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Preface

ASIACRYPT 2015, the 21st Annual International Conference on Theory and Appli-
cation of Cryptology and Information Security, was held on the city campus of the
University of Auckland, New Zealand, from November 29 to December 3, 2015.
The conference focused on all technical aspects of cryptology, and was sponsored by
the International Association for Cryptologic Research (IACR).

The conference received 251 submissions from all over the world. The program
included 64 papers selected from these submissions by a Program Committee
(PC) comprising 43 leading experts of the field. In order to accommodate as many
high-quality submissions as possible, the conference ran in two parallel sessions, and
these two-volume proceedings contain the revised versions of the papers that were
selected. The revised versions were not reviewed again and the authors are responsible
for their contents.

The selection of the papers was made through the usual double-blind review pro-
cess. Each submission was assigned three reviewers and submissions by PC members
were assigned five reviewers. The selection process was assisted by a total of 339
external reviewers. Following the individual review phase, the selection process
involved an extensive discussion phase.

This year, the conference featured three invited talks. Phillip Rogaway gave the
2015 TACR Distinguished Lecture on “The Moral Character of Cryptographic Work,”
Gilles Barthe gave a talk on “Computer-Aided Cryptography: Status and Perspectives,”
and Masayuki Abe spoke on “Structure-Preserving Cryptography.” The proceedings
contain the abstracts of these talks. The conference also featured a traditional rump
session that contained short presentations on the latest research results of the field.

The best paper award was decided based on a vote by the PC members, and it was
given to “Improved Security Proofs in Lattice-Based Cryptography: Using the Rényi
Divergence Rather than the Statistical Distance” by Shi Bai, Adeline Langlois, Tan-
créde Lepoint, Damien Stehlé, and Ron Steinfeld. Two more papers, “Key-Recovery
Attacks on ASASA” by Brice Minaud, Patrick Derbez, Pierre-Alain Fouque, and Pierre
Karpman, and “The Tower Number Field Sieve” by Razvan Barbulescu, Pierrick
Gaudry, and Thorsten Kleinjung, were solicited to submit full versions to the Journal
of Cryptology.

ASIACRYPT 2015 was made possible by the contributions of many people. We
would like to thank the authors for submitting their research results to the conference.
We are deeply grateful to all the PC members and all the external reviewers for their
hard work to determine the program of the conference. We sincerely thank Steven
Galbraith, the general chair of the conference, and the members of the local Organizing
Committee for handling all the organizational work of the conference. We also thank
Nigel Smart for organizing and chairing the rump session.

We thank Shai Halevi for setting up and letting us use the JACR conference
management software. Springer published the two-volume proceedings and made these
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available at the conference. We thank Alfred Hofmann, Anna Kramer, and their col-
leagues for handling the editorial process. Last but not least, we thank the speakers,
session chairs, and all the participants for coming to Auckland and contributing to
ASIACRYPT 2015.

December 2015 Tetsu Iwata
Jung Hee Cheon
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Structure-Preserving Cryptography

Masayuki Abe

NTT Secure Platform Laboratories, NTT Corporation, Tokyo, Japan
abe.masayuki@lab.ntt.co. jp

Bilinear groups has been a common ground for building cryptographic schemes since its
introduction in seminal works [3, 5, 6]. Not just being useful for directly designing
schemes for their rich mathematical structure, they aim to modular construction of
complex schemes from simpler building blocks that work over the same bilienar groups.
Namely, given a description of blinear groups, several building blocks exchange group
elements each other, and the security of the resulting scheme is proven based on the
security of the underlying building blocks. Unfortunately, things are not that easy in
reality. Building blocks often require grues that bridge incompatible interfaces or they
have to be modified to work together and the security has to be re-proved.

Structure-preserving cryptography [2] is a paradigm for designing cryptographic
schemes over bilinear groups. A cryptographic scheme is called structure preserving if its
all public inputs and outputs consist of group elements of bilinear groups and the func-
tional correctness can be verified only by computing group operations, testing group
membership and evaluating pairing product equations. Due to the regulated interface,
structure-preserving schemes are highly inter-operable as desired in modular construc-
tions. In particular, combination of structure-preserving signatures and noninteractive
proof system of [4] yields numerous applications that protect signers’ or receivers’ pri-
vacy. The required properties on the other hand make some important primitives such as
pseudo-random functions and collision resistant shrinking commitments unavailable in
the world of structure-preserving cryptography. Interestingly, however, the constraints on
the verification of correctness aim to argue non-trivial lower bounds in some aspects of
efficiency such as signature size in the structure-preserving signature schemes.

Since the first use of the term ‘“structure-preserving” in [1] in 2010, intensive
research has been done for the area. In this talk, we overview state of the art on several
structure-preserving schemes including commitments and signatures with a careful
look about underlying assumptions, known bounds, and impossibility results. We also
show open questions and discuss promising directions for further research.

References

1. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-preserving
signatures and commitments to group elements. In: Advances in Cryptology - CRYPTO 2010,
30th Annual Cryptology Conference, Santa Barbara, CA, USA, 15-19 August 2010. Pro-
ceedings, pp. 209-236 (2010)
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Computer-Aided Cryptography:
Status and Perspectives

Gilles Barthe

IMDEA Software Institute, Madrid, Spain

Computer-aided cryptography is an emerging discipline which advocates the use of
computer tools for building and mechanically verifying the security of cryptographic
constructions. Computer-aided cryptography builds on the code-based game-based
approach to cryptographic proofs, and adopts a program verification approach to justify
common patterns of reasoning, such as equivalence up to bad, lazy sampling, or simply
program equivalence. Technically, tools like EasyCrypt use a program verification
method based on probabilistic couplings for reasoning about the relationship between
two probabilistic programs, and standard tools to reason about the probability of events
in a single probabilistic program. The combination of these tools, together with general
mechanisms to instantiate or combine proofs, can be used to verify many examples
from the literature.

Recent developments in computer-aided cryptography have explored two different
directions. On the one hand, several groups have developed fully automated techniques
to analyze cryptographic constructions in the standard model or hardness assumptions
in the generic group model. In turn, these tools have been used for synthesizing new
cryptographic constructions. Transformational synthesis tools take as input a crypto-
graphic construction, for instance a signature in Type I setting and outputs another
construction, for instance a batch signature or a signature in Type III setting. In con-
trast, generative synthesis tools take as input some size constraints and output a list of
secure cryptographic constructions, for instance padding-based encryption schemes,
modes of operations, or tweakable blockciphers, meeting the size constraints. On the
other hand, several groups are working on carrying security proofs to (assembly-level)
implementations, building on advances in programming languages, notably verified
compilers. These works open the possibility to reason formally about mitigations used
by cryptography implementers and to deliver strong mathematical guarantees, in the
style of provable security, for cryptographic code against more realistic adversaries.

For further background information, please consult: www.easycrypt.info.
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The Moral Character of Cryptographic Work

Phillip Rogaway’

Department of Computer Science
University of California, Davis, USA

Abstract. Cryptography rearranges power: it configures who can do what, from
what. This makes cryptography an inherently political tool, and it confers on the
field an intrinsically moral dimension. The Snowden revelations motivate a
reassessment of the political and moral positioning of cryptography. They lead
one to ask if our inability to effectively address mass surveillance constitutes a
failure of our field. I believe that it does. I call for a community-wide effort to
develop more effective means to resist mass surveillance. I plea for a reinvention
of our disciplinary culture to attend not only to puzzles and math, but, also, to
the societal implications of our work.

Keywords: Cryptography - Democracy - Ethics - Mass surveillance - Privacy -
Snowden revelations - Social responsibility

! Work on the paper and talk associated to this abstract has been supported by NSF Grant CNS
1228828. Many thanks to the NSF for their continuing support.
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Abstract. The ASASA construction is a new design scheme introduced
at ASIACRYPT 2014 by Biruykov, Bouillaguet and Khovratovich. Its ver-
satility was illustrated by building two public-key encryption schemes, a
secret-key scheme, as well as super S-box subcomponents of a white-box
scheme. However one of the two public-key cryptosystems was recently
broken at CRYPTO 2015 by Gilbert, Plut and Treger. As our main contri-
bution, we propose a new algebraic key-recovery attack able to break at
once the secret-key scheme as well as the remaining public-key scheme, in
time complexity 2% and 239 respectively (the security parameter is 128
bits in both cases). Furthermore, we present a second attack of indepen-
dent interest on the same public-key scheme, which heuristically reduces
its security to solving an LPN instance with tractable parameters. This
allows key recovery in time complexity 2°¢. Finally, as a side result, we
outline a very efficient heuristic attack on the white-box scheme, which
breaks an instance claiming 64 bits of security under one minute on a
single desktop computer.

Keywords: ASASA - Algebraic cryptanalysis - Multivariate cryptogra-
phy - LPN

1 Introduction

The idea of creating a public-key cryptosystem by obfuscating a secret-key cipher
was proposed by Diffie and Hellman in 1976, in the same seminal paper that
introduced the idea of public-key encryption [DH76]. While the RSA cryptosys-
tem was introduced only a year later, creating a public-key scheme based on
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symmetric components has remained an open challenge to this day. The interest
of this problem is not merely historical: beside increasing the variety of available
public-key schemes, one can hope that a solution may help bridging the perfor-
mance gap between public-key and secret-key cryptosystems, or at least offer
new trade-offs in that regard.

Multivariate cryptography is one way to achieve this goal. This area of
research dates back to the 1980’s [MI88,FD86], and has been particularly active
in the late 1990’s and early 2000’s [Pat95,Pat96,RP97,FJ03, ...]. Many of the
proposed public-key cryptosystems build an encryption function from a struc-
tured, easily invertible polynomial, which is then scrambled by affine maps (or
similarly simple transformations) applied to its input and output to produce the
encryption function.

This approach might be aptly described as an ASA structure, which should be
read as the composition of an affine map “A”, a nonlinear transformation of low
algebraic degree “S” (not necessarily made up of smaller S-boxes), and another
affine layer “A”. The secret key is the full description of the three maps A, S, A,
which makes computing both ASA and (ASA)~! easy. The public key is the
function ASA as a whole, which is described in a generic manner by providing
the polynomial expression of each output bit in the input bits (or group of n
bits if the scheme operates on Fan). Thus the owner of the secret key is able
to encrypt and decrypt at high speed, depending on the structure of S. The
downside is slow public key operations, and a large key size.

The ASASA Construction. Historically, attempts to build public-key encryp-
tion schemes based on the above principle have been ill-fated [FJ03,BFP11,
DGS07,DFSS07,WBDY9S, ...]'. However several new ideas to build multivari-
ate schemes were recently introduced by Biryukov, Bouillaguet and Khovra-
tovich at ASIACRYPT 2014 [BBK14]. The paradigm federating these ideas is
the so-called ASASA structure: that is, combining two quadratic mappings S by
interleaving random affine layers A. With quadratic S layers, the overall scheme
has degree 4, so the polynomial description provided by the public key remains
of reasonable size.

This is very similar to the 2R scheme by Patarin [PG97], which fell vic-
tim to several attacks [Bih00, DFKYZD99], including a powerful decomposition
attack [DFKYZD99, FP06], later developed in a general context by Faugere et al.
[FvzGP10,FP09a, FP09b]. The general course of this attack is to differentiate the
encryption function, and observe that the resulting polynomials in the input bits
live in a “small” space entirely determined by the first ASA layers. This essen-
tially allows the scheme to be broken down into its two ASA sub-components,
which are easily analyzed once isolated. A later attempt to circumvent this and
other attacks by truncating the output of the cipher proved insecure against
the same technique [FP06] — roughly speaking truncating does not prevent the
derivative polynomials from living in too small a space.

! HFEv- seems to be an exception in this regard.
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In order to thwart attacks including the decomposition technique, the authors
of [BBK14] propose to go in the opposite direction: instead of truncating the
cipher, a perturbation is added, consisting in new random polynomials of degree
four added at fixed positions, prior to the last affine layer?. The idea is that
these new random polynomials will be spread over the whole output of the
cipher by the last affine layer. When differentiating, the “noise” introduced by
the perturbation polynomials is intended to drown out the information about
the first quadratic layer otherwise carried by the derivative polynomials, and
thus to foil the decomposition attack.

Based on this idea, two public-key cryptosystems are proposed. One uses
random quadratic expanding S-boxes as nonlinear components, while the other
relies on the x function, most famous for its use in the SHA-3 winner KECCAK.
However the first scheme was broken at CRYPTO 2015 by a decomposition attack
[GPT15]: the number of perturbation polynomials turned out to be too small
to prevent this approach. This leaves open the question of the robustness of the
other cryptosystem, based on x, to which we answer negatively.

Black-Box ASASA. Besides public-key cryptosystems, the authors of [BBK14]
also propose a secret-key (“black-box”) scheme based on the ASASA structure,
showcasing its versatility. While the structure is the same, the context is entirely
different. This black-box scheme is in fact the exact counterpart of the SASAS
structure analyzed by Biryukov and Shamir [BS01]: it is a block cipher operating
on 128-bit inputs; each affine layer is a random affine map on Z?8, while the
nonlinear layers are composed of 16 random 8-bit S-boxes. The secret key is the
description of the three affine layers, together with the tables of all S-boxes.

In some sense, the “public key” is still the encryption function as a whole;
however it is only accessible in a black-box way through known or chosen-
plaintext or ciphertext attacks, as any standard secret-key scheme. A major dif-
ference however is that the encryption function can be easily distinguished from
a random permutation because the constituent S-boxes have algebraic degree at
most 7, and hence the whole function has degree at most 49; in particular, it
sums up to zero over any cube of dimension 50. The security claim is that the
secret key cannot be recovered, with a security parameter evaluated at 128 bits.

White-Box ASASA. The structure of the black-box scheme is also used as a
basis for several white-box proposals. In that setting, a symmetric (black-box)
ASASA cipher with small block (e.g. 16 bits) is used as a super S-box in a design
with a larger block. A white-box user is given the super S-box as a table. The
secret information consists in a much more compact description of the super
S-box in terms of alternating linear and nonlinear layers. The security of the
ASASA design is then expected to prevent a white-box user from recovering the
secret information.

2 A similar idea was used in [Din04].
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1.1 Owur Contribution

Algebraic Attack on the Secret-Key and x-Based Public-Key Schemes.
Despite the difference in nature between the y-based public-key scheme and the
black-box scheme, we present a new algebraic key-recovery attack able to break
both schemes at once. This attack does not rely on a decomposition technique.
Instead, it may be regarded as exploiting the relatively low degree of the encryp-
tion function, coupled with the low diffusion of nonlinear layers. Furthermore, in
the case of the public-key scheme, the attack applies regardless of the amount of
perturbation. Thus, contrary to the attack of [GPT15], there is no hope of patch-
ing the scheme by increasing the number of perturbation polynomials. As for the
secret-key scheme, our attack may be seen as a counterpart to the cryptanalysis
of SASAS in [BS01], and is structural in the same sense.

While the same attack applies to both schemes, their respective bottlenecks
for the time complexity come from different stages of the attack. For the y
scheme, the time complexity is dominated by the need to compute the kernel
of a binary matrix of dimension 2'2, which can be evaluated to 239 basic linear
operations®. As for the black-box scheme, the time complexity is dominated by
the need to encrypt 253 chosen plaintexts, and the data complexity follows.

This attack actually only peels off the last linear layer of the scheme, reducing
ASASA to ASAS. In the case of the black-box scheme, the remaining layers can
be recovered in negligible time using Biryukov and Shamir’s techniques [BS01].
In the case of the y scheme, removing the remaining layers poses non-trivial
algorithmic challenges (such as how to efficiently recover quadratic polynomials
A, B,C € Zs[Xq,...,X,]/(X? — X;), given A+ B - (), and some of the algo-
rithms we propose may be of independent interest. Nevertheless, in the end the
remaining layers are peeled off and the secret key is recovered in time complexity
negligible relative to the cost of removing the first layer.

LPN-Based Attack on the x Scheme. As a second contribution, we present
an entirely different attack, dedicated to the x public-key scheme. This attack
exploits the fact that each bit at the output of x is “almost linear” in the input:
indeed the nonlinear component of each bit is a single product, which is equal to
zero with probability 3/4 over all inputs. Based on this property, we are able to
heuristically reduce the problem of breaking the scheme to an LPN-like instance
with easy-to-solve parameters. By LPN-like instance, we mean an instance of a
problem very close to the Learning Parity with Noise problem (LPN), on which
typical LPN-solving algorithms such as the Blum-Kalai-Wasserman algorithm
(BKW) [BKWO03] are expected to immediately apply. The time complexity of
this approach is higher than the previous one, and can be evaluated at 2°¢ basic

3 In practice, vector instructions operating on 128-bit inputs would mean that the
meaningful size of the matrix is 2'3~7 = 2%, and in this context the number of basic
linear operations would be much lower. We also disregard asymptotic improvements
such as the Strassen or Coppersmith-Winograd algorithms and their variants. The
main point is that the time complexity is quite low — well within practical reach.
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operations. However it showcases a different weakness of the x scheme, providing
a different insight into the security of ASASA constructions. In this regard, it is
noteworthy that the security of another recent multivariate scheme, presented
by Huang et al. at PKC’12 [HLY12], was also reduced to an easy instance of
LWE [Reg05], which is an extension of LPN, in [AFF+14] 4.

Heuristic Attack on the White-Box Scheme. Finally as a side result,
we describe a key-recovery attack on white-box ASASA. The attack technique is
unrelated to the previous ones, and its motivation relies on heuristics rather than
a theoretical model. On the other hand it is very effective on the smallest white-
box instances of [BBK14] (with a security level of 64 bits), which we break under
a minute on a laptop computer. Thus it seems that the security level offered by
small-block ASASA is much lower than anticipated.

The same attack on white-box schemes was found independently by Dinur,
Dunkelman, Kranz and Leander [DDKL15]. Their approach focuses on small-
block ASASA instances, and is thus only applicable to the white-box scheme of
[BBK14]. Section5 of [DDKL15] is essentially the same attack as ours, minus
some heuristic improvements (see [MDFK15]). On the other hand, the authors
of [DDKL15] present other methods to attack small-block ASASA instances that
are less reliant on heuristics, but as efficient as our heuristically improved variant,
and thus provide a better theoretical basis for understanding small-block ASASA,
as used in the white-box scheme of [BBK14].

1.2 Structure of the Article

Section 3 provides a brief description of the three ASASA schemes under attack.
In Sect. 4, we present our main attack, as applied to the secret-key (“black-box”)
scheme. In particular, an overview of the attack is given in Sect.4.1. The attack
is then adapted to the yx public-key scheme in Sect.5.1, while the LPN-based
attack on the same scheme is presented in Sect. 5.2. Finally, our attack on the
white-box scheme is presented in Sect. 6.

1.3 Implementation and Full Version

Due to space constraints, some subordinate algorithms and proofs were removed
from the print version of this article. However none of the missing material is
essential to understanding the attacks. The full version is available on ePrint
[MDFK15]. It is also available at the following link, together with implementa-
tions of our attacks:

https://www.dropbox.com/sh/3glwcbx181fekre/ AAASeG7D-CGKM2gLmr-UVBK9a

* On this topic, the authors of [BBK14] note that “the full application of LWE to
multivariate cryptography is still to be explored in the future”.
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2 Notation and Preliminaries

The sign £ denotes an equality by definition. |S| denotes the cardinality of a set
S. The log() function denotes logarithm in base 2.

Binary Vectors. We write Zs as a shorthand for Z/27Z. The set of n-bit vectors
is denoted interchangeably by {0,1}™ or Z%. However the vectors are always
regarded as elements of Z% with respect to addition + and dot product (:|-). In
particular, addition should be understood as bitwise XOR. The canonical basis of
Zy is denoted by eq,...,en_1.

For any v € {0,1}", v; denotes the i-th coordinate of v. In this context, the
index ¢ is always computed modulo n, so vy = v,, and so forth. Likewise, if F is
a function mapping into {0,1}", F; denotes the i-th bit of the output of F.

For a € {0,1}", (F|a) is a shorthand for the function x — (F(x)|a).

For any v € {0,1}", |v]x denotes the truncation (vo,...,vx—1) of v to its
first k& coordinates.

For any bit b, b stands for b+ 1.

Derivative of a Binary Function. For F': {0,1}"* — {0,1}"™ and 6 € {0,1}™,
we define the derivative of F along & as dF/96 = z +— F(x)+ F(x+0). We write

A

OUF/Ovg ... 0vg_1 = O(...(OF/Ovy) ...)/Ovq_1 for the order-d derivative along
Voy - - -, Vd—1 € {0,1}™. For convenience we may write F’ instead of 0F/0v when
v is clear from the context; likewise for F”.

The degree of Fj is its degree as an element of Fa[zo, ..., 2m_1]/(x? — x;) in
the binary input variables. The degree of F' is the maximum of the degrees of
the Fj’s.

Cube. A cube of dimension d in {0,1}" is simply an affine subspace of dimen-
sion d. The terminology comes from [DS09]. Note that summing a function F
over a cube C' of dimension d, i.e. computing ) .~ F'(c), amounts to comput-
ing the value of an order-d differential of F' at a certain point: it is equal to
0UF/Ovg ... 0vg_1(a) for a, (v;) such that C = a + span{vp,...,vq_1}. In par-
ticular if F' has degree d, then it sums up to zero over any cube of dimension
d+1.

Bias. For any probability p € [0, 1], the bias of p is |2p — 1|. Note that the bias
is sometimes defined as |p —1/2]| in the literature. Our choice of definition makes
the formulation of the Piling-up Lemma more convenient [Mat94]:

Lemma 1 (Piling-up Lemma). For Xi,..., X, independent random binary
variables with respective biases by, ..., by, the bias of X =Y X; isb=]]b;.
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Learning Parity with Noise (LPN). The LPN problem was introduced in
[BKWO03], and may be stated as follows: given (A, As + e), find s, where:

— s € Zy is a uniformly random secret vector.

- Ae Zév X" is a uniformly random binary matrix.

— e € ZY is an error vector, whose coordinates are chosen according to a
Bernoulli distribution with parameter p.

3 Description of ASASA schemes

3.1 Presentation and Notations

ASASA is a general design scheme for public or secret-key ciphers (or cipher
components). An ASASA cipher is composed of 5 interleaved layers: the letter
A represents an affine layer, and the letter S represents a nonlinear layer (not
necessarily made up of smaller S-boxes). Thus the cipher may be pictured as:

/ / /
S R A 7 B BT R i~ N R

We borrow the notation of [GPT15] and write the encryption function F' as:

F=A4%05Y%0AY0S5%0 A"

Moreover, = (xq, ..., Zn_1) is used to denote the input of the cipher; z’ is the
output of the first affine layer A®; and so on, as pictured above. The variables z},
yi, etc., will often be viewed as polynomials over the input bits (z,...,Zn—1).
Similarly, F' denotes the whole encryption function, while F¥ = S* o A® is the
partial encryption function that maps the input x to the intermediate state y,
and likewise F=' = A% F¥ = AY 0 §% o A%, etc.

One secret-key (“black-box”) and two public-key ASASA ciphers are pre-
sented in [BBK14]. The secret-key and public-key variants are quite different in
nature, even though our main attack applies to both. We now present in turn the
black-box and white-box constructions and the public-key variant based on x.

3.2 Description of the Black-Box Scheme

It is worth noting that the following ASASA scheme is the exact counterpart of
the SASAS structure analyzed by Biryukov and Shamir [BS01], with swapped
affine and S-box layers.

Black-box ASASA is a secret-key encryption scheme, parameterized by m,
the size of the S-boxes and k, the number of S-boxes. Let n = km be the number
of bits of the scheme. The overall structure of the cipher follows the ASASA
construction, with layers as follows:
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— A* AY A? are a random invertible affine mappings Z4 — Z7%. Without loss of
generality, the mappings can be considered purely linear, because the affine
constant can be integrated into the preceding or following S-box layer. In the
remainder we assume the mappings to be linear.

— S§%,5Y are S-box layers. Each S-box layer consists in the application of k
parallel random invertible m-bit S-boxes.

All linear layers and all S-boxes are uniformly random among invertible elements,
and independent from each other.

In the concrete instance of [BBK14], each S-box layer contains k = 16
S-boxes over m = 8 bits each, so that the scheme operates on blocks of n =
128 bits. The secret key consists in three n-bit matrices and 2k m-bit S-boxes,
so the key size is 3 - n? 4 2k - m2™-bit long. With the previous parameters this
amounts to 14 KB.

It should be pointed out that the scheme is not IND-CPA secure. Indeed, an
8-bit invertible S-box has algebraic degree (at most) 7, so the overall scheme has
algebraic degree (at most) 49. Thus, the sum of ciphertexts on entries spanning a
cube of dimension 50 is necessarily zero. As a result the security claim in [BBK14]
is only that the secret key cannot be recovered, with a security parameter of
128 bits.

3.3 Description of the White-Box Scheme

As an application of the symmetric ASASA scheme, Biryukov et al. propose its
use as a basis for designing white-box block ciphers. In a nutshell, their idea is to
use ASASA to create small ciphers of, say, 16-bit blocks and to use them as super
S-boxes in e.g. a substitution-permutation network (SPN). Users of the cipher
in the white-box model are given access to super S-boxes in the form a table,
which allows them to encrypt and decrypt at will. Yet if the small ciphers used
in building the super S-boxes are secure, one cannot efficiently recover their keys
even when given access to their whole codebook, meaning that white-box users
cannot extract a more compact description of the super S-boxes from their tables.
This achieves weak white-box security as defined by Biryukov et al. [BBK14]:

Definition 1 (Key Equivalence [BBK14]). Let £ : {0,1}" x {0,1}" —
{0,1}™ be a (symmetric) block cipher. E(k) is called the equivalent key set of k if
for any k' € E(k) one can efficiently compute E' such thatVp E(k,p) = E'(K',p).

Definition 2 (Weak White-Box T-security [BBK14]). Let E : {0,1}" x
{0,1}" — {0,1}"™ be a (symmetric) block cipher. W(E)(k,-) is said to be a
T-secure weak white-box implementation of E(k,-) if Vp W(E)(k,p) = E(k,p)
and if it is computationally expensive to find k' € E(k) of length less than T bits
when giwen full access to W(E)(k,-).

Ezample 1. If Sig is a secure cipher with 16-bit blocks, then the full codebook
of Si6(k, ) as a table is a 220-secure weak white-box implementation of Sy6(k, -).
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For their instantiations, Biryukov et al. propose to use several super S-boxes
of different sizes, among others:

— A 16-bit ASASA;5 where the nonlinear permutations S are made of the parallel
application of two 8-bit S-boxes, with conjectured security of 64 bits against
key recovery.

— A 20-bit ASASA,p where the nonlinear permutations S are made of the parallel
application of two 10-bit S-boxes, with conjectured security of 100 bits against
key recovery.

— A 24-bit ASASA, where the nonlinear permutations S are made of the parallel
application of three 8-bit S-boxes, with conjectured security of 128 bits against
key recovery.

3.4 Description of the x-based Public-Key Scheme

The x mapping was introduced by Daemen [Dae95] and later used for several
cryptographic constructions, including the SHA-3 competition winner KECCAK.
The mapping x : {0,1}™ — {0,1}" is defined by:

Xi(a) = a; + @Gi1aiy2

The y-based ASASA scheme presented in [BBK14] is a public-key encryption
scheme operating on 127-bit inputs, the odd size coming from the fact that x is
only invertible on inputs of odd length. The encryption function may be written as:

F=A%0(P+xo0oAY0xo0A")
where:

— A®, AY, A* are random invertible affine mappings Z32” — Z3?7. In the remain-
der we will decompose A* as a linear map L* followed by the addition of a
constant C®, and likewise for AY, A*.

— x is as above.

— P is the perturbation. It is a mapping {0,1}'27 — {0,1}'27. For 24 output
bits at a fixed position, it is equal to a random polynomial of degree 4. On
the remaining 103 bits, it is equal to zero.

Since x has degree only 2, the overall degree of the encryption function is 4.
The public key of the scheme is the encryption function itself, given in the form
of degree 4 polynomials in the input bits, for each output bit. The private key
is the triplet of affine maps (A%, AY, A%).

Due to the perturbation, the scheme is not actually invertible. To circumvent
this, some redundancy is required in the plaintext, and the 24 bits of perturbation
must be guessed during decryption. The correct guess is determined first by
checking whether the resulting plaintext has the required redundancy, and second
by recomputing the ciphertext from the tentative plaintext and checking that it
matches. This is not relevant to our attack, and we refer the reader to [BBK14]
for more information.
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4 Structural Attack on Black-Box ASASA

Our goal in this section is to recover the secret key of the black-box ASASA
scheme, in a chosen-plaintext model. For this purpose, we begin by peeling off
the last linear layer, A*. Once A? is removed, we obtain an ASAS structure, which
can be broken using Biryukov and Shamir’s techniques [BS01] in negligible time.
Thus the critical step is the first one.

4.1 Attack Overview

Before progressing further, it is important to observe that the secret key of the
scheme is not uniquely defined. In particular, we are free to compose the input
and output of any S-box with a linear mapping of our choosing, and use the
result in place of the original S-box, as long as we modify the surrounding linear
layers accordingly. Thus, S-boxes are essentially defined up to linear equivalence.
When we claim to recover the secret key, this should be understood as recovering
an equivalent secret key; that is, any secret key that results in an encryption
function identical to the black-box instance under attack.

In particular, in order to remove the last linear layer of the scheme, it is
enough to determine, for each S-box, the m-dimensional subspace corresponding
to its image through the last linear layer. Indeed, we are free to pick any basis of
this m-dimensional subspace, and assert that each element of this basis is equal
to one bit at the output of the S-box. This will be correct, up to composing the
output of the S-box with some invertible linear mapping, and composing the
input of the last linear layer with the inverse mapping; which has no bearing on
the encryption output.

Thus, peeling off A* amounts to finding the image space of each S-box
through A*. For this purpose, we will look for linear masks a,b € {0,1}" over
the output of the cipher, such that the two dot products (F|a) and (F'|b) of the
encryption function F' along each mask are each equal to one bit at the output
of the same S-box in the last nonlinear layer SY. Let us denote the set of such
pairs (a,b) by S (as in “solution”).

In order to compute S, the core property at play is that if masks a and b are
as required, then the binary product (F|a)(F|b) has degree only (m — 1) over
the input variables of the cipher (meaning that (F|a)({F'|b) sums to zero over any
cube of dimension (m — 1) + 1), whereas it has degree 2(m — 1)? in general.

We define the two linear masks a and b we are looking for as two vec-
tors of binary unknowns. Then f(a,b) = (Fla)(F|b) may be expressed as a
quadratic polynomial over these unknowns, whose coefficients are (Fle;)(Fe;)
for (e;) the canonical basis of Z}. Now, the fact that f(a,b) sums to zero over
some cube C' gives us a quadratic condition on (a,b), whose coefficients are
S o (F(@)les) (F(O)les).

By computing n(n — 1)/2 cubes of dimension (m — 1)? + 1, we thus derive
n(n—1)/2 quadratic conditions on (a, b). The resulting system can then be solved
by relinearization. This yields the linear space K spanned by S.
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However we want to recover S, rather its linear combinations K. Thus in
a second step, we compute S as S = K N P, where P is essentially the set of
elements that stem from a single product of two masks a and b. While P is not
a linear space, by guessing a few bits of the masks a, b, we can get many linear
constraints on the elements of P satisfying these guesses, and intersect these
linear constraints with K.

The first step may be regarded as the core of the attack, and it is also
the computationally most expensive: essentially we need to encrypt plaintexts
spanning n(n — 1)/2 cubes of dimension (m — 1)2 + 1. We recall that in the
actual black-box scheme of [BBK14], we have S-boxes over m = 8 bits, and the
total block size is n = 128 bits, covered by k = 16 S-boxes, so the complexity
is dominated by the computation of the encryption function over 2'3 cubes of
dimension 50, i.e. 253 encryptions.

4.2 Description of the Attack

We use the notation of Sect.3.1: let F' = A% 0 S¥ 0 AY 0 §% 0 A" denote the
encryption function. We are interested in linear masks a € {0,1}"™ such that
(F|a) depends only on the output of one S-box. Since (F|a) = (S¥ 0 AY 0 5% o
A®|(A*)Ta), this is equivalent to saying that the active bits of (A4*)Ta span a
single S-box.

In fact we are searching for the set S of pairs of masks (a, b) such that (4%)Ta
and (A%)Th span the same single S-box. Formally, if we let (eg,...,e,_1) be the
canonical basis of ZJ, and let O; = span{e; : mt < i < m(t+ 1)} be the span of
the output of the t-th S-box, then:

S ={(a,b) € {0,1}" x {0,1}" : 3¢, (A*)Ta € O; and (4%)Tb € O,}

The core property exploited in the attack is that if (a,b) belongs to S, then
(Fla){F|b) has degree at most (m — 1)2, as shown by Lemma 2 below. On the
other hand, if (a,b) € S, then (F|a)(F|b) is akin to the product of two indepen-
dent random polynomials of degree (m — 1)2, and it reaches degree 2(m — 1)
with overwhelming probability.

Lemma 2. Let G be an invertible mapping {0,1}™ — {0,1}™ for m > 2. For
any two m-bit linear masks a and b, H = (Gla)(G|b) has degree at most m — 1.

Proof. 1t is clear that the degree cannot exceed m, since we depend on only m
variables (and we live in F3). What we show is that it is less than m — 1, as long
asm > 2.If a=0or b=0or a=0», this is clear, so we can assume that a, b are
linearly independent. Note that there is only one possible monomial of degree
m, and its coefficient is equal to 3, g 13 H(z). So all we have to show is that
this sum is zero.

Because G is invertible, G(z) spans each value in {0,1}" once as x spans
{0,1}™. As a consequence, the pair ((G|a), (G|b)) takes each of its 4 possible
values an equal number of times. In particular, it takes the value (1,1) exactly
1/4 of the time. Hence (G|a)(G|b) takes the value 1 exactly 2™~2 times, which
is even for m > 2. Thus } ¢ 13m H(x) = 0 and we are done. O
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In the remainder, we regard two masks a and b as two sequences of n binary
unknowns (ag, ..., an—1) and (bo,...,bn—1).

Step 1: Kernel Computation. If a, b are as desired, (F'|a)({F'|b) has degree at
most (m—1)2. Hence the sum of this product over a cube of dimension (m—1)2+1
is zero, as this amounts to an order-(m — 1) + 1 differential of a degree (m —1)?
function. Let then C' denote a random cube of dimension (m —1)? + 1 — that is,
a random affine space of dimension (m — 1)2+41, over {0,1}". We have:

Y (E(Q)a)F()b) =D Y aiFie) Y biFj(e)

ceC ceCi<n j<n

> (X FOF; () ai;

i,j<n ceC

Z ( Z Fi(C)Fj(C)) (a;ib; + a;b;)

i<j<n ceC

To deduce the last line, notice that ) - F;F; = 0 since F' has degree less
than dim C'. Since the equation above really only says something about a;b;+a;b;
rather than a;b; (which is unavoidable, since the roles of a and b are symmetric),
we define E = Z3" /2 sce its canonical basis as e; ; for i < j < n, and define
Aa,b) € E by: Aa,b);; = a;b; + a;b;. By convention we set A\;; = A, ; and
Aii = 0. The previous equations tells us that knowing only the n(n — 1)/2 bits
> ccc Fi(c)Fj(c) yields a quadratic condition on (a,b), and more specifically a
linear condition on A(a,b). Whence we proceed as follows:

Algorithm 1: GENERATECONDITION

Input: A random cube C' of dimension (m — 1)* 4+ 1 over {0,1}"
1 Let sum = (0,...,0) € E

2 for ce C do

3 (zoy -+, Tn-1) <« F(c)

4 t— (ziz;fori<j<n)eE

5

6

sum = sum +t

return sum

Let M be a binary matrix of size (n?/2) x (n(n — 1)/2), whose rows are
separate outputs of Algorithm 1. Let K be the kernel of this matrix. Then for
all (a,b) € S, A(a, b) is necessarily in K. Thus K contains the span of the A(a, b)’s
for (a,b) € S. Because M contains more than n(n — 1)/2, with overwhelming
probability K contains no other vector®. This is confirmed by our experiments.

5 This point is the only reason we pick n?/2 rows rather than only n(n —1)/2; but we
may as easily choose n(n —1)/2 plus some small constant. In practice it we can just
pick n(n — 1)/2 rows, and add more as required until the kernel has the expected
dimension km(m — 1)/2.
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Complexity Analysis. Overall, the dominant cost is to compute 2(m=1)*+1
encryptions per cube, for n%/2 cubes, which amounts to a total of n22(m=1"
encryptions. With the parameters of [BBK14], this is 2% encryptions. In prac-
tice, we could limit ourselves to dimension-(m — 1)? + 1 subcubes of a single
dimension-(m — 1)2 + 2 cube, which would cost only 2(m=D*+2 encryptions.
However we would still need to sum (pairwise bit products of) ciphertexts for
each subcube, so while this approach would certainly be an improvement in
practice, we believe it is cleaner to simply state the complexity as n22(m=1)*
encryption equivalents.

Beside that, we also need to compute the kernel of a matrix of dimension
n(n — 1)/2, which incurs a cost of roughly n°/8 basic linear operations. With
the parameters of [BBK14], we need to invert a binary matrix of dimension 23,
costing around 23 (in practice, highly optimized) operations, so this is negligible
compared to the required number of encryptions.

Step 2: Extracting Masks. Let:
P={Ae€E:3a,be{0,1}", A= Xa,b)}

Clearly we have A(S) € K N P. In fact, we assume A(S) = K N P, which is
confirmed by our experiments. We now want to compute K N P.

However we do not need to enumerate the whole intersection K N P directly:
for our purpose, it suffices to recover enough elements of A(S) such that the
corresponding masks span the output space of all S-boxes. Indeed, recall that
our end goal is merely to find the image of all k£ S-boxes through the last linear
layer. Thus, in the remainder, we explain how to find a random element in K NP.
Once we have found km linearly independent masks in this manner, we will be
done.

The general idea to find a random element of K N P is as follows. We begin
by guessing the value of a few pairs (a;,b;). This yields linear constraints on
the X; j’s. As an example, if (ag,by) = (0,0), then Vi,\g; = 0. Because the
constraints are linear and so is the space K, finding the elements of K satisfying
the constraints only involves basic linear algebra. Thus, all we have to do is
guess enough constraints to single out an element of S with constant probability,
and recover that element as the one-dimensional subspace of K satisfying the
constraints.

More precisely, assume we guess 27 bits of a, b as:

A0y -y Qr—1 = QQ, -+, Qp—1
b07"'7br—1 :/607“-’67‘—1
We view pairs (ay, 3;) as elements of Z3. Assume there exists some linear depen-

dency between the (o, 8;)’s: that is, for some (u;) € {0,1}":

i i, Bi) = (0,0)
i=0



16 B. Minaud et al.

Then for all j < n, we have:

r—1 r—1 r—1
Z'u")\i’j = bj Z i@y + aj Z ,qubz =0 (1)
=0 i=0 =0

Now, since Z3 has dimension only 2, we can be sure that there exist r — 2
independent linear relations between the («;,[;)’s, from which we deduce as
above (r —2)n linear relations on the \; ;’s. In the full version of this article (see
Sect. 1.3), we prove that at least (r — 2)(n — r) of these relations are linearly
independent.

Now, the cardinality of S is k(2™ — 1)(2™ — 2) ~ k22™. Hence if we choose
r = [log(|S])/2] & m + %logk, and randomly guess the values of (a;,b;) for
i < r, then we can expect that with constant probability there exists exactly one
element in S satisfying our guess. More precisely, each element has a probability
(close to) 272LSI/2] ~ 2-ISI of fitting our guess of 2r bits, so this probability
is close to |S|(|S|71(1 — |S|71)!SI71) ~ 1/e. Thus, if we denote by T' the sub-
space of E of vectors satisfying the linear constraints induced by our guess, with
probability roughly 1/3, A(S) NT contains a single element.

On the other hand, K is generated by pairs of masks corresponding to distinct
bits for each S-box in SY. Hence dim K = km(m —1)/2 = n(m —1)/2. As shown
earlier, from our 2r guesses, we deduce (at least) (r — 2)(n —r) linear conditions
on the (A;;)’s, so codim 7' > (r —2)(n —r). Since we chose r = m + 3 log k, this
means:

1 1
codim T > (m—2+§logk)~(n—m— §1ogk)
dimK = (m—1) - (n/2)

Thus, having §logk > 1, i.e. k > 4, and m + % logk > n/2, which is easily the
case with concrete parameters m = 8, k = 16, n = 128, we have codim T >
dim K, and so K NT is not expected to contain any extra vector beside the span
of A(§) NT. This is confirmed by our experiments.

In summary, if we pick r = m + %logk and randomly guess the first r pairs
of bits (a;,b;), then with probability close to 1/e, K N'T contains only a single
vector, which belongs to A(S) N T and in particular to A(S). In practice it may
be worthwhile to guess a little less then m + %logk pairs to ensure K N7 is
nonzero, then guess more as needed to single out a solution. Once we have a
single element in \(S), it is easy to recover the two masks (a, b) it stems from®.

In the end, we recover two masks (a,b) coming from the same S-box. If we
repeat this process n = km times on average, the masks we recover will span
the output of each S-box (indeed we recover 2 masks each time, so n tries is
more than enough with high probability). Furthermore, checking whether two
masks belong to the same S-box is very cheap (for two masks a, b, we only need
to check whether A(a,b) is in K), so we recover the output space of each S-box.

5 Tt can be shown that ) is invertible except on its zero output, which is reached only
when a = 0, b = 0 or @ = b. An inversion algorithm is given in the full version of
this article (cf. Sect. 1.3).
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Complexity Analysis. In order to get a random element in S, each guess of 2r
bits yields roughly 1/3 chance of recovering an element by intersecting linear
spaces K and T'. Since K has dimension n(m — 1)/2, the complexity is roughly
(n(m —1)/2)3 per try, and we need 3 tries on average for one success. Then the
process must be repeated n times. Thus the complexity may be evaluated to
roughly 3n*(m — 1)3 basic linear operations. With the parameters of [BBK14],
this amounts to 236 linear operations, so this step is negligible compared to
Step 1 (and quite practical besides).

Before closing this section, we note that our attack does not really depend
on the randomness of the S-boxes or affine layers. All that is required of the
S-boxes is that the degree of z;z; vary depending on whether ¢ and j belong to
the same S-box. This makes the attack quite general, in the same sense as the
structural attack of [BS01].

5 Attacks on the x-based Public-Key Scheme

In this section, our goal is to recover the private key of the y-based ASASA
scheme, using only the public key. For this purpose, we peel off one layer at a
time, starting with the last affine layer A*. We actually propose two different
ways to achieve this. The first attack is our main algebraic attack from Sect. 4,
with some modifications to account for the peculiarity of x and the presence
of the perturbation. It is presented in Sect.5.1. The second attack reduces the
problem to an instance of LPN, and is presented in Sect.5.2. Once the last
affine layer has been removed with either attack, we move on to attacking the
remaining layers in Sect. 5.3.

5.1 Algebraic Attack on the x Scheme

The x scheme can be attacked in exactly the same manner as the black-box
scheme in Sect. 4. Using the notations of Sect. 3.1, we have:

zizig1 = (Yi + y§+1y§+2) (Wi + y§+2y§+3)
= YiYis1 + ViVisoYics

Here the crucial point is that y; , is shared by the only degree-4 term of both
sides. Thus the degree of z;z;+1 is bounded by 6. Likewise, the degree of z;11(z; +
Ziv2) = 2iZit1 + Zi+12i+2 1s also bounded by 6, as the sum of two products
of the previous form. On the other hand, any product of linear combinations
(3" aizi) (O Bizi) not of the previous two forms does not share common y;’s in
its higher-degree terms, so no simplification occurs, and the product reaches
degree 8 with overwhelming probability.

As a result, we can proceed as in Sect.4. Let n = 127 be the size of the
scheme, p = 24 the number of perturbation polynomials. The positions of the
p perturbation polynomials are not defined in the original paper; in the sequel
we assume that they are next to each other. Other choices of positions increase
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the tedium of the attack rather than its difficulty. A brief discussion of random
positions for perturbation polynomials is offered in the full version of this arti-
cle (see Sect.1.3). Due to the rotational symmetry of x, the positions of the
perturbed bits is only defined modulo rotational symmetry; for convenience, we
assume that perturbed bits are at positions 2, —, to z,—1.

The full attack presented below has been verified experimentally for small
values of n.

Step 1: Kernel Computation. We fill the rows of an n(n—1)/2xn(n—1)/2
matrix with separate outputs of Algorithm 1, with the difference that the dimen-
sion of cubes in the algorithm is only 7 (instead of (m —1)2+1 = 50 in the black-
box case). Then we compute the kernel K of this matrix. Since n(n —1)/2 ~ 213
the complexity of this step is roughly 239 basic linear operations.

Step 2: Extracting Masks. The second step is to intersect K with the set P
of elements of the form A(a,b) to recover actual solutions (see Sect. 4, step 2). In
Sect. 4 we were content with finding random elements of K N P. Now we want to
find all of them. To do so, instead of guessing a few pairs (a;,b;) as earlier, we
exhaust all possibilities for (ag, bg) then (a1, b1) and so forth along a tree-based
search. For each branch, we stop when the dimension of K intersected with the
linear constraints stemming from our guesses of (a;, b;)’s is reduced to 1. Each
branch yields a solution A(a,b), from which the two masks a and b can be easily
recovered.

Step 3: Sorting Masks. Let a; = ((L?)T)"!e; be the linear mask such that
zi = (F|a;) (for the sake of clarity we first assume C?# = 0; this has no impact
on the attack until step 4 in Sect. 5.3 where we will recover C#). At this point
we have recovered the set S of all (unordered) pairs of masks {a;,a;4+1} and
{ai,a;—1 + aj41} for i < n — p, i.e. such that the corresponding z;’s are not
perturbed. Now we want to distinguish masks a;_1 + a;4+1 from masks a;. For
each ¢ such that z;_1, z;, ;41 are not perturbed, this is easy enough, as a; appears
exactly three times among unordered pairs in S: namely in the pairs {a;, a;—1},
{a;,a;42} and {a;,a;—1 + a;41}; whereas masks of the form a;_1 + a;41 appear
only once, in {a;—1 + ajt1,a0;}.

Thus we have recovered every a; for which z;_1, z;, z;+1 are not perturbed.
Since perturbed bits are next to each other, we have recovered all unperturbed
a;’s save the two a;’s on the outer edge of the perturbation, i.e. ap and an—p—_1.
We can also order all recovered a;’s simply by checking whether {a;,a;11} isin S.
In other words, we look at S as the set of edges of a graph whose vertices are the

elements of pairs in S; then the chain (a1, ..., a,—p—2) is simply the longest path
in this graph. In fact we recover (a1, ..., an—p—2), minus its direction: that is, so
far, we cannot distinguish it from (a,—p—2,...,a1). If we look at the neighbours

of the end points of the path, we also recover {ag, ap+az2} and {an—p—1, @n—p—3+
an—p—1}. However we are not equipped to tell apart the members of each pair
with only S at our disposal.
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To find ap in {ag,a0 + a2} (and likewise ap—p—2 in {an—p—1,an—p—3 +
an—p—1}), a very efficient technique is to anticipate a little and use the dis-
tinguisher in Sect. 5.2. Namely, in short, we differentiate the encryption function
F twice using two fixed random input differences §; # d2, and check whether
for a fraction 1/4 of possible choices of (81,d2), (92F/d51055|x) is equal to a
constant with bias 274: this property holds if and only if z is one of the a;’s.
This only requires around 2'6 encryptions for each choice of (d1,d2), and thus
completes in negligible time. Another more self-contained approach is to move
on to the next step (in Sect.5.3), where the algorithm we use is executed sepa-
rately on each recovered mask a;, and fails for ag + a2 but not a;. However this
would be slower in practice.

We assume either solution was chosen and we now know the whole ordered
chain (ag,...,an—p—1) of masks corresponding to unperturbed bits. At this
stage we are only missing the direction of the chain, i.e. we cannot distinguish
(@0, .-, an—p—1) from (an—p—_1,...,ap). This will be corrected at the next step.

As mentioned earlier, we propose two different techniques to recover the
first linear layer of the x scheme: one algebraic technique, and another based on
LPN. We have now just completed the algebraic technique. In the next section we
present the LPN-based technique. Afterwards we will move on to the remaining
steps, which are common to both techniques, and fully break the cipher with
the knowledge of (ao, ..., an—p—1), in Sect.5.3.

5.2 LPN-based attack on the x scheme

We now present a different approach to remove the last linear layer of the y
scheme. This approach relies on the fact that each output bit of x is almost
linear, in the sense that the only nonlinear component is the product of two
input bits. In particular this nonlinear component is zero with probability 3/4.
The idea is then to treat this nonlinear component as random noise. To achieve
this we differentiate the encryption function F' twice. So the first ASA layers of
F" yield a constant; then ASAS is a noisy constant due to the weak nonlinearity;
and ASASA is a noisy constant accessed through A*. This allows us to reduce the
problem of recovering A* to (a close variant of) an LPN instance with tractable
parameters.

We now describe the attack in detail. First, pick two distinct random differ-
ences 1,02 € {0,1}™. Then compute the order 2 differential of the encryption
function along these two differences. That is, let F”/ = 9F/d61002. This second-
order differential is constant at the output of F¥ = AY o x o A%, since x has
degree only two:

(FY')"(x) 2 OFY /85,085 = C(61,05)
Now if we look at a single bit at the output of F* = x o Fy/, we have:
(F)} (2) = (B} (2) + FL Flio(@) + FYL Flia (a4 61)
Yl (0 4 60) + YL Flp(a 40 4+0) (2)
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That is, a bit at the output of (F#)” still sums up to a constant, plus the sum of
four bit products. If we look at each product as an independent random binary
variable that is zero with probability 3/4, i.e. bias 27!, then by the Piling-up
Lemma (Lemma 1) the sum is equal to zero with bias 27%.

Experiments show that modeling the four products as independent is not
quite accurate: a significant discrepancy is introduced by the fact that the four
inputs of the products sum up to a constant. For the sake of clarity, we will
disregard this for now and pretend that the four products are independent. We
will come back to this issue later on.

Now a single linear layer remains between (F#)” and F”. Let s; € {0,1}"
be the linear mask such that (Fl|s;) = F7 (once again we assume C* = 0, and
postpone taking C* into account until step 4 of the attack). Then (F”|s;) is
equal to a constant with bias 27%. Now let us compute N different outputs of
F" for some N to be determined later, which costs 4N calls to the encryption
function F'. Let us stack these N outputs in an N X n matrix A.

Then we know that A-s; is either the all-zero or the all-one vector (depending
on (F¥')") plus a noise of bias 274, Thus finding s; is essentially an LPN problem
with dimension n = 127 and bias 27 (i.e. noise 1/2+27°). Of course this is not
quite an LPN instance: A is not uniform, there are n solutions instead of one, and
there is no output vector b (although we could isolate the last column of A and
define it as the output vector). However in practice none of this should hinder
the performance of a BKW algorithm [BKWO03]. Thus we make the heuristic
assumption that BKW performs here as it would on a standard LPN instance”.

In the end, we recover the masks s; such that z; = (F|s;). Before moving on to
the next stage of the attack, we go back to the earlier independence assumption.

Dependency Between the Four Products. In the reasoning above, we have
modeled the four bit products in Eq.2 as independent binary random variables
with bias 27!, That is, we assumed the four products would behave as:

I =W 1We+ X1 Xo + 1Yo+ 212,

where W;, X;,Y;, Z; are uniformly random independent binary variables. This
yields an expectancy E[II] with bias 27%. As noted above, this is not quite
accurate, and we now provide a more precise model that matches with our
experiments.

7 To the best of our knowledge, we have yet to see an LPN-like problem with a matrix A
on which BKW underperforms significantly compared to the uniform case, unless the
problem was specifically crafted for this purpose. The existence of multiple solutions
is also a notable difference in our case. However in a classic application of BKW with
a fast Fourier transform at the end, this only means that the Fourier transform will
output several solutions. Note that the dimension of the Fourier transform will be
close to 127/3 = 42 [LF06], and we have only = 2 solutions, so they are distinct
on their last 42 bits with very high probability.
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Since F¥' has degree two, (Fy/)” is a constant, dependent only on d; and ds.
This implies that in the previous formula, we have W1 + X1 +Y1 +2; = (FV){
and Wy + Xy + Yo + 2, = (Fy/);’_s_2 To capture this, we look at:

E(cr,e) =EI|W1+ X1+ Y1+ 71 =c1,Wa+ Xo+ Yo+ Z5 = ¢

It turns out that F(0,0) has a stronger bias, close to 273; while perhaps sur-
prisingly, E(a,b) for (a,b) # (0,0) has bias zero, and is thus not suitable for our
attack. Since G” is essentially random, this means that our technique will work
for only a fraction 1/4 of output bits. However, once we have recovered these
output bits, we can easily change d1,d2 to obtain a new value of G' and start
over to find new output bits.

After k iterations of the above process, a given bit at position i < 127 will
have probability (3/4)* of remaining undiscovered. In order for all 103 unper-
turbed bits to be discovered with good probability, it is thus enough to perform
k = —1og(103)/1og(3/4) ~ 16 iterations.

In the end we recover all linear masks a; corresponding to unperturbed bits at
the output of the second  layer; i.e. a; = ((4%)T)te; for 0 <i < n—p. The a;’s
can then be ordered into a chain (ao,...,an—p—1) like in Sect. 5.1: neighbouring
a;’s are characterized by the fact that (F|a;)(F|a;4+1) has degree 6. We postpone
distinguishing between (ag, ..., an—p—1) and (an—p—1,...,ap) until Sect. 5.3.

Complezity Analysis. According to [LF06, Theorem 2], the number of samples
needed to solve an LPN instance of dimension 127 and bias 274 is N = 2%
(attained by setting @ = 3 and b = 43). This requires 4N = 2%¢ encryptions.
Moreover the dominant cost in the time complexity is to sort the 2*4 samples a
times, which requires roughly 3-44-2%* < 252 basic operations. Finally, as noted
above, we need to iterate the process 16 times to recover all unperturbed output
bits with good probability, so our overall time complexity is increased to 2°6
for BKW, and 2°° encryptions to gather samples (slightly less with a structure
sharing some plaintexts between the 16 iterations).

5.3 Peeling Off the Remaining ASAS layers

Using either the algebraic attack from Sect.5.1 or the LPN-based attack from

Sect. 5.2, we have recovered the ordered chain (ag, ..., an—p—1) of linear masks
such that z; = (F|a;). More exactly we have recovered either (ao,...,an—p—1)
or (an—p—1,-..,a0). For simplicity assume we have recovered (ag, ..., 0n—p—1)-

We will be able to distinguish between the two cases later on.

Essentially, this means we have peeled off the last affine layer A* — or more
accurately, its linear component, over the unperturbed bits. Note that we can-
not hope to recover A* over perturbed bits, as perturbed bits are by definition
uniformly random polynomials of degree 4, and a linear combination of uni-
formly random polynomials of degree 4 is still a uniformly random polynomial
of degree 4. In other words, the perturbation is essentially defined modulo affine
equivalence.
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We now move on to peeling off the remaining layers one by one. We point
out once again that all steps below have been verified experimentally.

Step 4: from ASAS to ASA. The next layer we wish to peel off is a x layer,
which is entirely public. It may seem that applying x ~! should be enough. The
difficulty arises from the fact that we do not know the full output of x, but
only n — p bits. Furthermore, if our goal was merely to decrypt some specific
ciphertext, we could use other techniques, e.g. the fact that guessing one bit at
the input of x produces a cascade effect that allows recovery of all other input
bits from output bits, regardless of the fact that the function has been truncated
[Dae95]. However our goal is different: we want to recover the secret key, not just
be able to decrypt messages. For this purpose we want to cleanly recover the
input of x in the form of degree 2 polynomials, for every unperturbed bit. We
propose a technique to achieve this below.

From the previous step, we are in possession of (ag,...,an—p—1) as defined
above. Since by definition z; = (Fa;), this means we know z; for 0 < i < n — p.
Note that y; has degree only 2, and we know that z; = y; +yj, ,¥; . In order to
reverse the x layer, we set out to recover y;,y;, 1, ¥; o from knowledge of only
2;, by using the fact that yj,y;,,,;,, are quadratic.

This reduces to the following problem: given P = A+ B-C, where A, B, C are
degree-2 polynomials, recover A, B,C. A closer look reveals that this problem
is not possible exactly as stated, because P can be equivalently written in four
different ways as: A+ B-C, A+ B+B-C,A+C+B-C,A+ B+C+B-C.On
the other hand, we assume that for uniformly random A, B, C, the probability
that P may be written in some unrelated way, i.e. P=C+ D - E for C,D,FE
distinct from the previous four cases, is overwhelmingly low. This situation has
never occurred in our experiments. Thus our problem reduces to:

Problem 1. Given P = A+B-C, where A, B, C are degree-2 polynomials, recover
degree-2 polynomials A’, B’, C’ such that P = A’ + B’ - C".

Our previous assumption says A’ € span{A, B,C,1}; B',C’ € span{B,C,1}.
A straightforward approach to tackle this problem is to write B formally as
a generic degree-2 polynomial with unknown coefficients. This gives us k =
1+ n+n(n+1)/2 ~ n?/2 binary unknowns. Then we observe that B - P has
degree only 4 (since B> = B). Each term of degree 5 in B - P must have a
zero coefficient, and thus each term gives us a linear constraint on the unknown
coefficients of B. Collecting the constraints takes up negligible time, at which
point we have a k x k matrix whose kernel is span{B, C,1}. This gives us a
few possibilities for B’, C’, which we can filter by checking that A’ = P — B’ -
C’ has degree 2. The complexity of this approach boils down to inverting a
k-dimensional binary matrix, which costs essentially 2% basic linear operations.
In our case this amounts to 239 basic linear operations. In the full version of this
article (cf. Sect. 1.3), we present a more elaborate, but faster algorithm to solve
Problem 1.
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At this point, we have essentially removed the first two ASASA layers (assum-
ing C* = 0, but this actually has no impact up to this point). More work is
required to fully recover the layers, and analyze the remaining ASA layers. How-
ever the core of the attack is over. A detailed description of the remaining steps
to fully recover the remaining layers is provided in the full version of this article
(see Sect. 1.3).

6 A Practical Attack on White-Box ASASA

In this section we show that the actual security of small-block ASASA ciphers is
much lower than was estimated by Biryukov et al. We describe a procedure that
attempts to recover the secret components of the structure, thus breaking the
weak white-box security notion (Definition 2). Our algorithm relies rather heavily
on heuristics, and evaluating its efficiency requires actual implementation. We
focused on two instance, the 16-bit ASASA;s with claimed security of 64 bits
and the 20-bit ASASA5y with claimed security of 100 bits. A straightforward
implementation of our algorithm is able to recover the secret components of the
16-bit instance in under a minute and of the 20-bit instance in a few hours, when
running on a standard PC. We recall that the source code is publicly available
(see Sect.1.3). For the remainder of the section, we implicitly use the 16-bit
instance when describing the attack.

6.1 Attack Overview

Our general black-box attack from Sect.4 does not apply, because the block
size is too small to allow computing cubes of dimension 50. On the other hand,
the small block size makes it possible to compute the distribution of output
differences for a single input difference in very reasonable time. For instance,
one can compute and store the entire difference distribution table (DDT) of a
16-bit cipher in under a second using just a standard PC.

Remark 1. Our attack makes use of the full codebook of the ciphers, which in
general may be seen as a very strong requirement. This is however only natural in
the case of attacking white-box implementations, as the user is actually required
to be given the full codebook of the super S-boxes as part of the implementation.

From the results of Biryukov and Shamir [BS01], it is already enough to recover
only one of the external affine (or linear) layers in order to break the security
of ASASA. Indeed, this allows to reduce the cipher to either of ASAS or SASA,
which can then be attacked in practical time using their method. Thus we focus
on removing the first linear layer. In accordance with the opening remarks of
Sect. 4.1, this amounts to finding the image space of each S-box through (A4%)~1.

The general idea of the attack is to create an oracle able to recognize whether
an input difference § activates one or two S-boxes in the first S-box layer S&.
More accurately, we create a ranking function F such that F(4) is expected to
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be significantly higher if § activates only one S-box rather than two. We propose
two choices for F.

Both choices begin by computing the entire output difference distribution
D(9) for the input difference §, i.e. the row corresponding to ¢ in the DDT.
Then the value of F(¢) is computed from D(d). Choices for F are heuristic, but
experiments show they are quite efficient. We now present our two choices for F.

Walsh Transform. The idea behind this version of the attack is quite intuitive.
If & activates only one S-box, then after the first SA layers, two inner states
computed from any two plaintexts with input difference § are equal on the output
of the inactive S-box. Hence after the first ASA layers, they are equal along 2% —1
non-zero linear masks. Since these masks only traverse a single S-box layer before
the output of the cipher, linear cryptanalysis [Mat94] tells us that we can expect
some linear masks to be biased at the output of the cipher. On the other hand
if both S-boxes are active in the first round, no such phenomenon occurs, and
linear biases on the output differences are expected to be weaker.

In order to measure this difference, we propose to compute, for every output
mask a, the value f(a) = (3 c(0116(0F0d(x)]a)) — 2'° (where the sum is

computed in Z). That is, 27 f(a) is the bias of the output differences D(J)
along mask a. The function f can be computed efficiently, since it is precisely
the Walsh transform of the characteristic function of D(d), and we can use a fast
Fourier transform algorithm. Then as a ranking function F we simply choose
max(f), i.e. the highest bias among all output masks.

Number of Collisions. It turns out that performing the Walsh transform is
not truly necessary. Indeed, the number of collisions in D(4) is higher when ¢
activates only 1 S-box; where by number of collisions we mean 2'® minus the
number of distinct values in D(J). This may be understood as a consequence
of the fact that whenever § activates a single S-box, only 27 output differences
are possible after the first ASA layers; and depending on the properties of the
active (random) S-box, the distribution between these differences may be quite
uneven. Whereas if both S-boxes are active, 2% differences are possible and the
distribution is expected to be less skewed. Thus we pick as ranking function F
the number of collisions in D(J) in the previous sense.

Once we have chosen a ranking function F, we simply compute the ranking
of every possible input difference, sort the differences, and choose the highest 16
linearly independent differences according to our ranking. Our hope is that these
differences only activate a single S-box. In a second step, we will group together
differences that activate the same S-box. A more detailed description of the
attack, together with a discussion of the results, is provided in the full version
of this article (see Sect. 1.3).
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7 Conclusion

We presented a new algebraic attack able to efficiently break both the x-based
public-key cryptosystem and the secret-key scheme of [BBK14]. In addition we
proposed another attack that heuristically reduces the key-recovery problem on
the x scheme to an easy instance of LPN. In the case of the public-key scheme,
both attacks go through regardless of the amount of perturbation. For both
schemes, the attacks are quite structural (in the case of the black-box scheme, it
is in fact structural in the sense of [BS01]), and seem difficult to patch. Finally,
although the general attack on the black-box scheme does not carry over to the
small-block instances used for white-bow designs, we also showed a very efficient
dedicated attack on some of the small-block instances, casting a doubt on their
general suitability for that purpose.
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Abstract. The security of pairing-based crypto-systems relies on the
difficulty to compute discrete logarithms in finite fields Fp» where n is
a small integer larger than 1. The state-of-art algorithm is the number
field sieve (NFS) together with its many variants. When p has a special
form (SNFS), as in many pairings constructions, NFS has a faster vari-
ant due to Joux and Pierrot. We present a new NFS variant for SNFS
computations, which is better for some cryptographically relevant cases,
according to a precise comparison of norm sizes. The new algorithm is an
adaptation of Schirokauer’s variant of NFS based on tower extensions,
for which we give a middlebrow presentation.

Keywords: Discrete logarithm - Number field sieve - Pairings

1 Introduction

The discrete logarithm problem (DLP) in finite fields is a central topic in public
key cryptography. The case of F,» where p is prime and n is a small integer
greater than 1, albeit less studied than the prime case, is at the foundation
of pairing-based cryptography. The number field sieve (NFS) started life as a
factoring algorithm but was rapidly extended to compute discrete logarithms in
F, [19,20,33] and has today a large number of variants. In 2000 Schirokauer [34]
proposed the tower number field sieve (TNFS), as the first variant of NFS to
solve DLP in fields F,» with n > 1. When n is fixed and the field cardinality
@ = p" tends to infinity, he showed that TNFS has the heuristic complexity

Lo(1/3,3/64/9), where
Lo(a,¢) = exp ((c + o(1))(log Q)* (log log Q) ™) .

Schirokauer explicitly suggested that his algorithm might be extended to arbi-
trary fields Fp» with p = Lyn(a, ¢) and o > 2/3, while maintaining the same
complexity. Another question that he raised was whether his algorithm could
take advantage of a situation where the prime p has a special SNFS shape,
namely if it can be written p = P(u) for an integer u ~ p'/? and a polynomial
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P € Z[z] of degree d, with coefficients bounded by an absolute constant. By that
time, even for prime fields the answer was not obvious.

In 2006 Joux, Lercier, Smart and Vercauteren [21] presented a new variant
of NFS which applies to all finite fields Fp» with p = Lg(c, ¢) for some oo > 1/3
and ¢ > 0, the JLSV algorithm. When a > 2/3, their variant has complex-
ity Lg(1/3, ¥/64/9). The question of extending TNFS to arbitrary finite fields
became obsolete, because, in case of a positive answer, it would have the same
complexity as the JLSV algorithm.

In 2013 Joux and Pierrot [22] designed another variant of NFS which applies
to non-prime fields F,» where p is an SNFS prime. Their algorithm has com-
plexity Lg(1/3, ¥/32/9), which is the same as that of Semaev’s SNFS algorithm
for prime fields [35]. It shows that the pairing-based crypto-systems which use
primes of a special form are more vulnerable to NFS attacks than the gen-
eral ones. With this SNF'S algorithm, the second question of Schirokauer lost its
appeal as well, because this is the complexity that one can expect if Schirokauer’s
algorithm can be adapted when p is an SNFS prime.

In 2014 Barbulescu, Gaudry, Guillevic and Morain improved the algorithm
in [21] and set a record computation in a field F)2 of 180 decimal digits. However,
since their improvements do not apply to SNFS fields and since the algorithm
of Joux and Pierrot was never implemented, it is important to find a practical
algorithm for this case.

In this work, we wish to rehabilitate Schirokauer’s TNFS algorithm. First,
we show that indeed, the heuristic complexity carries over to the expected range
of finite fields. In order to make this analysis, we restate the original TNFS with
less technicalities than in the original presentation, taking advantage of tools
that were invented later (virtual logarithms).

We also show that for extension fields based on SNFS primes, the complexity
of TNFS drops as expected to Lg(1/3, ¥/32/9).

Finally, going beyond the asymptotic formulae, we compute estimates that
strongly suggest that TNF'S is currently the most efficient algorithm for solving
discrete logarithms in small degree extensions of SNFS prime fields, like the ones
arising naturally in several pairing constructions.

Outline. After a brief description of Schirokauer’s TNFS algorithm in Sect. 2,
we present it with sufficiently many details to get a proper asymptotic analysis
in Sect.3. In Sect. 4, several variants are described and analyzed, in particular
the SNFS variant. This is followed, in Sect.5 by more precise estimates for
cryptographically relevant sizes and comparisons with other methods. Further
technicalities about TNF'S are given in an appendix; these are mostly details that
could be useful for an implementation but which do not change the complexities.

2 Overview of TNFS

To fix ideas, we consider the case of “large” characteristic, so that we target
fields Fg with @ = p" so that p = Lg(a,¢) for some constants o > 2/3 and
c>0.
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Pohlig and Hellman explained how to retrieve the discrete logarithm modulo
the group order N from the value of the discrete logarithms modulo each prime
factor ¢ of N. Furthermore, Pollard’s rho algorithm allows to compute discrete
logarithms for small primes. Hence it is enough to explain how to use NFS
to compute discrete logarithms modulo prime factors £ of #IF. larger that
L,n(1/3,¢) for some ¢ > 0.

A classical variant of the NFS algorithm, e.g. one of the variants used for
factoring and DLP in prime fields, would involve two irreducible polynomials f
and ¢ in Z[z] which have a common irreducible factor of degree n modulo p.
Here, in TNFS, we consider two polynomials f and g defined over a ring R
which is of the form R = Z[t]/(h(t)) for a monic irreducible polynomial h of
degree n. We ask furthermore that i remains irreducible modulo p, so that there
is a unique ideal p above p in R. Finally, we require that f and g are irreducible
over Q[t]/(h(t)) and have a common root modulo p in R.

In the rest of the article, we denote by Ky the number field K f K,
K defined by f, and by K, the one defined by g. Also we write
Q(¢) for the number field defined by h, so that K, and K, are x %]
as in the figure aside.

The conditions imposed on f, g and h are such that there Q)
exist two ring homomorphisms from R[z] to R/p = Fpn, one h
going through R[z]/f(x), and the other through R[z]|/g(x), and
for any polynomial in R[z], the resulting values in Fp» coincide, Q

so that we get a commutative diagram as in the classical NFS
algorithm. In Fig. 1, we recall this diagram, where we have denoted by oy (resp.
ag) a root of f (resp. of g) and by m the common root of f and g modulo p
in R. These notations will be used all along the article.

Among the constructions that we tried, the best one uses polynomials f and
g with coeflicients in Z, so that Ky and K, can also be seen as compositum of
two fields. If one could find a construction where f and g have coefficients in R
one might find a faster algorithm. In any case, it is interesting to consider f and

/ R[x] \
(z))

Ky D Rla]/(f Rlz]/(9(z)) C K
af—m Qg —m
R— R% ‘A mod p
R/pR = Fpn

Fig. 1. Commutative diagram of TNFS for discrete logartihm in Fy~». In the classical
case, R = Z; here R = Z[i] is a subring of a number field of degree n where p is inert.
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g as polynomials in R[z], since this makes it easier to follow the analogy with
the classical NFS.

Once this setting is done, the TNFS algorithm proceeds as usual. For many
polynomials a(¢) — b(¢)x in R[z]|, we consider their two images in R[z]/f(z)
and R[z]/g(z), and test them for smoothness as ideals. Each time the images
are simultaneously smooth, we can write a relation: modulo the usual compli-
cations with principality defects and units that can be handled with the help
of Schirokauer maps, it is possible to convert a relation into a linear relation
between virtual logarithms of the factor base elements. Then follows a sparse
linear algebra step to deduce the values of these virtual logarithms. And finally,
the logarithm of an individual element of F,» can be computed using a descent
step.

In the next section, we will enter into details, define more precisely the factor
base elements and the associated smoothness notion, and estimate the size of
the objects involved in the computation.

3 Detailed Description and Analysis

3.1 Polynomial Selection

In the overview of the previous section, nothing is said about the respective
degrees of f and g. In fact, there is some freedom here, and we could in principle
have balanced degrees and use for instance the algorithm of [20] or we can use a
linear polynomial g, both methods leading to the same asymptotic complexity.
The only difference comes in the individual logarithm stage. In order to keep
the exposition short, we will only present this stage in the case where g is linear,
but in practice one must take the one which minimizes the overall time.

To fix ideas, we take a linear polynomial g and a polynomial f with a degree
of the form

deg f = d =6 (logQ/loglog Q)'/3,

where the constant ¢ is to be fixed later, so that f and g have a common root
modulo p. They can be obtained by a simple base-m algorithm applied to p,
yielding coefficients for f and g of size

1 e = llglloe = p*/ @0,

where the infinite norm of a polynomial with integer coefficients denotes the
infinite norm of the vector formed with the coefficients of a polynomial.

In practice, instead of a naive base-m approach, one can use any of the
methods known for the polynomial selection of NFS, when tackling prime fields
or integer factorization [3,4,13,23,24].

What is left is to select a polynomial h of degree n with small coefficients
which is irreducible modulo p. This is done by testing polynomials with small
coefficients and, heuristically, we succeed after n trials, on average, because the
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proportion of irreducible polynomials modulo p is &~ 1/n. As we will explain
later, rather than having the polynomial h with the smallest coefficients, we
might prefer some polynomial with slightly larger coefficients but with the addi-
tional property that the Galois group of h is cyclic of order n. For this, we test
polynomials in families with a cyclic Galois group; for example Foster [17] gives
a list of such families when degh = 2,3,4,5 or 6.

If one is interested in rigorous results and not in the most efficient polyno-
mials, then one can give a proof of existence based on Corollary 10 given in the
Appendix. Indeed, using cyclotomic fields one provably finds A with coefficients
upper bounded by (An® log(pn)©)™ for some effective constants A, B and C.

3.2 Relation Collection

In the top of the diagram of Fig.1 one usually takes a — bz with a,b € R.
However, in the most general version of NFS one considers polynomials in R[x]
of arbitrary degrees; this is in particular necessary for the medium characteristic
case [21]. In our study, we did not find any case where it was advantageous to
consider polynomials of degree more than 1. Therefore we stick to the traditional
(a, b)-pairs terminology for designating a linear polynomial a(t) — b(¢)x in R|x]
that we consider as a candidate for producing a relation.

Ideals of Degree 1. In our case, just like in the classical NFS, only ideals of
degree 1 can occur in the factorizations of the elements in the number rings
(except maybe for a finite number of ideals dividing the discriminants). This is,
of course only true when thinking in the relative extensions; we formalize this in
the following proposition that holds for f, but is also true for g if it happens to
be non-linear.

Proposition 1. Let Q(¢) be a number field and let O, be its ring of integers.
Let f be a monic irreducible polynomial in O,[x], and denote by a one of its
roots. We denote by Ky = Q(i, c) the corresponding extension field, and Oy its
ring of integers.

If q is a prime ideal of O, not dividing the index-ideal [Of : O,[a]], then the
following statements hold.

(i) The prime ideals of Oy above q are all the ideals of the form
Q = (q,7(a)),

where T'(z) are the lifts to O,[z] of the irreducible factors of f in O,/q[z].
Moreover degQ = degT'.

(ii) If a(t), b(t) € Z[t] are such that q divides N, jq(,)(a(t) —b(¢)a) and a(t)O,+
b(¢)O, = O,, then the unique ideal of Of above q which divides a(t) — b(t)a
is Q= (q,a — (1)) withr = a(:)/b(+)(mod q).

Proof. (i) This is Proposition 2.3.9 of [14].

(ii) Let Q = (q, T(«x)) be a prime ideal of K above q that divides a(¢)—b(¢)a. If
9 divides b(¢) then it also divides a(t), and therefore we have a contradiction with
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the condition a(t)O, +b(t)O, = O,. Therefore we can simplify valg (a(t) —b(¢)a)
by dividing out by b(:):

valg(a(t) — b(t)a) = valq(b(r)) + valg(a(e)/b(t) — a) = valg(a — 7(1)).

This expression is non-zero only when 9 = (q, & — r(¢)), which proves the state-
ment.

Note that the coprimality condition is similar to the one we have in the classical
case, and the proportion of coprime pairs is

11 (1 - N(lcn?) B <@<L1><2>’

q prime ideal in Q(¢)

replacing 1/(g(2) in the classical variant.

Factor Base. The consequence of this result is that we keep only the degree 1
ideals in the factor bases for each side. With the same notations as above, and
for a smoothness bound B, we define the factor base for f by

prime ideals of Oy, coprime to Disc(Ky), of norm less than B,
whose inertia degree over Q(¢) is one ’

Fi(B) ={

We define Fy(B) similarly; if ¢ is linear this is just the set of prime ideals of
O, = O, of norm less than B. Prime ideals that divide the ideal-index [Oy :
O,[«]] are not covered by Proposition 1, and can still occur in the factorization
of (a(c) —b(¢)ar). Moreover, since the index-ideal cannot be computed effectively,
we consider together all the ideals above Disc(f) and above the leading coefficient
of f. We denote them by D on the f-side, and Dy on the g-side. The cardinalities
of these sets are bounded by a polynomial in log Q. Since Proposition 1 cannot
be used for detecting which elements of D divide (a(t) —b(¢)cr), we have to use
general algorithms, and again, we refer to [14].

Finally, we join the two factor bases and these exceptional ideals in the global
factor base defined by

F =Fy(B)UFy(B)UDyUD,.

We note that, as usual, the parameter B will be chosen of the form B =
Lo(1/3,0), for a constant 3 to be fixed later.

By the prime ideal theorem, the number of prime ideals in Q(¢) of norm
less than B is %(1 + 0(1)). Using Chebotarev’s density theorem, the average
number of roots of f (resp. g) modulo a random prime ideal q is one. Hence the
cardinality of the factor base is

#F

= o+ olL)

which is similar to its value in the classical variant of NFS. As usual, in the
complexity analysis, we approximate #F by the quantity Lg(1/3,5), since
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polynomial-time factors are, in the end, hidden in the o(1) added to the exponent
constant.

Finding Doubly-smooth (a, b)-pairs. Among various choices for the shape of
the a(t) and b(t) polynomials that we tried, the one giving the smallest norms is
that where a and b are of maximal degree, n — 1, and for which their coefficients
are all of more or less the same size.

Let us denote by A a bound on these coefficients of a(t) and b(t). In the end,
it will be chosen to be just large enough so that we get enough relations to get
a full-rank system by browsing through all the possible coprime (a,b)-pairs of
degree at most n — 1 fitting this bound.

In order to estimate the probability that an (a,b)-pair gives a relation, the
first step is to bound the size of the absolute norms on the f- and the g-side.
The main tool is the following bound on the resultant.

Theorem 2 [10, Thm 7]. If f,g € C[c] have degree dy and d,, then

| Res(f, 9)| < 1 £1421g115 (ds + 1)%/(dy + 1)%/2,

We can now give the formula for the bound on the norm. We write it with the
notations of the f-side, but it applies also to the g-side, after replacing the degree
d by 1.

Theorem 3. Let h and f be monic irreducible polynomials over Z of respective
degrees n and d. Let K be the compositum of the number fields defined by h and
f, and let v and oy be roots in K of h and f, respectively.

Let a(t) and b(t) be two polynomials of degree less than n and with coefficients
bounded by A. Then, the absolute norm of the element a(t) — b(v)ay of K is
bounded by

|Nicso (ale) = be)ag) | < A" FI R4 Cn, d). M
where C(n,d) = (n 4 1)B34+Dn/2(d 4 1)37/2,

Proof. We have Nk, = No(,),0 © Nk/q() and, since f is monic, we get

Nic/q (at) = bo)ay) = Nowyq (Flab),

where F(a,b) = 3 ;10,4 fia(t)’b(t)4=%. The i-th term of this sum is a product
of f; and of d factors that are polynomials of degree less than n. Each term of
the sum is therefore a polynomial of degree less than or equal to d(n — 1) with
coefficients bounded by || f||cc A9n?. Therefore, we have

1 F(a,b)]loo < (d4 1)||floc A%,

Finally, since h is monic, we have Ng,)/q(F(a,b)) = Res (h, F'(a,b)), and we
can apply Theorem 2 to get the following upper bound:

Now/a(F (a.0)) < | F (a,0)[ % [AlIE D (n + )P D2 (d(n — 1) + 1)/
< DA i (d+ 130 (1)
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If the polynomials f, g or i are not monic, the theorem does not apply, since
the element a(¢) —b(¢t)ay is not an integer anymore. However, the denominators,
that are powers of the primes dividing the leading coefficients are under control
in term of smoothness (it suffices to add a few prime ideals in the factor bases).
And in fact, the quantity based on resultants computed in the proof of the
theorem is the one that is really used for smoothness testing. Therefore, the
monic hypothesis is not a restriction, and is just there to avoid technicalities.

It remains to plug-in ||h|| = O(1) and the bounds for || f||cc and ||¢||ec coming
from our choice of polynomial selection and we get:

Ni, jgla —bay) < (A" f[|n) o) = (BIQY/(dH1)) o) (2)
and
Nk, jola —bag) < (A™|g||m) o) = (BQY (¢1))1Fe(), (3)

where we have set E = A", so that the quantity of pairs that are tested is E?,
just like in the classical NF'S analysis. It is to be noted that the contribution of
C(n,d) remains negligible. Indeed, it would reach a value of the form Lg(2/3),
only when n gets larger than an expression of the form (log Q/loglog @Q)'/?,
which is not the case, since we ask that p is larger than any expression of the
form Lg(2/3). It is worth noticing that the expressions for the norms are the
same as for the prime field case, where @ = p.

3.3 Writing and Solving Linear Equations

Mapping a factorization of ideals to a linear combination of logarithms is not
immediate unless the ring is principal and there are no units other than +1; both
things are highly unlikely since the fields K¢ and K, have large degrees over Q.
Therefore, we have to resort to the notion of virtual logarithms, just like in the
classical case.

For this, it is easier to work with absolute extensions. Then, we can use the
same strategy as in Sect. 4.3 of [21], that we summarize in the following theorem
which can be applied to Ky and K.

Theorem 4 (/21, Section 4.3]). Let K = Q(0) be a number field and P a non-
ramified ideal of its ring of integers Ok , with residual field isomorphic to Fpn in
which we fix a generator t. Let ¢ be a prime factor of p* — 1 and let U = {z €
K | V& above ¢,valg(z) = 0}.

We assume that there exists a Schirokauer function, i.e. an injective group
homomorphism X\ = (A1,...,\.) : (U/U*,-) — (ZJUZ,+)", where 7 is the unit
rank of Ok .

Assuming furthermore that ¢ neither divides the class number of K nor its
discriminant, the following holds.

There exists a map log : {ideals of O coprime to P} — Z/lZ and a map
x:{1,...,r} = Z/lZ called virtual logarithms, so that, for all ¢ € Z[x], such
that ¢(0) is in U and coprime to B, we have
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log, 50)" = 3 vala(6(8)log 2+ 3 A (6(6))x;, (4)

9 prime ideal j=1

where ¢(9)‘43 is the projection of ¢(0) in the residual field Fpn of B.

In [33], Schirokauer explained how to construct an explicitly and efficiently
computable map A as in the theorem and brought heuristics to support the
assumptions. These heuristics and the fact that the other hypothesis of the
theorem are expected to be true rely on the condition that ¢ is not too small.
These are the main reasons why we asked that ¢ grows at least like Lg(1/3) in
the beginning.

For each (a, b)-pair that gives two smooth ideals in Ky and K, the element
a(t) — b(¢)ay can be expressed in the absolute representation of Ky = Q(6y) by
a polynomial form ¢;(6¢), and similarly a(c) — b(¢)ay can be written ¢4(6,) in
K, = Q(0,). We refer for instance to [14] for algorithms to manipulate relative
extensions as absolute extensions. Then, applying Theorem 4 to ¢¢ in K¢ and
¢q in K4, we obtain two linear expressions that must be equal, since they both
correspond to the logarithm of the same element in Fyn.

As a consequence, each relation is rewritten as a linear equation between the
virtual logarithms of the elements of the factor base and the x; for each field.
We make the now classical heuristic that collecting roughly the same number
of relations as the size of the factor base (say, a polynomial factor times more),
then the linear system obtained in such a manner has a kernel of dimension
one. A vector of this kernel is computed using Wiedemann’s algorithm [36] in a
quasi-quadratic time B2t°(1)_ This gives the logarithms of all the ideals in the
factor base.

3.4 Overall Complexity of the Main Phase

From the previous sections, we can now conclude about the complexity of the
main steps of the algorithm. In fact, with our choice for the polynomial selection,
and the kind of (a, b)-pairs that we test for smoothness, we have obtained exactly
the same expressions for the sizes of the norms as in the usual NFS complexity
analysis for prime fields, and in particular the same probability Prob that the
product of the norms is smooth. Also, since the linear algebra step is also similar,
the final complexity is the same: we have then to minimize B? + E? subject to
the condition E? - Prob > Bl+0(1), and we refer for example to Conjecture 11.2

of [13]. Hence, the optimal values of the parameters are E = B = L(1/3, f/g)

and d = V/3( 1olg§)fgo§Q)1/gv and the heuristic complexity of the main phase of

TNFS is Lg(1/3, {/ 8.

3.5 Individual Logarithms

Let s be an element of . for which we want to compute the discrete logarithm.
If s is very small, then it factors into ideals of the factor base, and its logarithm
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is easily retrieved. However, in general, this requires a 2-phase process that is
not so trivial, although negligible compared to the other steps.

First, in what we call a smoothing phase, the element s is randomized and
tested for By-smoothness with the ECM algorithm. The bound B; will be of the
form Lg(2/3), so that the cost of the smoothing test is in Lg(1/3).

Thereafter, each prime ideal £ which is not in the factor base is considered
as a special-q and we search for a relation involving £ and other smaller ideals.
Continuing recursively, we get a special-q descent tree, from which the logarithm
of s can be deduced.

Smoothing. The randomization is simple: we compute z = s¢ in F,,» for random
values e, and test z for smoothness. The logarithm of s is just the logarithm of
z divided by e modulo /.

To be more precise, the smoothness is not tested for the element z as an
element of the finite field, but as the corresponding element in K. Indeed, in
our construction, z € F,» is represented by a polynomial of degree less than
n with coefficients modulo p. Lifting these coefficients to integers, we obtain a
polynomial which makes sense modulo h(t), therefore an element of Q(¢) = K,
(this is where we use that g is linear). As usual, to test the smoothness of z as an
element of Q(¢), we test the smoothness of its norm as an integer. Using again
the estimate of Theorem 3, the size S of this norm is Q'*+°(1).

The bound B; can then be optimized w.r.t. this only step, like in the classical
NFS: if this is too small, the probability of being smooth is too small, while if it is
too large, the cost of testing the smoothness by ECM is prohibitive. The analysis
is the same as in [15] and gives a value By = Lg(2/3, (%)1/3); the corresponding
cost for the smoothing phase is Lg(1/3,3'/3).

After the smoothing phase, the logarithm of s has been rewritten in terms
of the logarithms of small prime ideals of K, for which the logarithm is already
known, and some largish prime ideals of K, of norm bounded by B;. The next
step is to compute the logarithms of these largish ideals.

Descent by Special-q. As in NFS, the algorithm is recursive: if 1 is a prime
ideal of degree one in K (respectively K,), then we write logQ as a formal
sum of virtual logs of ideals 9 of Ky and K, with norm less than N(Q)¢, for
a positive parameter ¢ < 1. For this, we consider the lattice of (a,b)-pairs for
which 9 divides the element a — bas (resp. a — bayg). A basis for this lattice
can be constructed and LLL-reduced. Small combinations of these basis vectors
are then formed and the norms of the corresponding (a,b) pairs are tested for
N(£9)¢-smoothness. We refer to Appendix 7.1 for the description of this special-q
lattice technique, that is also used in practice during the collection of relations
in the main stage. When a relation is found, this gives a new node in the descent
tree, the children of it being the ideals of the relations that are still too large to
be in the factor base. The total number of nodes is quasi-polynomial.

The cost of each step is determined by the size of N(a(¢) — asb(¢)) (resp.
N(a(t) — agb(t))) which are tested during the computations. The matrix Mg of
the basis of the lattice has determinant det Mq = N(9), so a short vector in the
LLL-reduced basis has coordinates of size ~ N(2)'/(2"). We make the heuristic
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assumption that all the vectors of the reduced basis, (a*), (%)) for k =1,...,2n,
have coordinates of the same size. The pairs (a,b) tested for smoothness are
linear combinations (a,b) = iil ix(a® b*)) where i, are rational integers
with absolute value less than a parameter A’, we set E' = (A’)™. By Theorem 3,
the size of the norms tested for smoothness is

N jala = bay) < (max([lalloo, [[blloe) ™[I flI5) 70 = (N(©Q)"*(E)'QY/ ),

Nk, jala = bag) < (max([lallso, [blloc)" lgll%) T = (N(Q) 2 E'QY) e,

These expressions coincide with the ones in the analogous stage of the classical
variant (for example in Equation (7.11) in [5]) and we obtain a complexity of
L(1/3,1.1338...) which is the same as in the classical case [15]. We conclude that
the overall complexity of individual logarithm is dominated by the Lg(1/3, 31/3)
complexity of the smoothing test.

4 Variants

Note on the Boundary Case. TNFS can be applied to the boundary case
p = Lg(2/3,¢p), ¢, > 0, where one obtains a complexity Lg(1/3,¢). The con-
stant ¢ is strictly larger then {/64/9 as the factor C(n,d) in Eq. (1) is not
negligible any more. Yet, for some values of c,, TNFS overcomes the method
of [21], which was state-of-art until recently. Using the generalized Joux-Lercier
method, the authors of [6,7] reduced the constant ¢ to (64/9)/% ~ 1.92 and
Pierrot [31] showed that a multiple fields variant allows to further reduce ¢ to
~ 1.90. Therefore, we do not reproduce here the tedious computations of the
complexity in the boundary case.

The Case of Primes of Special Form (SNFS). Given a positive integer
d, an integer p, not necessarily prime, is said to be a d-SNF'S integer if it can
be written as p = P(u) for some integer u = p'/? and a polynomial P € Z[z]
such that ||P|| is small (say, bounded by a constant). We remark that when
a number is SNF'S, then there can be several valid choices for d and P. This is
typically the case for integers of the form 2% + ¢, for tiny e.

When solving DLP in fields F,~» for d-SNFS primes p, we can follow the
classical SNF'S construction [27] and set f(x) = P(z) and g(x) = x — u, which
is possible since f and g share the root v modulo p.

When evaluating the sizes of the norms, Eq. (2) can be restated with || f|lcc =
O(1), so we obtain the following bound:

Ni, jg(a — bay) Ny, jg(a — bag) < (BHH1QU)HW), 5)

Following the analysis of Semaev [35], we obtain that if the degree d can be

chosen to grow precisely as d = i/g (bg’lgo SQ)I/ s

SNFS is the same as that of factoring numbers from the Cunningham project,

namely Lg (1/3, (/%) .

, then the overall complexity of
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Using Multiple Number Fields (MINFS). Given a choice of polynomials f
and g selected as in the first step of TNFS, one can construct a large number
of polynomials f; which share with f and g the root m modulo p. The idea
goes back to Coppersmith’s variant of NFS for factorization [16] and has been
used again in [8,28] and [31]. Let V' be a parameter of size Lg(1/3,¢,) for some
constant ¢, > 0. For all p(t) and v(t) € Z[t] so that degpu,degr < n — 1 and
illoos 7]l < V™, we set

fu,l/ = U(L)f + Z/(L)g, (6)

keeping only those polynomials that are irreducible (most of them are, so we
expect that the correcting factor on the bounds for ||u]le and ||v||e are only
marginally adjusted). Let us denote by Ky, , the number field generated by f, .,
over Q(¢), and call oy, ,, a root of f,,,, in its number field. For any pair (u,v) as
above and (a,b) in the sieving domain, by Theorem 3 we have

Ni, ., (@ — auub) < A VYCY | floo) [RIEC (n, d) = (V/2EQVH M. (T)

In the multiple number field sieve a relation is given by a pair (a,b) in the
sieving domain and a polynomial f,, from the set constructed above so that
Ng,/0(a = bag) is B-smooth and Nk, (a —bay,,) is B/V-smooth. We use as

factor base the set
F=(Us,.8/v) U7 B).
v

We collect relations as in Coppersmith’s modification: collect pairs (a,b) in the
sieving domain and keep only those for which N, Jo(a—agb) is B-smooth. Then,
for each surviving pair (a,b) we use ECM to collect polynomials f, , such that
Nk, ,/0la = aupb) is B/V-smooth.

We choose parameter E so that the number of collected pairs exceeds 2B,
which is an upper bound on #F. The same considerations as in [16] allow
us to find the optimal parameters: V' = Lg(1/3,1 — (@)1/3), E=B=
Lo(1/3, (746"‘115’8‘/@)1/3) and d = 6(log Q/loglog Q)'/? where § = (732_3‘/ﬁ)1/3;
the complexity of the multiple field variant of TNFS is Lg(1/3, (%)1/3).

Automorphisms. Joux, Lercier, Smart and Vercauteren [21] proposed an
improvement based on the field automorphisms of the number fields occurring
in NFS. A recent preprint proves (a reformulation of) the following result:

Theorem 5 (Theorem 3.5(i) of [6]). Let o be a field automorphism of K/Q.
Assume that B is a prime ideal of K above p such that o3 =B. Fix a prime £
dividing N(B) — 1, coprime to the class number and the discriminant of K. Fiz
a generator t of the residual field of P and, for any prime ideal Q, denote by
log 9 the virtual logarithm of Q with respect to t and a set of explicit generators
s0 that v,(q) = o(ya). Then, there exists a constant r € [0,ord(0) — 1] such
that for any Q we have

log(cQ) = p™log(Q) mod ¢.
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In Sect. 3.1 we noted that one might find ¢ so that Q(:)/Q has n automor-
phisms over Q. All these automorphisms can be used to speed-up computations,
using the following result.

Corollary 6. Let o be an automorphism of Q(¢)/Q and call & the unique field
automorphism of Ky such that 5(v) = o(¢) and (o) = ap. Assume that f has
small coefficients so that virtual logarithms are defined using explicit generators.
Then, there exists k € [0,ord(c) — 1] such that, for all prime ideals Q of Ky, we
have

log(6Q) = p"logQ mod /.

Proof. The only non-trivial condition, &3y = Py, is tested directly:
oPBs = (PZ[L], o —m) = (6(p)Z[],6(af) — 5 (m)) = (PZ[t], o —m) = Py.

According to [7], automorphisms allow us to sieve n times faster and to speed-
up the linear algebra stage by a factor n?. Note that, contrary to the classical
variant of NFS where automorphisms were available only for certain values of n,
TNEFS has no restrictions.

5 Comparison for Cryptographically Relevant Sizes

The complexity of NFS and its many variants is written in the form C'to(D),
which can hide large factors, and therefore we cannot decide which variant to
implement based only on asymptotic complexity. We follow the methodology
of [7, Section4.4] and do a more precise comparison by evaluating the upper
bound on the size of the integers which are tested for smoothness: the product
of the norms with respect to the two sides. In particular, we make explicit the
negligible terms of Eqs. (2) and (3) using Theorem 3.

5.1 The Case of General Primes

When p is not an SNFS number, we compare TNFS to the algorithm of Joux,
Lercier, Smart and Vercauteren(JLSV) [21]. From Egs. (2) and (3) we find a
formula for the logarithm of the product of the norms in TNFS:

Crnrs = (d+ 1) log, E + dL log, @ = Cnrs;,
+1
where d = deg f can be chosen as desired (unlike the SNFS variant of the
algorithm where d might be imposed by the shape of p). It is remarkable that
this formula is the same as for NFS in the integer factorization case.

Since the JLSV algorithm comes with a variety of methods of polynomial
selection, we cannot give a unified formula for the size of norms’ product, so we
use the minimum of the formulae in [7]. Therefore, in the following, when we say
JLSV, this covers both variants explained in [21] as well as the Conjugation and
Generalized Joux-Lercier methods. The choice of the parameter F depends on
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Fig. 2. Comparison of TNFS (in black) and the best variant of JLSV algorithm
(in dashdotted blue). Vertical axis: bitlength of the norm’s product; horizontal axis:
bitlength of p™ (Color figure online).

the size of the norms, but for a first comparison we can use the default values of
CADO-NFS [7, Table 2].

In Fig. 2 we compare TNFS to JLSV when p is a general prime (not SNFS),
for a range 400 < log, @ < 1000. We conclude that in this range, when n > 5,
TNEFS is competitive and must be kept for an even more accurate comparison.

5.2 The Case of Primes of Special Shape (SNFS)

The Importance of the d Parameter. If we want to compute discrete log-
arithms in a field Fp» such that p is d-SNFS for a parameter d, then the first
question to ask is whether to use a general algorithm like TNFS and JLSV or
a specialized variant of these two, namely the SNFS variant of TNFS that we
denote STNF'S or the Joux-Pierrot algorithm.

When d = 6 we can rely on a real-life example: Aoki et al. [2] factored a
1039-bit integer with SNF'S, using sextic polynomials, i.e. d = 6. The current
record, hold by Kleinjung et al. [26], was obtained with a MNFS variant and
targeted d-SNF'S integers for d = 8. Their computations were much faster than
the evaluated time to factor a 1024-bit RSA modulus, so it is safe to say that
SNFS is the best option when log, @ ~ 1024 and d = 6 or when d = 8 for slightly
larger targets. However, the value of d is fixed in most cases and can take very
different values among curves used in pairing-based crypto-systems, going from
d = 2 for MNT curves [29] to d = 56 in other constructions [18, Table6.1],[30].
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If the polynomial P such that p = P(u) has a special shape, one can try to
reduce the value of d using techniques from the Cunningham project records.
On the one hand, if P = T'(z%) with T' € Z[z] and a € N, we can also write
p = T(v) with v = u%, so p is (degT)-SNFS. This technique can be used for
example in the construction of Brezing-Weng [12, Section 3, item 3(b)] where
P(z) = pa® + vb? for some small constants y and v and where a,b € Z[z9]
have degree 5 and respectively 15; we replace P of degree 30 by a polynomial of
degree 6.

On the other hand, a construction of Freeman, Scott and Teske [18, Con-
struction 6.4] allows to divide the degree by 2. Indeed, in that case the poly-
nomial P is almost a palindrome, in the sense that it can be written as
P(z) = 1zdeP)/2T(z — 1) with T € Z[z]. Then we select f = T(z) and
g = uz — (u? — 1), which share the root u — < modulo p and are so that

[ £lleo = O(1) and ||g|oo = p*/ 98/,

Modeling. A good comparison requires a precise estimation of the norms. How-
ever, several factors in Eq. (1) can be negligible in some cases but can also be
very large in the others:

negligible factors = C'(n, d)| f|| ||2]|% .

The factor C(n,d) is itself a bad estimation of the number of terms in the
Sylvester discriminant, which can vary between 6 bits for n = 2 and d = 3 to 15
bits for n = 5 and d = 6. This determines us to restrict to n < 5 and d < 6. The
factor || ||, equals 1 if || f||oc = 1 but can be as large as 252 when n = 12 and
Il flloc = 36. Hence, it is impossible to plot the size of the norms for all SNFS
numbers, independently of the polynomial f.

For our modeling, we consider the case ||f|lcc = [|h]lo = 1 and neglect
the combinatorial factor C(n,d) for small values of n and d. From Eq. (5) the
dominant factor in the product of the norms for STNFS is

Csrrrs(n, d) = log(E4TY) + log(QY?).

Note again that this formula is the same as that of the complexity of the factoring
variant of SNFS.

The product of the norms in the Joux-Pierrot algorithm is bounded by
(n 4+ 1)%(logn)"® E#nd+1)/t Qt=1)/(d) (discussion preceding Eq. (5) in [22]),
and for the comparison we keep only the logarithm of most important factors:

2n t—1
Cyp(n,d,t) = == log(B**) + ——log(Q'/").

Let us see two examples in which we tackle fields of about one kilobit, for
which we use the approximation log, F = 30.4, as in [2].

A First Example. We target a 1024-bit field F,2 for a 6-SNFS prime p and we
set the parameters equal to their value in the computation of Aoki et al. If one
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chooses to forget that p has a special shape and uses JLSV with conjugation
method, then the product of the norms has bitsize ~ 439. If instead one uses the
special shape of p, the product of the norms for STNFS has bitsize Cstnrs(n =
2,d = 6) ~ 3806, while the best parameters for the Joux-Pierrot algorithm yield
Cip(n = 2,d = 6,t = 3) = 457. A probabilistic experiment suggests that our
model is quite precise, as the negligible factors do not add more than 6 bits.

Barreto-Naehrig. The elliptic curves proposed by Barreto and Naehrig [9] cor-
respond to finite fields of parameters n = 12 and d = 4. We tackle a field of
1024-bit cardinality and we will use a value of E close to the one in the fac-
torization record, i.e. logy £ = 30.4. If we forget that p is SNFS, then we can
choose the value of d in TNFS and we find Crnxps(n = 12,d = 7) = 500. If
instead we use the special shape of p we obtain Csrnrs(n = 12,d = 4) = 408
and Cjp(n =12,d =4,t = 12) = 539.

In that case, the extension degree n (a.k.a. the embedding degree in the
pairing context) is already pretty large, so that we are not at all in the nominal
range of applicability of TNFS. As a consequence, our estimate for Crnpg is way
too optimistic, since the so-called negligible factors are no longer small. But in
fact, it is not that bad: computing explicitly the norms for a sample of typical
(a,b)’s of the appropriate size shows that the product of the norms for STNFS
is 60 to 80 bits larger than the ideal model when f = 36z* + 1223 4+ 1622 +2z+1
and h = z'? — x — 1. Therefore, it might still be better than Joux-Pierrot.

There are however examples when the specialized algorithms do not apply.

Fact 7. When d = 2, the JP and STNFS algorithms are not better than the
general ones, i.e.

CiLsy < min(Cjyp, Csnrs),

where Cypsy is the complexity of the JLSV algorithm with conjugation method.

To see this, note first that the Joux-Pierrot algorithm keeps unchanged the
stages of JLSV once finished the polynomial selection. In the Joux-Pierrot algo-
rithm one constructs polynomials f and g such that deg(f) = nd, deg(g) = n,
| £lloe = O(1) and ||g]|ec = QY ¥ However, when n = 2, they have the same
characteristics as the polynomials constructed by the Conjugation method, which
applies to arbitrary primes.

Also note that the STNFS uses a polynomial g with coefficients of size p'/?.
When d = 2 the norm of the g-side has bitsize larger than %log2 @, which
is typical for algorithms of complexity Lo(1/2) and is larger than the norms
considered in the JLSV algorithm in the range log, @ < 1000 and n < 5.

Plots. Let us plot the modelled bitsize of the norms product for STNFS and
Joux-Pierrot in the range which is currently feasible or might become in the near
future: 400 < log, @ < 1000. Together with Cstnrs and Cyp (Joux-Pierrot), we
also plot Cnps which represents the bitsize of the product of the norms in NFS
when factoring RSA numbers. We make separate graphs for each pair (n,d)
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Fig. 3. Comparison of Cnrs (in dashed blue), Csrnrs (in black) and Cyp (in dasdotted
red) in Fpn with n = 2, for d-SNFS primes. Vertical axis: bitlength of the norm’s
product; horizontal axis: bitlength of p™ (Color figure online).
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Fig. 4. Comparison of Cnrs (in dashed blue), Cstnrs (in black) and Cyp (in dashdot-
ted red) in Fp» with n = 3, for d-SNFS primes. Vertical axis: bitlength of the norm’s
product; horizontal axis: bitlength of p™ (Color figure online).
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Fig. 5. Comparison of Cnrs (in dashed blue), Cstnrs (in black) and Cyp (in dashdot-
ted red) in Fpn with n = 4, for d-SNFS primes. Vertical axis: bitlength of the norm’s

product; horizontal axis: bitlength of p™ (Color figure online).
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Fig. 6. Comparison of Cnrs (in dashed blue), Cstnrs (in black) and Cyp (in dashdot-
ted red) in Fp» with n = 5, for d-SNFS primes. Vertical axis: bitlength of the norm’s
product; horizontal axis: bitlength of p™ (Color figure online).
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where n is the degree of the target field and d is the parameter such that p is
d-SNFS, as those parameters are unique (in general) for each finite field: Fig. 3
(n = 2), Fig.4 (n = 3), Fig.5 (n = 4) and Fig.6 (n = 5). Albeit the value of
E depends on the size of the norms, in a first approximation we can use the
formula E = ¢ - Lg(1/3,(4/9)'/3) where c is a constant chosen such that the
formula fits the value of E in the example of Aoki et al.

We emphasize that our comparisons are imprecise since they are based only
on the product of the norms. Nevertheless, one might make two remarks:

— when d > 3, the two algorithms specialized in fields of SNFS characteristic
have smaller norms than those of NFS when factoring RSA numbers;
— when d > 4, STNF'S is an important challenger for the Joux-Pierrot algorithm.

6 Cryptographic Consequences

The number field sieve algorithm is still far from being fully understood, in par-
ticular for extension fields that are so important for pairing-based cryptography.
In the past few years, several improvements have been made in the asymptotic
complexities in various scenarios, leading in particular to an L(1/3, {/32/9) com-
plexity for small degree extensions of SNFS-prime fields, that are common in
pairing-friendly constructions.

We have shown, that in this setting, an old NFS variant due to Schi-
rokauer could compete and probably overcome the algorithm by Joux-Pierrot.
We acknowledge that the comparison is not perfect since it is based on a model
where the efficiency is directly linked to the size of product of the norms of the
elements that have to be tested for smoothness. Still, in some cases, the differ-
ence is large enough (a few dozens of bits), so that we are confident that this
should translate into a significant practical difference.

Of course, only a careful implementation of both algorithms could confirm
this. Unfortunately, this goes way beyond the scope of this paper. As far as
we know, Joux-Pierrot’s algorithm has not been used so far for a record-setting
computation, and Schirokauer’s TNFS would require even more implementa-
tion work to handle the sieve in higher dimension. And since doing experiments
with non-optimized implementations and small field sizes could lead to highly
misleading conclusions, we preferred to keep this for future work.

7 Appendix: Technicalities

7.1 Special-q Sieving

In practice for prime fields the relation collection phase is split in subtasks fol-
lowing the so-called special-q sieving strategy. It is expected, but no so obvious,
that this technique can be adapted to the case of TNFS.
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The General Case. Given a prime ideal Q of K (resp. of K), the special-q
algorithm collects (most of) the coprime pairs (a,b) € Z[1]* which satisfy

— a—bay=0 mod Q;
— Nk, jola —bay)/ Nk, o(Q) and Nk /g(a — bag) are B-smooth,

and which have coefficients bounded by Ng /Q(D)l/ ] for a parameter I.
In the main lines, the sieving is done by Algorithm 1, where a key role is
played by the lattice Ly of (a,b)-pairs such that Q |a — boy:

n—1 n—1

La = {(a07~~-7an717b07~~~7bn71) €z’ | (Zamk) _Oéf(ZbkLk) =0 mod Q}.
k=0

k=0

Algorithm 1. Special-q task

1: Compute an LLL-reduced basis of Lg, u® . u®™ ) and for each k define the
pair (a®,b®)) by a® = Y- uf® e and b0 = oIt w0

2: Initialize an array indexed by (i1,...,i2n) € [[5,[—I,I] with the value of
log, Nk, /q(a — bay) where

2n 2n
a= Zika(k) and b = Zikb(k).
k=1 k=1

w

: For each £ in F; update the entries of the array such that a — bay € £.

4: Collect yield(f), the coprime pairs (a,b) associated to entries of the array with
value less than a given threshold.

5: Repeat Steps 2-4 with f replaced by g, and collect yield(g).

6: return yield(f) [ yield(g)

In more detail, if Q = (q, oy — pa(t)) and q = (g, ¢q(¢)), we can assume that
©q is monic and define the matrix

q 0. v - 0

q

Ma = B . :
vector(pq) [0 --- --- 0

vector(pa (¢)) |1 .
vector(pg (¢)e)

vector(pg (1)) 1

One can check that the rows of Mgy form a basis of Lg, and that det(Lg) =
qdes(ea) — Nowy/o(4) = Nk, /o(Q) and dim Ly = 2n. Then, the coefficients

of the shortest vector in an LLL-reduced basis have size about NKf/Q(Q)l/(Z").
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We make the heuristic assumption that for a large proportion of ideals £, all the
vectors in the reduced basis have coefficients of this size. Then, the coefficients
of the (a,b) pairs visited during Steps 3-4-5 of Algorithm 1 are approximatively
equal to INKf/Q(Q)l/(Q").

The critical part of Algorithm 1 is Step 4., where we need to solve a problem
that Pollard [32] asked in the case m = 2.

Problem 1. Compute the intersection of a sub-lattice of Z™ with an interval
product [T} I

Since the dimension is fixed or small enough, we can use a generic lattice enu-
meration algorithm like the Kannan-Fincke-Pohst algorithm. In the case m = 2,
Franke and Kleinjung [25, Appendix A] gave an elegant algorithm that proved
very efficient in practice. Extending this algorithm to higher dimension is still
an open problem.

The Particular Case of Gaussian Integers. When h = 22 + 1, ¢« = i and
we have a series of advantages. First of all, we have deg(h) = n = 2, so the
combinatorial overhead C(n,d) in Theorem 3 is small. Secondly, the ring Z[i] is
Euclidean, so that we can speed-up Step 1 of Algorithm 1.

Lemma 8. Let g and r be two elements of Z[i] such that q is irreducible and
r is not divisible by q. Assume that Q = (q,ay — ) is a prime ideal of K.
Let (uj,vj,d;);>0 be the sequence of Bezout coefficients such that ujq + vjr =
d;, obtained during the Extended Euclidean Algorithm(EEA). Let j > 0 be an
integer. For k =1,2,3,4 we set

(a(l)’ b(l)) = (djv vj)a (a’(2)7 b(2)) = (Zdjv Z.'Uj.)v
(a(3)7b(3)) = (dj+17vj+1)7 (a(4),b(4)) = (Zdj+17“}j+1)7

and define u®) = (Re(a®),Im(a®), Re(b®)), Im(b*))). Then the vectors u),
u®, ul®  u® form a basis of the lattice Ly .

Proof. Note first that if two elements eq, es form a basis for a Z[i]-module M,
then the set {e1,ieq,ea,iea} is a basis of M seen as a Z-module. We apply this
fact to M = {(a,b) € Z[i] x Z[i] | a — br =0 mod ¢}, so it is sufficient to show
that (d;j,v;) and (dj41,vj41) form a basis of M when seen as a Z[i]-module.

By construction of the sequence (uj,v;,d;);>0, there exist invertible matrices
I, I,,... € GL(Z][i],2) so that, for all j > 1,

(Uj+1 vjr1 dj > _ 7 ( uj v d; )
. ) ) =4 ) ) ) :
u; v dj Uj—1 Vj—1 dj—1

Therefore, for all j, the pairs (d;, v;) and (d;4+1,vj4+1) span the same Z[i]-module.
In particular, for j = 0, we have (do,v0) = (¢,0) and (d1,v1) = (r,1), which
is a basis of M, so that any pair in the sequence spans M. Finally, a pair
(a,b) € Z[i]xZ[i] is in M if and only if the vector u = (Re(a),Im(a), Re(b),Im(b))
is in the lattice Ly, which completes the proof.
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We interrupt the execution of EEA at its middle point, i.e. for the least index
J where Ng(iy/q(dj) < +/Noeiy/o(q). As in the classical variant of NFS, we make
the heuristic that for all k € [1, ], we have ||(a'®),b())|| ~ 1/|q|. Hence, we
replaced Step 1 in Algorithm 1 by EEA in Z[].

Another advantage of Z[i] is that we can easily deal with the roots of unity.
Indeed, the roots of unity have a bad effect on the sieve since, for any pairs (a, b)
found during the sieve, one will also find (ua, ub) for all roots of unity u. For a
practical implementation one might prefer to choose h so that there are no roots
of unity other than +1.

In the case h = 2?41, we can impose that we have no duplicates due to roots
of unity. For this, we modify Step 2 of Algorithm 1 so that the indices run in

(i1yi2sis,ia) € [0,1] x [0, 1] % [~1,1] x [~1, ]

instead of [—I,I]*. By doing so we divide by four the number of pairs (a,b)
sieved in the special q task associated to Q. Indeed, if a pair (a,b) is written as
(a,b) = Zk ix(a® b)), then when we multiply (a,b) by roots of unity we
use the followmg indices where exactly one of the pairs has 1,42 > 0:

(a,b) > (i1, i2,i3,14) (—a,=b) < (—i1, —iz, —iz, —is)
(ia, Zb) — (—ig, ’il, —i4, ig) (—ia, —Zb) — (ig, —’il, i4, —ig).

7.2 Using a Cyclotomic Field for Q(¢)

Although we found no practical advantage for cyclotomic fields other than Q(7),
they allow us to give a poof of existence for the polynomial h, as required in the
TNFS construction of Sect. 3.1.

Theorem 9 (/I], Prop. 3). Assuming the FExtended Riemann Hypothesis
(ERH), there is a constant ¢ > 0, such that for all p,n € N, p prime and
ged(n,p) = 1, there exists a prime q such that ¢ =1 (mod n), ¢ < en*log(pn)?
and p is inert in the unique subfield K of Q((,) with [K : Q] = n.

Corollary 10. Under ERH, there exists a constant ¢ > 0 such that, for any
integer n and any prime p > n, there exists an effectively constructible polyno-
mial h € Z]x] such that:

— h is irreducible modulo p;
= [[Allos < (2en* log(np)?)™.

Proof. Let ¢ be the constant of the theorem above. Let ¢ be a prime associated
with p and n and let (; be a primitive gth root of unity and 7 a Gaussian period:

= > G
xz€F; /(Fi)la-D/n
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If r1,...,r, are a set of representatives of F;‘/(]F‘Z)(q_l)/", then the conjugates of
7 are its images by the morphisms o; : ¢, — (;*. Hence, the minimal polynomial

of n over Q is
n—1

h= ] —oim).
=0
For k € [0,n], a crude estimate of the kth coefficient of f is (})|n|*, which
is further upper bounded by 2"(q — 1)", and finally by (2cn?log(np)?)”. The
coefficients of h add a factor ||h|\g<5d_1) in Eq.(1). It remains negligible, i.e.
Lo(2/3)°M, when n? = o(d) or equivalently when p = Lg(a) for a > 5/6.

7.3 The Waterloo Improvement

At the beginning of the individual logarithm stage, the smoothing step can be
sped up in practice using the continued fraction method, also called “Waterloo
improvement”!. It allows to replace the probability of an integer of size S to
be smooth by the probability of two numbers of size VS to be simultaneously
smooth. This does not change the complexity, unless we make the o(1) expression
explicit, but has a measurable practical impact. A TNFS equivalent for the
continued-fraction method is to LLL-reduce the lattice generated by the rows of
the matrix

p
0
p
M =
(2) z |1 ’

Y 1
where z is a lift of the target element of the finite field, and z, ..., :" 'z are
written by their coordinates as elements of Q(¢). Since det M(z) = p" = @, a
short vector (ug,...,Un_1,%0,--,Vn_1) has coordinates of size ~ Q'/?". The

quotient u/v where u = ZZ;S upt? and v = ZZ;S vt is an element of Q(¢)
that reduces to the same element of F» as z. Therefore, instead of testing for
smoothness the norm of z, of size S = (), we test whether the norms of u and v,
both of size /@, are smooth.
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Abstract. Hash functions are often constructed based on permutations
or blockciphers, and security proofs are typically done in the ideal per-
mutation or cipher model. However, once these random primitives are
instantiated, vulnerabilities of these instantiations may nullify the secu-
rity. At ASTACRYPT 2007, Knudsen and Rijmen introduced known-key
security of blockciphers, which gave rise to many distinguishing attacks
on existing blockcipher constructions. In this work, we analyze the impact
of such attacks on primitive-based hash functions. We present and for-
malize the weak cipher model, which captures the case a blockcipher has
a certain weakness but is perfectly random otherwise. A specific instance
of this model, considering the existence of sets of B queries whose XOR
equals 0 at bit-positions C', where C is an index set, covers a wide range
of known-key attacks in literature. We apply this instance to the PGV
compression functions, as well as to the Grgstl (based on two permuta-
tions) and Shrimpton-Stam (based on three permutations) compression
functions, and show that these designs do not seriously succumb to any
differential known-key attack known to date.

Keywords: Hash functions - Known-key security + Knudsen-Rijmen -
PGV - Grgstl - Shrimpton-Stam - Collision resistance - Preimage
resistance

1 Introduction

Cryptographic hash functions are conventionally built on top of compression
functions, and in turn on one or more blockciphers. Since the first appearance
of such compression function F(h,m) = DES,,(h) by Rabin [49] in the late 70s,
many blockcipher-based functions appeared in the literature [23,25,29,30,40,43,
48,58]. These all enjoy security proofs in the ideal model, where the underlying
ciphers are assum ed to behave ideally. Characteristic to these designs is that the
key input to the cipher depends on the input to the compression function, and
that the key scheduling needs to be sufficiently strong. For instance, Biryukov
et al. [6] derived a related-key attack on AES and claimed that it invalidates the
security of the Davies-Meyer compression function when the underlying primitive
is instantiated with AES. A more recent approach to compression function design
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is to base them on a limited number of permutations [8,41,42,51,57]. These
permutations could be designed from scratch, or obtained by fixing a small set
of keys and using a blockcipher for these keys only. Related- or chosen-key attacks
on blockciphers do not help the adversary here, as the keys are fixed.

Known-Key Security of Blockciphers. While in the classical security mod-
els for blockciphers the key is secret and randomly drawn and the adversary’s
target is to distinguish the instantiation of the cipher from a random permuta-
tion (also known as (strong) pseudorandom permutation security), this notion
does not apply if the key is known to the adversary. At ASIACRYPT 2007,
Knudsen and Rijmen [27] introduced known-key security of blockciphers. Here,
the key is presumed known, and the adversary succeeds in distinguishing if it
identifies a structural property of the cipher. Andreeva et al. [1] proposed a way
to formalize the known-key security of blockciphers based on the underlying
primitives. The model is derived from the indifferentiability framework [37] and
hence all composition results carry over. Intuitively: suppose some cryptosystem
F is proven to achieve a certain level of security in the ideal permutation model,
and consider F’ to be F with the permutations replaced by independent blockci-
pher instantiations. Then, F’ achieves the same level of security as F, up to the
known-key indifferentiability bound of the underlying blockciphers.

In [1], several blockecipher constructions are proven to be known-key indiffer-
entiable, such as the multiple Even-Mansour cipher and 14 rounds of balanced
Feistel with random functions (using a result of Holenstein et al. [24]). For such
ciphers, the above approach works well, although for Even-Mansour the com-
position is trivial (one essentially replaces an ideal permutation by an ideal
permutation) and for Feistel with 14 rounds security is only guaranteed up to
27/32 queries, where n is the state size of the cipher.

Known-Key Attacks on Blockciphers. Knudsen and Rijmen also demon-
strated that the Feistel network on n bits with 7 rounds (called “Feistel;”) is not
known-key indifferentiable [1,27]: an adversary can generically find 2/2 plain-
text/ciphertext tuples (m,c) and (m/,¢’) satisfying Ri, s(m @ c®m/ &) =0
(where Ri.(x) outputs the r rightmost bits of ). This result has lead to a
wave of other known-key attacks on practical constructions, including gener-
alized/extended variants of Feistel [1,27,47,53,56], reduced versions of AES
or Rijndael [22,27,38,44,52], reduced variants of the blockciphers underlying
SHA-2 and SHA-3 finalists BLAKE and Skein [2,7,31,34,60], and many more
[3,11,12,14,17,18,28,33,46,47,54,55]. This paper will mostly be concerned with
differential known-key attacks, including rebound- and boomerang-based attacks
(the majority of above-mentioned attacks). We highlight two results that are
among the best-known ones and that exemplify the idea of the other attacks.
Gilbert and Peyrin [22] used the rebound technique [39] to derive a known-key
attack on 8 rounds of AES (called “AESg”). It starts from the middle, and results
in a differential trail with four active words in the beginning, and four at the end.
These active words are overlapping at two positions, hence one could consider
this result as two tuples (m, ¢) and (m/, ¢) satisfying m@®cdm/ &’ = 0 at 10n/16
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bit-positions. The adversary has 2% < 27/8 degrees of freedom in the attack, and
for any choice it results in such a tuple with a certain probability. (The bound
of 27/8 is used for simplicity later on.) The second attack we highlight is by
Yu et al. [60], who employ the boomerang technique [59] to attack 36 rounds of
the blockcipher Threefish-512 (called “Threefishss”) used in Skein. This attack
results in four tuples (m!,ct),...,(m*, ) satisfying m! @ --- @ ¢* = 0. The
adversary has 2" degrees of freedom, but any trial succeeds with probabil-
ity approximately 27%%%. Therefore, the expected number of solutions is about
gn—454 < 9n/8 This attack is in fact a known-related-key attack, where a fixed
difference in the key exists. For simplicity, we condone this, observing that an
attack with no key difference must logically be harder.

In any of these cases, the traditional and commonly employed ideal
cipher/permutation model falls short: results achieved in this model do not
necessarily hold if the primitives are instantiated with Feistel;, AESs,
Threefishsg, or any other known-key distinguishable cipher.

1.1 Owur Contributions

In their seminal work, Knudsen and Rijmen state: “In some cases blockciphers
are used with a key that is known to the adversary, and at least to a certain
extent, the key is under the adversary’s control. Our attacks are quite relevant to
this case.” We investigate this fundamental question whether known-key attacks
invalidate the security of primitive-based hash functions, but we do so in a much
more general way. At a high level, we present a model that goes beyond the tra-
ditional ideal cipher model as well as the principle of known-key attacks and that
allows to generically analyze the impact of various weaknesses of blockciphers
on various blockcipher- and permutation-based cryptosystems.

Model. A naive approach to analyzing the impact of known-key attacks would
be to simply plug a certain blockcipher construction into a hash function and
to analyze its security, but this would be a devious and complex combinatorial
task: for a function based on r permutations, plugging Feistel; into it would lead
to 7r underlying primitive calls. Note that proving security of the Feistel con-
struction itself is already extraordinarily hard [16,24,32]. Instead, we model the
blockciphers in such a way that they behave randomly, except that an adversary
can exploit the particular relation. More formally, we pose a certain predicate
@, and we draw blockciphers randomly from the set of all ciphers that comply
with predicate @. Throughout, we refer to this model as the “weak cipher model
(WCM).” Tt corresponds to the ideal cipher model if @ is trivial.

We present an explicit description of a random weak cipher for the
case where @ implies for each key k the existence of A sets of B queries
{(k,m',c),...,(k,m®?,cP)} that comply with a certain condition (. These
ciphers are modeled to have three interfaces: forward queries, inverse queries,
and predicate queries. Forward and inverse queries are as usual; on a predicate
query, an adversary is given a set of B queries satisfying ¢. Multiple technicali-
ties are involved in this formalization. Most importantly, predicate @ applies to
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tuples of queries, rather than single queries only, and some query responses may
have a reduced entropy.

Above-mentioned known-key attacks are covered by our model if the condi-
tion ¢ states for some C' C {1,...,n} that

Bitsc (m' @c' @ - amP &) =0, (1)

where Bitse(x) outputs a string consisting of all bits of z whose index is in C'. (In
fact, our model is much more general: above-mentioned attacks aim to generate
only one relation, while we allow an adversary to see multiple relations.) The
value A usually depends on n and C' is regularly a large subset. We consider B
being a relatively small number (independent of n). For the above-mentioned
attack on Feistel;, A = 2"/2, B = 2, and C corresponds to the rightmost n/2
bits. Similarly, the attacks on AESg (for A = 2*/%, B = 2, and C a certain
set of size 10n/16) and Threefishzg (for A = 27/ B =4, and C = {1,...,n})
are covered, and so are almost all known differential (rebound- or boomerang-
based) known-key attacks. We remark that, on the other hand, the predicate is
not well-suited for integral-based known-key attacks: upon a predicate query an
attacker would receive B ~ 2" queries.

The weak cipher model is similar to an approach followed by Bresson
et al. [15] for the indifferentiability analysis of the SHA-3 candidate Shabal if
the underlying blockcipher shows some non-random behavior, and by Bouillaguet
et al. [13] to analyze the indifferentiability security of SIMD when the underly-
ing compression function is distinguishable from a random function. However, in
both approaches, the underlying biased primitives were relatively easy to model.
For instance in [15] (using our terminology), predicate @ is a relation that holds
for single queries only, and not for combinations of queries. This considerably
simplifies the analysis: one can derive a bias 0 to measure the distance between
primitive responses and fully random responses, and consider oracle responses
to be drawn from a set of size at least 2%, and the original indifferentiability
analysis carries over with minor modifications. The predicate used in the analy-
sis in [13], on the other hand, does apply to tuples of queries, but the model can
simply be described using two sampling algorithms, and an adversary cannot
hit a weak pair by accident (which s possible in our analysis). Liskov [35] used
a similar approach to prove indifferentiability security of the zipper hash if the
underlying compression function is invertible up to a certain degree. However,
the analysis is significantly simpler, as this primitive can be perfectly mod-
eled. We finally remark that Katz et al. [26] analyze the impact of related-key
attacks on blockciphers to hash functions. However, in their model, the differ-
ences Ak, Ax, Ay are fixed, an ideal cipher is generated for half of the key space,
and for the other half the cipher is adjusted as Ex(z,y) = Exgar(x ® Az) ® A,.
This primitive can be easily modeled, but is also too generous to the attacker.

To our knowledge, this is the first attempt to formally analyze the effect
of a wide class of blockcipher attacks on higher level cryptographic functions.
Nonetheless, the weak cipher model is in essence still a model: we use an abstrac-
tion of the cryptanalytic known-key attacks in such a way that the ideal cipher
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Table 1. Security results for the PGV, Grgstl, and Shrimpton-Stam compression func-
tions in the weak cipher model. Ideal cipher /permutation model bounds match the ones
of B > 3. All results are tight except for the case (B = 1,|C| > n/2) for Shrimpton-
Stam.

PGV Grgstl Shrimpton-Stam

B |C| collision preimage collision preimage collision preimage
1 <nj2 210Dz gn-l0l  oIOD/A m-ICD/2 gm-ICD/2  gn/2
>n/2 o(n—IC)/2  on—|Cl  9(n—IC))/4 o(n—|C)/2 9(n-|C])/2  9n—[C]|
2 < 7'L/2 277,/2 on 277,/4 2n/2 277,/2 277,/2
> n/2 2”7‘0' on 2('7L7|C’\)/2 2'n/2 an\C\ 2n/2
>3 arbitrary on/2 on on/4 on/2 on/2 on/2

model can be relaxed to cope them. A further discussion on the accuracy of the
model is given in Sect. 7.

Application to Blockcipher-Based Hash Functions. Preneel, Govaerts,
and Vandewalle (PGV) [48] classified the 64 most basic ways of constructing
a 2n-to-n-bit compression function from a blockcipher with n-bit key and n-
bit state, and claimed security of 12 of them. A formal security analysis of
these functions in the ICM has been performed by Black et al. [9], and later by
Duo and Li [19], Stam [58], and Black et al. [10]. In more detail, in the ICM
these constructions achieve tight collision security up to about 2*/2 queries and
preimage security up to about 2™ queries. Baecher et al. [4] recently showed that
the 12 secure PGV functions can be divided into two classes, in such a way that
if a primitive makes one function secure it makes the entire class secure.

As first application of our model, we consider the PGV compression functions
in the WCM and derive collision and preimage bounds for general (A, B, C).
A schematic summary of the results for various B and C is given in Table1
(we remark that A is merely a technical parameter that has no influence on
the results). We also show that the bounds are optimal, by providing matching
attacks. Some of these attacks are similar to methods used in [27,53,56] to detect
(near-)collisions in certain PGV modes of operations using known-key attacks.

Application to Permutation-Based Hash Functions. We also apply the
WCM to permutation-based compression functions. This is particularly interest-
ing for two reasons: (i) it allows us to understand the impact of distinguishers on
permutations that are used in hash functions, and (ii) a blockcipher with a fixed
and known key is a permutation and can be used as such. In more detail, we con-
sider the Grgstl compression function [21] and the permutation-based equivalent
of the Shrimpton-Stam compression function [57] (see also Fig.4). In the IPM,
the former is proven to achieve collision security up to 2"/4 queries, where n is
the state size, and preimage security up to 2™/2 [20]. Rogaway and Steinberger
[51] showed via an automated analysis that the latter function is collision and
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preimage resistant up to 2"/2 queries (asymptotically). This has been confirmed
in the generalized work of Mennink and Preneel [41].

A summary of our findings for the Grgstl and Shrimpton-Stam compression
functions in the WCM is given in Table 1. All results are tight, except for the case
(B =1,|C| > n/2) for Shrimpton-Stam, for which we leave proving tightness as
an open problem. We remark that the analysis for these schemes is much more
demanding as multiple primitives are involved.

Impact. An application of our formalization to the PGV functions and various
permutation-based functions shows that these achieve a comparable level of secu-
rity in the ideal and weak cipher model for a spectrum of choices for (4, B, C).
This result particularly implies that most relevant rebound-based (including
[12,22,28,38,52,53,56]) and boomerang-based (including [2,7,31,54,60]) known-
key attacks known to date do not invalidate the security of such functions, or
only have a little effect. For instance, the above-discussed attack on Feistel; sat-
isfies B = 2 and |C| = n/2 and it does not affect the security; similarly for
Threefishzg for which B = 4. The attack on AESg is covered for B = 2 and
|C| = 10n/16, which demonstrates a slight security degradation to 26%/16 for
the PGV functions, but this may in part be due to our over-generosity to the
adversary. We remark that, even though we focused on collision and preimage
resistance, the techniques can be generalized to other security notions, such as
near-collisions. This may entail differences in the security results.

We stress that these results do not mean that the analyzed functions are
secure when the underlying permutations are instantiated with, say, Feistel;
or Threefishsg: it only means that existing known-key attacks, or more general
weaknesses such as relation (1), alone are not sufficient to invalidate the collision
and preimage security of the construction. Indeed, more sophisticated attacks
which are not yet covered by our application of the WCM may still invalidate
the security of certain modes [6]. It remains a challenging open research problem
to generalize the findings to underlying primitives that have multiple or different
weaknesses.

1.2 Outline

In Sect. 2, we formally present the “weak cipher model,” and in Sect. 3 we show
how it relates to known-key attacks. We apply the model to the PGV functions
in Sect. 4, to the Grgstl compression function in Sect. 5, and to Shrimpton-Stam
in Sect. 6. We conclude this work in Sect. 7.

2 Weak Cipher Model

If X is a set, by 2 < X we denote the uniformly random sampling of an element
from X. By X < x, we denote X « X U {x}. For a bit string z, its bits are
numbered & = x|y - - xox1. If C C {1,...,]z[}, the function Bitsc(z) outputs a
string consisting of all bits of x whose index is in C'. Abusing notation, Bitsz(z)
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always denotes the remaining bits (technically, C = {1,...,|z|}\C). For 0 < r <
|z|, we consider Ri.(z) that outputs the r rightmost bits of z. In other words,
Ri.(x) = Bitsgy,.._ (). For a function f, by dom(f) and rng(f) we denote its
domain and range, respectively.

2.1 Security Model

For k > 0 and n > 1, by BC(k, n) we denote the set of all blockciphers with x-bit
key operating on n bits. If K = 0, BC(n) := BC(0,n) denotes the set of all n-bit
permutations. If @ is a predicate, by BC[®](k,n) we denote the subset of ciphers
of BC(k, n) that satisfy predicate @. For m € BC[®](k, n), the input-output tuples
are denoted (k,z,z), where 7(k,x) = mp(z) = z and 77 (k,2) = 7, '(2) = z.
The key k is omitted in case x = 0.

Let F : {0,1}* — {0,1}"™ be a compressing function instantiated with
¢ > 1 primitives from BC[®](k,n), for some predicate ¢. Throughout, we con-
sider security of F in an idealized model: we consider an adversary A that is
a probabilistic algorithm with oracle access to a randomly sampled primitive
7w = (m1,...,m) < BC[®](k,n)¢. A is information-theoretic and its complexity
is only measured by the number of queries made to its oracles. The adversary
can make forward and inverse queries to its oracles, and these queries are stored
in a query history Q.

A collision-finding adversary A for F aims at finding two distinct inputs to F
that compress to the same range value. In more detail, we say that A succeeds
if it finds two distinct inputs X, X’ such that F(X) = F(X’) and Q contains all
queries required for these evaluations of F. We define by

Advel(A) = Pr (w & BO@](k,n)!, X, X' — A™ : X £ X' A F(X) = F(X'))

the probability that A succeeds in this. By Adv?l(q) we define the maximum
collision advantage taken over all adversaries making ¢ queries.

For preimage resistance, we focus on everywhere preimage resistance [50],
which captures preimage security for every point of {0,1}". Let Z € {0,1}"
be any range value. Then, we say that A succeeds in finding a preimage if it
obtains an input X such that F(X) = Z and Q contains all queries required for
this evaluation of F. We define by

epre o (i 4 — AT . —
Adve (A)—Zenigﬁ}nPr@r BC[®)(k,n)!, X — A™(Z) : F(X) Z)

the probability that A succeeds, maximized over all possible choices for Z. By
Adv™(q) we define the maximum (everywhere) preimage advantage taken over
all adversaries making g queries.

If ¢ is a trivial relation, we have BC[®](x,n) = BC(k,n), and the above
definitions boil down to security in the ideal cipher model (ICM) if K > 0 or
the ideal permutation model (IPM) if k = 0. On the other hand, if ¢ is a non-
trivial predicate, it strictly reduces the set BC(k,n). In this case, we will refer
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to the model as the “weak cipher model (WCM),” for both k > 0 and x = 0.
Very informally, this model still involves random ciphers/permutations, with
the difference that an adversary may exploit a certain additional property. The
modeling of a randomly drawn weak ciphers is much more delicate.

2.2 Random Weak Cipher

For a certain class of predicates, we discuss how to model a randomly drawn
weak cipher 7 from BC[®](k,n). Let A,B € N. We will consider predicates
that imply, for every k € {0,1}", the existence of A sets of B distinct queries
{(zt,21),..., (2B, 25)} that satisfy @i ({(2?,2),..., (2P, 25)}) for some condi-
tion ¢ dependlng on key k. The predicate is denoted &(A,B,p). Ais merely a
technical parameter, and throughout we assume it is larger than ¢, the number of
oracle calls an adversary can make. This definition of (A, B, ) is fairly general.
Particularly, predicate B-sets may overlap and the condition ¢ can represent any
function on the inputs. We note that @ can be easily generalized to tuples of
different length and/or to multiple types of conditions at the same time.

Traditionally, an adversary has only forward 7 (z) and inverse 7, ' (z) query
access. In order for the adversary to be able to exploit the weakness present
in 7, we give it additional access to 7 via a “predicate query” ¢ (y): on input
of y € {1,..., A}, the adversary obtains a B-set {(z!,2!),..., (25, 25)} that
satisfies ¢ ({(21,21),..., (2B, 25)}).

A formal description of how to model = < BC[®(A, B, ¢)](k,n) is given in
Fig. 1. Here, for every k € {0,1}"*, Py is an initially empty list of 7x-evaluations,
where a regular forward/inverse query adds one element (z,2) to Py and a -
query may add up to B elements. Additionally, P,f is an initially empty list of
queries to 7. We denote by Xy (P, PZ) C ({0,1}" x {0, 1}™)” the set of all
tuples {(z',2%),..., (2, 2P)} such that

(i) 3?1 xB are pairwise distinct and 2',..., 28 are pairwise distinct;

(i) VB, : 2° € dom(Py) = 2* = Py(2%) and 2! € mg(Py,) = 2 = P, ' (2);
(iil) ¢ ({( 1), cee (JL‘B )}) holds;
(iv) {(xp(l Wy, (@PB) 2B & g(PP) for any permutation p on

{,....B }.

For a new query 7 (y), the response is then randomly drawn from (P, PF).
Conditions (i-iii) are fairly self-evident; note particularly that an existing (z, z) €
P, may appear in multiple predicate queries. Condition (iv) assures that the
drawing from Z'k(Pk,P,fS ) is not just an old predicate query or a reordering
thereof. The usage of this set Xy (P, P{) allows for a uniform behavior of ¥ for

every k, and in general of m < BC[®(A, B, v)](k,n), modulo the known existence
of condition . This step is fundamental to our model and new compared with
previous approaches of [13,15,35]. We remark that the model allows adversaries
to make their queries at their own discretion, e.g., duplicate queries and regular
queries after predicate queries are allowed.
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procedure g ()

if P(z) = L: procedure 7§ (y)

2 &0, 1" \rg(Py) if PY(y) = L: ]

P)lc<i (m,z) {(:I"l 21)7 a($B7 B)}(_Zk(PIWPIf)
end if for ¢ = 1, ., B:
return Py (x) if (2, Z “) ¢ Py

1 P, << (2%, 2%)
PrOS?dure 7, (%) ond if
if P (z) = L: end for
$ n U

z <_U{O7 1}™\dom(F%) P (y, {(a, 2Y),. .., (@B, 25)))

Py — (x,2) end if
end if return P7 (y)

return P, ' (2)

Fig. 1. Random weak cipher 7. An adversary has access to m, 71, and n%.

2.3 Random Abortable Weak Cipher

Security analyses in the WCM are significantly more complex than in the ICM
or IPM, which is in part because predicate queries may consist of older queries.
This will particularly be an issue once collisions among queries are investigated.
To suit the analysis for this case, we transform the WCM to an abortable weak
cipher model (AWCM), which we denote as BC[®(A, B, ¢)](k,n). At a high-
level, an abortable weak cipher responds to predicate queries with new query
tuples only, and aborts once it turns out that an older query appears in a newer
predicate query.

For any k € {0,1}* and partial P, and PZ, define by Xy(PZ) C
({0,1}™ x {0,1}™)” the set of all tuples {(z*, 2),..., (5, 28)} such that

(111) (pk({(gj Zl) '7(IB7ZB)}) hOldS;
(iv) {(xp(l),zp(l)),...,(xp(B),zp(B))} ¢ mg(PP) for any permutation p on

{1,...,B}.

Y(P?) differs from X (P, P?) in that conditions (i) and (ii) are omitted, and
particularly: it is independent of Pg. A formal description of a random cipher
7 < BC[®(A, B, )|(k,n) is given in Fig. 2. It deviates from Fig. 1 as follows: for
every key k, ﬁf responds randomly from Xy (P,f5 ), and it aborts if the response
violates one of the two skipped conditions of Xy (P, PF).

The next lemma shows that the WCM and AWCM are indistinguishable
as long as the abortable weak cipher does not abort, approximately up to the
birthday bound. Here, we assume that Xy (P?) is always large enough.

Lemma 1. Let 7 < BC[®(A, B, ¢)|(k,n). Consider an adversary that makes
q queries to . Then,
B*q(g+1)

_ _Blg2n
[k ()]

Pr (7 sets abort) <
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procedure 77 (y)

procedure 7 (x)

if Py(z) = L: i P’?(f) -

UL GO i S

Pi = (,2) if * E7dom7(Pk) A28 # Pe(z®): abort
end if if 2° € rg(Pe) Az’ # Pl (2"): abort
return Py (z) if (2%, 2%) € {(a, 2"), ..., (=", 271} abort
procedure 7, '(2) if (2°,2%) ¢ Pi:
if P (z) = Lt Py (2%,2")

2 < {0,1}"\dom(Py) end if

Pki(x,z) en;if:)r 1,1 B _B
b PP (g {(a ), 02
return P, '(2) end if

return P (y)

Fig. 2. Random abortable weak cipher . An adversary has access to 7,71, and 7%.

Proof. Consider the i*" query, for i € {1,...,q}, and assume it is a predicate
query ﬁf(y)‘ We will consider the probability that this query makes 7 abort,
provided it has not aborted so far. Prior to this i*" query, |Py| < B(i — 1) and
|PF| < i. Basic combinatorics shows that

|Z0(BY)| = | Zk(2)] = B! | B,

where we use that 7 has not aborted so far. This i*® query aborts only if for
some £ € {1,..., B}, the value 2 equals an element in dom(Py)U{z!,... z*~1}
or the value z* equals an element in rng(Py) U {z!,... 271}

Define by X20°(P?) the set of all elements of Ek(P'@) that would lead to
abort. We have 2B possible values to cause the abort (namely, z', ..., 2"), and
it causes the abort if it equals an element in a set of size at most |Pg| + B. For
any of these 2B(|P;| + B) choices, the number of tuples in X4 (PF) complying

with this choice is at most %ﬂ. Thus,

e (P)| _ 2B(P+B) - EEL  op

D — Y _ RI. D — on _ _Blg2"
SWED S Skle) - BU IR 2 B

Pr (7% (y) sets abort) =

The proof is completed by summation over i = 1,...,q. a

3 Modeling Known-Key Attacks

We next apply the WCM to known-key attacks. For the sake of explanation, we
first reconsider the Knudsen-Rijmen attack on Feistel; [27]. (A detailed descrip-
tion of the attack is also given in the full version of this paper.) Let n € N,
and let m := m; be an instance of Feistel; with fixed key k. Knudsen and
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Rijmen revealed four functions f, f’,g,¢’ : {0,1}*/2 — {0,1}" such that for
all y € {0,1}"/2:

9(y) = 7(f(y)) and ¢'(y) = = (f'(y)),
Rins2 (f(y) © 9(y)) = Riny2 (f'(v) ® 9'(y)) - (2)

These four functions depend on the cryptographic primitive underlying Feistel;
in a complicated way. Therefore, we can safely assume that these functions
behave sufficiently random, besides this particular relation (2), and that they are
unknown to the adversary. f, f’,g,¢" are all injective and satisty f(y) # f'(v)
and g(y) # ¢'(y) for all y. On the other hand, collisions of the form f(y) = f'(v')
and ¢g(y) = ¢'(y') may occur.

Generically, the attack demonstrates that for key k there exist 2/ possibly
overlapping sets of distinct queries {(x!, 2!), (22, 2%)} that satisfy Riy, /2 (a:l 2@
22 ® 22) = 0. In other words, Feistel; meets predicate Q5(2"/27 2, pFeisteln) " where

wgeimb ({(xl, 2Y), (22, z2)}) : Rip/o (331 e’ z2) =0.

Here, we remark that the Knudsen-Rijmen attack works for any fixed but known
key k, and that condition goiemeb is in fact independent of the key. In this
work, we will consider a more general predicate ®(A, B, ) for A, B € N and

C C{1,...,n}, where
of ({(z',2Y),...,(@P,2%)}) : Bitsc (z' @' @@z @2P)=0. (3)

This generalized predicate considers the case of arbitrary but fixed and known
keys, where the adversary can even choose the key every time it makes a pred-
icate query. Note that also the attacks on AESg and Threefishsg (see Sect. 1)
are covered, as they satisfy &(2/8,2,¢C) for certain C of size 10n/16 and
45(2”/ 8,4,30{1"“’”}), respectively. In general, all rebound- or boomerang-based
known-key attack in literature are covered by predicate @(A, B, %) for some
A, B,C. Here, B is always a value independent of n (usually 2 or 4) and C' is
regularly a large subset (of size at least n/4). Throughout, we consider A to be
sufficiently large.

Basic Computations for AWCM

For the specific condition ¢ of (3), we derive a simpler bound on the probabil-
ity that a primitive 7 < BC[®(A, B, ¢°)](k,n) aborts, along with some other
elementary observations for 7. To this end, we define the notation “[X],” which
equals 1 if X holds and 0 otherwise. For conciseness, we introduce the function
0p,c[b] defined as

op.clb) = 2B =b] + [B > b]. (4)
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Lemma 2. Let 7 < BC[®(A, B, ¢)|(k,n). Consider an adversary that makes
q < 2"71/B queries to 7. Then,

B? 1
Pr (7 sets abort) < 23(—#;(1) (5)

Let k € {0,1}" and let Z,Z',Z" € {0,1}™. Consider any new query ﬁf(y) and
assume it does not abort. Wmte the response as {(z',2Y),..., (2B, 28)}. The

(i) Vae{l,...,B}: Pr(a®=2), Pr(2*=2) < 525
(i) Ya€{l,...,B}: Pr(z® @2 = Z) < 2,
(iii) ¥ {a,b} C{1,...,B}: Pr(a® @20 = ZNab @ b = Z) < 22l
(iv) ¥ {a,b} C{1,...,B}:
Pr(ac“:Z/\xb:Z’/\x“@za@xb@zb:Z”)§

Bq’

§p.c[2]
23n ,Bq .

Proof. Recall from the proof of Lemma 1 that
1 Z1(PY)| = |Zx(2)| - BIIFY],

where |PZ| < q. For the specific predicate analyzed in this lemma, |X)(2)| =
(27)?B=12n=I€l 1In the remainder, we regularly bound B! < B - (2")?8~2 for
B>1lor B'<B-(2")*~% for B > 2.

Probability of Abortion. The bound of (5) directly follows from Lemma 1,
the above-mentioned size of X} (&), and the bound on B!.

Part (i). Define by Z_’,(ci)(P,f) the set of all elements of Xy (PZ) that satisfy
x® = Z. Then, |E‘,§1)(P,‘f)\ < (27)2B-2271C1 and

Z0ED 1
S~ 27~ B

Pr(z*=2)=

A similar analysis applies to the case z* = Z.

Part (ii). Define by E’,iii) (PF) the set of all elements of Xy (PF) that satisfy
z* ® z* = Z. We make a distinction between B =1 and B > 1. In case B > 1,
a similar reasoning as in (i) applies, and we have | £V (P®)| < (2n)2B-22n-C1,
On the other hand, if B = 1, we have |Z_Jlgii)(P,f)| = 0 if Bitse(Z) # 0 and
|Z_J,(€ii)(P,f)| < 2" if Bits¢(Z) = 0. In any case,

|2,]iii) (P]?S)‘ < (2n)23722n7|0|5370[1} 7
and

£ B _ Sl

P @ ¢ =7)= £ .
PSS =20 = TR S By
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Part (iii). This part only applies to B > 1; if B = 1 the probability equals
0 by construction. Define by £ (P®) the set of all elements of X (P?) that
satisfy 2% @ 2% = Z and 2° ® 2 = Z’. We make a distinction between B = 2
and B > 2. In case B > 2, a similar reasoning as in (i) and (ii) applies, and

we have |E‘£iii)(P,f)\ < (27)28-327~1€1 On the other hand, if B = 2, we have
| SU) (P2 = 0if Bitse (Z2Z') # 0 and |1 (PP)| < (27)2 if Bits (2 2') = 0.
In any case,

1S (PD)| < (27)2P %27 1%5p 2]

and

IVPH| _ sl
Pr(z¢ @' =Znab@b =2 :| L k71 < : )
( ) |Ze(PE)| ~ 22" — DBq

Part (iv). The approach is fairly similar to case (iii). If B = 1 the probability
is 0 by construction. Define by Eliiv)(P,f ) the set of all elements of Xy (PF)
that satisfy 2% = Z, 2 = Z/, and 2° @ 2* ® 2® ® 2 = Z”. In case B > 2,
we have |Z_],(€iv)(Pk¢)| < (27)2B-427~1C On the other hand, if B = 2, we have
| S0)(P2)| = 0 if Bitse(2”) # 0 and |Z(Y)(P2)| < 2" if Bits¢(Z”) = 0. In any
case,

|2](€iV) (P]f)l < (2“)23742”'7'6"6370[2} 7
and

_ 5@ sl
ZW(BD)] ~ 27 =By

Pr(m“:Z/\a:b:Z'/\:E“@z“@xb@zb:Z”)

a

4 Application to PGV Compression Functions

We consider the 12 blockcipher-based compression functions from Preneel, Gov-
aerts, and Vandewalle (PGV) [48]. In the ICM these constructions achieve tight
collision security up to about 2"/2 queries and preimage security up to about 2"
queries [9,10,19,58]. The 12 constructions are depicted in Fig. 3. Here, we follow
the ordering of [10], where PGV1, PGV2, and PGV5 are better known as the
Matyas-Meyer-Oseas [36], Miyaguchi-Preneel, and Davies-Meyer [45] compres-
sion functions.

Baecher et al. [4] analyzed the 12 PGV constructions under ideal cipher
reducibility, which at a high level covers the idea of two constructions being
equally secure for the same underlying idealized blockcipher. They divide the
PGV functions into two classes, in such a way that if some blockcipher makes
one of the constructions secure, it makes all functions in the corresponding class
secure. Applied to our WCM, the results of Baecher et al. imply the following:
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Group G1 Group G2
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Fig.3. The 12 PGV compression functions. When in iteration mode, the message
comes in at the top. The groups G1 and G2 refer to Lemma 3.

Lemma 3 (Ideal Cipher Reducibility of PGV [4], Informal). Let © <
BC[®](n,n) for some predicate . Let

Gy = {1,4,5,8,9,12}, and G5 = {2,3,6,7,10,11} .

For any a € {1,2} and i,j € G,, PGVi and PGVj achieve the same level of
collision and preimage security once instantiated with .

Baecher et al. also derive a reduction between the two classes, but this reduction
requires a non-direct transformation on the ideal cipher 7!, making it unsuitable
for our purposes. Thanks to Lemma 3, it suffices to only analyze PGV1 and
PGV2 in the WCM: the bounds carry over to the other 10 PGV constructions.
In Sect. 4.1 we analyze the collision security of these functions in the WCM. The
preimage security is considered in Sect. 4.2.

4.1 Collision Security

Theorem 1. Let n € N. Let a € {1,2} and consider PGVa. Suppose m <
BC[é(A, B7 @C)}(n7n). Then, fOT’ q < 2n—1/B7

B2 1]¢? B\ 265 c[2 4B2¢?
B7c[]q+() B,C[]q+ @

AdVCPOCl}Va (q) <

- 2n 2 2n 2n

L If 7 makes the PGV constructions from group Gi secure, there is a transformation
7 such that 7™ makes the constructions from G2 secure, and vice versa.
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Proof. We focus on PGV2. The analysis for PGV1 is a simplification due to
the absence of the feed-forward of the key. We consider any adversary that has
query access to m < BC[®(A, B, ¢°)](n,n) and makes ¢ queries. As a first step,

we move from 7 to 7 < BC[®(A, B, ¢“)](n,n). By Lemma 2, this costs us an

additional term %
q

A collision for PGV2 would imply the existence of two distinct query pairs
(k,z,2),(k',2',2') such that k ®z ® z = k' © 2’ @ 2’. We consider the i query
(i € {1,...,q}) to be the first query to make this condition satisfied, and sum
over i = 1,...,q at the end. For regular (forward or inverse) queries, the analysis
of [9,10,58] mostly carries over. The analysis of predicate queries is a bit more
technical.

Query 7y () or 7, "(2). The cases are the same by symmetry, and we consider
Tr(z) only. Denote the response by z. There are at most B(i — 1) possible
(K',2',2"). As z is randomly drawn from a set of size at least 2" — By, it satisfies

2=k®x k' ® 2’ @2 with probability at most B(l 1)

Query @ (y). Denote the query response by {(k,z!',z'),...,(k,2%,2P)}. In
case the B-set contributes only to (k,x,z), the same reasoning as for regular

queries applies with the difference that any query of the B-set may be successful
B%5p,c[1](i—1)

2n —Bq .

Now, consider the case the predicate query contributes to both (k,x,z) and
(k,2’,2"). There are (g) ways for the predicate query to contribute (or 0 if
B =1). By Lemma 2 part (iii), which considers the success probability for any

such combination, the predicate query results in a collision with probability at
most (5 )%.

and that the bound of Lemma 2 part (ii) applies:

Conclusion. Taking the maximum of all success probabilities, the i*" query

B (53 C[l](l 1) +( )53 c[ ]2

5 Bg T B . Summation

is successful with probability at most
over t = 1,...,q gives

B?0pc(ll¢* | (B\ds.cl2q N B%q(q+1)
V="%0n"Bg) "\2)2"—Bqg " 2" _Bq °

where the last part of the bound comes from the transition from WCM to
AWCM. The proof is completed by using the fact that 2" — Bg > 2”1 for
Bq < 2" ! and that ¢ + 1 < 2¢q for ¢ > 1. O

We note that the bound gets worse for increasing values of B. This has a technical
cause: predicate queries are counted equally expensive as regular queries, but
result in up to B new query tuples. This leads to several factors of B in the
bound. As this work is mainly concerned with differential known-key attacks for
which B is regularly small, these factors are of no major influence.

The implications of the bound of Theorem 1 become more visible when con-
sidering particular choices of B and C.
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(i) If B =1, then Advihya(q) < Zonl 4 42

(ii) If B =2, then Advi%hya(q) < 22 4 420,

(iii) If B > 3 (independent of n), then Advisay,(q) < 5B;qu + %?1.

In other words, for B = 2 and C with |C] < n/2, or for B > 3 constant and
C arbitrary, the PGV functions achieve the same 2"/2 collision security level
as in the ICM. On the other hand, if B = 1, collisions can be found in about
2(n=I€N/2 queries, and if B = 2 with |C| > n/2, in about 2"~ < 2/2 queries.
See also Table 1.

Tightness

For the cases B = 1 and C arbitrary, and B = 2 and C arbitrary such that
|C| > n/2, we derive generic attacks that demonstrate tightness of the bound of
Theorem 1. Knudsen and Rijmen [27] and Sasaki et al. [53,56] already considered
how to exploit a known-key pair for the underlying blockcipher to find a colli-
sion for the Matyas-Meyer-Oseas (PGV1) and/or Miyaguchi-Preneel (PGV?2)
compression functions. Their attacks correspond to our B = 2 case.

Proposition 1 (B = 1). Let n € N. Let o € {1,2} and consider PGVa. Sup-
pose T & BC[®(A, 1,0%)](n,n). Then, Advfpoé\,a(q) > 2,1‘172‘0'

Proof. We construct a collision-finding adversary A for PGV2. It fixes key k = 0,
and makes predicate queries to 7T;f on input of distinct values y to obtain ¢
queries (k, zy, z,) satistying Bits¢(z, @ z,) = 0. Any two such queries collide on
the entire state, k@ xy, ® 2y = k @z, @ 2,r, with probability at least quic'. The
attack for PGV1 is the same as we have taken k = 0. O

Proposition 2 (B =2and |C| > n/2). Let n € N. Let o € {1,2} and
consider PGVa. Suppose m < BC[B(A,2,0)](n,n). Then, Adviseva(q) >
e

Proof. We construct a collision-finding adversary A for PGV2. It fixes key k = 0,

and makes predicate queries to W,f on input of distinct values y to obtain ¢ 2-sets

{(k, leﬁzé)’ (k,x2,22)} s;'itisfying Bitsc (z) & z,) = Bitsg (2 ® z2). The.s.e two
queries collide on the entire state, k & chlj &) z; =k® a:i &) 257 with probability at

least ﬁ If the adversary makes g predicate queries, we directly obtain our
bound. The attack for PGV1 is the same as we have taken k = 0. O
4.2 Preimage Security

Theorem 2. Let n € N. Let o € {1,2} and consider PGVa. Suppose © <
BC[®(A, B, @C)}(n,n). Then, for ¢ <2"2/B,

epre QB(] B 2B25B,C[1]q
AdvEy,.(9) < (Qn) L T
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The proof is given in Appendix A. It is much more involved than the one of
Theorem 1, particularly as we cannot make use of abortable ciphers. Entering
various choices of B and C' shows that in the PGV functions remain mostly
unaffected in the WCM if B > 2, and the same security level as in the ICM is
achieved [9,10,58]. A slight security degradation appears for B = 1 as preimages
can be found in about 27~I€|. In the full version, we present a matching attack
in the WCM.

5 Application to Grgstl Compression Function

We consider the provable security of the compression function mode of operation
of Grgstl [21] (see also Fig. 4):

Farost(T1,22) = 22 @ mi(21) © ma(21 © 2) . (6)

The Grgstl compression function is in fact designed to operate in a wide-pipe
mode, and in the IPM, the function is proven collision secure up to about 2"/4
queries and preimage secure up to 2/2 queries [20]. We consider the security
of Farostl in the WCM, where (71, m2) n BC[®(A, B, ¢%)](n)?. We remark that
in this section we consider keyless primitives, hence x = 0 and the k-input is
dropped throughout. We furthermore note that finding collisions and preimages
for Farast1 18 equivalent to finding them for

FGrost (1, 22) = 71 ® 22 @ m1(21) © ma(22) (7)

as Farosti (@1, ©2) = Fyppen (21, 21 B x2), and we will consider Ff, ., throughout.

5.1 Collision Security

Theorem 3. Let n € N. Suppose (w1, m3) < BC[B(A, B, p°)|(n)2. Then, for
q<2"'/B,

B4p c[1]¢? B\ 265 ¢[2](g2 + 27/2-1C1 B2g? 4B242
Grostl on 2 on 2.9n/2 on

x T Z1 ™ P
D D MDD D
Lo T2 N Z L2 ™2 NVAREANY) 3 N 2

Fig. 4. Gregstl compression function (left) and Shrimpton-Stam (right).
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The proof is given in the full version of the paper. If we enter particular choices
of B and C' into the bound, we find results comparable to the case of Sect.4.1.
In more detail, for B = 2 and C with |C| < n/2, or for B > 3 constant and C
arbitrary, Fqrsst1 achieves the same 21/ collision security level as in the ICM
[20]. If B = 1, the bound guarantees security up to about 2(n=ICN/4 and if
B = 2 with |C| > n/2, collisions can be found in about 2(*~1€N/2 queries. See
also Table1. In the full version, we also show that the bound is optimal, by
presenting tight attacks on Ff,, ., in the WCM.

5.2 Preimage Security

Theorem 4. Let n € N. Suppose (m1,m) < BC[®(A, B, p°)](n)?. Then, for
q=< 2n_1/B)

2B2%5p o[1](g? + 27/2-1€! Bq  4B%*¢?
Adverre (Q) < B7C[ Kq + Q) q q .
Farost on on/2 on
The proof is given in the full version of the paper. As before, we find that Fqpast)
remains unaffected in the WCM for most cases, the sole exception being B = 1
for which preimages can be found in about 2(*~I¢D/2 In the full version, we

also show that the bound is optimal, by presenting a tight attack on Ff,, ,, for
B =1 in the WCM.

6 Application to Shrimpton-Stam Compression Function

In this section, we consider the provable security of the Shrimpton-Stam com-
pression function [57] (see also Fig.4):

Fss(z1,22) = 21 @ w1 (1) ® m3(w1 @ m1(21) B 2 B Mo (22)) - (8)

This function is proven asymptotically optimally collision and preimage secure
up to 2"/? queries in the IPM [41,51,57]. We consider the security of Fgg in

the WCM, where (71, 2, 73) < BC[B(A, B, »°)](n)?. (As in Sect. 5 we consider
keyless functions, hence £ = 0 and the key inputs are dropped throughout.) Our
findings readily apply to the generalization of Fgg of [41]. The analysis of this
construction is significantly more complex than the ones of Sects. 4 and 5.

6.1 Collision Security
Theorem 5. Let n € N. Suppose (w1, T, w3) < BC[P(A, B, p°)|(n)?. Then,

(i) If B=1 and C arbitrary, Advﬁcs’ls (2(n=ICN/2=ney 0 for n — oo;
.. . col ron/2—n
= = ) F €) — s

(it) If B =2 and C with |C| < n/2, Adv{2 (2"/ ) — 0 forn — oo;
(i1i) If B =2 and C with |C| > n/2, Advﬁzls@"’m*m) — 0 forn — oo;

w) If B > 3 (independent of n) and C arbitrary, AdveS. (27/2-1¢) — 0 for

Fss
n — 00.
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Due to the technicality of the proof, the results are expressed in asymptotic
terms. The proof is given in the full version of the paper. For B = 2 and C with
|C| < n/2, or for B > 3 constant and C arbitrary, Fgg achieves the same security
level as in the IPM. On the other hand, if B =1, or if B = 2 but |C| > n/2,
Theorem 5 results in a worse bound. See also Table 1. In the full version, we also
show that the bound is optimal, by presenting tight attacks on Fgg in the WCM.

6.2 Preimage Security
Theorem 6. Let n € N. Suppose (w1, o, 73) < BC[P(A, B, v°)](n)3. Then,

(i) If B=1 and C with |C| < n/2, Advﬁzze(2"/2_"5) — 0 for n — oo;
(ii) If B=1 and C with |C| > n/2, Adv*(2"~1C1=1¢) — 0 for n — oo;
(iii) If B > 2 (independent of n) and C arbitrary, Adver;e(Q”/Q*”E) — 0 for
n — o0o.

As for collision resistance, the results are expressed in asymptotic terms. The
proof is given in the full version of the paper. The bounds match the ones in
the IPM, except for the case of B = 1 and |[C| > n/2. We leave it as an open
problem to prove tightness of Theorem 6 part (ii).

7 Conclusions

Since their formal introduction by Knudsen and Rijmen at ASTACRYPT 2007
[27], numerous known-key attacks on blockciphers have appeared in literature.
These attacks are often considered delicate, as it is not always clear to what
extent they influence the security of cryptographic functions based on these
known-key blockciphers. We presented the weak cipher model in order to inves-
tigate this impact. For a specific instance of this model, considering the exis-
tence of A sets of B queries that satisfy condition ¢ of (3), we proved that the
PGV compression functions [48], the Grgstl compression function [21], and the
Shrimpton-Stam compression function [57] remain mostly unaffected by the gen-
eralized weakness. Additionally, preimage security of the functions turned out to
be significantly less susceptible to these types of weaknesses than collision secu-
rity. The results can be readily generalized to other primitive-based functions,
such as the double block length compression functions Tandem-DM, Abreast-
DM, and Hirose’s compression functions [23,30], and to the permutation-based
sponge mode [5].

Our model is general enough to cover practically all differential known-
key attacks in literature, such as latest results based on the rebound attack
[12,22,28,38,52,53,56] and on the boomerang attack [2,7,31,54,60]. To our
knowledge, our work provides the first attempt to formally analyze the effect
of a wide class of cryptanalytic attacks from a modular and provable security
point of view. It is a step in the direction of security beyond the ideal model, con-
necting practical attacks from cryptanalysis with ideal model provable security.
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There is still a long way to go: in order to make the connection between the two
fields, we abstracted known-key attacks to a certain degree. It remains a highly
challenging open research problem to generalize our findings to multiple or dif-
ferent weaknesses, and to different permutation-based cryptographic functions.
These generalizations include the analysis of known-key based constructions for
more advanced conditions ¢ (such as arbitrary polynomials).
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A  Proof of Theorem 2

We focus on PGV2. The analysis for PGV1 is a simplification due to the absence
of the feed-forward of the key. We consider any adversary that has query access
tom < BC[®(A, B,¢%)](n,n) and makes ¢ queries. Let Z € {0,1}". A preimage
for Z would imply the existence of a query (k,z,z) such that x ® z = k@ Z.
We consider the i query (i € {1,...,¢}) to be the first query to make this
condition satisfied, and sum over ¢ = 1,...,q at the end. For regular (forward
or inverse) queries, the analysis of [9,10,58] mostly carries over. The analysis
of predicate queries is a more technical, particularly as we cannot make use of
abortable ciphers.

Query 7 (x) or 7'rk_1 (2). The cases are the same by symmetry, and we consider
7k (x) only. Denote the response by z. As z is randomly drawn from a set of size

at least 2™ — By, it satisfies z = = ® k & Z with probability at most 2" 5

Query 7y (y). Denote the query response by {(k,z',z'),..., (k,2%,25)}. If all
tuples are old, the query cannot be successful as no earlier query was successful,
and so we assume it contains at least one new tuple. The response is drawn
uniformly at random from the set Z’k(Pk,P,f). For ¢ = 0,..., B, denote by
Yt(Py, PP) the subset of all responses that have ¢ new query tuples and B — ¢
old query tuples (which already appear in Py). By construction,

B
SR P2 = | ZL(P PY). (9)
=0
Define furthermore for £ = 1,..., B by Ei’p (P, P?) the subset of elements of
X! (Pg, P?) for which one of the new query tuples satisfies @ z = k ® Z (recall
that we have excluded the case of £ = 0). The predicate query is successful with
probability

Eé,pre Pk )l
Pr (7 (y) sets pre(Q | ’ i 10
( k (y) Z ‘Zk ‘ij7 P@)‘ ( )
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Using (9), we bound (10) as

|21 prC(Pk7P¢ Z |E€ prc F)}€7 )‘

Pr (7% (y) sets pre(Q;)) <
( k(y) p ( )) |2]€B(P7P<15 ‘E@ P]wP@)‘

(11)

(=2

The reason why £ = 1 is treated differently, will become clear shortly.

We next bound all relevant sets. Here, for integers a > b > 1, we denote by
at = a1 b), the falling factorial power. Starting with the numerators, for £ = 1
we have

|57 (P, PE)| < B+ [P (27 — | Py)) -

Indeed, we have B positions for the sole new query to appear and |Pk|E choices
for the old queries. For the new query, without loss of generality (k,2?,2%), it
needs to satisfy Bitsg(z? @ 2P) = Bitsg(z' @ --- @28 ) and 2B @ 2P =k Z.
We have 2" — |Py| possible choices for z”, and any choice gives at most one
possible zP. We remark that |2, P*(Py, PZ)| will probably be about a factor
211 1ess, as we should only count all possible solutions for the B —1 old queries
that satisfy Bitsg(z! @ --- @ 25~1) = Bitsg(k @ Z). Deriving a tighter bound
would be a cumbersome exercise, but fortunately there is no need to do so: the
fraction of elements in Xy (P, PF) consisting of B —1 old tuples is already small
enough for the case B > 1. This is the reason why we use a special treatment
for the case of £ =1 in (11).
For ¢ € {2,..., B} we have

B _ _
|2]€)pre(Pk:aP]?)| < (Z) . ‘pﬂﬂ, (2n — |Pk|)£'f' (2" — |Pk‘)u_2n—|0\.

Again, the first term comes from identifying at which positions the new queries
appear and the second term comes from the selection of old queries. Next, we
have (2" |Pk|) choices for the z-values and ¢ positions for the “winning query”

to occur. For this particular winning query, the corresponding z-value is fixed
by the equation x & z = k @ Z. For the remaining ¢ — 1 z-values, there are
(2" — | P|)=2 possibilities to freely fix the first £ — 2 of them, and the last one
will be adapted to the predicate condition, and can take at most 27~ I€! values.

Regarding the denominators, for £ € {1,..., B} we have

B B (2" — |P ‘)L(2n_‘Pk|)ﬂ.2n—\Cl —
EZ P, P@ > P ﬂ k
|25 (Bry B | 2 <£> | P | Bq-(2"—|Pk|)e’—1-(2"—IPkI)Z;l-T‘_'C' ’

which can be seen as follows. As before, we have (]‘;” ) positions for the new
queries to appear and |Pk|H possible lists of old queries. Regarding the £ new
queries, without loss of generality (k,z', 2%),..., (k, 2% %), these need to satisfy
Bitsc (2! @ - -+ @ 2%) = Bits¢ (2! @ - - - @ 2P). We first compute the number of
choices for these new queries where 2z is only used to adapt to this condition
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and does not need to satisfy that it is fresh. For this case, we have precisely
(2" — |Pe))E - (2" — |Py|)=L choices for xt,..., 271, z¢, and 2"~IC1 possibilities
for the adaption value 2.

Now, we subtract the cases where this adapted value happens to collide,
either with an older value in rng(Py) or with any of the new z!,...,z¢~1. Any of
these choices would fix z* (in total at most (| Py| + ¢ — 1) possibilities). Similarly
to the analysis for |E,€’pr°(Pk, PF)|, where now z* will be used to be adapted to
the predicate condition, there are at most

(1Pl + €= 1) (2" — [P)=E (20 — | By y=E - 2 1€
choices for the fresh values. As ¢ < B, and additionally |P;| < B(i—1) < B(g—1)

for the current query, we obtain our bound for | X% (Pg, PZ)|. The bound can be
simplified to

B _ _ _ _
|5k P PO 2 () - 1P @7 = |PYEE - 27 — RS- 27190 (2n — 2Bg),

: " | P |)t n n
using that % =2"—|P,|—(¢{—-1)>2" - Bg.

Plugging these bounds into (11), we find for the case B = 1:

2" — | Py 2lcl
o .
Pr (mic () sets pre(Q) < 5T or 99 <7 —2g°

For the case B > 1 the computation is a bit more elaborate:

B- (2" —|Pgl) || B=L
Pr (=¥ sets pre(Q;) ) < . +
( k@) pre( Z)) T (@n - |P)BEL 2nmlCl (20 —2Bg) (20 — |P)BEL
f: @ — [P @ = [P)E2
= @ — [P (2 — P )L 2m —2Bg

For the first fraction we use that 2" — [P, < (2" — |Py[)2~t as B > 1, and
additionally that |C| < n. For the falling factorial powers of the second fraction,
we use that |Py[2=2 < (Bg)B~! and (2" — |P,[)2=L > (2" —|Py|— (B—1))B~! >
n 4 n £—2
(2"—2Bq)P~1. For the fraction in the sum, we use that (= |Pel) (2% = Pel) =

Pl (0—1) (2n—|Pg))E=L- (27— | Py )2
2" —| Py |—(£—1 .
o p (=2 < 1. We obtain:

B
B (Bg)"~* ¢
P & sets D)) < . _
r (7Tk (y) Sets pre(Q )) = 2n —2Bq (2n _ QBq)Bfl + Zz:; 2n — 2Bq
BBfol BZ

< .
~ (2 —2Bqg)B + 2" — 2Bq
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Conclusion. Taking the maximum of all success probabilities, the i query
B,B-1 BZ(SB’c[l]

B”q .
7 2B P snoapg - Summation over

is successful with probability at most i
1=1,...,q gives

epre BBqB BZ(;B C[l]q
Advpgys(g) < (2n —2Bq)B 2" —2Bq

The proof is completed by using the fact that 2® — 2Bq > 2"~! for Bq < 2"~2.

References

1. Andreeva, E., Bogdanov, A., Mennink, B.: Towards understanding the known-key
security of block ciphers. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp.
348-366. Springer, Heidelberg (2014)

2. Aumasson, J.-P., Calik, C., Meier, W., (jzen, O., Phan, R.C.-W., Varia, K.:
Improved cryptanalysis of skein. In: Matsui, M. (ed.) ASTACRYPT 2009. LNCS,
vol. 5912, pp. 542-559. Springer, Heidelberg (2009)

3. Aumasson, J., Meier, W.: Zero-sum distinguishers for reduced Keccak- f and for
the core functions of Luffa and Hamsi (2009)

4. Baecher, P., Farshim, P., Fischlin, M., Stam, M.: Ideal-cipher (Ir)reducibility for
blockcipher-based hash functions. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 426-443. Springer, Heidelberg (2013)

5. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Sponge functions. In:
ECRYPT Hash Function Workshop (2007)

6. Biryukov, A., Khovratovich, D., Nikoli¢, I.: Distinguisher and related-key attack
on the full AES-256. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp.
231-249. Springer, Heidelberg (2009)

7. Biryukov, A., Nikoli¢, I., Roy, A.: Boomerang attacks on BLAKE-32. In: Joux, A.
(ed.) FSE 2011. LNCS, vol. 6733, pp. 218-237. Springer, Heidelberg (2011)

8. Black, J.A., Cochran, M., Shrimpton, T.: On the impossibility of highly-efficient
blockcipher-based hash functions. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 526-541. Springer, Heidelberg (2005)

9. Black, J., Rogaway, P., Shrimpton, T.: Black-box analysis of the block-cipher-based
hash-function constructions from PGV. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 320-335. Springer, Heidelberg (2002)

10. Black, J., Rogaway, P., Shrimpton, T., Stam, M.: An analysis of the blockcipher-
based hash functions from PGV. J. Cryptology 23(4), 519-545 (2010)

11. Blondeau, C., Peyrin, T., Wang, L.: Known-key distinguisher on full PRESENT.
In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 455-474.
Springer, Heidelberg (2015)

12. Bouillaguet, C., Dunkelman, O., Leurent, G., Fouque, P.A.: Attacks on hash func-
tions based on generalized feistel: application to reduced-round Lesamnta and
SHAvite-8512. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC 2010. LNCS,
vol. 6544, pp. 18-35. Springer, Heidelberg (2011)

13. Bouillaguet, C., Fouque, P.-A.,; Leurent, G.: Security analysis of SIMD. In:
Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp.
351-368. Springer, Heidelberg (2011)

14. Boura, C., Canteaut, A.: Zero-sum distinguishers for iterated permutations and
application to KECCAK-f and Hamsi-256. In: Biryukov, A., Gong, G., Stinson,
D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 1-17. Springer, Heidelberg (2011)



82

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

B. Mennink and B. Preneel

Bresson, E., Canteaut, A., Chevallier-Mames, B., Clavier, C., Fuhr, T., Gouget, A.,
Icart, T., Misarsky, J.F., Naya-Plasencia, M., Paillier, P., Pornin, T., Reinhard, J.,
Thuillet, C., Videau, M.: Indifferentiability with distinguishers: why Shabal does
not require ideal ciphers. Cryptology ePrint Archive, Report 2009/199 (2009)
Coron, J.-S., Patarin, J., Seurin, Y.: The random oracle model and the ideal cipher
model are equivalent. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
1-20. Springer, Heidelberg (2008)

Dong, L., Wu, W., Wu, S., Zou, J.: Known-key distinguisher on round-reduced
3D block cipher. In: Jung, S., Yung, M. (eds.) WISA 2011. LNCS, vol. 7115, pp.
55-69. Springer, Heidelberg (2012)

Duan, M., Lai, X.: Improved zero-sum distinguisher for full round Keccak- f per-
mutation. Chin. Sci. Bull. 57(6), 694697 (2012)

Duo, L., Li, C.: Improved collision and preimage resistance bounds on PGV
schemes. Cryptology ePrint Archive, Report 2006/462 (2006)

Fouque, P.-A., Stern, J., Zimmer, S.: Cryptanalysis of tweaked versions of SMASH
and reparation. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS,
vol. 5381, pp. 136-150. Springer, Heidelberg (2009)

Gauravaram, P., Knudsen, L.R., Matusiewicz, K., Mendel, F., Rechberger, C.,
Schlaffer, M., Thomsen, S.: Grgstl - a SHA-3 candidate (2011). Submission to
NIST’s SHA-3 competition

Gilbert, H., Peyrin, T.: Super-Sbox cryptanalysis: improved attacks for AES-like
permutations. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 365—
383. Springer, Heidelberg (2010)

Hirose, S.: Some plausible constructions of double-block-length hash functions. In:
Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 210-225. Springer, Heidelberg
(2006)

Holenstein, T., Kiinzler, R., Tessaro, S.: The equivalence of the random oracle
model and the ideal cipher model, revisited. In: Proceedings of ACM Symposium
on Theory of Computing 2011, pp. 89-98. ACM, New York (2011)

Jetchev, D., Ozen, O., Stam, M.: Collisions are not incidental: a compression func-
tion exploiting discrete geometry. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194,
pp. 303-320. Springer, Heidelberg (2012)

Katz, J., Lucks, S., Thiruvengadam, A.: Hash functions from defective ideal ciphers.
In: Nyberg, K. (ed.) CT-RSA 2015. LNCS, vol. 9048, pp. 273-290. Springer,
Heidelberg (2015)

Knudsen, L.R., Rijmen, V.: Known-key distinguishers for some block ciphers. In:
Kurosawa, K. (ed.) ASTACRYPT 2007. LNCS, vol. 4833, pp. 315-324. Springer,
Heidelberg (2007)

Koyama, T., Sasaki, Y., Kunihiro, N.: Multi-differential cryptanalysis on reduced
DM-PRESENT-80: collisions and other differential properties. In: Kwon, T., Lee,
M.-K., Kwon, D. (eds.) ICISC 2012. LNCS, vol. 7839, pp. 352-367. Springer,
Heidelberg (2013)

Kuwakado, H., Hirose, S.: Hashing mode using a lightweight blockcipher. In: Stam,
M. (ed.) IMACC 2013. LNCS, vol. 8308, pp. 213-231. Springer, Heidelberg (2013)
Lai, X., Massey, J.L.: Hash function based on block ciphers. In: Rueppel, R.A.
(ed.) Advances in Cryptology — EUROCRYPT 1992. LNCS, vol. 658, pp. 55-70.
Springer, Heidelberg (1992)

Lamberger, M., Mendel, F.: Higher-order differential attack on reduced SHA-256.
Cryptology ePrint Archive, Report 2011/037 (2011)



32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

On the Impact of Known-Key Attacks on Hash Functions 83

Lampe, R., Seurin, Y.: Security analysis of key-alternating feistel ciphers. In: Cid,
C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp. 243-264. Springer,
Heidelberg (2015)

Lauridsen, M.M., Rechberger, C.: Linear distinguishers in the key-less setting:
application to PRESENT. In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp.
217-240. Springer, Heidelberg (2015)

Leurent, G., Roy, A.: Boomerang Attacks on Hash Function Using Auxiliary Dif-
ferentials. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 215-230.
Springer, Heidelberg (2012)

Liskov, M.: Constructing an ideal hash function from weak ideal compression func-
tions. In: Biham, E., Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356, pp. 358-375.
Springer, Heidelberg (2007)

Matyas, S., Meyer, C., Oseas, J.: Generating strong one-way functions with cryp-
tographic algorithm. IBM Techn. Disclosure Bull. 27(10A), 5658-5659 (1985)
Maurer, U.M., Renner, R.S., Holenstein, C.: Indifferentiability, impossibility results
on reductions, and applications to the random oracle methodology. In: Naor, M.
(ed.) TCC 2004. LNCS, vol. 2951, pp. 21-39. Springer, Heidelberg (2004)
Mendel, F., Peyrin, T., Rechberger, C., Schlaffer, M.: Improved cryptanalysis of
the reduced Grgstl compression function, ECHO permutation and AES block cipher.
In: Jacobson Jr, M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol.
5867, pp. 16-35. Springer, Heidelberg (2009)

Mendel, F., Rechberger, C., Schlaffer, M., Thomsen, S.S.: The rebound attack:
cryptanalysis of reduced whirlpool and Grgstl. In: Dunkelman, O. (ed.) FSE 20009.
LNCS, vol. 5665, pp. 260-276. Springer, Heidelberg (2009)

Mennink, B.: Optimal collision security in double block length hashing with single
length key. In: Wang, X., Sako, K. (eds.) ASTACRYPT 2012. LNCS, vol. 7658, pp.
526-543. Springer, Heidelberg (2012)

Mennink, B., Preneel, B.: Hash functions based on three permutations: a generic
security analysis. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 330-347. Springer, Heidelberg (2012)

Mennink, B., Preneel, B.: Efficient parallelizable hashing using small non-
compressing primitives. Int. J. Inf. Sec. (2015, to appear)

Meyer, C., Schilling, M.: Secure program load with manipulation detection code.
In: Proceedings of Securicom, pp. 111-130 (1988)

Minier, M., Phan, R.C.-W., Pousse, B.: Distinguishers for ciphers and known key
attack against rijndael with large blocks. In: Preneel, B. (ed.) AFRICACRYPT
2009. LNCS, vol. 5580, pp. 60-76. Springer, Heidelberg (2009)

Miyaguchi, S., Ohta, K., Iwata, M.: Confirmation that some hash functions are
not collision free. In: Damgard, I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473,
pp. 326-343. Springer, Heidelberg (1991)

NakaharaJr, J.: New impossible differential and known-key distinguishers for the
3D cipher. In: Bao, F., Weng, J. (eds.) ISPEC 2011. LNCS, vol. 6672, pp. 208-221.
Springer, Heidelberg (2011)

Nikoli¢, 1., Pieprzyk, J., Sokolowski, P., Steinfeld, R.: Known and chosen key differ-
ential distinguishers for block ciphers. In: Rhee, K.-H., Nyang, D.H. (eds.) ICISC
2010. LNCS, vol. 6829, pp. 20-48. Springer, Heidelberg (2011)

Preneel, B., Govaerts, R., Vandewalle, J.: Hash functions based on block ciphers:
a synthetic approach. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp.
368-378. Springer, Heidelberg (1994)

Rabin, M.: Digitalized signatures. In: Lipton, R., DeMillo, R. (eds.) Foundations
of Secure Computation 1978, pp. 155-166. Academic Press, New York (1978)



84

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

B. Mennink and B. Preneel

Rogaway, P., Shrimpton, T.: Cryptographic hash-function basics: definitions, impli-
cations, and separations for preimage resistance, second-preimage resistance, and
collision resistance. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp.
371-388. Springer, Heidelberg (2004)

Rogaway, P., Steinberger, J.P.: Constructing cryptographic hash functions from
fixed-key blockciphers. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
433-450. Springer, Heidelberg (2008)

Sasaki, Y.: Known-key attacks on Rijndael with large blocks and strengthening
ShiftRow parameter. In: Echizen, I., Kunihiro, N., Sasaki, R. (eds.) IWSEC 2010.
LNCS, vol. 6434, pp. 301-315. Springer, Heidelberg (2010)

Sasaki, Y., Emami, S., Hong, D., Kumar, A.: Improved known-key distinguishers
on Feistel-SP ciphers and application to Camellia. In: Susilo, W., Mu, Y., Seberry,
J. (eds.) ACISP 2012. LNCS, vol. 7372, pp. 87-100. Springer, Heidelberg (2012)
Sasaki, Y., Wang, L.: Distinguishers beyond three rounds of the RIPEMD-128/-
160 compression functions. In: Bao, F., Samarati, P., Zhou, J. (eds.) ACNS 2012.
LNCS, vol. 7341, pp. 275-292. Springer, Heidelberg (2012)

Sasaki, Y., Wang, L., Takasaki, Y., Sakiyama, K., Ohta, K.: Boomerang distin-
guishers for full HAS-160 compression function. In: Hanaoka, G., Yamauchi, T.
(eds.) IWSEC 2012. LNCS, vol. 7631, pp. 156-169. Springer, Heidelberg (2012)
Sasaki, Y., Yasuda, K.: Known-key distinguishers on 11-round feistel and collision
attacks on its hashing modes. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp.
397-415. Springer, Heidelberg (2011)

Shrimpton, T., Stam, M.: Building a collision-resistant compression function
from non-compressing primitives. In: Aceto, L., Damgard, 1., Goldberg, L.A.,
Halld6rsson, M.M., Ing6lfsdéttir, A., Walukiewicz, 1. (eds.) ICALP 2008, Part II.
LNCS, vol. 5126, pp. 643-654. Springer, Heidelberg (2008)

Stam, M.: Blockcipher-based hashing revisited. In: Dunkelman, O. (ed.) FSE 2009.
LNCS, vol. 5665, pp. 67-83. Springer, Heidelberg (2009)

Wagner, D.: The boomerang attack. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol.
1636, pp. 156-170. Springer, Heidelberg (1999)

Yu, H., Chen, J., Wang, X.: The boomerang attacks on the round-reduced skein-
512. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 287-303.
Springer, Heidelberg (2013)



Generic Security of NMAC and HMAC
with Input Whitening

Peter Gazi'®™) | Krzysztof Pietrzak!, and Stefano Tessaro?

1 IST Austria, Klosterneuburg, Austria
{peter.gazi,pietrzak}@ist.ac.at
2 UC Santa Barbara, Santa Barbara, USA

tessaro@cs.ucsb.edu

Abstract. HMAC and its variant NMAC are the most popular appro-
aches to deriving a MAC (and more generally, a PRF) from a cryptographic
hash function. Despite nearly two decades of research, their exact security
still remains far from understood in many different contexts. Indeed, recent
works have re-surfaced interest for generic attacks, i.e., attacks that treat
the compression function of the underlying hash function as a black box.

Generic security can be proved in a model where the underlying com-
pression function is modeled as a random function — yet, to date, the
question of proving tight, non-trivial bounds on the generic security of
HMAC/NMAC even as a PRF remains a challenging open question.

In this paper, we ask the question of whether a small modification to
HMAC and NMAC can allow us to exactly characterize the security of the
resulting constructions, while only incurring little penalty with respect to
efficiency. To this end, we present simple variants of NMAC and HMAC,
for which we prove tight bounds on the generic PRF security, expressed in
terms of numbers of construction and compression function queries neces-
sary to break the construction. All of our constructions are obtained via a
(near) black-box modification of NMAC and HMAC, which can be inter-
preted as an initial step of key-dependent message pre-processing.

While our focus is on PRF security, a further attractive feature of
our new constructions is that they clearly defeat all recent generic attacks
against properties such as state recovery and universal forgery. These
exploit properties of the so-called “functional graph” which are not directly
accessible in our new constructions.

Keywords: Message authentication codes - HMAC - Generic attacks -
Provable security

1 Introduction

This paper presents new variants of the HMAC/NMAC constructions of message
authentication codes which enjoy provable security as a pseudorandom function
(PRF) against generic distinguishing attacks, i.e., attacks which treat the com-
pression function of the underlying hash function as a black-box. In particular,
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we prove concrete tight bounds in terms of the number of queries to the construc-
tion and to the compression function necessary to distinguishing our construction
from a random function. Our constructions are the firss HMAC/NMAC variants
to enjoy such a tight analysis, and we see this as an important stepping stone
towards the understanding of the generic security of such constructions.

Hash-Based M ACs. HMAC [3] is the most widely used approach to key a hash
function H to obtain a PRF or a MAC. It computes the output on message M
and a key K as

HMAC(K, M) = H(K & opad || H(K & ipad || M)),

where opad # ipad are constants.! Usually, H is a hash function like SHA-1,
SHA-256 or MD5, in particular following the Merkle-Damgard paradigm [4,16].
That is, it extends a compression function f : {0,1}¢ x {0,1}* — {0,1}¢ into
a hash function MDfy, by first padding M into b-bit blocks M[1], ..., M[¢], and
then producing the output H (M) = S;, where

So— IV, S;—f(S;—1||M[i]) for alli =1,...,¢. (1)

starting with the c-bit initialization value IV. A cleaner yet slightly less practical
variant of HMAC is NMAC, which instead outputs
NMACr,, i, (M) =MD (MDY, (M),

where Kin, Kout € {0,1}¢ are key values.

Security of HMAC/NMAC. The security of both constructions has been stud-
ied extensively, both by obtaining security proofs and proposing attacks. On the
former side, NMAC and HMAC were proven to be secure pseudorandom functions
(PRFs) in the standard model [3], later also using weaker assumptions [2] and via
a tight bound in the uniform setting [7]. However, as argued in [7], this standard-
model bound might be overly pessimistic, covering also very unnatural construc-
tions of the underlying compression function f (for example the one used in their
tightness proof). The authors hence argue for the need of an analysis of the PRF
security of HMAC in the so-called ideal compression function model where the com-
pression function is modelled as an ideal random function and the adversary is
allowed to query it. This model was previously used by Dodis et al. [6] to study
indifferentiability of HMAC, which however only holds for certain key lengths.

This is also the model implicitly underlying many of the recently proposed
attacks on hash-based MACs [5,10,15,17,19,20,22]. These attacks are termed
generic, meaning they can be mounted for any underlying hash function as long
as it follows the Merkle-Damgard (MD) paradigm. The complexity of such a
generic attack is then expressed in the number of key-dependent queries to the
construction (denoted g¢) as well as the number of queries to the underlying
compression function (denoted ¢f). These two classes of queries are also often
referred to as online and offline, respectively.

! Some details such as padding and arbitrary key length are addressed in Sect. 2.
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All iterated MACs are subject to the long-known Preneel and van Oorschot’s
attack [21] which implies a forgery (and hence also distinguishing) attack against
HMAC/NMAC making gc = 2¢/2 construction queries (consisting of constant-
length messages) and no direct compression function queries (i.e., g¢ = 0). This
immediately raises two questions:

How does the security of HMAC and NMAC degrade (in terms of tolerable
qc) by increasing (1) the length £ of the messages and (2) the number
qs of compression-function evaluations?

The first question has been partially addressed in [7]. Their result? can be inter-
preted as giving tight bounds on the PRF security of NMAC against an attacker
making gc key-dependent construction queries (of length at most ¢ < 2¢/3
b-bit blocks) but no queries to the compression function. They show that both
constructions can only be distinguished from random function with advan-
tage roughly e(qc,f) ~ £'T°(Mga?/2¢, improving significantly on the bound
€(qa, ¥) =~ £%2qc?/2¢ provable using standard folklore techniques. From our per-
spective, this bound can be read as a smooth trade-off: with increasing maximum
allowed query length ¢ it tells us how many queries gc can be tolerated for any
acceptable upper bound on advantage.

Still, it is not clear how this trade-off changes when allowing extremely long
messages (¢ > 2¢/3) and/or some queries to the compression function (g > 0).
Note that while huge ¢ can be prevented by standards, in practical settings gr is
very likely to be much higher than ¢c, as it represents cheap local (offline) com-
putation of the attacker. We therefore focus on capturing the trade-off between
gc and ¢ for values of g¢ that do not allow to mount the attack from [21]. How-
ever, as we argue below, getting such a tight trade-off for NMAC/HMAC seems
to be out of reach for now, we hence relax the problem by allowing for slight
modifications to the vanilla NMAC/HMAC construction.

Our Contributions. We ask the following question here, and answer it
positively:

Can we devise variants of HMAC/NMAC whose security provably
degrades gracefully with an increasing number of compression function
queries g, possibly retaining security for gs being much larger than 2°7

The main contribution of this paper is the introduction and analysis of a
variant of NMAC (which we then adapt to the HMAC setting, as described
below) which uses additional key material to “whiten” message blocks before
being processed by the compression function. Concretely, our construction —
termed WNMAC (for “whitened NMAC”) uses an additional extra b-bit key K,
and given a message M padded as M[1],..., M[{], operates as NMAC on input
padded to blocks M'[i] = M[i] & Ky, i.e., every message block is whitened with
the same key (see also Fig. 1).

2 Here we refer to Theorem 2 in [7] that formally considers a related construction
NI in the standard model. However, its proof starts by a transition to the ideal-
model analysis of a construction very closely related to NMAC, while disallowing
compression-function queries.
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The rationale behind WNMAC is two-fold. First, from the security viewpoint,
the justification comes from the rich line of research on generic attacks on hash-
based MACs. Most recent attacks [10,15,19,20] exploit the so-called “functional
graph” of the compression function f, i.e., the graph capturing the structure of
f when repeatedly invoked with its b-bit input fixed to some constant (say 0°).
Since our whitening denies the adversary the knowledge of b-bit inputs on which
f is invoked during construction queries, intuitively it seems to be the right way
to foil such attacks. Moreover, a recent work by Sasaki and Wang [22] suggests
that keying every invocation of f is necessary in order to prevent suboptimal
security against generic state recovery attacks. WNMAC arguably provides the
simplest and most natural such keying. Second, from the practical perspective,
WNMAC can be implemented on top of an existing implementation of NMAC,
using it as a black-box.

PRF-Security of WNMAC. Our main result shows that WNMAC is a secure
PRF; more precisely, no attacker making at most gc construction queries (for
messages padded into at most £ blocks) and ¢ primitive queries can distinguish
WNMAC from a random function, except with distinguishing advantage

! lgc? 6403
ewnmac (o, gr, £) < q;]f +2- ;,iqcf + (;S ' (d’(é) T e T 1) :

Here, d'(¢) is the maximum, over all positive integers ¢ < ¢, of the number of
positive divisors of £/, and grows very slowly, i.e., d'(¢) = ¢1/1"¢ We also prove
that this bound is essentially tight. Namely, we give an attack that achieves
advantage roughly qcgr/2%¢, showing the first term above to be necessary. Addi-
tionally, we know from [7] that the third term is tight for £ < 2¢/3,

Note that in the case of g = 0, the bound matches exactly the bound from [7].
Moreover, observe that under the realistic assumption that £ < min{2¢/3,2b=¢},
the bound simplifies to

Y 2
ewnmac(qc, gr, £) < 3% +(d'(0) +2) - q;j :

Ignoring d’(¢) for simplicity, we see that we can tolerate up to gc ~ 2¢/2/v/¢
construction queries and up to gf ~ 21°¢ primitive queries. This corresponds to
the security threshold ranging from 292 f-queries for MD5 up to 278 f-queries for
SHA-512. The first term also clearly characterizes the complete trade-off curve
between g < 2¢/2 / V0 and ¢ for any reasonable upper bound on the message
length and acceptable distinguishing advantage.

Other Security Properties. Additionally, we also analyze the security level
WNMAC achieves with respect to other security notions frequently considered in
the attacks literature. By a series of reductions, we show that, roughly speaking,
ewNmac also upper-bounds the adversary’s advantage for distinguishing-H and
state recovery. We believe that addressing these cryptanalytic notions also using
the traditional toolbox of provable security is important and see this paper as
taking the first step on that path.
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Lifting to HMAC. We then move our attention from NMAC to HMAC and pro-
pose two analogous modifications to it. The first one, called WHMAC, is obtained
from HMAC in the same way WNMAC is obtained from NMAC: by whitening
the padded message blocks with an independent key, The second one, termed
WHMACT™, additionally processes a fresh key K+ instead of the first block of the
message. Both variants can be implemented given only black-box access to HMAC,
and we prove that they maintain the same security level as WNMAC as long as the
parameters b, ¢ of f satisfy b > 2¢ (for WHMAC) or b > ¢ (for WHMAC™). Note
that for existing hash functions, the former condition is satisfied for both MD5 and
SHA-1, while the latter holds also for SHA-256 and SHA-512.

The Dual Construction. Motivated by the most restrictive term gogr/2%¢ in
ewNMac, the final construction we propose in this paper is a “dual” version of
WNMAC denoted DWNMAC, that differs in the final, outer f-call. Instead of
f(K2,s| 0°7¢) for a c-bit key K and a c-bit state s padded with zeroes, the outer
call in DWNMAC computes f(s, K2) for a longer, b-bit key. As expected, we prove
that this tweak removes the need for the gogr/2%¢ term and replaces it by the
strictly favourable term gogr/2°¢, proving that the zero-padding in the outer
call of WNMAC was actually responsible for the “bottle-neck” term in its security
bound.

Our Techniques. In our information-theoretic analysis of WNMAC we employ
the H-coefficient technique by Patarin [18], partially inheriting the notational
framework from the recent analysis of keyed sponges by Gazi, Pietrzak, and
Tessaro [8]. On a high level, the heart of our proof is a careful analysis of the
probability that two sets intersect in the ideal experiment: (1) the set of adversar-
ial queries to f, and (2) the set of inputs on which f is invoked when answering
the adversary’s queries to WNMAC. Obtaining a bound on the probability of
this event then allows us to exclude it and use the result from [7] that considers
gr = 0, properly adapted to the WNMAC setting.

Related Work. As mentioned above, the motivation for our work partially
stems from the recent line of work on generic attacks against iterated hash-based
MACs [5,10,15,17,19,20,22]. While our security bound for WNMAC does not
exclude attacks of the complexity (in terms of numbers of queries and message
lengths) considered in these papers, the design of WNMAC was partially guided
by the structure of these attacks and seems to prevent them. We find in particular
the work [22] to be a good justification for investigating the security of WNMAC
and related constructions. Iterated MAC that uses keying in every f-invocation
was already considered by An and Bellare [1], their construction NI was later sub-
ject to analysis [7] that we adapt and reuse. One can see WNMAC as a conceptual
simplification of NI where the key is simply used to whiten the b-bit input to the
compression function. Finally, our dual construction considered in Sect.5 bears
resemblance to the Sandwich MAC analyzed by Yasuda [23], we believe that our
methods could be easily adapted to cover this construction as well.

Perspective and Open Problems. We stress that the reader should not con-
clude from this work that NMAC and HMAC are necessarily less secure than the
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constructions proposed in this paper, specifically with respect to PRF security.
In fact, we are not aware of any attacks showing a separation between the PRF
security of our constructions and that of the original NMAC/HMAC construc-
tions, finding one is an interesting open problem.

While obtaining a non-tight birthday-type bound for NMAC/HMAC is feasi-
ble (for most key-length values, a bound follow directly from the indifferentia-
bility analysis of [6]), proving tight bounds in terms of compression function and
construction queries on the generic PRF security of NMAC/HMAC is a challeng-
ing open problem, on which little progress has been made. The main challenge is
to understand how partial information in form of f-queries can help the attacker
to break security (i.e., distinguish) in settings with gc¢ < 2¢/2/v/¢, when the
attack from [7] does not apply. This will require in particular developing a bet-
ter understanding of the functional graph defined by queries to the function f.
Some of its properties have been indeed exploited in existing generic attacks,
but proving security appears to require a much deeper understanding: Most of
the recent attacks, which are probably still not tight, do not come with rigorous
proofs but instead rely on conjectures on the structure of these graphs [10]. The
difficulty of this question for NMAC/HMAC is also well documented by the fact
that even proving security of the whitened constructions presented in this paper
required some novel tricks and considerable effort.

Similarly, it remains equally challenging to prove that for the properties con-
sidered by the recent HMAC/NMAC attacks (such as distinguishing-H, state
recovery or various types of forgeries), the security of WNMAC/WHMAC is prov-
ably superior. Yet, we note that our construction invalidates direct application
of all existing attacks, and hence we feel confident conjecturing that its security
is much higher.

Black-box Instantiations. Throughout the paper we implicitly assume we
can add a key to each b-bit input block, even though we aim for a black-box
instantiation. For many MD-based hash functions, such fine-grained control of
the input to the compression function is generally not possible via a black-box
message pre-processing. Concretely, the functions from the SHA-family with 512-
bit blocks only allow to effectively control (via alterations of the message) the
first 447 bits of the last block, since the remaining 65 bits are reserved for the
64-bit length, and an additional 1-bit. Our analysis can be easily modified to take
this into account. The resulting bound will change very little, and will result in
the term £gcgr /2% being replaced by the term (£—1+2%)-qq-q¢/2°7¢, where d is
the length of the non-controllable part of the input (for SHA-functions, d = 65).
Note that since d < b — ¢, this will not affect the tightness of the bounds for
concrete parameters.

2 Preliminaries

Basic Notation. We denote [n] := {1,...,n}. Moreover, for a finite set S
(e.g., & = {0,1}), we let 8™, ST and S* be the sets of sequences of elements
of S of length n, of arbitrary (but non-zero) length, and of arbitrary length,
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respectively (with e denoting the empty sequence, as opposed to ¢ which is a
small quantity). As a shorthand, let {0,1}** denote ({O7 1}”)*. We denote by
Si] the i-th element of S € 8™ for all ¢ € [n]. Similarly, we denote by S[i...j],
for every 1 < i < j < n, the sub-sequence consisting of S[i], S[i + 1],...,S[j],
with the convention that S[i...i] = S[i]. Moreover, we denote by S| S’ the
concatenation of two sequences in §*, and also, we let S|T be the usual prefix-
of relation: S | T & (35’ € §*: S| S =1T).

For an integer n, d(n) = [{i € N:i|n}| is the number of its positive
divisors and

d'(n) =  max }l{d EN:d|n'}| ~nl/nn

n’e{l,...,n

is the maximum, over all positive integers n’ < n, of the number of positive divi-
sors of n’. More precisely, we have Ve > 0 Ing Vn > ng: d(n) < n(ite)/minn[qq],

We also let F(D,R) be the set of all functions from D to R; and with a
slight abuse of notation we sometimes write F(m,n) (resp. F(x,n)) to denote
the set of functions mapping m-bit strings to n-bit strings (resp. from {0, 1}* to

{0,1}™). We denote by x & X the act of sampling x uniformly at random from
X. Finally, we denote the event that an adversary A, given access to an oracle O,
outputs a value y, as A = y. To emphasize the random experiment considered,
we sometimes denote the probability of an event A in a random experiment E
by PE[A]. Finally, the min-entropy Hu.(X) of a random variable X with range
X is defined as —log (max,ex Px(2)).

Pseudorandom Functions. We consider keyed functions F: K xD — R taking
a k-bit key (i.e., K = {0,1}*), a message M € D as input, and returning an
output from R. For a keyed function F under a key k € K we often write
Fx(-) instead of F(k,-). One often considers the security of F as a pseudorandom
function (or PRF, for short) [9]. This is defined via the following advantage
measure, involving an adversary A:

AdVET(A) = ’P [K 10,137 AFR = 1] P [f EFDR): A = 1”

Informally, we say that F is a PRF if this advantage is “negligible” for all “effi-
cient” adversaries A.

PRFs in the Ideal Compression Function Model. For our analysis below,
we are going to consider keyed constructions C[f]: {0,1}* x D — R which make

queries to a randomly chosen compression function f & rF (¢ + b,c) which can
also be evaluated by the adversary (we sometimes write C* instead of C[f]). For
this case, we use the following notation to express the PRF advantage of A:

AdVEl (A) = P [ & {0,136 & Fle o) Al =1

—P [Rif(D,R),fif(c+b,c): AR=f;»1] ’
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We call A’s queries to its first oracle construction queries (or C-queries) and its
queries to the second oracle as primitive queries (or f-queries).

Note that the notion of PRF-security is identical to the notion of
distinguishing-R, first defined in [13] and often used in the cryptanalytic lit-
erature on hash-based MACs.

Distinguishing-H. A further security notion defined in [13] is the so-called
distinguishing-H security. Here, the goal of the adversary is to distinguish the
hash-based MAC construction Cg[f] using its underlying compression function f
(say SHA-1) and a random key K, from the same construction Cg [g] built on top
of an independent random compression function g. In the ideal compression func-
tion model, where we model already the initial compression function f as ideal,
this corresponds to distinguishing a pair of oracles (Cklf],f) from (Cklf],g).
Formally,

Advdcist—H(A) = ‘P [K L {0,1}",f S F(c+b,c): Ach,f = 1]

_p [Ki (0,13, f,g & Fc+b,c): ACkE = 1} ‘

State Recovery. An additional notion considered in the literature is security
against state recovery. Since the definition of this notion needs to be tailored for
the concrete construction it is applied to, we postpone the formal definition of
security against state recovery to Sect. 3.10.

MACs and Unpredictability. It is well known that a good PRF also yields
a good message-authentication code (MAC). A concrete security bound for
unforgeability can be obtained from the PRF bound via a standard argument.

Iterated MACs. For a keyed function f : {0,1}¢ x {0,1}* — {0,1}¢ we denote
with Casc’ : {0,1}¢ x {0,1}"* — {0,1}¢ the cascade construction (also known as
Merkle-Damgard) built from f as

Casc' (K, m1| ... |me) := ye where yo := K and fori > 1 : y; == f(y;_1,m;),

in particular Cascf(K, g):=K.

The construction NMAC": ({0,1}¢)2x{0,1}** — {0, 1} is derived from Casc
by adding an additional, independently keyed application of f at the end. It
assumes that the domain sizes of f satisfy b > ¢ and the output of the cascade
is padded with zeroes before the last f-call. Formally,

NMAC (K1, K3), M) := f(K, Casc’ (K1, M)||0°~¢).

Note that practical MD-based hash functions take as input arbitrary-length bit-
strings and then pad them to a multiple of the block length, often including
the message length in the so-called MD-strengthening. This padding then also
appears in NMAC (and HMAC) but here we take the customary shortcut and
our definition of NMAC above (resp. HMAC below) actually corresponds to the
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generalized constructions denoted as GNMAC (resp. GHMAC) in [2] where this
step is also justified in detail.

HMAC  is a practice-oriented version of NMACf7 where the two keys (K7, K>)
are derived from a single key K € {0, 1} by xor-ing it with two fixed b-bit strings
ipad and opad. In addition, the keys are not given through the key-input of the
compression function f, but are prepended to the message instead. This allows
for the usage of existing implementations of hash functions that contain a hard-
coded initialization vector IV. Formally:

HMAC' (K, m) := Casc' (IV, K;|Casc' (IV, K ||m)||fpad)
where (K1, K») := (K @ ipad, K & opad)

and fpad is a fixed (b — ¢)-bit padding not affecting the security analysis. (Tech-
nically, [14] allows for arbitrary length of the key K: a key shorter than b bits
is padded with zeroes before applying the xor transformations, a longer key is
first hashed.)

3 The Whitened NMAC Construction

We now present our main construction called Whitened NMAC (or WNMAC
for short). To that end, let us first consider a modification of the cascade con-
struction Casc called whitened cascade and denoted WCasc. For a keyed function
f:{0,1}¢ x {0,1}* — {0,1}¢ we denote with WCasc" : ({0,1}¢ x {0,1}?) x
{0,1}** — {0, 1} the whitened cascade construction built from f as

WCasc' (K1, Ky),ma| ... |me) :== ye
where yo := Ky and for i > 1 : y; :=f(yi—1, m; ® Ky),

in particular WCasc' (K1, Ky),¢) := K.

The construction WNMAC is derived from NMAC, the only difference being
that the inner cascade Casc is replaced by the whitened cascade WCasc. More
precisely,

WNMAC (K1, Ky, Ky), M) := f(K,, WCasc' (K1, Ky), M)||0°~°).

For a graphical depiction of WNMAC, see Fig. 1. We devote most of this section to
the proof of the following theorem that quantifies the PRF-security of WNMAC.

Theorem 1 (PRF-Security of WNMAC). Let A be an adversary making
at most g queries to the compression function f and at most qc construction
queries, each of length at most £ b-bit blocks. Let K = (K1, Ko, Ky,) € {0,1}¢ x
{0,1}¢ x {0,1}" be a tuple of random keys. Then we have

rf grqc lgcgr | Lgc? 6463
Adviynmacy, (A) < 92c T2 Spre T e '<d'(€)+ st ()

Note that as observed in Sect. 2, this also covers the so-called distinguishing-
R security of WNMAC. Moreover, our analysis also implies security bounds for
distinguishing-H and state recovery, as we discuss later.
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Fig. 1. The construction WNMAC[f]k, ks, Ky -

K, WNMACIf] k., k5. 16, (]| -+ - [[e)

3.1 Basic Notation, Message Trees and Repetition Patterns

Let us fix an adversary A. We assume that A is deterministic, it makes ezactly
gs queries to f and g¢ construction queries, and it never repeats the same query
twice. All these assumptions are without loss of generality for an information-
theoretic indistinguishability analysis, since an arbitrary (possibly randomized)
adversary making at most this many queries can be transformed into one satis-
fying the above constraints and achieving advantage which is at least as large.

Let Q¢ € ({0, 1}b)* be any non-empty set of messages (later this will rep-
resent the set of A’s C-queries). Based on it, we now introduce the message tree
and its labeled version, which capture the inherent combinatorial structure of
the messages Q¢, as well as the internal values computed while these messages
are processed by WCasc' inside of WNMAC'. The message tree T(Q¢) = (V, E)
for Q¢ is defined as follows:

— The vertex set is V := {M’ € ({0,1}%)" : IM € Q¢ : M| M}, where is the
prefix-of partial ordering of strings. In particular, note that the empty string

€ is a vertex and that Qo C V.
— The set E CV x V of (directed) edges is

E:={(M,M") : 3me {0,1}* : M' = M ||m}.

To simplify our exposition, we also define the following two mappings based on

T(Qc).

— The mapping 7(v): V\{e} — V returns the unique parent node of v € V\{e};
i.e., the unique node u such that (u,v) € E.

— The mapping p(v): V \ {e} — {0,1}® returns the unique message block
m € {0,1}® such that m(v) || u(v) = v (intuitively, this will be the message
block that is processed when “arriving” in vertex v).

Alternatively, with a slight abuse of notation we will also refer to the vertices
in V as v1,...,vy| which is an arbitrary ordering of them such that for all
1 <i,j <|V]| it satisfies v;|v; = ¢ < j. Note that one obtains such an ordering
for example if one, intuitively speaking, processes the messages in Q¢ block-wise
and labels the vertices by their “first appearance”: in particular v; = ¢ is the
tree root.
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0 1]f(A(0),1 8 Ky)

1

0f1]1

f(A(0]11),1® Ky)

Fig. 2. Labeled message tree. Example of a labeled message tree T;((Qo) for four
messages Qc = {0,0]/0,0]/ 11,1}, where r = r° for r € {0,1}. The gray vertices
correspond to these four messages. Next to each vertex v and edge (u,v), we give the
label A(v) and the value u(v), respectively.

Additionally, for a mapping f: {0,1}¢ x {0,1}* — {0,1}¢ and a key tuple
K = (K, Ky, K,,) € {0,1}¢ x {0,1}¢ x {0,1}* we also consider an extended
version of T'(Q¢) which we call the labeled message tree and denote T% (Q¢) =
(V, E, \), and which is defined as follows:

— The set of vertices V and edges E are defined exactly as for T(Q¢) above.
— The vertex-labeling function A\: V' — {0, 1} is defined iteratively: A(e) := K;
and for each non-root vertex v € V'\ {e} we put A(v) := f(A(7(v)), u(v) ® Ky).

An example of a labeled message tree is given in Fig. 2. Note that each vertex
label A(v) is exactly the output of the inner, whitened cascade WCasc';(l’Kw (v)

in WNMACF, (recall that v is actually a message from {0,1}"*).

For any message tree T(Q¢) = (V, E), a repetition pattern is any equivalence
relation p on V. For a labeled message tree T% (Qc) = (V, E, \) we say that a
repetition pattern p is induced by it if it satisfies

Yu,v € V : AMu) = A(v) < pu,v).

3.2 Interactions and Transcripts

Let QR denote the set of gc pairs (x,7) such that z € {0,1}** is a construction
query and r € {0,1}¢ is a potential response to it (what we mean by “potential”
will be clear from below). Similarly let QR¢ denote the set of ¢f pairs (z,r)
such that z € {0,1}¢ x {0,1}" is an f-query and r € {0,1}¢ is a potential
response to it. Let Qc C {0,1}** and Q¢ C {0,1}¢ x {0,1}® denote the sets
of first coordinates (i.e., the queries) in QR and QRy, respectively; we have
|Qc| = qc and |Qf| = ¢s.

We call the pair of sets (QR¢, OQR¢) valid if the adversary A would indeed
ask these queries throughout the experiment, assuming that each of her queries
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would be replied by the respective response in QR or QR¢ (note that once
a deterministic A is fixed, this determines whether a given pair (QR ¢, QRy) is
valid).

We then define a wvalid transcript to be of the form

7= (QRe¢, QR K = (K1, K3, Ky), T (Qc))

where (QRc, QRs) is valid, f: {0,1}¢ x {0,1}® — {0,1}¢ is a function and
K = (K1, Ky, K,) € {0,1}¢ x {0,1}¢ x {0,1}" is a key tuple.

We differentiate between the ways in which such valid transcripts are gener-
ated in the real and in the ideal worlds (or experiments), respectively, by defining
corresponding distributions T,ea and Tigeal Over the set of valid transcripts:

Real World. The transcript T,e, for the adversary A is obtained by sampling
f & Fle+be)and K = (K1, Ky, Ky,) — {0,1}¢ x {0,1}¢ x {0,1}*, and
letting T,ea denote

(QRC = {(MHY%) i= 17Q,R’f = {(X“R) i= 17K = (K17K27KW)7T;((QC))7

where we execute A, which asks construction queries My, ..., M,, answered
with Y; := WNMAC[f]x(M;) for all i € [gc]; and f-queries Xi,..., X,
answered with R; := f(X;) for all ¢ € [g] (note that the C-queries and
f-queries may in general be interleaved adaptively, depending on A). Finally,
we let T%,(Qc) be the labeled message tree corresponding to Q¢, f and K.

Ideal World. The transcript Tigea for the adversary A is obtained similarly

to the above, but here, together with the random function f & F(c+b,c)
and the key tuple K = (K1, K2, K,) < {0,1}¢ x {0,1}¢ x {0,1}®, we also
sample gc¢ independent random values Yi,...,Y,, € {0,1}". Then we let
Tigeal denote

(QRc = {(M;, V) }I, , ORs = {(Xi, R}, K = (K1, Ko, Ky), T (Qc)),

where we execute A, answer each its C-query M; with Y; for all i € [¢c] and
each its f-query X; with R; := f(X;) for all i € [g¢]. Then we let 7% (Qc) be
the labeled message tree corresponding to Q¢, f and K.

Later we refer to the above two random experiments as real and ideal, respec-
tively. Note that the range of T, is included in the range of Tigea by definition,
and that the range of Tigea is easily seen to contain all valid transcripts.

3.3 The H-Coefficient Method

We upper-bound the advantage A in distinguishing WNMACIf]x for f &
F(c+ b,c) from a random function in terms of the statistical distance of the
transcripts, i.e.,

AdVS\r/RMAC (A) < SD(TreaIa |dea| Z |P real = T -P [Tideal = T]| , (3)
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where the sum is over all valid transcripts. This is because an adversary for
Treal and Tigea;, whose optimal advantage is exactly SD(T eal, Tideal), can always
output the same decision bit as A, ignoring any extra information provided by
the transcript.

We are going to use Patarin’s H-coefficient method [18]. This means that we
need to partition the set of valid transcripts into good transcripts GT and bad
transcripts BT and then apply the following lemma.

Lemma 1 (The H-Coefficient Method [18]). Let §,¢ € [0,1] be such that:

(a) P[Tigeal € BT] < 6.
(b) For all T € GT,
P [Treal = T]

— - >1—e
P [Tideal = T] o

Then,
AdV\r;\r/fNMAc(A) < SD(Treal; Tideal) < €+ 6.

More verbally, we want a set of good transcripts GT such that with very high
probability (i.e., 1 — ) a generated transcript in the ideal world is going to be
in this set, and moreover, for each such good transcript, the probabilities that
it occurs in the real and in the ideal worlds are roughly the same, i.e., at most a
multiplicative factor 1 — € apart.

3.4 Good and Bad Transcripts

Given a valid transcript 7 we define the sets Lin, Louws € {0,1}¢ x {0,1}° as

Lin :={(A(7(v)), n(v) & Ky) : v €V \{e}}
Lous = { (K2, A\v) || Obfc) cveQet,

and let £ = Li, U Loyt Intuitively, £ represents the set of inputs on which f is
evaluated while processing A’s construction queries in the real experiment. This
set is also well-defined in the ideal experiment by the above equations, and in
both experiments it is determined by the transcript. We refer to L, as the set
of inner f-invocations, i.e., those invocations of f that were required to evaluate
the inner, whitened cascade WCasc’ in WNMAC; and similarly, Lot denotes the
outer invocations.

If there is an intersection between the adversary’s f-queries and the inputs
in Li, (resp. Lout), we call this an inner (resp., outer) C-f-collision. We then
denote by C-f-coll;, (resp., C-f-colloyt) the event that any inner (resp., outer)
C-f-collision occurs. Formally,

C-f-colliy : < (Qs N Lin #0) and C-f-colloyt < (Qf N Lous # 0)

and let C-f-coll := C-f-colli, U C-f-collgye. Furthermore, if the vertex labels A(M)
collide for two messages M, M’ € Q¢, we call this a C-collision and denote such
an event by

C-coll :& (AM, M’ € Qc: A(M) = A\(M")).
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Definition 1 ( Good Transcripts). Let
7= (QRc, QRs, K = (K1, K>, Ky.), T (Qc) = (V, E, \))

be a valid transcript. We say that the transcript is good (and thus 7 € GT) if
the following properties are true:

(1) The event C-f-colloy: has not occurred.
(2) The event C-coll has not occurred.
(3) For any v € V we have \(v) # K.

We denote as GT the set of all good transcripts, and BT the set of all bad
transcripts, i.e., transcripts which can possibly occur (i.e., they are in the range
of Tigeal) and are not good. More specifically, we denote by BT; the set of all
bad transcripts that do not satisfy the i-th property in the definition of a good
transcript above, hence we have BT = Ule BT;.

3.5 Probability of a C-f-collision

In this section we upper-bound the probability of C-f-coll by considering inner
and outer C-f-collisions separately.

Lemma 2. We have P¢![C-f-coll;,] < fqcqr/287¢.

Proof. We start by modifying the ideal experiment to obtain an experiment
denoted ideal’ and the corresponding transcript distribution Tige,r. The exper-
iment ideal’ is given in Fig.3. Clearly, ideal’ differs from the ideal experiment
only in the way the vertex labeling function A(-) is determined.

We now argue that P [C-f-colli,] = P2’ [C-f-coll;,]. To see this, consider
an intermediate experiment ideal” that is defined exactly as ideal except that it
uses a separate ideal compression function g to generate the vertex labels of the
tree contained in the transcript, where g is completely independent of f queried
by the adversary (i.e., the adversary queries f and the transcript contains QR
and T%(Qc)). Tt is now clear that Pe[C-f-colli,] = P [C-f-colliy] since as
long as no inner C-f-collision happens, the experiments are identical.

The remaining equality Pi9¢!" [C-f-coll;,] = P9’ [C-f-coll;,] follows from the
definition of ideal’. It is easy to see that the distribution of vertex labels sam-
pled in steps 2 and 3 of ideal’ and by labeling the tree T% (Q¢) in ideal” are the
same. In both cases, repeated inputs to the compression function lead to consis-
tent outputs, while fresh inputs lead to independent random outputs. The two
experiments only differ in the order of sampling: ideal” first samples g and then
performs the labeling, while ideal” starts by sampling the repetition pattern, and
then chooses the actual labels correspondingly. The same distribution of vertex
labels in these two experiments then implies the same probability of C-f-coll;,
occurring.
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1. The adversary asks its C-queries and f-queries and these are
answered by independent random values. Once the gc queries in
Qc are fixed, they also determine the message tree T'(Q¢) and mappings
w and 7 as defined in Section 3.1 (the labeling X is so far undefined).

2. Sample a repetition pattern p. The equivalence relation p is deter-
mined indirectly by first iteratively defining a mapping p: V. — [|V]].
Recall the vertex ordering vi,...,vy| defined in Section 3.1. First, set
p(v1) = 1. Then, for i taking values 2,...,|V|, determine p(v;) as fol-
lows. If there exists j € [¢ — 1] such that u(v;) = p(vi) and p(w(v;)) =
p(m(vi)) then let p(v;) := p(v;) for the minimal such j. Otherwise let
z:=max;ec;;—1){p(v;)} and sample p(v;) as

1 with probability 27¢

o) =4
z with probability 27¢
z + 1 with probability 1 — z-27°.

Finally, for all 4,5 € [|V]] let p(vi,v;) = (p(vi) = p(v;)).

3. Sample a vertex labeling \(-) according to p. Namely, sample |p|
distinct uniformly random values si,...,s, € {0,1}° where [p| is the
number of equivalence classes of p, and let A(vi) 1= s5(,,) for all i € [|V]].
Also let K1 := A(e).

4. Sample random keys (K2, Kv) € {0,1}° x {0,1}".

Fig. 3. The random experiment ideal’ for the proofs of Lemmas2 and 3.

Finally, we upper-bound the probability P’ [C-f-coll;;]. Conditioned on the
repetition pattern p taking some fixed value rp, in step 2, we have

Pl [C-focolly | p=rp] < D P [(A(m(v)), u(v) & Ky) € O | p=rp]
veV\{e}

> P [(550n(0), 1(v) ® Ky) € Q5 | p =]
veV\{e}

> gr/2"TC < Lgoge/2"
veV\{e}

because the random variables s; and K, sampled in steps 3 and 4 are uniformly
distributed and independent of Qf. Since this bound holds conditioned on p
being any fixed repetition pattern rp, it remains valid also without conditioning
on it, hence concluding the proof. a

We proceed by upper-bounding the probability of an outer C-f-collision.

Lemma 3. We have

. lgcqr | qogr
deal
P'eC-f-colloyt] < e 52 -
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Proof. Let us again consider the experiments ideal’ and ideal” defined in the
proof of Lemma 2. We start by the simple observation that for any event A we
have

P9l [A] = P9 [A A C-f-collin] + P [A A =C-f-colli]

lgcgs ideal”’ Lqcgs
< Shre + P9 JA A =C-f-coll] < Shrc

"

+ Pidea

A, (4)

which follows from Lemma 2 and the observation that ideal and ideal” only differ
if C-f-coll;, occurs.

Applying (4) to the event C-f-collo,t as A, it remains to bound the probability
pideal” [C-f-colloyt]; for this we observe that pideal” [C-f-colloyt] = pideal’ [C-f-colloyt]
similarly as before: the repetition pattern p sampled in step 2 of ideal’ has the
same distribution as the repetition pattern induced by the tree T% (Q¢) in ideal”,
and this together with the sampling performed in step 3 results in the same
distribution of vertex labels in ideal” and ideal’ and hence also in the same
probability of C-f-colly,: in both experiments.

Finally, to upper-bound the probability pideal’ [C-f-colloyt], again conditioned
on the repetition pattern p sampled in step 2 taking some fixed value rp, we
have

P [C-fcolloue | p=1p] < D P [(Kp, A(v) [|0°7°) € Qf | p = rp]

vEQCo

< Z P|deall [(K27S[)(v) || Ob_c) € Qf ‘ pP= Tp:l
vEQC

= ) 4r/2% < qoqr/2°
vEQCo

because the random variables s; and K5 sampled in steps 3 and 4 are uniformly
distributed and independent of Qf. Since this bound holds conditioned on p
being any fixed repetition pattern rp, it remains valid also without conditioning
on it. O

3.6 Probability of Repeated Outer Invocations

In this section we analyze the probability that any of the outer f-invocations
in the ideal experiment will not be fresh, in particular we upper-bound both
P[Tideal € BT2] and P[Tigeal € BT3].

Lemma 4. We have

. 2 403
Pldeal [C-CO”] < EQCQf + EQC . (d/(f) + 644 ) .

— 2b+c 92c 92c
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Proof. Applying (4) to the event C-coll, we have P [C-coll] < lgcqr/2°F¢ +
pideal” [C-coll]. Since the queries Q¢ in the experiment ideal” are chosen non-
adaptively (with respect to the keys K, K, and the function g used to later
compute the tree labeling), we can obtain via a union bound that

pideal” [C-coll] < gc” - ppax pe-K1 Kw [WCasch, . (M1) = WCasch . (M2)].
[My],| Ma|<tb

Moreover, we have

max pe- K1, Ky [WCasc%( K
M1 # M 3
[ M |,|M2|<Lb

1
= max Z 57 pe [WCasc’%(hKW(Ml) = WCasc, g (MQ):|
| My |,| My |<eb K1€{0,1}°

(My) = WCasc, f. (Mg)}

w

K,e{0,1}®
< Y L P [WCasch . (My) = WCasch . (My)
- 2o AL, aSCry K, M) = WhasCye, i, (M2
?S{%ﬁ” | My ,| M2 |<Lb
1
= Z et MM, P# [Cascl,, (M@K = Cascl, (M@K
?S{%ﬁb | My ,| M2 |<Lb
1
— g _ g
- Z . 2c+b ' MIFQJ)\(/Iz pe [Cascfﬁ (Ml) - CascKl (M2)]’
?E{{%ﬁb | My ,| M2 | <tb

CascColl(£)

where the notation M,@ K, denotes XOR-ing the key K, to each of the
blocks of M;.

The last maximization term above was already studied in the context of the
construction NI2 in [7], where it was denoted as CColl(¢), but we will refer to it
as CascColl(¢) to avoid confusion with the event C-coll considered here. It was
shown in [7] that
0-d'(0) 640t

2c + 22c (5)

Putting all the above bounds together concludes the proof of Lemma4. 0O

CascColl(¢) <

Lemma 5. We have

lqc

Pideal 3y € V: A(v) = K] < TR

Proof. As is clear from the description of the ideal experiment, the key K» is
chosen uniformly at random and independently of the rest of the experiment, in
particular of the labels A(v). The lemma hence follows by a simple union bound
over all {gc vertices v € V. |
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3.7 Good Transcripts and Putting Pieces Together

Let us consider a good transcript 7. First, since 7 ¢ BTy, there is no overlap
between the outer f-invocations and the f-queries issued by the adversary. Sec-
ond, since T ¢ BT, there is also no repetition between the outer f-invocations
themselves. Finally, since 7 ¢ BTgs, there is also no overlap between the outer
f-invocations and the inner f-invocations (all the outer invocations contain Ko
as their first component). Altogether, this means that each outer f-invocation
in real is fresh and hence its outcome can be seen as freshly uniformly sampled
(since f is an ideal random function). Therefore, the distribution of these out-
comes will be the same as in ideal, where they correspond to the independent
random values Y;. Hence, for all 7 € GT, we have

P [Treal = T]

=1.
P [Tideat = 7]

Plugging this into Lemma 1, together with the bounds from Lemmas 3, 4
and 5, we obtain

3
Adviiumac(A) < Y P [Tideal € BT)]
=1

grqc lgogr | lgc® ([ 646°\ | fqco
- 92 +2- 9b+c 92c ' <d ([) 92c 2c
grqc lgogr | lgc® [ 64¢°
< 92¢ +2-2b+c+ 9 ~<d(€)+ 5¢ +1],
which concludes the proof of Theorem 1. O

3.8 Tightness

We now argue that the gogr/2%¢ term in our bound on the security of WNMAC
as given in (2) is tight, by giving a matching attack (up to a linear factor O(c)).
For most practical parameters, this will be the dominating term in (2), and thus
for those parameters Theorem 1 gives a tight bound. Here we only describe an
attack for the case where g = ©(c) is very small, and defer the general case to
the full version.

The gc = O(c) Case. We must define an adversary A®f who can distinguish
the case where the first oracle O implements a random function R from the case
where it implements WNMACf((Kl,KQ,KW), -) with random keys Ki, Ko, Ky
using the random function f : {0,1}*+¢ — {0,1}¢ which is given as the second
oracle. _ _

AOf first picks t := ¢¢/2° keys K1, ..., K; arbitrarily, and then uses its g
function queries to learn the outputs

Zi = {f(K;,|0"°) : = €{0,1}}
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for all the keys. When throwing 2¢ balls randomly into 2¢ bins, we expect
a 1l —1/e =~ 0.63 fraction of the bins to be non-empty (and the value is
strongly concentrated around this expectation). We can think of evaluating
the random function f(K;,-|0°=¢) : {0,1}¢ — {0,1}¢ as throwing 2¢ balls
(the inputs) to random bins (the outputs), and thus have |Z;| ~ 0.63 - 2¢.
Then A®f queries © on O(c) random inputs, let Q. denote the correspond-
ing outputs. Now A outputs 1 if and only if for some i we have Q. C Z;. If
O(-) = WNMAC' (K1, Ky, Ky, -) = f(Ka, WCasc' (K1, Ky,), -)||0°~¢) and more-
over Ky = K; for some i — which happens with probability ¢/2¢ — then all the
outputs of O(-) are in the range of f(k;,.]|0°=¢) and thus A®f outputs 1.

On the other hand, if O(+) is a random function, then every single query will
miss the set Z; with constant probability 0.37. Using this, we get by a Chernoff

bound (and the union bound over all ¢ keys) that

. t

Summing up we get for gc = ©(c) and t = ¢f/2°¢

t

9c 26(qc)

l gr grqc
> > =
- 2c—1 — 220—1 22c . @(C)

f
Adv\e\r/NMAc(ch,t) >

which matches our term grgc/2%¢ from the lower bound up to a ©(c) factor.

3.9 Distinguishing-H Security of WNMAC

The above results also imply a bound on the distinguishing-H security of
WNMAC. To capture this, we first introduce the notion of distinguishing-C,
which corresponds to PRF-security with the restriction that the distinguisher
only uses construction queries.

Definition 2 (Distinguishing-C). Let C[f]: {0,1}" x D — R be a keyed

. . . . . 3
construction making queries to a randomly chosen compression function f «—
F(c+b,c). The distinguishing-C advantage of an adversary A is defined as

AdvERC(A) = ‘P [K 210,135 f & Fle+be): Ak = 1}
—P [Rif(D,R): AR:>1} ‘

The notion of distinguishing-C is useful for bridging distinguishing-H and PRF-
security, as the following lemma shows (we omit its simple proof).

Lemma 6. For every adversary A asking qc and g construction and primitive
queries, respectively, there exists an adversary A’ asking qc queries to its single
oracle such that

AdvEH(A) < AdVET (A) + Advd e (A)
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and

AdvE[ (A) < AdvEM(A) + AdvdiC(A).
One can readily obtain a bound on the distinguishing-C security of WNMAC
using Theorem 1 with gf = 0.

Lemma 7 (Distinguishing-C Security of WNMAC). Let A be an adversary
making at most qc construction queries, each of length at most ¢ b-bit blocks.
Let K = (K1, Ko, Ky) € {0,1}¢ x {0,1}¢ x {0,1}" be a tuple of random keys.
Then we have

. Lgc? 6403
Adviviniac, (A) < e (d/(f) + + 1) .

26 ’ 26
By combining Theorem 1 and Lemmas 6 and 7, we get the following theorem.
Theorem 2 (Distinguishing-H Security of WNMAC). Let A be an adver-
sary making at most g queries to the compression function and at most qc con-

struction queries, each of length at most £ b-bit blocks. Let K = (K1, Ky, Ky) €
{0,1}¢ x {0,1}¢ x {0,1}® be a tuple of random keys. Then we have

dist-H grqc Lqcas lqc® , 6403
Adviynmac (A) < 92c +2- e +2- 5c " d'(0) + 5 +1]).

3.10 State Recovery for WNMAC

We now formally define the notion of security against state recovery for WNMAC.
We consider the strong notion where the goal of the adversary is to output a
pair (M, s) such that the state s occurs at any point during the evaluation of
WCasc on M. Formally, we define AdV\S/(/NMAc[f] (A) to be

p [K Sk, f & F AWNMACKS (A s)

IM’ € {0,1}** s.t. M’ |M AWCascl, - (M') = s}

where K = {0,1}¢ x {0,1}¢ x {0,1}*, K = (K1, K2, Ky) and F := F(c+ b, c).

Theorem 3 (State-Recovery Security of WNMAC). Let A be an adversary
making at most gs queries to the compression function and at most qc construc-
tion queries, each of length at most ¢ b-bit blocks. Let K = (K1,Ky, Ky) €
{0,1}¢ x {0,1}¢ x {0,1}° be a tuple of random keys. Then we have

r grqc Lqcqs lgc? 6403
Advinnaacy, (A) < I g JICH 5 T .(d/(e)+ —+2).
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Proof (sketch). First, we replace the compression function oracle f by an indepen-
dent random function g completely unrelated to WN MACF. The error introduced
by this is upper-bounded by Theorem 2 and now, compression-function queries
are useless to the adversary, hence we can disregard them.

Let us denote by &€ the experiment where A interacts with WN MACF (without
direct access to f). Consider an alternative experiment &’ given in Fig.4. As
long as the key Ko chosen in step 4 does not hit any of the internal states
that occurred during the query evaluation, the experiment £’ is identical to £.
Moreover, since K5 is chosen independently at random, such a hit can only occur
with probability at most £gc/2¢. Since the vertex labels are only sampled after
the adversary makes its guess for the state, the probability that the guess will
be correct is at most £/2¢. O

1. The adversary asks its C-queries. For each of them, only the repe-
tition pattern for the state values belonging to this query is sampled (as
in the experiment ideal’ in Figure 3) and the query is answered with a
fresh random value, unless the outer f-invocation happens on a repeated
value, in which case the query is answered consistently. After answering
all queries, we have a complete repetition pattern p for all state values.

2. Let A output its guess (M, s).

Sample a vertex labeling A\(-) according to p, let K; := \(e).

4. Sample random keys (K2, Ky) € {0,1}° x {0,1}".

w

Fig. 4. The random experiment £’ for the proof of Theorem 3.

4 Whitening HMAC

HMAC is a “practice-oriented” variant of NMAC, see Sect.2 for its definition.
In this section we consider a “whitened” variant WHMAC of HMAC which is
derived from HMAC in the same way as WNMAC was derived from NMAC,
i.e., by XORing a random key K, to every message block. We also consider a
variant WHMAC™ where the first message block is a fresh key K+ € {0,1}°.
More precisely,

WHMAC ke, [f)(m) = £ (K}, WCascle, . (m)|lfpad)

where
K{:=f(IV,K ®ipad) and K} :=f(IV,K @ opad) (6)

and fpad is some fixed padding; and

WHMACE, o . [fl(m) == f (Ké,WCasch{,Kw (m)||fpad) ,
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where this time
Z:=f(IV,K @ipad) and Kj:=f(Z,K") and K} :=f(IV,K @ opad)

and fpad is again some padding. Note that both variants, WHMAC and
WHMACT, can be implemented given just black-box access to an implemen-
tation of HMAC.

The theorem below relates the security of WHMAC and WHMAC™ to the
security of WNMAC.

Theorem 4 (Relating Security of WHMAC to WNMAC). Consider any
xxx € {prf,dist-H,sr}. Assume that for every adversary A making at most g
queries to the compression function f and at most qc construction queries, each
of length at most £ b-bit blocks, we have

Ade\A);EMAC}(lYK27KW [f] (A) S e’
where here and below, K1, Ky € {0,1}¢ and K, Ky, KT € {0,1}* are uniformly
random keys. Then for every such adversary A we have

b—2c

AdVITHMAC ks, 7] (A) S €+27 2

(7)

and
b—c

ADVTHMACE e s I(A) S €227 72 4275, (8)

Proof. Intuitively, for WHMAC one can think of f as an extractor which extracts
keys K{, K} from K, and the bound then readily follows by the leftover hash
lemma. For WNMAC™ one can roughly think of K 1 and K as being extracted
from independent keys K and K, respectively. For the latter it is thus sufficient
that b (which is the length, and thus also the entropy of the uniform K and K ™)
is sufficiently larger than ¢ (the length of K7, K}), whereas for the former we
need b to be sufficiently larger than 2c. We now give the details of the proof for
WHMAC and postpone the treatment of WNMAC™ to the full version.

In order to prove the bound (7) it is sufficient to show that the statistical

distance between the transcripts (as seen by the adversary) when interacting
b—2c

with WNMAC or WHMAC is at most 2~ 2 . As the only difference between
WNMAC and WHMAC is that we replace the uniform keys K, Ko with keys
K1, K} derived according to (6), to bound the distance between the transcripts,
it is sufficient to bound the distance between the random and derived keys. As
K{, K/ are not independent of f, it is important to bound the distance when
given f, concretely, we must show that

2c

SD ((K]/_aKé7f) B (K17K27f)) S 2= b_2 .

We will use the leftover hash lemma [12] which states that for any random vari-
able X € {0,1}™ with min-entropy at least Ho(X) > k and a hash function
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h:{0,1}™ — {0,1}* chosen from a family of pairwise independent hash func-
tions we have (with U, being uniform over {0, 1}¢)

£=Hoo (X)

SD (h(X),h), (U h)) <2 3 <273
Since f : {0, 1}*+¢ — {0,1}€ is uniformly random, also the function
f(K) = (f(IV, K & ipad), f(IV, K & opad))

is uniformly random, and thus also pairwise independent. Using Ho,(K) =
Ho (K @ipad) = b and (K}, K}) = f'(K) we thus get

b—2c

SD ((K{,Ké,f/) s (Kl,KQ,f/)) = SD((K{,Ké,f) s (K17K27f)) <2772

as required. The first equality above holds as f defines all of f’ and vice versa. O

5 The Dual WNMAC Construction

Looking at the security bounds for WNMAC given in Sect. 3 from a distance, it
seems that under reasonable assumptions the most restrictive term in the bounds
is grqc/22%¢. Intuitively speaking, the reason for this term is the outer f-call in
WNMAC that only takes 2¢ bits of actual inputs and adds b — ¢ padding zeroes.

In an attempt to overcome this limitation, we propose a variant of the
WNMAC construction that we call Dual WNMAC (DWNMAC). We prove the
PRF-security of DWNMAC that goes beyond the restrictive term grqc/22¢ and
our proof again extends also to distinguishing-H and state-recovery security.
The price we pay for this improvement is a slight increase in the key length and
the fact that DWNMAC cannot be implemented using only black-box access to
NMAC. Similarly, if we apply the same modification to WHMAC, the resulting
construction can no longer be implemented using black-box access to HMAC.

The construction DWNMAC is derived from WNMAC, the only difference
being that the outer f-call is performed on the c-bit state and a b-bit key K.
More precisely, for a key tuple (K, Ko, Ky,) € {0,1}¢ x {0,1}* x {0,1}% and a
message M € {0,1}"*, we define

DWNMAC' (K1, K3, Ky), M) = f(WCascl, . (M), Ka).

Note that DWNMAC is slightly similar to what we would obtain by whitening
from the Sandwich MAC construction [23].
We now summarize the security of DWNMAC.

Theorem 5. (Security of DWNMAC). Let A be an adversary making at most
gs queries to the compression functionf and at most qc construction queries, each
of length at most £ b-bit blocks. Let K = (K1, Ko, Ky,) € {0,1}¢x{0,1}*x{0,1}°
be a tuple of random keys. Then we have

Lqcar lqc? ( 6403 >

/
gire T2 g (A0 + 5 2

Advpinmacy, (A) <3

for all xxx € {prf, dist-H, sr}.
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Proof (sketch). The proofs are analogous to the proofs for WNMAC given in
Sect. 3, with the main modification needed in Lemma3 where the probability
of an outer C-f-collision can be upper-bounded by gcgr/2°+¢. Roughly speak-
ing, this is because the outer call in DWNMAC does not contain the 0°—¢
padding and instead processes b+ c¢ bits of input that are hard to predict for the
attacker. O
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Abstract. It is well known that three and four rounds of balanced Feis-
tel cipher or Luby-Rackoff (LR) encryption for two blocks messages are
pseudorandom permutation (PRP) and strong pseudorandom permuta-
tion (SPRP) respectively. A block is n-bit long for some positive integer
n and a (possibly keyed) block-function is a nonlinear function map-
ping all blocks to themselves, e.g. blockcipher. XLS (eXtended Latin
Square) encryption defined over two block inputs with three blockcipher
calls was claimed to be SPRP. However, later Nandi showed that it is not
a SPRP. Motivating with these observations, we consider the following
questions in this paper: What is the minimum number of invocations of
block-functions required to achieve PRP or SPRP security over £ blocks
inputs? To answer this question, we consider all those length-preserving
encryption schemes, called linear encryption mode, for which only
nonlinear operations are block-functions. Here, we prove the following
results for these encryption schemes:

1. At least 2¢ (or 2¢ — 1) invocations of block-functions are required to
achieve SPRP (or PRP respectively). These bounds are also tight.

2. To achieve the above bound for PRP over £ > 1 blocks, either we need
at least two keys or it can not be inverse-free (i.e., need to apply the
inverses of block-functions in the decryption). In particular, we show
that a single-keyed inverse-free PRP needs 2¢ invocations of block
functions.

3. We show that 3-round LR using a single-keyed pseudorandom func-
tion (PRF) is PRP if we xor a block of input by a masking key.

Keywords: XLS - CMC - Luby-Rackoft - PRP - SPRP - Blockcipher

1 Introduction

BLOCK FUNCTION. For all symmetric key algorithms, domains (sometimes, also
ranges) are desired to be sets of bit-strings of variable sizes. However, almost
all known methodologies, known as modes, use one or more (usually keyed)
functions defined over small and fixed lengths (e.g., blockcipher, compression
function, permutations in sponge constructions etc.) in a black-box manner.
We call a function from I,, := {0,1}" (elements of the set are called blocks)
to itself a block function. Throughout the paper we fix a positive integer n.
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DOI: 10.1007/978-3-662-48800-3_5
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A keyed blockcipher is a popular example of block function. Multiplying (as a
field multiplication over I,) an element by a secret key K can also be considered
to be a block function as it maps a block input x to K -z € I,. Outputs
of a streamcipher with one block seed, can also be viewed as a sequence of
execution of different block functions. In fact, any function mapping one block
to multiple blocks can be viewed as a sequence of executions of block functions.
Whereas, a function mapping multiple blocks to a single block can not be in
general expressed through block functions. For example, compression function,
or mapping (z,y) to (z + K) - (y + K) (known as pseudo dot-product) are not
examples of block functions as they take more than one block as an input.

Length-Preserving Encryption. An encryption algorithm is called length-
preserving if the the number of blocks in a plaintext and its corresponding
ciphertext are same. A length-preserving encryption is called an enciphering
scheme. In addition with the theoretical interest, an enciphering scheme has
some practical applications. Among others, a popular application is disk-sector
encryption addressed by the “IEEE Security in Storage” Work Group P1619.
An enciphering scheme is said to be (S)PRP or (strong) pseudorandom permu-
tation [34,35] if it is secure against adversaries making only plaintext queries (or
both plaintext, ciphertext queries respectively). The building block keyed block
function is assumed to be PRP or PRF (pseudorandom function [12]).

Linear Mode. In this paper we consider a wide class of enciphering schemes and
pseudorandom functions based on linear mode. Informally, a linear mode (LM)
is defined by an oracle algorithm which interacts with block functions (usually
keyed) as oracles such that all inputs of the block functions are computed through
some public linear functions (determined in the design) of the previous obtained
responses. Finally, the output is also computed through a public linear function
of all responses of block functions and the input.

This class is indeed a wide class of encryption algorithms. Most of the
known symmetric key encryptions, e.g., Luby-Rackoff (LR) [23,28], Feistel type
Encryption Schemes [6,17] CMC [15], EME [13,16] HCTR [9,51], TET [14],
HEH [47] etc. are some examples of enciphering schemes based on linear mode.
Almost all pseudorandom functions (e.g., CBC-MAC [5], PMAC [8], TMAC [22],
OMAC [18], DAG-based constructions [20], a sub-class of affine domain exten-
sion or ADE [29] etc.) are also based on linear mode. Thus, the linear mode
based keyed construction includes a wide class of symmetric key algorithms.

1.1 Brief Literature Survey

Now we briefly revisit the related results. Feistel structure is used to define
different blockciphers e.g., Lucifer [50], DES etc. Later, Luby-Rackoff provides
the PRP and SPRP security analysis of this type of ciphers and since then it is
also popularly known as Luby-Rackoff (LR) cipher. In particular it was shown
that three and four round LR cipher are PRP and SPRP secure respectively.
Each round invokes exactly one block function. There are many results known
for security analysis of different rounds of LR and for different forms of Feistel



On the Optimality of Non-Linear Computations 115

structures [6,28,39,40,48]. Many results are known for reducing the key-sizes (i.e.
reusing the round keys [37,38,42,46]). Nandi [28] has characterized that all secure
LR encryption schemes must have non-palindrome key-scheduling algorithms.
Thus, we cannot use one single key.

XLS [43] is proposed to construct a generic encryption scheme which takes
incomplete message blocks given that an encryption which can take complete
message blocks. A particular instantiation of XLS invokes three block functions
and claimed to be SPRP secure. However, the result is shown to be wrong [31]
and some of implications (e.g., COPA [2] which uses XLS) are shown very
recently [32]. Among all linear mode based length-preserving SPRP, the CMC
and four-round Luby-Rackoff require only 2¢ calls for encrypting ¢ blocks and
others requires more (e.g., EME requires 2¢+1 calls etc.). Understanding optimal-
ity of SPRP and PRP, in terms of the number of blockcipher or block function
calls, is our main motivation of this paper.

A class of authenticated encryption modes linear over the field was proposed
by Jutla [21]. This class is more restricted than our linear mode as the linearity
is considered over I, instead of binary. In other words, only linear operation
is bit-wise xor (without having any rotation or permutation of bit positions,
multiplying by primitive element etc.). Jutla had shown that the number of
invocations of blockcipher calls plus the number of masking keys should be about
4 O(logy £).

1.2 Owur Contribution

(1) Optimality in PRP and SPRP. Lear Bahack in his submission of the
design called Julius [1] stated that 2¢—1 blockcipher encryptions are required for
achieving “simple linear mode” PRP over ¢ blocks. However, their result is still
unpublished and so formalizing the issue and proving such a statement is yet
to know. Moreover, no such claim is known for SPRP security. In this paper we
provide a formal definition of linear mode in Sect. 3. In Sect. 4, we formally show
that a linear mode based length-preserving PRP (or SPRP) over ¢ blocks must
invoke block functions at least 2¢ — 1 (or respectively, 2¢) times. This justifies
why XLS or three rounds of Luby-Rackoff are not SPRP. This bound is tight
as three and four-rounds LR, CMC (for arbitrary block messages) etc. achieve
these bounds.

(2) Optimality in Single-key Inverse-Free PRP. Inverse-free encryp-
tions [6,17,19,23] like LR cipher are useful in terms of implementation as we
do not need to implement the inverse of the building-block for the combined
implementation of encryption and decryption. In Sect. 5, we show that any linear-
mode based inverse-free single key length-preserving PRP over ¢ blocks requires
at least 2¢ invocations (which is actually same for SPRP constructions). This
shows that PRP and SPRP becomes equally costly for single-keyed inverse-free
encryptions. Although all distinguishers of our paper are differential distinguish-
ers, the PRP distinguisher for an inverse-free single key construction is different
from the above SPRP attacks.
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(3) Three-Round Single-PRF Based LR with a Masking is PRP. The
above observation says that to achieve inverse-free double-block PRP with three
invocations, we can use two independent PRF (e.g., the constructions in [28]
are such examples). Two independent keyed PRF may be more costly than one
keyed PRF due to key-scheduling or key set-up algorithms [10,44]. In the later
part of the Sect. 5, we show that the single PRF based three round LR is indeed
PRP if we simply mask one block of the input by a masking key.

Significance. Our above two distinguishing attacks provide a limitation on the
performance of a (inverse-free) length-preserving encryption or pseudorandom
function or permutation. This applies to a wide class of encryption algorithms
including online encryption, authenticated encryption (without any nonce) etc.
and so it has impact on designs and analysis in symmetric key cryptography.

Novelty of The Attack Idea. In [30] the minimum number of multiplications
required to achieve A universal hash has been proposed. Like all other differential
attacks (where zero differences are exploited), our PRP distinguisher and the
AU attack from [30] basically finds zero differences in the input of non-linear
functions for some executions. Basic intuition of our SPRP distinguishing attack
is also similar to that of the distinguishing attack of XLS. However, to make
all these applicable for general constructions, we need to find an appropriate
difference in queries. For this, we adopt methodologies from linear algebra. The
PRP distinguisher for single keyed inverse-free construction also exploits zero
differential propagation. However, to achieve zero differential in one more block
than expected (for a PRP distinguisher) is the tricky part of the attack. This
essentially allows to achieve a PRP distinguisher even if we invoke one extra
block function compared to usual PRP construction.

2 Preliminaries

A block matrix is a binary square matrix of size n. Let M, (a, b) denote the set
of all partitioned matrices F,xp (of size a X b as a block partitioned matrix and
of size an x bn as a binary matrix) whose (4, 7)*" entry, denoted E[i, j], is a block-
matrix for all ¢ € [1..a] = {1,...,a} and j € [1..b]. The transpose of E, denoted
E' is applied as a binary matrix. Thus, E'[i,j] = E[j,4]"". Conventionally,
any matrix F,«p is written as the following block-wise partition matrices

E[1,1] E[1,2] --- E[1,0] E[1, %]
E[2,1] E[2,2] --- E[2,}] E[2,

E= : : = : = (E[%1] E[*,2] --- E[,b])
Ela,1] E[a,2] - -- E[a,b] Ela, %]

where E[i, ] and E[x, j] denote i block-row and 5! block-column respectively.
For 1 <i < j < a, we also write E[i..j ; *] to mean the sub-matrix consisting
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of all rows in between ¢ and j. We simply write E[..j ; *] or E[i.. ; %] to denote
E[l..j; #] and Eli..a ; %] respectively. Similar notation for columns are defined.

Definition 1. A (square) matriz E € M, (a,a) is called (block-wise) strictly
lower triangular if for all 1 <i < j <a, E[i,j] =0 (zero matriz).

For all z = (x1,...,2,) € I%, we define a linear function mapping a blocks to b
blocks as E-x = (y1,- .., ys). Here, we consider z and y as binary column vectors
(we follow this convention which should be understood from the context). So the
block matriz Eli, j| represents the contribution of x; to define y;. More formally,

yi = Eli,1] 21+ E[i,2) 29+ - + E[i,a] - x4, 1 <3 <h.

If F is a strictly lower triangular matrix then y; is clearly functionally indepen-
dent of x;,...,2,, 1 < i < a. So if we associate y; uniquely to each z; (e.g.,
y; = p(z;) for some function p) then the choice of the vectors x and y satisfying
E -z = y becomes unique. This observation is useful while we define intermediate
inputs and outputs of a black-box based construction.

2.1 Useful Properties of Matrices

It is well known that the maximum number of linearly independent (binary)
rows and columns of a matrix A € M, (s,t) are same and this number is called
rank of the matrix, denoted rank(A). So clearly we have rank(A) < min{ns, nt}.
By using Gaussian elimination method, denoted = = solve(A4,b), we can solve
for some x (not necessarily unique) of the system of solvable linear equations
A - x = b. By convention, whenever a non-zero solution exists it returns a non-
zero solution. Note that if w' = solve(A! b)) then w - A = b (by applying
transpose). The following results are straightforward and so we skip the proofs.

Lemma 1. Let A € M, (s,t) and r := rank(A).

(1) If r < ns (i.e. presence of row-dependency) then solve(A' 0) returns a
non-zero solution.

(2) Similarly for r < nt (i.e. presence of column-dependency) solve(A,O0)
returns a mon-zero solution.

(3) Finally, let r = nt (i.e., full column rank) and b := A - w. Then,
solve(A,b) = w (i.e., w is also the unique solution).

Lemma 2. Suppose A € ML, (s, s) is a non-singular matriz, i.e., rank(A) = ns.
Lett < s and

Al..t, %] 0

B= 0 Al..t, *]
At + 1..,%] At + 1., %]

where 0 denotes the zero matriz of appropriate size. Then, rank(B) = n(s + t)
(i.e., full row-rank).
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2.2 Security Definitions and Notation

In this section we quickly recall the security definitions of fixed length keyed con-
structions. One can also extend the definitions for variable length constructions.

PRF. We call an oracle algorithm A (¢, ¢)-algorithm if it makes at most ¢ queries
and runs in time ¢. Let K be a key-space and f : K x I? — I? be a (keyed)
function. We say that f is (¢,t,€)-PRF if for any (¢, ¢)-algorithm A the prf-
distinguishing advantage

AdV?rf(A) = |PrlAf* = 1, K & K] —PrlA? = 1;9 = Func(a, b)]|

is at most e where Func(a,b) denotes the set of all functions from I¢ to I2. We
call randomly chosen g to be the (uniform) random function.

Notation. For notational simplicity, we skip the time parameter ¢ which is
irrelevant in this paper. We also simply write Func := Func(1,1) and Perm to
mean the set of all functions and permutations over I,,.

(S)PRP. A keyed permutation g over I¢ is a function g : K x I# — I2 such that
for all key k € K, g := g(K,-) € Perm(a) (the set of all permutations over I¢).
We denote the uniformly chosen permutation by II, and call uniform random
permutation. A keyed permutation g is called (g, €)-PRP if for any g-algorithm
A the prp-distinguishing advantage

AQVE'P(A) = |Prlasx©) = 1, K & K] - PrlATe = 1]]
is at most e. By PRF-PRP switching lemma [4,49], it is well known that
|Adv?rf(.,4) — Adv}P(A)] < (9)27". We define the sprp-distinguishing
advantage
AdVPP(A) = PrA S = 1 &K - PrAT T = 1))
and (g, €)-SPRP.

2.3 Tools for Proving Security

Given a g-algorithm A interacting with an oracle O we denote the
transcript 7(.A®) by the random vector ((X1,Y1),..., (X, Y,)) where X; € I2
and Y; € I? are the i*" query made by and response obtained by A respectively.
The following theorem, known as coefficient-H technique [36,41] is very useful
to show a construction is PRP or SPRP. It has also been adapted in [7,25]

Theorem 1 (Coefficient-H Technique). Let f : K x I¢ — I2 be a keyed
function and Vuaq C (I¢ x I2)9. Suppose

1. for all g-algorithm B, Prt(B'at) € Vyaa] < €1 and
2. fOT’ all 7= ((‘rlayl)7 DR} (I(Iayq)) ¢ Vbad;

$ —n
Prifu(z1) = y1,. - fre(tg) = ygs K = K] > (1 — e2) x 2771,
Then, for all q-algorithm A, Adv?rf(A) <€+ €.
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3 Linear Mode

3.1 Linear Query and Mode

A block matrix U € M, (¢, a+¢) is called (a,¢)-query function if U ; a+1.]
is block-wise strictly lower triangular. Here ¢ represents the number of queries
and a represents the number of blocks in the input. For any such query func-
tion, an input X € I?, (and a tuple of ¢ functions p = (p1,...,p¢) over
I,), we can uniquely define or associate u and v, called intermediate input
and output vector respectively, satisfying (1) U - (f) = v and (2) p(u) =
(p1(u1),...,pe(ug)) = v. This can be easily shown by recursive definitions of
u;’s and v;’s. More precisely, u; is uniquely determined by vq,...,v,_1 and X
(through the linear function) and v; is uniquely determined by u; through p;, for
all 1 < < /. Informally, a (a, b, £)-linear mode is a mode which takes a blocks
input and returns b blocks output based on executing block functions building
blocks (see Fig. 1 for an illustration of a linear mode). Formally, (a, b, )-linear
mode is defined by a block matrix E € M, (£ + b, ¢ + a) where E[1..£ ; ] is a
(a, £)-query function. For any ¢-tuple of functions p € Func’, the corresponding
linear-mode function E? : I¢ — I? is defined as E?(X) =Y where

(=), s

X X X b

l | o T

R— 1 — b

I 1
; ‘ : “ee . Ul Lol
U1, 4] = @ m U2, 4] Do ——{ U, +] |+ - - @ m [ +] Y

Uo U2

Fig.1. Linear Mode: Here Ul[i,*] means the ™™ block row which maps

(X,v1,...,0i—1,0°7""1) to u;. Finally, U[¢+1.. ; *] maps the input X and intermediate
output vector v to the output Y consisiting of b blocks.

So v is the intermediate output vector associated to the input X and the final

output Y := E[{+1..; %] ()U(), a linear function of v and X . Now we state a useful
differential property of linear mode. Note that the functions of p are non-linear
and would be secret for the adversaries. So to obtain any information about
the intermediate input and output, we only can equate intermediate outputs
whenever two inputs collide for same function. Given any vectors z,z’ of same
size, we write Az to mean z @ 2’ and A, px to mean (z, ® a,,. ..,z B xp). We
simply write Aix to mean Ay ;x (the first ¢ elements of Ax) (Fig. 2).
Lemma 3. Suppose E[..t ; |- X = E[..t ; |- X' (i.e., E[.t ; *]-AX =0). Let
EP(X)=Y, EP(X') =Y'. Let v,v' and u,u’ denote intermediate outputs and
inputs respectively associated with X and X' (for the function tuple p) respec-
tively. Then, Aju = Ay = 0 and

AY =E[l+1.; .a] - AX + E[l+1..; a+t+1.] Avpyq..
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AX AX AX

| soro |

Av, _
s ] t+1..0—1 b

U[L*]Zu_,@ e o o Ult,*] = /p-t\ ) 0@—> Ul + 1., 4—F—AY
=0 Avi =0 Avio1=0 K=o \aw=0 Ay

Fig. 2. Differential patterm of the linear mode: we choose AX such that the first ¢ input
differences of the p functions are zero. So the final difference AY can be expressed as
the linear function of the rest of the differences Av¢y1.. and AX.

Proof. Due to choice of X and X', by induction one can show that (uy,v1) =
(uf,v)), ... (ut,ve) = (up,v;) where v and u' denote the intermediate inputs
associated with X and X’ respectively (for the function tuple p). In other words,
A= Aw=0"Now,Y = E[{+1..; a+1.]-v+E[{+1..; ..a]- X and similarly
Y'=E[{+1..; a+1.]- v+ E[{+1..; ..a]- X'. The result is followed after we
add these two equations and using that A;v = 0. O

3.2 Keyed Constructions Based on Linear Mode

KEYED LINEAR MODE. Let 7 = F; X --- x Fy and k be a non-negative integer
where F; C Func. A key-space K for any keyed function is of the form I* x F.
We call F the function-key space and I* masking-key space. Any function g is
also written as g*!.

Definition 2. Let p : [1.4] — [1..f], called key-assignment function, a :=
(ai,...,ap) € {+1, -1}, called inverse-assignment tuple. For any function-key
p=(p1,---,pr) € F, we define pf; := (p5i*,...,p5t). We denote the set of all
Junctions pj; by F.

Here we implicitly assume that whenever a; = —1, p,, is a permutation. If
a = 1%, we simply skip the notation «. In general, the presence of inverse call of
building blocks may be required when we consider decryption of keyed function.
For the encryption, or a keyed function where decryption is not defined, w.l.o.g.
we may assume that a = 14

Definition 3. A (k,a,b) keyed linear mode with key-space K, key-assignment
function p, is a (a+k, b, £) linear mode E. For each key k := (L, p) € K := I¥xF,
we define a keyed function E.(P) := EP+(L, P).

Keyed linear mode E is actually a linear mode with a part of the input is the
masking key and function tuples are also derived by reusing some keyed block
functions.

Ezample 1. Consider the simple variant of PMAC [8,45] defined over I? (see
Fig. 3 above). Let (p1,...,pq) be the input.

a—1
1<i:<a-1,u; = p; and ua:paGB(@vi).
i=1
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Uy = p1 Ug—1 = Pa—1
| | n
P1 Pa—1
U1 Va—1
— ° ° ° (} @ m Pa C1 = Uq

Fig. 3. The simplified structure of PMAC. The input is (p1,...,p) and the output
is c1.

Finally the output is defined as ¢; = v,. Here £ = a and b = 1. There is no
masking key, i.e. k =0 and f = a (all function-keys are independently chosen).
The key-assignment function p is an identity function.

In a single function-key version of PMAC (with independent masking key),
we have f =1 =k. The u; = o L@p; for 1 <i < a and u, = pa@(@?:_ll v;)DL.
Here the key-assignment function maps all indices to the key-index 1 (as there
is only one choice of key).

Affine Domain Extension or ADE [29]. As defined in [29], affine domain
extension over I? is nothing but a (a, 1,¢)-linear mode keyed function E such
that the key-space is L = F C Fungc, i.e., f = 1 (single function-key) and k = 0
(no masking key). Moreover, the final output is the response of the last oracle
call, i.e. vy. Like PMAC, the key-assignment function for ADE maps all indices to
the key-index 1. One can consider an injective padding rule and sequence of such
constructions indexed by a to incorporate variable length inputs. CBC-MAC [5],
PMAC [8,24,33], TMAC [22], OMAC [18,27], DAG-based constructions [20] etc.
are some examples of ADE.

Length Preserving Linear Encryption Mode. A keyed linear mode F is
called length-preserving (LP) encryption if E, is encryption scheme and a = b.
In addition to these, we also assume that its decryption algorithm D is also a
keyed linear mode which is indeed true for all known linear encryption modes.
We first see an example below.

Ezample 2. As an example, consider Luby-Rackoff (LR) keyed function with
three rounds using two random functions p1,p2, ie. f = 2, a = b = 2 and
¢ = 3 (three invocations of the underlying block functions). Consider the key-
assignment function 7 with 7y = 1,7 = 1 and m3 = 2. So the function tuple
after applying the key-assignment is (p1, p1, p2). As there is no masking key, we
have k = 0. So the key-space is Func?. Given (p1, p2) € I? we define

uy = p1,v1 = p1(u1), ug = v1 + P2, v2 = p1(u2), ug = va + p1,v3 = pa(us).

Finally, the output is (c1,c2) where ¢; := uz and ¢3 = v3 + ug. This is clearly
decryptable. Consider u;’s, v;’s and p;’s as variables. The ciphertext provides
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two linear functions of these variables, namely w3 and vs + us. So ug is in the
span. As ug is in the span, v is also computable. Thus us is in the span of the
extended ciphertext including v3. Again vy is computable and hence u; := p; is
in the extended span. Finally, ps is in the span after including v;. So we see that
that decryption algorithm is also linear mode (Fig. 4).

P2 b1

& &

1 P1 P2
Uy =N g v 7 U vy N ug Vg

Cc] = us Co = V3 + U2

Fig. 4. LR with three round.

Decryption Algorithm of a Keyed Linear Encryption Mode. From the
above example, it is clear that the intermediate input outputs for the building
blocks would be same if we encrypt and then decrypt as we do in the correctness
condition: Dy (E,(P)) = P. Informally, if some input-output does not arise in
the decryption then either this input-output is redundant in the encryption
computation or the correctness condition does not hold (due to randomness of the
output which has influence in the encryption but is not used in the decryption).
We now describe the details of a length preserving linear encryption mode for
which all invocations of block function calls are not redundant.

Definition 4 (Reordering of Vectors). Let a := (ay,...,a0) € {1,-1}¢,
and 3 = (B1,...,B¢) be a permutation over [1..£]. A pair of vectors (w,z) € I2
is (a, B)-reordering of a pair of vectors (u,v) € I2¢ if

Ug;> U, ifai =1,
(Uﬁﬁuﬁz‘) if a; = —1.

Definition 5. A (k + a,a,{)-linear mode E is called linear-mode length-
preserving encryption with key-space K := I¥ x F and key-assignment 7 if the
corresponding decryption algorithm D is also a (k + a,a,f)-linear mode with
(1) an inverse assignment-tuple o = (ay,...,ap) € {1,—=1}* and (2) key-
assignment ©' = 7o B where B = (B1,...,0¢) is a permutation over [1..4].

Moreover, VP € I¢,L € I¥,p = (p1,...,ps) € F,

L

E-|P)| = (g) yPry (1) = v1, .. pr,(ug) = v if and only if
v
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L

w o
p-(c —<P),pf:;<w1>—zl,...vpﬂ;f(wz)w

where (w, z) is (a, 3)-reordering of (u,v).

The above definition implies that correctness condition of an encryption
Drw (L, E*(L, P)) = P. In addition with the correctness condition, the inter-
mediate inputs and outputs for both encryption and decryption are simply
reordered. In Example2 (given above), we have a = b = f = 2, £ = 3. For
the decryption algorithm, we execute the function in the reverse order and
so we set 01 = 3,02 = 2,01 = 3. So the key-assignment function for the
decryption is 7] = 2,7, = 2,75 = 1. We do not need to apply inverse for
the decryption (it is called inverse-free) and so inverse-assignment tuple is 13.
So if (u1,v1), (ug,v2) and (us,vs) are the intermediate input-output pairs for
encryption then (ug,vs), (u2,v2) and (u1,v1) (reordering of the previous pairs)
are the intermediate input-output pairs for decryption.

Examples. EME [16], ELmE [11], AEZ [1], CMC [15] (these follow Encrypt-
Mix-Encrypt paradigm), Luby-Rackoff with @ = b = 2, unbalanced Feistel [17,
48] etc. are some examples of length-preserving linear mode encryptions. HCBC1,
HCBC2 [3], Modified-HCBC’s, ELmD [1], MCBC [26], COPE [2] etc. are some
examples of online computable length-preserving encryptions based on linear
mode.

4 PRP and SPRP Distinguishing Attacks

Consider a length-preserving encryption scheme based on (k+a, a, £) linear mode
E. Now we show two main results in this section. Namely, we provide PRP
and SPRP distinguishing attacks on the encryption scheme if ¢ < 2a — 2. and
¢ < 2a — 1 respectively. Thus, it gives lower bound on the number of invocations
of building blocks for achieving PRP and SPRP security.

4.1 PRP Distinguishing Attack on E with £ = 2a — 2

Let us assume ¢ = 2a — 2. The attack can be trivially extended to all those
constructions with ¢ < 2a — 2. We recall that E7 (P) = C' if and only if

E. JI3 :(Z) pu) = .

Distinguisher D,,, against (k + a,a,2a — 2)-Linear mode E.

1. step-1 (finding a suitable difference in a pair of plaintext queries): Let d € I¢
be the non-zero solution of solve(E[..a — 1 ; k + 1.k + a],0), i.e. E[.a—1;
k+1..k+a]-d = 0. Such a non-zero solution exists as the number of columns
is more than that of rows (see lemma1).
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2. step-2 (make the queries with the difference obtained in step-1): Now the
distinguisher makes two queries 0 and d and obtains corresponding responses
c=E7(0) and ¢ = E7(d). Let

/ / ! /
UL, V1. e, U2q—25 V2q—2, ANd UL, V], ..., Udy 9,V5q o

denote the intermediate inputs outputs for the two queries respectively. By
lemma?2, we have 1 <i <a—1, u; = u},v; = v, and

Ac=FER2a—1..; k+1.(a+k)]-d+ E[2a —1..; 2a+ k..] - Av,_.

while it is interacting with the keyed construction.

3. step-3 (find a nullifier of unknown intermediate values): As the matrix
E[2a —1..; 2a+ k.] is a X (a — 1) matrix, we find a non-zero binary vec-
tor w € {0,1}"* such that w - E[2a — 1.. ; 2a + k..] = 0. In particular,
w = solve(E[2a — 1.. ; 2a + k..]*",0).

4. step-4 (the distinguisher event): If w- Ac =w-E[2a—1..; k+1..(a+k)]-d
then it returns 1 (decision for the keyed construction), else returns 0 (decision
for uniform random permutation).

The distinguishing advantage of the above distinguisher D is at least 1/2
since for a random permutation w-Ac=w- E[2a —1.. ; k+ 1..(a + k)] - d with
probability 1/2 whereas we have seen this holds with probability one for the
keyed construction. When a = 2, we know that LR with three rounds is PRP.
This shows the bound is tight at least for a = 2.

A Generalized Distinguisher DJ7 Against (k + a,a,()-Linear Mode E.
Now we define a distinguisher against (k+a, a, £)-linear mode F assuming certain
singularities in the sub-matrices.

Assumption: Suppose there exists an integer ¢ such that

1. rank(E[..t ; ..a]) < na and
2. rank(E[l+1..; a+k+t+1.]) <na.

Note the above assumption always holds for ¢t = ¢ — 1 when ¢ < 2a — 2.
However, if ¢ > 2a — 1, the both conditions not necessarily hold. Whenever
the assumptions hold, we have the following similar distinguisher as mentioned
before. This distinguisher would be used later on while describing SPRP distin-
guishers.

Distinguisher DJ" Against (k + a,a, ()-linear Mode E.

1. step-1. Due to the assumptions, we can find d and w such that E[..t ; ..a]) -
d=0andw-E{f{+1..; a+k+t+1.]=0.

2. step-2. Then we make two queries 0 and d and obtain responses ¢ and ¢'.

3. step-3. The distinguisher returns 1 if w-Ac=w-E[{+1..; k+1..(a+k)]-d,
else 0.
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4.2 SPRP Distinguishing Attack on F with £ =2a — 1

Now we show that if £ < 2a then we have a SPRP distinguisher. In other words,
2a many invocations is minimum to achieve SPRP and which is tight as it is
achieved in CMC. The basic intuition of our attack is similar to that of XLS.
However, to complete the attack for any linear-mode encryption we need to
carefully set the queries and distinguishing event. Consider a length-preserving
(k,a,2a — 1)-encryption scheme based on (k + a, a,2a — 1)-linear mode E. Let
us denote the (k+ a, a,2a — 1)-linear mode for its decryption by D. We describe
three distinguishers depending on cases.

Case 1: Rank(FE[2a.. ; 2a + k..]) < na. In this case, the two assumptions,
mentioned above, hold for ¢ = a —1. So we can run the PRP-distinguisher DJ"".
Case 2: Rank(D]J..a ; k + 1..k + a]) < mna. In this case, the two assump-
tions also hold for ¢ = a for the decryption function. So we run our general PRP
distinguisher Dg%" applied to the decryption function.

Case 3: Rank(D][..a ; k + 1..k + a]) = na, rank(E[2a.. ; 2a + k..]) = na.

Here we describe a SPRP distinguisher. Briefly, it works as follows. It first
makes two queries as in step-2 (the first a — 1 intermediate input and outputs
are identical for two encryption queries). Using the invertible property we can
actually obtain all the differences of intermediate values. As the computation of
decryption algorithm must use same internal input and outputs of the building
blocks, we also know the differences of intermediate inputs and outputs if we
decrypt the first two encryption queries. Now we find another decryption query
for which the first a intermediate input and output differences with one of the
first two queries are fixed. So we can nullify the unknown a — 1 differences and
obtain a distinguishing event. The details are described below.

Distinguisher Dy, Against (k + a, a,2a — 1)-Linear Mode E.

1. step-1 (make two queries with a certain difference, same as PRP distin-
guisher): Let d € I be the non-zero solution of solve(E[..a—1 ; k+1..k+a],0),
ie. El.a—1; k+1.k+a]-d=0.It makes two queries 0 and d and obtains
corresponding responses ¢ = Ej-z (0) and ¢ = El’-j (d).

Let uy,v1,...,U2q—1,V24—1 and uf,v,...,u5, 1,05, 1 denote the interme-
diate inputs outputs for the two queries respectively. By lemm 3, we have
1<i<a-—1,u; =ul,v =v, and

Ac=ER2a—1..; k+1.(a+ k)] -d+ E[2a..; 2a+ k.| - Av,.,

while it is interacting with the keyed construction.

2. step-2 (solve for Au, Av): Using the invertible property of E[2a.. ; 2a+k..],
we can actually solve Av, . and hence Au,. . Thus, we know Au and Av. Sup-
pose we make two (redundant) decryption queries ¢ and ¢’ (whose responses
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must be 0 and d) and let wy, 21, ..., Waq—1, 22q—1 and wi, 2], ..., wh, 1,2, 1
denote the intermediate inputs outputs for the two queries respectively. Then
by the definition of decryption algorithm we also know Aw, Az which are
nothing but (8, 7)-reordering of (Au, Av).

3. step-3 (find a difference for the final decryption query): Now we find a dif-
ference d’ such that

d A
Dlia; k+1lk+a+1]- (Az ) = (Oawi)
1

We can solve for a non-zero d’. This can be solved assuming that Aw; # 0 (see
the remark below). Note that the matrix D[..a ; k+1..k+a] is invertible. Now
we make two decryption queries ¢ and & = ¢ + d’. While we set two queries
we should ensure that none of these have been obtained in the first two
encryption queries (these are also called non-pointless or non-trivial queries).
Let @1,21,...,Waq—1,22q4—1 W], 21, .-, Why_1, 2541 denote the intermediate
inputs outputs for these two queries respectively and let p and p’ denote
the corresponding responses. By choice of d' we know that z; = 2z and
AZQ..a = Oa71~

4. step-4 (find a nullifier of unknown intermediate values, same as PRP distin-
guisher): As D[2a.. ; 2a+k..] is a X (a — 1) matrix, we find a non-zero binary
vector w € {0,1}"* such that w - D[2a — 1..,2a + k..] = 0.

5. step-5 (the distinguisher event): If w-(p®p') = w-D[2a—1.. ; k+1..(a+k)]-d’
then it returns 1 (decision for the keyed construction), else returns 0 (decision
for uniform random permutation).

Remark 1. In the above attack we assume that Aw; # 0 since otherwise we
do not get a non-zero d’. Note that Aw; can be written as a function of ¢ and
c’. So for a random permutation, a function of ¢ and ¢’ become zero has low
probability. So we may assume that the Aw; # 0.

5 Security Analysis of Inverse-Free Single Key
Construction

5.1 PRP Attack of Single-Key Inverse-Free Constructions
Without Masking

In the last section, we have seen that to obtain PRP, we need at least 2a — 1
invocations and this is tight as three rounds of LR achieves this bound.
Note that the three calls of the building block can not have same key. In [28],
it is also shown that three rounds of LR-type rounds with same key building
block can not be PRP. However, their result is applicable to a specific form of
encryption schemes. Now, we generalize this result and show that any inverse-
free single function-key (and no masking key) PRP requires at least 2a calls.
In [28], there is a construction of inverse-free SPRP over two blocks invoking
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underlying function (single keyed) four times. So the bound is tight. Interest-
ingly, the cost of PRP and SPRP become same when we want inverse-free single
function-key constructions.

Consider a length-preserving encryption scheme based on (a, a,2a — 1)-linear
mode E. Let us denote the (a, a, 2a—1)-linear mode for its decryption by D. Since
it is inverse-free the inverse-assignment for the decryption is 8 = (1,1,...,1).
As it is based on single function-key, the key-assignment is a constant function,
i.e., m; = w, = 1. However, there exists a permutation § over [1..2a — 1]. such
that w and z are w-reordering of w and v respectively where u,v denote the
intermediate input and output, respectively for E°(P) = C and similarly w, z for
Dr(C) = P. We first briefly describe how we can construct a PRP-distinguisher
(as like SPRP). The attack is similar to SPRP but we can not make decryption
queries. We see how we can manage even if we are not allowed to make decryption
queries.

We make two encryption queries such that Aq_1u = Aq_1v = 0%~ 1. This is
possible as we have ¢ many plaintext blocks. Assuming some invertible property,
we can find out the whole differences Au and Av for these two queries. For these
two queries, if we look at the decryption computation then the first inputs, say
wy, w) and their corresponding output differences Az; (not the exact outputs)
for both decryption are known (as there is no masking key). So now we make
two encryption queries with the the following restrictions on intermediate values
u,v,w and U': Uy = wy, W) = wl, Ay ou = Ay U, As U= Ay V. As we have
obtained differences for the first @ inputs in a determined manner, we can nullify
the remaining a — 1 intermediate differences and obtain a distinguishing event.
The more details of the attack is given below depending on different cases. Note
that the matrix E € M,,(3a — 1,3a — 1).

Distinguisher  D,,, Against (a,a,2a — 1)-Linear-Mode FE
(with Corresponding Decryption Mode D.

Case 1: Rank(E[2a.. ; 2a..]) < na. In this case, the two assumptions, men-
tioned before, hold for t = a — 1. So we have our general PRP distinguisher.

Case 2: Rank(E[1..a ; ..a]) < na. In this case, the two assumptions also hold
for t = a. So we have our general PRP distinguisher.

Case 3: Rank(E[l..a ; ..a]) = na., rank(E[2a.. ; 2a..]) = na. Here we
describe a PRP distinguisher which works similar to SPRP distinguisher and as
described above.

1. step-1 (make two queries with a certain difference, same as PRP distin-
guisher): Let d € I? be the non-zero solution of solve(E[..a — 1 ; ..a],0), i.e.
El..a—1; ..a]-d = 0. It makes two queries 0% and d and obtains corresponding
responses ¢ = EP(0) and ¢’ = Ef(d).
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/ / / / 3
Let ui,v1,...,U2q—1,V24—1 and uj,v],...,u5,_1,v5,_; denote the inter-
mediate inputs outputs for the two queries respectively. By lemma 3, we have
1<i<a-—1,u; =ul,v =v; and

Ac = E[2a..; ..a]-d+ E[2a.. ; 2a.] - Av,,.

while it is interacting with the keyed construction.

2. step-2 (solve for Au, Av): Using the invertible property of E[2a.. ; 2a..], we
can actually solve Av,. and hence Au,. . Thus, we know Au and Av. Now
note that the first input of decryption D is only based on c and ¢’. Let 3 be the
permutation corresponding to the reordering of intermediate input outputs
for decryption. So the values of ug, and uj, are known (as they depend only
on ¢ and ¢’ due to no masking keys and inverse-free property). Moreover, we
know Avg,. Here we assume the difference Aug, is non-zero, otherwise, we
can have a different distinguishing event as zero difference can occur with low
probability for random permutation.

3. step-3 (find a difference for two more encryption queries): Now we find a
solution p and p’ such that

E[1, %] 0 ug,
0 E[,4 |- (p,) = | ul,
E[2..a,%] E[2..a, | P 0

This can be solved as it has full column rank (see Lemma 2). Now we make
two encryption queries p and p’ and obtain outputs ¢ and . Let u,v,u’ and
v’ be the intermediate inputs and outputs for these two queries respectively.
So w = ug,,uw; = U, Avy = Avg, and Ay T = Ay U = 0%~!. Thus,
the a block output difference A¢ depends only on the a — 1 blocks of the
intermediate output difference Av, 1.

4. step-4 (find a nullifier of unknown intermediate values, same as PRP distin-
guisher): As F[2a.. ; 2a+1..] is a X (a — 1) matrix, we find a non-zero binary
vector w € {0,1}"® such that w - E[2a..,2a + 1..] = 0.

5. step-5 (the distinguisher event): If w - (p ® d) = w - D[2a.. ; ..a] - d’ then
it returns 1 (decision for the keyed construction), else returns 0 (decision for
uniform random permutation).

5.2 PRP Security of Single-Key Luby-Rackoff with Masking

Define one round Luby-Rackoff LR (a,b) = (b @® f(a),a) where a,b € I, and
f € Func(a,a). In [28] it was shown that three rounds of some variants LR
rounds with single function key is not PRP secure. In last section we have also
generalized and showed that any encryption making three calls over two blocks
input with key space L = F = Func(a) is not PRP secure. However, we now
show that a simple variant of LR with a masking key becomes PRP secure.

Definition 6. For any f € Func(a), L € I,,, we define (see the Fig. 5 below)

LRI?(a,b) = LR (LR* (LR (a + L, b))).
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a+ L T+ b

a+c+ L I

Fig. 5. LR-three rounds single function-key and one masking key.

Now we show that the above construction with key-space K = I,, x Func is
PRP. Note that we have constant key-assignment (i.e., we reuse the PRF for all
invocations) and also inverse assignment tuple is 13. Let f denote the uniform
random function on I,,. Given a tuple of elements ¢ = (cy,...,¢;) we say that
the event coll(c) holds if there exists ¢ # j such that ¢; = ¢;. We define

Voaa = {((a1,b1,¢1,d1), ... (ag,bgs cq,dy)) € T2 : coll(c)}.

It is easy to see that for random function I and a g-algorithm A,

Pr{r(A”2) € Vyaa] < (g) 9 .

Now we show the high interpolation probability of the variant of 3 round LR
construction.

Proposition 1. For all 7 = ((a1,b1,¢1,d1), .- . (aq, by, ¢q,dg)) & Viad, we have
Pri7] == PrLR}?(as,b;) = (¢i,d;),1 <i < q] > (1 —€)272"4

where € = 21%21
Proof. We say that a tuple (Lo, (z;)1<i<q) is admissible if

1. Log{az""cja]-Slvjéq}u{al+mj71§27]gq}u
2. x;’s are distinct and z; # ¢j, 1 < 4,5 < g and
3. whenever a; = a;, we have z; + z; = b; + b;.
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Let A denote the set of admissible tuples. Let ¢; be the number of distinct
a;’s. The number of (Lg,z = (x1,...,24)), denoted N 3, satisfying only (1) and
(3) is at least (2" — 2¢%) x 291, So the number of admissible tuple is at least

(2" — 2¢°) x 2" — (2" — 2¢2) x 2@~ 1342 /2,

We mainly subtract the number of tuples satisfying (1) and (3) and not satisfying
(2) from Ny 3. So the number of admissible tuple is at least 2(41+1) (1 —¢) where

_ 14
€ = SntFT -

Now, for any 7 = ((a1,b1,c¢1,d1), ... (ag, by, ¢q,dq)) & Vbaa Wwe have

Pr[r] > Z Prir,X; = a4, L = Lo| = Z g~ a+20+1)
(Lo,z)eA (Lo,z)EA

By using the lower bound of the number of admissible tuples we have

, 7q°
3 . _
PrILRI?(a;, b:) = (¢i,di), 1 <i<gq] > (1— Sni1)2 na, .
Theorem 2. For any q-adversary, the PRP advantage Ader’g},g_ against LF\’é’3
L
is at most 42

on *

Proof. Armed with the above result and using Coefficient-H technique the the-
orem follows. O

6 Conclusion

In this paper, we justify formally why we do not have any length-preserving
PRP constructions more efficient than LR three rounds and length-preserving
SPRP constructions more efficient than CMC or four round LR (in terms of the
number of building block calls). We note that this optimality holds for all linear
modes. We show that any such linear mode based constructions over ¢ blocks
requires at leat 2¢ — 1 blockcipher calls against chosen plaintext adversaries and
at least 2¢ blockcipher calls against chosen plaintext-ciphertext adversaries. This
bounds are clearly tight as we know some constructions achieving the bound.
Then we look into inverse-free single-key PRP constructions. Nandi has shown
that three blockcipher call is no longer sufficient for LR-type constructions over
two blocks (note that three call is sufficient using two independent PRF). We
extend this result and show that any ¢-block single-key inverse-free PRP must
require 2/ calls like SPRP constructions. However, if we are allowed to use one
masking key then we can have inverse-free PRP construction invoking only three
blockcipher calls. We actually show that the three round LR using same keyed
PRF is PRP if we mask a plaintext block by a masking key.
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Abstract. The iterated Even-Mansour construction defines a block
cipher from a tuple of public n-bit permutations (Pi, ..., P.) by alter-
natively xoring some n-bit round key k;, i = 0,...,r, and applying
permutation P; to the state. The tweakable Even-Mansour construction
generalizes the conventional Even-Mansour construction by replacing the
n-bit round keys by n-bit strings derived from a master key and a tweak,
thereby defining a tweakable block cipher. Constructions of this type
have been previously analyzed, but they were either secure only up to
the birthday bound, or they used a nonlinear mixing function of the
key and the tweak (typically, multiplication of the key and the tweak
seen as elements of some finite field) which might be costly to imple-
ment. In this paper, we tackle the question of whether it is possible to
achieve beyond-birthday-bound security for such a construction by using
only linear operations for mixing the key and the tweak into the state.
We answer positively, describing a 4-round construction with a 2n-bit
master key and an n-bit tweak which is provably secure in the Random
Permutation Model up to roughly 227/3 adversarial queries.

Keywords: Tweakable block cipher - Iterated Even-Mansour cipher -
Key-alternating cipher + Beyond-birthday-bound security

1 Introduction

Background. A block cipher with key space K and message space M is a family
of permutations of M indexed by the key k € K. A tweakable block cipher
(TBC) takes an additional (potentially public) input parameter t € 7 called a
tweak aiming at providing inherent variability in about the same way an IV or
nonce brings variability to an encryption scheme. Some block ciphers such as the
Hasty Pudding Cipher [35], Mercy [10], or Threefish (the block cipher underlying
the Skein hash function [15]) were designed so as to natively support tweaks.
The syntax and security requirements for tweakable block ciphers were formally
articulated in a seminal paper by Liskov, Rivest and Wagner [24]. Since then,
© International Association for Cryptologic Research 2015
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TBCs have found multiple applications such as (tweakable) length-preserving
encryption modes [18,19], online ciphers [1,33], and authenticated encryption
modes [24,31,32].

Liskov et al. [24] also proposed two generic constructions of a TBC from a

standard block cipher, achieving security up to the so-called birthday bound,
i.c., when the adversary is allowed at most roughly 2"/2 queries to the encryp-
tion or decryption oracle, where n is the block size (that is, the message space
of the TBC is M = {0,1}"). The “black-box” design strategy (i.e., building a
TBC on top of an existing standard block cipher, in a black-box way) has since
then been the main avenue of research. Earlier proposals, such as XEX [31] and
variants [4,26] were related to the second of the two original proposals of Liskov
et al., and were limited to birthday-bound security as well. Recently, a number
of constructions achieving beyond-birthday-bound security have emerged, such
as Minematsu’s construction [27], the CLRW construction [22,23,30], and two
constructions by Mennink [25]. All those constructions enjoy a security proof in
the standard model (i.e., assuming that the underlying block cipher is a pseudo-
random permutation), except for Mennink’s constructions that were analyzed in
the ideal cipher model.
Tweaking Even-Mansour Ciphers. Unfortunately, none of the currently
known black-box TBC constructions with beyond-birthday-bound security can
be deemed truly practical (even though some of them might come close to it [25]).
Hence, it might be beneficial to “open the hood” and to study how to build
a TBC from some lower level primitive than a full-fledged conventional block
cipher, e.g., a pseudorandom function or a public permutation. For example,
Goldenberg et al. [16] investigated how to include a tweak in Feistel ciphers. This
was extended to generalized Feistel ciphers by Mitsuda and Iwata [28]. Recently,
a similar study was undertaken for the second large class of block ciphers besides
Feistel ciphers, namely key-alternating ciphers [11], a super-class of Substitution-
Permutation Networks (SPNs). An r-round key-alternating cipher based on a
tuple of public n-bit permutations (Pi,...,P,.) maps a plaintext « € {0,1}" to
the ciphertext defined as

y=kr ®P (ko1 ®Prv(---Pa(k1 ® Pi(ko®x))--+)), (1)

where the n-bit round keys ko, ..., k. are either independent or derived from a
master key k. When the P;’s are modeled as public permutation oracles, con-
struction (1) is also referred to as the (iterated) Even-Mansour construction,
in reference to Even and Mansour who pioneered the analysis of this construc-
tion in the Random Permutation Model [13]. While Even and Mansour limited
themselves to proving birthday-bound security in the case r = 1, larger num-
bers of rounds were studied in subsequent works [3,21,36]. The general case has
been recently (tightly) settled by Chen and Steinberger [6], who proved that
the r-round iterated Even-Mansour cipher with r-wise independent round keys
ensures security up to roughly 2717 adversarial queries.

In order to incorporate a tweak t in the iterated Even-Mansour construction,
it is tantalizing to generalize (1) by replacing round keys k; by some function
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fi(k, t) of the master key k and the tweak t (see Fig.1). We will refer to such a
construction as a Tweakable Even-Mansour (TEM) construction.! This is exactly
the spirit of the TWEAKEY framework introduced by Jean et al. [20]. In fact,
these authors go one step further and propose to unify the key and tweak inputs
into what they dub the tweakey. The main topic of this paper being provable
security (in the traditional model where the key is secret and the tweak is chosen
by the adversary), we will not make such a bold move here, since we are not
aware of any formal security model adequately capturing what Jean et al. had
in mind.

The investigation of the theoretical soundness of this design strategy was
initiated in three recent papers. First, Cogliati and Seurin [8], and independently
Farshim and Procter [14], analyzed the simple case of an n-bit key &k and an
n-bit tweak ¢ simply xored together at each round, i.e., f;(k,t) = k @t for
each i = 0,...,r.2 They gave attacks up to two rounds, and proved birthday-
bound security for three rounds. In fact, the security of this construction caps
at 27/2 queries independently of the number of rounds. Indeed, it can be written
E(k,t,x) = E(k @ t,x), where E is the conventional iterated Even-Mansour
cipher with the trivial key-schedule (i.e., the same round key is xored between
each round), and by a result of Bellare and Kohno [2, Corollary 5.7], a tweakable
block cipher of this form can never offer more than /2 bits of security, where
k is the key-length of E (i.e., Kk = n in the case at hand). Hence, if we want
beyond-birthday-bound security, we have no choice but to consider more complex
functions f; (at the bare minimum, these functions, even if linear, should prevent
the TBC construction from being of the form E(k @ ¢, z) for some block cipher
E with n-bit keys).

This was undertaken by Cogliati, Lampe, and Seurin [7], who considered
nonlinear ways of mixing the key and the tweak. More specifically, they studied
the case where f;(k,t) = Hy,(t), where the family of functions (Hy) is uniform
and almost XOR-universal, and the master key is k = (ko,..., k). A classical
example is multiplication-based hashing, i.e., f;(k,t) = k; ® t, where ® denotes
the multiplication in the finite field Fon, the tweak ¢ = 0 being forbidden. Cogliati
et al. showed that one round is secure up to the birthday bound, and that two
rounds are secure up to roughly 22"/% adversarial queries.® They also provided a

! We warn that the naming Tweakable Even-Mansour construction was previously
used by the designers of Minalpher [34], a candidate to the CAESAR competition,
to designate a permutation-based variant of Rogaway’s XEX construction [31], i.e., a
1-round Even-Mansour construction where the derivation functions fo and f1 applied
to (k, t) are allowed to depend on the internal permutation P; (something we do not
consider in this paper).

Actually, the results of [8,14] were stated in terms of xor-induced related-key security
of the (conventional) iterated Even-Mansour cipher, but in this case this is equivalent
to standard (i.e., single-key) security of the corresponding tweakable construction.
More precisely, the birthday-bound result applies to the variant of the construction
were the same key is used before and after permutation P;, and the 221/ 3_security
bound applies to the cascade of this construction with two independent keys and
two independent permutations.

[V
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(non-tight) asymptotic security bound improving as the number of rounds grows.
However, implementing a xor-universal hash function might be costly, and linear
functions f;’s would be highly preferable for obvious efficiency reasons.

Our Results. In this paper, we ask whether it is possible to come with a
tweakable Even-Mansour construction achieving both:

1. a linear mixing of the tweak and the key to the state;
2. beyond-birthday-bound security.

We answer positively, by providing a construction with 2n-bit keys and n-bit
tweaks. The starting point is the 4-round iterated Even-Mansour construction
with a 2n-bit master key (ko, k1), ko and k; being both n bits, and what we
call the “alternating” key schedule, namely round keys are kg, k1, kg, etc. This
is for example how LED-128 is designed [17]. To turn this block cipher into a
tweakable Even-Mansour construction, we simply add the n-bit tweak t between
each permutation (see Fig.2). In other words, if we denote E((ko, k1), ) the
conventional Even-Mansour cipher with alternating round keys, the tweakable
construction that we consider can be written

E((ko, k1), t,2) = E((ko ® t, k1 @ 1), 2).

We prove that this construction is secure up to roughly 22%/3 adversarial
queries. Unsurprisingly, and as in many previous works, our proof uses Patarin’s
H-coefficients technique [6,29]. In particular, we rely on a key lemma by Cogliati
et al. [7] to analyze so-called good transcripts.

Application to Related-Key Security. Our result can be rephrased in terms
of related-key security [2] of the conventional Even-Mansour cipher: the 4-round
conventional Even-Mansour cipher with the alternating key-schedule is secure
up to roughly 22/3 adversarial queries against related-key attacks for the set of
related-key deriving functions.

20 (ko k) — (ko ® Ak & A) - A € {0,117}

Note that this set is more restrictive than the set @ that would allow to xor an
arbitrary 2n-bit string to the master key (ko, k1). It remains an open problem
(already stated in [8]) to find an Even-Mansour construction provably secure
beyond the birthday bound against $P-related-key attacks.

Open Problems. We propose three challenging open problems, the first two
being restricted to the case of n-bit tweaks. First, what would be the analogue
of the Chen-Steinberger result [6] in the tweakable setting? In more details, we
know how to deliver n/2 bits of security with an n-bit master key [8,14] and
this paper shows how to reach 2n/3 bits of security with a 2n-bit master key.
Hence, it is natural to ask whether one can obtain rn/(r + 1) bits of security
from an rn-bit master key for r > 2, and what would be the adequate num-
ber of rounds and the corresponding (linear) “tweak-and-key” schedule. Second,
Chen et al. [5] showed that the 2-round conventional Even-Mansour construc-
tion can provably deliver 2n/3 bits of security even with an n-bit master key
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(for example, when the two inner permutations are independent, the trivial key-
schedule is sufficient). Again, what would be the analogue of this result in the
tweakable setting? Can we design a TEM construction with an n-bit master key
and an n-bit tweak delivering 2n/3 bits of security, or even more? Finally, it is
natural to ask whether one can extend the construction of this paper to handle
larger tweaks, in particular 2n-bit tweaks. We show in the full version of this
paper [9] that the naive way of proceeding, namely adding alternatively to and
t1, is insecure for four rounds. Hence, this seems to require at least five rounds.

We also remark that attacks against the (conventional) iterated Even-
Mansour cipher with the alternating key-schedule have been investigated by
Dinur et al. [12]. It would be interesting to study whether these attacks can be
adapted (and potentially improved) in the tweakable setting.

Organization. In Sect.2, we introduce the notation, the security definitions,
and give some background on the H-coefficients technique. Our main result is
proved in Sect. 3.

2 Preliminaries

2.1 Notation and General Definitions

General Notation. In all the following, we fix an integer n > 1 and denote
N = 2". For integers 1 < b < a, we will write (a), =a(a—1)---(a—b+1) and
(a)o = 1 by convention. The set of all permutations of {0,1}" will be denoted
P(n).

Tweakable Block Ciphers. A tweakable block cipher with key space KC, tweak
space 7, and message space M is a mapping E : K x 7 x M — M such that
for any key k € K and any tweak t € 7, « — E(k,t,z) is a permutation of M.
We denote TBC(KC, 7, n) the set of all tweakable block ciphers with key space IC,
tweak space 7, and message space {0,1}". A tweakable permutation with tweak
space 7 and message space M is a mapping P:T x M — M such that for any
tweak t € T, x — P(t,x) is a permutation of M. We denote TP(7,n) the set of
all tweakable permutations with tweak space 7 and message space {0,1}".

Tweakable Even-Mansour Constructions. Fix integers n,r > 1. Let K and
T be two sets, and let f = (fo, ..., fr) be a (r+1)-tuple of functions from K x 7
to {0,1}™. The r-round tweakable Even-Mansour construction TEM[n, r, f] spec-
ifies, from an r-tuple P = (P,..., P,) of permutations of {0,1}", a tweakable
block cipher with key space I, tweak space 7', and message space {0, 1}", simply
denoted TEMY in the following (parameters [n, r, f] will always be clear from the
context) which maps a key k € K, a tweak t € 7, and a plaintext 2 € {0,1}" to
the ciphertext defined as (see Fig.1):

TEMP(kvtvx) = fr(k,t) @ Pr(frfl(k’t) S Prfl(' "Pl(fO(k7t> @CE) T ))

We will denote TEMy the mapping taking as input (t,z) € 7 x {0,1}" and
returning TEMP (k, t, z).
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We will mostly be interested in the case where £ = ({0,1}")® and 7T =
({0,1}™)® for integers a,b > 1. In this setting, we will denote k = (ko, ..., kq_1)
and t = (fo,...,ts—1), all k;’s and ¢;’s being n-bit strings, or simply k = k, resp.
t =t when a = 1, resp. b = 1. When all f;’s are linear over ({0,1}")**? we say
that the construction has linear tweak and key mixing.

(k,t) l l —J

fo S fr

P, P,

T D P

[an)
>
<

[an)
>

Fig. 1. The r-round tweakable Even-Mansour construction based on a tuple of public
permutations (Pr,..., Pr).

Previously Studied Constructions. Two types of TEM constructions have
already been studied. In [8], Cogliati and Seurin considered the simplest case
where @ = b = 1 (n-bit keys and n-bit tweaks) and f;(k,t) = k @ ¢ for each
i = 0,...,r. This construction has linear tweak and key mixing, and is secure
up to 2"/2? adversarial queries starting from 7 = 3. (The results of [8] were for-
mulated in terms of xor-induced related-key attacks against the conventional
iterated Even-Mansour construction, but in this simple case the two security
notions are in fact equivalent.) In [7], Cogliati, Lampe, and Seurin studied a
large class of nonlinear mixing functions, in particular, for n-bit tweaks, finite
field multiplication-based ones, i.e., f(k,t) = k ® t, or more generally, for
bn-bit tweaks, polynomial hashing-based functions, i.e., f(k, (to,...,tp—1)) =
Skt @t

2.2 Security Definitions

Fix some family of functions f = (fo,..., fr) from K x 7 to {0,1}". To study
the security of the construction TEM[n, r, f] in the Random Permutation Model,
we consider a distinguisher D which interacts with r + 1 oracles that we denote
generically (P, Py, ..., P,.), where syntactically Py is a tweakable permutation
with tweak space 7 and message space {0,1}", and Py, ..., P, are permutations
of {0,1}". The goal of D is to distinguish two “worlds”: the so-called real world,
where D interacts with (TEME, P), where P = (Py,..., P,) is a tuple of public
random permutations and the key k is drawn uniformly at random from K, and
the so-called ideal world (Py,P), where Py is a uniformly random tweakable
permutation and P is a tuple of random permutations of {0,1}" independent
from 150. We will refer to }50 as the construction oracle and to Pi,..., P, as the
mner permutation oracles.
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The distinguishing advantage of a distinguisher D is defined as

Adv(D) ¥

Pr [DTEMEP — 1] — pr [DPP — 1]

)

where the first probability is taken over the random choice of k and P, and
the second probability is taken over the random choice of Py and P. In all
the following, we consider computationally unbounded distinguishers, and hence
we can assume wlog that they are deterministic. We also assume that they
never make pointless queries (i.e., queries whose answers can be unambiguously
deduced from previous answers). The distinguisher is allowed to query all oracles
adaptively in both directions; this corresponds to adaptive chosen-plaintext and
ciphertext attacks (CCA).

For non-negative integers ¢. and g¢,, we define the insecurity of the
TEM[n, r, f] construction against CCA-attacks as

Adv%'CEaM [n,r,£] (Qw QI)) = mgx AdV(D),

where the maximum is taken over all distinguishers making exactly q. queries to
the construction oracle and exactly g, queries to each inner permutation oracle.

2.3 The H-Coefficients Technique

As in many previous works [5-8], our security proof will use the H-coefficients
technique [29], which we explain here.

Transcript. Recall that the distinguisher D interacts with a tuple of r+1 oracles
denoted (Py, Py, ..., P.). In the real world, the construction oracle Py is TEME
where P = (Py, ..., P.) and k is random, whereas in the ideal world it is a ran-
dom tweakable permutation independent from (P4, ..., P.). From the interaction
of D with these oracles, we define the queries transcript (Qc, Qp,,...,9p,) of
the attack as follows. The list Q¢ records the queries to the construction oracle:
if D made either a direct query (t,z) to the construction oracle Py which was
answered by y, or an inverse query (t,y) which was answered by z, then the
triple (t,z,y) € T x {0,1}" x {0,1}" is added to Q¢. Similarly, for 1 <i <,
Qp, contains all pairs (u,v) € {0,1}" x {0,1}" such that D made either a direct
query u to permutation P; which was answered by v, or an inverse query v
which was answered by u. Note that queries are recorded in a directionless and
unordered way, but by our assumption that the distinguisher is deterministic,
the raw interaction of D with its oracles can unambiguously be reconstructed
from the queries transcript (see e.g. [6] for more details). Note also that by our
assumption that D never makes pointless queries, each query to the construc-
tion oracle results in a distinct triple in Q¢, and each query to P; results in a
distinct pair in Qp,. Moreover, since we assume that the distinguisher always
makes the maximal number of allowed queries to each oracle, one has |Q¢| = ¢.
and |Qp,| = gp for 1 < <r. In all the following, we also denote m the number
of distinct tweaks appearing in Q¢, and ¢; the number of queries for the i-th
tweak, 1 < i < m, ordering the tweaks arbitrarily. Note that one always has
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2211 ¢ = (¢, even though m may depend on the answers received from the
oracles.

A queries transcript is said attainable (with respect to some fixed distin-
guisher D) if there exists oracles (P, P) such that the interaction of D with
(}30, P) results in this transcript (in other words, the probability to obtain this
transcript in the ideal world is non-zero). Moreover, in order to have a simple
definition of bad transcripts, the actual key k is revealed to the adversary at
the end of the experiment if we are in the real world, while in the ideal world,
a “dummy” key k «g¢ K is simply drawn uniformly at random independently
from the answers of the oracle Py (this is obviously without loss of generality
since this can only help the distinguisher and increase its advantage). All in all,
a transcript 7 is a tuple 7 = (Q¢, Qp,,...,Qp., k), and we say that a tran-
script is attainable if the corresponding queries transcript (Qc, Qp,, ..., Qp,) is
attainable. We denote @ the set of attainable transcripts. In all the following,
we denote T}, resp. Tiq, the probability distribution of the transcript 7 induced
by the real world, resp. the ideal world (note that these two probability distrib-
utions depend on the distinguisher). By extension, we use the same notation to
denote a random variable distributed according to each distribution. The main
lemma of the H-coeflicients technique is the following one (see e.g. [5,6] for the
proof).

Lemma 1. Fiz a distinguisher D. Let © = OgoodUOpaa be a partition of the set
of attainable transcripts. Assume that there exists €1 such that for any T € Ogood,

one has*
Pr{Tye = 7]

_— >
P?”[ id = T] -
and that there exists o such that Pr{Tiq € Opaq] < €2. Then Adv(D) < g1 + &3.

1—51,

Useful Observations. We end this section with some useful preliminary obser-
vations. First, we introduce some additional notation. Given a permutation
queries transcript @ and a permutation P, we say that P extends Q, denoted
PF Q if Plu) = for all (u,v) € Q. By extension, given a tuple of permu-

tation queries transcripts Qp = (Qp,,...,9p,) and a tuple of permutations
P =(P,...,P.), we say that P extends Op, denoted P + Qp, if P, - Qp, for
each i =1,...,7. Note that for a permutation transcript of size g,, one has
1
Pr[P —gP(n): PF Q] = (2)
(N)Qp

Similarly, given a tweakable permutation transcript Q and a _tweakable permu-

tation P, we say that P extends Q, denoted P + Q, if P(t x) = y for all

(t,z,y) € Q. For a tweakable permutation transcript @ with m distinct tweaks
and ¢; queries corresponding to the ¢-th tweak, one has

Pr[ﬁ —s TP(T,n)

3)

i:l

* Recall that for an attainable transcript, one has Pr[Tiq = 7] > 0.
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It is easy to see that the interaction of a distinguisher D with oracles
(Py, Py, ..., P.) yields any attainable queries transcript (Qc¢, Qp) with Qp =
(Qpy,---,9p,) iff ]50 F Q¢ and P+ Qp, for 1 < ¢ < r. In the ideal world, the
key k, the permutations Py,..., P., and the tweakable permutation ]50 are all
uniformly random and independent, so that, by (2) and (3), the probability of
getting any attainable transcript 7 = (Q¢, Op, k) in the ideal world is

1 1\ 51
Pmm:ﬂ:wﬁ(mm)xfhmg

=1

In the real world, the probability to obtain 7 is

Pr[T = 7] = I%\ x (<N1)qp>r x Pr [P — (P(n))": TEMP - Q¢ ‘ P+ QP} .

Let
p(r) < pr [P — (P(n))" : TEMP F Q¢ ’ Pr QP} .

Then we have

Pr[Tye = 7] 1

—— =p(7T / —_— 4

= "0/ i, @
Hence, applying Lemma 1 will require three steps: first, define good and bad
transcripts, then upper bound the probability of bad transcripts in the ideal

world, and finally lower bound the real world probability p(r) when 7 is good in
order to use Eq. (4).

2.4 An Extended Sum-Capture Lemma

To upper bound the probability of getting a bad transcript in the ideal world,
we will need a generalization of the sum-capture theorem from [5] (that applied
to a random permutation) to the case of a family of random permutations
(in other words, a random tweakable permutation).

We denote GL(n) the general linear group of degree n over Fa, i.e., the set of
all automorphisms (linear bijective mappings) of .
Lemma 2. Fiz an automorphism I' € GL(n) and a non-empty set T. Let P
be a uniformly random tweakable permutation in TP(7,n), and let A be some
probabilistic algorithm making exactly q (two-sided) adaptive queries to P. Let
Q = ((t1,21,91), -+, (tq, 2q,yq)) denote the transcript of the interaction of A

with P. For any two subsets U and V' of {0,1}", let
mQUV) = {((t;2,y),u,0) € Qx U XV : z@u=T(y@v)}.
Then, assuming 9n < q < N/2, one has

~ UVl 242UV
Prg, HU,VQ{O,l}":/QL(Q,U,V)z‘”]\‘,| |, 2 ]L.H 43 ng|U|V|

2
<7a
- N
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where the probability is taken over the random choice oflB and the random coins

w of A.

The proof of this lemma is a simple generalization of the one from [5] and can
be found in the full version of this paper [9].

3 Beyond-Birthday-Bound Security

3.1 Statement of the Result and Discussion

In this section, we consider the 4-round tweakable Even-Mansour construction
TEMI[n, 4, f] with 2n-bit keys and n-bit tweaks depicted on Fig.2. The main
result of this paper is the following one:

Theorem 1. Let £ = (fo,..., fa) where fi((ko,k1),t) = kimod2 ® t. Let gc,qp
be two integers such that In < ¢. and ¢, + 3g. +1 < N/2. Then one has

442" + 38\ /Gy + (30 + 3v/R)ap /G + gy + 2

N

Adv%'CEaM [n,4,f] (qw qp) <

Hence, this construction ensures CCA-security as long as g. and g, are small
compared to 22%/3_ up to logarithmic terms in N = 2.

The proof follows the H-coefficients method exposed in Sect. 2.3. In Sect. 3.2,
we begin by describing the set of bad transcripts and upper bound the proba-
bility to get such a transcript in the ideal world. Then, for any good attainable
transcript 7, we prove in Sect. 3.3 that the ratio between the probability to get
7 in the real world and in the ideal world is close enough to 1.

kot ki@t kot ki@t kot
T é Py é Py é Py é Py é Y

Fig. 2. The 4-round tweakable Even-Mansour construction with a 2n-bit key (ko, k1)
and an n-bit tweak ¢.

3.2 Definition and Probability of Bad Transcripts

The first step is to define the set of bad transcripts. Let 7 = (Q¢, Qp,, .- .,
Op,, (ko, k1)) be an attainable transcript, with |Q¢| = ¢. and |Qp,| = ¢, for
i=1,...,4. In all the following, we let, for i € {1,...,4},

Ui = {u; € {0,1}" : (us,v;) € Qp, }
Vi =A{v; € {0,1}" : (us,v;) € Qp, }
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denote the domains and ranges of Qp, respectively. We also define three quan-
tities characterizing the transcript,
def
a1 = (4w, y),m) € Qo x Uy = x @ ko &t = uy }
def
as = [{((t,z,y),v4) € Qo x Vi : y D ko Bt = v4}]
def
azs = [{((t,2,9),v2,u3) € Qo X Vo x Uz : vy B ko &t = uz}.

We also define two quantities depending respectively on Qp, and Qp,:

v | {((u2, v3), (ub, 1)) € (Qpy)? © (un, v2) # (uh, vh), us & vy = ubh & vh}]

vs = [{((us, v3), (uh,v5)) € (Qry)? : (us, vs) # (uh, vh), ug & vs = uly & vh}].

Definition 1. We say that a transcript T is bad if at least one of the following
conditions is fulfilled:

(B-1) there exists (t,z,y) € Qc, (u1,v1) € OQp,, and (u4,v4) € Qp, such that
kh@t=2@u = Dy;

(B-2) there exists (t,z,y) € Qc, (u1,v1) € Qp,, and (uz,v2) € Qp, such that
ko®t=xPu; and k1 &t = v, ® ug;

(B-3) there exists (t,z,y) € Qc, (us,v3) € Qp,, and (u4,v4) € Qp, such that
ki®t=v3Pus and koSt =v4 D y;

(3’4) oy 2> \/q7/27

(B-5) ay > \/(TC/Z;

(B-6) Q23 > qp\/(z’.

(B-7) Vo Z \/(E,'

(B-8) v3 > \/Gp.

Otherwise we say that T is good.> We denote Ogood, T€SP. Opaq the set of good,
resp. bad transcripts.

We start by upper bounding the probability of getting bad transcripts in the
ideal world.

Lemma 3. Assume that 9n < ¢. < N/2 and g, < N/2. Then one has

2020y +34:5 (54 3y/)v/acap + 4gp% 42

Pr(Tiq € Opad] < e N

Proof. We upper bound the probability of each condition in turn. We denote
©; the set of attainable transcripts satisfying condition (B-i). Recall that in the
ideal world, the key (ko, k1) is drawn independently from the queries transcript.

® We define conditions (B-4) and (B-5) using \/gc/2 rather than ,/gc in order to be
able later to directly apply a previous result by Cogliati et al. [7].
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Condition (B-1). Let BadK; be the set of keys kg such that there exists (¢, z,y) €
Qc, (u1,v1) € Qp,, and (uq,v4) € Qp, such that kg ®t =z Puy = y® vyg. Note
that BadK; only depends on the queries transcript, hence for any constant C' we
have, since kg is uniformly random,

Pr[Tiq € ©1] < Pr |Py g TP(T,n),P «— (P(n))* : |BadK,| > C} + % (5)
Moreover, if we let

def
w(Qc, U1, Vi) = [{((t,z,y),u1,va) € Qo x Ur X Vi : 2 @ up =y D vg)}l,

then one clearly has
IBadK: | < p(Qc, Uy, V).

Hence, we can use Lemma 2 in order to upper-bound |BadK;| with overwhelming
probability (we consider D with access to the inner permutations as a proba-
bilistic algorithm A interacting with the tweakable permutation ﬁo, resulting in
the transcript Q¢, and we let I" be the identity mapping). For

2
_ ey 2¢2qp

C N N + 3qpv/1Ges

we obtain that

Pr [ﬁo s TP(T,n),P — (P(n))! : |BadK;| > c} <

=

Using (5) gives

2
qeqp N 2¢%q,  3dp/N4e n 2

Pr [T} < .
rlTla€ O] = T+ Tz N N

Conditions (B-2) and (B-3). We consider (B-2). For each (t,z,y) € Qc,
(u1,v1) € Qp,, and (u2,v2) € Qp,, the probability, over the random draw of
(ko, k1), that ko @t = x D uy and ky &t = vy @ ug is 1/N? since (ko, k1) is
uniform and independent from the queries transcript. Summing over the chfj
possibilities for (¢,z,y), (u1,v1), and (uz,vs) yields

q4eqp
N2

Pr(Tiq € O] <

Similarly,

2
chp
N2~

Pr [Tld S 93] <

Conditions (B-4) and (B-5). We consider (B-4). Seeing a1 as a random variable
over the random draw of (ko, k1), one has

]E[Oél]: Z Z Pr[kozx@ul@t]gqjgp
(t,z,y)€Qc 1€l
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Then, using Markov’s inequality,

_ B[] _ 20,/
Vi N

Pr[Tiq € ©4) =Pr [oq > \/2(17}

Similarly,
2Gp/4c
Pr[Tiq € O3] < %

Condition (B-6). Again, we see as 3 as a random variable over the random draw
of kg. Then

]E[Oélg] = Z Z Z PI‘ [k‘o = V2 ) us b t] S q;\?p .

(t,x,y)€Qc v2€V2 us€U3

V)

Then, using Markov’s inequality,

Eloos] _ 4/
Qp\/qj - N

Conditions (B-7) and (B-8). Consider (B-7). We see the distinguisher combined
with ]50 and the inner permutations P;, Ps, and P, as a probabilistic algorithm
A interacting with P,, and we see 5 as a random variable over the random
choice of P, and the randomness of .A. One has

Pr [T;d IS 96] =Pr [042,3 2> Gp/4c) <

]E[I/Q] = Z Pr [UQJ' Duvg; =ug; D 11271‘] ,
(4,4)

1<i#j<qc
where the queries to P, are ordered as they are issued by A. Consider the i-th
and the j-th query, and assume wlog that i < j. If the j-th is a direct query
Ug j, then vy ; is uniformly random in a set of size N — j 4 1. Similarly, if this
is a inverse query vg j, then uy ; is uniformly random in a set of size N — j + 1.
In all cases, the probability that us; @ ve; = ua ;j ® vo ; is at most 1/(N — gp).

Hence,
Efve] < wlap = 1) _ 24;

- N—-¢q, — N
Using Markov’s inequality,
2q3/2
Pr[Tiq € ©7] = Pr [VQ > \/%] < ;\)/_
Similarly,
22
Pf[ﬂd S 88] S %

The result follows by a union bound over all cases. O
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3.3 Analysis of Good Transcripts

In this section, we fix a good transcript 7 = (Q¢, Qp,, - .., Qp,, (ko, k1)). By (4),
we have to lower bound

ef
p(r) € Pr [P s (P(n))" s TEME, ;, F Qc|P b= Qp, A AP E Q.

The proof will proceed in two steps: first, we will lower bound the probability
that permutations P; and P, satisfy some conditions given in the definition
below, and then, assuming (Py, Py) is good, we will lower bound the probability,
over the choice of P, and Ps, that TEMEO’,Cl F Qc¢. For this second step, we will
directly appeal to a previous result by Cogliati et al. [7].

We start by giving the conditions defining good pairs of permutations
(Py, Py). We stress that these conditions cannot be accommodated in the def-
inition of bad transcripts since they depend on values of P; and P, which do
not appear in the queries transcript, so that they cannot be defined from the
transcript 7 alone. We also warn the reader upfront that conditions (C-5) and
(C-6) are “dummy” conditions that will easily be seen to be impossible to fulfill,
yet will allow us to cleanly use the previous result of Cogliati et al. [7].

Definition 2. A pair of permutations (Py, Py) such that Py - Qp, and Py + Qp,
is said bad if at least one of the following conditions is fulfilled (see Fig. 3 for a
diagram of the first ten conditions):

(C-1) there exists (t,z,y) € Qc, us € Us, and vs € V3 such that

Pz Dko®t) @k &t =uy
Prly@kodt) @k @t =vs;

(C-2) there exists (t,z,y) € Qc, (ua,v2) € Qp,, and uz € Us such that

Pl(.’ﬂ@ko@t)@kl@t:uQ
vy B ko Bt =us;

(C-3) there exists (t,x,y) € Qc, (us,v3) € Qp,, and vy € Vo such that

Pillly@ko@t) @k &t =vs
Ug@ko@tzvg;

(C-4) there exists (t,x,y), (', 2',y"), (", 2", y") € Qc with (t,z,y) distinct from
(', 2’ y") and from (t",2",y") such that

Pz @k ®t) Ot =Pi(2z' Dk D) O
Pillly@ko®t)®t=P ' (y @koot") &t

(C-5) there exists (t,x,y,) # (t',2',y") € Q¢ such that

{Pl(:c@koeet)@tzPl(x’eeko@t’)@t’
:tl;
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(C-6) there exists (t,x,y,) # (t',2',y’) € Q¢ such that

yokat)et=P (Y ok at)ot
t— t's
(C-7) there exists (t,x,y) # (t',2',y") € Qc and uy € Uy such that

(
P I@ko@t)@]ﬁ@t—ﬂg
Pilllyokot)ot=P (Y ok ot)ot,;
(t,

(C-8) there exists (t,x,y) # (t',2',y") € Qc and vs € V3 such that

Pilydkodt) @k @t =3
Pilz®ko®t)®t =Pz’ ko) DY

(C-9) there exists (t,z,y) # (t',2',y") € Q¢ and (ug,v2), (uh,vh) € Qp, such
that
Pl(w@ko@t)@/ﬁ Dt =1us
P(d' @kodt) Dk dt =ub
ve Dt =0vh Dt
(C-10) there exists (t,x,y) # (t',2',y") € Q¢ and (us,vs), (uh,vs) € Qp, such
that
Pilllyoko®t) ki @t =03
Py @koot) ok ot =0}
us®t=us Dt
(C-11) 0y > \/3c;
(C-12) a3 > \/qc;
(0_13) ﬁ2 > @;’
(C-14) B3 = /@c:

where

ay E {(tz,y) € Qo Pi(x @ ko ®t) @ by @t € Us}l,

def _
as = [{(t,z,y) € Qc : Py (y@ko®t) @k @t € V3}l,
def

Bo = H(t,z,y) € Qo : 3(t, 2" y) # (t,2,y),
Pzokat)yot=P (' dkat)at},
def

Bs = |{(t,x,y) € Qo : It a',y') # (t,z,y),
Plllyokoot)ot=P (Y okodt)dt'}.

Otherwise we say that (P1, Py) is good. We denote Igooq, Tesp. IInaa the set of
good, resp. bad pairs of permutations (P1, Py) such that Py - Qp, and Py + Qp,.

In all the following, we denote IT the set of pairs of permutations (Py, Py) such
that Py - Qp, and Py - Qp,. The first step towards studying good transcripts
will be to upper bound the probability that the pair (Py, Py) is bad.



(C-1)

(C-2)

(C-4)

(C-5)

(C-6)

(X5

(C-9)

(C-10)
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P1 P2 R; P4
(t,z) %; Us U3 1% (t,y)
(tt I> %' ) ) )
vy us s 1% (ty)
(t,z) (t,y)
(t.a)--- - e "o/
(t,2)
(t/‘r II) -
t,y)
- ()
(taI) m« U2 (tyy)
- --=(ty)
(t,2) U3 ‘ﬂ (t.y)
(t/111)777 -
(t,x) Uz U246
(ta') - - - e XU vétr”//
pU3 Vs g (ty)
R SRR S ---(t.y)

Fig.3. The ten

“collision”

conditions characterizing a bad pair of permutations

(P1, Py). Black dots correspond to pairs (uz,v2) € Qp, or (us,vs) € Qp,. Note that for
(C-4) one might have (¢',2') = (¢”,2"), and for (C-9) (resp. (C-10)) one might have
zDt=2" Dt (resp. ydt =1y dt).
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Lemma 4. For any integers q. and g, such that g, +q. +1 < N/2, one has

4q? +1642qp + 4q.q; N 1062% + 4q0 /3y + 10,/Gegp
N

Pr{(Py, Py) € Ilpaq) < e

where the probability is taken over the uniformly random draw of (Py, Py) in II.

Proof. We upper bound the probabilities of the fourteen conditions in turn. We
denote II; the set of pairs of permutations (Pi, Py) € II satisfying condition
(C-9).

Condition (C-1). Fix (t,z,y) € Qc, us € Uz, and vs € V3. Note that if
@ koDt = uy for some (u1,v1) € Qp,, then vy ® k; ® t cannot be equal
to ug since otherwise 7 would satisfy (B-2). Similarly, if y @ ko ©t = v4 for some
(ug,v4) € Qp,, then uy ® k; @ ¢ cannot be equal to vs since otherwise 7 would
satisfy (B-3). On the other hand, if x ® ko ®¢ ¢ Uy and y & ko ® ¢ ¢ Vy, then
the probability over (Py, Py) «g II that

Pl(l’@ko@t):"llg@k‘l@t
Pillyoko®t) =vs @k @t

is at most 1/(N —gp)? < 4/N2. (In more details, if uy Sk Bt € V; or vy ki Bt €
Uy, then this probability is zero, whereas otherwise it is exactly 1/(N — g,)?.)
Summing over the at most chf, possibilities for (¢,z,y), uz, and vs yields

4q.q;

PI‘[(Pl,P4) € Hﬂ < N2

Conditions (C-2) and (C-3). We consider (C-2), the reasoning for (C-3) is sim-
ilar. Fix (t,z,y) € Qc¢, (uz,v2) € Qp,, and ug € Us. Note first that for (C-2)
to be satisfied, one must have v, ® kg @ t = ug, and there are by definition at
most ag g triplets ((¢,x,y), v2, ug) satisfying this equality. If z @ ko @ t = uy for
some (u1,v1) € Qp,, then vy ® k1 ® t cannot be equal to us since otherwise 7
would satisfy (B-2). On the other hand, if x @ ko @t ¢ Uy, then the probability
that Py(z @ ko ®t) = us @ k1 & ¢ is at most 1/(N — ¢p) < 2/N (it is zero if
us ® k1 @t € Vi, and 1/(N — ¢,) otherwise). Summing over the at most a3
possibilities for (¢,z,y), (u2,v2), and us, with a3 < ¢,./qc since otherwise 7
would satisfy (B-6), we obtain

5

2
Pr[(PL, Py) € IIy] < q’}v

Similarly,

2 c
Pr|(Py, Py) € I15) < q‘}vﬁ.
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Condition (C-4). Fix (t,z,y), (', 2’ y"), (", 2",y") € Q¢ with (¢, z,y) distinct
from (t',2',y’) and from (¢, z"”,y"). First, note that if x ® ko Dt =2’ ® ko Bt/
ory®kodt=1y" ®ky®t’, then (C-4) cannot be satisfied. Hence, we assume
that none of these two equalities holds. We consider three cases. Assume first
that @ @ kg &t = uy for some (uj,v1) € Qp,. Note that there are at most
ay possibilities for (t,z,y), and a; < (/ge/2 since otherwise 7 would satisfy
(B-4). Moreover y @ ko &t ¢ V, since otherwise 7 would satisfy (B-1). Hence,
the probability that

P4—1(y® kO @t) @t —_ P4—1(y// o kO @t”) @t”

is at most 1/(IV — g, — 1) < 2/N. (In more details, if ¥ & ko ® t"” € V4, then
this probability is either zero if P, ' (y" © ko © t") @ t & " € Uy, or exactly
1/(N — gp) otherwise, whereas if y” @ ko @ t” ¢ Vi, then this probability is at
most 1/(N — ¢, — 1).) Summing over the at most ,/qc/2 X g. possibilities for
(t,z,y) and (t”,2",y"), the probability of this first case is at most qg’/Q/N. The
second case where y @ ko @&t € V, is handled similarly. Finally, consider the case
where x @ ko @t ¢ Uy and y @ ko @t ¢ Vy. Then the probability that

Pix@kydt)dt=P (' koDt )
P4_1(y ® ko ® t) ot= P4—1(y// ® ko ® t”) D t”;

is at most 1/(N — g, —1)? < 4/N?. Summing over the at most ¢> possibilities for
(t,z,y), (t',2',y"), and (¢",2",y"), the probability of this third case is at most
4¢3 /N2. Overall, we obtain

agd | 242"
PI‘[(Pl,P4) S H4] < N2 —+ N

Conditions (C-5) and (C-6). These conditions cannot be satisfied. Indeed,
assume that there exits (¢, z,y) # (¢',2',y") € Q¢ satisfying (C-5). Since t = ¢/,
then = # 2’ by the assumption that the distinguisher never makes pointless
queries. This obviously implies that Py (z ® ko ®t) @t # Pi(a’ ko B t) B, a
contradiction. The reasoning is similar for (C-6). Hence,

Pr[(Py, Py) € IIs] = Pr[(Py, Py) € ITg] = 0.

Conditions (C-7) and (C-8). We consider condition (C-7). Fix queries (¢, z,y) #
(t',z',y') € Qc and uy € Us. We will consider two cases: first, the case where
y D ko®t € Vy, and then the case where y @ ko ® t ¢ Vy. For both cases, note
that if ¢ ® ko ® t = uy for some (u1,v1) € Qp,, then v1 ® k; @ t cannot be
equal to wug since otherwise 7 would satisfy (B-2). Hence, we can assume that
T @ koDt ¢ Up. It follows that the probability that

P(z@ko®t) Dk Ot =usy

is at most 1/(N — ¢,) < 2/N (it is zero if ug ® k; & ¢t € V4, and 1/(N —
gp) otherwise). Summing over the at most ay queries (¢,z,y) € Q¢ such that
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y® ko ®t € Vy, with ay < /qc/2 since otherwise 7 would satisfy (B-5), and
the g, possibilities for us, we see that the first case happens with probability at
most gp,/qe/N. Assume now that y @ ko © ¢ ¢ Vj. Then the probability that

Plllyokot)ot=P 'y ok at)at

is at most 1/(N —¢g, —1) < 2/N. (In more details, if y® ko Bt =y’ S ko®t/, then
it can easily be seen that it cannot hold, whereas if y ® ko @t # vy ® ko D t’, the
equation holds with probability at most 1/(N — g, — 1).) Summing over the at
most g2g, possibilities for (¢,z,y), (t,2',y), and uz, we see that the probability
of the second case is at most 4¢2q,/N?2. Overall,

4‘12%
N2

Pr(PL, Py) € IT] < qu\/qT n

Similarly, one has

Ip/qe 4‘13%
PI‘[(Pl,P4)€H8}§ N + N2

Conditions (C-9) and (C-10). Consider condition (C-9). First note that, if the
condition is satisfied, we have x@®ko®t & Uy, 2’ ko@Dt & Uy, ua®k1®t € V1 and
ub @k ®t' € V1, otherwise (B-2) is fulfilled. Moreover, if (u2,v2) = (u,v5), then
t =1/, thus = 2/, which is impossible. Hence we must have (ug,vs) # (uj, v5).
The condition can be divided into two conditions:

9.1 there exists (¢,z,y) # (t',2',y') € Qc and (ug,va) # (uh,v5) € Qp, such
that z@t = 2’ ®t', P1(x®ko®t) = ua®k1 Dt and Py (2' Dko®t') = ubdk
and vo ®t =vi D';

9.2 there exists (¢,z,y) # (t',2',y') € Q¢ and (ug,va) # (uh,vh) € Qp, such
that z@t # o' ®t', P (xBkoBt) = ua®k1 Dt and Py (2/ Bkodt’) = ubdk
and v @t =vh Bt

In the first case, one has
UQ@kl@t:.Pl((ﬂ@ko@t):Pl(x/@ko@t/):Ué@kl @t/,

thus us @ub = tdt = va ®vh. Hence the first condition implies the following one:
there exists (¢,z,y) € Q¢ and (ug,ve) # (ub,vh) € Qp, such that Py (z®ko®t) =
us @k &t and us Puhy = vo B vh, with xdko®t & Uy and ua® ki &t ¢ V3. Since
v < \/Qp, the number of suitable us € Us is lower than V> and the probability

that this first condition is fulfilled is at most %{?’ < Q%T\/%. For the second

condition, fix any queries (¢,z,y) # (¢,2',y) € Qé such that x &t # 2/ ',
B ko@Dt g Uy, o’ ®kodt € Uy and (ug,v) € Qp,. f vy Bt dt' & Vs, the
condition cannot be fulfilled. Otherwise let (uj,v5) € Qp, be the unique query
such that v @t = v5 @ ¢'. Then the probability that Py(z @ ko ®t) = us ® k1 Ot
and Py (2’ @ ko®t') = ub @k, Ot is at most m Finally, by summing
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over every possible tuple of queries, and by taking into account the condition
9.1, one has

29e\/Tp | 4q2qp
Pr [(Pl,P4) [S Hg] < N —+ ]\07_2

Similarly,

2qcx/q;n 4(]261
Pr[(Py, P Iy < —X— )
r[(Py, Py) € ITyo] < N + N

Conditions (C-11) and (C-12). We see oy (resp. a3) as a random variable over
the choice of P; (resp. Py). Note that

Q2 = ‘{(tax,y) €Qc : Pl(x@ko@t)@kl Dt e UQ}‘
=t z,y) €Qc 2D ko @t Uy, Pz @ ko ®t) D1 Dt € Usll,
because, if t @ ko®t € Uy and Py (x DkoDt) Dk Bt € Uy, then (B-2) is fulfilled.

We denote Qc¢1 the subset of queries (¢, z,y) € Q¢ such that z @ ko &t & U;.
Then

]E[CYQ]: Z Z Pr[Pl(x@kO@t):’LQ@k}l@t]
(t,z,y)€Qc,1 u2€U2

> Y i
(t,z,y)€Qc,1 u2€U2 p
2qcqp

IA

<
- N

Using Markov’s inequality, we get

2
Pr[(Py, Py) € 1] < q’}V\/‘TC.

Similarly,

2 c
Pr[(P, Py) € ITs] < q’}V\/‘T.

Conditions (C-13) and (C-14). Consider condition (C-13). Note that
ﬂQ = H(taxay) €Qc : E'(t/,l'/,y/) 7é (t,x,y),
P(xdkat)ot=P(r'dkat)at'}
<o+ |{(t,z,y) € Qc : x® ko ®t € Uy and I(t', 2, y') # (t,2,y),
Pzokdt)y@t=P (' @kodt)®t'}.

We denote 3} the last term of this sum. Thus

EB= Y > PrPi(z@ko®t)®t =Pz’ Dko®t) Bt
(t,z,y)€Qc,1 (2 ,y")#(t,x,y)
g 2q;
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This inequality holds because, if x@®t = x’' &', then ¢ # t’ since the distinguisher
never makes pointless queries, thus Pi(z @ ko ®t) ®t = P2’ D ko D) BT
cannot be fulfilled. Otherwise,

Pr{Pi(x®ko®t) Dt =Pz DkoDt') Dt < .
N—q,—1

Finally, since (B-4) is not fulfilled, a1 < /qc/2. Thus fo > /g, implies G5 >
V/Gc/2. Hence, using Markov’s inequality,

OR[B]  4q>/?
Pel(Py.P) € Iha] < Pr(fy > yip/2) < 28 < Mo
Similarly,
ag2”?
Pr [(P17P4) S H14] <
The result follows by an union bound over all conditions. O

We are now ready for the second step of the reasoning.

Definition 3. Fiz any pair of permutations (Py, Py) such that P, = Qp, and
Py Qp,. We define a new query transcript Q. depending on (Py, Py) as

/C = {(tvpl(CC@ kO @t),P4_1(y@ ko @t)) : (taxay) € QC}
We also denote

~ Py, P /
) ) = , 173 ¢ : kqi.k C 2 P> B .
p(, P\, Py) = Pr [PQ Py s P(n) : TEMPP b QL | (Po b Qpy) A (P F QPB)}

Lemma 5. One has

PriTie=1] p(r, P1, P4)
PriTia =] ) (Pl,Pge:Hgood (N =) I 1/ (N)g,

Proof. Clearly, once P; and Py are fixed, TEI\/I,CPS,’:1 2PePa 00 is equivalent to
TEM>(® - Q. Hence,

p(r) = Z Pr[(P1,Py) s I : (Py = P1) A\ (Py = Py)| p(7, P1, Py)
(Py,Py)ell
6(7.7 pla P4)
.y PP
> — N2
(Pl,p4)€Hgood ((N qp)')
The result follows from Eq. (4). O

We can now directly appeal to a previous result by Cogliati et al. [7].
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Lemma 6. Let q. and g, be two positive integers such that g, +3q. < N/2. Fiz
any pair of permutations (P, Py) € Hgo0qa. Then

p(r.PLP)) <4qc(qp+2qc)2 . 14q§/2+4¢q7qp>

15 1/(N)g, — N? N

Proof. One can check that the queries transcript v = (Qf, Qp,, Qp,) satisfies
exactly the conditions defining a good transcript as per [7, Definition 2]. More-
over, the ratio p(7, P1, Py)/ [[i~; 1/(N),, is exactly the ratio of the probabilities
to get 7/ in the real and in the ideal world once a good pair (P, Py) is fixed.
Hence, we can apply [7, Lemma 6] that directly yields the result.® a

We are now ready to prove the main lemma of this section.

Lemma 7. Let q. and g, be two positive integers such that q, +3q. +1 < N/2.
One has

Prite=7] _ 202 + 32q%qy + 8.a> 2492 + dqe /Ty + 14/cqy
PriTa=7] ~ N2 N '

Proof. From Lemmas5 and 6, one has

Prfi=r], 3 b(r, 1, Pi)
_ - 2 m
Pr(Tiq = 7] (Py,Pa)ell 000 (N — ‘Ip)!) H¢:1 ]‘/(N)‘Zi

oy daelap +200)° 1462 + 4./30qy 5 1
N2 N o ((N7Qp)')2

3/2
— (1 4QC(Qp + 2QC)2 _ 14qc/ + 4\/‘70‘];0 ‘Hgood|
Nz N (N = g,)1)”

_ (1 dge(gp +200)° 142" +4/Gg,

e I ) Pr[(P1, Py) € Hgood]

where the last probability is taken over the random draw of (Py, Py) from I7, the
set of pairs of permutations satisfying P, - Qp, and P; - Qp,. Using Lemma4,
one has

P =1] ( | a2 416020y + 49007 106 + Age /Gy + 10@%)
- N

Pr([Tiq = 7] N?

(- daclap+20)* 14627 + 4/,
N2 N

R 3/2

| 202 + 3220y + 8.0} 240" + Ao /Ty + 14\/Geay
- N2 N

5 Even though this might not be apparent to the reader unfamiliar with [7], the proof

of Lemma 7 in that paper does not rely on the xor-universal hash functions h; and
hs appearing in the definition of good transcripts of [7].
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Concluding. We are now ready to prove Theorem 1. Combining Lemmas1, 3,
and 7, one has

2¢2q, + 344> LG+ 3v/n) /ety + 4gp + 2
N2 N
203 + 3202, + 84.q2 24627 + 4. /T + 144/Godp
+ 5 +
N N
3 2 2
< 20q; + 3492qp + 11qcq;,
< Nz
3/2 3/2
N 244c"" + 4qe/Tp + (19 + 3v/1) /ey + 4gp " + 2
~ )

AdvTEy [n,4,f] (de, qp) <

Since the result holds trivially when ¢2 > N2, ngp > N2, or chz > N2, we can
assume that ¢2 < N2, qfqp < N2 and chg < N2, so that

g _ @ c OV qcdy < Vet
N2~ N’ N2 - N’ N2 — N
Thus
3/2 3/2
44q:"" + 38qe\/Gp + (30 + 3v/n)qp\ /e + 4gp ” + 2

AdVPFCEM[nA,f] (qC7 QP) < N )

which concludes the proof of Theorem 1.
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Abstract. In CRYPTO 2003, Halevi and Rogaway proposed CMC, a
tweakable enciphering scheme (TES) based on a blockcipher. It requires
two blockcipher keys and it is not inverse-free (i.e., the decryption algo-
rithm uses the inverse (decryption) of the underlying blockcipher). We
present here a new inverse-free, single-keyed TES. Our construction
is a tweakable strong pseudorandom permutation (TSPRP), i.e., it is
secure against chosen-plaintext-ciphertext adversaries assuming that the
underlying blockcipher is a pseudorandom permutation (PRP), i.e., secure
against chosen-plaintext adversaries. In comparison, SPRP assumption
of the blockcipher is required for the TSPRP security of CMC. Our
scheme can be viewed as a mixture of type-1 and type-3 Feistel cipher
and so we call it FMix or mixed-type Feistel cipher.

Keywords: (Tweakable strong) pseudorandom permutation - Coeffi-
cient H Technique - Encipher - CMC - Fiestel cipher

1 Introduction

A tweakable enciphering scheme (TES) is a length-preserving encryption
scheme that takes a tweak as an additional input. In other words, for each tweak,
TES computes a ciphertext preserving length of the plaintext. Preserving length
can be very useful in applications such as disk-sector encryption (as addressed
by the IEEE SISWG P1619), where a length-preserving encryption preserves
the file size after encryption. When a tweakable enciphering scheme is used,
the disk sectors can serve as tweaks. Other applications of enciphering schemes
could include bandwidth-efficient network protocols and security-retrofitting of
old communication protocols.

Examples based on Paradigms. There are four major paradigms of tweakable
enciphering schemes. Almost all enciphering schemes fall in one of the following
categories.

— Feistel Structure: 2-block Feistel design was used in early block ciphers
like Lucifer [4,22] and DES [23]. Luby and Rackoff gave a security proof of
Feistel ciphers [12], and later the design was generalised to obtain inverse-free
enciphering of longer messages [17]. Ezamples: Naor-Reingold Hash [16], GFN
[10], matrix representations [1].
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— Hash-Counter-Hash: Two layers of universal hash with a counter mode of
encryption in between. Ezamples: XCB [13], HCTR [25], HCH [2].

— Hash-Encrypt-Hash: Two layers of universal hash with an ECB mode of
encryption in between. Ezxamples: PEP [3], TET [6], HEH [21].

— Encrypt-Mix-Encrypt: Two encryption layers with a mixing layer in
between. Examples: EME [8], EME* [5] (with ECB encryption layer), CMC
[7] (with CBC encryption layer).

Among all these constructions, the examples from Feistel cipher and Encrypt-
mix-encrypt paradigms are based on blockciphers alone (i.e., no field multiplica-
tion or other primitive is used). Now we take a closer look at CMC encryption.

CMC. In CRYPTO 2003, Halevi and Rogaway proposed CMC, a tweakable
enciphering scheme (TES) based on a blockcipher (Fig. 1). It accepts only plain-
texts of size a multiple of n, the size of the underlying blockcipher. We call each
n-bit segment of the plaintext a block. The CMC construction has the following
problems:

— For an encryption using ey, the decryption needs e;{l. In a combined hard-
ware implementation, the footprint size (e.g., the number of gates or slices)
goes up;

— The security proof of CMC relied on the stronger assumption SPRP (Strong
Pseudo-Random Permutation) on the underlying blockcipher;

— Tweak is processed using an independent key, and the proposed single-key
variant uses an extra call to the blockcipher.

Fig. 1. CMC for four blocks, with tweak ¥ and M = 2(X @ Y). Here 2 represents a
primitive element of a finite field over {0,1}".
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X1 X2 I3 T4

U1 Y2 Y3 Ya Y1 Y2 Y3 Ya

Feistel type-1 Feistel type-3

Fig. 2. The round function of two types of generalised Feistel networks for four block
inputs. Similar definition can be applied for any number of blocks.

Feistel Cipher: An Inverse-Free Cipher. To resolve the first issue mentioned
above, one can fall back on a Feistel network. For inverse-free constructions, the
main approach so far has been to generalise the classical 2-block Feistel network
to work for longer messages. Two of the interesting approaches were the type-
1 Feistel network and the type-3 Feistel network (Fig.2). In [10], it is shown
that to encrypt ¢ block plaintext, type-1 and type-3 need 4¢ — 2 and 2¢ + 2
rounds respectively for achieving birthday security, which translates to 4¢ — 2
and 2¢2 — 2 invocations of the underlying blockcipher. However, their result is
meant for providing a security performance trade-off and there is a provision for
having beyond-birthday security.

One recent inverse-free construction based on Feistel networks is the AEZ-core,
which forms part of the implementation of AEZ [9]. It belongs to the Encrypt-
Mix-Encrypt paradigm, where the encryption uses a Feistel structure. It requires
five blockcipher calls for every two plaintext blocks, but is highly parallelizable.

1.1 Owur Contribution

In this paper, we address all the issues present in CMC in our construction. We
use a mixture of type-1 and type-3 for our construction (hence the name FMix)
to have an inverse-free construction which minimizes the number of blockcipher
calls. FMix applies a simple balanced regular function b. Except for this, it looks
exactly like the composition of ¢ + 1 rounds of type-1 and one round of type-3
Feistel cipher. The features of FMix can be summarized as follows (see Table 1
for a comparison study):

1. FMix is inverse-free, i.e., it needs the same f for both encryption and decryp-
tion, having low footprint in the combined hardware implementation.

2. Because it is inverse-free, an important improvement is on the security
requirement of ex. CMC relies upon an SPRP-secure eg, while our con-
struction just needs a PRF-secure eg. This can have significant practical
implications in reducing the cost of implementation.
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3. The tweak is processed through the same f, removing the requirement of an
extra independent blockcipher key.

4. To encrypt a message with ¢ blocks and a tweak (a single block), CMC needs
20+1 calls to the blockcipher e. Its variant (which eliminates the independent
key), however uses 2¢ + 2 calls to e. Our construction requires 2¢ 4 1 calls,
without needing the independent key.

Table 1. A Comparison of some blockcipher based TES. The description of the columns
are as follows: (1) Number of blockcipher calls, (2) Number of keys, (3) How many
sequential layers with full parallelization, (4) Security assumption of the underlying
blockcipher, (5) Whether it is inverse-free. (CMC' is a “natively tweakable” variant of
CMC, as described in [7]).

Schemes #BC | #Key | #Layers | BC-security | Inverse-free?
CMC 2041 |2 {42 SPRP NO

cMC 20+2 |2 {+2 SPRP NO

EME 20+3 |1 4 SPRP NO

GFN-1 40 -2 |40 —2 |40 -2 PRP YES

GFN-3 20> -2 20° -2 2¢0—2 |PRP YES
AEZ-core ~ gf 1 5 PRP YES

FMix (this paper) |20+ 1 |1 {+3 PRP YES

2 Preliminaries

2.1 Tweakable Encryption Schemes

This paper proposes a new tweakable encryption scheme, so we begin by
describing what we mean by that. Formally, with a tweakable (deterministic)
encryption scheme we associate four finite sets of binary strings: the message
space M, the tweak space 7, the ciphertext space C, and the key space K. The
encryption function ¢ : K x 7 x M — C and the corresponding decryption
function 2 : L x T x C — M are required to satisfy the following (known as
the correctness requirement):

V(K,T,P) e KxT xM, 2(K,T,e(K,T,P))=P.

We also write ¢(K, T, P) by ex (%, P) and ?(K,%,C) by e¢x'(%,C). We call a
tweakable encryption scheme tweakable enciphering scheme (TES) if for all
plaintext P, key K € K and tweak ¥ € T, |e¢(K, %, P)| = |P| (i.e., it preserves
length).

Random Function. In the heart of most encryption schemes lies the notion of
a random function. Given a domain D and a range R, a random function

f:D-5R
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is a function chosen uniformly from the class of all functions from D to R
(denoted RP). Some elementary calculations show that for distinct 1, ..., z, €
D, f(x1), ..., f(z,) are independent and uniformly distributed over R. More gen-
erally, we define the following:

Definition 1. Let € C RP be a class of functions from D to R. A random
& -function

D %R
is a function chosen uniformly from €.

Note that choosing a function uniformly from a class {f, }acr indexed by some
finite set I can be achieved by choosing ag uniformly from I and then picking
fao as the chosen function.

Tweakable Random Permutation. When R = D, a popular choice of &
is IIp, the class of all permutations on D (i.e., bijections from D to itself).
A random permutation over D is a IIp-random function. It is an ideal choice
corresponding to an encryption scheme over D. The ideal choice corresponding
to a tweakable enciphering scheme over D with tweak space 7 is called tweakable
random permutation 7 which is chosen uniformly from the class Hg . For each
tweak T € 7, we choose a random permutation mg independently, and 7 is a
stochastically independent collection of random permutations {7¢;% € T }.

2.2 Pseudorandomness and Distinguishing Games

It should be noted that a random function or a random permutation is an ideal
concept, since in practice the sizes of RP or IIp are so huge that the cost of
simulating a uniform random sampling on them is prohibitive. What is used
instead of a truly random function is a pseudorandom function (PRF), a
function whose behaviour is so close to that of a truly random function that
no algorithm can effectively distinguish between the two. An adversary for a
pseudorandom function f; is a deterministic algorithm A that tries to distinguish
f1 from a truly random fj.

Security Notions. To test the pseudorandomness of f;, A plays the PRF
distinguishing game with an oracle O simulating (unknown to .A) either f; or
fo- For this, A makes g queries, in a deterministic but possibly adaptive manner.
It is well known that there is no loss in assuming a distinguisher deterministic
as unbounded time deterministic distinguisher is as powerful as a probabilistic
distinguisher. Thus, the first query z7 = q1() is fixed, and given the responses
y; = O(x;),j € {1,...,i — 1}, the i-th query becomes x; = q;(y1, ..., ¥i—1), where
g; is a deterministic function for choosing the i-th query for ¢ € {1, ..., ¢}. Finally,
a deterministic decision function examines y1, ..., ¥, and chooses the output b €
{0,1} of A. A wins if O was simulating f,. An equivalent way to measure this
winning event is called prf-advantage defined as

Aalfo; fr) = AdVI(A) = [Pry [A% — 1] = Pry, [A" — 1],
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where Pr;[.] denotes the probability of some event when O imitates f. The above
definition can be extended for more than one oracles. We can analogously define
pseudorandom permutation (PRP) advantage Adv}"(A) of fi in which
case fo is the random permutation. When f; is an enciphering scheme and 4
is interacting with both f; and its inverse f; ' (or with fy and fy ') we have
strong pseudorandom permutation (SPRP) advantage

AdVEP(A) = [Pry [P0 — 1] = Prp, [APT — 1]

Finally, for a tweakable enciphering schemes with the strong pseudorandom prop-
erty as above, we analogously define the tweakable strong pseudorandom
permutation (TSPRP) advantage Adv;slprp(A).

Pointless Adversaries. In addition to the adversary being deterministic, we
also assume that it does not make any pointless queries. An adversary A making
queries to a tweakable encryption scheme f and f~! is called pointless if either
it makes a duplicate query or it makes an f-query (%, P) and obtains response C'
and f~!-query (T, C) and obtains response P (the order of these two queries can
be reversed). We can assume that adversary is not pointless since the responses
are uniquely determined for these types of queries.

Theorem 1. [11] Let f; be a TES over a message space M C {0,1}* and fy
and f be two independently chosen random functions. Then for any adversary
non-pointless distinguisher A making at most q queries, we have,

AdVEPP(A) < Au(fi, /71 5 (fos £o)) + %

where m = min{¢ : M N{0,1}* # 0}.

The above result says that an uniform length-preserving random permutation is
very close to an uniform length-preserving random function.

2.3 Domain Extensions and Coefficient H Technique

The notion of pseudorandomness, while giving us an approximate implementa-
tion of random functions, introduces a new problem. In general, it is very hard to
decide whether or not there is an adversary that breaks the pseudorandomness
of a particular function, since there is no easy way of exhaustively covering all
possible adversaries in an analysis, and since there is no true randomness in a
practically implemented function, probabilistic arguments cannot be used.

The common get-around is to assume we have PRFs fi,..., f,, each with
domain D and use them to obtain an F with domain D’ D D, such that a PRF-
attack on F' leads to a PRF-attack on one of f1, ..., f,,. Now, there are known func-
tions on small domains (like AES, for instance) which have withstood decades of
attempted PRF-attacks and are believed to be reasonably secure against PRF-
attacks. Choosing D suitably to begin with and using the known PRFs in our
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construction, we can find a PRF F with domain D’ that is secure as long as the
smaller functions are secure. This technique is known as a domain extension.

Here, the central step in a proving the security of F' is the reduction of an
adversary of F' to an adversary of one of fi,..., f,. This reduction is achieved
by assuming f1, ..., fn to be truly random, and giving an information-theoretic
proof that the distinguishing advantage of any adversary at F' is small. Thus, if
an adversary thus distinguish F' from random with a reasonable advantage, we
must conclude that fi,..., f, are not truly random. Thus, all we need to show
is that when the underlying functions are truly random, F' behaves like a truly
random function.

P P Ps Py
V; 1% 1%
r D ' A SR
T f ] f \7J f % %
U Us Us <b>
D 5 5
Vi
| D 0
f > p D
@) U U, U]
Sl Y T e SO
vi vy 1% T

Fig. 3. The FMix construction for four blocks, with M = V,; + V/

Patarin’s Coefficient H Technique. There are several techniques for showing
this. The one we use is based on the Coefficient H Technique, due to Jacques
Patarin, which we briefly describe here. We look at the queries z1,...,24 and
the outputs 1, ..., 94, and note that the adversary’s decision will be based solely
on the 2¢-tuple (z1,...,%q4, Y1, .-, Yq). Now, if Fy is the truly random function

F' is trying to emulate, then Féq) is also truly random, so on input (z1,...,24),



166 R. Bhaumik and M. Nandi

Féq)(xl, ..., Zq) will be uniform over R/, R being the range of F. Thus when
D' =R ={0,1}",

1
Pr{EG" @1, ey g) = (1,00 U0)] = G-

If we can now show that Pr[F(9(zy,...,2,) = (y1,..,Y,)] (which we call its
interpolation probability after Bernstein) is “very close” to 2%(1 for most 2¢-
tuples (%1, ..., %4, Y1, ---, Yq), We can conclude that no adversary can distinguish
F from Fj with a reasonable advantage. One way to formalize “very close” is
that the interpolation probability is at least (1 —¢€)27™4. Moreover, this may not
happen for all possible views. (A view consists of all input and output blocks
taken together. Informally, it is the portion of the computations visible to the
adversary after completing all the queries.) So we may need to restrict the inter-
polation calculation on so called good views. This is the central idea of Patarin’s

technique.

Let view(A®) denote the the view obtained by the adversary A interacting
with O.

Theorem 2 (Coefficient H Technique[19]). Suppose the interpolation prob-
abilities follow the inequality

IPhp(V) 2 (1 =€) - 270

for all views V € Vgooa (set of good views). Then for an SPRP-adversary A, we
have
Advgpgp(F) < e+ ¢

where € denotes the probability Prview(ATF) & V,,04].

This technique was first introduced by Patarin’s PhD thesis [18] (as mentioned
in [24]). Later it has been formalized in [19].

3 The FMix Construction

We are now in a position to describe our encryption scheme FMix. We use
one underlying block function, chosen from a keyed family of PRFs {fx :
{0,1}" — {0,1}"} kex. The extended domain, which serves as both M and
C, is Uj>2{0,1}", all strings consisting of two or more n-bit blocks. In addi-
tion to a key and a plaintext, the encryption algorithm also takes a tweak ¥ as
input, which is also supplied to the decryption algorithm. Encryption is length-
preserving: for m € {0, 1}0™ ¢(K,m,T) € {0,1}!°™ as well. The basic structure
of the construction is based on that of CMC: a CBC encryption layer, followed by
a layer of mixing, followed by a CBC decryption layer. However, using a gener-
alisation of the Feistel scheme, we eliminate the need for flzl during decryption,
making do with fx instead, thus making this construction inverse-free (Fig. 3).
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input : A tweak ¥, an integer [ > 2, [ plaintext blocks P, ..., P,
output: [ ciphertext blocks C4, ..., C|

begin

T +— £(%)

Vo T

fori<— 1tol—1do
Uy~ Vio1®F;
Vi — £

end

U —~b(Vi_1® PR)

Vi «— £(U))

U — Vol

V) — £(U)

M—vieV/

U_,+—UsdM

VzL1 — f(Uz/71)

G~ V_i® v (U)

fori<—3tol—1do
Ul/+17i —UieM
Vl/+17i - f(Ull+17i>
Cl+27i — l,+1—z' @ Ul/+2_l'

end

Ul U +V/

Vi — £

Vo =T

Co — Vi @ Uj

C1 — b(V)aU]

end

Algorithm 1: FMix Encryption Algorithm. The decryption algorithm is
exactly same as the encryption except that the b(T) is computed in the first
layer and only T is used in the second.

The details of the construction are demonstrated in the figure, which shows
a four-block FMix construction. The algorithm for general [ is described in the
box. Here, b is a balanced linear permutation, which we define below, and b’ is
b~1. Decryption is almost identical, just with 7" and b(T) switching roles.

Definition 2. A permutation b : {0,1}™ — {0,1}™ will be called a balanced
linear permutation if both t — b(t) and t — t 4+ b(t) are linear permutations.

One choice of b could be multiplication by a primitive «, but this is not very
software-friendly. A more software-friendly choice is (¢1,%2) — (t1 ®ta,t1), where
t1 and to are the higher and lower halves of ¢.

Notation for Our Construction. For our analysis we will assume the underly-
ing PRF to be a truly random function f. We now model the encryption scheme
in terms of computations based on f. An encryption is a computation
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C«— ¢/(T,P),

where T € {0,1}", and P, C € {0, 1} for some [ > 2. Similarly, a decryption is
a computation
P —2/(%,0),

which inverts e/, for any tweak . The plaintext P is denoted (Pi, ..., P,), where
each P; is an n-bit block of P. Simlarly, the ciphertext C is denoted (C1, ..., C}).

In the TSPRP game, the adversary makes ¢ queries to the oracle O. Each query
is of the form (§,%,X), where § € {e,d} denotes the direction of the query,
T € {0,1}" is the tweak, and X € {0,1}"™ for some [ is the input. If O is
imitating FMIX, O(e, ¥, X) returns £/ (%, X), and O(d, T, X) returns Df (T, X).
If O is imitating a tweaked PRP IT, O(e, T, X) returns 1 (%, X), and O(d, T, X)
returns I1-1(%, X). The output of O is denoted Y.

All the queries and their outputs taken together form what we call a view. We
use the following notation in a view. For the i-th query, ° denotes the direction
of the query, ¥ denotes the tweak, and [’ denotes the number of blocks in X.
When 6° = e, the blocks of X are denoted P, ..., P; and those of Y are denoted
Cy,...,Cpi. When 6° = d, this notation is reversed, i.e., the blocks of Y are
denoted P, ..., P and those of X are denoted C4,...,C}:. In the analysis, the
tweak ¥ is denoted both P} and C{.

4 TSPRP Security Analysis of FMix

4.1 Good Views and Interpolation

Our first task is to formulate the version of Patarin’s Coefficient H Technique
we shall use for our proof. We begin by restricting our attention to a particular
class of views.

Pointless View. A view is an indexed set of tuples
V={( T PO <i<ql<j<IY)

Here &' can take values e and d only. The [*’s are positive integers and
T, P;, C’} € {0,1}™, called blocks. The Pj? and C; mean the ;% block of plaintext
and ciphertext respectively on the i*" query. We denote ¥° by both P} and Cj.

For any 0 < a < b < [;, we write P! , to represent the tuple (P¢, ..., P}) and
P to denote Fj ;. Similar notation for C* and C; ;. A view V is said to be

pointless if at least one of the followings holds:

. Ji # i such that 6" = §" = ¢, P! = P
. i # i such that 6" = 6" =d, C' = C7.
. 3i’ < i such that 6 = e, " =d, P! = P".
. 3i’ < isuch that ' =d, 6" =e, C'=C".

W N
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The first two cases are for duplicate queries. The third holds when we obtain
a response P’ for some decryption query C and then make an encryption
query P? := P, (The fourth case is the third case with the order of the queries
reversed.) It is easy to see that when an adversary A is interacting with a TES,
the view obtained is pointless if and only if A is pointless.

As we do not allow a pointless adversary we can restrict ourselves to non-
pointless views only. Now we define good and bad views among this class.

Definition 3. (Good and Bad Views). A view {(6',%",1', P},C})|1 < i <
q,1 < j < 1%} is said to be good if it is not pointless and

(Vi with 6% = e)(3i’ < i)(Ci = CF), and (Vi with & = d)(3i' < i)(P} = P}').
A wview that is not good and not pointless is called bad.

The proof revolves around showing that the good views have a near-random
distribution, and the bad views occur with a low probability. For the rest of the
analysis, we fix a good view V.

Interpolation Probability. Now we consider the interpolation probability for
FMix construction. It is easy to see that

where the probability is taken under the randomness of f chosen uniformly
from the set of all functions from {0,1}" to itself. Similarly, the interpolation
probability for an ideal random function IP,(V) is 27"F where L = > 7_ 1,
This corresponds to the case where O imitating a truly random function. Now

we state a result the proof of which is deferred to the next section.

Proposition 1. For any good view V,

2L

(%)

2n

Armed with this result and the Coefficient H Technique, we are now ready to
state and prove the main result of this paper.

IPI{'M,'X(V) >(1—€) x27"L where e =

Theorem 3. For any SPRP-adversary A making q queries with L blocks in all,

2L q
Adv‘;__a,\p/)lllrf(A) < (2 )2:— (2) .
Proof. When a non-pointless adversary A is interacting with a pair of inde-
pendent random functions (fy, f§), it obtains a bad view has probability upper
bounded by (g) To see this, let the bad event occurs for the first time at the 7"
query. If it is an encryption query (similar proof can be carried out for the decryp-
tion query) then C% is chosen randomly from {0,1}" and so it matches with one
of the previous first ciphertext block is at most (i—1)/2". So Pr, s [view(A%0-/0)

is a bad view] < Y7 | 12—711 = %. By using Coefficient H Technique (see in

Sect. 2.3) and the proposition stated above we have proved our theorem. a
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Corollary 1. Let FMixy denote the FMix construction based on the keyed blcok-
cipher fx. For any TSPRP-adversary A making q queries with L blocks in all
there exists an adversary A’ making at most L encryption queries (and similar
time as A)

2L q
A, () < A + L2 EE,

This follows from the standard hybrid argument.

4.2 Extension of FMix for Partial Block Input

In Sect. 3, we define our construction only for complete block inputs. In practice,
messages-lengths m may not be a multiple of block-length n. For a complete enci-
phering scheme, our message space needs to be extended to include these partial
block inputs. Two known methods for message-space extension of a cipher were
XLS [20] and Nandi’s scheme [14]. XLS is now known to be insecure [15], so we
use Nandi’s generic scheme for extending the message-space. The generic con-
struction requires two additional blockcipher keys. We write these blockciphers
as fo and f3. The blockcipher f; is used in FMix. Given any partial block =z,
1 <|z| < n—1, we write pad(x) = £1]|0»~'~1#. Similarly, chop, (z) denotes the
first r bits of x.

input : A tweak ¥, an integer | > 2, I — 1 complete plaintext blocks
P, ..., P_1, partial last plaintext block p;
output: [ — 1 complete ciphertext blocks Ci, ..., Ci_1, partial last ciphertext
block ¢;
begin
Py — fa(pad(pr)) © Pro1
(017 e 01*27 Cl,—l) — FMinl (Pl, CERN] 3*27 F)l/—l)
Cl Chop‘p“(f:;(Pllfl ©Ci_y)) ©m
Ci—1 « f2(pad(cr)) ® Cl_4
end

Theorem 4. For any SPRP-adversary A making q queries with L blocks
(including incomplete) in all,

)+ () | 3q(q—1)
2n 2n+1

A4y < |

The proof of the statement is immediate from Theorem 1 and the generic
conversion as described in [14].

5 Proof of Proposition 1

In this section we provide the proof of Proposition 1.
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Proposition. For any good view V,

2L
IPL, (V) > (1 —€) x 27" where ¢ = (2%)

We find a lower bound for the probability on the left by counting the choices of
f that give rise to V. For this counting, we find the number of internal states
(simulations) o that can result in V, and for each o, the number of choices of
f compatible with it. As it turns out, slightly undercounting the simulations
(counting only what we call admissible simulations) will suffice to prove our
security bound.

5.1 Simulations

We shall develop an effective way of calculating the interpolation probability
of V. We begin by introducing the notion of variables. Let E be the set of all
encryption query indices, i.e., E = {i|d* = e}. Similarly, let D be the set of all
decryption query indices. In identifying and labelling internal blocks, we continue
using superscripts to denote query indices. Thus, for a query 7, the 2/% inputs of
[ (other than €*) are denoted U7, ..., U}, U{", ..., U/}, and the 2I* +1 outputs of f
are denoted Vi, V{, ..., Vi, V{", ..., V/7'. For ease of notation, we shall write both
U§ and U{ to denote T°.

Variables and Derivables. We pick a set of output blocks
S={V/lie E,je{l,..,I'}}u{Vlie D,j e {1,...lI'}}.

S will be our set of primary variables, or simply variables. Any non-trivial
linear combination of variables, optionally including blocks from V as well, will
be called a derivable. While the proof will be primarily depend on variables,
derivables will serve in the proof mainly to simplify notation and make the proof
easier to grasp. Examples of derivables would be UZ, Y, V/* and V¥ + P}. Note
that a linear combination of view blocks alone, say C3+C%, will not be considered
a derivable, since it’s value has already been fixed by choosing V.

Let us assume for now that the input block and its corresponding output
block are unrelated. We note that all input and output blocks of f are either
variables or derivables. Thus, if we assign values to the variables, all the inputs
and outputs of f over all queries are linearly determined. Thus, the variables
linearly generate the entire set of input and output blocks, while themselves
being linearly independent. We now formalise the notion of value assignment to
variables.

Definition 4. A transcriptt is a collection of variable-value pairs (Z,v) such
that no two pairs in the collection contain the same variable. For every (Z,v) € T,
the variable Z is said to be assigned the value v underT. We denote this as Z|; = v.
The domain D(7) of a transcript T is defined as {Z|(Fv)(Z,v) € 7}. Given a set
S of variables, a transcript T with D(7) = S is said to be an instantiation of S.
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For a transcript 7 and a derivable Z’ whose value only depends on the variables
in D(7), 7 effectively determines a value for Z’. This value is denoted by Z’||.
For ease of notation, for any view block X, X||, will simply denote the value
of X fixed in V. An instantiation o of S will be called a simulation, since it
determines all inputs and outputs of f and thus describes a complete simulation
of the internal computations that resulted in view S.

Not all simulations make sense, however, when we consider the connection
between and input block and its corresponding output block. A dependence now
creeps in among the variables, owing to the key observation below, which poses
the only non-trivial questions in the entire proof.

Wherever the inputs of f are identical, so are its outputs.

There can be simulations which violate this rule, and thus describe internal com-
putations that can never occur. A simulation which actually describes a possible
set of internal computations is called realisable. It is immediately clear that our
observation holds for all realisable simulations. The problem of calculating the
interpolation probability of V boils down to counting the number of realisable
simulations.

5.2 Admissibility

All realisable simulations can be difficult to count, however. We shall focus
instead on a smaller class of simulations, called admissible simulations, which
are easy to count and yet are abundant enough to give us the desired result.
Before that, we let us formulate in specific terms the ramifications of this obser-
vation. The immediate consequence is what we call pre-destined collisions. Let
T =U{Us,Uf,..,Uj, U, ..., U]’} be the set of all input blocks of f.

Definition 5. A pair of input blocks Z1,Zy € T is said to constitute a pre-
destined collision if for any realisable simulation o,

Z].HO’ = ZQH(T-

All other collisions between input blocks are called accidental collisions. Our
next task is to identify all pre-destined collisions. For that we’ll need some more
definitions.

Definition 6. Query indices i and i’ are called k-encryption equivalent for
some k < min(l%,1") if either i =4', or

(PL,..,PL) = (PY, ..., PL).

This is denoted as i ~., t'. Similarly, i and i’ are called k-decryption equiv-
alent for some k < min(l*,1%) if either i =i, or

(Cs, ... CL) = (CF,..,CE).

This is denoted as i ~q, .
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Note that if i ~, i, then (VK < k)(i ~,, i'), and similarly for decryption
equivalence. Our choice of V as a good view ensures that ¢ € F whenever i ~, i
for some ¢’ < i, and ¢ € D whenever ¢ ~g, i’ for some i’ < 4. We can now make
a list of pre-destined collisions:

’

- (U}iaUlg)7O <k <min(l%1"),i ~e, i’
— (U UF),0 < k< min(l%,17),i ~a, i’

Substituting Vi | + P{ for U} and V' | + C} for UJ?, we can re-write the pre-
destined collisions as

- (Vki—l + Pli,’ Vki/—l + P,i/),O <k< min(li,li/),i ~ep 1
— (VI OL VI 0,0 <k <min(l%17),i ~g, i

List of Pre-destined Collision. By our Observation, a pre-destined collision
on inputs naturally entails a collision on the corresponding outputs. This leads
to a corresponding set of pre-destined output collisions, which we write in
the form of equations over derivables and view blocks:

(@) (irve, i) — (VkZ = ka,)vo <k< min(liali,)a
(b) (i ~a, 7') — (V= V)0 < k < min(I%,17).

The pre-destined output collisions linearly follow from the pre-destined collisions,
but are formulated separately here, because they’ll later be useful as a class of
constraints on realisable simulations. Finally, we define the class of admissible
simulations.

Definition 7 (Admissible). A simulation o is called admissible if, for any
Z1,Z5 € T that do not constitute a pre-destined collision, Z1||, # Za||o-

Thus, in an admissible simulation, no two input blocks of f can accidentally
collide, and the only collisions are the pre-destined ones.

5.3 Basis and Extension

We now identify a subclass B of the variables which are linearly independent
under assumption of admissibility, and such that an instantiation 75 of B admits
a unique extension E(7p) to a realisable simulation. We shall call B a basis of
X. First, we’ll need one more definition.

Definition 8. A query index i, 1 < i < q, is called k-fresh, k > 0 if k =%, or
k< 1" and Pi' < i with k <1 such that i ~, i’ ori~q, i

The set Ej, of k-fresh encryption queries is defined as {i|6° = e, k-fresh}. Simi-
larly, the set Dy, of k-fresh decryption queries is defined as {i|0" = d,i k-fresh}.
Clearly, E = Uy E), and D = Uy Dy, since any i is [*-fresh.
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We are now in a position to choose our basis B. Let | = max; {*. We define
the following: ‘
Bj = {ijh € Ej}vo <j< l7
B ={V"lie D;},0<j <l

Finally, we define our basis as

l
B=J(B;uB)).
j=0

We next show how to obtain ¢ = E(7p) given instantiation 75 of B. To
simplify the description, we shall use a couple of new definitions.

Definition 9. The encryption k-ancestor of a query index i is defined as

A% (i) = min 4.
irve, i

Similarly, the decryption k-ancestor of a query index i is defined as

A¢(i) = min 7',
irva, i

Clearly, if 7 is k-fresh, then ¢ is its own k-ancestor.

Definition 10. For a query index i and a transcript T, the query slice at i of
T is defined as

Qi(r) ={(Z",v)|(Z",v) € 7}

Thus, a query slice is the portion of a transcript that refers to a specific query.
The query slices of a transcript form a partition of it.

We are now ready to describe how to uniquely obtain o. To begin with, for
all Z € B, we set

Zlo =Z|rg-

This gives us, among other things, the complete Q1(c). (To see why, assume
without loss of generality that §' = e. Then 1 € E}; for every j, so V;' € B for 0 <
§ <1'.) We proceed inductively to determine @Q;(c) based on Q1 (o), ...,Q;_1(o).

Suppose we have determined Q; (o) for all i’ < . For 0 < j <, let i; denote
A;S-z (t). Clearly, {i;}; form a non-decreasing sequence, and 4;; = ¢. Let

k = min j.

Suppose without loss of generality that §° = d. Thus, for all j > k, i € D;. So

Vj'i € B for every k < j < I*. For 0 < j < k, since i ~q, ij, and i; is decryption
j-fresh, we use 4.3 (b) to set

‘/]'/i‘o- — ‘/j/ino-.
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Finally, we set _ _
Volo =V5'llo-

This completes our extension of 73.

To show that o indeed is a simulation, we just observe that if U™ *Q; (o)
is realisable, and 6 = d, then Q;(c0) cannot violate 4.3 (a) (which concerns
encryption queries only), and @;(o) is chosen so as to conform to 4.3 (b).

5.4 Extension Equations

We observe that in extending 75 to E(75), once we've set the basis variables
in accordance with 75, none of the steps we perform thereafter depend on the
specific instantiation 7g. Thus, for each variable we can identify an equation
relating it to the basis variables, so that a simulation can be obtained by sim-
ply plugging in an appropriate instantiation of B. We call these equations the
extension equations.

Pick i € E,j € {0,...,I'}. Then V} is a variable. Let b be j, and a; be A5(7).
Having obtained by, ..., b and ay, ..., ax, we stop if k is odd and ay € E, or if k
is even and ay € D. Otherwise, let b1 = 1% — 1 — b, and agqq be A‘g:il(ak).
Since apy1 > ag, this terminates after finitely many steps, say upon obtaining
ak,. Then we call ((by,a1),..., (bio, ak,)) the extension chain of Vji7 denoted

To obtain the extension equation of VJ’ from Q:(Vji), note that Vf = Vj‘“, and

for any even k < ko, Vj/a"‘ = V}lak’l, and (if k < ko) Vjal“r1 = V*. To bridge

these equations, we just need to recall the equations relating Vji, to Vl’f}/ilij for

arbitrary ¢ with [* > j.

‘From our algor.ithm?‘VO’Z = o, Vi = bV [+ Vg + Pl)+Ch and
Vi =0V + Vg +Pp)+C.

For 1 <j <I* — 2, recall the masking equation

'yl i’ 13’ i’ i’
Vit = Vgt Vi + Vi + P+ Ci

On replacing V' by b(Vli:,l + Vi + Pli;,) + ¥, this becomes

1’
ViE = Vi Vi bV + Ve + PL) + O + Pl + Cyy

The extension equations can be computed inductively using the above. Similarly,
for derivables, we can get the extension equations by writing it in terms of
variables, and expanding these variables through their corresponding extension
equations. We’ll mostly be interested in the set of basis variables appearing in
the extension equation of an input derivable Z, called the base B(Z) of Z.
We'll show that whenever for two input derivables Z and Z’, B(Z) = B(Z'),
(Z,Z") is either a pre-destined collision, or Z and Z’ cannot collide. This’ll show
that every accidental input collision corresponds to a linear equation on the basis
variables and view blocks. Note that this linear equation actually corresponds to
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n linear equations in terms of the bits, all of which should be dodged. For most
of the analysis, this distinction will not matter, and it’ll only become important
when we deal with two special cases in the very end.

Lemma 1. FEvery accidental input collision imposes a non-trivial linear equa-
tion on the basis variables.

The proof of the lemma is postponed to the end of this section. It basically
considers all cases for accidental collision and shows that it gives a non-trivial
linear equation.

5.5 Bringing It All Together

We are now ready to wrap up our proof of the proposition 1. Let L denote ), 1.
(%)

Let € = *5+~.

The total number of output bits V in is nL, so clearly

1

IP.(V) = 57

Now, let F C ({0,1}")1%1}" be such that (f € F) «— (choosing f results in V).

We see that
IPL (1) = # choices of f which result in V | F|
FMix o # choices of f in all INCDE

Let 2 be the set of all admissible simulations. For an admissible simulation o,
let F, denote the subset of F such that (f € F,) «— (choosing f results in V
and o). With this notation, we can write

FAEDIRvAL

oed

To calculate |F,|, we note that o fixes the values f for L + |B| distinct inputs.
Thus,
|fa| _ (2n)2 7L7\B|'

Since this does not depend on o, we can write
S 1F | = (2 (2 I
oe

Now, each admissible simulation is E(7p) for some instantiation 75 of B. To
ensure E(75) € 2, we just have to choose 75 such that it dodges all the linear
equations corresponding to accidental input collisions. As there can be at most

(22L) such equations, we conclude that

2L
2 > 2181 ( ! ) Lgn(IBI=1) — gnlBl( _ g,
Putting all of this together, we get
FI =@ - (1-e = (1-¢ P.(V)- (2",

from which the Proposition follows.
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5.6 Proof of Lemma 1

Proof. We'll divide the possible input pairs into several cases, which we’ll further
subdivide into groups, and we write out the proof only for the first case in each
group, and the rest follow from it. The classifying factors are as follows:

— Whether they both occur in the same layer (encryption layer {U;} or
decryption layer {U ;}), or in different layers;

— Whether they occur in the right layer (encryption layer of an encryption
query, or decryption layer of decryption query) or the wrong layer;

— Whether their first-cross indices match (this would be the current query
index if in the wrong layer, and the index after the first backward jump during
extension if in the right layer).

We begin with an easy group of cases, where both occur in the right layer, and
their first-cross indices do not match:

Case 1la. (U;,U;:),i,i’ € E,a= A

(i) < AL (i) =

B(U?) = B(V/_,) can only contain basis variables with query indices < a. Since
B(U}) = B(V}/_,) will contain either V'3 or V', B(U?) # B(UL).

Case 1b. (U}, U}'),i,i' € D,a = A% (i) < A%,_,(i') = o’

Case 1c. (Uj, U]{?'),i €E,i' e Dya=A5_ (i) <A}_ (i) =d

Case 1d. (U}, U;:),Z eD,i' e B,a= A} (i) < AS_, (i) = d

j—1
We next turn to another easy group, where exactly one of them is in the right
layer, and first-cross indices do not match:

Case 2a. (U}, U ),i,i' € E,a = AS_ (i) #

If a < i, Vi, is in B(US) but not in B(U}). If a > i, either V2, is in B(U)
but not in %(UJ{?/), or Vi is in B(U}) but not in ‘B(UJ{?').

Case 2b. (U}, U),i,i' € D,i # A%,_,(i') = d’

Case 2c. (U}, U}),i € E,i' € D,a = AS_, (i) # i

Case 2d. (U/, U ),i€ B,i' € D,i# A%_|(i") =d

The next group is even easier: both in the wrong layer, with non-matching first-
cross indices. This takes care of all cases with non-matching first-cross indices.

Case 3a. (U},U%),i,i' € D,i < i’

15’ . . i’ . ;
Vi is in B(U},) but not in B(U;).
Case 3b. (U}, Ull'),i,i' € E,i < i’

i 1713’ -/ ; -/
UL )ie D € Byi<i

Case 3c. (
Case 3d. (U},U}),i€ E,i' € D,i < i
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Next we turn to a slightly trickier group, where they are in the same layer, both
in the right layer, and first-cross indices match.

Case 4. (UL, U%L),i,i' € B, AS_, (i) = A%, (i')

Consider €(V/_1) = (b1, a1), ..., (br,, ax,)), E(Vi_y) = (b7, d4), ., (b > @y ))- 1
the chains follow the same query paths (i.e., if kg = k{ and (Vk < ko)(ar = a},)),
assuming without loss of generality kg is odd and ky € E (from the chain-
termination condition), we have V;Zko € B(U}), and V"o € ‘B(U;:), all other

0 ko

basis variables in the two extension equations being the same. Thus, if by, #
b, B(U)) 7:5 ‘B(U;:), and if by, = b}, , (U}, U;:) is either a pre-destined collision
(if P; = Pj,) or it cannot be a collision. If the chains do not follow the same
query path, we can find k such that aj, # a}, which reduces to one of the previous
cases.

Case 4a. (U/',Ul),i,i' € D,Ad_, (i) = Ad,_, (i)
The next group is much simpler, where they are in different layers, both in the

right layer, and first-cross indices match.
Case 5. (UL, Ul) i€ E,i' € D,a= AS_, (i) = A%_,(i")
Without loss of generality, a € E. So V| is in %(U;:) but not in B(U}).

Case 5a. (U, Ul),i € D,i' € E,AJ_,(i) = A5, _ (/)
We’re almost done with the proof at this point. We wrap up with the few remain-
ing cases. In the next group, they come from different layers, exactly one of them

in the right layer, and first-cross indices match.

Case 6. (U}, UJ1),i,i' € B, AS_ (i) =/

Here, Vli: is in %(U}:) but not in B(U}).

Case 6a. (U},Ul}),i,i' € D,i= A% (i)

The four cases of the final group can be proved using the extension-chain-
comparison technique of Case 4. In this group, they are in the same layer, at
least one in the wrong layer, and first-cross indices match. (If they are both in
the wrong layer, and first-cross indices match, they occur at the same query, so
they cannot be in different layers, so this wraps up the case analysis).

Case 7. (UL, U}),i € E,i' € D, AS_, (i) = i

Case 7a. (U/,Ull),i € E,i' € D,i = A%_, ()

Case 7b. (U;,U;/),i eD

Case 7c. (U}, U}}),i € E

This leaves only a few boundary cases (involving the likes of U ), which can be
easily verified. We just point out two special cases which underline the impor-
tance of choosing b as a balanced permutation. For the pair (U?,Uj") for some
i, if P{ = C%, the condition for an accidental collision becomes Vi + b(V{) = 0,

which is still n independent linear equations in terms of the bits, by choice of b.
Similarly, if i ~.,, | ', and b(P};) = Py;, the pair (Uy;, U};) yields the equation
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b(Vléq) + Vzg/q = 0, which again is n independent linear equations in terms of
the bits.

Thus we establish our lemma. O

6 Conclusion and Future Works

In this paper we propose a new Feistel type length preserving tweakable encryp-
tion scheme. Our construction, called FMix, has several advantages over CMC
and other blockcipher based enciphering scheme. It makes an optimal number of
blockcipher calls using single keyed PRP blockcipher. The only drawback com-
pare to EME is that the first layer of encryption, like CMC, is sequential. We
can view our construction as a composition of type-1 and type-3 Feistel ciphers.

There are several possible scopes of future work. When we apply a generic
method to encrypt last partial block message, we need an independent key. (This
is always true for generic construction.) However, one can have a very specific way
to handle partial block message keeping only one blockcipher key. The presence
of the function b helps us to simplify the security proof. However, we do not
know of any attack if we do not use this function (except for handling the tweak
in the bottom layer - that use is necessary). So it would be interesting to see
whether our proof can be extended for the variant without using the function b.
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Abstract. In this work, we study the intrinsic complexity of black-
box Universally Composable (UC) secure computation based on general
assumptions. We present a thorough study in various corruption model-
ings while focusing on achieving security in the common reference string
(CRS) model. Our results involve the following:

— Static UC Secure Computation. Designing the first static UC
secure oblivious transfer protocol based on public-key encryption and
stand-alone semi-honest oblivious transfer. As a corollary we obtain
the first black-box constructions of UC secure computation assuming
only two-round semi-honest oblivious transfer.

— One-sided UC Secure Computation. Designing adaptive UC
secure two-party computation with single corruptions assuming
public-key encryption with oblivious ciphertext generation.

— Adaptive UC Secure Computation. Designing adaptively secure
UC commitment scheme assuming only public-key encryption with
oblivious ciphertext generation. As a corollary we obtain the first
black-box constructions of adaptive UC secure computation assum-
ing only (trapdoor) simulatable public-key encryption (as well as a
variety of concrete assumptions).

We remark that such a result was not known even under non-black-box
constructions.

Keywords: UC secure computation - Black-box constructions - Obliv-
ious transfer + UC commitments

1 Introduction

Secure multi-party computation enables a set parties to mutually run a protocol
that computes some function f on their private inputs, while preserving a num-
ber of security properties. Two of the most important properties are privacy and
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correctness. The former implies data confidentiality, namely, nothing leaks by the
protocol execution but the computed output. The later requirement implies that
no corrupted party or parties can cause the output to deviate from the specified
function. It is by now well known how to securely compute any efficient function-
ality [2,4,24,45,50] in various models and under the stringent simulation-based
definitions (following the ideal/real paradigm). Security is typically proven with
respect to two adversarial models: the semi-honest model (where the adversary
follows the instructions of the protocol but tries to learn more than it should
from the protocol transcript), and the malicious model (where the adversary
follows an arbitrary polynomial-time strategy), and feasibility results are known
in the presence of both types of attacks. The initial model considered for secure
computation was of a static adversary where the adversary controls a subset
of the parties (who are called corrupted) before the protocol begins, and this
subset cannot change. In a stronger corruption model the adversary is allowed
to choose which parties to corrupt throughout the protocol execution, and as a
function of its view; such an adversary is called adaptive.

These feasibility results rely in most cases on stand-alone security, where
a single set of parties run a single execution of the protocol. Moreover, the
security of most cryptographic protocols proven in the stand-alone setting does
not remain intact if many instances of the protocol are executed concurrently
[40]. The strongest (but also the most realistic) setting for concurrent security is
known by Universally Composable (UC) security [4]. This setting considers the
execution of an unbounded number of concurrent protocols in an arbitrary and
adversarially controlled network environment. Unfortunately, stand-alone secure
protocols typically fail to remain secure in the UC setting. In fact, without
assuming some trusted help, UC security is impossible to achieve for most tasks
[7,8,40]. Consequently, UC secure protocols have been constructed under various
trusted setup assumptions in a long series of works; see [1,5,10,14,34,38] for few
examples.

In this work, we are interested in understanding the intrinsic complexity
of UC secure computation. Identifying the general assumptions required for a
particular cryptographic task provides an abstraction of the functionality and
the specific hardness that is exploited to obtain a secure realization of the task.
The expressive nature of general assumptions allows the use of a large number of
concrete assumptions of our choice, even one that may not have been considered
at the time of designing the protocols. Constructions that are based on general
assumptions are proven in two flavors:

Black-box Usage: A construction is black-box if it refers only to the
input/output behavior of the underlying primitives.

Non-black-box Usage: A construction is non-black box if it uses the code
computing the functionality of the underlying primitives.

Typically, non-black-box constructions have been employed to demonstrate
feasibility and derive the minimal assumptions required to achieve cryptographic
tasks. An important theoretical question is whether or not non-black-box usage
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of the underlying primitive is necessary in a construction. Besides its theoreti-
cal importance, obtaining black-box constructions is related to efficiency as an
undesirable effect of non-black-box constructions is that they are typically inef-
ficient and unlikely to be implemented in practice. Fortunately, a recent line
of works [25,26,32,47] has narrowed the gap between what is achievable via
non-black-box and black-box constructions under minimal assumptions.

More relevant to our context, the work of Ishai, Prabhakaran and Sahai
[33] provided the first black-box constructions of UC secure protocols assuming
only one-way functions in a model where all parties have access to an ideal
oblivious transfer (OT) functionality. Orthogonally, Choi et al. [12] provided a
compiler that transforms any semi-honest OT to a protocol that is secure against
malicious static adversaries in the stand-alone (i.e. not UC) while assuming that
all parties have access to the ideal commitment functionality. In the adaptive
setting, the work of Choi et al. provides a transformation from adaptively secure
semi-honest oblivious transfer to one that is secure in the stronger UC setting
against malicious adaptive adversaries while assuming that all parties have access
to the ideal commitment functionality. In essence, these works provide black-
box constructions, however, they fall short of identifying the necessary minimal
general computational assumptions in the UC setting.

Loosely speaking, a UC commitment scheme [7] is a fundamental building
block in secure computation which is defined in two phases: in the commit phase
a committer commits to a value while keeping it hidden, whereas in the decommit
phase the committer reveals the value that it previously committed to. In addi-
tion to the standard binding and hiding security properties that any commitment
must adhere, commitment schemes that are secure in the UC framework must
allow straight-line extraction (where a simulator should be able to extract the
content of any valid commitment generated by the adversary) and straight-line
equivocation (where a simulator should be able to produce many commitments
for which it can later decommit to both 0 and 1). We stress that even security
in the static setting requires some notion of equivocation. Due to these rigorous
requirements, it has been a real challenge to design black-box constructions of
UC secure commitment schemes.

In the context of realizing the UC commitments in the CRS model, Damgard
and Nielsen introduced the notion of mixed-commitments in [16]. This construc-
tion requires a CRS that is linear in the number of parties and can be instan-
tiated under the N-residuosity and p-subgroup hardness assumptions. In the
global CRS model (where a single CRS is introduced for any number of exe-
cutions), the only known constructions are by Damgéard and Groth [15] based
on the Strong RSA assumption and Lindell [42] based on the DDH assump-
tion, where the former construction guarantees security in the adaptive setting
whereas the later construction provides static security.

Another fundamental building block in secure computation which has been
widely studied is oblivious transfer [21,49]. Semi-honest two-round oblivious
transfer can be constructed based enhanced trapdoor permutations [21] and
smooth projective hashing [28], and concretely under Discrete Diffie-Hellman
(DDH) [46]. Two-round protocols with malicious UC security are presented in
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the influential paper by Peikert et al. [48] that presents a black-box framework in
the common reference string (CRS) model for oblivious transfer, based on dual-
mode public-key encryption (PKE) schemes, which can be concretely instanti-
ated under the DDH, quadratic residuosity and Learning with Errors (LWE)
hardness assumptions. In a followup work [13], the authors present UC oblivious
transfer constructions in the global CRS model assuming DDH, N-residuosity
and the Decision Linear Assumption (DLIN). As pointed out in [13], the [48]
constructions require a distinct CRS per party. In the context of adaptive UC
oblivious transfer protocols, the works of [12] and [22] give constructions in the
UC commitment hybrid model where they additionally rely on an assumption
that implies adaptive semi-honest oblivious transfer.

It is worth noting that while the works of [48] and [13] provide abstrac-
tions of their assumptions, the assumptions themselves are not general enough
to help understand the minimal assumptions required to achieve static UC secu-
rity. In particular, when restricting attention to black-box constructions based
on general assumptions, the state-of-the-art literature seems to indicate that
achieving UC security in most trusted setup models reduces to constructing
two apparently incomparable primitives: semi-honest oblivious transfer and UC
commitment schemes. This leaves the following important question open:

What are the minimal (general) assumptions required to construct UC
secure protocols, given only black-box access to the underlying primi-
tives?

We note that this question is already well understood in the static setting
when relaxing the black-box requirement. Namely, in [18] Damgard, Nielsen
and Orlandi showed how to construct UC commitments assuming only semi-
honest oblivious transfer in the global CRS model, while additionally assuming
a pre-processing phase where the parties participate in a round-robin manner®.
More recently, Lin, Pass and Venkitasubramaniam [39] improved this result by
removing any restricted pre-processing phase. In the same work the authors
showed how to achieve UC security in the global CRS model assuming only the
existence of semi-honest oblivious transfer. In particular, this construction shows
that static UC security can be achieved without assuming UC commitments
when relying on non-black-box techniques.

In the stand-alone (i.e. not UC) setting, assuming only the existence of semi-
honest oblivious transfer [26,27,32] show how to construct secure multiparty
computation protocols while relying on the underlying primitives in a black-box
manner. More recently, [12] provided black-box constructions that are secure
against static adversaries, again, in the stand-alone setting, where all parties
have access to an ideal commitment functionality (cf. Proposition 1 in [12]). The
latter construction achieves a stronger notion of straight-line simulation, however
falls short of achieving static UC security (see more details in Sect. 3).

! In such a pre-processing phase, it is assumed that at most one party is allowed to
transmit messages in any round.
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In the adaptive setting, the only work that considers a single general assump-
tion that implies adaptive UC security using non-black-box techniques is the
result due to Dachman-Soled et al. [14], that shows how to obtain adaptive
UC commitments assuming simulatable PKE. Moreover, the best known gen-
eral assumptions required to achieve black-box UC security are adaptive semi-
honest oblivious transfer and UC commitments [12,17]. Known minimal general
assumptions that are required to construct these primitives are (trapdoor) sim-
ulatable PKE for adaptive semi-honest oblivious transfer [11] and mixed com-
mitments for UC commitments [17].

1.1 Our Results

In this paper we present a thorough study of black-box UC secure computation
in the CRS model; details follow.

Static UC Secure Computation. Our first result is given in the static set-
ting, where we demonstrate the feasibility of UC secure computation based on
semi-honest oblivious transfer and extractable commitments. More concretely,
we prove how to transform any statically semi-honest secure oblivious trans-
fer into one that is secure in the presence of malicious adversaries, giving only
black-box access to the underlying semi-honest oblivious transfer protocol. Our
approach is inspired by the protocols from [27] and [37], where we observe that
it is not required to use the full power of static UC commitments. Instead, we
employ a weaker primitive that only requires straight-line input extractability.
Interestingly, we prove that this weaker notion of security, denoted by extractable
commitments [44], can be realized based on any CPA secure PKE. More pre-
cisely, we prove the following theorem.

Theorem 11 (Informally). Assuming the existence of PKE and semi-honest
oblivious transfer, then any functionality can be realized in the CRS model with
static UC security, where the underlying primitives are accessed in a black-box
manner.

We remark here that this theorem makes a significant progress towards reducing
the general assumptions required to construct UC secure protocols. Previously,
the only general assumptions based on which we knew how to construct UC
secure protocols were mixed-commitments [16] and dual-mode PKE [48] both
of which were tailor-made for the particular application. Towards understanding
the required minimal assumptions, we recall the work Damgard and Groth in [15]
who showed that the existence of UC commitments in the CRS model implies a
stand-alone key agreement protocol. Moreover, under black-box constructions,
the seminal work of Impagliazzo and Rudich [31] implies that key agreement
cannot be based on one-way functions. Thus, there is reasonable evidence to
believe that some public-key primitive is required for UC commitments. In that
sense, our assumption regarding PKE is close to being optimal. Nevertheless, it
is unknown whether the semi-honest oblivious transfer assumption is required.
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Our result is shown in two phases. At first we compile the semi-honest obliv-
ious transfer protocol into a new protocol with intermediate security properties
in the presence of malicious adversaries. This transformation is an extension of
the [27] transformation that is only proven for bit oblivious transfer, whereas our
proof works for string oblivious transfer. Next, we use the transformed oblivi-
ous transfer protocol in order to construct a maliciously fully secure oblivious
transfer. By combining our oblivious transfer with the [33] protocol we obtain a
statically generic UC secure computation.

An important corollary is deduced from the work by Gertner et al. [23],
who provided a black-box construction of PKE based on any two-round semi-
honest oblivious transfer protocol. Specifically, the combination of their result
with ours implies the following corollary, which demonstrates that two-round
semi-honest oblivious transfer is sufficient in the CRS model to achieve black-
box constructions of UC secure protocols.

Corollary 12 (Informally). Assuming the ezistence of two-round semi-honest
oblivious transfer, then any functionality can be UC realized in the CRS model,
where the oblivious transfer is accessed in a black-box manner.

Implications. In what follows, we make a sequence of interesting observations
that are implied by our result in the static UC setting.

— The important result by Canetti, Lindell, Ostrovsky and Sahai [9] presents
the first non-black-box constructions of static UC secure protocols assuming
enhanced trapdoor permutations. In fact, their result can be extended assum-
ing only PKE with oblivious ciphertext generation (which is PKE with the
special property that a ciphertext can be obliviously sampled without the
knowledge of the plaintext, and can be further realized using enhanced trap-
door permutation). In that sense, our result, assuming PKE with oblivious
ciphertext generation, can be viewed as an improvement of [9] when relying
on this primitive in a black-box manner.

— The pair of works by Damgard, Nielsen and Orlandi [18] and Lin, Pass and
Venkitasubramaniam [39] demonstrate that non-black-box constructions of
UC commitments, and more generally static UC secure computation, can be
achieved in the CRS model assuming only semi-honest oblivious transfer. In
comparison, our result shows that two-round semi-honest oblivious transfer
protocols are sufficient for obtaining black-box UC secure computation in the
CRS model. Note that most semi-honest oblivious transfer protocols anyway
require only two-round of communication, e.g., [21].

— In [38,39], Lin, Pass and Venkitasubramaniam provided a unified framework
for constructing UC secure protocols in any “trusted-setup” model. Their
result is achieved by capturing the minimal requirement that implies UC com-
putations in the setup model. More precisely, they introduced the notion of
a UC puzzle and showed that any setup model that admits a UC puzzle can
be used to securely realize any functionality in the UC setting, while addi-
tionally assuming the existence of semi-honest oblivious transfer. Moreover,
they showed how to easily construct such puzzles in most models. We remark
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that our approach can be viewed as providing a framework to construct black-
box UC secure protocols in other UC models. More precisely, we show that
any setup model that admits the extractable commitment functionality can
be used to securely realize any functionality assuming the existence of semi-
honest oblivious transfer. In fact, our result easily extends to the chosen key
registration authority (KRA) model [1], where it is assumed the existence of
a trusted authority that samples public key, secret key pairs for each party,
and broadcasts the public key to all parties. We leave it for future work to
instantiate our framework in other setup models.

— The fact that our construction only requires PKE and semi-honest oblivious
transfer allows an easy translation of static UC security to various efficient
implementations under a wide range of concrete assumptions. Specifically,
both PKE and (two-round) semi-honest oblivious transfer can be realized
under RSA, factoring Blum integers, LWE, DDH, N-residuosity, p-subgroup
and coding assumptions. This is compared to prior results that could be based
on the later five assumptions [13,19,20,48].

— Recently, Maji, Prabhakaran, and Rosulek [44] initiated the study of the cryp-
tographic complexity of secure computation tasks, while characterizing the
relative complexity of a task in the UC setting. Specifically, they established
a zero-one law that states that any task is either trivial (i.e., it can be reduced
to any other task), or complete (i.e., to which any task can be reduced to),
where a functionality F is said to reduce to another functionality G, if there
is a UC secure protocol for F using ideal access to G. More precisely, they
showed that assuming the existence of semi-honest oblivious transfer, every
finite two-party functionality is either trivial or complete. While their main
theorem relies on the minimal assumption of semi-honest oblivious transfer,
their use of the assumption is non-black-box and they leave it as an open
problem to achieve the same while relying on oblivious transfer in a black-box
manner. Our result makes progress towards establishing this.

In more details, their high-level approach is to identify complete functional-
ities using four categories, namely, (1) Fxor that abstracts a XOR-type func-
tionality, (2) Foc that abstracts a simple cut-and-choose functionality, (3) For
the oblivious transfer functionality, and (4) Fcoyn the commitment function-
ality. They then show that each category can be used to securely realize any
computational task?. Among these reductions, functionalities Fyor and Fee
rely on oblivious transfer in a non-black-box way. In this work we improve the
reduction of functionality Foc. That is, we obtain this improvement by show-
ing that the extractable commitment functionality Frxrcom and semi-honest
oblivious transfer can be used in a black-box way to realize functionality For,
and combine this with a reduction presented in [44] that reduces Fcc to the
Fexrcom functionality in a black-box way.

One-Sided UC Secure Computation. In this stronger two-party setting,
where at most one of the parties is adaptively corrupted [29,35], we prove that

2 Where it suffices to realize the For functionality as it is known to be complete [36].
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one-sided adaptive UC security is implied by PKE with oblivious ciphertext gen-
eration. Here we combine two observations, one where our malicious static oblivi-
ous transfer from the previous result requires using the parties’ inputs in only one
phase, together with the fact that one-sided non-committing encryption (NCE)
can be designed based on PKE with oblivious ciphertext generation [6,16]. In
particular, NCE allow secure communication in the presence of adaptive attacks,
which implies that the communication can be equivocated once the real message
is handed to the simulator. Then, by encrypting part of our statically secure pro-
tocol using NCE, we obtain a generic protocol for any two-party functionality
under the assumption specified above®. Namely,

Theorem 13 (Informally). Assuming the existence of PKE with oblivious
ciphertext generation, then any two-party functionality can be realized in the CRS
model with one-sided adaptive UC security and black-box access to the PKE.

Adaptive UC Secure Computation. Our last result is in the strongest cor-
ruption setting, where any number of parties can be adaptively corrupted. Here
we design a new adaptively secure UC commitment scheme under the assump-
tion of PKE with oblivious ciphertext generation, which is the first construction
that achieves the stronger notion of adaptive security based on this hardness
assumption. Our construction makes a novel usage of such a PKE together with
Reed-Solomon codes, where the polynomial shares are encrypted using the PKE
with oblivious ciphertext generation. Plugging-in our UC commitment proto-
col into the transformation of [12] that generates adaptive malicious oblivious
transfer given adaptive semi-honest oblivious transfer and UC commitments,
implies an adaptively UC secure oblivious transfer protocol with malicious secu-
rity based on semi-honest adaptive oblivious transfer and PKE with oblivious
ciphertext generation, using only black-box access to the semi-honest oblivious
transfer and the PKE. That is,

Theorem 14 (Informally). Assuming the existence of PKE with oblivious
ciphertext generation and adaptive semi-honest oblivious transfer, then any func-
tionality can be realized in the CRS model with adaptive UC security, where the
underlying primitives are accessed in a black-box manner.

We further recall the work of Choi et al. [11] that shows that the weakest general
known assumption that is required to construct adaptively secure semi-honest
oblivious transfer is trapdoor simulatable PKE. Now, since such an encryption
scheme admits PKE with oblivious ciphertext generation, we obtain the follow-
ing corollary that unifies the two assumptions required to achieve adaptive UC
security.

Corollary 15. Assuming the existence of (trapdoor) simulatable PKE, then any
functionality can be realized in the CRS model with adaptive UC security and
black-box access to the PKE.

3 We note that while in the plain model any statically secure protocol can be compiled
into one-sided secure protocol by encrypting its entire communication using one-
sided NCE, it is not the case in the UC setting due to the additional setup.
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An additional interesting observation that is implied by our work is that
our UC commitment scheme implies a construction that is secure in the adap-
tive setting when erasures are allowed, and under the weaker assumption of
PKE. Specifically, instead of obliviously sampling ciphertexts in the commit-
ment phase, the committer encrypts arbitrary plaintexts and then erases the
plaintexts and randomness used for these computations. Our proof follows eas-
ily for this case as well. Combining our UC commitment scheme together with
the semi-honest with erasures OT from [41] and the transformation of [12], we
obtain the following result

Theorem 16 (Informally). Assuming the existence of PKE and semi-honest
oblivious transfer secure against an adaptive adversary assuming erasures, then
any functionality can be realized in the CRS model with adaptive UC security
assuming erasures, where the underlying primitives are accessed in a black-box
manner.

Noting that OT secure against adaptive adversaries assuming erasures can be
realized under assumptions sufficient for achieving the same with respect to the
weaker static adversaries, this theorem shows that achieving UC security against
adaptive adversaries in the presence of erasures does not require any additional
assumption beyond what is required to secure against static adversaries.

Implications. Next, we specify a sequence of interesting observations that are
implied by our result in the adaptive UC setting.

— Previously, Dachman-Soled et al. [14], showed that adaptive UC secure proto-
cols can be constructed in the CRS model assuming the existence of simulat-
able PKE. Our result improves this result in terms of complexity assumptions
by showing that trapdoor simulatable PKE is sufficient, and provides new
constructions based on concrete assumptions that were not known before.
Nevertheless, we should point out that while the work of Dachman-Soled et
al. is constructed in the global CRS model using a non-black-box construc-
tion, our result provides a black-box construction in a CRS model where the
length of the reference string is linear in the number of parties.

— Analogous to our result on static UC security, it is possible to extend this result
to the chosen key-registration authority (KRA) model, where we assume the
existence of a trusted-party that samples public keys and secret keys for each
party, and broadcasts the public key to all parties.

— Importantly, this result provides the first evidence that adaptively secure UC
commitment is theoretically easier to construct than stand-alone adaptively
secure semi-honest oblivious transfer. This is due to a separation from [43]
(regarding static vs. adaptive oblivious transfer), that proves that adaptive
oblivious transfer requires a stronger hardness assumption than enhanced
trapdoor permutation.

— Regarding concrete assumptions, previously, adaptive UC commitments with-
out erasures were constructed based on N-residuosity and p-subgroup hard-
ness assumptions [17] and Strong RSA [15]. On the other hand, our result
demonstrates the feasibility of this primitive under DDH, LWE, factoring
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Blum integers and RSA assumptions. When considering adaptive corruption
with erasures, the work of Blazy, et al. [3], extending the work of Lindell [42],
shows how to construct highly efficient UC commitments based on the DDH
assumption. On the other hand, assuming erasures, we are able to construct
an adaptive UC commitment scheme based on any CPA-secure PKE.

2 Preliminaries

We denote the security parameter by n. We use the abbreviation PPT to denote
probabilistic polynomial-time. We further denote by a < A the random sampling
of a from a distribution A, and by [n] the set of elements {1,...,n}.

Definition 21 (PKE with Oblivious Ciphertext Generation [16]). A PKE
IT with oblivious sampling generation is defined by the tuple (Gen, Enc, Dec,

— 1
Enc,Enc ) and has the following additional property,

— Indistinguishability of Oblivious and Real Ciphertexts. For any mes-
sage m in the appropriate domain, consider the experiment (PK,SK) «

Gen(1™), ¢1 « E\nEpK(rl), co — Encpi(m;ra), 1] — EF\E;K(@).
Then, (PK,r1,c1,m) ~ (PK, ro,co,m).

To this end, we only employ PKE with perfect decryption. This merely simplifies
the analysis and can be relaxed by using PKE with a negligible decryption error
instead.

2.1 Oblivious Transfer

1-out-of-2 oblivious transfer (OT) is an important functionality in the context
of secure computation that is engaged between a sender Sen and a receiver Rec;
see Fig. 1 for the description of functionality Fo.. In this paper we are interested
in reducing the hardness assumptions for general UC secure computation when
using only black-box access to the underlying cryptographic primitives, such as
the semi-honest OT. We use semi-honest OT as a building block for designing
UC secure protocols in both static and adaptive settings. In the static setting,
we refer to the two-round protocol of [21] that is based on PKE with oblivi-
ous ciphertext generation (or enhanced trapdoor permutation). In the adaptive
setting, we refer to the two-round protocol of [9] that is based on augmented
non-committing encryption scheme.

We next recall that any two-round semi-honest OT implies PKE. We demon-
strate that in two phases, starting with the claim that semi-honest OT implies
a key agreement (KA) protocol, where two parties agree on a secret key over
a public channel. This statement has already been proven in [23] in the static
setting, and holds for any number of rounds. The idea is simple, the parties
execute an OT protocol where the party that plays the sender picks two random
inputs sg, s1, whereas the party that plays the receiver enters 0. Finally, the par-
ties output sg and security follows from the correctness and privacy of the OT.
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A simple observation shows that this reduction also holds in the adaptive setting.
Namely, starting with an adaptive semi-honest OT, the same reduction implies
an adaptively secure KA (where the protocol communication must be consis-
tent with respect to any key). Note that this reduction preserves the number of
rounds, thus if the starting point is a two-round OT then the reduction implies
a two-round KA. Next, a well established fact shows that in the static setting a
two-round key agreement implies PKE (in fact, these primitives are equivalent).
Formally,

Theorem 22. Assume the existence of two-round key agreement protocol with

static security, then there exists IND-CPA PKE.

Functionality For

Functionality For communicates with with sender Sen and receiver Rec, and adversary

S.

1. Upon receiving input (sender, sid, vo,v1) from Sen where vo,v1 € {0,1},
record (sid, vo, v1).

2. Upon receiving (receiver, sid, ) from Rec, where a tuple (sid, vo, v1) is recorded
and u € {0,1}, send (sid, vy) to Rec and sid to S. Otherwise, abort.

Fig. 1. The oblivious transfer functionality.

Sender Private Oblivious Transfer. Sender privacy is a weaker notion than
malicious security and only requires that the receiver’s input be hidden even
against a malicious sender. It is weaker than malicious security in that it does
not require a simulation of the malicious sender that extracts the sender’s inputs.
In particular, we will only require that a malicious sender cannot distinguish the
cases where the receiver’s input is 0 or 1. Formally stated,

Definition 23 (Sender Private OT). Let 7w be a two-party protocol that is
engaged between a sender Sen and a receiver Rec. We say that m is a sender
private oblivious transfer protocol, if for every PPT adversary A that corrupts
Sen, the following ensembles are computationally indistinguishable:

- {VieWAJT [A(]_n)7 Rec(l", O)]}nEN
- {View 4 -[A(1"),Rec(1™,1)]} nen

where View 4 .[A(1"),Rec(1,b)] denotes A’s view within m whenever the
receiver Rec inputs the bit b.

We point out that sender privacy protects the receiver against a malicious sender
and should be read as privacy against a malicious sender.
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Defensibly Private Oblivious Transfer. The notion of defensible privacy
was introduced by Haitner in [26,27]. A defense in a two-party protocol © =
(P1, Py) execution is an input and random tape provided by the adversary after
the execution concludes. A defense for a party controlled by the adversary is
said to be good, if this party participated honestly in the protocol using this very
input and random tape, then it would have resulted in the exact same messages
that were sent by the adversary. In essence, this defense serves as a proof of
honest behavior. It could very well be the case that an adversary deviates from
the protocol in the execution but later provides a good defense. The notion of
defensible privacy says that a protocol is private in the presence of defensible
adversaries if the adversary learns nothing more than its prescribed output when
it provides a good defense.

We informally describe the notion of good defense for a protocol m; we refer
to [27] for the formal definition. Let trans = (g1, a1,...,qe, ae) be the transcript
of an execution of a protocol w that is engaged between P; and P, and let A
denote an adversary that controls P;, where g; is the ith message from P; and q;
is the ith message from P, (that is, a; is the response for ¢;). Then we say that
(z,7) constitutes a good defense of A relative to trans if the transcript generated
by running the honest algorithm for P; with input x and random tape r against
P,’s messages aq, ..., ap results trans.

The notion of defensible privacy can be defined for any secure computation
protocol. Nevertheless, since we are only interested in oblivious transfer proto-
cols, we present a definition below that is restricted to oblivious transfer proto-
cols. The more general definition can be found in [27]. At a high-level, an OT
protocol is defensibly private with respect to a corrupted sender if no adversary
interacting with an honest receiver with input b should be able to learn b, if at the
end of the execution the adversary produces any good defense. Similarly, an OT
protocol that is defensibly private with respect to malicious receivers requires
that any adversary interacting with an honest sender with input (sg, s1) should
not be able to learn s;_p, if at the end of the execution the adversary produces
a good defense with input b. Below we present a variant of the definition pre-
sented in [27]. We stress that while the [27] definition only considers bit OT (i.e.
sender’s inputs are bits) we consider string OT.

Definition 24 (Defensible-Private String OT). Let w be a two-party proto-
col that is engaged between a sender Sen and a receiver Rec. We say that 7w is a

defensibly-private string oblivious transfer protocol, if for every PPT adversary
A the following holds,

1. {I(View 4[A(1"),Rec(1",U)],U)} ~ {I'(View4[A(1"),Rec(1™,U)],U")},
where I'(v, *) is set to (v, *) if following the execution A outputs a good defense
for m, and L otherwise, and U and U’ are independent random variables uni-
formly distributed over {0, 1}. This property is referred to as defensibly private
with respect to a corrupted sender.

2. {I'(View a[Sen(1", (U, U)), A(1")|,UT,)} & {I'(View [Sen(1", (UF,
Ur)), A(1™)],U™)} where I'(v,*) is set to (v,*) if following the evecution
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A outputs a good defense for w, and L otherwise, b is the Rec’s input in
this defense and UL, UT', U™ are independent random variables uniformly dis-
tributed over {0,1}™. This property is referred to as defensibly private with

respect to a corrupted receiver.

In our construction from Sect.3, we will rely on an OT protocol that is
sender private and defensibly private with respect to a corrupted receiver. In [27],
Haitner et al. showed how to transform any semi-honest bit-OT to one that is
defensibly private with respect to a corrupted receiver and malicious secure with
respect to a corrupted sender. More formally, the following Lemma is implicit in
the work of [27].

Lemma 21 (Implicit in Theorem 4.1 and Corollary 5.3 [27]). Assume
the existence of a semi-honest oblivious transfer protocol 7. Then there exists
an oblivious transfer protocol 7 that is defensible-private with respect to the
receiver and sender private that relies on the underlying primitive in a black-
box manner.

Now, since sender privacy is implied by malicious security with respect to a cor-
rupted sender, this transformation yields a bit OT protocol with the required
security guarantees. Nevertheless, our protocol crucially relies on the fact that
the underlying OT is a string OT protocol. We therefore show in the full ver-
sion [30] how to transform any bit OT to a string OT protocol while preserving
both defensible private with respect to a maliciously corrupted receiver and
sender privacy.

At a high-level, in order to convert any protocol from semi-honest security to
defensible privacy, Haitner et al. include a coin-tossing stage at the beginning of
the protocol that determines the parties’ random tapes. In fact, they let the coin-
tossing also determine the parties inputs as they only require OT secure with
respect to random inputs for both the sender and receiver. Now, if the receiver
has to provide a good defense, then it must reveal the input and randomness
used for the semi-honest OT protocol and prove consistency relative to the values
generated in the coin-tossing stage. Due to the fact that the commitment schemes
that are used in the coin-tossing stage are statistically-binding, the probability
that a malicious receiver can deviate from the protocol and provide a good
defense is negligible. Using this fact, Haitner et al. argued that the probability
that a malicious receiver outputs a good defense and guesses the other sender’s
input is negligible. Next, to obtain sender private oblivious transfer they first
transformed an OT protocol that is defensible-private against malicious receivers
to one that is maliciously secure, and then exploited the symmetry of OT in order
to obtain a protocol that is sender-private. The first transformation relies on the
cut-and-choose approach to ensure that the receiver provides a valid defense,
and then using the fact that defensible privacy hides the sender’s other input
they argued that it is receiver-private.

2.2 UC Commitment Schemes

The notion of UC commitments was introduced by Canetti and Fischlin in [7].
The formal description of functionality Fcoy is depicted in Fig. 2.
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Functionality Fcon

Functionality Fcon communicates with with sender Sen and receiver Rec, and adver-
sary S.

1. Upon receiving input (commit,sid,m) from Sen where m € {0,1}, in-
ternally record (sid,m) and send message (sid,Sen,Rec) to the adversary.
Upon receiving approve from the adversary send sid, to Rec. Ignore subsequent
(commit, ., ., .) messages.

2. Upon receiving (reveal, sid) from Sen, where a tuple (sid, m) is recorded, send
message m to adversary S and Rec. Otherwise, ignore.

Fig. 2. The string commitment functionality.

2.3 Extractable Commitments

Our result in the static setting requires the notion of (static) extractable UC
commitments, which is a weaker security property than UC commitments in the
sense that it does not require equivocality. In what follows, we introduce the
definition for the ideal functionality Frxrcom from [44]. Towards introducing
this definition, Maji et al. introduced some notions first. More concretely,

Definition 25. A protocol is a syntactic commitment protocol if:

— It is a two phase protocol between a sender and a receiver (using only plain
communication channels).

— At the end of the first phase (commitment phase), the sender and the receiver
output a transcript trans. Furthermore, the sender receives an output (which
will be used for opening the commitment).

— In the decommitment phase the sender sends a message 7y to the receiver, who
extracts an output value opening(trans,vy) € {0,1}" U {L}.

Definition 26. Two syntactic commitment protocols (wr,wr) form a pair of
complementary statistically binding commitment protocols if the following hold:

— wg 15 a statistically binding commitment scheme (with stand-alone security).

— In wyp, at the end of the commitment phase the receiver outputs a string z €
{0,1}™. If the receiver is honest, it is only with negligible probability that there
exists v such that opening(trans,v) # L and opening(trans,y) # z.

As noted in [44], wy, by itself is not an interesting cryptographic goal, as the
sender can simply send the committed string in the clear during the commitment
phase. Nevertheless, in defining Fyxrcom below, there exists a single protocol
that satisfies both the security guarantees. We are now ready to introduce the
notion of extractable commitments in Fig.3 that is parameterized by (wy,wg).
We also include a function pp that will be used as an initialization phase to set
up the public-parameters for wy, and wg.
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Functionality Frxrcow parameterized by (pp, wr,wr)

Fexrcom 1S running with parties Pi,..., P, and an adversary S: Upon receiving a
message (init — commit, sid, ssid, P;, P;) from P;, it first checks if there is a tuple
(public — params, sid, P;, (pp, sp)). If yes, it sends (init — commit, sid, ssid, P;, P;) to P;. If
not, it runs (pp, sp) < pp(1™) and sends (init — commit, sid, P;, pp) to P;, P; and S. It stores
(public — params, sid, P;, (pp, sp)). We denote P; by the sender and P; by the receiver in this
interaction. Next, the functionality behaves as follows, depending on which party is corrupted.

— P; 1S HONEST AND P; IS HONEST.

Commit Phase: Upon receiving (commit, sid, ssid, P;, Pj,m) from P;, it internally
simulates a session of wg (simulating both the sender and receiver in wg), with
the sender’s input fixed to m. It gives (transcript, sid, ssid, trans,v) to P; and
(receipt, sid, ssid, P;, Pj,trans) to P; and S.

Reveal Phase: Upon receiving (decommit, sid, ssid,-) from the sender, it sends
(decommit, sid, ssid, P;, Pj, z) to Pj and S.

— P; IS CORRUPTED AND P; IS HONEST.

Commit Phase: It runs the commitment wy, with the sender, playing the part of the receiver

in wr,, to obtain (sid, ssid, trans, z). It sends (receipt, sid, ssid, P;, Pj,trans) to P;

and S.
Reveal Phase: Upon receiving (decommit, sid, ssid,y) from the sender, if
opening(trans,y) = =z, it sends (decommit,sid, ssid, P;, Pj,z) to P; and S.

Otherwise ignore.
— P; IS HONEST AND P; IS CORRUPT.

Commit Phase: Upon receiving (commit, sid, ssid, P;, P;,m) from P;, it runs the com-
mitment phase of wgr with Pj, playing the sender’s role in wg with m as input. It obtains
the output (trans,y) at the end of this phase, and sends (transcript, sid, ssid, trans, )
to P;.

Reveal Phase: Upon receiving (decommit, sid, ssid) from the sender it sends
(decommit, sid, ssid, P;, P;, (7, z)) to Pj and S.

The functionality does not do anything when both the sender and the receiver are corrupted.

Fig. 3. Extractable commitment functionality.

Implementing Fixrcon in the CRS Model. We briefly sketch how to imple-
ment the extractable commitment functionality in the F-rs-hybrid based on the
CPA-security of any PKE. Namely, the CRS will be set to a public-key gener-
ated using the key-generation function of the PKE scheme. To commit, a sender
simply encrypts the message using the public-key in the CRS and sends the
ciphertext to the receiver. We can achieve extraction by setting the CRS to a
public-key for which the secret-key is available to the extractor (in this case, the
extractor is the Fuxrcon functionality). Hiding follows from the CPA-security of
the encryption scheme. A formal description and proof of this construction can
be found in the full version of this paper [30].
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3 Static UC Secure Computation

In this section we prove the feasibility of UC secure computation based on semi-
honest OT and extractable commitments, where the latter can be constructed
based on two-round semi-honest OT (see Sects.2.1 and 2.3 for more details).
More concretely, we prove how to transform any statically semi-honest secure
OT into one that is secure in the presence of malicious adversaries, giving only
black-boz access to the underlying semi-honest OT protocol. Our protocol is
a variant of the protocol by Lin and Pass from [37] (which in turn is a vari-
ant of the protocol of [27]). In particular, in [37], the authors rely on a strong
variant of a commitment scheme known as a CCA-secure commitment in order
to achieve extraction. We observe that it is not required to use the full power
of such commitments, or for that matter UC commitments. Specifically, using
a weaker primitive that only implies straight-line input extractability enables
to solely rely on semi-honest OT. An important weakening in our commitment
scheme compared to CCA-secure commitments from [37] is that we allow invalid
commitments to be made by the adversary. We remark here that the work of [37]
rely on string OT that are secure against malicious senders and state that the
work of [26] provides a black-box construction of such a protocol starting from
a semi-honest bit OT. However, the work of [26] only shows how to construct
a bit OT secure against malicious senders where the proof crucially relies on
the sender’s input being only bits. We provide a transformation and complete
analysis from bit OT to a string OT for the weaker notion of defensible privacy
as this is sufficient for our work. Finally, combining our UC OT protocol with
the [33] protocol, we obtain a statically UC secure protocol for any well-formed
functionality (see definition in [9]). Namely,

Theorem 31. Assume the existence of static semi-honest oblivious transfer.
Then for any multi-party well-formed functionality F, there exists a protocol that
UC realizes F in the presence of static, malicious adversaries in the Fuxrcom-
hybrid model using black-box access to the oblivious transfer protocol.

We remark here that the work of [12] shows how starting from a semi-honest
oblivious transfer it is possible to obtain a black-box construction of an OT
protocol that is secure against stand-alone static adversaries in the Foy-hybrid
model. It is noted in [12] that the (high-level) analysis provided in the work might
be extendable to the UC-setting (cf. Footnote 10 in [12]). Furthermore, in the
static setting, it is conceivable that F.oy can be directly realized in the Fgxrcom-
hybrid using the notion of extractable trapdoor commitments [47]. We do not
pursue this approach and instead directly realize OT in the Frxrcon-hybrid.
While the previous works of [12] and [27] require a three step transformation,
our transformation is one shot and therefore more direct.

It seems possible to generalize our theorem to multi-session functionalities.
Analogous to [7], this will allows us to extend our corollaries to the Global CRS
model by additionally assuming CCA encryption scheme and leave it as future
work.
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3.1 Static UC Oblivious Transfer

In the following, we discuss a secure implementation of the oblivious transfer
functionality (see Fig.1) with static, malicious security in the Fuxrcon-hybrid
model (where Fuxrcon is stated formally in Fig.3). Our goal in this section
is to show that the security of malicious UC OT can be based on UC semi-
honest OT, denoted by 721, and extractable commitments. Our result is shown
in two phases. At first we compile the semi-honest OT protocol 73} into a new
protocol with the security properties that are specified in Sect. 2.1, extending
the [27] transformation into string OT; denote the compiled OT protocol by
Tor. Next, we use Tor in order to construct a new protocol 7% that is secure
in the presence of malicious adversaries. Details follow,

Protocol 1 (Protocol 731 with Static Security)

Input: The sender Sen has input (vo,v1) where vo,v1 € {0,1}" and the receiver Rec
has input u € {0,1}.

The protocol:

1. Coin Tossing:
— Receiver’s random tape generation: The parties use a coin tossing protocol in
order to generate the inputs and random tapes for the receiver.
e The receiver commits to 20n strings of appropriate length, c/lg\@ted by

ARec, - - - AR, by sending Faxrcom the message (commit, sid, ssid;, ko)
for all i € [n].

e The sender responds with 20n random strings of appropriate length
bRcc7 . b%iocré

o The receiver computes Tso. = ahoe ®bhec and then interprets ré.. = CZHTRQC
where ¢; determines the receiver’s input for the it" OT protocol, whereas T,
determines the receiver’s random tape used for this execution.

— Sender’s random tape generation: The parties use a coin tossing protocol in
order to generate the inputs and random tapes for the sender.

e The sender commits to 20n strings of appropriate length, denoted by
Adens -+ - A2, by sending Fextcom the message (commit, sid, sszdl,asen)
for all i € [n].

e The receiver responds with 20n random strings of appropriate length
bden, - - -, b3,

o The sender computes ri,, = ahen © bhe, and then interprets ri., =
89|88 Téen where (s9,s}) determine the sender’s input for the it" OT pro-
tocol, whereas 1., determines the sender’s random tape used for this exe-
cution.

2. Oblivious Transfer:

— The parties participate in 20n executions of the OT protocol Tor with the corre-
sponding inputs and random tapes obtained from Stage 2. Let the output of the
receiver in the it" exzecution be §;.

3. Cut-and-choose:

~ Sen chooses a random subset gsen = (Gdens - - -, G8en) € {1,...,20}™ and sends it
to Rec. The string qsen is used to define a set of indices I'sen C {1,...,20n} of
size n in the following way: I'sen = {20i—qéen}i€[n]. The receiver then opens the
commitments from Stage 1 that correspond to the indices within I'sen, namely,
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the receiver decommits ahe. for all i € I'sen. Sen checks that the decommitted
values are consistent with the inputs and randomness used for the OT's in Stage 2
by the receiver, and aborts in case of a mismatch.

- Rec chooses a random subset qrec = (qhoc) - - - » Avoc) € {1,---,20}™ and sends it
to Sen. The string qrec s used to define a set of indices I'mec C {1,...,20n} of
size n in the following way: I'nec = {207 — qﬁcc}ie[n]. The sender then opens the
commitments from Stage 1 that correspond to the indices within I'Rec, namely,
the sender decommits al., for all i € I'vec. Rec checks that the decommitted
values are consistent with the inputs and randomness used for the OTs in Stage 2
by the sender, and aborts in case of a mismatch.

- Rec commits to another subset I' C [20n] denoted by (I'*,..., ™), by sending
Frxrcom the message (commit, sid, ssid;,Fi) for all i € [n]. (The sender will
reveal its inputs and randomness that are used in Stage 2 that correspond to the
indices in I' later in Stage 5.)

4. Combiner:

— Let A = [20n] — I'Rec — ISen- Then for every i € A, the receiver computes
a; = u D c; and sends it to the sender.

— The sender computes a 10n-out-of-18n secret sharing of vo, denote the shares by
{pY}ica. Analogously, it computes a 10n-out-of-18n secret sharing of vi, denote
the shares by {piYica. The sender computes 3° = pb @ s?@ai for all b € {0, 1}
and i € A, and sends the outcome to the receiver.

— The receiver computes p; = ;' @ $; for alli € A. Denote by p these concatenated
bits.

5. Final cut-and-choose:

— The receiver decommits I' and the sender sends the inputs and randomness it
used in Stage 2 for the coordinates that correspond to AN I. (Note that the
sender need only reveal the indices that were not decommitted in Stage 3). Rec
checks that the sender’s values are consistent with the inputs and randomness
used for the OTs in Stage 2 by the sender, and aborts in case of a mismatch.

— The receiver checks whether (p;)ica agrees with some codeword w € Wign,10n
on 17n locations (where the code Wisgn,10n s induced by the secret sharing con-
struction that we use in Stage 4). Recall that the minimum distance of the code
Wisn,10n 1S at least 18n—10n > 8n, which implies that there will be at most one
such codeword w. Furthermore, since we can correct up to w = 4n errors,
any code that is 1Tn close to a codeword can be efficiently recovered using the
Berlekamp-Welch algorithm. The receiver outputs that w as its output in the
OT protocol. If no such w exists, the receiver returns a default value.

Theorem 32. Assume that 7l is static semi-honest secure and that the com-
piled Tor 18 secure according to Lemma 21. Then Protocol 1 UC realizes For in
the presence of static malicious adversaries in the Fgxrcom-hybrid model using

black-box access to the oblivious transfer protocol.

Recalling that our protocol relies on the existence of semi-honest OT and
extractable commitments, and that the later can be constructed based on any
two-round semi-honest OT, e.g., [21], which implies PKE (see Sects. 2.1 and 2.3
for more details), an immediate corollary from Theorem 32 implies that,

Corollary 33. Assume the existence of two-round static semi-honest oblivious
transfer. Then there exists a protocol that securely realizes For in the presence
of static malicious adversaries in the CRS model using black-box access to the
oblivious transfer protocol.
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A High Level Proof. We first provide an overview of the security proof; the
complete proof is found in [30]. Loosely speaking, in case the receiver is corrupted
the simulator plays the role of the honest sender in Stages 1-4. Next in Stage 5,
the simulator extracts the receiver’s input u. Specifically, the simulator extracts
all the committed values of the receiver within Stage 1 (relying on the fact that
the commitment scheme is extractable), and then uses these values in order to
obtain the inputs for the OT executions in Stage 2. Upon completing Stage 2,
the simulator records the coordinates for which the receiver deviates from the
prescribed input and random tape chosen in the coin tossing phase. Denoting
these set of coordinates by @, we recall that a malicious receiver may obtain
both of the sender’s inputs with respect to the OT executions that correspond
to the coordinates within @ and I'. On the other hand, it obtains only one of
the two inputs with respect to the rest of the OT executions that correspond
to the coordinates within A — @ — I'. Consequently, the simulator checks how
many shares of vy and v, are obtained by the receiver and proceeds accordingly.
In more details,

— If the receiver obtains more than 10n shares of both inputs then the simulator
halts and outputs fail (we prove in Section [30] that this event only occurs
with negligible probability).

— If the receiver obtains less than 10n shares of both inputs then the simulator
picks two random values for vy and v of the appropriate length and completes
the interaction, playing the role of the honest sender on these values. Note
that in this case the simulator does not need to call the ideal functionality.

— Finally, if the receiver obtains more than 10n shares for only one input u €
{0,1}, then the simulator sends u to the ideal functionality For and obtains
¥y. The simulator then sets v1_, as a random string of the appropriate length
and completes the interaction by playing the role of the honest sender on these
values.

Recall that the only difference between the simulation and the real execution is
in the way the messages in Stage 4 are generated. Specifically, in the simulation
a value u is extracted from the malicious receiver and then fed to the For
functionality. The simulation is then completed based on the output returned
from the functionality. Intuitively, the cut-and-choose mechanism ensures that
the receiver cannot deviate from the honest strategy in Stage 2 in more than n
OT sessions without getting caught with overwhelming probability. Moreover,
the defensible privacy of the OT protocol implies that the receiver can learn at
most one of the two inputs of the sender relative to the OT executions in Stage 2
for which the receiver proceeded honestly.

In case the sender is corrupted, the simulator’s strategy is to play the role
of the honest receiver until Stage 5 where the simulator extracts the sender’s
inputs. More specifically, the simulator first extracts the sender’s input for the
OT executions in Stage 1 (relying on the fact that the commitment scheme is
extractable). Next, the simulator extracts the shares {p{};c and {p}};ca that
correspond to inputs vg and v;. To obtain the actual values the simulator checks
if these shares agree with some codeword relative to 16n locations. That is,
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— Let wg and w; denote the corresponding codewords (if there are no such
codewords that agree with with vy and v; on 16n locations then the simulator
uses a default codeword instead). Next, the simulator checks wy and wq against
the final cut-and-choose. If any of the shares from w, are inconsistent with
the opened shares that are opened by the sender in the final cut-and-choose,
then vy, is set to a default value, otherwise v, is the value corresponding to
the shared secret.

Finally, the simulator sends (vg,v1) to the ideal functionality for For. Security
in this case is reduced to the privacy of the receiver. In addition, the difference
between the simulation’s strategy and the honest receiver’s strategy is that the
simulator extracts the sender’s both inputs in all i € A — @ and then finds
codewords that are 16n-close to the extracted values, whereas the honest receiver
finds a codeword that is 17n-close based on the inputs it received in the Stages 2
and 5, and returns it. We thus prove that the value u extracted by the simulator
is identical the to the reconstructed output of the honest receiver relying on the
properties of the secret sharing scheme.

4 One-Sided Adaptive UC Secure Computation

In the two-party one-sided adaptive setting, at most one of the parties is adap-
tively corrupted [29,35]. In this section we provide a simple transformation of
our static UC secure protocol from Sect.3 to a two-party UC-secure protocol
that is secure against one-sided adaptive corruption. Our first observation is
that in Protocol 1 the parties use their real inputs to the OT protocol only in
Phase 4. Therefore simulation of the first three phases can be easily carried out
by simply following the honest strategy. On the other hand, simulating messages
in Phase 4 requires some form of equivocation since if corruption takes place
after this phase is concluded then the simulator needs to explain this message
with respect to the real input of the corrupted party. On a high-level we will
transform the protocol so that if no party is corrupted until end of Phase 4, the
simulator can equivocate the message in Phase 4. We explain how to achieve
equivocation later. First, we describe our simulator: In case either party is stat-
ically corrupted the simulation for Protocol 1 follows the strategy of the honest
party until Phase 4, where the simulator extracts the corrupted party’s input
relying on the fact that it knows the adversary’s committed input in Phase 1.
Therefore, the same proof follows in case the adversary adaptively corrupts one
of the parties at any point before Phase 4, as the simulator can pretend that cor-
ruption took place statically. On the other hand, if corruption takes place after
Phase 4, then the simulator equivocates the communication. It is important to
note that while in the plain model any statically secure protocol can be compiled
into one-sided secure protocol by encrypting its entire communication, it is not
clear that this is the case in the UC setting due to the additional setup, e.g.,
a CRS that may depend on the identity of the corrupted party. Nevertheless,
in Phase 4 the parties only run a combiner for which the computation does not
involve any usage of the CRS (which is induced by the extractable commitment).
Therefore, the proof follows.
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A common approach to achieve equivocation is to rely on non-committing
encryption schemes (NCE) [6,11,16], that allow secure communication in the
presence of adaptive attacks. This powerful tool has been constructed while
relying on (a variant of) simulatable PKE schemes, which, roughly speaking,
allows for both the public-key and the ciphertexts to be generated obliviously
without the knowledge of the plaintext or the secret key [11,16]. Notably, these
constructions achieve a stronger notion of security where both parties may be
adaptively corrupted (also referred to as fully adaptive). Our second observation
is that it is sufficient to rely on a weaker variant of NCE, namely, one that is
secure against only one-sided adaptive corruption.

In particular, we take advantage of a construction presented in [6] and later
refined in [16], that achieves receiver equivocation under the assumption of semi-
honest OT. We will briefly describe it now. Recall that in the fully adaptive case,
the high-level idea is for the sender and receiver to mutually agree on a random
bit, which is then used by the sender to determine which of two random strings
to mask its message. The process of agreeing on a bit requires the ability to
both obliviously sample a public-key without the knowledge of the secret key,
as well as the ability to obliviously sample a ciphertext without the knowledge
of the corresponding plaintext. In the simpler one-sided scenario, Canetti et al.
observed that an oblivious transfer protocol can replace the oblivious generation
of the public-key. Specifically, the NCE receiver sends two public keys to the
sender, and then the parties invoke an OT protocol where the NCE receiver
plays the role of the OT sender and enters the corresponding secret keys. To allow
equivocation for the NCE sender, the OT must enable equivocation with respect
to the OT receiver. The [21] OT protocol is an example for such a protocol. Here
the OT receiver can pick the two ciphertexts so that it knows both plaintexts.
Then equivocation is carried out by declaring that the corresponding ciphertext
is obliviously sampled.

The advantage of this approach is that it removes the requirement of gen-
erating the public key obliviously, as now the randomness for its generation is
split between the parties, where anyway only one of them is corrupted. This
implies that the simulator can equivocate the outcome of the protocol execu-
tion without letting the adversary the ability to verify it. To conclude, it is
possible to strengthen the security of Protocol 1 into the one-sided setting by
simply encrypting the communication within the combiner phase using one-sided
NCE which in turn can be constructed based on PKE with oblivious ciphertext
generation. This implies the following theorem which further implies black-box
one-sided UC secure computation from enhanced trapdoor permutation.

Theorem 41. Assume the existence of PKE with oblivious ciphertext genera-
tion. Then for any two-party well-formed functionality F, there exists a protocol
that UC realizes F in the presence of one-sided adaptive, malicious adversaries
in the CRS model using black-box access to the PKE.
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5 Adaptive UC Secure Computation

In this section we demonstrate the feasibility of UC secure commitment schemes
based on PKE with oblivious ciphertext generation (namely, where it is possible
to obliviously sample the ciphertext without knowing the plaintext). Our con-
struction is secure even in the presence of adaptive corruptions and is the first to
achieve the stronger notion of adaptive security based on this hardness assump-
tion. Plugging-in our UC commitment protocol into the transformation of [12]
that generates adaptive malicious OT given adaptive semi-honest OT and UC
commitments, implies an adaptively UC secure oblivious transfer protocol with
malicious security based on semi-honest adaptive OT and PKE with oblivious
ciphertext generation using only black-box access to the semi-honest OT and
the PKE. Stating formally,

Theorem 51. Assume the existence of adaptive semi-honest oblivious transfer
and PKE with oblivious ciphertext generation. Then for any multi-party well-
formed functionality F, there exists a protocol that UC realizes F in the presence
of adaptive, malicious adversaries in the CRS model using black-box access to
the oblivious transfer protocol and the PKE.

Noting that simulatable PKE implies both semi-honest adaptive OT [9,11] and
PKE with oblivious ciphertext generation, we derive the following corollary
(where simulatable PKE implies oblivious sampling of both public keys and
ciphertexts),

Corollary 52. Assume the existence of simulatable PKE. Then for any multi-
party well-formed functionality F, there exists a protocol that UC realizes F in
the presence of adaptive, malicious adversaries in the CRS model using black-box
access to the simulatable PKE.

This in particular improves the result from [14] that relies on simulatable PKE in
a non-black-box manner. Note also that our UC commitment can be constructed
using a weaker notion than simulatable PKE where the inverting algorithms can
require a trapdoor. This notion is denoted by trapdoor simulatable PKE [11] and
can be additionally realized based on the hardness assumption of factoring Blum
integers. This assumption, however, requires that we modify our commitment
scheme so that the CRS includes 3n+1 public keys of the underlying PKE instead
of just one, as otherwise the reduction to the security of the PKE does not follow
for multiple ciphertexts. Specifically, at the cost of linear blowup (in the security
parameter) of the CRS, we obtain adaptively secure UC commitments under
a weaker assumption. Now, since trapdoor simulatable PKE implies adaptive
semi-honest OT [11] it holds,

Corollary 53. Assume the existence of trapdoor simulatable PKE. Then for any
multi-party well-formed functionality F, there exists a protocol that UC realizes
F in the presence of adaptive, malicious adversaries in the CRS model using
black-box access to the trapdoor simulatable PKFE.
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Note that, since the best known general assumptions for realizing adaptive semi-
honest OT is trapdoor simulatable PKE, this corollary gives evidence that the
assumptions for adaptive semi-honest OT are sufficient for adaptive UC security
and makes a step towards identifying the minimal assumptions for achieving UC
security in the adaptive setting. To conclude, we note that enhanced trapdoor
permutations, which imply PKE with oblivious ciphertext generation, imply the
following corollary,

Theorem 54. Assume the existence of enhanced trapdoor permutation. Then
Feoum (cf Fig. 2) can be UC realized in the CRS model in the presence of adaptive
malicious adversaries.

5.1 UC Commitments from PKE with Oblivious Ciphertext
Generation

In this section we demonstrate the feasibility of adaptively secure UC commit-
ments for the message space m € {0,1} from any public-key encryption scheme

IT = (Gen, Enc, Dec, E;rc, Enc 1) with oblivious ciphertext generation (cf. Defi-
nition 21) in the common reference string (CRS) model. In this model [7] the
parties have access to a CRS chosen from a specified trusted distribution D.
This is captured via the ideal functionality FL.. (see [30] for the definition).
We note that we use II in two places in our protocol. First, in the encoding
phase (where the commitments are computed by the sender) and then in the
coin-tossing phase (where the commitments are computed by the receiver). Our
complete construction can be found in Fig. 4. Next, we prove

— 1
Theorem 55. Assume that II = (Gen,Enc,Dec,Enc,Enc ) is a PKE with
oblivious ciphertext generation. Then protocol meoym (cf. Fig. 4) UC realizes Feom
in the CRS model in the presence of adaptive malicious adversaries.

A High Level Proof. Intuitively, security requires proving both hiding and
binding in the presence of static and adaptive corruptions. The hiding property
follows from the IND-CPA security of the encryption scheme combined with the
fact that the receiver only sees n shares in a n-out-of-3n+ 1 secret-sharing of the
message in the commit phase. On the other hand, proving binding is much more
challenging and reduces to the facts that a corrupted sender cannot successfully
predict exactly the n indices from {1,...,3n + 1} that will be chosen in the
coin-tossing protocol. In fact, if it can identify these n indices, then it would be
possible for the adversary to break binding. An important information-theoretic
argument that we prove here is that for a fixed encoding phase, no adversary
can equivocate on two continuations from the encoding phase with different
outcomes of the coin-tossing phase. Saying differently, for any given encoding
phase there is exactly one outcome for the coin-tossing phase that will allow
equivocation. Given this claim, binding now follows from the IND-CPA security
of the encryption scheme used in the coin-tossing phase. In addition, recall that
in the UC setting the scheme must also support a simulation that allows straight-
line extraction and equivocation. At a high-level, the simulator sets the CRS to
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Protocol mcowm.
CRS: Two independent keys PK, PK that are in the range of Gen(1™).
Sender’s Input: A message m € {0, 1} and a security parameter 1".

[Commitment phase:]

Encoding phase: The sender chooses a random n-degree polynomial p(-) over a field F|x]
such that p(0) = m. Namely, it randomly chooses a; < F for all ¢ € [n] and sets ag = m,
and defines the polynomial p(x) = ao + a1z + -+ + anax™. The sender then creates a
commitment to m as follows. For every ¢ = [3n + 1], it first pick b; < {0, 1} at random
and then computes the following pairs:

0 . 0
) ¢; = Encpx (p(2); t:) ey CG =T
If b; = 0 then c} — else, if b; = 1 then c} — Encex (p(i); )

where t; <« {0, 1}" and r; < E?Tc() is obliviously sampled. The sender sends
(cd,¢8)y .-+, (C3nq1, Cony1) to the receiver.
Coin-tossing phase: The sender and receiver interact in a coin-tossing protocol that is car-
ried out as follows.
1. The receiver sends ¢ = Encg (00; 70, ) to the sender where oo < {0,1}" is chosen
uniformly at random.
2. The sender picks o1 < {0,1}" at random and sends it in the clear to the receiver
3. The receiver decrypts c by revealing oo and ro,,.
Both the sender and the receiver compute o = o @ o1 and use o as the random string to
sample a random subset S C [3n + 1] of size n. (Note that such sampling can be done in
a simple way by partitioning the set of coordinates into n sets of triples (where the last set
includes 4 elements) and picking one element per set. Notably, this technique does not imply
that any potential subset of size n will be picked, rather it ensures that a subset is picked with
a negligible probability in n, specifically (1/3)™, which suffices for our proof.)
Cut-and-choose phase: The sender decrypts the set {cﬁ” tics by sending the sequence
{bi, p(i),t;: }ics. The receiver verifies that all the decryptions are correct and aborts oth-
erwise.

[Decommitment phase:] Let ' = [3n + 1] — S. The sender reveals its input m and decrypts
all the ciphertexts in {cf1 }ier. The receiver checks if all the decryptions are correct and aborts
otherwise. Using the n polynomial evaluations revealed relative to ¢ € S and any additional
polynomial evaluation that was revealed relative to 7', the receiver reconstructs the polynomial
p(+) (via polynomial interpolation of n+ 1 points). Next, the receiver verifies whether p(0) = m,
and that for every ¢ € [3n + 1] the point p(7) is the decrypted value within ¢

i

Fig. 4. UC adaptively secure commitment scheme.

public-keys for which it knows the corresponding secret-keys. This will allow
the simulator to extract all the values encrypted by the adversary. We observe
that the simulator can fix the outcome of the coin-tossing phase to any n-indices
of its choice by extracting the random string o encrypted by the receiver and
choosing a random string o; so that og @ o7 is a particular string. Next, the
simulator generates secret-sharing for both 0 and 1 so that they overlap in the
particular n shares. To commit, the simulator encrypts the n common shares
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within the n indices to be revealed (which it knows in advance), and for the rest
of the indices it encrypts two shares, one that corresponds to the sharing of 0 and
the other that corresponds to the sharing of 1. Finally, in the decommit phase,
the simulator reveals that shares that correspond to the real message m, and
exploits the invertible sampling algorithm to prove that the other ciphertexts
were obliviously generated.
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Abstract. The covert security model (Aumann and Lindell, TCC 2007)
offers an important security /efficiency trade-off: a covert player may arbi-
trarily cheat, but is caught with a certain fixed probability. This permits
more efficient protocols than the malicious setting while still giving mean-
ingful security guarantees. However, one drawback is that cheating can-
not be proven to a third party, which prevents the use of covert protocols
in many practical settings. Recently, Asharov and Orlandi (ASIACRYPT
2012) enhanced the covert model by allowing the honest player to gen-
erate a proof of cheating, checkable by any third party. Their model,
which we call the PVC (publicly verifiable covert) model, offers a very
compelling trade-off.

Asharov and Orlandi (AO) propose a practical protocol in the PVC
model, which, however, relies on a specific expensive oblivious transfer
(OT) protocol incompatible with OT extension. In this work, we improve
the performance of the PVC model by constructing a PVC-compatible
OT extension as well as making several practical improvements to the
AQO protocol. As compared to the state-of-the-art OT extension-based
two-party covert protocol, our PVC protocol adds relatively little: four
signatures and an =~ 67 % wider OT extension matrix. This is a signifi-
cant improvement over the AO protocol, which requires public-key-based
OTs per input bit. We present detailed estimates showing (up to orders
of magnitude) concrete performance improvements over the AO protocol
and a recent malicious protocol.

Keywords: Secure computation - Publicly verifiable covert security

1 Introduction

Two-party secure computation addresses the problem where two parties need to
evaluate a common function f on their inputs while keeping the inputs private.
Several security models for secure computation have been proposed. The most

A.J. Malozemoff—Work partially done while the author was at Bell Labs.

© International Association for Cryptologic Research 2015
T. Iwata and J.H. Cheon (Eds.): ASIACRYPT 2015, Part II, LNCS 9453, pp. 210-235, 2015.
DOI: 10.1007/978-3-662-48800-3_-9



Public Verifiability in the Covert Model (Almost) for Free 211

basic is the semi-honest model, where the parties are expected to follow the pro-
tocol description but must not be able to learn anything about the other party’s
input from the protocol transcript. A much stronger guarantee is provided by
the malicious model, where parties may deviate arbitrarily from the protocol
description. This additional security comes at a cost. Recent garbled circuit-
based protocols [3,17] have an overhead of at least 40x that of their semi-honest
counterparts, and are considerably more complex.

Aumann and Lindell [8] introduced a very practical compromise between
these two models, that of covert security. In the covert security model, a party
can deviate arbitrarily from the protocol description but is caught with a fixed
probability e, called the deterrence factor. In many practical scenarios, this guar-
anteed risk of being caught (likely resulting in loss of business and/or embar-
rassment) is sufficient to deter would-be cheaters. Importantly, covert protocols
are much more efficient and simpler than their malicious counterparts.

Motivating the Publicly Verifiable Covert (PVC) Model. At the same
time, the cheating deterrent introduced by the covert model is relatively weak.
Indeed, a party catching a cheater certainly knows what happened and can
respond accordingly, e.g., by taking their business elsewhere. However, the impact
is largely limited to this, since the honest player cannot credibly accuse the
cheater publicly. If, however, credible public accusation were possible, the deter-
rent for the cheater would be immeasurably greater: suddenly, all the cheater’s
customers would be aware of the cheating and thus any cheating may affect the
cheater’s global customer base.

The addition of credible accusation greatly improves the covert model even in
scenarios with a small number of players, such as those involving the government.
Consider, for example, the setting where two agencies are engaged in secure
computation on their respective classified data. The covert model may often be
insufficient here. Indeed, consider the case where one of the two players deviates
from the protocol, perhaps due to an insider attack. The honest player detects
this, but we are now faced with the problem of identifying the culprit across two
domains, where the communication is greatly restricted due to trust, policy, data
privacy legislation, or all of the above. On the other hand, credible accusation
immediately provides the ability to exclude the honest player from the suspect
list, and focus on tracking the problem within one organization/trust domain,
which is dramatically simpler.

PVC Definition and Protocol. Asharov and Orlandi [7] proposed a security
model, covert with public verifiability, and an associated protocol, addressing
these concerns. At a high level, they proposed that when cheating is detected, the
honest player is able to publish a “certificate of cheating” which can be checked
by any third party. In this work, we abbreviate their model as PVC: publicly
verifiable covert. Their proposed protocol (which we call the “AO protocol”) has
performance similar to the original covert protocol of Aumann and Lindell [8],
with the exception of requiring signed-OT, a special form of oblivious transfer
(OT). Their signed-OT construction is based on the OT of Peikert et al. [18],
and thus requires several expensive public-key operations.
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In this work, we propose several critical performance improvements to the
AO protocol. Our most technically involved contribution is a novel signed-OT
extension protocol which eliminates per-instance public-key operations. Before
discussing our contributions and technical approach in Sect. 1.1, we review the
AO protocol.

The Asharov-Orlandi (AO) PVC Protocol [7]. The AO protocol is based
on the covert construction of Aumann and Lindell [8]. Let P; be the circuit
generator, P, be the evaluator, and f(-,-) be the function to be computed. Recall
the standard garbled circuit (GC) construction in the semi-honest model: P;
constructs a garbling of f and sends it to P, along with the wire labels associated
with its input. The parties then run OT, with P; acting as the sender and
inputting the wire labels associated with P5’s input, and P; acting as the receiver
and inputting as its choice bits the associated bits of its input.

We now adapt this protocol to the PVC setting. Recall the “selective failure”
attack on P’s input wires, where P; can send P» via OT an invalid wire label
for one Py’s two inputs and learn one of P;’s input bits based on whether P,
aborts. To protect against this attack, the parties construct f/(x1,x3,...,x5) =
f(X1’®i€[u] x4), where v is the XOR-tree replication factor, and compute f’
instead of f. Party P; then constructs A\ (the GC replication factor) garblings of
/' and Ps checks that A — 1 of the GCs are correctly constructed, evaluating the
remaining GC to derive the output. The main difficulty of satisfying the PVC
model is ensuring that neither party can improve its odds by aborting (e.g.,
based on the other party’s challenge). For example, if P; could abort whenever
Py’s challenge would reveal P;’s cheating, this would enable P; to cheat without
the risk of generating a proof of cheating. Thus, P, sends the GCs to P, through
a l-out-of-A OT; namely, in the ith input to the OT P; provides openings for
all the GCs but the ith, as well as the input wire labels needed to evaluate GC;.
Party P, inputs a random -y, checks that all GCs besides GC,, are constructed
correctly, and if so, evaluates GC,.

Finally, it is necessary for P, to operate in a wverifiable manner, so that
an honest P, has proof if P; tries to cheat and gets caught. (Note that GCs
guarantee that P, cannot cheat in the GC evaluation at all, so we only worry
about catching P;.) The AO protocol addresses this by having P; sign all its
messages and the parties using signed-OT in place of all standard OTs (including
wire label transfers and GC openings). Informally, the signed-OT functionality
proceeds as follows: rather than the receiver R getting message m; from the
sender S for choice bit b, R receives ((b,my), o), where o is S’s signature of
(b,my). This guarantees that if R detects any cheating by S, it has S’s signature
on an inconsistent set of messages, which can be used as proof of this cheating.
Asharov and Orlandi show that this construction is e-PVC-secure for e = (1 —

/M) (1 — 277+,
1.1 Owur Contribution

Our main contribution is a signed-OT extension protocol built on the recent
malicious OT extension of Asharov et al. [6]. Informally, signed-OT extension
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ensures that (1) a cheating sender S is held accountable in the form of a “cer-
tificate of cheating” that the honest receiver R can generate, and (2) a malicious
R cannot defame an honest S by presenting a false “certificate of cheating”.
Achieving the first goal is fairly straightforward by having S simply sign all its
messages. The challenge is in simultaneously protecting against a malicious R.
In particular, we need to commit R to its particular choices throughout the OT
extension protocol to prevent it from defaming an honest S, while maintaining
that those commitments do not leak any information about R’s choices.

Recall that in the standard OT extension protocol of Ishai et al. [12] (cf.
Fig.3), R constructs a random matrix M, and S obtains a matrix M’ derived
from M, S’s random string s and R’s vector of OT inputs r. The key challenge
of adapting this protocol to the signed variant is to efficiently prevent R from
submitting a malleated M as part of the proof without it ever explicitly revealing
M to S (as this would leak R’s choice bits). We achieve this by observing that
S does in fact learn some of M, as in the OT extension construction some of
the columns of M and M’ are the same (i.e., those corresponding to zero bits of
S’s string s). We prevent R from cheating by having S include in its signature
carefully selected information from the columns in M which S sees. Finally, we
require that R generates each row of M from a seed, and that R’s proof of
cheating includes this seed such that the row rebuilt from the seed is consistent
with the columns included in S’s signature. We show that this makes it infeasible
for R to successfully present an invalid row in the proof of cheating. We describe
this approach in greater detail in Sect. 3!.

As another contribution, we present a new more communication efficient PVC
protocol, building off of the AO protocol; see Sect.4. Our main (simple) trick
there is a careful amendment allowing us to send GC hashes instead of GCs; this
is based on an idea from Goyal et al. [11].

We work in the random oracle model, a slight strengthening of the assump-
tions needed for standard OT extension and free-XOR, two standard secure
computation tools.

Comparison with Existing Approaches. The cost of our protocol is almost
the same as that of the covert protocol of Goyal et al. [11]; the only extra cost
is essentially a ~ 67% wider OT extension matrix and four signatures. This
often negligible additional overhead (versus covert protocols) provides us with
dramatically stronger (than covert) deterrent. We believe that our PVC protocol
could be used in many applications where covert security is insufficient at the
order-of-magnitude cost advantage over previously-needed malicious protocols
or the PVC protocol of Asharov and Orlandi [7]. See Sect. 5 for more details.

Related Work. The only directly related work is that of Asharov and Orlandi [7],
already discussed at length. We also note a recent line of work on secure

! Our construction is also interesting from a theoretical perspective in that we con-
struct signed-OT from any maliciously secure OT protocol, whereas Asharov and
Orlandi [7] build a specific construction based on the Decisional Diffie-Hellman
problem.
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computation with cheaters (including fairness violators) punished by an external
entity, such as the Bitcoin network [4,10,16]. Similarly to the PVC model and our
protocols, this line of work relies on generating proofs of misbehavior which could
be accepted by a third-party authority. However, these works address a different
setting and use different techniques; in particular, they build on maliciously-secure
computation and require the Bitcoin framework.

2 Preliminaries

Let k denote the (computational) security parameter, let p denote the statistical
security parameter, and let 7 denote the field size. When considering concrete
costs, we utilize the security parameter and field size settings for key lengths
recommended by NIST [9]; see Fig. 1. We use PPT to denote “probabilistic poly-
nomial time” and let negl(-) denote a negligible function in its input. We con-
sider two-party protocols between parties P; and P,, and when we use subscript
1 € {1,2} to denote a party we let subscript -i = 3 — ¢ denote the other party.
We use i* € {1,2} to denote a malicious party and -i* = 3 — ¢* to denote the
associated honest party.

Security x FCC ECC

Short 80 1024 160
Long 128 3072 256

Fig. 1. Settings for (computational) security parameter x and field size 7 for various
security settings as recommended by NIST [9]. FCC denotes the setting of 7 when
using finite field cryptography and ECC denotes the setting of 7 when using elliptic
curve cryptography.

We use bold lowercase letters (e.g., x) to denote bitstrings and use the nota-
tion x[i] to denote the ith bit in bitstring x. Likewise, we use bold uppercase

letters (e.g., T) to denote matrices over bits. We use [n] to denote {1,...,n}.
Let “a «— f(x1,x92,...)” denote setting a to be the deterministic output of f
on inputs x1, xa,...; the notation “a«s f(z1,z2,...)” is the same except that

f here is randomized. We abuse notation and let a «—s .S denote selecting a uni-
formly at random from set S.

Our constructions are in the Fpk; model, where each party P; can register a
verification key, and other parties can retrieve P;’s verification key by querying
Fpki on id;. We use the notation Signpi(.) to denote a signature signed by P;’s
secret key, and we assume that this signature can be verified by any third party.
We often leave off the subscript if the identity of the signing party is clear.

2.1 Publicly Verifiable Covert Security

We assume the reader is familiar with the covert security model; however,
we review the less familiar publicly verifiable covert (PVC) security model of
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Asharov and Orlandi [7] below. When we say a protocol is “secure in the covert
model,” we assume it is secure under the strong explicit cheat formulation with
e-deterrent [8, §3.4], for some value of e.

Let 7w be a two-party protocol between parties P; and P, implementing func-
tion f. Following Aumann and Lindell [8], we call m non-halting if for honest P;
and fail-stop adversary? P;, the probability that P; outputs corrupted.; is negli-
gible. Consider the triple of algorithms (7, Blame, Judgment) defined as follows:

— Protocol 7’ is the same as m except that if an honest party P.;- outputs
corrupted;. when executing 7, it computes Cert «— Blame(id;«, key, View_;),
where key denotes the type of cheating detected, and sends Cert to Pj«.

— Algorithm Blame is a deterministic algorithm which takes as input a cheating
identity id, a cheating type key, and a view View of a protocol execution, and
outputs a certificate Cert.

— Algorithm Judgment is a deterministic algorithm which takes as input a cer-
tificate Cert and outputs either an identity id or L.

Before proceeding to the definition, we first introduce some notation. Let
Execy, 4(z) (71, T2;17) denote the transcript (i.e., messages and output) produced
by P; with input xz; and P, with input xs running protocol 7, where adver-
sary A with auxiliary input z can corrupt parties before execution begins. Let
Outputp, (Exec, 4(.) (21, x2;1%)) denote the output of P; on the input transcript.

Definition 1. We say that (7, Blame, Judgment) securely computes f in the
presence of a publicly verifiable covert adversary with e-deterrent (or, is e-PVC-
secure) if the following conditions hold:

1. The protocol 7' is a non-halting and secure realization of f in the covert model
with e-deterrent.

2. (Accountability) For every PPT adversary A corrupting party Pi«, there exists
a negligible function negl(-) such that if Outputp . (Execy a(.)(z1,72;1%)) =
corrupted,. then Pr[Judgment(Cert) = id;+] > 1—negl(x), where Cert «— Blame
(id;=, key, View_;« ) and the probability is over the randomness used in the pro-
tocol execution.

3. (Defamation-free) For every PPT adversary A corrupting party P« and out-
putting a certificate Cert, there exists a negligible function negl(-) such that
Pr [Judgment(Cert) = id_;«] < negl(k), where the probability is over the ran-
domness used by A.

Note that, in particular, the PVC definition implicitly disallows Blame to reveal
P.;»’s input. This is because 7" specifies that Cert is sent to Pj«.

2.2 Signed Oblivious Transfer

A central functionality for constructing PVC protocols is signed oblivious transfer
(signed-OT). Introduced by Asharov and Orlandi [7], we can define the basic

2 A fail-stop adversary is one which acts semi-honestly but may halt at any time.
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signed-OT functionality F as
(L, (mp, Signg, (b, my))) s F((mg, m1, sk), (b, vk)),

where the signature scheme is assumed to be existentially unforgeable under
adaptive chosen message attack (EU-CMA). Namely, the sender S inputs two
messages mg and my along with a signing key sk; the receiver R inputs a choice
bit b and a verification key vk; S receives no output whereas R receives my,
alongside a signature on (b, mp).

However, as in prior work [7], this definition is too strong for our signed-
OT extension construction to satisfy. We introduce a relaxed signed-OT variant
(slightly different from Asharov and Orlandi’s variant [7]) which is tailored for
OT extension and is sufficient for obtaining PVC-security. Essentially, we need
a signature scheme that satisfies a weaker notion than EU-CMA in which the
signing algorithm takes randomness, a portion of which can be controlled by the
adversary®. This is because in our signed-OT extension construction, a malicious
party can influence the randomness used in the signing algorithm. In addition,
we introduce an associated data parameter to the signing algorithm which allows
the signer to specify some additional information unrelated to the message being
signed but used in the signature. In our construction, we use the associated data
to tie the signature to a specific counter (such as a session ID or message ID),
preventing a malicious receiver from “mixing” properly signed values to defame
an honest sender.

Let IT = (Gen, Sign, Verify) be a tuple of PPT algorithms over message space
M, associated data space D, and randomness spaces Ri and Ro, defined as
follows:

1. Gen(1%): On input security parameter 1%, output key pair (vk, sk).

2. Signg (m,a; (r1,72)): On input secret key sk, message m € M, associated data
a € D, and randomness r; € Ry and 9 € R, output signature o = (a,o’).

3. Verify,, (m,o): On input verification key vk, message m € M, and signature
o, output 1 if o is a valid signature for m and 0 otherwise.

For security, we need the condition that unforgeability remains even if the adver-
sary inputs some arbitrary r; or 7. However, the adversary is prevented from
inputting values for both r; and ry. This reflects the fact that in our signed-OT
extension construction, a malicious sender can control only r; and a malicious
receiver can control only r5. We place a further restriction that the choice of rq
must be consistent; namely, all queries to Sign must use the same value for ry.
Looking ahead, this property exactly captures the condition we need (r; cor-
responds to the zero bits in the sender’s column selection string in the OT

3 Our notion is similar to the p-EU-CMRA notion introduced by Asharov and
Orlandi [7]. It differs in that we allow different portions of the randomness to be
corrupted, but not both portions at once. Looking forward, this is needed because
the sender in our signed-OT functionality is only allowed to control some of the
randomness.
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extension), where the choice of r1 is made once and then fixed throughout the
protocol execution.

Towards our definition, we define an oracle Og(:, -, -, ) as follows. Let L be
a special symbol. On input (m,a,r1,72), proceed as follows. If neither r; nor ro
equal L, output L. Otherwise, proceed as follows. If 11 = L and ] has not been
set, set r} uniformly at random; if 7 # L and 7] has not been set, set 7| = ry;
if 1o = L, set r5 uniformly at random; otherwise, set r5 = 7. Finally, output
Signsk(ma a; (T/17 TIQ))

Now, consider the following game Sig—forgei'\_/'ERA(n) for signature scheme IT
between PPT adversary A and PPT challenger C

1. C runs (vk,sk) <sGen(1%) and sends vk to A.

2. A, who has oracle access to Og(-, -, "), outputs a tuple (m, (a,0’)). Let Q
be the set of messages and associated data pairs input to O+, -, -, ).

3. A succeeds if and only if (1) Verify,,(m, (a,0’)) =1 and (2) (m,a) ¢ Q.

Definition 2. Signature scheme IT = (Gen,Sign, Verify) is existentially unforge-
able under adaptive chosen message and partial randomness attack (EU-CMPRA)
if for all PPT adversaries A there exists a negligible function negl(-) such that

Pr[Sig-forgeil\f'gRA (k)] < negl(k).

Functionality fggnedOT

The functionality is parameterized by an EU-CMPRA signature scheme II =
(Gen, Sign, Verify).

Input: The sender inputs messages mo and mi such that |mo| = |m1|, secret
key sk, associated data a, randomness r], and signatures oy and o7. The receiver
inputs choice bit b, verification key vk, and randomness r3. If the sender (resp.,
the receiver) is honest, then i = o5 = o7 = L (resp., r5 = L).

Output: The functionality computes o, = Signg ((b,ms),a; (ri,r3)) for b €
{0,1}. The sender receives no output. The receiver receives the following out-
put based on if the sender is corrupt or not:

— If either o5 # L or o7 # L, the functionality outputs ((b, ms), o7 ) if and only
if Verify,, ((0,mo),00) = Verify,, ((1,m1),07) = 1, where o} + oy if o3 = L;
otherwise it outputs abort.

— If o5 = o7 = L, the functionality outputs ((b,ms), o).

Fig. 2. Signed oblivious transfer functionality.

Signed-OT Functionality. We are now ready to introduce our relaxed signed-
OT functionality. As is our EU-CMPRA signature, it is tailored for OT exten-
sion, and is sufficient for building PVC protocols. This functionality, denoted
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by fggnedOT, is parameterized by an EU-CMPRA signature scheme I7 and is
defined in Fig. 2. As in standard OT, the sender inputs two messages (of equal
length) and the receiver inputs a choice bit. However, in this formulation we allow
a malicious sender to specify some random value r} as well as signatures oj and
0. Likewise, a malicious receiver can specify some random value r3. (Honest
players input L for these values.) If both players are honest, the functionality
computes o « Sign((b,my); (r1,r2)) with uniformly random values r; and ry
and outputs ((b, myp), o) to the receiver. However, if either party is malicious and
specifies some random value, this is fed into the Sign algorithm. Likewise, if the
sender is malicious and specifies some signature o; # L, this value is used as
the signature sent to the receiver.

Note that fggnedOT is nearly identical to the signed-OT functionality pre-
sented by Asharov and Orlandi [7, Functionality 2]; it differs in the use of EU-
CMPRA signature schemes instead of p-EU-CMRA schemes. We also note that it

is straightforward to adapt ]—'ggnedorr to realize OTs with more than two inputs
from the sender. We let (i‘)—]-"ggnedOT denote a 1-out-of-\ variant of fggnedOT.

A Compatible Commitment Scheme. Our construction of an EU-CMPRA
signature scheme (cf. Sect. 3.3) uses a non-interactive commitment scheme, which
we define here. Our definition follows the standard commitment definition, except
we tweak the Com algorithm to take an additional associated data value.

Let ITcom = (ComGen, Com) be a tuple of PPT algorithms over message space
M and associated data space D, defined as follows:

1. ComGen(1*): On input security parameter 1, compute parameters params.
2. Com(m,a;r): On input message m € M, associated data a € D, and ran-
domness r, output commitment com.

A commitment can be opened by revealing the randomness r used to construct
that commitment.

We now define security for our commitment scheme. We only consider the
binding property; namely, the inability for a PPT adversary to open a commit-
ment to some other value than that committed to. Security is the same as for
standard commitment schemes, except we allow the adversary to control the
randomness used in ComGen.

Consider the game Com-bind 4 ;7. (k) for commitment scheme ITcom between
a PPT adversary A and a PPT challenger C, defined as follows.

1. A sends randomness 7 to C.

2. C computes params < ComGen(1*;r) and sends params to A.

3. A outputs (com,mq,a,71,ma,a2,72) and wins if and only if (1) m; # ma,
and (2) com = Com(params,my,ay;71) = Com(params, mq, as;r2).

Definition 3. A commitment scheme Icom = (ComGen, Com) is (computation-
ally) binding if for all PPT adversaries A, there exists a negligible function negl(-)
such that Pr[Com-bind 4 7. (k)] < negl(x).
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3 Signed Oblivious Transfer Extension

We now present our main contribution: an efficient instantiation of signed obliv-
ious transfer (signed-OT) extension. We begin in Sect. 3.1 by describing in detail
the logic of the construction, iteratively building it up from the passively secure
protocol of Ishai et al. [12]. We motivate the need for EU-CMPRA signature
schemes in Sect. 3.2 and present a compatible such scheme in Sect. 3.3. In Sect. 3.4
we present the proof of security.

3.1 Intuition for the Construction

Consider the OT extension protocol of Ishai et al. [12] in Fig. 3, run between
sender S and receiver R. This protocol is secure against a semi-honest R and
malicious S. We show how to convert this protocol into one which satisfies the
fggnedOT functionality defined in Fig.2. For clarity of presentation, we build
on the protocol of Fig. 3 and later discuss how to support a malicious R as well,

based on the malicious OT extension protocol of Asharov et al. [6].

S’s inputs: Message pairs {(x},x})} where each x},x; € {0,1}".

j€[m]’
R’s inputs: Selection bits r = (r1,...,7rm).
Common inputs: Security parameter ; number of base OTs ¢ (= k); hash

function H : N x {0,1}* — {0,1}"; ideal functionality For.

1. Initial OT Phase:

— S computes s s {0, 1}".

— R generates a random m X £ matrix T, where the jth row is t; and the
ith column is t*. Likewise, R generates a r_andom m X £ matrix V, where
the jth row is v; and the ith column is v*.

— S and R run For £ times in parallel, where S acts as the receiver with
input s; in the ith OT and R acts as the sender with input (t*,v") in
the ith OT.

2. OT Extension Phase (Part I):
— TForic [m], Rsets u’ + t' @ v’ ®r, and sends u’ to S.
3. OT Extension Phase (Part II):

— Let Q be the m x ¢ matrix where each column q = (si- (0 ev))®
((1 —s4)-t*). Note that ¢ = (s, -r) d t’ and q; = (r; - s) D t;.

— For j € [m], S computes y? — x? @ H(j,q;) and y;- — x; ®H(j,q; Ds),
and sends y? and yjl- to R.

— For j € [m], R computes x; < y;" @ H(j,t;).

4. Output:

— Soutputs L and R outputs {x;},c(,,-

Fig. 3. Protocol implementing passively secure OT extension [5,12].
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As a first attempt, suppose S simply signs all its messages in Step 3. Recall
that we will use this construction to have P; send the appropriate input wire
labels to P»; namely, P; acts as .S in the OT extension and inputs the wire labels
for P,’s input wires whereas P, acts as R and inputs its input bits. Thus, our
first step is to enhance the protocol in Fig.3 to have S send o’ <s Sign((7, y?))
and o «s Sign((j,yjl.)) in Step 3.

Now, if P5 gets an invalid (with respect to a signed GC sent in the PVC proto-
col of Sect. 4) wire label x;, it can easily construct a certificate Cert which demon-
strates P;’s cheating. Namely, it outputs as its certificate the tuple (b7 7, y?, yjl,
o’,0”,t;) along with the (signed by P; and opened) GC containing the invalid
wire label. A third party can (1) check that ¢’ and ¢ are valid signatures and
(2) compute xll]’» — H(j,t;) @yg and check that X? is indeed an invalid wire label
for the given garbled circuit.

This works for protecting against a malicious P;; however, note that P, can
easily defame an honest Py by outputting t] # t; as part of its certificate (in
which case X?‘ — H(j,t;) @ y? will very likely be an invalid wire label). Thus,
the main difficulty in constructing signed-OT extension is tying P» to its choice
of the matrix T generated in Step 1 of the protocol so it cannot blame an honest
Py by using invalid rows t in its certificate.

Towards this end, consider the following modification. In Step 1, R now
additionally sends commitments to each t; to S, and S signs these and sends
them as part of its messages in Step 3. This prevents R from later changing t;
to blame S. This does not quite work, however, as R could simply commit to an
incorrect t} in the first place! Clearly, R cannot send T to S, as this would leak
R’s selection bits, yet we still need R to somehow be committed to its choice of
the matrix T. The key insight is noting that S does in fact know some of the
bits of T; namely, it knows those columns at which s; = 0 (as it learns t¢ in the
base OT). We can use this information to tie R to its choice of T such that it
cannot later construct some matrix T* # T to defame S.

We do this by enhancing Step 3 as follows. Let I° be the set of indices 3 such
that s; = 0 (recall that s is the random selection bits of S input to the base OTs
in Step 1). Let t;; denote the ith bit in row t;. Note that S knows the values
of t; for i € I°, and could thus compute {(i,?;;)}icro as a “binding” of R’s
choice of t;. By including this information in its signature, S enforces that any
t7 that R tries to use to blame S must match in the given positions. This brings
us closer to our goal; however, there are still two issues that we need to resolve:

1. Sending {(i,t;;)}icr to R leaks s, which allows R to learn both of S’s inputs.
We address this by increasing the number of base OTs in Step 1 and having
S only send some subset I C I° such that |I| = x. Thus, while R learns that
s; = 0 for i € I, by increasing the number of base OTs enough, R does not
have enough information to recover s.

2. R can still flip one bit in t; and pass the check with high probability. We
fix this by having each t; be generated by a seed k;. Namely, R computes
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t; < G(k;) in Step 1, where G is a random oracle®. Then, when blaming S, R
must reveal k; instead of t;. Thus, with high probability a malicious polytime
R cannot find some k7 # k; such that the Hamming distance between G(k7)
and G(k;) is small enough that the above check succeeds.

Finally, note that we have thus far considered the passively secure OT exten-
sion protocol, which is insecure against a malicious R. We thus utilize the mali-
ciously secure OT extension protocol of Asharov et al. [6]. The only way R can
cheat in passively secure OT extension is by using different r values in Step 2.
Asharov et al. add a “consistency check” phase between Steps 1 and 2 to enforce
that r is consistent. This does not affect our construction, and thus we can
include this step to complete the protocol®. We refer the reader to Asharov
et al. [6] for the justification and intuition of this step; as far as this work is
concerned we can treat this consistency check as a “black box”.

Observation 1 (OT Extension Matrix Size). We set ¢, the number of base
OTs, so that leaking k bits to R does not allow it to recover s and thus both
messages. We do this as follows. Let ' be the number of base OTs required in
malicious OT extension [6]. We set £ = '+ k and require that when S chooses s,
it first fizes k randomly selected bits to zero before randomly setting the rest of
the bits. Now, when S reveals I to R, the number of unknown bits in s is equal to
¢ and thus the security of the Asharov et al. scheme carries over to our setting.
Asharov et al. set ¢! =~ 1.6k, and thus us using K extra columns results in an
~ 67 % matrix size increase.

Observation 2 (Batching Signatures). The main computational cost of our
protocol is the signatures sent by S in Step 4. This cost can easily be brought to
negligible, as follows. Recall that when using our protocol for transferring the
input wire labels of a GC using free-XOR we can optimize the communication
slightly by setting xg-) — H(j,q;) and yjl- — x? ®A® H(j,q; Ds), where A is
the free-XOR global offset. Thus, S only needs to send (and sign) yjl-.

The most important idea, however, is to batch messages across OT executions
and have S sign (and send) only one signature which includes all the necessary
information across many OTs. Namely, using the free-XOR optimization above,
S signs and sends the tuple (I, {yjl-,{tj,i}ig}je[m}) to R. We note that the j
values need not be sent as they are implied by the protocol execution.

Figure4 gives the full protocol for signed-OT extension. For clarity of presen-
tation, this description, and the following proof of security, does not take into
account the optimizations described in Observation 2.

4 Note that G cannot be a pseudorandom generator because the input to G is not
necessarily uniform as the inputs may be adversarially chosen by R.

5 The reason this does not affect our construction is because the consistency check
phase only involves R sending messages to S. A malicious R cannot defame S because
we are only enforcing that R’s value r is consistent.
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irXj
R’s inputs: Selection bits r = (71, ...,y ); verification key vk.

Common inputs: Security parameter k; statistical security parameter p; number
of base OTs ¢; number of check functions y; random oracle G : {0,1}* — {0,1}%;
random oracle H : N x {0,1}* — {0,1}"; random oracle H' : {0,1}"™ — {0,1}";
EU-CMA signature scheme IT = (KeyGen’, Sign’, Verify'); ideal functionality For.

S’s inputs: Messages {(xJ xl)}je[m] where xJ,x} € {0,1}"; signing key sk.

1. Initial OT Phase:

— S computes s € {0,1}" as follows. Let I be a set of indices, where |I| = &.
For i € I, S sets s; = 0. Then, S fills the remaining bits at random.

— For j € [m], R computes k; <—s{0,1}" and sets t; + G(k;).

— Let T be an m x £ matrix, where the jth row is t; and the ith column
is t*. Let V be an m x £ matrix, where the jth row is v; and the ith
column is v'. S and R run For /¢ times in parallel, where S acts as the
recetver with input s; and R acts as the sender with input (t*, v*).

2. OT Extension Phase (Part I):

— TForic[f, Rsets u’ + t" ®v' ®r, and sends u’ to S.
3. Consistency check of r:

— Same as in maliciously-secure OT extension protocol of Asharov et al. [6].
4. OT Extension Phase (Part II):

— Let Q be the m x ¢ matrix where each column qd=(si-(wav))e
((1 —s4) - t*). Note that q" = (s; - ) ® t* and q; = (rj - s) D t;.

— Let I be the set defined in Step 1, and let ¢;; denote the ¢th bit in row
t;. S sends I to R, who checks that |I| = k and otherwise aborts.

— For j € [m], S computes y(; — x(]? ® H(j,q;) and yj < x]l &)
H(j,q; ® s) and signatures o} < Signl, ((I,j7 y?, {tj’i}iel)), and o} «+
Sign;k ((17 j7 yjl', {tj,i}iel))7 and sends (.]7 Y?a YJ1'7 {tjvi}iep 0'3'7 U;,) to R.

— For j € [m], R computes x; -y’ & H(j,t;).

5. Output:

— Soutputs L; R outputs {x;, (4,75,k;, I, ¥}, ¥}, {tjitierr 05 07) }],E[m].

Fig. 4. Signed-OT extension, based on the OT extension protocol of Asharov et al. [6].

3.2 Towards a Proof of Security

Before presenting the security proof, we first motivate the need for EU-CMPRA
signature schemes. As mentioned in Sect. 3.1, ideally we could just have S sign
everything using an EU-CMA signature scheme; however, this presents opportu-
nities for R to defame S. Thus, we need to enforce that R cannot output an x?-
value different from the one sent by S. We do so by using a binding commitment
scheme ITcom = (ComGen, Com), and show that the messages sent by S in Step

4 are essentially binding commitments to the underlying x? values.

We define Icom as follows, where G : {0,1}" — {0,1}" and H : Nx {0,1}* —
{0,1}" are random oracles, and £ > k.
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1. ComGen(1%): choose set I C [¢] uniformly at random subject to |I| = k;
output params « I.

2. Com(params,m, j;r): On input parameters I « params, message m, counter
j, and randomness r € {0,1}", proceed as follows. Compute t « G(r), set
com « (j,m® H(j,t),1,{t;i},.;), and output com.

We make the assumption that given I, one can derive the randomness input
to ComGen. (We use this when defining our EU-CMPRA signature scheme below,
which uses a generic binding commitment scheme). We can satisfy this by simply
letting the randomness input to ComGen be the set I.

In our signed-OT extension protocol, the set I chosen by S is used as params
and the k; values chosen by R are used as the randomness to Com. The com-
mitment value com is exactly the message signed and sent by S in Step 4. Thus,
ignoring the signatures for now, we have an OT extension protocol that binds
S to its xg values, and thus prevents a malicious R from defaming an honest S.
Adding in the signatures (cf. Sect. 3.3) gives us an EU-CMPRA signature scheme.
Namely, S is tied to its messages due to the signatures and R is prevented from
“changing” the messages to defame S due to the binding property of the com-
mitment scheme.

We now prove that the commitment scheme described above is binding. We
actually prove something stronger than what is required in our protocol. Namely,
we prove that an adversary who can control both random values still cannot
win, whereas when we use this commitment scheme in our signed-OT extension
protocol, only one of the two random values can be controlled by any one party.

Theorem 1. Protocol Ilcom is binding according to Definition 3.

Proof. Adversary A needs to come up with choices of I, m, m’, j, j/, r, and
v’ such that (j,m @ H(j,t),I,{t;},c;) = (', m" ®© H(j',t'),I,{t}},c; ), where
t — G(r) and t' — G(r'). Clearly, j = j'. Thus, A must find t and t’ such
that ¢; = t; for all i € I. However, by the property that G is a random oracle,
the values t and t’ are distributed uniformly at random in {0,1}". Thus, the
probability that A finds two bitstrings t and t’ that match in  bits is negligible,
regardless of the choice of I. |

3.3 An EU-CMPRA Signature Scheme

We now show that the messages sent by .S in Step 4 form an EU-CMPRA signature
scheme. Let IT' = (Gen’,Sign’, Verify’) be an EU-CMA signature scheme and
Icom = (ComGen, Com) be a commitment scheme satisfying Definition 3 (e.g.,
the scheme presented in Sect. 3.2). Consider the scheme IT = (Gen, Sign, Verify)
defined as follows.

1. Gen(1%): On input 1%, run (vk,sk) «s Gen’(1%) and output (vk, sk).

2. Signg (m, j; (rf,r3)): On input message m € {0,1}", counter j € N, and
randomness r} and r3, proceed as follows. Compute params «— ComGen(1%;r})
and com « Com(params, m, j;r}). Next, choose m’«+s{0,1}" and compute
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com’ « Com(params,m’, j;r3)%. Output o « (4, params, r}, com, com’, Sign,
((params, com)), Sign., ((params, com’))).

3. Verifypk(m, 0): On input message m and signature o, parse o as (j, params,r,
com’,com” ¢’, ¢"), and output 1 if and only if (1) Com(params, m;r) = com’,
(2) Verify,, ((params,com’),o’) = 1, and (3) Verify,, ((params,com”),o”) = 1;
otherwise output 0.

As explained in Sect. 3.2, this signature scheme exactly captures the behavior
of S in our signed-OT extension protocol. We now prove that this is indeed an
EU-CMPRA signature scheme.

Theorem 2. Given an EU-CMA signature scheme II' = (Gen',Sign’, Verify’)
and a commitment scheme Ilcom = (ComGen, Com) secure according to Defini-
tion 3, then IT = (Gen, Sign, Verify) described above is an EU-CMPRA signature
scheme.

Proof. Let A be a PPT adversary attacking IT. We construct an adversary B
attacking IT’. Adversary B receives vk from the challenger and initializes A
with vk as input. Let (m,j,ri,r5) be the input of A to its signing oracle.
Adversary B emulates the execution of A’s signing oracle as follows: it com-
putes params «— ComGen(1%;r}) and com «— Com(params, m, j;r3), chooses m’
uniformly at random and computes com’ «— Com(params, m’, j;r3), constructs
o « (4, params, r3, com, com’, Sign, ((params, com)), Sign, ((params, com’))), and
sends o to A. After each of A’s queries, B stores (m, j) in set Q4 and stores all
the messages it sent to its signing oracle in set Qp.

Eventually, A outputs (m, (j,c’)) as its forgery. Adversary B checks that
Verify,, (m, (4,0')) = 1 and that (m,j) & Q4. If not, B outputs 0. Otherwise, B
parses o’ as (params,r,com’,com” ¢’ , ¢’") and checks that com’ ¢ Qg. If so, it
outputs (com’, o’); otherwise it outputs 0.

Note that Sig—forgei'\,/'ERA(n) = 1 and Sig—forge%',v'HA/(n) = 0 if and only if
Verify,, (m, (4, params, r,com’,com” 0’,¢"”)) = 1 and (m,j) ¢ Q4 but com’ €
Op. Fix some (m, (j, params, r,comy,comy/,01,01/)) such that this is the case.
Thus it holds that com; € Q. This implies that B queried Sign’ on comy,
which means that A queried its signing oracle on some (m’,j’,r3,r}), where
m’ # m, and received back (j’, params,r’,comy, comys, o1/, 09/). However, this
implies that Com(params,comy;r) = m and Com(params,comy;r’) = m’. Thus,
Pr[Sig—forgei’Y‘ERA(n)] = Pr[Sig—forge%’}/'IIA(/i)] + Pr[Com-bindg .. ()] for some
PPT adversary B’. We now bound Pr[Com-bindg . (#)].

Adversary B’ runs almost exactly like B. On the first query (m, j,r},r2) by
A, it sets r = r} if ri # L and otherwise it sets r uniformly at random; B’ then
sends r to C, receiving back params.

Let (my, ji,r%,r3) and (mg, jo,r%, 13 ) be the two queries made by A result-
ing in a common commitment value. Let (j;, params,ry,com;,com}, o1,07/) and
(jo2, params, ra, comy, comb, o1, 09/) be the corresponding signatures resulting

5 This extra commitment on a random message is needed for our signed-OT extension
proof.
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from A’s queries. Adversary B’ sends (coml,ml,jl,rs,mg,jg,r;) to its chal-
lenger and wins with probability one, contradicting the security of the commit-
ment scheme. Thus, we have that Pr[Com-bindy 1. (k)] < negl(x), completing
the proof. |

3.4 Proof of Security

We are now ready to prove the security of our signed-OT extension protocol.
Most of the proof complexity is hidden in the proofs of the associated EU-CMPRA
signature scheme and commitment scheme. Thus, the signed-OT extension sim-
ulator is relatively straightforward, and mostly involves parsing the output of
fggnedOT and passing the correct values to the adversary. The analysis follows
almost exactly that of Asharov et al. [6] and thus we elide most of the details.

Theorem 3. Let II = (Gen,Sign, Verify) be the EU-CMPRA signature scheme
in Sect. 3.3. Then the protocol in F'ig. / is a secure realization of }"SlijgnedOT n
the Fot-hybrid model.

Proof. We separately consider the case where S is malicious and R is malicious.
The case where the parties are either both honest or both malicious is straight-
forward.

Malicious S . Let A be a PPT adversary corrupting S. We construct a simulator
S as follows.

1. The simulator S acts as an honest R would in Step 1, extracting s from A’s
input to For.

2. The simulator S acts as an honest R would in Steps 2 and 3.

3. Let I and (j, y?,yjl-,{tj)i}iel,a;-,o,aéyl), for j € [m], be the messages sent
by A in Step 4. If any of these are invalid, S sends abort to fSlgnedOT and
simulates R aborting, outputting whatever 4 outputs.

4. For j € [m], proceed as follows. The simulator S extracts xQ — y? ®H(j,q;)
and xj < yi @ H(j,q; ®s), constructs o, — (4, [, k;, (I, (] yo. 1, {t] itier))s
(I, (4, yjl_b I A{tji}icr)s 0 p: 051 p) for b € {0,1}, and sends xj7
and o7 to f51gnedOT7 receiving back either ((b,my), ;) or abort.

5. If S received abort in any of the above iterations, it simulates R aborting, out-
putting whatever A outputs. Otherw1se for j € [m] S parses ;5 as (4,1, kj,
(I, (G, % LAt }ier) (1, (4, yj b It Yier))s Oy 0 1 _p), constructs mess-
age 0 — (j,y?,yjl-, {tiiticr> 950,05 1), and acts as an honest R would when
receiving messages I and {0;}, elm]-

6. The simulator S outputs whatever 4 outputs.

1
7 95,00

It is easy to see that this protocol perfectly simulates a malicious sender since S

acts exactly as an honest R would (beyond feeding the appropriate messages to
T

fsignedOT)'

Malicious R . Let A be a PPT adversary corrupting R. We construct a simulator

S as follows.
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1. The simulator S acts as an honest S would in Step 1, extracting matrices T
and V through S’s For inputs, and thus the values {k; }je[m]'

2. The simulator S uses the values extracted above to extract selection bits r
after receiving the u’ values from A in Step 2.

3. The simulator S acts as an honest .S would in Step 3.

4. Let IV be the indices at which s (generated in Step 1) is zero, and let I C IY be
a set of size k. For j € [m], S sends r;, vk, and I to FL, a0, receiving back
((Tja X;j )7 Oj4,r; ); S parses ojr; as (Jv Iv r, (Ia (.77 Cr;y Ia {tj»i}iej))v (Iv (Jv Cl—r;,
I7 {tjﬁi}ie[))V J;‘,rj ) 0—;’71—” )

5. In Step 4, S sends I and (j, o, 1, {tj,i'};1c5 050,05 1), for j € [m], to A.

6. The simulator S outputs whatever A outputs.

The analysis is almost exactly that of the malicious receiver proof in the con-
struction of Asharov et al. [6]; we thus give an informal security argument here
and refer the reader to the aforementioned work for the full details.

A malicious R has two main attacks: using inconsistent choices of its selection
bits r and trying to cheat in the signature creation in Step 4. This latter attack
is prevented by the security of our EU-CMPRA signature scheme. The former is
prevented by the consistency check in Step 3. Namely, Asharov et al. show that
the consistency check guarantees that: (1) most inputs are consistent with some
string r, and (2) the number of inconsistent inputs is small and thus allow R
to only learn a small number of bits of s. Thus, for specific choices of ¢ and pu,
the probability of a malicious R cheating is negligible. Asharov et al. provide
concrete parameters for various settings of the security parameter [6, §3.2]; let
¢ denote the number of base OTs used in their protocol. Now, in our protocol
we set £ = ¢/ + k; S leaks k bits of s when revealing the set I in Step 4, and
so is left with ¢/ unknown bits of s. Thus, the security argument presented by
Asharov et al. carries over into our setting. |

4 Our Complete PVC Protocol

As noted above, the main technical challenge of the PVC model is in the signed-
OT construction and model definitions. The AO protocol in the FggnedOT—
hybrid model is relatively straightforward: the natural (but careful) combina-
tion of taking a non-halting covert protocol, having the GC generator P; sign
appropriate messages, and replacing OTs with signed-OTs works. In particular,
our signed-OT extension can be naturally modified and used in place of the
signed-OT primitive in the AO protocol.

In this section we present a new PVC protocol based on signed-OT extension.
Our protocol is similar to the AO protocol in the fggnedOT—hybrid model, but
with applying several simple yet very effective optimizations, resulting in a much
lower communication cost.

We present our protocol by starting off with the AO protocol and pointing
out the differences. We presented the AO protocol intuition in the Introduction;
see Fig.5 for its formal description; due to lack of space, we omit the (straight-
forward) Blame and Judgment algorithms. In presenting our changes, we sketch
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Private inputs: P; has input x; € {0,1}" and P has input x2 € {0,1}".
Common inputs: Security parameter k; XOR-tree replication factor v; gar-
bled circuit replication factor A; circuit C(-,-); commitment scheme Ilcom =
(Com, Open); ideal functionalities ]:slijgnedOT and G)‘]:s]ijgnedOT for EU-CMPRA
signature scheme I7.

1. Py and P define a new circuit C’(x1,x3,...,x}5) = C(x1,Dicp x5). Let
Wi, ..., Wy denote the input wires of x1 and let w,{(i—1)v, ..., Wntir denote
the input wires of x5. v .

2. For i € [v—1], P, chooses x3 = {0, 1}". P> sets x5 < (€D,¢(, 1) X2) ® Xa.

3. For j € [\,i€[n+wvn],and b € {0,1}, Pi chooses k{Un,+mb +s{0,1}".

4. P; and P, run vn instantiations of fggnedorr, where in the ith execution

P acts as the sender with input (k}unh oll -- |\kwn+1 05 k11Un+7. - ||k«)/3n+, 1)

and P, acts as the receiver with input x [i/n] [i mod v]. If P»’s output is aborty,
it outputs abort;.

5. For j € [A], P1 constructs garbled circuit GC; of circuit C’, where for i € [n+
vn] the keys for input wire w; are kf%o and kful_’l. Py sends (GCj, Sign(GC;))
to P, who checks that the signature is valid; if not, P» outputs abort;.

6. For i € [n] and j € [}, Pi chooses b¢=s{0,1}, computes com-
mitments (c},, 5,07, o) ¢ Com(kfu ) and (¢, l,ofu o) <sCom(k], ,), and
sends (Cuy,, b,Slgn(cW v)) and (c wl’b,Slgn( wisb )) to Pz, who checks that the
signatures are valid; if not, P> outputs abort;.

7. P and P> run (i\)']:sgijgnedOT with P; as the sender inputting

Wewp o Yician gy pemivmoerony v ticpn gy pemperony Womntier)

as its jth input and P> as the receiver inputting ~ <s [\] as its input; if P»’s

output is aborty, it outputs abort;.

8. P> does the following:
- For j € [)\}\{fy} i € [n], and b € {0,1}, P> checks that Open(c’ i b
o), ,) = kj, ,. If not, P sets key < InvalidDecommitment and moves to
Step 9.

— For j € [N\{v}, P> uses the input wire keys received from the signed-OT
in Step 7 to check that GCj is a correctly garbled circuit. If not, P» sets
key <— InvalidCircuit and moves to Step 9.

— For j € [N\{7}, P2 checks that the keys received in the signed-OT
in Step 4 match the keys sent by P in Step 7. If not, P sets key <«
SelectiveOTAttack and moves to Step 9.

9. If any of the above checks fail, P, computes Cert + Blame(idy, key, Views),
publishes Cert, and outputs corrupted;. Otherwise, P, uses the keys to com-
pute C’(x1,%3,...,x5) and outputs the result.

Fig. 5. The AO PVC protocol [7, Protocol 3].

the improvement each of them brings. Thus, we start by reviewing the commu-
nication cost of the AO protocol.

Communication Cost of the AO Protocol. Using state-of-the-art optimiza-
tions [13,19,20], the size of each GC sent in Step 5 is 2k|G¢|, where |G¢| is
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the number of non-XOR gates in circuit C' (note that |G¢| = |Ger| for cir-
cuit C" generated in Step 1 since the XOR-tree only adds XOR gates to the
circuit, which are “free” [13]). Let 7 be the field size (in bits), v the XOR-
tree replication factor, A the GC replication factor, and n the length of the
inputs, and assume that each signature is of length 7 and the commitment and
decommitment values are of length k. Using the signed-OT instantiations of
Asharov and Orlandi [7, Protocols 1 and 2], we get a total communication cost
of 7(Tvn 4+ 11) 4+ 2 kvn + £(26|Ge| + 7) + 2nA\(k+7) + T(3+ 22+ 11(A — 1)) +
AR(2(n+vn)(A—1) +2n(A — 1) +n).

As an example, consider the secure computation of AES(m, k), where P
inputs message m € {0, 1}128 and P inputs key k € {0, 1}128, and suppose we
set both the GC replication factor A and the XOR-tree replication factor v to 3,
giving a cheating probability of e = 1/2. Letting x = 128 and 7 = 256, we have
a total communication cost of 9.3 Mbit (where we assume that the AES circuit
has 9,100 non-XOR gates [15]).

Our Modifications. We make the following modifications to the AO protocol:

— In Step 6, instead of using a commitment scheme we can use a hash function.
This saves on communication in Step 7 as P; no longer needs to send the
openings {Ofup,b} to the commitments in the signed-OT, and is secure when
treating H as a random oracle since the keys are generated uniformly at
random and thus it is infeasible for P, to guess the committed values. The
total savings are 2n(A — 1)k bits; in our example, this saves us 196 kbit.

— In Step 3, we use a random seed to generate the input wire keys. Namely,
for all j € [A] we compute s;«s{0,1}", and compute the input wire keys
for circuit j as k{UI,OHkZUth~-~||ki)n+m70\|k{un+m,l — G(s;), where G is a
pseudorandom generator. Now, in the 1-out-of-\ signed-OT in Step 7 we can
just send the seeds to the input wire keys rather than the input wire keys
themselves. The total savings are 2(n+vn)(A — 1)k —n(A — 1) Ak bits; in our
example, this saves us 688 kbit. 4

— In Step 5, P; generates each GC; from a seed sl,. (This idea was first put
forward by Goyal et al. [11].) That is, s’ specifies the randomness used
to construct all wire keys except for the input wire keys which were set in
Step 3. Instead of P; sending each GC to P, in Step 5, P, instead sends a
commitment ¢k < H(GC;). Now, in Step 7, P; can send the appropriate
seeds {SJGC}je[)\]\{j} in the jth input of the 1-out-of-\ signed-OT to allow P,
to check the correctness of the check GCs. We then add an additional step
where, if the checks pass, P; sends GC, (along with a signature on GC,) to
P,, who can check whether H(GC,) = c/,. Note that this does not violate
the security conditions required by the PVC model because P» catches any
cheating of P; before the evaluation circuit is sent. If P; tries to cheat here,
P; already has a commitment to the circuit so can detect any cheating. The
total savings are (A — 1)2k|G¢c| — A7 — Ak(A — 1) bits; in our example, this
saves us 4.6 Mbit.
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Private inputs: P has input x; € {0,1}"; P has input x2 € {0,1}".
Common inputs: Security parameter x; XOR-tree replication factor v; garbled
circuit replication factor A; circuit C(-,-); hash function H : {0,1}" — {0,1}";
pseudorandom generator G : {0,1}" — {0,1}*" ™" jdeal functionalities
]—'ggnedOT and (i)—]—'ggnedOT for EU-CMPRA signature scheme 7.

1. Pi and P» define a new circuit C’(x1,x3,...,X5) = C(x1, By x5). Let
wi,. .., w, denote the input wires of x; and let wp4(i—1)v, - .., Wntir denote
the input wires of x5. A _

2. For i € [v— 1], P chooses x5 <=5 {0,1}" and sets x5 < (D,¢(, 1) X2) ® x2.

3. For j € [A], Pi chooses s;+s{0,1}" and computes kZul,O”kZul,l” el
Km0l 0 G(s5)-

4. Py and P> run vn instantiations of .Fggnedorr, where in the ith execution

n+i,0 ‘ Hkﬁ; levn,Jri,«,lll“' ”k/\ )

Wy 44,1
and P, acts as the receiver with input x2WM [t mod v]. If P;’s output is abort;,

it outputs abort;.

5. For j € [\, Pi computes sk +${0,1}" and uses s} as the randomness
used to generate garbled circuit GCj, where for ¢ € [n + vn| the keys for
input wire w; are k{UiYO and kii,l. Py computes cl,, + H(GC;) and sends

P, acts as the sender with input (k.

n+i,07

(ckq, Sign(cl,y)) to P2, who checks that the signature is valid; if not, P»

outputs abort;.

6. Fori € [n] and j € [X], Py computes ¢, , + H(kJ, ;) andcl, , + H(k], ,),
and sends (Cuw,,b, Sign(Cw; b)), (Cy, 5 Sig'n(cwl‘g)) to Py, where b<s{0,1}. P,
checks that the signatures are valid; if not, P2 outputs abort; .

7. Py and P> run (?)—fggnedo-r with P as the sender and P» as the receiver.
P, uses y<s[)] as its input and Py uses ({s,SGc e\ {51+ {kii,i,xl[i]}ig[”])
as its jth input. If P;’s output is abort;, it outputs abort;.

8. P, does the following:

— For j € [N\{y}, i€ [n], and b € {0,1}, P> checks that H(k}, ,)=¢cJ, ,.
If not, P> sets key < InvalidDecommitment and moves to Step 12.

— Forj € [A\{7}, P> uses s; and s{}C received from (?)—fggnedOT to check
that GC; is a correctly garbled circuit and that H(GC;) = clyq. If not,
Ps sets key < InvalidCircuit and moves to Step 12.

— TFor j € \\{}, P checks that the keys received in Fliymeaor match
the keys generated by s; received in Step 7. If not, P> sets key <
SelectiveOTAttack and moves to Step 12.

9. Let ((,my),0) be Py’s output of (i‘)—fggnedo—r. P, sends (v,0) to Pi, who
checks that the signature is valid and otherwise outputs aborts.

10. Py sends (GC,,Sign(GC5)) to P2, who checks that the signature is valid; if
not, P» outputs abort;.
11. P, checks that H(GC,) = cl. If not, P> sets key < InvalidCircuitHash and

moves to Step 12.

12. If any of the above checks fail, P, computes Cert < Blame(id1, key, Views),
publishes Cert, and outputs corrupted,. Otherwise, P uses the keys to com-
pute C’(x1,%3,...,x5) and outputs the result.

Fig. 6. Our PVC protocol.
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Our PVC Protocol and Its Cost. Fig.6 presents our optimized protocol.
For simplicity, we sign each message in Steps 5 and 6 separately; however, we
note that we can group all the messages in a given step into a single signature
(cf. Observation 2). The Blame and Judgment algorithms are straightforward
and similar to the AO protocol (Blame outputs the relevant parts of the view,
including the cheater’s signatures, and Judgment checks the signatures). We
prove the following theorem in the full version.

Theorem 4. Let A < p(k) and v < p(k), for some polynomial p(-), be parame-
ters to the protocol, and set € = (1—1/)\)(1—27""1). Let f be a PPT function, let
H be a random oracle, let ‘FinIgnedOT and (i‘) _stiIgnedOT be the (%) -signed-OT

and (i‘) -signed-OT ideal functionalities, respectively, where I is an EU-CMPRA
signature scheme. Then the protocol in Fig. 6 securely computes f in the pres-
ence of (1) an e-PVC adversary corrupting Py and (2) a malicious adversary
corrupting Ps.

Using our AES circuit example, we find that the total communication cost is
now 2.5 Mbit, plus the cost of signed-OT /signed-OT extension. In this particu-
lar example, signed-OT requires around 1 Mbit and signed-OT extension requires
around 1.4 Mbit. However, as we show below, as the number of OTs required
grows, signed-OT extension quickly outperforms signed-OT, both in communi-
cation and computation.

5 Comparison with Prior Work

We now compare our signed-OT extension construction (including optimizations,
and in particular, the signature batching of Observation 2) with the signed-OT
protocol of Asharov and Orlandi [7], along with a comparison of existing covert
and malicious protocols and our PVC protocol using both signed-OT and signed-
OT extension. All comparisons are done through calculating the number of bits
transferred and estimated running times based on the relative cost of public-key
versus symmetric-key operations. We use a very conservative (low-end) estimate
on the public/symmetric speed ratio. We note that this ratio does vary greatly
across platforms, being much higher on low power mobile devices, which often
employ a weak CPU but have hardware AES support. For such platforms our
numbers would be even better.

Recall that 7 is the field size (in bits), v is the XOR-tree replication factor,
A is the GC replication factor, n is the input length, and we assume that each
signature is of length 7.

Communication Cost. We first focus on the communication cost of the two
protocols. The signed-OT protocol of Asharov and Orlandi [7] is based on the
maliciously secure OT protocol of Peikert et al. [18], and inherits similar costs.
Namely, the communication cost of executing ¢ OT's each of length n is (6¢+11)7
if n < 7, and (6¢ + 11)7 + 2nf if n > 7. Signed-OT requires the additional
communication of a signature per OT, adding an additional 7¢ bits. In the
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underlying secure computation protocol we have that n = Ak, where X is the
garbled circuit replication factor. For simplicity, we set A = 3 (which along with
an XOR-tree replication factor of three equates to a deterrence factor of € = 1/2)
and thus n = 3k. Thus, the total communication cost of executing t signed-OT's
is 7(7t + 11) bits if 3x < 7 and 7(7t 4+ 11) + 6kt bits otherwise.

On the other hand, the cost of signed-OT extension for t OTs is (6¢+11)7 +
20t + 0t + pllog € + 4plk + klog £ + (n + k)t + 7. Asharov et al. [6, §3.2] present
concrete choices of p and ¢ for various security parameters. However, in our
setting we need to increase ¢ by s bits. Thus, let ¢ be the particular choice
of ¢ specified by Asharov et al. We then set £ = ¢/ + k. Thus, for short secu-
rity parameter we set £ = 133 + 80 = 213 and pu = 3, and for long security
parameter we set £ = 190 + 128 = 318 and g = 2. Thus, the total com-
munication cost of executing t signed-OTs when using signed-OT extension is
(664 12)T + (3£ + n+ k)t + pllogl + 4plk + rklogl bits.

1,000 OTs 10,000 OTs
Security sOT sOT-ext Improvement sOT sOT-ext Improvement
Short (FFC) 7,179 2,539 2.8% 71,691 11,305 6.3x
Short (ECC) 1,602 1,398 1.1x 16,002 10,164 1.6x
Long (FFC) 21,538 7,694 2.8% 215,074 20,888 10.3x
Long (ECC) 2,563 2,288 1.1x 25,603 15,482 1.7x

Fig. 7. Communication cost (in kbits) of transferring the input wire labels for P> when
using signed-OT (sOT) versus signed-OT extension (sOT-ext) for 1,000 and 10,000
OTs.

Figure 7 presents a comparison of the communication cost of both approaches
when executing 1,000 and 10,000 OTs, for various keylength settings and under-
lying public-key cryptosystems. We see improvements from 1.1-10.3x, depending
on the number of OTs, the underlying public-key cryptosystem, and the size of
the security parameter. Note that for a smaller number of OTs (such as 100),
signed-OT is more efficient, which makes sense due to the overhead of OT exten-
sion and the need to compute the base OTs. However, as the number of OTs
grows, we see that signed-OT extension is superior across the board.

Computational Cost. We now look at the computational cost of the two pro-
tocols. Let £ denote the cost of a public-key operation (we assume exponentia-
tions and signing take the same amount of time), and let ¢ denote the cost of
a symmetric-key operation (where we let ¢ denote the cost of operating over k
bits; e.g., hashing a 2k-bit value costs 2¢). We assume all other operations are
“free”. This is obviously a very coarse analysis; however, it gives a general idea
of the performance characteristics of the two approaches.

The cost of executing ¢ OTs on n-bit messages is (144 + 12)¢ if n < 7 and
(140 4-12)¢§ + 202¢ if n > 7. Signed-OT requires an additional 2§ operations
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(for signing and verifying). We again set n = 3k, and thus the cost of executing
t signed-OTs is (16t + 12)¢ if 3k < 7 and (16t + 12)& 4 6t otherwise.

The cost of our signed-OT extension protocol for ¢ OTs (where we assume
t > k and we hash the input prior to signing in Step 4) is %t( + (146 + 12)¢ +
26%( + 6€u%§—|— 2log ¢ + 2t“‘"%( + 2£. As above, we set £ = 213 and p = 3 for
short security parameter, £ = 318 and p = 2 for long security parameter, and
n = 3k. Thus, the cost of executing ¢ signed-OTs is (14£ 4+ 14)€+((5 + 6u)£
+8)t¢ + 2logé(.

1,000 OTs 10,000 OTs
Security sOT sOT-ext Improvement sOT sOT-ext Improvement
Short (FFC) 16.0 3.1 5.1x 160.0 3.8 42.4x
Short (ECC) 53 1.1 4.9 533 1.7 30.9x
Long (FFC) 144.1 40.2 3.6% 1440.1  40.7 35.4 %
Long (ECC) 14.4 4.1 3.5x 144.1 4.5 31.9%

Fig. 8. Computation cost (in millions of “time units”) of transferring the input wire
labels for P> when using signed-OT (sOT) versus signed-OT extension (sOT-ext) for
1,000 and 10,000 OTs. We assume symmetric-key operations take 1 “time unit”, FFC
(resp., ECC) operations take 1000 (resp., 333) “time units” for the short security
parameter, and FFC (resp., ECC) operations take 9000 (resp., 900) “time units” for
the long security parameter [1].

Figure 8 presents a comparison of the computational cost of both approaches
when executing 1,000 and 10,000 OTs, for various keylength settings and under-
lying public-key cryptosystems. Here we see that regardless of the number of
OTs and public-key cryptosystem used, signed-OT extension is (often much)
more efficient, and as the number of OTs increases so does this improvement.
For as few as 1,000 OTs we already see a 3.5-5.1x improvement, and for 10,000
OTs we see a 30.9-42.4x improvement.

Comparing Covert, PVC, and Malicious Protocols. We now compare
the computation cost of our PVC protocol in Fig. 6, using both signed-OT and
signed-OT extension, with the covert protocol of Goyal et al. [11] and the mali-
cious protocol of Lindell [17]".

Figure 9 presents a comparison of the computation cost of our protocol using
both signed-OT (Ours’®T) and signed-OT extension (Ours*®T-°x*) as well as
comparisons to the Goyal et al. protocol (GMS) and Lindell protocol (Lin). Due
to lack of space, the detailed cost formulas appear in the full version. We fix
k=128, A = v = 3 (giving a deterrence factor of € = 1/2), and assume the

7 Lindell’s malicious protocol can also be adapted into a covert protocol; however, we
found that the computation cost is much more than that of Goyal et al., at least for
deterrence factor 1/2.
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f # inputs # gates Ourgl(\)l"ls“-exc Olcl)rl;:%sg-:xt Oursg(i)nT-ext
16384-bit Comp. 16,384 32,229 0.85-0.73 17.1-86.7 357.0-1887.2
Hamming 16000 16,000 97,175 0.90-0.79 11.0-67.0 224.7-1408.4
16x16 Matrix Mult. 8192 4,186,368 1.00-0.98 1.2-3.1 14.2-54.3
1024-bit Sum 1,024 2,977 0.71-0.61 6.7-10.2 166.6-258.2
1024-bit Mult. 1,024 6,371,746 1.00-0.99 1.0-1.2 10.1-13.9
1024-bit RSA 1,024 15,149,856,895 1.00-1.00 1.0-1.0 9.6-9.6

Fig. 9. Ratio of computation cost of various secure computation protocols with our
signed-OT extension construction, using a deterrence factor of 1/2 for the covert and
PVC protocols. GMS denotes the covert protocol of Goyal et al. [11], Ours*°™ denotes
the optimized Asharov-Orlandi protocol run using signed-OT, Ours®°T-*** denotes
the same protocol using signed-OT extension, and Lin denotes Lindell’s malicious
protocol [17]. We let f denote the function being computed, # inputs denote the
number of input bits required as input by P, and # gates denote the number of
non-XOR gates in the resulting circuit. All circuit information is taken from the PCF
compiler [14, Table5]. We report each ratio as a range; the first number uses £ = 125
as the cost of public-key operations and the second number uses £ = 1250, where we
assume a symmetric-key operation costs ¢ = 1.

use of elliptic curve cryptography (and thus 7 = 256). We expect public-key
operations to take between 125-1250x more than symmetric-key operations,
depending on implementation details, whether one uses AES-NI, etc. This range
is a very conservative estimate using the Crypto++ benchmark [2], experiments
using OpenSSL, and estimated ratios of running times between finite field and
elliptic curve cryptography [1].

When comparing against GMS, we find that Ours is slightly more
expensive, due almost entirely to the larger number of base OTs in the signed-OT
extension. We note that in practice, however, a deterrence factor of 1/2 may not
be sufficient for a covert protocol but may be sufficient for a PVC protocol, due
to the latter’s ability to “name-and-shame” the perpetrator. When increasing
the deterrence factor for the covert protocol to € = .9, the cost ratios favor
Ours®OT-ext | For example, for 16x16 matrix multiplication, the ratio becomes
3.60-3.53%, depending on the cost of public-key operations (versus 1.00-0.98x).

Comparing Ours®*©T-*t with Ours®°T, we find that the former is 1.0-86.7x
more efficient, depending largely on the characteristics of the underlying circuit.
For circuits with a large number of inputs but a relatively small number of gates
(e.g., 16384-bit Comp., Hamming 16000, and 1024-bit Sum) this difference is
greatest, which makes sense, as the cost of the OT operations dominates. The
circuits for which the ratio is around 1.0 (e.g., 1024-bit RSA) are those that have
a huge number of gates compared to the number of inputs, and thus the cost of
processing the GC far outweighs the cost of signed-OT /signed-OT extension.

Finally, comparing Ours’®T-*** with Lin, the former is 9.6-1887.2x more
efficient, again depending in a large part on the characteristics of the circuit.
We see that for circuits with a large number of inputs this difference is starkest;

sOT-ext
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e.g., for the Hamming 16000 circuit, we get an improvement of 224.7-1408.4x.
The reason we see such large improvements for these circuits is that Lin requires
cut-and-choose oblivious transfer, which cannot take advantage of OT extension.
Thus, the number of public-key operations is huge compared to the circuit size,
and this cost has a large impact on the overall running time. Note, however, that
even for circuits where the number of gates dominates, we still see a relatively
significant improvement (e.g., 14.2-54.3x for 16 x16 Matrix Mult.). These results
demonstrate that for settings where public shaming is enough of a deterrent from
cheating, Ours®*©T-*** presents a better choice than malicious protocols.
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Abstract. Extractability, or “knowledge,” assumptions have recently
gained popularity in the cryptographic community, leading to the study
of primitives such as extractable one-way functions, extractable hash
functions, succinct non-interactive arguments of knowledge (SNARKS),
and (public-coin) differing-inputs obfuscation ((PC-)diO), and spurring
the development of a wide spectrum of new applications relying on
these primitives. For most of these applications, it is required that the
extractability assumption holds even in the presence of attackers receiv-
ing some auziliary information that is sampled from some fized efficiently
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We show that, assuming the existence of public-coin collision-resistant
hash functions, there exists an efficient distributions Z such that either
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To achieve our results, we develop a “succinct punctured program” tech-
nique, mirroring the powerful punctured program technique of Sahai and
Waters (STOC’14), and present several other applications of this new
technique. In particular, we construct succinct perfect zero knowledge
SNARGs and give a universal instantiation of random oracles in full-
domain hash applications, based on PC-diO.

As a final contribution, we demonstrate that even in the absence of
auziliary input, care must be taken when making use of extractability
assumptions. We show that (standard) di©O w.r.t. any distribution D over
programs and bounded-length auxiliary input is directly implied by any
obfuscator that satisfies the weaker indistinguishability obfuscation (iQ)
security notion and diO for a slightly modified distribution D’ of pro-
grams (of slightly greater size) and no auxiliary input. As a consequence,
we directly obtain negative results for (standard) diO in the absence of
auxiliary input.

1 Introduction

Extractability Assumptions. Extractability, or “knowledge,” assumptions (such
as the “knowledge-of-exponent” assumption), have recently gained in popu-
larity, leading to the study of primitives such as extractable one-way func-
tions, extractable hash-functions, SNARKS (succinct non-interactive arguments
of knowledge), and differing-inputs obfuscation:

— Extractable OWF: An extractable family of one-way (resp. collision-
resistant) functions [14,15,27], is a family of one-way (resp. collision-resistant)
functions {f;} such that any attacker who outputs an element y in the range
of a randomly chosen function f; given the index i must “know” a pre-image
x of y (i.e., fi(x) = y). This is formalized by requiring for every adversary A,
the existence of an “extractor” £ that (with overwhelming probability) given
the view of A outputs a pre-image = whenever A outputs an element y in the
range of the function.

For example, the “knowledge-of-exponent” assumption of Damgard [15] stip-
ulates the existence of a particular such extractable one-way function.

— SNARKS: Succinct non-interactive arguments of knowledge (SNARKSs)
[5,32,35] are communication-efficient (i.e., “short” or “succinct”) arguments
for NP with the property that if a prover generates an accepting (short) proof,
it must “know” a corresponding (potentially long) witness for the statement
proved, and this witness can be efficiently “extracted” out from the prover.

— Differing-Inputs Obfuscation: [1,2,10] A differing-inputs obfuscator O for
program-pair distribution D is an efficient procedure which ensures if any
efficient attacker A can distinguish obfuscations O(C) and O(Cs) of programs
C1, Cs generated via D given the randomness 7 used in sampling, then it must
“know” an input z such that Cy(z) # Cz(z), and this input can be efficiently
“extracted” from .A.
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A recently proposed (weaker) variant known as public-coin differing-inputs
obfuscation [30] additionally provides the randomness used to sample the pro-
grams (Cp, C1) < D to the extraction algorithm (and to the attacker A).

The above primitives have proven extremely useful in constructing cryptographic
tools for which instantiations under complexity-theoretic hardness assumptions
are not known (e.g., [1,5,10,16,24,27,30]).

Extraction with (Distribution-Specific) Auxiliary Input. In all of these applica-
tions, we require a notion of an auxiliary-input extractable one-way function
[14,27], where both the attacker and the extractor may receive an auxiliary
input. The strongest formulation requires extractability in the presence of an
arbitrary auxiliary input. Yet, as informally discussed already in the original
work by Hada and Tanaka [27], extractability w.r.t. an arbitrary auxiliary input
is an “overly strong” (or in the language of [27], “unreasonable”) assumption.
Indeed, a recent result of Bitansky, Canetti, Rosen and Paneth [7] (formalizing
earlier intuitions from [5,27]) demonstrates that assuming the existence of indis-
tinguishability obfuscators for the class of polynomial-size circuits' there cannot
exist auxiliary-input extractable one-way functions that remain secure for an
arbitrary auxiliary input.

However, for most of the above applications, we actually do not require
extractability to hold w.r.t. an arbitrary auxiliary input. Rather, as proposed
by Bitansky et al. [5,6], it often suffices to consider extractability with respect
to specific distributions Z of auxiliary input.? More precisely, it would suf-
fice to show that for every desired output length ¢(-) and distribution Z there
exists a function family Fz (which, in particular, may be tailored for Z) such
that Fz is a family of extractable one-way (or collision-resistant) functions
{0,1}* — {0,1}**) with respect to Z. In fact, for some of these results (e.g.,
[5,6]), it suffices to just assume that extraction works for just for the uniform
distribution.

In contrast, the result of [7] can be interpreted as saying that (assuming :0),
there do not exist extractable one-way functions with respect to every distribu-
tion of auxiliary input: That is, for every candidate extractable one-way function
family F, there exists some distribution Zx of auxiliary input that breaks it.

! The notion of indistinguishability obfuscation [2] requires that obfuscations O(Ch)
and O(C2) of any two equivalent circuits C1 and C> (i.e., whose outputs agree on
all inputs) from some class C are computationally indistinguishable. A candidate
construction for general-purpose indistinguishability obfuscation was recently given
by Garg et al. [18].

As far as we know, the only exceptions are in the context of zero-knowledge simula-
tion, where the extractor is used in the simulation (as opposed to being used as part
of areduction), and we require simulation w.r.t. arbitrary auxiliary inputs. Neverthe-
less, as pointed out in the works on zero-knowledge [26,27], to acheive “plain” zero-
knowledge [3,25] (where the verifier does not receive any auxiliary input), weaker
“bounded” auxiliary input assumptions suffice.

[
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Our Results. In this paper, we show limitations of extractability primitives with
respect to distribution-specific auxiliary input (assuming the existence of public-
coin collision-resistant hash functions (CRHF) [29]). Our main result shows a
conflict between public-coin differing-inputs obfuscation for Turing machines [30]
and extractable one-way functions.

Theorem 1 (Main Theorem — Informal). Assume the existence of public-
coin collision-resistant hash functions. Then for every polynomial £, there exists
an efficiently computable distribution Z such that one of the following two prim-
itives does not exist:

— eatractable one-way functions {0, 1} — {0, 1Y5) w.rt. auziliary input from Z.
— public-coin differing-inputs obfuscation for Turing machines.

By combining our main theorem with results from [5,30], we obtain the
following corollary:

Theorem 2 (Informal). Assume the existence of public-coin CRHF and fully
homomorphic encryption with decryption in NC'.3 Then there exists an effi-
ciently computable distribution Z such that one of the following two primitives
does not exist:

- SNARKs w.r.t. auziliary input from Z.
— public-coin differing-inputs obfuscation for NC' circuits.

To prove our results, we develop a new proof technique, which we refer to as the
“succinct punctured program” technique, extending the “punctured program”
paradigm of Sahai and Waters [34]; see Sect. 1.1 for more details. This technique
has several other interesting applications, as we discuss in Sect. 1.3.

As a final contribution, we demonstrate that even in the absence of auwil-
iary input, care must be taken when making use of extractability assumptions.
Specifically, we show that differing-inputs obfuscation (di©) for any distribu-
tion D of programs and bounded-length auxiliary inputs, is directly implied
by any obfuscator that satisfies a weaker indistinguishability obfuscation (:O)
security notion (which is not an extractability assumption) and di©O security
for a related distribution D’ of programs (of slightly greater size) which does
not contain auxiliary input. Thus, negative results ruling out existence of di©
with bounded-length auxiliary input directly imply negative results for diO in a
setting without auxiliary input.

Theorem 3 (Informal). Let D be a distribution over pairs of programs and
(-bounded auziliary input information P x P x {0,1}¢. There exists diO with
respect to D if there exists an obfuscator satisfying 1O in addition to diQO with
respect to a modified distribution D' over P’ x P’ for slightly enriched program
class P’, and no auxiliary input.

3 As is the case for nearly all existing FHE constructions (e.g., [13,21]).
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Our transformation applies to a recent result of Garg et al. [20], which shows
that based on a new assumption (pertaining to special-purpose obfuscation of
Turing machines) general-purpose di@ w.r.t. auxiliary input cannot exist, by
constructing a distribution over circuits and bounded-length auxiliary inputs for
which no obfuscator can be diO-secure. Our resulting conclusion is that, assum-
ing such special-purpose obfuscation exists, then general-purpose di© cannot
exist, even in the absence of auxiliary input.

We view this as evidence that public-coin differing inputs may be the “right”
approach definitionally, as restrictions on auxiliary input without regard to the
programs themselves will not suffice.

Interpretation of Our Results. Our results suggest that one must take care
when making extractability assumptions, even in the presence of specific distri-
butions of auxiliary inputs, and in certain cases even in the absence of auxiliary
input. In particular, we must develop a way to distinguish “good” distributions of
instances and auxiliary inputs (for which extractability assumptions may make
sense) and “bad” ones (for which extractability assumptions are unlikely to hold).
As mentioned above, for some applications of extractability assumptions, it in
fact suffices to consider a particularly simple distribution of auxiliary inputs—
namely the uniform distribution.* We emphasize that our results do not present
any limitations of extractable one-way functions in the presence of uniform aux-
iliary input, and as such, this still seems like a plausible assumption.

Comparison to [20]. An interesting subsequent® work of Garg et al. [19,20]
contains a related study of differing-inputs obfuscation. In [20], the authors pro-
pose a new “special-purpose” circuit obfuscation assumption, and demonstrate
based on this assumption an auxiliary input distribution (whose size grows with
the desired circuit size of circuits to be obfuscated) for which general-purpose
diO cannot exist. Using similar techniques of hashing and obfuscating Turing
machines as in the current work, they further conclude that if the new obfusca-
tion assumption holds also for Turing machines, then the “bad” auxiliary input
distribution can have bounded length (irrespective of the circuit size).

Garg et al. [20] show the “special-purpose” obfuscation assumption is a fal-
sifiable assumption (in the sense of [33]) and is implied by virtual black-box
obfuscation for the relevant restricted class of programs, but plausibility of the
notion in relation to other primitives is otherwise unknown. In contrast, our
results provide a direct relation between existing, studied topics (namely, diQO,
EOWFs, and SNARKS). Even in the case that the special-purpose obfuscation
assumption does hold, our primary results provide conclusions for public-coin
diO, whereas Garg et al. [20] consider (stronger) standard diO, with respect to
auxiliary input.

* Note that this is not the case for all applications; e.g. [11,23,26,27] require consid-
ering more complicated distributions.

5 A version of our paper with Theorems 1 and 2 for (standard) differing-inputs obfus-
cation in the place of public-coin diO has been on ePrint since October 2013 [12].
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And, utilizing our final observation (which occurred subsequent to [20]), we
show that based on their same special-purpose obfuscation assumption for Turing
machines, we can in fact rule out general-purpose diO for circuits even in the
absence of auxiliary input.

1.1 Proof Techniques

To explain our techniques, let us first explain earlier arguments against the
plausibility of extractable one-way functions with auxiliary input. For simplicity
of notation, we focus on extractable one-way function over {0,1}* — {0,1}* (as
opposed to over {0,1}* — {0,1}**) for some polynomial £), but emphasize that
the approach described directly extends to the more general setting.

Early Intuitions. As mentioned above, already the original work of Hada and
Tanaka [27], which introduced auxiliary input extractable one-way functions
(EOWFSs) (for the specific case of exponentiation), argued the “unreasonable-
ness” of such functions, reasoning informally that the auxiliary input could con-
tain a program that evaluates the function, and thus a corresponding extractor
must be able to “reverse-engineer” any such program. Bitansky et al. [5] made
this idea more explicit: Given some candidate EOWF family F, consider the
distribution Zz over auxiliary input formed by “obfuscating” a program IT°(:)
for uniformly chosen s, where IT%(-) takes as input a function index e from the
alleged EOWF family F = {f;}, applies a pseudorandom function (PRF) with
hardcoded seed s to the index ¢, and then outputs the evaluation f;(PRF(7)).
Now, consider an attacker A who, given an index 4, simply runs the obfuscated
program to obtain a “random” point in the range of f;. If it were possible to
obfuscate IT° in a “virtual black-box (VBB)” way (as in [2]), then it easily fol-
lows that any extractor £ for this particular attacker A can invert f;. Intuitively,
the VBB-obfuscated program hides the PRF seed s (revealing, in essence, only
black-box access to II®), and so if £ can successfully invert f; on A’s output
fi(PRF4(i)) on a pseudorandom input PRF(7), he must also be able to invert
for a truly random input. Formally, given an index i and a random point ¥ in
the image of f;, we can “program” the output of IT%(i) to simply be y, and thus
FE will be forced to invert y.

The problem with this argument is that (as shown by Barak et al. [2]), for
large classes of functions VBB program obfuscation simply does not exist.

The Work of [7] and the “Punctured Program” Paradigm of [34]. Intriguingly,
Bitansky, Canetti, Rosen and Paneth [7] show that by using a particular PRF
and instead relying on indistinguishability obfuscation, the above argument still
applies! To do so, they rely on the powerful “punctured-program” paradigm of
Sahai and Waters [34] (and the closely related work of Hohenberger, Sahai and
Waters [28] on “instantiating random oracles”). Roughly speaking, the punc-
tured program paradigm shows that if we use indistinguishability obfuscation
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to obfuscate a (function of) a special kind of “puncturable” PRF® [8,11,31],
we can still “program” the output of the program on one input (which was
used in [28,34] to show various applications of indistinguishability obfuscation).
Bitansky et al. [7] show that by using this approach, then from any alleged
extractor £ we can construct a one-way function inverter Inv by “program-
ming” the output of the program IT° at the input 7 with the challenge value y.
More explicitly, mirroring [28,34], they consider a hybrid experiment where £ is
executed with fake (but indistinguishable) auxiliary input, formed by obfuscat-
ing a “punctured” variant II;, of the program /I* that contains an é-punctured
PRF seed s* (enabling evaluation of PRF(j) for any j # ¢) and directly outputs
the hardcoded value y := f;(PRF;(4)) on input 4: indistinguishability of this aux-
iliary input follows by the security of indistinguishability obfuscation since the
programs II7, and II° are equivalent when y = f;(PRF;(i)) = I1°(i). In a sec-
ond hybrid experiment, the “correct” hardcoded value y is replaced by a random
evaluation f;(u) for uniform wu; here, indistinguishability of the auxiliary inputs
follows directly by the security of the punctured PRF. Finally, by indistinguisha-
bility of the three distributions of auxiliary input in the three experiments, it
must be that £ can extract an inverse to y with non-negligible probability in each
hybrid; but, in the final experiment this implies the ability to invert a random
evaluation, breaking one-wayness of the EOWF.

The Problem: Dependence on F. Note that in the above approach, the auxiliary
input distribution is selected as a function of the family F = {f;} of (alleged)
extractable one-way functions. Indeed, the obfuscated program IT® must be able
to evaluate f; given j. One may attempt to mitigate this situation by instead
obfuscating a universal circuit that takes as input both F and the index j,
and appropriately evaluates f;. But here still the size of the universal circuit
must be greater than the running time of f;, and thus such an auxiliary input
distribution would only rule out EOWFs with a-priori bounded running time.
This does not suffice for what we aim to achieve: in particular, it still leaves open
the possibility that for every distribution of auxiliary inputs, there may exist a
family of extractable one-way functions that remains secure for that particular
auxiliary input distribution (although the running time of the extractable one-
way function needs to be greater than the length of the auxiliary input).

A First Idea: Using Turing Machine Obfuscators. At first sight, it would appear
this problem could be solved if we could obfuscate Turing machines. Namely, by
obfuscating a universal Turing machine in the place of a universal circuit in the
construction above, the resulting program I7° would depend only on the size of
the PRF seed s, and not on the runtime of f; € F.

But there is a catch. To rely on the punctured program paradigm, we must be
able to obfuscate the program I7° in such a way that the result is indistinguishable

5 That is, a PRF where we can surgically remove one point in the domain of the
PRF, keeping the rest of the PRF intact, and yet, even if we are given the seed of
the punctured PRF, the value of the original PRF on the surgically removed point
remains computationally indistinguishable from random.
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from an obfuscation of a related “punctured” program II? ; in particular, the
size of the obfuscation must be at least as large as |II], |. Whereas the size of 11°
is now bounded by a polynomial in the size of the PRF seed s, the description of
this punctured program must specify a punctured input ¢ (corresponding to an
index of the candidate EOWF F) and hardcoded output value y, and hence must
grow with the size of F. We thus run into a similar wall: even with obfuscation
of Turing machines, the resulting auxiliary input distribution Z would only rule
out EOWF with a-priori bounded index length.

Our “Succinct Punctured Program” Technique. To deal with this issue, we
develop a “succinct punctured program” technique. That is, we show how to
make the size of the obfuscation be independent of the length of the input, while
still retaining its usability as an obfuscator. The idea is two-fold: First, we modify
the program II° to hash the input to the PRF, using a collision-resistant hash
function h. That is, we now consider a program II"*(j) = f;(PRFs(h(j))).
Second, we make use of differing-inputs obfuscation, as opposed to just indis-
tinguishability obfuscation. Specifically, our constructed auxiliary input distri-
bution Z will sample a uniform s and a random hash function h (from some
appropriate collection of collision-resistant hash functions) and then output a
differing-inputs obfuscation of 1T

To prove that this “universal” distribution Z over auxiliary input breaks all
alleged extractable one-way functions over {0,1}¥ — {0,1}*, we define a one-
way function inverter Inv just as before, except that we now feed the EOWF
extractor £ the obfuscation of the “punctured” variant II; h’s which contains a

PRF seed punctured at point k(7). The program H iy proceeds just as IT"*
except on all inputs j such that h(j) is equal to this special value h(i); for those
inputs it simply outputs the hardcoded value y. (Note that the index i is no
longer needed to specify the function H ) —rather, just its hash A(i)—but is
included for notational convenience). As before consider a hybrid experiment
where v is selected as y := IT"*(4).

Whereas before the punctured program was equivalent to the original, and
thus indistinguishability of auxiliary inputs in the different experiments followed
by the definition of 1nd1st1ngulshab1hty obfuscation, here it is no longer the
case that if y = II™*(i), then II; ;JS is equivalent to IT"*—in fact, they may
differ on many points. More precisely, the programs may differ in all points
j such that h(j) = h(3), but j # i (since f; and f; may differ on the input
PRF,(h(i))). Thus, we can no longer rely on indistinguishability obfuscation to
provide indistinguishability of these two hybrids.

We resolve this issue by relying differing-inputs obfuscation instead of just
indistinguishability obfuscation. Intuitively, if obfuscations of I1* and I1; h’s an
be distinguished when y is set to IT™*(), then we can efficiently recover some
input j where the two programs differ. But, by construction, this must be some
point j for which h(j) = h(i) (or else the two program are the same), and j # i
(since we chose the hardcoded value y = IT"*(i) to be consistent with I1™* on
input 4. Thus, if the obfuscations can be distinguished, we can find a collision in
h, contradicting its collision resistance.
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To formalize this argument using just public-coin diQ, we require that h is
a public-coin collision-resistant hash function [29].

1.2 Removing Auxiliary Input in diO

The notion of public-coin di© is weaker than “general” (not necessarily public-
coin) diO in two aspects: (1) the programs My, M; are sampled using only public
randomness, and (2) we consider only a very specific auxiliary input that is given
to the attacker—namely the randomness of the sampling procedure.

In this section, we explore another natural restriction of di© where we simply
disallow auxiliary input, but allow for “private” sampling of My, M;. We show
that “bad side information” cannot be circumvented simply by simply disallow-
ing auxiliary input, but rather such information can appear in the input-output
behavior of the programs to be obfuscated.

More precisely, we show that for any distribution D over P x P x {0,1}¢ of
programs P and bounded-length auxiliary input, the existence of diQ w.r.t. D is
directly implied by the existence of any indistinguishability obfuscator (¢OQ) that
is diO-secure for a slightly enriched distribution of programs D’ over P’ x P/,
without auxiliary input.

Intuitively, this transformation works by embedding the “bad auxiliary input”
into the input-output behavior of the circuits to be obfuscated themselves. That
is, the new distribution D’ is formed by sampling first a triple (Py, P, z) of pro-
grams and auxiliary input from the original distribution D, and then instead
considering the tweaked programs Fy, P{ that have a special additional input
x* (denoted later as “mode = %”) for which P§(z*) = Pf(z*) is defined to be
z. This introduces no new differing inputs to the original program pair Py, P,
but now there is no hope of preventing the adversary from learning z without
sacrificing correctness of the obfuscation scheme.

A technical challenge arises in the security reduction, however, in which we
must modify the obfuscation of the z-embedded program P} to “look like” an
obfuscation of the original program P,. Interestingly, this issue is solved by mak-
ing use of a second layer of obfuscation, and is where the O security of the
obfuscator is required. We refer the reader to the full version of this work for
details.

1.3 Other Applications of the “Succinct Punctured Program”
Technique

As mentioned above, the “punctured program” paradigm of [34] has been used
in multiple applications (e.g., [9,17,28,34]). Many of them rely on punctured
programs in an essentially identical way to the approach described above, and
in particular follow the same hybrids within the security proof. Furthermore, for
some of these applications, there are significant gains in making the obfuscation
succinct (i.e., independent of the input size of the obfuscated program). Thus, for
these applications, if we instead rely on public-coin differing-inputs obfuscation
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(and the existence of public-coin collision-resistant hash functions), by using our
succinct punctured program technique, we can obtain significant improvements.
For instance, relying on the same approach as above, we can show based on these
assumptions:

— “Succinct” Perfect Zero-Knowledge Non-Interactive Universal Argument Sys-
tem (with communication complexity k¢ for every €), by relying on the non-
succinct Perfect NIZK construction of [34].

— A universal instantiation of Random Oracles, for which the Full Domain Hash
(FDH) signature paradigm [4] is (selectively) secure for every trapdoor (one-
to-one) function (if hashing not only the message but also the index of the
trapdoor function), by relying on the results of [28] showing how to provide a
trapdoor-function specific instantiation of the random oracle in the FDH.”

1.4 Overview of Paper

We focus in this extended abstract on the primary result: the conflict between
public-coin differing inputs obfuscation and extractable OWFs (and SNARKS).
Further preliminaries, applications of our succinct punctured programs tech-
nique, and our transformation removing auxiliary input in differing-inputs obfus-
cation are deferred to the full version [12].

2 Preliminaries

2.1 Public-Coin Differing-Inputs Obfuscation

The notion of public-coin differing-inputs obfuscation (PC-di©Q) was introduced
by Ishai et al. [30] as a refinement of (standard) differing-inputs obfuscation [2]
to exclude certain cases whose feasibility has been called into question. (Note
that we also consider “standard” differing-inputs obfuscation as described in
Sect. 1.2. For a full treatment of the notion and our result, we refer the reader
to the full version of this work [12]).

We now present the PC-di© definition of [30], focusing only on Turing
machine obfuscation; the definition easily extends also to circuits.

Definition 1 (Public-Coin Differing-Inputs Sampler for TMs). An effi-
cient non-uniform sampling algorithm Samp = {Samp,} is called a public-coin
differing inputs sampler for the parameterized collection of TMs M = {My} if
the output of Samp,, is always a pair of Turing machines (Mo, M) € My x My,

" That is, [28] shows that for every trapdoor one-to-one function, there exists some way
to instantiate the random oracle so that the resulting scheme is secure. In contrast,
our results shows that there exists a single instantiation that works no matter what
the trapdoor function is.
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such that |Mp| = |M1| and for every efficient non-uniform algorithm A = { Ay}
there exists a negligible function € such that for all k € N,

Pr [ {0,113 (Mo, My) = Sampy (r): (1) = A (r)
- (Mo(z) # M) A (steps(Mo, z) = steps(Ml,x))} < e(k).

Definition 2 (Public-Coin Differing-Inputs Obfuscator for TMs).
A uniform PPT algorithm O is a public-coin differing-inputs obfuscator for the
collection M = { My} if the following requirements hold:

— Correctness: For every k € N, every M € My, and every x, we have that
Pr[M — O1%, M) : M(z) = M(z)] = 1.

- Security: For every public-coin differing-inputs sampler Samp = {Samp,}
for the ensemble M, every efficient non-uniform distinguishing algorithm D =
{Dy}, there exists a negligible function € such that for all k,

|PI‘[T — {07 1}*§ (M07M1) - Sampk(r); M — O(lkaMO) :Dk(Tv M) =
Pr[r — {0,1}*; (Mo, My) «— Samp,,(r); M — O(1%, My) :Dy(r, M
2.2 Extractable One-Way Functions

We present a non-uniform version of the definition, in which both one-wayness
and extractability are with respect to non-uniform polynomial-time adversaries.

Definition 3 (Z-Auxiliary-Input EOWF).  Let ¢,m be polynomially
bounded length functions. An efficiently computable family of functions

F={fi 0.1} = {0,1'® | i e {0,1}", k N},

associated with an efficient probabilistic key sampler Kz, is a Z-auxiliary-input
extractable one-way function if it satisfies:
— One-wayness: For non-uniform poly-time A and sufficiently large k € N,
Prlz «— 2 i — Kr(1%); o« {0,1}%; 2’ — A(, fi(2); 2)
: fi(a!) = fi(w)] < negl(k).

— Extractability: For any non-uniform polynomial-time adversary A, there
exists a mon-uniform polynomial-time extractor £ such that, for sufficiently
large security parameter k € N:

Pr(z« Z4; i« Kr(1%): y — A(i; 2); o' — E(i; 2)
(3w st fi(@) =y A fi(@) # y] < negl(k).
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2.3 Succinct Non-Interactive Arguments of Knowledge (SNARK3S)

We focus attention to publicly verifiable succinct arguments. We consider succinct
non-interactive arguments of knowledge (SNARKS) with adaptive soundness in
Sect. 3.2, and consider the case of specific distributional auxiliary input.

Definition 4 (Z-Auxiliary Input Adaptive SNARK). A triple of algo-
rithms (CRSGen, Prove, Verify) is a publicly verifiable, adaptively sound succinct
non-interactive argument of knowledge (SNARK) for the relation R if the fol-
lowing conditions are satisfied for security parameter k:

— Completeness: For any (z,w) € R,
Pr(crs < CRSGen(1%); 7 « Prove(x, w, crs) : Verify(x, 7, crs) = 1] = 1.

In addition, Prove(x,w,crs) runs in time poly(k, |y|,t).

— Succinctness: The length of the proof © output by Prove(z,w,crs), as well
as the running time of Verify(z, m, crs), is bounded by p(k + | X|), where p is
a universal polynomial that does not depend on R. In addition, CRSGen(1¥)
runs in time poly(k): in particular, crs is of length poly(k).

— Adaptive Proof of Knowledge: For any mon-uniform polynomial-size
prover P* there exists a non-uniform polynomial-size extractor Ep«, such that
for all sufficiently large k € N and auxiliary input z «— Z, it holds that

Pr[z « Z; crs « CRSGen(1%); (x,7) < P*(z,crs);
(x,w) «— Ep=(z,crs) : Verify(crs,z,m) = 1 Aw ¢R(x)] < negl(k).

In the full version of this work, we obtain as an application of our succinct
programs technique zero-knowledge (ZK) succinct non-interactive arguments
(SNARGSs), without the extraction property. We refer the reader to [12] for
a full treatment.

2.4 Puncturable PRFs

Our result makes use of puncturable PRFs; which are PRFs with an extra capa-
bility to generate keys that allow one to evaluate the function on all bit strings
of a certain length, except for any polynomial-size set of inputs. We focus on the
simple case of puncturing PRFs at a single point: that is, given a punctured key
k* with respect to input z, one can efficiently evaluate the PRF at all points
except x, whose evaluation remains pseudorandom. We refer the reader to [34]
for a formal definition.

As observed in [8,11,31], the GGM tree-based PRF construction [22] yields
puncturable PRF's, based on any one-way function.

Theorem 4 ([8,11,31]). If one-way functions exist, then for all efficiently com-
putable m/ (k) and €(k), there exists a puncturable PRF family that maps m/(k)
bits to L(k) bits, such that the size of a punctured key is O(m/ (k) - £(k)).
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3 Public-Coin Differing-Inputs Obfuscation
or Extractable One-Way Functions

In this section, we present our main result: a conflict between extractable one-
way functions (EOWF) w.r.t. a particular distribution of auxiliary information
and public-coin differing-inputs obfuscation (“PC—diO”) (for Turing Machines).

3.1 From PC-d:iO to Impossibility of Z-Auxiliary-Input EOWF

We demonstrate a bounded polynomial-time uniformly samplable distribution Z
(with bounded poly-size output length) and a public-coin differing-inputs sam-
pler for Turing Machines D (over TM x TM) such that if there exists public-coin
differing-inputs obfuscation for Turing machines (and, in particular, for the pro-
gram sampler D), and there exist public-coin collision-resistant hash functions
(CRHF), then there do not exist extractable one-way functions (EOWF) w.r.t.
auxiliary information sampled from distribution Z. In our construction, Z con-
sists of an obfuscated Turing machine.

We emphasize that we provide a single distribution Z of auxiliary inputs for
which all candidate EOWF families F with given output length will fail. This
is in contrast to the result of [7], which show for each candidate family F that
there exists a tailored distribution Z (whose size grows with |F|) for which F
will fail.

Theorem 5. For every polynomial £, there exists an efficient, uniformly sam-
plable distribution Z such that, assuming the existence of public-coin collision-
resistant hash functions and public-coin differing-inputs obfuscation for Turing

machines, then there cannot exist Z-auxiliary-input extractable one-way func-
tions {f; : {0,1}* — {0,1}¢®)},

Proof. We construct an adversary A and desired distribution Z on auxiliary
inputs, such that for any alleged EOWF family F, there cannot exist an efficient
extractor corresponding to A given auxiliary input from Z (assuming public-coin
CRHFs and PC — diO).

The Universal Adversary A. We consider a universal PPT adversary A that,
given (i,z) € {0,1}PoY(*) x {0, 1}™*) parses z as a Turing machine and returns
z(1). Note that in our setting, 7 corresponds to the index of the selected function
fi € F, and (looking ahead) the auxiliary input z will contain an obfuscated
program.

The Auxiliary Input Distribution Z. Let PRF = {PRF, : {0,1}"®*) —
{0,1}*}5e40,13+ be a puncturable pseudorandom function family, and H = {H;}
a public-coin collision-resistant hash function family with % : {0,1}* — {0, 1}™(*%)
for each h € Hy. (Note that by Theorem 4, punctured PRF's for these parameters
exist based on OWF's, which are implied by CRHF). We begin by defining two
classes of Turing machines:
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M= {Hh,s

se{0,1Y%, he My, keN},

e ={y

se {01}, ye {0,1Y®) heH,, ke N},

which we now describe. We assume without loss of generahty for each k that the
corresponding collection of Turing machines IT"* € My, IT j € Mj are of the
same size; this can be achieved by padding. (We address the size bound of each
class of machines below). In a similar fashion we may further assume that for
each k the runtime of each IT™* and H ® on any given input f; is equal.

At a high level, each machine IT"* accepts as input a poly-size circuit descrip-
tion of a function f; (with canonical description, including a function index 7),
computes the hash of the corresponding index ¢ w.r.t. the hardcoded hash func-
tion h, applies a PRF with hardcoded seed s to the hash, and then evaluates
the circuit f; on the resulting PRF output value z: that is, H;f ys( f:) outputs
Ui(fi, PRFs(h(i))), where Uy, is the universal Turing machine. See Fig. 1. Note
that each IT"* can be described by a Turing machine of size O(|s| + |h| + |Ux|),
which is bounded by p(k) for some fixed polynomial p.

Turing Machine I17*:

Hardwired: Hash function & : {0,1}* — {0,1}™*®) PRF seed s € {0, 1}*.
Inputs: Circuit description f;
1. Hash the index: v = h(7).
2. Compute the PRF on this hash: = PRFs(v).
3. Output the evaluation of the universal Turing machine on inputs f;, x: i.e.,
y = Uk(fi, ).

Fig. 1. Turing machines II™* € M.

Auxiliary Input Distribution Zj:

1. Sample a hash function lz < H;. and PRF seed s + ]Cpﬁ}‘(lk).
2. Output an obfuscation IT < PC-diO(IT"*).

Fig. 2. The auxiliary input distribution Zj.

The machines H iy * perform a similar task, except that instead of havmg the
entire PRF seed s hardcoded, they instead only have a punctured seed s* derived
from s by puncturing it at the point h() (i.e., enabling evaluation of the PRF
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on all points except h(7)). In addition, it has hardwired an output y to replace
the punctured result. More specifically, on input a circuit description f; (with
explicitly specified index j), the program IT Zh ; first computes the hash h = h(3),
continues computation as usual for any h # h(i) using the punctured PRF key,
and for h = h(i), it skips the PRF and Uy, evaluation steps and directly outputs
y. Note that because h is not injective, this puncturing may change the value
of the program on multiple inputs f; (corresponding to functions f; € F with
h(j) = h(i)). When the hardcoded value y is set to y = f;(PRFs(h(7))), then
Hi}f ; agrees with II™* additionally on the input f;, but not necessarily on the
other inputs f; for which h(j) = h(4). (Indeed, whereas the hash of their indices
collide, and thus their corresponding PRF outputs, PRF(h(j)), will agree, the
final step will apply different functions f; to this value).

We first remark that indistinguishability obfuscation arguments will thus not
apply to this scenario, since we are modifying the computed functionality. In
contrast, differing-inputs obfuscation would guarantee that the two obfuscated
programs are indistinguishable, since otherwise we could efficiently find one of
the disagreeing inputs, which would correspond to a collision in the CRHF. But,
most importantly, this argument holds even if the randomness used to sample the

program pair (IT"* th ys) is revealed. Namely, we consider a program sampler

that generates pairs (I1*, IT hys) of the corresponding distribution; this amounts
to sampling a hash functlon h, an EOWF challenge index i, and a PRF seed
s, and a h(i)-puncturing of the seed, s*. All remaining values specifying the
programs, such as y = f;(PRF(h(7))), are deterministically computed given
(h,i,s,s"). Now, since H is a public-coin CRHF family, revealing the randomness
used to sample h < H is not detrimental to its collision resistance. And, the
values 4, s, and s* are completely independent of the CRHF security (i.e., a CRHF
adversary reduction could simply generate them on its own in order to break h).
Therefore, we ultimately need only rely on public-coin diO.

We finally consider the size of the program(s) to be obfuscated. Note that each
Hl-h; can be described by a Turing machine of size O(|s*|+|h|+|y|+|Ux|). Recall
by Theorem 4 the size of the punctured PRF key |s*| € O(m/(k)¢(k)), where the
PRF has input and output lengths m’(k) and £(k). In our application, note that
the input to the PRF is not the function index ¢ itself (in which case the machine
I h.s iy would need to grow with the size of the alleged EOWF family), but rather
the hashed index h(i), which is of fixed polynomial length. Thus, collectively, we

have |II; | is bounded by a fixed polynomial p’(k), and finally that there exists a

single ﬁxed polynomial bound on the size of all programs I1"* € M, ths e M*.
This completely determines the auxiliary input distribution Z = {2}, described
in full in Fig. 2. (Note that the size of the auxiliary output generated by Z, which
corresponds to an obfuscation of an appropriately padded program I is thus
also bounded by a fixed polynomial in k).

A Has No Extractor. We show that, based on the assumed security of the
underlying tools, the constructed adversary A given auxiliary input from the
constructed distribution £ = {Zj}, cannot have an extractor £ satisfying
Definition 3:
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Turing Machine IT, Lh e

Hardwired: Hash function & : {0,1}* — {0,1}™® punctured PRF seed s* € {0,1}",
punctured point k(i), bit string y € {0, 1},
Input: Circuit description f; (containing index j)
1. Hash the index: v = h(j).
2. If v # h(i), compute z = PRF,« (v), and output Uk (f;, ).
3. If v = h(z), output y.

Fig. 3. “Punctured” Turing machines HZ’; € M*.

Auxiliary Input Distribution 2 (i, y):

Sample a hash function h < H; and PRF seed s « ICpr(lk).

Sample a punctured PRF seed s* < Punct(s, h(7)), punctured at point h(7).
Compute the “correct” punctured evaluation: y = f;(PRFs(h(7))).

Output an obfuscation M « PC-diO(HZ-’f;j), where thys is defined from (h, s*,y),
as in Figure 3.

Ll

Fig. 4. The “punctured” distribution Zj(,y).

Proposition 1. For any non-uniform polynomial-time candidate extractor £
for A, it holds that € fails with overwhelming probability: i.e.,

Pr [z — Zp; i Kr(1%); y — A(3;2); o' — E(i52)
:3x st fi(x) =y A fi(2!) # y} > 1 — negl(k).

Proof. First note that given auxiliary input z < Z;, A produces an element in
the image of the selected f; with high probability. That is,

Pr [z — Zpi — Kr(1%);y — A(i;2) : 3z s.t. fi(z) = y| > 1 —negl(k).

Indeed, by the definition of A and Zj, and the correctness of the obfuscator
PC — diO, then we have with overwhelming probability

A(is2) = M(f;) = I (f;) = fi(PRF(h(0))),

where z = M is an obfuscation of IT"* € M; i.e., z = M — PC — diO(II"").
Now, suppose for contradiction that there exists a non-negligible function

e(k) such that for all k£ € N the extractor £ successfully outputs a preimage

corresponding to the output A(i; z) € Range(f;) with probability e(k): i.e.,

Pr [z — Zp; i Ke(1F); o’ — E(i5 2)

: fi(@') = Al 2) = fi(PRF,(h(2)))] = e(k).
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where as before, s, h are such that z = PC — diO(II"*). We show that this
cannot be the case, via three steps.

Step 1: Replace Z with “punctured” distribution Z(i,y). For every index i of the
EOWF family F and k € N, consider an alternative distribution Z(i,y) that,
instead of sampling and obfuscating a Turing machine IT"* from the class M,
as is done for Z, it does so with a Turing machine IT hys € M* as follows. First,
it samples a hash function h «— Hj and PRF seed s as usual. It then generates
a punctured PRF key s* « Punct(s, h(4)) that enables evaluation of the PRF on
all points except the value h(7). For the specific index i, it computes the correct
full evaluation y := f;(PRFs(h(4))). Finally, Z(i,y) outputs an obfuscation of
the constructed program 11 -h as specified in Fig.3 from the values (h,s*,y):

ie., M «— PC — diO(II] ) See Fig. 4 for a full description of Z(i,y).
We now argue that the extractor £ must also succeed in extracting a preimage
when given a value z* «— Z(i,y) from this modified distribution instead of Zj.
Consider the Turing Machine program sampler algorithm Samp as in Fig. 5.

Program Pair Sampler Samp(1*,7):

Sample a hash function h = Hy(rp).

Sample an EOWF index i = K}-(lk;ri).

Sample a PRF seed s = KPRF(lk;TS).

Sample a punctured PRF seed s* = Punct(s, h(i); 7).

Lot y = fi(PRF, (h(i))).

Denote 17 := (Th, ri, Ts, s ).

Output program pair (11™* H;f;f), defined by h, i, s, s™, y as above (and padded to
equal length). '

N ot W

Fig.5. Program pair sampler algorithm, to be used in public-coin differing inputs
security step.

We first argue that, by the (public-coin) collision resistance of the hash family
‘H, the sampler algorithm Samp is a public-coin differing-inputs sampler, as per
Definition 1.

Claim. Samp is a public-coin differing-inputs sampler. That is, for all efficient
non-uniform Apc, there exists a negligible function € such that for all k € N,

Pr [7“ —{0,1}*; (Mo, My) < Samp(1%,7); (x,1%) «— Apc(1*,7) :
Mo(x) # Mi(x) A steps(Mo, ) = steps(Mi,z) = t] < e(k). (1)

Proof. Suppose, to the contrary, there exists an efficient (non-uniform) adver-
sary Apc and non-negligible function «(k) for which the probability in Eq. 1 is
greater than a(k). We show such an adversary contradicts the security of the
(public-coin) CRHF. Consider an adversary Acg in the CRHF security challenge.
Namely, for a challenge hash function h «— Hy(ry), the adversary Acg receives
h,rp, and performs the following steps:
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CRHF adversary Acr(1%, h,rp):

1. Imitate the remaining steps of Samp. That is, sample an EOWF index
i = Kr(1%;7;); a PRF seed s = Kprr(1¥;7,); and a punctured PRF seed
s* = Punct(s, h(7);r«). Define y = f;(PRFs(h(3))) and r = (rp, ri, 7s, 7% ),
and let My = IT"* and M; = HZh;

2. Run Apc (1%, ) on the collection of randomness r used above. In response,
Apc returns a pair (z,1%).

3. Acg outputs the pair (i,z) as an alleged collision in the challenge hash
function h.

Now, by assumption, the value x generated by Apc satisfies (in particular) that
My (z) # M (z). From the definition of My, M; (i.e., IT"*, HZ-}’L?’JSL this must mean
that h(i) = h(z) (since all values with h(x) # h(i) were not changed from IT"*
to Hi}f;), and that i # z (since thys(z) was specifically “patched” to the correct
output value I7"*(7)). That is, Acr successfully identifies a collision with the
same probability «(k), which must thus be negligible.

We now show that this implies, by the security of the public-coin di©O, that
our original EOWF extractor £ must succeed with nearly equivalent probability
in the EOWF challenge when instead of receiving (real) auxiliary input from
Z, both £ and A are given auxiliary input from the fake distribution Z(i,y).
(Recall that € is assumed to be &’s success in the same experiment as below but
with z «— Zj, instead of z* — Z;(i,y)).

Lemma 1. It holds that

Pr [z — Kr(1F); 2% «— Zi(i,y); o'« E(i;27)
file') = A(i; 2%) = fi(PRF, (h(i)))| = e(k) — negl(k). (2)

Proof. Note that given z* «— Z(i,y) (which corresponds to an obfuscated
program of the form thy‘s) our EOWF adversary A indeed will still output

1} (i) = y == fi(PRF,(h(i))) (see Figs.3,4).

Now, suppose there exists a non-negligible function «(k) for which the prob-
ability in Eq. (2) is less than e(k) — a(k). We directly use such £ to design
another adversary Ag;o to contradict the security of the public-coin di©® with
respect to the program pair sampler Samp (which we showed in Claim 3.1 to be
a void public-coin differing inputs sampler). Recall the diO challenge samples a
program pair (Hh’s,ﬂffj) « Samp(1*,r), selects a random M « {Hh"s?HZ;}
to obfuscate as M — PC — diO(1%, M), and gives as a challenge the pair (r, M)
of the randomness used by Samp and obfuscated program. Define 440 (who
wishes to distinguish which program was selected) as follows.
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PC-diO adversary Ago (1%, 7, M):

1. Parse the given randomness r used in Samp as r = (rp,,r;,7s,7«) (see
Fig.5).

2. Recompute the “challenge index” i = Kx(1%;r;). Let z* = M.

Run the extractor algorithm £(i; 2*), and receive an alleged preimage x’.

4. Recompute h = Hy(rn), s = Kpre(lirs), again using the randomness
from 7.

5. If f;(a’) = fi;(PRFs(h(i))) — i.e., if £ succeeded in extracting a preimage
— then Ago outputs 1. Otherwise, Ag4;0 outputs 0.

w

Now, if M is an obfuscation of II™*, then this experiment corresponds directly
to the EOWF challenge where £ (and A) is given auxiliary input z «— Zj.
On the other hand, if M is an obfuscation of th ?’f, then the experiment corre-
sponds directly to the same challenge where £ (and A) is given auxiliary input
z* — Z(i,y). Thus, Ageo will succeed in distinguishing these two cases with
probability at least [e(k)] — [e(k) — a(k)] = a(k). By the security of PC — diO, it
hence follows that a(k) must be negligible.

Step 2: Replace “correct” hardcoded y in Z(i,y) with random f; evaluation. Next,
we consider another experiment where Z (i, y) is altered to a nearly identical dis-
tribution Z (i, u) where, instead of hardcoding the “correct” i-evaluation value
y = fi(PRF4(h(7))) in the generated “punctured” program IT Zh Z’f, the distribution
Z(i,u) now simply samples a random f; output y = f;(u) for an independent
random u «+ {0, 1}*. We claim that the original EOWF extractor & still succeeds
in finding a preimage when given this new auxiliary input distribution:

Lemma 2. It holds that

Pr [z — Kr(1%); 2% — Z(i,u); o' — E(i;27) :
fi(x") = A(i;2*%) = fi(u)| > e(k) — negl(k). (3)

Proof. This follows from the fact that PRF4(h(7)) is pseudorandom, even given
the h(i)-punctured key s*.

Formally, consider an algorithm AR which, on input the security parameter
1%, a pair of values i, h, and a pair s*,z (that will eventually correspond to a
challenge punctured PRF key, and either PRF;(h(7)) or random u), performs the
following steps.

Algorithm A3gr (1%, i, h, s*, x):

ok

1. Take y = f;(z), and obfuscate the associated program H;f;j: ie., 2" «—
PC— diO(1%, 1I1).

2. Run the EOWF extractor given index ¢ and auxiliary input z**: 2’ «
E(1;2**).
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3. Output 0 if £ succeeds in extracting a valid preimage: i.e., if f;(z') =
y* = fi(x). Otherwise, output a random bit b < {0,1}.

Now, suppose Lemma 2 does not hold: i.e., the probability in Eq. (3) differs
by some non-negligible amount from e(k). Then, expanding out the sampling
procedure of Zi(i,y) and Zj(i,u), we have for some non-negligible function
a(k) that

Pr |:Z —Kr(1%); h— Hy; s Kprr(1¥); s* < Punct(s, h(i));
1
u— {0,137 — {0,1} : ASpr(1%,4,h, ) = b| > 5 tak), @

where zg := PRF4(h(7)) and x; := u. Indeed, in the case b = 0, the auxiliary
input z** generated by Aprr and given to &£ has distribution exactly Z(i,y),
whereas in the case b = 1, the generated z** has distribution exactly Z(i,u).

In particular, there exists a polynomial p(k) such that for infinitely many k,
there exists an index i, and hash function hy € Hj with

Pr |5 «— Kprr(1¥); s* < Punct(s, h(ig)); u < {0,1}%;
1

+p()’

b 0,1} Abge (1", ig, by ) = b > (5)

N | =

where xg, x; are as before.

Consider a non-uniform punctured-PRF adversary Algr (with the ensemble
I = {ig, hi} hardcoded) that first selects the challenge point hy(ix); receives
the PRF challenge information (s*,z) for this point; executes A3gr on input
(1% ik, by, s*, ), and outputs the corresponding bit b output by A%ge. Then by
(5), it follows that ALge breaks the security of the punctured PRF.

Step 3: Such an extractor breaks one-wayness of EOWF. Finally, we observe that
this means that £ can be used to break the one-wayness of the original function
family F. Indeed, given a random key i and a challenge output y = f;(u), an
inverter can simply sample a hash function h and h(i)-punctured PRF seed s*
on its own, construct the program I1 Zh ; with its challenge y hardcoded in, and

sample an obfuscation z** «+ PC — diO(H{f;). Finally, it runs £(7, 2**) to invert
y*, with the same probability e(k) — negl(k).
This concludes the proof of Theorem 5.

3.2 PC-diO or SNARKSs

We link the existence of public-coin differing-inputs obfuscation for NC! and
the existence of succinct non-interactive arguments of knowledge (SNARKs),
via an intermediate step of proximity extractable one-way functions (PEOWFS),
a notion related to EOWFs, introduced in [5]. Namely, assume the existence of
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fully homomorphic encryption (FHE) with decryption in NC* and public-coin
collision-resistant hash functions. Then, building upon the results of the previous
subsection, and the results of [5,30], we show:

1. Assuming SNARKSs for NP, there exists an efficient distribution Z such that
public-coin differing-inputs obfuscation for NC! implies that there cannot
exist PEOWFs {f : {0,1}F — {0,1}*} w.r.t. 2.

2. PEOWFs {f : {0,1}* — {0,1}*} w.r.t. this auxiliary input distribution Z
are implied by the existence of SNARKSs for NP secure w.r.t. a second efficient
auxiliary input distribution Z’, as shown in [5].

3. Thus, one of these conflicting hypotheses must be false. That is, there exists an
efficient distribution Z’ such that assuming existence of FHE with decryption
in NC! and collision-resistant hash functions, then either: (1) public-coin
differing-inputs obfuscation for NC! does not exist, or (2) SNARKS for NP
w.r.t. 2’ do not exist.

Note that we focus on the specific case of PEOWFs with k-bit inputs and
k-bit outputs, as this suffices to derive the desired contradiction; however, the
theorems following extend also to the more general case of PEOWF output length

(demonstrating an efficient distribution Z to rule out each potential output
length £(k)).

Proximity EOWFs. We begin by defining Proximity EOWFs.

Prozimity Extractable One-Way Functions (PEOWFs). In a Proximity EOWF
(PEOWTF), the extractable function family {f;} is associated with a “proximity”
equivalence relation ~ on the range of f;, and the one-wayness and extractabil-
ity properties are modified with respect to this relation. The one-wayness is
strengthened: not only must it be hard to find an exact preimage of v, but it is
also hard to find a preimage of any equivalent v ~ v’. The extractability require-
ment is weakened accordingly: the extractor does not have to output an exact
preimage of v, but only a preimage of of some equivalent value v’ ~ v.

As an example, consider functions of the form f : z — (fi(z), fo(x)) and
equivalence relation on range elements (a,b) ~ (a,b’) whose first components
agree. Then the proximity extraction property requires for any adversary A who
outputs an image element (a,b) € Range(f) that there exists an extractor £
finding an input z s.t. f(z) = (a,b’) for some b’ not necessarily equal to b.

In this work, we allow the relation ~ to depend on the function index 4,
but require that the relation ~ is publicly (and efficiently) testable. We further
consider non-uniform adversaries and extraction algorithms, and (in line with
this work) auxiliary inputs coming from a specified distribution Z.

Definition 5 (Z-Auxiliary-Input Proximity EOWFSs). Let ¢, m be poly-
nomially bounded length functions. An efficiently computable family of functions

F = {fl : {0, 1}k — {0, 1}5(’“) i € {0, 1}m(k)7k c N} :
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associated with an efficient probabilistic key sampler Kz, is a Z-auxiliary-input
proximity extractable one-way function if it satisfies the following (strong) one-
wayness, (weak) extraction, and public testability properties:

- (Strengthened) One-wayness: For non-uniform polynomial-time A and
sufficiently large security parameter k € N,

Pr [z — Zp i e Kp(1F); @ {0,1}% o/ — A, fi(2); )
s fi(a!) ~ fi(x) | < negl(k).

- (Weakened) Extractability: For any non-uniform polynomial-time adver-
sary A, there exists a non-uniform polynomial-time extractor € such that, for
sufficiently large security parameter k € N,

Pr |z« Zg; i — Kr(1%); y — A(5;2); 2’ < E(i; 2)
e st fi(a) =y A fi () 2 ] < negl(h).

— Publicly Testable Relation: There exists a deterministic polytime machine
T such that, given the function index i, T acceptsy,y’ € {0, 1}5(’“) if and only

ify ~ky'.

(PC — di© for NC' + PC-CRHF 4+ FHE + SNARK ) = No
Z-PEOWPF. We now show that, assuming the existence of public-coin collision-
resistant hash functions (CRHF) and fully homomorphic encryption (FHE) with
decryption in NC',® then for some efficiently computable distributions Zsnark,
ZpEoWF, if there exist public-coin differing-inputs obfuscators for NC! circuits,
and SNARKs w.r.t. auxiliary input Zsyark, then there cannot exist PEOWF's
w.r.t. auxiliary input Zpgowr. This takes place in two steps.

First, we remark that an identical proof to that of Theorem5 rules out
the existence of Z-auxiliary-input prozimity FOWFs in addition to standard
EOWTFs, based on the same assumptions: namely, assuming public-coin differing-
inputs obfuscation for Turing machines, and public-coin collision-resistant hash
functions. Indeed, assuming the existence of a PEOWF extractor £ for the adver-
sary A and auxiliary input distribution Z (who extracts a “related” preimage to
the target value), the same procedure yields a PEOWF inverter who similarly
extracts a “related” preimage to any challenge output. In the reduction, it is
merely required that the success of £ is efficiently and publicly testable (this is
used to construct a distinguishing adversary for the differing-inputs obfuscation
scheme, in Step 1). However, this is directly implied by the public testability of
the PEOWF relation ~, as specified in Definition 5.

8 As is the case for nearly all existing FHE constructions (e.g., [13,21]).
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Theorem 6. There exist an efficient, uniformly samplable distribution Z such
that, assuming the existence of public-coin collision-resistant hash functions and
public-coin differing-inputs obfuscation for polynomial-size Turing machines,
there cannot exist (publicly testable) Z-auziliary-input PEOWFs {f; : {0,1}F —
{0,1}%}.
Now, in [30], it was shown that public-coin differing-inputs obfuscation for the
class of all polynomial-time Turing machines can be achieved by bootstrapping
up from public-coin differing-inputs obfuscation for circuits in the class NC?,
assuming the existence of FHE with decryption in NC!, public-coin CRHF, and
public-coin SNARKSs for NP.

Putting this together with Theorem 6, we thus have the following corollary.

Corollary 1. There exists an efficient, uniformly samplable distribution Z s.t.,
assuming existence of public-coin SNARKs and FHE with decryption in NC*,
then assuming the existence of public-coin differing-inputs obfuscation for NC?,
there cannot exist PEOWFs {f; : {0,1}* — {0,1}*} w.r.t. auziliary input Z.

( SNARK + CRHF) — Z-PEOWF. As shown in [5], Proximity EOWFs
(PEOWFs) with respect to an auxiliary input distribution Z are implied by
collision-resistant hash functions (CRHF) and SNARKSs secure with respect to
a related auxiliary input distribution 2’.°

Loosely, the transformation converts any CRHF family F into a PEOWF by
appending to the output of each f € F a succinct SNARK argument 7, that
there exists a preimage x yielding output f(x). (If the Prover algorithm of the
SNARK system is randomized, then the function is also modified to take an
additional input, which is used as the random coins for the SNARK generation).
The equivalence relation on outputs is defined by (y,7) ~ (¢/,7') if y = v’ (note
that this relation is publicly testable). More explicitly, consider the new function
family F’ composed of functions

fles(@,r) = (f(x), Prove(1*, crs, f(x), z;7))

where a function f!, € F’ is sampled by first sampling a function f «— F from
the original CRHF family, and then sampling a CRS for the SNARK scheme,
crs «— CRSGen(1%).

Now (as proved in [5]), the resulting function family will be a PEOWF with
respect to auxiliary input Z if the underlying SNARK system is secure with
respect to an augmented auxiliary input distribution Zsnark := (Z,h), formed
by concatenating a sample from Z with a function index h sampled from the
collision-resistant hash function family F. (Note that we will be considering
public-coin CRHF, in which case h is uniform).

Theorem 7 ([5]). There exist efficient, uniformly samplable distributions
Z, Zsnark such that, assuming the existence of collision-resistant hash functions
and SNARKs for NP secure w.r.t. auziliary input distribution Zsnark, then there
exist PEOWFs {f; : {0,1}* — {0,1}*¥} w.r.t. Z.

o [5] consider the setting of arbitrary auxiliary input; however, their construction
directly implies similar results for specific auxiliary input distributions.
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Reaching a Standoff. Observe that the conclusions of Corollary1l and
Theorem 7 are in direct contradiction. Thus, it must be that one of the two
sets of assumptions is false. Namely,

Corollary 2. Assuming the existence of public-coin collision-resistant hash func-
tions and fully homomorphic encryption with decryption in NC', there exists an
efficiently samplable distribution Zsnark such that one of the following two objects
cannot exist:

— SNARKs w.r.t. auxiliary input distribution ZsNaRrk -
— Public-coin differing-inputs obfuscation for NC'.

More explicitly, we have that Zsyark = (Z,U), where Z is composed of an
obfuscated program, and U is a uniform string (corresponding to a randomly
sampled index from a public-coin CRHF family).

Acknowledgements. The authors would like to thank Kai-Min Chung for several
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Abstract. It takes time for theoretical advances to get used in practical
schemes. Anonymous credential schemes are no exception. For instance,
existing schemes suited for real-world use lack formal, composable defi-
nitions, partly because they do not support straight-line extraction and
rely on random oracles for their security arguments. To address this
gap, we propose unlinkable redactable signatures (URS), a new building
block for privacy-enhancing protocols, which we use to construct the first
efficient UC-secure anonymous credential system that supports multiple
issuers, selective disclosure of attributes, and pseudonyms. Our scheme
is one of the first such systems for which both the size of a credential
and its presentation proof are independent of the number of attributes
issued in a credential. Moreover, our new credential scheme does not rely
on random oracles. As an important intermediary step, we address the
problem of building a functionality for a complex credential system that
can cover many different features. Namely, we design a core building
block for a single issuer that supports credential issuance and presen-
tation with respect to pseudonyms and then show how to construct a
full-fledged credential system with multiple issuers in a modular way.
We expect this definitional approach to be of independent interest.

Keywords: Structure preserving signatures : Vector commitments -
Anonymous credentials - Universal composability + Groth-Sahai proofs

1 Introduction

Digital signature schemes are a fundamental cryptographic primitive. Besides
their use for signing digital items, they are used as building blocks in more
complex cryptographic schemes such as blind signatures [6,42], group signa-
tures [15,52], direct anonymous attestation [20], electronic cash [40], voting
schemes [48], adaptive oblivious transfer [23,32], and anonymous credentials [12].
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For protocols constructed like this to be efficient, special properties are
demanded from a signature scheme, in particular when the protocol needs to
achieve strong privacy properties. The most important such properties seem to
be that the issuance of a signature and its later use in a protocol is unlinkable as
well as that the scheme is able to sign multiple messages (without employing a
hash function). The first signature scheme that met these requirements is a blind
signature scheme by Brands [18]. The drawback of blind signatures, however, is
that when using the signature later in a higher-level protocol it must typically be
revealed so that a third party can be convinced of its validity. Thus, a signature
can be used only once, which turns out to be quite limiting for applications such
as group signatures, multi-show anonymous credentials, and compact e-cash [25].

Camenisch and Lysyanskaya [30,31] were the first to design signature schemes
(CL-signatures) overcoming these drawbacks. Their schemes are secure under the
Strong RSA, the ¢-SDH, or the LRSW assumption, respectively, and allow for an
alternative approach when using a signature in a protocol: instead of revealing
the signature to a party, the user employs zero-knowledge proofs to convince the
party that she possesses a valid signature. While in theory this is possible for any
signature scheme, CL-signatures were the first that enabled efficient proofs using
generalized Schnorr proofs of knowledge. This is due to the algebraic properties of
CL-signatures, i.e., no hash function is applied to the message and the signature
and message values are either exponents or group elements.

Since the introduction of CL-signatures, the area of privacy preserving pro-
tocols flourished considerably and numerous new protocols based on them have
been proposed. This has also made it apparent, however, that CL-signatures still
have a number of drawbacks:

1. Random oracles. To make generalized Schnorr proofs of knowledge non-
interactive (which is often required), one needs to resort to the Fiat-Shamir
heuristic, i.e., to the random oracle model, and thus looses all provable secu-
rity guarantees when the oracle is instantiated by a hash function [36].

2. Straight-line extraction. When designing a protocol to be secure in the UC
model [35], rewinding can not be used to prove security. As a result, witnesses
in generalized Schnorr proofs of knowledge need to be encrypted under a
public key encoded in the common reference string (CRS). As the witnesses
(messages signed with CL-signatures) are discrete logarithms, this is rather
expensive [26] and may render the overall protocol impractical.

3. Linear size. When proving ownership of a CL-signature on many messages,
all of them are needed for the verification of the signature and therefore a
proof of possession of a signature will be linear in the number of messages.

A promising ingredient to overcome these drawbacks is the work by Groth
and Sahai [45], who for the first time constructed efficient non-interactive zero-
knowledge proofs (NIZK) without using random oracles, albeit for a limited set
of languages. Indeed, the set of languages covered by these so-called GS-proofs
does not include the ones covered by generalized Schnorr protocols and therefore
many authors started to look for a compatible CL-signatures replacement, i.e.,
structure-preserving signature schemes [1-3]. Together with GS-proofs, these
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new schemes can also be used as signatures of knowledge [39] and thus are
applicable in scenarios previously addressed with CL-signatures.

However, structure-preserving signatures still suffer in terms of performance
when signing multiple messages (cf. drawback (3)), which is a typical requirement
in applications such as anonymous credentials. Indeed, as for CL-signatures, the
size of proofs with structure-preserving signatures grows linearly with the num-
ber of messages. As the constant factor for GS-proofs is larger than for gener-
alized Schnorr proofs, structure-preserving signatures loose their attractiveness
as a building block for such applications.

Our Contribution. In this paper, our goal is to address the three drawbacks of
CL-signatures discussed above. To this end, we propose a new type of signa-
ture scheme, unlinkable redactable signatures (URS), in which one can redact
message-signature pairs and reveal only their relevant parts each time they
are used. Moreover, signatures in URS are unlinkable and the same message-
signature pair can be redacted and revealed multiple times without being linked
back to its origin. The real-world efficiency of URS is comparable to that of
CL-signatures when a single message is signed and becomes superior when the
number of messages signed grows. We view our contribution as threefold: First, in
Sect. 2, we formally define URS. We present property-based security definitions
for unlinkability and unforgeability and also a UC functionality for URS. Com-
paring the two definitions we find the seemingly common phenomenon that the
functionality-based definition requires a key-registration process (allowing for the
extraction of keys in the proof) while the property based definition per se does
not require that. We validate our definitions by showing that an URS scheme
satisfying strengthened property-based security definitions with key extraction
securely implements our UC functionality.

Second, in Sect. 3, we construct an efficient URS scheme from vector commit-
ments [37,51,56], structure-preserving signatures [2,3], and (a minimal dose of)
non-interactive proofs of knowledge (NIPoK), which in practice can be instanti-
ated by witness-indistinguishable Groth-Sahai proofs [45]. As we are interested
in practical efficiency, we instantiate our scheme with concrete building block
that deliberately rely on stronger assumptions (see Sect.4.3). However, if one
is willing to accept a less efficient scheme, a CDH-based vector commitment
scheme [37] secure under less strong assumptions. We show how to make use of
algebraic properties in our building blocks to minimize the witness size of the
NIPoK.

Third, in Sect.4, to demonstrate the versatility of our URS scheme as a
CL-signature scheme ‘replacement’, we employ it to design the first efficient uni-
versally composable anonymous credential system that supports multiple issuers,
pseudonyms, and selective disclosure of attributes.

Anonymous credential systems usually need to support an ecosystem of dif-
ferent features. Therefore, a single ideal functionality providing all the features
such as pseudonyms, selective attribute disclosure, predicates over attributes,
revocation, inspection, etc. would be very complex and hard to both create and
use in a modular way—mnot to mention credible security proofs.
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Nevertheless, ideal functionalities are very attractive for modeling the com-
plexity of anonymous credential schemes. Indeed an early seminal paper [29]
attempted exactly this, but was foiled by drawback (2)—as well as by the imma-
turity of the UC framework at the time. To overcome this complexity, we present
a flexible and modular approach for constructing UC-secure anonymous creden-
tials. Namely, we design a core building block for a single issuer that supports
credential issuance and presentation with respect to pseudonyms. We then show
how to compose multiple such blocks to construct in a modular way a full-fledged
credential system with multiple issuers.

Besides being composable, our system is also arguably one of the first schemes
to support efficient non-interactive attribute disclosure with cost independent of
the number of attributes issued without having to rely on random oracles. Even
in the random oracle model this has been an elusive goal. Therefore, because
of the composability and efficient selective disclose, our scheme is very attrac-
tive and quickly surpasses schemes based on blind signatures and CL-signatures
[19,31] when the number of attributes grows.

Related Work. We compare our signatures and credential schemes with other
related work, a full comparison is deferred to the full paper [9]. As there are a
multitude of papers on redactable, quotable, and sanitizable signatures [7,21,46,
58], we focus on the most influential definitional work and the most promising
approaches in terms of efficiency.

A variety of signature schemes with flexible signing capabilities and strong
privacy properties have been proposed [7,8,10,14,17,34,38]. While these works
provide a fresh definitional approach, their schemes are very inefficient, espe-
cially when redacting a message vector with a large number of attributes. Some
schemes built on vector commitments [51,55] achieve better efficiency but only
consider one-time-show credentials, and while the scheme in [51] is not defined
formally, the scheme in [55] involves interaction.

The first efficient multi-show anonymous credential scheme is [29]. It was
extended with efficient attribute disclosure [24] and had real-world exposure
[20,33]. It can, however, only be non-interactive in the random oracle model.
Non-interactive credentials in the standard model have been built from
P-signatures [12,13]. An instantiation of our URS scheme, however, is almost
twice more efficient than [12] despite the fact that the latter does not support
signing multiple messages. Belenkiy et al. [11] show how to use the randomiz-
ability of P-signatures for delegation and Chow et al. [41] extend the random-
izable group signatures scheme underlying [11] with a flexible attribute mecha-
nism. Izabachéne et al. [50] extends the work of [12] with vector commitments;
their scheme is, however, not secure under our definitions. In independent work,
Hanser and Slamanig [47] present a credential system with efficient (indepen-
dent of the number of attributes) attribute disclosure. However, their system
is only secure in the generic group model [43]. Furthermore, it uses hash func-
tion to encode attributes and thus does not enable efficient protocol design.
None of these schemes is (universally) composable. Camenisch et al. [27] have
recently proposed property-based definitions of anonymous credentials and of
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the necessary building blocks, given a construction and proved it secure. Their
definitions turn out to be rather complex, indicating that for complex systems
functionality-based definitions might be easier to handle. Indeed, for their def-
inition of privacy, Camenisch et al. make use of what they call ‘filter’ which is
very reminiscent of an ideal functionality. Finally, the construction they provide
is based on CL-signatures and thus suffers from the drawbacks of that approach.

An important factor that is often neglected is the compatibility of schemes
with zero-knowledge proofs to enable efficient protocol design. Because of its
compatibility with Groth-Sahai proofs, efficiency and composability, immediate
further applications of our URS scheme include efficient e-cash, credential-based
key exchange, e-voting, auditing, and others.

2 Definitions of Unlinkable Redactable Signatures

Redactable signatures are an instance of homomorphic [7] or controlled-malleable
signatures [38]. For our credentials application the most useful redaction opera-
tion is to selectively white-list or quote a subset of messages and their positions
from a message vector of length n ([7] consider the quoting of sub-sentences).
We denote the message space of all valid message vectors as M. We also refer
to the redacted message as a quote of the original message. To distinguish the
original vector from the quote of all messages we denote the original vector as
m = (1,mq,...,m,) and a quote as my = (2,m},...,m}). We represent each
valid quoting transformation by a set I C [1,n] of message positions and denote
quoting either by I(m) or m;. We denote the i*" message element either by m/|i]
or m;. A quote m; from m is of the form

myli] =m, = {

m; €1
1 otherwise

Note that the message itself already reveals whether it is a quote. Chase et al.
[38] call such a scheme tiered and we refer to the vectors m and m; as Tier 1
and Tier 2 vectors respectively. The vector m; can be sparse and can have a
much shorter encoding than m. Finally, we define Zero(m, I) = (1,7m1,...,My,),
with m; =m; for j € I and m; = 0 for j ¢ I. This should not be confused with
the operator I that outputs a Tier 2 message.

2.1 Property-Based Definitions for Unlinkable
Redactable Signatures

One can define the security of redactable signatures by instantiating controlled-
malleable signature definitions for simulatability, simulation unforgeability, and
simulation context-hiding of Chase et al. [38] with the quoting transformation
class T = {I(:)|I C [1..n]} above. We prefer, however, to give our own unforge-
ability and unlinkability definitions that are more specific and do not rely on
simulation and extraction. This makes them simpler and easier to prove, and
thus more efficiently realizable. Together with key extractability they are never-
theless sufficient to realize the strong guarantees of our UC functionality.
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Definition 1 (Unlinkable Redactable Signatures). An unlinkable redac-
table signature scheme URS consists of the following algorithms:

URS.SGen(1%) — SP. SGen takes the security parameter 1% as input and outputs
the system parameters SP.

URS.Kg(SP) — (pk, sk). Kg takes the system parameters SP as an input and
outputs public verification and private signing keys (pk, sk). The verification
key pk defines the message space M.

URS.Sign(sk, m) — o. Sign takes the signing key sk and a message m € M as
input and produces a signature o.

URS.Derive(pk, I, m,c) — oy. Derive takes the public key pk, a selection vector
I, a message m and a signature o (both of Tier 1) as input. It produces a
Tier 2 signature oy for my.

URS.Verify(pk, o, m) — 0/1. Verify takes the verification key pk, a signature o,
and a message m of Tier 1 or Tier 2 as input and checks the signature.

We omit the URS qualifier when it is clear from the context.

Correctness. Informally, correctness requires that for honestly generated keys,
both honestly generated and honestly derived signatures must always verify.

Unforgeability. Unforgeability captures the requirement that an attacker, who is
given Tier 1 and Tier 2 signatures on messages of his choice, should not be able
to produce a signature on a message that is not derivable from the set of signed
messages in his possession. More formally:

Definition 2 (Unforgeability). Let H output unique handles, for instance
implemented using a counter. For a redactable signature scheme URS.{SGen,
Kg, Sign, Derive, Verify}, tables Q1,Q2,Q3, and an adversary A, consider the
following game:

~ Step 1. SP — SGen(1%); (pk, sk) < Kg(SP); Q1,Q2, Qs «— 0.

- Step 2. (mj,0*) & AOsisn (1) Oerive (), Oreveal () (ple) | where Osign, Oberive; and
OReveal behave as follows:

OSign(m) ODerive(h> I) OReveaI(h)

h «— H; o « Sign(sk,m) if (h,m,0) € @, if (h,m,0) € Q1
add (h,m,c) to Qy o' « Derive(pk,I, m,o) add m to Q3
return h add my to Qs; return o’ return o

A signature scheme URS satisfies unforgeability if for all such PPT algorithms A
there exists a negligible function v(-) such that in the above game the probability
(over the random choices of Kg, Sign, Derive and A) that Verify(pk,o*, m}) =1
and Ym € Qs, m; # my, and m; ¢ Q3 is less than v(k).

Note that we do not consider a Tier 1 signature itself as a forgery. However,
if the adversary manages to produce a valid Tier 1 signature on a message
m without calling Sign(m) and either Reveal(h) or Derive(h,I) on all subsets
I C [1..n] for the corresponding handle h, he can use this Tier 1 signature to
break unforgeability by deriving a Tier 2 signature from it.
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Unlinkability. Informally, unlinkability ensures that an adversarial signer cannot
distinguish which of two Tier 1 signatures of his choosing was used to derive a
Tier 2 signature. More formally:

Definition 3 (Unlinkability). For the signature scheme URS.{SGen, Kg, Sign,
Derive, Verify} and a stateful adversary A, consider the following game:
— Step 1. SP «+ SGen(1¥).
— Step 2. (pk, I, m(© m®) 50 1) & A(SP), where mgo) = mgl),
Verify(pk, 0, m(©) = 1, and Verify(pk,c™), m1)) = 1.
- Step 8. Pick b« {0,1} and form a}b) & Derive(pk, I, m® o®).
~ Step 4. b & A(U§b)).
The signature scheme URS is unlinkable if for any polynomial time adversary A

. .. . _ 1+v(k)
there exists a negligible function v(-) such that Pr[b =] < =3,

Note that this definition is very strong, as the adversary can even pick pk.

2.2 Ideal Functionality for Unlinkable Redactable Signatures

We now give an alternative characterization of unlinkable redactable signatures
using an ideal functionality Fygrs defined as follows:

Functionality Fyrs

The functionality maintains tables K and Q initialized to @ and flags kg and keyleak
which are initially unset.

— On input (keygen, sid) from S, verify that sid = (S, sid’) for some sid’ and that
flag kg is unset. If not, then return L. Else, send (initF, sid) to STM and wait
for a message (initF,sid, SP,Kg, Sign, Derive, Verify) from SZM, where Kg,
Sign, and Derive are PPT algorithms and Verify is a deterministic algorithm.
Then, store SP, Kg, Sign, Derive, and Verify, run (pk, sk) «— Kg(SP), set flag
kg, store (pk, sk) in K, and return (verificationKey, sid, pk) to S.

— On input (checkPK, sid, pk’) from some party P, verify that the flag kg is
set. Check whether pk’ = pk or whether (pk’, sk’) for some sk’ was stored
in K. In this case, return (checkedPX, sid, true). Else, if (pk’, L) was stored in
KC return (checkedPK, sid, false). Else, send (checkPK, sid, pk’) to STM, wait
for (checkedPK, sid, sk’) from STM, add (pk',sk’) to K. If sk’ # L, return
(checkedPK, sid, true) to P. Otherwise, return (checkedPX, sid, false) to P.

— On input (leakSK, sid) from S verify that sid = (S, sid") for some sid’. If not,
return L. Else, if flag kg is set, set flag keyleak and return (leakSk, sid, sk),
otherwise - abort.

— On input (sign,sid, m) from S, verify that sid = (9,sid') for some sid’
and that the flag kg is set. If not, return L. Else, run o < Sign(sk, m) and
Verify(pk, o, m). If Verify is successful, return (signature, sid, m,o) to S and
add m to Q, otherwise return L. (Continue on the next page.)
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— On input (derive, sid, pk’, I, m, o) from some party P, run Derive(pk’, I, m, o)
and if it fails, return L. Otherwise, if the flag kg is set and pk = pk’
then set skimp = sk. If there is an entry (pk’,sk’) € K recorded,
set skimp = sk'. If skimp was set run o' <«  Sign(skimp, Zero(m, I))
and return Derive(pk’, I,Zero(m,I),0’). Otherwise, return the output of
Derive(pk’, I, m, o).

— On input (verify,sid, pk’,o,m;) from some party P, compute result
Verify(pk’, o, mp). If the flag kg is set, pk’ = pk, flag keyleak is not set, and
A m € Q such that m; = I(m), then output (verified, sid, mr,0). Otherwise,
output (verified, sid, mr,result).

We point out some aspects of the ideal functionality. The functionality needs
to output concrete values as signatures of messages and redacted signatures, as
well as key material. To generate and verify these values, Fyrs requires the adver-
sary /simulator SZM to provide it with a number of polynomial-time algorithms.
This is in line with how ideal functionalities for signatures, and in particular blind
signatures, have been defined before [6,35,42,49,53]. We consider static corrup-
tions of protocol machines, but allow the simulator to request the signing key
at any time by sending the leakSK message. This allows us to ensure that the
privacy properties for users are still enforced even if the signer leaks its secret
key. The functional and security properties are enforced by the functionality no
matter how these (adversarial) algorithms compute the values. Unforgeability is
enforced by the fact that Fyrs will output false (0) for verification queries for
which the message (or a corresponding original message) has not been signed,
provided that the signer is not corrupted and the signing key not leaked. (If the
signer is corrupted statically, (keygen, sid) will not be sent and hence kg not set
and unforgeability not enforced.) Unlinkability of redacted signature is enforced
by Furs as follows. It generates a fresh redacted signature only from those parts
of the original message that are quoted, i.e., the hidden message parts are set
to zero, and thus redacted signatures from Fyrs do not contain any information
about the hidden parts of messages. More precisely, this is enforced for the keys
generated by Fygrs and for any keys that an honest party successfully checked
before generating a redacted signature. Unless mentioned otherwise, the reply
of the functionality upon a failed check or verification is L.

2.3 Key Registration and UC Realizability

We now want to construct a protocol Rygrs that realizes Fyrs using a URS
scheme in the Fcrs-hybrid model where SP is the reference string and each call
to Fuyrs is essentially replaced by running one of the algorithms of URS. While
this can be done (the detailed description of Rygs is given in the full version [9]),
there are a number of hurdles that need to be overcome. These hurdles are quite
typical and include, e.g., that we need to be able to extract the secret keys from
the adversary to be able to simulate properly. They are, however, often treated
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only informally in security proofs. Here we want to make them explicit and treat
them formally correct. So our goal is to prove a statement (Theorem) of the
form:

If URS is correct, unforgeable, unlinkable, and X then Ryrs securely
realizes Fyrs in the Fcrs-hybrid model.

What do we have to require from X to make this theorem true? To prove the
theorem we have to show indistinguishability between the ideal world and the
real world. In the ideal world, an environment Z interacts with the simulator
SZIM and functionality Fyrs. In the real world, the environment Z interacts
with the real adversary A and the protocol Ryrs.

We provide a tentative description of SZM in the ideal world: when receiv-
ing the (initF, sid) message from Fygs, it generates a trapdoor ¢d (in addi-
tion to SP) and returns (initF, sid, SP,Kg, Sign, Derive, Verify). On receiving
the (checkPXK, sid, pk) message, is uses the trapdoor to extract the secret key sk
and returns sk to Fyrs.

To make this work, we extend URS with several algorithms: CheckPK is run
by Rurs on receiving a message (checkPK, sid, pk). SGenT and ExtractKey are
the trapdoored parameter generation and key extraction algorithm for SZM.
CheckKeys is used to define what it means to extract a valid key.

URS.CheckPK(pk) — 0/1. CheckPK is a deterministic algorithm that takes a
public key pk as an input and checks that it is correctly formed. It outputs 1
if pk is correct, and O otherwise.

URS.SGenT(1%) — (SP,td). SGenT is a system parameters generation algorithm
that takes the security parameter 1% as input and outputs the system para-
meters SP and a trapdoor td for the key extraction algorithm.

URS.ExtractKey(pk,td) — sk. ExtractKey is an algorithm that takes a public key
pk and a trapdoor td as input. It extracts the corresponding secret key sk.

URS.CheckKeys(pk, sk) — 0/1. CheckKeys is an algorithm that takes a public pk
and a private sk keys and checks if they constitute a valid signing key pair.
It outputs 1 if they do, and 0 otherwise.

Strengthened Correctness requires that honestly generated keys, but also keys
for which predicate CheckKeys(pk, sk) holds can be used to create signatures
that will verify. It moreover guarantees that CheckPK(pk) holds for honestly
generated public keys.

Parameter Indistinguishability. Informally, parameter indistinguishability
ensures that the SP produced by SGenT and SGen are computationally indistin-
guishable. It is formally defined as follows:

Definition 4 (Parameter Indistinguishability). A redactable signature
scheme URS.{SGen, Kg, Sign, Derive, Verify} with alternative parameter genera-
tion SGenT is parameter indistinguishable if for any polynomial time adversary
A there exists a negligible function v(-) such that Pr[(SPy,td) «+ SGenT(1%);

SPy — SGen(1%); b {0,1}; b A(SPy) 1 b =] < H5.
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Key Extractability. Informally, the key extractability ensures that if SGenT was
run and if CheckPK outputs 1, then the extraction algorithm ExtractKey(pk, td)
will output a valid secret key sk, i.e. CheckKeys(pk, sk) = 1.

Definition 5 (Key Extractability). A redactable signature scheme URS.
{SGen, Kg, Sign, Derive, Verify} with additional algorithms (CheckPK, SGenT,

CheckKeys, ExtractKey) is key extractable if CheckKeys is correct and for any
polynomial time adversary A there exists a negligible function v(-) such that
Pr[(SP,td) « SGenT(1%); pk « A(SP,td); sk « ExtractKey(pk,td) : (CheckPK
(pk) = 1 A CheckKeys(pk, sk) = 0))] < v(k).

Composable Unlinkability holds even when parameters in the unlinkability game
are generated using (SP,td) «— SGenT(1*) and A is handed td. This allows for
the use of the game in a hybrid argument when proving the security of the simu-
lator. We note that in such an adapted unlinkability game the trapdoor td must
only enable key-extraction, and crucially does not allow the adversary to extract
a Tier 1 signature from a Tier 2 signature (this would break unlinkability). In
our instantiation this is achieved by splitting SP into several parts. The trapdoor
is only generated for the part used for key extraction.

UC Realization. We prove that if an unlinkable redactable signature URS is cor-
rect, parameter indistinguishable, key extractable, unforgeable, and unlinkable,
then Rygs securely realizes Fyrs. More formally, we have the following theorem
(which is proven in the full version of this paper [9]).

Theorem 1. Let URS be an unlinkable redactable signature scheme. If URS is
correct, parameter indistinguishable, key-extractable, unforgeable, and compos-
able unlinkable then Ryrs securely realizes Fyrs in the Fcrs-hybrid model.

3 The Construction of Our Redactable Signature Scheme

As a first step toward our full solution, we will construct an unforgeable and
unlinkable URS scheme without key extraction. The scheme should be of inde-
pendent interest, in case universal composability is not a design requirement.
This isolation of key extraction, seemingly only needed for universal composi-
tion, is a nice feature of our definitions.

Let G be a bilinear group generator that takes as an input security parameter
1% and outputs the descriptions of multiplicative groups grp = (p,G,@,Gt,e,
G, é) where G, G, and G, are groups of prime order p, e is an efficient, non-
degenerating bilinear map e : G x G — Gy, and G and G are generators of the
groups G and @, respectively.

Our construction makes use of a structure preserving signature (SPS) scheme
SPS.{Kg, Sign, Verify} and a vector commitment scheme VC.{Setup, Commit,
Open,Check}. We recall that the structure-preserving property of the signature
scheme requires that verification keys, messages, and signatures are group ele-
ments and the verification predicate is a conjunction of pairing product equa-
tions. The intuition behind our construction is susceptibly simple: Use SPS.Kg
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to generate a signing key pair and VC.Setup to add commitment parameters to
the public key. To sign a vector m, first, commit to m and then sign the resulting
commitment C. To derive a quote for a subset I of the messages, simply open
the commitment to the messages in m;. We verify a signature on a quote by
verifying both the structure-preserving signature (SPS.Verify) and checking the
opening of the commitment (VC.Check).

Such a scheme has, however, several shortcomings. First, it is linkable, as
the same commitment is reused across multiple quotes of the same message.
Even if both the underlying SPS scheme and the commitment scheme are indi-
vidually re-randomizable, this seems hard to avoid as the unforgeability of the
SPS scheme prevents randomization of the message. Second, such a construction
is only heuristically secure. Existing vector commitments do not guarantee that
multiple openings cannot be combined and mauled into an opening for a different
sub-vector. We call vector commitment schemes that prevent this opening non-
malleable. (Recently, [47] constructed an SPS scheme allowing for randomization
within an equivalence class. However, their commitments cannot be opened to
arbitrary vectors of Z, and are not provably opening non-malleable.)

Our main design goal is to address both of these weaknesses while avoiding a
large performance overhead. Our main tool for this is an efficient non-interactive
proof-of-knowledge. Intuitively, we hide the commitments and their openings, as
well as a small part of the signature to achieve unlinkability. Hiding the com-
mitment opening also helps solve the malleability problems for commitments. To
achieve real-world efficiency we show how to exploit the re-randomizability of the
SPS (and optionally the commitment scheme as described in the full version [9]).

Before describing our redactable signature scheme in more detail, we present
a vector commitment scheme that uses a variant of polynomial commitments
from [51]. While our changes are partly cosmetic, they simplify the assumption
needed for opening non-malleability.

3.1 Vector Commitments Simplified

A vector of messages m € Zj is committed using a polynomial f(x) that
has a value f(i) = m; at the position ¢. In Lagrange form such a polynomial
is a linear combination f(z) = Y., m;fi(z) of Lagrange basis polynomials
filz) = H?:O,j;ﬁi %_JJ To batch-open a vector commitment for a position set
I € {1,...,n}, one uses a polynomial fr(x) = >, ; m;fi(x). For such a poly-
nomial, it holds that fr(i) = m; for i € I; and f;(0) = 0. (The additional root
at 0 is necessary to achieve opening non-malleability). The reuse of the same
Lagrange basis polynomials, which yields polynomials of not the lowest possible
degree, reduces the number of variable bases in the equation of Check below and
increases efficiency when used for the construction of bigger protocols such as
anonymous credential. Also, note that f(x)— fr(x) is divisible by the polynomial
pr(z) =« - [[;c;(x — 7). We use the polynomial p(z) = = - [[;_,(z — ) which
is divisible by pr(z) for any I C {1,...,n} to randomize commitments to make
them perfectly hiding.
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Construction. We reuse the notation of Sect. 2 and use Tier 1 vectors m for the
vectors being committed and Tier 2 vectors m; for batch openings at positions
I. We also let grp = (p, G, @, Gy, e, G, é) be bilinear map parameters generated
by a bilinear group generator G(1%).

VC.Setup(grp). Pick a «— Z, and compute (Gi, Gi,...,Gni1, Gpit), where
G; = G) and G; = G, Output parameters pp = (grp, Gy, G1,. ..,
Gpi1, én+1)~ Values G, ..., Gpy1 suffice to compute G¢(%) for any polyno-
mial ¢(x) of maximum degree n + 1 (and similarly for G#(®)).
Furthermore, for the above defined f;(x), p(z), and pr(x), we implicitly define
F; = Glil®) p=@prl®) P = GP1@) and P; = GP1(» . These group elements
can be computed from the parameters pp.

VC.Commit(pp, m,r). Output C = [[;_, F/" P".

VC.Open(pp, I, m,r). Let w(z) = MLZW and compute the witness

pri(z
W = G*(®) using parameters pp. 5 } )
VC.Check(pp, C, my, W). Accept if e(C, G) = e(W, Pr)e(I],c; Fi™, G).

Note that ps(x) always has the factor . This is essential for achieving opening
non-malleability. If pr(z) would be 1 for I = ), as in the original polynomial
commitment scheme of [51], then C' would be a valid batch opening witness for
the empty set of messages.

Security Analysis. We require the commitment scheme to be complete, batch
binding, and opening non-malleable. Completeness is standard for a commitment
scheme follows easily from the following equation: e(C, G) = e(G, G)f(@)+7p(@) =

. () —fr(e)+rp(a) ~ ~ .
e(G, Pr) P1(@) e(G, G)1) = e(W, Pr)e(T1,e; Fi™. G).

Next, we define the batch binding and opening non-malleability properties:

Definition 6 (Batch Binding). For a vector commitment scheme VC.{Setup,
Commit, Open, Check} and an adversary A consider the following game:

- Step 1. grp — G(1%) and pp — VC.Setup(grp)
- Step 2. C,my, W, m/;,, W' — A(pp)

Then, the commitment scheme satisfies batch binding if for all such PPT algo-
rithms A there exists a negligible function v(-) such that the probability (over
the choices of G,Setup,and A) that 1 = VC.Check(pp,C, m;,W) = VC.Check
(pp, C,m),,W') and that there exist i € I NI’ such that m; # m} is at most
v(k). (Note that my and m;, are Tier 2 vectors, and thus encode the sets I and
I’ respectively.)

Definition 7 (Opening Non-malleability). For a vector commitment scheme
VC.{Setup, Commit, Open, Check} and an adversary A consider the following
game:

~ Step 1. grp — G(1%) and pp < VC.Setup(grp)
- Step 2. m, I — A(pp)
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— Step 3. Pick random r, compute C +—VC.Commit(pp, m,r),
and W «—VC.Open(pp, I, m,r).
- Step 4. W', I' — A(C,W)

Then the commitment scheme satisfies opening non-malleability if for all such
PPT algorithms A there exists a negligible function v(-) such that the probability
(over the choices of G, Setup, Commit, and A that 1 = VC.Check(pp, C, m;, W'),
and I # I’ is at most v(k).

In the following theorems we make use of the n-BSDH assumption [44] and
the n-RootDH assumption that are defined next. See the full version of this
paper [9] for its generic group model proof. (We note that this assumption is
only required for opening non-malleability, which is ignored by most existing
constructions of anonymous credentials from vector commitments.)

Definition 8 (n-SDH Assumption). The n-strong Diffie-Hellman (n-SDH)
assumption [16] states that there exists a G that for all algorithms A, the follow-
ing advantage

AdngDH()‘) = Pr[(p, 67G, G) i g ; T, C <i Zp :
AN D, G, G,G%, ..., G"") = (¢, GV )] < negl(N).

The n-BSDH assumption is defined identically to n-SDH except that now A
is challenged to compute (c,e(G, G'/(*+¢)), Note that the n-BSDH assumption
is already implied by the n-SDH assumption.

Definition 9 (n-RootDH Assumption).
For an adversary A consider the following game:

— Step 1. grp — G(17)

— Step 2. Pick random a,r « Z, compute X = (G Tlizi(a=i)yr,
— Step 3. (J, state) — A(G, G, {G, Gyl X))

— Step 4. Compute Y = (GHiEJ(O‘_’))T.

~ Step 5. J', Z — A(state,Y)

Then the group generator G satisfies the n-RootDH assumption if for all such
PPT algorithms A there exists a negligible function v(-) such that the probability
(over the choices of G, a, r, and A that J and J' are subsets of [1.n], J # J,
and Z = (GILics (=0 45 at most a negligible function v(k).

Theorem 2. The commitment scheme VC defined above is batch binding under
the (n + 1)-BSDH assumption. The proof is similar to that of [51] and can be
found in the full version [9].

Theorem 3. The commitment scheme VC defined above is opening non-
malleable under the n-RootDH assumption. The proofs can be found in the full
version [9].



Composable and Modular Anonymous Credentials 275

3.2 Non-interactive Zero-Knowledge and Witness Indistinguishable
Proof Systems

Let R be an efficiently computable binary relation. For pairs (W, Stmt) € R we
call Stmt the statement and W the witness. Let £ be the language consisting of
statements in R. A non-interactive zero-knowledge (NIZK) proof-of-knowledge
system for a language £ consists of the following algorithms and protocols:

I1.Setup(grp) — CRS. On input grp «— (1%), it outputs common parameters
(a common reference string) CRS for the proof system.

I1.Prove(CRS, W, Stmt) — m. On input a statement Stmt and a witness W, it
generates a zero-knowledge proof 7 that the witness satisfies the statement.

I1.Verify(CRS, m, Stmt) — 0/1. On input Stmt and , it outputs 1 if 7 is valid,
and 0 otherwise.

We explain the notation for the statements Stmi. We call extractable
(f-extractable [12]) witnesses that can be (only partially) extracted from the
corresponding proof, respectively. To express the “extractability” property of
the witnesses we use notation introduced by Camenisch et al. [28]. For the
extractable witnesses we use the “knowledge” notation (M), and for the f-
extractable witnesses we use “existence” (3 ) notation. (If function f is constant,
nothing can be extracted.) We define £ as a set of extractable witnesses and &
as a set of the witnesses that we can only prove existence about. We only con-
sider proofs for multi-exponentiations (for existence) and pairing products (for
existence and knowledge) equations. The following is an examplary statement:

~ n U
Stmt = N {YY eﬁ}izl A {e ey, =] o™

Jj=1

ne(G, Q) =] (e(¥i, Bi) - e(Ai, V7).

i=1

For simplicity of presentation, we do not explicitly specify public values of a
statement as additional input to the algorithms, since they are clear from the
description of the statement and the list of witnesses.

We employ different proof systems that are either witness indistinguishable
or zero-knowledge in terms of privacy, and either extractable or simulation-
extractable in term of soundness. For the security proofs we introduce the
following algorithms:

IT.ExtSetup(grp) — (CRS,tdcyt). On input grp, it outputs a common reference
string CRS and a trapdoor tde: for extraction of valid witnesses from valid
proofs. This is for witness-indistinguishable extractable proofs.

I1.SimSetup(grp) — (CRS,tdeyt,tdsim) It outputs a CRS and the extraction
and simulation trapdoors. This is for proofs that are also zero-knowledge.

I1.SimProve(CRS, tdgm, Stmt) — m. On input CRS and a trapdoor tdg,, it
outputs a simulated proof 7 such that IT.Verify(CRS, w, Stmt) = 1.
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I1.Extract(CRS, tdext, m, Stmt) — W. On input a proof m and a trapdoor tdex,
it extracts a witness W that satisfies the statement Stmt of the proof 7.

For simulation-extractable NIZK proofs (that are non-malleable) we also
allow an additional public input to the Prove, Extract, SimProve, and Verify algo-
rithms — a message (label) L, which is non-malleably attached to the proof (i.e.
the signature of knowledge is computed on this message). We provide a formal
definition below.

Definition 10 (Simulation Extractability). A proof system II is called sim-
ulation extractable with labels if for any PPT adversary A and security parameter
A there exists a negligible function negl(-) such that:

Pr[(CRS, tdsim, tdex) < SimSetup(11); (Stmt*, L* 1) — APsim(tdsm: ) (CRS) ;
W «— Extract(CRS, tdext, m, Stmt™, L*) : Verify(CRS, m, Stmt*, L*) = 1A
(W, Stmt™) ¢ R N Ogim was never queried with (Stmt*, L*)] < negl(X).

3.3 Our Redactable Signature Scheme

We construct our redactable signature scheme URS from a structure-preserving
signature scheme SPS, a vector commitment scheme VC, and an extractable and
witness-indistinguishable non-interactive proof-of-knowledge system IT described
in the previous section. Some SPS and vector commitment schemes might also
support randomization; we already discussed such a property for vector com-
mitments in the last sub-section; for signatures we refer the reader to [2,3]. We
denote the randomization algorithm of signatures by SPS.Rand. We denote the
randomizable elements of a SPS signature X' by 1;pq(X) and the other elements
by ¥yit(X). (For a non-randomizable SPS signature 1y (%) = X.)

Our construction does not utilize any randomizability in the vector commit-
ment scheme itself. In the full version [9] we analyze batch-binding and opening
non-malleability in presence of such a randomization algorithm.

Construction.

URS.SGen(1%). Compute grp < G(1%), pp < VC.Setup(grp), CRS « II.Setup
(grp), output SP = (grp, pp, CRS).

URS.Kg(SP). Obtain grp from SP, generate (pkg,s, sksps) < SPS.Kg(grp),
output pk = (pky,s, SP) and sk = (skgps, pk).

URS.Sign(sk, m). Pick r «— Z,, compute C = VC.Commit(pp, m,r) and X
SPS.Sign(sksps, C), and return o = (X, C, ).

URS.Derive(pk, I, m, o). First, compute W = VC.Open(pp, I, m,r). Then, if a
SPS.Rand algorithm is present, randomize the signature as X’ «— SPS.Rand
(Pkgps, X); otherwise, set X' « Y. And compute the proof m « II.Prove
(CRS; C, W, thyine (X7); N Cy W, hyse (X)) SPS.Verify(kaps,E’,C)/\VC.Check
(pp,C,mp, W) ). Return o = (¢rna(X’), 7) as the signature on my.

URS.Verify(pk, o, my). Check that H.Verify(CRS;w; NC W, i (X)) :+ SPS.
Verify(pk,,,, &', C)) = VC.Check(pp, C, m, W) = 1.
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Theorem 4. URS is an unforgeable redactable signature scheme, if the SPS
scheme 1is unforgeable, the vector commitment scheme satisfies the batch bind-
g and opening non-malleability property, and the proof-of-knowledge system is
extractable and witness indistinguishable. The proofs of Theorems 4 is provided
in the full version [9].

Theorem 5. URS is an unlinkable redactable signature scheme if the proof-of-
knowledge system is witness indistinguishable. The proofs are given in the full
version of this paper [9].

Strengthened Scheme for an Universally Composable Construction. To be able
to satisfy the UC functionality, we require an additional key-extraction property.
We thus build an augmented redactable signature scheme URS from a redactable
signature scheme URS™ (without key extraction) and a zero-knowledge non-inter-
active proof-of-knowledge system IT*.

URS.SGen(1%). Run SP* « URS*.SGen(1%), get grp from SP*, run CRS «—
IT*.Setup(grp), and output SP = (SP*, CRSp).

URS.Kg(SP). Obtain SP* and CRSj from SP, sample randomness r, and run
(pk*, sk™)«— URS*.Kg(SP*;r). Compute the proof
7sk — II*.Prove (CRSs; (sk™,r); A sk™ v : (pk*, sk™) = URS".Kg(SP*;r)).
Output pk = (SP,pk™,ms) and sk = (sk™,pk). We note that URS*.Kg
(SP*;r) fixes the randomness of the a key generation algorithm.

URS.CheckPK(SP, pk). Check IT*Verify(CRSs;si; Nsk Ar : (pk,sk) =
URS*.Kg(SP*;r)) = 1.

Sign, Derive, Verify are almost unchanged and use pk™ internally. SGenT and
ExtractKey use the extraction setup and extractor of the proof system respec-
tively, while CheckKeys checks that the relation R holds for pk and sk.

Note that Groth-Sahai proofs can be used to implement key-extraction by
proving a binary, or n-ary decomposition of the secret key [57]. But this comes at
a huge cost of more than 61,000 group elements at 128-bit security, even if this
cost is only incurred once by every user per public key. We propose instead to use
fully structure-preserving signatures (FSPS) [5] such that sk consists of group
elements and can be easily extracted. FSPS for signing single group elements can
be as cheap as 15 elements per signature and proofs of key possession consist of
just 18 elements.

Theorem 6. The strengthened scheme URS is an unforgeable, unlinkable, and
key extractable redactable signature scheme, if the underlying redactable signature
scheme URS™ is unforgeable and unlinkable, and the proof-of-knowledge system
II* is zero-knowledge and extractable.

Unforgeability and unlinkability are corollaries of Theorem 4 and Theorem 5.
Key-extractability follows directly from the extractability of the proof system.
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Signing Group Elements as Additional Parts of the Message. While the presented
redactable signature scheme can sign and quote a large number of values in Z,
very efficiently, in certain applications, like the one presented in the next section,
one might also need to sign a small number of additional group elements. In the
Derive algorithm these elements will either be part of the derived message, and
given in the clear after derivation, or be treated as part of the witness, i.e.,
hidden from the verifier. The detailed construction and the security proofs are
given in the full version [9].

4 From Unlinkable Redactable Signatures to Anonymous
Credentials

As we designed our UC-secure URS scheme as a building block for privacy-
preserving protocols, anonymous credentials are a natural application. Indeed, an
(unlinkable) redactable signature scheme is already a simple selective-disclosure
credential system where the attributes issued to users are the messages signed
in Tier 1 signatures and a user can later reveal a subset of her attributes by
deriving a Tier 2 signature. However, in an anonymous credential system, users
also require secret keys and pseudonyms (pseudonymous public keys), on which
credentials can be issued and with respect to which credentials can be presented.
This allows users to prove that they possess several credentials issued from dif-
ferent parties on the same secret key [19,31].

In this section, we extend the functionality of URS in two ways: (1) we bind
Tier 1 signatures to user secret keys in a way that prevents the derivation of
signatures without knowledge of the secret and (2) we bind Tier 2 derived sig-
natures to the unique context, czt (nonce), to prevent replay attacks in which
an attacker shows the same signature derived twice.

We first recall the algorithms of a multi-issuer anonymous credential system
and then provide an instantiation using URS. To be modular and to simplify the
analysis, we then provide an ideal functionality for a single issuer. The function-
ality is carefully designed to self-compose naturally into a full-fledged credential
system with multiple issuers. Finally, we provide a concrete instantiation of our
generic construction and analyze its efficiency.

4.1 Algorithms of Our Anonymous Credential System

Let us first introduce the parties and the algorithms of a multi-issuer anonymous
credential system supporting user attributes (cf. [19,31]). Its protagonists are
users (U), issuers (Z), and verifiers (V). Each user has a secret key X, from
which she can derive (cryptographic) pseudonyms P. To get a credential issued,
a user sends to the issuer a pseudonym P together with a (non-interactive) proof
mx,p that she is privy to the underlying secret key. The issuer will then issue her
a credential Cred on P containing the attributes a the issuer vouches for. The
user can then present the credential to a verifier under a potentially different
pseudonym P’ by sending, together with P’, a (non-interactive) proof mx, cred
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that she possesses a credential on the attributes a;. Recall that I defines which
attributes shall be revealed.

A credential system Cred defines a set of algorithms: a system parameters
generation algorithm SGen; an issuer setup algorithm Kg; a user secret generation
algorithm SecGen; algorithms for pseudonym generation and verification NymGen
and NymVerify, respectively; an algorithm to request a credential RequestCred; an
algorithm for issuing a credential IssueCred; an algorithm to check a newly issued
credential for correctness CheckCred; an algorithm to show a credential with
respect to a pseudonym (to create a credential proof) Prove; and an algorithm
to verify a credential proof Verify.

A more detailed discussion of these algorithms is given in the full version [9].
We instantiate these algorithms by adding support for user secrets, pseudonyms
and contexts to our redactable signature scheme. Besides the URS algorithms,
we use pseudonym generation and verification algorithms based on a structure
preserving commitment scheme SPC and a hard relation to generate credential
specific secrets. A hard relation has a generator Kgrg,, that generates a wit-
ness (X creq and a public value Yereq), and a verification algorithm Vggap, such
that it is easy to verify (Xcred, Yorea) but hard to compute X greq from Yereq.
This hardness is used to prevent a network adversary that observes the issuing
protocol from impersonating the user.

Table 1 gives the construction of our credential scheme. We group the core
credential algorithms into those used for setup, issuing and presentation. In our
security definition and the proof we will make use of additional algorithms for
simulation and extraction.

4.2 Ideal Functionality for Credentials

To tame the complexity of definitions for credential systems with many different
issuers, we chose to give a definition Fcreq of a scheme for a single issuer only,
that then can be used as building block to a a full-fledged credential system
with multiple issuers. The single issuer functionally Fcreq will just allow users
to get a credential on a pseudonym from the issuer and to prove ownership of a
credential by the issuer w.r.t. a given pseudonym.

To serve as a secure building block, Fcreq must be carefully designed. On the
one hand it must deal with the unforgeability of credentials and on the other
hand it must provide the hooks such that colluding users cannot mix and match
credentials from different issuers. To address the former Fcreq binds issued cre-
dentials to the respective users’ secret key X and for the latter Fceq will enforce
that credential proofs will not verify w.r.t. a pseudonym P unless a correspond-
ing credential got issued to the X underlying that pseudonym. Then, provided
adversarial users are unable to provide different X’s for the same pseudonym,
credentials from different issuers issued to different users (i.e., different X’s) can-
not be matched. As a consequence of this, the generation of user secret keys and
pseudonyms is not done inside Fcreq but users are require to input their secret
key X the pseudonym P (as cryptographic values) to Fcred on the calls to get
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Setup algorithms

Issuing algorithms

Presentation algorithms

Simulation and extraction algorithms

J. Camenisch et al.

Table 1. Algorithms of our credential system

Cred.SGen(1%): Compute SPyrs < URS.SGen(1%); CRSx <« I1.Setup(1™); ppspc
— SPC.Setup(SPURs); and output SP = (SPURs, CRSX,ppSPC).
Cred.Kg(SP): Compute (pkygs, skurs) < URS.KeyGen(SPuyrs), and output
(sk, pk) = (skurs, pkygs)-
Cred.SecGen(SP) : Take G from SP, pick random x < Zp,, X = G*. Output X.
Cred.NymGen(SP, X) : (P, O) < SPC.Commit(ppgpc, X). Output (P, auz(P) = O).
Cred.NymVerify(SP, X, P, auz(P)) : Parse auz(P) as O. Output the result of
SPC.Check(ppspc, P, O).

Cred.RequestCred(SP, pk, X, P, auz(P)) :
(X cred, Yored) < Krgap; 7x,p < II.Prove(CRS x; (X, X cred, auz(P)); Stmip),
where Stmtp = (A X, auz(P) : NymVerify(SP, X, P, auz(P)) = 1).
Add Xcred, Yored, P, aux(P) to auz(Cred) and Yereq to mx, p.
Cred.IssueCred(SP, sk, P,a,7x,p):
1. Verify the request for issuance 7x p:
If I1.Verify(CRS x; x,p; Stmtp) = 0, return L.

2. Else, generate a credential by creating a Tier 1 signature on the vector of
messages, providing the pseudonym and a gap problem challenge, and
calling o < URS.Sign(sk, (P, Ycred, @)) and output Cred = o.

Cred.CheckCred(SP, pk, X, P, auz(P), Cred, auz:(Cred), a) : Output the result of
URS.Verify(pk, Cred, (P, Ycred, @)).

Cred.Prove(SP, pk, X, P’, auz(P)’, Cred, auz(Cred), a, I, cxt) — Tx Cred:
1. Obtain X cred, Yored, P, auz(P) from auz(Cred) and o from Cred.
2. Run o7 < URS.Derive(pk, I, (P, Ycred, a),0)).
3. Compute a proof of knowledge of the secret, pseudonym, where the context
is non-malleably attached as a label to the proof:
TX,Cred = H.Prove(CRSx; (X, P7
auz(P), aux(P)'7 Yered, X crea); Stmt, cat); Stmt =
()1 X, P, auz(P), aux(P),Ycred, X Cred : NymVerify(SP, X, P’, aux(P)') =
1 A NymVerify(SP, X, P, auz(P)) = 1 A URS.Verify(pk, o1, (P, Ycred, a)1)) =
1 A Vrgap(Xcred, Yorea) = 1).
Add o7 to mx, cred as a part of the public input.
Cred.Verify(SP, pk, P', 7x cred, ar, cxt) : Output the result of IT.Verify(CRS x;
T'X ,Cred; Stmt(SP, P/7 or, a[)7 CIt).

Cred.SGenT(17) : (SPuyrs, td) < URS.SGenT(1%);
(CRS x,tdext, tdsim) < I1.SimSetup(1™); ppspc < SPC.Setup(SPurs).
Output (SP = (SPurs, CRS x, pPspc)s tdext = (td, tdezt),tdsim).
Cred.Extract(SP, tdest, pk, P', 7x Crea, a1, czt):
Take (X, auz(P)) from IT.Extract(SP;tdest; Tx, crea; Stmt)).
Cred.SimProve(SP, sk, tdsim, P, ar, cxt) — Tx, Cred:
1. X < SecGen(SP); (P, auz(P)) - NymGen(SP, X).
2. Let ap be a Tier 1 message restored from ar by replacing L-s with 0-s as if
it was derived from the original message a by applying Zero(a, I).
3. o + URS.Sign(sk, (P, Ycred, a0))
. o1 < URS.Derive(pk, I, (P, Ycred, a0),0)).
5. Compute a proof of knowledge of the secret, pseudonym, and the
correctness of the signature on a context:
7x,cred < I1.SimProve(CRS x; tdsim; P'; Stmt, cxt).

'y
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credentials issued or to generate a credential proof. Thus we assume that algo-
rithms (SecGen, NymGen, NymVerify) to generate user secret keys, to generate
pseudonyms, and to verify pseudonyms are available. Fcreq is given NymVerify
as an input parameter and will use this algorithm, to check the relation between
P and X. For the security properties guaranteed by Fcred, we do not make any
assumptions about the security properties of these algorithms. However, for the
security of the overall credential scheme, pseudonym need to be commitments
to X, i.e., to be binding and hiding w.r.t. X.

In the following we provide the definition of F¢eq and a protocol Rcyeq that
realizes Fcred using Fca and Fcrs, assuming static corruptions.

Single Issuer Ideal Functionality. The starting point for our credential function-
ality is the ideal functionality of unlinkable redactable signatures, extended in a
number of ways. Similar to Fygrs (and in line with other UC-functionalities such
as Fsig that need to output cryptographic values), Fcred is handed a number
of cryptographic algorithms by the simulator. These algorithms allow Fceq to
produce cryptographic artifacts for proofs of credential ownership and attribute
disclosure, to verify such proofs (when they are coming from the adversary),
and to extract values from proofs. (We note that there are no artifacts for the
credentials themselves.) While these algorithms can be completely adversarial,
Fered Will enforce that algorithms and the artifacts produced by them) satisfy
the required unforgeability and privacy properties. In fact, because of the privacy
properties, Fcreq needs to run these algorithms itself and cannot ask the simu-
lator for the artifacts as is sometimes done (cf. Fyrs and the UC-functionalities
for blind signatures [6,42]).

We now describe the steps of our ideal functionality Fereq (cf. Fig.1) and
explain the security properties it ensures and how it does so. Note that because
we consider static corruption, Fcreq and SZM are aware of which parties are
corrupted.

Fcred maintains two tables for bookkeeping: M ss stores information about
issued credentials and M prgrs stores information about credentials that pro-
duced presentation proofs. It then handles requests as follows. Upon receiving
a (keygen, sid) message, Fcred performs a setup by asking the simulator for the
system parameters, the keys of the issuer, trapdoors, a set of algorithms and
a list of corrupted parties. The message (leakSK, sid) is handled in exactly the
same way as for redactable signatures.

Next, upon receiving a (issueCred, sid, gid,U, X, P, aux(P)) message from
a user U, Fcred initiates credential issuing by sending a corresponding message
to the issuer specified in sid = (Z, sid"). If Z responds to the request with a list
of attributes a, Fcreq verifies that X, P, and auz(P) form a valid pseudonym
(i.e., NymVerify outputs 1), and, if so, records in Mgs that a credential with
attributes a to user U w.r.t. secret X has been issued.

Upon receiving a credential proof request in the form of a (proveCred,...)
message, Fcred verifies whether the provided X, P, and auz(P) form a valid
pseudonym and whether a credential with attributes a to user U w.r.t. secret X
has been issued. Then, Fceq creates a cryptographic artifact for the proof using
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the Cred.SimProve algorithm where no information that must not be revealed is
input to the algorithm. This will guarantee the privacy properties of the creden-
tial proof for honest users. Furthermore, before outputting the proof to the user,
Fecred Will verify it using Cred.Verify as to ensure correctness.

Finally, upon receiving the (verifyCredProof,...) message, Fcrd has to

determine whether or not the proof should be accepted. Here we need to deal
with unforgeability of credential proofs (and thus of credentials) if the issuer is
honest and its secret key has not been leaked. Naturally, Fcreq should accept
proofs that it has generated itself. Apart from that, Fcq could in principle just
accept all proofs for which the revealed attributes correspond to a credential
that was issued. This would allow the adversary to also produce proofs that
match credentials that were not issued to dishonest users but only to an honest
user. To prevent this, we require an extraction algorithm Cred.Extract which, on
input a credential proof, will generate a user secret. Then, Fcrq will accept a
credential proof only if the revealed attributes correspond to a credential that
was issued to a corrupted users w.r.t. the X’ extracted from the proof. That,
however, would still allow (dishonest) users to mix and match their credentials.
Therefore, Fcreg will accept the proofs only if the extracted X’ underlies the
pseudonym P’ w.r.t. which the proof verifies. Therefore, Fcreq checks the latter
using NymVerify.
Realization of Fcred- A protocol Rereq that realizes Fcreq can be obtained from
the algorithms described in Sect. 4.1 in the (Fcgrs, Fca)-hybrid model where SP
is the reference string and each call to Fceq is replaced by running the cor-
responding algorithms. The detailed description of Rcreq is given in the full
version [9].

For efficiency reasons related to the integration of pseudonyms (which requires
zero-knowledge proofs and thus whitebox techniques), Rcyred does not use Rygs
as a (blackbox) subroutine. We will, however, carefully align the internals of Fcyeq
and Rcreq with those of Fyrs and Rygs respectively, such that we can use the UC
emulation theorem in one of the hybrid steps of our security proof.

Theorem 7. Let URS be an unlinkable redactable signature scheme according
to Definition 1, SPC be a structure-preserving commitment scheme, Rgap be
a veriftable relation, II be a non-interactive proof of knowledge system. Then
Rered securely realizes Fered 0 the (Fcrs, Fea)-hybrid model if URS is correct,
unlinkable, unforgeable, and key extractable, SPC is binding, the non-interactive
proof-of-knowledge system is zero-knowledge and simulation extractable, and the
Rgap relation is hard. The proof is provided in the full version [9].

Building a Full-Fledged Credential System with Multiple Issuers. We now explain
how to use our credential functionality to support multiple issuers using multiple
sessions of Fcred, one for each issuer, together with algorithms (SecGen, NymGen,
NymVerify) to generate user secret keys, to generate pseudonyms, and to verify
pseudonyms. The pseudonyms are required to be both hiding and binding w.r.t.
the user secret to provide privacy to the honest users and to prevent colluding
users from sharing credentials unless they all user the same user secret. A user
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Functionality Fcred(NymVerify)

The functionality maintains tables Mss and M prgs initialized to () and flags kg
and keyleak which are initially unset.

— On input (keygen, sid) from Z, verify that sid = (Z, sid’) for some sid’ and
that flag kg is unset. If not, then return L. Else, do the following:

1. Send (initF, sid) to SZM and wait for a message (initF, sid, SP, sk, pk,
tdsim, tdeqt, Cred.SimProve, Cred.Verify, Cred.Extract) from SZM, where
SP are the system parameters, tdsim and tdeq: are the simulation and
extraction trapdoors respectively, and the rest are polynomial-time
algorithms. Store all of these values and set flag kg.

2. Return (verificationKey, sid, pk) to Z.

— On input (leakSK, sid) from Z verify that sid = (Z, sid") for some sid’. If
not, return L. Else, if flag kg is set, set flag keyleak and return
(LeaksK, sid, sk), otherwise - abort.

— On input (issueCred, sid, ¢id, X, P, auz(P)) from U, check sid = (Z, sid’)
for some sid’, and that flag kg is set. If not, return L. Else send a public
delayed output (issueCred, sid, qid, P) to Z.

— On input (issueCred, sid, ¢id, @) from Z, check for
(issueCred, sid, qid, X, P, auz(P)) from U, and verify that sid = (Z, sid") for
some sid’ and that the flag kg is set. If not, return L. Else, do the following:

1. Run b « NymVerify(SP, P, X, auz(P)). If b = 0, return L.

2. Add (1SS, L, X,a) to Mss.

3. Send a public delayed output (credIssued, sid, gid, a) to U.

4. When (credIssued, sid, gid, a) is delivered to U, update the issuance
record by adding the user to (ISS,U, X,a) of Mss.

— On input (proveCred, sid, X, P, auz(P)’, I, a, cat) from U, do the following:

. Check if kg is set. If not, return L.
Check if NymVerify(SP, P', X, auz(P)") = 1. If not, return L.
. Check if (ISS,U, X, a) exists. If not, return L.
7x,cred < Cred.SimProve(SP, sk, tdsim, P',ar, cxt).
Check if Cred.Verify(SP, pk, P', 7x cred, ar, cxt) = 0, then output L.
. Add (PRES,U, cxt, X, P', auz(P)’,ar,7x, cred) to Mprps.
. Return (credProved, sid, ar, Tx,cred) to U.
- On input (verifyCredProof, sid, pk', P', 7 cyeq, @y, cat’) from some party
‘P, do the following:
1. Verify the proof result = Cred.Verify(SP, pk', P', 7'y ¢yeq, @7, cat’).
2. If pk # pk’, or keyleak is set, or Z is dishonest, or result = 0, send
(verified, sid, a}, result) to P.
3. Else, if there is a record (PRES, *, czt’,*, P, *, @}, T oeq) return
(verified, sid,a’, 1) to P.
4. Else, run (X', auz(P)") < Cred.Extract(SP, tdest, pk, P', T cred, @7, czt’).
5. If NymVerify(SP, P, X', auz(P)") = 0, return (verified, sid,a},0) to P.
6. Else, if there is a record (ISS,U, X', a) in Mss for a corrupted user U
such that a; = a7, return (verified, sid,a}, 1) to P.
7. Otherwise return (verified, sid, a’,0) to P.

\IO:.CI\:J;OJ!\DH

Fig. 1. The ideal functionality for single issuer anonymous credentials
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now can generate a user secret and different pseudonyms on them and then use
multiple calls to the Fcreq instances for different issuers to get credentials on
her pseudonyms. To compose a presentation proof that reveals attributes from
different credentials, the user creates a pseudonym P’ and uses the corresponding
Fcred instances to generate the required proofs with respect to this pseudonym.
Because the pseudonym is the same in different proofs and each proof guarantees
the same underlying secret in the credential and the pseudonym, the collection of
these proofs together results in a single proof for multiple credentials. Each proof
block guarantees unlinkability and unforgeability, and because the pseudonym is
both binding and hiding this composed proof is also unforgeable and unlinkable
with respect to other proof collections. The verification is done by querying the
corresponding Fcreq instances for verification of each particular proof part and by
checking that the pseudonym is the same in each proof part. A formal definition
of a full-fledged credential scheme and proof that the scheme just sketched meets
it is left as future work.

4.3 Instantiation and Efficiency Analysis

To analyze the efficiency of our scheme we consider a concrete instantiation sce-
nario. We instantiate our non-interactive construction with Groth-Sahai proofs
[45], the structure-preserving commitment scheme of [4], and our unlinkable
redactable signature scheme presented in Sect.3.3. We use disjunctive proofs
to make the proof system simulation-extractable [22], see [54] for the efficient
instantiation with 48 group elements overhead in the XDH setting that forms
the basis of our efficiency analysis. As a hard relation we pick the Computa-
tional Diffie-Hellman problem. The URS scheme is instantiate with the fully
structure-preserving signature scheme by Abe et al. [5], Groth-Sahai proofs, and
the vector commitment scheme from Sect. 3.1. The proof of Theorem 8 follows
from Theorems 6-7.

Theorem 8. The credential system described above securely realizes Fcreq defined
in Sect. 4.2 if the SXDH, n-RootDH, n-BSDH, q-SDH, XDLIN, co-CDH, and DBP
assumptions hold. Consult building blocks for definitions of assumptions.

We refer to the full version [9] for the comparison with prior work. We stress
that the complexity of the Prove and Verify algorithms is independent of the
number of all attributes contained in a credential.

The size of the credential proof is roughly 178 group elements (148 when using
the SPS of [2] instead of FSPS). This means that the communication efficiency
for showing a credential with respect to a pseudonym is around 11 KB (9 KB for
SPS) at 128-bit security level, which is close to Idemix credentials [31] as the size
of pairing groups is much smaller than the size of RSA groups and because the
size of Idemix credential proofs is linear in the number of attributes. Besides,
Idemix credentials do not provide such strong formal security guarantees, i.e.
they require random oracles for non-interactive proofs and are not universally
composable. Our non-UC scheme is comparable in efficiency with the credential
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system of Izabachéne et al. [50] that has credential proofs of around 8 KB, while
our UC scheme has larger proof sizes. Our scheme is much less efficient than the
scheme of [47] but their scheme relies on hash functions in their construction
and thus does not enable efficient protocol design.

Open Questions. We leave the construction of a scheme that achieves the same
functionality as ours with the efficiency of [47]—perhaps using fully structure
preserving signatures of equivalence classes—as an interesting open problem.
Other interesting questions are exploiting the lack of opening non-malleability
for attacks on existing constructions and efficiently basing the opening non-
malleability property of vector commitments on a more standard cryptographic
assumption than the n-RootDH assumption of Definition 9.
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Abstract. We describe three contributions regarding the Soft Analyti-
cal Side-Channel Attacks (SASCA) introduced at Asiacrypt 2014. First,
we compare them with Algebraic Side-Channel Attacks (ASCA) in a
noise-free simulated setting. We observe that SASCA allow more efficient
key recoveries than ASCA, even in this context (favorable to the latter).
Second, we describe the first working experiments of SASCA against an
actual AES implementation. Doing so, we analyse their profiling require-
ments, put forward the significant gains they provide over profiled Dif-
ferential Power Analysis (DPA) in terms of number of traces needed
for key recoveries, and discuss the specificities of such concrete attacks
compared to simulated ones. Third, we evaluate the distance between
SASCA and DPA enhanced with computational power to perform enu-
meration, and show that the gap between both attacks can be quite
reduced in this case. Therefore, our results bring interesting feedback for
evaluation laboratories. They suggest that in several relevant scenarios
(e.g. attacks exploiting many known plaintexts), taking a small mar-
gin over the security level indicated by standard DPA with enumeration
should be sufficient to prevent more elaborate attacks such as SASCA. By
contrast, SASCA may remain the only option in more extreme scenarios
(e.g. attacks with unknown plaintexts/ciphertexts or against leakage-
resilient primitives). We conclude by recalling the algorithmic depen-
dency of the latter attacks, and therefore that our conclusions are specific
to the AES.

1 Introduction

State-of-the-art. Strategies to exploit side-channel leakages can be classified as
Divide and Conquer (DC) and analytical. In the first case, the adversary recovers
information about different bytes of (e.g.) a block cipher key independently, and
then combines this information, e.g. via enumeration [36]. In the second case,
she rather tries to recover the full key at once, exploiting more algorithmic
approaches to cryptanalysis with leakage. Rephrasing Banciu et al., one can see
these different strategies as a tradeoff between pragmatism and elegance [2].

In brief, the “DC+enumeration” approach is pragmatic, i.e. it is easy to
implement, requires little knowledge about the target implementation, and can
take advantage of a variety of popular (profiled and non-profiled) distinguishers,
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such as Correlation Power Analysis (CPA) [6], Mutual Information Analysis
(MIA) [14], Linear Regression (LR) [34] or Template Attacks (TA) [8]. We will
use the term Differential Power Analysis (DPA) to denote them all [22].

By contrast, analytical approaches are (more) elegant, since they theoreti-
cally exploit all the information leaked by an implementation (vs. the leakages
of the first and/or last rounds independently for DC attacks). As a result, these
attacks can (theoretically) succeed in conditions where the number of measure-
ments available to the adversary is very limited. But this elegance (and the
power that comes with it) usually implies stronger assumptions on the target
implementation (e.g. most of them require some type of profiling). The Algebraic
Side-Channel Attacks (ASCA) described in [30] and further analyzed in [7,32]
are an extreme solution in this direction. In this case, the target block cipher and
its leakages are represented as a set of equations that are then solved (e.g. with
a SAT solver, or Groebner bases). This typically implies a weak resistance to the
noise that is usually observed in side-channel measurements. As a result, various
heuristics have been suggested to better deal with errors in the information leak-
ages, such as [24,39]. The Tolerant Algebraic Side-Channel Attacks (TASCA)
proposed in [25,26] made one additional step in this direction, by replacing the
solvers used in ASCA by an optimizer. But they were limited by their high mem-
ory complexity (since they essentially deal with noise by exhaustively encoding
the errors they may cause). More recently, two independent proposals suggested
to design a dedicated solver specialized to byte-oriented ciphers such as the
AES [16,27]. The latter ones were more efficient and based on smart heuris-
tics exploiting enumeration. Eventually, Soft Analytical Side-Channel Attacks
(SASCA) were introduced at Asiacrypt 2014 as a conceptually different way
to exploit side-channel leakages analytically [38]. Namely, rather than encoding
them as equations, SASCA describe an implementation and its leakages as a
code, that one can efficiently decode using the Belief Propagation (BP) algo-
rithm. As a result, they can directly exploit the (soft) information provided by
profiled side-channel attacks (such as LR or TA), in an efficient manner, with
limited memory complexity, and for multiple plaintexts. Concretely, this implies
that they provide a natural bridge between DC attacks and analytical ones.

Our Contribution. In view of this state-of-the-art, we consider three open
problems regarding DC and analytical strategies in side-channel analysis.

First, we observe that the recent work in [38] experimented SASCA in the
context of noisy AES leakages. While this context allowed showing that SASCA
are indeed applicable in environments where ASCA would fail, it leaves the
question whether this comes at the cost of a lower efficiency in a noise-free
context open. Therefore, we launched various experiments with noise-free AES
leakages to compare ASCA and SASCA. These experiments allowed us to confirm
that also in this context, SASCA are equally (even slightly more) efficient.

Second, the experiments in [38] exploited simulations in order to exhibit
the strong noise-resilience of SASCA (since the amount of noise can then be
used as a parameter of such simulations). But this naturally eludes the question
of the profiling of a concrete device, which can be a challenging task, and for
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which the leakage functions of different target intermediate values may turn out
to be quite different [13]. Therefore, we describe the first working experiments
of SASCA against an actual AES implementation, for which a bivariate TA
exploiting the S-box input/output leakages would typically be successful after
more than 50 measurements. We further consider two cases for the adversary’s
knowledge about the implementation. In the first one, she has a precise descrip-
tion in hand (i.e. the assembly code, typically). In the second one, she only knows
AES is running, and therefore only exploits the generic operations that one can
assume from the algorithm specification.! Our experiments confirm that SASCA
are applicable in a simple profiled scenario, and lead to successful key recoveries
with less traces than a DC attack (by an approximate factor up to 5). They
also allow us to discuss the profiling cost, and the consequences of the different
leakage functions in our target implementation. A relevant observation regarding
them is that weak leakages in the MixColumns operations are especially damag-
ing for the adversary, which can be explained by the (factor) graph describing an
AES implementation: indeed, XORing two values with limited information sig-
nificantly reduces the information propagation of the BP algorithm execution.
This suggest interesting research directions for preventing such attacks, since
protecting the linear parts of a block cipher is usually easier/cheaper.

Third, we note that SASCA are in general more computationally intensive
than DC attacks. Therefore, a fair comparison should allow some enumeration
power to the DC attacks as well. We complement our previous experimental
attacks by considering this last scenario. That is, we compare the success rate
of SASCA with the ones of DC attacks exploiting a computational power corre-
sponding to up to 230 encryptions (which corresponds to more than the execu-
tion time of SASCA on our computing platform). Our results put forward that
SASCA remain the most powerful attack in this case, but with a lower gain.

Summary. These contributions allow answering the question of our title. First,
SASCA are in general preferable to ASCA, with both noise-free and noisy AES
leakages. Second, the tradeoff between SASCA and DC attacks is more balanced.
As previously mentioned, DC attacks are more pragmatic. So the interest of
SASCA essentially depends on the success rate gains it provides, which itself
depends on the scenarios. If multiple plaintexts/ciphertext pairs are available,
our experiments suggest that the gain of SASCA over DPA with enumeration is
somewhat limited, and may not justify such an elegant approach. This conclusion
backs up the results in [2], but in a more general scenario, since we consider
multiple-queries attacks rather than single-query ones, together with more a
powerful analytical strategy. By contrast, if plaintexts/ciphertexts are unknown
(which renders DPA [17] and enumeration more challenging to apply), or if the
number of plaintexts one can observe is very limited (e.g. by design, due to a
leakage-resilient primitive [10]), SASCA may be the best/only option.

! Admittedly, such a generic scenario still assumes that the target implementation
closely follows the specifications given in [11] which may not always be the case, e.g.
for bitslice implementations [29], or T-table based implementations [9].
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Preliminary Remark. Our focus in this paper is on a couple of extreme
approaches to side-channel analysis, i.e. the most pragmatic DC attacks against
8-bit targets of the first AES round, and the most elegant ASCA /SASCA exploit-
ing most/all such targets in the implementation. Quite naturally, the other ana-
lytical attacks mentioned in this introduction would provide various tradeoffs
between these extremes. Besides, more computationally-intensive DPA attacks
(based on larger key hypotheses) are also possible, as recently discussed by
Mather et al. [23]. Such attacks are complementary and may further reduce
the gain of SASCA over DPA, possibly at the cost of increased computational
requirements (e.g. the latter work exploited high-performance computing
whereas all our experiments were carried out on a single desktop computer).

2 Background

In this section we first describe the measurement setup used in our experiments.
Then, we describe two tools we used to identify and evaluate information leakages
in the traces. Finally, we recall the basics of the different attacks we compare.

2.1 Measurement Setup

Our measurements are based on the open source AES FURIOUS implementa-
tion (http://point-at-infinity.org/avraes) run by an 8-bit Atmel ATMEGAG644p
microcontroller at a 20 MHz clock frequency. We monitored the power consump-
tion across a 22{2 resistor. Acquisitions were performed using a Lecroy WaveRun-
ner HRO 66 ZI providing 8-bit samples, running at 400 Msamples/second. For
SASCA, we can exploit any intermediate values that appear during the AES
computation. Hence, we measured the full encryption. Our traces are composed
of 94 000 points, containing the key scheduling and encryption rounds. Our pro-
filing is based on 256 000 traces corresponding to random plaintexts and keys.
As a result, we expect around 1000 traces for each value of each intermediate
computation. We use I” _ for the value z of the n'” intermediate value in the i*"

n,xr
tth

leakage trace, and liw(t) when we access at the t** point (sample) of this trace.

2.2 Information Detection Tools

Since SASCA can exploit many target intermediate values, we need to identify
the time samples that contain information about them in our traces, next referred
to as Points Of Interest (POI). We recall two simple methods for this purpose,
and denote the POI of the n” intermediate value in our traces with t,,.

(a) Correlation Power Analysis (CPA) [6]. is a standard side-channel dis-
tinguisher that estimates the correlation between the measured leakages and
some key-dependent model for a target intermediate value. In its standard ver-
sion, an a-priori (here, Hamming weight) model is used for this purpose.
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In practice, this estimation is performed by sampling (i.e. measuring) traces
from a leakage variable L and a model variable Mj, using Pearson’s correlation
coefficient:

_ EI(L = ) (M, — g, )]
pi(L, My) = var(L)var(My)

In this equation, E and var respectively denote the sample mean and variance
operators, and fiy, is the sample mean of the leakage distribution L. CPA is a
univariate distinguisher and therefore launched sample by sample.

(b) The Signal-to-Noise Ratio (SNR) [21]. of the n!" intermediate value
at the time sample ¢ can be defined according to Mangard’s formula [21]:

SNR, (1) = Vérz(éi (l;’x(t))) :
e E. (véri (lﬁm(t)))

Despite connected (high SNRs imply efficient CPA if the right model is used),
these metrics allow slightly different intuitions. In particular, the SNR cannot
tell apart the input and output leakages of a bijective operation (such as an
S-box), since both intermediate values will generate useful signal. This separation
can be achieved by CPA thanks to its a-priori leakage predictions.

2.3 Gaussian Templates Attacks

Gaussian TA [8] are the most popular profiled distinguisher. They assume that
the leakages can be interpreted as the realizations of a random variable which
generates samples according a Gaussian distribution and work in two steps.
In a profiling phase, the adversary estimates a mean fi,, , and variance ‘3121,:,; for
each value z of the n' intermediate computation. In practice, this is done for the
time sample ¢,, obtained thanks to the previously mentioned POI detection tools.
Next, in the attack phase and for each trace I, she can calculate the likelihood
to observe this leakage at the time t, for each x as:

P;I‘[l(tnﬂl’] ~ N(ﬂn,rv 5—7%,.%)'

In the context of standard DPA, we typically have x = p & k, with p a known
plaintext and k the target subkey. Therefore, the adversary can easily calculate
Pr[k*|p, l(t,)] using Bayes theorem, for each subkey candidate k*:

Pr[k*] = Hp}[k* Ip, U (L))

To recover the full key, she can run a TA on each subkey independently.



296 V. Grosso and F.-X. Standaert

By contrast, in the context of SASCA, we will directly insert the knowledge (i.e.

probabilities) about any intermediate value x in the (factor) graph describing
the implementation, and try to recover the full key at once.

Note that our SASCA experiments consider univariate Gaussian TA whereas
our comparisons with DPA also consider bivariate TA exploiting the S-box input
and output leakages (i.e. the typical operations that a divide-and-conquer adver-
sary would exploit). In the latter case, the previous means and variances just
have to be replaced by mean vectors and covariance matrices. This choice is
motivated by our focus on the exploitation of multiple intermediate AES com-
putations. It could be further combined with the exploitation of more samples
per intermerdiate computation, e.g. thanks to dimensionality reduction [1].

2.4 Key Enumeration and Rank Estimation

At the end of a DC side-channel attack (as the previous TA), the attacker has
probabilities on each subkey. If the master key is not the most probable one,
she can perform enumeration up to some threshold thanks to enumeration algo-
rithms, e.g. [36]. This threshold depends on the computational power of the
adversary, since enumerating all keys is computationally impossible. If the key is
beyond the threshold of computationally feasible enumeration, and in order to
gain intuition about the computational security remaining after an attack, key
rank estimation algorithms can be used [15,37]. A key rank estimation takes in
input the list of probabilities of all subkeys and the probability of the correct
key (which is only available in an evaluation context), and returns an estimation
on the number of keys that are more likely than the actual key. Rank estima-
tion allows to approximate d*"-order success rates (i.e. the probability that the
correct key lies among the d first ones rated by the attack) efficiently and quite
accurately. The security graphs introduced in [37] provide a visual representation
of higher-order success rates in function of the number attack traces.

2.5 Algebraic Side-Channel Attacks

ASCA were introduced in [30] as one of the (if not the) first method to efficiently
exploit all the informative samples in a leakage trace. We briefly recall their three
main steps and refer to previous publications for the details.

1. Construction consists in representing the cipher as an instance of an algebraic
problem (e.g. Boolean satisfiability, Groebner bases). Because of their large mem-
ory (RAM) requirements, ASCA generally build a system corresponding to one
(or a few) traces only. For example, the SAT representation of a single AES trace
in [32] has approximatively 18,000 equations in 10,000 variables.

2. Information extraction consists in getting exploitable leakages from the mea-
surements. For ASCA, the main constraint is that actual solvers require hard
information. Therefore, this phase usually translates the result of a TA into
deterministic leakages such as the Hamming weight of the target intermediate
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values. Note that the attack is (in principle) applicable with any type of lekages
given that they are sufficiently informative and error-free.

3. Solving. Eventually, the side-channel information extracted in the second
phase is added to the system of equations constructed in the first phase, and
generic solvers are launched to solve the system and recover the key. In practice,
this last phase generally has large RAM requirements causing ASCA to be lim-
ited to the exploitation of one (or two) measurement traces.

Summarizing, ASCA are powerful attacks since they can theoretically recover a
key from very few leakage traces, but this comes at the cost of low noise-resilience,
which motivated various heuristic improvements listed in introduction. The next
SASCA are a more founded solution to get rid of this limitation.

2.6 Soft Analytical Side-Channel Attacks

SASCA [38] describe the target block cipher implementation and its leakages
in a way similar to a Low-Density Parity Check code (LDPC) [12]. Since the
latter can be decoded using soft decoding algorithms, it implies that SASCA
can directly use the posterior probabilities obtained during a TA. Similar to
ASCA, they can also be described in three main steps.

1. Construction. The cipher is represented as a so-called “factor graph” with
two types of nodes and bidirectional edges. First, variable nodes represent the
intermediate values. Second, function nodes represent the a-priori knowledge
about the variables (e.g. the known plaintexts and leakages) and the operations
connecting the different variables. Those nodes are connected with bidirectional
edges that carry two types of messages (i.e. propagate the information) through
the graph: the type ¢ message are from variables to functions and the type r
messages are from functions to variables (see [20] for more details).

2. Information extraction. The description of this phase is trivial. The probabil-
ities provided by TA on any intermediate variable of the encryption process can
be directly exploited, and added as a function node to the factor graph.

3. Decoding. Similar to LDPC codes, the factor graph is then decoded using the
BP algorithm [28]. Intuitively, it essentially iterates the local propagation of the
information about the variable nodes of the target implementation.

Since our work is mostly focused on concrete investigations of SASCA, we now
describe the BP algorithm in more details. Our description is largely inspired
by the description of [20, Chapter 26]. For this purpose, we denote by z; the i*
intermediate value and by f; the i*" function node. As just mentioned, the nodes
will be connected by edges that carry two types of messages. The first ones go
from a variable node to a function node, and are denoted as g, —f,,. The second
ones go from a function node to a variable node, and are denoted as 7y, _.y,,
In both cases, n is the index of the sending node and m the index of the recipient
node. The messages carried correspond to the scores for the different values of
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the variable nodes. At the beginning of the algorithm execution, the messages
from variable nodes to function nodes are initialized with no information on the
variable. That is, for all n,m and for all x,, we have:

Qo frn (Tn) = 1.

The scores are then updated according to two rules (one per type of messages):

T frn—vn (mn) = Z (f7rL($n’axn) HQun/—>fm (xn’)) (1)

’ ’
T, ,n #n n

Qop— frn (Tn) = H Tf s —vn () (2)

m’#m

In Eq.2, the variable node v, sends the product of the messages about x,
received from the others function nodes (m’ # m) to the function node f,,,
for each value of x,,. And in Eq.1, the function node f,, sends a sum over all
the possible input values of f,, of the value of f,, evaluated on the vector of
(zpr,n' # n)’s, multiplied by the product of the messages received by f,, for
the considered values of x, . The BP algorithm essentially works by iteratively
applying these rules on all nodes. If the factor graph is a tree (i.e. if it has no
loop), a convergence should occur after a number of iterations at most equal to
the diameter of the graph. In case the graph includes loops (e.g. as in our AES
implementation case), convergence is not guaranteed, but usually occurs after a
number of iterations slightly larger than the graph diameter. The main parame-
ters influencing the time and memory complexity of the BP algorithm are the
number of possible values for each variable (i.e. 2% in our 8-bit example) and the
number of edges. The time complexity additionally depends on the number of
inputs of the function nodes representing the block cipher operations (since the
first rule sums over all the input combinations of these operations).

3 Comparison with ASCA

ASCA and SASCA are both analytical attacks with very similar descriptions.
As previously shown in [38], SASCA have a clear advantage when only noisy
information is available. But when the information is noise-free, the advantage
of one over the other has not been studied yet. In this section, we therefore tackle
the question “which analytical attack is most efficient in noise-free scenario?”.
To this end, we compare the results of SASCA and ASCA against a simu-
lated AES implementation with noise-free (Hamming weight) leakages. We first
describe the AES representation we used in our SASCA (which will also be used
in the following sections), then describe the different settings we considered for
our simulated attacks, and finally provide the results of our experiments.

3.1 Our Representation for SASCA

As usual in analytical attacks, our description of the AES is based on its tar-
get implementation. This allows us to easily integrate the information obtained
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Fig. 1. Graph representation of one column of the first AES round.

during its execution. For readability purposes, we start by illustrating the graph
representation for the first round of one column of the AES in Fig.1. To build
this graph for one plaintext, we start with 32 variable nodes (circles), 16 for
the 8-bit subplaintexts (p;), and 16 for the 8-bit subkeys (k;). We first add a
new variable node in the graph representation each time a new intermediate
value is computed in the AES FURIOUS implementation,? together with the

2 Excluding memory copies which only increase the graph diameter.
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corresponding function nodes (rectangles). There are three different operations
that create intermediate values. First, the Boolean XOR takes two variables as
inputs and outputs a new variable that is equal to the bitwise XOR of the two
inputs. Next, two memory accesses to look-up tables are used for the S-box and
Xtimes operations, which take one variable as input, and create a new variable
as output. We finally add two types of leaf nodes to these three function nodes.
The P’s reflect the knowledge of the plaintext used, and the L’s give the posterior
probability of the value observed using Gaussian templates. A summary of the
different function nodes used in our AES factor graph is given in Table 1.

Table 1. Summary of the function nodes used in our AES factor graph.

1 ifa=b&c,

1 if a = sbox(b
! sBoxX(a,b) = { L ifa=sboz(b),
0 otherwise.

XOR(a, b,c) = .
0 otherwise.

1 ifa=xti b 1 ifz, =p,
XTIMES(a,b) = na ?Zmes( ) P(zy) = ne _{3
0 otherwise. 0 otherwise.

L(zn) = Prlza|l(tn)].

The graph in Fig.1 naturally extends to a full AES execution. And when
using several traces, we just keep a single description of the key scheduling, that
links different subgraphs representing the different plaintext encryptions. Our
description of the key scheduling requires 226 variable nodes and 210 function
nodes. Our description of the rounds requires 1036 variable nodes and 1020
function nodes. The key scheduling nodes are connected by 580 edges, and each
round of the encryption contains 292 edges. As a result and overall, the factor
graph for one plaintext contains 1262 variable nodes, 1230 function nodes and
3628 edges. On the top of that we finally add the leakage function nodes which
account for up to 1262 edges (if all leakages are exploited). Concretely, each
variable node represents an intermediate value that can take 2% different values.
Hence, if we represent each edge by two tables in single precision of size 256, the
memory required is: 256 x (3628 x 2 + 1262) x 4 bytes ~ 8 MB.?

3.2 Comparison Setup

Our noise-free evaluations of ASCA and SASCA are based on single-plaintext
attacks, which is due to the high memory requirements of ASCA (that hardly
extend to more plaintexts). In order to stay comparable with the previous work
in [32], we consider a Hamming weight (W) leakage function and specify the
location of the leakages as follows:

— 16 Wg's for AddRoundKey,
— 16 Wgy’s for the output of SubBytes and ShiftRows,
— 36 Wy's for the XORs and 16 Wy for the look-up tables in MixColumns.

3 For the leakage nodes, messages from variable to function (g.,, s, ) are not necessary.
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As previously mentioned, these leakages are represented by £ boxes in Fig. 1.
We also consider two different contexts for the information extraction:

— Consecutive weights (cw), i.e. the Wg’s are obtained for consecutive rounds.
— Random weights (rw), i.e. we assume the knowledge of Wg’s for randomly
distributed intermediate values among the 804 possible ones.

Eventually, we analyzed attacks in a Known Plaintext (KP) and Unknown Plain-
text (UP) scenario. And in all cases, we excluded the key scheduling leakages, as
in [32]. Based on these settings, we evaluated the success rate in function of the
quantity of information collected, counted in terms of “rounds of information”,
where one round corresponds to 84 Wy’s of 8-bit values.

3.3 Experimental Results

The results of our SASCA with noise-free leakages are reported in Fig.2, and
compared to the similar ASCA experiments provided in Reference [32].

We first observe that 2 consecutive rounds of Wy's are enough to recover
the key for SASCA with the knowledge of plaintext and when the leakages are
located in the first rounds.* Next, if we do not have access to the plaintext,
SASCA requires 3 consecutive rounds of leakage, as for ASCA. By contrast,
and as previously underlined, the solving/decoding phase is significantly more
challenging in case the leakage information is randomly distributed among the
intermediate variables. This is intuitively connected to the fact that the solver
and decoder both require to propagate information through the rounds, and
that this information can rapidly vanish in case some intermediate variables
are unknown. The simplest example is a XOR operation within MixColumns,
as mentioned in introduction. So accumulating information on closely connected
intermediate computations is always the best approach in such analytical attacks.
This effect is of course amplified if the leakages are located in the middle rounds
and the plaintext/ciphertext are unknown, as clear from Fig. 2.

Overall, and since both SAT-solvers and the BP algorithm with loops in the
factor graph are highly heuristic tools, it is of course difficult to make strong
statements about their respective leakage requirements. However, these experi-
ments confirm that at least in the relevant case-study of Hamming weight AES
leakages, the better noise-resilience of SASCA does not imply weaker perfor-
mances in a noise-free setting. Besides, and in terms of time complexity, the
attacks also differ. Namely, the resolution time for ASCA depends of the quan-
tity of information, whereas it is independent of this quantity in SASCA, and
approximately 20 times lower than the fastest resolution times for ASCA.

Note finally that moving to a noisy scenario can only be detrimental to ASCA.
Indeed, and as discussed in [26], ASCA requires correct hard information for the

4 We considered leakages for the two first rounds in this case, which seems more nat-
ural, and is the only minor differences with the experiments in [32], which considered
middle rounds. However, we note that by considering middle round leakages with
known plaintext, we then require three rounds of Wg's, as for ASCA.
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Fig. 2. Experimental results of comparison of ASCA and SASCA.

key recovery to succeed. In case of noisy measurements, this can only be guar-
anteed by considering less informative classes of leakages or similar heuristics.
For example, previous works in this direction considered Hamming weights h’s
between h — d and h + d for increasing distances d’s, which rapidly makes the
attack computationally hard (and cannot be mitigated with multiple plaintext
leakages because of the high RAM requirements of ASCA). So the efficiency gain
of SASCA over ASCA generally increases with the measurement noise.

4 SASCA Against a Concrete AES Implementation

In this section, we complete the previous simulated experiments and explore
whether SASCA can be transposed in the more realistic context of measured
leakages. To the best of our knowledge, we describe the first uses of SASCA
against a concrete AES implementation, and take advantage of this case-study
to answer several questions such as (i) how to perform the profiling of the many
target intermediate values in SASCA?, (i) what happens when the implementa-
tion details (such as the source code) are unknown?, and (éii) are there significant
differences (or even gaps) between concrete and simulated experiments?

4.1 Profiling Step

We first describe how to exploit the tools from Sect. 2.2 in order to detect POIs
for our 1230 target intermediate values (which correspond to 1262 variable nodes
minus 32 corresponding to the 16 bytes of plaintext and ciphertext). In this con-
text, directly computing the SNRs or CPAs in parallel for all our samples turns
out to be difficult. Indeed, the memory requirements to compute the mean trace
of an intermediate value with simple precision requires 94,000 (samples) x 256
(values) x 4 (bytes) ~ 91MB, which means approximately 100 GB for the 1,230
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values. For similar reasons, computing all these SNRs or CPAs sequentially is
not possible (i.e. would require too much time). So the natural option is to trade
time and memory by cutting the traces in a number of pieces that fit in RAM.
This is easily done if we can assume some knowledge about the implementation
(which we did), resulting in a relatively easy profiling step carried out in a dozen
of hours on a single desktop computer. A similar profiling could be performed
without implementation knowledge, by iteratively testing the intermediate val-
ues that appear sequentially in an AES implementation.

A typical outcome of this profiling is given in Fig.3, where we show the
SNR we observed for the intermediate value t; from the factor graph in Fig. 1
(i-e. the value of the bitwise XOR of the first subkey and the first subplaintext).
As intuitively expected, we can identify significant leakages at three different
times. The first one, at t = 20, 779, corresponds to the computation of the value
t1, i.e. the XOR between p; and k;. The second one, at t = 22,077, corresponds
to the computation of the value s1, i.e. a memory access to the look-up table
of the S-box. The third one, at ¢ = 24,004, corresponds to memory copies of
s1 during the computation of MixColumns. Indeed, the SNR cannot tell apart
intermediate values that are bijectively related. So we used the CPA distinguisher
to get rid of this limitation (taking advantage of the fact that a simple Hamming
weight leakage model was applicable against our target implementation).

18
16} .
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14} Y:1.6149 i
12} :
e 17
&
08 X: 24004
Y:0.55431
06 . —
04} x: 20779 1
0| ¥:0.1493 .
0 b | -
0 2 4 6 8 10
time samples %10

Fig. 3. SNR-based profiling of a single intermediate value.

A summary of the results obtained after our profiling step is given in Table 2,
where the most interesting observation is that the informativeness of the leakage
samples strongly depends on the target intermediate values. In particular, we
see that memory accesses allow SNRs over 2, while XOR operations lead to
SNRs below 0.4 (and this SNR is further reduced in case of consecutive XOR
operations). This is in strong contrast, with the simulated cases (in the previous
section and in [38]), where all the variables were assumed to leak with the same
SNR. Note that the table mentions both SNR and CPA values, though our
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Table 2. Summary of profiling step results.

Assembly code Graph description ‘SNR ‘p(WH)
Add round key

1d H1, Y+ * * *

eor ST11, H1 Xor t1 pl k1 0.1493 ]0.5186
Sbox

1di ZH, high(sbox<<1) |* * *

mov ZL, ST11 * * *

lpm ST11, Z _Sbox sl t1 1.6301 | 0.4766
MixColumns

1di ZH, high(xtime<<1) |* * *

mov H1, STi11 * * *

eor H1, ST21 _Xor hl sl s2 0.1261 |0.6158
eor H1, ST31 _Xor h2 hl s3 0.0391 0.1449
eor H1, ST41 _Xor h3 h2 s4 0.3293 10.5261
mov H2, STi11 * * *

mov H3, ST11 * * *

eor H3, ST21 _Xor mcl sl s2 0.2802 10.6163
mov ZL, H3 * * *

lpm H3, Z Xtime xt1 mcl 2.8650 |0.6199
eor ST11, H3 _Xor cml xtl sl 0.0723 10.2508
eor ST11, H1 Xor pl7 cm1 h3 |0.1064 |0.3492
Key schedule

1di H1, 1 * * *

1di ZH, high(sbox<<1) |* * *

mov ZL, ST24 * * *

lpm H3, Z _Sbox sk14 k14 2.2216 0.5553
eor ST11, H3 _Xor akl sk14 k1 |0.1158 0.5291
eor ST11, H1 XorCste k17 akl 1]/0.3435 |0.5140

selection of POIs was based on the (more generic) first criteria, and CPA was
only used to separate the POIs of bijectively related intermediate values.?

4.2 Experimental Results

Taking advantage of the previous POI detection, we now want to discuss the
consequences of different assumptions about the implementation knowledge. These
investigations are motivated by the usual gap between Kerckhofl’s laws [18], which

5 We used a relatively noisy setup on purpose (e.g. we did not filter our measurements),
in order to magnify the effectiveness of SASCA in such challenging contexts.
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advises to keep the key as only secret in cryptography, and the practice in embedded
security, that usually takes advantage of some obscurity regarding the implemen-
tations. For this purpose, we considered three adversaries:

1. Informed. The adversary has access to the implementation details (i.e. source
code), and can exploit the leakages of all the target intermediate values.

2. Informed, but excluding the key scheduling. This is the same case as the pre-
vious one, but we exclude the key scheduling leakages as in the simulations
of the previous section (e.g. because round keys are precomputed).

3. Uninformed. Here the adversary only knows the AES is running, assumes it
is implemented following the specifications in [11], and only exploits generic
operations (i.e. the inputs and outputs of AddRoundKey, SubByte, ShiftRows
and MixColumns, together with the key rounds’ inputs and outputs).

In order to have fair comparisons, we used the same profiling for all three cases
(i.e. we just excluded some POIs for cases 2 and 3), and we used 100 sets of 30
traces with different keys and plaintexts to calculate the success rate of SASCA
in these different conditions. The results of our experiments are in Fig. 4. Our first
and main observation is that SASCA are applicable to actual implementations,
for which the leakages observed provide more or less information (and SNR)
depending on the intermediate values. As expected, the informed adversary is
the most powerful. But we also see that excluding the key scheduling leakages, or
considering an uninformed adversary, only marginally reduces the attack success
rates. Interestingly, there is a strong correlation between this success rate and the
number of leakage samples exploited, since excluding the key scheduling implies
the removal of 226 leakage function nodes, and the uninformed adversary has
540 leakage function nodes less than the informed one (mostly corresponding
to the MixColumns operation). So we can conclude that SASCA are not only
a threat for highly informed adversaries, and in fact quite generically apply to
unprotected software implementations with many leaking points.

Simulation Vs. Measurement. In view of the previous results, with infor-
mation leakages depending on the target intermediate values, a natural question
is whether security against SASCA was reasonably predicted with a simulated
analysis. Of course, we know that in general, analytical attacks are much harder
to predict than DPA [31], and do not enjoy simple formulas for the prediction of
their success rates [22]. Yet, we would like to study informally the possible con-
nection between simple simulated analyses and concrete ones. For this purpose,
we compare the results obtained in these two cases in Fig. 5. For readability, we
only report results for the informed and uninformed cases, and consider different
SNRs for the simulated attacks. In this context, we first recall Table 2 where the
SNRs observed for our AES implementation vary between 2' and 272. Interest-
ingly, we see from Fig. 5 that the experimental success rate is indeed bounded by
these extremes. (Tighter and more rigorous bounds are probably hard to obtain
for such heuristic attacks). Besides, we also observe that the success rates of the
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Fig. 4. Success rate in function of the # of traces for different adversaries: informed one
(—® ), informed one without key scheduling leakages (-+) and uninformed one (- *-).

measurements and simulations are closer in the case of the uninformed adver-
sary, which can be explained by the fact that we essentially ignore MixColumns
leakages in this case, for which the SNRs are lower.

5 Comparison with DPA and Enumeration

In this section, we start from the observation that elegant approaches to side-
channel analysis generally require more computational power than standard
DPA. Thus, a fair comparison between both approaches should not only look at
the success rate in function of the number of traces, but also take into account
the resolution time as a parameter. As a result, and in order to compare SASCA
and the pragmatic DPA on a sound basis, this section investigates the result of
DC attacks combined with computational power for key enumeration.

5.1 Evaluation of Profiled Template Attacks

In order to be as comparable as possible with the previous SASCA, our com-
parison will be based on the profiled TA described in Sect. 2.3. More precisely,
we considered a quite pragmatic DC attack exploiting the bivariate leakages
corresponding to the AddRoundKey and SubByte operations (i.e. {s;}18, and
{t;}1¢, in Fig.1). We can take advantage of the same detection of POIs as
described in the previous section for this purpose. This choice allows us to keep
the computational complexity of the TA itself very minimal (since relying only
on 8-bit hypotheses). As previously mentioned, it also aims to make comparison

5 We considered TA for our DPA comparison because they share the same profiled
setting as SASCA. Comparisons with a non-profiled CPA can only be beneficial to
SASCA. More precisely, we expect a typical loss factor of 2 to 5 between (Wg-based)
CPA and TA, according to the results in [35] obtained on the same device.
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Fig. 5. Experimental results for SASCA for an informed adversary (a) and unin-
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figure online).

as meaningful as possible (since we compare two attacks with one sample per
target operation that only differ by their number of target operations). Follow-
ing, we built the security graph of our bivariate TA, as represented in Fig. 6,
where the white (resp. black) curve corresponds to the maximum (resp. mini-
mum) rank observed, and the red curve is for the average rank. It indicates that
approximately 60 plaintexts are required to recover the key without any enu-
meration (which is in line with Footnote 5). But more interestingly, the graph
also highlights that allowing enumeration up to ranks (e.g.) 23° allows to reduce
the required number of measured traces down to approximately 10.

5.2 Comparing SASCA and DPA with Enumeration

In our prototype implementation running on a desktop computer, SASCA
requires roughly one second per plaintext, and reaches a success rate of one after
20 plaintexts (for the informed adversary). In order to allow reasonably fair com-
parisons, we first measured that the same desktop computer can perform a bit
more than 22° AES encryptions in 20 seconds. So this is typically the amount of
enumeration that we should grant the bivariate TA for comparisons with SASCA.”
For completeness, we also considered the success rates of bivariate TA without enu-
meration and with 239 enumeration power.® The results of these last experiments

" We omit to take the (time and memory) resources required for the generation of the
list of the most probable keys to enumerate into account in our comparisons, since
these resources remain small in the total enumeration cost. Using the state-of-the-art
enumeration algorithm [36], we required 2.7MB + 0.55 seconds to generate a list of
220 keys, and 1.8GB + 3130 seconds to generate a list of 232 keys.

8 Which is also more than allowed by the new suboptimal key enumeration in [3].
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Fig. 6. Security graph of a bivariate TA.

are in Fig. 7. Overall, they bring an interesting counterpart to our previous inves-
tigations. On the one hand, we see that SASCA remains the most powerful attack
when the adversary has enough knowledge of the implementation. By contrast in
the uninformed case, the gain over the pragmatic TA with enumeration is lower.
So as expected, it is really the amount and type of leakage samples exploitable
by the adversary that make SASCA more or less powerful, and determine their
interest (or lack thereof) compared to DC attacks. In this respect, a meaningful
observation is that the gap between SASCA and DPA without enumeration (here
approximately 5) is lower than the approximate factor 10 that was observed in
the previous simulations of [38]. This difference is mainly due to the lower SNRs
observed in the MixColumns transform.

Eventually, we note that in view of these results, another natural approach
would be to use enumeration for SASCA. Unfortunately, our experiments have
shown that enumeration is much less effective in the context of analytical attacks.
This is essentially caused by the fact that DC attacks consider key bytes inde-
pendently, whereas SASCA decode the full key at once, which implies that the
subkey probabilities are not independent in this case, and can be degraded when
running the loopy BP too long. Possible tracks to improve this issue include the
use of list decoding algorithms for LDPC codes (as already mentioned in [13]), or
enumeration algorithms that can better take subkey dependencies into account
(as suggested in [19] for elliptic curve implementations).

6 Conclusion and Open Problems

This paper puts forward that the technicalities involved in elaborate analytical
side-channel attacks, such as the recent SASCA, are possible to solve in prac-
tice. In particular, our results show that the intensive profiling of many target
intermediate values within an implementation is achievable with the same (SNR
&CPA) tools as any profiled attack (such as the bivariate TA we considered).
This profiling only requires a dozen of hours to complete, and then enables very
efficient SASCA that recover the key of our AES implementation in a couple
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Fig. 7. Comparison between elegant and pragmatic approaches.

of seconds and traces, using a single desktop computer. Furthermore, these suc-
cessful attacks are even possible in a context where limited knowledge about the
target implementation is available, hence mitigating previous intuitions regard-
ing analytical attacks being “only theoretical”. Besides this positive conclusion,
a fair comparison with DC attacks also highlights that the gap between a bivari-
ate TA and a SASCA can be quite reduced in case enumeration power is granted
to the DC adversary, and several known plaintexts are available. Intuitively, the
important observation in this respect is that the advantage of SASCA really
depends on the amount and type of intermediate values leaking information,
which highly depends on the algorithms and implementations analyzed.

The latter observation suggests two interesting directions for further research.
On the one hand, the AES Rijndael is probably among the most challenging tar-
gets for SASCA. Indeed, it includes a strong linear diffusion layer, with many
XOR operations through which the information propagation is rapidly amor-
tized. Besides, it also relies on a non-trivial key scheduling, which prevents the
direct combination of information leaked from multiple rounds. So it is not
impossible that the gap between SASCA and standard DPA could be larger
for other ciphers (e.g. with permutation based diffusion layers [4], and very min-
imum key scheduling algorithms [5]). On the other hand, since the propagation
of the leakage information through the MixColumns operation is hard(er), one
natural solution to protect the AES against such attacks would be to enforce
good countermeasures for this part of the cipher, which would guarantee that
SASCA do not exploit more information than the one of a single round. Ideally,
and if one can prevent any information propagation beyond the cipher rounds,
we would then have a formal guarantee that SASCA is equivalent to DPA.
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