2 , whose initial
state is denoted by N0. It is updated recursively as

N t+1 = G(N t ⊕ L1(Lt)) ⊕ L2(Lt) ⊕ u(rLt, rN t) · R(t,K) ⊕ Ct,

where G(·) is a (l2, l2)-vectorial Boolean function, Ct is a counter related
vector of length l2. Note that whether the key is involved in the state updat-
ing is dependent on the value of u(·). If u(rLt, rN t) = 1, the key will be
involved. Similarly, we assume this non-linear process is invertible, and the
inverse process is computed as

N t−1 = G′(N t⊕L′
1(L

t−1))⊕L′
2(L

t−1)⊕u(rLt−1, rN t−1)·R(t−1,K)⊕Ct−1.

– A filter function h(·) from Fn1+n2
2 into F2 is used as part of the output function

in the form h(pLt, pN t), which takes n1 input values {Lt
α1

, Lt
α2

, ..., Lt
αn1

} from
Lt and n2 input values {N t

β1
, N t

β2
, ..., N t

βn2
} from N t, respectively.
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– A linear Boolean function l(·) from Fm1+m2
2 into F2 is used as part of the out-

put function in the form l(qLt, qN t), which takes m1 input values {Lt
σ1

, Lt
σ2

, ...,
Lt

σm1
} from Lt and m2 input values {N t

τ1 , N
t
τ2 , ..., N

t
τm2

} from N t, respectively.
– An output function φ(·) = l(·) ⊕ h(·), which generates the keystream {zt}t≥0

based on the inputs taken from both Lt and N t, t = 0, 1, ...

2. Keystream Generation
The keystream {zt}t≥0 is recursively generated as

zt = h(pLt, pN t) ⊕ l(qLt, qN t), t = 0, 1, ...

Let U be the subspace of Fm
2 and denote the dimension as dim(U), define

U := {a ∈ Fm
2 : a /∈ U} ∪ {0} as the complementary space of U . Now a coset

of the subspace U is represented by Ua := a ⊕ U, a ∈ U , also called a flat. The
following definitions are needed in our model.

Definition 1. An m-variable Boolean function f is k-normal (resp. k-weakly
normal) if there exists a flat V ⊆ Fm

2 of dimension k such that f is constant
(resp. affine) on V .

For example, the 5-variable Boolean function h(·) in Grain-v1 is 2-normal
and 3-weakly normal, and the 9-variable Boolean function h(·) in Sprout and
Grain-128a is 5-normal.

Next, we study a natural generalization of the above definition for vectorial
Boolean functions [5].

Definition 2. An (m, n)-function F : Fm
2 → Fn

2 is called k-normal if there
exists a flat V ⊆ Fm

2 of dimension k such that F is constant on V .

In our analysis, we investigate the k-normality of the augmented function defined
as follows.

Definition 3. For a (n1 + n2)-variable Boolean function h(pLt, pN t), the
(b+f +1)-th augmented function of h, H(b,f) : FM1+M2

2 → F b+f+1
2 is defined as

H(b,f)(PLt, PN t) =
(
h(pLt−b, pN t−b), ..., h(pLt, pN t), ..., h(pLt+f , pN t+f )

)
,

where b, f are two positive integers, and

PLt Δ=
⋃f

i=−b pLt+i, M1
Δ= |PLt| ≤

f∑

i=−b

|pLt+i| = n1(b + f + 1),

PN t Δ=
⋃f

i=−b pN t+i, M2
Δ= |PN t| ≤

f∑

i=−b

|pN t+i| = n2(b + f + 1).

3. Assumptions

– 3.1 : there exists two positive integers b, f such that
⋃f

i=−b pqN t+i ⊆ N t

for any t ≥ b. In this case, the output segment zt−b, ..., zt, ..., zt+f can be
computed from the complete state (Lt, N t) at time t.
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– 3.2 : H(b,f), the (b + f + 1)-th augmented function of the filter function h, is
a k-normal Boolean function such that H(b,f)(x1, ..., xn) = 0b+f+1 when xj is
fixed for all j ∈ Ω, where Ω is a subset of [1, n] and |Ω| = n − k.

– 3.3 : there exists two positive integers d, e such that
⋃e

i=−d rN t+i ⊆ N t for any
t ≥ d. In this case, u(rLt+i, rN t+i), i = −d, ...,−1, 0, 1, ..., e can be computed
from the complete state (Lt, N t) at time t.

– 3.4 : assume pqN t+f+1 	⊂ N t and pqN t+f+1 ⊂ N t+1 for any t ≥ b, meaning
that we cannot get pqN t+f+1 from the state (Lt, N t). Note that the secret
key is incorporated in the non-linear state updating selectively, if we assume a
special state (Lt, N t) such that u(rLt, rN t) = 0, N t+1 can be computed from
(Lt, N t), thus we further get the output bit zt+f+1. Repeat this process for x
steps, i.e., we assume a special state (Lt, N t) such that u(rLt+i, rN t+i) = 0
for i = 0, 1, ..., x − 1, then we get the output bits zt+f+1, ..., zt+f+x.

– 3.5 : assume rN t+e+1 	⊂ N t and rN t+e+1 ⊂ N t+1 for any t ≥ d. For the above
special state (Lt, N t) such that u(rLt+i, rN t+i) = 0 for i = 0, 1, ..., x − 1,
if x − 1 ≤ e, we have only unknowns from (Lt, N t); if x − 1 > e, then the
unknowns from N t+1, N t+2,... will appear with some nonlinear equations
N t+j+1 = G(N t+j ⊕ L1(Lt+j)) ⊕ L2(Lt+j) ⊕ Ct+j , j = 0, 1, ..., x − e − 2.

– 3.6 : assume pqN t−b−1 	⊂ N t and pqN t−b−1 ⊂ N t−1 for any t ≥ b, which
means we cannot get pqN t−b−1 from the state (Lt, N t). If we assume a special
state (Lt, N t) such that u(rLt−1, rN t−1) = 0, N t−1 can be computed from
(Lt, N t), thus we further get the output bit zt−b−1. Repeat this process for y
steps, i.e., we assume a special state (Lt, N t) such that u(rN t−j , rLt−j) = 0
for j = 1, ..., y, then we get the output bits zt−b−1, ..., zt−b−y.

– 3.7 : assume rN t−d−1 	⊂ N t and rN t−d−1 ⊂ N t−1 for any t ≥ d. For the
above special state (Lt, N t) such that u(rLt−j , rN t−j) = 0 for j = 1, ..., y, if
y ≤ d, we have only unknowns from (Lt, N t); if y > d, then the unknowns
from N t−1, N t−2,... will appear with some nonlinear equations N t−j−1 =
G′(N t−j ⊕ L′

1(L
t−j−1)) ⊕ L′

2(L
t−j−1) ⊕ Ct−j−1, j = 0, 1, ..., y − d − 1.

It is easy to check that the proposed model includes a number of primitives,
e.g., Sprout and the Grain family. For Grain family, the term u(rLt, rN t) = 0
for any time t. For Sprout, N t = [nt, nt+1, ..., nt+39], Lt = [lt, lt+1, ..., lt+39], and
for any t, u(rLt, rN t) = lt+4 ⊕ lt+21 ⊕ lt+37 ⊕ nt+9 ⊕ nt+20 ⊕ nt+29. The positive
integers b, f, d, e are b = 1, f = 1, d = 9, e = 10 respectively.

3 A TMD Tradeoff Attack Framework

In this section, we provide a systematic security analysis for Sprout-like stream
ciphers. A dedicated TMD tradeoff attack framework is developed for such
designs based on the k-normality of the augmented function.

The goal of cryptanalysis is to recover the internal state which has generated
a sample segment, and if possible, given the internal state, to further restore the
secret key. There are two phases in the framework: the pre-processing phase and
the processing phase. The offline pre-processing phase is performed only once
and is independent of the employed secret key and the keystream sample.
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3.1 Pre-Processing Phase

In the offline pre-processing phase, some tables are prepared which will be used
later in the processing phase. Given the parameters l1, l2 and b, f, d, e, x, y, define
a two-dimensional counter array C̄ = [Ct−y, ..., Ct−1, Ct, Ct+1, ..., Ct+(x−1)], we
construct the State-Keystream pair tables as follows.

1. Under the assumptions in the model, construct a system of equations which
implies a “special” state (Lt, N t) satisfying the following conditions.
– (1.1) H(b,f)(PLt, PN t) = 0b+f+1 and l(qLt+i, qN t+i) = 0, for i = −b, ...,

−1, 0, 1, ..., f .
– (1.2) u(rLt+i, rN t+i) = 0 for i = 0, 1, ..., x − 1, from which we can get the

output bits zt+f+1,...,zt+f+x.
– (1.3) u(rLt−j , rN t−j) = 0 for j = 1, ..., y, from which we can get the output

bits zt−b−1,...,zt−b−y.
2. Suppose Assumptions 3.2, 3.5 and 3.7 hold,

– if x − 1 ≤ e and y ≤ d, the above system of equations has only unknowns
from the state (Lt, N t).

– if x− 1 > e and y ≤ d, the unknowns from N t+1, N t+2,... will appear with
some non-linear equations:

N t+j+1 = G(N t+j ⊕ L1(L
t+j)) ⊕ L2(L

t+j) ⊕ Ct+j , j = 0, 1, ..., x − e − 2.

Define another counter array C̄′ = [Ct, Ct+1, ..., Ct+(x−e−2)], note that the
round constant vectors in C̄′ are involved in these equations.

– if x− 1 ≤ e and y > d, the unknowns from N t−1, N t−2,... will appear with
some nonlinear equations:

N t−j−1 = G′(N t−j⊕L′
1(L

t−j−1))⊕L′
2(L

t−j−1)⊕Ct−j−1, j = 0, 1, ..., y−d−1.

Define counter array C̄′ = [Ct−(y−d), ..., Ct−2, Ct−1], the round constant
vectors in C̄′ are involved in these equations.

– if x − 1 > e and y > d, the unknowns from N t+1, N t+2,... and N t−1,
N t−2,... will appear with some nonlinear equations:

Nt+j+1 = G(Nt+j ⊕ L1(L
t+j)) ⊕ L2(L

t+j) ⊕ Ct+j , j = 0, 1, ..., x − e − 2,

Nt−j−1 = G′(Nt−j ⊕ L1′ (Lt−j−1)) ⊕ L2′ (Lt−j−1) ⊕ Ct−j−1, j = 0, 1, ..., y − d − 1.

Define counter array C̄′ = [Ct−(y−d), ..., Ct−1, Ct, Ct+1, ..., Ct+(x−e−2)], the
round constant vectors in C̄′ are involved in these equations.

3. For each possible counter array C̄′, solve the constructed system of equations
and get the special states (Lt, N t) satisfying 1 and 2. Memorize the special
state (Lt, N t) in the first column of a row in table TC̄′ , further for this state
and for each possible counter array C̄∗ = C̄\C̄′, get the corresponding (x+y)
output bits zt−b−1, ..., zt−b−y

︸ ︷︷ ︸
y

, zt+f+1, ..., zt+f+x
︸ ︷︷ ︸

x

and store them in the second

column as a sub-row in table TC̄′ .
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Remarks. Denote the number of rows (in the first column) of table TC̄′ as 2r,
if r < x + y, we only need to store (x + y − r) output bits in the second column,
indexed by r-bit of the output. Next, let Z(b+f+1)

t = [zt−b, ..., zt, ..., zt+f ] ∈
F b+f+1
2 , then an internal state satisfying the condition (1.1) implies Z(b+f+1)

t =
0b+f+1. Further, for each counter array C̄′, N t+1,...,N t+x and N t−1,...,N t−y can
be computed directly from a “special” state (Lt, N t) according to the non-linear
state updating function without involving the secret key.

3.2 Processing Phase

Now we discuss how to recover the internal state which has generated a sample
segment, and if possible, given the internal state, to further restore the secret
key. The following two propositions have provided us a direct way of key recovery
from an internal state candidate and some keystream bits.

Proposition 1. For a special state (Lt, N t) satisfying the conditions (1.1) and
(1.2), N t+1,...,N t+x can be computed directly from the complete state (Lt, N t)
and the non-linear state updating function without involving the secret key.
Besides, if u(rLt+x, rN t+x) = 1, we may get some secret key information
R(t+x,K) when the keystream bit zt+f+x+1 is known. Further, more key infor-
mation R(t+x+j,K), j = 0, 1, ... will probably be obtained when more keystream
bits zt+f+x+j+1, j = 0, 1, ... are known.

Proof. The first half is clear from the condition (1.2).

For a special state (Lt, N t), if u(rLt+x, rN t+x) = 1, the secret key information
R(t + x,K) is incorporated into the updating of the non-linear part from N t+x

to N t+x+1. One can check that the keystream bit zt+f+x+1 is dependent on
N t+x+1. In a word, R(t + x,K) is likely to affect (if u(rLt+x, rN t+x) = 1)
the keystream bit zt+f+x+1. Accordingly, we may obtain some key information
R(t + x,K) from zt+f+x+1. This procedure can be repeated many times. �

Similar to the proof of Proposition 1, we have the following proposition.

Proposition 2. For a special state (Lt, N t) satisfying the conditions (1.1) and
(1.3), N t−1,...,N t−y can be computed directly from the complete state (Lt, N t)
and the non-linear state updating function without involving the secret key.
Besides, if u(rLt−y−1, rN t−y−1) = 1, we may get some key information R(t−y−
1,K) when the keystream bit zt−b−y−1 is known. Further, more key information
R(t − y − j,K), j = 1, 2, ... will probably be obtained when more keystream bits
zt−b−y−j, j = 1, 2, ... are known.

By utilizing the pre-computed tables and the given keystream sample, the
processing phase is carried out as follows.
The Internal State Recovery Algorithm. Given the parameters b, f, x, y,
the tables TC̄′ , and the keystream sample {zt}t≥0, the processing steps are as
follows.
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1. Search the keystream sequence {zt}t for the next non-considered block of
(b+f +1) zeros. If there are no more blocks, output a flag that the algorithm
has failed.

2. For each detected block, compute the corresponding counter array C̄, C̄′ and
C̄∗ from the time t, compare the x-bit segment of the keystream subsequent
to the block and y-bit segment prior to the block with the memorized (x+y)-
bit segments in the second column (sub-row is indexed by C̄∗) of the table
TC̄′ , and do the following:
– If the matching does not exist, go the processing Step 1.
– If the (x + y)-bit output segment matches with a segment in table TC̄′ , go

to Step 3.
3. Read the corresponding state, and if appropriate, recover (part of) the secret

key according to Propositions 1 and 2 from this state and more keystream
bits.

3.3 Complexity Analysis

In the Sprout-like model, the keystream bit is generated as zt = h(pLt, pN t) ⊕
l(qLt, qN t). For the (b, f) derived from Assumption 3.3, we define a flat V (b,f)

of dimension dim(V (b,f)) such that H(b,f) = 0b+f+1 over it. i.e.,

V (b,f) = {(Lt, N t) : H(b,f)(PLt, PN t) = 0b+f+1},

We have the following lemma which is closely related to the time complexity of
processing (table look-ups) of our proposed algorithm.

Lemma 1. Suppose Pr[u(·) = 0] = p, assume all the events in (1.1),(1.2) and
(1.3) are independent, then the probability that an internal state (Lt, N t) is a
special state satisfying the conditions (1.1), (1.2) and (1.3) simultaneously when
the keystream segment Z(b+f+1)

t = 0b+f+1 is

Pr
[
(Lt, N t) is a special state

∣
∣ Z(b+f+1)

t = 0b+f+1
]

=
1

2l1+l2−dim(V (b,f))
· px+y,

where V (b,f) is a flat such that H(b,f) = 0b+f+1 over it.

Proof. For any internal state (Lt, N t) and keystream segment Z(b+f+1)
t , the

underlying assumptions directly imply the following:

Pr
[
(Lt, N t) is a special state

]
=

1
2l1+l2−dim(V (b,f))

· 1
2b+f+1

· px+y,

and Pr
[
Z(b+f+1)

t = 0b+f+1
]

= 2−(b+f+1), and

Pr
[
Z(b+f+1)

t = 0b+f+1
∣
∣
∣ (Lt, N t) is a special state

]
= 1.
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On the other hand,

Pr
[
(Lt, N t) is a special state| Z(b+f+1)

t = 0b+f+1
]

=
Pr[(Lt,Nt) is a special state]·Pr

[
Z
(b+f+1)
t =0b+f+1

∣∣∣(Lt,Nt) is a special state
]

Pr
[
Z
(b+f+1)
t =0b+f+1

]

= 1

2l1+l2−dim(V (b,f))
· px+y

which yields the statement of the lemma. �

Theorem 1. Suppose V (b,f) is a flat such that H(b,f) = 0b+f+1 over it, then the
complexities of the proposed generic algorithm for cryptanalysis are as follows:

(1) The processing data complexity is D = 2l1+l2−dim(V (b,f)) ·2b+f+1 ·p−(x+y).
(2) The expected space complexity in the pre-processing phase is proportional

to the sum of number of rows in each table TC̄′ .
(3) The processing (table look-ups) time complexity is proportional to

2l1+l2−dim(V (b,f)) · p−(x+y).
(4) The pre-processing time complexity is equivalent to the workload for solv-

ing the system of equations constructed.

Proof. The data complexity is determined by the probability that an internal
state is a special state satisfying conditions (1.1), (1.2) and (1.3) simultane-
ously in the pre-processing phase, which is given in the proof of Lemma 1 as
2−(l1+l2−dim(V (b,f))) · 2−(b+f+1) · px+y. Thus we have D = 2l1+l2−dim(V (b,f)) ·
2b+f+1 · p−(x+y).

For each possible counter array C̄′, we have constructed the corresponding
table TC̄′ , thus the estimated space complexity is proportional to the sum of
number of rows in each table TC̄′ .

In the processing phase, the expected number of table look-ups depends on
the probability that an internal state (Lt, N t) is a special state satisfying the
conditions (1.1), (1.2) and (1.3) simultaneously when the keystream segment
Z(b+f+1)

t = 0b+f+1, which is given in Lemma 1 as 2−(l1+l2−dim(V (b,f))) · px+y.
Thus the number of table look-ups is 2l1+l2−dim(V (b,f)) · p−(x+y).

The pre-processing time complexity is determined by the workload for solving
the system of equations constructed. �

4 Cryptanalysis of Sprout

In this section, we apply the framework proposed in Sect. 3 to Sprout with the
comparisons to the previous relevant attacks.

4.1 Fitting into the Model

Sprout fits into the model with the parameters l1 = l2 = 40, which are the length
of LFSR and NFSR respectively. The keystream bit zt at time t is generated as

zt = h(nt+4, lt+6, lt+8, lt+10, lt+32, lt+17, lt+19, lt+23, nt+38)
⊕lt+30 ⊕ nt+1 ⊕ nt+6 ⊕ nt+15 ⊕ nt+17 ⊕ nt+23 ⊕ nt+28 ⊕ nt+34,
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where h(·) = nt+4lt+6 ⊕ lt+8lt+10 ⊕ lt+32lt+17 ⊕ lt+19lt+23 ⊕ nt+4lt+32nt+38.
As described in Sect. 2, whether the secret key is involved in the NFSR state

updating is determined by the value ut = lt+4⊕lt+21⊕lt+37⊕nt+9⊕nt+20⊕nt+29,
to fit in the model, we have rLt = {lt+4, lt+21, lt+37}, rN t = {nt+9, nt+20, nt+29}
and the two parameters d = 9, e = 10 such that

⋃10
i=−9 rN t+i ⊆ N t.

Let pLt = {lt+6, lt+8, lt+10, lt+17, lt+19, lt+23, lt+32}, pN t = {nt+4, nt+38},
qLt = {lt+30}, and qN t = {nt+1, nt+6, nt+15, nt+17, nt+23, nt+28, nt+34}. From
this we have b = 1, f = 1 to fit into the Sprout-like model. Given (b, f) = (1, 1),

H(1,1)(PLt, PN t) =
(
h(pLt−1, pN t−1), h(pLt, pN t), h(pLt+1, pN t+1)

)
,

where PLt = Lt
[5,11]∪Lt

[16,20]∪Lt
[22,24]∪Lt

[31,33] and PN t = N t
[3,5]∪N t

[37,39], thus
H(1,1)(·) is a (24, 3)-vectorial Boolean function.

Suppose nt+3 = nt+4 = nt+5 = 0, by a computer computation, there
are 12096(> 213) possible values for the following 16-bit of LFSR such that
H(1,1)(·) = 03:

P t = [lt+7lt+8lt+9lt+10||lt+11lt+16lt+17lt+18

||lt+19lt+20lt+22lt+23||lt+24lt+31lt+32lt+33] ⊆ Lt.

For example, P t = 0x0000, 0x8000, 0x4000, 0xc000, ... when denoted by
hexadecimal digits. We denote all the 12096(> 213) values of P t as a1, a2, a3,
a4,...,a12096 such that a1 = 0x0000, a2 = 0x8000, a3 = 0x4000, a4 = 0xc000,...
respectively.

For Sprout, we will use 213 flats defined as follows:

Vi = {(Lt, N t) : P t = ai and nt+j = 0, j = 3, 4, 5}, i = 1, ..., 213

Note that in each Vi, 19 bits of (Lt, N t) are fixed, then each Vi has a dimension
of dim(Vi) = 61 , and H(1,1)(·) = 03 over Vi. Further we define a flat V as
V =

⋃213

i=1 Vi. Thus the dimension of V is dim(V ) = 74.

4.2 Cryptanalysis

We first discuss how to construct tables that will be used in the processing phase.

Pre-processing Phase. Given the parameters x, y and do the following:

1. Define a counter array as C = [c4t−y, ..., c4t−1, c
4
t , c

4
t+1, ..., c

4
t+(x−1)] of size |C| =

x + y. For an internal state (Lt, N t) such that nt+3 = nt+4 = nt+5 = 0 (thus
there are 77 unknowns), construct a system of equations which implies a state
(Lt, N t) satisfying the following conditions.
– (a). l(qLt+i, qN t+i) = 0, for i = −1, 0, 1.
– (b). ut+i = 0 for i = 0, 1, ..., x − 1, from which we can get the output

bits zt+2,...,zt+x+1 (suppose the round constants c4t , c
4
t+1, ..., c

4
t+(x−1) are

known).
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– (c). ut−j = 0 for j = 1, ..., y, from which we can get the output bits
zt−2,...,zt−y−1 (suppose the round constants c4t−1, c

4
t−2, ..., c

4
t−y are

known).
2. We discuss it in the following situations:

– Case 1: If x ≤ 11 and y ≤ 9, we have the corresponding system of (3 +
x + y) linear equations with only 77 unknowns from the state (Lt, N t): 40
unknowns from Lt and 37 unknowns from N t.

⎧⎨
⎩

lt+30+k ⊕ (⊕i∈A nt+i+k

)
= 0, k = −1, 0, 1

lt+4+i ⊕ lt+21+i ⊕ lt+37+i ⊕ nt+9+i ⊕ nt+20+i ⊕ nt+29+i = 0, i = 0, 1, ..., x − 1
lt+4−j ⊕ lt+21−j ⊕ lt+37−j ⊕ nt+9−j ⊕ nt+20−j ⊕ nt+29−j = 0, j = 1, ..., y

– Case 2: If x ≥ 12 and y ≤ 9, in addition to the 77 unknowns from
the state (Lt, N t), the unknowns nt+40, nt+41,...,nt+40+(x−12) will appear
with some non-linear equations. Thus we obtain a system of equations
with (66 + x) unknowns, and (2x + y − 8) equations ((3 + x + y) linear
equations and (x−11) non-linear equations). Define another counter array
C ′ = [c4t , c

4
t+1, ..., c

4
t+(x−12)] of size |C ′| = x − 11, note that the round

constants in C ′ are involved in this system.
⎧⎪⎪⎨
⎪⎪⎩

lt+30+k ⊕ (⊕i∈A nt+i+k

)
= 0, k = −1, 0, 1

lt+4+i ⊕ lt+21+i ⊕ lt+37+i ⊕ nt+9+i ⊕ nt+20+i ⊕ nt+29+i = 0, i = 0, 1, ..., x − 1
lt+4−j ⊕ lt+21−j ⊕ lt+37−j ⊕ nt+9−j ⊕ nt+20−j ⊕ nt+29−j = 0, j = 1, ..., y

nt+40+m ⊕ lt+m ⊕ c4t+m ⊕ g(Nt+m) = 0, m = 0, 1, ..., x − 12 (non − linear)

– Case 3: If x ≤ 11 and y ≥ 10, in addition to the 77 unknowns from the
state (Lt, N t), the unknowns nt−1, nt−2,...,nt−(y−9) will appear with some
non-linear equations. Thus we obtain a system of equations with (68 + y)
unknowns, and (x+2y−6) equations ((3+x+y) linear equations and (y−9)
non-linear equations). Define C ′ = [c4t−(y−9), ..., c

4
t−1] of size |C ′| = y − 9,

the round constants in C ′ are involved in this system.
⎧⎪⎪⎨
⎪⎪⎩

lt+30+k ⊕ (⊕i∈A nt+i+k

)
= 0, k = −1, 0, 1

lt+4+i ⊕ lt+21+i ⊕ lt+37+i ⊕ nt+9+i ⊕ nt+20+i ⊕ nt+29+i = 0, i = 0, 1, ..., x − 1
lt+4−j ⊕ lt+21−j ⊕ lt+37−j ⊕ nt+9−j ⊕ nt+20−j ⊕ nt+29−j = 0, j = 1, ..., y
nt−n ⊕ lt−n ⊕ c4t−n ⊕ g′(Nt−n+1) = 0, n = 1, ..., y − 9 (non − linear)

– Case 4: If x ≥ 12 and y ≥ 10, in addition to the 77 unknowns from
the state (Lt, N t), the unknowns nt+40, nt+41,...,nt+40+(x−12) and nt−1,
nt−2,...,nt−(y−9) will appear with some non-linear equations. Thus we
obtain a system of equations with (57+x+y) unknowns, and (2x+2y− 17)
equations ((3+x+y) linear equations and (x+y−20) non-linear equations).
Define C ′ = [c4t−(y−9), ..., c

4
t−1, c

4
t , c

4
t+1, ..., c

4
t+(x−12)] of size |C ′| = x+y−20,

the round constants in C ′ are involved in the system.
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

lt+30+k

(⊕
i∈A nt+i+k

)
= 0, k = −1, 0, 1

lt+4+i ⊕ lt+21+i ⊕ lt+37+i ⊕ nt+9+i ⊕ nt+20+i ⊕ nt+29+i = 0, i = 0, 1, ..., x − 1
lt+4−j ⊕ lt+21−j ⊕ lt+37−j ⊕ nt+9−j ⊕ nt+20−j ⊕ nt+29−j = 0, j = 1, ..., y

nt+40+m ⊕ lt+m ⊕ c4t+m ⊕ g(Nt+m) = 0, m = 0, 1, ..., x − 12 (non − linear)

nt−n ⊕ lt−n ⊕ c4t−n ⊕ g′(Nt−n+1) = 0, n = 1, ..., y − 9 (non − linear)

3. For each possible counter array C ′, solve the constructed system of equations.
Observe that all the round constants in C ′ are added to the system linearly,
by guessing at most 274−(x+y) appropriate unknowns we can solve the system
and get 274−(x+y) solutions (Lt, N t) for each possible counter array C ′.
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4. For each possible counter array C ′, check each of the 274−(x+y) solutions
(Lt, N t). If (Lt, N t) ∈ Vi, i.e., P t = ai for any i = 1, 2, ..., 213, store the
61-bit (L∗t, N∗t) in the first column of a row in table TC′,i, where L∗t = Lt\P t

and N∗t = N t\{nt+3, nt+4, nt+5}. Further for this state and for each possible
round constants of C∗ = C\C ′, get the corresponding (x + y) output bits
(zt−y−1, ..., zt−2, zt+2, ..., zt+x+1) and put them in the second column as a
sub-row in table TC′,i. Thus there are expected 258−x−y rows in the first
column and 258−x−y × Count(|C|)

Count(|C′|) rows in the second column, where Count(n)
represents the number of all the possible counter arrays of size n.

We list in Table 1 the number of all the possible counter arrays Count(n) of
size n.
Table 1. The size of the counter array n and the number Count(n) for all the possible
counter arrays

n 6 7 8 9 10 11 12 13 14 15 16 17

Count(n) 12 14 16 18 20 22 24 26 28 30 32 33

n 18 19 20 21 22 23 24 25 26 27 28 29

Count(n) 35 37 39 41 43 45 47 49 51 53 55 57

n 30 31 32 33 34 35 36 37 38 39 40 41

Count(n) 59 61 63 64 65 66 67 68 69 70 71 72

n 42 43 44 45 46 47 48 49 50 51 52 53

Count(n) 73 74 75 76 77 78 79 80 80 80 80 80

Remarks. First, it can be seen that, the necessary and sufficient condition for a
state (Lt, N t) to be a “special” state is that (Lt, N t) ∈ V and the conditions (a),
(b) and (c) hold. Second, for each possible counter array C, nt+40,...,nt+40+(x−1)

and nt−1,...,nt−y can be computed directly from a special state (Lt, N t) accord-
ing to the state updating of NFSR without involving the key information. Third,
denote the number of rows (in the first column) of table TC′,i as 2ri , if ri < x+y,
we only need to store (x + y − ri) output bits in the second column, indexed
by ri-bit of the output. Finally, in the pre-processing phase, we have obtained
Count(|C ′|) × 213 tables TC′,i, each having 258−x−y rows in the first column to
store “special” states and 258−x−y × Count(|C|)

Count(|C′|) rows in the second column to
store the corresponding output bits.

Lemma 2. The probability that an internal state (Lt, N t) is a special state
( such that (Lt, N t) ∈ V and the conditions ( a), (b) and ( c) hold) when the
keystream segment Z(3)

t = 03 is given by the following:

Pr
[
(Lt, N t) is a special state

∣
∣ Z(3)

t = 03
]

= 2−(6+x+y).

Proof. For any internal state (Lt, N t) and keystream segment Z(3)
t , the under-

lying assumptions directly imply the following:

Pr
[
(Lt, N t) is a special state

]
=

1
240+40−dim(V )

× 1
23+x+y

= 2−(9+x+y),
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and Pr
[
Z(3)

t = 03
]

= 2−3, and

Pr
[
Z(3)

t = 03
∣
∣
∣ (Lt, N t) is a special state

]
= 1.

On the other hand,

Pr
[
(Lt, N t) is a special state| Z(3)

t = 03
]

=
Pr[(Lt,Nt) is a special state]×Pr

[
Z
(3)
t =03

∣∣∣(Lt,Nt) is a special state
]

Pr
[
Z
(3)
t =03

]

= 2−(6+x+y).

which yields the statement of the lemma. �

Next, we will present a State Checking and Key Recovery Mechanism specified
for Sprout, by which we have the opportunity to check whether a state candidate
is correct, and if so, further recover the key for a correct guess.
State Checking and Key Recovery Mechanism. For a state candidate at
time t, Lt = [lt, lt+1, ..., lt+39], N t = [nt, nt+1, ..., nt+39], create an 80-bit vector
K for the possible values associated with it:

1. Compute the value of nt−1 given by the keystream bit zt−2 as nt−1 = zt−2 ⊕
h(nt+2, lt+4, lt+6, lt+8, lt+30, lt+15, lt+17, lt+21, nt+36)⊕ lt+28 ⊕(⊕

i∈A′ nt+i−2

)

where A′ = {6, 15, 17, 23, 28, 34}. And compute lt−1 by the LFSR updating
equation as lt−1 = lt+39 ⊕ lt+33 ⊕ lt+24 ⊕ lt+19 ⊕ lt+14 ⊕ lt+4, and deduce
from nt−1, lt−1 the value k∗

t−1 by the NFSR updating equation as k∗
t−1 =

nt+39 ⊕ c4t−1 ⊕ lt−1 ⊕ g(N t−1).
2. Compute the value of ut−1 = lt+3 ⊕ lt+20 ⊕ lt+36 ⊕ nt+8 ⊕ nt+19 ⊕ nt+28 and

combine it with the value of k∗
t−1 obtained in Step 1:

– if ut−1 = 0 and k∗
t−1 = 0, set t → t − 1 and go back to Step 1.

– if ut−1 = 0 and k∗
t−1 = 1, there is a contradiction, conclude that this guess

for state is not correct and stop.
– if ut−1 = 1 and k∗

t−1 = 0, check if k(t−1) mod 80 has already been set in K.
If no, set it to 0. Set t → t − 1 and go back to Step 1. Else, if there is a
contradiction, conclude that this guess for state is not correct and stop.

– if ut−1 = 1 and k∗
t−1 = 1, check if k(t−1) mod 80 has already been set in K.

If no, set it to 1. Set t → t − 1 and go back to Step 1. Else, if there is a
contradiction, conclude that this guess for state is not correct and stop.

Similar to the statements in [8], the probability that a state candidate survives
for 2r clocks is 2−r. On average for each 2 clocks, half of the possible guesses will
be eliminated. For 2s candidate states, the average number of clocks for each
elimination is

s∑

i=0

2 × 2s−i

2s
=

s∑

i=0

1
2i−1

≈ 4

We can conclude that 4 clocks of output is enough for checking the validity of a
candidate state and the recovery of the key bits for each candidate.
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Next we illustrate the algorithm for the internal state and key recovery in
the processing phase.
Processing Phase. Given the parameter x, y, the corresponding Count(|C ′|)×
213 tables TC′,i and the given keystream sample {zt}t≥0, the processing steps
are as follows:

1. Search the keystream sequence {zt}t for the next non-considered block of 3
zeros. If there are no more blocks, output a flag that the algorithm has failed
to recover the key.

2. For each detected block, compute the corresponding counter array C, C ′ and
C∗ from the time t. For i = 1, ..., 213, compare the x-bit segment of the
keystream subsequent to the block and y-bit segment prior to the block with
the memorized (x+y)-bit segments in the second column (sub-row is indexed
by C∗) of the table TC′,i, and do the following:
– If the matching does not exist, go to the processing Step 1.
– If the (x+ y)-bit sample segments match with a segment in table TC′,i, go

to Step 3.
3. Read the corresponding state, check whether it is a correct state or not and

recover the secret key by the State Checking and Key Recovery Mechanism
stated above. If this state survives, recover and output the key, else go to
Step 1.

Theorem 2. For two positive integers x, y, the dedicated TMD tradeoff on
Sprout has complexities as follows: (1) The data complexity for the processing is
D = 29+x+y; (2) The expected memory M(-bit) of pre-processing is computed as
follows:

M =

⎧
⎨
⎩

Count(|C′|) × 271−x−y ×
[
61 + Count(x+y)

Count(|C′|) · (x + y)
]
, if x + y < 30,

Count(|C′|) × 271−x−y ×
[
61 + Count(x+y)

Count(|C′|) · (2x + 2y − 58)
]
, if x + y ≥ 30.

(3) The time complexity of processing is 270.66−x−y Sprout encryptions along
with 26+x+y table look-ups. (4) The time complexity of pre-processing is propor-
tional to 274−x−y.

Proof. The data complexity is determined by the probability that an internal
state (Lt, N t) is a special state (such that (Lt, N t) ∈ V and the conditions (a),
(b) and (c) hold), which is given in the proof of Lemma 2 as 2−(9+x+y). Thus
we have D = 29+x+y.

As for the memory, we need Count(|C ′|) × 213 tables TC′,i, each having
258−x−y rows in the first column to store 61-bit “special” states (3+16=19-bit
are fixed for each table) and 258−x−y × Count(|C|)

Count(|C′|) rows in the second column
to store the corresponding output bits. If x + y < 30, each row in the second
column contains (x+y) output bits; if x+y ≥ 30, each row in the second column
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contains 2(x + y) − 58 output bits, indexed by 58 − x − y bits of the output.
Hence the memory M(-bit) is computed as follows:

M =

⎧⎨
⎩

Count(|C′|) × 213 × 258−x−y ×
[
61 + Count(x+y)

Count(|C′|) · (x + y)
]
, if x + y < 30,

Count(|C′|) × 213 × 258−x−y ×
[
61 + Count(x+y)

Count(|C′|) · (2x + 2y − 58)
]
, otherwise.

In the processing phase, the expected number of table look-ups is determined
by the probability that an internal state (Lt, N t) is a special state when the
keystream segment Z(3)

t = 0, which is given in Lemma 2 as 2−(6+x+y). Thus
the number of table look-ups is 26+x+y. For each (x + y)-bit keystream bits,
we have 271−2(x+y) state candidates producing the output. As stated before, 4
more clocks of output is enough for checking the validity of the state and the
recovery of the key bits for each candidate. In total, the time complexity is
26+x+y × 271−2(x+y) × 4 = 279−x−y, which is equivalent to 279−x−y

324 = 270.66−x−y

Sprout encryptions.
The pre-processing time complexity is equivalent to solving the constructed

system of equations. We see that by guessing at most 274−(x+y) appropriate
unknowns we can solve the system for each possible counter array C ′. As the
counter values are added to the systems linearly, we can do the Gauss elimination
only once to store separate tables for each of the Count(|C ′|) counter arrays. �

4.3 Detailed Workload for x = 16, y = 15

We now focus on the workload to solve the system of equations for x = 16,
y = 15. For a state (Lt, N t), let nt+j = 0, j = 3, 4, 5 and define N∗t =
N t\{nt+3, nt+4, nt+5}. We need to solve the following systems of equations,
which amounts to 34 linear equations, 11 non-linear equations and 88 unknowns
Lt,N∗t,nt+40,nt+41,...,nt+44,nt−1,nt−2,...,nt−6.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 : lt+29 ⊕ nt ⊕ nt+5 ⊕ nt+14 ⊕ nt+16 ⊕ nt+22 ⊕ nt+27 ⊕ nt+33 = 0
2 : lt+30 ⊕ nt+1 ⊕ nt+6 ⊕ nt+15 ⊕ nt+17 ⊕ nt+23 ⊕ nt+28 ⊕ nt+34 = 0
3 : lt+31 ⊕ nt+2 ⊕ nt+7 ⊕ nt+16 ⊕ nt+18 ⊕ nt+24 ⊕ nt+29 ⊕ nt+35 = 0
4 : ut−15 = lt−11 ⊕ lt+6 ⊕ lt+22 ⊕ nt−6 ⊕ nt+5 ⊕ nt+14 = 0
5 : ut−14 = lt−10 ⊕ lt+7 ⊕ lt+23 ⊕ nt−5 ⊕ nt+6 ⊕ nt+15 = 0
......
18 : ut−1 = lt+3 ⊕ lt+20 ⊕ lt+36 ⊕ nt+8 ⊕ nt+19 ⊕ nt+28 = 0
19 : ut = lt+4 ⊕ lt+21 ⊕ lt+37 ⊕ nt+9 ⊕ nt+20 ⊕ nt+29 = 0
20 : ut+1 = lt+5 ⊕ lt+22 ⊕ lt+38 ⊕ nt+10 ⊕ nt+21 ⊕ nt+30 = 0
......
34 : ut+15 = lt+19 ⊕ lt+36 ⊕ lt+52 ⊕ nt+24 ⊕ nt+35 ⊕ nt+44 = 0
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

35 : nt+40 ⊕ lt ⊕ c4t ⊕ g(N t) = 0
36 : nt+41 ⊕ lt+1 ⊕ c4t+1 ⊕ g(N t+1) = 0
......
39 : nt+44 ⊕ lt+4 ⊕ c4t+4 ⊕ g(N t+4) = 0
40 : nt−1 ⊕ lt−1 ⊕ c4t−1 ⊕ g′(N t) = 0
41 : nt−2 ⊕ lt−2 ⊕ c4t−2 ⊕ g′(N t−1) = 0
......
45 : nt−6 ⊕ lt−6 ⊕ c4t−6 ⊕ g′(N t−5) = 0

In the following part, Lt is treated as a column vector of size 40. First of all, we
choose the 40 equations numbered by 1,2,...,34 and 40,41,...,45 from the above
systems to represent Lt by the unknowns N∗t,nt+40,nt+41,...,nt+44,nt−1,nt−2,...,
nt−6 as M · Lt = v, where M is the 40 × 40 coefficient matrix of Lt, and v is a
column vector of size 40, and

M · Lt = [lt+29, lt+30, lt+31, lt−11 ⊕ lt+6 ⊕ lt+22, ...,

lt+19 ⊕ lt+36 ⊕ lt+52, lt−1, ..., lt−6]T ,

and

v = [
⊕

i∈Bnt+i−1,
⊕

i∈Bnt+i,
⊕

i∈Bnt+i+1, nt−6 ⊕ nt+5 ⊕ nt+14, ...,
nt+24 ⊕ nt+35 ⊕ nt+44, nt−1 ⊕ c4t−1 ⊕ g′(N t), ..., nt−6 ⊕ c4t−6 ⊕ g′(N t−5)]T .

We have checked that rank(M) = 39. Take lt as a free variable, we obtain an
invertible coefficient matrix of size 39×39. Let L′t = Lt\{lt}, then each variable
in L′t can be uniquely represented as linear combinations of N∗t,nt+40,nt+41,...,
nt+44,nt−1,nt−2,...,nt−6 and lt, together with 1 non-linear equation with these
unknowns. Plugging in the values lt+1,lt+2,lt+3,lt+4 in equations numbered by
36,...,39, we get a system with 6 non-linear equations and 49 unknowns N∗t,nt+40,
nt+41,...,nt+44,nt−1,nt−2,...,nt−5 and lt. Define a set GUESS = {nt+j : j ∈ S} of
size 33, where

S = {−1, 0, 1, 3, 4, 6, 7, 9, 11, 12, 13, 15, 16, 17, 19, 20, 21,
23, 24, 25, 26, 28, 30, 31, 32, 33, 34, 35, 36, 37, 39, 40, 41}.

By guessing the 33 unknowns in the set GUESS,

– If nt+9 = 0, we come up with 232 systems with 6 linear equations and 16
unknowns; For each of these systems, we do the Gauss elimination once by
choosing an invertible coefficient matrix of 6 × 6. The systems can be solved
with 232 × (63 + 210) = 242.27 basic operations.

– If nt+9 = 1, we further guess nt+8, thus we get 233 systems with 6 linear
equations and 15 unknowns. Similarly, the systems can be solved with 233 ×
(63 + 29) = 242.51 basic operations.

In total, the pre-computation is approximately 243.39 basic operations.
We list in Table 2 more instances that illustrate the complexities of the TMD

tradeoff attacks on Sprout. The Comparison of our TMD tradeoff attacks with
the previous ones in [8] and [12] are presented in Table 3. With carefully chosen
attack parameters, our method is at least 220 times faster than the attack in
[12], 210 times faster than the attack in [8] with much less memory.
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Table 2. The complexity issues of the attack on Sprout

x, y Count(x + y) Data Memory(-bit),(TB) Time Pre-computation

16,14 59 239 251.39-bit, 336 TB 240.66 244.03

16,15 61 240 250.63-bit, 198 TB 239.66 243.39

17,15 63 241 249.85-bit, 115 TB 238.66 243.81

17,16 64 242 249.03-bit, 65 TB 237.66 245.36

18,16 65 243 248.20-bit, 36 TB 236.66 247.09

Table 3. Comparison of our time/memory/data Tradeoff attacks with the previous
ones

Attack Data Memory(-bit),(TB) Time Pre-computation

[12] 112 ≥ 252.32-bit, ≥ 639 TB 266.80 268.87

[8] 240 252.58-bit, 770 TB 230.66 254.29

[8] 241 252.64-bit, 399 TB 229.66 ≈ 256.70

[8] 242 250.69-bit, 207 TB 228.66 ≈ 259.07

[8] 243 249.74-bit, 108 TB 227.66 ≈ 261.42

ours 239 251.39-bit, 336 TB 240.66 244.03

ours 240 250.63-bit, 198 TB 239.66 243.39

ours 241 249.85-bit, 115 TB 238.66 243.81

ours 242 249.03-bit, 65 TB 237.66 245.36

ours 243 248.20-bit, 36 TB 236.66 247.09

5 Practical Implementation

To verify the validity of our attack, we experimentally test it on a reduced cipher
with similar structure and properties as Sprout. In general, the simulation results
match well with the theoretical estimates.

5.1 The Reduced Version of Sprout

Similarly, there is an 8-bit counter register, of which the lower 6 bits are a
modulo 40 counter, denoted by (c5t , c

4
t , c

3
t , c

2
t , c

1
t , c

0
t ) at a given round t. The 3-th

LSB c3t of the counter is employed in the keystream generation. It should be
noted that, c3t has a cycle of length 40, i.e., in each cycle, this bit takes the
values 0, 0, ..., 0

︸ ︷︷ ︸
8

1, 1, ..., 1
︸ ︷︷ ︸

8

0, 0, ..., 0
︸ ︷︷ ︸

8

1, 1, ..., 1
︸ ︷︷ ︸

8

0, 0, ..., 0
︸ ︷︷ ︸

8

.

The reduced version of Sprout uses a 20-bit LFSR and a 20-bit NFSR. At
time t, the LFSR state is Lt = [lt, lt+1, ..., lt+19], and it is updated recursively
by f as lt+20 = lt ⊕ lt+1 ⊕ lt+14 ⊕ lt+15 ⊕ lt+16 ⊕ lt+19. The NFSR state N t =
[nt, nt+1, ..., nt+19] is updated recursively by a nonlinear feedback function g as
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nt+20 = k∗
t ⊕ c3t ⊕ lt ⊕ g(N t)

= k∗
t ⊕ c3t ⊕ lt ⊕ nt ⊕ nt+13 ⊕ nt+15 ⊕ nt+17 ⊕ nt+19

⊕ nt+2nt+5 ⊕ nt+3nt+7 ⊕ nt+8nt+9 ⊕ nt+1nt+14 ⊕ nt+16nt+18 ⊕ nt+6nt+12

⊕ nt+13nt+16nt+17nt+18 ⊕ nt+10nt+11nt+12 ⊕ nt+4nt+7nt+11.

Let ut be ut = lt+1 ⊕ lt+4 ⊕ lt+17 ⊕ nt+4 ⊕ nt+10 ⊕ nt+14, then

k∗
t =

{
kt, 0 ≤ t ≤ 39
kt(mod 40) · ut, otherwise

Given the internal state at time t, the keystream bit zt is generated as

zt = h(nt+4, lt+6, lt+8, lt+10, lt+12, lt+17, lt+19, lt+3, nt+18) ⊕ lt+10 ⊕
(⊕

i∈A
nt+i

)
,

where A = {1, 3, 6, 15, 17}, and the filter function h(·) is defined as

h(·) = nt+4lt+6 ⊕ lt+8lt+10 ⊕ lt+12lt+17 ⊕ lt+19lt+3 ⊕ nt+4lt+12nt+18.

During the key/IV setup phase, since the key is fixed, first load the IV in
the following way: ni = ivi, 0 ≤ i ≤ 19; li = ivi+20, 0 ≤ i ≤ 14 and li = 1, 15 ≤
i ≤ 18, l19 = 0. Then run the cipher 160 rounds as follows.

– the LFSR update function is changed to lt+20 = zt ⊕ f(Lt).
– the NFSR update function is changed to nt+20 = zt ⊕ k∗

t ⊕ lt ⊕ c3t ⊕ g(Nt).
– no keystream bit is generated.

After the initialization phase, the keystream generation phase starts and there
is no feedback keystream anymore.

5.2 Attack Process

Suppose lt+4 = 0, nt+3 = nt+4 = nt+5 = 0, by a computer computation,
there are 1728(> 210) possible values for the following 13-bit of LFSR such
that H(1,1)(·) is 0 (∈ F 3

2 ).

P t = [lt+2||lt+3lt+7lt+8lt+9||lt+10lt+11lt+12lt+13||lt+16lt+17lt+18lt+19] ⊆ Lt.

For example, P t = 0x0000, 0x0001, ... We denote all the 1728 values of P t

as a1,a2,...,a1024,...,a1728, where the first 1024 values are a1 = 0x0000, a2 =
0x0001,...,a1024 = 0x1ba1. For convenience, several notations are defined as
follows:

– L∗t = Lt\({lt+4} ∪ P t) of 6-bit.
– N∗t = N t\{nt+3, nt+4, nt+5} of 17-bit.
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– Define C = [c3t−5, ..., c
3
t−1, c

3
t , c

3
t+1, ..., c

3
t+5] of length 11, the employed counter

array. There are 21 different counter arrays, denoted by hexadecimal numbers,
they are

0x007, 0x00f, 0x01f, 0x03f, 0x07f, 0x0ff, 0x1fe,
0x3fc, 0x7f8, 0x7f0, 0x7e0, 0x7c0, 0x780, 0x700,
0x601, 0x403, 0x600, 0x400, 0x000, 0x001, 0x003,

– Define C ′ = [c3t−1] of length 1, and C∗ = [c3t−5, ..., c
3
t−2, c

3
t , c

3
t+1, ..., c

3
t+5] of

length 10. There are 2 different values for C ′, denoted as c′
1 = 0x0, c′

2 = 0x1.
If c3t−1 = 0x0, there are 13 different values for C∗, they are 0x007, 0x00f,
0x01f,0x03f,0x3c0,0x380,0x301,0x203,0x300,0x200,0x000,0x001,0x003; If
c3t−1 = 0x1, there are 8 different values for C∗, they are 0x03f,0x07f,0x0fe,
0x1fc,0x3f8,0x3f0,0x3e0,0x3c0.

Pre-processing Phase. For any state (Lt, N t), suppose lt+4 = 0, nt+3 =
nt+4 = nt+5 = 0. In the pre-processing phase, we construct 2 × 210 tables
Tc′

j ,ai
indexed with c′

j and ai, for c′
1 = 0x0, c′

2 = 0x1 and a1 = 0x0000, a2 =
0x0001,...,a1024 = 0x1ba1. In Table Tc′

j ,ai
, 23-bit (L∗t, N∗t) are stored in the

first column of a row such that
⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

P t = [lt+2||lt+3lt+7lt+8lt+9||lt+10lt+11lt+12lt+13||lt+16lt+17lt+18lt+19] = ai

lt+10+i ⊕ nt+1+i ⊕ nt+3+i ⊕ nt+6+i ⊕ nt+15+i ⊕ nt+17+i = 0, i = −1, 0, 1
ut+j = lt+1+j ⊕ lt+4+j ⊕ lt+17+j ⊕ nt+4+j ⊕ nt+10+j ⊕ nt+14+j = 0, j = 0, 1, ..., 5
ut−k = lt+1−k ⊕ lt+4−k ⊕ lt+17−k ⊕ nt+4−k ⊕ nt+10−k ⊕ nt+14−k = 0, k = 1, 2, ..., 5
nt−1 ⊕ lt−1 ⊕ c3t−1 ⊕ g′(N t) = 0 (non − linear)

Similarly, we can solve all the systems by choosing a set of unknowns as
GUESS = {nt, nt+1, nt+6, nt+7, nt+10, nt+11, nt+15, nt+16, nt+17} with approxi-
mately 223 basic operations. Besides, for each (c′

j , ai) pair, there are expected
29 solutions, we store the 23-bit (L∗t, N∗t) of the internal state (4+13=17-
bit are fixed for each table) in the first column of a row in table Tc′

j ,ai
.

Further for this state and for each possible round constants C∗, get the cor-
responding 11-bit output (zt−6, ..., zt−2, zt+2, ..., zt+7) and put them in the sec-
ond column as a sub-row indexed by C∗. The number of sub-row is 13 for
c′
1 = 0x0, while the number is 8 for c′

2 = 0x1. In total, the memory needed
is M = 210 × 29 × (23 + 11 × 13) + 210 × 29 × (23 + 11 × 8) ≈ 227.11-bit, i.e.,
17.3 MB1.

Next, we present the State Checking and Key Recovery Mechanism specified
for the reduced version of Sprout, which is similar to the one stated for Sprout.
State Checking and Key Recovery Mechanism. For a candidate state at
time t, Lt = [lt, lt+1, ..., lt+19], N t = [nt, nt+1, ..., nt+19], create a 40-bit vector
K for the possible values associated with it:

1 Since each table is expected to have 29 rows, we can only store 2 output bits in the
second column of each row, indexed by 9 bits of the output. Thus, the memory can
be reduced to 210 × 29 × (23 + 2 × 13) + 210 × 29 × (23 + 2 × 8) ≈ 225.46-bit, i.e.,
5.5 MB.



582 B. Zhang and X. Gong

1. Compute the value of nt−1 given by the keystream bit zt−2 as nt−1 = zt−2 ⊕
h(nt+2, lt+4, lt+6, lt+8, lt+10, lt+15, lt+17, lt+1, nt+16) ⊕ lt+8 ⊕ (⊕

i∈A′ nt+i−2

)

where A′ = {3, 6, 15, 17}. And compute lt−1 by the LFSR updating equation
as lt−1 = lt+19 ⊕ lt+18 ⊕ lt+15 ⊕ lt+14 ⊕ lt+13 ⊕ lt, and deduce from nt−1, lt−1

the value k∗
t−1 by the NFSR updating equation as k∗

t−1 = nt+19⊕c3t−1⊕lt−1⊕
g(N t−1).

2. Compute the value of ut−1 = lt ⊕ lt+3 ⊕ lt+16 ⊕ nt+3 ⊕ nt+9 ⊕ nt+13 and
combine it with the value of k∗

t−1 obtained in Step 1:
– if ut−1 = 0 and k∗

t−1 = 0, set t → t − 1 and go back to Step 1.
– if ut−1 = 0 and k∗

t−1 = 1, there is a contradiction, conclude that this guess
for state is not correct and stop.

– if ut−1 = 1 and k∗
t−1 = 0, check if k(t−1) mod 40 has already been set in K.

If no, set it to 0. Set t → t − 1 and go back to Step 1. Else, if there is a
contradiction, conclude that this guess for state is not correct and stop.

– if ut−1 = 1 and k∗
t−1 = 1, check if k(t−1) mod 40 has already been set in K.

If no, set it to 1. Set t → t − 1 and go back to Step 1. Else, if there is a
contradiction, conclude that this guess for state is not correct and stop.

By utilizing the pre-computed tables and the given keystream sample, the
processing phase is carried out as follows.
The Internal State Recovery Algorithm. Given the 2 × 210 tables Tc′

j ,ai
,

and the keystream sample {zt}t≥0 having at least 221 sample segments, the
processing steps are as follows:

1. Search the keystream sequence {zt}t≥6 for the next non-considered block of
3 zeros, i.e., zt−1ztzt+1 = 000. If there are no more blocks, output a flag that
the algorithm has failed.

2. For each detected block, compute the corresponding C ′ = [c3t−1]
Δ= c′ and

C∗ = [c3t−5, ..., c
3
t−2, c

3
t , c

3
t+1, ..., c

3
t+5]

Δ= c∗ from the time t. For a1 = 0x0000,
a2 = 0x0001,...,a1024 = 0x1ba1, compare (zt+2zt+3...zt+7) after the zero-
segment and (zt−6zt−5...zt−2) before the zero-segment with the memorized
11-bit segments in the second column of a sub-row indexed by c∗ from the
tables Tc′,ai

, and do the following:
– If the matching does not exist, go to the processing Step 1.
– If the 11-bit sample segments match with a segment in table Tc′,ai

, go to
Step 3.

3. Read the corresponding state, check whether it is a correct state or not and
recover the secret key by the State Checking and Key Recovery Mechanism
stated before. If this state survives, recover and output the key, else go to
Step 1.

5.3 Simulation Results

Our attacks have been fully implemented on one core of a single PC, running
with Windows 7, Intel Core i3-2120 CPU @ 3.30 GHz and 4.00 GB RAM. In
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general, the experimental results match the theoretical analysis quite well. We
present the details as follows.

In our experiment, first of all, we constructed 2 × 210 tables indexed by
(c′

j , ai) pairs for c′
1 = 0x0, c′

2 = 0x1 and a1 = 0x0000, a2 = 0x0001,...,a1024 =
0x1ba1, storing the special internal states. We used 2×210 text files to store the
(State,Keystream1, keystream2, ..., keystreamcount(|C∗|)) tuples named with
the corresponding c′

j and ai. Note that count(|C∗|) = 13 for c′
1 = 0x0 and

count(|C∗|) = 8 for c′
2 = 0x1. Experimental results show that there are 496 or

504 or 520 or 528 rows in each table, and totally 524448(≈ 219) rows for c′
1 = 0x0

, 524128(≈ 219) rows for c′
2 = 0x1. Thus the memory needed in the simulation

is 524448 × (23 + 11 × 13) + 524128 × (23 + 11 × 8) ≈ 227.11-bit, i.e., 17.3 MB,
which matches the theoretical estimate quite well.

For the key recovery algorithm illustrated above, the data complexity is
estimated by the probability that an internal state (Lt, N t) is a special state
satisfying:

(1) lt+4 = 0, nt+3 = nt+4 = nt+5 = 0,
(2) P t = a1 or P t = a2 or ... P t = a1024,
(3) lt+10+d ⊕ (⊕

i∈A nt+i+d

)
= 0 for d = −1, 0, 1,

(4) ut+j = 0, for j = 0, 1, ..., 5,
(5) ut−k = 0, for k = 1, 2, ..., 5,

Thus the theoretical estimate is D = 221. In the experiment, we used the RC4
cipher to randomly generate 215 (K, IV ) pairs and for each randomly chosen
(K, IV ) pair, we ran the cipher and generated 221 keystream bits. Results show
that we can get a special state at time t ≤ 221 for 20423(≈ 214.32) (K, IV ) pairs.
For example, suppose (K, IV ) pair be

K = 1010100101011001101010110010011000110110
IV = 11010101101001001110100110010111011

where the left-most bit represents the value for index 0. At time t = 580697(≈
219.14), a special state arises in Table Tc′,a140 , where c′ = 0x0 and a140 = 0x0191,
such that (1)(3)(4)(5) hold and P t = 0x0191. This internal state is

Lt = 11110000010001110000
N t = 00100000011011010110

In the internal state and key recovery algorithm, we search the keystream
sequence for the 3 zeros blocks, and for each block, we try to find matching
pairs, and further recover the key. In the experiment, we first searched the given
keystream sequence and collected the time instances t implying 3 zeros. The
expected number of such instances is 221 × 2−3 = 218. Besides, for each 11-bit
output, the expected number of candidate states is 219

211 = 28 producing this
output. Thus we go through all the time instances, and for each time instance,
we go through all the candidate states. We have also verified by experiments
that 4 more clocks of output is enough for checking the validity of the state and
the recovery of the key bits for each candidate. In total, the estimate of the time
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complexity is 218 × 28 × 4 = 228. In the simulation, for the (K, IV ) pair above,
we have recovered all the key bits within 1 hour.

6 Conclusion

In this paper, we have studied the security of Sprout-like stream ciphers in a
unified framework from the viewpoint of k-normality of the augmented function.
We made a systematic security analysis based on this property and developed
a dedicated TMD tradeoff attack framework for such designs. In particular, it
is shown that Sprout can be broken by various TMD tradeoffs. Our attack is
highly flexible and compares favorably to all the previous attacks on Sprout,
which demonstrates the superiority of the new method. We believe that stream
ciphers with shorter internal state may suffer from the time/memory/data trade-
off attacks and the k-normality of the augmented function should be taken into
account for new stream cipher designs.
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Abstract. In May 2012, a highly advanced malware for espionage
dubbed Flame was found targeting the Middle-East. As it turned out,
it used a forged signature to infect Windows machines by MITM-ing
Windows Update. Using counter-cryptanalysis, Stevens found that the
forged signature was made possible by a chosen-prefix attack on MD5
[25]. He uncovered some details that prove that this attack differs from
collision attacks in the public literature, yet many questions about tech-
niques and complexity remained unanswered.

In this paper, we demonstrate that significantly more information can
be deduced from the example collision. Namely, that these details are
actually sufficient to reconstruct the collision attack to a great extent
using some weak logical assumptions. In particular, we contribute an
analysis of the differential path family for each of the four near-collision
blocks, the chaining value differences elimination procedure and a com-
plexity analysis of the near-collision block attacks and the associated
birthday search for various parameter choices. Furthermore, we were able
to prove a lower-bound for the attack’s complexity.

This reverse-engineering of a non-academic cryptanalytic attack
exploited in the real world seems to be without precedent. As it allegedly
was developed by some nation-state(s) [11,12,19], we discuss potential
insights to their cryptanalytic knowledge and capabilities.

Keywords: MD5 · Hash function · Cryptanalysis · Reverse
engineering · Signature forgery

1 Introduction

1.1 End-of-Life of a Cryptographic Primitive

The end-of-life of a widely-used cryptographic primitive is an uncommon event,
preferably orchestrated in an organized fashion by replacing it with a next gener-
ation primitive as a precaution as soon as any kind of weakness has been exposed.
Occasionally such idealistic precautions are thrown to the wind for various rea-
sons. Unfortunately, the sudden introduction of practical attacks may then seri-
ously reduce the security of systems protected by the cryptographic primitive.
The ensuing forced mitigation efforts need to overcome important hurdles in a
c© International Association for Cryptologic Research 2015
T. Iwata and J.H. Cheon (Eds.): ASIACRYPT 2015, Part II, LNCS 9453, pp. 586–611, 2015.
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short amount of time and thus prove to be less successful than precautionary
mitigation efforts. The topic of this paper, namely an exposed cryptanalytic
attack on the hash function MD5 exploited in the real-world eight years after
the first practical break of MD5, is a recent example of the above.

1.2 Collisions for MD5

The cryptographic hash function MD5 found widespread use for many years
since its inception in 1991 by Ron Rivest [21]. It became the de facto industry
standard in combination with RSA to generate digital signatures upon which our
Internet’s Public Key Infrastructure (PKI) for TLS/SSL has been build. This
despite early collision attacks on the compression function of MD5 by den Boer
and Bosselaers [2] and Dobbertin [6].

That changed after in 2004 the first real MD5 collision attack, as well as
example collisions, were presented by Wang et al. in a major breakthrough in
hash function cryptanalysis [28,29]. Improvements to their attack were pub-
lished in a series of papers (e.g., see [9,10,13,22,24,27,30,31]). Unfortunately,
no convincing threatening scenarios arose due to the important restriction that
colliding message pairs M = P ||C||S, M ′ = P ||C ′||S can only differ in the
random-looking C,C ′.

This restriction was lifted with the introduction of the first chosen-prefix
collision attack on MD5 [26] that for any two equal-length prefixes P and P ′

constructs short random-looking C and C ′ such that P ||C||S and P ′||C ′||S col-
lide for any common suffix S. Chosen-prefix collisions make it significantly easier
to construct collisions with meaningful differences, i.e., often it suffices to choose
M and M ′ appropriately and to hide C and C ′ somewhere within the messages.
It enabled the first truly convincing attack scenario using MD5 collisions, namely
the construction of a rogue Certificate Authority (CA) certificate presented in
2009 [27]. As it turned out, many CAs had voluntarily stopped using MD5. Nev-
ertheless, the remaining few MD5-using CAs endangered the entire PKI as any
PKI is only as strong as its weakest link, i.e., CA.

Based on these developments, various authorities explicitly disallowed MD5
in digital signatures (e.g., The CA/Browser Forum adopted Baseline Require-
ments for CAs in 20111, Microsoft updated its Root CA Program in 20092).

1.2.1 Counter-Cryptanalysis
Due to its widespread and pervasive use, MD5 remains supported to accommo-
date old signatures even up to the time of this writing. Any party world-wide
still signing with an MD5-based digital signature scheme – against all advice –
may be attacked using a chosen-prefix collision attack. Furthermore, a resulting
digital signature forgery can be exploited against nearly everyone due to the
near-ubiquitous support of MD5-based signatures. Stevens recently proposed

1 https://cabforum.org/wp-content/uploads/Baseline Requirements V1.pdf
2 http://technet.microsoft.com/en-us/library/cc751157.aspx

https://cabforum.org/wp-content/uploads/Baseline_Requirements_V1.pdf
http://technet.microsoft.com/en-us/library/cc751157.aspx
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to counter these threats using counter-cryptanalysis [25], specifically a collision
detection algorithm, i.e., an algorithm that asserts whether any given single
message belongs to a colliding message pair that was constructed using a MD5
and/or SHA-1 collision attack. The main idea is to guess the colliding part (i.e.,
the C ′) of the assumed sibling colliding message and to verify whether an internal
collision occurs. Once a collision has been verified, one knows the near-collision
blocks for both messages, however, one cannot reconstruct earlier parts of the
missing message with counter-cryptanalysis.

Collision detection can strengthen digital signatures by invalidating forged
digital signatures, thereby allowing the continued secure use of MD5-based sig-
natures. However, collision detection is clearly not a permanent solution and
cannot replace proper migration to the more secure SHA-2 and SHA-3.

1.3 The Super-Malware ‘Flame’

1.3.1 Background
Flame is a highly advanced malware for espionage and was discovered in May
2012 by the Iranian CERT, Kaspersky Lab and CrySyS Lab [11,12]. It seemed
to have targeted the Middle-East, with the most infections in Iran. Among the
targets were government-related organizations, private companies, educational
institutions as well as specific individuals. According to these reports by malware
experts Flame was developed by some nation-state(s) with near-certainty. It
seems the best report so far on the origin is a Washington Post article reporting
that – according to unnamed officials and experts – Flame was a joint U.S.-Israel
classified effort [19].

For espionage, Flame collected keyboard inputs, Skype conversations and
local documents of potential interest. It could also record screen contents, micro-
phone audio, webcam video as well as network traffic, sometimes triggered by
the use of specific applications of interest like Instant Messaging applications.

According to Kaspersky [12], Flame was active since at least 2010. How-
ever, CrySyS Lab reports Flame or a preliminary version thereof may have been
active since 2007 due to an observed file in the security enterprise webroot in
2007. Infections seem to have occurred with surgical precision with each target
carefully selected instead of wildly spreading, which may be one of the reasons
why it has evaded discovery for several years.

We refer to the analyses by Kaspersky Lab and CrySyS Lab [11,12] for more
details on the functionality, purpose and origin of Flame. Here we focus on the
variant chosen-prefix collision attack that enabled its propagation.

1.3.2 Propagation
As described by Sotirov [23], Flame used WPAD (Web Proxy Auto-Discovery
Protocol) to register itself as a proxy for the domain update.windows.com to
launch Man-In-The-Middle attacks for Windows Update on other computers on
the local network. By forcing a fall-back from the secure HTTPS protocol to
the insecure HTTP protocol, Flame was able to push validly signed Windows
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Update patches of its choice. This included a properly, but illegitimately, signed
Windows Update patch by which Flame could spread to other machines. Flame’s
code-signing certificate for this security patch was obtained by fooling a certain
part of Microsoft’s PKI into signing a colliding – innocuous-looking – sibling
certificate using an MD5-based signature algorithm. As the to-be-signed parts
of both certificates were carefully crafted to result in the same MD5-hash using
a chosen-prefix collision attack, the MD5-based signature was valid for both
certificates.

Even though Microsoft was fully aware of the severe weaknesses of MD5 and
spent great effort on migrating to more secure hash functions for new digital
signatures at least since 2008, their software continued to accept (old) MD5-
based digital signatures. Unfortunately, the use of MD5-based signatures for
licensing purposes in their Terminal Server Licensing Service was overlooked in
their efforts.3 This, together with other unforeseen circumstances, allowed the
creation of Flame’s properly, but illegitimately, signed security patch that was
trusted by all versions of Windows [16].4

1.3.3 Unknown Variant Chosen-Prefix Collision Attack
On the 3rd of June 2012, Microsoft blogged that in their initial analysis of Flame
they “identified that an older cryptography algorithm could be exploited and then
be used to sign code as if it originated from Microsoft” [17]. An immediate guess
was that this cryptically worded statement refers to the construction of a rogue
code-signing certificate using a chosen-prefix collision attack on MD5 similar
to [27]. Only the certificates in the chain leading to the forged signature on
Flame’s executable were circulating on the Internet [20], its sibling colliding
certificate remains lost. Using his collision detection technique, Stevens was able
to reconstruct the collision part of the missing sibling colliding certificate [25].

Having both colliding parts one can observe the differential paths used for this
attack which Stevens uses to provide a preliminary analysis of Flame’s attack:

Flame’s differential paths clearly show a chosen-prefix collision attack that
starts with a chaining-value difference containing many bit differences that is
gradually reduced to zero by the four sequential “near-collision” block pairs.
However, these differential paths do not match any family of published chosen-
prefix collision attacks [27], but instead were variants based on the first differen-
tial paths for MD5 by Wang et al.[29]. Also, they show characteristics that do not
match those from known differential path construction methods for MD5. The
author provides arguments indicating an unnecessary costly differential path
construction method was used. Furthermore, experimental results were given
constructing replacement paths with significantly fewer bitconditions in only
about 15 s on average on a single Intel i7-2600 CPU (equivalent to about 229

MD5 compressions).

3 Microsoft invalidated this part of their PKI after the discovery of Flame in 2012.
4 Any license certificate produced by the Terminal Server Licensing Service could

directly be used to attack Windows Vista and earlier versions, but not later versions.
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Based on the differential paths and the observation that the best known
message modification technique was used, for each block a lower bound for the
average complexity to find the near-collision blocks is given. Note the implicit
assumption that the differential path including the target output chaining value
difference is fixed before the near-collision block search.

Based on the weight of the observed chaining value difference after the
birthday search that need to be eliminated by the four near-collision attacks,
an indicative complexity estimate of about 242 MD5 compressions is given.
Although further constraints make it more likely to be even higher instead of
lower. Lacking a more detailed analysis of the chaining value difference elimina-
tion strategy, no more accurate prediction could be given.

Although Stevens was able to show a yet unknown variant attack was used, so
far, no reconstruction of Flame’s attack has been presented and many questions
regarding techniques and complexities remained unanswered. Specifically there
is no analysis so far for the possible differential path family for each block, and
therefore for the chaining value reduction procedure that selects which chaining
value differences (the tail of the differential path) to eliminate in each block.
This in turn makes it hard to provide accurate complexity estimates for each
of the four near-collision attacks as well as for the associated birthday attack.
Furthermore, the work in this paper makes it clear that Stevens’ assumption that
each near-collision block targets a specific chaining value difference is inaccurate,
making his preliminary comments on the attack complexity incorrect.

2 Our Contributions

In [25] Stevens presented proof that Flame uses a yet unknown chosen-prefix
collision attack and made indications of the complexity to find solutions for the
recovered differential paths. No attack reconstruction or more accurate complex-
ity estimates were given.

Our paper is entirely based on the four near-collision block pairs shown
in Appendix B that can be recovered from the single available certificate in
Flame’s attack using counter-cryptanalysis. This paper significantly improves
upon Stevens’ preliminary reconstruction and we demonstrate for the first time
that a single example of a collision pair is actually sufficient to reconstruct the
used collision attack to a great extent under some weak logical assumptions.
Furthermore, the high level of detail of our reconstruction even admits concrete
conclusions under a complexity analysis, specifically we prove a lower-bound for
the estimated attack complexity and provide a cost figure for the closest fit of
attack parameters. Our work shows that Stevens’ indications of the near-collision
costs are not the real expected costs. In particular the attack does not use fixed
differential paths, but allows some random chaining value differences to occur
in the first two blocks that can be efficiently negated in the last two blocks.
Lacking more information about the near-collision attack procedures, Stevens
was also unable to give real indications of the birthday search complexity of
Flame’s chosen-prefix collision attack. However, our reconstruction as well as our
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complexity analysis includes the birthday search and shows there is a trade-off
between the birthday search cost and the total cost of the near-collision attacks.

At a high level we can draw some insights from our analysis into the cryptan-
alytic capabilities and the available resources of Flame’s creators. In particular,
the complexity for the closest fit of attack parameters is equivalent to 249.3 MD5
compressions which takes roughly 40,000 CPUcore hours. That means for say
3-day attempts to succeed in reasonable time given the large number of required
attempts, one needs about 560 CPUcores, which is large but not unreasonable
even for academic research groups. With an estimated complexity of 244.55 MD5
compressions from [27], this seems to be suboptimal. Not only the overall com-
plexity seems to be suboptimal, also the differential path construction method
and the near-collision speed-up techniques seem to be suboptimal. Overall we
can report that it is clear that significant expertize in cryptanalysis was required,
yet there are no indications at all of superior techniques, but instead that vari-
ous parts are sub-optimal. It seems a working attack that succeeds in reasonable
time was more important than optimizing the overall attack using all of the state
of the art techniques5.

Noteworthy is the following thought by an anonymous reviewer: developing
a new variant attack required significant human effort which would have been
unnecessary if its creators had enough computational power to do a general
birthday search of complexity 264.85 MD5 compressions in reasonable time. This
may indicate a reasonable upper bound on available resources. Although, given
the public availability of the Hashclash tools [8] since mid 2009, it might have
been unnecessary in the first place which would imply they explicitly chose to
build their attack or use their already built attack for Flame for some reasons.

At a more detailed level, our analysis revealed that a central idea behind
the attack seems to be that the near-collision blocks operate in pairs: The first
two blocks together eliminate one part of the intermediate hash value differen-
tial, allowing mostly random changes to other parts. The remaining differences
(including the random changes from the first pair) are eliminated by the second
two blocks. This idea allows a significant reduction in the expected complexity
compared to the previous estimate by Stevens [25], where each near-collision
pair was assumed to target specific intermediate hash value differences.

We have deduced the most likely parametrized family of differential paths
for each near-collision block from which one is selected to eliminate specific
intermediate hash value differences, as well as the complementary parametrized
birthday search procedure that results in an intermediate hash value difference
that can be eliminated using the 4 families of differential paths. We provide
a complexity analysis for plausible parameter choices. Furthermore, we prove
Theorem 6 stating a lower-bound complexity independent of parameter choices
to be 246.6 calls to the compression function in Sect. 4.3.3, and provide parameter

5 At the time there seems to have been no reason to hold back more advanced tech-
niques, given that counter-cryptanalysis was not publicly known then. Also, if there
was a concern about revealing their knowledge then they could have easily used the
publicly available Hashclash tools [8] instead.
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choices that achieve this cost. Sotirov estimated that obtaining their forgery
was significantly more difficult than the original Rogue CA construction, thus
requiring many collisions in order to succeed [23]. This indicates that significant
computational resources need to have been brought to bear to execute each
chosen-prefix collision attack in a relatively short amount of time in order to
succeed in their overall aim to obtain a forgery.

Lacking more examples or other hints about the actual attack procedure, it
seems to be very hard to determine more specifics of Flame’s chosen-prefix col-
lision attack with any significant level of certainty. This includes the differential
path construction algorithm and the collision search algorithm. For more details
and analysis of less important aspects to our complexity analysis we refer to the
full version of this paper.

The remainder of this paper is as follows. We start in Sect. 3 with an exposi-
tion of the main known techniques for chosen-prefix collision attacks. In Sect. 4.1,
we break down the data from the recovered near-collision block pairs. We present
our reconstruction in Sect. 4.2 and its complexity analysis in Sect. 4.3.

3 MD5 Chosen-Prefix Collision Attacks

3.1 MD5

The hash function MD5 maps an arbitrarily long input message M to a 128-bit
output string. Its design follows the Merkle-Damg̊ard construction [5,15], using
a compression function which we call MD5Compress and a chaining value denoted
IHV .

1. Unambiguously pad M to a length that is a multiple of 512.
2. For i = 0, . . . , N − 1, let Mi denote the ith 512-bit block of M . Let

IHV0 = IV = (6745230116, efcdab8916, 98badcfe16, 1032547616)

3. For i = 1, . . . , N , let IHVi = MD5Compress(IHVi−1,Mi−1).
4. Output IHVN converted back from little-endian representation.

The description of MD5Compress we give here is not the standard one but an
equivalent “unrolled” formulation [7] that is better suited for cryptanalysis. The
compression function has 64 steps and computes a sequence of working states
Qt for inputs IHVin ∈ {0, 1}128, M ∈ {0, 1}512:
1. Split IHVin and M into 32-bit words; IHVin = a‖b‖c‖d, M = m0‖ . . . ‖m15

2. Let Q−3 = a, Q−2 = d, Q−1 = c and Q0 = b.
3. For t = 0, . . . , 63, compute

Ft = ft(Qt, Qt−1, Qt−2); Tt = Ft + Qt−3 + ACt + Wt;
Rt = RL(Tt, RCt); Qt+1 = Qt + Rt;

4. Output IHVout = (Q61 + a,Q64 + b,Q63 + c,Q62 + d).

where ACt = �232 · | sin(t + 1)|� and Wt, ft(X,Y,Z) and RCt are given by:
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Step Wt ft(X,Y,Z) RCt

0 ≤ t < 16 mt (X ∧ Y ) ⊕ (X ∧ Z) (7, 12, 17, 22)[t mod 4]

16 ≤ t < 32 m(1+5t) mod 16 (Z ∧ X) ⊕ (Z ∧ Y ) (5, 9, 14, 20)[t mod 4]

32 ≤ t < 48 m(5+3t) mod 16 X ⊕ Y ⊕ Z (4, 11, 16, 23)[t mod 4]

48 ≤ t < 64 m(7t) mod 16 Y ⊕ (X ∨ Z) (6, 10, 15, 21)[t mod 4]

3.2 General Approach

When constructing a chosen-prefix collision pair P ||C||Sany and P ′||C ′||Sany for
given prefixes P and P ′ and arbitrary suffix Sany, we may assume without loss of
generality that P and P ′ are of equal length and that their length is a multiple of
the MD5 message block size. (Otherwise, one can just add padding.) A chosen-
prefix collision attack consists of two stages. The first is the Birthday Search
where one searches for equal-length suffixes Sb and S′

b such that the difference
in the intermediate hash value after processing P‖Sb and P ′‖S′

b has a particular
form necessary for the second stage. In the second stage, one constructs near-
collision block pairs (S1, S

′
1), (S2, S

′
2), . . . , (Sn, S′

n) such that after processing
P‖Sb‖S1‖ . . . ‖Sn and P ′‖S′

b‖S′
1‖ . . . ‖S′

n the intermediate hash values are equal.
Thus one has found the desired C = Sb‖S1‖ . . . ‖Sn and C ′ = S′

b‖S′
1‖ . . . ‖S′

n for
which the pair P ||C||Sany and P ′||C ′||Sany form a collision for any suffix Sany.
We explain the construction of the near-collision block pairs below.

3.3 Differential Cryptanalysis

Differential cryptanalysis is based on the analysis of the propagation of input
differences throughout a cryptosystem. This technique was publicly introduced
in 1993 by Eli Biham and Adi Shamir who first applied it to block ciphers [1].
Differential cryptanalysis of hash functions has been very successful. One of the
key techniques introduced by Wang et al. against MD5 was the simultaneous
use of the difference modulo 232 and the bitwise XOR difference resulting in a
bitwise signed difference.

Let I and I ′ be two different inputs, for any variable X involved in the
computation for input I, we denote the respective variable for input I ′ as X ′.
For X,X ′ ∈ Z232 , we denote by δX = X ′ − X mod 232 the arithmetic differ-
ential. When it is necessary to keep track of the bitwise differences as well, we
use the Binary Signed Digit Representation (BSDR). The BSDR differential is
(ΔX[i])i=0,...,31 where ΔX[i] = X ′[i]−X[i] ∈ {−1, 0, 1}. We can easily calculate
the arithmetic difference from the BSDR: δX =

∑
i ΔX[i] · 2i mod 232.

For a BSDR ΔX, we define the weight w(ΔX) as the number of indices
i where ΔX[i] 
= 0. For δX 
= 0, there are multiple BSDRs ΔX such that
δX =

∑31
i=0 ΔX[i] · 2i. However, there is a normal form, called the non-adjacent

form (NAF). The non-adjacent form of δX is the unique BSDR ΔX such that
∑31

i=0 ΔX[i] · 2i = δX, ΔX[31] ≥ 0 and ΔX has no adjacent non-zero entries.
The NAF is a minimal-weight BSDR of δX. We define the NAF-weight w(δX)
as the weight of the NAF of δX.
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3.4 Differential Paths

A differential path is an exact description of how differences propage through two
related evaluations of MD5Compress. In particular, a differential path describes
for every step t the differences δQt−3, ΔQt−2, ΔQt−1, ΔFt, δWt, δTt, δRt and
δQt+1 such that:

– δTt = δQt−3 + σ(ΔFt) + δWt;
– δQt+1 = σ(ΔQt) + δRt;
– Pr[ΔFt|ΔQt−2,ΔQt−1,ΔQt] > 0;
– Pr[δRt|δTt] > 0.

We say that an input pair (IHV,m0‖ . . . ‖m15), (IHV ′,m′
0‖ . . . ‖m′

15) for
MD5Compress solves the differential path up to step t if differences for the message
block and the intermediate variables are as specified in the differential path up to
step t.

Although the first differential paths for MD5 were constructed entirely by
hand [29], two quite different ways to construct differential paths have since
been introduced: Stevens’ meet-in-the-middle approach [26] and De Cannière
and Rechberger’s coding-theory based technique [4,14].

Suppose a pair of inputs solves a differential path up to some step. This pair
of inputs might fail to solve the next step because of the Boolean function or
because of the bit rotation. To handle the Boolean functions, bit conditions are
used that allow efficient checks whether our inputs have the correct values for
ΔFt. The rotations are taken care of probabilistically.

3.5 Tunnels

Message modification, specifically Tunneling [10], is an important technique that
can drastically speed up collision attacks. Under some preconditions, a tunnel
allows us to change a certain working state bit Qt[i] and corresponding message
bits without affecting Qt+1, . . . , Qt′ for some t′ > t. As an example, consider the
most important known tunnel T8 with the following requirements:

– Q9[i] is free, i.e., no difference and no boolean function bitcondition
– Q′

10[i] = Q10[i] = 0, and Q′
11[i] = Q11[i] = 1

Under these conditions, we can flip bits Q9[i] = Q′
9[i] and adjust m8, m9 and

m12 without affecting Q10, . . . , Q24 and Q′
10, . . . , Q

′
24.

To see why T8 is useful, suppose that we have a differential path and a
partial solution thereof up to and including Q24. We say that a bit-position
i ∈ {0, . . . , 31} is active for T8 if it satisfies the requirements. We call the number
k of active bit-positions the strength of T8. The tunnel allows us to generate 2k

different partial solution up to Q24 — one for each possible value of the active
bit-positions. Since the probability that a partial solution can be extended to a
full solution is rather small, cheaply generating many partial solutions reduces
the cost of the collision attack significantly. In Table 1, we describe the three
tunnels that are the most relevant for the Flame collision attack. In Sect. 4.1.3,
we discuss how these tunnels might have been used in the collision attack.
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Table 1. Most important tunnels for MD5Compress

Tunnel Flip bit Aux. bitconditions Affected states Affected message words

T4 Q9[b] Q10[b] = Q11[b] = 1 Q22, . . . , Q64 m8, m9, m10, m12

T5 Q10[b] Q11[b] = 0 Q22, . . . , Q64 m9, m10, m12, m13

T8 Q9[b] Q10[b] = 0, Q11[b] = 1 Q25, . . . , Q64 m8, m9, m12

4 Reverse-Engineering Flame’s Attack

4.1 Breakdown of Data

In Appendix B we list the chaining values and near-collision blocks from the
available Flame certificate and the ones for the associated ‘legitimate’ certifi-
cate that can be recovered using counter-cryptanalysis. The differential path for
each near-collision block pair can directly be observed by comparing the two
compression function computations. In this section we first list several specific
observations about these (reconstructed) Flame near-collision blocks and the
observed differential paths that are relevant to our reconstruction.

4.1.1 Some Features of the Near-Collision Blocks
Observation 1 ([23]). Due the constrained space where the near-collision blocks
were to be hidden in the certificate, the collision attack could only use four near-
collision blocks.

Observation 2. Blocks 1 and 3 of the Flame collision attack use the message
block differences from the first differential path of Wang et al.’s identical-prefix
attack, δm4 = δm14 = 231, δm11 = 215 and δmi = 0 for i 
= 4, 11, 14. Blocks 2
and 4 use the differences from the second differential path of the identical prefix
attack, δm4 = δm14 = 231, δm11 = −215 and δmi = 0 for i 
= 4, 11, 14.

Observation 3. The working state differences ΔQ6 are maximal in all four
near-collision blocks, i.e., for every i = 0, . . . , 31, we have ΔQ6[i] 
= 0. The ΔQ6

of Blocks 1 and 3 are equal, likewise for Blocks 2 and 4.

Observation 4. The four blocks all have a common structure: Up to and includ-
ing step 5, the differences δQt vary among all four blocks. Then, there is a
maximal difference in step 6. After that, the values for ΔQt and ΔFt are mostly
identical in the first and third and in Blocks 2 and 4, leading up to long sequences
of trivial steps. The final five steps again differ greatly among all four blocks.

4.1.2 Notes on Differential Path Construction
From this last observation, we conclude that a differential path beginning based
on the input IHV s and a differential path ending were generated separately and
then combined. Such differential path construction can be done for MD5 using
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Stevens’ meet-in-the-middle approach [26] or De Cannière and Rechberger’s
coding-theory based technique [4,14]. The latter technique is less likely to have
been used, since all observed differential paths don’t show its characteristic very
long carry chains over the non-predetermined part Q1, . . . , Q5. Stevens already
showed that suitable differential paths can be constructed in about 15 s on an
Intel i7-2600 CPU, so in time equivalent to approximately 229 MD5 compres-
sions [25]. As this shows that differential path construction can be done very fast
and does not have to cost a significant fraction of the overall attack complexity
and lacking more example collisions for analysis, our paper will focus on the
complexity-wise more costly parts of the attack.

4.1.3 Tunnel Strengths in the Near-Collision Blocks
In order to estimate the complexity of the Flame collision attack, it is important
to know whether and to what extent the attackers used tunnels. The tunnels T4,
T5 and T8 are the most important in speeding up the attack. See Table 1 for a
description of the three relevant tunnels.

Observation 5 ([25, Sect. 3.3]). The table below lists per near-collision block the
observed strength of tunnel T8, the maximal strength possible given the respective
differential path and the average strength that would have been observed if the
tunnel was not used.

Near-collision Block Observed strength Maximal strength Average strength

1 7 17 4.25

2 13 18 4.5

3 10 17 4.25

4 9 18 4.5

It is clear that the tunnel T8 has been used, since the observed tunnel
strengths are much larger than one expects to see if T8 was not used. Although
not presented here, we’d like to note that the tunnel strengths for T4 and T5 are
smaller than average, but one cannot conclude that T4 and T5 were not used
since for each bit only one of T4, T5 and T8 can be active due to conflicting
preconditions.

For our complexity estimates, we will assume the strengths of these three
tunnels to be the average over all four blocks. That is, we assume that tunnel T4

has strength 3, T5 has strength 7.5 and T8 has strength 9.75. Reconstructing the
exact tunnel-exploitation method would be interesting and could lead to more
precise complexity estimates. We discuss some possible methods in Sect. 4.2.3.

4.2 Our Reconstruction of the Chosen-Prefix Collision Attack

In this section, we describe our reconstruction of the collision attack, in particular
the differential path construction, the families of differential paths endings that
were used, the cost of the Birthday Search and of the message block construction.



Reverse-Engineering of the Cryptanalytic Attack 597

Central to our reconstruction attempt is the idea that the first two blocks
eliminate δc from δIHV = (δa, δb, δc, δd) up to a constant term while allowing
random changes in parts of δb. The second two blocks then eliminate δb and the
constant term in δc. This allows for the first two blocks to be constructed faster
than estimated in the preliminary analysis in [25].

It seems that the four near-collision attacks can be grouped into two pairs:
Blocks 1 and 2 form a pair, and, likewise, Blocks 3 and 4. In each of the pairs, the
first block uses the message block differences of the first near-collision block in
the identical-prefix attack by Wang et al. and the second block uses the difference
of the second near-collision block in that attack. That is, in Blocks 1 and 3, the
only differences in the message block are δm4 = δm14 = 231 and δm11 = 215. In
Blocks 2 and 4, the differences are negated, i.e., δm11 = −215.

To determine the complexity of the Birthday Search and of the message block
construction algorithm, we describe a family of end-segments of the differential
path for each of the four near-collision blocks. We compute the complexity of
the Birthday Search and the complexity of the algorithm for generating near-
collision blocks on the basis of our reconstruction of the end-segments.

Table 2. Chaining value difference corrections (δIHVout − δIHVin) for each block

Block 1 Block 2

δa [31] [31, 5]
δd [31, 25] [31, −25, −9, 5]
δc [31, 25, −14, −12, 9] [31, 26, 24, 20, −9, 5]
δb [31, 25, −18, −15, −12, 9, 1] [−26, 24, 21, −14, −9, 5, 0]

Block 3 Block 4

δa [31] [31]
δd [31, 25, 9] [31, −25, −9]
δc [31, 26, −24, −14, 9] [31, −25, 14, −9]
δb [30, 26, −24, 20, −17, 15, 9, −3] [−25, 14, −9, −5, 3, 0]

4.2.1 Differential Path Family
Four near-collision blocks are used to eliminate the chaining value differences
after the birthday search of the chosen-prefix collision attack. In this section we
reconstruct the family of differential paths used for each of the four near-collision
blocks based on the observed chaining value differences, the observed differential
paths and the possible variations thereof that are compatible with the overall
attack.

In particular, each of the four near-collision attacks uses a carry expansion
of a particular bit difference in the last few steps of Wang’s original differen-
tial paths for MD5 to allow for some controlled additional differences to affect
the chaining value differences. This can be seen in the recovered paths shown
in Appendix A: for each block there is a primary carry chain either in δQ62

or δQ63 starting at bit position either 5 or 25 used for controlled differences,
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other small carry chains are random artifacts and not actively used. Our recon-
struction is based on these primary carry chains and we will parametrize the
amount of allowed carries. Using other carry chains significantly complicates the
overall attack strategy, does not lead to significant benefits and does not fit the
observed paths, hence we apply Ockham’s razor principle and keep to the most
straightforward explanation.

The differences that are added to δIHV = (δa, δb, δc, δd) using each near-
collision block are summarized in Table 2. We begin with an outline of what we
assume to be the elimination strategy. The differences in δc are eliminated by
the first two blocks using carry chains in δQ62 starting at bit positions 25 and 5
respectively, but a difference of −224 is introduced which is then eliminated in
the final two blocks. For δb, matters are more complicated. Given the following
observations:

– deliberate changes to δb possible in blocks 1,2 can be deferred to blocks 3,4;
– random changes to δb possible in blocks 1,2 can be handled in blocks 3,4;
– blocks 1 and 2 actually increase the NAF-weight of δb;

we found that the best explanation is that the changes to δb in the first two
blocks are mostly random and that the elimination of differences in δb is done
in Block 3 and Block 4 using carry chains in δQ63 starting at bit positions 25
and 5 respectively. This explanation in fact reduces the complexity for Blocks 1
and 2 as they only need to control δQ64 (that affects δb) to a very small extent.

Table 3. End segment of block 1.

Steps Bitconditions

60 +BBBB1B. ........ ........ ........

61 +BBBB1B. ........ ........ ........

62 X+-----. ........ ........ ........

63 X.....+. ........ .DDDDD+D ........

64 ***...+. ...***** ***AAA+A ....****

δQ63 = 231 + 225 + 29 + C14214 +
∑8+w1

i=8 Ci2
i, 1 ≤ w1 ≤ 5

δQ64 = δQ63+
∑31

i=29 Xi2
i+
∑20

i=14 Xi2
i+
∑v1

i=0 Xi2
i, −1 ≤ v1 ≤ 3

We have generalized the observed differential path endings to a reasonable
extent, i.e., making our reconstructed path families more general would make
matters significantly more complex, while similar benefits might also be obtained
by simply choosing larger parameters for our families below. The four differential
path families are described as follows. For Block i we use a parameter wi that
specifies the length of the carry chain and thus over how many bits one can fully
control the differences. Block 4 uses an additional carry chain whose length is
determined by u4. For Blocks 1 and 2 we use an additional parameter v1 and v2
that control an amount of bit positions in which random differences are allowed
as they can be handled in Blocks 3 and 4, these parameters v1 and v2 depend
on the value of u4.
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Table 4. End segment of block 2.

Steps Bitconditions

60 +....... ........ BBBBBB1B BBB.....

61 -....... 0000.... BBBBBB1B BB+.....

62 +.....-. ........ -+++++++ ---.....

63 XDDDD-D+ DDDD.... ......-B B+-.....

64 **DDD-A+ AAAD**** ***...-. ..+*****

δQ63 = 231 − 226 + 224 − 29 + 25 +
∑24+w2

i=20 Ci2
i,

δQ64 = δQ63 +
∑29

i=27 Bi2
i + B202

20 +
∑v2

i=0 Xi2
i +∑19

i=13 Xi2
i +
∑31

i=30 Xi2
i

0 ≤ w2 ≤ 6, −1 ≤ v2 ≤ 4

1. Block 1 uses a carry chain starting in δQ62 at bit position 25 up to 25 + w1

to control differences in δQ63 over bit positions 8 up to 8 + w1. Given the
differences that can be covered in Blocks 3 and 4, we can allow arbitrary
differences in δQ64 at bit position ranges [0, v1], [14, 20], and [29, 31].

2. Block 2 uses a carry chain starting in δQ62 at bit position 5 up to bit position
9+w2 to control differences in δQ63 over bit positions 20 up to 24+w2. Given
the differences that can be covered in Blocks 3 and 4, we can allow arbitrary
differences in δQ64 at bit position ranges [0, v2], [13, 19], and [30, 31].

3. Block 3 uses a carry chain starting in δQ63 at bit position 24 up to 26 + w3

to control differences in δQ64 over bit positions 13 up to 15 + w3.
4. Block 4 uses a carry chain starting in δQ63 at bit position 14 up to bit position

14 + w4 to control differences in δQ64 over bit positions 13 up to 15 + w3,
and a second carry chain at bit positions 9 up to 9+u4 to control differences
over bit positions 30 up to (30 + u4 mod 32) that wrap around to the lower
bit positions.

Note that in Block 4, the parameter u4 must be large enough to eliminate the
random changes to δb that are made in Blocks 1 and 2. That is, if max(v1, v2) ≤ 2,
we need u4 ≥ max(v1, v2)+2 and otherwise, we need u4 = 4. Also, in Sect. 4.3.2
we will estimate the complexity of solving these differential paths.

Table 5. End segment of block 3.

Steps Bitconditions

61 +BBBBBBB ........ .1....0. ........

62 +BBBBB+B ........ .0....+. ........

63 X+----B- ........ .-....+. ........

64 .+...+.- ....DDDD D-D...+. ....-...

δQ64 = 230 + 226 − 224 + 29 − 23 +
∑15+w3

i=13 Bi2
i, 0 ≤

w3 ≤ 4

We now describe each differential path family more fully in Tables 3, 4, 5 and 6
by giving a template and specifying equations that the values of δQ61, . . . , δQ64



600 M. Fillinger and M. Stevens

Table 6. End segment of block 4.

Steps Bitconditions

61 +.....1. ...BBBBB 11BBBBB. ........

62 -.....-. ...BBBBB 00BBBB-. ........

63 X.....-. ...+---- ---++++. ........

64 DD....-. ........ .+....-D DD-D+DDD

δQ64 = −225 +214 − 29 − 25 +23 +
∑min(u4,1)

i=30 Bi2
i +∑u4−2

i=0 Bi2
i +
∑3+w4

i=3 Bi2
i

1 ≤ w4 ≤ 6, 0 ≤ u4 ≤ 4

must satisfy. In the templates, a symbol qt[i] at step (row) i and bit position
(column) i can be any of the following:

– ‘.’: represents Qt[i] = Q′
t[i];

– ‘+’: represents Qt[i] = 0, Q′
t[i] = 1;

– ‘-’: represents Qt[i] = 1, Q′
t[i] = 0;

– ‘0’: represents Qt[i] = Q′
t[i] = 0;

– ‘1’: represents Qt[i] = Q′
t[i] = 1;

– ‘^’: represents Qt[i] = Q′
t[i] = Qt−1[i];

– ‘?’: represents (Qt[i] = Q′
t[i]) ∧ (Qt[i] = 1 ∨ Qt−2[i] = 0);

– ‘D’: a variable differential bitcondition, i.e., qt[i] ∈ {., +, -};
– ‘B’: a variable Boolean function bitcondition, i.e., qt[i] ∈ {., 0, 1, ?};
– ‘X’: a non-constant bitcondition, i.e., qt[i] ∈ {+, -};
– ‘*’: a (for now) irrelevant differential bitcondition;
– ‘A’: the same differential as above, qt[i] = qt−1[i].

The equations may contain the following terms:

– wi, vi, ui: Parameters of the differential path family. Higher values for the wi

mean that the differential path family can cancel more differences but is, on
average, harder to solve.

– Ci, Bi: These terms can take on values in {−1, 0, 1} and correspond to the
variable differential bitconditions (‘D’s) in step 63 or 64, respectively. A mem-
ber of the differential path family is determined by the Ci and Bi.

– Xi: These terms take on values in {−1, 0, 1} and correspond to the irrelevant
bitconditions (‘*’s). While the Bi and Ci fix a differential path in the family,
the Xi are determined only after a successful near-collision block search.

We say that a pair of inputs (IHV,B), (IHV ′, B′) to MD5Compress solves the
last four steps of the differential path if there is some setting for the Xi such
that δQ61, . . . , δQ64 satisfy the given equations. This is a more lax definition
than what we use elsewhere, i.e., we do not require a solution to solve the exact
bitconditions but use bitconditions as a tool to show which δQi are possible.
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4.2.2 Birthday Search
We calculate the Birthday Search complexity for the maximal parameter values.
It is easy to compute the Birthday Search complexity for lower values, namely
for each carry that is dropped, the complexity increases by a factor of 20.5.

Given the elimination strategy, we can now specify the Birthday Search tar-
get. We require that there are fixed differences in δa and δd and that for those
bit positions i that we can not manipulate in our four near-collision blocks, we
need c[i] = c′[i] or b[i] = b′[i] (after subtracting the constant bit differences).
Given these constraints, the Birthday Search looks for a collision of the function

f(x) = (a, b̃10, . . . , b̃13, b̃21, . . . , b̃26, c0, . . . , c7, c15, . . . , c19, c31, d)

where (a, b, c, d) =

{
MD5Compress(IHV,B‖x) +

(−25, 0,−25, 29 − 25
)

x even
MD5Compress (IHV ′, B′‖x) x odd

and b̃ = b − c

with IHV and IHV ′ the intermediate hash values after processing the two chosen
prefixes. Not every collision of f is useful. The probability p that a collision is
useful is at most 1/2 since we require that the two parts use different prefixes.
Therefore the expected number of compression function calls required to find a
useful collision is

√
π · 288/(2 · p) ≈ √

π · 244 ≈ 244.8 [18].
As we already mentioned, we use parameters to make trade-offs between

message block construction and Birthday Search cost. For every carry we do not
rely on, we introduce another bit position where b and b′ or c and c′ may not
differ, increasing the Birthday Search complexity by a factor of 20.5. This allows
us to trade off Birthday Search complexity against complexity in the message
block construction.

4.2.3 Tunnel Exploitation Analysis
As explained in Sect. 4.1.3, the tunnel strength in the Flame differential paths
was neither average nor maximized. We now derive a formula for the expected
tunnel strength when each tunnel bit is active with probability α. Let m be the
number of bits that could be active for T8. For a random solution up to step 24,
let S be the random variable measuring the strength of T8 and solve the event
that the partial solution can be extended to a full solution using T8. Assuming
Pr[solve | S = k] ≈ 2k · p for some p independent of k, we can calculate

E[S | solve] ≈
m∑

k=0

k · (
m
k

)

∑m
i=0

(
m
i

) · (2α)i−k · (1 − α)k−i

An explanation for the observed tunnel strengths (Observation 5) proposed
in [25] is that the Flame authors did not try to maximize the tunnel strength
but used tunnels in their message block construction algorithm to the extent
that they were available. This corresponds to setting α = 1/4. On the other
hand, we consider the alternative hypothesis that many bits in working state
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Q10 were fixed to ‘0’ to bring the probability closer to α = 1/2. In Table 7,
we list the expectation and variance of the tunnel strength for both values of
α. These results show that the initial explanation by Stevens with α = 1/4 is
rather unlikely, while the explanation with α = 1/2 is more probable.

Table 7. Summary of the observed (s), maximal (m) and expected (μ) tunnel strength,
and the standard deviation (σ).

α = 1/4 α = 1/2

Block s m μ σ μ σ

1 7 17 6.80 2.02 8.67 1.70

2 13 18 7.20 2.08 10.00 1.83

3 10 17 6.80 2.02 9.33 1.76

4 9 18 7.20 2.08 10.67 1.89

4.3 Cost Estimation

4.3.1 A Formula for the Expected Cost
We now estimate the cost of generating a near-collision block. Since the bitcon-
ditions are concentrated on the first 16 working states and the tunnel T8 is used,
we assume that the algorithm can be broken down into the following steps:

1. Generate a full differential path/generate a set of initial working states that
connects to the lower differential path.

2. Select Q1, . . . , Q16 according to the path and tunnel requirements.
3. Try to obtain a solution6 up to step 24 with the help of tunnels T4 and T5. Go

back to step 2 and choose different Qi if it is not possible to obtain a solution
and use early abort to reduce the cost of this step.

4. Attempt to generate a solution for the whole path from our solution up to
step 24 using tunnel T8. We use early abort to some extent.

5. Check if the values for δQ61, . . . , δQ64 are correct. If yes, we have a solution.

The expected cost of this algorithm is as follows: Cpath is the differential path
construction cost; let the random variable Z be the number of input pairs with
δQ57 = · · · = δQ60 = 231 that we need to evaluate until we find an input pair
where δQ61, . . . , δQ64 are as specified by the differential path. The expected cost
of finding a solution with the correct values for δQ61, . . . , δQ64 is then

Cblock = Cpath + E[Z] · 213.6.

The factor 213.6 represents the measured average complexity of finding input
pairs with δQ57 = · · · = δQ60 = 231 for Flame’s differential paths. This com-
plexity is very stable for all near-collision blocks as the differential paths are
6 We say that a pair of inputs solves a path up to step t if it agrees with the bitcon-

ditions q−3, . . . , qt and with the δQt+1 from the differential path.
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only varied in the first 16 steps which don’t affect complexity and the last few
steps which are instead covered by Z. Hence, the expected complexity of finding
a near-collision block is E[Z] · 213.6.

We give estimates for E[Z] in the next section. As discussed in Sect. 4.1.2,
Cpath can be as low as 229 MD5 compressions, which will be negligible compared
to the other parts of the attack.

4.3.2 Estimating the Expected Number of Attempts
In this section, we want to estimate the expected number of input pairs with
δQ57 = · · · = δQ60 = 231 we have to generate until a solution for the differential
path is found. We call input pairs with δQ57 = · · · = δQ60 = 231 admissible
input pairs and we call the values for δQ61, . . . , δQ64 that we want the target.

Let Ti,ui,vi,wi
be the random variable that gives the target for Block i with

parameters ui, vi and wi. Selecting a target is done by selecting the values
for Bk, Ck ∈ {−1, 0, 1} as in Sect. 4.2.1. Let Zτ be the random variable that
counts the admissible inputs we have to try until τ is solved and let Zi,ui,vi,wi

be the random variable obtained by first sampling τ ← Ti,ui,vi,wi
and then

sampling Zτ . To compute the total expected cost, we need E [Zi,ui,vi,wi
]. To

obtain an empirical estimate λi,ui,vi,wi
, we repeat the following process until

a fixed number of targets is solved: We first sample τ ← Ti,ui,vi,wi
and then

select random admissible inputs and message blocks until we find one that solves
the target.7 When the chosen number of targets is solved, we let the average
number of attempts to solve a target be our estimate λi,ui,vi,wi

. We then obtain
Ci,ui,vi,wi

= λi,ui,vi,wi
· 213.6 as an estimate for the cost of solving the differential

path for Block i with parameters ui, vi and wi. The simulation outcomes for the
four blocks are given in Tables 8, 9, 10 and 11.

To save time, we do not generate admissible inputs as in Sect. 4.3.1. Instead,
we select working states Q57, . . . , Q60 and message words m0, . . . ,m15 at random
and compute Q′

57, . . . , Q
′
60 and m′

0, . . . ,m
′
15 by applying the appropriate arith-

metic differentials. This procedure requires the assumption that the probability
for hitting the target does not change when we select Q57, . . . , Q60 and message
words at random, which is justified by the pseudo-randomness of MD5.

Our estimate of the Birthday Search cost in Sect. 4.2.2 assumes that the
parameters wi and u4 are maximal. For smaller parameter values, the cost must
be multiplied by a “Birthday Factor” μi which we give in Table 12.

4.3.3 Total Cost.
Let us now combine our estimates for the cost of solving the paths for different
parameter setting with the Birthday Search complexity. We will calculate the
following costs:

7 Recall that we say that an input solves a differential path if there exists a setting
for the Xk such that δQ61, . . . , δQ64 are as described by the path.
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Table 8. Estimated complexities for the first near-collision block.

log2 C1,v1,w1 v1 = −1 v1 = 0 v1 = 1 v1 = 2 v1 = 3

w1 = 1 24.1 23.7 23.6 23.4 22.9

w1 = 2 25.8 25.2 25.0 24.8 24.3

w1 = 3 27.9 27.2 26.8 26.5 26.1

w1 = 4 29.8 29.1 28.6 28.2 27.8

w1 = 5 30.4 29.7 29.2 28.7 28.3

Table 9. Estimated complexities for the second near-collision block.

log2 C2,v2,w2 v2 = −1 v2 = 0 v2 = 1 v2 = 2 v2 = 3 v2 = 4

w2 = 0 35.4 34.8 34.7 34.6 34.6 34.6

w2 = 1 37.0 36.2 36.1 36.0 36.0 36.0

w2 = 2 39.2 38.2 37.9 37.8 37.8 37.8

w2 = 3 41.6 40.5 40.0 39.8 39.7 39.7

w2 = 4 44.0 42.9 42.4 42.0 41.8 41.8

w2 = 5 46.7 45.5 45.0 44.6 44.2 44.0

w2 = 6 49.3 48.1 47.6 47.2 46.8 46.4

Table 10. Estimated complexities for the third near-collision block.

log2 C3,w3

w3 = 0 32.3

w3 = 1 34.3

w3 = 2 36.4

w3 = 3 38.1

w3 = 4 38.3

– Cmsg: expected cost when minimizing the message block construction cost.
– Cflame: expected cost when minimizing the message block construction cost

while keeping the parameters consistent with the observed paths.
– Csearch: expected cost when minimizing the Birthday Search cost.
– Cmin: minimal expected cost.

Firstly, for Cmsg, we choose w1, . . . , w4 to be as small as possible. We have to
balance the parameters v1 and v2 against u4. Increasing v1 and v2 does not speed
up the message block construction by much, so we pick v1, v2 = −1 which allows
us to pick u4 = 1. The combined Birthday Factor for these parameters is 211.0.
We therefore have

Cmsg = 4 · Cpath + 211.0 · 244.3 · p−1/2 + 224.1 + 235.4 + 232.3 + 234.1 ≈ 255.8
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Table 11. Estimated complexities for the fourth near-collision block.

log2 C4,u4,w4 u4 = 0 u4 = 1 u4 = 2 u4 = 3 u4 = 4

w4 = 1 34.1 33.8 35.6 38.2 38.7

w4 = 2 35.2 35.0 36.7 39.4 39.8

w4 = 3 37.0 36.5 38.4 41.0 41.4

w4 = 4 38.8 38.4 40.2 42.7 43.8

w4 = 5 40.8 40.6 42.3 44.6 44.8

w4 = 6 43.0 42.4 43.6 46.9 47.8

Table 12. “Birthday Factors” for the four near-collision blocks.

Block i 1 2 3 4

log2μi (5 − w1)/2 (6 − w2)/2 (4 − w3)/2 (10 − w4 − u4)/2

where Cpath is the cost of constructing a full differential path and p is the prob-
ability that a collision is useful. We assume that p ≈ 1/2 and use the fact that
4 · Cpath can be negligible compared to the other costs (see Sect. 4.1.2).

For Cflame, we must choose minimal values for the wi that are compatible
with the differential paths. That is, we must take w1 = 4, w2 = 3, w3 = 4 and
w4 = 1. We have v1 ≥ 1 and v2 ≥ 0, therefore, we must have u4 ≥ 3. We can
minimize the cost by choosing v1 = v2 = u4 = 4. Then, we have a Birthday
Factor of 24.5. With the same assumptions as before, this gives us

Cflame = 4 · Cpath + 248.8 · p−1/2 + 227.8 + 239.7 + 238.3 + 238.7 ≈ 249.3.

For Csearch, we have a Birthday Factor of 1 and

Csearch = 4 · Cpath + 244.3 · p−1/2 + 228.3 + 246.4 + 238.3 + 247.8 ≈ 248.4

To minimize the total expected cost, we take w1 = 5, v1 = 3, w2 = 5, v2 = 4,
w3 = 4, w4 = 5 and u4 = 4. Then, we have a Birthday Factor of 21.0 and

Cmin = 4 · Cpath + 245.8 · p−1/2 + 228.3 + 244.0 + 238.3 + 244.8 ≈ 246.6

We now show that this cost is indeed minimal:

Theorem 6 . Given the values for E[Z] from Sect. 4.3.2 and assuming that the
probability p for a useful collision in the Birthday Search is 1/2, the expected
cost of the collision attack is equivalent to at least Cmin = 246.6 executions of
MD5Compress. For suitably chosen parameters, this cost can be achieved.

Proof. We have already given parameters which show that the second part of
the theorem holds. To see that this parameter choice indeed gives us the minimal
cost, let us try to improve upon it: It is easy to see that the Birthday Factor μ
must satisfy 1 < μ ≤ 21.5 for if μ = 1, the attack complexity is Csearch > Cmin and
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if μ = 22.0, the Birthday Search cost is already larger than Cmin. If μ = 20.5·k, we
can reduce the wi or ui parameters by k. Since Blocks 2 and 4 have the highest
complexity, this is where these reductions should be spent.

For μ = 20.5, in order to improve upon Cmin, we need to construct the near-
collision blocks with a cost ≤ 245.8, for μ = 21.0, the cost needs to be ≤ 245.4

and for μ = 21.5 it needs to be ≤ 244.2. It turns out that the only way these
constraints can be satisfied is by setting μ = 21.0 and reducing the parameters
w2 and w4. But these are precisely the parameters that give us Cmin. ��
The parameters for Cmin are consistent with the observed differential paths.
Assuming that our reconstruction is correct, we can conclude that the expected
cost of the collision attack used by the Flame authors is lower-bounded by 246.6

calls to MD5Compress. However, it seems likely that the cost of the actual attack
was higher than Cmin since the observed number of carries is always lower than
the Cmin-parameters. Nevertheless, the actual collision attack might have been
faster in practice: Since Birthday Search can be executed very cost-effectively on
massively parallel architecture (e.g., GPUs), it might be advantageous to shift a
larger part of the workload to the Birthday Search step.

The expected cost of the [27]-attack with four near-collision blocks is roughly
1/4 of the lower bound of the Flame attack; its expected cost is equivalent to
244.55 calls to MD5Compress (see [25, Sect. 3.7]). The cost of the Birthday Search
dominates the total cost.

5 Conclusion

In this paper we have demonstrated for the first time that a cryptanalytic attack
can be reconstructed from a single output example, specifically, a single example
half of a collision pair. We have provided a complexity analysis proving a lower-
bound for its cost. Furthermore, we showed that in terms of theoretical cost,
the Flame attack is less efficient than the [27]-attack, although it might achieve
a better real-world performance when the Birthday Search is performed on a
massively parallel architecture.

Our reverse-engineering of a yet unknown cryptanalytic attack seems to be
without precedent. As allegedly Flame was developed by some nation-state(s),
the example collision and its analysis in this work provide some insights to their
cryptanalytic knowledge and capabilities. With respect to the complexity, the
closest fit of attack parameters is equivalent to 249.3 MD5 compressions which
takes roughly 40,000 CPUcore hours. That means for say 3-day attempts to
succeed in reasonable time given the large number of required attempts, one
needs about 560 CPUcores, which is large but not unreasonable even for acad-
emic research groups. With the respect to cryptanalytic knowledge there are no
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indications at all of superior techniques, rather various parts seem to be sub-
optimal compared to the state-of-the-art in the literature. In particular it is clear
that one could do better using the state-of-the-art in the literature, i.e., lower
theoretical complexity to craft a 4-block chosen-prefix collision (see Theorem6),
and generate differential paths with significantly lower density of bitconditions in
negligible time (as previously observed [25]). Nevertheless, the apparent signifi-
cant resources more than make up for that and it seems a working attack that
succeeds in reasonable time was more important than optimizing the overall
attack using all state of the art techniques.

A Flame Differential Paths

Here, we show the differential paths for all four Flame near-collision blocks,
see also Sect. 4.2.1. The column ‘Probability’ lists the theoretical unconditional
rotation probabilities from δTt to δRt. If this rotation probability for this δTt

is not maximal, we list the maximal possible rotation probability for this δTt

albeit for a different δRt between braces. In the next column ‘Cond. Est.’, we
give empirical estimates for the probabilities of the rotations conditioned on that
the Qi satisfy their bitconditions (Tables 13, 14, 15 and 16).

Table 13. Differential path sections of the 1st near-collision block of Flame’s attack

t Bitconditions t[31] . . . t[0] Probability Cond. est.

2 +0-0-.00 .-++00+- 0-1-+.1+ 1+-0++^. 0.247 (0.628) 0.166
3 +010-000 .-+++0+1 +--.+^1+ -+-+++-. 0.911 1
4 -00-10+. .11-+-0+ +++11--0 -101-+0. 0.381 (0.561) 1
5 0-+-++-^ ^0110+1- -110+0-0 -0001+1^ 0.229 (0.435) 1
6 ++----+- ---+---- -----+++ ++++++++ 0.425 (0.514) 1
7 111.-111 1101011. 110-1001 +0100.00 0.838 1
8 00+0.111 10111101 -1101100 .1110011 0.063 (0.444) 0.171
9 ..0.1... .....-.. 0.10+... 0-....0. 0.516 0.563

59 +....... ........ ........ ........ 1 1
60 +.11110. ........ ........ ........ 1 1
61 +.11000. ........ .001.00. ........ 0.992 1
62 -.+----. ........ ...0.... ........ 0.391 (0.609) 0.427
63 +.?0??+. ........ .--+.+-. ........ 0.867 0.855
64 +......+ ++++++.. -..-.+-. .....+-.
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Table 14. Differential path sections of the 2nd near-collision block of Flame’s attack

t Bitconditions t[31] . . . t[0] Probability Cond. est.

2 .01.-011 00+-++0+ 0--+.--0 ++10+0+0 0.849 0.492
3 ..1.-+11 +001++^+ 01-+0110 0+1++0++ 0.623 0.833
4 ..-.1-11 ++1-++-+ -1111--+ ++0+-+-1 0.100 (0.547) 1
5 ^^1^+1-- 10-01011 0+10-1-+ 0-+++000 0.399 (0.431) 0.499
6 +-++++++ ++++---- ------+- --+----- 0.458 (0.518) 1
7 0010-000 01111011 1011-111 10.10010 0.961 1
8 00000100 1111111+ -1001111 1-010111 0.468 0.673
9 ...-1... .-.....1 0..1+... .1....^. 0.468 (0.469) 0.495

58 +....... ........ ........ ........ 1 1
59 +....... ........ ........ ..0..... 1 1
60 +.....0. ........ ...1001. 110..... 0.5 0.507
61 -....100 ...0.... ...1..1. 00+..... 0.496 0.749
62 +....1-. ........ ...-+++. +--..... 0.972 0.948
63 +....++- ...+.... ...???-. ?+-..... 0.238 (0.270) 0.262
64 ......-- ..+..... .-....-. .+-....+

Table 15. Differential path sections of the 3rd near-collision block of Flame’s attack

t Bitconditions t[31] . . . t[0] Probability Cond. est.

2 10-01110 +++1---+ +10+.... 0-0++++1 0.404(0.408) 0.374
3 -0-01^1+ +0+1--10 0-++^^.0 01+0+00. 0.941 1
4 --0++-00 0-0+11++ ++-1-+10 -+00+-1. 0.085(0.593) 1
5 -1++-0-1 +1-00+1- +0++110- -1--1+^^ 0.776 1
6 ++----+- ---+---- -----+++ ++++++++ 0.514 1
7 1000-010 00.1010. 101-0101 +0001.00 0.838 1
8 11+1.101 01011100 -1000101 .1000011 0.437 0.0566
9 ..0.1... .....-.. 0.10+... 0-....0. 0.516 0.573

58 +....... ........ ........ ........ 1 1
59 +....... ........ ........ ........ 1 1
60 -.....0. ........ ......1. ........ 1 1
61 -.0110.0 ........ .1....0. ........ 0.496 0.515
62 +..01.+. ........ .0....+. ........ 0.498 0.492
63 +.+---?- ........ .-....+. ........ 0.404 0.396
64 .+...+.- ....++++ -.....+. ....-...
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Table 16. Differential path sections of the 4th near-collision block of Flame’s attack

t Bitconditions t[31] . . . t[0] Probability Cond. est.

2 +--.-0-. -+1+0--0 1+1-1-++ -1-00+-- 0.691 0.757
3 +--1-^1. .+100--+ 10---1+0 ---0++-1 0.309 1
4 -010+-1. 10-1-01+ 0-000-1- 0+-10-1- 0.574 1
5 +00-+00^ 0++-11-0 +++0-111 01-+-100 0.749 1
6 +-++++++ ++++---- ------+- --+----- 0.518 0.507
7 .111-110 01.010.0 0101-110 1101.011 0.961 0.735
8 11110110 0101000+ -0101111 0-100111 0.032(0.476) 0.0508
9 ...-1... .-.....1 0..1+... .1....^. 0.468(0.469) 0.522

58 -....... ........ ........ ........ 1 1
59 -....... ........ ........ ........ 1 1
60 +.....0. ........ .....00. ........ 1 1
61 +.....1. ........ 11....1. ........ 0.496 0.525
62 -.....-. ........ 10...-+. ........ 0.5 0.493
63 +.....-. ........ +-...?-. ........ 0.500 0.503
64 ....-++. ........ +-....-. ..-.+..+

B Message Blocks and IHV s

Flame certificate Legitimate certificate

IHV7 a262d0136907c960bb84d9d73b74732e 8262d01365179fa09bd4c9cf1b76732e

B8 7f7b4b7bc6beeb3f9f983da38487547e 7f7b4b7bc6beeb3f9f983da38487547e

728771254b6835ae65bd6c8fdc8dacc4 728771a54b6835ae65bd6c8fdc8dacc4

e89892dedc5362f5726a2527a31246eb e89892dedc5362f5726a2527a39246eb

7f6d58cd3083d77a85b848e60e011168 7f6d58cd3083d77a85b848660e011168

IHV8 63fc3d453bdacbc8826faa39cc7df2cc 43fc3dc5395c9d8a62719ab3ac7ff24e

B9 657d53380b40f43b684359c13c05c340 657d53380b40f43b684359c13c05c340

269d5197e2eb2eb8c2196e4e94463bd8 269d5117e2eb2eb8c2196e4e94463bd8

d4fd0d00d168fadff3fa188a7c659bda d4fd0d00d168fadff3fa188a7ce59ada

23119f16a68b23248887226919c211ea 23119f16a68b2324888722e919c211ea

IHV9 7aeea241ddd49e30b9ce4dab4b8e0ff4 7aeea241fc1490efb9ce4daa4b8e0ff4

B10 9d3681adfbe88bd2d0eb06f21a868dc6 9d3681adfbe88bd2d0eb06f21a868dc6

84f388c5e0d964c64895d4bed3544891 84f38845e0d964c64895d4bed3544891

e66ce91e33971542eeb46d1f150b27dd e66ce91e33971542eeb46d1f158b27dd

08bb81deb6961639d926446a5fd16b3f 08bb81deb6961639d92644ea5fd16b3f

IHV10 ac3aa31bd79e7f3a9b34ec0a850e3940 ac3aa39bee607f3c9bf6eb8c851039c2

B11 1271dcf09962d2431458f86ef82235d2 1271dcf09962d2431458f86ef82235d2

90f7fd936ac449b8cb0ce965a8f722b5 90f7fd136ac449b8cb0ce965a8f722b5

f2051920ef2563c7b3974a823eb2e3ee f2051920ef2563c7b3974a823e32e3ee

b45ecb1db3598f8df47901b1b6688914 b45ecb1db3598f8df4790131b6688914
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Abstract. In 2012, NIST standardized SHA-512/224 and SHA-512/256,
two truncated variants of SHA-512, in FIPS 180-4. These two hash func-
tions are faster than SHA-224 and SHA-256 on 64-bit platforms, while
maintaining the same hash size and claimed security level. So far, no
third-party analysis of SHA-512/224 or SHA-512/256 has been published.
In this work, we examine the collision resistance of step-reduced ver-
sions of SHA-512/224 and SHA-512/256 by using differential cryptanaly-
sis in combination with sophisticated search tools. We are able to generate
practical examples of free-start collisions for 44-step SHA-512/224 and
43-step SHA-512/256. Thus, the truncation performed by these variants
on their larger state allows us to attack several more rounds compared to
the untruncated family members. In addition, we improve upon the best
published collisions for 24-step SHA-512 and present practical collisions
for 27 steps of SHA-512/224, SHA-512/256, and SHA-512.

Keywords: Hash functions · Cryptanalysis · Collisions · Free-start
collisions · SHA-512/224 · SHA-512/256 · SHA-512 · SHA-2

1 Introduction

The SHA-2 family of hash functions is standardized by NIST as part of the
Secure Hash Standard in FIPS 180-4 [21]. This standard is not superseded by
the upcoming SHA-3 standard. Rather, the SHA-3 hash functions supplement
the SHA-2 family. Thus, it is likely that the SHA-2 family will remain as ubiqui-
tously deployed in the foreseeable future as it is now. Therefore, the continuous
application of state-of-the-art cryptanalytic techniques for quantifying the secu-
rity margin of hash functions of the SHA-2 family is of significant practical
importance.

In this work, we focus on the two most recent members of the SHA-2 family,
SHA-512/224 and SHA-512/256. As already observed by Gueron et al. [10], using
truncated SHA-512 variants like SHA-512/256 gives a significant performance
advantage over SHA-256 on 64-bit platforms due to the doubled input block size.
At the same time, the shorter 256-bit hash values are more economic, compati-
ble with existing applications, and offer the same security level as SHA-256. In
addition, the resulting chop-MD [5] structure of SHA-512/224 and SHA-512/256
with is wide-pipe structure provides cryptographic benefits over the standard
c© International Association for Cryptologic Research 2015
T. Iwata and J.H. Cheon (Eds.): ASIACRYPT 2015, Part II, LNCS 9453, pp. 612–630, 2015.
DOI: 10.1007/978-3-662-48800-3 25
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Merkle-Damg̊ard [7,20] structure by prohibiting generic attacks like Joux’ mul-
ticollision attack [12], Kelsey and Kohno’s herding and Nostradamus attacks [13],
and Kelsey and Schneier’s second preimages for long messages [14].

However, no cryptanalysis dedicated to SHA-512/224 and SHA-512/256 has
been published so far. Therefore, we examine the effects of truncating the hash
value of SHA-512. We show that due to this truncation, practical free-start colli-
sion for 43-step SHA-512/256 and 44-step SHA-512/224 are possible. Moreover,
we improve upon the previous best collisions for 24-step SHA-512 [11,23] and
show collisions for 27 steps of SHA-512, SHA-512/224, and SHA-512/256. Since
all of our results are practical, we provide examples of colliding message pairs
for every attack. Our results are summarized in Table 1 together with previously
published collision attacks.

Table 1. Best published collision attacks on the SHA-512 family.

Hash size Type Steps Complexity Reference

all collision 24/80 practical [11,23]

collision 27/80 practical Sect. 4.3

semi-free-start collision 38/80 practical [9]

semi-free-start collision 39/80 practical Sect. 4.1

512 free-start collision 57/80 2255.5 [17]

384 free-start collision 40/80 2183 [17]

256 free-start collision∗ 43/80 practical Sect. 4.2

224 free-start collision∗ 44/80 practical Sect. 4.2
∗ without padding.

Related Work. No dedicated cryptanalysis of SHA-512/224 or SHA-512/256
has been published so far. However, there is a number of results targeting
SHA-512. The security of SHA-512 against preimage attacks was first studied by
Aoki et al. [1]. They presented MITM preimage attacks on 46 steps of the hash
function. This was later extended to 50 steps by Khovratovich et al. [15]. How-
ever, due to the wide-pipe structure of SHA-512/224 and SHA-512/256, these
attacks do not carry over to SHA-512/224 and SHA-512/256.

The currently best known practical collision attack on the SHA-512 hash
function is for 24 steps. It was published independently by Indesteege et al. [11]
and by Sanadhya and Sarkar [23]. Both attacks are trivial extensions of the
attack strategy of Nikolić and Biryukov [22] which applies to both SHA-
256 and SHA-512. Recently, Eichlseder et al. [9] demonstrated how to extend
these attacks to get semi-free-start collisions for SHA-512 reduced to 38 steps
with practical complexity. Furthermore, second-order differential collisions for
SHA-512 up to 48 steps with practical complexity have been shown by
Yu et al. [27]. We want to note that all these practical collision attacks on
SHA-512 are also applicable to its truncated variants.
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Additionally, Li et al. showed in [17] that particular preimage attacks on
SHA-512 can also be used to construct free-start collision attacks for the step-
reduced hash function and its truncated variants. They show a free-start collision
for 57-step SHA-512 and 40-step SHA-384. Both attacks are only slightly faster
than the respective generic attacks.

Outline. The remainder of the paper is organized as follows. We describe the
design of the SHA-2 family in Sect. 2. Then, we briefly explain our attack strategy
and discuss the choice of suitable starting points for our attacks in Sect. 3. The
actual attacks on step-reduced SHA-512/224 and SHA-512/256 are presented in
Sect. 4.

2 Description of SHA-512 and Other SHA-2 Variants

The SHA-2 family of hash functions is specified by NIST as part of the
Secure Hash Standard (SHS) [21]. The standard defines two main algorithms,
SHA-256 and SHA-512, with truncated variants SHA-224 (based on SHA-256)
and SHA-512/224, SHA-512/256, and SHA-384 (based on SHA-512). In addi-
tion, NIST defines a general truncation procedure for arbitrary output lengths
up to 512 bits. Below, we first describe SHA-512, followed by its truncated vari-
ants SHA-512/224 and SHA-512/256 that this paper is focused on. Finally, the
main differences to SHA-256 and SHA-224 are briefly discussed.

SHA-512. SHA-512 is an iterated hash function that pads and processes the
input message using t 1024-bit message blocks mj . The 512-bit hash value is
computed using the compression function f :

h0 = IV,

hj+1 = f(hj ,mj) for 0 ≤ j < t.

The hash output is the final 512-bit chaining value ht.
In the following, we briefly describe the compression function f of SHA-512.

It basically consists of two parts: the message expansion and the state update
transformation. A more detailed description of SHA-512 is given by NIST [21].

We use + (or −) to denote addition (or subtraction) modulo 264; ⊕ (or ∧) is
bitwise exclusive-or (or bitwise and) of 64-bit words, and ≫ n (or � n) denotes
rotate-right (or shift-right) by n bits.

Padding and Message Expansion. The message expansion of SHA-512 splits
each 1024-bit message block into 16 64-bit words Mi, i = 0, . . . , 15, and expands
these into 80 expanded message words Wi as follows:
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Wi =

{
Mi 0 ≤ i < 16,

σ1(Wi−2) + Wi−7 + σ0(Wi−15) + Wi−16 16 ≤ i < 80.
(1)

The functions σ0(x) and σ1(x) are given by

σ0(x) = (x ≫ 1) ⊕ (x ≫ 8) ⊕ (x � 7),
σ1(x) = (x ≫ 19) ⊕ (x ≫ 61) ⊕ (x � 6).

State Update Transformation. We use the alternative description of the
SHA-512 state update by Mendel et al. [18], which is illustrated in Fig. 1.
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Fig. 1. The state update transformation of SHA-512.

The state update transformation starts from the previous 512-bit chaining
value hj = (A−1, . . . , A−4, E−1, . . . , E−4) and updates it by applying the step
functions 80 times. In each step i = 0, . . . , 79, one 64-bit expanded message word
Wi is used to compute the two state variables Ei and Ai as follows:

Ei = Ai−4 + Ei−4 + Σ1(Ei−1) + IF(Ei−1, Ei−2, Ei−3) + Ki + Wi, (2)
Ai = Ei − Ai−4 + Σ0(Ai−1) + MAJ(Ai−1, Ai−2, Ai−3). (3)

For the definition of the step constants Ki, we refer to the standard docu-
ment [21]. The bitwise Boolean functions IF and MAJ used in each step are
defined by

IF(x, y, z) = (x ∧ y) ⊕ (x ∧ z) ⊕ z,

MAJ(x, y, z) = (x ∧ y) ⊕ (y ∧ z) ⊕ (x ∧ z),
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and the linear functions Σ0 and Σ1 are defined as follows:

Σ0(x) = (x ≫ 28) ⊕ (x ≫ 34) ⊕ (x ≫ 39),
Σ1(x) = (x ≫ 14) ⊕ (x ≫ 18) ⊕ (x ≫ 41).

After the last step of the state update transformation, the previous chaining
value is added to the output of the state update (Davies-Meyer construction).
The result of this feed-forward sum is the chaining value hj+1 for the next
message block mj+1 (or the final hash value ht):

hj+1 = (A79 + A−1, . . . , A76 + A−4, E79 + E−1, . . . , E76 + E−4). (4)

SHA-512/256 and SHA-512/224. These truncated variants of SHA-512 dif-
fer only in their initial values and a final truncation to 256 or 224 bits, respec-
tively. The rest of the algorithmic description remains exactly the same. The mes-
sage digest of SHA-512/256 is obtained by omitting the output words E79+E−1,
E78+E−2, E77+E−3, and E76+E−4 of the last compression function call. SHA-
512/224 additionally omits the 32 least significant bits of A76 + A−4.

SHA-256 and SHA-224. SHA-256 and SHA-512 are closely related. Thus, we
only point out properties of SHA-256 which differ from SHA-512:

– The wordsize is 32 instead of 64 bits.
– IV and Ki are the 32 most significant bits of the respective SHA-512 value.
– The step function is applied 64 instead of 80 times.
– The linear functions σ0, σ1, Σ0 and Σ1 use different rotation values.

SHA-224 is a truncated variant of SHA-256 with different IV, in which the output
word E60 + E−4 is omitted.

3 Attack Strategy

Starting from the ground-breaking results of Wang et al. [25,26], the search tech-
niques used for practical collisions have been significantly improved, hitting their
current peak in the attacks on SHA-256 [2,19] and SHA-512 [9,27]. In spite of
all achieved improvements, the top-level attack strategy has remained essentially
the same. At first, a suitable starting point for the search must be determined to
define the search space and hopefully make the ensuing search process feasible.
The search itself usually involves two phases: The search for a suitable differen-
tial characteristic, and the message modification phase to determine a collision-
producing message pair for this characteristic. The search for this characteristic
and message pair can either be done by hand or, for more complex functions like
SHA-2, using an automatic search tool. We use a heuristic search tool based on a
guess-and-determine strategy, which we briefly describe in Sect. 3.1. Afterwards,
we discuss the choice of suitable starting points in Sect. 3.2.
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3.1 Guess-and-Determine Search Tool

To search for differential characteristics and colliding message pairs, we use an
automatic search tool, which implements a configurable heuristic guess-and-
determine search strategy. Roughly, the tool is partitioned into two separate,
but closely interacting parts: The representation of the analyzed cryptographic
primitive and the search procedure.

Representation. The tool internally represents differences at bit level, allow-
ing to store all possible stages from a completely unrestricted bit over signed
differences down to exact values. Thus, the same tool can be used in the search
for a characteristic and in the search for a message pair. The conditions are
grouped in words representing the internal variables of the hash function. These
words can then be connected with any operations (typically bitwise functions or
modular additions) to define the hash function.

Search. The search procedure uses the bitwise conditions as variables, and
attempts to find a solving assignment with the help of a heuristic guess-and-
determine strategy [8], similar to SAT solvers. The following steps are repeated
until a solution is found:

– Guess: Pick a bit and guess its value (e.g., no difference, or a specific assign-
ment).

– Determine: The previous guess influences other connected bit conditions.
Determine these effects, which might result in further refinement of other bit
conditions, or a contradiction.

– Backtrack: If a contradiction is detected, resolve this conflict by undoing
previous guesses and replacing them with other choices.

This simple approach alone is not sufficient to go through the whole search
space, so numerous refinements have been proposed to fine-tune this method.
These include the detection of two-bit conditions [18], backtracking strategies,
and a look-ahead approach to guide the search [9]. Additionally, SHA-2-specific
heuristics and strategies [18,19] have been proposed, deciding which parts of the
state to guess with higher priority.

3.2 Finding Starting Points for SHA-2

To model SHA-2 as a satisfiability problem for the search tool, we need to intro-
duce suitable intermediate variables. Based on the alternative description from
Sect. 2, we only use the words Ai and Ei of the state, plus the words Wi of
the message expansion. Figure 2 illustrates the update rules for A, E and W by
highlighting the input words for updating each word: Each row represents one
of the 80 step iterations, with its three state words Ai, Ei, and Wi.
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Fig. 2. Update rules to compute Ai, Ei, and Wi ( ) from other state words ( ).

Local Collisions. All our results are based on “local collisions” in the message
expansion: by carefully selecting (expanded) message words in the middle steps
so that the differences can cancel out in as many consecutive steps as possible
in the forward and backward expansion, i.e., the first and last few expanded
message words contain no differences. The t middle steps with differences can
induce differences in the Ai and Ei words. However, the Wi words can be used
to achieve zero difference in the last 4 of the t words Ei, and in the last 8 of the
t words Ai. This is necessary to obtain words with zero difference in the very
last 4 steps of the state update and thus in the output chaining value.

As an example, the starting point for the 27-step collisions for SHA-256 [18]
allows differences in expanded message words W7,W8,W12,W15, and W17, as
well as state words E7, . . . , E13 and A7, . . . , A10. The exact bitwise signed dif-
ferences are chosen during the search such that any potential differences in
W19,W22,W23,W24, as well as E14, . . . , E17 and A10, . . . , A13 cancel out. The
resulting starting point is illustrated in Fig. 3a. We show in Sect. 4.3 how the
same starting point can be used for SHA-512.

The semi-free-start collision starting point covering the most steps so far is
for 38 steps of SHA-256 [19] and SHA-512 [9], with a local collision spanning
t = 18 steps. Considering the large number of steps, the number of expanded
message words with differences and cancellations is remarkably low: only 6 words
with differences, and 6 words imposing cancellation conditions.

To find candidates for a higher number of steps, we enumerated all possible
selections of active message words (more precisely, of some t ≤ 20 intermediate
expanded message words, the “core words” of the local collision) and investigated
the forward and backward expansion under certain assumptions: the t core words
are chosen freely, according to the message expansion rule; in the forward and
backward expansion, if at least 2 of the input words have differences, they are
assumed to cancel out, while a single input word with difference never cancels
out. Criteria for selecting suitable candidates then include a low number t of
spanned steps and a low number of required cancellation constraints. The best
(consistent) result for 39 steps, spanning t = 19 steps with 9 cancellations, is
given in Fig. 3b.
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Fig. 3. SHA-2 starting points: Words with differences and cancellations , .

Semi-Free-Start Collisions and Collisions. The discussed starting points
are targeted to find semi-free-start collisions, that is, different messages m,m′

and an IV h0 such that f(h0,m) = f(h0,m
′). However, they can also be used

for hash function collisions with the original IV h0 by trading the freedom of the
IV for freedom in the message words.

In order to find hash function collisions, the first few message words Wi must
retain sufficient freedom (i.e., they should not be constrained by conditions from
the message expansion for cancelling differences) to allow to match the correct
IV value. Ideally, this means that the first 8 message words W0, . . . ,W7 are free
of any conditions (no differences, but also not constrained by conditions from
other message words connected via the message expansion). If the Wi differences
are sparse enough overall, it can also be sufficient to have at least 5 words
W0, . . . ,W4 free of conditions by providing the remaining freedom with a two-
block approach [19].

The starting points of Fig. 3a and 3b both have at least 7 message words
free of differences in the beginning. However, the local collision shown in Fig. 3b
spans over t = 19 steps. Thus, the first message words are constrained by many
conditions, leaving not enough freedom to match the correct IV. In contrast, the
11-step local collision shown in Fig. 3a provides enough freedom in the first 7
message words to be used in a single-block collision attack [18].
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4 Collision Attacks for Truncated SHA-512 Variants

The hash functions SHA-512/224 and SHA-512/256 differ from SHA-512 in their
IV and a final processing step, which truncates the 512-bit state to 224 or 256
bits, respectively. Consequently, the semi-free-start collisions demonstrated for
SHA-512 [9] are also valid for these truncated versions (since the IV is non-
standard anyway in this attack scenario). In this section, we first improve these
results by providing 39-step semi-free-start collisions for SHA-512 and its vari-
ants. We then extend this result to free-start collisions for 43-step SHA-512/256
and 44-step SHA-512/224. By free-start collisions, we mean two messages m,m′

and two IVs h0, h
′
0 such that the hash values of m (under IV h0) and m′ (under

IV h′
0) collide. Note that free-start collisions are not equivalent to collisions of the

compression function for truncated SHA-2 versions, since the truncated output
bits of the last compression function call may contain differences. Additionally,
we present collisions for 27 steps of SHA-512, SHA-512/224, and SHA-512/256.

4.1 Semi-free-start Collisions

We use the 39-step starting point from Fig. 3b. Previous work showed that sparse
differences particularly in the Ai words are essential for the success probability of
the message modification phase. For this reason, we additionally require that in
6 words between A8 and A18, namely A11, A12, A13, A14, A15, and A17, differences
also cancel out. The five consecutive zero-difference words in Ai also force E15

to zero difference. These additional requirements are already marked in Fig. 3b
(hatched area).

The first task for the search procedure with the solving tool is to fix a suitable
signed characteristic. Compared to the previously published 38-step SHA-512
semi-free-start collision [9], the local collision for our starting point spans 19
steps (compared to previously 18) and has 9 (previously 6) active expanded
message words. Cancellations are also required in 9 (previously 6) expanded
message words. This increases the necessity for very sparse differences in Ai and
Wi in steps 16–26. For this reason, we require a single-bit difference in W26,W17

and A18, and very low Hamming weights for the other words. We finally found
a characteristic with at most two active bits in almost all words of Ai and Wi

(except A9, A10,W11,W12).
After the characteristic is fixed, we need to find a complying message pair. We

start by guessing the dense parts in Ai and Ei, hoping that the sparser conditions
in the later steps are fulfilled probabilistically. Since the dense parts are already
almost fully determined by the characteristics and the sparse parts pose only
so few conditions, a message pair is easily found. The result is a semi-free-start
collision valid for all SHA-512 variants. We give an example in Appendix A in
Table 4a.

4.2 Free-Start Collisions

Free-start collisions are a generalization of semi-free-start collisions, so the 39-step
results obtained in the previous section give a first result for SHA-512/224 and
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SHA-512/256. However, we can take advantage of the truncated output bits to add
several more steps. If we add another step in the beginning or in the end, the exist-
ing difference pattern remains unchanged, but there will be differences in the word
W0 (computable via backward expansion,which includesWi+9 = W9, the previous
W8 from Fig. 3b) or in the new word W39 (via the normal forward expansion, which
includes W39−15 = W24), respectively. These, in turn, can imply differences in E−4

or in A39 and E39, which translates to differences in the IV (turning semi-free-
start into free-start results, and included in the hash value via the feed-forward)
or directly in the compression function output, respectively.

The advantage of adding steps in the beginning is that it is possible to limit
the additional differences in the state update words to E, and keep A free of new
differences. Any differences in E−1, . . . , E−4 will be added to the compression
function output with the final feed-forward, but the corresponding words of the
result are truncated, so the hash outputs still collide.

Free-Start Collisions for 43-Step SHA-512/256. Since SHA-512/256 trun-
cates the last 4 output words of the compression function call (E79 + E−1,
E78+E−2, E77+E−3, and E76+E−4), differences in E−1, . . . , E−4 are acceptable
for a free-start collision. This observation allows us to add 4 additional steps in
the beginning of the 39-step starting point from Fig. 3b. Shifting the characteris-
tic “downwards” by 4 steps causes the previous message words W12, . . . ,W15 to
turn into new expanded message words W16, . . . ,W19; in particular, this affects
the difference in the previous word W12. To determine a compatible difference
pattern for the new first 4 words, the message expansion can be computed back-
wards from the new words W4, . . . ,W19 via

Wi = Wi+16 − σ1(Wi+14) − Wi+9 − σ0(Wi+1).

It turns out that all 4 new words will contain differences (W3 from W3+9 =
W12; W2 from W2+1 = W3 and W2+14 = W16; W1 from W1+1 = W2 and
W1+14 = W15; and W0 from W0+1 = W1, W0+14 = W14 and W0+16 = W16).
However, similar to steps 27–30, the state words Ai and Ei can be kept free of
differences for 4 steps. To achieve this, the search tool needs to find differences in
the IV words E−4, . . . , E−1 to cancel out those in W0, . . . ,W3 when computing
E0, . . . , E3. The resulting starting point is given in Fig. 4a.

For the search procedure with the solving tool, we fixed the signed differences
of steps 12–30 to the same values as the 39-step SHA-512 semi-free-start collision
of Sect. 4.1. Then, to complete the characteristic, we first search for a valid
solution for the dense part of the middle steps (Ai and Ei in steps 13–16, and
Ei in steps 17–27), and finally fix the corresponding message words Wi in steps
13–17, which determines the complete state, including the dense differences in
the prepended steps and IV.

The search only takes seconds on a standard computer; an example for a
free-start collision is given in Appendix A in Table 3a.
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Fig. 4. Potential free-start starting points (differences and cancellations , ).

Free-Start Collisions for 44-Step SHA-512/224. A very similar strategy
can be employed to extend the previous 43-step free-start collision by another
step for SHA-512/224. Prepending an additional step shifts the difference of
previous word E−1 to E0, which in turn requires a cancellation in A0 and a
difference in A−4, as illustrated in Fig. 4b. However, only the least significant
32 bits of the corresponding compression function output word are truncated.
Furthermore, this output word is computed from A−4 via modular addition, so
even differences only in the lower 32 bits can possibly cause differences in the
untruncated output bits.

Fortunately, the underlying characteristic of signed differences as used for the
39-step SHA-512 semi-free-start collision is well compatible with our constraints:
The difference in A−4 needs to cancel that in W4 in a modular addition (via E0,
by Eqs. (3) and (2) or Fig. 2, since all other involved words have zero difference).
This difference of W4, in turn, is dictated by that in W13 (by the update rule
for W20, where again all other involved words have zero difference). None of
these equalities involves any of the bitwise functions σ,Σ, MAJ or IF. Thus, the
modular difference in A−4 must be the same as that in W13, which is already
fixed by the underlying characteristic to a modular difference of +32. Written as
bitwise differences, this will translate to a single-bit difference (in the sixth least
significant bit) with probability 1

2 (which does not carry over to the untruncated
bits of the final output with overwhelming probability). Indeed, the example for
a free-start collision given in Appendix A in Table 2a only displays this single-bit
difference in A−4 (and no carries in the output bits).
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4.3 Collisions

So far, the best practical collisions found for SHA-512 are those for 24 steps,
proposed independently by Sanadhya and Sarkar [23] and Indesteege et al. [11],
together with 24-step collisions for SHA-256. While the results for SHA-256 have
since been improved to 27 [18], 28 [19] (both practical), and finally 31 steps [19]
(theoretical attack with almost practical complexity), no such improvements
have been proposed for SHA-512 so far. The main reason for this seems to be
the doubling in state size from SHA-256 to SHA-512; this larger search space
increases the difficulty of the problem for the search tools.

Starting Point for SHA-512. Since the message expansion is essentially the
same for all SHA-2 variants (except for different word sizes and rotation val-
ues, of course), the SHA-256 starting points can theoretically also be used for
SHA-512. However, the resulting search complexity is different. For our results,
we used the 27-step starting point (based on a local collision over the t = 11 steps
7–17), as illustrated in Fig. 3a. Just as the 39-step semi-free-start starting point
(Fig. 3b), it requires that differences cancel in E in 4 of the t steps (E14, . . . , E17)
and in A in the 4 previous steps (A10, . . . , A13), as well as in several steps of the
message expansion.

Finding a solution from this starting point requires significantly more effort
than for SHA-256. Of course, we also tried to expand our search to the closely
related 28-step starting point, which adds an additional step in the beginning
of the 27-step version. However, with the additional constraints imposed on the
message expansion by this added step we could not find any suitable (reasonably
sparse) characteristics.

In contrast to the results from Sect. 4.2, since the IV needs to exactly match
the original IV, we were not able to take advantage of the final truncation to sim-
plify the search process, or add additional steps. We first search a characteristic
for SHA-512, and then try to use it to match the different IVs for SHA-512/224
and SHA-512/256.

Search Strategy. The search progresses in several stages, as illustrated in
Fig. 5:

1. Fix Signed Characteristic:
(a) Find Candidate Characteristic (Fig. 5a): First fix the signed differ-

ences of the message expansion W (5 words) and state update A (3 words).
Since the word W17 poses conditions on the first few message words, whose
freedom we will later need to match the IV, we focus on keeping its signed
difference as sparse as possible, with only few difference bits. With much
lower priority, also determine the differences in the state update words E
(7 words) to complete the signed characteristic. The characteristic is very
dense in E, but this only has limited influence on the success of the IV
matching phase.
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Fig. 5. Stages of the 27-step collision search (guessed values and differences ,
derived values , and previously fixed values and differences ).

(b) Verify Dense Parts (Fig. 5b): Fully determine the values of A and E in
the densest steps 7–9 to verify the validity of the candidate characteristic.
If necessary, fix any remaining free bits of A and E in steps 10–11. This
fully determines A3, . . . , A11, E7, . . . , E11 and W11.

To maneuver the search process in the large search space and detect con-
tradictions as soon as possible, we need to apply the look-ahead strategies
previously employed for semi-free-start collisions on SHA-512 [9] in this stage
(with 16 look-ahead candidates per guess).

2. Message Modification to Match IV: Starting from the best signed char-
acteristics of the previous stage, with the correct IV inserted, find a solution
message pair step by step:
(a) Match IV (Fig. 5c): Fix the values in the more difficult, heavily con-

strained words first (W10,W9,W8,W7). Choosing W10 and W9 also deter-
mines A2 and A1 (via E6 and E5). Together with W7, W8, and the IV,
this determines all values in steps 0–11.
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(b) Finalize Message for Sparse Parts (Fig. 5d): choosing the 4 remaining
message words W12, . . . ,W15 allows to satisfy the remaining, sparse parts
of the characteristic in steps 12–26 with high probability.

Unlike the other stages, guesses are not made randomly here, but systemat-
ically word-by-word. Since most conditions are from modular additions, we
always start from the least significant bits and proceed towards the more
significant bits. This last stage needs to be repeated for each IV separately,
which takes some hours on a single CPU per target IV.

Results. Our results for collisions for 27-step SHA-512/224, SHA-512/256, and
SHA-512 are given in Appendix A in Tables 2b, 3b, and 4b, respectively.

Acknowledgments. This research (or a part of this research) is supported by Cryp-
tography Research and Evaluation Committee (CRYPTREC) and by the Austrian
Research Promotion Agency (FFG) and the Styrian Business Promotion Agency (SFG)
under grant number 836628 (SeCoS).

A Examples

An example for the semi-free-start collisions of Sect. 4.1 is given in Table 4a.
Results for the free-start collisions of Sect. 4.2 are given in Tables 2a and 3a, and
for the collisions of Sect. 4.3 in Tables 2b, 3b, and 4b.
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Table 2. Results for SHA-512/224.
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Table 3. Results for SHA-512/256.
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Table 4. Results for SHA-512.
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9. Eichlseder, M., Mendel, F., Schläffer, M.: Branching heuristics in differential colli-
sion search with applications to SHA-512. In: Cid, C., Rechberger, C. (eds.) FSE
2014. LNCS, vol. 8540, pp. 473–488. Springer, Heidelberg (2015)

10. Gueron, S., Johnson, S., Walker, J.: SHA-512/256. In: Latifi, S. (ed.) Information
Technology: New Generations – ITNG 2011, pp. 354–358. IEEE Computer Society
(2011)

11. Indesteege, S., Mendel, F., Preneel, B., Rechberger, C.: Collisions and other non-
random properties for step-reduced SHA-256. In: Avanzi, R.M., Keliher, L., Sica,
F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 276–293. Springer, Heidelberg (2009)

12. Joux, A.: Multicollisions in iterated hash functions. Application to cascaded con-
structions. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 306–316.
Springer, Heidelberg (2004)

13. Kelsey, J., Kohno, T.: Herding hash functions and the nostradamus attack. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 183–200. Springer,
Heidelberg (2006)

14. Kelsey, J., Schneier, B.: Second preimages on n-bit hash functions for much less
than 2n work. In: Cramer [6], pp. 474–490

15. Khovratovich, D., Rechberger, C., Savelieva, A.: Bicliques for preimages: Attacks
on Skein-512 and the SHA-2 family. In: Canteaut [4], pp. 244–263

16. Lee, D.H., Wang, X. (eds.): ASIACRYPT 2011. LNCS, vol. 7073. Springer, Hei-
delberg (2011)

17. Li, J., Isobe, T., Shibutani, K.: Converting meet-in-the-middle preimage attack
into pseudo collision attack: Application to SHA-2. In: Canteaut [4], pp. 264–286
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Abstract. We explore time-memory and other tradeoffs for memory-
hard functions, which are supposed to impose significant computational
and time penalties if less memory is used than intended. We analyze
three finalists of the Password Hashing Competition: Catena, which was
presented at Asiacrypt 2014, yescrypt and Lyra2.

We demonstrate that Catena’s proof of tradeoff resilience is flawed,
and attack it with a novel precomputation tradeoff. We show that using
M4/5 memory instead of M we have no time penalties and reduce the
AT cost by the factor of 25. We further generalize our method for a
wide class of schemes with predictable memory access. For a wide class
of data-dependent schemes, which addresses memory unpredictably, we
develop a novel ranking tradeoff and show how to decrease the time-
memory and the time-area product by significant factors. We then apply
our method to yescrypt and Lyra2 also exploiting the iterative structure
of their internal compression functions.

The designers confirmed our attacks and responded by adding a new
mode for Catena and tweaking Lyra2.

Keywords: Password hashing · Memory-hard · Catena · Tradeoff ·
Cryptocurrency · Proof-of-work

1 Introduction

Memory-hard functions are a fast emerging trend which has become a popu-
lar remedy to the hardware-equipped adversaries in various applications: cryp-
tocurrencies, password hashing, key derivation, and more generic Proof-of-Work
constructions. It was motivated by the rise of various attack techniques, which
can be commonly described as optimized exhaustive search. In cryptocurren-
cies, the hardware arms race made the Bitcoin mining [29] on regular desktops
tremendously inefficient, as the best mining rigs spend 30,000 times less energy
per hash than x86-desktops/laptops1. This causes major centralization of the
mining efforts which goes against the democratic philosophy behind the Bitcoin
design. This in turn prevents wide adoption and use of such cryptocurrency in
1 The estimate comes from the numbers given in [6]: the best ASICs make 232 hashes

per joule, whereas the most efficient laptops can do 217 hashes per joule.

c© International Association for Cryptologic Research 2015
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economy, limiting the current activities in this area to mining and hoarding,
whith negative effects on the price. Restoring the ability of CPU or GPU mining
by the use of memory-hard proof-of-work functions may have dramatic effect on
cryptocurrency adoption and use in economy, for example as a form of decentral-
ized micropayments [15]. In password hashing, numerous leaks of hash databases
triggered the wide use of GPUs [3,34], FPGAs [27] for password cracking with
a dictionary. In this context, constructions that intensively use a lot of memory
seem to be a countermeasure. The reasons are that memory operations have
very high latency on GPU and that the memory chips are quite large and thus
expensive on FPGA and ASIC environments compared to a logic core, which
computes, e.g. a regular hash function.

Memory-intensive schemes, which bound the memory bandwidth only, were
suggested earlier by Burrows et al. [8] and Dwork et al. [17] in the context of
spam countermeasures. It was quickly realized that to be a real countermeasure,
the amount of memory shall also be bounded [18], so that memory must not
be easily traded for computations, time, or other resources that are cheaper
on certain architecture. Schemes that are resilient to such tradeoffs are called
memory-hard [21,30]. In fact, the constructions in [18] are so strong that even
tiny memory reduction results in a huge computational penalty.

Disadvantage ofClassicalConstructions andNewSchemes. Theprovably tradeoff-
resilient superconcentrators [32] and their applications in [18,19] have serious
performance problems. They are terribly slow for modern memory sizes. A super-
concentrator requiring N blocks of memory makes O(N log N) calls to F . As a
result, filling, e.g., 1 GB of RAM with 256-bit blocks would require dozens of calls
to F per block (C log N calls for some constant C). This would take several minutes
even with lightweight F and is thus intolerable for most applications like web
authentication or cryptocurrencies. Using less memory, e.g., several megabytes,
does not effectively prohibit hardware adversaries.

This has been an open challenge to construct a reasonably fast and tradeoff-
resilient scheme. Since the seminal paper by Dwork et al. [18] the first important
step was made by Percival, who suggested scrypt [30]. The idea of scrypt was
quite simple: fill the memory by an iterative hash function and then make a
pseudo-random walk on the blocks using the block value as an address for the
next step. However, the entire design is somewhat sophisticated, as it employs a
stack of subfunctions and a number of different crypto primitives. Under certain
assumptions, Percival proved that the time-memory product is lower bounded
by some constant. The scrypt function is used inside cryptocurrency Litecoin [4]
with 128 KB memory parameter and is now adapted as an IETF standard for
key-derivation [5]. scrypt is a notable example of data-dependent schemes where
the memory access pattern depends on the input, and this property enabled Per-
cival to prove some lower bound on adversary’s costs. However, the performance
and/or the tradeoff resilience of scrypt are apparently not sufficient to discourage
hardware mining: the Litecoin ASIC miners are more efficient than CPU miners
by the factor of 100 [1].
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The need for even faster, simpler, and possibly more tradeoff-resilient con-
structions was further emphasized by the ongoing Password Hashing Competi-
tion [2], which has recently selected 9 finalists out of the 24 original submissions.
Notable entries are Catena [20], just presented at Asiacrypt 2014 with a security
proof based on [26], and yescrypt and Lyra2 [25], which both claim performance
up to 1 GB/sec and which were quickly adapted within a cryptocurrency proof-
of-work [7]. The tradeoff resilience of these constructions has not been challenged
so far. It is also unclear how possible tradeoffs would translate to the cost

Our Contributions. We present a rigorous approach and a reference model to
estimate the amortized costs of password brute-force on special hardware using
full-memory algorithms or time-space tradeoffs. We show how to evaluate the
adversary’s gains in terms of area-time and time-memory products via compu-
tational complexity and latency of the algorithm.

Then we present our tradeoff attacks on the last versions of Catena and
yescrypt, and the original version of Lyra2. Then we generalize them to wide
classes of data-dependent and data-independent schemes. For Catena we ana-
lyze the faster Dragonfly mode and show that the original security proof for
it is flawed and the computation-memory product can be kept constant while
reducing the memory. For ASIC-equipped adversaries we show how to reduce the
area-time product (abbreviated further by AT) by the factor of 25 under reason-
able assumptions on the architecture. The attack algorithm is then generalized
for a wide class of data-independent schemes as a precomputation method.

Then we consider data-dependent schemes and present the first generic trade-
off strategy for them, which we call the ranking method. Our method easily
applies to yescrypt and then to the second phase of Lyra2, both taken with min-
imally secure time parameters. We further exploit the incomplete diffusion in the
core primitives of these designs, which reduces the time-memory and time-area
products for both designs.

Altogether, we show how to decrease the time-memory product by the factor
of 2 for yescrypt and the factor of 8 for Lyra2. Our results are summarized in
Table 1. To the best of our knowledge, our methods are the first generic attacks
so far on data-dependent or data-independent schemes2.

Related Work. So far there have been only a few attempts to develop tradeoff
attacks on memory-hard functions. A simple tradeoff for scrypt has been known
in folklore and was recently formalized in [20]. Alwen and Serbinenko analyzed
a simplified version of Catena in [9]. Designers of Lyra2 and Catena attempted
to attack their own designs in the original submissions [20,25]. Simple analysis
of Catena has been made in [16].

Paper Outline. We introduce necessary definitions and metrics in Sect. 2. We
attack Catena-Dragonfly in Sect. 3 and generalize this method in Sect. 4. Then
we present a generic ranking algorithm for data-dependent schemes in Sect. 5
2 The full version of this paper is available at [14].
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Table 1. Our tradeoff gains on Catena, yescrypt and Lyra2 with minimal secure para-
meters, 230 memory bytes and reference hardware implementations (Sect. 2). TM loss
is the maximal factor by which we can reduce the time-memory product compared to
the full-memory implementation. AT loss is the maximal factor for time-area product
reduction. Compactness of TM and AT is the maximal memory reduction factor which
does not increase the TM or AT, resp., compared to the default implementation.

Catena-Dragonfly Generic 1-pass yescrypt Lyra2 v1

Time T = 3M T = M T = 4/3M T = 2M

Section 3 Section 5 Section 6 Appendix A

TM loss 200 1.28 2.1 8

AT loss 25 1.28 2.1 3

TM compactness 64 4 5.8 16

AT compactness 64 4 4.5 5

and attack yescrypt with this method in Sect. 6. The attack on Lyra2 is quite
sophisticated and we leave it for AppendixA.

2 Preliminaries

2.1 Syntax

Let G be a hash function that takes a fixed-length string I as input and outputs
tag H. We consider functions that iteratively fill and overwrite memory blocks
X[1],X[2], . . . ,X[M ] using a compression function F :

X[ij ] = fj(I), 1 ≤ j ≤ s; (1)
X[ij ] = F (X[φ1(j)],X[φ2(j)], . . . , X[φk(j)]), s < j ≤ T, (2)

where φi are some indexing functions referring to some already filled blocks and
fj are auxiliary hash functions (similar to F ) filling the initial s blocks for some
positive s.

We say that the function makes p passes over the memory, if T = pM .
Usually p and M are tunable parameters which are responsible for the total
running time and the memory requirements, respectively.

2.2 Time-Space Tradeoff

Let A be an algorithm that computes G. The computational complexity C(A) is
the total number of calls to F and fi by A, averaged over all inputs to G. We
do not consider possible complexity amortization over successive calls to A. The
space complexity S(A) is the peak number of blocks (or their equivalents) stored
by A, again averaged over all inputs to G. Suppose that A can be represented as
a directed acyclic graph with vertices being calls to F . Then the latency L(A) is
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the length of the longest chain the graph from the input to the output. Therefore,
L(A) is the minimum time needed to run A assuming unlimited parallelism and
instant memory access.

A straightforward implementation of the scheme (1) results in an algorithm
with computational complexity T and latency L = T and space complexity M .
However, it might be possible to compute G using less memory. According to [24],
any function, that is described by Eq. (1) and whose reference block indices φj(i)
are known in advance, can be computed using ck

T
log T memory blocks for some

constant ck depending on the number k of input blocks for F . Therefore, any
p-pass function can be computed using less than M = T/p memory for suffi-
ciently large M .

Let us fix some default algorithm A of G with (C1,M1, L1) being computa-
tional and space complexities and latency of A, respectively. Suppose that there
is a time-space tradeoff given by the family of algorithms3 B = {Bq} that com-
pute G using M1

q space for different q. The idea is to store only one of q memory
blocks on average and recompute the missing blocks whenever they are needed.
Then we define the computational penalty CB(q) as

CPB(q) =
C(Bq)

C1

and latency penalty LB(q).

LPB(q) =
L(Bq)

L1
,

2.3 Attackers and Cost Estimates

We consider the following attack. Suppose that G with time and memory para-
meters (T,M) is used as a password hashing function with I = (P, S), where P
is a secret password and S is a public salt. An attacker gets H and S (e.g., from
a database leak) and tries to recover P . He attempts a dictionary attack: given
a list L of most probable passwords, he runs G on every P ∈ L and checks the
output.

Definition 1. Let Φ be a cost function defined over a space of algorithms. Let
also GT,M be a hash function with fixed algorithm A0 (default algorithm). Then
GT,M is called (α,Φ)-secure if for every algorithm B for GT,M

Φ(B) > αΦ(A).

In other words, GT,M can not be computed cheaper than by the factor of 1
α .

The cost function is more difficult to determine. We suggest evaluating amor-
tized computing costs for a single password trial. Depending on the architecture,
the costs vary significantly for the same algorithm A. For the ASIC-equipped
attackers, who can use parallel computing cores, it is widely suggested that the
3 As well as A, the family B admits parallel implementations.
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costs can be approximated by the time-area product AT [9,11,28,35]. Here T is
the time complexity of the used algorithm and A is the sum of areas needed to
implement the memory cells and the area needed to implement the cores. Let the
area needed to implement one block of memory be the unit of area measurement.
Then in order to know the total area, we need core-memory ratio Rc, which is
how many memory blocks we can place on the area taken by one core.

Suppose that the adversary runs algorithm Bq using M/q memory and l com-
puting cores, thus having computational complexity Cq = C(Bq). The running
time is lower bounded by the latency Lq = L(Bq) of the algorithm. If Lq < Cq/l,
i.e. the computing cores can not finish the work in minimum time, then the time
T can be approximated by Cq/l, and the costs are estimated as follows:

ATBq
(l) =

(

lRc +
M

q

)
Cq

l
= Cq(Rc +

M

ql
)

We see that the costs drop as l increases. Therefore, the adversary would be
motivated to push it to the maximum limit Cq/Lq. Thus we obtain the final
approximation of costs:

ATBq
= CqRc + Lq

M

q
. (3)

Here we assume unlimited memory bandwidth. Taking the bandwidth restric-
tions into account is even more difficult, as they depends on the relative fre-
quency of the computing core and the memory as well as on the architecture of
the memory bus. Moreover, the memory bandwidth of the algorithm depends
on the implementation and is not easy to evaluate. We leave rigorous memory
bandwidth evaluation and restrictions for the future work.

We recall that the value Rc is depends on the architecture, the function
F , and the block size. To give a concrete example, suppose that the block is
64 bytes and F is the Blake-512 hash function. We use the following reference
implementations4:

– The 50-nm DRAM [22], which takes 550 mm2 per GByte;
– The 65-nm Blake-512 [23], which takes about 0.1 mm2.

Then the core-memory ratio is 224·0.1
550 ≈ 3000. For more lightweight hash func-

tions this ratio will be smaller.
The actual functions F in the designs that we attack are often ad-hoc and

have not implemented yet in hardware. Moreover, the numbers may change
when going to smaller feature size. To make our estimates of the attack costs
architecture-independent, we introduce a simpler metric — the time-memory
product TM:

TMBq
= Lq

M

q
, (4)

which for not so high computational penalties gives a good approximation of AT.
4 We take low-area implementations, as possible parallelism is already taken into

account.
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In our tradeoff attacks, we are mainly interested to compare the AT and TM
costs of Bq with that of the default algorithm A. Thus we define the AT ratio
of Bq as ATBq

ATA
, and the TM ratio of Bq as TMBq

TMA
We note that for the same TM value the implementation with less memory

is preferable, as its design and production will be cheaper. Thus we explore how
much the memory can be reduced keeping the AT or TM costs below those of
the default algorithm.

Definition 2. Tradeoff algorithms B have AT compactness q if it is the maximal
q such that

ATBq
≤ ATA.

Tradeoff algorithms B have TM compactness q if it is the maximal q such that

TMBq
≤ TMA.

For the concrete schemes we take “minimally secure” values of T , i.e. those
that supposed to have (α,Φ)-security for reasonably high α. Unfortunately, no
explicit security claim of this kind is present in the design documents of the
functions we consider.

Data-Dependent and Data-Independent Schemes. The existing schemes can be
categorized according to the way they access memory. The data-independent
schemes Catena [20], Pomelo [36], Argon2i [13] computes φ(j) independently
of the actual password in order to avoid timing attacks like in [33]. Then the
algorithm B that uses less memory can recompute the missing blocks just by the
time they are requested. Therefore, it has the same latency as the full-memory
algorithm, i.e. L(B) = L0. For these algorithms the time-memory product can be
arbitrarily small, and the minimum AT value is determined by the core-memory
ratio.

The data-dependent schemes scrypt [30] yescrypt [31], Argon2d [13] compute
φ(j) using the just computed block: φ(j) = φ(j,Xij−1). Then precomputation is
impossible, and for each recomputing block the latency is increased by the latency
of the recomputation algorithm, so Lq > L0. There exist hybrid schemes [25],
which first run a data-independent phase and then a data-dependent one.

3 Cryptanalysis of Catena-Dragonfly

3.1 Description

Short History. Catena was first published on ePrint [20] and then submitted to
the Password Hashing Competition. Eventually the paper was accepted to Asi-
acrypt 2014 [21]. In the middle of the reviewing process, we discovered and com-
municated the first attack on Catena to the authors. The authors have introduced
a new mode for Catena in the camera-ready version of the Asiacrypt paper, which
is resistant to the first attack. The final version of Catena, which is the finalist
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of the Password Hashing Competition, contains two modes: Catena-Dragonfly
(which we abbreviate to Catena-D), which is an extension to the original Catena,
and Catena-Butterfly, which is a new mode advertised as tradeoff-resistant. In
this paper we present the attack on Catena-Dragonfly, which is very similar to
the first attack on Catena.

Specification. Catena-D is essentially a mode of operation over the hash function
F , which is be instantiated by Blake2b [10] in the full or reduced-round version.
The functional graph of Catena-D is determined by the time parameter λ (values
λ = 1, 2 are recommended) and the memory parameter n, and can be viewed as
(λ + 1)-layer graph with 2n vertices in each layer (denoted by Catena-D-λ). We
denote the X-th vertex in layer l (both count from 0) by [X]l. With each vertex
we associate the corresponding output of the hash function F and denote it by
[X l] as well. The outputs are stored in the memory, and due to the memory
access pattern it is sufficient to store only 2n blocks at each moment. The hash
function H has 512-bit output, so the total memory requirements are 2n+6 bytes.

First layer is filled as follows

– [0]0 = G1(P, S), where G1 invokes 3 calls to F ;
– [1]0 = G2(P, S), where G2 invokes 3 calls to F
– [i]0 ← F ([i − 1]0, [i − 2]0), 2 ≤ i ≤ 2n − 1.

Then 23n/4 nodes of the first layer are modified by function Γ . The details of Γ
are irrelevant to our attack.

The memory access pattern at the next layers is determined by the bit-
reversal permutation ν. Each index is viewed as an n-bit string and is trans-
formed as follows:

ν(x1x2 . . . xn) = xnxn−1 . . . x1, where xi ∈ {0, 1}.

The layers are then computed as

– [0]j = F ([0]j−1 || [2n − 1]j−1);
– [i]j = F ([i − 1]j || [ν(i)]j−1).

Thus to compute [X]l we need [ν(X)l−1]. The latter can be then overwritten5.
An example of Catena-D with λ = 2 and n = 3 is shown at Fig. 1.

The bit-reversal permutation is supposed to provide memory-hardness. The
intuition is that it maps any segment to a set of blocks that are evenly distributed
at the upper layer.

Original Tradeoff Analysis. The authors of Catena-D originally provided two
types of security bounds against tradeoff attacks. Recall that Catena-D-λ can be
computed with λ2n calls to F using 2n memory blocks. The Catena-D designers
5 In terms of Eq. (1) we could enumerate all blocks as [i]j = j|| i︸︷︷︸

n bits

so that φ(j||i) =

(j − 1)||ν(i).



Tradeoff Cryptanalysis of Memory-Hard Functions 641

Fig. 1. Catena-D-2 with n = 3. 3 layers, 8 vertices per layer.

demonstrated that Catena-D-λ can be computed using λS memory blocks with
time complexity6

T ≤ 2n + 2n

(
2n

2S

)λ−1

+ 2n

(
2n

2S

)λ

Therefore, if we reduce the memory by the factor of q, i.e. use only 2n

q blocks,
we get the following penalty:

Pλ(q) ≈
(q

2

)λ

. (5)

The second result is the lower bound for tradeoff attacks with memory reduction
by q:

Pλ(q) ≥ Ω
(
qλ

)
. (6)

However the constant in Ω() is too small (2−18 for λ = 3) to be helpful in
bounding tradeoff attacks for small q. More importantly, the proof is flawed:
the result for λ = 1 is incorrectly generalized for larger λ. The reason seems to
be that the authors assumed some independence between the layers, which is
apparently not the case (and is somewhat exploited in our attack).

In the further text we demonstrate a tradeoff attack yielding much smaller
penalties than Eq. (5) and thus asymptotically violating Eq. (6).

3.2 Our Tradeoff Attack on Catena-D

The idea of our method is based on the simple fact that

ν(ν(X)) = X,

where X can be a single index or a set of indices. We exploit it as follows. We
partition layers into segments of length 2k for some integer k, and store the first
block of every segment (first two blocks at layer 0). As the index of such a block
ends with k zeros, we denote the set of these blocks as [∗n−k0k]. We also store
all 23n/4 blocks modified by Γ , which we denote by [Γ ].

6 This result is a part of Theorem 6.3 in [20].
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Consider a single segment [AB∗k], where A is a k-bit constant, B is a n−2k-
bit constant. Then

ν([AB∗k]) = [∗kν(B)ν(A)].

Blocks [∗kν(B)ν(A)] belong to 2k segments that have ν(B) in the middle of the
index. Denote the union of these segments by [∗kν(B)∗k]. Now note that

ν([∗kν(B)∗k]) = [∗kB∗k],

and
ν(ν([∗kB∗k])) = [∗kB∗k].

Therefore, when we iterate the permutation ν, we are always within some 2k

segments. We suggest the computing strategy in Algorithm 1. At layer t we
recompute 2k full segments from layers 0 to t − 2 and 2k subsegments of length
ν(A) (interpreted as a number in the binary form) at layer t − 1. Therefore, the
total cost of computing layer t is

C(t) =
∑

A

∑

B

((t − 1)22k + ν(A)2k + 2k) = (7)

=
∑

A

((t − 1)2n + ν(A)2n−k + 2n−k) =

(t − 1)2n+k + 2n+k−1 + 2n = (t − 1
2
)2n+k + 2n.

The total cost of computing Catena-D-λ is

2n

(
λ2

2
2k + λ + 1

)

.

We store (t+1)2n−k blocks as segment starting points, 23n/4 blocks [Γ ] and 22k

blocks for intermediate computations. For k = log q + log(λ + 1) and q < 2n/4

Algorithm 1. Tradeoff for Catena-Dragonfly.
1. Compute layer 0 storing [∗n−k0k]0 and [∗n−k0k−11]0, i.e. the first two blocks of

every segment.
2. Compute Γ and store all the updated blocks [Γ ] in the memory.
3. Compute layer 1 segmentwise: for each segment [AB∗k]1 recompute blocks

[∗kν(B) ν(A)]0 using stored blocks from layer 0 and [Γ ]. Store blocks [∗n−k0k]1.
4. Compute layer 2 segmentwise: for each segment [AB∗k]2 recompute 2k segments

[∗kBk]0 using stored blocks from layer 0, then use them to recompute blocks
[∗kν(B) ν(A)]1 using [Γ ], then compute [AB∗k]2. Store blocks [∗n−k0k]2.

5. Compute layer 3 segmentwise: for each segment [AB∗k]3 recompute 2k segments
[∗kν(B)k]0 using stored blocks from layer 0, then recompute 2k segments [∗kBk]1

using stored blocks from layer 1 and [Γ ], then recompute blocks [∗kν(B) ν(A)]2,
then compute [AB∗k]3. Store blocks [∗n−k0k]3.

6. Compute other layers in the similar fashion.
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we store about 2n/q blocks, so the memory is reduced by the factor of q. This
value of k yields the total computational complexity of

Cq = 2n

(
qλ2(λ + 1)

2
+ λ + 1

)

(8)

Since the computational complexity of the memory-full algorithm is (λ + 1)2n,
our tradeoff method gives the computational penalty

qλ2

2
+ 1.

Since Catena is a data-independent scheme, the latency of our method does
not increase. Therefore, the time-memory product (Eq. (4)) can be reduced by
the factor of 2n/4. We can estimate how AT costs evolves assuming the reference
implementation in Sect. 2.3:

ATBq
= 2n

(
qλ2(λ + 1)

2
+ λ + 1

)

· 3000 + (λ + 1)2n 2n

q
.

For q = 2n/5 and λ = 2 we get

ATB
2n/5 = 2n

(
6 · 2n/5

)
· 211.5 + 3 · 29n/5.

For n = 24 (1 GB of RAM) we get

ATB24.8
≈ 224+2.5+4.8+11.5 + 243.2+1.5 ≈ 244.

whereas
ATB1 = 249.5.

Therefore, we expect the time-area product dropped by the factor of about
25 if the memory is reduced by the factor of 30. In the terms of Definition 1,
Catena-D-2 is not (1/25,AT)-secure. Our tradeoff method also have AT and
TM compactness at least 2n/5 = 64.

On other architectures the AT may drop even further, and we expect that an
adversary would choose the one that maximizes the tradeoff effect, so the actual
impact of our attack can be even higher.

Violation of Catena-D Lower Bound. Our method shows that the Catena-
D lower bound is wrong. If we summarize the computational costs for λ layers,
we obtain the following computational penalty for the memory reduction by the
factor of q:

CPλ(q) = O(λ3q),

which is asymptotically smaller than the lower bound Ω(qλ) (Eq. (6)) from the
original Catena submission [20].
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Table 2. Computation-memory tradeoff for Catena-D-3 and Catena-D-4.

Memory fraction Catena-D-3 Catena-D-4

Computational penalty

Our [20] Our [20]
1
2

7.4 36.2 13.8 512
1
4

15.5 252 26.6 7373
1
8

30.1 1872 52 217

1
2l

2l+1.9 23l 2l+2.8 24l+1.5

3.3 Other Results for Catena

Our attack on Catena can be further scrutinized and generalized to non-even
segments. More details are provided in [14] with the summary given in Table 2.

4 Generic Precomputation Tradeoff Attack

Now we try to generalize the tradeoff method used in the attack on Catena for a
class of data-independent schemes. We consider schemes G where each memory
block is a function of the previous block and some earlier block:

X[i] ← F (X[i − 1],X[φ(i)]), 0 ≤ i < T

where φ is a deterministic function such that φ(i) < i. A group of existing
password hashing schemes falls into this category: Catena [20], Pomelo [36],
Lyra2 [25] (first phase). Multiple iterations of such a scheme are equivalent to a
single iteration with larger T and an additional restriction

x − M ≤ φ(x),

so that the memory requirements are M blocks.
The crucial property of the data-independent attacks is that they can be

tested and tuned offline, without hashing any real password. An attacker may
spend significant time to search for an optimal tradeoff strategy, since it would
then apply to the whole set of passwords hashed with this scheme.

Precomputation Method. Our tradeoff method generalizes as follows. We divide
memory into segments and store only the first block of each segment. For every
segment I we calculate its image φ(I). Let φ(I) be the union of segments that
contain φ(I). We repeat this process until we get an invariant set Uk = U(I):

I︸︷︷︸
U0

→ φ(I)
︸︷︷︸

U1

→ φ(φ(I))
︸ ︷︷ ︸

U2

· · · → Uk.

The scheme G is then computed according to Algorithm 2.
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Algorithm 2. Precomputation method
– For all segments precompute the block indices in the union chains I → U(I)
– Compute G by segment. For each segment I:

1. Compute blocks U(I) = Uk;
2. Compute blocks in Uk−1, then in Uk−2, up to U0 = I.
3. Store the first block of I in the memory.

The total amount of calls to F is
∑

i≥0 |Ui|, and the penalty to compute I is

CP (I) =

∑
i≥0 |Ui|
|I| .

How efficient the tradeoff is depends on the properties of φ and the segment parti-
tion, i.e. how fast Ui expands. As we have seen, Catena uses a bit permutation for
φ, whereas Lyra2 uses a simple arithmetic function or a bit permutation [20,25].
In both cases Ui stabilizes in size after two iterations. If φ is a more sophisticated
function, the following heuristics (borrowed from our attacks on data-dependent
schemes) might be helpful:

– Store the first T1 computed blocks and the last T2 computed blocks for some
T1, T2 (usually about N/q).

– Keep the list L of the most expensive blocks to recompute and store M [i] if
φ(i) ∈ L (Fig. 2).

I = U0U1U2

Fig. 2. Segment unions in the precomputation method.

5 Generic Ranking Tradeoff Attack

Now we present a generic attack on a wide class of schemes with data-dependent
memory addressing. Such schemes include scrypt [30] and the PHC finalists
yescrypt [31], Argon2d [13], and Lyra2 [25]. We consider the schemes described
by Eq. (1) with k = 2 and the following addressing (cf. also Fig. 3):

X[1] = f(I)
for 1 < i < T

ri = g(X[i − 1]);
X[i] = F (X[i − 1],X[ri]).

(9)
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Here g is some indexing function. This construction and our tradeoff method
can be easily generalized to multiple functions F , to stateful functions (like in
Lyra2), to multiple inputs, outputs, and passes, etc. However, for the sake of
simplicity we restrict to the construction above.

M [0] M [1] M [2]

M [i]
M [ri]

M [i − 1]

F F F F F F

Fig. 3. Data-dependent schemes.

Our tradeoff strategy is following: we compute the blocks sequentially and
for each block X[i] decide if we store it or not. If we do not store it, we calculate
its access complexity A(i) – the number of calls needed to recompute it as a sum
of access complexities of X[i − 1] and X[ri] plus one. If we store X[i], its access
complexity is 0.

The storing heuristic rule is the crucial element of our strategy. The idea is
to store the block if A(ri) is too high.

Our ranking tradeoff method works according to Algorithm 3 (Fig. 4).

Algorithm 3. Ranking method
1. Split the memory into segments of s blocks;
2. Keep the sorted list L of the T/l highest access complexities, initialize it with all

zeros;
3. Temporarily store last w blocks.
4. Compute blocks sequentially. For block X[i], if X[ri] is missing, recompute it.
5. If X[i] is the starting block of the segment, we store it and set A(i) = 0;
6. If X[i] is not the starting block of the segment, but A(ri) ∈ L, we store X[i] and

set A(i) = 0;
7. If X[i] is not the starting block of the segment, and A(ri) /∈ L, we do not store

X[i] and set A(i) = A(ri) + A(i − 1) + 1.

Here w, s and l are parameters, and we usually set l = 3s. The computational
complexity is computed as

C =
∑

i

A(ri).

We also compute the latency L(i) of each block as L(i) = max(L(ri), L(i−1))+1
if we do not store X[i] and L(i) = 0 if we store it. Then the total latency is

L =
∑

i

Li.
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Fig. 4. Outline of the ranking tradeoff method.

We implemented our attack and tested it on the class of functions described
by Eq. (9). For fixed w and s the total number of calls to F and the number
of stored blocks is entirely determined by indices {ri}. Thus we do not have
to implement a real hash function, and it is sufficient to generate ri according
to some distribution, model the computation as a directed acyclic graph, and
compute C and L for this graph. We made a number of tests with uniformly
random ri (within the segment [0; i] and T = 212) and different values of w and
s. Then we grouped C and L values by the memory complexity and figured the
lowest complexities for each memory reduction factor. These values are given in
Table 3.

Table 3. Computational, latency, AT (for Rc = 3000 and M = 224), and TM penalties
for the ranking tradeoff attack on generic data-dependent schemes.

Memory fraction (1/q) 1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

1
10

Computation penalty CP (q) 1.59 2.98 7.3 16.6 57.5 180 635 3340 213.2

Latency penalty LP (q) 1.56 2.55 4 5.8 8.7 11.6 15.4 21.1 24.8

AT ratio 0.78 0.85 1.02 1.16 1.45 1.69 2.04 2.97 4.24

TM ratio 0.78 0.85 1.02 1.16 1.45 1.65 1.9 2.34 2.48

Segment length s 3 5 8 10 13 16 18 21 23

Window size w
M

0.06 0.01 0.01 0 0 0 0 0 0

We conclude that generic 1-pass data-dependent schemes with random
addressing are (0.75, AT )- and (0.75, TM)-secure using our ranking method. Both
AT and TM ratios exceed 1 when q ≥ 4, so both the AT- and the TM-compactness
is about 4.
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6 Cryptanalysis of yescrypt

6.1 Description

yescrypt [31] is another PHC finalist, which is built upon scrypt and is notable for
its high memory filling rate (up to 2 GB/sec) and a number of features, which
includes custom S-boxes to thwart exhaustive search on GPU, multiplicative
chains to increase the ASIC latency, and some others. yescrypt is essentially a
family of functions, each member activated by a combination of flags. Due to
the page limits, we consider only one function of the family.

Here we consider the yescrypt setting where flag yescrypt RW is set, there is
no parallelism, and no ROM (in the further text – just yescrypt). It operates on
1024-byte memory blocks X[1],X[2], . . . ,X[M ]. The scheme works as follows:

X[1] ← F ′(I);
X[i] ← F (X[i − 1] ⊕ X[φ(i)]), 1 < i ≤ M ;

Y ← X[M ];
Y ← X[Y mod M ]) ← F (Y ⊕ X[Y (mod M)]),M < i ≤ T.

Here F and F ′ are compression functions (the details of F ′ are irrelevant for the
attack). Therefore, the memory is filled in the first M steps and then (T − M)
blocks are updated using the state variable Y . Here φ(i) is the data-dependent
indexing function: it takes 32 bits of X[i−1] and interprets it as a random block
index among the last 2k blocks, where 2k is the largest power of 2 that is smaller
than i.

Transformation F operates on 1024-byte blocks as follows:

– Blocks are partitioned into 16 64-byte subblocks B0, B1, . . . , B15.
– New blocks are produced sequentially:

Bnew
0 ← f(Bold

0 ⊕ Bold
15 );

Bnew
i ← f(Bnew

i−1 ⊕ Bold
i ), 0 < i < 16.

The details of f are irrelevant to our attack.

6.2 Tradeoff Attack on yescrypt

Our crucial observation is that there is no diffusion from the last subblocks
to the first ones. Thus if we store all B0, we break the dependencies between
consecutive blocks and the subblocks can be recomputed from B1 to B15 with
pipelining (Fig. 5). Suppose that the block X[i] is computed with latency L(i),
i.e. its computation tree has L(i) levels if measured in F . However, if we consider
the tree of f , then the actual latency of X[i] is L(i) + 15 instead of expected
16L(i) if measured in calls to f .
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The tradeoff strategy is given in Algorithm4.

Algorithm 4. Tradeoff attack on yescrypt.
1. Start the ranking tradeoff method with some parameters w, s;
2. Store B0 of each block;
3. If X[i] needs the missing block X[ri]:

(a) Compute B0 of X[i] using one call to f , as all previous B0 are stored;
(b) Compute B1.
(c) While B1 is recomputed, start recomputing B2, as it needs exactly the same

subblocks used in the recomputation of B1. This adds latency of one call to f .
(d) Compute Bi for all other i.

If the missing block is recomputed by a tree of depth D, then the latency of
the new block is D + 16 measured in calls to f , or D

16 + 1 if measured in calls to
F . This number should be compared to the latency D+1 if we had not exploited
the iterative structure of F . Thus if the ranking method gives the total latency
L (measured in F ), the actual latency should be L+15

16 .
For the smallest secure parameter (T = 4M/3) we get the final computational

and latency penalties as well as AT and TM penalties are given in Table 4 (1/16-
th of each block is added to the attacker’s memory). We conclude yescrypt is only
(0.45, AT )- and (0.45, TM)-secure, whereas the AT compactness is 4 and the TM
compactness is 6. Since this numbers are worse than for generic 1-pass schemes,
our attack clearly signals of a vulnerability in the design of BlockMix. We expect
that our attack becomes inefficient for T = 2M and higher.

Table 4. Computational, latency, AT (for Rc = 3000 and M = 224), and TM penalties
for the ranking tradeoff attack on yescrypt mode of operation with 4/3 passes, using
the iterative structure of F .

Memory 1 1
2

1
3

1
4

1
5

1
6

1
7

1
8

Computation penalty CP (q) 1 2.9 26 1135 219 - - -

Latency penalty LP (q) 1 1.1 1.4 2 3.5 6.3 11.1 17.5

TM ratio 1 0.55 0.47 0.5 0.75 1.05 1.59 2.19

AT ratio 1 0.55 0.46 0.7 95 - - -

7 Future Work

Our tradeoff methods apply to a wide class of memory-hard functions, so our
research can be continued in the following directions:

– Application of our methods to other PHC candidates and finalists: Pomelo [36]
and the modified Lyra2.
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Fig. 5. Pipelining the block computation in yescrypt: only the first subblock is computed
with delay D.

– Set of design criteria for the indexing functions that would withstand our
attacks.

– New methods that directly target schemes that make multiple passes over
memory or use parallel cores.

– Design a set of tools that helps to choose a proof-of-work instance in various
applications: cryptocurrencies, proofs of space, etc.

8 Conclusion

Tradeoff cryptanalysis of memory hard functions is a young, relatively unex-
plored and complex area of research combining cryptanalytic techniques with
understanding of implementation aspects and hardware constraints. It has direct
real-world impact since its results can be immediately used in the on-going arms
race of mining hardware for the cryptocurrencies.

In this paper we have analyzed memory-hard functions Catena-Dragonfly
and yescrypt. We show that Catena-Dragonfly is not memory-hard despite orig-
inal claims and the security proof by the designers’, since a hardware-equipped
adversary can reduce the attack costs significantly using our tradeoffs. We also
show that yescrypt is more tradeoff-resilient than Catena, though we can still
exploit several design decisions to reduce the time-memory and the time-area
product by the factor of 2.

We generalize our ideas to the generic precomputation method for data-
independent schemes and the generic ranking method for the data-dependent
schemes. Our techniques may be used to estimate the attack cost in various
applications from the fast emerging area of memory-hard cryptocurrencies to
the password-based key derivation.

Acknowledgement. We would like to thank the authors of Catena for verifying and
confirming our attack.
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A Cryptanalysis of Lyra2 V1

A.1 Description of Lyra2 V1

Lyra2 [25] is a PHC finalist, notable for its high memory filling rate (up to
1 GB/sec). Very recently, Lyra2 has been significantly changed for the second
round of the competition. This section describes the original submission to
PHC [25], Lyra2 v1 (just Lyra2 in the further text).

Lyra2 is a hybrid hashing scheme, which uses data-independent addressing
in the first phase and data-dependent addressing in the second phase. Lyra2
operates on blocks of 768 bits (96 bytes) each, and fills the memory with 2n · C
such blocks, where n and C are parameters, and C is by default set to 128 [25,
p. 39]. In this paper we use C = 128. The entire memory is represented as a
(2n × C)-matrix M , and we refer to its components as rows and columns. Rows
are denoted by M [i].

Lyra2 has two main phases: the single-iteration Setup phase, where the
memory is addressed data-independently, and the multiple-iteration Wandering
phase, where the memory is addressed data-dependently. The number T of
iterations in the Wandering phase can be as low as 1, and we take this value in
our analysis.

Setup Phase. The first phase fills rows sequentially from M [0] to M [2n − 1] as
follows:

M [0],M [1] ← f(Password,Salt);
for i from 2 to 2n − 1

M [i] ← F (M [i − 1],M [φ(i)]);

M [φ(i)] ← M [φ(i)] ⊕ ←−−
M [i].

Here φ(i) = 2k − i, where 2k is the smallest power of 2 that is not smaller than
i,

←−−
M [] stands for the left rotation of each 768-bit word by 32 bits, and G is a

cryptographic hash function.
The following details of F are relevant to our attack:

– Function F is stateful: it operates on the 1024-bit state S, which is preserved
between rows.

– Function F (X,Y ) processes columns Xi, Yi of X and Y sequentially. The
internal state undergoes C rounds (similarly to the duplex-sponge construc-
tion [12]), where in round i column Zi of the output Z is produced as follows:

S ← S ⊕ Xi ⊕ Yi;
S ← P (S);

Zi ← 768 least sign. bits of (S).

Here P is a single round of the Blake2b internal permutation [10]. We do not
exploit any specific property of P . Thus F can be seen as a duplex-sponge
instantiated with a Blake2b round function.
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We remind the reader that Z is used not only to produce a new row M [i] but
also to overwrite the row M [2k − i].

Wandering Phase. The Wandering phase transforms the blocks produced in the
Setup phase. First, it reverses the ordering. Then it operates similarly to the
Setup phase, but the second input block to F is taken pseudo-randomly:

for i from 1 to 2n − 1
ri ← g(M [i − 1], i − 1);
M [i] ← M [i] ⊕ F (M [i − 1],M [ri]);

M [ri] ← M [ri] ⊕ ←−−−−−−−−−−−−−
F (M [i − 1],M [ri]).

Here g truncates the first input to the least significant 32 bits and xores with the
second input. All indices are computed modulo 2n.

A.2 Tradeoff Attack on the Setup and Wandering Phases of Lyra2

Our strategy for the Setup phase is similar to the one for Catena. Again, we
exploit the properties of the indexing function φ.

Let us denote a segment of rows {M [i],M [i + 1], . . . , M [j]} by M [i : j].
Consider a, b such that 2k−1 < a < b < 2k. Then

φ([a : b]) = [(2k − b) : (2k − a)].

Thus to construct a single segment we need another segment of the same length.
This suggests the following strategy for computing 2n rows in the Setup phase.

1. First 2n−l rows M [0], . . . , M [2n−l − 1] for some l > 0 (parameter of the
attack).

2. We split rows from M [2n−l] to M [2n − 1] into segments of length q for some
q < 2n−l. Store the entire state S at the start of each segment.

Then to compute segment M [a : a + q − 1], 2k−1 < a < 2k we have to
compute M [φ(a : a+ q −1)], which has been updated when computing segments
between 2k−2 and 2k−1. Eventually we reach the stored 2n−l rows. To compute
M [a : a + q − 1], 2k−1 < a < 2k we need to compute a segment in the interval
[2i : 2i+1] for each n − l < i < k (Fig. 6).

Let us figure out the memory reduction and the computational overhead
of this procedure. We store 2n−l first rows and 2n

96q rows for starting state in
each segment, then a segment of length q during recomputation. For segments
between rows M [2n−l] and M [2n−l+1] we need 1 call to F per row, as there is no
recomputation. For segments between rows M [2n−l+1] and M [2n−l+2] we need
2 calls to F per row, and so on. In general, we make

(k − n + l)q (10)
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calls to F to compute a segment of length q between row indices 2k and 2k+1.
For the entire Setup phase we spend

2n−l
︸︷︷︸

M [0:2n−l−1]

+ 2n−l
︸︷︷︸

M [2n−l:2n−l+1−1]

+2 · 2n−l+1 + 3 · 2n−l+2 + · · · + l2n−1 ≤ (l − 0.5)2n

calls to F . The memory requirements are 2n−l + q + 2n

96q , which reaches the
minimum of 2n−l + 2n/2−4.5 for q = 2n/2−5.5.

To summarize, our tradeoff algorithm B has computational penalty (l − 0.5)
if the memory is reduced by the factor of 2l (Table 5).

a

2k − b

2k−1

q

2n−l

b

2k − a

Fig. 6. Computing segment of length q with precomputation method in the Setup
phase of Lyra2.

Table 5. Computational-memory tradeoff for the Setup phase of Lyra2: our method
and designers’ analysis.

Memory fraction Computational penalty [25]

1/4 1.5 2

1/8 2.5 4

2−l l − 0.5 2l−1

Access Complexity of a Single Row. In the next phase we will need to
calculate the cost of recomputing a single row rather than a segment. To compute
a single row, we need to recompute (l−0.5) segments on average, so the average
recomputation complexity is:

A = q(l − 0.5). (11)
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Tradeoff Attack on the Wandering Phase of Lyra2 with T = 1. We
apply the ranking method to the Wandering phase of Lyra2. Since Lyra2 updates
two rows at once, its penalties are higher than in generic data-dependent schemes
and are given in Table 6.

Table 6. Average computational and depth penalties for the ranking method on the
Wandering phase of Lyra2, without exploiting the row pipelining.

Memory fraction 1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
10

1
12

1
16

Computation penalty 2.7 10.4 75 1071 214 2n 2n 2n 2n 2n

Depth penalty 2.4 4.8 8.9 15.4 23.8 35.7 49 83 124 193

A.3 Tradeoff for the Full Lyra2 with T = 1

Memory Partition. To run the attack on the full Lyra2 with fraction 1/l of
memory, we have to split the available memory between Setup and Wandering
phases. Suppose that we allocate fraction α of memory for the Setup phase
and fraction β of memory for the Wandering phase. Let PS(α) be the penalty of
running the Setup phase with fraction α, PR(α) be the average access complexity
of a single row from the Setup phase run with fraction α (Eq. (11)), and PW (β)
be the penalty of running the Wandering phase with fraction β (Table 6). Then
the total memory reduction will be α+β. To estimate the time penalty, we note
that in our tradeoff for the Wandering phase, each recomputation requests as
many rows from the Setup phase as many hash calls is made in the Wandering
phase. Therefore, the total time penalty would be estimated as

P (α + β) =
PS(α)2n + PR(α)PW (β)2n

2n+1
,

as we construct 2 · 2n blocks in two phases.

Exploiting Iterative Compression Function. Similarly to the attack on yescrypt
we can exploit the fact that Lyra2 produces blocks of a row columnwise. There-
fore, we have to make D calls to P to compute the first column of the block,
whereas computation of other columns can be pipelined: the second column of
the deepest tree level can be computed simultaneously with the first column of
one level higher. To compute all 128 columns, we spend time needed to compute
D + 128 columns only, so the actual latency penalty is 1 + D/128. Therefore,
the total latency penalty can be calculated as follows:

D(α + β) =
DS(α) + DR(α)+DW (β)

128 + 1
2

,

where DS(α) = 1−(log α)/256 is the average latency penalty in the Setup phase,
DR(α) = − log α − 0.5 is the average latency penalty for accessing the row from
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the Setup phase, and DW (β) is the depth penalty for the Wandering phase given
in Table 6.

The results are given in Table 7. We conclude that Lyra2 is only (0.33, AT )-
secure and (0.1, TM)-secure. The AT compactness is 4 and the TM compactness
is 16. Thus Lyra2 v1 is more susceptible to tradeoff attacks compared to yescrypt.

Table 7. Computational, latency, AT (assuming Rc = 3000 and M = 224) and TM
penalties for the ranking tradeoff attack on Lyra2 v1 with T = 1. Memory fraction is
given as a sum of Wandering and Setup allocations

Memory 1 0.45 0.31 0.26 0.12 0.06

Wandering+Setup 1/3+1/8 1/4+ 1/16 1/5+1/16 1/10+1/64 1/17+1/256

Comp. penalty CP (q) 1 14.2 133 1876 219 -

Lat. penalty LP (q) 1 1.03 1.05 1.08 1.37 1.93

TM penalty 1 0.47 0.33 0.28 0.16 0.12

AT penalty 1 0.47 0.35 0.63 94 -
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Abstract. At EUROCRYPT 2012 Pandey and Rouselakis introduced
the notion of property preserving symmetric encryption which enables
checking for a property on plaintexts by running a public test on the
corresponding ciphertexts. Their primary contributions are: (i) a sepa-
ration between ‘find-then-guess’ and ‘left-or-right’ security notions; (ii)
a concrete construction for left-or-right secure orthogonality testing in
composite order bilinear groups.

This work undertakes a comprehensive (crypt)analysis of property
preserving symmetric encryption on both these fronts. We observe that
the quadratic residue based property used in their separation result is
a special case of testing equality of one-bit messages, suggest a very
simple and efficient deterministic encryption scheme for testing equality
and show that the two security notions, find-then-guess and left-or-right,
are tightly equivalent in this setting. On the other hand, the separation
result easily generalizes for the equality property. So contextualized, we
posit that the question of separation between security notions is prop-
erty specific and subtler than what the authors envisaged; mandating
further critical investigation. Next, we show that given a find-then-guess
secure orthogonality preserving encryption of vectors of length 2n, there
exists left-or-right secure orthogonality preserving encryption of vectors
of length n, giving further evidence that find-then-guess is indeed a mean-
ingful notion of security for property preserving encryption. Finally, we
cryptanalyze the scheme for testing orthogonality. A simple distinguish-
ing attack establishes that it is not even the weakest selective find-then-
guess secure. Our main attack extracts out the subgroup elements used
to mask the message vector and indicates greater vulnerabilities in the
construction beyond indistinguishability. Overall, our work underlines
the importance of cryptanalysis in provable security.
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1 Introduction

The question of constructing practical cryptographic schemes for securing data in
the cloud has attracted a lot of research during the last decade. Notions like order
preserving encryption [8,10], attribute-based encryption [21,24,26], functional
encryption [1,6,14–16,25] and format preserving encryption [7] are useful for this
purpose. The notions of IBE [11,12,19] and public key encryption with keyword
search [13,17,33,34] deal with testing of equality. Homomorphic encryption too
[22,23,35] plays an important role in cloud security. These schemes aim to achieve
data privacy, user privacy, secure computation on encrypted data, etc., on the
cloud.

At EUROCRYPT 2012 Pandey and Rouselakis [29] defined the notion of
property preserving symmetric encryption (PPEnc) which can be used for data
clustering [27]. This notion, the authors claim, is most useful in the symmetric
key setting. A PPEnc scheme is a collection of four algorithms, namely, Setup,
Encrypt, Decrypt and Test where Test is used to check whether the underly-
ing messages satisfy a particular property or not. The authors claim that it is
sufficient to consider a simpler notion called property preserving tag (PPTag),
obtained by dropping the decryption algorithm. The standard approach is to use
a semantic secure symmetric key encryption scheme to encrypt the “payload”
message while the encryption algorithm of PPTag is used to create a “tag” that is
used as one of the inputs to Test to publicly check whether the message satisfies
the property or not. In fact a similar approach was taken in [28,32]. Following the
Bellare et al. approach for standard encryption [4,5], they define several security
notions for property preserving encryption such as find-then-guess (FtG) and
left-or-right (LoR) security. However, unlike Bellare et al. [4] who showed FtG
implies LoR in the ordinary symmetric key setting, [29] claims that there is a
separation between FtG and LoR notions and a hierarchy among the FtG classes
that does not collapse. While the notion of property preserving encryption and
its security are defined in the abstract setting of a general k-ary property, the
separation results are conditioned on the assumed existence of a PPEnc for a
concrete binary property based on quadratic residuosity, called Pqr. Finally, the
paper proposes a scheme for achieving orthogonality, which is claimed to be LoR
secure in the generic bilinear group model.

Property preserving encryption has a direct connection with predicate pri-
vate encryption [32]. In such a scheme, given a token one can check whether a
ciphertext satisfies a certain predicate or not. A PPTag scheme may be easily con-
structed from a predicate private encryption scheme by concatenating ciphertext
and token for a given message. If one starts from a full secure predicate-private
scheme, one obtains an LoR secure PPTag scheme [1,29]. In [29], the authors also
claim that property preserving encryption is a generalization of order preserving
encryption of Boldyreva et al. [8–10].

Our Motivation. Property preserving symmetric encryption is an interesting
new concept, with a potential practical application for outsourcing computa-
tion and it is related to several other primitives like order preserving encryption
and predicate encryption. Hence it is imperative that this notion be critically



660 S. Chatterjee and M.P.L. Das

evaluated from the definitional perspective. Because of the separation, design-
ers working on the problem of constructing property preserving encryption for
various concrete properties may tend to disregard the FtG notion and only aim
at the strongest LoR notion, which is likely to take considerably more resources,
see, for example, [1]. Thus it is natural to ask whether the separation indicates
any real gap between the two notions and generalizes to any concrete property
of interest or is it an artifact related to the peculiarities of the property con-
sidered in [29]. The importance of cryptanalyzing the proposed provably secure
construction requires no further emphasis.

Our Contributions. In Sect. 3, we revisit the separation results of [29]. As no
concrete construction of FtG-secure scheme for Pqr was suggested to validate the
separation results, we first attempt to build such a scheme. The first observation
is that the quadratic residuosity property used in the separation results of [29],
can be generalized to a property preserving test of equality. Hence we focus on
equality property and show that one-time pad is sufficient to achieve FtG security
for equality preserving encryption of one-bit messages. Furthermore, the two
notions of FtG and LoR security in fact collapse in such a deterministic setting.
This result is further generalized for equality testing of n-bit messages where
we show a pseudo-random permutation is sufficient to achieve the strongest LoR
security. Thus, on one hand we can easily generalize the separation results of
[29] for the equality property, on the other we show that in concrete terms the
two notions of FtG and LoR effectively collapse for this property. This points to
the inherent ambiguity with respect to the actual implication of the separation
results for concrete properties of interest. Thus contextualized, we note that
the question of whether the separation results of [29] actually indicate any real
world difference between the two notions of FtG and LoR security for property
preserving encryption still remains open.

In Sect. 4, we look at the relation of FtG and LoR in the context of orthog-
onality property. We show that given an FtG secure orthogonality preserving
encryption of vectors of length 2n, there exists LoR secure orthogonality pre-
serving encryption of vectors of length n. This result gives further credence
to our already established evidence that FtG is indeed a meaningful notion of
security for property preserving encryption. We also show that in the property
preserving scenario orthogonality implies equality.

In Sect. 5, we cryptanalyze the scheme for testing orthogonality from [29]. We
show that the PPEnc scheme given in [29, Sect. 5] is not even weakest selective
find-then-guess secure, which falsifies the claim [29, Theorem 5.1] that it is LoR
secure. Going beyond indistinguishability, we show that if an adversary is allowed
just one query and then given a ciphertext for some unknown message vector
x = (x1, . . . , xn), s/he can extract significant non-trivial information about x
including whether x is orthogonal to any message of adversary’s choice. Thus
the attack defeats the very purpose of having property preserving encryption in
the symmetric key setting and may be of independent interest in understanding
the security of cryptographic schemes in the composite order pairing setting.

We draw our conclusion in Sect. 6. Some of the detailed proofs are provided
in AppendixA.
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2 Definitions

We recall the basic definition of property preserving encryption and notions of
its security from [29]. The paper claims that the idea makes most sense in the
symmetric key setting – in the public key setting an adversary can gain non-
trivial information about a target ciphertext by encrypting messages of her own
choice and then testing for the property on the target message.

As in [29], we too model any k-ary property on M as a Boolean function on
Mk. One of the main properties considered is orthogonality, which depends on
computing inner products in finite dimensional vector spaces over finite fields.
Let v = (v1, . . . , vn) and w = (w1, . . . , wn) be vectors over a finite field Fq. The
inner product between them is defined as v · w = v1w1 + . . . + vnwn (mod q).
These vectors are orthogonal if v · w = 0.

Definition 1. A property preserving encryption scheme (PPEnc) for the k-ary
property P is a collection of four probabilistic polynomial time (PPT) algorithms,
which are defined as follows:

1. Setup(1λ): This takes as input the security parameter and outputs the message
space (M), public parameters (PP ) and the secret key (SK).

2. Encrypt(PP, SK,m): This algorithm outputs the ciphertext CT corresponding
to the message m, using the secret key SK and public parameter PP .

3. Decrypt(PP, SK,CT ): This algorithm outputs the plaintext message m.
4. Test(CT1,. . . , CTk, PP ): This is a public algorithm that takes as inputs

ciphertexts CT1, . . . , CTk corresponding to messages m1, . . . ,mk, respectively
and outputs a bit.

These set of four algorithms must satisfy the standard correctness requirement.
In addition, if the Test algorithm outputs b ∈ {0, 1} then, except with negligible
probability, one has P (m1, . . . ,mk) = b.

A related notion of PPTag scheme was also defined. Informally, such a scheme
does not have any decrypt module.

Definition 2. A property preserving tag scheme (PPTag) for the k-ary property
P is a collection of three probabilistic polynomial time (PPT) algorithms, which
are defined as follows:

1. Setup(1λ): This takes as input the security parameter and outputs the message
space (M), public parameters (PP ) and the secret key (SK).

2. Encrypt(PP, SK,m): This algorithm outputs the ciphertext CT corresponding
to the message m, using the secret key SK and public parameter PP .

3. Test(CT1,. . . , CTk, PP ): This is a public algorithm that takes as inputs
ciphertexts CT1, . . . , CTk corresponding to messages m1, . . . ,mk, respectively
and outputs a bit.

This set of algorithms must satisfy the standard correctness requirement. If the
Test lgorithm outputs b ∈ {0, 1} then, except with negligible probability, one has
P (m1, . . . ,mk) = b.
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Remark 1. In [29], the authors suggest the following strategy while designing a
secure property preserving encryption scheme. The actual “payload” message is
encrypted using an IND-CPA secure symmetric encryption scheme. For testing
the property, a tag is constructed for each message using a PPTag scheme.

2.1 Security Notions

Inspired by the study of security notions of symmetric key encryption by Bellare
et al. [4], Pandey and Rouselakis [29] propose several notions of security for
property preserving symmetric encryption. These notions are defined by taking
into account the specific nature of PPEnc. Here we informally describe the two
notions of security for such schemes which are most relevant to our work. For
more details refer to [29].

Definition 3. For a k-ary property P , any two sequences X = (x1, . . . , xn) and
Y = (y1, . . . , yn) of inputs are said to have the same equality pattern if

P (xi1 , . . . , xik) = P (yi1 , . . . , yik), ∀(i1, . . . , ik) ∈ [n]k.

Find-then-Guess Security (FtG). Challenger and adversary A = (A1,A2)
plays the following game GameFtGΠ,A,λ(b) which is formally defined in [29, Sect. 3].
After the Setup phase, in A1, the adversary first adaptively queries the encryp-
tion oracle for messages (m1, . . . ,mt). Then the adversary outputs the challenge
messages (m∗

0,m
∗
1). In A2, after the challenger returns the ciphertext of m∗

b for
a random b ∈ {0, 1}, the adversary again adaptively queries (mt+1, . . . ,mq).
The adversary wins the game if s/he can correctly predict the bit b. Adver-
sarial queries must satisfy the extra condition that the equality patterns
of (m1, . . . ,mt,m

∗
0,mt+1, . . . ,mq) and (m1, . . . ,mt,m

∗
1,mt+1, . . . ,mq) are the

same. Otherwise A can trivially win the game.

Definition 4. Let Π =Setup,Encrypt,Decrypt,Test be a symmetric key property
preserving encryption scheme. Then Π is said to be FtG secure if there exists a
negligible function n(·) such that for all PPT FtG adversaries A as above and
for all λ ∈ N sufficiently large, the advantage of A in the FtG game is negligible:

AdvFtGΠ,A,λ =
∣
∣
∣Pr

[
GameFtGΠ,A,λ(1) = 1

]
− Pr

[
GameFtGΠ,A,λ(0) = 1

]∣
∣
∣ ≤ n(λ).

They [29] further introduce a hierarchy in the FtG notion depending on the
number of challenge queries. In particular, any adversary playing the FtGη game,
for η ∈ N, is allowed to make η many challenge queries interleaved between
encryption oracle queries. A selective FtG notion may be defined in the usual
way, following [11], where the adversary outputs the challenge messages even
before receiving the public parameters.

Left-or-Right Security (LoR). Challenger and adversary A plays the following
game GameLoRΠ,A,λ(b). After setup, A makes q encryption queries, where each query

is of the form (m(i)
0 ,m

(i)
1 ). The queries are such that the tuples (m(1)

0 , . . . ,m
(q)
0 )
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and (m(1)
1 , . . . ,m

(q)
1 ) have the same equality pattern. The challenger returns the

encryption of m
(i)
b for each i where the random bit b is chosen at the beginning

of game. At the end, the adversary has to output a guess b′ of b and wins if
b′ = b. The game is formally defined in [29, Sect. 3]. The definition of adversarial
advantage is as follows.

Definition 5. Let Π =Setup,Encrypt,Decrypt,Test be a symmetric key property
preserving encryption scheme. Then Π is said to be LoR secure if there exists a
negligible function n(·) such that for all PPT LoR adversaries A as above and
for all λ ∈ N sufficiently large, the advantage of A in the LoR game is negligible:

AdvLoRΠ,A,λ =
∣
∣
∣Pr

[
GameLoRΠ,A,λ(1) = 1

]
− Pr

[
GameLoRΠ,A,λ(0) = 1

]∣
∣
∣ ≤ n(λ).

3 Separation Results: A Closer Look

Let QRp (resp. QNRp) be the set of quadratic residues (resp. quadratic non-
residues) in Z

∗
p for some prime p. Consider the quadratic residuosity property

Pqr defined as follows:

Pqr(m1,m2) =
{

1 if m1 · m2 ∈ QRp

0 if m1 · m2 ∈ QNRp
(1)

Assuming there exists an FtG secure property preserving encryption scheme
Π for Pqr; Pandey and Rouselakis construct an artificial scheme Π ′ which is FtG
but not LoR secure [29, Theorem 4.1]. In a similar fashion they establish that
FtGη

� FtGη+1 [29, Theorem 4.4]. Note that (i) the separation results are specific
to property Pqr and (ii) conditioned on the existence of FtG secure scheme for
Pqr and no such construction was known or suggested in [29].

Property preserving encryption is a rather broad category and a separa-
tion based on the specificity of a particular property does not necessarily pro-
vide enough insight about the relationship between different security notions
for another concrete property or how two notions are related in general. For
example, the separation result for Pqr in [29] does not give any clue whether the
same will hold for another property, say orthogonality. Another crucial question
is whether the separation is real or merely an artifact – is there any ‘natural’
construction for a ‘natural’ property that is FtG but not LoR secure.

Clearly, a thorough investigation of these questions requires identifying nat-
ural properties that encompass other properties and then analysing the real dif-
ference between security notions of property preserving encryption in the context
of these natural properties. For example, consider the set of all unary proper-
ties. It is suggested [29] that for any unary property P , a PPTag scheme can be
trivially obtained by providing P (m) in the clear as part of the ciphertext. We
note that in such a scenario, the two notions FtG and LoR actually collapse. The
case for binary properties, however, is more subtle as we see next.
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3.1 Equivalence Testing via Equality

We demonstrate that certain equivalence relations can be tested via equality
property – Pqr property used in [29] is one such relation.

Claim 1. To construct a PPTag scheme for Pqr; it suffices to construct a PPTag
scheme for equality where the message space is M = {0, 1}.1

Proof. The argument is quite straightforward. A “sign” function S was used
by [29] to define Pqr where S(m) = 0 if m ∈ QRp; else S(m) = 1. In other
words, Pqr divides the message space M = Z

∗
p into 2 equivalence classes. Given

any message in Z
∗
p one can efficiently determine S(m) and then use the PPTag

scheme for equality over the message space {0, 1} to encrypt S(m). Product of
two messages x and y belongs to QRp if and only if both x and y belong to same
equivalence class. Thus testing whether the product of x and y is a quadratic
residue or not is now reduced to the task of testing whether S(x) and S(y) are
equal or not. ��
The property Pqr used in [29] is a particular instance of a larger class of property
P. In particular, the property P induces an equivalence relation on a set M such
that there exists an efficient algorithm to determine the class in which a given
element lies. Another example of such property is to test, given two integers m
and n, whether their difference is divisible by a fixed prime p. It is easy to see
that a PPTag scheme for such a property P can be realized by any PPTag scheme
for equality. Note, however, that there do exist equivalence relations for which
the question of membership testing is not known to be easy.

3.2 Natural LoR Secure Equality Testing

We describe a property preserving encryption scheme for testing equality over
message space {0, 1}.

1. Setup(1λ): Set SK = t, where t ∈R {0, 1}.
2. Encrypt(SK,m): CT = t ⊕ m.
3. Decrypt(SK,CT ): m′ = CT ⊕ t.
4. Test(CT1, CT2): Return 1 if and only if CT1 = CT2.

It is well-known that as a symmetric key encryption scheme the above con-
struction (or any deterministic encryption scheme) is not FtG secure in the sense
of [4] but it is as a PPEnc as the following claim shows.

Claim 2. The above construction is an FtG secure PPEnc for one-bit messages.

1 Here and afterwards we often focus on PPTag schemes as the problem of construct-
ing a PPEnc is essentially reduced to the problem of constructing a PPTag scheme
(see Remark 1).
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Proof. The key idea is that an FtG adversary A is restricted by the equality
pattern. If A makes the challenge query as (0, 1) or (1, 0) then s/he cannot make
any encryption oracle query. Hence, the one-time pad ensures the challenge bit
is information theoretically hidden from A. On the other hand, if the challenge
query is of the form (0, 0) or (1, 1) then there is no non-trivial information for
A to learn either from the encryption queries or from the challenge. ��
The above result further leads us to the following interesting consequence. Let
E : K × {0, 1} −→ {C0, C1} be a deterministic encryption scheme.

Claim 3. If E is FtG secure PPEnc scheme for equality then it is LoR secure.

Proof. Let A be a valid LoR adversary for E. We will construct a valid FtG
adversary B for E, which is playing the FtG game with its own challenger C by
internally running A.

Observe that A has to respect the equality pattern and hence can only
make queries from the following disjoint sets: S1 = {(0, 0), (1, 1)} and
S2 = {(0, 1), (1, 0)}. If A makes queries from the set S1, then FtG −→ LoR
holds trivially.

Now let us analyze the case when A makes queries from S2 = {(0, 1), (1, 0)}.
Let us, without loss of generality, assume that A’s first query is (0, 1). B sets the
same message (0, 1) as its own FtG challenge query, forwards it to C. In response
C provides a challenge ciphertext Cb to B, b ∈ {0, 1} by encrypting β ∈R {0, 1}
using the encryption function E as per the rule of the FtG game. B forwards the
same Cb to A. Note that by the definition of FtG security, B cannot make any
other query to C. However, if A repeats the same query (0, 1), then B simply
forwards the same ciphertext Cb. If A queries the other valid message pair (1, 0),
then B returns ciphertext C1−b. When A outputs a bit as its guess and halts,
then B outputs the same bit to C and halts.

The simulation of A’s environment by B is perfect. In fact, after the first
query, A can on its own generate the response for all other queries it is going
to make. Now the FtG security of E ensures that the encryption of 1 is indistin-
guishable from the encryption of 0. Hence, the advantage of B is same as that
of A and the two notions actually collapse. ��
As a consequence we note that the one-time pad construction of PPEnc achieves
LoR security. However, it is well-known that the same is not even FtG secure as
standard symmetric key encryption scheme. Thus there exists binary property
preserving encryption scheme secure in the strong LoR sense of property preserv-
ing encryption but does not even achieve FtG security as a standard symmetric
key encryption scheme.

Based on our previous observations we suggest the following direct construc-
tion of LoR secure PPEnc for equality testing on M = {0, 1}n. A PPTag can be
obtained by dropping the Decrypt algorithm from the description.2

2 Similar construction for testing equality in the context of authenticated encryption
and searchable encryption schemes was suggested earlier by Rogaway-Shrimpton [31]
and Amanatidis et al. [2]. Their constructions used deterministic MAC which is
modeled as a PRF.
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Property Preserving Encryption for Equality. We describe a scheme Π
to test for equality of strings of length n.3 Let {F}n be a pseudo-random
permutation (PRP) family and an element F ∈ {F}n is defined as F :
{0, 1}n × {0, 1}n −→ {0, 1}n.

1. Setup(1λ): Set a random n-bit binary string K as the secret key SK.
2. Encrypt(SK,m): CT = FK(m).
3. Decrypt(SK,CT ): Return F−1

K (CT ).
4. Test(CT1, CT2): Return 1 if and only if CT1 = CT2.

Claim 4. If the underlying PRP family is secure, then Π is LoR secure.

Proof. (Sketch) The claim is established through a simple hybrid argument. Let
the adversary A for the LoR game set (m∗

0,1,m
∗
1,1), . . . , (m

∗
0,t,m

∗
1,t) as challenges.

We claim that the games Game0 : m∗
0,1, . . . ,m

∗
0,t and Game1 : m∗

1,1, . . . ,m
∗
1,t are

indistinguishable. We note that, by the security of the PRP, the Game0 is indis-
tinguishable from a game where the challenger computes the response from a
random permutation. Similarly, challenges output in Game1 will be indistinguish-
able from the output of a random permutation. ��

3.3 Separation Between FtG and LoR Notions for Equality

After establishing the existence of natural PPEnc/PPTag scheme for equality
testing satisfying LoR security (and, hence, FtG security), we now generalize the
result of [29, Theorem 4.1] to show that the separation holds for the equality
property and need not necessarily be restricted to small number of equivalence
classes. Let M be the message space. Suppose z = 	log2 |M|
 so that every ele-
ment m ∈ M can be represented by a bit string of length z. Note that z (and not
|M|) is a polynomial in the security parameter. Let Π = (Setup,Encrypt,Test)
be any FtG secure PPTag scheme for equality. From this scheme we construct
another scheme Π ′ = (Setup′,Encrypt′,Test′) for realizing the same property.
The construction uses a PRF family F : {0, 1}κ × {0, 1}z −→ {0, 1}z.4

1. Setup′(1λ): Calls Setup of Π to obtain (PP, SK) and chooses k ∈R {0, 1}κ (as
the key for the PRF). The algorithm outputs PP as the public parameters
for Π ′ and sets the secret key as SK ′ = (SK, k).

2. Encrypt′(PP, SK ′,m): While encrypting m ∈ M, the encryption algorithm of
Π is used to obtain ct = Encrypt(PP, SK,m). Then choose a bit b ∈R {0, 1}.
The ciphertext of Π ′ is computed as

CT =

{
(ct, b, Fk(m)), if b = 0,

(ct, b, Fk(m) ⊕ m), otherwise.

3 For the case of PPTag there is no need to decrypt and hence the construction can be
extended to arbitrary length messages by the use of a CRHF H with n-bit digests.

4 The PRF can be replaced by a set of |M| random bit strings when |M| is small
(i.e., polynomial in the security parameter). On the other hand, for arbitrary length
messages one can use a collision resistant hash function (CRHF) H to first map the
message to a digest of z-bit and then apply the PRF on the digest.
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3. Test′(CT1, CT2, PP ): Given CT1 = (ct1, b1, t1) and CT2 = (ct2, b2, t2), the
algorithm outputs Test(ct1, ct2, PP ).

The following two lemma generalize the result of [29] and together establish
that the separation result for FtG and LoR holds for equality property. We provide
the proofs in AppendixA.

Lemma 1. If the scheme Π is FtG secure and F is a secure PRF then Π ′

constructed as above is also FtG secure. In particular, εΠ′ ≤ εΠ + 2εF where
εX denotes the advantage in the corresponding security game for the primitive
X ∈ {Π,F ,Π ′}.
Lemma 2. There is an LoR adversary for the scheme Π ′ with non-negligible
advantage.

Remark 2. We point out an interesting consequence of the above separation
result. Shen-Shi-Waters [32] proposed two security notions, the single challenge
and full challenge security for predicate private symmetric encryption (see [32]
for the definitions of security). The strategy outlined in Lemmas 1 and 2 in the
context of PPTag can be adapted to establish a similar separation between single
challenge and full challenge security of predicate private encryption. Suppose we
are given a single challenge secure predicate private scheme for equality, called
Ψ . From that we construct another scheme Ψ ′ where the only changes are in
the Setup and Encrypt as described in the context of Π ′ above. In particular,
the encryption algorithm of Ψ ′ outputs a ciphertext of Ψ together with either
(b, Fk(m)) or (b, Fk(m) ⊕ m) depending upon whether b = 0 or b = 1. A similar
argument as in the case of PPTag above shows that Ψ ′ is single challenge secure
but not full secure.

Hierarchy Among FtG Classes. We briefly comment on the separation result
for the hierarchy among FtG classes given in [29]. The reader may refer to the
full version [20] for further details. The equality property over small message
space is used to establish the result. We start with a scheme Π which is FtGη

secure and derive a scheme Π ′ which is not FtGη+1 secure. For each message m
the Setup algorithm of Π ′ stores a set of random bit strings {tm,1, . . . , tm,η} as
part of secret key. Encryption algorithm of Π ′ chooses b ∈R {1, . . . , η + 1} and
returns

Π ′.Encrypt(PP, SK,m) = (Π.Encrypt(PP, SK,m), b, val),

where

val =

{
tm,b, if 1 ≤ b ≤ η

tm,1 ⊕ . . . ⊕ tm,η) ⊕ m, if b = η + 1.

The derived scheme Π ′ is not FtGη+1 secure, but FtGη secure.
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3.4 The Bottom Line

At this point a reader may wonder what could be a plausible conclusion of our
analysis. On one hand, a PRP is sufficient to construct LoR secure PPEnc for
equality and the two notions of FtG and LoR collapse in such a setting. On the
other, for the same property there is a theoretical gap between FtG and LoR
notions of security which may or may not be the case for other properties of
interest. In fact, in the next section we show that for orthogonality any FtG
secure PPEnc for vectors of length 2n gives an LoR secure PPEnc for vectors of
length n.

It seems the only reasonable conclusion is that no conclusive evidence exists
indicating any real world difference between the two notions of security for PPEnc
in general. This leads us to the following open question: is there a ‘natural’ con-
struction of a scheme for testing equality or, for that matter, any other ‘nat-
ural’ property, which is FtG secure but not LoR secure. Resolving this question
will shed further light into the usefulness of the hierarchy of security notions
introduced in [29].

4 Orthogonality: Relation Between FtG and LoR and with
Equality

We show that it is possible to construct an LoR secure scheme from FtG secure
scheme for orthogonality which provides evidence that FtG is a meaningful notion
for property preserving encryption. Next, we show that orthogonality implies
equality in the property preserving scenario.

4.1 FtG2n implies LoRn

Shen, Shi and Waters showed [32, Theorem 2.8] that a single challenge secure
symmetric key predicate-only encryption scheme for testing orthogonality of
vectors of length 2n may be used to construct one achieving full security for n
length vectors. Inspired by their technique we derive a similar result for property
preserving orthogonality testing.

Let Θ2n be an FtG secure PPTag encryption scheme for testing orthogonality
of vectors of length 2n. We construct a PPTag scheme Θn for testing orthog-
onality of vectors of length n as follows. In the following we assume that the
underlying field on which the vectors are defined does not have characteristic 2
(this is a technical requirement in the security argument). For x = (x1, . . . , xn)
and y = (y1, . . . , yn), as usual x||y := (x1, . . . , xn, y1, . . . , yn).

1. Θn ·Setup(1λ): The public parameters and the secret key are the same as the
corresponding ones of Θ2n.

2. Θn · Encrypt(PP, SK, x): The ciphertext is Θ2n · Encrypt(PP, SK, x||x).
3. Θn ·Test(CT1, CT2, PP ): The test is carried out using that of the Θ2n scheme

as Θn · Test(CT1, CT2, PP ) = 1 if and only if Θ2n · Test(CT1, CT2, PP ) = 1.
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Next, we show that Θn is LoR secure. The proof proceeds via a sequence of
hybrids. Any adversary who can distinguish two adjacent games can break the
FtG security of Θ2n.

Theorem 1. The scheme Θ2n is FtG secure implies the derived scheme Θn is
LoR secure.

Proof. (Sketch) Recall that we have assumed that the underlying field on which
the vectors are defined does not have characteristic 2. We observe that x · y =
0 if and only if (x||x) · (y||y) = 0. The encoding which maps x to x||x is used for
proving LoR security via a hybrid argument.

Let A be a valid LoR adversary for Θn. The adversary A sets as challenges
the pairs (x(1)

0 , x
(1)
1 ), . . . , (x(q)

0 , x
(q)
1 ) to the challenger C. The challenger fixes a

random bit b and returns encryption of x
(i)
b , 1 ≤ i ≤ q. The adversary outputs

a bit b′ at the end of the game and wins if b = b′.
We prove that the distributions of the ciphertexts of the sequence of mes-

sages (x(1)
0 , x

(2)
0 , . . . , x

(q)
0 ) and (x(1)

1 , x
(2)
1 , . . . , x

(q)
1 ) are indistinguishable. That is,

the adversary A cannot distinguish the games G0 and G1 of Table 1. The proof
proceeds via a sequence of hybrid games. We tabulate the sequence of hybrids
in Table 1. In GB , the value α is chosen at random from the underlying field. We
mention that a sequence of intermediate games is defined between two consecu-
tive games for proving indistinguishability, where only one ciphertext is changed.
One such sequence between GA and GB is given in Table 1.

Table 1. Left: sequence of hybrids G0 through G1; right: intermediate games between
GA and GB

We first argue that G0 and GA are indistinguishable. Consider an intermediate
game, called G0,1, defined as x

(1)
0 ||0, x

(2)
0 ||x(2)

0 , . . . , x
(q)
0 ||x(q)

0 .
Notice that this game differs from G0 only in the first component. We claim

that G0 and G0,1 are indistinguishable. For, suppose A can distinguish them.
Setting (x(1)

0 ||x(1)
0 , x

(1)
0 ||0) as challenge messages and querying the rest of the

elements, A can be used to construct a valid FtG adversary for Θ2n. We proceed
by defining a sequence of games where any two consecutive games vary exactly at
one component. Similar argument would show that GB and GC are indistinguish-
able. The games GC and GD too may similarly be shown to be indistinguishable.
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Recall that GB was defined using a random parameter α. Even though, say
for example (x(1)

0 ||0) · (x(2)
0 ||0) �= 0 holds, it may so happen that (x(1)

0 ||x(1)
1 ) ·

(x(2)
0 ||x(2)

1 ) = 0. Thus, a random choice of α ensures that setting as the challenge
(x(1)

0 ||0, x
(1)
0 ||αx

(1)
1 ) and the rest of the elements as queries one gets a valid FtG

adversary for Θ2n. This argument shows that GA and GB are indistinguishable.
Similar argument shows that GD and G1 are indistinguishable. ��

4.2 A Direct Test for Equality from Orthogonality

Katz et al. [28] suggested a simple encoding to test for equality using inner
product: create a ciphertext for I = (1, I) and a token for J = (−J, 1). Now
the inner product of I and J is 0 if and only if I = J . This encoding does not
directly work for property preserving encryption as there is no separate token
and the Test is performed only on the ciphertexts. Nevertheless, we show that
one can construct a scheme for testing equality property, given a scheme for
testing orthogonality of vectors. The new scheme inherits the same security as
that of the underlying orthogonality testing scheme. Note that this result is of
theoretical interest, but of little practical value as we already have much more
efficient scheme for testing equality.

The setting is as follows. Let the message space be Fq, where the finite field
is assumed to contain i =

√−1. Examples of fields which contain i are F2n ; Fp,
where p ≡ 1 (mod 4); or extensions of the form Fq which contain i. The square
root of −1 may be given explicitly or may be computed using Tonelli-Shanks
algorithm [3, Chapter 7].

We encode any x ∈ Fq as a vector in F
5
q, where the encoding is given by

x �→ vx = (x2+1, ix2, ix, ix, i) (in characteristic 2 fields m �→ vm = (m+1,m, 1)).
The mapping m �→ vm is one-to-one. Observe that, elements x and y are equal if
and only if vx · vy = 0. We now describe a scheme Π ′ for testing equality, given
a scheme Π for testing orthogonality of vectors of length 5 over Fq.

1. Setup(1λ): The public parameters and secret key for Π ′ are those of Π.
2. Encrypt(PP, SK,m): While encrypting m ∈ Fq, the encryption algorithm

first computes the encoding vm corresponding to m. Then the ciphertext
corresponding to m is CT = Π.Encrypt(PP, SK, vm).

3. Test(CT1, CT2, PP ): Same as that of Π.

Lemma 3. If Π is FtG (respectively LoR) secure then so is Π ′, correspondingly.

Proof. We describe the FtG case as the LoR case may be similarly handled.
Suppose Π ′ is not FtG secure, with AΠ′ a valid adversary. We construct AΠ , an
FtG adversary for scheme Π, which internally runs AΠ′ . Whenever AΠ′ makes
an encryption query m, the adversary AΠ forwards vm to the challenger BΠ .
On receiving the ciphertext, it forwards it to AΠ′ . When AΠ′ sets (m∗

0,m
∗
1) as

challenge, the adversary AΠ forwards (vm∗
0
, vm∗

1
) to the challenger. On receiving
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the encryption of one of the two vectors AΠ forwards it to AΠ′ . The other queries
made by AΠ′ may be handled similarly. When AΠ′ outputs a bit b′ and halts,
so does AΠ . This is a perfect simulation and AΠ wins with the same advantage
as that of AΠ′ . ��

5 Cryptanalysis of Pandey and Rouselakis Construction

The only construction proposed in [29] is a PPTag scheme for testing orthogonal-
ity of two vectors over a finite field. The proposed scheme works in the composite
order bilinear pairing setting. It is claimed without proof in [29, Theorem 5.1]
that the scheme achieves LoR security in the generic group model with a precise
bound on the adversarial advantage.

We identify an inherent symmetry in the construction that is required for
the public Test algorithm. The same symmetry allows the adversary to con-
struct ‘pseudo-ciphertext’ for many messages from a valid ciphertext of a known
message. Suitably manipulated pseudo-ciphertext can be exploited by the adver-
sary to win the indistinguishability game with overwhelming probability. Thus
the scheme is not even selective FtG secure. However, the properties of pseudo-
ciphertexts allow an adversary to go even further. We show that, after making
a single query, an adversary can gain non-trivial information about the underly-
ing message vector given any valid ciphertext. In particular, the adversary can
choose any vector and then check whether the unknown message is orthogonal
to it or not. This effectively negates the main motivation of using the symmetric
key setting for property preserving encryption.

5.1 Pandey and Rouselakis Construction

We recall the scheme of [29] for testing orthogonality of two vectors defined over
a prime field Fp, referred to as PR scheme hereafter.

1. Setup(1λ, n): Pick two distinct primes p and q uniformly at random in the
range (2λ−1, 2λ) where λ is the security parameter. Let G and GT be two
groups of order N = pq such that there is an efficiently computable bilinear
map e : G×G −→ GT . Select a vector (γ1, . . . , γn) ∈ Zq such that

∑n
i=1 γ2

i =
δ2 (mod q). Let g0 (resp. g1) be a generator of a subgroup of order p (resp.
q) of G. Set the message space as M = (Z∗

N

⋃{0})n. Set

PP = 〈n,N, G, GT , e〉, SK = 〈g0, g1, {γi}n
i=1, δ〉.

2. Encrypt(PP, SK,M): On input a message M = (m1, . . . ,mn), select two ran-
dom elements φ and ψ from ZN . The ciphertext is computed as

CT = (ct0, {cti}n
i=1) =

(
gψδ
1 , {gφmi

0 · gψγi

1 }n
i=1

)
.

3. Test(CT (1), CT (2), PP ): When two ciphertexts CT (1) = (ct(1)0 , {ct
(1)
i }n

i=1) and
CT (2) = (ct(2)0 , {ct

(2)
i }n

i=1) are input, the algorithm outputs 1 if and only if:
n∏

i=1

e(ct(1)i , ct
(2)
i ) = e(ct(1)0 , ct

(2)
0 ).
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Correctness ensures that Test outputs 1 only when the underlying messages
are orthogonal, except with a negligible probability.

5.2 A Valid FtG Adversary

Notice that the construction ensures that the quadratic form relation γ2
1 + γ2

2 +
. . .+γ2

n = δ2 (mod q) is formed in the exponent for one subgroup element of GT

while the inner product of the two message vectors is computed in the exponent
of the other. However, the above equality implies that γ1(γ1+γ2)+γ2(γ2−γ1)+
γ2
3 + . . . + γ2

n = δ2 mod q also holds.
Given a ciphertext for some message x = (x1, . . . , xn), say (c0, c1, c2, . . . , cn),

the tuple W = (c0, c1 · c2, c2/c1, c3, . . . , cn) may be computed. We can hence
easily see that the tuple W may be used in the Test algorithm in place of a valid
ciphertext of x′ = (x1 + x2, x2 − x1, x3, . . . , xn). The advantage is that, even
though the adversary is forbidden to query x′ in the security game, s/he may
still obtain a ciphertext of x if it is a valid query, and then, compute and use W
for testing for orthogonality to x′.

Many such relations among the secret key tuple (γ1, . . . , γn) exist that are
equal to δ2. We give more such examples in Lemma 4. But, this observation
motivates us to define the notion of pseudo-ciphertext.

Definition 6. A pseudo-ciphertext for PR scheme, associated with a valid mes-
sage z, is an element Wz ∈ G

n+1 such that Test(CTx,Wz, PP ) = 1 if and only if
Test(CTx, CTz, PP ) = 1, except with negligible probability, where CTx and CTz

are properly formed ciphertexts for x and z respectively.

Next, we prove that [29] scheme is not FtG secure.

Proposition 1. The PPTag scheme proposed in [29] for testing orthogonality is
not even selective FtG secure.

Proof. One can construct a valid selective FtG adversary for the n = 2 case as
follows. The adversary sets (0, 1) and (1, 0) as challenges. Then s/he queries (1, 1)
and forms a pseudo-ciphertext for (2, 0). Using that pseudo-ciphertext adversary
can trivially win the indistinguishability game.

Now consider the case where n ≥ 3. The claim is established in terms of the
following attack game between the adversary (A) and the challenger (S).

(i) A outputs a pair of n-dimensional vectors (μ∗
0, μ

∗
1) as the challenge messages

where n � N . The challenges are of the form μ∗
0 = (m1,m0, 1, . . . , 1) and

μ∗
1 = (m1,m1, 1, . . . , 1), where m1 �= m0 are from Z

∗
N .

(ii) A receives the public parameter PP from challenger.
(iii) A queries Q = ((m1 +m0)/2, (m0 −m1)/2, 1, . . . , 1,−(n−3)). Observe that
Q is not orthogonal to either of the challenge messages μ∗

0 and μ∗
1 and hence, is

a valid query. S responds with CTQ, which is equal to
(
gψδ
1 , g

φ(m1+m0)/2
0 gψγ1

1 , g
φ(m0−m1)/2
0 gψγ2

1 , gφ
0 gψγ3

1 , . . . , gφ
0 g

ψγn−1
1 , g

−(n−3)φ
0 gψγn

1

)
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for some ψ, φ ∈R ZN . Given CTQ, A takes the product and ratio of the third
and second components of the ciphertext to obtain respectively gm0φ

0 g
ψ(γ1+γ2)
1

and g−m1φ
0 g

ψ(γ2−γ1)
1 . A now computes the pseudo-ciphertext (Definition 6) WQ′

for Q′ = (m0,−m1, 1, . . . , 1,−(n − 3)) as

(gψδ
1 , gm0φ

0 g
ψ(γ1+γ2)
1 , g−m1φ

0 g
ψ(γ2−γ1)
1 , gφ

0 gψγ3
1 , . . . , gφ

0 g
ψγn−1
1 , g

−(n−3)φ
0 gψγn

1 ).

Note that the message vector Q′ is orthogonal to μ∗
0 but not to μ∗

1.
(iv) A now asks for the challenge ciphertext. Suppose that S responds with an
encryption for μ∗

b

CTb =
(
gψ̃δ
1 , gm1φ̃

0 gγ1ψ̃
1 , gmbφ̃

0 gγ2ψ̃
1 , gφ̃

0 gγ3ψ̃
1 , · · · , gφ̃

0 gγnψ̃
1

)
,

where b ∈R {0, 1} and φ̃, ψ̃ ∈R ZN are as chosen by S.
(v) A runs the Test algorithm on (CTb,WQ′ , PP ). This amounts to computing
the following quantities:

A = e(gψδ
1 , gψ̃δ

1 ) and

B = e(gm0φ
0 g

ψ(γ1+γ2)
1 , gm1φ̃

0 gγ1ψ̃
1 ) · e(g−m1φ

0 g
ψ(γ2−γ1)
1 , gmbφ̃

0 gγ2ψ̃
1 )·

n−1∏

i=3

e(gφ
0 gψγi

1 , gφ̃
0 gγiψ̃

1 ) · e(g−(n−3)φ
0 gψγn

1 , gφ̃
0 gγnψ̃

1 ).

If A = B then A outputs b′ = 0, otherwise A outputs b′ = 1.
We see that A = B implies b = 0, except with negligible probability. Hence,

the adversary wins the selective FtG game with overwhelming probability of
success. ��
Remark 3. We give yet another attack on the scheme for even n. Let x =
(x1, . . . , xn) be any valid message. Observe that both

δ2 = γ1(γ1 + γ2) + γ2(γ2 − γ1) + . . . + γn−1(γn−1 + γn) + γn(γn − γn−1),

δ2 = γ1(γ1 − γ2) + γ2(γ2 + γ1) + . . . + γn−1(γn−1 − γn) + γn(γn + γn−1)

hold modulo q. Hence, from the ciphertext for x, pseudo-ciphertexts for both

ξ1 = (x1 + x2, x2 − x1, . . . , xn−1 + xn, xn − xn−1) and
ξ2 = (x1 − x2, x2 + x1, . . . , xn−1 − xn, xn + xn−1)

can be formed. Note that neither ξ1 nor ξ2 is orthogonal to x, while ξ1 is orthog-
onal to ξ2. Thus, for example, after setting (ξ1, x) as the challenge pair, querying
x and computing pseudo-ciphertext for ξ2, the adversary can win the FtG game.
A similar attack may also be worked out for odd n.

Remark 4. It would have been illustrating to see where exactly the proof of
[29, Theorem 5.1] fails. Unfortunately no such proof is provided by the authors.
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5.3 Insecurity Beyond Indistinguishability

Recall that in the ciphertext of PR scheme described in Sect. 5.1, the message
components reside in the exponent and even the party who possesses the secret
key does not have the ability to decrypt. Thus it is not reasonable to expect that
one can attack the scheme in the sense of message recovery for high min-entropy
messages. Our next attack demonstrates that an adversary is still capable of
extracting significant amount of information. This will lead to a total break of
the scheme when the messages come from a smaller domain, which could be the
case in applications dealing with, for example, certain types of streaming data
as envisaged in [29].

We assume that the adversary is allowed to make just one query and is given
a valid ciphertext as response. We show how the adversary can process the given
ciphertext and then utilize pairing to unmask the subgroup elements containing
the message vector of any ciphertext, by working in the target group.

Attack for n = 2 Case. Suppose the adversary makes a query (1/2,1/2) and
gets the ciphertext (c0, c1, c2) = (gψδ

1 , g
φ/2
0 gψγ1

1 , g
φ/2
0 gψγ2

1 ). Observe that

(c0, c1 · c2, c2/c1) = (gψδ
1 , gφ

0 g
ψ(γ1+γ2)
1 , g

ψ(γ2−γ1)
1 )

(c0, c1/c2, c1 · c2) = (gψδ
1 , g

ψ(γ1−γ2)
1 , gφ

0 g
ψ(γ1+γ2)
1 )

are pseudo-ciphertexts (see Definition 6) for (1, 0) and (0, 1), respectively, which
can be computed by the adversary. We represent the formation of the two pseudo-
ciphertexts, respectively, via the following two matrices with the obvious inter-
pretation:

M1 =
[

1 1
−1 1

]

and M2 =
[
1 −1
1 1

]

.

Suppose now the adversary gets a ciphertext for some unknown message x =
(x1, x2) as (C0, C1, C2) = (gψ̃δ

1 , gφ̃x1
0 gψ̃γ1

1 , gφ̃x2
0 gψ̃γ2

1 ). With the pseudo-ciphertext
for (1, 0), the adversary computes

e(C1, c1 · c2)e(C2, c2/c1)
e(C0, c0)

=
e(gφ̃x1

0 gψ̃γ1
1 , gφ

0 g
ψ(γ1+γ2)
1 ) · e(gφ̃x2

0 gψ̃γ2
1 , g

ψ(γ2−γ1)
1 )

e(gψ̃δ
1 , gψδ

1 )

= e(g0, g0)φφ̃x1 .

Thus the adversary now possesses (e(g0, g0)φφ̃x1 , e(g0, g0)φφ̃x2), after process-
ing the pseudo-ciphertext for (0, 1) similarly.

This trivially breaks the FtG security of PR scheme. Moreover, the adversary
can test if x is orthogonal to any y = (y1, y2) of his choice by checking whether

(
e(g0, g0)φφ̃x1

)y1 ·
(
e(g0, g0)φφ̃x2

)y2

= 1.
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The adversary may also test for relations among the message coordinates, like
whether x1 = αx2 for some α in a testable range. If x comes from a small domain
then one can exhaustively try for all candidate y to check whether x and y are
orthogonal and thereby recover x with non-negligible probability.

Attack for General n. Before describing the attack, we show that many a
pseudo-ciphertexts can be formed from a valid ciphertext.

Lemma 4. For 1 ≤ i ≤ n, let Mi = ((m(i)
st )) be an n × n matrix defined as

follows. Define m
(i)
it = 1, 1 ≤ t ≤ n. For 1 ≤ s ≤ n, but s �= i

m
(i)
st =

⎧
⎪⎨

⎪⎩

1, t = s

−1, t = i

0, otherwise.

Let CT = (c0, c1, . . . , cn) be a valid ciphertext for x = (x1, . . . , xn). Define ξi =
Mix

T . Define Wi = (d(i)0 , d
(i)
1 , . . . , d

(i)
n ) as follows. For all j, define

d
(i)
j =

{
c0, if j = 0
∏n

k=1 c
m

(i)
jk

k , otherwise.

Then Wi is a pseudo-ciphertext for ξi.

Proof. We provide details for i = 1 – the general case is similar. Observe that by
applying M1 to xT one obtains ξ1 = (

∑n
l=1 xl, x2−x1, . . . , xn−x1). We also note

that M1(γ1, . . . , γn)T = (
∑n

l=1 γl, γ2 −γ1, . . . , γn −γ1). By an easy computation:

γ1
∑

γl + γ2(γ2 − γ1) + . . . + γn(γn − γ1) = δ2 (mod q).

Let (gψδ
1 , gφx1

0 gψγ1
1 , . . . , gφxn

0 gψγn

1 ) be a valid ciphertext for x. From this, we
compute a pseudo-ciphertext for ξ1 as

W1 = (gψδ
1 , g

φ
∑

xl

0 g
ψ
∑

γl

1 , g
φ(x2−x1)
0 g

ψ(γ2−γ1)
1 , . . . , g

φ(xn−x1)
0 g

ψ(γn−γ1)
1 ).

Let a ciphertext for y = (y1, . . . , yn) be given as

CTy = (c0, c1, . . . , cn) =
(
gψ̃δ
1 , gφ̃y1

0 gψ̃γ1
1 , . . . , gφ̃yn

0 gψ̃γn

1

)
.

Suppose we run Test with CTy and W1. It is easy to see that:

e(c0, g
φ
∑

xl

0 g
ψ
∑

γl

1 )
∏n

l=2 e(cl, g
φ(xl−x1)
0 g

ψ(γl−γ1)
1 )

e(gψ̃δ
1 , gψδ

1 )
= e(g0, g0)φφ̃(y·ξ1)

= 1

if and only if y is orthogonal to ξ1, except with negligible probability. ��
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Corollary 1. By querying the vector x = (1/n, . . . , 1/n), one can obtain the
pseudo-ciphertexts for each of the unit vectors ei = (0, . . . , 0, 1, 0 . . . , 0) (1 in the
ith place), 1 ≤ i ≤ n.

In the following theorem we describe the attack for general n.

Theorem 2. Suppose in the proposed PR scheme of [29] the adversary is
allowed to make one query for any message of its choice. Then, given a valid
ciphertext for any unknown message (x1, . . . , xn), the adversary can extract the
tuple of elements (η; ηφ′x1 , . . . , ηφ′xn) for some η belonging to the order-p sub-
group of GT and φ′ ∈ ZN .

Proof. Let (d0, d1, . . . , dn) = (gψδ
1 , g

φ/n
0 gψγ1

1 , . . . , g
φ/n
0 gψγn

1 ) be the ciphertext
for the queried message (1/n, . . . , 1/n). A ciphertext CTx for some unknown
x = (x1, . . . , xn) is given to the adversary, where CTx = (c0, c1, . . . , cn) =(
gψ̃δ
1 , gφ̃x1

0 gψ̃γ1
1 , . . . , gφ̃xn

0 gψ̃γn

1

)
.

Notice that the unit vector ei can be written as ei = Mi(1/n, . . . , 1/n)T .
From Lemma 4, the adversary can compute Wi = (w(i)

0 , w
(i)
1 , . . . , w

(i)
n ), a pseudo-

ciphertext for ei as

Wi =
(
gψδ
1 , g

ψ(γ1−γi)
1 , . . . , g

ψ(γi−1−γi)
1 , gφ

0 g
ψ(
∑

γj)
1 , g

ψ(γi+1−γi)
1 , . . . , g

ψ(γn−γi)
1

)
.

The adversary further computes
(∏n

l=1 e(cl, w
(i)
l )

)
/e(c0, w

(i)
0 ) = e(g0, g0)φφ̃xi .

In a similar fashion, the adversary obtains a tuple over the order-p subgroup of
the target group GT as Ω =

(
e(g0, g0)φφ̃x1 , . . . , e(g0, g0)φφ̃xn

)
. The adversary

now computes η := (
∏n

i=1 e(di, di)) /e(d0, d0) = e(g0, g0)φ2/n. Rewriting Ω as
powers of η, s/he gets Ω = (ηφ′x1 , . . . , ηφ′xn). Hence the result. ��
As already pointed out for the n = 2 case, the above argument shows that the
adversary is capable of extracting a lot of information from the ciphertext of any
unknown message vector x. Recall that the fundamental reason for having PPTag
in symmetric setting is to prevent the adversary from being able to test whether
a ciphertext of some unknown message satisfies a certain property and thereby
learn some non-trivial information about the message. Given Ω the adversary
can precisely do that and thus the scheme in [29] defeats the very purpose of
symmetric key property preserving encryption.

6 Concluding Remarks

In this work we perform a comprehensive (crypt)analysis of property preserv-
ing symmetric encryption. On the definitional front, we revisit the FtG and LoR
separation result in [29]. To do that we show equality property captures prop-
erty Pqr used in the separation results and provide a simple construction for
equality property to demonstrate that the separation results are non-vacuous.
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Based on the security attributes of our construction and its generalization we
raised the pertinent question of whether the separation results actually indicate
any real world difference between the two notions of security and argue for a
property specific study of the security notions. Continuing further in this direc-
tion, we see that an LoR-secure scheme may be constructed from a so-called
weaker FtG-secure one for orthogonality. We demonstrate several attacks on the
PPTag scheme for testing orthogonality from [29] refuting the claim that the
scheme is provably secure. Our main attack successfully unmasks the subgroup
elements where the message vector is mapped to and thereby points to greater
vulnerability beyond the notion of indistinguishability.

Acknowledgements. The authors wish to thank the anonymous reviewers for their
valuable comments. The authors also thank Chethan Kamath, Neal Koblitz, Alfred
Menezes, Omkant Pandey, Yannis Rouselakis and Palash Sarkar for their comments on
a preliminary version of this work.

A Appendix

We first argue the separation result for polynomial size message space and use
it to prove the general case.

A.1 Separation Result for Polynomial Size Message Space

Let M = {αi | 1 ≤ i ≤ l} be the message space and each αi can be represented
by a z-bit string where z = 	log2 l
. We argue the separation result FtG �LoR
for equality property in the case where l is polynomial in security parameter.
Let Π be an FtG secure PPTag scheme for equality over M. From this scheme
we construct another scheme Π ′ for realizing the same property as follows.

1. Π ′ · Setup(1λ): The public parameters for Π ′ are exactly those of Π. The
secret key SK ′ of Π ′ comprises of that of Π and a set of binary strings
{ti | 1 ≤ i ≤ l}, where each ti is of length z and chosen independently and
uniformly at random.

2. Π ′ · Encrypt(PP, SK,m): Suppose m = αi; the algorithm chooses a random
bit b and the output is defined as

Π ′.Encrypt(PP, SK ′,m) =

{
(Π.Encrypt(PP, SK,m), b, ti), if b = 0,

(Π.Encrypt(PP, SK,m), b, ti ⊕ αi), o.w.

3. Π ′.Test(CT1, CT2, PP ): Same as that of Π, where only the relevant parts of
the ciphertexts are used.

Lemma 5. The scheme Π ′ is not FtG secure implies Π is not FtG secure.
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Proof. Consider a valid FtG adversary for Π ′, denoted by A. We describe how an
FtG adversary B for Π, with same advantage as that of A and which internally
uses A, can be constructed.

(i). B forwards to A whatever is received from its own challenger as public
parameters of Π and initializes an empty table T .
(ii). Whenever A makes an encryption query for m = αi, 1 ≤ i ≤ l, B forwards
it to the simulator of Π. On receiving ct from the simulator, B checks whether
the same query was made earlier or not. If the query is made for the first time,
then it chooses t ∈R {0, 1}z, sets ti = t and updates the table T with {(i, ti)}.
Else, B reuses corresponding ti from T . Finally B chooses a random bit b and
forwards to A

CT =

{
(ct, b, ti), if b = 0,

(ct, b, ti ⊕ αi), if b = 1.

(iii). After a certain number of encryption queries A outputs the challenge
(m∗

0,m
∗
1). Two cases arise with respect to the challenges, which we describe

below.
Case 1: The challenge messages m∗

0 and m∗
1 are equal.

Case 2: The challenge messages m∗
0 and m∗

1 are different. In this case, the
adversary cannot make encryption query for these two messages.

B forwards (m∗
0,m

∗
1) to the simulator of Π and gets ct∗. If the challenge

messages are equal (Case 1), then (ct∗, b, val) may be computed by B in the
same way as it responses to the encryption queries. If the challenge messages
are different (Case 2), then none of m∗

0 and m∗
1 have been queried previously.

B returns (ct∗, b, t∗), where b ∈R {0, 1} and t∗ ∈R {0, 1}z. Let αj ∈ {m∗
0,m

∗
1}

be the unknown message chosen by the simulator of Π. The strategy adopted
by B gives a perfect simulation. This is because if b = 0 then t∗ can be set as tj
whereas for b = 1, t∗ can be set as tj ⊕ αj .
(iv). B follows the same strategy of step (ii) above to answer all the subsequent
encryption queries of A.
(v). When A outputs a bit b′ and halts, so does B.

Notice that all the ciphertexts which B computes for forwarding to A are
properly distributed. B is a polynomial time algorithm and provides a perfect
simulation. Hence, advantage of B is equal to that of A. ��
Lemma 6. There is an LoR adversary for the scheme Π ′ with non-negligible
advantage.

Proof. A valid LoR adversary sets as u challenges the same pair of the form
(m0,m1), with m0 �= m1. Equality pattern is clearly preserved between the left
and right sequences. If the challenger outputs two ciphertexts for which the
b-values are distinct, then the adversary can immediately distinguish the two
sequences. The advantage will be 1 − 2−u+1. ��
The strategy outlined in the above proof can be used to prove Lemma2.
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A.2 Proof of Lemma 1

Recall that in the FtG game A makes a polynomial number of encryption oracle
query mi, 1 ≤ i ≤ q, and a single challenge query (m∗

0,m
∗
1) maintaining the

equality pattern. Two cases arise depending upon whether the challenge mes-
sages m∗

0 and m∗
1 are equal or not. If m∗

0 = m∗
1 then it is easy to see that any

advantage of A against Π ′ translates into the same advantage against Π. Hence,
we consider the case when m∗

0 �= m∗
1. Note that in this case none of the queries

to the encryption oracle mi is equal to m∗
b , for b ∈ {0, 1}. Otherwise, the equality

pattern of the two sequences will be different allowing A to trivially distinguish.
Let Game0 correspond to the queries (m1, . . . ,mi,m

∗
0,mi+1, . . . ,mq) while

Game1 to queries (m1, . . . ,mi,m
∗
1,mi+1, . . . ,mq) made by the adversary. Sup-

pose A can distinguish whether it is playing Game0 or Game1 with a non-
negligible advantage εΠ′ . The proof will proceed through a hybrid argument.
Given an adversary A against Π ′ we construct a series of four games and then
show that if A can distinguish between any two consecutive games then we can
construct either a PRF adversary against F or an FtG adversary against Π.

Game0 The challenger runs the Setup algorithm of Π ′ and gives the PP to
A and keeps the secret key SK ′ = (SK, k) to itself. The challenger computes
the ciphertext corresponding to (m1, . . . ,mi,m

∗
0,mi+1, . . . ,mq) using SK ′ as per

the encryption algorithm of Π ′ and give them to A.
GameA The challenger runs the Setup algorithm of Π and gives the PP to

A and keeps the secret key SK of Π to itself. Note that the challenger does
not generate the PRF key k; instead it will maintain a table T = 〈xi, yi〉 where
xi and yi are two z-bit strings. The first entry in each row of T corresponds to
the messages queried by A while the second entry is a random bit-string. The
table is initially empty. Whenever A makes an encryption query for a message x,
the challenger first checks whether there is a corresponding entry in T. If not, it
chooses a random z-bit string y and enters (x, y) in the table T sorted according
to the first entry. A makes encryption queries for (m1, . . . ,mi,m

∗
0,mi+1, . . . ,mq).

To answer the query of A for a message, say x, the challenger computes the
ciphertext of Π on x and then uses the corresponding random string y from
the entry (x, y) in T to create a ciphertext of Π ′. Note that A makes at most q
encryption oracle queries and a single challenge query. So the size of T is O(q)
and hence the challenger can consistently respond to all the queries of A.

Claim 5. If A can decide with a non-negligible advantage whether it is playing
Game0 or GameA then we can construct a PRF distinguisher with the same
advantage.

Recall that in the PRF security game we are provided with an oracle which
is either a function from the PRF family or a random function. In the former
case the challenger will be playing Game0 while in the latter case it’ll be playing
GameA. Hence, any advantage of A in distinguishing between the two games
translate into the same advantage of the challenger in breaking the PRF security.

Game1 (resp. GameB) will be identical to Game0 (resp. GameA) except the fact
that A now queries with (m1, . . . ,mi,m

∗
1,mi+1, . . . ,mq). An identical argument
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as in the claim above establishes that any advantage of A in deciding whether
it is playing Game1 or GameB translates into the same PRF advantage for the
challenger.

Note that the only difference in GameA and GameB is in the challenge cipher-
text (corresponding to m∗

0 and m∗
1). The challenge is computed by calling the

encryption algorithm of Π and appending either a random bit string or a
one-time encryption of m∗

b (using that random string). Hence, an adversary
distinguishing between GameA and GameB can be converted into an adversary
breaking the FtG security of Π. As there are only polynomial many queries, this
case is the same as the one where there are only small (polynomial in λ) number
of messages. This case can be easily handled by using random strings. We have
already given the analysis in the proof of Lemma5.
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Abstract. We study two open problems proposed by Wagner in his
seminal work on the generalized birthday problem. First, with the use
of multicollisions, we improve Wagner’s k-tree algorithm that solves the
generalized birthday problem for the cases when k is not a power of two.
The new k-tree only slightly outperforms Wagner’s k-tree. However, in
some applications this suffices, and as a proof of concept, we apply the
new 3-tree algorithm to slightly reduce the security of two CAESAR
proposals. Next, with the use of multiple collisions based on Hellman’s
table, we give improvements to the best known time-memory tradeoffs for
the k-tree. As a result, we obtain the a new tradeoff curve T 2 ·M lg k−1 =
k ·N . For instance, when k = 4, the tradeoff has the form T 2M = 4 ·N .

Keywords: Generalized birthday problem · k-list problem · k-tree algo-
rithm · Time-memory tradeoff

1 Introduction

Arguably, the most popular problem in private key cryptography is the collision
search problem. It appears frequently not only in its classical usage, e.g. finding
collisions for hash functions, but also as an intermediate subproblem of a wider
cryptographic problem. The collision search has been widely studied and well
understood. Besides this problem, and along with the search of multicollisions
and multiple collisions, perhaps the next most popular is the generalized birthday
problem (GBP).

The GBP is defined as follows: given k lists of random elements, choose
a single element in each list, such that all the chosen elements sum up to a
predefined value. Wagner is the first to investigate the GBP for all values of
k and as an independent problem. In his seminal paper [31], he proposes an
algorithm to solve GBP for all values of k and shows wide variety of applications
ranging from blind signatures, to incremental hashing, low weight parity checks,
and cryptanalysis of various hash functions.

Prior to Wagner, GBP problem has been mostly studied in the context of
its application and only for a concrete number of lists (usually four lists, i.e.
k = 4). Schroeppel and Shamir [28] find all solutions to the 4-list problem.
c© International Association for Cryptologic Research 2015
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Bernstein [4] uses similar algorithm to enumerate all solutions to a particular
equation. Boneh, Joux and Nguyen [10] use Schroeppel and Shamir’s algorithm
for solving integer knapsacks as well as Bleichenbacher [8] in his attack on DSA.
Chose, Joux, and Mitton [11] use it to speed up search for parity checks for
stream cipher cryptanalysis. Joux and Lercier [19] use related ideas in point-
counting algorithms for elliptic curves. Blum, Kalai, and Wasserman [9] apply
it to find the first known subexponential algorithm for the learning parity with
noise problem. Ajtai, Kumar, and Sivakumar findings [1] base on Blum, Kalai,
and Wasserman’s algorithm as a subroutine to speed up the shortest lattice
vector problem.

To solve the k-list problem, Wagner proposes a so-called k-tree algorithm.
In a nutshell, the k-tree is a divide and conquer approach and at each step it
operates on only two lists. The step operations are based on a simple collision
search. When the k lists are composed of n-bit words, Wagner’s k-tree algorithm
solves the GBP in O(k · 2 n

�lg k�+1 ) time and memory and requires lists of around
2

n
�lg k�+1 elements1.

Even though the GBP has been shown to be very important to many prob-
lems in cryptography, more than a decade after its publication neither signifi-
cant improvement to the k-tree algorithm nor other dedicated algorithms have
emerged. However, moderate improvements and refinements have been pub-
lished. As one of the most important, we single out the extended k-tree algorithm
by Minder and Sinclair [21] that provides solution to GBP when the lists have
smaller sizes and the time-memory tradeoffs by Bernstein et al. [5,6].

Our Contribution. Wagner points out a few open problems of the GBP and
of the k-tree algorithm. Two of these problems, namely, improving the efficiency
of k-tree when k is not a power of two and memory reduction of the k-tree, are
in fact the main research topics of our paper.

The k-tree algorithm discards part of the lists when k is not a power of two
(note how the complexity of k-tree takes lower bound of lg k). For instance, 7-
tree works only with 4 lists, while the remaining 3 lists are not processed. Our
first improvement to the k-tree is to work with the discarded lists (we call them
passive lists) by creating multicollisions from the lists. From each of the passive
lists we create a multicollision set of values that coincide on certain l bits, where
l < n. Then, we produce several solutions with the k-tree from the other (active)
lists, and for the same l bits. Finally, the remaining n − l bits are absorbed by
combining the multicollisions from the passive lists, and the solutions from the
active lists. The advantage of our approach over the classical k-tree is limited
by the size of the multicollision sets, which in turn is bounded by the value
of n. The speed-up factor can be approximated as a · nc/ lg(b · n), where a, b, c
are constants that depend on k. The speed-up is sufficient to break the O(2

n
2 )

complexity bound for the 3-list problem and to show that in applications this
can matter. As an example, we show a security reduction of two authenticated

1 Note, we use lg for log2.
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encryption CAESAR [3] proposals, Deoxys [16] and KIASU [18], based on the
latest results of Nandi [22]. He shows that a forgery attack for COPA based
candidates can be reduced to the 3-list problem. We apply our improved 3-tree
algorithm to this problem and reduce the security bound of the candidates by 2
bits.

Our second contribution are time-memory tradeoffs for the k-tree algorithm.
This research topic has been investigated by Bernstein et al. Their best tradeoffs
are described with the curves TM lg k = k ·N and T 2 ·M lg k−2 = k2

4 ·N , where M
and T , are the memory and time complexity, respectively, and N is the size of the
space of elements. To achieve a better tradeoff, we play around with the idea of
producing multiple collisions in a memory constrained environment with the use
of Hellman’s tables2. It allows us to significantly reduce the memory complexity
of the first level of the k-tree algorithm and to achieve better tradeoffs. As a
result, we obtain the tradeoff T 2M lg k−1 = k ·N . This translates to T 2M = 4 ·N
for k = 4, and T 2M2 = 8 · N for k = 8 (cf. TM2 = 4 · N and TM3 = 8 · N
curves of Bernstein et al.). As illustrated further in Fig. 6, for a given amount
of memory, the new tradeoff always leads to a lower time complexity than the
previous tradeoffs. The improvement of the tradeoff can be seen on the case of
generalized birthday problem for the hash function SHA-160 and k = 8. Our new
tradeoff requires around 250 SHA-1 computations and 230 memory on 8 cores
(with the use of van Oorschot and Wiener’s parallel collisions search [30]), while
with the same memory, the old tradeoff needs around 265 SHA-1 computations.

2 The Generalized Birthday Problem

Wagner introduced the generalized birthday problem (GBP) as multidimensional
generalization of the birthday problem. GBP is also called a k-list problem, and
is formalized as follows:

Problem 1. Given k lists L1, . . . , Lk of elements drawn uniformly and inde-
pendently at random from {0, 1}n, find x1 ∈ L1, . . . , xk ∈ Lk such that
x1 ⊕ x2 ⊕ . . . ⊕ xk = 0.

Obviously, if |L1| × |L2| × . . . × |Lk| ≥ 2n, then with a high probability the
solution to the problem exists. The real challenge, however, is to find it efficiently.

When all the lists have a minimal size, i.e. |Li| = 2
n
k , efficient algorithms to

the k-list problem are known only for the cases when k = 2, and k ≥ n. The
former is due to the collisions search algorithm, i.e. 2-list problem is equivalent to
finding collisions thus it can be solved in 2n/2. The latter is due to the Bellare and
Micciancio result [2] which states that such problem can be solved by Gaussian
elimination in O(n3 + kn). A trivial algorithm is known for the k-list when
2 < k < n. The algorithm first creates two larger lists L1, L2, where L1 =
{X|X = x1 ⊕ . . . ⊕ xk/2, xi ∈ Li}, L2 = {Y |Y = xk/2+1 ⊕ . . . ⊕ xk, xi ∈ Li} and

2 Joux and Lucks [20] use this technique to generate multiple collisions, which later
lead to multicollisions.
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Fig. 1. Wagner’s 4-tree algorithm.

subsequently it finds a collision between the two lists. The size of the lists is 2
n
2

thus the time complexity of the algorithm is O(2
n
2 ).

Wagner proposed the k-tree algorithm that solves GBP (k-list problem) faster
under the assumption that the list sizes are larger. Further we describe the case
when k = 4, refer to Fig. 1. Let us define S �� T as a list of elements common
to both S and T , and let lowl(x) stand for the l least significant bits of x.
Furthermore, let us define S ��l T as a set that contains all pairs from S×T that
agree in their l least significant bits (the xor on the least significant bits is zero).
Assume L1, L2, L3, L4 are four lists, each containing 2l elements (l will be defined
further). First we create a list L12 of values x1 ⊕ x2, where x1 ∈ L1, x2 ∈ L2,
such that lowl(x1 ⊕ x2) = 0. Similarly, we create a list L34 of values x3 ⊕ x4,
where x3 ∈ L3, x4 ∈ L4, such that lowl(x3 ⊕ x4) = 0. Finally, we search for a
collisions between L12 and L34. It is easy to see that such a collision reveals the
required solution, i.e. x1 ⊕ x2 ⊕ x3 ⊕ x4 = 0.

The main advantage of the k-tree algorithm lies in the way the solution is
found – at each of the two levels, only a simple collision search algorithm is used,
and only a certain number of bits is made to fulfill the final goal (the xor is zero
on all bits). At the first level, the lists L12, L34 contain words that have zeros on
the l least significant bits, thus xor of any two words from the lists must have
zeros on these bits. At the second level, the xor of the words from the two lists
will result in zeros on the remaining n − l bits, if there are enough pairs. To get
the sufficient number of pairs, the value of l is defined as l = n/3. Then each of
L12, L34 will have 2n/3 · 2n/3/2n/3 = 2n/3 words, and thus at the second level
there will be 2n/3 · 2n/3 = 22n/3 possible xors, one of which will have zeros on
the remaining n − n/3 = 2n/3 bits. It is important to note that l is chosen as to
balance the complexity of the two levels. Obviously, the total memory and the
time complexities of the 4-tree algorithm are O(2n/3) each.
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The very same idea is used to tackle any k-list problem, where k is a power
of two. The only difference is in the choice of l, and in the number of levels.
In general, the number of levels equals lg k, and at each level except the final,
additional l bits are set to zero. At the final level, the remaining 2l bits are
zeroed. Hence, l · lg k + l = n, and thus l = n/(lg k + 1). The algorithm works in
O(k2

n
lg k+1 ) time and memory and requires lists of sizes 2

n
lg k+1 . As an example,

let us focus on 8-list problem, i.e. we have L1, . . . , L8 lists, lg 8 = 3 levels, and
l = n/4. At the first level we build L12, L34, L56, L78, by combining two lists
Li, Lj , each with 2l = 2n/4 elements that have zeros in the n/4 least significant
bits. At the second, we build L1234 and L5678 that have again 2n/4 elements with
zeros in the next n/4 bits. Finally, at the third level, we find the solution that
will have zeros on the remaining n/2 bits.

Wagner’s algorithm works similarly when k is not a power of two. The trick
is to make some lists passive, i.e. to choose one element from each of the passive
lists, and then continue with the algorithm as for the case of power of two and
the remaining lists. For instance, to solve 6-list problem for lists L1, . . . , L6,
we take any element v5 ∈ L5 and v6 ∈ L6, and then solve the 4-list problem
x1 ⊕ x2 ⊕ x3 ⊕ x4 = v5 ⊕ v6, for the lists L1, . . . , L4. We can easily remove the
non-zero condition v5⊕v6 in the right part, by adding this value to each element
of the list L1. Hence, the complexity of the k-list problem for the case when k is
not a power of two equals the complexity to the closest (and smaller) power of
two case. Thus, for any value of k, the k-tree algorithm works in O(k · 2 n

�lg k�+1 )
time and memory.

3 Improved Algorithm for the 3-List Problem

We focus on the 3-list problem and show how to improve the complexity of
Wagner’s 3-tree algorithm. Our improvement is based on the idea of multicolli-
sions. The technique mimics the approach developed by Nikolić et al. [24] and
further generalized by Dinur et al. [12]. We exploit the k-tree algorithm, but we
also work with the passive lists and make them more active. Namely, instead of
simply taking one element from the passive lists, we find in them partial multi-
collisions – sets of words that share the same value on particular bits. We then
force the active lists on these bits to have a specific value (which is xor of all the
values of the partial multicollisions), and at the final step, merge the results of
the active and passive lists to obtain zero on the remaining bits. Let us take a
closer look at this idea.

Definition 1. The set of n-bit words S = {x1, . . . , xp} forms a p-partial multi-
collision on the s least significant bits, if lows(x1) = lows(x2) = . . . = lows(xp).

This is to say that all p words are equal on the last s bits. Note, the choice to work
with the least bits is not crucial but is introduced to simplify the presentation.
Given an arbitrary set, we can create a p-partial multicollision from this set,
i.e. we can find a subset that is p-partial multicollision. The maximal value of p
depends on the size of the initial set and will be analyzed later in the section.
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Fig. 2. Multicollision technique for k = 3. The values in blue denote the size of the lists.

Let us assume that we are given a 3-list problem with lists L1, L2, L3, each of
size 2l. If we apply the k-tree algorithm, then l should equal n/2, the lists L1, L2

will be active, while L3 will be passive. Instead of marking L3 as passive, let us
create a p-partial multicollision from L3 on the l least significant bits (LSB) and
denote this set as L3 (refer to Fig. 2). Without loss of generality we can assume
that the colliding value of the l bits is zero (if not, we xor this value to all the
elements of the list L1). Furthermore, with the use of the join operator, from
L1, L2 we create a list L12 of all values x1 ⊕ x2, where x1 ∈ L1, x2 ∈ L2 and
lowl(x1 ⊕ x2) = 0; obviously |L12| � 2l with high probability. Finally, we use
the join operator once again between L12 and L3, to find the required solution.
As we have to cancel additional n − l bits, the solution will exist with a high
probability as long as p|L12| ≥ 2n−l, that is, p22l−n ≥ 1.

The complexity of our algorithm depends on the complexity of the two join
operators and of producing multicollisions. The join operators (which are indeed
simple collision searching algorithms) work in O(2l) as in each of the cases, the
sizes of the lists are not larger than 2l. Furthermore, the partial multicollisions
from |L3| = 2l can be produced in O(2l) time and memory3. Hence the multi-
collision technique solves the 3-list problem in O(2l) time and memory.
Let us find the value of l. For this purpose we replace the inequality p22l−n ≥ 1,
with

p22l−n = 1, (1)

3 It is to initialize counters for each possible value of the colliding bits, then for each
x ∈ L3 increase the counter lowl(x3). After all elements have been processed, counter
with the highest value corresponds to the largest multicollision set.
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and obtain

l =
n

2
− 1

2
lg p. (2)

Therefore, the complexity of our algorithm is O(2
n
2 /

√
p), hence the speed-up

factor is
√

p. Recall that p is the size of the multicollision set produced from
the passive list L3 – the larger the size, the greater the speed-up. Note, in the
original Wagner’s 3-tree algorithm, one element is chosen at random from L3

and therefore the multicollision set consists of a single element. That is, for the
classical 3-tree, p = 1 and the complexity is O(2

n
2 ).

Let us examine the maximal possible value of p, i.e. the size of the p-partial
multicollisions set on l bits produced from the set L3 of size 2l. Theorem 5 of [29]
defines the number of elements in a set required to produce multicollision with
a high probability, and by this theorem we obtain

(p!)1/p2
p−1

p l = 2l. (3)

A more straightforward way that we use to find the value of p is based on
the so-called balls-into-bins problem: m balls are thrown into m bins (the bin
for each ball is chosen uniformly at random), and the problem is to find the
expected maximum load, i.e. the expected number of balls in a bin that contains
the most balls. The solution to this problem is well known and the expected
maximum load asymptotically is:

Θ

(
ln m

ln lnm

)

. (4)

Our multicollision problem is an instance of the balls-into-bins problem as the
number of elements in the passive list L3 (the number of balls), and the size of the
multicollision space (the number of bins) are both 2l. Therefore, the asymptotics
of p(l) can be evaluated as Θ( ln 2l

ln ln 2l ) = Θ( l
ln l ). Finally, as l ≈ n

2 , we obtain that

the speed-up factor
√

p of our improved 3-tree (over Wagner’s 3-tree) is
√

n/2
lnn/2 ,

thus the complexity of our algorithm is

O
(

2
n
2 /

√
n/2

ln n/2

)

. (5)

To find the actual speed-up for concrete values of n, we need to approximate
the asymptotics of p(l), i.e. need to find the approximate value of c in p(l) =
c l
ln l . For this purpose, we have run a series of experiments. For each value of

l = 10, . . . , 28, we have generated 2l random values (of bit length l) and have
checked the maximal number of multicollisions. For each l, the experiments have
been repeated 20 times. The outcomes of the experiments are reported in Table 1.

Based on the experiments, the value of c can be approximated as c ≈ 1.3.
With such an assumption, we have computed the speed-up factor of our improved
3-tree for various values of n – we refer the reader to Table 2.
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Table 1. Experimental search of number of multicollisions.

l Average size l
ln l

c

10 5.80 4.34 1.34

11 5.85 4.59 1.27

12 6.10 4.83 1.26

13 6.45 5.07 1.27

14 7.00 5.30 1.32

15 7.15 5.54 1.29

16 7.55 5.77 1.31

17 7.90 6.00 1.32

18 8.15 6.23 1.31

19 8.50 6.45 1.32

20 8.70 6.68 1.30

21 9.05 6.89 1.31

22 9.50 7.12 1.33

23 9.65 7.34 1.31

24 10.30 7.55 1.36

25 10.40 7.77 1.34

26 10.60 7.98 1.33

27 11.05 8.19 1.35

28 11.15 8.40 1.33

Table 2. A comparison of the time complexities of Wagner’s 3-tree with our new
approach.

n Speed-up (
√
p) l

64 3.43 31

128 4.42 62

256 5.82 126

512 7.71 253

The above strategy is in line with the multicollision approach by
Nikolić et al. used in the analysis of the lightweight block cipher LED [14].
The advanced approach by Dinur et al., however, cannot be used for further
improvements. One of their main ideas is to work simultaneously with a few
multicollisions, instead of only one. In the case of the k-tree algorithm, this
would mean to produce from L3 several p-partial multicollision sets. However,
each such set will collide on s different value of the l LSBs, i.e. the elements of the
first p-partial multicollision set will have the value v1 on the l LSB, the elements
of the second set will have the value v2, etc. The different values will increase
the complexity of the later stage of k-tree by a factor of s. When using the join
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operator on l bits of L1 and L2 there will be s targets (whereas previously we
had only one), thus a simple collision search will have to be repeated s times.
Therefore, in this particular case, Dinur et al. approach cannot be used.

Improvements for k > 3. Our technique can be applied as well to improve
the k-tree algorithm for larger (and non-power of two) values of k. Again, we will
start with the classical k-tree and assume that all the lists are of size 2l (where
l < n

lg k+1 ). Given k that is not a degree of 2, the number of active lists kA is
2�lg k� and the number of passive lists kP is k − kA. For instance, for k = 7, it
means that kA = 4, kP = 3 (see Fig. 3). Without loss of generality, assume that
the first kA lists are active, and the remaining lists are passive. First, we produce
p-partial multicollision sets on λ = l · lg kA bits, independently for all of the kP

passive lists, and obtain LkA+1, . . . , Lk. Let v1, . . . , vkP
be the common values of

these sets, and v = v1 ⊕ . . . ⊕ vkP
. Obviously the set LP = LkA+1 ��l . . . ��l Lk

has cardinality |LP | = pkP and all the elements of the set have the value v on the
λ LSBs. For the sake of simplicity, assume v = 0. Next, focus on the active lists
and find 2l solutions for kA-problem on the same λ = l · lg kA bits by running
the k-tree with initial lists of sizes 2l. Note, this way at level lg kA there will be
one list with 2l elements that have zeros on λ LSBs. If the number of solutions
produced from the two independent steps satisfy pkP ·2l ≥ 2n−λ, then one of the
elements of the list found by the kA-tree algorithm can be matched with one of
the elements of LP , on the remaining n − λ bits. As a result we will obtain one
solution to the original k-list problem.

Let us focus on the complexity of the algorithm. The p-partial multicollisions
produced from the passive lists Li, i = kA + 1, . . . , k, require around kP · |Li| =
kP · 2l operations. Under the assumption that kP is small, the additional kP + pkP

operations spent on producing v and LP can be ignored as the whole complexity

Fig. 3. Multicollision technique for k = 7. The values in blue denote the size of the lists.
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will be dominated by the multicollisions. On the other hand, the production of 2l

elements with the kA-tree requires around kA · 2
λ

lg kA = kA · 2l operations. As a
result, the total complexity of the algorithm is around kP · 2l + kA · 2l = (kP +
kA) · 2l = k · 2l. Let us find the value of l. For this reason we equate pkP · 2l to
2n−λ (specified in the inequality above), and obtain kP lg p + l = n − l · lg kA, or
equivalently

l =
n

lg kA + 1
− kP lg p

lg kA + 1
. (6)

Therefore the improved k-tree outperforms the classical k-tree by a factor of

k2
n

lg kA+1

k2l
= 2

kP lg p

lg kA+1 = (2lg p)
kP

lg kA+1 = p
kP

lg kA+1 . (7)

The value of p can be approximated as follows. First note that we can no longer
use the balls-into-bins problem, as the size of the lists (i.e. 2l) not necessarily
equals the size of the multicollision space (e.g., when k = 7, the space has 22l

elements). Therefore, we use (3), to approximate the number of multicollisions.
From (3), with a simple transformation we obtain that l

p = lg p
e . The approxi-

mate solution of this equation is of the form p = l
lg l

e

. Therefore, the speed up
factor of our improved k-tree algorithm can be evaluated as

(
l

lg l
e

)
kP

lg kA+1 ≈ a · nc

lg(b · n)
, (8)

where a, b, c are constants that depend on the values of kA and kP .

Applications. The improvement of the 3-tree algorithm can be used for crypt-
analysis of authenticated encryption schemes proposed to the ongoing CAE-
SAR [3]. Some of these schemes, to process the final incomplete blocks of mes-
sages, use a construction called XLS proposed by Ristenpart and Rogaway [27].
Initially, XLS was proven to be secure, however Nandi [22] points out flaws in the
security proof and shows a very simple attack that requires three queries to break
the construction. However, the CAESAR candidates that rely on XLS, do not
allow this trivial attack as the required decryption queries are not permitted by
the schemes. To cope with this limitation, Nandi proposes another attack [23],
that requires only encryption queries. He is able to reduce the design flaw of
XLS to the 3-list problem. Therefore, Nandi is able to attack schemes that claim
birthday bound query complexity because with only 2

n
3 queries (equivalent to

size of the lists in the 3-list problem), he can find a solution to the 3-list problem
(in 2

2n
3 time). However, Nandi cannot break the schemes that claim birthday

bound time complexity, as he cannot solve the 3-list problem faster than 2
n
2 .

Note, Nandi constructs the 3-list problem from only 2
n
3 queries, rather than

from 3 ·2n
3 , as the elements of all three lists depend on the same 2

n
3 ciphertexts.

The CAESAR schemes based on XLS, such as Deoxys [16], Joltik [17],
KIASU [18], Marble [13], SHELL [32], claim only birthday bound time complex-
ity, thus Nandi’s findings do not break the security claims of these candidates.
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However, our improved 3-tree algorithm goes below the birthday bound and thus
can be used to show a slight weakness in some of these candidates.

Let us focus on the 128-bit CAESAR candidates Deoxys and KIASU. The 3-
list problem for XLS in these candidates has the parameter n = 128. According
to Table 2, we can take

√
p = 4.42 and l = 62. Consequently, the complexity of

a forgery based on the XLS weakness is C · 262, where C is a constant factor.
The value of C is 1 because: 1) as mentioned above, the 3 lists can be produced
from the same 262 ciphertexts, and 2) all of the operations required by the
improved 3-tree algorithm are significantly less expensive than one encryption
of the analyzed schemes. As a result, we obtain a forgery on the COPA modes
of Deoxys and KIASU in 262 encryptions and thus the security level of these
schemes is reduced by 2 bits from the claimed 64 bits.

4 Improved Time-Memory Tradeoffs

In applications, usually the elements of the lists Li are in fact outputs of functions
fi, thus GBP is often formulated as:

Problem 2. Given non-invertible functions f1, . . . , fk : {0, 1}n′ → {0, 1}n, n′ ≥
n, find y1, . . . , yk ∈ {0, 1}n′

such that f1(y1) ⊕ f2(y2) ⊕ . . . ⊕ fk(yk) = 0.

In some applications, all the functions are identical, and the problem is to
find distinct inputs:

Problem 3. Given a non-invertible function f : {0, 1}n′ → {0, 1}n, n′ ≥ n, find
distinct y1, . . . , yk ∈ {0, 1}n′

such that f(y1) ⊕ f(y2) ⊕ . . . ⊕ f(yk) = 0.

Both of the above problems give rise to the possibility of time-memory trade-
offs, i.e., reducing the memory complexity of the k-tree algorithm at the expense
of time. We will investigate time-memory tradeoffs for the GBP as defined in
Problem 3. Recall that k-tree in its current form assumes that both time and
memory are of equal magnitude, i.e. T = M = O(k · 2

n
lg k+1 ).

Bernstein et al. [5,6] investigate k-tree in memory restricted environments
and propose a few tradeoffs. Their main approach is to solve the k-list problem
on less than n bits. Assume M = 2m, where M < 2

n
lg k+1 . Then, a k-list problem

on n̄ = m(lg k + 1) bits (instead of n bits) can easily be solved with the k-tree
algorithm. The first tradeoff idea is to perform a precomputation (or prefiltra-
tion) such that all the entries in each list have the value of 0 in the n − n̄ most
significant bits.4 For the remaining n̄ least significant bits, they apply the k-tree
algorithm and thus find a solution for all n bits. The time complexity is the sum
of the cost for precomputation and for solving the k-tree algorithm, which is
k · (2n−n̄ · 2m + 2m) ≈ k · 2n−m lg k. The tradeoff is therefore defined as

T · M lg k = k · N. (9)

4 It is pointed out in [6] that n − n̄ bits can have an arbitrary value as long as the
sum of all lists is zero. The technique is called clamping through precomputations.
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Their second idea is similar but does not use precomputation. They apply the k-
tree algorithm on n̄ = m(lg k+1) bits until the value of the remaining n− n̄ bits
probabilistically becomes zero. Obviously, in total there will be 2n−n̄ repetition
of the k-tree, thus the time complexity becomes T = k · 2m · 2n−n̄ = k · 2n−m lg k,
which provides the same tradeoff as the previous one, i.e.,

T · M lg k = k · N. (10)

The third idea also relies on reduction of n, but the technique is more advanced.
Assume, f1 = f2, f3 = f4, . . ., i.e. the functions are pairwise identical. The k-list
problem is regarded as two separate k

2 problems, the first involving the functions
f1, f3, . . ., while the second f2, f4, . . .. If the amount of available memory is 2m,
then it is possible to solve each of these k

2 -list problems on up to n̄ = m(lg k
2+1) =

m · lg k bits. By elevating the two k
2 -lists to k-list, the remaining n − n̄ bits can

be zeroed with the use of memoryless collision search algorithm. Therefore the
time complexity is T = k

2 · 2n−n̄
2 · 2m = k

2 · 2n
2 −m( lg k

2 −1) and their tradeoff curve
is defined as

T · M
lg k
2 −1 =

k

2
· N

1
2 ,

which is converted to

T 2 · M lg k−2 =
k2

4
· N, (11)

Because this method solves k
2 -list problem, it is meaningful when k > 4. We note

that when M < 2
n

lg k+2 , then (11) provides better tradeoff while for M > 2
n

lg k+2 ,
(9) is better.

The k-tree relies on producing multiple collisions. For instance, at the first
level of 4-tree, 2

n
3 colliding pairs on n

3 bits are produced. Producing these pairs is
trivial when the amount of available memory is 2

n
3 . However, once the memory

is reduced to 2m,m < n
3 , the trivial collision search does not work.

The fact that k-tree requires multiple collisions, opens doors to the following
technique based on Hellman’s tables [15]5.

Fact 1. (Hellman’s table) Let f : {0, 1}∗ → {0, 1}n be an arbitrary-size input
and n-bit output function, N = 2n, and let M = 2m be the amount of avail-
able memory. Once the precomputation equivalent to MX evaluations of f is
performed, the cost of generating new collisions for f is N

MX per collision.

The technique works as follows. Choose M distinct values v0
i ∈ {0, 1}n, where

i = 1, 2, . . . ,M . For each of them, compute chains of length X with the target
function f , i.e. compute vj

i ← f(vj−1
i ) for i = 1, . . . ,M, j = 1, . . . , X, and store

only the first and last values of each chain, i.e. (v0
i , vX

i ), in a precomputation

5 Note, we could not exploit the more advanced Rivest’s distinguished points and
Oechslin’s rainbow tables [25] to improve the analysis.
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Fig. 4. Hellman’s table Tpre when M memory is available.

table Tpre. The construction of Tpre is depicted in Fig. 4. Note, even though MX
values exist in all the chains, only 2M values are stored in Tpre. Once Tpre is
constructed, to generate a collision, start with a random point and construct a
chain of length N

MX . As there are N possible values, and MX are in Tpre, one
point of the new chain will collide with one point of the chains created during
the construction of the table. The match can be detected by further extending
the new chain at most X times, as eventually it will reach one of vX

i stored in
Tpre. Then, the exact colliding values can be detected by recalculating chains
from v0

i and the starting value of the new chain. Obviously Tpre can be reused
to find not only one, but multiple collisions.

Joux and Lucks [20] use this technique to produce 3-collisions. They set
M = X = 2

n
3 to generate 2

n
3 ordinary collisions with time T = 2

2n
3 and memory

M = 2
n
3 . Then, they find another collision between 2

n
3 ordinary collisions and

2
2n
3 single values. When they generate 2

n
3 ordinary multiple collisions, Hellman’s

table has an important role to keep the memory M rather than MX.
Further, we will use Hellman’s table to produce multiple collisions for the

first level of k-tree, but only on certain l bits (where l < n).

4.1 Improved Time-Memory Tradeoffs for the 4-List Problem

We present a more efficient time-memory tradeoff for GBP. Our tradeoff curve
depends on the number of available lists, which is parameterized by k. For a
better understanding, first we explain our algorithm for k = 4.

The original 4-tree algorithm consists of two-level collision searches (the para-
meter l used below will be determined later).

Level 1. Construct two lists, L12 and L34, each containing 2
n−l
2 partial collisions

on l bits.
Level 2. Find a collision between the elements of L12 and L34 on the remaining

n − l bits.
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Fig. 5. Improved time-memory tradeoff for the 4-list problem with Hellman’s table.

Our new 4-tree algorithm works similarly with the exception of Level 1. At
this level, we first construct Hellman’s table, and then we use it to find 2

n−l
2

collisions. As a result, our algorithm decomposes Level 1 into two parts. Its
complexity depends on the available memory M which in turn determines the
length of the chains X. The updated 4-tree is illustrated in Fig. 5 and is specified
as follows.

Level 1a. Construct Hellman’s table containing M chains, each of length of X.
Level 1b. With the use of Hellman’s table, find 2 · 2

n−l
2 partial collisions on l

bits. Store a half (2
n−l
2 ) of them in a list L12 and the other half in L34.

Level 2. Find a collision between the elements of L12 and L34 on the remaining
n − l bits.

Construction of Hellman’s Table. For the Level 1a our algorithm first con-
structs Hellman’s table which contains M chains of length X. However, unlike
in [20], we have the following technical obstacle. The function f takes an n-bit
input and produces an n-bit output and thus for such a function only full n-bit
collisions can be identified. In other words, the classical Hellman’s table cannot
be used to find partial collisions.

To solve this problem, we define a reduction function fl : {0, 1}l → {0, 1}l so
that only the l bits are meaningful in the chain. For generating chains with fl,
n − l bits of 0’s are concatenated to the l-bit input, and this value is processed
with f : {0, 1}n → {0, 1}n. Finally, the n-bit output is truncated to l bits, and is
used as the input to the next chain. That is, fl(x) = Truncl

(
f(0n−l||x)

)
, where

Truncl(·) truncates the n-bit input to the l least significant bits.
To summarize, we choose M distinct l-bit values v0

i for i = 1, 2, . . . ,M , for
each of them generate a chain of length X by computing vj+1

i = fl(v
j
i ) where

j = 1, 2, . . . ,X. In total, MX values are in all the chains and only the first and
the last points of each chain are stored in Tpre. Thus Hellman’s table requires
around MX time and M memory.
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Generation of l-bit Collisions. According to Fact 1, once Hellman’s table
Tpre is constructed, the complexity for producing l-bit collisions is reduced sig-
nificantly. Considering that the size of the values in the chains is l bits and the
length of each chain is X, Fact 1 shows that the cost is 2l

MX per collision.
To generate an l-bit collision, we choose a random l-bit value and with the

function fl from it compute a chain of length 2l

MX +X. On average, one collision
will occur before we reach the 2l

MX value of this new chain against the MX values
stored in Tpre. The computation of additional X values in the chain ensures that
the corresponding vX

i will appear as one of the ending points of Tpre. The exact
colliding pairs are detected by recomputing the chains from v0

i and the chosen
l-bit value.

From the definition of fl, the two inputs colliding on f always have the form
(0n−l‖l1, 0n−l‖l2), where 0n−l is a sequence of n − l zero bits and l1 and l2 are
some l-bit values. A collision of the two chains means that Truncl

(
f(0n−l‖l1)

)
=

Truncl

(
f(0n−l‖l2)

)
. Therefore, f(0n−l‖l1) and f(0n−l‖l2) only collide in the

least significant l bits, while on the remaining n − l bits behave randomly.
The collision generation process is iterated 2

n−l
2 times and the input and

output of each pair is stored in L12. Similarly, the process is iterated additional
2

n−l
2 times and the results are stored in L34. Therefore the complexity of this

step is around 2 · 2
n−l
2 · 2l

MX = 2 · N
1
2 2

l
2

MX time and 2 · 2
n−l
2 = 2 · N

1
2

2
l
2

memory.

Finding a Solution to the 4-list Problem. From the two lists L12 and L34

containing 2
n−l
2 partial collisions on l bits, we find a collision on the remaining

n − l bits. This procedure is straightforward and it requires 2
n−l
2 = N

1
2

2
l
2

time
and no additional memory.

Parameters and the Tradeoff. The complexities for each step are as follows:

Level 1a. Time = MX, Memory = M

Level 1b. Time = 2 · N
1
2 2

l
2

MX
, Memory = 2 · N

1
2

2
l
2

Level 2. Time =
N

1
2

2
l
2

, Memory = negligible

To balance the memory at Level 1a and Level 1b, M,N, l should satisfy the

relation M = 2 · N
1
2

2
l
2

. From this relation, the time complexity of Level 2 becomes
M
2 , and thus is negligible compared to Level 1a when X is sufficiently large. To

balance the time complexities of Level 1a and Level 1b, we need MX = 2· N
1
2 2

l
2

MX ,
which gives the relation M3X2 = 4·N . Finally, as the time complexity T satisfies
T = MX, we obtain the following tradeoff curve



698 I.Y. Nikolić and Y. Sasaki

T 2 · M = 4 · N. (12)

For instance, when the available memory is 2
n
4 (instead of 2

n
3 as in the

original 4-tree), then the updated 4-tree finds a solution in around 2
3n
8 time.

This is to be compared to Bernstein et al. tradeoffs given in (9) and (10) which
require around 2

n
2 time. Additional points of the tradeoff curve and comparison

to previous results are given in Table 4.
During the analysis, we relied implicitly on several facts. First, we assumed

that Hellman’s table can contain an arbitrary number of points. In order to
avoid collisions between the chains, however, the values of M and X cannot
be arbitrary, but should depend on l. That is, during the construction of Hell-
man’s table, the number of chains and their length is bounded by the value
of l. Biryukov and Shamir in [7] call this a matrix stopping rule, and define
it as MX2 ≤ 2l. It is trivial to see that this inequality holds in our case as
MX2 = M 4N

M3 = 4N
M2 = 4N

(2N
1
2 /2

l
2 )2

= 2l. For instance, when M = 2
n
4 , then

l ≈ n
2 , T = 2

3n
8 , X = 2

n
8 . Therefore, obviously MX2 = 2

n
2 = 2l. We assumed

as well that the tradeoff applies only to Problem 3. However, a close inspections
of our algorithm reveals that it can be applied to the case of pairwise identical
functions, i.e., f1 = f2, f3 = f4. That is, the area of application of the trade-
off is wider, and is similar to the area of the tradeoff given by Bernstein et al.
in (11). To deal with the extended case, we have to create two Hellman’s tables
at the initial stage, one for each pair of functions. Thus the time and memory
complexities will increase by a factor of two at Level 1a, and will stay the same
at Levels 1b and 2.

4.2 Improved Time-Memory Tradeoff for the k-list Problem

In this section, we generalize the time-memory tradeoff for the k-tree algorithm,
where k = 2d. Overall, we replace the collision generation at Level 1 of the k-tree
algorithm with a generation based on Hellman’s table. Hereafter, we call the bits
whose sum is fixed to zero clamped bits.

The ordinary k-tree algorithm initially starts from 2d lists containing M = 2m

elements. At Level 1, 2d−1 lists containing M elements are generated with m
bits clamped. At Level i for i = 2, 3, . . . , d − 1, 2d−i lists containing M elements
are generated with im bits clamped. At the last Level d there are two lists
containing M elements with (d − 1)m bits clamped. As no longer M collisions
are required, but rather only one, the sum on up to (d + 1)m bits can be 0, by
setting (d + 1)m = n, and thus the k-tree algorithm will find the solution to
the k-list problem. However, if the memory size is restricted, i.e. m � n

d+1 , the
k-tree algorithm can enforce the sum of only (d + 1)m bits to zero.

Our algorithm replaces Level 1 with Hellman’s table collision generation and
performs the same procedure as the k-tree algorithm from Level 2 to Level d.
To find the required solution after Level d, however, at Level 1 we clamp more
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Table 3. A comparison of the number of clamping bits between the k-tree and our
algorithm.

#lists #Clamped bits

k-tree algorithm Our algorithm

Level 1 2d−1 m l

Level i, (i = 2, . . . , d − 1) 2d−i im l + (i − 1)m

Level d 1 (d + 1)m l + dm

bits. Let the number of the clamped bits at Level 1 be l. After the first level
we will have 2d−1 lists, each with M = 2m elements. Similarly, after Level i for
i = 2, 3, . . . , d−1, we will have 2d−i lists containing M elements with l+(i−1)m
bits clamped. After the final Level d, we will have one element with l + dm zero
bits. Therefore, we set l + dm = n, i.e. l = n − dm, to get at least one solution
on all n bits. In Table 3, we compare the number of clamped bits of the k-tree
and our algorithm.

From the condition l = n−dm and the parameters k and m, we can determine
the reduction function fl for Hellman’s table. We create M chains of length X,
and only store the first and last values of the chains in Hellman’s table Tpre.
Once Tpre is constructed, we can find an l-bit partial collision with a cost of 2l

MX

per a collision, which is equivalent to N
Md+1X

. At Level 1, we produce in total
(2d−1 · M) l-bit collisions, and store them in 2d−1 lists each with M elements.
The total cost for producing the partial collisions and thus the complexity of
Level 1 is 2d−1 · N

MdX
.

Complexity Evaluation and the Tradeoff Curve. The complexity to gen-
erate Tpre is MX time and M memory. As mentioned above, Level 1 requires
2d−1 · N

MdX
time and 2d−1 ·M memory. The time and memory complexities of the

remaining Levels 2 to d are all M , thus negligibly small compared to the genera-
tion of Tpre. We balance the time complexity of Hellman’s table generation and
of Level 1, which gives the relation T = MX = 2d−1 · N

MdX
, and can further be

reduced to (MX)2 = 2d−1 · N
Md−1 and approximately results in a tradeoff curve

T 2 · M lg k−1 = k · N (13)

Note, the tradeoff given in Sect. 4.1 can be obtained from the above tradeoff
by setting k = 4. In Table 4, we compare the previous tradeoffs given in (9),
(11) to our new tradeoff for k = 4, 8 and for two particular memory amounts.
Obviously, the time complexity of our algorithm is significantly smaller for the
same amount of available memory.

The tradeoff curves of these three methods are also depicted in Fig. 6. The
vertical axis and horizontal axis represent the logarithm of the time complexity t
and memory complexity m, respectively. Curves for k = 8 and k = 16 are drawn
in Fig. 6 with red lines and black lines, respectively. For k = 8 with m ≥ n

4 , the
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Table 4. Comparison of tradeoffs. For simplicity, the constant multiplication for N is
ignored.

Method M T Other parameters

k = 4 Bernstein et al. Eq.(9) 2
n
4 2

n
2 −

(T · M2 = N) 2
n
6 2

2n
3 −

Our 2
n
4 2

3n
8 X = 2

n
8 , l = n

2

(T 2 · M = N) 2
n
6 2

5n
12 X = 2

n
4 , l = 2n

3

k = 8 Bernstein et al. Eq.(9) 2
n
5 2

2n
5 −

(T · M3 = N) 2
n
6 2

n
2 −

Bernstein et al. Eq.(11) 2
n
5 2

2n
5 −

(T 2 · M = N) 2
n
6 2

5n
12 −

Our 2
n
5 2

3n
10 X = 2

n
10 , l = 2n

5

(T 2 · M2 = N) 2
n
6 2

n
3 X = 2

n
6 , l = n

2

ordinary k-tree algorithm with t = n
4 can be performed. Thus, the time-memory

tradeoffs are meaningful only when the memory amount is limited to m < n
4 ,

and Fig. 6 only describes the curves in this range. Similarly, for k = 16 only
m < n

5 is shown in the figure.
The previous curve given in (9) achieves the same time complexity as the

k-tree algorithm when sufficient memory is available, while the time complexity
is about 2n when the available amount of memory is very limited. The previous
curve given in (11) cannot reach the time complexity of the k-tree algorithm even
if sufficient memory is available, while the time complexity is at most 2

n
2 for very

limited amount of memory. It is easy to see that our tradeoff takes advantages

Fig. 6. Comparison of tradeoff curves. Our curve for k = 8 and Bernstein et al. 2 for
k = 16 are overlapped in the range of m < n/5.



Refinements of the k-tree Algorithm for the Generalized Birthday Problem 701

of those two curves, i.e. it requires the same complexity as the k-tree algorithm
when sufficient memory is available and requires only 2

n
2 time complexity when

the available amount of memory is limited. Therefore, our tradeoff always allows
a lower time complexity than both of the previous tradeoffs. It improves the
time complexity and simplifies the situation, as it is the best for any value of
m (unlike the previous two tradeoffs that outperformed each other for different
values of m).

5 Conclusion

We have shown improvements to Wagner’s k-tree algorithm for the case when
k is not a power of two, and when the available memory is restricted. For the
former case, our findings indicate that the passive lists can be used to reduce

the complexity of the k-tree (in the case of 3-tree, by a factor of
√

n/2
lnn/2 ).

Rather than discarding the passive lists, we have produced multicollisions sets
from them, and later, we have used the sets to decrease the size and thus the
complexity of the k-tree algorithm. In the case of a memory restricted k-list
problem, we have provided a new time-memory tradeoff based on the idea of
Hellman’s table. The precomputed table has allowed us to efficiently produce a
large number of collisions at the very first level of the k-tree algorithm, and thus
to reduce the memory requirement of the whole algorithm. As a result, we have
achieved an improved tradeoff that follows the curve T 2M lg k−1 = k · N .

We point out that we have run series of experiments to confirm parts of
the analysis. In particular, we have verified that the predicted number of mul-
ticollisions and we have completely implemented the tradeoff for k = 4, n = 60
and various sizes of available memory, e.g., m = 8, 10, 14. The outcome of the
experiments has confirmed the tradeoff.

The 3-list problem appears frequently in the literature and as our improved 3-
tree algorithm is the first that solves this problem with below the birthday bound
complexity, we expect future applications of the algorithm. However, although
our improved 3-tree asymptotically outperforms Wagner’s 3-tree algorithm, the
speed up factor is lower for smaller values of n. Thus we urge careful analysis
when applying the improved 3-tree.

Bernstein [5] argues that the large memory requirement of Wagner’s k-tree
algorithm makes it impractical. He assumes that the memory access is far more
expansive, thus the actual cost of the algorithm is miscalculated. He introduces
tradeoffs (discussed in Sect. 4) to reduce the memory requirement, and to obtain
algorithms of lower complexity (measured by the new metric). We note that as
our tradeoffs are more memory effective, by the new metric they lead to better
algorithms for the k-tree problem with pairwise identical functions.

There are several future research directions. One is to consider restrictions
on the amount of available data. The functions fi in the k-list problem are often
assumed to be public, i.e. the attacker can evaluate them offline. When fi are not
public, the data needs to be collected by making online queries. Thus developing
new time-memory-data tradeoffs for this scenario is an interesting open problem.
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Another direction is to consider the weight of each function in the total cost of
the algorithm, which leads to the case of an unbalanced GBP. This is based on
the fact that in specific applications, it may occur that some of the functions
are more costly to compute than other functions. The algorithm that solves an
unbalanced GBP will be different than the one for the balanced GBP.
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18. Jean, J., Nikolić, I., Peyrin, T.: KIASU v1. Submitted to CAESAR (2014)
19. Joux, A., Lercier, R.: “Chinese and Match”, an alternative to Atkin “Match and

Sort” method used in the sea algorithm. Math. Comput. 70(234), 827–836 (2001)
20. Joux, A., Lucks, S.: Improved generic algorithms for 3-collisions. In: Matsui, M.

(ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 347–363. Springer, Heidelberg
(2009)

21. Minder, L., Sinclair, A.: The extended k-tree algorithm. J. Cryptol. 25(2), 349–382
(2012)

22. Nandi, M.: XLS is not a strong pseudorandom permutation. In: Sarkar, P., Iwata,
T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 478–490. Springer, Heidelberg
(2014)

23. Nandi, M.: Revisiting security claims of XLS and COPA. Cryptology ePrint
Archive, Report 2015/444 (2015). http://eprint.iacr.org/
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Abstract. We assume a scenario where an attacker can mount several
independent attacks on a single CPU. Each attack can be run several
times in independent ways. Each attack can succeed after a given num-
ber of steps with some given and known probability. A natural question
is to wonder what is the optimal strategy to run steps of the attacks in a
sequence. In this paper, we develop a formalism to tackle this problem.
When the number of attacks is infinite, we show that there is a magic
number of steps m such that the optimal strategy is to run an attack
for m steps and to try again with another attack until one succeeds. We
also study the case of a finite number of attacks.

We describe this problem when the attacks are exhaustive key
searches, but the result is more general. We apply our result to the learn-
ing parity with noise (LPN) problem and the password search problem.
Although the optimal m decreases as the distribution is more biased,
we observe a phase transition in all cases: the decrease is very abrupt
from m corresponding to exhaustive search on a single target to m = 1
corresponding to running a single step of the attack on each target. For
all practical biased examples, we show that the best strategy is to use
m = 1. For LPN, this means to guess that the noise vector is 0 and to
solve the secret by Gaussian elimination. This is actually better than all
variants of the Blum-Kalai-Wasserman (BKW) algorithm.

1 Introduction

We assume that there are an infinite number of independent keys K1,K2, . . . and
that we want to find at least one of these keys by trials with minimal complexity.
Each key search can be stopped and resumed. The problem is to find the optimal
strategy to run several partial key searches in a sequence. In this optimization
problem, we assume that the distributions Di for each Ki are known. We denote
D = (D1,D2, . . .). Consider the problem of guessing a key Ki, drawn following
Di, which is not necessarily uniform. We assume that we try all key values
exhaustively from the first to the last following a fixed ordering. If we stop the
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key search on Ki after m trials, the sequence of trials is denoted by ii · · · i = im.
It has a worst-case complexity m and a probability of success which we denote
by PrD(im).

Instead of running parallel key searches in sequence, we could consider any
other attack which decomposes in steps of the same complexity and in which
each step has a specific probability to be the succeeding one. We assume that
the ith attack has a probability PrD(im) to succeed within m steps and that
each step has a complexity 1. The fundamental problem is to wonder how to run
steps of these attacks in a sequence so that we minimize the complexity until
one attack succeeds. For instance, we could run attack 1 for up to m steps and
decide to give up and try again with attack 2 if it fails for attack 1, and so on.
We denote by s = 1m2m3m · · · this strategy. Unsurprisingly, when the Di’s are
the same, the average complexity of s is the ratio CD(1m)

PrD(1m) where CD(1m) is the
expected complexity of the strategy 1m which only runs attack 1 for m steps1

and PrD(1m) is its probability of success.
Traditionally, when we want to compare single-target attacks with different

complexity C and probability of success p, we use as a rule of the thumb to
compare the ratio C

p . Quite often, we have a continuum of attacks C(m) with
a number of steps limited to a variable m and we tune m so that p(m) is a
constant such as 1

2 . Indeed, the curve of m �→ C(m)
p(m) is often decreasing (so has

an L shape) or decreasing then increasing (with a U shape) and it is optimal to
target p(m) = 1

2 . But sometimes, the curve can be increasing with a Γ shape. In
this case, it is better to run an attack with very low probability of success and
to try again until this succeeds. In some papers, e.g. [14], we consider min C(m)

p(m)

as a complexity metric to compare attacks. Our framework justifies this choice.
LPN and Learning with Errors (LWE) [21] are two appealing problems in

cryptography. In both cases, the adversary receives a matrix V and a vector
C = V s+D where s is a secret vector and D is a noise vector. For LPN, the best
solving algorithm was presented in Asiacrypt 2014 [12]. It brings an improvement
over the well-known BKW [5] and its variants [11,15]. The best algorithm has a
sub-exponential complexity.

Assuming that V is invertible, by guessing D we can solve s and check it
with extra equations. So, this problem can be expressed as the one of guessing
a correct vector D of small weight, which defines a biased distribution. Here,
the distribution of D corresponds to the weighted concatenation of uniform
distributions among vectors of the same weight. We can thus study this problem
in our formalism. This was used in [8]. This algorithm is also cited in [6] and by
Lyubashevsky2.

Both LPN and LWE fall in the aforementioned scenario of guessing a k-bit
biased noise vector by a simple transformation. Work on breaking cryptosystems
with biased keys was also done in [18].

1 CD(1m) can be lower than m since there is a probability to succeed before reaching
the mth step.

2 http://www.di.ens.fr/∼lyubash/talks/LPN.pdf.

http://www.di.ens.fr/~lyubash/talks/LPN.pdf
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The guessing game that we describe in our paper also matches well the pass-
word guessing scenario where an attacker tries to gain access to a system by
hacking an account of an employee. There exists an extensive work on the crypt-
analytic time-memory tradeoffs for password guessing [2–4,13,19,20], but the
game we analyse here requires no pre-computation done by the attacker.

Our Results. We develop a formalism to compare strategies and derive some
useful lemmas. We show that when we can run an infinite number of independent
attacks of the same distribution, an optimal strategy is of the form 1m2m3m · · ·
and it has complexity

min
m

CD(1m)
PrD(1m)

for some “magic” value m. This justifies the rule of the thumb to compare attacks
with different probabilities of success.

When the probability that an attack succeeds at each new step decreases (e.g.,
because we try possible key values in decreasing order of likelihood), there are
two remarkable extreme cases: m = n (where n is the maximal number of steps)
corresponds to the normal single-target exhaustive search with a complexity
equal to the guesswork entropy [17] of the distribution; m = 1 corresponds to
trying attacks for a single step until it works, with complexity 2−H∞ , where H∞
is the min-entropy of the distribution.

When looking at the “magic” value m in terms of the distribution D, we
observe that in many cases there is a phase transition: when D is very close to
uniform, we have m = n. As soon as it becomes slightly biased, we have m = 1.
There is no graceful decrease from m = n to m = 1.

We also treat the case where we have a finite number |D| of independent
attacks to run. We show that there is an optimal “magic” sequence m1,m2, . . .
such that an optimal strategy has form

1m12m1 · · · |D|m11m22m2 · · · |D|m2 · · ·

The best strategy is first to run all attacks for m1 steps in a sequence then to
continue to run them for m2 steps in a sequence, and so on.

Although our results look pretty natural, we show that there are distribu-
tions making the analysis counter-intuitive. Proving these results is actually non
trivial.

We apply this formalism to LPN by guessing the noise vector then performing
a Gaussian elimination to extract the secret. The optimal m decreases as the
probability τ to have an error in a parity bit decreases from 1

2 . For τ = 1
2 , the

optimal m corresponds to a normal exhaustive search. For τ < 1
2 − ln 2

2k , where k
is the length of the secret, the optimal m is 1: this corresponds to guessing that
we have no noise at all. So, there is a phase transition.

Furthermore, for LPN with τ = k− 1
2 , which is what is used in many crypto-

graphic constructions, the obtained complexity is poly ·e
√

k which is much better
than the usual poly ·2 k

log2 k that we obtain for variants of the BKW algorithm [6].
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More generally, we obtain a complexity of poly · e−k ln(1−τ). It is not better than
the BKW variants for constant τ but becomes interesting when τ < ln 2

log2 k .

When the number of samples is limited in the LPN problem with τ = k− 1
2 ,

we can still solve it with complexity eO(
√

k(ln k)2) which is better than eO( k
ln ln k )

with the BKW variants [16].
For LWE, the phase transition is similar, but the algorithm for m = 1 is not

better than the BKW variants. This is due to the 0 noise having a much lower
probability in LWE (which is 1−τ for LPN) in the discrete Gaussian distribution
in Zq.

For password search, we tried several empirical distributions of passwords
and obtained again that the optimal m is m = 1. So, the complexity is 2−H∞ .

Besides the 3 problems we study here, we believe that our results can prove
to be useful in other cryptographic applications.

Structure of the Paper. Section 2 formalizes the problem and presents a few
useful results. In Sect. 3 we characterize the optimal strategies and show they
can be given a special regular structure. We then apply this in Sect. 4 with LPN
and password recovery. Due to lack of space, we do the same for LWE in the full
version of this paper. We study the phase transition of the “magic” number m
in Sect. 5 and conclude in Sect. 6.

2 The STEP Game

In this section we introduce our framework through which we address the fun-
damental question of what is the best strategy to succeed in at least one attack
when we can step several independent attacks. Let D = (D1,D2, . . .) be a tuple
of independent distributions. If it is finite, |D| denotes the number of distrib-
utions. We formalize our framework as a game where we have a ppt adversary
A and an oracle that has a sequence of keys (K1,K2, . . .) where Ki ← Di. At
the beginning, the oracle assigns the keys according to their distribution. These
distributions are known to the adversary A. The adversary will test each key
Ki by exhaustive search following a given ordering of possible values. We can
assume that values are sorted by decreasing order of likelihood to obtain a mini-
mal complexity but this is not necessary in our analysis. We only assume a fixed
order. So, our framework generalizes to other types of attacks in which we can-
not choose the order of the steps. Each test on Ki corresponds to a step in the
exhaustive search for Ki. In general, we write “i” in a sequence to denote that
we run one new step of the ith attack. The sequence of “i”s defines a strategy
s. It can be finite or not. The sequence of steps we follow is thus a sequence
of indices. For instance, im means “run the Ki search for m steps”. The oracle
is an algorithm that has a special command: STEP(i). When queried with the
command STEP(i), the oracle runs one more step of the ith attack ( so, it incre-
ments a counter ti and tests if Ki = ti, assuming that possible key values are
numbered from 1). If this happens then the adversary wins. The adversary wins
as soon as one attack succeeds (i.e., he guesses one of the keys from the sequence
K1,K2, . . . ).
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Definition 1 (Strategies). Let D be a sequence of distributions D =
(D1, . . . , D|D|) (where |D| can be infinite or not). A strategy for D is a sequence
s of indices between 1 and |D|. It corresponds to Algorithm1. We let PrD(s) be
the probability that the strategy succeeds and CD(s) be the expected number of
STEP when running the algorithm until it stops. We say that the strategy is full
if PrD(s) = 1 and that it is partial otherwise.

Algorithm 1. Strategy s in the STEP game
1: initialize attacks 1, . . . , |D|
2: for j = 1 to |s| do
3: STEP(sj): run one more step of the attack sj and stop if succeeded
4: end for
5: stop (the algorithm fails)

For example for s = 11223344 · · · , Algorithm 1 tests the first two values for each
key.

Definition 2 (Distributions). A distribution Di over a set of size n is a
sequence of probabilities Di = (p1, . . . , pn) of sum 1 such that pj ≥ 0 for
j = 1, . . . , n. We assume without loss of generality that pn �= 0 (Otherwise, we
decrease n). We can equivalently specify the distribution Di in an incremental
way by a sequence Di = [p′

1, . . . , p
′
n] (denoted with square brackets) such that

p′
j =

pj

pj + · · · + pn
pj = p′

j(1 − p′
1) · · · (1 − p′

j−1)

for j = 1, . . . , n.

We have PrD(ij) = p1 + · · · + pj = 1 − (1 − p′
1) · · · (1 − p′

j), the probability of
the j first values under Di.

When considering the key search, it may be useful to assume that distribu-
tions are sorted by decreasing likelihood. We note that the equivalent condition
to pj ≥ pj+1 with the incremental description is 1

p′
j

+ j ≤ 1
p′

j+1
+ j + 1, for

j = 1, . . . , n − 1.
We define the distribution that the keys are not among the already tested

ones.

Definition 3 (Residual Distribution). Let D = (D1, . . . , D|D|) be a sequence
of distributions and let s be a strictly partial strategy for D (i.e., PrD(s) < 1).
We denote by “|¬s” the residual distribution in the case where the strategy s
does not succeed, i.e., the event ¬s occurs.

We let #occs(i) denote the number of occurrences of i in s. We have

D|¬s =
(
D1|¬1#occs(1), . . . , D|D||¬|D|#occs(|D|)

)
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where Di|¬iti = [p′
i,ti+1, . . . , p

′
i,ni

] if Di = [p′
i,1, . . . , p

′
i,ni

]. Hence, defining distri-
butions in the incremental way makes the residual distribution being just a shift
of the original one.

We write PrD(s′|¬s) = PrD|¬s(s′) and CD(s′|¬s) = CD|¬s(s′).
Next, we prove a list of useful lemmas in order to compute complexities,

compare strategies, etc.

Lemma 4 (Success Probability). Let s be a strategy for D. The success prob-
ability is computed by

Pr
D

(s) = 1 −
|D|∏

i=1

Pr
Di

(¬i#occs(i))

Proof. The failure corresponds to the case where for all i, Ki is not in
{1, . . . ,#occs(i)}. The independence of the Ki implies the result. �	
Lemma 5 (Complexity of Concatenated Strategies). Let ss′ be a strategy
for D obtained by concatenating the sequences s and s′. If PrD(s) = 1, we have
PrD(ss′) = PrD(s) and CD(ss′) = CD(s). Otherwise, we have

Pr
D

(ss′) = Pr
D

(s) +
(
1 − Pr

D
(s)

)
Pr
D

(s′|¬s)

CD(ss′) = CD(s) +
(
1 − Pr

D
(s)

)
CD(s′|¬s)

Proof. The first equation is trivial from the definition of residual distributions
and conditional probabilities.

The prefix strategy s succeeds with probability PrD(s). Let c be the com-
plexity of s conditioned to the event that s succeeds. Clearly, the complex-
ity of ss′ conditioned to this event is equal to c. The complexity of ss′ con-
ditioned to the opposite event is equal to |s| + CD(s′|¬s). So, CD(ss′) =
PrD(s)c + (1 − PrD(s))(|s| + CD(s′|¬s)). The complexity of s conditioned to
that s fails is equal to |s|. So, CD(s) = PrD(s)c + (1 − PrD(s))|s|. From these
two equations, we obtain the result. �	
Lemma 6 (Complexity with Incremental Distributions). Let Di =
[p′

i,1, . . . , p
′
i,ni

] and let s be a strategy for D = (D1,D2, . . .). We have

Pr
D

(s) = 1 −
|s|∏

t′=1

(1 − p′
st′ ,#occs1···s

t′ (st′ ))

CD(s) =
|s|∑

t=1

t−1∏

t′=1

(1 − p′
st′ ,#occs1···s

t′ (st′ ))

Proof. By induction, the probability that the strategy fails on the first t−1 steps
is qt =

∏t−1
t′=1(1 − p′

st′ ,#occs1···s
t′ (st′ )). We can express CD(s) =

∑|s|
t=1 qt. So, we

can deduce PrD(s) and CD(s). �	
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Example 7. For D1 = (p1, . . . , pn) = [p′
1, . . . , p

′
n] and m ≤ n, due to Lemma 6

we have
Pr
D

(1m) = p1 + · · · + pm = 1 − (1 − p′
1) · · · (1 − p′

m)

and

CD(1m) =
m∑

t=1

t−1∏

j=1

(1 − p′
j)

=
m∑

t=1

(pt + · · · + pn) = p1 + 2p2 + · · · + mpm + mpm+1 + · · · + mpn

The second equality uses the relations from Definition 2.

We want to concatenate an isomorphic copy w of a strategy v to another
strategy u. For this, we make sure that w and u have no index in common.

Definition 8 (Disjoint Copy of a Strategy). Two strategies v and w are
isomorphic if there exists an injective mapping ϕ such that wt = ϕ(vt) for all t
and Dϕ(i) = Di for all i. So, CD(v) = CD(w). Let u and v be two strategies for
D. Whenever possible, we define a new strategy w = newu(v) such that v and w
are isomorphic and w has no index in common with u.

We can define it by recursion: if w1 = ϕ(v1), . . . , wt−1 = ϕ(vt−1) are already
defined and ϕ(vt) is not, we set it to the smallest index i (if exists) which does
not appear in u nor in w1, . . . , wt−1 and such that Di = Dvt

.

For instance, if v = 1m, all Di are equal, and i is the minimal index which does
not appear in u, we have newu(v) = im.

Lemma 9 (Complexity of a Repetition of Disjoint Copies). Let s be
a non-empty strategy for D. We define new strategies s+1, s+2, . . ., disjoint
copies of s, by recursion as follows: s+r = newss+1···s+(r−1)(s). We assume that
s+1, s+2, . . . , s+(r−1) can be constructed. If PrD(s) = 0, then

CD(ss+1s+2 · · · s+(r−1)) = r · CD(s).

Otherwise, we have

CD(ss+1s+2 · · · s+(r−1)) =
1 − (1 − PrD(s))r

PrD(s)
CD(s)

For r going to ∞, we respectively obtain CD(ss+1s+2 · · · ) = +∞ and

CD(ss+1s+2 · · · ) =
CD(s)
PrD(s)

For instance, for s = 1m and Di all equal, the disjoint isomorphic copies of s are
s+r = (1+r)m. I.e., we run m steps the (1+r)th attack. So, ss+1s+2 · · · s+(r−1) =
1m2m · · · rm.
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Proof. We prove it by induction on r. This is trivial for r = 1. Let s̄r =
ss+1s+2 · · · s+r. If it is true for r − 2, then

CD(s̄r−1) = CD(s̄r−2) + (1 − Pr
D
(s̄r−2))CD(s+(r−1)|¬s̄r−2)

=

{
1−(1−PrD(s))r−1

PrD(s)
CD(s) + (1 − PrD(s̄r−2))CD(s+(r−1)|¬s̄r−2) if PrS(s) > 0

(r − 1) · CD(s) + (1 − PrD(s̄r−2))CD(s+(r−1)|¬s̄r−2) if PrS(s) = 0

Clearly, we have 1 − PrD(s̄r−2) = (1 − PrD(s))r−1 and CD(s+(r−1)|¬s̄r−2) =
CD(s). So, we obtain the result. �	
Example 10. For all Di equal, if we let s = 1m, we can compute

CD(1m2m · · · rm) =
1 − (1 − PrD(1m))r

PrD(1m)
CD(1m)

=
1 − (pm+1 + · · · + pn)r

p1 + · · · + pm
(p1 + 2p2 + · · · + mpm + mpm+1 + · · · + mpn)

We now consider r = ∞. For an infinite number of i.i.d distributions we have

CD(1m2m · · · ) =
CD(1m)
PrD(1m)

=
p1 + 2p2 + · · · + mpm + mpm+1 + · · · ,mpn

p1 + · · · + pm

=
∑m

i=1 ipi + m(1 − p1 + · · · + pm)
p1 + · · · + pm

= Gm + m

(
1

PrDi
(1m)

− 1
)

where Gm = CD1|1m(1m) and D1|1m = ( p1
PrD1 (1

m) , . . . ,
pm

PrD1 (1
m) ). If D1 is

ordered, Gm corresponds to the guesswork entropy of the key with distribution
D1|1m.

We can see two extreme cases for s = 1m2m · · · . On one end we have a
strategy of exhaustively searching the key until it is found, i.e. take m = n. On
the other extreme we have a strategy where the adversary tests just one key
before switching to another key, i.e. m = 1. For the sequences s = 12 · · · and
s = 1n2n · · · , i.e. m = 1 and m = n, when D1 is ordered by decreasing likelihood,
we obtain the following expected complexity:

m = 1 ⇒ CD(12 · · · ) =
1
p1

= 2−H∞(D1)

m = n ⇒ CD(1n2n · · · ) = CD(1n) = Gn,

where H∞(D1) and Gn denote the min-entropy and the guesswork entropy of
the distribution D1, respectively.

We now define a way to compare partial strategies.
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Definition 11 (Strategy Comparison). We define

minCD(s) = inf
s′;PrD(ss′)=1

CD(ss′)

the infimum of CD(ss′), i.e. the greatest of its lower bounds. We write s ≤D s′

if and only if minCD(s) ≤ minCD(s′). A strategy s is optimal if minCD(s) =
minCD(∅), where ∅ is the empty strategy (i.e. the strategy running no step at
all).

So, s is better than s′ if we can reach lower complexities by starting with s
instead of s′. The partial strategy s is optimal if we can still reach the optimal
complexity when we start by s.

Lemma 12 (Best Prefixes are Best Strategies). If u and v are permuta-
tions of each other, we have u ≤D v if and only if CD(u) ≤ CD(v).

Proof. Note that PrD(u) = 1 is equivalent to PrD(v) = 1. If PrD(u) = 1, it
holds that minCD(u) = CD(u) and minCD(v) = CD(v). So, the result is trivial
in this case. Let us now assume that PrD(u) < 1 and PrD(v) < 1. For any s′,
by using Lemma 5 we have

CD(us′) = CD(u) +
(
1 − Pr

D
(u)

)
CD(s′|¬u)

So,

inf
s′;PrD(us′)=1

CD(us′) = CD(u) +
(
1 − Pr

D
(u)

)
inf

s′;PrD(us′)=1
CD(s′|¬u)

The same holds for v. Since u and v are permutations of each other, we have
D|¬u = D|¬v. So, PrD(us′) = PrD(vs′) and CD(s′|¬u) = CD(s′|¬v). Hence,
inf CD(s′|¬u) = inf CD(s′|¬v). Furthermore, we have PrD(u) = PrD(v). So,
minCD(u) ≤ minCD(v) is equivalent to CD(u) ≤ CD(v). �	

3 Optimal Strategy

The question we address in this paper is: what is the optimal strategy for the
adversary so that he obtains the best complexity in our STEP formalism? That
is, we try to find the optimal sequence s for Algorithm1. At a first glance, we
may think that a greedy strategy always making a step which is the most likely to
succeed is an optimal strategy. We show below that this is wrong. Sometimes, it
is better to run a series of unlikely steps in one given attack because we can then
run a much more likely one of the same attack after these steps are complete.
However, criteria to find this strategy are not trivial at all.

The greedy algorithm is based on looking at the i for which the next applica-
ble p′

j in Di is the largest. With our formalism, this defines as follows.

Definition 13 (Greedy Strategy). Let s be a strategy for D. We say that s
is greedy if

Pr
D

(st|¬s1 · · · st−1) = max
i

Pr
D

(i|¬s1 · · · st−1)

for t = 1, . . . , |s|.
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The following example shows that the greedy strategy is not always optimal.

Example 14. We take |D| = ∞ and all Di equal to Di = (23 , 7
36 , 5

36 ) = [23 , 7
12 , 1].

After testing the first key, we have D|¬1 = (D′,D2,D3, . . .) with D′ = ( 7
12 , 5

12 ) =
[ 7
12 , 1]. Since 2

3 > 7
12 , the greedy algorithm would then test a new key and

continue testing new keys. I.e., we would have s = 1234 · · · as a greedy strategy.
By applying Lemma 5, the complexity is solution to c = 1 + 1

3c, i.e., c = 3
2 .

However, the one-key strategy s = 111 has complexity

2
3

+ 2
7
36

+ 3
5
36

=
53
36

<
3
2

so the greedy strategy is not the best one.

Remark: The above counterexample works even when |D| is finite. If we take
D = (D1,D2) with Di = (23 , 7

36 , 5
36 ) = [23 , 7

12 , 1], the greedy approach would test
the strategy s = 1211 that has a complexity of

1 +
1
3

(

1 +
1
3

(

1 +
5
12

· 1
))

=
161
108

.

This is greater than 53
36 , the complexity of the strategy 111.

Next, we note that we may have no optimal strategy as the following example
shows.

Example 15 (Distribution with No Optimal Strategy). Let qi be an increasing
sequence of probabilities which tends towards 1 without reaching it. Let Di =
[qi, qi, . . . , qi, 1] of support n. We have C(in) = 1

qi
(1 − (1 − qi)n) which tends

towards 1 as i grows. So, 1 is the best lower bound of the complexity of full
strategies. But there is no full strategy of complexity 1.

When the number of different distributions is finite, optimal strategies exist.

Lemma 16 (Existence of an Optimal Full Strategy). Let D =
(D1,D2, . . .) be a sequence of distributions. We assume that we have in D a
finite number of different distributions. There exists a full strategy s such that
CD(s) is minimal.

Proof. Clearly, c = inf CD(s) over all full strategies s is well defined. Essentially,
we want to prove that c is reached by one strategy, i.e. that the infimum is a
minimum. First, if c = ∞, all full strategies have infinite complexity, and the
result is trivial. So, we now assume that c < +∞ and we prove the result by a
diagonal argument.

We now construct s = s1s2 · · · by recursion. We assume that s1s2 · · · sr is
constructed such that minC(s1s2 · · · sr) = c. We concatenate s1, . . . , sr to im

where m is such that PrD[im−1|¬s1 · · · sr] = 0 and PrD[im|¬s1 · · · sr] > 0. The
values of i to try are the ones such that i appears in s1, . . . , sr (we have a finite
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number of them), and the ones which do not appear, but we can try only one
for each different Di. We take the choice minimizing minC(s1s2 · · · sri

m) and set
sr+1 = im. So, we construct a strategy s.

If one key Ki is tested until exhaustion, we have PrD(s) = 1. If no key is
tested until exhaustion, there is an infinite number of keys with same distribution
Di which are tested. If p = PrD[im] is the nonzero probability with the smallest
m of this distribution, there is an infinite number of tests which succeed with
probability p. So, PrD(s) ≥ 1 − (1 − p)∞ = 1. In all cases, as s has a probability
to succeed of 1, s is a full strategy.

What remains to be proven is that CD(s) = c. We now denote by si the ith
step of s.

Let qt be the probability that s fails on the first t−1 steps. We have CD(s) =
∑|s|

t=1 qt. Let ε > 0. For each r, by construction, there exists a tail strategy v such
that CD(s1 · · · sr−1v) ≤ c + ε. Since qt is also the probability that s1 · · · sr−1v
fails on the first t−1 steps for t ≤ r, we have

∑r
t=1 qt ≤ CD(s1 · · · sr−1v) ≤ c+ε.

This holds for all r. So, we have CD(s) ≤ c+ ε. Since this holds for all ε > 0, we
have CD(s) ≤ c. Consequently, CD(s) = c: s is an optimal and full strategy. �	

The following two results show what is the structure of an optimal strategy.

Theorem 17. Let D = (D1,D2, . . .) be a sequence of distributions. We assume
that we have in D a finite number of pairwise different distributions but an
infinite number of copies of each of them in D. There exists a sequence of indices
i1 < i2 < · · · and an integer m such that Di1 = Di2 = · · · and s = im1 im2 · · · is
an optimal strategy of complexity CD(im

1 )
PrD(im

1 ) .

Here are examples of optimal m for different distributions.

Example 18 (Uniform Distribution). For the uniform distribution pi = 1
n , with

1 ≤ i ≤ n. We get PrD(1m) = m
n and Gm = m+1

2 . With this we obtain
CD(1m2m · · · ) = n − m−1

2 . Thus, the value of m that minimizes the complexity
is m = n and CD(1m2m · · · ) = n−1

2 . The best strategy is to exhaustively search
the key until it is found.

Example 19 (Geometric Distribution). For the geometric distribution with para-
meter p, we have pi = (1 − p)i−1p, with i = 1, 2, . . . or Di = [p, p, . . .]. Due to
Lemma 5, we can see that for every infinite strategy s, CD(s) = 1

p .

In AppendixA we study concatenations of uniform distributions.
We note that Theorem 17 does not extend if some distribution has a finite

number of copies as the following example shows.

Example 20 (Distribution with No Optimal Strategy of the Form im1 im2 · · · ). Let
D1 = [1 − ε, ε, ε, . . . , ε, 1] of support n and D2 = D3 = · · · = [p, . . . , p, 1] for
ε < p ≤ 1

2 and n large enough. Given a full strategy s, the formula in Lemma5
defines a sequence qt(s) = p′

st,#occs1···st (st)
. We can see that for all full strategies

s and s′, if |s| ≤ |s′| and qt(s) ≥ qt(s′) for t = 1, . . . , |s|, then CD(s) ≤ CD(s′).
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With this, we can see that s = 12n is better than all full strategies with length
at least n + 1. There are only two full strategies with smaller length: 1n and
2n. We have CD(2n) = 1−(1−p)n

p ≈ 1
p ≥ 2 as n grows. We have CD(12n) =

1+ ε 1−(1−p)n

p ≈ 1+ ε
p as n grows, so CD(12n) < CD(2n) for n large enough. We

have CD(1n) = 1 + ε 1−(1−ε)n−1

ε = 2 − (1 − ε)n−1 ≈ 2 so CD(12n) < CD(1n) for
n large enough. For all strategies of length at least n + 1, s = 12n collected the
largest possible p′ values. So, the best strategy is s = 12n. It is better than any
strategy of form im1 im2 · · · .
When we have a finite number of distributions, we may have no optimal strategy
of the form in Theorem17. We may have multiple layers of repetition of im as
the following result shows.

Theorem 21. Let D1 be a distribution of finite support n. Let D =
(D1,D2, . . . , D|D|) be a finite sequence of length |D| in which D1 = D2 = · · · =
D|D|. There exists a sequence m1, . . . ,mr such that the strategy

s = 1m12m1 · · · |D|m11m22m2 · · · |D|m2 · · · 1mr

is optimal.

We provide toy examples below.

Example 22. We take D = (D1,D2) with D1 = D2 = (35 , 9
25 , 1

50 , 1
50 ) =

[35 , 18
20 , 1

2 , 1]. Here are the complexities of some full strategies.

CD(1111) =
146
100

= 1.46

CD(12111) =
792
500

= 1.584

CD(11211) =
732
500

= 1.464

CD(121211) =
7892
5000

= 1.5784

CD(112211) =
7292
5000

= 1.4584

so the last strategy is the best one. Notice that this is also a greedy strategy.

Example 23. We take D = (D1,D2) with D1 = D2 = ( 70
100 , 20

100 , 5
100 , 3

100 , 1
100 ,

1
100 ) = [ 70

100 , 2
3 , 1

2 , 3
5 , 1

2 , 1]. Here are the complexities of some full strategies.

CD(111111) = 1.48
CD(1211111) = 1.44

CD(12121111) = 1.438
CD(121212111) = 1.439
CD(121122111) = 1.444

so s = 12121111 is the best one. For this example we have that the optimal
strategy requires m1 = 1, m2 = 1 and m3 = 4. It is also greedy.
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3.1 Proof of Theorem17

To prove the result, we first state a useful lemma.

Lemma 24 (Is It Better to Do s or s′ First?). If s and s′ are non-empty
and have no index in common (i.e., if st �= s′

t′ for all t and t′), then ss′ ≤D s′s
if and only if CD(s)

PrD(s) ≤ CD(s′)
PrD(s′) in [0,+∞], with the convension that c

p = +∞ for
c > 0 and p = 0.

Proof. Due to Lemma 5, when PrD(s) < 1 we have

CD(ss′) = CD(s) +
(
1 − Pr

D
(s)

)
CD(s′|¬s)

Since s′ does not make use of the distributions which are dropped in D|¬s, we
have CD(s′|¬s) = CD(s′). So,

CD(ss′) = CD(s) +
(
1 − Pr

D
(s)

)
CD(s′)

This is also clearly the case when PrD(s) = 1. Similarly,

CD(s′s) = CD(s′) +
(
1 − Pr

D
(s′)

)
CD(s)

So, CD(ss′) ≤ CD(s′s) is equivalent to

CD(s) +
(
1 − Pr

D
(s)

)
CD(s′) ≤ CD(s′) +

(
1 − Pr

D
(s′)

)
CD(s)

So, this inequality is equivalent to CD(s)
PrD(s) ≤ CD(s′)

PrD(s′) . �	
We can now prove Theorem 17.

Proof (of Theorem 17). Due to Lemma 16, we know that optimal full strategies
exist. Let s be one of these. We let i be the index of an arbitrary key which is
tested in s. We can write s = u0i

m1u1i
m2 · · · imrur where i appears in no uj and

mj > 0 for all j, and u1, . . . , ur−1 are non-empty.
Since s is optimal, by permuting imj and either uj−1 or uj , we obtain larger

complexities. So, by applying Lemma24, we obtain

CD(im1)
PrD(im1)

≤ CD(u1|¬u0)
PrD(u1|¬u0)

≤ CD(im2 |¬im1)
PrD(im1 |¬im1)

≤ · · · ≤ CD(ur|¬u0 · · · ur−1)

We now want to replace ur in s by some isomorphic copy of s which is not
overlapping with u0i

m1u1i
m2 · · · imr . Due to the optimality of s, we would deduce

CD(ur|¬u0 · · · ur−1) ≤ CD(s|¬u0 · · · ur−1) = CD(s)

so CD(im1 )
PrD(im1 ) ≤ CD(s) which would imply that the repetition of isomorphic copies

of im1 are at least as good as s, so CD(im1 )
PrD(im1 ) = CD(s) due to the optimality of s.
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But to replace ur in s by the isomorphic copy of s, we need to rewrite the original s
containing ur by some isomorphic copy in which indices are left free to implement
another isomorphic copy of s.

For that, we split the sequence (1, 2, 3, . . .) into two subsequences v and v′

which are non-overlapping (i.e. vt �= vt′ for all t and t′), complete (i.e. for every
integer j, v contains j or v′ contains j), and representing each distribution with
infinite number of occurrences (i.e. for all j, there exist infinite sequences t1 <
t2 < · · · and t′1 < t′2 < · · · such that Dj = Dvt�

= Dv′
t′
�

for all �). For that, we

can just construct v and v′ iteratively: for each j, if the number of j′ < j such
that Dj′ = Dj in v or v′ is the same, we put j in v, otherwise (we may have
only one more instance in v), we put j in v′ (to balance again). For instance, if
all Di are equal, this construction puts all odd j in v and all even j in v′. Hence,
we can define s′ = newv(s) and s′′ = newv′(s). s′ will thus only use indices in v′

while s′′ will only use indices in v. Therefore, s′ and s′′ will be isomorphic, with
no index in common. So, CD(s) = CD(s′) = CD(s′′).

Following the split of s, the strategy s′ can be written s′ =
u′
0i

′m1u′
1i

′m2 · · · i′mru′
r with

CD(im1 )

PrD(im1 )
=

CD(i′m1 )

PrD(i′m1 )
≤ CD(u′

r|¬u′
0 · · · u′

r−1) = CD(u′
r|¬u′

0i′m1u′
1i′m2 · · · i′mr )

If we replace u′
r in s′ by s′′, since s′ is optimal, we obtain a larger complexity.

So,

CD(u′
0i

′m1u′
1i

′m2 · · · i′mru′
r) ≤ CD(u′

0i
′m1u′

1i
′m2 · · · i′mrs′′)

These two strategies have the prefix u′
0i

′m1u′
1i

′m2 · · · i′mr in common. We can
write their complexities by splitting this common prefix using Lemma5. By
eliminating the common terms, we deduce

CD(u′
r|¬u′

0i′m1u′
1i′m2 · · · i′mr ) ≤ CD(s′′|¬u′

0i′m1u′
1i′m2 · · · i′mr ) = CD(s′′) = CD(s)

We deduce
CD(im1)
PrD(im1)

≤ CD(s)

Let i1 < i2 < · · · be a sequence of keys using the distribution Di. By Lemma 9,
the strategy im1 im2 · · · has complexity CD(im1 )

PrD(im1 ) . Since s is optimal, we have
CD(im1 )
PrD(im1 ) ≥ CD(s). Therefore, CD(im1 )

PrD(im1 ) = CD(s). �	

3.2 Proof of Theorem21

For the proof of Theorem21 we need the result of the following lemma.
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Lemma 25. Let s = uiavjbw be an optimal strategy with n occurrences of each
key. We assume that i �= j, a < b, u does not end with i, v has no occurrence of
either i or j, and w has equal number of occurrences for i and j. Furthermore,
we assume that either a �= 0, or v is nonempty and starts with some k such that
u does not end with k. Then, CD(s) = CD(ujb−aiavjaw).

Lemma 25 will be used in two ways.

1. For s = u′jcvjbw with c > 0, b > 0, v with no i or j, and balanced occurrences
of i and j in w, which has the same complexity as s′ = u′jb+cvw (so, to
apply the lemma we define a = 0, u = u′jc, k = j, and s = u′jci0vjbw; all
hypotheses are verified except v non-empty, but the result is trivial for empty
v). This means that we can regroup jc and jb when there are separated by a
v with no i and followed by a balanced tail w.

2. For s = uiavjbw with 0 < a < b, v with no i or j, and balanced occurrences
of i and j in w, which has the same complexity as s′ = ujb−aiavjaw. This
means that we can balance ia and jb when there are separated by a v with
no i or j and followed by a balanced tail w.

The proof of Lemma 25 is given in AppendixB.
In what follows, we say that a strategy is in a normal form if for all t, i �→

#occs1···st
(i) is a non-increasing function, i.e. #occs1···st

(i) ≥ #occs1···st
(i + 1)

for all i. For instance, 1112322133 is normal as the number of STEP(1) is at no
time lower than the number of STEP(2) and the same for the number of STEP(2)
and STEP(3).

Since all distributions are the same, all strategies can be rewritten into an
equivalent one in a normal form: for this, for the smallest t such that there
exists i such that #occs1···st

(i) < #occs1···st
(i + 1), it must be that st = i + 1

and #occs1···st−1(i) = #occs1···st−1(i + 1). We can permute all values i and i + 1
in the tail stst+1 · · · and obtain an equivalent strategy on which the function
becomes non-increasing at step t and is unchanged before. By performing enough
such rewriting, we obtain an equivalent strategy in normal form. For instance,
12231332 is not normal. The smallest t is t = 3 when we make a second STEP(2)
while we only did a single STEP(1). So, we permute 1 and 2 at this time and
obtain 12132331. Then, we have t = 7 and permute 2 and 3 to obtain 12132321.
Then, again t = 7 to permute 1 and 2 to obtain 12132312 which is normal.

We now prove Theorem 21.

Proof (of Theorem 21). Let s be an optimal strategy. Due to the assumptions,
it must be finite. We assume w.l.o.g. that s is in normal form. We note that
we can always complete s in a form s2a23a3 · · · so that the final strategy has
exactly n occurrences of each i. So, we assume w.l.o.g. that s has equal number of
occurrences. We write s = 1m1x11m2x2 · · · 1mrxr where the xt’s are non-empty
and with no 1 inside.

As detailed below, we rewrite xr (and push some steps earlier in xr−1) so
that we obtain a permutation of the blocks 2mr , . . . , |D|mr . The rewriting is
done by preserving the probability of success (which is 1) and the complexity
(which is the optimal complexity). Then, we do the same operation in xr−1
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and continue until x1. When we are done, each xt becomes a permutation of
the blocks 2mt , . . . , |D|mt . Finally, we normalize the obtained rewriting of s and
obtain the result.

We assume that s has already been rewritten so that for each t′ = t+1, . . . , r,
the xt′ sub-strategy is a permutation of the blocks 2mt′ , . . . , |D|mt′ . Then, we
explain how to rewrite xt. We make a loop for j = 2 to |D|. In the loop, we
first regroup all blocks of j’s by using Lemma 25 with i = 1: while we can write
xt = u′jcvjbw′ where c > 0, b > 0, v is non-empty with no j, and w′ has no
j, we write u = 1m1x11m2x2 · · · 1mtu′ and w = w′1mt+1xt+1 · · · 1mrxr, and set
a = 0 and i = 1. This rewrites xt = u′jb+cvw′ by preserving the complexity and
making a permutation. When this while loop is complete, we can only find a
single block of j’s in xt and write xt = vjbw′, where v and w′ have no j. So, we
apply again Lemma 25 to balance 1mt and jb: we write u = 1m1x11m2x2 · · · xt−1

and w = w′1mt+1xt+1 · · · 1mrxr, and set a = mt and i = 1. This rewrites 1mtxt

to jb−mt1mtvjmtw′ by preserving the complexity and making a permutation.
So, this rewrites xt to vjmtw′ and xt−1 to xt−1j

b−mt . When the loop of j is
complete, xt is a permutation of the blocks 2mt , . . . , |D|mt .

Interestingly, the sequence m1, . . . ,mr is unchanged from our starting opti-
mal normal full strategy s. If we rather start from an optimal full strategy s
which is not in normal form, we can still see how to obtain this sequence: for
each t, m1 + · · · + mt is the next record number of steps for an attack i after
the m1 + · · · + mt−1 record. That is the number of steps for the attack i when
s decides to move to another attack. �	

3.3 Finding the Optimal m

We provide here a simple criterion for the optimal m of Theorem 17.

Lemma 26. We let D1 = (p1, . . . , pn) = [p′
1, . . . , p

′
n] be a distribution and define

D = (D1,D1, . . .). Let m be such that s = 1m2m · · · is an optimal strategy based
on Theorem17. We have 1

p′
m

≤ CD(1m2m · · · ) ≤ 1
p′

m+1
.

Proof. We let s = 2m3m · · · We know that CD(1m+1s) ≥ CD(1ms) since 1ms is
optimal. So,

0 ≤ CD(1m+1s) − CD(1ms)
= (1 − Pr

D
(1m))(CD(1s|¬1m) − CD(s))

= (1 − Pr
D

(1m))(1 − p′
m+1 · CD(s))

from which we deduce 1
p′

m+1
≥ CD(s). Similarly, we have

0 ≥ CD(1ms) − CD(1m−1s)
= (1 − Pr

D
(1m−1))(CD(1s|¬1m−1) − CD(s))

= (1 − Pr
D

(1m−1))(1 − p′
m · CD(s))

from which we deduce 1
p′

m
≤ CD(s). �	
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We note that if pm = pm+1, then

p′
m+1 =

pm+1

pm+1 + · · · + pn
=

pm

pm+1 + · · · + pn
>

pm

pm + pm+1 + · · · + pn
= p′

m

which is impossible (given the result from Lemma 26). Consequently, we must
have pm �= pm+1. So, in distributions when we have sequences of equal proba-
bilities pt, we can just look at the largest index t in the sequence as a possible
candidate for being the value m.

Lemma 26 has an equivalent for Theorem 21 (given in the full version of this
paper due to lack of space).

4 Applications

4.1 Solving Sparse LPN

We will model the Learning Parity with Noise (LPN) problem in our STEP game.
As we will see, we use the noise bits as the keys the adversary A is trying to
guess. First of all, we formally give the definition of the LPN problem.

Definition 27 (Search LPN). Let s
U←− Z

k
2 , let τ ∈]0, 1

2 [ be a constant noise
parameter and let Berτ be the Bernoulli distribution with parameter τ . Denote
by Ds,τ the distribution defined as

{(v, c) | v
U←− Z

k
2 , c = 〈v, s〉 ⊕ d, d ← Berτ} ∈ Z

k+1
2 .

An LPN oracle OLPN
s,τ is an oracle which outputs independent random samples

according to Ds,τ .
Given queries from the oracle OLPN

s,τ , the search LPN problem is to find the
secret s.

As studied in [6], the LPN-solving algorithms which are based on BKW [5] have
a complexity poly · 2

k
log2 k . The naive algorithm guessing that the noise is 0 and

running a Gaussian elimination until this finds the correct solution works with
complexity poly · (1 − τ)−k. So, the latter is much better as soon as τ < ln 2

log2 k ,

and in particular for τ = k− 1
2 which is the case for some applications [1,9].

Experiments reported in [6] also show that for τ = k− 1
2 , the Gaussian elimination

outperforms the BKW variants for k > 500.
The Gaussian elimination algorithm just reduces to finding a k-bit noise

vector. It guesses that this vector is 0. If this does not work, the algorithm
tries again with new LPN queries. We can see this as guessing at least one
k-bit biased vector Ki which follows the distribution Di = Berkτ defined by
Pr[Ki = v] = τHW(v)(1− τ)k−HW(v) in our framework. The most probable vector
is v = 0 which has probability Pr[Ki = 0] = (1 − τ)k. The above algorithm
corresponds to trying K1 = 0 then K2 = 0, ... i.e., the strategy 123 · · · in our
framework. We can wonder if there is a better 1m2m3m · · · . This is the problem
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we study below. We will see that the answer is no: using m = 1 is the best option
as soon as τ is less than 1

2 − ε for ε = ln 2
2k which is pretty small.

For instance, for LPN768, 1√
768

we obtain CD(12 · · · ) = 241. I.e., 241 calls to
the STEP command which corresponds to collecting k LPN queries and making
a Gaussian elimination to recover the secret based on the assumption that the
error bits are all 0. If we add up the cost of running Gaussian elimination in
order to recover the secret, we obtain a complexity of 270. This outperforms all
the BKW variants and proves that LPN768, 1√

768
is not a secure instance for a

80-bit security. Furthermore, this algorithm outperforms even the covering code
algorithm [12]. Our results are strengthened by the results from [6] where we see
that there is a big difference between the performance of CD(12 · · · ) and the one
of the covering code algorithm.

Di is a composite distribution of uniform ones in the sense defined in
AppendixA. Namely, Di =

∑k
w=0 τk(1 − τ)k−wUw where Uw is uniform of sup-

port
(

k
w

)
. By Theorem 17, we know that there exists a magic m for which the

strategy s = 1m2m · · · is optimal. The analysis of composite distributions fur-
ther says that m must be of form m = Bw =

∑w
i=0

(
k
i

)
for some magic w. Let

cm be the complexity of 1m2m · · · . A value w = k, i.e. m = n corresponds to the
exhaustive search of the noise bits. For w = 0, i.e. m = 1, the adversary assumes
that the noise is 0 every time he receives k queries from the LPN oracle.

We first computed experimentally the optimal m for the LPN100,τ instance
where we take 0 < τ < 1

2 . The magic m takes the value 1 for a τ which is
not close to 1

2 . As shown on Fig. 1, it changes to n = 2100 around the value
τ = 0.4965. This boundary between two different strategies corresponds to the
value τ = 1

2 − ln 2
2k computed in our analysis below. Interestingly, there is no

intermediate optimal m between 1 and n.

Fig. 1. The change of optimal m for solving LPN100,τ

For Cryptographic Parameters, c1 is Optimal. The optimal w depends on τ . The
case when τ is lower than 1

k is not interesting as it is likely that no error occurs
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so all w lead to a complexity which is very close to 1. Conversely, for τ = 1
2 , the

exhaustive search has a complexity of cn = 1
2 (2k +1) and w = 0 has a complexity

of c1 = 2k. Actually, Di is uniform in this case and we know that the optimal m
completes batches of equal consecutive probabilities. So, the optimal strategy is
the exhaustive search.

We now show that for τ < 0.16, the best strategy is obtained for w = 0.
Below, we use pBw

= τw(1 − τ)k−w and c1 = (1 − τ)−k.
Let wc be a threshold weight and let α = Pr(1Bwc ). For 0 < w ≤ wc, due to

Lemma 26, if cBw
is optimal we have

cBw
≥ 1

p′
Bw

=
PrD(¬1Bw−1)

pBw

≥ PrD(¬1Bwc )
pBw

=
1 − α

pBw

=
1 − α

(
τ

1−τ

)w c1 ≥ 1 − α
τ

1−τ

c1

For τ < 0.16, we have τ
1−τ < 0.20. So, if α ≤ 4

5 we obtain cBw
> c1. This

contradicts that w is optimal. For wc = τk, the Central Limit Theorem gives us
that α ≈ 1

2 which is less than 4
5 . So, no w such that 0 < w ≤ τk is optimal.

Now, for w ≥ wc, we have

cw =
CD(1Bw )

PrD(1Bw )
≥ CD(1Bw ) =

Bw∑
i=1

ipi + Bw Pr
D
(¬1Bw ) ≥ Bwc Pr

D
(¬1Bwc ) = (1 − α)Bwc

By using the bound Bwc
≥

(
k

wc

)wc

, for wc = τk we have α ≈ 1
2 and we

obtain cw ≥ 1
2τ−τk. We want to compare this to c1 = (1 − τ)−k. We look at

the variations of the function τ �→ −kτ ln τ − ln 2 + k ln(1 − τ). We can see by
derivating twice that for τ ∈ [0, 1

2 ], this function increases then decreases. For
τ = 0.16, it is positive. For τ = 1

k , it is also positive. So, for τ ∈ [ 1k , 0.16], we
have cBw

≥ c1.
Therefore, for all τ < 0.16, c1 is the best complexity so m = 0 is the magic

value. Experiment shows that this remains true for all τ < 1
2 − ln 2

2k . Actually, we
can easily see that c1 becomes lower than 2k+1

2 for τ ≈ 1
2 − ln 2

2k . We will discuss
this in Sect. 5.

Solving LPN with O(k) Queries. We now concentrate on the m = n case to
limit the query complexity to O(k). (In our framework, we need only k queries
but we would practically need more to check that we did find the correct
value). So, we estimate the complexity of the full exhaustive search on one
error vector x of k bits for LPN, i.e., CD(1n). If pt is the probability that
x is the t-th enumerated vector, we have CD(1n) =

∑n
t=1 tpt. For t between

Bw−1 + 1 and Bw, the sum of the pt’s is the probability that we have exactly
w errors. So, CD(1n) ≤ ∑k

w=0 Bw Pr[w errors]. We approximate Pr[w errors] to
the continuous distribution. So, the Hamming weight has a normal distribution,
with mean kτ and standard deviation σ =

√
kτ(1 − τ). We do the same for
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Bw ≈ 2k√
2π

∫ 2w−k√
k

−∞ e− v2
2 dv. With the change of variables w = kτ + tσ, we have

CD(1n) ≤
k∑

w=0

Bw Pr[w errors]

≈ 2k

2π

∫ +∞

−∞

(∫ 2w−k√
k

−∞
e− v2

2 dv

)
1
σ

e− (w−kτ)2

2σ2 dw

=
2k

2π

∫∫

v≤ 2kτ−k+2tσ√
k

e− t2+v2
2 dv dt

The distance between the origin (t, v) = (0, 0) and the line v = 2kτ−k+2tσ√
k

is

d =
√

k
1 − 2τ

√
1 + 4τ(1 − τ)

By rotating the region on which we sum, we obtain

CD(1n) ≈ 2k

2π

∫∫

x≥d

e− x2+y2

2 dx dy =
2k

√
2π

∫ +∞

d

e− x2
2 dx ∼ 2k

d
√

2π
e− d2

2

On Fig. 2 we can see that this approximation of CD(1n) is very good for τ = k− 1
2 .

So, the complexity CD(1n) is asymptotically 2k(1− 1
2 ln 2 )+O(

√
k). Interestingly,

the dominant part of log2 CD(1n) is 0.2788×k and does not depend on τ as long
as 1

k � τ � 1
2 . Although very good for the low k that we consider, this approx-

imation of CD(1n) deviates, probably because of the imprecise approximation
of the Bw’s. Next, we derive a bound which is much higher but asymptotically
better (the curves crossing for k ≈ 50 000). We now use the bound Bw ≤ kw

and do the same computation as before. We have

CD(1n) ≤
k∑

w=0

kw Pr[w errors]

≈ 1√
2π

∫ +∞

−∞
kkτ+tσe− t2

2 dw

=
e

1
2 (σ ln k)2+kτ ln k

√
2π

∫ +∞

−∞
e− (t−σ ln k)2

2 dw

= e
1
2 (σ ln k)2+kτ ln k

So, CD(1n) = e
1
2

√
k(ln k)2+O(

√
k ln k) for τ = k− 1

2 . It is better than the eO( k
ln ln k )

of Lyubashevsky [16] in the sense that it is asymptotically better and that we
use O(k) queries instead of k1+ε. However, this new bound for CD(1n) is very
loose.

Outside the scenario of a sparse LPN, we display in Fig. 3 the logarithmic
complexity to solve LPN in our STEP game when the noise parameter is constant.
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Table 1. log2(CD(1n)) vs. log2

(
2k

d
√
2π

e− d2
2

)
for k = 2000

τ log2(CD(1n)) log2

(
2k

d
√
2π

e− d2
2

)

0.1 1350.04 1314.81

0.125 1458.86 1429.33

0.25 1794.57 1788.49

0.4 1966.67 1966.55
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Comparing log2(CD(1n)) with the approximation we obtained, i.e.
log2

(
2k

d
√
2π

e− d2
2

)
, we obtain the following results which validate our approxi-

mations (See Table 1).

4.2 Password Recovery

There are many news nowadays with attacks and leaks of passwords from dif-
ferent famous companies. From these leaks the community has studied what are
the worst passwords used by the users. Having in mind these statistics, we are
interested to see what is the best strategy of an outsider that tries to get access
to a system having access to a list of users. The goal of the attacker is to hack
one account. He can try to hack several accounts in parallel. Within our frame-
work, we compute to see what is the optimal m for the strategy 1m2m · · · . In
this given scenario, the strategy corresponds to making m guesses for each user
until it reaches the end of the list and starting again with new guesses.

We consider the statistics that we have found for the 10 000 Top Passwords3

and the one done for the database with passwords in clear from the RockYou
hack4. Studies on the distribution of user’s passwords were also done in [7,10,
22,23]. The first case-study analyses what are the top 10 000 passwords from a
total 6.5 million username-passwords leaked. The most frequent passwords are
the following:

password p1 = 0.00493
123456 p2 = 0.00400
12345678 p3 = 0.00133
1234 p4 = 0.00089

In the case of the RockYou hack, where 32 million of passwords were leaked,
we have that the most frequent passwords and their probability of usage is:

123456 p1 = 0.009085
12345 p2 = 0.002471
123456789 p3 = 0.002400
Password p4 = 0.000194

Moreover, approximately 20% of the users used the most frequent 5 000 pass-
words. What these statistics show is that users frequently choose poor and pre-
dictable passwords. While dictionary attacks are very efficient, we study here
the case where the attacker wants to minimize the number of trials until he
gets access to the system, with no pre-computation done. By using our formulas
of computing CD(1m2m · · · ), we obtain in both of the above distributions that
m = 1 is the optimal one. This means that the attacker tries for each username
the most probable password and in average after couple of hundred of users (for
the two studies we obtain CD to be ≈ 203 and ≈ 110), he will manage to access

3 https://xato.net/passwords/more-top-worst-passwords/#.VNiORvnF-xW.
4 http://www.imperva.com/docs/WP Consumer Password Worst Practices.pdf.

https://xato.net/passwords/more-top-worst-passwords/#.VNiORvnF-xW
http://www.imperva.com/docs/WP_Consumer_Password_Worst_Practices.pdf
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the system. We note that having m = 1 is very nice as for the typical password
guessing scenario, we need to have a small m to avoid complications of blocking
accounts and triggering an alarm that the system is under an attack.

5 On the Phase Transition

Given the experience of the previous applications, we can see that for “regular”
distributions, the optimal m falls from m = n to the minimal m as the bias of
the distribution increases. We let n1 be such that p1 = p2 = · · · = pn1 �= pn1+1

and n2 be such that pn1+1 = · · · = pn1+n2 �= pn1+n2+1. Due to Lemma 26, the
magic value m can only be n1, n1 +n2, or more. We study here when the curves
of CD(1n12n1 · · · ), CD(1n1+n22n1+n2 · · · ), and CU (1n) = n+1

2 cross each other.

Lemma 28. We consider a composite distribution D1 = αU1 + βU2 + (1 − α −
β)D′, where U1 and U2 are uniform of support n1 and n2. For U uniform, we
have

CD(1n12n1 · · · ) ≤ CD(1n1+n22n1+n2 · · · ) ⇐⇒ α − β
n1

n2
≥ α

(
α + β

1 − n1/n2

2

)

CD(1n12n1 · · · ) ≤ CU (1n) ⇐⇒ n/n1 + 1

2
≥ 1

α

Note that for 2−H∞ ≥ 2
n , we have α

n1
≥ 2

n so the second property is satisfied.
As an example, for n1 = n2 = 1, the first condition becomes α − β ≥ α2

which is the case of all the distribution we tried for password recovery. The
second condition becomes 2−H∞ ≥ 2

n+1 , which is also always satisfied.
For LPN, we have n1 = 1, n2 = k, α = (1 − τ)k, and β = n2τ(1 − τ)k−1. The

first and second conditions become

(1 − τ)k ≤ 1 − 2τ

1 + k−3
2 τ

and (1 − τ)k ≥ 2
2k + 1

respectively. They are always satisfied unless τ is very close to 1
2 : by letting

τ = 1
2 −ε with ε → 0, the right-hand term of the first condition is asymptotically

equivalent to 8ε
k+1 and the left-hand term tends towards 2−k. The balance is thus

for τ ≈ 1
2 − k+1

8 2−k. The second condition gives

τ ≤ 1 −
(

2k + 1
2

)− 1
k

=
1
2

− ln 2
2k

− o

(
1
k

)

So, we can explain the phase transition in LPNk,τ as follows: if we make τ decrease
from 1

2 , for each fixed m, the complexity of all possible CD(1m) smoothly
decrease. The function for m = n1 crosses the one of m = n1 + n2 before it
crosses n+1

2 which is close to the value of the one for m = n. So, the curve for
m = n1 becomes interesting after having beaten the curve for m = n1+n2. This
proves that we never have a magic m equal to n1 +n2. Presumably, it is the case
for all other curves as well. This explains the abrupt fall from m = n to m = 1
which we observed on Fig. 1.
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Proof. We have

CD(1n12n1 · · · ) =
CD(1n1)
PrD(1n1)

=
αn1+1

2 + (1 − α)n1

α

and

CD(1n1+n22n1+n2 · · · ) = CD(1n1+n2 )

PrD(1n1+n2 )
=

α n1+1
2

+ β
(
n1 + n2+1

2

)
+ (1 − α − β)(n1 + n2)

α + β

so

CD(1n1)
PrD(1n1)

≤ CD(1n1+n2)
PrD(1n1+n2)

⇐⇒

αn1+1
2 + (1 − α)n1

α
≤ αn1+1

2 + β
(
n1 + n2+1

2

)
+ (1 − α − β)(n1 + n2)

α + β
⇐⇒

α − β
n1

n2
≥ α

(

α + β
1 − n1/n2

2

)

For the second property, we have

CD(1n12n1 · · · ) ≤ CU (1n) ⇐⇒ CD(1n1)
PrD(1n1)

≤ CU (1n)

⇐⇒ αn1+1
2 + (1 − α)n1

α
≤ n + 1

2

⇐⇒ n/n1 + 1
2

≥ 1
α

�	

6 Conclusions

Our framework enables the analysis of different strategies to sequentialize algo-
rithms when the objective is to make one succeed as soon as possible.

When the algorithms have the same distribution and are unlimited in num-
ber, the optimal strategy is of form 1m2m · · · for some magic m. As the distri-
bution becomes biased, we observe a phase transition from the regular single-
algorithm run 1n (i.e., m = n) to the single-step multiple algorithms 123 · · ·
(i.e., m = 1) which is very abrupt in the application we considered: LPN and
password recovery.

The phase transition phenomenon is further studied. In particular, we show
that the fall from m = n to m = 1 does not go through any m ∈ {2, . . . , k(k+1)

2 }.
For LPN, the solving algorithm we obtain outperforms the classical ones.
When we have a limited number of algorithms, the optimal strategy has

the form 1m1 · · · |D|m11m2 · · · |D|m2 · · · . For LPN, this simple algorithm outper-
forms the classical ones, even the one from Asiacrypt 2014 [12] for the relevant
parameters using τ ∼ k− 1

2 .
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A Composite Distributions

We give a formula to compute the optimal strategies for distributions obtained by
composing several distributions. The formula is useful when we want to regroup
equal consecutive pj ’s in a distribution D1 so that D1 appears as a composition
of uniform distributions.

Lemma 29. Let U1, . . . , Uk be independent distributions of support n1, . . . , nk,
respectively. Let Ui = (pi,1, . . . , pi,ni

). Given a distribution (α1, . . . , αk)
of support k, we define D1 = α1U1 + α2U2 + . . . + αkUk by D1 =
(α1p1,1, . . . , α1p1,n1 , α2p2,1, . . . , αkpk,nk

).
Let m =

∑i
j=1 nj. We have

Pr
D1

(1n11n2 · · · 1ni) = α1 + · · · + αi

CD1(1
n11n2 · · · 1ni) =

i∑

j=1

αjCUj
(1nj ) +

i∑

j=1

nj

(

1 −
j∑

k=1

αk

)

We note that if all Ui are ordered and if αipi,ni
≥ αi+1pi+1,1 for all 1 ≤ i < k,

then D1 is ordered as well.
We let D = (D1,D1, . . .). If we assume that Ui are uniform distributions,

we can use the observation following Lemma 26 to deduce from Theorem 17 that
the optimal strategy is 1m2m · · · for m =

∑i
j=1 nj and i minimizing

minCD(∅) = min
i

⎛

⎝

∑i
j=1 αjCUj

(1nj ) +
∑i

j=1 nj

(
1 − ∑j

k=1 αk

)

∑i
j=1 αj

⎞

⎠

Proof. We prove it by induction on i. It is trivial for i = 0. We assume the result
holds for i − 1. By induction, we have

CD1 (1
n1 · · · 1ni ) = CD1 (1

n1 · · · 1ni−1 ) + (1 − Pr
D1

(1n1 · · · 1ni−1 ))CD1 (1
ni |¬(1n1 · · · 1ni−1 ))

=

i−1∑
j=1

αjCUj
(1nj ) +

i−1∑
j=1

nj

⎛
⎝1 −

j∑
k=1

αk

⎞
⎠+ αiCUi

(1ni ) + ni

(
1 −

i∑
k=1

αk

)

=
i∑

j=1

αjCUj
(1nj ) +

i∑
j=1

nj

⎛
⎝1 −

j∑
k=1

αk

⎞
⎠

The second equality is obtained from the fact that

CD1 (1
ni |¬(1

n1 · · · 1ni−1 )) =
αi

αi + · · · + αk

(pi,1 + 2pi,2 + . . . + nipi,ni
) + ni(

αi+1 + · · · + αk

αi + · · · + αk

)

=
αi

1 − PrD1 (1
n1 · · · 1ni−1 )

CUi
(1

ni ) + ni(
1 − PrD1 (1

n1 · · · 1ni−1 ) − αi

1 − PrD1 (1
n1 · · · 1ni−1 )

)

�	
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B Proof of Lemma25

Proof. We will show below that there exists d > 0 such that a ≤ b − d and
CD(s) = CD(ujdiavjb−dw). Hence, we can rewrite s by replacing u by ujd and b
by b−d. Since d > 0 and a ≤ b−d, we can just apply this rewriting rule enough
time until b is lowered down to a. Hence, we obtain the result.

To find d, we first write s = u0i
m1u1i

m2 · · · imruri
avjbw where i appears in no

ut, the mt are nonzero, and u1, . . . , ur are non-empty. (Note that since a < b, we
must have m1+· · ·+mr > 0 so r ≥ 1.) Let n′ be the equal number of occurrences
of i and j in uiavjb. Let t be the smallest index such that m1 + · · ·+mt > n′ −b.
(For t = 0, the left-hand term is 0 but n′ ≥ b; for t = r, the left-hand term is
n′−a and we know that a < b; so, t exists and t > 0.) We write mt = m′+d such
that m1 + · · · + mt−1 + m′ = n′ − b. So, d > 0. Note that b − d = b − mt + m′ =
n′ − m1 − · · · − mt = mt+1 + · · · + mr + a. So, b − d ≥ a. Clearly, d ≤ b.
We write s = HidBiavjdT with head H = u0i

m1u1i
m2 · · · ut−1i

m′
, body B =

uti
mt+1 · · · imrur, and tail T = jb−dw. Clearly, H has n′ − b occurrences of i and

HidBiav has n′−b occurrences of j. Since s is optimal for D, idBiavjd is optimal
for D|¬H. We note that B does not start with i (t is between 1 and r and ut is
nonempty and with no i) and that iav is non-empty and with no j (either a �= 0
or v is nonempty and with no j). We split idBiavjd = idx1 · · · x�i

ay1 · · · y�′jd

where two consecutive blocks in the list id, x1, . . . , x�, i
a, y1, . . . , y�′ , jd have no

key in common. (For a = 0, we can always split so that x� and y1 have no key
in common by using the first term k of v which is not the last of u: we just take
y1 as a block of k’s and x� as a block with no k.) We can apply Lemma 24 and
obtain

CD(id|¬in
′−b)

PrD(id|¬in
′−b)

≤ CD(ia|¬in
′−a)

PrD(ia|¬in
′−a)

≤ CD(y1|¬ · · · )
PrD(y1|¬ · · · ) ≤ CD(y�′ |¬ · · · )

PrD(y�′ |¬ · · · ) ≤ CD(jd|¬jn′−b)

PrD(jd|¬jn′−b)

Since the first and the last terms are equal, all of them are equal. So, we can
permute two consecutive blocks which have no index in common. Hence, we can
propagate jd earlier until it is stepped before ia, since we know there is no other
occurrence of j in the exchanged blocks. We obtain that

CD(HidBiavjdT ) = CD(HidBjdiavT )

as announced. �	
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Abstract. We consider the task of data analysis with pure differen-
tial privacy. We construct new and improved mechanisms for statistical
release of interval and rectangle queries. We also obtain a new algorithm
for counting over a data stream under continual observation, whose error
has optimal dependence on the data stream’s length.

A central ingredient in all of these result is a differentially private par-
tition mechanism. Given set of data items drawn from a large universe,
this mechanism outputs a partition of the universe into a small number
of segments, each of which contain only a few of the data items.

1 Introduction

Differential privacy is a recent privacy guarantee tailored to the problem of
statistical disclosure control: how to publicly release statistical information about
a set of people without compromising the privacy of any individual [DMNS06]
(see the book [DR14] for an extensive treatment). In a nutshell, differential
privacy requires that the probability distribution on the published results of an
analysis is “essentially the same,” independent of whether any individual opts
in to, or opts out of, the data set. (The probabilities are over the coin flips of
the privacy mechanism.) Statistical databases are frequently created to achieve
a social goal, and increased participation in the databases permits more accurate
analyses. The differential privacy guarantee supports the social goal by assuring
each individual that she incurs little risk by joining the database: anything that
can happen is essentially equally likely to do so whether she joins or abstains.

In the differential privacy literature, privacy is achieved by the introduction of
randomized noise into the output of an analysis. Moreover, sophisticated mech-
anisms for differentially private data analysis can incur a significant efficiency

M. Naor—Incumbent of the Judith Kleeman Professorial Chair. Research supported
in part by grants from the Israel Science Foundation, BSF and Israeli Ministry
of Science and Technology and from the I-CORE Program of the Planning and
Budgeting Committee and the Israel Science Foundation (grant No. 4/11).

c© International Association for Cryptologic Research 2015
T. Iwata and J.H. Cheon (Eds.): ASIACRYPT 2015, Part II, LNCS 9453, pp. 735–751, 2015.
DOI: 10.1007/978-3-662-48800-3 30



736 C. Dwork et al.

overhead. A rich and growing literature aims to minimize the “cost of privacy”
in terms of the error and also in terms of computational efficiency. In this work
we present new algorithms with improved error for several natural data analysis
tasks.

There are several variants of differential privacy that have been studied.
Most notably, these include the stronger (in terms of privacy-protection) notion
of pure differential privacy, and its relaxation to approximate differential privacy.
Our work focuses on mechanisms that guarantee pure differential privacy for the
tasks of answering statistical queries, maintaining an online count of significant
events in a data stream, and partitioning a large universe into a small number
of contiguous segments, none of which contains too many input items (a type of
“dimension reduction”).

Before proceeding to outline our contributions, we recall the definition of
differential privacy:

Definition 1.1 (Differential Privacy [DMNS06,DKM+06]). A randomized
algorithm M : Un → Y is (ε, δ)-differentially private if for every pair adjacent
databases x, x′ that differ only in one row, and for every S ⊂ Y :

Pr[M(x) ∈ S] ≤ eε · Pr[M(x′) ∈ S] + δ.

When δ = 0, we say the algorithm provides (pure) ε -differential privacy. When
δ > 0, we say that the algorithm provides (approximate) differential privacy.

As discussed above, we focus on the stronger guarantee of pure differential pri-
vacy throughout this work.

1.1 Differentially Private Query Release: Interval and Rectangle
Queries

Differentially private query release is a central problem in the literature. The
goal is releasing the answers to a set of statistical queries while maintaining
both differential privacy and low error. We focus on the case of counting queries
(sometimes referred to as statistical queries). Let U be the set of possible data
items (the data universe). A counting query q is specified by a predicate q :
U → {0, 1}. For an n-element database x ∈ Un, the query output q(x) ∈ [0, n]
counts how many items in the database satisfy the query. The goal, given a set
Q of queries and a database x, is to approximate q(x) for each q ∈ Q, while
(i) guaranteeing differential privacy (for the collection of all answers), and (ii)
minimizing error in the answers.

We focus on the (challenging) setting where the query set Q is large. To
avoid running in time proportional to |Q| (which is too large), we will produce
a differentially private data synopsis. Given the database x, the mechanism pro-
duces a synopsis: a data structure that can later be used to answer any query
q ∈ Q. Thus, the synopsis is a small implicit representation for the answers to
all queries in Q.
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Differentially private query release, especially for counting queries, has been
the focus of a rich literature. Starting with the works of Dinur, Dwork and Nissim
[DN03,DN04], showed how to answer k queries (counting queries or general low-
sensitivity queries) using computationally efficient mechanisms, with noise that
grew with k for pure ε-DP [DMNS06], or

√
k for approximate (ε, δ)-DP. Starting

with the work of Blum, Ligett and Roth [BLR08], later works improved the
dependence on the number of queries k to logarithmic. The running time for
these mechanisms, however, can be prohibitive in many settings. Even the state-
of-the-art mechanisms for answering general counting queries [HR10] require
running time that is at least linear in the size of the data universe |U| (whereas
the running time of earlier mechanisms was logarithmic in |U|). Indeed, for many
query sets Q, the best differentially private query release mechanisms that are
known require either large error (as a function of |Q|), or large running time (as
a function of |U| and |Q|). Indeed, under cryptographic assumptions, there are
inherent limits on the computational efficiency and the accuracy of differentially
private query release algorithms for specific sets of counting queries [DNR+09,
Ull13,BUV14]. Thus, a significant research effort has aimed to design efficient
and accurate DP mechanisms for specific natural sets of counting queries.

Our work continues this effort. We construct new and improved mechanisms
for answering interval or threshold queries. We further extend these results to
multi-dimensional rectangle queries, and for these queries we are able to increase
the data dimensionality with relatively mild loss in accuracy and efficiency.

Interval Queries. We consider the natural class of interval queries. Here the data
universe is the integers from 1 to D (i.e. U = [1,D], and |U| = D).1 Each query
q is specified by an interval I = [i, j] ⊆ [1,D], and associated with the predicate
that outputs 1 on data elements that fall in that interval. Usually we think of D
as being very large, much larger than (even exponential in) the database size n.
For example, the data universe could represent a company’s salary information,
and interval queries approximate the number of employees whose salaries fall in
a certain bracket.

In prior work, Dwork et al. [DNPR10] showed that this class could be
answered with pure ε-differential privacy and error roughly O( log

2 D
ε ) (see the

analysis in [CSS11]). They also showed an Ω(log D) error lower bound for obtain-
ing pure differential privacy. Our first contribution is a new mechanism that
obtains pure differential privacy with error roughly O( log D+(log2 n)

ε ). In particu-
lar, the error’s dependence on D is optimal.

Theorem 1.2 (DP Intervals). The mechanism in Sect. 3.2 answers interval
queries over [1,D]. For any privacy and accuracy parameters ε, β > 0, it guar-
antees (pure) ε-differential privacy. For any database x of size n, with all but β
probability over the mechanism’s coins, it produces a synopsis that answers all

1 Throughout this work, for integers i, j s.t. i ≤ j, we use the notation [i, j] to denote
the (closed) interval of integers {i, i + 1, . . . , j − 1, j}.
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interval queries (simultaneously) with error O( log D+((log2 n)·log(1/β))
ε ). The run-

ning time to produce the synopsis (and to then answer any interval query) is
(n · poly(log D, log(1/ε), log(1/β))).

While the error’s dependence on log D is optimal, we do not know whether the
dependence on log2 n is optimal (i.e., whether the error is tight for cases where
D is not much larger than n). This remains a fascinating question for future
work.

The main idea behind this mechanism is partitioning the data universe [1,D]
into at most n contiguous segments, where the number of items in each segment
is not too large. We give a new differentially private mechanism for construct-
ing such a partition, see Sects. 1.3 and 2. Given this partition, we treat the n
segments as a new smaller data universe, and use the algorithm of [DNPR10] to
answer interval queries on this smaller data universe (this is where we incur the
log2 n error term).

Related Work: Approximately Private Threshold Queries. The class of interval
queries generalizes the class of threshold queries, where each query is specified
by i ∈ [1,D] and counts how many items in the input database are larger than i
(i.e., how many items are in the interval [i,D]). In fact, since answers to threshold
queries can also be used to answer interval queries, these two classes are equiva-
lent. Answering threshold queries with approximate (ε, δ)-DP was considered in
the work of Beimel, Nissim and Stenner [BNS13], who obtain an upper bound
of 2O(log∗ D). In a beautiful recent independent work, Bun, Nissim, Stemmer
and Vadhan [BNSV15] show a lower bound of Ω(log∗ D) for approximate-DP
mechanisms (as well as an improved upper bound of roughly 2log

∗ D). The main
difference with our work is that we focus on the stricter guarantee of pure dif-
ferential privacy, which (provably) incurs a larger error.

Rectangle Queries. We further study a natural generalization of interval queries:
rectangle queries. These queries consider multi-dimensional data (in particular,
c-dimentional for an integer c > 1). The data universe is U = [1,D]c. A rectangle
query q is specified by a rectangle R = ([i1, j1] × . . . × [ic, jc]) ⊆ [1,D]c, and
associated with the predicate that outputs 1 on data items that fall inside the
set R. As was the case for interval queries, we usually think of D as larger than
n, and of c as being smaller than either of these quantities (sub-logarithmic in
n, or even constant). Continuing the example above, a database could contain
employees’ salaries, ages, years of experience, rank, etc. Rectangle queries can be
used to approximate the numbers of employees that fall into various conjunctions
of brackets, e.g. the number of employees in given age, experience and salary
brackets. More generally, these queries are useful for multi-dimensional data,
where many (or all) of the data dimensions are associated with an ordering on
data items in that dimension.

We generalize the intervals mechanism to answer rectangle queries. While
in many settings known differentially private algorithms suffer from a “curse of
dimensionality” that increases the error or running time as the dimension grows,
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we give an algorithm whose error and running time have a mild dependence
on the data dimensionality. In particular, the error is roughly O((c2 · log D) +
((log n)O(c)). The running time is roughly n · poly(logc n, log D), and does not
grow with Dc. For the (reasonable) setting of parameters where we think of
n ≈ log D, the running time is only polynomial in (log log D)c.

Theorem 1.3 (DP Rectangles). The mechanism described in Sect. 3.3
answers c-dimensional rectangle queries over [1,D]c. For any privacy and accu-
racy parameters ε, β > 0, the mechanism guarantees (pure) ε-differential pri-
vacy. With all but β probability over its coins, all rectangle queries (simul-
taneously) are answered with error O( (c

2·log D)+((log n)O(c)·log(1/β)
ε ). The run-

ning time to produce the synopsis (and to then answer any rectangle query)
is (n · poly(logc n, log D, log(1/ε), log(1/β))).

In prior work, Chan Shi and Song [CSS11] considered rectangle queries and
obtained an error bound of roughly (log D)O(c). Theorem 1.3 roughly replaces
this with a (log n)O(c) term, as well as an additive O(c2 · log D) (recall that
typically n << D). We emphasize that the error’s dependence on log D does not
grow exponentially with the dimentionality c.

Muthukrishnan and Nikolov [MN12] show an Ω((log n)c−O(1)) error lower-
bound when n ≈ D, even for (the relaxed notion of) (ε, δ)-differentially private
algorithms (they refer to this as “orthogonal range counting”). Thus, the depen-
dance on log n in the mechanism of Theorem 1.3 is optimal up to a (small)
polynomial factor (the exact term in our upper bound is O((log n)1.5c+1)).

The rectangles mechanism is a multi-dimensional generalization of the inter-
vals mechanism (see more above and below). Recall that the intervals algorithm
utilized a differentially private partition of the data universe into n segments. It
then used the “tree-counter” algorithm of [DNPR10] to answer interval queries
over these n segments. This is done by building a binary tree of noisy counts,
whose leaves are the n segments. For the rectangle mechanism, we use a (k, d)-
tree-like data structure (see [Ben75] and see also the rectangle mechanism of
[CSS11]), building a “tree of trees” of noisy counts along the c dimensions of
the data universe (after reducing the size of each dimension using a differentially
private partition). We judiciously prune this tree to avoid an exponential blowup
in its size (the naive implementation requires time and memory nc). A careful
analysis guarantees that even while we extend to c dimensions, the error (as a
function of D) only grows to O(c2 · D).

1.2 Counting Under Continual Observation

Dwork, Naor, Pitassi and Rothblum [DNPR10] introduced the problem of count-
ing under continual observation. The goal is to monitor a stream of D bits, and
continually maintain an approximation of the number of 1’s that have been
observed so far. For privacy, the entire collection of D outputs (where the i-
th output approximates the count after processing i elements) should maintain
ε-differential privacy, masking the value of any single bit. The canonical appli-
cation is monitoring events, such as the number of influenza patients arriving
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at medical office, or the number of users visiting a webpage (where privacy
hides any single access). Since its introduction online counting has found many
applications. In most settings, the data stream is sparse: the number of 1’s (the
stream’s “weight”) is much smaller than D.

The online counter proposed by [DNPR10] (we refer to this as the “tree
counter”) had error roughly O(log2 D) (see the analysis in [CSS11]). As an addi-
tional contribution, we present an improved counter (with pure or (ε, 0) dif-
ferential privacy) for sparse streams. In particular, thinking of the input as a
boolean string where the number of 1’s is at most n (and n 	 D), the error is
improved to roughly (log D + (log2 n)) (compared with roughly (log2 D) for the
tree counter). We note that the dependence on D is optimal, and matches the
Ω(log D) lower bound in [DNPR10].

Theorem 1.4. For any ε, β > 0, the online counter from Sect. 3.1 guarantees ε-
differential privacy. Taking n to be an upper bound on the input stream’s weight,
with all but β probability over the counter’s coins, the maximal error over all D

items is at most O( log D+((log2 n)·log(1/β))
ε ).

Here again, we partition the data stream (of length D) into at most n segments,
where the number of items in each segment is not too large. This is done using
an online partition mechanism, which can process the items one-by-one, and
after processing each item can decide whether a segment is large enough to be
“sealed”, or whether to keep accumulating the current segment (see Sects. 1.3
and 2). Given this online partition mechanism, we can run the tree counter of
[DNPR10] (or any other counter) on its output. As we process data items, we
don’t update the count until the current segment is sealed. When a segment is
sealed, we feed the count within this segment into the tree counter, and obtain
an updated count (we use here the fact that the tree counter can also operate
on integer inputs, not just on bits).

1.3 Differentially Private Online Partition

As mentioned above, one of the main tools we use is a (pure) ε-differentially
private partition algorithm. Given an n-item database x ⊆ [1,D], this algorithm
partitions the data universe U = [1,D] into (at most) n contiguous segments
(S1 = [1, s1], S2 = [s1 + 1, s2], . . . , Sn = [sn−1 + 1,D]) (where the si’s are all
integers). The guarantee is that w.h.p. the number of data elements in each
of these segments is small, and bounded by roughly O(log D). These partitions
are pervasive in the applications mentioned above. In a nutshell, we treat the
segments as a new and reduced data universe. This reduces the size of the data
universe from D to n, an exponential improvement for some of the parameter
regimes of interest. Beyond its applications in this work, we find the partition
mechanism to be of independent interest, and hope that it will find further
applications.

Theorem 1.5. For any ε, β > 0, the Partition mechanism in Sect. 2 guar-
antees ε-differential privacy. When run on a database of size n, with all
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but β probability over the mechanism’s coins, it outputs at most n segments,
and each segment is of weight at most 5(log D+log(1/β))

ε . The running time is
n · poly(log D, log(1/ε), log(1/β)).

The Partition algorithm and its analysis are inspired by an algorithm from
[DNPR10] for transforming a class of streaming algorithms into ones that are
private even under continual observation.

Another important property of this algorithm is that it can be run in an
online manner. In this setting, the input is treated as a bit-stream of length D.
The i-th input yi ∈ {0, 1} indicates whether item i is in the dataset. Thus, this
is a sparse stream with total weight n. The partition mechanism can process
these bits one-by-one, making an online decision about when to “seal” each
segment. We use this online of the partition algorithm to obtain an improved
online counter.

2 Differentially Private Online Partition

The Mechanism. The (online) partition algorithm processes the input as a
stream x1, . . . , xD ∈ {0, 1}. We use n to denote the weight of the stream (the
number of 1’s).2 The output is a partition of [D] into (contiguous) segments
P = (S1, . . . , Sj), such that:

1. W.h.p. the number of segments j is smaller than n.
2. The weight of the items in each segments is O((log D + log(1/β))/ε) (where

ε is the privacy parameter).

This is an online algorithm, in the sense that after processing the i-th data
item, the algorithm either “seals” a new segment, ending at i, or it keeps the
current segment “open” and proceeds to the next data item. We emphasize that
the algorithm is oblivious to the input stream’s weight. The Partition algorithm
and its analysis are inspired by an algorithm from [DNPR10] for transforming
a class of streaming algorithms into ones that are private even under continual
observation (see also the discussion of the “sparse vector” abstraction in [DR14]).

Theorem 2.1. For any ε, β > 0, the Partition Algorithm of Fig. 1 guarantees
ε-differential privacy. Let n be the total weight of the input stream. With all but
β probability over the algorithm’s coins, it outputs at most n segments, and each
segment is of weight at most 5(log D+log(1/β))

ε .

Before proving the partition algorithm’s privacy and accuracy, we remark that
the dependence on log D is optimal by the lower bound of [DNPR10]. Moreover,
for an offline implementation, where the input is given as an n-item database
x ⊆ [1,D], we can reduce the running time to polylogD:

2 More generally, we could also work with a stream of integers, and the weight would
be the L1 norm.
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Partition (D, ε, β)

Initialize the threshold T ← (3(log D + log(1/β))/ε), and indices i, j ← 0

Repeat the following loop: (each iteration of the loop seals a new segment)

1. Initialize the j-th segment:
j ← j + 1, countj ← 0, T̃j ← T + Lap(1/ε)

2. Repeat the following loop, processing the i-th data item in each iteration:

(a) i ← i + 1, countj ← countj + xi

(b) ˜count i ← countj + Lap(1/ε)

Keep the j-the segment open until (˜count i > T̃j) or (i ≥ D)
3. Seal the j-th segment: sj ← i

Until (i ≥ D). Take m ← j to be the final number of segments
Output the partition P = {[1, s1], [s1 + 1, s2], . . . , [sm−1 + 1, D]} and the number of segments m

Fig. 1. Online DP partition algorithm

Remark 2.2 [Efficient Offline Implementation]. For the offline settings, where
the input is an n-item database x ⊆ [1,D], we can compute the partition in
n · polylog(D) time as follows. We sort the n items so that x1 < x2 < . . . < xn

(where each xk ∈ [1,D]). We then process the items one by one. When processing
the k-th item xk, assume that the last sealed segment was sealed at sj . We count
the number of database items in [sj + 1, xk]. This gives a certain probability p
that the (j + 1)-th segment will be sealed at xk. Until the (j + 1)-th segment is
sealed, for every y ∈ [xk, xk+1 − 1], the probability that the (j + 1)-th segment
is sealed at y remains pk (because there are no additional items processed).
We can now sample in polylogD time whether the segment is sealed in the
range [xk, xk+1 − 1]. If we sample that the segment is sealed at some y∗ in this
range, then we run the above process again starting at y (with a new probability
computed from the updated true count, which becomes 0). If not, then we run it
again starting at xk+1 (again from the updated the count, which is incremented).

Proof (Proof of Theorem 2.1). We argue privacy and accuracy:

Privacy. Fix databases x , x ′, which differ in the i-th data item (for i ∈ [D]).
Consider a partition P . Take Sj ∈ P s.t. i ∈ Sj . Since the data streams are
identical up to Sj , the probabilities of generating the prefix S1, . . . , Sj−1 are
identical on x and x ′ (for any choice of random coins made in the first j − 1
segments, the outcome on both databases is identical). Below, we bound the
ratio between the probabilities of generating Sj = [sj−1, sj ] as the j-th segment
in both runs. After generating Sj as the j-th segment, the probabilities of the
partition’s suffix when running on the two databases are again identical, because
the data are identical and no state is carried over (beyond the boundary sj of
the j-th segment).

We show a bijection between noise values when running on x and on x ′, such
that for any noise value producing Sj on x , the bijection gives a noise value of
similar probability that produces the same output on x ′. We conclude that the
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probability p′ of producing Sj on x ′ is not much smaller than the probability p
of producing Sj on x , which implies Differential Privacy.

Towards this, take T̃j , T̃
′
j be the j-th noisy thresholds in a run on x and on

x ′ (respectively), and similarly take c̃ountsj
and c̃ount

′
sj

to be the noisy counts
in runs on x and on x ′. The bijection is defined as follows:

– For the case xi = 0 and x ′
i = 1, take:

T̃ ′
j = T̃j + 1, c̃ount

′
sj

= c̃ountsj

All other noise values are unchanged in the two runs. This bijection guarantees
that if no item before sj sealed the j-th segment on x , then no item before sj

will seal the j-th segment on x ′ (whose count can only be larger by at most
1 at any point in the segment). Moreover, if sj seals the j-th segment on x ,
then it will also seal the j-th segment on x ′ (because the noisy threshold there
is larger by 1, and count at sj is larger by 1 in x ′).

– For the case xi = 1 and x ′
i = 0, take:

T̃ ′
j = T̃j , c̃ount

′
sj

= c̃ountsj
+ 1

All other noise values are unchanged in the two runs. This bijection guarantees
that if no item before sj sealed the j-th segment on x , then no item before
sj will seal the j-th segment on x ′ (whose count can only be smaller at any
point in the segment). Moreover, if sj seals the j-th segment on x , then it will
also seal the j-th segment on x ′ (because the noisy threshold there is smaller
by 1, and count at sj is also smaller by 1 in x ′).

Since the bijection changed the magnitude of a single draw from Lap(1/ε)
by at most 1, we conclude that p′ ≥ e−ε · p, and the algorithm is ε-differentially
private.

Accuracy. By construction, the algorithm makes at most 2D draws from the
Lap(1/ε) distribution. By the properties of the Laplace distribution, with all
but β probability, all of these draws will have magnitude at most ((log D +
log 2 + log(1/β))/ε). Condition on this event for the remainder of the proof.
Under this conditioning, whenever c̃ount > T̃ , we have that count (the true
count within the segment) is greater than 0, and so all the segments are non-
empty, and there can be at most n segments (because there are only n items
in the dataset). Moreover, under the above conditioning, as soon as we have
count ≥ 5(log D + log(1/β))/ε), we also have c̃ount > T̃ , and so no segment can
have weight larger than 5(log D + log(1/β))/ε).

3 From Partitions to Counting, Intervals and Rectangles

In this section we apply the partition algorithm to obtain improved differentially
private mechanisms for online counting, and for answering interval and rectangle
queries.
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3.1 Online Counting Under Continual Observation

Counting under continual observation was first studied by [DNPR10], and has
emerged as an important primitive with many applications. Given a stream of
D data items (integers or boolean values), the goal is to process the items one-
by-one. After processing the i-th item, the counter outputs an approximation
to the sum of items (1 . . . i). Taken together, the counter’s D outputs should be
differentially private, and mask a change of 1 in any particular data item (flipping
a bit if the values are boolean, or adding/subtracting 1 if they are integers).
A (D,α, β)-counter guarantees that with all but β probability over its own coins,
all D estimates it outputs (simultaneously) have error bounded by α.

Recap: The “Tree Counter”. For privacy and error parameters ε, β > 0,
“tree counter” of [DNPR10] is an ε-differentially private (D,O(((log2 D) ·
log(1/β))/ε), β) counter: W.h.p., for all D outputs simultaneously, the error is
bounded by roughly (log2 D). The counter works by building a binary tree over
the interval [1,D]. Each data item is a leaf in the tree, and each internal node at
height � (where leaves are at height 0) “covers” a sub-segment of length 2�. The
(D/2�) nodes in height � partition the interval [1,D] into sub-segments of length
2�. The online counter maintains a noisy sum for the items in each internal node
(filling up these counts as the items (1, . . . , D) are processed). To estimate the
number of items in some segment [1, k], they observe that the segment is exactly
covered by at most log D internal nodes of the tree. The counter outputs the sum
of these internal nodes as its estimate. The noise for each internal node is drawn
from a Laplace distribution with magnitude O(log D/ε), so the sum of noises
from the log D noise values is O(log2 D) w.h.p. (the error analysis in [DNPR10]
is a bit more slack, see [CSS11]). Privacy follows because any “leaf” (i.e. input
element) only affects the counts of the log D internal nodes that “cover” it.

Improved Online Counter via Partitions. We show that the (online) partition
algorithm of Sect. 2 gives an improved online counter (with pure or (ε, 0) Differ-
ential Privacy) for the case of sparse streams. In particular, thinking of the input
as a boolean string where the number of 1’s is at most n (and n << D), the
error is improved to roughly (log D + (log2 n)) (compared with roughly (log2 D)
for the tree counter). We note that the dependence on D is optimal, and matches
the Ω(log D) lower bound in [DNPR10]. We note that the counter was conceived
for (and is usually applied to) scenarios where D is much larger than n.

The improved counter operates by running any online counter (and in partic-
ular the tree counter) “on top of” a partition obtained from the (online) partition
algorithm. Initializing the count to 0, we process each new data item using the
partition algorithm. If the algorithm keeps the current segment open, then we
simply maintain the current count. If the algorithm seals a segment, then we
“feed” that segment into the (online) counter as a new data item (using the true
number of 1’s in the current segment). We then update the current count using
the counter’s output. I.e. the segments of the partition now form the “leaves”



Pure Differential Privacy for Rectangle Queries via Private Partitions 745

of the tree used in the [DNPR10] online counter.3 By differential privacy of the
partition algorithm and the counter, the output of this composed algorithm is
also differentially private.

Theorem 3.1 Composing the Partition algorithm from Fig. 1 with the online
tree counter from [DNPR10] gives an online counter. For any ε, β > 0, the
composed algorithm guarantees ε-differential privacy. Let n be an upper bound
on the input stream’s weight. With all but β probability over the counter’s coins,
the maximal error over all D items is at most O( log D+((log2 n)·log(1/β))

ε ).

Proof. We run the partition algorithm with privacy parameter (ε/2) and error
parameter (β/2). By Theorem 2.1, with all but (β/2) probability, the online
partition algorithm seals at most n segments, where the (true) number of 1’s in
each segment is at most 10(log D+log(2/β))

ε . We then run the tree counter on this
“stream” of n segments, with privacy parameter (ε/2) and error parameter (β/2).
The partition into segments is (ε/2)-DP, and the output of the tree counter on
the “stream” of n segments (given the true count in each of these segments) is
also (ε/2)-DP. By composition of DP mechanisms, the complete output of the
composed mechanism is ε-DP. For accuracy:

1. By the error guarantee of the tree counter, the n counts obtained when seg-
ments are sealed have error at most O( (log

2 n)·log(1/β)
ε ) (with all but a (β/2)

probability of error).
2. By the segment-size guarantee of the partition algorithm, the true count

in a “open” segment that hasn’t been sealed yet is bounded. Thus, the
fact that counts are not updated before a segment is sealed incurs only a
O( log D+log(1/β)

ε ) additional (additive) error for the (D−n) items that do not
“seal” a segment.

By a union bound, with all but β probability, the total error is
O( log D+((log2 n)·log(1/β))

ε ).

3.2 Interval Queries

To answer interval queries on a database x ⊆ [1,D], we run the partition algo-
rithm and obtain a privacy-preserving partition of [1,D] into (at most) n disjoint
segments (S1, . . . , Sn), where w.h.p. the count of items in each segment is small.
We then construct a binary tree “on top of” these n segments, as in the improved
online counter (see Sect. 3.1). I.e., the n segments are the tree’s leaves, and each
internal node at height h “covers” 2h segments. For each node in this tree, cov-
ering an interval [i, j], we add independent Laplace noise of magnitude (log n/ε),
and release the (noisy) size of the intersection x ∩ [i, j] (the number of 1’s in the
interval). Privacy follows because the partition is DP, and given the partition

3 We note that, in general, we could compose any online counter with the partition
algorithm. We are not using any specific properties of the tree counter.
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any data item only changes the counts in log n nodes of the tree. Note that this
offline algorithm can be implemented in time poly(n, log D) (see Remark 2.2).

Given the tree of noisy counts, we can answer any interval query I = [i, j]
as follows. First, observe that any such interval can be “covered” by at most
2 log n nodes of the tree: a collection of nodes whose (disjoint) leaves form the
(minimal) collection of segments whose union contains I. To find such a cover,
consider the lowest node k in the tree such that the segments its sub-tree cover
the interval I (but this is not true for either of k’s children). Now the “left”
and “right” parts of the interval I are the parts contained in the left or right
sub-trees of k (respectively). The left part of I is covered by at most log n nodes
in the left sub-tree, and the right part of I is covered by at most log n nodes
in the right sub-tree. Note that we can also find this cover efficiently. Once the
above cover is obtains, we answer the query by simply outputting the sum of
(noisy) counts of the nodes that cover the interval. Accuracy follows by the fact
that the counts in each segment are small, and the noise in the sum of noisy
counts is also small.

Theorem 3.2 (Theorem 1.2, Restated). The mechanism described above
answers interval queries. For any privacy and accuracy parameters ε, β > 0,
the mechanism guarantees ε-differential privacy. For any database x of size n,
with all but β probability over the mechanism’s coins, all interval queries (simul-
taneously) are answered with error O( log D+((log2 n)·log(1/β))

ε ). The running time
to produce the synopsis (which can later be used to answer any interval query)
is poly(n, log D, log(1/ε), log(1/β)).

Proof. We run the partition algorithm with privacy parameter (ε/2) and error
parameter (β/2). By Theorem 2.1, with all but (β/2) probability, the online
partition algorithm outputs at most n segments, where the (true) number of
1’s in each segment is at most 10(log D+log(2/β))

ε . We then build a tree of noisy
counts on top of these n segments, adding Laplace noise of magnitude (2 log n/ε)
to each node’s true count, and releasing all of these noisy counts. The partition
itself is (ε/2)-DP, and since each data item affects exactly log n counts in the
tree, these noisy counts (taken all together and as a function of the partition)
are (ε/2)-DP. Thus, the algorithm’s output is altogether ε-DP.For an interval
query I = [i, j], we argue accuracy as follows:

The algorithm finds a “minimal cover”: A collection of segments (Sk, . . . , S�)
s.t. the union of these segments contains the interval I, and (by minimality) the
union of (Sk+1, . . . , S�−1) is contained in I (we ignore the borderline cases where
� − k ≤ 1, which is handled similarly). Let us denote the union of (Sk, . . . , S�)
by I ′, so that I ⊆ I ′. We have that:

1. The (true) sum of items in I ′ is well approximated by the sum of noisy
counts computed by the algorithm. In particular, with all but (β/2) prob-
ability, the error in computing this sum (a sum of log n Laplacian RVs) is
O( (log

2 n)·log(1/β)
ε ).



Pure Differential Privacy for Rectangle Queries via Private Partitions 747

2. The difference between the (true) counts in I ′ and in I is at most the sum of
counts in Sk and S�. This is because the only items that are in I ′ but not in
I are those in Sk or S� (recall that I contains the union of (Sk+1, . . . , S�−1)).
By the accuracy of the partition algorithm, with all but (β/2) probability,
this difference is at most O( log D+log(1/β)

ε )

By a union bound, we conclude that with all but β probability, the total
error in computing the count on interval I is O( log D+((log2 n)·log(1/β))

ε ).

3.3 Rectangle Queries

To answer c-dimensional rectangle queries on a database x ⊆ [1,D]c, we run
the partition algorithm on each “axis” of the input space separately. For each
dimension a ∈ [1, c], we partition the line [1,D] into (at most) n segments, where
for each of these segments, the number of input elements whose a-th coordinate
falls into that segment is bounded. I.e., we compute a privacy-preserving parti-
tion (Sa

1 , . . . , Sa
n), where for all i, the number of database elements whose a-th

coordinate falls into Sa
i is bounded. For the remainder of the construction, we

will consider the partition of the multi-dimensional space [1,D]c into a collection
of rectangles:

{(S1
i1 × . . . × Sc

ic)}i1,...,ic∈[1,n].

By the properties of the partition algorithm, these rectangles are disjoint and
cover the input space.

Multi-Dimensional Tree. We construct a “multi-dimensional tree” of counts over
the above partition. The construction is iterative, proceeding one dimension at
a time from 1 to c:

– The dimension-1 tree is a binary tree, whose leaves are the segments {S1
i }i∈[1,n]

(as in the intervals algorithm). Each node of this dimension-1 tree corresponds
to an interval T 1, a union of some number (a power of 2) of segments {S1

i }
from the dimension-1 partition. Each such node contains a noisy count for the
number of items whose first coordinate falls in the interval T 1. The node also
contains a dimension-2 tree, which we call its “successor”.

– For a ∈ [2, c] each dimension-a tree is a binary tree whose leaves are the
segments {Sa

i }i∈[1,n]. The dimension-a tree has a “predecessor”, a dimension-
(a − 1) tree, corresponding to intervals (T 1, . . . , T a−1) in the first (a − 1)
dimensions.

Each node in the dimension-a tree corresponds to an interval T a, a union
of some number (a power of 2) of segments {Sa

i } from the dimension-a par-
tition. Each such node contains a noisy count for the number of items s.t.
for all i ∈ [1, a], their i-th coordinate falls in T i. For a < c (until the “final”
dimension), each node also contains a dimensional-(a + 1) tree, which we call
its “successor”.
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For privacy parameter ε, the noise added to each count is drawn from a
Laplace random variable with magnitude (4 logc n/ε). We view each node in the
above construction as specifying a c-dimensional rectangle T = (T 1 × . . . × T c)
(for nodes in dimension-a trees where a < c, the intervals (T a+1, . . . , T c) are
“full” and equal [1,D]). Each such node contains a noisy count of the number of
input elements that fall into this rectangle, i.e. of |x ∩ T |. The size of this data
structure is roughly nc. By pruning this tree, removing nodes with small noisy
counts (and their successors), we can obtain a data structure of size O(n · logc n)
(whose construction also requires time O(n · logc n)), see Remark 3.4 below.

The following two claims will be used in arguing privacy and accuracy:

Claim. Adding or removing an element to the dataset only changes the counts
of at most (2 logc n) nodes in the multi-dimensional tree.

Proof. Let xj ∈ [1, d]c be a data item. Let (S1
i1

, . . . , Sn
in

) be the (unique) segments
of the partition s.t. the a-th coordinate of xj is in Sa

ia
(for all a ∈ [1, c]). We

bound the number of nodes in the tree for which their corresponding rectangle T
includes xj (adding or removing xj will not affect the counts in any other nodes).
In the dimension-1 tree there are only log n such nodes: the leaf corresponding
to the segment S1

i1
, and its ancestors in the tree. Now observe that for the other

nodes in the dimension-1 tree, their successors (and their successors) will never
correspond to rectangles that include xj . For the log n nodes that do include
xj , their successors are dimension-2 trees, and they each have log n nodes that
include xj . Thus, we have log2 n nodes in dimension-2 trees that include xj . For
all other nodes, their successors will not include xj . Continuing as above, we
have that in the dimension-a trees there are loga n nodes that include xj . We
conclude that in total, the number of nodes in the multi-dimensional tree that
include xj is bounded by:

c∑

a=1

loga n ≤ 2 logc n

Claim. For any rectangle R = (R1 × . . . × Rc) ⊆ [1,D]c, there exists a tight
“covering” of that rectangle using a set of at most m = (2 log n)c nodes T =
{T1, . . . , Tm} from the multi-dimensional tree. Taking Q =

⋃
i Ti we have:

1. R is no larger than Q, in particular R ⊆ Q.
2. Q is not “much” larger than R. In particular, for each dimension a there

exist segments Sa
j , Sa

k (segments of the a-th partition) s.t. for any element in
y ∈ (Q \ R) for some a ∈ [1, c] the a-th coordinate of y is in either Sa

j or Sa
k

(and thus, by the properties of the partition algorithm, the size of (Q \ R) is
not too large).

Proof. Similarly to the intervals algorithm, we begin with a separate “cover”
for the intervals that constitute each dimension of the rectangle R. As in the
intervals algorithm, for each dimension a ∈ [1, c], there exists a collection T a of
2 log n intervals corresponding to nodes in the dimension-a tree that “cover” the
interval Ra as follows. Taking Qa =

⋃
T∈T a T :
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1. Ra ⊆ Qa.
2. There exist two segments (Sa

j , Sa
k ) of the a-th partition, s.t. (Qa\(Sa

i

⋃
Sa

j )) ⊆
Ra

Now the claim follows by taking T , the set of tree nodes, to be T = (T 1 ×
. . .×T c). This is a set of at most (2 log n)c nodes, as required. Moreover, taking:

Q =
⋃

T∈T
T = (Q1 × . . . × Qc),

by the above properties of the cover on each dimension separately, we get that:

R = (R1 × . . . × Rc) ⊆ (Q1 × . . . × Qc) = (
⋃

T∈T
T ) = Q.

Moreover, for each dimension a we denote Q′
a = (Qa \ (Sa

j

⋃
Sa

k)). We have that
Q′ = Q′

1 × . . . × Q′
c has the properties that Q′ ⊆ R, and for every element

y ∈ (Q \ Q′), for some a ∈ [1, c], its a-th coordinate is in (Sa
j

⋃
Sa

k).

Answering Rectangle Queries. We use the multi-dimensional tree of noisy counts
described above to answer rectangle queries. Given a rectangle query R = (R1 ×
. . . × Rc) ⊆ [1,D]c, we decompose it into a “cover” T of (2 log n)c tree nodes as
promised in Claim 3.3. We answer the query R by adding up the noisy counts
for the these m nodes and outputting this noisy sum. This can be done in time
poly(logc n).

Theorem 3.3 (Theorem 1.3, Restated). The mechanism described above
answers c-dimensional rectangle queries. For any privacy and accuracy para-
meters ε, β > 0, the mechanism guarantees ε-differential privacy. With all but
β probability over its coins, all rectangle queries (simultaneously) are answered
with error O( (c

2·log D)+(c·(2 log n)1.5c+1·log(1/β))
ε ).

Proof. By composition of DP mechanisms, privacy follows directly from: (i)
privacy of the Partition algorithm (for computing the c partitions), and (ii)
from Claim 3.3 and the fact that we add Laplace noise of magnitude (4 logc n/ε)
to each count.

For accuracy, observe that after we partition the axis, there are n2c possible
rectangle queries (rectangles whose covers are identical are essentially equiva-
lent). For each such query R, we release a noisy count for its cover T . The noise
is a sum of (at most) (2 log n)c independent Laplace RVs, each of magnitude
2 logc n. With all but (β/2) probability, the maximal noise added to the count
of any of these covers is of magnitude at most O( c·(2 log n)1.5c+1·log(1/β)

ε ) (see the
analysis for the sum of Laplacian RVs in [CSS11]). So for each rectangle R with
cover T , the error in the noisy count for T is bounded.

We run the partition algorithm c times, each with privacy parameter (ε/2c)
and error parameter (β/2c). With all but (β/2c) probability, the size of each
segment in each of the c partitions is at most O( c·(log D+log c+log(1/β))

ε ). Every
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point that is in T but not in R must have one of its coordinates be in a (fixed)
set of 2c such segments. Thus, by the second property of the cover T (see
Claim 3.3), the difference between the true counts of R and of T is at most
O( c2·(log D+log c+log(1/β))

ε ). The error bound follows by a triangle inequality (and
a union bound).

Remark 3.4. The naive construction of the multi-dimensional tree requires time
(and size) nc. We improve this running time dramatically by judiciously “prun-
ing” the tree. We take a threshold t = O((log n)c+1 · log(1/β)), and as we con-
struct the multi-dimensional tree (starting with the dimension-1 tree), for any
node whose noisy count is smaller than t, we set that node to be “empty” (noisy
count 0), and do not continue to its children in the current tree, nor to its suc-
cessor. By this choice of t, w.h.p. over the noise, any node that is not marked as
empty corresponds to a rectangle that is not empty in the input database.

Now when using the noisy counts to reconstruct the answers to a given rectan-
gle, because we might be under-counting for all (2 log n)c of the nodes that we use
to “cover” the query, we obtain a slightly-larger error of ((log n)O(c) · log(1/β)).
The advantage, however, is that the running time and the size of the multi-
dimensional tree are improved to O(n · logc n). To see this, recall that any node
that is not marked as “empty” must have at least 1 data item in its correspond-
ing rectangle. The bound on the tree size follows by induction over c (as does
the improved running time).
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Abstract. Multilinear maps have become popular tools for designing
cryptographic schemes since a first approximate realisation candidate
was proposed by Garg, Gentry and Halevi (GGH). This construction was
later improved by Langlois, Stehlé and Steinfeld who proposed GGHLite
which offers smaller parameter sizes. In this work, we provide the first
implementation of such approximate multilinear maps based on ideal lat-
tices. Implementing GGH-like schemes naively would not allow instan-
tiating it for non-trivial parameter sizes. We hence propose a strategy
which reduces parameter sizes further and several technical improve-
ments to allow for an efficient implementation. In particular, since find-
ing a prime ideal when generating instances is an expensive operation,
we show how we can drop this requirement. We also propose algorithms
and implementations for sampling from discrete Gaussians, for inverting
in some Cyclotomic number fields and for computing norms of ideals in
some Cyclotomic number rings. Due to our improvements we were able
to compute a multilinear jigsaw puzzle for κ = 52 (resp. κ = 38) and
λ = 52 (resp. λ = 80).

Keywords: Algorithms · Implementation · Lattice-based cryptogra-
phy · Cryptographic multilinear maps

1 Introduction

Multilinear maps, starting with bilinear ones, are popular tools for designing
cryptosystems. When pairings were introduced to cryptography [Jou04], many
previously unreachable cryptographic primitives, such as identity-based encryp-
tion [BF03], became possible to construct. Maps of higher degree of linearity
were conjectured to be hard to find – at least in the “realm of algebraic geom-
etry” [BS03]. But in 2013, Garg, Gentry and Halevi [GGH13a] proposed a con-
struction, relying on ideal lattices, of a so-called “graded encoding scheme” that
approximates the concept of a cryptographic multilinear map.
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As expected, graded encoding schemes quickly found many applications in
cryptography. Already in [GGH13a] the authors showed how to generalise the
3-partite Diffie-Hellman key exchange first constructed with cryptographic bilin-
ear maps [BS03] to N parties: the protocol allows N users to share a secret key
with only one broadcast message each. Furthermore, a graded encoding scheme
also allows constructing very efficient broadcast encryption [BS03,BWZ14]: a
broadcaster can encrypt a message and send it to a group where only a part of
it (decided by the broadcaster before encrypting) will be able to read it. More-
over, [GGH+13b] introduced indistinguishability obfuscation (iO) and functional
encryption based on a variant of multilinear maps — multilinear jigsaw puz-
zles — and some additional assumptions.

The GGH Scheme. For a multilinearity parameter κ, the principle of the sym-
metric GGH graded encoding scheme is as follows: given a ring R and a principal
ideal I generated by a small secret element g ∈ R, a plaintext is a small ele-
ment of R/I and is viewed as a level-0 encoding. Given a level-0 encoding, it is
easy increase the level to a higher level i � κ, but it is assumed hard to come
back to an inferior level. The encodings are additively homomorphic at the same
level, and multiplicatively homomorphic up to κ operations. The multiplication
of a level-i and a level-j encoding gives a level-(i + j) encoding. Additionally,
a zero-testing parameter pzt allows testing if a level-κ element is an encoding
of 0, and hence also allows testing if two level-κ encodings are encoding the same
elements. Finally, the extraction procedure uses pzt to extract � bits which are
a “canonical” representation of a ring element given its level-κ encoding.

More precisely, in GGH we are given R = Z[X]/(Xn + 1), where n is a
power of 2, a secret element z uniformly sampled in Rq = R/qR (for a certain
prime number q), and a public element y which is a level-1 encoding of 1 of the
form [a/z]q for some small a in the coset 1 + I. We are also given m level-i

encodings of 0 named x
(i)
j , for all 1 � i � κ, and a zero-testing parameter pzt.

To encode an element of R/I at level-i (for i � κ), we multiply it by yi in Rq

(which give an element of the form
[
c/zi

]
q
, where c is an arbitrary small coset

representative). Then, we add a linear combination of encodings of 0 at level-i
of the form

∑
j ρjx

(i)
j to it where the ρj are sampled from a certain discrete

Gaussian. This last step is the re-randomisation process and ought to ensure
that the analogue of the discrete logarithm problem is hard: going from level-i
to level-0, for example by multiplying the encoding by y−i. We will see later that
the encodings of zero made public for this step are a problem for the security of
the scheme.

The asymmetric variant of this scheme replaces levels by “groups” which are
identified with subsets of {1, . . . , κ}. Addition of two elements in the same group
stays within the group, multiplying two elements of different groups with disjoint
index sets produces an element in the group defined by the union of their index
sets. These groups are realised by defining one zi for each index 1 � i � κ and
then dividing by the appropriate product of zi. Given a group characterised by
S ⊆ {1, . . . , κ} we call the cardinality of S its level.
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We can distinguish between GGH instances where encodings of zero are made
publicly available to allow anyone to encode elements and those where this is
not the case. The latter are also called “Multilinear Jigsaw Puzzles” and were
introduced in [GGH+13b] as a building block for indistinguishability obfusca-
tion. Such instances can be thought of as secret-key graded encoding schemes.
To distinguish the two cases, we denote those instances where no encodings of
zero x

(i)
j are published as GGHs. In such instances the secret elements g and zi

are required to encode elements at levels above zero.

Security. Already in [GGH13a] it was shown that an attacker can recover the
ideal (g) and the coset of (g) for any encoding at level � κ if encodings of
zero are made available. However, since these representatives of either (g) or the
cosets are not small, it was believed that these “weak discrete log” attacks would
not undermine the central security goal of GGH – the analogue of the BDDH
assumption. However, in [HJ15] it was shown that these attacks can be extended
to recover short representatives of the cosets. As a consequence, if encodings of
zero are published, then [HJ15] breaks the GGH security goals in many scenarios
and it is not clear, at present, if and how GGH-like graded encoding schemes can
be defended against such attacks. A candidate proposal to prevent weak discrete
logarithm attacks was proposed in [CLT15, Appendix G], where the strategy is
to change zero testing to make it non-linear in the encodings such that the attack
does not work anymore. However, no security analyses was provided in [CLT15]
and revision 20150516:083005 of [CLT15] drops any mention of this candidate
fix. Hence, the status of GGH-like schemes where encodings of zero are published
is currently unclear. However, we note that GGHs, where no encodings of zero
are made available, does not appear to be vulnerable to weak discrete log attacks
if the freedom of an attacker to produce encodings of zero at the higher levels
is also severely restricted to prevent generalisations of “zeroizing” attacks such
as [CGH+15]. Such variants are the central building block of indistinguishability
obfuscation, i.e. this case has important applications despite being more limited
in functionality. Indeed, at present no known attack threatens the security of
indistinguishability obfuscation constructed from graded encoding schemes such
as GGH.

Alternative Constructions. An alternative instantiation of graded encoding
schemes over the integers promising practicality was proposed by Coron, Lep-
oint and Tibouchi [CLT13]. This first proposal was also broken in polynomial
time using public encodings of zero in [CHL+15]. The attack was later gener-
alised in [CGH+15] and a candidate defence against these attacks was proposed
in [CLT15]. The authors of [CLT15] also provided a C++ implementation of a
heuristic variant of this scheme. They report that the Setup phase of an 7-partite
Diffie-Hellman key exchange takes 4528 s (parallelised on 16 cores), publishing a
share (Publish) takes 7.8 s per party (single core) and the final key derivation
(KeyGen) takes 23.9 s per party (single core) for a level of security λ = 80.
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Instantiation. The implementation reported in [CLT15] is to date the only imple-
mentation of a candidate graded encoding scheme. This is partly because instan-
tiating the original GGH construction is too costly in practice for anything but
toy instances. In 2014, Langlois, Stehlé and Steinfeld [LSS14a] proposed a vari-
ant of GGH called GGHLite, improving the re-randomisation process of the
original scheme. It reduces the number m of re-randomisers, public encodings of
zero, needed from Ω(n log n) to 2 and also the size of the parameter σ�

i of the
Gaussian used to sample multipliers ρj during the re-randomisation phase from
Õ(2λ λ n4.5κ) to Õ(n5.5

√
κ). These improvements allow reducing the size of the

public parameters and improving the overall efficiency of the scheme. But even
though [LSS14a] made a step forward towards efficiency and in some cases no
public re-randomisation is required at all (GGHs), GGH-like schemes are still
far from being practical.

Our contribution. Our main contribution is a first and efficient implementation
of improved GGH-like schemes which we make publicly available under an open-
source license. This implementation covers symmetric and asymmetric flavours
and we allow encodings of zero to be published or not. However, since the security
of GGH-like constructions is unclear when encodings of zero are published, we do
not discuss this variant in this paper. We note, however, that our implementation
provides a good basis for implementing any future fixes and improvements for
GGH-based graded encoding schemes.

Implementing GGH-like schemes efficiently such that non-trivial levels of
multilinearity and security can be achieved is not straight forward and to obtain
an implementation we had to address several issues. In particular, we contribute
the following improvements to make GGH-like multilinear maps instantiable:

• We show that we do not require (g) to be a prime ideal for the existing
proofs to go through. Indeed, sampling an element g ∈ Z[X]/(Xn + 1) such
that the ideal it generates is prime, as required by GGH and GGHLite, is a
prohibitively expensive operation. Avoiding this check is then a key step to
allow us to go beyond toy instances.

• We give a strategy to choose practical parameters for the scheme and extend
the analysis of [LSS14a] to ensure the correctness of all the procedures of the
scheme. Our refined analysis reduces the bitsize of q by a factor of about 4,
which in turn reduces the required dimension n.

• We apply the analyses from [CS97] to pick parameters to defend against lattice
attacks.

• For all steps during the instance generation we provide implementations and
algorithms which work in quasi-linear time and efficiently in practice. In par-
ticular, we provide algorithms and implementations for inverting in some
Cyclotomic number fields, for computing norms of ideals in some Cyclotomic
number rings, for producing short representatives of elements modulo (g) and
for sampling from discrete Gaussians in Õ(n). For the latter we use Ducas
and Nguyen’s strategy [Duc13] Our implementation of these operations might
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Table 1. Computing a κ-level asymmetric multilinear maps with our implementation
without encodings of zero. Column λ gives the minimum security level we accepted,
column λ′ gives the actually expected security level based on the best known attacks for
the given parameter sizes. Timings produced on Intel Xeon CPU E5–2667 v2 3.30 GHz
with 256 GB of RAM, parallelised on 16 cores, but not all operations took full advantage
of all cores. Setup gives the time for generating the GGH instance. Encode lists the time
it takes to reduce an element ∈ Zp with p = N (I) to a small element in Z[X]/ (Xn + 1)
modulo (g). Mult lists the time to multiply κ elements. All times are wall times.

λ κ λ′ n log q Setup Encode Mul ‖enc‖
52 6 64.4 215 2117 114 s 26 s 0.05 s 8.3 MB

52 9 53.5 215 3086 133 s 25 s 0.12 s 12.1 MB

52 14 56.6 216 4966 634 s 84 s 0.62 s 38.8 MB

52 19 56.6 216 6675 762 s 75 s 1.38 s 52.2 MB

52 25 59.6 217 9196 2781 s 243 s 5.78 s 143.7 MB

52 52 62.7 218 19898 26695 s 1016 s 84.1 s 621.8 MB

80 6 155.2 216 2289 415 s 74 s 0.13 s 17.9 MB

80 9 86.7 216 3314 445 s 72 s 0.27 s 25.9 MB

80 14 120.9 217 5288 1525 s 252 s 1.38 s 82.6 MB

80 19 80.4 217 7089 1821 s 268 s 3.07 s 110.8 MB

80 25 138.8 218 9721 9595 s 967 s 13.52 s 303.8 MB

80 38 80.3 218 14649 20381 s 947 s 16.21 s 457.8 MB

be of independent interest (cf. [LP15] for recent work on efficient sampling
from a discrete Gaussian distribution), which is why they are available as a
separate module in our code.

• We discuss our implementation and report on experimental results.

Our results (cf. Table 1) are promising, as we manage to compute up to mul-
tilinearity level κ = 52 (resp. κ = 38) at security level κ = 52 (resp. λ = 80) in
the asymmetric GGHs case. We note that much smaller levels of multilinearity
have been used to realise non-trivial functionality in the literature. For exam-
ple, [BLR+15] reports on comparisons between 16-bit encrypted values using a
9-linear map (however, this result holds in a generic multilinear map model). We
note that the results in Table 1, where no encodings of zero are made available,
are not directly comparable with those reported in [CLT15].

Technical Overview. Our implementation relies on FLINT [HJP14]. However,
we provide our own specialised implementations for operations in the ring of
integers of Cyclotomic number fields where the degree is a power of two and
related rings as listed above.

Our variant of GGH foregoes checking if g generates a prime ideal. Dur-
ing instance generation [GGH13a,LSS14a] specify to sample g such that (g) is a
prime ideal. This condition is needed in [GGH13a,LSS14a] to ensure that no non-
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zero encoding passes the zero-testing test and to argue that the non-interactive
N -partite key exchange produces a shared key with sufficient entropy. We show
that for both argumentswe candrop the requirement that g generates aprime ideal.
This was already mentioned as a potential improvement in [Gar13, Section 6.3] but
not shown there. As rejection sampling until a prime ideal (g) is found is pro-
hibitively expensive due to the low density of prime ideals in Z[X]/(Xn + 1),
this allows speeding-up instance generation such that non-trivial instances are
possible. We also provide fast algorithms and implementations for checking if
(g) ⊂ Z[X]/(Xn + 1) is prime for applications which still require prime (g).

We also improve the size of the two parameters q and � compared to [LSS14a].
We first perform a finer analysis than [LSS14a], which allows us to reduce the size
of the parameter q by a factor 2. Then, we introduce a new parameter ξ, which
controls what fraction of q is considered “small”, i.e. passes the zero-testing test,
which reduces the size of q further. This also reduces the number of bits extracted
from each coefficient �. Indeed, instead of setting � = 1/4 log q −λ where λ is the
security parameter, we set � = ξ log q − λ with 0 < ξ � 1/4. We then show that
for a good choice of ξ this is enough to ensure the correctness of the extraction
procedure and the security of the scheme. Overall, our refined analysis allows

us to reduce the size of q ≈ (3n
3
2 σ�

1σ
′)
8κ

in [LSS14a] to q ≈ (3n
3
2 σ�

1σ
′)
(2+ε)κ

which, in turn, allows reducing the dimension n. When no encodings of zero are
published we simply set σ�

1 = 1 and apply the same analysis.

Open Problems. The most pressing question at this point is whether GGH-like
constructions are secure. There exist no security proofs for any variant and recent
cryptanalysis results recommend caution. Even speculating that secure variants
of GGH-like multilinear maps can be found, performance is still an issue. While
we manage to compute approximate multilinear maps for relatively high levels of
κ in this work, all known schemes are still at least quadratic in κ which presents
a major obstacle to efficiency. Any improvement which would reduce this to
something linear in κ would mean a significant step forward. Finally, establishing
better estimates for lattice reduction and tuning the parameter choices of our
schemes are areas of future work.

Roadmap. We give some preliminaries in Sect. 2. In Sect. 3 we describe the
GGH-like asymmetric graded encoding schemes and the multilinear jigsaw puz-
zles used for iO. In Sect. 4, we explain our modifications to GGH-like schemes,
especially concerning the parameter q. We also recall a lattice attack to derive
the parameter n and show that we do not require (g) to be prime. In Sect. 5, we
give the details of our implementation.

2 Preliminaries

Lattices and Ideal Lattices. An m-dimensional lattice L is an additive subgroup
of R

m. A lattice L can be described by its basis B = {b1, b2, . . . , bk}, with
bi ∈ R

m, consisting in k linearly independent vectors, for some k � m, called
the rank of the lattice. If k = m, we say that the lattice has full-rank. The
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lattice L spanned by B is given by L = {∑k
i=1 ci · bi, ci ∈ Z}. The volume of the

lattice L, denoted by vol(L), is the volume of the parallelepiped defined by its
basis vectors. We have vol(L) =

√
det(BT B), where B is any basis of L.

For n a power of two, let f(X) ∈ Z[X] be a monic polynomial of degree
n (in our case, f(X) = Xn + 1). Then, the polynomial ring R = Z[X]/f(X)
is isomorphic to the integer lattice Z

n, i.e. we can identify an element u(X) =
∑n−1

i=0 ui ·Xi ∈ R with its corresponding coefficient vector (u0, u1, . . . , un−1). We
also define Rq = R/qR = Zq[X]/(Xn + 1) (isomorphic to Z

n
q ) for a large prime

q and K = Q[X]/(Xn + 1) (isomorphic to Q
n).

Given an element g ∈ R, we denote by I the principal ideal in R generated
by g: (g) = {g · u : u ∈ R}. The ideal (g) is also called an ideal lattice and
can be represented by its Z-basis (g, X · g, . . . , Xn−1 · g). We denote by N (g) its
norm. For any y ∈ R, let [y]g be the reduction of y modulo I. That is, [y]g is
the unique element in R such that y − [y]g ∈ (g) and [y]g =

∑n−1
i=0 yiX

ig, with
yi ∈ [−1/2, 1/2),∀i, 0 � i � n− 1. Following [LSS14a] we abuse notation and let
σn(b) denotes the last singular value of the matrix rot(b) ∈ Z

n×n, for any b ∈ I.
For z ∈ R, we denote by MSB� ∈ {0, 1}�·n the � most significant bits of each of
the n coefficients of z in R.

Gaussian Distributions. For a vector c ∈ R
n and a positive parameter σ ∈

R, we define the Gaussian distribution of centre c and width parameter σ as
ρσ,c(x) = exp(−π ||x−c||2

σ2 ), for all x ∈ R
n. This notion can be extended to ellip-

soid Gaussian distribution by replacing the parameter σ with the square root
of the covariance matrix Σ = BBt ∈ R

n×n with det(B) �= 0. We define it
by ρ√

Σ,c(x) = exp(−π · (x − c)t(BtB)−1(x − c)), for all x ∈ R
n. For L a

subset of Z
n, let ρσ,c(L) =

∑
x∈L ρσ,c(x). Then, the discrete Gaussian distri-

bution over L with centre c and standard deviation σ (resp.
√

Σ) is defined as
DL,σ,c(y) = ρσ,c(y)

ρσ,c(L) , for all y ∈ L. We use the notations ρσ (resp. ρ√
Σ) and DL,σ

(resp. DL,
√

Σ) when c is 0.

Finally, for a fixed Y = (y1, y2) ∈ R2, we define: ẼY,s = y1DR,s + y2DR,s

as the distribution induced by sampling u = (u1, u2) ∈ R2 from a discrete
spherical Gaussian with parameter s, and outputting y = y1u1+y2u2. It is shown
in [LSS14a, Theorem 5.1] that if Y ·R2 = I and s � max(‖g−1y1‖∞, ‖g−1y2‖∞) ·
n · √

2 log(2n(1 + 1/ε))/π for ε ∈ (0, 1/2), this distribution is statistically close
to the Gaussian distribution DI,sY T .

3 GGH-like Asymmetric Graded Encoding Scheme

We now recall the definitions given in [GGH+13b, Section 2.2] for the notions of
Jigsaw specifier, Multilinear Form and Multilinear Jigsaw puzzle.

Definition 1 ([GGH+13b, Definition 5]). A Jigsaw specifier is a tuple (κ, �, A)
where κ, � ∈ Z

+ are parameters and A is a probabilistic circuit with the following
behavior: On input a prime number q, A outputs the prime q and an ordered set
of � pairs (S1, a1), . . . , (S�, a�) where each ai ∈ Zq and each Si ⊆ [κ].
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Definition 2 ([GGH+13b, Definition 6 and 7]). A Multilinear Form is a
tuple F = (κ, �,Π, F ) where κ, � ∈ Z

+ are parameters and Π is a circuit with �
input wires, made out of binary and unary gates. F is an assignment of an index
set I ⊆ [κ] to every wire of Π. A multilinear form must satisfies constraints given
in the original definition (on gates, and the output wire is assigned to [κ]).

We say that a Multilinear Form F = (κ′, �′,Π, F ) is compatible with X =
((S1, a1), . . . , (S�, a�)) if κ = κ′, � = �′ and the input wires of Π are assigned to
the sets S1, . . . , S�. The evaluation of F on X is then doing arithmetic operations
on the inputs depending on the gates. We say that the evaluation succeeds if the
final output is ([κ], 0).

We now define the Multilinear Jigsaw Puzzles.

Jigsaw Generator: JGen(λ, κ, �, A) → (q,X, puzzle). This algorithm takes
as input λ, and a Jigsaw specifier (κ, �, A). It outputs a prime q, a private
output X and a public output puzzle. The generator is using a pair of PPT
algorithms JGen = (InstGen,Encode).

InstGen(λ, κ) → (q, params, s). This algorithm takes λ and κ as inputs and
outputs (q, params, s), where q is a prime of size at least 2λ, params is a
description of public parameters, and s is a secret state to pass to the
encoding algorithm.

Encode(q, params, s, (S, a)) → (S, u). The encoding algorithm takes as inputs
the prime q, the parameters params, the secret state s, and a pair (S, a)
with S ⊆ [κ] and a ∈ Zq and outputs u, an encoding of a relative to S.

More precisely, the algorithm runs the Jigsaw specifier on input q to get �
pairs (S1, a1), . . . , (S�, a�). Then encodes all the plaintext elements by using
the Encode algorithm on each (Si, ai) which return (Si, ui). We have:

X = (q, (S1, a1), . . . , (S�, a�)) and puzzle = (params, (S1, u1), . . . , (S�, u�)).

Jigsaw Verifier: JVer(puzzle,F) → {0, 1}. This algorithm takes as input the
public output of a Jigsaw Generator puzzle, and a multilinear form F . It
outputs either accept (1) or reject (0).

Correctness. For an output (q,X, puzzle) and a form F compatible with X, we
say that the verifier JVer is correct if either the evaluation of F on X succeeds
and JVer(puzzle,F) = 1 or the evaluation fails and JVer(puzzle,F) = 0. We
require that with high probability over the randomness of the generator, the
verifier will be correct on all forms.

Security. Thehardness assumptions for theMultilinear Jigsawpuzzle requires that
for two different polynomial-size families of Jigsaw Specifier {(κλ, �λ, Aλ)}λ∈Z+

and {(κλ, �λ, A′
λ)}λ∈Z+ the public output of the Jigsaw Generator on (κλ, �λ, Aλ)

will be computationally indistinguishable from the public output of the Jigsaw
Generator on (κλ, �λ, A′

λ).
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3.1 Using GGH to Construct Jigsaw Puzzles

In Fig. 1, we describe a GGH-like asymmetric graded encoding scheme without
encodings of zero based on the definition of GGHLite from [LSS14a]. Below, we
explain how to use those procedures to construct the Jigsaw Generator, described
in [GGH+13b, Appendix A].

Instance generation. InstGen 1λ, 1κ : Given security parameter λ and multilinear-
ity parameter κ, determine scheme parameters n, q, σ, σ , �g 1 , �b, � as in [LSS14a].
Then proceed as follows:

Sample g DR,σ until g 1 �g 1 and I g is a prime ideal. Define
encoding domain Rg R g .
Sample zi U Rq for all 0 i κ.

Sample h DR, q and define the zero-testing parameter pzt
h
g

κ
i 1 zi

q
.

Return public parameters params n, q, � and pzt.

Encode at level-0 Enc0 params, g, e : Compute a small representative e e g

and sample an element e De I,σ . Output e .
Encode in group i . Enc params, zi, e : Given parameters params, zi, and a
level-0 encoding e R, output e zi q.

Adding encodings. Add params, u1, u2 : Given encodings u1 c1 i S zi q

and u2 c2 i S zi q
with S 1, . . . , κ :

Return u u1 u2 q, an encoding of c1 c2 q in the group S.
Multiplying encodings. Mult params, u1, u2 : Let S1 κ , S2 κ with

S1 S2 , given an encoding u1 c1 i S1
zi

q
and an encoding

u2 c2 i S2
zi

q
:

Return u u1 u2 q, an encoding of c1 c2 q in S1 S2.
Zero testing at level κ. isZero params, pzt, u : Given parameters params, a zero-
testing parameter pzt, and an encoding u c κ 1

i 0 zi q
in the group κ ,

return 1 if pztu q q3 4 and 0 else.

Fig. 1. GGH-like asymmetric graded encoding scheme adapted from [LSS14a].

Jigsaw Generator. The Jigsaw Generator uses InstGen to generate all the
public (params and pzt) and secret parameters of the multilinear map. Each
level of the multilinear map will be associated with a subset of the set [κ].
To create the puzzle pieces, which are encodings of some elements of R at
different level, the Generator simply encodes some random elements at level
S ⊂ [1, κ], those are given as puzzle.

Jigsaw Verifier. The verifier is given the public parameters params and pzt,
a valid form Π (which is defined [GGH+13b, Def. 6] in as a circuit made
of binary and unary gates) and puzzle, an input for Π (which are some
encodings). The verifier is then evaluating Π on these input using Add for
addition gates and Mult for multiplication gates. The verifier must succeeds
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if the evaluation of F on X succeeds, which means that the final output of
the evaluation is an encoding of zero at level κ. The verifier is invoking the
zero-testing procedure, and outputs 1 if the test passes, 0 otherwise.

4 Modifications to and Parameters for GGH-like Schemes

In this section, we first show that we do not require a prime (g) and then describe
a method which allows to reduce the size of two parameters: the modulus q and
the number � of extracted bits. In Sect. 4.3 then we describe the lattice-attack
against the scheme which we use to pick the dimension n. Finally, we describe
our strategy to choose parameters that satisfy all these constraints.

4.1 Non-prime (g)

Both GGHLite and GGH-like jigsaw puzzles as specified in Fig. 1 require to
sample a g such that (g) is a prime ideal. However, finding such a g is pro-
hibitively expensive. While checking each individual g whether (g) is a prime
ideal is asymptotically not slower than polynomial multiplication, finding such
a g requires to run this check often. The probability that an element generates
a prime ideal is assumed to be roughly 1/(nc) for some constant c > 1 [Gar13,
Conjecture 5.18], so we expect to run this check nc times. Hence, the overall
complexity is at least quadratic in n which is too expensive for anything but toy
instances.

Primality of (g) is used in two proofs. Firstly, to ensure that after multiplying
κ+1 elements in Rg the product contains enough entropy. This is used to argue
entropy of the N -partite non-interactive key exchange. Secondly, to prove that
c · h/g is big if c, h �∈ g (cf. Lemma 2). Below, we show that we can relax the
conditions on g for these two arguments to still go through, which then allows
us to drop the condition that (g) should be prime. We note, though, that some
other applications might still require g to be prime and that future attacks might
find a way to exploit non-prime (g).

Entropy of the Product. The next lemma shows that excluding prime factors
� 2N and guaranteeing N (g) � 2n is sufficient to ensure 2λ bits of entropy in
a product of κ + 1 elements in Rg with overwhelming probability. We note that
both conditions hold with high probability, are easy to check and are indeed
checked in our implementation.

Lemma 1. Let κ � 2, λ be the security parameter and g ∈ Z[X]/(Xn + 1) with
norm p = N (g) � 2n such that p has no prime factors � 2κ + 2, and such
that n � κ · λ · log(λ). Then, with overwhelming probability, the product of κ + 1
uniformly random elements in Rg has at least κ · λ · log(λ)/4 bits of entropy.

Proof. Write p =
∏r

i=1 pei
i where pi are distinct primes and ei ≥ 1 for all i. Let

us consider the set S = {i ∈ {1, . . . , r} : ei = 1}. Then, following [CDKD14] we
define ps =

∏
i∈S pi as the square-free part of p. Asymptotically, it holds that
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#{p � x : p/ps > ps} is cx3/4 for some computable constant c (cf. [CDKD14]).
Since in our case we have x � 2n, this implies that with overwhelming probability
it holds that ps � √

p and hence log(ps) � n/2.
By the Chinese Remainder Theorem, Rg is isomorphic to F1 ×· · ·×Fr where

each “slot” Fi = Zp
ei
i

. The set of Fi, for i ∈ S corresponds to the square-free
part of p. Those Fi are fields, and each of them has order pi � 2N which means
that a random element in such Fi is zero with probability 1/pi. In those slots,
the product of N elements has Es bits of entropy, where

Es =
∑

i∈S

(

1 − N

pi

)

log(pi).

First, as pi � 2N for all i ∈ S, the quotient N/pi � 1/2 and then
(
1 − N

pi

)
� 1/2

for all i ∈ S. This implies that

Es � 1/2
∑

i∈S
log(pi) = 1/2 log

( ∏

i∈S
pi

)
= 1/2 log(ps).

Because log(ps) � n/2, we conclude that Es � n
4 � κ·λ·log(λ)

4 . �


Probability of False Positive. It remains to be shown that we can ensure that
there are no false positives even if (g) is not prime. In [GGH13a, Lemma 3] false
positives are ruled out as follows. Let u = [c/zκ]q where c is a short element in
some coset of I, and let w = [pzt · u]q, then we have w = [c · h/g]q. The first step
in [GGH13a] is to suppose that ‖g · w‖ and ‖c · h‖ are each at most q/2, then,
since g · w = c · h mod q we have that g · w = c · h exactly. We also have an
equality of ideals: (g) · (w) = (c) · (h), and then several cases are possible. If (g)
is prime as in [GGH13a, Lemma 3], then (g) divides either (c) or (h) and either
c or h is in (g). As, by construction, none of them is in (g) if c is not in I, either
‖g · w‖ or ‖c · h‖ is more than q/2. Using this, they conclude that there is no
small c (not in I) such that w is small enough to be accepted by the zero-test.

Our approach is to simply notice that all we require is that (g) and (h)
are co-prime. Checking if (g) and (h) are co-prime can be done by checking
gcd(N (g),N (h)) = 1. However, computing N (h) is rather costly because h is
sampled from DZn,

√
q and hence has a large norm. To deal with this issue we

notice that if gcd(N (g),N (h)) �= 1 then we also have gcd(N (g),N (h mod g)) �=
1 which can be verified with a simple calculation. Now, interpreting h mod g as
“a small representative of h modulo g”, we can compute h mod g as h−g ·�g−1 ·
h�, which produces an element of size ≈ √

n ·‖g‖. We can use this observation to
reduce the complexity of checking if (g) and (h) are co-prime to computing two
norms for elements of size ‖g‖ and ≈ √

n·‖g‖ and taking their gcd. Furthermore,
this condition holds with high probability, i.e. we only have to perform this test
O(1) times. Indeed, by ruling out likely common prime factors first, we expect
to run this test exactly once. Hence, checking co-primality of (g) and (h) is much
cheaper than finding a prime (g) but still rules out false positives.
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Finally, we note that recent proposals of indistinguishability obfuscation from
multilinear maps [Zim15,AB15] requires composite order maps. These are not
the maps we are concerned with here as in [Zim15,AB15] it is assumed that
the factorisation of (g) is known. However, we note that our techniques and
implementation easily extend to this case by considering g = g1 · g2 for known
co-prime g1 and g2.

4.2 Reducing the Size of q

In this section, we show how to reduce q for which we consider the case where
re-randomisers are published for level-1 but no other levels. This matches the
requirements of the N -partite Diffie-Hellman key exchange but not the Jigsaw
puzzle case. However, when no re-randomisers are published we may simply set
σ�
1 = 1 and apply the same analysis. Hence, assuming that re-randomisers are

published fits our framework in all cases and makes our analysis compatible with
previous work. We note that the analysis can be easily generalised to accommo-
date re-randomisers at higher levels than one by increasing q to accommodate
“numerator growth”.

The size of q is driven from both correctness and security considerations. To
ensure the correctness of the zero-testing procedure, [LSS14a] showed the two
following lower bounds on q. Equation 1 implies that false negatives do not exist,
and Eq. 2 implies that the probability of false positive occurrence is negligible:

q > max
(
(n�g−1)8, (3n

3
2 σ�

1σ
′)
8κ

)
, (1)

q > (2nσ)4. (2)

The strongest constraint for q is given by the inequality q > (3n
3
2 σ�

1σ
′)
8κ

. It
comes from the fact that for any level-κ encoding u of 0, the inequality ‖pztu‖∞ <
q3/4 has to hold. The condition is needed for the correctness of zero-testing and
extraction.

New parameter ξ. The choice suggested in [LSS14a] is to extract � = log(q)/4 −
λ bits from each element of the level-κ encoding. We show that this supplies
much more entropy than needed and that we can sample a smaller fraction,
� = ξ log(q)−λ bits. The equation for q can be rewritten in terms of the variable
ξ, by setting the initial condition ‖pzt u‖∞ < q1−ξ.

Lemma 2 (Adapted from Lemma A.1 in [LSS14b]). Let g ∈ R and
I = (g), let c, h ∈ R such that c /∈ I, (g) and (h) are co-prime, ‖c · h‖ < q/2 and
q > (2tnσ)1/ξ for some t � 1 and any 0 < ξ � 1/4. Then ‖[c · h/g]q‖ > t · q1−ξ.

Proof. From [GGH13a, Lemma 3] and the discussion in Sect. 4.1 we know that
since ‖c · h‖ < q/2 we must have

∥
∥
∥g · [c · h/g]q

∥
∥
∥ > q/2 if (g) and (h) are co-

prime (note that c ·h �= g · [c · h/g]q in R/(Xn +1)). So we have
∥
∥
∥g · [c · h/g]q

∥
∥
∥ >

q/2 =⇒ √
n ‖g‖·

∥
∥
∥[c · h/g]q

∥
∥
∥ > q/2 =⇒

∥
∥
∥[c · h/g]q

∥
∥
∥ > q/(2nσ). We have t·q1−ξ =

t · q/qξ < t · q/(2tnσ) = q/(2nσ) and the claim follows. �
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Correctness of Zero-Testing. We can obtain a tighter bound on q by refining
the analysis in [LSS14a]. Recall that ‖[pzt u]q‖∞ = ‖[hc/g]q‖∞ = ‖h · c/g‖∞ �
‖h‖ · ‖c/g‖ � ‖h‖ · ‖c‖ · ‖g−1‖√

n. The first inequality is a direct application of
the inequalities between the infinity norm of a product and the product of the
Euclidean norms, the second comes from [Gar13, Lemma 5.9].

Since h ← DR,
√

q, we have ‖h‖ � √
nq1/2. Moreover, c can be written as

a product of κ level-1 encodings ui, for i = 1, . . . , κ, i.e., c =
∏κ

i=1 ui. Thus,
‖c‖ � (

√
n)κ−1(maxi=1,...,κ ‖ui‖)κ since each of the κ − 1 multiplications brings

an extra
√

n factor. Let umax be one of the ui of largest norm. It can be written
as umax = e · a + ρ1 · b1(1) + ρ2 · b2(1). As we sampled the polynomial g such that∥
∥g−1

∥
∥ � lg−1 the inequality ‖[pzt u]q‖∞ < q1−ξ holds if:

nlg−1(
√

n)κ−1‖(e · a + ρ1 · b
(1)
1 + ρ2 · b

(1)
2 )‖κ < q1/2−ξ. (3)

Then, since

‖e ·a+ρ1 ·b(1)1 +ρ2 ·b(1)2 ‖κ � (‖e‖ · ‖a‖√
n + ‖ρ1‖ · ‖b

(1)
1 ‖√

n + ‖ρ2‖ · ‖b
(1)
2 ‖√

n)
κ
,

e ← DR,σ′ , a ← D1+I,σ′ , b
(1)
1 , b

(1)
2 ← DI,σ′ and ρ1, ρ2 ← DR,σ�

1
, we can bound

each of these values as ‖e‖, ‖a‖, ‖b
(1)
1 ‖, ‖b

(1)
2 ‖ � σ′√n, ‖ρ1‖, ‖ρ2‖ � σ�

1

√
n to get:

nlg−1(
√

n)κ−1(σ′√n · σ′√n · √
n + 2 · σ�

1

√
n · σ′√n · √

n)κ
< q1/2−ξ,

(

nlg−1(
√

n)κ−1((σ′)2n
3
2 + 2σ�

1σ
′n

3
2 )

κ
) 2

1−2ξ

< q. (4)

In [LSS14a], we had ξ = 1/4 (which give 2/(1 − 2ξ) = 4), we hence have that
this analysis allows to save a factor of 2 in the size of q even for the same ξ. If
we additionally consider ξ < 1/4 bigger improvements are possible. For practical
parameter sizes we reduce the size of q by a factor of almost 4 because ξ tends
towards zero as κ and λ grow.

Correctness of Extraction. As in [LSS14a], we need that two level-κ encodings
u and u′ of different elements have different extracted elements, which implies
that we need: ‖[pzt(u − u′)]q‖∞ > 2L−�+1 with L = �log q�. This condition
follows from Lemma 2 with t satisfying t · q1−ξ > 2L−�+1, which holds for t =
qξ · 2−�+1. As a consequence, the condition q > (2tnσ)1/x is still satisfied if we
have � > log2(8nσ), and to ensure that t > 1 we need that � < ξ log q + 2.
Finally, to ensure that εext, the probability of the extraction to be the same for
two different elements, is negligible, we need that � � ξ log2 q − log2(2n/εext).

Picking ξ and q. Putting all constraints together, we let � = log(8nσ) and

q̃ = nlg−1(
√

n)κ−1
(

(σ′)2n
3
2 + 2σ�

1σ
′n

3
2

)κ

.

To find ξ we solve � + λ = 2ξ
1−2ξ · log q̃ for ξ and set q = q̃

2
1−2ξ .
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4.3 Lattice Attacks

To pick a dimension n we rely on lattice attacks. The most efficient lattice
attacks described [GGH13a] rely on computing weak discrete logarithms and
hence do not seem to be applicable to either the case where no encodings of
zero are published or the case where such attacks are ruled out in some other
way. However, we may mount the attack from [CS97] against GGH-like graded
encoding schemes. We explain it in the symmetric setting. Assume two encodings
of random elements: u1 = [e1/z]q and u2 = [e2/z]q. We have

[
u1

u2

]

q

=
[
e1/z

e2/z

]

q

=
[
e1
e2

]

q

with e1 and e2 small. We set up the lattice Λ =
(

qI 0
X I

)

where I is the n × n

identity matrix, 0 is the n×n zero matrix, and U a rotational basis for [u1/u2]q.
By construction Λ contains the vector (e1, e2) which is short. We have det(Λ) =
qn and ‖(e1, e2)‖ ≈ √

2nσ′. In contrast, a random lattice with determinant qn

and dimension 2n is expected to have a shortest vector of norm ≈ qn/2n =
√

q
which is much longer than ‖(e1, e2)‖. While Λ does not constitute a Unique-
SVP instance because there are many short elements of norm roughly

√
2nσ′

we may consider all of these “interesting”. Clearly, there is a gap between those
“interesting” vectors and the expected length of short vectors for random lattices.
To hedge against potential attacks exploiting this gap, we may hence want to
ensure that finding those “interesting” short vectors is hard. The hardness of
Unique-SVP instances is determined by the ratio of the second shortest λ2(Λ)
and the shortest vector λ1(Λ) of the lattice. We assume that the complexity of
finding a short element in Λ depends on the gap between (e1, e2) and

√
q in a

similar way.
In order to succeed, an attacker needs to solve something akin of a Unique-

SVP instance with gap λ2(Λ)/λ1(Λ). We need to pick parameters such that
this problem takes at least 2λ operations. The most efficient technique known
in the literature to produce short lattice vectors is to run lattice reduction.
The quality of lattice reduction is typically expressed as the root-Hermite factor
σ0. An algorithm with root-Hermite factor σ0 is expected to output a vector
v in a lattice L such that ‖v‖ = σn

0 vol(L)1/n. Hence, in our case we require
τ · σ2n

0 � λ2(Λ)/λ1(Λ) and thus

σ0 �
( √

q√
2n · σ′ · τ

)1/(2n)

, (5)

where τ is a constant which depends on the lattice structure and on the reduction
algorithm used. Typically τ ≈ 0.3 [APS15], which we will use as an approxima-
tion.

Currently, the most efficient algorithm for lattice reduction is a variant of the
BKZ algorithm [SE94] referred to as BKZ 2.0 [CN11]. However, its running time
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and behaviour, especially in high dimensions, is not very well understood: there
is no consensus in the literature as to how to relate a given σ0 to computational
cost. We estimate the cost of lattice reduction as in [APS15].

We stress, though, that these assumptions requires further scrutiny. Firstly,
this attack does not use pzt which means we expect that better lattice attacks
can be found eventually. Secondly, we are assuming that the lattice reduction
estimates in [APS15] are accurate. However, should these assumptions be falsi-
fied, then this part of the analysis can simply be replaced by refined estimates.

4.4 Putting Everything Together

Our overall strategy is as follows. Pick an n and compute parameters σ, σ′, σ�
1 as

in [LSS14a] and �g and q as in Sect. 4.2. Now, establish the root-Hermite factor
required to carry out the attack in Sect. 4.3 using Equation (5). If this σ0 is small
enough to satisfy security level λ terminate, otherwise double n and restart the
procedure.

We give choices of parameters in Table 2.

Table 2. Parameter choices for multilinear jigsaw puzzles.

λ κ n q ‖ enc ‖ ‖ params ‖ σ0 BKZ Enum BKZ Sieve

52 2 214 ≈ 2781.5 ≈ 223.6 ≈ 223.6 1.006855 ≈ 2112.2 ≈ 2101.8

52 4 215 ≈ 21469.0 ≈ 225.5 ≈ 225.5 1.007031 ≈ 2110.4 ≈ 2102.3

52 6 215 ≈ 22114.9 ≈ 226.0 ≈ 226.0 1.010477 ≈ 264.4 ≈ 283.3

52 10 215 ≈ 23406.8 ≈ 226.7 ≈ 226.7 1.017404 ≈ 253.5 ≈ 268.6

52 20 216 ≈ 27014.8 ≈ 228.8 ≈ 228.8 1.018311 ≈ 256.6 ≈ 271.7

52 40 217 ≈ 214599.3 ≈ 230.8 ≈ 230.8 1.019272 ≈ 259.6 ≈ 274.8

52 80 218 ≈ 230508.4 ≈ 232.9 ≈ 232.9 1.020258 ≈ 262.7 ≈ 277.8

52 160 218 ≈ 260827.8 ≈ 233.9 ≈ 233.9 1.040912 ≈ 254.0 ≈ 254.0

80 2 214 ≈ 2837.5 ≈ 223.7 ≈ 223.7 1.007451 ≈ 298.2 ≈ 294.5

80 4 215 ≈ 21525.0 ≈ 225.6 ≈ 225.6 1.007330 ≈ 2103.7 ≈ 298.8

80 6 216 ≈ 22287.2 ≈ 227.2 ≈ 227.2 1.005661 ≈ 2160.9 ≈ 2128.3

80 10 217 ≈ 23844.7 ≈ 228.9 ≈ 228.9 1.004882 ≈ 2209.0 ≈ 2150.9

80 20 218 ≈ 27824.9 ≈ 230.9 ≈ 230.9 1.005074 ≈ 2198.9 ≈ 2148.5

80 40 219 ≈ 216152.9 ≈ 233.0 ≈ 233.0 1.005294 ≈ 2188.4 ≈ 2145.7

80 80 220 ≈ 233546.4 ≈ 235.0 ≈ 235.0 1.005528 ≈ 2179.7 ≈ 2143.6

80 160 221 ≈ 269810.9 ≈ 237.1 ≈ 237.1 1.005769 ≈ 2171.3 ≈ 2141.4

5 Implementation

Our implementation relies on FLINT [HJP14]. We use its data types to encode
elements in Z[X], Q[X], and Zq[X] but re-implement most non-trivial opera-
tions for the ring of integers of a Cyclotomic number field where the degree is a
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power of two. Other operations — such as Gaussian sampling or taking approx-
imate inverses — are not readily available in FLINT and are hence provided
by our implementation. For computation with elements in R we use MPFR’s
mpfr t [The13] with precision 2λ if not stated otherwise. Our implementation is
available under the GPLv2+ license at https://bitbucket.org/malb/gghlite-flint.
We give experimental results for computing multilinear maps using our imple-
mentation in Table 1.

For all operations considered in this section naive algorithms are available in
O (

n2 log q
)

or O (
n3 log n

)
bit operations. However, the smallest set of parame-

ters we consider in Table 1 is n = 215 which implies that if implemented naively
each operation would take 249 bit operations for the smallest set of parameters
we consider. Even quadratic algorithms can be prohibitively expensive. Hence, in
order to be feasible, all algorithms should run in quasi-linear time in n, or more
precisely in O (n log n) or O (

n log2 n
)
. All algorithms discussed in this section

run in quasi-linear time.

5.1 Polynomial Multiplication in Zq[X]/(Xn + 1)

During the evaluation of a GGH-style graded encoding scheme multiplications of
polynomials in Zq[X]/(Xn+1) are performed. Naive multiplication takes O (

n2
)

time in n, Asymptotically fast multiplication in this ring can be realised by first
reducing to multiplication in Z[X] and then to the Sch?nehage-Strassen algo-
rithm for multiplying large integers in O(n log n log log n). This is the strategy
implemented in FLINT, which has a highly optimised implementation of the
Sch?nehage-Strassen algorithm. Alternatively, we can get an O(n log n) algo-
rithm by using the Number-Theoretic Transform (NTT). Furthermore, using a
negative wrapped convolution we can avoid reductions modulo (Xn + 1):

Theorem 1 (Adapted from [Win96]). Let ωn be a nth root of unity in Zq

and ϕ2 = ωn. Let a =
∑n−1

i=0 aiX
i and b =

∑n−1
i=0 biX

i ∈ Zq[X]/(Xn + 1). Let
c = a · b ∈ Zq[X]/(Xn +1) and let a = (a0, ϕa1, . . . , ϕ

n−1an−1) and define b and
c analogously. Then c = 1/n · NTT−1

ωn
(NTTωn

(a) � NTTωn
(b)).

The NTT with a negative wrapped convolution has been used in lattice-based
cryptography before, e.g. [LMPR08]. We note that if we are doing many opera-
tions in Zq[X]/(Xn + 1) we can avoid repeated conversions between coefficient
and “evaluation” representations,

(
f(1), f(ωn), . . . , f(ωn−1

n )
)
, of our elements,

which reduces the amortised cost from O(n log n) to O(n). That is, we can con-
vert encodings to their evaluation representation once on creation and back only
when running extraction. We implemented this strategy. We observe a consider-
able overall speed-up with the strategy of avoiding the conversions where possi-
ble. We also note that operations on elements in their evaluation representation
are embarrassingly parallel.

5.2 Computing Norms in Z[X]/(Xn + 1)

During instance generation we have to compute several norms of elements in
Z[X]/(Xn + 1). The norm N (f) of an element f in Z[X]/(Xn + 1) is equal to

https://bitbucket.org/malb/gghlite-flint
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the resultant res(f,Xn + 1). The usual strategy for computing resultants over
the integers is to use a multi-modular approach. That is, we compute resul-
tants modulo many small primes qi and then combine the results using the
Chinese Remainder Theorem. Resultants modulo a prime qi can be computed
in O(M(n) log n) operations where M(n) is the cost of one multiplication in
Zqi

[X]/(Xn + 1). Hence, in our setting computing the norm costs O(n log2 n)
operations without specialisation.

However, we can observe that res(f,Xn + 1) mod qi can be rewritten as∏
(Xn+1)(x)=0 f(x) mod qi as Xn + 1 is monic, i.e. as evaluating f on all roots

of Xn + 1. Picking qi such that qi ≡ 1 mod 2n this can be accomplished using
the NTT reducing the cost mod qi to O(M(n)) saving a factor of log n, which
in our case is typically > 15.

5.3 Checking if (g) is a Prime Ideal

While we show in Sect. 4.1 that we do not necessarily require a prime (g), some
applications might still rely on this property. We hence provide an implementa-
tion for sampling such g.

To check whether the ideal generated by g is prime in Z[X]/(Xn + 1) we
compute the norm N (g) and check if it is prime which is a sufficient but not
necessary condition. However, before computing full resultants, we first check if
res(g, Xn + 1) = 0 mod qi for several “interesting” primes qi. These primes are
2 and then all primes up to some bound with qi ≡ 1 mod n because these occur
with good probability as factors. We list timings in Table 3.

Table 3. Average time of checking primality of a single (g) on Intel Xeon CPU E5–2667
v2 3.30 GHz with 256 GB of RAM using 16 cores.

n log σ wall time n log σ wall time n log σ wall time

1024 15.1 0.54 s 2048 16.2 3.03 s 4096 17.3 20.99 s

5.4 Verifying that (b(1)1 b
(1)
2 ) = (g)

If re-randomisation elements are required, then it is necessary that they generate
all of (g), i.e. (b(1)1 , b

(1)
2 ) = (g). If b

(1)
i = b̃

(1)
i · g for 0 < i � 2 then this condition

is equivalent to (b̃(1)1 ) + (b̃(1)2 ) = R. We check the sufficient but not necessary
condition gcd(res(b̃(1)1 ,Xn + 1), res(b̃(1)2 ,Xn + 1)) = 1, i.e. if the respective ideal
norms are co-prime. This check, which we have to perform for every candidate
pair (b̃(1)1 , b̃

(1)
2 ), involves computing two resultants and their gcd which is quite

expensive. However, we observe that gcd(res(b̃(1)1 ,Xn +1), res(b̃(1)2 ,Xn +1)) �= 1
when res(b̃(1)1 ,Xn+1) = 0 = res(b̃(1)2 ,Xn+1) mod qi for any modulus qi. Hence,
we first check this condition for several “interesting” primes and resample if this
condition holds. These “interesting” primes are the same as in the previous
section. Only if these tests pass, we compute two full resultants and their gcd.
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Indeed, after having ruled out small common prime factors it is quite unlikely
that the gcd of the norms is not equal to one which means that with good
probability we will perform this expensive step only once as a final verification.
However, this step is still by far the most time consuming step during setup even
with our optimisations applied. We note that a possible strategy for reducing
setup time is to sample m > 2 re-randomisers b

(1)
i and to apply some bounds on

the probability of m elements b̃
(1)
i sharing a prime factor (after excluding small

prime factors).

5.5 Computing the Inverse of a Polynomial Modulo Xn + 1

Instance generation relies on inversion in Q[X]/(Xn + 1) in two places. Firstly,
when sampling g we have to check that the norm of its inverse is bounded
by �g. Secondly, to set up our discrete Gaussian samplers we need to run many
inversions in an iterative process. We note that for computing the zero-testing
parameter we only need to invert g in Zq[X]/(Xn + 1) which can be realised in
n inversions in Zq in the NTT representation.

In both cases where inversion in Q[X]/(Xn + 1) is required approximate
solutions are sufficient. In the first case we only need to estimate the size of g−1

and in the second case inversion is a subroutine of an approximation algorithm
(see below). Hence, we implemented a variant of [BCMM98] to compute the
approximate inverse of a polynomial in Q[X]/(Xn + 1), with n a power of two.

The core idea is similar to the FFT, i.e. to reduce the inversion of f to
the inversion of an element of degree n/2. Indeed, since n is even, f(X) is
invertible modulo Xn + 1 if and only if f(−X) is also invertible. By setting
F (X2) = f(X)f(−X) mod Xn + 1, the inverse f−1(X) of f(X) satisfies

F (X2) f−1(X) = f(−X) (mod Xn + 1). (6)

Let f−1(X) = g(X) = Ge(X2) + XGo(X2) and f(−X) = Fe(X2) + XFo(X2)
be split into their even and odd parts respectively. From Eq. 6, we obtain F (X2)
(Ge(X2)+XGo(X2)) = Fe(X2)+XFo(X2) (mod Xn+1) which is equivalent to

{
F (X2)Ge(X2) = Fe(X2) (mod Xn + 1)
F (X2)Go(X2) = Fo(X2) (mod Xn + 1).

From this, inverting f(X) can be done by inverting F (X2) and multiplying
polynomials of degree n/2. It remains to recursively call the inversion of F (Y )
modulo (Xn/2 + 1) (by setting Y = X2). This leads to an algorithm for approx-
imately inverting elements of Q[X]/(Xn + 1) when n is a power of 2 which can
be performed in O(n log2(n)) operations in Q. We give experimental results in
Table 4.

We give experimental results comparing Algorithm 1 with FLINT’s extended
GCD algorithm in Table 4 which highlights that computing approximate inverses
instead of exact inverses is necessary for anything but toy instances.
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Algorithm 1. Approximate inverse of f(X) mod Xn + 1 using prec bits of
precision

if n = 1 then
g0 ← f−1

0

else
F (X2) ← f(X)f(−X) mod Xn + 1
F̃ (Y ) = F (Y ) truncated to prec bits of precision
G(Y ) ← InverseMod(F̃ (Y ), q, n/2)
Set Fe(X

2), Fo(X
2) such that f(−X) = Fe(X

2) + XFo(X
2)

Te(Y ), To(Y ) ← G(Y ) · Fe(Y ), G(Y ) · Fo(Y )
f−1(X) ← Te(X

2) + XTo(X
2)

f̃−1(X) = f−1(X) truncated to prec bits of precision
return f̃−1(X)

end if

Table 4. Inverting g ←↩ DZn,σ with FLINT’s extended Euclidean algorithm (“xgcd”),
our implementation with precision 160 (“160”), iterating our implementation until
‖f̃−1(X)·f(X)‖ < 2−160 (“160iter”) and our implementation without truncation (“∞”)
on Intel Core i7–4850HQ CPU at 2.30 GHz, single core.

n log σ xgcd 160 160iter ∞
4096 17.2 234.1 s 0.067 s 0.073 s 121.8 s

8192 18.3 1476.8 s 0.195 s 0.200 s 755.8 s

5.6 Small Remainders

The Jigsaw Generator as defined in [GGH+13b, Definition 8] takes as input ele-
ments ai in Zp where p = N (I) and produces level encodings with respect to
some source group Si. In particular, this algorithm produces some small rep-
resentative of the coset ai modulo (g) from large integers of size ≈ (σ

√
n)n if

we represents elements in Zp as integers 0 � ai < p. This can be accomplished
by using Babai’s trick and that g is small, i.e. by computing ai − g · �g−1 · ai�
in Q[X]/(Xn + 1). However, in order for this operation to produce sufficiently
small elements, we need g−1 either exactly or with high precision. Computing
such a high quality approximation of g−1 can be prohibitively expensive in terms
of memory and time. Our strategy for computing with a lower precision is to
rewrite ai as

ai =
�log2(ai)/B�∑

j=0

2B·j · aij

where aij < 2B for some B. Then, we compute small representatives for all 2B·j

and aij using an approximation of g−1 with precision B. Finally, we multiply the
small representatives for 2B·j and aij and add up their products. This produces
a somewhat short element which we then reduce using our approximation of g−1

with precision B until its size does not decrease any more.
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5.7 Sampling from a Discrete Gaussian

While the strategy in Sect. 5.6 produces short elements it does not necessar-
ily produce elements which follow a spherical Gaussian distribution and hence
do not leak geometric information about g. To produce such samples we need
to sample from the discrete Gaussian D(g),σ′,c where c is a small representa-
tive of a coset of (g). Furthermore, if encodings of zero are published, we are
required to sample from D(g),σ′,0 and D(g),σ′,1. For this, a fundamental building
block is to sample from the integer lattice. We implemented a discrete Gaussian
sampler over the integers both in arbitrary precision – using MPFR — and
in double precision — using machine doubles. For both cases we implemented
rejection sampling from a uniform distribution with and without table (“online”)
lookups [GPV08] and Ducas et al’s sampler which samples from DZ,kσ2 where
σ2 is a constant [DDLL13, Algorithm 12]. Our implementation automatically
chooses the best algorithm based on σ, c and τ (the tail cut). In our case σ is
typically relatively large, so we call the latter whenever sampling with a cen-
tre c ∈ Z and the former when c �∈ Z. We list example timings of our discrete
Gaussian sampler in Table 5. We note that in our implementation we — con-
servatively — only make use of the arbitrary precision implementation of this
sampler with precision 2λ.

Table 5. Example timings for discrete Gaussian sampling over Z on Intel Core i7–
4850HQ CPU at 2.30 GHz, single core.

Algorithm σ c double mpfr t

prec samp./s prec samp./s

Tabulated [GPV08, SampleZ] 10000 1.0 53 660.000 160 310.000

Tabulated [GPV08, SampleZ] 10000 0.5 53 650.000 160 260.000

Online [GPV08, SampleZ] 10000 1.0 53 414.000 160 9.000

Online [GPV08, SampleZ] 10000 0.5 53 414.000 160 9.000

[DDLL13, Algorithm 12] 10000 1.0 53 350.000 160 123.000

Using our discrete Gaussian sampler over the integers we implemented dis-
crete Gaussian samplers over lattices. Implemented naively this takes O(n3 log n)
operations even if we ignore issues of precision. Following [Duc13], we imple-
mented a variant of [Pei10] which we reproduce in Algorithm 2. Namely, we
first observe that D(g),σ′,0 = g · DR,σ′·g−T and then use [Pei10, Algorithm 1] to
sample from DR,σ′·g−T where g−T is the conjugate of g−1. That is, gT

0 = g0 and
gT

n−i = −gi for 1 � i < n for deg(g) = n − 1. We then proceed as follows. We
first compute an approximate square root (see below) of Σ′

2 = g−T · g−1 up to
λ bits of precision. We perform operations with log(n) + 4 (log(

√
n ‖ σ ‖)) bits

of precision. If the square root does not converge for this precision, we double
it and start over. We then use this value, scaled appropriately, as the initial
value from which to start computing a square-root of Σ2 = σ′2 · g−T · g−1 − r2

with r = 2 · �√log n �. We terminate when the square of the approximation
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Algorithm 2. Computing an approximate square root of σ′2 · g−T · g−1 − r2.
p, s′ ← log n + 4 log(

√
n ‖ σ ‖), 1

Σ′
2 ← g−T · g−1

while ‖s′2 − Σ′
2‖ > 2−λ do

s′ ←≈√Σ′
2 computed at prec. p until ‖s′2 − Σ2‖ < 2−λ or no more convergence

p ← 2p
end while
p, r ← p + 2 log σ′, 2 · �√log n	
Σ2 ← σ · g−T · g−1 − r2

s ←≈ √
Σ2 computed at precision p using s′ as initial approximation until ‖s2 −

Σ2‖ < 2−2λ

return s

Algorithm 3. Sampling from D(g),σ′
√

Σ2
′ ←≈

√
σ′2 · g−T · g−1 − r2

x′ ∈ R
n ←↩ ρ1,0

x ← x′ considered as an element ∈ Q[X]/(Xn + 1)
y ← √

Σ2
′ · x

return g · (
y	r)

is within distance 2−2λ to Σ2. This typically happens quickly because our initial
candidate is already very close to the target value.

Given an approximation
√

Σ2
′ of

√
Σ2 we then sample a vector x ←↩ Rn from

a standard normal distribution and interpret it as a polynomial in Q[X]/(Xn+1).
We then compute y =

√
Σ2

′ · x in Q[X]/(Xn + 1) and return g · (�y�r), where
�y�r denotes sampling a vector in Z

n where the i-th component follows DZ,r,yi
.

This algorithm is then easily extended to sample from arbitrary centres c. The
whole algorithm is summarised in Algorithm 3 and we give experimental results
in Table 6.

5.8 Approximate Square Roots

Our Gaussian sampler requires an (approximate) square root in Q[X]/(Xn +1).
That is, for some input element Σ we want to compute some element

√
Σ

′ ∈
Q[X]/(Xn + 1) such that ‖√

Σ
′ · √

Σ
′ − Σ‖ < 2−2λ. We use iterative methods

as suggested in [Duc13, Section 6.5] which iteratively refine the approximation
of the square root similar to Newton’s method. Computing approximate square
roots of matrices is a well studied research area with many algorithms known in
the literature (cf. [Hig97]). All algorithms with global convergence invoke approx-
imate inversions in Q[X]/(Xn + 1) for which we call our inversion algorithm.

We implemented the Babylonian method, the Denman-Beavers iteration
[DB76] and the Padé iteration [Hig97]. Although the Babylonian method only
involves one inversion which allows us to compute with lower precision, we used
Denman-Beavers, since it converges faster in practice and can be parallelised
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Table 6. Approximate square roots of Σ2 = σ′2 · g−T · g − r2 · I for discrete Gaussian
sampling over g with parameter σ′ on Intel Core i7–4850HQ CPU at 2.30 GHz, 2 cores
for Denman-Beavers, 4 cores for estimating the scaling factor, one core for sampling.
The last column lists the rate (samples per second) of sampling from D(g),σ′ .

Square root

prec n log σ′ Iterations Wall time log ‖(
√

Σ2
′
)
2 − Σ2‖ D(g),σ′/s

160 1024 45.8 9 0.4 s −200 26.0

160 2048 49.6 9 0.9 s −221 12.0

160 4096 53.3 10 2.5 s −239 5.1

160 8192 57.0 10 8.6 s −253 2.0

160 16384 60.7 10 35.4 s −270 0.8

on two cores. While the Padé iteration can be parallelised on arbitrarily many
cores, the workload on each core is much greater than in the Denman-Beavers
iteration and in our experiments only improved on the latter when more than 8
cores were used.

Most algorithms have quadratic convergence but in practice this does not
assure rapid convergence as error can take many iterations to become small
enough for quadratic convergence to be observed. This effect can be mitigated,
i.e. convergence improved, by scaling the operands appropriately in each loop
iteration of the approximation [Hig97, Section 3]. A common scaling scheme is
to scale by the determinant which in our case means computing res(f,Xn + 1)
for some f ∈ Q[X]/(Xn +1). Computing resultants in Q[X]/(Xn +1) reduces to
computing resultants in Z[X](Xn+1). As discussed above, computing resultants
in Z[X]/(Xn + 1) can be expensive. However, since we are only interested in an
approximation of the determinant for scaling, we can compute with reduced
precision. For this, we clear all but the most significant bit for each coefficient’s
numerator and denominator of f to produce f ′ and compute res(f ′,Xn + 1).
The effect of clearing out the lower order bits of f is to reduce the size of the
integer representation in order to speed up the resultant computation. With this
optimisation scaling by an approximation of the determinant is both fast and
precise enough to produce fast convergence. See Table 6 for timings.
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1 Introduction

The notion of key dependent message security [12] moves beyond our classical
notion of encryption security [22]. It demands a system remain secure even if an
attacker gains access to ciphertexts that encrypt messages that are, or depend on,
the very private keys of the system it is trying to attack. As a concrete example,
consider a special case of key-dependent security called n-circular security. Here
an encryption scheme is said to be n-circular secure, if an adversary is unable
to distinguish Enc(pk1, sk2),Enc(pk2, sk3), . . . ,Enc(pkn, sk1) from corresponding
zero encryptions.

While the notion of key dependent or circular security might first appear
to be just a technical exercise, this very problem arises in multiple contexts.
Camenisch and Lysyanskaya [17] applied circular secure encryption to build an
anonymous credentials scheme with certain properties. Other works used circular
security in formal methods to prove the soundness of symbolic protocols [2,26].
Perhaps the most compelling example comes from Gentry [20], who showed that
a fully homomorphic scheme for limited depth can be “bootstrapped” to work
for arbitrary depth circuits if the original system is sufficient to compute its own
decryption circuit and is 1-circular secure.

The first positive examples of key-dependent message security were given in
the random oracle model by Black et al. [12] and Camenisch and Lysyanskaya
[17]. It was a significant time later when Boneh, Hamburg, Halevi and Ostro-
vsky [14] gave an elegant construction of an n-circular secure encryption in the
standard model under the decision Diffie-Hellman assumption. Subsequently, a
sequence of further works [5,7–9,15,16] gave standard model constructions of key
dependent security for functions that could be arbitrary circuits on the private
key(s).

All the above constructions and proofs were based on encryption schemes
with specific properties. A natural question is whether key-dependent message
security is implied by IND-CPA (or IND-CCA) security. If this were true, we
would get it for free, without needing such specific properties of the encryption
scheme.

A cursory examination of the problem shows that in the broadest sense the
answer is no. One can derive a simple counterexample for 1-circular security (i.e.,
a system that encrypts its own private key) by slightly modifying a public key
encryption system. To do so, simply augment a standard private key K with a
randomly chosen K ′ ∈ {0, 1}λ and append y = f(K ′) to the public key where f
is a one way function. When encrypting a message m = (m1,m2) the system will
give out the message in the clear if f(m2) = y) and encrypt normally otherwise.
Clearly, an encryption of the private key will be detectable. Yet, if the function
f is one way and the original system is IND-CPA secure, the resulting system
will still be IND-CPA secure.

While it can be trivially shown (by the argument above) that IND-CPA secu-
rity does not imply 1-circular security, the case for n ≥ 2 becomes significantly
more challenging. Intuitively, when multiple public keys are thrown into the mix,
we need a system that is powerful enough to allow for different ciphertexts to
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“talk” to each other in a manner that allows for cycle detection, but does not
compromise IND-CPA security. So far there have been two approaches to this.
For the case of n = 2, Acar et al. [1] and Cash, Green and Hohenberger [18]
showed how to construct a counterexample from a certain class of asymmet-
ric bilinear groups.1 Here there must exist a bilinear map e : G1 × G2 → GT

where the decision Diffie-Hellman problem is believed to remain hard respec-
tively within G1 and within G2 (this is called the SXDH assumption). A second
approach by Koppula, Ramchen and Waters [25] showed a counterexample under
the assumption of indistinguishability obfuscation for poly-sized circuits. Inde-
pendently and concurrently, Marcedone and Orlandi [27] showed this under the
stronger assumption of virtual black box obfuscation.

Our Goals and Results. In this work, we investigate new constructions of
n-circular counterexamples with a focus on the case of n = 2. We have a partic-
ular interest in what qualities a cryptosystem must have to be able to separate
circular security from IND-CPA and IND-CCA security.

To start, we ask whether there is something special about the asymmetry
in bilinear groups that is inherent in the works of [1,18,34] or whether it is
actually more the bilinearity that matters. As a further question, we explore
how to derive such counterexamples from other assumptions such as the Learning
with Errors (LWE) problem. If it were difficult to find such counterexamples,
this might bolster are confidence in using 2-circular encryption as a method
of bootstrapping [20] fully homomorphic encryption systems that are based on
lattice assumptions.

The results of this paper broadly expand the class of assumptions from which
we can build 2-circular counterexamples. We first show for any constant k ≥ 2
how to build 2-circular counterexamples from a bilinear group under the deci-
sion k-linear assumption. Recall that the decision k-linear assumption becomes
progressively weaker as k becomes larger. This means that we can instantiate
counterexamples from symmetric bilinear groups and shows that asymmetric
groups do not have any inherently special property needed for this problem.
We then show how to create 2-circular counterexamples from the Learning with
Error (LWE) problem. This extends the reach of these systems beyond bilin-
ear groups and obfuscation, giving us a much broader understanding of circular
security and its challenges.

Our Approach. We begin by introducing a new abstraction called an n-Cycle
Tester that will simplify the process of finding and describing counterexam-
ples by focusing on the core problem. A cycle tester consists of four algorithms
(Setup,KeyGen,Enc,Test). The algorithms of Setup,KeyGen,Enc behave as in
a normal encryption scheme with a common trusted setup algorithm, while
the Test algorithm will take in an n-tuple of public keys and ciphertexts and

1 In a similar vein, Rothblum [34] presented an elegant counterexample for bit-
encryption under a generalization of the SXDH assumption applied to multilinear
groups.
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detect (with some non-negligible probability) the presence of a cycle. Notably
absent is the inclusion of a decryption algorithm. Thus, a tester does not require
that ciphertexts be decryptable in the traditional sense — it only matters that
the Test algorithm work with some non-negligible probability. We found that
relieving the responsibility of providing a system with decryption simplifies our
constructions and allows us to focus on the main ideas. The security property
required is IND-CPA security (recall that the basic IND-CPA game does not
involve a decryption algorithm).

Of course, to obtain a full-fledged counterexample of an encryption system we
actually do need to provide an encryption system that decrypts. We show how to
generically derive such a counterexample for n-circular encryption by combining
a standard IND-CPA secure cryptosystem (of sufficient message length) with
a n-cycle tester. The idea is fairly straightforward. The setup algorithm of the
counterexample will run the respective setup algorithms of the encryption and
cycle tester schemes. The public key is the pair of these public keys and the
secret key is the pair of secret keys. To encrypt a message m = (m1,m2), first
encrypt m = (m1,m2) under the regular encryption system, then encrypt just
m2 under the cycle tester. We can now see that: (1) the cycle tester will allow for
any key cycle to be detected and (2) the standard encryption scheme can be used
for decryption. A simple hybrid argument shows that the IND-CPA security of
the standard encryption scheme and cycle tester imply IND-CPA security of the
derived counterexample system.

We also show that it is possible to extend this transformation idea to chosen
ciphertext security, where we can combine any IND-CCA secure encryption sys-
tem (of appropriate message length) with the same IND-CPA secure cycle tester
to get an encryption system that is IND-CCA secure, but where encryption of
key cycles can be detected.

Again, the usefulness of this framework is its modularity. We show these basic
transformations once in Sect. 4, and then for each construction we only need to
focus on the basic cycle tester abstraction.

A Cycle Tester from Asymmetric Bilinear Groups. As a baseline for our explo-
ration (see [11] for the full details), we first create a 2-cycle tester from asym-
metric groups using the SXDH assumption. Our construction is extracted from
Cash et al. [18] (also similar to [1,34]), but simpler in that we only aim for the
tester abstraction.

In our construction, the Setup algorithm creates an asymmetric pairing
description PP = (p,G1,G2,GT , e) of prime order p. It also produces gener-
ators g ∈ G1 and h ∈ G2. The message space will be Z

∗
p.

A key can be of one of two types. The cycle detection algorithm Test will
work on any cycle of keys of two different types. The key generation algorithm
KeyGen will first flip a coin β ∈ {0, 1} to determine its type. It then picks a
random key s ∈ Z

∗
p. If β = 0, it sets its public key to be K = gs ∈ G1; otherwise,

its public key is K = hs ∈ G2.
The encryption algorithm will choose a random exponent t ∈ Zp and if

the key is of type β = 0, it produces the ciphertext as (C1 = Ktm = gstm,
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C2 = gt) ∈ G
2
1; otherwise if β = 1, it produces the ciphertext as (C1 = Ktm =

hstm, C2 = ht) ∈ G
2
2. With ciphertexts of this form, the test algorithm follows

straightforwardly. Suppose we had a pair of ciphertexts y = (C = (C1, C2), C ′ =
(C ′

1, C
′
2)) that encrypted a cycle for keys of different types. The algorithm can

test this by simply computing e(C1, C
′
2)

?= e(C2, C
′
1). Plugging in s, s′ as the

respective keys, t, t′ as the encryption randomness, and m,m′ as the messages,
we see that the test computes:

e(gstm, ht′
) ?= e(gt, hs′t′m′

).

This equality holds if m = s′ and m′ = s and will not hold with high probability
for a message independent of the private key.

One thing we emphasize here is that IND-CPA is clearly broken if the SXDH
assumption does not hold. Consider an encryption (C1 = Ktm = gstm, C2 =
gt) ∈ G

2
1 for the message m. The group elements g, (gs)m = gsm, C2 = gt, C1 =

gstm clearly form a DDH tuple. So if DDH is easy in G1, any β = 0 type key
is susceptible to attack. An analogous statement holds in G2 for any β = 1 key.
This potential attack demonstrates that the above construction relies strongly
on properties of asymmetric groups. We next show how to remove that reliance.

A Cycle Tester from the Decision k-Linear Assumption. We next move to con-
structing a cycle tester from the decision k-linear assumption for any constant
k ≥ 2. Recall that the k-linear assumption [24,35] is a parameterized family
of assumptions on the source elements of bilinear groups. The assumption class
becomes progressively weaker for larger values of k. Importantly, by moving
to the decision k-linear assumption we remove our dependence on asymmetric
groups.2 See [11] for a review.

In our construction, the setup algorithm first generates a bilinear source
group G of prime order p with generator g. Then it chooses a random invert-
ible (rank k) matrix A ∈ Z

k×k
p and computes gA, which along with the group

description forms the common public parameters. (We use the notation gM as
shorthand for the set of group elements resulting from raising g to each matrix
entry in M.) The message and key spaces are defined to be the set of rank k
matrices in Z

k×k
p .3

Once again the key generation algorithm will flip a coin β to determine its
type. Next it chooses a random W from the set of invertible matrices in Z

k×k
p .

If β = 0 the key is gAW; otherwise it is gWA.

2 We emphasize though that our constructions could use an asymmetric form of bilin-
ear maps if desired, although we describe things in terms of symmetric groups. The
main point is that there is no longer a reliance on asymmetry or that DDH is hard
within each group.

3 In our scheme, we actually let the message and key space be {0, 1}λ for security
parameter λ and define a pseudorandom generator from this to rank k matrices. That
way the message space is defined before the common setup is executed. However, for
simplicity we will just assume here that the message and key spaces are the set of
invertible k × k matrices.
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The encryption algorithm takes as input a message M ∈ Z
k×k
p and then

computes its inverse M−1. (Recall the message space is the set of invertible
matrices.) If the type bit β = 0, the algorithm chooses a random row vector r
of length k in Zp (i.e. a random matrix of dimension 1 × k). The ciphertext is
computed and output as C1 = grAW, C2 = grAM−1

. Thus, the ciphertext will
consist of two row vectors in the exponent. We observe all terms are computable
from the public keys and public parameters. If the type bit β = 1 the algorithm
chooses a random column vector r of length k in Zp (i.e., a random matrix of
dimension k×1). The ciphertext is computed and output as C1 = gWAr, C2 =
gM

−1Ar.
Now suppose we have two ciphertexts y = (C = (C1, C2), C ′ = (C ′

1, C
′
2)) of

different types (with the first being of β = 0). We can then test for a cycle by
testing if e(C1, C

′
2)

?= e(C ′
1, C2). To see why, suppose we had a cycle, so we have

that M′−1 = W−1 and M−1 = W′−1. Then, in the exponent, it follows that:

rAWM′−1Ar′ ?= rAM−1W′Ar′

rAIAr′ ?= rAIAr′

rA2r′ ?= rA2r′.

So if there is a cycle, the test will output 1. In contrast, if the messages encrypted
are independent of the key, the test will output 0 with high probability.

Finally, we can give a simple proof of IND-CPA security from the decision k-
linear assumption. More specifically, we will use the matrix k-linear assumption,
introduced by Naor and Segev [29], that was shown to be equivalent to the
decision k-linear assumption. Informally, the assumption says that it is hard to
distinguish gX and gY where X is a random matrix of rank i > k and Y is a
random matrix (of the same dimension) of rank j > k. I.e., the rank of matrices
in the exponent cannot be determined as long as it is greater than k. For our
purposes, we will be interested in using the difficulty of distinguishing between
rank k and rank k + 1 matrices.

Let us examine IND-CPA security for an encryption under a type β = 0 key.
(The argument for β = 1 will follow analogously.) We will devise a reduction
algorithm that receives a matrix k-linear assumption challenge gM, where M
is selected as either a random rank k matrix or rank k + 1 matrix. In the case
where it is a rank k matrix, our reduction algorithm will use it to derive the key
and ciphertext values of

gA, gAW, grAW, grA.

These can be used to generate a well-formed ciphertext of a given message.
However, if the reduction algorithm receives a random matrix of rank k + 1, it
will create key and ciphertext values distributed as

gA, gAW, grAW, guA.

In this case the fact that u is fresh randomness will information-theoretically
hide the message from the attacker. It then follows that any attacker with
non-negligible advantage against our system must break the matrix k-linear
assumption.
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In the full version [11], we present a different 2-cycle tester from the Decision
Linear assumption in symmetric pairing groups. This construction can be viewed
as closer to an extension of the SXDH one (sketched above and detailed in [11]) to
symmetric groups where new variables and equations are introduced to prevent
the use of pairings to disrupt IND-CPA security. However, it does not seem
to generalize to a system that is secure using the decision k-linear assumption
for k > 2 or help move toward a Learning with Errors Assumption. At the
same time, when compared to our more general construction just given for the
k = 2 (decision linear assumption) case, it achieves smaller public keys. Public
keys here are two group elements as opposed to four. Our techniques for this
construction might be of future interest for other applications of transforming
constructions proved under asymmetric group assumptions to those that do not
rely on them. We defer further details of these techniques to the full version [11].

A Cycle Tester from Learning with Errors Assumption. While there are now
many known examples of cryptographic functionalities that can be achieved in
both the bilinear and lattice settings, it is not at all clear how to imitate the
pairings-based approach above to obtain a cycle tester from the LWE assump-
tion. Typically, encryption schemes proven secure under LWE have ciphertexts
that are large, noisy vectors in Z

m
q and secret keys that are short vectors in Z

m,
with decryption computing a dot product and then removing the small effect
of the noise multiplied by the short key vector. It seems unlikely that we could
build a cycle tester using only this kind of structure, as the cycle effect would be
obscured by the interactions of large ciphertext vectors with the embedded noise.

Intuitively, we then expect that a cycle tester may use ciphertexts that have
two parts: a noisy vector and a short vector. The large, noisy vectors will help us
prove IND-CPA security from LWE, while the short vectors will help us perform
the cycle test. Naturally, the main challenge is designing the relationship between
the noisy and short vectors such that the short vectors do not break security
when there is no cycle.

The secret key for our scheme will generate a matrix B and a corresponding
short trapdoor basis TB . For IND-CPA security, it is important that B is hidden,
so one should ignore the notational collision and not think of this as correspond-
ing to the public matrix A in an LWE challenge, but rather the columns of B will
play the role of different hidden s vectors in typical LWE notation. The public
key will be formed by choosing several random vectors c1, . . . , c� and publishing
noisy versions of c1B, . . . , c�B as well as the (non-noisy) vectors c1, . . . , c� (so
these ci’s can be thought of as playing the role of the public matrix A in an
LWE challenge).

To encrypt a message, the message will first be used to generate a matrix Z
and a corresponding short trapdoor basis TZ . The encryptor will mimic typical
LWE-style encryption by forming a noisy version of sB for some vector s, but
since it does not know B, it will form s as a linear combination of c1, . . . , c� with
coefficients chosen randomly from {−1, 1}. Note that the encryptor can then
compute both s (without noise) and a noisy version of sB. The noisy version of
sB becomes the noisy part of the ciphertext, and the other part of the ciphertext
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is a short vector v such that Zv equals the transpose of s. Note that such a vector
v can be sampled appropriately using the trapdoor basis TZ .

For full details of how the cycle test works, see Sect. 6. The main idea is
that when there is a 2-cycle, the secret key matrix B for one ciphertext is the
same as the message matrix Z for the other ciphertext and vice versa. This
leads to a common relationship between the short vector of one ciphertext and
the noisy vector of the other, while when the B,Z matrices of each are fresh
and unrelated, this relationship does not appear. One convenient feature of this
scheme as compared to the bilinear schemes is that there is no need for different
types of ciphertexts. Intuitively, the pairing relationship has been replaced by a
dot product relationship between a short vector and a noisy one.

Proving IND-CPA security for this scheme can be accomplished in a few
steps. First, since B is hidden and its columns act like the hidden vector s in
a typical LWE challenge and the ci’s act like rows of the public matrix A, we
can argue that LWE implies the noisy public versions of ciB can be replaced
by uniformly random vectors, independent of the ci’s and B. Next, using a
convenient variant of the left over hash lemma from [3], we argue that the random
coefficients in {−1, 1} that form s from the ci’s and the noisy ciphertext vector
from the public noisy vectors supply sufficient entropy to replace both of these
with fresh uniformly random vectors as well. We are then left with an encryption
that samples a uniformly random s (now independent of the noisy part of the
ciphertext) and samples the short part of the ciphertext as a short vector v such
that Zv is the transpose of s. Here we can argue that the distribution of such a v
is statistically close to a distribution that is independent of Z: this follows from
a result in [21] that ensures us that the image of a short, Gaussian distributed
vector v under multiplication by Z is uniformly distributed in Z

n
q . Thus, by

employing LWE followed by a sequence of statistical arguments, we can arrive
at a point where the ciphertext is independent of the message, and this implies
IND-CPA security.

Other Related Work. Haitner and Holenstein [23] show black box impossibility
results for proving key-dependent message security from different cryptographic
assumptions. Their goal deviates from ours in two important ways. First, their
work focuses on impossibility results for ciphertext encrypting functions of its
own private keys, whereas we are concerned with the circular case where there
is a cycle over multiple private keys. Second, we are interested in concrete coun-
terexamples. In particular, it may be possible that IND-CPA security implies
certain key-dependent security properties even if there does not exist any black
box reduction. In contrast our counterexamples will show that this is impossible
if certain specific number theoretic assumptions hold.

2 Preliminaries

Background on pairings can be found in the full version [11].
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2.1 The k-LIN Assumption

Decision Linear and the k-LIN Family (k-LIN). We now present a family
of assumptions called the k-LIN assumptions (where k = 1 is the standard DDH
assumption and k = 2 is called Decision Linear [13]) [10,24]. Let G be a group
of prime order p ∈ Θ(2λ). For all p.p.t. adversaries A and k ≥ 1, the following
probability is 1/2 plus an amount negligible in λ:

Pr[g, g1, . . . , gk ← G; r1, . . . , rk ← Zp;T0 = g(r1+···+rk);T1 ← G; d ← {0, 1};
d′ ← A(g, g1, . . . , gk, gr1

1 , . . . , grk

k , Td) : d = d′].

In the generic group model, these k-LIN assumptions become progressively
weaker for increasing k.

In our proof of security in Sect. 5 we will use a theorem due to Naor and
Segev [29] that shows that under the decision k-linear assumption no attacker
can distinguish between a random rank i matrix and a random rank j matrix
(in the exponent and of the same dimensions) for i, j ≥ k.

2.2 Lattices and LWE

We let q, n, and m denote positive integers. Given a matrix A ∈ Z
n×m
q , we let

Λ⊥
q (A) denote the lattice {x ∈ Z

m : Ax = 0 mod q}. For u ∈ Z
n
q , we let Λu

q (A)
denote the set {x ∈ Z

m : Ax = u mod q}.
For a matrix A ∈ Z

n×m, we let ||A|| denote the �2 length of the longest
column of A, and we let ||A||GS denote ||Ã||, where Ã is the Gram-Schmidt
orthogonalization of the columns of A. We let At denote the transpose of the
matrix A.

Learning with Errors (LWE). Given integers n,m, a prime q, and a noise distri-
bution χ over Z, the (n,m, q, χ)-LWE problem is to distinguish the distributions
(A,Ats + e) and (A, u), where A is chosen uniformly from Z

n×m
q , s is chosen

uniformly from Z
n
q , e is chosen from χm, and u is chosen uniformly from Z

m
q .

Under a quantum reduction, Regev [33] showed that for certain noise dis-
tributions, the LWE problem is as hard as the worst-case SIVP and GapSVP.
Peikert [31] gave a reduction in the classical setting. Our construction will admit
a range of parameters where solving the LWE problem is as hard as approxi-
mating the worst-case GapSVP to polynomial (in n) factors, which is believed
to be computationally hard.

Trapdoor Generation. We will rely on the polynomial time algorithm Trap-
Gen(1n, 1m, q) (developed in [4,6,28]). This is a randomized algorithm that
when given m = Θ(n log q), outputs a full rank matrix A ∈ Z

n×m
q and an

accompanying basis TA ∈ Z
m×m for Λ⊥

q (A) such that the distribution of A is
negligibly close (in n) to uniform over Z

n×m
q and ||TA||GS = O(

√
n log q) with

all but negligible probability (as a function of n).
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Discrete Gaussian Distributions. We employ the discrete Gaussian distribution
Dσ(Γu

q (A)) on Γu
q (A), parameterized by σ > 0 (as defined e.g. in [33]). The salient

fact we will use about this distribution is that for a random matrix A ∈ Zn×m
q

and σ = Ω̃(
√

n), a vector sampled from Dσ(Λu
q (A)) has �2 norm less than σ

√
m

with probability at least 1 minus a quantity that is negligible in m.
We will rely on a polynomial time algorithm SampleD(A, TA, u, σ) [21]. This

is a randomized algorithm that when σ = ||TA||GS · ω(
√

log m), produces a
random vector x from a distribution that is statistically close to Dσ(Λu

q (A)).
We also employ the following result from [21] (appears as Corollary 5.4 in

that work):
Lemma 1. Let n and q be positive integers with q prime, and let m ≥ 2n log q.
Then for all but a 2q−n fraction of all A ∈ Z

n×m
q and for any σ ≥ ω(

√
log m),

the distribution of the syndrome u = Ae mod q is statistically close to uniform
over Z

n
q , where e is distributed according to DZm,σ.

Randomness Extraction. We will use the leftover hash lemma (see [3] e.g. for an
even stronger statement):
Lemma 2. Suppose that � > (j + 1) log q + ω(log j) and q > 2 is prime (for
integers q, j, �). Let R be an � × 1 vector chosen uniformly in {1,−1}� mod q.
Let A and B be matrices chosen uniformly in Z

j×�
q and Z

j×1
q respectively. Then,

the distribution (A,AR) is statistically close to the distribution (A,B).

3 Security Definitions

In this work, we will focus on public key encryption schemes that admit a global
setup algorithm.

Definition 1 (Public Key Encryption). A public key encryption scheme
Π = (Setup,KeyGen,Enc,Dec) for a message space M and secret key space S4

is a tuple of algorithms specified as follows:

– Setup(1λ) → PP. The Setup algorithm takes as input the security parameter
λ and outputs common public parameters PP.

– KeyGen(PP) → (pk , sk). The Key Generation algorithm takes as input the
public parameters PP and outputs a public pk and secret key sk ∈ S.

– Enc(pk ,m ∈ M) → C. The Encryption algorithm takes as input a public key
pk and a message m ∈ M and outputs a ciphertext C.

– Dec(sk , C) → m. The Decryption algorithm takes as input a secret key sk and
a ciphertext C and outputs either an error message ⊥ or a value m ∈ M .

By negl(k) we denote some negligible function, i.e., one such that, for all
c > 0 and all sufficiently large k, negl(k) < 1/kc. We abbreviate probabilistic
polynomial time as PPT.
4 Technically, the output of the Setup algorithm may be required to establish the

message and secret key spaces. For instance, the setup algorithm may output a
prime p and the message space might be set as Z

∗
p. For simplicity, we provide a

name for these sets at the scheme level, even though the elements in these sets may
not be defined until after Setup.



786 A. Bishop et al.

Perfect Correctness. An encryption scheme Π = (Setup,KeyGen,Enc,Dec) for
message space M is said to be perfectly correct if for all λ ∈ N, m ∈ M , and
(pk , sk) ∈ KeyGen(Setup(1λ)), it holds that Dec(sk ,Enc(pk ,m)) = m.

Security. We recall the notion of indistinguishability of encryptions under a
chosen-plaintext attack [22].

Definition 2 (IND-CPA Security). Let Π = (Setup,KeyGen,Enc,Dec) be a
public-key encryption scheme. For scheme Π, adversary A, and λ ∈ N, let
the random variable IND-CPA(Π,A, λ) be defined by the probabilistic algorithm
described on the left side of Fig. 1. We denote the IND-CPA advantage of A by
AdvcpaΠ,A(λ) = 2·Pr[IND-CPA(Π,A, λ) = 1]−1. We say that Π is IND-CPA secure
if AdvcpaΠ,A(λ) is negligible for all PPT A.

We also consider the indistinguishability of encryptions under a chosen-ciphertext
attack [19,30,32].

Definition 3 (IND-CCA Security). Let Π = (Setup,KeyGen,Enc,Dec) be a
public-key encryption scheme. Let the random variable IND-CCA(Π,A, λ) be
defined by an algorithm identical to IND-CPA(Π,A, λ) above, except that A has
access to an oracle Dec(sk , ·) that returns the output of the decryption algorithm
and A cannot query this oracle on input y. We denote the IND-CCA advantage of
A by AdvccaΠ,A(λ) = 2 ·Pr[IND-CCA(Π,A, λ) = 1]−1. We say that Π is IND-CCA
secure if AdvccaΠ,A(λ) is negligible for all PPT A.

3.1 Circular Security

We next define circular security of public-key encryption. This definition is
derived from the Key-Dependent Message (KDM) security notion of Black et al.
[12]. We follow prior counterexample definitions [1,18] which restrict the adver-
sary’s power (e.g., cannot ask for any affine function of the secret keys). The
adversary is asked to distinguish between an encryption cycle or encryptions of
zero as in [14,18]. The bit string zero is not actually in the message spaces we
consider, but this value can be encoded to be in the space; equivalently, one can
follow the approach of Acar et al. [1] which instead of zero, encrypts a fresh
random message.

Definition 4 (IND-CIRC-CPAn). Let Π = (Setup,KeyGen,Enc,Dec) be a public-
key encryption scheme. For integer n > 0, scheme Π, adversary A and λ ∈ N,
let the random variable IND-CIRC-CPAn(Π,A, λ) be defined by the probabilistic
algorithm in the middle of Fig. 1. We denote the IND-CIRC-CPAn advantage of
A by

Advn-circ-cpa
Π,A (λ) = 2 · Pr[IND-CIRC-CPAn(Π,A, λ) = 1] − 1.

We say that Π is IND-CIRC-CPAn secure if Advn-circ-cpa
Π,A (λ) is negligible for all

PPT A.
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IND-CPA(Π, A, λ)

b
r← {0, 1}

PP ← Setup(1λ)
(pk , sk) ← KeyGen(PP)
(m0, m1) ← A(pk)
y ← Enc(pk , mb)

b̂ ← A(y)

Output (b̂
?
= b)

IND-CIRC-CPAn(Π, A, λ)

b
r← {0, 1}

PP ← Setup(1λ)
For i = 1 to n:

(pk i, sk i) ← KeyGen(PP)
If b = 1 then

y ← EncCycle(pk, sk)
Else

y ← EncZero(pk, sk)

b̂ ← A(pk,y)

Output (b̂
?
= b)

EncCycle(pk, sk)

For i = 1 to n
mi ← sk (i mod n)+1

yi ← Enc(pk i, mi)
Output y

EncZero(pk, sk)

For i = 1 to n

mi ← 0|sk(imod n)+1|

yi ← Enc(pk i, mi)
Output y

Fig. 1. Experiments for Definitions 2 and 4, each for a message space M , and we assume
that m0, m1, sk i ∈ M . We write pk, sk, and y for (pk1, . . . , pkn), (sk1, . . . , skn) and
(y1, . . . , yn) respectively.

Discussion. Cash et al. [18] made a distinction between whether an adversary
could distinguish an encryption cycle from encryptions of zero (as in the standard
game above), or whether an adversary could actually recover the secret keys
(and provided the latter type of counterexample). Recently, Koppula et al. [25]
showed that if there exists (an IND-CPA secure) scheme with a PPT adversary
that can distinguish an encryption cycle (in the standard game), then it can
be transformed into another scheme with a corresponding adversary that can
extract the secret keys from the cycle. Thus, in this work, we can focus exclusively
on the standard definition.

4 A Framework for Generating Circular Counterexamples

We now present a general framework for creating circular security counterexam-
ples, which we will instantiate under a variety of different assumptions in the
subsequent sections. At the center of our framework is an abstraction called a
“cycle tester”. Like an encryption scheme, a cycle tester must be able to encode a
message in an IND-CPA secure manner. However, unlike an encryption scheme,
the cycle tester need not support a decryption operation, instead it must support
a testing operation which can detect the presence of an encryption cycle.

After formalizing this abstraction, we provide two results that use it. First, we
show how our tester can be combined with any IND-CPA encryption scheme (of
appropriate message length) to provide a full blown counterexample. Second,
we extend this idea to show how to combine any tester with any IND-CCA
encryption scheme to get an IND-CCA counterexample.

In addition to letting us focus on a narrower primitive for our counterex-
ample, this separation avoids duplication of work and minimizes assumptions.
In particular, we can design a single tester and then both the IND-CPA and
IND-CCA counterexamples follow. Most prior works did not address IND-CCA
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counterexamples. While Cash et al. [18] did, their IND-CCA counterexample
required the use of NIZKs, which is a stronger assumption than simply assum-
ing the existence of IND-CCA encryption schemes as we do here. Our abstraction
and transformation essentially show that designing IND-CCA counterexamples
is no harder than designing IND-CPA ones.

We remark that Koppula et al. [25] have a IND-CPA counterexample with
structure similar to our general transformation, however, no generic or IND-CCA
theorems are proven.

Definition 5 (n-Cycle Tester). A cycle tester Γ = (Setup,KeyGen,Enc,Test)
for message space M and secret key space S is a tuple of algorithms specified as
follows:

– Setup(1λ) → PP. The Setup algorithm takes as input the security parameter
λ and outputs common public parameters PP.

– KeyGen(PP) → (pk , sk). The Key Generation algorithm takes as input the
public parameters PP and outputs a public key pk and secret key sk ∈ S.

– Enc(pk ,m ∈ M) → C. The Encryption algorithm takes as input a public key
pk and a message m ∈ M and outputs a ciphertext C.

– Test(pk,y) → {0, 1}. On input pk = (pk1, . . . , pkn) and y = (C1, . . . , Cn),
the Testing algorithm outputs a bit in {0, 1}.

It also must possess the following properties. Let Π = (Setup,KeyGen,Enc, ·) be
an encryption scheme formed from the first three algorithms of the tester with
an empty decryption algorithm. Then, it must hold that:

1. (IND-CPA security) Π is IND-CPA secure according to Definition 2.
2. (Testing Correctness) the Testing algorithm’s advantage in distinguishing

encryption cycles, denoted Advn-circ-cpa
Π,Test (λ) from Definition 4, is non-negligible.

We now prove two theorems.

Theorem 1 (CPA Counterexample from Cycle Testers). If there exists
an IND-CPA-secure encryption scheme Π for message space M = (M1 × M2)
and secret key space S1 ⊆ M1 and an n-cycle tester Γ for message space M2

and secret key space S2 ⊆ M2, then there exists an IND-CPA-secure encryption
scheme Π ′ for message space M = (M1×M2) and secret key space S = (S1×S2)
that is n-circular insecure.

Proof. Let Π = (Setup1,KeyGen1,Enc1,Dec1) and Γ = (Setup2,KeyGen2,Enc2,
Test2). We construct an IND-CPA Π ′ = (Setup,KeyGen,Enc,Dec), together with
its IND-CIRC-CPA2 test algorithm Test, as follows.

Setup(1λ): On input 1λ, run PP1 ← Setup1(1λ) and PP2 ← Setup2(1λ). Output
PP = (PP1,PP2).

KeyGen(PP): On input PP = (PP1,PP2), run (pk1, sk1) ← KeyGen1(PP1) and
(pk2, sk2) ← KeyGen2(PP2). Output pk = (pk1, pk2) and sk = (sk1, sk2).

Enc(pk ,m): On input pk = (pk1, pk2) and m = (m1,m2) ∈ M , run c1 ←
Enc1(pk1, (m1,m2)) and c2 ← Enc2(pk2,m2). Output C = (c1, c2).
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Dec(sk , C): On input sk = (sk1, sk2) and C = (c1, c2), output Dec1(sk1, c1).
Test(pk,y): On input pk = (pk1, . . . , pkn) and y = (C1, . . . , Cn), parse pk i =

(ai, bi) and Ci = (ci, di) and output the bit Test2((b1, . . . , bn), (d1, . . . , dn)).

The correctness of Test follows directly from that of Test2. If (pk,y) con-
tains an encryption cycle (or encryptions of zero, respectively), then so will
((b1, . . . , bn), (d1, . . . , dn)), and thus by definition of the cycle tester, the test will
distinguish between these cases with non-negligible advantage.

It remains to argue that Π ′ is an IND-CPA secure encryption scheme. This
follows by a simple hybrid argument based on the fact that an encryption in Π ′

is a pair of encryptions from two different IND-CPA-secure schemes, Γ and Π.
We omit this proof as it is a simplified version of the IND-CCA proof that we
provide next.

Theorem 2 (CCA Counterexample from Cycle Testers). Let k, � be secu-
rity parameters and p(·) be a polynomial. If there exists an IND-CCA-secure
encryption scheme Π (with k-bit secret keys and (p(�) + 2k)-bit messages) and
an n-cycle tester Γ (with k-bit secret keys, k-bit messages, and p(�)-bit cipher-
texts), then there exists an IND-CCA-secure encryption scheme Π ′ for 2k-bit
messages that is n-circular insecure.

Proof. Let Π = (Setup1,KeyGen1,Enc1,Dec1) and Γ = (Setup2,KeyGen2,Enc2,
Test2) with the length constraints above. We construct an IND-CCA Π ′ =
(Setup,KeyGen,Enc,Dec), together with its IND-CIRC-CPA2 test algorithm Test,
as follows. We can no longer simply append the cycle-tester encryption to the
regular encryption, because changes to the cycle-testing portion might be lever-
aged to obtain a decryption of a portion of the challenge ciphertext. Instead, we
encrypt this cycle-testing portion using the regular CCA-secure scheme.

Setup(1λ): On input 1λ, run PP1 ← Setup1(1λ) and PP2 ← Setup2(1λ). Output
PP = (PP1,PP2).

KeyGen(PP): On input PP = (PP1,PP2), run (pk1, sk1) ← KeyGen1(PP1) and
(pk2, sk2) ← KeyGen2(PP2). Output pk = (pk1, pk2) and sk = (sk1, sk2).

Enc(pk , (ma,mb)): On input pk = (pk1, pk2) and message (ma,mb) ∈ {0, 1}k ×
{0, 1}k, run c2 ← Enc2(pk2,mb) and c1 ← Enc1(pk1, (ma,mb, c2)). Output
C = (c1, c2).

Dec(sk , C): On input sk = (sk1, sk2) and C = (c1, c2), run Dec1(sk1, c1). If
it does not return a message of the form (ma,mb,mc) ∈ {0, 1}k × {0, 1}k ×
{0, 1}p(λ) or if mc 	= c2, then output ⊥ (invalid ciphertext). Otherwise, output
the message (ma,mb) ∈ {0, 1}k × {0, 1}k.

Test(pk,y): On input pk = (pk1, . . . , pkn) and y = (C1, . . . , Cn), parse pk i =
(ai, bi) and Ci = (ci, di) and output the bit Test2((b1, . . . , bn), (d1, . . . , dn)).
Same as before.

As before, the correctness of Test follows directly from that of Test2. If (pk,y)
contains an encryption cycle (or encryptions of zero, respectively), then so will
((b1, . . . , bn), (d1, . . . , dn)), and thus by definition of the cycle tester, the test will
distinguish between these cases with non-negligible advantage.
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4.1 Proving IND-CCA Security via a Sequence of Games

It remains to argue that Π ′ is an IND-CCA secure encryption scheme. This
proof is significantly more involved than the IND-CPA case. We prove this using
a sequence of games from an encryption of a message M0 to an encryption of
M1 (where these messages come from the IND-CCA game). The public and
secret keys are always distributed as in the real scheme, but the structure of
the challenge ciphertext changes in each hybrid. We underline these changes for
the reader. Let the challenge messages be described as M0 = (m0,a,m0,b) and
M1 = (m1,a,m1,b). Then the hybrids are as follows:

Game 1. This corresponds to the original security game IND-CCA(Π ′,A, λ)
in which the challenger interacts with adversary A, except that the challenge
ciphertext is always an encryption of message M0.

1. Run Setup(1λ) to produce PP and then KeyGen(PP) to produce (pk , sk).
2. On decryption query Ci from A, output Dec(sk , Ci).
3. Provide the challenge ciphertext as C∗ = (c∗

1, c
∗
2), where c∗

1 = Enc1(pk1,
(m0,a, m0,b, c

∗
2)) and c∗

2 = Enc2(pk2,m0,b). This is a valid encryption of M0.
4. On decryption query Ci 	= C∗ from A, output Dec(sk , Ci).

Game 2. This is the same as Game 1, except that we change how the second
decryption queries to reject all requests where the first portion of the query
matches the first portion of the challenge.

1. Run Setup(1λ) to produce PP and then KeyGen(PP) to produce (pk , sk).
2. On decryption query Ci from A, output Dec(sk , Ci).
3. Provide the challenge ciphertext as C∗ = (c∗

1, c
∗
2), where c∗

1 = Enc1(pk1, (m0,a,
m0,b, c

∗
2)) and c∗

2 = Enc2(pk2,m0,b). This is a valid encryption of M0.
4. On decryption query Ci = (ci,1, ci,2) 	= C∗ from A, if ci,1 = c∗

1 output ⊥, oth-
erwise output Dec(sk , Ci).

Game 3. This is the same as Game 2, except that we now encrypt M1 in
the cycle tester portion and continue to encrypt M0 in the regular encryption
portion. We continue to reject all decryption queries where the regular encryption
portion matches the challenge.

1. Run Setup(1λ) to produce PP and then KeyGen(PP) to produce (pk , sk).
2. On decryption query Ci from A, output Dec(sk , Ci).
3. Provide the challenge ciphertext as C∗ = (c∗

1, c
∗
2), where c∗

1 = Enc1(pk1, (m0,a,
m0,b, c

∗
2)) and c∗

2 = Enc2(pk2,m1,b).
4. On decryption query Ci = (ci,1, ci,2) 	= C∗ from A, if ci,1 = c∗

1 output ⊥,
otherwise output Dec(sk , Ci).

Game 4. This is the same as Game 3, except that now the entire challenge
ciphertext is an encryption of M1. As before, we continue to reject all decryption
queries where the regular encryption portion matches the challenge.
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1. Run Setup(1λ) to produce PP and then KeyGen(PP) to produce (pk , sk).
2. On decryption query Ci from A, output Dec(sk , Ci).
3. Provide the challenge ciphertext as C∗ = (c∗

1, c
∗
2), where c∗

1 = Enc1(pk1, (m1,a,
m1,b, c

∗
2)) and c∗

2 = Enc2(pk2,m1,b).
4. On decryption query Ci = (ci,1, ci,2) 	= C∗ from A, if ci,1 = c∗

1 output ⊥,
otherwise output Dec(sk , Ci).

Game 5. This is the same as Game 4, except now all decryption queries are
answered as normal. The challenge ciphertext always contains an encryption of
M1.

1. Run Setup(1λ) to produce PP and then KeyGen(PP) to produce (pk , sk).
2. On decryption query Ci from A, output Dec(sk , Ci).
3. Provide the challenge ciphertext as C∗ = (c∗

1, c
∗
2), where c∗

1 = Enc1(pk1, (m1,a,
m1,b, c

∗
2)) and c∗

2 = Enc2(pk2,m1,b).
4. On decryption query Ci 	= C∗ from A, output Dec(sk , Ci).

4.2 Adversary’s Probability of Outputting 1 in These Games

Let Probi
A denote the probability that adversary A outputs a 1 in Game i. We

will now show, by a series of steps, that for any adversary A the difference in
its probability of outputting 1 between Game 1 (encryption of M0) and Game 5
(encryption of M1) is negligible. Thus, it cannot distinguish between these two
games.

Claim. For any adversary A, Prob2
A = Prob1

A.

Proof. These games are identical except that in Game 1 all decryption queries
Ci = C∗ are rejected whereas in Game 2 all decryption queries Ci = (ci,1, ci,2)
such that ci,1 = c∗

1 for C∗ = (c∗
1, c

∗
2) are rejected. This results, however, in

identical behavior on the decryption queries. Whenever ci,1 	= c∗
1, both games

answer the queries normally. Whenever Ci = C∗, neither game answers this
illegal challenge query. On ci,1 = c∗

1 but ci,2 	= c∗
2, Game 2 will output ⊥.

However, Game 1’s response is also to reject this query with the message ⊥ for
being a non-valid ciphertext, since the decryption of c∗

1 results in an intermediate
tuple of the form (m0,a,m0,b, c

∗
2) and the decryption algorithm checks that c∗

2 =
ci,2, which won’t be true in this case. Thus, the adversary gets identical responses
to its decryption queries (and everything else) in both games. Since the games
are identical, from the adversary’s viewpoint, it will output 1 with the same
probability.

Claim. If Γ is an IND-CPA-secure n-cycle tester with security parameter λ, then
for any adversary A, Prob3

A − Prob2
A ≤ negl(λ).

Proof. We show that an attacker’s probability of outputting 1 cannot be non-
negligibly different in Games 2 and 3, because that would imply an attack on
the IND-CPA security of the cycle tester. More formally, suppose there exists an
adversary A such that Prob3

A −Prob2
A = ε. Then we can construct an adversary

B that uses A to show that Γ is not an IND-CPA-secure n-cycle tester. B works
as follows:
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1. B runs Setup1(1λ) → PP1 and KeyGen1(PP1) → (pk1, sk1).
2. B obtains the public key pk2 from the IND-CPA encryption challenger.
3. B sends pk = (pk1, pk2) to A.
4. A returns two messages M0 = (m0,a,m0,b) and M1 = (m1,a,m1,b).
5. B sends (m0,b,m1,b) to the cycle tester encryption challenger and obtains the

challenge c∗
2.

6. B forms the challenge ciphertext by computing c∗
1 = Enc1(pk1, (m0,a,m0,b, c

∗
2))

and sending C∗ = (c∗
1, c

∗
2) to A.

7. Eventually, A returns a bit b̂ and B outputs b̂ to its challenger.

In the above, B perfectly simulates Game 2 for adversary A if the challenge
ciphertext c∗

2 contains an encryption of m0,b and, in the other case, B perfectly
simulates Game 3 for adversary A when the challenge ciphertext c∗

2 contains
an encryption of m1,b. Moreover, B succeeds if and only if A succeeds. Thus, if
Prob3

A −Prob2
A = ε, then we have Pr[B is correct] = 1

2 Pr[B is correct | IND-CPA
challenger chose 0] + 1

2 Pr[B is correct | IND-CPA challenger chose 1] = 1
2 Pr[A

is correct | Game 2] + 1
2 Pr[A is correct | Game 3] = 1

2 (1 − Prob2
A) + 1

2 (Prob3
A)

= 1
2 (1 −Prob2

A) + 1
2 (Prob2

A + ε) = 1
2 + ε

2 . Since we assumed the cycle tester was
IND-CPA secure, it must hold that ε ≤ negl(λ).

Claim. If Π is an IND-CCA-secure encryption scheme with security parameter
λ, then for any adversary A, Prob4

A − Prob3
A ≤ negl(λ).

Proof. Suppose there exists an adversary A such that Prob4
A −Prob3

A = ε. Then
we can construct an adversary B that uses A to show that Π is not an IND-
CCA-secure encryption scheme. B works as follows:

1. B obtains the public key pk1 from the IND-CCA encryption challenger.
2. B runs Setup2(1λ) → PP2 and KeyGen2(PP2) → (pk2, sk2).
3. B sends pk = (pk1, pk2) to A.
4. On receiving a decryption query for ciphertext Ci = (ci,1, ci,2) from A, B

sends ci,1 to its IND-CCA encryption challenger to obtain a message M . B
returns M to A.

5. A returns two messages M0 = (m0,a,m0,b) and M1 = (m1,a,m1,b).
6. B computes c∗

2 = Enc2(pk2,m1,b) and sends M ′
0 = (M0, c

∗
2) and M ′

1 = (M1, c
∗
2)

to the IND-CCA challenger and obtains the challenge c∗
1.

7. B sends the challenge ciphertext C∗ = (c∗
1, c

∗
2) to A.

8. On receiving a decryption query for ciphertext Ci = (ci,1, ci,2) where ci,1 	=
c∗
1 from A, B sends ci,1 to its IND-CCA encryption challenger to obtain a

message M . B returns M to A
9. Eventually, A returns a bit b̂ and B outputs b̂ to its challenger.

In the above, B perfectly simulates Game 3 for adversary A if the challenge
ciphertext c∗

1 contains an encryption of M ′
0 and, in the other case, B perfectly

simulates Game 4 for adversary A when the challenge ciphertext c∗
1 contains

an encryption of M ′
1. Moreover, B succeeds if and only if A succeeds. Thus, if

Prob4
A−Prob3

A = ε, then B’s probability of success in the IND-CCA security game
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is Pr[B is correct] = 1
2 Pr[B is correct | IND-CCA challenger chose 0] + 1

2 Pr[B is
correct | IND-CCA challenger chose 1] = 1

2 Pr[A is correct | Game 3] + 1
2 Pr[A

is correct | Game 4] = 1
2 (1 −Prob3

A) + 1
2 (Prob4

A) = 1
2 (1 −Prob3

A) + 1
2 (Prob3

A + ε)
= 1

2 + ε
2 . Since we assumed that Π was IND-CCA secure, it must hold that

ε ≤ negl(λ).

Claim. For any adversary A, Prob5
A = Prob4

A.

Proof. These games are identical except that in Game 4 all decryption queries
Ci = (ci,1, ci,2) such that ci,1 = c∗

1 for C∗ = (c∗
1, c

∗
2) are rejected in Game 5

whereas all decryption queries Ci = C∗ are rejected. This results, however, in
identical behavior on the decryption queries. This case is the mirror image of
the argument in the proof of Claim 4.2.

Conclusion of the Proof of Theorem 2. Given the above claims, we can con-
clude that if Γ is an IND-CPA-secure n-cycle tester and Π is an IND-CCA-
secure encryption scheme (with the appropriate length constraints), then for
any adversary A, it holds that Prob5

A − Prob1
A is negligible, implying that Π ′ is

an IND-CCA-secure encryption scheme.

5 A 2-Cycle Tester from the k-DLIN Assumption

We now present a 2-cycle tester from the decision k-Linear assumption in pairing
groups for any constant k (where this assumption is believed to hold for k ≥ 2
in this bilinear setting and the assumption grows weaker as k increases). We will
use a message space of {0, 1}λ. In our exposition we will use boldface to denote
a matrix such as M. We also use gM as shorthand to denote the group elements
corresponding to the raising g to each individual element of M.

Setup(1λ) → PP. The setup algorithm first runs G(1λ) to generate a (Type-1)
group G of prime order p with generator g. Next it defines a pseudorandom
generator PRG : {0, 1}λ → Z

k×k
p , which maps strings from {0, 1}λ to invertible

k ×k matrices over Zp. Finally, it chooses a random invertible matrix A ∈ Z
k×k
p

and computes gA. The public parameters, PP consist of the group description
G, the description of PRG and gA.

KeyGen(PP) → (pk , sk). The key generation algorithm first chooses random
w ∈ {0, 1}λ. The secret key sk = w. Next, it computes PRG(w) → W ∈ Z

k×k
p

and chooses a bit β ∈ {0, 1}. Finally, in addition to implicitly including PP, it
defines the public key as

pk =

{
(0,K = gAW) ∈ {0, 1} × G

k×k if β = 0;
(1,K = gWA) ∈ {0, 1} × G

k×k if β = 1.

Enc(pk = (β,K),m ∈ {0, 1}λ) → ct .
The encryption algorithm first computes computes PRG(m) → M ∈ Z

k×k
p

and then computes M−1. Note that since PRG maps to invertible matrices, M
will have an inverse.
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If the type bit β = 0 the key K = gAW for some W. The algorithm chooses
r as a random row vector of length k in Zp (i.e. a random matrix of dimension
1 × k). The ciphertext is computed and output as

C1 = grAW, C2 = grAM−1
.

Thus, the ciphertext will consist of two row vectors in the exponent. We observe
all terms are computable from the public keys and public parameters.

If the type bit β = 1 the key K = gWA for some W. The algorithm chooses r
as a random column vector of length k in Zp (i.e. a random matrix of dimension
k × 1). The ciphertext ct is computed and output as

C1 = gWAr, C2 = gM
−1Ar.

Test(pk,y) → {0, 1}. Since we are testing for 2-cycles, parse y = (C = (C1, C2),
C ′ = (C ′

1, C
′
2)). If the key types are identical i.e. β = β′ then just output a

random bit as a guess.
Otherwise, presume that β = 0, β′ = 1 (if it is the other way around just

flip the order). Then compute e(C1, C
′
2)

?= e(C ′
1, C2) and output the result. Note

here we overload notation so that the pairing operator e is over a matrix of group
elements and means matrix multiplication in the exponent. (Or in this case a
dot product in the exponent.)

Analysis of Test Algorithm. We analyze the correctness of the test algorithm.
Let’s consider two secret keys w,w′ where PRG(w) = W and PRG(w′) = W′.
Again, presume that β = 0, β′ = 1. The corresponding public keys will be
pk = gAW and pk = gW

′A. Now consider an encryption of m under pk and
m′ under pk ′ where PRG(m) = M and PRG(M ′) = M′. Let r and r′ be the
respective randomness used for each encryption.

The test equations outputs 1 iff e(C1, C
′
2)

?= e(C ′
1, C2) this is equivalent to

testing
rAWM′−1Ar′ ?= rAM−1W′Ar′. (1)

Let’s first consider the case where we have an encryption of a cycle. This
means that m′ = w and m = w′ so we have that M′−1 = W−1 and M−1 =
W′−1. Substituting these in we see that

rAWM′−1Ar′ ?= rAM−1W′Ar′

rAIAr′ ?= rAIAr′

rA2r′ ?= rA2r′.

Thus, on a cycle the test will output 1.
We now turn to the case of showing that an encryption of 0’s will output 0

(when the keys have different β types) with all but negligible probability.
First, we first let Z = PRG(0λ)−1 which is the matrix used to encrypt the

all 0’s string. Second, we consider the probability of the tester outputting 1,
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when W and W′ are chosen uniformly at random (and independently from Z)
from the set of full rank matrices, as opposed to being the output of a pseudo-
random generator. If there, was more than a negligible difference of the test in
outputting 1 in these two cases, it would lead to an attack on the security of the
pseudorandom generator.

We can now observe that the matrices X = AWZA and X′ = AZW′A are
distributed independently and uniformly random from full rank matrices. Note
we substituted Z for both M′−1 and M−1 in Eq. 1. Then u = rX and u′ = rX′

are independently distributed as uniformly at random row vectors of length k.
Finally, it follows that the probability that

ur′ ?= u′r′

is negligible in the security parameter. Thus, with probability negligibly close to
1 the test algorithm will output 0 when given an encryption of all 0’s.
IND-CPA Security of the Tester

Theorem 3. The above encryption scheme Π = (KeyGen,Enc,Test) (where the
decryption algorithm is ignored) is IND-CPA-secure under the k-Linear Assump-
tion in G.

The proof of this theorem can be found in the full version [11].

6 A 2-Cycle Tester from Learning with Errors

We now present a 2-Cycle Tester whose IND-CPA security follows from the Learn-
ing with Errors Assumption. We note that our construction is similar to multi-bit
Regev encryption.

6.1 Construction

Setup(1n) → PP. The setup algorithm chooses m, q, �, σ, r, α. These parameters
are chosen to satisfy the following constraints: m ≥ 2n log q, σ ≥ Lω(

√
log m),

q ≥ 5σ(m+1), � > (n+m+1) log q +ω(log(n+m)), r := σ�, α ≤ 1/(r
√

m + 1 ·
ω(

√
log n)), and q > 2 is prime. Here, L is defined as follows. We let z denote

the number of uniform random bits employed by TrapGen to generate a matrix
B in Z

n×m
q along with a trapdoor basis TB . L is a bound such that ||TB ||GS ≤ L

with overwhelming probability. (We note that this range of parameters allows
us to set α so that n/α is polynomial, and LWE is believed to be hard in this
parameter regime.) The public parameters are PP = (m, q, �, σ, r, α, z).

KeyGen(PP) → (pk , sk). The key generation algorithm chooses a uniformly
random secret key sk in {0, 1}z and runs TrapGen(sk) to produce a matrix
B ∈ Z

n×m
q and a corresponding trapdoor basis TB . It then chooses independent

and uniformly random vectors c1, . . . , c� ∈ Z
n
q and noise vectors γ1, . . . , γ� from

χm, where χ is distributed as �qΨα� mod q, where Ψα is a distribution on T of a
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normal variable with mean 0 and standard deviation α/
√

2π reduced modulo 1.
(We think of these vectors as row vectors.) In addition to implicitly including
the PP, it sets

pk = {c1, . . . , c�, y1 := c1B + γ1, . . . , y� := c�B + γ�}.

Enc(pk ,m ∈ {0, 1}z) → ct . The encryption algorithm runs TrapGen(m) to pro-
duce a matrix Z ∈ Z

n×m
q and a corresponding trapdoor basis TZ . It chooses

random signs r1, . . . , r� ∈ {−1, 1} and computes s :=
∑�

i=1 rici. It then uses TZ

to sample a short (column) vector v such that Zv = st, by calling the algorithm
SampleD. It computes C =

∑�
i=1 riyi, and sets the ciphertext as ct = (C, v).

Test((pk0, pk1), ((C0, v0), (C1, v1))) → {0, 1}. The cycle test algorithm compares
C0v1 to C1v0 and checks if there are close modulo q (if their distance is ≤ 2q/5).
If so, it outputs 1. If not, it outputs 0.

Analysis of Test Algorithm. We let B0, Z0, s0 be the B, Z and s values cor-
responding to ciphertext (C0, v0) and B1, Z1, s1 be the analogous values for
(C1, v1). When there is a cycle, we then have Z0 = B1 and Z1 = B0. We then
have B0v1 = st

1 and B1v0 = st
0. Noting that C0 = s0B0 + ψ0 for some small

vector ψ0, we see that

C0v1 = s0B0v1 + ψ0v1 = s0s
t
1 + ψ0v1.

Similarly, C1 = s1B1 + ψ1 for some small vector ψ1, so we have that

C1v0 = s1B1v0 + ψ1v0 = s1s
t
0 + ψ1v0.

We consider the size of ψ0v1 −ψ1v0 modulo q. First, |ψ0v1| is at most � times
the maximal size of |γjv1|. Using the same analysis as in the proof of Lemma
8.2 of [21], each of these is ≤ q

5� with high probability. Thus, |ψ0v1 − ψ1v0| ≤ 2q
5

with high probability.
Since all of v0, v1, ψ0, ψ1 are short, this will cause these values to be close

modulo q, so the cycle test will output 1 with high probability.
When there is no cycle, the matrices B0 and B1 are (statistically close) to

independent, uniformly random matrices. Thus the probability that s0B0v1 and
s1B1v0 will be within 2

5q modulo q is negligibly close to 2
5 . Thus the cycle test

wins the distinguishing game with probability negligibly close to 1
2 + 1

2 · 3
5 = 4

5 .

6.2 IND-CPA Security of the Tester

To prove that this construction satisfies IND-CPA, we define a sequence of secu-
rity games.

Game0 This is the regular IND-CPA security game for our construction:

1. The challenger runs Setup(1n) → PP = (m, q, �, σ, r, α, z).
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2. The challenger chooses a uniformly random secret key sk in {0, 1}z and runs
TrapGen(sk) to produce a matrix B ∈ Z

n×m
q and a corresponding trap-

door basis TB . It then chooses independent and uniformly random vectors
c1, . . . , c� ∈ Z

n
q and noise vectors γ1, . . . , γ� from χm. It sets

pk = {c1, . . . , c�, y1 := c1B + γ1, . . . , y� := c�B + γ�}.

The challenger gives the parameters PP and key pk to the attacker.
3. A The attacker submits two messages m0,m1 to the challenger.
4. The challenger flips a coin b ∈ {0, 1}. It runs TrapGen(mb) to produce a

matrix Z ∈ Z
n×m
q and a corresponding trapdoor basis TZ . It chooses random

signs r1, . . . , r� ∈ {−1, 1} and computes s :=
∑�

i=1 rici. It then uses TZ to
sample a short (column) vector v such that Zv = st, by calling the algorithm
SampleD. It computes C =

∑�
i=1 riyi, and sets the ciphertext as (C, v).

5. The attacker receives the challenge ciphertext. It then outputs a guess b′ and
wins if b′ = b.

Game1

2. The challenger chooses a uniformly random secret key sk in {0, 1}z and
runs TrapGen(sk) to produce a matrix B ∈ Z

n×m
q and a corresponding

trapdoor basis TB. It then chooses independent and uniformly random vec-
tors c1, . . . , c� ∈ Z

n
q and uniformly random vectors y1, . . . , y� ∈ Z

m
q . It sets

pk = {c1, . . . , c�, y1, . . . , y�}.

Game2

4. The challenger flips a coin b ∈ {0, 1}. It runs TrapGen(mb) to produce a
matrix Z ∈ Z

n×m
q and a corresponding trapdoor basis TZ . It chooses s ran-

domly in Z
n
q . It then uses TZ to sample a short (column) vector v such that

Zv = st, by calling the algorithm SampleD. It chooses C randomly from Z
m
q

and sets the ciphertext as (C, v).

Game3

4. The challenger samples the vector v from DZm,σ. It chooses C randomly from
Z

m
q and sets the ciphertext as (C, v).

At this point, the distribution of the ciphertext is independent of the message,
and it is clear that no PPT adversary can obtain a non-zero advantage.

Lemma 3. Under the LWE assumption for the noise distribution χ, no PPT
attacker can obtain a non-negligible difference in advantage between Game0 and
Game1.

Proof. We can collect the column vectors ct
1, . . . , c

t
� into a n × � matrix we call

D. We can collect the row vectors y1, . . . , ym into a � × m matrix we call Y and
the row vectors γ1, . . . , γ� into a � × m matrix we call Γ. We can then write the
public key as D,DtB + Γ. Since B is never published, each column of B is a
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fresh, uniform vector in Z
n
q , and therefore each column of DtB +Γ is distributed

as an LWE sample with D playing the role of the n×m matrix A and the column
of B playing the role of the random vector s. By a hybrid argument over the
columns, we can thus rely on LWE to change each yi to be uniformly distributed
in Z

m
q .

Lemma 4. No PPT attacker can obtain a non-negligible difference in advantage
between Game1 and Game2.

Proof. For this, we will argue that the distributions of s, C in Game1 and Game2

are statistically close. This is a direct application of Lemma 2 with j set to be
n+m. To see this, we consider the random signs r1, . . . , r� ∈ {−1, 1} as a column
vector R of length �. We then consider the (vertical) concatenation of st and Ct

into a n+m length column vector. In Game1, this is produced as MR, where M
is a (n + m) × � matrix formed by vertically concatenating D and Y t as defined
in the proof of the previous lemma. Since the matrices D,Y are now uniformly
chosen, replacing MR by a uniformly random (n+m)× 1 matrix (as in Game2)
is a statistically close distribution by Lemma 2.

Lemma 5. No PPT attacker can obtain a non-negligible difference in advantage
between Game2 and Game3.

Proof. We will argue that the distributions of v in Game2 and Game3 are sta-
tistically close. We first observe that in Game2, v is chosen so that Zv = st for
a uniformly random s that is now independent of the rest of the ciphertext. The
distribution of v here produced by SampleD is statistically close to DΛs

q(Z),σ.
Now by Lemma 1, if we consider the distribution DZm,σ, the probability mass
on the preimages of st under the mapping Zv = st is (up to a negligible statis-
tical distance) the same for each s. Thus, the distribution of v in both Game2

and in Game3 is statistically close to DZm,σ.
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