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Abstract. We revisit the problem of finding small solutions to a col-
lection of linear equations modulo an unknown divisor p for a known
composite integer N . In CaLC 2001, Howgrave-Graham introduced an
efficient algorithm for solving univariate linear equations; since then, two
forms of multivariate generalizations have been considered in the context
of cryptanalysis: modular multivariate linear equations by Herrmann and
May (Asiacrypt’08) and simultaneous modular univariate linear equa-
tions by Cohn and Heninger (ANTS’12). Their algorithms have many
important applications in cryptanalysis, such as factoring with known
bits problem, fault attacks on RSA signatures, analysis of approximate
GCD problem, etc.

In this paper, by introducing multiple parameters, we propose
several generalizations of the above equations. The motivation behind
these extensions is that some attacks on RSA variants can be reduced
to solving these generalized equations, and previous algorithms do not
apply. We present new approaches to solve them, and compared with
previous methods, our new algorithms are more flexible and especially
suitable for some cases. Applying our algorithms, we obtain the best ana-
lytical/experimental results for some attacks on RSA and its variants,
specifically,
– We improve May’s results (PKC’04) on small secret exponent attack

on RSA variant with moduli N = prq (r ≥ 2).
– We experimentally improve Boneh et al.’s algorithm (Crypto’98) on

factoring N = prq (r ≥ 2) with known bits problem.
– We significantly improve Jochemsz-May’ attack (Asiacrypt’06) on

Common Prime RSA.
– We extend Nitaj’s result (Africacrypt’12) on weak encryption expo-

nents of RSA and CRT-RSA.
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1 Introduction

Lattice-based cryptanalysis is a very useful tool in various cryptographic sys-
tems, e.g., historically, it was used to break the Merkle-Hellman knapsack cryp-
tosystem [34]. The basic idea of the lattice-based approach is that if the system
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parameters of the target problem can be transformed into a basis of a certain
lattice, one can find some short vectors in the desired lattice using dedicated
algorithms, like the LLL-algorithm [20]. One may then hope that the secret
key can be recovered once the solutions from these short vectors are extracted.
Although in most cases this assumption is not rigorous in theory, it usually works
well in practice.

In the above approach, a key step is to construct the desired lattice. In
1997, Coppersmith [5] presented a subtle lattice construction method, and used
it to find small roots of modular equations of special forms. Since then, this
approach has been widely applied in the analysis of RSA. Among them, one of
the most important applications is to solve approximate integer common divisor
problem (ACDP), namely, given two integers that are near-multiples of a hidden
integer, output that hidden integer. We note that ACDP was first introduced by
Howgrave-Graham [15], which in turn has many important applications such as
building fully homomorphic cryptosystems [37].

Let us briefly explain Howgrave-Graham’s method. First, one reduces ACDP
to solving a univariate modular polynomial:

f(x) = x + a mod p

where a is a given integer, and p (p ≥ Nβ for some 0 < β ≤ 1) is unknown that
divides the known modulus N . Then he proposed a polynomial-time algorithm
to find small roots of the univariate polynomial over integer. Note that this
type of polynomial can also be applied in other RSA-related problems, such as
factoring with known bits problem [21].

In 2003, May [21] generalized Howgrave-Graham’s strategy by using a uni-
variate linear polynomial to an arbitrary monic modular polynomial of degree
δ, i.e. f(x) = xδ + aδ−1x

δ−1 + . . . + a0 mod p where δ ≥ 1. As an important
application, this algorithm can be used to solve the problem of factoring with
known bits on Takagi’s moduli N = prq (r > 1) [2].

In Asiacrypt’08, Herrmann and May [12] extended the univariate linear mod-
ular polynomial to polynomials with an arbitrary number of n variables. They
presented a polynomial-time algorithm to find small roots of linear modular-
polynomials

f(x1, . . . , xn) = a0 + a1x1 + · · · + anxn mod p

where p is unknown and divides the known modulus N . Naturally, they applied
their results to the problem of factoring with known bits for RSA modulus N =
pq where those unknown bits might spread across arbitrary number of blocks of
p. Besides, Herrmann-May’s algorithm also can be used to cryptanalyze Multi-
prime Φ-Hiding Assumption [11,19], and attack CRT-RSA signatures [6,7].

On the other hand, in 2012, Cohn and Heninger [4] generalized Howgrave-
Graham’s equations to the simultaneous modular univariate linear equations

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f1(x1) = a1 + x1 = 0 mod p
f2(x2) = a2 + x2 = 0 mod p

...
fn(xn) = an + xn = 0 mod p

(1)
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where a1, . . . , an are given integers, and p (p ≥ Nβ for some 0 < β < 1) is
an unknown factor of known modulus N . These equations have many appli-
cations in public-key cryptanalysis. For example, in 2010, van Dijk et al. [37]
introduced fully homomorphic encryption over the integers, which the security
of their scheme is based on the hardness of solving Eq. (1). In 2011, Sarkar and
Maitra [32] investigated implicit factorization problem [24] by solving Eq. (1). In
2012, Fouque et al. [10] proposed fault attacks on CRT-RSA signatures, which
can also be reduced to solving Eq. (1).

1.1 Our Contributions

In this paper, we focus on the following three types of extensions of previous
equations.

The first is an extension of Herrmann-May’s equation, described in Sect. 3,
we focus on the equations

f(x1, x2, . . . , xn) = a0 + a1x1 + · · · + anxn mod pv (2)

for some unknown divisor pv (v ≥ 1) and known composite integer N (N ≡
0 mod pu, u ≥ 1). Here u, v are positive integers. Note that if u = 1, v = 1, that
is exactly Herrmann-May’s equation [12].

The second is a special case of Eq. (2): a0 = 0, described in Sect. 4.
The last is a generalized version of Eq. (1), described in Sect. 5; we focus on

the equations ⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f1(x1) = a1 + x1 = 0 mod pr1

f2(x2) = a2 + x2 = 0 mod pr2

...
fn(xn) = an + xn = 0 mod prn

(3)

where p (p ≥ Nβ for some 0 < β < 1) is unknown that satisfies N = 0 mod pr

and a1, . . . , an, r, r1, . . . , rn are given integers. Here r, r1, . . . , rn are positive inte-
gers. Note that if r = r1 = · · · = rn = 1, that is exactly Eq. (1).

Notice that our generalized equations employ many parameters. The reason
why we introduce these parameters is based on the fact that some attacks on
RSA variants (such as Takagi’s RSA variant [35]) can be reduced to solving
this kind of equations. However, previous algorithms [4,12,23] do not seem to
work in this situation. The difficulty lies in how to wisely embed this algebraic
information in the lattice construction.

We solve the above equations by introducing new techniques. More precisely,
we present a novel way to select appropriate polynomials in constructing desired
lattice. Compared with previous algorithms, our algorithms are more flexible
and especially suitable for some cases. Applying our algorithms, we obtain the
best analytical/experimental results for some attacks on RSA and its variants.
We elaborate them below. We further conjecture that our new algorithms may
find new applications in various other contexts.
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Small Secret Exponent Attack on Multi-power RSA. In multi-power
RSA algorithm, suppose that the public key is (N, e), where N = prq for
some fixed r ≥ 2 and p, q are of the same bit-size. The secret key d satisfies
ed ≡ 1 mod φ(N), where φ(N) is Euler’s φ-function. In Crypto’99, Takagi [35]
showed that when the secret exponent d < N

1
2(r+1) , one can factorize N . Later

in PKC’04, May [22] improved Takagi’s bound to N
max{ r

(r+1)2
,
(r−1)2

(r+1)2
}. In this

paper, we further improve May’s bound to N
r(r−1)
(r+1)2 , which is better than May’s

result when r > 2, and is also independent of the value of public exponent e.
Similar as [22], our result also directly implies an improved partial key exposure
attack for secret exponent d with known most significant bits (MSBs) or least
significant bits (LSBs). Our improvements are based on our algorithm of solving
the first type equations, with the observation that gcd(ed − 1, N) = pr−1 but
N ≡ 0 mod pr.

Factoring Multi-power Moduli with Known Bits. In 1999, Boneh et al. [2]
extended factoring with high bits problem to moduli of the form N = prq(r ≥ 2).
They showed that this moduli can be factored in polynomial-time in the bit-
length of N if r = Ω(

√
log N

log log N ). Applying our algorithm of solving the first
type equations, we can directly get another method to settle the problem of [2].
Though we can not get an asymptotic improvement, in practice, especially for
large r, our new method performs better than [2].

Weak Encryption Exponents of RSA and CRT-RSA. In Africacrypt’12,
Nitaj [26] presented some attacks on RSA and CRT-RSA (the public exponent
e and the private CRT-exponents dp and dq satisfy edp ≡ 1 mod (p − 1) and
edq ≡ 1 mod (q − 1)). His attacks are based on Herrmann-May’s technique [12]
for finding small solutions of modular equations. In particular, he reduced his
attacks to solving bivariate linear modular equations modulo unknown divisors:
ex + y ≡ 0 mod p for some unknown p that divides the known modulus N .
Noticing that his equations are homogeneous, we can improve his results with
our algorithm of solving second type equations.

Small Secret Exponent Attack on Common Prime RSA. We give a simple
but effective attack on an RSA variant called Common Prime RSA. This variant
was originally introduced by Wiener [38] as a countermeasure for his continued
fraction attack. He suggested to choose p and q such that p−1 and q −1 share a
large common factor. In 2006, Hinek [13] revisited the security of Common Prime
RSA, in the same year, Jochemsz and May [17] proposed a heuristic attack, and
showed that parts of key space suggested by Hinek is insecure. In this paper, we
further improve Jochemsz-May’s bound by using our algorithm of solving third
type equations.

Experimental Results. For all these attacks, we carry out experiments to
verify the validity of our algorithms. These experimental results show that our
attacks are effective.
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2 Preliminary

In 1982, Lenstra, Lenstra and Lovász proposed the LLL-algorithm [20] that
can find vectors in polynomial-time whose norm is small enough to satisfy the
following condition.

Lemma 1 (LLL [20]). Let L be a lattice of dimension w. Within polynomial-
time, LLL-algorithm outputs a set of reduced basis vectors vi, 1 � i � w that
satisfies

||v1|| � ||v2|| � · · · � ||vi|| � 2
w(w−1)

4(w+1−i) det(L)
1

w+1−i

In practice, it is widely known that the LLL-algorithm tends to output the
vectors whose norms are much smaller than theoretically predicted.

In 1997, Coppersmith [5] described a lattice-based technique to find small
roots of modular and integer equations. Later, Howgrave-Graham [14] refor-
mulated Coppersmith’s ideas of finding modular roots. The main idea of
Coppersmith’s method is to reduce the problem of finding small roots of
f(x1, . . . , xn) mod N to finding roots over the integers. Therefore, one can con-
struct a collection of polynomials that share a common root modulo Nm for
some well-chosen integer m. Then one can construct a lattice by defining a lat-
tice basis via these polynomial’s coefficient vectors. Using lattice basis reduction
algorithms (like LLL-algorithm [20]), one can find a number of linear equations
with sufficiently small norm. Howgrave-Graham [14] showed a sufficient condi-
tion to quantify the term sufficiently small. Next we review this useful lemma.

Let g(x1, · · · , xk) =
∑

i1,··· ,ik
ai1,··· ,ik

xi1
1 · · · xik

k . We define the norm of g by
the Euclidean norm of its coefficient vector: ||g||2 =

∑
i1,··· ,ik

a2
i1,··· ,ik

.

Lemma 2 (Howgrave-Graham [14]). Let g(x1, · · · , xk) ∈ Z[x1, · · · , xk] be
an integer polynomial that consists of at most w monomials. Suppose that

1. g(y1, · · · , yk) = 0 mod pm for | y1 |� X1, · · · , | yk |� Xk and
2. ||g(x1X1, · · · , xkXk)|| < pm

√
w

Then g(y1, · · · , yk) = 0 holds over integers.

Combining Lemmas 1 and 2, we can get following theorem.

Theorem 1 (Coppersmith [5], May [23]). Let N be an integer of unknown
factorization, which has a divisor p ≥ Nβ, 0 < β ≤ 1. Let f(x) be a univariate
monic polynomial of degree δ. Then we can find in time O(ε−7δ5 log9 N) all
solutions x0 for the equation

f(x) = 0 mod p with |x0| ≤ N
β2

δ −ε.

Additionally sometimes our attacks rely on a well-known assumption which was
widely used in the literatures [1,9,12].
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Assumption 1. The lattice-based construction yields algebraically independent
polynomials. The common roots of these polynomials can be efficiently computed
using the Gröbner basis technique.

Note that the time complexity of Gröbner basis computation is in general doubly
exponential in the degree of the polynomials.

We would like to point out that our subsequent complexity considerations
solely refer to our lattice basis reduction algorithm, that turns the polynomial
f(x1, . . . , xn) mod N into the number of n polynomials over the integers. We
assume that the running time of the Gröbner basis computation is negligible
compared to the time complexity of the LLL-algorithm, since in general, our
algorithm yields more than the number of n polynomials, so one can make use
of these additional polynomials to speed up the Gröbner basis computation.

3 The First Type of Equations

In this section, we address how to solve f1(x) = a0 + a1x mod pv (v ≥ 1) for
some unknown p where pu divides a known modulus N (i.e. N ≡ 0 mod pu,
u ≥ 1). In particular, Howgrave-Graham’s result [15] can be viewed as a special
case of our algorithm when u = 1, v = 1.

3.1 Our Main Result

Theorem 2. For every ε > 0, let N be a sufficiently large composite integer (of
unknown factorization) with a divisor pu (p ≥ Nβ, u ≥ 1). Let f1(x) ∈ Z[x] be
a univariate linear polynomial whose leading coefficient is coprime to N . Then
one can find all the solutions y of the equation f1(x) = 0 mod pv with v ≥ 1,
|y| ≤ Nγ if γ < uvβ2 − ε. The time complexity is O(ε−7v2 log2 N).

Proof. Consider the following univariate linear polynomial:

f1(x) = a0 + a1x mod pv

where N is known to be a multiple of pu for known u and unknown p. Here
we assume that a1 = 1, since otherwise we can multiply f1 by a−1

1 mod N . Let
f(x) = a−1

1 f1(x) mod N .
We define a collection of polynomials as follows:

gk(x) := fk(x)Nmax{� v(t−k)
u �,0}

for k = 0, . . . , m and integer parameters t and m with t = τm (0 ≤ τ < 1),
which will be optimized later. Note that for all k, gk(y) ≡ 0 mod pvt.

Let X := Nuvβ2−ε(= Nγ) be the upper bound on the desired root y. We will
show that this bound can be achieved for any chosen value of ε by ensuring that
m ≥ m∗ := �β(2u+v−uvβ)

ε � − 1
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N4 N4

fN4 ∗ XN4

f2N3 ∗ ∗ X2N3 0f3N2 ∗ ∗ ∗ X3N2

f4N2 ∗ ∗ ∗ ∗ X4N2

f5N ∗ ∗ ∗ ∗ ∗ X5N
f6 ∗ ∗ ∗ ∗ ∗ ∗ X6

f7 ∗ ∗ ∗ ∗ ∗ ∗ ∗ X7

f8 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ X8

Fig. 1. The matrix for the case β = 0.25, u = 3, v = 2, t = 6, m = 8

We build a lattice L of dimension d = m + 1 using the coefficient vectors of
gk(xX) as basis vectors. We sort these polynomials according to the ascending
order of g, i.e., gk < gl if k < l. Figure 1 shows an example for the parameters
β = 0.25, u = 3, v = 2, t = 6,m = 8.

From the triangular matrix of the lattice basis, we can compute the determi-
nant as the product of the entries on the diagonal as det(L) = XsNsN where

s =
m∑

k=0

k =
m(m + 1)

2

sN =
t−1∑

k=0

�v(t − k)
u

� =
t−1∑

k=0

(
v(t − k)

u
+ ck

)

=
vτm(τm + 1)

2u
+

t−1∑

k=0

ck

Here we rewrite � v(t−k)
u � as

(
v(t−k)

u + ck

)
where ck ∈ [0, 1). To obtain a polyno-

mial with short coefficients that contains all small roots over integer, we apply
LLL-basis reduction algorithm to the lattice L. Lemma 1 gives us an upper
bound on the norm of the shortest vector in the LLL-reduced basis; if the bound
is smaller than the bound given in Lemma2, we can obtain the desired polyno-
mial. We require the following condition:

2
d−1
4 det(L)

1
d <

Nvβτm

√
d

where d = m + 1. We plug in the values for det(L) and d, and obtain

2
m(m+1)

4 (m + 1)
m+1

2 X
m(m+1)

2 < Nvβτm(m+1)− vτm(τm+1)
2u −∑t−1

k=0 ck

To obtain the asymptotic bound, we let m grow to infinity. Note that for suffi-
ciently large N the powers of 2 and m+1 are negligible. Thus, we only consider
the exponent of N . Then we have

X < N2vβτ− vτ(τm+1)
u(m+1) − 2

∑t−1
k=0 ck

m(m+1)
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Setting τ = uβ, and noting that
∑t−1

k=0 ck ≤ t1, the exponent of N can be lower
bounded by

uvβ2 − vβ(1 − uβ)
m + 1

− 2uβ

m + 1
We appropriate the negative term ∗

m+1 by ∗
m and obtain

uvβ2 − β(2u + v − uvβ)
m

Enduring that m ≥ m∗ will then gurantee that X satisfies the required bound
for the chosen value of ε.

The running time of our method is dominated by LLL-algorithm, which is
polynomial in the dimension of the lattice and in the maximal bit-size of the
entries. We have a bound for the lattice d

d = m + 1 ≥ �β(2u + v − uvβ)
ε

�

Since uβ < 1, then we obtain d = O(ε−1). The maximal bit-size of the entries is
bounded by

max{vt

u
log(N), duvβ2 log(N)} = max{vβd log(N), duvβ2 log(N)}

Since uβ < 1 and d = O(ε−1), the bit-size of the entries can be upperbounded by

max{O(vβε−1) log(N),O(vβε−1) log(N)} = O(vε−1 log(N))

Nguyen and Stehlé [25] proposed a modified version of the LLL-algorithm called
L2-algorithm. The L2-algorithm achieves the same approximation quality for a
shortest vectors as the LLL-algorithm, but has an improved worst case running
time anlaysis. Its running time is O(d5(d + log bd) log bd), where log bd is the
maximal bit-size of an entry in lattice. Thus, we can obtain the running time of
our algorithm

O
((

1
ε

)5 (
1
ε

+
v log N

ε

)
v log N

ε

)

Therefore, the running time of our algorithm is O(ε−7v2 log2 N). Eventually, the
vector output by LLL-algorithm gives a univariate polynomial g(x) such that
g(y) = 0, and one can find the root of g(x) over the integers. 	


Extension to Arbitrary Degree. We can generalize the result of Theorem 2
to univariate polynomials with arbitrary degree.

1 This estimation is rough, we can do it more precisely for specific parameters u, v.
For example, for v = 1, we can get

∑t−1
k=0 ck ≤ t

2
+ 1.
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Theorem 3. For every ε > 0, let N be a sufficiently large composite integer (of
unknown factorization) with a divisor pu (p ≥ Nβ, u ≥ 1). Let f1(x) ∈ Z[x] be
a univariate polynomial of degree δ whose leading coefficient is coprime to N .
Then one can find all the solutions y of the equation f1(x) = 0 ( mod pv) with
v ≥ 1, |y| ≤ Nγ if γ < uvβ2

δ − ε. The time complexity is O(ε−7δ5v2 log2 N).

In the proof of Theorem 3, we use the following collection of polynomials:

gk(x) := xjfk(x)Nmax{� v(t−k)
u �,0}

for k = 0, . . . , m, j = 0, . . . , δ − 1 and integer parameters t and m with t = τm
(0 ≤ τ < 1). The rest of the proof is the same as Theorem 2. We omit it here.

Specifically, the result in [23] can be viewed as a special case of our algorithm
when u = v.

Extension to More Variables. We also generalize the result of Theorem 2
from univariate linear equations to an arbitrary number of n variables x1, . . . , xn

(n ≥ 2).

Proposition 1. For every ε > 0, let N be a sufficiently large composite integer
(of unknown factorization) with a divisor pu (p ≥ Nβ, u ≥ 1). Furthermore,
let f1(x1, . . . , xn) ∈ Z[x1, . . . , xn] be a monic linear polynomial in n(n ≥ 2)
variables. Under Assumption 1, we can find all the solutions (y1, . . . , yn) of the
equation f1(x1, . . . , xn) = 0 ( mod pv) with v ≥ 1, |y1| ≤ Nγ1 , . . . |yn| ≤ Nγn if

n∑

i=1

γi <
v

u

(
1 − (1 − uβ)

n+1
n − (n + 1)(1 − uβ)

(
1 − n

√
1 − uβ

))
− ε

The running time of the algorithm is polynomial in ε−n and ε−n log N .

Proof. We define the following collection of polynomials which share a common
root modulo pvt:

gi2,...,in,k = xi2
2 · · · xin

n fk
1 Nmax{� v(t−k)

u �,0}

for k = 0, ...,m where ij ∈ {0, . . . , m} such that
∑n

j=2 ij ≤ m − k, and the
integer parameter t = τm has to be optimized. The idea behind the above
transformation is that we try to eliminate powers of N in the diagonal entries
in order to keep the lattice determinant as small as possible.

Next we can construct the lattice L using the similar method of Herrmann-
May [12], therefore, the lattice has triangular form, then the determinant det(L)
is then simply the product of the entries on the diagonal:

det(L) =
n∏

i=1

X
sxi
i NsN
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Let d denote the dimension of L, t = r · h + c (h, c ∈ Z and 0 ≤ c < r).
A straightforward but tedious computation yields that

sxi
=

(
m + n

m − 1

)

=
1

(n + 1)!
mn+1 + o(mn+1)

sN =
t−1∑

k=0

∑

0≤∑n
j=2 ij≤m−k

�v(t − k)
u

�

=
v

u

(n + 1)τ − 1 + (1 − τ)n+1

(n + 1)!
mn+1 + o(mn+1)

d =
(

m + n

m

)

=
1
n!

mn + o(mn)

To obtain the number of n polynomial with short coefficients that contains all
small roots over integer, we apply LLL-basis reduction algorithm to the lattice L.
Combining Lemma 1 with Lemma 2, we require the following condition:

2
d(d−1)

4(d+1−n) det(L)
1

d−n+1 <
Nvβτm

√
d

Let Xi = Nγi(1 ≤ i ≤ n). Combining the values with the above condition, we
obtain

n∑

i=1

γi <
v

u

(
1 − (1 − τ)n+1

)
− τv(n + 1)(

1
u

− β) − ε

By setting τ = 1 − n
√

1 − uβ, the condition reduces to

n∑

i=1

γi <
v

u

(
1 − (1 − uβ)

n+1
n − (n + 1)(1 − uβ)

(
1 − n

√
1 − uβ

))
− ε

The running time is dominated by the time to run LLL-lattice reduction on a
basis matrix of dimension d and bit-size of the entries. Since d = O(mn

n! ) and
the parameter m depends on ε−1 only, therefore, our approach is polynomial in
logN and ε−n. Besides, our attack relies on Assumption 1. 	


3.2 Analysis of Multi-power RSA

We apply our algorithm to analyze an RSA variant, namely multi-power RSA,
with moduli N = prq (r ≥ 2). Compared to the standard RSA, the multi-power
RSA is more efficient in both key generation and decryption. Besides, moduli of
this type have been applied in many cryptographic designs, e.g., the Okamoto-
Uchiyama cryptosystem [27], or better known via EPOC and ESIGN [8], which
uses the modulus N = p2q.

Using our algorithm of Theorem2, we give two attacks on multi-power RSA:
small secret exponent attack and factoring with known bits.
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Small Secret Exponent Attack on Multi-power RSA. There are two
variants of multi-power RSA. In the first variant ed ≡ 1 mod pr−1(p− 1)(q − 1),
while in the second variant ed ≡ 1 mod (p−1)(q−1). In [16], the authors proved

that the second variant is vulnerable when d < N
2−√

2
r+1 .

In this section, we focus on the first variant. In Crypto’99, Takagi [35]
proved that when the decryption exponent d < N

1
2(r+1) , one can factorize

N in polynomial-time. Later, in PKC’04, May [22] improved Takagi’s bound

to N
max{ r

(r+1)2
,
(r−1)2

(r+1)2
}. Based on the technique of Theorem 2, we can further

improve May’s bound to N
r(r−1)
(r+1)2 .

Theorem 4. Let N = prq, where r ≥ 2 is a known integer and p, q are primes
of the same bit-size. Let e be the public key exponent and d be the private key
exponent, satisfying ed ≡ 1 mod φ(N). For every ε > 0, suppose that

d < N
r(r−1)
(r+1)2

−ε

then N can be factored in polynomial-time.

Proof. Since φ(N) = pr−1(p−1)(q−1), we have the equation ed−1 = kpr−1(p−
1)(q −1) for some k ∈ N. Then we want to find the root y = d of the polynomial

f1(x) = ex − 1 mod pr−1

with the known multiple (of unknown divisor p) N (N ≡ 0 mod pr). Let d ≈ N δ.
Applying Theorem2, setting β = 1

r+1 , u = r, v = r−1, we obtain the final result

δ < r(r−1)
(r+1)2 − ε 	


Recently, Sarkar [30,31] improved May’s bound for modulus N = prq, however,
unlike our method, his method can not applied for public key exponents e of
arbitrary size. In addition, we get better experimental results for the case of
r > 2 (see Sect. 3.2).

For small r, we provide the comparison of May’s bound, Sarkar’s bound, and
our bound on δ in Table 1. Note that for r = 2, we obtain the same result as
May’s bound.

Table 1. Comparisons of May’s bound, Sarkar’s bound and ours on δ

r 2 3 4 5 6 7 8 9

May’s bound 0.22 0.25 0.36 0.44 0.51 0.56 0.60 0.64

Sarkar’s bound [30,31] 0.39 0.46 0.50 0.54 0.57 0.51 0.53 0.54

Our bound 0.22 0.37 0.48 0.55 0.61 0.65 0.69 0.72
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Partial Key-Exposure Attacks on Multi-power RSA. Similar to the
results of [22], the new attack of Theorem 4 immediately implies partial key
exposure attacks for d with known MSBs/LSBs. Following we extend the app-
roach of Theorem 4 to partial key exposure attacks.

Theorem 5 (MSBs). Let N = prq, where r ≥ 2 is a known integer and p, q
are primes of the same bit-size. Let e be the public key exponent and d be the
private key exponent, satisfying ed = 1 mod φ(N). For every ε > 0, given d̃ such

that |d − d̃| < N
r(r−1)
(r+1)2

−ε, then N can be factored in polynomial-time.

Proof. We have that

e(d − d̃) + ed̃ − 1 ≡ 0 mod pr−1

Then we want to find the root y = d − d̃ of the polynomial

f1(x) = ex + ed̃ − 1 mod pr−1

with the known multiple (of unknown divisor p) N (N ≡ 0 mod pr). Applying
Theorem 2, setting β = 1

r+1 , u = r, v = r − 1, we obtain the final result. 	

Theorem 6 (LSBs). Let N = prq, where r ≥ 2 is a known integer and p, q are
primes of the same bit-size. Let e be the public key exponent and d be the private
key exponent, satisfying ed = 1 mod φ(N). For every ε > 0, given d0,M with

d = d0 mod M and M > N
3r+1

(r+1)2
+ε, then N can be factored in polynomial-time.

Proof. Rewrite d = d1M + d0, then we have

ed1M + ed0 − 1 ≡ 0 mod pr−1

Then we want to find the root y = d1 of the polynomial

f1(x) = eMx + ed0 − 1 mod pr−1

with the known multiple (of unknown divisor p) N (N ≡ 0 mod pr). Applying
Theorem 2 and setting β = 1

r+1 , u = r, v = r − 1, we obtain the final result. 	

We have implemented our algorithm in Magma 2.11 computer algebra system
on our PC with Intel(R) Core(TM) Duo CPU (2.53GHz, 1.9GB RAM Windows
7). Table 2 shows the experimental results for multi-power RSA modulus N with
512-bit primes p, q. We compute the number of bits that one should theoretically
be able to attack for d (column d-pred in Table 2). In all the listed experiments,
we can recover the factorization of N . Note that our attack is also effective for
large e.

In [31], for 1024-bit N = p3q, Sarkar considered δ = 0.27 using a lattice with
dimension 220, while we can achieve δ = 0.359 using a lattice with dimension 41.
Besides, Sarkar also stated that “for r = 4, 5, lattice dimension in our approach
becomes very large to achieve better results. Hence in these cases we can not
present experiment results to show the improvements over existing results.” In
Table 2, we can see that our experimental results are better than Sarkar’s for
r > 2.
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Table 2. Experimental results of the attack from Theorem 4

N (bits) r e (bits) d-pred (bits) (m, t) dim (L) d-exp (bits) δ Time (sec)

1536 2 1536 341 (30, 20) 31 318 0.207 3155.687

2048 3 2048 768 (20, 15) 21 706 0.345 749.167

2048 3 4096 768 (20, 15) 21 706 0.345 745.170

2048 3 2048 768 (40, 30) 41 735 0.359 37800.462

2560 4 2560 1228 (20, 16) 21 1136 0.444 1245.754

2560 4 2560 1228 (30, 24) 31 1167 0.456 12266.749

Factoring Multi-power Moduli with Known Bits. In 1985, Rivest and
Shamir [28] first introduced the factoring with high bits known problem, they
presented an algorithm that factors N = pq given 2

3 -fraction of the bits of p.
Later, Coppersmith [5] gave a improved algorithm when half of the bits of p
are known. In 1999, Boneh, Durfee and Howgrave-Graham [2] (referred as BDH
method) extended Coppersmith’s results to moduli N = prq(r ≥ 2). Basically,
they considered the scenario that a few MSBs of the prime p are known to the
attacker. Consider the univariate polynomial

f(x) = (p̃ + x)r mod pr

For simplicity, we assume that p and q are of the same bit-size. Using the algo-
rithm of Theorem 1, Boneh et al. showed that they can recover all roots x0 with

|x0| ≤ N
β2

δ −ε = N
r

(r+1)2
−ε

in time O(ε−7 log2 N)2. Thus we need a 1
r+1 -fraction of p in order to factor N

in polynomial-time.
Applying our algorithm of Theorem2, and setting β = 1

r+1 , u = r, v = 1, we
can also find all roots x0 with

|x0| ≤ Nuvβ2−ε = N
r

(r+1)2
−ε

in time O(ε−7 log2 N).
Note that we obtain the same asymptotic bound and running time complexity

as BDH method. But, as opposed to BDH method, our algorithm is more flexible
in choosing the lattice dimension. For example, in the case of r = 10, BDH
method only works on the lattice dimension of 11∗m (m ∈ Z

+) while our method
can work on any lattice dimension m (m ∈ Z

+). Figure 2 shows a comparsion
of these two methods in terms of the size of p̃ (p̃ = Nγ) that can be achieved.
We can see that to achieve the same γ, we require smaller lattice dimensions
than BDH method. Our algorithm is especially useful for large r. Actually our
lattice is the same to the lattice of BDH method if the lattice dimensions are
11 ∗ m (m ∈ Z

+).
2 Since this univariate equation is very special: f(x) = (x+a)r, in fact we can remove

the quantity r5 from the time complexity of Theorem 1.
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Fig. 2. Comparison of the achievable bound depending on the lattice dimension: the
case of r = 10.

Table 3. Comparison of our experimental results with BDH method.

r Theo. Expt. BDH method Our method

Dim Time (in seconds) Dim Time (in seconds)

5 84 164 30 112.914 26 29.281

5 84 134 48 2874.849 46 1343.683

10 46 186 44 670.695 34 259.298

10 46 166 44 1214.281 41 917.801

We also give some experimental results. Table 3 shows the experimental
results for multi-power RSA modulus N(N = prq) with 500-bit primes p, q.
These experimental data confirmed our theoretical analysis. It is obvious that
our method performs better than BDH method in practice.

4 The Second Type of Equations

In this section, we study the problem of finding small roots of homogeneous
linear polynomials f2(x1, x2) = a1x1 + a2x2 mod pv (v ≥ 1) for some unknown
p where pu divides a known modulus N (i.e. N ≡ 0 mod pu, u ≥ 1). Let (y1, y2)
be a small solution of f2(x1, x2). We assume that we also know an upper bound
(X1,X2) ∈ Z

2 for the root such that |y1| ≤ X1, |y2| ≤ X2.

4.1 Our Main Result

Theorem 7. For every ε > 0, let N be a sufficiently large composite integer
(of unknown factorization) with a divisor pu (p ≥ Nβ, u ≥ 1). Let f2(x1, x2) ∈
Z[x1, x2] be a homogeneous linear polynomial in two variables whose coefficients
are coprime to N . Then one can find all the solutions (y1, y2) of the equation
f2(x1, x2) = 0 ( mod pv) (v ≥ 1) with gcd(y1, y2) = 1, |y1| ≤ Nγ1 , |y2| ≤ Nγ2 if
γ1+γ2 < uvβ2−ε, and the time complexity of our algorithm is O(ε−7v2 log2 N).
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Proof. Since the proof is similar to that of Theorem2, we only give the sketch
here. Consider the linear polynomial:

f2(x1, x2) = a1x1 + a2x2 mod pv

where N is known to be a multiple of pu for known u and unknown p. Here we
assume that a1 = 1, since otherwise we can multiply f2 by a−1

1 mod N . Let

f(x1, x2) = a−1
1 f2(x1, x2) mod N

Fix m := �β(2u+v−uvβ)
ε �, and define a collection of polynomials as follows:

gk(x1, x2) := xm−k
2 fk(x1, x2)Nmax{� v(t−k)

u �,0}

for k = 0, . . . , m and integer parameters t and m with t = τm (0 ≤ τ < 1),
which will be optimized later. Note that for all k, gk(y1, y2) ≡ 0 mod pvt.

Let X1,X2(X1 = Nγ1 ,X2 = Nγ2) be upper bounds on the desired root
(y1, y2), and define X1X2 := Nuvβ2−ε. We build a lattice L of dimension d =
m + 1 using the coefficient vectors of gk(x1X1, x2X2) as basis vectors. We sort
the polynomials according to the order as following: If k < l, then gk < gl.

From the triangular matrix of the lattice, we can easily compute the deter-
minant as the product of the entries on the diagonal as det(L) = Xs1

1 Xs2
2 NsN

where

s1 = s2 =
m∑

k=0

k =
m(m + 1)

2

sN =
t−1∑

k=0

�v(t − k)
u

� =
t−1∑

k=0

(
v(t − k)

u
+ ck

)

=
vt(t + 1)

2u
+

t−1∑

k=0

ck

Here we rewrite � v(t−k)
u � as

(
v(t−k)

u + ck

)
where ck ∈ [0, 1). Combining

Lemmas 1 and 2, after some calculations, we can get the final result

γ1 + γ2 ≤ uvβ2 − β(2u + v − uvβ)
m

Similar to Theorem2, the time complexity of our algorithm is O(ε−7v2 log2 N).
The vector output by LLL-algorithm gives a polynomial f

′
(x1, x2) such that

f
′
(y1, y2) = 0. Let z = x1/x2, any rational root of the form y1/y2 can be found by

extracting the rational roots of f
′
(z) = 1/xm

2 f
′
(x1, y1) with classical methods. 	


Comparisons with Previous Methods. For u = 1, v = 1, the upper bound
δ1 + δ2 of Theorem 7 is β2, that is exactly May’s results [21] on univariate linear
polynomial f(x) = x + a. Actually the problem of finding a small root of homo-
geneous polynomial f(x1, x2) can be transformed to find small rational roots of
univariate linear polynomial F (z) i.e. F (x2

x1
) = f(x1, x2)/x1 (the discussions of

the small rational roots can be found on pp. 413 of Joux’s book [18]).
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Our result improves Herrmann-May’s bound 3β − 2 + 2(1 − β)
3
2 up to β2 if

a0 = 0. As a concrete example, for the case β = 0.5, our method improves the
upper size of X1X2 from N0.207 to N0.25.

Another important work to mention is that in [3], Castagnos, Joux, Laguillau-
mie and Nguyen also considered homogeneous polynomials. Their algorithm can
be directly applied to our attack scenario. They consider the following bivariate
homogeneous polynomial

f(x1, x2) = (a1x1 + a2x2)
u
v mod p

However, their algorithm can only deal with the cases u
v ∈ Z, and our algo-

rithm is more flexible: specially, for u
v -degree polynomial with 2

u
v monomials

(the dimension of lattice is u
v m), whereas our algorithm is for linear polynomial

with two monomials (the dimension of lattice is m). Besides, in [3], they formed
a lattice using the coefficients of g(x, y) instead of g(xX, yY ). This modification
enjoys the benefits in terms of real efficiency, since their lattice has smaller deter-
minant than in the classical bivariate approach. However, their algorithm fails
when the solutions are significantly unbalanced (X1 
 X2). We highlight the
idea that the factor X,Y should not only be used to balance the size of different
power of x, y but also to balance the variables x, y. That is why our algorithm
is suitable for this unbalanced attack scenario.

Extension to More Variables. We generalize the result of Theorem 7 to an
arbitrary number of n variables x1, . . . , xn. The proof of the following result is
similar to that for Proposition 1, so we state only the result itself.

Proposition 2. For every ε > 0, let N be a sufficiently large composite integer
(of unknown factorization) with a divisor pu (p ≥ Nβ, u ≥ 1). Furthermore, let
f2(x1, . . . , xn) ∈ Z[x1, . . . , xn] be a homogeneous linear polynomial in n(n ≥ 3)
variables. Under Assumption 1, we can find all the solutions (y1, . . . , yn) of the
equation f2(x1, . . . , xn) = 0 mod pv (v ≥ 1) with gcd(y1, . . . , yn) = 1, |y1| ≤
Nγ1 , . . . |yn| ≤ Nγn if

n∑

i=1

γi <
v

u

(
1 − (1 − uβ)

n
n−1 − n(1 − uβ)

(
1 − n−1

√
1 − uβ

))
− ε

The running time of the algorithm is polynomial in log N and ε−n log N .

4.2 Applications

In Africacrypt’12, Nitaj [26] presented a new attack on RSA. His attack is based
on Herrmann-May’s method [12] for finding small roots of a bivariate linear
equation. In particular, he showed that the public modulus N can be factored in
polynomial-time for the RSA cryptosystem where the public exponent e satisfies
an equation ex + y ≡ 0 ( mod p) with parameters x and y satisfying ex + y �≡
0 ( mod N) |x| < Nγ and |y| < N δ with δ + γ ≤

√
2−1
2 .
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Note that the equation of [26] is homogeneous, thus we can improve the upper
bound of γ + δ using our result in Theorem 7. In [29], Sarkar proposed another
method to extend Nitaj’s weak encryption exponents. Here, the trick is to con-
sider the fact that Nitaj’s bound can be improved when the unknown variables
in the modular equation are unbalanced (x and y are of different bit-size). In
general, Sarkar’s method is essentially Herrmann-May’s method, whereas our
algorithm is simpler (see Theorem 7). We present our result below.

Theorem 8. Let N = pq be an RSA modulus with q < p < 2q. Let e be a public
exponent satisfying an equation ex + y ≡ 0 mod p with |x| < Nγ and |y| < N δ.
If ex+y �≡ 0 mod N and γ +δ ≤ 0.25− ε, N can be factored in polynomial-time.

In [26], Nitaj also proposed a new attack on CRT-RSA. Let N = pq be an RSA
modulus with q < p < 2q. Nitaj showed that if e < N

√
2

2 and edp = 1+kp(p−1)

for some dp with dp < N

√
2

4√
e

, N can be factored in polynomial-time. His method is
also based on Herrmann-May’s method. Similarly we can improve Nitaj’s result
in some cases using our idea as Theorem 7.

Theorem 9. Let N = pq be an RSA modulus with q < p < 2q. Let e be a public
exponent satisfying e < N0.75 and edp = 1 + kp(p − 1) for some dp with

dp <
N

0.75−ε
2√
e

Then, N can be factored in polynomial-time.

Proof. We rewrite the equation edp = 1 + kp(p − 1) as

edp + kp − 1 = kpp

Then we focus on the equation modulo p

ex + y = 0 mod p

with a root (x0, y0) = (dp, kp − 1). Suppose that e = Nα, dp = N δ, then we get

kp =
edp − 1
p − 1

<
edp

p − 1
< Nα+δ−0.5

Applying Theorem7 with the desired equation where x0 = dp < N δ and y0 =
kp − 1 < Nα+δ−0.5, setting β = 0.5, u = 1 and v = 1 we obtain

2δ + α < 0.75 − ε

Note that gcd(x0, y0) = gcd(dp, kp − 1) = 1, kp < Nα+δ−0.5 < Nα+2δ−0.5 <
N0.25 < p, hence edp + kp − 1 �= 0 mod N . Then we can factorize N with
gcd(N, edp + kp − 1) = p. 	

Note that Theorem 9 requires the condition e < N0.75 for N = pq, hence we
cannot be using small CRT exponents both modulo p and modulo q. Our attack
is valid for the case that the cryptographic algorithm has a small CRT-exponent
modulo p, but a random CRT-exponent modulo q.
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Table 4. Experimental results for weak encryption exponents

N (bit) r dp-pred (bits) (m, t) dim (L) dp-exp (bits) Time (sec)

1024 1 128 (6, 3) 7 110 0.125

1024 1 128 (10, 5) 11 115 1.576

1024 1 128 (30, 15) 31 124 563.632

Experimental Results. Table 4 shows the experimental results for RSA mod-
ulus N with 512-bit primes p, q. In all of our experiments, we fix e’s length as
512-bit, and so the scheme does not have a small CRT exponent modulo q. We
also compute the number bits that one should theoretically be able to attack for
dp (column dp-pred of Table 4).

That is actually the attack described in Theorem9. In [26], the author showed
that for a 1024-bit modulus N , the CRT-exponent dp is typically of size at most
110. We obtain better results in our experiments as shown in Table 4.

5 The Third Type of Equations

In this section, we give our main algorithm to find small roots of extended
simultaneous modular univariate linear equations. At first, we introduce this
kind of equations.

Extended Simultaneous Modular Univariate Linear Equations. Given
positive integers r, r1, . . . , rn and N, a1, . . . , an and bounds γ1, . . . , γn, η ∈ (0, 1).
Suppose that N = 0 mod pr and p ≥ Nη. We want to find all integers
(x(0)

1 , . . . , x
(0)
n ) such that |x(0)

1 | ≤ Nγ1 , . . . , |x(0)
n | ≤ Nγn , and

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f1(x
(0)
1 ) = a1 + x

(0)
1 = 0 mod pr1

f2(x
(0)
2 ) = a2 + x

(0)
2 = 0 mod pr2

...
fn(x(0)

n ) = an + x
(0)
n = 0 mod prn

5.1 Our Main Result

Our main result is as follows:

Theorem 10. Under Assumption 1, the above equations can be solved provided
that

n

√
γ1 · · · γn

rr1 · · · rn
< η

n+1
n and η 
 1√

log N

The running time of the algorithm is polynomial in log N but exponential in n.

Proof. First, for every j (j ∈ {1, . . . , n}), we check whether condition γj

rj
≤ η is

met. If there exists k such that γk

rk
> η, then we throw away this corresponding
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polynomial fk(x), since this polynomial could not offer any useful information.
Here suppose that all the polynomials satisfy our criteria. Define a collection of
polynomials as follows:

f[i1,...,in](x1, . . . , xn) = (a1 + x1)i1 · · · (an + xn)inNmax{� t−∑n
j=1 rjij

r �,0}

Notice that for all indexes i1, . . . , in, f[i1,...,in](x
(0)
1 , . . . , x

(0)
n ) = 0 mod pt. We

select the collection of shift polynomials that satisfies

0 ≤
n∑

j=1

γjij ≤ ηt

The reason we select these shift polynomials is that we try to select as many
helpful polynomials as possible by taking into account the sizes of the root
bounds.

We define the polynomial order ≺ as xi1
i xi2

2 · · · xin
n ≺ x

i
′
1
1 x

i
′
2
2 · · · xi

′
n

n if

n∑

j=1

ij <
n∑

j=1

i
′
j or

n∑

j=1

ij =
n∑

j=1

i
′
j , ij = i

′
j(j = 1, . . . , k), ik+1 < i

′
k+1

Ordered in this way, the basis matrices become triangular in general.
We compute the dimension of lattice L as w where

w = dim(L) =
∑

0≤γii1+···+γnin≤βt

1 =
(ηt)n

n!
1

γ1 · · · γn
+ o(tn)

and the determinate det(L) = NsN X
sX1
1 · · · XsXn

n where

sN =
∑

0≤r1i1+···+rnin≤t

� t − ∑n
j=1 rjij

r
� =

tn+1

(n + 1)!
1

rr1 · · · rn
+ o(tn+1)

sXj
=

∑

0≤γ1i1+···+γnin≤ηt

ij =
tn+1

(n + 1)!
1

γ1 · · · γj−1γ2
j γj+1 · · · γn

+ o(tn+1)

for each sX1 , sX2 , . . . , sXn
.

To obtain the number of n polynomials with short coefficients that contain all
small roots over integer, we apply LLL basis reduction algorithm to the lattice
L. Lemma 1 gives us an upper bound on the norm of the shortest vector in the
LLL-reduced basis; if the bound is smaller than the bound given in Lemma2,
we can obtain the desired polynomial. We require the following condition:

2
w−1

4 det(L)
1
w <

Nηt

√
w

(4)
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Ignoring low order terms of m and the quantities that do not depend on N , we
have the following result

sN +
n∑

j=1

γjsXj
< wηt

After some calculations, we can get the final result

n

√
γ1 · · · γn

rr1 · · · rn
< η

n+1
n

In particular, from the Eq. (4), in order to ignore the quantities that do not
depend on N , we must have

2
w
4 � Nηt and det(L)

1
w < Nηt

and these inequations imply that

w � 4ηt log2 N and
sN

w
log2 N < ηt log2 N

Finally we have
1

4(n + 1)rr1 · · · rn
� η2 log2 N

Furthermore, one can check that in order to let the value 2w/4 become negligible
compared with Nηt, we must have

η2 log2 N 
 1

The running time is dominated by LLL-reduction, therefore, the total running
time for this approach is polynomial in log N but exponential in n. 	

Like [4,36], we also consider the generalization to simultaneous linear equations
of higher degree.

Extended Simultaneous Modular Univariate Equations. Suppose that
N = 0 mod pr, p ≥ Nη, we consider the simultaneous modular univariate equa-
tions ⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

h1(x1) = xδ1
1 + aδ1x

δ1−1
1 + · · · + a1 = 0 mod pr1

h2(x2) = xδ2
1 + bδ2x

δ2−1
1 + · · · + b1 = 0 mod pr2

...
hn(xn) = xδn

1 + cδn
xδn−1
1 + · · · + c1 = 0 mod prn

Here each equation hj(xj) has one variable and the degree of hj(xj) is δj . We
give the following result.

Theorem 11. Under Assumption 1, the above generalised problem can be solved
provided that

n

√
δ1γ1 · · · δnγn

rr1 · · · rn
< η

n+1
n and η 
 1√

log N

The running time of the algorithm is polynomial in log N but exponential in n.

The proof is very similar to [4,36], we omit it here.
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5.2 Common Prime RSA

In [13], Hinek revisited a new variant of RSA, called Common Prime RSA,
where the modulus N = pq is chosen such that p − 1 and q − 1 have a large
common factor. For convenience, we give a brief description on the property of
Common Prime RSA. Without loss of generality, assume that p = 2ga + 1 and
q = 2gb + 1, where g � Nγ and a, b are coprime integers, namely gcd(a, b) = 1.
The decryption exponent d and encryption exponent e satisfy that

ed ≡ 1 mod 2gab (5)

where e � N1−γ and d � Nβ .
For a better comparison with the previous attacks, we give a brief review on

all known attacks.

Wiener’s Attack [38]. Using a continued fraction attack, Wiener proved that
given any valid Common Prime RSA public key (N, e) with private exponent
d < N

1
4− γ

2 , namely β < 1
4 − γ

2 , one can factor N in polynomial-time.

Hinek’s Attack [13]. Hinek revisited this problem and proposed two lattice-
based attacks. Due to Hinek’s work, when β < γ2 or β < 2

5γ, N can be factored
in polynomial-time.

Jochemsz-May’s Attack [17]. Jochemsz and May gave another look at the
equation proposed by Hinek [13] and modified the unknown variables in the
equation. The bound has been further improved as

β <
1
4
(4 + 4γ −

√
13 + 20γ + 4γ2).

Sarkar-Maitra’s Attack [33]. Sarkar and Maitra proposed two improved
attacks, one attack worked when γ ≤ 0.051, and another worked when 0.051 <
γ ≤ 0.2087.

One can check that when γ ≥ 0.2087, Jochemsz-May’s attack [17] is superior
to other attacks. We use the algorithm of Theorem 10 to make an improvement
on previous attacks when γ ≥ 0.3872. We give a comparison with Jochemsz-
May’s attack in Fig. 3.

Our results improve Jochemsz-May’s attack dramatically when γ is large, for
instance, when γ is close to 0.5, we improve the bound on β from 0.2752, which
is the best result of previous attacks, to 0.5. Below is our main result.

Theorem 12. Assume that there exists instance of Common Prime RSA N =
pq with the above-mentioned parameters. Under Assumption 1, N can be factored
in polynomial-time provided

β < 4γ3 and γ >
1
4
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Fig. 3. Comparison of our theoretical bounds with Jochemsz-May’s work.

Proof. According to the property of Common Prime RSA, we have N = pq =
(2ga + 1)(2gb + 1) which implies N − 1 ≡ 0 mod g. On the other hand, from
Eq. (5) one can obtain

ed − 1 ≡ 0 mod g

Multiplying by the inverse of e modulo N − 1, we can obtain the following
equation,

E − x ≡ 0 mod g

where E denotes the inverse of e modulo N − 1 and x denotes the unknown d.
Moreover, since (p − 1)(q − 1) = 4g2ab, we have another equation,

N − y ≡ 0 mod g2

where y denotes the unknown p + q − 1.
In summary, simultaneous modular univariate linear equations can be listed

as {
E − x ≡ 0 mod g
N − y ≡ 0 mod g2

Note that N − 1 is a multiple of g and (d, p + q − 1) is the desired solution of
above equations, where g � Nγ , d � Nβ and p + q − 1 � N

1
2 . Obviously, this

kind of modular equations is what we considered in Theorem10. Setting

n = 2, r = 1, r1 = 1, r2 = 2, γ1 = β, γ2 =
1
2
, η = γ

We have
γ > β γ >

1
4

β < 4γ3

Then we can obtain
β < 4γ3 and γ >

1
4



Solving Linear Equations Modulo Unknown Divisors: Revisited 211

Under Assumption 1, one can solve the desired solution. This concludes the proof
of Theorem 12. 	


Experimental Results. Some experimental data on the different size of g are
listed in Table 5. Here we used 1000-bit N . Assumption 1 worked perfectly in all
the cases. We always succeed to find out our desired roots.

Table 5. Comparison of our theoretical and experimental results with existing works.

γ Theorem of [17] Our result

Theo. Expt. Dim Time (in seconds)

0.40 0.237 0.256 0.220 86 12321.521

0.42 0.245 0.294 0.260 113 53669.866

0.45 0.256 0.354 0.320 105 29128.554

0.48 0.268 0.415 0.390 98 15058.558

6 Conclusion

In this paper, we consider three type of generalized equations and propose some
new techniques to find small root of these equations. Applying our algorithms, we
obtain the best analytical/experimental results for some attacks on RSA and its
variants. Besides, we believe that our new algorithms may find new applications
in various other contexts.
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