
Tetsu Iwata · Jung Hee Cheon (Eds.)

 123

LN
CS

 9
45

2

21st International Conference on the Theory
and Application of Cryptology and Information Security
Auckland, New Zealand, November 29 – December 3, 2015
Proceedings, Part I

Advances in Cryptology –
ASIACRYPT 2015

Lecture Notes in Computer Science 9452

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Tetsu Iwata • Jung Hee Cheon (Eds.)

Advances in Cryptology –

ASIACRYPT 2015
21st International Conference on the Theory
and Application of Cryptology and Information Security
Auckland, New Zealand, November 29 – December 3, 2015
Proceedings, Part I

123

Editors
Tetsu Iwata
Nagoya University
Nagoya
Japan

Jung Hee Cheon
Seoul National University
Seoul
Korea (Republic of)

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-662-48796-9 ISBN 978-3-662-48797-6 (eBook)
DOI 10.1007/978-3-662-48797-6

Library of Congress Control Number: 2015953256

LNCS Sublibrary: SL4 – Security and Cryptology

Springer Heidelberg New York Dordrecht London
© International Association for Cryptologic Research 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer-Verlag GmbH Berlin Heidelberg is part of Springer Science+Business Media
(www.springer.com)

Preface

ASIACRYPT 2015, the 21st Annual International Conference on Theory and Appli-
cation of Cryptology and Information Security, was held on the city campus of the
University of Auckland, New Zealand, from November 29 to December 3, 2015.
The conference focused on all technical aspects of cryptology, and was sponsored by
the International Association for Cryptologic Research (IACR).

The conference received 251 submissions from all over the world. The program
included 64 papers selected from these submissions by a Program Committee
(PC) comprising 43 leading experts of the field. In order to accommodate as many
high-quality submissions as possible, the conference ran in two parallel sessions, and
these two-volume proceedings contain the revised versions of the papers that were
selected. The revised versions were not reviewed again and the authors are responsible
for their contents.

The selection of the papers was made through the usual double-blind review pro-
cess. Each submission was assigned three reviewers and submissions by PC members
were assigned five reviewers. The selection process was assisted by a total of 339
external reviewers. Following the individual review phase, the selection process
involved an extensive discussion phase.

This year, the conference featured three invited talks. Phillip Rogaway gave the
2015 IACR Distinguished Lecture on “The Moral Character of Cryptographic Work,”
Gilles Barthe gave a talk on “Computer-Aided Cryptography: Status and Perspectives,”
and Masayuki Abe spoke on “Structure-Preserving Cryptography.” The proceedings
contain the abstracts of these talks. The conference also featured a traditional rump
session that contained short presentations on the latest research results of the field.

The best paper award was decided based on a vote by the PC members, and it was
given to “Improved Security Proofs in Lattice-Based Cryptography: Using the Rényi
Divergence Rather than the Statistical Distance” by Shi Bai, Adeline Langlois, Tan-
crède Lepoint, Damien Stehlé, and Ron Steinfeld. Two more papers, “Key-Recovery
Attacks on ASASA” by Brice Minaud, Patrick Derbez, Pierre-Alain Fouque, and Pierre
Karpman, and “The Tower Number Field Sieve” by Razvan Barbulescu, Pierrick
Gaudry, and Thorsten Kleinjung, were solicited to submit full versions to the Journal
of Cryptology.

ASIACRYPT 2015 was made possible by the contributions of many people. We
would like to thank the authors for submitting their research results to the conference.
We are deeply grateful to all the PC members and all the external reviewers for their
hard work to determine the program of the conference. We sincerely thank Steven
Galbraith, the general chair of the conference, and the members of the local Organizing
Committee for handling all the organizational work of the conference. We also thank
Nigel Smart for organizing and chairing the rump session.

We thank Shai Halevi for setting up and letting us use the IACR conference
management software. Springer published the two-volume proceedings and made these

available at the conference. We thank Alfred Hofmann, Anna Kramer, and their col-
leagues for handling the editorial process. Last but not least, we thank the speakers,
session chairs, and all the participants for coming to Auckland and contributing to
ASIACRYPT 2015.

December 2015 Tetsu Iwata
Jung Hee Cheon

VI Preface

ASIACRYPT 2015

The 21st Annual International Conference on Theory
and Application of Cryptology and Information Security

Sponsored by the International Association for Cryptologic Research (IACR)

November 29–December 3, 2015, Auckland, New Zealand

General Chair

Steven Galbraith University of Auckland, New Zealand

Program Co-chairs

Tetsu Iwata Nagoya University, Japan
Jung Hee Cheon Seoul National University, Korea

Program Committee

Daniel J. Bernstein University of Illinois at Chicago, USA and Technische
Universiteit Eindhoven, The Netherlands

Ignacio Cascudo Aarhus University, Denmark
Chen-Mou Cheng National Taiwan University, Taiwan
Sherman S.M. Chow Chinese University of Hong Kong, Hong Kong, SAR China
Kai-Min Chung Academia Sinica, Taiwan
Nico Döttling Aarhus University, Denmark
Jens Groth University College London, UK
Dawu Gu Shanghai Jiaotong University, China
Dong-Guk Han Kookmin University, Korea
Marc Joye Technicolor, USA
Nathan Keller Bar-Ilan University, Israel
Aggelos Kiayias National and Kapodistrian University of Athens, Greece
Kaoru Kurosawa Ibaraki University, Japan
Xuejia Lai Shanghai Jiaotong University, China
Hyang-Sook Lee Ewha Womans University, Korea
Jooyoung Lee Sejong University, Korea
Soojoon Lee Kyung Hee University, Korea
Arjen Lenstra EPFL, Switzerland
Hemanta K. Maji UCLA, USA
Alexander May Ruhr University Bochum, Germany
Bart Mennink KU Leuven, Belgium
Tatsuaki Okamoto NTT Secure Platform Laboratories, Japan
Raphael C.-W. Phan Multimedia University, Malaysia

Josef Pieprzyk Queensland University of Technology, Australia
Bart Preneel KU Leuven, Belgium
Damien Robert Inria Bordeaux, France
Giovanni Russello University of Auckland, New Zealand
Ahmad-Reza

Sadeghi
TU Darmstadt, Germany

Rei Safavi-Naini University of Calgary, Canada
Palash Sarkar Indian Statistical Institute, India
Yu Sasaki NTT Secure Platform Laboratories, Japan
Peter Schwabe Radboud University, The Netherlands
Jae Hong Seo Myongji University, Korea
Nigel Smart University of Bristol, UK
Damien Stehlé ENS de Lyon, France
Tsuyoshi Takagi Kyushu University, Japan
Mehdi Tibouchi NTT Secure Platform Laboratories, Japan
Dominique Unruh University of Tartu, Estonia
Serge Vaudenay EPFL, Switzerland
Vesselin Velichkov University of Luxembourg, Luxembourg
Huaxiong Wang Nanyang Technological University, Singapore
Hongjun Wu Nanyang Technological University, Singapore
Vassilis Zikas ETH Zurich, Switzerland

Additional Reviewers

Masayuki Abe
Divesh Aggarwal
Shashank Agrawal
Shweta Agrawal
Hyunjin Ahn
Janaka Alawatugoda
Martin Albrecht
Gergely Alpár
Joël Alwen
Prabhanjan Ananth
Elena Andreeva
Yoshinori Aono
Daniel Apon
Hassan Jameel Asghar
Tomer Ashur
Nuttapong Attrapadung
Maxime Augier
Jean-Philippe Aumasson
Christian Badertscher
Yoo-Jin Baek
Shi Bai

Foteini Baldimtsi
Razvan Barbulescu
Achiya Bar-On
Harry Bartlett
Lejla Batina
Aurélie Bauer
Carsten Baum
Anja Becker
Fabrice Benhamouda
Shivam Bhasin
Sanjay Bhattacherjee
Begül Bilgin
Gaëtan Bisson
Jonathan Bootle
Joppe W. Bos
Elette Boyle
Zvika Brakerski
Mark Bun
David Cash
Guilhem Castagnos
Andrea Cerulli

Pyrros Chaidos
Debrup Chakraborty
Donghoon Chang
Seunghwan Chang
Yun-An Chang
Chien-Ning Chen
Jie Chen
Ming-Shing Chen
Yu-Chi Chen
Dooho Choi
Seung Geol Choi
Ji Young Chun
Stelvio Cimato
Sandro Coretti
Jean-Marc Couveignes
Joan Daemen
Bernardo David
Angelo De Caro
Jeroen Delvaux
Gregory Demay
Patrick Derbez

VIII ASIACRYPT 2015

Jintai Ding
Itai Dinur
Christophe Doche
Ming Duan
Léo Ducas
Alina Dudeanu
Orr Dunkelman
Keita Emura
Martianus Frederic

Ezerman
Xiong Fan
Antonio Faonio
Pooya Farshim
Sebastian Faust
Marc Fischlin
Eiichiro Fujisaki
Philippe Gaborit
Martin Gagné
Steven Galbraith
Nicolas Gama
Wei Gao
Peter Gaži
Essam Ghadafi
Hossein Ghodosi
Irene Giacomelli
Benedikt Gierlichs
Zheng Gong
Dov Gordon
Robert Granger
Sylvain Guilley
Jian Guo
Qian Guo
Zheng Guo
Divya Gupta
Florian Göpfert
Jaecheol Ha
Xue Haiyang
Keisuke Hakuta
Shuai Han
Neil Hanley
Malin Md Mokammel

Haque
Yasufumi Hashimoto
Gottfried Herold
Javier Herranz
Shoichi Hirose
Viet Tung Hoang

Dennis Hofheinz
Justin Holmgren
Deukjo Hong
Wei-Chih Hong
Tao Huang
Yun-Ju Huang
Pavel Hubáček
Michael Hutter
Andreas Hülsing
Jung Yeon Hwang
Laurent Imbert
Sorina Ionica
Zahra Jafargholi
Tibor Jager
Jérémy Jean
Ik Rae Jeong
Hyungrok Jo
Thomas Johansson
Antoine Joux
Handan Kılınç
Taewon Kim
Alexandre Karlov
Pierre Karpman
Kenji Kashiwabara
Aniket Kate
Marcel Keller
Carmen Kempka
Dmitry Khovratovich
Dakshita Khurana
Jinsu Kim
Jongsung Kim
Min Kyu Kim
Sungwook Kim
Tae Hyun Kim
Taechan Kim
Taewan Kim
Paul Kirchner
Elena Kirshanova
Susumu Kiyoshima
Thorsten Kleinjung
Jessica Koch
Markulf Kohlweiss
Ilan Komargodski
Venkata Koppula
Ranjit Kumaresan
Po-Chun Kuo
Stefan Kölbl

Pascal Lafourcade
Russell W.F. Lai
Adeline Langlois
Martin M. Lauridsen
Changhoon Lee
Changmin Lee
Eunjeong Lee
Hyung Tae Lee
Juhee Lee
Tancrède Lepoint
Wen-Ding Li
Yang Li
Benoît Libert
Seongan Lim
Changlu Lin
Fuchun Lin
Tingting Lin
Wei-Kai Lin
Feng-Hao Liu
Junrong Liu
Shengli Liu
Ya Liu
Zhen Liu
Zhenhua Liu
Zhiqiang Liu
Satya Lokam
Carl Löndahl
Yu Long
Steve Lu
Yiyuan Luo
Atul Luykx
Vadim Lyubashevsky
Alex J. Malozemoff
Avradip Mandal
Giorgia Azzurra Marson
Luke Mather
Takahiro Matsuda
Christian Matt
Peihan Miao
Daniele Micciancio
Andrea Miele
Eric Miles
Kazuhiko Minematsu
Marine Minier
Takaaki Mizuki
Ameer Mohammed
Paweł Morawiecki

ASIACRYPT 2015 IX

Daisuke Moriyama
Kirill Morozov
Nicky Mouha
Nadia El Mrabet
Pratyay Mukherjee
Yusuke Naito
Chanathip Namprempre
Mridul Nandi
María Naya-Plasencia
Khoa Nguyen
Ruben Niederhagen
Jesper Buus Nielsen
Ivica Nikolić
Svetla Nikova
Tobias Nilges
Ryo Nishimaki
Wakaha Ogata
Go Ohtake
Claudio Orlandi
Ilya Ozerov
Jiaxin Pan
Giorgos Panagiotakos
Omkant Pandey
Kostas Papagiannopoulos
Cheol-Min Park
Bryan Parno
Anat Paskin-Cherniavsky
Chris Peikert
Bo-Yuan Peng
Clément Pernet
Léo Perrin
Giuseppe Persiano
Thomas Peters
Christophe Petit
Albrecht Petzoldt
Thomas Peyrin
Le Trieu Phong
Cécile Pierrot
Bertram Poettering
Joop van de Pol
Antigoni Polychroniadou
Carla Ràfols
Yogachandran

Rahulamathavan
Sergio Rajsbaum
Somindu C. Ramanna
Samuel Ranellucci

Vanishree Rao
Christian Rechberger
Oded Regev
Michał Ren
Oscar Reparaz
Reza Reyhanitabar
Vincent Rijmen
Matthieu Rivain
Vladimir Rožić
Saeed Sadeghian
Yusuke Sakai
Subhabrata Samajder
Simona Samardjiska
Katerina Samari
Alessandra Scafuro
Jacob C.N. Schuldt
Karn Seth
Yannick Seurin
Setareh Sharifian
Ji Sun Shin
Bo-Yeon Sim
Siang Meng Sim
Leonie Simpson
Shashank Singh
Arkadii Slinko
Mate Soos
Pierre-Jean Spaenlehauer
Martijn Stam
Ron Steinfeld
Christoph Striecks
Le Su
Koutarou Suzuki
Alan Szepieniec
Björn Tackmann
Katsuyuki Takashima
Syh-Yuan Tan
Qiang Tang
Christophe Tartary
Sidharth Telang
Isamu Teranishi
Stefano Tessaro
Ivan Tjuawinata
Daniel Tschudi
Yiannis Tselekounis
Yu-Hsiu Tung
Himanshu Tyagi
Aleksei Udovenko

Praveen Vadnala
Srinivas Vivek Venkatesh
Frederik Vercauteren
Damien Vergnaud
Gilles Villard
Dhinakaran

Vinayagamurthy
Vanessa Vitse
Damian Vizár
Lei Wang
Qingju Wang
Weijia Wang
Bogdan Warinschi
Hoeteck Wee
Benjamin Wesolowski
Carolyn Whitnall
Daniel Wichs
Xiaodi Wu
Hong Xu
Sen Xu
Shota Yamada
Naoto Yanai
Bo-Yin Yang
Guomin Yang
Shang-Yi Yang
Masaya Yasuda
Takanori Yasuda
Kazuki Yoneyama
Taek-Young Youn
Ching-Hua Yu
Shih-Chun Yu
Yu Yu
Aaram Yun
Thomas Zacharias
Mark Zhandry
Bingsheng Zhang
Hui Zhang
Jiang Zhang
Liang Feng Zhang
Liting Zhang
Tao Zhang
Ye Zhang
Yongjun Zhao
Bo Zhu
Jens Zumbrägel

X ASIACRYPT 2015

Organizing Committee

Chair

Steven Galbraith University of Auckland, New Zealand

Local Committee Members

Peter Gutmann Computer Science, University of Auckland, New Zealand
Hinne Hettema ITS, University of Auckland, New Zealand
Giovanni Russello Computer Science, University of Auckland, New Zealand
Arkadii Slinko Mathematics, University of Auckland, New Zealand
Clark Thomborson Computer Science, University of Auckland, New Zealand

Sponsors

The University of Auckland
Microsoft Research
Intel
STRATUS
Centre for Discrete Mathematics and Theoretical Computer Science

ASIACRYPT 2015 XI

Invited Talks

Structure-Preserving Cryptography

Masayuki Abe

NTT Secure Platform Laboratories, NTT Corporation, Tokyo, Japan
abe.masayuki@lab.ntt.co.jp

Bilinear groups has been a common ground for building cryptographic schemes since its
introduction in seminal works [3, 5, 6]. Not just being useful for directly designing
schemes for their rich mathematical structure, they aim to modular construction of
complex schemes from simpler building blocks that work over the same bilienar groups.
Namely, given a description of blinear groups, several building blocks exchange group
elements each other, and the security of the resulting scheme is proven based on the
security of the underlying building blocks. Unfortunately, things are not that easy in
reality. Building blocks often require grues that bridge incompatible interfaces or they
have to be modified to work together and the security has to be re-proved.

Structure-preserving cryptography [2] is a paradigm for designing cryptographic
schemes over bilinear groups. A cryptographic scheme is called structure preserving if its
all public inputs and outputs consist of group elements of bilinear groups and the func-
tional correctness can be verified only by computing group operations, testing group
membership and evaluating pairing product equations. Due to the regulated interface,
structure-preserving schemes are highly inter-operable as desired in modular construc-
tions. In particular, combination of structure-preserving signatures and noninteractive
proof system of [4] yields numerous applications that protect signers’ or receivers’ pri-
vacy. The required properties on the other hand make some important primitives such as
pseudo-random functions and collision resistant shrinking commitments unavailable in
the world of structure-preserving cryptography. Interestingly, however, the constraints on
the verification of correctness aim to argue non-trivial lower bounds in some aspects of
efficiency such as signature size in the structure-preserving signature schemes.

Since the first use of the term “structure-preserving” in [1] in 2010, intensive
research has been done for the area. In this talk, we overview state of the art on several
structure-preserving schemes including commitments and signatures with a careful
look about underlying assumptions, known bounds, and impossibility results. We also
show open questions and discuss promising directions for further research.

References

1. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-preserving
signatures and commitments to group elements. In: Advances in Cryptology - CRYPTO 2010,
30th Annual Cryptology Conference, Santa Barbara, CA, USA, 15–19 August 2010. Pro-
ceedings, pp. 209–236 (2010)

2. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-preserving
signatures and commitments to group elements. J. Cryptol. (2015). doi:http://dx.doi.org/10.
1007/s00145-014-9196-7.

3. Boneh, D., Boyen, X.: Efficient selective-id secure identity-based encryption without random
oracles. In: Advances in Cryptology - EUROCRYPT 2004, International Conference on the
Theory and Applications of Cryptographic Techniques, Interlaken, Switzerland, 2–6 May
2004. Proceedings, pp. 223–238 (2004)

4. Groth, J., Sahai, A.: Efficient noninteractive proof systems for bilinear groups.
SIAM J. Comput. 41(5), 1193–1232 (2012)

5. Menezes, A., Okamoto, T., Vanstone, S.A.: Reducing elliptic curve logarithms to logarithms
in a finite field. IEEE Trans. Inf. Theory 39(5), 1639–1646 (1993)

6. Sakai, R., Kasahara, M.: ID based cryptosystems with pairing on elliptic curve. IACR
Cryptology ePrint Archive 2003, vol. 54 (2003)

XVI M. Abe

http://dx.doi.org/10.1007/s00145-014-9196-7
http://dx.doi.org/10.1007/s00145-014-9196-7

Computer-Aided Cryptography:
Status and Perspectives

Gilles Barthe

IMDEA Software Institute, Madrid, Spain

Computer-aided cryptography is an emerging discipline which advocates the use of
computer tools for building and mechanically verifying the security of cryptographic
constructions. Computer-aided cryptography builds on the code-based game-based
approach to cryptographic proofs, and adopts a program verification approach to justify
common patterns of reasoning, such as equivalence up to bad, lazy sampling, or simply
program equivalence. Technically, tools like EasyCrypt use a program verification
method based on probabilistic couplings for reasoning about the relationship between
two probabilistic programs, and standard tools to reason about the probability of events
in a single probabilistic program. The combination of these tools, together with general
mechanisms to instantiate or combine proofs, can be used to verify many examples
from the literature.

Recent developments in computer-aided cryptography have explored two different
directions. On the one hand, several groups have developed fully automated techniques
to analyze cryptographic constructions in the standard model or hardness assumptions
in the generic group model. In turn, these tools have been used for synthesizing new
cryptographic constructions. Transformational synthesis tools take as input a crypto-
graphic construction, for instance a signature in Type I setting and outputs another
construction, for instance a batch signature or a signature in Type III setting. In con-
trast, generative synthesis tools take as input some size constraints and output a list of
secure cryptographic constructions, for instance padding-based encryption schemes,
modes of operations, or tweakable blockciphers, meeting the size constraints. On the
other hand, several groups are working on carrying security proofs to (assembly-level)
implementations, building on advances in programming languages, notably verified
compilers. These works open the possibility to reason formally about mitigations used
by cryptography implementers and to deliver strong mathematical guarantees, in the
style of provable security, for cryptographic code against more realistic adversaries.

For further background information, please consult: www.easycrypt.info.

http://www.easycrypt.info

The Moral Character of Cryptographic Work

Phillip Rogaway1

Department of Computer Science
University of California, Davis, USA

Abstract. Cryptography rearranges power: it configures who can do what, from
what. This makes cryptography an inherently political tool, and it confers on the
field an intrinsically moral dimension. The Snowden revelations motivate a
reassessment of the political and moral positioning of cryptography. They lead
one to ask if our inability to effectively address mass surveillance constitutes a
failure of our field. I believe that it does. I call for a community-wide effort to
develop more effective means to resist mass surveillance. I plea for a reinvention
of our disciplinary culture to attend not only to puzzles and math, but, also, to
the societal implications of our work.

Keywords: Cryptography · Democracy · Ethics · Mass surveillance · Privacy ·
Snowden revelations · Social responsibility

1 Work on the paper and talk associated to this abstract has been supported by NSF Grant CNS
1228828. Many thanks to the NSF for their continuing support.

Contents – Part I

Best Paper

Improved Security Proofs in Lattice-Based Cryptography: Using the Rényi
Divergence Rather Than the Statistical Distance . 3

Shi Bai, Adeline Langlois, Tancrède Lepoint, Damien Stehlé,
and Ron Steinfeld

Indistinguishability Obfuscation

Multi-input Functional Encryption for Unbounded Arity Functions 27
Saikrishna Badrinarayanan, Divya Gupta, Abhishek Jain,
and Amit Sahai

Multi-party Key Exchange for Unbounded Parties from Indistinguishability
Obfuscation . 52

Dakshita Khurana, Vanishree Rao, and Amit Sahai

PRFs and Hashes

Adaptively Secure Puncturable Pseudorandom Functions
in the Standard Model . 79

Susan Hohenberger, Venkata Koppula, and Brent Waters

Multilinear and Aggregate Pseudorandom Functions: New Constructions
and Improved Security. 103

Michel Abdalla, Fabrice Benhamouda, and Alain Passelègue

New Realizations of Somewhere Statistically Binding Hashing
and Positional Accumulators. 121

Tatsuaki Okamoto, Krzysztof Pietrzak, Brent Waters, and Daniel Wichs

Discrete Logarithms and Number Theory

Computing Individual Discrete Logarithms Faster in GFðpnÞ with the
NFS-DL Algorithm . 149

Aurore Guillevic

Multiple Discrete Logarithm Problems with Auxiliary Inputs 174
Taechan Kim

Solving Linear Equations Modulo Unknown Divisors: Revisited 189
Yao Lu, Rui Zhang, Liqiang Peng, and Dongdai Lin

http://dx.doi.org/10.1007/978-3-662-48797-6_1
http://dx.doi.org/10.1007/978-3-662-48797-6_1
http://dx.doi.org/10.1007/978-3-662-48797-6_2
http://dx.doi.org/10.1007/978-3-662-48797-6_3
http://dx.doi.org/10.1007/978-3-662-48797-6_3
http://dx.doi.org/10.1007/978-3-662-48797-6_4
http://dx.doi.org/10.1007/978-3-662-48797-6_4
http://dx.doi.org/10.1007/978-3-662-48797-6_5
http://dx.doi.org/10.1007/978-3-662-48797-6_5
http://dx.doi.org/10.1007/978-3-662-48797-6_6
http://dx.doi.org/10.1007/978-3-662-48797-6_6
http://dx.doi.org/10.1007/978-3-662-48797-6_7
http://dx.doi.org/10.1007/978-3-662-48797-6_7
http://dx.doi.org/10.1007/978-3-662-48797-6_7
http://dx.doi.org/10.1007/978-3-662-48797-6_8
http://dx.doi.org/10.1007/978-3-662-48797-6_9

FourQ: Four-Dimensional Decompositions on a Q-curve over the
Mersenne Prime . 214

Craig Costello and Patrick Longa

Signatures

Efficient Fully Structure-Preserving Signatures for Large Messages 239
Jens Groth

A Provably Secure Group Signature Scheme from Code-Based
Assumptions. 260

Martianus Frederic Ezerman, Hyung Tae Lee, San Ling, Khoa Nguyen,
and Huaxiong Wang

Type 2 Structure-Preserving Signature Schemes Revisited 286
Sanjit Chatterjee and Alfred Menezes

Design Principles for HFEv- Based Multivariate Signature Schemes 311
Albrecht Petzoldt, Ming-Shing Chen, Bo-Yin Yang, Chengdong Tao,
and Jintai Ding

Multiparty Computation I

Oblivious Network RAM and Leveraging Parallelism to Achieve
Obliviousness . 337

Dana Dachman-Soled, Chang Liu, Charalampos Papamanthou,
Elaine Shi, and Uzi Vishkin

Three-Party ORAM for Secure Computation. 360
Sky Faber, Stanislaw Jarecki, Sotirios Kentros, and Boyang Wei

On Cut-and-Choose Oblivious Transfer and Its Variants 386
Vladimir Kolesnikov and Ranjit Kumaresan

Public Key Encryption

An Asymptotically Optimal Method for Converting Bit Encryption
to Multi-Bit Encryption . 415

Takahiro Matsuda and Goichiro Hanaoka

Selective Opening Security for Receivers . 443
Carmit Hazay, Arpita Patra, and Bogdan Warinschi

Function-Hiding Inner Product Encryption . 470
Allison Bishop, Abhishek Jain, and Lucas Kowalczyk

XX Contents – Part I

http://dx.doi.org/10.1007/978-3-662-48797-6_10
http://dx.doi.org/10.1007/978-3-662-48797-6_10
http://dx.doi.org/10.1007/978-3-662-48797-6_10
http://dx.doi.org/10.1007/978-3-662-48797-6_10
http://dx.doi.org/10.1007/978-3-662-48797-6_11
http://dx.doi.org/10.1007/978-3-662-48797-6_12
http://dx.doi.org/10.1007/978-3-662-48797-6_12
http://dx.doi.org/10.1007/978-3-662-48797-6_13
http://dx.doi.org/10.1007/978-3-662-48797-6_14
http://dx.doi.org/10.1007/978-3-662-48797-6_15
http://dx.doi.org/10.1007/978-3-662-48797-6_15
http://dx.doi.org/10.1007/978-3-662-48797-6_16
http://dx.doi.org/10.1007/978-3-662-48797-6_17
http://dx.doi.org/10.1007/978-3-662-48797-6_18
http://dx.doi.org/10.1007/978-3-662-48797-6_18
http://dx.doi.org/10.1007/978-3-662-48797-6_19
http://dx.doi.org/10.1007/978-3-662-48797-6_20

ABE and IBE

Idealizing Identity-Based Encryption . 495
Dennis Hofheinz, Christian Matt, and Ueli Maurer

A Framework for Identity-Based Encryption with Almost Tight Security 521
Nuttapong Attrapadung, Goichiro Hanaoka, and Shota Yamada

Riding on Asymmetry: Efficient ABE for Branching Programs 550
Sergey Gorbunov and Dhinakaran Vinayagamurthy

Conversions Among Several Classes of Predicate Encryption
and Applications to ABE with Various Compactness Tradeoffs. 575

Nuttapong Attrapadung, Goichiro Hanaoka, and Shota Yamada

Zero-Knowledge

QA-NIZK Arguments in Asymmetric Groups: New Tools
and New Constructions . 605

Alonso González, Alejandro Hevia, and Carla Ràfols

Dual-System Simulation-Soundness with Applications to UC-PAKE
and More . 630

Charanjit S. Jutla and Arnab Roy

Secret Sharing and Statistical Zero Knowledge . 656
Vinod Vaikuntanathan and Prashant Nalini Vasudevan

Compactly Hiding Linear Spans: Tightly Secure Constant-Size
Simulation-Sound QA-NIZK Proofs and Applications 681

Benoît Libert, Thomas Peters, Marc Joye, and Moti Yung

Multiparty Computation II

A Unified Approach to MPC with Preprocessing Using OT 711
Tore Kasper Frederiksen, Marcel Keller, Emmanuela Orsini,
and Peter Scholl

Secure Computation from Millionaire . 736
Abhi Shelat and Muthuramakrishnan Venkitasubramaniam

Garbling Scheme for Formulas with Constant Size of Garbled Gates 758
Carmen Kempka, Ryo Kikuchi, Susumu Kiyoshima,
and Koutarou Suzuki

Card-Based Cryptographic Protocols Using a Minimal Number of Cards 783
Alexander Koch, Stefan Walzer, and Kevin Härtel

Author Index . 809

Contents – Part I XXI

http://dx.doi.org/10.1007/978-3-662-48797-6_21
http://dx.doi.org/10.1007/978-3-662-48797-6_22
http://dx.doi.org/10.1007/978-3-662-48797-6_23
http://dx.doi.org/10.1007/978-3-662-48797-6_24
http://dx.doi.org/10.1007/978-3-662-48797-6_24
http://dx.doi.org/10.1007/978-3-662-48797-6_25
http://dx.doi.org/10.1007/978-3-662-48797-6_25
http://dx.doi.org/10.1007/978-3-662-48797-6_26
http://dx.doi.org/10.1007/978-3-662-48797-6_26
http://dx.doi.org/10.1007/978-3-662-48797-6_27
http://dx.doi.org/10.1007/978-3-662-48797-6_28
http://dx.doi.org/10.1007/978-3-662-48797-6_28
http://dx.doi.org/10.1007/978-3-662-48797-6_29
http://dx.doi.org/10.1007/978-3-662-48797-6_30
http://dx.doi.org/10.1007/978-3-662-48797-6_31
http://dx.doi.org/10.1007/978-3-662-48797-6_32

Contents – Part II

Attacks on ASASA

Key-Recovery Attacks on ASASA . 3
Brice Minaud, Patrick Derbez, Pierre-Alain Fouque,
and Pierre Karpman

Number Field Sieve

The Tower Number Field Sieve . 31
Razvan Barbulescu, Pierrick Gaudry, and Thorsten Kleinjung

Hashes and MACs

On the Impact of Known-Key Attacks on Hash Functions 59
Bart Mennink and Bart Preneel

Generic Security of NMAC and HMAC with Input Whitening 85
Peter Gaži, Krzysztof Pietrzak, and Stefano Tessaro

Symmetric Encryption

On the Optimality of Non-Linear Computations of Length-Preserving
Encryption Schemes . 113

Mridul Nandi

Beyond-Birthday-Bound Security for Tweakable Even-Mansour Ciphers
with Linear Tweak and Key Mixing . 134

Benoît Cogliati and Yannick Seurin

An Inverse-Free Single-Keyed Tweakable Enciphering Scheme. 159
Ritam Bhaumik and Mridul Nandi

Foundations

On Black-Box Complexity of Universally Composable Security
in the CRS Model . 183

Carmit Hazay and Muthuramakrishnan Venkitasubramaniam

Public Verifiability in the Covert Model (Almost) for Free 210
Vladimir Kolesnikov and Alex J. Malozemoff

http://dx.doi.org/10.1007/978-3-662-48800-3_1
http://dx.doi.org/10.1007/978-3-662-48800-3_2
http://dx.doi.org/10.1007/978-3-662-48800-3_3
http://dx.doi.org/10.1007/978-3-662-48800-3_4
http://dx.doi.org/10.1007/978-3-662-48800-3_5
http://dx.doi.org/10.1007/978-3-662-48800-3_5
http://dx.doi.org/10.1007/978-3-662-48800-3_6
http://dx.doi.org/10.1007/978-3-662-48800-3_6
http://dx.doi.org/10.1007/978-3-662-48800-3_7
http://dx.doi.org/10.1007/978-3-662-48800-3_8
http://dx.doi.org/10.1007/978-3-662-48800-3_8
http://dx.doi.org/10.1007/978-3-662-48800-3_9

Limits of Extractability Assumptions with Distributional Auxiliary Input 236
Elette Boyle and Rafael Pass

Composable and Modular Anonymous Credentials: Definitions
and Practical Constructions. 262

Jan Camenisch, Maria Dubovitskaya, Kristiyan Haralambiev,
and Markulf Kohlweiss

Side-Channel Attacks

ASCA, SASCA and DPA with Enumeration: Which One Beats the Other
and When?. 291

Vincent Grosso and François-Xavier Standaert

Counting Keys in Parallel After a Side Channel Attack 313
Daniel P. Martin, Jonathan F. O’Connell, Elisabeth Oswald,
and Martijn Stam

A Unified Metric for Quantifying Information Leakage of Cryptographic
Devices Under Power Analysis Attacks . 338

Liwei Zhang, A. Adam Ding, Yunsi Fei, and Pei Luo

How Secure is AES Under Leakage . 361
Andrey Bogdanov and Takanori Isobe

Design of Block Ciphers

A Synthetic Indifferentiability Analysis of Interleaved Double-Key
Even-Mansour Ciphers. 389

Chun Guo and Dongdai Lin

Midori: A Block Cipher for Low Energy . 411
Subhadeep Banik, Andrey Bogdanov, Takanori Isobe, Kyoji Shibutani,
Harunaga Hiwatari, Toru Akishita, and Francesco Regazzoni

Optimally Secure Block Ciphers from Ideal Primitives. 437
Stefano Tessaro

Authenticated Encryption

Security of Full-State Keyed Sponge and Duplex: Applications
to Authenticated Encryption . 465

Bart Mennink, Reza Reyhanitabar, and Damian Vizár

Heuristic Tool for Linear Cryptanalysis with Applications
to CAESAR Candidates . 490

Christoph Dobraunig, Maria Eichlseder, and Florian Mendel

XXIV Contents – Part II

http://dx.doi.org/10.1007/978-3-662-48800-3_10
http://dx.doi.org/10.1007/978-3-662-48800-3_11
http://dx.doi.org/10.1007/978-3-662-48800-3_11
http://dx.doi.org/10.1007/978-3-662-48800-3_12
http://dx.doi.org/10.1007/978-3-662-48800-3_12
http://dx.doi.org/10.1007/978-3-662-48800-3_13
http://dx.doi.org/10.1007/978-3-662-48800-3_14
http://dx.doi.org/10.1007/978-3-662-48800-3_14
http://dx.doi.org/10.1007/978-3-662-48800-3_15
http://dx.doi.org/10.1007/978-3-662-48800-3_16
http://dx.doi.org/10.1007/978-3-662-48800-3_16
http://dx.doi.org/10.1007/978-3-662-48800-3_17
http://dx.doi.org/10.1007/978-3-662-48800-3_18
http://dx.doi.org/10.1007/978-3-662-48800-3_19
http://dx.doi.org/10.1007/978-3-662-48800-3_19
http://dx.doi.org/10.1007/978-3-662-48800-3_20
http://dx.doi.org/10.1007/978-3-662-48800-3_20

Collision Attacks Against CAESAR Candidates: Forgery
and Key-Recovery Against AEZ and Marble . 510

Thomas Fuhr, Gaëtan Leurent, and Valentin Suder

Symmetric Analysis

Optimized Interpolation Attacks on LowMC. 535
Itai Dinur, Yunwen Liu, Willi Meier, and Qingju Wang

Another Tradeoff Attack on Sprout-Like Stream Ciphers 561
Bin Zhang and Xinxin Gong

Reverse-Engineering of the Cryptanalytic Attack Used in the Flame
Super-Malware . 586

Max Fillinger and Marc Stevens

Analysis of SHA-512/224 and SHA-512/256 . 612
Christoph Dobraunig, Maria Eichlseder, and Florian Mendel

Cryptanalysis

Tradeoff Cryptanalysis of Memory-Hard Functions 633
Alex Biryukov and Dmitry Khovratovich

Property Preserving Symmetric Encryption Revisited 658
Sanjit Chatterjee and M. Prem Laxman Das

Refinements of the k-tree Algorithm for the Generalized Birthday Problem. . . . 683
Ivica Nikolić and Yu Sasaki

How to Sequentialize Independent Parallel Attacks?: Biased Distributions
Have a Phase Transition. 704

Sonia Bogos and Serge Vaudenay

Privacy and Lattices

Pure Differential Privacy for Rectangle Queries via Private Partitions 735
Cynthia Dwork, Moni Naor, Omer Reingold, and Guy N. Rothblum

Implementing Candidate Graded Encoding Schemes from Ideal Lattices 752
Martin R. Albrecht, Catalin Cocis, Fabien Laguillaumie,
and Adeline Langlois

New Circular Security Counterexamples from Decision Linear
and Learning with Errors . 776

Allison Bishop, Susan Hohenberger, and Brent Waters

Author Index . 801

Contents – Part II XXV

http://dx.doi.org/10.1007/978-3-662-48800-3_21
http://dx.doi.org/10.1007/978-3-662-48800-3_21
http://dx.doi.org/10.1007/978-3-662-48800-3_22
http://dx.doi.org/10.1007/978-3-662-48800-3_23
http://dx.doi.org/10.1007/978-3-662-48800-3_24
http://dx.doi.org/10.1007/978-3-662-48800-3_24
http://dx.doi.org/10.1007/978-3-662-48800-3_25
http://dx.doi.org/10.1007/978-3-662-48800-3_26
http://dx.doi.org/10.1007/978-3-662-48800-3_27
http://dx.doi.org/10.1007/978-3-662-48800-3_28
http://dx.doi.org/10.1007/978-3-662-48800-3_29
http://dx.doi.org/10.1007/978-3-662-48800-3_29
http://dx.doi.org/10.1007/978-3-662-48800-3_30
http://dx.doi.org/10.1007/978-3-662-48800-3_31
http://dx.doi.org/10.1007/978-3-662-48800-3_32
http://dx.doi.org/10.1007/978-3-662-48800-3_32

Best Paper

Improved Security Proofs in Lattice-Based
Cryptography: Using the Rényi Divergence

Rather Than the Statistical Distance

Shi Bai1(B), Adeline Langlois2,3, Tancrède Lepoint4,
Damien Stehlé1, and Ron Steinfeld5

1 Laboratoire LIP (U. Lyon, CNRS, ENSL, INRIA, UCBL),
ENS de Lyon, Lyon, France

{shi.bai,damien.stehle}@ens-lyon.fr
http://perso.ens-lyon.fr/shi.bai, http://perso.ens-lyon.fr/damien.stehle

2 EPFL, Lausanne, Switzerland
adeline.langlois@epfl.ch

http://lasec.epfl.ch/alangloi/
3 CNRS/IRISA, Rennes, France
4 CryptoExperts, Paris, France

tancrede.lepoint@cryptoexperts.com

https://www.cryptoexperts.com/tlepoint/
5 Faculty of Information Technology, Monash University, Clayton, Australia

ron.steinfeld@monash.edu

http://users.monash.edu.au/rste/

Abstract. The Rényi divergence is a measure of closeness of two prob-
ability distributions. We show that it can often be used as an alternative
to the statistical distance in security proofs for lattice-based cryptogra-
phy. Using the Rényi divergence is particularly suited for security proofs
of primitives in which the attacker is required to solve a search problem
(e.g., forging a signature). We show that it may also be used in the case of
distinguishing problems (e.g., semantic security of encryption schemes),
when they enjoy a public sampleability property. The techniques lead to
security proofs for schemes with smaller parameters, and sometimes to
simpler security proofs than the existing ones.

1 Introduction

Let D1 and D2 be two non-vanishing probability distributions over a common
measurable support X. Let a ∈ (1,+∞). The Rényi divergence [Rén61,EH12]
(RD for short) Ra(D1‖D2) of order a between D1 and D2 is defined as the
((a−1)th root of the) expected value of (D1(x)/D2(x))a−1 over the randomness
of x sampled from D1. For notational convenience, our definition of the RD is
the exponential of the classical definition [EH12]. The RD is an alternative to
the statistical distance (SD for short) Δ(D1,D2) = 1

2

∑
x∈X |D1(x) − D2(x)| as

measure of distribution closeness, where we replace the difference in SD, by the
ratio in RD. RD enjoys several properties that are analogous of those enjoyed
c© International Association for Cryptologic Research 2015
T. Iwata and J.H. Cheon (Eds.): ASIACRYPT 2015, Part I, LNCS 9452, pp. 3–24, 2015.
DOI: 10.1007/978-3-662-48797-6 1

4 S. Bai et al.

by SD, where addition in the property of SD is replaced by multiplication in the
analogous property of RD (see Subsect. 2.3).

SD is ubiquitous in cryptographic security proofs. One of its most useful
properties is the so-called probability preservation property : For any measurable
event E ⊆ X, we have D2(E) ≥ D1(E) − Δ(D1,D2). RD enjoys the analogous
property D2(E) ≥ D1(E)

a
a−1 /Ra(D1‖D2). If the event E occurs with significant

probability under D1, and if the SD (resp. RD) is small, then the event E also
occurs with significant probability under D2. These properties are particularly
handy when the success of an attacker against a given scheme can be described as
an event whose probability should be negligible, e.g., the attacker outputs a new
valid message-signature pair for a signature scheme. If in the attacker succeeds
with good probability in the real scheme based on distribution D1, then it also
succeeds with good probability in the simulated scheme (of the security proof)
based on distribution D2.

To make the SD probability preservation property useful, it must be ensured
that the SD Δ(D1,D2) is smaller than any D1(E) that the security proof must
handle. Typically, the quantity D1(E) is assumed to be greater than some success
probability lower bound ε, which is of the order of 1/poly(λ) where λ refers to the
security parameter, or even 2−o(λ) if the proof handles attackers whose success
probabilities can be sub-exponentially small (which we believe better reflects
practical objectives). As a result, the SD Δ(D1,D2) must be < ε for the SD
probability preservation property to be relevant. Similarly, the RD probability
preservation property is non-vacuous when the RD Ra(D1‖D2) is ≤ poly(1/ε).
In many cases, the latter seems less demanding than the former: in all our
applications of RD, the RD between D1 and D2 is small while their SD is too
large for the SD probability preservation to be applicable. In fact, as we will
see in Subsect. 2.3, the RD becomes sufficiently small to be useful before the SD
when supxD1(x)/D2(x) tends to 1. This explains the superiority of the RD in
several of our applications.

Although RD seems more amenable than SD for search problems, it seems
less so for distinguishing problems. A typical cryptographic example is semantic
security of an encryption scheme. Semantic security requires an adversary A to
distinguish between the encryption distributions of two plaintext messages of its
choosing: the distinguishing advantage AdvA(D1,D2), defined as the difference
of probabilities that A outputs 1 using D1 or D2, should be large. In security
proofs, algorithm A is often called on distributions D′

1 and D′
2 that are close

to D1 and D2 (respectively). If the SDs between D1 and D′
1 and D2 and D′

2 are
both bounded from above by ε, then, by the SD probability preservation prop-
erty (used twice), we have AdvA(D′

1,D
′
2) ≥ AdvA(D1,D2)−2ε. As a result, SD

can be used to distinguishing problems in a similar fashion as for search prob-
lems. The multiplicativity of the RD probability preservation property seems to
prevent RD from being applicable to distinguishing problems.

Improved Security Proofs in Lattice-Based Cryptography 5

We replace the statistical distance by the Rényi divergence in several security
proofs for lattice-based cryptographic primitives. Lattice-based cryptography is a
relatively recent cryptographic paradigm in which cryptographic primitives are
shown at least as secure as it is hard to solve standard problems over lattices (see
the survey [MR09]). Security proofs in lattice-based cryptography involve differ-
ent types of distributions, often over infinite sets, such as continuous Gaussian
distributions and Gaussian distributions with lattice supports. The RD seems
particularly well suited to quantify the closeness of Gaussian distributions. Con-
sider for example two continuous distributions over the reals, both with standard
deviation 1, but one with center 0 and the other one with center c. Their SD
is linear in c, so that c must remain extremely small for the SD probability
preservation property to be useful. On the other hand, their RD of order a = 2
is bounded as exp(O(c2)) so that the RD preservation property remains useful
event for slightly growing c.

RD was first used in lattice-based cryptography by [LPR13], in the decision
to search reduction for the Ring Learning With Errors problem (which serves
as a security foundation for many asymptotically fast primitives). It was then
exploited in [LSS14] to decrease the parameters of the Garg et al. (approximation
to) cryptographic multilinear maps [GGH13]. In the present work, we present a
more extensive study of the power of RD in lattice-based cryptography, by show-
ing several independent applications of RD. In some cases, it leads to security
proofs allowing to take smaller parameters in the cryptographic schemes, hence
leading to efficiency improvements. In other cases, this leads to alternative secu-
rity proofs that are conceptually simpler.

Our applications of RD also include distinguishing problems. To circum-
vent the aforementioned a priori limitation of the RD probability preservation
property for distinguishing problems, we propose an alternative approach that
handles a class of distinguishing problems, enjoying a special property that we
call public sampleability. This public sampleability allows to estimate success
probabilities via Hoeffding’s bound.

The applications we show in lattice-based cryptography are as follows:

• Smaller signatures for the Hash-and-Sign GPV signature scheme [GPV08].
• Smaller storage requirement for the Fiat-Shamir BLISS signature scheme

[DDLL13,PDG14,Duc14].
• Alternative proof that the Learning With Errors (LWE) problem with noise

chosen uniformly in an interval is no easier than the Learning With Errors
problem with Gaussian noise [DMQ13]. Our reduction does not require the
latter problem to be hard, and it is hence marginally more general as it also
applies to distributions with smaller noises. Further, our reduction preserves
the LWE dimension n, and is hence tighter than the one from [DMQ13] (the
latter degrades the LWE dimension by a constant factor).1

• Smaller parameters in the dual-Regev encryption scheme from [GPV08].
1 Note that LWE with uniform noise in a small interval is also investigated in [MP13],

with a focus on the number of LWE samples. The reduction from [MP13] does not
preserve the LWE reduction either.

6 S. Bai et al.

We think RD is likely to have further applications in lattice-based crypto-
graphy, for search and for distinguishing problems.

Related Works. The framework for using RD in distinguishing problems was
used in [LPSS14], in the context of the k-LWE problem (a variant of LWE
in which the attacker is given extra information). In [PDG14], Pöpplemann,
Ducas and Güneysu used the Kullback-Leibler divergence (which is the RD of
order a = 1) to lower the storage requirement of [DDLL13]. Asymptotically,
using the Kullback-Leibler divergence rather than SD only leads to a constant
factor improvement. Our approach allows bigger savings in the case where the
number of signature queries is limited, as explained in Sect. 3.

Very recently, Bogdanov et al. [BGM+15] adapted parts of our RD-based
hardness proof for LWE with noise uniform in a small interval, to the Learning
With Rounding problem. In particular, they obtained a substantial improvement
over the hardness results of [BPR12,AKPW13].

Road-Map. In Sect. 2, we provide necessary background on lattice-based cryp-
tography, and on the Rényi divergence. In Sect. 3, we use RD to improve some
lattice-based signature scheme parameters. Section 4 contains the description of
the framework in which we can use RD for distinguishing problems, which we
apply to the dual-Regev encryption scheme. In Sect. 5, we describe an alternative
hardness proof for LWE with noise uniformly chosen in an interval.

Notations. If x is a real number, we let �x	 denote a closest integer to x.
The notation ln refers to the natural logarithm and the notation log refers to
the base 2 logarithm. We define T = ([0, 1],+). For an integer q, we let Zq

denote the ring of integers modulo q. We let Tq denote the group Tq = {i/q
mod 1 : i ∈ Z} ⊆ T. Vectors are denoted in bold. If b is a vector in R

d, we let ‖b‖
denote its Euclidean norm. By default, all our vectors are column vectors.

If D is a probability distribution, we let Supp(D) = {x : D(x)
= 0} denote its
support. For a set X of finite weight, we let U(X) denote the uniform distribution
on X. The statistical distance between two distributions D1 and D2 over a
countable support X is Δ(D1,D2) = 1

2

∑
x∈X |D1(x)−D2(x)|. This definition is

extended in the natural way to continuous distributions. If f : X → R takes non-
negative values, then for all countable Y ⊆ X, we define f(Y) =

∑
y∈Y f(y) ∈

[0,+∞]. For any vector c ∈ R
n and any real s > 0, the (spherical) Gaussian

function with standard deviation parameter s and center c is defined as follows:
∀x ∈ R

n, ρs,c(x) = exp(−π‖x − c‖2/s2). The Gaussian distribution is Ds,c =
ρs,c/sn. When c = 0, we may omit the subscript c.

We use the usual Landau notations. A function f(λ) is said negligible if it
is λ−ω(1). A probability p(λ) is said overwhelming if it is 1 − λ−ω(1).

The distinguishing advantage of an algorithm A between two distributions D0

and D1 is defined as AdvA(D0,D1) = |Prx←↩D0 [A(x) = 1]−Prx←↩D1 [A(x) = 1]|,
where the probabilities are taken over the randomness of the input x and the
internal randomness of A. Algorithm A is said to be an (ε, T)-distinguisher if it
runs in time ≤ T and if AdvA(D0,D1) ≥ ε.

Improved Security Proofs in Lattice-Based Cryptography 7

2 Preliminaries

We assume the reader is familiar with standard cryptographic notions, as well
as with lattices and lattice-based cryptography. We refer to [Reg09a,MR09] for
introductions on the latter topic.

2.1 Lattices

A (full-rank) n-dimensional Euclidean lattice Λ ⊆ R
n is the set of all integer

linear combinations
∑n

i=1 xibi of some R-basis (bi)1≤i≤n of Rn. In this setup,
the tuple (bi)i is said to form a Z-basis of Λ. For a lattice Λ and any i ≤ n,
the ith successive minimum λi(Λ) is the smallest radius r such that Λ contains
i linearly independent vectors of norm at most r. The dual Λ∗ of a lattice Λ is
defined as Λ∗ = {y ∈ R

n : y tΛ ⊆ Z
n}.

The (spherical) discrete Gaussian distribution over a lattice Λ ⊆ R
n, with

standard deviation parameter s > 0 and center c is defined as:

∀x ∈ Λ,DΛ,s,c =
ρs,c(x)
ρs,c(Λ)

.

When the center is 0, we omit the subscript c.
The smoothing parameter [MR07] of an n-dimensional lattice Λ with respect

to ε > 0, denoted by ηε(Λ), is the smallest s > 0 such that ρ1/s(Λ∗ \ {0}) ≤ ε.
We use the following properties.

Lemma 2.1 ([MR07, Lemma 3.3]). Let Λ be an n-dimensional lattice and
ε > 0. Then

ηε(Λ) ≤
√

ln(2n(1 + 1/ε))
π

· λn(Λ).

Lemma 2.2 (Adapted from [GPV08, Lemma5.3]). Let m,n ≥ 1 and q a
prime integer, with m ≥ 2n ln q. For A ∈ Z

n×m
q we define A⊥ as the lattice {x ∈

Z
m : Ax = 0 mod q}. Then,

∀ε < 1/2 : Pr
A←↩U(Zn×m

q)

[

ηε(A⊥) ≥ 4

√
ln(4m/ε)

π

]

≤ q−n.

Lemma 2.3 (Adapted from [GPV08, Corollary 2.8]). Let Λ,Λ′ be n-
dimensional lattices with Λ′ ⊆ Λ and ε ∈ (0, 1/2). Then for any c ∈ R

n and
s ≥ ηε(Λ′) and any x ∈ Λ/Λ′ we have

(DΛ,s,c mod Λ′)(x) ∈
[
1 − ε

1 + ε
,
1 + ε

1 − ε

]

· det(Λ)
det(Λ′)

.

8 S. Bai et al.

2.2 The SIS and LWE Problems

The Small Integer Solution (SIS) problem was introduced by Ajtai in [Ajt96]. It
serves as a security foundation for numerous cryptographic primitives, including,
among many others, hash functions [Ajt96] and signatures [GPV08,DDLL13].

Definition 2.4. Let m ≥ n ≥ 1 and q ≥ 2 be integers, and β a positive real. The
SISn,m,q,β problem is as follows: given A ←↩ U(Zn×m

q), the goal is to find x ∈ Z
m

such that Ax = 0 mod q and 0 < ‖x‖ ≤ β.

The SIS problem was proven by Ajtai [Ajt96] to be at least as hard as some
standard worst-case problems over Euclidean lattices, under specific parameter
constraints. We refer to [GPV08] for an improved (and simplified) reduction.

The Learning With Errors (LWE) problem was introduced in 2005 by Regev
[Reg05,Reg09b]. LWE is also extensively used as a security foundation, for
encryption schemes [Reg09b,GPV08], fully homomorphic encryption schemes
[BV11], and pseudo-random functions [BPR12,AKPW13], among many others.
Its definition involves the following distribution. Let χ be a distribution over T,
q ≥ 2, n ≥ 1 and s ∈ Z

n
q . A sample from As,χ is of the form (a , b) ∈ Z

n
q × T,

with a ←↩ U(Zn
q), b = 1

q 〈a , s〉 + e and e ←↩ χ.

Definition 2.5. Let χ be a distribution over T, q ≥ 2, and m ≥ n ≥ 1. The
search variant sLWEn,q,χ,m of the LWE problem is as follows: given m samples
from As,χ for some s ∈ Z

n
q , the goal is to find s. The decision variant LWEn,q,χ,m

consists in distinguishing between the distributions (As,χ)m and U(Zn
q × T)m,

where s ←↩ U(Zn
q).

In some cases, it is convenient to use an error distribution χ whose support
is Tq. In these cases, the definition of LWE is adapted in that U(Zn

q × T) is
replaced by U(Zn

q ×Tq). Note also that for a fixed number of samples m, we can
represent the LWE samples using matrices. The ai ’s form the rows of a matrix A
uniform in Z

m×n
q , and the scalar product is represented by the product between

A and s.
Regev [Reg09b] gave a quantum reduction from standard worst-case prob-

lems over Euclidean lattices to sLWE and LWE, under specific parameter con-
straints. Classical (but weaker) reductions have later been obtained (see [Pei09,
BLP+13]). We will use the following sample-preserving search to decision reduc-
tion for LWE.

Theorem 2.6 (Adapted from [MM11, Proposition 4.10]). If q ≤ poly
(m,n) is prime and the error distribution χ has support in Tq, then there exists
a reduction from sLWEn,q,χ,m to LWEn,q,χ,m that is polynomial in n and m.

2.3 The Rényi Divergence

For any two discrete probability distributions P and Q such that Supp(P) ⊆
Supp(Q) and a ∈ (1,+∞), we define the Rényi divergence of order a by

Improved Security Proofs in Lattice-Based Cryptography 9

Ra(P‖Q) =

⎛

⎝
∑

x∈Supp(P)

P (x)a

Q(x)a−1

⎞

⎠

1
a−1

.

We omit the a subscript when a = 2. We define the Rényi divergences of orders 1
and +∞ by

R1(P‖Q) = exp

⎛

⎝
∑

x∈Supp(P)

P (x) log
P (x)
Q(x)

⎞

⎠ and R∞(P‖Q) = max
x∈Supp(P)

P (x)
Q(x)

.

The definitions are extended in the natural way to continuous distributions. The
divergence R1 is the (exponential of) the Kullback-Leibler divergence.

For any fixed P,Q, the function a �→ Ra(P‖Q) ∈ (0,+∞] is non-decreasing,
continuous over (1,+∞), tends to R∞(P‖Q) when a grows to infinity, and
if Ra(P‖Q) is finite for some a, then Ra(P‖Q) tends to R1(P‖Q) when a tends
to 1 (we refer to [EH12] for proofs). A direct consequence is that if P (x)/Q(x) ≤ c
for all x ∈ Supp(P) and for some constant c, then Ra(P‖Q) ≤ R∞(P‖Q) ≤ c.
In the same setup, we have Δ(P,Q) ≤ c/2.

The following properties can be considered the multiplicative analogues of
those of the SD. We refer to [EH12,LSS14] for proofs.

Lemma 2.7. Let a ∈ [1,+∞]. Let P and Q denote distributions with Supp(P) ⊆
Supp(Q). Then the following properties hold:

• Log. Positivity: Ra(P‖Q) ≥ Ra(P‖P) = 1.
• Data Processing Inequality: Ra(P f‖Qf) ≤ Ra(P‖Q) for any function f ,
where P f (resp. Qf) denotes the distribution of f(y) induced by sampling
y ←↩ P (resp. y ←↩ Q).

• Multiplicativity: Assume P and Q are two distributions of a pair of random
variables (Y1, Y2). For i ∈ {1, 2}, let Pi (resp. Qi) denote the marginal distri-
bution of Yi under P (resp. Q), and let P2|1(·|y1) (resp. Q2|1(·|y1)) denote the
conditional distribution of Y2 given that Y1 = y1. Then we have:

• Ra(P‖Q) = Ra(P1‖Q1) · Ra(P2‖Q2) if Y1 and Y2 are independent.
• Ra(P‖Q) ≤ R∞(P1‖Q1) · maxy1∈X Ra(P2|1(·|y1)‖Q2|1(·|y1)).

• Probability Preservation: Let A ⊆ Supp(Q) be an arbitrary event. If a ∈
(1,+∞), then Q(A) ≥ P (A)

a
a−1 /Ra(P‖Q). Further, we have

Q(A) ≥ P (A)/R∞(P‖Q).

Let P1, P2, P3 be three distributions with Supp(P1) ⊆ Supp(P2) ⊆ Supp(P3).
Then we have:

• Weak Triangle Inequality:

Ra(P1‖P3) ≤
{

Ra(P1‖P2) · R∞(P2‖P3),
R∞(P1‖P2)

a
a−1 · Ra(P2‖P3) if a ∈ (1,+∞).

10 S. Bai et al.

Getting back to the setup in which P (x)/Q(x) ≤ c for all x ∈ Supp(P) and
for some constant c, the RD probability preservation property above is relevant
even for large c, whereas the analogous SD probability preservation property
starts making sense only when c < 2.

Pinsker’s inequality is the analogue of the probability preservation prop-
erty for a = 1: for an arbitrary event A ⊆ Supp(Q), we have Q(A) ≥ P (A) −√

ln R1(P‖Q)/2 (see [PDG14, Lemma 1] for a proof). Analogously to the statisti-
cal distance, this probability preservation property is useful for unlikely events A
only if lnR1(P‖Q) is very small. We refer to Subsect. 3.1 for additional comments
on this property.

2.4 RD Bounds

We will use the following result, adapted from [LSS14].

Lemma 2.8. For any n-dimensional lattice Λ ⊆ R
n and s > 0, let P be the

distribution DΛ,s,c and Q be the distribution DΛ,s,c′ for some fixed c, c′ ∈ R
n. If

c, c′ ∈ Λ, let ε = 0. Otherwise, fix ε ∈ (0, 1) and assume that s ≥ ηε(Λ). Then,
for any a ∈ (1,+∞):

Ra(P‖Q) ∈
[(

1 − ε

1 + ε

) 2
a−1

,

(
1 + ε

1 − ε

) 2
a−1

]

· exp
(

aπ
‖c − c′‖2

s2

)

.

It may be checked that also R1(P‖Q) is of the order of exp(‖c′ − c‖2/s2),
R∞(P‖Q) = +∞ and Δ(P,Q) is of the order of ‖c′ − c‖2/s2. In that setup,
the RD of order a = ∞ is useless, and the probability preservation properties of
the SD and RD of order a = 1 lead to interesting bounds for events occurring
only when ‖c′ − c‖/s = o(ε). Oppositely, for any a ∈ (1,+∞), the probability
preservation property for the RD of order a ∈ (1,+∞) may be used with ‖c′ −
c‖/s = O(

√
log(1/ε)) while still leading to probabilistic lower bounds of the

order of εO(1).
As we have already seen, if two distributions are close in a uniform sense,

then their RD is small. We observe the following immediate consequence of
Lemma 2.3, that allows replacing the SD with the RD in the context of smooth-
ing arguments, in order to save on the required parameter s. In applications of
Lemma 2.3, it is customary to use s ≥ ηε(Λ′) with ε ≤ 2−λ, in order to make the
distribution DΛ/Λ′,s,c = DΛ,s,c mod Λ′ within SD 2−λ of the uniform distribu-
tion U(Λ/Λ′). This translates via Lemma 2.1 to use s = Ω(

√
λ + log n · λn(Λ′)).

Whereas if using an RD bound R∞(DΛ/Λ′,s,c‖UΛ/Λ′) = O(1) suffices for the
application, one can take ε = O(1) in the corollary below, which translates to
just s = Ω(

√
log n · λn(Λ′)), saving a factor Θ(

√
λ).

Lemma 2.9. Let Λ,Λ′ be n-dimensional lattices with Λ′ ⊆ Λ and ε ∈ (0, 1/2).
Let DΛ/Λ′,s,c denote the distribution on Λ/Λ′ induced by sampling from DΛ,s,c

Improved Security Proofs in Lattice-Based Cryptography 11

and reducing modulo Λ′, and let UΛ/Λ′ denote the uniform distribution on Λ/Λ′.
Then for any c ∈ R

n and s ≥ ηε(Λ′) and any x ∈ Λ/Λ′ we have

R∞(DΛ/Λ′,s,c‖UΛ/Λ′) ≤ 1 + ε

1 − ε
.

3 Application to Lattice-Based Signature Schemes

In this section, we use the RD to improve the security proofs of the GPV and
BLISS signature schemes [GPV08,DDLL13], allowing to take smaller parameters
for any fixed security level.

3.1 Sampling Discrete Gaussians and the BLISS Signature Scheme

We show that the use of RD in place of SD leads to significant savings in the
required precision of integers sampled according to a discrete Gaussian distrib-
ution in the security analysis of lattice-based signature schemes. These savings
consequently lower the precomputed table storage for sampling discrete Gaus-
sians with the method described in [DDLL13,PDG14]. In Table 1, we provide a
numerical comparison of RD and SD based on an instantiation of BLISS-I.

Discrete Gaussian Sampling. In the BLISS signature scheme [DDLL13] (and
similarly in earlier variants [Lyu12]), each signature requires the signing algo-
rithm to sample O(n) independent integers from the 1-dimensional discrete
Gaussian distribution DZ,s, where s = O(m) is the standard deviation para-
meter (here the variable m denotes a parameter related to the underlying lattice
dimension, and is typically in the order of several hundreds)2.

In [DDLL13], a particularly efficient sampling algorithm for DZ,s is pre-
sented. To produce a sample from DZ,s, this algorithm samples about � =
�log(0.22s2(1 + 2τs))	 Bernoulli random variables of the form Bexp(−π2i/s2),
where i = 0, . . . , � − 1 and τ = O(

√
λ) is the tail-cut factor for the Gaussian. To

sample those Bernoulli random variables, the authors of [DDLL13] use a precom-
puted table of the probabilities ci = exp(−π2i/s2), for i = 1, . . . , �. Since these
probabilities are real numbers, they must be truncated to some bit precision p
in the precomputed table, so that truncated values c̃i = ci +εi are stored, where
|εi| ≤ 2−pci are the truncation errors.

In previous works, the precision was determined by an analysis either based
on the statistical distance (SD) [DDLL13] or the Kullback-Leibler divergence
(KLD) [PDG14]. In this section, we review and complete these methods, and we
propose an RD-based analysis that leads to bigger savings, asymptotically and
in practice (see Table 1). More precisely, we give sufficient lower bounds on the
precision p to ensure security on the scheme implemented with truncated values
against adversaries succeeding with probability ≥ ε and making ≤ qs signing
2 Note that [Lyu12,DDLL13] consider the unnormalized Gaussian function ρ′

σ,c(x) =
exp(−‖x − c‖/(2σ2)) instead of ρs,c . We have ρs,c = ρ′

σ,c when σ = s/
√

2π.

12 S. Bai et al.

queries. For any adversary, the distributions Φ′ and Φ denote the signatures in
the view of the adversary in the untruncated (resp. truncated) cases.

SD-based analysis [DDLL13]. Any forging adversary A with success probabil-
ity ≥ ε on the scheme implemented with truncated Gaussian has a success prob-
ability ε′ ≥ ε − Δ(Φ,Φ′) against the scheme implemented with perfect Gaussian
sampling. We select parameters to handle adversaries with success probabilities
≥ ε/2 against the untruncated scheme; we can set the required precision p so that
Δ(Φ,Φ′) ≤ ε/2. Each signature requires � ·m samples from the Bernoulli random
variables (Bc̃i

)i. To ensure security against qs signing queries, each of the trun-
cated Bernoulli random variables Bc̃i

should be within SD Δ(Φ,Φ′)/(� ·m ·qs) of
the desired Bci

(by the union bound). Using Δ(Bc̃i
, Bci

) = |εi| ≤ 2−pci ≤ 2−p−1

leads to a precision requirement

p ≥ log(� · m · qs/Δ(Φ,Φ′)) ≥ log(� · m · qs/ε). (1)

The overall precomputed table is hence of bit-size LSD = p ·� ≥ log(� ·m ·qs/ε) ·�.
Note that in [DDLL13], the authors omitted the term � · m · qs in their

analysis: they only ensured that Δ(Bc̃i
, Bci

) ≤ ε, leading to the requirement
that p ≥ log(1/ε).

One may also set the precision pi depending on i for 0 ≤ i ≤ � − 1. It is
sufficient to set

2−pici = 2−pi exp(−π2i/s2) ≤ (ε/2)/(� · m · qs).

Hence the precision pi is

pi ≥ log
(

� · m · qs

ε
· exp(−π2i/s2)

)

+ 1. (2)

The bit-size of the overall precomputed table can be computed as a sum of the
above pi’s. Using the symmetry of the Bernoulli variable, we can further drop
the bit-size of the precomputed table.

KLD-based analysis [PDG14]. In [PDG14], Pöppelman, Ducas and Güneysu
replace the SD-based analysis by a KLD-based analysis (i.e., using the RD
of order a = 1) to reduce the precision p needed in the precomputed table.
They show that any forging adversary A with success probability ε on the
scheme implemented with truncated Gaussian has a success probability ε′ ≥
ε − √

ln R1(Φ‖Φ′)/2 on the scheme implemented with perfect Gaussian (see
remark at the end of Subsect. 2.3). By the multiplicative property of the RD
over the � · m · qs independent samples needed for signing qs times, we get that
R1(Φ‖Φ′) ≤ (maxi=1,...,
 R1(Bc̃i

‖Bci
))
·m·qs . Now, we have:

ln R1(Bc̃i
‖Bci

) = (1 − ci − εi) ln
1 − ci − εi

1 − ci
+ (ci + εi) ln

ci + εi

ci

≤ −(1 − ci − εi)
εi

1 − ci
+ (ci + εi)

εi

ci
=

ε2i
(1 − ci)ci

.

Improved Security Proofs in Lattice-Based Cryptography 13

Using |εi| ≤ 2−pci and 1 − ci ≥ 1/2, we obtain lnR1(Bc̃i
‖Bci

) = 2−2p+1 ci

1−ci
≤

2−2p. Therefore, we obtain ε′ ≥ ε −
√

� · m · qs · 2−2p. We can select parameters
such that

√
� · m · qs · 2−2p+1 ≤ ε/2. This leads to a precision requirement

p ≥ 1
2

log
(

� · m · qs

ε2

)

+
1
2

. (3)

The overall precomputed table is hence of bit-size LKLD ≥ (log(� ·m · qs/ε2)/2+
1/2) · �. This KLD-based analysis may save some storage if ε is not too small.

Note that in [PDG14], the authors selected ε = 1/2 and � · m · qs = 2λ where
λ is the desired bit-security, and hence obtained p ≥ λ/2 + 1.

One may also set the precision pi depending on i. It is sufficient to set

pi ≥ 1
2

log
(

� · m · qs

ε2
· ci

1 − ci

)

+ 1. (4)

Using symmetry, we may assume ci ≤ 1/2.

R∞-based analysis. The probability preservation property of the Rényi diver-
gence from Lemma 2.7 is multiplicative for a > 1 (rather than additive for a = 1).
Here we use the order a = ∞. This property gives that any forging adver-
sary A having success probability ε on the scheme implemented with truncated
Gaussian sampling has a success probability ε′ ≥ ε/R∞(Φ‖Φ′) on the scheme
implemented with perfect Gaussian. If R = R∞(Φ‖Φ′) ≤ O(1), then ε′ = Ω(ε).
By the multiplicative property of the RD (over the � · m · qs samples needed for
signing qs times), we have R∞(Φ‖Φ′) ≤ R∞(Bc̃i

‖Bci
)
·m·qs . By our assumption

that ci ≤ 1/2, we have R∞(Bc̃i
‖Bci

) = 1 + |εi|/ci ≤ 1 + 2−p. Therefore, we
get ε′ ≥ ε/(1 + 2−p)
·m·qs . We select parameters to get adversaries with success
probabilities ≥ ε/2 against the untruncated scheme and set the precision so that
(1 + 2−p)
·m·qs ≤ 2. This yields an approximated precision requirement

p ≥ log(� · m · qs). (5)

Note above estimate may not be accurate unless � ·m ·qs is much smaller than 2p.
Hence we may also require that p ≥ log(� ·m · qs)+C for some constant C. This
condition essentially eliminates the term ε from the precision needed by the SD-
based and KLD-based analyses.3 Overall, we get a precomputed table of bit-size
LRD = log(� · m · qs) · �.

Ra-based analysis. We may also consider Ra-based analysis for general a > 1. It
should noted that the reductions here are not tight: for Ra-based analysis with
a > 1, the probability preservation shows ε′ > εa/(a−1)/Ra(Φ‖Φ′). The Rényi

3 Note that the resulting precision is not independent of ε. The parameters m = m(ε)
and � = �(ε) are chosen in [DDLL13] so that any forging adversary has success
probability at most ε on the scheme implemented with perfect Gaussian sampling.

14 S. Bai et al.

divergence can be computed by

(Ra(Φ‖Φ′))a−1 =
(1 − ci − εi)a

(1 − ci)a−1
+

(ci + εi)a

ca−1
i

= (1 − ci − εi)
(

1 − εi

1 − ci

)a−1

+ (ci + εi)
(

1 +
εi

ci

)a−1

.

If a is much smaller than 2p, we get

(Ra(Φ‖Φ′))a−1 ≈ (1 − ci − εi)
(

1 − (a − 1)εi

1 − ci

)

+ (ci + εi)
(

1 +
(a − 1)εi

ci

)

= 1 +
ε2i (a − 1)
ci(1 − ci)

≤ 1 + 2−2p(a − 1)
ci

1 − ci
≤ 1 + 2−2p(a − 1).

For instance if we take a = 2, we have R2(Φ‖Φ′) ≤ 1 + 2−2p and hence ε′ ≥
ε2/R2(Φ‖Φ′). To get a success probability lower bound ε2/2, it is sufficient to set

p ≥ 1
2

log(� · m · qs). (6)

On the other hand, if a is much larger than 2p, then we have

(Ra(Φ‖Φ′))a−1 = (1 − ci − εi)
(

1 − εi

1 − ci

)a−1

+ (ci + εi)
(

1 +
εi

ci

)a−1

≈ (ci + εi) exp
(

(a − 1)εi

ci

)

.

Hence the Rényi divergence

Ra(Φ‖Φ′) ≈ (ci + εi)1/(a−1) exp
(

εi

ci

)

≈ 1 +
εi

ci
.

As a → ∞, Ra(Φ‖Φ′) → 1 + 2−p.
Thus if the tightness of the reduction is not a concern, using Ra with small

a reduces the precision requirement. Furthermore, we can amplify the success
probability of the forger on the truncated Gaussian from ε′ to some ε′′ > ε′.

Numerical Examples. In Table 1, we consider a numerical example which
gives the lower bound on the precision for the scheme BLISS-I (with ε = 2−128)
when allowing up to qs = 264 sign queries to the adversary. For the BLISS-I
parameters, we use m = 1024, � = 29, s = �√2π · 254 · √

1/(2 ln 2)	 = 541 and
τ = 13.4/

√
2π ≈ 5.4). The reductions in the table are tight, except for R2 (as

ε′ in the reduction does not depend directly on ε but on ε2), and we are a little
bit loose for the R∞ case.

When instantiating BLISS-I with the parameters of Table 1, the table bit-size
can be reduced from about 6000 bits to about 1200 bits by using R2 in place
of SD. If the tightness of the reduction is concerned, we may use R∞ instead,
which leads to a table of about 2300 bits.

Improved Security Proofs in Lattice-Based Cryptography 15

Table 1. Comparison of the precision to handle adversaries with success probability
≥ ε making ≤ qs sign queries to BLISS-I. Our Rényi-based parameters are on the last
two lines.

Lower bound on the precision p Example p Table bit-size

SD (Eq. (1)) p ≥ log(� · m · qs/ε) p ≥ 207 6003

SD (Eq. (2)) pi ≥ log(� · m · qs · e−π2i/s2/ε) + 1 – 4598

KLD (Eq. (3)) p ≥ log(� · m · qs/ε2)/2 + 1/2 p ≥ 168 4872

KLD (Eq. (4)) pi ≥ log(� · m · qs/ε2 · ci/(1 − ci))/2 + 1 – 3893

R∞ (Eq. (5)) p ≥ log(� · m · qs) p ≥ 79 2291

R2 (Eq. (6)) p ≥ log(� · m · qs)/2 p ≥ 40 1160

3.2 GPV Signature Scheme

The RD can also be used to reduce the parameters obtained via the SD-based
analysis of the GPV signature scheme in [GPV08].

In summary, the signature and the security proof from [GPV08] work as
follows. The signature public key is a matrix A ∈ Z

n×m
q with n linear in the

security parameter λ, q = poly(n), and m = O(n log q). The private signing key
is a short basis matrix T for the lattice A⊥ = {x ∈ Z

m : A · x = 0 mod q},
whose last successive minimum satisfies λm(A⊥) ≤ O(1) when m = Ω(n log q)
(see [GPV08]). A signature (σ, s) on a message M is a short vector σ ∈ Z

m

and a random salt s ∈ {0, 1}λ, such that A · σ = H(M, s) mod q, where H is
a random oracle hashing into Z

n
q . The short vector σ is sampled by computing

an arbitrary vector t satisfying A · t = H(M, s) mod q and using T along with
a Gaussian sampling algorithm (see [GPV08,BLP+13]) to produce a sample
from t + DA⊥,r,−t .

The main idea in the security proof from the SIS problem [GPV08] is based
on simulating signatures without T , by sampling σ from DZm,r and then pro-
gramming the random oracle H at (M, s) according to H(M, s) = A ·σ mod q.
As shown in [GPV08, Lemma 5.2], the conditional distribution of σ given A · σ
mod q is exactly the same in the simulation and in the real scheme. Therefore,
the SD between the simulated signatures and the real signatures is bounded by
the SD between the marginal distribution D1 of A · σ mod q for σ ←↩ DZm,r

and U(Zm
q). This SD for one signature is bounded by ε if r ≥ ηε(A⊥). This leads,

over the qs sign queries of the attacker, in the SD-based analysis of [GPV08], to
take ε = O(2−λq−1

s) and thus r = Ω(
√

λ + log qs) (using Lemma 2.2), in order
to handle attackers with success probability 2−o(λ).

Now, by Lemma 2.9, we have that the RD R∞(D1‖U) is bounded by 1 +
c · ε for one signature, for some constant c. By the multiplicativity property of
Lemma 2.7, over qs queries, it is bounded by (1+cε)qs . By taking ε = O(q−1

s), we
obtain overall an RD bounded as O(1) between the view of the attacker in the real
attack and simulation, leading to a security proof with respect to SIS but with a
smaller r = Ω(

√
log λ + log(nqs)). When the number of sign queries qs allowed

16 S. Bai et al.

to the adversary is much smaller than 2λ, this leads to significant parameter
savings, because SIS’s β is reduced and hence n,m, q may be set smaller for the
same security parameter λ.

4 Rényi Divergence and Distinguishing Problems

In this section, we prove Theorem 4.1 which allows to use the RD for distin-
guishing problems, and we show how to apply it to the dual-Regev encryption
scheme.

4.1 Problems with Public Sampleability

A general setting one comes across in analyzing the security of cryptographic
schemes has the following form. Let P denote a decision problem that asks to
distinguish whether a given x was sampled from distribution X0 or X1, defined
as follows:

X0 = {x : r ←↩ Φ, x ←↩ D0(r)}, X1 = {x : r ←↩ Φ, x ←↩ D1(r)}.

Here r is some parameter that is sampled from the same distribution Φ in
both X0 and X1. The parameter r then determines the conditional distributions
D0(r) and D1(r) from which x is sampled in X0 and X1, respectively, given r.
Now, let P ′ denote another decision problem that is defined similarly to P ,
except that in P ′ the parameter r is sampled from a different distribution Φ′

(rather than Φ). Given r, the conditional distributions D0(r) and D1(r) are the
same in P ′ as in P . Let X ′

0 (resp. X ′
1) denote the resulting marginal distributions

of x in problem P ′. Now, in the applications we have in mind, the distributions
Φ′ and Φ are “close” in some sense, and we wish to show that this implies an
efficient reduction between problems P ′ and P , in the usual sense that every
distinguisher with efficient run-time T and non-negligible advantage ε against
P implies a distinguisher for P ′ with efficient run-time T ′ and non-negligible
advantage ε′. In the classical situation, if the SD Δ(Φ,Φ′) between Φ′ and Φ is
negligible, then the reduction is immediate. Indeed, for b ∈ {0, 1}, if pb (resp. p′

b)
denotes the probability that a distinguisher algorithm A outputs 1 on input
distribution Xb (resp. X ′

b), then we have, from the SD probability preservation
property, that |p′

b −pb| ≤ Δ(Φ,Φ′). As a result, the advantage ε′ = |p′
1 −p′

0| of A
against P ′ is bounded from below by ε− 2Δ(Φ,Φ′) which is non-negligible (here
ε = |p1 − p0| is the assumed non-negligible advantage of A against P).

Unfortunately, for general decision problems P, P ′ of the above form, it seems
difficult to obtain an RD-based analogue of the above SD-based argument, in the
weaker setting when the SD Δ(Φ,Φ′) is non-negligible, but the RD R = R(Φ‖Φ′)
is small. Indeed, the probability preservation property of the RD in Lemma 2.7
does not seem immediately useful in the case of general decision problems P, P ′.
With the above notations, it can be used to conclude that p′

b ≥ p2b/R but this
does not allow us to usefully relate the advantages |p′

1 − p′
0| and |p1 − p0|.

Improved Security Proofs in Lattice-Based Cryptography 17

Nevertheless, we now make explicit a special class of “publicly sampleable”
problems P, P ′ for which such a reduction can be made. In such problems, it is
possible to efficiently sample from both distributions D0(r) (resp. D1(r)) given
the single sample x from the unknown Db(r). This technique is implicit in the
application of RD in the reductions of [LPR13], and we abstract it and make it
explicit in the following.

Theorem 4.1. Let Φ,Φ′ denote two distributions with Supp(Φ) ⊆ Supp(Φ′),
and D0(r) and D1(r) denote two distributions determined by some parameter r ∈
Supp(Φ′). Let P, P ′ be two decision problems defined as follows:

• Problem P : Distinguish whether input x is sampled from distribution X0

or X1, where

X0 = {x : r ←↩ Φ, x ←↩ D0(r)}, X1 = {x : r ←↩ Φ, x ←↩ D1(r)}.

• Problem P ′: Distinguish whether input x is sampled from distribution X ′
0

or X ′
1, where

X ′
0 = {x : r ←↩ Φ′, x ←↩ D0(r)}, X ′

1 = {x : r ←↩ Φ′, x ←↩ D1(r)}.

Assume that D0(·) and D1(·) satisfy the following public sampleability prop-
erty: there exists a sampling algorithm S with run-time TS such that for all (r, b),
given any sample x from Db(r):

• S(0, x) outputs a fresh sample distributed as D0(r) over the randomness of S,
• S(1, x) outputs a fresh sample distributed as D1(r) over the randomness of S.

Then, given a T -time distinguisher A for problem P with advantage ε, we
can construct a distinguisher A′ for problem P ′ with run-time and distinguishing
advantage respectively bounded from above and below by (for any a ∈ (1,+∞]):

O

(
1
ε2

log
(

Ra(Φ‖Φ′)
εa/(a−1)

)

· (TS + T)
)

and
ε

4 · Ra(Φ‖Φ′)
·
(ε

2

) a
a−1

.

Proof. Distinguisher A′ is given an input x sampled from Db(r) for some r
sampled from Φ′ and some unknown b ∈ {0, 1}. For an ε′ to be determined later,
it runs distinguisher A on N = O(ε−2 log(1/ε′)) independent inputs sampled
from D0(r) and D1(r) calling algorithm S on (0, x) and (1, x) to obtain estimates
p̂0 and p̂1 for the acceptance probabilities p0(r) and p1(r) of A given as inputs
samples from D0(r) and D1(r) (with the r fixed to the value used to sample
the input x of A′). By the choice of N and the Hoeffding bound, the estimation
errors |p̂0 − p0| and |p̂1 − p1| are < ε/8 except with probability < ε′ over the
randomness of S. Then, if p̂1 − p̂0 > ε/4, distinguisher A′ runs A on input x and
returns whatever A returns, else distinguisher A′ returns a uniformly random
bit. This completes the description of distinguisher A′.

Let S1 denote the set of r’s such that p1(r) − p0(r) ≥ ε/2, S2 denote the set
of r’s that are not in S1 and such that p1(r) − p0(r) ≥ 0, and S3 denote all the
remaining r’s. Then:

18 S. Bai et al.

• If r ∈ S1, then except with probability < ε′ over the randomness of S, we will
have p̂1 − p̂0 > ε/4 and thus A′ will output A(x). Thus, in the case b = 1,
we have Pr[A′(x) = 1|r ∈ S1] ≥ p1(r) − ε′ and in the case b = 0, we have
Pr[A′(x) = 1|r ∈ S1] ≤ p0(r) + ε′.

• Assume that r ∈ S2. Let u(r) be the probability over the randomness of S
that p̂1 − p̂0 > ε/4. Then A′ will output A(x) with probability u(r) and
a uniform bit with probability 1 − u(r). Thus, in the case b = 1, we have
Pr[A′(x) = 1|r ∈ S2] = u(r) · p1(r) + (1 − u(r))/2, and in the case b = 0, we
have Pr[A′(x) = 1|r ∈ S2] = u(r) · p0(r) + (1 − u(r))/2.

• If r ∈ S3, except with probability < ε′ over the randomness of S, we have p̂1−
p̂0 < ε/4 and A′ will output a uniform bit. Thus, in the case b = 1, we have
Pr[A′(x) = 1|r ∈ S3] ≥ 1/2 − ε′, and in the case b = 0, we have Pr[A′(x) =
1|r ∈ S3] ≤ 1/2 + ε′.

Overall, the advantage of A′ is bounded from below by:
∑

r∈S1

Φ′(r) (p1(r) − p0(r) − 2ε′) +
∑

r∈S2

Φ′(r)u(r) (p1(r) − p0(r)) −
∑

r∈S3

Φ′(r)2ε′

≥ Φ′(S1) · ε

2
− 2ε′.

Without loss of generality, we may assume that the advantage of A is positive.
By an averaging argument, the set S1 has probability Φ(S1) ≥ ε/2 under distri-
bution Φ. Hence, by the RD probability preservation property (see Lemma 2.7),
we have Φ′(S1) ≥ (ε/2)

a
a−1 /Ra(Φ‖Φ′). The proof may be completed by set-

ting ε′ = (ε/8) · (ε/2)
a

a−1 /Ra(Φ‖Φ′). ��

4.2 Application to Dual-Regev Encryption

Let m,n, q, χ be as in Definition 2.5 and Φ denote a distribution over Z
m×n
q .

We define the LWE variant LWEn,q,χ,m(Φ) as follows: Sample A ←↩ Φ, s ←↩
U(Zn

q), e ←↩ χm and u ←↩ U(Tm); The goal is to distinguish between the
distributions (A, 1

q As + e) and (A,u) over Z
m×n
q × T

m. Note that standard
LWE is obtained by taking Φ′ = U(Zm×n

q).
As an application to Theorem 4.1, we show that LWE with non-uniform and

possibly statistically correlated a i’s of the samples (a i, bi)’s (with bi either inde-
pendently sampled from U(T) or close to 〈a i, s〉 for a secret vector s) remains
at least as hard as standard LWE, as long as the RD R(Φ‖U) remains small,
where Φ is the joint distribution of the given a i’s and U denotes the uniform
distribution.

To show this result, we first prove in Corollary 4.2 that there is a reduction
from LWEn,q,χ,m(Φ′) to LWEn,q,χ,m(Φ) using Theorem 4.1 if Ra(Φ‖Φ′) is small
enough. We then describe in Corollary 4.3 how to use this first reduction to
obtain smaller parameters for the dual-Regev encryption. This allows us to save
an Ω(

√
λ/ log λ) factor in the Gaussian deviation parameter r used for secret

key generation in the dual-Regev encryption scheme [GPV08], where λ refers to
the security parameter.

Improved Security Proofs in Lattice-Based Cryptography 19

Corollary 4.2. Let Φ and Φ′ be two distributions over Z
m×n
q with Supp(Φ) ⊆

Supp(Φ′). If there exists a distinguisher A against LWEn,q,χ,m(Φ) with run-
time T and advantage ε = o(1), then there exists a distinguisher A′ against
LWEn,q,χ,m(Φ′) with run-time T ′ = O(ε−2 log Ra(Φ‖Φ′)

εa/(a−1) · (T + poly(m, log q)))

and advantage Ω
(

ε1+a/(a−1)

Ra(Φ‖Φ′)

)
, for any a ∈ (1,+∞].

Proof. Apply Theorem 4.1 with r = A ∈ Z
m
q , x = (A, b) ∈ Z

m×n
q ×T

m, D0(r) =
(A,A · s + e) with s ←↩ U(Zn

q) and e ←↩ χm, and D1(r) = (A,u) with u ←↩
U(Zm

q). The sampling algorithm S is such that S(0, x) outputs (A,A ·s ′ +e ′) for
s ′ ←↩ U(Zn

q) and e ′ ←↩ χm, while S(1, x) outputs (A,u ′) with u ′ ←↩ U(Zm
q). ��

We recall that the dual-Regev encryption scheme has a general public parame-
ter A ∈ Z

m×n
q , a secret key of the form sk = x with x ←↩ DZm,r and a public

key of the form u = Atx mod q. A ciphertext for a message M ∈ {0, 1} is
obtained as follows: Sample s ←↩ U(Zn

q), e1 ←↩ χm and e2 ←↩ χ; return cipher-
text (c1, c2) = (1q As + e1,

1
q 〈u , s〉 + e2 + M

2) ∈ T
m × T.

Corollary 4.3. Suppose that q is prime, m ≥ 2n log q and r ≥ 4
√

log(12m)/π.
If there exists an adversary against the IND-CPA security of the dual-Regev
encryption scheme with run-time T and advantage ε, then there exists a dis-
tinguishing algorithm for LWEn,q,χ,m+1 with run-time O((ε′)−2 log(ε′)−1 · (T +
poly(m))) and advantage Ω((ε′)2), where ε′ = ε − 2q−n.

Proof. The IND-CPA security of the dual-Regev encryption scheme as described
above is at least as hard as LWEn,q,χ,m+1(Φ) where Φ is obtained by sam-
pling A ←↩ U(Zm×n

q), u ←↩ At · DZm,r mod q and returning the (m + 1) × n
matrix obtained by appending u t at the bottom of A. We apply Corollary 4.2
with Φ′ = U(Z(m+1)×n

q).
Since q is prime, if A is full rank, then the multiplication by At induces an

isomorphism between the quotient group Z
m/A⊥ and Z

n
q , where A⊥ = {x ∈ Z

m :
At · x = 0 mod q}. By Lemma 2.2, we have η1/3(A⊥) ≤ 4

√
log(12m)/π ≤ r,

except for a fraction ≤ q−n of the A’s. Let BAD denote the union of such bad A’s
and the A’s that are not full rank. We have Pr[BAD] ≤ 2q−n.

By the multiplicativity property of Lemma 2.7, we have:

R∞(Φ‖Φ′) ≤ max
A/∈BAD

R∞(DZm,r mod A⊥‖UZm/A⊥).

Thanks to Lemma 2.9, we know that the latter is ≤ 2. The result now follows
from Corollary 4.2. ��
In all applications we are aware of, the parameters satisfy m ≤ poly(λ) and q−n ≤
2−λ, where λ refers to the security parameter. The r = Ω(

√
log λ) bound of our

Corollary 4.3, that results from using δ = 1/3 in the condition r ≥ ηδ(A⊥)
in the RD-based smoothing argument of the proof above, improves on the
corresponding bound r = Ω(

√
λ) that results from the requirement to use

20 S. Bai et al.

δ = O(2−λ) in the condition r ≥ ηδ(A⊥) in the SD-based smoothing argu-
ment of the proof of [GPV08, Theorem 7.1], in order to handle adversaries with
advantage ε = 2−o(λ) in both cases. Thus our RD-based analysis saves a factor
Ω(

√
λ/ log λ) in the choice of r, and consequently of a−1 and q. (The authors

of [GPV08] specify a choice of r = ω(
√

log λ) for their scheme because they
use in their analysis the classical “no polynomial attacks” security requirement,
corresponding to assuming attacks with advantage ε = λ−O(1), rather than the
stronger ε = ω(2−λ) but more realistic setting we take.)

5 Application to LWE with Uniform Noise

The LWE problem with noise uniform in a small interval was introduced in
[DMQ13]. In that article, the authors exhibit a reduction from LWE with
Gaussian noise, which relies on a new tool called lossy codes. The main proof
ingredients are the construction of lossy codes for LWE (which are lossy for
the uniform distribution in a small interval), and the fact that lossy codes are
pseudorandom.

We note that the reduction from [DMQ13] needs the number of LWE samples
to be bounded by poly(n) and that it degrades the LWE dimension by a constant
factor. The parameter β (when the interval of the noise is [−β, β]) should be at
least mnσα where α is the LWE Gaussian noise parameter and σ ∈ (0, 1) is an
arbitrarily small constant.

We now provide an alternative reduction from the LWEn,q,Dα,m distinguish-
ing problem to the LWEn,q,U([−β,β]),m distinguishing problem, and analyze it
using RD. Our reduction preserves the LWE dimension n, and is hence tighter
than the one from [DMQ13]. We also require that β = Ω(mα).

Theorem 5.1. Let m ≥ n ≥ 1 and with q ≤ poly(m,n) prime. Let α, β > 0 be
real numbers with β = Ω(mα). Then there is a polynomial-time reduction from
LWEn,q,Dα,m to LWEn,q,φ,m, with φ = 1

q �qU([−β, β])	.

Proof. In the proof, we let Uβ denote the distribution U([−β, β]), to ease nota-
tions. Our reduction relies on four steps:

• A reduction from LWEn,q,Dα,m to LWEn,q,ψ,m with ψ = Dα + Uβ ,
• A reduction from LWEn,q,ψ,m to sLWEn,q,ψ,m,
• A reduction from sLWEn,q,ψ,m to sLWEn,q,Uβ ,m,
• A reduction from sLWEn,q,Uβ ,m to LWEn,q,Uβ ,m.

First step. The reduction is given m elements (a i, bi) ∈ Z
n
q × T, all drawn

from As,Dα
(for some s), or all drawn from U(Zn

q ×T). The reduction consists in
adding independent samples from Uβ to each bi. The reduction maps the uniform
distribution to itself, and As,Dα

to As,ψ.

Second step. Reducing the distinguishing variant of LWE to its search variant
is direct.

Improved Security Proofs in Lattice-Based Cryptography 21

Third step. The reduction from sLWEn,q,ψ,m to sLWEn,q,Uβ ,m is vacuous:
by using the RD (and in particular the probability preservation property
of Lemma 2.7), we show that an oracle solving sLWEn,q,Uβ ,m also solves
sLWEn,q,ψ,m.

Lemma 5.2. Let α, β be real numbers with α ∈ (0, 1/e) and β ≥ α. Let ψ =
Dα + Uβ. Then

R2(Uβ‖ψ) =
α

β

∫ β

0

1
∫ β

−β
e

−π(x−y)2

α2 dy
dx ≤ 1 + 16

α

β

√
ln(1/α)/π.

Proof. The density function of ψ is the convolution of the density functions of Dα

and Uβ :

fψ(x) =
1

2αβ

∫ β

−β

e
−π(x−y)2

α2 dy.

Using Rényi of order 2, we have:

R2(Uβ‖ψ) =
∫ β

−β

1
(2β)2

1
2αβ

∫ β

−β
e

−π(x−y)2

α2 dy
dx =

α

β

∫ β

0

1
∫ β

−β
e

−π(x−y)2

α2 dy
dx.

The denominator in the integrand is a function for x ∈ [0, β].

φ(x) = α −
∫ ∞

β+x

exp(
−πy2

α2
) dy −

∫ ∞

β−x

exp(
−πy2

α2
) dy.

For standard Gaussian, we use the following tail bound [CDS03]:

1√
2π

∫ ∞

z

e−x2/2dx ≤ 1
2
e−z2/2.

Then we have

φ(x) ≥ α

(

1 − 1
2

exp
(−π(β + x)2

α2

)

− 1
2

exp
(−π(β − x)2

α2

))

.

Taking the reciprocal of above, we use the first-order Taylor expansion. Note
here

t(x) =
1
2

exp
(−π(β + x)2

α2

)

+
1
2

exp
(−π(β − x)2

α2

)

.

We want to bound the function t(x) by a constant c ∈ (0, 1). Here t(x) is not
monotonic. We take the maximum of the first-half and the maximum of the
second-half of t(x). An upper bound (β ≥ α) is:

t(x) ≤ 1
2
e−πβ2/α2

+
1
2

=: σα,β +
1
2

< 1.

22 S. Bai et al.

We then use the fact that 1
1−t(x) = 1 + 1

1−t(x) t(x) ≤ 1 + 1
1−2σα,β

t(x) to bound
the Rényi divergence of order 2.

R2(Uβ‖ψ) =
α

β

∫ β

0

1
φ(x)

dx

≤ 1
β

∫ β

0

1

1 − 1
2 exp

(
−π(β+x)2

α2

)
− 1

2 exp
(

−π(β−x)2

α2

)dx

≤ 1
β

∫ β

0

(

1 +
1

1 − 2σα,β
exp

(−π(β + x)2

α2

)

+
1

1 − 2σα,β
exp

(−π(β − x)2

α2

))

dx

= 1 +
1

(1 − 2σα,β)β

∫ 2β

0

exp
(−πx2

α2

)

dx

= 1 +
1

2(1 − 2σα,β)β

∫ 2β

−2β

exp
(−πx2

α2

)

dx

= 1 +
α

(1 − 2σα,β)β
(1 − 2Dα(2β)) ≤ 1 +

1
1 − 2σα,β

α

β
.

Hence we have the bound,

R2(Uβ‖ψ) ≤ 1 +
1

1 − e−πβ2/α2

α

β
. ��

We use Lemma 5.2 with m samples and β = Ω(mα) to ensure that the mth
power of the RD is ≤ 2. The RD multiplicativity and probability preservation
properties (see Lemma 2.7) imply that ε′ ≥ ε2/Rm

2 (Uβ‖φ); hence if an oracle
solves sLWEn,q,Uβ ,m with probability ε, then it also solves sLWEn,q,ψ,m with
probability ≥ ε2/2.

Fourth step. We reduce sLWEn,q,Uβ ,m with continuous noise Uβ to sLWEn,q,φ,m

with discrete noise φ = 1
q �qUβ	 with support contained in Tq, by rounding to

the nearest multiple of 1
q any provided bi (for i ≤ m). We reduce sLWEn,q,φ,m

to LWEn,q,φ,m by invoking Theorem 2.6. ��

6 Open Problems

Our results show the utility of the Rényi divergence in several areas of lattice-
based cryptography. However, they also suggest some natural open problems,
whose resolution could open up further applications. In particular, can we extend
the applicability of RD to more general distinguishing problems than those sat-
isfying our ‘public sampleability’ requirement? This may extend our results fur-
ther. For instance, can we use RD-based arguments to prove the hardness of LWE
with uniform noise without using the search to decision reduction of [MM11]?
This may allow the proof to apply also to Ring-LWE with uniform noise.

Improved Security Proofs in Lattice-Based Cryptography 23

Acknowledgments. We thank Léo Ducas, Vadim Lyubashevsky and Fabrice
Mouhartem for useful discussions. This work has been supported in part by ERC Start-
ing Grant ERC-2013-StG-335086-LATTAC, an Australian Research Fellowship (ARF)
from the Australian Research Council (ARC), and ARC Discovery Grants DP0987734,
DP110100628 and DP150100285. This work has been supported in part by the Euro-
pean Union’s H2020 Programme under grant agreement number ICT-644209.

References

[Ajt96] Ajtai, M.: Generating hard instances of lattice problems (extended
abstract). In: Proceedings of of STOC, pp. 99–108. ACM (1996)

[AKPW13] Alwen, J., Krenn, S., Pietrzak, K., Wichs, D.: Learning with rounding,
revisited. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS,
vol. 8042, pp. 57–74. Springer, Heidelberg (2013)

[BGM+15] Bogdanov, A., Guo, S., Masny, D., Richelson, S., Rosen, A.: On the hard-
ness of learning with rounding over small modulus. Cryptology ePrint
Archive, Report 2015/769 (2015). http://eprint.iacr.org/

[BLP+13] Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical
hardness of learning with errors. In: Procedings of STOC, pp. 575–584.
ACM (2013)

[BPR12] Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol.
7237, pp. 719–737. Springer, Heidelberg (2012)

[BV11] Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryp-
tion from (standard) LWE, In: Proceedings of FOCS, pp. 97–106. IEEE
Computer Society Press (2011)

[CDS03] Chiani, M., Dardari, D., Simon, M.K.: New exponential bounds and
approximations for the computation of error probability in fading chan-
nels. IEEE Trans. Wireless. Comm. 2(4), 840–845 (2003)

[DDLL13] Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures
and bimodal gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part I. LNCS, vol. 8042, pp. 40–56. Springer, Heidelberg (2013)

[DMQ13] Döttling, N., Müller-Quade, J.: Lossy codes and a new variant of the
learning-with-errors problem. In: Johansson, T., Nguyen, P.Q. (eds.)
EUROCRYPT 2013. LNCS, vol. 7881, pp. 18–34. Springer, Heidelberg
(2013)

[Duc14] Ducas, L.: Accelerating Bliss: the geometry of ternary polynomials. Cryp-
tology ePrint Archive, Report 2014/874 (2014). http://eprint.iacr.org/

[EH12] van Erven, T., Harremoës, P.: Rényi divergence and Kullback-Leibler diver-
gence. CoRR, abs/1206.2459 (2012)

[GGH13] Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lat-
tices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS,
vol. 7881, pp. 1–17. Springer, Heidelberg (2013)

[GPV08] Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices
and new cryptographic constructions. In: Proceedings of STOC, pp. 197–
206. ACM (2008)

[LPR13] Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning
with errors over rings. J. ACM 60(6), 43 (2013)

http://eprint.iacr.org/
http://eprint.iacr.org/

24 S. Bai et al.

[LPSS14] Ling, S., Phan, D.H., Stehlé, D., Steinfeld, R.: Hardness of k -LWE
and applications in traitor tracing. In: Garay, J.A., Gennaro, R.
(eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 315–334. Springer,
Heidelberg (2014)

[LSS14] Langlois, A., Stehlé, D., Steinfeld, R.: GGHLite: more efficient multilin-
ear maps from ideal lattices. In: Nguyen, P.Q., Oswald, E. (eds.) EURO-
CRYPT 2014. LNCS, vol. 8441, pp. 239–256. Springer, Heidelberg (2014)

[Lyu12] Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval,
D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–
755. Springer, Heidelberg (2012)

[MM11] Micciancio, D., Mol, P.: Pseudorandom knapsacks and the sample complex-
ity of LWE search-to-decision reductions. In: Rogaway, P. (ed.) CRYPTO
2011. LNCS, vol. 6841, pp. 465–484. Springer, Heidelberg (2011)

[MP13] Micciancio, D., Peikert, C.: Hardness of SIS and LWE with small parame-
ters. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol.
8042, pp. 21–39. Springer, Heidelberg (2013)

[MR07] Micciancio, D., Regev, O.: Worst-case to average-case reductions based on
Gaussian measures. SIAM J. Comput. 37(1), 267–302 (2007)

[MR09] Micciancio, D., Regev, O.: Lattice-based cryptography. In: Bernstein, D.J.,
Buchmann, J., Dahmen, E. (Eds), Post-Quantum Cryptography, pp. 147–
191. Springer, Heidelberg (2009)

[PDG14] Pöppelmann, T., Ducas, L., Güneysu, T.: Enhanced lattice-based signa-
tures on reconfigurable hardware. In: Batina, L., Robshaw, M. (eds.) CHES
2014. LNCS, vol. 8731, pp. 353–370. Springer, Heidelberg (2014)

[Pei09] Peikert, C.: Public-key cryptosystems from the worst-case shortest vector
problem. In: Proceedings of STOC, pp. 333–342. ACM (2009)

[Reg05] Regev, O.: On lattices, learning with errors, random linear codes, and
cryptography. In: Proceedings of STOC, pp. 84–93 (2005)

[Reg09a] Regev, O.: Lecture notes of lattices in computer science, taught at the
Computer Science Tel Aviv University, (2009). http://www.cims.nyu.edu/
regev

[Reg09b] Regev, O.: On lattices, learning with errors, random linear codes, and
cryptography. J. ACM 56(6), 1–40 (2009)

[Rén61] Rényi, A.: On measures of entropy and information. In: Proceedings of the
Fourth Berkeley Symposium on Mathematical Statistics and Probability,
vol. 1, pp. 547–561 (1961)

http://www.cims.nyu.edu/regev
http://www.cims.nyu.edu/regev

Indistinguishability Obfuscation

Multi-input Functional Encryption
for Unbounded Arity Functions

Saikrishna Badrinarayanan1(B), Divya Gupta1, Abhishek Jain2,
and Amit Sahai1

1 UCLA, Los Angeles, USA
{bsaikrishna7393,divyagupta.iitd,amitsahai}@gmail.com

2 Johns Hopkins University, Baltimore, USA
abhishekjain.itbhu@gmail.com

Abstract. The notion of multi-input functional encryption (MI-FE)
was recently introduced by Goldwasser et al. [EUROCRYPT’14] as a
means to non-interactively compute aggregate information on the joint
private data of multiple users. A fundamental limitation of their work,
however, is that the total number of users (which corresponds to the
arity of the functions supported by the MI-FE scheme) must be a priori
bounded and fixed at the system setup time.

In this work, we overcome this limitation by introducing the notion
of unbounded input MI-FE that supports the computation of functions
with unbounded arity. We construct such an MI-FE scheme with indis-
tinguishability security in the selective model based on the existence of
public-coin differing-inputs obfuscation for turing machines and collision-
resistant hash functions.

Our result enables several new exciting applications, including a new
paradigm of on-the-fly secure multiparty computation where new users
can join the system dynamically.

1 Introduction

Functional Encryption. Traditionally, encryption has been used as a tool
for private end-to-end communication. The emergence of cloud computing has
opened up a host of new application scenarios where more functionality is desired

A. Jain—Supported in part by a DARPA/ARL Safeware Grant W911NF-15-C-0213
and NSF CNS-1414023
A. Sahai—Research supported in part from a DARPA/ONR PROCEED award,
a DARPA/ARL SAFEWARE award, NSF Frontier Award 1413955, NSF grants
1228984, 1136174, 1118096, and 1065276, a Xerox Faculty Research Award, a Google
Faculty Research Award, an equipment grant from Intel, and an Okawa Founda-
tion Research Grant. This material is based upon work supported by the Defense
Advanced Research Projects Agency through the U.S. Office of Naval Research under
Contract N00014-11-1-0389. The views expressed are those of the author and do not
reflect the official policy or position of the Department of Defense, the National
Science Foundation, or the U.S. Government.

c© International Association for Cryptologic Research 2015
T. Iwata and J.H. Cheon (Eds.): ASIACRYPT 2015, Part I, LNCS 9452, pp. 27–51, 2015.
DOI: 10.1007/978-3-662-48797-6 2

28 S. Badrinarayanan et al.

from encryption beyond the traditional privacy guarantees. To address this chal-
lenge, the notion of functional encryption (FE) has been developed in a long
sequence of works [3,4,13,16,17,19,21]. In an FE scheme for a family F , it is
possible to derive decryption keys Kf for any function f ∈ F from a master
secret key. Given such a key Kf and an encryption of a message x, a user can
compute f(x). Intuitively, the security of FE says that an adversarial user should
only learn f(x) and “nothing else about x.”

Multi-input Functional Encryption. Most of the prior work on FE focuses
on the problem of computing a function over a single plaintext given its cor-
responding ciphertext. However, many applications require the computation of
aggregate information from multiple data sources (that may correspond to dif-
ferent users). To address this issue, recently, Goldwasser et al. [10] introduced
the notion of multi-input functional encryption (MI-FE). Let F be a family
of n-ary functions where n is a polynomial in the security parameter. In an
MI-FE scheme for F , the owner of the master secret key (as in FE) can com-
pute decryption keys Kf for any function f ∈ F . The new feature in MI-FE is
that Kf can be used to compute f(x1, . . . , xn) from n ciphertexts CT1, . . . ,CTn

of messages x1, . . . , xn respectively, where each CTi is computed independently,
possibly using a different encryption key (but w.r.t. the same master secret key).

As discussed in [10] (see also [11,12]), MI-FE enables several important appli-
cations such as computing on multiple encrypted databases, order-revealing and
property-revealing encryption, multi-client delegation of computation, secure
computation on the web [14] and so on. Furthermore, as shown in [10], MI-FE,
in fact, implies program obfuscation [2,8].

A fundamental limitation of the work of Goldwasser et al. [10] is that it
requires an a priori (polynomial) bound on the arity n of the function family F .
More concretely, the arity n of the function family must be fixed during system
setup when the parameters of the scheme are generated. This automatically
fixes the number of users in the scheme and therefore new users cannot join the
system at a later point of time. Furthermore, the size of the system parameters
and the complexity of the algorithms depends on n. This has an immediate
adverse impact on the applications of MI-FE: for example, if we use the scheme
of [10] to compute on multiple encrypted databases, then we must a priori fix the
number of databases and use decryption keys of size proportional to the number
of databases.

Our Question: Unbounded Arity MI-FE. In this work, we seek to overcome
this limitation. Specifically, we study the problem of MI-FE for general functions
F with unbounded arity. Note that this means that the combined length of all
the inputs to any function f ∈ F is unbounded and hence we must work in the
Turing machine model of computation (as opposed to circuits). In addition, we
also allow for each individual input to f to be of unbounded length.

More concretely, we consider the setting where the owner of a master secret
key can derive decryption keys KM for a general Turing machine M . For any
index i ∈ 2λ (where λ is the security parameter), the owner of the master secret
key can (at any point in time) compute an encryption key EKi. Finally, given a

Multi-input Functional Encryption for Unbounded Arity Functions 29

list of ciphertexts CT1, . . . ,CT� for any arbitrary �, where each CTi is encryption
of some message xi w.r.t. EKi, and a decryption key KM , one should be able to
learn M(x1, . . . , x�).

We formalize security via a natural generalization of the indistinguishability-
based security framework for bounded arity MI-FE to the case of unbounded
arity. We refer the reader to Sect. 3 for details but point out that similar to [10],
we also focus on selective security where the adversary declares the challenge
messages at the beginning of the game.

1.1 Our Results

Our main result is an MI-FE scheme for functions with unbounded arity assum-
ing the existence of public-coin differing-inputs obfuscation (pc-diO) [20] for
general Turing machines with unbounded input length and collision-resistant
hash functions. We prove indistinguishability-based security of our scheme in
the selective model.

Theorem 1 (Informal). If public-coin differing-inputs obfuscation for general
Turing machines and collision-resistant hash functions exist, then there exists
an indistinguishably-secure MI-FE scheme for general functions with unbounded
arity, in the selective model.

Discussion. Recently, Pandey et al. [20] defined the notion of pc-diO as a weak-
ening of differing-inputs obfuscation (diO) [1,2,5]. In the same work, they also
give a construction of pc-diO for general Turing machines with unbounded input
length based on pc-diO for general circuits and public-coin (weak) succinct non-
interactive arguments of knowledge (SNARKs).1 We note that while the exis-
tence of diO has recently come under scrutiny [9], no impossibility results are
known for pc-diO.

On the Necessity of Obfuscation. It was shown by Goldwasser et al. [10]
that MI-FE for bounded arity functions with indistinguishability-based security
implies indistinguishability obfuscation for general circuits. A straightforward
extension of their argument (in the case where at least one of the encryption keys
is known to the adversary) shows that MI-FE for functions with unbounded arity
implies indistinguishability obfuscation for Turing machines with unbounded
input length.

Applications. We briefly highlight a few novel applications of our main result:

– On-the-fly secure computation: MI-FE for unbounded inputs naturally yields
a new notion of on-the-fly secure multiparty computation in the correlated
randomness model where new parties can join the system dynamically at any

1 A recent work by [6] shows that SNARKs with privately generated auxiliary inputs
are impossible assuming the existence of pc-diO for circuits. We stress, however, that
[20] only assumes the existence of a much weaker notion of public-coin SNARKs for
their positive result. Therefore, the impossibility result of [6] is not applicable to [20].

30 S. Badrinarayanan et al.

point in time. To the best of our knowledge, no prior solution for secure
computation (even in the interactive setting) exhibits this property.

In order to further explain this result, we first recall an application of MI-
FE for bounded inputs to secure computation on the web [14] (this is implicit
in [10]): consider a group of n parties who wish to jointly compute a function
f over their private inputs using a web server. Given an MI-FE scheme that
supports f , each party can simply send an encryption of its input xi w.r.t.
to its own encryption key to the server. Upon receiving all the ciphertexts,
the server can then use a decryption key Kf (which is given to it as part of
a correlated randomness setup) to compute f(x1, . . . , xn). Note that unlike
the traditional solutions for secure computation that require simultaneous
participation from each player, this solution is completely non-interactive and
asynchronous (during the computation phase), which is particularly appealing
for applications over the web.2

Note that in the above application, since the number of inputs for the MI-
FE scheme are a priori bounded, it means that the number of parties must also
be bounded at the time of correlated randomness setup. In contrast, by plug-
ging in our new MI-FE scheme for unbounded inputs in the above template,
we now no longer need to fix the number of users in advance, and hence new
users can join the system on “on-the-fly.” In particular, the same decryption
key Kf that was computed during the correlated randomness setup phase can
still be used even when new users are dynamically added to the system.

– Computing on encrypted databases of dynamic size: In a similar vein, our MI-
FE scheme enables arbitrary Turing machine computations on an encrypted
database where the size of the database is not fixed a priori and can be
increased dynamically.3 Concretely, given a database of initial size n, we can
start by encrypting each record separately. If the database owner wishes to
later add new records to the database, then she can simply encrypt these
records afresh and then add them to the existing encrypted database. Note
that a decryption key KM that was issued previously can still be used to
compute on the updated database since we allow for Turing machines of
unbounded input length.

We finally remark that this solution also facilitates “flexible” computations:
suppose that a user is only interested in learning the output of M on a subset
S of the records of size (say) � � n. Then, if we were to jointly compute on
the entire encrypted database, the computation time would be proportional
to n. In contrast, our scheme facilitates selective (joint) decryption of the
encryptions of the records in S; as such, the running time of the resulting
computation is only proportional to �.

2 One should note, however, that due to its non-interactive nature, this solution only
achieves a weaker indistinguishability-based notion of security for secure computa-
tion where the adversary also gets access to the residual function f(xb

H , ·). Here
(x0

H ,x1
H) are vectors of inputs of the honest parties.

3 The same idea can be naturally extended to multiple databases.

Multi-input Functional Encryption for Unbounded Arity Functions 31

1.2 Technical Overview

In this work, we consider the indistinguishability-based selective security model
for unbounded arity multi-input functional encryption4. The starting point for
our construction is the MiFE scheme for bounded arity functions [10]. Similar
to their work, in our construction, each ciphertext will consist of two ciphertexts
under pk1 and pk2, and some other elements specific to the particular encryption
key used. At a high level, a function key for a turing machine M will be an
obfuscation of a machine which receives a collection of ciphertexts, decrypts
them using sk1, and returns the output of the turing machine on the decrypted
messages. Before we decrypt the ciphertext with sk1, we also need to have a
some check that the given ciphertext is a valid encryption corresponding to
a certain index. This check needs to be performed by the functional key for
the turing machine M . Moreover, there is a distinct encryption key for each
index and we do not have any a-priori bound on the number of inputs to our
functions. Hence, the kinds of potential checks which need to be performed are
unbounded in number. Dealing with unbounded number of encryption keys is
the main technical challenge we face in designing an unbounded arity multi-input
functional encryption scheme. We describe this in more detail below.

In the indistinguishability based security game of MiFE, the adversary can
query for any polynomial number of encryption keys and is capable of encrypting
under those. Finally, it provides the two challenge vectors. For the security proof
to go through, we need to switch-off all encryption keys which are not asked by
the adversary. The construction of [10] achieves this by having a separate “flag”
value for each encryption key; this flag is part of the public parameters and also
hardcoded in all the function keys that are given out. This approach obviously
does not work in our case because we are dealing with unbounded number of
encryption keys. This is one of the main technical difficulties which we face in
extending the construction of MiFE for bounded arity to our case. We would
like to point out that these problems can be solved easily using diO along with
signatures, but we want our construction to only rely on pc-diO.

At a high level, we solve this issue of handling and blocking the above men-
tioned unbounded number of keys as follows: The public parameters of our
scheme will consist of a pseudorandom string u = G(z) and a random string
α. An encryption key EKi for index i will consist of a proof that either there
exists a z such that u = G(z) or there exists a string x such that x[j] = i and
α = h(x), where h is a collision resistant hash function. Our programs only con-
tain u and α hardcoded and hence their size is independent of the number of
keys we can handle. In our sequence of hybrids, we will change u to be a random
string and α = h(I), where I denotes the indices of the keys given out to the
adversary. The encryption keys (which are asked by the adversary) will now use
a proof for the second part of the statement and we show that a valid proof for
an encryption key which is not given out to the adversary leads to a collision in
the hash function.
4 It was shown in [10] that simulation-based security even for bounded arity MiFE

implies the strong notion of black-box obfuscation. Hence, we do not consider that
notion in this paper.

32 S. Badrinarayanan et al.

Another issue which occurs is relating to the challenge ciphertexts for
the indices for which the encryption key is not given to the adversary. Con-
sider the setting when there is some index, say i∗, in challenge vector such that
EKi∗ is secret. In the security game of MiFE we are guaranteed that output of
M on any subset of either of the challenge ciphertexts along with any collec-
tion of the ciphertexts which the adversary can generate, is identical for both
the challenge vectors. As mentioned before, for security proof to go through we
need to ensure that for i∗, there should only exist the encryption of x0

i∗ and x1
i∗

(which are the challenge messages) and nothing else. Otherwise, if the adversary
is able to come up with a ciphertext of y∗ �= xb

i∗ , he might be able to distinguish
trivially. This is because we do not have any output restriction corresponding to
y∗. In other words, we do not want to rule out all ciphertexts under EKi∗ ; we
want to rule out everything except x0

i∗ and x1
i∗ . In the MiFE for bounded inputs

[10], this problem was solved by hardcoding these specific challenge ciphertexts
in public parameters as well as function keys. In our case, this will clearly not
work since there is no bound on length of challenge vectors. We again use ideas
involving collision resistant hash functions to deal with these issues. In particu-
lar, we hash the challenge vector and include a commitment to this hash value
as part of the public parameters as well as the function keys. Note that we can
do this because we only need to prove the selective security of our scheme.

We note that since collision resistant hash-functions have no trapdoor secret
information, they work well with pc-diO assumption. We will crucially rely on
pc-diO property while changing the program from using sk1 to sk2. Note that
there would exist inputs on which the programs would differ, but these inputs
would be hard to find for any PPT adversary even given all the randomness used
to sample the two programs.

MiFE with unbounded arity implies iO for turing machines with
unbounded inputs. First we recall the proof for the fact that MiFE with
bounded number of inputs implies iO for circuits. To construct an iO for circuit
C with n inputs, consider an MiFE scheme which supports arity n+1. Under the
first index EK1, encrypt C and under keys {2, . . . , n+1} give out encryptions of
both 0 and 1 under each index. Also, the secret key corresponding to universal
circuit is given out. For our case, consider the setting of two encryption keys EK1

and EK2. We give out the encryption of the machine M under EK1 and also the
key EK2. That is, we are in the partial public key setting. We also give out the
secret key corresponding to a universal turing machine which accepts inputs of
unbounded length. Now, the user can encrypt inputs of unbounded length under
the key EK2 by encrypting his input bit by bit. Note that our construction allows
encryption of multiple inputs under the same key.

2 Preliminaries

In this section, we describe the primitives used in our construction. Let λ be the
security parameter.

Multi-input Functional Encryption for Unbounded Arity Functions 33

2.1 Public-Coin Differing-Inputs Obfuscation

The notion of public coin differing-inputs obfuscation (pc-diO) was recently
introduced by Yuval Ishai, Omkant Pandey, and Amit Sahai [15].

Let N denote the set of all natural numbers. We denote by M = {Mλ}λ∈N,
a parameterized collection of Turing machines (TM) such that Mλ is the set
of all TMs of size at most λ which halt within polynomial number of steps on
all inputs. For x ∈ {0, 1}∗, if M halts on input x, we denote by steps(M, x) the
number of steps M takes to output M(x). We also adopt the convention that
the output M(x) includes the number of steps M takes on x, in addition to the
actual output. The following definitions are taken almost verbatim from [15].

Definition 1 (Public-Coin Differing-Inputs Sampler for TMs). An effi-
cient non-uniform sampling algorithm Sam = {Samλ} is called a public-coin
differing-inputs sampler for the parameterized collection of TMs M = {Mλ} if
the output of Samλ is always a pair of Turing Machines (M0,M1) ∈ Mλ × Mλ

such that |M0| = |M1| and for all efficient non-uniform adversaries A = {Aλ},
there exists a negligible function ε such that for all λ ∈ N :

Pr
r

[
M0(x) �= M1(x)∧

steps(M0, x) = steps(M1, x) = t

∣
∣
∣
∣
(M0,M1) ← Samλ(r);

(x, 1t) ← Aλ(r)

]

� ε(λ)

By requiring Aλ to output 1t, we rule out all inputs x for which M0,M1 may
take more than polynomial steps.

Definition 2 (Public-Coin Differing-Inputs Obfuscator for TMs). A
uniform PPT algorithm O is called a public-coin differing-inputs obfuscator for
the parameterized collection of TMs M = {Mλ} if the following requirements
hold:

– Correctness : ∀λ,∀M ∈ Mλ,∀x ∈ {0, 1}∗, we have
Pr[M′(x) = M(x) : M′ ← O(1λ,M)] = 1.

– Security : For every public-coin differing-inputs sampler Sam = {Samλ} for
the collection M, for every efficient non-uniform distinguishing algorithm D =
{Dλ}, there exists a negligible function ε such that for all λ :

∣
∣
∣
∣
Pr[Dλ(r,M′) = 1 : (M0,M1) ← Samλ(r),M′ ← O(1λ,M0)]−
Pr[Dλ(r,M′) = 1 : (M0,M1) ← Samλ(r),M′ ← O(1λ,M1)]

∣
∣
∣
∣ ≤ ε(λ)

where the probability is taken over r and the coins of O.
– Succinctnessandinput − specificrunningtime : There exists a (global)

polynomial s′ such that for all λ, for all M ∈ Mλ, for all M′ ← O(1λ,M), and
for all x ∈ {0, 1}∗, steps(M′, x) � s′(λ, steps(M, x)).

We note that the size of the obfuscated machine M′ is always bounded by the
running time of O which is polynomial in λ. More importantly, the size of M′

is independent of the running time of M . This holds even if we consider TMs
which always run in polynomial time. This is because the polynomial bounding
the running time of O is independent of the collection M being obfuscated. It
is easy to obtain a uniform formulation from our current definitions.

34 S. Badrinarayanan et al.

2.2 Non Interactive Proof Systems

We start with the syntax and formal definition of a non-interactive proof system.
Then, we give the definition of non-interactive witness indistinguishable proofs
(NIWI) and strong non-interactive witness indistinguishable proofs (sNIWI).

Syntax : Let R be an efficiently computable relation that consists of pairs (x,w),
where x is called the statement and w is the witness. Let L denote the language
consisting of statements in R. A non-interactive proof system for a language L
consists of the following algorithms:

– Setup CRSGen(1λ) is a PPT algorithm that takes as input the security para-
meter λ and outputs a common reference string crs.

– Prover Prove(crs, x, w) is a PPT algorithm that takes as input the common
reference string crs, a statement x and a witness w. If (x,w) ∈ R, it produces
a proof string π. Else, it outputs fail.

– Verifier Verify(crs, x, π) is a PPT algorithm that takes as input the common
reference string crs and a statement x with a corresponding proof π. It outputs
1 if the proof is valid, and 0 otherwise.

Definition 3 (Non-interactive Proof System). A non-interactive proof sys-
tem (CRSGen,Prove,Verify) for a language L with a PPT relation R satisfies the
following properties:

– PerfectCompleteness : For every (x,w) ∈ R, it holds that

Pr [Verify(crs, x,Prove(crs, x, w))] = 1

where crs
$←− CRSGen(1λ), and the probability is taken over the coins of

CRSGen, Prove and Verify.
– StatisticalSoundness : For every adversary A, it holds that

Pr
[
x /∈ L ∧ Verify(crs, x, π) = 1

∣∣∣ crs ← CRSGen(1λ); (x, π) ← A(crs)
]

� negl(λ)

If the soundness property only holds against PPT adversaries, then we call it an
argument system.

Definition 4. (Strong Witness Indistinguishability sNIWI). Given a non-
interactive proof system (CRSGen,Prove,Verify) for a language L with a PPT
relation R, let D0 and D1 be distributions which output an instance-witness pair
(x,w). We say that the proof system is strong witness-indistinguishable if for
every adversary A and for all PPT distinguishers D′, it holds that

If
∣
∣
∣ Pr[D′(x) = 1|(x,w) ← D0(1λ)] − Pr[D′(x) = 1|(x,w) ← D1(1λ)]

∣
∣
∣ � negl(λ)

Then
|Pr[A(crs, x,Prove(crs, x, w)) = 1|(x,w) ← D0(1λ)] −
Pr[A(crs, x,Prove(crs, x, w)) = 1|(x,w) ← D1(1λ)]| � negl(λ)

The proof system of [7] is a strong non-interactive witness indistinguishable proof
system.

Multi-input Functional Encryption for Unbounded Arity Functions 35

2.3 Collision Resistent Hash Functions

In this section, we describe the collision resistant hash functions mapping arbi-
trary polynomial length strings to {0, 1}λ. We begin by defining a family of
collision resistant hash functions mapping 2λ length strings to λ length strings.

Definition 5. Consider a family of hash functions H′
λ such that every h′ ∈ H′

λ

maps {0, 1}2λ to {0, 1}λ. H′
λ is said to be a collision resistant hash family if for

every PPT adversary A,

Pr
[
h′ $←− H′

λ; (x, y) ← A(h′);h′(x) = h′(y)
]

� negl(λ)

In our scheme, we will need hash functions which hash unbounded length
strings to {0, 1}λ. We describe these next, followed by a simple construction
using Merkle trees [18]. In our construction, each block will consists of λ bits.
Note that it is sufficient to consider a hash family hashing 2λ blocks to λ bits,
i.e., hashing strings of length at most λ2λ to λ bits.

Definition 6. [Family of collision resistant hash functions for unbounded length
strings] Consider a family of hash functions Hλ such that every h ∈ Hλ maps
strings of length at most {0, 1}λ2λ

to {0, 1}λ. Additionally, it supports the fol-
lowing functions:

– H.Open(h, x, i, y): Given a hash function key h, a string x ∈ {0, 1}∗ such
that |x| � λ2λ, an index i ∈ [|x|], and y ∈ {0, 1}λ, it outputs a short proof
γ ∈ {0, 1}λ2

that x[i] = y.
– H.Verify(h, y, u, γ, i): Given a hash function key h, a string y ∈ {0, 1}λ, a

string u ∈ {0, 1}λ, a string γ ∈ {0, 1}λ2
and an index i ∈ [2λ], it outputs

either accept or reject. This algorithm essentially verifies that there exists a
x such that y = h(x) and x[i] = u.

For security it is required to satisfy the following property of collision resistance.

CollisionResistance. The hash function family Hλ is said to be collision resis-
tant if for every PPT adversary A,

Pr
[
h

$←− Hλ; (x, u, γ, i) ← A(h) s.t. h(x) = y; x[i] �= u;H.Verify(h, y, u, γ, i) = accept
]

� negl(λ)

Construction: The above described scheme can be constructed by a merkle
hash tree based construction on standard collision resistant hash functions of
Definition 5.

3 Unbounded Arity Multi-input Functional Encryption

Multi-input functional encryption(MiFE) for bounded arity functions (or cir-
cuits) was first introduced in [11,12]. In other words, for any bound n on the
number of inputs, they designed an encryption scheme such that the owner of
the master secret key MSK, can generate function keys skf corresponding to

36 S. Badrinarayanan et al.

functions f accepting n inputs. That is, skf computes on CT1, . . . ,CTn to pro-
duce f(x1, . . . , xn) as output where CTi is an encryption of xi. In this work, we
remove the a-priori bound n on the cardinality of the function.

In this work, we consider multi-input functional encryption for functions
which accept unbounded number of inputs. That is, the input length is not
bounded at the time of function key generation. Since we are dealing with FE
for functions accepting unbounded number of inputs, in essence, we are dealing
with TMs (with unbounded inputs) instead of circuits (with bounded inputs).
Similar to MiFE with bounded inputs which allows for multi-party computation
with bounded number of players, our scheme allows multiparty computation
with a-priori unbounded number of parties. In other words, our scheme allows
for more parties to join on-the-fly even after function keys have been given out.
Moreover, similar to original MiFE, we want that each party is able to encrypt
under different encryption keys, i.e., we want to support unbounded number of
encryption keys. We want to achieve all this while keeping the size of the public
parameters, master secret key as well as the function keys to be bounded by
some fixed polynomial in the security parameter.

As mentioned before, we consider unbounded number of encryption keys,
some of which may be made public, while rest are kept secret. When all the
encryption keys corresponding to the challenge ciphertexts of the adversary are
public, it represents the “public-key setting”. On the other hand, when none
of the keys are made public, it is called the “secret-key” setting. Our modeling
allows us to capture the general setting when any polynomial number of keys
can be made public. This can correspond to any subset of the keys associated
with the challenge ciphertexts as well as any number of other keys. Note that we
have (any) unbounded polynomial number of keys in our system unlike previous
cases, where the only keys are the ones associated with challenge ciphertext.

As another level of generality, we allow that the turing machines or the
functions can be invoked with ciphertexts corresponding to any subset of the
encryption keys. Hence, if CTj is an encryption of xj under key EKij

then skM
on CT1, . . . ,CTn computes M((x1, i1), . . . , (xn, in)). Here skM corresponds to the
key for the turing machine M.

Now, we first present the syntax and correctness requirements for unbounded
arity multi-input functional encryption in Sect. 3.1 and then present the security
definition in Sect. 3.2.

3.1 Syntax

Let X = {Xλ}λ∈N, Y = {Yλ}λ∈N and K = {Kλ}λ∈N be ensembles where each
Xλ,Yλ,Kλ ⊆ [2λ]. Let M = {Mλ}λ∈N be an ensemble such that each M ∈ Mλ

is a turing machine accepting an (a-priori) unbounded polynomial (in λ) length
of inputs. Each input string to a function M ∈ Mλ is a tuple over Xλ × Kλ. A
turing machine M ∈ Mλ, on input a n length tuple ((x1, i1), (x2, i2), . . . , (xn, in))
outputs M((x1, i1), (x2, i2), . . . , (xn, in)) ∈ Yλ, where (xj , ij) ∈ Xλ × Kλ for all
j ∈ [n] and n(λ) is any arbitrary polynomial in λ.

Multi-input Functional Encryption for Unbounded Arity Functions 37

An unbounded arity multi-input functional encryption scheme FE for M
consists of five algorithms
(FE.Setup,FE.EncKeyGen,FE.Enc,FE.FuncKeyGen,FE.Dec) described below.

– Setup FE.Setup(1λ) is a PPT algorithm that takes as input the security para-
meter λ and outputs the public parameters PP and the master secret key
MSK.

– Encryption Key Generation FE.EncKeyGen(PP, i,MSK) is a PPT algo-
rithm that takes as input the public parameters PP, an index i ∈ Kλ and
master secret key MSK, and outputs the encryption key EKi corresponding to
index i.

– Encryption FE.Enc(PP,EKi, x) is a PPT algorithm that takes as input pub-
lic parameters PP, an encryption key EKi and an input message x ∈ Xλ

and outputs a ciphertext CT encrypting (x, i). Note that the ciphertext also
incorporates the index of the encryption key.

– Function Key Generation FE.FuncKeyGen(PP,MSK,M) is a PPT algo-
rithm that takes as input public parameters PP, the master secret key MSK,
a turing machine M ∈ Mλ and outputs a corresponding secret key SKM.

– Decryption FE.Dec(SKM,CT1,CT2, . . . ,CTn) is a deterministic algorithm
that takes as input a secret key SKM and a set of ciphertexts CT1, . . . ,CTn as
input and outputs a string y ∈ Yλ. Note that there is no a-priori bound on n.

Definition 7 (Correctness). An unbounded arity multi-input functional
encryption scheme FE for M is correct if ∀M ∈ Mλ, ∀n s.t n = p(λ), for
some polynomial p, all (x1, x2, . . . , xn) ∈ X n

λ and all I = (i1, . . . , in) ∈ Kn
λ :

Pr

⎡

⎢
⎢
⎣

(PP,MSK) ← FE.Setup(1λ);EKI ← FE.EncKeyGen(PP, I,MSK);
SKM ← FE.FuncKeyGen(PP,MSK,M);
FE.Dec(SKM,FE.Enc(PP,EKi1 , x1), . . . ,FE.Enc(PP,EKin

, xn)) �=
M((x1, i1), . . . , (xn, in))

⎤

⎥
⎥
⎦ � negl(λ)

Here, EKI denotes a set of encryption keys corresponding to the indices in the
set I. For each i ∈ I, we run FE.EncKeyGen(PP, i,MSK) and we denote that in
short by FE.EncKeyGen(PP, I,MSK).

3.2 Security Definition

We consider indistinguishability based selective security (or IND-security, in
short) for unbounded arity multi-input functional encryption. This notion will
be defined very similar to the security definition in original MiFE papers [11,12].
We begin by recalling this notion.

Let us consider the simple case of 2-ary functions f(·, ·) such that adversary
requests the function key for f as well as the encryption key for the second index.
Let the challenge ciphertext be (x0, y0) and (x1, y1). For the indistinguishability
of challenge vectors, first condition required is that f(x0, y0) = f(x1, y1). More-
over, since the adversary has the encryption key for the second index, he can
encrypt any message corresponding to the second index. Hence, if there exists

38 S. Badrinarayanan et al.

a y∗ such that f(x0, y∗) �= f(x1, y∗), then distinguishing is easy! Hence, they
additionally require that f(x0, ·) = f(x1, ·) for all the function queries made by
the adversary. That is, the function queries made have to be compatible with the
encryption keys requested by the adversary; otherwise the task of distinguishing
is trivial.

Similar to this notion, since in our case as well, the adversary can request
any subset of the encryption keys, we require that the function key queries are
compatible with encryption key queries. Since we allow the turing machine to be
invoked with any subset of the key indices and potentially unbounded number
of key indices, this condition is much more involved in our setting. At a high
level, we require that the function outputs should be identical for any subset
of the two challenge inputs combined with any vector of inputs for indices for
which adversary has the encryption keys. More formally, we define the notion of
I-compatibility as follows:

Definition 8 (I-Compatibility). Let {M} be any set of turing machines such
that every turing machine M in the set belongs to Mλ. Let I ⊆ Kλ such that
|I| = q(λ) for some polynomial q. Let X0 and X1 be a pair of input vectors, where
Xb = {(xb

1, k1), (x
b
2, k2), . . . , (x

b
n, kn)} such that n = p(λ) for some polynomial

p. We say that {M} and (X0,X1) are I-compatible if they satisfy the following
property:

– For every M ∈ {M}, every I′ = {i1, . . . , iα} ⊆ I, every J = {j1, . . . , jβ} ⊆ [n],
and every y1, . . . , yα ∈ Xλ and every permutation π : [α + β] → [α + β] :

M
(
π
(
(y1, i1), (y2, i2), . . . , (yα, iα), (x0

j1
, kj1), (x

0
j2

, kj2), . . . , (x
0
jβ

, kjβ
)
))

=

M
(
π
(
(y1, i1), (y2, i2), . . . , (yα, iα), (x1

j1
, kj1), (x

1
j2

, kj2), . . . , (x
1
jβ

, kjβ
)
))

Here, π(a1, a2, . . . , aα+β) denotes the permutation of the elements
a1, . . . , aα+β.

We now present our formal security definition for IND-secure unbounded arity
multi-input functional encryption.

Selective IND-Secure MiFE. This is defined using the following game between
the challenger and the adversary.

Definition 9 (Indistinguishability-Based Selective Security). We say
that an unbounded arity multi-input functional encryption scheme FE for M is
IND-secure if for every PPT adversary A = (A0,A1), for all polynomials p, q
and for all m = p(λ) and for all n = q(λ), the advantage of A defined as

AdvFE,IND
A (1λ) =

∣
∣
∣ Pr

[
INDFE

A (1λ) = 1
]

− 1
2

∣
∣
∣

is negl(λ) where the experiment is defined below (Fig. 1).
In the above experiment, we require :

– Let {M} denote the entire set of function key queries made by A1. Then, the
challenge message vectors X0 and X1 chosen by A1 must be I-compatible
with {M}.

Multi-input Functional Encryption for Unbounded Arity Functions 39

Fig. 1.

4 A Construction from Public-Coin Differing-Inputs
Obfuscation

Notation : Without loss of generality, let’s assume that every plaintext message
and encryption key index is of length λ where λ denotes the security parameter of
our scheme. Let (CRSGen,Prove,Verify) be a statistically sound, non-interactive
strong witness-indistinguishable proof system for NP, O denote a public coin
differing-inputs obfuscator, PKE = (PKE.Setup,PKE.Enc,PKE.Dec) be a seman-
tically secure public key encryption scheme, com be a statistically binding and
computationally hiding commitment scheme and G be a pseudorandom genera-
tor from {0, 1}λ to {0, 1}2λ. Without loss of generality, let’s say com commits to
a string bit-by-bit and uses randomness of length λ to commit to a single bit.
Let {Hλ} be a family of merkle hash functions such that every h ∈ Hλ maps
strings from {0, 1}λ2λ

to {0, 1}λ. That is, the merkle tree has depth λ.
We now describe our scheme FE = (FE.Setup,FE.EncKeyGen,FE.Enc,
FE.FuncKeyGen,FE.Dec) as follows:

– Setup FE.Setup(1λ):
The setup algorithm first computes crs ← CRSGen(1λ). Next, it computes
(pk1, sk1) ← PKE.Setup(1λ), (pk2, sk2) ← PKE.Setup(1λ), (pk3, sk3) ←
PKE.Setup(1λ) and (pk4, sk4) ← PKE.Setup(1λ). Let α = com(0λ;u), β1 =
com(0λ;u1) and β2 = com(0λ;u2) where u, u1 and u2 are random strings of

length λ2. Choose a hash function h ← Hλ. Choose z
$←− {0, 1}λ and compute

Z = G(z).
The public parameters are PP = (crs, pk1, pk2, pk3, pk4, h, α, β1, β2, Z).

The master secret key is MSK = (sk1, z, u, u1, u2).
– Encryption Key Generation FE.EncKeyGen(PP, i,MSK):

Given an index i, this algorithm first defines bi = z||0λ||0λ2 ||0λ2 ||0λ. Then,
it computes di = PKE.Enc(pk4, bi; r) for some randomness r and σi ←
Prove(crs, sti, wi) for the statement that sti ∈ L1 using witness wi = (bi, r)
where sti = (di, i, pk4, α, Z).

L1 is defined corresponding to the relation R1 defined below.

40 S. Badrinarayanan et al.

Relation R1:
Instance : sti = (di, i, pk4, α, Z)
Witness : w = (bi, r), where bi = z||hv||γ||u||t
R1(sti, w) = 1 if and only if the following conditions hold:
1. di = PKE.Enc(pk4, bi; r) and
2. The or of the following statements must be true:

(a) G(z) = Z
(b) H.Verify(h, hv, i, γ, t) = 1 and com(hv;u) = α

The output of the algorithm is the ith encryption key EKi = (σi, di, i), where
σi is computed using witness for statements 1 and 2(a) of R1.

– Encryption FE.Enc(PP,EKi, x):
To encrypt a message x with the ith encryption key EKi, the encryption
algorithm first computes c1 = PKE.Enc(pk1, x||i; r1) and c2 = PKE.Enc(pk2,
x||i; r2). Define string a = x||i||r1||0λ2 ||0λ||0λ2 ||x||i||r2||0λ2 ||0λ||0λ2 ||0λ and
compute c3 = PKE.Enc(pk3, a; r3). Next, it computes a proof π ←
Prove(crs, y, w) for the statement that y ∈ L2 using witness w where:
y = (c1, c2, c3, pk1, pk2, pk3, pk4, β1, β2, i, di, α, Z)
w = (a, r3, σi)
L2 is defined corresponding to the relation R2 defined below.

Relation R2:
Instance : y = (c1, c2, c3, pk1, pk2, pk3, pk4, β1, β2, i, di, α, Z)
Witness : w = (a, r3, σi) where a = x1||i1||r1||u1||hv1||γ1||x2||i2||r2||u2||
hv2||γ2||t
R2(y, w) = 1 if and only if the following conditions hold:
1. c3 = PKE.Enc(pk3, a; r3) and
2. The or of the following two statements 2(a) and 2(b) is true:

(a) The or of the following two statements is true:
i. (c1 = PKE.Enc(pk1, (x1||i1); r1) and c2 = PKE.Enc(pk2,

(x1||i1); r2)
and i1 = i and Verify(crs, sti, σi) = 1 such that

sti = (di, i, pk4, α, Z) ∈ L1); OR
ii. (c1 = PKE.Enc(pk1, (x2||i2); r1) and c2 = PKE.Enc(pk2,

(x2||i2); r2)
and i2 = i and Verify(crs, sti, σi) = 1 such that
sti = (di, i, pk4, α, Z) ∈ L1);

(b) c1,c2 encrypt (x1||i1),(x2||i2) respectively, which may be different but
then both β1 and β2 contain a hash of one of them (which may be
different). That is,
i. c1 = PKE.Enc(pk1, (x1||i1); r1) and c2 = PKE.Enc(pk2,

(x2||i2); r2)
ii. H.Verify(h, hv1, (x1||i1), γ1, t) = 1 and β1 = com(hv1;u1) OR

H.Verify(h, hv1, (x2||i2), γ1, t) = 1 and β1 = com(hv1;u1)
iii. H.Verify(h, hv2, (x1||i1), γ2, t) = 1 and β2 = com(hv2;u2) OR

H.Verify(h, hv2, (x2||i2), γ2, t) = 1 and β2 = com(hv2;u2)

Multi-input Functional Encryption for Unbounded Arity Functions 41

Fig. 2.

The output of the algorithm is the ciphertext CT = (c1, c2, c3, di, π, i). π is
computed for the AND of statements 1 and 2(a)i of R2.

– Function Key Generation FE.FuncKeyGen(PP,MSK,M) : The algorithm
computes SKM = O(GM) where the program GM is defined as follows (Fig. 2):

– Decryption FE.Dec(SKM,CT1, . . . ,CTn): It computes and outputs
SKM(CT1, . . . ,CTn).

5 Security Proof

We now prove that the proposed scheme FE is selective IND-secure.

Theorem 2. Let M = {Mλ}λ∈N be a parameterized collection of Turing
machines (TM) such that Mλ is the set of all TMs of size at most λ which
halt within polynomial number of steps on all inputs. Then, assuming there
exists a public-coin differing-inputs obfuscator for the class M, a non-interactive
strong witness indistinguishable proof system, a public key encryption scheme,
a non-interactive perfectly binding computationally hiding commitment scheme,
a pseudorandom generator and a family of merkle hash functions, the proposed
scheme FE is a selective IND-secure MIFE scheme with unbounded arity for Tur-
ing machines in the class M according to Definition 9.

We will prove the above theorem via a series of hybrid experiments
H0, . . . ,H20 where H0 corresponds to the real world experiment with challenge
bit b = 0 and H20 corresponds to the real world experiment with challenge bit
b = 1.

– Hybrid H0: This is the real experiment with challenge bit b = 0. The public
parameters are
PP = (crs, pk1, pk2, pk3, pk4, h, α, β1, β2, Z) such that α = com(0λ;u), β1 =

com(0λ;u1),β2 = com(0λ;u2) and Z = G(z), where z
$←− {0, 1}λ.

42 S. Badrinarayanan et al.

– Hybrid H1: This hybrid is identical to the previous hybrid except that β1 and
β2 are computed differently. β1 is computed as a commitment to hash of the
string s1 = (x0

1||k1, . . . , x0
n||kn) where {(x0

1, k1), . . . , (x
0
n, kn)} is the challenge

message vector X0. Similarly, β2 is computed as a commitment to hash of the
string s2 = (x1

1||k1, . . . , x1
n||kn) where {(x1

1, k1), . . . , (x
1
n, kn)} is the challenge

message vector X1. That is, β1 = com(h(s1);u1) and β2 = com(h(s2);u2).
There is no change in the way the challenge ciphertexts are computed.

Note that s1 and s2 are padded with sufficient zeros to satisfy the input
length constraint of the hash function.

– Hybrid H2: This hybrid is identical to the previous hybrid except that we
change the third component (c3) in every challenge ciphertext. Let the ith

challenge ciphertext be CTi = (ci,1, ci,2, ci,3, dki
, πi, ki) for all i ∈ [n]. Let

s1 = (x0
1||k1, . . . , x0

n||kn) and s2 = (x1
1||k1, . . . , x1

n||kn). In the previous hybrid
ci,3 is an encryption of ai = x0

i ||ki||r1||0λ2 ||0λ||0λ2 ||x0
i ||ki||r2||0λ2 ||0λ||0λ2 ||0λ.

Now, ai is changed to ai = x0
i ||ki||r1||u1||h(s1)||γ1,i||x1

i ||ki||r2||u2||h(s2)||γ2,i||i
where γ1,i, γ2,i are the openings for h(s1) and h(s2) w.r.t. x0

i ||ki and
x1

i ||ki, respectively. That is, γ1,i = H.Open(h, s1, i, x
0
i ||ki) and γ2,i =

H.Open(h, s2, i, x
1
i ||ki). Since ai has changed, consequently, ciphertext ci,3

which is an encryption of ai, witness wi for πi and proof πi change as well for
all i ∈ [n]. Note that for all challenge ciphertexts, π still uses the witness for
statement 1 and 2(a).

– Hybrid H3: This hybrid is identical to the previous hybrid except that
we change the second component in every challenge ciphertext. Let the
ith challenge ciphertext be CTi where i ∈ [n]. Let’s parse CTi =
(ci,1, ci,2, ci,3, dki

, πi, ki). We change ci,2 to be an encryption of x1
i ||ki. Fur-

ther, πi is now computed using the AND of statements 1 and 2(b) in the
relation R2.

– Hybrid H4: This hybrid is identical to the previous hybrid except that α is
computed as a commitment to hash of the string s = (k1, k2, . . . , km) where
{k1, . . . , km} is the set of indices I for which the adversary requests encryption
keys. i.e. α = com(h(s);u).

Note that in this hybrid, for any encryption key EKi, the proof σi is
unchanged and is generated using the and of statements 1 and 2(a).

– Hybrid H5: This hybrid is identical to the previous hybrid except that we
change the second component dki

for every encryption key EKki
that is given

out to the adversary. First, let’s denote s = (k1, . . . , km) as in the previous
hybrid. dki

is an encryption of bki
= z||0λ||0λ2 ||0λ2 ||0λ. Now, bki

is changed
to bki

= z||h(s)||γi||u1||i where u1 is the randomness used in the commitment
of α and γi is the opening of the hash values in the merkle tree. That is,
γi = H.Open(h, s, i, ki). Consequently, dki

which is an encryption of bki
also

changes. Since bki
has changed, the witness used in computing the proof σki

has also changed. Note that σki
still uses the witness for statements 1 and

2(a).
– Hybrid H6: This hybrid is identical to the previous hybrid except that for

every encryption key EKki
that is given out to the adversary, σki

is now
computed using the AND of statements 1 and 2(b) in the relation R1.

Multi-input Functional Encryption for Unbounded Arity Functions 43

– Hybrid H7: This hybrid is identical to the previous hybrid except that in the
public parameters Z is chosen to be a uniformly random string. Therefore,
now G(z) �= Z except with negligible probability.

– Hybrid H8: Same as the previous hybrid except that the challenger sets the
master secret key to have sk2 instead of sk1 and for every function key query
M, the corresponding secret key SKM is computed as SKM ← O(G′

M) where
the program G′

M is the same as GM except that :
1. It has secret key sk2 as a constant hardwired into it instead of sk1.
2. It decrypts the second component of each input ciphertext using sk2. That

is, in step 1(C), xi||ki is computed as xi||ki = PKE.Dec(sk2, ci,2)
– Hybrid H9: This hybrid is identical to the previous hybrid except that in the

public parameters Z is chosen to be the output of the pseudorandom generator
applied on the seed z. That is, Z = G(z).

– Hybrid H10: This hybrid is identical to the previous hybrid except that for
every encryption key EKki

that is given out to the adversary, we change σki
to

now be computed using the AND of statements 1 and 2(a) in the relation R1.

Remark: Note that statement 2(b) is true as well for all EKki
but we choose

to use 2(a) due to the following technical difficulty. Observe that at this point
we need to somehow change each ci,1 to be an encryption of x1

i ||ki instead
of x0

i ||ki. When we make this switch, the statement 2(b) in R2 is no longer
true. This is because β1 will not be valid w.r.t. ci,1 and ci,2 since both are now
encryptions of x1

i ||ki. So we need to make statement 2(a) true for all challenge
ciphertexts including the ones under some EKkj

such that kj /∈ I.
– Hybrid H11: This hybrid is identical to the previous hybrid except that we

change the first component in every challenge ciphertext. Let the ith challenge
ciphertext be CTi where i ∈ [n]. Let’s parse CTi = (ci,1, ci,2, ci,3, dki

, πi, ki).
We change ci,1 to be an encryption of x1

i ||ki. Then, we change the proof πi to
be computed using the AND of statements 1 and 2(a) in the relation R2.

– Hybrid H12: This hybrid is identical to the previous hybrid except that β1 is
computed differently. β1 is computed as a commitment to hash of the string
s2 = (x1

1||k1, . . . , x1
n||kn) where {(x1

1, k1), . . . , (x
1
n, kn)} is the challenge mes-

sage vector X1. That is, β1 = com(h(s2);u1)
Note that s2 is padded with sufficient zeros to satisfy the input length

constraint of the hash function. There is no change in the way the challenge
ciphertexts are computed.

– Hybrid H13: This hybrid is identical to the previous hybrid except that we
change the proof in every challenge ciphertext. Let the ith challenge cipher-
text be CTi where i ∈ [n]. Let’s parse CTi = (ci,1, ci,2, ci,3, dki

, πi, ki). We
change πi to now be computed using the AND of statements 1 and 2(b) in
the relation R2.

– Hybrid H14: This hybrid is identical to the previous hybrid except that for
every encryption key EKki

that is given out to the adversary, we change σki
to

now be computed using the AND of statements 1 and 2(b) in the relation R1.
– Hybrid H15: This hybrid is identical to the previous hybrid except that in

the public parameters Z is chosen to be a uniformly random string.

44 S. Badrinarayanan et al.

– Hybrid H16: This hybrid is identical to the previous hybrid except that the
master secret key is set back to having sk1 instead of sk2 and for every function
key query M, the corresponding secret key SKM is computed using obfuscation
of the original program GM, i.e. SKM ← O(GM).

– Hybrid H17: This hybrid is identical to the previous hybrid except we change
Z to be the output of the pseudorandom generator applied on the seed z.
That is, Z = G(z).

– Hybrid H18: This hybrid is identical to the previous hybrid except that for
every encryption key EKki

that is given out to the adversary, σki
is now

computed using the AND of statements 1 and 2(a) in the relation R1.
– Hybrid H19: This hybrid is identical to the previous hybrid except that we

change the second component dki
for every encryption key EKki

that is given
out to the adversary. We change bki

to be bki
= z||0λ||0λ2 ||0λ2 ||0λ and conse-

quently dki
also changes as it is the encryption of bki

. Since bki
has changed,

the witness used in computing the proof σki
has also changed. Note that σki

still uses the witness for statements 1 and 2(a).
– Hybrid H20: This hybrid is identical to the previous hybrid except that we

change α to be a commitment to 0λ. That is, α = com(0λ;u).
– Hybrid H21: This hybrid is identical to the previous hybrid except that for

every challenge ciphertext key CTi that is given out to the adversary, πi is
now computed using the AND of statements 1 and 2(a) in the relation R2.

– Hybrid H22: This hybrid is identical to the previous hybrid except that
we change the third component in every challenge ciphertext. Let the
ith challenge ciphertext be CTi where i ∈ [n]. Let’s parse CTi =
(ci,1, ci,2, ci,3, dki

, πi, ki) where ci,3 is an encryption of ai. Now, ai is changed to
ai = x1

i ||ki||r1||0λ2 ||0λ||0λ2 ||x1
i ||ki||r2||0λ2 ||0λ||0λ2 ||0λ. Consequently, cipher-

text ci,3 which is an encryption of ai will also change. Note that for all chal-
lenge ciphertexts, π still uses the witness for statement 1 and 2(a).

– Hybrid H23: This hybrid is identical to the previous hybrid except that β1

and β2 are both computed to be commitments of 0λ. That is, β1 = com(0λ;u1)
and β2 = com(0λ;u2). This is identical to the real experiment with challenge
bit b = 1.

Below we will prove that (H0 ≈c H1), (H1 ≈c H2), and (H7 ≈c H8). The
indistinguishability of other hybrids will follow along the same lines.

Lemma 1 (H0 ≈c H1). Assuming that com is a (computationally) hiding com-
mitment scheme, the outputs of experiments H0 and H1 are computationally
indistinguishable.

Proof. The only difference between the two hybrids is the manner in which the
commitments β1 and β2 are computed. Let’s consider the following adversary
Acom, which internally executes the hybrid H0 except that it does not generate
the commitments β1 and β2 on it’s own. Instead, after receiving the challenge
message vectors X0 and X1 from A, it sends two sets of strings, namely (0λ, 0λ)
and (h(s1), h(s2)) to the outside challenger where s1 and s2 are defined the same

Multi-input Functional Encryption for Unbounded Arity Functions 45

way as in H1. In return, Acom receives two commitments β1, β2 corresponding
to either the first or the second set of strings. It then gives these to A. Now,
whatever bit b that A guesses, Acom forwards the guess to the outside challenger.
Clearly, Acom is a polynomial time algorithm and violates the hiding property
of com unless H0 ≈c H1.

Lemma 2 (H1 ≈c H2). Assuming the semantic security of PKE and the strong
witness indistinguishability of the proof system, the outputs of experiments H1

and H2 are computationally indistinguishable.

Proof. Recall that strong witness indistinguishability asserts the following: let D0

and D1 be distributions which output an instance-witness pair for an NP-relation
R and suppose that the first components of these distributions are computation-
ally indistinguishable, i.e., {y : (y, w) ← D0(1λ)} ≈c {y : (y, w) ← D1(1λ)};
then X0 ≈c X1 where Xb : {(crs, y, π) : crs ← CRSGen(1λ); (y, w) ← Db(1λ);π ←
Prove(crs, y, w)} for b ∈ {0, 1}.

Suppose that H1 and H2 can be distinguished with noticeable advantage δ.
Note that we can visualize Hybrid H2 as a sequence of n hybrids H1,0, . . . ,H1,n

where in each hybrid, the only change from the previous hybrid happens in the
ith challenge ciphertext CTi. H1,0 corresponds to H1 and H1,n corresponds to H2.
Therefore, if H1 and H2 can be distinguished with advantage δ, then there exists
i such that H1,i−1 and H1,i can be distinguished with advantage δ/n where n is
a polynomial in the security parameter λ. So, let’s fix this i and work with these
two hybrids H1,i−1 and H1,i.

Observe that both hybrids internally sample the following values in an identi-
cal manner: ζ = (pk1, pk2, pk3, pk4, h, α, β1, β2, Z, ci,1, ci,2, dki

, ki). This includes
everything except crs, ci,3 and πi. By simple averaging, there is at least a δ/2n
fraction of strings st such that the two hybrids can be distinguished with advan-
tage at least δ/2n when ζ = st. Call such a ζ to be good. Fix one such ζ, and
denote the resulting hybrids by Hζ

1,i−1 and Hζ
1,i. Note that the hybrids have

inbuilt into them all other values used to sample ζ namely : X0,X1 received
from A, randomness for generating the encryptions and the commitments, and
the master secret key msk.

The first distribution D(ζ)
0 is defined as follows: compute ci,3 = PKE.Enc

(pk3, ai; ri,3) where ai = x0
i ||ki||ri,1||0λ2 ||0λ||0λ2 ||x0

i ||ki||ri,2||0λ2 ||0λ||0λ2 ||0λ and
let statement y = (ci,1, ci,2, ci,3, pk1, pk2, pk3, pk4, β1, β2, ki, dki

, α, Z), witness
w = (ai, ri,3, σki

). It outputs (y, w). Note that y is identical to ζ except
that h has been removed and ci,3 has been added. Define a second dis-
tribution D(ζ)

1 identical to D(ζ)
0 except that instead of ai , it uses a∗

i =
x0

i ||ki||r1||u1||h(s1)||γi,1||x1
i ||ki||r2||u2||h(s2)||γi,2||i. Here, γi,1, γi,2 are the open-

ings of the hash values in the merkle tree. That is, γi,1 = H.Open(h, s1, i, x
0
i ||ki)

and γi,2 = H.Open(h, s2, i, x
1
i ||ki) where s1 = (x0

1||k1, . . . , x0
n||kn) and s2 =

(x1
1||k1, . . . , x1

n||kn). Then, it computes c∗
i,3 = PKE.Enc(pk3, a∗

i ; ri,3), y∗ =
(ci,1, ci,2, c

∗
i,3, pk1, pk2, pk3, pk4, β1, β2, ki, dki

, α, Z), and w∗ = (a∗
i , ri,3, σi). It

outputs (y∗, w∗). It follows from the security of the encryption scheme that
the distribution of y sampled by D(ζ)

0 is computationally indistinguishable from

46 S. Badrinarayanan et al.

y∗ sampled by D(ζ)
1 , i.e., y ≈c y∗. Therefore, we must have that X0 ≈c X1

with respect to these distributions. We show that this is not the case unless
Hζ

1,i−1 ≈c Hζ
1,i.

Consider an adversary A′ for strong witness indistinguishability who incor-
porates A and ζ (along with sk1 and all values for computing ζ described above),
and receives a challenge (crs, y, π) distributed according to either D(ζ)

0 or D
(ζ)
1 ;

here y has one component ci,3 that is different from ζ. The adversary A′ uses
crs, sk1 and other values used in defining ζ to completely define PP, answer
encryption key queries, generate other challenge ciphertexts and answer the func-
tion key queries and feeds it to A. Then, it uses (ci,3, π) to define the ithchallenge
ciphertext CTi = (ci,1, ci,2, ci,3, dki

, π, ki). The adversary A′ outputs whatever A
outputs. We observe that the output of this adversary is distributed according
to Hm

1,i−1 (resp., Hm
1,i) when it receives a tuple from distribution X0 (resp., X1).

A randomly sampled m is good with probability at least δ/2n, and therefore it
follows that with probability at least δ2

4n2 , the strong witness indistinguishability
property will be violated with non-negligible probability unless δ is negligible.

Lemma 3 (H7 ≈c H8). Assuming the correctness of PKE, that O is a public-
coin differing-inputs obfuscator for for Turing machines in the class M, G is a
pseudorandom generator, com is a perfectly binding and (computationally) hiding
commitment scheme and Hλ is a family of merkle hash functions, the outputs of
experiments H7 and H8 are computationally indistinguishable.

Proof. Suppose that the claim is false and A′s output in H7 is noticeably different
from its output in H8. Suppose that A′s running time is bounded by a polynomial
μ so that there are at most μ function key queries it can make. We consider a
sequence of μ hybrid experiments between H7 and H8 such that hybrid H7,v for
v ∈ [μ] is as follows.

Hybrid H7,v. It is identical to H7 except that it answers the function key queries
as follows. For j ∈ [μ], if j � v, the function key corresponding to the jth query,
denoted by Mj , is an obfuscation of program GMj

. If j > v, it is an obfuscation
of program G′

Mj
. We define H7,0 to be H7 and observe that H7,μ is the same

as H8.
We see that if A′s advantage in distinguishing between H7 and H8 is δ, then

there exists a v ∈ [μ] such that A’s advantage in distinguishing between H7,v−1

and H7,v is at least δ/μ. We show that if δ is not negligible, then we can use
A to violate the indistinguishability of the obfuscator O. To do so, we define
a sampling algorithm Samv

A and a distinguishing algorithm Dv
A and prove that

Samv
A is a public-coin differing inputs sampler outputting a pair of differing-input

TMs yet Dv
A can distinguish an obfuscation of left TM from that of right TM

that is output by Samv
A. The description of these two algorithms is as follows:

Sampler Samv
A(ρ):

1. Receive (X0,X1, I) from A.
2. Parse ρ as (crs, h, τ).

Multi-input Functional Encryption for Unbounded Arity Functions 47

3. Proceed identically to H7 using τ as randomness for all tasks except for sam-
pling the hash function which is set to h, and the CRS, which is set to crs.
This involves the following steps:
(a) Parse τ = (τ1, τ2, τ3, τ4, ri,1, ri,2, ri,3, r�, u, u1, u2) for all i ∈ [n] and for

all � ∈ [|I|].
(b) Use τ1 as randomness to generate (pk1, sk1), τ2 as randomness to generate

(pk2, sk2) τ3 as randomness to generate (pk3, sk3) τ4 as randomness to
generate (pk4, sk4).

(c) Use u as randomness to generate α = com(h(s);u), where
s = (1||k1, 2||k2, . . . , t||km) and {k1, . . . , km} = I.

(d) Use u1, u2 as randomness to generate β1 = com(h(s1);u1) and
β2 = com(h(s2);u2), where s1 = (1||x0

1||k1, . . . , n||x0
n||kn) and

s2 = (1||x1
1||k1, . . . , n||x1

n||kn).
(e) Define Z to be a uniform random string of length 2λ. Define the public

parameters PP = (crs, pk1, pk2, pk3, pk4, h, α, β1, β2, Z). Send PP to A.

(f) For all ki ∈ I, to generate the ith encryption key EKki
, compute bki

=
z||h(s)||γi||u1||i and dki

= PKE.Enc(pk4, bki
; ri). Using witness wki

=
(bki

, ri), compute proof σki
using the AND of statements 1 and 2(b) in

the relation R1.
Send the encryption key EKki

for all ki ∈ I to A.
(g) For all i ∈ [n], we generate the ith challenge ciphertext in the follow-

ing manner. We use ri,1 and ri,2 as randomness to generate ci,1 =
PKE.Enc(pk1, x0

i ||ki; ri,1) and ci,2 = PKE.Enc(pk2, x1
i ||ki; ri,2). Use ai =

x0
i ||ki||ri,1||u1||h(s1)||γi,1||x1

i ||ki||ri,2||u2||h(s2)||γi,2||i where γi,1, γi,2 are
the openings for h(s1) and h(s2) w.r.t. x0

i ||ki and x1
i ||ki respectively. That

is, γi,1 = H.Open(h, s1, i, x
0
i ||ki) and γi,2 = H.Open(h, s2, i, x

1
i ||ki). Com-

pute ci,3 = PKE.Enc(pk3, ai; ri,3). Then, use witness wi = (ai, ri,3, σki
)

to compute proof πi using the AND of statements 1 and 2(b) in the
relation R2. The ith challenge ciphertext is (ci,1, ci,2, ci,3, dki

, πi, ki).
Send all the challenge ciphertexts to A.

(h) Answer the function key queries of A as follows. For all queries Mj , until
j < v, send an obfuscation of GMj

.
(i) Upon receiving the vth function key query Mv, output (M̃0, M̃1) and halt,

where :
M̃0 = GMv

, M̃1 = G′
Mv

.

Distinguisher Dv
A(ρ,M′): on input a random tape ρ and an obfuscated TM M′,

the distinguisher simply executes all steps of the sampler Samv
A(ρ), answering

function keys for all j < v as described above. The distinguisher, however, does
not halt when the vth query is sent, and continues the execution of A answering
function key queries for Mj as follows :

– if j = v, send M′ (which is an obfuscation of either M̃0 or M̃1).
– if j > v, send an obfuscation of G′

Mj
.

48 S. Badrinarayanan et al.

The distinguisher outputs whatever A outputs.
We can see that if M′ is an obfuscation of M̃0, the output of Dv

A(ρ,M′) is
identical to A′s output in H7,k−1 and if M′ is an obfuscation of M̃1, it is identical
to A′s output in H7,k. We have that Dv

A(ρ,M′) distinguishes H7,k−1 and H7,k

with at least δ/μ advantage.
All that remains to prove now is that Samv

A(ρ) is a public-coin differing-inputs
sampler.

Theorem 3. Samv
A(ρ) is a public-coin differing inputs sampler.

Proof. We show that if there exists an adversary B who can find differing-inputs
to the pair of TMs sampled by Samv

A(ρ) with noticeable probability, we can
use B and Samv

A(ρ) to construct an efficient algorithm CollFinderB,Samv
A(ρ) which

finds collisions in h with noticeable probability.

CollFinderB,Samv
A(ρ)(h):

On input a random hash function h ← Hλ, the algorithm first sam-
ples uniformly random strings (crs, τ) to define a random tape ρ =
(crs, h, τ). Then, it samples (M̃0, M̃1) ← Samv

A(ρ) and computes e∗ ←
B(ρ) e∗ is the differing input and corresponds to a set of ciphertexts.
Let e∗ = (e∗

1, . . . , e
∗
�) where each e∗

j = (e∗
j,1, e

∗
j,2, e

∗
j,3, d

∗
k∗

j
, π∗

j , k∗
j) for j ∈

[�]. For each j, if π∗
j is a valid proof, compute a∗

j = PKE.Dec(sk3, e∗
j,3)

and let a∗
j = x∗

j,1||k∗
j,1||r∗

j,1||u1||hv∗
1||γ∗

j,1||x∗
j,2||k∗

j,2||r∗
j,2||u2||hv∗

2||γ∗
j,2||t∗. Let

(X0,X1) be the challenge message vectors output by A initially. Let
X0 = {(x0

1, k1), . . . , (x
0
n, kn)} and X1 = {(x1

1, k1), . . . , (x
1
n, kn)}. Define s1 =

(x0
1||k1, . . . , x0

n||kn) and s2 = (x1
1||k1, . . . , x1

n||kn) Let the encryption key queries
be I = {k1, . . . , kt}. Define s = (k1, . . . , kt). If h(s1) = h(s2), output (s1, s2) as
collisions to the hash function.

Claim. For all j ∈ [�], π∗
j is a valid proof.

Proof. Since e∗ is a differing input, M̃0(e∗) �= M̃1(e∗). Now, suppose for some
j ∈ [�], π∗

j was not a valid proof. Then, both M̃0 and M̃1 would output ⊥ on
input e∗ which means that e∗ is not a differing input.

Condition A : A ciphertext C = (c1, c2, c3, dk, π, k) for which π is valid satisfies
condition A with respect to challenge message vectors (X0,X1) and encryption
key queries I iff

1. c1 and c2 encrypt the same message and k ∈ I (OR)
2. ∃i ∈ [n] such that {(x1||k1), (x2||k2)} = {(x0

i ||ki), (x1
i ||ki)}, where x1||k1 =

PKE.Dec(sk1, c1) and x2||k2 = PKE.Dec(sk2, c2).

Claim. For every j ∈ [�], if e∗
j satisfies condition A, then e is not a differing

input.

Proof. Suppose the above two conditions are true for every j ∈ [�]. Then, from
the definition of I-compatibility of challenge message vectors (X0,X1) and func-
tion query Mv, we see that M̃0(e∗) = M̃1(e∗) which means that e∗ is not a
differing input.

Multi-input Functional Encryption for Unbounded Arity Functions 49

Therefore, since we have assumed that e∗ is a differing input, there exists
j ∈ [�] such that e∗

j does not satisfy condition A.

Claim. If there exists j ∈ [�] such that e∗
j does not satisfy condition A, then we

can find a collision in the hash function h.

Proof. Let’s fix j ∈ [�] such that e∗
j does not satisfy condition A. Since π∗

j is
a valid proof, by the soundness of the strong witness indistinguishable proof
system, one of the following two cases must hold:

– case 1: π∗
j was proved using statements 1 and 2(a) of relation R2.

Now, since e∗
j does not satisfy condition A, it doesn’t satisfy condition A(1)

as well. Therefore, either e∗
j,1 and e∗

j,2 encrypt different messages or k∗
j /∈ I.

If e∗
j,1 and e∗

j,2 encrypt different messages, statement 2(a) would clearly be
false and π∗

j would not be valid. However, we already proved that π∗
j is valid.

Therefore, it must be the case that k∗
j /∈ I.

Since 2(a) is true in R2, we have Verify(crs, stk∗
j
, σk∗

j
) = 1 where stk∗

j
=

(dk∗
j
, k∗

j , pk4, α, Z) and σk∗
j

is a proof that stk∗
j

∈ L1. Further, since Z is a
uniform random string, Z �= G(z) for any z except with negligible probabil-
ity. As a result, σk∗

j
must be proved using statements 1 and 2(b) in relation

R1. Therefore, there exists hv∗, γ∗, t∗ such that H.Verify(h, hv∗, k∗
j , γ∗, t∗) = 1

and com(hv∗;u) = α. Since the commitment scheme is perfectly binding,
hv∗ = h(s). We know that s = (k1, . . . , kt). Therefore, s[t∗] �= k∗

j . Thus,
there exists γ∗, t∗ such that H.Verify(h, h(s), k∗

j , γ∗, t∗) = 1 and s[t∗] �= k∗
j . By

definition 6, we have found a collision in the hash function h.
– case 2: π∗

j was proved using statements 1 and 2(b) of relation R2.
Since e∗

j does not satisfy condition A, it doesn’t satisfy condition A(2) as
well. Therefore, ∀i ∈ [n] {(x∗

j,1||k∗
j,1), (x

∗
j,2||k∗

j,2)} �= {(x0
i ||ki), (x1

i ||ki)}. Since
π∗

j was proved using 2(b), ∃hv∗
1, hv

∗
2, γ

∗
1 , γ∗

2 , t∗ such that 2(b)(ii) and 2(b)(iii)
are true. Without loss of generality, let’s say that the first of the two con-
ditions in 2(b)(ii) is true and the second of the two conditions in 2(b)(iii)
is true. That is, H.Verify(h, hv∗

1, x
∗
j,1||k∗

j,1, γ
∗
1 , t∗) = 1, β1 = com(hv∗

1;u1) and
H.Verify(h, hv∗

2, x
∗
j,2||k∗

j,2, γ
∗
2 , t∗) = 1, β2 = com(hv∗

2;u2). Since the commit-
ment scheme is perfectly binding, hv∗

1 = h(s1) and hv∗
2 = h(s2). We know

that {(x∗
j,1||k∗

j,1), (x
∗
j,2||k∗

j,2)} �= {(x0
t∗ ||kt∗), (x1

t∗ ||kt∗)}. Without loss of gen-
erality, let’s say (x∗

j,1||k∗
j,1) �= (x0

t∗ ||kt∗). Since s1 = (x0
1||k1, . . . , x0

n||kn), we
have s1[t∗] �= (x∗

j,1||k∗
j,1). Thus, there exists γ∗

1 , t∗ such that s1[t∗] �= x∗
j,1||k∗

j,1

and H.Verify(h, h(s1), x∗
j,1||k∗

j,1, γ
∗
1 , t∗) = 1. By Definition 6, we have found a

collision in the hash function h.

References

1. Ananth, P., Boneh, D., Garg, S., Sahai, A., Zhandry, M.: Differing-inputs obfusca-
tion and applications (2013)

2. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001)

50 S. Badrinarayanan et al.

3. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011)

4. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data.
In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidel-
berg (2007)

5. Boyle, E., Chung, K.M., Pass, R.: On extractability (aka differing-inputs) obfus-
cation. In: TCC (2014)

6. Boyle, E., Pass, R.: Limits of extractability assumptions with distributional auxil-
iary input. IACR Cryptology ePrint Archive 2013/703 (2013). http://eprint.iacr.
org/2013/703

7. Feige, U., Lapidot, D., Shamir, A.: Multiple noninteractive zero knowledge proofs
under general assumptions. SIAM J. Comput. 29(1), 1–28 (1999)

8. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 2013
IEEE 54th Annual Symposium on Foundations of Computer Science (FOCS), pp.
40–49. IEEE (2013)

9. Garg, S., Gentry, C., Halevi, S., Wichs, D.: On the implausibility of differing-inputs
obfuscation and extractable witness encryption with auxiliary input. In: Garay,
J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 518–535.
Springer, Heidelberg (2014)

10. Goldwasser, S., Gordon, S.D., Goyal, V., Jain, A., Katz, J., Liu, F.-H., Sahai, A.,
Shi, E., Zhou, H.-S.: Multi-input functional encryption. In: Nguyen, P.Q., Oswald,
E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602. Springer, Heidelberg
(2014)

11. Goldwasser, S., Goyal, V., Jain, A., Sahai, A.: Multi-input functional encryption.
Cryptology ePrint Archive, Report 2013/727 (2013)

12. Gordon, S.D., Katz, J., Liu, F.H., Shi, E., Zhou, H.S.: Multi-input functional
encryption. IACR Cryptology ePrint Archive 2013/774 (2013)

13. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Proceedings of the 13th ACM confer-
ence on Computer and communications security, pp. 89–98. ACM (2006)

14. Halevi, S., Lindell, Y., Pinkas, B.: Secure computation on the web: computing
without simultaneous interaction. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 132–150. Springer, Heidelberg (2011)

15. Ishai, Y., Pandey, O., Sahai, A.: Public-coin differing-inputs obfuscation and its
applications. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol.
9015, pp. 668–697. Springer, Heidelberg (2015)

16. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In: Smart, N.P. (ed.) EUROCRYPT 2008.
LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008)

17. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure
functional encryption: attribute-based encryption and (hierarchical) inner prod-
uct encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
62–91. Springer, Heidelberg (2010)

18. Merkle, R.C.: A digital signature based on a conventional encryption function.
In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 369–378. Springer,
Heidelberg (1988)

19. O’Neill, A.: Definitional issues in functional encryption. IACR Cryptology ePrint
Archive 2010/556 (2010)

http://eprint.iacr.org/2013/703
http://eprint.iacr.org/2013/703

Multi-input Functional Encryption for Unbounded Arity Functions 51

20. Pandey, O., Prabhakaran, M., Sahai, A.: Obfuscation-based non-black-box simula-
tion and four message concurrent zero knowledge for np. IACR Cryptology ePrint
Archive 2013/754 (2013)

21. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

Multi-party Key Exchange for Unbounded
Parties from Indistinguishability Obfuscation

Dakshita Khurana1(B), Vanishree Rao2, and Amit Sahai1

1 Department of Computer Science, Center for Encrypted Functionalities,
UCLA, Los Angeles, CA, USA

{dakshita,sahai}@cs.ucla.edu
2 PARC, a Xerox Company, Palo Alto, CA, USA

Vanishree.Rao@parc.com

Abstract. Existing protocols for non-interactive multi-party key
exchange either (1) support a bounded number of users, (2) require a
trusted setup, or (3) rely on knowledge-type assumptions.

We construct the first non-interactive key exchange protocols which
support an unbounded number of parties and have a security proof
that does not rely on knowledge assumptions. Our non-interactive key-
exchange protocol does not require a trusted setup and extends easily to
the identity-based setting. Our protocols suffer only a polynomial loss to
the underlying hardness assumptions.

1 Introduction

Non-interactive key exchange (NIKE) enables a group of parties to derive a
shared secret key without any interaction. In a NIKE protocol, all parties simul-
taneously broadcast a message to all other parties. After this broadcast phase,
each party should be able to locally compute a shared secret key for any group
of which he is a member. All members of a group should generate an identical
shared key, and the shared key for a group should look random to a non-member.

This notion was introduced by Diffie and Hellman [16], who also gave a pro-
tocol for non-interactive key exchange in the two-party setting. More than two
decades later, Joux [32] constructed the first non-interactive key exchange pro-
tocol for three parties. Given a set of N parties (where N is a polynomial in

D. Khurana and A. Sahai—Research supported in part from a DARPA/ARL SAFE-
WARE award, NSF Frontier Award 1413955, NSF grants 1228984, 1136174, 1118096,
and 1065276, a Xerox Faculty Research Award, a Google Faculty Research Award,
an equipment grant from Intel, and an Okawa Foundation Research Grant. This
material is based upon work supported by the Defense Advanced Research Projects
Agency through the ARL under Contract W911NF-15-C-0205. The views expressed
are those of the authors and do not reflect the official policy or position of the
Department of Defense, the National Science Foundation, or the U.S. Government.
V. Rao—Work done while studying at UCLA.

c© International Association for Cryptologic Research 2015
T. Iwata and J.H. Cheon (Eds.): ASIACRYPT 2015, Part I, LNCS 9452, pp. 52–75, 2015.
DOI: 10.1007/978-3-662-48797-6 3

Multi-party Key Exchange for Unbounded Parties 53

the security parameter), Boneh and Silverberg [4] obtained a multiparty NIKE
protocol based on multilinear maps. The recent candidates for multilinear maps
given by [14,15,22,27] can be used to instantiate the scheme of [4], assuming
a trusted setup. After the advent of candidate constructions for indistinguisha-
bility obfuscation (iO) starting with the result of Garg et. al. [23], Boneh and
Zhandry [6] demonstrated how to obtain static secure NIKE and ID-NIKE based
on indistinguishability obfuscation, without relying on a trusted setup.

However, all these constructions require an a-priori bound on the number
of parties. The only known protocols which can possibly handle an unbounded
number of parties are the ones by Ananth et. al. and Abusalah et. al. [1,2], but
their solutions rely on differing-inputs obfuscation (diO)[2,3,7]. Unfortunately,
diO is a knowledge-type assumption, and recent work [9,25,31] demonstrates
that it may suffer from implausibility results. In this paper, we address the
following question:

Can we obtain NIKE supporting an a-priori unbounded number of parties and
not requiring any setup, based on indistinguishability obfuscation?

We give a positive answer to this question, by demonstrating non-interactive
key exchange protocols that achieve static security and support an a-priori
unbounded number of parties, based on indistinguishability obfuscation.

1.1 Our Contributions

We consider a setting where an a-priori unbounded number of parties may broad-
cast or publish messages, such that later any party can derive a shared secret
key for a group of which it is a member. In our setting, parameters do not grow
with the number of parties. Our results can be summarized as follows.

Theorem 1. Assuming indistinguishability obfuscation and fully homomorphic
encryption, it is possible to obtain static-secure non-interactive multi-party key
exchange for an a-priori unbounded number of parties, without any setup.

Theorem 2. Assuming indistinguishability obfuscation and fully homomorphic
encryption, it is possible to obtain static-secure identity-based non-interactive
multi-party key exchange for an a-priori unbounded number of parties.

Fully homomorphic encryption was first constructed by Gentry [26] and
subsequently Brakerski and Vaikuntanathan [10] constructed it under the learn-
ing with errors assumption. Alternatively, it can be constructed based on sub-
exponentially secure iO for circuits and sub-exponential one-way functions [12].

1.2 Technical Overview

Bottlenecks in known constructions. Our starting point the static-secure NIKE
protocol of Boneh and Zhandry [6] based on indistinguishability obfuscation, in
the simplest case where parties have access to a trusted setup. The adversary

54 D. Khurana et al.

fixes a set of parties to corrupt, independent of the system parameters. Then the
setup generates public parameters, and each party broadcasts its public values.
We require that the shared group key for all the honest parties should look
indistinguishable from random, from the point of view of the adversary.

The basic Boneh-Zhandry construction uses a trusted setup to generate an
obfuscated program with a secret PRF key. Parties pick a secret value uniformly
at random, and publish the output of a length-doubling PRG applied to this
value, as their public value. To derive the shared secret key for a group of users,
a member of the group inputs public values of all users in the group (including
himself) according to some fixed ordering, as well as his own secret value into
this obfuscated program. The program checks if the PRG applied to the secret
value corresponds to one of the public values in the group, and if the check
passes, outputs a shared secret key by applying a PRF to the public value of all
parties in the group.

To prove security, we note that the adversary never corrupts any party in the
challenge set, so we never need to reveal the secret value for any party in this
set. Thus, (by security of the PRG) we can set the public values of parties in the
challenge set, to uniformly random values in the co-domain of the PRG. Then
with overwhelming probability, there exists no pre-image for any of the public
values in the challenge set, and therefore there exists no secret value for which
the PRG check in the program would go through. This allows us to puncture
the program at the challenge set, and then replace the shared secret key for this
set with random. However, in this construction it is necessary to set an a-priori
bound on the number of participants, since the size of inputs to the setup circuit
must be bounded.

The construction of Ananth et. al. [2] works without this a-priori bound,
by making use of differing-inputs obfuscation and collision resistant hashing. To
obtain a shared group key, parties first hash down the group public values and
then generate a short proof of membership in the group. The program takes the
hashed value and proof, and outputs a shared secret key for the group if and
only if the proof verifies. However, because the hash is compressing, there exist
collisions and thus there exist false proofs of membership. The only guarantee
is that these proofs are ‘hard’ to find in a computational sense. Unfortunately,
proving security in such a situation requires the use of differing-inputs obfusca-
tion, since we must argue that any non-member which distinguishes from random
the shared key of a group, could actually have generated false proofs. Such an
argument inherently involves an extractable assumption.

First attempt. Now, it seems that we may benefit from using an iO-friendly
tool for hashing, such that the proof of membership is unconditionally sound for
a select piece of the input to the hash. Moreover, the description of the hash
should computationally hide which part of the input it is sound for. Then, like
in the previous proof, we can set the public values of parties in the challenge set
to uniformly random values in the co-domain of the PRG, and try to puncture
the program at each position one by one. This resembles the “selective enforce-
ment” techniques of Koppula et. al. [34] who construct accumulators (from iO)

Multi-party Key Exchange for Unbounded Parties 55

as objects enabling bounded commitments to an unbounded storage, which are
unconditionally binding for a select piece of the storage.

At this point, it may seem that we can use the accumulator hash function
and we should be done. Parties can hash down an unbounded number of public
values to a bounded size input using the accumulator, and generate a short
proof of correctness. On input the hashed value and proof, the program can
be set to output a shared key if the proof verifies. To prove security, we could
begin by generating the public values for parties in the challenge set, uniformly
at random in the co-domain of the PRG. Then, it should be possible to make
the accumulator binding at the first index, and consequently puncture out the
first index from the program. Then we can continue across indices and finally
puncture out the hash value at the challenge set for all indices.

Even though this proof seems straightforward, the afore-mentioned approach
fails. This is because an accumulator can be made unconditionally sound at a
particular index, only conditioned on the previous indices being equal to an a-
priori fixed sequence. In the setting of obfuscating unbounded-storage Turing
Machines, for which such accumulators were first introduced [34], there was
indeed a well-defined “correct” path that was generated by the machine itself,
and consequently there was a way to enforce correct behaviour on all previous
indices. However, in our setting the adversary is allowed to hash completely
arbitrary values for all indices. Very roughly, we require a tool that enables
selective enforcing even when the adversary is allowed to behave arbitrarily on
all other indices.

Our solution. At this point, we require a hash function which can enforce sound-
ness at hidden indices, while allowing arbitrary behaviour on all other indices.
Such a hash function was introduced recently in the beautiful work of Hubacek
and Wichs [30], in the context of studying the communication complexity of
secure function evaluation with long outputs. They call it a somewhere statisti-
cally binding (SSB) hash and give a construction based on fully homomorphic
encryption. An SSB hash can be used like other hash functions, to hash an
a-priori unbounded number of chunks of input, each of bounded size, onto a
bounded space. Moreover, this hash can operate in various modes, where each
mode is statistically binding on some fixed index i determined at setup; yet, the
description of the hash function computationally hides this index.

Equipped with this tool, it is possible to argue security via a selective enforc-
ing hybrid argument. As usual, we begin by generating the public values of all
parties in the challenge set, uniformly at random in the co-domain of the PRG.
With overwhelming probability, this ensures that there exist no secret values
that could generate the public values in the challenge set. Now, we zoom into
each index (of the hash) one by one, and make the hash function statistically
binding at that particular index. Specifically, we know that a specific output of
the hash h∗ can only be achieved via a single fixed public value at the enforcing
index (say i). Moreover, with overwhelming probability, this public value lies
outside the range of the PRG, and thus there exist no false proofs for hash value
h∗ at the enforcing index i.

56 D. Khurana et al.

This allows us to alter the obfuscated circuit to always ignore the value h∗

at index i. Once we have changed the program, we generate the hash function
to be statistically binding at index (i + 1), and repeat the argument. Note that
once we are at this next index, there may exist false proofs for previous indices –
however, at this point, we have already programmed the obfuscation to eliminate
the value h∗ for all previous indices.

In the identity-based NIKE setting, we generate secret keys for identities as
PRF outputs on the identity (in a manner similar to [6]). In addition to using
the enforce-and-move technique detailed above, we need to avoid simultaneously
programming in an unbounded number of public values. We handle this using
Sahai-Waters [37] punctured programming techniques(using PRGs) to puncture
and then un-puncture the PRF keys before moving on to the next value.

1.3 Other Related Work

Cash, Kiltz, and Shoup [13] and Freire, Hofheinz, Kiltz, and Paterson [19] for-
malized various security models in the two-party NIKE setting. Bones and
Zhandry [6] first resolved NIKE for bounded N > 3 parties without relying
on a trusted setup, assuming indistinguishability obfuscation. However, their
security proofs worked only for the static and semi-static scenarios. Hofheinz
et. al. [29] realized adaptive secure bounded N -party NIKE in the random ora-
cle model without setup, and Rao [36] realized bounded N -party NIKE with
adaptive security and without setup based on assumptions over multilinear maps.
A recent independent work of Yamakawa et. al. [39] gives multilinear maps where
the multilinearity levels need not be bounded during setup, and the size of the
representations of elements is independent of the level of multi-linearity. In the
same paper, these maps are used to construct multiparty NIKE with unbounded
parties, however, requiring a trusted setup. Furthermore, their scheme does not
seem to extend directly to the identity-based NIKE setting.

In the identity-based NIKE setting, there is a trusted master party that
generates secret values for identities using a master secret key. This (seem-
ingly weaker) setting has been extensively studied both in the standard and
the random oracle models, and under various static and adaptive notions of
security [18,20,35,38], but again for an a-priori bounded number of parties.

Zhandry [40] uses somewhere statistically binding hash along with obfusca-
tion to obtain adaptively secure broadcast encryption with small parameters.

2 Preliminaries

2.1 Indistinguishability Obfuscation and PRFs

Definition 1 (Indistinguishability Obfuscator (iO)). A uniform PPT
machine iO is called an indistinguishability obfuscator for circuits if the following
conditions are satisfied:

Multi-party Key Exchange for Unbounded Parties 57

– For all security parameters κ ∈ N, for all circuits C, for all inputs x, we have
that

Pr[C ′(x) = C(x) : C ′ ← iO(κ,C)] = 1

– For any (not necessarily uniform) PPT adversaries Samp, D, there
exists a negligible function α such that the following holds: if Pr[|C0| =
|C1| and ∀x,C0(x) = C1(x) : (C0, C1, σ) ← Samp(1κ)] > 1 − α(κ), then
we have:

∣
∣
∣ Pr

[
D(σ, iO(κ,C0)) = 1 : (C0, C1, σ) ← Samp(1κ)

]

−Pr
[
D(σ, iO(κ,C1)) = 1 : (C0, C1, σ) ← Samp(1κ)

]∣∣
∣ ≤ α(κ)

Such indistinguishability obfuscators for circuits were constructed under
novel algebraic hardness assumptions in [24].

Definition 2. A puncturable family of PRFs F is given by a triple of Turing
Machines KeyF , PunctureF , and EvalF , and a pair of computable functions n(·)
and m(·), satisfying the following conditions:

– [Functionality preserved under puncturing] For every PPT adversary
A such that A(1κ) outputs a set S ⊆ {0, 1}n(κ), then for all x ∈ {0, 1}n(κ)

where x /∈ S, we have that:

Pr
[
EvalF (K, x) = EvalF (KS , x) : K ← KeyF (1κ), KS = PunctureF (K, S)

]
= 1

– [Pseudorandom at punctured points] For every PPT adversary (A1, A2)
such that A1(1κ) outputs a set S ⊆ {0, 1}n(κ) and state σ, consider an exper-
iment where K ← KeyF (1κ) and KS = PunctureF (K,S). Then we have
∣∣∣Pr
[
A2(σ, KS , S, EvalF (K, S)) = 1

]− Pr
[
A2(σ, KS , S, Um(κ)·|S|) = 1

]∣∣∣ = negl(κ)

where EvalF (K,S) denotes the concatenation of EvalF (K,x1)), . . . ,
EvalF (K,xk)) where S = {x1, . . . , xk} is the enumeration of the elements
of S in lexicographic order, negl(·) is a negligible function, and U� denotes the
uniform distribution over � bits.

For ease of notation, we write PRF(K,x) to represent EvalF (K,x). We also
represent the punctured key PunctureF (K,S) by K{S}.

The GGM tree-based construction of PRFs [28] from one-way functions are
easily seen to yield puncturable PRFs, as recently observed by [5,8,33]. Thus,

Imported Theorem 1. [5,8,28,33] If one-way functions exist, then for all
efficiently computable functions n(κ) and m(κ), there exists a puncturable PRF
family that maps n(κ) bits to m(κ) bits.

58 D. Khurana et al.

2.2 Somewhere Statistically Binding Hash

Definition 3. We use the primitive somewhere statistically binding hash (SSB
hash), constructed by Hubacek and Wichs [30]. Intuitively, these are a special type
of collision resistant hash function that is binding on a hidden index, and can be
used with indistinguishability obfuscation. An SSB hash is a tripe of algorithms
(Gen,Open,Ver) where:

– Gen(s, i) takes as input two integers s and i, where s ≤ 2κ denotes the number
of blocks that will be hashed, and i ∈ [s] indexes a particular block. The output
is a function H : Σs → Z. The size of the description of H is independent of
s and i (though it will depend on the security parameter).

– Open(H,x = {x�}�∈[s], j) for x� ∈ Σ and j ∈ [s] produces an “opening” π that
proves that the jth element in x is xj.

– Ver(H,h ∈ Z, j ∈ [s], u ∈ Σ, π) either accepts or rejects. The idea is that Ver
should only accept when h = H(x) where xj = u.

– Correctness: Ver(H,H(x), j, xj ,Open(H,x, j)) accepts.
– Index hiding: Gen(s, i0) is computationally indistinguishable from Gen(s, i1)

for any i0, i1.
– Somewhere Statistically Binding: If H ← Gen(s, i) then if Ver(H,h, i, u, π)

and Ver(H,h, i, u′, π′) accept, it must be that u = u′.

Remark. Note that using SSB hash functions, one can efficiently hash down an
a-priori unbounded (polynomial) number of values in the security parameter κ.

Imported Theorem 2. Assuming the existence of FHE, there exists a some-
where statistically binding hash function family mapping unbounded polynomial
size inputs to outputs of size κ bits (where κ denotes the security parameter),
according to Definition 3.

3 Definitions

Definition 4 (Multiparty Non-interactive Key Exchange). An adaptive
multiparty NIKE protocol has the following three algorithms:

– Setup(1κ) : The setup algorithm takes a security parameter κ, and outputs
public parameters params.

– Publish(1κ, i) : Each party executes the publishing algorithm, which takes as
input the index of the party, and outputs two values: a secret key svi and a
public value pvi. Party Pi keeps svi as his secret value, and publishes pvi to
the other parties.

– KeyGen(params,S, (pvi)i∈S , j, svj) : To derive the common key kS for a subset
S, each party in S runs KeyGen with params, its secret value svj and the public
values (pvi)i ∈ S of the parties in S.

Then, these algorithms should satisfy the following properties:

Multi-party Key Exchange for Unbounded Parties 59

– Correctness: For all S, i, i′ ∈ S,

KeyGen(params,S, (pvj)j∈S , i, svi) = KeyGen(params,S, (pvj)j∈S , i′, svi′).

– Security: The adversary is allowed to (statically) corrupt any subset of users of
his choice. More formally, for b ∈ {0, 1}, we denote by expmt(b) the following
experiment, parameterized only by the security parameter κ and an adver-
sary A, and params

$← Setup(1κ) and b′ ← AReg(·),RegCor(·,·),Ext(·),Rev(···),Test(···)

(1κ, params) where:
• Reg(i ∈ [2κ]) registers an honest party Pi. It takes an index i, and

runs (svi, pvi) ← Publish(params, i). The challenger then records the tuple
(i, ski, pvi, honest) and sends pvi to A.

• RegCor(i ∈ [2κ], pki) registers a corrupt party P ∗
i . It takes an index i

and a public value pvi. The challenger records (i,⊥, pvi, corrupt). The
adversary may make multiple queries for a particular identity, in which
case the challenger only uses the most recent record.

• Ext(i) extracts the secret key for an honest registered party. The challenger
looks up the tuple (i, svi, pvi, honest) and returns svi to A.

• Rev(S, i) reveals the shared secret for a group S of parties, as calculated
by the ith party, where i ∈ S. We require that party Pi was registered as
honest. The challenger uses the secret key for party Pi to derive the shared
secret key kS , which it returns to the adversary.

• Test(S) : Takes a set S of users, all of which were registered as honest.
Next, if b = 0 the challenger runs KeyGen to determine the shared secret key
(arbitrarily choosing which user to calculate the key), which it returns to the
adversary. Else if b = 1, the challenger generates a random key k to return to
the adversary.

A static adversary A must have the following restrictions:

– A commits to a set S∗ before seeing the public parameters, and,
– A makes a single query to Test, and this query is on the set S∗.

We require that all register queries and register-corrupt queries are for dis-
tinct i, and that pvi 	= pvj for any i 	= j. For b = 0, let Wb be the event that
b′ = 1 in expmt(b) and we define AdvNIKE(κ) = |Pr[W0] − Pr[W1]|.

Then, a multi-party key exchange protocol (Setup,Publish,KeyGen) is stati-
cally secure if AdvNIKE(κ) is negl(κ) for any static PPT adversary A.

4 Static Secure NIKE for Unbounded Parties

4.1 Construction

Let PRF denote a puncturable PRF mapping κ bits to κ bits, and PRG denote
a length-doubling pseudorandom generator with inputs of size κ bits. Let
(Gen,Open,Ver) denote the algorithms of a somewhere statistically binding hash

60 D. Khurana et al.

Fig. 1. Static Secure NIKE Parameters PKE

scheme as per Definition 3. Then the static secure NIKE algorithms are con-
structed as follows.

Setup(1κ): Pick puncturable PRF key K
$← {0, 1}κ. Run Gen(1κ, 2κ, 0) to

obtain H. Obfuscate using iO the program PKE in Fig. 1, padded to the appro-
priate length. Output PiO = iO(PKE) as public parameters.

Publish: Party i chooses a random seed si ∈ {0, 1}λ as a secret value, and
publishes xi = PRG(si).
KeyGen(PKE , i, si, S, {pvj}j∈S): Compute h = H({pvj}j∈S). Compute π =
Open(H, {pvj}j∈S , i). Run program PKE on input (h, i, pv, sv, π, |S|) to obtain
shared key KS .

4.2 Security Game and Hybrids

Hybrid0: This is the real world attack game, where A commits to a set Ŝ. In
response A gets the public parameters from the setup, and then makes the
following queries.

– Register honest user queries: A submits an index i. The challenger chooses a
random si, and sends xi = PRG(si) to A.

– Register corrupt user queries: A submits an index i such that i 	∈ Ŝ, along
with a string xi as the public value for party i. We require that i was not, and
will not be registered as honest.

– Extract queries: A submits an i ∈ [N] \ Ŝ that was previously registered as
honest. The challenger responds with si.

– Reveal shared key queries: The adversary submits a subset S 	= Ŝ of users, of
which at least one is honest. The challenger uses PRF to compute and send
the group key.

– Finally, for set Ŝ, the adversary receives either the correct group key (if b = 0)
or a random key (if b = 1). The adversary outputs a bit b′ and wins if Pr[b′ =
b] > 1

2 + 1/poly(κ) for some polynomial poly(·).
We now demonstrate a sequence of hybrids, via which we argue that the advan-
tage of the adversary in guessing the bit b is negl(κ), where negl(·) is a function
that is asymptotically smaller than 1/poly(κ) for all polynomials poly(·). We give

Multi-party Key Exchange for Unbounded Parties 61

Fig. 2. Static Secure NIKE Parameters PKE,i∗

short overviews of indistinguishability between the hybrids, with full proofs in
Appendix A. We use underline changes between subsequent hybrids.

Hybrid1: For each i ∈ Ŝ, choose xi
$← {0, 1}2λ. When answering register hon-

est user queries for i ∈ Ŝ, use these xi values instead of generating them from
PRG. Follow the rest of the game same as Hybrid0. This hybrid is indistinguish-
able from Hybrid0, by security of the PRG.

Let t∗ = |S|. We start with Hybrid2,1,a, and go across hybrids in the
following sequence: Hybrid2,1,a,Hybrid2,1,b,Hybrid2,2,a,Hybrid2,2,b . . .Hybrid2,t∗,a,
Hybrid2,t∗,b. The hybrids Hybrid2,i∗,a and Hybrid2,i∗,b are described below, for
i∗ ∈ [t∗].

Hybrid2,1,a : Generate hash function H
$← Gen(1κ, 2κ, 1). Follow the rest of

the game same as Hybrid1. This is indistinguishable from Hybrid1 because of
indistinguishability of statistical binding index.

Hybrid2,i∗,a : Generate hash function H
$← Gen(1κ, 2κ, i∗). Follow the rest of

the game same as Hybrid2,i∗−1,b. This is indistinguishable from Hybrid2,i∗−1,b

because of indistinguishability of statistical binding index.
Hybrid2,i∗,b : Generate hash function H

$← Gen(1κ, 2κ, i∗).
Let h∗ = H({pvj}j∈S). Set PKE to Ci∗ , an obfuscation of the circuit in Fig. 2.
This is indistinguishable from Hybrid2,i∗,a because of iO between functionally
equivalent circuits PKE,i∗ and PKE,i∗−1 when the hash is statistically binding
at index i∗.

Hybrid2,t∗,b : Generate hash function H
$← Gen(1κ, 2κ, t∗). Let h∗ =

H({pvj}j∈S). Set PKE to Ci which is an obfuscation of the circuit in Fig. 3.
Hybrid3 : Generate hash function H

$←Gen(1κ, 2κ, t∗). Let h∗ = H({pvj}j∈S).
Set k∗ = PRF(K, t∗). Set PKE to Ci which is an obfuscation of the circuit in
Fig. 4, using punctured key K{t∗}. Follow the rest of the game the same as in
Hybrid2,t∗,b. This program is functionally equivalent to the program in Hybrid3,
and thus the hybrid is indistinguishable by iO.

Hybrid4 : Generate hash function H
$←Gen(1κ, 2κ, t∗). Let h∗ = H({pvj}j∈S).

Set k∗ $← {0, 1}κ. Follow the rest of the game honestly according to Hybrid3, with

62 D. Khurana et al.

Fig. 3. Static Secure NIKE Parameters PKE,t∗

Fig. 4. Static Secure NIKE Parameters PKE′

this value of k∗. This hybrid is indistinguishable from Hybrid3 because of security
of the punctured PRF.

Hybrid5 : Generate hash function H
$←Gen(1κ, 2κ, t∗). Set h∗ = H({pvj}j∈S).

Set k∗ $← {0, 1}κ. Set PKE to Ci which is an obfuscation of the circuit in Fig. 5,
using punctured key k∗{h∗}. This program is functionally equivalent to the pro-
gram in Hybrid4, thus the hybrids are indistinguishable by iO.

Finally, by security of punctured PRF, A’s advantage in Hybrid5 is negl(κ).

4.3 Removing the Setup

We note that in our protocol, the Publish algorithm is independent of the Setup
algorithm. In such a scenario, [6] gave the following theorem, which can be used
to remove setup from our scheme in the case of static corruptions.

Imported Theorem 3. [6] Let (Setup,Publish,KeyGen) be a statically secure
NIKE protocol where Publish does not depend on params output by Setup, but
instead just takes as input (λ, i). Then there is a statically secure NIKE protocol
(Setup′,Publish′,KeyGen′) with no setup.

Multi-party Key Exchange for Unbounded Parties 63

Fig. 5. Static Secure NIKE Parameters PKE

5 ID-NIKE for Unbounded Parties

In the identity-based NIKE setting, there is a trusted setup that outputs public
parameters, and generates secret keys for parties based on their identity. These
parties then run another key-generating algorithm on their secret keys and setup,
to compute shared group keys.

Our NIKE scheme can be extended to obtain identity-based NIKE for
unbounded parties with a polynomial reduction to the security of indistinguisha-
bility obfuscation and fully homomorphic encryption. In this section, we describe
our protocol for ID-NIKE for a-priori unbounded parties, and give an overview
of the hybrid arguments.

5.1 Construction

Let κ denote the security parameter, PRF denote a puncturable pseudo-random
function family mapping κ bits to κ bits and PRG denote a length-doubling
pseudo-random generator with inputs of size κ bits. ID-NIKE consists of the
following algorithms.

– Setup(1κ): Sample random PRF keys K1 and K2. Compute the program PIBKE

in Fig. 6 padded to the appropriate length, and compute PiO = iO(PIBKE).
Sample SSB hash H ← Gen(1κ). Publish the public parameters params =
PiO,H.

– Extract(K2, id): Output skid = PRF(K2, id).
– KeyGen(params, S, id, sid): To compute shared key kS for lexicographically

ordered set S, compute h = H(S) and π = Open(h, S, i); where i denotes
the index of id in sorted S. Then obtain output kS = PiO(h, i, id, π, sid, |S|).

5.2 Security Game and Hybrids

Hybrid0: This is the real world attack game, where A commits to a set Ŝ. In
response A gets the public parameters as hash function H and the obfuscation
of PIBKE and then makes the following queries.

64 D. Khurana et al.

Fig. 6. Static Secure ID-NIKE Parameters PIBKE

– Obtain secret keys: A submits an identity id such that id ≤ poly(κ) and id 	∈ Ŝ.
The challenger outputs Extract(K2, id) to A.

– Reveal shared keys: The adversary submits a subset S 	= Ŝ of users, of which
at least one is honest. The challenger uses the public parameters to compute
and send the group key.

– Finally, for set Ŝ, the adversary receives either the correct group key (if b = 0)
or a random key (if b = 1). The adversary outputs a bit b′ and wins if Pr[b′ =
b] > 1

2 + 1/poly(κ) for some polynomial poly(·).
We now demonstrate a sequence of hybrids, via which we argue that the advan-
tage of the adversary in guessing the bit b is negl(κ), where negl(·) is a function
that is asymptotically smaller than 1/poly(κ) for all polynomials poly(·). We
give short arguments for indistinguishability between the hybrids, with complete
proofs in the full version.

Let Ŝ = {id∗
1, id

∗
2, id

∗
3, . . . id

∗
|Ŝ|}. Then, for p ∈ [1, |Ŝ|], we have the sequence of

hybrids:
Hybridp−1,j ,Hybridp,a,Hybridp,b, . . .Hybridp,j ,Hybridp+1,a,Hybridp+1,b, Here,
Hybrid0 ≡ Hybrid0,j . We now write out the experiments and demonstrate the
sequence of changes between Hybridp−1,j and Hybridp,j for any p ∈ [1, |Ŝ|].

Hybridp−1,j : This is the same as Hybrid0 except that the hash is generated
as H ← Gen(1κ, 2κ, p − 1). The challenger computes h∗ = H(Ŝ) and outputs
the program PIBKE in Fig. 7 padded to the appropriate length. He publishes
PiO = iO(PIBKE).

Hybridp,a : This is the same as Hybridp−1,j except that the challenger
computes r∗

p = PRF(K2, id
∗
p), z∗

p = PRG(r∗
p). He computes punctured PRF key

K2{id∗
p} and using the program PIBKE in Fig. 8 padded to the appropriate length,

computes PiO = iO(PIBKE). This is indistinguishable from Hybridp−1,j because of
iO between functionally equivalent circuits.

Hybridp,b : This is the same as Hybridp,a except that the challenger picks
r∗
p

$← {0, 1}κ and sets z∗
p = PRG(r∗

p). This is indistinguishable from Hybridp,a by
security of the puncturable PRF.

Multi-party Key Exchange for Unbounded Parties 65

Fig. 7. Static Secure ID-NIKE Parameters PIBKE

Fig. 8. Static Secure ID-NIKE Parameters PIBKE

Hybridp,c : This is the same as Hybridp,b except that the challenger sets
z∗
p

$← {0, 1}2κ. This is indistinguishable from Hybridp,b by security of the PRG.
Hybridp,d : This is the same as Hybridp,c except that the challenger computes

the program PIBKE in Fig. 9 padded to the appropriate length, and publishes
PiO = iO(PIBKE).

With probability 1/2κ over random choice of z∗
1 , the value z∗

1 does not lie in
the co-domain of the length-doubling PRG. Then this hybrid is indistinguishable
from Hybrid1,c because of iO between functionally equivalent circuits.

Hybridp,e : In this hybrid, the challenger generates H
$← Gen(1κ, 2κ, p) (such

that it is statistically binding at index p). The rest of the game is same as
Hybridp,d. This hybrid is indistinguishable from Hybridp,d because of indistin-
guishability of statistical binding index.

Hybridp,f : This is the same as Hybridp,e except that the challenger outputs
the program PIBKE in Fig. 10 padded to the appropriate length. He publishes
PiO = iO(PIBKE).

66 D. Khurana et al.

Fig. 9. Static Secure ID-NIKE Parameters PIBKE

Fig. 10. Static Secure ID-NIKE Parameters PIBKE

This is indistinguishable from Hybridp,e because of iO between functionally
equivalent circuits. The circuits are functionally equivalent because the hash is
statistically binding at index p.

Hybridp,g: This is the same as Hybridp,f , except that the challenger picks
z∗
p

$← {0, 1}2κ, and then outputs the program PIBKE in Fig. 11 padded to the
appropriate length. He publishes PiO = iO(PIBKE).

With probability 1/2κ over the randomness of choice of z∗
p , the value z∗

p lies
outside the co-domain of the PRG. Thus, with over whelming probability, the
extra statement is never activated and the circuit is functionally equivalent to
the one in Hybridp,f . Then this is indistinguishable from Hybridp,f because of iO
between functionally equivalent circuits.

Hybridp,h : This is the same as Hybrid1,g except that the challenger picks
r∗
p

$← {0, 1}κ and sets z∗
p = PRG(r∗

p). It follows the rest of the game same as
Hybridp,g with this value of z∗

p . This hybrid is indistinguishable from Hybridp,g

because of security of length-doubling PRGs.

Multi-party Key Exchange for Unbounded Parties 67

Fig. 11. Static Secure ID-NIKE Parameters PIBKE

Fig. 12. Static Secure ID-NIKE Parameters PIBKE

Hybridp,i : This is the same as Hybridp,h except that the challenger sets
r∗
p = PRF(K2, id

∗
p) and z∗

p = PRG(r∗
p). It follows the rest of the game same as

Hybridp,h with this value of z∗
p . This hybrid is indistinguishable from Hybridp,h

because of security of the puncturable PRF.
Hybridp,j : This is the same as Hybridp,i except that the challenger outputs

the program PIBKE in Fig. 12 padded to the appropriate length. He publishes
PiO = iO(PIBKE).

This is indistinguishable from Hybridp,i by iO between functionally equivalent
circuits. Note that at this stage, we have un-punctured the PRF at value id∗

p. This
is crucial for our hybrid arguments to go through, because we will eventually have
to program in an a-priori un-bounded number of identities.

Hybrid|Ŝ|,j : This is the final hybrid in the sequence, where the hash is gener-

ated as H ← Gen(1κ, 2κ, |Ŝ|). The challenger computes h∗ = H(Ŝ) and outputs
the program PIBKE in Fig. 7 padded to the appropriate length. He publishes
PiO = iO(PIBKE).

Finally, we have the following two hybrids

68 D. Khurana et al.

Fig. 13. Static Secure ID-NIKE Parameters PIBKE

Fig. 14. Static Secure ID-NIKE Parameters PIBKE

Hybridante−penultimate : In this hybrid, the challenger generates the hash func-
tion as H ← Gen(1κ, 2κ, |Ŝ|). The challenger computes h∗ = H(Ŝ) and sets
k∗ = PRF(K1, t

∗). He punctures the PRF key K1 on input t∗ to obtain K{t∗}.
He outputs the program PIBKE in Fig. 14 padded to the appropriate length. He
publishes PiO = iO(PIBKE).

This is indistinguishable from Hybrid|Ŝ|,j because of indistinguishability
between functionally equivalent circuits.

Hybridpenultimate: This is the same as Hybridante-penultimate, except that the
challenger sets k∗ $← {0, 1}κ. This is indistinguishable from Hybridante-penultimate

because of security of the puncturable PRF.
Hybridultimate: This is the same as Hybridpenultimate, except that the challenger

punctures PRF key k∗ on value h∗. Then, he sets the program PIBKE in Fig. 15
using punctured key k∗{h∗} padded to the appropriate length. He publishes
PiO = iO(PIBKE).

This hybrid is indistinguishable from Hybridpenultimate because of iO between
functionally equivalent programs. Finally, the distinguishing advantage of the
adversary in this hybrid is at most negl(κ), by security of the puncturable PRF.

Multi-party Key Exchange for Unbounded Parties 69

Fig. 15. Static Secure ID-NIKE Parameters PIBKE

6 Conclusion

We construct static-secure protocols that allow NIKE and ID-NIKE between
an unbounded number of parties, relying on more feasible assumptions such as
indistinguishability obfuscation and fully homomorphic encryption; as opposed
to ‘knowledge-type’ assumptions such as differing-inputs obfuscation. It would be
interesting to design protocols that tolerate more active attacks by adversaries,
for an unbounded number of parties.

A NIKE: Proofs of Indistinguishability of the Hybrids

Lemma 1. For all (non-uniform) PPT adversaries D, D(Hybrid0) ≈c

D(Hybrid1).

Proof. We define a sub-sequence of polynomially many (concretely, |Ŝ|) sub-
hybrids Hybrid0,j for j ∈ |Ŝ|, where Hybrid0,j is the same as Hybrid0 except
that the challenger samples the first j public values for parties in the set Ŝ at
random in {0, 1}2κ instead of generating them as the output of the PRG. Note
that Hybrid0,0 ≡ Hybrid0 and Hybrid0,|Ŝ| ≡ Hybrid1.

We show that hybrids Hybrid0,j and Hybrid0,j+1 are computationally indis-
tinguishable. We will prove this by contradiction.

Suppose there exists a distinguisher D which distinguishes between Hybrid0,j

and Hybrid0,j+1 with advantage 1/poly(κ) for some polynomial poly(·). We con-
struct a reduction that uses this distinguisher to break security of the underlying
PRG. The reduction obtains a challenge value x, which may either be the out-
put of the PRG on a uniform input, or may be chosen uniformly at random in
{0, 1}2κ. It picks the first j public values for parties in the set Ŝ at random
in {0, 1}2κ instead of generating them as the output of the PRG. It sets the
(j + 1)th public value to the challenge value x. It samples the remaining public
values for parties in the set Ŝ by picking a uniform si ∈ {0, 1}κ and computing
xi = PRG(si).

70 D. Khurana et al.

If x is the output of a PRG this is the experiment in Hybrid0,j else it is
Hybrid0,j+1. Therefore, the reduction can mimic the output of the distinguisher
between Hybrid0,j and Hybrid0,j+1, thereby breaking the security of the PRG with
advantage 1/poly(κ).

Lemma 2. For all (non-uniform) PPT adversaries D, D(Hybrid1) ≈c

D(Hybrid2,1,a).

Proof. Suppose there exists a distinguisher which distinguishes between Hybrid1
and Hybrid2,1,a with advantage 1/poly(κ) for some polynomial poly(·). We con-
struct a reduction that uses this distinguisher to break index-hiding security of
the somewhere statistically hiding hash.

The reduction gives indices {0, 1} to the hash challenger. The challenger then
generates hash H = Gen(s, b) for b

$← {0, 1} and sends them to the reduction.
The reduction uses this function H as the hash (instead of generating the hash
itself), and continues the game with the distinguisher. If b = 0, this corresponds
to Hybrid1, and if b = 1 the game corresponds to Hybrid2,1,a. Therefore, the
reduction can mimic the output of the distinguisher between Hybrid2,i∗−1,b and
Hybrid2,i∗,a, thereby breaking index-hiding security of the hash function with
advantage 1/poly(κ).

Lemma 3. For all (non-uniform) PPT adversaries D, D(Hybrid2,i∗−1,b) ≈c

D(Hybrid2,i∗,a).

Proof. Suppose there exists a distinguisher which distinguishes between
Hybrid2,i∗−1,b and Hybrid2,i∗,a with advantage 1/poly(κ) for some polynomial
poly(·). We construct a reduction that uses this distinguisher to break index-
hiding security of the somewhere statistically hiding hash.

The reduction gives indices {i∗ −1, i∗} to the hash challenger. The challenger
then generates hash H = Gen(s, b) for b

$← {i∗ − 1, i∗} and sends them to the
reduction. The reduction uses this function H as the hash (instead of generating
the hash itself), and continues the game with the distinguisher. If b = i∗ −
1, this corresponds to Hybrid2,i∗−1,b, and if b = i∗ the game corresponds to
Hybrid2,i∗,a. Therefore, the reduction can mimic the output of the distinguisher
between Hybrid1 and Hybrid2,1,a, thereby breaking index-hiding security of the
hash function with advantage 1/poly(κ).

Lemma 4. For all (non-uniform) PPT adversaries D, D(Hybrid2,i∗,a) ≈c

D(Hybrid2,i∗,b).

Proof. Note that in the experiment of Hybrid2,1,a/b, H ← Gen(1κ, 2κ, i∗). Thus,
by the statistical binding property of the hash function, if Ver(H,h, i∗, u, π) and
Ver(H,h, i∗, u′, π′) accept, then it must be that u = u′.

Consider the programs PKE,i∗−1 and PKE,i∗ . Note that the only place
where the two programs may differ is on inputs of the form (h∗, i∗, pv, sv, π, t),
where h∗ = H(Ŝ). Denote the public values {pvj}j∈S by pvx1 , pvx2 , . . . pvx|S| .
In this case, PKE,i∗−1 (in Hybrid2,i∗,a) checks if Ver(H,h∗, i∗, pv, π) = 1 and

Multi-party Key Exchange for Unbounded Parties 71

if PRG(sv) = pv, then outputs PRF(K,h) else outputs ⊥. On the other hand,
PKE,i∗ (in Hybrid2,i∗,b) always outputs ⊥. Because of the statistical binding prop-
erty of the hash at index i, if Ver(H,h∗, i∗, pv, π) accepts for any value of (pv, π),
then pv = pvxi∗ . Moreover, since pvxi∗ is uniformly chosen in the range of the
PRG, then with overwhelming probability, there does not exist any value sv such
that PRG(sv) = pvxi∗ . Thus, the ‘if’ condition in PKE,i∗−1 in Hybrid2,i∗,a will
never be activated, and the two programs are functionally equivalent.

Therefore, the obfuscated circuits iO(PKE,i∗−1) and iO(PKE,i∗) must be
indistinguishable by security of the iO. Suppose they are not, then consider a
distinguisher D which distinguishes between these hybrids with non-negligible
advantage. D can be used to break selective security of the indistinguishability
obfuscation (according to Definition 1) via the following reduction to iO. The
reduction acts as challenger in the experiment of Hybrid2,i∗,a.

The iO challenger Samp(1κ) first activates the reduction, which samples the
two circuits PKE,i∗−1, PKE,i∗ and gives them to Samp(1κ). The challenger then
samples challenge circuit C

$←{PKE,i∗−1, PKE,i∗}, and sends C ′ = iO(C) to the
reduction. The reduction continues the game of Hybrid2,i∗,a with C ′ in place of
the obfuscation of program PKE,i∗−1.

If C = PKE,i∗−1, this corresponds to Hybrid2,i∗−1,b, and if C = PKE,i∗ the
game corresponds to Hybrid2,i∗,a. Therefore, the reduction can mimic the out-
put of the distinguisher between Hybrid2,i∗,a and Hybrid2,i∗,b, thereby breaking
security of the iO with advantage 1/poly(κ).

Lemma 5. For all (non-uniform) PPT adversaries D, D(Hybrid2,t∗,b) ≈c

D(Hybrid3).

Proof. Consider the programs PKE,t∗ (Hybrid2,t∗,b) and PKE′ (Hybrid3). Note
that the only place where the two programs may differ is on inputs where t = t∗.

In this case, if i ≤ t∗, then for all h = h∗, both programs output ⊥ and abort.
If i > t∗ and t = t∗, then i > t and both programs output ⊥ and abort in Step
1. Moreover, for t = t∗, k∗ = PRF(K, t∗) and thus the programs are functionally
equivalent.

Therefore, the obfuscated circuits iO(PKE,t∗) and iO(PKE′) must be indis-
tinguishable by security of the iO. Suppose they are not, then consider a distin-
guisher D which distinguishes between these hybrids with non-negligible advan-
tage. D can be used to break security of the indistinguishability obfuscation
(according to Definition 1) via the following reduction to iO. The reduction acts
as challenger in the experiment of Hybrid3.

The iO challenger Samp(1κ) first activates the reduction, which samples the
two circuits PKE,t∗ , PKE′ and gives them to Samp(1κ). The challenger then
samples challenge circuit C

$← {PKE,t∗ , PKE′}, and sends C ′ = iO(C) to the
reduction. The reduction continues the game of Hybrid3 with C ′ in place of the
obfuscation of program PKE′ .

If C = PKE,t∗ , this corresponds to Hybrid2,t∗,b, and if C = PKE′ the game
corresponds to Hybrid3. Therefore, the reduction can mimic the output of the

72 D. Khurana et al.

distinguisher between Hybrid2,t∗,b and Hybrid3, thereby breaking security of the
iO with advantage 1/poly(κ).

Lemma 6. For all (non-uniform) PPT adversaries D, D(Hybrid3) ≈c

D(Hybrid4).

Proof. Suppose there exists a distinguisher D which distinguishes between these
hybrids with non-negligible advantage. D can be used to break selective secu-
rity of the puncturable PRF via the following reduction. The reduction acts as
challenger in the experiment of Hybrid3.

It obtains challenge set Ŝ from the distinguisher, and computes t∗ = |Ŝ|.
Then, it gives t∗ to the PRF challenger, and obtains punctured PRF key K{t∗}
and a challenge a, which is either chosen uniformly at random or is the output
of the PRF at t∗. Then, the reduction continues the experiment of Hybrid3 as
challenger, except that he sets r∗ = a.

If a = PRF(K, t∗) then this is the experiment of Hybrid3, and if a is chosen
uniformly at random, then this is the experiment of Hybrid4. Therefore, the
reduction can mimic the output of the distinguisher between Hybrid3 and Hybrid4,
thereby breaking security of the puncturable PRF with advantage 1/poly(κ).

Lemma 7. For all (non-uniform) PPT adversaries D, D(Hybrid4) ≈c

D(Hybrid5).

Proof. Consider the programs PKE′ (Hybrid4) and PKE′′ (Hybrid5). Note that the
only place where the two programs may differ is on inputs where t = t∗. Then,
for t = t∗, h = h∗, both programs output ⊥. Moreover, because of functional
equivalence of the punctured key k∗{h∗} and k∗ on all points where h 	= h∗, the
programs are equivalent.

Suppose there exists a distinguisher D which distinguishes between these
hybrids with non-negligible advantage. D can be used to break security of indis-
tinguishability obfuscation via the following reduction. The reduction acts as
challenger in the experiment of Hybrid4. It obtains challenge set Ŝ from the
distinguisher, and computes h∗ = H(Ŝ|). Then, it constructs gives circuits
PKE′ , PKE′′ as input to the Samp algorithm. Samp picks C

$← {PKE′ , PKE′′}
and sends C ′ = iO(C) to the reduction. The reduction uses C ′ in place of PKE′

in the experiment of Hybrid4.
If C = PKE′ then this is the experiment of Hybrid4, and if C = PKE′′ , then

this is the experiment of Hybrid5. Therefore, the reduction can mimic the output
of the distinguisher between Hybrid4 and Hybrid5, thereby breaking security of
the indistinguishability obfuscation with advantage 1/poly(κ).

Lemma 8. For all (non-uniform) PPT adversaries D, AdvD(Hybrid5) =
negl(κ).

Proof. Suppose there exists a distinguisher D which has non-negligible advantage
in Hybrid5. D can be used to break selective security of the puncturable PRF via
the following reduction. The reduction acts as challenger in the experiment of
Hybrid5.

Multi-party Key Exchange for Unbounded Parties 73

It obtains challenge set Ŝ from the distinguisher, and computes h∗ = H(Ŝ).
Then, it gives h∗ to the PRF challenger, and obtains punctured PRF key k∗{t∗}
and a challenge a, which is either chosen uniformly at random or is the output
of the PRF at h∗. Then, the reduction continues the experiment of Hybrid3 as
challenger, except that he sets the shared key to a.

If a = PRF(k∗, h∗) then this corresponds to the correct shared key for group
Ŝ, whereas if a is chosen uniformly at random, this corresponds to a random
key. Therefore, the reduction can mimic the output of the distinguisher, thereby
breaking security of the puncturable PRF with advantage 1/poly(κ).

References

1. Abusalah, H., Fuchsbauer, G., Pietrzak, K.: Constrained prfs for unbounded inputs.
IACR Cryptology ePrint Archive 2014, p. 840 (2014). http://eprint.iacr.org/2014/
840

2. Ananth, P., Boneh, D., Garg, S., Sahai, A., Zhandry, M.: Differing-inputs obfus-
cation and applications. IACR Cryptology ePrint Archive 2013, p. 689 (2013).
http://eprint.iacr.org/2013/689

3. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan,
S.P., Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, p. 1. Springer, Heidelberg (2001).
http://dx.doi.org/10.1007/3-540-44647-8 1

4. Boneh, D., Silverberg, A.: Applications of multilinear forms to cryptography. IACR
Cryptology ePrint Archive 2002, p. 80 (2002). http://eprint.iacr.org/2002/080

5. Boneh, D., Waters, B.: Constrained pseudorandom functions and their applica-
tions. IACR Cryptology ePrint Archive 2013, p. 352 (2013)

6. Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing, and
more from indistinguishability obfuscation. In: Garay and Gennaro [21], pp. 480–
499. http://dx.doi.org/10.1007/978-3-662-44371-2 27

7. Boyle, E., Chung, K.-M., Pass, R.: On extractability obfuscation. In: Lindell,
Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 52–73. Springer, Heidelberg (2014).
http://dx.doi.org/10.1007/978-3-642-54242-8 3

8. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom func-
tions. IACR Cryptology ePrint Archive 2013, p. 401 (2013)

9. Boyle, E., Pass, R.: Limits of extractability assumptions with distributional aux-
iliary input. IACR Cryptology ePrint Archive 2013, p. 703 (2013). http://eprint.
iacr.org/2013/703

10. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. SIAM J. Comput. 43(2), 831–871 (2014). http://dx.doi.org/
10.1137/120868669

11. Canetti, R., Garay, J.A. (eds.): CRYPTO 2013, Part I. LNCS, vol. 8042. Springer,
Heidelberg (2013). http://dx.doi.org/10.1007/978-3-642-40041-4

12. Canetti, R., Lin, H., Tessaro, S., Vaikuntanathan, V.: Obfuscation of probabilistic
circuits and applications. In: Dodis and Nielsen [17], pp. 468–497. http://dx.doi.
org/10.1007/978-3-662-46497-7 19

13. Cash, D., Kiltz, E., Shoup, V.: The twin diffie-hellman problem and applications.
J. Cryptol. 22(4), 470–504 (2009). http://dx.doi.org/10.1007/s00145-009-9041-6

http://eprint.iacr.org/2014/840
http://eprint.iacr.org/2014/840
http://eprint.iacr.org/2013/689
http://dx.doi.org/10.1007/3-540-44647-8_1
http://eprint.iacr.org/2002/080
http://dx.doi.org/10.1007/978-3-662-44371-2_27
http://dx.doi.org/10.1007/978-3-642-54242-8_3
http://eprint.iacr.org/2013/703
http://eprint.iacr.org/2013/703
http://dx.doi.org/10.1137/120868669
http://dx.doi.org/10.1137/120868669
http://dx.doi.org/10.1007/978-3-642-40041-4
http://dx.doi.org/10.1007/978-3-662-46497-7_19
http://dx.doi.org/10.1007/978-3-662-46497-7_19
http://dx.doi.org/10.1007/s00145-009-9041-6

74 D. Khurana et al.

14. Coron, J., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the
integers. In: Canetti and Garay [11], pp. 476–493. http://dx.doi.org/10.1007/
978-3-642-40041-4 26

15. Coron, J., Lepoint, T., Tibouchi, M.: New multilinear maps over the integers. IACR
Cryptology ePrint Archive 2015, p. 162 (2015). http://eprint.iacr.org/2015/162

16. Diffie, W., Hellman, M.E.: New directions in cryptography. J. IEEE Trans. Inf.
Theor. 22(6), 644–654 (1976)

17. Dodis, Y., Nielsen, J.B. (eds.): TCC 2015, Part II. LNCS, vol. 9015. Springer,
Heidelberg (2015). http://dx.doi.org/10.1007/978-3-662-46497-7

18. Dupont, R., Enge, A.: Provably secure non-interactive key distribution based on
pairings. Discrete Appl. Math. 154(2), 270–276 (2006). http://www.sciencedirect.
com/science/article/pii/S0166218X05002337, Coding and Cryptography

19. Freire, E.S.V., Hofheinz, D., Kiltz, E., Paterson, K.G.: Non-interactive key
exchange. IACR Cryptology ePrint Archive 2012, p. 732 (2012). http://eprint.
iacr.org/2012/732

20. Freire, E.S.V., Hofheinz, D., Paterson, K.G., Striecks, C.: Programmable hash func-
tions in the multilinear setting. In: Canetti and Garay [11], pp. 513–530. http://
dx.doi.org/10.1007/978-3-642-40041-4 28

21. Garay, J.A., Gennaro, R. (eds.): CRYPTO 2014, Part I. LNCS, vol. 8616. Springer,
Heidelberg (2014). http://dx.doi.org/10.1007/978-3-662-44371-2

22. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
1–17. Springer, Heidelberg (2013)

23. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 54th
Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, Octo-
ber 2013, Berkeley, CA, USA, pp. 40–49, 26–29. IEEE Computer Society (2013).
http://dx.doi.org/10.1109/FOCS.2013.13

24. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: FOCS
(2013)

25. Garg, S., Gentry, C., Halevi, S., Wichs, D.: On the implausibility of differing-inputs
obfuscation and extractable witness encryption with auxiliary input. In: Garay and
Gennaro [21], pp. 518–535. http://dx.doi.org/10.1007/978-3-662-44371-2 29

26. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher,
M. (ed.) Proceedings of the 41st Annual ACM Symposium on Theory of Comput-
ing, STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009, pp. 169–178. ACM
(2009). http://doi.acm.org/10.1145/1536414.1536440

27. Gentry, C., Gorbunov, S., Halevi, S.: Graph-induced multilinear maps from
lattices. In: Dodis and Nielsen [17], pp. 498–527. http://dx.doi.org/10.1007/
978-3-662-46497-7 20

28. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions
(extended abstract). In: FOCS, pp. 464–479 (1984)

29. Hofheinz, D., Jager, T., Khurana, D., Sahai, A., Waters, B., Zhandry, M.: How to
generate and use universal parameters. IACR Cryptology ePrint Archive 2014, p.
507 (2014). http://eprint.iacr.org/2014/507

30. Hubacek, P., Wichs, D.: On the communication complexity of secure function eval-
uation with long output. In: Roughgarden, T. (ed.) Proceedings of the 2015 Con-
ference on Innovations in Theoretical Computer Science, ITCS 2015, Rehovot,
Israel, January 11–13, 2015, pp. 163–172. ACM (2015). http://doi.acm.org/10.
1145/2688073.2688105

http://dx.doi.org/10.1007/978-3-642-40041-4_26
http://dx.doi.org/10.1007/978-3-642-40041-4_26
http://eprint.iacr.org/2015/162
http://dx.doi.org/10.1007/978-3-662-46497-7
http://www.sciencedirect.com/science/article/pii/S0166218X05002337
http://www.sciencedirect.com/science/article/pii/S0166218X05002337
http://eprint.iacr.org/2012/732
http://eprint.iacr.org/2012/732
http://dx.doi.org/10.1007/978-3-642-40041-4_28
http://dx.doi.org/10.1007/978-3-642-40041-4_28
http://dx.doi.org/10.1007/978-3-662-44371-2
http://dx.doi.org/10.1109/FOCS.2013.13
http://dx.doi.org/10.1007/978-3-662-44371-2_29
http://doi.acm.org/10.1145/1536414.1536440
http://dx.doi.org/10.1007/978-3-662-46497-7_20
http://dx.doi.org/10.1007/978-3-662-46497-7_20
http://eprint.iacr.org/2014/507
http://doi.acm.org/10.1145/2688073.2688105
http://doi.acm.org/10.1145/2688073.2688105

Multi-party Key Exchange for Unbounded Parties 75

31. Ishai, Y., Pandey, O., Sahai, A.: Public-coin differing-inputs obfuscation and its
applications. In: Dodis and Nielsen [17], pp. 668–697. http://dx.doi.org/10.1007/
978-3-662-46497-7 26

32. Joux, A.: Public-coin differing-inputs obfuscation and its applications. In:
Bosma, W. (ed.) ANTS 2000. LNCS, vol. 1838. Springer, Heidelberg (2000).
http://dx.doi.org/10.1007/10722028 23

33. Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable
pseudorandom functions and applications. IACR Cryptology ePrint Archive 2013,
p. 379 (2013)

34. Koppula, V., Lewko, A.B., Waters, B.: Indistinguishability obfuscation for turing
machines with unbounded memory. IACR Cryptology ePrint Archive 2014, p. 925
(2014). http://eprint.iacr.org/2014/925

35. Paterson, K.G., Srinivasan, S.: On the relations between non-interactive key dis-
tribution, identity-based encryption and trapdoor discrete log groups. Des. Codes
Crypt. 52(2), 219–241 (2009). http://dx.doi.org/10.1007/s10623-009-9278-y

36. Rao, V.: Adaptive multiparty non-interactive key exchange without setup in the
standard model. IACR Cryptology ePrint Archive 2014, p. 910 (2014). http://
eprint.iacr.org/2014/910

37. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: Shmoys, D.B. (ed.) Symposium on Theory of Computing, STOC
2014, New York, NY, USA, May 31 - June 03, 2014, pp. 475–484. ACM (2014).
http://doi.acm.org/10.1145/2591796.2591825

38. Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystems based on pairing. In: Sym-
posium on Cryptography and Information Security SCIS (2000)

39. Yamakawa, T., Yamada, S., Hanaoka, G., Kunihiro, N.: Self-bilinear map on
unknown order groups from indistinguishability obfuscation and its applications.
Cryptology ePrint Archive, Report 2015/128 (2015). http://eprint.iacr.org/

40. Zhandry, M.: Adaptively secure broadcast encryption with small system parame-
ters. IACR Cryptology ePrint Archive 2014, p.757 (2014). http://eprint.iacr.org/
2014/757

http://dx.doi.org/10.1007/978-3-662-46497-7_26
http://dx.doi.org/10.1007/978-3-662-46497-7_26
http://dx.doi.org/10.1007/10722028_23
http://eprint.iacr.org/2014/925
http://dx.doi.org/10.1007/s10623-009-9278-y
http://eprint.iacr.org/2014/910
http://eprint.iacr.org/2014/910
http://doi.acm.org/10.1145/2591796.2591825
http://eprint.iacr.org/
http://eprint.iacr.org/2014/757
http://eprint.iacr.org/2014/757

PRFs and Hashes

Adaptively Secure Puncturable Pseudorandom
Functions in the Standard Model

Susan Hohenberger1(B), Venkata Koppula2, and Brent Waters2

1 Johns Hopkins University, Baltimore, MD, USA
susan@cs.jhu.edu

2 University of Texas at Austin, Austin, TX, USA
{kvenkata,bwaters}@cs.utexas.edu

Abstract. We study the adaptive security of constrained PRFs in the
standard model. We initiate our exploration with puncturable PRFs.
A puncturable PRF family is a special class of constrained PRFs, where
the constrained key is associated with an element x′ in the input domain.
The key allows evaluation at all points x �= x′.

We show how to build puncturable PRFs with adaptive security
proofs in the standard model that involve only polynomial loss to the
underlying assumptions. Prior work had either super-polynomial loss
or applied the random oracle heuristic. Our construction uses indistin-
guishability obfuscation and DDH-hard algebraic groups of composite
order.

More generally, one can consider a t-puncturable PRF: PRFs that
can be punctured at any set of inputs S, provided the size of S is less
than a fixed polynomial. We additionally show how to transform any
(single) puncturable PRF family to a t-puncturable PRF family, using
indistinguishability obfuscation.

1 Introduction

Pseudorandom functions (PRFs) are one of the fundamental building blocks in
modern cryptography. A PRF system consists of a keyed function F and a set
of keys K such that for a randomly chosen key k ∈ K, the output of the function
F (k, x) for any input x in the input space “looks” random to a computationally
bounded adversary, even when given polynomially many evaluations of F (k, ·).
Recently, the concept of constrained pseudorandom functions1 was proposed in

S. Hohenberger—Supported by the National Science Foundation CNS-1228443 and
CNS-1414023; the Defense Advanced Research Projects Agency (DARPA) and the
Air Force Research Laboratory (AFRL) under contract FA8750-11-C-0080, the Office
of Naval Research under contract N00014-14-1-0333, and a Microsoft Faculty Fel-
lowship.
B. Waters—Supported by NSF CNS-1228599 and CNS-1414082, DARPA SafeWare,
Google Faculty Research award, the Alfred P. Sloan Fellowship, Microsoft Faculty
Fellowship, and Packard Foundation Fellowship.

1 These were alternatively called functional PRFs [6] and delegatable PRFs [21].

c© International Association for Cryptologic Research 2015
T. Iwata and J.H. Cheon (Eds.): ASIACRYPT 2015, Part I, LNCS 9452, pp. 79–102, 2015.
DOI: 10.1007/978-3-662-48797-6 4

80 S. Hohenberger et al.

the concurrent works of Boneh and Waters [4], Boyle, Goldwasser and Ivan [6]
and Kiayias, Papadopoulos, Triandopoulos and Zacharias [21]. A constrained
PRF system is associated with a family of boolean functions F = {f}. As
in standard PRFs, there exists a set of master keys K that can be used to
evaluate the PRF F . However, given a master key k, it is also possible to derive
a constrained key kf associated with a function f ∈ F . This constrained key kf

can be used to evaluate the function F (k, ·) at all inputs x such that f(x) = 1.
Intuitively, we would want that even if an adversary has kf , the PRF evaluation
at an input x not accepted by f looks random. Security is captured by an adaptive
game between a PRF challenger and an adversary. The adversary is allowed to
make multiple constrained key or point evaluation queries before committing to
a challenge x∗ not equal to any of the evaluation queries or accepted by any of
the functions for which he obtained a constrained key.2 The challenger either
sends the PRF evaluation at x∗ or an output chosen uniformly at random from
the PRF range space, and the adversary wins if he can distinguish between these
two cases.

Since their inception, constrained PRFs have found multiple applications.
For example, Boneh and Waters [4] gave applications of broadcast encryption
with optimal ciphertext length, identity-based key exchange, and policy-based
key distribution. Sahai and Waters [24] used constrained PRFs as a central ingre-
dient in their punctured programming methodology for building cryptosystems
using indistinguishable obfuscation. Boneh and Zhandry [5] likewise applied con-
strained PRFs for realizing multi-party key exchange and broadcast systems.

Adaptive Security in Constrained PRFs. In their initial work, Boneh and
Waters [4] showed constructions of constrained PRFs for different function fam-
ilies, including one for the class of all polynomial circuits (based on multilinear
maps). However, all their constructions offer selective security - a weaker notion
where the adversary must commit to the challenge input x∗ before making any
evaluation/constrained key queries.3 Using complexity leveraging, one can obtain
adaptive security by guessing the challenge input x∗ before any queries are made.
However, this results in exponential security loss. The works of [6,21] similarly
dealt with selective security.

Recently, Fuchsbauer, Konstantinov, Pietrzak and Rao [11] showed adaptive
security for prefix-fixing constrained PRFs, but with quasi-polynomial security
loss. Also recently, Hofheinz [16] presented a novel construction that achieves
adaptive security for bit-fixing constrained PRFs, but in the random oracle
model.

While selective security has been sufficient for some applications of con-
strained PRFs, including many recent proofs leveraging the punctured program-
ming [24] methodology (e.g., [2,5,19,24]), there are applications that demand

2 This definition can be extended to handle multiple challenge points. See Sect. 3 for
details.

3 The prefix construction of [6,21] were also selective.

Adaptively Secure Puncturable Pseudorandom Functions 81

adaptive security, where the security game allows the adversary to query the
PRF on many inputs before deciding on the point to puncture. For instance, [5]
give a construction for multiparty key exchange that is semi-statically secure, and
this construction requires adaptively secure constrained PRFs for circuits. We
anticipate that the further realization of adaptively secure PRFs will introduce
further applications of them.

Our Objective and Results. Our goal is to study adaptive security of constrained
PRFs in the standard model. We initiate this exploration with puncturable PRFs,
first explicitly introduced in [24] as a specialization of constrained PRFs. A punc-
turable PRF family is a special class of constrained PRFs, where the constrained
key is associated with an element x′ in the input domain. The key allows evalua-
tion at all points x �= x′. As noted by [4,6,21], the GGM tree-based construction
of PRFs from one-way functions (OWFs) [14] can be modified to construct a
puncturable PRF.4 A selective proof of security follows via a hybrid argument,
where the reduction algorithm uses the pre-determined challenge query x∗ to
“plant” its OWF challenge. However, such a technique does not seem power-
ful enough to obtain adaptive security with only a polynomial-factor security
loss. The difficulty in proving adaptive security arises due to the fact that the
reduction algorithm must respond to the evaluation queries, and then output
a punctured key that is consistent with the evaluations. This means that the
reduction algorithm must be able to evaluate the PRF at a large set S (so that
all evaluation queries lie in S with non-negligible probability). However, S can-
not be very large, otherwise the challenge x∗ will lie in S, in which case the
reduction algorithm cannot use the adversary’s output.

In this work, we show new techniques for constructing adaptively-secure
puncturable PRFs in the standard model. A central contribution is to over-
come the conflict above, by allowing the reduction algorithm to commit to the
evaluation queries, and at the same time, ensuring that the PRF output at the
challenge point is unencumbered by the commitment.

Our main idea is to execute a delayed commitment to part of the PRF by
partitioning. Initially, in our construction all points are tied to a single (Naor-
Reingold [23] style) PRF. To prove security we begin by using the admissible
hash function of Boneh and Boyen [3]. We partition the inputs into two distinct
sets. The evaluable set which contains about (1 − 1/q) fraction of inputs, and a
challenge set which contains about 1/q fraction of inputs, where q is the number
of point evaluation queries made by the attacker. Via a set of hybrid steps using
the computational assumptions of indistinguishability obfuscation and subgroup
hiding we modify the construction such that we use one Naor-Reingold PRF
function to evaluate points in the evaluable set and a completely independent
Naor-Reingold PRF to evaluate points in the challenge set.

After this separation has been achieved, there is a clearer path for our proof
of security. At this point the reduction algorithm will create one PRF itself and

4 In fact, the GGM PRF construction can be used to construct prefix-fixing con-
strained PRFs.

82 S. Hohenberger et al.

use it to answer any attacker point query in the evaluable set. If it is asked
for a point x in the challenge set, it will simply abort. (The admissible hash
function ensures that we get through without abort with some non-negligible
probability.) Eventually, the attacker will ask for a punctured key on x∗, which
defines x∗ as the challenge input. Up until this point the reduction algorithm has
made no commitments on what the second challenge PRF is. It then constructs
the punctured key using the a freshly chosen PRF for the challenge inputs.
However, when constructing this second PRF it now knows what the challenge
x∗ actually is and can fall back on selective techniques for completing the proof.

At a lower level our core PRF will be the Naor-Reingold PRF [23], but
based in composite-order groups. Let G be a group of order N = pq, where p
and q are primes. The master key consists of a group element v ∈ G and 2n
exponents di,b ∈ ZN (for i = 1 to n and b ∈ {0, 1}). The PRF F takes as
input a key k = (v, {di,b}), an �-bit input x, uses a public admissible hash func-
tion h : {0, 1}� → {0, 1}n to compute h(x) = b1 . . . bn and outputs v

∏n
j=1 dj,bj .

A punctured key corresponding to x′ derived from master key k is the obfus-
cation of a program P which has k, x′ hardwired and outputs F (k, x) on input
x �= x′, else it outputs ⊥.

We will use a parameterized problem (in composite groups) to perform some
of the separation step. Our assumption is that given g, ga, . . . , gan−1

for randomly
chosen g ∈ G and a ∈ Z

∗
N it is hard to distinguish gan

from a random group
element. While it is somewhat undesirable to base security on a parameterized
assumption, we are able to use the recent results of Chase and Meiklejohn [8]
to reduce this to the subgroup decision problem in DDH hard composite order
groups.

t-puncturable PRFs. We also show how to construct t-puncturable PRFs: PRFs
that can be punctured at any set of inputs S, provided |S| ≤ t (where t(·) is
a fixed polynomial). We show how to transform any (single) puncturable PRF
family to a t-puncturable PRF family, using indistinguishability obfuscation. In
the security game for t-puncturable PRFs, the adversary is allowed to query
for multiple t-punctured keys, each corresponding to a set S of size at most t.
Finally, the adversary sends a challenge input x∗ that lies in all the sets queried,
and receives either the PRF evaluation at x∗ or a uniformly random element of
the range space.

In the construction, the setup and evaluation algorithm for the t-puncturable
PRF are the same as those for the puncturable PRF. In order to puncture a key
k at set S, the puncturing algorithm outputs the obfuscation of a program P
that takes as input x, checks that x /∈ S, and outputs F (k, x).

For the proof of security, we observe that when the first t-punctured key query
S1 is made by the adversary, the challenger can guess the challenge x̃ ∈ S1. If
this guess is incorrect, then the challenger simply aborts (which results in a 1/t
factor security loss). However, if the guess is correct, then the challenger can
now use the punctured key Kx̃ for all future evaluation/t-punctured key queries.
From the security of puncturable PRFs, it follows that even after receiving

Adaptively Secure Puncturable Pseudorandom Functions 83

evaluation/t-punctured key queries, the challenger will not be able to distin-
guish between F (k, x̃) and a random element in the range space.

We detail this transformation and its proof in Sect. 5.1. We also believe that
we can use a similar approach to directly modify our main construction to handle
multiple punctured points, however, we choose to focus on the generic transfor-
mation.

Related Works. Two recent works have explored the problem of adaptive security
of constrained PRFs. Fuchsbauer, Konstantinov, Pietrzak and Rao [11] study
the adaptive security of the GGM construction for prefix-free constrained PRFs.
They show an interesting reduction to OWFs that suffers only a quasi-polynomial
factor qO(log n) loss, where q is the number of queries made by the adversary,
and n is the length of the input. This beats the straightforward conversion from
selective to adaptive security, which results in O(2n) security loss.

Hofheinz [16] shows a construction for bit-fixing constrained PRFs that is
adaptively secure, assuming indistinguishability obfuscation and multilinear
maps in the random oracle model. It also makes novel use of the random ora-
cle for dynamically defining the challenge space based on the output of h. It is
currently unclear whether such ideas could be adapted to the standard model.

Fuchsbauer et al. also show a negative result for the Boneh-Waters [4] con-
struction of bit-fixing constrained PRFs. They show that any simple reduction
from a static assumption to the adaptive security of the Boneh-Waters [4] bit-
fixing constrained PRF construction must have an exponential factor security
loss. More abstractly, using their techniques, one can show that any bit-fixing
scheme that has the following properties will face this obstacle: (a) fingerprinting
queries - By querying for a set of constrained keys, the adversary can obtain a
fingerprint of the master key. (b) checkability - It is possible to efficiently check
that any future evaluation/constrained key queries are consistent with the finger-
print. While these properties capture certain constructions, small perturbations
to them could potentially circumvent checkability.

Partitioning type proofs have been used in several applications including
identity-based encryption [1,3,17,25], verifiable random functions [20], and proofs
of certain signature schemes [9,18,19]. We believe ours is the first to use partition-
ing for a delayed commitment to parameters. We note that our delayed technique
is someway reminiscent to that of Lewko and Waters [22].

Recently, there has been a push to prove security for indistinguishability
obfuscation from basic multilinear map assumptions. The recent work of Gentry,
Lewko, Sahai and Waters [13] is a step in this direction, but itself requires the use
of complexity leveraging. In the future work, we might hope for such reductions
with just polynomial loss — perhaps for special cases of functionality. And thus
give an end-to-end polynomial loss proof of puncturable PRFs from multilinear
maps assumptions.

Two works have explored the notion of constrained verifiable random func-
tions (VRFs). Fuchsbauer [10] and Chandran, Raghuraman and Vinayagamurthy
[7] show constructions of selectively secure constrained VRFs for the class of all
polynomial sized circuits. The construction in [7] is also delegatable.

84 S. Hohenberger et al.

Future Directions. A natural question is to construct adaptively-secure con-
strained PRFs for larger classes of functions in the standard model. Given the
existing results of [11,16], both directions seem possible. While the techniques
of [16] are intricately tied to the random oracle model, it is plausible there could
be constructions in the standard model that evade the negative result of [11]. On
the other hand, maybe the negative result of [11] (which is specific to the [4] con-
struction) can be extended to show a similar lower bound for all constructions
of constrained PRFs with respect to function family F .

2 Preliminaries

First, we recall the notion of admissible hash functions due to Boneh and Boyen [3].
Here we state a simplified definition from [19]. Informally, an admissible hash func-
tion family is a function h with a ‘partition sampling algorithm’ AdmSample. This
algorithm takes as input a parameter Q and outputs a ‘random’ partition of the
outputs domain, where one of the partitions has 1/Q fraction of the points. Also,
this partitioning has special structure which we will use in our proof.

Definition 1. Let l, n and θ be efficiently computable univariate polynomials,
h : {0, 1}l(λ) → {0, 1}n(λ) an efficiently computable function and AdmSample a
PPT algorithm that takes as input 1λ and an integer Q, and outputs a string
u ∈ {0, 1,⊥}n(λ). For any u ∈ {0, 1,⊥}n(λ), define Pu : {0, 1}l(λ) → {0, 1} as
follows: Pu(x) = 0 if for all 1 ≤ j ≤ n(λ), h(x)j �= uj, else Pu(x) = 1.

We say that (h,AdmSample) is θ-admissible if the following condition holds:
For any efficiently computable polynomial Q, for all x1, . . . , xQ(λ), x

∗ ∈
{0, 1}l(λ), where x∗ /∈ {xi}i,

Pr[(∀i ≤ Q(λ), Pu(xi) = 1) ∧ Pu(x∗) = 0] ≥ 1
θ(Q(λ))

where the probability is taken over u ← AdmSample(1λ, Q(λ)).

Theorem 1 (Admissible Hash Function Family [3], simplified proof in
[9]). For any efficiently computable polynomial l, there exist efficiently com-
putable polynomials n, θ such that there exist θ-admissible function families map-
ping l bits to n bits.

Note that the above theorem is information theoretic, and is not based on
any cryptographic assumptions.

Next, we recall the definition of indistinguishability obfuscation from [12,24].
Let PPT denote probabilistic polynomial time.

Definition 2. (Indistinguishability Obfuscation) A uniform PPT machine iO
is called an indistinguishability obfuscator for a circuit class {Cλ} if it satisfies
the following conditions:

– (Preserving Functionality) For all security parameters λ ∈ N, for all C ∈ Cλ,
for all inputs x, we have that C ′(x) = C(x) where C ′ ← iO(λ,C).

Adaptively Secure Puncturable Pseudorandom Functions 85

– (Indistinguishability of Obfuscation) For any (not necessarily uniform) PPT
distinguisher B = (Samp,D), there exists a negligible function negl(·) such
that the following holds: if for all security parameters λ ∈ N,Pr[∀x,C0(x) =
C1(x) : (C0;C1;σ) ← Samp(1λ)] > 1 − negl(λ), then

| Pr[D(σ, iO(λ,C0)) = 1 : (C0;C1;σ) ← Samp(1λ)]−
Pr[D(σ, iO(λ,C1)) = 1 : (C0;C1;σ) ← Samp(1λ)]| ≤ negl(λ).

In a recent work, [12] showed how indistinguishability obfuscators can be con-
structed for the circuit class P/poly. We remark that (Samp,D) are two algo-
rithms that pass state, which can be viewed equivalently as a single stateful
algorithm B. In our proofs we employ the latter approach, although here we
state the definition as it appears in prior work.

2.1 Assumptions

Let G be a PPT group generator algorithm that takes as input the security
parameter 1λ and outputs (N, p, q,G,Gp, Gq, g1, g2) where p, q ∈ Θ(2λ) are
primes, N = pq, G is a group of order N , Gp and Gq are subgroups of G of order
p and q respectively, and g1 and g2 are generators of Gp and Gq respectively.

Assumption 1 (Subgroup Hiding for Composite DDH-Hard Groups).
Let (N, p, q,G,Gp,Gq, g1, g2) ← G(1λ) and b ← {0, 1}. Let T ← G if b = 0, else
T ← Gp. The advantage of algorithm A in solving Assumption 1 is defined as

AdvSGH
A =

∣
∣
∣
∣Pr[b ← A(N,G,Gp,Gq, g1, g2, T)] − 1

2

∣
∣
∣
∣

We say that Assumption 1 holds if for all PPT A, AdvSGH
A is negligible in λ.

Note that the adversary A gets generators for both subgroups Gp and Gq. This
is in contrast to bilinear groups, where, if given generators for both subgroups,
the adversary can use the pairing to distinguish a random group element from
a random subgroup element.

Analogously, we assume that no PPT adversary can distinguish between a
random element of G and a random element of Gq with non-negligible advantage.
This is essentially Assumption 1, where prime q is chosen instead of p, and Gq

is chosen instead of Gp.

Assumption 2. This assumption is parameterized with an integer n ∈ Z. Let
(N, p, q,G,Gp,Gq, g1, g2) ← G(1λ), g ← G, a ← Z

∗
N and b ← {0, 1}. Let D =

(N,G,Gp,Gq, g1, g2, g, ga, . . . , gan−1
). Let T = gan

if b = 0, else T ← G. The
advantage of algorithm A in solving Assumption 2 is defined as

AdvA =
∣
∣
∣
∣Pr[b ← A(D,T)] − 1

2

∣
∣
∣
∣

We say that Assumption 2 holds if for all PPT A, AdvA is negligible in λ.

86 S. Hohenberger et al.

We will use Assumption 2 for clarity in certain parts of our proof, but we
do not give it a name because it is implied by other named assumptions. First,
Assumption 2 is implied by the n-Power Decisional Diffie-Hellman Assumption
[15]. Second, it is also implied by the non-parameterized Assumption 1. The
recent results of Chase and Meiklejohn [8] essentially show this latter implica-
tion, but that work focuses on the target groups of bilinear maps, whereas our
algebraic focus does not involve bilinear maps.

3 Constrained Pseudorandom Functions

In this section, we define the syntax and security properties of a constrained
pseudorandom function family. This definition is similar to the one in Boneh-
Waters [4], except that the keys are constrained with respect to a circuit family
instead of a set system.

Let K denote the key space, X the input domain and Y the range space. The
PRF is a function F : K × X → Y that can be computed by a deterministic
polynomial time algorithm. We will assume there is a Setup algorithm F.setup
that takes the security parameter λ as input and outputs a random secret key
k ∈ K.

A PRF F : K × X → Y is said to be constrained with respect to a circuit
family C if there is an additional key space Kc, and three algorithms F.setup,
F.constrain and F.eval as follows:

– F.setup(1λ) is a PPT algorithm that takes the security parameter λ as input
and outputs a description of the key space K, the constrained key space Kc

and the PRF F .
– F.constrain(k,C) is a PPT algorithm that takes as input a PRF key k ∈ K

and a circuit C ∈ C and outputs a constrained key kC ∈ Kc.
– F.eval(kC , x) is a deterministic polynomial time algorithm that takes as input

a constrained key kC ∈ Kc and x ∈ X and outputs an element y ∈ Y. Let kC

be the output of F.constrain(k,C). For correctness, we require the following:

F.eval(kC , x) =

{
F (k, x) if C(x) = 1
⊥ otherwise

Security of Constrained Pseudorandom Functions: Intuitively, we require that
even after obtaining several constrained keys, no polynomial time adversary
can distinguish a truly random string from the PRF evaluation at a point not
accepted by the queried circuits. This intuition can be formalized by the following
security game between a challenger and an adversary A.

Let F : K × X → Y be a constrained PRF with respect to a circuit family C.
The security game consists of three phases.

Setup Phase. The challenger chooses a random key k ← K and b ← {0, 1}.

Adaptively Secure Puncturable Pseudorandom Functions 87

Query Phase. In this phase, A is allowed to ask for the following queries:

– Evaluation Query A sends x ∈ X , and receives F (k, x).
– Key Query A sends a circuit C ∈ C, and receives F.constrain(k,C).
– Challenge Query A sends x ∈ X as a challenge query. If b = 0, the challenger

outputs F (k, x). Else, the challenger outputs a random element y ← Y.

Guess. A outputs a guess b′ of b.
Let E ⊂ X be the set of evaluation queries, L ⊂ C be the set of constrained

key queries and Z ⊂ X the set of challenge queries. A wins if b = b′ and
E ∩ Z = φ and for all C ∈ L, z ∈ Z,C(z) = 0. The advantage of A is defined to
be AdvF

A(λ) = Pr[A wins].

Definition 3. The PRF F is a secure constrained PRF with respect to C if for
all PPT adversaries A AdvF

A(λ) is negligible in λ.

3.1 Puncturable Pseudorandom Functions

In this section, we define the syntax and security properties of a puncturable
pseudorandom function family. Puncturable PRFs are a special class of con-
strained pseudorandom functions.

A PRF F : K × X → Y is a puncturable pseudorandom function if there is
an additional key space Kp and three polynomial time algorithms F.setup, F.eval
and F.puncture as follows:

– F.setup(1λ) is a randomized algorithm that takes the security parameter λ as
input and outputs a description of the key space K, the punctured key space
Kp and the PRF F .

– F.puncture(k, x) is a randomized algorithm that takes as input a PRF key
k ∈ K and x ∈ X , and outputs a key kx ∈ Kp.

– F.eval(kx, x′) is a deterministic algorithm that takes as input a punctured key
kx ∈ Kp and x′ ∈ X . Let k ∈ K, x ∈ X and kx ← F.puncture(k, x). For
correctness, we need the following property:

F.eval(kx, x′) =

{
F (k, x′) if x �= x′

⊥ otherwise

Security of Puncturable PRFs: The security game between the challenger and
the adversary A consists of the following four phases.

Setup Phase. The challenger chooses uniformly at random a PRF key k ← K
and a bit b ← {0, 1}.

Evaluation Query Phase. A queries for polynomially many evaluations. For each
evaluation query x, the challenger sends F (k, x) to A.

88 S. Hohenberger et al.

Challenge Phase. A chooses a challenge x∗ ∈ X . The challenger computes kx∗ ←
F.puncture(k, x∗). If b = 0, the challenger outputs kx∗ and F (k, x∗). Else, the
challenger outputs kx∗ and y ← Y chosen uniformly at random.

Guess. A outputs a guess b′ of b. Let E ⊂ X be the set of evaluation queries.
A wins if b = b′ and x∗ /∈ E. The advantage of A is defined to be AdvF

A(λ) =
Pr[A wins].

Definition 4. The PRF F is a secure puncturable PRF if for all probabilistic
polynomial time adversaries A AdvF

A(λ) is negligible in λ.

t-Puncturable Pseudorandom Functions. The notion of puncturable PRFs
can be naturally extended to that of t-puncturable PRFs, where it is possible
to derive a key punctured at any set S of size at most t. A formal definition of
t-puncturable PRFs can be found in Sect. 5.

4 Construction

We now describe our puncturable PRF family. It consists of the PRF F : K×X →
Y and the three algorithms F.setup, F.puncture and F.eval. The input domain is
X = {0, 1}�, where � = �(λ). We define the key space K and range space Y as
part of the setup algorithm described next.

F.setup(1λ) F.setup, on input 1λ, runs G to compute (N, p, q,G,Gp,Gq, g1, g2) ←
G(1λ). Let n, θ be polynomials such that there exists a θ-admissible hash function
h mapping �(λ) bits to n(λ) bits. For simplicity of notation, we will drop the
dependence of � and n on λ.

The key space is K = G × (
Z
2
N

)n and the range is Y = G. The setup
algorithm chooses v ∈ G, di,b ∈ ZN , for i = 1 to n and b ∈ {0, 1}, and sets
k = (v, ((d1,0, d1,1) , . . . , (dn,0, dn,1))).

The PRF F for key k on input x is then computed as follows. Let k =
(v, ((d1,0, d1,1) , . . . , (dn,0, dn,1))) ∈ G × (

Z
2
N

)n and h(x) = (b1, . . . , bn), where
bi ∈ {0, 1}. Then,

F (k, x) = v
∏n

j=1 dj,bj .

F.puncture(k,x′) F.puncture computes an obfuscation of PuncturedKeyk,x′

(defined in Fig. 1); that is, Kx′ ← iO(λ,PuncturedKeyk,x′) wherePuncturedKeyk,x′

is padded to be of appropriate size.5

F.eval(Kx′ ,x) The punctured key Kx′ is a program that takes an �-bit input.
We define

F.eval(Kx′ , x) = Kx′(x).
5 Looking ahead, in the proof of security, the program PuncturedKeyk,x′

will be replaced by PuncturedKey′
V,w,D,u,x′ , PuncturedKeyAltu,k,k′,x′ and

PuncturedKeyAlt′u,W,E,k,x′ in subsequent hybrids. Since this transformation
relies on iO being secure, we need that all programs have same size. Hence, all
programs are padded appropriately to ensure that they have the same size.

Adaptively Secure Puncturable Pseudorandom Functions 89

Fig. 1. Program PuncturedKey

4.1 Proof of Security

We will now prove that our construction is a secure puncturable PRF as defined
in Definition 4. Specifically, the claim we show is:

Theorem 2 (Main Theorem). Assuming iO is a secure indistinguishability
obfuscator and the Subgroup Hiding Assumption holds for groups output by G, the
PRF F defined above, together with algorithms F.setup, F.puncture and F.eval,
is a secure punctured pseudorandom function as defined in Definition 4.

Proof. In order to prove this, we define the following sequence of games. Assume
the adversary A makes Q = Q(λ) evaluation queries (where Q(·) is a polynomial)
before sending the challenge input.

Sequence of Games. We underline the primary changes from one game to the
next.

Game 0. This game is the original security game from Definition 4 between
the challenger and A instantiated by the construction under analysis. Here the
challenger first chooses a random PRF key, then A makes evaluation queries
and finally sends the challenge input. The challenger responds by sending a key
punctured at the challenge input, and either a PRF evaluation at the challenged
point or a random value.

1. Let (N, p, q,G,Gp,Gq, g1, g2) ← G(1λ). Choose v ∈ G, di,b ∈ ZN , for i = 1 to
n and b ∈ {0, 1}, and set k = (v, ((d1,0, d1,1) , . . . , (dn,0, dn,1))).

2. On any evaluation query xi ∈ {0, 1}�, compute h(xi) = bi
1 . . . bi

n and output

v

∏n
j=1 d

j,bi
j .

3. A sends challenge input x∗ such that x∗ �= xi ∀ i ≤ Q. Compute Kx∗ ←
iO(λ,PuncturedKeyk,x∗) and h(x∗) = b∗

1 . . . b∗
n. Let y0 = v

∏n
j=1 dj,b∗

j and
y1 ← G.

90 S. Hohenberger et al.

4. Flip coin β ← {0, 1}. Output (Kx∗ , yβ).
5. A outputs β′ and wins if β = β′.

Game 1. This game is the same as the previous one, except that we simulate a
partitioning game while the adversary operates and if an undesirable partition
arises, we abort the game and decide whether or not the adversary “wins” by
a coin flip. This partitioning game works as follows: the challenger samples u ∈
{0, 1,⊥}n using AdmSample and aborts if either there exists an evaluation query
x such that Pu(x) = 0 or the challenge query x∗ satisfies Pu(x∗) = 1.

1. Let (N, p, q,G,Gp,Gq, g1, g2) ← G(1λ). Choose v ∈ G, di,b ∈ ZN , for i = 1 to
n and b ∈ {0, 1}, and set k = (v, ((d1,0, d1,1) , . . . , (dn,0, dn,1))).
Choose u ← AdmSample(1λ, Q) and let Su = {x : Pu(x) = 1} (recall Pu(x) =
0 if h(x)j �= uj ∀1 ≤ j ≤ n).

2. On any evaluation query xi ∈ {0, 1}�, check if Pu(xi) = 1.
If not, flip a coin γi ← {0, 1} and abort. A wins if γi = 1.

Else compute h(xi) = bi
1 . . . bi

n and output v

∏n
j=1 d

j,bi
j .

3. A sends challenge input x∗ such that x∗ �= xi ∀ i ≤ Q. Check if Pu(x∗) = 0.
If not, flip a coin γ∗ ← {0, 1} and abort. A wins if γ∗ = 1.
Else compute Kx∗ ← iO(λ,PuncturedKeyk,x∗) and h(x∗) = b∗

1 . . . b∗
n. Let y0 =

v
∏n

j=1 dj,b∗
j and y1 ← G.

4. Flip coin β ← {0, 1}. Output (Kx∗ , yβ).
5. A outputs β′ and wins if β = β′.

Game 2. In this game, the challenger modifies the punctured key and outputs an
obfuscation of PuncturedKeyAlt defined in Fig. 2. On inputs x such that Pu(x) =
1, the altered punctured key uses the same master key k as before. However,
if Pu(x) = 0, the altered punctured key uses a different master key k′ that is
randomly chosen from the key space.

1. Let (N, p, q,G,Gp,Gq, g1, g2) ← G(1λ). Choose v ∈ G, di,b ∈ ZN , for i = 1 to
n and b ∈ {0, 1}.
Set k = (v, ((d1,0, d1,1) , . . . , (dn,0, dn,1))).
Choose u ← AdmSample(1λ, Q).

2. On any evaluation query xi ∈ {0, 1}�, check if Pu(xi) = 1.
If not, flip a coin γi ← {0, 1} and abort. A wins if γi = 1.

Else compute h(xi) = bi
1 . . . bi

n and output v

∏n
j=1 d

j,bi
j .

3. A sends challenge input x∗ such that x∗ �= xi ∀ i ≤ Q. Check if Pu(x∗) = 0.
If not, flip a coin γ∗ ← {0, 1} and abort. A wins if γ∗ = 1.
Else choose w ∈ G, ei,b ∈ ZN , for i = 1 to n and b ∈ {0, 1}.
Set k′ = (w, ((e1,0, e1,1), . . . , (en,0, en,1))).
Compute Kx∗ ← iO(λ,PuncturedKeyAltu,k,k′,x∗) and h(x∗) = b∗

1 . . . b∗
n. Let

y0 = w
∏n

j=1 ej,b∗
j and y1 ← G.

4. Flip coin β ← {0, 1}. Output (Kx∗ , yβ).
5. A outputs β′ and wins if β = β′.

Adaptively Secure Puncturable Pseudorandom Functions 91

Fig. 2. Program PuncturedKeyAlt

Game 3. In this game, the challenger changes how the master key k′ is chosen
so that some elements contain an a-factor, for use on inputs x where Pu(x) = 0.

1. Let (N, p, q,G,Gp,Gq, g1, g2) ← G(1λ). Choose v ∈ G, di,b ∈ ZN , for i = 1 to
n and b ∈ {0, 1}, and set k = (v, ((d1,0, d1,1) , . . . , (dn,0, dn,1))).
Choose u ← AdmSample(1λ, Q).

2. On any evaluation query xi ∈ {0, 1}�, check if Pu(xi) = 1.
If not, flip a coin γi ← {0, 1} and abort. A wins if γi = 1.

Else compute h(xi) = bi
1 . . . bi

n and output v

∏
j d

j,bi
j .

3. A sends challenge input x∗ such that x∗ �= xi ∀ i ≤ Q. Check if Pu(x∗) = 0.
If not, flip a coin γ∗ ← {0, 1} and abort. A wins if γ∗ = 1.
Else choose w ← G, a ← Z

∗
N and e′

i,b ← ZN .
Let ei,b = e′

i,b · a if h(x∗)i = b, else ei,b = e′
i,b.

Let k′ =(w, ((e1,0, e1,1), . . . , (en,0, en,1))), Kx∗ ← iO(PuncturedKeyAltu,k,k′,x∗).

Let h(x∗) = b∗
1 . . . b∗

n and y0 = w
∏

j ej,b∗
j and y1 ← G.

4. Flip coin β ← {0, 1}. Output (Kx∗ , yβ).
5. A outputs β′ and wins if β = β′.

Game 4. This game is the same as the previous one, except that the altered
punctured program contains the constants {w

ai }n
i=0 hardwired. These terms are

used to compute the output of the punctured program. The punctured key is an
obfuscation of PuncturedKeyAlt′ defined in Fig. 3.

1. Let (N, p, q,G,Gp,Gq, g1, g2) ← G(1λ). Choose v ∈ G, di,b ∈ ZN , for i = 1 to
n and b ∈ {0, 1}, and set k = (v, ((d1,0, d1,1) , . . . , (dn,0, dn,1))).
Choose u ← AdmSample(1λ, Q).

92 S. Hohenberger et al.

2. On any evaluation query xi ∈ {0, 1}�, check if Pu(xi) = 1.
If not, flip a coin γi ← {0, 1} and abort. A wins if γi = 1.

Else compute h(xi) = bi
1 . . . bi

n and output v

∏
j d

j,bi
j .

3. A sends challenge input x∗ such that x∗ �= xi ∀ i ≤ Q. Check if Pu(x∗) = 0.
If not, flip a coin γ∗ ← {0, 1} and abort. A wins if γ∗ = 1.
Else choose w ← G, a ← Z

∗
N and e′

i,b ← ZN .
Let W = (w,wa, . . . , wan−1

), E = ((e′
1,0, e

′
1,1), . . . , (e

′
n,0, e

′
n,1)).

Let K ′′
x∗ ← iO(PuncturedKeyAlt′u,W,E,k,x∗), h(x∗)=b∗

1 . . . b∗
n, y0 =

(
wan)∏

j e′
j,b∗

j

and y1 ← G.
4. Flip coin β ← {0, 1}. Output (K ′′

x∗ , yβ).
5. A outputs β′ and wins if β = β′.

Fig. 3. Program PuncturedKeyAlt’

Game 5. In this game, we replace the term wan

with a random element from
G. Hence, both y0 and y1 are random elements of G, thereby ensuring that any
adversary has zero advantage in this game.

1. Let (N, p, q,G,Gp,Gq, g1, g2) ← G(1λ). Choose v ∈ G, di,b ∈ ZN , for i = 1 to
n and b ∈ {0, 1}, and set k = (v, ((d1,0, d1,1) , . . . , (dn,0, dn,1))).
Choose u ← AdmSample(1λ, Q).

2. On any evaluation query xi ∈ {0, 1}�, check if Pu(xi) = 1.
If not, flip a coin γi ← {0, 1} and abort. A wins if γi = 1.

Else compute h(xi) = bi
1 . . . bi

n and output v

∏n
j=1 d

j,bi
j .

Adaptively Secure Puncturable Pseudorandom Functions 93

3. A sends challenge input x∗ such that x∗ �= xi ∀ i ≤ Q. Check if Pu(x∗) = 0.
If not, flip a coin γ∗ ← {0, 1} and abort. A wins if γ∗ = 1.
Else choose w ← G, a ← Z

∗
N , and e′

i,b ← ZN . Let W = (w,wa, . . . , wan−1
),

E =((e′
1,0, e

′
1,1), . . . , (e

′
n,0, e

′
n,1)) and Kx∗ ← iO(λ,PuncturedKeyAlt′u,W,E,k,x∗).

Let h(x∗) = b∗
1 . . . b∗

n. Choose T ← G and let y0 = (T)
∏n

j=1 e′
j,b∗

j and y1 ← G.
4. Flip coin β ← {0, 1}. Output (Kx∗ , yβ).
5. A outputs β′ and wins if β = β′.

Adversary’s Advantage in These Games. Let Advi
A denote the advantage

of adversary A in Game i. We will now show that if an adversary A has non-
negligible advantage in Game i, then A has non-negligible advantage in Game
i + 1. Finally, we show that A has advantage 0 in Game 5.

Claim 1. For any adversary A, Adv1A ≥ Adv0A/θ(Q).

Proof. This claim follows from the θ-admissibility of the hash function h. Recall
h is θ-admissible if for all x1, . . . , xq, x

∗, Pr[∀i, Pu(xi) = 1 ∧ Pu(x∗) = 0] ≥
1/θ(Q), where the probability is only over the choice of u ← AdmSample(1λ, Q).
Therefore, if A wins with advantage ε in Game 0, then A wins with advantage
at least ε/θ(Q) in Game 1.

Claim 2. Assuming iO is a secure indistinguishability obfuscator and the Sub-
group Hiding Assumption holds, for any PPT adversary A,

Adv1A − Adv2A ≤ negl(λ).

Clearly, the two programs in Game 1 and Game 2 are functionally different
(they differ on ‘challenge partition’ inputs x where Pu(x) = 0), and therefore
the proof of this claim involves multiple intermediate experiments. In the first
hybrid experiment, we transform the program such that the program computes
the output in a different manner, although the output is the same as in the
original program. Next, the constants hardwired in the modified program are
modified such that the output changes on all ‘challenge partition’ inputs (this
step uses Assumption 2). Essentially, both programs use a different base for the
challenge partition inputs. Next, using Subgroup Hiding Assumption and Chi-
nese Remainder Theorem, even the exponents can be changed for the challenge
partition, thereby ensuring that the original program and final program use dif-
ferent PRF keys for the challenge partition. The formal proof can be found in
full version of this paper.

Claim 3. For any PPT adversary A, Adv3A = Adv2A.

Proof. Game 2 and Game 3 are identical, except for the manner in which the
constants ei,b are chosen. In Game 2, ei,b ← ZN , while in Game 3, the challenger
first chooses e′

i,b ← ZN , a ← Z
∗
N , and sets ei,b = e′

i,b · a if h(x)i = b, else sets
ei,b = e′

i,b. Since a ∈ Z
∗
N (and therefore is invertible), e′

i,b · a is also a uniformly
random element in ZN if e′

i,b is. Hence the two experiments are identical.

94 S. Hohenberger et al.

Claim 4. If there exists a PPT adversary A such that Adv3A − Adv4A is non-
negligible in λ, then there exists a PPT distinguisher B that breaks the security
of iO with advantage non-negligible in λ.

Proof. Suppose there exists a PPT adversary A such that Adv3A −Adv4A = ε. We
will construct a PPT algorithm B that breaks the security of iO with advantage
ε by interacting with A. B first sets up the parameters, including u and k, and
answers the evaluation queries of A exactly as in steps 1 and 2 of Game 3, which
are identical to steps 1 and 2 of Game 4. When A sends B a challenge input x∗,
B checks that Pu(x∗) = 0 and if not aborts (identical in both games).

Next B chooses further values to construct the circuits: w ← G, a ← Z
∗
N

and e′
i,b ← ZN . Let ei,b = e′

i,b · a if h(x∗)i = b, else ei,b = e′
i,b. Let k′ =

(w, ((e1,0, e1,1), . . . , (en,0, en,1))), W = (w,wa, . . . , wan−1
) and E = ((e′

1,0, e
′
1,1),

. . . , (e′
n,0, e

′
n,1)).

B constructs C0 = PuncturedKeyAltu,k,k′,x∗ , C1 = PuncturedKeyAlt′u,W,E,k,x∗ ,
and sends C0, C1 to the iO challenger. B receives Kx∗ ← iO(Cb) from the
challenger. It computes h(x∗) = b∗

1 . . . b∗
n, y0 = w

∏
j ej,b∗

j , y ← G, β ← {0, 1},
sends (Kx∗ , yβ) to A and receives β′ in response. If β = β′, B outputs 0, else it
outputs 1.

We will now prove that the circuits C0 and C1 have identical functionality.
Consider any � bit string x, and let h(x) = b1 . . . bn. Recall tx∗(x) = |{i : bi =
b∗
i }|.

For any x ∈ {0, 1}� such that x = x∗, both circuits output ⊥.
For any x ∈ {0, 1}� such that x �= x∗ and Pu(x) = 1, both circuits output

v
∏n

j=1 dj,bj .
For any x ∈ {0, 1}� such that x �= x∗ and Pu(x) = 0, we have

C0(x) = PuncturedKeyAltu,k,k′,x∗(x) = w
∏n

j=1 ej,bj = w
a
tx∗(x)

∏n
j=1 e′

j,bj =
(
wtx∗ (x)

)∏n
j=1 e′

j,bj = PuncturedKeyAlt′u,W,E,k,x∗(x) = C1(x).

As C0 and C1 have identical functionality, Pr[B wins] = Pr[A wins in Game 3] -
Pr[A wins in Game 4]. If Adv3A − Adv4A = ε, then B wins the iO security game
with advantage ε.

Claim 5. If there exists a PPT adversary A such that Adv4A − Adv5A is non-
negligible in λ, then there exists a PPT adversary B that breaks Assumption 2
with advantage non-negligible in λ.

Proof. Suppose there exists an adversary A such that Adv4A −Adv5A = ε, then we
can build an adversary that breaks Assumption 2 with advantage ε. The games
are identical except that Game 5 replaces the term wan

with a random element
of G. On input an Assumption 2 instance (N,G,Gp,Gq, g1, g2, w, wa, . . ., wan−1

)
together with challenge value T (which is either wan

or a random element in G),
use these parameters as in Game 5 with A. If A guesses it was in Game 4, guess
that T = wan

, else guess that T was random.

Adaptively Secure Puncturable Pseudorandom Functions 95

Observation 1. For any adversary A, Adv5A = 0.

Proof. If the challenger aborts either during the evaluation or challenge phase,
then A has 0 advantage, since A wins with probability 1/2. If the challenger does
not abort during both these phases, then A receives (Kx∗ , yβ), and A must guess
β. However, both y0 and y1 are uniformly random elements in G, and therefore,
Adv5A = 0.

Conclusion of the Main Proof. Given Claims 1–5 and Observation 1,
we can conclude that if iO is a secure indistinguishability obfuscator and
Assumption 1 holds (in the full version of this paper, we show that Assumption 1
implies Assumption 2), then any PPT adversary A has negligible advantage in
the puncturable PRF security game (i.e., Game 0).

5 t-Puncturable PRFs

Let t(·) be a polynomial. A PRF Ft : K × X → Y is a t-puncturable pseudoran-
dom function if there is an additional key space Kp and three polynomial time
algorithms Ft.setup, Ft.eval and Ft.puncture defined as follows.

– Ft.setup(1λ) is a randomized algorithm that takes the security parameter λ as
input and outputs a description of the key space K, the punctured key space
Kp and the PRF Ft.

– Ft.puncture(k, S) is a randomized algorithm that takes as input a PRF key
k ∈ K and S ⊂ X , |S| ≤ t(λ), and outputs a t-punctured key KS ∈ Kp.

– Ft.eval(kS , x′) is a deterministic algorithm that takes as input a t-punctured
key kS ∈ Kp and x′ ∈ X . Let k ∈ K, S ⊂ X and kS ← Ft.puncture(k, S). For
correctness, we need the following property:

Ft.eval(kS , x′) =

{
Ft(k, x′) if x′ /∈ S

⊥ otherwise

The security game between the challenger and adversary is similar to the
security game for puncturable PRFs. However, in this case, the adversary is
allowed to make multiple challenge queries (as in the security game for con-
strained PRFs). The game consists of the following three phases.

Setup Phase. The challenger chooses a random key k ← K and b ← {0, 1}.

Query Phase. In this phase, A is allowed to ask for the following queries:

– Evaluation Query A sends x ∈ X , and receives Ft(k, x).
– Key Query A sends a set S ⊂ X , and receives Ft.puncture(k, S).
– Challenge Query A sends x ∈ X as a challenge query. If b = 0, the challenger

outputs Ft(k, x). Else, the challenger outputs a random element y ← Y.

96 S. Hohenberger et al.

Guess A outputs a guess b′ of b.
Let x1, . . . , xq1 ∈ X be the evaluation queries, S1, . . . , Sq2 ⊂ X be the t-

punctured key queries and x∗
1, . . . , x

∗
s be the challenge queries. A wins if ∀i ≤

q1, j ≤ s, xi �= x∗
j , ∀i ≤ q2, j ≤ s, x∗

j ∈ Si and b′ = b. The advantage of A is
defined to be AdvFt

A (λ) = Pr[A wins].

Definition 5. The PRF Ft is a secure t-puncturable PRF if for all PPT adver-
saries A AdvFt

A (λ) is negligible in λ.

5.1 Construction

In this section, we present our construction of t-puncturable PRFs from punc-
turable PRFs and indistinguishability obfuscation. Let F : K × X → Y be
a puncturable PRF, and F.setup, F.puncture, F.eval the corresponding setup,
puncturing and evaluation algorithms. We now describe our t-puncturable PRF
Ft, and the corresponding algorithms Ft.setup, Ft.puncture and Ft.eval.

Ft.setup(1
λ) Ft.setup is the same as F.setup.

Ft.puncture(k,S) Ft.puncture(k, S) computes an obfuscation of the program
PuncturedKeytk,S defined in Fig. 4; that is, KS ← iO(λ,PuncturedKeytk,S). As
before, the program PuncturedKeytk,S is padded to be of appropriate size.

Fig. 4. Program PuncturedKeyt

Ft.eval(KS,x) The punctured key KS is a program that takes an input in X .
We define

Ft.eval(KS , x) = KS(x).

5.2 Proof of Security

We will now prove that the above construction is a secure t-puncturable PRF
as defined in Definition 5.

Adaptively Secure Puncturable Pseudorandom Functions 97

Theorem 3. Assuming iO is a secure indistinguishability obfuscator and F ,
together with F.setup, F.puncture and F.eval is a secure puncturable PRF, the
PRF Ft defined above, together with Ft.setup, Ft.puncture and Ft.eval, is a secure
t-puncturable PRF.

For simplicity, we will assume that the adversary makes q1 evaluation queries,
q2 punctured key queries and 1 challenge query. As shown by [4], this can easily be
extended to the general case of multiple challenge queries via a hybrid argument.
We will first define the intermediate hybrid experiments.

Game 0. This game is the original security game between the challenger and
adversary A, where the challenger first chooses a PRF key, then A makes
evaluation/t-punctured key queries and finally sends the challenge input. The
challenger responds with either the PRF evaluation at challenge input, or sends
a random element of the range space.

1. Choose a key k ← K.
2. A makes evaluation/t-punctured key queries.

(a) If A sends an evaluation query xi, then output F (k, xi).
(b) If A sends a t-punctured key query for set Sj , output the key KSj

←
iO(PuncturedKeytk,Sj

).
3. A sends challenge query x∗ such that x∗ �= xi ∀i ≤ q1 and x∗ ∈ Sj ∀j ≤ q2.

Choose β ← {0, 1}. If β = 0, output y = F (k, x∗), else output y ← Y.
4. A sends β′ and wins if β = β′.

Game 1. This game is the same as the previous one, except that the challenger
introduces an abort condition. When the first t-punctured key query S1 is made,
the challenger guesses the challenge query x̃ ← S1. The challenger aborts if any
of the evaluation queries are x̃, if any of the future t-punctured key queries does
not contain x̃ or if the challenge query x∗ �= x̃.

1. Choose a key k ← K.
2. A makes evaluation/t-punctured key queries.

Let S1 be the first t-punctured key query. Choose x̃ ← S1 and output key
KS1 ← iO(λ,PuncturedKeytk,S1

). For all evaluation queries xi before S1,
output F (k, xi).
For all queries after S1, do the following.
(a) If A sends an evaluation query xi and xi = x̃, abort.

Choose γ1
i ← {0, 1}. A wins if γ1

i = 1.
Else if xi �= x̃, output F (k, xi).

(b) If A sends a t-punctured key query for set Sj and x̃ /∈ Sj , abort.
Choose γ2

i ← {0, 1}. A wins if γ2
i = 1.

Else if x̃ ∈ Sj , output KSj
← iO(λ,PuncturedKeytk,Sj

).
3. A sends challenge query x∗ such that x∗ �= xi ∀i ≤ q1 and x∗ ∈ Sj ∀j ≤ q2.

If x̃ �= x∗, abort. Choose γ∗ ← {0, 1}. A wins if γ∗ = 1.
Else if x̃ = x∗, choose β ← {0, 1}. If β = 0, output y = F (k, x∗), else output
y ← Y.

4. A sends β′ and wins if β = β′.

98 S. Hohenberger et al.

Next, we define q2 games, Game 1l, 1 ≤ l ≤ q2. Let Game 10 = Game 1.

Game 1l. In this game, the first l punctured key queries use Kx̃, while the
remaining use k.

1. Choose a key k ← K.
2. A makes evaluation/t-punctured key queries.

Let S1 be the first t-punctured key query. Choose x̃ ← S1.
Compute Kx̃ ← F.puncture(k, x̃).
Output KS1 ← iO(λ,PuncturedKeyAlttKx̃,S1

) (where PuncturedKeyAltt is
defined in Fig. 5).
For all evaluation queries xi before S1, output F (k, xi).
For all queries after S1, do the following.
(a) If A sends an evaluation query xi and xi = x̃, abort. Choose γ1

i ← {0, 1}.
A wins if γ1

i = 1.
Else if xi �= x̃, output F.eval(Kx̃, xi) = F (k, xi).

(b) If A sends a t-punctured key query for set Sj and x̃ /∈ Sj , abort. Choose
γ2

i ← {0, 1}. A wins if γ2
i = 1.

Else if x̃ ∈ Sj and j ≤ l, output KSj
← iO(λ,PuncturedKeyAlttKx̃,Sj

).
Else output KSj

← iO(λ,PuncturedKeytk,Sj
).

3. A sends challenge query x∗ such that x∗ �= xi ∀i ≤ q1 and x∗ ∈ Sj ∀j ≤ q2.
If x̃ �= x∗, abort. Choose γ∗ ← {0, 1}. A wins if γ∗ = 1.
Else if x̃ = x∗, choose β ← {0, 1}. If β = 0, output y = F (k, x∗), else output
y ← Y.

4. A sends β′ and wins if β = β′.

Fig. 5. Program PuncturedKeyAltt

Game 2. In this game, the challenger outputs a random element as the response
to the challenge query.

1. Choose a key k ← K.
2. A makes evaluation/t-punctured key queries.

Let S1 be the first t-punctured key query. Choose x̃ ← S1 and compute
Kx̃ ← F.puncture(k, x̃).
Output KS1 ← iO(λ,PuncturedKeyAlttKx̃,S1

).
For all evaluation queries xi before S1, output F (k, xi).
For all queries after S1, do the following.

Adaptively Secure Puncturable Pseudorandom Functions 99

(a) If A sends an evaluation query xi and xi = x̃, abort. Choose γ1
i ← {0, 1}.

A wins if γ1
i = 1.

Else if xi �= x̃, output F.eval(Kx̃, xi) = F (k, xi).
(b) If A sends a t-punctured key query for set Sj and x̃ /∈ Sj , abort. Choose

γ2
i ← {0, 1}. A wins if γ2

i = 1.
Else if x̃ ∈ Sj , output KSj

← iO(λ,PuncturedKeyAlttKx̃,Sj
).

3. A sends challenge query x∗ such that x∗ �= xi ∀i ≤ q1 and x∗ ∈ Sj ∀j ≤ q2.
If x̃ �= x∗, abort. Choose γ∗ ← {0, 1}. A wins if γ∗ = 1.
Else if x̃ = x∗, choose β ← {0, 1} and output y ← Y.

4. A sends β′ and wins if β = β′.

Adversary’s Advantage in These Games. Let Advi
A denote the advantage

of adversary A in Game i.

Observation 2. For any adversary A, Adv1A ≥ Adv0A/t.

Proof. Since one of the elements of S1 will be the challenge input, and |S1| ≤ t,
the challenger’s guess is correct with probability 1/|S1| ≥ 1/t. Hence, Adv1A ≥
Adv0A/t.

We will now show that Game 1l and Game 1l+1 are computationally indis-
tinguishable, assuming iO is secure.

Claim 6. If there exists a PPT adversary A such that Adv1lA − Adv
1l+1
A is non-

negligible in λ, then there exists a PPT distinguisher B that breaks the security
of iO with advantage non-negligible in λ.

Proof. Note that the only difference between Game 1l and Game 1l+1 is in the
response to the (l+1)th t-punctured key query. In Game 1l, PuncturedKeytk,Sl+1

is used to compute KSl+1 , while in Game 1l+1, PuncturedKeyAlttKs̃,Sl+1
is used.

Suppose there exists a PPT adversary A such that Adv1lA −Adv
1l+1
A = ε. We will

construct a PPT algorithm B that interacts with A and breaks the security of
iO with advantage ε.

B chooses k ← K and for all evaluation queries xi before the first t-punctured
key query, outputs F (k, xi). On receiving the first t-punctured key query S1, B
chooses x̃ ← S1 and computes Kx̃ ← F.puncture(k, x̃). The evaluation queries
are computed as in Game 1l and 1l+1. The first l t-punctured key queries are
constructed using k, while the last q2 − l − 1 t-punctured keys are constructed
using Kx̃ (as in Game 1l and Game 1l+1). For the (l + 1)th query, B does the
following. B sets C0 = PuncturedKeytk,Sl+1

and C1 = PuncturedKeyAlttKx̃,Sl+1
,

and sends C0, C1 to the iO challenger, and receives KSl+1 in response, which it
sends to A.

Finally, after all queries, the challenger sends the challenge query x∗. B checks
that x̃ = x∗, sets y0 = F (k, x∗) and chooses y1 ← Y, β ← {0, 1}. It outputs yβ

and receives β′ in response. If β = β′, B outputs 0, else it outputs 1.
From the correctness property of puncturable PRFs, it follows that F.eval

(Kx̃, x) = F (k, x) for all x /∈ Sl+1. Hence, the circuits C0 and C1 are functionally
identical. This completes our proof.

100 S. Hohenberger et al.

Next, we show that Game 1q2 and Game 2 are computationally indistinguishable.

Claim 7. If there exists a PPT adversary A such that Adv
1q2
A − Adv2A is non-

negligible in λ, then there exists a PPT distinguisher B that breaks the security
of puncturable PRF F with advantage non-negligible in λ.

Proof. We will use A to construct a PPT algorithm B that breaks the security
of puncturable PRF F with advantage Adv

1q2
A − Adv2A. Observe that in Game

1q2 , the challenger requires the master key k only for the evaluation queries
before the first t-punctured key query. After the first t-punctured key query S1,
the challenger chooses x̃ ← S1, computes a punctured key Kx̃, and uses this to
compute all future evaluation queries and t-punctured keys.

B begins interacting with A. For each evaluation query xi before the first t-
punctured key query, B sends xi to the puncturable PRF challenger, and receives
yi, which it forwards to A. On receiving the first t-punctured key query S1,
B chooses x̃ ← S1 and sends x̃ as challenge input to the puncturable PRF
challenger. B receives Kx̃ and y. It uses Kx̃ for all remaining queries. On receiving
challenge x∗ from A, B checks x∗ = x̃ and sends y. B sends A’s response to the
PRF challenger.

Note that until the challenge query is made, both games are identical and B
simulates them perfectly. If y is truly random, then A receives a response as per
Game 2, else it receives a response as per Game 1q2 .

Finally, we have the following simple observation.

Observation 3. For any adversary, Adv3A = 0.

From the above claims and observations, we can conclude that if iO is a secure
indistinguishability obfuscator as per Definition 2, and F , together with F.setup,
F.puncture, F.eval is a secure puncturable PRF as per Definition 4, then any PPT
adversary A has negligible advantage in Game 0.

6 Conclusion

Puncturable and t-puncturable PRFs have numerous cryptographic applications.
This work provides the first constructions and proofs of adaptive security in the
standard model. This is an interesting step forward in its own right, and we
believe the techniques used to achieve adaptiveness from indistinguishability
obfuscation may be useful elsewhere. Moreover, this work resolves for at least
the puncturable PRF space, the larger question of characterizing which classes
of functions admit an adaptively-secure constrained PRF in the standard model.
As noted earlier, the results of [11] and [16] provide intuition both for and against
whether this is indeed possible for many other function families.

Adaptively Secure Puncturable Pseudorandom Functions 101

References

1. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer,
Heidelberg (2010)

2. Bitansky, N., Canetti, R., Paneth, O., Rosen, A.: Indistinguishability obfuscation
vs. auxiliary-input extractable functions: One must fall. Cryptology ePrint Archive,
Report 2013/641 (2013). http://eprint.iacr.org/

3. Boneh, D., Boyen, X.: Secure identity based encryption without random oracles.
In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 443–459. Springer,
Heidelberg (2004)

4. Boneh, D., Waters, B.: Constrained pseudorandom functions and their applica-
tions. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270,
pp. 280–300. Springer, Heidelberg (2013)

5. Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing, and
more from indistinguishability obfuscation. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 480–499. Springer, Heidelberg (2014)

6. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom func-
tions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer,
Heidelberg (2014)

7. Chandran, N., Raghuraman, S., Vinayagamurthy, D.: Constrained pseudorandom
functions: Verifiable and delegatable. Cryptology ePrint Archive, Report 2014/522
(2014). http://eprint.iacr.org/

8. Chase, M., Meiklejohn, S.: Déjà Q: using dual systems to revisit q-type assump-
tions. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441,
pp. 622–639. Springer, Heidelberg (2014)

9. Freire, E.S.V., Hofheinz, D., Paterson, K.G., Striecks, C.: Programmable hash func-
tions in the multilinear setting. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part I. LNCS, vol. 8042, pp. 513–530. Springer, Heidelberg (2013)

10. Fuchsbauer, G.: Constrained verifiable random functions. In: Abdalla, M., De
Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 95–114. Springer, Heidelberg
(2014)

11. Fuchsbauer, G., Konstantinov, M., Pietrzak, K., Rao, V.: Adaptive security of
constrained PRFs. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part II.
LNCS, vol. 8874, pp. 82–101. Springer, Heidelberg (2014)

12. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: FOCS
(2013)

13. Gentry, C., Lewko, A., Sahai, A., Waters, B.: Indistinguishability obfuscation
from the multilinear subgroup elimination assumption. Cryptology ePrint Archive,
Report 2014/309 (2014). http://eprint.iacr.org/

14. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions
(extended abstract). In: FOCS, pp. 464–479 (1984)

15. Golle, P., Jarecki, S., Mironov, I.: Cryptographic primitives enforcing communica-
tion and storage complexity. In: Financial Cryptography, pp. 120–135 (2002)

16. Hofheinz, D.: Fully secure constrained pseudorandom functions using random ora-
cles. IACR Cryptology ePrint Archive, Report 2014/372 (2014)

17. Hofheinz, D., Kiltz, E.: Programmable hash functions and their applications. J.
Cryptology 25(3), 484–527 (2012)

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

102 S. Hohenberger et al.

18. Hohenberger, S., Sahai, A., Waters, B.: Full domain hash from (Leveled) multilinear
maps and identity-based aggregate signatures. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 494–512. Springer, Heidelberg (2013)

19. Hohenberger, S., Sahai, A., Waters, B.: Replacing a random oracle: full domain
hash from indistinguishability obfuscation. In: Nguyen, P.Q., Oswald, E. (eds.)
EUROCRYPT 2014. LNCS, vol. 8441, pp. 201–220. Springer, Heidelberg (2014)

20. Hohenberger, S., Waters, B.: Constructing verifiable random functions with large
input spaces. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 656–
672. Springer, Heidelberg (2010)

21. Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable
pseudorandom functions and applications. In: ACM Conference on Computer and
Communications Security, pp. 669–684 (2013)

22. Lewko, A., Waters, B.: New proof methods for attribute-based encryption: achiev-
ing full security through selective techniques. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 180–198. Springer, Heidelberg (2012)

23. Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random
functions. J. ACM 51(2), 231–262 (2004)

24. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: STOC, pp. 475–484 (2014)

25. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005)

Multilinear and Aggregate
Pseudorandom Functions:

New Constructions and Improved Security

Michel Abdalla(B), Fabrice Benhamouda, and Alain Passelègue

ENS, CNRS, INRIA, and PSL, Paris, France
{michel.abdalla,fabrice.ben.hamouda,alain.passelegue}@ens.fr

http://www.di.ens.fr/users/mabdalla

http://www.di.ens.fr/users/fbenhamo

http://www.di.ens.fr/users/passeleg

Abstract. Since its introduction, pseudorandom functions (PRFs) have
become one of the main building blocks of cryptographic protocols. In
this work, we revisit two recent extensions of standard PRFs, namely
multilinear and aggregate PRFs, and provide several new results for these
primitives. In the case of aggregate PRFs, one of our main results is a
proof of security for the Naor-Reingold PRF with respect to read-once
boolean aggregate queries under the standard Decision Diffie-Hellman
problem, which was an open problem. In the case of multilinear PRFs,
one of our main contributions is the construction of new multilinear
PRFs achieving indistinguishability from random symmetric and skew-
symmetric multilinear functions, which was also left as an open problem.
In order to achieve these results, our main technical tool is a simple
and natural generalization of the recent linear independent polynomial
framework for PRFs proposed by Abdalla, Benhamouda, and Passelègue
in Crypto 2015, that can handle larger classes of PRF constructions. In
addition to simplifying and unifying proofs for multilinear and aggregate
PRFs, our new framework also yields new constructions which are secure
under weaker assumptions, such as the decisional k-linear assumption.

Keywords: Pseudorandom functions · Multilinear PRFs · Aggregate
PRFs

1 Introduction

Pseudorandom functions (PRFs) are one of the most fundamental primitives in
cryptography. One of the features that makes PRFs so useful is the fact that
they behave as truly random functions with respect to computationally bounded
adversaries. Since being introduced by Goldreich, Goldwasser, and Micali [15],
PRFs have been used in many cryptographic applications, varying from sym-
metric encryption and authentication schemes to key exchange. In particular,
they are very useful for modeling the security of concrete block ciphers, such as
AES [4].
c© International Association for Cryptologic Research 2015
T. Iwata and J.H. Cheon (Eds.): ASIACRYPT 2015, Part I, LNCS 9452, pp. 103–120, 2015.
DOI: 10.1007/978-3-662-48797-6 5

104 M. Abdalla et al.

Given the large applicability of pseudorandom functions, several extensions
have been proposed in the literature over the years, with the goal of providing
additional functionalities to these functions. One concrete example of such an
extension are constrained PRFs [9,11,17], which provides the owner of the secret
key with the capability of delegating the computation of the pseudorandom
function for different subsets of the input domain, without compromising the
pseudorandomness property for the other points of the input domain. In this
paper, we focus on two recent extensions of pseudorandom functions, namely
multilinear PRFs [13], and aggregate PRFs [12], and solve several open problems
related to the construction of these primitives.

Aggregate Pseudorandom Functions. Aggregate pseudorandom functions
were introduced by Cohen, Goldwasser, and Vaikuntanathan in [12]. The main
interest of an aggregate PRF is to provide the user with the possibility of aggre-
gating the values of the function over super-polynomially many PRF values with
only a polynomial-time computation, without enabling a polynomial-time adver-
sary to distinguish the function from a truly random function. For instance, one
such example of an aggregate query could be to compute the product of all the
output values of the PRF corresponding to a given exponentially-sized interval
of the input domain.

In addition to proposing the notion of aggregate PRFs, Cohen, Goldwasser,
and Vaikuntanathan [12] also proposed new constructions for several different
classes of aggregate queries, such as decision trees, hypercubes, and read-once
boolean formulas, achieving different levels of expressiveness. Unfortunately, for
most of the constructions proposed in [12], the proofs of security suffer from
an exponential (in the input length) overhead in their running time and have
to rely on the sub-exponential hardness of the Decisional Diffie-Hellman (DDH)
problem.

Indeed, to prove the security of their constructions, the authors use a generic
result which is simply saying the following: given an adversary A against the
AGG-PRF security of a PRF F , one can build an adversary B against the
standard PRF security of F . B simply queries all the values required to compute
the aggregate values (or the PRF values), and computes the aggregate values
itself before sending them to A .

Clearly, this reduction proves that any secure PRF is actually also a secure
aggregate PRF. However, this reduction is not efficient, since to answer to just
one aggregate query, the adversary B may have to query an exponential num-
ber of values to its oracle. Hence, as soon as we can aggregate in one query a
superpolynomial number of PRF values, this generic reduction does not run in
polynomial time.

Multilinear Pseudorandom Functions. In order to overcome the shortcom-
ings of the work of Cohen, Goldwasser, and Vaikuntanathan [12], Cohen and
Holmgren introduced the concept of multilinear pseudorandom functions in [13].
Informally speaking, a multilinear pseudorandom function is a variant of the

Multilinear and Aggregate Pseudorandom Functions 105

standard notion of pseudorandom functions, which works with vector spaces
and which guarantees indistinguishability from random multilinear functions
with the same domain and range. As shown in [13], multilinear pseudorandom
functions can be used to prove the AGG-PRF security of the Naor-Reingold
(NR) PRF [18] with a polynomial time reduction for the case of hypercubes
and decision trees aggregations. Unfortunately, their technique does not extend
to the more general case of read-once formulas aggregation, which is the most
expressive form of aggregation in [12].

Our Techniques. In this work, we provide an alternative way of overcoming
the limitations of the work of Cohen, Goldwasser, and Vaikuntanathan [12],
based on a natural extension of the recent algebraic framework for pseudorandom
functions proposed by Abdalla, Benhamouda, and Passelègue in [1], known as
the linear independent polynomial (LIP) framework.

In a nutshell, the LIP framework essentially says that for any linearly inde-
pendent polynomials P1, . . . , Pq ∈ Zp[T1, . . . , Tn], the group elements

[P1(#”a) · b] , . . . , [Pq(#”a) · b],

with #”a
$← Z

n
p and b

$← Zp, are computationally indistinguishable from indepen-
dent random group elements in G, under the DDH assumption (when polynomi-
als are multilinear) or the d-DDHI assumption (where d is the maximum degree
of P1, . . . , Pq in any indeterminate Ti). As a toy example, the LIP framework
directly proves the security of the NR PRF defined as:

NR((b, #”a), x) =

[

b

n∏

i=1

axi
i

]

,

where (b, #”a = (a1, . . . , an)) ∈ K = Zp × Z
n
p and x ∈ D = {0, 1}n. Indeed, all the

polynomials Px = b
∏n

i=1 axi
i are linearly independent.

Unfortunately, the LIP framework is not enough to prove the security of mul-
tilinear PRFs or aggregate PRFs, as the outputs of the function (and the corre-
sponding polynomials) may not be independent. To overcome these limitations,
we provide a natural extension of the LIP framework, which we call polynomial
linear pseudorandomness security (PLP), that can handle such dependences.
Despite being a simple extension, the new PLP framework yields significant
improvements over previous works on multilinear and aggregate PRFs. In par-
ticular, the multilinear constructions in [13] can be seen as a special case of our
new PLP framework.

Main Results. Using our new PLP framework for pseudorandom functions,
we obtain the following results.

First, we prove the security of the aggregate PRF for read-once formulas pro-
posed in [12], under the DDH assumption and with a polynomial-time reduction.
This in turn implies the security of all the other aggregate PRFs in [12], as the

106 M. Abdalla et al.

latter are particular cases of the aggregate PRFs for read-once formulas. The
proof is very simple and based on linear algebra. Up to now, the only known
reduction incurred an exponential blow-up in the length n of the input.

Second, we show that our PLP framework enables to very easily prove the
security of the multilinear pseudorandom function construction in [13]. More
importantly, it enables us to directly show the security of the symmetric variant
of this construction, under the d-DDHI assumption, which was left as an open
problem in [13].

Third, we extend all the above constructions to weaker assumptions, as the
k-Lin assumption, which can hold in symmetric k-linear groups, contrary to
DDH or d-DDHI. Again, these extensions are straightforward to prove thanks
to our PLP framework.

Additionally, we solve two other open problems respectively in [12, end of
Sects. 1 and 2.2] and in [13]: We show that unless NP=BPP, there cannot exist
aggregate PRFs for DNF formulas, although satisfiability of DNF formulas can
be tested in polynomial time; and we propose the first skew-symmetric multilin-
ear PRF.

Additional Contributions. As a side contribution, we prove the hardness of
Ek,d-MDDH (defined in [1] and recalled in Sect. 2) in the generic (symmetric) k-
linear group model, which was left as an open problem in [1] for k > 2 and d > 1.
This result directly implies that all the results stated in [1] under the E2,d-MDDH
now holds also for Ek,d-MDDH, for any k ≥ 2, which is also an interesting side
contribution. To prove this result, we essentially need to prove there are no non-
trivial polynomial relations of degree k between the elements of the assumptions
(these elements being themselves polynomials), as in [8,10,14]. The proof is by
induction over k: for the base case k = 1, the proof is straightforward as all
the elements we consider are linearly independent; for the inductive case k = 2,
we basically set some indeterminates to some carefully chosen values (for the
polynomials defining the elements we consider) to come down to previous cases.

Paper Organization. The rest of the paper is composed of the following sec-
tions. In Sect. 2 and the full version [3], we give necessary background and nota-
tions. We introduce our general PLP security notion and explain our main result,
termed PLP theorem (Theorem 1), in Sect. 3. We then present our new construc-
tions and improved security bounds for aggregate and multilinear pseudorandom
functions in Sect. 4 as well as some side results. The proofs of these results are
detailed in the full version [3]. Finally, in the full version [3], we prove the hard-
ness of our main assumption (the Ek,d-MDDH assumption) in the generic k-linear
group model.

2 Definitions

Notations and Conventions. We denote by κ the security parameter. Let
F : K × D → R be a function that takes a key K ∈ K and an input x ∈ D

Multilinear and Aggregate Pseudorandom Functions 107

and returns an output F (K,x) ∈ R. The set of all functions F : K × D → R
is denoted by Fun(K,D,R). Likewise, Fun(D,R) denotes the set of all functions
mapping D to R. Also, if D and R are vector spaces, we denote by L(D,R) the
vector space of linear functions from D to R. In addition, if D1, . . . ,Dn are n
vector spaces, then L(D1 ⊗ · · · ⊗ Dn,R) is the vector space of n-linear functions
from D1 × · · · × Dn to R.

If S is a set, then |S| denotes its size. We denote by s
$← S the operation

of picking at random s in S. If #”x is a vector then we denote by | #”x | its length,
so #”x = (x1, . . . , x| #”x |). For a binary string x, we denote its length by |x| so
x ∈ {0, 1}|x|, xi its i-th bit, so x = x1 ‖ . . . ‖ x|x|. For a matrix A of size k×m, we
denote by ai,j the coefficient of A in the i-th row and the j-th column. We denote
by Zp[T1, . . . , Tn] the subspace of multivariate polynomials in indeterminates
T1, . . . , Tn, and by Zp[T1, . . . , Tn]≤d the subring of polynomials of degree at most
d in each indeterminate. For a polynomial P ∈ Zp[T1, . . . , Tn], we denote by
P (

#”

T) the polynomial P (T1, . . . , Tn) and by P (#”a) its evaluation by setting
#”

T to
#”a , meaning that we set T1 = a1, . . . , Tn = an.

We often implicitly consider a multiplicative group G = 〈g〉 with public
generator g of order p and we denote by [a] the element ga, for any a ∈ Zp.
Similarly, if A is a matrix in Z

k×m
p , [A] is a matrix U ∈ G

k×m, such that
ui,j = [ai,j] for i = 1, . . . , k and j = 1, . . . ,m. All vector spaces are implicitly
supposed to be Zp-vector spaces.

We denote by TestLin a procedure which takes as inputs a list L of polynomi-
als (R1, . . . , RL) (such that R1, . . . , RL are linearly independent as polynomials)
and a polynomial R and which outputs:

{
⊥ if R is linearly independent of the set {R1, . . . , RL}
#”

λ = (λ1, . . . , λL) otherwise, so that R = λ1R1 + . . . + λLRL

#”

λ is uniquely defined since we assume that polynomials from the input list are
linearly independent. No such procedure is known for multivariate polynomials,
if we require the procedure to be deterministic and polynomial-time. However,
it is easy to construct such a randomized procedure which is correct with over-
whelming probability. Such a statistical procedure is sufficient for our purpose
and was given in [2]. We recall this procedure in Fig. 1. This procedure is correct
with probability at least p−1

p as soon as nd ≤ √
p, where d is the maximum

degree in one indeterminate and n is the number of indeterminates.

Games [5]. Most of our definitions and proofs use the code-based game-playing
framework, in which a game has an Initialize procedure, procedures to respond
to adversary oracle queries, and a Finalize procedure. In the case where the
Finalize procedure is not explicitly defined, it is implicitly defined as the pro-
cedure that simply outputs its input. To execute a game G with an adversary
A , we proceed as follows. First, Initialize is executed and its outputs become
the input of A . When A executes, its oracle queries are answered by the cor-
responding procedures of G. When A terminates, its outputs become the input
of Finalize. The output of the latter, denoted GA is called the output of the

108 M. Abdalla et al.

Fig. 1. TestLin procedure

game, and we let “GA ⇒ 1” denote the event that this game output takes the
value 1. The running time of an adversary by convention is the worst case time
for the execution of the adversary with any of the games defining its security, so
that the time of the called game procedures is included.

Pseudorandom Functions. A PRF is an efficiently computable ensemble of
functions F : K × D → R, implicitly indexed by the security parameter κ, such
that, when K

$← K, the function x ∈ D �→ F (K,x) ∈ R is indistinguishable
from a random function. Formally, we say that F is a pseudorandom function if
the advantage of any adversary A in attacking the standard PRF security of F
is negligible, where this advantage is defined via

Advprf
F (A) = Pr

[
PRFRealAF ⇒ 1

]
− Pr

[
PRFRandA

F ⇒ 1
]
,

where games PRFRealF and PRFRandF are depicted in Fig. 2.

Aggregation Function. Let f : K × D → R be a function. We define an
aggregation function by describing two objects:

– a collection S of subsets S of the domain D;
– an aggregation function Γ: R∗ → V that takes as input a tuple of values from

the range R of F and aggregates them to produce a value in an output set V.

In addition, we require the set ensemble S to be efficiently recognizable, meaning
that for any S ∈ S , there exists a polynomial time procedure to check if x ∈ S,
for any x ∈ D. Also, we require the aggregation function Γ to be polynomial

Multilinear and Aggregate Pseudorandom Functions 109

time and the output of the function not to depend on the order of the elements
provided as inputs. Finally, we require all sets S to have a representation of size
polynomial in the security parameter κ.

Given an aggregation function (S ,Γ), we define the aggregate function
AGG = AGGf,S ,Γ as the function that takes as input a set S ∈ S and out-
puts the aggregation of all values f(x) for all x ∈ S. That is, AGG(S) outputs
Γ(f(x1), . . . , f(x|S|)), where S = {x1, . . . , x|S|}. We will require the computation
of AGG to be polynomial time (even if the input set S is exponentially large)
if the function f provided is the pseudorandom function F (K, ·) we consider,
where K is some key.

Aggregate Pseudorandom Functions. Let F : K × D → R be a pseudo-
random function and let (S ,Γ) be an associated aggregation function. We say
that F is an (S ,Γ)-aggregate pseudorandom function ((S ,Γ)-AGG-PRF) if the
advantage of any adversary in attacking the AGG-PRF security of F is negligi-
ble, where this advantage is defined via

Advagg-prf
F,S ,Γ(A) = Pr

[
AGGPRFRealAF ⇒ 1

]
− Pr

[
AGGPRFRandA

F ⇒ 1
]
,

where games AGGPRFRealF and AGGPRFRandF are depicted in Fig. 2. Game
AGGPRFRandF may not be polynomial-time, as AGGf,S ,Γ may not require
to compute an exponential number of values f(x). However, for all the aggre-
gate PRFs that we consider, this game is statistically indistinguishable from a
polynomial-time game, using the TestLin procedure, similarly to what is done
in our new PLP security notion (see Sect. 3 and Fig. 3).

Multilinear Pseudorandom Functions. Multilinear pseudorandom func-
tions are a variant of the standard notion of pseudorandom functions, which
works with vector spaces. More precisely, a multilinear pseudorandom function
F : K × D → R, is an efficiently computable function with key space K, domain
D = D1 × · · · × Dn (a cartesian product of n vector spaces D1, . . . ,Dn, for some
integer n), range R which is a vector space, and which is indistinguishable from
a random n-linear function with same domain and range. We say that F is a
multilinear pseudorandom function (MPRF) if the advantage of any adversary in
attacking the MPRF security of F is negligible, where this advantage is defined
via

Advmprf
F (A) = Pr

[
MPRFRealAF ⇒ 1

]
− Pr

[
MPRFRandA

F ⇒ 1
]
,

where games MPRFRealF and MPRFRandF are depicted in Fig. 2. As explained
in [13], Game MPRFRandF can be implemented in polynomial time using a
deterministic algorithm checking linearity of simple tensors [6]. Also, similarly
to Game AGGPRFRandF , it is also possible to implement a polynomial-time
game that is statistically indistinguishable from MPRFRandF using TestLin.

110 M. Abdalla et al.

Fig. 2. Security games for (classical, aggregate, multilinear — from top to bottom)
pseudorandom functions

Assumptions. Our main theorem is proven under the same MDDH assump-
tion [14] introduced in [1] and termed Ek,d-MDDH assumption. This MDDH
assumption is defined by the matrix distribution Ek,d which samples matrices Γ
as follows

Γ =

⎛

⎜
⎜
⎜
⎝

A0 · B
A1 · B

...
Ad · B

⎞

⎟
⎟
⎟
⎠

∈ Z
k(d+1)×k
p with A,B

$← Z
k×k
p . (1)

The advantage of an adversary D against the Ek,d-MDDH assumption is

AdvEk,d-mddh
G

(D) = Pr [D(g, [Γ], [Γ · W])] − Pr [D(g, [Γ], [U])],

where Γ
$← Ek,d, W

$← Z
k×1
p , U $← Z

k(d+1)×1
p . This assumption is random self-

reducible, as any other MDDH assumption (we will make use of this property in
the proof of our main theorem, and recall this property in the full version [3]).

In Table 1, we summarize security results for Ek,d-MDDH. For k = 1 or d = 1,
the Ek,d-MDDH assumption is implied by standard assumptions (DDH, DDHI,
or k-Lin, as recalled in the full version [3]). E1,1-MDDH is actually exactly DDH.

Multilinear and Aggregate Pseudorandom Functions 111

Table 1. Security of Ek,d-MDDH

k = 1 k = 2 k ≥ 3

d = 1 = Advddh
G � 2 · AdvU2-mddh

G
� k · Adv

Uk-mddh
G

d ≥ 2 � d · Advd−ddhi
G

a
Generic bilinear groupb Generic k-linear groupc

Advddh
G , Advd-ddhi

G and AdvUk-mddh
G

are advantages for DDH, DDHI, and
Uk-MDDH. This later assumption is weaker than k-Lin;
aproven in [1];
bproven in the generic (symmetric) bilinear group model [7] in [1]
cproven in the generic (symmetric) k-linear group model [16,19] in the full

version [3].

In [1], the question of the hardness of the Ek,d-MDDH problem in the generic
k-linear group model was left as an open problem when d > 1 and k > 2. One
of our contributions is to give a proof of hardness of these assumptions, which
is detailed in the full version [3].

3 Polynomial Linear Pseudorandomness Security

As we already mentioned in the introduction, while the LIP theorem from [1] is
quite powerful to prove the security of numerous constructions of pseudorandom
functions (and related-key secure pseudorandom functions), it falls short when
we need to prove the security of multilinear pseudorandom functions or aggregate
pseudorandom functions. Indeed, the LIP theorem requires that there is no linear
dependence between the outputs of the function. Thus, for the latter primitives,
it is clear that one cannot use the LIP theorem, since the main point of these
primitives is precisely that outputs can be related.

In order to deal with these primitives, we introduce a new security notion,
termed polynomial linear pseudorandomness security (PLP), which encompasses
the LIP security notion, but allows to handle multilinear pseudorandom func-
tions and aggregate pseudorandom functions.

3.1 Intuition

Intuitively, the polynomial linear pseudorandomness security notion says that
for any polynomials P1, . . . , Pq ∈ Zp[T1, . . . , Tn], the group elements

[P1(#”a) · b], . . . , [Pq(#”a) · b],

with #”a
$← Z

n
p and b

$← Zp, are computationally indistinguishable from the group
elements:

[U(P1)], . . . , [U(Pq)],

with U
$← L(Zp[T1, . . . , Tn]≤d,Zp) being a random linear function from the poly-

nomial vector space Zp[T1, . . . , Tn]≤d (with d the maximum degree of P1, . . . , Pq

112 M. Abdalla et al.

in any indeterminate Ti) to the base field Zp. Our main theorem (Theorem 1)
shows that this security notion holds under the E1,d-MDDH assumption (and
thus also under DDH for d = 1 and d-DDHI for d ≥ 2).

When P1, . . . , Pq are linearly independent, [U(P1)], . . . , [U(Pq)] are indepen-
dent random group elements in G. In that sense, the polynomial linear pseudo-
randomness security notion is a generalization of the LIP security notion.

We remark that, in the generic group model, the polynomial linear pseudoran-
domness security notion holds trivially, by definition. The difficulty of the work
is to prove it under classical assumptions such as the E1,d-MDDH assumption.

Polynomial-Time Games. When we want to formally define the polynomial
linear pseudorandomness security notion, we quickly face a problem: how to
compute [U(Pi)] for a random linear map U

$← L(Zp[T1, . . . , Tn]≤d,Zp)? Such a
map can be represented by a (random) vector with (d + 1)n entries. But doing
so would make the game in the security notion exponential time. The idea is to
define or draw U lazily: each time we need to evaluate it on a polynomial Pi

linearly independent of all the previous polynomials Pj (with j < i), we define
U(Pi)

$← Zp; otherwise, we compute U(Pi) as a linear combination of U(Pj).
More precisely, if Pi =

∑i−1
j=1 λj · Pj , U(Pi) =

∑i−1
j=1 λj · U(Pj). As explained in

Sect. 2, no deterministic polynomial-time algorithm for checking linear depen-
dency between polynomials in Zp[T1, . . . , Tn] is known. But we can use one which
is correct which overwhelming probability. We recall that we denote by TestLin
such an algorithm.

On the Representation of the Polynomials. A second challenge is to define
how the polynomials are represented. We cannot say they have to be given in
their expanded form, because it would restrict us to polynomials with a polyno-
mial number of monomials and forbid polynomials such as

∏n
i=1(ai + 1).

Instead, we only suppose that polynomials can be (partially) evaluated, in
polynomial time (in n and d, the maximum degree in each indeterminate). This
encompasses polynomials defined by an expression (with + and · operations,
indeterminates, and scalars) of polynomial size (in n and d). Details are given
in the full version [3].

Extension to Weaker Assumptions. Before, showing the formal definition
and theorem, let us show an extension of our polynomial linear pseudorandom-
ness security notion to handle weaker assumptions, namely Ek,d-MDDH, with
k ≥ 2. In that case, we need to evaluate polynomials on matrices: [Pi(A) · B],
with A

$← Z
k×k
p and B

$← Z
k×m
p (with m ≥ 1 being a positive integer). As

multiplication of matrices is not commutative, we need to be very careful. We
therefore consider that Tn appears before Tn−1 (in products), Tn−1 before Tn−2,
. . . (or any other fixed ordering).

More formally, we suppose that polynomials are represented by an expression
(similar to the case k = 1), such that in any subexpression Q ·R, if Q contains Ti

Multilinear and Aggregate Pseudorandom Functions 113

Fig. 3. Game defining the (n, d, k,m)-PLP security for a group G

(formally as an expression and not just when the expression is expanded), then
R contains no monomial Tj with j > i. Details are given in the full version [3].

3.2 Formal Security Notion and Theorem

Let G = 〈g〉 be a group of prime order p. We define the advantage of an adversary
A against the (n, d, k,m)-PLP security of G, denoted Adv(n,d,k,m)-plp

G
(A) as the

probability of success in the game defined in Fig. 3, with A being restricted to
make queries P ∈ Zp[T1, . . . , Tn]≤d. When not specified, m = 1. When k = m =
1, we get exactly the intuitive security notion defined previously, as in that case
#”

A = #”a ∈ Z
n
p and B = b ∈ Zp.

Theorem 1 (PLP). Let G = 〈g〉 be a group of prime order p. Let A be an
adversary against the (n, d, k,m)-PLP security of G that makes q oracle queries
P1, . . . , Pq. Then we can design an adversary B against the Ek,d-MDDH problem
in G, such that Adv(n,d,k,m)-plp

G
(A) ≤ n·d·AdvEk,d-mddh

G
(B)+O(ndqN/p), where

N is an integer polynomial in the size of the representations of the polynomials
and N = 1 when k = 1 (see the full version [3] for details). The running time
of B is that of A plus the time to perform a polynomial number (in q, n, and
d) of operations in Zp and G.

The proof of Theorem1 is detailed in the full version [3]. It is similar to
the proof of the LIP theorem (in the matrix case) in [1]. More precisely, we
show a series of indistinguishable games where the first game corresponds to the
(n, d, k,m)-PLP security game when b = 0, and the last game corresponds to this
security game when b = 1. Basically, all the games except for the last two games
are the same as in the proof of the LIP theorem. The two last games differ,
as follows: for the LIP theorem, all polynomials are supposed to be linearly
independent, and so in the last two games, all the returned values are drawn

114 M. Abdalla et al.

uniformly and independently, while for the PLP theorem, the returned values
still have linear dependencies.

4 Applications

In this section, we describe how PLP theorem (Theorem 1) can be used to prove
the security of aggregate pseudorandom functions as well as multilinear pseudo-
random functions. In particular, we obtain polynomial-time reduction for all pre-
vious constructions of aggregate-pseudorandom, even for aggregate where only
exponential-time reduction were known (read-once formulas). We also obtain a
very simple proof of the multilinear pseudorandom function designed in [13].
Finally, we briefly explain how these results can be extended to build construc-
tions based on weaker assumptions in an almost straightforward manner, by
simply changing the key space. The proofs of security remain almost the same
and consist in reducing the security to the adequate PLP security game.

4.1 Aggregate Pseudorandom Functions

In this subsection, we show that for all constructions proposed in [12], one can
prove the AGG-PRF security with a polynomial time reduction, while proofs
proposed in this seminal paper suffered from an exponential (in the input size)
overhead in the running time of the reduction. Moreover, our reductions are
almost straightforward via the PLP theorem.

A first attempt to solve the issue of the exponential time of the original
reductions was done in [13]. By introducing multilinear pseudorandom functions
and giving a particular instantiation, Cohen and Holmgren showed that one
can prove the AGG-PRF security of NR with a polynomial time reduction for
hypercubes and decision trees aggregation. However, their technique does not
extend to the more general case of read-once formulas aggregation. Also, as we
will show it the next subsection, their construction can be seen as a particular
case of our main theorem, and then can be proven secure very easily using our
result.

Here, we provide a polynomial time reduction for the general case of read-
once formulas. This implies in particular the previous results on hypercubes and
decision trees which are particular cases of read-once formulas.

Intuitively, if we consider the PLP security for k = 1 and aggregation with
the Naor-Reingold PRF, our PLP theorem (Theorem1) implicitly says that as
long as the aggregate values can be computed as a group element whose dis-
crete logarithm is the evaluation of a multivariate polynomial on the key, then,
if the corresponding polynomials have a small representation, the PLP theorem
guarantees the security (with a polynomial time reduction), even if the number
of points aggregated is superpolynomial. Please notice that if these polynomials
do not have any small representation (e.g. the smallest representation is expo-
nential in the input size), then there is no point of considering such aggregation,

Multilinear and Aggregate Pseudorandom Functions 115

since the whole point of aggregate pseudorandom function lies in the possibil-
ity of aggregating superpolynomially many PRF values with a very efficient
computation.

Read-Once Formulas. A read-once formula is a circuit on x = (x1, . . . , xn) ∈
{0, 1}n composed of only AND, OR and NOT gates with fan-out 1, so that each
input literal is fed into at most one gate and each gate output is fed into at most
one other gate. We denote by ROFn the family of all read-once boolean formulas
over x1, . . . , xn variables. In order to ease the reading, we restrict these circuits
to be in a standard form, so that they are composed of fan-in 2 and fan-out 1
AND and OR gates, and NOT gates occurring only at the inputs. This common
restriction can be done without loss of generality. Hence, one can see such a
circuit as a binary tree where each leaf is labeled by a variable xi or its negation
x̄i and where each internal node has a label C and has two children with labels
CL and CR and represents either an AND or an OR gate (with fan-in 2). We
identify a formula (and the set it represents) with the label of its root Cφ.

Aggregation for Read-Once Formulas. We recall the definition of read-once
formula aggregation used in [12]. For the sake of simplicity, we only consider the
case of the Naor-Reingold PRF, defined as NR(#”a , x) = [a0

∏n
i=1 axi

i], where
a0, . . . , an

$← Zp and x ∈ {0, 1}n. We define the aggregation function for read-
once formulas of length n as follows.

The collection Srof ⊆ {0, 1}n corresponds to all the subsets of S ⊆ {0, 1}n

such that there exists a read-once formula Cφ ∈ ROFn such that S = {x ∈
{0, 1}n | Cφ(x) = 1}.

The aggregation function Γrof is defined as the product (assuming the group
is a multiplicative group) of the values on such a subset. Hence, we have:

AGGNR,Srof ,Γrof
(Cφ) =

∏

x|Cφ(x)=1

[

a0

n∏

i=1

axi
i

]

=

⎡

⎣a0

∑

x|Cφ(x)=1

n∏

i=1

axi
i

⎤

⎦

=
[
a0 · ACφ,1(#”a)

]
,

where AC,b is the polynomial
∑

x∈{0,1}n|C(x)=b

∏n
i=1 T xi

i for any C ∈ ROFn and
b ∈ {0, 1}.

Efficient Evaluation of AC,b. One can efficiently compute AC,b recursively as
follows:

– If C is a literal for variable xi, then AC,1 = Ti and AC,0 = 1 if C = xi; and
AC,1 = 1 and AC,0 = Ti if C = x̄i;

– If C is an AND gate with CL and CR its two children, then we have:
AC,1 = ACL,1 · ACR,1

AC,0 = ACL,0 · ACR,0 + ACL,1 · ACR,0 + ACL,0 · ACR,1;

116 M. Abdalla et al.

– If C is an OR gate with CL and CR its two children, then we have:
AC,1 = ACL,1 · ACR,1 + ACL,1 · ACR,0 + ACL,0 · ACR,1

AC,0 = ACL,0 · ACR,0.

Now we have introduced everything, we can prove that NR (or more general
constructions) is an (Srof ,Γrof)-AGG-PRF under the standard DDH assumption,
as stated in the lemma below.

Lemma 2. Let G = 〈g〉 be a group of prime order p and NR be the
Naor-Reingold PRF defined as NR(#”a , x) = [a0

∏n
i=1 axi

i], where the key is
(a0, . . . , an) $← Z

n+1
p and the input is x ∈ {0, 1}n. Then one can reduce the

(Srof ,Γrof)-AGG-PRF security of NR to the hardness of the DDH problem in G,
with a loss of a factor n. Moreover, the time overhead is polynomial in n and
in the number of queries made by the adversary.

The proof is straightforward using the PLP theorem: all queries in the security
game for the aggregate PRF can be seen as a queries of the form Pl(P) for some
polynomial P with a small representation: Fn(x) returns Pl(T0

∏n
i=1 T xi

i) and
AGG(Cφ) returns Pl(T0 · ACφ,1(

#”

T)). Details can be found in the full version [3].

Extensions. One can easily extend this result for k-Lin-based PRFs similar to
NR using our main theorem. Also, one can easily use our PLP theorem (Theo-
rem 1) to prove the security for any aggregate (for instance with NR) as soon as
the aggregate values can be represented as group elements whose discrete log-
arithms are the evaluation of a (multivariate) polynomial on the key (and that
this polynomial is efficiently computable).

Impossibility Result for CNF (Conjunctive Normal Form) and DNF
(Disjunctive Normal Form) Formulas. In [12], the authors show that, unless
NP=BPP, there does not exist an (S ,Γ)-aggregate pseudorandom function1,
with D = {0, 1}n, S containing the following sets:

Sφ = {x ∈ {0, 1}n | φ(x) = 1}

with φ a CNF formula with n-bit input, and Γ a “reasonable” aggregate function,
e.g., Γrof (assuming R is a cyclic group G of prime order p). The proof consists
in showing that if such aggregate pseudorandom function exists, then we can
solve SAT in polynomial time. More precisely, given a SAT instance, i.e., a CNF
formula φ, we can compute AGG(φ). If φ is not satisfiable, AGG(φ) = 1 ∈ G,
while otherwise AGG(φ) =

∏
x∈{0,1}n, φ(x)=1 F (K,x). This latter value is not

1 with high probability, otherwise we would get a non-uniform distinguisher
against aggregate pseudorandomness.
1 We suppose that the aggregate pseudorandomness security property holds non-

uniformly. When S is expressive enough, we can also do the proof when this security
property holds uniformly, see [12, Sect. 2.2] for details.

Multilinear and Aggregate Pseudorandom Functions 117

The case of DNF formulas (or more generally of any class for which sat-
isfiability is tractable) was left as an important open problem in [12]. Here,
we show that unless NP=BPP, there also does not exist an (S ,Γ)-aggregate
pseudorandom function as above, when S contains Sφ for any DNF (instead
of CNF) formula φ with n-bit input. For that, we first remark that the formula
�, always true, is a DNF formula (it is the disjunction of all the possible lit-
erals), and that the negation φ̄ of a CNF formula φ is a DNF formula. Then,
given a SAT instance, a CNF formula φ, we compute AGG(φ̄) and AGG(�).
If φ is not satisfiable, φ̄ is always true and AGG(φ̄) = AGG(�), while other-
wise, AGG(φ̄) = AGG(�)/

∏
x∈{0,1}n, φ(x)=1 F (K,x). This latter value is not

AGG(�) with high probability, otherwise we would get a non-uniform distin-
guisher against aggregate pseudorandomness.

4.2 Multilinear Pseudorandom Functions

Here, we explain how our main theorem can be used to prove directly the secu-
rity of the multilinear pseudorandom function built in [13]. We first recall their
construction before explaining how to prove its security.

Cohen-Holmgren Multilinear Pseudorandom Function (CH). Let G =
〈g〉 be a group of prime order p. The key space of the multilinear pseudorandom
function is Z

l1
p × · · · × Z

ln
p . The input space is the same as the key space. Given

a key (#”a1, . . . ,
”an) taken uniformly at random in the key space, the evaluation of

the multilinear pseudorandom function on the input (# ”x1, . . . ,
”xn)) outputs:

CH((#”a1, . . . ,
”an), (# ”x1, . . . ,

”xn)) =

[
n∏

i=1

〈 #”ai,
#”xi〉

]

where 〈 #”a , #”x 〉 denotes the canonical inner product 〈 #”a , #”x 〉 =
∑l

i=1 ai · xi, with l
being the length of vectors #”a and #”x .

In [13], Cohen and Holmgren prove that this construction is a secure multilin-
ear pseudorandom function under the standard DDH assumption. One of their
main contributions is to achieve a polynomial time reduction. Their technique
can be seen as a special case of ours. In particular, using our main theorem, one
can easily obtain the following lemma.

Lemma 3. Let G = 〈g〉 be a group of prime order p and CH: (Zl1
p ×· · ·×Z

ln
p)×

(Zl1
p ×· · ·×Z

ln
p) → G denote the above multilinear pseudorandom function. Then

we can reduce the multilinear PRF security of CH to the hardness of the DDH
problem in G, with a loss of a factor l =

∑n
i=1 li. Moreover, the time overhead

is polynomial in l and in the number of queries made by the adversary.

A detailed proof can be found in the full version [3], but we give an intuition
of the proof in what follows.

Proof. Let
#”

T = (T1,1, . . . , T1,l1 , . . . , Tn,1, . . . , Tn,ln) be a vector of inde-
terminates, and let

#”

Ti = (Ti,1, . . . , Ti,li). The PLP theorem shows that

118 M. Abdalla et al.

CH(#”a1, . . . ,
”an, # ”x1, . . . ,

”xn) (using a random key #”a) is computationally indistin-
guishable from

[

U

(
n∏

i=1

〈 #”

Ti,
#”xi〉

)]

= [f(# ”x1, . . . ,
”xn)]

with U
$← L(Zp[

#”

T]≤1,Zp) and

f :
(
Z

l1
p × · · · × Z

ln
p → Zp

(# ”x1, . . . ,
”xn) �→ U(

∏n
i=1〈

#”

Ti,
#”xi〉)

)

.

To conclude, we just need to prove that f is a random n-linear function in
L(Zl1

p ⊗ · · · ⊗ Z
ln
p ,Zp).

For that purpose, let us introduce the following n-linear application:

ψ :
(
Z

l1
p × · · · × Z

ln
p → Zp[

#”

T]≤1

(# ”x1, . . . ,
”xn) �→ ∏n

i=1〈
#”

Ti,
#”xi〉

)

.

We remark that f is the composition of U and ψ: f = U ◦ ψ.
Furthermore, if we write # ”ei,l = (0, . . . , 0, 1, 0, . . . , 0) the i-th vector of the

canonical base of Zl
p, then:

ψ(# ”ei1,l1 , . . . ,
”ein,ln) = T1,i1 · · · Tn,in

;

and as the monomials T1,i1 · · · Tn,in
are linearly independent, ψ is injective. Since

f = U ◦ ψ and U
$← L(Zp[

#”

T]≤1,Zp), the function f is a uniform random linear
function from L(Zl1

p ⊗ · · · ⊗Z
ln
p ,Zp). This is exactly what we wanted to show. ��

Symmetric Multilinear Pseudorandom Function. In [12], constructing
symmetric multilinear pseudorandom functions was left as an open problem. The
definition of this notion is the same as the notion of multilinear pseudorandom
function, except that we only require the function to be indistinguishable from a
random symmetric multilinear function. In that case, we suppose that l1 = · · · =
ln = l, i.e., all the vectors # ”x1, . . . ,

”xn have the same size l. The authors wrote in
[12] that the natural modification of the CH construction to obtain a symmetric
construction consisting in setting #”a1 = #”a2 = · · · = # ”an (simply denoted #”a in what
follows) leads to a symmetric multilinear pseudorandom function whose security
is less clear, but claimed that it holds under the E1,n-MDDH assumption (which
is exactly the n-Strong DDH assumption), when l = | #”a | = 2. We show that this
construction is actually secure under the same assumption for any l = | #”a | ≥ 2
as stated in the following lemma, whose proof is detailed in the full version [3]
and is almost the same as the proof of Lemma 3.

Lemma 4. Let G = 〈g〉 be a group of prime order p and CHsym: Z
l
p×(Zl

p)
n → G

that takes as input a key #”a ∈ Z
l
p and an input #”x = (# ”x1, . . . ,

”xn) ∈ (Zl
p)

n

and outputs [
∏n

i=1〈 #”a , #”xi〉]. Then we can reduce the symmetric multilinear PRF
security of CHsym to the hardness of the n-DDHI problem in G, with a loss of a
factor l. Moreover, the time overhead is polynomial in l and in the number of
queries made by the adversary.

Multilinear and Aggregate Pseudorandom Functions 119

Skew-Symmetric Multilinear Pseudorandom Function. In [12], the
author left as an open problem the construction of a skew-symmetric multilinear
pseudorandom function. The definition of this notion is the same as the notion
of multilinear pseudorandom function, except that we only require the function
to be indistinguishable from a random skew-symmetric multilinear function. We
assume that l1 = · · · = ln = l = n, i.e., all the vectors # ”x1, . . . ,

”xn have the same
size l = n. We need l = n because there is no skew-symmetric n-multilinear map
from

(
Z

l
p

)n to Zp, when l < n.
We know that any skew-symmetric n-multilinear map f is of the form:

f(# ”x1, . . . ,
”xn) = c · det(# ”x1, . . . ,

”xn),

with c being a scalar in Zp and det being the determinant function. Therefore,
the function

F (a, (# ”x1, . . . ,
”xn)) = [a · det(# ”x1, . . . ,

”xn)]

is a skew-symmetric multilinear PRF with key a ∈ Zp. The proof is trivial
since, (# ”x1, . . . ,

”xn) �→ F (a, (# ”x1, . . . ,
”xn)) is actually a random skew-symmetric n-

multilinear map when a is a random scalar in Zp. No assumption is required. Our
analysis shows that skew-symmetric multilinear PRFs are of limited interest, but
our construction still solves an interesting open problem in [12].

Extensions. As for aggregate pseudorandom functions, it is very easy to build
multilinear pseudorandom functions under k-Lin and to prove their security
applying our PLP theorem (Theorem1), for instance using the same construction
but changing the key components from elements in Zp to elements in Z

k×k
p

while keeping the same inputs space, and by defining 〈 #”

A, #”x 〉 =
∑l

i=1 xi · Ai ,
with

#”

A = (A1, . . . ,Al) ∈ (Zk×k
p)l and x = (x1, . . . , xl) ∈ Z

l
p. This leads to the

following construction:

F :

(
Z

l1
p × · · · × Z

ln
p → G

k×m

(# ”x1, . . . ,
”xn) �→

[
(
∏n

i=1〈
”

Ai,
#”xi〉) · B

]
)

with (
”

A1, . . . ,
”

An) ∈ (Zk×k
p)l1 × · · · × (Zk×k

p)ln and B ∈ Z
k×m
p .

References

1. Abdalla, M., Benhamouda, F., Passelègue, A.: An algebraic framework for pseudo-
random functions and applications to related-key security. In: Gennaro, R.,
Robshaw, M.J.B. (eds.) CRYPTO 2015, Part I. LNCS, vol. 9215, pp. 388–409.
Springer, Heidelberg (2015)

2. Abdalla, M., Benhamouda, F., Passelègue, A., Paterson, K.G.: Related-key security
for pseudorandom functions beyond the linear barrier. In: Garay, J.A., Gennaro,
R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 77–94. Springer, Heidelberg
(2014)

120 M. Abdalla et al.

3. Abdalla, M., Benhamouda, F., Passelgue, A.: Multilinear and aggregate pseudo-
random functions: new constructions and improved security, full version of this
paper available at Cryptology ePrint Archive. http://eprint.iacr.org

4. Advanced Encryption Standard (AES). National Institute of Standards and Tech-
nology (NIST), FIPS PUB 197, U.S. Department of Commerce, November 2001

5. Bellare, M., Rogaway, P.: The security of triple encryption and a frame-
work for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT
2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006)

6. Bogdanov, A., Wee, H.M.: A stateful implementation of a random function sup-
porting parity queries over hypercubes. In: Jansen, K., Khanna, S., Rolim, J.D.P.,
Ron, D. (eds.) RANDOM 2004 and APPROX 2004. LNCS, vol. 3122, pp. 298–309.
Springer, Heidelberg (2004)

7. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004)

8. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with
constant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol.
3494, pp. 440–456. Springer, Heidelberg (2005)

9. Boneh, D., Waters, B.: Constrained pseudorandom functions and their applica-
tions. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270,
pp. 280–300. Springer, Heidelberg (2013)

10. Boyen, X.: The uber-assumption family. In: Galbraith, S.D., Paterson, K.G. (eds.)
Pairing 2008. LNCS, vol. 5209, pp. 39–56. Springer, Heidelberg (2008)

11. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom func-
tions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer,
Heidelberg (2014)

12. Cohen, A., Goldwasser, S., Vaikuntanathan, V.: Aggregate pseudorandom func-
tions and connections to learning. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015,
Part II. LNCS, vol. 9015, pp. 61–89. Springer, Heidelberg (2015)

13. Cohen, A., Holmgren, J.: Multilinear Pseudorandom Functions. In: Halldórsson,
M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol.
9134, pp. 331–342. Springer, Heidelberg (2015)

14. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework
for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part II. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013)

15. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM 33(4), 792–807 (1986)

16. Hofheinz, D., Kiltz, E.: Secure hybrid encryption from weakened key encapsulation.
In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 553–571. Springer,
Heidelberg (2007)

17. Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable
pseudorandom functions and applications. In: Sadeghi, A.R., Gligor, V.D., Yung,
M. (eds.) ACM CCS 2013, pp. 669–684, ACM Press, November 2013

18. Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random
functions. In: 38th FOCS, pp. 458–467, IEEE Computer Society Press, October
1997

19. Shacham, H.: A cramer-shoup encryption scheme from the linear assumption
and from progressively weaker linear variants. Cryptology ePrint Archive, Report
2007/074 (2007). http://eprint.iacr.org/2007/074

http://eprint.iacr.org
http://eprint.iacr.org/2007/074

New Realizations of Somewhere Statistically
Binding Hashing and Positional Accumulators

Tatsuaki Okamoto1(B), Krzysztof Pietrzak2, Brent Waters3,
and Daniel Wichs4

1 NTT Laboratories, Tokyo, Japan
okamoto.tatsuaki@lab.ntt.co.jp

2 IST Austria, Klosterneuburg, Austria
pietrzak@ist.ac.at

3 UT Austin, Austin, USA
bwaters@cs.utexas.edu

4 Northeastern University, Boston, USA
wichs@ccs.neu.edu

Abstract. A somewhere statistically binding (SSB) hash, introduced by
Hubáček and Wichs (ITCS ’15), can be used to hash a long string x to
a short digest y = Hhk(x) using a public hashing-key hk. Furthermore,
there is a way to set up the hash key hk to make it statistically binding
on some arbitrary hidden position i, meaning that: (1) the digest y com-
pletely determines the i’th bit (or symbol) of x so that all pre-images
of y have the same value in the i’th position, (2) it is computationally
infeasible to distinguish the position i on which hk is statistically binding
from any other position i′. Lastly, the hash should have a local opening
property analogous to Merkle-Tree hashing, meaning that given x and
y = Hhk(x) it should be possible to create a short proof π that certi-
fies the value of the i’th bit (or symbol) of x without having to provide
the entire input x. A similar primitive called a positional accumulator,
introduced by Koppula, Lewko and Waters (STOC ’15) further supports
dynamic updates of the hashed value. These tools, which are interesting
in their own right, also serve as one of the main technical components in
several recent works building advanced applications from indistinguisha-
bility obfuscation (iO).

The prior constructions of SSB hashing and positional accumulators
required fully homomorphic encryption (FHE) and iO respectively. In
this work, we give new constructions of these tools based on well studied
number-theoretic assumptions such as DDH, Phi-Hiding and DCR, as
well as a general construction from lossy/injective functions.

K. Pietrzak—Research supported by ERC starting grant (259668-PSPC)
B. Waters—Supported by NSF CNS-1228599 and CNS-1414082. DARPA SafeWare,
Google Faculty Research award, the Alfred P. Sloan Fellowship, Microsoft Faculty
Fellowship, and Packard Foundation Fellowship.
D. Wichs—Research supported by NSF grants CNS-1347350, CNS-1314722, CNS-
1413964.

c© International Association for Cryptologic Research 2015
T. Iwata and J.H. Cheon (Eds.): ASIACRYPT 2015, Part I, LNCS 9452, pp. 121–145, 2015.
DOI: 10.1007/978-3-662-48797-6 6

122 T. Okamoto et al.

1 Introduction

SSB Hashing. A somewhere statistically binding (SSB) hash, introduced by
Hubáček and Wichs [HW15], can be used to create a short digest y = Hhk(x)
of some long input x = (x[0], . . . , x[L − 1]) ∈ ΣL, where Σ is some alphabet.
The hashing key hk ← Gen(i) can be chosen by providing a special “binding
index” i and this ensures that the hash y = Hhk(x) is statistically binding for
the i’th symbol, meaning that it completely determines the value x[i]. In other
words, even though y has many preimages x′ such that Hhk(x′) = y, all of these
preimages agree in the i’th symbol x′[i] = x[i]. The index i on which the hash
is statistically binding should remain computationally hidden given the hashing
key hk. This is formalized analogously to semantic security so that for any indices
i, i′ the hashing keys hk ← Gen(i) and hk′ ← Gen(i′) should be computationally
indistinguishable. Moreover, we will be interested in SSB hash functions with a
“local opening” property that allows us to prove that j’th symbol of x takes on
some particular value x[j] = u by providing a short opening π. This is analogous
to Merkle-Tree hashing, where it is possible to open the j’th symbol of x by pro-
viding a proof π that consists of the hash values associated with all the sibling
nodes along the path from the root of the tree to the j’th leaf. In the case of
SSB hashing, when j = i is the “binding index”, there should (statistically) exist
only one possible value that we can open x[j] to by providing a corresponding
proof.

Positional Accumulators. A related primitive called a positional accumulator,
was introduced at the same time as SSB hashing by Koppula, Lewko and Waters
[KLW15]. Roughly speaking, it includes the functionality of SSB hashing along
with the ability to perform “local updates” where one can very efficiently update
the hash y = Hhk(x) if a particular position x[j] is updated. Again, this is
analogous to Merkle-Tree hashing, where it is possible to update the j’th symbol
of x by only updating the hash values along the path from the root of the tree
to the j’th leaf.1

Applications of SSB Hashing and Positional Accumulators. The above tools,
which are interesting in their own right, turn out to be extremely useful in
several applications when combines with indistinguishability obfuscation (iO)
[BGI+12,GGH+13]. An iO scheme can be used to obfuscate a program (given
by a circuit) so that the obfuscations of any two functionally equivalent pro-
grams are indistinguishable. Although this notion of obfuscation might a-priori
1 The formal definitions of SSB hashing and positional accumulators as given in

[HW15,KLW15] are technically incomparable. On a high level, the latter notion
requires additional functionality in the form of updates but only insists on a weaker
notion of security which essentially corresponds to “target collision resistance” where
the target hash value is computed honestly. In this work, we construct schemes that
achieve the best of both worlds, having the additional functionality and the stronger
security.

SSB Hashing and Positional Accumulators 123

seem too week to be useful, recent work has shown it to be surprisingly pow-
erful (see e.g., [SW14]). Very recently, several results showed how to use iO in
conjunction with SSB hashing and positional accumulators to achieve various
advanced applications. The work of [HW15] uses SSB hashing and iO to con-
struct the first general Multi-Party Computation (MPC) protocols in the semi-
honest model where the communication complexity essentially matches that of
the best insecure protocol for the same task. The work of [KLW15] uses positional
accumulators and iO to construct succinct garbling for Turing Machines, and
recent work extends this approach to RAM programs [CH15,CCC+15]. Lastly,
the work of [Zha14] uses SSB hashing and iO to construct the first adaptively
secure broadcast encryption with short system parameters.

Example: The Power of iO + SSB. To see the usefulness of combining iO and
SSB hashing (or positional accumulators), let’s take a simple illustrative exam-
ple, adapted from [HW15].2 Imagine that Alice has a (small) secret circuit C,
and both Alice and Bob know a public value x ∈ ΣL. Alice wishes to communi-
cate the values {C(x[i])}i∈[L] to Bob while hiding some information about C. In
particular, Bob shouldn’t learn whether Alice has the circuit C or some other
C ′ that satisfies C(x[i]) = C ′(x[i]) for each i ∈ [L]. Note that C and C ′ may
not be functionally equivalent and they only agree on the inputs {x[i]}i∈[L] but
might disagree on other inputs. A naive secure solution would be for Alice to
simply send the outputs {C(x[i])}i∈[L] to Bob, but this incurs communication
proportional to L. An insecure but communication-efficient solution would be for
Alice to just send the small circuit C to Bob. Can we get a secure solution with
comparable communication independent of L? Simply sending an obfuscated
copy of C is not sufficient since the circuits C,C ′ are not functionally equivalent
and therefore their obfuscations might be easily distinguishable. However it is
possible to achieve this with iO and SSB hashing. Alice can send an obfuscation
of a circuit that has the hash y = Hhk(x) hard-coded and takes as input a tuple
(j, u, π): it checks that j ∈ [L] and that π is a valid opening to x[j] = u and if so
outputs C(u). Bob can evaluate this circuit on the values {x[j]}j∈[L] by provid-
ing the appropriate openings. It is possible to show that the above hides whether
Alice started with C or C ′. The proof proceeds in a sequence of L hybrids where
in the i’th hybrid we obfuscate a circuit Ci that runs C ′ instead of C when j ≤ i
and otherwise runs C. To go from hybrid i to i + 1 we first switch the SSB hash
key hk to be binding in position i + 1 and then we can switch from obfuscating
Ci to Ci+1 by arguing that these are functionally equivalent; they only differ in
the code they execute for inputs of the form (j = i + 1, u, π) where π is a valid
proof but in this case, by the statistical binding property, the only possible value
u for which a valid proof π exists is the unique value u = x[j] for which both
circuits produce the same output C(x[j]) = C ′(x[j]).

2 The contents of this paragraph and the notion of iO are not essential to understand
the results of the paper, but we provide it to give some intuition for how SSB hashing
and positional accumulators are used in conjunction with iO in prior works to get
the various applications described above.

124 T. Okamoto et al.

Prior Constructions of SSB and Positional Accumulators. The work of [HW15]
constructed a SSB hash by relying on fully homomorphic encryption (FHE).
Roughly speaking the construction combines FHE with Merkle Hash Trees. To
hash some value x = (x[0], . . . , x[L − 1]) the construction creates a full binary
tree of height log L (for simplicity, assume L is a power of 2) and determin-
istically associates a ciphertext with each node of the tree. The L leaf nodes
will be associated with some deterministically created encryptions of the values
x[0], . . . , x[L − 1], say by using all 0 s for the random coins of the encryption
procedure. The hash key hk consists of an encryption of a path from the root of
the tree to the i’th leaf where i is the binding index; concretely it contains log L
FHE ciphertexts (ct1, . . . , ctlog L) which encrypt bits β1, . . . , βlog L correspond-
ing to the binary representation of the binding index i so that βi = 0 denotes
“left” and βi = 1 denotes “right”. The ciphertext associated with each non-leaf
node are computed homomorphically to ensure that the value x[i] is contained
in each ciphertext along the path from the root to the i’th leaf. Concretely, the
ciphertext associated with some node at level j is determined by a homomor-
phic computation which takes the two child ciphertexts c0 (left) and c1 (right)
encrypting some values m0,m1 and the ciphertext cti contained in hk which
encrypts βi and homomorphically produces a ciphertext encrypting mβi

. (For
technical reasons, the actual construction is a bit more complicated and needs
to use a different FHE key at each level of the tree – see [HW15] for full details.)
This ensures that the binding index i is hidden by the semantic security of FHE
and the statistically binding property follows by the correctness of FHE.

The work of [KLW15] constructs positional accumulators by also relying on
a variant of Merkle Trees. However, instead of FHE, it relies on standard public-
key encryption and iO. (It is relatively easy to see that the scheme of [HW15]
would also yield an alternate construction of a positional accumulator).

1.1 Our Results

In this work we give new constructions of SSB hashing and positional accumu-
lators from a wide variety of well studied number theoretic assumptions such as
DDH, DCR (decisional composite residuocity), φ-hiding, LWE and others.

Two-to-One SSB. We first abstract out the common Merkle-tree style approach
that is common to both SSB hashes and positional accumulators, and identify
a basic underlying primitive that we call a two-to-one SSB hash, which can be
used to instantiate this approach. Intuitively a two-to-one SSB hash takes as
input x = (x[0], x[1]) ∈ Σ2 consisting of just two alphabet symbols and outputs
a value y = Hhk(x) which is not much larger than a single alphabet symbol. The
key hk can be set up to be statistically binding on either position 0 or 1.

Instantiations of Two-to-One SSB. We show how to instantiate a two-to-one SSB
hash from the DDH assumption and the decisional composite residuocity (DCR)
assumption. More generally, we show how to instantiate a (slight variant of) two-
to-one SSB hash from any lossy/injective function. This is a family of functions

SSB Hashing and Positional Accumulators 125

fpk(x) where the public key pk can be picked in one of two indistinguishable
modes: in injective mode, the function fpk(x) is an injective function and in lossy
mode fpk(x) it is a many-to-one function. To construct a two-to-one SSB hash
from injective/lossy function we pick two public keys hk = (pk0, pk1) and define
Hhk(x[0], x[1]) = h(fpk0(x[0]), fpk1(x[1])) where h is a universal hash function.
To make the hk binding on index 0 we choose pk0 to be injective and pk1 to be
lossy and to make is binding on index 1 we do the reverse. With appropriate
parameters, we can ensure that the statistically binding property holds with
overwhelming probability over the choice of h.

From Two-to-One SSB to Full SSB and Positional Accumulators. We can instan-
tiate a (full) SSB hash with arbitrary input size ΣL by combining two-to-one
SSB hashes in a Merkle Tree, with a different key at each level. To make the
full SSB binding at some location i, we choose the hash keys at each level to
be binding on either the left or right child in such a way that they are binding
along the path from the root of the tree to the leaf at position i. This allows us
to “locally open” the j’th position of the input in the usual way, by giving the
hash values of all the siblings along the path from the root to the j’th leaf. If
j = i is the binding index, then there is a unique value x[j] = u for which there
is a valid opening. To get positional accumulators, we use the fact that we can
also locally update the hashed value by modifying one location x[j] and only
updating the hashes along the path from the root to the j’th leaf.

A Flatter Approach. We also explore a different approach for achieving SSB hash-
ing from the φ-hiding assumption, which does not go through a Merkle-Tree type
construction. Roughly our approach uses a construction is structurally similar
to standard constructions RSA accumulators [BdM93]. However, we construct a
modus N to be such that for some given prime exponent e we have that e divides
φ(N). This means that if y ∈ ZN is not an e-th residue mod N , then there
exists no value π ∈ ZN where πe = y. This will lead to our statistical binding
property as we will leverage this fact to make the value e related to an index we
wish to be binding on. Index hiding will follow from the φ-hiding assumption.

2 Preliminaries

SSB Hash (with Local Opening). Our definition follows that of [HW15], but
whereas that work only defined SSB hash which included the local opening
requirement by default, it will be convenient for us to also separately define a
weaker variant which does not require the local opening property.

Definition 2.1 (SSB Hash). A somewhere statistically binding (SSB) hash
consists of PPT algorithms H = (Gen,H) and a polynomial �(·, ·) denoting the
output length.

– hk ← Gen(1λ, 1s, L, i): Takes as input a security parameter λ a block-length
s an input-length L ≤ 2λ and an index i ∈ {0, . . . , L − 1} (in binary) and

126 T. Okamoto et al.

outputs a public hashing key hk. We let Σ = {0, 1}s denote the block alphabet.
The output size is � = �(λ, s) and is independent of the input-length L.

– Hhk : ΣL → {0, 1}�: A deterministic poly-time algorithm that takes as input
x = (x[0], . . . , x[L − 1]) ∈ ΣL and outputs Hhk(x) ∈ {0, 1}�.

We require the following properties:

Index Hiding: We consider the following game between an attacker A and a
challenger:

– The attacker A(1λ) chooses parameters 1s, L and two indices i0, i1 ∈
{0, . . . , L − 1}.

– The challenger chooses a bit b ← {0, 1} and sets hk ← Gen(1λ, 1s, L, ib).
– The attacker A gets hk and outputs a bit b′.

We require that for any PPT attacker A we have |Pr[b = b′] − 1
2 | ≤ negl(λ) in

the above game.

Somewhere Statistically Binding: We say that hk is statistically binding for
an index i ∈ [L] if there do not exist any values x, x′ ∈ ΣL with x[i] �= x′[i]
such that Hhk(x) = Hhk(x′). We require that for any parameters s, L and
any integer i ∈ {0, . . . , L − 1} we have:

Pr[hk is statistically binding for index i : hk ← Gen(1λ, 1s, L, i)] ≥ 1 − negl(λ).

We say that the hash is perfectly binding if the above probability is 1.

Definition 2.2 (SSB Hash with Local Opening). An SSB Hash with local
opening H = (Gen,H,Open,Verify) consists of an SSB hash (Gen,H) with output
size �(·, ·) along with two additional algorithms Open,Verify and an opening size
p(·, ·). The additional algorithms have the following syntax:

– π ← Open(hk, x, j): Given the hash key hk, x ∈ ΣL and an index j ∈
{0, . . . , L− 1}, creates an opening π ∈ {0, 1}p. The opening size p = p(λ, s) is
a polynomial which is independent of the input-length L.

– Verify(hk, y, j, u, π): Given a hash key hk a hash output y ∈ {0, 1}�, an integer
index j ∈ {0, . . . , L − 1}, a value u ∈ Σ and an opening π ∈ {0, 1}p, outputs
a decision ∈ {accept, reject}. This is intended to verify that a pre-image x of
y = Hhk(x) has x[j] = u.

We require the following two additional properties.

Correctness of Opening: For any parameters s, L and any indices
i, j ∈ {0, . . . , L−1}, any hk ← Gen(1λ, 1s, L, i), x ∈ ΣL, π ← Open(hk, x, j):
we have Verify(hk,Hhk(x), j, x[j], π) = accept

Somewhere Statistically Binding w.r.t. Opening:3 We say that hk is sta-
tistically binding w.r.t opening (abbreviated SBO) for an index i if there do
not exist any values y, u �= u′, π, π′ s.t.

Verify(hk, y, i, u, π) = Verify(hk, y, i, u′, π′) = accept.

3 Note that the “somewhere stat. binding w.r.t. opening” property implies the basic
“somewhere stat. binding” property of SSB hash.

SSB Hashing and Positional Accumulators 127

We require that for any parameters s, L and any index i ∈ {0, . . . , L − 1}

Pr[hk is SBO for index i : hk ← Gen(1λ, 1s, L, i)] ≥ 1 − negl(λ).

We say that the hash is perfectly binding w.r.t. opening if the above proba-
bility is 1.

Fixed-Parameter Variants. The above definitions allow for a flexible input-length
L and block-length s specified by the user as inputs to the Gen algorithm. This
will be the default throughout the paper, but we also consider variants of the
above definition with a fixed-input-length L and/or fixed-block-length s where
these values cannot be specified by the user as inputs to the Gen algorithm but
are instead set to some fixed value (a constant or polynomial in the security
parameter λ) determined by the scheme. In the case of a fixed-input-length
variant, the definitions are non-trivial if the output-length � and opening-size p
satisfy �, p < L · s.

Discussion. There are several constructions of SSB hash that do not provide
local opening. For example, any PIR scheme can be used to realize an SSB
hash without local opening. The hash key hk consists of a PIR query for index
i and the hash Hhk(x) simply computes the PIR response using database x.
Unfortunately, we do not know how to generically add a local opening capability
to such SSB hash constructions.

3 Two-to-One SSB Hash

As our main building block, we rely on a notion of a “two-to-one SSB hash”.
Informally, this is a fixed-input-length and flexible-block-size SSB hash (we do
not require local opening) that maps two input blocks (L = 2) to an output
which is roughly the size of one block (up to some small multiplicative and
additive factors).

Definition 3.1 (Two-to-One SSB Hash). A two-to-one SSB hash is an SSB
hash with a fixed input-length L = 2 and flexible block-length s. The output-length
is �(λ, s) = s · (1 + 1/Ω(λ)) + poly(λ).

We give three constructions of a Two-to-One SSB Hash systems. Our first
construction is built from the DDH-hard groups with compact representation.
This construction achieves perfect binding. Our next construction is built from
the DCR assumption. Lastly, we generalize our approach by showing a (variant
of) Two-to-One SSB hashing that can work from any lossy function. We note
that lossy functions can be built from a variety of number theoretic primitives
including DDH (without compact representation), Learning with Errors, and the
φ-hiding assumption.

128 T. Okamoto et al.

Remark: Impossibility without Overhead. We note that the need for some “slack”
is inherent in the above definition and we cannot get a two-to-one SSB hash
where the output is exactly �(λ, s) = s matching the size of one of the inputs.
This is because in that case, if we choose hk ← Gen(1λ, 1s, i = 0) then for each
x0 ∈ {0, 1}s there is a unique choice of y ∈ {0, 1}s such that Hhk(x0, x1) = y
no matter what x1 is. In other words, the function Hhk(x0, x1) does not depend
on the argument x1. Symmetrically, if hk ← Gen(1λ, 1s, i = 1) then the function
Hhk(x0, x1) does not depend on the argument x0. These two cases are easy to
distinguish.

3.1 Two-to-One SSB Hash from DDH

DDH Hard Groups and Representation Overhead. Let G be a PPT group
generator algorithm that takes as input the security parameter 1λ and outputs
a pair G, p where G is a group description of prime order p for p ∈ Θ(2λ).

Assumption 1 (Decision Diffie-Hellman Assumption). Let (G, p) ←
G(1λ) and b ← {0, 1}. Choose a random generator g ∈ G and random x, y ∈ Zp

Let T ← G if b = 0, else T ← gxy. The advantage of algorithm A in solving the
decision Diffie-Hellman problem is defined as

AdvA =
∣
∣
∣
∣Pr[b ← A(G, p, g, gx, gy, T)] − 1

2

∣
∣
∣
∣ .

We say that the Decision-Diffie Hallman assumption holds if for all PPT A,
AdvA is negligible in λ.

Representation Overhead of Group Elements. In this work we will be concerned
with how efficiently (prime order) group elements are represented. We are inter-
ested in the difference between the number of bits to represent a group element
and �lg(p)	. In our definition we consider the bit representation of a group to be
intrinsic to a particular group description.

Definition 3.2 (Representational Overhead). Consider a family of prime
order groups output from some group generation algorithm G(1λ) that outputs a
group of prime order p for 2λ < p < 2λ+1. Notice that for a generator g in such
a group that gi �= gj for i, j ∈ [0, 2λ] and i �= j. (I.e. no “wraparound” happens.)

We define the representational overhead δ(λ) to be the function which
expresses maximum difference between the number of bits used to represent a
group element of G and λ, where G, p ← G(1λ).

For this work we are interested in families of groups who representational
overhead δ(λ) is some constant c. Examples of these include groups generated
from strong primes and certain elliptic curve groups.

SSB Hashing and Positional Accumulators 129

Construction of Two-to-One SSB. We now describe our Two-To-One SSB
Hash. We will use a group generation algorithm G that has constant represen-
tational overhead c as defined in Definition 3.2. Consider a matrix M over Zp

and group generator g of order p we will use the notation gM as short hand for
giving out g raised to each element of M.

The construction sets up a hash function key hk for a function that takes two
s bit inputs xA and xB . If the index bit β = 0 it will be statistically binding on
xA; otherwise it is statistically binding on xB . At a high level the construction
setup is intuitively similar to the Lossy trapdoor function algorithms of Peikert
and Waters [PW08] where the setup creates two functions — one injective and
the other lossy and assigns whether the lossy function corresponds to the A or
B input according to the index bit β.

There are two important differences from the basic PW construction. First
the PW construction encrypted the input bit by bit. This low rate of encoding
was needed in order to recover the input from a trapdoor in [PW08], but a trap-
door is not required for our hash function. Here we cram in as many bits into a
group element as possible. This is necessary to satisfy the SSB output size prop-
erties. We note [BHK11] pack bits in a similar manner. The second property we
have is that the randomness used to generate both the injective and lossy func-
tion is correlated such that we can intuitively combine the outputs of each into
one output where the output length is both small and maintains the committing
property of the injective function. We note that our description describes the
procedures directly and the connection to injective and lossy functions is given
for intuition, but not made formal.

GenTwo-to-One(1λ, 1s, β ∈ {0, 1})
The generation algorithm first sets t = max(λ, �√s · c). (The variable t will
be the number of bit each group element can uniquely represent.) It then calls
G(1t) → (G, p) with 2t < p < 2t+1 and chooses a random generator g ∈ G.

Next, it lets d = � s
t �. It then chooses random w1, . . . , wd ∈ Zp, two random

column vectors a = (a1, . . . , ad) ∈ Z
d
p and b = (b1, . . . , bd) ∈ Z

d
p. We let Ã be

the d × d matrix over Zp where the (i, j)-th entry is ai · wj and B̃ be the d × d

matrix over Zp where the (i, j)-th entry is bi ·wj . Finally, let A be Ã+(1−β) · I
and B be B̃ + β · I where I is the identity matrix. (I.e. we add in the identity
matrix to Ã to get the A matrix if the selection bit β = 0; otherwise, if β = 1
add in the identity matrix to B̃ to get B.)

The hash key is hk = (ga, gb, gA, gB).

Hhk : {0, 1}s × {0, 1}s → G
d+1

The hash function algorithm takes in two inputs xA ∈ {0, 1}s and xB ∈ {0, 1}s.
We can view the bitstrings xA and xB each as consisting of d blocks each of t bits
(except the last block which may be less). The function first parses these each
as row vectors xA = (xA,1, . . . , xA,d) and xB = (xB,1, . . . , xB,d). These have the
property that for j ∈ [d] we have xA,j is an integer < 2t ≤ p representing the
j − th block of bits as an integer.

130 T. Okamoto et al.

Next, it computes

V = gxAa+xBb, Y = gxAA+xBB.

We observe that V is one group element in G and Y is a vector of d group
elements. Thus the output size of the hash is (d + 1) · (t + c) bits.

Analysis. We now analyze the size overhead, index hiding and binding proper-
ties of the hash function.

Overhead. The output of the hash function is d + 1 group elements each of
which takes t+ c bits to represent for a total output size of (d+1)(t+ c) bits. In
the case where �√s · c	 ≥ λ, we can plug in our parameter choices for t, d and
see that the outputsize �(λ, s) = s + O(

√
s), thus matching the requirements of

Definition 3.1. In the case where �√s · c	 < λ we have that �(λ, s) = s + O(λ)
thus also matching our definition.

Somewhere Statistically Binding. We show that the hash function above is selec-
tively binding respective to the bit β. We demonstrate this for the β = 0 case.
The β = 1 case follows analogously.

Suppose a hash key hk were setup according to the process GenTwo−to−One

as above with the input β = 0. Now consider the evaluation Hhk(xA, xB) =
(V, Y = (Y1, . . . , Yd)). We have that for all j ∈ [1, d] that Yj/V wj = gxA,j . Let’s
verify this claim. First from the hash definition we can work out that

V = gΣi∈[d]xA,iai+xB,ibi

and

Yj = gxA,j+Σi∈[d]xA,i(aiwj)+xB,i(biwj) = gxA,jgwj(Σi∈[d]xA,iai+xB,ibi).

The claim that Yj/V wj = gxA,j follows immediately from these equations.
Now suppose that we are given two inputs (xA, xB) and (x′

A, x′
B) such

that xA �= x′
A There must then exist some j such that xA,j �= x′

A,j . Let
Hhk(xA, xB) = (V, Y = (Y1, . . . , Yd)) and Hhk(x′

A, x′
B) = (V ′, Y ′ = (Y ′

1 , . . . , Y ′
d)).

From the above claim it follows that Yj/V wj = gxA,j and Yj/V wj = gx′
A,j . There-

fore (V, Yj) �= (V ′, Y ′
j) and the outputs of the hashes are distinct.

Index Hiding. We now prove index hiding. To do this we define Game normal to be
the normal index hiding game on the two-to-one construction and Game random to
be the index hiding game, but where the matrices Ã and B̃ are chosen randomly
when constructing the hash function hk.

We first argue that if the decision Diffie-Hellman assumption holds, then the
advantage of any PPT attacker A in Game normal must be negligibly close to
its advantage in Game random. To show this we apply a particular case of the
decision matrix linear assumption family introduced by Naor and Segev [NS12].
They show (as part of a more general theorem) that if the decision Diffie-Hellman

SSB Hashing and Positional Accumulators 131

assumption holds that a PPT attacker cannot distinguish if a 2d×(d+1) matrix
M over Zp was sampled randomly from the set of rank 1 matrices or rank d + 1
matrices given gM.

Suppose that the difference of advantage for some attacker in Game normal and
Game random is some non-negligible function of λ. Then we construct an algorithm
B on the above decision matrix linear assumption. B receives a challenge gM and
breaks this into gMA and gMB where MA is the top half of the matrix M and
MB is the bottom half. It then takes ga from the first column of gMA and gÃ

as the remaining d columns. Similarly, B takes gb from the first column of gMB

and gB̃ as the remaining d columns. It then samples a random index β ∈ {0, 1}
and continues to use these values in executing GenTwo−to−One, giving the hash
key hk to the attack algorithm.

If gM were sampled as a rank 1 matrix, then the view of the attacker is the
same as executing Game normal. Otherwise, if gM were sampled as a rank d + 1
matrix the attacker’s view is statistically close to Game random (as choosing a
random rank d + 1 matrix is statistically close to choosing a random matrix). If
the attacker A correctly guesses β′ = β, then B guesses the matrix was rank 1,
else it guesses it was rank d + 1. If the difference in advantage of A in the two
games is non-neglgibile, then B has a non-negligible advantage in the decision
matrix game.

Finally, we see that in Game random any attacker’s advantage must be 0 as
the distributions of the outputs are independent of β.

3.2 Two-to-One SSB Hash from DCR

We can also construct a two-to-one hash with perfect binding from the deci-
sional composite residuocity (DCR) assumption. We do so by relying on the
Damg̊ard-Jurik cryptosystem [DJ01] which is itself a generalization of the Pal-
lier cryptosystem based on the DCR assumption [Pai99]. We rely on the fact
that this cryptosystem is additively homomorphic and “length flexible”, mean-
ing that it has a small ciphertext expansion. When we plug this construction of
a two-to-one SSB hash into our full construction of SSB hash with local open-
ing, we essentially get the private-information retrieval (PIR) scheme of Lipmaa
[Lip05]. Note that, in general, PIR implies SSB hash but only without local open-
ing. However, the particular PIR construction of [Lip05] already has a tree-like
structure which enables efficient local opening.

Damg̊ard-Jurik. The Damg̊ard-Jurik cryptosystem consists of algorithms
(KeyGen, Enc, Dec). The key generation (pk, sk) ← KeyGen(1λ) generates a pub-
lic key pk = n = pq which is a product of two primes p, q and sk = (p, q). For any
(polynomial) w the scheme can be instantiated to have plaintext space Znw and
ciphertext space Z

∗
nw+1 . The encryption/decryption procedures c = Encpk(m; r)

and Decsk(c) satisfy perfect correctness so that for all m ∈ Znw and all pos-
sible choices of the randomness r we have Decsk(Encpk(m; r)) = m. Moreover
the scheme is additively homomorphic, meaning that there is an operation ⊕

132 T. Okamoto et al.

such that Encpk(m; r) ⊕ Encpk(m′; r′) = Encpk(m + m′; r′′) for some r′′ (the
operation + is in the ring Znw). Similarly, we can define homomorphic sub-
traction �. Furthermore, by performing repeated addition we can also imple-
ment an operation ⊗ that allows for multiplication by a plaitnext element
Encpk(m; r) ⊗ m′ = Encpk(m · m′; r′) for some r′ (the operation · is in the ring
Znw). The semantic security of the cryptosystem holds under the DCR assump-
tion.

Construction of Two-to-One SSB. We use the Damg̊ard-Jurik cryptosystem to
construct an SSB hash as follows.

hk ← Gen(1λ, 1s, β ∈ {0, 1}) Choose (pk, sk) ← KeyGen(1λ) to be a Damg̊ard-
Jurik public/secret key. We assume (without loss of generality) that the
modulus n satisfies n > 2λ. Set the parameter w which determines the
plaintext space Znw and the ciphertext space Z

∗
nw+1 to be w = �s/ log n� so

that we can interpret {0, 1}s as a subset of Znw . Choose c ← Encpk(β) and
output hk = (pk, c).

Hhk(x0, x1): Parse hk = (pk, c) and interpret the values x0, x1 ∈ {0, 1}s as
ring elements x0, x1 ∈ Znw . Define the value 1ct = Encpk(1; r0) to be a
fixed encryption of 1 using some fixed randomness r0 (say, all 0s). Compute
c∗ := (x1⊗c)⊕(x0⊗(1ct�c)). By the homomorphic properties of encryption,
c∗ is an encryption of xβ .

Theorem 3.3. The above construction is a two-to-one SSB hash with perfect
binding under the DCR assumption.

Proof. The index hiding property follows directly from the semantic security of
the Damg̊ard-Jurik cryptosystem, which in turn follows from the DCR assump-
tion.

The perfect binding property follows from the perfect correctness of the cryp-
tosystem. In particular, if hk ← Gen(1λ, 1s, β) then y = Hhk(x0, x1) satisfies
y = Encpk(xβ ; r) for some r which perfectly determines xβ .

Lastly, the output size of the hash function is

�(s, λ) = (w + 1)�log n� = (�s/ log n� + 1)�log n�
≤ (1 + 1/ log n)s + O(log n) = (1 + 1/Ω(λ))s + poly(λ).

3.3 SSB with Local Opening from Two-to-One SSB

We now show how to construct a SSB hash with local opening from a two-to-
one SSB hash via the “Merkle Tree” construction. Assume that H = (Gen,H)
is a two-to-one SSB hash family with output length give by �(s, λ). We use this
hash function in a Merkle-Tree to construct an SSB hash with local opening
H∗ = (Gen∗,H∗,Open,Verify) as follows.

– hk ← Gen∗(1λ, 1s, L, i): Let (bq, . . . , b1) be the binary representation of i (with
b1 being the least significant bit) where q = �log L�. For j ∈ [q] define the
block-lengths s1, . . . , sq where s1 = s and sj+1 = �(sj , λ). Choose hkj ←
Gen(1λ, 1sj , bj) and output hk = (hk1, . . . , hkq).

SSB Hashing and Positional Accumulators 133

– y = H∗
hk(x): For x = (x[0], . . . , x[L − 1]) ∈ ΣL, hk = (hk1, . . . , hkq) proceed

as follows. Define T to be a complete binary tree of height q where level 0
of the tree denotes the leaves and level q denotes the root. We will assign a
label to each vertex in the tree. The L leaf vertices are assigned the labels
x[0], . . . , x[L − 1]. The rest of the labels are assigned inductively where each
non-leaf vertex v at level j of the tree with children that have labels x′

0, x
′
1

gets assigned the label Hhkj (x
′
0, x

′
1). The output of the hash is the label y

assigned to the root of the tree.
– π = Open(hk, x, j): Compute the labeled tree T as above. Output the labels

of all the sibling nodes along the path from the root to the j’th leaf.
– Verify(hk, y, j, u, π): Recompute all of the labels of the nodes in the tree T that

lie on the path from the root to the j’th leaf by using the value u for that
leaf and the values given by π as the labels of all the sibling nodes along the
path. Check that the recomputed label on the root of the tree is indeed y.

Theorem 3.4. If H is a two-to-one SSB hash then H∗ is a SSB hash with local
opening.

Proof. Firstly, the index hiding property of H∗ follows directly from that of H
via q hybrid arguments. In particular, if i0 = (b0

q, . . . , b
0
1) and i1 = (b1

q, . . . , b
1
1)

are the two indices chosen by the attacker during the security game for index
hiding, then we can prove the indistinguishability of hk0 ← Gen∗(1λ, L, s, i0)
and hk1 ← Gen∗(1λ, L, s, i1) via q hybrid games where we switch the component
keys hk = (hk1, . . . , hkq) from being chosen as hkj ← Gen(1λ, 1s, b0

j) to hkj ←
Gen(1λ, 1s, b1

j).
Secondly, to show that H∗ is somewhere statistically binding w.r.t. open-

ing, assume that there exist some y, u �= u′, π, π′ s.t. Verify(hk, y, i, u, π) =
Verify(hk, y, i, u′, π′) = accept. Recall that the verification procedure assigns
labels to all the nodes along the path from the root to the i’th leaf. During
the two runs of the verification procedure with the above inputs, let 0 < j ≤ q
be the lowest level at which both runs assign the same label w to the node at
level j (this must exist since the root at level q is assigned the same label y in
both runs and the leafs at level 0 are assigned different values u, u′ in the two
runs). Let v, v′ be the two different labels assigned to the node at level j − 1
by the two runs. Then w = Hhkj (x) = Hhkj (x

′) for some x, x′ ∈ Σ2 such that
x[bj] = v �= x′[bj] = v′. This means that hkj is not statistically binding on
the index bj , but this can only happen with negligible probability by the some-
where statistically binding property of the 2-to-1 SSB hash H. Therefore H∗ is
somewhere statistically binding w.r.t. opening.

Lastly, the output length of H∗ is given by �∗(s, λ) = sq+1 where s1 =
s and for each other j ∈ [q], sj+1 = �(sj , λ). The output length of a SSB
hash guarantees that �(sj , λ) = sj(1 + 1/Ω(λ)) + a(λ) where a(·) is some fixed
polynomial. This ensures that

�∗(s, λ) = s(1 + 1/Ω(λ))q + a(λ)
q−1∑

j=0

(1 + 1/Ω(λ))j = O(s) + a(λ)O(λ)

134 T. Okamoto et al.

H∗
hk(x)

h2

hk0
2

h1

hk0
1

x[0]‖0m−s

s

s

hk1
1

x[1]‖0m−s

s

Λ

s + Λ
√

Λ

hk1
2

h1

hk0
1

x[2]‖0m−s

s
√

s

hk1
1

x[3]‖0m−s

s
√

Λ

s + Λ

s + Λ

s + 2Λ

Fig. 1. Illustration of the SSB hash from a lossy function with key hk ←
Gen∗(1λ, 1s, L = 2q, i, Λ), i.e., Hhk(x) perfectly binds x[i = 2]. For every level

j ∈ {1, . . . , q} we sample a pairwise independent function hj : {0, 1}2m′ → {0, 1}m,
where m = 2(s + qΛ) + λ for a statistical security parameter λ, and two functions

hk0
j , hk

1
j : {0, 1}m → {0, 1}m′

from an (m, Λ)-lossy family of functions, one lossy and
one injective (we decide which one of the two is the injective one such that the path
from the perfectly binded value – here x[2] – to the root only contains injective func-
tions). The injective and lossy functions are shown in green and red, respectively. The
SBB hash is now a Merkle-hash with the hash function Hj(a, b) = hj(hk

0
j (a), hk1

j (b))
used in level j. An edge label t in the figure means that there are at most 2t possible
values at this point, e.g., there are 2s values of the form x[0]‖0m−s and the output of
a lossy function like hk1

1 has at most 2Λ values. To locally open a value, say x[2], we
reveal x[2] all the siblings of the nodes on the path from x[2] to the root, those are
marked with

√
in the figure.

is polynomial in s, λ. We rely on the fact that q ≤ λ to argue that (1+1/Ω(λ))q ≤
(1 + 1/Ω(λ))λ = O(1).

4 SSB Hash from Lossy Functions

In this section we describe a simple construction of an SSB Hash with local
opening, the main tool we’ll use are lossy functions, introduced by Peikert and
Waters [PW08]. They actually introduced the stronger notion of lossy trapdoor
functions, where a trapdoor allowed to invert functions with injective keys, we
only need the lossiness property, but no trapdoors.

Definition 4.1. An (m,Λ)-lossy function is given by a tuple of PPT algorithms

– For m,Λ ∈ N and mode ∈ {injective = 1, lossy = 0}, GenLF(m,Λ,mode)
outputs a key hk.

SSB Hashing and Positional Accumulators 135

– Every such key hk defines a function hk(.) : {0, 1}m → {0, 1}m′
(for some

m′ ≥ m).

We have the following three properties:

injective: If hk ← GenLF(m,Λ, injective), then hk(.) is injective.
lossy: If hk ← GenLF(m,Λ, lossy), then hk(.)’s output domain has size ≤ 2Λ, i.e.

|{y : ∃x ∈ {0, 1}m, hk(x) = y}| ≤ 2Λ

indistinguishable: Lossy and injective keys are computationally indistinguish-
able. More concretely, think of Λ as a security parameter and let m =
poly(Λ), then the advantage of any PPT adversary in distinguishing
GenLF(m,Λ, injective) from GenLF(m,Λ, lossy) is negligible in Λ.

The Construction. Our construction (Gen∗,H∗,Open,Verify) is illustrated in
Fig. 1, we define it formally below.

– hk ← Gen∗(1λ, 1s, L = 2q, i,Λ): Set m = 2(s + qΛ) + λ. For i ∈ {0, . . . , 2q −
1}, let (bq, . . . , b1) be the binary representation of i (with b1 being the least
significant bit).

For every j: Choose hk0
i ← GenLF(m,Λ, 1 − bj) and hk1

i ← GenLF(m,Λ, bj).
Sample a pairwise independent hash function hj : {0, 1}2m′ → {0, 1}m and
let hkj = (hk0

j , hk1
j , hj). Each hkj defines a mapping Hj : {0, 1}2m → {0, 1}m

defined as
Hj(a, b) = hj(hk0

j (a), hk1
j (b))

Output hk = (hk1, . . . , hkq).
– H∗

hk(x): For x = (x[0], . . . , x[2q − 1]) ∈ {0, 1}s·2q

, hk = (hk1, . . . , hkq) proceed
as follows. Define T to be a complete binary tree of height q where level 0
of the tree denotes the leaves and level q denotes the root. We will assign a
label to each vertex in the tree. The 2q leaf vertices are assigned the labels
x[0]‖0m−s, . . . , x[2q − 1]‖0m−s (i.e., the input blocks padded to length m).
The rest of the labels are assigned inductively where each non-leaf vertex v at
level j of the tree with children that have labels x′

0, x
′
1 gets assigned the label

y = Hj(x′
0, x

′
1). The output H∗

hk(x) is the root of the tree.
– π = Open(hk, x, j): Compute the labeled tree T as above. Output the labels

of all the sibling nodes along the path from the root to the j’th leaf.
Figure 1 the values to be opened to reveal x[2] are marked with

√
.

– Verify(hk, y, j, u, π): Recompute all of the labels of the nodes in the tree T that
lie on the path from the root to the j’th leaf by using the value u for that
leaf and the values given by π as the labels of all the sibling nodes along the
path. Check that the recomputed label on the root of the tree is indeed y.

Theorem 4.2. The construction of a SSB Hash (with local opening) described
below, which maps L = 2q blocks of length s bits to a hash of size m = 2(s +

136 T. Okamoto et al.

qΛ) + λ bits where λ is a statistical security parameter and we assume (m,Λ)-
lossy functions, is secure. More concretely, the somewhere statistically binding
property holds with probability

1 − q/2λ

over the choice of the hash key, and the index hiding property can be reduced to
the indistinguishability property of the lossy function losing a factor q.

Proof. The index hiding property follows immediately from the indsitinguisha-
bility of injective and lossy modes.

To show that the hash is somewhere statistically binding, consider a key
hk ← Gen∗(1λ, 1s, L = 2q, i,Λ). We must prove that with overwhelming
probability no hash y ∈ {0, 1}2(s+q·Λ)+λ exists where Verify(hk, y, i, u, π) =
Verify(hk, y, i, u′, π′) = accept for some u �= u′, that is, x[i] can be opened to
u and u′.

In a nutshell, the reason why with high probability (over the choice of hk) the
hash Hhk is perfectly binding on its ith coordinate is that the value x[i] at the
leaf of the tree only passes through two kinds of functions on its way to the root:
injective functions and pairwise independent hashes. Clearly, no information can
be lost when passing through an injective function. And every time the value
passes through some hash hj , the other half of the input is the output of a lossy
function, and thus can take at most 2Λ possible values. Thus even as we arrive
at the root, there are only 2s+q·Λ possible values. We now set the output length
m = 2(s + q · Λ) + λ of the hj ’s so that 2m is a larger – by a factor 2λ – than
the square of the possible values. This then suffices to argue that every hj will
be injective on its possible inputs (recall that there are at most 2s+q·Λ of them)
with probability ≥ 1 − 2−λ.

For the formal proof it’s convenient to consider the case i = 0 (i.e.,
the leftmost value should be perfectly binding). Let π = (w1, . . . , wq) and
π′ = (w′

1, . . . , w
′
q) be two openings for values x[0] �= x′[0], we’ll prove that with

probability q/2λ (over the choice of hk) the verification procedure will compute
different hashes corresponding to any two such openings (i.e., for every opening
(π, x[0]), there’s at most one y which makes Verify(hk, y, i = 0, x[0], π) accept),
and thus the hash is perfectly binding on index 0.

Let v0 = x[i]‖0m−s and for j = 1, . . . , q define vj = hj(hk0
j (vj−1), hk1

j (wj)),
the v′

j ’s are defined analogously for the other opening. Note that vq is the final
hash value, so we have to show that vq �= v′

q.
We will do so by induction, first, we claim that (for any hk) there are at most

2s+j·Λ possible values vj can take. This is true for j = 0 as v0 = x[0]‖0m−s

can take exactly 2s values by definition. Assume it holds for j − 1 and let
Sj−1, |Sj−1| ≤ 2s+(j−1)Λ denote the set of values vj−1 can take, then

|Sj | = |{hj(hk0
j (vj−1), hk1

j (z)) : vj−1 ∈ Sj−1, z ∈ {0, 1}m)
} | (1)

≤ |{(vj−1, hk1
j (z)) : vj−1 ∈ Sj−1, z ∈ {0, 1}m))}| (2)

≤ |Sj−1| · 2Λ (3)
≤ 2s+jΛ (4)

SSB Hashing and Positional Accumulators 137

where the first step follows by definition of the set Sj , the second step follows as
applying deterministic functions cannot increase the number of possible values,
the third step follows as hk1

j (.) is lossy and thus can take at most 2Λ possible
values. The last step follows by the induction hypothesis for j − 1.

For the proof we will think of the hash key hk = (hk1, . . . , hkq), where hkj =
(hk0

j , hk1
j , hj), as being lazy sampled. Initially, we sample all the hk0

j , hk1
j keys.

Let Lj ⊂ {0, 1}m denote the range of the (lossy) hk1
j (.) functions, note that

|Lj | ≤ 2Λ for all j. The hj ’s will be sampled one by one in each induction step
below.

Assume so far he have sampled h1, . . . , hj−1, and so far for any openings
where x[0] �= x′[0] we had vj �= v′

j . For j = 0 this holds as x[0] �= x′[0] implies
v0 = x[0]‖0m−s �= x′[0]‖0m−s.

The inputs to the function hj (which is still to be sampled) are from Ij−1 =
h0

j (Sj−1) × Lj−1, which (as shown above) contains at most |Sj−1| · |Lj−1| ≤
2s+(j−1)Λ2Λ = 2s+j·Λ elements.

We now sample the pairwise independent hash hj , as it has range 2m the
probability that any two elements (v, l) �= (v′, l′) ∈ Ij−1 collide4 is 2−m, taking
the union bound over all pairs of elements we get

22(s+j·Λ)/2m ≤ 2−λ

Taking the union bound, we get that the probability that the induction fails for
any of the q steps is q/2λ as claimed.

5 SSB from φ-hiding

We now move on to building SSB from the φ-hiding assumption [CMS99]. This
construction will be qualitatively different from the prior ones in that we will not
employ a Merkle tree type structure for proving and verifying opens. In contrast
a hash output will consist of two elements Z∗

N0
and Z

∗
N1

for RSA primes N0, N1.
An opening will consist of a single element of either Z

∗
N0

or Z
∗
N1

.
Our construction is structurally similar to standard constructions RSA accu-

mulators [BdM93]. Intuitively, the initial hash key will consist of two RSA moduli
N0, N1 as well as two group elements h0, h1 and keys K0,K1 which hash to prime
exponents. To compute the hash on input x ∈ {0, 1}L let S0 = {i : x[i] = 0} be
the set of all indices where the i-th bit is 0 and S1 = {i : x[i] = 1} be the set of
indices where the i-th bit is 1. The function computes the output

y0 = h
∏

i∈S0
FK0 (i)

0 mod N0, y1 = h
∏

i∈S1
FK1 (i)

1 mod N1.

To prove that the j-th bit was 0 the open algorithm will give the FK0(j)-
th root of y0. It computes this by letting S0 = {i : x[i] = 0} and setting

4 Note that we prove something slightly stronger than required as we only need to
consider pairs where v �= v′.

138 T. Okamoto et al.

π = h
∏

i�=j∈S0
FK0 (i)

0 mod N0. A proof can be checked by simply checking if
y0

?= πFK0 (j) mod N0. (Proving an opening of 1 follows analogously).
The algorithms as described above very closely match a traditional RSA

accumulator. The key distinction is that we can achieve statistical binding on
index j by setting N0 such that K0(j) divides φ(N0) (and similarly for N1). The
idea is that in this setting if y0 is not an K0(j)-th residue then there will not
exist a value π such that y0

?= πFK0 (j) mod N0. The index-hiding property will
follow from the φ-hiding assumption.

5.1 RSA and φ-hiding Preliminaries

We begin by developing our notation and statement of the φ-hiding assumption
both of which follow closely to Kiltz, O’Neill, and Smith [KOS10]. We let Pk

denote the set of odd primes that are less than 2k. In addition, we let (N, p, q) $←
RSAk be the process of choosing two primes p, q uniformly from Pk and letting
N = pq. Further we let (N, p, q) $← RSAk[p = 1 mod e] be the be the process
of choosing two primes p, q uniformly from Pk with the constraint that p = 1
mod e, then letting N = pq.

We can now state the φ-hiding assumption relative to some constant 0 < c <
.5. Consider the following distributions relative to a security parameter λ.

R = {(e,N) : e, e′ $← Pcλ; (N, p, q) $← RSAλ[p = 1 mod e′]}
L = {(e,N) : e

$← Pcλ; (N, p, q) $← RSAλ[p = 1 mod e]}
Cachin, Micali and Stadler [CMS99] show that the two distributions can

be efficiently sampled if the Extended Riemann Hypothesis holds. The φ-hiding
assumption states that for all c ∈ (0, .5) no PPT attacker can distinguish between
the two distributions with better than negligible in λ probability.

5.2 Conforming Function

Before we give our construction we need one further abstraction. For any integer
L we require the ability to sample a keyed hash function F (K, ·) that hashes from
an integer i ∈ [0, L − 1] to a random prime in Pcλ. Furthermore, the function
should have the property that it is possible to sample the key K in such a way
that for a single pair i∗ ∈ [0, L − 1] and e∗ ∈ Pcλ F (K, i∗) = e∗. Moreover such
programming should be undetectable if e∗ is chosen at random from Pcλ.

We give the definitions of such a function system here and show how to con-
struct one in AppendixA. A conforming function system is parameterized by a
constant c ∈ (0, .5) and has three algorithms.

Sample-Normal(1λ, L) → K
Takes in a security parameter λ and a length L (in binary) and outputs a function
key K.

SSB Hashing and Positional Accumulators 139

Sample-Program(1λ, L, i∗, e∗) → K
Takes in a security parameter λ and a length L (in binary) as well as a program
index i∗ ∈ [0, L − 1] and e∗ ∈ Pcλ. It outputs a function key K.

FK : i → Pcλ

If Sample-Normal(1λ, L) → K, then FK takes in an index i ∈ [0, L − 1] and
outputs a prime from Pcλ.

Properties. Such a system will have four properties:

Efficiency. The programs Sample-Normal and Sample-Program run in
time polynomial in λ and L. Let Sample-Normal(1λ, L) → K, then FK

runs in time polynomial in λ and lg(L).
Programming at i∗. For some λ,L, i∗, e∗ let Sample-Program(1λ, L, i∗, e∗)

→ K. Then FK(i∗) = e∗ with all but negligible probability in λ.
Non colliding at i∗. For some λ,L, i∗, e∗ let Sample-Program(1λ, L, i∗, e∗)

→ K. Then for any i �= i∗ the probability that FK(i∗) = FK(i) is negligi-
ble in λ.

Indistinguishability of Setup. For any L, i∗ consider the following two dis-
tributions:

RL,i∗ = {K : e∗ $← Pcλ;Sample-Normal(1λ, L) → K}
LL,i∗ = {K : e∗ $← Pcλ;Sample-Program(1λ, L, i∗, e∗) → K}

The indistinguishability of setup property states that all PPT adversaries
have a most a negligible advantage in distinguishing between the two distri-
butions for all L, i∗.

5.3 Our φ-hiding SSB Construction

We now present our φ-hiding based SSB construction. Our construction is for an
alphabet of a single bit, thus s is implicitly 1 and omitted from our notation. In
addition, the construction is parameterized relative to some constant c ∈ (0, .5).

Gen(1λ, L, i∗)

The generation algorithm first samples two random primes e0, e1
$← Pcλ. Next,

it sets up two conforming functions as Sample-Program (1λ, L, i∗, e0) → K0

and Sample-Program (1λ, L, i∗, e1) → K1. Then it samples (N0, p0, q0)
$←

RSAk[p0 = 1 mod e0] and (N1, p1, q1)
$← RSAk[p1 = 1 mod e1]. Finally, it

chooses h0 ∈ Z∗
N0

randomly with the constraint that h
(p0−1)/e0
0 �= 1 mod p0 and

h1 ∈ Z∗
N1

randomly with the constraint that h
(p1−1)/e1
1 �= 1 mod p1.

It outputs the hash key as hk = {L, (N0, N1), (K0,K1), (h0, h1)}.

Hhk : {0, 1}L → Z
∗
N0

,Z∗
N1

:
On input x ∈ {0, 1}L let S0 = {i : x[i] = 0} be the set of all indices where the

140 T. Okamoto et al.

i-th bit is 0 and S1 = {i : x[i] = 1} be the set of indices where the i-th bit is 1.
The function computes

y0 = h
∏

i∈S0
FK0 (i)

0 mod N0, y1 = h
∏

i∈S1
FK1 (i)

1 mod N1.

The hash output is y = (y0, y1).
We note that the computation in practice will be done by iteratively with

repeated exponentiation as opposed to computing the large integer
∏

i∈S0
FK0(i)

up front.

Open(hk, x, j):
If xj = 0 it first lets S0 = {i : x[i] = 0}. Then it computes

π = h
∏

i�=j∈S0
FK0 (i)

0 mod N0.

Otherwise, if xj = 1 it first lets S1 = {i : x[i] = 1}. Then it computes

π = h
∏

i�=j∈S1
FK1 (i)

1 mod N1.

Verify(hk, y = (y0, y1), j, b ∈ {0, 1}, π):

The verify algorithm checks

yb
?= πFKb

(j) mod Nb.

Properties. We now show that the above construction meets the required prop-
erties for SSB with local opening. One minor difference from the original def-
inition is that we weaken the statistically binding requirement. Previously, we
wanted the binding property to hold for any hash digest y, even one which does
not correspond to a correctly generated hash output. In the version we achieve
here, we require that y = Hhk(x) for some x. We define the property formally
below.

Weak Somewhere Statistically Binding w.r.t. Opening: We say that
hk is weak statistically binding w.r.t opening (abbreviates wSBO) for an
index i if there do not exist any values x ∈ ΣL, u′ �= x[i], π′ s.t.
Verify(hk,Hhk(x), i, u′, π) = accept. We require that for any parameters s, L
and any index i ∈ {0, . . . , L − 1}

Pr[hk is wSBO for index i : hk ← Gen(1λ, 1s, L, i)] ≥ 1 − negl(λ).

We say that the hash is perfectly binding w.r.t. opening if the above proba-
bility is 1.

SSB Hashing and Positional Accumulators 141

Correctness of Opening. Consider any hk generated from the setup algorithm
and let π be the output from a call to Open(hk, x, j) for some x, j where that

x[j] = b ∈ {0, 1}. Then yb = h

∏
i∈Sb

FKb
(i)

b mod Nb and π = h

∏
i�=j∈Sb

FKb
(i)

b

mod Nb. It follows that πFKb
(j) = yb mod Nb.

Weak Somewhere Statistically Binding with Respect to Opening. Suppose that
Gen(1λ, L, i∗) → hk. We argue that with all but negligible probability for all
inputs x ∈ {0, 1}L that the function is statistically binding with respect to
opening.

Consider a particular input x where x[i∗] = 1 − b and Hhk(x) = y = (y0, y1).
We want to show that there does not exist a value π such that Verify(hk, y =
(y0, y1), i∗, b ∈ {0, 1}, π) = 1. Let eb ∈ Pcλ be the prime value chosen at
hash function setup. By the setup process we have that eb|pb − 1 and that of
eb = FKb

(i∗). The latter follows from the Programming at i∗ property of the
conforming hash function. Therefore we have that (πeb)(pb−1)/eb = 1 mod p1

(i.e. πeb is an eb-th residue mod pb).

Recall that yb = h

∏
i∈Sb

FKb
(i)

b mod Nb. Let α =
∏

i∈Sb
FKb

(i). By the non-
colliding property of F coupled with the fact that x[i∗] �= b and thus i∗ /∈ Sb

with all but negligible probability for all i ∈ Sb we have that FKb
(i) is a prime

�= eb. Therefore α is relatively prime to eb. Since hb was chosen to not be a eb-th
residue mod pb and α is relatively prime to eb it follows that yb = hα

b is also
not an eb-th residue mod pb. However, since πeb is an eb-th residue mod pb, it
cannot be equal to yb and the verification test will fail.

Index Hiding. We sketch a simple proof of index hiding via a sequence of games.
We begin by defining the sequence.

– Game 0: The Index Hiding game on our construction.
– Game 1: Same as Game 0 except that an additional prime e′

0
$← Pcλ is sam-

pled and (N0, p0, q0)
$← RSAλ[p = 1 mod e′

0]. Note that we still sample

(1λ, L, ib, e0) → K0 where w.h.p e0 �= e′
0. additional prime e′

1
$← Pcλ is sam-

pled and (N1, p1, q1)
$← RSAλ[p = 1 mod e′

1]. Note that we still sample
(1λ, L, ib, e1) → K1 where w.h.p e1 �= e′

1.
– Game 3: Same as Game 2 except that K0 is sampled as Sample-Normal

(1λ, L) → K0.
– Game 4: Same as Game 3 except that K1 is sampled as Sample-Normal

(1λ, L) → K1.

It follows directly from the φ-hiding assumption that no PPT attacker can
distinguish between Game 1 and Game 1 and that no attacker can distinguish
between Game 1 and Game 2. At this point the primes e0 and e1 are used only in
the programming of the hash function and are not reflected in the choice of the
RSA moduli. For this reason we can now use the Indistinguishability of Setup
property of the conforming has to show that no PPT attack can distinguish

142 T. Okamoto et al.

between Game 2 and Game 3 and Game 3 and Game 4. Finally, we observe that
the index ib is not used at Game 4 and thus the bit b is hidden from the attacker’s
view.

6 Positional Accumulators

In the full version of this paper, we also discuss how to extend some the above
results to positional accumulators. In particular, we show how to construct posi-
tional accumulators from a (perfectly binding) two-to-one SSB hash. The con-
struction can also be naturally extended to one based on lossy functions.

A Constructing a Conforming Function

We now give our construction of a conforming hash function per the definition
given in Sect. 5.2.

Recall, our goal is to construct a keyed hash function F (K, ·) that hashes
from an integer i ∈ [0, L − 1] to a prime in Pcλ. Furthermore, the function
should have the property that it is possible to sample the key K in such a way
that for a single pair i∗ ∈ [0, L − 1] and e∗ ∈ Pcλ we have F (K, i∗) = e∗. (The
constant c ∈ (0, .5) is considered a parameter of the system.) Moreover, such
programming should be undetectable if e∗ is sampled at random from Pcλ.

Our construction below is a simple implementation of this abstraction and all
properties are statistically guaranteed (i.e. we do not require any computational
assumptions).

Sample-Normal(1λ, L) → K
We first let B = 2�cλ� and let T = λ2. The algorithm chooses random
w1, . . . , wT ∈ [0, B − 1]. The key K is set as K = (λ,w1, . . . , wT).

Sample-Program(1λ, L, i∗, e∗) → K
We first let B = 2�cλ� and let T = λ2. Initialize a bit (local to this computation)
programmed to be 0. Then proceed in the following manner:

For j = 1 to T if programmed ?= 1 choose vj randomly in [0, B − 1] and
set wj = vj − i∗ mod B. This corresponds to the case where the value e∗ was

“already programmed”. Else, if programmed ?= 0, it first chooses vj randomly
in [0, B − 1]. If vj is not prime it simply sets wj = vj − i∗ mod B. Otherwise,
it sets wj = e∗ − i∗ mod B and flips the bit programmed to 1 so that e∗ will
not be programmed in again.

The key K is output as K = (λ,w1, . . . , wT).

FK : i → Pcλ

The function proceeds as follows. Starting at j = 1 to T the function tests if
wj + i is a prime (i.e. is in Pcλ). If so it outputs wj + i and halts. Otherwise, it

SSB Hashing and Positional Accumulators 143

increments j and tests again. If j goes past T and no primes have been found,
the algorithm outputs a default prime 3 ∈ Pcλ.5

Properties. We now confirm that our function meets all the required properties.

Efficiency. The programs Sample-Normal chooses T random values where
T is polynomial in λ and Sample-Program also chooses T random values
as well as performing up to T primality tests. The keysizes of both are T
integers in [0, B]. Thus the running times and keysizes are polynomial in λ
and lg(L).

Programming at i∗. Consider a call to Sample-Program(1λ, L, i∗, e∗) → K.
The function FK(i∗) will resolve to the smallest j such that wj + i∗ is a
prime (if any of these are a prime). By the design of Sample-Program
this will be e∗ since it puts in wj = e∗ − i∗ mod B the first time a prime is
sampled. In constructing the function if all vj sampled were composite then
FK(i∗) �= e∗, however, this will only occur with negligible probability since
the probability of choosing T random integers in 2�cλ� and none of them
being prime is negligible.

Non colliding at i∗. For some λ,L, i∗, e∗ let Sample-Program(1λ, L, i∗, e∗)
→ K. Let’s assume that FK(i∗) = e∗. We first observe that the chances
that there exist any pairs (i0, j0) �= (i1, j1) such that wj0 + i0 = wj1 + i1
is negligible. We consider the probability of this happening on an arbitrary
pair and them apply the union bound.
Consider a pair (i0, j0) �= (i1, j1) If j0 = j1 this cannot happen since the
two terms differ by i1 − i0. Otherwise, we notice that the probability of a
particular pair colliding is at most 1/B (which is negligible) since vj0 and vj1

are chosen independently at random. Since there are at most a polynomial(
T ·L
2

)
such pairs the chances that any collide is negligible.

It follows that the chances of FK(i∗) = FK(i) for i = i∗ is negligible since
the above condition would be necessary for this to occur.

Indistinguishability of Setup. For any L, i∗ consider the following two dis-
tributions:

RL,i∗ = {K : e∗ $← Pcλ;Sample-Normal(1λ, L) → K}
LL,i∗ = {K : e∗ $← Pcλ;Sample-Program(1λ, L, i∗, e∗) → K}

We argue that these two distributions are identical for all L, i∗. We show
this by also considering an intermediate distribution IL,i∗ . This distribution
is generated by randomly sampling vj in [0, B − 1] and setting wj = vj −
i∗ mod B. This distribution is clearly equivalent to the Sample-Normal
distribution as for all j selecting wj randomly and selecting vj randomly and
setting wj = vj − i∗ mod B both result in wj being chosen uniformly at
random.

5 Note there is nothing special about choosing 3. Any default prime would suffice.

144 T. Okamoto et al.

We now argue that this intermediate distribution is equivalent to the
LL,i∗ distribution which is equivalent to calling Sample-Program with
sampling e∗ randomly from Pcλ. We will step through an execution of
Sample-Program and argue that at each step j from j = 1, . . . , T vj

is chosen randomly from [0, B − 1] independently of all other vj′ for j′ < j.
Consider an execution starting with j = 1 and programmed = 0 and for
our exposition let’s consider that e∗ ∈ Pcλ has not been sampled yet. While
programmed

?= 0 the algorithm samples vj is sampled at random. If vj

is composite it is kept and put in the key, otherwise if it is prime in Pcλ,
vj is replaced with e∗ as another randomly sampled prime. Thus, for any
composite value x the probability that wj + i∗ = x is 1/B and for any prime
value x the probability that wj + i∗ = x is also 1/B. The reason is that
replacing any sampled prime with a different randomly sampled prime does
not change the distribution.

After programmed is set to 1 all further vj values are chosen uniformly
at random.

Remark A.1. We note that the Indistinguishability of Setup property holds per-
fectly while the programmability property holds statistically. One way to flip
this is to always program vT = e∗ at the end if if e∗ has not been programmed
in already.

References

[BdM93] Benaloh, J.C., de Mare, M.: One-way accumulators: a decentralized alter-
native to digital signatures. In: Helleseth, T. (ed.) EUROCRYPT 1993.
LNCS, vol. 765, pp. 274–285. Springer, Heidelberg (1994)

[BGI+12] Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan,
S.P., Yang, K.: On the (im)possibility of obfuscating programs. J. ACM
59(2), 6 (2012)

[BHK11] Braverman, M., Hassidim, A., Kalai, Y.T.: Leaky pseudo-entropy func-
tions. In: Proceedings of the Innovations in Computer Science - ICS 2010,
Tsinghua University, Beijing, China, 7–9 January 2011, pp. 353–366 (2011)

[CCC+15] Chen, Y.C., Chow, S.S., Chung, K.M., Lai, R.W., Lin, W.K., Zhou, H.S.:
Computation-trace indistinguishability obfuscation and its applications.
Cryptology ePrint Archive, Report 2015/406 (2015). http://eprint.iacr.
org/

[CH15] Canetti, R., Holmgren, J.: Fully succinct garbled RAM. Cryptology ePrint
Archive, Report 2015/388 (2015). http://eprint.iacr.org/

[CMS99] Cachin, C., Micali, S., Stadler, M.A.: Computationally private information
retrieval with polylogarithmic communication. In: Stern, J. (ed.) EURO-
CRYPT 1999. LNCS, vol. 1592, p. 402. Springer, Heidelberg (1999)

[DJ01] Damg̊ard, I., Jurik, M.: A generalisation, a simplification and some appli-
cations of Paillier’s probabilistic public-key system. In: Kim, K. (ed.) PKC
2001. LNCS, vol. 1992, pp. 119–136. Springer, Heidelberg (2001)

[GGH+13] Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Can-
didate indistinguishability obfuscation and functional encryption for all
circuits. In: FOCS (2013)

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

SSB Hashing and Positional Accumulators 145

[HW15] Hubacek, P., Wichs, D.: On the communication complexity of secure func-
tion evaluation with long output. In: Proceedings of the 2015 Conference on
Innovations in Theoretical Computer Science, ITCS 2015, Rehovot, Israel,
11–13 January 2015, pp. 163–172 (2015)

[KLW15] Koppula, V., Lewko, A.B., Waters, B.: Indistinguishability obfuscation for
turing machines with unbounded memory. In: STOC (2015)

[KOS10] Kiltz, E., O’Neill, A., Smith, A.: Instantiability of RSA-OAEP under
chosen-plaintext attack. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol.
6223, pp. 295–313. Springer, Heidelberg (2010)

[Lip05] Lipmaa, H.: An oblivious transfer protocol with log-squared communica-
tion. In: Zhou, J., López, J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS,
vol. 3650, pp. 314–328. Springer, Heidelberg (2005)

[NS12] Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage.
SIAM J. Comput. 41(4), 772–814 (2012)

[Pai99] Paillier, P.: Public-key cryptosystems based on composite degree residuos-
ity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp.
223–238. Springer, Heidelberg (1999)

[PW08] Peikert, C., Waters, B.: Lossy trapdoor functions and their applications.
In: Proceedings of the 40th Annual ACM Symposium on Theory of Com-
puting, Victoria, British Columbia, Canada, 17–20 May 2008, pp. 187–196
(2008)

[SW14] Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable
encryption, and more. In: STOC, pp. 475–484 (2014)

[Zha14] Zhandry, M.: Adaptively secure broadcast encryption with small system
parameters. In: IACR Cryptology ePrint Archive 2014, p. 757 (2014)

Discrete Logarithms and Number
Theory

Computing Individual Discrete Logarithms
Faster in GF(pn) with the NFS-DL Algorithm

Aurore Guillevic1,2(B)

1 Inria Saclay, Palaiseau, France
2 École Polytechnique/LIX, Palaiseau, France

guillevic@lix.polytechnique.fr

Abstract. The Number Field Sieve (NFS) algorithm is the best known
method to compute discrete logarithms (DL) in finite fields Fpn , with p
medium to large and n ≥ 1 small. This algorithm comprises four steps:
polynomial selection, relation collection, linear algebra and finally, indi-
vidual logarithm computation. The first step outputs two polynomials
defining two number fields, and a map from the polynomial ring over
the integers modulo each of these polynomials to Fpn . After the relation
collection and linear algebra phases, the (virtual) logarithm of a subset
of elements in each number field is known. Given the target element in
Fpn , the fourth step computes a preimage in one number field. If one can
write the target preimage as a product of elements of known (virtual)
logarithm, then one can deduce the discrete logarithm of the target.

As recently shown by the Logjam attack, this final step can be critical
when it can be computed very quickly. But we realized that computing
an individual DL is much slower in medium- and large-characteristic
non-prime fields Fpn with n ≥ 3, compared to prime fields and quadratic
fields Fp2 . We optimize the first part of individual DL: the booting step,
by reducing dramatically the size of the preimage norm. Its smoothness
probability is higher, hence the running-time of the booting step is much
improved. Our method is very efficient for small extension fields with
2 ≤ n ≤ 6 and applies to any n > 1, in medium and large characteristic.

Keywords: Discrete logarithm · Finite field · Number field sieve · Indi-
vidual logarithm

1 Introduction

1.1 Cryptographic Interest

Given a cyclic group (G, ·) and a generator g of G, the discrete logarithm (DL)
of x ∈ G is the element 1 ≤ a ≤ #G such that x = ga. In well-chosen groups,
the exponentiation (g, a) �→ ga is very fast but computing a from (g, x) is con-
jectured to be very difficult: this is the Discrete Logarithm Problem (DLP),

This research was partially funded by Agence Nationale de la Recherche grant ANR-
12-BS02-0001.

c© International Association for Cryptologic Research 2015
T. Iwata and J.H. Cheon (Eds.): ASIACRYPT 2015, Part I, LNCS 9452, pp. 149–173, 2015.
DOI: 10.1007/978-3-662-48797-6 7

150 A. Guillevic

at the heart of many asymmetric cryptosystems. The first group proposed for
DLP was the multiplicative group of a prime finite field. Nowadays, the group of
points of elliptic curves defined over prime fields are replacing the prime fields
for DLP-based cryptosystems. In pairing-based cryptography, the finite fields
are still used, because they are a piece in the pairing mechanism. It is important
in cryptography to know precisely the difficulty of DL computation in the con-
sidered groups, to estimate the security of the cryptosystems using them. Finite
fields have a particularity: there exists a subexponential-time algorithm to com-
pute DL in finite fields of medium to large characteristic: the Number Field
Sieve (NFS). In small characteristic, this is even better: a quasi-polynomial-time
algorithm was proposed very recently [7].

In May 2015, an international team of academic researchers revealed a sur-
prisingly efficient attack against a Diffie-Hellman key exchange in TLS, the Log-
jam attack [2]. After a seven-day-precomputation stage (for relation collection
and linear algebra of NFS-DL algorithm), it was made possible to compute any
given individual DL in about one minute, for each of the two targeted 512-bit
prime finite fields. This was fast enough for a man-in-the-middle attack. This
experience shows how critical it can be to be able to compute individual loga-
rithms very fast.

Another interesting application for fast individual DL is batch-DLP, and
delayed-target DLP : in these contexts, an attacker aims to compute several DL
in the same finite field. Since the costly phases of relation collection and lin-
ear algebra are only done one time for any fixed finite field, only the time for
one individual DL is multiplied by the number of targets. This context usually
arises in pairing-based cryptography and in particular in broadcast protocols
and traitor tracing schemes, where a large number of DLP-based public/private
key pairs are generated. The time to compute one individual DL is important in
this context, even if parallelization is available.

1.2 The Number Field Sieve Algorithm for DL in Finite Fields

We recall that the NFS algorithm is made of four steps: polynomial selection,
relation collection, linear algebra and finally, individual logarithm computation.
This last step is mandatory to break any given instance of a discrete logarithm
problem. The polynomial selection outputs two irreducible polynomials f and g
defining two number fields Kf and Kg. One considers the rings Rf = Z[x]/(f(x))
and Rg = Z[x]/(g(x)). There exist two maps ρf , ρg to Fpn , as shown in the
following diagram. Moreover, the monic polynomial defining the finite field is
ψ = gcd(f, g) mod p, of degree n.

Z[x]

Rf = Z[x]/(f(x)) Z[y]/(g(y)) = Rg

Fpn = Fp[z]/(ψ(z))

ρf : x �→ z ρg : y �→ z

Computing Individual Discrete Logarithms Faster in GF(pn) 151

In the remaining of this paper, we will only use ρ = ρf , K = Kf and Rf .
After the relation collection and linear algebra phases, the (virtual) logarithm
of a subset of elements in each ring Rf , Rg is known. The individual DL step
computes a preimage in one of the rings Rf , Rg of the target element in Fpn . If
one can write the target preimage as a product of elements of known (virtual)
logarithm, then one can deduce the individual DL of the target. The key point of
individual DL computation is finding a smooth decomposition in small enough
factors of the target preimage.

1.3 Previous Work on Individual Discrete Logarithm

The asymptotic running time of NFS algorithm steps are estimated with the
L-function:

LQ[α, c] = exp
((

c + o(1)
)
(log Q)α(log log Q)1−α

)
with α ∈ [0, 1] and c > 0.

The α parameter measures the gap between polynomial time (LQ[α = 0, c] =
logc Q) and exponential time (LQ[α = 1, c] = Qc). When c is implicit, or obvious
from the context, we simply write LQ[α]. When the complexity relates to an
algorithm for a prime field Fp, we write Lp[α, c].

Large Prime Fields. Many improvements for computing discrete logarithms first
concerned prime fields. The first subexponential DL algorithm in prime fields was
due to Adleman [1] and had a complexity of Lp[1/2, 2]. In 1986, Coppersmith,
Odlyzko and Schroeppel [13] introduced a new algorithm (COS), of complexity
Lp[1/2, 1]. They computed individual DL [13, Sect. 6] in Lp[1/2, 1/2] in two steps
(finding a boot of medium-sized primes, then finding relations of logarithms in
the database for each medium prime). In these two algorithms, the factor basis
was quite large (the smoothness bound was Lp[1/2, 1/2] in both cases), providing
a much faster individual DL compared to relation collection and linear algebra.
This is where the common belief that individual logarithms are easy to find
(and have a negligible cost compared with the prior relation collection and linear
algebra phases) comes from.

In 1993, Gordon [15] proposed the first version of NFS–DL algorithm for
prime fields Fp with asymptotic complexity Lp[1/3, 91/3 � 2.08]. However, with
the Lp[1/3] algorithm there are new difficulties, among them the individual DL
phase. In this Lp[1/3] algorithm, many fewer logarithms of small elements are
known, because of a smaller smoothness bound (in Lp[1/3] instead of Lp[1/2]).
The relation collection is shortened, explaining the Lp[1/3] running time. But
in the individual DL phase, since some non-small elements in the decomposi-
tion of the target have an unknown logarithm, a dedicated sieving and linear
algebra phase is done for each of them. Gordon estimated the running-time of
individual DL computation to be Lp[1/3, 91/3 � 2.08], i.e. the same as the first
two phases. In 1998, Weber [24, Sect. 6] compared the NFS–DL algorithm to
the COS algorithm for a 85 decimal digit prime and made the same observation
about individual DL cost.

152 A. Guillevic

In 2003, ten years after Gordon’s algorithm, Joux and Lercier [17] were the
first to dissociate in NFS relation collection plus linear algebra on one side and
individual DL on the other side. They used the special -q technique to find the
logarithm of medium-sized elements in the target decomposition. In 2006, Com-
meine and Semaev [11] analyzed the Joux–Lercier method. They obtained an
asymptotic complexity of Lp[1/3, 31/3 � 1.44] for computing individual log-
arithms, independent of the relation collection and linear algebra phases. In
2013, Barbulescu [4, Sects. 4 and 7.3] gave a tight analysis of the individual DL
computation for prime fields, decomposed in three steps: booting (also called
smoothing), descent, and final combination of logarithms. The booting step has
an asymptotic complexity of Lp[1/3, 1.23] and the descent step of Lp[1/3, 1.21].
The final computation has a negligible cost.

Non-prime Fields of Medium to Large Characteristic. In 2006, Joux, Lercier,
Smart and Vercauteren [19] computed a discrete logarithm in a cubic extension of
a prime field. They used the special-q descent technique again. They proposed for
large characteristic fields an equivalent of the rational reconstruction technique
for prime fields and the Waterloo algorithm [8] for small characteristic fields,
to improve the initializing step preceding the descent. For DLs in prime fields,
the target is an integer modulo p. The rational reconstruction method outputs
two integers of half size compared to p, such that their quotient is equal to the
target element modulo p. Finding a smooth decomposition of the target modulo
p becomes equivalent to finding a (simultaneous) smooth decomposition of two
elements, each of half the size. We explain their method (that we call the JLSV
fraction method in the following) for extension fields in Sect. 2.3.

Link with Polynomial Selection. The running-time for finding a smooth decom-
position depends on the norm of the target preimage. The norm preimage
depends on the polynomial defining the number field. In particular, the smaller
the coefficients and degree of the polynomial, the smaller the preimage norm.
Some polynomial selection methods output polynomials that produce much
smaller norm. That may be one of the reasons why the record computation
of Joux et al. [19] used another polynomial selection method, whose first poly-
nomial has very small coefficients, and the second one has coefficients of size
O(p). Thanks to the very small coefficients of the first polynomial, their fraction
technique was very useful. Their polynomial selection technique is now super-
seded by their JLSV1 method [19, Sect. 2.3] for larger values of p. As noted in
[19, Sect. 3.2], the fraction technique is useful in practice for small n. But for the
JLSV1 method and n ≥ 3, this is already too slow (compared to not using it). In
2008, Zajac [25] implemented the NFS-DL algorithm for computing DLs in Fp6

with p of 40 bits (12 decimal digits (dd), i.e. Fp6 of 240 bits or 74 dd). He used
the methods described in [19], with a first polynomial with very small coefficients
and a second one with coefficients in O(p). In this case, individual DL computa-
tion was possible (see the well-documented [25, Sect. 8.4.5]). In 2013, Hayasaka,
Aoki, Kobayashi and Takagi [16] computed a DL in Fp12 with p = 122663 (pn

of 203 bits or 62 dd). We noted that all these records used the same polynomial

Computing Individual Discrete Logarithms Faster in GF(pn) 153

selection method, so that one of the polynomials has very small coefficients (e.g.
f = x3 + x2 − 2x − 1) whereas the second one has coefficients in O(p).

In 2009, Joux, Lercier, Naccache and Thomé [18] proposed an attack of DLP
in a protocol context. The relation collection is sped up with queries to an oracle.
They wrote in [18, Sect. B] an extended analysis of individual DL computation.
In their case, the individual logarithm phase of the NFS-DL algorithm has a
running-time of LQ[1/3, c] where c = 1.44 in the large characteristic case, and
c = 1.62 in the medium characteristic case. In 2014, Barbulescu and Pierrot
[3] presented a multiple number field sieve variant (MNFS) for extension fields,
based on Coppersmith’s ideas [12]. The individual logarithm is studied in [3,
Sect. A]. They also used a descent technique, for a global estimated running
time in LQ[1/3, (9/2)1/3], with a constant c ≈ 1.65. Recently in 2014, Barbulescu,
Gaudry, Guillevic and Morain [5,6] announced 160 and 180 decimal digit discrete
logarithm records in quadratic fields. They also used a technique derived from
the JLSV fraction method and a special-q descent technique, but did not give
an asymptotic running-time. It appears that this technique becomes inefficient
as soon as n = 3 or 4.

Overview of NFS-DL Asymptotic Complexities. The running-time of the relation
collection step and the individual DL step rely on the smoothness probability of
integers. An integer is said to be B-smooth if all its prime divisors are less than
B. An ideal in a number field is said to be B-smooth if it factors into prime
ideals whose norms are bounded by B. Usually, the relation collection and the
linear algebra are balanced, so that they have both the same dominating asymp-
totic complexity. The NFS algorithm for DL in prime and large characteristic
fields has a dominating complexity of LQ[1/3, (649)1/3 � 1.923]. For the individ-
ual DL in a prime field Fp, the norm of the target preimage in the number field
is bounded by p. This bound gives the running time of this fourth step (much
smaller than relation collection and linear algebra). Finding a smooth decom-
position of the preimage and computing the individual logarithm (see [11]) has
complexity Lp[1/3, c] with c = 1.44, and c = 1.23 with the improvements of [4].
The booting step is dominating. In large characteristic fields, the individual DL
has a complexity of LQ[1/3, 1.44], dominated by the booting step again ([18,
Sect. B] for JLSV2, Table 3 for gJL).

In generic medium characteristic fields, the complexity of the NFS algorithm
is LQ[1/3, (1289)1/3 = 2.42] with the JLSV1 method proposed in [19, Sect. 2.3],
LQ[1/3, (323)1/3 = 2.20] with the Conjugation method [6], and LQ[1/3, 2.156]
with the MNFS version [23]. We focus on the individual DL step with the JLSV1

and Conjugation methods. In these cases, the preimage norm bound is in fact
much higher than in prime fields. Without any improvements, the dominating
booting step has a complexity of LQ[1/3, c] with c = 1.62 [18, Sect. C] or c = 1.65
[3, Sect. A]. However, this requires to sieve over ideals of degree 1 < t < n. For
the Conjugation method, this is worse: the booting step has a running-time
of LQ[1/3, 61/3 � 1.82] (see our computations in Table 3). Applying the JLSV
fraction method lowers the norm bound to O(Q) for the Conjugation method.
The individual logarithm in this case has complexity LQ[1/3, 31/3] as for prime

154 A. Guillevic

fields (without the improvements of [4, Sect. 4]). However, this method is not
suited for number fields generated with the JLSV1 method, for n ≥ 3.

1.4 Our Contributions

In practice, we realized that the JLSV fraction method which seems interesting
and sufficient because of the O(Q) bound, is in fact not convenient for the gJL
and Conjugation methods for n greater than 3. The preimage norm is much too
large, so finding a smooth factorization is too slow by an order of magnitude.
We propose a way to lift the target from the finite field to the number field,
such that the norm is strictly smaller than O(Q) for the gJL and Conjugation
methods:

Theorem 1. Let n > 1 and s ∈ F
∗
pn a random element (not in a proper subfield

of Fpn). We want to compute its discrete logarithm modulo �, where � | Φn(p),
with Φn the n-th cyclotomic polynomial. Let Kf be the number field given by a
polynomial selection method, whose defining polynomial has the smallest coeffi-
cient size, and Rf = Z[x]/(f(x)).

Then there exists a preimage r in Rf of some r ∈ F
∗
pn , such that log ρ(r) ≡

log s (mod) � and such that the norm of r in Kf is bounded by O(Qe), where e
is equal to

1. 1 − 1
n for the gJL and Conjugation methods;

2. 3
2 − 3

2n for the JLSV1 method;
3. 1 − 2

n for the Conjugation method, if Kf has a well-chosen quadratic subfield
satisfying the conditions of Lemma 3;

4. 3
2 − 5

2n for the JLSV1 method, if Kf has a well-chosen quadratic subfield
satisfying the conditions of Lemma 3.

Our method reaches the optimal bound of Qϕ(n)/n, with ϕ(n) the Euler totient
function, for n = 2, 3, 4, 5 combined with the gJL or the Conjugation method. We
show that our method provides a dramatic improvement for individual logarithm
computation for small n: the running-time of the booting step (finding boots)
is LQ[1/3, c] with c = 1.14 for n = 2, 4, c = 1.26 for n = 3, 6 and c = 1.34 for
n = 5. It generalizes to any n, so that the norm is always smaller than O(Q)
(the prime field case), hence the booting step running-time in LQ[1/3, c] always
satisfies c < 1.44 for the two state-of-the-art variants of NFS for extension fields
(we have c = 1.44 for prime fields). For the JLSV1 method, this bound is satisfied
for n = 4, where we have c = 1.38 (see Table 3).

1.5 Outline

We select three polynomial selection methods involved for NFS-DL in generic
extension fields and recall their properties in Sect. 2.1. We recall a commonly used
bound on the norm of an element in a number field (Sect. 2.2). We present in
Sect. 2.3 a generalization of the JLSV fraction method of [19]. In Sect. 3.1 we give
a proof of the booting step complexity stated in Lemma 1. We sketch in Sect. 3.2
the special-q descent technique and list the asymptotic complexities found in the

Computing Individual Discrete Logarithms Faster in GF(pn) 155

literature according to the polynomial selection methods. We present in Sect. 4
our main idea to reduce the norm of the preimage in the number field, by reducing
the preimage coefficient size with the LLL algorithm. We improve our technique
in Sect. 5 by using a quadratic subfield when available, to finally complete the
proof of Theorem 1. We provide practical examples in Sect. 6, for 180 dd finite
fields in Sect. 6.1 and we give our running-time experiments for a 120 dd finite
field Fp4 in Sect. 6.2.

2 Preliminaries

We recall the three polynomial selection methods we will study along this paper
in Sect. 2.1. We give a common simple upper bound on the norm of an element
in an number field in Sect. 2.2. We will need this formula to estimate a bound
on the target preimage norm and the corresponding asymptotic running-time of
the booting step of the individual logarithm computation.

We recall now an important property of the LLL algorithm [21] that we will
widely use in this paper. Given a lattice L of Zn defined by a basis given in an
n × n matrix L, and parameters 1

4 < δ < 1, 1
2 < η <

√
δ, the LLL algorithm

outputs a (η, δ)-reduced basis of the lattice. the coefficients of the first (shortest)
vector are bounded by

(δ − η2)
n−1
4 det(L)1/n.

With (η, δ) close to (0.5, 0.999) (as in NTL or magma), the approximation factor
C = (δ − η2)

n−1
4 is bounded by 1.075n−1 (see [10, Sect. 2.4.2])). Gama and

Nguyen experiments [14] on numerous random lattices showed that on average,
C ≈ 1.021n. In the remaining of this paper, we will simply denote by C this LLL
approximation factor.

2.1 Polynomial Selection Methods

We will study the booting step of the NFS algorithm with these three polynomial
selection methods:

1. the Joux–Lercier–Smart–Vercauteren (JLSV1) method [19, Sect. 2.3];
2. the generalized Joux–Lercier (gJL) method [22, Sect. 2], [6, Sect. 3.2];
3. the Conjugation method [6, Sect. 3.3].

In a non-multiple NFS version, the JLSV2 [19, Sect. 2.3] and gJL methods have
the best asymptotic running-time in the large characteristic case, while the Con-
jugation method holds the best one in the medium characteristic case. However
for a record computation in Fp2 , the Conjugation method was used [6]. For
medium characteristic fields of record size (between 150 and 200 dd), is seems
also that the JLSV1 method could be chosen [6, Sect. 4.5]. Since the use of each
method is not fixed in practice, we study and compare the three above methods
for the individual logarithm step of NFS. We recall now the construction and
properties of these three methods.

156 A. Guillevic

Joux–Lercier–Smart–Vercauteren (JLSV 1) Method. This method was introduced
in 2006. We describe it in Algorithm 1. The two polynomials f, g have degree n
and coefficient size O(p1/2). We set ψ = gcd(f, g) mod p monic of degree n. We
will use ψ to represent the finite field extension Fpn = Fp[x]/(ψ(x)).

Algorithm 1. Polynomial selection with the JLSV1 method [19, Sect. 2.3]
Input: p prime and n integer
Output: f, g, ψ with f, g ∈ Z[x] irreducible and ψ = gcd(f mod p, g mod p) in

Fp[x] irreducible of degree n
1 Select f1(x), f0(x), two polynomials with small integer coefficients,

deg f1 < deg f0 = n
2 repeat
3 choose y ≈ �√p�
4 until f = f0 + yf1 is irreducible in Fp[x]
5 (u, v) ← a rational reconstruction of y modulo p
6 g ← vf0 + uf1
7 return (f, g, ψ = f mod p)

Generalized Joux–Lercier (gJL) Method. This method was independently pro-
posed in [22, Sect. 2] and [4, Sect. 8.3] (see also [6, Sect. 3.2]). This is a general-
ization of the Joux–Lercier method [17] for prime fields. We sketch this method
in Algorithm 2. The coefficients of g have size O(Q1/(d+1)) and those of f have
size O(log p), with deg g = d ≥ n and deg f = d + 1.

Algorithm 2. Polynomial selection with the gJL method
Input: p prime, n integer and d ≥ n integer
Output: f, g, ψ with f, g ∈ Z[x] irreducible and ψ = gcd(f mod p, g mod p) in

Fp[x] irreducible of degree n
1 Choose a polynomial f(x) of degree d + 1 with small integer coefficients which

has a monic irreducible factor ψ(x) = ψ0 + ψ1x + · · · + xn of degree n modulo p
2 Reduce the following matrix using LLL

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

p

. . .

p
ψ0 ψ1 · · · 1

. . .
. . .

. . .

ψ0 ψ1 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫
⎪⎬
⎪⎭deg ψ = n

⎫
⎪⎬
⎪⎭d + 1 − n

, to get LLL(M) =

⎡
⎢⎢⎢⎢⎢⎢⎣

g0 g1 · · · gd

∗

⎤
⎥⎥⎥⎥⎥⎥⎦

.

return (f, g = g0 + g1x + · · · + gdxd, ψ)

Computing Individual Discrete Logarithms Faster in GF(pn) 157

Algorithm 3. Polynomial selection with the Conjugation method [6,
Sect. 3.3]
Input: p prime and n integer
Output: f, g, ψ with f, g ∈ Z[x] irreducible and ψ = gcd(f mod p, g mod p) in

Fp[x] irreducible of degree n
1 repeat
2 Select g1(x), g0(x), two polynomials with small integer coefficients,

deg g1 < deg g0 = n
3 Select Py(Y) a quadratic, monic, irreducible polynomial over Z with small

coefficients

4 until Py(Y) has a root y in Fp and ψ(x) = g0(x) + yg1(x) is irreducible in Fp[x]
5 f ← ResY (Py(Y), g0(x) + Y g1(x))
6 (u, v) ← a rational reconstruction of y
7 g ← vg0 + ug1
8 return (f, g, ψ)

Table 1. Properties: degree and coefficient size of the three polynomial selection meth-
ods for NFS-DL in Fpn . The coefficient sizes are in O(X). To lighten the notations, we
simply write the X term.

Method deg f deg g ||f ||∞ ||g||∞
JLSV1 n n Q1/2n Q1/2n

gJL d + 1 > n d ≥ n log p Q1/(d+1)

Conjugation 2n n log p Q1/2n

Conjugation Method. This method was published in [6] and used for the discrete
logarithm record in Fp2 , with f = x4 + 1. The coefficient size of f is in O(log p)
and the coefficient size of g is in O(p1/2). We describe it in Algorithm 3 (Table 1).

2.2 Norm Upper Bound in a Number Field

In Sect. 4 we will compute the norm of an element s in a number field Kf . We
will need an upper bound of this norm. For all the polynomial selection methods
chosen, f is monic, whereas g is not. We remove the leading coefficient of f from
any formula involved with a monic f . So let f be a monic irreducible polynomial
over Q and let Kf = Q[x]/(f(x)) a number field. Write s ∈ Kf as a polynomial
in x, i.e. s =

∑deg f−1
i=0 six

i. The norm is defined by a resultant computation:

NormKf/Q(s) = Res(f, s).

We use Kalkbrener’s bound [20, Corollary 2] for an upper bound:

|Res(f, s)| ≤ κ(deg f,deg s) · ||f ||deg s
∞ ||s||deg f

∞ ,

where κ(n,m) =
(
n+m

n

)(
n+m−1

n

)
, and ||f ||∞ = max0≤i≤deg f |fi| the absolute

value of the greatest coefficient. An upper bound for κ(n,m) is (n+m)!. We will

158 A. Guillevic

use the following bound in Sect. 4:

|NormKf/Q(s)| ≤ (deg f + deg s)!||f ||deg s
∞ ||s||deg f

∞ . (1)

2.3 Joux–Lercier–Smart–Vercauteren Fraction Method

Notation 1. Row and column indices. In the following, we will define matrices
of size d × d, with d ≥ n. For ease of notation, we will index the rows and
columns from 0 to d − 1 instead of 1 to d, so that the (i + 1)-th row at index
i, Li = [Lij]0≤j≤d−1, can be written in polynomial form

∑d−1
j=0 Lijx

j, and the
column index j coincides with the degree j of xj.

In 2006 was proposed in [19] a method to generalize to non-prime fields the
rational reconstruction method used for prime fields. In the prime field setting,
the target is an integer modulo p. The rational reconstruction method outputs
two integers of half size compared to p and such that their quotient is equal to the
target element modulo p. Finding a smooth decomposition of the target modulo
p becomes equivalent to finding at the same time a smooth decomposition of two
integers of half size each.

To generalize to extension fields, one writes the target preimage as a quotient
of two number field elements, each with a smaller norm compared to the original
preimage. We denote by s the target in the finite field Fpn and by s a preimage
(or lift) in K. Here is a first very simple preimage choice. Let Fpn = Fp[x]/(ψ(x))
and s =

∑deg s
i=0 six

i ∈ Fpn , with deg s < n. We lift the coefficients si ∈ Fp to
si ∈ Z then we set a preimage of s in the number field K to be

s =
deg s∑

i=0

siX
i,

with X such that K = Q[X]/(f(X)). (We can also write s =
∑deg s

i=0 siα
i, with

α a root of f in the number field: K = Q[α]). We have ρ(s) = s.
Now LLL is used to obtain a quotient whose numerator and denominator

have smaller coefficients. We present here the lattice used with the JLSV1 poly-
nomial selection method. The number field K is of degree n. We define a lattice
of dimension 2n. For the corresponding matrix, each column of the left half
corresponds to a power of X in the numerator; each column of the right half
corresponds to a power of X in the denominator. The matrix is

L =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

p
. . .

p
s0 . . . sn−1 1
...

...
. . .

sxn−1 mod ψ 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

0

...
n−1

n

...
2n−1

2n×2n

Computing Individual Discrete Logarithms Faster in GF(pn) 159

The first n coefficients of the output vector, u0, u1, . . . , un−1 give a numerator
u and the last n coefficients give a denominator v, so that s = au(X)

v(X) with a a
scalar in Q. The coefficients ui, vi are bounded by ||u||∞, ||v||∞ ≤ Cp1/2 since
the matrix determinant is detL = pn and the matrix is of size 2n× 2n. However
the product of the norms of each u, v in the number field K will be much larger
than the norm of the single element s because of the large coefficients of f in
the norm formula. We use formula (1) to estimate this bound:

NormK/Q(u) ≤ ||u||deg f
∞ ||f ||deg u

∞ = O(p
n
2 p

n−1
2) = O(pn− 1

2) = O(Q1− 1
2n)

and the same for NormK/Q(v), hence the product of the two norms is bounded
by O(Q2− 1

n). The norm of s is bounded by NormK/Q(s) ≤ pnp
n−1
2 = Q

3
2− 1

2n

which is much smaller whenever n ≥ 3. Finding a smooth decomposition of u
and v at the same time will be much slower than finding one for s directly,
for large p and n ≥ 3. This is mainly because of the large coefficients of f (in
O(p1/2)).

Application to gJL and Conjugation Method. The method of [19] to
improve the smoothness of the target norm in the number field Kf has an advan-
tage for the gJL and Conjugation methods. First we note that the number field
degree is larger than n: this is d + 1 ≥ n + 1 for the gJL method and 2n for
the Conjugation method. For ease of notation, we denote by df the degree of f .
We define a lattice of dimension 2df . Hence there is more place to reduce the
coefficient size of the target s.

We put p on the diagonal of the first n − 1 rows, then xiψ(x) coefficients
from row n to df − 1, where 0 � i < df − 1 (ψ is of degree n and has n + 1
coefficients). The rows from index df to 2df are filled with Xis mod f (these
elements have df coefficients). We obtain a triangular matrix L.

L =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

p
. . .

p
ψ0 · · · ψn−1 1

.
ψ0 · · · ψn−1 1

s0 . . . sn−1 1
...

. . .
Xdf−1s mod f 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

0

...
n−1

n

...
df−1

df

...
2df

2df×2df

Since the determinant is detL = pn and the matrix of dimension 2df × 2df ,
the coefficients obtained with LLL will be bounded by Cp

n
2df . The norm of the

numerator or the denominator (with s = u(X)/v(X) ∈ Kf) is bounded by

NormKf/Q(u) ≤ ||u||deg f
∞ ||f ||deg u

∞ = O(pn/2) = O(Q1/2).

160 A. Guillevic

The product of the two norms will be bounded by O(Q) hence we will have the
same asymptotic running time as for prime fields, for finding a smooth decom-
position of the target in a number field obtained with the gJL or Conjugation
method. We will show in Sect. 4 that we can do even better.

3 Asymptotic Complexity of Individual DL Computation

3.1 Asymptotic Complexity of Initialization or Booting Step

In this section, we prove the following lemma on the booting step running-time
to find a smooth decomposition of the norm preimage. This was already proven
especially for an initial norm bound of O(Q). We state it in the general case of
a norm bound of Qe. The smoothness bound B = LQ[2/3, γ] used here is not
the same as for the relation collection step, where the smoothness bound was
B0 = LQ[1/3, β0]. Consequently, the special-q output in the booting step will be
bounded by B.

Lemma 1 (Running-time of B-smooth decomposition). Let s ∈ FQ of
order �. Take at random t ∈ [1, �−1] and assume that the norm St of a preimage
of st ∈ FQ, in the number field Kf , is bounded by Qe = LQ[1, e]. Write B =
LQ[αB , γ] the smoothness bound for St. Then the lower bound of the expected
running time for finding t s.t. the norm St of st is B-smooth is LQ[1/3, (3e)1/3],
obtained with αB = 2/3 and γ = (e2/3)1/3.

First, we need a result on smoothness probability. We recall the definition of
B-smoothness already stated in Sect. 1.4: an integer S is B-smooth if and only
if all its prime divisors are less than or equal to B. We also recall the L-notation
widely used for sub-exponential asymptotic complexities:

LQ[α, c] = exp
((

c + o(1)
)
(log Q)α(log log Q)1−α

)
with α ∈ [0, 1] and c > 0.

The Canfield–Erdős–Pomerance [9] theorem provides a useful result to measure
smoothness probability:

Theorem 2 (B-smoothness probability). Suppose 0 < αB < αS ≤ 1, σ >
0, and β > 0 are fixed. For a random integer S bounded by LQ[αS , σ] and a
smoothness bound B = LQ[αB , β], the probability that S is B-smooth is

Pr(S is B-smooth) = LQ

[
αS − αB ,−(αS − αB)

σ

β

]
(2)

for Q → ∞.

We prove now the Lemma 1 that states the running-time of individual loga-
rithm when the norm of the target in a number field is bounded by O(Qe).

Proof (of Lemma 1). From Theorem 2, the probability that S bounded by
Qe = LQ[1, e] is B-smooth with B = LQ[αB , γ] is Pr(S is B-smooth) =
LQ

[
1 − αB ,−(1 − αB) e

γ

]
. We assume that a B-smoothness test with ECM

Computing Individual Discrete Logarithms Faster in GF(pn) 161

takes time LB [1/2, 21/2] = LQ[αB

2 , (2γαB)1/2]. The running-time for finding a
B-smooth decomposition of S is the ratio of the time per test (ECM cost) to
the B-smoothness probability of S:

LQ

[αB

2
, (2γαB)1/2

]
LQ

[
1 − αB , (1 − αB)

e

γ

]
.

We optimize first the α value, so that α ≤ 1/3 (that is, not exceeding the α of
the two previous steps of the NFS algorithm): max(αB/2, 1 − αB) ≤ 1

3 . This

gives the system
{

αB ≤ 2/3
αB ≥ 2/3 So we conclude that αB = 2

3 . The running-time

for finding a B-smooth decomposition of S is therefore

LQ

[
1/3,

(4
3
γ
)1/2

+
e

3γ

]
.

The minimum1 of the function γ �→ (43γ)1/2 + e
3γ is (3e)1/3, corresponding to

γ = (e2/3)1/3, which yields our optimal running time, together with the special-q
bound B:

LQ

[
1/3, (3e)1/3

]
with q ≤ B = LQ

[
2/3, (e2/3)1/3

]
.

�

3.2 Running-Time of Special-q Descent

The second step of the individual logarithm computation is the special-q descent.
This consists in computing the logarithms of the medium-sized elements in the
factorization of the target in the number field. The first special-q is of order
LQ[2/3, γ] (this is the boot obtained in the initialization step) and is the norm
of a degree one prime ideal in the number field where the booting step was done
(usually Kf). The idea is to sieve over linear combinations of degree one ideals,
in Kf and Kg at the same time, whose norms for one side will be multiples of q
by construction, in order to obtain a relation involving a degree one prime ideal
of norm q and other degree one prime ideals of norm strictly smaller than q.

Here is the common way to obtain such a relation. Let q be a degree one
prime ideal of Kf , whose norm is q. We can write q = 〈q, rq〉, with rq a root of
f modulo q (hence |rq| < q). We need to compute two ideals q1, q2 ∈ Kf whose
respective norm is a multiple of q, and sieve over aq1 + bq2. The classical way
to construct these two ideals is to reduce the two-dimensional lattice generated

by q and rq − αf , i.e. to compute LLL
([

q 0
−r 1

])

=
[
u1 v1
u2 v2

]

to obtain two

degree-one ideals u1 + v1αf , u2 + v2αf with shorter coefficients. One sieves over

1 One computes the derivative of the function ha,b(x) = a
√

x + b
x
: this is h

′
a,b(x) =

a
2
√

x
− b

x2 and find that the minimum of h for x > 0 is ha,b((
2b
a

)2/3) = 3(a2b
4

)1/3.

With a = 2/31/2 and b = e/3, we obtain the minimum: h((e2

3
)1/3) = (3e)1/3.

162 A. Guillevic

rf = (au1 + bu2) + (av1 + bv2)αf and rg = (au1 + bu2) + (av1 + bv2)αg. The new
ideals obtained in the relations will be treated as new special-qs until a relation
of ideals of norm bounded by B0 is found, where B0 is the bound on the factor
basis, so that the individual logarithms are finally known. The sieving is done
in three stages, for the three ranges of parameters.

1. For q = LQ[2/3, β1]: large special-q;
2. For q = LQ[λ, β2] with 1/3 < λ < 2/3: medium special-q;
3. For q = LQ[1/3, β3]: small special-q.

The proof of the complexity is not trivial at all, and since this step is allegedly
cheaper than the two main phases of sieving and linear algebra, whose complexity
is LQ[1/3, (649)1/3], the proofs are not always expanded.

There is a detailed proof in [11, Sect. 4.3] and [4, Sect. 7.3] for prime fields Fp.
We found another detailed proof in [18, Sect. B] for large characteristic fields Fpn ,
however this was done for the polynomial selection of [19, Sect. 3.2] (which has
the same main asymptotic complexity LQ[1/3, (649)1/3]). In [22, Sect. 4, pp. 144–
150] the NFS-DL algorithm is not proposed in the same order: the booting
and descent steps (step (5) of the algorithm in [22, Sect. 2]) are done as a first
sieving, then the relations are added to the matrix that is solved in the linear
algebra phase. What corresponds to a booting step is proved to have a com-
plexity bounded by LQ[1/3, 31/3] and there is a proof that the descent phase
has a smaller complexity than the booting step. There is a proof for the JLSV1

polynomial selection in [18, Sect. C] and [3, Sect. A] for a MNFS variant. We
summarize in Table 2 the asymptotic complexity formulas for the booting step
and the descent step that we found in the available papers.

Table 2. Complexity of the booting step and the descent step for computing one
individual DL, in Fp and Fpn , in medium and large characteristic. The complexity is
given by the formula LQ[1/3, c], only the constant c is given in the table for ease of
notation. The descent of a medium special-q, bounded by LQ[λ, c] with 1/3 < λ < 2/3,
is proven to be negligible compared to the large and small special-q descents. In [18,
Sects. B and C], the authors used a sieving technique over ideals of degree t > 1 for
large and medium special-q descent.

Reference Finite field Polynomial
selection

Target norm
bound

Booting
step

Descent step

Large Med. Small

[11, Sect. 4.3] Fp JL03 [17] p 1.44 <1.44

[4, Table 7.1] Fp JL03 [17] p 1.23 1.21 neg 0.97

[22, Sect. 4] Fpn , large p gJL Q 1.44 < 1.44

[18, Sect. B] Fpn , large p JLSV2 Q 1.44 – neg 1.27

[18, Sect. C] Fpn , med. p JLSV1 vari-
ant

Q1+α, α �
0.4

1.62 – neg 0.93

[3, Sect. A] Fpn , med. p JLSV1 Q3/2 1.65 ≤ 1.03

Computing Individual Discrete Logarithms Faster in GF(pn) 163

Usually, the norm of the target is assumed to be bounded by Q (this is clearly
the case for prime fields Fp). The resulting initialization step (finding a boot
for the descent) has complexity LQ[1/3, 31/3 ≈ 1.44]. Since the large special-
q descent complexity depends on the size of the largest special-q of the boot,
lowering the norm, hence the booting step complexity and the largest special-q
of the boot also decrease the large special-q descent step complexity. It would
be a considerable project to rewrite new proofs for each polynomial selection
method, according to the new booting step complexities. However, its seems to
us that by construction, the large special-q descent step in these cases has a
(from much to slightly) smaller complexity than the booting step. The medium
special-q descent step has a negligible cost in the cases considered above. Finally,
the small special-q descent step does not depend on the size of the boot but on
the polynomial properties (degree, and coefficient size). We note that for the
JLSV2 polynomial selection, the constant of the complexity is 1.27. It would be
interesting to know the constant for the gJL and Conjugation methods.

The third and final step of individual logarithm computation is very fast. It
combines all of the logarithms computed before, to get the final discrete loga-
rithm of the target.

4 Computing a Preimage in the Number Field

Our main idea is to compute a preimage in the number field with smaller degree
(less than deg s) and/or of coefficients of reduced size, by using the subfield
structure of Fpn . We at least have one non-trivial subfield: Fp. In this section,
we reduce the size of the coefficients of the preimage. This reduces its norm and
give the first part of the proof of Theorem 1. In the following section, we will
reduce the degree of the preimage when n is even, completing the proof.

Lemma 2. Let s ∈ F
∗
pn =

∑deg s
i=0 six

i, with deg s < n. Let � be a non-trivial
divisor of Φn(p). Let s′ = u · s with u in a proper subfield of Fpn . Then

log s′ ≡ log s mod �. (3)

Proof. We start with log s′ = log s+ log u and since u is in a proper subfield, we
have u(pn−1)/Φn(p) = 1, then u(pn−1)/� = 1. Hence the logarithm of u modulo �
is zero, and log s′ ≡ log s mod �. �
Example 1 (Monic preimage). Let s′ be equal to s divided by its leading term,
s′ = 1

sdeg s
s ∈ Fpn . We have log s′ ≡ log s mod �.

We assume in the following that the target s is monic since dividing by its leading
term does not change its logarithm modulo �.

164 A. Guillevic

4.1 Preimage Computation in the JLSV1 Case

Let s =
∑n−1

i=0 six
i ∈ Fpn with sn−1 = 1. We define a lattice of dimension n by

the n × n matrix

L =

⎡

⎢
⎢
⎢
⎣

p
. . .

p
s0 . . . sn−2 1

⎤

⎥
⎥
⎥
⎦

0

...
n−2

n−1

n×n

⎫
⎪⎬

⎪⎭

n − 1 rows

}row n − 1 with s coeffs

with p on the diagonal for the first n−1 rows (from 0 to n−2), and the coefficients
of the monic element s on row n − 1. Applying the LLL algorithm to M , we
obtain a reduced element r =

∑n−1
i=0 riX

i ∈ Kf such that

r =
n−1∑

i=0

aiLi

with Li the vector defined by the i-th row of the matrix and ai a scalar in Z.
We map this equality in Fpn with ρ. All the terms cancel out modulo p except
the line with s:

ρ(r) ≡ ρ(an−1) · ρ(s) = u · s mod (p, ψ)

with u = ρ(an−1) ∈ Fp. Hence, by Lemma 2,

log ρ(r) ≡ log s mod �. (4)

Moreover,
||r||∞ ≤ Cp(n−1)/n.

It is straightforward, using Inequality (1), to deduce that

NormKf/Q(r) = O
(
p

3
2 (n−1)

)
= O

(
Q

3
2− 3

2n
)
.

We note that this first simple improvement applied to the JLSV1 construction is
already better than doing nothing: in that case, NormKf/Q(s) = O(Q

3
2− 1

2n). The
norm of r is smaller by a factor of size Q

1
n . For n = 2 we have NormKf/Q(r) =

O(Q
3
4) but for n = 3, the bound is NormKf/Q(r) = O(Q), and for n = 4,

O(Q11/8). This is already too large. We would like to obtain such a bound,
strictly smaller than O(Q), for any n.

4.2 Preimage Computation in the gJL and Conjugation Cases

Let s =
∑n−1

i=0 six
i ∈ Fpn with sn−1 = 1. In order to present a generic method

for both the gJL and the Conjugation methods, we denote by df the degree of
f . In the gJL case we have df = d + 1 ≥ n + 1, while in the Conjugation case,
df = 2n. We define the df × df matrix with p on the diagonal for the first n − 1

Computing Individual Discrete Logarithms Faster in GF(pn) 165

rows, and the coefficients of the monic element s on row n−1. The rows n to df

are filled with the coefficients of the monic polynomial xjψ, with 0 ≤ j ≤ df −n.

L =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

p
. . .

p
s0 . . . sn−2 1
ψ0 ψ1 · · · ψn−1 1

.
ψ0 ψ1 · · · ψn−1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

0

...
n−2

n−1

n

...
df−1

df×df

⎫
⎪⎬

⎪⎭

n − 1 rows

}row n − 1 with s coeffs⎫
⎪⎬

⎪⎭

df − n rows with ψ coeffs

Applying the LLL algorithm to L, we obtain a reduced element r =
∑df−1

i=0 riX
i ∈ Kf such that r =

∑df−1
i=0 aiLi where Li is the i-th row vec-

tor of L and ai is a scalar in Z. We map this equality into Fpn with ρ. All the
terms cancel out modulo (p, ψ) except the one with s coefficients:

ρ(r) ≡ ρ(an−1) · ρ(s) = u · s mod (p, ψ)

with u = ρ(an−1) ∈ Fp. Hence, by Lemma 2,

log ρ(r) ≡ log s mod �. (5)

Moreover,
||r||∞ ≤ Cp(n−1)/df .

It is straightforward, using Inequality (1), to deduce that

NormKf/Q(r) = O
(
pn−1

)
= O

(
Q1−1/n

)
.

Here we obtain a bound that is always strictly smaller than Q for any n. In the
next section we show how to improve this bound to O

(
Q1−2/n

)
when n is even

and the number field defined by ψ has a well-suited quadratic subfield.

5 Preimages of Smaller Norm with Quadratic Subfields

Reducing the degree of s can reduce the norm size in the number field for the
JLSV1 polynomial construction. We present a way to compute r ∈ Fpn of degree
n − 2 from s ∈ Fpn of degree n in the given representation of Fpn , and r, s
satisfying Lemma 2. We need n to be even and the finite field Fpn to be expressed
as a degree-n/2 extension of a quadratic extension defined by a polynomial of a
certain form. We can define another lattice with r and get a preimage of degree
n−2 instead of n−1 in the number field. This can be interesting with the JLSV1

method. Combining this method with the previous one of Sect. 4 leads to our
proof of Theorem 1.

166 A. Guillevic

5.1 Smaller Preimage Degree

In this section, we prove that when n is even and Fpn = Fp[X]/(ψ(X)) has a
quadratic base field Fp2 of a certain form, from a random element s ∈ Fpn with
sn−1 �= 0, we can compute an element r ∈ Fpn with rn−1 = 0, and s = u · r with
u ∈ Fp2 . Then, using Lemma 2, we will conclude that log r ≡ log s mod �.

Lemma 3. Let ψ(X) be a monic irreducible polynomial of Fp[X] of even degree
n with a quadratic subfield defined by the polynomial Py = Y 2 + y1Y + y0.
Moreover, assume that ψ splits over Fp2 = Fp[Y]/(Py(Y)) as

ψ(X) = (Pz(X) − Y)(Pz(X) − Y p)
or ψ(X) = (Pz(X) − Y X)(Pz(X) − Y pX)

with Pz monic, of degree n/2 and coefficients in Fp. Let s ∈ Fp[X]/(ψ(X)) a
random element, s =

∑n−1
i=0 siX

i.
Then there exists r ∈ Fpn monic and of degree n−2 in X, and u ∈ Fp2 , such

that s = u · r in Fpn .

We first give an example for s ∈ Fp4 then present a constructive proof.

Example 2. Let Py = Y 2 + y1Y + y0 be a monic irreducible polynomial over Fp

and set Fp2 = Fp[Y]/(Py(Y)). Assume that Z2 − Y Z + 1 is irreducible over Fp2

and set Fp4 = Fp2 [Z]/(Z2 − Y Z + 1). Let ψ = X4 + y1X
3 + (y0 + 2)X2 + y1X +

1 be a monic reciprocal polynomial. By construction, ψ factors over Fp2 into
(X2 − Y X + 1)(X2 − Y pX + 1) and Fp[X]/(ψ(X)) defines a quartic extension
Fp4 of Fp. We have these two representations for Fp4 :

Fp4 = Fp2 [Z]/(Z2 − Y Z + 1) and

|
Fp2 = Fp[Y]/(Y 2 + y1Y + y0)

|
Fp

Fp4 = Fp[X]/(X4 + y1X3 + (y0 + 2)X2 + y1X + 1)

|
|
|
Fp

Proof (of Lemma 3). Two possible extension field towers are:

Fpn = Fp2 [Z]/(Pz(Z) − Y)
|
Fp2 = Fp[Y]/(Py(Y))
|
Fp

and

Fpn = Fp2 [Z]/(Pz(Z) − Y Z)
|
Fp2 = Fp[Y]/(Py(Y))
|
Fp

We write s in the following representation to emphasize the subfield structure:

s =
n/2−1∑

i=0

(ai0 + ai1Y)Zi with aij ∈ Fp.

Computing Individual Discrete Logarithms Faster in GF(pn) 167

1. If ψ = Pz(Z) − Y then we can divide s by uLT = an/2,0 + an/2,1Y ∈ Fp2 (the
leading term in Z, i.e. the coefficient of Zn/2) to make s monic in Z up to a
subfield cofactor uLT :

s

uLT
=

n/2−2∑

i=0

(bi0 + bi1Y)Zi + Zn/2−1,

with the coefficients bij in the base field Fp, and bi0+bi1Y = (ai0+ai1Y)/uLT .
Since Pz(Z) = Y and Z = X in Fpn by construction, we replace Y by Pz(Z)
and Z by X to get an expression for s in X:

s

uLT
=

n/2−2∑

i=0

(bi0 + bi1Pz(X))Xi + Xn/2−1 = r(X).

The degree in X of r is deg r = deg Pz(X)Xn/2−2 = n − 2 instead of deg s =
n − 1. We set u = 1/uLT . By construction, u ∈ Fp2 . We conclude that
s = ur ∈ Fpn , with deg r = n − 2 and u ∈ Fp2 .

2. If ψ = Pz(Z) − Y Z then we can divide s by uCT = a00 + a01Y ∈ Fp2 (the
constant term in Z) to make the constant coefficient of s to be 1:

s

uCT
= 1 +

n/2−1∑

i=1

(bi0 + bi1Y)Zi

with bij ∈ Fp. Since Pz(Z) = Y Z and Z = X in Fpn by construction, we
replace Y Z by Pz(Z) and Z by X to get

s

uCT
= 1 +

n/2−1∑

i=1

(bi0X
i + bi1Pz(X)Xi−1) = r(X).

The degree in X of r is deg r = deg Pz(X)Xn/2−1−1 = n − 2 instead of
deg s = n − 1. We set u = 1/uCT . By construction, u ∈ Fp2 . We conclude
that s = ur ∈ Fpn , with deg r = n − 2 and u ∈ Fp2 . �

Now we apply the technique described in Sect. 4.1 to reduce the coefficient size
of r in the JLSV1 construction. We have rn−1 = 0 and we assume that rn−2 = 1.
We define the lattice by the (n − 1) × (n − 1) matrix

L =

⎡

⎢
⎢
⎢
⎣

p
. . .

p
r0 . . . rn−3 1

⎤

⎥
⎥
⎥
⎦

0

...
n−3

n−2

n−1×n−1

⎫
⎪⎬

⎪⎭

n − 2 rows

}row n − 2 with r coeffs

After reducing the lattice with LLL, we obtain an element r′ whose coeffi-
cients are bounded by Cp

n−2
n−1 . The norm of r′ in the number field Kf constructed

with the JLSV1 method is

NormKf/Q(r′) = O(p
3
2n−2− 1

n−1) = O(Q
3
2− 2

n− 1
n(n−1)).

168 A. Guillevic

This is better than the previous O
(
Q

3
2− 3

2n
)

case: the norm is smaller by a factor

of size O
(
Q

1
2n+ 1

n(n−1)
)
. For n = 4, we obtain NormKf/Q(r′) = O

(
Q

11
12

)
, which

is strictly less than O(Q).
We can do even better by re-using the element r of degree n − 2 and the

given one s of degree n − 1, and combining them.

Generalization to Subfields of Higher Degrees. It was pointed out to us by an
anonymous reviewer that more generally, by standard linear algebra arguments,
for m | n and s ∈ Fpn , there exists a non-zero u ∈ Fpm such that s · u is a
polynomial of degree at most n − m.

5.2 Smaller Preimage Norm

First, suppose that the target element s =
∑n−1

i=0 six
i satisfies sn−1 = 0 and

sn−2 = 1. We can define a lattice whose vectors, once mapped to Fpn , are either
0 (so vectors are sums of multiples of p and ψ) or are multiples of the initial
target s, satisfying Lemma 2. The above r of degree n − 2 is a good candidate.
The initial s also. If there is no initial s of degree n − 1, then simply take at
random any u in a proper subfield of Fpn which is not Fp itself and set s = u · r.
Then s will have sn−1 �= 0. Then define the lattice

L =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

p
. . .

p
r0 . . . rn−3 1
s0 . . . sn−3 sn−2 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

0

...
n−3

n−2

n−1

n×n

⎫
⎪⎬

⎪⎭

n − 2 rows

} row n − 2 with r coeffs
} row n − 1 with s coeffs

and use it in place of the lattices of Sect. 4.1 or 4.2.

5.3 Summary of Results

We give in Table 3 the previous and new upper bounds for the norm of s in
a number field Kf for three polynomial selection methods: the JLSV1 method,
the generalized Joux–Lercier method and the Conjugation method, and the com-
plexity of the booting step to find a B-smooth decomposition of NormKf/Q(s).
We give our practical results for small n, where there are the most dramatic
improvements. We obtain the optimal norm size of Qϕ(n)/n for n = 2, 3, 5 with
the gJL method and also for n = 4 with the Conjugation method.

6 Practical Examples

We present an example for each of the three polynomial selection methods we
decided to study. The Conjugation method provides the best timings for Fp2 at
180 dd [6]. We apply the gJL method to Fp3 according to [6, Fig. 3]. We decided
to use the JLSV1 method for Fp4 [6, Fig. 4].

Computing Individual Discrete Logarithms Faster in GF(pn) 169

Table 3. Norm bound of the preimage with our method, and booting step complexity.

Fpn
poly. norm bound booting step LQ[1

3
, c] practical values of c

selec. nothing JLSV this work prev this work n = 2 n = 3 n = 4 n = 5 n = 6

any n > 1
gJL Q1+ 1

n Q
Q1−1/n

1.44
(3(1 − 1

n
))1/3 1.14 1.26 – 1.34 –

even n ≥ 4 Q1−2/n (3(1 − 2
n
))1/3 – – 1.14 – 1.26

any n > 1
Conj Q2 Q

Q1−1/n

1.44
(3(1 − 1

n
))1/3 1.14 1.26 – 1.34 –

even n ≥ 4 Q1−2/n (3(1 − 2
n
))1/3 – – 1.14 – 1.26

any n > 1
JLSV1 Q

3
2 − 1

2n Q2 Q3/2−3/n

1.65
(9
2
(1 − 1

n
))1/3 1.31 1.44 – 1.53 –

even n ≥ 4 Q3/2−5/n (3
2
(3 − 5

n
))1/3 – – 1.38 – 1.48

6.1 Examples for Small n and pn of 180 Decimal Digits (dd)

Example for n = 2, Conjugation Method. We take the parameters of
the record in [6]: p is a 90 decimal digit (300 bit) prime number, and f, ψ are
computed with the Conjugation method. We choose a target s from the decimal
digits of exp(1).

p = 314159265358979323846264338327950288419716939937510582097494459230781640628620899877709223

f = x4 + 1
ψ = x2 + 107781513095823018666989883102244394809412297643895349097410632508049455376698784691699593 x + 1
s = 271828182845904523536028747135319858432320810108854154561922281807332337576949857498874314 x

+95888066250767326321142016575753199022772235411526548684808440973949208471194724618090692

We first compute s′ = 1
s0

s then reduce

L =

⎡

⎢
⎢
⎣

p 0 0 0
s′
0 1 0 0
1 ψ1 1 0
0 1 ψ1 1

⎤

⎥
⎥
⎦

then LLL(L) produces r of degree 3 and coefficient size O(p1/4). Actually LLL
outputs four short vectors, hence we get four small candidates for r, each of norm
NormKf/Q(r) = O(p) = O(Q1/2) = O(Qϕ(n)/n), i.e. 90 dd. To slightly improve
the smoothness search time, we can compute linear combinations of these four
reduced preimages.

3603397286457205828471x3 + 13679035553643009711078x2 + 5577462470851948956594x + 856176942703613067714

9219461324482190814893x3 − 4498175796333854926013x2 + 8957750025494673822198x + 1117888241691130060409

28268390944624183141702x3 + 5699666741226225385259x2 − 17801940403216866332911x + 5448432247710482696848

3352162792941463140060x3 + 3212585012235692902287x2 − 5570636518084759125513x + 46926508290544662542327

The norm of the first element is

NormKf/Q(r) = 21398828029520168611169045280302428434866966657097075761337598070760485340948677800162921

of 90 decimal digits, as expected. For a close to optimal running-time of
LQ[1/3, 1.14] ∼ 240 to find a boot, the special-q bound would be around 64 bits.

170 A. Guillevic

Example for n = 3, gJL Method. We take p of 60 dd (200 bits) so that
Fp3 has size 180 dd (600 bits) as above. We took p a prime made of the 60 first
decimal digits of π. We constructed f, ψ, g with the gJL method described in [6].

p = 314159265358979323846264338327950288419716939937510582723487

f = x4 − x + 1
ψ = x3 + 227138144243642333129902287795664772043667053260089299478579x2

+126798022201426805402186761110440110121157863791585328913565x
+86398309157441443539791899517788388184853963071847115552638

g = 2877670889871354566080333172463852249908214391x3 + 6099516524325575060821841620140470618863403881x2

−10123533234834473316053289623165756437267298403x + 2029073371791914965976041284208208450267120556

s = 271828182845904523536028747135319858432320810108854154561922x2

+281807332337576949857498874314095888066250767326321142016575x
+75319902277223541152654868480858951626493739297259139859875

We set s′ = 1
s2

s. The lattice to be reduced is

L =

⎡

⎢
⎢
⎣

p 0 0 0
0 p 0 0
s′
0 s′

1 1 0
ψ0 ψ1 ψ2 1

⎤

⎥
⎥
⎦

then LLL(L) computes four short vectors r of degree 3, of coefficient size O(p1/2),
and of norm size NormKf/Q(r) = O(p2) = O(Q2/3) = O(Qϕ(n)/n).

159774930637505900093909307018x3 + 165819631832105094449987774814x2 + 177828199322419553601266354904x
−159912786936943488400590389195

136583029354520905232412941048x3 − 521269847225531188433352927453x2 + 322722415562853671586868492721x
+255238068915917937217884608875

118289007598934068726663000266x3 + 499013489972894059858543976363x2 − 105084220861844155797015713666x
+535978811382585906107397024241

411603890054539500131474313773x3 − 240161030577722451131067159670x2 − 373289346204280810310169575030x
−389720783049275894296185820094

The norm of the first element is

NormKf/Q(r)
= 997840136509677868374734441582077227769466501519927620849763845265357390584602475858356409809239812991892769866071779

of 117 decimal digits (with 2
3180 = 120 dd). For a close to optimal running-time

of LQ[1/3, 1.26] ∼ 245 to find a boot, the special-q bound would be around 77
bits.

Computing Individual Discrete Logarithms Faster in GF(pn) 171

Example for n = 4, JLSV1 Method.

p = 314159265358979323846264338327950288419980011

� = 49348022005446793094172454999380755676651143247932834802731698819521755649884772819780061

f = ψ = x4 + x3 + 70898154036220641093162x2 + x + 1
g = 101916096427067171567872x4 + 101916096427067171567872x3 + 220806328874049898551011x2

+101916096427067171567872x + 101916096427067171567872

s = 271828182845904523536028747135319858432320810x3 + 108854154561922281807332337576949857498874314x2

+95888066250767326321142016575753199022772235x + 41152654868480844097394920847127588391952018

We set s′ = 1
s3

s. The subfield simplification for s gives

r = x2 + 134969122397263102979743226915282355400161911x + 104642440649937756368545765334741049207121011 .

We reduce the lattice defined by

L =

⎡

⎢
⎢
⎣

p 0 0 0
0 p 0 0
r0 r1 1 0
s′
0 s′

1 s′
2 1

⎤

⎥
⎥
⎦

then LLL(L) produces these four short vectors of degree 3, coefficient size
O(p1/2), and norm NormKf/Q(r′) = O(p

7
2) = O(Q7/8) (smaller than O(Q)).

5842961997149263751946x3 + 290736827330861011376x2 − 5618779793817086743792x + 1092494800287557029045

1640842643903161175359x3 + 15552590269131889589575x2 − 4425488394163838271378x − 5734086421794811858814

6450686906504525374853x3 + 13768771242650957399419x2 + 10617583944234090880579x + 16261617079167797580912

16929135804139878865391x3 + 698185571704810258344x2 + 12799300411012246114079x − 22787282698718065284157

The norm of the first element is

NormKf/Q(r′) = 14521439292172711151668611104133579982787299949310242601944218977645007049527\
012365602178307413694530274906757675751698466464799004360546745210214642178285

of 155 decimal digits (with 7
8180 = 157.5). For a close to optimal running-time of

LQ[1/3, 1.34] ∼ 249 to find a boot, the special-q bound would be approximately
of 92 bits. This is very large however.

6.2 Experiments: Finding Boots for Fp4 of 120 dd

We experimented our booting step method for Fp4 of 120 dd (400 bits). Without
the quadratic subfield simplification, the randomized target norm is bounded by
Q9/8 of 135 dd (450 bits). The largest special-q in the boot has size LQ[2/3, 3/4]
(25 dd, 82 bits) according to Lemma 1 with e = 9/8. The running-time to find
one boot would be LQ[1/3, 1.5] ∼ 244.

We apply the quadratic subfield simplification. The norm of the randomized
target is Q7/8 of 105 dd (� 350 bits). We apply Theorem 1 with e = 7/8. The size
of the largest special-q in the boot will be approximately LQ[2/3, 0.634] which is

172 A. Guillevic

21 dd (69 bits). The running-time needed to find one boot with the special-q of no
more than 21 dd is LQ[1/3, 1.38] ∼ 240 (to be compared with the dominating part
of NFS-DL of LQ[1/3, 1.923] ∼ 257). We wrote a magma program to find boots,
using GMP-ECM for q-smooth tests. We first set a special-q bound of 70 bits and
obtained boots in about two CPU hours. We then reduced the special-q bound
to a machine word size (64 bits) and also found boots in around two CPU hours.
We used an Intel Xeon E5-2609 0 at 2.40 GHz with 8 cores.

7 Conclusion

We have presented a method to improve the booting step of individual logarithm
computation, the final phase of the NFS algorithm. Our method is very efficient
for small n, combined with the gJL or Conjugation methods; it is also usefull for
the JLSV1 method, but with a slower running-time. For the moment, the booting
step remains the dominating part of the final individual discrete logarithm. If our
method is improved, then special-q descent might become the new bottleneck
in some cases. A lot of work remains to be done on final individual logarithm
computations in order to be able to compute one individual logarithm as fast as
was done in the Logjam [2] attack, especially for n ≥ 3.

Acknowledgements. The author thanks the anonymous reviewers for their construc-
tive comments and the generalization of Lemma 3. The author is grateful to Pierrick
Gaudry, François Morain and Ben Smith.

References

1. Adleman, L.: A subexponential algorithm for the discrete logarithm problem with
applications to cryptography. In: 20th FOCS, pp. 55–60. IEEE Computer Society
Press, October 1979

2. Adrian, D., Bhargavan, K., Durumeric, Z., Gaudry, P., Green, M., Halderman, J.A.,
Heninger, N., Springall, D., Thomé, E., Valenta, L., VanderSloot, B., Wustrow,
E., Zanella-Béguelin, S., Zimmermann, P.: Imperfect forward secrecy: how Diffie-
Hellman fails in practice. In: CCS 2015, October 2015, to appear. https://weakdh.
org/imperfect-forward-secrecy.pdf

3. Barbulescu, R., Pierrot, C.: The multiple number field sieve for medium- and high-
characteristic finite fields. LMS J. Comput. Math. 17, 230–246 (2014). http://
journals.cambridge.org/article S1461157014000369

4. Barbulescu, R.: Algorithmes de logarithmes discrets dans les corps finis. Ph.D.
thesis, Université de Lorraine (2013)

5. Barbulescu, R., Gaudry, P., Guillevic, A., Morain, F.: Discrete logarithms in
GF(p2) - 180 digits (2014), announcement available at the NMBRTHRY archives.
https://listserv.nodak.edu/cgi-bin/wa.exe?A2=NMBRTHRY;2ddabd4c.1406

6. Barbulescu, R., Gaudry, P., Guillevic, A., Morain, F.: Improving NFS for the dis-
crete logarithm problem in non-prime finite fields. In: Oswald, E., Fischlin, M.
(eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 129–155. Springer, Heidelberg
(2015)

https://weakdh.org/imperfect-forward-secrecy.pdf
https://weakdh.org/imperfect-forward-secrecy.pdf
http://journals.cambridge.org/article_S1461157014000369
http://journals.cambridge.org/article_S1461157014000369
https://listserv.nodak.edu/cgi-bin/wa.exe?A2=NMBRTHRY;2ddabd4c.1406

Computing Individual Discrete Logarithms Faster in GF(pn) 173

7. Barbulescu, R., Gaudry, P., Joux, A., Thomé, E.: A heuristic quasi-polynomial
algorithm for discrete logarithm in finite fields of small characteristic. In: Nguyen,
P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 1–16. Springer,
Heidelberg (2014)

8. Blake, I.F., Mullin, R.C., Vanstone, S.A.: Computing logarithms in GF (2n). In:
Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 73–82.
Springer, Heidelberg (1985)

9. Canfield, E.R., Erdös, P., Pomerance, C.: On a problem of Oppenheim concerning
“factorisatio numerorum”. J. Number Theor. 17(1), 1–28 (1983)

10. Chen, Y.: Réduction de réseau et sécurité concréte du chiffrement complétement
homomorphe. Ph.D. thesis, Université Paris 7 Denis Diderot (2013)

11. Commeine, A., Semaev, I.A.: An algorithm to solve the discrete logarithm problem
with the number field sieve. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.)
PKC 2006. LNCS, vol. 3958, pp. 174–190. Springer, Heidelberg (2006)

12. Coppersmith, D.: Modifications to the number field sieve. J. Cryptol. 6(3), 169–180
(1993)

13. Coppersmith, D., Odlzyko, A.M., Schroeppel, R.: Discrete logarithms in GF(p).
Algorithmica 1(1–4), 1–15 (1986). http://dx.doi.org/10.1007/BF01840433

14. Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Smart, N.P. (ed.) EURO-
CRYPT 2008. LNCS, vol. 4965, pp. 31–51. Springer, Heidelberg (2008)

15. Gordon, D.M.: Discrete logarithms in GF(p) using the number field sieve. SIAM
J. Discrete Math. 6, 124–138 (1993)

16. Hayasaka, K., Aoki, K., Kobayashi, T., Takagi, T.: An experiment of number field
sieve for discrete logarithm problem over GF(p12). In: Fischlin, M., Katzenbeisser,
S. (eds.) Buchmann Festschrift. LNCS, vol. 8260, pp. 108–120. Springer, Heidelberg
(2013)

17. Joux, A., Lercier, R.: Improvements to the general number field for discrete loga-
rithms in prime fields. Math. Comput. 72(242), 953–967 (2003)

18. Joux, A., Lercier, R., Naccache, D., Thomé, E.: Oracle-assisted static Diffie-
Hellman is easier than discrete logarithms. In: Parker, M.G. (ed.) Cryptography
and Coding 2009. LNCS, vol. 5921, pp. 351–367. Springer, Heidelberg (2009)

19. Joux, A., Lercier, R., Smart, N.P., Vercauteren, F.: The number field sieve in the
medium prime case. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp.
326–344. Springer, Heidelberg (2006)

20. Kalkbrener, M.: An upper bound on the number of monomials in determinants of
sparse matrices with symbolic entries. Mathematica Pannonica 73, 82 (1997)

21. Lenstra, A., Lenstra Jr., H.W., Lovász, L.: Factoring polynomials with rational
coefficients. Mathematische Annalen 261(4), 515–534 (1982). http://dx.doi.org/
10.1007/BF01457454

22. Matyukhin, D.: Effective version of the number field sieve for discrete logarithms in
the field GF(pk) (in Russian). Trudy po Discretnoi Matematike 9, 121–151 (2006)

23. Pierrot, C.: The multiple number field sieve with conjugation and generalized joux-
lercier methods. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9056, pp. 156–170. Springer, Heidelberg (2015)

24. Weber, D.: Computing discrete logarithms with quadratic number rings. In:
Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 171–183. Springer,
Heidelberg (1998)

25. Zajac, P.: Discrete logarithm problem in degree six finite fields. Ph.D. thesis, Slovak
University of Technology (2008)

http://dx.doi.org/10.1007/BF01840433
http://dx.doi.org/10.1007/BF01457454
http://dx.doi.org/10.1007/BF01457454

Multiple Discrete Logarithm Problems
with Auxiliary Inputs

Taechan Kim(B)

NTT Secure Platform Laboratories, Tokyo, Japan
taechan.kim@lab.ntt.co.jp

Abstract. Let g be an element of prime order p in an abelian group
and let α1, . . . , αL ∈ Zp for a positive integer L. First, we show that, if

g, gαi , and gαd
i (i = 1, . . . , L) are given for d | p − 1, all the discrete log-

arithms αi’s can be computed probabilistically in Õ(
√

L · p/d +
√

L · d)
group exponentiations with O(L) storage under the condition that L �
min{(p/d)1/4, d1/4}.

Let f ∈ Fp[x] be a polynomial of degree d and let ρf be the number
of rational points over Fp on the curve determined by f(x) − f(y) = 0.

Second, if g, gαi , gα2
i , . . . , gαd

i are given for any d ≥ 1, then we propose an
algorithm that solves all αi’s in Õ(max{√L · p2/ρf , L · d}) group expo-

nentiations with Õ(
√

L · p2/ρf) storage. In particular, we have explicit
choices for a polynomial f when d | p ± 1, that yield a running time of

Õ(
√

L · p/d) whenever L ≤ p
c·d3 for some constant c.

Keywords: Discrete logarithm problem · Multiple discrete logarithm ·
Birthday problem · Cryptanalysis

1 Introduction

Let G be a cyclic group of prime order p with a generator g. A discrete logarithm
problem (DLP) aims to find the element α of Zp when g and gα are given. The
DLP is a classical hard problem in computational number theory, and many
encryption schemes, signatures, and key exchange protocols rely on the hardness
of the DLP for their security.

In recent decades, many variants of the DLP have been introduced. These
include theWeakDiffie–HellmanProblem [13], StrongDiffie–HellmanProblem [2],
Bilinear Diffie–Hellman Inversion Problem [1], and Bilinear Diffie–Hellman Expo-
nent Problem [3], and are intended to guarantee the security of many cryptosys-
tems, such as traitor tracing [13], short signatures [2], ID-based encryption [1], and
broadcast encryption [3]. These problems incorporate additional information to
the original DLP problem. Although such additional information could weaken
the problems, and their hardness is not well understood, these variants are
widely used because they enable the construction of cryptosystems with various
functionalities.

c© International Association for Cryptologic Research 2015
T. Iwata and J.H. Cheon (Eds.): ASIACRYPT 2015, Part I, LNCS 9452, pp. 174–188, 2015.
DOI: 10.1007/978-3-662-48797-6 8

Multiple Discrete Logarithm Problems with Auxiliary Inputs 175

These variants can be considered as the problem of finding α when
g, gαe1

, . . . , gαed are given for some e1, . . . , ed ∈ Z. This problem is called the
discrete logarithm problem with auxiliary inputs (DLPwAI).

On the other hand, in the context of elliptic curve cryptography, because of
large computational expense of generating a secure elliptic curve, a fixed curve is
preferred to a random curve. One can choose a curve recommended by standards
such as NIST. Then this causes an issue with the multiple DLP/DLPwAI and
leads the following question. Can it be more efficient to solve them together than
to solve each of instances individually when needed, if an adversary collects many
instances of DLP/DLPwAI from one fixed curve?

In multiple discrete logarithm problem, an algorithm [11] computes L dis-
crete logarithms in time Õ(

√
L · p) for L � p1/4. Recently, it is proven that

this algorithm is optimal in the sense that it requires at least Ω(
√

L · p) group
operations to solve the multiple DLP in the generic group model [19].

On the other hand, an efficient algorithm for solving the DLPwAI is proposed
by Cheon [5,6]. If g, gα, and gαd ∈ G (resp. g, gα, . . . , gα2d ∈ G) are given, then
one can solve the discrete logarithm α ∈ Zp in O(

√
p/d+

√
d) (resp. O(

√
p/d+d))

group operations in the case of d | p−1 (resp. d | p+1). Since solving the DLPwAI
in the generic group model requires at least Ω(

√
p/d) group operations [2],

Cheon’s algorithm achieves the lower bound complexity in the generic group
model when d ≤ p1/2 (resp. d ≤ p1/3). Brown and Gallant [4] independently
investigated an algorithm in the case of d | p − 1.

However, as far as we know, the DLPwAI algorithm in the multi-user setting
has not been investigated yet. This paper proposes an algorithm to solve the
multiple DLPwAI better than O(L · √

p/d) group operations in the case of d |
p ± 1, where L denotes the number of the target discrete logarithms.

Our Contributions. We propose two algorithms for the multiple DLPwAI.
Our first algorithm is based on Cheon’s (p − 1)-algorithm [5,6]. If g, gαi , and
gαd

i (i = 1, 2, . . . , L) are given for d | p − 1, our algorithm solves L discrete loga-
rithms probabilistically in Õ(

√
L · p/d +

√
L · d) group operations with storages

for O(L) elements whenever L ≤ min{cp/d(p/d)1/4, cdd
1/4} (for some constants

0 < cp/d, cd < 1). We also show a deterministic variant of this algorithm which
applies for any L > 0 and has the running time of Õ(

√
L · p/d +

√
L · d + L),

although it requires as large amount of the storage as the time complexity. How-
ever, an approach based on Cheon’s (p+1)-algorithm does not apply to improve
an algorithm in multi-user setting.

Our second algorithm is based on Kim and Cheon’s algorithm [10]. The
algorithm basically works for any d > 0. Let f(x) ∈ Fp[x] be a polynomial
of degree d over Fp and define ρf := |(x, y) ∈ Fp × Fp : f(x) = f(y)|. If
g, gαi , gα2

i , . . . , gαd
i (i = 1, 2, . . . , L) are given, the algorithm computes all αi’s in

Õ
(
max{√L · p2/ρf , L·d}) group operations with the storage for Õ(

√
L · p2/ρf)

elements.

176 T. Kim

In particular, if L · d ≤ √
L · p2/ρf (i.e. L ≤ p2

d2·ρf
), the time complexity

is given by Õ(
√

L · p2/ρf). Since p ≤ ρf ≤ dp, this value is always between
Õ(

√
L · p/d) and Õ(

√
L · p). Explicitly, if d | p − 1, one can choose the polyno-

mial by f(x) = xd and in the case the complexity is given by the lower bound
Õ(

√
L · p/d) whenever L ≤ p/d3. Similarly, in the case of d | p+1, if one takes the

polynomial f(x) = Dd(x, a), where Dd(x, a) is the Dickson polynomial of degree
d for some nonzero a ∈ Fp, then it also has the running time of Õ(

√
L · p/d) for

L � p/(2d3).
As far as the authors know, these two algorithms extend all existing DLPwAI-

solving algorithms to the algorithms for multi-user setting.

Organization. This paper is organized as follows. In Sect. 2, we introduce sev-
eral variants of DLP including a problem called discrete logarithm problem in the
exponent (DLPX). We also show that several generic algorithms can be applied
to solve the DLPX. In Sect. 3, we propose an algorithm solving the multiple
DLPwAI based on Cheon’s algorithm. In Sect. 4, we present another algorithm
to solve the multiple DLPwAI using Kim and Cheon’s algorithm. We conclude
with some related open questions in Sect. 5.

2 Discrete Logarithm Problem and Related Problems

In this section, we introduce several problems related to the discrete logarithm
problem. Throughout the paper, let G = 〈g〉 be a cyclic group of prime order p.
Let Fq be a finite field with q elements for some prime power q = pr. Let ZN be
the set of the residue classes of integers modulo an integer N .

– The Discrete Logarithm Problem (DLP) in G is: Given g, gα ∈ G, to solve
α ∈ Zp.

– The Multiple Discrete Logarithm Problem (MDLP) in G is: Given
g, gα1 , . . . , gαL ∈ G, to solve all α1, . . . , αL ∈ Zp.

– The (e1, . . . , ed) -Discrete Logarithm Problem with Auxiliary Inputs (DLP-
wAI) in G is: Given g, gαe1

, gαe2
, . . . , gαed ∈ G, to solve α ∈ Zp.

– The (e1, . . . , ed) -Multiple Discrete Logarithm Problem with Auxiliary
Inputs (MDLPwAI) in G is: Given g, gα

e1
i , gα

e2
i , . . . , gα

ed
i ∈ G for i =

1, 2, . . . , L, to solve α1, . . . , αL ∈ Zp.

In the case of (e1, e2, . . . , ed) = (1, 2, . . . , d), we simply denote (1, 2, . . . , d)-
(M)DLPwAI by d-(M)DLPwAI.

We also introduce the problem called Fp -discrete logarithm problem in the
exponent (Fp-DLPX).

– The Fp -Discrete Logarithm Problem in the Exponent (Fp -DLPX) in G is
defined as follows: Let χ ∈ Fp be an element of multiplicative order N , i.e.
N | p − 1. Given g, gχn ∈ G and χ ∈ Fp, compute n ∈ ZN .

– The Fp -Multiple Discrete Logarithm Problem in the Exponent (Fp-MDLPX)
in G is: Given g, gχn1

, . . . , gχnL ∈ G and χ ∈ Fp, to solve n1, . . . , nL ∈ ZN . In
both cases, the Fp-(M)DLPX is said to be defined over ZN .

Multiple Discrete Logarithm Problems with Auxiliary Inputs 177

Algorithm for DLPX. Observe that several DL-solving algorithms can be
applied to solve the DLPX with the same complexity. For example, the baby-
step-giant-step (BSGS) algorithm works as follows: Suppose that the DLPX is
defined over ZN . Set an integer K ≈ √

N and write n = n0K + n1, where
0 ≤ n0 ≤ N/K ≈ √

N and 0 ≤ n1 < K. For given g, gχn ∈ G and χ ∈ Fp,

compute and store the elements gχi·K
=

(
gχ(i−1)·K)χK

for all i = 0, 1, . . . , N/K.

Then compute
(
gχn)χ−j

for all j = 0, 1, . . . , K −1 and find a match between the
stored elements. Then the discrete logarithm is given by n = iK+j for the indices
i and j corresponding to the match. It costs O(

√
N) group exponentiations by

elements in Fp and O(
√

N) storage.
In a similar fashion, it is easy to check that the Pollard’s lambda

algorithm [15] also applies to solve the DLPX. It takes O(
√

N) group opera-
tions to solve the problem with small amount of storage. Also, check that the
other algorithms such as Pohlig-Hellman algorithm [14] or the distinguished
point method of Pollard’s lambda algorithm [17] apply to solve the DLPX. The
above observation was a main idea to solve the DLPwAI in [5,6].

3 Multiple DLPwAI: Cheon’s Algorithm

In this section, we present an algorithm of solving the (1, d)-MDLPwAI based
on Cheon’s algorithm [5,6] when d | p − 1.

Workflow of This Section. Description of our algorithm is presented as fol-
lows. First, we recall how Cheon’s algorithm solves the DLPwAI. In Sect. 3.1,
we observed that the DLPwAI actually reduces to the DLPX (defined in Sect. 2)
by Cheon’s algorithm. It is, then, easy to check that to solve the MDLPwAI
reduces to solve the MDLPX. So, we present an algorithm to solve the MDLPX
in Sect. 3.2. Combined with the above results, we present an algorithm to solve
the MDLPwAI in Sect. 3.3.

3.1 Reduction of DLPwAI to DLP in the Exponent Using Cheon’s
Algorithm

We briefly remind Cheon’s algorithm in the case of d | p − 1. The algorithm
solves (1, d)-DLPwAI. Let g, gα, and gαd

be given. Let ζ be a primitive element
of Fp and H = 〈ξ〉 = 〈ζd〉 be a subgroup of F

∗
p of order p−1

d . Since αd ∈ H,
we have αd = ξk for some k ∈ Z(p−1)/d. Our first task is to find such k. This
is equivalent to solve the Fp-DLPX defined over Z(p−1)/d, that is, to compute
k ∈ Z(p−1)/d for given g, gξk ∈ G and ξ ∈ Fp. Note that gξk

= gαd

is given
from an instance of the DLPwAI and we know the value of ξ, since a primitive
element in Fp can be efficiently found. As mentioned before, solving the DLPX
over Z(p−1)/d takes O

(√
p/d

)
group exponentiations using BSGS algorithm or

Pollard’s lambda algorithm.

178 T. Kim

Continuously, if we write α ∈ Fp as α = ζ�, then since αd = ζd� = ζdk = ξk,
it satisfies � ≡ k (mod (p−1)/d), i.e. αζ−k = (ζ

p−1
d)m for some m ∈ Zd. Now we

know the value of k, it remains to recover m. This is equivalent to solve Fp-DLPX
over Zd, that is, to solve m ∈ Zd given the elements g, gμm

= (gα)ζ−k ∈ G and
μ ∈ Fp, where μ = ζ

p−1
d is known. This step costs O

(√
d
)

group exponentiations.
Overall, Cheon’s (p − 1) algorithm reduces of solving two instances of DLP in
the exponent with complexity O

(√
p/d +

√
d
)
.

3.2 Algorithm for Multiple DLP in the Exponent

In this section, we describe an algorithm to solve L -multiple DLP in the expo-
nent : Let L be a positive integer. Let χ be an element in Fp of multiplicative order
N . The problem is to solve all ki ∈ ZN for given g, y1 := gχk1

, . . . , yL := gχkL

and χ.
We use Pollard’s lambda-like algorithm. Define pseudo-random walk f from

y := gχk

(k ∈ ZN) as follows. For an integer I, define a pseudo-random function
ι : {gχn

: n ∈ ZN} → {1, 2, . . . , I} and set S := {χs1 , . . . , χsI } for some random
integers si. For y = gχk

, a pseudo-random walk f is defined by f : y �→ yχ
sι(y) =

gχ
k+sι(y)

.
Notice that Pollard’s rho-like algorithm does not apply to solve the DLPX1.

For instance, it seems hard to compute gχ2k

from gχk

for unknown k if the
Diffie-Hellman assumption holds in the group G. This is why we take Pollard’s
lambda-like approach.

The proposed algorithm is basically the same with the method by Kuhn and
Struik [11]. It uses the distinguished point method of Pollard’s rho (lambda)
method [17]. Applying their method in the case of the DLPX, we describe the
algorithm as follows.

Step 1. For y0 := gχk0 for k0 = N − 1, compute the following chain until it
reaches to a distinguished point d0.

C0 : y0 �→ f(y0) �→ f(f(y0)) �→ · · · �→ d0.

Step 2. For y1 = gχk1 , compute a chain until a distinguished point d1 found.

C1 : y1 �→ f(y1) �→ f(f(y1)) �→ · · · �→ d1.

If we have a collision d1 = d0, then it reveals a discrete logarithm k1. Oth-
erwise, set y′

1 = y1 · gχz

for known z and use it as a new starting point to
compute a new chain to obtain a collision.

Step 3. Once we have found the discrete logarithm k1, . . . , ki, then one iter-
atively computes the next discrete logarithm ki+1 as follows: Compute a
chain as Step 2 with a starting point yi+1 until a distinguished point di+1 is

1 In the paper [16], they indeed consider Pollard’s lambda algorithm rather than rho
algorithm.

Multiple Discrete Logarithm Problems with Auxiliary Inputs 179

found. Then try to find a collision di+1 = dj for some 1 ≤ j ≤ i. It reveals
the discrete logarithm of yi+1. If it fails, compute a chain again with a new
randomized starting point y′

i+1 = yi+1 · gχz′
for known z′.

By the analysis in [11], this algorithm has a running time of Õ(
√

L · N)
operations for L ≤ cNN1/4 (where 0 < cN < 1 is some constant depending on
N) with storage for O(L) elements of the distinguished points.

Remark 1. If we allow large amount of storage, then we have a determinis-
tic algorithm solving the DLPX based on the BSGS method2. It works for
any L ≥ 0 as follows. First, choose an integer K = √N/L� and compute

gχK·t
=

(
gχK·(t−1))χK

for all t ≤ √
L · N using O(

√
L · N) group exponenti-

ations and store all of the elements. Then, for each i = 1, 2, . . . , L, compute

gχki−s

=
(
gχki

)χ−s

for all s ≤ √
N/L and find a collision with the stored ele-

ments. It takes O(L · √
N/L) operations for all. If one has a collision, then we

have ki = s + t · K for the indices s and t corresponding to the collision.

Remark 2. There is a recent paper by [7] that claims that the MDLP can be
solved in Õ(

√
L · N) for any L with small amount of storage. However, their

analysis (Sect. 2, [7]) seems somewhat questionable.
In their analysis, they essentially assumed that a collision occurs indepen-

dently from each different chains. The pseudo-random function, however, once it
has been fixed, it becomes deterministic and not random. For example, assume
that we have a collision between two chains, say C1 and C2. If a new chain C3

also collides with C1, then it deterministically collides with C2, too. This contra-
dicts with independency assumption. The event that the chain C3 connects to
the chain C2 should be independent whether C3 is connected to C1 or not. This
kind of heuristic might be of no problem when L is much smaller than compared
to N . However, this is not the case for large L.

Several literatures focus on this rigour of pseudo-random function used in
Pollard’s algorithm. For further details on this, refer to [9].

3.3 Solving Multiple DLPwAI Using Cheon’s Algorithm

Combined with the results from Sects. 3.1 and 3.2, we propose an algorithm solv-
ing the (1, d)-MDLPwAI in the case of d | p−1. In Appendix A, we explain that
Cheon’s (p + 1)-algorithm does not help to solve the MDLPwAI in the case of
d | p + 1.

Theorem 1 (Algorithm for (1, d)-MDLPwAI, d | p − 1). Let the nota-
tions as above. Let α1, . . . , αL be randomly chosen elements from Zp. Assume
that d | p − 1. For L ≤ min{cp/d(p/d)1/4, cdd

1/4} (where 0 < cp/d, cd < 1 are
some constants on p/d and d respectively), given the elements g, gαi and gαd

i for

2 The proof is contributed by Mehdi Tibouchi.

180 T. Kim

i = 1, 2, . . . , L, we have an algorithm that computes αi’s in Õ(
√

L · p/d+
√

L · d)
group exponentiations with storage for O(L) elements in the set of the distin-
guished points.

Proof. Similarly as in Sect. 3.1, let H = 〈ξ〉 = 〈ζd〉 ⊂ G for a primitive element
ζ ∈ Fp. Since αd

i ∈ H, we have αd
i = ξki for some k1, . . . , kL, where ki ∈ Z(p−1)/d,

and if we write αi = ζ�i , then we have αiζ
−ki = μmi for mi ∈ Zd. Thus the

problem reduces of solving two multiple DLP in the exponent with instances
gξ, gξk1 = gαd

1 , . . . , gξkL = gαd
L and gμ, gμm1 = (gα1)ζ−k1

, . . . , gμmL = (gαL)ζ−kL ,
where ξ and μ are known. We compute αi’s as follows:

1. Given gξ, gαd
1 = gξk1

, . . . , gαd
L = gξkL for ki ∈ Z(p−1)/d, compute ki’s using

the algorithm in Sect. 3.2. It takes time Õ(
√

L · p/d) with storage for O(L)
elements.

2. Given gα1 , . . . , gαL and k1, . . . , kL, compute ζ−k1 , . . . , ζ−kL in O(L) exponen-
tiations in Fp and compute

gμm1 = (gα1)ζ−k1
, . . . , gμmL = (gαL)ζ−kL

in O(L) exponentiations in G.
3. Compute m1, . . . ,mL ∈ Zd from gμm1

, . . . , gμmL using the algorithm in
Sect. 3.2. It takes time Õ(

√
L · d) with storage for O(L) elements.

The overall complexity is given by Õ(
√

L · p/d +
√

L · d + L). Since L ≤
min{p/d, d} by the assumption, i.e. L ≤ min{√L · p/d,

√
L · d}, it is equiva-

lent to Õ(
√

L · p/d +
√

L · d). ��
Remark 3. Note that we can replace the algorithm to solve the MDLPX used
in Step 1 and Step 3 with any algorithm solving the MDLPX. In that case,
the complexity solving the MDLPwAI totally depends on that of the algorithm
solving the MDLPX. For example, if we use the BSGS method described in
Remark 1, then the proposed algorithm solves the MDLPwAI for any L in time
complexity O(

√
L · p/d +

√
L · d + L) with the same amount of storage.

4 Multiple DLPwAI: Kim and Cheon’s Algorithm

In this section, we propose an approach to solve the d-MDLPwAI. The idea is
basically based on Kim and Cheon’s algorithm [10]. To analyze the complexity,
we also need some discussion on non-uniform birthday problem.

4.1 Description of Algorithm

Let G = 〈g〉 be a group of prime order p. For i = 1, 2, . . . , L, let g, gαi , . . . , gαd
i be

given. We choose a polynomial f(x) ∈ Fp[x] of degree d and fix a positive integer
� which will be defined later. The proposed algorithm is described as follows:

Multiple Discrete Logarithm Problems with Auxiliary Inputs 181

Step 1. For each i, given g, gαi , . . . , gαd
i and f(x), we compute and store a

constant number of sets each of which is of form

Si := {gf(ri,1αi), . . . , gf(ri,�αi)},

where ri,j ’s are randomly chosen from Fp.
Step 2. We also compute and store a constant number of sets each of which

consists of
S0 := {gf(s1), . . . , gf(s�)},

where sk’s are known random values from Fp.
Step 3. We construct a random graph with L vertices: we add an edge between

vertices i and j, if Si and Sj collide.
Step 4. If f(ri,jαi) = f(sk) for some i, j and k, then αi is one of d roots of the

equation of degree d in variable αi:

f(ri,jαi) − f(sk) = 0.

Step 5. If f(ri,jαi) = f(ri′,j′αi′), for some i, j, i′ and j′, where αi is known,
then αi′ is one of d roots of the following equation of degree d in variable αi′ :

f̃(αi′) := f(ri,jαi) − f(ri′,j′αi′) = 0.

We recover all αi’s when they are connected into a component with known
discrete logs. In the next subsection, we analyze the complexity of the proposed
algorithm more precisely.

4.2 Complexity Analysis

We analyze the complexity of the proposed algorithm.

Theorem 2 (Algorithm for d-MDLPwAI). Let the notations as above. Let
f(x) be a polynomial of degree d over Fp. Define ρf := |{(x, y) ∈ Fp × Fp :
f(x) = f(y)}|. Given g, gαi , . . . , gαd

i for i = 1, 2, . . . , L, we have an algorithm
that computes all αi’s in Õ(max{√L · p2/ρf , L · d}) group exponentiations with
storage for Õ(

√
L · p2/ρf) elements in G.

Proof. Consider the complexity of each step in the proposed algorithm. Through-
out the paper, we denote M(d) by the time complexity multiplying two poly-
nomials of degree d over Fp (typically, we will take M(d) = O(d log d log log d)
using the Schönhage-Strassen method).

In Step 2, we compute f(s1), . . . , f(s�) using fast multipoint evaluation
method. It takes O(�/d · M(d) log d) = O(� log2 d log log d) operations in Fp if
� ≥ d. Otherwise, the cost is bounded by O(M(d) log d) = O(d log2 d log log d)
operations in Fp. Then compute gf(s1), . . . , gf(s�) in O(�) exponentiations in G.

In Step 1, we use fast multipoint evaluation method in the exponent as
described in [10, Theorem 2.1], which is the following: given gF0 , . . . , gFd , where

182 T. Kim

Fi is the coefficient of xi of a polynomial F (x) ∈ Fp[x], and given random ele-
ments r1, . . . , rd ∈ Fp, it computes gF (r1), . . . , gF (rd) in O(M(d) log d) operations
in G.

In our case, for given g, gαi , . . . , gαd
i and f(x) = a0+· · ·+adx

d, we set fi(x) :=
f(αix) = a0 + (a1αi)x + · · · + (adα

d
i)x

d and compute ga0 , (gαi)a1 , . . . , (gαd
i)ad in

O(d) exponentiations in G for each i. It totally costs O(L · d) exponentiations
for all i = 1, . . . , L. Applying Theorem 2.1 in [10] to each polynomial fi(x), if
� ≥ d, we compute

Si = {gfi(ri,1), . . . , gfi(ri,�)} = {gf(ri,1αi), . . . , gf(ri,�αi)}

in O(�/d · M(d) log d) operations in G for each i. It costs O(L · � log2 d log log d)
operations overall for all i = 1, . . . , L. Otherwise, if � ≤ d, then this step costs
O(L · d logd log log d) operations.

In Step 4 and Step 5, the cost takes O(M(d) log d log(dp)) field operations on
average [18] to compute roots of equation of degree d over Fp. For each equation,
we need to find αi among at most d possible candidates. It takes O(d) operations.
These steps need to be done L times since we have L equations to be solved.

Consequently, to recover all αi’s, it takes overall Õ(max{L·�, L·d}) operations
with O(L · �) storage. Now it remains to determine the value of �. To this end,
we need to clarify the probability of a collision between Si and Sj (for i �= j) in
Step 3. It leads us to consider non-uniform birthday problem of two types. We
will discuss on details for this in Appendix B.

We heuristically assume that the probability of a collision between Si and
Sj in Step 3 is equiprobable for any i �= j and we denote this probability by ω3.
By Corollary 1 in Appendix B, the probability is given by ω = Θ(�2 · ρf/p2)
for large p. Then the expected number of edges in the graph in Step 3 will be
(
L
2

) · ω ≈ L2ω
2 ≈ L2�2

2 · ρf

p2 . We require this value to be larger than 2L ln L to
connect all connected components in the graph (see [7]), i.e.

� ≥ 2

√
p2

ρf
· ln L

L
.

If we take � = 2
√

p2

ρf
· lnL

L , the overall time complexity becomes (without log

terms) Õ(max{L · �, L · d}) = Õ
(
max

{√
L · p2/ρf , L · d

})
with storage for

Õ(L · �) = Õ
(√

L · p2/ρf

)
elements in G. ��

Remark 4. In general, the computation of ρf seems relatively not so obvious.
However, for some functions f which are useful for our purpose, it can be effi-
ciently computable. See Sect. 4.3.

3 The assumption is reasonable, since every exponents of the elements in Si’s are
randomly chosen from Fp, i.e. the sets Si’s are independent from each other. Observe
that this does not conflict with Remark 2.

Multiple Discrete Logarithm Problems with Auxiliary Inputs 183

If L ≤ p2

d2·ρf
, then the time complexity of the algorithm is given

by Õ
(√

L · p2/ρf

)
. Note that this value is always between Õ

(√
L · p

d

)
and

Õ(
√

L · p). In the next subsection, we observe that one can find polynomials
f with ρf ≈ C · dp for some constant C in the case of d | p ± 1. In such cases,
the proposed algorithm has a running time of Õ(

√
L · p/d) whenever L ≤ p

C·d3 .
It should be compared that application of Cheon’s (p + 1)-algorithm failed

to achieve the lower bound complexity Õ(
√

L · p/d) in the case of d | p + 1 (see
Appendix A).

4.3 Explicit Choices of Polynomials for Efficient Algorithms in the
Case Of d | P ± 1

For efficiency of the algorithm, we require a polynomial f(x) with large ρf . In
particular, ρf becomes larger as the map x �→ f(x), restricted on Fp or a large
subset of Fp, has a smaller value set. See the examples below. For details on
choices of these polynomials, refer to [10].

d | p−1Case. Let f(x) = xd. Then the map by f is d-to-1 except at x = 0. Then
we have ρf = 1 + d(p − 1) ≈ dp. In this case, the complexity of our algorithm
becomes Õ

(√
L · p/d

)
for L ≤ p/d3.

d | p + 1Case. Let f(x) = Dd(x, a) be the Dickson polynomial for a nonzero
element a ∈ Fp, where

Dd(x, a) =
�d/2�∑

k=0

d

d − k

(
d − k

k

)

(−a)kxd−2k.

If d | p + 1, then by [8,12], we have ρf = (d+1)p
2 + O(d2) ≈ dp

2 . In this case, our
algorithm has the complexity of Õ(

√
L · p/d) for L � p/(2d3).

5 Conclusion

In this paper, we proposed algorithms for the MDLPwAI based on two different
approaches. These algorithms cover all extensions of existing DLPwAI-solving
algorithms, since, up to our knowledge, there are only two (efficient) approaches
solving the DLPwAI: Cheon’s algorithm and Kim and Cheon’s algorithm.

Our analysis shows that our algorithms have the best running time of either
Õ(max{√L · p/d,

√
L · d}) when d | p − 1, or Õ(max{√L · p/d, L · d}) when

d | p + 1. It shows that the choice of the prime p should be chosen carefully so
that both of p + 1 and p − 1 have no small divisors. Readers might refer to [5,6]
for careful choices of such prime p.

However, our second algorithm is based on some heuristics and requires rel-
atively large amount of memory. Thus, it would be a challenging question either
to reduce the storage requirement in the algorithm, or to make the algorithm
more rigorous.

184 T. Kim

It would be also interesting to determine the lower bound complexity in the
generic group model for solving the multiple DLPwAI. A very recent result [19]
showed that at least Ω(

√
L · p) group operations are required to solve the L

multiple DLP in the generic group model. Recall that the generic lower bound
for the DLPwAI is Ω(

√
p/d). Then it is natural to ask the following questions.

What is the lower bound complexity in the generic group model to solve the
multiple DLPwAI? Do we need at least Ω(

√
L · p/d) operations for solving the

multiple DLPwAI?

Acknowledgement. The author would like to thank Pierre-Alain Fouque, Soojin
Roh, Mehdi Tibouchi, and Aaram Yun for their valuable discussion. He also would like
to extend his appreciation to anonymous reviewers who further improved this paper.

A A Failed Approach for MDLPwAI When d | P + 1

Fp2-Discrete Logarithm Problem in the Exponent. To define Fp2 -
(M)DLPX, we introduce the following definition4.

Definition 1. Let G = 〈g〉 be a group of prime order p. Let Fp2 = Fp[θ] =
Fp[x]/(x2 − κ) for some quadratic non-residue κ ∈ Fp. For γ = γ0 + γ1θ ∈ Fp2 ,
we define gγ = (gγ0 , gγ1) with abuse of notations. For g := (g0, g1) ∈ G × G, we
define

gγ = gγ0+γ1θ = (gγ0
0 gκγ1

1 , gγ1
0 gγ0

1), where θ2 = κ.

One can readily check that (gγ)δ = (gγ0 , gγ1)δ = (gγ0δ0+κγ1δ1 , gγ0δ1+γ1δ0) = gγδ,
where δ = δ0 + δ1θ. Now we define Fp2 -(M)DLPX.

– The Fp2 -Discrete Logarithm Problem in the Exponent (Fp2-DLPX) in G is
defined as follows: Let χ ∈ Fp2 be an element of multiplicative order N , i.e.
N | p2 − 1. Given g ∈ G and gχn ∈ G × G and χ ∈ Fp2 , compute n ∈ ZN .

– The Fp2 -Multiple Discrete Logarithm Problem in the Exponent (Fp2-
MDLPX) in G is: Given g ∈ G, gχn1

, . . . , gχnL ∈ G × G and χ ∈ Fp2 , to
solve n1, . . . , nL ∈ ZN . In both cases, the Fp2 -(M)DLPX is said to be defined
over ZN .

Observe that generic approaches to solve the (M)DLPX described in Sects. 2 and
3.2 also apply to solve the Fp2 -(M)DLPX.

A Failed Approach when d | p + 1. We consider the MDLPwAI in the case
of d | p + 1. Recall Cheon’s (p + 1) algorithm [5,6] which solves 2d-DLPwAI.
Let g, gαi , . . . , gα2d

i , for i = 1, 2, . . . , L, be given. We try to solve the prob-
lem as follows: For each i = 1, 2, . . . , L, let βi := (1 + αiθ)p−1 ∈ Fp2 = Fp[θ]
and let ξ ∈ Fp2 an element of multiplicative order (p + 1)/d. We compute

gi := g(1−κα2
i)

d

and gξki

i = g
βd

i
i := (gf0(αi), gf0(αi)) for the given elements

4 This notion can be found in [5,6] when he solves DLPwAI using Pollard’s lambda
algorithm. We simply formalize them.

Multiple Discrete Logarithm Problems with Auxiliary Inputs 185

g, gαi , . . . , gα2d
i , where βd

i = 1
(1−κα2

i)
d {f0(αi)+f1(αi)θ}. The remaining task is to

solve k1, . . . , kL ∈ Z(p+1)/d. This translates to solve L instances of the Fp2 -DLPX,

say (g1, g
ξk1

1), (g2, g
ξk2

2), . . . , (gL, gξkL

L). Note that, however, these L instances
cannot be solved efficiently in a batch computation based on our MDLPX algo-
rithms, since all the bases of the instances are not the same.

B Non-uniform Birthday Problem: Girls and Boys

In this section, we consider the probability of a collision in Step 3, Sect. 4.1.
More generally, we consider non-uniform birthday problem of two types. The
main goal in this section is to prove the following theorem.

Theorem 3. For a positive integer N and i ∈ {1, 2, . . . , N}, assume that the
probability of a randomly chosen element from the set {1, 2, . . . , N} to be i is ωi.
Let T1 (respectively, T2) be a set consisting of �1 (reps. �2) elements randomly
chosen from {1, 2, . . . , N}. Then the probability ω that T1 and T2 have an element
in common satisfies

�1�2 ·
N∑

i=1

ω2
i ≥ ω ≥ �1�2 ·

N∑

i=1

ω2
i −

(

�1 ·
(

�2
2

)

+ �2 ·
(

�1
2

))

·
N∑

i=1

ω3
i

+
(

�1
2

)(
�2
2

)
⎛

⎝
N∑

i=1

ω4
i −

∑

1≤i<j≤N

ω2
i ω2

j

⎞

⎠. (1)

Proof. For each i ∈ {1, 2, . . . , N}, let B
(�1,�2)
i be the event that two sets T1 and

T2 have the element i in common. Then the probability ω that T1 and T2 have
at least one element in common is given by

ω = Pr[B(�1,�2)
1 ∪ · · · ∪ B

(�1,�2)
N].

From now on, we shall omit superscript in B
(�1,�2)
i and simply denote it by Bi.

To bound the value ω, we use Bonferroni inequality,

N∑

i=1

Pr[Bi] −
∑

1≤i<j≤N

Pr[Bi ∩ Bj] ≤ ω ≤
N∑

i=1

Pr[Bi]5.

5 It is easy to check the lower bound inequality. Assume that Pr[B1 ∪ B2] ≥
Pr[B1] + Pr[B2] − Pr[B1 ∩ B2] (indeed the equality holds in this case). Then to
see that

Pr[(B1 ∪ B2) ∪ B3] = Pr[B1 ∪ B2] + Pr[B3] − Pr[(B1 ∪ B2) ∩ B3]

≥ Pr[B1] + Pr[B2] + Pr[B3] − Pr[B1 ∩ B2] − Pr[B1 ∩ B3] − Pr[B2 ∩ B3],

it is enough to check that

Pr[(B1 ∪ B2) ∩ B3] = Pr[(B1 ∩ B3) ∪ (B2 ∩ B3)] ≤ Pr[B1 ∩ B3] + Pr[B2 ∩ B3].

186 T. Kim

Now apply the induction on N .
We shall investigate bounds on Pr[Bi] and Pr[Bi ∩ Bj] in the followings.
For each i, the set T1 with �1 elements has the element i with probability

1 − (1 − ωi)�1 and similarly for T2. Thus both of T1 and T2 have the element i
with probability Pr[Bi] =

(
1 − (1 − ωi)�1

) · (1 − (1 − ωi)�2
)
. Using the inequality

1 − nx ≤ (1 − x)n ≤ 1 − nx +
(
n
2

)
x2 for 0 ≤ x ≤ 1 and n > 1, we have

(

�1ωi −
(

�1
2

)

ω2
i

)

·
(

�2ωi −
(

�2
2

)

ω2
i

)

≤ Pr[Bi] ≤ �1�2 · ω2
i .

Furthermore, we have Pr[Bi ∩ Bj] ≤ (
�1
2

)(
�2
2

)
ω2

i ω2
j , since T1 has the element

i and j with probability at most
(
�1
2

)
ωiωj and similarly for T2.

Then the upper bound for ω directly comes from the upper bound for Pr[Bi]
and the lower bound comes from

ω ≥
N∑

i=1

Pr[Bi] −
∑

1≤i<j≤N

Pr[Bi ∩ Bj]

≥
N∑

i=1

(

�1ωi −
(

�1
2

)

ω2
i

)

·
(

�2ωi −
(

�2
2

)

ω2
i

)

−
∑

i<j

(
�1
2

)(
�2
2

)

ω2
i ω2

j .

This concludes the proof. ��

Corollary 1. Let W :=
∑N

i=1 ω2
i in Theorem 3. If � = �1 = �2 = O

(√
1
W

)
and

W → 0, we have

�2W − (�2W)2

8
+ O

(1√
W

) ≤ ω ≤ �2W.

Proof. Evaluating � = �1 = �2 in the right most side of Eq. (1), we have

ω ≥ �2W − �2(� − 1)
N∑

i=1

ω3
i +

�2(� − 1)2

4

(
3
2

∑

i

ω4
i − 1

2
W 2

)

≥ �2W − �3
N∑

i=1

ω3
i − 1

8
(�2W)2.

In the first inequality, we used that
∑

i<j ω2
i ω2

j = 1
2

[(∑
i ω2

i

)2 − ∑
i ω4

i

]
. To

see that �3
∑

i ω3
i ≤ O

(
1√
W

)
, it is enough to check that

∑
i ω3

i =
∑

i ω2
i ωi =

∑
i ω2

i · ∑
i ωi − ∑

i	=j ω2
i ωj ≤ ∑

i ω2
i = W (recall that

∑
i ωi = 1). ��

Return to our interest. Intrinsically, in our application (Sect. 4), we consider the
intersection between two sets T1 := {t1, . . . , t�} = {f(r1), . . . , f(r�)} and T2 :=
{t′1, . . . , t

′
�} = {f(r′

1), . . . , f(r′
�)} for a degree d polynomial f(x) ∈ Fp[x]. This can

be regarded as non-uniform birthday problem described in Theorem 3 similarly

Multiple Discrete Logarithm Problems with Auxiliary Inputs 187

as in [10]: An element t ∈ T1 (or t′ ∈ T2) is randomly chosen from Fp with
the probability |f−1(t)|

p . Let Ri := |{t ∈ Fp : |f−1(t)| = i}| for a non-negative
integer i. We have Ri = 0 for i > d since deg(f) = d. Then we might say that
an element in T1 (or T2) is drown by following the probability distribution (with
proper rearrange)

(ω1, . . . , ωp) =
(
0, . . . , 0
︸ ︷︷ ︸

R0

,
1
p
, . . . ,

1
p

︸ ︷︷ ︸
R1

,
2
p
, . . . ,

2
p

︸ ︷︷ ︸
R2

, · · · ,
d

p
, . . . ,

d

p
︸ ︷︷ ︸

Rd

)
.

Then W =
∑p

i=1 ω2
i =

∑d
i=1 i2Ri

p2 = ρf

p2 , where ρf := |{(x, y) ∈ Fp × Fp :

f(x) = f(y)}|. In our case, we usually take � = 2
√

p2

ρf
· lnL

L = O(
√

1/W) (see
the proof of Theorem 3), where L is the constant given by the number of the
target discrete logarithms. Then, by Corollary 1, we roughly have �2W− (�2W)2

8 ≤
ω ≤ �2W for large enough p, i.e. ω = Θ(�2W) (using x − x2/8 ≥ (7/8)x for
0 ≤ x ≤ 1). Consequently, this gives what we want for the analysis.

References

1. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

2. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004)

3. Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with
short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol.
3621, pp. 258–275. Springer, Heidelberg (2005)

4. Brown, D.R.L., Gallant, R.P.: The static Diffie-Hellman problem. IACR Cryptol-
ogy ePrint Archive (2004). http://eprint.iacr.org/2004/306

5. Cheon, J.H.: Security analysis of the strong Diffie-Hellman problem. In: Vaude-
nay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 1–11. Springer, Heidelberg
(2006)

6. Cheon, J.H.: Discrete logarithm problems with auxiliary inputs. J. Cryptol. 23(3),
457–476 (2010)

7. Fouque, P.-A., Joux, A., Mavromati, C.: Multi-user collisions: applications to dis-
crete logarithm, even-mansour and PRINCE. In: Sarkar, P., Iwata, T. (eds.) ASI-
ACRYPT 2014. LNCS, vol. 8873, pp. 420–438. Springer, Heidelberg (2014)

8. Gomez-Calderon, J., Madden, D.J.: Polynomials with small value set over finite
fields. J. Number Theory 28, 167–188 (1988)

9. Kijima, S., Montenegro, R.: Collision of random walks and a refined analysis of
attacks on the discrete logarithm problem. In: Katz, J. (ed.) PKC 2015. LNCS,
vol. 9020, pp. 127–149. Springer, Heidelberg (2015)

10. Kim, T., Cheon, J.H.: A new approach to discrete logarithm problem with auxiliary
inputs. IACR Cryptology ePrint Archive (2012). http://eprint.iacr.org/2012/609

http://eprint.iacr.org/2004/306
http://eprint.iacr.org/2012/609

188 T. Kim

11. Kuhn, F., Struik, R.: Random walks revisited: extensions of Pollard’s Rho algo-
rithm for computing multiple discrete logarithms. In: Vaudenay, S., Youssef, A.M.
(eds.) SAC 2001. LNCS, vol. 2259, pp. 212–229. Springer, Heidelberg (2001)

12. Mit’kin, D.A.: Polynomials with minimal set of values and the equation f(x) = f(y)
in a finite prime field. Matematicheskie Zametki 38(1), 3–14 (1985)

13. Mitsunari, S., Sakai, R., Kasahara, M.: A new traitor tracing. IEICE Trans. Fun-
dam. Electron. Commun. Comput. Sci. 85(2), 481–484 (2002)

14. Pohlig, S.C., Hellman, M.E.: An improved algorithm for computing logarithms
over GF (p) and its cryptographic significance (corresp.). IEEE Trans. Inf. Theory
24(1), 106–110 (1978)

15. Pollard, J.M.: Kangaroos, monopoly and discrete logarithms. J. Cryptol. 13(4),
437–447 (2000)

16. Sakemi, Y., Izu, T., Takenaka, M., Yasuda, M.: Solving a DLP with auxiliary input
with the ρ-algorithm. In: Jung, S., Yung, M. (eds.) WISA 2011. LNCS, vol. 7115,
pp. 98–108. Springer, Heidelberg (2012)

17. van Oorschot, P.C., Wiener, M.J.: Parallel collision search with cryptanalytic appli-
cations. J. Cryptol. 12(1), 1–28 (1999)

18. von zur Gathen, J., Gerhard, J.: Modern Computer Algebra. Cambridge University
Press, Cambridge (2003)

19. Yun, A.: Generic hardness of the multiple discrete logarithm problem. In: Oswald,
E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 817–836. Springer,
Heidelberg (2015)

Solving Linear Equations Modulo Unknown
Divisors: Revisited

Yao Lu1,2, Rui Zhang1(B), Liqiang Peng1, and Dongdai Lin1

1 State Key Laboratory of Information Security (SKLOIS), Institute of Information
Engineering, Chinese Academy of Sciences, Beijing 100093, China
lywhhit@gmail.com, {r-zhang,pengliqiang,ddlin}@iie.ac.cn

2 The University of Tokyo, Tokyo, Japan

Abstract. We revisit the problem of finding small solutions to a col-
lection of linear equations modulo an unknown divisor p for a known
composite integer N . In CaLC 2001, Howgrave-Graham introduced an
efficient algorithm for solving univariate linear equations; since then, two
forms of multivariate generalizations have been considered in the context
of cryptanalysis: modular multivariate linear equations by Herrmann and
May (Asiacrypt’08) and simultaneous modular univariate linear equa-
tions by Cohn and Heninger (ANTS’12). Their algorithms have many
important applications in cryptanalysis, such as factoring with known
bits problem, fault attacks on RSA signatures, analysis of approximate
GCD problem, etc.

In this paper, by introducing multiple parameters, we propose
several generalizations of the above equations. The motivation behind
these extensions is that some attacks on RSA variants can be reduced
to solving these generalized equations, and previous algorithms do not
apply. We present new approaches to solve them, and compared with
previous methods, our new algorithms are more flexible and especially
suitable for some cases. Applying our algorithms, we obtain the best ana-
lytical/experimental results for some attacks on RSA and its variants,
specifically,
– We improve May’s results (PKC’04) on small secret exponent attack

on RSA variant with moduli N = prq (r ≥ 2).
– We experimentally improve Boneh et al.’s algorithm (Crypto’98) on

factoring N = prq (r ≥ 2) with known bits problem.
– We significantly improve Jochemsz-May’ attack (Asiacrypt’06) on

Common Prime RSA.
– We extend Nitaj’s result (Africacrypt’12) on weak encryption expo-

nents of RSA and CRT-RSA.

Keywords: Lattice-based analysis · Linear modular equations · RSA

1 Introduction

Lattice-based cryptanalysis is a very useful tool in various cryptographic sys-
tems, e.g., historically, it was used to break the Merkle-Hellman knapsack cryp-
tosystem [34]. The basic idea of the lattice-based approach is that if the system
c© International Association for Cryptologic Research 2015
T. Iwata and J.H. Cheon (Eds.): ASIACRYPT 2015, Part I, LNCS 9452, pp. 189–213, 2015.
DOI: 10.1007/978-3-662-48797-6 9

190 Y. Lu et al.

parameters of the target problem can be transformed into a basis of a certain
lattice, one can find some short vectors in the desired lattice using dedicated
algorithms, like the LLL-algorithm [20]. One may then hope that the secret
key can be recovered once the solutions from these short vectors are extracted.
Although in most cases this assumption is not rigorous in theory, it usually works
well in practice.

In the above approach, a key step is to construct the desired lattice. In
1997, Coppersmith [5] presented a subtle lattice construction method, and used
it to find small roots of modular equations of special forms. Since then, this
approach has been widely applied in the analysis of RSA. Among them, one of
the most important applications is to solve approximate integer common divisor
problem (ACDP), namely, given two integers that are near-multiples of a hidden
integer, output that hidden integer. We note that ACDP was first introduced by
Howgrave-Graham [15], which in turn has many important applications such as
building fully homomorphic cryptosystems [37].

Let us briefly explain Howgrave-Graham’s method. First, one reduces ACDP
to solving a univariate modular polynomial:

f(x) = x + a mod p

where a is a given integer, and p (p ≥ Nβ for some 0 < β ≤ 1) is unknown that
divides the known modulus N . Then he proposed a polynomial-time algorithm
to find small roots of the univariate polynomial over integer. Note that this
type of polynomial can also be applied in other RSA-related problems, such as
factoring with known bits problem [21].

In 2003, May [21] generalized Howgrave-Graham’s strategy by using a uni-
variate linear polynomial to an arbitrary monic modular polynomial of degree
δ, i.e. f(x) = xδ + aδ−1x

δ−1 + . . . + a0 mod p where δ ≥ 1. As an important
application, this algorithm can be used to solve the problem of factoring with
known bits on Takagi’s moduli N = prq (r > 1) [2].

In Asiacrypt’08, Herrmann and May [12] extended the univariate linear mod-
ular polynomial to polynomials with an arbitrary number of n variables. They
presented a polynomial-time algorithm to find small roots of linear modular-
polynomials

f(x1, . . . , xn) = a0 + a1x1 + · · · + anxn mod p

where p is unknown and divides the known modulus N . Naturally, they applied
their results to the problem of factoring with known bits for RSA modulus N =
pq where those unknown bits might spread across arbitrary number of blocks of
p. Besides, Herrmann-May’s algorithm also can be used to cryptanalyze Multi-
prime Φ-Hiding Assumption [11,19], and attack CRT-RSA signatures [6,7].

On the other hand, in 2012, Cohn and Heninger [4] generalized Howgrave-
Graham’s equations to the simultaneous modular univariate linear equations

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f1(x1) = a1 + x1 = 0 mod p
f2(x2) = a2 + x2 = 0 mod p

...
fn(xn) = an + xn = 0 mod p

(1)

Solving Linear Equations Modulo Unknown Divisors: Revisited 191

where a1, . . . , an are given integers, and p (p ≥ Nβ for some 0 < β < 1) is
an unknown factor of known modulus N . These equations have many appli-
cations in public-key cryptanalysis. For example, in 2010, van Dijk et al. [37]
introduced fully homomorphic encryption over the integers, which the security
of their scheme is based on the hardness of solving Eq. (1). In 2011, Sarkar and
Maitra [32] investigated implicit factorization problem [24] by solving Eq. (1). In
2012, Fouque et al. [10] proposed fault attacks on CRT-RSA signatures, which
can also be reduced to solving Eq. (1).

1.1 Our Contributions

In this paper, we focus on the following three types of extensions of previous
equations.

The first is an extension of Herrmann-May’s equation, described in Sect. 3,
we focus on the equations

f(x1, x2, . . . , xn) = a0 + a1x1 + · · · + anxn mod pv (2)

for some unknown divisor pv (v ≥ 1) and known composite integer N (N ≡
0 mod pu, u ≥ 1). Here u, v are positive integers. Note that if u = 1, v = 1, that
is exactly Herrmann-May’s equation [12].

The second is a special case of Eq. (2): a0 = 0, described in Sect. 4.
The last is a generalized version of Eq. (1), described in Sect. 5; we focus on

the equations ⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f1(x1) = a1 + x1 = 0 mod pr1

f2(x2) = a2 + x2 = 0 mod pr2

...
fn(xn) = an + xn = 0 mod prn

(3)

where p (p ≥ Nβ for some 0 < β < 1) is unknown that satisfies N = 0 mod pr

and a1, . . . , an, r, r1, . . . , rn are given integers. Here r, r1, . . . , rn are positive inte-
gers. Note that if r = r1 = · · · = rn = 1, that is exactly Eq. (1).

Notice that our generalized equations employ many parameters. The reason
why we introduce these parameters is based on the fact that some attacks on
RSA variants (such as Takagi’s RSA variant [35]) can be reduced to solving
this kind of equations. However, previous algorithms [4,12,23] do not seem to
work in this situation. The difficulty lies in how to wisely embed this algebraic
information in the lattice construction.

We solve the above equations by introducing new techniques. More precisely,
we present a novel way to select appropriate polynomials in constructing desired
lattice. Compared with previous algorithms, our algorithms are more flexible
and especially suitable for some cases. Applying our algorithms, we obtain the
best analytical/experimental results for some attacks on RSA and its variants.
We elaborate them below. We further conjecture that our new algorithms may
find new applications in various other contexts.

192 Y. Lu et al.

Small Secret Exponent Attack on Multi-power RSA. In multi-power
RSA algorithm, suppose that the public key is (N, e), where N = prq for
some fixed r ≥ 2 and p, q are of the same bit-size. The secret key d satisfies
ed ≡ 1 mod φ(N), where φ(N) is Euler’s φ-function. In Crypto’99, Takagi [35]
showed that when the secret exponent d < N

1
2(r+1) , one can factorize N . Later

in PKC’04, May [22] improved Takagi’s bound to N
max{ r

(r+1)2
,
(r−1)2

(r+1)2
}. In this

paper, we further improve May’s bound to N
r(r−1)
(r+1)2 , which is better than May’s

result when r > 2, and is also independent of the value of public exponent e.
Similar as [22], our result also directly implies an improved partial key exposure
attack for secret exponent d with known most significant bits (MSBs) or least
significant bits (LSBs). Our improvements are based on our algorithm of solving
the first type equations, with the observation that gcd(ed − 1, N) = pr−1 but
N ≡ 0 mod pr.

Factoring Multi-power Moduli with Known Bits. In 1999, Boneh et al. [2]
extended factoring with high bits problem to moduli of the form N = prq(r ≥ 2).
They showed that this moduli can be factored in polynomial-time in the bit-
length of N if r = Ω(

√
log N

log log N). Applying our algorithm of solving the first
type equations, we can directly get another method to settle the problem of [2].
Though we can not get an asymptotic improvement, in practice, especially for
large r, our new method performs better than [2].

Weak Encryption Exponents of RSA and CRT-RSA. In Africacrypt’12,
Nitaj [26] presented some attacks on RSA and CRT-RSA (the public exponent
e and the private CRT-exponents dp and dq satisfy edp ≡ 1 mod (p − 1) and
edq ≡ 1 mod (q − 1)). His attacks are based on Herrmann-May’s technique [12]
for finding small solutions of modular equations. In particular, he reduced his
attacks to solving bivariate linear modular equations modulo unknown divisors:
ex + y ≡ 0 mod p for some unknown p that divides the known modulus N .
Noticing that his equations are homogeneous, we can improve his results with
our algorithm of solving second type equations.

Small Secret Exponent Attack on Common Prime RSA. We give a simple
but effective attack on an RSA variant called Common Prime RSA. This variant
was originally introduced by Wiener [38] as a countermeasure for his continued
fraction attack. He suggested to choose p and q such that p−1 and q −1 share a
large common factor. In 2006, Hinek [13] revisited the security of Common Prime
RSA, in the same year, Jochemsz and May [17] proposed a heuristic attack, and
showed that parts of key space suggested by Hinek is insecure. In this paper, we
further improve Jochemsz-May’s bound by using our algorithm of solving third
type equations.

Experimental Results. For all these attacks, we carry out experiments to
verify the validity of our algorithms. These experimental results show that our
attacks are effective.

Solving Linear Equations Modulo Unknown Divisors: Revisited 193

2 Preliminary

In 1982, Lenstra, Lenstra and Lovász proposed the LLL-algorithm [20] that
can find vectors in polynomial-time whose norm is small enough to satisfy the
following condition.

Lemma 1 (LLL [20]). Let L be a lattice of dimension w. Within polynomial-
time, LLL-algorithm outputs a set of reduced basis vectors vi, 1 � i � w that
satisfies

||v1|| � ||v2|| � · · · � ||vi|| � 2
w(w−1)

4(w+1−i) det(L)
1

w+1−i

In practice, it is widely known that the LLL-algorithm tends to output the
vectors whose norms are much smaller than theoretically predicted.

In 1997, Coppersmith [5] described a lattice-based technique to find small
roots of modular and integer equations. Later, Howgrave-Graham [14] refor-
mulated Coppersmith’s ideas of finding modular roots. The main idea of
Coppersmith’s method is to reduce the problem of finding small roots of
f(x1, . . . , xn) mod N to finding roots over the integers. Therefore, one can con-
struct a collection of polynomials that share a common root modulo Nm for
some well-chosen integer m. Then one can construct a lattice by defining a lat-
tice basis via these polynomial’s coefficient vectors. Using lattice basis reduction
algorithms (like LLL-algorithm [20]), one can find a number of linear equations
with sufficiently small norm. Howgrave-Graham [14] showed a sufficient condi-
tion to quantify the term sufficiently small. Next we review this useful lemma.

Let g(x1, · · · , xk) =
∑

i1,··· ,ik
ai1,··· ,ik

xi1
1 · · · xik

k . We define the norm of g by
the Euclidean norm of its coefficient vector: ||g||2 =

∑
i1,··· ,ik

a2
i1,··· ,ik

.

Lemma 2 (Howgrave-Graham [14]). Let g(x1, · · · , xk) ∈ Z[x1, · · · , xk] be
an integer polynomial that consists of at most w monomials. Suppose that

1. g(y1, · · · , yk) = 0 mod pm for | y1 |� X1, · · · , | yk |� Xk and
2. ||g(x1X1, · · · , xkXk)|| < pm

√
w

Then g(y1, · · · , yk) = 0 holds over integers.

Combining Lemmas 1 and 2, we can get following theorem.

Theorem 1 (Coppersmith [5], May [23]). Let N be an integer of unknown
factorization, which has a divisor p ≥ Nβ, 0 < β ≤ 1. Let f(x) be a univariate
monic polynomial of degree δ. Then we can find in time O(ε−7δ5 log9 N) all
solutions x0 for the equation

f(x) = 0 mod p with |x0| ≤ N
β2

δ −ε.

Additionally sometimes our attacks rely on a well-known assumption which was
widely used in the literatures [1,9,12].

194 Y. Lu et al.

Assumption 1. The lattice-based construction yields algebraically independent
polynomials. The common roots of these polynomials can be efficiently computed
using the Gröbner basis technique.

Note that the time complexity of Gröbner basis computation is in general doubly
exponential in the degree of the polynomials.

We would like to point out that our subsequent complexity considerations
solely refer to our lattice basis reduction algorithm, that turns the polynomial
f(x1, . . . , xn) mod N into the number of n polynomials over the integers. We
assume that the running time of the Gröbner basis computation is negligible
compared to the time complexity of the LLL-algorithm, since in general, our
algorithm yields more than the number of n polynomials, so one can make use
of these additional polynomials to speed up the Gröbner basis computation.

3 The First Type of Equations

In this section, we address how to solve f1(x) = a0 + a1x mod pv (v ≥ 1) for
some unknown p where pu divides a known modulus N (i.e. N ≡ 0 mod pu,
u ≥ 1). In particular, Howgrave-Graham’s result [15] can be viewed as a special
case of our algorithm when u = 1, v = 1.

3.1 Our Main Result

Theorem 2. For every ε > 0, let N be a sufficiently large composite integer (of
unknown factorization) with a divisor pu (p ≥ Nβ, u ≥ 1). Let f1(x) ∈ Z[x] be
a univariate linear polynomial whose leading coefficient is coprime to N . Then
one can find all the solutions y of the equation f1(x) = 0 mod pv with v ≥ 1,
|y| ≤ Nγ if γ < uvβ2 − ε. The time complexity is O(ε−7v2 log2 N).

Proof. Consider the following univariate linear polynomial:

f1(x) = a0 + a1x mod pv

where N is known to be a multiple of pu for known u and unknown p. Here
we assume that a1 = 1, since otherwise we can multiply f1 by a−1

1 mod N . Let
f(x) = a−1

1 f1(x) mod N .
We define a collection of polynomials as follows:

gk(x) := fk(x)Nmax{� v(t−k)
u �,0}

for k = 0, . . . ,m and integer parameters t and m with t = τm (0 ≤ τ < 1),
which will be optimized later. Note that for all k, gk(y) ≡ 0 mod pvt.

Let X := Nuvβ2−ε(= Nγ) be the upper bound on the desired root y. We will
show that this bound can be achieved for any chosen value of ε by ensuring that
m ≥ m∗ := �β(2u+v−uvβ)

ε � − 1

Solving Linear Equations Modulo Unknown Divisors: Revisited 195

N4 N4

fN4 ∗ XN4

f2N3 ∗ ∗ X2N3 0f3N2 ∗ ∗ ∗ X3N2

f4N2 ∗ ∗ ∗ ∗ X4N2

f5N ∗ ∗ ∗ ∗ ∗ X5N
f6 ∗ ∗ ∗ ∗ ∗ ∗ X6

f7 ∗ ∗ ∗ ∗ ∗ ∗ ∗ X7

f8 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ X8

Fig. 1. The matrix for the case β = 0.25, u = 3, v = 2, t = 6, m = 8

We build a lattice L of dimension d = m + 1 using the coefficient vectors of
gk(xX) as basis vectors. We sort these polynomials according to the ascending
order of g, i.e., gk < gl if k < l. Figure 1 shows an example for the parameters
β = 0.25, u = 3, v = 2, t = 6,m = 8.

From the triangular matrix of the lattice basis, we can compute the determi-
nant as the product of the entries on the diagonal as det(L) = XsNsN where

s =
m∑

k=0

k =
m(m + 1)

2

sN =
t−1∑

k=0

�v(t − k)
u

� =
t−1∑

k=0

(
v(t − k)

u
+ ck

)

=
vτm(τm + 1)

2u
+

t−1∑

k=0

ck

Here we rewrite � v(t−k)
u � as

(
v(t−k)

u + ck

)
where ck ∈ [0, 1). To obtain a polyno-

mial with short coefficients that contains all small roots over integer, we apply
LLL-basis reduction algorithm to the lattice L. Lemma 1 gives us an upper
bound on the norm of the shortest vector in the LLL-reduced basis; if the bound
is smaller than the bound given in Lemma2, we can obtain the desired polyno-
mial. We require the following condition:

2
d−1
4 det(L)

1
d <

Nvβτm

√
d

where d = m + 1. We plug in the values for det(L) and d, and obtain

2
m(m+1)

4 (m + 1)
m+1

2 X
m(m+1)

2 < Nvβτm(m+1)− vτm(τm+1)
2u −∑t−1

k=0 ck

To obtain the asymptotic bound, we let m grow to infinity. Note that for suffi-
ciently large N the powers of 2 and m+1 are negligible. Thus, we only consider
the exponent of N . Then we have

X < N2vβτ− vτ(τm+1)
u(m+1) − 2

∑t−1
k=0 ck

m(m+1)

196 Y. Lu et al.

Setting τ = uβ, and noting that
∑t−1

k=0 ck ≤ t1, the exponent of N can be lower
bounded by

uvβ2 − vβ(1 − uβ)
m + 1

− 2uβ

m + 1
We appropriate the negative term ∗

m+1 by ∗
m and obtain

uvβ2 − β(2u + v − uvβ)
m

Enduring that m ≥ m∗ will then gurantee that X satisfies the required bound
for the chosen value of ε.

The running time of our method is dominated by LLL-algorithm, which is
polynomial in the dimension of the lattice and in the maximal bit-size of the
entries. We have a bound for the lattice d

d = m + 1 ≥ �β(2u + v − uvβ)
ε

�

Since uβ < 1, then we obtain d = O(ε−1). The maximal bit-size of the entries is
bounded by

max{vt

u
log(N), duvβ2 log(N)} = max{vβd log(N), duvβ2 log(N)}

Since uβ < 1 and d = O(ε−1), the bit-size of the entries can be upperbounded by

max{O(vβε−1) log(N),O(vβε−1) log(N)} = O(vε−1 log(N))

Nguyen and Stehlé [25] proposed a modified version of the LLL-algorithm called
L2-algorithm. The L2-algorithm achieves the same approximation quality for a
shortest vectors as the LLL-algorithm, but has an improved worst case running
time anlaysis. Its running time is O(d5(d + log bd) log bd), where log bd is the
maximal bit-size of an entry in lattice. Thus, we can obtain the running time of
our algorithm

O
((

1
ε

)5 (
1
ε

+
v log N

ε

)
v log N

ε

)

Therefore, the running time of our algorithm is O(ε−7v2 log2 N). Eventually, the
vector output by LLL-algorithm gives a univariate polynomial g(x) such that
g(y) = 0, and one can find the root of g(x) over the integers. 	

Extension to Arbitrary Degree. We can generalize the result of Theorem 2
to univariate polynomials with arbitrary degree.

1 This estimation is rough, we can do it more precisely for specific parameters u, v.
For example, for v = 1, we can get

∑t−1
k=0 ck ≤ t

2
+ 1.

Solving Linear Equations Modulo Unknown Divisors: Revisited 197

Theorem 3. For every ε > 0, let N be a sufficiently large composite integer (of
unknown factorization) with a divisor pu (p ≥ Nβ, u ≥ 1). Let f1(x) ∈ Z[x] be
a univariate polynomial of degree δ whose leading coefficient is coprime to N .
Then one can find all the solutions y of the equation f1(x) = 0 (mod pv) with
v ≥ 1, |y| ≤ Nγ if γ < uvβ2

δ − ε. The time complexity is O(ε−7δ5v2 log2 N).

In the proof of Theorem 3, we use the following collection of polynomials:

gk(x) := xjfk(x)Nmax{� v(t−k)
u �,0}

for k = 0, . . . ,m, j = 0, . . . , δ − 1 and integer parameters t and m with t = τm
(0 ≤ τ < 1). The rest of the proof is the same as Theorem 2. We omit it here.

Specifically, the result in [23] can be viewed as a special case of our algorithm
when u = v.

Extension to More Variables. We also generalize the result of Theorem 2
from univariate linear equations to an arbitrary number of n variables x1, . . . , xn

(n ≥ 2).

Proposition 1. For every ε > 0, let N be a sufficiently large composite integer
(of unknown factorization) with a divisor pu (p ≥ Nβ, u ≥ 1). Furthermore,
let f1(x1, . . . , xn) ∈ Z[x1, . . . , xn] be a monic linear polynomial in n(n ≥ 2)
variables. Under Assumption 1, we can find all the solutions (y1, . . . , yn) of the
equation f1(x1, . . . , xn) = 0 (mod pv) with v ≥ 1, |y1| ≤ Nγ1 , . . . |yn| ≤ Nγn if

n∑

i=1

γi <
v

u

(
1 − (1 − uβ)

n+1
n − (n + 1)(1 − uβ)

(
1 − n

√
1 − uβ

))
− ε

The running time of the algorithm is polynomial in ε−n and ε−n log N .

Proof. We define the following collection of polynomials which share a common
root modulo pvt:

gi2,...,in,k = xi2
2 · · · xin

n fk
1 Nmax{� v(t−k)

u �,0}

for k = 0, ...,m where ij ∈ {0, . . . , m} such that
∑n

j=2 ij ≤ m − k, and the
integer parameter t = τm has to be optimized. The idea behind the above
transformation is that we try to eliminate powers of N in the diagonal entries
in order to keep the lattice determinant as small as possible.

Next we can construct the lattice L using the similar method of Herrmann-
May [12], therefore, the lattice has triangular form, then the determinant det(L)
is then simply the product of the entries on the diagonal:

det(L) =
n∏

i=1

X
sxi
i NsN

198 Y. Lu et al.

Let d denote the dimension of L, t = r · h + c (h, c ∈ Z and 0 ≤ c < r).
A straightforward but tedious computation yields that

sxi
=

(
m + n

m − 1

)

=
1

(n + 1)!
mn+1 + o(mn+1)

sN =
t−1∑

k=0

∑

0≤∑n
j=2 ij≤m−k

�v(t − k)
u

�

=
v

u

(n + 1)τ − 1 + (1 − τ)n+1

(n + 1)!
mn+1 + o(mn+1)

d =
(

m + n

m

)

=
1
n!

mn + o(mn)

To obtain the number of n polynomial with short coefficients that contains all
small roots over integer, we apply LLL-basis reduction algorithm to the lattice L.
Combining Lemma 1 with Lemma 2, we require the following condition:

2
d(d−1)

4(d+1−n) det(L)
1

d−n+1 <
Nvβτm

√
d

Let Xi = Nγi(1 ≤ i ≤ n). Combining the values with the above condition, we
obtain

n∑

i=1

γi <
v

u

(
1 − (1 − τ)n+1

)
− τv(n + 1)(

1
u

− β) − ε

By setting τ = 1 − n
√

1 − uβ, the condition reduces to

n∑

i=1

γi <
v

u

(
1 − (1 − uβ)

n+1
n − (n + 1)(1 − uβ)

(
1 − n

√
1 − uβ

))
− ε

The running time is dominated by the time to run LLL-lattice reduction on a
basis matrix of dimension d and bit-size of the entries. Since d = O(mn

n!) and
the parameter m depends on ε−1 only, therefore, our approach is polynomial in
logN and ε−n. Besides, our attack relies on Assumption 1. 	

3.2 Analysis of Multi-power RSA

We apply our algorithm to analyze an RSA variant, namely multi-power RSA,
with moduli N = prq (r ≥ 2). Compared to the standard RSA, the multi-power
RSA is more efficient in both key generation and decryption. Besides, moduli of
this type have been applied in many cryptographic designs, e.g., the Okamoto-
Uchiyama cryptosystem [27], or better known via EPOC and ESIGN [8], which
uses the modulus N = p2q.

Using our algorithm of Theorem2, we give two attacks on multi-power RSA:
small secret exponent attack and factoring with known bits.

Solving Linear Equations Modulo Unknown Divisors: Revisited 199

Small Secret Exponent Attack on Multi-power RSA. There are two
variants of multi-power RSA. In the first variant ed ≡ 1 mod pr−1(p− 1)(q − 1),
while in the second variant ed ≡ 1 mod (p−1)(q−1). In [16], the authors proved

that the second variant is vulnerable when d < N
2−√

2
r+1 .

In this section, we focus on the first variant. In Crypto’99, Takagi [35]
proved that when the decryption exponent d < N

1
2(r+1) , one can factorize

N in polynomial-time. Later, in PKC’04, May [22] improved Takagi’s bound

to N
max{ r

(r+1)2
,
(r−1)2

(r+1)2
}. Based on the technique of Theorem 2, we can further

improve May’s bound to N
r(r−1)
(r+1)2 .

Theorem 4. Let N = prq, where r ≥ 2 is a known integer and p, q are primes
of the same bit-size. Let e be the public key exponent and d be the private key
exponent, satisfying ed ≡ 1 mod φ(N). For every ε > 0, suppose that

d < N
r(r−1)
(r+1)2

−ε

then N can be factored in polynomial-time.

Proof. Since φ(N) = pr−1(p−1)(q−1), we have the equation ed−1 = kpr−1(p−
1)(q −1) for some k ∈ N. Then we want to find the root y = d of the polynomial

f1(x) = ex − 1 mod pr−1

with the known multiple (of unknown divisor p) N (N ≡ 0 mod pr). Let d ≈ N δ.
Applying Theorem2, setting β = 1

r+1 , u = r, v = r−1, we obtain the final result

δ < r(r−1)
(r+1)2 − ε 	

Recently, Sarkar [30,31] improved May’s bound for modulus N = prq, however,
unlike our method, his method can not applied for public key exponents e of
arbitrary size. In addition, we get better experimental results for the case of
r > 2 (see Sect. 3.2).

For small r, we provide the comparison of May’s bound, Sarkar’s bound, and
our bound on δ in Table 1. Note that for r = 2, we obtain the same result as
May’s bound.

Table 1. Comparisons of May’s bound, Sarkar’s bound and ours on δ

r 2 3 4 5 6 7 8 9

May’s bound 0.22 0.25 0.36 0.44 0.51 0.56 0.60 0.64

Sarkar’s bound [30,31] 0.39 0.46 0.50 0.54 0.57 0.51 0.53 0.54

Our bound 0.22 0.37 0.48 0.55 0.61 0.65 0.69 0.72

200 Y. Lu et al.

Partial Key-Exposure Attacks on Multi-power RSA. Similar to the
results of [22], the new attack of Theorem 4 immediately implies partial key
exposure attacks for d with known MSBs/LSBs. Following we extend the app-
roach of Theorem 4 to partial key exposure attacks.

Theorem 5 (MSBs). Let N = prq, where r ≥ 2 is a known integer and p, q
are primes of the same bit-size. Let e be the public key exponent and d be the
private key exponent, satisfying ed = 1 mod φ(N). For every ε > 0, given d̃ such

that |d − d̃| < N
r(r−1)
(r+1)2

−ε, then N can be factored in polynomial-time.

Proof. We have that

e(d − d̃) + ed̃ − 1 ≡ 0 mod pr−1

Then we want to find the root y = d − d̃ of the polynomial

f1(x) = ex + ed̃ − 1 mod pr−1

with the known multiple (of unknown divisor p) N (N ≡ 0 mod pr). Applying
Theorem 2, setting β = 1

r+1 , u = r, v = r − 1, we obtain the final result. 	

Theorem 6 (LSBs). Let N = prq, where r ≥ 2 is a known integer and p, q are
primes of the same bit-size. Let e be the public key exponent and d be the private
key exponent, satisfying ed = 1 mod φ(N). For every ε > 0, given d0,M with

d = d0 mod M and M > N
3r+1

(r+1)2
+ε, then N can be factored in polynomial-time.

Proof. Rewrite d = d1M + d0, then we have

ed1M + ed0 − 1 ≡ 0 mod pr−1

Then we want to find the root y = d1 of the polynomial

f1(x) = eMx + ed0 − 1 mod pr−1

with the known multiple (of unknown divisor p) N (N ≡ 0 mod pr). Applying
Theorem 2 and setting β = 1

r+1 , u = r, v = r − 1, we obtain the final result. 	

We have implemented our algorithm in Magma 2.11 computer algebra system
on our PC with Intel(R) Core(TM) Duo CPU (2.53GHz, 1.9GB RAM Windows
7). Table 2 shows the experimental results for multi-power RSA modulus N with
512-bit primes p, q. We compute the number of bits that one should theoretically
be able to attack for d (column d-pred in Table 2). In all the listed experiments,
we can recover the factorization of N . Note that our attack is also effective for
large e.

In [31], for 1024-bit N = p3q, Sarkar considered δ = 0.27 using a lattice with
dimension 220, while we can achieve δ = 0.359 using a lattice with dimension 41.
Besides, Sarkar also stated that “for r = 4, 5, lattice dimension in our approach
becomes very large to achieve better results. Hence in these cases we can not
present experiment results to show the improvements over existing results.” In
Table 2, we can see that our experimental results are better than Sarkar’s for
r > 2.

Solving Linear Equations Modulo Unknown Divisors: Revisited 201

Table 2. Experimental results of the attack from Theorem 4

N (bits) r e (bits) d-pred (bits) (m, t) dim (L) d-exp (bits) δ Time (sec)

1536 2 1536 341 (30, 20) 31 318 0.207 3155.687

2048 3 2048 768 (20, 15) 21 706 0.345 749.167

2048 3 4096 768 (20, 15) 21 706 0.345 745.170

2048 3 2048 768 (40, 30) 41 735 0.359 37800.462

2560 4 2560 1228 (20, 16) 21 1136 0.444 1245.754

2560 4 2560 1228 (30, 24) 31 1167 0.456 12266.749

Factoring Multi-power Moduli with Known Bits. In 1985, Rivest and
Shamir [28] first introduced the factoring with high bits known problem, they
presented an algorithm that factors N = pq given 2

3 -fraction of the bits of p.
Later, Coppersmith [5] gave a improved algorithm when half of the bits of p
are known. In 1999, Boneh, Durfee and Howgrave-Graham [2] (referred as BDH
method) extended Coppersmith’s results to moduli N = prq(r ≥ 2). Basically,
they considered the scenario that a few MSBs of the prime p are known to the
attacker. Consider the univariate polynomial

f(x) = (p̃ + x)r mod pr

For simplicity, we assume that p and q are of the same bit-size. Using the algo-
rithm of Theorem 1, Boneh et al. showed that they can recover all roots x0 with

|x0| ≤ N
β2

δ −ε = N
r

(r+1)2
−ε

in time O(ε−7 log2 N)2. Thus we need a 1
r+1 -fraction of p in order to factor N

in polynomial-time.
Applying our algorithm of Theorem2, and setting β = 1

r+1 , u = r, v = 1, we
can also find all roots x0 with

|x0| ≤ Nuvβ2−ε = N
r

(r+1)2
−ε

in time O(ε−7 log2 N).
Note that we obtain the same asymptotic bound and running time complexity

as BDH method. But, as opposed to BDH method, our algorithm is more flexible
in choosing the lattice dimension. For example, in the case of r = 10, BDH
method only works on the lattice dimension of 11∗m (m ∈ Z

+) while our method
can work on any lattice dimension m (m ∈ Z

+). Figure 2 shows a comparsion
of these two methods in terms of the size of p̃ (p̃ = Nγ) that can be achieved.
We can see that to achieve the same γ, we require smaller lattice dimensions
than BDH method. Our algorithm is especially useful for large r. Actually our
lattice is the same to the lattice of BDH method if the lattice dimensions are
11 ∗ m (m ∈ Z

+).
2 Since this univariate equation is very special: f(x) = (x+a)r, in fact we can remove

the quantity r5 from the time complexity of Theorem 1.

202 Y. Lu et al.

11 22 33 44

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

γ

dim(L)

 Our Method
 BDH Method

Fig. 2. Comparison of the achievable bound depending on the lattice dimension: the
case of r = 10.

Table 3. Comparison of our experimental results with BDH method.

r Theo. Expt. BDH method Our method

Dim Time (in seconds) Dim Time (in seconds)

5 84 164 30 112.914 26 29.281

5 84 134 48 2874.849 46 1343.683

10 46 186 44 670.695 34 259.298

10 46 166 44 1214.281 41 917.801

We also give some experimental results. Table 3 shows the experimental
results for multi-power RSA modulus N(N = prq) with 500-bit primes p, q.
These experimental data confirmed our theoretical analysis. It is obvious that
our method performs better than BDH method in practice.

4 The Second Type of Equations

In this section, we study the problem of finding small roots of homogeneous
linear polynomials f2(x1, x2) = a1x1 + a2x2 mod pv (v ≥ 1) for some unknown
p where pu divides a known modulus N (i.e. N ≡ 0 mod pu, u ≥ 1). Let (y1, y2)
be a small solution of f2(x1, x2). We assume that we also know an upper bound
(X1,X2) ∈ Z

2 for the root such that |y1| ≤ X1, |y2| ≤ X2.

4.1 Our Main Result

Theorem 7. For every ε > 0, let N be a sufficiently large composite integer
(of unknown factorization) with a divisor pu (p ≥ Nβ, u ≥ 1). Let f2(x1, x2) ∈
Z[x1, x2] be a homogeneous linear polynomial in two variables whose coefficients
are coprime to N . Then one can find all the solutions (y1, y2) of the equation
f2(x1, x2) = 0 (mod pv) (v ≥ 1) with gcd(y1, y2) = 1, |y1| ≤ Nγ1 , |y2| ≤ Nγ2 if
γ1+γ2 < uvβ2−ε, and the time complexity of our algorithm is O(ε−7v2 log2 N).

Solving Linear Equations Modulo Unknown Divisors: Revisited 203

Proof. Since the proof is similar to that of Theorem2, we only give the sketch
here. Consider the linear polynomial:

f2(x1, x2) = a1x1 + a2x2 mod pv

where N is known to be a multiple of pu for known u and unknown p. Here we
assume that a1 = 1, since otherwise we can multiply f2 by a−1

1 mod N . Let

f(x1, x2) = a−1
1 f2(x1, x2) mod N

Fix m := �β(2u+v−uvβ)
ε �, and define a collection of polynomials as follows:

gk(x1, x2) := xm−k
2 fk(x1, x2)Nmax{� v(t−k)

u �,0}

for k = 0, . . . ,m and integer parameters t and m with t = τm (0 ≤ τ < 1),
which will be optimized later. Note that for all k, gk(y1, y2) ≡ 0 mod pvt.

Let X1,X2(X1 = Nγ1 ,X2 = Nγ2) be upper bounds on the desired root
(y1, y2), and define X1X2 := Nuvβ2−ε. We build a lattice L of dimension d =
m + 1 using the coefficient vectors of gk(x1X1, x2X2) as basis vectors. We sort
the polynomials according to the order as following: If k < l, then gk < gl.

From the triangular matrix of the lattice, we can easily compute the deter-
minant as the product of the entries on the diagonal as det(L) = Xs1

1 Xs2
2 NsN

where

s1 = s2 =
m∑

k=0

k =
m(m + 1)

2

sN =
t−1∑

k=0

�v(t − k)
u

� =
t−1∑

k=0

(
v(t − k)

u
+ ck

)

=
vt(t + 1)

2u
+

t−1∑

k=0

ck

Here we rewrite � v(t−k)
u � as

(
v(t−k)

u + ck

)
where ck ∈ [0, 1). Combining

Lemmas 1 and 2, after some calculations, we can get the final result

γ1 + γ2 ≤ uvβ2 − β(2u + v − uvβ)
m

Similar to Theorem2, the time complexity of our algorithm is O(ε−7v2 log2 N).
The vector output by LLL-algorithm gives a polynomial f

′
(x1, x2) such that

f
′
(y1, y2) = 0. Let z = x1/x2, any rational root of the form y1/y2 can be found by

extracting the rational roots of f
′
(z) = 1/xm

2 f
′
(x1, y1) with classical methods. 	

Comparisons with Previous Methods. For u = 1, v = 1, the upper bound
δ1 + δ2 of Theorem 7 is β2, that is exactly May’s results [21] on univariate linear
polynomial f(x) = x + a. Actually the problem of finding a small root of homo-
geneous polynomial f(x1, x2) can be transformed to find small rational roots of
univariate linear polynomial F (z) i.e. F (x2

x1
) = f(x1, x2)/x1 (the discussions of

the small rational roots can be found on pp. 413 of Joux’s book [18]).

204 Y. Lu et al.

Our result improves Herrmann-May’s bound 3β − 2 + 2(1 − β)
3
2 up to β2 if

a0 = 0. As a concrete example, for the case β = 0.5, our method improves the
upper size of X1X2 from N0.207 to N0.25.

Another important work to mention is that in [3], Castagnos, Joux, Laguillau-
mie and Nguyen also considered homogeneous polynomials. Their algorithm can
be directly applied to our attack scenario. They consider the following bivariate
homogeneous polynomial

f(x1, x2) = (a1x1 + a2x2)
u
v mod p

However, their algorithm can only deal with the cases u
v ∈ Z, and our algo-

rithm is more flexible: specially, for u
v -degree polynomial with 2

u
v monomials

(the dimension of lattice is u
v m), whereas our algorithm is for linear polynomial

with two monomials (the dimension of lattice is m). Besides, in [3], they formed
a lattice using the coefficients of g(x, y) instead of g(xX, yY). This modification
enjoys the benefits in terms of real efficiency, since their lattice has smaller deter-
minant than in the classical bivariate approach. However, their algorithm fails
when the solutions are significantly unbalanced (X1 X2). We highlight the
idea that the factor X,Y should not only be used to balance the size of different
power of x, y but also to balance the variables x, y. That is why our algorithm
is suitable for this unbalanced attack scenario.

Extension to More Variables. We generalize the result of Theorem 7 to an
arbitrary number of n variables x1, . . . , xn. The proof of the following result is
similar to that for Proposition 1, so we state only the result itself.

Proposition 2. For every ε > 0, let N be a sufficiently large composite integer
(of unknown factorization) with a divisor pu (p ≥ Nβ, u ≥ 1). Furthermore, let
f2(x1, . . . , xn) ∈ Z[x1, . . . , xn] be a homogeneous linear polynomial in n(n ≥ 3)
variables. Under Assumption 1, we can find all the solutions (y1, . . . , yn) of the
equation f2(x1, . . . , xn) = 0 mod pv (v ≥ 1) with gcd(y1, . . . , yn) = 1, |y1| ≤
Nγ1 , . . . |yn| ≤ Nγn if

n∑

i=1

γi <
v

u

(
1 − (1 − uβ)

n
n−1 − n(1 − uβ)

(
1 − n−1

√
1 − uβ

))
− ε

The running time of the algorithm is polynomial in log N and ε−n log N .

4.2 Applications

In Africacrypt’12, Nitaj [26] presented a new attack on RSA. His attack is based
on Herrmann-May’s method [12] for finding small roots of a bivariate linear
equation. In particular, he showed that the public modulus N can be factored in
polynomial-time for the RSA cryptosystem where the public exponent e satisfies
an equation ex + y ≡ 0 (mod p) with parameters x and y satisfying ex + y �≡
0 (mod N) |x| < Nγ and |y| < N δ with δ + γ ≤

√
2−1
2 .

Solving Linear Equations Modulo Unknown Divisors: Revisited 205

Note that the equation of [26] is homogeneous, thus we can improve the upper
bound of γ + δ using our result in Theorem 7. In [29], Sarkar proposed another
method to extend Nitaj’s weak encryption exponents. Here, the trick is to con-
sider the fact that Nitaj’s bound can be improved when the unknown variables
in the modular equation are unbalanced (x and y are of different bit-size). In
general, Sarkar’s method is essentially Herrmann-May’s method, whereas our
algorithm is simpler (see Theorem 7). We present our result below.

Theorem 8. Let N = pq be an RSA modulus with q < p < 2q. Let e be a public
exponent satisfying an equation ex + y ≡ 0 mod p with |x| < Nγ and |y| < N δ.
If ex+y �≡ 0 mod N and γ +δ ≤ 0.25− ε, N can be factored in polynomial-time.

In [26], Nitaj also proposed a new attack on CRT-RSA. Let N = pq be an RSA
modulus with q < p < 2q. Nitaj showed that if e < N

√
2

2 and edp = 1+kp(p−1)

for some dp with dp < N

√
2

4√
e

, N can be factored in polynomial-time. His method is
also based on Herrmann-May’s method. Similarly we can improve Nitaj’s result
in some cases using our idea as Theorem 7.

Theorem 9. Let N = pq be an RSA modulus with q < p < 2q. Let e be a public
exponent satisfying e < N0.75 and edp = 1 + kp(p − 1) for some dp with

dp <
N

0.75−ε
2√
e

Then, N can be factored in polynomial-time.

Proof. We rewrite the equation edp = 1 + kp(p − 1) as

edp + kp − 1 = kpp

Then we focus on the equation modulo p

ex + y = 0 mod p

with a root (x0, y0) = (dp, kp − 1). Suppose that e = Nα, dp = N δ, then we get

kp =
edp − 1
p − 1

<
edp

p − 1
< Nα+δ−0.5

Applying Theorem7 with the desired equation where x0 = dp < N δ and y0 =
kp − 1 < Nα+δ−0.5, setting β = 0.5, u = 1 and v = 1 we obtain

2δ + α < 0.75 − ε

Note that gcd(x0, y0) = gcd(dp, kp − 1) = 1, kp < Nα+δ−0.5 < Nα+2δ−0.5 <
N0.25 < p, hence edp + kp − 1 �= 0 mod N . Then we can factorize N with
gcd(N, edp + kp − 1) = p. 	

Note that Theorem 9 requires the condition e < N0.75 for N = pq, hence we
cannot be using small CRT exponents both modulo p and modulo q. Our attack
is valid for the case that the cryptographic algorithm has a small CRT-exponent
modulo p, but a random CRT-exponent modulo q.

206 Y. Lu et al.

Table 4. Experimental results for weak encryption exponents

N (bit) r dp-pred (bits) (m, t) dim (L) dp-exp (bits) Time (sec)

1024 1 128 (6, 3) 7 110 0.125

1024 1 128 (10, 5) 11 115 1.576

1024 1 128 (30, 15) 31 124 563.632

Experimental Results. Table 4 shows the experimental results for RSA mod-
ulus N with 512-bit primes p, q. In all of our experiments, we fix e’s length as
512-bit, and so the scheme does not have a small CRT exponent modulo q. We
also compute the number bits that one should theoretically be able to attack for
dp (column dp-pred of Table 4).

That is actually the attack described in Theorem9. In [26], the author showed
that for a 1024-bit modulus N , the CRT-exponent dp is typically of size at most
110. We obtain better results in our experiments as shown in Table 4.

5 The Third Type of Equations

In this section, we give our main algorithm to find small roots of extended
simultaneous modular univariate linear equations. At first, we introduce this
kind of equations.

Extended Simultaneous Modular Univariate Linear Equations. Given
positive integers r, r1, . . . , rn and N, a1, . . . , an and bounds γ1, . . . , γn, η ∈ (0, 1).
Suppose that N = 0 mod pr and p ≥ Nη. We want to find all integers
(x(0)

1 , . . . , x
(0)
n) such that |x(0)

1 | ≤ Nγ1 , . . . , |x(0)
n | ≤ Nγn , and

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f1(x
(0)
1) = a1 + x

(0)
1 = 0 mod pr1

f2(x
(0)
2) = a2 + x

(0)
2 = 0 mod pr2

...
fn(x(0)

n) = an + x
(0)
n = 0 mod prn

5.1 Our Main Result

Our main result is as follows:

Theorem 10. Under Assumption 1, the above equations can be solved provided
that

n

√
γ1 · · · γn

rr1 · · · rn
< η

n+1
n and η 1√

log N

The running time of the algorithm is polynomial in log N but exponential in n.

Proof. First, for every j (j ∈ {1, . . . , n}), we check whether condition γj

rj
≤ η is

met. If there exists k such that γk

rk
> η, then we throw away this corresponding

Solving Linear Equations Modulo Unknown Divisors: Revisited 207

polynomial fk(x), since this polynomial could not offer any useful information.
Here suppose that all the polynomials satisfy our criteria. Define a collection of
polynomials as follows:

f[i1,...,in](x1, . . . , xn) = (a1 + x1)i1 · · · (an + xn)inNmax{� t−∑n
j=1 rjij

r �,0}

Notice that for all indexes i1, . . . , in, f[i1,...,in](x
(0)
1 , . . . , x

(0)
n) = 0 mod pt. We

select the collection of shift polynomials that satisfies

0 ≤
n∑

j=1

γjij ≤ ηt

The reason we select these shift polynomials is that we try to select as many
helpful polynomials as possible by taking into account the sizes of the root
bounds.

We define the polynomial order ≺ as xi1
i xi2

2 · · · xin
n ≺ x

i
′
1
1 x

i
′
2
2 · · · xi

′
n

n if

n∑

j=1

ij <
n∑

j=1

i
′
j or

n∑

j=1

ij =
n∑

j=1

i
′
j , ij = i

′
j(j = 1, . . . , k), ik+1 < i

′
k+1

Ordered in this way, the basis matrices become triangular in general.
We compute the dimension of lattice L as w where

w = dim(L) =
∑

0≤γii1+···+γnin≤βt

1 =
(ηt)n

n!
1

γ1 · · · γn
+ o(tn)

and the determinate det(L) = NsN X
sX1
1 · · · XsXn

n where

sN =
∑

0≤r1i1+···+rnin≤t

� t − ∑n
j=1 rjij

r
� =

tn+1

(n + 1)!
1

rr1 · · · rn
+ o(tn+1)

sXj
=

∑

0≤γ1i1+···+γnin≤ηt

ij =
tn+1

(n + 1)!
1

γ1 · · · γj−1γ2
j γj+1 · · · γn

+ o(tn+1)

for each sX1 , sX2 , . . . , sXn
.

To obtain the number of n polynomials with short coefficients that contain all
small roots over integer, we apply LLL basis reduction algorithm to the lattice
L. Lemma 1 gives us an upper bound on the norm of the shortest vector in the
LLL-reduced basis; if the bound is smaller than the bound given in Lemma2,
we can obtain the desired polynomial. We require the following condition:

2
w−1

4 det(L)
1
w <

Nηt

√
w

(4)

208 Y. Lu et al.

Ignoring low order terms of m and the quantities that do not depend on N , we
have the following result

sN +
n∑

j=1

γjsXj
< wηt

After some calculations, we can get the final result

n

√
γ1 · · · γn

rr1 · · · rn
< η

n+1
n

In particular, from the Eq. (4), in order to ignore the quantities that do not
depend on N , we must have

2
w
4 � Nηt and det(L)

1
w < Nηt

and these inequations imply that

w � 4ηt log2 N and
sN

w
log2 N < ηt log2 N

Finally we have
1

4(n + 1)rr1 · · · rn
� η2 log2 N

Furthermore, one can check that in order to let the value 2w/4 become negligible
compared with Nηt, we must have

η2 log2 N 1

The running time is dominated by LLL-reduction, therefore, the total running
time for this approach is polynomial in log N but exponential in n. 	

Like [4,36], we also consider the generalization to simultaneous linear equations
of higher degree.

Extended Simultaneous Modular Univariate Equations. Suppose that
N = 0 mod pr, p ≥ Nη, we consider the simultaneous modular univariate equa-
tions ⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

h1(x1) = xδ1
1 + aδ1x

δ1−1
1 + · · · + a1 = 0 mod pr1

h2(x2) = xδ2
1 + bδ2x

δ2−1
1 + · · · + b1 = 0 mod pr2

...
hn(xn) = xδn

1 + cδn
xδn−1
1 + · · · + c1 = 0 mod prn

Here each equation hj(xj) has one variable and the degree of hj(xj) is δj . We
give the following result.

Theorem 11. Under Assumption 1, the above generalised problem can be solved
provided that

n

√
δ1γ1 · · · δnγn

rr1 · · · rn
< η

n+1
n and η 1√

log N

The running time of the algorithm is polynomial in log N but exponential in n.

The proof is very similar to [4,36], we omit it here.

Solving Linear Equations Modulo Unknown Divisors: Revisited 209

5.2 Common Prime RSA

In [13], Hinek revisited a new variant of RSA, called Common Prime RSA,
where the modulus N = pq is chosen such that p − 1 and q − 1 have a large
common factor. For convenience, we give a brief description on the property of
Common Prime RSA. Without loss of generality, assume that p = 2ga + 1 and
q = 2gb + 1, where g � Nγ and a, b are coprime integers, namely gcd(a, b) = 1.
The decryption exponent d and encryption exponent e satisfy that

ed ≡ 1 mod 2gab (5)

where e � N1−γ and d � Nβ .
For a better comparison with the previous attacks, we give a brief review on

all known attacks.

Wiener’s Attack [38]. Using a continued fraction attack, Wiener proved that
given any valid Common Prime RSA public key (N, e) with private exponent
d < N

1
4− γ

2 , namely β < 1
4 − γ

2 , one can factor N in polynomial-time.

Hinek’s Attack [13]. Hinek revisited this problem and proposed two lattice-
based attacks. Due to Hinek’s work, when β < γ2 or β < 2

5γ, N can be factored
in polynomial-time.

Jochemsz-May’s Attack [17]. Jochemsz and May gave another look at the
equation proposed by Hinek [13] and modified the unknown variables in the
equation. The bound has been further improved as

β <
1
4
(4 + 4γ −

√
13 + 20γ + 4γ2).

Sarkar-Maitra’s Attack [33]. Sarkar and Maitra proposed two improved
attacks, one attack worked when γ ≤ 0.051, and another worked when 0.051 <
γ ≤ 0.2087.

One can check that when γ ≥ 0.2087, Jochemsz-May’s attack [17] is superior
to other attacks. We use the algorithm of Theorem 10 to make an improvement
on previous attacks when γ ≥ 0.3872. We give a comparison with Jochemsz-
May’s attack in Fig. 3.

Our results improve Jochemsz-May’s attack dramatically when γ is large, for
instance, when γ is close to 0.5, we improve the bound on β from 0.2752, which
is the best result of previous attacks, to 0.5. Below is our main result.

Theorem 12. Assume that there exists instance of Common Prime RSA N =
pq with the above-mentioned parameters. Under Assumption 1, N can be factored
in polynomial-time provided

β < 4γ3 and γ >
1
4

210 Y. Lu et al.

Fig. 3. Comparison of our theoretical bounds with Jochemsz-May’s work.

Proof. According to the property of Common Prime RSA, we have N = pq =
(2ga + 1)(2gb + 1) which implies N − 1 ≡ 0 mod g. On the other hand, from
Eq. (5) one can obtain

ed − 1 ≡ 0 mod g

Multiplying by the inverse of e modulo N − 1, we can obtain the following
equation,

E − x ≡ 0 mod g

where E denotes the inverse of e modulo N − 1 and x denotes the unknown d.
Moreover, since (p − 1)(q − 1) = 4g2ab, we have another equation,

N − y ≡ 0 mod g2

where y denotes the unknown p + q − 1.
In summary, simultaneous modular univariate linear equations can be listed

as {
E − x ≡ 0 mod g
N − y ≡ 0 mod g2

Note that N − 1 is a multiple of g and (d, p + q − 1) is the desired solution of
above equations, where g � Nγ , d � Nβ and p + q − 1 � N

1
2 . Obviously, this

kind of modular equations is what we considered in Theorem10. Setting

n = 2, r = 1, r1 = 1, r2 = 2, γ1 = β, γ2 =
1
2
, η = γ

We have
γ > β γ >

1
4

β < 4γ3

Then we can obtain
β < 4γ3 and γ >

1
4

Solving Linear Equations Modulo Unknown Divisors: Revisited 211

Under Assumption 1, one can solve the desired solution. This concludes the proof
of Theorem 12. 	

Experimental Results. Some experimental data on the different size of g are
listed in Table 5. Here we used 1000-bit N . Assumption 1 worked perfectly in all
the cases. We always succeed to find out our desired roots.

Table 5. Comparison of our theoretical and experimental results with existing works.

γ Theorem of [17] Our result

Theo. Expt. Dim Time (in seconds)

0.40 0.237 0.256 0.220 86 12321.521

0.42 0.245 0.294 0.260 113 53669.866

0.45 0.256 0.354 0.320 105 29128.554

0.48 0.268 0.415 0.390 98 15058.558

6 Conclusion

In this paper, we consider three type of generalized equations and propose some
new techniques to find small root of these equations. Applying our algorithms, we
obtain the best analytical/experimental results for some attacks on RSA and its
variants. Besides, we believe that our new algorithms may find new applications
in various other contexts.

Acknowledgments. We would like to thank the anonymous reviewers for helpful
comments. This research was supported by CREST, JST. Part of this work was also
supported by Strategic Priority Research Program of the Chinese Academy of Sciences
(No. XDA06010703, No. XDA06010701 and No. XDA06010702), the National Key
Basic Research Project of China (No. 2011CB302400 and No. 2013CB834203), and
National Science Foundation of China (No. 61379139 and No. 61472417).

References

1. Boneh, D., Durfee, G.: Cryptanalysis of RSA with private key d less than N0.292.
IEEE Trans. Inf. Theor. 46(4), 1339–1349 (2000)

2. Boneh, D., Durfee, G., Howgrave-Graham, N.: Factoring N = prq for large r. In:
Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, p. 326. Springer, Heidelberg
(1999)

3. Castagnos, G., Joux, A., Laguillaumie, F., Nguyen, P.Q.: Factoring pq2 with
quadratic forms: nice cryptanalyses. In: Matsui, M. (ed.) ASIACRYPT 2009.
LNCS, vol. 5912, pp. 469–486. Springer, Heidelberg (2009)

4. Cohn, H., Heninger, N.: Approximate common divisors via lattices. ANTS-X (2012)

212 Y. Lu et al.

5. Coppersmith, D.: Small solutions to polynomial equations, and low exponent RSA
vulnerabilities. J. Crypt. 10(4), 233–260 (1997)

6. Coron, J.-S., Joux, A., Kizhvatov, I., Naccache, D., Paillier, P.: Fault attacks on
RSA signatures with partially unknown messages. In: Clavier, C., Gaj, K. (eds.)
CHES 2009. LNCS, vol. 5747, pp. 444–456. Springer, Heidelberg (2009)

7. Coron, J.-S., Naccache, D., Tibouchi, M.: Fault attacks against emv signatures.
In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 208–220. Springer, Hei-
delberg (2010)

8. The EPOC and the ESIGN Algorithms. IEEE P1363: Protocols from Other
Families of Public-Key Algorithms (1998). http://grouper.ieee.org/groups/1363/
StudyGroup/NewFam.html

9. Ernst, M., Jochemsz, E., May, A., de Weger, B.: Partial key exposure attacks on
RSA up to full size exponents. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 371–386. Springer, Heidelberg (2005)

10. Fouque, P.A., Guillermin, N., Leresteux, D., Tibouchi, M., Zapalowicz, J.C.:
Attacking RSA-CRT signatures with faults on montgomery multiplication. J. Cryp-
togr. Eng. 3(1), 59–72 (2013). Springer

11. Herrmann, M.: Improved cryptanalysis of the multi-prime φ - hiding assumption.
In: Nitaj, A., Pointcheval, D. (eds.) AFRICACRYPT 2011. LNCS, vol. 6737, pp.
92–99. Springer, Heidelberg (2011)

12. Herrmann, M., May, A.: Solving linear equations modulo divisors: on factoring
given any bits. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp.
406–424. Springer, Heidelberg (2008)

13. Hinek, M.J.: Another look at small RSA exponents. In: Pointcheval, D. (ed.) CT-
RSA 2006. LNCS, vol. 3860, pp. 82–98. Springer, Heidelberg (2006)

14. Howgrave-Graham, N.: Finding small roots of univariate modular equations revis-
ited. In: Darnell, M.J. (ed.) Cryptography and Coding 1997. LNCS, vol. 1355, pp.
131–142. Springer, Heidelberg (1997)

15. Howgrave-Graham, N.: Approximate integer common divisors. In: Silverman, J.H.
(ed.) CaLC 2001. LNCS, vol. 2146, pp. 51–66. Springer, Heidelberg (2001)

16. Itoh, K., Kunihiro, N., Kurosawa, K.: Small secret key attack on a variant of RSA
(due to Takagi). In: Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 387–406.
Springer, Heidelberg (2008)

17. Jochemsz, E., May, A.: A strategy for finding roots of multivariate polynomials
with new applications in attacking RSA variants. In: Lai, X., Chen, K. (eds.)
ASIACRYPT 2006. LNCS, vol. 4284, pp. 267–282. Springer, Heidelberg (2006)

18. Joux, A.: Algorithmic Cryptanalysis. Chapman & Hall/CRC, Boca Raton (2009)
19. Tosu, K., Kunihiro, N.: Optimal bounds for multi-prime Φ-hiding assumption. In:

Susilo, W., Mu, Y., Seberry, J. (eds.) ACISP 2012. LNCS, vol. 7372, pp. 1–14.
Springer, Heidelberg (2012)

20. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational
coefficients. Math. Ann. 261(4), 515–534 (1982)

21. May, A.: New RSA vulnerabilities using lattice reduction methods. Ph.D. thesis
(2003)

22. May, A.: Secret exponent attacks on RSA-type schemes with moduli N = prq.
In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 218–230.
Springer, Heidelberg (2004)

23. May, A.: Using LLL-reduction for solving RSA and factorization problems. In:
Nguyen, P.Q., Vallée, B. (eds.) The LLL Algorithm, pp. 315–348. Springer, Hei-
delberg (2010)

http://grouper.ieee.org/groups/1363/StudyGroup/NewFam.html
http://grouper.ieee.org/groups/1363/StudyGroup/NewFam.html

Solving Linear Equations Modulo Unknown Divisors: Revisited 213

24. May, A., Ritzenhofen, M.: Implicit factoring: on polynomial time factoring given
only an implicit hint. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443,
pp. 1–14. Springer, Heidelberg (2009)

25. Nguên, P.Q., Stehlé, D.: Floating-point LLL revisited. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 215–233. Springer, Heidelberg (2005)

26. Nitaj, A.: A new attack on RSA and CRT-RSA. In: Mitrokotsa, A., Vaudenay, S.
(eds.) AFRICACRYPT 2012. LNCS, vol. 7374, pp. 221–233. Springer, Heidelberg
(2012)

27. Okamoto, T., Uchiyama, S.: A new public-key cryptosystem as secure as factoring.
In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 308–318. Springer,
Heidelberg (1998)

28. Rivest, R.L., Shamir, A.: Efficient factoring based on partial information. In: Pich-
ler, F. (ed.) EUROCRYPT 1985. LNCS, vol. 219, pp. 31–34. Springer, Heidelberg
(1986)

29. Sarkar, S.: Reduction in lossiness of RSA trapdoor permutation. In: Bogdanov,
A., Sanadhya, S. (eds.) SPACE 2012. LNCS, vol. 7644, pp. 144–152. Springer,
Heidelberg (2012)

30. Sarkar, S.: Revisiting prime power RSA. Cryptology ePrint Archive, Report
2015/774 (2015). http://eprint.iacr.org/

31. Sarkar, S.: Small secret exponent attack on RSA variant with modulus N = prq.
Des. Codes Cryptogr. 73, 383–392 (2014)

32. Sarkar, S., Maitra, S.: Approximate integer common divisor problem relates to
implicit factorization. IEEE Trans. Inf. Theor. 57(6), 4002–4013 (2011)

33. Sarkar, S., Maitra, S.: Cryptanalytic results on Dual CRT and Common Prime
RSA. Des. Codes Cryptgr. 66(1–3), 157–174 (2013)

34. Shamir, A.: A polynomial time algorithm for breaking the basic Merkle-Hellman
cryptosystem. In: FOCS 1982, pp. 145–152. IEEE (1982)

35. Takagi, T.: Fast RSA-type cryptosystem modulo pkq. In: Krawczyk, H. (ed.)
CRYPTO 1998. LNCS, vol. 1462, pp. 318–326. Springer, Heidelberg (1998)

36. Takayasu, A., Kunihiro, N.: Better lattice constructions for solving multivariate
linear equations modulo unknown divisors. In: Boyd, C., Simpson, L. (eds.) ACISP.
LNCS, vol. 7959, pp. 118–135. Springer, Heidelberg (2013)

37. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic
encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 24–43. Springer, Heidelberg (2010)

38. Wiener, M.J.: Cryptanalysis of short RSA secret exponents. IEEE Trans. Inf.
Theor. 36(3), 553–558 (1990)

http://eprint.iacr.org/

FourQ: Four-Dimensional Decompositions on
a Q-curve over the Mersenne Prime

Craig Costello(B) and Patrick Longa

Microsoft Research, Redmond, USA
{craigco,plonga}@microsoft.com

Abstract. We introduce FourQ, a high-security, high-performance ellip-
tic curve that targets the 128-bit security level. At the highest arith-
metic level, cryptographic scalar multiplications on FourQ can use a
four-dimensional Gallant-Lambert-Vanstone decomposition to minimize
the total number of elliptic curve group operations. At the group
arithmetic level, FourQ admits the use of extended twisted Edwards coor-
dinates and can therefore exploit the fastest known elliptic curve addi-
tion formulas over large prime characteristic fields. Finally, at the finite
field level, arithmetic is performed modulo the extremely fast Mersenne
prime p = 2127 − 1. We show that this powerful combination facilitates
scalar multiplications that are significantly faster than all prior works. On
Intel’s Haswell, Ivy Bridge and Sandy Bridge architectures, our software
computes a variable-base scalar multiplication in 59,000, 71,000 cycles
and 74,000 cycles, respectively; and, on the same platforms, our software
computes a Diffie-Hellman shared secret in 92,000, 110,000 cycles and
116,000 cycles, respectively.

1 Introduction

This paper introduces a new, complete twisted Edwards [5] curve E(Fp2) :
−x2 + y2 = 1 + dx2y2, where p is the Mersenne prime p = 2127 − 1, and d
is a non-square in Fp2 . This curve, dubbed “FourQ”, arises as a special instance
of recent constructions using Q-curves [27,46], and is thus equipped with an
endomorphism ψ related to the p-power Frobenius map. In addition, it has com-
plex multiplication (CM) by the order of discriminant D = −40, meaning it
comes equipped with another efficient, low-degree endomorphism φ [47].

We built an elliptic curve cryptography (ECC) library that works inside the
cryptographic subgroup E(Fp2)[N], where N is a 246-bit prime. The endomor-
phisms ψ and φ do not give any practical speedup to Pollard’s rho algorithm [42],
which means the best known attack against the elliptic curve discrete logarithm
problem (ECDLP) on E(Fp2)[N] requires around

√
πN/4 ∼ 2122.5 group opera-

tions on average. Thus, the cryptographic security of E (see Sect. 2.3 for more
details) is closely comparable to other curves that target the 128-bit security
level, e.g., [6,9,21,37].

Our choice of curve and the accompanying library offer a range of advantages
over existing curves and implementations:
c© International Association for Cryptologic Research 2015
T. Iwata and J.H. Cheon (Eds.): ASIACRYPT 2015, Part I, LNCS 9452, pp. 214–235, 2015.
DOI: 10.1007/978-3-662-48797-6 10

FourQ: Four-Dimensional Decompositions 215

Speed: FourQ’s library computes scalar multiplications significantly faster
than all known software implementations of curve-based cryptographic prim-
itives. It uses the endomorphisms ψ and φ to accelerate scalar multiplications
via four-dimensional Gallant-Lambert-Vanstone (GLV)-style [22] decompo-
sitions. Four-dimensional decompositions have been used before [9,32,37],
but not over the Mersenne prime1; this choice of field is significantly
faster than any neighboring fields and several works have studied its arith-
metic [13,21,36]. The combination of extremely fast modular reductions and
four-dimensional scalar decompositions makes for highly efficient scalar mul-
tiplications on E . Furthermore, we can exploit the fastest known addition
formulas for elliptic curves over large characteristic fields [31], which are
complete on E since the above d is non-square [31, Sect. 3]. In Sect. 2, we
explain why four-dimensional decompositions and this special underlying
field were not previously partnered at the 128-bit security level.

Simplicity and concrete correctness: Simplicity is a major priority in
this work and in the development of our software; in some cases we sacrifice
speed enhancements in order to design a more simple and compact algorithm
(cf. Sect. 4.2).
On input of any point P ∈ E(Fp2)[N], validated as in [14, Appendix A]
if necessary, and any integer scalar m ∈ [0, 2256), our software does the
following (strictly in constant-time and without exception):
1. Computes φ(P), ψ(P) and ψ(φ(P)) using exactly2 68M, 27S and 49.5A

– see Sect. 3.
2. Decomposes m (e.g., in less than 200 Sandy Bridge cycles) into a mul-

tiscalar (a1, a2, a3, a4) ∈ Z
4 such that each ai is positive and at most

64 bits – see Sect. 4.
3. Recodes the multiscalar (e.g., in less than 800 Sandy Bridge cycles) to

ensure a simple and constant-time main loop – see Sect. 5.
4. Computes a lookup table of 8 elements using exactly 7 complete addi-

tions, before executing the main loop using exactly 64 complete twisted
Edwards double-and-add operations, and finally outputting [m]P =
[a1]P + [a2]φ(P) + [a3]ψ(P) + [a4]ψφ(P) – see Sect. 5.

This paper details each of the above steps explicitly, culminating in
the full routine presented in Algorithm 2. Several prior works exploit-
ing scalar decompositions have potential points of failure (cf. [30, Sect. 7],
and Sect. 4.2), but crucially, and for the first time in the setting of four-
dimensional decompositions, we accompany our routine with a robust proof
of correctness – see Theorem 1.

1 p stands alone as the only Mersenne prime suitable for high-security curves over
quadratic extension fields. The next largest Mersenne prime is 2521 − 1, which is
suitable only for prime field curves targeting the 256-bit level.

2 Here, and throughout, I, M, S and A are used to denote the respective costs of
inversions, multiplications, squarings and additions in Fp2 . We note that Frobenius
operations amount to conjugations in Fp, which are tallied as 0.5A.

216 C. Costello and P. Longa

Cryptographic versatility: FourQ is intended to be used in the same way,
i.e., using the same model, same coordinates and same explicit formulas, irre-
spective of the cryptographic protocol or nature of the intended scalar mul-
tiplication. Unlike implementations using ladders [4,6,9,23], FourQ supports
fast variable-base and fast fixed-base scalar multiplications, both of which
use twisted Edwards coordinates; this serves as a basis for fast (ephemeral)
Diffie-Hellman key exchange and fast Schnorr-like signatures. The presence
of a single, complete addition law gives implementers the ability to easily
wrap higher-level software and protocols around the FourQ’s library exactly
as is.

Public availability: Prior works exploiting four-dimensional decomposi-
tions have either made code available that did not attempt to run in constant-
time [9], or not published code that did run in constant-time [18,37]. Our
library, which is publicly available [15], is largely written in portable C and
includes two modular implementations of the arithmetic over Fp2 : a portable
implementation written in C and a high-performance implementation for x64
platforms written in C and optional x64 assembly. The library also permits
to select (at build time) whether the efficiently computable endomorphisms
ψ and φ can be used or not for computing generic scalar multiplications. The
code is accompanied by Magma scripts that can be used to verify the proofs
of all claims and the claimed operation counts. Our aim is to make it easy
for subsequent implementers to replicate the routine and, if desired, develop
specialized code that is tailored to specific platforms for further performance
gains or with different memory constraints.

When the NIST curves [40] were standardized in 1999, many of the landmark
discoveries in ECC (e.g., [17,21,22,46]) were yet to be made. FourQ and its
accompanying library represent the culmination of several of the best known
ECC optimizations to date: it pulls together the extremely fast Mersenne prime,
the fastest known large characteristic addition formulas [31], and the highest
degree of scalar decompositions (there is currently no known way of achieving
higher dimensional decompositions without exposing the ECDLP to attacks that
are asymptotically much faster than Pollard rho). Subsequently, for generic scalar
multiplications, FourQ performs around four to five times faster than the original
NIST P-256 curve [26], between two and three times faster than curves that
are currently under consideration as NIST alternatives, e.g., Curve25519 [4],
and is also significantly faster than all of the other curves used to set previous
speed records (see Sect. 6 for the comparisons). Interestingly, FourQ is still highly
efficient if the endomorphisms ψ and φ are not used at all for computing generic
scalar multiplications. In this case, FourQ performs about three times faster than
the NIST P-256 curve and up to 1.5 times faster than Curve25519.

It is our belief that the demand for high-performance cryptography warrants
the state-of-the-art in ECC to be part of the standardization discussion: this
paper ultimately demonstrates the performance gains that are possible if such a
curve was to be considered alongside the “conservative” choices.

FourQ: Four-Dimensional Decompositions 217

The extended version. For space considerations, we have omitted the proofs of
Propositions 1, 2, 4 and 5, Lemma 1 and Theorem 1, as well as several additional
remarks. All of these, along with an appendix covering point validation, can be
found in the extended version of this article [14].

2 The Curve: FourQ

This section describes the proposed curve, where we adopt Smith’s notation
[44,46] for the most part. We present the curve parameters in Sect. 2.1, shed
some light on how the curve was found in Sect. 2.2, and discuss its cryptographic
security in Sect. 2.3. Both Sects. 2.2 and 2.3 discuss that E is essentially one-of-
a-kind, illustrating that there were no degrees of freedom in the choice of curve
(see [14] for more details).

2.1 A Complete Twisted Edwards Curve

We will work over the quadratic extension field Fp2 := Fp(i), where p := 2127 −1
and i2 = −1. We define E to be the twisted Edwards [5] curve

E/Fp2 : − x2 + y2 = 1 + dx2y2, (1)

where d := 125317048443780598345676279555970305165·i+4205857648805777768770.
The set of Fp2 -rational points satisfying the affine model for E forms a group:

the neutral element is OE = (0, 1) and the inverse of a point (x, y) is (−x, y).
The fastest set of explicit formulas for the addition law on E are due to Hisil,
Wong, Carter and Dawson [31]: they use extended twisted Edwards coordinates
to represent the affine point (x, y) on E by any projective tuple of the form
(X : Y : Z : T) for which Z �= 0, x = X/Z, y = Y/Z and T = XY/Z. Since d is
not a square in Fp2 , this set of formulas is also complete on E (see [5]), meaning
that they will work without exception for all points in E(Fp2).

The trace tE of the p2-power Frobenius endomorphism πE of E is tE =
136368062447564341573735631776713817674, which reveals that

#E(Fp2) = p2 + 1 − tE = 23 · 72 · N, (2)

where N is a 246-bit prime. The cryptographic group we work with in this paper
is E(Fp2)[N].

2.2 Where did this Curve Come From?

The curve E above comes from the family of Q-curves of degree 2 – originally
defined by Hasegawa [29] – that was recently used as one of the example fam-
ilies in Smith’s general construction of Q-curve endomorphisms [44,46]. Cer-
tain examples of low-degree Q-curves (including this family) were independently
obtained through a different construction by Guillevic and Ionica [27], who also
studied 4-dimensional decompositions arising from such curves possessing CM.

218 C. Costello and P. Longa

In fact, E has a similar structure to the curve constructed in [27, Exercise 1], but
is over the prime p = 2127 − 1.

For Δ a square-free integer, this family is defined over Q(
√

Δ) and is para-
meterized by s ∈ Q as

Ẽ2,Δ,s : y2 = x3 − 6(5 − 3s
√

Δ)x + 8(7 − 9s
√

Δ). (3)

By definition [44, Definition 1], curves from this family are 2-isogenous (over
Q(Δ,

√−2)) to their Galois conjugates σẼ2,Δ,s. Smith reduces Ẽ2,Δ,s and σẼ2,Δ,s

modulo primes p that are inert in Q(
√

Δ) to produce the curves E2,Δ,s and
σE2,Δ,s defined over Fp2 . He then composes the induced 2-isogeny from E2,Δ,s

to σE2,Δ,s with the p-power Frobenius map from σE2,Δ,s back to E2,Δ,s, which
produces an efficiently computable degree 2p endomorphism ψ on E2,Δ,s.

Recall that in this paper we fix p = 2127 − 1 for efficiency reasons. For this
particular prime p and this family of Q-curves, Smith’s construction gives rise
to precisely p non-isomorphic curves corresponding to each possible choice of
s ∈ Fp [46, Proposition 1]. Varying s allows us to readily find curves belonging
to this family with strong cryptographic group orders, each of which comes
equipped with the endomorphism ψ that facilitates a two-dimensional scalar
decomposition.

Seeking a four-dimensional (rather than two-dimensional) scalar decompo-
sition on E2,Δ,s restricts us to a very small subset of possible s values. This
is because we require the existence of another efficiently computable endomor-
phism on E2,Δ,s, namely the low-degree GLV endomorphism φ on those instances
of E2,Δ,s that possess CM over Q(

√
Δ). In [46, Sect. 9], Smith explains why there

are only a handful of s values in any particular Q-curve family that correspond to
a curve with CM, before cataloging all such instances in the families of Q-curves
of degrees 2, 3, 5 and 7. In particular, up to isogeny and over any prime p, there
are merely 13 values of s such that E2,Δ,s has CM over Q(

√
Δ). As is remarked

in [46, Sect. 9], this scarcity of CM curves makes it highly unlikely that we will
find a secure instance of a low-degree Q-curve family with CM over any fixed
prime p. This is the reason why other authors chasing high speeds at the 128-bit
security level have previously sacrificed the fast Mersenne prime p = 2127 − 1 in
favor of a four-dimensional decomposition [9,37]; one can always search through
the small handfull of exceptional CM curves over many sub-optimal primes until
a cryptographically secure instance is found. However, in the specific case of
p = 2127 − 1, we actually get extremely lucky: our search through Smith’s tables
of exceptional Q-curves with CM [46, Theorem 6] found one particular instance
over Fp2 with a prime subgroup of 246-bits, namely E2,Δ,s with s = ± 4

9 and
Δ = 5. As is detailed in [46, Sect. 3], the specification of Δ = 5 here does not
dictate how we form the extension field Fp2 over Fp; all quadratic extension fields
of Fp are isomorphic, so we can take s

√
Δ = ± 4

9

√
5 in (3) while still taking the

reduction of Ẽ2,5,± 4
9

modulo p to be E2,5,± 4
9
/Fp2 with Fp2 := Fp(

√−1). To sim-
plify notation, from hereon we fix ẼW := Ẽ2,5,± 4

9
and define EW as the reduction

FourQ: Four-Dimensional Decompositions 219

of ẼW modulo p, given as

EW/Fp2 : y2 = x3 − (30 − 8
√

5)x + (56 − 32
√

5), (4)

where the choice of the root
√

5 in Fp2 will be fixed in Sect. 3. We note that the
short Weierstrass curve EW is not isomorphic to our twisted Edwards curve E ,
but rather to a twisted Edwards curve Ê that is Fp2 -isogenous to E . The reason
we work with E rather than Ê is because the curve constant d on E is non-square
in Fp2 , which is not the case for the curve constant d̂ on Ê ; as we mentioned
above, d being a non-square ensures that the fastest known addition formulas
are also complete on E . The isogenies between E and Ê are made explicit as
follows.

Proposition 1. Let Ê/K and E/K be the twisted Edwards curves defined by
Ê/K : −x2+y2 = 1+ d̂x2y2 and E/K : −x2+y2 = 1+dx2y2. If d = −(1+1/d̂),

then the map τ : E → Ê, (x, y) �→
(

2xy

(x2+y2)
√

d̂
, x2−y2+2

y2−x2

)

is a 4-isogeny, the

dual of which is τ̂ : Ê → E, (x, y) �→
(

2xy
√

d̂
x2−y2+2 , y2−x2

y2+x2

)

.

We note at once that if d̂ is a square in K, then τ and τ̂ are defined over K.
Fortunately, while the twisted Edwards curve Ê corresponding to EW/Fp2 has a
square constant d̂, our chosen isogenous curve E has the non-square constant d =
−(1+1/d̂). Our implementation will work solely in twisted Edwards coordinates
on E , but we will pass back and forth through EW (via Ê) when deriving explicit
formulas for the endomorphisms φ and ψ in Sect. 3. We note that Hamburg used
4-isogenies (also derived from [1]) to a similar effect in [28].

2.3 The Cryptographic Security of FourQ

Pollard’s rho algorithm [42] is the best known way to solve the ECDLP in
E(Fp2)[N]. An optimized version of this attack which uses the negation map [50]
requires around

√
πN/4 ∼ 2122.5 group operations on average. We note that,

unlike some of the typical GLV [22] or GLS [21] endomorphisms that can be
used to speed up Pollard’s rho algorithm [16], both ψ and φ on E do not facil-
itate any known advantage; neither of these endomorphisms have a small orbit
and they are both more expensive to compute than an amortized addition. Thus,
the known complexity of the ECDLP on E is comparable to various other curves
used in the speed-record literature; optimized implementations of Pollard rho
against any of the fastest curves in [4,9,13,18,21,37,41] would require between
2124.8 and 2125.8 group operations on average. Ideally, we would prefer not to
have the factor 72 dividing #E(Fp2), but the resulting (∼ 2.8 bit) security degra-
dation is a small price to pay for having the fastest field at the 128-bit level in
conjunction with a four-dimensional scalar decomposition. As we discuss further
in [14], it was a long shot to try and find such a cryptographically secure Q-curve

220 C. Costello and P. Longa

with CM over Fp2 in Smith’s tables in the first place, let alone one that also had
the necessary torsion to support a twisted Edwards model.

Since E(Fp2) has rational 2-torsion, it is easy to write down the corresponding
abelian surface over Fp whose Jacobian is isogenous to the Weil restriction of
E – see [43, Lemma 2.1 and Lemma 3.1]. But since the best known algorithm to
solve the discrete logarithm problem on such abelian surfaces is again Pollard’s
rho algorithm, the Weil descent philosophy (cf. [24]) does not pose a threat here.
Furthermore, the embedding degree of E with respect to N is (N −1)/2, making
it infeasible to reduce the ECDLP into a finite field [19,39].

We note that the largest prime factor dividing the group order of E ’s
quadratic twist is 158 bits, but twist-security [4] is not an issue in this work:
firstly, our software always validates input points (such validation is essentially
free), and secondly, x-coordinate-only arithmetic (which is where twist-security
makes sense) on E is not competitive with a four-dimensional decomposition that
uses both coordinates.

In contrast to most currently standardized curves, the proposed curve is
both defined over a quadratic extension field and has a small discriminant; one
notable exception is secp256k1 in the SEC standard [11], which is used in the
Bitcoin protocol and also has small discriminant. However, it is important to
note that there is no better-than-generic attack known to date that can exploit
either of these two properties on E . In fact, with respect to ECDLP difficulty,
Koblitz, Koblitz and Menezes [33, Sect. 11] point out that slower, large dis-
criminant curves, like NIST P-256 and Curve25519, may turn out to be less
conservative than specially chosen curves with small discriminant.

3 The Endomorphisms ψ and φ

In this section we derive explicit formulas for the two endomorphisms
on E . In what follows we use ci,j,k,l to denote the constant i + j

√
2 +

k
√

5 + l
√

2
√

5 in Fp2 , which is fixed by setting
√

2 := 264 and
√

5 :=
87392807087336976318005368820707244464 · i.

For both ψ and φ, we start by deriving the explicit formulas on the short
Weierstrass model EW. As discussed in the previous section, we will pass back
and forth between E and EW via the twisted Edwards curve Ê that is 4-
isogenous to E over Fp2 . The maps between E and Ê are given in Proposi-
tion 1, and we take the maps δ : EW → Ê and δ−1 : Ê → EW from [46, Sect. 5]
(tailored to our Ê) as δ : (x, y) �→

(
γ(x−4)

y ,
x−4−c0,2,0,1
x−4+c0,2,0,1

)
, and δ−1 : (x, y) �→

(
c0,2,0,1(y+1)

1−y + 4,
c0,2,0,1(y+1)γ

x(1−y)

)
, where γ2 = c−12,−4,0,−2. The choice of the

square root γ ∈ Fp2 becomes irrelevant in the compositions below.

3.1 Explicit Formulas for ψ

There is almost no work to be done in deriving ψ on E , since this is
Smith’s Q-curve endomorphism corresponding to the degree-2 family to which

FourQ: Four-Dimensional Decompositions 221

EW belongs. We start with ψW : EW → EW, taken from [46, Sect. 5], as

ψW : (x, y) �→
((

−x
2 − c9,0,4,0

x−4

)p

,
(

y

i
√
2

(
− 1

2 + c9,0,4,0
(x−4)2

))p)
. With ψW as above,

we define ψ : E → E as the composition ψ = τ̂ δψWδ−1τ . In optimizing the
explicit formulas for this composition, there is practically nothing to be gained
by simplifying the full composition in the function field Fp2(E). However, it is
advantageous to optimize explicit formulas for the inner composition (δψWδ−1)
in the function field Fp2(Ê). In fact, for both ψ and φ, optimized explicit formulas
for this inner composition are faster than the respective endomorphisms ψW and
φW, and are therefore much faster than computing the respective compositions
individually.

Simplifying the composition δψWδ−1 in the function field Fp2(Ê) yields
(δψWδ−1) : Ê → Ê ,

(x, y) �→
(

2ixp · c−2,3,−1,0

yp · ((xp)2 · c−140,99,0,0 + c−76,57,−36,24)
,
c−9,−6,4,3 − (xp)2

c−9,−6,4,3 + (xp)2

)

.

Note that each of the p-power Frobenius operations above amount to one Fp

negation. As mentioned above, we compute the endomorphism ψ = τ̂(δψWδ−1)τ
on E by computing τ and τ̂ separately; see Sect. 3.4 for the operation counts.

3.2 Deriving Explicit Formulas for φ

We now derive the second endomorphism φ that arises from E admitting CM
by the order of discriminant D = −40. We start by pointing out that there
is actually multiple routes that could be taken in defining and deriving φ (see
the full version [14] for additional details). The possibility that we use in this
paper produces an endomorphism of degree 5. This option was revealed to us in
correspondence with Ben Smith, who pointed out that Q-curves with CM can
also be produced as the intersection of families of Q-curves, and that our curve E
is not only a degree-2 Q-curve, but is also a degree-5 Q-curve. Thus, the second
endomorphism φ can be derived by first following the treatment in [46, Sect. 7]
(see also [27, Sect. 3.3]) to derive φW as a 5-isogeny on EW, which we do below.

Working in Q(
√

5)[x], the 5-division polynomial (cf. [20, Definition 9.8.4]) of
ẼW factors as f(x)g(x), where f(x) = x2 + 4

√
5 · x + (18 − 4/5

√
5) and g(x)

(which is of degree 10) are irreducible. The polynomial f(x) defines the kernel
of a 5-isogeny φσ

W : ẼW → Ẽσ
W. We use this kernel to compute φσ

W via Vélu’s
formulae [49] (see also [34, Sect. 2.4]), reduce modulo p, and then compose with
Frobenius πp : Eσ

W → EW to give φW : EW → EW, (x, y) �→ (xφW
, yφW

), where

xφW
=

⎛
⎜⎝

x5 + 8
√

5x4 + (40
√

5 + 260)x3 + (720
√

5 + 640)x2 + (656
√

5 + 4340)x + (1920
√

5 + 960)

5
(
(x2 + 4

√
5x − 1/5(4

√
5 − 90)

)2

⎞
⎟⎠

p

,

yφW
=

⎛
⎜⎝

−y
(

x2 + (4
√

5 − 8)x − 12
√

5 + 26
) (

x4 + (8
√

5 + 8)x3 + 28x2 − (48
√

5 + 112)x − 32
√

5 − 124
)

(√
5(x2 + 4

√
5x − 1/5(4

√
5 − 90))

)3

⎞
⎟⎠

p

,

As was the case with ψ in Sect. 3.1, it is advantageous to optimize formulas in
Fp2(Ê) for the composition (δψWδ−1), which gives (δψWδ−1) : Ê → Ê , (x, y) �→

222 C. Costello and P. Longa

(xφ, yφ), where

xφ =

⎛
⎝ c9,−6,4,−3 · x · (y2 − c7,5,3,2 · y + c21,15,10,7) · (y2 + c7,5,3,2 · y + c21,15,10,7)

(y2 + c3,2,1,1 · y + c3,3,2,1) · (y2 − c3,2,1,1 · y + c3,3,2,1)

⎞
⎠

p

,

yφ =

⎛
⎝ c15,10,6,4 · (5y4 + c120,90,60,40 · y2 + c175,120,74,54)

5y · (y4 + c240,170,108,76 · y2 + c3055,2160,1366,966)

⎞
⎠

p

.

Again, we use this to compute the full endomorphism ψ = τ̂(δψWδ−1)τ on E
by computing τ and τ̂ separately; see Sect. 3.4 for the operation counts.

3.3 Eigenvalues

The eigenvalues of the two endomorphisms ψ and φ play a key role in developing
scalar decompositions. In this subsection we write them in terms of the curve
parameters. From [46, Theorem 2], and given that we used a 4-isogeny τ and
its dual to pass back and forth to EW, the eigenvalues of ψ on E(Fp2)[N] are
λψ := 4· p+1

r (mod N) and λ′
ψ := −λψ (mod N), where r is an integer satisfying

2r2 = 2p + tE . To derive the eigenvalues for φ, we make use of the CM equation
for E , which (since E has CM by the order of discriminant D = −40) is 40V 2 =
4p2−t2E , for some integer V . We fix r and V to be the positive integers satisfying
these equations, namely V := 4929397548930634471175140323270296814 and
r := 15437785290780909242.

Proposition 2. The eigenvalues of φ on E(Fp2)[N] are

λφ := 4 · (p − 1)r3

(p + 1)2V
(mod N) and λ′

φ := −λφ (mod N).

3.4 Section Summary

Table 1 summarizes the isogenies derived in this section, together with their
exact operation counts. The reason that multiples of 0.5 appear in the additions
column is that we count Frobenius operations (which amount to a negation in Fp)
as half an addition in Fp2 . Four-dimensional scalar decompositions on E require
the computation of φ(P), ψ(P) and the composition ψ(φ(P)); the ordering here
is important since ψ is much faster than φ, meaning we actually compute φ once
and ψ twice. We note that all sets of explicit formulas were derived assuming the
inputs were projective points (X : Y : Z) corresponding to a point (X/Z, Y/Z)
in the domain of the isogeny. Similarly, all explicit formulas output the point
(X ′ : Y ′ : Z ′) corresponding to (X ′/Z ′, Y ′/Z ′) in the codomain, and in the special
cases when the codomain is E (i.e., for τ̂ , φ, ψ and −ψφ), we also output the
coordinate T ′ (or a related variant) corresponding to T ′ = X ′Y ′/Z ′, which
facilitates faster subsequent group law formulas on E – see [14].

Table 1 reveals that, on input of a projective point in E(Fp2)[N], the total
cost of the three maps φ, ψ and ψφ is 68M+27S+49.5A. Computing the maps
using these explicit formulas requires the storage of 16 constants in Fp2 , and at
any stage of the endomorphism computations, requires the storage of at most 7
temporary variables.

FourQ: Four-Dimensional Decompositions 223

Table 1. Summary of isogenies used in the derivation of the three endomorphisms φ,
ψ and φψ on E , together with the cost of their explicit formulas. Here M, S and A
respectively denote the costs of one multiplication, one squaring and one addition in
Fp2 .

Isogeny Domain &
codomain

Degree No. fixed
constants

No. temp
variables

Cost

M S A

τ E → Ê 4 1 2 5 3 5

τ̂ Ê → E 4 1 2 5 3 4

(δφWδ−1) Ê → Ê 5p 10 7 20 5 11.5

(δψWδ−1) Ê → Ê 2p 4 2 9 2 5.5

φ 80p 11 7 30 11 20.5

ψ E → E 32p 5 2 19 8 14.5

ψφ 2560p - 7 19 8 14.5

total cost (φ, ψ, ψφ) 16 7 68 27 49.5

4 Optimal Scalar Decompositions

Let λψ and λφ be as fixed in Sect. 3.3. In this section we show how to com-
pute, for any integer scalar m ∈ Z, a corresponding 4-dimensional multiscalar
(a1, a2, a3, a4) ∈ Z

4 such that m ≡ a1 + a2λφ + a3λψ + a4λφλψ (mod N), such
that 0 ≤ ai < 264 − 1 for i = 1, 2, 3, 4, and such that a1 is odd (which facil-
itates faster scalar recodings and multiplications – see Sect. 5). An excellent
reference for general scalar decompositions in the context of elliptic curve cryp-
tography is [45], where it is shown how to write down short lattice bases for
scalar decompositions directly from the curve parameters. Here, we show how to
further reduce such short bases into bases that are, in the context of multiscalar
multiplications, optimal.

4.1 Babai Rounding and Optimal Bases

Following [45, Sect. 1], we define the lattice of zero decompositions as

L := 〈 (z1, z2, z3, z4) ∈ Z
4 | z1 + z2λφ + z3λψ + z4λφλψ ≡ 0 (mod N)〉,

so that the set of decompositions for m ∈ Z/NZ is the lattice coset (m, 0, 0, 0)+
L. For a given basis B = (b1,b2,b3,b4) of L, and on input of any m ∈ Z,
the Babai rounding technique [2] computes (α1, α2, α3, α4) ∈ Q

4 as the unique
solution to (m, 0, 0, 0) =

∑4
i=1 αibi, and subsequently computes the multiscalar

(a1, a2, a3, a4) = (m, 0, 0, 0) − ∑4
i=1�αi · bi. It follows that (a1, a2, a3, a4) −

(m, 0, 0, 0) ∈ L, so m ≡ a1 + a2λφ + a3λψ + a4λφλψ (mod N). Since −1/2 ≤
x−�x ≤ 1/2, this technique finds the unique element in (m, 0, 0, 0)+L that lies

224 C. Costello and P. Longa

inside the parallelepiped3 defined by P(B) = {Bx |x ∈ [−1/2, 1/2)4}, i.e., Babai
rounding maps Z onto P(B)∩Z

4. For a given m, the length of the corresponding
multiscalar multiplication is then determined by the infinity norm, || · ||∞, of the
corresponding element (a1, a2, a3, a4) in P(B) ∩ Z

4.
Since our scalar multiplications must run in time independent of m, the speed

of the multiscalar exponentiations will depend on the worst case, i.e., on the
maximal infinity norm taken across all elements in P(B) ∩Z

4. Or, equivalently,
the speed of routine will depend on the width of the smallest 4-cube whose convex
body contains P(B) ∩ Z

4. This width depends only on the choice of B, so this
gives us a natural way of finding a basis that is optimal for our purposes. We
make this concrete in the following definition, which is stated for an arbitrary
lattice of dimension n. Definition 1 simplifies the situation by looking for the
smallest n-cube containing P(B), rather than P(B) ∩ Z

n, but our candidate
bases will always be orthogonal enough such that the conditions are equivalent
in practice.

Definition 1 (Babai-optimal bases). We say that a basis B of a lattice
L ∈ R

n is Babai-optimal if the width of the smallest n-cube containing the
parallelepiped P(B) is minimal across all bases for L.

We note immediately that taking the n successive minima under || · ||�, for
any � ∈ {1, 2, . . . ,∞}, will not be Babai-optimal in general. Indeed, for our
specific lattice L, neither the || · ||2-reduced basis (output from LLL [35]) or the
|| · ||∞-reduced basis (in the sense of Lovász and Scarf [38]) are Babai-optimal.

For very low dimensions, such as those used in ECC scalar decompositions,
we can find a Babai-optimal basis via straightforward enumeration as follows.
Starting with any reasonably small basis B′ = (b′

1, . . . ,b
′
n), like the ones in [45],

we compute the width, w(B′), of the smallest n-cube whose convex body contains
P(B′); by the definition of P, this is w(B′) = max1≤j≤n {∑n

i=1 |b′
i[j]|}. We then

enumerate the set S of all vectors v ∈ L such that ||v||∞ ≤ w(B′); any vector
not in S cannot be in a basis whose width is smaller than B′. We can then test
all possible bases B, that are formed as combinations of n linearly independent
vectors in S, and choose one corresponding to the minimal value of w(B).

Proposition 3. A Babai optimal basis for our zero decomposition lattice L is
given by B := (b1,b2,b3,b4), where

224 · b1 := (16(−60α + 13r − 10), 4(−10α − 3r + 12) , 4(−15α + 5r − 13) , −13α − 6r + 3) ,

8 · b2 := (32(5α − r) , −8 , 8 , 2α + r) ,

224 · b3 := (16(80α − 15r + 18) , 4(18α − 3r − 16) , 4(−15α − 9r + 15) , 15α + 8r + 3α) ,

448 · b4 := (16(−360α + 77r + 42), 4(42α + 17r + 72), 4(85α − 21r − 77), (−77α − 36r − 17)) ,

for V and r as fixed in Sect. 3, and where α := V/r ∈ Z.

3 This is a translate (by − 1
2
(
∑4

i=1 bi)) of the fundamental parallelepiped, which is
defined using x ∈ [0, 1)4.

FourQ: Four-Dimensional Decompositions 225

Proof. Straightforward but lengthy calculations using the equations in Sect. 3.3
reveal that b1, b2, b3 and b4 are all in L. Another direct calculation reveals that
the determinant of 〈b1,b2,b3,b4〉 is N , so B is a basis for L. To show that B is
Babai-optimal, we set B′ = B and compute w(B′) = max1≤j≤4

{∑4
i=1 |b′

i[j]|
}

,
which (at j = 1) is w(B′) = (245α + 120r + 17)/448. Enumeration under || · ||∞
yields exactly 128 vectors (up to sign) in S = {v ∈ L | ||v||∞ ≤ w(B′)}; none of
the rank 4 bases formed from S have a width smaller than B. ��
The size of the set S in the above proof depends on the quality of the initial
basis B′. For the proof, it suffices to start with the Babai-optimal basis B itself,
but in practice we will usually start with a basis that is not optimal according
to Definition 1. In our case we computed the basis in Proposition 3 by first
writing down a short basis using Smith’s methodology [45]. We input this into
the LLL algorithm [35] to obtain an LLL-reduced basis (b1,b2,b1 + b4,b3);
these are also the four successive minima under || · ||2. We then input this basis
into the algorithm of Lovász and Scarf [38]; this forced the requisite changes to
output a basis consisting of the four successive minima under || · ||∞, namely
(b1,b1 + b4,b2,b1 + b3). Using this as our input B′ into the enumeration gave
a set S of size 282, which we exhaustively searched to find B.

We now describe a simple scalar decomposition that uses Babai rounding on
the optimal basis above. Note that, since V and r are fixed, the four α̂i values
below are fixed integer constants.

Proposition 4. For a given integer m, and the basis B := (b1,b2,b3,b4)
in Prop. 3, let (α1, α2, α3, α4) ∈ Q

4 be the unique solution to (m, 0, 0, 0) =
∑4

i=1 αibi, and let (a1, a2, a3, a4) = (m, 0, 0, 0) − ∑4
i=1�αi · bi. Then m ≡

a1 + a2λφ + a3λψ + a4λψφ (mod N) and |a1|, |a2|, |a3|, |a4| < 262.

4.2 Handling Round-Off Errors

The decomposition described in Proposition 4 requires the computation of four
roundings � α̂i

N · m, where m is the input scalar and the four α̂i and N are fixed
curve constants. Following [10, Sect. 4.2], one efficient way of performing these
roundings is to choose a power of 2 greater than the denominator N , say μ,
and precompute the fixed curve constants �i = � α̂i

N · μ, so that � α̂i

N · m can
be computed at runtime as � �i·m

μ �, and the division by μ can be computed as a
simple shift.

It is correctly noted in [10, Sect. 4.2] that computing the rounding in this
way means the answer can be out by 1 in some cases, but it is further said that
“in practice this does not affect the size of the multiscalars”. While this assertion
may have been true in [10], in general this will not be the case, particularly when
we wish to bound the size of the multiscalars as tightly as possible. We address
this issue on E starting with Lemma 1.

Lemma 1. Let α̂ be any integer, and let m,N and μ be positive integers with
m < μ. Then

⌊
α̂m
N

⌉ −
⌊⌊

α̂μ
N

⌉
· m

μ

⌋
is either 0 or 1.

226 C. Costello and P. Longa

Lemma 1 says that, so long as we choose μ to be greater than the maximum
size of our input scalars m, our fast method of approximating � α̂i

N · m will
either give the correct answer, or it will be � α̂i

N · m − 1. It is easy to see that
larger choices of μ decrease the probability of a rounding error. For example, on
10 million random decompositions of integers between 0 and N with μ = 2246,
roughly 2.2 million trials gave at least one error in the αi; when μ = 2247, roughly
1.7 million trials gave at least one error; when μ = 2256, 4333 trials gave an error;
and, taking μ = 2269 was the first power of two that gave no errors.

Prior works have seemingly addressed this problem by taking μ to be large
enough so that the chance of roundoff errors are very (perhaps even exponen-
tially) small. However, no matter how large μ is chosen, the existence of a per-
missible scalar whose decomposition gives a roundoff error is still a possibility4,
and this could violate constant-time promises.

In this work, and in light of Theorem 1, we instead choose to sacrifice some
speed by guaranteeing that roundoff errors are always accounted for. Rather
than assuming that (a1, a2, a3, a4) =

∑4
i=1(αi − �αi)bi, we account for the

approximation α̃i to �αi (described in Lemma 1) by allowing (a1, a2, a3, a4) =
∑4

i=1 (αi − α̃i)bi =
∑4

i=1 (αi − (�αi − εi))bi, for all sixteen combinations aris-
ing from εi ∈ {0, 1}, for i = 1, 2, 3, 4. This means that all integers less than μ will
decompose to a multiscalar in Z

4 whose coordinates lie inside the parallelepiped
Pε(B) := {Bx |x ∈ [−1/2, 3/2)4}. Theorem 1 permits scalars as any 256-bit
strings, so we fix μ := 2256 from here on, which also means that division by μ
will correspond to a shift of machine words. The edges of Pε(B) are twice as
long as those of P(B), so the number of points in Pε(B) ∩Z

4 is vol(Pε) = 16N .
We note that, even though the number of permissible scalars far exceeds 16N ,
the decomposition that maps integers in [0, μ) to multiscalars in Pε(B) ∩ Z

4 is
certainly no longer onto; almost all of the μ scalars will map into P(B)∩Z

4, since
the chance of roundoff errors that take us into Pε(B) − P(B) is small. Plainly,
the width of smallest 4-cube containing Pε(B) is also twice that of the 4-cube
containing P(B), so (in the sense of Definition 1) our basis is still Babai-optimal.
Nevertheless, the bounds in Proposition 4 no longer apply, which is one of the
issues addressed in the next subsection.

4.3 All-Positive Multiscalars

Many points in Pε(B) ∩ Z
4 have coordinates that are far greater than 262 in

absolute value, and in addition, the majority of them will have coordinates that
are both positive and negative. Dealing with such signed multiscalars can require
an additional iteration in the main loop of the scalar multiplication, so in this
subsection we use an offset vector in L to find a translate of Pε(B) that contains
points whose four coordinates are always positive. We note that this does not
save the additional iteration mentioned above, but (at no cost) it does simplify

4 This is not technically true: so long as the set of permissible scalars is finite, there
will always be a μ large enough to round all scalar decompositions accurately, but
finding or proving this is, to our knowledge, very difficult.

FourQ: Four-Dimensional Decompositions 227

the scalar recoding, such that we do not have to deal with multiscalars that
can have negative coordinates. Such offset vectors were used in two dimensions
in [13, Sect. 4].

From the proof of Proposition 3, we have that the width of the smallest
4-cube containing Pε(B) is 2 · (245α + 120r + 17)/448, which lies between 263

and 264. Thus, the optimal situation is to translate of Pε(B) (using a vector in
L) that fits inside the convex body of the 4-cube H = {264 · x |x ∈ [0, 1]4}. In
fact, as we discuss in the next paragraph, we actually want to find two unique
translates of Pε(B) inside H.

The scalar recoding described in Sect. 5 requires that the first component of
the multiscalar (a1, a2, a3, a4) is odd. In the case that a1 is even, which hap-
pens around half of the time, previous works have employed this “odd-only”
recoding by instead working with the multiscalar (a1 − 1, a2, a3, a4), and adding
the point P to the value output by the main loop (cf. [41, Algorithm 4] and
[18, Algorithm 2]). Of course, in a constant-time routine, this scalar update and
point addition must be performed regardless of the parity of a1, and the correct
scalars and results must be masked in and out of the main loop accordingly.
In this work we simplify the situation by using offset vectors in L to achieve
the same result; this has the added advantage of avoiding an extra point addi-
tion. We do this by finding two vectors c, c′ ∈ L such that c + Pε(B) and
c′ + Pε(B) both lie inside H, and such that precisely one of (a1, a2, a3, a4) + c
and (a1, a2, a3, a4) + c′ has a first component that is odd. This is made explicit
in the full scalar decomposition described below.

Proposition 5 (Scalar Decompositions). Let B = (b1,b2,b3,b4) be the
basis in Proposition 3, let μ = 2256, and define the four curve constants �i :=
�α̂i · μ/N for i = 1, 2, 3, 4, with the α̂i as given in Proposition 4. Let c = 2b1 −
b2+5b3+2b4 and c′ = 2b1−b2+5b3+b4 in L. For any integer m ∈ [0, 2256), let
α̃i = ��im/μ�, and let (a1, a2, a3, a4) = (m, 0, 0, 0)−∑4

i=1�α̃i ·bi. Then, both of
the multiscalars (a1, a2, a3, a4)+c and (a1, a2, a3, a4)+c′ are valid decompositions
of m, have all four coordinates positive and less than 264, and precisely one of
them has a first coordinate that is odd.

The scalar decomposition described in Proposition 5 outputs two multi-
scalars. Our decomposition routine uses a bitmask to select and output the
one with an odd first coordinate in constant time.

5 The Scalar Multiplication

This section describes the full scalar multiplication of P ∈ E(Fp2) by an integer
m ∈ [0, 2256), pulling together the endomorphisms and scalar decompositions
derived in the previous two sections.

5.1 Recoding the Multiscalar

The “all-positive” multiscalar (a1, a2, a3, a4) that is obtained from the decom-
position described in Proposition 5 could be fed as is into a simple 4-way mul-
tiexponentiation (e.g., the 4-dimensional version of [48]) to achieve an efficient

228 C. Costello and P. Longa

scalar multiplication. However, more care needs to be taken to obtain an effi-
cient routine that also runs in constant-time. For example, we need to guarantee
that the main loop iterates in the same number of steps, which would not cur-
rently be the case since maxj(log2(|aj |)) can be several integers less than 64. As
another example, a straightforward multiexponentiation could leak information
in the case that the i-th bit of all four aj values was 0, which would result in a
“do-nothing” rather than a non-trivial addition.

To achieve an efficient constant-time routine, we adopt the general recod-
ing Algorithm from [18, Algorithm 1], and tailor it to scalar multiplications on
FourQ. This results in Algorithm 1 below, which is presented in two flavors:
one that is geared towards the general reader and one that is geared towards
implementers (we note that the lines do not coincide for the most part). On
input of any multiscalar (a1, a2, a3, a4) produced by Proposition 5, Algorithm 1
outputs an equivalent multiscalar (b1, b2, b3, b4) with bj =

∑64
i=0 bj [i] · 2i for

bj [i] ∈ {−1, 0, 1} and j = 1, 2, 3, 4, such that we always have b1[64] = 1 and such
that b1[i] is non-zero for every i = 0, . . . , 63. This fixes the length of the main
loop and ensures that each addition step of the multiexponentiation requires an
addition by something other than the neutral element.

Another benefit of Algorithm 1 is that bj [i] ∈ {0, b1[i]} for j = 2, 3, 4; as
was exploited in [18], this “sign-alignment” means that the lookup table used
in our multiexponentiation only requires 8 elements, rather than the 16 that
would be required in a näıve multiexponentiation that uses (a1, a2, a3, a4). More
specifically, since b1[i] (which is to be multiplied by P) is always non-zero, every
element of the lookup table T must contain P , so we have T [u] := P +[u0]φ(P)+
[u1]ψ(P) + [u2]ψ(φ(P)), where u = (u2, u1, u0)2 for u = 0, . . . , 7. We point out
that the recoding must itself be implemented in constant-time; the implementer-
friendly version shows that Algorithm 1 indeed lends itself to such a constant-
time implementation. We further note that the outputs of the two versions are
formatted differently: the left side outputs the multiscalar (b1, b2, b3, b4), while
the right side instead outputs the corresponding lookup table indices (the di) and
the masks (the mi) used to select the correct signs of the lookup elements. That
is, (m64, . . . ,m0) corresponds to the binary expansion of b1 and (d64, . . . , d0)
corresponds to the binary expansion of b2 + 2b3 + 4b4.

5.2 The Full Routine

We now present Algorithm 2: the full scalar multiplication routine. This is accom-
panied by Theorem 1, the proof of which (see [14]) gives more details on the steps
summarized in Algorithm 2; in particular, it specifies the representations of all
points in order to state the total number of Fp2 operations. Algorithm 2 assumes
that the input point P is in E(Fp2)[N], i.e., has been validated according to
[14, Appendix A].

Theorem 1. For every point P ∈ E(Fp2)[N] and every non-negative integer m
less than 2256, Algorithm 2 computes [m]P correctly using a fixed sequence of
field, integer and table-lookup operations.

FourQ: Four-Dimensional Decompositions 229

Algorithm 1. FourQ multiscalar recoding: reader-friendly (left) and
implementer-friendly (right).
Input: four positive integers aj = (0, aj [63], . . . , aj [0])2 ∈ {0, 1}65 less than 264 for
1 ≤ j ≤ 4 and with a1 odd.

Output: four integers
bj =

∑64
i=0 bj [i] · 2i, with

bj [i] ∈ {−1, 0, 1}.

1: b1[64] = 1
2: for i = 0 to 64 do
3: if i �= 64 then
4: b1[i] = 2a1[i + 1] − 1
5: for j = 2 to 4 do
6: bj [i] = b1[i] · aj [0]
7: aj = �aj/2� − �bj [i]/2�
8: return (bj [64], . . . , bj [0]) for

1 ≤ j ≤ 4.

Output: (d64, . . . , d0) with 0 ≤ di < 7, and
(m64, . . . , m0) with mi ∈ {−1, 0}.

1: m64 = −1
2: for i = 0 to 63 do
3: di = 0
4: mi = −a1[i + 1]
5: for j = 2 to 4 do
6: di = di + (aj [0] � (j − 2))
7: c = (a1[i + 1] | aj [0]) ∧ a1[i + 1]
8: aj = (aj 	 1) + c
9: d64 = a2 + 2a3 + 4a4

10: return (d64, . . . , d0) and (m64, . . . , m0).

6 Performance Analysis and Results

This section shows that, at the 128-bit security level, FourQ is significantly faster
than all other known curve-based primitives. We reiterate that our software
runs in constant-time and is therefore fully protected against timing and cache
attacks.

6.1 Operation Counts

We begin with a first-order comparison based on operation counts between
FourQ and two other efficient curve-based primitives that are defined over large
prime characteristic fields and that target the 128-bit security level: the twisted
Edwards GLV+GLS curve defined over Fp2 with p = 2127−5997 proposed in [37],
and the genus 2 Kummer surface defined over Fp with p = 2127 − 1 that was
proposed in [25]; we dub these “GLV+GLS” and “Kummer” below. Both of
these curves have recently set speed records on a variety of platforms (see [18]
and [6]). Table 2 summarizes the operation counts for one variable-base scalar
multiplication on FourQ, GLV+GLS and Kummer. In the right-most column
we approximate the cost in terms of prime field operations (using the standard
assumption that 1 base field squaring is approximately 0.8 base field multiplica-
tions), where we round each tally to the nearest integer. For the GLV+GLS and
FourQ operation counts, we assume that one multiplication over Fp2 involves
3 multiplications and 5 additions/subtractions over Fp (when using Karatsuba)
and one squaring over Fp2 involves 2 multiplications and 3 additions/subtractions
over Fp.

Table 2 shows that the GLV+GLS routine from [37] requires slightly fewer
operations than FourQ. This can mainly be explained by the faster endomor-
phisms, but (as we will see in Table 3) this difference is more than made up

230 C. Costello and P. Longa

Algorithm 2. FourQ’s scalar multiplication on E(Fp2)[N].
Input: Point P ∈ E(Fp2)[N] and integer scalar m ∈ [0, 2256).
Output: [m]P .

Compute endomorphisms:
1: Compute φ(P), ψ(P) and ψ(φ(P)) using the explicit formulas summarized in
Table 1.
Precompute lookup table:
2: Compute T [u] = P + [u0]φ(P) + [u1]ψ(P) + [u2]ψ(φ(P)) for u = (u2, u1, u0)2 in
0 ≤ u ≤ 7.
Scalar decomposition:
3: Decompose m into the multiscalar (a1, a2, a3, a4) as in Proposition 5.
Scalar recoding:
4: Recode (a1, a2, a3, a4) into (d64, . . . , d0) and (m64, . . . , m0) using Algorithm 1.
Write si = 1 if mi = −1 and si = −1 if mi = 0.
Main loop:
5: Q = s64 · T [d64]
6: for i = 63 to 0 do
7: Q = [2]Q
8: Q = Q + si · T [di]
9: return Q

Table 2. Operation counts for variable-base scalar multiplications on three different
curves targeting the 128-bit security level. In the case of the Kummer surface, we
additionally use a “word-mul” column to count the number of special multiplications
of a general element in Fp by a small (i.e., one-word) constant – see [6].

primitive prime char. p op. count over Fp2 approx. op. count over Fp

inv mul sqr add inv mul add word-mul

FourQ 2127 − 1 1 842 283 950.5 1 3092 6960 -

GLV+GLS 2127 − 5997 1 833 191 769 1 2885 6278 -

Kummer 2127 − 1 - - - - 1 4319 8032 2008

for by the faster modular arithmetic and superior simplicity of FourQ. Table 2
shows that FourQ requires far fewer operations (in the same ground field) than
Kummer; it is therefore expected, in general, that implementations based on
FourQ outperform Kummer implementations for computing variable-base scalar
multiplications.

6.2 Experimental Results

To evaluate performance, we wrote a standalone library supporting Four Q –
see [15]. The library’s design pursues modularity and code reuse, and lever-
ages the simplicity of FourQ’s arithmetic. It also facilitates the addition of spe-
cialized code for different platforms and applications: the core functionality of
the library is fully written in portable C and works together with pluggable

FourQ: Four-Dimensional Decompositions 231

implementations of the arithmetic over Fp2 (and a few other complementary
functions). The first release version of the library comes with two of those plug-
gable modules: a portable implementation written in C and a high-performance
implementation for x64 platforms written in C and optional x64 assembly. The
library computes all of the basic elliptic curve operations including variable-
base and fixed-base scalar multiplications, making it suitable for a wide range
of cryptographic protocols. In addition, the software permits the selection (at
build time) of whether or not the endomorphisms ψ and φ are to be exploited
in variable-based scalar multiplications.

In Table 3, we compare FourQ’s performance with other state-of-the-art
implementations documented in the literature. Our benchmarks cover a wide
range of x64 processors, from high-end architectures (e.g., Intel’s Haswell) to
low-end architectures (e.g., Intel’s Atom). To cast the performance numbers in
the context of a real-world protocol, we choose to illustrate FourQ’s perfor-
mance in one round of an ephemeral Diffie-Hellman (DH) key exchange. This
means that both parties can generate their public keys using a fixed-base scalar
multiplication and generate the shared secret using a variable-base scalar mul-
tiplication. Exploiting such precomputations to generate truly ephemeral public
keys agrees with the comments made by Bernstein and Lange in [8, Sect. 1], e.g.,
that “forward secrecy is at its strongest when a key is discarded immediately
after its use”. Thus, Table 3 shows the execution time (in terms of clock cycles)
for both variable-base and fixed-base scalar multiplications. We note that the
laddered implementations in [4,6,9] only compute variable-base scalar multipli-
cations, which is why we use the cost of two variable-base scalar multiplications
to approximate the cost of ephemeral DH in those cases. For the FourQ and
GLV+GLS implementations, precomputations for the fixed-base scalar multipli-
cations occupied 7.5KB and 6KB of storage, respectively.

Table 3 shows that, in comparison with the “conservative” curves, FourQ is
2.1–2.7 times faster than the Curve25519 implementations in [3,12] and up to
5.4 times faster than the curve P-256 implementation in [26], when computing
variable-base scalar multiplications. When considering the results for the DH
key exchange, FourQ performs 1.8–3.5 times faster than Curve25519 and up to
4.2 times faster than curve P-256.

In terms of comparisons to the previously fastest implementations, variable-
base scalar multiplications using our software are between 1.20 and 1.34 times
faster than the Kummer [6,9] and the GLV+GLS [18] implementations on
AMD’s Kaveri and Intel’s Atom Pineview, Sandy Bridge and Ivy Bridge. The
Kummer implementation for Haswell in [6] is particularly fast because it takes
advantage of the powerful AVX2 vector instructions. Nevertheless, our imple-
mentation (which does not currently exploit vector instructions to accelerate the
field arithmetic) is still faster in the case of variable-base scalar multiplication.
Moreover, in practice we expect a much larger advantage. For example, in the
case of the DH key exchange, we leverage the efficiency of fixed-base scalar mul-
tiplications to achieve a factor 1.33x speedup over the Kummer implementation
on Haswell. For the rest of platforms considered in Table 3, a DH shared secret

232 C. Costello and P. Longa

Table 3. Performance results (expressed in terms of thousands of clock cycles) of
state-of-the-art implementations of various curves targeting the 128-bit security level
on various x64 platforms. Benchmark tests were taken with Intel’s TurboBoost and
AMD’s TurboCore disabled and the results were rounded to the nearest 1000 clock
cycles. The benchmarks for the FourQ and GLV+GLS implementations were done on
1.66 GHz Intel Atom N570 Pineview, 3.4 GHz Intel Core i7-2600 Sandy Bridge, 3.4 GHz
Intel Core i7-3770 Ivy Bridge, 3.4 GHz Intel Core i7-4770 Haswell and 3.1GHz AMD
A8 PRO-7600B Kaveri. For the Kummer implementations [6,9] and Curve25519 imple-
mentation [3], Pineview, Sandy Bridge, Ivy Bridge and Haswell benchmarks were taken
from eBACS [7] (machines h2atom, h6sandy, h9ivy and titan0), while AMD bench-
marks were obtained by running eBACS’ SUPERCOP toolkit on the corresponding
targeted machine. The benchmarks for curve NIST P-256 were taken directly from [26]
and the second set of Curve25519 benchmarks were taken directly from [12].

Processor Operation FourQ GLV+GLS Kummer Curve25519 P-256

(this work) [18] [9] [6] [3] [12] [26]

Atom Pineview var-base 442 N/A 556 N/A 1,109 N/A N/A

fixed-base 217 N/A - N/A - N/A N/A

ephem. DH 659 N/A 1,112 N/A 2,218 N/A N/A

Sandy Bridge var-base 74 92 123 89 194 157 400

fixed-base 42 51 - - - 54 90

ephem. DH 116 143 246 178 388 211 490

Ivy Bridge var-base 71 89 119 88 183 159 N/A

fixed-base 39 49 - - - 52 N/A

ephem. DH 110 138 238 176 366 211 N/A

Haswell var-base 59 N/A 111 61 162 N/A 312

fixed-base 33 N/A - - - N/A 67

ephem. DH 92 N/A 222 122 324 N/A 379

AMD Kaveri var-base 122 N/A 151 164 301 N/A N/A

fixed-base 65 N/A - - - N/A N/A

ephem. DH 187 N/A 302 328 602 N/A N/A

using the FourQ software can be computed 1.5–1.8 times faster than a DH secret
using the Kummer software in [6]. We note that the eBACS website [7] and [6]
report different results for the same Kummer software on the same platform (i.e.,
Titan0): eBACS reports 60,556 Haswell cycles whereas [6] claims 54,389 Haswell
cycles. This difference in performance raises questions regarding accuracy. The
results that we obtained after running the eBACS’ SUPERCOP toolkit on our
own targeted Haswell machine seem to confirm that the results claimed in [6]
for the Kummer were measured with TurboBoost enabled.

FourQ without endomorphisms. Our library can be built with a version of
the variable-base scalar multiplication function that does not exploit the endo-
morphisms ψ and φ to accelerate computations (note that fixed-base scalar mul-
tiplications do not exploit these endomorphisms by default). In this case, FourQ
computes one variable-base scalar multiplication in (respectively) 109, 131, 138
and 803 thousand cycles on the Haswell, Ivy Bridge, Sandy Bridge and Atom

FourQ: Four-Dimensional Decompositions 233

Pineview processors used for our experiments. These results are up to 2.9 times
faster than the corresponding results for NIST P-256 and up to 1.5 times faster
than the corresponding results for Curve25519.

Acknowledgements. We thank Michael Naehrig for several discussions throughout
this work, and Joppe Bos, Sorina Ionica and Greg Zaverucha for their comments on an
earlier version of this paper. We are especially thankful to Ben Smith for pointing out
the better option for φ in Sect. 3.2.

References

1. Ahmadi, O., Granger, R.: On isogeny classes of Edwards curves over finite fields.
Cryptology ePrint Archive, Report 2011/135 (2011). http://eprint.iacr.org/

2. Babai, L.: On Lovász’ lattice reduction and the nearest lattice point problem.
Combinatorica 6(1), 1–13 (1986)

3. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.-Y.: High-speed high-
security signatures. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917,
pp. 124–142. Springer, Heidelberg (2011)

4. Bernstein, D.J.: Curve25519: new Diffie-Hellman speed records. In: Yung, M.,
Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 207–
228. Springer, Heidelberg (2006)

5. Bernstein, D.J., Birkner, P., Joye, M., Lange, T., Peters, C.: Twisted Edwards
curves. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 389–
405. Springer, Heidelberg (2008)

6. Bernstein, D.J., Chuengsatiansup, C., Lange, T., Schwabe, P.: Kummer strikes
back: new DH speed records. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014.
LNCS, vol. 8873, pp. 317–337. Springer, Heidelberg (2014)

7. Bernstein, D.J., Lange, T.: eBACS: ECRYPT Benchmarking of Cryptographic
Systems. http://bench.cr.yp.to/results-dh.html. Accessed on May 19 2015

8. Bernstein, D.J., Lange, T.: Hyper-and-elliptic-curve cryptography. LMS J. Com-
put. Math. 17(A), 181–202 (2014)

9. Bos, J.W., Costello, C., Hisil, H., Lauter, K.: Fast cryptography in genus 2. In:
Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
194–210. Springer, Heidelberg (2013)

10. Bos, J.W., Costello, C., Hisil, H., Lauter, K.: High-performance scalar multiplica-
tion using 8-dimensional GLV/GLS decomposition. In: Bertoni, G., Coron, J.-S.
(eds.) CHES 2013. LNCS, vol. 8086, pp. 331–348. Springer, Heidelberg (2013)

11. Certicom Research. Standards for Efficient Cryptography 2: Recommended Elliptic
Curve Domain Parameters, v2.0. Standard SEC2, Certicom (2010)

12. Chou, T.: Fastest Curve25519 implementation ever. In: Workshop on Elliptic Curve
Cryptography Standards (2015). http://www.nist.gov/itl/csd/ct/ecc-workshop.
cfm

13. Costello, C., Hisil, H., Smith, B.: Faster compact Diffie–Hellman: endomorphisms
on the x -line. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol.
8441, pp. 183–200. Springer, Heidelberg (2014)

14. Costello, C., Longa, P.: FourQ: four-dimensional decompositions on a Q-curve
over the Mersenne prime (extended version). Cryptology ePrint Archive, Report
2015/565 2015. http://eprint.iacr.org/

http://eprint.iacr.org/
http://bench.cr.yp.to/results-dh.html
http://www.nist.gov/itl/csd/ct/ecc-workshop.cfm
http://www.nist.gov/itl/csd/ct/ecc-workshop.cfm
http://eprint.iacr.org/

234 C. Costello and P. Longa

15. Costello, C., Longa, P.: FourQlib (2015). http://research.microsoft.com/fourqlib/
16. Duursma, I.M., Gaudry, P., Morain, F.: Speeding up the discrete log computa-

tion on curves with automorphisms. In: Lam, K.-Y., Okamoto, E., Xing, C. (eds.)
ASIACRYPT 1999. LNCS, vol. 1716, pp. 103–121. Springer, Heidelberg (1999)

17. Edwards, H.: A normal form for elliptic curves. Bull. Am. Math. Soc. 44(3), 393–
422 (2007)

18. Faz-Hernández, A., Longa, P., Sánchez, A.H.: Efficient and secure algorithms for
GLV-based scalar multiplication and their implementation on GLV-GLS curves
(extended version). J. Cryptographic Eng. 5(1), 31–52 (2015)

19. Frey, G., Müller, M., Rück, H.: The Tate pairing and the discrete logarithm applied
to elliptic curve cryptosystems. IEEE Trans. Inf. Theor. 45(5), 1717–1719 (1999)

20. Galbraith, S.D.: Mathematics of Public Key Cryptography. Cambridge University
Press, Cambridge (2012)

21. Galbraith, S.D., Lin, X., Scott, M.: Endomorphisms for faster elliptic curve cryp-
tography on a large class of curves. J. Cryptology 24(3), 446–469 (2011)

22. Gallant, R.P., Lambert, R.J., Vanstone, S.A.: Faster point multiplication on elliptic
curves with efficient endomorphisms. In: Kilian, J. (ed.) CRYPTO 2001. LNCS,
vol. 2139, pp. 190–200. Springer, Heidelberg (2001)

23. Gaudry, P.: Fast genus 2 arithmetic based on Theta functions. J. Math. Cryptology
1(3), 243–265 (2007)

24. Gaudry, P.: Index calculus for abelian varieties of small dimension and the elliptic
curve discrete logarithm problem. J. Symbolic Comput. 44(12), 1690–1702 (2009)

25. Gaudry, P., Schost, E.: Genus 2 point counting over prime fields. J. Symbolic
Comput. 47(4), 368–400 (2012)

26. Gueron, S., Krasnov, V.: Fast prime field elliptic curve cryptography with 256 bit
primes. J. Cryptographic Eng. 5(2), 141–151 (2015)

27. Guillevic, A., Ionica, S.: Four-dimensional GLV via the Weil restriction. In: Sako,
K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 79–96.
Springer, Heidelberg (2013)

28. Hamburg, M.: Twisting Edwards curves with isogenies. Cryptology ePrint Archive,
Report 2014/027 (2014). http://eprint.iacr.org/

29. Hasegawa, Y.: Q-curves over quadratic fields. Manuscripta Math. 94(1), 347–364
(1997)

30. Hisil, H., Costello, C.: Jacobian coordinates on genus 2 curves. In: Sarkar, P., Iwata,
T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 338–357. Springer, Heidelberg
(2014)

31. Hisil, H., Wong, K.K.-H., Carter, G., Dawson, E.: Twisted Edwards curves revis-
ited. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 326–343.
Springer, Heidelberg (2008)

32. Hu, Z., Longa, P., Xu, M.: Implementing 4-dimensional GLV method on GLS
elliptic curves with j-invariant 0. Des. Codes Cryptography 63(3), 331–343 (2012)

33. Koblitz, A.H., Koblitz, N., Menezes, A.: Elliptic curve cryptography: the serpentine
course of a paradigm shift. J. Number Theor. 131(5), 781–814 (2011)

34. Kohel, D.: Endomorphism rings of elliptic curves over finite fields. Ph.D. thesis,
University of California at Berkeley (1996)

35. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational
coefficients. Math. Ann. 261(4), 515–534 (1982)

36. Longa, P., Gebotys, C.: Efficient techniques for high-speed elliptic curve cryptog-
raphy. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp.
80–94. Springer, Heidelberg (2010)

http://research.microsoft.com/fourqlib/
http://eprint.iacr.org/

FourQ: Four-Dimensional Decompositions 235

37. Longa, P., Sica, F.: Four-dimensional Gallant-Lambert-Vanstone scalar multipli-
cation. J. Cryptology 27(2), 248–283 (2014)

38. Lovász, L., Scarf, H.E.: The generalized basis reduction algorithm. Math. Oper.
Res. 17(3), 751–764 (1992)

39. Menezes, A., Vanstone, S.A., Okamoto, T.: Reducing elliptic curve logarithms to
logarithms in a finite field. In: Koutsougeras, C., Vitter, J.S. (eds.) Proceedings of
23rd Annual ACM Symposium on Theory of Computing, pp. 80–89. ACM (1991)

40. National Institute of Standards and Technology (NIST). 186–2. Digital Signature
Standard (DSS). Federal Information Processing Standards (FIPS) Publication
(2000)

41. Oliveira, T., López, J., Aranha, D.F., Rodŕıguez-Henŕıquez, F.: Two is the fastest
prime: lambda coordinates for binary elliptic curves. J. Cryptographic Eng. 4(1),
3–17 (2014)

42. Pollard, J.M.: Monte Carlo methods for index computation (mod p). Math. Com-
put. 32(143), 918–924 (1978)

43. Scholten, J.: Weil restriction of an elliptic curve over a quadratic exten-
sion (2004). http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.118.7987&
rep=rep1&type=pdf

44. Smith, B.: Families of fast elliptic curves from Q-curves. In: Sako, K., Sarkar, P.
(eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 61–78. Springer, Heidelberg
(2013)

45. Smith, B.: Easy scalar decompositions for efficient scalar multiplication on elliptic
curves and genus 2 Jacobians. In: Contemporary Mathematics Series, vol. 637, p.
15. American Mathematical Society (2015)

46. Smith, B.: The Q-curve construction for endomorphism-accelerated elliptic curves.
J. Cryptology (2015, to appear)

47. Stark, H.M.: Class-numbers of complex quadratic fields. In: Kuijk, W. (ed.) Mod-
ular Functions of One Variable I, pp. 153–174. Springer, Heidelberg (1973)

48. Straus, E.G.: Addition chains of vectors. Am. Math. Mon. 70(806–808), 16 (1964)
49. Vélu, J.: Isogénies entre courbes elliptiques. CR Acad. Sci. Paris Sér. AB 273,

A238–A241 (1971)
50. Wiener, M., Zuccherato, R.J.: Faster attacks on elliptic curve cryptosystems. In:

Tavares, S., Meijer, H. (eds.) SAC 1998. LNCS, vol. 1556, pp. 190–200. Springer,
Heidelberg (1999)

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.118.7987&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.118.7987&rep=rep1&type=pdf

Signatures

Efficient Fully Structure-Preserving Signatures
for Large Messages

Jens Groth(B)

University College London, London, UK
j.groth@ucl.ac.uk

Abstract. We construct both randomizable and strongly existentially
unforgeable structure-preserving signatures for messages consisting of
many group elements. To sign a message consisting of N = mn group
elements we have a verification key size of m group elements and signa-
tures contain n + 2 elements. Verification of a signature requires evalu-
ating n + 1 pairing product equations.

We also investigate the case of fully structure-preserving signatures
where it is required that the secret signing key consists of group elements
only. We show a variant of our signature scheme allowing the signer to
pick part of the verification key at the time of signing is still secure. This
gives us both randomizable and strongly existentially unforgeable fully
structure-preserving signatures. In the fully structure preserving scheme
the verification key is a single group element, signatures contain m+n+1
group elements and verification requires evaluating n+1 pairing product
equations.

Keywords: Digital signatures · Pairing-based cryptography · Full
structure-preservation

1 Introduction

Structure-preserving signatures are pairing-based signatures where verification
keys, messages and signatures all consist solely of group elements and the
verification algorithm relies on generic group operations such as multiplications
and pairings to verify a signature. Structure-preserving signatures are interest-
ing because they compose well with other structure-preserving primitives such
as ElGamal encryption [ElG85] and Groth-Sahai proofs [GS12] for instance.
By combining different structure-preserving components it is possible to
build advanced cryptographic schemes in a modular manner. Applications
of structure-preserving signatures include blind signatures [AFG+10,FV10],
group signatures [AFG+10,FV10,LPY12], homomorphic signatures [LPJY13,

This research was supported by the Engineering and Physical Sciences Research
Council grant EP/J009520/1 and the European Research Council under the Euro-
pean Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agree-
ment n. 307937.

c© International Association for Cryptologic Research 2015
T. Iwata and J.H. Cheon (Eds.): ASIACRYPT 2015, Part I, LNCS 9452, pp. 239–259, 2015.
DOI: 10.1007/978-3-662-48797-6 11

240 J. Groth

ALP13], delegatable anonymous credentials [Fuc11], compact verifiable shuf-
fles [CKLM12], network encoding [ALP12], oblivious transfer [GH08,CDEN12],
tightly secure encryption [HJ12,ADK+13] and anonymous e-cash [ZLG12].

Since structure-preserving signatures are basic components when building
cryptographic schemes it is crucial to make them as efficient as possible. All
cryptographic protocols built on top of a structure-preserving signature scheme
will be affected by its efficiency. There has therefore been a significant amount
of research into finding barriers for how efficient structure-preserving signatures
can be and constructing schemes achieving these bounds. Abe et al. [AGHO11]
demonstrated a lower bound of 3 group elements for structure-preserving sig-
natures (using Type III pairings, which is the most efficient type) and found
matching constructions with 3 element signatures.

While the case of signing a single group element has been well studied, the
question of signing larger messages has received less attention. Most structure-
preserving schemes offering to sign many elements do so by increasing the size
of the verification key linearly in the message to be signed. One could of course
imagine chopping a large message into smaller pieces and signing each of them
individually and then sign the resulting signatures to bind them together. How-
ever, this approach incurs a multiplicative overhead proportional to the size of
the signatures we use, which due to the lower bound will be at least a factor 3.
Also, such constructions would require the use of many pairing product equations
in the verification of a signature.

Recently Abe et al. [AKOT15] introduced the notion of fully structure-
preserving signatures. In a fully structure-preserving signature scheme also the
secret key is required to consist of group elements only, which stands in contrast
to most current structure-preserving signature schemes where the secret key con-
sists of field elements. Fully structure-preservation is useful in several contexts, it
is for instance often the case in a PKI that to get a public key certified one must
demonstrate possession of a matching secret key. When the secret key consists
of group elements it becomes possible to use Groth-Sahai proofs to give efficient
proofs of knowledge of the secret key.

Abe et al. [AKOT15] also considered the question of signing messages that
consist of many group elements. Surprisingly they showed that one can give fully
structure-preserving signatures that only grow propotionately to the square root
of the message size. The reason this is remarkable is that in structure-preserving
signatures one cannot use collision-resistant hash-functions to reduce the mes-
sage size since they are structure-destroying and furthermore it is known that
size-reducing strictly structure-preserving commitments do not exist [AHO12].
They also showed a lower bound that says the combined length of the verifica-
tion key and the signature size must be at least the square root of the message
size, which holds regardless of whether the structure-preservation is full or not.

1.1 Our Contribution

As we said earlier it is crucial to optimize efficiency of structure-preserving sig-
natures. In this paper we investigate the case of signing large messages and

Efficient Fully Structure-Preserving Signatures for Large Messages 241

present very efficient structure-preserving signature schemes for signing many
elements at once. Our signature schemes will be designed directly with large
messages in mind and therefore be more efficient than constructions relying on
the combination of multiple signature schemes.

We construct a structure-preserving signature scheme for messages consist-
ing of N = mn group elements. The verification key contains m elements and
the signature size is n + 2 elements. This matches the best structure-preserving
signature schemes for a single group element, in which case we would have a
single group element verification key and a 3 element signature but unlike prior
constructions our signature scheme scales very well for large messages. The ver-
ification process involves n + 1 pairing product equations, so also this matches
state of the art for signing a single group element but scales well to handle larger
messages.

Depending on the context, it may be desirable to use a strong signature
scheme where it is not only infeasible to forge signatures on messages that have
not been seen before but it is also infeasible to create a new different signatures on
messages that have already been signed. In other circumstances, however, quite
the opposite may be the case and it may be desirable to have signatures that can
be randomized. In particular, when combining structure-preserving signatures
with Groth-Sahai proofs, randomizability may be desirable since some of the
signature elements can be revealed in the clear after being randomized.

Our signature scheme is very flexible in the sense that the same verification
key can be used for both strong signatures and randomizable signatures at the
same time. We define the notion of a combined signature scheme where the signer
can choose for each message whether to make the signature strongly unforgeable
or randomizable.

We also present a modified construction that is fully structure-preserving.
In order to get full structure-preservation it is necessary for the signer to know
discrete logarithms of group elements that are paired with the message since
she does not know the discrete logarithms of the group elements in the message.
Surprisingly this can be achieved in a simple way in our signature scheme by
letting the signer pick most of the verification key herself. Due to this property
we now get a fully structure-preserving signature scheme where the verification
key is just a single group element and the signature consists of m + n + 2 group
elements.

1.2 Related Work

The name “structure-preserving signature” was coined by Abe et al. [AFG+10]
but there are earlier works giving structure-preserving signatures with the first
being [Gro06].

Abe et al. [AGHO11] gave the first 3 element signature scheme for
fully asymmetric pairings (Type III) and also proved that this is optimal.
Abe et al. [AGOT14] give 2 element signatures based on partially asymmetric
pairings (Type II) but Chatterjee and Menezes [CM15] showed that structure
preserving signatures in the partially asymmetric setting are less efficient than

242 J. Groth

signatures based on fully asymmetric pairings. In this paper we therefore only
consider the fully asymmetric setting, which gives the best efficiency and thus is
the most relevant case to consider.

A line of research [HJ12,ACD+12,ADK+13,LPY15,BCPW15] has worked
on basing structure-preserving signatures on standard assumptions such as the
decision Diffie-Hellman or the decision linear assumptions. The fully structure-
preserving signatures by Abe et al. [AKOT15] is based on the natural dou-
ble pairing assumption, which is implied by the DDH assumption. However,
Abe et al. [AGO11] has showed that 3 element signatures cannot be proven
secure under a non-interactive assumption using black-box reductions, so strong
assumptions are needed to get optimal efficiency. We will therefore base the
security of our signatures on the generic group model [Nec94,Sho97] instead of
aiming for security under a well-established assumption.

The signature scheme in Abe et al. [AGOT14] can be seen to be fully
structure-preserving. It is a 3 group element signature scheme and is selectively
randomiazable. Selective randomizability means that signatures are strong but
the signer can choose to release a randomization token to make a signature
randomizable. This notion is different from our notion of a combined signature
scheme where the signer can choose to create randomizable or strong signatures.
The advantage of selective randomizable signatures is that all signatures are ver-
ified with the same verification equation; the disadvantage is the need to issue
randomization tokens when making a signature randomizable.

As discussed earlier the most directly related work is by Abe et al. [AKOT15]
who introduced the notion of fully structure-preserving signatures and con-
structed a square root complexity scheme based on the double pairing assump-
tion. We give a detailed performance comparison in Table 1. If we use m ≈ n ≈√

N their verification key contains 11+6
√

N group elements, signatures contain
11+4

√
N group elements, and they require 5+

√
N pairing product equations to

verify a signature. In comparison, our fully structure-preserving signature scheme
has a verification key with 1 group element, signatures consist of 2+2

√
N group

elements, and we use 1 +
√

N pairing product equations to verify signatures.

Table 1. Comparison of structure-preserving signature schemes for messages consisting
of N = mn elements in G2. We display public parameter, verification key and signature
sizes measured in group elements in G1 and G2 and number of pairing product equations
required for verifying a signature. The public parameters also contain a description
of the bilinear group. The public parameters can be reused for other cryptographic
schemes so their cost can be amortized.

Scheme Parameters Verification key Signature PPE

[AKOT15] 4 G1, 4G2 1 G1, 10 + 3m + 3n G2 7 + m + n G1, 4 + 2n G2 5 + n

Our SPS 1 G1, n + 1 G2 m G1 1 G1, 1 + n G2 1 + n

Our fully SPS 1 G1, n + m G2 1 G1 m G1, 1 + n G2 1 + n

Efficient Fully Structure-Preserving Signatures for Large Messages 243

2 Preliminaries

2.1 Bilinear Groups

Throughout the paper we let G be an asymmetric bilinear λ returns
(p,G1,G2,GT , e,G,H) ← G(1λ) with the following properties:

– G1,G2,GT are groups of prime order p
– e : G1 × G2 → GT is a bilinear map
– G generates G1, H generates G2 and e(G,H) generates GT

– There are efficient algorithms for computing group operations, evaluating the
bilinear map, comparing group elements and deciding membership of the
groups

In a bilinear group we refer to deciding group membership, computing group
operations in G1,G2 or GT , comparing group elements and evaluating the bilin-
ear map as the generic group operations. In the signature schemes we construct
we only use generic group operations.

Galbraith, Paterson and Smart [GPS08] distinguish between 3 types of bilin-
ear group generators. In the Type I setting (also called the symmetric setting)
G1 = G2, in the Type II setting there is an efficiently computable isomorphism
ψ : G2 → G1, and in the Type III setting no isomorphism that is efficiently
computable in either direction between the source groups exists. Throughout
the paper we will work in the Type III setting, which gives the most efficient
operations and therefore is most important setting.

It will be useful to use the notation of Escala et al. [EHK+13] that keeps track
of the discrete logarithm of group elements. They represent a group element X
in G1 by [x]1 when X = Gx and a group element Y in G2 as [y]2 when Y = Hy

and a group element Z ∈ GT as [z]T when Z = e(G,H)z. In this notation the
source group generators G and H are [1]1 and [1]2.

The advantage of using this notation is that it highights the underlying linear
algebra performed on the exponents when we do group operations. Multiplying
two group elements X,Y ∈ G1 to get XY for instance corresponds to [x]1+[y]1 =
[x + y]1. Exponentiation of X ∈ G1 with y ∈ Zp to get Xy can be written
y[x]1 = [yx]1. Using the bilinear map on X ∈ G1 and Y ∈ G2 to get e(X,Y) can
be written as [x]1[y]2 = [xy]T .

We can represent vectors of group elements X = (X1, . . . , Xn) in G1 as [x]1.
The operations taking place in the groups have natural linear algebra equivalents,
e.g., exponentiation of a vector of group elements to a matrix of exponents to
get a new vector of group elements can be written [x]1A = [xA]1. A pairing
product

∏n
i=1 e(Xi, Yi) can be written [x]1 · [y]2 = [x · y]T . Exponentiation of

a number of group elements to the same exponent to get (Xa
1 , . . . , Xa

n) can be
written [x]1a = [xa]1.

2.2 Signature Schemes

Our signature schemes work over an asymmetric bilinear group generated by G.
This group may be generated by the signer and included in the public verification

244 J. Groth

key. In many cryptographic schemes it is convenient for the signer to work on top
of a pre-existing bilinear group though. We will therefore in the description of our
signatures explicitly distinguish between a setup algorithm Setup that produces
public parameters pp and a key generation algorithm the signer uses to generate
her own keys. The setup algorithm we use in our paper generates a bilinear
group (p,G1,G2,GT , e, [1]1, [1]2) ← G(1λ). It then extends the description of the
bilinear group with additional randomly selected group elements. Our signature
scheme does not rely on knowledge of the discrete logarithms of these random
group elements, so the setup may be reused for many different signature schemes
and other cryptographic schemes.

A signature scheme (with setup algorithm Setup) consists of efficient algo-
rithms (Setup,Gen,Sign,Vfy).

Setup(1λ) → pp: The setup algorithm generates public parameters pp. They
specify a message space Mpp.

Gen(pp) → (vk, sk): The key generation algorithm takes public parameters pp
as input and returns a public verification key vk and a secret signing key sk.

Sign(pp, sk,m) → σ: The signing algorithm takes a signing key sk and a mes-
sage m ∈ Mpp as input and returns a signature σ.

Vfy(pp, vk,m, σ) → 1/0: The verification algorithm takes the verification key
vk, a message m and a purported signature σ as input and returns either 1
(accept) or 0 (reject).

Definition 1 (Correctness). The signature scheme (Setup,Gen,Sign,Vfy)
is (perfectly) correct if for all security parameters k ∈ N

Pr
[

pp ← Setup(1λ); (vk, sk) ← Gen(pp)
m ← Mpp;σ ← Sign(pp, sk,m) : Vfy(pp, vk,m, σ) = 1

]

= 1.

2.3 Structure-Preserving Signature Schemes

In this paper, we study structure-preserving signature schemes [AFG+10]. In a
structure-preserving signature scheme the verification key, the messages and the
signatures consist only of group elements from G1 and G2 and the verification
algorithm evaluates the signature by deciding group membership of elements in
the signature and by evaluating pairing product equations, which are equations
of the form ∏

i

∏

j

e(Xi,Xj)aij = 1,

where X1,X2, . . . ∈ G1 are group elements appearing in pp, vk,m and σ and
a11, a12, . . . ∈ Z are constants.

Structure-preserving signatures are extremely versatile because they mix well
with other pairing-based protocols. Groth-Sahai proofs [GS12] are for instance
designed with pairing product equations in mind and can therefore easily be
applied to structure-preserving signatures.

Efficient Fully Structure-Preserving Signatures for Large Messages 245

Definition 2 (Structure-preserving signatures). A signature scheme is
said to be structure preserving over bilinear group generator G if

– public parameters include a bilinear group (p,G1,G2,GT , e, [1]1, [1]2) ←
G(1λ),

– verification keys consist of group elements in G1 and G2,
– messages consist of group elements in G1 and G2,
– signatures consist of group elements in G1 and G2, and
– the verification algorithm only needs to decide membership in G1 and G2 and

evaluate pairing product equations.

Fully Structure Preserving Signatures. Abe et al. [AKOT15] argue that in
several applications it is desirable that also the secret signing keys only contain
source group elements. They define a structure-preserving signature scheme to
be fully structure preserving if the signing key sk consists of group elements in
G1 and G2 and the correctness of the secret signing key with respect to the
public verification key can be verified using pairing product equations.

3 Randomizable and Strongly Unforgeable Signatures

A signature scheme is said to be existentially unforgeable if it is infeasible to
forge a signature on a message that has not previously been signed. The standard
definition of existential unforgeability allows the adversary to modify an existing
signature on a message to a new signature on the same message. We say a
signature scheme is randomizable if it is possible to randomize a signature on a
message to get a new random signature on the same message. On the other hand,
we say a signature scheme is strongly unforgeable when it is also infeasible to
modify a signature, or more precisely it is infeasible to construct a valid message
and signature pair that has not previously been seen.

Both strong signatures and randomizable signatures have many uses. We
will therefore construct both strongly existentially unforgeable signatures and
randomizable signatures. To capture the best of both worlds, we will define a
combined signature scheme where the signer can decide whether a signature
should be randomizable or strongly unforgeable. Randomizable signatures are
constructed using signing algorithm Sign0 and verified by verification algorithm
Vfy0. Strongly unforgeable signatures are constructed using signing algorithm
Sign1 and verified by verification algorithm Vfy1.

A näıve combined signature scheme would have a verification key containing
two verification keys, one for randomizable signatures and one for strong signa-
tures. However, this solution has the disadvantage of increasing key size. Instead
we will in this paper construct a combined signature scheme where the verifi-
cation key is just a single group element that can be used to verify either type
of signature. This dual use of the verification key means that we must carefully
consider the security implications of combining two signature schemes though,
so we will now define a combined signature scheme.

246 J. Groth

A combined signature scheme (Setup,Gen,Sign0,Vfy0,Rand,Sign1,
Vfy1) consists of 7 probabilistic polynomial time algorithms as described below.

Setup(1λ, size) → pp: The setup algorithm takes the security parameter λ and
description of the size of messages to be signed and generates public para-
meters. It defines a message space Mpp of messages that can be signed.

Gen(pp) → (vk, sk): The key generation algorithm given public parameters
generates a public verification key vk and a secret signing key sk.

Sign0(pp, sk,m) → σ: The randomizable signature algorithm given the signing
key and a message m returns a randomizable signature σ.

Vfy0(pp, vk,m, σ) → 1/0: The randomizable signature verification algorithm
given a message and a purported randomizable signature on it returns 1 if
accepting the signature and 0 if rejecting the signature.

Rand(pp, vk,m, σ) → σ′: The randomization algorithm given a valid random-
izable signature on a message returns a new randomized signature on the
same message.

Sign1(pp, sk,m) → σ: The strong signature algorithm given the signing key and
a message m returns a strongly unforgeable signature σ.

Vfy1(pp, vk,m, σ) → 1/0: The strong signature verification algorithm given a
message and a purported strong signature on it returns 1 if accepting the
signature and 0 if rejecting the signature.

We say a combined signature scheme has perfect correctness if the con-
stituent randomizable and strongly unforgeable signature schemes (Setup,Gen,
Sign0,Vfy0) and (Setup,Gen,Sign1,Vfy1) both are perfectly correct.

The combined signatures are perfectly randomizable if a randomized signa-
ture looks exactly like a fresh signature on the same message.

Definition 3 (Perfect randomizability). The combined signature scheme is
perfectly randomizable if for all λ ∈ N and all stateful adversaries A

Pr

⎡

⎣
pp ← Setup(1λ); (vk, sk) ← Gen(pp)
m ← A(pp, vk, sk);σ, σ0 ← Sign0(pp, sk,m)
σ1 ← Rand(pp, vk,m, σ); b ← {0, 1}

: A(σ, σb) = b

⎤

⎦ =
1
2
,

where A outputs m ∈ Mpp.

To capture the attacks that can occur against a combined signature scheme,
we assume the adversary may arbitrarily query a signer for randomizable or
strong signatures. We want the signature scheme to be combined existentially
unforgeable in the sense that even seeing randomizable signatures does not help
in breaking strong existential unforgeability and on the other hand seeing strong
signatures does not help in producing randomizable signatures.

Definition 4 (Combined existential unforgeability under chosen mes-
sage attack). The combined signature scheme is combined existentially unforge-
able under adaptive chosen message attack (C-EUF-CMA) if for all probabilistic
polynomial time adversaries A

Pr

[
pp ← Setup(1λ); (vk, sk) ← Gen(pp)

(m, σ) ← ASign0(pp,sk,·),Sign1(pp,sk,·)(pp, vk)
:

Vfy0(pp, vk, m, σ) = 1 ∧ m /∈ Q0 or

Vfy1(pp, vk, m, σ) = 1 ∧ (m, σ) /∈ Q1

]

Efficient Fully Structure-Preserving Signatures for Large Messages 247

is negligible, where A outputs m ∈ Mpp and always queries on messages in Mpp

and Q0 is the set of messages that have been queried to Sign0 to get randomizable
signatures and Q1 is the set of message and signature pairs from queries to Sign1

to get strongly unforgeable signatures.

4 Structure-Preserving Combined Signature Scheme

Fig. 1 describes a structure-preserving combined signature scheme that can be
used to sign messages consisting of N = mn group elements in G2. It has a
verification key size of m group elements, a signature size of n+2 group elements,
and verification involves evaluating n + 1 pairing product equations.

In order to explain some of the design principles underlying the construction,
let us first consider the special case where the message space is G2, i.e., we are
signing a single group element and N = m = n = 1. The setup includes a
random group element [y]2, the verification key consists of a single group element
[v]1, and both randomizable and strongly unforgeable signatures are of the form
σ = ([r]1, [s]2, [t]2).

For a randomizable signature there are two verification equations

[r]1[s]2 = [1]1[y]2 + [v]1[1]2 [r]1[t]2 = [1]1[m]2 + [v]1[y]2.

It is easy to see that we can randomize the factors in [r]1[s]2 and [r]1[t]2
into (1

β [r]1)(β[s]2) and (1
β [r]1)(β[t]2) without changing the products themselves,

which gives us randomizability of the signatures.

Setup(1λ, m, n)

gk = (p,G1,G2,GT , e, [1]1, [1]2) ← G(1λ)
[y]2 ← G

n
2

Return pp = (gk, m, n, [y]2)

Gen(pp)
u ← Z

m−1
p , v ← Zp

vk = ([u]1, [v]1)
sk = (u, v)
Return (vk, sk)

Signb(pp, sk, [M]2)
z ← Z

∗
p

r = 1
z

[s]2 = z([y1]2 + [v]2)
[t]2 = z ((u, 1)[M]2 + v[y]2 + bv[s]21)
Return σ = ([r]1, [s]2, [t]2)

Vfyb(pp, vk, [M]2, σ)
Parse σ = ([r]1, [s]2, [t]2)
Return 1 if and only if

[M]2 ∈ G
m×n
2

[r]1 ∈ G1

[s]2 ∈ G2

[t]2 ∈ G
n
2

[r]1[s]2 = [1]1[y1]2 + [v]1[1]2
[r]1[t]2 = [(u, 1)]1[M]2 + [v]1[y]2 + b[v]1[s]21

Rand(pp, vk, M, σ)
Parse σ = ([r]1, [s]2, [t]2)
β ← Z

∗
p

[r′]1 = 1
β
[r]1

[s′]2 = β[s]2
[t′]2 = β[t]2
Return σ′ = ([r′]1, [s′]2, [t′]2)

Fig. 1. Structure-preserving combined signature scheme. The signature and verification
algorithms for randomizable and strongly unforgeable signatures, respectively, are quite
similar. We have there described them at the same time indicating the choice by b = 0
for randomizable signatures and b = 1 for strongly unforgeable signatures.

248 J. Groth

The first verification equation is designed to prevent the adversary from cre-
ating a forged signature from scratch after seeing the verification key only. An
adversary using only generic group operations can do no better than computing
[r]1 = ρ[1]1 + ρv[v]1 and [s]2 = σ[1]2 + σy[y]2 ρ, ρv, σ, σy ∈ Zp. Looking at the
underlying discrete logarithms, the first verification equation then corresponds
to the polynomial equation

(ρ + ρvv)(σ + σyy) = y + v

in the unknown discrete logarithms v and y. This equation is not solvable: Look-
ing at the ρvσv = v terms we see σ �= 0. Looking at the ρσyy = y terms we see
ρ �= 0. But this would leave us with a constant term ρσ �= 0.

Now, what if the adversary instead of creating a signature from scratch tries
to modify an existing signature or combine many existing signatures? Well, due
to the randomness in the choice of z ← Z

∗
p in the signing protocol each signature

query will yield a signature with a different random [ri]1. As it turns out this
randomization used in each signature makes it hard for the adversary to combine
multiple signatures, or even modify one signature, in a meaningful way with
generic group operations. The intuition is that generic group operations allow
the adversary to take linear combinations of elements it has seen, however, the
verificaction equations are quadratic.

In order to prevent randomization and get strong existential unforgeabil-
ity the combined signature scheme modifies the latter verification equation by
adding a [v]1[s]2 term. This gives us the following verification equations for
strongly unforgeable signatures

[r]1[s]2 = [1]1[y]2 + [v]1[1]2 [r]1[t]2 = [1]1[m]2 + [v]1[y]2 + [v]1[s]2.

Now the randomization technique fails because a randomization of [s]2 means we
must change [t]2 in a way that counteracts this change in the second verification
equation. However, [t]2 is paired with [r]1 that also changes when [s]2 changes.
The adversary is therefore faced with a non-linear modification of the signatures
and gets stuck because generic group operations only enable it to do linear
modifications of signature elements.

We can extend the one-element signature scheme to sign a vector [m]2 with
m group elements in G2 by extending the verification key by m − 1 random
group elements [u]1 = [(u1, . . . , um−1)]1. Now the verification equations become

[r]1[s]2 = [1]1[y1]2 + [v]1[1]2 [r]1[t]2 = [(u, 1)]1 · [m]2 + [v]1[y]2 + b[v]1[s]2,

where b = 0 for a randomizable signature and b = 1 for a strong signature. The
idea is that the discrete logarithms of the elements in [u]1 are unknown to the
adversary making it hard to change either group element in a previously signed
message to get a new message that will verify under the same signature.

Finally, to sign mn group elements in G2 instead of m group elements we
keep the first verification equation, which does not involve the message, but add
n − 1 extra verification equations similar to the second verification equation for

Efficient Fully Structure-Preserving Signatures for Large Messages 249

a vector of group elements described above. This allows us to sign n vectors in
parallel. In order to avoid linear combinations of message vectors and signature
components being useful in other verification equations, we give each verification
equation a separate [v]1[yk]2 term, where k = 1, . . . , n is the number of the
verification equation.

Theorem 1 Fig. 1 gives a structure-preserving combined signature scheme that
is C-EUF-CMA secure in the generic group model.

Proof. Perfect correctness, perfect randomizability and structure-preservation
follows by inspection. What remains now is to prove that the signature scheme
is C-EUF-CMA secure in the generic group model. In the (Type III) generic
bilinear group model the adversary may compute new group elements in either
source group by taking arbitrary linear combinations of previously seen group
elements in the same source group. We shall see that no such linear combination
of group elements, viewed as formal Laurent polynomials in the variables picked
by the key generator and the signing oracle, yields an existential forgery. It fol-
lows along the lines of the Uber assumption of Boneh, Boyen and Goh [BBG05]
from the inability to produce forgeries when working with formal Laurent poly-
nomials that the signature scheme is C-EUF-CMA secure in the generic bilinear
group model.

Suppose the adversary makes q queries [Mi]2 ∈ G
m×n
2 to get signatures

[ri]1 = [
1

zi
]1 [si]2 = [zi(y1 + v)]2 [ti]2 = [zi ((u, 1)Mi + vy + biziv(y1 + v))]2,

where bi = 0 if query i is for a randomizable signature and bi = 1 if query i is
for a strong signature, and where Mi may depend on previously seen signature
elements in [sj]2, [tj]2 for j < i.

Viewed as Laurent polynomials we have that a signature ([r]1, [s]2, [t]2) gen-
erated by the adversary on [M] ∈ G

m×n
2 is of the form

r = ρ + vρv + uρ�
u +

∑

i

1
zi

ρri

s = σ + σyy� +
∑

j

σsj
zj(y1 + v) +

∑

j

σtj
zj ((u, 1)Mj + vy + bjzjv(y1 + v)1)

t = τ + yTy +
∑

j

zj(y1 + v)τ sj
+

∑

j

zj ((u, 1)Mj + vy + bjzjv(y1 + v)1) Ttj

Similarly, all mn entries in M can be written on a form similar to s and all
entries in queried matrices Mi can be written on a form similar to s where the
sums are bounded by j < i.

For the first verification equation to be satisfied we must have rs = y1 + v,
i.e.,

(
ρ + uρ�

u

+vρv +
∑

i
1
zi

ρri

)(σ + σyy� +
∑

j σsj zj(y1 + v)

+
∑

j σtj zj

(
(u, 1)Mj + vy + bjvzj(y1 + v)1

)�

)
= y1 + v

250 J. Groth

We start by noting that r �= 0 since otherwise rs cannot have the
term y1. Please observe that it is only in G1 that we have terms including
indeterminates with negative power, i.e., 1

zi
. In G2 all indeterminates have

positive power, i.e., so sj , tj ,Mj only contain proper multi-variate polyno-
mials. Now suppose for a moment that ρri

= 0 for all i. Then in order
not to have a terms involving zj ’s in rs we must have

∑
j σsj

zj(y1 + v) +
∑

j σtj
zj ((u, 1)Mj + vy + bjvzj(y1 + v)1)� = 0. The term y1 now gives us

ρσy,1 = 1 and the term v gives us ρvσ = 1. This means ρ �= 0 and σ �= 0 and
therefore we reach a contradiction since the constant term should be ρσ = 0. We
conclude that there must exist some � for which ρr�

�= 0.
Now we have the term ρr�

σ 1
z�

= 0, which shows us σ = 0. The terms
ρr�

σy,k
yk

z�
= 0 for k = 1, . . . , n give us σy = 0.

The polynomials corresponding to sj and tj contain the indeterminate zj

in all terms, so no linear combination of them can give us a term where the
indeterminate component is vyk for some k ∈ {1, . . . , n}. Since Mj is constructed
as a linear combination of elements in the verification key and components in
G2 from previously seen signatures, it too cannot contain a term where the
indeterminate component is vyk. The coefficient of zj

z�
vyk is therefore ρr�

σtj ,k = 0
and therefore σtj ,k = 0 for every j �= � and k ∈ {1, . . . , n}. This shows σtj

= 0
for all j �= �. Looking at the coefficients for vyk for k = 1, . . . , n we see that
σt�

= 0 too.
The terms ρr�

σsj

zj

zl
v give us σsj

= 0 for all j �= �. In order to get a coefficient
of 1 for the term y1 we see that σs�

= 1
ρr�

, which is non-zero. Our analysis has
now shown that

s =
1

ρr�

z�(y1 + v).

Let us now analyze the structure of r. The term ρvσ�v
2z� = 0 gives us ρv = 0.

We know from our previous analysis that if there was a second i �= � for which
ρri

�= 0 then also σρ�
= 0, which it is not. Therefore for all i �= � we have ρri

= 0.
The term ρσs�

z�y1 gives ρ = 0. The terms in σs�
uz�vρ�

u give us ρu = 0. Our
analysis therefore shows

r = ρr�

1
z�

.

We now turn to the second verification equation, which is rt1 = (u, 1)m� +
vy1 + bvs, where m� is the first column vector of M . The message vector is of
the form

m =
μ + yMy +

∑
j μsj

zj(y1 + v)
+

∑
j zj ((u, 1)Mj + vy + bjvzj(y1 + v)1) Mtj

where μ,Myμsj
and Mtj

are suitably sized vectors and matrices with entries
in Zp chosen by the adversary. Similarly, we can write out t1 = τ + τ yy� +∑

j τsj
zj(y1 + v) +

∑
j τ tj

zj ((u, 1)Mj + vy + bjvzj(y1 + v)1) for elements and
suitably sized vectors τ, τ y, τsj

, τ tj
with entries in Zp chosen by the adversary.

Efficient Fully Structure-Preserving Signatures for Large Messages 251

Writing out the second verification equation we have

ρr�

1
z�

(
τ + τ yy� +

∑
j τsj

zj(y1 + v)
+

∑
j τ tj

zj ((u, 1)Mj + vy + bjvzj(y1 + v)1)

)

= vy1 + bv

(
1

ρr�

z�(y1 + v)
)

+ (u, 1)
(

μ + yMy +
∑

j μsj
zj(y1 + v)

+
∑

j zj ((u, 1)Mj + vy + bjvzj(y1 + v)1) Mtj

)�
.

Looking at the coefficients of terms involving 1
z�

and yk

z�
we get τ = 0 and

τ y = 0. Looking at the terms in ρr�
τ tj

zj

z�
vy we get τ tj

= 0 for all j �= �.
Similarly, the terms ρr�

τsj

zj

z�
v give us τsj

= 0 for all j �= �. We are now left with

ρr�
(τs�

(y1 + v) + τ t�
((u, 1)M� + vy + b�vz�(y1 + v)1))

= vy1 + bv
1

ρr�

z�(y1 + v)

+ (u, 1)
(

μ + yMy +
∑

j μsj
zj(y1 + v)

+
∑

j zj ((u, 1)Mj + vy + bjvzj(y1 + v)1) Mtj

)�
.

Terms involving zj and z2j must cancel out, so we can assume μsj
= 0 and

Mtj
= 0 for j > �. Since M� does not involve z� in any of its terms, we get from

the terms in (u, 1)z�vμ�
s�

that μs�
= 0. Since there can be no terms involving z2�

we get b�1M�
t�

= 0. Looking at the coefficients for v we get τs�
= 0. This leaves

us with

ρr�
τ t�

((u, 1)M� + vy + b�vz�(y1 + v)1)�

= vy1 + bv
1

ρr�

z�(y1 + v) + (u, 1)z� ((u, 1)M� + vy)Mt�
)�

+ (u, 1)
(

μ + yMy +
∑

j<� μsj
zj(y1 + v)

+
∑

j<� zj ((u, 1)Mj + vy + bjvzj(y1 + v)1) Mtj

)�
.

Looking at the terms involving z�v
2 we see ρr�

τ t�
b�1� = b 1

ρr�
. This cancels

out the first two parts involving z�. The only remaining terms involving z� now
give us Mt�

= 0. This gives us

ρr�
τ t�

((u, 1)M� + vy)� − y1

= (u, 1)

(
μ + yMy +

∑
j<� μ

(�)
sj zj(y1 + v)

+
∑

j<� zj ((u, 1)Mj + vy + bjvzj(y1 + v)1) Mtj

)�

Looking at the terms in vy we now get ρr�
τ t�

= (1, 0, . . . , 0). Let the first
column vector of M� be m�

� then we now have

(u, 1)m�
� = (u, 1)m�.

252 J. Groth

Writing

m′ =
m� − m = μ′ + yM ′

y +
∑

j<� μ′
sj

zj(y1 + v)
+

∑
j<� zj ((u, 1)Mj + vy + bjvzj(y1 + v)1) M ′

tj

we now have

(u, 1)
(

μ′ + yM ′
y +

∑
j<� μ′

sj
zj(y1 + v)

+
∑

j<� zj ((u, 1)Mj + vy + bjvzj(y1 + v)1) M ′
tj

)�
= 0.

The terms in (u, 1)μ′� tell us μ′ = 0. Looking at terms involving uiyk or yk

gives us M ′
y = 0. Terms with z2j tell us bj1M ′

tj
= 0 for all j. Terms in (u, 1)zjvμ′

sj

tell us μ′
sj

= 0 for all j. Finally, terms in (u, 1)(vyM ′
tj

) give us M ′
tj

= 0.
We have now deduced that m′ = 0 and therefore m� = m. This means the

first column in M for which the adversary has produced a signature is a copy of
the first column in the queried message M�. Using the same analysis on the last
n − 1 verification equations gives us that the other n − 1 columns also match.
This means a generic adversary can only produce valid signatures for previously
queried messages, so we have EUF-CMA security.

Finally, let us consider the case where b = 1, i.e., we are doing a strong
signature verification. We saw earlier that ρr�

τ t�
b�1� = b� = b 1

ρr�
which can only

be satisfied if b� = 1 and ρr�
= 1. This means s = s� and r = r� and M = M� and

therefore t = t�. So the generic adversary can only satisfy the strong verification
equation with b = 1 by copying both the message and signature from a previous
query with b� = 1.

On the other hand, if b = 0, i.e., we are verifying a randomizable signature,
we see from ρr�

τ t�
bl1� = b� = b 1

ρr�
that b� = 0. So the adversary has randomized

a signature intended for randomization. �	

5 Fully Structure-Preserving Combined Signature
Scheme

The earlier structure-preserving signature scheme uses knowledge of the dis-
crete logarithms of [u]1 in a fundamental way since [t]2 contains a z(u, 1)[M]2
component that could not be computed without these discrete logarithms. This
situation is common for all structure-preserving signature schemes for messages
that are vectors of group elements. The need to specify such discrete logarithms
in the signing key therefore prevents them from being fully structure-preserving.

Abe et al. [AKOT15] get around this problem by only pairing message group
elements with signature group elements where the signer knows the discrete
logarithms. Inspired by their work, we will let the signer pick [u]1 and include
it in the signature.

To make this idea work we first make a minor modification to our signature
scheme from before. We include a vector of m − 1 group elements [x]2 in the
setup and we modify [s]2 to have the form [s]2 = z([y1]2 + u · [x]2 + [v]2). The
first verification equation then becomes

[r]1[s]2 = [1]1[y1]2 + [u]1 · [x]2 + [v]1[1]2.

Efficient Fully Structure-Preserving Signatures for Large Messages 253

If this was the only modification we made it is not hard to see that the same
security proof we gave earlier will work again, we are only modifying the verifi-
cation equation by a random constant [u · x]T . The surprising thing though is
that the signature scheme remains secure if we let the signer pick the [u]1 part
of the verification key herself and include it in the signature.

Letting the signer pick [u]1 as part of the verification key means that she
can know their discrete logarithms. Since she also picks z ← Z

∗
p herself she can

now use linear operations to compute the z(u, 1)[M]2 part of [t]2. Furthermore,
we have designed the scheme such that the rest can be computed with linear
operations as well. To make randomizable signatures the signer just needs to
know [v]2 and [vy]2. To make strong signatures she additionally needs to know
[vx]2 and [v2]2.

The resulting fully structure-preserving signature scheme is presented in
Fig. 2 and can be used to sign messages consisting of N = mn group elements
in G2. It has a verification key size of 1 group elements, a signature size of
m + n + 1 group elements, and verification involves evaluating n + 1 pairing
product equations.

Theorem 2. Fig. 2 gives a fully structure-preserving combined signature scheme
that is C-EUF-CMA secure in the generic group model.

Proof. Perfect correctness, perfect randomizability and structure-preservation
follows by inspection. The secret key sk = ([v]2, [vx]2, [vy]2, [v2]2) consists of
m + n + 1 group elements and we can verify that it matches the verification key

Setup(1λ, m, n)

gk = (p,G1,G2,GT , e, [1]1, [1]2) ← G(1λ)
[x]2 ← G

m−1
2

[y]2 ← G
n
2

Return pp = (gk, [x]2, [y]2)

Gen(pp)
v ← Zp

vk = [v]1
sk = ([v]2, [vx]2, [vy]2, [v

2]2)
Return (vk, sk)

Signb(pp, sk, [M]2)
u ← Z

m−1
p , z ← Z

∗
p , r = 1

z

[s]2 = z([y1]2 + u · [x]2 + [v]2)

[t]2 = z

(
(u, 1)[M]2 + [vy]2

+bz([vy1]2 + u · [vx]2 + [v2]2)1

)

Return σ = ([u]1, [r]1, [s]2, [t]2)

Vfyb(pp, vk, [M]2, σ)
Parse σ = ([u]1, [r]1, [s]2, [t]2)
Return 1 if and only if

[M]2 ∈ G
m×n
2

[r]1 ∈ G1 , [u]1 ∈ G
m−1
1

[s]2 ∈ G2 , [t]2 ∈ G
n
2

[r]1[s]2 = [1]1[y1]2 + [u]1 · [x]2 + [v]1[1]2
[r]1[t]2 = [(u, 1)]1[M]2 + [v]1[y]2 + b[v]1[s]21

Rand(pp, vk, M, σ)
Parse σ = ([u]1, [r]1, [s]2, [t]2)
α ← Z

m−1
p

β ← Z
∗
p

[u′]1 = [u]1 + α[r]1
[r′]1 = 1

β
[r]1

[s′]2 = β([s]2 + α[x]2)
[t′]2 = β([t]2 + (α, 0)[M]2)
Return σ′ = ([u′]1, [r′]1, [s′]2, [t′]2)

Fig. 2. Fully structure-preserving combined signature scheme. Since they are quite sim-
ilar we have described the randomizable signature and the strongly unforgable signature
algorithms jointly. Setting b = 0 gives the algorithms for randomizable signatures and
setting b = 1 gives the algorithms for strongly unforgeable signatures.

254 J. Groth

vk = [v]1 by checking the pairing product equations

[v]1[1]2 = [1]1[v]2 [v]1[x]2 = [1]1[vx]2 [v]1[y]2 = [1]1[vy]2 [v]1[v]2 = [1]1[v
2]2,

so the signature scheme is fully structure preserving.
What remains now is to prove that the signature scheme is C-EUF-CMA

secure in the generic group model. In the (Type III) generic bilinear group model
the adversary may compute new group elements in either source group by tak-
ing arbitrary linear combinations of previously seen group elements in the same
source group. We shall see that no such linear combination of group elements,
viewed as formal Laurent polynomials in the variables picked by the key genera-
tor and the signing oracle, yields an existential forgery. It follows along the lines
of the Uber assumption in [BBG05] this that the signature scheme is C-EUF-
CMA secure in the generic bilinear group model.

Suppose the adversary makes q queries [Mi]2 ∈ G
m×n
2 to get signatures

[ui]1 [ri]1 = [
1
zi

]1 [si]2 = [zi(y1 + ui · x + v)]2

[ti]2 = [zi ((ui, 1)Mi + vy + biziv(y1 + ui · x + v))]2,

where bi = 0 if query i is for a randomizable signature and bi = 1 if query i is
for a strong signature, and where Mi may depend on previously seen signature
elements in [sj]2, [tj]2 for j < i.

Viewed as Laurent polynomials we have that a signature ([u]1, [r]1, [s]2, [t]2)
generated by the adversary on [M] ∈ G

m×n
2 is of the form

u = α + vαv +
∑

i

uiAi +
∑

i

1
zi

αri

r = ρ + vρv +
∑

i

uiρ
�
ui

+
∑

i

1
zi

ρri

s = σ + σxx� + σyy� +
∑

j

σsj
zj(y1 + ujx

� + v)

+
∑

j

σtj
zj

(
(uj , 1)Mj + vy + bjzjv(y1 + ux� + v)1

)

t = τ + xTx + yTy +
∑

j

zj(y1 + ujx
� + v)τ sj

+
∑

j

zj

(
(uj , 1)Mj + vy + bjzjv(y1 + ux� + v)1

)
Ttj

Similarly, all mn entries in M can be written on a form similar to s and all
entries in queried matrices Mi can be written on a form similar to s where the
sums are bounded by j < i.

Efficient Fully Structure-Preserving Signatures for Large Messages 255

For the first verification equation to be satisfied we must have rs = y1 +
ux� + v, i.e.,

(
ρ +
∑

i uiρ
�
ui

+vρv +
∑

i
1
zi

ρri

)
·
⎛
⎝ σ + σxx� + σyy� +

∑
j σsj zj(y1 + ujx� + v)

+
∑

j σtj zj

(
(uj , 1)Mj + vy + bjvzj(y1 + ujx� + v)1

)�

⎞
⎠

= y1 +

(
α+ vαv +

∑
i

uiAi +
∑

i

1

zi
αri

)
x� + v

We start by noting that r �= 0 since otherwise rs cannot have the term y1.
Please observe that it is only in G1 that we have terms including indeterminates
with negative power, i.e., 1

zi
. In G2 all indeterminates have positive power, i.e.,

so sj , tj ,Mj only contain proper multi-variate polynomials. Now suppose for a
moment that ρri

= 0 for all i. Then in order not to have a terms involving zj ’s
in rs we must have
∑

j

σsj zj(y1 + ujx� + v) +
∑

j

σtj zj

(
(uj , 1)Mj + vy + bjvzj(y1 + ujx� + v)1

)�
= 0.

The term y1 now gives us ρσy,1 = 1 and the term v gives us ρvσ = 1. This means
ρ �= 0 and σ �= 0 and therefore we reach a contradiction since the constant term
should be ρσ = 0. We conclude that there must exist some � for which ρr�

�= 0.
Now we have the term ρr�

σ 1
z�

= 0, which shows us σ = 0. The terms
ρr�

σy,k
yk

z�
= 0 for k = 1, . . . , n give us σy = 0.

The polynomials corresponding to sj and tj contain the indeterminate zj

in all terms, so no linear combination of them can give us a term where the
indeterminate component is vyk for some k ∈ {1, . . . , n}. Since Mj is constructed
as a linear combination of elements in the verification key and components in
G2 from previously seen signatures, it too cannot contain a term where the
indeterminate component is vyk. The coefficient of zj

z�
vyk is therefore ρr�

σtj ,k = 0
and therefore σtj ,k = 0 for every j �= � and k ∈ {1, . . . , n}. This shows σtj

= 0
for all j �= �. Looking at the coefficients for vyk for k = 1, . . . , n we see that
σt�

= 0 too.
The terms ρr�

σsj

zj

zl
v give us σsj

= 0 for all j �= �. In order to get a coefficient
of 1 for the term y1 we see that σs�

= 1
ρr�

, which is non-zero. Our analysis has
now shown that

s = σxx� +
1

ρr�

z�(y1 + u�x
� + v).

Let us now analyze the structure of r. The term ρvσ�v
2z� = 0 gives us ρv = 0.

We know from our previous analysis that if there was a second i �= � for which
ρri

�= 0 then also σρ�
= 0, which it is not. Therefore for all i �= � we have ρri

= 0.
The term ρσs�

z�y1 gives ρ = 0. The terms in ρui
σs�

uiz�v give us ρui
= 0 for all

i. Our analysis therefore shows

r = ρr�

1
z�

.

256 J. Groth

Finally, having simplifed r and s analysing the terms in u gives us

u = u� + ρr�
σx

1
z�

.

We now turn to the second verification equation, which is rt1 = (u, 1)m� +
vy1 + bvs, where m� is the first column vector of M . The message vector is of
the form

m =
μ + xMx + yMy +

∑
j μsj

zj(y1 + ujx
� + v)

+
∑

j zj

(
(uj , 1)Mj + vy + bjvzj(y1 + ujx

� + v)1
)
Mtj

,

where μ,Mx,Myμsj
and Mtj

are suitably sized vectors and matrices with entries
in Zp chosen by the adversary. Similarly, we can write out t1 = τ+τxx�+τ yy�+∑

j τsj
zj(y1 + ujx

� + v) +
∑

j τ tj
zj

(
(u, 1)Mj + vy + bjvzj(y1 + ujx

� + v)1
)

for elements and suitably sized vectors τ, τx, τ y, τsj
, τ tj

with entries in Zp chosen
by the adversary.

Writing out the second verification equation we have

ρr�

1

z�

(
τ + τ xx� + τ yy� +

∑
j τsj zj(y1 + ujx

� + v)

+
∑

j τ tj zj

(
(uj , 1)Mj + vy + bjvzj(y1 + ujx

� + v)1
)�
)

= vy1 + bv

(
σxx� +

1

ρr�

z�(y1 + u�x
� + v)

)

+

(
u� + ρr�σx

1

z�
, 1

)(
μ + xMx + yMy +

∑
j μsj

zj(y1 + ujx
� + v)

+
∑

j zj

(
(uj , 1)Mj + vy + bjvzj(y1 + ujx

� + v)1
)
Mtj

)�

.

Looking at the coefficients of terms involving 1
z�

we get the following equalities
for all j �= �: τ = σxμ� (1

z�
), τx = σxM�

x (xk

z�
), τ y = σxM�

y (yk

z�
), τsj

=
σxμ�

sj
(vzj

z�
), τ tj

= σxT�
tj

(vykzj

z�
). Cancelling out these terms we are left with

ρr�

(
τs�(y1 + u�x

� + v) + τ t�

(
(u�, 1)M� + vy + b�vz�(y1 + u�x

� + v)1
)�)

= vy1 + bv

(
σxx� +

1

ρr�

z�(y1 + u�x
� + v)

)

+ ρr�σx

(
μs�

(y1 + u�x
� + v) +

(
(u�, 1)M� + vy + b�vz�(y1 + u�x

� + v)1
)

Mt�

)�

+ (u�, 1)

(
μ + xMx + yMy +

∑
j μsj

zj(y1 + ujx
� + v)

+
∑

j zj

(
(uj , 1)Mj + vy + bjvzj(y1 + ujx

� + v)1
)
Mtj

)�

.

Terms involving zj and z2j must cancel out, so we can assume μsj
= 0 and

Mtj
= 0 for j > �. Since M� does not involve z� in any of its terms, we get from

the terms in (u�, 1)z�vμ�
s�

that μs�
= 0. Since there can be no terms involving

z2� we get b�1M�
t�

= 0. Looking at the coefficients for v we get τs�
= σxμs�

. This

Efficient Fully Structure-Preserving Signatures for Large Messages 257

leaves us with

ρr�
τ t�

(
(u�, 1)M� + vy + b�vz�(y1 + u�x

� + v)1
)�

= vy1 + bv

(

σxx� +
1

ρr�

z�(y1 + u�x
� + v)

)

+ ρr�
σx (((u�, 1)M� + vy) Mt�

)�

+ (u�, 1)
(

μ + xMx + yMy +
∑

j<� μsj
zj(y1 + ujx

� + v)
+

∑
j<� zj

(
(uj , 1)Mj + vy + bjvzj(y1 + ujx

� + v)1
)
Mtj

)�

+ (u�, 1)z� ((u�, 1)M� + vy)Mt�
)�

.

Looking at the terms involving z�v
2 we see ρr�

τ t�
b�1� = b 1

ρr�
. The only

remaining terms involving z� now give us Mt�
= 0. This gives us

ρr�
τ t�

((u�, 1)M� + vy)�

= vy1 + bvσxx�

+ (u�, 1)
(

μ + xMx + yMy +
∑

j<� μsj
zj(y1 + ujx

� + v)
+

∑
j<� zj

(
(uj , 1)Mj + vy + bjvzj(y1 + ujx

� + v)1
)
Mtj

)�

Looking at the terms in vy we now get ρr�
τ t�

= (1, 0, . . . , 0). This means
(u�, 1)m�

� = bσxx� + (u�, 1)m�, where m�
� is the first column of M�. Looking

at the coefficients of vxk we see that if bσx = 0. Since m� and m are independent
of u� this means m = m�.

A similar argument can applied to the remaining n−1 verification equations
showing us that in all columns M and M� match. This means M = M�, so the
signature scheme is existentially unforgeable both for randomizable signatures
and strong signatures.

Finally, let us consider the case where b = 1, i.e., we are doing a strong
signature verification. We have already seen that bσx = 0 so when b = 1 this
means σx = 0. Since ρr�

τ t�
b�1� = b� = b 1

ρr�
we see that b� = 1 and ρr�

= 1.
This means s = s� and r = r� and u = u� and M = M� and therefore t = t�.
So the generic adversary can only satisfy the strong verification equation with
b = 1 by copying both the message and signature from a previous query with
b� = 1.

On the other hand, if we have b = 0, i.e., we are verifying a randomizable
signature, we see from ρr�

τ t�
bl1� = b� = b 1

ρr�
that b� = 0. So the adversary has

randomized a signature intended for randomization. �	

Acknowledgment. We thank Masayuki Abe, Markulf Kohlweiss, Miyako Ohkubo
and Mehdi Tibouchi for their comments and sharing an early version of [AKOT15]
with us.

258 J. Groth

References

[ACD+12] Abe, M., Chase, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo,
M.: Constant-size structure-preserving signatures: generic constructions
and simple assumptions. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012.
LNCS, vol. 7658, pp. 4–24. Springer, Heidelberg (2012)

[ADK+13] Abe, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo, M.: Tagged
one-time signatures: tight security and optimal tag size. In: Kurosawa, K.,
Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 312–331. Springer,
Heidelberg (2013)

[AFG+10] Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.:
Structure-preserving signatures and commitments to group elements. In:
Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer,
Heidelberg (2010)

[AGHO11] Abe, M., Groth, J., Haralambiev, K., Ohkubo, M.: Optimal structure-
preserving signatures in asymmetric bilinear groups. In: Rogaway, P. (ed.)
CRYPTO 2011. LNCS, vol. 6841, pp. 649–666. Springer, Heidelberg (2011)

[AGO11] Abe, M., Groth, J., Ohkubo, M.: Separating short structure-preserving
signatures from non-interactive assumptions. In: Lee, D.H., Wang, X. (eds.)
ASIACRYPT 2011. LNCS, vol. 7073, pp. 628–646. Springer, Heidelberg
(2011)

[AGOT14] Abe, M., Groth, J., Ohkubo, M., Tibouchi, M.: Unified, minimal and selec-
tively randomizable structure-preserving signatures. In: Lindell, Y. (ed.)
TCC 2014. LNCS, vol. 8349, pp. 688–712. Springer, Heidelberg (2014)

[AHO12] Abe, M., Haralambiev, K., Ohkubo, M.: Group to group commitments do
not shrink. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 301–317. Springer, Heidelberg (2012)

[AKOT15] Abe, M., Kohlweiss, M., Ohkubo, M., Tibouchi, M.: Fully structure-
preserving signatures and shrinking commitments. In: Oswald, E., Fischlin,
M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 35–65. Springer, Hei-
delberg (2015)

[ALP12] Attrapadung, N., Libert, B., Peters, T.: Computing on authenticated data:
new privacy definitions and constructions. In: Wang, X., Sako, K. (eds.)
ASIACRYPT 2012. LNCS, vol. 7658, pp. 367–385. Springer, Heidelberg
(2012)

[ALP13] Attrapadung, N., Libert, B., Peters, T.: Efficient completely context-hiding
quotable and linearly homomorphic signatures. In: Kurosawa, K., Hanaoka,
G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 386–404. Springer, Heidelberg
(2013)

[BBG05] Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption
with constant size ciphertext. Cryptology ePrint Archive, Report 2005/015
(2005)

[BCPW15] Benhamouda, F., Couteau, G., Pointcheval, D., Wee, H.: Implicit zero-
knowledge arguments and applications to the malicious setting. In: Gen-
naro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 107–129.
Springer, Heidelberg (2015)

[CDEN12] Camenisch, J., Dubovitskaya, M., Enderlein, R.R., Neven, G.: Oblivious
transfer with hidden access control from attribute-based encryption. In:
Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 559–579.
Springer, Heidelberg (2012)

Efficient Fully Structure-Preserving Signatures for Large Messages 259

[CKLM12] Chase, M., Kohlweiss, M., Lysyanskaya, A., Meiklejohn, S.: Malleable proof
systems and applications. In: Pointcheval, D., Johansson, T. (eds.) EURO-
CRYPT 2012. LNCS, vol. 7237, pp. 281–300. Springer, Heidelberg (2012)

[CM15] Chatterjee, S., Menezes, A.: Type 2 structure-preserving signature schemes
revisited. In: ASIACRYPT (2015)

[EHK+13] Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic frame-
work for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 129–147. Springer, Heidel-
berg (2013)

[ElG85] ElGamal, T.: A public key cryptosystem and a signature scheme based on
discrete logarithms. IEEE Trans. Inf. Theor. 31(4), 469–472 (1985)

[Fuc11] Fuchsbauer, G.: Commuting signatures and verifiable encryption. In: Pater-
son, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 224–245.
Springer, Heidelberg (2011)

[FV10] Fuchsbauer, G., Vergnaud, D.: Fair blind signatures without random ora-
cles. In: Bernstein, D.J., Lange, T. (eds.) AFRICACRYPT 2010. LNCS,
vol. 6055, pp. 16–33. Springer, Heidelberg (2010)

[GH08] Green, M., Hohenberger, S.: Universally composable adaptive oblivious
transfer. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp.
179–197. Springer, Heidelberg (2008)

[GPS08] Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers.
Discrete Appl. Math. 156(16), 3113–3121 (2008)

[Gro06] Groth, J.: Simulation-sound NIZK proofs for a practical language and con-
stant size group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006.
LNCS, vol. 4284, pp. 444–459. Springer, Heidelberg (2006)

[GS12] Groth, J., Sahai, A.: Efficient noninteractive proof systems for bilinear
groups. SIAM J. Comput. 41(5), 1193–1232 (2012)

[HJ12] Hofheinz, D., Jager, T.: Tightly secure signatures and public-key encryp-
tion. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol.
7417, pp. 590–607. Springer, Heidelberg (2012)

[LPJY13] Libert, B., Peters, T., Joye, M., Yung, M.: Linearly homomorphic structure-
preserving signatures and their applications. In: Canetti, R., Garay, J.A.
(eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 289–307. Springer,
Heidelberg (2013)

[LPY12] Libert, B., Peters, T., Yung, M.: Group signatures with almost-for-free
revocation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 571–589. Springer, Heidelberg (2012)

[LPY15] Libert, B., Peters, T., Yung, M.: Short group signatures via structure-
preserving signatures: standard model security from simple assumptions.
In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp.
296–316. Springer, Heidelberg (2015)

[Nec94] Nechaev, V.I.: Complexity of a determinate algorithm for the discrete log-
arithm. Mat. Zametki 55(2), 91–101 (1994)

[Sho97] Shoup, V.: Lower bounds for discrete logarithms and related problems.
In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266.
Springer, Heidelberg (1997)

[ZLG12] Zhang, J., Li, Z., Guo, H.: Anonymous transferable conditional E-cash. In:
Keromytis, A.D., Di Pietro, R. (eds.) SecureComm 2012. LNICST, vol.
106, pp. 45–60. Springer, Heidelberg (2013)

A Provably Secure Group Signature Scheme
from Code-Based Assumptions

Martianus Frederic Ezerman, Hyung Tae Lee, San Ling,
Khoa Nguyen(B), and Huaxiong Wang

Division of Mathematical Sciences, School of Physical and Mathematical Sciences,
Nanyang Technological University, Singapore, Singapore

{fredezerman,hyungtaelee,lingsan,khoantt,hxwang}@ntu.edu.sg

Abstract. We solve an open question in code-based cryptography by
introducing the first provably secure group signature scheme from code-
based assumptions. Specifically, the scheme satisfies the CPA-anonymity
and traceability requirements in the random oracle model, assuming the
hardness of the McEliece problem, the Learning Parity with Noise prob-
lem, and a variant of the Syndrome Decoding problem. Our construction
produces smaller key and signature sizes than the existing post-quantum
group signature schemes from lattices, as long as the cardinality of the
underlying group does not exceed the population of the Netherlands
(≈224 users). The feasibility of the scheme is supported by implementa-
tion results. Additionally, the techniques introduced in this work might
be of independent interest: a new verifiable encryption protocol for the
randomized McEliece encryption and a new approach to design formal
security reductions from the Syndrome Decoding problem.

1 Introduction

1.1 Background and Motivation

Group signature [CvH91] is a fundamental cryptographic primitive with two
intriguing features: On the one hand, it allows users of a group to anonymously
sign documents on behalf of the whole group (anonymity); On the other hand,
there is a tracing authority that can tie a given signature to the signer’s identity
should the need arise (traceability). These two properties make group signatures
highly useful in various real-life scenarios such as controlled anonymous print-
ing services, digital right management systems, e-bidding and e-voting schemes.
Theoretically, designing secure and efficient group signature schemes is of deep
interest since doing so typically requires a sophisticated combination of care-
fully chosen cryptographic ingredients. Numerous constructions of group signa-
tures have been proposed, most of which are based on classical number-theoretic
assumptions (e.g., [CS97,ACJT00,BBS04,BW06,LPY12]).

While number-theoretic-based group signatures could be very efficient (e.g.,
[ACJT00,BBS04]), such schemes would become insecure once the era of scal-
able quantum computing arrives [Sho97]. The search for post-quantum group
c© International Association for Cryptologic Research 2015
T. Iwata and J.H. Cheon (Eds.): ASIACRYPT 2015, Part I, LNCS 9452, pp. 260–285, 2015.
DOI: 10.1007/978-3-662-48797-6 12

A Provably Secure Group Signature Scheme from Code-Based Assumptions 261

signatures, as a preparation for the future, has been quite active recently,
with 6 published schemes [GKV10,CNR12,LLLS13,LLNW14,LNW15,NZZ15],
all of which are based on computational assumptions from lattices. Despite their
theoretical interest, those schemes involve significantly large key and signature
sizes, and no implementation result has been given. Our evaluation shows that
the lattice-based schemes listed above are indeed very far from being practical
(see Sect. 1.2). This somewhat unsatisfactory situation highlights two interesting
challenges: First, making post-quantum group signatures one step closer to prac-
tice; Second, bringing in more diversity with a scheme from another candidate for
post-quantum cryptography (e.g., code-based, hash-based, multivariate-based).
For instance, an easy-to-implement and competitively efficient code-based group
signature scheme would be highly desirable.

A code-based group signature, in the strongest security model for static
groups [BMW03], would typically require the following 3 cryptographic layers:

1. The first layer requires a secure (standard) signature scheme to sign mes-
sages1. We observe that the existing code-based signatures fall into two cat-
egories.
The “hash-and-sign” category consists of the CFS signature [CFS01] and
its modified versions [Dal08,Fin10,MVR12]. The known security proofs
for schemes in this category, however, should be viewed with skepti-
cism: the assumption used in [Dal08] was invalidated by distinguishing
attacks [FGUO+13], while the new assumption proposed in [MVR12] lies
on a rather fragile ground.
The “Fiat-Shamir” category consists of schemes derived from Stern’s identi-
fication protocol [Ste96] and its variant [Vér96,CVA10,MGS11] via the Fiat-
Shamir transformation [FS86]. Although these schemes produce relatively
large signatures (as the underlying protocol has to be repeated many times
to make the soundness error negligibly small), their provable security (in the
random oracle model) is well-understood.

2. The second layer demands a semantically secure encryption scheme to enable
the tracing feature: the signer is constrained to encrypt its identifying infor-
mation and to send the ciphertext as part of the group signature, so that
the tracing authority can decrypt if and when necessary. This ingredient is
also available in code-based cryptography, thanks to various CPA-secure and
CCA-secure variants of the McEliece [McE78] and the Niederreiter [Nie86]
cryptosystems (e.g., [NIKM08,DDMN12,Per12,MVVR12]).

3. The third layer, which is essentially bottleneck in realizing secure code-based
group signatures, requires a zero-knowledge (ZK) protocol that connects the
first two layers. Specifically, the protocol should demonstrate that a given sig-
nature is generated by a certain certified group user who honestly encrypts
its identifying information. Constructing such a protocol is quite challeng-
ing. There have been ZK protocols involving the CFS and Stern’s signatures,

1 In most schemes in the [BMW03] model, a standard signature is also employed
to issue users’ secret keys. However, this is not necessarily the case: the scheme
constructed in this paper is an illustrative example.

262 M.F. Ezerman et al.

which yield identity-based identification schemes [CGG07,ACM11,YTM+14]
and threshold ring signatures [MCG08,MCGL11]. There also have been ZK
proofs of plaintext knowledge for the McEliece and the Niederreiter cryp-
tosystems [HMT13]. Yet we are not aware of any efficient ZK protocol that
simultaneously deals with both code-based signature and encryption schemes
in the above sense.

Designing a provably secure group signature scheme, thus, is a long-standing
open question in code-based cryptography (see, e.g., [CM10]).

1.2 Our Contributions

In this work, we construct a group signature scheme which is provably secure
under code-based assumptions. Specifically, the scheme achieves the anonymity
and traceability requirements ([BMW03,BBS04]) in the random oracle model,
assuming the hardness of the McEliece problem, the Learning Parity with Noise
problem, and a variant of the Syndrome Decoding problem.

Contributions to Code-Based Cryptography. By introducing the first
provably secure code-based group signature scheme, we solve the open problem
discussed earlier. Along the way, we introduce two new techniques for code-based
cryptography, which might be of independent interest:

1. We design a ZK protocol for the randomized McEliece encryption scheme,
that allows the prover to convince the verifier that a given ciphertext is well-
formed, and that the hidden plaintext satisfies an additional condition. Such
protocols, called verifiable encryption protocols, are useful not only in con-
structing group signatures, but also in much broader contexts [CS03]. It is
worth noting that, prior to our work, verifiable encryption protocols for code-
based cryptosystems only exist in the very basic form [HMT13] (where the
plaintext is publicly given), which seem to have restricted applications.

2. In our security proof of the traceability property, to obtain a reduction from
the hardness of the Syndrome Decoding (SD) problem, we come up with an
approach that, as far as we know, has not been considered in the literature
before. Recall that the (average-case) SD problem with parameters m, r, ω

is as follows: given a uniformly random matrix H̃ ∈ F
r×m
2 and a uniformly

random syndrome ỹ ∈ F
r
2, the problem asks to find a vector s ∈ F

m
2 that

has Hamming weight ω (denoted by s ∈ B(m,ω)) such that H̃ · s� = ỹ�.
In our scheme, the key generation algorithm produces public key containing
matrix H ∈ F

r×m
2 and syndromes yj ∈ F

r
2, while users are given secret keys

of the form sj ∈ B(m,ω) such that H · s�
j = y�

j . In the security proof,
since we would like to embed an SD challenge instance (H̃, ỹ) into the public
key without being noticed with non-negligible probability by the adversary,
we have to require that H and the yj ’s produced by the key generation are
indistinguishable from uniform.

A Provably Secure Group Signature Scheme from Code-Based Assumptions 263

One method to generate these keys is to employ the “hash-and-sign”
technique from the CFS signature [CFS01]. Unfortunately, while the syn-
dromes yj ’s could be made uniformly random (as the outputs of the ran-
dom oracle), the assumption that the CFS matrix H is computationally
close to uniform (for practical parameters) is invalidated by distinguishing
attacks [FGUO+13].

Another method, pioneered by Stern [Ste96], is to pick H and the sj ’s
uniformly at random. The corresponding syndromes yj ’s could be made com-
putationally close to uniform if the parameters are set such that ω is slightly
smaller than the value ω0 given by the Gilbert-Varshamov bound2, i.e., ω0

such that
(

m
ω0

) ≈ 2r. However, for these parameters, it is not guaranteed with
high probability that a uniformly random SD instance (H̃, ỹ) has solutions,
which would affect the success probability of the reduction algorithm.

In this work, we consider the case when ω is moderately larger than ω0, so
that two conditions hold: First, the uniform distribution over the set B(m,ω)
has sufficient min-entropy to apply the left-over hash lemma [GKPV10]; Sec-
ond, the SD problem with parameters (m, r, ω) admits solutions with high
probability, yet remains intractable3 against the best known attacks [FS09,
BJMM12]. This gives us a new method to generate uniformly random vectors
sj ∈ B(m,ω) and matrix H ∈ F

r×m
2 so that the syndromes yj ’s corresponding

to the sj ’s are statistically close to uniform. This approach, which somewhat
resembles the technique used in [GPV08] for the Inhomogeneous Small Integer
Solution problem, is helpful in our security proof (and generally, in designing
formal security reductions from the SD problem).

Contributions to Post-Quantum Group Signatures. Our construction
provides the first non-lattice-based alternative to provably secure post-quantum
group signatures. The scheme features public key and signature sizes linear
in the number of group users N , which is asymptotically not as efficient as
the recently published lattice-based counterparts ([LLLS13,LLNW14,LNW15,
NZZ15]). However, when instantiating with practical parameters, our scheme
behaves much more efficiently than the scheme proposed in [NZZ15] (which is
arguably the current most efficient lattice-based group signature in the asymp-
totic sense). Indeed, our estimation shows that our scheme gives public key and
signature sizes that are 2300 times and 540 times smaller, respectively, for an
average-size group of N = 28 users. As N grows, the advantage lessens, but our
scheme remains more efficient even for a huge group of N = 224 users (which
is comparable to the whole population of the Netherlands). The details of our
estimation are given in Table 1.

Furthermore, we give implementation results - the first ones for post-quantum
group signatures - to support the feasibility of our scheme (see Sect. 5). Our

2 In this case, the function fH(sj) = H · s�
j acts as a pseudorandom generator [FS96].

3 The variant of the SD problem considered in this work are not widely believed to
be the hardest one [Ste96,Meu13], but suitable parameters can be chosen (e.g., see
Sect. 5) such that the best known attacks run in exponential time.

264 M.F. Ezerman et al.

Table 1. Efficiency comparison between our scheme and [NZZ15].

N Public key size Signature sizeb

Our scheme 28 5.13 × 106 bits (642 KB) 8.57 × 106 bits (1.07 MB)

216 4.10 × 107 bits (5.13 MB) 1.77 × 107 bits (2.21 MB)

224 9.23 × 109 bits (1.16 GB) 2.36 × 109 bits (294 MB)

[NZZ15]a ≤224 1.18 × 1010 bits (1.48 GB) 4.63 × 109 bits (579 MB)
aThe parameters of our scheme are set as in Sect. 5. For the [NZZ15] scheme,
we choose the commonly used lattice dimension n = 28, and set parameters
m = 29×150 and q = 2150 so that the requirements given in [NZZ15, Section 5.1]
are satisfied. Both schemes achieve the CPA-anonymity notion [BBS04] and
soundness error 2−80.
bIn our implementations presented in Sect. 5, the actual signature sizes could be
reduced thanks to an additional technique.

results, while not yielding a truly practical scheme, would certainly help to bring
post-quantum group signatures one step closer to practice.

1.3 Overview of Our Techniques

Let m, r, ω, n, k, t and � be positive integers. We consider a group of size N = 2�,
where each user is indexed by an integer j ∈ [0, N − 1]. The secret signing key
of user j is a vector sj chosen uniformly at random from the set B(m,ω). A
uniformly random matrix H ∈ F

r×m
2 and N syndromes y0, . . . ,yN−1 ∈ F

r
2, such

that H ·s�
j = y�

j , for all j, are made public. Let us now explain the development
of the 3 ingredients used in our scheme.

The Signature Layer. User j can run Stern’s ZK protocol [Ste96] to prove the
possession of a vector s ∈ B(m,ω) such that H·s� = y�

j , where the constraint s ∈
B(m,ω) is proved in ZK by randomly permuting the entries of s and showing that
the permuted vector belongs to B(m,ω). The protocol is then transformed into
a Fiat-Shamir signature [FS86]. However, such a signature is publicly verifiable
only if the index j is given to the verifier.

The user can further hide its index j to achieve unconditional anonymity
among all N users (which yields a ring signature [RST01] on the way, a
la [BS13]), as follows. Let A =

[
y�
0 | · · · |y�

j | · · · |y�
N−1

] ∈ F
r×N
2 and let x = δN

j

- the N -dimensional unit vector with entry 1 at the j-th position. Observe that
A · x� = y�

j , and thus, the equation H · s� = y�
j can be written as

H · s� ⊕ A · x� = 0, (1)

where ⊕ denotes addition modulo 2. Stern’s framework allows the user to prove in
ZK the possession of (s,x) satisfying this equation, where the condition x = δN

j

can be justified using a random permutation.

The Encryption Layer. To enable the tracing capability of the scheme, we
let user j encrypt the binary representation of j via the randomized McEliece

A Provably Secure Group Signature Scheme from Code-Based Assumptions 265

encryption scheme [NIKM08]. Specifically, we represent j as vector I2B(j) =
(j0, . . . , j�−1) ∈ {0, 1}�, where

∑�−1
i=0 ji2�−1−i = j. Given a public encrypting key

G ∈ F
k×n
2 , a ciphertext of I2B(j) is of the form:

c =
(
u‖ I2B(j)

) · G ⊕ e ∈ F
n
2 , (2)

where (u, e) is the encryption randomness, with u ∈ F
k−�
2 , and e ∈ B(n, t) (i.e.,

e is a vector in F
n
2 , that has weight t).

Connecting the Signature and Encryption Layers. User j must demon-
strate that it does not cheat (e.g., by encrypting some string that does not point
to j) without revealing j. Thus, we need a ZK protocol that allows the user to
prove that the vector x = δN

j used in (1) and the plaintext hidden in (2) both
correspond to the same secret j ∈ [0, N − 1]. The crucial challenge is to estab-
lish a connection (which is verifiable in ZK) between the “index representation”
δN
j and the binary representation I2B(j). This challenge is well-handled by the

following technique.
Instead of working with I2B(j) = (j0, . . . , j�−1), we consider an extension of

I2B(j), defined as Encode(j) = (1 − j0, j0, . . . , 1 − ji, ji, . . . , 1 − j�−1, j�−1) ∈ F
2�
2 .

We then suitably insert � zero-rows into matrix G to obtain matrix Ĝ ∈ F
(k+�)×n
2

such that
(
u‖Encode(j)) · Ĝ =

(
u‖ I2B(j)

) · G. Let f = Encode(j), then
equation (2) can be rewritten as:

c =
(
u‖ f

) · Ĝ ⊕ e ∈ F
n
2 . (3)

Now, let B2I : {0, 1}� → [0, N −1] be the inverse function of I2B(·). For every
b ∈ {0, 1}�, we carefully design two classes of permutations Tb : FN

2 → F
N
2 and

T ′
b : F2�

2 → F
2�
2 , such that for any j ∈ [0, N − 1], the following hold:

x = δN
j ⇐⇒ Tb(x) = δN

B2I(I2B(j)⊕b);

f = Encode(j) ⇐⇒ T ′
b(f) = Encode(B2I(I2B(j) ⊕ b)).

Given these equivalences, in the protocol, the user samples a uniformly ran-
dom vector b ∈ {0, 1}�, and sends b1 = I2B(j) ⊕ b. The verifier, seeing that
Tb(x) = δN

B2I(b1)
and T ′

b(f) = Encode(B2I(b1)), should be convinced that x
and f correspond to the same j ∈ [0, N − 1], yet the value of j is completely
hidden from its view, because vector b essentially acts as a “one-time pad”.

The technique extending I2B(j) into Encode(j) and then permuting Encode(j)
in a “one-time pad” fashion is inspired by a method originally proposed by
Langlois et al. [LLNW14] in a seemingly unrelated context, where the goal is to
prove that the message being signed under the Bonsai tree signature [CHKP10]
is of the form I2B(j), for some j ∈ [0, N − 1]. Here, we adapt and develop their
method to simultaneously prove two facts: the plaintext being encrypted under
the randomized McEliece encryption is of the form I2B(j), and the unit vector
x = δN

j is used in the signature layer.
By embedding the above technique into Stern’s framework, we obtain an

interactive ZK argument system, in which, given the public input (H,A,G), the

266 M.F. Ezerman et al.

user is able to prove the possession of a secret tuple (j, s,x,u, f , e) satisfying (1)
and (3). The protocol is repeated many times to achieve negligible soundness
error, and then made non-interactive, resulting in a non-interactive ZK argument
of knowledge Π. The final group signature is of the form (c,Π), where c is the
ciphertext. In the random oracle model, the anonymity of the scheme relies
on the zero-knowledge property of Π and the CPA-security of the randomized
McEliece encryption scheme, while its traceability is based on the hardness of
the variant of the SD problem discussed earlier.

1.4 Related Works and Open Questions

A group signature scheme based on the security of the ElGamal signature scheme
and the hardness of decoding of linear codes was given in [MCK01]. In a con-
current and independent work, Alamélou et al. [ABCG15] also propose a code-
based group signature scheme. These two works have yet to provide a provably
secure group signature scheme based solely on code-based assumptions, which
we achieve in the present paper.

Our work constitutes a foundational step in code-based group signatures.
In the next steps, we will work towards improving the current construction in
terms of efficiency (e.g., making the signature size less dependent on the number
of group users), as well as functionality (e.g., achieving dynamic enrollment and
efficient revocation of users). Another interesting open question is to construct
a scheme achieving CCA-anonymity.

2 Preliminaries

Notations. We let λ denote the security parameter and negl(λ) denote a neg-

ligible function in λ. We denote by a
$← A if a is chosen uniformly at random

from the finite set A. The symmetric group of all permutations of k elements is
denoted by Sk. We use bold capital letters, (e.g., A), to denote matrices, and
bold lowercase letters, (e.g., x), to denote row vectors. We use x� to denote
the transpose of x and wt(x) to denote the (Hamming) weight of x. We denote
by B(m,ω) the set of all vectors x ∈ F

m
2 such that wt(x) = ω. Throughout

the paper, we define a function I2B which takes a non-negative integer a as an
input, and outputs the binary representation (a0, · · · , a�−1) ∈ {0, 1}� of a such
that a =

∑�−1
i=0 ai2�−1−i, and a function B2I which takes as an input the binary

representation (a0, · · · , a�−1) ∈ {0, 1}� of a, and outputs a. All logarithms are of
base 2.

2.1 Background on Code-Based Cryptography

We first recall the Syndrome Decoding problem, which is well-known to be NP-
complete [BMvT78], and is widely believed to be intractable in the average case
for appropriate choice of parameters [Ste96,Meu13].

A Provably Secure Group Signature Scheme from Code-Based Assumptions 267

Definition 1 (The Syndrome Decoding problem). The SD(m, r, ω) prob-
lem is as follows: given a uniformly random matrix H ∈ F

r×m
2 and a uniformly

random syndrome y ∈ F
r
2, find a vector s ∈ B(m,ω) such that H · s� = y�.

When m = m(λ), r = r(λ), ω = ω(λ), we say that the SD(m, r, ω) problem is
hard, if the success probability of any PPT algorithm in solving the problem is
at most negl(λ).

In our security reduction, the following variant of the left-over hash lemma for
matrix multiplication over F2 is used.

Lemma 1 (Left-over hash lemma, adapted from [GKPV10]). Let D be a
distribution over Fm

2 with min-entropy e. For ε > 0 and r ≤ e−2 log(1/ε)−O(1),

the statistical distance between the distribution of (H,H · s�), where H $←− F
r×m
2

and s ∈ F
m
2 is drawn from distribution D, and the uniform distribution over

F
r×m
2 × F

r
2 is at most ε.

In particular, if ω < m is an integer such that r ≤ log
(
m
ω

)−2λ−O(1) and D

is the uniform distribution over B(m,ω) (i.e., D has min-entropy log
(
m
ω

)
), then

the statistical distance between the distribution of (H,H · s�) and the uniform
distribution over F

r×m
2 × F

r
2 is at most 2−λ.

The Randomized McEliece Encryption Scheme. We employ a randomized
variant of the McEliece [McE78] encryption scheme, suggested in [NIKM08],
where a uniformly random vector is concatenated to the plaintext. The scheme
is described as follows:

– ME.Setup(1λ): Select parameters n = n(λ), k = k(λ), t = t(λ) for a binary
[n, k, 2t + 1] Goppa code. Choose integers k1, k2 such that k = k1 + k2. Set
the plaintext space as F

k2
2 .

– ME.KeyGen(n, k, t): Perform the following steps:
1. Produce a generator matrix G′ ∈ F

k×n
2 of a randomly selected [n, k, 2t+1]

Goppa code. Choose a random invertible matrix S ∈ F
k×k
2 and a random

permutation matrix P ∈ F
n×n
2 . Let G = SG′P ∈ F

k×n
2 .

2. Output encrypting key pkME = G and decrypting key skME = (S,G′,P).

– ME.Enc(pkME,m): To encrypt a message m ∈ F
k2
2 , sample u $←− F

k1
2 and

e $← B(n, t), then output the ciphertext c = (u‖m) · G ⊕ e ∈ F
n
2 .

– ME.Dec(skME, c): Perform the following steps:
1. Compute c ·P−1 = ((u‖m) ·G⊕ e) ·P−1 and then m′ ·S = DecodeG′(c ·

P−1) where Decode is an error-correcting algorithm with respect to G′.
If Decode fails, then return ⊥.

2. Compute m′ = (m′S) · S−1, parse m′ = (u‖m), where u ∈ F
k1
2 and

m ∈ F
k2
2 , and return m.

The scheme described above is CPA-secure in the standard model assuming
the hardness of the DMcE(n, k, t) problem and the DLPN(k1, n,B(n, t)) prob-
lem [NIKM08,Döt14]. We now recall these two problems.

268 M.F. Ezerman et al.

Definition 2 (The Decisional McEliece problem). The DMcE(n, k, t) prob-
lem is as follows: given a matrix G ∈ F

k×n
2 , distinguish whether G is a uniformly

random matrix over F
k×n
2 or it is generated by algorithm ME.KeyGen(n, k, t)

described above.
When n = n(λ), k = k(λ), t = t(λ), we say that the DMcE(n, k, t) problem is

hard, if the success probability of any PPT distinguisher is at most 1/2+negl(λ).

Definition 3 (The Decisional Learning Parity with (fixed-weight)
Noise problem). The DLPN(k, n,B(n, t)) problem is as follows: given a pair
(A,v) ∈ F

k×n
2 ×F

n
2 , distinguish whether (A,v) is a uniformly random pair over

F
k×n
2 × F

n
2 or it is obtained by choosing A $← F

k×n
2 , u $← F

k
2 , e $← B(n, t) and

outputting (A,u · A ⊕ e).
When k = k(λ), n = n(λ), t = t(λ), we say that the DLPN(k, n,B(n, t))

problem is hard, if the success probability of any PPT distinguisher is at most
1/2 + negl(λ).

2.2 Group Signatures

We follow the definition of group signatures provided in [BMW03] for the case
of static groups.

Definition 4. A group signature GS = (KeyGen,Sign,Verify,Open) is a tuple
of four polynomial-time algorithms:

– KeyGen: This randomized algorithm takes as input (1λ, 1N), where N ∈ N

is the number of group users, and outputs (gpk, gmsk, gsk), where gpk is
the group public key, gmsk is the group manager’s secret key, and gsk =
{gsk[j]}j∈[0,N−1] with gsk[j] being the secret key for the group user of index j.

– Sign: This randomized algorithm takes as input a secret signing key gsk[j] for
some j ∈ [0, N −1] and a message M and returns a group signature Σ on M .

– Verify: This deterministic algorithm takes as input the group public key gpk, a
message M , a signature Σ on M , and returns either 1 (Accept) or 0 (Reject).

– Open: This deterministic algorithm takes as input the group manager’s secret
key gmsk, a message M , a signature Σ on M , and returns an index j ∈
[0, N − 1] associated with a particular user, or ⊥, indicating failure.

Correctness. The correctness of a group signature scheme requires that for all
λ,N ∈ N, all (gpk, gmsk, gsk) produced by KeyGen(1λ, 1N), all j ∈ [0, N − 1],
and all messages M ∈ {0, 1}∗,

Verify
(
gpk,M,Sign(gsk[j],M)

)
= 1; Open

(
gmsk,M,Sign(gsk[j],M)

)
= j.

Security Notions. A secure group signature scheme must satisfy two security
notions:

– Traceability requires that all signatures, even those produced by a coalition of
group users and the group manager, can be traced back to a member of the
coalition.

A Provably Secure Group Signature Scheme from Code-Based Assumptions 269

– Anonymity requires that, signatures generated by two distinct group users
are computationally indistinguishable to an adversary who knows all the user
secret keys. In Bellare et al.’s model [BMW03], the anonymity adversary is
granted access to an opening oracle (CCA-anonymity). Boneh et al. [BBS04]
later proposed a relaxed notion, where the adversary cannot query the opening
oracle (CPA-anonymity).

Formal definitions of CPA-anonymity and traceability are as follows.

Definition 5. We say that a group signature GS = (KeyGen,Sign,Verify,Open)
is CPA-anonymous if for all polynomial N(·) and any PPT adversaries A, the
advantage of A in the following experiment is negligible in λ:

1. Run (gpk, gmsk, gsk) ← KeyGen(1λ, 1N) and send (gpk, gsk) to A.
2. A outputs two identities j0, j1 ∈ [0, N − 1] with a message M . Choose a

random bit b and give Sign(gsk[jb],M) to A. Then, A outputs a bit b′.

A succeeds if b′ = b, and the advantage of A is defined to
∣
∣
∣
∣Pr[A succeeds] − 1

2

∣
∣
∣
∣.

Definition 6. We say that a group signature GS = (KeyGen,Sign,Verify,Open)
is traceable if for all polynomial N(·) and any PPT adversaries A, the success
probability of A in the following experiment is negligible in λ:

1. Run (gpk, gmsk, gsk) ← KeyGen(1λ, 1N) and send (gpk, gmsk) to A.
2. A may query the following oracles adaptively and in any order:

– A OCorrupt oracle that on input j ∈ [0, N − 1], outputs gsk[j].
– A OSign oracle that on input j, a message M , returns Sign(gsk[j],M).

Let CU be the set of identities queried to OCorrupt.
3. Finally, A outputs a message M∗ and a signature Σ∗.

A succeeds if (1) Verify(gpk,M∗, Σ∗) = 1 and (2) Sign(gsk[j],M∗) was never
queried for j /∈ CU , yet (3) Open(gmsk,M∗, Σ∗) /∈ CU .

3 The Underlying Zero-Knowledge Argument System

Recall that a statistical zero-knowledge argument system is an interactive pro-
tocol where the soundness property holds for computationally bounded cheating
provers, while the zero-knowledge property holds against any cheating verifier.
In this section we present a statistical zero-knowledge argument system which
will serve as a building block in our group signature scheme in Sect. 4.

Before describing the protocol, we first introduce several supporting notations
and techniques. Let � be a positive integer, and let N = 2�.

1. For x = (x0, x1, . . . , xN−1) ∈ F
N
2 and for j ∈ [0, N − 1], we denote by x = δN

j

if xj = 1 and xi = 0 for all i �= j.

270 M.F. Ezerman et al.

2. We define an encoding function Encode : [0, N − 1] → F
2�
2 , that encodes

integer j ∈ [0, N − 1], whose binary representation is I2B(j) = (j0, . . . , j�−1),
as vector:

Encode(j) = (1 − j0, j0, . . . , 1 − ji, ji, . . . , 1 − j�−1, j�−1).

3. Given a vector b = (b0, . . . , b�−1) ∈ {0, 1}�, we define the following 2 permu-
tations:
(a) Tb : F

N
2 → F

N
2 that transforms x = (x0, . . . , xN−1) to (x′

0, . . . , x
′
N−1),

where for each i ∈ [0, N−1], we have xi = x′
i∗ , where i∗ = B2I

(
I2B(i)⊕b

)
.

(b) T ′
b : F

2�
2 → F

2�
2 that transforms f = (f0, f1, . . . , f2i, f2i+1, . . . ,

f2(�−1), f2(�−1)+1) to (fb0 , f1−b0 , . . . , f2i+bi
, f2i+(1−bi), . . . ,

f2(�−1)+b�−1 , f2(�−1)+(1−b�−1)).

Observe that, for any j ∈ [0, N − 1] and any b ∈ {0, 1}�, we have:

x = δN
j ⇐⇒ Tb(x) = δN

B2I(I2B(j)⊕b); (4)

f = Encode(j) ⇐⇒ T ′
b(f) = Encode(B2I(I2B(j) ⊕ b)). (5)

Example: Let N = 24. Let j = 6, then I2B(j) = (0, 1, 1, 0) and Encode(j) =
(1, 0, 0, 1, 0, 1, 1, 0). If b = (1, 0, 1, 0), then B2I(I2B(j) ⊕ b) = B2I(1, 1, 0, 0) = 12,
and we have:

Tb(δ166) = δ1612 and T ′
b(Encode(6)) = (0, 1, 0, 1, 1, 0, 1, 0) = Encode(12).

3.1 The Interactive Protocol

We now present our interactive zero-knowledge argument of knowledge (ZKAoK).
Let n, k, t,m, r, ω, � be positive integers, and N = 2�. The public input consists
of matrices G ∈ F

k×n
2 , H ∈ F

r×m
2 ; N syndromes y0, . . . ,yN−1 ∈ F

r
2; and a vector

c ∈ F
n
2 . The protocol allows prover P to simultaneously convince verifier V in

zero-knowledge that P possesses a vector s ∈ B(m,ω) corresponding to certain
syndrome yj ∈ {y0, . . . ,yN−1} with hidden index j, and that c is a correct
encryption of I2B(j) via the randomized McEliece encryption. Specifically, the
secret witness of P is a tuple (j, s,u, e) ∈ [0, N −1]×F

m
2 ×F

k−�
2 ×F

n
2 satisfying:

{
H · s� = y�

j ∧ s ∈ B(m,ω);
(
u‖ I2B(j)

) · G ⊕ e = c ∧ e ∈ B(n, t).
(6)

Let A =
[
y�
0 | · · · |y�

j | · · · |y�
N−1

] ∈ F
r×N
2 and x = δN

j . We have A · x� = y�
j ,

and thus, the equation H · s� = y�
j can be written as H · s� ⊕ A · x� = 0.

Let Ĝ ∈ F
(k+�)×n
2 be the matrix obtained from G ∈ F

k×n
2 by replacing its

last � rows gk−�+1,gk−�+2, . . . ,gk by 2� rows 0n,gk−�+1,0n,gk−�+2, . . . ,0n,gk.
We then observe that

(
u‖ I2B(j)

) · G =
(
u‖Encode(j)) · Ĝ.

A Provably Secure Group Signature Scheme from Code-Based Assumptions 271

Let f = Encode(j), then (6) can be equivalently rewritten as:
{

H · s� ⊕ A · x� = 0 ∧ x = δN
j ∧ s ∈ B(m,ω);

(
u‖ f

) · Ĝ ⊕ e = c ∧ f = Encode(j) ∧ e ∈ B(n, t).
(7)

To obtain a ZKAoK for relation (7) in Stern’s framework [Ste96], P proceeds as
follows:

– To prove that x = δN
j and f = Encode(j) while keeping j secret, prover P

samples a uniformly random vector b ∈ {0, 1}�, sends b1 = I2B(j) ⊕ b, and
shows that:

Tb(x) = δN
B2I(b1)

∧ T ′
b(f) = Encode(B2I(b1)).

By the equivalences observed in (4) and (5), the verifier will be convinced
about the facts to prove. Furthermore, since b essentially acts as a “one-time
pad”, the secret j is perfectly hidden.

– To prove in zero-knowledge that s ∈ B(m,ω), P samples a uniformly random
permutation π ∈ Sm, and shows that π(s) ∈ B(m,ω). Similarly, to prove in
zero-knowledge that e ∈ B(n, t), a uniformly random permutation σ ∈ Sn is
employed.

– Finally, to prove the linear equations in zero-knowledge, P samples uniformly
random “masking” vectors (rs, rx, ru, rf , re), and shows that:

{
H · (s ⊕ rs)� ⊕ A · (x ⊕ rx)� = H · r�

s ⊕ A · r�
x ;

(
u ⊕ ru ‖ f ⊕ rf

) · Ĝ ⊕ (e ⊕ re) ⊕ c =
(
ru ‖ rf

) · Ĝ ⊕ re.
(8)

Now let COM : {0, 1}∗ → {0, 1}λ be a collision-resistant hash function,
to be modelled as a random oracle. Prover P and verifier V first perform the
preparation steps described above, and then interact as described in Fig. 1.

3.2 Analysis of the Protocol

The properties of our protocol are summarized in the following theorem.

Theorem 1. The interactive protocol described in Sect. 3.1 has perfect complete-
ness, and has communication cost bounded by β = (N + 3 log N) + m(log m +
1) + n(log n + 1) + k + 5λ bits. If COM is modelled as a random oracle, then
the protocol is statistical zero-knowledge. If COM is a collision-resistant hash
function, then the protocol is an argument of knowledge.

Completeness. It can be seen that the given interactive protocol is perfectly
complete, i.e., if P possesses a valid witness (j, s,u, e) and follows the protocol,
then V always outputs 1. Indeed, given (j, s,u, e) satisfying (6), P can always
obtain (j, s,x,u, f , e) satisfying (7). Then, as discussed above, the following are
true:
{

∀π ∈ Sm : π(s) ∈ B(m,ω); ∀σ ∈ Sn : σ(e) ∈ B(n, t);
∀b ∈ {0, 1}�: Tb(x)= δN

B2I(I2B(j)⊕b) =wx; T ′
b(f)=Encode(B2I(I2B(j)⊕b))=wf .

272 M.F. Ezerman et al.

Fig. 1. The underlying zero-knowledge argument system of our group signature scheme.

A Provably Secure Group Signature Scheme from Code-Based Assumptions 273

As a result, P should always pass V’s checks in the case Ch = 1. In the case
Ch = 2, since the linear equations in (8) hold true, P should also pass the
verification. Finally, in the case Ch = 3, it suffices to note that V simply checks
for honest computations of c1 and c2.

Communication Cost. The commitment CMT has bit-size 3λ. If Ch = 1, then
the response RSP has bit-size 3�+N +2(m+n+λ). In each of the cases Ch = 2
and Ch = 3, RSP has bit-size 2� + N + m(log m + 1) + n(log n + 1) + k + 2λ.
Therefore, the total communication cost (in bits) of the protocol is less than the
bound β specified in Theorem 1.

Zero-Knowledge Property. The following lemma says that our interactive
protocol is statistically zero-knowledge if COM is modelled as a random oracle.

Lemma 2. In the random oracle model, there exists an efficient simulator S
interacting with a (possibly cheating) verifier V̂, such that, given only the public
input of the protocol, S outputs with probability negligibly close to 2/3 a simulated
transcript that is statistically close to the one produced by the honest prover in
the real interaction.

Argument of Knowledge Property. The next lemma states that our protocol
satisfies the special soundness property of Σ-protocols, which implies that it is
an argument of knowledge [Gro04].

Lemma 3. Let COM be a collision-resistant hash function. Given the public
input of the protocol, a commitment CMT and 3 valid responses RSP1,RSP2,
RSP3 to all 3 possible values of the challenge Ch, one can efficiently construct
a knowledge extractor E that outputs a tuple (j′, s′,u′, e′) ∈ [0, N − 1] × F

m
2 ×

F
k−�
2 × F

n
2 such that:

{
H · s′� = y�

j′ ∧ s′ ∈ B(m,ω);
(
u′ ‖ I2B(j′)

) · G ⊕ e′ = c ∧ e′ ∈ B(n, t).

The proofs of Lemmas 2 and 3 employ the standard simulation and extrac-
tion techniques for Stern-type protocols (e.g., [Ste96,KTX08,LNSW13]). These
proofs are omitted here due to space constraints. They can be found in the full
version of this paper [ELL+15].

4 Our Code-Based Group Signature Scheme

4.1 Description of the Scheme

Our group signature scheme is described as follows:

KeyGen(1λ, 1N): On input a security parameter λ and an expected number of
group users N = 2� ∈ poly(λ), for some positive integer �, this algorithm
first selects the following:

274 M.F. Ezerman et al.

–Parameters n = n(λ), k = k(λ), t = t(λ) for a binary [n, k, 2t + 1] Goppa
code.

–Parameters m = m(λ), r = r(λ), ω = ω(λ) for the Syndrome Decoding
problem, such that

r ≤ log
(

m

w

)

− 2λ − O(1). (9)

– Two collision-resistant hash functions, to be modelled as random oracles:
1. COM : {0, 1}∗ → {0, 1}λ, to be used for generating zero-knowledge

arguments.
2. H : {0, 1}∗ → {1, 2, 3}κ (where κ = ω(log λ)), to be used in the

Fiat-Shamir transformation.
The algorithm then performs the following steps:
1. Run ME.KeyGen(n, k, t) to obtain a key pair

(
pkME = G ∈ F

k×n
2 ; skME

)

for the randomized McEliece encryption scheme with respect to a binary
[n, k, 2t + 1] Goppa code. The plaintext space is F

�
2.

2. Choose a matrix H $←− F
r×m
2 .

3. For each j ∈ [0, N−1], pick sj
$←− B(m,ω), and let yj ∈ F

r
2 be its syndrome,

i.e., y�
j = H · s�

j .
Remark 1. We note that, for parameters m, r, ω satisfying condition (9),
the distribution of syndrome yj , for all j ∈ [0, N −1], is statistically close
to the uniform distribution over F

r
2 (by Lemma 1).

4. Output
(
gpk = (G,H,y0, . . . ,yN−1), gmsk = skME, gsk = (s0, . . . , sN−1)

)
.(10)

Sign(gsk[j],M): To sign a message M ∈ {0, 1}∗ under gpk, the group user of
index j, who possesses secret key s = gsk[j], performs the following steps:
1. Encrypt the binary representation of j, i.e., vector I2B(j) ∈ F

�
2, under

the randomized McEliece encrypting key G. This is done by sampling
(u $←− F

k−�
2 , e $←− B(n, t)) and outputting the ciphertext:

c =
(
u‖ I2B(j)

) · G ⊕ e ∈ F
n
2 .

2. Generate a NIZKAoK Π to simultaneously prove in zero-knowledge the
possession of a vector s ∈ B(m,ω) corresponding to a certain syndrome
yj ∈ {y0, . . . ,yN−1} with hidden index j, and that c is a correct McEliece
encryption of I2B(j). This is done by employing the interactive argument
system in Sect. 3 with public input (G,H,y0, . . . ,yN−1, c), and prover’s
witness (j, s,u, e) that satisfies:

{
H · s� = y�

j ∧ s ∈ B(m,ω);
(
u‖ I2B(j)

) · G ⊕ e = c ∧ e ∈ B(n, t).
(11)

A Provably Secure Group Signature Scheme from Code-Based Assumptions 275

The protocol is repeated κ = ω(log λ) times to achieve negligible sound-
ness error, and then made non-interactive using the Fiat-Shamir heuristic.
Namely, we have

Π =
(
CMT(1), . . . ,CMT(κ); (Ch(1), . . . ,Ch(κ)); RSP(1), . . . ,RSP(κ)

)
,(12)

where (Ch(1), . . . ,Ch(κ)) = H(
M ;CMT(1), . . . ,CMT(κ); gpk, c

) ∈
{1, 2, 3}κ.

3. Output the group signature Σ = (c,Π).
Verify(gpk,M,Σ): Parse Σ as (c,Π) and parse Π as in (12). Then proceed as

follows:
1. If (Ch(1), . . . ,Ch(κ)) �= H(

M ;CMT(1), . . . ,CMT(κ); gpk, c
)
, then return 0.

2. For i = 1 to κ, run the verification step of the interactive protocol in
Sect. 3 with public input (G,H,y0, . . . ,yN−1, c) to check the validity of
RSP(i) with respect to CMT(i) and Ch(i). If any of the verification condi-
tions does not hold, then return 0.

3. Return 1.
Open(gmsk,M,Σ): Parse Σ as (c,Π) and run ME.Dec(gmsk, c) to decrypt c.

If decryption fails, then return ⊥. If decryption outputs g ∈ F
�
2, then return

j = B2I(g) ∈ [0, N − 1].

The efficiency, correctness, and security aspects of the above group signature
scheme are summarized in the following theorem.

Theorem 2. The given group signature scheme is correct. The public key has
size nk+(m+N)r bits, and signatures have bit-size bounded by

(
(N +3 log N)+

m(log m + 1) + n(log n + 1) + k + 5λ
)
κ + n. Furthermore, in the random oracle

model:

– If the Decisional McEliece problem DMcE(n, k, t) and the Decisional Learning
Parity with fixed-weight Noise problem DLPN(k − �, n,B(n, t)) are hard, then
the scheme is CPA-anonymous.

– If the Syndrome Decoding problem SD(m, r, ω) is hard, then the scheme is
traceable.

4.2 Efficiency and Correctness

Efficiency. It is clear from (10) that gpk has bit-size nk + (m + N)r. The
length of the NIZKAoK Π is κ times the communication cost of the underlying
interactive protocol. Thus, by Theorem 1, Σ = (c,Π) has bit-size bounded by(
(N + 3 log N) + m(log m + 1) + n(log n + 1) + k + 5λ

)
κ + n.

Correctness. To see that the given group signature scheme is correct, first
observe that the honest user with index j, for any j ∈ [0, N−1], can always obtain
a tuple (j, s,u, e) satisfying (11). Then, since the underlying interactive protocol
is perfectly complete, Π is a valid NIZKAoK and algorithm Verify(gpk,M,Σ)
always outputs 1, for any message M ∈ {0, 1}∗.

276 M.F. Ezerman et al.

Regarding the correctness of algorithm Open, it suffices to note that, if the
ciphertext c is of the form c =

(
u‖ I2B(j)

) · G ⊕ e, where e ∈ B(n, t), then,
by the correctness of the randomized McEliece encryption scheme, algorithm
ME.Dec(gmsk, c) will output I2B(j).

4.3 Anonymity

Let A be any PPT adversary attacking the CPA-anonymity of the scheme with
advantage ε. We will prove that ε = negl(λ) based on the ZK property of the
underlying argument system, and the assumed hardness of the DMcE(n, k, t)
and the DLPN(k − �, n,B(n, t)) problems. Specifically, we consider the following
sequence of hybrid experiments G

(b)
0 , G

(b)
1 , G

(b)
2 , G

(b)
3 and G4.

Experiment G
(b)
0 . This is the real CPA-anonymity game. The challenger runs

KeyGen(1λ, 1N) to obtain
(
gpk = (G,H,y0, . . . ,yN−1), gmsk = skME, gsk = (gsk[0], . . . , gsk[N − 1])

)
,

and then gives gpk and {gsk[j]}j∈[0,N−1] to A. In the challenge phase, A outputs
a message M∗ together with two indices j0, j1 ∈ [0, N − 1]. The challenger
sends back a challenge signature Σ∗ = (c∗,Π∗) ← Sign(gpk, gsk[jb]), where

c∗ =
(
u‖ I2B(jb)

) · G ⊕ e, with u $←− F
k−�
2 and e $←− B(n, t). The adversary then

outputs b with probability 1/2 + ε.

Experiment G
(b)
1 . In this experiment, we introduce the following modification

in the challenge phase: instead of faithfully generating the NIZKAoK Π∗, the
challenger simulates it as follows:

1. Compute c∗ ∈ F
n
2 as in experiment G

(b)
0 .

2. Run the simulator of the underlying interactive protocol in Sect. 3 t = ω(log λ)
times on input (G,H,y0, . . . ,yN−1, c∗), and then program the random ora-
cle H accordingly.

3. Output the simulated NIZKAoK Π∗.

Since the underlying argument system is statistically zero-knowledge, Π∗ is
statistically close to the real NIZKAoK. As a result, the simulated signature
Σ∗ =

(
c∗,Π∗) is statistically close to the one in experiment G

(b)
0 . It then follows

that G
(b)
0 and G

(b)
1 are indistinguishable from A’s view.

Experiment G
(b)
2 . In this experiment, we make the following change with

respect to G
(b)
1 : the encrypting key G obtained from ME.KeyGen(n, k, t) is

replaced by a uniformly random matrix G $←− F
k×n
2 . We will demonstrate in

Lemma 4 that experiments G
(b)
1 and G

(b)
2 are computationally indistinguishable

based on the assumed hardness of the DMcE(n, k, t) problem.

Lemma 4. If A can distinguish experiments G
(b)
1 and G

(b)
2 with probability non-

negligibly larger than 1/2, then there exists an efficient distinguisher D1 solving
the DMcE(n, k, t) problem with the same probability.

A Provably Secure Group Signature Scheme from Code-Based Assumptions 277

Proof. An instance of the DMcE(n, k, t) problem is a matrix G∗ ∈ F
k×n
2 which

can either be uniformly random, or be generated by ME.KeyGen(n, k, t). Distin-
guisher D1 receives a challenge instance G∗ and uses A to distinguish between
the two. It interacts with A as follows.

– Setup. Generate (H,y0, . . . ,yN−1) and (gsk[0], . . . , gsk[N − 1]) as in the real
scheme. Then, send the following to A:

(
gpk∗ = (G∗,H,y0, . . . ,yN−1), gsk = (gsk[0], . . . , gsk[N − 1])

)
.

– Challenge. Receiving the challenge (M∗, j0, j1), D1 proceeds as follows:

1. Pick b
$←− {0, 1}, and compute c∗ =

(
u‖ I2B(jb)

)·G∗⊕e, where u $←− F
k−�
2

and e $←− B(n, t).
2. Simulate the NIZKAoK Π∗ on input (G∗,H,y0, . . . ,yN−1, c∗), and out-

put Σ∗ =
(
c∗,Π∗).

We observe that if G∗ is generated by ME.KeyGen(n, k, t) then the view of A in
the interaction with D1 is statistically close to its view in experiment G

(b)
1 with

the challenger. On the other hand, if G∗ is uniformly random, then A’s view
is statistically close to its view in experiment G

(b)
2 . Therefore, if A can guess

whether it is interacting with the challenger in G
(b)
1 or G

(b)
2 with probability

non-negligibly larger than 1/2, then D1 can use A’s guess to solve the challenge
instance G∗ of the DMcE(n, k, t) problem, with the same probability. ��

Experiment G
(b)
3 . Recall that in experiment G

(b)
2 , we have

c∗ =
(
u‖ I2B(jb)

) · G ⊕ e = (u · G1 ⊕ e) ⊕ I2B(jb) · G2,

where G1 ∈ F
(k−�)×n
2 , G2 ∈ F

�×n
2 such that

[
G1
G2

]
= G; and u $←− F

k−�
2 , e $←−

B(n, t).
In experiment G

(b)
3 , the generation of c∗ is modified as follows: we instead

let c∗ = v ⊕ I2B(jb) · G2, where v $←− F
n
2 . Experiments G

(b)
2 and G

(b)
3

are computationally indistinguishable based on the assumed hardness of the
DLPN(k − �, n,B(n, t)) problem, as shown in Lemma 5.

Lemma 5. If A can distinguish experiments G
(b)
2 and G

(b)
3 with probability non-

negligibly larger than 1/2, then there exists an efficient distinguisher D2 solving
the DLPN(k − �, n,B(n, t)) problem with the same probability.

Proof. An instance of the DLPN(k − �, n,B(n, t)) problem is a pair (B,v) ∈
F
(k−�)×n
2 × F

n
2 , where B is uniformly random, and v is either uniformly random

or of the form v = u · B ⊕ e, for (u $←− F
k−�
2 ; e $←− B(n, t)). Distinguisher D2

receives a challenge instance (B,v) and uses A to distinguish between the two.
It interacts with A as follows.

278 M.F. Ezerman et al.

– Setup. Pick G2
$←− F

�×n
2 and let G∗ =

[
B
G2

]
. Generate (H,y0, . . . ,yN−1) and

(gsk[0], . . . , gsk[N − 1]) as in the real scheme, and send the following to A:
(
gpk∗ = (G∗,H,y0, . . . ,yN−1), gsk = (gsk[0], . . . , gsk[N − 1])

)
.

– Challenge. Receiving the challenge (M∗, j0, j1), D2 proceeds as follows:

1. Pick b
$←− {0, 1}, and let c∗ = v ⊕ I2B(jb) · G2, where v comes from the

challenge DLPN instance.
2. Simulate the NIZKAoK Π∗ on input (G∗,H,y0, . . . ,yN−1, c∗), and out-

put Σ∗ =
(
c∗,Π∗).

We observe that if D2’s input pair (B,v) is of the form (B,v = u · B ⊕ e),

where u $←− F
k−�
2 and e $← B(n, t), then the view of A in the interaction with D2

is statistically close to its view in experiment G
(b)
2 with the challenger. On the

other hand, if the pair (B,v) is uniformly random, then A’s view is statistically
close to its view in experiment G

(b)
3 . Therefore, if A can guess whether it is

interacting with the challenger in G
(b)
2 or G

(b)
3 with probability non-negligibly

larger than 1/2, then D2 can use A’s guess to solve the challenge instance of the
DLPN(k − �,B(n, t)) problem with the same probability. ��

Experiment G4. In this experiment, we employ the following modification with
respect to G

(b)
3 : the ciphertext c∗ is now set as c∗ = r $←− F

n
2 . Clearly, the

distributions of c∗ in experiments G
(b)
3 and G4 are identical. As a result, G4 and

G
(b)
3 are statistically indistinguishable. We note that G4 no longer depends on

the challenger’s bit b, and thus, A’s advantage in this experiment is 0.
The above discussion shows that experiments G

(b)
0 , G

(b)
1 , G

(b)
2 , G

(b)
3 , G4 are

indistinguishable, and that AdvA(G4) = 0. It then follows that the advantage
of A in attacking the CPA-anonymity of the scheme, i.e., in experiment G

(b)
0 , is

negligible. This concludes the proof of the CPA-anonymity property.

4.4 Traceability

Let A be a PPT traceability adversary against our group signature scheme,
that has success probability ε. We construct a PPT algorithm F that solves the
SD(m, r, ω) problem with success probability polynomially related to ε.

Algorithm F receives a challenge SD(m, r, ω) instance, that is, a uniformly
random matrix-syndrome pair (H̃, ỹ) ∈ F

r×m
2 × F

r
2. The goal of F is to find a

vector s ∈ B(m,ω) such that H̃ · s� = ỹ�. It then proceeds as follows:

1. Pick a guess j∗ $←− [0, N − 1] and set yj∗ = ỹ.

2. Set H = H̃. For each j ∈ [0, N − 1] such that j �= j∗, sample sj
$← B(m,ω)

and set yj ∈ F
r
2 be its syndrome, i.e., y�

j = H · s�
j .

3. Run ME.KeyGen(n, k, t) to obtain a key pair
(
pkME = G ∈ F

k×n
2 ; skME

)
.

4. Send gpk =
(
G,H,y0, . . . ,yN−1

)
and gmsk = skME to A.

A Provably Secure Group Signature Scheme from Code-Based Assumptions 279

We note that, since the parameters m, r, ω were chosen such that r ≤ log
(
m
w

) −
2λ−O(1), by Lemma 1, the distribution of syndrome yj , for all j �= j∗, is statisti-
cally close to the uniform distribution over Fr

2. In addition, the syndrome yj∗ = ỹ
is truly uniform over F

r
2. It then follows that the distribution of (y0, . . . ,yN−1)

is statistically close to that in the real scheme (see Remark 1). As a result, the
distribution of (gpk, gmsk) is statistically close to the distribution expected by A.

The forger F then initializes a set CU = ∅ and handles the queries from A
as follows:

– Queries to the random oracle H are handled by consistently returning uni-
formly random values in {1, 2, 3}κ. Suppose that A makes QH queries, then
for each η ≤ QH, we let rη denote the answer to the η-th query.

– OCorrupt(j), for any j ∈ [0, N − 1]: If j �= j∗, then F sets CU := CU ∪ {j} and
gives sj to A; If j = j∗, then F aborts.

– OSign(j,M), for any j ∈ [0, N − 1] and any message M :
• If j �= j∗, then F honestly computes a signature, since it has the secret

key sj .
• If j = j∗, then F returns a simulated signature Σ∗ computed as in

Sect. 4.3 (see Experiment G
(b)
1 in the proof of anonymity).

At some point, A outputs a forged group signature Σ∗ on some message M∗,
where

Σ∗ =
(
c∗,

(
CMT(1), . . . ,CMT(κ); Ch(1), . . . ,Ch(κ); RSP(1), . . . ,RSP(κ)

))
.

By the requirements of the traceability experiment, one has Verify(gpk,M∗,
Σ∗) = 1, and for all j ∈ CU , signatures of user j on M∗ were never queried. Now
F uses skME to open Σ∗, and aborts if the opening algorithm does not output j∗.
It can be checked that F aborts with probability at most (N − 1)/N + (2/3)κ,
because the choice of j∗ ∈ [0, N − 1] is completely hidden from A’s view,
and A can violate the soundness of the argument system with probability at
most (2/3)κ. Thus, with probability at least 1/N − (2/3)κ, it holds that

Verify(gpk,M∗, Σ∗) = 1 ∧ Open(skME,M
∗, Σ∗) = j∗. (13)

Suppose that (13) holds. Algorithm F then exploits the forgery as follows. Denote
by Δ the tuple

(
M∗;CMT(1), . . . ,CMT(κ);G,H,y0, . . . ,yN−1, c∗). Observe that

if A has never queried the random oracle H on input Δ, then

Pr
[(
Ch(1), . . . ,Ch(κ)

)
= H(Δ)

] ≤ 3−κ.

Therefore, with probability at least ε − 3−κ, there exists certain η∗ ≤ QH such
that Δ was the input of the η∗-th query. Next, F picks η∗ as the target forking
point and replays A many times with the same random tape and input as in
the original run. In each rerun, for the first η∗ − 1 queries, A is given the same
answers r1, . . . , rη∗−1 as in the initial run, but from the η∗-th query onwards,

280 M.F. Ezerman et al.

F replies with fresh random values r
′
η∗ , . . . , r

′
qH

$←− {1, 2, 3}κ. The Improved
Forking Lemma of Pointcheval and Vaudenay [PV97, Lemma 7] implies that,
with probability larger than 1/2 and within less than 32·QH/(ε−3−κ) executions
of A, algorithm F can obtain a 3-fork involving the tuple Δ. Now, let the answers
of F with respect to the 3-fork branches be

r1,η∗ = (Ch(1)1 , . . . ,Ch
(κ)
1); r2,η∗ = (Ch(1)2 , . . . ,Ch

(κ)
2); r3,κ∗ = (Ch(1)3 , . . . ,Ch

(κ)
3).

Then, by a simple calculation, one has:

Pr
[∃i ∈ {1, . . . , κ} : {Ch(i)1 ,Ch

(i)
2 ,Ch

(i)
3 } = {1, 2, 3}] = 1 − (7/9)κ.

Conditioned on the existence of such index i, one parses the 3 forgeries cor-
responding to the fork branches to obtain

(
RSP

(i)
1 ,RSP

(i)
2 ,RSP

(i)
3

)
. They turn

out to be 3 valid responses with respect to 3 different challenges for the same
commitment CMT(i). Then, by using the knowledge extractor of the underlying
interactive argument system (see Lemma 3), one can efficiently extract a tuple
(j′, s′,u′, e′) ∈ [0, N − 1] × F

m
2 × F

k−�
2 × F

n
2 such that:

{
H · s′� = y�

j′ ∧ s′ ∈ B(m,ω);
(
u′ ‖ I2B(j′)

) · G ⊕ e′ = c∗ ∧ e′ ∈ B(n, t).

Since the given group signature scheme is correct, the equation
(
u′ ‖ I2B(j′)

) ·
G ⊕ e′ = c∗ implies that Open(skME,M

∗, Σ∗) = j′. On the other hand, we
have Open(skME,M

∗, Σ∗) = j∗, which leads to j′ = j∗. Therefore, it holds that
H̃ · s′� = H · s′� = y�

j∗ = ỹ�, and that s′ ∈ B(m,ω). In other words, s′ is a valid
solution to the challenge SD(m, r, ω) instance (H̃, ỹ).

Finally, the above analysis shows that, if A has success probability ε and
running time T in attacking the traceability of our group signature scheme, then
F has success probability at least 1/2

(
1/N − (2/3)κ

)(
1 − (7/9)κ

)
and running

time at most 32 · T · QH/(ε − 3−κ) + poly(λ,N). This concludes the proof of the
traceability property.

5 Implementation Results

This section presents our basic implementation results of the proposed code-
based group signature to demonstrate its feasibility. The testing platform was
a modern PC running at 3.5 GHz CPU with 16 GB RAM. We employed the
NTL library [NTL] and the gf2x library [GF2] for efficient polynomial operations
over a field of characteristic 2. To decode binary Goppa codes, the Paterson
algorithm [Pat75] was used in our implementation of the McEliece encryption.
We employed SHA-3 with various output sizes to realize several hash functions.
To achieve 80-bit security, we chose the parameters as follows:

A Provably Secure Group Signature Scheme from Code-Based Assumptions 281

– The McEliece parameters were set to (n, k, t) = (211, 1696, 32), as in [BS08].
– The parameters for Syndrome Decoding were set to (m, r, ω) = (2756,

550, 121) so that the distribution of y0, . . . ,yN−1 is 2−80-close to the uni-
form distribution over F

r
2 (by Lemma 1), and that the SD(m, r, ω) problem

is intractable with respect to the best known attacks. In particular, these
parameters ensure that:
1. The Information Set Decoding algorithm proposed in [BJMM12] has work

factor more than 280. (See also [Sen14, Slide 3] for an evaluation formula.)
2. The birthday attacks presented in [FS09] have work factors more than 280.

– The number of protocol repetitions κ was set to 140 to obtain soundness
1 − 2−80.

Table 2. Implementation results and sizes

Average
N PK size signature size Message KeyGen Sign Verify Open

24 1 B 0.045 0.034
625 KB 111KB 14.020 0.155

(=16) 1 GB 5.473 5.450

28 1 B 0.046 0.036
642 KB 114KB 14.128 0.155

(=256) 1 GB 5.459 5.450

212 1 B 0.059 0.044
906 KB 159KB 14.255 0.155

(=4,096) 1 GB 5.474 5.462

216 1 B 0.269 0.193
5.13 MB 876KB 16.302 0.161

(=65,536) 1 GB 5.704 5.630

220 1 B 3.734 2.605
72.8 MB 12.4 MB 52.084 0.155

(=1,048,576) 1 GB 9.196 8.055

224 1 B 58.535 40.801
1.16 GB 196MB 636.511 0.154

(=16,777,216) 1 GB 64.047 46.402

Unit for time: second

Table 2 shows our implementation results, together with the public key and
signature sizes with respect to various numbers of group users and different
message sizes. To reduce the signature size, in the underlying zero-knowledge
protocol, we sent a random seed instead of permutations when Ch = 2. Simi-
larly, we sent a random seed instead of the whole response RSP when Ch = 3.
Using this technique, the average signature sizes were reduced to about 159 KB
for 4, 096 users and 876 KB for 65, 536 users, respectively. Our public key and
signature sizes are linear in the number of group users N , but it does not come
to the front while N is less than 212 due to the size of parameters G and H.

Our implementation took about 0.27 and 0.20 seconds for 1 B message and
about 5.70 and 5.60 seconds for 1 GB message, respectively, to sign a message and

282 M.F. Ezerman et al.

to verify a generated signature for a group of 65, 536 users. In our experiments,
it takes about 5.40 seconds to hash 1 GB message and it leads to the differences
of signing and verifying times between 1 B and 1 GB messages.

As far as we know, the implementation results presented here are the first
ones for post-quantum group signatures. Our results, while not yielding a truly
practical scheme, would certainly help to bring post-quantum group signatures
one step closer to practice.

Acknowledgements. The authors would like to thank Jean-Pierre Tillich, Philippe
Gaborit, Ayoub Otmani, Nicolas Sendrier, Nico Döttling, and anonymous reviewers of
ASIACRYPT 2015 for helpful comments and discussions. The research was supported
by Research Grant TL-9014101684-01 and the Singapore Ministry of Education under
Research Grant MOE2013-T2-1-041.

References

[ABCG15] Alamélou, Q. Blazy, O., Cauchie, S., Gaborit, P.: A code-based group
signature scheme. Presented at WCC, April 2015

[ACJT00] Ateniese, G., Camenisch, J.L., Joye, M., Tsudik, G.: A practical and prov-
ably secure coalition-resistant group signature scheme. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 255–270. Springer, Heidelberg (2000)

[ACM11] El Yousfi Alaoui, S.M., Cayrel, P.-L., Mohammed, M.: Improved identity-
based identification and signature schemes using quasi-dyadic Goppa
codes. In: Kim, T., Adeli, H., Robles, R.J., Balitanas, M. (eds.) ISA 2011.
CCIS, vol. 200, pp. 146–155. Springer, Heidelberg (2011)

[BBS04] Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin,
M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg
(2004)

[BJMM12] Becker, A., Joux, A., May, A., Meurer, A.: Decoding random binary linear
codes in 2n/20: how 1 + 1 = 0 improves information set decoding. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol.
7237, pp. 520–536. Springer, Heidelberg (2012)

[BMvT78] Berlekamp, E., McEliece, R.J., van Tilborg, H.C.A.: On the inherent
intractability of certain coding problems. IEEE Trans. Inf. Theor. 24(3),
384–386 (1978)

[BMW03] Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signa-
tures: formal definitions, simplified requirements, and a construction based
on general assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 614–629. Springer, Heidelberg (2003)

[BS08] Biswas, B., Sendrier, N.: McEliece cryptosystem implementation: theory
and practice. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS,
vol. 5299, pp. 47–62. Springer, Heidelberg (2008)

[BS13] Bettaieb, S., Schrek, J.: Improved lattice-based threshold ring signature
scheme. In: Gaborit, P. (ed.) PQCrypto 2013. LNCS, vol. 7932, pp. 34–51.
Springer, Heidelberg (2013)

[BW06] Boyen, X., Waters, B.: Compact group signatures without random oracles.
In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 427–444.
Springer, Heidelberg (2006)

A Provably Secure Group Signature Scheme from Code-Based Assumptions 283

[CFS01] Courtois, N.T., Finiasz, M., Sendrier, N.: How to achieve a McEliece-based
digital signature scheme. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol.
2248, pp. 157–174. Springer, Heidelberg (2001)

[CGG07] Cayrel, P. L., Gaborit, P., Girault, M.: Identity-based identification and
signature schemes using correcting codes. In: WCC, pp. 69–78 (2007)

[CHKP10] Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to
delegate a lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 523–552. Springer, Heidelberg (2010)

[CM10] Cayrel, P.-L., Meziani, M.: Post-quantum cryptography: code-based signa-
tures. In: Kim, T., Adeli, H. (eds.) AST/UCMA/ISA/ACN 2010. LNCS,
vol. 6059, pp. 82–99. Springer, Heidelberg (2010)

[CNR12] Camenisch, J., Neven, G., Rückert, M.: Fully anonymous attribute tokens
from lattices. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol.
7485, pp. 57–75. Springer, Heidelberg (2012)

[CS97] Camenisch, J., Stadler, M.A.: Efficient group signature schemes for large
groups. In: Kaliski Jr, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp.
410–424. Springer, Heidelberg (1997)

[CS03] Camenisch, J., Shoup, V.: Practical verifiable encryption and decryption
of discrete logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol.
2729, pp. 126–144. Springer, Heidelberg (2003)

[CVA10] Cayrel, P.-L., Véron, P., El Yousfi Alaoui, S.M.: A zero-knowledge iden-
tification scheme based on the q-ary syndrome decoding problem. In:
Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544,
pp. 171–186. Springer, Heidelberg (2011)

[CvH91] Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.)
EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg
(1991)

[Dal08] Dallot, L.: Towards a concrete security proof of Courtois, Finiasz and
Sendrier signature scheme. In: Lucks, S., Sadeghi, A.-R., Wolf, C. (eds.)
WEWoRC 2007. LNCS, vol. 4945, pp. 65–77. Springer, Heidelberg (2008)

[DDMN12] Döttling, N., Dowsley, R., Müller-Quade, J., Nascimento, A.C.A.: A CCA2
secure variant of the McEliece cryptosystem. IEEE Trans. Inf. Theor.
58(10), 6672–6680 (2012)

[Döt14] Döttling, N.: Cryptography based on the hardness of decoding. Ph.D. the-
sis, Karlsruhe Institute of Technology (2014). https://crypto.iti.kit.edu/
fileadmin/User/Doettling/thesis.pdf

[ELL+15] Ezerman, M.F., Lee, H.T., Ling, S., Nguyen, K., Wang, H.: A provably
secure group signature scheme from code-based assumptions. In: IACR
Cryptography ePrint Archive, Report 2015/479 (2015)

[FGUO+13] Faugere, J.-C., Gauthier-Umana, V., Otmani, A., Perret, L., Tillich, J.-
P.: A distinguisher for high-rate McEliece cryptosystems. IEEE Trans. Inf.
Theor. 59(10), 6830–6844 (2013)

[Fin10] Finiasz, M.: Parallel-CFS. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.)
SAC 2010. LNCS, vol. 6544, pp. 159–170. Springer, Heidelberg (2011)

[FS86] Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identi-
fication and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986.
LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)

[FS96] Fischer, J.-B., Stern, J.: An efficient pseudo-random generator provably
as secure as syndrome decoding. In: Maurer, U.M. (ed.) EUROCRYPT
1996. LNCS, vol. 1070, pp. 245–255. Springer, Heidelberg (1996)

https://crypto.iti.kit.edu/fileadmin/User/Doettling/thesis.pdf
https://crypto.iti.kit.edu/fileadmin/User/Doettling/thesis.pdf

284 M.F. Ezerman et al.

[FS09] Finiasz, M., Sendrier, N.: Security bounds for the design of code-based
cryptosystems. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912,
pp. 88–105. Springer, Heidelberg (2009)

[GF2] gf2x library, ver. 1.1. https://gforge.inria.fr/projects/gf2x/
[GKPV10] Goldwasser, S., Kalai, Y., Peikert, C., Vaikuntanathan, V.: Robustness

of the learning with errors assumption. In: ICS, pp. 230–240. Tsinghua
University Press (2010)

[GKV10] Gordon, S.D., Katz, J., Vaikuntanathan, V.: A group signature scheme
from lattice assumptions. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS,
vol. 6477, pp. 395–412. Springer, Heidelberg (2010)

[GPV08] Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lat-
tices and new cryptographic constructions. In: STOC, pp. 197–206. ACM
(2008)

[Gro04] Groth, J.: Evaluating security of voting schemes in the universal compos-
ability framework. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS
2004. LNCS, vol. 3089, pp. 46–60. Springer, Heidelberg (2004)

[HMT13] Hu, R., Morozov, K., Takagi, T.: Proof of plaintext knowledge for code-
based public-key encryption revisited. In: ASIA CCS, pp. 535–540. ACM
(2013)

[KTX08] Kawachi, A., Tanaka, K., Xagawa, K.: Concurrently secure identification
schemes based on the worst-case hardness of lattice problems. In: Pieprzyk,
J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 372–389. Springer,
Heidelberg (2008)

[LLLS13] Laguillaumie, F., Langlois, A., Libert, B., Stehlé, D.: Lattice-based
group signatures with logarithmic signature size. In: Sako, K., Sarkar, P.
(eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 41–61. Springer,
Heidelberg (2013)

[LLNW14] Langlois, A., Ling, S., Nguyen, K., Wang, H.: Lattice-based group signa-
ture scheme with verifier-local revocation. In: Krawczyk, H. (ed.) PKC
2014. LNCS, vol. 8383, pp. 345–361. Springer, Heidelberg (2014)

[LNSW13] Ling, S., Nguyen, K., Stehlé, D., Wang, H.: Improved zero-knowledge
proofs of knowledge for the ISIS problem, and applications. In: Kuro-
sawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 107–124.
Springer, Heidelberg (2013)

[LNW15] Ling, S., Nguyen, K., Wang, H.: Group signatures from lattices: simpler,
tighter, shorter, ring-based. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020,
pp. 427–449. Springer, Heidelberg (2015)

[LPY12] Libert, B., Peters, T., Yung, M.: Scalable group signatures with revoca-
tion. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS,
vol. 7237, pp. 609–627. Springer, Heidelberg (2012)

[McE78] McEliece, R.J.: A public-key cryptosystem based on algebraic coding the-
ory. Deep Space Network Progress Report, vol. 44, pp. 114–116 (1978)

[MCG08] Melchor, C.A., Cayrel, P.-L., Gaborit, P.: A new efficient threshold ring
signature scheme based on coding theory. In: Buchmann, J., Ding, J. (eds.)
PQCrypto 2008. LNCS, vol. 5299, pp. 1–16. Springer, Heidelberg (2008)

[MCGL11] Melchor, C.A., Cayrel, P.-L., Gaborit, P., Laguillaumie, F.: A new efficient
threshold ring signature scheme based on coding theory. IEEE Trans. Inf.
Theor. 57(7), 4833–4842 (2011)

[MCK01] Ma, J.F., Chiam, T.C., Kot, A.C: A new efficient group signature scheme
based on linear codes. In: Networks, pp. 124–129. IEEE (2001)

https://gforge.inria.fr/projects/gf2x/

A Provably Secure Group Signature Scheme from Code-Based Assumptions 285

[Meu13] Meurer, A.: A coding-theoretic approach to cryptanalysis. Ph.D. thesis,
Ruhr University Bochum (2013). http://www.cits.rub.de/imperia/md/
content/diss.pdf

[MGS11] Melchor, C.A., Gaborit, P., Schrek, J.: A new zero-knowledge code based
identification scheme with reduced communication. CoRR, abs/1111.1644
(2011)

[MVR12] Mathew, K.P., Vasant, S., Rangan, C.P.: On provably secure code-
based signature and signcryption scheme. In: IACR Cryptography ePrint
Archive, Report 2012/585 (2012)

[MVVR12] Mathew, K.P., Vasant, S., Venkatesan, S., Pandu Rangan, C.: An efficient
IND-CCA2 secure variant of the Niederreiter encryption scheme in the
standard model. In: Susilo, W., Mu, Y., Seberry, J. (eds.) ACISP 2012.
LNCS, vol. 7372, pp. 166–179. Springer, Heidelberg (2012)

[Nie86] Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding the-
ory. Probl. Control Inf. Theor. 15(2), 159–166 (1986)

[NIKM08] Nojima, R., Imai, H., Kobara, K., Morozov, K.: Semantic security for
the McEliece cryptosystem without random oracles. Des. Codes Cryptogr.
49(1–3), 289–305 (2008)

[NTL] NTL: a library for doing number theory version 9.0.2. http://www.shoup.
net/ntl/

[NZZ15] Nguyen, P.Q., Zhang, J., Zhang, Z.: Simpler efficient group signatures
from lattices. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 401–426.
Springer, Heidelberg (2015)

[Pat75] Patterson, N.J.: The algebraic decoding of Goppa codes. IEEE Trans. Inf.
Theor. 21(2), 203–207 (1975)

[Per12] Persichetti, E.: On a CCA2-secure variant of McEliece in the standard
model. In: IACR Cryptography ePrint Archive, Report 2012/268 (2012)

[PV97] Pointcheval, D., Vaudenay, S.: On provable security for digital signature
algorithms. Technical report LIENS-96-17, Laboratoire d’Informatique de
Ecole Normale Superieure (1997)

[RST01] Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd,
C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer,
Heidelberg (2001)

[Sen14] Sendrier, N.: QC-MDPC-McEliece: a public-key code-based encryption
scheme based on quasi-cyclic moderate density parity check codes. In:
Workshop “Post-Quantum Cryptography: Recent Results and Trends”,
Fukuoka, Japan, November 2014

[Sho97] Shor, P.: Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509
(1997)

[Ste96] Stern, J.: A new paradigm for public key identification. IEEE Trans. Inf.
Theor. 42(6), 1757–1768 (1996)

[Vér96] Véron, P.: Improved identification schemes based on error-correcting
codes. Appl. Algebra Eng. Commun. Comput. 8(1), 57–69 (1996)

[YTM+14] Yang, G., Tan, C.H., Mu, Y., Susilo, W., Wong, D.S.: Identity based iden-
tification from algebraic coding theory. Theor. Comput. Sci. 520, 51–61
(2014)

http://www.cits.rub.de/imperia/md/content/diss.pdf
http://www.cits.rub.de/imperia/md/content/diss.pdf
http://www.shoup.net/ntl/
http://www.shoup.net/ntl/

Type 2 Structure-Preserving Signature
Schemes Revisited

Sanjit Chatterjee1(B) and Alfred Menezes2

1 Department of Computer Science and Automation,
Indian Institute of Science, Bengaluru, India

sanjit@csa.iisc.ernet.in
2 Department of Combinatorics & Optimization, University of Waterloo,

Waterloo, Canada
ajmeneze@uwaterloo.ca

Abstract. At CRYPTO 2014, Abe et al. presented generic-signer
structure-preserving signature schemes using Type 2 pairings. Accord-
ing to the authors, the proposed constructions are optimal with only two
group elements in each signature and just one verification equation. The
schemes beat the known lower bounds in the Type 3 setting and thereby
establish that the Type 2 setting permits construction of cryptographic
schemes with unique properties not achievable in Type 3.

In this paper we undertake a concrete analysis of the Abe et al. claims.
By properly accounting for the actual structure of the underlying groups
and subgroup membership testing of group elements in signatures, we
show that the schemes are not as efficient as claimed. We present nat-
ural Type 3 analogues of the Type 2 schemes, and show that the Type 3
schemes are superior to their Type 2 counterparts in every aspect. We
also formally establish that in the concrete mathematical structure of
asymmetric pairing, all Type 2 structure-preserving signature schemes
can be converted to the Type 3 setting without any penalty in security or
efficiency, and show that the converse is false. Furthermore, we prove that
the Type 2 setting does not allow one to circumvent the known lower
bound result for the Type 3 setting. Our analysis puts the optimality
claims for Type 2 structure-preserving signature in a concrete perspec-
tive and indicates an incompleteness in the definition of a generic bilinear
group in the Type 2 setting.

1 Introduction

The terms ‘Type 2’ and ‘Type 3’ pairings were introduced by Galbraith,
Paterson and Smart [16]. A bilinear map e : G1 × G2 −→ GT defined over
prime-order groups is called Type 2 or Type 3 depending on whether or not
an efficiently computable isomorphism from G2 to G1 is known. Their aptly
titled paper “Pairings for cryptographers” begins with the observation that many
research papers treat pairings as a “black box” and then develop schemes that
“may not be realizable in practice, or may not be as efficient as the authors
assume”. A similar concern constitutes the central focus of the current work.
c© International Association for Cryptologic Research 2015
T. Iwata and J.H. Cheon (Eds.): ASIACRYPT 2015, Part I, LNCS 9452, pp. 286–310, 2015.
DOI: 10.1007/978-3-662-48797-6 13

Type 2 Structure-Preserving Signature Schemes Revisited 287

The term ‘structure-preserving signature’ (SPS) was coined in 2010 by Abe
et al. [1] but such constructions existed even before (see, e.g., Groth [18]). These
pairing-based signature schemes have the property that verification keys, mes-
sages, and signatures are all group elements. Moreover, signatures are verified by
testing the equality of products of pairings of group elements; each such equality
is called a product-of-pairings equation (PPE).

Unlike a standard digital signature, the raison d’etre for an SPS is not as
a stand-alone scheme, but rather in the modular design of cryptographic pro-
tocols. They have been used in numerous cryptographic protocols (see [4] for a
list). One of the primary reasons for the popularity of SPS schemes in protocol
design is that they are fully compatible with the well-known Groth-Sahai (GS)
constructions of pairing-based non-interactive witness-indistinguishable (NIWI)
and non-interactive zero-knowledge (NIZK) proof systems [19].

In typical applications of structure-preserving signature schemes when used
in conjunction with, say, GS proofs, a party has a signed message and wishes to
convince a second party (the verifier) that it possesses the (valid) signed message
without revealing the message or the signature.1 Groth-Sahai NIWI and NIZK
proofs allow a party (the prover) to convince a second party (the verifier) that
it possesses a solution to a collection of PPEs. The complexity of verifying a GS
proof is heavily dependent on the number of group elements in the signature and
the number of PPEs in signature verification (see [11, Sect. 3.4]).

It is important to keep the above perspective in mind when investigating
optimal constructions of structure-preserving signatures. In other words, having
an optimal construction in terms of signature size (number of group elements)
and verification complexity (number of PPEs and pairings) is useful for a proto-
col designer who cares for the concrete efficiency of a protocol designed on top
of a structure-preserving signature. In contrast, if (at all) a structure-preserving
signature finds application as a stand-alone primitive, then the high cost of
pairing-based verifications can be easily mitigated by batching [10,15]. As can be
expected, we have witnessed significant research to design structure-preserving
signature schemes with the smallest possible number of group elements in a sig-
nature and with the smallest possible number of PPEs in signature verification
(and recently, with the smallest possible number of pairings [9]).

Previous Work. At CRYPTO 2011, Abe et al. [2] presented a strongly secure
SPS using Type 3 pairings. Verification has two PPEs, which was proven to be
optimal in the sense that any Type 3 structure-preserving signature scheme with
verification having a single PPE was shown to succumb to a random message
attack. Moreover, signatures are comprised of three group elements, which was
also shown to be optimal. In their lower bound results Abe et al. [2] used the
notion of a ‘generic signer’. A generic signer has access only to generic group

1 We use the example of GS because many applications of structure-preserving signa-
ture schemes are in conjunction with such non-interactive proof systems. However,
structure-preserving signatures are combined with other primitives too – see the
work of Hanser and Slamanig [20].

288 S. Chatterjee and A. Menezes

operations and the same notion was used in later works including [4,9] to prove
lower bound results.

At TCC 2014, Abe et al. [3] extended the aforementioned optimality results
to the Type 1 setting, thereby unifying the Type 1 and 3 settings. They also
proposed a selectively randomizable SPS which is optimal in terms of signature
size and verification complexity in both Type 1 and 3 settings.

At CRYPTO 2014, Abe et al. [4] continued their investigation of structure-
preserving signature schemes in the Type 2 setting. They presented a strongly
unforgeable structure-preserving signature scheme and a randomizable structure-
preserving signature scheme using Type 2 pairings. Both schemes are claimed
to have signatures that are comprised of only two group elements, have only
one PPE in signature verification, and were proven secure in the generic group
model for Type 2 pairings. The authors conclude that their schemes enjoy the
smallest signature (in terms of number of group elements) and fastest signa-
ture verification. Furthermore, they claimed that their constructions in Type 2
are optimal in terms of signature size, number of verification equations and verifi-
cation key (see Table 1 of [4]). In light of the aforementioned lower bounds on the
number of group elements in signatures and the number of PPEs in signature
verification for Type 3 structure-preserving signature schemes, they conclude
that the Type 2 schemes have no analogues in the Type 3 setting. According
to the authors [4]: “This is significant from a high level pairing-based cryptog-
raphy perspective, as it provides a concrete example of a property that can be
obtained in the Type 2 setting but not in the other settings.” This is contrary to
the arguments presented in [13] that any cryptographic protocol that employs
Type 2 pairings has a natural counterpart in the Type 3 setting that does not
suffer any loss in functionality, security or efficiency.

In a follow-up work, Barthe et al. [9] establish lower bounds on the num-
ber of pairings in the Type 2 setting. Using an automated tool they devise
structure-preserving signatures that are ‘strongly-optimal’ – having one verifi-
cation equation and minimum number of pairings in the Type 2 setting.

Concrete Differences Between Type 2 and Type 3 Pairings.
Abe et al. [4] use the notion of ‘generic algorithms’ in their results that establish
the claimed superiority of Type 2 setting for SPS. A bilinear group generator
G is abstractly defined which takes input a security parameter and returns the
descriptions of G1,G2,GT , a bilinear pairing e : G1 × G2 −→ GT along with an
efficiently-computable isomorphism ψ : G2 −→ G1. In their abstraction all the
relevant operations over G1,G2,GT such as subgroup membership, computing
group operations, and evaluating the maps ψ and e are treated as “black-box”.
Such an abstraction is useful provided it is able to capture all the essential prop-
erties of the concrete mathematical structure over which a Type 2 pairing is
defined.

Type 2 and Type 3 pairings are concretely defined over certain elliptic curve
groups [16]. As first pointed out in [16] and elaborated further in [13], each
setting is constrained by the underlying mathematical structure. For example,

Type 2 Structure-Preserving Signature Schemes Revisited 289

no efficient method is known for hashing onto G2 in Type 2, whereas the iso-
morphism ψ, even though it exists in a mathematical sense, is not known to be
efficiently computable in the Type 3 setting. Similarly, the structure of G2 in the
Type 2 setting requires the evaluation of two pairings in subgroup membership
tests for G2. All these are deemed to be necessary assumptions in the asym-
metric pairing setting that a protocol designer needs to keep in mind if s/he is
concerned with concrete instantiation of protocols in the real world.

Our Contributions. To critically evaluate the claimed advantages of Type 2
structure-preserving signature schemes, we deconstruct the Abe et al. propos-
als [4] in terms of the underlying concrete group structures. We show that the
analysis of the Type 2 generic-signer structure-preserving signature schemes in [4]
neglected to account for the concrete group structure and subgroup membership
testing of group elements in a signature, leading to erroneous conclusions. Incor-
porating these subgroup membership tests into the signature verification increases
the number of group elements in signatures and also increases the number of PPEs
in signature verification. Next we examine whether the pairing-based subgroup
membership tests can be discounted as verification equations when the signature
scheme is composed with the Groth-Sahai proof system. Recall that such a modu-
lar composition is the primary motivation for structure-preserving signatures. Our
analysis establishes that not all these pairing-based verifications can be dispensed
with when the signature scheme is composed with such a proof system.

Furthermore, since GS proofs in the Type 2 setting are more costly than in
the Type 3 setting, the Type 2 schemes are not as efficient as claimed in [4] in
the stand-alone setting and significantly slower when composed with GS proofs.
In support of this claim, two examples of Groth-Sahai NIWI proofs for verifying
that the prover possesses a solution (X,Y) to the equation e(A,X) · e(B, Y) = t
where e is a Type 2 or a Type 3 pairing are given in Appendix A. We present
natural Type 3 analogues of the Type 2 schemes, and show that the Type 3
schemes are superior to their Type 2 counterparts in all aspects.

Continuing the process of deconstruction, we formally show that all Type 2
generic-signer structure-preserving signature schemes can be converted to Type 3
without any penalty in security and efficiency, but not all Type 3 schemes have a
secure Type 2 counterpart. Further, we exhibit the impossibility of having a sin-
gle pairing-based verification equation in the Type 2 setting even when messages
are drawn from G2 and thereby put the lower bound results of [4] in the correct
perspective. Our results demonstrate that any Type 2 structure-preserving sig-
nature scheme is merely an inefficient implementation of a corresponding Type 3
scheme. The claim of superiority of the Type 2 setting over Type 3 stems from
an incomplete abstraction of the Type 2 setting in [4].

Organization. The remainder of the paper is organized as follows. In Sect. 2 we
summarize the salient differences between Type 2 and Type 3 pairings derived
from elliptic curves having even embedding degrees. In Sect. 3 we explain why,
contrary to the claims, the strongly unforgeable structure-preserving signature

290 S. Chatterjee and A. Menezes

scheme in [4] actually has signatures comprising of three group elements and
has two PPEs in signature verification. We present a natural analogue of the
scheme in the Type 3 setting, and show that it is more efficient than the Type 2
scheme. In Sect. 4, we present our Type 3 analogue of the Type 2 randomizable
structure-preserving signature scheme in [4], and show that the Type 3 scheme is
more efficient. In Sect. 5, we present our conversion framework for generic-signer
structure-preserving signature schemes from the Type 2 setting to the Type 3
setting, the separation between Types 2 and 3, and the impossibility of having
a single pairing-based verification equation in the Type 2 setting. We draw our
conclusions in Sect. 6. Two instances of Groth-Sahai NIWI proofs in the Type 2
and Type 3 settings are given in Appendix A.

2 Asymmetric Bilinear Pairings

Let Fq be a finite field of characteristic p ≥ 5, and let E be an ordinary elliptic
curve defined over Fq. Let n be a prime divisor of #E(Fq) satisfying gcd(n, q) = 1,
and let k (the embedding degree) be the smallest positive integer such that n | qk−
1. We will henceforth assume that k is even, since then some important speedups in
pairing computations are applicable [7]. Some prominent families of elliptic curves
with even embedding degree include the MNT [23], BN [8], KSS [22], and BLS [6]
curves.

Since k > 1, we have E[n] ⊆ E(Fqk) where E[n] denotes the n-torsion group
of E. Let G ∈ E(Fq)[n] be an Fq-rational point of order n, and define G1 = 〈G〉.
Let GT denote the order-n subgroup of the multiplicative subgroup of Fqk .

Type 3 Pairings. Following [16], we denote by D the CM discriminant of E
and set e = gcd(k, 6) if D = −3, e = gcd(k, 4) if D = −4, e = 2 if D < −4,
and d = k/e. For example, BN curves have k = 12, e = 6 and d = 2, whereas
MNT curves have k = 6, e = 2 and d = 3. Now, E has a unique degree-e twist Ẽ
defined over Fqd such that n | #Ẽ(Fqd) [21]. Let Ĩ ∈ Ẽ(Fqd) be a point of order n,
and let G̃3 = 〈Ĩ〉. Then there is a monomorphism φ : G̃3 −→ E(Fqk) such that
I = φ(Ĩ) �∈ G1. The group G3 = 〈I〉 is the Trace-0 subgroup of E[n], so named
because it consists of all points P ∈ E[n] for which Tr(P) =

∑k−1
i=0 πi(P) = ∞,

where π denotes the q-th power Frobenius. The monomorphism φ can be defined
so that φ : G̃3 −→ G3 can be efficiently computed in both directions; therefore
we can identify G̃3 and G3, and consequently the elements of G3 can be viewed
as having coordinates in Fqd (instead of in the larger field Fqk).

Non-degenerate bilinear pairings e3 : G1×G3 −→ GT are said to be of Type 3
because no efficiently-computable isomorphisms from G1 to G3 or from G3 to
G1 are known [16]. There are several Type 3 pairings, of which the most efficient
is Vercauteren’s optimal pairing [24].

Type 2 Pairings. Let H ∈ E[n] with H �∈ G1 and H �∈ G3. Then G2 = 〈H〉
is an order-n subgroup of E(Fqk) with G2 �= G1 and G2 �= G3. Non-degenerate

Type 2 Structure-Preserving Signature Schemes Revisited 291

bilinear pairings e2 : G1 ×G2 −→ GT are said to be of Type 2 because the map
Tr is an efficiently-computable isomorphism from G2 to G1; note, however, that
no efficiently-computable isomorphism from G1 to G2 is known. These pairings
have the property that hashing onto G2 is infeasible (other than by multiplying
H by a randomly selected integer).

The computation of e2 is efficiently reduced to the task of computing Type 3
pairing e3 [16]. Thus, the costs of computing e2 and e3 are approximately equal.
To see this, define the maps ψ : E[n] −→ G1, Q
→ 1

kTr(Q) and ρ : E[n] −→ G3,
Q
→ Q − ψ(Q). Recall that e2 and e3 are restrictions of the (reduced) Tate
pairing ê : E[n] × E[n] −→ GT . Hence, for all P ∈ G1, Q ∈ G2, we have

e2(P,Q) = ê(P,ψ(Q)) · ê(P, ρ(Q)) = ê(P, ρ(Q)) = e3(P, ρ(Q)). (1)

Remark 1. Note that the Type 2 setting is equipped with not only the map
ψ : G2 −→ G1 but also the map ρ : G2 −→ G3. The abstract definition of the
Type 2 setting, e.g., in [4], does not capture the latter. However, as we show in
the following sections, the map ρ plays a crucial role for a comparative study of
the protocols in the Type 2 and Type 3 settings.

Comparing the Performance of Type 2 and Type 3 Pairings. Since
points in G2 have coordinates in Fqk whereas points in G3 have coordinates in
the proper subfield Fqd , it would appear that the ratio of the bitlengths of points
in G2 and G3 is k/d. Similarly, the ratio of the costs of addition in G2 and G3

can be expected to be k2/d2 bit operations (using naive methods for extension
field arithmetic). These ratios are given in Table 3 of [16]. However, as observed
in [12], points in G2 have a shorter representation which we describe next. We
emphasize that this representation can be used for all order-n subgroups G2 of
E[n] different from G1 and G3.

Let H be an arbitrary point from E[n]\(G1 ∪G3), and set G2 = 〈H〉. Define
G = 1

kTr(H) so that the map ψ restricted to G2 is an efficiently-computable
isomorphism from G2 to G1 with ψ(H) = G. Finally, set I = H − G. Then
I ∈ G3 and the map ρ restricted to G2 is an efficiently-computable isomorphism
from G2 to G3 with ρ(H) = I.

Now, given a point Q ∈ E[n], one can efficiently determine the unique points
Q1 ∈ G1 and Q2 ∈ G3 such that Q = Q1 + Q2; namely, Q1 = ψ(Q) and Q2 =
ρ(Q) = Q−Q1. Writing D(Q) = (ψ(Q), ρ(Q)) and letting H2 ⊆ G1 ×G3 denote
the range of D applied to G2, we have an efficiently-computable isomorphism
D : G2 −→ H2 whose inverse is also efficiently computable. Hence, without loss
of generality, points Q ∈ G2 can be represented by a pair of points (Q1, Q2) with
Q1 ∈ G1 and Q2 ∈ G3. Note that arithmetic in G2 with this representation is
component-wise. Thus the ratio of the bitlengths of points in G2 and G3 is in fact
(d+1)/d, whereas the ratio of the costs of addition in G2 and G3 is (d2 +1)/d2.
We also have the following simple condition for determining membership of a
point Q ∈ E[n] in G2.

Lemma 1. Let Q ∈ E[n], and let Q1 = ψ(Q) and Q2 = ρ(Q). Then Q ∈ G2 if
and only if logG Q1 = logI Q2.

292 S. Chatterjee and A. Menezes

Proof. Suppose that Q ∈ G2, so Q = �H for some � ∈ [0, n − 1]. Then Q =
�(G + I) = �G + �I. Thus Q1 = �G and Q2 = �I, whence logG Q1 = logI Q2.
The converse is similar. �
Table 2 of [12] lists the costs of performing basic operations in G1, G2 and G3 for
a particular BN curve. The table confirms the expectation that basic operations
in G2 are only marginally more expensive than the operations in G3. One notable
exception is that testing membership in G2 is several times more expensive than
testing membership in G1 and G3. To see this, let us consider the case of BN
curves E defined over Fq where q and n = #E(Fq) are prime; recall that these
curves have embedding degree k = 12 and d = 2. Testing membership of a point
Q in G1 is very efficient, and simply entails verifying that Q has coordinates
in Fq and satisfies the equation that defines the curve, i.e., Q ∈ E(Fq). Testing
membership of a point Q in G3 involves a fast check that φ−1(Q) is in Ẽ(Fq2),
followed by an exponentiation to verify that nQ = ∞. Testing membership in G2

is more costly since the known methods require two pairing computations. If the
shorter representation (as elements of G1×G3) is used for G2 then, by Lemma 1,
membership of (Q1, Q2) in G2 can be determined by first checking that Q1 ∈ G1

and Q2 ∈ G3, and then verifying that e3(Q1, I) = e3(G,Q2) [14]. If the longer
representation (as elements of E(Fq12)) is used for G2, then membership of Q
in G2 can be determined by first checking that Q ∈ E(Fq12) and nQ = ∞, and
then verifying that e2(ψ(Q),H) = e2(G,Q).

Remark 2. Unlike G1 and G3, the group G2 does not have any special struc-
ture, and all the n − 1 order-n subgroups of E[n] other than G1 and G3 are
candidates for G2. Subgroup membership testing in G2 is costly because given
any arbitrary point Q, the task is to decide whether (i) Q ∈ E[n] and then
whether (ii) ψ(Q) and ρ(Q) have the same discrete log with respect to the gen-
erators G and I. Thus a pairing-based verification is assumed to be necessary
for a subgroup membership test for G2 (unless one knows some other efficient
method for testing equality of discrete logarithms in G1 and G2, e.g., by solving
the discrete logarithm problem in G1 or G2). As the primary focus of our work is
a concrete comparative study of structure-preserving signatures in Types 2 and
3, in the remainder of the paper we perform our analysis based on this reasonable
assumption. However, for the sake of completeness, in Remark 5 we comment
on why none of the superiority claims [4] of Type 2 structure-preserving signa-
tures over Type 3 will hold even in the hypothetical scenario where an efficient
subgroup membership testing in G2 that does not require pairing computation
is discovered.

A Case for Concrete Treatment. Protocol designers usually assume the exis-
tence of a bilinear group generator which given a security parameter generates
the relevant group descriptions and the bilinear map. This abstraction filters out
the interconnection between Type 2 and 3 settings. For example, the existing
generic definition of Type 2 pairings is oblivious to the fact that both Type 2

Type 2 Structure-Preserving Signature Schemes Revisited 293

and 3 pairings can be defined over the same elliptic curve and are restrictions of
the same function to different subgroups.

In contrast, comparative studies of Type 2 and Type 3 setting, as initiated
in [16] or in follow-up works such as [13], are in the concrete security setting.
In fact Galbraith et al. noted that the existence of a polynomial-time bilinear
group generator assumed in the asymptotic treatment is not always automatic
(see Sect. 2.1 of [16]), although it is not a problem in practice as one can efficiently
generate a bilinear group description for any concrete security level of interest.
For example, the BN family is optimized for the 128-bit security level and the
notion of asymptotic security cannot be used in a meaningful way when the
underlying pairing is derived from such family of curves.

In particular, when efficiency is being studied one cannot meaningfully distin-
guish between the Type 2 and Type 3 settings in the asymptotic sense. Clearly,
it’s the concrete efficiency (e.g., the number of group elements in a signature or
the number of PPEs and pairings in verification) that Abe et al. [4] and Barthe
et al. [9] are concerned with when they discuss the efficiency or optimality of
their constructions of structure-preserving signature in the Type 2 setting.

Thus the focus here, as in [13,16], is on concrete security (along with func-
tionality and efficiency) in the Type 2 and 3 settings. The Type 2 and 3 pairings
(i.e., e2 and e3) are defined as restrictions of the (reduced) Tate pairing. In the
performance comparison above we used the example of BN curves as they yield
the most efficient pairings at the 128-bit security level. However, we note that our
observations are without loss of generality and apply equally well to asymmetric
pairings derived from other prominent families of elliptic curves such as MNT,
KS and BLS. Readers are referred to Galbraith et al. [16] for a more general
comparative treatment of the Type 2 and 3 settings including a discussion on
the high cost of group membership testing for G2 in the Type 2 setting.2

In Sects. 3, 4 and 5, we use multiplicative notation for elements of G1, G2

and G3.

3 Strongly Unforgeable Structure-Preserving Signatures

We present the Type 2 strongly unforgeable SPS from [4] and our Type 3 ana-
logue of it. The Type 3 scheme was obtained by following the general recipe
given in [13] for converting a protocol from the Type 2 to the Type 3 setting.

3.1 Type 2 Strongly Unforgeable SPS [4]

1. Setup. Let e2 : G1 × G2 −→ GT be a Type 2 pairing where G1, G2 and GT

have order n; G, H are fixed generators of G1, G2, respectively.
2 Since this is how Type 2 and Type 3 pairings are currently defined, any concrete

efficiency/security treatment must be based on that existing knowledge. No compar-
ative study or claim of superiority of one setting over another will make sense based
on hitherto undiscovered mathematical structure. If there is a completely new way
to define Type 2 and Type 3 pairings in the future, then of course that will mandate
a new concrete analysis of all asymmetric pairing-based protocols.

294 S. Chatterjee and A. Menezes

2. Key generation. The secret key is v, w ∈R [1, n − 1]. The public key is (V,W)
where V = Gv and W = Gw.

3. Signature generation. To sign M ∈ G2, select t ∈R [1, n − 1] and compute
R = Ht−w and S = Mv/tH1/t. The signature on M is (R,S).

4. Signature verification. To verify a signed message (M, (R,S)), check that
(a) M,R, S ∈ G2; and (b) e2(Wψ(R), S) = e2(V,M) · e2(G,H).

In [4, Theorem 2], the Type 2 scheme is proven strongly secure3 against
generic forgers. Signatures are comprised of two G2 elements. Signature verifi-
cation requires three G2 membership tests and one PPE verification.

3.2 Type 3 Strongly Unforgeable SPS

1. Setup. Let e3 : G1 × G3 −→ GT be a Type 3 pairing where G1, G3 and GT

have order n; G, I are fixed generators of G1, G3, respectively.
2. Key generation. The secret key is v, w ∈R [1, n − 1]. The public key is (V,W)

where V = Gv and W = Gw.
3. Signature generation. To sign M ∈ G3, select t ∈R [1, n−1] and compute R1 =

Gt−w, R2 = It−w, and S = Mv/tI1/t. The signature on M is (R1, R2, S).
4. Signature verification. To verify a signed message (M, (R1, R2, S)), check that

(a) R1 ∈ G1 and M,R2, S ∈ G3;
(b) e3(R1, I) = e3(G,R2); and
(c) e3(WR1, S) = e3(V,M) · e3(G, I).

It is easy to verify correctness of the Type 3 signature scheme. The security
proof given in [4, Theorem 2] that the Type 2 scheme is strongly secure against
generic forgers also applies (with minimal changes) to the Type 3 signature
scheme. The reason that the proof carries over with minimal changes is that
we follow the strategy of [13] in the conversion. The Type 3 scheme is obtained
by first replacing all G2 elements by the corresponding H2 elements and then
discarding the redundant G1 elements that are not used either in the construction
or in security argument in the Type 2 setting.

Signatures for the Type 3 scheme are comprised of one G1 element and two
G3 elements. Signature verification requires one G1 membership test, three G3

membership tests, and two PPE verifications.
We note that the verification step 4(b) of the Type 3 scheme cannot be

omitted. Indeed, if this step is omitted then the scheme succumbs to the follow-
ing key-only attack: (1, (W−1G, 1, I)) is a valid forgery. Moreover, even if the
message M = 1 is disallowed, the scheme succumbs to the following random
message attack. The forger first obtains a signed message (M, (R1, R2, S)). It
then computes M ′ = MS−1 and R′

1 = R1V
−1, thereby obtaining a valid forgery

(M ′, (R′
1, R2, S)). We note that this attack is anticipated by the proof of The-

orem 2 in [2] which establishes that any Type 3 structure-preserving signature
scheme with a single verification equation is existentially forgeable under random
message attack.
3 A signature scheme is said to be secure if it is existentially unforgeable under chosen-

message attack. If, in addition, it is infeasible to find a new signature for a message
that has already been signed, then the signature scheme is said to be strongly secure.

Type 2 Structure-Preserving Signature Schemes Revisited 295

3.3 Comparisons

Signature Size. Signatures in the Type 2 scheme are comprised of two G2

elements or, equivalently, two G1 and two G3 elements. Thus, signatures in the
Type 3 scheme are smaller than signatures in the Type 2 scheme.

Signature Generation Cost. In signature generation, computing R = Ht−w

for the Type 2 scheme has exactly the same cost as computing R1 = Gt−w and
R2 = It−w for the Type 3 scheme. However, the computation of S = Mv/tH1/t

in the Type 2 scheme is significantly slower than in the Type 3 scheme since
the computation takes place in G2 in the former and in G3 in the latter. Thus,
signature generation is slower in the Type 2 scheme than in the Type 3 scheme.

Signature Verification Cost. Signature verification in the Type 2 scheme is
significantly slower than in the Type 3 scheme. This is because, as explained in
Sect. 2, the subgroup membership tests M,R, S ∈ G2 required in the Type 2
scheme each requires the verification of a PPE, whereas the subgroup mem-
bership tests R1 ∈ G1 and M,R2, S ∈ G3 in the Type 3 scheme are relatively
inexpensive. Thus, signature verification in the Type 2 scheme requires four PPE
verifications, whereas only two are needed in the Type 3 scheme. Note that the
high cost of PPE verifications can be mitigated by batching [10,15].

The costly subgroup membership tests in step 4(a) of the Type 2 scheme
cannot be omitted for two reasons. First, if these tests are omitted then the
security proof given in [4] is no longer applicable since the proof makes the
assumption that M,R, S ∈ G2. Second, and more importantly, there are attacks
on the scheme if the membership tests are omitted. For example, given a valid
signed message (M, (R,S)), one can easily4 select a second point R′ ∈ E[n] with
R′ �= R and ψ(R′) = ψ(R), thereby obtaining a second valid signed message
(M, (R′, S)). Similarly, given (M, (R,S)) one can obtain a second valid signed
message (M ′, (R,S)) or (M, (R,S′)) if membership tests for M or S are omitted.

Cost of Signature Verification with Groth-Sahai Proofs. SPS schemes
were not designed to be used as stand-alone primitives, but rather in conjunc-
tion with non-interactive proof systems like Groth-Sahai as explained in Sect. 1.
Suppose that Groth-Sahai proof verification always requires subgroup member-
ship tests for the group elements in commitment and proof as described in
Appendix A. Now the pertinent question is whether in Type 2 it is possible
to give a proof for a single PPE as opposed to two PPEs in Type 3. This may
give some advantage to the Type 2 scheme because the cost of a Groth-Sahai
proof depends heavily on the number of PPEs in signature verification.

Consider the Type 2 signature scheme of Abe et al. when used in conjunction
with a Groth-Sahai proof. The prover provides a commitment of (M, (R,S))

4 Given R ∈ G2, one computes R1 = ψ(R) and selects arbitrary R′
2 ∈ G3 with

R′
2 �= R · R−1

1 . Then R′ = R1 · R′
2 satisfies ψ(R′) = R1 and R′ �= R.

296 S. Chatterjee and A. Menezes

together with a proof that the committed values satisfy the following PPE:

e2(Wψ(R), S) = e2(V,M) · e2(G,H). (2)

In this proof system, the group elements G, H, V and W are known to the
verifier, whereas the variables are M,R, S ∈ G2. However, since Groth-Sahai
proofs do not have a mechanism for incorporating the evaluation of ψ(R), the
variables in (2) are actually M , ψ(R) and S. In other words, a Groth-Sahai proof
for (2) only convinces a verifier that the prover knows R1 ∈ G1 and M,S ∈ G2

that satisfy the following PPE:

e2(WR1, S) = e2(V,M) · e2(G,H). (3)

In particular, the proof does not establish that the prover knows R ∈ G2 such
that R1 = ψ(R). As we have shown above, unless the prover establishes that
s/he knows R ∈ G2 which has the same discrete logarithm to the base H ∈ G2

as R1 to the base G ∈ G1, the signature scheme is insecure, i.e., not (strongly)
unforgeable. Thus, as per the Groth-Sahai proof system, the prover needs to
convince the verifier that it possesses a solution (M,R1, R, S) to the following
collection of PPEs:

e2(WR1, S) = e2(V,M) · e2(G,H) (4)
e2(R1,H) = e2(G,R). (5)

When composed with Groth-Sahai proof systems, the verification now has two
PPEs (note that batching does not work in this scenario). This is in contrast to
the claim made in [4] that the Type 2 signature scheme of Sect. 3.1 has only one
PPE. Moreover, in addition to R,S, the prover has to commit to R1 in the Groth-
Sahai proof. So when composed with Groth-Sahai, signatures are comprised of
three group elements, i.e., R1 ∈ G1 must be included in the signature along with
R,S ∈ G2.

Recall that the Type 3 signature scheme in Sect. 3.2 also has two PPEs in
verification and signatures that are comprised of three group elements. Thus,
it might appear at first glance that signature verification for the Type 2 and
Type 3 schemes costs roughly the same when used in conjunction with Groth-
Sahai proofs. However, the Groth-Sahai proofs for the Type 2 setting are based
on hardness of the decisional linear (DLIN) problem in G2 [17], whereas Groth-
Sahai proofs for the Type 3 setting can be based on hardness of the decisional
Diffie-Hellman (DDH) problem in G1 and G3 [19]. Now, DLIN-based Groth-
Sahai proofs are significantly more costly than DDH-based Groth-Sahai proofs
in terms of commitment size, proof size, and the total number of pairing com-
putations in proof verification. For example, one can see that the DLIN-based
proof of knowledge of a solution (X,Y) to the equation e2(A,X) ·e2(B, Y) = t in
Appendix A.1 is significantly more costly than the DDH-based proof of knowl-
edge of a solution (X,Y) to the equation e3(A,X)·e3(B, Y) = t in Appendix A.2;
see also the performance estimates given in Sect. 3.4 of [11]. Thus, the Type 2
structure-preserving signature scheme will be significantly slower than its Type 3
counterpart when combined with Groth-Sahai proofs.

Type 2 Structure-Preserving Signature Schemes Revisited 297

Conclusions. The Type 3 strongly unforgeable structure-preserving signature
scheme is superior to its Type 2 counterpart with respect to signature size,
signature generation cost, and signature verification cost when the schemes are
used as stand-alone signature schemes and when used in conjunction with Groth-
Sahai proofs. Moreover, the schemes have similar security proofs against generic
forgers. Thus, the Type 2 scheme offers no advantages over the Type 3 scheme.

4 Randomizable Structure-Preserving Signatures

We present the Type 2 randomizable structure-preserving signature scheme from
[4] and our Type 3 analogue of it. The Type 3 scheme was obtained by following
the general recipe given in [13] for converting a protocol from the Type 2 setting
to the Type 3 setting.

4.1 Type 2 Randomizable SPS [4]

1. Setup. Let e2 : G1 × G2 −→ GT be a Type 2 pairing where G1, G2 and GT

have order n; G, H are fixed generators of G1, G2, respectively.
2. Key generation. The secret key is v, w ∈R [1, n − 1]. The public key is (V,W)

where V = Gv and W = Gw.
3. Signature generation. To sign M ∈ G2, select r ∈R [1, n − 1] and compute

R = Hr and S = MvHr2+w. The signature on M is (R,S).
4. Randomization. To randomize (M, (R,S)), select α ∈R [1, n−1] and compute

R′ = RHα and S′ = SR2αHα2
. The randomized signature on M is (R′, S′).

5. Signature verification. To verify a signed message (M, (R,S)), check that
(a) M,R, S ∈ G2; and (b) e2(G,S) = e2(V,M) · e2(ψ(R), R) · e2(W,H).

In [4, Theorem 1], the Type 2 scheme is proven secure against generic forgers.
Signatures are comprised of two G2 elements. Signature verification requires
three G2 membership tests and one PPE verification.

4.2 Type 3 Randomizable SPS

1. Setup. Let e3 : G1 × G3 −→ GT be a Type 3 pairing, where G1, G3 and GT

have order n; G, I are fixed generators of G1, G3, respectively.
2. Key generation. The secret key is v, w ∈R [1, n − 1]. The public key is (V,W)

where V = Gv and W = Gw.
3. Signature generation. To sign M ∈ G3, select r ∈R [1, n − 1] and compute

R1 = Gr, R2 = Ir and S = MvIr2+w. The signature on M is (R1, R2, S).
4. Randomization. To randomize (M, (R1, R2, S)), select α ∈R [1, n − 1] and

compute R′
1 = R1G

α, R′
2 = R2I

α, and S′ = SR2α
2 Iα2

. The randomized
signature on M is (R′

1, R
′
2, S

′).
5. Signature verification. To verify a signed message (M, (R1, R2, S)), check that

(a) R1 ∈ G1 and M,R2, S ∈ G3;
(b) e3(R1, I) = e3(G,R2); and

298 S. Chatterjee and A. Menezes

(c) e3(G,S) = e3(V,M) · e3(R1, R2) · e3(W, I).

It is easy to verify correctness of the Type 3 scheme. Following the strategy
outlined in Sect. 3.2, the security proof given in [4, Theorem 1] that the Type 2
scheme is secure against generic forgers can be modified (with minimal changes)
for the Type 3 signature scheme.

Signatures for the Type 3 scheme are comprised of one G1 element and two
G3 elements. Signature verification requires one G1 membership test, three G3

membership tests, and two PPE verifications.
We note that the verification equation in step 5(b) of the Type 3 scheme

cannot be omitted. Indeed, if this step is omitted then the scheme succumbs
to the following random message attack. The forger first obtains a signed mes-
sage (M, (R1, R2, S)). It then computes M ′ = MR2 and R′

1 = R1V
−1, thereby

obtaining a valid forgery (M ′, (R′
1, R2, S)). Indeed, this attack is anticipated by

the proof of Theorem 2 of [2].

4.3 Comparisons

The subgroup membership tests performed in step 5(a) of the Type 2 random-
izable structure-preserving signature scheme cannot be omitted. If they are,
then an attacker can proceed as follows. Having obtained a valid message-
signature pair (M, (R,S)), she computes M ′ = MR and R′ = RV −1. Note
that ρ(R′) = ρ(R). Then (M ′, (R′, S)) is a valid signed message since the term
e2(V,M) · e2(ψ(R), R) in step 5(b) of signature verification remains unchanged:

e2(V,M ′) · e2(ψ(R′), R′) = e2(V,MR) · e2(ψ(R) · ψ(V −1), R′)
= e2(V,M) · e2(V,R) · e2(ψ(R), R′) · e2(ψ(V), R′)−1

= e2(V,M) · e3(V, ρ(R)) · e3(ψ(R), ρ(R)) · e3(V, ρ(R))−1

= e2(V,M) · e2(ψ(R), R).

The comparisons made between the Type 2 and Type 3 strongly unforgeable
structure-preserving signature schemes in Sect. 3.3 are also valid for the Type 2
and Type 3 randomizable structure-preserving signature schemes in Sects. 4.1
and 4.2. Namely, the Type 3 scheme has smaller signatures, faster signature gen-
eration, faster signature verification in stand-alone applications (since it requires
the verification of two PPEs instead of four PPEs for the Type 2 scheme),
and faster signature verification when used with Groth-Sahai proofs (since both
schemes have two PPEs and three group elements in signatures, but the Type 3
proofs are DDH-based instead of DLIN-based).

As mentioned in [4], randomizable structure-preserving signature schemes
are useful in building anonymization protocols because the signature component
that is uniformly distributed and independent of the message can be revealed
without leaking any information about the message or the original signature
from which the randomized signature was derived. In the Type 2 randomizable
signature scheme of Sect. 4.1, the signature component R can be made public. In
that case, only the single PPE in step 5(b) of signature verification needs to be

Type 2 Structure-Preserving Signature Schemes Revisited 299

transformed when used in conjunction with Groth-Sahai proofs (and the PPE is
of the form described in AppendixA.1). Similarly, in the Type 3 randomizable
signature scheme of Sect. 4.2, the signature components R1 and R2 can be made
public. In that case, only the single PPE in step 5(c) of signature verification
needs to be transformed when used in conjunction with Groth-Sahai proofs (and
the PPE is of the form described in AppendixA.2).

In both situations, i.e., whether the message-independent signature compo-
nents are made public or not, the Type 3 scheme is superior in all respects to
its Type 2 counterpart.

4.4 Strongly-Optimal Signatures

In a recent paper, Barthe et al. [9] investigated the optimal number of pairings
for structure-preserving signature. The question is indeed well motivated as the
Groth-Sahai proof complexity also depends on the number of pairings in each
PPE. Barthe et al. work in the Type 2 setting as that supposedly allows a single
PPE based verification and explicitly disregard the PPEs in group membership
testing for G2 elements in the verification. This is justified by stating that such
tests “may require an amortizable (aka offline) pairing computation in practical
instantiation”. However, this is a not a valid assumption, particularly when the
main goal of [9] is to find a lower bound on the “concrete number of pairings”
and optimal construction meeting that bound. As we have already pointed out in
the context of the Abe et al. constructions [4], one cannot in general ignore the
pairing-based verification equations involved in G2 membership testing either
in the stand-alone setting or in conjunction with Groth-Sahai proofs. It is also
evident that these pairings cannot be treated as offline (and thereby, amortizable)
since they involve message and/or signature elements.

Assuming that signature verification involves a single PPE, Barthe et al. [9]
derive a lower bound of three pairings for CMA-secure construction and two
pairings for RMA security in the generic Type 2 setting. They use an automated
tool to obtain signature schemes matching these lower bounds which they term
as “strongly optimal”. However, when their abstract construction is translated
to the concrete Type 2 setting, then we see that the CMA-secure scheme actu-
ally requires six more additional pairings, none of which can be made offline.
Incidentally, following the general recipe of [13], they also propose a Type 3
counterpart that requires a total of five pairings of which only three are online.

More interesting is the case of their RMA-secure construction in the Type 2
setting which is claimed to have only two online pairings, whereas in concrete
terms six additional online pairings will be required. Now consider the scenario
when this signature scheme is composed with Groth-Sahai proofs. Given a sig-
nature (R,S) ∈ G

2
2 for M ∈ G2, their verification equation5 is of the form

e2(ψ(S) · W,H) = e(ψ(R) · V,M).

5 We correct a typo in [9] where R is used in the equation.

300 S. Chatterjee and A. Menezes

As the scheme is randomizable, the message-independent random group element
R in the signature can be revealed but not the signature element S ∈ G2. As we
already pointed out in the context of the Abe et al. strongly-unforgeable signa-
ture, Groth-Sahai proofs do not have any mechanism for incorporating the evalu-
ation of ψ(S). Hence, the signature now has an additional component ψ(S) ∈ G1

and verification involves one additional PPE:

e2(ψ(S),H) = e2(G,S).

Clearly, the signature contains three group elements and verification involves
four online pairings that need to be counted when the scheme is composed with
a Groth-Sahai proof.

5 A Closer Look at Type 2 Schemes

We first establish that all Type 2 generic-signer structure-preserving signature
schemes can be transformed to the Type 3 setting without any penalty in secu-
rity or efficiency.6 Next, we demonstrate the impossibility of having signature
verification with a single pairing-product equation in the Type 2 setting when
messages are drawn from G2. Finally, we show a separation between the Type 2
and Type 3 settings by proposing a Type 3 signature scheme that has no secure
Type 2 counterpart.

Based on the claimed optimality of their Type 2 schemes, Abe et al. [4]
asserted that the Type 2 setting is different from Type 3 setting as it “permits the
construction of cryptographic schemes with unique properties”. This, according
to [4], settles the open question in [13] of whether all Type 2 schemes can be
converted to the Type 3 setting with no efficiency loss. In contrast, the results of
this section formally establish that all Type 2 generic-signer structure-preserving
signature schemes are merely Type 3 schemes in disguise and cannot beat the
established lower bound results even when messages are drawn from G2.

5.1 Conversion from Type 2 to Type 3

Recall the definition of structure-preserving signatures (SPS) from [4, Defini-
tion 4]. Based on that definition, any generic-signer structure-preserving signa-
ture scheme with message space G2 can be described as follows. The conversion
framework with message space G1 is analogous.

SPS-T2

1. Setup. Let e2 : G1 × G2 −→ GT be a Type 2 pairing where G1, G2 and GT

have order n; G, H are fixed generators of G1, G2, respectively.
6 Our transformation uses the concrete (and only known) mathematical structure over

which Type 2 and Type 3 pairings are defined. This concreteness does not cause the
transformation to lose its generality since any Type 2 structure-preserving signature
scheme can be converted using our framework.

Type 2 Structure-Preserving Signature Schemes Revisited 301

2. Key generation. The secret key contains elements u1, u2, . . . , v1, v2, . . . ∈R

[1, n − 1]. The public key contains elements U1, U2, . . . ∈ G1, V1, V2, . . . ∈ G2,
where Ui = Gui and Vj = Hvj . Note that because the signer is generic, we can
assume without loss of generality that the signer knows the discrete logarithm
of the Ui and the Vj .

3. Signature generation. The message is M ∈ G2. However, unlike the public
key, we cannot in general assume that the signer knows the discrete log-
arithm of M = Hm. The signing algorithm is restricted to generic group
operations, so a generic signer can only construct signature elements of the
form Si = ψ(M)αiGβi ∈ G1 and Tj = MγjHδj where αi, βi, γj , δj ∈ [0, n − 1]
are independent of m. Finally, the algorithm outputs a signature containing
elements (S1, S2, . . .) ∈ G1 and (T1, T2, . . .) ∈ G2.

4. Signature verification. Given message M and a corresponding signature of
the form (S1, S2, . . . , T1, T2, . . .), the verifier does the following:
(a) check that S1, S2, . . . ∈ G1;
(b) check that M ∈ G2 and T1, T2, . . . ∈ G2;
(c) verify a collection of equations of the following form:

∏

i

∏

j

e2(Si, Tj)aqij ·
∏

i

∏

j

e2(Si, Vj)bqij ·
∏

j

e2(ψ(M), Tj)cqj

·
∏

j

e2(ψ(M), Vj)dqj ·
∏

i

e2(Si,M)eqi ·
∏

i

e2(Ui,M)fqi

·
∏

i

∏

j

e2(Ui, Tj)gqij · e2(ψ(M),M)hq = 1.

Note: We use the augmented set S = {S1, S2, . . .}∪ {ψ(T1), ψ(T2), . . .} in the
above verification equation. However, there is no need to consider the elements
ψ(Vj) separately because they can, without loss of generality, be included
in the public key. The constant exponents aqij , bqij , . . . from [0, n − 1] used
in the verification equations are specified as part of the signature verification
algorithm.

We now propose the following transformation to convert SPS-T2 from the
Type 2 to the Type 3 setting. The transformation uses the efficiently-computable
isomorphism D : G2 −→ H2 given by D(Q) = (ψ(Q), ρ(Q)) where H2 ⊆ G1×G3

(see Sect. 2). Our strategy is very simple: apply D so that all G2 elements in
SPS-T2 are replaced by their “shorter representation” as elements of H2. This
strategy, together with the observation that the computation of a Type 2 pairing
e2 is efficiently reduced to the task of computing a Type 3 pairing e3 (see Eq. (1)),
immediately yields the following Type 3 structure-preserving signature scheme.

SPS-T3

1. Setup. Let e3 : G1 × G3 −→ GT be a Type 3 pairing where G1, G3 and GT

have order n; G, I are fixed generators of G1, G3, respectively.

302 S. Chatterjee and A. Menezes

2. Key generation. For each element Vj = Hvj in SPS-T2, compute Vj1 = Gvj

and Vj2 = Ivj . The secret key contains elements u1, u2, . . . , v1, v2, . . . ∈R

[1, n − 1]. The public key contains elements U1, U2, . . . ∈ G1 (as in SPS-T2)
and (V11 , V12), (V21 , V22), . . . ∈ H2.

3. Signature generation. The message M = Hm in SPS-T2 can be written
as (M1,M2) = (Gm, Im) ∈ H2. Recall that using generic group opera-
tions, a generic signer in SPS-T2 can only construct Si = Mαi

1 Gβi and
Tj = MγjHδj where αi, βi, γj , δj are independent of m. Representing Tj

as an element of H2 we have Tj = (Tj1 , Tj2) = (Mγj

1 Gδj ,M
γj

2 Iδj) ∈ H2.
It is easy to see that a generic signer can compute the signature element
Tj ∈ G2 if and only if she can compute M

γj

1 Gδj ∈ G1 and M
γj

2 Iδj ∈ G3.
Using the above idea we can convert each signature element Tj ∈ G2 of
SPS-T2 to (Tj1 , Tj2) ∈ H2 and thereby obtain the corresponding signature
elements in SPS-T3. Finally, the algorithm outputs a signature of the form
S1, S2, . . . ∈ G1 and (T11 , T12), (T21 , T22), . . . ∈ H2.

4. Signature verification. Given a message (M1,M2) and corresponding signature
(S1, S2, . . . , (T11 , T12), (T21 , T22), . . .), the verifier does the following:
(a) check that S1, S2, . . . ∈ G1;
(b) check that (M1,M2), (T11 , T12), (T21 , T22), . . . ∈ H2;
(c) verify a set of equations of the following form:

∏

i

∏

j

e3(Si, Tj2)
aqij ·

∏

i

∏

j

e3(Si, Vj2)
bqij ·

∏

j

e3(M1, Tj2)
cqj

·
∏

j

e3(M1, Vj2)
dqj ·

∏

i

e3(Si,M2)eqi ·
∏

i

e3(Ui,M2)fqi

·
∏

i

∏

j

e3(Ui, Tj2)
gqij · e3(M1,M2)hq = 1.

Note: We use the augmented set S = {S1, S2, . . .} ∪ {T11 , T21 , . . .} in the
above verification equation. As already observed in the context of SPS-
T2, there is no need to consider the public key elements V11 , V21 , . . . sep-
arately and the constants in the exponent are specified in the verification
algorithm.

Correctness of SPS-T3 follows directly from the correctness of SPS-T2. More-
over, SPS-T3 maintains all the claimed benefits of SPS-T2. We now show that
SPS-T3 is as secure as its original Type 2 counterpart SPS-T2. For concreteness,
the security argument is sketched for existential unforgeability under chosen mes-
sage attack (EUF-CMA), but it is easy to see that the argument extends to other
standard notions of security such as EUF-RMA and strong unforgeability under
chosen/random message attack.

Claim 2. SPS-T2 is EUF-CMA-secure if and only if SPS-T3 is EUF-CMA-
secure.

Proof. In the framework of the conversion described above, we have consis-
tently replaced all G2 elements in SPS-T2 by the corresponding H2 elements

Type 2 Structure-Preserving Signature Schemes Revisited 303

to derive the corresponding algorithms of SPS-T3. Recall that D : G2 −→ H2

is an efficiently-computable isomorphism whose inverse is also efficiently com-
putable. Hence, given an EUF-CMA adversary against SPS-T3, one can easily
construct an EUF-CMA adversary against SPS-T2 and vice versa. �
Remark 3. SPS-T3 does not have any efficiency gain (or loss) compared to
SPS-T2. Further optimizations for SPS-T3 are usually possible by removing
some redundant group elements after a careful scrutiny of the construction and
its security argument as suggested in [13]. For example, the Type 3 schemes
described in Sects. 3 and 4 are optimized versions of their Type 2 counterparts
obtained by following the general recipe given above.

Remark 4. The subgroup membership tests described in step 4(b) of SPS-T2
and SPS-T3 involve pairing-based verification equations. We have observed in
Sects. 3 and 4 that avoiding subgroup membership tests can lead to a random
message attack in both the Type 2 and 3 settings. Apart from these pairing-
based verifications of subgroup membership, signature verification will involve
at least one more pairing product equation. See the proof of Theorem 3 for
further details.

Remark 5. Consider the following hypothetical situation. Working within the
mathematical structure of asymmetric pairings described in Sect. 2, someone in
the future discovers an efficient method for membership testing in G2 that does
not require a pairing computation. By Lemma 1, the pairing-based verifications
in the Type 3 setting for testing whether (Q1, Q2) ∈ H2 (see step 4(b) in SPS-T3)
will no longer be required. This simple observation together with Claim 2 imme-
diately shows that if there exists, say, an EUF-CMA secure structure-preserving
signature scheme in Type 2 with a single PPE-based verification, then there
exists an EUF-CMA secure structure-preserving signature scheme in Type 3 with
a single PPE-based verification. For example, if the membership testing in G2

in the verification step of the Type 2 randomizable SPS of [4] can be performed
without pairing then the verification in step 5(b) of the Type 3 randomizable
SPS of Sect. 4.2 can be replaced by a pairing-free check of (R1, R2) ∈ H2, lead-
ing to a single PPE-based verification in the Type 3 setting. Consequently, our
hypothetical situation will refute the Abe et al. assertion [4] that, unlike the
Type 2 setting, in the Type 3 setting no secure structure-preserving signature
scheme can have a single PPE-based verification. Further, when read in conjunc-
tion with Claim 2 and Remark 3, it is easy to see that none of the superiority
claims in [4] of a structure-preserving signature scheme in Type 2 over Type 3
will hold even in this hypothetical scenario.

5.2 Impossibility of Single PPE in Verification

In Theorem 2 of [2], Abe et al. showed that there is no Type 3 structure-
preserving signature scheme with a single pairing-based verification equation
that is existentially unforgeable under random message attack. The original
argument was for messages in G1, but can be easily extended when messages are

304 S. Chatterjee and A. Menezes

from G3. In Theorem 3 of [4], Abe et al. showed a similar impossibility result
for Type 2 structure-preserving signature schemes with messages in G1.

Assuming that the hypothetical scenario discussed in Remark 5 does not
occur7, one can generalize the above results to show that the impossibility holds
even when the messages are drawn from H2. As a corollary, one concludes that
there is no Type 2 SPS scheme with a single pairing-based verification equation
that is existentially unforgeable under random message attack.

Theorem 3. No structure-preserving signature scheme with a single pairing-
product equation based signature verification is secure in the sense of existential
unforgeability under random message attack.

Proof. The case of messages in G1 in the Type 3 setting (resp. the Type 2
setting) is proved in [2, Theorem 2] (resp. [4, Theorem 3]). The case of messages
in G3 in the Type 3 setting is analogous to the proof of Theorem 2 in [2]. The
case of the Type 1 setting was settled in [3, Theorem 4].

We now show the same impossibility for messages in G2. For ease of exposi-
tion, we will use the structure of SPS-T3, which we have already shown equivalent
to SPS-T2, and the message space H2 (recall that H2 is isomorphic to G2, and
that an element of H2 is comprised of a pair in G1×G3 the components of which
have the same discrete logarithm with respect to the fixed generators G and I).
Our argument closely follows the proof of Theorem 2 from [2] but needs to take
care of additional complications due to the structure of H2.

Recall the signature verification for SPS-T3 where in step 4(c) we described
the general form of a verification equation. Our claim is that having a single
verification equation of the form 4(c) and omitting the subgroup membership
test in step 4(b) lead to a random message attack. In other words, signature
verification must involve more than one PPEs (some of which may be in the
disguise of subgroup membership test for H2 i.e., G2). For simplicity, we assume
that the signature contains two elements of H2. Note that Abe et al. claim that
two group elements is the optimal signature size in Type 2 – see Table 1 of [4].
However, it is easy to see that our result holds for the more general case.

Consider a structure-preserving signature scheme for messages in H2 with
verification key containing group elements U1, U2, . . . ∈ G1, V1, V2, . . . ∈ G3, and
Z ∈ GT .8 For simplicity, in the following we consider two Ui’s and two Vi’s in the
verification key. A signature is of the form (S1, T1), (S2, T2) ∈ H2 and is verified

7 Note that Theorem 2 of [2] has to be interpreted modulo the (implicit) assumption
that the hypothetical scenario discussed in Remark 5 does not occur. Otherwise,
the Type 3 randomizable structure-preserving signature scheme in Sect. 4.2 with
message space G3 and its dual discussed later in Sect. 5.3 with message space G1

will contradict the impossibility result of [2].
8 Here, as in [2], we have relaxed the original definition of structure-preserving signa-

tures to allow the public verification key to contain an arbitrary element Z from GT

that appears in the verification equation. As already observed in [2], the relaxation
strengthens the impossibility result.

Type 2 Structure-Preserving Signature Schemes Revisited 305

by the following PPE:

e3(S1, T1)a11 · e3(S1, T2)a12 · e3(S2, T1)a21 · e3(S2, T2)a22

·e3(S1, V1)b11 · e3(S1, V2)b12 · e3(S2, V1)b21 · e3(S2, V2)b22

·e3(M1, T1)c11 · e3(M1, T2)c12 · e3(M1, V1)d11 · e3(M1, V2)d12

·e3(S1,M2)c21 · e3(S2,M2)c22 · e3(U1,M2)d21 · e3(U2,M2)d22

·e3(U1, T1)e11 · e3(U1, T2)e12 · e3(U2, T1)e21 · e3(U2, T2)e22

·e3(M1,M2)f = Z.

Note that terms such as e3(Ui, Vj) can be incorporated in Z ∈ GT without any
loss of generality.

Given a signature (S1, T1), (S2, T2) ∈ H2 on a random message (M1,M2) ∈
H2, we isolate S1, S2 and M2 in the verification equation to obtain:

A1 = T a11
1 T a12

2 V b11
1 V b12

2 A2 = T a21
1 T a22

2 V b21
1 V b22

2

B1 = Mf
1 Sc22

2 Ud21
1 Ud22

2 B2 = Mf
1 Sc21

1 Ud21
1 Ud22

2 .

Suppose that A1 �= M−c21
2 . We first rewrite the verification equation as

e3(S1,M2)c21 · e3(S1, A1) · e3(B1,M2) · Ẑ = Z.

Note that Ẑ does not contain the terms S1 and M2. If c21 = 0, then we set
S

′
1 = S1B

−1
1 and M

′
2 = M2A1. For the message (M1,M

′
2) we have a forged

signature (S
′
1, T1), (S2, T2).9 If c21 �= 0, then we set S

′
1 = S−1

1 B
−2/c21
1 and

M
′
2 = M−1

2 A
−2/c21
1 and the corresponding forgery is (S

′
1, T1), (S2, T2) for message

(M1,M
′
2).

A similar attack works when A2 �= M−c22
2 .

Suppose now that A1M
c21
2 = 1 and A2M

c22
2 = 1. So both S1 and S2 are

cancelled from the verification equation and henceforth we will only consider the
signature elements T1, T2. Now, the verification equation will be of the form

e3(M1, T1)c11 · e3(M1, T2)c12 · e3(M1, V1)d11 · e3(M1, V2)d12

·e3(U1,M2)d21 · e3(U2,M2)d22

·e3(U1, T1)e11 · e3(U1, T2)e12 · e3(U2, T1)e21 · e3(U2, T2)e22

·e3(M1,M2)f = Z.

Proceeding as before, we isolate M1 and M2 to obtain

A3 = T c11
1 T c12

2 V d11
1 V d12

2 B3 = Ud21
1 Ud22

2 .

Suppose A3 �= M−f
2 . The verification equation can be written as

e3(M1,M2)f · e3(M1, A3) · e3(B3,M2) · Z ′ = Z.

9 The attack can be prevented by checking whether (M1, M
′
2) and (S

′
1, T1) are elements

of H2 or not. However that requires two additional pairing-product equations in
signature verification.

306 S. Chatterjee and A. Menezes

Note that Z ′ does not contain the elements M1 and M2. If f = 0, then setting
M

′
1 = M1B

−1
3 and M

′
2 = M2A3 yields the forgery (T1, T2) for (M

′
1,M

′
2). If f �= 0,

then setting M
′
1 = M−1

1 B
−2/f
3 and M

′
2 = M−1

2 A
−2/f
3 yields the forgery (T1, T2)

for (M
′
1,M

′
2).

Suppose now that A3M
f
2 = 1; so the message element M1 is also cancelled

from the verification equation. Thus the signature verification is reduced to the
form:

e3(U1,M2)d21 · e3(U2,M2)d22 · e3(U1, T1)e11 · e3(U1, T2)e12

· e3(U2, T1)e21 · e3(U2, T2)e22 = Z.

Producing a forgery is now trivial. The adversary obtains signatures (T1, T2) and
(T

′
1, T

′
2) on random messages (M1,M2) and (M

′
1,M

′
2). From these the adversary

forms a signature (T 2
1 /T

′
1, T

2
2 /T

′
2) on a new message (M2

1 /M
′
1,M

2
2 /M

′
2). �

5.3 Separation

We construct a Type 3 randomizable structure-preserving signature scheme that
has no secure counterpart in the Type 2 setting. The Type 3 scheme is a “dual”
of the scheme presented in Sect. 4.2 in the sense that the former has V,W ∈ G1

and M,S ∈ G3, whereas the latter has V,W ∈ G3 and M,S ∈ G1.

1. Setup. Let e3 : G1 × G3 −→ GT be a Type 3 pairing, where G1, G3 and GT

have order n; G, I are fixed generators of G1, G3, respectively.
2. Key generation. The secret key is v, w ∈R [1, n − 1]. The public key is (V,W)

where V = Iv and W = Iw.
3. Signature generation. To sign M ∈ G1, select r ∈R [1, n − 1] and compute

R1 = Gr, R2 = Ir and S = MvGr2+w. The signature on M is (R1, R2, S).
4. Randomization. To randomize (M, (R1, R2, S)), select α ∈R [1, n − 1] and

compute R′
1 = R1G

α, R′
2 = R2I

α, and S′ = SR2α
1 Gα2

. The randomized
signature on M is (R′

1, R
′
2, S

′).
5. Signature verification. To verify a signed message (M, (R1, R2, S)), check that

(a) M,R1, S ∈ G1 and R2 ∈ G3;
(b) e3(R1, I) = e3(G,R2); and
(c) e3(S, I) = e3(M,V) · e3(R1, R2) · e3(G,W).

Because of the dual nature of the two schemes, the security proof against
generic forgers for the Type 3 scheme indicated in Sect. 4.2 carries over to the
Type 3 scheme described here when we swap the roles of the elements in G1

and G3.
However, the above Type 3 scheme does not have a secure and natural

counterpart in the Type 2 setting. The natural Type 2 variant has public
key V = Hv, W = Hw, signatures on a message M ∈ G1 comprising of
R = Hr and S = MvGr2+w, and verification that checks M,S ∈ G1, R ∈ G2

and e2(S,H) = e2(M,V) · e2(ψ(R), R) · e2(G,W). Now, given the public key

Type 2 Structure-Preserving Signature Schemes Revisited 307

(V,W) an adversary can mount the following no-message attack. Select arbi-
trary m, r ∈ [1, n − 1] and compute a forged signature on M = Gm as R = Hr

and S = ψ(V)mψ(W)Gr2
= MvGr2+w. While the absence of an efficiently-

computable isomorphism from G3 to G1 allows us to construct the secure Type 3
scheme described above, the availability of ψ in the Type 2 setting provides the
adversary with the means to mount the no-message attack.

5.4 Type 2: A Designer’s Artifact?

It is not the case that the Abe et al. [4] constructions and security arguments
have any intrinsic weakness. However, their efficiency analysis as well as the
optimality claims are incorrect. A similar observation holds for the optimality
claims made in the follow-up work of Barthe et al. [9] and in various lower bound
results of [4,9].10 The central problem in the analysis of protocols in the generic
Type 2 model and associated lower bound claims stems from an incomplete
abstraction of the underlying mathematical structure.

In prime-order asymmetric pairing groups, a protocol designer has the choice
of using elements from G1, G3 and H2 ⊆ G1 × G3. However, the definition of
a bilinear group generator in the generic Type 2 setting recognizes only G1, G2

and the isomorphism ψ : G2 −→ G1. See, for example, the definition of a bilinear
group generator G in Sect. 2.1 of [4]. The definition does not take into account
the fact that in concrete settings there may exist a group G3 and an efficiently-
computable isomorphism ρ : G2 −→ G3. This incompleteness in the abstract
definition has a significant bearing on the concrete analysis of pairing-based
cryptographic protocols as we demonstrate in this paper.11

More generally, a protocol designer desiring to use the map ψ in a crypto-
graphic protocol or the corresponding security argument unnecessarily restricts
herself to G1 and G2 (i.e. H2). This design artifact introduces (costly) redun-
dancy in the cryptographic scheme without any benefit in terms of functionality
or security. This observation was first made in [13] based on a careful analysis
of existing Type 2 schemes. However, [13] did not attempt a formal proof of
the assertion that Type 2 pairings are “merely less efficient implementation of
Type 3 pairings”. Motivated by the erroneous claim of superiority of Type 2 over
Type 3 in [4], in this paper we formally settle the relation between Type 2 and
Type 3 settings in the context of generic-signer structure-preserving signatures.
10 For example, Theorem 4 of [4] proves a lower bound of two group elements in the

verification key under the assumption of a single verification equation. The theorem
as stated is void because there is no secure structure-preserving signature with a
single verification equation.

11 Following the approach outlined here, we believe it is not difficult to devise a more
comprehensive definition of generic bilinear group generator in the Type 2 setting.
Such a definition should be able to better model the concrete properties of the
Type 2 setting, such as infeasibility of hashing into G2 and the cost of subgroup
membership testing in G2. However, we do not undertake such an exercise or, for
that matter, a better model of Type 2 structure-preserving signature, since we don’t
see any concrete motivation for using the Type 2 setting in the first place.

308 S. Chatterjee and A. Menezes

6 Concluding Remarks

We presented natural Type 3 analogues of the Type 2 strongly unforgeable and
randomizable structure-preserving signature schemes that were proposed in [4].
By properly accounting for subgroup membership testing of group elements in
signatures, we have shown that the Type 3 schemes are superior to their Type 2
counterparts when the signature schemes are used in a stand-alone setting, and
when used in conjunction with Groth-Sahai proofs. Finally, we show that all
generic-signer Type 2 schemes are merely Type 3 schemes in disguise and cannot
beat the existing lower bound results. On the other hand, not all Type 3 schemes
have a secure Type 2 counterpart. We conclude that the question posed in [13] of
the existence of a cryptographic protocol which necessarily has to be restricted
to Type 2 for implementation or security reasons is still open.

Acknowledgements. We thank Jens Groth and Francisco Rodŕıguez-Henŕıquez for
their comments on an earlier draft of the paper. We also thank the Asiacrypt reviewers
for their helpful feedback.

A Groth-Sahai Proofs

In this section, we use additive notation for elements of G1, G2 and G3.

A.1 DLIN-Based Proofs

Let A,B ∈ G1 and t ∈ GT . We present a Groth-Sahai non-interactive witness-
indistinguishable proof of knowledge of X,Y ∈ G2 such that e2(A,X)·e2(B, Y) =
t. The NIWI proof is derived from the general description in Sect. 4.2 of [17]. It
can also be used with Type 3 pairings. Security is based on the decisional linear
(DLIN) assumption.

1. Setup. Let e2 : G1 × G2 −→ GT be a Type 2 pairing.
2. Common reference string. Let H be a generator of G2. Let a, b, i, j ∈R [1, n−

1], and define U = aH, V = bH, I = iU , J = jV , K = (i+j)H. The common
reference string is (H,U, V, I, J,K).

3. Commitment. Select s11, s12, s13, s21, s22, s23 ∈R [1, n−1] and compute d11 =
s11U + s13I, d12 = s12V + s13J , d13 = X + s11H + s12H + s13K, d21 =
s21U + s23I, d22 = s22V + s23J and d23 = Y + s21H + s22H + s23K. The
commitment is d = (d11, d12, d13, d21, d22, d23).

4. Proof. Compute θ1 = s11A + s21B, θ2 = s12A + s22B and θ3 = s13A + s23B.
The proof is θ = (θ1, θ2, θ3).

5. Verification. Check that θ1, θ2, θ3 ∈ G1, d11, d12, d13, d21, d22, d23 ∈ G2, and

e2(A, d11) · e2(B, d21) = e2(θ1, U) · e2(θ3, I)
e2(A, d12) · e2(B, d22) = e2(θ2, V) · e2(θ3, J)
e2(A, d13) · e2(B, d23) = e2(θ1,H) · e2(θ2,H) · e2(θ3,K) · t.

Type 2 Structure-Preserving Signature Schemes Revisited 309

A.2 DDH-Based Proofs

Let A,B ∈ G1 and t ∈ GT . We present a Groth-Sahai non-interactive witness-
indistinguishable proof of knowledge of X,Y ∈ G3 such that e3(A,X)·e3(B, Y) =
t. The NIWI proof is derived from the general description in Sect. 4.1 of [17].
Security is based on the decisional Diffie-Hellman (DDH) assumption in G3.
Since the decisional Diffie-Hellman problem is easy in G2, the NIWI proof has
no counterpart with Type 2 pairings.

1. Setup. Let e3 : G1 × G3 −→ GT be a Type 3 pairing.
2. Common reference string. Let I be a generator of G3. Let a, b ∈R [1, n−1], and

define U = aI, V = bI, J = bU . The common reference string is (I, U, V, J).
3. Commitment. Select s11, s12, s21, s22 ∈R [1, n − 1] and compute d11 = s11I +

s12V , d12 = X + s11U + s12J , d21 = s21I + s22V and d22 = Y + s21U + s22J .
The commitment is d = (d11, d12, d21, d22).

4. Proof. Compute θ1 = s11A + s21B and θ2 = s12A + s22B. The proof is
θ = (θ1, θ2).

5. Verification. Check that θ1, θ2 ∈ G1, d11, d12, d21, d22 ∈ G3, and

e3(A, d11) · e3(B, d21) = e3(θ1, I) · e3(θ2, V)
e3(A, d12) · e3(B, d22) = e3(θ1, U) · e3(θ2, J) · t.

References

1. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-
preserving signatures and commitments to group elements. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010)

2. Abe, M., Groth, J., Haralambiev, K., Ohkubo, M.: Optimal structure-preserving
signatures in asymmetric bilinear groups. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 649–666. Springer, Heidelberg (2011)

3. Abe, M., Groth, J., Ohkubo, M., Tibouchi, M.: Unified, minimal and selectively
randomizable structure-preserving signatures. In: Lindell, Y. (ed.) TCC 2014.
LNCS, vol. 8349, pp. 688–712. Springer, Heidelberg (2014)

4. Abe, M., Groth, J., Ohkubo, M., Tibouchi, M.: Structure-preserving signatures
from type II pairings. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I.
LNCS, vol. 8616, pp. 390–407. Springer, Heidelberg (2014)

5. Abe, M., Groth, J., Ohkubo, M., Tibouchi, M.: Structure-preserving signatures
from type II pairings, full version of [4] (2014). http://eprint.iacr.org/2014/312

6. Barreto, P.S.L.M., Lynn, B., Scott, M.: Constructing elliptic curves with prescribed
embedding degrees. In: Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS,
vol. 2576, pp. 257–267. Springer, Heidelberg (2003)

7. Barreto, P., Lynn, B., Scott, M.: Efficient implementation of pairing-based cryp-
tosystems. J. Cryptol. 17, 321–334 (2004)

8. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In:
Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer,
Heidelberg (2006)

http://eprint.iacr.org/2014/312

310 S. Chatterjee and A. Menezes

9. Barthe, G., Fagerholm, E., Fiore, D., Scedrov, A., Schmidt, B., Tibouchi, M.:
Strongly-optimal structure preserving signatures from type II pairings: synthesis
and lower bounds. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 355–376.
Springer, Heidelberg (2015)

10. Bellare, M., Garay, J.A., Rabin, T.: Fast batch verification for modular exponenti-
ation and digital signatures. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol.
1403, pp. 236–250. Springer, Heidelberg (1998)

11. Chase, M.: Efficient non-interactive zero-knowledge proofs for privacy applications.
Ph.D. thesis, Brown University (2008)

12. Chatterjee, S., Hankerson, D., Knapp, E., Menezes, A.: Comparing two pairing-
based aggregate signature schemes. Des. Codes Cryptogr. 55, 141–167 (2010)

13. Chatterjee, S., Menezes, A.: On cryptographic protocols employing asymmetric
pairings - the role of ψ revisited. Discrete Appl. Math. 159, 1311–1322 (2011)

14. Chen, L., Cheng, Z., Smart, N.: Identity-based key agreement protocols from pair-
ings. Inte. J. Inf. Secur. 6, 213–241 (2007)

15. Ferrara, A.L., Green, M., Hohenberger, S., Pedersen, M.Ø.: Practical short signa-
ture batch verification. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp.
309–324. Springer, Heidelberg (2009)

16. Galbraith, S., Paterson, K., Smart, N.: Pairings for cryptographers. Discrete Appl.
Math. 156, 3113–3121 (2008)

17. Ghadafi, E., Smart, N.P., Warinschi, B.: Groth–Sahai proofs revisited. In: Nguyen,
P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 177–192. Springer,
Heidelberg (2010)

18. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant
size group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol.
4284, pp. 444–459. Springer, Heidelberg (2006)

19. Groth, J., Sahai, A.: Efficient noninteractive proof systems for bilinear groups.
SIAM J. Comput. 41, 1193–1232 (2012)

20. Hanser, C., Slamanig, D.: Structure-preserving signatures on equivalence classes
and their application to anonymous credentials. In: Sarkar, P., Iwata, T. (eds.)
ASIACRYPT 2014. LNCS, vol. 8873, pp. 491–511. Springer, Heidelberg (2014)

21. Hess, F., Smart, N., Vercauteren, F.: The eta pairing revisited. IEEE Trans. Inf.
Theor. 52, 4595–4602 (2006)

22. Kachisa, E.J., Schaefer, E.F., Scott, M.: Constructing Brezing-Weng pairing-
friendly elliptic curves using elements in the cyclotomic field. In: Galbraith, S.D.,
Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 126–135. Springer,
Heidelberg (2008)

23. Miyaji, A., Nakabayashi, M., Tanako, S.: New explicit condition of elliptic curve
trace for FR-reduction. IEICE Trans. Fundam. Electron. Commun. Comput. Sci.
E84–A, 1234–1243 (2001)

24. Vercauteren, F.: Optimal pairings. IEEE Trans. Inf. Theor. 56, 455–461 (2010)

Design Principles for HFEv- Based Multivariate
Signature Schemes

Albrecht Petzoldt1, Ming-Shing Chen2,3, Bo-Yin Yang2,
Chengdong Tao4, and Jintai Ding5,6(B)

1 Technische Universität Darmstadt, Darmstadt, Germany
2 Academia Sinica, Taipei, Taiwan

3 National Taiwan University, Taipei, Taiwan
4 South China University of Technology, Guangzhou, China

5 ChongQing University, Chongqing, China
6 University of Cincinnati, Cincinnati, OH, USA

jintai.ding@gmail.com

Abstract. The Hidden Field Equations (HFE) Cryptosystem as pro-
posed by Patarin is one of the best known and most studied multivariate
schemes. While the security of the basic scheme appeared to be very
weak, the HFEv- variant seems to be a good candidate for digital sig-
nature schemes on the basis of multivariate polynomials. However, the
currently existing scheme of this type, the QUARTZ signature scheme,
is hardly used in practice because of its poor efficiency. In this paper we
analyze recent results from Ding and Yang about the degree of regularity
of HFEv- systems and derive from them design principles for signature
schemes of the HFEv- type. Based on these results we propose the new
HFEv- based signature scheme Gui, which is more than 100 times faster
than QUARTZ and therefore highly comparable with classical signature
schemes such as RSA and ECDSA.

Keywords: Multivariate cryptography · Digital signatures · HFEv- ·
Design principles · Security · Performance

1 Introduction

Cryptographic techniques are an essential tool to guarantee the security of com-
munication in modern society. Today, the security of nearly all of the crypto-
graphic schemes used in practice is based on number theoretic problems such as
factoring large integers and solving discrete logarithms. The best known schemes
in this area are RSA [28], DSA [19] and ECC. However, schemes like these will
become insecure as soon as large enough quantum computers arrive. The rea-
son for this is Shor’s algorithm [29], which solves number theoretic problems
like integer factorization and discrete logarithms in polynomial time on a quan-
tum computer. Therefore, one needs alternatives to those classical public key
schemes, based on hard mathematical problems not affected by quantum com-
puter attacks.
c© International Association for Cryptologic Research 2015
T. Iwata and J.H. Cheon (Eds.): ASIACRYPT 2015, Part I, LNCS 9452, pp. 311–334, 2015.
DOI: 10.1007/978-3-662-48797-6 14

312 A. Petzoldt et al.

Besides lattice, code and hash based cryptosystems, multivariate cryptogra-
phy is one of the main candidates for this [1]. Multivariate schemes are in general
very fast and require only modest computational resources, which makes them
attractive for the use on low cost devices like smart cards and RFID chips [5,6].
Additionally, at least in the area of digital signatures, there exists a large number
of practical multivariate schemes [10,20].

In 2001, Patarin and Courtois proposed a multivariate signature scheme
called QUARTZ [24], which is based on the concept of HFEv-. While QUARTZ
produces very short signatures (128 bit), the signature generation process is very
slow (at the time about 11 seconds per signature [6]). The main reason for this
is the use of a high degree HFE polynomial (for QUARTZ this degree is given
by D = 129), which makes the inversion of the central map very costly.

At the time of the design of the QUARTZ scheme, very little was known
about the complexity of algebraic attacks against the HFE family of systems, in
particular, the HFEv- schemes. Therefore, the authors of QUARTZ could not
base their parameter choice on theoretical foundations. Recently, there has been
a fundamental breakthrough in terms of understanding the behavior of algebraic
attacks on the HFE family of systems [9,11], which gives an upper bound on the
degree of regularity of Gröbner basis attacks against those schemes.

In this paper, we review and analyze the results of Ding and Yang and derive
from these results design criteria for HFEv- based signature schemes. In par-
ticular we show that we can, by increasing the numbers a of Minus equations
and v of Vinegar variables, achieve adequate security even for low degree HFE
polynomials and that the upper bound on the degree of regularity given by Ding
and Yang is reasonably tight. Based on our analysis, we propose the new HFEv-
based signature scheme Gui1, which uses HFE polynomials of very low degree,
namely D ∈ {5, 9, 17}. This enables us to speed up the signature generation
process by a factor of more than 100 compared to QUARTZ, without weakening
the security of the scheme. By doing so, we create a highly practical multivariate
signature scheme, whose performance is comparable to that of classical signature
schemes such as RSA and ECDSA.

The rest of this paper is organized as follows. In Sect. 2 we give an introduc-
tion into the area of multivariate cryptography and in particular Big-Field signa-
ture schemes. Section 3 introduces the HFEv-signature scheme and the changes
made to this scheme by Patarin and Courtois when defining QUARTZ. Further-
more, in this section, we discuss the performance and the security of HFEv-
based signature schemes. In Sect. 4 we analyze the results of Ding and Yang on
the behaviour of direct attacks on HFEv- schemes by performing a large number
of experiments and present the design criteria we derive from that. Based on
these principles, we propose in Sect. 5 our new multivariate signature scheme
Gui. Section 6 gives details on the implementation of the scheme and compares
the efficiency of Gui with that of some standard signature schemes. Finally,
Sect. 7 concludes the paper.
1 We call our new scheme Gui, referring to earthenware pottery dating back to the

4000-year-old Longshan culture [31].

Design Principles for HFEv- Based Multivariate Signature Schemes 313

2 Multivariate Cryptography

The basic objects of multivariate cryptography are systems of multivariate
quadratic polynomials (see Eq. (1)).

p(1)(x1, . . . , xn) =
n∑

i=1

n∑

j=i

p
(1)
ij · xixj +

n∑

i=1

p
(1)
i · xi + p

(1)
0

p(2)(x1, . . . , xn) =
n∑

i=1

n∑

j=i

p
(2)
ij · xixj +

n∑

i=1

p
(2)
i · xi + p

(2)
0

...

p(m)(x1, . . . , xn) =
n∑

i=1

n∑

j=i

p
(m)
ij · xixj +

n∑

i=1

p
(m)
i · xi + p

(m)
0 (1)

The security of multivariate schemes is based on the

MQ Problem: Given m multivariate quadratic polynomials p(1)(x), . . . , p(m)(x)
in n variables x1, . . . , xn as shown in Eq. (1), find a vector x̄ = (x̄1, . . . , x̄n) such
that p(1)(x̄) = . . . = p(m)(x̄) = 0.

The MQ problem (for m ≈ n) is proven to be NP-hard even for quadratic
polynomials over the field GF(2) [15].

To build a public key cryptosystem based on the MQ problem, one starts
with an easily invertible quadratic map F : Fn → F

m (central map). To hide the
structure of F in the public key, one composes it with two invertible affine (or
linear) maps S : Fm → F

m and T : Fn → F
n. The public key is therefore given

by P = S ◦ F ◦ T . The private key consists of S, F and T and therefore allows
to invert the public key.

Note: Due to the above construction, the security of multivariate schemes is
not only based on the MQ-Problem but also on the EIP-Problem (“Extended
Isomorphism of Polynomials”) of finding the composition of P.

In this paper we concentrate on multivariate signature schemes of the Big-
Field family. For this type of multivariate schemes, the map F is a specially
chosen easily invertible map over a degree n extension field E of F. One uses an
isomorphism Φ : Fn → E to transform F into a quadratic map

F̄ = Φ−1 ◦ F ◦ Φ (2)

from F
n to itself. The public key of the scheme is therefore given by

P = S ◦ F̄ ◦ T = S ◦ Φ−1 ◦ F ◦ Φ ◦ T : Fn → F
n. (3)

The standard signature generation and verification process of a multivariate
BigField scheme works as shown in Fig. 1.

314 A. Petzoldt et al.

Fig. 1. General workflow of multivariate BigField signature schemes

Signature generation: To generate a signature for a message h ∈ F
n, one com-

putes recursively x = S−1(h) ∈ F
n, X = Φ(x) ∈ E, Y = F−1(X) ∈ E,

y = Φ−1(Y) ∈ F
n and z = T −1(y). The signature of the message h is z ∈ F

n.

Verification: To check the authenticity of a signature z ∈ F
n, one simply com-

putes h′ = P(z) ∈ F
n. If h′ = h holds, the signature is accepted, otherwise

rejected.
A good overview on existing multivariate schemes can be found in [8].
Two widely used variations of multivariate BigField signature schemes are

the Minus variation and the use of additional (Vinegar) variables.

Minus variation: The idea of this variation is to remove a small number of
equations from the public key. The Minus-Variation was first used in schemes
like SFLASH [25] to prevent Patarins Linearization Equations attack [26] against
the Matsumoto-Imai cryptosystem [23].

Vinegar variation: In this variation one parametrizes the central map F by
adding (a small set of) additional (Vinegar) variables. In the context of multi-
variate BigField signature schemes, the Vinegar variation can be used to increase
the security of the scheme against direct and rank attacks.

3 The HFEv- Signature Scheme

In this section we introduce the HFEv- signature scheme, which is the basis of
both QUARTZ and our new signature scheme Gui (see Sect. 5).

Let F = Fq be a finite field with q elements and E be a degree n extension
field of F. Furthermore, we choose integers D, a and v. Let Φ be the canonical
isomorphism between F

n and E, i.e.

Φ(x1, . . . , xn) =
n∑

i=1

xi · Xi−1. (4)

Design Principles for HFEv- Based Multivariate Signature Schemes 315

The central map F of the HFEv- scheme is a map from E×F
v to E of the form

F(X) =
qi+qj≤D∑

0≤i≤j

αij · Xqi+qj

+
qi≤D∑

i=0

βi(v1, . . . , vv) · Xqi

+ γ(v1, . . . , vv), (5)

with αij ∈ E, βi : F
v → E being linear and γ : F

v → E being a quadratic
function.

Due to the special form of F , the map F̄ = Φ−1 ◦ F ◦ Φ is a quadratic
polynomial map from F

n+v to F
n. To hide the structure of F̄ in the public

key, one combines it with two affine (or linear) maps S : F
n → F

n−a and
T : Fn+v → F

n+v of maximal rank.
The public key of the scheme is the composed map P = S ◦ F̄ ◦ T : Fn+v →

F
n−a, the private key consists of S, F and T .

Signature generation: To generate a signature for a message h ∈ F
n−a, the signer

performs the following three steps.

1. Compute a preimage x ∈ F
n of h under the affine map S.

2. Lift x to the extension field E (using the isomorphism Φ). Denote the result
by X.
Choose random values for the vinegar variables v1, . . . , vv ∈ F and compute
FV = F(v1, . . . , vv).
Solve the univariate polynomial equation FV (Y) = X by Berlekamp’s algo-
rithm and compute y′ = Φ−1(Y) ∈ F

n.
Set y = (y′||v1|| . . . ||vv).

3. Compute the signature z ∈ F
n+v by z = T −1(y).

Signature verification: To check the authenticity of a signature z ∈ F
n+v, one

simply computes h′ = P(z) ∈ F
n−a. If h′ = h holds, the signature is accepted,

otherwise rejected.

3.1 QUARTZ

In 2001, Patarin and Courtois proposed the multivariate signature scheme
QUARTZ [24], which is based on the concept of HFEv-. Indeed, the public
and private maps of QUARTZ are HFEv- maps with the parameters

(F, n,D, a, v) = (GF(2), 103, 129, 3, 4).

Due to this choice, the public key P of QUARTZ is a quadratic map from F
107

to F
100. The public key size of QUARTZ is 71 kB, the private key size 3 kB.

The input length of QUARTZ is only n−a = 100 bit. Therefore, it is possible
for an attacker to use a birthday attack to find two different messages m1 and

316 A. Petzoldt et al.

m2 which map to the same input value h ∈ F
100 and therefore to the same

signature.
To prevent this kind of attack, Patarin and Courtois developed a special

procedure for the signature generation process of QUARTZ. Roughly spoken, one
computes four HFEv- signatures (for the messages h, H(h||0x00), H(h||0x01)
and H(h||0x02)) and combines them to a single 128 bit signature of the message
h. Analogously, during the signature verification process, one has to use the
public key P four times.

3.2 Performance

The most costly step during the signature generation process of HFEv- based
signature schemes such as QUARTZ is the inversion of the univariate polyno-
mial equation FV over the extension field E. This step is usually performed by
Berlekamp’s algorithm, whose complexity can be estimated by [27]

O(D3 + n · D2). (6)

As can be seen from Eq. (6), the complexity of inverting FV and therefore of
the signature generation process of HFEv- based schemes is mainly determined
by the degree D of the HFE polynomial. Due to the high degree of the HFE
polynomial used in QUARTZ, the inversion of FV is very costly. Furthermore, we
have to perform this step four times during the signature generation of QUARTZ.
Additionally, the design of QUARTZ requires the central equation FV (Y) = X
to have a unique root. Since, after choosing random values for Minus equations
and Vinegar variables, FV can be seen as a random function, this happens with
probability about 1

e . Altogether, we therefore have to run Berlekamp’s algorithm
about 4 ·e times during the signature generation process of QUARTZ. Thus, the
QUARTZ signature scheme is rather slow and it takes about 11 seconds to
generate a signature [6].

3.3 Security of HFEv- Based Schemes

The most important attacks against signature schemes of the HFEv- type are

– the MinRank attack and
– direct algebraic attacks.

The MinRank Attack on HFE. In this paragraph we describe the attack of
Kipnis and Shamir [21] against the HFE cryptosystem. For the simplicity of our
description we restrict ourselves to homogeneous maps F and P.

The key idea of the attack is to lift the maps S, T and P to functions S�,
T � and P� over the extension field E. Since S and T are linear maps, S� and
T � have the form

S�(X) =
n−1∑

i=1

si · Xqi

and T �(X) =
n−1∑

i=1

ti · Xqi

, (7)

Design Principles for HFEv- Based Multivariate Signature Schemes 317

with coefficients si and ti ∈ E. The function P� can be expressed as

P�(X) =
n−1∑

i=0

n−1∑

j=0

p�
ijX

qi+qj

= X · P � · XT , (8)

where P � = [p�
ij] andX = (Xq0

,Xq1
, . . . , Xqn−1

) . Due to the relation P�(X) =
S� ◦ F ◦ T �(X) we get S� −1 ◦ P�(X) = F ◦ T �(X) and

P̃ =
n−1∑

k=0

sk · G�k = W · F · WT (9)

with g� k
ij = (p�

i−k mod n,j−k mod n)qk

, wij = sqi

j−i mod n and F being the n × n
matrix representing the central map F . Note that, due to the special structure
of F , the only non zero entries in the matrix F are located in the upper left r×r
submatrix (r = �logq D − 1� + 1).

Therefore, the rank of the matrix W · F · WT is less or equal to r, which
means that we can determine the coefficients sk of Eq. (9) by solving an instance
of the MinRank problem.

In the setting of HFEv-, the rank of this matrix is, for odd characteristic,
bounded from above by [11]

Rank(P̃) ≤ r + a + v. (10)

Under the assumption that the vinegar maps βi look like random functions, we
find that this bound is tight.

For fields of even characteristic we eventually have to decrease this rank by
1, since over those fields, the matrix P̃ is always of even rank. The complexity of
the MinRank attack against HFEv- based schemes is therefore given roughly by

ComplexityMinRank = O(qn·(r+v+a−1) · (n − a)3). (11)

In the paper [18] the authors showed that, due to the symmetry of the solutions
of the equations for the MinRank problem in the Kipnis-Shamir attack and the
fact that we work over a large extension field, the complexity of the Kipnis-
Shamir attack is actually exponential in terms of the number of variables in
the HFE system using known MinRank methods, and not polynomial as was
originally stated. Though the theoretical argument underlying this observation
does not apply directly to the generic MinRank problem, it demonstrates that
the Kipnis-Shamir attack, for which one needs to solve a non-generic MinRank
problem, has a much higher complexity than originally estimated. We therefore
conclude, that the complexity of a MinRank attack against an HFEv- based
signature scheme is, in practice, higher than the above estimation.

There is one other formulation of the MinRank problem. According to [13],
solving a MinRank problem with n×n matrices to a rank of r′ involves computing
a Gröbner basis with degree of regularity r′(n − r′) + 1, where the rank is given
by r′ = r + v + a − 1 . When we raise the rank r′ (by increasing a + v), this
means that the attack complexity of the MinRank attack is much higher than
that of a direct attack.

318 A. Petzoldt et al.

Direct Attacks. For the HFE family of schemes, the direct attack, namely the
attack by directly solving the public equation P(x) = h by an algorithm like XL
or a Gröbner basis method such as F4 [12] is a major concern due to which hap-
pened to HFE challenge 1. At the time of the design of QUARTZ, very little was
known theoretically about the complexity of algebraic attacks against the HFE
family of systems, in particular, the HFEv- schemes. The authors of QUARTZ
did not actually give an explanation for their selection of the parameters and
therefore the parameter selection of their scheme was not supported by theoret-
ical results. We need to point out that, as has been shown by experiments [22],
the public systems of HFEv- based schemes can be solved easier than random
systems.

Recently, there has been a fundamental breakthrough in terms of under-
standing how algebraic attacks on the HFE family of systems work [9,11]. In
particular, we now have a solid insight what happens in the case of HFEv-.
An upper bound for the degree of regularity of a Gröbner Basis attack against
HFEv- systems is given by [11]

dreg ≤
{

(q−1)·(r−1+a+v)
2 + 2 q even and r + a odd

(q−1)·(r+a+v)
2 + 2 otherwise

, (12)

where r is given by r = �logq(D − 1)� + 1.

Note: In [7] Courtois et al. estimated the complexity of a direct attack on
QUARTZ by 274 operations. However, they underestimated the degree of regu-
larity of solving an HFEv- system drastically.

4 Design Principles for HFEv- Based Signature Schemes

The theoretical breakthrough mentioned in the previous subsection indicates
that it might be possible to substantially improve the original design of QUARTZ
without reducing the security of the scheme, if we adapt the number of Minus
equations and Vinegar variables in an appropriate way. By reducing the degree
of the central HFEv- polynomial we can speed up the operations of Berlekamp’s
algorithm and therefore the signature generation process of the HFEv- scheme.
In this section, we analyze by experiments the behavior of direct attacks against
HFEv- schemes and the tightness of the upper bound given by Eq. (12). From our
results we derive design principles for the construction of HFEv- based signature
schemes, which we later apply to our new signature scheme Gui presented in the
next section.

In particular, we answer in this section the following questions.

1. Equation (12) shows a tradeoff between the degree D of the HFE polynomial
and the sum a+v of minus equations and vinegar variables. This would enable
us to use low degree HFE polynomials in the construction of HFEv- based
signature schemes and therefore to improve their performance drastically. Can
we verify this by experiments?

Design Principles for HFEv- Based Multivariate Signature Schemes 319

2. Is the ratio between a and v important for the security of the scheme?
3. Is the upper bound on the degree of regularity given by equation (12) rea-

sonably tight?
4. Does it help to guess some variables before applying a Gröbner basis algorithm

to the system P (Hybrid Approach)?

To answer these questions, we performed a large number of experiments with the
F4 algorithm integrated in MAGMA. As we found, adding the field equations
{x2

i −xi} to the system makes a huge difference regarding the degree of regularity
and the running time of the attack.

4.1 Can We Use HFE Polynomials of Low Degree D?

To improve the efficiency of the signature generation process we are interested
in decreasing the degree of the HFE polynomial in use as far as possible without
weakening the security of the scheme. Doing so will reduce the complexity of
Berlekamp’s algorithm (see Eq. (6)) and therefore improve the performance of
the scheme significantly. So, the first question we have to answer in this context
is the following.

How should we choose the degree D of the HFE polynomial in order to
obtain secure and efficient HFEv- based schemes?

– D = 2, 3: Such small values of D would lead to matrices F of rank 2. We
therefore do not think that these schemes can be secure.

– D = 5: Although the plain HFE scheme with an HFE polynomial of degree 5
(r = 3) is highly insecure, we believe that the modified HFEv- scheme provides
adequate security.

– D = 9, 17: Other promising values for the degree of the HFE polynomial in
use are D = 9 and D = 17, which lead to values of r of 4 and 5 respectively.

In the first row of experiments we analyzed the behavior of direct attacks against
HFEv- systems over GF(2) with different values of D. For this, we fixed the
number of equations in the system. For different values of D, a and v we created
HFEv- systems and fixed a + v variables randomly to get determined systems.
After adding the field equations {x2

i −xi} we solved the systems using MAGMA’s
implementation of the F4 algorithm. For each parameter set we performed 10
experiments.

Table 1 shows the results of our experiments with determined HFEv- systems
of 20 and 25 equations respectively. The degree of regularity of a random system
of this size is 5 and 6 respectively. The table shows, for different values of D,
the minimal values of a and v needed to reach this degree. Although, because of
memory restrictions, we could not perform our experiments for larger values of
n, we expect that similar results hold for arbitrary numbers of equations.

320 A. Petzoldt et al.

Table 1. Experiments with F4 on determined HFEv- systems with 20 and 25 equations

D r 20 equations 25 equations

Minimal a,v dreg Time (s) Memory (MB) Minimal a, v dreg Time (s) Memory(MB)

129 8 a = v = 0 5 2.74 109.7 a = v = 1 6 276.2 7,621

65 7 a = 0, v = 1 5 2.73 110.2 a = v = 2 6 276.0 7,681

33 6 a = v = 1 5 2.75 109.7 a = 2, v = 3 6 273.4 7,762

17 5 a = 1, v = 2 5 2.72 109.7 a = v = 3 6 275.7 7,751

9 4 a = v = 2 5 2.73 109.9 a = 3, v = 4 6 276.4 7,693

5 3 a = 2, v = 3 5 2.73 109.6 a = v = 4 6 272.8 7,680

Random system 5 2.85 110.8 6 286.3 7,683

From the above experiments we obtain the following important observation

Let d be the degree of regularity of a direct attack against an HFEv-
system with parameters D1, n, a1, v1 and let D2 < D1.
By choosing large enough values for a2 and v2, we can obtain an HFEv-
scheme with parameters D2, n, a2, v2, such that the degree of regularity
of a direct attack against this system is d, too.

From this observation we derive our first design principle for the construction of
HFEv- based signature schemes.

Design Principle 1:
For the construction of HFEv- based signature schemes we use for

efficiency reasons HFE polynomials of small degree D, namely
D ∈ {5, 9, 17}. We then increase the numbers of Minus equations a

and Vinegar variables v to obtain a secure scheme.

4.2 Is the Ratio Between a and v Important for the Security of the
Scheme?

To answer this question, we performed experiments of the following type. For a
fixed degree D of the HFE polynomial, a fixed number of equations and a fixed
value s we created HFEv- systems with a ∈ {0, . . . , s} and v = s − a. After
fixing v + a variables to get a determined system and adding the field equations
{x2

i − xi} we solved the systems by the F4 algorithm integrated in MAGMA.
For each parameter set we performed 10 experiments. The results are shown in
Tables 2 and 3.

As the tables show, in particular for HFEv- schemes with low degree D, the
number v of vinegar variables should not be too small. Especially, v = 0 (i.e.
HFE-) seems to be a bad choice.

On the other hand, very high values of v do not increase the security of the
scheme and increase the public key size of the scheme drastically. To achieve a
good security and a moderate public key size, we therefore formulate our second
design principle for HFEv- based signature schemes as follows.

Design Principles for HFEv- Based Multivariate Signature Schemes 321

Table 2. Experiments with F4 on determined HFEv- systems with 20 equations

D=5, a+v=5 D=9, a+v=4 D=17, a+v=3

a v dreg Time (s) Memory (MB) a v dreg Time (s) Memory (MB) a v dreg Time (s) Memory (MB)

0 5 5 2.76 109.7 0 4 5 2.77 109.7 0 3 5 2.75 110.7

1 4 5 2.77 109.7 1 3 5 2.78 110.8 1 2 5 2.77 109.7

2 3 5 2.76 110.7 2 2 5 2.76 110.7 2 1 5 2.74 110.8

3 2 5 2.77 110.8 3 1 5 2.75 110.8 3 0 5 2.73 109.7

4 1 5 2.75 109.8 4 0 5 2.79 108.7 —

5 0 4 1.01 32.6 — —

Table 3. Experiments with F4 on determined HFEv- systems with 25 equations

D=5, a+v=8 D=9, a+v=7 D=17, a+v=6

a v dreg Time (s) Memory (MB) a v dreg Time (s) Memory (MB) a v dreg Time (s) Memory (MB)

0 8 6 246.6 7,582 0 7 6 248.9 7,582 0 6 6 247.0 7,581

1 7 6 246.2 7,579 1 6 6 247.4 7,582 1 5 6 247.6 7,581

2 6 6 246.6 7,580 2 5 6 248.0 7,580 2 4 6 247.6 7,581

3 5 6 248.1 7,581 3 4 6 246.4 7,593 3 3 6 248.3 7,579

4 4 6 247.1 7,581 4 3 6 248.3 7,578 4 2 6 246.5 7,580

5 3 6 248.3 7,582 5 2 6 248.5 7,579 5 1 6 248.8 7,580

6 2 6 248.3 7,554 6 1 6 247.3 7,581 6 0 6 247.9 7,581

7 1 5 99.3 1,317 7 0 5 99.5 1,380 —

8 0 5 88.3 1,509 — —

Design Principle 2:
In the design of HFEv- based signature schemes we choose the

number of Minus equations a and the number of Vinegar variables v
to be as equal as possible, i.e. v − a ≤ 1.

4.3 Is the Upper Bound on dreg Given by Eq. (12) Reasonably
Tight?

In this section we check by experiments if the upper bound on the degree of
regularity given by Eq. (12) is tight. Due to memory restrictions, we can show
the tightness of Eq. (12) only for some small values of D, a and v. However, for
all values of D used in our scheme Gui (D ∈ {5, 9, 17}) we could find parameter
sets for which the bound (12) is tight (see Table 4).

For most of the other parameter sets, we missed the upper bound on the
degree of regularity given by Eq. (12) only by 1. We believe that, by increasing
the number of equations in the systems, it would be possible to reach the upper
bound for arbitrary values of (D, a, v). However, due to memory restrictions, we
could not perform experiments with more than 38 equations.

Furthermore, as shown in Table 5, we could, for all of the proposed values of
D, reach a degree of regularity of at least 7. These results are the basis of our
parameter choice for Gui (see Sect. 5).

322 A. Petzoldt et al.

Table 4. Parameter sets, for which the upper bound (12) is tight

D a v Upper bound for dreg (12) dreg (experimental)

5 0 0 3 3 for n ≥ 10

1 1 4 4 for n ≥ 23

9 0 1 4 4 for n ≥ 23

1 1 4 4 for n ≥ 21

17 0 0 4 4 for n ≥ 15

0 1 4 4 for n ≥ 12

Table 5. Parameter sets which lead to dreg ≥ 7

D a v dreg (experimental) Upper bound for dreg (12)

5 6 6 7 for n ≥ 38 9

9 5 5 7 for n ≥ 37 8

17 4 4 7 for n ≥ 37 8

4.4 Does it Help to Guess Some Variables Before Applying a
Gröbner Basis Algorithm?

In the case of multivariate signature schemes such as HFEv- the public key P
is an underdetermined system of quadratic equations. In our case this system
consists of n − a quadratic equations in n + v variables. For the experiments
presented in the previous subsections we fixed a + v of the variables of the
system to create a determined system before applying the F4 algorithm.

However, for some multivariate systems, it is a good strategy to guess some
additional variables before applying the Gröbner basis algorithm (Hybrid App-
roach [4]). The goal of this strategy is to create overdetermined systems which
hopefully will be significantly easier to solve. When guessing k variables one has,
to find a solution of the original system, to solve qk instances of the simpli-
fied system, where q is the cardinality of the underlying field. To check whether
this Hybrid approach helps to solve the public systems of the HFEv- scheme
faster, we performed a number of experiments. For the three parameter sets
(D, a, v) ∈ {(5, 6, 6), (9, 5, 5), (17, 4, 4)} and varying numbers of n and k we
created HFEv- systems and solved them with the F4 algorithm integrated in
MAGMA. Table 6 shows, for k ∈ {0, . . . , 5}, the minimal value of n needed to
reach a degree of regularity of 7.

As the table shows, we could, for each of the above parameter sets and each
value k ∈ {0, . . . , 5}, create a HFEv- system offering a good level of security,
simply by increasing the number of equations in the system. In fact, the degree
of regularity of a direct attack against such a system of n−a quadratic equations
in n − a − k variables will be at least 7.

We therefore assume that, for large enough n, all the multivariate systems
which have to be solved in the course of a direct/hybrid attack against our

Design Principles for HFEv- Based Multivariate Signature Schemes 323

Table 6. Experiments on HFEv- systems with the Hybrid Approach

k of guessed variables Minimal value of n to reach dreg ≥ 7

D = 5, a = v = 6 D = 9, a = v = 5 D = 17, a = v = 4

0 38 37 37

1 39 38 38

2 40 40 39

3 42 41 41

4 43 43 42

5 44 44 44

schemes, will have a degree of regularity of at least 7. This is the basis for our
parameter selection presented in the next section.

5 The New Multivariate Signature Scheme Gui

Based on our experiments presented in the previous section we propose three
different versions of our HFEv- based signature scheme Gui over the field GF(2):

– Gui-96 with (n,D, a, v) = (96, 5, 6, 6) with 90 equations in 102 variables,
– Gui-95 with (n,D, a, v) = (95, 9, 5, 5) with 90 equations in 100 variables and
– Gui-94 with (n,D, a, v) = (94, 17, 4, 4) with 90 equations in 98 variables.

The complexity of direct attacks against these schemes can be estimated as
follows.

According to our experiments (see Table 6), the degree of regularity of the
F4 algorithm (even with the Hybrid Approach) against these schemes will be at
least 7.

For the complexity of a direct attack against one of our schemes (with guess-
ing k variables) we have

ComplexityF4/F5
≥ 3 · τ · T 2, (13)

where T is the number T of top-level monomials in the solving step of the F4
algorithm and τ is the number of non zero elements in each equation. We get

ComplF4/F5
≥ 3 · τ · T

2
= 2

k · 3 ·
(n − a − k

2

)
·
(n − a − k

dreg

)2

= 3 ·
(n − a

2

)
·
(n − a

dreg

)2

· 2k · (n − a − k) · (n − a − k − 1)

(n − a) · (n − a − 1)
·
(

(n − a − k) · . . . · (n − a − k − dreg + 1)

(n − a) · . . . · (n − a − dreg + 1)

)2

︸ ︷︷ ︸
≥1

≥ 3 ·
(n − a

2

)
·
(n − a

dreg

)2
≥ 3 ·

(90
7

)
·
(90
2

)
= 2

80.7
. (14)

324 A. Petzoldt et al.

Note that this number is very optimistic since we assume that the degree of
regularity will not rise above 7.

Additionally, for better comparison to standard signature schemes, we pro-
pose a fourth version of Gui, Gui-127, with the parameters (n,D, a, v) =
(127, 9, 4, 6), providing a security level of 120 bits.

5.1 Signature Generation

The central component of the signature generation process of Gui is inverting
the HFEv- core map.

To compute a pre-image of a (n − a) bit digest h, one first has to choose
random values for the Minus equations and the Vinegar variables. In our con-
crete implementation, these values are the last a + v bits of SHA-256(h).
After that, one computes recursively x = S−1(h), X = Φ(x), Y = F−1

V (X),
y = (Φ−1(Y)||v1|| . . . ||vv) and z = T −1(y) (see Fig. 2).

For the parameters of Gui, the length of the digest h is only n − a = 90 bits.
To prevent birthday attacks, we therefore have to perform the above process
several times (for different values of h). We denote this repetition factor by k
and set k = 3 for Gui-96 and Gui-95. For Gui-94 and Gui-127 the value k is
chosen to be 4.

The signature generation process of Gui works as shown in Algorithm 1 and
Fig. 3.

We initialize the n − a vector S0 to be 0 and compute the SHA-256 hash
value h of the message. Let D1 be the bitstring consisting of the first (n − a)
bits of h. We compute the pre-image of D1 under the HFEv- core (see above)
and split the result into an (n − a) bit string S1 and an a + v bit string X1.

We set D2 to be the string consisting of the first (n − a) bits of SHA-256(h)
and compute the HFEv- pre-image of D2 ⊕S1. Again, the result is split into the
two parts S2 (n − a bits) and X2 (a + v bits). This process is repeated, until we
have values Si,Xi for i = 1, . . . , k.

The final signature of the message is given by σ = (Sk||Xk|| . . . ||X1). The
resulting signature sizes for our schemes can be found in Table 7.

A detailed description, how the inversion of the central HFEv- map is per-
formed in our implementation, can be found in Sect. 6.2. Due to some flaws in
the SHA-1 algorithm, we replace the SHA-1 hash function used in the original
QUARTZ design by SHA-256.

5.2 Signature Verification

To check the authenticity of a signature σ ∈ GF(2)(n−a)+k(a+v) we parse σ into
Sk, Xk, . . . , X1 and compute D1, . . . , Dk as shown in Sect. 5.1. For i = k−1 to 0
we compute recursively Si = P(Si+1||Xi+1) ⊕ Di+1. The signature is accepted,
if and only if S0 = 0 holds.

By the above construction of the signature generation and verification process
we prevent birthday attacks as follows. We consider an adversary A who wants
to find two messages m1 and m2 which lead to the same signature σ.

Design Principles for HFEv- Based Multivariate Signature Schemes 325

Fig. 2. Core operations of HFEv-

Algorithm 1. Signature Generation Process of Gui
Input: Gui private key (S, F , T) message d, repetition factor k

Output: signature σ ∈ GF(2)(n−a)+k(a+v)

1: h ← SHA-256(d)
2: S0 ← 0 ∈ GF(2)n−a

3: for i = 1 to k do
4: Di ← first n − a bits of h
5: (Si, Xi) ← HFEv-−1(Di ⊕ Si−1)
6: h ← SHA-256(h)
7: end for
8: σ ← (Sk||Xk|| . . . ||X1)
9: return σ

Algorithm 2. Signature Verification Process of Gui
Input: Gui public key P, message d, repetition factor k, signature σ ∈

GF(2)(n−a)+k(a+v)

Output: TRUE or FALSE
1: h ← SHA-256(d)
2: (Sk, Xk, . . . , X1) ← σ
3: for i = 1 to k do
4: Di ← first n − a bits of h
5: h ← SHA-256(h)
6: end for
7: for i = k − 1 to 0 do
8: Si ← P(Si+1||Xi+1) ⊕ Di+1

9: end for
10: if S0 = 0 then
11: return TRUE
12: else
13: return FALSE
14: end if

326 A. Petzoldt et al.

Fig. 3. Signature generation process of Gui

Table 7. Key and signature sizes of Gui-94, Gui-95, Gui-96, and Gui-127

Scheme Core map HFEv-
(n, D, a, v)

Public key size (byte) Private key
size (byte)

Repetition
factor k

Signature
size (bit)

Gui-96 (96, 5, 6, 6) 63036 3175 3 126

Gui-95 (95, 9, 5, 5) 60600 3053 3 120

Gui-94 (94, 17, 4, 4) 58212 2943 4 122

Gui-127 (127, 9, 4, 6) 142576 5350 4 163

QUARTZ (103, 129, 3, 4) 75515 3774 4 128

For the plain HFEv- signature scheme it would be enough to find two mes-
sages m1 and m2 such that SHA-256(m1)i = SHA-256(m2)i for the first n − a
bits. If (n − a) ≤ 160, the adversary can find m1 and m2 by a birthday attack.

In the context of our scheme Gui, the adversary now has to find messages
m1 and m2 which lead to the same values of D1, . . . , Dk. For our values of the
repetition factor k, this corresponds to finding a collision for a hash function of
length 270, 360 and 492 bit (Gui-95/96, Gui-94 and Gui-127 respectively). This
is, in general, assumed to be infeasible.

6 Implementation and Comparison

In this section we present the details of our implementation of the Gui signature
scheme and compare the performance of our scheme with that of the original
QUARTZ and other standard signature schemes.

6.1 Arithmetics Over Finite Fields

The first step in our implementation of the Gui signature scheme is to provide
efficient arithmetics over the large binary fields in use. To speed up these compu-
tations, we use a set of new processor instructions for carry-less multiplication:
PCLMULQDQ [30].

The instruction set PCLMULQDQ allows the efficient multiplication of two 64-
bit polynomials over GF(2) resulting in an 128-bit polynomial. The PCLMULQDQ
instructions are available on some new processors of Intel and AMD. Performance

Design Principles for HFEv- Based Multivariate Signature Schemes 327

Table 8. Performance of PCLMULQDQ on different platforms (source: [14,17])

Processor type Latency cycles Throughput cycles/multiplication

Intel Sandy Bridge 14 8

Ivy Bridge 14 8

Hashwell 7 2

AMD Bulldozer 12 7

Piledriver 12 7

Steamroller 11 7

data of PCLMULQDQ can be found in Table 8. In the case of Gui, the extension
field E has less than 2128 elements. We represent an element of the field E as a
polynomial over GF(2) which can be divided into two 64-bit polynomials.

A multiplication over the large field E is divided into two phases, namely a
multiplication and a reduction phase.

In the multiplication phase, the multiplication of two 128-bit polynomials can
be performed by 4 calls of PCLMULQDQ. With the help of the Karatsuba algorithm,
we can avoid one call of PCLMULQDQ and therefore its long latency (see Table 8).
To square an element of E, we need only two calls of PCLMULQDQ since we are
operating over a field of characteristic 2.

The reduction phase of the field multiplication heavily depends on the field
representation. For the original QUARTZ scheme over the field GF(2103) the
authors used GF(2103) := GF(2)[x]/(x103 + x9 + 1) [24]. For Gui, we choose the
field representations

– GF(294) := GF(2)[x]/(x94 + x21 + 1),
– GF(295) := GF(2)[x]/(x95 + x11 + 1),
– GF(296) := GF(2)[x]/(x96 + x10 + x9 + x6 + 1) and
– GF(2127) := GF(2)[x]/(x127 + x + 1) respectively.

The baseline for the reduction phase is two calls of PCLMULQDQ since, after the
multiplication phase, the degree of the polynomial will be greater than 2 × 64.
The irreducible polynomials above are chosen to contain only few terms of low
degree. With few terms in the irreducible polynomials, we may replace the use
of PCLMULQDQ by a few logic shifts and XOR instructions.

In the GF(2127) case, for example, the reduction can be performed by only
two 128-bit shifts for the x128 part and one conditional XOR for the x127 term,
avoiding at least two calls of PCLMULQDQ while reducing the high 128 bit register.

Another technique is to represent elements as 128-bit polynomials while
avoiding full reduction. This allows us to perform the reduction of degree 128–191
and 192–255 terms using only two calls of PCLMULQDQ without data dependency.
In the GF(296) case, for example, we can perform the reduction phase by multi-
plying the degree 128–191 terms by x128 = x42 + x41 + x38 + x32 and the degree
192–255 terms with x192 = x20 + x18 + x12 + 1. All the polynomials in use have
degree ≤ 64, and we can perform the reduction by two calls of PCLMULQDQ.

328 A. Petzoldt et al.

The proposed implementation provides time-constant multiplication for pre-
venting side channel leakage, since, regardless of the input, the same operations
are performed. The same strategy is also applied to the calculation of multiplica-
tive inverses. For example, for the sake of time-constant arithmetics, the inverse
of an element x ∈ GF(2127) is calculated by raising x to x2127−2 instead of the
faster extended Euclidean algorithm.

6.2 Inverting the HFEv- Core

In this section we describe how we can perform the inversion of the central
HFEv- equation FV (Y) = X efficiently. During the signature generation process
of Gui we have to perform this step several times to avoid birthday attacks (see
Sect. 5.1). Therefore it is extremely important to perform this step efficiently.

To invert the central HFEv- equation, we have to perform Berlekamp’s algo-
rithm to find the roots of the polynomial FV (Y) − X. Since the design of
QUARTZ and Gui requires FV (Y) − X to have a unique solution, we only have
to perform the first step of Berlekamp’s algorithm, i.e. the computation of

gcd(FV (Y) − X,Y 2n − Y). (15)

We have

gcd(FV (Y) − X, Y 2n − Y)

= gcd(FV (Y) − X,
∏

i∈F2n ,i�=0

(Y − i)) =
∏

i:FV (i)=X

(Y − i).

Therefore the main process in creating a signature consists in computing gcd(FV (Y)−
X, Y 2n − Y). The number of roots of FV (Y) − X (as well as the only solution when
that happens) can obviously be read off from the result.

Probability of a Unique Root. Every time we choose the values of Minus equa-
tions and Vinegar variables, we basically pick a random central equation FV (Y)−X =
0. The probability of this equation having a unique solution is about 1/e. Therefore, in
order to invert the HFEv- central equation, we have to perform the gcd computation
about e times.

The repeated computation of the gcd (see Eq. 15) is probably the most detectable
side channel leakage of our scheme. However, there are no known side channel attacks
on big field schemes or HFEv- which use the information that one particular equation
in the big field has no, respectively two or more solutions.

How Do We Optimize the Computation of the GCD? The main com-
putation consumption in this step comes from the division of the extreme high power
polynomial Y 2n − Y mod FV (Y). A naive long division is unacceptable for this pur-
pose due to its slow reduction phase. Instead of this, we choose to recursively raise the
lower degree polynomial Y 2m to the power of 2.

(Y 2m mod FV(Y))∈ mod FV(Y)

=(
∑
i<2m

biY
i)2 mod FV(Y) = (

∑

〉<∈�
�∈

〉 Y∈〉) mod FV(Y)

Design Principles for HFEv- Based Multivariate Signature Schemes 329

By multiplying Y to the naive relation Y D =
∑

0≤i≤j,2i+2j<D aijY
2i+2j , we can

prepare a table for Y 2i mod FV(Y) first. The rest of computation of the raising process
is to square all the coefficients bi in Y 2m mod FV(Y) and multiply them to the Y 2is
in the table.

Although the starting relation FV (Y) = Y D+
∑

0≤i≤j,2i+2j<D aijY
2i+2j is a sparse

polynomial, the polynomials become dense quickly in the course of the raising process.
However, the number of terms in the polynomials is restricted by D because of
mod FV(Y). We expect the number of terms to be in average D during the com-
putation.

We implemented Berlekamp’s algorithm in such a way that it takes the same num-
ber of iterations in the main GCD loop and the same number of operations in the big
field for each run at very low cost. Therefore it runs, independently from the input, at
constant time.

The number of field multiplications needed to compute the Y 2i table is O(2·D2). To
raise Y 2m to Y 2n we need O((n−m) ·D) squarings and O((n−m) ·D2) multiplications.
We can further reduce the number of computations needed for raising Y 2m by using a

higher degree Y i table. For example, if we raise Y 2m to Y 24m in one step, we need only
O((n−m)·D) squarings and O((n−m)

2
·D2) multiplications. However, the computational

effort for preparing the Y i table increases. Table 9 shows the time needed to compute
gcd(Y 2n − Y, F(Y)) on three different CPUs.

6.3 Experiments and Comparison

Table 10 shows key and signature sizes as well as the running times of signature gen-
eration and verification of Gui and compares these data with those of some standard
signature schemes. The data are benchmarked according to specifications given by the
eBACS project [3].

We should note that the timings for Gui given by Table 10 are for C programs
with a few intrinsic function calls of PCLMULQDQ. The PKCs benchmarked in the eBACs
project also do not represent optimal implementations of RSA and ECC. We present
these numbers in an effort to compare apples to apples by using only reference imple-
mentations.

Table 9. Key sizes of HFEv- schemes and running time of gcd(X2n − X, F(X))

Scheme Security Public key Private key Time needed for inverting

level (bit) size (kB) size (kB) F (kilo-cycles)

HFEv- (96, 5, 6, 6) 80 61.6 3.1 72/76/55a

HFEv- (95, 9, 5, 5) 80 59.2 3.0 159/135/79

HFEv- (94, 17, 4, 4) 80 56.8 2.9 533/453/274

HFEv- (127, 9, 4, 6) 120 139.2 5.2 170/156/128

HFEv- (103, 129, 3, 4) 80 71.9 3.1 25,793/20,784/12,630
a AMD Opteron 6212, 2.5GHz (Bulldozer)/Intel Xeon CPU E5-2620, 2.0GHz (Sandy
Bridge)/Intel Xeon E3-1245 v3, 3.4GHz (Hashwell)

330 A. Petzoldt et al.

Table 10. Comparison between Gui and standard signature schemes

Scheme Security Public key Private key Signature Signing time Verification

level (bits) size (Bytes) size (Bytes) size (bits) (k-cycles)a time (k-cycles)a

Gui-96 (96, 5,

6, 6)

80 63,036 3,175 126 603/569/238 97/70/62

Gui-95 (95, 9,

5, 5)

80 60,600 3,053 120 1,417/1,441/602 91/60/58

Gui-94 (94, 17,

4, 4)

80 58,212 2,943 124 5,800/5,480/2,495 118/74/71

Gui-127 (127,

9, 4, 6)

120 142,576 5,350 163 2,368/2,183/1,080 220/121/122

QUARTZ (103,

129, 3, 4)

80 73,626 3,174 128 302,882/315,716/128,736 145/84/86

RSA-1024 80 128 128 128 2,080/1,058/1,073 74/32/33

RSA-2048 112 256 256 256 8,834/5,347/4,625 138/76/61

ECDSA P160 80 40 60 320 1,283/558/588 1,448/635/652

ECDSA P192 96 48 72 384 1,513/773/697 1,715/867/779

ECDSA P256 128 64 96 512 830/388/342 2,111/920/816
a AMD Opteron 6212, 2.5GHz (Bulldozer)/Intel Xeon CPU E5-2620, 2.0GHz (Sandy Bridge)/Intel Xeon

E3-1245 v3, 3.4GHz (Hashwell)

6.4 Platforms Without PCLMULQDQ

We also optimized the arithmetics over large finite fields by SIMD table-lookup instruc-
tions for platforms without PCLMULQDQ. SIMD table-lookup instructions are common
in contemporary CPUs, e.g., PSHUFB (Packed Shuffle Byte) on x86 and VTBL (Vector
Table Lookup) on ARM platforms. For this we used an ARM Cortex-A9 processor with
NEON instruction set, which is currently the most common version in smart phones.
We use PSHUFB and VTBL as general table-lookup instructions with 4-bit index (although
VTBL is capable of 5-bit indices), not necessarily restricted to the x86 platform. Since
the length of indices in these instructions is only 4 or 5 bit, PSHUFB and VTBL were so
far only applied to implementations over small fields, e.g., GF(16) and GF(256) [6]. For
applying PSHUFB and VTBL to large finite fields, we have to represent the large field as
an extension of the small field. In our case, we use for the implementation the following
representation of GF(296)

– GF(16) := GF(2)[y]/(y4 + y + 1),
– GF(296) := GF(16)[x]/(x24 + y3x3 + x + y).

The multiplication in GF(16) is performed with PSHUFB and the multiplication in
GF(296) corresponds to a polynomial multiplication over GF(16). Furthermore, we use
Karatsuba’s technique for the computation of coefficients in different registers. To pre-
vent the scheme from side channel leakage, we implement the multiplication in GF(16)
with logarithm/exponential tables instead of multiplication tables, except for the mul-
tiplication with fixed values in the reduction phase of the polynomial multiplication.
With logarithm tables, the multiplication in GF(16) is performed by an addition in
the exponents of a multiplicative generator and therefore consists of two table lookups,
addition and reduction. Although there is only one table lookup in a normal imple-
mentation of multiplication tables, an intentional cache miss would result in a time
difference since the tables are loaded with the values of input operands.

Design Principles for HFEv- Based Multivariate Signature Schemes 331

Table 11. Average number of cycles for the arithmetics in GF(296) and GF(2127) for
various implementations.

Implementation Multiplication Square Inversion

GF(296) 64-bit variables, school book 624/3392a 624/3384 68,752/357,728

128-bit register, PSHUFB/VTBL 138/731 87/424 11,242/48,825

128-bit register, PCLMULQDQ 12/- 8/- 2,489/-

GF(2127) 64-bit variables, school book 743/4,009 735/3,997 105,235/546,881

128-bit register, PSHUFB/VTBLb 318/813 187/531 28,565/77,703

128-bit register, PCLMULQDQ 15/- 9/- 3,257/-
a Intel Xeon E3-1245 v3, 3.4GHz (Hashwell)/Xilinx Zynq 7020, 667MHz (ARM
Cortex-A9)
b GF(2128)

Performance data of these implementations as well as a reference implementation
of school book multiplication for 64-bit variables, which is applicable to all platforms
without these SIMD instructions, can be found in Table 11. Note that, in the sixth
row of Table 11, we use the field GF(2128) := GF(16)[x]/(x32 + x3 + x + y) instead of
GF(2127), since the shape of this field contains some restrictions in the extension from
GF(16).

Our ARM implementation takes on average 1,14 ms to invert the central map
FV (Y) = X. Performance data for the implementation of Gui-96 on ARM platforms
can be found in Table 12. As one can see, we are able to generate about 300 Gui
signatures per second on a standard smart phone.

6.5 Grover’s Algorithm and Potential Extension to Larger Fields

By Grover’s algorithm [16] it might be possible to cut down the complexity of a brute-
force search in an n-bit space to O(2n/2). We believe that this is no major threat to
HFEv- and in particular to Gui because of the large number of quantum bits (qubits)
needed in this case: While we need only 1024 qubits to solve Discrete Logarithms on a
256-bit prime modulus elliptic curve and 6000 qubits to factorize 3000-bit RSA numbers
using Shor’s Algorithm, the number of qubits and quantum gates needed to attack Gui
by Grover’s algorithm is in the order of a million (n3), since it implies the evaluation
of n quadratic polynomials in n variables. Therefore, quantum algorithms can be used
much more easy for the cryptanalysis of schemes such as RSA and ECC than for that
of multivariate schemes such as Gui and we do not consider Grover’s algorithm to be
a major problem for our scheme. However, even if we have to take Grover’s algorithm
into account, there is an easy way to prevent this kind of attack, namely by choosing

Table 12. Performance data for Gui on ARM platforms (timings in 10−6 s)

Scheme Key generation Signature generation Signature verification

Gui-96(96, 5, 6, 6) 99,555 3,291 102

332 A. Petzoldt et al.

the parameter n about twice as large while keeping all other parameters constant.
In the implementation, this means an extra layer of the Karatsuba algorithm in the
multiplication phase and therefore a factor of 3 slowdown. Furthermore, this increases
the public key size by a factor of 8.

7 Conclusion and Future Work

In this paper, we analyzed the behavior of direct attacks against HFEv- based signature
schemes. Experiments show that, even for low degree HFE polynomials in use, we can
obtain adequate security levels by increasing the numbers a and v of Minus equations
and Vinegar variables. Furthermore we find that the upper bound on the degree of
regularity proposed by Ding and Yang in [11] is relatively tight. From our results we
derive design principles for the construction of HFEv- based signature schemes, which
lead to both secure and efficient schemes. We apply these principles to the construction
of our new HFEv- based signature scheme Gui, which is more than 100 times faster
than the original QUARTZ scheme. Furthermore we show that the performance of our
scheme is highly comparable to that of standard signature schemes, including signatures
on elliptic curves.

As future work we want to analyze the influence of the numbers a of Minus Equa-
tions and v of Vinegar variables on the security of HFEv- schemes further. Furthermore
we plan to create for every common existing platform an optimal implementation of
HFEv- (Gui) and compare it with some of the best optimized code for ECC and RSA,
such as Ed25519 [2]. Another approach would be to verify such optimal Gui code for
formal correctness. In short, we believe that there is still much work to be done on the
HFEv- digital signature schemes.

Acknowledgements. We thank the anonymous reviewers of Asiacrypt for their com-
ments which helped to improve the paper. Especially we want to thank the shepherd
of our paper for his valuable advice. Due to this we included

– Further remarks on the complexity of the Kipnis-Shamir attack on HFE and its
variants (Sect. 3.3).

– Additional experiments on the effect of the parameters a and v on the security of our
scheme and the Hybrid approach (Sects. 4.2 and 4.4).

– Remarks on side channel leakage and countermeasures (Sects. 6.1 and 6.2).
– Implementation details of Gui on ARM platforms (Sect. 6.4).
– Remarks on how Grover’s algorithm might affect our parameter choice (Sect. 6.5).

We would like to thank for partial support from the Charles Phelps Taft Research Cen-
ter, the Center for Advanced Security Research Darmstadt (CASED), ECSPRIDE,
Academia Sinica, the CAS/SAFEA International Partnership Program for Creative
Research Teams, Taiwan’s Ministry of Science and Technology, National Taiwan Uni-
versity and Intel Corporation under grands NIST 60NAN15D059, NSFC 61472054,
MOST 103-2911-I-002-001, NTU-ICRP-104R7501 and NTU-ICRP-104R7501-1.

Design Principles for HFEv- Based Multivariate Signature Schemes 333

References

1. Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.): Post Quantum Cryptography.
Springer, Heidelberg (2009)

2. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.-Y.: High-speed high-
security signatures. J. Cryptographic Eng. 2(2), 77–89 (2012)

3. Bernstein, D.J., Lange, T. (eds.): eBACS: ECRYPT Benchmarking of Crypto-
graphic Systems. http://bench.cr.yp.to. Accessed 14 May 2014

4. Bettale, L., Faugère, J.C., Perret, L.: Hybrid approach for solving multivariate
systems over finite fields. J. Math. Cryptol. 3, 177–197 (2009)

5. Bogdanov, A., Eisenbarth, T., Rupp, A., Wolf, C.: Time-area optimized public-
key engines: MQ-cryptosystems as replacement for elliptic curves? In: Oswald, E.,
Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 45–61. Springer, Heidelberg
(2008)

6. Chen, A.I.-T., Chen, M.-S., Chen, T.-R., Cheng, C.-M., Ding, J., Kuo, E.L.-H.,
Lee, F.Y.-S., Yang, B.-Y.: SSE implementation of multivariate PKCs on modern
x86 CPUs. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 33–48.
Springer, Heidelberg (2009)

7. Courtois, N.T., Daum, M., Felke, P.: On the security of HFE, HFEv- and QUARTZ.
In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 337–350. Springer, Hei-
delberg (2003)

8. Ding, J., Gower, J.E., Schmidt, D.S.: Multivariate Public Key Cryptosystems.
Springer, New York (2006)

9. Ding, J., Kleinjung, T.: Degree of regularity for HFE-. IACR eprint 2011/570
10. Ding, J., Schmidt, D.: Rainbow, a new multivariable polynomial signature scheme.

In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531,
pp. 164–175. Springer, Heidelberg (2005)

11. Ding, J., Yang, B.-Y.: Degree of regularity for HFEv and HFEv-. In: Gaborit, P.
(ed.) PQCrypto 2013. LNCS, vol. 7932, pp. 52–66. Springer, Heidelberg (2013)

12. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases (F4). J. Pure
Appl. Algebra 139, 61–88 (1999)

13. Faugère, J.C., Safey el Din, M., Spaenlehauer, P.J.: On the complexity of the
generalized MinRank problem. J. Symbolic Comput. 55, 30–58 (2013)

14. Fog, A.: Instruction tables: Lists of instruction latencies, throughputs and micro-
operation breakdowns for Intel, AMD and VIA CPUs, 7 December 2014. http://
www.agner.org/optimize/

15. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman and Company, New York (1979)

16. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Pro-
ceedings of STOC, pp. 212–219. ACM (1996)

17. Intel Corporation: Hashwell Cryptographic Performance. http://www.
intel.com/content/dam/www/public/us/en/documents/white-papers/
haswell-cryptographic-performance-paper.pdf

18. Jiang, X., Ding, J., Hu, L.: Kipnis-Shamir attack on HFE revisited. In: Pei, D.,
Yung, M., Lin, D., Wu, C. (eds.) Inscrypt 2007. LNCS, vol. 4990, pp. 399–411.
Springer, Heidelberg (2008)

19. Kravitz, D.: Digital Signature Algorithm. US patent 5231668, July 1991
20. Kipnis, A., Patarin, J., Goubin, L.: Unbalanced oil and vinegar signature schemes.

In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 206–222. Springer,
Heidelberg (1999)

http://bench.cr.yp.to
http://www.agner.org/optimize/
http://www.agner.org/optimize/
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/haswell-cryptographic-performance-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/haswell-cryptographic-performance-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/haswell-cryptographic-performance-paper.pdf

334 A. Petzoldt et al.

21. Kipnis, A., Shamir, A.: Cryptanalysis of the HFE public key cryptosystem by
relinearization. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 19–30.
Springer, Heidelberg (1999)

22. Mohamed, M.S.E., Ding, J., Buchmann, J.: Towards algebraic cryptanalysis of
HFE challenge 2. In: Kim, T., Adeli, H., Robles, R.J., Balitanas, M. (eds.) ISA
2011. CCIS, vol. 200, pp. 123–131. Springer, Heidelberg (2011)

23. Matsumoto, T., Imai, H.: Public quadratic polynomial-tuples for efficient signature-
verification and message-encryption. In: Günther, C.G. (ed.) EUROCRYPT 1988.
LNCS, vol. 330, pp. 419–453. Springer, Heidelberg (1988)

24. Patarin, J., Courtois, N.T., Goubin, L.: QUARTZ, 128-bit long digital signatures.
In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 282–297. Springer,
Heidelberg (2001)

25. Patarin, J., Courtois, N.T., Goubin, L.: FLASH, a fast multivariate signature
algorithm. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 298–307.
Springer, Heidelberg (2001)

26. Patarin, J.: Cryptanalysis of the Matsumoto and Imai public key scheme of Euro-
crypt ’88. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 248–261.
Springer, Heidelberg (1995)

27. Richards, C.: Algorithms for factoring square-free polynomials over finite fields.
Master thesis, Simon Fraser University, Canada (2009)

28. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

29. Shor, P.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

30. Taverne, J., Faz-Hernández, A., Aranha, D.F., Rodŕıguez-Henŕıquez, F., Hanker-
son, D., López, J.: Software implementation of binary elliptic curves: impact of
the carry-less multiplier on scalar multiplication. In: Preneel, B., Takagi, T. (eds.)
CHES 2011. LNCS, vol. 6917, pp. 108–123. Springer, Heidelberg (2011)

31. http://en.wikipedia.org/wiki/File:CMOC Treasures of Ancient China exhibit
white pottery gui 1.jpg

http://en.wikipedia.org/wiki/File:CMOC_Treasures_of_Ancient_China_exhibit_white_pottery_gui_1.jpg
http://en.wikipedia.org/wiki/File:CMOC_Treasures_of_Ancient_China_exhibit_white_pottery_gui_1.jpg

Multiparty Computation I

Oblivious Network RAM and Leveraging
Parallelism to Achieve Obliviousness

Dana Dachman-Soled1(B), Chang Liu1, Charalampos Papamanthou1,
Elaine Shi2, and Uzi Vishkin1

1 University of Maryland, College Park, USA
danadach@ece.umd.edu, liuchang@cs.umd.edu,

cpap@umd.edu, vishkin@umiacs.umd.edu
2 Cornell University, Ithaca, USA

runting@gmail.com

Abstract. Oblivious RAM (ORAM) is a cryptographic primitive that
allows a trusted CPU to securely access untrusted memory, such that
the access patterns reveal nothing about sensitive data. ORAM is known
to have broad applications in secure processor design and secure multi-
party computation for big data. Unfortunately, due to a logarithmic lower
bound by Goldreich and Ostrovsky (Journal of the ACM, ’96), ORAM is
bound to incur a moderate cost in practice. In particular, with the latest
developments in ORAM constructions, we are quickly approaching this
limit, and the room for performance improvement is small.

In this paper, we consider new models of computation in which the
cost of obliviousness can be fundamentally reduced in comparison with
the standard ORAM model. We propose the Oblivious Network RAM
model of computation, where a CPU communicates with multiple mem-
ory banks, such that the adversary observes only which bank the CPU
is communicating with, but not the address offset within each memory
bank. In other words, obliviousness within each bank comes for free—
either because the architecture prevents a malicious party from observing
the address accessed within a bank, or because another solution is used
to obfuscate memory accesses within each bank—and hence we only need
to obfuscate communication patterns between the CPU and the memory
banks. We present new constructions for obliviously simulating general

D. Dachman-Soled—Work supported in part by NSF CAREER award #CNS-
1453045 and by a Ralph E. Powe Junior Faculty Enhancement Award.
C. Liu—Work supported in part by NSF awards #CNS-1314857, #CNS-1453634,
#CNS-1518765, #CNS-1514261, and Google Faculty Research Awards.
C. Papamanthou—Work supported in part by NSF award #CNS-1514261, by a
Google Faculty Research Award and by the National Security Agency.
E. Shi—Work supported in part by NSF awards #CNS-1314857, #CNS-1453634,
#CNS-1518765, #CNS-1514261, Google Faculty Research Awards, and a Sloan Fel-
lowship. This work was done in part while a subset of the authors were visiting
the Simons Institute for the Theory of Computing, supported by the Simons Foun-
dation and by the DIMACS/Simons Collaboration in Cryptography through NSF
award #CNS-1523467.
U. Vishkin—Work supported in part by NSF award #CNS-1161857.

c© International Association for Cryptologic Research 2015
T. Iwata and J.H. Cheon (Eds.): ASIACRYPT 2015, Part I, LNCS 9452, pp. 337–359, 2015.
DOI: 10.1007/978-3-662-48797-6 15

338 D. Dachman-Soled et al.

or parallel programs in the Network RAM model. We describe appli-
cations of our new model in secure processor design and in distributed
storage applications with a network adversary.

1 Introduction

Oblivious RAM (ORAM), introduced by Goldreich and Ostrovsky [18,19], allows
a trusted CPU (or a trusted computational node) to obliviously access untrusted
memory (or storage) during computation, such that an adversary cannot gain
any sensitive information by observing the data access patterns. Although the
community initially viewed ORAM mainly from a theoretical perspective, there
has recently been an upsurge in research on both new efficient algorithms (c.f.
[8,13,22,36,39,43,46]) and practical systems [9,11,12,21,30,35,37,38,44,48] for
ORAM. Still the most efficient ORAM implementations [10,37,39] require a
relatively large bandwidth blowup, and part of this is inevitable in the stan-
dard ORAM model. Fundamentally, a well-known lower bound by Goldreich
and Ostrovsky states that any ORAM scheme with constant CPU cache must
incur at least Ω(log N) blowup, where N is the number of memory words, in
terms of bandwidth and runtime. To make ORAM techniques practical in real-life
applications, we wish to further reduce its performance overhead. However, since
latest ORAM schemes [39,43] have practical performance approaching the limit
of the Goldreich-Ostrovsky lower bound, the room for improvement is small in
the standard ORAM model. In this paper, we investigate the following question:

In what alternative, realistic models of computation can we significantly
lower the cost of oblivious data accesses?

Motivated by practical applications, we propose the Network RAM (NRAM)
model of computation and correspondingly, Oblivious Network RAM (O-
NRAM). In this new model, one or more CPUs interact with M memory banks
during execution. Therefore, each memory reference includes a bank identifier,
and an offset within the specified memory bank. We assume that an adversary
cannot observe the address offset within a memory bank, but can observe which
memory bank the CPU is communicating with. In other words, obliviousness
within each bank “comes for free”. Under such a threat model, an Oblivious
NRAM (O-NRAM) can be informally defined as an NRAM whose observable
memory traces (consisting of the bank identifiers for each memory request) do
not leak information about a program’s private inputs (beyond the length of
the execution). In other words, in an O-NRAM, the sequence of bank identifiers
accessed during a program’s execution must be provably obfuscated.

1.1 Practical Applications

Our NRAM models are motivated by two primary application domains:

Secure processor architecture. Today, secure processor architectures
[1,12,30,35,40,41] are designed assuming that the memory system is passive

Oblivious Network RAM and Leveraging Parallelism 339

and untrusted. In particular, an adversary can observe both memory contents
and memory addresses during program execution. To secure against such an
adversary, the trusted CPU must both encrypt data written to memory, and
obfuscate memory access patterns.

Our new O-NRAM model provides a realistic alternative that has been men-
tioned in the architecture community [30,31] and was inspired by the Module
Parallel Computer (MPC) model of Melhorn and Vishkin [32]. The idea is to
introduce trusted decryption logic on the memory DIMMs (for decrypting mem-
ory addresses). This way, the CPU can encrypt the memory addresses before
transmitting them over the insecure memory bus. In contrast with traditional
passive memory, we refer to this new type of memory technology as active mem-
ory. In a simple model where a CPU communicates with a single active memory
bank, obliviousness is automatically guaranteed, since the adversary can observe
only encrypted memory contents and addresses. However, when there are multi-
ple such active memory banks, we must obfuscate which memory bank the CPU
is communicating with.

Distributed storage with a network adversary. Consider a scenario where a
client (or a compute node) stores private, encrypted data on multiple distributed
storage servers. We consider a setting where all endpoints (including the client
and the storage servers) are trusted, but the network is an untrusted intermediary.
In practice, trust in a storage server can be bootstrapped through means of
trusted hardware such as the Trusted Platform Module (TPM) or as IBM 4758;
and network communication between endpoints can be encrypted using standard
SSL. Trusted storage servers have also been built in the systems community [3].
On the other hand, the untrusted network intermediary can take different forms
in practice, e.g., an untrusted network router or WiFi access point, untrusted
peers in a peer-to-peer network (e.g., Bitcoin, TOR), or packet sniffers in the
same LAN. Achieving oblivious data access against such a network adversary is
precisely captured by our O-NRAM model.

1.2 Background: The PRAM Model

Two of our main results deal with the parallel-RAM (PRAM) model, which
is a synchronous generalization of the RAM model to the parallel processing
setting. The PRAM model allows for an unbounded number of parallel processors
with a shared memory. Each processor may access any shared memory cell and
read/write conflicts are handled in various ways depending on the type of PRAM
considered:

– Exclusive Read Exclusive Write (EREW) PRAM: A memory cell can
be accessed by at most one processor in each time step.

– Concurrent Read Exclusive Write (CREW) PRAM: A memory cell
can be read by multiple processors in a single time step, but can be written
to by at most one processor in each time step.

– Concurrent Read Concurrent Write (CRCW) PRAM: A memory cell
can be read and written to by multiple processors in a single time step. Reads

340 D. Dachman-Soled et al.

are assumed to complete prior to the writes of the same time step. Concurrent
writes are resolved in one of the following ways: (1) Common—all concurrent
writes must write the same value; (2) Arbitrary—an arbitrary write request is
successful; (3) Priority—processor id determines which processor is successful.

1.3 Results and Contributions

We introduce the Oblivious Network RAM model, and conduct the first system-
atic study to understand the “cost of obliviousness” in this model. We consider
running both sequential programs and parallel progams in this setting. We pro-
pose novel algorithms that exploit the “free obliviousness” within each bank,
such that the obliviousness cost is significantly lower in comparison with the
standard Oblivious (Parallel) RAMs. We give a summary of our results below.

First, observe that if there are only O(1) number of memory banks, there is a
trivial solution with O(1) cost: just make one memory access (real or dummy) to
each bank for each step of execution. On the other hand, if there are Ω(N) mem-
ory banks each of constant size (where N denotes the total number of memory
words), then the problem approaches standard ORAM [18,19] or OPRAM [7].
The intermediate parameters are therefore the most interesting. For simplicity,
in this section, we mainly state our results for the most interesting case when the
number of banks M = O(

√
N), and each bank can store up to O(

√
N) words. In

Sects. 3, 4 and 5, our results will be stated for more general parameter choices.
We now state our results (see also Table 1 for an overview).

“Sequential-to-sequential” compiler. First, we show that any RAM pro-
gram can be obliviously simulated on a Network RAM, consuming only O(1)
words of local CPU cache, with Ô(log N) blowup in both runtime and band-
width, where–throughout the paper–when we say the complexity of our scheme
is Ô(f(N)), we mean that for any choice of h(N) = ω(f(N)), our scheme attains
complexity g(N) = O(h(N)). Further, when the RAM program has Ω(log2 N)
memory word size, it can be obliviously simulated on Network RAM with only
Ô(1) bandwidth blowup (assuming non-uniform memory word sizes as used by
Stefanov et al. in [38]). In comparison, the best known (constant CPU cache)
ORAM scheme has roughly Ô(log N) bandwidth blowup for Ω(log2 N) memory
word size [43]. For smaller memory words, the best known ORAM scheme has
O(log2 / log log N) blowup in both runtime and bandwidth [25].

“Parallel-to-sequential” compiler. We demonstrate that parallelism can
facilitate obliviousness, by showing that programs with a “sufficient degree of
parallelism” – specifically, programs whose degree of parallelism P = ω(M log N)
– can be obliviously simulated in the Network RAM model with only O(1)
blowup in runtime and bandwidth. Here, we consider parallelism as a prop-
erty of the program, but are not in fact executing the program on a parallel
machine. The overhead stated above is for the sequential setting, i.e., consider-
ing that both NRAM and O-NRAM have single processor. Our compiler works
when the underlying PRAM program is in the EREW, CREW, common CRCW
or arbitrary CRCW model.

Oblivious Network RAM and Leveraging Parallelism 341

Table 1. A systematic study of “cost of obliviousness” in the Network
ORAM model. W denotes the memory word size in # bits, N denotes the total
number of memory words, and M denotes the number of memory banks. For sim-
plicity, this table assumes that M = O(

√
N), and each bank has O(

√
N) words. Like

implicit in existing ORAM works [19,25], small word size assumes at least log N bits
per word—enough to store a virtual address of the word.

Setting RAM to O-NRAM blowup c.f. Best known ORAM blowup

Sequential-to-sequential compiler

W = small Ô(log N) O(log2 N/ log log N) [25]

W = Ω(log2 N) Bandwidth: Ô(1) Bandwidth: Ô(log N) [43]

Runtime: Ô(log N) Runtime: O(log2 N/ log log N) [25]

W = Ω(N ε) Ô(1) Ô(log N) [43]

Parallel-to-sequential compiler

ω(M log N)-parallel O(1) Same as standard ORAM

Parallel-to-parallel compiler

M1+δ-parallel O(log∗ N) Best known: poly log N [7]

for any const δ > 0 Lower bound: Ω(log N)

Beyond the low overhead discussed above, our compiled sequential O-NRAM
has the additional benefit that it allows for an extremely simple prefetching algo-
rithm. In recent work, Yu et al. [49] proposed a dynamic prefetching algorithm
for ORAM, which greatly improved the practical performance of ORAM. We
note that our parallel-to-sequential compiler achieves prefetching essentially for
free: Since the underlying PRAM program will make many parallel memory
accesses to each bank, and since the compiler knows these memory addresses
ahead of time, these memory accesses can automatically be prefetched. We note
that a similar observation was made by Vishkin [42], who suggested leveraging
parallelism for performance improvement by using (compile-time) prefetching in
serial or parallel systems.

“Parallel-to-parallel” compiler. Finally, we consider oblivious simulation in
the parallel setting. We show that for any parallel program executing in t parallel
steps with P = M1+δ processors, we can obliviously simulate the program on a
Network PRAM with P ′ = O(P/ log∗ P) processors, running in O(t log∗ P) time,
thereby achieving O(log∗ P) blowup in parallel time and bandwidth, and optimal
work. In comparison, the best known OPRAM scheme has poly log N blowup in
parallel time and bandwidth. The compiler works when the underlying program
is in the EREW, CREW, common CRCW or arbitrary CRCW PRAM model.
The resulting compiled program is in the arbitrary CRCW PRAM model.

342 D. Dachman-Soled et al.

1.4 Technical Highlights

Our most interesting technique is for the parallel-to-parallel compiler. We achieve
this through an intermediate stepping stone where we first construct a parallel-
to-sequential compiler (which may be of independent interest).

At a high level, the idea is to assign each virtual address to a pseudorandom
memory bank (and this assignment stays the same during the entire execution).
Suppose that a program is sufficiently parallel such that it always makes mem-
ory requests in P = ω(M log N)-sized batches. For now, assume that all memory
requests within a batch operate on distinct virtual addresses – if not we can lever-
age a hash table to suppress duplicates, using an additional “scratch” bank as
the CPU’s working memory. Then, clearly each memory bank will in expecta-
tion serve P/M requests for each batch. With a simple Chernoff bound, we can
conclude that each memory bank will serve O(P/M) requests for each batch,
except with negligible probability. In a sequential setting, we can easily achieve
O(1) bandwidth and runtime blowup: for each batch of memory requests, the
CPU will sequentially access each bank O(P/M) number of times, padding with
dummy accesses if necessary (see Sect. 4).

However, additional difficulties arise when we try to execute the above algo-
rithm in parallel. In each step, there is a batch of P memory requests, one coming
from each processor. However, each processor cannot perform its own memory
request, since the adversary can observe which processor is talking to which
memory bank and can detect duplicates (note this problem did not exist in the
sequential case since there was only one processor). Instead, we wish to

1. hash the memory requests into buckets according to their corresponding banks
while suppressing duplicates; and

2. pad the number of accesses to each bank to a worst-case maximum – as men-
tioned earlier, if we suppressed duplicate addresses, each bank has O(P/M)
requests with probability 1 − negl(N).

At this point, we can assign processors to the memory requests in a round-
robin manner, such that which processor accesses which bank is “fixed”. Now,
to achieve the above two tasks in O(log∗ P) parallel time, we need to employ
non-trivial parallel algorithms for “colored compaction” [4] and “static hash-
ing” [5,17], for the arbitrary CRCW PRAM model, while using a scratch bank
as working memory (see Sect. 5).

1.5 Related Work

Oblivious RAM (ORAM) was first proposed in a seminal work by Goldreich
and Ostrovsky [18,19] where they laid a vision of employing an ORAM-capable
secure processor to protect software against piracy. In their work, Goldreich
and Ostrovsky showed both a poly-logarithmic upper-bound (commonly referred
to as the hierarchical ORAM framework) and a logarithmic lower-bound for
ORAM—both under constant CPU cache. Goldreich and Ostrovsky’s hierarchi-
cal construction was improved in several subsequent works [6,20,22,25,33,45–47].

Oblivious Network RAM and Leveraging Parallelism 343

Recently, Shi et al. proposed a new, tree-based paradigm for constructing
ORAMs [36], thus leading to several new constructions that are simple and
practically efficient [8,13,39,43]. Notably, Circuit ORAM [43] partially resolved
the tightness of the Goldreich-Ostrovsky lower bound, by showing that certain
stronger interpretations of their lower bound are indeed tight.

Theoretically, the best known ORAM scheme (with constant CPU cache) for
small O(log N)-sized memory words1 is a construction by Kushilevitz et al. [25],
achieving O(log2 N/ log log N) bandwidth and runtime blowup. Path ORAM
(variant with O(1) CPU cache [44]) and Circuit ORAM can achieve better bounds
for bigger memory words. For example, Circuit ORAM achieves O(log N)ω(1)
bandwidth blowup for a word size of Ω(log2 N) bits; and for O(log N)ω(1) run-
time blowup for a memory word size of N ε bits where 0 < ε < 1 is any constant
within the specified range.

ORAMs with larger CPU cache sizes (caching up to Nα words for any con-
stant 0 < α < 1) have been suggested for cloud storage outsourcing applica-
tions [20,38,47]. In this setting, Goodrich and Mitzenmacher [20] first showed
how to achieve O(log N) bandwidth and runtime blowup.

Other than secure processors and cloud outsourcing, ORAM is also noted as a
key primitive for scaling secure multi-party computation to big data [23,26,43,44].
In this context, Wang et al. [43,44] pointed out that the most relevant ORAM
metric should be the circuit size rather than the traditionally considered band-
width metrics. In the secure computation context, Lu and Ostrovsky [27] proposed
a two-server ORAM scheme that achieves O(log N) runtime blowup. Similarly,
ORAM can also be applied in other RAM-model cryptographic primitives such as
(reusable) Garbled RAM [14–16,28,29].

Goodrich and Mitzenmacher [20] and Williams et al. [48] observed that com-
putational tasks with inherent parallelism can be transformed into efficient,
oblivious counterparts in the traditional ORAM setting—but our techniques
apply to the NRAM model of computation. Finally, Oblivious RAM has been
implemented in outsourced storage settings [37,38,45,47,48], on secure proces-
sors [9,11,12,30,31,35], and atop secure multiparty computation [23,43,44].

Comparison of our parallel-to-parallel compiler with the work of [7].
Recently, Boyle, Chung and Pass [7] proposed Oblivious Parallel RAM, and
presented a construction for oblivious simulation of PRAMs in the PRAM model.
Our result is incomparable to their result: Our security model is weaker than
theirs since we assume obliviousness within each memory bank comes for free; on
the other hand, we obtain far better asymptotical and concrete performance. We
next elaborate further on the differences in the results and techniques of the two
works. Reference [7] provide a compiler from the EREW, CREW and CRCW
PRAM models to the EREW PRAM model. The security notion achieved by
their compiler provides security against adversaries who see the entire access
pattern, as in standard oblivious RAM. However, their compiled program incurs
a poly log overhead in both the parallel time and total work. Our compiler is
a compiler from the EREW, CREW, common CRCW and arbitrary CRCW
1 Every memory word must be large enough to store the logical memory address.

344 D. Dachman-Soled et al.

PRAM models to the arbitrary CRCW PRAM model and the security notion we
achieve is the weaker notion of oblivious network RAM, which protects against
adversaries who see the bank being accessed, but not the offset within the bank.
On the other hand, our compiled program incurs only a log∗ time overhead and
its work is asymptotically the same as the underlying PRAM. Both our work
and the work of [7] leverage previous results and techniques from the parallel
computing literature. However, our techniques are primarily from the CRCW
PRAM literature, while [7] use primarily techniques from the low-depth circuit
literature, such as highly efficient sorting networks.

2 Definitions

2.1 Background: Random Access Machines (RAM)

We consider RAM programs to be interactive stateful systems 〈Π, state,D〉,
consisting of a memory array D of N memory words, a CPU state denoted
state, and a next instruction function Π which given the current CPU state and
a value rdata read from memory, outputs the next instruction I and an updated
CPU state denoted state′:

(state′, I) ← Π(state, rdata)

Each instruction I is of the form I = (op, . . .), where op is called the op-
code whose value is read, write, or stop. The initial CPU state is set to
(start, ∗, stateinit). Upon input x, the RAM machine executes, computes output
z and terminates. CPU state is reset to (start, ∗, stateinit) when the computation
on the current input terminates.

On input x, the execution of the RAM proceeds as follows. If state =
(start, ∗, stateinit), set state := (start, x, stateinit), and rdata := 0. Now, repeat
the doNext() till termination, where doNext() is defined as below:

doNext()

1. Compute (I, state′) = Π(state, rdata). Set state := state′.
2. If I = (stop, z) then terminate with output z.
3. If I = (write, vaddr,wdata) then set D[vaddr] := wdata.
4. If I = (read, vaddr,⊥) then set rdata := D[vaddr].

2.2 Network RAM (NRAM)

Nework RAM. A Network RAM (NRAM) is the same as a regular RAM,
except that memory is distributed across multiple banks, Bank1, . . . ,BankM . In
an NRAM, every virtual address vaddr can be written in the format vaddr :=
(m, offset), where m ∈ [M] is the bank identifier, and offset is the offset within
the Bankm .

Oblivious Network RAM and Leveraging Parallelism 345

Otherwise, the definition of NRAM is identical to the definition of RAM.

Probabilistic NRAM. Similar to the Probabilistic RAM notion formalized by
Goldreich and Ostrovsky [18,19], we additionally define a Probabilistic NRAM. A
probablistic NRAM is an NRAM whose CPU state is initialized with randomness
ρ (that is unobservable to the adversary). If an NRAM is deterministic, we can
simply assume that the CPU’s initial randomness is fixed to ρ := 0. Therefore, a
deterministic NRAM can be considered as a special case of a Probabilistic NRAM.

Outcome of execution. Throughout the paper, we use the notation RAM(x)
or NRAM(x) to denote the outcome of executing a RAM or NRAM on input x.
Similarly, for a Probabilistic NRAM, we use the notation NRAMρ(x) to denote
the outcome of executing on input x, when the CPU’s initial randomness is ρ.

2.3 Oblivious Network RAM (O-NRAM)

Observable traces. To define Oblivious Network RAM, we need to first specify
which part of the memory trace an adversary is allowed to observe during a
program’s execution. As mentioned earlier in the introduction, each memory
bank has trusted logic for encrypting and decrypting the memory offset. The
offset within a bank is transferred in encrypted format on the memory bus.
Hence, for each memory access op := “read” or op := “write” to virtual address
vaddr := (m, offset), the adversary observes only the op-code op and the bank
identifier m, but not the offset within the bank.

Definition 1 (Observable traces). For a probabilistic NRAM, we use the
notation Trρ(NRAM, x) to denote its observable traces upon input x, and ini-
tial CPU randomness ρ:

Trρ(NRAM, x) := {(op1,m1), (op2,m2), . . . , (opT ,mT)}
where T is the total execution time of the NRAM, and (opi,mi) is the op-code
and memory bank identifier during step i ∈ [T] of the execution.

We remark that one can consider a slight variant model where the opcodes
{opi}i∈[T] are also hidden from the adversary. Since to hide whether the opera-
tion is a read or write, one can simply perform one read and one write for each
operation – the differences between these two models are insignificant for techni-
cal purposes. Therefore, in this paper, we consider the model whose observable
traces are defined in Definition 1.

Oblivious Network RAM. Intuitively, an NRAM is said to be oblivious, if for
any two inputs x0 and x1 resulting in the same execution time, their observable
memory traces are computationally indistinguishable to an adversary.

For simplicity, we define obliviousness for NRAMs that run in deterministic
T time regardless of the inputs and the CPU’s initial randomness. One can also
think of T as the worst-case runtime, and that the program is always padded
to the worst-case execution time. Oblivious NRAM can also be similarly defined
when its runtime is randomized – however we omit the definition in this paper.

346 D. Dachman-Soled et al.

Definition 2 (Oblivious Network RAM). Consider an NRAM that runs in
deterministic time T = poly(λ). The NRAM is said to be computationally oblivi-
ous if no polynomial-time adversary A can win the following security game with
more than 1

2 + negl(λ) probability. Similarly, the NRAM is said to be statisti-
cally oblivious if no adversary, even computationally unbounded ones, can win
the following game with more than 1

2 + negl(λ) probability.

– A chooses two inputs x0 and x1 and submits them to a challenger.
– The challenger selects ρ ∈ {0, 1}λ, and a random bit b ∈ {0, 1}. The challenger

executes NRAM with initial randomness ρ and input xb for exactly T steps,
and gives the adversary Trρ(NRAM, xb).

– A outputs a guess b′ of b, and wins the game if b′ = b.

2.4 Notion of Simulation

Definition 3 (Simulation). We say that a deterministic RAM := 〈Π, state,D〉
can be correctly simulated by another probabilistic NRAM := 〈Π ′, state′,D′〉 if for
any input x for any initial CPU randomness ρ, RAM(x) = NRAMρ(x). Moreover,
if NRAM is oblivious, we say that NRAM is an oblivious simulation of RAM.

Below, we explain some subtleties regarding the model, and define the metrics
for oblivious simulation.

Uniform vs. non-uniform memory word size. The O-NRAM simulation
can either employ uniform memory word size or non-uniform memory word size.
For example, the non-uniform word size model has been employed for recursion-
based ORAMs in the literature [39,43]. In particular, Stefanov et al. describe a
parametrization trick where they use a smaller word size for position map levels
of the recursion [39].

Metrics for simulation overhead. In the ORAM literature, several perfor-
mance metrics have been considered. To avoid confusion, we now explicitly define
two metrics that we will adopt later. If an NRAM correctly simulates a RAM, we
can quantify the overhead of the NRAM using the following metrics.

– Runtime blowup. If a RAM runs in time T , and its oblivious simulation
runs in time T ′, then the runtime blowup is defined to be T ′/T . This notion
is adopted by Goldreich and Ostrovsky in their original ORAM paper [18,19].

– Bandwidth blowup. If a RAM transfers Y bits between the CPU and mem-
ory, and its oblivious simulation transfers Y ′ bits, then the bandwidth blowup
is defined to be Y ′/Y . Clearly, if the oblivious simulation is in a uniform word
size model, then bandwidth blowup is equivalent to runtime blowup. However,
bandwidth blowup may not be equal to runtime blowup in a non-uniform word
size model.

In this paper, we consider oblivious simulation of RAMs in the NRAM model,
and we focus on the case when the Oblivious NRAM has only O(1) words of
CPU cache.

Oblivious Network RAM and Leveraging Parallelism 347

3 Sequential Oblivious Simulation

We first consider oblivious (sequential) simulation of arbitrary RAMs in the
NRAM model. The detailed proofs and algorithms for this section will appear in
the full version. Most of the techniques used here (with the exception of how to
obliviously store the position map in a separate bank) are inspired by the work
on practical ORAM by Stefanov, Shi, and Song [38]. Here we describe how we
have adjusted their techniques to fit the Network RAM model.

Let M denote the number of memory banks in our NRAM, where each bank
has O(N/M) capacity. For simplicity we first describe a simple Oblivious NRAM
with O(M) CPU private cache. In the beginning, every block i ∈ [N] is assigned
randomly to a bank j ∈ [M]. We also maintain locally (i) a position map that
maps every block to each bank; (ii) a cache of M queues, which are initially
empty. To read/write a block i:

– We retrieve its bank number x from the position map;
– We first look for block i in the local queue x. If it is not there, we send a

dummy memory request to a random location. Otherwise we read and then
remove block i from the memory bank x;

– We pick a fresh random memory bank x′, and we push block i to the queue
x′ in the local cache.

To avoid the overflow of local queues, we use a background eviction technique
from Stefanov, Shi, and Song [38], which ensures that the local queues do not
grow too much, while still maintaining obliviousness. Although storing the posi-
tion map takes O(N log M) bits of CPU cache, in the full version we describe
a recursion technique [36,38] that can reduce this storage to O(1). Finally, to
further reduce the space from O(M) to O(1), we can store the CPU cache in a
separate memory bank. However, this is challenging, as indicated below.

Main challenge. Placing the cache in a special memory bank to achieve con-
stant client storage might violate obliviousness, since different operations to the
cache might have different memory traces. The key challenge is to design a special
data structure to store the cache inside the memory bank that ensures constant
worst-case cost for each query—specifically, each queue in the eviction cache
must support pop, push, ReadAndRm operations. Partly to design this special
data structure, we modified the analysis of the deamortized Cuckoo hash table
construction [2] to achieve negligible failure probability.

We defer details of our algorithms and techniques to the full version and next
state our main theorem for our sequential-to-sequential compiler.

Theorem 1 (O-NRAM simulation of arbitrary RAM programs). Any
N -word RAM with a word size of W = Ω(log2 N) bits can be simulated by an
Oblivious NRAM (with non-uniform word sizes) that consumes O(W) bits of
CPU cache, and with O(M) memory banks each of O(W ·(M +N/M +Nδ)) bits
in size. Further, the oblivious NRAM simulation incurs Ô(1) bandwidth blowup
and Ô(log N) run-time blowup.

348 D. Dachman-Soled et al.

4 Sequential Oblivious Simulation of Parallel Programs

We are eventually interested in parallel oblivious simulation of parallel programs
(Sect. 5). As a stepping stone, we first consider sequential oblivious simulation
of parallel programs. However, we emphasize that the results in this section can
be of independent interest. In particular, one way to interpret these results is
that “parallelism facilitates obliviousness”. Specifically, if a program exhibits a
sufficient degree of parallelism, then this program can be made oblivious at only
const overhead in the Network RAM model. The intuition for why this is so, is
that instructions in each parallel time step can be executed in any order. Since
subsequences of instructions can be executed in an arbitrary order during the
simulation, many sequences of memory requests can be mapped to the same
access pattern, and thus the request sequence is partially obfuscated.

4.1 Parallel RAM

To formally characterize what it means for a program to exhibit a sufficient
degree of parallelism, we will formally define a P -parallel RAM. In this section,
the reader should think of parallelism as a property of the program to be simu-
lated – we actually characterize costs assuming both the non-oblivious and the
oblivious programs are executed on a sequential machine (different from Sect. 5).

An P -parallel RAM machine is the same as a RAM machine, except the next
instruction function outputs P instructions which can be executed in parallel.

Definition 4 (P -parallel RAM). An P -Parallel RAM is a RAM which has
a next instruction function Π = Π1, . . . ,ΠP such that on input (state =
state1|| · · · ||stateP , rdata = rdata1|| · · · ||rdataP), Π outputs P instructions
(I1, . . . , IP) and P updated states state′

1, . . . , state
′
P such that for p ∈ [P],

(Ip , state′
p) = Πp(statep , rdatap). The instructions I1, . . . , IP satisfy one of the fol-

lowing:

– All of I1, . . . , IP are set to (stop, z) (with the same z).
– All of I1, . . . , IP are either of the form. (read, vaddr,⊥) or (write, vaddr,wdata).

Finally, the state state has size at most O(P).

As a warmup exercise, we will first consider a special case where in each
parallel step, the memory requests made by each processor in the underlying
P -parallel RAM have distinct addresses—we refer to this model as a restricted
PRAM. Later in Sect. 4.3, we will extend the result to the (arbitrary) CRCW
PRAM case. Thus, our final compiler works when the underlying P -parallel
RAM is in the EREW, CREW, common CRCW or arbitrary CRCW PRAM
model.

Definition 5 (Restricted P -parallel RAM). For a P -parallel RAM denoted
PRAM := 〈D, state1, . . ., stateP , Π1, . . . ΠP 〉, if every batch of instructions
I1, . . . , IP have unique vaddr’s, we say that PRAM is a restricted P -parallel RAM.

Oblivious Network RAM and Leveraging Parallelism 349

4.2 Warmup: Restricted Parallel RAM to Oblivious NRAM

Our goal is to compile any P -parallel RAM (not necessarily restricted), into
an efficient O-NRAM. As an intermediate step that facilitates presentation, we
begin with a basic construction of O-NRAM from any restricted, parallel RAM.
In the following section, we extend to a construction of O-NRAM from any
parallel RAM (not necessarily restricted).

Let PRAM := 〈D, state1, . . . , stateP ,Π1, . . . ΠP 〉 be a restricted P -Parallel
RAM, for P = ω(M log N). We now present an O-NRAM simulation of PRAM
that requires M + 1 memory banks, each with O(N/M + P) physical memory,
where N is the database size.

Setup: Pseudorandomly assign memory words to banks. The setup phase
takes the initial states of the PRAM, including the memory array D and the
initial CPU state, and compiles them into the initial states of the Oblivious
NRAM denoted ONRAM.

To do this, the setup algorithm chooses a secret key K, and sets
ONRAM.state = PRAM.state||K. Each memory bank of ONRAM will be initial-
ized as a Cuckoo hash table. Each memory word in the PRAM’s initial memory
array D will be inserted into the bank numbered (PRFK(vaddr) mod M) + 1,
where vaddr is the virtual address of the word in PRAM. Note that the ONRAM’s
(M +1)-th memory bank is reserved as a scratch bank whose usage will become
clear later.

Simulating each step of the PRAM’s execution. Each doNext() operation
of the PRAM will be compiled into a sequence of instructions of the ONRAM.
We now describe how this compilation works. Our presentation focuses on the
case when the next instruction’s op-codes are reads or writes. Wait or stop
instructions are left unmodified during the compilation.

As shown in Fig. 1, for each doNext instruction, we first compute the batch
of instructions I1, . . . , IP , by evaluating the P parallel next-instruction circuits
Π1, . . . ,ΠP . This results in P parallel read or write memory operations. This
batch of P memory operations (whose memory addresses are guaranteed to be
distinct in the restricted parallel RAM model) will then be served using the
subroutine Access.

We now elaborate on the Access subroutine. Each batch will have P =
ω(M log N) memory operations whose virtual addresses are distinct. Since each
virtual address is randomly assigned to one of the M banks, in expectation, each
bank will get P/M = ω(log N) hits. Using a balls and bins analysis, we show that

Fig. 1. Oblivious simulation of each step of the restricted parallel RAM

350 D. Dachman-Soled et al.

the number of hits for each bank is highly concentrated around the expectation.
In fact, the probability of any constant factor, multiplicative deviation from the
expectation is negligible in N . Therefore, we choose max := 2(P/M) for each
bank, and make precisely max number of accesses to each memory bank. Specif-
ically, the Access algorithm first scans through the batch of P = ω(M log N)
memory operations, and assigns them to M queues, where the m-th queue stores
requests assigned to the m-th memory bank. Then, the Access algorithm sequen-
tially serves the requests to memory banks 1, 2, . . . ,M , padding the number of
accesses to each bank to max. This way, the access patterns to the banks are
guaranteed to be oblivious.

The description of Fig. 2 makes use of M queues with a total size of P =
ω(M log N) words. It is not hard to see that these queues can be stored in an
additional scratch bank of size O(P), incurring only constant number of accesses
to the scratch bank per queue operation. Further, in Fig. 2, the time at which
the queues are accessed, and the number of times they are accessed are not
dependent on input data (notice that Line 7 can be done by linearly scanning
through each queue, incurring a max cost each queue).

Cost analysis. Since max = 2(P/M), in Fig. 2 (see Theorem 2), it is not hard to
see each batch of P = ω(M log N) memory operations will incur Θ(P) accesses
to data banks in total, and Θ(P) accesses to the scratch bank. Therefore, the
ONRAM incurs only a constant factor more total work and bandwidth than the
underlying PRAM.

Fig. 2. Obliviously serving a batch of P memory requests with distinct virtual
addresses.

Oblivious Network RAM and Leveraging Parallelism 351

Theorem 2. Let PRF be a family of pseudorandom functions, and PRAM be a
restricted P -Parallel RAM for P = ω(M log N). Let max := 2(P/M). Then, the
construction described above is an oblivious simulation of PRAM using M banks
each of O(N/M +P) words in size. Moreover, the oblivious simulation performs
total work that is constant factor larger than that of the underlying PRAM.

Proof. Assuming the execution never aborts (Line 6 in Fig. 2), then Theorem 2
follows immediately, since the access pattern is deterministic and independent of
the inputs. Therefore, it suffices to show that the abort happens with negligible
probability on Line 6. This is shown in the following lemma.

Lemma 1. Let max := 2(P/M). For any PRAM and any input x, abort on
Line 6 of Fig. 2 occurs only with negligible probability (over choice of the PRF).

Proof. We first replace PRF with a truly random function f . Note that if we
can prove the lemma for a truly random function, then the same should hold for
PRF, since otherwise we obtain an adversary breaking pseudorandomness.

We argue that the probability that abort occurs on Line 6 of Fig. 2 in a
particular step i of the execution is negligible. By taking a union bound over the
(polynomial number of) steps of the execution, the lemma follows.

To upper bound the probability of abort in some step i, consider a thought
experiment where we change the order of sampling the random variables: We
run PRAM(x) to precompute all the PRAM’s instructions up to and including
the i-th step of the execution (independently of f), obtaining P distinct virtual
addresses, and only then choose the outputs of the random function f on the
fly. That is, when each virtual memory address vaddrp in step i is serviced,
we choose m := f(vaddrp) uniformly and independently at random. Thus, in
step i of the execution, there are P distinct virtual addresses (i.e., balls) to be
thrown into M memory banks (i.e., bins). Due to standard Chernoff bounds, for
P = ω(M log N), we have P/M = ω(log N) and so the probability that there
exists a bin whose load exceeds 2(P/M) is N−ω(1), which is negligible in N .

We note that in order for the above argument to hold, the input x cannot be
chosen adaptively, and must be fixed before the PRAM emulation begins.

4.3 Parallel RAM to Oblivious NRAM

Use a hash table to suppress duplicates. In Sect. 4.2, we describe how to
obliviously simulate a restricted parallel-RAM in the NRAM model. We now
generalize this result to support any P -parallel RAM, not necessarily restricted
ones. The difference is that for a generic P -parallel RAM, each batch of P mem-
ory operations generated by the next-instruction circuit need not have distinct
virtual addresses. For simplicity, imagine that the entire batch of memory opera-
tions are reads. In the extreme case, if all P = ω(M log N) operations correspond
to the same virtual address residing in bank m, then the CPU should not read

352 D. Dachman-Soled et al.

Fig. 3. Obliviously serving a batch of P memory request, not necessarily with distinct
virtual addresses.

bank m as many as P number of times. To address this issue, we rely on an addi-
tional Cuckoo hash table [34] denoted HTable to suppress the duplicate requests
(see Fig. 3, and the doNext function is defined the same way as Sect. 4.2).

The HTable will be stored in the scratch bank. We can employ a standard
Cuckoo hash table that need not be deamortized. As shown in Fig. 3, we need
to support hash table insertions, lookups, and moreover, we need to be able
to iterate through the hash table. We now make a few remarks important for
ensuring obliviousness. Line 1 of Fig. 3 performs P = ω(M log N) number of
insertions into the Cuckoo hash table. Due to standard Cuckoo hash analysis,
we know that these insertions will take O(P) total time except with negligible
probability. Therefore, to execute Line 1 obliviously, we simply need to pad with
dummy insertions up to some max′ = c · P , for an appropriate constant c.

Next, we describe how to execute the loop at Line 2 obliviously. The total size
of the Cuckoo hash table is O(P). To iterate over the hash table, we simply make
a linear scan through the hash table. Some entries will correspond to dummy
elements. When iterating over these dummy elements, we simply perform dummy
operations for the for loop. Finally, observe that Line 16 performs lookups to the
Cuckoo hash table, and each hash table lookup requires worst-case O(1) accesses
to the scratch bank.

Oblivious Network RAM and Leveraging Parallelism 353

Cost analysis. Since max = 2(P/M) (see Theorem 2), it is not hard to see
each batch of P = ω(M log N) memory operations will incur O(P) accesses to
data banks in total, and O(P) accesses to the scratch bank. Note that this takes
into account the fact that Line 1 and the for-loop starting at Line 2 are padded
with dummy accesses. Therefore, the ONRAM incurs only a constant factor more
total work and bandwidth than the underlying PRAM.

Theorem 3. Let max = 2(P/M). Assume that PRF is a secure pseudorandom
function, and PRAM is a P -Parallel RAM for P = ω(M log N). Then, the above
construction obliviously simulates PRAM in the NRAM model, incurring only a
constant factor blowup in total work and bandwidth consumption.

Proof. (sketch) Similar to the proof of Theorem 2, except that now we have
the additional hash table. Note that obliviousness still holds, since, as discussed
above, each batch of P memory requests requires O(P) accesses to the scratch
bank, and this can be padded with dummy accesses to ensure the number of
scratch bank accesses remains the same in each execution.

5 Parallel Oblivious Simulation of Parallel Programs

In the previous section, we considered sequential oblivious simulation of pro-
grams that exhibit parallelism – there, we considered parallelism as being a prop-
erty of the program which will actually be executed on a sequential machine. In
this section we consider parallel and oblivious simulations of parallel programs.
Here, the programs will actually be executed on a parallel machine, and we con-
sider classical metrics such as parallel runtime and total work as in the parallel
algorithms literature.

We introduce the Network PRAM model – informally, this is a Network
RAM with parallel processing capability. Our goal in this section will be to
compile a PRAM into an Oblivious Network PRAM (O-NPRAM), a.k.a., the
“parallel-to-parallel compiler”.

Our O-NPRAM is the Network RAM analog of the Oblivious Parallel RAM
(OPRAM) model by Boyle et al. [7]. Goldreich and Ostrovsky’s logarithmic
ORAM lower bound (in the sequential execution model) directly implies the fol-
lowing lower bound for standard OPRAM [7]: Let PRAM be an arbitrary PRAM
with P processors running in parallel time t. Then, any P -parallel OPRAM sim-
ulating PRAM must incur Ω(t log N) parallel time. Clearly, OPRAM would also
work in our Network RAM model albeit not the most efficient, since it is not
exploiting the fact that the addresses in each bank are inherently oblivious. In
this section, we show how to perform oblivious parallel simulation of “sufficiently
parallel” programs in the Network RAM model, incurring only O(log∗ N) blowup
in parallel runtime, and achieving optimal total work. Our techniques make use
of fascinating results in the parallel algorithms literature [4,5,24].

354 D. Dachman-Soled et al.

5.1 Network PRAM (NPRAM) Definitions

Similar to our NRAM definition, an NPRAM is much the same as a stan-
dard PRAM, except that (1) memory is distributed across multiple banks,
Bank1, . . . ,BankM ; and (2) every virtual address vaddr can be written in the
format vaddr := (m, offset), where m is the bank identifier, and offset is the
offset within the Bankm. We use the notation P -parallel NPRAM to denote an
NPRAM with P parallel processors, each with O(1) words of cache. If processors
are initialized with secret randomness unobservable to the adversary, we call this
a Probabilistic NPRAM.

Observable traces. In the NPRAM model, we assume that an adversary can
observe the following parts of the memory trace: (1) which processor is making
the request; (2) whether this is a read or write request; and (3) which bank
the request is going to. The adversary is unable to observe the offset within a
memory bank.

Definition 6 (Observable traces for NPRAM). For a probabilistic P -
parallel NPRAM, we use Trρ(NPRAM, x) to denote its observable traces upon input
x, and initial CPU randomness ρ (collective randomness over all processors):

Trρ(NPRAM, x) :=
[(

(op11, m
1
1), . . . , (op

P
1 , mP

1)
)

, . . . ,
(
(op1T , m1

T), . . . , (opP
T , mP

T)
)]

where T is the total parallel execution time of the NPRAM, and
{(op1i ,m

1
i), . . . , (op

P
i ,mP

i)} is of the op-codes and memory bank identifiers for
each processor during parallel step i ∈ [T] of the execution.

Based on the above notion of observable memory trace, an Oblivious NPRAM
can be defined in a similar manner as the notion of O-NRAM (Definition 2).

Metrics. We consider classical metrics adopted in the vast literature on parallel
algorithms, namely, the parallel runtime and the total work. In particular, to
characterize the oblivious simulation overhead, we will consider

– Parallel runtime blowup. The blowup of the parallel runtime comparing
the O-NPRAM and the NPRAM.

– Total work blowup. The blowup of the total work comparing the O-
NPRAM and the NPRAM. If the total work blowup is O(1), we say that
the O-NPRAM achieves optimal total work.

5.2 Construction of Oblivious Network PRAM

Preliminary: colored compaction. The colored compaction problem [4] is
the following:

Given n objects of m different colors, initially placed in a single source
array, move the objects to m different destination arrays, one for each color.
In this paper, we assume that the space for the m destination arrays are
preallocated. We use the notation di to denote the number of objects colored
i for i ∈ [m].

Oblivious Network RAM and Leveraging Parallelism 355

Lemma 2 (Log∗-time parallel algorithm for colored compaction [4]).
There is a constant ε > 0 such that for all given n, m, τ , d1, . . . , dm ∈ N, with
m = O(n1−δ) for arbitrary fixed δ > 0, and τ ≥ log∗ n, there exists a parallel
algorithm (in the arbitrary CRCW PRAM model) for the colored compaction
problem (assuming preallocated destination arrays) with n objects, m colors, and
d1, . . . , dm number of objects for each color, executing in O(τ) time on
n/τ�
processors, consuming O(n +

∑m
i=1 di) space, and succeeding with probability at

least 1 − 2−nε

.

Preliminary: parallel static hashing. We will also rely on a parallel, sta-
tic hashing algorithm [5,24], by Bast and Hagerup. The static parallel hashing
problem takes n elements (possibly with duplicates), and in parallel creates a
hash table of size O(n) of these elements, such that later each element can be
visited in O(1) time. In our setting, we rely on the parallel hashing to suppress
duplicate memory requests. Bast and Hagerup show the following lemma:

Lemma 3 (Log∗-time parallel static hashing [5,24]). There is a constant
ε > 0 such that for all τ ≥ log∗ n, there is a parallel, static hashing algorithm (in
the arbitrary CRCW PRAM model), such that hashing n elements (which need
not be distinct) can be done in O(τ) parallel time, with O(n/τ) processors and
O(n) space, succeeding with 1 − 2−(log n)τ/ log∗ n − 2−nε

probability.

Construction. We now present a construction that allows us to compile a P -
parallel PRAM, where P = M1+δ for any constant δ > 0, into a O(P/ log∗ P)-
parallel Oblivious NPRAM. The resulting NPRAM has O(log∗ P) blowup in
parallel runtime, and is optimal in total amount of work.

In the original P -parallel PRAM, each of the P processors does constant
amount of work in each step. In the oblivious simulation, this can trivially be simu-
lated in O(log∗ P) time with O(P/ log∗ P) processors. Therefore, clearly the key is
how to obliviously fetch a batch ofP memory accesses in parallel withO(P/ log∗ P)
processors, and O(log∗ P) time. We describe such an algorithm in Fig. 4. Using a
scratch bank as working memory, we first call the parallel hashing algorithm to
suppress duplicate memory requests. Next, we call the parallel colored compaction
algorithm to assign memory request to their respective queues – depending on
the destination memory bank. Finally, we make these memory accesses, including
dummy ones, in parallel.

Theorem 4. Let PRF be a secure pseudorandom function, let M = N ε for any
constant ε > 0. Let PRAM be a P -parallel RAM for P = M1+δ, for constant
δ > 0. Then, there exists an Oblivious NPRAM simulation of PRAM with the
following properties:

– The Oblivious NPRAM consumes M banks each of which O(N/M +P) words
in size.

– If the underlying PRAM executes in t parallel steps, then the Oblivious
NPRAM executes in O(t log∗ P) parallel steps utilizing O(P/ log∗ P) proces-
sors. We also say that the NPRAM has O(log∗ P) blowup in parallel runtime.

356 D. Dachman-Soled et al.

Fig. 4. Obliviously serving a batch of P memory requests using P ′ :=
O(P/ log∗ P) processors in O(log∗ P) time. In Steps 1, 2, and 3, each processor
will make exactly one access to the scratch bank in each parallel execution step – even
if the processor is idle in this step, it makes a dummy access to the scratch bank. Steps
1 through 3are always padded to the worst-case parallel runtime.

– The total work of the Oblivious NPRAM is asymptotically the same as the
underlying PRAM.

Proof. We note that our underlying PRAM can be in the EREW, CREW, com-
mon CRCW or arbitrary CRCW models. Our compiled oblivious NPRAM is in
the arbitrary CRCW model.

We now prove security and costs separately.

Security proof. Observe that Steps 1, 2, and 3 in Fig. 4 make accesses only to
the scratch bank. We make sure that each processor will make exactly one access
to the scratch bank in every parallel step – even if the processor is idle in this
step, it makes a dummy access. Further, Steps 1 through 3 are also padded to
the worst-case running time. Therefore, the observable memory traces of Steps
1 through 3 are perfectly simulatable without knowing secret inputs.

For Step 4 of the algorithm, since each of the M queues are of fixed length
max, and each element is assigned to each processor in a round-robin manner,
the bank number each processor will access is clearly independent of any secret
inputs, and can be perfectly simulated (recall that dummy request incur accesses
to the corresponding banks as well).

Oblivious Network RAM and Leveraging Parallelism 357

Costs. First, due to Lemma 1, each of the M queues will get at most 2(P/M)
memory requests with probability 1 − negl(N). This part of the argument is the
same as Sect. 4. Now, observe that the parallel runtime for Steps 2 and 4 are
clearly O(log∗ P) with O(P/ log∗ P) processors. Based on Lemmas 2 and 3, Steps
1 and 3 can be executed with a worst-case time of O(log∗ P) on O(P/ log∗ P)
processors as well. We note that the conditions M = N ε and P = M1+δ ensure
negl(N) failure probability.

References

1. Intel SGX for dummies (intel SGX design objectives). https://software.intel.com/
en-us/blogs/2013/09/26/protecting-application-secrets-with-intel-sgx

2. Arbitman, Y., Naor, M., Segev, G.: De-amortized cuckoo hashing: provable worst-
case performance and experimental results. In: Albers, S., Marchetti-Spaccamela,
A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol.
5555, pp. 107–118. Springer, Heidelberg (2009)

3. Bajaj, S., Sion, R.: Trusteddb: a trusted hardware-based database with privacy
and data confidentiality. IEEE Trans. Knowl. Data Eng. 26(3), 752–765 (2014)

4. Bast, H., Hagerup, T.: Fast parallel space allocation, estimation, and integer sort-
ing. Inf. Comput. 123(1), 72–110 (1995)

5. Bast, H., Hagerup, T.: Fast and reliable parallel hashing. In: SPAA, pp. 50–61
(1991)

6. Boneh, D., Mazieres, D., Popa, R.A.: Remote oblivious storage: making oblivious
RAM practical (2011). http://dspace.mit.edu/bitstream/handle/1721.1/62006/
MIT-CSAIL-TR-2011-018.pdf

7. Boyle, E., Chung, K.-M., Pass, R.: Oblivious parallel RAM. http://eprint.iacr.org/
2014/594.pdf

8. Chung, K.-M., Liu, Z., Pass, R.: Statistically-secure oram with Õ(log2 n) overhead.
CoRR, abs/1307.3699 (2013)

9. Fletcher, C.W., van Dijk, M., Devadas, S.: A secure processor architecture for
encrypted computation on untrusted programs. In: STC (2012)

10. Fletcher, C.W., Ren, L., Kwon, A., Van Dijk, M., Stefanov, E., Devadas, S.: Tiny
ORAM: a low-latency, low-area hardware ORAM controller with integrity verifi-
cation

11. Fletcher, C.W., Ren, L., Kwon, A., van Dijk, M., Stefanov, E., Devadas, S.: RAW
path ORAM: a low-latency, low-area hardware ORAM controller with integrity
verification. IACR Cryptology ePrint Archive 2014:431 (2014)

12. Fletcher, C.W., Ren, L., Yu, X., van Dijk, M., Khan, O., Devadas, S.: Suppressing
the oblivious RAM timing channel while making information leakage and program
efficiency trade-offs. In: HPCA, pp. 213–224 (2014)

13. Gentry, C., Goldman, K.A., Halevi, S., Julta, C., Raykova, M., Wichs, D.: Opti-
mizing ORAM and using it efficiently for secure computation. In: De Cristofaro,
E., Wright, M. (eds.) PETS 2013. LNCS, vol. 7981, pp. 1–18. Springer, Heidelberg
(2013)

14. Gentry, C., Halevi, S., Lu, S., Ostrovsky, R., Raykova, M., Wichs, D.: Garbled
RAM revisited. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS,
vol. 8441, pp. 405–422. Springer, Heidelberg (2014)

15. Gentry, C., Halevi, S., Raykova, M., Wichs, D.: Garbled RAM revisited, part i.
Cryptology ePrint Archive, Report 2014/082 (2014). http://eprint.iacr.org/

https://software.intel.com/en-us/blogs/2013/09/26/protecting-application-secrets-with-intel-sgx
https://software.intel.com/en-us/blogs/2013/09/26/protecting-application-secrets-with-intel-sgx
http://dspace.mit.edu/bitstream/handle/1721.1/62006/MIT-CSAIL-TR-2011-018.pdf
http://dspace.mit.edu/bitstream/handle/1721.1/62006/MIT-CSAIL-TR-2011-018.pdf
http://eprint.iacr.org/2014/594.pdf
http://eprint.iacr.org/2014/594.pdf
http://eprint.iacr.org/

358 D. Dachman-Soled et al.

16. Gentry, C., Halevi, S., Raykova, M., Wichs, D.: Outsourcing private RAM compu-
tation. IACR Cryptology ePrint Archive 2014:148 (2014)

17. Gil, J., Matias, Y., Vishkin, U.: Towards a theory of nearly constant time paral-
lel algorithms. In: 32nd Annual Symposium on Foundations of Computer Science
(FOCS), pp. 698–710 (1991)

18. Goldreich, O.: Towards a theory of software protection and simulation by oblivious
RAMs. In: ACM Symposium on Theory of Computing (STOC) (1987)

19. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious
RAMs. J. ACM 43, 431–473 (1996)

20. Goodrich, M.T., Mitzenmacher, M.: Privacy-preserving access of outsourced data
via oblivious RAM simulation. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP
2011, Part II. LNCS, vol. 6756, pp. 576–587. Springer, Heidelberg (2011)

21. Goodrich, M.T., Mitzenmacher, M., Ohrimenko, O., Tamassia, R.: Practical obliv-
ious storage. In: ACM Conference on Data and Application Security and Privacy
(CODASPY) (2012)

22. Goodrich, M.T., Mitzenmacher, M., Ohrimenko, O., Tamassia, R.: Privacy-
preserving group data access via stateless oblivious RAM simulation. In: SODA
(2012)

23. Dov Gordon, S., Katz, J., Kolesnikov, V., Krell, F., Malkin, T., Raykova, M.,
Vahlis, Y.: Secure two-party computation in sublinear (amortized) time. In: ACM
CCS (2012)

24. Hagerup, T.: The log-star revolution. In: Finkel, A., Jantzen, M. (eds.) STACS
1992. LNCS, vol. 577, pp. 259–278. Springer, Heidelberg (1992)

25. Kushilevitz, E., Lu, S., Ostrovsky, R.: On the (in)security of hash-based oblivious
RAM and a new balancing scheme. In: SODA (2012)

26. Liu, C., Huang, Y., Shi, E., Katz, J., Hicks, M.: Automating efficient ram-model
secure computation. In: IEEE S & P. IEEE Computer Society (2014)

27. Lu, S., Ostrovsky, R.: Distributed oblivious RAM for secure two-party compu-
tation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 377–396. Springer,
Heidelberg (2013)

28. Lu, S., Ostrovsky, R.: How to garble RAM programs? In: Johansson, T., Nguyen,
P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 719–734. Springer, Heidel-
berg (2013)

29. Lu, S., Ostrovsky, R.: Garbled RAM revisited, part ii. Cryptology ePrint Archive,
Report 2014/083 (2014). http://eprint.iacr.org/

30. Maas, M., Love, E., Stefanov, E., Tiwari, M., Shi, E., Asanovic, K., Kubiatowicz,
J., Song, D.: Phantom: practical oblivious computation in a secure processor. In:
CCS (2013)

31. Maas, M., Love, E., Stefanov, E., Tiwari, M., Shi, E., Asanovic, K., Kubiatowicz,
J., Song, D.: A high-performance oblivious RAM controller on the convey HC-2ex
heterogeneous computing platform. In: Workshop on the Intersections of Computer
Architecture and Reconfigurable Logic (CARL) (2013)

32. Mehlhorn, K., Vishkin, U.: Randomized and deterministic simulations of prams by
parallel machines with restricted granularity of parallel memories. Acta Inf. 21,
339–374 (1984)

33. Ostrovsky, R., Shoup, V.: Private information storage (extended abstract). In:
ACM Symposium on Theory of Computing (STOC) (1997)

34. Pagh, R., Rodler, F.F.: Cuckoo hashing. J. Algorithms 51(2), 122–144 (2004)
35. Ren, L., Yu, X., Fletcher, C.W., van Dijk, M., Devadas, S.: Design space exploration

and optimization of path oblivious RAM in secure processors. In: ISCA, pp. 571–
582 (2013)

http://eprint.iacr.org/

Oblivious Network RAM and Leveraging Parallelism 359

36. Shi, E., Chan, T.-H.H., Stefanov, E., Li, M.: Oblivious RAM with O((logN)3)
worst-case cost. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol.
7073, pp. 197–214. Springer, Heidelberg (2011)

37. Stefanov, E., Shi, E.: Oblivistore: high performance oblivious cloud storage. In:
IEEE Symposium on Security and Privacy (S & P) (2013)

38. Stefanov, E., Shi, E., Song, D.: Towards practical oblivious RAM. In: NDSS (2012)
39. Stefanov, E., van Dijk, M., Shi, E., Hubert Chan, T.-H., Fletcher, C., Ren, L., Yu,

X., Devadas, S.: Path ORAM: an extremely simple oblivious RAM protocol. In:
ACM CCS (2013)

40. Edward Suh, G., Clarke, D., Gassend, B., van Dijk, M., Devadas, S.: Aegis: archi-
tecture for tamper-evident and tamper-resistant processing. In: International Con-
ference on Supercomputing, ICS 2003, pp. 160–171 (2003)

41. Thekkath, D.L.C., Mitchell, M., Lincoln, P., Boneh, D., Mitchell, J., Horowitz, M.:
Architectural support for copy and tamper resistant software. SIGOPS Oper. Syst.
Rev. 34(5), 168–177 (2000)

42. Vishkin, U.: Can parallel algorithms enhance seriel implementation? Commun.
ACM 39(9), 88–91 (1996)

43. Wang, X.S., Hubert Chan, T.-H., Shi, E.: Circuit ORAM: on tightness of the
goldreich-ostrovksy lower bound. http://eprint.iacr.org/2014/672.pdf

44. Wang, X.S., Huang, Y., Chan, H.T-H., Shelat, A., Shi, E.: Scoram: oblivious ram
for secure computation. http://eprint.iacr.org/2014/671.pdf

45. Williams, P., Sion, R.: Usable PIR. In: Network and Distributed System Security
Symposium (NDSS) (2008)

46. Williams, P., Sion, R.: SR-ORAM: single round-trip oblivious RAM. In: ACM
Conference on Computer and Communications Security (CCS) (2012)

47. Williams, P., Sion, R., Carbunar, B.: Building castles out of mud: practical access
pattern privacy and correctness on untrusted storage. In: CCS (2008)

48. Williams, P., Sion, R., Tomescu, A.: Privatefs: a parallel oblivious file system. In:
CCS (2012)

49. Yu, X., Haider, S.K., Ren, L., Fletcher, C.W., Kwon, A., van Dijk, M., Devadas,
S.: Proram: dynamic prefetcher for oblivious RAM. In: Proceedings of the 42nd
Annual International Symposium on Computer Architecture, Portland, OR, USA,
13–17 June 2015, pp. 616–628 (2015)

http://eprint.iacr.org/2014/672.pdf
http://eprint.iacr.org/2014/671.pdf

Three-Party ORAM for Secure Computation

Sky Faber1, Stanislaw Jarecki1(B), Sotirios Kentros2, and Boyang Wei1

1 University of California, Irvine, USA
{fabers,boyanw1}@uci.edu, stasio@ics.uci.edu

2 Salem State University, Salem, USA
sotirios.kentros@salemstate.edu

Abstract. An Oblivious RAM (ORAM) protocol [13] allows a client to
retrieve N-th element of a data array D stored by the server s.t. the server
learns no information about N. A related notion is that of an ORAM for
Secure Computation (SC-ORAM) [17], which is a protocol that securely
implements a RAM functionality, i.e. given a secret-sharing of both D
and N, it computes a secret-sharing of D[N]. SC-ORAM can be used as a
subprotocol for implementing the RAM functionality for secure compu-
tation of RAM programs [7,14,17]. It can also implement a public data-
base service which hides each client’s access pattern even if a threshold
of servers colludes with any number of clients.

Most previous works used two-party secure computation to implement
each step of an ORAM client algorithm, but since secure computation
of many functions becomes easier in the three-party honest-majority set-
ting than in the two-party setting, it is natural to ask if the cost of an
SC-ORAM scheme can be reduced if one was willing to use three servers
instead of two and assumed an honest majority. We show a 3-party SC-
ORAM scheme which is based on a variant of the Binary Tree Client-
Server ORAM of Shi et al. [20]. However, whereas previous SC-ORAM
implementations used general 2PC or MPC techniques like Yao’s garbled
circuits, e.g. [14,22], homomorphic encryption [11], or the SPDZ protocol
for arithmetic circuits [15], our techniques are custom-made for the three-
party setting, giving rise to a protocol which is secure against honest-but-
curious faults using bandwidth and CPU costs which are comparable to
those of the underlying Client-Server ORAM.

Keywords: Oblivious RAM · Secure computation · Private information
retrieval

1 Introduction

Oblivious RAM for Secure Computation. An Oblivious RAM (ORAM)
is a protocol between client and server which allows the client who can locally
store only small amount of information to write and read from an outsourced
memory in such a way that the server cannot tell which memory locations the
client accesses, and the cost of each memory access is sublinear in the memory
c© International Association for Cryptologic Research 2015
T. Iwata and J.H. Cheon (Eds.): ASIACRYPT 2015, Part I, LNCS 9452, pp. 360–385, 2015.
DOI: 10.1007/978-3-662-48797-6 16

Three-Party ORAM for Secure Computation 361

size. Starting from the seminal work of Goldreich and Ostrovsky [13], there have
been numerous improvements in ORAM techniques, achieving polylogarithmic
client storage, computation, bandwidth, and server storage overheads, with the
most recent proposal of Path ORAM by Stefanov et al. [21] practical enough to
be implemented on secure processors [9,10,18].

The above classic formulation of the ORAM problem, which we will call
a client-server ORAM, provides secure outsourced memory for a single client.
The client-server ORAM notion can be generalized (and relaxed) by considering
still a single client but n > 1 servers, and assuring client-access obliviousness
only if at most t < n of these servers collude. Such generalization was proposed
and realized for (t, n) = (1, 2) by Ostrovsky and Lu [17]. However, one can
imagine a stronger notion, namely of a protocol which allows n servers to emulate
an Oblivious RAM functionality so that a shared memory can be accessed by
multiple clients, but their access patterns remain hidden even if up to t of these
n servers collude, possibly with any coalition of the clients. Such multi-party
ORAM emulator is equivalent to (multi-party) secure computation of the RAM
functionality (called SC-ORAM for short), which given the secret-sharing of
memory array D and a secret-sharing of a location i (and value v) outputs a
secret-sharing of record D[i] (and writes v at index i in the secret-shared D).

One source of interest in such ORAM emulation is that it can provide obliv-
ious RAM access as subprotocol for secure computation of any RAM program
[7,14,19]. Recall that secure computation allows a set of parties S1, ..., Sn to
compute some (randomized) function f on their inputs, where each Si inputs a
private value xi into the computation, in such a way that the protocol reveals
nothing else but the final output value y = f(x1, ..., xn) to the participants.
A standard approach to secure computation is to represent function f as a
Boolean circuit [3], an arithmetic circuit [1], or a decision diagram [16]. However,
even for very simple functions, each of these representations can be impractically
large. This is indeed necessarily so if some of the inputs xi are very long, i.e.
when some of the data involved in the computation of f is large. Consider any
information retrieval task, where x1 is a large database, x2 is a search term, and
f is a search algorithm. The circuit or decision tree representation of f is at
least as long as x1, and therefore secure computation of f using any of the above
techniques must take time at least linear in the size of the database.

SC-ORAM Applications. On the other hand each information retrieval prob-
lem which has a practical solution does so because it has an efficient RAM pro-
gram, and as Ostrovsky and Shoup were the first to point out [19], an ORAM
emulator can be used to securely compute any RAM program, because each local
computation step can be implemented using Yao’s garbled circuit technique [24]
while each memory access can be handled by the SC-ORAM subprotocol. Exam-
ples of such SC-ORAM usage were recently provided by Keller and Scholl [15], who
used their SC-ORAM implementation to build MPC implementations of other
datastructures, e.g. a priority queue, and then utilized them in MPC computa-
tion of various algorithms in the RAM computation model e.g. Dijkstra’s shortest
path algorithm. In general, SC-ORAM is well suited to secure computation of any
information-retrieval algorithm because such algorithms rely very strongly on the

362 S. Faber et al.

RAM model, e.g. by identifying database entries using hash tables of keywords.
One application using SC-ORAM in this way could be provision of a shared data-
base resource to multiple clients in a way that hides any client’s access pattern even
if all other clients collude. One can look at such usage of SC-ORAM as providing
an alternative to Searchable Symmetric Encryption which requires interaction but
hides all patterns of access to the encrypted data. In its most basic form of secure
implementation of an array look-up, 3-server SC-ORAM also provides an interac-
tive alternative to 3-server (symmetric) Private Information Retrieval [4,12], with
support for both read and write, and with the added security property that the
database itself is private to any (single) server.

Two-Party SC-ORAM Constructions. Apart of pointing out the usefulness
of an SC-ORAM protocol, Ostrovsky and Shoup sketched a method for convert-
ing any client-server ORAM into a two-party SC-ORAM: One of the two parties
can implement the server in the underlying client-server ORAM scheme, while
all the work of the client can be jointly computed by the two parties using Yao’s
garbled circuit technique applied to the circuit representation of each step of the
client’s algorithm in any client-server ORAM scheme. This idea was also consid-
ered by Damgard et al. [7], and it was further developed by Gordon et al. [14]
who showed an optimized two-party ORAM emulation protocol based on the
Binary Tree client-server ORAM of Shi et al. [20], utilizing a novel subprotocol
gadget for secure computation of a pseudorandom function (PRF) on secret-
shared inputs. Gentry et al. [11] showed several space and computation saving
modifications of the Binary Tree client-server ORAM of Shi et al., together with
a very different two-party ORAM emulation protocol for it, which used a cus-
tomized homomorphic encryption scheme instead of Yao’s garbled circuits for
the two-party computation of the ORAM client’s algorithm. Other modifications
of the Binary Tree ORAM were shown in [5], and in the Path ORAM proposal
of Shi et al. [21], but even though they improve the client-server ORAM, it is
not clear if these modifications translate into a faster ORAM emulator.

Indeed, Wang et al. [22] examined the circuit complexity of the client’s
algorithm in several proposed variants of the Binary Tree client-server ORAM,
including [5,20], and they concluded that the client’s algorithm in the original
scheme of [20] has by far the smallest circuit. They also showed a set of modifi-
cations to the Binary Tree ORAM, building on the Path ORAM modifications,
which result in roughly a factor of 10 reduction in the circuit representation of
the client algorithm in a client-server ORAM, hence speeding up the two-party
ORAM emulation protocol of [14] by the same factor. The SC-ORAM protocol
for a database D containing 2m records of size d each requires secure computa-
tion of a circuit of asymptotic size O

(
m3 + dm

)
, resulting in O

(
κ(m3 + dm)

)

bound on protocol bandwidth where κ is a cryptographic security parameter.
For m between 20 and 29 and d = 4B this comes to between 4.6M and 13M
gates, and its secure evaluation requires (on-line) as many hash or block cipher
operations as the number of non-xor gates in the circuits. (In a work concurrent
to ours Wang et al. [23] showed further reductions in the ORAM client circuit
size, reporting 350K and gates for m = 20 and d = 4B.)

Three-Party ORAM for Secure Computation 363

Multi-Party SC-ORAM and Our Contribution. Secure computation of
many functionalities can be implemented with easier tools in the multi-party
setting with honest majority than in the two-party setting. (In fact, assuming
secure channels any function can be securely computed without further crypto-
graphic assumptions [1,2].) Thus even as the search for a minimal circuit ORAM
continues, one can ask if secure ORAM emulation can be made significantly eas-
ier by moving from the 2PC to the MPC setting. Keller and Scholl [15] showed
one way to design such multi-party SC-ORAM protocols, using arithmetic cir-
cuit representation of an ORAM client and implementing it with the SPDZ
MPC protocol of Damgard et al. [6,8]. Their implementation achieved signif-
icantly faster on-line times than the 2PC SC-ORAM implementation of [22]:
[15] report 250 ms wall clock per access for m = 20 and d = 5B for 2 machines
with direct connection in the online stage, while Wang et al. [22] report 30 s
of just CPU time for m = 24 and d = 4B. Moreover, the implementation of
[15] is secure against malicious adversaries while that of [22] works only against
honest-but-curious faults. On the other hand, this on-line speed-up comes at the
cost of intensive precomputation required by the SPDZ MPC protocol, which
[15] estimated at between 100 and 800 min for m = 20.

In this work we explore a different possibility for SC-ORAM design, spe-
cific to the setting of three parties with a single corrupted party, with security
against honest-but-curious faults. The 3-party SC-ORAM protocol we propose
uses a variant of the Binary-Tree ORAM as the underlying data-structure. The
access part of the proposed SC-ORAM is based on the following observation:
If P1 and P2 secret-share an array of (keyword,value) pairs (k, v) (this will be
a path in the Binary-Tree ORAM) and a searched-for keyword k∗ (this will be
the searched-for address prefix), then a variant of the Conditional Disclosure of
Secret protocol of [12] which we call Secret-Shared Conditional OT (SS-COT)
allows P3 to receive value v associated with keyword k∗ at the cost roughly equal
to the symmetric encryption and transmission of the array. Moreover, while SS-
COT reveals the location of pair (k∗, v) in the array to P3, this leakage can be
easily masked if P1, P2 first shift the secret-shared array by a random offset. The
eviction part of the SC-ORAM springs from an observation that instead of per-
forming the eviction computation on all the data in the path retrieved at access,
one can use garbled circuit to encode only the procedure determining eviction
movement logic, i.e. determining which entries in each bucket should be shifted
down the path. Then, if P1, P2 secret-share the retrieved path, and hence the
bits which enter this computation, we can let P3 evaluate this garbled circuit
and learn the positions of the entries to be moved if (1) the eviction moves a
constant number of entries in each bucket in a predictable way, e.g. one step
down the path, and (2) P1, P2 randomly permute the entries in each bucket, so
that P3 always computes a fixed number of randomly distributed distinct indexes
for each bucket. Computation of this movement logic uses only two input bits
(appropriate direction bit and a full/empty flag) and 17 non-xor gates per bucket
entry, so the garbled circuit is much smaller than if it coded the whole eviction
procedure. Finally, the secret-shared data held by P1, P2 can be moved according

364 S. Faber et al.

to the movement matrix held by P3 in another OT/CDS variant we call Secret-
Shared Shuffle OT which uses only xor’s and whose bandwidth is roughly four
times the size of the secret-shared path.

Assuming constant record sizes the bandwidth of the resulting SC-ORAM
protocol is O

(
w(m3 + κm2)

)
where w is the bucket size in the underlying Binary-

Tree ORAM. Since the best exact bound on overflow probability we can give
requires w = Ω(λ + m) where λ is a statistical security parameter, and since
m < κ, this asymptotic bound is essentially the same as that of the 2-server
SC-ORAM of [22]. However, the exact numbers for bandwidth and computation
cost (measured in the number of block cipher or hash operations) are much
lower, and this is because of two factors: First, even though we still use garbled
circuits, the circuits involved have dramatically smaller complexity than in the
2PC implementations (see Table 1 below). Secondly, the cost of all operations
outside the garbled circuits is a small factor away from the cost of transmission
and decryption of server data in the underlying Binary-Tree ORAM algorithm.
Concretely, the non-GC bandwidth is under 9P where P is the (total) size of
tree paths retrieved by the Binary-Tree ORAM, and computation is bounded by
symmetric encryption of roughly 20P bits, whereas for the underlying Binary-
Tree ORAM both quantities are 2P . Finally, stochastic evidence suggests that
it suffices that w = Ω(

√
λ + m), which for concrete parameters of m = 36 and

λ = 40 reduces the required w, and hence all our protocol costs, by a further
factor between 3 and 4.

We tested a preliminary Java implementation of our scheme, without mak-
ing use of several possible optimizations, on three lowest-tier Amazon servers
(t2.micro) connected through a LAN. Regarding the overall bandwidth, for a
concrete value m = 18 (the largest size for which [22] give bandwidth data),
λ = 80, and d = 4B, our scheme instantiated with w = 128, which satisfies
exact security bounds for these m,λ values, uses 1.18MB bandwidth, a factor of
40 less than 45MB reported by [22]. Using the stochastic bound w = Ω(

√
λ + m)

which for the above case of m,λ is satisfied by w = 32 (see Sect. 5) would further

Table 1. Comparison of Circuit Size between this proposal (without optimizations)
and the SC-ORAM scheme [22]. All numbers are reported as function of array size
|D| = 2m for statistical security paramenter λ = 80. The first 3PORAM estimation
uses bucket size w = 128 mandated by the strict bound implied by Lemma 2, while the
second one uses bucket size w = 32 derived from the Markov Chain approximation.
(We note Wang et al. [23] recently exhibited further reductions in ORAM circuit, e.g.
reporting 350K and gates for m = 20. See Sect. 5 for further discussion.)

ORAM Circuit Size (asymptotic bounds) Circuit Size (gates) Number of inputs

m = 20 m = 29 m = 20 m = 29

Path-SC ORAM Õ
(
m3 + dm

)
ω (1) 37.2 M 111.7 M 0.2 M 0.3 M

SCORAM N/A (heuristic) 4.6 M 13.0 M 0.3 M 0.9 M

3PORAM (w = 128) O
(
m3)ω (1) 96.9K 213.9K 11.5K 25.3K

3PORAM (w = 32) O
(
m3)ω (1) 28.5K 62.6K 3.4K 7.4K

Three-Party ORAM for Secure Computation 365

decrease the bandwidth by a factor of about 2.5. Regarding computational costs,
for m = 36 and d = 4B, using w = 32 justified by the stochastic evidence, our
implementation takes 320 ms per access in the on-line phase and 1.3 s in the pre-
computation phase. The SC-ORAM scheme of [22] reported only local execution
times for m up to 26 while we tested our scheme on Amazon EC2 servers com-
municating over LAN for m up to 36, but for a conservative statistical security
parameter λ = 80 the combined CPU cost of our implementation using w = 128
is a factor of about 50 less than that of [22], e.g. it is under 600 msec for m = 24
while that of [22] is 30 s.

In summary, we see our contributions as three-fold: First, we provide an
immediate improvement to any application of SC-ORAM which can be done in
the setting of three parties with an honest-majority. Secondly, the techniques
we explore can be utilized in a different context, e.g. for a different “secure-
computation friendly” eviction strategy for a Binary-Tree ORAM. Finally, the
proposed protocol leaves several avenues for further improvements in 3-party
SC-ORAM both on the level of system implementation and algorithm design.

Technical Overview. We base our implementation on the Shi et al. [20] hierar-
chical two party ORAM, and use a combination of three-party OT’s and secure
computation (using Yao garbled circuits [24]) in order to ensure privacy in the
three party setting. Our protocol follows the same technical approach of two-
party SC-ORAM schemes, i.e. of providing a secure computation protocol for
access and eviction algorithms in a client-server ORAM. However, the existence
of a third party allows us to greatly reduce the cost of this secure computation.
Our main observation is that in Binary Tree access and eviction algorithms, like
that of Gordon et al. [14], there is a separation in the role played by the input
bits of the access or eviction circuit. Part of the bits are used to implement the
logic of the circuit, but the majority are data that do not participate in the
output of the logic and are, at best, just being moved between some locations
based on the output of the logic. We exploit this separation in the three-party
setting, by isolating the bits necessary for the logic, using Yao’s garbled circuit
to securely compute the logic only on those bits, and then use several variants of
the (three-party) Oblivious Transfer (OT) protocol to move data to the locations
pointed out by the output of the circuits. Since all these variants of OT can be
implemented at a cost similar to just the secure transmission of the data the
OT operates on, this leads to dramatic reductions in the cost of the resulting
secure computation protocol. In addition, in the access protocol, as opposed to
the eviction, we avoid using garbled circuits entirely, as the entire logic comes
down to finding an index where two lists of n bitstrings contain a matching
entry, which we implement using a three-party variant of Conditional OT which
takes a single interaction round and costs roughly as much as encryption and
transmission of these n bitstrings.

We make several modifications in the Binary-Tree ORAM of Shi et al. [20]
to make it more efficient for the type of operations we are interested in. We
use ideas from Gentry et al. [11] and Stefanov et al. [21]. In particular, we make
the ORAM trees more shallow, as in Gentry et al. [11] by increasing how many

366 S. Faber et al.

entries in the ORAM will be mapped to each leaf in expectation and increasing
the total capacity (in terms of entries) of the leaf nodes. To be more precise,
for a tree that has a total capacity of 2m entries and a capacity in each node of
w, instead of having 2m leafs in the ORAM tree, we have 2m

w leafs instead. In
order to ensure that overflow does not occur in the leafs of the tree we increase
capacity of leaf nodes to 4w. With this change we achieve linear overhead in
terms of storage needed for the ORAM, meaning that now the total entries that
can be stored in the ORAM are O (2m), in contrast with the O (w · 2m) entries
that the Shi et al. [20] ORAM had (note that for most settings w = O (m)).
In addition, we observe that for internal nodes it is not necessary to increase
their capacity, since the overflow of internal nodes is mandated by a difference
probabilistic process that the one of leaf nodes. In contrast with the approach
used in Gentry et al. [11], by only increasing the capacity of leaf nodes, we avoid
doubling the bandwidth needed by the ORAM protocol (which is what happened
in Gentry et al. [11], since they increase the capacity of all nodes, whether they
are leafs or internal nodes).

We adopt the idea of eviction through a single path introduced by
Gentry et al. [11]. The main problem we identified in the single path eviction,
is that both Gentry et al. [11] and Stefanov et al. [21] evict all entries in all nodes
of the path, as far down in the path as they can go. Although this is easy to do
in a client-server ORAM where the client retrieves the whole path and performs
all operations in the clear text data, in the setting of secure computation on the
secret shared data, such eviction is very costly. For this reason, we modify the
eviction to only evict at most two items from each node to the next node in
the path, provided such items exist. This operation is limited enough to allow
for simple garbled circuits. Moreover, it is an oblivious operation in the sense
that always two entries are evicted to the next level (we evict empty entries if
appropriate entries do not exist), which allows for its simple 3-party implemen-
tation. We choose not to increase the fun-out of nodes as Gentry et al. [11] do,
since this would complicate both our circuits and the rest of the protocols. We
also choose to avoid using the overflow cache used in Path ORAM of Stefanov
et al. [21] in order to decrease the total space requirements for their ORAM,
deciding instead to experiment at first with a design which maximally simplifies
the eviction logic and the associated garbled circuits.

Lastly we briefly explain why it seems difficult to construct a (3-server) SC-
ORAM scheme with competitive efficiency based on the two-server Client-Server
ORAM of Lu and Ostrovsky [17]. Indeed, since in either 3-server or 2-server set-
ting of SC-ORAM we rely on non-collusion between any two parties, we could
use a two-server version of the underlying client-server ORAM. Because the two-
server ORAM of [17] achieves O(m) amortized overhead per query, the asymp-
totic running time of the SC-ORAM protocol based on this two-server ORAM
could also be only linear in m, which would beat (at least asymptotically) any-
thing based on the O(m3) single-server ORAM schemes of [11,20,21]. However,
the Lu-Ostrovsky two-server ORAM has some features which adversely affect the
practicality of the resulting SC-ORAM protocol. It is a hierarchical construc-
tion in the spirit of [13] with O(m) levels where the i-th level contains O(2i−1)

Three-Party ORAM for Secure Computation 367

encrypted memory entries. After every 2t RAM accesses, the construction re-
shuffles the first 2t levels of the hierarchy, incurring O(2t) cost, which makes
the running time of each access highly uneven. The scheme has other “MPC
unfriendly” properties, e.g. the client’s retrieval algorithm, which has to be emu-
lated with secure computation, acts differently at a given level depending on
whether the item has been found in a higher level. Also, the scheme seems to need
oblivious computation of a PRF with secret-shared inputs (and possibly also out-
puts), and the currently best protocol for such OPRF evaluation uses O(t) expo-
nentiations for a t-bit domain [14].

2 Baseline Client-Server ORAM Protocol

We describe the Client-Server ORAM which forms the basis of our three-party
SC-ORAM protocol presented in Sect. 4. The scheme explained below is a variant
of the Binary Tree client-server ORAM scheme of Shi et al. [20], with some
optimizations adopted from a variant given by Gentry et al. [11]. The design
principle behind our variant of the Binary Tree ORAM is two-fold: First, we
want the client’s algorithm to be “secure computation friendly”. Secondly, we
want to do so without increasing the parameters of the Binary Tree ORAM
scheme (e.g. tree depth, tree size, tuple size, bucket size, etc.), as this would
also negatively affect the efficiency of the resulting three-party ORAM emulator
protocol.

ORAM Forest. Let D be an array of |D| ≤ 2m records, where D[N] for every
m-bit address N is a bitstring of fixed length d. For a given security parameter λ
and cryptographic security parameter κ, the ORAM protocol needs only O (κ)
persistent storage and O (m · d) transient storage for client C, and O (2m · d) =
O (|D|) persistent storage of server S. Given m, d, λ, κ, an ORAM implementation
is parametrized by two additional parameters w, 2τ where w = max(λ,m) and
τ is an integer divisor of m. Let h = log2τ 2m = m/τ . Server S stores an ORAM
Forest, OTF = (OT0,OT1, . . . ,OTh). Each ORAM Tree OTi for i > 0 is a binary
tree of height di = iτ − log w (if iτ ≤ log w then di = 0). Let N = [N(1)| . . . |N(h)]
be the parsing of N into τ -bit segments and let Ni = [N(1)| . . . |N(i)] be N’s
prefix of length τi. The last ORAM tree OTh implements a look-up table Fh s.t.
Fh(N) = D[N], but the efficient retrieval of Fh(N) from OTh is possible only given
a label Lh ∈ {0, 1}dh which defines the leaf (or path, see below) in OTh where
value Fh(N) is stored. The way this label Lh can be found is that each ORAM
tree OTi for i < h implements a look-up table Fi which maps Ni to label Li+1 ∈
{0, 1}di+1 , and it is an invariant of OTF that for each i, Li+1 = Fi(Ni) defines a
leaf (or path, see below) in OTi+1 which contains values of Fi+1 on arguments
Ni+1 = Ni|N(i+1) for all N(i+1) ∈ {0, 1}τ . Therefore the ORAM access algorithm
on input N proceeds recursively: The base tree OT0 is a single vertex which
contains values L1 = F0(N1) for all N1 ∈ {0, 1}τ , so the algorithm first retrieves
L1 = F0(N1) from OT0, then using Li it retrieves Li+1 = Fi(Ni+1) from OTi for
i = 1, . . . , h − 1, and finally using Lh it retrieves Fh(N) = D[N] from OTh. For
notational convenience we can think of an ORAM forest OTF as implementing

368 S. Faber et al.

function FOTF : {0, 1}m → {0, 1}d1 × {0, 1}d2 × . . . × {0, 1}dh × {0, 1}d, where
FOTF(N) = (F0(N1),F1(N2), . . . ,Fh−1(Nh),Fh(Nh)).

We now explain how Fi values are stored in binary tree OTi. Let {0, 1}<m

denote the binary strings of length from 0 to m − 1. The nodes of OTi for
i > 0 are formed as follows: Each internal node, indexed by j ∈ {0, 1}<di ,
stores a bucket Bj , while each leaf node, indexed by j ∈ {0, 1}di , is a set of four
buckets (Bj00,Bj01,Bj10,Bj11). Tree OT0 is an exception because it consists of
a single root node Broot. (Constant 4 is chosen somewhat arbitrarily and can
be adjusted, see Sect. 5.) Each bucket Bj is stored at node j in OTi encrypted
under the master key held by C. Each bucket is an array of w tuples of the
form Ti = (fbi,Ni,Li,Ai) where fbi ∈ {0, 1}, Ni ∈ {0, 1}iτ , Li ∈ {0, 1}di , and
Ai for i < h is an array containing 2τ labels Li+1 ∈ {0, 1}di+1 , while Ah is a
record in D. The above invariant is maintained if for every N (or, if D is a sparse
array, only for those N’s for which D[N] is non-empty), there is a sequence of
labels (L1, . . . ,Lh) (assume L0 = 0 and N(0) = 0τ) s.t. each OTi contains a
unique tuple of the form T = (1,N(i),Li,Ai) for some Ai and (1) this tuple
is contained in some bucket along the path from the root to the leaf Li in
OTi; and (2) if i < h then Ai

[
N(i+1)

]
= Li+1, and Ah = D[N]. Observe that

(L1, . . . ,Lh,D[N]) = FOTF[N].

Access Procedure. To access location N in D, the client C performs the follow-
ing loop sequentially for each i = 0, ..., h, given the recursively obtained label Li:
C sends Li to the server S, who retrieves and sends to C the encrypted path PLi

in tree OTi from the root to the leaf Li. C decrypts PLi using its master key into
a corresponding plaintext path PLi which is a sequence of buckets (B1, . . . ,Bn)
for n = di +4 (recall that a leaf contains 4 buckets), finds the unique tuple Ti in
this bucket sequence of the form Ti = (1,N(i),Li,Ai) and computes either label
Li+1 = Ai

[
N(i+1)

]
if i < h, or, if i = h, outputs Ai as the record D[N].

Note that protocol reveals the vector of labels (L1, . . . ,Lh) to S. Therefore
after each access C picks new random labels ((L1)′, . . . , (Lh)′), where (Li)′ is a
random bitstring of length di, and OTF needs to be updated so that FOTF(N) =
((L1)′, . . . , (Lh)′,D[N]). To do this, C erases the tuple Ti = (1,N(i),Li,Ai) in
the bucket in which it was found (by flipping the fb field to 0), replaces Li with
(Li)′, sets Ai

[
N(i+1)

]
to (Li+1)′, and inserts this modified tuple (Ti)′ into the

root bucket B1. C then re-encrypts the buckets and sends the new encrypted
path (PLi)′ to S to insert in place of PLi in OTi.

Constrained Eviction Strategy. The above procedure works except for the
fact that the root bucket fills up after w accesses. To ensure that this does not
happen (with overwhelming probability), an eviction step is interjected into the
access protocol before C re-encrypts PLi and sends it back to S. The aim of an
eviction process is to move each tuple T = (N(i),L,A) in an internal node of
tree OTi down towards its “destination leaf” L. Since in access C reads only
the tuples in path PLi , this will only be done to the tuples found in the internal
buckets of this path. Moreover, because we want our eviction strategy to be
secure-computation friendly, i.e. to be as easy to compute securely in our three-
party setting as possible, we restrict this eviction principle in two ways: we will

Three-Party ORAM for Secure Computation 369

attempt to move at most two tuples down in every path, and we will move them
only one bucket down. Both of these two restrictions make no sense in the case
of a client-server ORAM, where C sees all the buckets in PLi in the cleartext
and can move all the tuples in this path as far down as they can go. However, in
the context of the multi-party SC-ORAM protocol these constraints make the
data movement pattern in the eviction process more predictable, and hence more
easily implemented via a secure computation protocol which does not implement
the whole eviction as a single (securely-computed) circuit.

Technically, this “constrained” eviction strategy works as follows: Consider
a bucket Bj corresponding to an internal node in PLi , i.e. for j ≤ di. We say
that tuple T = (fb,N(i),L,A) in Bj is moveable down the path towards leaf Li

if fb = 1 and the j-th bit in its label field L matches the j-th bit of leaf Li. In
every bucket Bj for j ≤ di we choose two random tuples which are moveable
down towards leaf Li. If there are no such tuples then we choose two random
empty tuples instead (if they exist), and if there is only one then the second
one is chosen as a random empty tuple (if it exists). In addition, we choose two
random empty tuples (if they exist) among the 4w tuples contained in the four
buckets Bj contained in the leaf node in PLi , i.e. for j = di +1, . . . ,di +4. Then,
for each i ≤ di, we take the two chosen tuples in bucket Bj and move them to
the two spaces vacated in bucket Bj+1 (except for j = di where the two chosen
spaces in the level below can be in any of the buckets Bdi+1, . . . ,Bdi+4).

Eviction fails in case of a bucket overflow i.e. if (1) some internal bucket in
PLi does not contain two tuples which are either empty or moveable; or (2) the
four buckets corresponding to the leaf node do not contain two empty tuples. As
we argue in Sect. 5, both probabilities are negligible for w = O (m), assuming
the number accesses to D is polynomial in |D|.
Notation. In the 3-party SC-ORAM secure protocol for this Client-Server
ORAM we will use notation |Pi

L| to denote the length of any path in tree
OTi, and |Ti| to denote the length of any tuple in such tree. Note that
|Pi

L| = (di + 4) · w · |Ti| and |Ti| = 1 + i · τ + di + 2τ · di+1 if i < h while
|Th| = 1 + h · τ + dh + d because Ti = (fb,Ni,Li,Ai), |Ni| = i · τ , |Li| = di, and
Ai for i < h is an array holding 2τ next-level leaf labels of length di+1, while
Ah = D[N] and |D[N]| = d.

3 Three-Party Protocol Building Blocks

Our SC-ORAM protocols Access, PostProcess, and Eviction of Sect. 4 rely on
several variants of Oblivious Transfer (OT) or Conditional Disclosure of Secrets
(CDS) protocols which we detail here. The efficiency of our SC-ORAM protocol
relies on the fact that all these OT variants, including the OT variant employed
in Yao’s Garbled Circuit (GC) protocol, have significantly cheaper realizations
in the 3-party setting. All presented protocols assume secure channels, although
in many instances encryption overhead can be eliminated with simple protocol
changes, e.g. using pairwise-shared keys in PRG’s and PRF’s.

370 S. Faber et al.

Notation. Let κ denote the cryptographic security parameter, which will assume
is both the key length and the block length of a symmetric cipher. Let G� be a
PRG which outputs �-bit strings given a seed of length κ. Let F�

k be a PRF which
maps domain {0, 1}κ onto {0, 1}�, for k randomly chosen in {0, 1}κ. We will write
G and Fk when � = κ. In our implementation both F and G are implemented
using counter-mode AES. If party A holds value a and party B holds value b
s.t. a ⊕ b = v then we call pair (a, b) an “A/B secret-sharing” of v and denote it
as (sA[v], sB[v]). Whenever we describe an intended output of some protocol as
A/B secret-sharing of value v, we mean this to be a random xor-sharing of v i.e.
pair (r, r ⊕ v) for r random in {0, 1}|v|. Let s[j] denote the j-th bit of bitstring
s, and let [n] denote integer range {1, ..., n}.

3-Party Variants of Oblivious Transfer. We use several variants of the
Oblivious Transfer problem in our three-party setting, namely Secret-Shared
Conditional OT, SS-COT[N], Secret-Shared Index OT, SS-IOT[2τ], Shuffle OT,
XOT

[
N
k

]
, Secret-Shared Shuffle OT, SS-XOT

[
N
k

]
, and Shift OT, Shift. We

explain the functionality and our implementations of these OT variants below.
The common feature of all our implementations is that they require one or two
messages both in the pre-computation phase and in the online phase (except of
Secret-Shared Shuffle OT which sends four messages), and the computational
cost of each protocol for each party, both in pre-computation and on-line, is
within a factor of 2 of the cost of secure transmission of the sender’s inputs.
We stress that all protocol we present form secure computation protocols of the
corresponding functionalities assuming an honest-but-curious adversary, secure
channels, and a single corrupted player. In each case the security proof is a
straightforward simulation argument.

Algorithm 1. Secret-Shared Conditional OT Protocol SS-COT[N](S,R,H)
Input: S’s input (m1, ..., mN) and (a1, ..., aN), H’s input (b1, ..., bN).
Output: R outputs pairs (t, mt) s.t. at = bt.
Parameters: � and �′ s.t. |mt| = � and |at| = |bt| = �′ ≤ κ for all t.
Pre-computation phase: S, H share PRF F keys k, k′ and κ-bit random nonces r1, ..., rN .

1: S sends {(et, vt) = (G�(Fκ
k (xt))⊕mt,F

κ
k′(xt))}N

t=1 to R where xt =rt⊕[at|0κ−�′
].

2: H sends {(pt, wt) = (Fκ
k (yt),F

κ
k′(yt))}N

t=1 to R where yt = rt ⊕ [bt|0κ−�′
].

3: R outputs (t, mt) where m′
t = et ⊕ G�(pt) for each t s.t. vt = wt.

Secret-Shared Conditional OT, SS-COT[N](S,R,H), is a protocol where S inputs
two lists, (m1, . . . ,mN) and (a1, . . . , aN), H inputs a single list (b1, . . . , bN), and
the protocol’s goal is for R to output all pairs (t,mt) s.t. at = bt. This is a very
close variant of the Conditional Disclosure of Secrets protocol of [12], and it can
be implemented e.g. using modular arithmetic in a prime field. In Algorithm1 we
provide an alternative design which uses fewer (pseudo)random bits, and hence
requires fewer PRG ops in pre-computation, but uses block ciphers in the on-line
phase. (The algorithm proposed here was faster in our implementation even in

Three-Party ORAM for Secure Computation 371

Algorithm 2. Shuffle OT Protocol XOT
[
N
k

]
(S,R, I)

Input: S’s input (m1, ..., mN) and I’s input (i1, ..., ik) and (δ1, ..., δk).
Output: R’s output (z1, ..., zk) s.t. zσ = miσ ⊕ δσ for all σ.
Parameters: Let |mt| = � for all t.
Pre-computation phase: I and S pick a random permutation π on (1, ..., N) and a
sequence of �-bit random pads r1, ..., rN .

1: S sends (a1, ..., aN) = (mπ(1) ⊕ r1, ..., mπ(N) ⊕ rN) to R.
2: I sends (j1,..., jk)=(π-1(i1),..., π

-1(ik)) and (p1,..., pk)=(rj1 ⊕ δ1,..., rjk ⊕ δk) to R.
3: R outputs (z1, ..., zk) = (aj1 ⊕ p1,..., ajk ⊕ pk).

(Note that zσ = (mπ(jσ) ⊕ rjσ) ⊕ (rjσ ⊕ δσ) = miσ ⊕ δσ because π(jσ) = iσ.)

the on-line stage.) S and H share two PRF keys k, k′, and for each t helper H
sends to R a pair (pt, wt) = (Fk(bt),Fk′(bt)), while S sends (et, vt) where et is an
xor of message mt and G(Fk(at)) while vt = Fk′(at). For each t receiver R checks
if vt = wt, and if so then it concludes that at = bt and outputs mt = et ⊕G(pt).
To protect against collisions in (short) at, bt values both within each protocol
instance and across protocol instances each at and bt is xor-ed by respectively S
and H by a pre-shared one-time κ-bit random nonce rt, with all nonces derived
via a PRG on a seed shared by S and H.

Secret-Shared Index OT, SS-IOT[2τ](S,R,H), is a close variant of the Secret-
Shared Conditional OT, where S holds a list of messages (m0, . . . ,mN-1) for
N = 2τ and an index share jS ∈ {0, 1}τ while H holds the other share jH ∈
{0, 1}τ , and the aim of the protocol is for R to output (j,mj) s.t. j = jS ⊕ jH.
Our protocol for SS-IOT[2τ] executes similarly to SS-COT[N] except H sends
only two values, (p, v) = (Fk(jH),Fk′(jH)) and S’s messages are computed as
et = G(Fk(jS ⊕ t)) and vt = Fk′(jS ⊕ t). Finally, to avoid correlations across
protocol instances players H and S xor their PRF inputs with a single pre-shared
random κ-bit nonce r.

Shuffle OT, XOT
[
N
k

]
(S,R, I), is a protocol between sender S, receiver R, and

indicator I, where S inputs a sequence of messages m1, ...,mN , I inputs a sequence
of indexes i1, ..., ik and a sequence of masks δ1, ..., δk, and the protocol lets R
output a sequence of messages mi1 ⊕ δ1, ...,mik

⊕ δk, without leaking anything
else about S’s and I’s inputs. See Algorithm 2 for an implementation of this
protocol.

Secret-Shared Shuffle OT, SS-XOT
[
N
k

]
(A,B, I), involves indicator I and two

parties A and B. It is a close variant of the Shuffle OT above, where I holds
indexes i = (i1, ..., ik), the pads δ1, ..., δk are all set to zero, and both inputs
m1, ...,mk and outputs mi1 , ...,mik

are secret-shared by A and B. We imple-
ment this protocol with two instances of XOT

[
N
k

]
. The indicator I first chooses

a sequence of random masks δ = (δ1, ..., δk), and inputs i, δ into both instances,
where the first instance runs on A’s input (sA[m1], ..., sA[mn]), and lets B out-
put (sA[mi1] ⊕ δ1, ..., sA[mik

] ⊕ δk), while the second instance runs on B’s inputs

372 S. Faber et al.

(sB[m1], and lets A output (sB[mi1] ⊕ δ1, ..., sB[mik
] ⊕ δk). It’s easy to see that

these outputs form a randomized A/B secret-sharing of (mi1 , ...,mik
).

Shifting a Secret-Shared Sequence, Shift(A,B,H). As the access protocol traverses
the forest of ORAM trees OTF = (OT0,OT1, ...,OTh), D and E recover the
secret-sharing of path PLi , for i = 1, ..., h, and make several modifications to it.
In particular, the buckets in the path are rotated by a random shift σi known to
D and E. In the eviction protocol on this retrieved path we need a sub-protocol
Shift to reverse this shift by transforming the secret-sharing of this path, which is
a sequence of buckets, to a (fresh) secret-sharing of the same buckets but rotated
back by σi positions. An inexpensive implementation of this task relies on the
fact that in our three-party setting player D can act as a “helper” party and
create, in pre-computation, correlated random inputs for E and C, which allows
for an on-line protocol which consists of a few xor operations and a transmission
of a single |PLi |-bit message from C to E. Since this protocol is a very close
variant of protocol SS-IOT[N] given above we omit its description.

Yao’s Garbled Circuit on Secret-Shared Inputs. The last component used
in our ORAM construction is protocol GC[F](A,B,R), a Yao’s garbled circuit
solution for secure computation of an arbitrary function [24], executing on public
inputs a circuit of function F, where the inputs X to this circuit are secret-shared
between A and B, i.e. A inputs sA[X] and B inputs sB[X], and the protocol lets
R compute F(X). We stress that even though we do use Yao’s garbled circuit
evaluation as a subprotocol in our SC-ORAM scheme, we use it sparingly, and
the computation involved is comparable, for realistic m values, to the necessary
cost of decryption of paths PLi retrieved by the underlying Binary-Tree Client-
Server ORAM scheme. The protocol is a simple modification of the delivery of
the input-wire keys in Yao’s protocol, adopted to the setting where the input X
is secret-shared by parties A and B, while the third party R will compute the
garbled circuit and get the F(X). Let n = |X| and let κ be the bitlength of the
keys used in Yao’s garbled circuit. In the off-line stage either A or B, say party
A, prepares the garbled circuit for function F and sends it to R, and then for
each input wire key pair (K0

i ,K1
i) created by Yao’s circuit garbling procedure,

A picks random Δi in {0, 1}κ, computes (A0
i , A

1
i) = (Δi,K

0
i ⊕K1

i ⊕ Δi) and
(B0

i , B1
i) = (K0

i ⊕ Δi,K
1
i ⊕ Δi), and sends (B0

i , B1
i) to B. (To optimize pre-

computation A can send to B a random seed from which {K0
i ,K1

i ,Δi}n
i=1 can

be derived via a PRG.) In the on-line phase, for each i = 1, ..., n, party A on
input bit a = sA[Xi] sends Aa

i to R, while party B on input bit b = sB[Xi] sends
Bb

i . For each i = 1, ..., n, party R computes Ki = Ai⊕Bi for Ai, Bi received
respectively from A and B, and then runs Yao’s evaluation procedure inputting
keys K1, ...,Kn into the garbled circuit received for F. Observe that Ai⊕Bi = Kv

i

for v = a⊕b, and hence if a, b is the XOR secret-sharing of the i-th input bit,
i.e. if a⊕b = Xi, then Ki = K0

i if Xi = 0 and Ki = K1
i if Xi = 1. The protocol

is secure thanks to the random pad Δi, because for every Xi and every possible
sharing (a, b) of Xi, values (Ai, Bi) sent to R are distributed as two random
bitstrings s.t. Ai⊕Bi = Kv

i for v = Xi.

Three-Party ORAM for Secure Computation 373

4 Three-Party SC-ORAM Protocol

We describe our three-party SC-ORAM protocol, which is a three-party secure
computation of the Client-Server ORAM of Sect. 2. We refer to the three parties
involved as C, D, and E. The basic idea for the protocol is to secret-share the
datastructure OTF between two servers D and E, and have these two parties
implement the Server’s algorithm of the Client-Server ORAM scheme of Sect. 2,
while the corresponding Client’s algorithm will be implemented with a three-
party secure computation involving parties C,D,E. In the description below
we combine these two conceptually separate parts into a single protocol, but
almost all of the protocol implements the three-party computation of the ORAM
Client’s algorithm, as the Server’s side of this Client-Server ORAM consists only
of retrieving (the shares of) path PLi from (the shares of) the i-th tree OTi at
the beginning of i-th iteration of the access procedure, and then writing (the
shares of) a new path P�

Li in place of (the shares of) PLi at the end.
Given this secret-sharing scenario, the task of the three-party SC-ORAM

protocol is to securely compute the following two functionalities:

1. The access functionality computes the next-tree label Li+1 = Fi(Ni+1) given
the D/E secret-sharing of path PLi , for Li = Fi−1(Ni) and the D/E secret-
sharing of address prefix Ni+1;

2. The eviction functionality computes the D/E secret-sharing of path P�
Li out-

put by the eviction algorithm applied to the D/E secret-shared path PLi ,
after the tuple containing the label identified by the access functionality is
moved to the root node.

Both tasks can be computed using standard secure computation techniques but
the protocol we show beats a generic one by a few orders of magnitude, and
comes close to the computation cost of the underlying Client-Server ORAM
itself. Note that the i-th iteration of the Client-Server ORAM needs a Server-
to-Client transmission and decryption of path PLLi and then encryption and
Client-to-Server transmission of path P�

Li . Therefore the base-line cost we want
the SC-ORAM to come close to are h+1 rounds of Client-Server interaction with
2 · |Pi

L| bandwidth and (2/κ) · |Pi
L| block cipher operations for i = 0, ..., h. The

main idea which allows us to come close to these parameters is that if the inputs
to either access or eviction functionalities, secret-shared by two parties, e.g. D
and E, are shifted/permuted/rotated/masked in an appropriate way, then the
correspondingly shifted/masked outputs of these functionalities can be revealed
to the third party, e.g. C.

In the 3-party setting we separate the Client-Server access/eviction protocols
into Access, PostProcess, and Eviction. Protocol Access contains all parts of the
client-server access which have to be executed sequentially, i.e. the retrieval of
sequence FOTF(N) = (L1,L2, ...,Lh,D[N]) done by sequential identification (and
removal from the OTi trees) of the tuple sequence (T1,T2, ...,Th) where Ti is
defined as path PLLi of tree OTi whose address field is equal to N’s prefix Ni

and whose A field contains label Li+1 at position N(i+1). Protocol PostProcess
performs cleaning-up operations on each tuple Ti in this tuple sequence, by

374 S. Faber et al.

Algorithm 3. Protocol Access[i] - Oblivious Retrieval of Next Label
Input: D, E’s inputs: label Li and secret-sharing of OTi and Ni+1 = [Ni|N(i+1)];
Output: (1) C outputs Li+1 = Ai[N(i+1)] where Ai is the A field of tuple Ti in
PLi whose N field matches Ni; (2) C and E output a secret-sharing of Ti and P∗

Li =

Rot[σ,δ,ρ](P′
Li), where P∗

Li is PLi without tuple Ti; (3) D & E output σ, ρ;

Pre-computation phase: D & E’s input: (σ, δ, ρ, p) ← [di+4]× [w]×{0, 1}τ ×{0, 1}|PLi |;
Parameters: n = w(di+4).

1: D retrieves share sD[PLi] from sD[OTi] and sets sD[Rot[σ,δ,ρ](PLi)] as the result of
the three data-rotations using shifts (σ, δ, ρ) applied to (sD[PLi] ⊕ p). E computes
sE[Rot[σ,δ,ρ](PLi)] in the corresponding way.

2: D sends sD[Rot[σ,δ,ρ](PLi)] and sD[Ni+1] = (sD[Ni]|sD[N(i+1)]) to C.
3: D and E isolate in their shares of Rot[σ,δ,ρ](PLi) a vector of shares of pairs (fbj , Nj)

for j = 1, ..., n of fb and N fields of all tuples in this (rotated) path. E also isolates
in sE[Rot[σ,δ,ρ](PLi)] shares (sE[Rot[ρ](A1)], ..., sE[Rot[ρ](An)]) of the A field of all
tuples. The parties then run SS-COT[n](E, C, D) on E’s input (m1, ..., mn) and
(a1, ..., an) and D’s input (b1, ..., bn) where mt = sE[Rot[ρ](At)⊕y], at = sE[fbt|Nt]⊕
[0|sE[Ni]], and bt = sD[fbt|Nt] ⊕ [1|sD[Ni]]. This subprotocol outputs (j1, ē) for C
s.t. [fbj1 |Nj1] = [1|Ni] and ē = y ⊕ sE[Rot[ρ](Aj1)]. The client computes z = ē ⊕ d̄
where d̄ is the A field in the j1-th tuple in sD[Rot[σ,δ,ρ](PLi)]. (Note that j1-th tuple
in Rot[σ,δ,ρ](PLi) is equal to Ti, hence Aj1 = Ai and z ⊕ y = Rot[ρ](Ai).)

4: Parties run SS-IOT[2τ](E, C, D) on E’s input (y0, . . . , y2τ -1) and sE[N(i+1)] and D’s
input sD[N(i+1)] ⊕ ρi, which outputs pair (j2, yj2) for C.

5: Each party computes its output as follows:
– C outputs Li+1 = yj2 ⊕ zj2 where zj2 is j2-th di+1-bit segment in z;
– C and E form (sC[Ti], sE[Ti]) as ((1, sD[Ni], 0di , z), (0, sE[Ni], Li, y));
– C and E form secret-sharing of P∗

Li by C setting its share to sD[Rot[σ,δ,ρ](PLi)]
but with the j1-th tuple modified by flipping bit fb and setting its other bits
at random, and E setting its share to sE[Rot[σ,δ,ρ](PLi)];

– D and E output (σ, ρ).

modifying its label field from Li to (Li)′ and modifying the label held at N(i+1)-
th position in the Ai array of this tuple from Li+1 to (Li+1)′. Importantly, the
PostProcess and Eviction protocols can be done in parallel for all trees OTi, which
allows for a better CPU utilization in the protocol execution.

Access Protocol. Protocol Access runs on D/E secret-sharing of searched-
for address N and the ORAM forest OTF, and it’s goal is to compute a D/E
secret-sharing of record D[N]. Protocol Access creates two additional outputs,
for each i = 0, . . . , h (with some parts skipped in the edge cases of i = 0 and
i = h): (1) C/E secret-sharing of the path PLi in OTi, modified in the way we
explain below, and with the tuple Ti defined above removed; and (2) whatever
information needed for the PostProcess protocol to modify Ti into (Ti)′ which
will be inserted into the root of OTi in protocol Eviction.

Protocol Access proceeds by executing loop Access[i] sequentially, see
Algorithm 3, for i = 0, . . . , h. The inputs to Access[i] are: (1) D/E secret-sharing
of OTi; (2) D/E secret-sharing of address prefix Ni+1 = [Ni|N(i+1)]; (3) Leaf

Three-Party ORAM for Secure Computation 375

label Li as the input of D and E (with N0, N(h+1), and L0 all empty strings).
Its outputs are: (1) C’s output the next leaf label Li+1 = Fi(Ni+1), for i �= h,
or the C/E secret-sharing of record r = D[N], for i = h; (2) C/E secret-sharing
of tuple Ti defined above; and (3) C/E secret-sharing of path Rot[σi,δi,ρi](P′

Li)
which results from rotating the data in PLi by three random shifts (σi, δi, ρi)
known to E and D (and of removing Ti from PLi).

Data-Rotations and Conditional OT’s. We first explain how E and D perform
the three data-rotations on the secret-shared path PLi retrieved from the (shares
of) the i-th level ORAM tree OTi (and randomized by D and E xor-ing the shares
of PLi retrieved from OTi by a pre-agreed random pad). E and D pick three
values during pre-processing, σi, δi, ρi, at random in ranges resp. {1, ...,di + 4},
{1, ..., w}, and {0, 1}τ . The data-rotation defined by σi is performed on the
bucket level, i.e. the di + 4 buckets in path PLi (recall that there are di internal
nodes containing a bucket each and that the leaf node contains 4 buckets) are
rotated clock-wise by σi positions. The data-rotation defined by δi is performed
on the level of tuples within each bucket, i.e. in each of the di +4 buckets in PLi

the sequence of w tuples held in that bucket is rotated clock-wise by δi positions.
Finally, the bit-vector ρi defines τ flips which will be applied to the array A in
each of the (di +4) ·w tuples in the path. Namely, the A field in each tuple in the
path is treated as a τ -dimensional cube whose content is flipped along the j-th
dimension if the j-th bit in ρi is 1. Such τ flips define a permutation on elements
of A where an element at position t moves to position t⊕ρi, for each t ∈ {0, 1}τ .
Note that E and D can perform all these data-rotations locally on their shares
of the path PLi . We use Rot[σi,δi,ρi](PLi) to denote the resulting tree, and we
use Rot[ρi](A) to denote the result of the permutation defined by ρi ∈ {0, 1}τ

on field A as explained above. After applying these data-rotations to PLi the
parties run protocols SS-COT[n] and SS-IOT[2τ] described in Sect. 3, with E as
the sender, D as the helper, and C as the receiver in both protocols. The goal
of protocol SS-COT[n], for n = (di + 4) · w, is two-fold: (1) to let C compute the
index j1 ∈ {1, ..., n} where path Rot[σi,δi,ρi](PLi) contains the unique tuple Ti

defined above (i.e. the tuple that contains the searched-for address prefix Ni);
and (2) to create a C/E secret-sharing of this tuple. The goal of SS-IOT[2τ] is to
let C compute the N(i+1)-th entry in the A field of this secret-shared tuple Ti,
because that field contains the next-tree label Li+1 = Fi(Ni+1).

Note that D and E hold the secret-sharing of Ni and for each t = 1, ..., n they
also hold the shares of the address Nt in the t-th tuple in Rot[σi,δi,ρi](PLi). If D
and E form values at and bt as an xor of these two sharings, i.e. at = sE[Ni ⊕
sE[Nt]] and bt = sD[Ni⊕sD[Nt]] then at = bt if and only if Nt = Ni, i.e. if and only
if t points to a unique tuple Ti in (rotated) path Rot[σi,δi,ρi](PLi) whose address
field N equals the searched-for address Ni. Therefore if D and E run the Secret-
Shared Conditional OT SS-COT[n] on (a1, ..., an) and (b1, ..., bn) defined above as
their condition-share vectors, then C will compute the index j1 to the searched-
for tuple Ti contained in this path. Moreover, SS-COT[n] will also compute the
secret-sharing of Ti if E picks a random pad y of length 2τ ·di+1, and defines the
message vector it inputs to SS-COT[n] as (m1, ...,mn) where mt is an xor of y

376 S. Faber et al.

with E’s share of the A field in the t-th tuple in Rot[σi,δi,ρi](PLi). Note that the
A field in any entry in the rotated path corresponds to array Rot[ρi](A) where
A was the field of the corresponding entry in the original path. Therefore C’s
output in this SS-COT[n] instance will be j2 together with ē = y⊕sE[Rot[ρi](Ai)]
where the searched-for tuple Ti is defined as (1,Li,Ni,Ai). Finally, D can send
to C its share of the whole path Rot[σi,δi,ρi](PLi), so if C computes z as an xor
of ē with the A field in the j1-th tuple in sD[Rot[σi,δi,ρi](PLi)] then (z, y) form a
C/E secret-sharing of Rot[ρi](Ai).

It remains for us to explain how SS-IOT[2τ] computes an entry in this secret-
shared field that corresponds to the next-level address chunk N(i+1), because
that’s the entry which contains Li+1 = Fi(Ni+1). Note that E and D hold the
secret-sharing of N(i+1) and that they also hold the bit-vector ρi s.t. the entry at
t-th position in Ai is located at position t ⊕ ρi in Rot[ρi](Ai). Since Li+1 sits at
the t-th position in Ai for t = N(i+1), we will find if we retrieve the j2-th entry
of Rot[ρi](Ai) for j2 = N(i+1) ⊕ ρi. Note, however, that e.g. sD[N(i+1)] ⊕ ρi and
sE[N(i+1)] form a secret-sharing of j2, and therefore the Secret-Shared Index OT
protocol SS-IOT[2τ] executed on sharing (sD[N(i+1)]⊕ρi, sE[N(i+1)]) and E’s data
vector y = (y0, ..., y2τ -1), will let C output j2 together with the j2-th fragment
yj2 of y. Since (z, y) form the secret-sharing of Rot[ρi](Ai), C can compute the
j2-th entry of Rot[ρi](Ai), i.e. the next-level tree label Li+1, by xor-ing yj2 with
j2-th fragment of z = (z0, ..., z2τ -1).

Security Argument. This protocol is a secure computation of Access[i] function-
ality. Note that D and E do not receive any messages in this protocol, while
C learns D’s fresh random share sD[Rot[σi,δi,ρi](PLi)] of the rotated path, the
index j1 to the location of Ti = (1,Ni+1,Li,Rot[ρi](Ai)) in this rotated path,
string ē = y ⊕ sE[Rot[ρi](Ai)], the index j2 = N(i+1) ⊕ ρi where Li+1 is held
in Rot[ρi](Ai), and label Li+1 = Fi(Ni+1). This view can be efficiently simu-
lated given only Li+1 because (1) D’s share of any path retrieved from OTi is
always a fresh random string because D and E randomize the sharing of PLi after
retrieving it from OTi; (2)j1 is a random integer in {1, ..., w · (di + 4)} because
the buckets are rotated by random σi ∈ {1, ...,di + 4} and the tuples within
each bucket are rotated by random δi ∈ {1, ..., w}; (3) ē and j2 are random bit-
strings, because so are y and ρi; (4) C’s view of SS-COT[n] and SS-IOT[2τ] can
be simulated from their outputs.

Boundary Cases. Algorithm 3 shows protocol Access[i] for 0 < i < h. For i = 0
tree OTi contains a single node, shifts σ0, δ0 are not used, sub-protocol SS-COT[n]

is skipped, index j1 is not used, and the outputs include only j2 for C, ρ0 for D
and E, and the C/E secret-sharing of T0 (with L0 and N0 set to empty strings).
For i = h the SS-IOT[2τ] sub-protocol is skipped, shift ρh and index j2 are not
used, and (z, y) held by C and E form a secret-sharing of record D[N].

Post-Process. The post-process protocol PostProcess transforms the C/E
secret-shared tuples T0, ...,Th output by Access to prepare the inputs for pro-
tocol Eviction. It does so by executing a loop PostProcessT[i] in Algorithm4 in

Three-Party ORAM for Secure Computation 377

Algorithm 4. Protocol PostProcessT[i] - Inserting New Labels into Ti

Input: C’s input sC[Ti], Li, Li+1, j2; E’s input sE[Ti];
Input known in pre-computation: C/D secret-sharing of labels (Li)′ and (Li+1)′,
where E forwards its shares to D;
Output: E/C secret-sharing of tuple (Ti)′ = (1, Ni, (Li)′, A′) where A′[j2] = (Li+1)′

and A′[t] = A[t] for all t �= j2 where Ti = (1, Ni, Li, A);
Pre-computation phase: D picks r1, ..., r2τ in {0, 1}di+1 and α in {0, 1}τ , and sends
α, r1, ..., r2τ to C and s1, ..., s2τ to E s.t. sα = rα ⊕ sE[(Li+1)′] and st = rt for t �= α.

1: C sends δ = α − j2 (mod 2τ) to E.
2: C outputs sC[(Ti)′] = sC[Ti] ⊕ (0, 0iτ , Li ⊕ sC[(Li)′], (c1|...|c2τ)) where ct =

rt+δ (mod 2τ) for all t �= j2 and ct = rt+δ (mod 2τ) ⊕ Li+1 ⊕ sC[(Li+1)′] for t = j2.
3: E outputs sE[(Ti)′] = sE[Ti]⊕(0, 0iτ , sE[(Li)′], (e1|...|e2τ)) where et = st+δ (mod 2τ).

parallel for i = 0, ..., h − 1 (tuple Th is not part of this step). The goal of post-
processing is to replace the Li+1 value which sits at the j2-th position in the A
field of the secret-shared tuple Ti (where j2 is an index C learns in Access[i]),
with the secret-shared value (Li+1)′. In other words, we need to inject a secret-
shared value into a secret-shared array at a secret position known only to one
party. However, we can utilize the fact that this secret-shared value to be injected
can be chosen in pre-processing and that E’s share of it can be revealed to D.
Let (c, e) = (sC[(Li+1)′], sE[(Li+1)′]) and let E sends its share e to D in pre-
processing. If D pre-computes two |A|-long correlated random pads, one for C
and one for E, with the known difference e between them at random location α
known to C, then e⊕c can be injected at position j2 into the C/E secret-sharing
of Ti if (1) C sends δ = α − j2 mod 2τ to E, (2) both parties rotate the pads
they receives from D counter-clockwise by δ positions, in this way placing the
unique pad cells that differ by e at position j2, (3) both parties xor their shares
of Ti with these pads, with C injecting an xor with c at position j2 into her
share. (In addition C will also erase the previous leaf value at position j2 in A
field of Ti by adding Li+1 to that xor.)

Eviction Protocol. Protocol Eviction executes subprotocol Eviction[i] in
Algorithm 5 in parallel for each i = 0, ..., h. (For i = 0 protocol Eviction[i] skips
all the steps in Algorithm 5 except the last one.) Subprotocol Eviction[i] performs
an ORAM eviction procedure on path P∗

Li , whose C/E secret-sharing is output
by protocol Access. The protocol has two parts: First, using Yao’s garbled circuit
protocol GC (see Sect. 3) it allows D to identify two tuples in each internal bucket
of P∗

Li which are either moveable one notch down this path or they are empty
(see the eviction algorithm in Sect. 2). Another instance of GC will similarly find
two empty tuples in the four buckets corresponding to the leaf in P∗

Li . The rea-
son these pairs of indices j0, j1 can be leaked to D is that (1) C and E randomly
permute the tuples in each bucket in P∗

Li before using them in this protocol,
and (2) index jb computed for b = 0, 1 for each bucket in P∗

Li is defined as the
first moveable tuple in that bucket after a random offset λb (counting the tuples
cyclically), where shifts λ0, λ1 are chosen by E independently for each bucket at

378 S. Faber et al.

Algorithm 5. Protocol Eviction[i] - Eviction in Path PLi of OTi

Input: C/E secret-sharing of path P∗
Li and tuple (Ti)′; σ, ρ held by E, D;

Output: D/E secret-sharing of path P�
Li to be inserted into tree OTi in place of PLi .

Notation: Let W = {1, ..., w}, IB = {0, ..., di − 1}, and EB = {di, di + 1, di + 2, di + 3}.
Pre-computation phase: C and E share random permutations π1, ..., πdi on set [w], a
random permutation πdi+1 on set [4 · w], and a random pad ξ of length |PLi |;
1: Parties run protocol Shift(C, E, D) on inputs C/E-secret-sharing of P∗

Li and on
D, E input a shift σ. The protocol outputs a C/E-secret-sharing of path identical
to P∗

Li but with buckets shifted back by σ positions. In addition, for each j ∈ IB,
C and E use πj to permute (their shares of) the tuples in the j-th bucket in the
resulting path, and they use πdi+1 to permute (their shares of) the tuples in the
four buckets corresponding to the leaf node. The resulting path, shared by C and
E, is denoted P∗∗

Li .
2: Let fbj

� and Lj
� be the fb and L fields of the �-th tuple in the j-th bucket in

P∗∗
Li . For each j ∈ IB, parties run protocol GC[F2FT](E, C, D), see Sec 3, on C’s

inputs {sC[fbj
� , L

j
� [j + 1]]}�∈W and on E’s inputs {sE[fbj

�], Bj}�∈W where Bj =
sE[Lj

� [j + 1]] ⊕ 1 ⊕ Li[j + 1]. (Note that sC[Lj
� [j + 1]] ⊕ Bj = 1 iff the secret-shared

value Lj
� and the public value Li agree on (j + 1)-st bit.) For each j ∈ IB, D

defines α1
j , α

2
j ∈ [1, ..., w] as the indices of the two output wires of F2FT on which

D received output bit 1 in the j-th instance of GC[F2FT].
3: The parties run protocol GC[F2ET](E, C, D) on E’s inputs {sE[fbj

�]}�∈W,j∈EB and
C’s inputs {sC[fbj

�]}�∈W,j∈EB. D defines α1
di

, α2
di

∈ [1, ..., 4 · w] as the indices of the
two output wires of F2ET on which D received output bit 1 in this instance of
GC[F2ET].

4: D prepares a sequence of k = w · (di + 4) indices I = (β1, ..., βk) s.t.

βw·j+� =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k + 1, if j = 0 and � = α1
0

k + 2, if j = 0 and � = α2
0

w · (j − 1) + α1
j−1, if 1 ≤ j ≤ di − 1 and � = α1

j

w · (j − 1) + α2
j−1, if 1 ≤ j ≤ di − 1 and � = α2

j

w · (di − 1) + α1
di−1, if j ≥ di and w · (j − di) + � = α1

di

w · (di − 1) + α2
di−1, if j ≥ di and w · (j − di) + � = α2

di

w · j + � otherwise

and then divides I into di + 4 chunks, each of which has w indices, and permutes
each chunk with the corresponding �r.

5: C prepares a sequence of k + 2 shares (sC[a1], ..., sC[ak+2]) by setting sC[aw·j+�] =
sC[Tj

�] where Tj
� is �-th tuple in j-th bucket Bj in P∗∗

Li , for � ∈ W and j ∈ IB ∪ EB,
sC[ak+1] as sC[(Ti)′], and sC[ak+2] as 0 concatenated with a random string of
i · τ + di + 2τ · di+1 bits. E prepares a sequence of k + 2 shares (sE[a1], ..., sE[ak+2])
in the corresponding way, using its shares of P∗∗

Li and (Ti)′.
6: The parties run protocol SS-XOT

[
k+2
k

]
on C’s input (sC[a1], ..., sC[ak+2]), E’s input

(sE[a1], ..., sE[ak+2]), and D’s input I. C and E set their shares of path P�
Li to their

output in this SS-XOT
[
k+2
k

]
protocol xor’ed with string ξ.

7: C sends sC[P�
Li] to D; D and E insert their shares of P�

Li into their shares of OTi.

Three-Party ORAM for Secure Computation 379

random in {1, ..., w}. The circuit computed for every internal bucket takes only
2w bits of input (one for bit fb and one for an agreement in the i-th bit of a leaf
label in the tuple and the i-th bit of label Li defining path P∗

Li), and has only
about 16w non-xor gates. Once D gets two indexes per each bucket in the path,
it uses the Secret-Shared Shuffle OT protocol SS-XOT

[
k+2
k

]
(see Section 3) to

randomizes the secret-sharing of all tuples in PLi while (1) moving the secret-
shared tuple (Ti)′ prepared by PostProcess into the root bucket, and (2) moving
the two chosen tuples in each bucket to the space vacated by the two tuples
chosen in the bucket below. Finally, C and E randomize their secret-sharing of
the resulting path P∗∗

Li by xor-ing their shares with a pre-agreed random pad, C
sends its share of P∗∗

Li to D, and D and E insert their respective shares of P∗∗
Li

into their shares of OTi, in place of the shares of the original path PLi retrieved
in the first step of Access[i].

5 Protocol Analysis

Assuming constant record size the bandwidth of our protocol is O
(
w(m3 + κm2)

)
,

where w the bucket size of the nodes in our protocol, |D| = 2m, and κ is the cryp-
tographic security parameter. The O

(
wm3

)
term comes from the fact that all our

protocols except for the GC evaluation have bandwidth O(|PLi |) where PLi is a
path accessed in OTi. (The online part of our protocol requires 7 such transmis-
sions per each OTi). Each path PLi in OTi has length O

(
w(di)2

)
where di is linear

in i, and the summation is then done for i from 1 to h = O (m). The O
(
wκm2

)

term is the bandwidth for garbled circuits, since the inputs to the circuits for a
path have O (wm) bits and there are O (m) paths retrieved during the traversal of
the ORAM forest.

Each party’s local cryptographic computation is O
(
w

(
m3/κ + m2

))
block

cipher or hash operations. Note that the O
(
wm3/κ

)
factor comes already from

secure transmission of data in the Client-Server ORAM, hence this cost seems
cryptographically minimal. The GC computation contributes O

(
wm2

)
hash

function operations, all performed by one party. Since m < κ, the O
(
wm2

)

term could dominate, and indeed we observe that the GC computation occupies
a significant fraction of the overall CPU cost.

The performance of the scheme is linear in the bucket size parameter w,
and the size of this parameter should be set so that the probability of overflow
of any bucket throughout the execution of the scheme is bounded by 2−λ for
the desired statistical security parameter λ. The probability that an internal
node overflows and the probability that a leaf node overflows are independent
stochastic processes and for this reason we examine them separately. The ana-
lytical bounds we give for both cases are not optimal. For the leaf node overflow
probability the bound we give in Lemma1 could be made tight if the number of
ORAM accesses N is equal to the number of memory locations 2m, but for the
general case of N > 2m we use a simple union bound which adds a N factor. If
a tighter analysis could be made, it could potentially reduce the required w by
up to log(N) bits. The bound we give for the internal node overflow probability

380 S. Faber et al.

in Lemma 2 is simplistic and clearly far the optimal. We amend this bound by
a discussion of a stochastic model which we used to approximate the eviction
process. If this approximation is close to the real stochastic process then the
scheme can be instantiated with much smaller bucket sizes than those implied
by Lemma 2.

Lemma 1. (Leaf Nodes) If we have N accesses in an ORAM forest with the
total capacity for 2m records and with leaf nodes which hold 4w entries, then the
probability that some leaf node overflows at some access is bounded by:

Pr[some leaf node in OTF overflows] ≤ N · h2 · 2m

w
· 2−2w

The proof of this lemma follows from a standard bins-and-balls argument.
To keep this probability below 2−λ we need that 2w ≥ λ+logN+m+2 log m.

It is easy to see that if you increase the number of buckets in a leaf node, the
constant of this linear relationship (which is roughly 1

2 for 4 buckets per leaf)
decreases rapidly. For example if one uses 6 buckets per leaf, the constant of the
linear relationship between w and m + logN + λ becomes 1

6 , allowing for much
smaller buckets. This means that by modifying the number of buckets per leaf,
we can ensure that it is the internal nodes that define the size of buckets. We
note that increasing the number of buckets per leaf increases the total space for
the ORAM forest OTF.

Lemma 2. (Internal Nodes) If we have N accesses and subsequent evictions
in an ORAM forest with internal buckets of size w, then the probability that
some internal bucket overflows at some access is bounded by:

Pr[some internal bucket in OTF overflows] ≤ N · h · dh · w · 2−(w−1)

We can prove Lemma 2 by assuming that there exists an internal node that
during all accesses and subsequent evictions is on the verge of overflowing (has
w or w − 1 entries in it). We also assume the worst case of each node always
receiving exactly two new entries, and we compute the probability that a node
is not able to evict two entries, thus causing an overflow.

To keep this probability below 2−λ, the lemma implies that w − log w ≥
λ + logN + 2 log m + 1. For w < 512 this can be simplified as w ≥ λ + logN +
2 log m + 10. For N ≤ c · 2m this implies w ≥ λ + m + 2 log m + 10 + log c.

Stochastic Approximation. The above analysis is pessimistic, since it assumes
that there exists a critical bucket that is always full, having w or w − 1 entries
and bounds the probability of such a bucket having a “bad event”. It does not
explore how difficult it is for a bucket to reach such a state, or how a congested
bucket is emptying over time. In order to better understand such behaviors we
observe that each internal node can be modeled as a Markov Chain, where the
state of the chain counts how many entries are currently in the node. The node
is initially empty. Whenever a node is selected in an eviction path it may receive
up to two entries depending on whether the parent node was able to evict one

Three-Party ORAM for Secure Computation 381

or two entries. Moreover the node could evict up to two entries to its child that
participates in the eviction path. The root always receives 1 entry and may evict
up to two entries. Intuitively since the eviction path is picked at random and
each entry is assigned to a random leaf node, each entry in a node in the eviction
path can be evicted to the selected child node with probability 1

2 . So for this
model we make the following relaxation: Instead of mapping an entry to a leaf
node, when it is inserted for the first time in the root, we just let the leaf node
be “defined” as the entry is pushed down the tree during eviction. In that sense
we abstract entries and the only think we need to care for, is how many entries
there exist in a given internal node at a given moment, which is expressed by
the state of the Markov Chain.

This model needs one Markov Chain for each internal node. We make the
following relaxation: We use one Markov Chain for each level of the tree.
A Markov Chain starts empty. At each eviction step, a Markov Chain at level i
may receive up to two entries depending on how many entries the Markov Chain
in the previous level i−1 was able to evict. Moreover the Markov Chain at level
i may evict up to two entries to level i + 1. The Markov Chain for the root
(level 0) always receives 1 entry. The state of a Markov Chain keeps tracks of
how many entries are in it. At each eviction step an entry can be evicted with
probability 1

2 (the same as the probability we had for the previous model).
The final relaxation we do, is that we remove the direct relationship between

a Markov Chain at level i evicting an entry and the Markov Chain at level i + 1
receiving an entry. We first observe that on expectation at every level the Markov
Chain receives at most 1 entry at each eviction step. Intuitively in order to prove
this we observe that initially all nodes are empty. The root receives one entry in
each eviction step, from there we can use a recursive argument that at any level i
a node cannot be evicting more than 1 entry on expectation in each eviction step,
which is what the node at level i+1 is receiving. Since the eviction probabilities
only depend on the current state of a Markov Chain, the worst case for the
Markov Chain, is when the variance of the input is maximized. This happens
when with probability 1

2 the node receives 0 entries and with probability 1
2 the

node receives 2 entries (also maximizes the expectation to 1).
We use this last model in order to bound the probability of overflow for inter-

nal nodes in our implementation and in order to set bucket sizes. In particular
we generate a Markov Chain the has w + 2 states, w for the bucket size, one
empty state and one overflow state. The overflow state is a sink. We compute the
probability of being in the overflow state after N accesses assuming the node was
initially empty and perform a union bound on the number of nodes in all paths
of the ORAM forest OTF. In Fig. 1 for different statistical security parameters
λ equal with 20, 40 and 80, we show the minimum bucket sizes w for logN in the
range 12, . . . 36 and m = O (logN). Generally, we observe that using the Markov
Chain based approximation can lead to tighter bounds on the internal node
sizes, from which we conjecture that the size of internal nodes can be reduced
to O

(√
λ + logN

)
(w > 2

√
λ + logN + 2 log m).

382 S. Faber et al.

Fig. 1. w for different logN

6 Implementation and Testing

We built and benchmarked a prototype JAVA implementation of the proposed
3-party SC-ORAM protocol. We tested this implementation on the entry-level
Amazon EC2 t2.micro virtual servers, which have one hyperthread on a 2.5GHz
CPU and 1GB RAM. Each of the three protocol participants C, D, E where
co-located in the same availability zone and connected via a local area network.
Here we will briefly show the most important findings, and we defer to the full
version of the paper for more detailed performance data.

We measured the performance of the online and offline stages of our protocol
separately, but our development effort was focused on optimizing the online stage
so the offline timings provide merely a loose upper-bound on the precomputation
overhead. We measured both wall clock and CPU times for each execution, where
the wall clock time is defined as the maximum of the individual wall clocks, and
the CPU time as the sum of the CPU times of the three parties. We tested our
prototype for bit-length m of the RAM addresses ranging from 12 to 36, and
for record size d ranging from 4 to 128 Bytes. Since the SC-ORAM protocol has
two additional parameters, the bucket size w and the bitlength of RAM address
segments τ , we tested the sensitivity of the performance to w using w equal to
16, 32, 64, or 128, and for each (m,w, d) tuple we searched for τ that minimize
the wall clock (an optimal τ was always between 3 and 6 for the tested cases).

Figure 2 shows the wall clock time of the online stage as a function of the
bitlength m of the RAM address space, for the two cases (w, d) = (16, 4) and
(w, d) = (32, 4). We found that the CPU utilization in the online phase of our
protocol is pretty stable, growing from about 25% for smaller m’s to 35% for
m ≥ 30, hence the graph of the CPU costs as function of m has a very similar
shape. Our testing showed that the influence of the record size d on the overall
performance is very small for d less than 100B, but higher payload sizes start

Three-Party ORAM for Secure Computation 383

Fig. 2. Online Wall Clock vs RAM address size m

influencing the running time. Our testing confirms that the running time has
clear linear relationship to the bucket size w: The wall clock for w = 64 grows
by a factor close to 1.8 compared to w = 32, and for w = 128 by a factor
close to 3.5 (for large m and small d). The offline wall clock time grows from
400 msec for m = 12 to 1300 msec for m = 36 for w = 32, but these numbers
should be taken only as loose upper bounds on the precomputation overhead
of our SC-ORAM. Finally, we profiled the code to measure the percentage of
CPU time spent on different protocol components. We found that the fraction
of the fraction of the total CPU costs of the online phase spent on Garbled
Circuit evaluation decreases from 45% − 50% for m = 12 to 25% for m = 36.
We also found that only about half of that cost is spent in SHA evaluation, i.e.
that the Garbled Circuit evaluation protocol spends only about half its CPU
time on decryption of the garbled gates. The fraction of the CPU cost spent on
symmetric ciphers, which form the only cryptographic costs of all the non-GC
part of our protocol, decreases from the already low figure of 10% for small m’s
to below 5% for m = 36. By contrast, the fraction of the CPU cost spent on
handling message passing to and from TCP communication sockets grows from
12% for small m’s to 30% for m = 36.

References

1. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: Proceedings of the Twen-
tieth Annual ACM Symposium on Theory of Computing, STOC 1988, pp. 1–10.
ACM, New York (1988)

2. Chaum, D., Crépeau, C., Damgard, I.: Multiparty unconditionally secure proto-
cols. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of
Computing, STOC 1988, pp. 11–19. ACM, New York (1988)

3. Choi, S.G., Hwang, K.-W., Katz, J., Malkin, T., Rubenstein, D.: Secure multi-
party computation of boolean circuits with applications to privacy in on-line mar-
ketplaces. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 416–432.
Springer, Heidelberg (2012)

384 S. Faber et al.

4. Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval.
In: Proceedings of 36th FOCS, pp. 41–50 (1995)

5. Chung, K.-M., Liu, Z., Pass, R.: Statistically-secure ORAM with Õ(log2 n) over-
head. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part II. LNCS, vol. 8874,
pp. 62–81. Springer, Heidelberg (2014)

6. Damg̊ard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical
covertly secure MPC for dishonest majority – or: breaking the SPDZ limits. In:
Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp.
1–18. Springer, Heidelberg (2013)

7. Damg̊ard, I., Meldgaard, S., Nielsen, J.B.: Perfectly secure oblivious RAM with-
out random oracles. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 144–163.
Springer, Heidelberg (2011)

8. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012)

9. Fletcher, C.: Ascend: an architecture for performing secure computation on
encrypted data. In: MIT CSAIL CSG Technical Memo, p. 508 (2013)

10. Fletcher, C.W., van Dijk, M., Devadas, S.: A secure processor architecture for
encrypted computation on untrusted programs. In: Proceedings of the Seventh
ACM Workshop on Scalable Trusted Computing, STC 2012, pp. 3–8. ACM, New
York (2012)

11. Gentry, C., Goldman, K.A., Halevi, S., Julta, C., Raykova, M., Wichs, D.: Opti-
mizing ORAM and using it efficiently for secure computation. In: De Cristofaro,
E., Wright, M. (eds.) PETS 2013. LNCS, vol. 7981, pp. 1–18. Springer, Heidelberg
(2013)

12. Gertner, Y., Ishai, Y., Kushilevitz, E., Malkin, T.: Protecting data privacy in
private information retrieval schemes. In: STOC (1998)

13. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious rams.
J. ACM 43(3), 431–473 (1996)

14. Gordon, S.D., Katz, J., Kolesnikov, V., Krell, F., Malkin, T., Raykova, M., Vahlis,
Y.: Secure two-party computation in sublinear (amortized) time. In: Computer and
Communications Security (CCS), CCS 2012, pp. 513–524 (2012)

15. Keller, M., Scholl, P.: Efficient, oblivious data structures for MPC. In: Sarkar,
P., Iwata, T. (eds.) ASIACRYPT 2014, Part II. LNCS, vol. 8874, pp. 506–525.
Springer, Heidelberg (2014)

16. Kruger, L., Jha, S., Goh, E.-J., Boneh, D.: Secure function evaluation with ordered
binary decision diagrams. In: Conference on Computer and Communications Secu-
rity, CCS 2006, pp. 410–420. ACM, New York (2006)

17. Lu, S., Ostrovsky, R.: Distributed oblivious RAM for secure two-party compu-
tation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 377–396. Springer,
Heidelberg (2013)

18. Maas, M., Love, E., Stefanov, E., Tiwari, M., Shi, E., Asanovic, K., Kubiatowicz,
J., Song, D.: Phantom: practical oblivious computation in a secure processor. In:
Conference on Computer and Communications Security, CCS 2013, pp. 311–324.
ACM, New York (2013)

19. Ostrovsky, R., Shoup, V.: Private information storage (extended abstract). In: Pro-
ceedings of the Twenty-Ninth Annual ACM Symposium on the Theory of Com-
puting, El Paso, Texas, USA, 4–6 May 1997, pp. 294–303 (1997)

20. Shi, E., Chan, T.-H.H., Stefanov, E., Li, M.: Oblivious RAM with O((logN)3)
worst-case cost. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol.
7073, pp. 197–214. Springer, Heidelberg (2011)

Three-Party ORAM for Secure Computation 385

21. Stefanov, E., Van Dijk, M., Shi, E., Fletcher, C., Ren, L., Yu, X., Devadas, S.: Path
oram: an extremely simple oblivious ram protocol. In: Conference on Computer and
Communications Security (CCS), CCS 2013, pp. 299–310 (2013)

22. Wang, X.S., Huang, Y., Chan, T.H., Shelat, A., Shi, E.: Scoram: oblivious ram for
secure computation. In: Conference on Computer and Communications Security,
CCS 2014, pp. 191–202. ACM (2014)

23. Wang, X.S., Hubert, T.-H., Shi, E.: Circuit oram: on tightness of the Goldreich-
Ostrovsky lower bound. In: Eprint IACR Archive, 2015/672 (2014)

24. Yao, A.C.-C.: Protocols for secure computations (extended abstract). In: Proceed-
ings of the 23rd Annual Symposium on Foundations of Computer Science, FOCS
1982, pp. 160–164 (1982)

On Cut-and-Choose Oblivious Transfer
and Its Variants

Vladimir Kolesnikov1(B) and Ranjit Kumaresan2

1 Bell Labs, Murray Hill, NJ, USA
kolesnikov@research.bell-labs.com
2 MIT CSAIL, Cambridge, MA, USA

ranjit@csail.mit.edu

Abstract. Motivated by the recent progress in improving efficiency of
secure computation, we study cut-and-choose oblivious transfer—a basic
building block of state-of-the-art constant round two-party secure com-
putation protocols that was introduced by Lindell and Pinkas (TCC
2011). In particular, we study the question of realizing cut-and-choose
oblivious transfer and its variants in the OT-hybrid model. Towards this,
we provide new definitions of cut-and-choose oblivious transfer (and its
variants) that suffice for its application in cut-and-choose techniques for
garbled circuit based two-party protocols. Furthermore, our definitions
conceptually simplify previous definitions including those proposed by
Lindell (Crypto 2013), Huang et al., (Crypto 2014), and Lindell and Riva
(Crypto 2014). Our main result is an efficient realization (under our new
definitions) of cut-and-choose OT and its variants with small concrete
communication overhead in an OT-hybrid model. Among other things
this implies that we can base cut-and-choose OT and its variants under a
variety of assumptions, including those that are believed to be resilient to
quantum attacks. By contrast, previous constructions of cut-and-choose
OT and its variants relied on DDH and could not take advantage of OT
extension. Also, our new definitions lead us to more efficient construc-
tions for multistage cut-and-choose OT—a variant proposed by Huang
et al. (Crypto 2014) that is useful in the multiple execution setting.

Keywords: Cut-and-choose oblivious transfer · OT extension ·
Concrete efficiency

1 Introduction

Secure two-party computation is rapidly moving from theory to practice. While
the basic approach for semi-honest security, garbled circuits [33], is extensively
studied and is largely settled, security against malicious players has recently

V. Kolesnikov—Supported by the Office of Naval Research under contract N00014-
14-C-0113.
R. Kumaresan—Supported by Qatar Computing Research Institute and DARPA
Grant number FA8750-11-2-0225. Work done in part while at the Technion.

c© International Association for Cryptologic Research 2015
T. Iwata and J.H. Cheon (Eds.): ASIACRYPT 2015, Part I, LNCS 9452, pp. 386–412, 2015.
DOI: 10.1007/978-3-662-48797-6 17

On Cut-and-Choose Oblivious Transfer and Its Variants 387

seen significant improvements. The main technique for securing garbled circuit
protocols against malicious adversaries is cut-and-choose, formalized and proven
secure by Lindell and Pinkas [23]. A line of work [11,22–24,26,31] has focused
on reducing the concrete overhead of the cut-and-choose approach: it is possible
to guarantee probability of cheating ≤ 2−σ using exactly σ garbled circuits.

The above works have been motivated by the impression that the major over-
head of secure two-party computation arises from the generation, transmission,
and evaluation of garbled circuits (especially for functions having large circuit
size). Indeed, the work of Frederiksen and Nielsen [7] showed that the cost of the
circuit communication and computation for oblivious two-party AES is approxi-
mately 80% of the total cost; likewise, Kreuter et al. [19] showed that the circuit
generation and evaluation for large circuits takes 99.999% of the execution time.

Recent works of [10,21] consider the multiple-execution setting, where two
parties compute the same function on possibly different inputs either in parallel
or sequentially. These works show that to evaluate the same function t times, it
is possible to reduce the number of garbled circuits to O(σ/ log t). In concrete
terms, this corresponds to a drastic reduction in the number of garbled circuits.
For instance when t = 3500 and for σ = 40, the work of [10,21] shows a cut-
and-choose technique that reduces the number of garbled circuits to less than
8 per execution. Thus it is reasonable to say that the overhead due to generation,
transmission, and evaluation of garbled circuits has been significantly reduced.

However, state-of-the-art two-party secure computation protocols, both in
the single-execution setting [22] and in the multiple-execution setting [10], suffer
from major overheads due to use of public key operations for two reasons:

– Use of DDH-based zero-knowledge protocols to enforce circuit-generator’s
input consistency.

– Use of DDH-based cut-and-choose oblivious transfer protocols [5,10,21,22,24]
to avoid “selective failure” attacks.

Of greater concern is the fact that these state-of-the-art protocols are unlikely
to perform well in settings where the inputs of even one of the parties are large
(because they use public key operations proportional to the total size of inputs
of both parties). It is worthwhile to note that although techniques, most notably
amortization via oblivious transfer (OT) extension [12,14,29], exist to reduce
the number of public key operations required at least for one of the parties, the
state-of-the-art two-party secure computation protocols simply are not able to
take advantage of these amortization techniques.

If one restricts their attention to constant-round protocols with good concrete
efficiency there are very few alternatives [23,26] that require reduced number
of public key operations. For instance the protocols of [23,26] use public key
operations only for the (seed) OTs (which can be amortized using OT extension).
Furthermore, at least in the single execution setting, the techniques of [23,26] can
be easily merged with state-of-the-art cut-and-choose techniques to reduce the
number of public key operations. However, this results in a considerable overhead
in the communication complexity (by factor σ) for proving input consistency of
the circuit generator. More importantly the techniques of [23,26] do not adapt

388 V. Kolesnikov and R. Kumaresan

well to the state-of-the-art cut-and-choose techniques for the multiple executions
setting, and require strong assumptions such as a programmable random oracle.
Specifically, the “XOR-tree encoding schemes” technique employed in [23,26]
to avoid the selective failure attack no longer appears to work with standard
garbling techniques. On the other hand, a natural generalization of cut-and-
choose OT, namely multistage cut-and-choose OT proposed in [10,21] can handle
the selective failure attack in the multiple executions setting (cf. Sect. 1.2).

Unfortunately the only known constructions of cut-and-choose OT as well as
its variants rely on DDH and consequently use public key operations proportional
to the size of the cut-and-choose OT instance. This is further amplified by the
fact that known cut-and-choose OT protocols require regular exponentiations
which are more expensive relative to even fixed-base exponentiations. (Note that
on the other hand the DDH-based zero-knowledge protocols to ensure input
consistency used in [22,24] require only fixed-base exponentiations.)
Our Contributions. In this paper, we study cut-and-choose OT and its vari-
ants as independently interesting primitives. Motivated by the discussion above,
our main goal will be to reduce the number of public key operations required to
realize a cut-and-choose OT instance, while minimizing the concrete communica-
tion complexity. Towards this, we propose a new formulation of cut-and-choose
OT and its variants that (1) is sufficient for its application to design secure two-
party computation protocols, (2) allows a realization in an OT-hybrid model
(as opposed to specific public key cryptosystems, and also provides alternative
realizations which are resistant to quantum attacks), and (3) can be realized
with low communication complexity in both concrete terms (roughly factor 4
overhead) as well as asymptotic terms. Furthermore, our formulation provides
new insights into the design of multistage cut-and-choose OT protocols resulting
in new constructions of the same that offer factor t (where t is the number of
executions) improvement over prior work [10]. Note that the benefits of amorti-
zation in the multiple execution setting kick in for large t (e.g., 10X improvement
when t = 106). Hence our protocols can offer significant gains in efficiency. Con-
ceptually, our work can be considered as

– Pinning down the exact formulation of cut-and-choose OT and its variants
that suffices for its applications.

– Basing cut-and-choose OT on a wide variety of assumptions (including LWE,
RSA, DDH).

– Showing how to efficiently “extend” cut-and-choose OT (a la OT extension).
– An approach for porting “XOR-tree encoding schemes” to work in the multiple

execution setting while preserving their efficiency.

Our new formulation of cut-and-choose OT has the following aspects:

– Treats cut-and-choose OT (and its variants) as a reactive functionality. This
allows us to construct efficient protocols for multistage cut-and-choose OT.

– Requires ideal process simulation for corrupt receiver but only privacy against
corrupt sender. This will allow us to realize cut-and-choose OT (and its vari-
ants) with low concrete communication complexity.

On Cut-and-Choose Oblivious Transfer and Its Variants 389

1.1 Cut-and-Choose Oblivious Transfer and Its Variants

We provide an overview of cut-and-choose OT and its variants. In the following,
let λ (resp. σ) denote the computational (resp. statistical) security parameter.
Cut-and-Choose Oblivious Transfer. Cut-and-choose oblivious transfer
(CCOT) [24], denoted Fccot (see Fig. 1) is an extension of standard OT. The
sender inputs n pairs of strings, and the receiver inputs n selection bits to select
one string out of each pair of sender strings. However, the receiver also inputs a
set J of size n/2 that consists of indices where it wants both the sender’s inputs
to be revealed. Note that for indices not contained in J , only those sender inputs
that correspond to the receiver’s selection bits are revealed.

Remark 1. Using a PRG it is possible to obtain OT on long strings given ideal
access to OT on short strings of length λ [12]. This length extension technique
is applicable to cut-and-choose and its variants. Furthermore, for applications
to secure computation, sender input strings (i.e., garbled circuit keys) are of
length λ. Therefore, we assume wlog that sender input strings are all of length λ.

Fig. 1. The cut-and-choose OT functionality Fccot from [24].

Batch Single-Choice CCOT. In applications to secure computation, one
needs single-choice CCOT, where the receiver is restricted to inputting the
same selection bit in all the n/2 instances where it receives exactly one out
of two sender strings. Furthermore, it is crucial that the subset J input by the
receiver is the same across each instance of single-choice CCOT. This variant,
called batch single-choice CCOT can be efficiently realized under DDH [24].
Modified Batch Single-Choice CCOT. Lindell [22] presented a variant of
batch single-choice CCOT, denoted F�

ccot, to address settings where the receiver’s
input set J may be of arbitrary size (i.e., not necessarily n/2). In addition to
obtaining one of the sender’s inputs, the receiver also obtains a “check value”
for each index not in J . This variant can be realized under DDH [22].
Multistage CCOT. To handle the multiple (parallel) execution setting, a new
variant of F�

ccot called batch single-choice multi-stage cut-and-choose oblivious
transfer was proposed in [10]. For sake of simplicity, we refer to this primitive as
multistage cut-and-choose oblivious transfer and denote it by F�

mcot. At a high

390 V. Kolesnikov and R. Kumaresan

Fig. 2. Multistage cut-and-choose OT functionality F�
mcot [10,21].

level, this variant differs from F�
ccot in that the receiver can now input multiple

sets E1, . . . , Et (where J is now implicitly defined as [n] \ ∪k∈[t]Ek), and make
independent selections for each E1, . . . , Et. In fact the above definition reflects
the cut-and-choose technique employed in [10,21] for the multiple execution set-
ting. The technique proceeds by first choosing a subset of the n garbled circuits
to be checked, and then partitioning the remaining garbled circuits into t eval-
uation “buckets”. An information-theoretic reduction of F�

mcot to t instances of
F�

ccot with total communication cost O(nt2λ) was shown in [10].
For lack of space, we present only the multistage cut-and-choose OT function-

ality in Fig. 2. Note that F�
mcot generalizes modified batch single-choice CCOT

of [22] (simply by setting t = 1) as well as batch single-choice CCOT of [24] (by
setting t = 1 and forcing |J | = n/2 and setting all φk

j values to 0σ).

1.2 Selective Failure Attacks

In garbled circuit protocols, OT is used to enable the circuit generator (referred
to as the sender) S to transfer input keys for the garbled circuit corresponding
to the circuit evaluator (referred to as the receiver) R’s inputs. However, when S
is malicious, this can lead to a “selective failure” attack. To explain this problem
in more detail, consider the following näıve scheme. For simplicity assume that
R has only one input bit b. Let the keys corresponding to R’s input be (xj,0, xj,1)
in the j-th garbled circuit. In the following, let com be a commitment scheme.

– S sends (com(x1,0), com(x1,1)), . . . , (com(xn,0), com(xn,1)) to R.
– S and R participate in a single instance of FOT where S’s input ((d1,0, . . . ,

dn,0), (d1,1, . . . , dn,1)) where dj,c is the decommitment corresponding to
com(xj,c), and R’s input is b. R obtains (d1,b, . . . , dn,b) from FOT.

– Then R sends check indices J ⊆ [n] to S.
– S sends {dj,0, dj,1}j∈J to R.

On Cut-and-Choose Oblivious Transfer and Its Variants 391

The selective failure attack operates in the following way: S supplies
(d1,0, . . . , dn,0), (d′

1,1, . . . , d
′
n,1) where di,0 is a valid decommitment for com(xi,0)

while d′
i,1 is not a valid decommitment for com(xi,1). Then when R sends check

indices, S responds with {dj,0, dj,1}j∈J where dj,0 and dj,1 are valid decommit-
ments for com(xj,0) and com(xj,1) respectively. Suppose R’s input equals 0. In
this case, R does not detect any inconsistency, and continues the protocol, and
obtains output. Suppose R’s input equals 1. Now R will not obtain xj,1 for all
j ∈ [n] since it receives invalid decommitments. If R aborts then S knows that
R’s input bit equals 1. In any case, R cannot obtain the final output. I.e., the
ideal process and the real process can be distinguished when R’s input equals 1,
and the protocol is insecure since S can force an abort depending on R’s input.

Approaches Based on “XOR-Tree Encoding Schemes”. The first solu-
tion to the selective failure attack was proposed in [6,15,23] where the idea was
to randomly encode R’s input and then augment the circuit with a supplemen-
tal subcircuit (e.g., “XOR-tree”) that performs the decoding to compute R’s
actual input. Note that the “selective failure”-type attack can still be applied
by S but the use of encoding ensures that the event that R aborts due to the
attack is almost statistically independent of its actual input. The basic XOR-tree
encoding scheme incurs a multiplicative overhead of σ in the number of OTs and
increases the circuit size by σ XOR gates. The “random combinations” XOR-tree
encoding [23,25,30] incurs a total overhead of m′ = max(4m, 8σ) in the number
of OTs where m is the length of R’s inputs, and an additional 0.3mm′ XOR
gates. (Note that use of the free-XOR technique [18] can lead to nullifying the
cost of the additional XOR gates.) [13] uses σ-wise independent generators to
provide a rate-1 encoding of inputs which can be decoded using an NC0 circuit.

Approaches Based on CCOT. CCOT forces S to “commit” to all keys
corresponding to R’s input and reveals a subset of these keys corresponding to
R’s input but without the knowledge of which subset of keys were revealed.
This allows us to intertwine the OT and the circuit checks and avoids the need
to augment the original circuit with a supplemental decoding subcircuit. I.e.,
selective failure attacks are “caught” along with check for incorrectly constructed
circuits, and this results in a simpler security analysis.

Approaches for the Multiple Execution Setting. While either approach
seems sufficient to solve the selective failure attack, the CCOT based approach
offers a qualitative advantage in the multiple parallel execution setting. First let
us provide an overview of the cut-and-choose technique in the multiple execution
setting [10,21]. S sends n garbled circuits, and R picks a check set J ⊆ [n]. The
garbled circuits corresponding to check sets will eventually be opened by S.
The garbled circuits which are not check circuits are randomly partitioned into
t evaluation “buckets” denoted by E1, . . . , Et. We now explain the difficulty in
adapting XOR-tree encoding schemes to this cut-and-choose technique.

Observe that when using standard garbling schemes [23,33] in a 2-party
garbled circuits protocol, the OT step needs to be carried out before the garbled
circuits are sent. This is necessary for the simulator to generate correctly faked

392 V. Kolesnikov and R. Kumaresan

garbled circuits (using R’s inputs extracted from the OT) in the simulation for
corrupt R. For simplicity assume that R has exactly one input bit (which may
vary across different executions). Now when using XOR-tree encoding schemes
we need to enforce that in each execution, R inputs the same choice in all the
OTs. Batching the OTs together for each execution can be implemented if S
knows which circuits are going to be evaluation circuits for each execution, but R
cannot reveal which circuits are evaluation circuits because this allows a corrupt
S to transmit well-formed check circuits and ill-formed evaluation circuits. Thus
it is unclear how to apply the XOR-tree encoding schemes and ensure that
corrupt R chooses the same inputs for the evaluation circuits within an execution.

A generalization of CCOT called multistage CCOT (Fig. 2) is well-suited to
the multiple parallel execution setting. Indeed, multistage CCOT F�

mcot takes
as inputs (1) from S: all input keys corresponding to R’s inputs in each of the
n garbled circuits, and (2) from R: the sets E1, . . . , Et along with independent
choice bits for each of the t executions. Thus F�

mcot avoids the selective failure
attack in the same way as CCOT does it in the single execution setting. Further,
it ensures that R is forced to choose the same inputs within each execution.

Remark 2. Surprisingly, CCOT has a significant advantage over XOR-tree
encoding schemes only in the parallel execution setting. In the sequential exe-
cution setting, it is unclear how to use CCOT since R’s inputs for each of its
executions are not available at the beginning of the protocol. It appears nec-
essary to do the OT for each execution after all the garbled circuits are sent.
Then one may use adaptively secure garbling schemes [2,3] (e.g., in the program-
mable random oracle model) to enable the simulator to generate correctly faked
garbled circuits in the simulation for corrupt R. Assuming that the garbling is
adaptively secure, XOR-tree encoding schemes suffice to circumvent the selective
failure attack in the multiple sequential setting. This also applies to the multiple
parallel setting.

1.3 Overview of Definitions and Constructions

As mentioned in the Introduction, all known constructions of CCOT rely on
DDH and thus make heavy use of public key operations. A natural approach to
remedy the above situation is try and construct CCOT in a OT-hybrid model
and then use OT extension techniques [12,29].

Basing CCOT on OT. A first idea is to use general OT-based 2PC (e.g., [14])
to realize CCOT but it is not clear if this would result in a CCOT protocol with
good concrete efficiency. Note that the circuit implementing CCOT has very
small depth, and that S’s inputs are of length O(nλ) while R’s is of length O(n)
(where the big-Oh hides small constants). Protocols of [23,26] do not perform
well since there’s a multiplicative overhead of (at least) λσ over the instance size
(i.e., O(nλ)) simply because of garbling (factor λ) and cut-and-choose (factor σ).
Protocols of [10,22,24] already rely on CCOT and the instance size of CCOT
required inside these 2PC protocols are larger than the CCOT instance we wish

On Cut-and-Choose Oblivious Transfer and Its Variants 393

to realize. Since the circuit has very small constant depth it is possible to employ
non-constant round solutions [29] but this still incurs a factor λ overhead due
to use of authenticated OTs. Employing information-theoretic garbled circuit
variants [15,17] in the protocols of [23,26] still incur a factor σ overhead due to
cut-and-choose. In summary, none of the above are satisfactory for implementing
CCOT as they incur at least concrete factor min(λ, σ) multiplicative overhead.

To explain the intuition behind our definitions and constructions, we start
with the seemingly close relationship between CCOT and 2-out-of-3 OT. At
first glance, it seems that it must be easy to construct CCOT from 2-out-of-3
OT. For example, for each index, we can let S input the pair of real input keys
along with a “dummy check value” as its 3 inputs to 2-out-of-3 OT, and then
let R pick two out of the three values (i.e., both keys if it’s a check circuit, or
the dummy check value along with the key that corresponds to R’s real input).
There are multiple issues with making this idea work in the presence of malicious
adversaries. Perhaps the most important issue is that this idea still wouldn’t help
us achieve our goal of showing a reduction from CCOT to 1-out-of-2 OT. More
precisely, we do not know how to construct efficient protocols for 2-out-of-3 OT
from 1-out-of-2 OT. Consider the following toy example for the same.
Inputs: S holds (x0, x1, x2) and R holds b1 ∈ {0, 2}, b2 ∈ {1, 2}.
Toy Protocol:

– S sends (x0, x2) to FOT and R sends b1 to FOT.
– S sends (x1, x2) to FOT and R sends b2 to FOT.

Outputs: S outputs nothing. R outputs xb1 , xb2 .
The problem with the protocol above is that simulation extraction will fail with
probability 1/2 since a malicious S may input different values for x2 in each of
the two queries to FOT. Note that even enforcing S to send h = H̃(x2) to R
where H̃ is a collision-resistant hash function (or an extractable commitment)
does not help the simulator. On the other hand this hash value does enable R to
detect an inconsistency if (1) S supplied two different values for x2 in each of the
two queries to FOT and (2) R picked the x2 value which is not consistent with h.
However, if R aborts on detection of inconsistency this leaks information.

Our main observation is that the attacks on the toy protocol are very simi-
lar to the selective failure attacks discussed in Sect. 1.2. Motivated by this one
may attempt to use “XOR-tree encoding schemes” to avoid the selective failure
attacks, and attempt to construct CCOT directly from 1-out-of-2 OT. However,
note that the encoding schemes alone do not suffice to prevent selective failure
attacks; they need to be used along with a supplemental decoding circuit. Here
our main observation is that known encoding schemes (possibly with the excep-
tion of [32]) used to prevent selective failure attacks [13,23] can be decoded
using (a circuit that performs) only XOR operations. Thus, one may use the
free-XOR technique [18] to get rid of the need for a supplemental decoding cir-
cuit, and instead perform XOR operations directly on strings. Indeed the above
idea can be successfully applied to prevent selective failure attacks that could be
mounted on the toy protocol, and can also be extended to yield a protocol for

394 V. Kolesnikov and R. Kumaresan

CCOT. Although the resulting CCOT protocol is simulatable against a mali-
cious receiver, unfortunately we do not know how to simulate a corrupt sender
(specifically, extract sender’s input).

Relaxing CCOT. Our main observation is that for application to 2PC, full
simulation against a corrupt sender is not required. It is only privacy that is
required. This is because S’s inputs to the 2PC are extracted typically via ZK (or
the mechanism used for input consistency checks), and the inputs to the CCOT
are just random garbled keys which are unrelated to its real input. Note that in
2PC protocols that use CCOT [10,22,24] the following three steps happen after
the CCOT protocol is completed: (1) S sends all the garbled circuits, and (2) then
R reveals the identity of the evaluation circuits, and (3) then S reveals its keys
corresponding to its input for the evaluation circuits. Consider the second step
mentioned above, namely that R reveals the identity of the evaluation circuits.
This is a relatively subtle step since a malicious R may claim (a) that a check
circuit is an evaluation circuit, or (b) that an evaluation circuit is a check circuit.
Both these conditions need to be handled carefully since in case (a) corrupt R,
upon receiving S’s input keys in step (3) will be able to evaluate the garbled
circuits on several inputs of its choice. Case (b) is problematic while simulating
a corrupt R as the simulator does not know which circuits to generate correctly
and which ones to fake. Therefore, 2PC protocols that use CCOT require R to
“prove” the identity of the check/evaluation circuits. In [10,22], this is done via
“check values” and “checkset values”. We use similar ideas in our protocols: if
j ∈ [n] is such that j �∈ J , then R receives some dummy check value φj , and if
j ∈ J then R receives “checkset values” xj,0, xj,1 which correspond to S’s inputs.
Thus, R can prove the identity of check/evaluation circuits simply by sending
the “check values” {φj}j �∈J and “checkset values” {xj,0, xj,1}j∈J . Observe that
this step does not reveal any information about R’s input bits {bj}j �∈J to S. To
do this, we would need to include a “reveal” step.

Motivated by the discussions above, we formulate a new definition for CCOT
and its variants. Our definitions pose CCOT and its variants as reactive func-
tionalities, and in particular include a “reveal phase” where R’s evaluation set
[n] \ J is simply revealed to S by the functionality. More precisely, in the reveal
phase we allow R to decide whether it wants to abort or reveal J . Note that
for the case of F�

mcot, the evaluation sets E1, . . . , Et is revealed to S by the
functionality. This in particular allows us to eliminate the “check values” in the
definitions of F�

ccot [22] and F�
mcot [10], and allows us to present protocols for

(the reactive variant of) F�
mcot that is more efficient than prior constructions [10].

We formulate CCOT as a reactive functionality because step (1) where S sends
all the garbled circuits happens immediately after the CCOT step and before
step (2) where R reveals the identity of the evaluation circuits. It is easy to see
that this relaxed formulation suffices for applications to secure computation.
Discussion. Such relaxed definitions, in particular requiring only privacy against
corrupt sender, is not at all uncommon for OT and its variants (cf. [1,28]) or
PIR (cf. [4,20]). Similarly, [8] propose “keyword OT” protocols in a client-server
setting, and require one to simulate the server’s (which acts as the sender) view

On Cut-and-Choose Oblivious Transfer and Its Variants 395

alone, without considering its joint distribution with the honest client’s output.
For another example, consider [11] who use a CDH-based OT protocol that
achieves privacy (but is not known to be simulatable) against a malicious sender,
and yet this suffices for their purposes to construct efficient 2PC protocols.

2 Definitions

We formulate CCOT and its variants as reactive functionalities and provide
relaxed definitions formally. Recall that the main differences from prior formu-
lations is that we require (1) only privacy against corrupt sender, and (2) R
to provide the check set J and evaluation sets E1, . . . , Et to S at the end of
the protocol. We emphasize that privacy against corrupt sender must hold even
after J,E1, . . . , Et is revealed. Due to space constraints we describe our new for-
mulation only for the case of multistage CCOT denoted F+

mcot in Fig. 3. (The
extensions to all other variants is straightforward.)

Fig. 3. The reactive multistage CCOT functionality F+
mcot.

We will be using the following definitions (loosely based on analogous def-
initions for keyword OT [8]) for CCOT as well as its variants. Therefore for
convenience we will define these as security notions for an arbitrary functional-
ity F , and then in our theorem statements we will refer to F as being CCOT or
one of its variants.

Definition 1 (Correctness). If both parties are honest, then, after running
the protocol on inputs (X,Y), the receiver outputs Z such that Z = F (X,Y).

Definition 2 (Receiver’s privacy: indistinguishability). Let σ be a statis-
tical security parameter. Then, for any ppt S′ executing the sender’s part and
for any inputs X,Y, Y ′, the statistical distance between the views that S′ sees on
input X, in the case that the receiver inputs Y and the case that it inputs Y ′ is
bound by 2−σ+O(1).

396 V. Kolesnikov and R. Kumaresan

Definition 3 (Sender’s privacy: comparison with the ideal model). For
every ppt machine R′ substituting the receiver in the real protocol, there exists a
ppt machine R′′ that plays the receiver’s role in the ideal implementation, such
that on any inputs (X,Y), the view of R′ is computationally indistinguishable
from the output of R′′. (In the semi-honest model R′ = R.)

Definition 4. A protocol π securely realizes functionality F with sender-
simulatability and receiver-privacy if it satisfies Definitions 1, 2, and 3.

XOR-Tree Encoding Schemes. Selective failure attacks essentially corre-
spond to letting a corrupt sender learn a disjunctive predicate of the receiver’s
input. We define an XOR-tree encoding scheme consisting of a tuple (En,De,En′,
De′) of randomized algorithms (implicitly parameterized with statistical security
parameter σ, and possibly public randomness ω0) as satisfying:

1. Algorithm En takes input {(xi
0, x

i
1)}i∈[m] and produces pairs of random λ-bit

strings {u�
0, u

�
1}�∈[m′] s.t. for each �, �′ ∈ [m′], it holds that u�′

0 ⊕u�′
1 = u�

0⊕u�
1.

2. Algorithm En′ takes input b = (b1, . . . , bm) ∈ {0, 1}m and outputs {b′
�}�∈[m′].

3. For every b = (b1, . . . , bm) ∈ {0, 1}m and every {(xi
0, x

i
1)}i∈[m] it holds that

Pr

[{b′
�}�∈[m′] ← En′(b);

{(u�
0, u

�
1)}�∈[m′] ← En({(xi

0, x
i
1)}i∈[m])

: De({u�
b′
�
}�∈[m′]) = {xi

bi
}i∈[m]

]
= 1.

We sometimes abuse notation and allow De to take sets of pairs of strings as input
in which case we require that for every {(xi

0, x
i
1)}i∈[m] it holds that

Pr

[{(u�
0, u

�
1)}�∈[m′] ← En({(xi

0, x
i
1)}i∈[m]) :

De({(u�
0, u

�
1)}�∈[m′]) = {(xi

0, x
i
1)}i∈[m]

]
= 1.

4. For every b, it holds that Pr[De′(En′(b)) = b] = 1.
5. Algorithms De,De′ can be implemented by using (a tree of) XOR gates only.
6. For every disjunctive predicate P (·), the following holds: (1) If P involves at

most σ − 1 literals, then Pr[P (En′(b)) = 1] is completely independent of b.
(2) Otherwise, Pr[P (En′(b)) = 1] ≥ 1 − 2−σ+1.

7. For every {(xi
0, x

i
1)}i∈[m] and for every (possibly unbounded) adversary A′

and for every {b′
�}�∈[m′] ∈ {0, 1}m′

, there exists a ppt algorithm S ′ such
that the following holds:

Pr[{(u�
0, u

�
1)}�∈[m′] ← En({(xi

0, x
i
1)}i∈[m]) : A′({b′

�}�∈[m′], {u�
b′
�
}�∈[m′]) = 1] =

Pr

[
(b1, . . . , bm) ← De′({b′

�}�∈[m′]);

{ũ�}�∈[m′] ← S ′({b′
�}�∈[m′], {xi

bi
}i∈[m])

: A′({b′
�}�∈[m′], {ũ�}�∈[m′]) = 1

]
.

(This in particular, implies that A obtains no information about
{xi

1−bi
}i∈[m].)

Algorithms (En,De,En′,De′) for the basic XOR-tree encoding scheme [23]
are simple and implicit in our basic CCOT construction (cf. Fig. 4). For the

On Cut-and-Choose Oblivious Transfer and Its Variants 397

random combinations XOR-tree encoding [23] algorithm En′ is simply a random
linear mapping (i.e., public randomness ω0 defines this random linear mapping,
see e.g., [23,30] for more details). Finally, for the σ-wise independent genera-
tors XOR-tree encoding the algorithm En′ depends on the generator (i.e., public
randomness ω0 defines this generator) which can be implemented only using
XOR gates [27]. Note that in all of the above, En′ essentially creates a (σ − 1)-
independent encoding of its input, and thus Property 6 holds (see also Lemma 1).
In all our constructions, En simply maps its inputs to a pairs of random strings
such that the XOR of the two strings within a pair is always some fixed Δ. Algo-
rithms De,De′ are deterministic and function to simply reverse the respective
encoding algorithms En,En′. Note that De,De′ (acting respectively on outputs of
En,En′) are naturally defined by the supplemental decoding circuit that decodes
the XOR-tree encoding, and thus can be implemented using XOR gates only. We
point out that algorithm De′ is used only in the simulation to extract R’s input
from its XOR-tree encoded form. Finally, Property 7 is justified by the fact that
XOR-tree encoding schemes that are useful in standard two-party secure com-
putation protocols, the receiver R obtains only one of two keys corresponding
to the encoding (via OTs), and these keys reveal the output keys of the supple-
mental decoding circuit (that correspond exactly to the output of the decoding)
and nothing else.

3 Constructions

CCOT from OT. See the protocol in Fig. 4 for the CCOT protocol that uses
the basic XOR-tree encoding scheme of [23] in order to implement CCOT when
n = 1. The case when n ≥ 1 is handled by parallel repetition. While we prove
that the resulting CCOT protocol is simulatable against a malicious receiver,
unfortunately we do not know how to extract corrupt sender’s input. To see
this, note that a corrupt sender may supply values for some �, �′ ∈ [σ] values
u�
0, u

�
1, u

�′
0 , u�′

1 such that u�
0⊕u�

1 �= u�′
0 ⊕u�′

1 . Needless to say, such a deviation is
caught by R when J �= ∅. However, this deviation goes undetected when R’s
input J = ∅. Note that the simulator for a corrupt sender needs to extract S’s
input without knowing R’s input; however when S provides inconsistent inputs
to FOT, it is unclear how to extract S’s inputs. We prove that the protocol in
Fig. 4 securely realizes Fccot with sender-simulatability and receiver-privacy. We
start by observing that correctness follows from inspection of the protocol.

Simulating Corrupt Receiver. Assume that H is modeled as a (non-
programmable) random oracle. Acting as FOT the simulator does the following:

– Chooses random Δ′, {u�
0, u

�
2}�∈[σ] and sets for all � ∈ [σ], value u�

1 = u�
0⊕Δ′.

– For each � ∈ [σ], acting as FOT obtain values {c�
0, c

�
1} and return answers from

{u�
0, u

�
1, u

�
2} exactly as in the protocol.

– If there exists � ∈ [σ] such that c�
0 = c�

1 = 0, then set J = {1} and send J
to the trusted party and receive back (x0, x1). Now set Δ′

0 = x0⊕
⊕

�u
�
0 and

Δ′
1 = x1⊕Δ′⊕⊕

�u
�
0. Pick random Δ′

φ and random h′ ← {0, 1}λ. Finally,
send Δ′

0,Δ
′
1,Δ

′
φ, h′ to R.

398 V. Kolesnikov and R. Kumaresan

Fig. 4. CCOT via the basic XOR-tree encoding scheme.

– Else if for all � ∈ [σ], it holds that c�
0 �= c�

1, then for each � ∈ [σ] compute
b′
� such that c�

b′
�

= 0. Extract b′ =
⊕

�b
′
�. Set J = ∅, send (J, b = b′) to

the trusted party and receive back xb. If b = 0, set Δ′
0 = x0⊕

⊕
�u

�
0. Else if

b = 1, set Δ′
1 = x1⊕Δ′⊕⊕

�u
�
0. Pick random Δ′

1−b,Δ
′
φ ← {0, 1}λ, and set

h′ = H(Δφ⊕⊕
�u

�
2). Finally, send Δ′

0,Δ
′
1,Δ

′
φ, h′ to R.

– Else set J = ∅ and choose random b′ ← {0, 1} and send (J, b = b′) to the
trusted party. Receive back xb. If b = 0, set Δ′

0 = x0⊕
⊕

�u
�
0. Else if b = 1,

set Δ′
1 = x1⊕Δ′⊕⊕

�u
�
0. Pick random Δ′

1−b,Δ
′
φ ← {0, 1}λ, and set h′ =

H(Δφ⊕⊕
�u

�
2). Finally, send Δ′

0,Δ
′
1,Δ

′
φ, h′ to R.

– In the reveal phase, if R sends (J ′, Ψ ′, Φ′) such that J ′ �= J or the values Ψ ′, Φ′

are not consistent with the values above, then abort the reveal phase. Else,
send “reveal” to the trusted party.

It is easy to see that the above simulation is indistinguishable from the real
execution. Indeed if there exists any � such that c�

0 = c�
1 = 0, then in this case

corrupt R learns Δ but does not obtain u�
2. Therefore, in this case it misses at

least one additive share of φ and since h = H(φ) does not reveal information
(unless H is queried on φ), φ is statistically hidden from corrupt R. Thus, this
case corresponds to J �= ∅ since R could potentially know both x0 and x1 (since

On Cut-and-Choose Oblivious Transfer and Its Variants 399

it knows Δ and potentially at least one of u�
0, u

�
1 for each � ∈ [σ]) but not φ. On

the other hand, if for all � ∈ [σ] it holds that c�
0 �= c�

1 then it is easy to see that
the extracted input b′ equals R’s input b1 and that the rest of the simulation
is indistinguishable from the real execution. Finally the remaining case (i.e.,
there exists � ∈ [σ] such that c�

0 = c�
1 = 1 and there does not exist �′ ∈ [σ]

such that c�′
0 = c�′

1 = 0) is when R obtains only φ and neither x0 nor x1. This
case is rather straightforward to handle; the simulator supplies J = ∅ (since
R knows φ) and a random choice bit b′. This works because there exists some
� ∈ [σ] such that R neither obtains u�

0 nor u�
1. As a result both x0 and x1 are

information-theoretically hidden from it.

Privacy Against Corrupt Sender. Note that except in the reveal phase,
information flows only from S to R. If S is honest, then reveals made by R do
not leak any information. (Recall J is revealed to S in the real as well as the
ideal execution.) We have to show that even a corrupt S does not learn any
information about b1. Clearly when J �= ∅, R’s actions are independent of its
input b1 and thus does not leak any information. On the other hand when J = ∅,
observe that R does not reveal x̃b1 , and thus S only learns whether Ψ = Φ = ∅ or
not. This translates to learning information about R’s input b1 only if for some
(possibly many) � ∈ [σ], S provided (u�

0, u
�
2) in one instance of FOT and (u�

1, û
�
2)

in the other instance with u�
2 �= û�

2. This is because such a strategy would allow
S to learn whether R input c�

0 = 1 (in which case R does not abort) or c�
1 = 1

(in which case R does abort), and consequently leak information about b′
� (i.e.,

depending on which of c�
0, c

�
1 was 0 when J = ∅). More generally, such a strategy

allows S to learn any disjunctive predicate of R’s selections {c�
0, c

�
1}�. To prove

that such a strategy does not help S we use the following easy lemma.

Lemma 1 ([13]). Let En′ : {0, 1}m → {0, 1}m′
be such that for any b ∈ {0, 1}m,

it holds that En′(b) is a κ-wise independent encoding of b. Then for every
disjunctive predicate P (·) the following holds: (1) If P involves at most κ lit-
erals, then Pr[P (En′(b)) = 1] is completely independent of b. (2) Otherwise,
Pr[P (En′(b)) = 1] ≥ 1 − 2−κ.

To apply the lemma in our context, note that En′ here corresponds to the
“XOR-tree encoding”, i.e.,. encoding of b1 into {b′

�}�. Clearly, En′ is a κ = (σ−1)-
wise independent encoding of b1. Thus we have that if S supplied inconsistent
values (i.e., u�

2, û
�
2) in at most (σ − 1) instances, then the S does not learn any

information about b1 in the reveal phase. Further, even if S supplied inconsistent
values in all instances, then with all but negligible probability (exponentially
negligible in σ) R will abort in the reveal phase (irrespective of R’s true input b1).
This concludes the proof of privacy against corrupt sender.

Single-choice CCOT. Next, we consider the case of single-choice CCOT,
where S holds (x1,0, x1,1), . . . , (xn,0, xn,1) and R holds J ∈ [n] and a single choice
bit b1. At the end of the protocol, R receives {(xj,0, xj,1)}j∈J and {xj,b1}j �∈J .
That is, this is exactly the same as CCOT except we enforce that R inputs the
same choice across all n pairs of strings held by S. Our protocol in Fig. 5 enforces
this using a symmetric-key encryption scheme denoted (Enc,Dec).

400 V. Kolesnikov and R. Kumaresan

Fig. 5. Realizing single-choice CCOT in the FOT-hybrid model.

We prove that the protocol in Fig. 5 securely realizes single-choice CCOT
with sender-simulatability and receiver-privacy. We start by observing that cor-
rectness follows from inspection of the protocol.

Simulating Corrupt Receiver. The simulation is quite similar to the simu-
lation of CCOT construction presented in Fig. 4. Obviously the main difference
now is that R may attempt to use different b′

� values for j, j′ ∈ [n] (where b′
� is

On Cut-and-Choose Oblivious Transfer and Its Variants 401

defined as the value R inputs to FOT in Step 3). However the key observation is
that it receives only one key K�,b′

�
in {K�,0,K�,1}. Therefore, even if it attempts

to deviate and and obtain e�
j′,b′′

�
for b′′

� �= b′
�, it still cannot decrypt since it does

not possess the secret key K�,b′′
�
. Semantic security of the encryption allows us

to argue that if such a deviation happens then the value of φj′ is hidden from S.
Therefore in this case, the simulator can simply add j′ to J , and the simulation
can be completed. It is instructive to note that when such a deviation happens,
R will be neither be able to provide {xj′,0, xj′,1} nor the value φj′ , and thus will
get rejected by S during the reveal phase.

We proceed to the formal simulation. Assume that H is modeled as a (non-
programmable) random oracle. Acting as FOT the simulator does the following:

– Chooses random {Δ′
j}j∈[n], {K�,0,K�,1}�∈[σ], {u�

j,0, u
�
j,2}j∈[n],�∈[σ] and sets for

all j ∈ [n], � ∈ [σ], value u�
j,1 = u�

j,0⊕Δ′
j .

– For each � ∈ [σ], acting as FOT obtain values b′
�, return key K�,b′

�
, and set

e�
j,b′

�
= Enc(K�,b′

�
, u�

j,2), e�
j,1−b′

�
= Enc(K�,1−b′

�
,0). Compute b′ =

⊕
�b

′
�.

– For each j ∈ [n], � ∈ [σ], acting as FOT obtain values {c�
j,0, c

�
j,1} and return

answers using values u�
j,0, u

�
j,1, e

�
j,b′

�
, e�

j,1−b′
�

(computed as above) exactly as
in the protocol.

– Initialize J = ∅. For each j ∈ [n]: If there exists � ∈ [σ] such that c�
j,0 = c�

j,1 = 0,
then add j to J .

– Initialize flag = 0. For each j �∈ J : If there exists � ∈ [σ] such that either
c�
j,b′

�
= 0 or c�

j,1−b′
�

= 1 do not hold, then add j to J and set flag = 1.
– Send (J, b′) to the trusted-party and receive {xj,0, xj,1}j∈J and {xj,b′}j �∈J .
– For each j ∈ J , do: (1) set Δ′

j,0 = xj,0⊕
⊕

�u
�
j,0 and Δ′

j,1 = xj,1⊕Δ′⊕⊕
�u

�
j,0,

and (2) pick random Δ′
j,φ and random h′

j ← {0, 1}λ.
– For each j �∈ J , do: (1) if b′ = 0, set Δ′

j,0 = xj,0⊕
⊕

�u
�
0, (2) else if b′ = 1, set

Δ′
j,1 = xj,1⊕Δ′

j⊕
⊕

�u
�
0, and (3) pick random Δ′

j,1−b′ ,Δ′
j,φ ← {0, 1}λ, and

set h′
j = H(Δ′

j,φ⊕⊕
�u

�
j,2).

– Send {Δ′
j,0,Δ

′
j,1,Δ

′
j,φ, h′

j}j∈[n] to R.
– In the reveal phase, if flag = 1 or if R sends (J ′, Ψ ′, Φ′) such that J ′ �= J or the

values Ψ ′, Φ′ are not consistent with the values above, then abort the reveal
phase. Else, send “reveal” to the trusted party.

We show that the simulation is indistinguishable from the real execution. First,
note that if for some j ∈ [n], � ∈ [σ], it holds that c�

j,0 = c�
j,1 = 0, then R receives

both u�
j,0 and u�

j,1, and therefore knows Δj . In this case, it is safe to presume
that R will end up knowing both xj,0 as well as xj,1 (since for any �′, if it receives
even one of u�′

j,0, u
�′
j,1 it will know the other as well since it knows Δj). Therefore,

S includes j in J and obtains both xj,0, xj,1 from the trusted party. Now S can
carry out the simulation whether or not R obtained both xj,0 and xj,1.

Next, suppose that for some j ∈ [n] such that for no � ∈ [σ], it holds that
c�
j,0 = c�

j,1 = 0, and yet there exists some � ∈ [σ] such that either c�
j,b′

�
= 0

or c�
j,1−b′

�
= 1 does not hold. In this case, it is easy to see that R will not be

402 V. Kolesnikov and R. Kumaresan

able to produce both xj,0, xj,1 (since it is missing one of u�
j,0, u

�
j,1) in the real

execution. Further, it can be shown that except with negligible probability R
cannot produce φj either. This is because (1) R does not obtain e�

j,b′
�
, and (2) R

has no information about the plaintext encrypted as e�
j,1−b′

�
, and (3) hj = H(φj)

does not reveal any information about φj except with statistically negligible
probability (i.e., unless H is queried on φj). Point (2) above trivially holds in the
simulation because e�

j,1−b′
�

encrypts 0 instead of u�
j,2. On the other hand, in the

real execution, observe that R does not possess the key K�,1−b′
�
. It follows from

a straightforward reduction to the semantic security of the encryption scheme
that the real execution is indistinguishable from the simulation. In particular, in
this case R will not be able to produce (J ′, Ψ ′, Φ′) that will be accepted by S in
the real execution, and is equivalent to S sending abort in the ideal execution.

Finally, suppose that for every j ∈ [n], either (1) for all � ∈ [σ] it holds that
c�
j,0 = c�

j,1 = 1, or (2) for all � ∈ [σ] it holds that c�
j,b′

�
= 0 and c�

j,1−b′
�

= 1. This
indeed corresponds to honest behavior on the part of R. Specifically, in case (1),
we have j ∈ J , and in case (2), we have j �∈ J . This is exactly how the simulator
constructs J . It remains to be shown that in this case, any reveal (J ′, Ψ ′, Φ′)
such that J ′ �= J or Ψ ′, Φ′ is not consistent with the simulation will be rejected
by S in the real execution. This follows from: (a) Any j ∈ J cannot be claimed
by R to not be in the checkset. This is because in this case, R does not have any
information about φj (other than H(φj) which leaks no information unless H
is queried on φj). (b) Any j �∈ J cannot be claimed by R to be in the checkset.
This is because in this case, R obtains exactly one of {u�

j,0, u
�
j,1} for every � ∈ [σ]

and thus is able to reconstruct at most one of {xj,0, xj,1}. This concludes the
proof of security against corrupt receiver.

Privacy Against Corrupt Sender. The proof of privacy against corrupt
sender is very similar to the corresponding proof for (the basic) CCOT. Specif-
ically, note that except in the reveal phase, information flows only from S to
R. Next note that if S is honest, then the reveals made by R in the reveal
phase do not leak any information about R’s input b1. (Recall J is revealed to
S in the real as well as the ideal execution.) It remains to be shown that even
a corrupt S does not learn any information about b1. Clearly for j ∈ J , R’s
actions are independent of its input b1 and thus does not leak any information.
On the other hand for j �∈ J , observe that R does not reveal x̃j,b1 (i.e., in the
reveal phase), and thus the only information learnt by S is whether Ψ = Φ = ∅
or not. This translates to learning information about R’s input b1 only if for
some (possibly many) j ∈ [n], � ∈ [σ], S provided (u�

j,0, u
�
j,2) in one instance of

FOT and (u�
j,1, û

�
j,2) in the other instance with u�

j,2 �= û�
j,2. This is because such

a strategy would allow S to learn whether R input c�
j,0 = 1 (in which case R

does not abort) or c�
j,1 = 1 (in which case R does abort), and consequently leak

information about b′
� (i.e., depending on which of c�

j,0, c
�
j,1 was 0 when j �∈ J).

More generally, such a strategy allows S to learn any disjunctive predicate of
R’s selections {c�

j,0, c
�
j,1}�.

On Cut-and-Choose Oblivious Transfer and Its Variants 403

To prove that such a strategy does not help S we once again make use of
Lemma 1. As before, to apply the lemma in our context, note that En′ here cor-
responds to the “XOR-tree encoding”, i.e.,. encoding of b1 into {b′

�}�. Clearly,
En′ is a κ = (σ − 1)-wise independent encoding of b1. Thus we have that if S
supplied inconsistent values (i.e., u�

2, û
�
2) in at most (σ−1) instances, then S does

not learn any information about b1 in the reveal phase. Further, even if S sup-
plied inconsistent values in all instances, then with all but negligible probability
(exponentially negligible in σ) R will abort in the reveal phase (irrespective of
R’s true input b1). This concludes the proof of privacy against corrupt sender.

Batch single-choice CCOT. This functionality, which has actually been
used directly in 2PC constructions of [24] is our next stepping stone. (The
description can be obtained by modifying F�

mcot Fig. 2 by setting t = 1, setting
|J | = n/2 and setting all φk

j values to 0σ.) The construction of this primitive
follows easily merely by repeating the single-choice CCOT protocol batch-wise
in parallel. That is, in the m-th (parallel) execution, S and R participate in
a single-choice CCOT where S holds (x(i)

1,0, x
(i)
1,1), . . . , (x

(i)
n,0, x

(i)
n,1) while R holds

J ⊆ [n] and bi. Obviously the main difficulty is in enforcing that R supplies the
same check set J in each execution. However, this is easily enforceable in the
following way. Recall that in the reveal phase of each execution of single-choice
CCOT (which are now executed in parallel), R will have to reveal (Ei, Ψi, Φi).
In addition to checking whether these values are consistent with its inputs and
check value, S additionally checks if Ei = Ei′ for every i, i′ ∈ [m].
Using more efficient “XOR-tree” encoding schemes. Observe that the construc-
tion for batch single-choice CCOT described above incurs a multiplicative over-
head of (exactly) σ simply because the underlying single-choice CCOT protocol
makes use of the basic XOR-tree encoding scheme. Fortunately, the batch setting
makes it possible to apply more sophisticated encodings whose overhead is much
lower. More concretely, using encoding schemes based on random combinations
approach [23], the overhead can be as low as an additional ≤ 6 · max(4m, 8σ)
while using encoding schemes based on σ-wise independent generators [13] one
can obtain rate-1/6 communication complexity (and likely to be practical when
m � σ). We show constructions of batch single-choice CCOT using abstract
encoding schemes.

We describe a protocol for Fbat,sin
ccot in the FOT-hybrid model that makes

use of an arbitrary XOR-tree encoding scheme in Fig. 6. The protocol itself
is a straightforward extension combining ideas from protocols in Figs. 4 and 5
while abstracting away the underlying encoding scheme. We now prove that the
protocol πbat,sin

ccot described in Fig. 6 realizes batch single-choice CCOT with
sender-simulatability and receiver-privacy. We start by observing that correct-
ness follows from correctness properties of the XOR-tree encoding schemes
(specifically, Property 3).

Simulating Corrupt Receiver. The simulation is quite similar to the simula-
tion of single-choice CCOT construction presented in Fig. 5. Obviously the main
difference now is that we need to deal with encodings over R’s entire input. We pro-
ceed to the formal simulation. Assume that H is modeled as a (non-programmable)

404 V. Kolesnikov and R. Kumaresan

Fig. 6. Protocol πbat,sin
ccot realizing batch single-choice CCOT.

random oracle. S first receives public randomness ω0 for the XOR-tree encoding
scheme (En,De,En′,De′). Acting as FOT the simulator does the following:

– Samples for each j ∈ [n], uniform {(x̂(i)
j,0, x̂

(i)
j,1)}i∈[m], uniformly random ωj and

computes {(u�
j,0, u

�
j,1)}�∈[m′] ← Enω0({(x̂(i)

j,0, x̂
(i)
j,1)}i∈[m];ωj).

On Cut-and-Choose Oblivious Transfer and Its Variants 405

– Chooses random {(K�,0,K�,1)}�∈[m′], {u�
j,2}j∈[n],�∈[m′].

– For each � ∈ [m′], acting as FOT obtain values b′
�, return key K�,b′

�
, and set

e�
j,b′

�
= Enc(K�,b′

�
, u�

j,2), e�
j,1−b′

�
= Enc(K�,1−b′

�
,0).

Compute (b1, . . . , bm) = De′({b′
�}�∈[m′]).

– For each j ∈ [n], � ∈ [m′], acting as FOT obtain values {c�
j,0, c

�
j,1} and return

answers using values u�
j,0, u

�
j,1, e

�
j,b′

�
, e�

j,1−b′
�

(computed as above) exactly as
in the protocol.

– Initialize J = ∅. For each j ∈ [n]: If there exists � ∈ [m′] such that c�
j,0 = c�

j,1 =
0, then add j to J .

– Initialize flag = 0. For each j �∈ J : If there exists � ∈ [m′] such that either
c�
j,b′

�
= 0 or c�

j,1−b′
�

= 1 do not hold, then add j to J and set flag = 1.

– Send (J, {bi}i∈[m]) to the trusted party and receive back {(x(i)
j,0, x

(i)
j,1)}i∈[m],j∈J

and {x
(i)
j,bi

}i∈[m],j �∈J .
– For each j ∈ J , do: (1) for each i ∈ [m], set Δ̂

(i)
j,0 = x̂

(i)
j,0⊕x

(i)
j,0 and Δ̂

(i)
j,1 =

x̂
(i)
j,1⊕x

(i)
j,1, and (2) pick random Δ′

j,φ and random h′
j ← {0, 1}λ.

– For each j �∈ J , do: (1) for each i ∈ [m]: set Δ̂
(i)
j,bi

= x̂
(i)
j,bi

⊕x
(i)
j,bi

and pick random

Δ̂
(i)
j,1−bi

, and (2) pick random Δ′
j,φ ← {0, 1}λ, and set h′

j = H(Δ′
j,φ⊕⊕

�u
�
j,2).

– For each j ∈ [n]: send {Δ̂(i)
j,0, Δ̂

(i)
j,1}i∈[m],Δ

′
j,φ, h′

j to R.
– In the reveal phase, if flag = 1 or if R sends (J ′, Ψ ′, Φ′) such that J ′ �= J or the

values Ψ ′, Φ′ are not consistent with the values above, then abort the reveal
phase. Else, send “reveal” to the trusted party.

We show that the simulation is indistinguishable from the real execution. First,
note that if for some j ∈ [n], � ∈ [m′], it holds that c�

j,0 = c�
j,1 = 0, then R

receives both u�
j,0 and u�

j,1, but does not obtain u�
j,2. In this case, it is safe to

presume that R will end up knowing both x
(i)
j,0 as well as x

(i)
j,1 but R definitely

misses an additive share of (and consequently has no information about) φj .
Therefore, S includes j in J and obtains both x

(i)
j,0, x

(i)
j,1 from the trusted party.

This allows S to carry out a correct simulation irrespective of whether or not R

obtained both x
(i)
j,0 and x

(i)
j,1.

Next, suppose that for some j ∈ [n] such that for no � ∈ [m′] it holds that
c�
j,0 = c�

j,1 = 0, and yet there exists some � ∈ [m′] such that either c�
j,b′

�
= 0 or

c�
j,1−b′

�
= 1 does not hold. In this case, we claim that R will not be able to pro-

duce both x
(i)
j,0, x

(i)
j,1 in the real execution. This follows from the properties of the

XOR-tree encoding schemes and the fact that R misses one of u�
j,0, u

�
j,1. Further,

it can be shown that except with negligible probability R cannot produce φj

either. This is because (1) R does not obtain e�
j,b′

�
, and (2) R has no information

about the plaintext encrypted as e�
j,1−b′

�
, and (3) hj = H(φj) does not reveal

any information about φj with statistically negligible probability (i.e., unless H
is queried on φj). Point (2) mentioned above trivially holds in the simulation
because e�

j,1−b′
�

encrypts 0 instead of u�
j,2. On the other hand, in the real exe-

cution, observe that R does not possess the key K�,1−b′
�
. It then follows from

406 V. Kolesnikov and R. Kumaresan

a straightforward reduction to the semantic security of the encryption scheme
that the real execution is indistinguishable from the simulation. In particular, in
this case R will not be able to produce (J ′, Ψ ′, Φ′) that will be accepted by S in
the real execution, and is equivalent to S sending abort in the ideal execution.

Finally, suppose that for every j ∈ [n], either (1) for all � ∈ [m′] it holds that
c�
j,0 = c�

j,1 = 0, or (2) for all � ∈ [m′] it holds that c�
j,b′

�
= 0 and c�

j,1−b′
�

= 1. This
indeed corresponds to honest behavior on the part of R. Specifically, in case (1),
we have j ∈ J , and in case (2), we have j �∈ J . This is exactly how the simulator
constructs J . It remains to be shown that in this case, any reveal (J ′, Ψ ′, Φ′)
such that J ′ �= J or Ψ ′, Φ′ is not consistent with the simulation will be rejected
by S in the real execution. This follows from: (a) Any j ∈ J cannot be claimed
by R to not be in the checkset. This is because in this case, R does not have any
information about φj (other than H(φj) which leaks no information unless H is
queried on φj). (b) Any j �∈ J cannot be claimed by R to be in the checkset. This
is because in this case, R obtains exactly one of {u�

j,0, u
�
j,1} for every � ∈ [m′]

and thus by Property 7 of XOR-tree encoding schemes, is able to reconstruct at
most one of {x

(i)
j,0, x

(i)
j,1}.

Privacy Against Corrupt Sender. The proof of privacy against corrupt
sender is very similar to the corresponding proof for (the basic) CCOT. Specifi-
cally, note that except in the reveal phase, information flows only from S to R.
Next note that if S is honest, then the reveals made by R in the reveal phase
do not leak any information about R’s input b1, . . . , bm. (Recall J is revealed
to S in the real as well as the ideal execution.) It remains to be shown that
even a corrupt S does not learn any information about b1, . . . , bm. Clearly for
j ∈ J , R’s actions are independent of its inputs b1, . . . , bm and thus does not leak
any information. On the other hand for j �∈ J , observe that R does not reveal
any information about {x̃

(i)
j,bi

}i∈[m] (i.e., in the reveal phase), and thus the only
information learnt by S is whether Ψ = Φ = ∅ or not. This translates to learn-
ing information about R’s inputs b1, . . . , bm only if for some (possibly many)
j ∈ [n], � ∈ [σ], S provided (u�

j,0, u
�
j,2) in one instance of FOT and (u�

j,1, û
�
j,2)

in the other instance with u�
j,2 �= û�

j,2. This is because such a strategy would
allow S to learn whether R input c�

j,0 = 1 (in which case R does not abort) or
c�
j,1 = 1 (in which case R does abort), and consequently leak information about

b′
� (i.e., depending on which of c�

j,0, c
�
j,1 was 0 when j �∈ J). More generally, such a

strategy allows S to learn any disjunctive predicate of R’s selections {c�
j,0, c

�
j,1}�.

To prove that such a strategy does not help S we make use of Property 6 of
XOR-tree encoding schemes. Thus we have that if S supplied inconsistent values
(i.e., u�

2, û
�
2) in at most (σ − 1) instances, then S does not learn any information

about b1, . . . , bm in the reveal phase. Further, even if S supplied inconsistent
values in all instances, then with all but negligible probability (exponentially
negligible in σ) R will abort in the reveal phase (irrespective of R’s true input
b1, . . . , bm). This concludes the proof of privacy against corrupt sender.

It is easy to see that our construction of batch single-choice CCOT described
above is also a realization of modified batch single-choice CCOT.

On Cut-and-Choose Oblivious Transfer and Its Variants 407

Multistage CCOT. Note that now R has several evaluation sets E1, . . . , Et

(corresponding to t executions). To realize F+
mcot, we will rely on the protocol

πbat,sin
ccot designed for realizing Fbat,sin

ccot presented previously. Indeed as in the pro-
tocol designed in [10] we will run πbat,sin

ccot t times to obtain a protocol for F+
mcot.

Our protocol for F+
mcot is described in Fig. 7. Unlike protocols for other variants

of CCOT, here we improve over prior work by using the reactive functionality
relaxation (as opposed to receiver-privacy relaxation) to obtain a simpler pro-
tocol secure against corrupt receiver. Prior work [10] required an overhead of t2

while our protocol requires only a factor t overhead. We prove that the proto-
col in Fig. 7 securely realizes multistage CCOT with sender-simulatability and
receiver-privacy. We start by observing that correctness follows from correctness
of each instance of πbat,sin

ccot .

Simulating Corrupt Receiver. Using the simulator of πbat,sin
ccot , the simulator

S first extracts for all k ∈ [t], the check sets [n] \ E′
k and the selection bits

bk,1, . . . , bk,m. Note that a malicious R may supply sets E′
1, . . . , E

′
t that may

overlap. The simulation extraction for F�
mcot first initializes each of E1, . . . , Et

to ∅, flag to 0 (flag = 1 indicates whether S will choose to abort in the reveal
phase), and proceeds as follows

– For every j ∈ [n] such that there exists unique α ∈ [t] such that j ∈ E′
α, then

add j to Eα.
– For every j ∈ [n] such that there exists α, β ∈ [t] such that j ∈ E′

α ∩ E′
β , then

add j to J and set flag = 1.

It is easy to see that E1, . . . , Et are disjoint sets. The simulator then sends
E1, . . . , Et (as obtained above), and the values {bk,i}k∈[t],i∈[m] (as obtained from
the t invocations of the simulator of πbat,sin

ccot) to the ideal functionality F+
mcot.

Then upon receiving R’s output from F+
mcot, S additively secret shares each val-

ues in R’s output to obtain t additive shares of each value, and then feeds the
k-th share of each value to the k-th copy of the invoked simulator for πbat,sin

ccot .
Then the simulator uses the k-th copy of the invoked simulator for πbat,sin

ccot to
complete the simulation of each of the t parallel instances of πbat,sin

ccot . Then in the
reveal phase, the simulator sends abort to F+

mcot if flag = 1. On the other hand
if flag = 0, then the simulator receives (E′′

1 , . . . , E′′
t , Ψ, Φ) from R. If E′′

1 , . . . , E′′
t

are pairwise nonintersecting, and further for every k ∈ [t] it holds that Ek = E′′
k ,

then S sends reveal to F+
mcot, else sends abort. This completes the description

of the simulation. To see why the above simulation works, first note that each
of the t copies of the invoked simulator for πbat,sin

ccot (each of which independently
guarantee correct simulation of a single instance of πbat,sin

ccot) are run on random
(t − 1)-wise independent values. Since S generates these (t − 1)-wise indepen-
dent values correctly using the output received from F+

mcot, it follows that the t

copies of the invoked simulator for πbat,sin
ccot taken together also guarantee correct

simulation of the protocol realizing F+
mcot. In particular, at the end of the output

phase, the view of the adversary in real protocol is indistinguishable from that in

408 V. Kolesnikov and R. Kumaresan

the simulation. It then remains to be shown that (except with statistically negli-
gible probability) a corrupt R will not be able to reveal (E′′

1 , . . . , E′′
t , Ψ, Φ) that is

accepted by the sender in the real protocol and yet (E′′
1 , . . . , E′′

t) �= (E1, . . . , Et),
where E1, . . . , Et are the sets constructed by S as described above. This follows
from observing that for every j ∈ [n]:

– If j ∈ E′
α for some unique α ∈ [t], then R does not have any information about

φβ
j for any β �= α. Thus, it can successfully reveal (E′′

1 , . . . , E′′
t) with j ∈ E′′

β

for β �= α only with probability negligible in σ. More precisely in this case R
will not be able to provide Φβ consistent with (E′′

1 , . . . , E′′
t). That is if j ∈ E′

α

for some unique α ∈ [t], then for every reveal (E′′
1 , . . . , E′′

t) that is accepted
by the sender it must hold that j ∈ E′′

α. Stated differently, if for every j ∈ [n],
there exists unique α ∈ [t] such that j ∈ E′

α, then R can successfully reveal
(E′′

1 , . . . , E′′
t) only for (E′′

1 , . . . , E′′
t) = (E′

1, . . . , E
′
t). Recall that in this case,

the simulator S set flag = 0 and thus will reveal (E1, . . . , Et) = (E′
1, . . . , E

′
t)

in the reveal phase. Therefore, in this case it holds that the real protocol is
indistinguishable from the ideal simulation.

– If j ∈ E′
α ∩ E′

β for α �= β, then one of x
(i,β)
j,0 , x

(i,β)
j,1 (alternatively one of

x
(i,α)
j,0 , x

(i,α)
j,1) is information-theoretically hidden from R. Thus, it can suc-

cessfully reveal (E′′
1 , . . . , E′′

t) with j ∈ E′′
β (resp. j ∈ E′′

α) only if it guesses
the missing value, i.e., with probability negligible in λ. More precisely in this
case R will not be able to provide Ψβ (resp. Ψα) consistent with (E′′

1 , . . . , E′′
t).

In other words, if j ∈ E′
α ∩ E′

β for α �= β, then for every reveal (E′′
1 , . . . , E′′

t)
that is accepted by the sender it must hold that j �∈ ∪kE′′

k . Indeed, it can be
observed that any reveal by R will be rejected by S. In particular, R cannot
reveal j �∈ ∪kE′′

k either, since in this case it will be required to produce both
x
(i,k)
j,0 , x

(i,k)
j,1 for every k ∈ [t]. As pointed out earlier, R cannot do this except

with negligible probability for k ∈ {α, β}. Recall that in this case, the sim-
ulator S set flag = 1 and thus will abort in the reveal phase. Therefore, in
this case it holds that the real protocol is indistinguishable from the ideal
simulation.

Privacy Against Corrupt Sender. First observe that in the output phase of
each instance of πbat,sin

ccot information flows only from the sender to the receiver
during the output phase. Thus privacy at the end of the output phase triv-
ially holds, and in particular S has no information about the sets E1, . . . , Et. It
remains to be shown that the information revealed by R to S in the reveal phase
does not leak any information about R’s input bits b1, . . . ,bt. For simplicity, first
consider the case when S is honest. In this case, observe that in a given instance
of πbat,sin

ccot , say the k-th instance, R’s reveal message depends on input bk and
is independent of {bα}α�=k. Privacy then follows from the privacy guaranteed
by (each instance of) πbat,sin

ccot . On the other hand, when S is corrupt, R’s reveal
message in the k-th instance of πbat,sin

ccot depends on its input bk and whether S’s
cheating attempt (if any) was detected in any instance. Privacy follows from the
fact that each instance of πbat,sin

ccot preserves privacy of R’s inputs.

On Cut-and-Choose Oblivious Transfer and Its Variants 409

Fig. 7. Realizing F+
mcot in the FOT-hybrid model.

Additional Optimizations. Instead of sending the values Ψ = {x̃j,0, x̃j,1}j∈J

and Φ = {φ̃j}j �∈J , R could send (J,H ′(Ψ),H ′′(Φ)) to S, where H ′,H ′′ are mod-
eled as collision-resistant hash functions (alternatively, random oracles). Note
that these optimizations are applicable in a straightforward way in other con-
structions we present. We omit detailing them to keep the exposition more clear.

In applications to secure computation, full receiver simulation in CCOT is
also not required. We require only privacy, i.e., we do not need to consider the
joint distribution of receiver’s view and sender’s inputs. This is because sender’s
inputs are just random keys for the garbled circuits, and in the simulation of
the 2PC protocol, it is the simulator that will generate these keys. On the other
hand, extracting receiver inputs is very crucial in order to enable the simulator
to generate correctly faked garbled circuits. However our definitions will require
full receiver simulation (including extraction). Fortunately, achieving full receiver
simulation comes only with a small multiplicative overhead.

Summary of Efficiency. All our protocols are presented in the FOT-hybrid
model and thus can take advantage of OT extension techniques. Further,
using standard leveraging techniques (such as ones used in [9]), OT exten-
sion of [14], the XOR-tree encoding scheme of [13], and the constructions in

410 V. Kolesnikov and R. Kumaresan

Figs. 4, 5, 6, and 7, one can obtain a rate-1/6 construction for Fbat,sin
ccot (in the

non-programmable RO model) with sender-simulatability and receiver-privacy as
in Definition 4. In concrete terms, it is easy to verify that the additional overhead
of realizing Fbat,sin

ccot is ≤ 6 ·max(4m, 8σ). The efficiency of our CCOT protocol in
the single execution setting is comparable to that of XOR-tree encodings of [23],
but is clearly better than DDH-based CCOT [22,24] since we take advantage
of OT extension (under the assumption that correlation-robust hash functions
exist [12,14,29]). Finally, we can realize F+

mcot (in the non-programmable random
oracle model) with sender-simulatability and receiver-privacy as in Definition 4
while bearing an overhead at most t over the cost of realizing Fbat,sin

ccot where t
denotes the number of executions.

References

1. Aiello, W., Ishai, Y., Reingold, O.: Priced oblivious transfer: how to sell digital
goods. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 119–135.
Springer, Heidelberg (2001)

2. Applebaum, B., Ishai, Y., Kushilevitz, E., Waters, B.: Encoding functions with
constant online rate or how to compress garbled circuits keys. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 166–184. Springer,
Heidelberg (2013)

3. Bellare, M., Hoang, V.T., Rogaway, P.: Adaptively secure garbling with applica-
tions to one-time programs and secure outsourcing. In: Wang, X., Sako, K. (eds.)
ASIACRYPT 2012. LNCS, vol. 7658, pp. 134–153. Springer, Heidelberg (2012)

4. Cachin, C., Micali, S., Stadler, M.A.: Computationally private information retrieval
with polylogarithmic communication. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, pp. 402–414. Springer, Heidelberg (1999)

5. David, B.M., Nishimaki, R., Ranellucci, S., Tapp, A.: Generalizing efficient multi-
party computation. In: Lehmann, A., Wolf, S. (eds.) Information Theoretic Secu-
rity. LNCS, vol. 9063, pp. 15–32. Springer, Heidelberg (2015)

6. Feige, U., Kilian, J., Naor, M.: A minimal model for secure computation (extended
abstract). In: STOC, pp. 554–563 (1994)

7. Frederiksen, T.K., Jakobsen, T.P., Nielsen, J.B.: Faster maliciously secure two-
party computation using the GPU. In: Abdalla, M., De Prisco, R. (eds.) SCN
2014. LNCS, vol. 8642, pp. 358–379. Springer, Heidelberg (2014)

8. Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword search and oblivious
pseudorandom functions. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 303–
324. Springer, Heidelberg (2005)

9. Garay, J.A., Ishai, Y., Kumaresan, R., Wee, H.: On the complexity of UC commit-
ments. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441,
pp. 677–694. Springer, Heidelberg (2014)

10. Huang, Y., Katz, J., Kolesnikov, V., Kumaresan, R., Malozemoff, A.J.: Amortizing
garbled circuits. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS,
vol. 8617, pp. 458–475. Springer, Heidelberg (2014)

11. Huang, Y., Katz, J., Evans, D.: Efficient secure two-party computation using sym-
metric cut-and-choose. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II.
LNCS, vol. 8043, pp. 18–35. Springer, Heidelberg (2013)

On Cut-and-Choose Oblivious Transfer and Its Variants 411

12. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers effi-
ciently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer,
Heidelberg (2003)

13. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Prabhakaran, M., Sahai, A.: Efficient
non-interactive secure computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011.
LNCS, vol. 6632, pp. 406–425. Springer, Heidelberg (2011)

14. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer
– efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591.
Springer, Heidelberg (2008)

15. Kilian, J.: Founding cryptography on OT. In: STOC, pp. 20–31 (1988)
16. Kolesnikov, V., Kumaresan, R.: Improved OT extension for transferring short

secrets. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol.
8043, pp. 54–70. Springer, Heidelberg (2013)

17. Kolesnikov, V.: Gate evaluation secret sharing and secure one-round two-party
computation. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 136–155.
Springer, Heidelberg (2005)

18. Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates and
applications. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126,
pp. 486–498. Springer, Heidelberg (2008)

19. Kreuter, B., Shelat, A., Shen, C.: Billion-gate secure computation with malicious
adversaries. In: USENIX (2012)

20. Kushilevitz, E., Ostrovsky, R.: Replication is NOT needed: SINGLE database,
computationally-private information retrieval. In: FOCS, pp. 364–373 (1997)

21. Lindell, Y., Riva, B.: Cut-and-Choose Yao-Based secure computation in the
online/offline and batch settings. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014, Part II. LNCS, vol. 8617, pp. 476–494. Springer, Heidelberg (2014)

22. Lindell, Y.: Fast cut-and-choose based protocols for malicious and covert adver-
saries. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043,
pp. 1–17. Springer, Heidelberg (2013)

23. Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation
in the presence of malicious adversaries. In: Naor, M. (ed.) EUROCRYPT 2007.
LNCS, vol. 4515, pp. 52–78. Springer, Heidelberg (2007)

24. Lindell, Y., Pinkas, B.: Secure two-party computation via cut-and-choose oblivious
transfer. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 329–346. Springer,
Heidelberg (2011)

25. Lindell, Y., Pinkas, B., Smart, N.P.: Implementing two-party computation effi-
ciently with security against malicious adversaries. In: Ostrovsky, R., De Prisco,
R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 2–20. Springer, Heidelberg
(2008)

26. Mohassel, P., Riva, B.: Garbled circuits checking garbled circuits: more efficient
and secure two-party computation. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013, Part II. LNCS, vol. 8043, pp. 36–53. Springer, Heidelberg (2013)

27. Mossel, E., Shpilka, A., Trevisan, L.: On e-biased generators in NC0. In: FOCS,
pp. 136–145 (2003)

28. Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: SODA, pp. 448–457
(2001)

29. Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to prac-
tical active-secure two-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 681–700. Springer, Heidelberg (2012)

412 V. Kolesnikov and R. Kumaresan

30. Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure two-party compu-
tation is practical. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
250–267. Springer, Heidelberg (2009)

31. Shelat, A., Shen, C.: Two-output secure computation with malicious adversaries.
In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 386–405.
Springer, Heidelberg (2011)

32. Shelat, A., Shen, C.: Fast two-party secure computation with minimal assumptions.
In: CCS, pp. 523–534 (2013)

33. Yao, A.: How to generate and exchange secrets. In: FOCS, pp. 162–167 (1986)

Public Key Encryption

An Asymptotically Optimal Method
for Converting Bit Encryption

to Multi-Bit Encryption

Takahiro Matsuda(B) and Goichiro Hanaoka

National Institute of Advanced Industrial Science and Technology (AIST),
Tokyo, Japan

{t-matsuda,hanaoka-goichiro}@aist.go.jp

Abstract. Myers and Shelat (FOCS 2009) showed how to convert a cho-
sen ciphertext secure (CCA secure) PKE scheme that can encrypt only
1-bit plaintexts into a CCA secure scheme that can encrypt arbitrarily
long plaintexts (via the notion of key encapsulation mechanism (KEM)
and hybrid encryption), and subsequent works improved efficiency and
simplicity. In terms of efficiency, the best known construction of a CCA
secure KEM from a CCA secure 1-bit PKE scheme, has the public key
size Ω(k) · |pk| and the ciphertext size Ω(k2) · |c|, where k is a security
parameter, and |pk| and |c| denote the public key size and the ciphertext
size of the underlying 1-bit scheme, respectively.

In this paper, we show a new CCA secure KEM based on a CCA
secure 1-bit PKE scheme which achieves the public key size 2 · |pk| and
the ciphertext size (2k+o(k)) · |c|. These sizes are asymptotically optimal
in the sense that they are the same as those of the simplest “bitwise-
encrypt” construction (seen as a KEM by encrypting a k-bit random
session-key) that works for the chosen plaintext attack and non-adaptive
chosen ciphertext attack settings. We achieve our main result by develop-
ing several new techniques and results on the “double-layered” construc-
tion (which builds a KEM from an inner PKE/KEM and an outer PKE
scheme) by Myers and Shelat and on the notion of detectable PKE/KEM
by Hohenberger, Lewko, and Waters (EUROCRYPT 2012).

1 Introduction

1.1 Background and Motivation

In this paper, we revisit the problem of how to construct a chosen ciphertext
secure (CCA2, or just CCA) public key encryption (PKE) scheme that can
encrypt plaintexts of arbitrary length from a CCA secure PKE scheme whose
plaintext space is only 1-bit. (Hereafter, we call a PKE scheme whose plaintext
space is {0, 1}n an n-bit PKE scheme.) It is well-known that if we only con-
sider chosen plaintext attack (CPA) and non-adaptive chosen ciphertext attack
(CCA1) settings, then the simple(st) “bitwise-encrypt” construction suffices, in
which a plaintext is encrypted bit-by-bit (under the same public key) by a 1-bit
c© International Association for Cryptologic Research 2015
T. Iwata and J.H. Cheon (Eds.): ASIACRYPT 2015, Part I, LNCS 9452, pp. 415–442, 2015.
DOI: 10.1007/978-3-662-48797-6 18

416 T. Matsuda and G. Hanaoka

PKE scheme, and the concatenation of all ciphertexts is regarded as a cipher-
text of the construction. However, for the CCA setting, until recently, the simple
question of how (and even whether) one can realize such a “1-bit-to-multi-bit”
conversion had been left open.

This open problem was resolved affirmatively by Myers and Shelat [20]. They
actually constructed a CCA secure key encapsulation mechanism (KEM) which
encrypts a random session-key, and can be used together with a CCA secure
symmetric key encryption (SKE) scheme to achieve a full-fledged CCA secure
PKE scheme via hybrid encryption [8]. One of the important steps of the app-
roach by Myers and Shelat is to consider the “double-layered” construction of
a KEM from an “inner” PKE scheme and an “outer” PKE scheme, where the
inner ciphertext encrypts a plaintext (or a session-key if one wants to construct
a KEM) and a randomness used for outer encryption, and the outer cipher-
text encrypts the inner ciphertext using the randomness encrypted in the inner
ciphertext. To decrypt a ciphertext, one first decrypts the outer ciphertext, and
then the resulting inner ciphertext, to recover a plaintext and a randomness
(for outer encryption), and the plaintext is output if the re-encryption of the
inner ciphertext using the recovered randomness results in the outer ciphertext.
Myers and Shelat showed that if the outer scheme that is built from a 1-bit
scheme satisfies the security notion called “unquoted CCA” (UCCA) security
(which is a weaker security notion than CCA security that can be considered
only for a PKE scheme constructed based on 1-bit PKE scheme), and the inner
scheme satisfies “1-wise non-malleability against UCCA” (which has a similar
flavor to 1-bounded CCA security [7]), the resulting construction achieves CCA
security.

The efficiency and simplicity of the construction by Myers and Shelat were
improved by Hohenberger, Lewko, and Waters [16]. Specifically, they introduced
the notion of a detectable PKE scheme, which is a PKE scheme that has an effi-
ciently computable predicate F as part of the syntax, and whose security notions
are defined with respect to this F. In particular, they introduced the notions of
detectable CCA (DCCA) security (which is a relaxed variant of CCA security)
and unpredictability, and considered a construction which has a mixed flavor of
the double-layered construction of Myers and Shelat, and the double (parallel)
encryption of Naor and Yung [21] (this construction has two PKE schemes for the
outer encryption). They showed that if the “inner” PKE scheme satisfies DCCA
security and unpredictability, and the “outer” PKE schemes are CPA secure
and 1-bounded CCA secure [7], respectively, then the resulting PKE scheme is
CCA secure. They also showed that the “bitwise-encrypt” construction based
on a CCA secure 1-bit PKE scheme yields a DCCA secure and unpredictable
detectable PKE scheme for long plaintexts, and thus achieves a 1-bit-to-multi-bit
conversion for CCA security. (In their construction, in fact a 1-bit scheme sat-
isfying only DCCA security and unpredictability suffices as the building block.)
The efficiency of the construction in [16] was further improved by Matsuda and
Hanaoka [19] using the ideas and techniques of hybrid encryption.

An Asymptotically Optimal Method for Converting Bit Encryption 417

Despite the elegant ideas employed in [16,19,20], however, even in the best
construction of [19] (in terms of efficiency), the public key size is Ω(k) · |pk| and
the ciphertext size (when seen as a KEM) is Ω(k2) · |c|, where k is a security
parameter, and |pk| and |c| denote the public key size and the ciphertext size of
a CCA secure 1-bit scheme, respectively. On the other hand, for constructing a
CPA (resp. CCA1) secure KEM from a CPA (resp. CCA1) secure 1-bit scheme,
one can use the above mentioned bitwise-encrypt construction in which one
encrypts a k-bit random string and regards this as a session-key of a KEM.
Note that the public key size of this KEM is just |pk| and the ciphertext size is
k · |c|. Compared to this simplest and most straightforward method, in the CCA
setting, the known constructions have the public key size and the ciphertext size
that are at least Ω(k) times larger.

Motivated by the above, in this paper we study the following question: How
efficient can a 1-bit-to-multi-bit conversion for CCA security be?

1.2 Our Contributions

As our main result, we show a new 1-bit-to-multi-bit construction for the CCA
setting, i.e., a construction of a CCA secure KEM based on a CCA secure 1-bit
PKE scheme, with much better asymptotic efficiency than the existing construc-
tions. Specifically, our construction achieves the public key size 2 · |pk|, and the
ciphertext size (2k + o(k)) · |c| = O(k) · |c|, which are asymptotically optimal in
the sense that these sizes are (except for a constant factor) the same as for the
simple bitwise-encrypt construction for CPA and CCA1 security.

We achieve our main result by developing several new techniques and results
on the double-layered construction of Myers and Shelat [20] and on the notion
of detectable PKE/KEM by Hohenberger, Lewko, and Waters [16]. Our tech-
nical contributions in this paper lie in (1) coming up with appropriate security
notions for detectable PKE/KEM so that we can conduct CCA security proofs
for the double-layered construction using the language of detectable PKE/KEM
(without addressing the details of how each of the inner and outer schemes
is constructed) which we believe helps us understanding our proposed construc-
tion (and more generally the double-layered approach itself) in a clearer manner,
and (2) showing how one can realize the inner and outer schemes (satisfying the
requirements of our security proofs) from a CCA secure 1-bit PKE scheme, so
that the resulting CCA secure KEM achieves asymptotically optimal efficiency
with respect to the bitwise-encrypt construction.

Below we explain more technical details of our results.

New Security Notions for Detectable PKE/KEM. In Sect. 3, we introduce new
security notions for detectable PKE and detectable KEMs. Recall that DCCA
security of [16] is defined like ordinary CCA security, except that in the secu-
rity experiment, the decryption oracle is restricted according to the predicate F
(which is a part of the syntax of detectable PKE/KEM): an adversary is not
allowed to query a ciphertext c such that F(c∗, c) = 1 where c∗ is the challenge
ciphertext. The first notion we introduce is a weak form of non-malleability

418 T. Matsuda and G. Hanaoka

[3,12,22] under DCCA that we simply name wNM-DCCA security, which is defined
like DCCA security except that we allow an adversary to make one “unrestricted”
decryption query (which is not affected by the restriction of F). We also introduce
an even weaker variant, which is a “replayable”-CCA-analogue [4] of wNM-DCCA
security, which we call wRNM-DCCA security, that is defined like wNM-DCCA secu-
rity except that the final unrestricted decryption query (and only this query) is
answered like a decryption query in the replayable CCA security.

We also introduce a new security notion for detectable PKE/KEM that we
call randomness-inextractability. Recall that a DCCA secure detectable PKE
scheme is meaningful only if it also satisfies another security notion that pre-
vents the predicate F from outputting 1 for every input (which makes DCCA
security equivalent to CPA security). Unpredictability [16] is one example of a
security notion that prevents DCCA security from being trivial, which ensures
that a ciphertext c satisfying F(c∗, c) = 1 is hard to find without seeing c∗.
Randomness-inextractability is another such security notion for detectable PKE:
Informally, it requires that if an adversary is given a ciphertext c∗ (that encrypts
a plaintext m of the adversary’s choice), it cannot come up with a pair of a (pos-
sibly different) plaintext m′ and randomness r′ such that F(c∗, c′) = 1, where c′

is the encryption of m′ generated using the randomness r′. We also show that
randomness-inextractability and unpredictability do not imply each other, even
if we combine one notion with wNM-DCCA security. See Sect. 3 for the details.

New CCA Security Proofs for the Double-Layered Construction Based on
Detectable PKE/KEM. In Sect. 4, we show our main technical results: two
new CCA security proofs for the double-layered construction of Myers and
Shelat [20]. Our first security proof shows that if the inner KEM is a detectable
KEM satisfying DCCA security and unpredictability, and the outer PKE scheme
is a detectable PKE scheme satisfying wRNM-DCCA security and randomness-
inextractability, then the KEM obtained from the double-layered construction is
CCA secure. Our main result with asymptotically optimal efficiency is obtained
from this security proof.

Our second security proof shows that if the inner KEM is wNM-DCCA secure
and unpredictable, and the outer PKE scheme is DCCA secure and randomness-
inextractable, then the KEM obtained from the double-layered construction is
CCA secure. Interestingly, this security proof can be seen as a generalization of
Myers-Shelat’s original security proof of their construction [20].

Both of the security proofs have similar flavors to the security proofs of
[16,19]. Namely, DCCA security of the inner KEM guarantees that a session-
key (hidden in the challenge ciphertext) is random as long as an adversary does
not submit a “dangerous” decryption query (which are defined with respect
to the predicate F from the inner detectable KEM), and we then upperbound
the probability that the adversary comes up with such “dangerous” decryption
queries to be negligible by the combination of the security properties of the outer
PKE scheme and the inner KEM. However, unlike the previous works [16,19] that
use a “detectable” primitive only for the inner scheme, we employ a detectable
primitive also for the outer scheme. Consequently, we have to deal with two types

An Asymptotically Optimal Method for Converting Bit Encryption 419

of “dangerous” decryption queries in the security proofs: an “inner-dangerous”
query and an “outer-dangerous” query, which, as the names indicate, are related
to the inner KEM and the outer PKE scheme, respectively. Our two security
proofs differ in the treatment of the inner- and outer-dangerous queries, which
lead to the difference between which of the inner KEM or the outer PKE scheme
needs to be “non-malleable” under DCCA. In both of the proofs, randomness-
inextractability of the outer PKE scheme is used to show that the adversary’s
outer-dangerous queries do not help.

We also show an evidence that indicates that our reliance on “non-
malleability” under DCCA for either the inner KEM or the outer PKE scheme
would be unavoidable, by showing a counterexample for the double-layered con-
struction that does not achieve CCA security if the inner and outer schemes
only satisfy DCCA security, unpredictability, and randomness-inextractability.
For the details, see Sect. 4.

A Detectable PKE Scheme Satisfying wRNM-DCCA Security and Randomness-
Inextractability from CCA Secure 1-bit PKE. In Sect. 5, we show a construction
of a detectable PKE scheme satisfying wRNM-DCCA security and randomness-
inextractability, using a CCA secure 1-bit PKE scheme and a non-malleable
code [13] for “bitwise-tampering and bit-level permutations” [1,2]. The idea of
this construction is based on the recent result by Agrawal et al. [2] who showed
how to transform a 1-bit commitment scheme secure against chosen commitment
attacks (CCA) into a non-malleable string commitment scheme: We first encode
a plaintext by a non-malleable code, and then do “bitwise-encryption” of the
encoded value by a CCA secure 1-bit PKE scheme. (Due to its structure, we
call this construction the “Encode-then-Bitwise-Encrypt” (EtBE) construction.)
Our contribution regarding this construction is to clarify that the approach of
[2] also works well for detectable PKE as we require.

Agrawal et al. [1] recently constructed a non-malleable code for the above
mentioned class of functions with “optimal rate”, meaning that the ratio between
the length n of a codeword and the length k of a message can be made arbitrarily
close to 1 (i.e. n = k + o(k)). We employ this non-malleable code to achieve the
asymptotic efficiency of our proposed KEM.

The Proposed 1-Bit-to-Multi-Bit Conversion, and More. Our main result, i.e.
a CCA secure KEM from a CCA secure 1-bit PKE scheme that achieves
optimal asymptotic efficiency in terms of the public key and ciphertext sizes,
is obtained by using the above mentioned detectable PKE scheme (together
with some hybrid encryption techniques) as the outer PKE scheme, and using
the bitwise-encrypt construction of a detectable KEM as the inner KEM, in the
double-layered construction, via our first security proof. In Sect. 6, we show the
full description of our construction. As noted above, our construction uses only
two key pairs of the underlying 1-bit PKE scheme.

Interestingly, there we also show that if a 2-bit PKE scheme can be used
instead of a 1-bit PKE scheme, then one can construct a CCA secure KEM
(with almost the same construction as our main construction) that uses only
one key pair.

420 T. Matsuda and G. Hanaoka

On the Necessity of Two Key Pairs. As mentioned above, our proposed KEM
from a 1-bit PKE scheme uses two key pairs of the underlying CCA secure 1-bit
PKE scheme. Given this, it is natural to ask if the number 2 of key pairs of the
underlying 1-bit scheme is optimal for 1-bit-to-multi-bit constructions for CCA
security. Although we could not answer this question affirmatively or negatively,
we show that the one-key variant of our proposed construction is vulnerable to
a CCA attack. (This result is shown in the full version.) This negative result
shows a necessity of different techniques and ideas than ours towards answering
the question. It also contrasts strikingly with our 2-bit-to-multi-bit construction
for CCA security that uses only one key pair of the underlying 2-bit scheme.

We leave it as an open problem to clarify whether one can achieve a 1-bit-
to-multi-bit conversion using only one key pair of the underlying 1-bit scheme,
or it is generally impossible.

1.3 Related Work

The double-layered construction [16,20], and extension of the plaintext space
of encryption schemes based on it, have been used in several works: Lin and
Tessaro [18] showed how to turn a 1-bit PKE scheme whose correctness is not
perfect and which only satisfies weak CCA security (weak in the sense that an
adversary may have bounded but non-negligible CCA advantage), into a PKE
scheme (with a large plaintext space) satisfying ordinary CCA security, via the
construction of [16]. Dachman-Soled et al. [9] studied the notion of “enhanced”
CCA security for PKE schemes with randomness recovery property, where the
decryption oracle in the security experiment returns not only the decryption
result of a queried ciphertext but also a randomness that is consistent with the
ciphertext, and (among other things) showed that the construction of [16] can be
used to achieve a 1-bit-to-multi-bit conversion for enhanced CCA security. Most
recently, Kitagawa et al. [17] showed that a simpler variant of the double-layered
construction which does not have validity check by re-encryption in the decryp-
tion algorithm, can be used to extend the plaintext space of PKE satisfying
key-dependent message (KDM) security against CCA with respect to projection
functions (projection-KDM-CCA security).

Very recently, Coretti et al. [6] showed a 1-bit-to-multi-bit conversion for
a PKE scheme. However, the security notion considered in their construction
is so-called “self-destruct” CCA security, which is defined like ordinary CCA
security except that in the security experiment, once an adversary submits an
invalid ciphertext (which does not decrypt to a valid plaintext) as a decryption
query, the decryption oracle “self-destructs”, i.e. it will not answer to subsequent
decryption queries. This security notion is strictly weaker than ordinary CCA
security. Furthermore, in another recent work, Coretti et al. [5] considered non-
malleability under self-destruct CCA, which is also strictly weaker than ordinary
CCA security, and showed a 1-bit-to-multi-bit conversion for a PKE scheme
satisfying this security notion. The 1-bit-to-multi-bit constructions of [5,6] share
the same idea with Agrawal et al.’s conversion (and hence with our “outer”
PKE scheme): first encode a plaintext by a suitable non-malleable code, and

An Asymptotically Optimal Method for Converting Bit Encryption 421

then do bitwise encryption. The main differences between these works [5,6] and
our “double-layered” construction are: (1) Ours achieves ordinary (full) CCA
security, while they achieve weaker security notions. (2) Our construction uses
only two key pairs of the underlying 1-bit scheme, while the constructions in [5,6]
use O(k) key pairs, of the building block 1-bit scheme. (3) The requirements of
the used non-malleable codes are all different: [5,6] need stronger form of non-
malleability called “continuous” non-malleability [15] (and its extension), while
we only need the original definition of non-malleability in [13] that captures
“one-time” tampering.; The tampering functions with respect to which non-
malleability is considered in [5,6] are based on bit-wise tampering (extended to
take into account continuous non-malleability), while ours requires additionally
non-malleability against bit-level permutation (as in [1,2]).

Paper Organization. The rest of this paper is organized as follows: Sect. 2 reviews
the basic notation and definitions of cryptographic primitives. In Sect. 3, we
define new security notions for detectable PKE, and also show several facts on
them. In Sect. 4, we show our main technical result: new security proofs for the
“double-layered” construction. We also explain some evidence that justifies our
reliance on non-malleability under DCCA. In Sect. 5, we show how to build a
detectable PKE scheme satisfying our new security notions based on a CCA
secure 1-bit PKE scheme and a non-malleable code. In Sect. 6, we provide the
full description of our proposed 1-bit-to-multi-bit construction. There we also
explain our 2-bit-to-multi-bit construction with a single key pair. We give a
comparison among 1-bit-to-multi-bit constructions in Sect. 7.

Due to space limitation, the proofs of the theorems and lemmas in this paper
are omitted and will be given in the full version, and we only give proof sketches
or intuitive explanations.

2 Preliminaries

In this section, we review the basic notation and the definitions for cryptographic
primitives.

Basic Notation. N denotes the set of all natural numbers. For n ∈ N, we define
[n] := {1, . . . , n}. “x ← y” denotes that x is chosen uniformly at random from y
if y is a finite set, x is output from y if y is a function or an algorithm, or y is
assigned to x otherwise. If x and y are strings, then “|x|” denotes the bit-length
of x, “x‖y” denotes the concatenation x and y, and “(x ?= y)” is defined to be
1 if x = y and 0 otherwise. “(P)PTA” stands for a (probabilistic) polynomial
time algorithm. For a finite set S, “|S|” denotes its size. If A is a probabilistic
algorithm then “y ← A(x; r)” denotes that A computes y as output by taking
x as input and using r as randomness. If furthermore O is an algorithm, then
“AO” denotes that A has oracle access to O. A function ε(·) : N → [0, 1] is
said to be negligible if for all positive polynomials p(k) and all sufficiently large
k ∈ N, we have ε(k) < 1/p(k). Throughout this paper, we use the character “k”
to denote a security parameter.

422 T. Matsuda and G. Hanaoka

2.1 (Detectable) Public Key Encryption

A public key encryption (PKE) scheme Π consists of the three PPTAs (PKG,
Enc,Dec) with the following interface:

Key Generation: Encryption: Decryption:
(pk, sk) ← PKG(1k) c ← Enc(pk,m) m (or ⊥) ← Dec(sk, c)

where Dec is a deterministic algorithm, (pk, sk) is a public/secret key pair, and
c is a ciphertext of a plaintext m under pk. We say that a PKE scheme satisfies
correctness if for all k ∈ N, all keys (pk, sk) output from PKG(1k), and all
plaintexts m, it holds that Dec(sk,Enc(pk,m)) = m.

Detectable PKE. In this paper, we use the notion of detectable PKE as defined in
[16]. It is a PKE scheme that has a predicate F that tests whether two ciphertexts
c and c′ are “related” in the sense that to decrypt c, the information of the
decryption result of c′ is useful (and hence, revealing the decryption result of c′

is “dangerous”). This predicate F is used to define multiple security notions of
the primitive, and hence we explicitly define it as a part of the syntax of the
primitive (this approach is also taken in [16,19]).

Formally, a tuple of PPTAs Π = (PKG,Enc,Dec,F) is said to be a detectable
PKE scheme if (PKG,Enc,Dec) constitutes PKE, and F is a predicate that takes
a public key pk and two ciphertexts c, c′ as input, and outputs either 0 or 1.

ExptATKΠ,A(k) :

(pk, sk) ← PKG(1k)

(m0, m1, st) ← AO(·)
1 (pk)

b ← {0, 1}
c∗ ← Enc(pk, mb)

b′ ← AO(·)
2 (st, c∗)

Return (b′ ?
= b)

ExptATKΓ,A(k) :

(pk, sk) ← KKG(1k)
(c∗, K∗

1) ← Encap(pk)
K∗

0 ← K
b ← {0, 1}
b′ ← AO(·)(pk, c∗, K∗

b)

Return (b′ ?
= b)

ExptUNPΠ,A(k) :

(pk, sk) ← PKG(1k)

(m, c) ← AO(·)(pk)
c∗ ← Enc(pk, m)
Return F(pk, c∗, c)

ExptUNPΓ,A(k) :

(pk, sk) ← KKG(1k)

c ← AO(·)(pk)
(c∗, K∗) ← Encap(pk)
Return F(pk, c∗, c)

ExptF-NM
C,A (k) :

(f, m0, m1, st) ← A1(1
k)

b ← {0, 1}
s∗ ← E(1k, mb)
s′ ← f(s∗)
m′ ← D(1k, s′)
If m′ ∈ {m0, m1} then

m′ ← same
b′ ← A2(st, m

′)

Return (b′ ?
= b)

Fig. 1. The experiments for defining the security of detectable PKE (left-top/bottom),
of detectable KEM (center-top/bottom), and of an F-non-malleable code (right). In
the ATK(∈ {CCA, DCCA}) and UNP experiments for PKE (resp. KEM), O(·) is the decryp-
tion oracle Dec(sk, ·) (resp. decapsulation oracle Decap(sk, ·)). In the CCA (resp. DCCA)
experiment for PKE, A2 is not allowed to query c∗ (resp. ciphertexts c such that
F(pk, c∗, c) = 1). Similar restrictions apply to A in the CCA/DCCA experiment for KEMs.

An Asymptotically Optimal Method for Converting Bit Encryption 423

We require that for all k ∈ N, all public keys pk output by PKG(1k), and all
ciphertexts c output by Enc(pk, ·), we have F(pk, c, c) = 1.1

Security Notions. Here we recall chosen ciphertext security (CCA security) for
PKE, and detectable CCA (DCCA) security and unpredictability for detectable
PKE [16].

Let ATK ∈ {CCA, DCCA}. For a (detectable) PKE scheme Π and an adversary
A = (A1,A2), consider the ATK experiment ExptATKΠ,A(k) described in Fig. 1 (left-
top). In the experiment, it is required that |m0| = |m1|, and A2 is not allowed to
submit the “prohibited” queries to the decryption oracle: If ATK = CCA, then the
prohibited query is c∗, and if ATK = DCCA, then the prohibited queries are c sat-
isfying F(pk, c∗, c) = 1. We say that a (detectable) PKE scheme Π is ATK secure
if for all PPTAs A, AdvATKΠ,A(k) := 2 · |Pr[ExptATKΠ,A(k) = 1] − 1/2| is negligible.

For a detectable PKE scheme Π (with predicate F) and an adversary A,
consider the unpredictability experiment ExptUNPΠ,A(k) described in Fig. 1 (left-
bottom). We say that a detectable PKE scheme Π is unpredictable if for all
PPTAs A, AdvUNPΠ,A(k) := Pr[ExptUNPΠ,A(k) = 1] is negligible.

2.2 (Detectable) Key Encapsulation Mechanism

A key encapsulation mechanism (KEM) Γ consists of the three PPTAs (KKG,
Encap,Decap) with the following interface:

Key Generation: Encapsulation: Decapsulation:
(pk, sk) ← KKG(1k) (c,K) ← Encap(pk) K (or ⊥) ← Decap(sk, c)

where Decap is a deterministic algorithm, (pk, sk) is a public/secret key pair
that defines a session-key space K, and c is a ciphertext of a session-key K ∈ K
under pk. We say that a KEM satisfies correctness if for all k ∈ N, all keys
(pk, sk) output from KKG(1k) and all ciphertext/session-key pairs (c,K) output
from Encap(pk), it holds that Decap(sk, c) = K.

We also define a KEM-analogue of detectable PKE, which we call detectable
KEM, as a KEM that has an efficiently computable predicate F whose interface
is exactly the same as that of detectable PKE.

Security Notions. Here we review the definition of CCA security for a KEM, and
the definitions of DCCA security and unpredictability for a detectable KEM.

Let ATK ∈ {CCA, DCCA}. For a (detectable) KEM Γ and an adversary A,
consider the ATK experiment ExptATKΓ,A(k) described in Fig. 1 (center-top). In the
experiment, A is not allowed to submit the “prohibited” queries that are defined
in the same way as those for the PKE case. We say that a (detectable) KEM Γ
is ATK secure if for all PPTAs A, AdvATKΓ,A(k) := 2 · |Pr[ExptATKΓ,A(k) = 1] − 1/2| is
negligible.

1 This requirement is not explicitly defined in [16], but is actually necessary for DCCA

security to be meaningful. Without this requirement, DCCA security is unachievable,
as an adversary can submit the challenge ciphertext to the decryption oracle.

424 T. Matsuda and G. Hanaoka

For a detectable KEM Γ (with predicate F) and an adversary A, consider the
unpredictability experiment ExptUNPΓ,A(k) described in Fig. 1 (center-bottom). We
say that a detectable KEM Γ is unpredictable if for all PPTAs A, AdvUNPΓ,A(k) :=
Pr[ExptUNPΓ,A(k) = 1] is negligible.

2.3 Non-malleable Codes

Here, we recall the definition of non-malleable codes [13].
A code C with message length κ = κ(k) and codeword length n = n(k)

(called also an (n, κ)-code) consists of the two PPTAs (E,D): E is the encoding
algorithm that takes 1k and a message m ∈ {0, 1}κ as input, and outputs a
codeword c ∈ {0, 1}n.; D takes 1k and c as input, and outputs m ∈ {0, 1}κ or
the special symbol ⊥ indicating that c is invalid. We require for all k ∈ N and
all messages m ∈ {0, 1}κ, it holds that D(1k,E(1k,m)) = m.

Non-malleability. Non-malleability for codes, formalized by Dziembowski et al.
[13], is defined with respect to a class of tampering functions F . Intuitively, non-
malleability guarantees that if an encoding c of a message m is modified into c′ =
f(c) by a function f ∈ F , then the decoded value m′ of c′ is either the original
message m itself, or a completely unrelated message (or ⊥). Here we recall the
indistinguishability-based definition which is most convenient for us to work
with, which is called the “alternative-non-malleability” in [14, Definition A.1].
It was shown in [14] that this definition is equivalent to the original simulation-
based definition for codes whose message length κ is superlogarithmic in k.

Let n, κ : N → N be positive polynomials of k such that n(k) ≥ κ(k). For an
(n, κ)-code C = (E,D), a class of functions F = {Fk : {0, 1}k → {0, 1}k}k∈N, and
an adversary A = (A1,A2), consider the F-NM experiment ExptF-NM

C,A (k) described
in Fig. 1 (right). In the experiment, “same” is the special symbol indicating that
the decoded message m′ was either m0 or m1, and it is required that f ∈ Fn

and |m0| = |m1| = κ(k). We say that C is non-malleable with respect to the
function class F (F-non-malleable, for short) if for all PPTAs2 A, AdvF-NM

C,A (k) :=
2 · |Pr[ExptF-NM

C,A (k) = 1] − 1/2| is negligible. We also say that C is an F-non-
malleable code.

Classes of Tampering Functions. In this paper, we consider the following classes
of functions.

Composition of “Bitwise Tampering” and “Bit-Level Permutation” P:
Let set, reset, forward, toggle : {0, 1} → {0, 1} be the functions over a bit,
defined by set(x) := 1, reset(x) := 0, forward(x) := x, and toggle(x) :=
1 − x. We define FBIT := {set, reset, forward, toggle}.
Let P = {Pn}n∈N be the class of functions which first perform “bitwise
tampering” to an input, followed by a “bit-level permutation.” Namely, Pn

is the set of all functions f : {0, 1}n → {0, 1}n that can be described by

2 The original definition [13] considered security against computationally unbounded
adversaries. In this paper, however, we only need security against PPTAs.

An Asymptotically Optimal Method for Converting Bit Encryption 425

using n bitwise-tampering functions f1, . . . , fn ∈ FBIT and a permutation
π : [n] → [n], as follows:

x = (x1‖ . . . ‖xn)
f�→

(
fπ−1(1)(xπ−1(1)) ‖ . . . ‖ fπ−1(n)(xπ−1(n))

)
.

“Bit-Fixing” or “Quoting an Input without Duplicated Positions”
Q: Let one : {0, 1}n → {0, 1} and zero : {0, 1}n → {0, 1} be the constant
functions that output 1 and 0 for any n-bit inputs, respectively. Furthermore,
for j ∈ [n], let quotej : {0, 1}n → {0, 1} be the “quoting” function that
always outputs the j-th bit of its input.
Let Q = {Qn}n∈N be the class of functions each of whose output bits is
either a “fixed value” or “quoting the input without duplicated positions.”
More formally, Qn is the set of all functions f : {0, 1}n → {0, 1}n that
can be decomposed to n functions f1, . . . , fn : {0, 1}n → {0, 1} so that
f(x) = (f1(x)‖ . . . ‖fn(x)) for all x ∈ {0, 1}n, and furthermore it holds that
for every i ∈ [n]:

fi ∈ {one, zero} ∪
(

{quotej}j∈[n]\{fj}j∈[i−1]

)
.

Note that the above guarantees that there exist no indices i, i′, j ∈ [n] such
that fi = fi′ = quotej and i
= i′. We call this condition the no duplicated
quoting condition.

Agrawal et al. [1] showed the following elegant result, which is crucial for the
efficiency of our proposed KEM:

Lemma 1. [1] There exists an explicit (n, k)-code such that (1) it is P-non-
malleable, and (2) its “rate”, defined by k/n, asymptotically approaches to 1 as
k increases (and hence n = k + o(k)).

Furthermore, the following is implicitly used by Agrawal et al. [2], and also is
useful for our purpose. (Although it is almost straightforward from the definitions
of P and Q, we will show its formal proof in the full version.)

Lemma 2. For all n ∈ N, Qn ⊆ Pn. (This holds even if FBIT does not contain
toggle.) Hence, any P-non-malleable code is also Q-non-malleable.

2.4 Other Standard Primitives

In this paper we also use a pseudorandom generator (PRG) G, and a CCA
secure deterministic symmetric key encryption (SKE) E = (SEnc,SDec): For
notation, encryption of a plaintext m using a key K ∈ {0, 1}k is denoted by
“c ← SEnc(K,m)” where c is a ciphertext, and decryption of c using K is
denoted by “m ← SDec(K, c)” where m could be the invalid symbol ⊥. Since
their security definitions are standard, we omit them in the proceedings version.

426 T. Matsuda and G. Hanaoka

3 New Security Notions for Detectable PKE and KEM

In this section, we introduce new security notions for detectable PKE: wNM-DCCA
security and wRNM-DCCA security in Sect. 3.1, and randomness-inextractability in
Sect. 3.2. We also show some useful facts regarding the new security notions in
Sect. 3.3.

We also define wNM-DCCA security and randomness-inextractability for
detectable KEMs. Since their definitions are straightforward KEM-analogues
of those for detectable PKE in this section, we omit them here and formally
provide them in the full version.

3.1 “Weak” Non-malleability Under DCCA and Its “Replayable”
Variant

Here, we define a “weak” form of non-malleability against DCCA for detectable
PKE, which we call wNM-DCCA security, that captures the intuition that a DCCA
adversary who works in the DCCA experiment cannot come up with a cipher-
text that is “meaningfully related” to the challenge ciphertext. Recall that the
original definitions of non-malleability for PKE [3,12,22] ensure that an adver-
sary cannot come up with even a vector of ciphertexts that are “meaningfully
related” to the challenge ciphertext, while our notion here only requires that
it cannot come up with only a single related ciphertext. Technically, following
the formalizations in [3,20,22], we formalize wNM-DCCA security by modifying
the original DCCA experiment (in which originally the usage of the decryption
oracle is restricted according the predicate F of detectable PKE), so that at the
end of the experiment an adversary is allowed to make a single “unrestricted”
decryption query, regardless of F. Thus, it is like “1-bounded” CCA security [7],
albeit an adversary has additionally access to DCCA decryption oracle. Myers
and Shelat [20] defined a security notion for PKE-to-PKE constructions called
“q-wise-non-malleability under UCCA.” Our definition of wNM-DCCA security is
a detectable-PKE-analogue of their 1-wise-non-malleability.

We also define a weaker variant of wNM-DCCA security, in the security experi-
ment of which the final “unrestricted” decryption query is answered like a decryp-
tion query in the “replayable” CCA experiment [4], namely, if the decryption result
is one of the challenge plaintexts that an adversary uses, then the adversary is
only informed so and is not given the actual decryption result. Due to the lack of
a better name, we call it wRNM-DCCA security (where R stands for “Replayable”).

Fomally, for a detectable PKE scheme Π = (PKG,Enc,Dec,F) and an adver-
sary A = (A1,A2,A3), we define the wNM-DCCA experiment ExptwNM-DCCAΠ,A (k) and
the wRNM-DCCA experiment ExptwRNM-DCCAΠ,A (k) described in Fig. 2 (left and center,
respectively). In both of the experiments, it is required that |m0| = |m1|, and
as in the DCCA experiment, A2 is not allowed to submit a decryption query c
satisfying F(pk, c∗, c) = 1 to the decryption oracle. The adversary’s final “unre-
stricted” decryption query is captured by the ciphertext c′ that is finally output
by A2, and naturally it is required that c′
= c∗. However, we allow c′ to be such

An Asymptotically Optimal Method for Converting Bit Encryption 427

that F(pk, c∗, c′) = 1. In the wRNM-DCCA experiment, “same” is the special symbol
(which is distinguished from ⊥) that indicates that Dec(sk, c′) ∈ {m0,m1}.

Definition 1. We say that a detectable PKE scheme Π is wNM-DCCA secure if
for all PPTAs A, AdvwNM-DCCAΠ,A (k) := 2·|Pr[ExptwNM-DCCAΠ,A (k) = 1]−1/2| is negligible.
We define wRNM-DCCA security analogously.

3.2 Randomness-Inextractability

Here we introduce another security notion for detectable PKE that we call
randomness-inextractability. Roughly, this security notion ensures that given the
challenge ciphertext c∗ (which is an encryption of a plaintext of an adversary’s
choice), an adversary cannot come up with a pair (m′, r′) of a plaintext and a
randomness such that F(pk, c∗,Enc(pk,m′; r′)) = 1. If the predicate F(pk, c∗, c′)
tests the equality (c∗ ?= c′), then this notion exactly demands that the random-
ness used in c∗ cannot be recovered, and hence we use the name “randomness-
inextractability” (although we allow more general predicates for F).

Formally, for a detectable PKE scheme Π = (PKG,Enc,Dec,F) and an adver-
sary A = (A1,A2), consider the R-Inext experiment described in Fig. 2 (right).

Definition 2. We say that a detectable PKE scheme Π satisfies randomness-
inextractability if for all PPTAs A, AdvR-InextΠ,A (k) := Pr[ExptR-InextΠ,A (k) = 1] is
negligible.

Remark. We could have defined the randomness-inextractability experiment so
that we let an adversary choose its challenge message m after given a public
key pk. This makes the security stronger. However, we do not need this stronger
variant for our results.

3.3 Useful Facts

Stretching a Session-Key. As in the case of ordinary KEMs, for a detectable
KEM, session-keys can be stretched by using a PRG. More formally, let Γ =
(KKG,Encap,Decap,F) be a detectable KEM whose session-key space is {0, 1}k.
Let G : {0, 1}k → {0, 1}� be a PRG with � = �(k) > k, where for convenience
we define G(⊥) := ⊥. Then, consider the detectable KEM Γ ′ = (KKG,Encap′,
Decap′,F) whose session-key space is {0, 1}�, which is naturally constructed by
combining Γ and G: Encap′(pk) runs (c,K) ← Encap(pk) and outputs a cipher-
text/session key pair (c,G(K)).; We define Decap′(sk, c) := G(Decap(sk, c)). The
following is straightforward, and thus its proof is omitted.

Lemma 3. If the detectable KEM Γ satisfies randomness-inextractability (resp.
unpredictability), then so does the detectable KEM Γ ′. Furthermore, if Γ is DCCA
(resp. wNM-DCCA) secure and G is a PRG, then Γ ′ is DCCA (resp. wNM-DCCA)
secure.

428 T. Matsuda and G. Hanaoka

ExptwNM-DCCAΠ,A (k) :

(pk, sk) ← PKG(1k)

(m0, m1, st) ← AO(·)
1 (pk)

b ← {0, 1}
c∗ ← Enc(pk, mb)

(c′, st′) ← AO(·)
2 (st, c∗)

m′ ← Dec(sk, c′)
b′ ← A3(st

′, m′)

Return (b′ ?
= b).

ExptwRNM-DCCAΠ,A (k) :

(pk, sk) ← PKG(1k)

(m0, m1, st) ← AO(·)
1 (pk)

b ← {0, 1}
c∗ ← Enc(pk, mb)

(c′, st′) ← AO(·)
2 (st, c∗)

m′ ← Dec(sk, c′)
If m′ ∈ {m0, m1} then

m′ ← same
b′ ← A3(st

′, m′)

Return (b′ ?
= b).

ExptR-InextΠ,A (k) :

(m, st) ← A1(1
k)

(pk, sk) ← PKG(1k)
c∗ ← Enc(pk, m)

(m′, r′) ← AO(·)
2 (st, pk, c∗)

c′ ← Enc(pk, m′; r′)
Return F(pk, c∗, c′).

Fig. 2. Security experiments for wNM-DCCA security (left), wRNM-DCCA security (center),
and randomness-inextractability (right). In the experiments, O(·) is the decryption
oracle Dec(sk, ·), and in the wNM/wRNM-CCA experiments, the decryption oracle for A2

has the same restriction as in the DCCA experiment.

Hybrid Encryption. For a detectable PKE scheme, a straightforward appli-
cation of hybrid encryption preserves w(R)NM-DCCA security and randomness-
inextractability, when combined with a CCA secure SKE scheme. Since a CCA
secure SKE scheme with “zero” ciphertext overhead can be realized from a strong
pseudorandom permutation [23] (which is in turn realized based on any one-way
function), the ciphertext overhead of a detectable PKE scheme with w(R)NM-DCCA
security and randomness-inextractability, can be as small as the ciphertext size
of the scheme for encrypting a random session-key (usually a k-bit string).

Formally, let Π = (PKG,Enc,Dec,F) be a detectable PKE scheme where the
randomness space of Enc is {0, 1}�, and let E = (SEnc,SDec) be a deterministic
SKE scheme (i.e. its encryption algorithm SEnc is deterministic). Then, we natu-
rally construct the detectable PKE scheme ΠHYB = (PKGHYB,EncHYB,DecHYB,FHYB)
via hybrid encryption, as in Fig. 3. (We describe the randomness of EncHYB explic-
itly so that it is convenient to consider its randomness-inextractability.) The
randomness space of EncHYB is {0, 1}�+k.

PKGHYB(1
k) :

(pk, sk) ← PKG(1k)
Return (pk, sk).

EncHYB(pk, m; R) :
Parse R as (r, K)

∈ {0, 1}� × {0, 1}k.
c ← Enc(pk, K; r)
ĉ ← SEnc(K, m)
C ← (c, ĉ)
Return C.

DecHYB(sk, C) :
(c, ĉ) ← C
K ← Dec(sk, c)
If K = ⊥ then

return ⊥.
m ← SDec(K, ĉ)
Return m.

FHYB(pk, C∗, C′) :
(c∗, ĉ∗) ← C∗

(c′, ĉ′) ← C′

b ← F(pk, c∗, c′)
Return b.

Fig. 3. Hybrid encryption ΠHYB for detectable PKE.

An Asymptotically Optimal Method for Converting Bit Encryption 429

Regarding the security of the hybrid encryption construction, the following
lemma is straightforward to see.

Lemma 4. If the detectable PKE scheme Π is wNM-DCCA secure (resp.
wRNM-DCCA secure) and the SKE scheme E is CCA secure, then the detectable
PKE scheme ΠHYB in Fig. 3 is wNM-DCCA secure (resp. wRNM-DCCA secure). Fur-
thermore, if Π satisfies randomness-inextractability (resp. unpredictability), then
so does ΠHYB.

From wRNM-DCCA Security to wNM-DCCA Security. Canetti, Krawczyk, and Nielsen
[4] showed how to convert a “replayable” CCA secure PKE scheme into an
ordinary CCA secure KEM, using a message authentication code (MAC), with
almost no overhead. This method can be used for converting a wRNM-DCCA secure
detectable PKE scheme into a wNM-DCCA secure detectable KEM. We review this
transformation in the full version.

On the Non-triviality of Randomness-Inextractability. One might wonder
whether there is an implication from randomness-inextractability to unpre-
dictability and/or vice versa (especially in case if a detectable PKE scheme
already satisfies wNM-DCCA security). We show that this is not the case, for both
directions. Specifically, (via artificial counterexamples) we can show the follow-
ing lemma that shows the non-triviality of these notions, which we formally show
in the full version.

Lemma 5. A detectable PKE scheme satisfying wNM-DCCA security and unpred-
ictability simultaneously does not necessarily satisfy randomness-inextractability.
Furthermore, a detectable PKE scheme satisfying wNM-DCCA security and
randomness-inextractability simultaneously does not necessarily satisfy unpre-
dictability.

4 Chosen Ciphertext Security of the Double-Layered
Construction

In this section, we show our main result: two new CCA security proofs for the
“double-layered” construction ΓDL (of a KEM) constructed from the “inner”
detectable KEM Γin and the “outer” detectable PKE scheme Πout. We also show
a partial evidence that we need to rely on “non-malleability” that we defined in
the previous section.

The Double-Layered Construction. Let Πout = (PKGout,Encout,Decout,Fout) be
a detectable PKE scheme. We assume the plaintext space of Πout to be {0, 1}n

(where n = n(k) is determined below), and the randomness space of Encout to
be {0, 1}� for some positive polynomial � = �(k). Let Γin = (KKGin,Encapin,
Decapin,Fin) be a detectable KEM such that the ciphertext length is n bit, and
the session-key space is {0, 1}�+k. Then we construct the “double-layered” KEM
ΓDL = (KKGDL,EncapDL,DecapDL) as in Fig. 4. For convenience, we occasionally
call Γin the inner KEM and Πout the outer PKE scheme.

Our First Security Proof. The CCA security of ΓDL can be shown as follows.

430 T. Matsuda and G. Hanaoka

KKGDL(1
k) :

(pkin, skin) ← KKGin(1
k)

(pkout, skout) ← PKGout(1
k)

PK ← (pkin, pkout)
SK ← (skin, skout, PK)
Return (PK, SK).

EncapDL(PK) :
(pkin, pkout) ← PK
(cin, α) ← Encapin(pkin)

Parse α as (r, K) ∈ {0, 1}� × {0, 1}k.
c ← Encout(pkout, cin; r)
Return (c, K).

DecapDL(SK, c) :
(skin, skout, PK) ← SK
(pkin, pkout) ← PK
cin ← Decout(skout, c)
If cin = ⊥ then return ⊥.
α ← Decapin(skin, cin)
If α = ⊥ then return ⊥.

Parse α as (r, K) ∈ {0, 1}� × {0, 1}k.
If Encout(pkout, cin; r) = c

then return K else return ⊥.

Fig. 4. The double-layered KEM construction ΓDL from a detectable PKE scheme Πout

and a detectable KEM Γin.

Theorem 1. Assume that the “outer” PKE scheme Πout is a detectable PKE
scheme satisfying wRNM-DCCA security and randomness-inextractability, and the
“inner” KEM Γin is a detectable KEM satisfying DCCA security and unpredictabil-
ity. Then, the KEM ΓDL in Fig. 4 is CCA secure.

The structure of the proof is similar to the security proofs for the constructions
by Hohenberger et al. [16] and by Matsuda and Hanaoka [19]. However, the
details differ due to the difference in the construction and the used assumptions.

We explain the ideas for the proof of Theorem1. (Here, the values with aster-
isk (*) represent those related to the challenge ciphertext c∗.) As the first step,
note that since a session-key K of ΓDL is part of a session-key α = (r‖K) of
the DCCA secure inner KEM Γin, unless a CCA adversary A submits a decapsu-
lation query c that simultaneously satisfies (1) Decout(skout, c) = cin
= ⊥ and
(2) Fin(pkin, c

∗
in, cin) = 1, A has no chance in distinguishing the real session-key

K∗
1 from a random K∗

0 . Following [16,19], we call this type of decapsulation
query a dangerous query. If the probability that A comes up with a dangerous
query is negligible, then we can finish the proof. Furthermore, observe that since
Γin satisfies unpredictability, if we can ensure that the information of the inner
ciphertext c∗

in is hidden from A’s view, then the probability that A comes up
with a dangerous query is negligible.

To show that the probability that A comes up with a dangerous query in the
original security game is negligibly close to that in the security game in which A’s
view does not contain c∗

in at all (and hence we can invoke the unpredictability
of Γin), we rely on the security properties of the outer PKE scheme Πout to
gradually change the security game for A so that in the final game, c∗ as well as
other values in A’s view contain no information on c∗

in. Note that in the actual
encapsulation algorithm EncapDL, the randomness r used for outer encryption is
also a part of the session-key α of the inner KEM. Thus, once we invoke the DCCA
security of the inner KEM Γin (which we have already done as the first step),
not only the real session-key K∗

1 but also the randomness r∗ used to generate

An Asymptotically Optimal Method for Converting Bit Encryption 431

the challenge ciphertext c∗ are made uniformly random values, which enables us
to rely on the security properties of Πout from that point on.

Now, intuitively, the DCCA security (which is implied by wRNM-DCCA secu-
rity) of Πout guarantees that c∗

in is hidden from A’s view as long as A only
submits a decapsulation query c such that Fout(pkout, c

∗, c) = 0. However, A
is free to choose its own decapsulation query, and may submit c such that
Fout(pkout, c

∗, c) = 1. As mentioned in Sect. 1.2, this is another type of “dan-
gerous” query, in the sense that the condition Fout(pkout, c

∗, c) = 1 prevents
us from relying on the DCCA security of the outer PKE scheme Πout. To dis-
tinguish this from the above mentioned type of dangerous queries with respect
to the inner KEM, let us use the names “inner-dangerous queries” and “outer-
dangerous queries” which are associated with the inner KEM and the outer PKE
scheme, respectively.

In the full proof, we will show that the randomness-inextractability of
the outer PKE scheme allows us to reject decapsulation queries c satisfying
Fout(pkout, c

∗, c) = 1, without being noticed by A. Intuitively, this is possible
because in order for A to notice the difference between a security game in which
a decryption query c with Fout(pkout, c

∗, c) = 1 is not rejected and a security
game in which such c is rejected, A has to come up with a “valid” query c sat-
isfying Fout(pkout, c

∗, c) = 1 and DecapDL(SK, c)
= ⊥. However, the latter con-
dition implies Decout(skout, c) = cin
= ⊥, Decapin(skin, cin) = (r‖K)
= ⊥, and
Encout(pkout, cin; r) = c, among which the combination of Fout(pkout, c

∗, c) = 1
and Encout(pkout, cin; r) = c is exactly the condition of violating randomness-
inextractability, and thus such a valid query c must be hard to find.

If we can safely reject an outer-dangerous query, one might wonder why
we need non-malleability for the outer PKE scheme, and why ordinary DCCA
security is not sufficient. The reason is that although DCCA security of Πout

intuitively ensures that A cannot “see” the inner challenge ciphertext c∗
in, it does

not prevent A from coming up with an inner-dangerous decapsulation query
c such that Fout(pkout, c

∗, c) = 1. From the viewpoint of the security proof,
we may be able to come up with a DCCA adversary (a reduction algorithm)
for Πout that perfectly simulates the security game (in which queries c with
Fout(pkout, c

∗, c) = 1 are rejected) for A. However, such DCCA adversary cannot
check if A’s query satisfying Fout(pkout, c

∗, c) = 1 is an inner-dangerous query
due to the restriction on the decryption oracle.

This is the place where the non-malleability of the outer PKE scheme comes
into play. Note that an inner ciphertext is a “plaintext” of the outer PKE scheme,
and the notion of “inner-dangerous queries” is a “meaningful relation” between
c∗
in and another inner ciphertext. Therefore, the wRNM-DCCA security of Πout

ensures that A cannot come up with even a single inner-dangerous query c,
as long as A can only observe the decapsulation results of queries c′ satisfying
Fout(pkout, c

∗, c′) = 0. From the viewpoint of the security proof, if a reduction
algorithm is a wRNM-DCCA adversary for Πout, it can check if A’s query c is inner-
dangerous by its final “unrestricted” decryption query, even if Fout(pkout, c

∗, c) =
1 holds. This enables us to finally show that the probability that A comes up

432 T. Matsuda and G. Hanaoka

with an inner-dangerous query in the original security game, is negligibly close
to the probability that A does so in the game in which A’s view does not contain
the information on c∗

in.
Hence, combining all the security properties of the building blocks leads

to CCA security. However, the explanation so far hides some technical sub-
tleties that arise due to the “replayable-CCA”-like nature of wRNM-DCCA secu-
rity, and the treatment of the cases where A’s decapsulation query c satisfies
Decout(skout, c) = c∗

in, etc. For the details, see the proof in the full version.

Our Second Security Proof. We show an alternative security proof for the double-
layered construction based on slightly different assumptions on the building
blocks.

Theorem 2. Assume that the “outer” PKE scheme Πout is a detectable
PKE scheme satisfying DCCA security and randomness-inextractability, and the
“inner” KEM Γin is a detectable KEM satisfying wNM-DCCA security and unpre-
dictability. Then, the KEM ΓDL in Fig. 4 is CCA secure.

Recall that Myers and Shelat’s original double-layered construction uses an
“unquoted” CCA (UCCA) secure construction of a PKE scheme for the outer
PKE scheme and a construction of a KEM which is “1-wise-non-malleable under
UCCA” for the inner KEM, where UCCA security and its non-malleable variant
are security notions considered for PKE-to-PKE constructions (i.e. constructions
that use another PKE scheme as a building block). Recall also that DCCA security
is an abstraction of UCCA security [16], from a security notion for a PKE-to-
PKE construction to that of a wider notion of detectable PKE. Analogously,
our definition of wNM-DCCA security can be seen as an abstraction of Myers and
Shelat’s “1-wise non-malleability under UCCA”. Furthermore, we can easily see
that the actual instantiations of the inner KEM and the outer PKE scheme
used in the original Myers-Shelat construction [20], when respectively seen as
a detectable KEM and a detectable PKE scheme, satisfy unpredictability and
randomness-inextractability. Therefore, Theorem2 can be seen as a generaliza-
tion of Myers and Shelat’s result.

The structure of the proof of Theorem2 is similar to our first proof. However,
there are several subtle but crucial differences. In particular, the definitions of
“inner/outer-dangerous queries” are different from those used in the proof of
Theorem 1, and correspondingly we consider a different ordering of the sequence
of games for this proof. Furthermore, the role of the “non-malleability” in this
proof and that of the proof of Theorem1 are different. Informally speaking,
in this proof, the wNM-DCCA security of the inner detectable KEM Γin is used
to ensure that the probability that a CCA adversary comes up with an outer-
dangerous query is not noticeably different between the games in which we invoke
(the indistinguishability property of) the DCCA security of the inner KEM.

Can We Avoid w(R)NM-DCCA Security? Both of our security proofs for the CCA
security of the double-layered construction require either the inner detectable
KEM or the outer detectable PKE scheme to be “non-malleable” under DCCA.

An Asymptotically Optimal Method for Converting Bit Encryption 433

Looking ahead, in the next section, we will see that the simplest “bitwise-
encrypt” construction based on CCA secure 1-bit PKE satisfies DCCA secu-
rity, unpredictability, and randomness-inextractability. Thus, a natural question
would be whether we can prove the CCA security of the double-layered construc-
tion without using the non-malleability notions for both of the building blocks
(and instead only requiring DCCA security). If such a security proof were possible,
then one can use the bitwise-encrypt-based construction both for the inner KEM
and the outer PKE scheme, and the resulting CCA secure KEM would be fairly
simple.

Unfortunately, however, we show that such a security proof for the double-
layered construction is impossible, as there is a counterexample.

Theorem 3. Assume there exists a detectable PKE scheme which is DCCA secure
and unpredictable. Then, there exist a detectable KEM Γin and a detectable PKE
scheme Πout such that the following simultaneously hold: (1) Γin is DCCA secure
and unpredictable. (2) Πout is DCCA secure and randomness-inextractable. (3)
The double-layered KEM ΓDL constructed using Γin as the inner KEM and Πout

as the outer PKE scheme, is not CCA secure (in fact, not secure in the sense of
one-wayness under 1-bounded CCA).

Our counterexample is based on an observation that the combination of DCCA
security, unpredictability, and randomness-inextractability, does not rule out a
double-layered KEM with the following property: A ciphertext C is of the form
C = (c1, c2) and the corresponding session-key K is of the form K = (K1,K2),
and furthermore it is “blockwise” consistent, meaning that each pair (ci,Ki)
is individually consistent as a ciphertext/session-key pair of the double-layered
construction. Thus, the decapsulation result of the “swapped” ciphertext Ĉ =
(c2, c1) is the “swapped” session-key K̂ = (K2,K1). Such a KEM is clearly
malleable, and its one-wayness is broken by just a single decapsulation query.

5 Concrete Instantiations of Building Blocks

In this section, we show how to construct a detectable PKE scheme, which we
call “encode-then-bitwise-encrypt” (EtBE) construction, that uses a CCA secure
1-bit PKE scheme and a Q-non-malleable code as building blocks and simul-
taneously satisfies wRNM-DCCA security and randomness-inextractability. Since it
is much easier to understand it if we first review the simple “bitwise-encrypt”
construction, we first review it in Sect. 5.1 together with its security properties,
and then we show the EtBE construction in Sect. 5.2.

5.1 Bitwise-Encrypt Construction

Here, we show that the “bitwise-encrypt” construction of a detectable PKE
scheme based on a 1-bit PKE scheme, in which each bit of a plaintext is encrypted
in a bit-by-bit fashion by the underlying 1-bit scheme, can be shown to satisfy

434 T. Matsuda and G. Hanaoka

Encn
BE(pk, m; r) :

Parse r as (r1, . . . , rn) ∈ ({0, 1}�)n.
View m as (m1‖ . . . ‖mn) ∈ {0, 1}n.
∀i ∈ [n] : ci ← Enc1(pk, mi; ri)
Return C ← (c1, . . . , cn).

Decn
BE(sk, C) :

(c1, . . . , cn) ← C
∀i ∈ [n] : mi ← Dec1(sk, ci)
If ∃i ∈ [n] : mi = ⊥ then return ⊥.
Return m ← (m1‖ . . . ‖mn).

Fn
BE(pk, C∗, C′) :
(c∗

1, . . . , c
∗
n) ← C∗

(c′
i, . . . , c

′
n) ← C′

If ∃i, j ∈ [n] : c∗
i = c′

j

then return 1 else return 0.

EncEtBE(pk, m; R) :

Parse R as (r, r̂) ∈ {0, 1}�·n × {0, 1}̂�.

s = (s1‖ . . . ‖sn) ← E(1k, m; r̂)
C = (c1, . . . , cn) ← Encn

BE(pk, s; r)

If DUPCHK(C) = 1 then return ⊥.†

Return C.

DecEtBE(sk, C) :
If DUPCHK(C) = 1 then return ⊥.
s ← Decn

BE(sk, C)
If s = ⊥ then return ⊥.

Return m ← D(1k, s).

FEtBE(pk, C∗, C′) :
If (a) ∧ (b) then return 1 else return 0:
(a) DUPCHK(C∗) = DUPCHK(C′) = 0
(b) Fn

BE(pk, C∗, C′) = 1

Fig. 5. The “bitwise-encrypt” (n-bit) construction Πn
BE (left), and the “encode-then-

bitwise-encrypt” (EtBE) construction ΠEtBE (right), both based on a 1-bit PKE scheme
Π1.The key generation algorithms for Πn

BE and ΠEtBE are the key generation algorithm
PKG1 of the underlying scheme Π1.

† Regarding the case in which EncEtBE returns ⊥,
see the explanation in the text.

randomness-inextractability, DCCA security, and unpredictability, if the underly-
ing 1-bit PKE scheme is CCA secure.

Let Π1 = (PKG1,Enc1,Dec1) be a 1-bit PKE scheme, and the randomness
space of whose encryption algorithm Enc1 is {0, 1}� (where � = �(k) is some pos-
itive polynomial). Then, for a polynomial n = n(k) > 0, consider the “bitwise-
encrypt” construction Πn

BE = (PKGn
BE := PKG1,Enc

n
BE,Dec

n
BE,F

n
BE) of an n-bit

detectable PKE scheme described in Fig. 5 (left). The key generation algorithm
PKGn

BE is actually PKG1 itself, and we do not show it in the figure. The random-
ness space of EncBE is {0, 1}�·n. In the figure, we make the randomness used by
Encn

BE explicit so that it is convenient to consider randomness-inextractability.
The following result was shown by Hohenberger et al. [16]:

Lemma 6. [16] Let n = n(k) > 0 be a polynomial. If the 1-bit PKE scheme
Π1 is CCA secure, then the detectable PKE scheme Πn

BE scheme satisfies DCCA
security and unpredictability.

We show a similar statement regarding randomness-inextractability.

Lemma 7. Let n = n(k) > 0 be a polynomial. If the PKE scheme Π1

is CCA secure, then the detectable PKE scheme Πn
BE satisfies randomness-

inextractability.

Here we explain an intuition why Lemma7 is true, which is quite straightfor-
ward: Suppose an adversary A, given a public key pk and the challenge ciphertext
C∗ = (c∗

1, . . . , c
∗
n) and access to the decryption oracle, succeeds in outputting a

plaintext m′ = (m′
1‖ . . . ‖m′

n) and a randomness r′ = (r′
1, . . . , r

′
n) such that

An Asymptotically Optimal Method for Converting Bit Encryption 435

Fn
BE(pk,C∗, C ′) = 1 with C ′ = (c′

1, . . . , c
′
n) = Encn

BE(pk,m′; r′). Then, by def-
inition, there must be a position i ∈ [n] such that c∗

i = c′
j holds for some

j ∈ [n], where c′
a = Enc1(pk,m′

a; r′
a) for each a ∈ [n]. Note that such A is in fact

“extracting” the randomness used for generating c∗
i . Note also that extracting

a randomness used for generating a ciphertext is a harder task than breaking
indistinguishability. Thus, it is easy to construct another CCA adversary (a reduc-
tion algorithm) B for Π1 that initially guesses the position i such that c∗

i = c′
j

holds with some j, embeds B’s challenge ciphertext into the i-th position of the
challenge ciphertext for A, and has the CCA advantage at least 1/n times that
of A’s advantage in breaking randomness-inextractability.

5.2 Encode-then-Bitwise-Encrypt Construction

Here, we show the construction of detectable PKE that we call “Encode-
then-Bitwise-Encrypt” (EtBE) construction, which simultaneously achieves
wRNM-DCCA security and randomness-inextractability, based on the security prop-
erties of the bitwise-encrypt construction (which are in turn based on the under-
lying CCA secure 1-bit scheme) and a Q-non-malleable code. Our construction is
actually a direct “PKE”-analogue of the transformation of a CCA secure 1-bit
commitment scheme into a non-malleable string commitment scheme by Agrawal
et al. [2]. We adapt their construction into the (detectable) PKE setting.

Let C = (E,D) be a code with message length k and codeword length n =
n(k) ≥ k. Let Π1 = (PKG1,Enc1,Dec1) be a 1-bit PKE scheme. Let Πn

BE =
(PKGn

BE = PKG1,Enc
n
BE,Dec

n
BE,F

n
BE) be the bitwise-encrypt construction based on

Π1. For convenience, we introduce the procedure “DUPCHK(·)” which takes a
ciphertext C = (c1, . . . , cn) of Πn

BE as input, and returns 1 if there exist distinct
i, j ∈ [n] such that ci = cj , and returns 0 otherwise. (That is, DUPCHK(C) checks
a duplication in the component ciphertexts (ci)i∈[n].)

Using C, Πn
BE (and Π1), and DUPCHK, the EtBE construction ΠEtBE = (PKGEtBE

:= PKG1,EncEtBE,DecEtBE,FEtBE) is constructed as in Fig. 5 (right). Like Πn
BE, the

key generation algorithm PKGEtBE is PKG1 itself, and we do not show it in the
figure. The plaintext space of ΠEtBE is {0, 1}k.

On the Correctness of ΠEtBE. Note that the encryption algorithm EncEtBE returns
⊥ if it happens to be the case that DUPCHK(C) = 1. This check is to ensure that
a valid ciphertext does not have “duplicated” components, which is required
due to our use of a Q-non-malleable code whose non-malleability can only take
care of a “non-duplicated” quoting. Since the probability (over the randomness
of EncEtBE) that EncEtBE outputs ⊥ is not zero, our construction ΠEtBE does not
satisfy correctness in a strict sense. (The exactly same problem arises in the con-
struction of string commitments in [2].) However, it is easy to show that if Π1

satisfies CCA security (or even CPA security), the probability of EncEtBE outputting
⊥ is negligible, and thus it does not do any harm in practice. (In practice, for
example, in case ⊥ is output, one can re-execute EncEtBE with a fresh randomness.
The expected execution time of EncEtBE is negligibly close to 1.) Furthermore,
if one needs standard correctness, then instead of letting EncEtBE output ⊥ in

436 T. Matsuda and G. Hanaoka

case DUPCHK(C) = 1, one can let it output a plaintext m (being encrypted) as an
“irregular ciphertext”, so that if the decryption algorithm DecEtBE takes an irreg-
ular ciphertext C as input, it outputs C as a “decryption result” of C. (In order
to actually implement this, in case DUPCHK(C) = 1 occurs, m ∈ {0, 1}k needs to
be padded to the length n·|c| of an ordinary ciphertext, and we furthermore need
to put a prefix for every ciphertext that tells the decryption algorithm whether
the received ciphertext should be treated as a normal ciphertext or an irregular
one.) Such a modification also does no harm to the security properties of ΠEtBE

(it only contributes to increasing an adversary’s advantage negligibly), thanks
to the CCA security of the building block Π1. For simplicity, in this paper we
focus on the current construction of ΠEtBE.

Security of ΠEtBE. The security properties of the EtBE construction is guaranteed
by the following lemmas.

Lemma 8. Assume that Π1 is CCA secure and C is a Q-non-malleable code.
Then, the detectable PKE scheme ΠEtBE in Fig. 5 (right) is wRNM-DCCA secure.

Lemma 9. If Π1 is CCA secure, then the detectable PKE scheme ΠEtBE scheme
in Fig. 5 (right) satisfies unpredictability and randomness-inextractabilty.

The proof of Lemma 9 is straightforward given the unpredictability (Lemma6)
and randomness-inextractability (Lemma 7) of the bitwise-encrypt construction
Πn

BE, and thus omitted.
The proof of Lemma 8 follows essentially the same story line as the security

proof of the non-malleable string commitment by Agrawal et al. [2]. A high-level
idea is as follows: In the wRNM-DCCA experiment, an adversary A = (A1,A2,A3)
is allowed to submit a single “unrestricted” decryption query C ′ = (c′

1, . . . c
′
n),

which is captured by the ciphertext finally output by A2. In order for this query
to be valid, however, C ′ has to satisfy DUPCHK(C ′) = 0, which guarantees that C ′

does not have duplicated components. Thus, since each component is a ciphertext
of the CCA secure scheme Π1, the best A can do to generate C ′ that is “related”
to the challenge ciphertext C∗ = (c∗

1, . . . , c
∗
n) is to “quote” some of c∗

i ’s into C ′ in
such a way that no c∗

i appears more than once. However, such “quoting without
duplicated positions” is exactly the function class Q with respect to which the
code C is non-malleable. Specifically, the Q-non-malleability of C guarantees
that even if an adversary observes the decryption result of such C ′ that quotes
some of components of C∗ without duplicated positions, A gains essentially no
information of the original content mb of the encoding s∗ encrypted in C∗, and
hence no information of the challenge bit b. Actually, it might be the case that
A succeeds in generating C ′ so that Decn

BE(sk, C ′) is s∗ itself (and hence its
decoded value is exactly the challenge plaintext mb). According to the rule of
the wRNM-DCCA experiment, however, in such a case A is not given the actual
decryption result DecEtBE(sk, C ′) directly but is given the symbol same which
only informs that the decryption result is either m0 or m1. Furthermore, all
other queries without quoting do not leak the information of the challenge bit b
because of the DCCA security of the bitwise-encrypt construction Πn

BE (Lemma 6).

An Asymptotically Optimal Method for Converting Bit Encryption 437

These ideas lead to wRNM-DCCA security of ΠEtBE. For the details, see the proof
in the full version.

6 Full Description of Our 1-bit-to-Multi-bit Conversion

Given the results in the previous sections, we are now ready to describe our
proposed 1-bit-to-multi-bit conversion, i.e. a CCA secure KEM from a CCA secure
1-bit PKE scheme. Let Π1 = (PKG1,Enc1,Dec1) be a 1-bit PKE scheme whose
public key size is “|pk|”, the ciphertext size is “|c|”, and the randomness space of
whose encryption algorithm Enc1 is {0, 1}�. Let C = (E,D) be a Q-non-malleable
(n, k)-code with n = n(k) ≥ k, and the randomness space of whose encoding
algorithm E is {0, 1}�̂. Let �′ = n ·�+ �̂+2k, and G : {0, 1}k → {0, 1}�′

be a PRG.
Finally, let E = (SEnc,SDec) be a deterministic SKE scheme whose plaintext
space is {0, 1}k·|c|, and it has zero ciphertext overhead (i.e. its ciphertext size is
the same as that of a plaintext).

From these building blocks, consider the following detectable KEM Γin and
detectable PKE scheme Πout:

Γin: Consider the bitwise-encrypt construction Πk
BE (Fig. 5) based on the PKE

scheme Π1, and regard it as a detectable KEM by encrypting a random k-bit
string as a session-key. For this detectable KEM, use the PRG G with the
method explained in the first paragraph of Sect. 3.3 to stretch its session-key
into �′ bits. Γin is the resultant KEM.
The public key size of Γin is |pk|, its ciphertext size is k · |c|, and its session-
key space is {0, 1}�′

. Due to Lemmas 3 and 6, Γin satisfies DCCA security and
unpredictability based on the CCA security of Π1 and the security of G.

Πout: Consider the EtBE construction ΠEtBE based on the code C and the bitwise-
encrypt construction Πn

BE (which is in turn based on Π1) (Fig. 5). Com-
bine this detectable PKE scheme with the SKE scheme E by the method
explained in the second paragraph of Sect. 3.3 (see Fig. 3). Πout is the resul-
tant PKE scheme.
The public key size of Πout is |pk|, its ciphertext overhead (the difference
between the total ciphertext size minus the plaintext size) is n · |c|, its plain-
text space is {0, 1}k·|c|, and the randomness space of its encryption algorithm
is {0, 1}�′−k. Due to Lemmas 4, 6, 7, 8, and 9, Πout satisfies wRNM-DCCA
security and randomness-inextractability, based on the CCA security of Π1,
Q-non-malleability of C, and the CCA security of E.

Our proposed KEM Γ̃ = (K̃KG, Ẽncap, D̃ecap) is then obtained from the double-
layered construction ΓDL in which the inner KEM is Γin and the outer PKE
scheme is Πout explained above. More concretely, the description of Γ̃ is as in
Fig. 6.

The public key size of Γ̃ is 2 · |pk|, and its ciphertext size is (n+k) · |c| (where
Γin contributes k · |c| and Πout contributes n · |c|). Using the P-non-malleable
code with “optimal rate” (Lemma 1) by Agrawal et al. [1] which also satisfies

438 T. Matsuda and G. Hanaoka

˜KKG(1k) :

(pkin, skin) ← PKG1(1
k)

(pkout, skout) ← PKG1(1
k)

PK ← (pkin, pkout)
SK ← (skin, skout, PK)
Return (PK, SK).

˜Encap(PK) :
(pkin, pkout) ← PK

Kin = (K
(1)
in ‖ . . . ‖K

(k)
in) ← {0, 1}k

∀i ∈ [k] : c
(i)
in ← Enc1(pkin, K

(i)
in)

α ← G(Kin)
Parse α as (r1, . . . , rn, r̂, Kout, K)

∈ ({0, 1}�)n × {0, 1}̂� × ({0, 1}k)2.

s = (s1‖ . . . ‖sn) ← E(1k, Kout; r̂)
∀i ∈ [n] : ci ← Enc1(pkout, si; ri)
If DUPCHK((ci)i∈[n]) = 1 then return ⊥.

ĉ ← SEnc(Kout, (c
(1)
in ‖ . . . ‖c

(k)
in))

C ← (c1, . . . , cn, ĉ)
Return (C, K).

˜Decap(SK, C) :
(skin, skout, PK) ← SK
(pkin, pkout) ← PK; (c1, . . . , cn, ĉ) ← C
If DUPCHK((ci)i∈[n]) = 1 then return ⊥.
∀i ∈ [n] : si ← Dec1(skout, ci)
If ∃i ∈ [n] : si = ⊥ then return ⊥.

Kout ← D(1k, s = (s1‖ . . . ‖sn))
If Kout = ⊥ then return ⊥.

(c
(1)
in ‖ . . . ‖c

(k)
in) ← SDec(Kout, ĉ)

If SDec has returned ⊥ then return ⊥.

∀i ∈ [k] : K
(i)
in ← Dec1(skin, c

(i)
in)

If ∃i ∈ [k] : K
(i)
in = ⊥ then return ⊥.

α ← G(Kin = (K
(1)
in ‖ . . . ‖K

(k)
in))

Parse α as (r1, . . . , rn, r̂, K′
out, K)

∈ ({0, 1}�)n × {0, 1}̂� × ({0, 1}k)2.
If (a) ∧ (b) ∧ (c) then return K

else return ⊥:
(a) ∀i ∈ [n] : Enc1(pkout, si; ri) = ci

(b) E(1k, K′
out; r̂) = s

(c) SEnc(K′
out, (c

(1)
in ‖ . . . ‖c

(k)
in)) = ĉ

Fig. 6. The proposed “1-bit-to-multi-bit” construction (KEM) Γ̃ .

Q-non-malleability by Lemma 2, we have n = k + o(k). Thus, the ciphertext size
of Γ̃ can be made asymptotically (2k + o(k)) · |c|.

The following statement is obtained as a corollary of the combination of
Theorem 1 and Lemmas 1, 2, 3, 4, 6, 7, 8, and 9.

Theorem 4. Assume that the PKE scheme Π1 is CCA secure, C is a Q-non-
malleable code, G is a PRG, and the SKE scheme E is CCA secure. Then, the
KEM Γ̃ in Fig. 6 is CCA secure.

2-bit-to-multi-bit Construction with a Single Key Pair. Note that our proposed
1-bit-to-multi-bit conversion Γ̃ uses two key pairs. It turns out that if we can
use a 2-bit PKE scheme as a building block instead of a 1-bit scheme, then we
can construct a CCA secure KEM that uses only one key pair of the underlying
2-bit scheme, with a very similar way to Γ̃ . The idea of this 2-bit-to-multi-bit
conversion is to use the additional 1-bit of the plaintext space as the “indicator
bit” that indicates whether each component ciphertext is generated for the inner
layer or the outer layer. That is, each inner ciphertext c

(i)
in is an encryption of

(1‖K
(i)
in), and each outer ciphertext ci is an encryption of (0‖si), and in the

decapsulation algorithm, we check whether the component ciphertexts {ci}i∈[n]

and {c
(i)
in }i∈[k] have appropriate indicator bits (“1” for the inner layer and “0”

An Asymptotically Optimal Method for Converting Bit Encryption 439

for the outer layer). This additional indicator bit and its check prevent a quoting
of an inner ciphertext into the outer layer and vice versa, and thus make the
encryption/decryption operations for the inner layer and those of the outer layer
virtually independent, as if each layer has an individual key pair. This enables
us to conduct the security proof in essentially the same way as that of Γ̃ . Due
to the lack of space, we detail it in the full version.

On the Necessity of Two Key Pairs. As mentioned in Introduction, our posi-
tive results on the 1-/2-bit-to-multi-bit constructions for CCA security raise an
interesting question in terms of the number of public keys: Is it necessary to use
two key pairs in 1-bit-to-multi-bit constructions for CCA security? Motivated
by this question, in the full version we consider the one-key variant of our pro-
posed KEM Γ̃ , and show that it is vulnerable to a CCA attack. Hence, using two
key pairs of the underlying 1-bit scheme is essential for our proposed construc-
tion Γ̃ . Clarifying the optimality of the number of key pairs in 1-bit-to-multi-bit
constructions would be an interesting open problem.

7 Comparison

Table 1 compares the public key size and ciphertext size of the existing “1-bit-to-
multi-bit” constructions that achieve CCA security (or related security). Specifi-
cally, in the table, “MS” represents the construction by Myers and Shelat [20].;
“HLW” represents the construction by Hohenberger et al. [16] which uses a CPA
secure PKE scheme, a 1-bounded CCA secure [7] PKE scheme, and a detectable
PKE scheme satisfying DCCA security and unpredictability. We assume that for
the 1-bounded CCA secure scheme, the construction by Dodis and Fiore [11,
Appendix C] is used, which constructs such a scheme from a CPA secure scheme
and a one-time signature scheme, and we also assume that its detectable scheme
and the CPA secure scheme are realized by the bitwise-encrypt construction Πk

BE.
(If we need to encrypt a value longer than k-bit, then we assume that hybrid
encryption is used everywhere possible by encrypting a k-bit random session-
key and using it as a key for SKE (where the length of SKE ciphertexts are
assumed to be the same as a plaintext [23]), which we do the same for the con-
structions explained below.); “MH” represents the construction by Matsuda and
Hanaoka [19], which can be seen as an efficient version of HLW [16] due to hybrid
encryption techniques, and we assume that the building blocks similar to HLW
are used.; “CMTV” represents the construction by Coretti et al. [6], the size
parameters of which are taken from the introduction of [6].; “CDTV” represents
the construction by Coretti et al. [5], where the size parameters are estimated
according to the explanations in [5, Sections 4.2 & 4.3].; “Ours” is the KEM Γ̃
shown in Fig. 6 in Sect. 6.

As is clear from Table 1, if one starts from a CCA secure 1-bit PKE scheme
(and assuming that building blocks implied by one-way functions are available
for free), then “Ours” achieves asymptotically the best efficiency. Notably, the
public size and the ciphertext size of “Ours” are asymptotically “optimal” in the
sense that they are asymptotically the same as the bitwise-encrypt construction

440 T. Matsuda and G. Hanaoka

Table 1. Comparison among the 1-bit-to-multi-bit constructions for CCA (and related)
security.

Scheme PK size Ciphertext size Sec. of Π1 Add. Bld. Blk

MS [20] (20k2 + 1)|pk| (10k3|c| + |vk| + |σ|)|c| CCA Sig., PRG

HLW [16] (2k + 2)|pk| (k2 + 3k)|c| + |vk| + |σ| + 6k DCCA &UNP Sig., PRG, SKE

MH [19] (2k + 2)|pk| (k2 + 2k)|c| + |vk| + |σ| DCCA &UNP Sig., PRG, SKE

CMTV† [6] ≈ k|pk| ≈ 5k|c| SDA —

CDTV† [5] O(k)|pk| O(k)|c| NM-SDA —

Ours (Sect. 6) 2|pk| (2k + o(k))|c| CCA PRG, SKE

In the columns “PK Size” and “Ciphertext Size”, |pk| and |c| denote the public key size and
the ciphertext size of the underlying 1-bit PKE scheme Π1, respectively, and |vk| and |σ|
denote the size of a verification key and that of a signature of the one-time signature scheme
used as a building block, respectively. The column “Sec. on Π1” shows the assumption on
the security of the underlying 1-bit PKE scheme required to show the CCA (or the related)
security of the entire construction. Here, “SDA” and “NM-SDA” denote “(indistinguishability
against) self-destruct CCA” [6] and “non-malleability against SDA” [5], respectively. The
column “Add. Bld. Blk.” shows the additional building blocks (used in each construction)
that can be realized only from the existence of a one-way function. Here, “Sig” stands for a
one-time signature scheme. (†) As explained in Introduction, CMTV [6] and CTDV [5] only
achieve SDA security and NM-SDA security, respectively, which are both implied by ordinary
CCA security but are strictly weaker than it

Πk
BE that works as a 1-bit-to-multi-bit conversion for the CPA and non-adaptive

CCA (CCA1) settings. Note also that all the previous constructions that achieve
ordinary CCA security have the public key size Ω(k) · |pk|, and the ciphertext size
Ω(k2) · |c|.

We note that, as mentioned in Sect. 1.3, CMTV [6] and CDTV [5] achieve only
indistinguishability under self-destruct CCA (SDA) and non-malleability under
self-destruct CCA (NM-SDA), respectively, which are both implied by ordinary CCA
security but are strictly weaker than it. Nonetheless, “Ours” actually achieves
better asymptotic efficiency than them.

However, for fairness we note that our construction requires CCA security for
the underlying 1-bit PKE scheme Π1, while HLW [16] and MH [19] only require
DCCA security and unpredictability, and the constructions CMTV [6] and CDTV
[5] only require SDA and NM-SDA security for Π1, respectively, and thus there is
a tradeoff among the assumptions on the building block Π1.

Acknowledgement. The authors would like to thank the members of the study group
“Shin-Akarui-Angou-Benkyou-Kai,” and the anonymous reviewers of ASIACRYPT
2015 for their helpful comments and suggestions.

References

1. Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.: A rate-
optimizing compiler for non-malleable codes against bit-wise tampering and per-
mutations. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part I. LNCS, vol. 9014,
pp. 375–397. Springer, Heidelberg (2015)

An Asymptotically Optimal Method for Converting Bit Encryption 441

2. Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.: Explicit non-
malleable codes against bit-wise tampering and permutations. In: Gennaro, R.,
Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 538–557. Springer,
Heidelberg (2015)

3. Bellare, M., Sahai, A.: Non-malleable encryption: equivalence between two notions,
and an indistinguishability-based characterization. In: Wiener, M. (ed.) CRYPTO
1999. LNCS, vol. 1666, pp. 519–536. Springer, Heidelberg (1999)

4. Canetti, R., Krawczyk, H., Nielsen, J.B.: Relaxing chosen-ciphertext security.
In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 565–582. Springer,
Heidelberg (2003)

5. Coretti, S., Dodis, Y., Tackmann, B., Venturi, D.: Non-malleable encryption: sim-
pler, shorter, stronger (2015). http://eprint.iacr.org/2015/772

6. Coretti, S., Maurer, U., Tackmann, B., Venturi, D.: From single-bit to multi-bit
public-key encryption via non-malleable codes. In: Dodis, Y., Nielsen, J.B. (eds.)
TCC 2015, Part I. LNCS, vol. 9014, pp. 532–560. Springer, Heidelberg (2015)

7. Cramer, R., Hanaoka, G., Hofheinz, D., Imai, H., Kiltz, E., Pass, R., Shelat, A.,
Vaikuntanathan, V.: Bounded CCA2-secure encryption. In: Kurosawa, K. (ed.)
ASIACRYPT 2007. LNCS, vol. 4833, pp. 502–518. Springer, Heidelberg (2007)

8. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM J. Comput. 33(1),
167–226 (2003)

9. Dachman-Soled, D., Fuchsbauer, G., Mohassel, P., O’Neill, A.: Enhanced chosen-
ciphertext security and applications. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol.
8383, pp. 329–344. Springer, Heidelberg (2014)

10. Dodis, Y., Fiore, D.: Interactive encryption and message authentication. In:
Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 494–513.
Springer, Heidelberg (2014)

11. Dodis, Y., Fiore, D.: Interactive encryption and message authentication (2013).
Full version of [10]. http://eprint.iacr.org/2013/817

12. Dolev, D., Dwork, C., Naor, M.:Non-malleable cryptography. In: STOC 1991, pp.
542–552. ACM (1991)

13. Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. In: ICS 2010, pp.
434–452 (2010)

14. Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. Full version of [13].
http://eprint.iacr.org/2009/608

15. Faust, S., Mukherjee, P., Nielsen, J.B., Venturi, D.: Continuous non-malleable
codes. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 465–488. Springer,
Heidelberg (2014)

16. Hohenberger, S., Lewko, A., Waters, B.: Detecting dangerous queries: a new app-
roach for chosen ciphertext security. In: Pointcheval, D., Johansson, T. (eds.)
EUROCRYPT 2012. LNCS, vol. 7237, pp. 663–681. Springer, Heidelberg (2012)

17. Kitagawa, F., Matsuda, T., Hanaoka, G., Tanaka, K.: Completeness of single-bit
projection-kdm security for public key encryption. In: Nyberg, K. (ed.) CT-RSA
2015. LNCS, vol. 9048, pp. 201–219. Springer, Heidelberg (2015)

18. Lin, H., Tessaro, S.: Amplification of chosen-ciphertext security. In: Johansson, T.,
Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 503–519. Springer,
Heidelberg (2013)

19. Matsuda, T., Hanaoka, G.: Achieving chosen ciphertext security from detectable
public key encryption efficiently via hybrid encryption. In: Sakiyama, K., Terada,
M. (eds.) IWSEC 2013. LNCS, vol. 8231, pp. 226–243. Springer, Heidelberg (2013)

http://eprint.iacr.org/2015/772
http://eprint.iacr.org/2013/817
http://eprint.iacr.org/2009/608

442 T. Matsuda and G. Hanaoka

20. Myers, S., Shelat, A.: Bit encryption is complete. In: FOCS 2009, pp. 607–616
(2009)

21. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen
ciphertext attacks. In: STOC 1990, pp. 427–437. ACM (1990)

22. Pass, R., Shelat, A., Vaikuntanathan, V.: Relations among notions of non-
malleability for encryption. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol.
4833, pp. 519–535. Springer, Heidelberg (2007)

23. Phan, D.H., Pointcheval, D.: About the security of ciphers (semantic security and
pseudo-random permutations). In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004.
LNCS, vol. 3357, pp. 182–197. Springer, Heidelberg (2004)

Selective Opening Security for Receivers

Carmit Hazay1(B), Arpita Patra2, and Bogdan Warinschi3

1 Faculty of Engineering, Bar-Ilan University, Ramat Gan, Israel
carmit.hazay@biu.ac.il

2 Department of Computer Science & Automation,
Indian Institute of Science, Bengaluru, India

arpita@csa.iisc.ernet.in
3 Department of Computer Science, University of Bristol, Bristol, UK

csxbw@bristol.ac.uk

Abstract. In a selective opening (SO) attack an adversary breaks into
a subset of honestly created ciphertexts and tries to learn information on
the plaintexts of some untouched (but potentially related) ciphertexts.
Contrary to intuition, standard security notions do not always imply
security against this type of adversary, making SO security an impor-
tant standalone goal. In this paper we study receiver security, where the
attacker is allowed to obtain the decryption keys corresponding to some
of the ciphertexts.

First we study the relation between two existing security definitions,
one based on simulation and the other based on indistinguishability, and
show that the former is strictly stronger. We continue with feasibility
results for both notions which we show can be achieved from (vari-
ants of) non-committing encryption schemes. In particular, we show that
indistinguishability-based SO security can be achieved from a tweaked
variant of non-committing encryption which, in turn, can be instantiated
from a variety of basic, well-established, assumptions. We conclude our
study by showing that SO security is however strictly weaker than all
variants of non-committing encryption that we consider, leaving poten-
tially more efficient constructions as an interesting open problem.

Keywords: Selective opening attacks · Encryption schemes · Non-
committing encryption

1 Introduction

Security notions for encryption come in many forms that reflect different attacker
goals (e.g. one-wayness, indistinguishability for plaintexts or non-malleability
of ciphertexts), variations in possible attack scenarios (e.g. chosen plaintext or
ciphertext attacks) and definitional paradigms (e.g. through games or simula-
tion). A class of attacks motivated by practical considerations are those where
the adversary may perform selective openings (SO). Here, an adversary is allowed
to break into a subset of honestly created ciphertexts leaving untouched other
(potentially related) ciphertexts.
c© International Association for Cryptologic Research 2015
T. Iwata and J.H. Cheon (Eds.): ASIACRYPT 2015, Part I, LNCS 9452, pp. 443–469, 2015.
DOI: 10.1007/978-3-662-48797-6 19

444 C. Hazay et al.

This attack scenario was first identified in the context of adaptively secure
multi-party computation (MPC) where communication is over encrypted chan-
nels visible to the adversary. The standard trust model for MPC considers an
adversary who, based on the information that he sees, can decide to corrupt
parties and learn their internal state. In turn, this may allow the attacker to
determine the parties’ long term secret keys and/or the randomness used to
create the ciphertexts. The broader context of Internet communication also nat-
urally gives rise to SO attacks. Attackers that access and store large amount of
encrypted Internet traffic are a reality, and getting access to the internal states
of honest parties can be done by leveraging design or implementation weaknesses
of deployed systems. For example the Heartbleed attack allowed a remote party
to extract (among other things) the encryption keys used to protect OpenSSL
connections.

Security against SO attacks comes in several distinct flavors. Depending on
the attack scenario, we distinguish two settings that fall under the general idea of
SO attacks. In sender security, we have n senders and one receiver. The receiver
holds a secret key relative to a public key known to all the senders. The senders
encrypt messages for the receiver and the adversary is allowed to corrupt some
of the senders (and learn the messages and randomness underlying some of the
ciphertexts). The concern is that the messages sent by uncorrupted senders stay
secret. The second scenario deals with receiver security. Here we consider one
sender and n receivers who hold independently generated public and secret keys.
The attacker is allowed to corrupt some of the receivers (and learn the secret
keys that decrypt some of the observed ciphertexts). Security in this setting is
concerned with the messages received by uncorrupted receivers. For each of these
settings, security can be defined using either the standard indistinguishability
paradigm or simulation-based definitions. Importantly, both scenarios capture
realistic attacks in secure computation where usually every party acts as either
a sender or a receiver at some point of time during a protocol execution.

Since most of the existent encryption schemes have been analyzed w.r.t. tra-
ditional notions of security (e.g. indistinguishability under chosen plaintext or
chosen ciphertext attacks (ind-cpa, ind-cca)), a central question in this area is
to understand how security against SO attacks relates to the established defini-
tions. Despite compelling intuition that the only information that an adversary
obtains is what it can glean from the opened plaintexts, progress towards con-
firming or disproving this conjecture has been rather slow. Perhaps the most
interesting and surprising results are due to Bellare et al. [1,2] who showed that
selective sender security as captured via simulation based definitions is strictly
stronger than indistinguishability under chosen plaintext attacks [15] (denoted
by ind-cpa security). The gap between standard notions of security and SO secu-
rity is uncomfortable: while SO attacks may naturally occur we do not have a
clear understanding of the level of security that existing constructions offer nor
do we have many ideas on how to achieve security against such attacks.

In this paper we study receiver security. This setting is less studied than
sender security yet it corresponds to more plausible attacks (e.g. the Heartbleed

Selective Opening Security for Receivers 445

attack). In a nutshell, we clarify the relation between various security notions for
receiver security and propose novel constructions. Before we describe our contri-
butions in detail we overview existing work in the area and take this opportunity
to introduce more carefully the different security notions of SO security.

1.1 Related Work

Selective opening attacks were first introduced in [12] in the context of commit-
ment schemes. In the context of encryption schemes, the first rigorous definitions
were proposed by Bellare, Hofheinz and Yilek [2]. They studied SO security for
public key encryption (PKE), for both the receiver and the sender settings and
for each setting proposed two types of definitions, indistinguishability-based and
simulation-based ones.

Very roughly, the indistinguishability-based definition (denoted by ind-so)
requires that an adversary that sees a vector of ciphertexts cannot distinguish
the true plaintexts of the unopened ciphertexts from independently sampled
plaintexts. This is required even with access to the randomness used for gener-
ating the opened ciphertexts (in the sender corruption setting), or with access to
the secret keys that decrypt the opened ciphertexts (in the receiver corruption
setting). This definition requires messages to come from a distribution that is
efficiently resamplable. A stronger security variant that does not restrict the mes-
sage distribution called full ind-so has been introduced later by Böhl, Hofheinz
and Kraschewski [5]. The simulation based notion (denoted by sim-so) is reminis-
cent of the definitional approach of Dwork et al. [12] and requires computational
indistinguishability between an idealized execution and the real one.

The first feasibility results for security against SO attacks are for the sender
setting and leverage an interesting relation with lossy encryption: a lossy PKE
implies ind-so for sender security [2]. Furthermore, if the PKE scheme has an
efficient opening algorithm of ciphertexts, then the scheme also satisfies sim-so
security. The work of Hemenway et al. [18] shows that lossy (and therefore ind-so)
PKE can be constructed based on several generic cryptographic primitives.

For primitives that benefit from multiple security notions, a central question
is to understand how these notions relate to each other. This type of results are
important as they clarify the limitations of some of the notions and enable trade-
offs between security and efficiency (to gain efficiency, a scheme with weaker
guarantees may be employed, if the setting allows it). The relation between
traditional security notions of encryption and security against SO attacks was a
long-standing open problem that was solved by Bellare et al. [1]. Their result is
that standard ind-cpa security does not imply sim-so (neither in the sender nor in
the receiver setting). There is no fully satisfactory result concerning the relation
between ind-cpa and ind-so. Here, the best result is that these two notions imply
each other in the generic group model [19] and that for the chosen-chiphertext
attacks variant (CCA) the two notions are distinct.

Relations between the different notions for selective opening have mainly been
studied in the sender setting. Böhl et al. establish that full ind-so and sim-so are
incomparable. Recently, [23] introduced an even stronger variant of the full ind-so

446 C. Hazay et al.

definition, and showed that many ind-cpa, ind-so and sim-so secure encryption
schemes are insecure according to their new notion. They further showed that
sim-so definition does not imply lossy encryption even without efficient open-
ability. Finally, SO security has been considered for CCA attacks [13,20] and in
the identity-based encryption scenario [3].

1.2 Our Contribution

With only two exceptions [1,2] prior work on SO security has addressed mainly
the sender setting. We concentrate on the receiver setting. Though theoretically
the feasibility for SO security for the receiver is implied by the existence of non-
committing encryption schemes [6,8,9,22], the state of the art constructions still
leave many interesting open problems in terms of relations between notions and
feasibility results. This is the focus of this work.

For relation between notions, similarly to prior separating results in the SO
setting [5,19,23], we demonstrate the existence of a separating scheme that is
based on generic assumptions and can be instantiated under various concrete
assumptions. For constructions, we find it useful to leverage the close relation
between (variants of) non-committing encryption and security under SO attacks.
For example, we show that ind-so security follows from a tweaked variant of
non-committing encryption which, in turn, we show how to instantiate from a
variety of standard assumptions. Interestingly, we also show a separation between
SO security and non-committing encryption (which leaves open the question of
potentially more efficient constructions that meet the former notion but not the
latter). Below, we elaborate on our results in details.

Notation-wise, we denote the indistinguishability and simulation-based defi-
nitions in the receiver setting by rind-so and rsim-so, respectively. For the corre-
sponding notions in the sender setting we write sind-so and ssim-so, respectively.
That is, we prepend “s” or “r” to indicate if the definition is for sender security
or receiver security.

The relation between rind-so and rsim-so. First, we study the relation between
the indistinguishability and simulation-based security notions in the receiver
setting. We establish that the rind-so notion is strictly weaker (and therefore
easier to realize) than the notion of rsim-so, by presenting a concrete pubic
key scheme that meets the former but not the latter level of security. Loosely
speaking, a ciphertext includes a commitment to the plaintext together with
encryptions of the opening information of this commitment (namely, the plain-
text and the corresponding randomness). We then prove that when switching to
an alternative fake mode the hiding properties of our building blocks (commit-
ment and encryption schemes) imply that the ciphertext does not contain any
information about the plaintext. Nevertheless, simulation always fails since it
would require breaking the binding property of the commitment. Applying the

Selective Opening Security for Receivers 447

observation that rsim-so implies rind-so security,1 we obtain the result that
rind-so is strictly weaker.

In more details, our separating scheme is built from a commitment scheme
and a primitive called non-committing encryption for the receiver (NCER) [7]
that operates in two indistinguishable ciphertexts modes: valid and fake, where
a fake ciphertext can be decrypted into any plaintext using a proper secret
key. This property is referred to as secret key equivocation and is implied by
the fact that fake ciphertexts are lossy which, in turn, implies rind-so security.
Specifically, the security of our scheme implies that:

Theorem 1.1 (Informal). There exists a PKE that is rind-so secure but is not
rsim-so secure.

Somewhat related to our work, [1] proved that the standard ind-cpa security
does not imply rsim-so security via the notion of decryption verifiability – the
idea that it is hard to decrypt a ciphertext into two distinct messages (even
using two different secret keys). Specifically, [1] showed that any ind-cpa secure
PKE that is decryption verifiable cannot be rsim-so secure. Compared with their
result, our result implies that rsim-so security is strictly stronger than rind-so
security (which may turn out to be stronger than ind-cpa security).

The feasibility of rind-so and rsim-so. We recall that in the sender setting,
the notions sind-so and ssim-so are achievable from lossy encryption and lossy
encryption with efficient openability.2 We identify a security notion (and a vari-
ant) which plays for receiver security the role that lossy encryption plays in
sender security. Specifically, we prove that NCER implies rsim-so and that a
variant of NCER, which we refer as tweaked NCER (formally defined in Tweaked
NCER subsection of Sect. 3), implies rind-so. Loosely speaking, the security of
tweaked NCER is formalized as follows. Similarly to NCER, tweaked NCER has
the ability to create fake ciphertexts that are computationally indistinguishable
from real ciphertexts. Nevertheless, while in NCER a fake ciphertext can be
efficiently decrypted to any plaintext (by producing a matching secret key), in
tweaked NCER a fake ciphertext can only be efficiently decrypted to a concrete
predetermined plaintext. Informally, our results are captured by the following
theorem:

Theorem 1.2 (Informal). Assume the existence of tweaked NCER and NCER,
then there exist PKE schemes that are rind-so and rsim-so secure, respectively.
1 This can be derived from the fact that the adversary’s view is identical for any

two simulated executions with different sets of unopened messages, as the simulator
never gets to see these messages.

2 Recall that a lossy encryption scheme is a public key encryption with the additional
ability to generate fake indistinguishable public keys so that a fake ciphertext (that
is generated using a fake public key) is lossy and is a non-committing ciphertext
with respect to the plaintext. A lossy encryption implies the existence of an opening
algorithm (possibly inefficient) that can compute a randomness for a given fake
ciphertext and a message.

448 C. Hazay et al.

Interestingly, we show that the converse implications do not hold. That is, a
rsim-so secure PKE is not necessarily a tweaked NCER or a NCER. This further
implies that a rind-so secure PKE is not necessarily a tweaked NCER or NCER.
This result is reminiscent of the previous result that sim-so and rind-so secure
PKE do not imply lossy encryption even without efficient openability [23].

Our separating scheme is based on an arbitrary key-simulatable PKE scheme.
Intuitively, in such schemes, it is possible to produce a public key without sam-
pling the corresponding secret key. The set of obliviously sampled public keys
may be larger than the the set of public keys sampled together with their asso-
ciated secret key, yet it is possible to explain a public key sampled along with
a secret key as one sampled without. In these schemes we also require that the
two type of keys are also computationally indistinguishable. Our proof holds for
the case that the set of obliviously sampled keys is indeed larger, so that not
every obliviously sampled public key can be explained to possess a secret key.
In summary, we prove that:

Theorem 1.3 (Informal). Assume the existence of key-simulatable PKE, then
there exists a PKE scheme that is rsim-so secure but is neither tweaked NCER
nor NCER.

Our constructions show that rsim-so (and rind-so) security can be achieved
under the same assumptions as key-simulatable PKE – there are results that
show that the latter can be constructed from a variety of hardness assumptions
such as Decisional Diffie-Hellman (DDH) and Decisional Composite Residuos-
ity (DCR). They also show that we can construct schemes from any hardness
assumption that implies simulatable PKE [9] (where both public keys and cipher-
texts can be obliviously sampled).

Realizing tweaked NCER. Finally, we demonstrate the broad applicability of
this primitive and show how to construct it from various important primitives:
key-simultable PKE, two-round honest-receiver statistically-hiding

(
2
1

)
oblivious

transfer (OT) and hash proof systems (HPS). We stress that it is not known
how to build NCER under these assumptions (or any other generic assumption),
which implies that tweaked NCER is much easier to realize. In addition, we prove
that the two existing NCER schemes [7] with security under the DDH and DCR
hardness assumptions imply the tweaked NCER notion, where surprisingly, the
former construction that is a secure NCER for only polynomial-size message
spaces, is a tweaked NCER for exponential-size message spaces (this further
hints that tweaked NCER may be constructed more efficiently than NCER).
These results imply that tweaked NCER (and thus rind-so) can be realized
based on DDH, DCR, RSA, factoring and learning with errors (LWE) hardness
assumptions.

Our results are summarized in Fig. 1.

The relation between sind-so and ssim-so. As a side result, we study the relation
between the indistinguishability and simulation based security definitions in the
sender setting. We show that sind-so is strictly weaker than the notion of ssim-so

Selective Opening Security for Receivers 449

Key-Simulatable PKE

2
1

)
-OT

HPS

NCER

Tweaked NCER rind-so rsim-so

Fig. 1. The arrows can be read as follows: solid arrows denote implication, crossed
arrows denote counterexamples, dashed arrows denote assumption-wise implication
and dotted arrows denote implication with respect to concrete instances (where the
implication may not hold in general). The implication of receiver indistinguishability
security by simulation security is a known result.

by presenting a concrete public key scheme that meets the former but not the
latter level of security. Our separating scheme is built using the two primitives
lossy public key encryption and commitment scheme. We exploit the hiding
properties of these building blocks to prove that our scheme implies sind-so
security. On the other hand, simulation always fails since it implies breaking the
binding property of the commitment scheme. Informally, we prove the following
theorem:

Theorem 1.4 (Informal). There exists a PKE that is sind-so secure but is not
ssim-so secure.

We stress that this was already demonstrated indirectly in [4] (by combining
two separation results). Here we design a concrete counter example to demon-
strate the same in a simpler manner. A similar result has been shown for full
ind-so and sim-so in [5], demonstrating that these definitions do not imply each
other in the sender setting.

To sum up, we study the different levels for receiver security in the pres-
ence of SO attacks. We clarify the relation between these notions and provide
constructions that meet them using the close conceptual relation between SO
security and non-committing encryption. From a broader perspective, our results
position more precisely SO security for the receiver in the spectrum of security
notions for encryption.

2 Preliminaries

Basic notations. For x, y ∈ N with x < y, let [x] := {1, . . . , x} and [x, y] :=
{x, x + 1, . . . , y}. We denote the computational security parameter by k and
statistical security parameter by s. A function μ(·) is negligible in security para-
meter κ if for every polynomial p(·) there exists a value N such that for all

450 C. Hazay et al.

κ > N it holds that μ(k) < 1
p(κ) , where κ is either k or s. For a finite set S,

we denote by s ← S the process of sampling s uniformly. For a distribution X,
we denote by x ← X the process of sampling x from X. For a deterministic
algorithm A, we write a ← A(x) the process of running A on input x and assign-
ing y the result. For a randomized algorithm A, we write a ← A(x; r) the process
of running A on input x and randomness r and assigning a the result. At times
we skip r in the parenthesis to avoid mentioning it explicitly. We write PPT for
probabilistic polynomial-time. For a PKE (or commitment) scheme C, we use
the notation MC and respectively RC to denote the input and the randomness
space of the encryption (or commitment) algorithm of C. We use bold fonts to
denote vectors. If m is an n dimensional vector, we write mi for the i-th entry
in m; if I ⊆ [n] is a set of indices we write mI for the vector of dimension |I|
obtained by projecting m on the coordinates in I.

2.1 Public Key Encryption

A public key encryption (PKE) scheme PKE with message space M con-
sists of three PPT algorithms (Gen,Enc,Dec). The key generation algorithm
Gen(1k) outputs a public key pk and a secret key sk. The encryption algorithm
Encpk(m; r) takes pk and a message m ∈ M and randomness r ∈ R, and outputs
a ciphertext c. The decryption algorithm Decsk(c) takes sk and a ciphertext c
and outputs a message m. For correctness, we require that m = Decsk(c) for all
m ∈ M and all (pk, sk) ← Gen(1k) and all c ← Encpk(m). The standard notion of
security for PKE is indistinguishability under chosen plaintext attacks, denoted
by ind-cpa [15] (and the corresponding experiment is denoted as Expind-cpaPKE).
As a general remark, we note that whenever we refer to a secret key, we refer to
the randomness used to generate it by the key generation algorithm.

2.2 Selective Opening Security

Depending on the attack scenario, we distinguish two settings that fall under the
general idea of SO attacks. In sender security, we have n senders and one receiver.
The receiver holds a secret key relative to a public key known to all senders. The
senders send messages to the receiver and the adversary is allowed to corrupt
some of the senders (and learn the messages and randomness underlying some
of the ciphertexts). The concern is that the messages sent by uncorrupted users
stay secret. The second scenario deals with receiver security. Here we consider
one sender and n receivers who hold independently generated public and secret
keys. The attacker is allowed to learn the secret keys of some of the receivers.
Security is concerned with the messages received by uncorrupted receivers.

For each of these settings we consider two types of definitions from the liter-
ature [2]: (1) an indistinguishability based definition and (2) a simulation based
definition. Indistinguishability-based definitions require that an adversary that
sees a vector of ciphertexts cannot distinguish the true plaintexts of the cipher-
texts from independently sampled plaintexts, even in the presence of the ran-
domness used for generating the opened ciphertexts (in the sender corruption

Selective Opening Security for Receivers 451

setting), or the secret keys that decrypt the opened ciphertexts (in the receiver
corruption setting). The indistinguishability based definitions use the notion of
efficiently resamplable message distributions which we recall next following [5].

Definition 2.1 (Efficiently Resamplable Distribution). Let n = n(k) > 0
and let Dist be a joint distribution over

({0, 1}k
)n. We say that Dist is efficiently

resamplable if there is a PPT algorithm ResampDist such that for any I ⊆ [n]
and any partial vector m′

I ∈ ({0, 1}k
)|I|, ResampDist(m′

I) returns a vector m
sampled from Dist|m′

I , i.e. m′ is sampled from Dist conditioned on mI = m′
I .

Below, we recall indistinguishability and simulation based definitions for security
in the presence of selective opening attacks3. We present the definitions for
sender and receiver security. To avoid heavy notation we follow the following
conventions when naming the security notions: we use “ind” or “sim” to indicate
if the definition is indistinguishability-based or simulation-based, and prepend
“s” or “r” to indicate if the definition is for sender security or receiver security;
we keep “so” in the name of the notion to indicate that we deal with selective
opening attacks. We also note that we consider chosen plaintext attacks only,
but avoid showing this explicitly in the names of the security notions.

Experiment 1 Expsind
PKE-so(A, k)

b ← {0, 1}
(pk, sk) ← Gen(1k)
(Dist,ResampDist, state1) ← A(pk)
m := (mi)i∈[n] ← Dist
r := (ri)i∈[n] ← Rn

PKE

e := (ei)i∈[n] ← (Encpk(mi; ri))i∈[n]

(I, state2) ← A(e, state1)
m′ ← Resamp(mI)
m∗ = m if b = 0, else m∗ = m′

b′ ← A(rI ,m∗, state2),
Return 1 if b = b′, and 0 otherwise.

Experiment 2 Exprind
PKE-so(A, k)

b ← {0, 1}
(pk, sk) := (pki, ski) ← (Gen(1k))i∈[n]

(Dist,ResampDist, state1) ← A(pk)
m := (mi)i∈[n] ← Dist
r := (ri)i∈[n] ← Rn

PKE

e := (ei)i∈[n] ← (Encpki
(mi; ri))i∈[n]

(I, state2) ← A(e, state1)
m′ ← Resamp(mI)
m∗ = m if b = 0, else m∗ = m′

b′ ← A(skI ,m∗, state2)
Return 1 if b = b′, and 0 otherwise.

Definition 2.2 (Indistinguishability Based SO Security). For a PKE
scheme PKE = (Gen,Enc,Dec), a polynomially bounded function n = n(k) > 0
and a stateful PPT adversary A, consider the following two experiments; the
left experiment corresponds to sender corruptions, whereas, the right experiment
corresponds to receiver corruptions.

In the above experiments we only assume adversaries that are well-behaved in
that they always output efficiently resamplable distributions together with resam-
pling algorithms.
3 We remark that a stronger security notion that does not does require efficient resem-

plability is possible, but no constructions that satisfy this stronger notion are known.

452 C. Hazay et al.

We say that PKE is sind-so secure if for a well-behaved PPT A there exists
a negligible function μ = μ(k) such that

Advsind-soPKE(A, k) := 2
∣
∣
∣
∣Pr[Expsind

PKE-so(A, k) = 1] − 1
2

∣
∣
∣
∣ ≤ μ.

We say that PKE is rind-so secure if for a well-behaved PPT A there exists a
negligible function μ = μ(k) such that

Advrind-soPKE(A, k) := 2
∣
∣
∣
∣Pr[Exprind

PKE-so(A, k) = 1] − 1
2

∣
∣
∣
∣ ≤ μ.

Pr
[
Expsind

PKE-so(A, k) = 1
]

and Pr
[
Exprind

PKE-so(A, k) = 1
]

denote the winning
probability of A in the respective experiments.

Simulation based security is defined, as usual, by comparing an idealized
execution with the real one. Again, we consider both sender and receiver security.

Experiment 3 ExpSSIM-SO
PKE -real(A, k)

(pk, sk) ← Gen(1k)
(Dist, state1) ← A(pk)
m := (mi)i∈[n] ← Dist

r := (ri)i∈[n] ← Rn
PKE

e := (ei)i∈[n] ← (Encpk(mi; ri))i∈[n]
(I, state2) ← A(e, state1)
output ← A(rI , mI , state2)
Return (m, Dist, I, output).

Experiment 4 ExpSSIM-SO
PKE -ideal(S, k)

(Dist, state1) ← S(·)
m := (mi)i∈[n] ← Dist

(I, state2) ← S(state1)
output ← S(mI , state2)
Return (m, Dist, I, output).

Experiment 5 Exprsim-so
PKE -real(A, k)

(pk, sk) := (pki, ski) ← (Gen(1k))i∈[n]
(Dist, state1) ← A(pk)
m := (mi)i∈[n] ← Dist

r := (ri)i∈[n] ← Rn
PKE

e := (ei)i∈[n] ← (Encpki
(mi; ri))i∈[n]

(I, state2) ← A(e, state1)
output ← A(skI , mI , state2)
Return (m, Dist, I, output).

Experiment 6 Exprsim-so
PKE -ideal(S, k)

(Dist, state1) ← S(·)
m := (mi)i∈[n] ← Dist

(I, state2) ← S(state1)
output ← S(mI , state2)
Return (m, Dist, I, output).

Definition 2.3 (Simulation Based SO Security). For a PKE scheme
PKE = (Gen,Enc,Dec), a polynomially bounded function n = n(k) > 0, a PPT
adversary A and a PPT algorithm S, we define the following pairs of experiments.

We say that PKE is ssim-so secure iff for every PPT A there is a PPT
algorithm S, a PPT distinguisher D with binary output and a negligible function
μ = μ(k) such that

Advssim-soPKE(D, k) :=
∣
∣
∣Pr[1 ← D(ExpSSIM-SO

PKE -real(A, k))] − Pr[1 ← D(ExpSSIM-SO
PKE -ideal(S, k))]

∣
∣
∣ ≤ μ.

We say that PKE is rsim-so secure iff for every PPT A there is a PPT
algorithm S, a PPT distinguisher D with binary output and a negligible function
μ = μ(k) such that

Advrsim-soPKE(D, k) :=
∣
∣
∣Pr[1 ← D(Exprsim-so

PKE -real(A, k))] − Pr[1 ← D(Exprsim-so
PKE -ideal(S, k))]

∣
∣
∣ ≤ μ.

Our definitions consider non-adaptive attacks, where the adversary corrupts the
parties in one go. Our results remain unaffected even in the face of an adaptive
adversary [5].

Selective Opening Security for Receivers 453

3 Building Blocks

Our constructions employ a number of fundamental cryptographic building
blocks as well as a new primitive which we call tweaked NCER.

Commitment Schemes. We define a non-interactive statistically hiding com-
mitment scheme (NISHCOM).

Definition 3.1 (NISHCOM). A non-interactive commitment scheme nisCom
consists of two algorithms (nisCommit, nisOpen) defined as follows. Given a secu-
rity parameter k, message m ∈ MnisCom and random coins r ∈ RnisCom, PPT
algorithm nisCommit outputs commitment c. Given k, commitment c and mes-
sage m, (possibly inefficient) algorithm nisOpen outputs r. We require the fol-
lowing properties:

– Correctness. We require that c = nisCommit(m; r) for all m ∈ MnisCom and
r ← nisOpen(c,m).

– Security. A NISHCOM nisCom is stat-hide secure if commitments of two
distinct messages are statistically indistinguishable. Specifically, for any
unbounded powerful adversary A, there exists a negligible function μ = μ(s)
such that
Advstat

nisCom-hide(A, k) := |Pr[1 ← A(c0)] − Pr[1 ← A(c1)]| ≤ μ
for ci ← nisCommit(mi), i ∈ {0, 1} and m0,m1 ∈ MnisCom.
A NISHCOM nisCom is comp-bind secure if no commitment can be opened
to two different messages in polynomial time. Specifically, the advantage
Advcomp

nisCom-bind(A, k) of A is defined by Pr[(m0, r0,m1, r1) ← A(k) :
nisCommit(prm,m0; r0) = nisCommit(prm,m1; r1)] (with the probability over
the choice of the coins of A) is smaller than some negligible function μ = μ(k).
A NISHCOM nisCom is called secure it is {stat-hide, comp-bind} secure.

Non-committing Encryption for Receiver (NCER). A non-committing
encryption for receiver [7,21] is a PKE scheme with the property that there is
a way to generate fake ciphertexts which can then be decrypted (with the help
of a trapdoor) to any plaintext. Intuitively, fake ciphertexts are generated in a
lossy way so that the plaintext is no longer well defined given the ciphertext and
the public key. This leaves enough entropy for the secret key to be sampled in a
way that determines the desired plaintext. We continue with a formal definition
of NCER and its security notion referred as ind-ncer security.

Definition 3.2 (NCER). An NCER nPKE consists of five PPT algorithms
(nGen, nEnc, nEnc∗, nDec, nOpen) defined as follows. Algorithms (nGen, nEnc,
nDec) form a PKE. Given the public key pk, the fake encryption algorithm nEnc∗

outputs a ciphertext e∗ and a trapdoor t. Given the secret key sk, the public key
pk, fake ciphertext e∗, trapdoor t and plaintext m, algorithm nOpen outputs sk∗.

– Correctness. We require that m = nDecsk(c) for all m ∈ M, all (pk, sk) ←
nGen(1k) and all c ← nEncpk(m).

454 C. Hazay et al.

– Security. An NCER scheme nPKE is ind-ncer secure if the real and fake
ciphertexts are indistinguishable. Specifically, for a PPT adversary A, con-
sider the experiment Expind

nPKE-ncer defined as follows.

Experiment 7 Expind
nPKE-ncer(A, k)

b ← {0, 1}
(pk, sk0) ← nGen(1k)
m ← A(pk)
e0 ← nEncpk(m)
(e1, t) ← nEnc∗

pk(1
k), sk1 ← nOpen(sk0, pk, e1, t, m)

b′ ← A(skb, eb)
Return 1 if b = b′, and 0 otherwise.

We say that nPKE is ind-ncer-secure if for a PPT adversary A, there exists
a negligible function μ = μ(k) such that

Advind-ncer
nPKE (A, k) := 2

∣
∣
∣
∣Pr[Expind-ncernPKE(A, k) = 1] − 1

2

∣
∣
∣
∣ ≤ μ.

An NCER nPKE is secure if it is ind-ncer secure.

Tweaked NCER. We introduce a variant of NCER which modifies the defini-
tion of NCER in the following two ways. First, the opening algorithm nOpen may
be inefficient. In addition, the fake encryption algorithm is required to output a
fake ciphertext e∗ given the secret key sk and a plaintext m, so that decryption
is “correct” with respect to e∗ and m. We call the resulting notion, which we
formalize below, tweaked NCER.

Definition 3.3 (Tweaked NCER). A tweaked NCER scheme tPKE is a PKE
that consists of five algorithms (tGen, tEnc, tEnc∗, tDec, tOpen) defined as follows.
Algorithms (tGen, tEnc, tDec) form a PKE. Given the secret key sk and the public
key pk, and a plaintext m, the PPT fake encryption algorithm tEnc∗ outputs a
ciphertext e∗. Given the secret key sk and the public key pk, fake ciphertext e∗

such that e∗ ← tEnc∗
pk(sk,m′) for some m′ ∈ MtPKE and a plaintext m, the

inefficient algorithm tOpen outputs sk∗ such that m = tDecsk∗(e∗).

– Correctness. We require that m = tDecsk(c) for all m ∈ M, all (pk, sk) ←
tGen(1k) and all c ← tEncpk(m).

– Security. A tweaked NCER scheme tPKE is ind-tcipher secure if real and fake
ciphertexts are indistinguishable. Specifically, for a PPT adversary A, consider
the experiment Expind

tPKE-tcipher defined as follows.

Experiment 8 Expind
tPKE-tcipher(A, k)

b ← {0, 1}
(pk, sk) ← tGen(1k)
m ← A(pk)
e0 ← tEncpk(m)
e1 ← tEnc∗

pk(sk, m)
b′ ← A(sk, eb)
Return 1 if b = b′, and 0 otherwise.

Experiment 9 Expind
tPKE-tncer(A, k)

b ← {0, 1}
(pk, sk0) ← tGen(1k)
m ← A(pk)
e0 ← tEnc∗

pk(sk0, m)
e1 ← tEnc∗

pk(sk0, m
′) for m′ ∈ MtPKE

sk1 ← tOpen(e1, m)
b′ ← A(skb, eb)
Return 1 if b = b′, and 0 otherwise.

Selective Opening Security for Receivers 455

We say that tPKE is ind-tcipher secure if for a PPT adversary A, there exists
a negligible function μ = μ(k) such that

Advind-tcipher
tPKE (A, k) := 2

∣
∣Pr[Expind-tciphertPKE(A, k) = 1] − 1

2

∣
∣ ≤ μ.

We say that tPKE is ind-tncer secure if for an unbounded adversary A, there
exists a negligible function μ = μ(s) such that

Advind-tncer
tPKE (A, k) := 2

∣
∣Pr[Expind-tncertPKE(A, k) = 1] − 1

2

∣
∣ ≤ μ.

A tweaked NCER tPKE is secure if it is {ind-tcipher, ind-tncer} secure.

Key-Simulatable PKE. A key-simulatable public key encryption scheme is a
PKE in which the public keys can be generated in two modes. In the first mode a
public key is picked together with a secret key, whereas the second mode implies
an oblivious public key generation without the secret key. Let V denote the set
of public keys generated in the first mode and K denote the set of public keys
generated in the second mode. Then it is possible that K contains V (i.e., V ⊆ K).
Moreover, in case V ⊂ K the set of public keys from K\V is not associated with
any secret key. We respectively denote the keys in V and K\V as valid and invalid
public keys. In addition to the key generation algorithms, key-simulatable PKE
also consists of an efficient key faking algorithm that explains a public key from
V, that was generated in the first mode, as an obliviously generated public key
from K that was generated without the corresponding secret key. The security
requirement asserts that it is hard to distinguish a random element from K from
a random element from V. The formal definition follows. We note that the notion
of key-simulatable PKE is very similar to the simulatable PKE [9] notion with
the differences that the latter notion assumes that K = V and further supports
oblivious ciphertext generation and ciphertext faking.

Definition 3.4 (Key-simulatable PKE). A key-simulatable public key

encryption sPKE consists of five PPT algorithms (sGen, sEnc, sDec, s̃Gen, s̃Gen
−1

)
defined as follows. Algorithms (sGen, sEnc, sDec) form a PKE. Given the secu-
rity parameter k, the oblivious public key generator s̃Gen returns a public key pk′

from K and the random coins r′ used to sample pk′. Given a public key pk ∈ V,
the key faking algorithm returns some random coins r.

– Correctness. We require that m = sDecsk(c) for all m ∈ M, all (pk, sk) ←
sGen(1k) and all c ← sEncpk(m).

– Security. A key-simulatable scheme sPKE is ind-cpa secure if
(sGen, sEnc, sDec) is ind-cpa secure. It is called ksim secure if it is hard to dis-
tinguish an obliviously generated key from a legitimately generated key. Specif-
ically, for a PPT adversary A, there exists a negligible function μ = μ(k) such
that Advksim

sPKE(A, k) :=
∣
∣Pr [1 ← A(r, pk)] − Pr

[
1 ← A(r′, pk′)

]∣
∣ ≤ μ where

(pk, sk) ← sGen(1k), r ← s̃Gen
−1

(pk) and (pk′, r′) ← s̃Gen(1k).
A key-simulatable scheme sPKE is secure if it is {ind-cpa, ksim} secure.

456 C. Hazay et al.

An extended key-simulatable PKE is a secure key-simulatable where in addition
V ⊂ K and it holds that Pr

[
pk ∈ K\V | (pk, r) ← s̃Gen(1k)

]
is non-negligible.

4 Selective Opening Security for the Receiver

In this section we provide negative and positive results regarding security for the
receiver in the presence of selective opening attacks. First, we show that rind-so
is strictly weaker than rsim-so security by constructing a scheme that meets the
former but not the latter level of security. We then relate the different forms
of security under SO attacks with non-committing encryption (for the receiver).
Specifically, we show that secure NCER implies rsim-so and that secure tweaked
NCER implies rind-so. Interestingly, we show that the converse implications
do not hold. In terms of constructions, we show that tweaked NCER can be
constructed from various primitives such as key-simulatable PKE, two-round
honest-receiver statistically-hiding

(
2
1

)
-OT protocol, secure HPS and NCER. The

DDH based secure NCER scheme of [7] that works for polynomial message space
turns out to be secure tweaked NCER for exponential message space.

4.1 rind-so Secure PKE � rind-so Secure PKE

Our construction is built from an ind-ncer secure scheme nPKE and a {stat-hide,
comp-bind} secure NISHCOM nisCom that satisfy a compatibility condition.
Specifically, we require that the message and randomness spaces of nisCom,
denoted by MnisCom and RnisCom, are compatible with the message space MnPKE

of nPKE.

Definition 4.1. An ind-ncer secure NCER nPKE and a {stat-hide, comp-bind}
secure NISHCOM nisCom are said to be compatible if MnPKE = MnisCom =
RnisCom.

Theorem 4.2. Assume there exist an ind-ncer secure NCER and a
{stat-hide, comp-bind} secure NISHCOM that are compatible. Then, there exists
a PKE that is rind-so secure but is not rsim-so secure.

Proof: We describe our separating encryption scheme first. Consider a scheme
nPKE = (nGen, nEnc, nEnc∗, nDec, nOpen) that is secure NCER (cf. Defini-
tion 3.2) and an NISHCOM nisCom = (nisCommit, nisOpen) (cf. Definition 3.1)
that are compatible. We define the encryption scheme PKE = (Gen,Enc,Dec) as
follows.

Gen(1k)
(pk0, sk0) ← nGen(1k)
(pk1, sk1) ← nGen(1k)
pk = (pk0, pk1)
sk = (sk0, sk1)
Return (pk, sk)

Encpk(m)
c ← nisCommit(m, r)
e0 ← nEncpk0

(m)
e1 ← nEncpk1

(r)
Return e = (e0, e1, c)

Decsk(e)
e := (e0, e1, c)
m = nDecsk0(e0)
r = nDecsk1(e1)
if c = nisCommit(m, r)

Return m
else Return ⊥

Selective Opening Security for Receivers 457

The proof follows from Lemmas 4.3 and 4.7 below which formalize that PKE
is rind-so secure but not rsim-so secure. �

Lemma 4.3. Assume that nPKE is ind-ncer secure and nisCom is {stat-hide,
comp-bind} secure, then PKE is rind-so secure.

Proof: More precisely we show that for any PPT adversary A attacking PKE
there exist a PPT adversary B and an unbounded powerful adversary C such
that

Advrind
PKE-so(A, k) ≤ n

(
4 · Advind

nPKE-ncer(B, k) + Advstat
nisCom-hide(C, k)

)
.

We prove this lemma using the following sequence of experiments.

– Exp0 = Exprind
PKE-so.

– Exp1 is identical to Exp0 except that the first component of each ciphertext
in the vector e is computed using nEnc∗ of nPKE. That is, for all i ∈ [n]
ciphertext ei is defined by (e∗

i0, ei1, ci) such that (e∗
i0, ti0) ← nEnc∗

pki0
(1k).

Furthermore, if i ∈ I (i.e., A asks to open the ith ciphertext), then Exp1

computes sk∗
i0 ← nOpen(ski0, e

∗
i0, ti0,mi) and hands (sk∗

i0, ski1) to A.
– Exp2 is identical to Exp1 except that the second component of each cipher-

text in the vector e is computed using nEnc∗ of nPKE, That is, for all i ∈ [n]
ciphertext ei is defined by (e∗

i0, e
∗
i1, ci) such that (e∗

i1, ti1) ← nEnc∗
pki1

(1k).
Furthermore, if i ∈ I (i.e., A asks to open the ith ciphertext), then Exp2

computes sk∗
i1 ← nOpen(ski1, e

∗
i1, ti1, ri) and hands (sk∗

i0, sk
∗
i1) to A, where ri

is the randomness used to compute ci.
– Exp3 is identical to Exp2 except that the third component of each ciphertext

in the vector e is a commitment of a dummy message. That is, for all i ∈ [n]
ciphertext ei is defined by (e∗

i0, e
∗
i1, c

∗
i) such that c∗

i ← nisCommit(m∗
i ; r

∗
i),

where m∗
i is a dummy message from MnisCom and r∗

i ← RnisCom. Furthermore,
if i ∈ I then Exp3 first computes ri ← nisOpen(c∗

i ,mi). Then it computes
sk∗

i1 ← nOpen(ski1, e
∗
i1, ti1, ri) and hands (sk∗

i0, sk
∗
i1) to A, where ri is the

randomness returned by nisOpen.

We note that although the third experiment is not efficient (the experiment
needs to equivocate the commitment without a trapdoor), it does not introduce
a problem in our proof: an adversary that distinguishes between Exp2 and Exp3

gives rise to an unbounded adversary that breaks the statistical hiding property
of the commitment scheme used by our construction.

Let εj be the advantage of A in Expj , i.e. εj := 2
∣
∣Pr[Expj(A, k) = 1] − 1

2

∣
∣.

We first note that ε3 = 0 since in experiment Exp3 the adversary receives a vec-
tor of ciphertexts that are statistically independent of the encrypted plaintexts,
implying that the adversary (even with unbounded computing power) outputs
the correct bit b with probability 1/2. Next we show that |ε0 − ε1| ≤ 2nΔind-ncer
and |ε1 − ε2| ≤ 2nΔind-ncer, where Δind-ncer = Advind

nPKE-ncer(B, k) for a PPT
adversary B. Finally, we argue that |ε2 − ε3| ≤ nΔstat-hide where Δstat-hide =

458 C. Hazay et al.

Advstat
nisCom-hide(C, k) for an unbounded powerful adversary C. All together this

implies that |ε0 − ε3| ≤ 4nΔind-ncer + nΔstat-hide and that ε0 ≤ 4nΔind-ncer +
nΔstat-hide, which proves the lemma.

Claim 4.4. |ε0 − ε1| ≤ 2nΔind-ncer, where Δind-ncer = Advind
nPKE-ncer(B, k).

Proof: We prove the claim by introducing n intermediate hybrids experiments
between Exp0 and Exp1; the difference between two consequent hybrids is
bounded by a reduction to ind-ncer security of nPKE. More specifically, we intro-
duce n − 1 intermediate hybrid experiments so that E0 = Exp0, En = Exp1

and the ith hybrid experiment Ei is defined recursively. That is,

– E0 = Exp0.
– For i = [n], Ei is identical to Ei−1 except that the ith ciphertext ei

is computed by (e∗
i0, ei1, ci) where (e∗

i0, ti0) ← nEnc∗
pki0

(1k). Furthermore,
if i ∈ I (i.e., if A asks to open the ith ciphertext), then Ei computes
sk∗

i0 ← nOpen(ski0, e
∗
i0, ti0,mi) and hands (sk∗

i0, ski1) to A.

Clearly En = Exp1 where the first component of all ciphertext is computed using
nEnc∗. Let γi define the advantage of A in Ei, i.e. γi := 2

∣
∣Pr[Ei(A, k) = 1] − 1

2

∣
∣.

Next we show that |γi−1 − γi| ≤ 2Δind-ncer for all i ∈ [n]. This implies that
|γ0 − γn| ≤ 2nΔind-ncer. Now, since γ0 = ε0 and γn = ε1 we get |ε0 − ε1| ≤
2nΔind-ncer, thus proving the claim.

We fix i ∈ [n] and prove that |γi−1 − γi| ≤ 2Δind-ncer. Specifically, we show
that any adversary B that wishes to distinguish a real ciphertext from a fake one
relative to nPKE can utilize the power of adversary A. Upon receiving pk from
experiment Expind

nPKE-ncerand i, B interacts with A as follows.

1. B samples first a bit b ← {0, 1} and sets pki0 = pk. It then uses nGen to
generate the rest of the public keys to obtain pk (and all but (i0)th secret
key).4 Finally, it hands pk to A that returns Dist and ResampDist.

2. B samples m ← Dist(1k) and outputs mi to Expind
nPKE-ncer that returns

(sk, e). B then sets ski0 = sk. (Note that this completes vector sk since
B generated the rest of the secret keys in the previous step).
– For j ∈ [i − 1], B computes the first component of ciphertext ej by

(ej0, tj0) ← nEnc∗
pkj0

(1k). B completes ej honestly (i.e., exactly as speci-
fied in Enc).

– For j = i, B sets the first component of ej to be e. B completes ej honestly.
– For j ∈ [i + 1, n], B computes ciphertext ej honestly.

Let e = (ej)j∈[n]. B hands e to A that returns I.
3. B resamples m′ ← ResampDist(mI). Subsequently it hands m∗ to A as well as

secret keys for all the indices that are specified in I, where m∗ = m if b = 0,
m∗ = m′ otherwise. That is,
– If j ∈ I lies in [i − 1], then B computes sk∗

j0 ← nOpen(skj0, ej0, tj0,mj)
and hands (sk∗

j0, skj1).

4 Recall that each public key within pk includes two public keys relative to nPKE.

Selective Opening Security for Receivers 459

– If j ∈ I equals i, then B hands (skj0, skj1) where skj0 is same as sk that
B had received from Expind

nPKE-ncer.
– If j ∈ I lies in [i + 1, n], then B returns (skj0, skj1).

4. B outputs 1 in experiment Expind
nPKE-ncer if A wins.

Next, note that B perfectly simulates Ei−1 if it received a real ciphertext e within
(sk, e). Otherwise, B perfectly simulates Ei. This ensures that the probability
that B outputs 1 in Expind

nPKE-ncer given a real ciphertext is at least as good as
the probability that A wins in Ei−1. On the other hand, the probability that
B outputs 1 in Expind

nPKE-ncer given a fake ciphertext is at least as good as the
probability that A wins in Ei. Since the advantage of A in Ei is γi, its winning
probability (cf. Definition 2.2) Pr[Ei(A, k) = 1] in the experiment is γi

2 + 1
2 .

Similarly, the winning probability of A in experiment Ei−1 is γi−1
2 + 1

2 . Denoting
the bit picked in Expind-ncernPKE by c we get,

Pr
[
1 ← B(sk, e) | (pk, sk) ← nGen(1k) ∧ e ← nEncpk(mi)

]
︸ ︷︷ ︸

=Pr[1←B | c=0]

≥ γi−1

2
+

1

2
and

Pr
[
1 ← B(sk, e) | (pk, sk) ← nGen ∧ (e, te) ← nEnc∗

pk ∧ sk ← nOpen(sk, e, te, mi)
]

︸ ︷︷ ︸
=Pr[1←B | c=1]

≥ γi

2
+

1

2
.

This implies that

Δind-ncer = Advind-ncer
nPKE (B, k) = 2

∣
∣
∣
∣Pr[Expind-ncernPKE(B, k) = 1] − 1

2

∣
∣
∣
∣

= 2

∣
∣
∣
∣
∣
∣
∣

Pr[0 ← B | c = 0]Pr(c = 0)
︸ ︷︷ ︸

=1/2

+Pr[1 ← B | c = 1]Pr(c = 1)
︸ ︷︷ ︸

=1/2

−1
2

∣
∣
∣
∣
∣
∣
∣

= |Pr[0 ← B | c = 0] + Pr[1 ← B | c = 1] − 1|
= |Pr[1 ← B | c = 0] − Pr[1 ← B | c = 1]| ≥ |γi−1 − γi|

2
.

	

The following claim follows by a similar hybrid argument as described above.

Claim 4.5. |ε1 − ε2| ≤ 2nΔind-ncer, where Δind-ncer = Advind
nPKE-ncer(B, k).

Finally, we prove the following claim.

Claim 4.6. |ε2 − ε3| ≤ nΔstat-hide, where Δstat-hide = Advstat
nisCom-hide(C, k).

Proof: We prove the claim by introducing n intermediate hybrids experiments
between Exp2 and Exp3; we show that each pair of consecutive experiments
is statistically indistinguishable based on stat-hide security of the NISHCOM.
These hybrid experiments are defined as follows:

460 C. Hazay et al.

– H0 = Exp2.
– For i = [n], Hi is identical to Hi−1 except that the ith ciphertext ei in e

is computed as (e∗
i0, e

∗
i1, c

∗
i) where c∗

i ← nisCommit(m∗
i ; r

∗
i), where m∗

i is a
dummy message from MnisCom and r∗ ← RnisCom. Furthermore, if i ∈ I, then
Hi computes ri ← nisOpen(c∗

i ,mi) and hands (sk∗
i0, sk

∗
i1) to A.

We remark again that the hybrid experiments defined above are not efficient,
but this is not an issue as we rely on the statistical security of the underlying
NISHCOM.

Clearly, Hn = Exp3 where the third component of each ciphertext within e
is computed using dummy messages. Let νi be the advantage of A in Hi, i.e.,
νi := 2

∣
∣Pr[Hi(A, k) = 1] − 1

2

∣
∣. Next, we show that |νi−1 − νi| ≤ Δstat-hide for

all i ∈ [n], where Δstat-hide = Advstat
nisCom-hide(C, k). All together, this implies

that |ν0 − νn| ≤ nΔstat-hide. Since ν0 = ε2 and νn = ε3 we get that |ε2 − ε3| ≤
nΔstat-hide which proves the claim.

Fix i ∈ [n]. The only difference between experiments Hi−1 and Hi is relative
to the third component of ciphertext ei. Namely, in Hi−1, the third component
in ei is a commitment to mi where mi is the ith element in m. On the other
hand, in Hi it is a commitment to a dummy message from MnisCom. As the
underlying NISHCOM satisfies statistical hiding property, even an unbounded
adversary C cannot distinct Hi−1 and Hi with probability better than Δstat-hide,
so |νi−1 − νi| ≤ Δstat-hide as desired. 	

We conclude with the proof of the following lemma.

Lemma 4.7. PKE is not rsim-so secure.

Proof: We then rely on a result of [1] which establishes that no decryption
verifiable ind-cpa secure is rsim-so. Informally, decryption verifiability implies
the existence of an algorithm W (that either outputs accept or reject), such that
it is hard to find pk, sk0, sk1, distinct m0,m1 and a ciphertext e where both
W (pk, sk0, e,m0) and W (pk, sk1, e,m1) accept. Note that it is hard to find two
valid secret keys and plaintexts as required since decryption follows successfully
only if the commitment that is part of the ciphertext is also correctly opened.
In particular, an adversary that produces a ciphertext that can be successfully
decrypted into two distinct plaintexts (under two different keys) must break the
comp-bind security of the underlying commitment scheme.5 This implies that
PKE is not rsim-so secure. 	

Compatible Secure NCER and Secure NISHCOM. We instantiate the
commitment scheme with the Paillier based scheme of Damg̊ard and Nielsen [10,
11], which is comprised of the following algorithms that use public parameters
(N, g) where N is a k-bit RSA composite and g = xN mod N2 for an uniformly
random x ← Z

∗
N .

5 Recall that the decryption algorithm verifies first whether the commitment within
the ciphertext is consistent with the decrypted ciphertexts (that encrypt the com-
mitted message and its corresponding randomness for commitment).

Selective Opening Security for Receivers 461

– nisCommit, given N, g and message m ∈ ZN , pick r ← Z
∗
N and compute

gm · rN mod N2.
– nisOpen, given commitment c and message m, compute randomness r such

that c = gm · rN mod N2. Namely, find first r̃ such that c = r̃N mod N2.
This implies that r̃N = (xN)m · rN mod N2 for some r ∈ Z

∗
N , since we can

fix r = r̃/xm.

This scheme is computationally binding, as a commitment is simply a random
Paillier encryption of zero. Furthermore, opening to two different values implies
finding the Nth root of g (which breaks the underlying assumption of Paillier,
i.e., DCR). Finally, the NCER can be instantiated with the scheme from [7] that
is also based on the DCR assumption. The message space of these two primitives
is ZN . In addition, the randomness of the commitment scheme is Z

∗
N and thus

can be made consistent with the plaintext spaces, as it is infeasible to find an
element in ZN/Z

∗
N .

4.2 Secure Tweaked NCER =⇒ rind-so Secure PKE

In this section we prove that every secure tweaked NCER is a rind-so secure PKE.
Intuitively, this holds since real ciphertexts are indistinguishable from fake ones,
and fake ciphertexts do not commit to any fixed plaintext. This implies that
the probability of distinguishing an encryption of one message from another is
exactly half, even for an unbounded adversary.

Theorem 4.8. Assume there exists an {ind-tcipher, ind-tncer} secure tweaked
NCER, then there exists a PKE that is rind-so secure.

Proof: More precisely, let tPKE = (tGen, tEnc, tEnc∗, tDec, tOpen) denote a
secure tweaked NCER. Then we prove that tPKE is rind-so secure, by prov-
ing that for any PPT adversary A attacking tPKE in the rind-so experiment
there exist a PPT adversary B and an unbounded powerful adversary C such
that

Advrind
tPKE-so(A, k) ≤ 2n

(
Advind

tPKE-tcipher(B, k) + Advind
tPKE-tncer(C, k)

)
.

We modify experiment rind-so step by step, defining a sequence of 2n + 1
experiments and bound the advantage of A in the last experiment. The proof is
then concluded by proving that any two intermediate consecutive experiments
are indistinguishable due to either ind-tcipher security or ind-tncer security of
tPKE. Specifically, we define a sequence of hybrid experiments {Expi}2n

i=0 as
follows.

– Exp0 = Exprind
tPKE-so.

– For all i ∈ [n], Expi is identical to Expi−1 except that the ith ciphertext in
vector e is computed by e∗

i ← tEnc∗
pki

(ski,mi), so that if i ∈ I then Expi

outputs the secret key ski computed by tGen and hands ski to adversary A
(here we rely on the additional property of tEnc∗).

462 C. Hazay et al.

– For all i ∈ [n], Expn+i is identical to Expn+i−1 except that the ith ciphertext
in vector e is computed by sampling a random message m∗

i ∈ MtPKE first and
then computing e∗

i ← tEnc∗
pki

(ski,m
∗
i). Next, if i ∈ I then Expn+i computes

a secret key sk∗
i ← tOpen(e∗

i ,mi) and hands sk∗
i to A.

Let εi denote the advantage of A in experiment Expi i.e., εi := |Pr[Expi(A, k) =
1] − 1

2 |. We first note that ε2n = 0 since in experiment Exp2n the adver-
sary receives a vector of ciphertexts that are statistically independent of the
encrypted plaintexts, implying that the adversary outputs the correct bit b with
probability 1/2. We next show that |εi−1 − εi| ≤ 2Δind-tcipher for any i ∈ [n],
where Δind-tcipher = Advind

tPKE-tcipher(B, k) for a PPT adversary B. Finally, we
prove that |εn+i−1 − εn+i| ≤ 2Δind-tncer for any i ∈ [n], where Δind-tncer =
Advind

tPKE-tncer(C, k) for an unbounded powerful adversary C. Together this
implies that |ε0 − ε2n| ≤ 2n(Δind-tcipher + Δind-tncer). So we conclude that
ε0 ≤ n(Δind-tcipher + Δind-tncer) + ε2n = 2n(Δind-tcipher + Δind-tncer) which
concludes the proof of the theorem for all i ∈ [n]. 	

Claim 4.9. |εi−1 − εi| ≤ 2nΔind-tcipher, where Δind-tcipher =
Advind

tPKE-tcipher(B, k).

Proof: In the following, we prove that one can design an adversary B that dis-
tinguishes a real ciphertext from a fake one in Expind

tPKE-tcipher, using adversary
A. B interacts with A as follows:

1. Upon receiving pk from Expind
tPKE-tcipher and an integer i, B sets pki = pk.

It picks a bit b randomly. It then generates the rest of the public and secret
key pairs using tGen for all j ∈ [n]\i, obtaining pk. It hands pk to A who
returns Dist and ResampDist.

2. B samples m ← Dist(1k) and hands mi to Expind
tPKE-tcipher which returns

(sk, e). B fixes ei = e and completes sk by setting ski = sk. Next, for
j ∈ [i − 1] it computes ej ← tEnc∗

pkj
(skj ,mj), whereas for j ∈ [i + 1, n]

it samples randomness rj ← RtPKE and computes ej ← tEncpkj
(mj ; rj). Let

e = (ei)i∈[n]. B hands e to A who returns I.
3. B samples m′ ← Resamp(mI) and hands A m∗ and the following secret keys

for all the indices that are specified in I. Here m∗ is m if b = 0 and m′

otherwise. That is,
– If j ∈ I lies in [i − 1] or in [i + 1, n], then B returns skj .
– If j ∈ I equals i, then B returns sk.

4. B outputs 1 in Expind
tPKE-tcipher if A wins.

Next, note that B perfectly simulates Expi−1 if it receives a real ciphertext e
within (sk, e). On the other hand, B perfectly simulates Expi if e is a fake cipher-
text. This ensures that the probability that B outputs 1 given a real ciphertext
is at least as good as the probability that A wins in Expi−1. On the other hand,
the probability that B outputs 1 given a fake ciphertext is at least as good as
the probability that A wins in Expi. Since the advantage of A in Expi is εi, its
winning probability (cf. Definition 2.2) Pr[Expi(A, k) = 1] in the experiment is

Selective Opening Security for Receivers 463

εi

2 + 1
2 . Similarly, the winning probability of A in experiment Expi−1 is εi−1

2 + 1
2 .

Denoting the bit picked in Expind-tciphertPKE by c,

Pr
[
1 ← B(pk, sk, e, mi) | (pk, sk) ← tGen(1k) ∧ e ← tEncpk(mi)

]
︸ ︷︷ ︸

=Pr[1←B | c=0]

≥ εi−1

2
+

1

2
and

Pr
[
1 ← B(pk, sk, e∗,mi) | (pk, sk) ← tGen(1k) ∧ e∗ ← tEnc∗

pk(sk,mi)
]

︸ ︷︷ ︸
=Pr[1←B | c=1]

≥ εi

2
+

1
2
.

This implies that

Δind-tcipher =Advind-tcipher
tPKE (B, k) = 2

∣
∣
∣
∣Pr[Expind-tciphertPKE(B, k) = 1] − 1

2

∣
∣
∣
∣

=2

∣
∣
∣
∣
∣
∣
∣

Pr[0 ← B | c = 0]Pr(c = 0)
︸ ︷︷ ︸

=1/2

+Pr[1 ← B | c = 1]Pr(c = 1)
︸ ︷︷ ︸

=1/2

−1
2

∣
∣
∣
∣
∣
∣
∣

= |Pr[0 ← B | c = 0] + Pr[1 ← B | c = 1] − 1|

= |Pr[1 ← B | c = 0] − Pr[1 ← B | c = 1]| ≥ |εi−1 − εi|
2

	

Claim 4.10. |εn+i−1 − εn+i| ≤ 2nΔind-tcipher for all i ∈ [n],

where Δind-tncer = Advind
tPKE-tncer(C, k).

Proof: We prove that one can design an unbounded adversary C that distin-
guishes the two views generated in experiment ind-tncer, using adversary A. C
interacts with A:

1. Upon receiving pk from Expind-tncertPKE and an integer i, C sets pki = pk
and picks a bit b. It then generates the rest of the public and secret key pairs
using tGen for all j ∈ [n]\{i}, obtaining pk. It hands pk to A who returns
Dist and ResampDist.

2. C samples m ← Dist(1k) and hands mi to Expind-tncertPKE which returns
(sk, e). C fixes ei = e and completes sk by setting ski = sk. Next, for j ∈ [i−1]
it samples m∗

j ← MtPKE and computes ej ← tEnc∗
pkj

(skj ,m
∗
j), whereas for

j ∈ [i + 1, n] it computes ej ← tEnc∗
pkj

(skj ,mj). Let e = (ej)j∈[n]. C hands e
to A receiving I.

3. C samples m′ ← Resamp(mI) and hands m∗ to A and the following secret
keys for all the indices that are specified in I. Here m∗ is m if b = 0 and m′

otherwise. That is,
– If j ∈ I lies in [i − 1], then C returns skj such that skj = tOpen(ej ,mj).
– If j ∈ I equals i, then C returns sk.
– If j ∈ I lies in [i + 1, n], then C returns skj .

464 C. Hazay et al.

4. C outputs 1 in Expind-tncertPKE if A wins.

Next, note that B perfectly simulates Expn+i−1 if it receives a real ciphertext
e within (sk, e). On the other hand, B perfectly simulates Expn+i if e is a fake
ciphertext and sk is a secret key returned by tOpen. This ensures that the
probability that B outputs 1 given a real ciphertext is at least as good as the
probability that A wins in Expn+i−1. On the other hand, the probability that
B outputs 1 given a fake ciphertext is at least as good as the probability that A
wins in Expn+i. Since the advantage of A in Expi is εn+i, its winning probability
(c.f Definition 2.2) Pr[Expi(A, k) = 1] in the experiment is εn+i

2 + 1
2 . Similarly,

the winning probability of A in experiment Expn+i−1 is εn+i−1
2 + 1

2 . Denoting
the bit picked in Expind-tncertPKE by c we get,

Pr
[
1 ← C(sk, e) | (pk, sk) ← tGen(1k) ∧ e ← tEnc∗

pk(sk,mi)
]

︸ ︷︷ ︸
=Pr[1←C | c=0]

≥ εn+i−1

2
+

1
2

and

Pr
[
1 ← C(sk∗, e∗) | (pk, sk) ← tGen ∧ e∗ ← tEnc∗

pk(sk, m∗) ∧ sk∗ ← tOpen(e∗, sk, mi)
]

︸ ︷︷ ︸
=Pr[1←C | c=1]

≥ εn+i

2
+

1

2
.

Following a similar argument as in the previous claim, we conclude that
2Δind-tncer ≥ |εn+i−1 − εn+i|. �

4.3 Secure NCER =⇒ rsim-so Secure PKE

In this section we claim that secure NCER implies selective opening security in
the presence of receiver corruption. Our theorem is stated for the stronger sim-
ulation based security definition but holds for the indistinguishability definition
as well. The proof is given in the full version [17].

Theorem 4.11. Assume there exists an ind-ncer secure PKE, then there exists
a PKE that is rsim-so secure.

4.4 rsim-so Secure PKE � Secure NCER and Tweaked NCER

In this section we prove that rsim-so does not imply both tweaked NCER and
NCER by providing a concrete counter example based on an extended key-
simulatable PKE (cf. see Key-Simulatable PKE subsubsection of Sect. 3). The
key point in our proof is that in some cases simulatable public keys cannot be
explained as valid public keys. Formally,

Theorem 4.12. Assume there exists an {ind-cpa, ksim} secure extended key-
simulatable PKE, then there exists a PKE that is rsim-so secure but is not a
{ind-tcipher, ind-tncer} secure tweaked NCER nor a ind-ncer secure NCER.

Selective Opening Security for Receivers 465

Proof: We describe our separating encryption scheme first; the complete proof
is given in the full version [17]. Given an extended key-simulatable PKE sPKE =

(sGen, sEnc, sDec, s̃Gen, s̃Gen
−1

) for a plaintext space MsPKE, we construct a new
scheme PKE = (Gen,Enc,Dec) with a binary plaintext space that is rsim-so
secure, and thus also rind-so secure, yet it does not imply tweaked NCER.
For simplicity, we assume that MsPKE is the binary space {0, 1}. The DDH
based instantiation of sPKE with V ⊂ K from see Realizing Key-Simulatable and
Extended Key-Simulatable PKE subsection of Sect. 4.4 is defined with respect
to this space. �

Gen(1k)
α ← {0, 1}
(pkα, skα) ← sGen(1k)
(pk1−α, r1−α) ← s̃Gen(1k)
pk = (pk0, pk1)
sk = (α, skα, r1−α)
Return (pk, sk)

Encpk(b)
e0 ← Encpk0

(b)
e1 ← Encpk1

(b)
Return e = (e0, e1)

Decsk(e)
sk = (α, skα, r1−α)
e := (e0, e1)
b = Decskα

(eα)
Return b

Realizing Key-Simulatable and Extended Key-Simulatable PKE. An
example of a {ind-cpa, ksim} secure key-simulatable PKE is the ElGamal PKE
[14] where we set K to be equal to the set of valid public keys, i.e. K = V. In
addition, note that any simulatable PKE as defined in [9] is also {ind-cpa, ksim}
secure key-simulatable PKE.

Below we provide an example of extended key-simulatable PKE with security
under the DDH assumption. For simplicity we consider a binary plaintext space.
Let (g0, g1, p) ← G(1k) be an algorithm that given a security parameter k returns
a group description G = Gg0,g1,p specified by its generators g0, g1 and its order
p. Furthermore, we set K = G

2 and V = {(gx
0 , gx

1) ∈ G
2 | x ∈ Zp}. Then define

the following extended key-simulatable PKE,

– sGen, given the security parameter k, set (g0, g1, p) ← G(1k). Choose uniformly
random x ← Zp and compute hi = gx

i for all i ∈ {0, 1}. Output the secret
key sk = x and the public key pk = (h0, h1).

– sEnc, given the public key pk and plaintext m ∈ {0, 1}, choose a uniformly
random s, t ← Zp. Output the ciphertext (gs

0g
t
1, g

m
0 · (hs

0h
t
1)).

– sDec, given the secret key x and ciphertext (gc, hc), output hc · (gx
c)−1.

– s̃Gen, given 1k, output two random elements from G and their bit sequence as
the randomness.

– s̃Gen
−1

, given a legitimate public key h0, h1, simply returns the bit strings of
h0, h1 as the randomness used to sample them from G

2 by s̃Gen.

We remark that a public key chosen randomly from G
2 does not necessarily

correspond to a secret key. Furthermore, Pr
[
pk ∈ K\V | pk ← s̃Gen(1k)

]
is non-

negligible. This is a key property in our proof from Sect. 4.4.

466 C. Hazay et al.

4.5 Realizing Tweaked NCER

Based on key-simulatable PKE. We prove that secure tweaked NCER can be
built based on any secure key-simulatable PKE with K = V (cf. Definition see
Key-Simulatable PKE subsubsection of Sect. 3). Specifically, our construction is
based on the separating scheme presented in Sect. 4.4. In addition, we define the
fake encryption algorithm so that it outputs two ciphertexts that encrypt two
distinct plaintexts rather than the same plaintext twice (implying that ciphertext
indistinguishability follows from the ind-cpa security of the underlying encryp-
tion scheme). More formally, the fake encryption algorithm can be defined as fol-
lows. Given sk = (α, skα, r1−α) and message b, a fake encryption of b is computed
by e∗ = (sEncpk0

(b), sEncpk1
(1−b)) if α = 0 and e∗ = (sEncpk0

(1−b), sEncpk1
(b))

otherwise. It is easy to verify that given sk, the decryption of e∗ returns b and
that e∗ is computationally indistinguishable from a valid encryption even given
the secret key. Next, we discuss the details of the non-efficient opening algorithm
which is required to generate a secret key for a corresponding public key given a
fake ciphertext and a message b′. In more details, assuming sk = (α, skα, r1−α)
and pk = (pk0, pk1),

tOpen(sk, pk, (e∗
0, e

∗
1), b

′) =

⎧
⎪⎪⎨

⎪⎪⎩

(α, skα, r1−α) if e∗
α = sEncpkα

(b′)

(1 − α, sk1−α, rα) else, where rα ← s̃Gen
−1

(pkα)
and sk1−α is a valid secret key
of pk1−α.

Note that since it holds that V = K for the underlying sPKE scheme, there exists
a secret key that corresponds to pk1−α and it can be computed (possibly in an
inefficient way). Encryption schemes for larger plaintext spaces can be obtained
by repeating this basic scheme sufficiently many times.6 Finally, we note that the
scheme is {ind-tcipher, ind-tncer} secure. Recalling that any simulatable PKE
with K = V is a key-simulatable PKE [8,9], we conclude that secure tweaked
NCER for a binary plaintext space can be built relying on DDH, RSA, factoring
and LWE assumptions.

An additional realization based on statistically-hiding
(
2
1

)
-OT in presented in

the full version [17]. These two implementations support binary plaintext space.
Below presented new constructions that support exponential plaintext spaces.

Based on NCER. We show that the DCR based secure NCER of [7] is also
a secure tweaked NCER. Let (p′, q′) ← G(1n) be an algorithm that given a
security parameter k returns two random n bit primes p′ and q′ such that p =
2p′ + 1 and q = 2q′ + 1 are also primes. Let N = pq and N ′ = p′q′. Define
(tGen, tEnc, tEnc∗, tDec, tOpen) by,

– tGen, given the security parameter k, run (p′, q′) ← G(1n) and set p = 2p′ +1,
q = 2q′ + 1, N = pq and N ′ = p′q′. Choose random x0, x1 ← ZN2/4 and a

6 We note that this construction was discussed in [16] in the context of weak hash
proof systems and leakage resilient PKE.

Selective Opening Security for Receivers 467

random g′ ∈ Z
∗
N2 and compute g0 = g′2N , h0 = gx0

0 and h1 = gx1
0 . Output

public key pk = (N, g0, h0, h1) and secret key sk = (x0, x1).
– tEnc, given the public key pk and a plaintext m ∈ ZN , choose a uniformly

random t ← ZN/4 and output ciphertext

c ← tEncpk(m; t) =
(
gt
0 mod N2, (1 + N)mht

0 mod N2, ht
1 mod N2

)
.

– tDec, given the secret key (x0, x1) and a ciphertext (c0, c1, c2), check whether
c2x1
0 = (c2)2; if not output ⊥. Then set m̂ = (c1/cx0

0)N+1. If m̂ = 1 + mN
for some m ∈ ZN , then output m; else output ⊥.

– tEnc∗, given the public key pk, secret key sk and a message m, choose
uniformly random t ← Zφ(N)/4, compute the fake ciphertext (where
all the group elements are computed mod N2) c∗ ← (c∗

0, c
∗
1, c

∗
2) =

((1 + N) · gt
0, (1 + N)m · (c∗

0)
x0 , (c∗

0)
x1) .

– tOpen, given N ′, (x0, x1), a triple (c0, c1, c2) such that (c0, c1, c2) ← tEnc∗
pk(sk,

m) and a plaintext m∗ ∈ ZN , output sk∗ = (x∗
0, x1), where x∗

0 ← ZNN ′

is the unique solution to the equations x∗
0 = x mod N ′ and x∗

0 = x0 +
m − m∗ mod N . These equations have a unique solution due to the fact
that gcd(N,N ′) = 1 and the solution can be obtained employing Chinese
Remainder Theorem. It can be verified that the secret key sk∗ matches the
public key pk and also decrypts the ‘simulated’ ciphertext to the required
message m∗. The first and third components of pk remain the same since
x1 has not been changed. Now gx∗

0 = gx∗
0 mod N ′

= gx0 mod N ′
= gx0 = h0.

Using the fact that the order of (1 + N) in Z
∗
N2 is N , we have

(
c1

c
x∗
0

0

)N+1

=

(
(1 + N)x0+mgtx0

0

(1 + N)x∗
0g

tx∗
0

0

)N+1

=
(
(1 + N)x0+m−x∗

0 mod N
)N+1

= ((1 + N)m)N+1 = (1 + mN).

It is easy to verify that real and fake ciphertexts are computationally indis-
tinguishable under the DCR assumption since the only difference is with respect
to the first element (which is an 2Nth power in a real ciphertext and not an
2Nth power in a simulated ciphertext). The other two elements are powers of
the first element. Furthermore sk = (x0, x1) and sk∗ = (x∗

0, x1) are statistically
close since x0 ← ZN2/4 and x∗

0 ← ZNN ′ and the uniform distribution over ZNN ′

and ZN2/4 is statistically close.

5 Selective Opening Security for the Sender

In this section we prove sind-so is strictly weaker than ssim-so security by con-
structing a scheme that meets the former but not the latter level of security. Our
starting point is a lossy encryption scheme loPKE = (loGen, loGen∗, loEnc, loDec).
We then modify loPKE by adding a (statistically hiding) commitment to each
ciphertext such that the new scheme, denoted by PKE, becomes committing.

468 C. Hazay et al.

Next, we prove that PKE is sind-so secure by showing that the scheme remains
lossy and is therefore sind-so secure according to [2]. Finally, using the result
from [1] we claim that PKE is not ssim-so secure. The following theorem is
proven in the full version [17].

Theorem 5.1. Assume there exists a {ind-lossy, ind-lossycipher} secure lossy
PKE and a {stat-hide, comp-bind} secure NISHCOM that are compatible. Then,
there exists a PKE that is sind-so secure but is not ssim-so secure.

Acknowledgements. Carmit Hazay acknowledges support from the Israel Ministry of
Science and Technology (grant No. 3-10883). Arpita Patra acknowledges support from
project entitled ‘ISEA - Part II’ funded by Department of Electronics and Information
Technology of Govt. of India. Part of this work was carried out while Bogdan Warinschi
was visiting Microsoft Research, Cambridge, UK and IMDEA, Madrid, Spain. He has
been supported in part by ERC Advanced Grant ERC-2010-AdG-267188-CRIPTO,
by EPSRC via grant EP/H043454/1, and has received funding from the European
Union Seventh Framework Programme (FP7/2007-2013) under grant agreement 609611
(PRACTICE).

References

1. Bellare, M., Dowsley, R., Waters, B., Yilek, S.: Standard security does not imply
security against selective-opening. In: Pointcheval, D., Johansson, T. (eds.) EURO-
CRYPT 2012. LNCS, vol. 7237, pp. 645–662. Springer, Heidelberg (2012)

2. Bellare, M., Hofheinz, D., Yilek, S.: Possibility and impossibility results for encryp-
tion and commitment secure under selective opening. In: Joux, A. (ed.) EURO-
CRYPT 2009. LNCS, vol. 5479, pp. 1–35. Springer, Heidelberg (2009)

3. Bellare, M., Waters, B., Yilek, S.: Identity-based encryption secure against selec-
tive opening attack. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 235–252.
Springer, Heidelberg (2011)

4. Bellare, M., Yilek, S.: Encryption schemes secure under selective opening attack.
In: IACR Cryptology ePrint Archive 2009, p. 101 (2009)

5. Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure two-party compu-
tation is practical. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
250–267. Springer, Heidelberg (2009)

6. Canetti, R., Friege, U., Goldreich, O., Naor, M.: Adaptively secure multi-party
computation. In: STOC, pp. 639–648 (1996)

7. Canetti, R., Halevi, S., Katz, J.: Adaptively-secure, non-interactive public-key
encryption. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 150–168. Springer,
Heidelberg (2005)

8. Choi, S.G., Dachman-Soled, D., Malkin, T., Wee, H.: Improved non-committing
encryption with applications to adaptively secure protocols. In: Matsui, M. (ed.)
ASIACRYPT 2009. LNCS, vol. 5912, pp. 287–302. Springer, Heidelberg (2009)

9. Damg̊ard, I.B., Nielsen, J.B.: Improved non-committing encryption schemes based
on a general complexity assumption. In: Bellare, M. (ed.) CRYPTO 2000. LNCS,
vol. 1880, pp. 432–450. Springer, Heidelberg (2000)

10. Damg̊ard, I.B., Nielsen, J.B.: Perfect hiding and perfect binding universally com-
posable commitment schemes with constant expansion factor. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 581–596. Springer, Heidelberg (2002)

Selective Opening Security for Receivers 469

11. Damg̊ard, I.B., Nielsen, J.B.: Universally composable efficient multiparty computa-
tion from threshold homomorphic encryption. In: Boneh, D. (ed.) CRYPTO 2003.
LNCS, vol. 2729, pp. 247–264. Springer, Heidelberg (2003)

12. Dwork, C., Naor, M., Reingold, O., Stockmeyer, L.J.: Magic functions. J. ACM
50(6), 852–921 (2003)

13. Fehr, S., Hofheinz, D., Kiltz, E., Wee, H.: Encryption schemes secure against
chosen-ciphertext selective opening attacks. In: Gilbert, H. (ed.) EUROCRYPT
2010. LNCS, vol. 6110, pp. 381–402. Springer, Heidelberg (2010)

14. El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Inf. Theor. 31(4), 469–472 (1985)

15. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2),
270–299 (1984)

16. Hazay, C., López-Alt, A., Wee, H., Wichs, D.: Leakage-resilient cryptography from
minimal assumptions. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 160–176. Springer, Heidelberg (2013)

17. Hazay, C., Patra, A., Warinschi, B. Selective opening security for receivers. In:
IACR Cryptology ePrint Archive 2015, p. 860 (2015)

18. Hemenway, B., Libert, B., Ostrovsky, R., Vergnaud, D.: Lossy encryption: con-
structions from general assumptions and efficient selective opening chosen cipher-
text security. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073,
pp. 70–88. Springer, Heidelberg (2011)

19. Hofheinz, D., Rupp, A.: Standard versus selective opening security: separation and
equivalence results. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 591–615.
Springer, Heidelberg (2014)

20. Huang, Z., Liu, S., Qin, B.: Sender-equivocable encryption schemes secure against
chosen-ciphertext attacks revisited. In: Kurosawa, K., Hanaoka, G. (eds.) PKC
2013. LNCS, vol. 7778, pp. 369–385. Springer, Heidelberg (2013)

21. Jarecki, S., Lysyanskaya, A.: Adaptively secure threshold cryptography: intro-
ducing concurrency, removing erasures (extended abstract). In: Preneel, B. (ed.)
EUROCRYPT 2000. LNCS, vol. 1807, p. 221. Springer, Heidelberg (2000)

22. Nielsen, J.B.: Separating random oracle proofs from complexity theoretic proofs:
the non-committing encryption case. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 111–126. Springer, Heidelberg (2002)

23. Ostrovsky, R., Rao, V., Visconti, I.: On selective-opening attacks against encryp-
tion schemes. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642,
pp. 578–597. Springer, Heidelberg (2014)

Function-Hiding Inner Product Encryption

Allison Bishop1(B), Abhishek Jain2, and Lucas Kowalczyk1

1 Columbia University, New York, USA
{allison,luke}@cs.columbia.edu

2 Johns Hopkins University, Baltimore, USA
abhishek@cs.jhu.edu

Abstract. We extend the reach of functional encryption schemes that
are provably secure under simple assumptions against unbounded collu-
sion to include function-hiding inner product schemes. Our scheme is a
private key functional encryption scheme, where ciphertexts correspond
to vectors �x, secret keys correspond to vectors �y, and a decryptor learns
〈�x, �y〉. Our scheme employs asymmetric bilinear maps and relies only
on the SXDH assumption to satisfy a natural indistinguishability-based
security notion where arbitrarily many key and ciphertext vectors can
be simultaneously changed as long as the key-ciphertext dot product
relationships are all preserved.

1 Introduction

Functional encryption (FE) [8,23,25] is an exciting paradigm for non-interactively
computing on encrypted data. In a functional encryption scheme for a family F , it
is possible to derive “special-purpose” decryption keys Kf for any function f ∈ F
from a master secret key. Given such a decryption key Kf and an encryption of
some input x, a user should be able to learn f(x) and nothing else about x.

A driving force behind FE has been to understand what class of functions
F can be supported and what notions of security can be achieved. In terms of
functionality, research in FE started with the early works on attribute-based
encryption [16,25], progressively evolving to support more expressive classes of
functions, leading to the state of art works that are now able to support com-
putation of general polynomial-size circuits [11,14,15,24]. In terms of security,
most of the prior work in this area focuses on the privacy of (encrypted) messages
(see, e.g., [8,10,23] for various security definitions considered in the literature
for message privacy).

In many application scenarios, however, it is important to also consider pri-
vacy of the function being computed. Consider the following motivating example:
suppose a hospital subscribes to a cloud service provider to store medical records
of its patients. To protect the privacy of the data, these records are stored in an

A. Bishop—Supported in part by NSF CNS 1413971 and NSF CCF 1423306.
A. Jain—Supported in part by a DARPA/ARL Safeware Grant W911NF-15-C-0213
and NSF CNS-1414023.
L. Kowalczyk—Supported by an NSF Graduate Research Fellowship DGE-11-44155.

c© International Association for Cryptologic Research 2015
T. Iwata and J.H. Cheon (Eds.): ASIACRYPT 2015, Part I, LNCS 9452, pp. 470–491, 2015.
DOI: 10.1007/978-3-662-48797-6 20

Function-Hiding Inner Product Encryption 471

encrypted form. At a later point in time, the hospital can request the cloud to
perform some analysis on the encrypted records by releasing a decryption key
Kf for a function f of its choice. If the FE scheme in use does not guarantee any
hiding of the function (which is the case for many existing FE schemes), then
the key Kf might reveal f completely to the cloud, which is undesirable when
f itself contains sensitive information.

This has motivated the study of function privacy in FE, starting with the
work of Shen et al. [26], and more recently by [2,6,7,9]. Intuitively speaking,
function privacy requires that given a decryption key Kf for a function f , one
should not be able to learn any unnecessary information about f . Using the
analogy to secure computation, function private FE can be seen as the non-
interactive analogue of private function evaluation (which guarantees the privacy
of both the input x and the function f being computed on x) just like standard
FE can be seen as the non-interactive analogue of secure function evaluation
(which only guarantees privacy of the input x). One may also observe that the
notion of function privacy is similar in spirit to program obfuscation [5,11].
Indeed, in the public-key setting, function private FE, in fact, implies program
obfuscation.1 In the secret-key setting, however, no such implication is known.

In this work, we continue the study of function privacy in FE. In particular,
we focus on the inner product functionality IP: a function IP�y ∈ IP in this
function family is parametrized by a vector �y in the finite field Zp. On an input
�x ∈ Zp, IP�y(�x) = 〈�x, �y〉, where 〈�x, �y〉 denotes the inner product

∑n
i=1 xiyi ∈

Zp. Inner product is a particularly useful function for statistical analysis. In
particular, in the context of FE, (as shown by [17]) it enables computation
of conjunctions, disjunctions, CNF/DNF formulas, polynomial evaluation and
exact thresholds.

Prior work on FE for inner product can be cast into the following two cate-
gories:

– Generic constructions: By now, we have a large sequence of works [4,10–12,14,
15,24,27] on FE that support computation of general circuits. Very recently,
Brakerski and Segev [9] give a general transformation from any FE scheme for
general circuits into one that achieves function privacy. Then, by combining [9]
with the aforementioned works, one can obtain a function-private FE scheme
for inner product as a special case.
We note, however, that these generic FE constructions use heavy-duty tools for
secure computation (such as fully-homomorphic encryption [13] and program
obfuscation [5,11]) and are therefore extremely inefficient. Furthermore, in
order to achieve collusion-resistance – one of the central goals in FE since its
inception – the above solution would rely on indistinguishability obfuscation
[5,11], which is a strong assumption.

1 Here, the security definition for function privacy determines the security notion of
program obfuscation that we obtain. See, e.g., [6] for further discussion on this
connection.

472 A. Bishop et al.

– Direct constructions: To the best of our knowledge, the only “direct” con-
struction of FE for inner product that avoids the aforementioned expensive
tools is due to the recent work of Abdalla et al. [1]. Their work, however, does
not consider function privacy.
We clarify that our formulation of inner product FE is different from that
considered in the works of [3,7,17,18,21,22,26]. Very briefly, these works study
inner product in the context of predicate encryption, where a message m is
encrypted along with a tag �x and decryption with a key Ky yields m iff
〈�x, �y〉 = 0. In contrast, as discussed above, we are interested in learning the
actual inner product value (in Zp).

In summary, the state of the art leaves open the problem of constructing a
collusion-resistant, function-private FE scheme for inner product from standard
assumptions. We stress that unless we put some restrictions on the distribution
of the messages (as in the work of [6,7]), this question only makes sense in the
secret-key setting.

Our Results. In this work, we resolve this open problem. Specifically, we con-
struct a function-private secret-key FE scheme for the inner product func-
tionality that supports any arbitrary polynomial number of key queries and
message queries. Our construction makes use of asymmetric bilinear maps and
is significantly more efficient than the generic solutions discussed earlier. The
security notion we prove for our construction is a natural indistinguishability-
based notion, and we establish it under the Symmetric External Diffie-Hellman
Assumption (SXDH). To obtain correctness for our scheme, we assume that
inner products will be contained in a polynomially-sized range. This assumption
is quite reasonable for statistical applications, where the average or count of
some bounded quantity over a polynomially-sized database will naturally be in
a polynomial range.

Our Techniques. We begin with the basic idea for inner product encryption
developed in [17], which is the observation that one can place two vectors in the
exponents on opposite sides of a bilinear group and compute the dot product via
the pairing. This already provides some protection for the vectors as discrete log
is thought to be hard in these groups, but without further randomization, this
is vulnerable to many attacks, such as guessing the vector or learning whether
two coordinates of a vector are the same. For this reason, the construction in
[17] multiplies each of the exponent vectors by a random scalar value and uses
additional subgroups in a composite order group to supply more randomization.
The use of composite order groups in this way is by no means inherent, as
subsequent works [18,21,22] (for example) demonstrate how to supply a sufficient
amount of randomization in prime order bilinear groups using dual pairing vector
spaces. However, in all of these schemes, the random scalars prevent a decryptor
from learning the actual value of the inner product. Of course this is intentional
and required, as these are predicate encryption schemes where the prescribed
functionality only depends on whether the inner product is zero or nonzero.

Function-Hiding Inner Product Encryption 473

To adapt these methods to allow a decryptor to learn the inner product, we
must augment the construction with additional group elements that produce
the same product of scalars in the exponent. Then the decryptor can produce
the value by finding a ratio between the exponents of two group elements. This
will be efficiently computable when the value of the inner product is in a known
polynomially-sized range. Crucially, we must prove that these additional group
elements do not reveal any unintended information.

We note that the construction in [17] is not known to be function-hiding.
And since we are further allowing the inner product itself to be learned,
function-hiding for our scheme means something different than function-hiding
for schemes such as [17]. In particular, function hiding for a public key scheme in
our setting would be impossible: one could simply create ciphertexts for a basis
of vectors and test decryption of one’s key against all of them to fully recon-
struct the vector embedded in the key. It is thus fundamental that the public
key scheme in [1] is not function-hiding. Indeed, their secret keys include vectors
given in the clear and have no hiding properties.

To prove function-hiding for our construction, we thus leverage our private
key setting to obtain a perfect symmetry between secret keys and ciphertexts,
both in our construction and in our security reduction. Since no public para-
meters for encryption need to be published, the same techniques that we use
to hide the underlying vectors in the ciphertexts can be flipped to argue that
function-hiding holds for the secret keys.

The core of our security argument is an information-theoretic step (in the
setting of dual pairing vector spaces as introduced by Okamoto and Takashima
[19,20]). Essentially, our master secret key consists of two dual orthonormal bases
that will be employed in the exponents to encode the vectors for ciphertexts and
secret keys respectively. Secret keys and ciphertexts thus correspond to linear
combinations of these basis vectors in the exponent. Since the bases themselves
are never made public, if all of the secret keys (for example) are orthogonal to
a particular vector, then there is a hidden “dimension” in the bases that can
be used to argue that the ciphertext vector can be switched to another vector
that has the same inner products with the provided keys. In fact, if we did not
want any function privacy and instead only wanted to hide whether a single
ciphertext corresponded to a vector �x0 or �x1 while giving out secret keys for
vectors �y orthogonal to �x0 −�x1, then we would do this information-theoretically.
When we instead have many ciphertexts and we also demand function privacy
for the keys, we use a hybrid argument, employing various applications of the
SXDH assumption to move things around in the exponent bases and isolate
a single ciphertext or key in a particular portion of the bases to apply our
information-theoretic argument. The symmetry between keys and ciphertexts
in our construction allows us to perform the same hybrid argument to obtain
function privacy as in the case of multiple-ciphertext security.

474 A. Bishop et al.

2 Preliminaries

2.1 Functional Encryption Specifications and Security Definitions

In the rest of this paper, we will consider a specialization of the general definition
of functional encryption to the particular functionality of computing dot prod-
ucts of n-length vectors over a finite field Zp. A private key functional encryption
scheme for this class of functions will have the following PPT algorithms:

Setup(1λ, n) → PP,MSK The setup algorithm will take in the security parame-
ter λ and the vector length parameter n (a positive integer that is polynomial in
λ). It will produce a master secret key MSK and public parameters PP. (Note
that this is not a public key scheme, so the PP are not sufficient to encrypt -
they are just parameters that do not need to be kept secret.)

Encrypt(MSK,PP, �x) → CT The encryption algorithm will take in the master
secret key MSK, the public parameters PP, and a vector �x ∈ Z

n
p . It produces a

ciphertext CT.

KeyGen(MSK,PP, �y) → SK The key generation algorithm will take in the mas-
ter secret key MSK, the public parameters PP, and a vector �y ∈ Z

n
p . It produces

a secret key SK.

Decrypt(PP,CT,SK) → m ∈ Zpor⊥ The decryption algorithm will take in the
public parameters PP, a ciphertext CT, and a secret key SK. It will output
either a value m ∈ Zp or ⊥.

For correctness, we will require the following. We suppose that PP,MSK
are the result of calling Setup(1λ, n), and CT,SK are then the result of calling
Encrypt(MSK,PP, �x) and KeyGen(MSK,PP, �y) respectively. We then require
that the output of Decrypt(PP,CT,SK) must be either m = 〈�x, �y〉 or ⊥. We will
only require that it is 〈�x, �y〉 and not ⊥ when 〈�x, �y〉 is from a fixed polynomial
range of values inside Zp, as this will allow a decryption algorithm to compute
it as a discrete log in a group where discrete log is generally hard.

Security. We will consider an indistinguishability-based security notion defined
by a game between a challenger and an attacker. At the beginning of the game,
the challenger calls Setup(1λ, n,B) to produce MSK,PP. It gives PP to the
attacker. The challenger also selects a random bit b.

Throughout the game, the attacker can (adaptively) make two types of a
queries. To make a key query, it submits two vectors �y0, �y1 ∈ Z

n
p to the chal-

lenger, who then runs KeyGen(MSK,PP, �yb) and returns the resulting SK to
the attacker. To make a ciphertext query, the attacker submits two vectors
�x0, �x1 ∈ Z

n
p to the challenger, who then runs Encrypt(MSK,PP, �xb) and returns

the resulting ciphertext to the attacker. The attacker can make any polynomial
number of key and ciphertext queries throughout the game. At the end of the
game, the attacker must submit a guess b′ for the bit b. We require that for all
key queries �y0, �y1 and all ciphertext queries �x0, �x1, it must hold that

Function-Hiding Inner Product Encryption 475

〈�y0, �x0〉 = 〈�y0, �x1〉 = 〈�y1, �x0〉 = 〈�y1, �x1〉

The attacker’s advantage is defined to be the probability that b′ = b minus 1
2 .

Definition 1. We say a private key functional encryption scheme for dot prod-
ucts over Z

n
p satisfies function-hiding indistinguishability-based security if any

PPT attacker’s advantage in the above game is negligible as a function of the
security parameter λ.

Remark 1. We note that the attacker can trivially win the security game if we
allowed a key query �y0, �y1 and ciphertext query �x0, �x1 such that 〈�y0, �x0〉 �=
〈�y1, �x1〉. Our stronger requirement that 〈�y0, �x1〉 and 〈�y1, �x0〉 is used for our hybrid
security proof, but it might be possible to remove it by developing different proof
techniques.

2.2 Asymmetric Bilinear Groups

We will construct our scheme in aymmetric bilinear groups. We let G denote
a group generator - an algorithm which takes a security parameter λ as input
and outputs a description of prime order groups G1, G2, GT with a bilinear map
e : G1×G2 → GT . We define G’s output as (p,G1, G2, GT , e), where p is a prime,
G1, G2 and GT are cyclic groups of order p, and e : G1 × G2 → GT is a map
with the following properties:

1. (Bilinear) ∀g1 ∈ G1, g2 ∈ G2, a, b ∈ Zp, e(ga
1 , gb

2) = e(g1, g2)ab

2. (Non-degenerate) ∃g1 ∈ G1, g2 ∈ G2 such that e(g1, g2) has order p in GT .

We refer to G1 and G2 as the source groups and GT as the target group.
We assume that the group operations in G1, G2, and GT and the map e are
computable in polynomial time with respect to λ, and the group descriptions of
G1, G2, and GT include a generator of each group.

The SXDH Assumption. The security of our construction relies on the hardness
of the SXDH assumption. Given prime order groups (p,G1, G2, GT , e) ← G(λ),
we define the SXDH problem as distinguishing between the following two distri-
butions:

D1 = (g1, ga
1 , gb

1, g
ab
1 , g2)

and
D2 = (g1, ga

1 , gb
1, g

ab+r
1 , g2)

where g1, g2 are generators of G1, G2, and a, b, r ← Zp.
The SXDH Assumption states that no polynomial-time algorithm can achieve

non-negligible advantage in deciding between D1 and D2. It also states that the
same is true for the analogous distributions formed from switching the roles of
G1, G2 (that is, D1 = (g2, ga

2 , gb
2, g

ab
2 , g1) and D2 = (g2, ga

2 , gb
2, g

ab+r
2 , g1))

476 A. Bishop et al.

2.3 Dual Pairing Vector Spaces

In addition to referring to individual elements of G1 and G2, we will also consider
“vectors” of group elements. For �v = (v1, ..., vm) ∈ Z

m
p and g1 ∈ G1, we write g�v

1

to denote the m-tuple of elements of G1:

g�v
1 := (gv1

1 , ..., gvm
1)

We can also perform scalar multiplication and exponentiation in the exponent.
For any a ∈ Zp and �v, �w ∈ Z

m
p , we have:

ga�v
1 :=(gav1

1 , ..., gavm
1)

g�v+�w
1 =(gv1+w1

1 , ..., gvm+wm
1)

We abuse notation slightly and also let e denote the product of the component
wise pairings:

e(g�v
1 , g �w

2) :=
m∏

i=1

e(gvi
1 , gwi

2) = e(g1, g2)〈�v,�w〉

Here, the dot product is taken modulo p.

Dual Pairing Vector Spaces. We will employ the concept of dual pairing vector
spaces from [19,20]. We will choose two random sets of vectors: B := {�b1, . . . ,�bm}
and B

∗ = {�b∗
1, . . . ,

�b∗
m} of Z

m
p subject to the constraint that they are “dual

orthonormal” in the following sense:

〈�bi,�b
∗
i 〉 = 1 (mod p) for all i

〈�bi,�b
∗
j 〉 = 0 (mod p) for all j �= i.

We note that choosing sets (B,B∗) at random from sets satisfying these dual
orthonormality constraints can be realized by choosing a set of m vectors B

uniformly at random from Z
m
p (these vectors will be linearly independent with

high probability), then determining each vector of B∗ from its orthonormality
constraints. We will denote choosing random dual orthonormal sets this way as:
(B,B∗) ← Dual(Zm

p).

3 Construction

We now present our construction in asymmetric bilinear groups. We will choose
dual orthonormal bases B and B

∗ that will be used in the exponent to encode
ciphertext and key vectors respectively. Vectors will be encoded twice to create
space for a hybrid security proof and will be additionally masked by random
scalars (these basic features are also present in [17]). We will use additional dual
bases D,D∗ to separately encode these same scalars in the exponent so that their

Function-Hiding Inner Product Encryption 477

effect can be removed from the final decryption result. We view it as a core fea-
ture of our construction that the structure of keys and ciphertexts in our scheme
is perfectly symmetric, just on different sides of dual orthonormal bases. This
enables us to prove function hiding for the keys with exactly the same techniques
we use to prove indistinguishability security for the ciphertexts.

Setup(1λ, n),→ MSK,PP The setup algorithm takes in the security parameter λ
and a positive integer n specifying the desired length of vectors for the keys and
ciphertexts. It chooses an asymmetric bilinear group consisting of G1, G2, GT , all
with prime order p. It fixes generators g1, g2 of G1 and G2 respectively. It then
samples dual orthonormal bases B,B∗ ← Dual(Z2n

p) and dual orthonormal bases
D,D∗ ← Dual(Z2

p). It defines the master secret key as MSK := B,B∗,D,D∗. The
groups G1, G2, GT , the generators g1, g2, and p are set to be public parameters.

Encrypt(MSK,PP, �x) → CT The encryption algorithm takes in the master
secret key B,B∗,D,D∗, the public parameters, and a vector �x ∈ Z

n
p . It chooses

two independent and uniformly random elements α, α̃ ∈ Zp. It then computes:

C1 := g
α(x1�b

∗
1+···+xn

�b∗
n)+α̃(x1�b

∗
n+1+···+xn

�b∗
2n)

1

C2 := g
α�d∗

1+α̃�d∗
2

1 .

The ciphertext CT = {C1, C2}.

KeyGen(MSK,PP, �y) → SK The secret key generation algorithm takes in the
master secret key B,B∗,D,D∗, the public parameters, and a vector �y ∈ Z

n
p . It

chooses two independent and uniformly random elements β, β̃ ∈ Zp. It then
computes:

K1 := g
β(y1�b1+···+yn

�bn)+β̃(y1�bn+1+···+yn
�b2n)

2

K2 := gβ�d1+β̃ �d2
2 .

The secret key SK = {K1,K2}.

Decrypt(PP,CT,SK) → m ∈ Zpor⊥ The decryption algorithm takes in the pub-
lic parameters, the ciphertext C1, C2, and the secret key K1,K2. It computes:

D1 := e(C1,K1)

D2 := e(C2,K2).

It then computes an m such that Dm
2 = D1 as elements of GT . It outputs m. We

note that we can guarantee that the decryption algorithm runs in polynomial
time when we restrict to checking a fixed, polynomially size range of possible
values for m and output ⊥ when none of them satisfy the criterion Dm

2 = D1.

478 A. Bishop et al.

Correctness. We observe that for a ciphertext formed by calling Encrypt(MSK,
PP, �x) and a key formed by calling KeyGen(MSK,PP, �y), we have

D1 =e(C1,K1) = e(g1, g2)αβ〈�x,�y〉+α̃β̃〈�x,�y〉 = e(g1, g2)(αβ+α̃β̃)〈�x,�y〉

and D2 = e(C2,K2) = e(g1, g2)αβ+α̃β̃ .

This follows immediately from the definitions of C1, C2,K1,K2 and the fact
that B,B∗ and D,D∗ are dual orthonormal bases pairs. Thus, if 〈�x, �y〉 is in the
polynomial range of possible values for m that the decryption algorithm checks,
it will output m := 〈�x, �y〉 as desired.

4 Security Proof

Our security proof is structured as a hybrid argument over a series of games
which differ in how the ciphertext and keys are constructed. Intuitively, if there
were only one ciphertext, we could embed the difference of the two possible
ciphertext vectors, namely �x0−�x1, into the definition of the bases B,B∗ to argue
that this difference is hidden when only key vectors orthogonal to �x0 − �x1 are
provided. In other words, there is ambiguity in the choice of B,B∗ left conditioned
on the provided keys, and this can be exploited to switch �x0 for �x1. But there is
a limited amount of such ambiguity, so to re-purpose it for many ciphertexts, we
employ a hybrid argument that isolates each ciphertext in turn in a portion of the
basis. Since keys and ciphertexts are constructed and treated symmetrically in
our scheme, we can apply the same hybrid argument over keys to prove function
hiding, just reversing the roles of B and B

∗.
Notice that a normal ciphertext for a vector �x contains two parallel copies

of �x in the exponent of C1: one attached to �b∗
i ’s and one attached to �b∗

n+i’s for
i = 1, ..., n. We will refer to this as a type-(�x, �x) ciphertext. We will use this
notation to define a type-(�0, �x) ciphertext - one which is normally formed but
has no �b∗

i components for i = 1, ..., n and no �d∗
1 component in C2. We will also

use the same terminology to refer to keys (i.e.: type-(�y, �y) / type-(�0, �y) / type-
(�y,�0) keys).

Letting Q1 denote the total number of ciphertext queries the attacker makes,
we define 7 games for each j = 0, ..., Q1:

Game1j,Z In Game1j,Z all ciphertexts before the jth ciphertext are of type-(�0, �x1
i),

the jth ciphertext is of type-(�0, �x0
i), all ciphertexts after the jth ciphertext are

also type-(�0, �x0
i) ciphertexts, and all keys are of type-(�y0

i , �y0
i).

Game2j,Z Game2j,Z is the same as Game1j,Z except that the jth ciphertext is now
of type-(�x0

j , �x
0
j).

Game3j,Z Game3j,Z is the same as Game2j,Z except that the jth ciphertext is now
of type-(�x0

j , �x
1
j).

Function-Hiding Inner Product Encryption 479

Game4j,Z Game4j,Z is the same as Game3j,Z except that all ciphertexts before the
jth ciphertext are now of type-(�x1

i , �x
1
i) and all ciphertexts after the jth cipher-

text are now type-(�x0
i , �x

0
i) ciphertexts.

Game5j,Z Game5j,Z is the same as Game4j,Z except that all ciphertexts before the
jth ciphertext are now of type-(�x1

i ,�0) and all ciphertexts after the jth ciphertext
are now type-(�x0

i ,�0) ciphertexts.

Game6j,Z Game6j,Z is the same as Game5j,Z except that the jth ciphertext is now
of type-(�x1

j , �x
1
j).

Game7j,Z Game7j,Z is the same as Game6j,Z except that all ciphertexts before
the jth ciphertext are now of type-(�x1

i , �x
1
i) and all ciphertexts after the jth

ciphertext are now type-(�x0
i , �x

0
i) ciphertexts.

Letting Q2 denote the total number of key requests the attacker makes, we define
7 additional games for each j = 0, ..., Q2:
Game1O,j In Game1O,j all keys before the jth key are of type-(�0, �y1

i), the jth key
is of type-(�0, �y0

i), all keys after the jth key are also type-(�0, �y0
i) keys, and all

ciphertexts are of type-(�x1
i , �x

1
i).

Game2O,j Game2O,j is the same as Game1O,j except that the jth key is now of
type-(�y0

j , �y0
j).

Game3O,j Game3O,j is the same as Game2O,j except that the jth key is now of
type-(�y0

j , �y1
j).

Game4O,j Game4O,j is the same as Game3O,j except that all keys before the jth
key are now of type-(�y1

i , �y1
i) and all keys after the jth key are now type-(�y0

i , �y0
i)

keys.

Game5O,j Game5O,j is the same as Game4O,j except that all keys before the jth
key are now of type-(�y1

i ,�0) and all keys after the jth key are now type-(�y0
i ,�0)

keys.

Game6O,j Game6O,j is the same as Game5O,j except that the jth key is now of
type-(�y1

j , �y1
j).

Game7O,j Game7O,j is the same as Game6O,j except that all keys before the jth
key are now of type-(�y1

i , �y1
i) and all keys after the jth key are now type-(�y0

i , �y0
i)

keys.
Note that Game70,Z is the real security game played with b = 0 and Game7O,Q2

is
the real security game played with b = 1. Note also that Game7Q1,Z and Game7O,0

are identical.

480 A. Bishop et al.

We will use a hybrid argument to transition between the two to show that no
polynomial attacker can achieve non-negligible advantage in the security game
(distinguishing between b = 0 and b = 1.). Our hybrid works in two parts,
first transitioning all ciphertexts from type-(�x0

i , �x
0
i) to type-(�x1

i , �x
1
i) (using the

Gamei
j,Z ’s), then transitioning all keys from type-(�y0

i , �y0
i) to type-(�y1

i , �y1
i) (using

the Gamei
O,j ’s).

First we will transition from Game70,Z (the real security game played with
b = 0) to Game11,Z . We then transition from Game11,Z to Game21,Z , to Game31,Z ,
...., to Game71,Z , to Game12,Z etc. until reaching Game7Q1,Z , where all cipher-
texts are of type (�x1

i , �x
1
i) (but all keys are still of type (�y0

i , �y0
i)). Recall that

Game7Q1,Z is identical to Game7O,0. We will then transition from Game7Q1,Z =
Game7O,0 to Game1O,1, to Game2O,1,, to Game7O,1, to Game1O,2, etc. until reach-
ing Game7O,Q2

, where all keys are of type (�y1
i , �y1

i) (and all ciphertexts are of type
(�x1

i , �x
1
i)). This is identical to the real security game played with b = 1.

We begin the first transition in a hybrid over the Q1 ciphertexts. Recall that
the real security game played with b = 0 is identical to Game70,Z , so in particular,
the following lemma allows us to make the first transition from Game70,Z to
Game11,Z .

Lemma 1. No polynomial-time attacker can achieve a non-negligible difference
in advantage between Game7(j−1),Z and Game1j,Z for j = 1, ..., Q1 under the
SXDH assumption.

Proof. Given an attacker that achieves non-negligible difference in advantage
between Game7(j−1),Z and Game1j,Z for some j ∈ [1, Q1], we could achieve non-
negligible advantage in deciding the SXDH problem as follows:

Given SXDH instance g1, g
a
1 , gb

1, T = gab+r
1 , g2 where either r ← Zp or r = 0,

use g1, g2 as the generators of the same name used to form ciphertexts and keys
respectively. Generate bases (F,F∗) ← Dual(Z2n

p), (H,H∗) ← Dual(Z2
p) and

implicitly define new bases (B,B∗), (D,D∗) as the following:

�bi = �fi − a�fn+i for i = 1, ..., n

�bn+i = �fn+i for i = 1, ..., n

�b∗
i = �f∗

i for i = 1, ..., n

�b∗
n+i = �f∗

n+i + a�f∗
i for i = 1, ..., n

�d1 = �h1 − a�h2

�d2 = �h2

�d∗
1 = �h∗

1

�d∗
2 = �h∗

2 + a�h∗
1

Note that these bases are distributed exactly the same as those output by
Dual(Z2n

p) and Dual(Z2
p) respectively (they are created by applying an invertible

linear transformation to the output of Dual(Z2n
p) and Dual(Z2

p)).

Function-Hiding Inner Product Encryption 481

To construct any key (for, say, vector �y0), generate random β, β̃′ ← Zp,
implicitly define β̃ = βa + β̃′, and compute:

K1 = g
β(y0

1
�f1+···+y0

n
�fn)+β̃′(y0

1
�fn+1+···+y0

n
�f2n)

2

= g
β(y0

1
�f1+···+y0

n
�fn)+(β̃−βa)(y0

1
�fn+1+···+y0

n
�f2n)

2

= g
β(y0

1(
�f1−a�fn+1)+···+y0

n(�fn−a�f2n))+β̃(y0
1

�fn+1+···+y0
n

�f2n)
2

= g
β(y0

1
�b1+···+y0

n
�bn)+β̃(y0

1
�bn+1+···+y0

n
�b2n)

2

K2 = gβ�h1+β̃′�h2
2

= g
β�h1+(β̃−βa)�h2
2

= g
β(�h1−a�h2)+β̃�h2
2

= gβ�d1+β̃ �d2
2

a properly distributed type-(�y0, �y0) key (as expected in both Game7(j−1),Z and
Game1j,Z).

For the jth ciphertext and all ciphertexts after, draw α′
i, α̃

′
i ← Zp and com-

pute:

C1,i = (gb
1)

α′
i(x

0
1,i

�f∗
n+1+···+x0

n,i
�f∗
2n)(T)α′

i(x
0
1,i

�f∗
1 +···+x0

n,i
�f∗
n)g

α̃′
i(x

0
1,i

�f∗
n+1+···+x0

n,i
�f∗
2n)

1

· (ga
1)α̃′

i(x
0
1,i

�f∗
1 +···+x0

n,i
�f∗
n)

= g
α′

ir(x
0
1,i

�f∗
1 +···+x0

n,i
�f∗
n)+(α̃′

i+α′
ib)(x

0
1,i(

�f∗
n+1+a�f∗

1)+···+x0
n,i(

�f∗
2n+a�f∗

n))

1

= g
α′

ir(x
0
1,i

�b∗
1+···+x0

n,i
�b∗

n)+(α̃′
i+α′

ib)(x
0
1,i

�b∗
n+1+···+x0

n,i
�b∗
2n)

1

C2,i = (gb
1)

α′
i
�h∗

2 (T)α′
i
�h∗

1g
α̃′

i
�h∗

2
1 (ga

1)α̃′
i
�h∗

1

= g
α′

ir
�h∗

1+(α̃′
i+α′

ib)(
�h∗

2+a�h∗
1)

1

= g
α′

ir
�d∗
1+(α̃′

i+α′
ib)

�d∗
2

1

For ciphertexts before the jth ciphertext, draw α′
i, α̃

′
i ← Zp and compute:

C1,i = (gb
1)

α′
i(x

1
1,i

�f∗
n+1+···+x1

n,i
�f∗
2n)(T)α′

i(x
1
1,i

�f∗
1 +···+x1

n,i
�f∗
n)g

α̃′
i(x

1
1,i

�f∗
n+1+···+x1

n,i
�f∗
2n)

1

· (ga
1)α̃′

i(x
1
1,i

�f∗
1 +···+x1

n,i
�f∗
n)

= g
α′

ir(x
1
1,i

�f∗
1 +···+x1

n,i
�f∗
n)+(α̃′

i+α′
ib)(x

1
1,i(

�f∗
n+1+a�f∗

1)+···+x1
n,i(

�f∗
2n+a�f∗

n))

1

= g
α′

ir(x
1
1,i

�b∗
1+···+x1

n,i
�b∗

n)+(α̃′
i+α′

ib)(x
1
1,i

�b∗
n+1+···+x1

n,i
�b∗
2n)

1

C2,i = (gb
1)

α′
i
�h∗

2 (T)α′
i
�h∗

1g
α̃′

i
�h∗

2
1 (ga

1)α̃′
i
�h∗

1

= g
α′

ir
�h∗

1+(α̃′
i+α′

ib)(
�h∗

2+a�h∗
1)

1

= g
α′

ir
�d∗
1+(α̃′

i+α′
ib)

�d∗
2

1

482 A. Bishop et al.

(The only difference from the prior ciphertext construction is that �x1 is used
instead of �x0).

When r ← Zp, all ciphertexts before the jth ciphertext are properly distributed
type-(�x1

i , �x
1
i) ciphertexts and the remaining ciphertexts are properly distributed

type-(�x0
i , �x

0
i) ciphertexts where αi = α′

ir and α̃i = α̃′
i + α′

ib. This is as would be
expected in Game7(j−1),Z .
When r = 0, all ciphertexts before the jth ciphertext are properly distributed
type-(�0, �x1

i) ciphertexts and the remaining ciphertexts are properly distributed
type-(�0, �x0

i) ciphertexts where α̃i = α̃′
i + α′

ib. This is as would be expected in
Game1j,Z .

Our simulation is therefore identical to either Game7(j−1),Z or Game1j,Z
depending on the SXDH challenge T = gab+r

1 having r ← Zp or r = 0 respec-
tively. Therefore, by playing the security game in this manner with the supposed
attacker and using the attacker’s output as an answer to the SXDH challenge,
we will enjoy the same non-negligible advantage as the supposed attacker in
deciding the SXDH problem.

By the SXDH assumption, this is not possible, so no such adversary can
exist.

Lemma 2. No polynomial-time attacker can achieve a non-negligible difference
in advantage between Game1j,Z and Game2j,Z for j = 1, ..., Q1 under the SXDH
assumption.

Proof. Given an attacker that achieves non-negligible difference in advantage
between Game1j,Z and Game2j,Z for some j ∈ [1, Q1], we could achieve non-
negligible advantage in deciding the SXDH problem as follows:

Given SXDH instance g1, g
a
1 , gb

1, T = gab+r
1 , g2 where either r ← Zp or r = 0,

use g1, g2 as the generators of the same name used to form ciphertexts and keys
respectively.. Generate bases (F,F∗) ← Dual(Z2n

p), (H,H∗) ← Dual(Z2
p) and

implicitly define new bases (B,B∗), (D,D∗) as the following:

�bi = �fi − a�fn+i for i = 1, ..., n

�bn+i = �fn+i for i = 1, ..., n

�b∗
i = �f∗

i for i = 1, ..., n

�b∗
n+i = �f∗

n+i + a�f∗
i for i = 1, ..., n

�d1 = �h1 − a�h2

�d2 = �h2

�d∗
1 = �h∗

1

�d∗
2 = �h∗

2 + a�h∗
1

Note that these bases are distributed exactly the same as those output by
Dual(Z2n

p) and Dual(Z2
p) respectively (they are created by applying an invertible

linear transformation to the output of Dual(Z2n
p) and Dual(Z2

p)).

Function-Hiding Inner Product Encryption 483

To construct any key (for, say, vector �y0), generate random β, β̃′ ← Zp,
implicitly define β̃ = βa + β̃′, and compute:

K1 = g
β(y0

1
�f1+···+y0

n
�fn)+β̃′(y0

1
�fn+1+···+y0

n
�f2n)

2

= g
β(y0

1
�f1+···+y0

n
�fn)+(β̃−βa)(y0

1
�fn+1+···+y0

n
�f2n)

2

= g
β(y0

1(
�f1−a�fn+1)+···+y0

n(�fn−a�f2n))+β̃(y0
1

�fn+1+···+y0
n

�f2n)
2

= g
β(y0

1
�b1+···+y0

n
�bn)+β̃(y0

1
�bn+1+···+y0

n
�b2n)

2

K2 = gβ�h1+β̃′�h2
2

= g
β�h1+(β̃−βa)�h2
2

= g
β(�h1−a�h2)+β̃�h2
2

= gβ�d1+β̃ �d2
2

a properly distributed type-(�y0, �y0) key (as expected in both Game1j,Z and
Game2j,Z).

For ciphertexts before the jth ciphertext draw random α̃i ← Zp and compute:

C1,i = g
α̃i(x

1
1,i

�f∗
n+1+···+x1

n,i
�f∗
2n)

1 (ga
1)α̃i(x

1
1,i

�f∗
1 +···+x1

n,i
�f∗
n)

= g
α̃i(x

1
1,i(

�f∗
n+1+a�f∗

1)+···+x1
n,i(

�f∗
2n+a�f∗

n))

1

= g
α̃i(x

1
1,i

�b∗
n+1+···+x1

n,i
�b∗
2n)

1

C2,i = g
α̃i

�h∗
2

1 (ga
1)α̃i

�h∗
1

= g
α̃i(�h

∗
2+a�h∗

1)
1

= g
α̃i

�d∗
2

1

a properly distributed type-(�0, �x1
i) ciphertext (as expected in both Game1j,Z and

Game2j,Z).
For ciphertexts after the jth ciphertext draw random α̃i ← Zp and compute:

C1,i = g
α̃i(x

0
1,i

�f∗
n+1+···+x0

n,i
�f∗
2n)

1 (ga
1)α̃i(x

0
1,i

�f∗
1 +···+x0

n,i
�f∗
n)

= g
α̃i(x

0
1,i(

�f∗
n+1+a�f∗

1)+···+x0
n,i(

�f∗
2n+a�f∗

n))

1

= g
α̃i(x

0
1,i

�b∗
n+1+···+x0

n,i
�b∗
2n)

1

C2,i = g
α̃i

�h∗
2

1 (ga
1)α̃i

�h∗
1

= g
α̃i(�h

∗
2+a�h∗

1)
1

= g
α̃i

�d∗
2

1

484 A. Bishop et al.

a properly distributed type-(�0, �x0
i) ciphertext (as expected in both Game1j,Z and

Game2j,Z). Note that this construction is the same as that of the first j − 1
ciphertexts except for the �x0

i components used instead of �x1
i .

For the jth ciphertext, compute:

C1,j = (gb
1)

x0
1,j

�f∗
n+1+···+x0

n,j
�f∗
2n(T)x0

1,j
�f∗
1 +···+x0

n,j
�f∗
n

= g
r(x0

1,j
�f∗
1 +···+x0

n,j
�f∗
n)+b(x0

1,j(
�f∗
n+1+a�f∗

1)+···+x0
n,j(

�f∗
2n+a�f∗

n))

1

= g
r(x0

1,j
�b∗
1+···+x0

n,j
�b∗

n)+b(x0
1,j

�b∗
n+1+···+x0

n,j
�b∗
2n)

1

C2,j = (gb
1)

�h∗
2 (T)�h

∗
1

= g
r�h∗

1+b(�h∗
2+a�h∗

1)
1

= g
r�d∗

1+b�d∗
2

1

When r = 0, this is a properly distributed type-(�0, �x0
j) ciphertext where α̃j = b

(as would be expected in Game1j,Z).
When r ← Zp, this is a properly distributed type-(�x0

j , �x
0
j) ciphertext where

αj = r and α̃j = b (as would be expected in Game2j,Z).
Our simulation is therefore identical to either Game1j,Z or Game2j,Z depending

on the SXDH challenge T = gab+r
1 having r = 0 or r ← Zp respectively. There-

fore, by playing the security game in this manner with the supposed attacker
and using the attacker’s output as an answer to the SXDH challenge, we will
enjoy the same non-negligible advantage as the supposed attacker in deciding
the SXDH problem.

By the SXDH assumption, this is not possible, so no such adversary can
exist.

Lemma 3. No attacker can achieve a non-negligible difference in advantage
between Game2j,Z and Game3j,Z for j = 1, ..., Q1.

Proof. This lemma is unconditionally true because both games are information-
theoretically identical.

In the simulation of the security Game2j,Z , one draws bases (B,B∗) ←
Dual(Z2n

p). However, imagine knowing the jth ciphertext vectors �x0
j , �x

1
j ahead of

time and drawing the bases in the following way: first, draw B,B∗ ← Dual(Z2n
p)

then apply following invertible linear transformation to get (F,F∗), which is used
(along with a normally drawn (D,D∗) ← Dual(Z2

p)) as the basis:

�fi = �bi for i = 1, ..., n

�fn+i = �bn+i +
α̃j(x0

i,j − x1
i,j)

αjx0
1,j

�b1 for i = 1, ..., n

�f∗
1 = �b∗

1 −
n∑

i=1

α̃j(x0
i,j − x1

i,j)
αjx0

1,j

�b∗
n+i

�f∗
i = �b∗

i for i = 2, ..., 2n

Function-Hiding Inner Product Encryption 485

where αj , α̃j are randomly drawn values used in the creation of the jth cipher-
text. Recall that the distribution of the (F,F∗) produced this way is identical to
that produced by Dual(Z2n

p)).

Consider simulating Game2j,Z with this basis. Any key (for, say, vector �y0)
looks like:

K1 = g
β(y0

1
�f1+···+y0

n
�fn)+β̃(y0

1
�fn+1+···+y0

n
�f2n)

2

K2 = gβ�d1+β̃ �d2
2 .

where:

K1 = g
β(y0

1
�f1+···+y0

n
�fn)+β̃(y0

1
�fn+1+···+y0

n
�f2n)

2

= g
β(y0

1
�b1+···+y0

n
�bn)+β̃(y0

1(
�bn+1+

α̃j(x0
1,j−x1

1,j)

αjx0
1,j

�b1)+···+y0
n(�b2n+

α̃j(x0
n,j−x1

n,j)

αjx0
1,j

�b1))

2

= g
β(y0

1
�b1+···+y0

n
�bn)+β̃(y0

1
�bn+1+···+y0

n
�b2n)+

β̃α̃j〈�y0,�x0
j −�x1

j 〉
αjx0

1,j

�b1

2

= g
β(y0

1
�b1+···+y0

n
�bn)+β̃(y0

1
�bn+1+···+y0

n
�b2n)

2

The last step above comes from the fact that 〈�y0, �x0
j − �x1

j 〉 = 0.
(�x0

j , �x
1
j are vectors requested in the game where we require 〈�y0, �x0

j 〉 = 〈�y0, �x1
j 〉 =⇒

〈�y0, �x0
j − �x1

j 〉 = 0). This is a type-(�y0, �y0) key in the (B,B∗) basis (as expected in
both Game2j,Z and Game3j,Z).

All ciphertexts created before the jth ciphertext look like properly distributed
type-(�0, �x1

i) ciphertexts in the (B,B∗) basis:

C1,i = g
α̃i(x

1
1,i

�f∗
n+1+···+x1

n,i
�f∗
2n)

1

= g
α̃i(x

1
1,i

�b∗
n+1+···+x1

n,i
�b∗
2n)

1

C2,i = g
α̃i

�d∗
2

1

Similarly, all ciphertexts created after the jth ciphertext look like properly dis-
tributed type-(�0, �x0

i) ciphertexts in the (B,B∗) basis:

C1,i = g
α̃i(x

0
1,i

�f∗
n+1+···+x0

n,i
�f∗
2n)

1

= g
α̃i(x

0
1,i

�b∗
n+1+···+x0

n,i
�b∗
2n)

1

C2,i = g
α̃i

�d∗
2

1

However, the jth ciphertext constructed (as a type-(�x0
j , �x

0
j) ciphertext) looks

like a type-(�x0
j , �x

1
j) ciphertext in the (B,B∗) basis:

C1,j = g
αj(x

0
1,j

�f∗
1 +···+x0

n,j
�f∗
n)+α̃j(x

0
1,j

�f∗
n+1+···+x0

n,j
�f∗
2n)

1

486 A. Bishop et al.

= g

αj(x
0
1,j(

�b∗
1−

n∑
i=1

α̃j(x
0
i,j − x1

i,j)

αjx0
1,j

�b∗
n+i) + · · · + x0

n,j
�b∗

n) + α̃j(x
0
1,j

�b∗
n+1 + · · · + x0

n,j
�b∗
2n)

1

= g
αj(x

0
1,j

�b∗
1+···+x0

n,j
�b∗

n)+α̃j(x
1
1,j

�b∗
n+1+···+x1

n,j
�b∗
2n)

1

C2,j = g
αj

�d∗
1+α̃j

�d∗
2

1

This construction of the jth ciphertext is the only difference between Game2j,Z
and Game3j,Z . So, drawing (B,B∗) directly from Dual(Z2n

p) and using it to
play Game2j,Z results in Game2j,Z in the (B,B∗) basis. However, transforming
this basis to (F,F∗) and using it instead results in playing Game3j,Z with the
(B,B∗) basis. However, since (B,B∗) and (F,F∗) have the same distribution
(the one produced by Dual(Z2n

p)), this means that the two Games are actu-
ally information-theoretically identical. Therefore, no attacker can achieve non-
negligible difference advantage in distinguishing between Game2j,Z and Game3j,Z .

Lemma 4. No polynomial-time attacker can achieve a non-negligible difference
in advantage between Game3j,Z and Game4j,Z for j = 1, ..., Q1 under the SXDH
assumption.

Proof. Given an attacker that achieves non-negligible difference in advantage
between Game3j,Z and Game4j,Z for some j ∈ [1, Q1], we could achieve non-
negligible advantage in deciding the SXDH problem as follows:

Given SXDH instance g1, g
a
1 , gb

1, T = gab+r
1 , g2 where either r ← Zp or r = 0,

use g1, g2 as the generators of the same name used to form ciphertexts and keys
respectively. Generate bases (F,F∗) ← Dual(Z2n

p), (H,H∗) ← Dual(Z2
p) and

implicitly define new bases (B,B∗), (D,D∗) as the following:

�bi = �fi − a�fn+i for i = 1, ..., n

�bn+i = �fn+i for i = 1, ..., n

�b∗
i = �f∗

i for i = 1, ..., n

�b∗
n+i = �f∗

n+i + a�f∗
i for i = 1, ..., n

�d1 = �h1 − a�h2

�d2 = �h2

�d∗
1 = �h∗

1

�d∗
2 = �h∗

2 + a�h∗
1

Note that these bases are distributed exactly the same as those output by
Dual(Z2n

p) and Dual(Z2
p) respectively (they are created by applying an invertible

linear transformation to the output of Dual(Z2n
p) and Dual(Z2

p)).

Function-Hiding Inner Product Encryption 487

To construct any key (for, say, vector �y0), generate random β, β̃′ ← Zp,
implicitly define β̃ = βa + β̃′, and compute:

K1 = g
β(y0

1
�f1+···+y0

n
�fn)+β̃′(y0

1
�fn+1+···+y0

n
�f2n)

2

= g
β(y0

1
�f1+···+y0

n
�fn)+(β̃−βa)(y0

1
�fn+1+···+y0

n
�f2n)

2

= g
β(y0

1(
�f1−a�fn+1)+···+y0

n(�fn−a�f2n))+β̃(y0
1

�fn+1+···+y0
n

�f2n)
2

= g
β(y0

1
�b1+···+y0

n
�bn)+β̃(y0

1
�bn+1+···+y0

n
�b2n)

2

K2 = gβ�h1+β̃′�h2
2

= g
β�h1+(β̃−βa)�h2
2

= g
β(�h1−a�h2)+β̃�h2
2

= gβ�d1+β̃ �d2
2

a properly distributed type-(�y0, �y0) key (as expected in both Game3j,Z and
Game4j,Z).

For the jth ciphertext, draw αj , α̃j ← Zp and compute:

C1,j = g
αj(x

0
1,j

�f∗
1 +···+x0

n,j
�f∗
n)+α̃j(x

1
1,j

�f∗
n+1+···+x1

n,j
�f∗
2n)

1 (ga
1)α̃j(x

1
1,j

�f∗
1 +···+x1

n,j
�f∗
n)

= g
αj(x

0
1,i

�f∗
1 +···+x0

n,i
�f∗
n)+α̃j(x

1
1,j(

�f∗
n+1+a�f∗

1)+···+x1
n,j(

�f∗
2n+a�f∗

n))

1

= g
αj(x

0
1,j

�b∗
1+···+x0

n,j
�b∗

n)+α̃j(x
1
1,j

�b∗
n+1+···+x1

n,j
�b∗
2n)

1

C2,j = g
αj

�h∗
1

1 g
α̃j

�h∗
2

1 (ga
1)α̃j

�h∗
1

= g
αj

�h∗
1+α̃j(�h

∗
2+a�h∗

1)
1

= g
αj

�d∗
1+α̃j

�d∗
2

1

a properly distributed type-(�x0
j , �x

1
j) ciphertext (as expected in both Game3j,Z

and Game4j,Z).

For all ciphertexts after the jth ciphertext, draw α′
i, α̃

′
i ← Zp and compute:

C1,i = (gb
1)

α′
i(x

0
1,i

�f∗
n+1+···+x0

n,i
�f∗
2n)(T)α′

i(x
0
1,i

�f∗
1 +···+x0

n,i
�f∗
n)g

α̃′
i(x

0
1,i

�f∗
n+1+···+x0

n,i
�f∗
2n)

1

· (ga
1)α̃′

i(x
0
1,i

�f∗
1 +···+x0

n,i
�f∗
n)

= g
α′

ir(x
0
1,i

�f∗
1 +···+x0

n,i
�f∗
n)+(α̃′

i+α′
ib)(x

0
1,i(

�f∗
n+1+a�f∗

1)+···+x0
n,i(

�f∗
2n+a�f∗

n))

1

= g
α′

ir(x
0
1,i

�b∗
1+···+x0

n,i
�b∗

n)+(α̃′
i+α′

ib)(x
0
1,i

�b∗
n+1+···+x0

n,i
�b∗
2n)

1

C2,i = (gb
1)

α′
i
�h∗

2 (T)α′
i
�h∗

1g
α̃′

i
�h∗

2
1 (ga

1)α̃′
i
�h∗

1

= g
α′

ir
�h∗

1+(α̃′
i+α′

ib)(
�h∗

2+a�h∗
1)

1

= g
α′

ir
�d∗
1+(α̃′

i+α′
ib)

�d∗
2

1

488 A. Bishop et al.

For ciphertexts before the jth ciphertext, draw α′
i, α̃

′
i ← Zp and compute:

C1,i = (gb
1)

α′
i(x

1
1,i

�f∗
n+1+···+x1

n,i
�f∗
2n)(T)α′

i(x
1
1,i

�f∗
1 +···+x1

n,i
�f∗
n)g

α̃′
i(x

1
1,i

�f∗
n+1+···+x1

n,i
�f∗
2n)

1

· (ga
1)α̃′

i(x
1
1,i

�f∗
1 +···+x1

n,i
�f∗
n)

= g
α′

ir(x
1
1,i

�f∗
1 +···+x1

n,i
�f∗
n)+(α̃′

i+α′
ib)(x

1
1,i(

�f∗
n+1+a�f∗

1)+···+x1
n,i(

�f∗
2n+a�f∗

n))

1

= g
α′

ir(x
1
1,i

�b∗
1+···+x1

n,i
�b∗

n)+(α̃′
i+α′

ib)(x
1
1,i

�b∗
n+1+···+x1

n,i
�b∗
2n)

1

C2,i = (gb
1)

α′
i
�h∗

2 (T)α′
i
�h∗

1g
α̃′

i
�h∗

2
1 (ga

1)α̃′
i
�h∗

1

= g
α′

ir
�h∗

1+(α̃′
i+α′

ib)(
�h∗

2+a�h∗
1)

1

= g
α′

ir
�d∗
1+(α̃′

i+α′
ib)

�d∗
2

1

(The only difference from the prior ciphertext construction is that �x1 is used
instead of �x0).

When r = 0, all ciphertexts before the jth ciphertext are properly distributed
type-(�0, �x1

i) ciphertexts and all ciphertexts after the jth are properly distributed
type-(�0, �x0

i) ciphertexts where α̃i = α̃′
i + α′

ib. This is as would be expected in
Game3j,Z .
When r ← Zp, all ciphertexts before the jth are properly distributed type-
(�x1

i , �x
1
i) ciphertexts and all ciphertexts after the jth are properly distributed

type-(�x0
i , �x

0
i) ciphertexts where αi = α′

ir and α̃i = α̃′
i + α′

ib. This is as would be
expected in Game4j,Z .

Our simulation is therefore identical to either Game3j,Z or Game4j,Z depending
on the SXDH challenge T = gab+r

1 having r = 0 or r ← Zp respectively. There-
fore, by playing the security game in this manner with the supposed attacker
and using the attacker’s output as an answer to the SXDH challenge, we will
enjoy the same non-negligible advantage as the supposed attacker in deciding
the SXDH problem.

By the SXDH assumption, this is not possible, so no such adversary can
exist.

Lemma 5. No polynomial-time attacker can achieve a non-negligible difference
in advantage between Game4j,Z and Game5j,Z for j = 1, ..., Q1 under the SXDH
assumption.

Proof. The proof of this lemma is symmetric to that of the previous Lemma 4,
just flipping the role of the two parallel bases.

Lemma 4 showed how to create keys of type-(�y0, �y0) and a type-(�x0
j , �x

1
j)

ciphertext while having the ciphertexts before and after the jth be type-(�0, �x1
i)

and type-(�0, �x0
i) or type-(�x1

i , �x
1
i) and type-(�x0

i , �x
0
i) respectively based on the

challenge elements of the SXDH problem. By symmetrically applying the same
embedding to the opposite halves of the parallel bases, we can achieve the same
result, but with the ciphertexts before and after the jth being type-(�x1

i , �x
1
i) and

Function-Hiding Inner Product Encryption 489

type-(�x0
i , �x

0
i) or type-(�x1

i ,�0) and type-(�x0
i ,�0) respectively based on the challenge

elements of the SXDH problem, which is what we need for this transition.

Lemma 6. No attacker can achieve a non-negligible difference in advantage
between Game5j,Z and Game6j,Z for j = 1, ..., Q1.

Proof. The proof of this lemma is information-theoretic and similarly symmetric
to that of Lemma 3, just flipping the role of the two parallel bases (just like the
previous lemma did with Lemma 4).

Lemma 7. No polynomial-time attacker can achieve a non-negligible difference
in advantage between Game6j,Z and Game7j,Z for j = 1, ..., Q1 under the SXDH
assumption.

Proof. The proof of this lemma is nearly identical to that of Lemma5 (which
transitioned ciphertexts before the jth between type-(�x1

i ,�0) and type-(�x1
i , �x

1
i)

and ciphertexts after the jth between type-(�x0
i ,�0) and type-(�x0

i , �x
0
i)) but instead

constructing the jth ciphertext as type-(�x1
i , �x

1
i) instead of type-(�x0

i , �x
1
i).

The previous lemmas let us transition to Game7Q1,Z , where all ciphertexts
are of type-(�x1

i , �x
1
i) and all keys are type-(�y0

i , �y0
i) keys. Notice that Game7Q1,Z is

identical to Game7O,0. It is easy to see that we can now use a symmetric set of
hybrids to transition all keys to type-(�y1

i , �y1
i) in a similar manner: starting by

transitioning from Game7Q1,Z = Game7O,0 to Game1O,1, then proceeding through
the Gamei

O,j using the same methods as in the Gamei
j,Z , just switching the roles

of the basis vectors (switching all �b∗ with �b, �d∗ with �d, α with β, α̃ with β̃, and
�xi with �yi, while always producing type (�x1

i , �x
1
i) ciphertexts (instead of always

producing type (�y0
i , �y0

i) keys).
These symmetric arguments let us transition to Game7O,Q2

, where all cipher-
texts are of type-(�x1, �x1) and all keys are type-(�y1

i , �y1
i) keys. This is identical to

the original security game when b = 1. So, by a hybrid argument, we have shown
that no polynomial-time attacker gan achieve non-negligible difference in advan-
tage in the security game when b = 0 (Game70,Z) vs when b = 1 (Game7O,Q2

)
under the SXDH assumption, so our construction is therefore secure.

References

1. Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Simple functional encryption
schemes for inner products. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 733–
751. Springer, Heidelberg (2015)

2. Agrawal, S., Agrawal, S., Badrinarayanan, S., Kumarasubramanian, A.,
Prabhakaran, M., Sahai, A.: On the practical security of inner product functional
encryption. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 777–798. Springer,
Heidelberg (2015)

3. Agrawal, S., Freeman, D.M., Vaikuntanathan, V.: Functional encryption for inner
product predicates from learning with errors. In: Lee, D.H., Wang, X. (eds.) ASI-
ACRYPT 2011. LNCS, vol. 7073, pp. 21–40. Springer, Heidelberg (2011)

490 A. Bishop et al.

4. Ananth, P., Brakerski, Z., Segev, G., Vaikuntanathan, V.: From selective to
adaptive security in functional encryption. In: Gennaro, R., Robshaw, M. (eds.)
CRYPTO 2015. LNCS, vol. 9216, pp. 657–677. Springer, Heidelberg (2015)

5. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001)

6. Boneh, D., Raghunathan, A., Segev, G.: Function-private identity-based encryp-
tion: hiding the function in functional encryption. In: Canetti, R., Garay, J.A.
(eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 461–478. Springer, Heidelberg
(2013)

7. Boneh, D., Raghunathan, A., Segev, G.: Function-private subspace-membership
encryption and its applications. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013,
Part I. LNCS, vol. 8269, pp. 255–275. Springer, Heidelberg (2013)

8. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011)

9. Brakerski, Z., Segev, G.: Function-private functional encryption in the private-key
setting. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp.
306–324. Springer, Heidelberg (2015)

10. De Caro, A., Iovino, V., Jain, A., O’Neill, A., Paneth, O., Persiano, G.: On the
achievability of simulation-based security for functional encryption. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 519–535. Springer,
Heidelberg (2013)

11. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candi-
date indistinguishability obfuscation and functional encryption for all circuits. In:
FOCS, pp. 40–49 (2013)

12. Garg, S., Gentry, C., Halevi, S., Zhandry, M.: Fully secure functional encryption
without obfuscation. Cryptology ePrint Archive, report 2014/666 (2014). http://
eprint.iacr.org/

13. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC, p. 169–
178 (2009)

14. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: How
to run turing machines on encrypted data. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 536–553. Springer, Heidelberg (2013)

15. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with bounded
collusions via multi-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 162–179. Springer, Heidelberg (2012)

16. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute based encryption for fine-
grained access control of encrypted data. In: ACM conference on Computer and
Communications Security, pp. 89–98 (2006)

17. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In: Smart, N.P. (ed.) EUROCRYPT 2008.
LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008)

18. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure
functional encryption: attribute-based encryption and (hierarchical) inner prod-
uct encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
62–91. Springer, Heidelberg (2010)

19. Okamoto, T., Takashima, K.: Homomorphic encryption and signatures from vector
decomposition. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol.
5209, pp. 57–74. Springer, Heidelberg (2008)

http://eprint.iacr.org/
http://eprint.iacr.org/

Function-Hiding Inner Product Encryption 491

20. Okamoto, T., Takashima, K.: Hierarchical predicate encryption for inner-products.
In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 214–231. Springer,
Heidelberg (2009)

21. Okamoto, T., Takashima, K.: Fully secure functional encryption with general rela-
tions from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010)

22. Okamoto, T., Takashima, K.: Fully secure unbounded inner-product and attribute-
based encryption. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol.
7658, pp. 349–366. Springer, Heidelberg (2012)

23. O’Neill, A.: Definitional issues in functional encryption. IACR Cryptology ePrint
Archive (2010)

24. Sahai, A., Seyalioglu, H.: Worry-free encryption: functional encryption with public
keys. In CCS, pp. 463–472 (2010)

25. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

26. Shen, E., Shi, E., Waters, B.: Predicate privacy in encryption systems. In: Reingold,
O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 457–473. Springer, Heidelberg (2009)

27. Waters, B.: A punctured programming approach to adaptively secure functional
encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216,
pp. 678–697. Springer, Heidelberg (2015)

ABE and IBE

Idealizing Identity-Based Encryption

Dennis Hofheinz1, Christian Matt2(B), and Ueli Maurer2

1 Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
dennis.hofheinz@kit.edu

2 Department of Computer Science, ETH Zurich, Zurich, Switzerland
{mattc,maurer}@inf.ethz.ch

Abstract. We formalize the standard application of identity-based
encryption (IBE), namely non-interactive secure communication, as real-
izing an ideal system which we call delivery controlled channel (DCC).
This system allows users to be registered (by a central authority) for
an identity and to send messages securely to other users only known by
their identity.

Quite surprisingly, we show that existing security definitions for IBE
are not sufficient to realize DCC. In fact, it is impossible to do so in
the standard model. We show, however, how to adjust any IBE scheme
that satisfies the standard security definition IND-ID-CPA to achieve
this goal in the random oracle model.

We also show that the impossibility result can be avoided in the stan-
dard model by considering a weaker ideal system that requires all users to
be registered in an initial phase before any messages are sent. To achieve
this, a weaker security notion, which we introduce and call IND-ID1-
CPA, is actually sufficient. This justifies our new security definition and
might open the door for more efficient schemes. We further investigate
which ideal systems can be realized with schemes satisfying the standard
notion and variants of selective security.

As a contribution of independent interest, we show how to model fea-
tures of an ideal system that are potentially available to dishonest parties
but not guaranteed, and which such features arise when using IBE.

Keywords: Identity-based encryption · Definitions · Impossibility
results · Composability

1 Introduction

1.1 Motivation

Identity-based encryption (IBE) is a generalization of public-key encryption
where messages can be encrypted using a master public key and the identity
of a user, which can be an arbitrary bit string, such as the user’s e-mail address.
Ciphertexts can be decrypted with a user secret key for the corresponding iden-
tity, where user secret keys are derived from a master secret key, which is gen-
erated together with the master public key.
c© International Association for Cryptologic Research 2015
T. Iwata and J.H. Cheon (Eds.): ASIACRYPT 2015, Part I, LNCS 9452, pp. 495–520, 2015.
DOI: 10.1007/978-3-662-48797-6 21

496 D. Hofheinz et al.

The apparent standard application of IBE is non-interactive secure commu-
nication. More specifically, we assume a setting with many parties, and the goal
is to enable each party to send any other party (known only by his/her identity)
messages in a secure way. This secure communication should be non-interactive
(or “one-shot”) in the sense that the sending party should not be required to,
e.g., look up a public key of the receiving party, or to communicate in any other
way (beyond of course sending one message to the receiver). In fact, our require-
ments and expectations can be described as follows. We define a “resource”
(or “ideal functionality” [1,5,10,12,13,15,19]) that provides the following basic
services (via appropriate calls to the resource):

Registration. Each party is able to register his/her identity id . (Intuitively, an
identity could be an email address or telephone number, that—presumably
uniquely—identifies the registering party.)

Communication. Each party is able to send a message m to another party
with identity id .

While an IBE scheme can be used in an obvious way to syntactically real-
ize this functionality, the application is only secure if the IBE scheme satisfies
a suitable security definition. Investigating the suitability of different security
definitions for this task is the purpose of this paper.

The Semantics of Security Definitions. We point out that security defi-
nitions for cryptographic primitives can serve two entirely different purposes,
which are often not clearly distinguished. The first is to serve as a (technical)
reference point, on one hand for devising schemes provably satisfying the def-
inition based on a weak assumption, and on the other hand for building more
sophisticated primitives from any scheme satisfying the definition. For instance,
the one-way function definition serves this purpose excellently.

In this work, we are interested in a second purpose of security definitions,
namely assuring the security of a certain type of application when a scheme
satisfying the (technical) security definition is used. While definitions are usu-
ally devised with much intuition for what is needed in a certain application, a
conventional technical security definition for a cryptographic primitive generally
cannot directly imply the security of an associated application. Guaranteeing
the security of an application can be seen as giving an application-semantics to
a security definition.

1.2 Identity-Based Encryption and Its Security

The concept of identity-based encryption has been conceived as early as
1984 [20]. A first candidate of an IBE scheme was presented in 1991 in [14],
although without a detailed security model. In the 2000s, however, both a
detailed security model [3] and a number of concrete IBE schemes (with security
proofs under various assumptions) emerged, e.g., [3,7,9,21].

Idealizing Identity-Based Encryption 497

Both standard IBE security notions (IND-ID-CPA and IND-ID-CCA) are
formalized as a security game. In this game, a hypothetical adversary A chooses
an identity id∗, and messages m∗

0 and m∗
1, and tries to distinguish an encryption

of m∗
0 from an encryption of m∗

1 (both prepared for receiver identity id∗). Besides,
A may (adaptively) ask for arbitrary user secret keys for identities id �= id∗.
(In case of IND-ID-CCA security, A additionally gets access to a decryption
oracle for arbitrary identities.) If no efficient A can successfully distinguish these
ciphertexts, we consider the system secure.

At this point, we note that these game-based notions of security do allow
for a form of adaptivity (in the sense that A may adaptively ask for user secret
keys), but do not directly consider a concrete communication scenario.

1.3 Contributions

In this work, we investigate the goal of non-interactive communication, and
in particular the use of IBE schemes to achieve that goal. Perhaps surpris-
ingly, it turns out that the standard notions of IBE security do not imply
non-interactive communication in the standard model. However, we prove that
standard IBE security notions do imply non-interactive communication in the
random oracle model and also weaker forms of non-interactive communication in
the standard model. (Loosely speaking, standard IBE security notions achieve
non-interactive communication in a setting in which registrations always occur
before any attempt is made to send messages to the respective receiving party.)
Furthermore, we introduce a new security notion that is weaker than the stan-
dard notion, but still implies a very natural weaker notion of non-interactive
communication in the standard model.

To formalize our results, we use the constructive cryptography (CC) frame-
work due to Maurer and Renner [12,13]. We stress, however, that our results do
not depend on that particular formal model. Specifically, the reason that stan-
dard IBE security does not imply non-interactive communication is not tied to
the specifics of CC. (We give a more detailed explanation of this reason below,
and we will hint at the differences to a potential formulation in Canetti’s uni-
versal composability framework [5] where appropriate.)

A More Technical View. A little more technically, we model non-interactive
communication as a “delivery controlled channels” resource DCC.1 This resource
has a number of interfaces, called A, B1, . . . , Bn, and C, to the involved users.
Intuitively, interface C is used to register parties, A is used to send messages2,
and the interfaces Bi are used to receive messages by different parties.

More specifically, our resource admits the following types of queries:
1 The name “delivery controlled channels” indicates that a user can specify (or, con-

trol) to which recipient the message should be delivered.
2 In this work, we focus on passive attacks (i.e., on eavesdropping adversaries). In

particular, we will not consider adversarially sent messages. Thus, for simplicity, we
will assume that all incoming requests to send a message arrive at a single interface A.

498 D. Hofheinz et al.

– Registration queries (made at interface C) register an interface Bi for receiv-
ing messages sent to an identity id . (Depending on the envisioned physical
registration process, the fact that Bi was registered under identity id may
become public. We model this by leaking the pair (id , i) at all interfaces Bj .)

– Send queries (at interface A) send a message m to a given identity id . (The
message will then be delivered to all interfaces which have been registered
for this identity. Besides, any interface Bi which is later registered for that
identity id will also receive m upon registration.)

– When thinking of an IBE scheme as realizing DCC, we cannot prevent dis-
honest parties from sharing their keys in the real world. As a result, also the
messages sent to that party are shared with every party that got the key. Our
ideal system DCC has to make this explicit, so we admit share queries (at any
interface Bi) that cause all messages sent to this interface to be potentially3

published at all other interfaces Bj that have also made a share query.

Furthermore, all parties (i.e., all interfaces Bi) at the beginning (potentially)
receive an honestly generated random string (that corresponds to the ran-
domness in the public master key of an IBE scheme that can potentially be
extracted). We deem an IBE scheme secure if it implements this resource (when
used in the straightforward way) in the sense of constructive cryptography. (In
particular, this means that the view of any given party using the real IBE scheme
can be simulated efficiently with access to the ideal non-interactive communica-
tion resource only.) We note that we do not model secret keys or ciphertexts in
our ideal resource.

We remark that a possible ideal functionality in the UC setting would not
use interfaces, but instead restrict the registration, send, and share queries to
different parties. That is, only a designated “master party” could register other
parties for receiving messages under certain identities. Every party P could send
messages, and also issue a share query (with the same consequences as in our
CC-based formulation).

Why Current Game-Based Definitions Do Not Realize DCC. Our first
observation is that existing game-based definitions of IBE security (such as IND-
ID-CPA or IND-ID-CCA) do not appear to realize the above resource. To explain
the reason, suppose that one party P performs its own registration (under an
arbitrary identity and at an arbitrary interface Bi) after messages are sent to P .
(Naturally, P will not be able to receive these messages before obtaining his/her
own user secret key during registration.) Now we claim that P ’s view in that
scenario cannot be simulated efficiently. Concretely, observe that P ’s view with
a real IBE scheme essentially consists of two elements: first, a ciphertext c of a
yet-unknown message m sent by another party; and second, a user secret key usk
3 Sharing is not guaranteed because our real system does not include channels between

the Bi (since they are not needed). When composed with other systems, it might
however be the case that such channels become available, so sharing cannot be
excluded in a composable framework.

Idealizing Identity-Based Encryption 499

that allows to decrypt c to m. In order to simulate P ’s view, a simulator must
thus first produce a ciphertext c at a point at which P is not registered as a
receiving party. Since at that point, m is not yet known to P , c must in fact be
simulated without knowledge of m. Later on, however, the simulator must also
produce a user secret key usk that opens c as an encryption of m.

Put differently, the simulation thus faces a commitment problem: first, it has
to commit to a ciphertext c, and later explain this ciphertext as an encryption of
an arbitrary message m. For technically very similar reasons, public-key encryp-
tion cannot be simulated in the face of adaptive corruptions [17]. (However, we
stress that in our case, no adaptive corruptions occur; see also the remark below.)
As a consequence, we can show that non-interactive communication (as formal-
ized by our resource DCC) cannot be achieved in the standard model. (We also
note that this argument applies verbatim to the potential UC-based formulation
sketched above.)

Weaker Notions of Non-interactive Communication. Our negative result
for the above resource DCC raises the question what we can do to achieve some
form of non-interactive communication and also what existing, game-based IBE
security notions actually achieve.

Recall that the commitment problem that arises with DCC occurs only when
identities are registered after messages have been sent to this identity. A natural
way to avoid this scenario is to assume first a registration phase (in which no
message transmissions are allowed), and second a transmission phase (in which
no registrations are allowed). This separation into two phases can be modeled
as a resource st2DCC that only allows message transmissions (and from then
on ignores registration attempts) after a specific input at the “registration”
interface C.4 We can show that st2DCC can be achieved by IND-ID-CPA secure
IBE schemes. In that sense, the commitment problem of DCC is the only reason
why we cannot achieve that resource. Interestingly, achieving st2DCC actually
corresponds to a game-based notion of IBE security that we introduce and call
IND-ID1-CPA security and that is weaker than IND-ID-CPA security.

We also show that IND-ID-CPA security exactly corresponds to a resource
stDCC which only allows registrations of identities to which no message has
been sent so far. (In that sense, stDCC implements a “local” version of the two-
phase separation of st2DCC. Again, we stress that it is the responsibility of the
implementation to enforce such a local separation.)

Finally, we provide relaxed resources preDCC and pre2DCC that are “selec-
tive” versions of stDCC and st2DCC, respectively. (Here, “selective” means that
the set of identities id that can be registered has to be specified initially, over
interface A.) We proceed to show that resource preDCC is achieved precisely

4 While this separation is easily modeled as a resource, we stress that it is the respon-
sibility of the (designer of the) implementation to physically enforce this separation.
For instance, in face of a passive adversary, such a separation into phases could be
enforced simply by telling honest parties not to send any messages until the second
phase.

500 D. Hofheinz et al.

by selective IND-ID-CPA secure IBE schemes. Similarly, the resource pre2DCC
is equivalent to a selective version of the game-based notion associated with
the resource st2DCC. The relations among security definitions and the achieved
constructions are summarized in Fig. 1.

IND-ID-CPA

IND-sID-CPA

IND-ID1-CPA

IND-sID1-CPA

stDCC st2DCC

preDCC pre2DCC

Thm. 2 Thm. 3

Fig. 1. Implications among security definitions and the constructed resources. Secu-
rity definitions are drawn in boxes with rounded corners and resources are shown in
rectangular boxes. The figure says for example that by Theorem 2, an IBE scheme can
be used to construct the resource stDCC if and only if it is IND-ID-CPA secure, while
IND-ID-CPA security implies IND-sID-CPA security and IND-ID1-CPA security. The
equivalences of the selective security variants and the corresponding constructions are
shown in the full version.

Relevance of the Impossibility Result. While it perhaps appears natural
to process all registrations before messages for the corresponding identities are
sent, this restriction substantially weakens the usefulness of IBE. For example,
if IBE is used in a large context to encrypt emails where the encryption service
is independent of the email providers, it seems desirable to be able to send
encrypted emails to anyone with a valid email address, without knowing whether
they have already registered for the encryption service. In fact, if one has to
“ask” whether a user has already received his key before being able to send him
a message, one gives up non-interactivity and does not gain much compared to
standard public-key encryption.

Moreover, an interesting application, which was suggested in [3], is impossi-
ble: Assume the key authority every day publishes a key for the identity that
corresponds to the current date. One should now be able to send a message “to
the future” by encrypting it for the identity corresponding to, e.g., the follow-
ing day. We are here precisely in the situation where a ciphertext is received
before the corresponding key, so standard IBE does not guarantee the security
of this application5 (our construction in the random oracle model, however, does
provide this guarantee).
5 One can give a less technical argument why standard definitions are insufficient

for this application than the inability to simulate: It is not excluded by IND-ID-
CPA or IND-ID-CCA that first providing a ciphertext and later the user secret key
for the corresponding identity yields a binding commitment (maybe only for some
specific subset of the message space). In this case, a dishonest recipient Bob of a
ciphertext for the following day can use this ciphertext to commit himself (to some
third party) to the encrypted value, and open the commitment on the next day. Note
that Bob committed himself to a value he did not know, misleading the third party

Idealizing Identity-Based Encryption 501

On Dishonest Senders. The results in this paper only consider passive
attacks, i.e., we assume only honest parties send messages. This makes our impos-
sibility result only stronger, and all positive results can in principle be lifted to a
setting with potentially dishonest senders by replacing the CPA-definitions with
their (R)CCA-counterparts. However, this leads to some subtleties in the mod-
eling. For example, one needs to simulate a dishonest sender sending some non-
sensical bit string (which does not constitute a valid ciphertext) to a dishonest
receiver. Furthermore, the two phases in the results with a separate registration
and transmission phase become intermixed, because only honest parties are pre-
vented from sending during the registration phase. To avoid such technicalities
and simplify the presentation, we formulate all results only for honest senders.

1.4 Related Work

On the Difference to the IBE Ideal Functionality of Nishimaki Et al.
We note that an ideal functionality for IBE has already been presented by Nishi-
maki et al. [18] in the UC framework. However, unlike our resources (when
interpreted as UC functionalities as sketched above), their functionality was
constructed directly along the IBE algorithms, and not to model the goal of
non-interactive communication. Besides, their functionality does not guarantee
secrecy for ciphertexts generated before the respective receiver has been initial-
ized. (This relaxed guarantee corresponds to our relaxed resource stDCC that
disallows registrations after communication attempts.)

As a consequence, [18] could indeed show that the standard game-based
definition of security for IBE schemes is equivalent to realizing their ideal func-
tionality. Specifically, their IBE abstraction thus compares differently from ours
to game-based IBE security notions.

Relation to Functional Encryption. Identity-based encryption is known to
be a special case of functional encryption [4], which has already been modeled
in the constructive cryptography framework [11]. However, the results from that
paper cannot directly be applied to the context of non-interactive communica-
tion as studied in our paper. One reason is that a different goal was modeled
in [11] (namely adding access control to a public repository), where only three
parties are considered. More importantly, we analyze security definitions which
are specific to IBE, while [11] only considers (simulation based) security def-
initions for general functional encryption, which are more involved. We note,
however, that the same commitment problem arises in the context of functional
encryption [4].

Relation to Adaptive Corruptions in the Public-Key Setting. As noted,
technically, the commitment problem we encounter is very similar to the com-
mitment problem faced in adaptively secure public-key encryption [17]. There,

into believing he knew it, which is not possible when an ideal “sending-to-the-future”
functionality is used.

502 D. Hofheinz et al.

a simulation would have to first produce a ciphertext (without knowing the sup-
posed plaintext). Later, upon an adaptive corruption of the respective receiver,
the simulation would have to provide a secret key that opens that ciphertext
suitably.

However, in our case, the actual setting in which the problem occurs is not
directly related to corruptions. Namely, in our setting, a similar commitment
problem occurs because messages may be sent to an identity prior to an “activa-
tion” of the corresponding communication channel. (In fact, since the mapping
of receiving parties to identities may not be clear beforehand, prior to such an
activation it is not even clear where to route the corresponding sent messages.)
Hence, we can argue that the commitment problem we face is inherent to the
IBE setting, independently of adaptive corruptions (all results in this paper are
actually formulated for static corruptions).

2 Preliminaries

Constructive Cryptography. The results in this paper are formulated using a
simulation-based notion of security. There are many protocol frameworks based
on such a simulation-based security notion (e.g., [1,5,10,12,13,15,19]). However,
in this work, we use the constructive cryptography (CC) framework [12,13].

Briefly, CC makes statements about constructions of resources from other
resources. A resource is a system with interfaces via which the resource interacts
with its environment and which can be thought of as being assigned to parties.
Converters are systems that can be attached to an interface of a resource to
change the inputs and outputs at that interface, which yields another resource.
The protocols of honest parties and simulators correspond to converters. Dishon-
est behavior at an interface is captured by not applying the protocol (instead
of modeling an explicit adversary). An ideal resource is constructed from a real
resource by a protocol, if the real resource with the protocol converters attached
at the honest interfaces is indistinguishable from the ideal resource with the
simulators attached at the dishonest interfaces.

We introduce the relevant concepts in more detail, following [13], in the
following subsections. For readers more familiar with the Universal Compos-
ability (UC) framework [5], we also include explanations of how the presented
concepts relate to similar concepts in UC.

Efficiency and Security Parameters. Negligibility and efficiency is defined
with respect to a security parameter and the complexity of all algorithms and sys-
tems in this paper is polynomial in this security parameter. Thus, distinguishing
advantages and advantages in winning a game are functions of this parameter.
To simplify notation, we will omit security parameters and not provide them as
additional inputs.

Notation for Algorithms and Systems. The algorithms and systems in this
paper are described by pseudocode using the following conventions: For variables

Idealizing Identity-Based Encryption 503

x and y, x ← y denotes the assignment after which x has the value of y. For a
finite set S, x ← S denotes the assignment of a uniformly random element in S
to x. If A is an algorithm, x ← A(. . .) denotes executing A(. . .) and assigning the
returned value to x. For a probabilistic algorithm A and a (sufficiently long) bit
string r, A(r; . . .) denotes the execution of A with randomness r. We denote the
length of a bit string s by |s| and for s1, s2, |(s1, s2)| denotes the bit length of
(some fixed) unique encoding of (s1, s2).

2.1 Resources, Converters, and Distinguishers

We consider different types of systems, which are objects with interfaces via
which they interact with their environment. Interfaces are denoted by uppercase
letters. One can compose two systems by connecting one interface of each system.
The composed object is again a system.

Two types of systems we consider here are resources and converters.
Resources are denoted by bold uppercase letters or sans serif fonts and have
a finite set I of interfaces. Resources with interface set I are called I-resources.
Converters have one inside and one outside interface and are denoted by low-
ercase Greek letters or sans serif fonts. The inside interface of a converter
α can be connected to interface I ∈ I of a resource R. The outside inter-
face of α then serves as the new interface I of the composed resource, which
is denoted by αIR. We also write αIR instead of αI

IR for a converter αI .
For a vector of converters α = (αI1 , . . . , αIn) with I1, . . . , In ∈ I and a set
P ⊆ {I1, . . . , In} of interfaces, αPR denotes the I-resource that results from
connecting αI to interface I of R for every I ∈ P. Moreover, αPR denotes
the I-resource one gets when αI is connected to interface I of R for every
I ∈ {I1, . . . , In} \ P. For I-resources R1, . . . ,Rm, the parallel composition
[R1, . . . ,Rm] is defined as the I-resource where each interface I ∈ I allows to
access the corresponding interfaces of all sub-systems Ri as sub-interfaces. Sim-
ilarly, for converters α1, . . . , αm, we define the parallel composition [α1, . . . , αm]
via [α1, . . . , αm]I [R1, . . . ,Rm] := [αI

1R1, . . . , α
I
mRm].

A distinguisher D for resources with n interfaces is a system with n+1 inter-
faces, where n of them connect to the interfaces of a resource and a bit is output
at the remaining one. We write Pr [DR = 1] to denote the probability that D
outputs the bit 1 when connected to resource R. The goal of a distinguisher is
to distinguish two resources by outputting a different bit when connected to a
different resource. Its success is measured by the distinguishing advantage.

Definition 1. The distinguishing advantage of a distinguisher D for resources
R and S is defined as

ΔD(R,S) := |Pr [DR = 1] − Pr [DS = 1]|.
If ΔD(R,S) = 0 for all distinguishers D, we say R and S are equivalent,
denoted as R ≡ S. If the distinguishing advantage is negligible for all efficient
distinguishers, we say R and S are computationally indistinguishable, denoted
as R ≈ S.

504 D. Hofheinz et al.

We introduce two special converters 1 and ⊥. The converter 1 forwards all
inputs at one of its interfaces to the other one. We thus have for all I-resources
R and all I ∈ I

1IR ≡ R.

One can equivalently understand connecting 1 to interface I of a resource as not
connecting any converter to that interface. Moreover, the converter ⊥ blocks all
inputs at the connected interface. That is, interface I of ⊥IR does not accept
any inputs and there are no outputs at this interface.

Relation to UC Concepts. In UC, systems as above can correspond to pro-
tocols, ideal functionalities, or simulators that interact with the protocol envi-
ronment. More specifically, resources correspond to ideal functionalities, while
converters can correspond to real or hybrid protocols, or to simulators. Namely,
a UC protocol can be viewed as a way to convert calls to that protocol to calls
to an underlying communication infrastructure (or hybrid functionality). Con-
versely, a UC simulator can be viewed as a way to convert the network interface
of one protocol into that of another one. (In CC, there is no a-priori distinction
between I/O and network interfaces; hence, both UC protocols and UC simu-
lators correspond to converters.) Distinguishers as above correspond to the UC
protocol environments.

2.2 Filtered Resources

In some situations, specific interactions with a resource might not be guaranteed
but only potentially available. To model such situations, we extend the concept of
a resource. Let R be an I-resource and let φ = (φI)I∈I be a vector of converters.
We define the filtered resource Rφ as a resource with the same set of interfaces
I. For a party connected to interface I of Rφ, interactions through the converter
φI are guaranteed to be available, while interactions with R directly are only
potentially available to dishonest parties. The converter φI can be seen as a filter
shielding specific functionality of interface I. Dishonest parties can potentially
remove the filter to get access to all features of the resource R. Formally, Rφ is
defined as the set of all resources that allows all interactions allowed φIR but
not more than allowed by R; see [13] for more details.

2.3 Communication Resources

An important example of resources are communication channels, which allow the
sender A to send messages from the message space M := {0, 1}∗ to the receiver
B. We define two such channels, which differ in the capabilities of the adversary
E. If a channel is used in a context with several potentially dishonest parties,
all of them have access to interface E.

Definition 2. An authenticated channel from A to B, denoted as AUTA,B,
and a secure channel from A to B, denoted as SECA,B, are resources with three

Idealizing Identity-Based Encryption 505

interfaces A, B, and E. On input a message m ∈ M at interface A, they both
output the same message m at interface B. Additionally, AUTA,B outputs m at
interface E and SECA,B outputs the length |m| of the message at interface E.
Other inputs are ignored. Both channels allow arbitrarily many messages to be
sent.

Remark 1. Alternatively, one could define authenticated and secure channels
such that E also has the ability to delete messages. The results in this paper can
be adapted to such a setting, but our assumption that sent messages are always
delivered allows to simplify the presentation.

For authenticated channels, we do not want to guarantee that an adversary
learns the message, it is rather not excluded. Similarly, secure channels should
not guarantee that the length of the message leaks. To model this, we introduce
filters that block all outputs at interface E. We then have that a secure channel
is also authenticated, i.e., the set of (filtered) secure channels is a subset of the
set of (filtered) authenticated channels.

Definition 3. Let φAUT = φSEC := (1,1,⊥). We will consider the filtered
resources AUTA,B

φAUT and SECA,B
φSEC .

Note that

φAUT
{A,B,E}AUT

A,B = 1A1B⊥EAUTA,B ≡ 1A1B⊥ESECA,B = φSEC
{A,B,E}SEC

A,B

accepts messages at interface A and outputs them at interface B where inter-
face E is inactive.

We finally introduce a more advanced communication resource that has many
interfaces and allows a sender to send messages to all other interfaces. It is
authenticated in the sense that the messages cannot be modified and everyone
receives the same message.

Definition 4. The broadcast resource BCASTA,B for a set B has interface set
{A}∪B. On input a message m ∈ M at interface A, the same message is output
at all interfaces B ∈ B. Other inputs are ignored.

Relation to UC Concepts. The presented resources directly correspond to
UC ideal functionalities for authenticated, secure, or broadcast channels. The
different interfaces of the presented resources correspond to what different parties
in UC could send or receive. (Here we note a common design difference in UC
and CC: in UC, typically one would assume parties as fixed entities, and model
communication and interfaces around them. In CC, one would typically start
with the interfaces that reflect the semantic types of in- and outputs of a resource,
and only later think of connecting entities like parties.)

506 D. Hofheinz et al.

2.4 Construction of Resources

A protocol is a vector of converters with the purpose of constructing a so-called
ideal resource from an available real resource. Depending on which parties are
considered potentially dishonest, we get a different notion of construction.

As an example from [8], consider the setting for public-key encryption with
honest A and B where we want to construct a secure channel SECA,B

φSEC from

authenticated channels AUTB,A
φAUT and AUTA,B

φAUT in presence of a dishonest eaves-

dropper E. Here, the real resource is
[
AUTB,A

φAUT ,AUT
A,B
φAUT

]
and the ideal resource

is SECA,B
φSEC . In this setting, a protocol π = (πA, πB , πE) constructs S from R

with potentially dishonest E if there exists a converter σE (called simulator)
such that

πAπBπE

[
φAUT

E AUTB,A, φAUT
E AUTA,B

]
≈ φSEC

E SECA,B

and πAπB

[
AUTB,A,AUTA,B

]
≈ σESEC

A,B ,

where σE provides a sub-interface to the distinguisher for each channel that con-
stitutes the real resource. The first condition ensures that the protocol imple-
ments the required functionality and the second condition ensures that whatever
Eve can do when connected to the real resource without necessarily following
the protocol, she could do as well when connected to the ideal resource by using
the simulator σE . Since Eve is here only a hypothetical entity, we typically have
πE = ⊥.

In this paper, we consider the more general setting that includes several
potentially dishonest parties that (in contrast to Eve in the above example) also
get certain guarantees if they are honest while unable to do more than specified
by the ideal resource even if they are dishonest. We define a secure construction
as follows.

Definition 5. Let Rφ and Sψ be filtered I-resources and let π = (πI)I∈I be
a protocol. Further let U ⊆ I be the set of interfaces with potentially dishon-
est behavior. We say π constructs Sψ from Rφ with potentially dishonest U ,
denoted by

Rφ

π
==⇒

U
Sψ,

if there exist converters σ = (σU)U∈U such that

∀P ⊆ U : πPφPR ≈ σPψPS.

The converters σU are called simulators.

For U = I, this definition corresponds to the abstraction notion from [13],
which considers all parties as potentially dishonest. The construction notion is
composable in the following sense:

Rφ

π
==⇒

U
Sψ ∧ Sψ

π′
==⇒

U
Tτ =⇒ Rφ

π′π
==⇒

U
Tτ ,

Idealizing Identity-Based Encryption 507

where π′π is the protocol that corresponds to first applying π and then π′ to the
resource.

To apply the above definition to an unfiltered resource R, one can formally
introduce trivial filters φI := 1 for I ∈ I and consider the filtered resource Rφ

which is identical to R. In such cases, we will omit the filters. We refer the reader
to [13] for more details.

Relation to UC Concepts. The “constructs” notion presented above directly
corresponds to the UC notion of secure realization. (The combination of π and R
corresponds to the real protocol in UC, while S matches the UC ideal protocol.)
The “constructs” notion does not consider an explicit adversary on the real pro-
tocol. (Instead, in UC terms, a dummy adversary is considered without loss of
generality.) There is a difference, however, in the modeling of corruptions. Gen-
erally, in UC, adaptive corruptions are considered. In the CC modeling above,
only static corruptions of parties are considered. Moreover, instead of model-
ing corruptions through special “corrupt” messages sent from the adversary or
environment, in CC corruptions are modeled simply be letting the distinguisher
connect to the interfaces of corrupted parties.

Finally, a subtle difference between CC and UC security is that CC security
requires “local” simulators for each interface, whereas in UC, one simulator is
required that handles all parties (resp. interfaces) at once. While this makes CC
security a stricter notion than UC security, this difference will not be relevant
to our results. (In particular, our negative result has nothing to do with the fact
that CC security requires local simulation.)

3 Delivery Controlled Channels

A broadcast channel allows a sender A to send messages to recipients B1, . . . , Bn.
One can understand the application of an IBE scheme to add some form of
delivery control to such a channel. More specifically, the enhanced channel allows
A to send a message for some identity id in an identity space ID such that
only the Bi that are registered for this identity receive the message, even if
several other Bi are dishonest. We assume this registration is managed by a
central authority C. We formalize this by a delivery controlled channel DCC.
This resource also allows the registration of identities after messages have been
sent for this identity. In this case, the corresponding user after registration learns
all such messages.

Because the public key and each ciphertext contain randomness, during ini-
tialization and for each sent message, all parties (potentially) receive common
randomness. Moreover, when someone gets registered for an identity, this iden-
tity together with a corresponding user secret key is sent to this party over a
secure channel. By definition, a secure channel can leak the length of the trans-
mitted messages. Since the length of user secret keys can depend on the identity
for which the key has been generated and also on the used randomness, dis-
honest users potentially learn which identity has just been registered for whom

508 D. Hofheinz et al.

and potentially even which randomness was used to generate the corresponding
secret key. Furthermore, dishonest recipients can share their secret keys with
others in the real world, which has the effect in the ideal world that the other
recipients also learn the messages sent for an identity that has been registered
for the user who shared his keys. We model this by a special symbol share that
Bi can input. A message sent for identity id is then received by Bi if id has been
registered for Bi or if there is a Bj such that Bi and Bj have input share and
id has been registered for Bj .

Definition 6. Let n, ρ ∈ N, M := {0, 1}∗, and let ID be a nonempty set. The
resource DCCn,ID,ρ has the interfaces A, C, and Bi for i ∈ {1, . . . , n}. The
resource internally manages the set S ⊆ {B1, . . . , Bn} of interface names that
want to share their identities and for each i ∈ {1, . . . , n}, the set Ii ⊆ ID of
identities registered for interface Bi. Initially, both sets are empty. The resource
works as follows:

Initialization
j ← 1
r ← {0, 1}ρ

for all i ∈ {1, . . . , n} do
output r at interface Bi

Interface A
Require: (idj , mj) ∈ ID × M

rj ← {0, 1}ρ

for all i ∈ {1, . . . , n} do
if idj ∈ Ii or

(
Bi ∈ S and idj ∈ ⋃k∈S Ik

)
then

output (idj , mj , rj) at interface Bi

else
output (idj , |mj |, rj) at interface Bi

j ← j + 1

Interface Bi

Require: share

S ← S ∪ {Bi}

Interface C
Require: (id , i) ∈ ID × {1, . . . , n}

Ii ← Ii ∪ {id}
r ← {0, 1}ρ

for all k ∈ {1, . . . , n} do
output (id , i, r) at interface Bk

if k = i or {Bi, Bk} ⊆ S then
for all l ∈ {1, . . . , j − 1} such that id l = id do

output ml at interface Bk

All inputs not matching the given format are ignored.

Idealizing Identity-Based Encryption 509

The randomness that the Bi get corresponds to randomness one can poten-
tially extract from the public key, the ciphertexts, and the length of the user
secret keys of an IBE scheme. Honest users are not guaranteed to receive this
randomness, we rather cannot exclude that dishonest parties do so. Similarly,
we cannot exclude that dishonest parties share their identities, that they learn
the identity for which a message is designated and the length of the mes-
sage without being registered for that identity, and that they learn who gets
registered for which identity. To model that these interactions are not guar-
anteed, we introduce filters to block inputs and outputs at interfaces Bi for
honest parties: For i ∈ {1, . . . , n}, let φDCC

Bi
be the converter that on input

(id ,m, r) ∈ ID × M × {0, 1}ρ at its inside interface, outputs (id ,m) at its
outside interface, on input m ∈ M at its inside interface, outputs m at its out-
side interface, and on input (id , k, r) ∈ ID×{1, . . . , n}×{0, 1}ρ with k = i at its
inside interface, outputs id at its outside interface. All other inputs at any of its
interfaces are ignored and thereby blocked. Further let φDCC

A = φDCC
C := 1 be the

converter that forwards all inputs at one of its interfaces to the other one and
let φDCC := (φDCC

A , φDCC
C , φDCC

B1
, . . . , φDCC

Bn
). We will consider the filtered resource

DCCn,ID,ρ
φDCC .

Remark 2. The resource defined above assumes that a central authority C reg-
isters all identities and allows one party to have more than one identity and
one identity to be registered for several users. That resource can now be used
in larger context where this registration process is regulated. For example, one
can have a protocol programmed on top of DCC that requires Bi to send his
identity together with a copy of his passport to C. Moreover, C could ensure
that each identity is registered for at most one user. In such an application, the
resource DCC could directly be used without considering how it was constructed.
Due to composition of the constructive cryptography framework, we can thus
focus on the construction of DCC and decouple confidentiality from the actual
registration process.

Static Identity Management. We now define a more restricted resource that
only allows the registration of an identity as long as no message has been sent
for this identity.

Definition 7. Let n, ρ ∈ N, M := {0, 1}∗, and let ID be a nonempty set.
The resource stDCCn,ID,ρ is identical to DCCn,ID,ρ except that inputs (id , i) ∈
ID × {1, . . . , n} at interface C are ignored if id ∈ ⋃j−1

k=1{idk}. We will use the
same filters as above and consider the resource stDCCn,ID,ρ

φDCC .

The above resource prevents identities for which messages have been sent to
be registered, but other identities can still be registered. The following resource
restricts the registration process further and operates in two phases: Initially,
only registrations are allowed and no messages can be sent. At any point, C can
end the registration phase and enable A to send messages.

510 D. Hofheinz et al.

Definition 8. Let n, ρ ∈ N, M := {0, 1}∗, and let ID be a nonempty set. The
resource st2DCCn,ID,ρ behaves as DCCn,ID,ρ except that it initially ignores all
inputs at interface A. On input the special symbol end registration at inter-
face C, the resource outputs registration ended at interfaces B1, . . . , Bn,6 and
from then on ignores all inputs at interface C and allows inputs at interface A.
We will consider the filtered resource st2DCCn,ID,ρ

φDCC .

Note that when using stDCC, A can prevent the registration of an identity
by sending a message for this identity. On the other hand, st2DCC gives C full
control over the registration process while being less dynamic. Depending on the
application, one of these resources might be preferable.

Predetermined Identities. We finally introduce two resources that addition-
ally require all identities that are used be determined at the beginning. This
allows us to capture the guarantees provided by selectively secure IBE schemes
(see Definition 11).

Definition 9. Let n, ρ ∈ N, M := {0, 1}∗, and let ID be a nonempty set. The
resources preDCCn,ID,ρ and pre2DCCn,ID,ρ have the interfaces A, C, and Bi

for i ∈ {1, . . . , n}. Before the resources output anything or accept any input,
they wait for the input of a finite set S ⊆ ID (encoded as a list of its ele-
ments) at interface A. On this input, they output ok at interfaces B1, . . . , Bn.
Afterwards, preDCCn,ID,ρ behaves identically to stDCCn,ID,ρ and pre2DCCn,ID,ρ

behaves identically to st2DCCn,ID,ρ with the exception that they only accept
inputs (id j ,mj) ∈ S × M at interface A (there is no restriction on inputs at
interface C). We will again consider the filtered resources preDCCn,ID,ρ

φDCC and

pre2DCCn,ID,ρ
φDCC .7

4 IBE Schemes and Protocols

4.1 IBE Schemes and Their Security

Identity-Based Encryption. An identity-based encryption (IBE) scheme E
with message space M and identity space ID consists of four PPT algorithms.
Key generation Gen() outputs a master public key mpk and a master secret
key msk . Extraction Ext(msk , id) (for a master secret key msk and an iden-
tity id ∈ ID) outputs a user secret key usk id . Encryption Enc(mpk , id ,m) (for

6 Note that φDCC blocks this output for honest users, i.e., it is not necessarily guaran-
teed that everyone learns that the registration has ended. It is not excluded by our
protocol since C there informs A that messages may now be sent, and this commu-
nication could be observed by dishonest users. If it is desirable in an application that
everyone learns that the registration has ended, one can still use st2DCCn,ID,ρ by
letting C explicitly send that information to all Bi via an additional channel. This
would happen outside of the resource st2DCCn,ID,ρ as a separate construction.

7 Again, the filter φDCC blocks the outputs ok and registration ended at inter-
faces Bi.

Idealizing Identity-Based Encryption 511

Experiment Expind-id-cpaE,A :
(mpk ,msk) ← Gen()
(st , id ,m0,m1) ← AExt(msk,·)(mpk)
b ← {0, 1}
c∗ ← Enc(mpk , id ,mb)
b′ ← AExt(msk,·)(st , c∗)
Return 1 if b′ = b, else return 0

Experiment Expind-sid-cpaE,A :
(st , id) ← A()
(mpk ,msk) ← Gen()
(st ′,m0,m1) ← AExt(msk,·)(st ,mpk)
b ← {0, 1}
c∗ ← Enc(mpk , id ,mb)
b′ ← AExt(msk,·)(st ′, c∗)
Return 1 if b′ = b, else return 0

Fig. 2. The IND-(s)ID-CPA experiment with scheme E and adversary A.

a master public key mpk , an identity id ∈ ID, and a message m ∈ M) out-
puts a ciphertext c. Decryption Dec(usk id , id , c) (for a user secret key usk id ,
an identity id ∈ ID, and a ciphertext c) outputs a message m ∈ M ∪ {⊥}.
For correctness, we require that for all (mpk ,msk) ← Gen(), all id ∈ ID, all
m ∈ M, all c ← Enc(mpk , id ,m), and all usk id ← Ext(msk , id), we always have
Dec(usk id , id , c) = m.

Standard Security Definitions for IBE Schemes. We first provide the
standard security definition for IBE schemes against passive attacks:

Definition 10 (IND-ID-CPA security). Consider the experiment Expind-id-cpaE,A
in Fig. 2 for an IBE scheme E = (Gen, Ext, Enc, Dec) and an algorithm A. In this
experiment, A is not allowed to output an identity id that it has queried to its Ext
oracle, or to later query id to Ext. Furthermore, A must output m0,m1 of equal
length. Let

Advind-id-cpaE,A := Pr
[
Expind-id-cpaE,A = 1

]
− 1/2.

We say that E has indistinguishable ciphertexts under chosen-plaintext attacks
(is IND-ID-CPA secure) if Advind-id-cpaE,A is negligible for all PPT A.

We further consider a weaker security notion introduced in [6] where the
adversary has to specify the identity he wants to attack at the beginning of the
experiment.

Definition 11 (IND-sID-CPA security). Consider experiment Expind-sid-cpaE,A
in Fig. 2 for an IBE scheme E = (Gen, Ext, Enc, Dec) and an algorithm A. In
this experiment, A is not allowed to query id to Ext and has to output m0,m1

of equal length. Let

Advind-sid-cpaE,A := Pr
[
Expind-sid-cpaE,A = 1

]
− 1/2.

We say that E has indistinguishable ciphertexts under selective identity, chosen-
plaintext attacks (is IND-sID-CPA secure) if Advind-sid-cpaE,A is negligible for all
PPT A.

512 D. Hofheinz et al.

Experiment Expind-id1-cpaE,A :
(mpk ,msk) ← Gen()
st ← AExt(msk,·)()
(st ′, id ,m0,m1) ← A(st ,mpk)
b ← {0, 1}
c∗ ← Enc(mpk , id ,mb)
b′ ← A(st ′, c∗)
Return 1 if b′ = b, else return 0

Experiment Expind-sid1-cpaE,A :
(st , id) ← A()
(mpk ,msk) ← Gen()
st ′ ← AExt(msk,·)(st)
(st ′′,m0,m1) ← A(st ′,mpk)
b ← {0, 1}
c∗ ← Enc(mpk , id ,mb)
b′ ← A(st ′′, c∗)
Return 1 if b′ = b, else return 0

Fig. 3. The IND-(s)ID1-CPA experiment with scheme E and adversary A.

Non-adaptive Security. We introduce two novel security notions for IBE
schemes that loosely correspond to variants of the standard definitions under
“lunchtime attacks” [16]. While CCA1 in contrast to CCA allows the adversary
only to ask decryption queries in an initial phase, our definitions restrict the
adversary to ask Ext queries only in an initial phase.

Definition 12 (IND-(s)ID1-CPA security). Consider the two experiments
Expind-id1-cpaE,A and Expind-sid1-cpaE,A for an IBE scheme E = (Gen, Ext, Enc, Dec) and
an algorithm A in Fig. 3. In these experiments, A is only considered valid if all
queries to its Ext oracle are different from id and if |m0| = |m1|. Let

Advind-id1-cpaE,A := Pr
[
Expind-id1-cpaE,A = 1

]
− 1/2 and

Advind-sid1-cpaE,A := Pr
[
Expind-sid1-cpaE,A = 1

]
− 1/2.

We say that E has indistinguishable ciphertexts under non-adaptive chosen-
plaintext attacks (is IND-ID1-CPA secure) if Advind-id1-cpaE,A is negligible for all
valid PPT A and E has indistinguishable ciphertexts under selective identity,
non-adaptive chosen-plaintext attacks (is IND-sID1-CPA secure) if Advind-sid1-cpaE,A
is negligible for all valid PPT A.

4.2 Using IBE Schemes in Constructions

In this section, we define the real resources we assume to be available and describe
the protocol converters that are designed to construct the resources defined in
Sect. 3 using an IBE scheme. Whether these constructions are achieved according
to Definition 5 depends on the security properties of the IBE scheme, which we
analyze in Sect. 5.

Delivery Controlled Channels. To construct a delivery controlled channel
from a broadcast channel8, we use an IBE scheme in a straightforward way: The
8 Note that we consider the sender to be honest in this paper. Hence, assuming a

broadcast channel to be available is not a strong assumption.

Idealizing Identity-Based Encryption 513

party at interface C generates all keys, sends the public key authentically to A
and the user secret keys securely to the corresponding Bi. To send a message, A
broadcasts an encryption thereof and the Bi with matching identity decrypt it.
Hence, we need in addition to the broadcast channel an authenticated channel
from C to A to transmit the public key and secure channels from C to each Bi.
We abbreviate the network consisting of these channels as

NW :=
[
BCASTA,{B1,...,Bn},AUTC,A,SECC,B1 , . . . ,SECC,Bn

]
.

The real resource in our construction corresponds to the filtered resource NWφNW

where φNW := (φNW
A , φNW

C , φNW
B1

, . . . , φNW
Bn

) with φNW
I := [1, φAUT

I , φSEC
I , . . . , φSEC

I]
for I ∈ {A,C,B1, . . . , Bn}.9

For an IBE scheme E , we define protocol converters enc, dec, and reg as
follows and let IBE := (enc, reg, dec, . . . , dec): The converter enc first expects to
receive a master public key mpk at its inside interface and stores it internally.
On input a message and identity (id ,m) ∈ ID × M at its outside interface, it
computes c ← Enc(mpk , id ,m) and outputs (id , c) at its inside sub-interface to
BCASTA,{B1,...,Bn}. The converter dec on input an identity and a corresponding
user secret key (id , usk id) at its inside interface, stores this tuple internally and
outputs id at its outside interface. For all pairs (id j , cj) with id j = id stored
internally, dec computes mj ← Dec(usk id , id , cj) and outputs mj at its outside
interface. On input an identity and a ciphertext (id , c) at its inside interface,
it stores (id , c) internally and if it has stored a user secret key for the identity
id , computes m ← Dec(usk id , id , c) and outputs (id ,m) at its outside interface.
The converter reg initially computes (mpk ,msk) ← Gen(), stores msk internally,
and outputs mpk at its inside sub-interface to AUTC,A

φAUT . On input (id , i) at its
outside interface, it computes usk id ← Ext(msk , id) and outputs (id , usk id) at
its inside sub-interface to SECC,Bi

φSEC .

Static Identity Management. To construct stDCC, the protocol at inter-
face C has to reject registration requests for identities for which messages have
already been sent. To be able to do so, it needs to know for which identities this
is the case. We thus assume there is an additional authenticated channel from
A to C that is used to inform C about usage of identities. The real resource is
then NW+

φNW+ for

NW+ :=
[
BCASTA,{B1,...,Bn},AUTA,C ,AUTC,A,SECC,B1 , . . . ,SECC,Bn

]

9 In this context, the channel SECC,Bi is a resource with n + 2 interfaces where inter-
face C corresponds to interface A of the resource in Definition 2, interface Bi corre-
sponds to interface B, and interfaces Bj for j �= i correspond to copies of interface E.
Similarly, φSEC

C corresponds to φSEC
A in Definition 3, φSEC

Bi
corresponds to φSEC

B , and

φSEC
Bj

to φSEC
E for j �= i. For simplicity, we do not introduce a different notation for

the different filters.

514 D. Hofheinz et al.

and φNW+
:= (φNW+

A , φNW+

C , φNW+

B1
, . . . , φNW+

Bn
) where for I ∈ {A,C,B1, . . . , Bn},

φNW
I := [1, φAUT

I , φAUT
I , φSEC

I , . . . , φSEC
I].

We define the protocol IBEs := (encs, regs, decs, . . . , decs) by describing the
differences from IBE as follows: On input (id ,m) ∈ ID × M at its outside
interface, encs additionally outputs id at its inside interface to AUTA,C

φAUT . The
converter regs on input id at its inside interface, stores this identity internally.
It subsequently ignores inputs (id , i) at its outside interface if it has stored id .

Note that it is crucial for this construction that AUTA,C cannot be inter-
rupted or delayed. Otherwise an attacker could prevent C from learning that
some identity has already been used to send messages and this identity could still
be registered. In practice, one could realize such channel by letting C acknowl-
edge the receipt while A sends the message only after receiving this acknowledg-
ment. This would, however, contradict the goal of non-interactivity.

If such reliable channel is not available, we can still construct st2DCC from
NW using the protocol IBE2s := (enc2s, reg2s, dec2s, . . . , dec2s) defined as follows:
It works as IBE, except that reg2s initially does not send mpk to A. On input
end registration at its outside interface, reg2s sends mpk to A and ignores
further inputs. The converter enc2s ignores all inputs until it receives mpk at its
inside interface and from then on handles all inputs as enc.

Remark 3. Note that sending mpk is here used to signal A that it can now start
sending messages. Since we assume that the sender is always honest, we do not
need to require, e.g., that mpk cannot be computed from user secret keys; as
long as mpk has not been sent, A will not send any messages.

Predetermined Identities. To construct preDCCφDCC from NW+

φNW+ , we define
the protocol IBEp = (encp, regp, decp, . . . , decp) that uses a selectively secure IBE
scheme. The protocol is almost identical to IBEs with the difference that encp

initially expects a finite set S ⊆ ID (encoded as a list of its elements) as input
at its outside interface. On this input, it stores S internally, sends ok to C via
AUTA,C

φAUT , and subsequently ignores all inputs (id ,m) for id /∈ S. The converter
regp initially waits and ignores all inputs at its outside interface until it receives
the input ok at its inside interface. It then sends mpk to A and from then on
behaves identically to reg2s.

Similarly, we define a protocol IBE2p = (enc2p, reg2p, dec2p, . . . , dec2p) to con-
struct pre2DCCφDCC from NW+

φNW+ . It works as IBE except that enc2p initially
expects a finite set S ⊆ ID (encoded as a list of its elements) as input at its
outside interface. On this input, it stores S internally, sends ok to C via AUTA,C

φAUT ,

and ignores all further inputs until it receives mpk over AUTC,A
φAUT . From then on,

it handles all inputs as enc, but ignores inputs (id ,m) for id /∈ S. The converter
reg2p initially waits and ignores all inputs at its outside interface until it receives
the input ok at its inside interface. It then accepts registration requests at its
outside interface as reg. On input end registration at its outside interface,
reg2p sends mpk to A and ignores further inputs.

Idealizing Identity-Based Encryption 515

Remark 4. While both IBEp and IBE2p need AUTA,C
φAUT , IBE

2p uses this channel
only once in the beginning to let A send ok to C. The availability of such channel
only at the beginning might be easier to guarantee in practice.

5 Constructing Delivery Controlled Channels

5.1 Impossibility of Construction

We now show that there is no IBE scheme that can be used to construct DCCφDCC

from NWφNW .

Theorem 1. Let n > 0, ID a nonempty set, and let ρ ∈ N. Then there is no
IBE scheme such that we have for the corresponding protocol IBE

NWφNW

IBE
==⇒

{B1,...,Bn}
DCCn,ID,ρ

φDCC .

Proof. This proof closely resembles Nielsen’s impossibility proof of non-com-
mitting public-key encryption [17]. Assume IBE = (enc, reg, dec, . . . , dec) achieves
the construction and let P := {B1}. Then there exists a converter σB1 such that
IBEPφNW

P NW ≈ σPφDCC
P DCCn,ID,ρ. Let id ∈ ID, let ν be an upper bound on the

length of the output of Ext(·, id), and consider the following distinguisher: The
distinguisher D chooses m ∈ {0, 1}ν+1 uniformly at random and inputs (id ,m)
at interface A. Let (id , c) be the resulting output at interface B1 (if there is no
such output, D returns 0). Then, D inputs (id , 1) at interface C. Let (id , usk)
be the resulting output at interface B1 and return 0 if there is no such output
or if |usk | > ν. Finally, D inputs first (id , c) and then (id , usk) at the inside
interface of dec and returns 1 if dec outputs id and m at its outside interface,
and 0 otherwise.

Correctness of the IBE scheme implies that D always outputs 1 if connected
to the real resource. In the ideal world, c is generated independently of m only
given |m| because σB1 does not learn m until (id , 1) is input at interface C. More-
over, there are at most 2ν possible values for usk such that |usk | ≤ ν. Hence,
there are at most 2ν values of m such that there exists a usk that decrypts c to
m with probability more than 1

2 . Since m was chosen uniformly from {0, 1}ν+1,
D outputs 1 with probability at most 1

2 + 1
2 · 1

2 = 3
4 when connected to the ideal

resource. Thus, the distinguishing advantage is at least 1
4 , which is a contradic-

tion. ��

5.2 Equivalence of IND-ID-CPA Security and Construction of
Statically Delivery Controlled Channels

While no IBE scheme constructs DCCφDCC from NWφNW , we show that IND-ID-
CPA security is sufficient to construct stDCCφDCC from NW+

φNW+ . See the full
version for a proof.

516 D. Hofheinz et al.

Lemma 1. Let ρ be an upper bound on the randomness used in one invocation
of Gen, Ext, and Enc. Then, there exist efficient converters σB1 , . . . , σBn

such
that for all P ⊆ {B1, . . . , Bn} and for all efficient distinguishers D that input at
most q messages at interface A, there exists an efficient algorithm A such that

ΔD
(
IBEs

PφNW+

P NW+, σPφDCC
P stDCCn,ID,ρ

)
= 2q ·

∣
∣
∣Adv

ind-id-cpa
E,A

∣
∣
∣ .

We now prove conversely that IND-ID-CPA security is also necessary for the
construction:

Lemma 2. Let ρ ∈ N and P ⊆ {B1, . . . , Bn},P �= ∅. Then, for all valid IND-
ID-CPA adversaries A and for all efficient converters σBi

for Bi ∈ P, there
exists an efficient distinguisher D such that

∣
∣
∣Adv

ind-id-cpa
E,A

∣
∣
∣ = ΔD

(
IBEs

PφNW+

P NW+, σPφDCC
P stDCCn,ID,ρ

)
.

Proof. Let A be a valid IND-ID-CPA adversary and let σBi
be efficient converters

for Bi ∈ P. Further let Bi ∈ P. We now define two distinguishers, D0 and
D1. Let mpk be the initial output at interface Bi of the resource connected to
the distinguisher (if nothing is output, let mpk be some default value10). Both
distinguishers then invoke A(mpk). The oracle query id ′ of A is answered as
follows by both distinguishers: They input (id ′, i) at interface C and let the
answer to the query be usk id′ where (id ′, usk id′) is the resulting output of the
resource at interface Bi (and let usk id′ be some default value if there is no such
output). If A returns (, , id ,m0,m1), D0 and D1 input (id ,m0) and (id ,m1) at
interface A, respectively. Now let (id , c∗) be the resulting output at the sub-
interface of Bi corresponding to BCASTA,{B1,...,Bn} (and let c∗ be some default
value if there is no such output). Both distinguishers then invoke A on input
(, c∗). Oracle queries are answered as above. Note that id will not be queried
since A is a valid IND-ID-CPA adversary and therefore inputs at interface C
will be handled as before. Finally, D0 and D1 output the bit returned by A.

Note that for all β ∈ {0, 1}

Pr
[
Dβ

(
IBEs

PφNW+

P NW+
)

= 1
]

= Pr
[
Expind-id-cpaE,A = β

∣
∣
∣ b = β

]

because the outputs of the real system are precisely generated as the correspond-
ing values in the IND-ID-CPA experiment. Further note that we have

Pr
[
D0

(
σPφDCC

P stDCCn,ID,ρ
)

= 1
]

= Pr
[
D1

(
σPφDCC

P stDCCn,ID,ρ
)

= 1
]

since D0 and D1 only differ in the message they input and σBi
only learns the

length of that message, which is the same for the two messages (since A is a
valid IND-ID-CPA adversary), so its output does not depend on the choice of

10 Note that this is only possible in the ideal system if σBi is flawed. Hence, one could
distinguish better in this case, but we do not need that for the proof.

Idealizing Identity-Based Encryption 517

the message. Now let D be the distinguisher that chooses β ∈ {0, 1} uniformly
at random, runs Dβ , and outputs the XOR of Dβ ’s output and β. We conclude

∣
∣
∣Adv

ind-id-cpa
E,A

∣
∣
∣ =

∣
∣
∣
∣Pr

[
Expind-id-cpaE,A = 1

]
− 1

2

∣
∣
∣
∣

=
1
2

∣
∣
∣Pr

[
Expind-id-cpaE,A = 1

∣
∣
∣ b = 0

]
+ Pr

[
Expind-id-cpaE,A = 1

∣
∣
∣ b = 1

]
− 1

∣
∣
∣

=
1
2

∣
∣
∣Pr

[
Expind-id-cpaE,A = 0

∣
∣
∣ b = 0

]
− Pr

[
Expind-id-cpaE,A = 1

∣
∣
∣ b = 1

]∣
∣
∣

=
1
2

∣
∣
∣Pr

[
D0

(
IBEs

PφNW+

P NW+
)

= 1
]

− Pr
[
D1

(
IBEs

PφNW+

P NW+
)

= 1
]∣
∣
∣

=
1
2

∣
∣
∣
∣Pr

[
D0

(
IBEs

PφNW+

P NW+
)

= 1
]

+ Pr
[
D1

(
IBEs

PφNW+

P NW+
)

= 0
]

− Pr
[
D0

(
σPφDCC

P stDCCn,ID,ρ
)

= 1
]

− Pr
[
D1

(
σPφDCC

P stDCCn,ID,ρ
)

= 0
]∣∣
∣
∣

= ΔD
(
IBEs

PφNW+

P NW+, σPφDCC
P stDCCn,ID,ρ

)
. ��

Lemma 1 and 2 together imply the following theorem:

Theorem 2. Let ρ be an upper bound on the randomness used in one invocation
of Gen, Ext, and Enc. We then have

NW+

φNW+

IBEs

==⇒
{B1,...,Bn}

stDCCn,ID,ρ
φDCC

⇐⇒ the underlying IBE scheme is IND-ID-CPA-secure .

The following theorem can be proven very similarly by observing that the
reductions used to prove Theorem 2 translate queries to the Ext oracle by the
adversary to inputs at interface C by the distinguisher and vice versa and
that NWφNW and st2DCCn,ID,ρ

φDCC restrict such inputs exactly as A is restricted

in Expind-id1-cpaE,A .

Theorem 3. Let ρ be an upper bound on the randomness used in one invocation
of Gen, Ext, and Enc. We then have

NWφNW

IBE2s

==⇒
{B1,...,Bn}

st2DCCn,ID,ρ
φDCC

⇐⇒ the underlying IBE scheme is IND-ID1-CPA-secure.

Selective Security. We similarly show the equivalence of IND-sID-CPA secu-
rity and the construction of statically delivery controlled channels with prede-
termined identities in the full version.

518 D. Hofheinz et al.

6 Construction with Random Oracles

6.1 Random Oracles

We show how any IND-ID-CPA secure IBE scheme E = (Gen, Ext, Enc, Dec) can
be used to construct DCC from the resource NWRO, which corresponds to our
network together with a random oracle. A random oracle is a uniform random
function {0, 1}∗ → {0, 1}k for some k to which all parties have access. The heuris-
tic to model a hash function as a random oracle was proposed by Bellare and
Rogaway [2]. Theorem 1 implies that no hash function can be used to instantiate
the random oracle in this construction. However, if a random oracle is actually
available, e.g., via a trusted party or secure hardware, the overall construction
is sound. For our purpose, it is sufficient to consider random oracles with binary
co-domain.

Definition 13. The resource RO has interfaces A, C, and B1, . . . , Bn. On input
x ∈ {0, 1}∗ at interface I ∈ {A,C,B1, . . . , Bn}, if x has not been input before
(at any interface), RO chooses y ∈ {0, 1} uniformly at random and outputs y at
interface I; if x has been input before and the resulting output was y, RO outputs
y at interface I.

Programmability. For our construction, we will assume that a random ora-
cle is available as part of the real resource. Our protocol then constructs an
ideal resource that does not give the honest parties access to the random oracle.
Thus, the simulators in the ideal world can answer queries to the random oracle
arbitrarily as long as they are consistent with previous answers and are indistin-
guishable from uniform bits. This gives the simulators additional power which
allows us to overcome the impossibility result from Theorem 1. Since the sim-
ulators can in some sense “reprogram” the random oracle, we are in a scenario
that is often referred to as programmable random oracle model.

6.2 Construction of Delivery Controlled Channels

Our protocol IBEro uses the same idea as Nielsen’s scheme [17] and essentially
corresponds to the transformation from [4, Section 5.3] (see also [11]) applied to
an IBE scheme. At a high level, it works as follows: To send a message m for
identity id , choose a bit string r (of sufficient length, say λ) uniformly at random,
input (r, 1), . . . , (r, |m|) to the random oracle to obtain a uniform value r′ with
|r′| = |m|. Finally encrypt r with the IBE scheme for identity id and send the
resulting ciphertext together with m ⊕ r′. The security proof exploits that the
one-time pad is non-committing and the random oracle is programmable.

A detailed description of the protocol and the involved resources as well as
a proof sketch of the following theorem can be found in the full version.

Theorem 4. Let ρ be an upper bound on the randomness used in one invocation
of Gen, Ext and Enc. If E is IND-ID-CPA secure, we have

NWRO
φNWRO

IBEro

==⇒
{B1,...,Bn}

[
DCCn,ID,ρ+λ

φDCC ,ROφRO

]
.

Idealizing Identity-Based Encryption 519

Acknowledgments. Ueli Maurer was supported by the Swiss National Science Foun-
dation (SNF), project no. 200020-132794. Dennis Hofheinz was supported by DFG
grants HO 4534/2-2 and HO 4534/4-1.

References

1. Beaver, D.: Foundations of secure interactive computing. In: Feigenbaum, J. (ed.)
CRYPTO 1991. LNCS, vol. 576, pp. 377–391. Springer, Heidelberg (1992)

2. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Proceedings of the 1st ACM Conference on Computer and
Communications Security, CCS 1993, pp. 62–73. ACM, New York (1993)

3. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)

4. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011)

5. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: Proceedings of FOCS 2001, pp. 136–145. IEEE Computer Society
(2001)

6. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer,
Heidelberg (2003)

7. Cocks, C.: An Identity based encryption scheme based on quadratic residues. In:
Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363.
Springer, Heidelberg (2001)

8. Coretti, S., Maurer, U., Tackmann, B.: Constructing confidential channels from
authenticated channelspublic-key encryption revisited. In: Sako, K., Sarkar, P.
(eds.) Advances in Cryptology - ASIACRYPT 2013. Lecture Notes in Computer
Science, vol. 8269, pp. 134–153. Springer, Heidelberg (2013)

9. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Proceedings of STOC 2008, pp. 197–206. ACM
(2008)

10. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: Proceedings of STOC
1987, pp. 218–229. ACM (1987)

11. Matt, C., Maurer, U.: A definitional framework for functional encryption. Cryp-
tology ePrint Archive, Report 2013/559 (2013)

12. Maurer, U.: Constructive cryptography – a new paradigm for security definitions
and proofs. In: Mödersheim, S., Palamidessi, C. (eds.) TOSCA 2011. LNCS, vol.
6993, pp. 33–56. Springer, Heidelberg (2012)

13. Maurer, U., Renner, R.: Abstract cryptography. In: Chazelle, B. (ed.) The Second
Symposium on Innovations in Computer Science, ICS 2011, pp. 1–21. Tsinghua
University Press January 2011

14. Maurer, U.M., Yacobi, Y.: Non-interative public-key cryptography. In: Davies,
D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 498–507. Springer, Heidelberg
(1991)

15. Micali, S., Rogaway, P.: Secure computation. In: Feigenbaum, J. (ed.) CRYPTO
1991. LNCS, vol. 576, pp. 392–404. Springer, Heidelberg (1992)

16. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen
ciphertext attacks. In: STOC, pp. 427–437. ACM (1990)

520 D. Hofheinz et al.

17. Nielsen, J.B.: Separating random oracle proofs from complexity theoretic proofs:
the non-committing encryption case. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, p. 111. Springer, Heidelberg (2002)

18. Nishimaki, R., Manabe, Y., Okamoto, T.: Universally composable identity-based
encryption. In: Nguyên, P.Q. (ed.) VIETCRYPT 2006. LNCS, vol. 4341, pp. 337–
353. Springer, Heidelberg (2006)

19. Pfitzmann, B., Waidner, M.: A model for asynchronous reactive systems and its
application to secure message transmission. In: Proceedings of IEEE Symposium
on Security and Privacy 2001, pp. 184–200. IEEE Computer Society (2001)

20. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

21. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005)

A Framework for Identity-Based Encryption
with Almost Tight Security

Nuttapong Attrapadung, Goichiro Hanaoka, and Shota Yamada(B)

National Institute of Advanced Industrial Science and Technology (AIST),
Tokyo, Japan

{n.attrapadung,hanaoka-goichiro,yamada-shota}@aist.go.jp

Abstract. We show a framework for constructing identity-based
encryption (IBE) schemes that are (almost) tightly secure in the multi-
challenge and multi-instance setting. In particular, we formalize a new
notion called broadcast encoding, analogously to encoding notions by
Attrapadung (Eurocrypt 2014) and Wee (TCC 2014). We then show
that it can be converted into such an IBE. By instantiating the frame-
work using several encoding schemes (new or known ones), we obtain the
following:
– We obtain (almost) tightly secure IBE in the multi-challenge, multi-

instance setting, both in composite and prime-order groups. The latter
resolves the open problem posed by Hofheinz et al. (PKC 2015).

– We obtain the first (almost) tightly secure IBE with sub-linear size
public parameters (master public keys). In particular, we can set the
size of the public parameters to constant at the cost of longer cipher-
texts and private keys. This gives a partial solution to the open prob-
lem posed by Chen and Wee (Crypto 2013).

By applying (a variant of) the Canetti-Halevi-Katz transformation to our
schemes, we obtain several CCA-secure PKE schemes with tight secu-
rity in the multi-challenge, multi-instance setting. One of our schemes
achieves very small ciphertext overhead, consisting of less than 12 group
elements. This significantly improves the state-of-the-art construction by
Libert et al. (in ePrint Archive) which requires 47 group elements. Fur-
thermore, by modifying one of our IBE schemes obtained above, we can
make it anonymous. This gives the first anonymous IBE whose security
is almost tightly shown in the multi-challenge setting.

Keywords: Tight security reduction · Identity-based encryption ·
Multi-challenge security · Chosen ciphertext security

1 Introduction

1.1 Backgrounds

In the context of provable security, we reduce the security of a given scheme to the
hardness of a computational problem, in order to gain confidence in the security
of the scheme. Namely, we assume an adversary A who breaks the scheme and
c© International Association for Cryptologic Research 2015
T. Iwata and J.H. Cheon (Eds.): ASIACRYPT 2015, Part I, LNCS 9452, pp. 521–549, 2015.
DOI: 10.1007/978-3-662-48797-6 22

522 N. Attrapadung et al.

then show another adversary B who solves the (assumed) hard problem using
A. Such a reduction should be as tight as possible, in the sense that B’s success
probability is as large as A. In this paper, we mostly focus on the tight security
reduction in identity-based encryption (IBE) [47].

IBE is an advanced form of public key encryption in which one can encrypt
a message for a user identity, rather than a public key. The first fully secure (or
often called, adaptively secure) construction in the standard model was given
in [11]. Later, further developments were made [8,29,48,49]. All the above men-
tioned papers only deal with the single-challenge, single-instance case. Since
it is known that the security in the (much more realistic) multi-challenge and
multi-instance setting can be reduced to the security in the single-challenge
and single-instance setting [7], these schemes are secure in the former setting in
asymptotic sense. However, this reduction incurs O(μQc) security loss, where Qc

is the number of challenge queries made by the adversary and μ is the number
of instances. Since all the above schemes already loose at least O(Qk) security
in the reductions, where Qk is the number of key extraction queries made by A,
theses schemes loose at least O(μQcQk) security in total.

Recently and somewhat surprisingly, Chen and Wee [17,19] showed the first
IBE scheme (CW scheme) whose reduction cost is independent of Qk, resolving
an important open question posed in [48]. Subsequently, Blazy et al. [9] were
able to obtain anonymous IBE and hierarchical IBE with the same security
guarantee. The drawback of these schemes is its large public parameters (master
public keys): It is proportional to the security parameter and thus rather large.
Note that they only consider the single-challenge and single-instance setting.
Very recently, further important development was made by Hofheinz, Koch, and
Striecks [31] who extended the proof technique of Chen and Wee in a novel
way and proposed the first IBE scheme (HKS scheme) whose reduction cost is
independent from all of μ, Qc, and Qk. However, they only give a construc-
tion in composite-order groups and explicitly mention that the construction in
prime-order groups remains open. We focus on the following two important open
problems in this paper:

– Can we construct a fully, (almost) tightly secure IBE scheme in the
multi-challenge and multi-instance setting from a static assumption in
the prime-order groups?

– Can we construct a fully, (almost) tightly secure IBE scheme from
a static assumption with constant-size public parameters even in the
single-challenge and single-instance setting?

1.2 Our Results

New Tightly-Secure IBE Schemes. In this paper, to tackle the above prob-
lems, we revisit the proof technique in [17,31] and propose a framework for con-
structing almost tightly secure IBE. The almost tight security means that the
reduction cost is independent from μ, Qc, and Qk, and is a small polynomial in

A Framework for Identity-Based Encryption with Almost Tight Security 523

the security parameter. In particular, we formalize the notion of broadcast encod-
ing analogously to Attrapadung [4] and Wee [50]. Then we show that it can be
converted into fully, (almost) tightly secure IBE scheme, in the multi-challenge
and multi-instance setting. We propose such conversions both in prime-order
and composite-order groups. Furthermore, we propose two broadcast encoding
schemes satisfying our requirement. By instantiating our generic conversion with
these schemes, we obtain several new IBE schemes. In particular,

– We obtain the first IBE scheme in prime-order groups with almost tight secu-
rity in the multi-challenge and multi-instance setting. The security of our
scheme can be shown under the decisional linear (DLIN) assumption. This
resolves the first question above.

– We obtain the first IBE scheme with almost tight security in the multi-
challenge and multi-instance setting and with sub-linear public parameter-size
(but at the cost of larger private key and ciphertext size). An IBE scheme with
almost tight security and sub-linear public parameter size is not known, even
in the single-challenge setting. This partially answers the second question
above.

Application to Chosen-Ciphertext Secure Public Key Encryption.
By applying a variant of Canetti-Halevi-Katz transformation to the new IBE
schemes, we obtain several new chosen-ciphertext (CCA) secure public key
encryption (PKE) schemes. The conversion is tightness-preserving, namely, if
the original IBE is tightly secure in the multi-challenge and multi-instance set-
ting, the resulting PKE scheme is also tightly secure in the same setting. One
of our schemes achieves very compact ciphertext size. The ciphertext overhead
of the scheme only consists of 10 group elements and 2 elements in Zp. This
is much shorter than the state-of-the-art construction of PKE scheme with the
same security guarantee [34]: their scheme requires 47 group elements.

Extension to Anonymous IBE. Furthermore, by modifying one of the new
IBE schemes obtained above, we obtain the first anonymous IBE scheme with
(almost) tight security reduction in the multi-challenge settings for the first
time. The security proof is done by carefully combining information-theoretic
argument due to Chen et al. [16] and a computational argument.

See Table 1 for overview of our schemes.

1.3 Our Techniques

Difficulties. To solve the first question above, a natural starting point would be
trying to apply the frameworks for composite-order-to-prime-order-conversion
dedicated to identity/attribute-based encryption [2,3,16,18,35] to the HKS
scheme [31]. However, security proofs for CW and HKS schemes significantly
deviate from the most standard form of dual system encryption methodology
[4,37,39,50], only for which the above mentioned frameworks can be applied.

524 N. Attrapadung et al.

Table 1. Comparison of almost tight IBE from static assumptions

Schemes |pp| + |mpk| |CT| |skID| Anon? Multi-

challenge?

Underlying group Security assumption

CW13 [17] O(κ) O(1) O(1) No No Composite SGD, CW

HKS15 [31] O(κ) O(1) O(1) No Yes Composite SGD, HKS

Ours: Φcomp
cc O(κ) O(1) O(1) No Yes Composite SGD, Problem 5

Ours: Φ
comp
slp

O(κ1−c) O(κc) O(κc) No Yes Composite SGD, DLIN

CW13 [17]† O(κ) O(1) O(1) No No Prime DLIN

BKP14 [9]∗† O(κ) O(1) O(1) Yes No Prime DLIN

Ours: Φprime
cc O(κ) O(1) O(1) No Yes Prime DLIN

Ours: Φ
prime
slp

O(κ1−c) O(κc) O(κc) No Yes Prime DLIN

Ours: Φanon O(κ) O(1) O(1) Yes Yes Prime DLIN

We compare IBE schemes focusing tight security reduction from static assumptions in the standard

model. |pp| + |mpk|, |CT|, and |skID| show the size of the master public keys and public parameters,

ciphertexts, and private keys, respectively. To measure the efficiency, we count the number of group

elements. In the table, κ denotes the security parameter. “Anon” shows whether the scheme is anony-

mous. “Multi-Challenge?” asks whether (almost) tight security reduction in the multi-challenge setting is

shown. “SGD” stands for sub-group decision assumptions. “CW” and “HKS” denote specific assumptions

used in the corresponding papers. For Φ
comp
slp

and Φ
prime
slp

, we can assign any 0 ≤ c ≤ 1.

∗ This is the only scheme that can be generalized to HIBE.

† These schemes can be generalized to be secure under the k-linear assumption (k-LIN) [28,46] for any

k ∈ N. In such a case, |pp|+|mpk|, |CT|, and |skID| are changed to be O(k2κ), O(k), and O(k), respectively.

Note that the DLIN assumption corresponds to the 2-LIN assumption.

Another approach is to try to convert specific assumptions they use into prime-
order. In fact, Chen and Wee [17] were able to accomplish such a conversion for
their scheme. However, their technique is non-generic and therefore it is highly
unclear whether the same argument is possible for the assumptions that HKS
use.

Next, we explain the difficulty of the second question. The reason why all IBE
schemes featuring (almost) tight security reduction in previous works [9,17,31]
require large public parameters is that they use (randomized version of) Naor-
Reingold PRF [40] in their construction. Note that the Naor-Reingold PRF
requires seed length which is linear in the input size, which in turn implies rather
long public parameters in the IBE schemes. A natural approach to improve the
efficiency would be, as noted by Chen and Wee [17,19], to reduce the seed length
of the Naor-Reingold PRF. However, this is a long-standing open problem and
turns out to be quite difficult.

Our Strategy. In this paper, we introduce new proof techniques for IBE schemes
(with almost tight security) that rely only on the subgroup decision assumptions1

This allows us to use frameworks for composite-order-to-prime-order conversions
in the literature [2,3,16,22,23,26,35,42] (to name only a few) which converts
subgroup decision assumption into a static assumption in prime-order groups,
1 In fact, we also require the decisional bilinear Diffie-Hellman (DBDH) assumption

on the composite-order groups (Problem 5) in addition to the subgroup decision
assumptions. However, the assumption does not use the power of composite-order
groups. In other words, it does not imply the factoring assumption. Therefore, it is
ready to be converted into prime-order.

A Framework for Identity-Based Encryption with Almost Tight Security 525

such as the DLIN assumption. Therefore, using these techniques, we are able
to convert a variant of HKS scheme into prime-order. This answers the first
question above. Note that in the security proof of HKS (and CW), they rely
on some specific assumptions in composite-order groups in addition to subgroup
decision assumptions. Because of these, it is unclear how to convert HKS scheme
into prime-order.

As for the second question, we view Chen and Wee’s scheme as being con-
structed from, somewhat surprisingly, broadcast encryption mechanism, instead
of (Naor-Reingold) PRF, and hence can avoid the above difficulty regarding
PRF. More precisely, we show that the task of constructing almost tightly secure
IBE scheme is essentially reduced to a construction of broadcast encryption, and
based on this idea, we are able to obtain the first IBE scheme with sub-linear
size public parameters and almost tight security. In the following, we explain our
technique.

Detailed Overview of Our Technique. Let us start from the following variant
of the Chen and Wee’s IBE scheme. Let the identity space of the scheme be
{0, 1}�. For i ∈ {1, 2, 3}, let gi be the generator of a subgroup of order pi of
G, which is bilinear groups of composite order N = p1p2p3. Let also h be a
generator of G. The master public key, a ciphertext, and a private key for an
identity ID are in the following form:

mpk =
(
g1, g

w1,0
1 , g

w1,1
1 , . . . , g

w�,0
1 , g

w�,1
1 , e(g1, h)α

)
,

CTID =
(

gs
1, g

s
∑

i∈[1,�] wi,IDi

1 , e(g1, h)sα · M
)

, skID =
(
hα · g

r
∑

i∈[1,�] wi,IDi

1 , g−r
1

)

where IDi is the i-th bit of ID and M is the message.2 Now we are going to show
the security. We only consider the single-challenge and single-instance case here
for simplicity. In the security proof, at first, the challenge ciphertext is changed
to the following form using a subgroup decision assumption:

(
gs
1 · gŝ

2, g
s
∑

i∈[1,�] wi,IDi

1 · g
ŝ
∑

i∈[1,�] wi,IDi

2 , e(gs
1 · gŝ

2, h
α) · M

)
.

Then, we consider � hybrid games. In Gamei, all private keys are in the following
form:

(

hα · g
R̂i(ID|i)
2 · g

r
∑

i∈[1,�] wi,IDi

1 , g−r
1

)

where ID|i is the length i prefix of the identity ID and R̂i : {0, 1}i → N is a
random function. Intuitively, through these hybrid games, the randomizing part
of the key (highlighted in the box) are gradually randomized and made dependent
on more and more bits of each identity. Finally, in Game�, we can argue that
2 In the actual scheme, skID is randomized by elements of Gp3 , but we do not care

about this point in this overview.

526 N. Attrapadung et al.

any adversary cannot obtain the information on the message M, because these
randomizing parts prevent it.

A crucial part of the security proof is to establish the indistinguishability
between Gamei�−1 and Gamei� for all i� ∈ [1, �]. For the target identity ID�

(recall that we are considering the single-challenge and single-instance case for
now), we assume that b� := ID�

i� is known to the reduction algorithm in advance,
since it can be guessed with probability 1/2. At the core of the proof for this is
an indistinguishability of the following distributions:

Given
(

gs
1 · gŝ

2, g
s
∑

i∈[1,�] wi,ID�
i

1 · g
ŝ
∑

i∈[1,�] wi,ID�
i

2

)

,

(
g

r
∑

i∈[1,�] wi,IDi

1 , g−r
1

)
c≈

(
gα̂
2 · g

r
∑

i∈[1,�] wi,IDi

1 , g−r
1

)
(1)

for all ID such that IDi� �= b�, where α̂
$← ZN . Indistinguishability of Gamei�−1

and Gamei� is reduced to Eq. (1). The reduction algorithm can create the chal-
lenge ciphertext using the first term in Eq. (1). It can also set private key as

⎧
⎨

⎩

hα · g
R̂i�−1(ID|i�−1)
2 · g

r
∑

i∈S wi,IDi
1 , g−r

1 if IDi� = b�

hα · g
R̂i�−1(ID|i�−1)
2 · gα̂

2 · g
r
∑

i∈S wi,IDi
1 , g−r

1 if IDi� �= b�

where α̂ = 0 or α̂
$← ZN . It is clear that the game corresponds to Gamei�−1 if

α̂ = 0. On the other hand, if α̂
$← ZN , it corresponds to Gamei� with

R̂i�(ID|i�) =

{
R̂i�−1(ID|i�−1) if IDi� = b�

R̂i�−1(ID|i�−1) + α̂ if IDi� �= b�
.

If α̂ is freshly chosen for every distinct ID|i� , the simulation is perfect. Therefore,
our task of the security proof is reduced to establish Eq. (1). To understand
better, we decompose the private key in Eq. (1) and restate it again in a slightly
stronger form:

Given
(

gs
1 · gŝ

2, g
s
∑

i∈[1,�] wi,ID�
i

1 · g
ŝ
∑

i∈[1,�] wi,ID�
i

2

)

,

(
g

rwi�,1−b�

1 , g−r
1 , {g

rwj,b

1 }(j,b) �=(i�,1−b�)

)

c≈
(

gα̂
2 · g

rwi�,1−b�

1 , g−r
1 , {g

rwj,b

1 }(j,b) �=(i�,1−b�)

)
.

Let us consider a bijection map f : {(i, b)}i∈[1,�],b∈{0,1} → [1, 2�] and replace
(i, b) with f((i, b)). We can further restate the requirement as:

Given
(
gs
1 · gŝ

2, g
s
∑

j∈S� wj

1 · g
ŝ
∑

j∈S� wj

2

)
,

(
grwτ�

1 , g−r
1 , {g

rwj

1 }j �=τ�

) c≈
(

gα̂
2 · grwτ�

1 , g−r
1 , {g

rwj

1 }j �=τ�

)
(2)

where S� = {f(i, ID�
i)}i∈[�], τ� = f((i�, 1 − b�)), and thus τ� �∈ S�. We call the

terms in the second line above as the challenge terms. (It should not be confused

A Framework for Identity-Based Encryption with Almost Tight Security 527

with challenge ciphertext.) At this point, we can now see a similarity to broadcast
encryption. We consider the following broadcast encryption which captures the
essence of the above requirement. Let the set of user index be [1, 2�].

mpk = (g1, gw1
1 , . . . , gw2�

1 , e(g1, h)α),

CTS = (gs
1, g

s
∑

j∈S wj

1 , e(g1, h)sα · M), skτ = (hαgrwτ
1 , g−r

1 , {g
rwj

1 }j∈[2�]\{τ})

where CTS is a ciphertext for a set S ⊆ [2�] and skτ is a private key for a user
index τ ∈ [2�]. This is in fact a variant of the broadcast encryption by Gentry
and Waters [25]! Indeed, Eq. (2) can be interpreted as a security condition for
this broadcast encryption scheme (in the sense of encoding analogous to [4,50]).
It says that given semi-functional ciphertext for a set S�, a normal private key
for τ� �∈ S� is indistinguishable from a semi-functional private key for τ�. At this
point, we are able to understand the core technique in Chen and Wee in terms
of broadcast encryption scheme.

However, we have not finished yet. In order to make the proof go through,
we argue that an adversary cannot distinguish challenge terms in Eq. (2), even
if these are given to the adversary unbounded many times with freshly chosen
randomness α̂, r. Such an indistinguishability can be shown by a standard tech-
nique [4,36,50] if the challenge term is given to the adversary only once. This
can be accomplished by the combination of subgroup decision assumption and
the parameter-hiding argument. In parameter-hiding argument, a value which
is information-theoretically hidden is used to make normal private key semi-
functional [4,36,37,50]. At the first glance, this argument does not seem to be
extended to the case where many challenge terms are given to the adversary,
since entropy of hidden parameters (in this case, w1, . . . , w2� mod p2) is lim-
ited. However, we have to simulate unbounded number of challenge terms. Chen
and Wee [17] resolve this problem by using computational argument instead of
information-theoretic argument as above. Namely, they assume a variant of the
DDH assumption on Gp2

3 and embed the problem instance into the above chal-
lenge terms. Indistinguishability of multiple challenge terms are tightly reduced
to the assumption, using the random self-reducibility of the assumption. On the
other hand, our technique for boosting to multi-challenge is much simpler. Our
key observation is that the challenge term in Eq. (2) can be easily randomized
by picking a

$← ZN and computing

((
gα̂
2 · grwτ�

1

)a
,
(
g−r
1

)a
, {(

g
rwj

1

)a}j �=τ�

)
=

(
gα̂′
2 · gr′wτ�

1 , g−r′
1 , {g

r′wj

1 }j �=τ�

)
(3)

where r′ = ar and α̂′ = aα̂. It is easy to see that r′ mod p1 is uniformly random
and independent from anything. We can also see that α̂′ mod p2 = 0 if α̂ = 0
and α̂′ mod p2 is uniformly random if α̂ �= 0 mod p2. By this argument, we can
see that indistinguishability of the single-challenge-term case implies that for the
3 Of course, in symmetric bilinear groups, the DDH assumption does not hold. They

considered a DDH assumption on Gp2 where each term is perturbed by a random
element in Gp3 , which prevents trivial attack against the assumption.

528 N. Attrapadung et al.

multi-challenge-term case. Based on all the above discussion, we are able to show
the security for the above scheme only using the subgroup decision assumption.

Overview of Our Framework. We refine the idea above and combine it with
the technique by HKS to propose our framework for constructing IBE schemes
that are (almost) tightly secure in the multi-challenge and multi-instance setting,
in both composite and prime-order groups. We first define a broadcast encoding,
which is an abstraction of broadcast encryption. The syntax of it is a special case
of “pair encoding” in [4] (also similar to “predicate encoding” in [50]). Then, we
define perfect master-key hiding (PMH) security and computational-master-key
hiding (CMH) security for it. These security notions are also similar to those
of [4,50]. The former is statistical requirement for the encoding, and the lat-
ter is computational requirement. We can easily show that the former implies
the latter. Then, we also introduce intermediate notion multi-master-key hid-
ing (MMH) security for the encoding. This is more complex notion compared
to the PMH and CMH-security, but implied by these, thanks to our boosting
technique above. Then, we show that broadcast encoding satisfying the MMH
security requirement can be converted into IBE scheme. All these reductions
are (almost) tightness-preserving, namely, if the original broadcast encoding is
tightly PMH/CMH secure, the resulting IBE scheme is also tightly secure in
the multi-challenge and multi-instance setting. Finally, we provide broadcast
encoding schemes that satisfy our requirement. One is implicit in Gentry-Waters
broadcast encryption scheme [25] and the other is completely new. By instanti-
ating our general framework with the latter construction, we obtain IBE scheme
with almost tight security and with sub-linear master public key size.

1.4 Related Works

Related Works on IBE. The first realizations of IBE in the random oracle
model were given in [13,20,45]. Later, realization in the standard model [10,14]
were given. In the random oracle model, it is possible to obtain efficient and
tightly secure IBE scheme [5]. Gentry [24] proposed a tightly secure anony-
mous IBE scheme under a non-static, parametrized assumption. Chen and Wee
proposed the first almost tightly secure IBE scheme under static and simple
assumptions [17,19]. Attrapadung [4] proposed an IBE scheme whose security
loss only depends on the number of key queries before the challenge phase. Jutla
and Roy [32] constructed very efficient IBE scheme from the SXDH assumption,
based on a technique related to NIZK. Blazy, Kiltz, and Pan [9] further general-
ized the idea and show that a message authentication code with a certain specific
algebraic structure implies (H)IBE. They further obtained almost tightly secure
anonymous IBE and (non-anonymous) HIBE via the framework. Note that all
above mentioned schemes only focus on the single-challenge setting.

Related Works on the Multi-Challenge CCA-Secure PKE. Bellare,
Boldyreva, and Micali [7] gave a tight reduction for the Cramer-Shoup

A Framework for Identity-Based Encryption with Almost Tight Security 529

encryption [21] in the multi-instance (multi-user) and the single-challenge set-
ting. They posed an important open question of whether it is possible to con-
struct tightly CCA-secure PKE scheme in the multi-instance and the multi-
challenge setting. The first PKE scheme satisfying the requirement was proposed
by Hofheinz and Jager [30]. Their scheme requires hundreds of group elements
in the ciphertexts. Subsequently, Abe et al. [1] reduced the size by improving the
efficiency of the underlying one-time signature. Libert et al. [33] greatly reduced
the ciphertext and made it constant-size for the first time. The ciphertext over-
head of their scheme consist of 68 group elements. Very recently, Libert et al.
[34] further reduced it to 47 group elements. Concurrently and independently to
us, Hofheinz [27] proposes the first PKE scheme with the same security guaran-
tee and fully compact parameters, which means all parameters are constant-size.
While the ciphertext-size (which consists of 60 group elements) is longer than
construction in [34], it achieves much shorter public parameters. We note that
while the technique is very powerful, it is unclear how to extend it to the IBE
setting.

Due to space limitations, many definitions and proofs are omitted from this
version. These can be found in the full version of the paper [6].

2 Preliminaries

Notation. Vectors will be treated as either row or column vector matrices.
When unspecified, we shall let it be a row vector. We denote by ei the i-th unit
(row) vector: its i-th component is one, all others are zero. 0 denotes the zero
vector or zero matrix. For an integer n ∈ N and a field F, GLn(F) denotes the
set of all invertible matrix in F

n×n. For a multiplicative group G, we denote by
G

∗ a set of all generators in G. We also denote by [a, b] a set {a, . . . , b} for any
integer a and b and [n] = [1, n] for any n ∈ N. We denote by u

$← U the fact
that u is picked uniformly at random from a finite set U .

2.1 Identity-Based Encryption

In this section, we define the syntax and security of IBE (in the multi-challenge,
multi-instance setting).

Syntax. An IBE scheme with identity space ID and message space M consists
of the following algorithms:

Par(1κ) → (pp, sp): The parameter sampling algorithm takes as input a security
parameter 1κ and outputs a public parameter pp and a secret parameter sp.

Gen(pp, sp) → (mpk,msk): The key generation algorithm takes pp and sp as
input and outputs a master public key mpk and master secret key msk.

Ext(msk,mpk, ID) → skID: The user private key extraction algorithm takes as
input the master secret key msk, the master public key mpk, and an identity
ID ∈ ID. It outputs a private key skID.

530 N. Attrapadung et al.

Enc(mpk, ID,M) → CT: The encryption algorithm takes as input a master public
key mpk, an identity ID, and a message M ∈ M. It will output a ciphertext
CT.

Dec(skID,CT) → M: The decryption algorithm takes as input a private key skID

and a ciphertext CT. It outputs a message M or ⊥ which indicates that the
ciphertext is not in a valid form.

We refer (standard) notion of correctness of IBE to [6].
In our constructions, we will set identity space ID = {0, 1}� for some � ∈ N.

Note that the restriction on the identity space can be easily removed by apply-
ing a collision resistant hash function CRH : {0, 1}∗ → {0, 1}� to an identity.
Typically, we would set � = Θ(κ) to avoid the birthday attack.

Security Model. We now define (μ,Qc, Qk)-security for an IBE Φ =
(Par,Gen,Ext,Enc,Dec). This security notion is defined by the following game
between a challenger and an attacker A.

Setup. The challenger runs (pp, sp) $← Par(1κ) and (mpk(j),msk(j)) $← Gen

(pp, sp) for j ∈ [μ]. The challenger also picks random coin coin
$← {0, 1} whose

value is fixed throughout the game. Then, (pp, {mpk(j)}j∈[μ]) is given to A.

In the following, A adaptively makes the following two types of queries in an
arbitrary order.

–Key Extraction Query. The adversary A submits (Extraction, j ∈ [μ],
ID ∈ ID) to the challenger. Then, the challenge runs sk

(j)
ID

$← Ext(msk(j),

mpk(j), ID) and returns sk
(j)
ID to A.

–Challenge Query. The adversary A submits (Challenge, j ∈ [μ], ID ∈
ID,M0,M1 ∈ M) to the challenger. Then, the challenger runs CT

$←
Enc(mpk(j), ID,Mcoin) and returns CT to A.

Guess. At last, A outputs a guess coin′ for coin. The advantage of an attacker
A in the game is defined as AdvIBE

A,Φ,(μ,Qc,Qk)
(κ) = |Pr[coin′ = coin] − 1

2 |.
We say that the adversary A is valid if and only if A never queries

(Extraction, j, ID) such that it has already queried (Challenge, j, ID,M0,M1)
for the same (j, ID) (and vice versa); A has made at most Qc challenge queries;
and A has made at most Qk key extraction queries.

Definition 1. We say that IBE Φ is secure if AdvIBE
A,Φ,(μ,Qc,Qk)

(κ) is negligible
for any polynomially bounded μ, Qc, Qk, and any valid PPT adversary A.

Anonymity. We also consider anonymity for the IBE scheme. To define
(μ,Qc, Qk)-anonymity for an IBE scheme, we change the form of challenge
queries in the above game as follows.

A Framework for Identity-Based Encryption with Almost Tight Security 531

–−Challenge Query. The adversary A submits (Challenge, j ∈ [μ], ID0, ID1 ∈
ID,M0,M1 ∈ M) to the challenger. Then, the challenger runs CT

$←
Enc(mpk(j), IDcoin,Mcoin) and returns CT to A.

We say that the adversary A is valid if A never queries (Extraction, j, ID) such
that it has already queried (Challenge, j, ID0, ID1,M0,M1) for the same j and
ID ∈ {ID0, ID1} (and vice versa); A has made at most Qc challenge queries; and
A has made at most Qk key extraction queries. We define the advantage of A
in this modified game as AdvAIBE

A,Φ,(μ,Qc,Qk)
(κ) := |Pr[coin′ = coin] − 1

2 |.

Definition 2. We say that IBE Φ is anonymous if AdvAIBE
A,Φ,(μ,Qc,Qk)

(κ) is negli-
gible for any polynomially bounded μ, Qc, Qk, and any valid PPT adversary A.

2.2 Composite-Order Bilinear Groups

We will use bilinear group (G,GT) of composite order N = p1p2p3p4, where p1,
p2, p3, p4 are four distinct prime numbers, with efficiently computable and non-
degenerate bilinear map e(·) : G×G → GT . For each d|N , G has unique subgroup
of order d denoted by Gd. We let gi be a generator of Gpi

. For our purpose, we
define a (composite order) bilinear group generator Gcomp that takes as input a
security parameter 1κ and outputs (N,G,GT , g1, g2, g3, g4, e(·)). Any h ∈ G can
be expressed as h = ga1

1 ga2
2 ga3

3 ga4
4 , where ai is uniquely determined modulo pi.

We call gai
i the Gpi

component of h. We have that e(ga, hb) = e(g, h)ab for any
g, h ∈ G, a, b ∈ Z and e(g, g) = 1GT

for g ∈ Gpi
and h ∈ Gpj

with i �= j.
Let (N,G,GT , g1, g2, g3, g4, e(·)) $← Gcomp(1κ) and g

$← G
∗. We define advan-

tage function AdvPxx
A (κ) for Problem xx for any adversary A as

AdvPxx
A (κ) = |Pr[A(g1, g4, g,D, T0) → 1] − Pr[A(g1, g4, g,D, T1) → 1]|.

In each problem, D, T0, and T1 are defined as follows. In the following, for
i, j ∈ [1, 4], gij is chosen as gij

$← G
∗
pipj

.

Problem 1. D = ∅, T0
$← G

∗
p1
, and T1

$← G
∗
p1p2

.

Problem 2. D = (g12, g3, g24), T0
$← G

∗
p1p4

, and T1
$← G

∗
p1p2p4

.

Problem 3. D = (g13, g2, g34), T0
$← G

∗
p1p4

, and T1
$← G

∗
p1p3p4

.

Problem 4. D = (g12, g23), T0
$← G

∗
p1p2

, and T1
$← G

∗
p1p3

.

Problem 5. D = (g2, g3, gx
2 , gy

2 , gz
2), T0 = e(g2, g2)xyz, and T1 = e(g2, g2)xyz+γ ,

where x, y, z
$← ZN and γ

$← Z
∗
N .

Problems 1, 2, 3, and 4 are called sub-group decision problems. Problem 5 is
called the decisional bilinear Diffie-Hellman problem.

532 N. Attrapadung et al.

Matrix-in-the-Exponent. Given any vector w = (w1, . . . , wn) ∈ Z
n
N and a

group element g, we write gw ∈ G
n to denote (gw1 , . . . , gwn) ∈ G

n: we define
gA for a matrix A in a similar way. gA · gB denotes componentwise product:
gA · gB = gA+B. Note that given gA and a matrix B of “exponents”, one
can efficiently compute gBA and gAB = (gA)B. Furthermore, if there is an
efficiently computable map e : G × G → GT , then given gA and gB, one can
efficiently compute e(g, g)A

�B via (e(g, g)A
�B)i,j =

∏
k e(gAk,i , gBk,j) where

Ai,j and Bi,j denote the (i, j)-th coefficient of A and B respectively. We will use
e(gA, gB) = e(g, g)A

�B to denote this operation.

3 Broadcast Encoding: Definitions and Reductions

In this section, we define the syntax and the security notions for broadcast
encoding. The syntax of our definition corresponds to a special case of “pair
encoding” defined in [4] and is also similar to “predicate encoding” in [50]. As
for the security requirement for the encoding, ours are slightly different from
both. We define several flavours of the security requirement: perfect master-key
hiding security (PMH), computational-master-key hiding (CMH) security, and
the multi-master-key hiding (MMH) security. The last one is useful, since we
can obtain IBE scheme from broadcast encoding scheme satisfying the security
notion, as we will explain in Sect. 4. However, MMH security is defined by rela-
tively complex game and may not be easy to show. Later in this section, we will
see that MMH security can be tightly reduced to much simpler CMH and PMH
security.

3.1 Broadcast Encoding: Syntax

The broadcast encoding Π consists of the following four deterministic algorithms.

Param(n,N) → d1 : It takes as input an integer n and N and outputs d1 ∈ N

which specifies the number of common variables in CEnc and KEnc. For the
default notation, w = (w1, . . . , wd1) denotes the list of common variables.

KEnc(τ,N) → (k, d′
2) : It takes as input τ ∈ [n], N ∈ N, and outputs a vector of

polynomials k = (k1, . . . , kd2) with coefficients in ZN , and d′
2 ∈ N that spec-

ifies the number of its own variables. We assume that d2 and d′
2 only depend

on n and do not depend on τ without loss of generality. We require that
each polynomials k is a linear combination of monomials α, rj , wkrj where
α, r1, . . . , rd′

2
, w1, . . . , wd1 are variables. More precisely, it outputs {bι}ι∈[d2],

{bι,j}(ι,j)∈[d2]×[d′
2]

, and {bι,j,k}(ι,j,k)∈[d2]×[d′
2]×[d1] in ZN such that

kι

(
α, r1, . . . , rd′

2
, w1, . . . , wd1

)

= bια +
(∑

j∈[d′
2]

bι,jrj

)
+

(∑

(j,k)∈[d′
2]×[d1]

bι,j,kwkrj

)
(4)

for ι ∈ [d2].

A Framework for Identity-Based Encryption with Almost Tight Security 533

CEnc(S,N) → (c, d′
3) : It takes as input S ⊆ [n], N ∈ N, and outputs a vector

of polynomials c = (c1, . . . , cd3) with coefficients in ZN , and d′
3 ∈ N that

specifies the number of its own variables. We require that polynomials c in
variables s0, s1, . . . , sd′

3
, w1, . . . , wd1 have the following form:

There exist (efficiently computable) set of coefficients {aι,j}(ι,j)∈[d3]×[0,d′
3]

and {aι,j,k}(ι,j,k)∈[d3]×[0,d′
3]×[d1] in ZN such that

cι

(
s0, s1, . . . , sd′

3
, w1, . . . , wd1

)

=
(∑

j∈[0,d′
3]

aι,jsj

)
+

(∑

(j,k)∈[0,d′
3]×[d1]

aι,j,kwksj

)
(5)

for ι ∈ [d3]. We also require that c1 = s0.
Pair(τ, S,N) → E : It takes as input τ ∈ [n], S ⊆ [n], and N ∈ N and outputs a

matrix E = (Ei,j)i∈[d2],j∈[d3] ∈ Z
d2×d3
N .

Correctness. The correctness requirement is as follows.

– We require that for any n, N , d1 ← Param(n,N), k ← KEnc(τ,N), c ←
CEnc(S,N), and E ← Pair(τ, S,N), we have that

kEc� = αs0 whenever τ ∈ S.

The equation holds symbolically, or equivalently, as polynomials in variables
α, r1, . . . , rd′

2
, s0, s1, · · · , sd′

3
, w1, . . . , wd1 .

– For p that divides N , if we let KEnc(τ,N) → (k, d′
2) and KEnc(τ, p) → (k′, d′′

2),
then it holds that d′

2 = d′′
2 and k mod p = k′. The requirement for CEnc is

similar.

Note that since kEc� =
∑

(i,j)∈[d2]×[d3]
Ei,jkicj , the first requirement

amounts to check if there is a linear combination of kicj terms summed up to
αs0. In the descriptions of proposed broadcast encoding schemes, which will
appear later in this paper, we will not explicitly write down E. Instead, we will
check this condition.

3.2 Broadcast Encoding: Security

Here, we define two flavours of security notions for broadcast encoding: per-
fect security and computational security. As we will see, the former implies the
latter. In what follows, we denote w = (w1, . . . , wd1), r = (r1, . . . , rd′

2
), and

s = (s0, s1, . . . , sd′
3
).

(Perfect Security). The pair encoding scheme Π = (Param,KEnc,CEnc,Pair)
is Q-perfectly master-key hiding (Q-PMH) if the following holds. For any n ∈ N,
prime p ∈ N, τ ∈ [n], and S1, . . . , SQ ⊂ [n] such that τ �∈ Sj for all j ∈ [Q],

534 N. Attrapadung et al.

let Param(n, p) → d1, (kτ , d′
2) ← KEnc(τ, p), and (cSj

, d′
3,j) ← CEnc(Sj , p) for

j ∈ [Q], then the following two distributions are identical:
{ { cSj

(sj ,w)}j∈[Q], kτ (0, r,w)
}

and
{ { cSj

(sj ,w)}j∈[Q], kτ (α, r,w)
}

where w $← Z
d1
p , α

$← Zp, r $← (Z∗
p)

d′
2 , sj

$← Z
d′
3+1

p for j ∈ [Q].

(Computational Security on Gp2). We define Q-computational-master-
key hiding (Q-CMH4) security on Gp2 for a broadcast encoding Π =
(Param,KEnc,CEnc,Pair) by the following game. At the beginning of the game,
an (stateful) adversary A is given (1κ, n) and chooses τ� ∈ [n]. Then, parameters
are chosen as (N,G,GT , g1, g2, g3, g4, e(·)) $← Gcomp(1κ), Param(n,N) → d1, and
ŵ $← Z

d1
N . The advantage of A is defined as

AdvCMH
A,Π,Q,Gp2

(κ) = |Pr[A(1κ, n) → τ�, A(g1, g2, g3, g4)
OCMH,C

τ�,ŵ
(·),OCMH,K

τ�,ŵ,0(·) → 1] −
Pr[A(1κ, n) → τ�, A(g1, g2, g3, g4)

OCMH,C
τ�,ŵ

(·),OCMH,K
τ�,ŵ,1(·) → 1]|.

In the above, OCMH,K
τ�,ŵ,b (·) for b ∈ {0, 1} are called only once while OCMH,C

τ�,ŵ (·) can
be called at most Q times. These oracles can be called in any order.

– OCMH,C
τ�,ŵ (·) takes S ⊂ [n] such that τ� �∈ S as input. It then runs CEnc(S,N) →

(c, d′
3), picks ŝ = (ŝ0, ŝ1, . . . , ŝd′

3
) $← Z

d′
3+1

N , and returns g
c(ŝ,ŵ)
2 . We note that

ŝ is freshly chosen every time the oracle is called.
– OCMH,K

τ�,ŵ,b (·) ignores its input. When it is called, it first runs KEnc(τ�, N) →
(k, d′

2) and picks r̂ = (r̂1, . . . , r̂d′
2
) $← Z

d′
2

N and α̂
$← ZN . Then it returns

g
k(b·α̂,r̂,ŵ)
2 =

{
g
k(0,r̂,ŵ)
2 if b = 0

g
k(α̂,r̂,ŵ)
2 if b = 1.

We say that the broadcast encoding is Q-CMH secure on Gp2 if AdvCMH
A,Π,Q,Gp2

(κ)
is negligible for all PPT adversary A.

(Computational Security on Gp3). We define AdvCMH
A,Π,Q,Gp3

(κ) and Q-CMH
security on Gp3 via similar game, by swapping g2 and g3 in the above.
Comparison with Definition in [4]. By setting Q = 1, the Q-PMH and the
Q-CMH security defined as above almost correspond to the perfect security and
the co-selective security defined in [4] respectively. We need to deal with the case
of Q � 1 in order to handle the multi-challenge setting. Another difference is
4 Here, we use CMH to stand for “computational-master-key hiding” (for broadcast

encoding), while in [4], CMH refers to “co-selective master-key hiding” (for pair
encoding). We hope that this should not be confusing, since our notion of 1-CMH
security is in fact almost the same as the notion of co-selective master-key hiding
security (for broadcast predicate) anyway.

A Framework for Identity-Based Encryption with Almost Tight Security 535

that we use groups with the order being a product of four primes, while they
deal with a product of three primes.

We have the following lemma which indicates that Q-PMH security uncon-
ditionally implies Q-CMH security on both of Gp2 and Gp3 .

Lemma 1. Assume that a broadcast encoding Π satisfies Q-PMH security for
some Q ∈ N. Then it follows that AdvCMH

A,Π,Q,Gpi
(κ) ≤ d′

2/pi for i ∈ {2, 3}.

3.3 Multi-master-key Hiding Security in Composite Order Groups

Here, we define multi-master-key hiding security for a broadcast encoding, which
is more complex security notion compared to the CMH security. A broadcast
encoding scheme that satisfies the security notion can be converted into an IBE
scheme as we will see in Sect. 4.

Multi-master-key Hiding Security (on Gp2). We define (Qc, Qk)-multi-
master-key hiding ((Qc, Qk)-MMH) security on Gp2 for a broadcast encoding
Π = (Param,KEnc,CEnc,Pair). The security is defined by the following game. At
the beginning of the game, A is given (1κ, n) and chooses τ� ∈ [n]. Then, para-
meters are chosen as (N,G,GT , g1, g2, g3, g4, e(·)) $← Gcomp(1κ), g24

$← G
∗
p2p4

,
d1 ← Param(n,N), and w $← Z

d1
N . The advantage of A is defined as

AdvMMH
A,Π,(Qc,Qk),Gp2

(κ) =

|Pr[A(1κ, n) → τ�, A(g1, gw1 , gw3 , g24, g3, g4)
OMMH,C

τ�,w
(·),OMMH,K

τ�,w,0(·) → 1] −
Pr[A(1κ, n) → τ�, A(g1, gw1 , gw3 , g24, g3, g4)

OMMH,C
τ�,w

(·),OMMH,K
τ�,w,1(·) → 1]|.

In the above, OMMH,C
τ�,w (·) and OMMH,K

τ�,w,b (·) for b ∈ {0, 1} can be called at most
Qc times and Qk times, respectively. They can be called in any order.

– OMMH,C
τ�,w (·) takes S ⊂ [n] such that τ� �∈ S as input. It then runs CEnc(S,N) →

(c, d′
3), picks s $← Z

d′
3+1

N and ŝ $← Z
d′
3+1

N and returns g
c(s,w)
1 · g

c(ŝ,w)
2 .

– OMMH,K
τ�,w,b (·) ignores its input. When it is called, it first runs KEnc(τ�, N) →

(k, d′
2), picks α̂

$← ZN , r $← Z
d′
2

N , δ
$← Z

d2
N . Then it returns

g
k(0,r,w)
1 · g

k(b·α̂,0,0)
2 · gδ

4 =

{
g
k(0,r,w)
1 · gδ

4 if b = 0
g
k(0,r,w)
1 · g

k(α̂,0,0)
2 · gδ

4 if b = 1.

In the above, r, α̂, and δ as well as s and ŝ are all freshly chosen every
time the corresponding oracle is called. We say that the broadcast encoding is
(Qc, Qk)-MMH secure on Gp2 if AdvMMH

A,Π,(Qc,Qk),Gp2
(κ) is negligible for all PPT

adversary A.

Multi-master-key Hiding Security (on Gp3). We define (Qc, Qk)-MMH
security on Gp3 and AdvMMH

A,Π,(Qc,Qk),Gp3
(κ) similarly to the above. The difference

is the following.

536 N. Attrapadung et al.

– The input to A is replaced with (g1, gw1 , gw2 , g34, g2, g4).
– g

c(s,w)
1 · g

c(ŝ,w)
2 in the above is replaced with g

c(s,w)
1 · g

c(ŝ,w)
3 .

– g
k(0,r,w)
1 · g

k(b·α̂,0,0)
2 · gδ

4 is replaced with g
k(0,r,w)
1 · g

k(b·α̂,0,0)
3 · gδ

4 .

3.4 Reduction from MMH Security to CMH Security

We can prove the following theorem that indicates that the (Qc, Qk)-MMH secu-
rity for a broadcast encoding on Gp2 (resp. Gp3) can be tightly reduced to its
Qc-CMH security on Gp2(resp. Gp3) and the hardness of the Problem 2 (resp. 3).

Theorem 1. For any i ∈ {2, 3}, broadcast encoding Π, and adversary A, there
exist adversaries B1 and B2 such that

AdvMMH
A,Π,(Qc,Qk),Gpi

(κ) ≤ AdvCMH
B1,Π,Qc,Gpi

(κ) + 2AdvPxx
B2

+
1
pi

and max{Time(B1),Time(B2)} ≈ Time(A)+(Qk+Qc)·poly(κ, n) where poly(κ, n)
is independent of Time(A). In the above, Pxx = P2 if i = 2 and Pxx = P3 if i = 3.

4 Almost Tight IBE from Broadcast Encoding in
Composite-Order Groups

In this section, we show a generic conversion from a broadcast encoding scheme
to an IBE scheme. An important property of the resulting IBE scheme is that
(μ,Qc, Qk)-security of the scheme can be almost tightly reduced to the Qc-CMH
security of the underlying broadcast encoding scheme (and Problems 1, 2, 3, 4,
and 5). In particular, the reduction only incurs small polynomial security loss,
which is independent of μ and Qk. Therefore, if the underlying broadcast encod-
ing scheme is tightly Qc-CMH secure, which is the case for all of our construc-
tions, the resulting IBE scheme obtained by the conversion is almost tightly
secure. Note that in the following construction, we have sp = ⊥. This mean
that the key generation algorithm Par does not output any secret parameter.
This property will be needed to convert our IBE scheme into CCA secure PKE
scheme in Sect. 8.

Construction. Here, we construct an IBE scheme Φcomp from a broadcast
encoding Π = (Param,KEnc,CEnc,Pair). Let the identity space of the scheme
be ID = {0, 1}� and the message space be M = {0, 1}m. We also let H be a
family of pairwise independent hash functions H : GT → M. We assume that√

2m

p2
= 2−Ω(κ) so that the left-over hash lemma can be applied in the security

proof.

Par(1κ) : It first runs (N,G,GT , g1, g2, g3, g4, e(·)) $← Gcomp(1κ) and
Param(2�,N) → d1. Then it picks w $← Z

d1
N , a

$← Z
∗
N , H

$← H and sets
h := (g1g2g3g4)a. Finally, it outputs pp = (g1, gw1 , g4, h,H) and sp = ⊥.

A Framework for Identity-Based Encryption with Almost Tight Security 537

Gen(pp, sp) : It picks α
$← ZN and outputs mpk = (pp, e(g1, h)α) and msk = α.

Ext(msk,mpk, ID) : It first sets S = {2i−IDi|i ∈ [�]} where IDi ∈ {0, 1} is the i-th
bit of ID ∈ {0, 1}�. Then it runs KEnc(j,N) → (

kj , d
′
2

)
and picks rj

$← Z
d′
2

N

and δj
$← Z

d2
N for all j ∈ S. It also picks random {αj ∈ ZN}j∈S subject to

constraint that α =
∑

j∈S αj . Then, it computes g
kj(0,rj ,w)
1 , Pair(j, S,N) →

Ej , and

skj = hkj(αj ,0,0) · g
kj(0,rj ,w)
1 · g

δj

4

for all j ∈ S. Note that g
kj(0,rj ,w)
1 can be computed from gw1 and rj =

(rj,1, . . . , rj,d′
2
) efficiently because kj(0, rj ,w) contains only linear combi-

nations of monomials rj,i, rj,iwj′ . Finally, it outputs private key skID =∏
j∈S(skj)Ej .

Enc(mpk, ID,M) : It first sets S = {2i − IDi|i ∈ [�]}. Then it runs CEnc(S,N) →
(c, d′

3), picks s = (s0, s1, . . . , sd′
3
) $← Z

d′
3+1

N , and computes g
c(s,w)
1 . Note that

g
c(s,w)
1 can be computed from gw1 and s efficiently because c(s,w) contains

only linear combinations of monomials si, siwj . Finally, it outputs

CT =
(

C1 = g
c(s,w)
1 , C2 = H

(
e(g1, h)s0α

) ⊕ M
)
.

Here, ⊕ denotes bitwise exclusive OR of two bit strings.
Dec(skID,CT) : It parses CT → (C1, C2) and computes e(sk�

ID, C�
1) = e(g1, h)s0α.

Then, it recovers the message by M = C2 ⊕ H(e(g1, h)s0α).

Correctness. We show the correctness of the scheme. It suffices to show the
following.

e(sk�
ID, C�

1) = e
(
(
∏

j∈S

(skj)Ej)�, g
c(s,w)�

1

)
=

∏

j∈S

e(g1, g1)kj(aαj ,rj ,w)Ejc(s,w)�

=
∏

j∈S

e(g1, g1)s0aαj =
∏

j∈S

e(g1, h)s0αj = e(g1, h)s0α.

The third equation above follows from the correctness of the broadcast encoding.

Security. The following theorem indicates that the security of the IBE is
(almost) tightly reduced to the MMH security of the underlying broadcast encod-
ing on Gp2 and Gp3 and Problems 1, 4, and 5. Combining the theorem with
Theorem 1, the security of the scheme can be almost tightly reduced to the Qc-
CMH security of the underlying encoding (and Problems 1, 2, 3, 4, and 5). The
reduction only incurs O(�) security loss.

Theorem 2. For any adversary A, there exist adversaries Bi for i ∈ [1, 5] such
that

AdvIBE
A,Φcomp,(μ,Qc,Qk)

(κ) ≤ AdvP1
B1

(κ) + AdvP5
B2

(κ) + Qc · 2−Ω(κ)

+�
(
2AdvP4

B3
(κ) + AdvMMH

B4,Π,(Qc,Qk),Gp2
(κ) + AdvMMH

B5,Π,(Qc,Qk),Gp3
(κ)

)

538 N. Attrapadung et al.

and max{Time(Bi)|i ∈ [1, 5]} ≈ Time(A) + (μ + Qc + Qk) · poly(κ, �) where
poly(κ, �) is independent of Time(A).

5 Framework for Constructions in Prime-Order Groups

In Sects. 3 and 4, we show our framework to construct almost tightly secure IBE
in composite-order groups. Since we carefully constructed the framework so that
we only use the subgroup decision assumptions and the DBDH assumption in
the security proof, we can apply recent composite-order-to-prime-order conver-
sion techniques in the literature [2,3,16,18] to the framework. We choose to use
[3], but other choices might be possible. In this section, we show our framework
for constructing almost tightly secure IBE in prime-order groups. Our frame-
work is almost parallel to that in composite-order groups. Namely, we define
CMH security and MMH security in prime-order groups. Then, we show reduc-
tion between them. Finally, we show a generic construction of IBE scheme from
broadcast encoding and show that the scheme is (almost) tightly secure if the
underlying encoding is tightly CMH secure.

In the following, we will use asymmetric bilinear group (G1,G2,GT) of
prime order p with efficiently computable and non-degenerate bilinear map
e(·) : G1 × G2 → GT . For our purpose, we define a prime-order bilinear
group generator Gprime that takes as input a security parameter 1κ and outputs
(p,G1,G2,GT , g, h, e(·)) where g and h are random generator of G1 and G2,
respectively. Let π1 : Z4×4

p → Z
4×2
p , π2 : Z4×4

p → Z
4×1
p , and π3 : Z4×4

p → Z
4×1
p

be the projection maps that map a 4 × 4 matrix to the leftmost 2 columns, the
third column, and the fourth column, respectively.

Intuition. In prime-order groups, we work with 4 × 4 matrix. The first two
dimensions serve as “normal space” (corresponding to Gp1), while the third and
the fourth dimension serve as double “semi-functional spaces” (corresponding to
Gp2 and Gp3). There is no corresponding dimension to Gp4 . While the use of
4× 4 matrices is similar to Chen and Wee [17,19]5, conceptually, our techniques
are quite different from theirs. They use the first two dimensions as a normal
space and the last two dimensions as single semi-functional space. In contrast,
we introduce additional semi-functional space to be able to prove the multi-
challenge security rather than single-challenge security. Furthermore, due to our
new proof technique, these semi-functional spaces are smaller compared to those
of [17,19].

5.1 Preparation

Here, we introduce definitions and notations needed to describe our result. Let
p be a prime number and k and c be vectors output by KEnc() and CEnc() on
5 They showed a construction that is secure under the k-LIN assumption for any
k, using 2k × 2k matrices. When k = 2, the scheme is secure under the DLIN
assumption.

A Framework for Identity-Based Encryption with Almost Tight Security 539

some input respectively. Here, we assign each variable wi in the vector a matrix
Wi ∈ Z

4×4
p for i ∈ [d1] (rather than assigning a scalar value), variable α a

column vector α ∈ Z
4×1
p , variable ri a vector xi ∈ Z

4×1
p for i ∈ [d′

2], and variable
si a vector yi ∈ Z

4×1
p for i ∈ [0, d′

3]. The evaluation of polynomials kZ and cB,
which are indexed by an invertible matrix B ∈ Z

4×4
p and Z ∈ Z

4×4
p , are defined

as follows. In the following, we denote

W = (W1, . . . ,Wd1) ∈ (Z4×4
p)d1 , X =

(
x1, . . . ,xd′

2

) ∈ Z
4×d′

2
p

Y =
(
y0,y1, . . . ,yd′

3

) ∈ Z
4×(d′

3+1)
p , Z = (B−1)� · D.

where D ∈ Z
4×4
p is a full-rank diagonal matrix with the entries (3, 3) and (4, 4)

being 1.
Let k = (k1, . . . , kd2) be a vector of polynomials in variables
α, r1, . . . , rd′

2
, w1, . . . , wd1 with coefficients in Zp defined as Eq. (4). We define

kZ(α,X,W) ∈ Z
4×d2
p as kZ(α,X,W) = {kZ,ι(α,X,W)}ι∈[d2] =

⎧
⎨

⎩
bια +

(∑

j∈[d′
2]

bι,jZxj

)
+

(∑

(j,k)∈[d′
2]×[d1]

bι,j,kW�
k Zxj

)
∈ Z

4×1
p

⎫
⎬

⎭
ι∈[d2]

.

Let c = (c1, . . . , cd3) be a vector of polynomials in variables s0, s1, . . . , sd′
3
,

w1, . . . , wd1 with coefficients in Zp defined as Eq. (5). We define cB(Y,W) ∈
Z
4×d3
p as

cB(Y,W) = {cB,ι(Y,W)}ι∈[d3] =
⎧
⎨

⎩

(∑

j∈[0,d′
3]

aι,jByj

)
+

(∑

(j,k)∈[0,d′
3]×[d1]

aι,j,kWkByj

)
∈ Z

4×1
p

⎫
⎬

⎭
ι∈[d3]

.

Restriction on the Encoding. In our framework for prime-order construc-
tions, we define and require regularity of encoding similarly to [3], which is
needed to prove the security of our IBE obtained from the broadcast encoding.
We omit the definition and defer to the full version for the details [6].

Correctness of Encoding. Let τ ∈ [n] and S ⊆ [n] be an index and a set
such that τ ∈ S. Let also KEnc(τ, p) → (

k, d′
2

)
, CEnc(S, p) → (c, d′

3), and
Pair(τ, S, p) → E = (Eη,ι)(η,ι)∈[d2]×[d3] ∈ Z

d2×d3
p . Then, by the correctness of

the broadcast encoding, we have
∑

(η,ι)∈[d2]×[d3]
Eη,ιkηcι = αs0 (the equation

holds symbolically). From this, we have the following. (Note that the claim is
shown similarly to Claim 15 in [3].)

Lemma 2. We have
∑

(η,ι)∈[d2]×[d3]
Eη,ι ·kZ,η(α,X,W)�cB,ι(Y,W) = α�By0.

CMH and MMH Security. In the full version [6], we define the Q-CMH
security for broadcast encoding on prime-order groups, analogously to the corre-
sponding notion on composite-order groups. We also define the (Qc, Qk)-MMH

540 N. Attrapadung et al.

security for broadcast encoding on prime-order groups. The former is (uncon-
ditionally) implied by the Q-PMH security. Furthermore, we can show that the
latter is tightly reduced to the former, similarly to the case in composite-order
groups.

5.2 Almost Tightly Secure IBE from Broadcast Encoding in Prime
Order Groups

Here, we construct an IBE scheme Φprime from broadcast encoding scheme Π =
(Param,KEnc,CEnc,Pair). Let the identity space of Φprime be ID = {0, 1}� and
the message space M be M = GT . We will not use pairwise independent hash
function differently from our construction in composite-order groups. We note
that similarly to our construction in composite-order groups, we have sp = ⊥ in
the following.

Par(1κ, �) : It first runs (p,G1,G2,GT , g, h, e(·)) $← Gprime(1κ) and
Param(2�, p) → d1. Then it picks B $← GL4(Zp), W = (W1, . . . ,Wd1)

$←
(Z4×4

p)d1 and a random full-rank diagonal matrix D ∈ Z
4×4
p with the entries

(3, 3) and (4, 4) being 1. Finally, it sets Z = B−�D and outputs

pp =

(
g, gπ1(B), gπ1(W1B), . . . , gπ1(Wd1B)

h, hπ1(Z), hπ1(W
�
1 Z), . . . , hπ1(W

�
d1

Z)

)

and sp = ⊥.

In the following, we will omit subscript B and Z from cB(S,W) and
kZ(α,R,W) and just denote c(S,W) and k(α,R,W) for ease of notation. B
and Z are fixed in the following and clear from the context.

Gen(pp) : It picks α
$← Z

4×1
p and outputs mpk = (pp, e(g, h)α�π1(B)) and msk =

α.
Ext(msk,mpk, ID) : It first sets S = {2i−IDi|i ∈ [�]} where IDi ∈ {0, 1} is the i-th

bit of ID ∈ {0, 1}�. Then it runs KEnc(j, p) → (
kj , d

′
2

)
, picks rj,1, . . . , rj,d′

2

$←
Z
2×1
p , and sets Rj =

((rj,1
0
0

)
, · · · ,

(rj,d′
2

0
0

))
∈ Z

4×d′
2

p for all j ∈ S. It also

picks random {αj ∈ Z
4×1
p }j∈S subject to constraint that α =

∑
j∈S αj .

Then, it computes Pair(j, S, p) → Ej = (Ej,η,ι)(η,ι)∈[d2]×[d3] and

skj = hkj(αj ,Rj ,W) = {skj,η = hkj,η(αj ,Rj ,W)}η∈[d2]

for all j ∈ S. Note that hkj(αj ,Rj ,W) can be computed from αj , hπ1(Z), and
{gπ1(W

�
i Z)}i∈[d1] efficiently because kj(αj ,Rj ,W) = {kj,ι(αj ,Rj ,W)}ι∈[d2]

contains only linear combination of αj , Z
(

ri
0
0

)
= π1(Z)ri, and W�

i Z
(rj′

0
0

)
=

π1(W�
i Z)rj′ . Finally, it outputs private key skID =

{∏
j∈S,η∈[d2]

sk
Ej,η,ι

j,η

}

ι∈[d3]
.

A Framework for Identity-Based Encryption with Almost Tight Security 541

Enc(mpk, ID,M) : It first sets S = {2i − IDi|i ∈ [�]}. Then it runs
CEnc(S, p) → (c, d′

3), picks s0, s1, . . . , sd′
3

$← Z
2×1
p , and sets S =

((
s0
0
0

)
,
(

s1
0
0

)
, · · · ,

(sd′
3
0
0

))
∈ Z

4×(d′
3+1)

p . Then it returns

CT =
(

C1 = gc(S,W), C2 = e(g, h)α�π1(B)s0 · M
)

.

Note that gc(S,W) can be computed from gπ1(B) and {gπ1(WiB)}i∈[d1] effi-

ciently because c(S,W) contains only linear combinations of B
(

si
0
0

)
=

π1(B)si and WiB
(sj

0
0

)
= π1(WiB)sj . C2 can be computed from

e(g, h)α�π1(B).
Dec(skID,CT) : Let CT be CT = (C1, C2). From C1 = gc(S,W) = {gcι(S,W)}ι∈[d3],

it computes

∏

ι∈[d3]

e

⎛

⎝gcι(S,W),
∏

j∈S,η∈[d2]

sk
Eη,ι

j,η

⎞

⎠ = e(g, h)α�π1(B)s0 (6)

and recovers the message by C2/e(g, h)α�π1(B)s0 = M.

Correctness. To see correctness of the scheme, it suffices to show Eq. (6).

∏

ι∈[d3]

e

⎛

⎝gcι(S,W),
∏

j∈S,η∈[d2]

sk
Eη,ι

j,η

⎞

⎠

=
∏

j∈S

e(g, h)
∑

(ι,η)∈[d3,d2] Eη,ιkj,η(αj ,Rj ,W)�cι(S,W)

=
∏

j∈S

e(g, h)
α�

j B

(s0
0
0

)

= e(g, h)α�π1(B)s0

The second equation above follows from the correctness of the underlying broad-
cast encoding.

Security. Assume that the broadcast encoding satisfies regularity requirement.
Then, we can show that the security of the above IBE is reduced to the hardness
of the (standard) decisional linear assumption and the (Qc, Qk)-MMH security
of the underlying broadcast encoding on prime-order groups. The reduction only
incurs O(�) security loss. Since the Qc-CMH security tightly implies (Qc, Qk)-
MMH security, the above IBE scheme is (almost) tightly secure if the underlying
broadcast encoding is tightly Qc-CMH. The details will appear in the full ver-
sion [6].

542 N. Attrapadung et al.

6 Construction of Broadcast Encoding Schemes

In this section, we show two broadcast encoding schemes Πcc and Πslp. For these
schemes, we can tightly prove the Qc-CMH security for any Qc. Therefore, by
applying the conversion in Sects. 4 and 5, we obtain IBE schemes with almost
tight security in the multi-challenge and multi-instance setting both in prime
and composite-order groups. An IBE obtained from Πcc achieves constant-size
ciphertexts, but at the cost of requiring public parameters with the number of
group elements being linear in the security parameter. Our second broadcast
encoding scheme Πslp partially compensate for this. By appropriately setting
parameters, we can realize trade-off between size of ciphertexts and public para-
meters. For example, from the encoding, we obtain the first almost tightly secure
IBE with all communication cost (the size of pp and CT) being O(

√
κ). Such a

scheme is not known even in the single-challenge setting [9,17]. While the struc-
ture of Πcc is implicit in [25], Πslp is new. The construction of Πslp is inspired
by recent works on unbounded attribute-based encryption schemes [38,43,44].
However, the security proof for the encoding is completely different.

6.1 Broadcast Encoding with Constant-Size Ciphertexts

At first, we show the following broadcast encoding scheme that we call Πcc. The
scheme has the same structure as the broadcast encryption scheme proposed by
Gentry and Waters [25]. For Πcc, we can prove Q-PMH security for any Q. By
Lemma 1, we have that Q-CMH security of Πcc on Gp2 and Gp3 can be tightly
proven unconditionally. Similar implication holds in prime-order groups.

Param(n,N) → d1 : It outputs d1 = n.
KEnc(τ,N) → (k, d′

2) : It outputs k = (α + rwτ , rw1, . . . , rwτ−1, r, rwτ+1, . . . ,
rwn) and d′

2 = 1 where r = r.
CEnc(S,N) → (c, d′

3) : Let S ⊆ [n]. It outputs c = (s,
∑

j∈S swj) and d′
3 = 0

where s = s.

Correctness. Let τ ∈ S. Then, we have

s ·
(
(α + rwτ) +

(∑

j∈S\{τ}
rwj

)) − (∑

j∈S

swj

) · r = sα.

Lemma 3. Πcc defined above is Q-PMH secure for any Q ∈ N.

Proof. Let τ �∈ ∪j∈[Q]Sj . It is clear that information on wτ is not leaked given
{cSj

(sj ,w)}j∈[Q]. Thus, α is information-theoretically hidden from kτ (α, r,w),
because α is masked by rwτ which is uniformly random over Zp. Thus, the lemma
follows.

A Framework for Identity-Based Encryption with Almost Tight Security 543

6.2 Encoding with Sub-linear Parameters

We propose the following broadcast encoding scheme that we call Πslp. We can
realize trade-off between sizes of parameters by setting n1. For the encoding
scheme, we are not able to show the Q-PMH security. Instead, we show the
Q-CMH security.

Param(n,N) → d1 : It outputs d1 = 2n1 + 3. We let n2 = �n/n1�. For ease
of the notation, we will denote w = (u1, . . . , un1 , v, u′

1, . . . , u
′
n1

, v′, w) in the
following.

KEnc(τ,N) → (k, d′
2) : It computes unique τ1 ∈ [n1] and τ2 ∈ [n2] such that

τ = τ1 + (τ2 − 1) · n1. Then it sets d′
2 = 1 and r = r and outputs

k =
(

α + rw, r, r(v + τ2uτ1), {rui}i∈[n1]\{τ1}, r(v′ + τ2u
′
τ1), {ru′

i}i∈[n1]\{τ1}
)
.

CEnc(S,N) → (c, d′
3) : It first defines S̃j and Sj for j ∈ [n2] as

S̃j = S ∩ [(j − 1)n1 + 1, jn1], Sj = {j′ − (j − 1)n1 | j′ ∈ S̃j},

sets s = (s0, t1, . . . , tn2 , t
′
1, . . . , t

′
n2

) and d′
3 = 2n2 + 1, and outputs

c =
(
s0, { s0w + ti

(
v + i

∑

j∈Si

uj

)
+ t′i

(
v′ + i

∑

j∈Si

u′
j

)
, ti, t′i }i∈[n2]

)
.

Correctness. Let τ ∈ S and τ1, τ2 be defined as above. Then, we have τ1 ∈ Sτ2

and

s0 · (α + rw)−
(
s0w + tτ2

(
v + τ2

∑
j∈Sτ2

uj

)
+ t′τ2

(
v′ + τ2

∑
j∈Sτ2

u′
j

)) · r

+ tτ2

(
r(v + τ2uτ1) + τ2 · (∑

j∈Sτ2\{τ1}
ruj

))
+ t′τ2

(
r(v′ + τ2u′

τ1
) + τ2 · (∑

j∈Sτ2\{τ1}
ru′

j

))

= s0α.

We can tightly prove the Q-CMH security of Πslp on composite-order (resp.
prime-order) groups assuming the DLIN assumption on the composite-order
(resp. prime-order) group. The details can be found in the full version [6].

6.3 Implications

For Πxx, we call an IBE scheme obtained by applying the conversion in Sect. 4
to Πxx Φcomp

xx . Similarly, we call a scheme obtained by the conversion in Sect. 5.2
Φprime

xx . Φprime
cc and Φprime

slp are the first IBE schemes that are (almost) tightly secure
in the multi-challenge and multi-instance setting, from a static assumption in
prime-order groups (the DLIN assumption). Φcomp

cc and Φprime
cc achieve constant-

size ciphertext, meaning the number of group elements in ciphertexts is constant.
The drawback of the schemes is their long public parameters. In Φcomp

slp and Φprime
slp ,

we can trade-off the size of ciphertexts and public parameters. For example, by

544 N. Attrapadung et al.

setting n1 =
√

n, we obtain the first almost tightly secure IBE scheme such that
all communication cost (the size of the public parameters, the master public
keys, and the ciphertexts) is sub-linear in the security parameter. Such a scheme
is not known in the literature, even in the single-challenge and single-instance
setting. Also see Table 1 in Sect. 1 for the overview of the obtained schemes.

7 Anonymous IBE with Tight Security Reduction

All our IBE schemes obtained so far is not anonymous. In these schemes, one
can efficiently check that a ciphertext is in a specific form using pairing compu-
tation, which leads to an attack against anonymity. In this section, we show that
Φprime

cc can be modified to be anonymous, by removing all group elements in G2

from the public parameter pp and put these in sp instead. We call the resulting
scheme Φanon. This is the first IBE scheme whose anonymity is (almost) tightly
proven in the multi-challenge setting. While our technique for making the scheme
anonymous is similar to that in [16], the security proof for our scheme requires
some new ideas. This is because [16] only deals with the single-challenge setting
whereas we prove tight security in the multi-challenge setting. In the security
proof, we introduce new combination of information-theoretic argument (as in
[16]) and computational argument.

Construction. Let the identity space of the scheme be {0, 1}� and the message
space be GT . We note that we have sp �= ⊥ in the following, differently from
other constructions in this paper.

Par(1κ, �) : It first runs (p,G1,G2,GT , g, h, e(·)) $← Gprime(1κ). Then it picks
B $← GL4(Zp), W1, . . . ,W2�

$← Z
4×4
p and a random full-rank diagonal

matrix D ∈ Z
4×4
p with the entries (3, 3) and (4, 4) being 1. Finally, it

sets Z = B−�D and returns pp = (g, gπ1(B), gπ1(W1B), . . . , gπ1(W2�B)) and
sp = (h, hπ1(Z), hπ1(W

�
1 Z), . . . , gπ1(W

�
2�Z)).

Gen(pp, sp) : It picks α
$← Z

4×1
p and outputs mpk = (pp, e(g, h)α�π1(B)) and

msk = (α, sp).
Ext(msk,mpk, ID) : It first sets S = {2i − IDi|i ∈ [�]} where IDi ∈ {0, 1} is

the i-th bit of ID ∈ {0, 1}�. Then it picks random r $← Z
2×1
p and returns

skID = (K1 = hα+
∑

i∈S π1(W
�
i Z)r, K2 = h−π1(Z)r).

Enc(mpk, ID,M) : It first sets S = {2i − IDi|i ∈ [�]}. Then it picks random
s $← Z

2×1
p and returns CT = (C1 = gπ1(B)s, C2 = g

∑
i∈S π1(WiB)s, C3 =

e(g, h)α�π1(B)s · M).
Dec(skID,CT) : It parses the ciphertext CT as CT → (C1, C2, C3), and com-

putes e(C1,K1)e(C2,K2) = e(g, h)α�π1(B)s. Then, it recovers the message
by C3/e(g, h)α�π1(B)s = M.

A Framework for Identity-Based Encryption with Almost Tight Security 545

Remark. We have to ensure that the key extraction algorithm Ext always use the
same randomness r for the same identity, in order to (tightly) prove the security
of the scheme. This can be easily accomplished, for example, using PRF [24].
For the sake of simplicity, we do not incorporate this change into the description
of our scheme.

Security. We can prove (1, Qc, Qk)-anonymity of Φanon under the DLIN assump-
tion (single instance case). The reduction cost is O(�), which is independent from
Qc and Qk. While we think that it is not difficult to extend the result to the
multi-instance setting, we do not treat it in this paper.

8 Application to CCA Secure Public Key Encryption

Here, we discuss that our IBE schemes with almost tight security reduction in the
multi-instance and multi-challenge setting yield almost tightly CCA secure PKE
in the same setting via simple modification of Canetti-Halevi-Katz (CHK) trans-
formation [15]. The difference from the ordinary CHK transformation is that we
use (tightly secure) Q-fold one-time signature introduced and constructed in
[30]. Another difference is that we need a restriction on the original IBE scheme.
That is, we require that the key generation algorithm Gen of the IBE scheme
does not output any secret parameter. Namely, sp = ⊥. Roughly speaking, this
is needed since the syntax of the PKE does not allow key generation algorithm
to take any secret parameter. Note that this condition is satisfied by all of our
constructions except for that in Sect. 7.

By applying the above conversion to Φprime
slp and Φprime

cc , we obtain new PKE
schemes that we call Ψprime

slp and Ψprime
cc . The former allows flexible trade-off

between the size of public parameters and ciphertexts. The latter achieves very
short ciphertext-size: The ciphertext overhead of our scheme only consists of 10
group elements and 2 elements in Zp. This significantly improves previous results
[1,27,30,33,34] on PKE scheme with the same security guarantee in terms of the
ciphertext-size. Note that state-of-the-art construction by [27,34] require 47 and
59 group elements of ciphertext overhead, respectively. Namely, ciphertext over-
head of our scheme is (at least) 74% shorter, compared to theirs. On the other
hand, the size of public parameter of the scheme in [27] is much shorter than
ours (and those of [33,34]). The former only requires 17 group elements, but the
latter requires many more.

The reason why we can achieve very short ciphertext size is that our strat-
egy to obtain PKE scheme is quite different from other works. Roughly speaking,
all of the previous constructions [1,27,30,33,34] follow the template established
by Hofheinz and Jager [30]. They first construct (almost) tightly-secure signa-
ture. Then, they use the signature to construct (almost) tightly-secure unbounded
simulation sound (quasi-adaptive) NIZK. Finally, they follow the Naor-Yung par-
adigm [41] and convert the CPA-secure PKE with tight security reduction [12]

546 N. Attrapadung et al.

into CCA-secure one using the NIZK. On the other hand, our construction is much
more direct and simpler. Our conversion only requires very small amount of over-
head in public parameters and ciphertexts.

Acknowledgement. We thank the members of Shin-Akarui-Ango-Benkyo-Kai for
valuable comments.We also thank anonymous reviewers for their constructive comments.

References

1. Abe, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo, M.: Tagged one-time
signatures: tight security and optimal tag size. In: Kurosawa, K., Hanaoka, G.
(eds.) PKC 2013. LNCS, vol. 7778, pp. 312–331. Springer, Heidelberg (2013)

2. Agrawal, S., Chase, M.: A study of Pair Encodings: Predicate Encryption in prime
order groups. IACR Cryptology ePrint Archive, Report 2015/390

3. Attrapadung, N.: Dual System Encryption Framework in Prime-Order Groups.
IACR Cryptology ePrint Archive, Report 2015/390

4. Attrapadung, N.: Dual system encryption via doubly selective security: frame-
work, fully secure functional encryption for regular languages, and more. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 557–
577. Springer, Heidelberg (2014)

5. Attrapadung, N., Furukawa, J., Gomi, T., Hanaoka, G., Imai, H., Zhang, R.: Effi-
cient identity-based encryption with tight security reduction. In: Pointcheval, D.,
Mu, Y., Chen, K. (eds.) CANS 2006. LNCS, vol. 4301, pp. 19–36. Springer, Hei-
delberg (2006)

6. Attrapadung, N., Hanaoka, G., Yamada, S.: A framework for identity-based encryp-
tion with almost tight security. IACR Cryptology ePrint Archive 2015:566 (2015)

7. Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user setting:
security proofs and improvements. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 259–274. Springer, Heidelberg (2000)

8. Bellare, M., Ristenpart, T.: Simulation without the artificial abort: simplified proof
and improved concrete security for waters’ IBE scheme. In: Joux, A. (ed.) EURO-
CRYPT 2009. LNCS, vol. 5479, pp. 407–424. Springer, Heidelberg (2009)

9. Blazy, O., Kiltz, E., Pan, J.: (Hierarchical) Identity-based encryption from affine
message authentication. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part
I. LNCS, vol. 8616, pp. 408–425. Springer, Heidelberg (2014)

10. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

11. Boneh, D., Boyen, X.: Secure identity based encryption without random oracles.
In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 443–459. Springer,
Heidelberg (2004)

12. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

13. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)

14. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer,
Heidelberg (2003)

A Framework for Identity-Based Encryption with Almost Tight Security 547

15. Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based
encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol.
3027, pp. 207–222. Springer, Heidelberg (2004)

16. Chen, J., Gay, R., Wee, H.: Improved dual system ABE in prime-order groups
via predicate encodings. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015.
LNCS, vol. 9057, pp. 595–624. Springer, Heidelberg (2015)

17. Chen, J., Wee, H.: Fully, (almost) tightly secure IBE from standard assumptions.
IACR Cryptology ePrint Archive, Report 2013/803

18. Chen, J., Wee, H.: Dual system groups and its applications - compact HIBE and
more. IACR Cryptology ePrint Archive, Report 2014/265

19. Chen, J., Wee, H.: Fully, (Almost) Tightly Secure IBE and Dual System Groups.
CRYPTO,pp. 435–460 (2013). A merge of two papers [19, 20]

20. Cocks, C.: An identity based encryption scheme based on quadratic residues. In:
Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363.
Springer, Heidelberg (2001)

21. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462, pp. 13–25. Springer, Heidelberg (1998)

22. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework
for diffie-hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part II. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013)

23. Freeman, D.M.: Converting pairing-based cryptosystems from composite-order
groups to prime-order groups. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 44–61. Springer, Heidelberg (2010)

24. Gentry, C.: Practical identity-based encryption without random oracles. In: Vau-
denay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer, Hei-
delberg (2006)

25. Gentry, C., Waters, B.: Adaptive security in broadcast encryption systems (with
short ciphertexts). In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp.
171–188. Springer, Heidelberg (2009)

26. Herold, G., Hesse, J., Hofheinz, D., Ràfols, C., Rupp, A.: Polynomial spaces: a new
framework for composite-to-prime-order transformations. In: Garay, J.A., Gennaro,
R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 261–279. Springer, Heidel-
berg (2014)

27. Hofheinz, D.: Algebraic partitioning: fully compact and (almost) tightly secure
cryptography. IACR Cryptology ePrint Archive, Report 2015/499

28. Hofheinz, D., Kiltz, E.: Secure hybrid encryption from weakened key encapsulation.
In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 553–571. Springer,
Heidelberg (2007)

29. Hofheinz, D., Kiltz, E.: Programmable hash functions and their applications. In:
Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 21–38. Springer, Heidelberg
(2008)

30. Hofheinz, D., Jager, T.: Tightly secure signatures and public-key encryption. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 590–607.
Springer, Heidelberg (2012)

31. Hofheinz, D., Koch, J., Striecks, C.: Identity-based encryption with (almost) tight
security in the multi-instance, multi-ciphertext setting. In: Katz, J. (ed.) PKC
2015. LNCS, vol. 9020, pp. 799–822. Springer, Heidelberg (2015)

548 N. Attrapadung et al.

32. Jutla, C.S., Roy, A.: Shorter quasi-adaptive NIZK proofs for linear subspaces. In:
Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 1–20.
Springer, Heidelberg (2013)

33. Libert, B., Joye, M., Yung, M., Peters, T.: Concise multi-challenge CCA-secure
encryption and signatures with almost tight security. In: Sarkar, P., Iwata, T.
(eds.) ASIACRYPT 2014, Part II. LNCS, vol. 8874, pp. 1–21. Springer, Heidelberg
(2014)

34. Libert, B., Joye, M., Yung, M., Peters, T.: Compactly Hiding Linear Spans: Tightly
Secure Constant-Size Simulation-Sound QA-NIZK Proofs and Applications. IACR
Cryptology ePrint Archive, Report 2015/242

35. Lewko, A.: Tools for simulating features of composite order bilinear groups in the
prime order setting. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 318–335. Springer, Heidelberg (2012)

36. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure
functional encryption: attribute-based encryption and (hierarchical) inner prod-
uct encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
62–91. Springer, Heidelberg (2010)

37. Lewko, A., Waters, B.: New techniques for dual system encryption and fully secure
hibe with short ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978,
pp. 455–479. Springer, Heidelberg (2010)

38. Lewko, A., Waters, B.: Unbounded HIBE and attribute-based encryption. In:
Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 547–567. Springer,
Heidelberg (2011)

39. Lewko, A., Waters, B.: New proof methods for attribute-based encryption: achiev-
ing full security through selective techniques. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 180–198. Springer, Heidelberg (2012)

40. Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random
functions. J. ACM 51(2), 231–262 (2004)

41. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen
ciphertext attacks. In: STOC, pp. 427–437 (1990)

42. Okamoto, T., Takashima, K.: Fully secure functional encryption with general rela-
tions from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010)

43. Okamoto, T., Takashima, K.: Fully secure unbounded inner-product and attribute-
based encryption. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol.
7658, pp. 349–366. Springer, Heidelberg (2012)

44. Rouselakis, Y., Waters, B.: Practical constructions and new proof methods for
large universe attribute-based encryption. In: ACM-CCS, pp. 463–474 (2013)

45. Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystems based on pairing over elliptic
curve. In: The 2001 Symposium on Cryptography and Information Security (2001).
(in Japanese)

46. Shacham, H.: A Cramer-Shoup encryption scheme from the linear assumption and
from progressively weaker linear variants, IACR Cryptology ePrint Archive, Report
2007/074

47. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

A Framework for Identity-Based Encryption with Almost Tight Security 549

48. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005)

49. Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under
simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–
636. Springer, Heidelberg (2009)

50. Wee, H.: Dual system encryption via predicate encodings. In: Lindell, Y. (ed.) TCC
2014. LNCS, vol. 8349, pp. 616–637. Springer, Heidelberg (2014)

Riding on Asymmetry: Efficient ABE
for Branching Programs

Sergey Gorbunov1(B) and Dhinakaran Vinayagamurthy2

1 Aikicrypt, Boston, USA
sergey@aikicrypt.com

2 University of Waterloo, Waterloo, Canada
dvinayag@uwaterloo.ca

Abstract. In an Attribute-Based Encryption (ABE) scheme the
ciphertext encrypting a message μ, is associated with a public attribute
vector x and a secret key skP is associated with a predicate P . The
decryption returns μ if and only if P (x) = 1. ABE provides efficient
and simple mechanism for data sharing supporting fine-grained access
control. Moreover, it is used as a critical component in constructions
of succinct functional encryption, reusable garbled circuits, token-based
obfuscation and more.

In this work, we describe a new efficient ABE scheme for a family of
branching programs with short secret keys and from a mild assumption.
In particular, in our construction the size of the secret key for a branching
program P is |P | + poly(λ), where λ is the security parameter. Our
construction is secure assuming the standard Learning With Errors
(LWE) problem with approximation factors nω(1). Previous constructions
relied on nO(log n) approximation factors of LWE (resulting in less
efficient parameters instantiation) or had large secret keys of size
|P | × poly(λ). We rely on techniques developed by Boneh et al.
(EUROCRYPT’14) and Brakerski et al. (ITCS’14) in the context of ABE
for circuits and fully-homomorphic encryption.

1 Introduction

Attribute-Based Encryption (ABE) was introduced by Sahai and Waters [40]
in order to realize the vision of fine-grained access control to encrypted data.
Using ABE, a user can encrypt a message μ with respect to a public attribute-
vector x to obtain a ciphertext ctx. Anyone holding a secret key skP , associated
with an access policy P , can decrypt the message μ if P (x) = 1. Moreover, the
security notion guarantees that no collusion of adversaries holding secret keys
skP1 , . . . , skPt

can learn anything about the message μ if none of the individual
keys allow to decrypt it. Until recently, candidate constructions of ABE were
limited to restricted classes of access policies that test for equality (IBE), boolean
formulas and inner-products: [1,2,8,12,14,15,30–32,41].

Work done while at MIT, supported by Microsoft PhD fellowship.
Work done while at University of Toronto.

c© International Association for Cryptologic Research 2015
T. Iwata and J.H. Cheon (Eds.): ASIACRYPT 2015, Part I, LNCS 9452, pp. 550–574, 2015.
DOI: 10.1007/978-3-662-48797-6 23

Riding on Asymmetry: Efficient ABE for Branching Programs 551

In recent breakthroughs Gorbunov, Vaikuntanathan and Wee [26] and Garg,
Gentry, Halevi, Sahai and Waters [20] constructed ABE schemes for arbitrary
boolean predicates. The GVW construction is based on the standard Learning
With Errors (LWE) problem with sub-exponential approximation factors,
whereas GGHSW relies on hardness of a (currently) stronger assumptions over
existing multilinear map candidates [16,18,21]. But in both these ABE schemes,
the size of the secret keys had a multiplicative dependence on the size of the
predicate: |P | · poly(λ, d) (where d is the depth of the circuit representation
of the predicate). In a subsequent work, Boneh et al. [10] showed how to
construct ABE for arithmetic predicates with short secret keys: |P |+poly(λ, d),
also assuming hardness of LWE with sub-exponential approximation factors.
However, in [26], the authors also showed an additional construction for a family
of branching programs under a milder and quantitatively better assumption:
hardness of LWE with polynomial approximation factors. Basing the security
on LWE with polynomial approximation factors, as opposed to sub-exponential,
results in two main advantages. First, the security of the resulting construction
relies on the hardness of a much milder LWE assumption. But moreover, the
resulting instantiation has better parameter – small modulo q – leading directly
to practical efficiency improvements.

In this work, we focus on constructing an ABE scheme under milder security
assumptions and better performance guarantees. We concentrate on ABE for a
family of branching programs which is sufficient for most existing applications
such as medical and multimedia data sharing [5,33,36].

First, we summarize the two most efficient results from learning with
errors problem translated to the setting of branching programs (via standard
Barrington’s theorem [7]). Let L be the length of a branching program P and
let λ denote the security parameter. Then,

– [26]: There exists an ABE scheme for length L branching programs with
large secret keys based on the security of LWE with polynomial approximation
factors. In particular, in the instantiation |skP | = |L| × poly(λ) and q =
poly(L, λ).

– [10]: There exists an ABE scheme for length L branching programs with small
secret keys based on the security of LWE with quasi-polynomial approximation
factors. In particular, |skP | = |L| + poly(λ, log L), q = poly(λ)log L.

To advance the state of the art for both theoretical and practical reasons, the
natural question that arises is whether we can obtain the best of both worlds
and:

Construct an ABE for branching programs with small secret keys based on
the security of LWE with polynomial approximation factors?

552 S. Gorbunov and D. Vinayagamurthy

1.1 Our Results

We present a new efficient construction of ABE for branching programs from a
mild LWE assumption. Our result can be summarized in the following theorem.

Theorem 1 (Informal). There exists a selectively-secure Attribute-Based
Encryption for a family of length-L branching programs with small secret keys
based on the security of LWE with polynomial approximation factors. More
formally, the size of the secret key skP is L + poly(λ, log L) and modulo q =
poly(L, λ), where λ is the security parameter.

Furthermore, we can extend our construction to support arbitrary length
branching programs by setting q to some small super-polynomial.

As an additional contribution, our techniques lead to a new efficient
constructing of homomorphic signatures for branching programs. In particular,
Gorbunov et al. [28] showed how to construct homomorphic signatures for
circuits based on the simulation techniques of Boneh et al. [10] in the context of
ABE. Their resulting construction is secure based on the short integer solution
(SIS) problem with sub-exponential approximation factors (or quasi-polynomial
in the setting of branching programs). Analogously, our simulation algorithm
presented in Sect. 3.4 can be used directly to construct homomorphic signatures
for branching programs based on SIS with polynomial approximation factors.

Theorem 2 (Informal). There exists a homomorphic signatures scheme for
the family of length-L branching programs based on the security of SIS with
polynomial approximation factors.

High Level Overview. The starting point of our ABE construction is the ABE
scheme for circuits with short secret keys by Boneh et al. [10]. At the heart of
their construction is a fully key-homomorphic encoding scheme.

It encodes a ∈ {0, 1} with respect to a public key A $← Z
n×m
q in a “noisy”

sample:
ψA,a = (A + a · G)Ts + e

where s $← Z
n
q and G ∈ Z

n×m
q are fixed across all the encodings and e $←

χm (for some noise distribution χ) is chosen independently every time. The
authors show that one can turn such a key-homomorphic encoding scheme, where
homomorphism is satisfied over the encoded values and over the public keys
simultaneously, into an attribute based encryption scheme for circuits.

Our first key observation is the asymmetric noise growth in their
homomorphic multiplication over the encodings. Consider ψ1, ψ2 to be the
encodings of a1, a2 under public keys A1,A2. To achieve multiplicative
homomorphism, their first step is to achieve homomorphism over a1 and a2

by computing

a1 · ψ2 = (a1 · A2 + (a1a2) · G)T s + a1e2 (1)

Riding on Asymmetry: Efficient ABE for Branching Programs 553

Now, since homomorphism over the public key matrices must also be satisfied
in the resulting encoding independently of a1, a2 we must replace a1 · A2 in
Eq. 1 with operations over A1,A2 only. To do this, we can use the first encoding
ψ1 = (A1 + a1 · G)T+e1 and replace a1 ·G with a1 ·A2 as follows. First, compute
Ã2 ∈ {0, 1}m×m such that G · Ã2 = A2. (Finding such Ã2 is possible since the
“trapdoor” of G is known publicly). Then compute

(Ã2)T · ψ1 = ÃT

2 · ((A1 + a1 · G)Ts + e1)

=
(
A1Ã2 + a1 · GÃ2

)T

s + Ã2e1

=
(
A1Ã2 + a1 · A2

)T

s + e′
1 (2)

Subtracting Eq. 2 from 1, we get
(
−A1Ã2 + (a1a2) · G

)T

s + e′ which is an

encoding of a1a2 under the public key A× := −A1Ã2. Thus,

ψA×,a× := a1 · ψ2 − ÃT

2 · ψ1

where a× := a1a2. Here, e′ remains small enough because Ã2 has small (binary)
entries. We observe that the new noise e′ = a1e2 − Ã2e1 grows asymmetrically.
That is, the poly(n) multiplicative increase always occurs with respect to the first
noise e1. Näıvely evaluating k levels of multiplicative homomorphism results in
a noise of magnitude poly(n)k. Can we manage the noise growth by some careful
design of the order of homomorphic operations?

To achieve this, comes our second idea: design evaluation algorithms for a
“sequential” representation of a matrix branching program to carefully manage
the noise growth following the Brakerski-Vaikuntanathan paradigm in the
context of fully-homomorphic encryption [13].

First, to generate a ciphertext with respect to an attribute vector x =
(x1, . . . , x�) we publish encodings of its individual bits:

ψi ≈ (Ai + xi · G)T s

We also publish encoding of an initial start state 01:

ψv
0 ≈ (Av

0 + v0 · G)T s

The message μ is encrypted under encoding uTs + e (where u is treated as the
public key) and during decryption the user should obtain a value ≈ uTs from
{ψi}i∈[�], ψ

v
0 iff P (x) = 1.

Now, suppose the user wants to evaluate a branching program P on the
attribute vector x. Informally, the evaluation of a branching program proceeds
in steps updating a special state vector. The next state is determined by the
current state and one of the input bits (pertaining to this step). Viewing the
1 Technically, we need to publish encodings of 5 states, but we simplify the notation

in the introduction for conceptual clarify.

554 S. Gorbunov and D. Vinayagamurthy

sequential representation of the branching program allows us to update the state
using only a single multiplication and a few additions. Suppose vt represents the
state of the program P at step t and the user holds its corresponding encoding
ψv

t (under some public key). To obtain ψv
t+1 the user needs to use ψi (for some

i determined by the program). Leveraging on the asymmetry, the state can be
updated by multiplying ψi with the matrix Ãv

t corresponding to the encoding
ψv

t (and then following a few simple addition steps). Since ψi always contains a
“fresh” noise (which is never increased as we progress evaluating the program),
the noise in ψv

t+1 increases from the noise in ψv
t only by a constant additive

factor! As a result, after k steps in the evaluation procedure the noise will be
bounded by k · poly(n). Eventually, if P (x) = 1, the user will learn ≈ uTs and
be able to recover μ (we refer the reader to the main construction for details).

The main challenge in “riding on asymmetry” for attribute-based encryption
is the requirement for satisfying parallel homomorphic properties: we must design
separate homomorphic algorithms for operating over the public key matrices and
over the encodings that allow for correct decryption. First, we define and design
an algorithm for public key homomorphic operations that works specially for
branching programs. Second, we design a homomorphic algorithm that works
over the encodings that preserves the homomorphism over public key matrices
and the bits2 and carefully manages the noise growth as illustrated above. To
prove the security, we need to argue that no collusion of users is able to learn
anything about the message given many secret keys for programs that do not
allow for decryption individually. We design a separate public-key simulation
algorithm to accomplish this.

1.2 Applications

We summarize some of the known applications of attribute-based encryption.
Parno, Raykova and Vaikuntanathan [37] showed how to use ABE to design
(publicly) verifiable two-message delegation delegation scheme with a pre-
processing phase. Goldwasser, Kalai, Popa, Vaikuntanathan and Zeldovich [24]
showed how to use ABE as a critical building block to construct succinct one-
query functional encryption, reusable garbled circuits, token-based obfuscation
and homomorphic encryption for Turing machines. Our efficiency improvements
for branching programs can be carried into all these applications.

1.3 Other Related Work

A number of works optimized attribute-based encryption for boolean formulas:
Attrapadung et al. [6] and Emura et al. [17] designed ABE schemes with
constant size ciphertext from bilinear assumptions. For arbitrary circuits, Boneh
et al. [10] also showed an ABE with constant size ciphertext from multilinear
assumptions. ABE can also be viewed as a special case of functional encryptions
[9]. Gorbunov et al. [25] showed functional encryption for arbitrary functions

2 These bits represent the bits of the attribute vector in the ABE scheme.

Riding on Asymmetry: Efficient ABE for Branching Programs 555

in a bounded collusion model from standard public-key encryption scheme.
Garg et al. [19] presented a functional encryption for unbounded collusions for
arbitrary functions under a weaker security model from multilinear assumptions.
More recently, Gorbunov et al. exploited a the asymmetry in the noise growth
in [10] in a different context of design of a predicate encryption scheme based on
standard LWE [27].

1.4 Organization

In Sect. 2 we present the lattice preliminaries, definitions for ABE and branching
programs. In Sect. 3 we present our main evaluation algorithms and build our
ABE scheme in Sect. 4. We present a concrete instantiation of the parameters in
Sect. 5. Finally, we outline the extensions in Sect. 6.

2 Preliminaries

Notation. Let PPT denote probabilistic polynomial-time. For any integer q ≥ 2,
we let Zq denote the ring of integers modulo q and we represent Zq as integers
in (−q/2, q/2]. We let Z

n×m
q denote the set of n × m matrices with entries

in Zq. We use bold capital letters (e.g. A) to denote matrices, bold lowercase
letters (e.g. x) to denote vectors. The notation AT denotes the transpose of the
matrix A. If A1 is an n × m matrix and A2 is an n × m′ matrix, then [A1‖A2]
denotes the n× (m+m′) matrix formed by concatenating A1 and A2. A similar
notation applies to vectors. When doing matrix-vector multiplication we always
view vectors as column vectors. Also, [n] denotes the set of numbers 1, . . . , n.

2.1 Lattice Preliminaries

Learning with Errors (LWE) Assumption The LWE problem was
introduced by Regev [39], who showed that solving it on the average is as hard
as (quantumly) solving several standard lattice problems in the worst case.

Definition 1 (LWE). For an integer q = q(n) ≥ 2 and an error distribution
χ = χ(n) over Zq, the learning with errors problem dLWEn,m,q,χ is to distinguish
between the following pairs of distributions:

{A,ATs + x} and {A,u}

where A $← Z
n×m
q , s $← Z

n
q ,x $← χm,u $← Z

m
q .

Connection to Lattices. Let B = B(n) ∈ N. A family of distributions χ =
{χn}n∈N is called B-bounded if

Pr[χ ∈ {−B, . . . , B − 1, B}] = 1.

There are known quantum [39] and classical [38] reductions between dLWEn,m,q,χ

and approximating short vector problems in lattices in the worst case, where

556 S. Gorbunov and D. Vinayagamurthy

χ is a B-bounded (truncated) discretized Gaussian for some appropriate B.
The state-of-the-art algorithms for these lattice problems run in time nearly
exponential in the dimension n [4,35]; more generally, we can get a 2k-
approximation in time 2Õ(n/k). Throughout this paper, the parameter m =
poly(n), in which case we will shorten the notation slightly to LWEn,q,χ.

Trapdoors for Lattices and LWE

Gaussian Distributions. Let DZm,σ be the truncated discrete Gaussian
distribution over Z

m with parameter σ, that is, we replace the output by 0
whenever the || · ||∞ norm exceeds

√
m ·σ. Note that DZm,σ is

√
m ·σ-bounded.

Lemma 1 (Lattice Trapdoors [3,22,34]). There is an efficient randomized
algorithm TrapSamp(1n, 1m, q) that, given any integers n ≥ 1, q ≥ 2, and
sufficiently large m = Ω(n log q), outputs a parity check matrix A ∈ Z

n×m
q and

a ‘trapdoor’ matrix TA ∈ Z
m×m such that the distribution of A is negl(n)-close

to uniform.
Moreover, there is an efficient algorithm SampleD that with overwhelming

probability over all random choices, does the following: For any u ∈ Z
n
q , and

large enough s = Ω(
√

n log q), the randomized algorithm SampleD(A,TA,u, s)
outputs a vector r ∈ Z

m with norm ||r||∞ ≤ ||r||2 ≤ s
√

n (with probability 1).
Furthermore, the following distributions of the tuple (A,TA,U,R) are within
negl(n) statistical distance of each other for any polynomial k ∈ N:

– (A,TA) ← TrapSamp(1n, 1m, q); U ← Z
n×k
q ; R ← SampleD(A,TA,U, s).

– (A,TA) ← TrapSamp(1n, 1m, q); R ← (DZm,s)k; U := AR (mod q).

Sampling Algorithms We will use the following algorithms to sample short
vectors from specific lattices. Looking ahead, the algorithm SampleLeft [1,14]
will be used to sample keys in the real system, while the algorithm SampleRight
[1] will be used to sample keys in the simulation.
Algorithm SampleLeft(A,B,TA,u, α):

Inputs: a full rank matrix A in Z
n×m
q , a “short” basis TA of Λ⊥

q (A), a matrix
B in Z

n×m1
q , a vector u ∈ Z

n
q , and a Gaussian parameter α.

Output: Let F := (A ‖ B). The algorithm outputs a vector e ∈ Z
m+m1 in

the coset ΛF+u.

Theorem 3 ([1, Theorem 17], [14, Lemma 3.2]). Let q > 2, m > n and
α > ‖TA‖GS ·ω(

√
log(m + m1)). Then SampleLeft(A,B,TA,u, α) taking inputs

as in (3) outputs a vector e ∈ Z
m+m1 distributed statistically close to DΛF+u,α,

where F := (A ‖ B).

where ‖T‖GS refers to the norm of Gram-Schmidt orthogonalisation of T. We
refer the readers to [1] for more details.
Algorithm SampleRight(A,G,R,TG,u, α):

Riding on Asymmetry: Efficient ABE for Branching Programs 557

Inputs: matrices A in Z
n×k
q and R in Z

k×m, a full rank matrix G in Z
n×m
q ,

a “short” basis TG of Λ⊥
q (G), a vector u ∈ Z

n
q , and a Gaussian parameter

α.
Output: Let F := (A ‖ AR+G). The algorithm outputs a vector e ∈ Z

m+k

in the coset ΛF+u.

Often the matrix R given to the algorithm as input will be a random matrix
in {1,−1}m×m. Let Sm be the m-sphere {x ∈ R

m+1 : ‖x‖ = 1}. We define
sR := ‖R‖ := supx∈Sm−1 ‖R · x‖.

Theorem 4 ([1, Theorem19]). Let q > 2,m > n and α > ‖TG‖GS ·
sR · ω(

√
log m). Then SampleRight(A,G,R,TG,u, α) taking inputs as in (3)

outputs a vector e ∈ Z
m+k distributed statistically close to DΛF+u,α, where

F := (A ‖ AR + G).

Primitive Matrix We use the primitive matrix G ∈ Z
n×m
q defined in [34].

This matrix has a trapdoor TG such that ‖TG‖∞ = 2.
We also define an algorithm invG : Zn×m

q → Z
m×m
q which deterministically

derives a pre-image Ã satisfying G · Ã = A. From [34], there exists a way to get
Ã such that Ã ∈ {0, 1}m×m.

2.2 Attribute-Based Encryption

An attribute-based encryption scheme ABE [30] for a class of circuits C with

 bit inputs and message space M consists of a tuple of p.p.t. algorithms
(Params,Setup,Enc,KeyGen,Dec):

Params(1λ) → pp: The parameter generation algorithm takes the security
parameter 1λ and outputs a public parameter pp which is implicitly given
to all the other algorithms of the scheme.

Setup(1�) → (mpk,msk): The setup algorithm gets as input the length
 of the
input index, and outputs the master public key mpk, and the master key
msk.

Enc(mpk, x, μ) → ctx: The encryption algorithm gets as input mpk, an index
x ∈ {0, 1}� and a message μ ∈ M. It outputs a ciphertext ctx.

KeyGen(msk, C) → skC : The key generation algorithm gets as input msk and a
predicate specified by C ∈ C. It outputs a secret key skC .

Dec(ctx, skC) → μ: The decryption algorithm gets as input ctx and skC , and
outputs either ⊥ or a message μ ∈ M.

Definition 2 (Correctness). We require that for all (x, C) such that C(x) = 1
and for all μ ∈ M, we have Pr[ctx ← Enc(mpk,x, μ);Dec(ctx, skC) = μ)] = 1
where the probability is taken over pp ← Params(1λ), (mpk,msk) ← Setup(1�)
and the coins of all the algorithms in the expression above.

558 S. Gorbunov and D. Vinayagamurthy

Definition 3 (Security). For a stateful adversary A, we define the advantage
function AdvabeA (λ) to be

Pr

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

b = b′ :

x, dmax ← A(1λ, 1�);
pp ← Params(1λ, 1dmax);
(mpk,msk) ← Setup(1λ, 1�,x∗);
(μ0, μ1) ← AKeygen(msk,·)(mpk),

|μ0| = |μ1|;
b

$← {0, 1};
ctx ← Enc(mpk,x, μb);
b′ ← AKeygen(msk,·)(ctx)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

− 1
2

with the restriction that all queries y that A makes to Keygen(msk, ·) satisfies
C(x∗) = 0 (that is, skC does not decrypt ctx). An attribute-based encryption
scheme is selectively secure if for all PPT adversaries A, the advantage
AdvabeA (λ) is a negligible function in λ.

2.3 Branching Programs

We define branching programs similar to [13]. A width-w branching program
BP of length L with input space {0, 1}� and s states (represented by [s]) is a
sequence of L tuples of the form (var(t), σt,0, σt,1) where

– σt,0 and σt,1 are injective functions from [s] to itself.
– var : [L] → [
] is a function that associates the t-th tuple σt,0, σt,1 with the

input bit xvar(t).

The branching program BP on input x = (x1, . . . , x�) computes its output
as follows. At step t, we denote the state of the computation by ηt ∈ [s]. The
initial state is η0 = 1. In general, ηt can be computed recursively as

ηt = σt,xvar(t)(ηt−1)

Finally, after L steps, the output of the computation BP(x) = 1 if ηL = 1 and 0
otherwise.

As done in [13], we represent states with bits rather than numbers to bound
the noise growth. In particular, we represent the state ηt ∈ [s] by a unit vector
vt ∈ {0, 1}s. The idea is that vt[i] = 1 if and only if σt,xvar(t)(ηt−1) = i. Note
that we can also write the above expression as vt[i] = 1 if and only if either:

– vt−1

[
σ−1

t,0 (i)
]

= 1 and xvar(t) = 0
– vt−1

[
σ−1

t,1 (i)
]

= 1 and xvar(t) = 1

This latter form will be useful for us since it can be captured by the following
formula. For t ∈ [L] and i ∈ [s],

vt[i] := vt−1

[
σ−1

t,0 (i)
] · (1 − xvar(t)) + vt−1

[
σ−1

t,1 (i)
] · xvar(t)

= vt−1 [γt,i,0] · (1 − xvar(t)) + vt−1 [γt,i,1] · xvar(t)

Riding on Asymmetry: Efficient ABE for Branching Programs 559

where γt,i,0 := σ−1
t,0 (i) and γt,i,1 = σ−1

t,1 (i) can be publicly computed from the
description of the branching program. Hence,

{
var(t), {γt,i,0, γt,i,1}i∈[s]

}
t∈[L]

is
also valid representation of a branching program BP.

For clarity of presentation, we will deal with width-5 permutation branching
programs, which is shown to be equivalent to the circuit class NC1 [7]. Hence,
we have s = w = 5 and the functions σ0, σ1 are permutations on [5].

3 Our Evaluation Algorithms

In this section we describe the key evaluation and encoding (ciphertext)
evaluation algorithms that will be used in our ABE construction. The algorithms
are carefully designed to manage the noise growth in the LWE encodings and to
preserve parallel homomorphism over the public keys and the encoded values.

3.1 Basic Homomorphic Operations

We first describe basic homomorphic addition and multiplication algorithms over
the public keys and encodings (ciphertexts) based on the techniques developed
by Boneh et al. [10].

Definition 4 (LWE Encoding). For any matrix A $← Z
n×m
q , we define an

LWE encoding of a bit a ∈ {0, 1} with respect to a (public) key A and randomness
s $← Z

n
q as

ψA,s,a = (A + a · G)Ts + e ∈ Z
m
q

for error vector e $← χm and an (extended) primitive matrix G ∈ Z
n×m
q .

In our construction, however, all encodings will be under the same LWE
secret s, hence for simplicity we will simply refer to such an encoding as ψA,a.

Definition 5 (Noise Function). For every A ∈ Z
n×m
q , s ∈ Z

n
q and encoding

ψA,a ∈ Z
m
q of a bit a ∈ {0, 1} we define a noise function as

Noises(ψA,a) := ||ψA,a − (A + a · G)Ts mod q||∞
Looking ahead, in Lemma 8 we show that if the noise obtained after applying
homomorphic evaluation is ≤ q/4, then our ABE scheme will decrypt the
message correctly. Now we define the basic additive and multiplicative operations
on the encodings of this form, as per [10]. In their context, they refer to a matrix
A as the “public key” and ψA,a as a ciphertext.

Homomorphic Addition This algorithm takes as input two encodings
ψA,a, ψA′,a′ and outputs the sum of them. Let A+ = A + A′ and a+ = a + a′.

Adden(ψA,a, ψA′,a′) : Output ψA+,a+ := ψA,a + ψA′,a′ mod q

560 S. Gorbunov and D. Vinayagamurthy

Lemma 2 (Noise Growth in Adden). For any two valid encodings
ψA,a, ψA′,a′ ∈ Z

m
q , let A+ = A + A′ and a+ = a + a′ and ψA+,a+ =

Adden(ψA,a, ψA′,a′), then we have

NoiseA+,a+(ψA+,a+) ≤ NoiseA,a(ψA,a) + NoiseA′,a′(ψA′,a′)

Proof Given two encodings we have,

ψA+,a+ = ψA,a + ψA′,a′

= ((A + a · G)Ts + e) + ((A′ + a′ · G)Ts + e′)
= ((A + A′) + (a + a′) · G)T s + (e + e′)
= (A+ + a+ · G)Ts + (e + e′)

Thus, from the definition of the noise function, it follows that

NoiseA+,a+(ψA,a + ψA′,a′) ≤ NoiseA,a(ψA,a) + NoiseA′,a′(ψA′,a′)

Homomorphic Multiplication This algorithm takes in two encodings ψA,a =
(A + a · G)Ts + e1 and ψA′,a′ = (A′ + a′ · G)Ts + e2 and outputs an encoding
ψA×,a× where A× = −AÃ′ and a× = aa′ as follows:

Multiplyen(ψA,a, ψA′,a′) : Output ψA×,a× := −Ã′T · ψ + a · ψ′.

Note that this process requires the knowledge of the attribute a in clear.

Lemma 3 (Noise Growth in Multiplyen). For any two valid encodings
ψA,a, ψA′,a′ ∈ Z

m
q , let A× = −AÃ′ and a× = aa′ and ψA×,a× =

Multiplyen(ψA,a, ψA′,a′) then we have

NoiseA×,a×(ψA×,a×) ≤ m · NoiseA,a(ψA,a) + a · NoiseA′,a′(ψA′,a′)

Proof Given two valid encodings, we have

ψA×,a× = −Ã′T · ψ + a · ψ′

= −Ã′T((A + a · G)Ts + e
)

+ a · (
(A′ + a′ · G)Ts + e′)

=
(

(−AÃ′ − a · A′)Ts − Ã′Te
)

+
(

(a · A′ + aa′ · G)Ts + a · e′
)

=
(
(−AÃ2︸ ︷︷ ︸

A×

) + aa′
︸︷︷︸
a×

·G)T
s +

(−Ã′Te + a · e′
︸ ︷︷ ︸

e×

)

Thus, from the definition of the noise function, we must bound the noise e×.
Hence,

∥
∥e×∥

∥
∞ ≤

∥
∥
∥Ã′Te

∥
∥
∥

∞
+ a · ‖e′‖∞ ≤ m · ‖e‖∞ + a · ‖e′‖∞

where the last inequality holds since Ã′ ∈ {0, 1}m×m.

Riding on Asymmetry: Efficient ABE for Branching Programs 561

Note: This type of homomorphism is different from a standard fully
homomorphic encryption (FHE) mainly for the following two reasons.

– To perform multiplicative homomorphism, here we need one of the input
values in clear but the FHE homomorphic operations are performed without
the knowledge of the input values.

– The other big difference is that, here we require the output public key matrices
A+,A× to be independent of the input values a1, a2. More generally, when
given an arbitrary circuit with AND and OR gates along with the matrices
corresponding to its input wires, one should be able to determine the matrix
corresponding to the output wire without the knowledge of the values of the
input wires. But, this property is not present in any of the existing FHE
schemes.

3.2 Our Public Key Evaluation Algorithm

We define a (public) key evaluation algorithm Evalpk. The algorithm takes as
input a description of the branching program BP, a collection of public keys
{Ai}i∈[�] (one for each attribute bit xi), a collection of public keys V0,i for initial
state vector and an auxiliary matrix Ac. The algorithm outputs an “evaluated”
public key corresponding to the branching program:

Evalpk(BP, {Ai}i∈[�], {V0,i}i∈[5],Ac) → VBP

The auxiliary matrix Ac can be thought of as the public key we use to encode
a constant 1. We also define A′

i := Ac − Ai, as a public key that will encode
1 − xi. The output VBP ∈ Z

n×m
q is the homomorphically defined public key

VL,1 at position 1 of the state vector at the Lth step of the branching program
evaluation.

The algorithm proceeds as follows. Recall the description of the branching
program BP represented by tuples

(
var(t), {γt,i,0, γt,i,1}i∈[5]

)
for t ∈ [L]. The

initial state vector is always taken to be v0 := [1, 0, 0, 0, 0]. And for t ∈ [L],

vt[i] = vt−1 [γt,i,0] · (1 − xvar(t)) + vt−1 [γt,i,1] · xvar(t)

Our algorithm calculates VBP inductively as follows. Assume at time t−1 ∈ [L],
the state public keys {Vt−1,i}i∈[5] are already assigned. We assign state public
keys {Vt,i}i∈[5] at time t as follows.

1. Let γ0 := γt,i,0 and γ1 := γt,i,1.
2. Let Vt,i = −A′

var(t)Ṽt−1,γ0 − Avar(t)Ṽt−1,γ1 .

It is important to note that the public key defined at each step of the state
vector is independent of any input attribute vector. Now, let VL,1 be the public
key assigned at position 1 at step L of the branching program. We simply output
VBP := VL,1.

562 S. Gorbunov and D. Vinayagamurthy

3.3 Our Encoding Evaluation Algorithm

We also define an encoding evaluation algorithm Evalen which we will use in
the decryption algorithm of our ABE scheme. The algorithm takes as input the
description of a branching program BP, an attribute vector x, a set of encodings
for the attribute (with corresponding public keys) {Ai, ψi := ψAi,xi

}i∈[�],
encodings of the initial state vector {V0,i, ψ0,i := ψV0,i,v0[i]}i∈[5] and an encoding
of a constant “1” ψc := ψAc,1. (From now on, we will use the simplified
notations ψi, ψ0,i, ψ

c for the encodings). Evalen outputs an encoding of the result
y := BP(x) with respect to a homomorphically derived public key VBP := VL,1.

Evalen
(
BP,x, {Ai, ψi}i∈[�], {V0,i, ψ0,i}i∈[5],Ac, ψc

) → ψBP

Recall that for t ∈ [L], we have for all i ∈ [5]:

vt[i] = vt−1 [γt,i,0] · (1 − xvar(t)) + vt−1 [γt,i,1] · xvar(t)

The evaluation algorithm proceeds inductively to update the encoding of the
state vector for each step of the branching program. The key idea to obtain
the desired noise growth is that we only multiply the fresh encodings of the
attribute bits with the binary decomposition of the public keys. The result is
then be added to update the encoding of the state vector. Hence, at each step of
the computation the noise in the encodings of the state will only grow by some
fixed additive factor.

The algorithm proceeds as follows. We define ψ′
i := ψA′

i,(1−xi) = (A′
i + (1 −

xi)·G)Ts+e′
i to denote the encoding of 1−xi with respect to A′

i = Ac−Ai. Note
that it can be computed using Adden(ψAc,1,−ψAi,xi

). Assume at time t−1 ∈ [L]
we hold encodings of the state vector {ψVt−1,i,vt[i]}i∈[5]. Now, we compute the
encodings of the new state values:

ψt,i = Adden
(
Multiplyen(ψ

′
var(t), ψt−1,γ0),Multiplyen(ψvar(t), ψt−1,γ1)

)

where γ0 := γt,i,0 and γ1 := γt,i,1. As we show below (in Lemma 4), this new
encoding has the form

(
Vt,i + vt[i] · G)T

s + et,i (for a small enough noise term
et,i).

Finally, let ψL,1 be the encoding obtained at the Lth step corresponding
to state value at position “1” by this process. As we show in Lemma 5, noise
term eBP has “low” infinity norm enabling correct decryption (Lemma 8). The
algorithm outputs ψBP := ψL,1.

Correctness and Analysis

Lemma 4. For any valid set of encodings ψvar(t), ψ
′
var(t) for the bits xvar(t), (1 −

xvar(t)) and {ψt−1,i}i∈[5] for the state vector vt−1 at step t − 1, the output of the
function

Adden
(
Multiplyen(ψ

′
var(t), ψt−1,γ0),Multiplyen(ψvar(t), ψt−1,γ1)

)
→ ψt,i

where ψt,i =
(
Vt,i + vt[i] · G)T

s + et,i, for some noise term et,i.

Riding on Asymmetry: Efficient ABE for Branching Programs 563

Proof. Given valid encodings ψvar(t), ψ
′
var(t) and {ψt−1,i}i∈[5], we have:

ψt,i = Adden
(
Multiplyen(ψ

′
var(t), ψt−1,γ0),Multiplyen(ψvar(t), ψt−1,γ1)

)

= Adden

([
(−A

′
var(t)Ṽt−1,γ0 + (vt[γ0] · (1 − xvar(t))) · G)

T
s + e1)

]
,

[
(−Avar(t)Ṽt−1,γ1 + (vt[γ1] · xvar(t)) · G)

T
s + e2)

])

=
[(

−A
′
var(t)Ṽt−1,γ0 − Avar(t)Ṽt−1,γ1

)

︸ ︷︷ ︸
Vt,i

+
(
vt[γ0] · (1 − xvar(t)) + vt[γ1] · xvar(t)

)
︸ ︷︷ ︸

vt[i]

·G
]T

s + et,i

where the first step follows from the correctness of Multiplyen algorithm and last

step from that of Adden with et,i = e1 + e2 where e1 = −
(
Ṽt−1,γ0

)T

e′
var(t) −

(1 − xvar(t)) · et−1,γ0 and e2 = −
(
Ṽt−1,γ1

)T

evar(t) − xvar(t) · et−1,γ1 .

Lemma 5. Let Evalen
(
BP,x, {Ai, ψi}i∈[�], {V0,i, ψ0,i}i∈[5],Ac, ψc

) → ψBP such
that all the noise terms,{
NoiseAi,xi

(ψi)
}

i∈[�]
,NoiseAc,1(ψc),

{
NoiseV0,i,v0[i](ψ0,i)

}
i∈[5]

are bounded by B,
then

NoiseVBP,y(ψBP) ≤ 3m · L · B + B

Proof. We will prove this lemma by induction. That is, we will prove that at any
step t,

NoiseVt,i,vt[i](ψt,i) ≤ 3m · t · B + B

for i ∈ [5]. For the base case, t = 0, we operate on fresh encodings for the initial
state vector v0. Hence, we have that, NoiseV0,i,v0[i](ψ0,i) ≤ B, for all i ∈ [5]. Let
{ψt−1,i}i∈[5] be the encodings of the state vector vt−1 at step t − 1 such that

NoiseVt−1,i,vt−1[i](ψt−1,i) ≤ 3m · (t − 1) · B + B

for i ∈ [5]. We know that ψt,i = Adden
(
Multiplyen(ψ′

var(t), ψt−1,γ0),Multiplyen

(ψvar(t), ψt−1,γ1)
)
. Hence, from Lemmas 2 and 3, we get:

NoiseVt,i,vt[i](ψt,i) ≤
(

m · NoiseA′
var(t),(1−xvar(t))

(ψ
′
var(t)) + (1 − xvar(t)) · NoiseVt−1,γ0

,vt−1[γ0]

)

+
(

m · NoiseAvar(t),xvar(t)
(ψvar(t)) + xvar(t) · NoiseVt−1,γ1

,vt−1[γ1]

)

=
(
m · 2B + (1 − xvar(t)) · (3m(t − 1)B + B)

)

+
(
m · B + xvar(t) · (3m(t − 1)B + B)

)

= 3m · t · B + B

where

NoiseA′
var(t),(1−xvar(t))

(ψ
′
var(t)) ≤ NoiseAc,1(ψ

c
) + Noise−Avar(t),−xvar(t)

(−ψvar(t)) ≤ B + B = 2B

by Lemma 2. With ψBP being an encoding at step L, we have NoiseVBP,y(ψBP) ≤
3m · L · B + B. Thus, NoiseVBP,y(ψBP) = O(m · L · B).

564 S. Gorbunov and D. Vinayagamurthy

3.4 Our Simulated Public Key Evaluation Algorithm

During simulation, we will use a different procedure for assigning public keys to
each wire of the input and the state vector. In particular, Ai = A · Ri − xi · G
for some shared public key A and some low norm matrix Ri. Similarly, the state
public keys Vt,i = A · Rt,i − vt[i] · G. The algorithm thus takes as input the
description of the branching program BP, the attribute vector x, two collection
of low norm matrices {Ri}, {R0,i} corresponding to the input public keys and
initial state vector, a low norm matrix Rc for the public key of constant 1 and a
shared matrix A. It outputs a homomorphically derived low norm matrix RBP.

EvalSIM(BP,x, {Ri}i∈[�], {R0,i}i∈[5],Rc,A) → RBP

The algorithm will ensure that the output RBP satisfies A · RBP − BP(x) · G =
VBP, where VBP is the homomorphically derived public key.

The algorithm proceeds inductively as follows. Assume at time t − 1 ∈ [L],
the we hold a collection of low norm matrices Rt−1,i and public keys Vt−1,i =
A·Rt−1,i−vt[i]·G for i ∈ [5] corresponding to the state vector. Let R′

i = Rc−Ri

for all i ∈ [
]. We show how to derive the low norm matrices Rt,i for all i ∈ [5]:

1. Let γ0 := γt,i,0 and γ1 := γt,i,1.
2. Compute

Rt,i =
(

−R
′
var(t)Ṽt−1,γ0 + (1 − xvar(t)) · Rt−1,γ0

)
+
(

−Rvar(t)Ṽt−1,γ1 + xvar(t) · Rt−1,γ1)
)

Finally, let RL,1 be the matrix obtained at the Lth step corresponding to
state value “1” by the above algorithm. Output RBP := RL,1. Below, we show
that the norm of RBP remains small and that homomorphically computed public
key VBP using Evalpk satisfies that VBP = A · RBP − BP(x) · G.

Lemma 6 (Correctness of EvalSIM). For any set of valid inputs to EvalSIM,
we have

EvalSIM(BP,x, {Ri}i∈[�], {R0,i}i∈[5],Rc,A) → RBP

where VBP = ARBP − BP(x) · G.

Proof. We will prove this lemma by induction. That is, we will prove that at any
step t,

Vt,i = ARt,i − vt[i] · G
for any i ∈ [5]. For the base case t = 0, since the inputs are valid, we have that
V0,i = AR0,i − v0[i] · G, for all i ∈ [5]. Let Vt−1,i = ARt−1,i − vt−1[i] · G for
i ∈ [5]. Hence, we get:

ARt,i =
(

−AR
′
var(t)Ṽt−1,γ0

+ (1 − xvar(t)) · ARt−1,γ0

)
+
(

−ARvar(t)Ṽt−1,γ1
+ xvar(t) · ARt−1,γ1

)
)

=
(

− (
A′

var(t) + (1 − xvar(t)) · G
)
Ṽt−1,γ0

+ (1 − xvar(t)) · (Vt−1,γ0
+ vt−1[γ0] · G

))

+
(

− (
Avar(t) + xvar(t) · G

)
Ṽt−1,γ1

+ xvar(t) · (Vt−1,γ1
+ vt−1[γ1] · G

))

=
(

− A
′
var(t)Ṽt−1,γ0

− (1 − xvar(t)) · Vt−1,γ0
+ (1 − xvar(t)) · Vt−1,γ0

+
(
(1 − xvar(t))vt−1[γ0]

) · G
)

+
(

− Avar(t)Ṽt−1,γ1
− xvar(t) · Vt−1,γ1

+ xvar(t) · Vt−1,γ1
+
(
xvar(t)vt−1[γ1]

) · G
)

=
(−A′

var(t)Ṽt−1,γ0
− Avar(t)Ṽt−1,γ1︸ ︷︷ ︸

Vt,i

)
+
(
(1 − xvar(t))vt−1[γ0] +

(
xvar(t)vt−1[γ1]

︸ ︷︷ ︸
vt[i]

) · G

Riding on Asymmetry: Efficient ABE for Branching Programs 565

Hence, we have Vt,i = ARt,i − vt[i] · G. Thus, at the Lth step, we have by
induction that

VBP = VL,1 = ARL,1−vt[i]·G = ARBP − vt[i] · G

Lemma 7. Let EvalSIM
(
BP,x, {Ri}i∈[�], {R0,i}i∈[5],Rc,A) → RBP such that all

the “R” matrices are sampled from {−1, 1}m×m, then

‖RBP‖∞ ≤ 3m · L + 1

Proof. This proof is very similar to that of Lemma5. We will prove this lemma
also by induction. That is, we will prove that at any step t,

‖Rt,i‖∞ ≤ 3m · t + 1

for i ∈ [5]. For the base case, t = 0, the input R0,is are such that, ‖Rt,0‖∞ = 1,
for all i ∈ [5]. Let ‖Rt−1,i‖∞ ≤ 3m · (t − 1) + 1 for i ∈ [5]. We know that

Rt,i =
(

−R
′
var(t)Ṽt−1,γ0 + (1 − xvar(t)) · Rt−1,γ0

)
+
(

−Rvar(t)Ṽt−1,γ1 + xvar(t) · Rt−1,γ1)
)

Hence, we have:

‖Rt,i‖∞ ≤
(
m ·
∥∥∥Ṽt−1,γ0

∥∥∥
∞

· ∥∥R′
var(t)

∥∥
∞ + (1 − xvar(t)) · ‖Rt−1,γ0‖∞

)

+
(
m ·
∥∥∥Ṽt−1,γ0

∥∥∥
∞

· ∥∥Rvar(t)

∥∥
∞ + xvar(t) · ‖Rt−1,γ1‖∞

)

=
(
m · 1 · 2 + (1 − xvar(t)) · 3m · (t − 1)

)
+
(
m · 1 · 1 + xvar(t) · 3m · (t − 1)

)

= 3m · t + 1

where ‖R′
i‖∞ ≤ ‖Rc + Ri‖∞ ≤ ‖Rc‖∞ + ‖Ri‖∞ ≤ 1 + 1 = 2. With RBP being

at step L, we have ‖RBP‖∞ ≤ 3m · L + 1. Thus, ‖RBP‖∞ = O(m · L).

4 Our Attribute-Based Encryption

In this section we describe our attribute-based encryption scheme for branching
programs. We present the scheme for a bounded length branching programs,
but note that we can trivially support unbounded length by setting modulo
q to a small superpolynomial. For a family of branching programs of length
bounded by L and input space {0, 1}�, we define the ABE algorithms
(Params,Setup,KeyGen,Enc,Dec) as follows.

– Params(1λ, 1L): For a security parameter λ and length bound L, let the
LWE dimension be n = n(λ) and let the LWE modulus be q = q(n,L).
Let χ be an error distribution over Z and let B = B(n) be an error
bound. We additionally choose two Gaussian parameters: a “small” Gaussian
parameter s = s(n) and a “large” Gaussian parameter α = α(n). Both
these parameters are polynomially bounded (in λ,L). The public parameters
pp = (λ,L, n, q,m, χ,B, s, α) are implicitly given as input to all the algorithms
below.

566 S. Gorbunov and D. Vinayagamurthy

– Setup(1�): The setup algorithm takes as input the length of the attribute
vector
.
1. Sample a matrix with a trapdoor: (A,TA) ← TrapSamp(1n, 1m, q).
2. Let G ∈ Z

n×m
q be the primitive matrix with the public trapdoor basis

TG.
3. Choose
 + 6 matrices {Ai}i∈[�], {V0,1}i∈[5],Ac at random from Z

n×m
q .

First,
 matrices form the LWE “public keys” for the bits of attribute
vector, next 5 form the “public keys” for the initial configuration of the
state vector, and the last matrix as a “public key” for a constant 1.

4. Choose a vector u ∈ Z
n
q at random.

5. Output the master public key

mpk :=
(
A,Ac, {Ai}i∈[�], {V0,i}i∈[5],G,u

)

and the master secret key msk := (TA,mpk).
– Enc(mpk,x, μ): The encryption algorithm takes as input the master public key

mpk, the attribute vector x ∈ {0, 1}� and a message μ.
1. Choose an LWE secret vector s ∈ Z

n
q at random.

2. Choose noise vector e $← χm and compute ψ0 = ATs + e.
3. Choose a random matrix Rc ← {−1, 1}m×m and let ec = (Rc)Te. Now,

compute an encoding of a constant 1:

ψc = (Ac + G)T s + ec

4. Encode each bit i ∈ [
] of the attribute vector:
(a) Choose random matrices Ri ← {−1, 1}m×m and let ei = RT

ie.
(b) Compute ψi = (Ai + xi · G)Ts + ei.

5. Encode the initial state configuration vector v0 = [1, 0, 0, 0, 0]: for all
i ∈ [5],
(a) Choose a random matrix R0,i ← {−1, 1}m×m and let e0,i = RT

0,ie.
(b) Compute ψ0,i = (V0,i + v0[i] · G)Ts + e0,i.

6. Encrypt the message μ as τ = uTs + e + �q/2� μ, where e ← χ.
7. Output the ciphertext

ctx =
(
x, ψ0, ψ

c, {ψi}i∈[�], {ψ0,i}i∈[5], τ
)

– KeyGen(msk,BP): The key-generation algorithm takes as input the master
secret key msk and a description of a branching program:

BP :=
(
v0,

{
var(t), {γt,i,0, γt,i,1}i∈[5]

}
t∈[L]

)

The secret key skBP is computed as follows.
1. Homomorphically compute a “public key” matrix associated with the

branching program:

VBP ← Evalpk(BP, {Ai}i∈[�], {V0,i}i∈[5],Ac)

Riding on Asymmetry: Efficient ABE for Branching Programs 567

2. Let F = [A||(VBP + G)] ∈ Z
n×2m
q . Compute rout ← SampleLeft(A,

(VBP + G),TA,u, α) such that F · rout = u.
3. Output the secret key for the branching program as

skBP := (BP, rout)

– Dec(skBP, ctx): The decryption algorithm takes as input the secret key for
a branching program skBP and a ciphertext ctx. If BP(x) = 0, output ⊥.
Otherwise,
1. Homomorphically compute the encoding of the result BP(x) associated

with the public key of the branching program:

ψBP ← Evalen(BP,x, {Ai, ψi}i∈[�], {V0,i, ψ0,i}i∈[5], (Ac, ψc))

2. Finally, compute φ = rT
out · [ψ||ψBP]. As we show in Lemma 8, φ = uTs +

�q/2� μ + eφ (mod q), for a short eφ.
3. Output μ = 0 if |τ − φ| < q/4 and μ = 1 otherwise.

4.1 Correctness

Lemma 8. Let BP be a family of width-5 permutation branching programs with
their length bounded by L and let ABE = (Params,Setup,KeyGen,Enc,Dec) be
our attribute-based encryption scheme. For a LWE dimension n = n(λ), the
parameters for ABE are instantiated as follows (according to Sect. 5):

χ = DZ,
√

n B = O(n) m = O(n log q)

q = Õ(n7 · L2) α = Õ(n log q)2 · L

then the scheme ABE is correct, according to the definition in Sect. 2.2.

Proof. We have to show that the decryption algorithm outputs the correct
message μ, given a valid set of a secret key and a ciphertext.

From Lemma 4, we have that ψBP = (VBP + G)Ts + eBP since BP(x) = 1.
Also, from Lemma 5, we know that ‖eBP‖∞ = O(m · L · (m · B)) = O(m2 · L · B)
since our input encodings have noise terms bounded by m · B. Thus, the noise
term in φ is bounded by:

‖eφ‖∞ = m · (
NoiseA,0(ψ) + NoiseVBP,1(ψBP)

) · ‖rout‖∞
= m · (B + O(m2 · L · B)) · Õ(n log q)2 · L

√
m

= O
(
(n log q)6 · L2 · B

)

where m = O(n log q) and ‖rout‖∞ ≤ α
√

m = Õ(n log q)2 · L
√

m according to
Sect. 5. Hence, we have

|τ − φ| ≤ ‖e‖∞ + ‖eφ‖∞ = O
(
(n log q)6 · L2 · B

) ≤ q/4

Clearly, the last inequality is satisfied when q = Õ(n7 ·L2). Hence, the decryption
proceeds correctly outputting the correct μ.

568 S. Gorbunov and D. Vinayagamurthy

4.2 Security Proof

Theorem 5. For any
 and any length bound L, ABE scheme defined above
satisfies selective security game 3 for any family of branching programs BP of
length L with
-bit inputs, assuming hardness of dLWEn,q,χ for sufficiently large
n = poly(λ), q = Õ(n7 ·L2) and poly(n) bounded error distribution χ. Moreover,
the size of the secret keys grows polynomially with L (and independent of the
width of BP).

Proof. We define a series of hybrid games, where the first and the last games
correspond to the real experiments encrypting messages μ0, μ1 respectively. We
show that these games are indistinguishable except with negligible probability.
Recall that in a selective security game, the challenge attribute vector x∗ is
declared before the Setup algorithm and all the secret key queries that adversary
makes must satisfy BP(x∗) = 0. First, we define auxiliary simulated ABE∗

algorithms.

– Setup∗(1λ, 1�, 1L,x∗): The simulated setup algorithm takes as input the
security parameter λ, the challenge attribute vector x∗, its length
 and the
maximum length of the branching program L.
1. Choose a random matrix A ← Z

n×m
q and a vector u at random.

2. Let G ∈ Z
n×m
q be the primitive matrix with the public trapdoor basis

TG.
3. Choose
+6 random matrices {Ri}i∈[�], {R0,i}i∈[5],Rc from {−1, 1}m×m

and set
(a) Ai = A · Ri − x∗G for i ∈ [
],
(b) V0,i = A · R0,i − v0[i] · G for i ∈ [5] where v0 = [1, 0, 0, 0, 0],
(c) Ac = A · Rc − G.

4. Output the master public key

mpk :=
(
A,Ac, {Ai}i∈[�], {V0,i}i∈[5],G,u

)

and the secret key

msk :=
(
x∗,A,Rc, {Ri}i∈[�], {R0,i}i∈[5]

)

– Enc∗(mpk,x∗, μ): The simulated encryption algorithm takes as input mpk,x∗

and the message μ. It computes the ciphertext using the knowledge of short
matrices {Ri}, {R0,i},Rc as follows.
1. Choose a vector s ∈ Z

n
q at random.

2. Choose noise vector e $← χm and compute ψ0 = ATs + e.
3. Compute an encoding of an identity as ψc = (Ac)T s + (Rc)Te.
4. For all bits of the attribute vector i ∈ [
] compute

ψi = (Ai + xi · G)Ts + RT

ie

Riding on Asymmetry: Efficient ABE for Branching Programs 569

5. For all i ∈ [5], encode the bits of the initial state configuration vector
v0 = [1, 0, 0, 0, 0]

ψ0,i = (V0,i + v0[i] · G)Ts + RT

0,ie

6. Encrypt the message μ as τ = uTs + e + �q/2� μ, where e ← χ.
7. Output the ciphertext

ct =
(
x, ψ0, {ψi}i∈[�], ψ

c, {ψ0,i}i∈[5], τ
)

– KeyGen∗(msk,BP): The simulated key-generation algorithm takes as input the
master secret key msk and the description of the branching program BP. It
computes the secret key skBP as follows.
1. Obtain a short homomorphically derived matrix associated with the

output public key of the branching program:

RBP ← EvalSIM
(
BP,x∗, {Ri}i∈[�], {R0,i}i∈[5],Rc,A

)

2. By the correctness of EvalSIM, we have VBP = ARBP − BP(x∗) ·
G. Let F = [A||(VBP + G)] ∈ Z

n×2m
q . Compute rout ←

SampleRight(A,G,RBP,TG,u, α) such that F · rout = u (this step relies
on the fact that BP(x∗) = 0).

3. Output the secret key for the branching program

skBP := (BP, rout)

Game Sequence. We now define a series of games and then prove that all
games Game i and Game i+1 are either statistically or computationally
indistinguishable.

– Game 0: The challenger runs the real ABE algorithms and encrypts message
μ0 for the challenge index x∗.

– Game 1: The challenger runs the simulated ABE algorithms Setup∗,KeyGen∗,
Enc∗ and encrypts message μ0 for the challenge index x∗.

– Game 2: The challenger runs the simulated ABE algorithms Setup∗,KeyGen∗,
but chooses a uniformly random element of the ciphertext space for the
challenge index x∗.

– Game 3: The challenger runs the simulated ABE algorithms Setup∗,KeyGen∗,
Enc∗ and encrypts message μ1 for the challenge index x∗.

– Game 4: The challenger runs the real ABE algorithms and encrypts message
μ1 for the challenge index x∗.

Lemma 9. The view of an adversary in Game 0 is statistically indistinguish-
able from Game 1. Similarly, the view of an adversary in Game 4 is statistically
indistinguishable from Game 3.

570 S. Gorbunov and D. Vinayagamurthy

Proof. We prove for the case of Game 0 and Game 1, as the other case is
identical. First, note the differences between the games:

– In Game 0, matrix A is sampled using TrapSamp algorithm and matrices
Ai,Ac,V0,j ∈ Z

n×m
q are randomly chosen for i ∈ [
], j ∈ [5]. In Game

1, matrix A ∈ Z
n×m
p is chosen uniformly at random and matrices Ai =

ARi − x∗
i ·G, Ac = ARc −G, V0,j = AR0,j −v0[j] ·G for randomly chosen

Ri,Rc,R0,j ∈ {−1, 1}m×m.
– In Game 0, each ciphertext component is computed as:

ψi = (Ai + x∗
i · G)Ts + ei = (Ai + x∗

i · G)Ts + RT

ie

ψc = (Ac + G)Ts + e1 = (Ac + G)Ts + (Rc)Te
ψ0,j = (V0,j + v0[j] · G)Ts + ei = (V0,j + v0[j] · G)Ts + RT

0,je

On the other hand, in Game 1 each ciphertext component is computed as:

ψi = (Ai + x∗
i · G)Ts + RT

ie = (ARi)Ts + RT

ie = RT

i

(
ATs + e

)

Similarly, ψc = (Rc)T(ATs + e) and ψ0,j = RT
0,j(As + e).

– Finally, in Game 0 the vector rout is sampled using SampleLeft, whereas in
Game 1 it is sampled using SampleRight algorithm.

For sufficiently large α (See Sect. 5), the distributions produced in two games
are statistically indistinguishable. This follows readily from [2, Lemma 4.3],
Theorems 3 and 4. Please refer to the full version [29] for a detailed proof.

Lemma 10. If the decisional LWE assumption holds, then the view of an
adversary in Game 1 is computationally indistinguishable from Game 2.
Similarly, if the decisional LWE assumption holds, then the view of an adversary
in Game 3 is computationally indistinguishable from Game 2.

Proof. Assume there exist an adversary Adv that distinguishes between Game
1 and Game 2. We show how to break LWE problem given a challenge
{(ai, yi)}i∈[m+1] where each yi is either a random sample in Zq or aT

i ·s+ei (for a
fixed, random s ∈ Z

n
q and a noise term sampled from the error distribution ei ←

χ). Let A = [a1,a2, . . . ,am] ∈ Z
n×m
q and u = am+1. Let ψ∗

0 = [y1, y2, . . . , ym]
and τ = ym+1 + μ �q/2.

Now, run the simulated Setup∗ algorithm where A,u are as defined above.
Run the simulated KeyGen∗ algorithm. Finally, to simulate the challenge
ciphertext set ψ∗

0 , τ as defined above and compute

ψi = RT

i · ψ∗
0 = RT

i

(
ATs + e

)

for i ∈ [
]. Similarly, ψc = (Rc)T(ATs + e) and ψ0,j = RT
0,j(A

Ts + e), for
j ∈ [5]. Note that if yi’s are LWE samples, then this corresponds exactly to
the Game 1. Otherwise, the ciphertext corresponds to an independent random
sample as in Game 2 by the left-over hash lemma. Thus, an adversary which
distinguishes between Game 1 and Game 2 can also be used to break the
decisional LWE assumption with almost the same advantage. The computational
indistinguishability of Game 3 and Game 2 follows from the same argument.

Riding on Asymmetry: Efficient ABE for Branching Programs 571

Thus, Game 0 and Game 4 are computationally indistinguishable by the
standard hybrid argument and hence no adversary can distinguish between
encryptions of μ0 and μ1 with non-negligible advantage establishing the selective
security of our ABE scheme.

5 Parameter Selection

This section provides a concise description on the selection of parameters for our
scheme, so that both correctness (see Lemma 8) and security (see Theorem 5) of
our scheme are satisfied.

For a family of width-5 permutation branching programs BP of bounded
length L, with the LWE dimension n, the parameters can be chosen as follows:
(we start with an arbitrary q and we will instantiate it later)

– The parameter m = O(n log q). The error distribution χ = DZ,
√

n with
parameter σ =

√
n. And, the error bound B = O(σ

√
n) = O(n).

– The “large” Gaussian parameter α = α(n,L) is chosen such that the
output of the SampleLeft and the SampleRight algorithms are statistically
indistinguishable from each other, when provided with the same set of inputs
F and u. The SampleRight algorithm (Algorithm 3) requires

α > ‖TG‖GS · ‖RBP‖ · ω(
√

log m) (3)

From Lemma 7, we have that ‖RBP‖∞ = O(m · L). Then, we get:

‖RBP‖ := sup
x∈Sm−1

‖RBP · x‖ ≤ m · ‖RBP‖∞ ≤ O(m2 · L)

Finally, from Eq. 3, the value of α required for the SampleRight algorithm is

α ≥ O(m2 · L) · ω(
√

log m) (4)

The value of the parameter α required for the SampleLeft algorithm
(Algorithm 3) is

α ≥ ‖TA‖GS · ω(
√

log 2m) ≥ O(
√

n log q) · ω(
√

log 2m) (5)

Thus, to satisfy both Eqs. 4 and 5, we set the parameter

α ≥ O(m2 · L) · ω(
√

log m) = Õ(n log q)2 · L

When our scheme is instantiated with these parameters, the correctness (see
Lemma 8) of the scheme is satisfied when O((n log q)6 · L2 · B) < q/4. Clearly,
this condition is satisfied when q = Õ(n7L2).

6 Extensions

We note a few possible extensions on our basic construction that lead to
further efficiency improvements. First, we can support arbitrary width branching
programs by appropriately increasing the dimension of the state vector in the
encryption. Second, we can switch to an arithmetic setting, similarly as it was
done in [10].

572 S. Gorbunov and D. Vinayagamurthy

References

1. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
In: Gilbert [23], pp. 553–572

2. Agrawal, S., Freeman, D.M., Vaikuntanathan, V.: Functional encryption for inner
product predicates from learning with errors. In: Lee, D.H., Wang, X. (eds.)
ASIACRYPT 2011. LNCS, vol. 7073, pp. 21–40. Springer, Heidelberg (2011)

3. Ajtai, M.: Generating hard instances of the short basis problem. In: Wiedermann,
J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 1–9.
Springer, Heidelberg (1999)

4. Ajtai, M., Kumar, R., Sivakumar, D.: A sieve algorithm for the shortest lattice
vector problem. In: Vitter, J.S., Spirakis, P.G., Yannakakis, M. (eds.) STOC, pp.
601–610, ACM (2001)

5. Akinyele, J.A., Pagano, M.W., Green, M.D., Lehmann, C.U., Peterson, Z.N.J.,
Rubin, A.D.: Securing electronic medical records using attribute-based encryption
on mobile devices. In: Jiang, X., Bhattacharya, A., Dasgupta, P., Enck, W. (eds.)
SPSM, pp. 75–86, ACM (2011)

6. Attrapadung, N., Libert, B., de Panafieu, E.: Expressive key-policy attribute-based
encryption with constant-size ciphertexts. In: Catalano, D., Fazio, N., Gennaro, R.,
Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 90–108. Springer, Heidelberg
(2011)

7. Barrington, D.A.M.: Bounded-width polynomial-size branching programs recog-
nize exactly those languages in nc1. In: Hartmanis, J. (ed.) STOC, pp. 1–5, ACM
(1986)

8. Boneh, D., Franklin, M.K.: Identity-based encryption from the Weil pairing. SIAM
J. Comput. 32(3), 586–615 (2003)

9. Boneh, D., Sahai, A., Waters, B.: Functional encryption: a new vision for public-key
cryptography. Commun. ACM 55(11), 56–64 (2012)

10. Boneh, D., Gentry, C., Gorbunov, S., Halevi, S., Nikolaenko, V., Segev, G.,
Vaikuntanathan, V., Vinayagamurthy, D.: Fully key-homomorphic encryption,
arithmetic circuit ABE and compact garbled circuits. In: Nguyen, P.Q., Oswald,
E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg
(2014)

11. Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.): Symposium on Theory of
Computing Conference, STOC 2013, Palo Alto, CA, USA, ACM, 1–4 Jun 2013

12. Boyen, X.: Attribute-based functional encryption on lattices. In: Sahai, A. (ed.)
TCC 2013. LNCS, vol. 7785, pp. 122–142. Springer, Heidelberg (2013)

13. Brakerski, Z., Vaikuntanathan, V.: Lattice-based FHE as secure as PKE. In: Naor,
M. (ed.) ITCS, pp. 1–12, ACM (2014)

14. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a
lattice basis. J. Cryptol. 25(4), 601–639 (2012)

15. Cocks, C.: An identity based encryption scheme based on quadratic residues. In:
Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363.
Springer, Heidelberg (2001)

16. Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the
integers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol.
8042, pp. 476–493. Springer, Heidelberg (2013)

17. Emura, K., Miyaji, A., Nomura, A., Omote, K., Soshi, M.: A ciphertext-policy
attribute-based encryption scheme with constant ciphertext length. In: Bao, F., Li,
H., Wang, G. (eds.) ISPEC 2009. LNCS, vol. 5451, pp. 13–23. Springer, Heidelberg
(2009)

Riding on Asymmetry: Efficient ABE for Branching Programs 573

18. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
1–17. Springer, Heidelberg (2013)

19. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In:
FOCS, pp. 40–49, IEEE Computer Society (2013)

20. Garg, S., Gentry, C., Halevi, S., Sahai, A., Waters, B.: Attribute-based encryption
for circuits from multilinear maps. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013, Part II. LNCS, vol. 8043, pp. 479–499. Springer, Heidelberg (2013)

21. Gentry, C., Gorbunov, S., Halevi, S.: Graph-induced multilinear maps from lattices.
In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 498–527.
Springer, Heidelberg (2015)

22. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Dwork, C. (ed.) STOC, pp. 197–206, ACM (2008)

23. Gilbert, H. (ed.): EUROCRYPT 2010. LNCS, vol. 6110. Springer, Heidelberg
(2010)

24. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.:
Reusable garbled circuits and succinct functional encryption. In: Boneh et al. [11],
pp. 555–564

25. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with bounded
collusions via multi-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 162–179. Springer, Heidelberg (2012)

26. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for
circuits. In: Boneh et al. [11], pp. 545–554

27. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Predicate encryption for circuits from
LWE. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp.
503–523. Springer, Heidelberg (2015)

28. Gorbunov, S., Vaikuntanathan, V., Wichs, D.: Leveled fully homomorphic
signatures from standard lattices. In: Servedio, R.A., Rubinfeld, R. (eds.) STOC,
pp. 469–477, ACM (2015)

29. Gorbunov, S., Vinayagamurthy, D.: Riding on asymmetry: efficient abe for
branching programs. Cryptology ePrint Archive, Report 2014/819 (2014)

30. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Juels, A., Wright, R.N., di Vimercati,
S.D.C. (eds.) CCS, pp. 89–98, ACM (2006)

31. Lewko, A.B., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure
functional encryption: attribute-based encryption and (hierarchical) inner product
encryption. In: Gilbert [23], pp. 62–91

32. Lewko, A., Waters, B.: New techniques for dual system encryption and fully secure
HIBE with short ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978,
pp. 455–479. Springer, Heidelberg (2010)

33. Li, M., Yu, S., Zheng, Y., Ren, K., Lou, W.: Scalable and secure sharing of personal
health records in cloud computing using attribute-based encryption. IEEE Trans.
Parallel Distrib. Syst. 24(1), 131–143 (2013)

34. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237,
pp. 700–718. Springer, Heidelberg (2012)

35. Micciancio, D., Voulgaris, P.: A deterministic single exponential time algorithm for
most lattice problems based on voronoi cell computations. In: Schulman, L.J. (ed.)
STOC, pp. 351–358, ACM (2010)

574 S. Gorbunov and D. Vinayagamurthy

36. Papanis, J., Papapanagiotou, S., Mousas, A., Lioudakis, G., Kaklamani, D.,
Venieris, I.: On the use of attribute-based encryption for multimedia content
protection over information-centric networks. Trans. Emerg. Telecommun. Technol.
25(4), 422–435 (2014)

37. Parno, B., Raykova, M., Vaikuntanathan, V.: How to delegate and verify in public:
verifiable computation from attribute-based encryption. In: Cramer, R. (ed.) TCC
2012. LNCS, vol. 7194, pp. 422–439. Springer, Heidelberg (2012)

38. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract. In: Mitzenmacher, M. (ed.) STOC, pp. 333–342, ACM (2009)

39. Regev, O.: On lattices, learning with errors, random linear codes, and
cryptography. J. ACM 56(6), Article No. 34 (2009)

40. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

41. Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under
simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–
636. Springer, Heidelberg (2009)

Conversions Among Several Classes of Predicate
Encryption and Applications to ABE
with Various Compactness Tradeoffs

Nuttapong Attrapadung, Goichiro Hanaoka, and Shota Yamada(B)

National Institute of Advanced Industrial Science and Technology (AIST),
Tokyo, Japan

{n.attrapadung,hanaoka-goichiro,yamada-shota}@aist.go.jp

Abstract. Predicate encryption is an advanced form of public-key
encryption that yields high flexibility in terms of access control. In the
literature, many predicate encryption schemes have been proposed such
as fuzzy-IBE, KP-ABE, CP-ABE, (doubly) spatial encryption (DSE),
and ABE for arithmetic span programs. In this paper, we study rela-
tions among them and show that some of them are in fact equivalent by
giving conversions among them. More specifically, our main contributions
are as follows:
– We show that monotonic, small universe KP-ABE (CP-ABE) with

bounds on the size of attribute sets and span programs (or linear
secret sharing matrix) can be converted into DSE. Furthermore, we
show that DSE implies non-monotonic CP-ABE (and KP-ABE) with
the same bounds on parameters. This implies that monotonic/non-
monotonic KP/CP-ABE (with the bounds) and DSE are all equivalent
in the sense that one implies another.

– We also show that if we start from KP-ABE without bounds on the
size of span programs (but bounds on the size of attribute sets), we
can obtain ABE for arithmetic span programs. The other direction
is also shown: ABE for arithmetic span programs can be converted
into KP-ABE. These results imply, somewhat surprisingly, KP-ABE
without bounds on span program sizes is in fact equivalent to ABE for
arithmetic span programs, which was thought to be more expressive
or at least incomparable.

By applying these conversions to existing schemes, we obtain many non-
trivial consequences. We obtain the first non-monotonic, large universe
CP-ABE (that supports span programs) with constant-size ciphertexts,
the first KP-ABE with constant-size private keys, the first (adaptively-
secure, multi-use) ABE for arithmetic span programs with constant-size
ciphertexts, and more. We also obtain the first attribute-based signa-
ture scheme that supports non-monotone span programs and achieves
constant-size signatures via our techniques.

Keywords: Attribute-based encryption · Doubly spatial encryption ·
Generic conversion · Constant-size ciphertexts · Constant-size keys ·
Arithmetic span programs

c© International Association for Cryptologic Research 2015
T. Iwata and J.H. Cheon (Eds.): ASIACRYPT 2015, Part I, LNCS 9452, pp. 575–601, 2015.
DOI: 10.1007/978-3-662-48797-6 24

576 N. Attrapadung et al.

1 Introduction

Predicate encryption (PE) is an advanced form of public-key encryption that
allows much flexibility. Instead of encrypting data to a target recipient, a sender
will specify in a more general way about who should be able to view the mes-
sage. In predicate encryption for a predicate R, a sender can associate a cipher-
text with a ciphertext attribute X while a private key is associated with a key
attribute Y . Such a ciphertext can then be decrypted by such a key if the pred-
icate evaluation R(X,Y) holds true.

There exist many classes of PE, each is defined by specifying a correspond-
ing class of predicates. One notable class is attribute-based encryption (ABE)
[24,38] for span programs (or equivalently, linear secret sharing schemes), of
which predicate is defined over key attributes being a span program and cipher-
text attributes being a set of attributes, and its evaluation holds true if the
span program accepts the set. This is called key-policy ABE (KP-ABE). There
is also ciphertext-policy ABE (CP-ABE), where the roles of key and ciphertext
attributes are exchanged. Another important class is doubly spatial encryption
(DSE) [25], of which predicate is defined over both key and ciphertext attributes
being affine subspaces, and its evaluation holds true if both subspaces intersect.
Very recently, a new important class of PE, that is called attribute encryption
for arithmetic span programs is defined in [28]. They showed such a PE scheme
is useful by demonstrating that the scheme can be efficiently converted into
ABE for arithmetic branching programs for both zero-type and non-zero type
predicates. If the scheme satisfies a certain requirement for efficiency (namely,
encryption cost is at most linear in ciphertext predicate size), it is also possi-
ble to obtain a publicly verifiable delegation scheme for arithmetic branching
programs, by exploiting a conversion shown in [36]. Furthermore, they gave a
concrete construction of such scheme.

Compared to specific constructions of predicate encryption [19,21,30–32,40]
(to name just a few) that focus on achieving more expressive predicates and/or
stronger security guarantee, relations among predicate encryption schemes are
much less investigated. The purpose of this paper is to improve our understand-
ing of relations among them.

1.1 Our Results

Relations among PE. Towards the goal above, we study relations among PE
and show that some of them are in fact equivalent by giving generic conversion
among them. We first investigate the relation among ABE with some bounds on
parameters (the size of attribute sets and the size of span programs) and DSE.
We have the following results:

– First, we show a conversion from KP-ABE (or CP-ABE) with the bounds on
parameters into DSE (without key delegation, in Sect. 3). Such an implication
is not straightforward in the first place. Intuitively, one reason stems from the
different nature between both predicates: while DSE can be considered as an

Conversions Among Several Classes of Predicate Encryption 577

algebraic object that involves affine spaces, ABE can be seen as a somewhat
more combinatorial object that involves sets (of attributes). Our approach
involves some new technique for “programming” a set associated to a cipher-
text and a span program associated to a private key in the KP-ABE scheme
so that they can emulate the relation for doubly spatial encryption.

– We then extend the result of [25], which showed that DSE implies CP/KP-
ABE with large universes. We provide a new conversion from DSE (without
delegation) to non-monotonic CP/KP-ABE with large universes (in Sect. 4).
We note that the resulting schemes obtained by the above conversions have
some bounds on parameters. In the conversion, we extensively use a special
form of polynomial introduced in [29] and carefully design a matrix so that
DSE can capture a relation for ABE.

Somewhat surprisingly, by combining the above results, we obtain generic con-
versions that can boost the functionality of (bounded) ABE: from monotonic
to non-monotonic, and from small-universe to large-universe; moreover, we also
obtain conversions which transform ABE to its dual (key-policy to ciphertext-
policy, and vice versa). This implies that they are essentially equivalent in some
sense. See Fig. 1 for the details.

So far, we have considered ABE schemes with bounds on parameters, espe-
cially on the size of span programs. We then proceed to investigate relation
among ABE schemes without bounds on the size of span programs (but with a
bound on the size of attribute sets) and ABE for arithmetic span programs
recently introduced and studied by Ishai and Wee [28]. We call the latter
key-policy ABE for arithmetic span programs (KASP), since in the latter, a
ciphertext is associated with a vector while a private key is associated with an
arithmetic span program which specifies a policy. By exchanging key and cipher-
text attribute, we can also define ciphertext-policy version of ABE for arithmetic
span program (CASP). We have the following results:

– We show that monotonic KP-ABE with small universe (without bound on the
size of span programs) can be converted into KASP (in Sect. 5). The idea for
the conversion is similar to that in Sect. 3.

– In the full version of the paper [4], we also investigate the converse direc-
tion. In fact, we show somewhat stronger result. That is, KASP can be
converted into non-monotonic KP-ABE with large universe, which trivially
implies monotonic KP-ABE with small universe. The idea for the conversion
is similar to that in Sect. 4.

Given the above results, we have all of the following are equivalent: monotonic
KP-ABE with small universe, non-monotonic KP-ABE with large universe, and
KASP. Similar implications hold for the case of CP-ABE and CASP. However,
we do not have a conversion from KP-ABE to CP-ABE in this case. Again, see
Fig. 1 for the details.

Direct Applications: New Instantiations. By applying our conversions to
existing schemes, we obtain many new instantiations. Most of them have new
properties that were not achieved before. These include

578 N. Attrapadung et al.

n-DSEmono,small (k̄, �̄, m̄, ϕ) KP-ABE

mono,large (k̄, �̄, m̄, ϕ) KP-ABE

non-mono,large (k̄, �̄, m̄, ϕ) KP-ABE

mono,small (k̄, −, −, −) KP-ABE

non-mono,large (k̄, −, −, −) KP-ABE

KASP

mono,small (k̄, �̄, m̄, ϕ) CP-ABE

mono,large (k̄, �̄, m̄, ϕ) CP-ABE

non-mono,large (k̄, �̄, m̄, ϕ) CP-ABE

mono,small (k̄, −, −, −) CP-ABE

non-mono,large (k̄, −, −, −) CP-ABE

CASP

Sect. 3

[27]

Sect. 4trivial

trivial

trivial

trivial

Full version.

Sect. 5

Sect. 3

[27]

Sect. 4 trivial

trivial

trivial

trivial

Sect. 5

Full version

Fig. 1. Relations among predicate encryption primitives. In this figure, arrows indicate
conversions that transform the primitive of the starting point to that of the end point.
The red arrows indicate our results in this paper. For ABE, ‘mono’ and ‘non-mono’
indicate whether it is monotonic or non-monotonic, while ‘small’ and ‘large’ indicate
whether the attribute universes are large (i.e., exponentially large) or small (i.e., poly-
nomially bounded). (k̄, �̄, m̄, ϕ) specify bounds on size of sets of attributes and span
programs. See Sect. 2.1 for details. As a result, primitives inside each dashed box are
all equivalent in the sense there is a conversion between each pair (Color figure online).

– the first DSE with constant-size public key,
– the first DSE with constant-size ciphertexts,
– the first DSE with constant-size private keys,
– the first non-monotonic, large-universe CP-ABE with constant-size cipher-

texts,
– the first non-monotonic, large-universe KP-ABE with constant-size keys,
– the first KASP, CASP with constant-size public key,
– the first KASP, CASP with adaptive security and unbounded multi-use,
– the first KASP with constant-size ciphertexts,
– the first CASP with constant-size keys,

which together offer various compactness tradeoffs. Previously, all DSE schemes
require linear (or more) sizes in all parameters [14,17,25]. Previous CP-ABE
with constant-size ciphertexts [12,13,18,20] can only deal with threshold or
even more limited expressiveness. As for KP-ABE, to the best of our knowl-
edge, there were no constructions with constant-size keys.1 Previous KASP and
1 KP-ABE with (asymptotically) short keys was also proposed in [9]. Compared to

ours, their key size is not constant but they focus on more expressive ABE, namely
ABE for circuits.

Conversions Among Several Classes of Predicate Encryption 579

CASP [16,28] require linear sizes in all parameters. Moreover, the adaptively
secure schemes [16] support only attribute one-use. See Sect. 6 and tables therein
for our instantiations and comparisons.

Application to Attribute-Based Signatures. Our technique is also useful
in the settings of attribute-based signatures (ABS) [33,34]. We first define a
notion that we call predicate signature (PS) which is a signature analogue of
PE. Then, we construct a specific PS scheme with constant-size signatures such
that a signature is associated with a set of attributes while a private key is
associated with a policy (or monotone span programs). This is in some sense a
dual notion of ordinary ABS in which a signature is associated with a policy and
a private key with a set. By using the technique developed in the above, we can
convert the PS scheme into an ABS scheme. As a result, we obtain the first ABS
scheme with constant-size signatures. Previous ABS schemes with constant-size
signatures [12,26] only support threshold or more limited policies.

Finally, we remark that although our conversions are feasible, they often
introduce polynomial-size overheads to some parameters. Thus, in most cases,
above schemes obtained by the conversions should be seen as feasibility results
in the sense that they might not be totally efficient. As a future direction, it
would be interesting to construct more efficient schemes directly.

1.2 Related Works

There are several previous works investigating relations among PE primitives. In
[23], a black box separation between threshold predicate encryption (fuzzy IBE)
and IBE was shown. They also rule out certain natural constructions of PE for
NC1 from PE for AC0. In [15], it was shown that hierarchical inner product
encryption is equivalent to spatial encryption, which is a special case of doubly
spatial encryption.

[22] showed a generic conversion from KP-ABE supporting threshold formu-
lae to CP-ABE supporting threshold formulae. Their result and ours are incom-
parable. Our KP-ABE to CP-ABE conversion requires the original KP-ABE to
support monotone span programs, which is a stronger requirement than [22].
On the other hand, the resulting scheme obtained by our conversion supports
non-monotone span programs, which is a wider class than threshold formulae2.
Thus, by applying our conversion, we can obtain new schemes (such as CP-ABE
supporting non-monotone span programs with constant-size ciphertext) that is
not possible to obtain by the conversion by [22].

In recent works [2,6], it is shown that PE satisfying certain specific template
can be converted into PE for its dual predicate. In particular, it yields KP-ABE-
to-CP-ABE conversion. Again, their result and ours are incomparable. On the
one hand, schemes obtained from their conversion are typically more efficient
than ours. On the other hand, their conversion only works for schemes with the
2 While it is known that monotone span programs contain threshold formulae [24],

the converse is not known to be true.

580 N. Attrapadung et al.

template while our conversion is completely generic. Furthermore, since they
essentially exchange key and ciphertext components in the conversion, the size
of keys and ciphertexts are also exchanged. For example, if we start from KP-
ABE with constant-size ciphertexts, they obtain CP-ABE with constant-size
private keys while we obtain CP-ABE with constant-size ciphertexts.

We also remark that in the settings where PE for general circuit is available,
we can easily convert any KP-ABE into CP-ABE by using universal circuits as
discussed in [19,21]. However, in the settings where only PE for span programs is
available, this technique is not known to be applicable. We note that all existing
PE schemes for general circuits [9,19,21] are quite inefficient and based on strong
assumptions (e.g., existence of secure multi-linear map or hardness of certain
lattice problems for an exponential approximation factor). In [7], in the context
of quantum computation, Belovs studies a span program that decides whether
two spaces intersect or not. The problem and its solution considered there is very
similar to that in Sect. 3 of our paper. However, he does not consider application
to cryptography and the result is not applicable to our setting immediately since
the syntax of span programs is slightly different.

Concurrent and Independent Work. Concurrently and independently to our
work, Aggrawal and Chase [1] show specific construction of CP-ABE scheme with
constant-size ciphertexts. Compared to our CP-ABE scheme with constant-size
ciphertexts, which is obtained by our conversion, their scheme only supports
monotone access structure over large universe, whereas our scheme supports
non-monotonic access structure over large universe. Furthermore, we can obtain
adaptively secure scheme whereas their scheme is only selectively secure. On the
other hand, their scheme has shorter keys.

2 Preliminaries

Notation. Throughout the paper, p denotes a prime number. We will treat
a vector as a column vector, unless stated otherwise. For a vector a ∈ Z

n
p ,

a[i] ∈ Zp represents i-th element of the vector. Namely, a = (a[1], . . . ,a[n])�.
For a,b ∈ Z

n
p , we denote their inner product as 〈a,b〉 = a�b =

∑n
i=1 a[i] · b[i].

We denote by ei the i-th unit vector: its i-th component is one, all others are
zero. In and 0n×m represent an identity matrix in Z

n×n
p and zero matrix in

Z
n×m
p respectively. We also define 1n = (1, 1, . . . , 1)� ∈ Z

n
p and 0n = 0n×1. We

often omit the subscript if it is clear from the context. We denote by [a, b] a set
{a, a + 1, . . . , b} for a, b ∈ Z such that a ≤ b and [b] denotes [1, b]. For a matrix
X ∈ Z

n×d
p , span(X) denotes a linear space {X · u|u ∈ Z

d
p} spanned by columns

of X. For matrices A ∈ Z
n1×m
p and B ∈ Z

n2×m
p , [A;B] ∈ Z

(n1+n2)×m
p denotes

[A�,B�]� i.e., the vertical concatenation of them.

Conversions Among Several Classes of Predicate Encryption 581

2.1 Definition of Predicate Encryption

Here, we define the syntax of predicate encryption. We emphasize that we do
not consider attribute hiding in this paper3.

Syntax. Let R = {RN : AN ×BN → {0, 1} | N ∈ N
c} be a relation family where

AN and BN denote “ciphertext attribute” and “key attribute” spaces and c is
some fixed constant. The index N = (n1, n2, . . . , nc) of RN denotes the numbers
of bounds for corresponding parameters. A predicate encryption (PE) scheme
for R is defined by the following algorithms:

Setup(λ,N) → (mpk,msk): The setup algorithm takes as input a security para-
meter λ and an index N of the relation RN and outputs a master public key
mpk and a master secret key msk.

Encrypt(mpk,M,X) → C: The encryption algorithm takes as input a master
public key mpk, the message M, and a ciphertext attribute X ∈ AN . It will
output a ciphertext C.

KeyGen(msk,mpk, Y) → skY : The key generation algorithm takes as input the
master secret key msk, the master public key mpk, and a key attribute Y ∈
BN . It outputs a private key skY .

Decrypt(mpk, C,X, skY , Y) → M or ⊥: We assume that the decryption algo-
rithm is deterministic. The decryption algorithm takes as input the master
public key mpk, a ciphertext C, ciphertext attribute X ∈ AN , a private
key skY , and private key attribute Y . It outputs the message M or ⊥ which
represents that the ciphertext is not in a valid form.

We refer (standard) definitions of correctness and security of PE to [2,4].

2.2 (Arithmetic) Span Program, ABE, and Doubly Spatial
Encryption

Definition of Span Program. Let U = {u1, . . . , ut} be a set of variables. For
each ui, denote ¬ui as a new variable. Intuitively, ui and ¬ui correspond to
positive and negative attributes, respectively. Also let U ′ = {¬u1, . . . ,¬ut}. A
span program over Zp is specified by a pair (L, ρ) of a matrix and a labelling
function where

L ∈ Z
�×m
p ρ : [�] → U ∪ U ′

for some integer �,m. Intuitively, the map ρ labels row i with attribute ρ(i).
A span program accepts or rejects an input by the following criterion. For an

input δ ∈ {0, 1}t, we define the sub-matrix Lδ of L to consist of the rows whose
labels are set to 1 by the input δ. That is, it consists of either rows labelled by
some ui such that δi = 1 or rows labelled by some ¬ui such that δi = 0. We say
that

(L, ρ) accepts δ iff (1, 0, . . . , 0) is in the row span of Lδ.

3 This is called “public-index” predicate encryption, categorized in [11].

582 N. Attrapadung et al.

We can write this also as e1 ∈ span(L�
δ). A span program is called monotone if

the labels of the rows consist of only the positive literals, in U .

Key-Policy and Ciphertext-Policy Attribute-Based Encryption. Let U
be the universe of attributes. We define a relation RKP on any span programs
(L, ρ) over Zp and any sets of attributes S ⊆ U as follows. For S ⊆ U , we define
δ ∈ {0, 1}t as an indicator vector corresponding to S. Namely, δi = 1 if ui ∈ S
and δi = 0 if ui
∈ S. We define

RKP(S, (L, ρ)) = 1 iff (L, ρ) accepts δ.

Similarly, RCP is defined as RCP((L, ρ), S) = 1 iff (L, ρ) accepts δ.
A KP-ABE scheme may require some bounds on parameters: we denote

k̄ = the maximum size of k (the size of attribute set S),
�̄ = the maximum size of � (the number of rows of L),

m̄ = the maximum size of m (the number of columns of L),
ϕ = the maximum size of allowed repetition in {ρ(1), . . . , ρ(�)}.

These bounds define the index N = (k̄, �̄, m̄, ϕ) for the predicate family. When
there is no restriction on corresponding parameter, we represent it by “−” such
as (k̄,−,−,−). We define AN and BN as the set of all attribute sets and the set
of all span programs whose sizes are restricted by N , respectively. KP-ABE is a
predicate encryption for RKP

N : AN ×BN → {0, 1}, where RKP
N is restricted on N

in a natural manner. CP-ABE is defined dually with AN and BN swapped.
Let t := |U|. We say the scheme supports small universe if t is polynomially

bounded and large universe if t is exponentially large. The scheme is monotonic
if span programs are restricted to be monotone, and non-monotonic otherwise.

Attribute-Based Encryption for Arithmetic Span Programs [28]. In this
predicate, the index N for the family is specified by an integer n. We call it the
dimension of the scheme. We define AN = Z

n
p . An arithmetic span program of

dimension n is specified by a tuple (Y,Z, ρ) of two matrices Y,Z ∈ Z
m×�
p and a

map ρ : [�] → [n], for some integers �,m. There is no restriction on � and m. If ρ
is restricted to injective, we say that the scheme supports only attribute one-use.
Otherwise, if there is no restriction on ρ, we say that it is unbounded multi-use.
We let BN be the set of all arithmetic span programs of dimension n. We then
define

RKASP
N (x, (Y,Z, ρ)) = 1 iff e1 ∈ span{x[ρ(j)] · yj + zj}j∈[�],

where here e1 = (1, 0, . . . , 0)� ∈ Z
m
p and x[ρ(j)] is the ρ(j)-th term of x, while yj

and zj are the j-th column of Y and Z respectively. We call predicate encryption
for RKASP key-policy attribute-based encryption for arithmetic span program
(KASP). Ciphertext-policy ASP (CASP) can be defined dually with AN and
BN swapped.

Conversions Among Several Classes of Predicate Encryption 583

Doubly Spatial Encryption. In this predicate, the index N for the family is
specified by an integer n (the dimension of the scheme). We define the domains
as AN = BN = Z

n
p × (∪0≤d≤nZ

n×d
p). We define

RDSE
N

(
(x0,X), (y0,Y)

)
= 1 iff

(
x0 + span(X)

) ∩ (
y0 + span(Y)

)
= ∅.

Doubly spatial encryption is PE for relation RDSE
N equipped with additional key

delegation algorithm. The key delegation algorithm takes a private key for some
affine space as an input and outputs a private key for another affine space, which
is a subset of the first one. We require that the distribution of a key obtained
by the delegation is the same as that of a key directly obtained by the key
generation algorithm. We refer to [4,17] for the formal definition.

2.3 Embedding Lemma for PE

The following useful lemma from [10] describes a sufficient criterion for implica-
tion from PE for a given predicate to PE for another predicate. The lemma is
applicable to any relation family.

We consider two relation families:

RF
N : AN × BN → {0, 1}, RF′

N ′ : A′
N ′ × B′

N ′ → {0, 1},

which is parametrized by N ∈ N
c and N ′ ∈ N

c′
respectively. Suppose that there

exists three efficient mappings

fp : Zc′ → Z
c fe : A′

N ′ → Afp(N ′) fk : B′
N ′ → Bfp(N ′)

which maps parameters, ciphertext attributes, and key attributes, respectively,
such that for all X ′ ∈ A′

N ′ , Y ′ ∈ B′
N ′ ,

RF′
N ′(X ′, Y ′) = 1 ⇔ RF

fp(N ′)(fe(X
′), fk(Y ′)) = 1. (1)

We can then construct a PE scheme Π ′ = {Setup′,Encrypt′,KeyGen′,Decrypt′}
for predicate RF′

N ′ from a PE scheme Π = {Setup,Encrypt,KeyGen,Decrypt} for
predicate RF

N as follows. Let Setup′(λ,N ′) = Setup(λ, fp(N ′)) and

Encrypt′(mpk,M,X ′) = Encrypt(mpk,M, fe(X ′)),
KeyGen′(msk,mpk, Y ′) = KeyGen(msk,mpk, fk(Y ′)),

and Decrypt′(mpk, C,X ′, skY ′ , Y ′) = Decrypt(mpk, C, fe(X ′), skY ′ , fk(Y ′)).

Lemma 1 (Embedding lemma [10]). If Π is correct and secure, then so is
Π ′. This holds for selective security and adaptive security.

Intuitively, the forward and backward direction of Relation (1) ensure that the
correctness and the security are preserving, respectively.

584 N. Attrapadung et al.

3 Conversion from ABE to DSE

In this section, we show how to construct DSE for dimension n from monotonic
KP-ABE (with bounds on the size of attribute sets and span programs). We
note that by simply swapping key and ciphertext attributes, we can also obtain
CP-ABE-to-DSE conversion. We first describe the conversion, then explain the
intuition behind the conversion later below.

3.1 The Conversion

Mapping Parameters. We map fDSE→KP
p : n �→ (k̄, �̄, m̄, ψ) where

k̄ = n(n + 1)κ + 1, �̄ = 2(nκ + 1)(n + 1),
m̄ = (nκ + 1)(n + 1) + 1, ψ = 2(n + 1),

where we define κ := �log2 p�. Moreover, we set the universe U as follows.

U =
{
Att[i][j][k][b]

∣
∣
∣ (i, j, k, b) ∈ [0, n] × [1, n] × [1, κ] × {0, 1}

}
∪ {D},

where D is a dummy attribute which will be assigned for all ciphertext. Hence,
the universe size is |U| = 2n(n + 1)κ + 1. Intuitively, Att[i][j][k][b] represents an
indicator for the condition “the k-th least significant bit of the binary represen-
tation of the j-th element of the vector xi is b ∈ {0, 1}”.

Mapping Ciphertext Attributes. For x0 ∈ Z
n
p and X = [x1, . . . , xd1] ∈ Z

n×d1
p

such that d1 ≤ n, we map fDSE→KP
e : (x0,X) �→ S where

S =
{
Att[i][j][k][b]

∣
∣
∣ (i, j, k) ∈ [0, d1] × [1, n] × [1, κ], b = xi[j][k]

}
∪ {D}.

Here, we define xi[j][k] ∈ {0, 1} so that they satisfy

xi[j] =
κ∑

k=1

2k−1 · xi[j][k].

Namely, xi[j][k] is the k-th least significant bit of the binary representation of
xi[j].

Mapping Key Attributes. For y0 ∈ Z
n
p and Y = [y1, . . . , yd2] ∈ Z

n×d2
p such

that d2 ≤ n, we map fDSE→KP
k : (y0,Y) �→ (L, ρ) as follows. Let the numbers of

rows and columns of L be

� = (2nκ + 1)(n + 1) + d2 + 1, m = (nκ + 1)(n + 1) + 1,

respectively. We then define

L =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

e1 e1 + ed2+2 y�
0

Y�

E J
E J
...

. . .
E J

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ Z
�×m
p , (2)

Conversions Among Several Classes of Predicate Encryption 585

of which each sub-matrix E and J both appears n + 1 times, where we define

E =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

g
g

. . .
g

0 0 . . . 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

∈ Z
(2nκ+1)×n
p , J =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−1
−1

−1
−1

. . .
−1
−1

1 1 . . . 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ Z
(2nκ+1)×nκ
p (3)

where g = (0, 1, 0, 2, . . . , 0, 2i, . . . , 0, 2κ−1)� ∈ Z
2κ
p .

Next, we define the map ρ : [1, �] → U as follows.

• If i ≤ d2 + 1, we set ρ(i) := D.
• Else, we have i ∈ [d2 + 2, �]. We then write

i = (d2 + 1) + (2nκ + 1)i′ + i′′

with a unique i′ ∈ [0, n + 1] and a unique i′′ ∈ [0, 2nκ].
– i′′ = 0, we again set ρ(i) = D.
– Else, we have i′′ ∈ [1, 2nκ]. We then write

i′′ = 2κj′ + 2k′ + b′ + 1

with unique j′ ∈ [0, n − 1], k′ ∈ [0, κ − 1], and b′ ∈ {0, 1}. We finally set

ρ(i) = Att[i′][j′ + 1][k′ + 1][b′].

Intuition. We explain the intuition behind the conversion. S can be seen as a
binary representation of the information of (x0,X). In the span program (L, ρ),
E is used to reproduce the information of (x0,X) in the matrix while J is used
to constrain the form of linear combination among rows to a certain form.4 In
some sense, the roll of the lower part of the matrix L (the last (2nκ + 1)(n + 1)
rows) is similar to universal circuit while the upper part of the matrix contains
the information of (y0,Y).

3.2 Correctness of the Conversion

We show the following theorem. The implication from KP-ABE to DSE would
then follow from the embedding lemma (Lemma 1).

4 A somewhat similar technique to ours that restricts the form of linear combination
of vectors was used in [8] in a different context (for constructing a monotone span
program that tests co-primality of two numbers).

586 N. Attrapadung et al.

Theorem 1. For n ∈ N, for any x0 ∈ Z
n
p , X ∈ Z

n×d1
p , y0 ∈ Z

n
p and Y ∈ Z

n×d2
p ,

it holds that

RKP
N (S, (L, ρ)) = 1 ⇔ RDSE

n

(
(x0,X), (y0,Y)

)
= 1

with N = fDSE→KP
p (n), S = fDSE→KP

e (x0,X), and (L, ρ) = fDSE→KP
k (y0,Y).

Proof. Define I ⊂ [�] as I := {i|ρ(i) ∈ S} and define LI as the sub-matrix of L
formed by all the rows of which index is in I. From the definition of fDSE→KP

e ,
we have that LI is in the form of

LI =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

e1 e1 + ed2+2 y�
0

Y�

E0 J′

E1 J′
...

. . .
Ed1 J′

1�
nκ

. . .
1�

nκ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ Z
�I×mI
p

where �I := (nκ+1)(d1 +1)+n−d1 +d2 +1 and mI := (nκ+1)(n+1)+1 and

Ei =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

gi,1

gi,2

. . .
gi,n

0 0 . . . 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

∈ Z
(nκ+1)×n
p , J′ =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−1
−1

. . .
−1

1 1 . . . 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

∈ Z
(nκ+1)×nκ
p .

for i ∈ [0, d1], where

gi,j =
(
xi[j][1], 2xi[j][2], . . . , 2κ−1xi[j][κ]

)�
∈ Z

κ
p .

We remark that it holds that 〈1κ, gi,j〉 = xi[j] by the definition of xi[j][k] and
thus E�

i · 1nκ+1 = xi holds. We also remark that if v�J′ = 0 holds for some
v ∈ Z

nκ+1
p , then there exists v ∈ Zp such that v = v1nκ+1. These properties will

be used later.
To prove the theorem statement is now equivalent to prove that

e1 ∈ span(L�
I) ⇔ (

x0 + span(X)
) ∩ (

y0 + span(Y)
)
= ∅.

Forward Direction (⇒). Suppose e1 ∈ span(L�
I). Then, there exists u ∈ Z

�I
p

such that u�LI = e�
1 . We write u as

u� =
(

v︸︷︷︸
1

, v�
︸︷︷︸

d2

, u�
0︸︷︷︸

nκ+1

, u�
1︸︷︷︸

nκ+1

, . . . , u�
d1︸︷︷︸

nκ+1

, ud1+1
︸ ︷︷ ︸

1

, . . . , un︸︷︷︸
1

)
.

Conversions Among Several Classes of Predicate Encryption 587

We then write

u�LI =
(

v,
(
v + 〈u0, e1〉

)
,

(
vy�

0 + v�Y� +
d1∑

i=0

u�
i Ei

)
,

(
u�

0 · J′
)
, . . . ,

(
u�

d1
· J′

)
,
(
ud1+11�

nκ+1

)
, . . . ,

(
un1�

nκ+1

))

Since u�LI = e�
1 , we have ud1+1 = · · · = un = 0, by comparing each ele-

ment of the vector. Furthermore, since u�
i · J′ = 0 for i ∈ [0, d1], there exist

{ui ∈ Zp}i∈[0,d1] such that ui = ui1nκ+1. By comparing the first and the second
element of the vector, we obtain v = 1 and v + 〈u0, e1〉 = 1 + u0〈1�

nκ+1, e1〉 =
1+u0 = 0. Hence, u0 = −1. Finally, we have that

∑d1
i=0 u

�
i Ei+vy�

0 +v�Y� = 0
and thus

−
d1∑

i=0

E�
i ui = y0 + Y · v.

The left hand side of the equation is

−
d1∑

i=0

E�
i ui = −u0E�

0 · 1nκ+1 −
d1∑

i=1

uiE�
i · 1nκ+1

= x0 −
d1∑

i=1

ui · xi ∈ (
x0 + span(X)

)
.

while the right hand side is y0 + Y · v ∈ (y0 + span(Y)). This implies that(
x0 + span(X)

) ∩ (
y0 + span(Y)

)
= ∅.

Converse Direction (⇐). Suppose
(
x0+span(X)

)∩(
y0+span(Y)

)
= ∅. Hence,
there exist sets {ui ∈ Zp}i∈[1,d1] and {vi ∈ Zp}i∈[1,d2] such that x0+

∑d1
i=1 uixi =

y0 +
∑d2

i=1 viyi. We set a vector u as

u� =
(
1, v1, . . . , vd2︸ ︷︷ ︸

d2

−1�
nκ+1,−u11�

nκ+1, . . . ,−ud11
�
nκ+1

︸ ︷︷ ︸
(nκ+1)(d1+1)

, 0, . . . , 0
︸ ︷︷ ︸

n−d1

)
).

Therefore, we have

u�LI =
(

1, 1 − 1,
(
y�
0 +

d2∑

i=1

viy�
i − 1�

nκ+1(E0 +
d1∑

i=1

uiEi)
)
,

(
− 1�

nκ+1J
′
)
,
(

− u11�
nκ+1J

′
)
, . . . ,

(
− un1�

nκ+1J
′
)
, 0 . . . , 0

)

=
(

1, 0,
(
y�
0 +

d2∑

i=1

viy�
i

)
−

(
x�
0 +

d1∑

i=1

uix�
i

)
, 0 . . . , 0

)

= e�
1

as desired. This concludes the proof of the theorem.

588 N. Attrapadung et al.

4 From DSE to Non-Monotonic ABE

In [25], it is shown that DSE can be converted into monotonic CP-ABE with
large universe (and bounds on the size of attribute sets and span programs).
In this section, we extend their result to show that non-monotonic CP-ABE
with large universe and the same bounds can be constructed from DSE. We
note that our transformation is very different from that of [25] even if we only
consider monotonic CP-ABE because of expositional reasons. We also note that
by simply swapping key and ciphertext attributes, we immediately obtain DSE-
to-non-monotonic-KP-ABE conversion. Again, we first describe the conversion,
provide some intuition later below.

4.1 The Conversion

Mapping Parameters. We map fCP→DSE
p : (k̄, �̄, m̄, �̄) �→ n = 4�̄ + m̄ + 2k̄�̄.

We assume that the universe of attributes is Zp. This restriction can be easily
removed by using collision resistant hash.

Mapping Ciphertext Attributes. For a span program (L, ρ), we map
fCP→DSE
e : (L, ρ) �→ (x0,X) as follows. Let � × m̄ be the dimension of L, where

� ≤ �̄. (If the number of columns is smaller, we can adjust the size by padding
zeroes.) Let �0, �1 be such that � = �0 + �1, and without loss of generality,
we assume that the first �0 rows of L are associated with positive attributes
and the last �1 rows with negative attributes by the map ρ. We denote L as
L = [L0;L1] using matrices L0 ∈ Z

�0×m̄
p and L1 ∈ Z

�1×m̄
p . We then define

fCP→DSE
e (L, ρ) = (x0,X) with

x0 = −e1 ∈ Z
n
p , X� =

⎛

⎜
⎜
⎝

L0

�̄
︷︸︸︷ G0

L1 I�1

�̄−�1︷︸︸︷

G1

⎞

⎟
⎟
⎠ ∈ Z

(�0+2�1)×n
p ,

where Gb ∈ Z
�b×�̄(k̄+1)
p for each b ∈ {0, 1} is defined as

Gb =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

p
(
ρ(b�0 + 1)

)� (�̄−�b)(k̄+1)
︷︸︸︷

p
(
ρ(b�0 + 2)

)�

. . .

p
(
ρ(b�0 + �b)

)�

⎞

⎟
⎟
⎟
⎟
⎟
⎠

where p() is a function that takes an element of Zp or its negation ({¬x|x ∈ Zp})
as an input and outputs a vector p(x) = (1, x, x2, . . . , xk̄)� ∈ Z

k̄+1
p .

Mapping Key Attributes. For a set S = (S1, . . . , Sk) such that k ≤ k̄, we
map fCP→DSE

k : S �→ (y0,Y) where

y0 = 0n ∈ Z
n
p , Y� =

(
m̄

︷︸︸︷ HI(k̄+1)�̄&
HI(k̄+1)�̄

)

∈ Z
2(k̄+1)�̄×n
p ,

Conversions Among Several Classes of Predicate Encryption 589

of which H is defined as

H = I�̄ ⊗ qS =

⎛

⎜
⎜
⎜
⎝

qS

qS

. . .
qS

⎞

⎟
⎟
⎟
⎠

∈ Z

(
(k̄+1)�̄

)
×�̄

p ,

where qS = (qS [1], . . . ,qS [k̄+1])� ∈ Z
k̄+1
p is defined as a coefficient vector from

QS [Z] =
k+1∑

i=1

qS [i] · Zi−1 =
k∏

i=1

(Z − Si).

If k < k̄, the coordinates qS [k + 2], . . . ,qS [k̄ + 1] are all set to 0.

Intuition. The matrices X and Y constructed above can be divided into two
parts. The first �0 rows of X� and the first (k̄ + 1)�̄ rows of Y� deal with posi-
tive attributes. The lower parts of X� and Y� deal with negation of attributes.
Here, we explain how we handle negated attributes. Positive attributes are han-
dled by a similar mechanism. I(k̄+1)�̄ in Y� and G1 in X� restricts the linear
combination of the rows of X� and Y� to a certain form in order to two affine
spaces to have a intersection. As a result, we can argue that the coefficient of the
i-th row of L1 in the linear combination should be multiple of QS(ρ(�0 + i))5.
Since we have that QS(x) = 0 iff x ∈ S for any x ∈ Zp, this means that the
coefficient of the vector in the linear combination should be 0 if ρ(�0 + i) = ¬Att
and Att ∈ S. This restriction is exactly what we need to emulate predicate of
non-monotonic CP-ABE.

4.2 Correctness of the Conversion

We show the following theorem. The implication from DSE to non-monotonic
CP-ABE with large universe would then follow from the embedding lemma.

Theorem 2. For any span program (L ∈ Z
�×m
p , ρ) such that � ≤ �̄ and m ≤ m̄

and S such that |S| ≤ k̄, let N = (k̄, �̄, m̄, �̄), we have that

RDSE
n ((x0,X), (y0,Y)) = 1 ⇔ RCP

N (S, (L, ρ)) = 1

where n = fCP→DSE
p (N), (x0,X) = fCP→DSE

e (L, ρ), and (y0,Y) = fCP→DSE
k (S).

Proof. Let I ⊂ [1, �] be I = {i|(ρ(i) = Att ∧ Att ∈ S) ∨ (ρ(i) = ¬Att ∧ Att
∈ S)}.
We also let LI be the sub-matrix of L formed by rows whose index is in I.

To prove the theorem statement is equivalent to prove that
(
x0 + span(X)

) ∩ (
y0 + span(Y)

)
= ∅ ⇔ e1 ∈ span(L�
I).

5 Here, We treat negated attributes ({¬x|x ∈ Zp}) as elements of Zp. Namely, if
ρ(�0 + i) = ¬Att for some Att ∈ Zp, QS(ρ(�0 + i)) := QS(Att)..

590 N. Attrapadung et al.

Forward Direction (⇒). Suppose that there exist u ∈ Z
�0+2�1
p and v ∈

Z
2(k̄+1)�̄
p such that x�

0 +u�X� = y�
0 +v�Y� = v�Y�. We denote these vectors

as

u� = (u�
0︸︷︷︸

�0

, u�
1︸︷︷︸

�1

, u�
2︸︷︷︸

�1

), v� = (v�
1︸︷︷︸

k̄+1

, . . . , v�̄
�︸︷︷︸

k̄+1

w�
1︸︷︷︸

k̄+1

, . . . , w�̄
�︸︷︷︸

k̄+1

.)

Hence, x�
0 + u�X and v�Y can be written as

x�
0 + u�X =

(
−e�

1 + u�
0 L0 + u�

1 L1
︸ ︷︷ ︸

m̄

,0�̄
� ,u0[1] · p(ρ(1))�, . . . ,u0[�0] · p(ρ(�0))�

︸ ︷︷ ︸
(k̄+1)�0

,

0�
(�̄−�0)(k̄+1), u

�
1︸︷︷︸

�1

,0�̄
�−�1

,

u2[1] · p(ρ(�0 + 1))�, . . . ,u2[�1] · p(ρ(�0 + �1))�
︸ ︷︷ ︸

(k̄+1)�1

,0�
(�̄−�1)(k̄+1)

)
(4)

and

v�Y = (0�
m̄, 〈v1,qS〉, . . . , , 〈v�̄,qS〉

︸ ︷︷ ︸
�̄

, v�
1 , . . . , v�̄

�︸ ︷︷ ︸
(k̄+1)�̄

,

〈w1,qS〉, . . . , , 〈w�̄,qS〉
︸ ︷︷ ︸

�̄

,w�
1 , . . . ,w�̄

�︸ ︷︷ ︸
(k̄+1)�̄

). (5)

First, by comparing the m̄+ �̄+1-th to m̄+(k̄+2)�̄-th elements of the vector,
we obtain that vi = u0[i] · p(ρ(i)) for i ∈ [1, �0] and vi = 0k̄+1 for i ∈ [�0 + 1, �̄].
Furthermore, by comparing m̄+1-th to m̄+ �̄-th elements of the vector, we have

〈vi,qS〉 = u0[i] · 〈p(ρ(i)),qS〉 = u0[i] · QS

(
ρ(i)

)
= 0

for i ∈ [1, �0]. The second equation above follows from the definition of p() and
qS . Since QS(ρ(i)) =

∏
ω∈S(ρ(i) − ω)
= 0 if ρ(i)
∈ S, we have that u0[i] = 0 if

ρ(i)
∈ S. That is, u0[i] = 0 for i ∈ [1, �0]\I.

Next, by comparing the last (k̄ + 1)�̄ elements in the vector, we obtain that
wi = u2[i] · p(ρ(�0 + i)) for i ∈ [1, �1] and wi = 0k̄+1 for i ∈ [�1 + 1, �̄]. By
comparing the m̄ + (k̄ + 2)�̄ + 1-th to m̄ + (k̄ + 3)�̄-th elements in the vector, we
have that (u�

1 ,0�̄
�−�1

) = (〈w1,qS〉, . . . , , 〈w�̄,qS〉) and thus

u1[i] = 〈wi,qS〉 = u2[i] · 〈p(ρ(�0 + i)),qS〉 = u2[i] · QS(ρ(�0 + i))

holds for i ∈ [1, �1]. From the above, we have that u1[i] = 0 if ρ(�0 + i) = ¬Att
and Att ∈ S for some Att. This implies that u1[i] = 0 if (�0 + i)
∈ I for i ∈ [1, �1].

Finally, by comparing the first m̄ elements in the vector, we obtain that
−e�

1 + u�
0 L0 + u�

1 L1 = 0�. Let u0,I be a subvector of u0 which is obtained by

Conversions Among Several Classes of Predicate Encryption 591

deleting all elements u0[i] for i
∈ I. Similarly, we define u1,I as a vector obtained
by deleting all elements u1[i] for i such that (�0 + i)
∈ I from u1. Since u0[i] = 0
for i ∈ [1, �0]\I and u1[i] = 0 for i ∈ [1, �1] such that (�0 + i)
∈ I, it follows that
(u�

0,I ,u
�
1,I)LI = u�

0 L0 + u�
1 L1 = e�

1 and thus e1 ∈ span(L�
I) as desired.

Converse Direction (⇐). The converse direction can be shown by repeating
the above discussion in reverse order. Assume that e1 ∈ span(L�

I). Then there
exists u′ ∈ Z

|I|
p such that u′�LI = e�

1 . We extend u′ to define u′′ ∈ Z
�0+�1
p so

that u′′
I = u′ and u′′[i] = 0 for i
∈ I hold. Here, u′′

I ∈ Z
|I|
p is a subvector of

u′′ which is obtained by deleting all elements u′′[i] for i
∈ I. These conditions
completely determine u′′. We denote this u′′ as u′′� = (u�

0 ,u�
1) using u0 ∈ Z

�0
p

and u1 ∈ Z
�1
p . We note that u�

0 L0 + u�
1 L1 = e�

1 holds by the definition.
Next we define vi for i ∈ [�̄] as vi = u0[i] · p(ρ(i)) if i ∈ [�0] and vi = 0k̄+1 if

i ∈ [�0 + 1, �̄]. We claim that 〈vi,qS〉 = 0 holds for i ∈ [�̄]. Here, we prove this.
The case for i ∈ [�0 + 1, �̄] is trivial. For the case of i ∈ [1, �0], we have

〈vi,qS〉 = u0[i] · 〈p(ρ(i)),qS〉 = u0[i] · QS(ρ(i)) = 0.

The last equation above holds because we have QS(ρ(i)) = 0 if i ∈ I and
u0[i] = 0 otherwise, by the definition of u0[i].

We define u2[i] ∈ Zp for i ∈ [1, �1] as u2[i] = u1[i]/QS(ρ(�0 + i)) if u1[i]
= 0
and u2[i] = 0 if u1[i] = 0. We have to show that u2[i] are well defined by showing
that QS(ρ(�0+i))
= 0 if u1[i]
= 0 (i.e., division by 0 does not occur). If u1[i]
= 0,
then (�0+i) ∈ I by the definition of u1. It implies that (ρ(�0+i) = ¬Att)∧(Att
∈
S) for some Att ∈ Zp and thus QS(ρ(�0 + i)) =

∏
ω∈S(Att − ω)
= 0 holds as

desired.
We also define wi as wi = u2[i] · p(ρ(�0 + i)) for i ∈ [1, �1] and wi = 0k̄+1

for i ∈ [�1 + 1, �̄]. Then, we have

〈wi,qS〉 = u2[i] · 〈p(ρ(�0 + i)),qS〉 = u2[i] · QS(ρ(�0 + i)) = u1[i]

for i ∈ [1, �1] and 〈wi,qS〉 = 0 for i ∈ [�1 + 1, �̄].
Finally, we define u and v as u� = (u�

0 ,u�
1 ,u�

2) and v� =
(v�

1 , . . . , v�̄
�

,w�
1 , . . . ,w�̄

�
). Then, Eqs. (4) and (5) hold. By the properties of

u and v we investigated so far, it is straightforward to see that x�
0 + u�X� =

y�
0 + v�Y holds. This concludes the proof of the theorem.

5 From KP(CP)-ABE to KASP(CASP)

In this section, we show that monotonic KP-ABE with small universe (without
bounds on the size of span programs) can be converted into KASP. We note that
we can also obtain CP-ABE-to-CASP conversion by simply swapping key and
ciphertext attribute.

592 N. Attrapadung et al.

5.1 The Conversion

Mapping Parameters. We show how to construct KASP for dimension n
from monotonic KP-ABE for parameter N = (nκ + 1,−,−,−) and the size
of attribute universe is |U| = 2nκ + 1. Here, κ = �log2 p�. That is, we define
fKASP→KP
p (n) = N . We set the universe of attributes as

U =
{
Att[i][j][b]

∣
∣
∣ (i, j, b) ∈ [1, n] × [1, κ] × {0, 1}

}
∪ {D}.

Intuitively, Att[i][j][b] represents an indicator for the condition “the j-th least
significant bit of the binary representation of the i-th element of the vector x is
b ∈ {0, 1}”. D is a dummy attribute which will be assigned for all ciphertexts.

Mapping Ciphertext Attributes. For x ∈ Z
n
p , we map fKASP→KP

e : x �→ S
where

S =
{
Att[i][j][b]

∣
∣
∣ (i, j) ∈ [1, n] × [1, κ], b = x[i][j]

}
∪ {D},

where we define x[i][j] ∈ {0, 1} in such a way that x[i] =
∑κ

j=1 2j−1 · x[i][j]. In
other words, x[i][j] is the j-th least significant bit of the binary representation
of x[i] ∈ Zp.

Mapping Key Attributes. For an arithmetic span program (Y =
(y1, . . . , y�) ∈ Z

m×�
p ,Z = (z1, . . . , z�) ∈ Z

m×�
p , ρ) such that Y,Z ∈ Z

m×�
p , we

define the map fKASP→KP
k : (Y,Z, ρ) �→ (L, ρ′) as follows. First, we define

L =

⎛

⎜
⎜
⎜
⎝

G1 J
G2 J
...

. . .
G� J

⎞

⎟
⎟
⎟
⎠

∈ Z

(
(2κ+1)�

)
×
(
κ�+m

)

p , (6)

where the matrix J ∈ Z
(2κ+1)×κ
p is defined as in Equation (3) (by setting n = 1)

while Gi is defined as

Gi = [g · y�
i ; z�

i] = (0m, yi,0m, 2yi, · · · ,0m, 2κ−1yi, zi)� ∈ Z
(2κ+1)×m
p

where g = (0, 1, 0, 2, . . . , 0, 2i, . . . , 0, 2κ−1)� ∈ Z
2κ
p .

Next, we define the map ρ′ : [(2κ + 1)�] → U as follows.

• If i = 0 mod (2κ + 1), we set ρ(i) := D.
• Else, we write

i = (2κ + 1)i′ + 2j′ + b′ + 1

with unique i′ ∈ [0, � − 1], j′ ∈ [0, κ − 1], and b′ ∈ {0, 1}. We finally set
ρ′(i) = Att[ρ(i′ + 1)][j′ + 1][b′].

Conversions Among Several Classes of Predicate Encryption 593

Intuition. S can be seen as a binary representation of the information of x. In
the span program (L, ρ′), J is used to constrain the form of linear combination
among rows to a certain form. Gi as well as ρ′, along with the above restriction,
are designed so that linear combination of rows of Gi only can be a scalar
multiple of the vector (x[ρ(i)]yi +zi)�. Therefore, (L, ρ′) essentially works as an
arithmetic span program.

5.2 Correctness of the Conversion

We show the following theorem. The implication from KP-ABE with parameter
N = (nκ + 1,−,−,−) to KASP with dimension n would then follow from the
embedding lemma.

Theorem 3. For any x ∈ Z
n
p , Y ∈ Z

m×�
p , Z ∈ Z

m×�
p , and ρ : [�] → [n], it holds

that

RKP
N (S, (L, ρ′)) = 1 ⇔ RKASP

n (x, (Y,Z, ρ)) = 1

where N = fKASP→KP
p (n), S = fKASP→KP

e (x), and (L, ρ′) = fKASP→KP
k (Y,Z, ρ).

Proof. Define I ⊂ [1, (2κ + 1)�] as I = {i|ρ′(i) ∈ S}. We define LI as the sub-
matrix of L formed by rows whose index is in I. From the definition of fKASP→KP

e ,
we have that LI is in the form of

LI =

⎛

⎜
⎜
⎜
⎝

G′
1 J′

G′
2 J′

...
. . .

G′
� J′

⎞

⎟
⎟
⎟
⎠

∈ Z

(
(κ+1)�

)
×
(
κ�+m

)

p ,

where

G′
i = [gi · y�

i ; z�
i] ∈ Z

(κ+1)×m
p , J′ =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−1
−1

. . .
−1

1 1 . . . 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

∈ Z
(κ+1)×κ
p ,

and where gi = (x[ρ(i)][1], 2x[ρ(i)][2], . . . , 2κ−1x[ρ(i)][κ])� ∈ Z
κ
p . We note that

we have 〈1κ, gi〉 = x[ρ(i)] by the definition of x[ρ(i)][j] and thus G′�
i · 1κ+1 =

x[ρ(i)]yi + zi holds. We also remark that if v�J′ = 0 holds for some v ∈ Z
κ+1
p ,

then there exists v ∈ Zp such that v = v1κ+1. These properties will be used
later below.

To prove the theorem statement is equivalent to prove that

e1 ∈ span(L�
I) ⇔ e1 ∈ span({x[ρ(i)]yi + zi}i∈[�]).

594 N. Attrapadung et al.

Forward Direction (⇒). We assume that e1 ∈ span(L�
I). From this, there

exists u ∈ Z
(κ+1)�
p such that u�LI = e�

1 . We write this u as

u� =
(
u�

1︸︷︷︸
κ+1

, u�
2︸︷︷︸

κ+1

, . . . , u�
�︸︷︷︸

κ+1

)
.

Therefore, we have that

e�
1 = u� · LI =

⎛

⎝
∑

i∈[�]

u�
i G

′
i,u

�
1 J

′, . . . ,u�
� J

′

⎞

⎠.

Since u�
i · J′ = 0 for i ∈ [�], there exist {ui ∈ Zp}i∈[�] such that ui = ui1κ+1.

Then, we have

e�
1 =

∑

i∈[�]

u�
i G

′
i =

∑

i∈[�]

ui1�
κ+1G

′
i =

∑

i∈[�]

ui(x[ρ(i)] · yi + zi)�.

This implies e1 ∈ span({x[ρ(i)]yi + zi}i∈[�]), as desired.

Converse Direction (⇐). We assume that e1 ∈ span({x[ρ(i)]yi + zi}i∈[�]).
Then, there exist {ui ∈ Zp}i∈[�] such that

∑
i∈[�] ui(x[ρ(i)] · yi + zi) = e1. We set

a vector u ∈ Z
(κ+1)�
p as u� =

(
u11�

κ+1, . . . , u�1�
κ+1

)
. Then, we have that

u� · LI =

⎛

⎝
∑

i∈[�]

ui1�
κ+1G

′
i, u11�

κ+1J
′, . . . ,u�1�

κ+1J
′

⎞

⎠

=

⎛

⎝
∑

i∈[�]

ui(x[ρ(i)]yi + zi)�,0�
κ , . . . ,0�

κ

⎞

⎠ = e�
1 .

This implies e1 ∈ span(L�
I), as desired. This concludes the proof of the theorem.

6 Implications of Our Result

In this section, we discuss consequences of our results.

Equivalence between (bounded) ABE and DSE. We have shown that
monotonic KP/CP-ABE for (k̄, �̄, m̄, ϕ) implies DSE (without delegation) in
Sect. 3 and DSE implies non-monotonic KP/CP-ABE with large universe for
(k̄, �̄, m̄, ϕ) in Sect. 4. Since non-monotonic KP/CP-ABE with large universe
for (k̄, �̄, m̄, ϕ) trivially implies monotonic KP/CP-ABE with small universe for
(k̄, �̄, m̄, ϕ), our results indicate that these PE schemes are essentially equivalent
in the sense that they imply each other.

Equivalence between K(C)ASP and KP(CP)-ABE. Next, we consider
the case where there is no restriction on the size of span programs. In Sect. 5,

Conversions Among Several Classes of Predicate Encryption 595

Table 1. Comparison among DSE Schemes

Schemes |mpk| |C| |sk| Delegation Security Assumption

Hamburg11 [25] O(n) O(d1) O(d2) � Selective Parameterized

CW14 [17] O(n2) O(nd1) O(n) � Selective Static

CZF12 [14] O(n) O(d1) O(d2) � Adaptive Static

Section 3 + RW13 [37] O(1) O(nd1κ) O(n2κ) � Selective Parameterized

Section 3 + ALP11 [5] O(n2κ) O(1) O(n4κ2) � Selective Parameterized

Section 3 + OT12 [35] O(1) O(n2d1κ) O(n2κ) ? Adaptive Static

Section 3 + A15 [3] O(1) O(nd1κ) O(n2κ) ? Adaptive Parameterized

Section 3 + A15 [3] O(n2κ) O(1) O(n4κ2) ? Adaptive Parameterized

Section 3 + A15 [3] O(n2κ) O(n4κ2) O(1) ? Adaptive Parameterized
an is the dimension of the scheme; d1 and d2 denote the dimension of the space associated

with the ciphertext and private key, respectively; κ = �log2 p	.
b“Delegation” shows if key delegation is supported. “?” means unknown.

we showed that monotonic KP-ABE for ((k̄ + 1)κ,−,−,−) implies KASP for
(k̄,−,−,−). In the full version [4], we also show the converse direction. That
is, we show that KASP for (k̄ + 1,−,−,−) implies non-monotonic KP-ABE for
(k̄,−,−,−) with large universe. Since non-monotonic KP-ABE for (k̄,−,−,−)
trivially implies monotonic KP-ABE for (k̄,−,−,−), our results indicate that
these PE schemes are essentially equivalent similarly to the above case. Similar
implications hold for CP-ABE. See Fig. 1 for the overview.

By applying the conversions to existing schemes, we obtain various new
schemes. The overviews of properties of resulting schemes and comparison with
existing schemes are provided in Tables 1, 2, 3 and 4. All schemes in the tables
are constructed in pairing groups. In the tables, we count the number of group
elements to measure the size of master public keys (|mpk|), ciphertexts (|C|),
and private keys (|sk|). Note that our conversions only can be applied to ABE
schemes supporting span programs over Zp. Therefore, for ABE schemes con-
structed on composite order groups [2,30], our conversions are not applicable
since they support span programs over ZN where N is a product of several large
primes. Similar restrictions are posed on DSE and K(C)ASP. Though it is quite
plausible that our conversions work even in such cases assuming hardness of
factoring N , we do not prove this in this paper.

New DSE Schemes. By applying our KP(CP)-ABE-to-DSE conversion to
existing KP(CP)-ABE schemes, we obtain many new DSE schemes. Table 1
shows overview of obtained schemes.6 Specifically,

– From the unbounded KP-ABE schemes [3,35,37], we obtain the first DSE
scheme with constant-size master public key (without delegation). Note that
all previous schemes [14,17,25] require at least O(n) group elements in master
public key where n is the dimension of the scheme.

6 In the table, parameterized assumptions refer to q-type assumptions, which are non-
interactive and falsifiable but parameterized by some parameters of the scheme such
as k, k̄.

596 N. Attrapadung et al.

Table 2. Comparison among CP-ABE Schemes

Schemes Expressiveness Efficiency Security Assumption

Universe Policy |mpk| |C| |sk|
OT12 [35] Large Non-mono. Span O(1) O(�) O(kϕ) Adaptive Static

AY15 [6],

A15 [3]

Large Mono. Span O(1) O(�) O(k) Adaptive Parametrized

AY15 [6],

A15 [3]

Large Mono. Span O(k̄) O(k̄�) O(1) Adaptive Parametrized

EMN+09 [18] Small AND-only O(k̄) O(1) O(k̄) Selective Static

CZF11 [13] Small AND-only O(k̄) O(1) O(k̄2) Selective Static

CCL+13 [12] Small Threshold O(k̄) O(1) O(k̄2) Adaptive Static

Sections 3,4 +

ALP11 [5]

Large Non-mono. Span O((k̄�̄)2κ) O(1) O((k̄�̄)4κ2) Selective Parametrized

Sections 3,4 +

T14 [39]

Large Non-mono. Span. O((k̄�̄)2κ) O(1) O((k̄�̄)4κ2) Semi-adapt Static

Section 3,4 +

A15 [3]

Large Non-mono. Span O((k̄�̄)2κ) O(1) O((k̄�̄)4κ2) Adaptive Parametrized

a k is the size of an attribute set associated with a key, � is the number of rows of a span program

matrix associated with a ciphertext; k̄, �̄ are the maximums of k, � (if bounded); ϕ is the maximum

number of allowed attribute multi-use in one policy (if bounded); κ = �log2 p�.

– From KP-ABE scheme with constant-size ciphertexts [3,5,27,39], we obtain
the first DSE scheme with constant-size ciphertexts. All previous schemes
[14,17,25] require at least O(d1) group elements in ciphertexts where d1 is the
dimension of the affine space associated to a ciphertext.

– From CP-ABE scheme with constant-size keys [6], we obtain the first DSE
scheme with constant-size private keys. All previous schemes require at least
O(d2) group elements in private keys where d2 is the dimension of the affine
space associated to a private key.

The schemes obtained from [3,35] achieves adaptive security. Furthermore, for
schemes obtained from [5,27,37], we can define key delegation algorithm. The
details of the key delegation algorithm will be given in the full version [4].

CP-ABE with Constant-Size Ciphertexts. By applying our DSE-to-non-
monotonic-CP-ABE conversion in Sect. 4 to the DSE scheme with constant-
size ciphertexts obtained above, we obtain the first non-monotonic CP-ABE
with constant-size ciphertexts. Previous CP-ABE schemes with constant-size
ciphertexts [12,13,18] only support threshold or more limited predicates7. See
Table 2 for comparison (we list only relevant schemes).

KP-ABE with Constant-Size Keys. By applying our DSE-to-non-
monotonic-KP-ABE conversion in Sect. 4 to the DSE scheme with constant-size
keys obtained above, we obtain the first non-monotonic KP-ABE with constant-
size keys. See Table 3 for comparison (we list only relevant schemes).
7 One would be able to obtain CP-ABE with constant-size ciphertexts supporting

threshold formulae by applying the generic conversion in [22] to a KP-ABE scheme
proposed in [5]. However, the resulting scheme supports more limited predicate com-
pared to ours. To the best of our knowledge, this observation has not appeared
elsewhere.

Conversions Among Several Classes of Predicate Encryption 597

Table 3. Comparison among KP-ABE Schemes

Schemes Expressiveness Efficiency Security Assumption

Universe Policy |mpk| |C| |sk|
OT12 [35] Large Non-mono. Span. O(1) O(kϕ) O(�) Adaptive Static

AY15 [6],

A15 [3]

Large Mono. Span O(1) O(k) O(�) Adaptive Parameterized

AY15 [6],

A15 [3]

Large Mono. Span O(k̄) O(1) O(k̄�) Adaptive Parameterized

Sections 3,4 +

A15 [3]

Large Non-mono. Span. O((k̄�̄)2κ) O((k̄�̄)4κ2) O(1) Adaptive Parameterized

a k is the size of an attribute set associated with a ciphertext, � is the number of rows of a span

program matrix associated with a key; k̄, �̄ are the maximums of k, � (if bounded); ϕ is the maximum

number of allowed attribute multi-use in one policy (if bounded); κ = �log2 p�.

New KASP and CASP Schemes. By applying the KP(CP)-ABE-to-
K(C)ASP conversion in Sect. 5, we obtain many new K(C)ASP schemes. See
Table 4 for the overview. Specifically,

– From the unbounded KP-ABE, CP-ABE schemes of [3,37], we obtain the first
KASP, CASP schemes with constant-size master public key.

– From adaptively secure KP-ABE, CP-ABE schemes of [3,32], we obtain the
first adaptively secure KASP, CASP schemes with unbounded attribute multi-
use.

– From KP-ABE schemes with constant-size ciphertexts [3,5,27,39], we obtain
the first KASP schemes with constant-size ciphertexts.

– From CP-ABE schemes with constant-size keys [3], we obtain the first CASP
schemes with constant-size keys.

Until recently, the only (K)ASP scheme in the literature was proposed by [28],
which is selectively secure and the master public key and ciphertext size are
linear in the dimension of the scheme. Very recently, adaptively secure KASP
and CASP were given in [16], albeit with the restriction of one-time use (of the
same attribute in one policy).

We remark that the conversion is not applicable for schemes in [34,35] since
these schemes are KP-ABE for (∗, ∗, ∗, ϕ) where ϕ is polynomially bounded,
whereas our conversion requires the last parameter to be unbounded.

7 Application to Attribute-Based Signature

Here, we discuss that our techniques developed in previous sections are also
applicable to construct attribute-based signatures (ABS) [33,34]. ABS is an
advanced form of signature and can be considered as a signature analogue of
ABE. In particular, it resembles CP-ABE in the sense that a private key is
associated with a set of attributes while a signature is associated with a policy
and a message. A user can sign on a message with a policy if and only if she
has a private key associated with a set satisfying the policy. Roughly speaking,
this property corresponds to the correctness and unforgeability. For ABS, we

598 N. Attrapadung et al.

Table 4. Comparison among KASP and CASP Schemes

Schemes Type Efficiency Security Attribute Assumption

|mpk| |C| |sk| multi-use

IW14 [28] KASP O(n) O(n) O(�) Selective yes Static

CGW15 [16] KASP O(n) O(n) O(�) Adaptive no Static

CGW15 [16] CASP O(n) O(�) O(n) Adaptive no Static

Section 5 + LW12 [32] KASP O(nκ) O(nκ) O(�κ) Adaptive yes Parameterized

Section 5 + ALP11 [5] KASP O(nκ) O(1) O(�nκ2) Selective yes Parameterized

Section 5 + RW13 [37] KASP O(1) O(nκ) O(�κ) Selective yes Parameterized

Section 5 + A15 [3] KASP O(nκ) O(1) O(�nκ2) Adaptive yes Parameterized

Section 5 + A15 [3] KASP O(1) O(nκ) O(�κ) Adaptive yes Parameterized

Section 5 + LW12 [32] CASP O(nκ) O(�κ) O(nκ) Adaptive yes Parameterized

Section 5 + RW13 [37] CASP O(1) O(�κ) O(nκ) Selective yes Parameterized

Section 5 + A15 [3] CASP O(1) O(�κ) O(nκ) Adaptive yes Parameterized

Section 5 + A15 [3] CASP O(nκ) O(�nκ2) O(1) Adaptive yes Parameterized
a n is the dimension of the scheme; � is the number of the columns of the matrices that define

an arithmetic span program (� reflects the size of an arithmetic span program); κ = �log2 p	.

also require privacy. That is, we require that one cannot obtain any information
about the attribute of the signer from a signature.

The construction of expressive ABS scheme with constant-size signatures has
been open. All previous ABS schemes with constant-size signatures [12,26] only
supports threshold predicates. The difficulty of constructing ABS with constant-
size signatures seems to be related to the difficulty of construction of CP-ABE
with constant-size ciphertexts. That is, it is hard to set constant number of group
elements so that they include very complex information such as span programs.

To solve the problem, we first define the notion of predicate signature (PS)
that is a signature analogue of PE. Then we construct a PS scheme that is
dual of ABS: a private key is associated with a policy and a signature with a
set. The scheme achieves constant-size signatures. This is not difficult to achieve
because the signature is associated with a set which is a simpler object compared
to a policy. The scheme is based on PS scheme for threshold predicate with
constant-size signatures by [26]. We change the scheme mainly in two ways.
At first, instead of using Shamir’s secret sharing scheme, we use linear secret
sharing scheme so that they support more general predicate. We also add some
modification so that the signature size be even shorter. The signatures of the
resulting scheme only consist of two group elements.

Since signature analogue of Lemma 1 holds, we can apply KP-ABE-to-non-
monotonic-CP-ABE conversion (combination of the results in Sects. 3 and 4)
to obtain the first ABS scheme with constant-size signatures supporting non-
monotone span programs. We refer to the full version [4] for the details.

Acknowledgements. We would like to thank anonymous reviewers and members of
Shin-Akarui-Angou-Benkyou-Kai for their helpful comments.

Conversions Among Several Classes of Predicate Encryption 599

References

1. Agrawal, S., Chase, M.: A study of pair encodings: predicate encryption in prime
order groups. IACR Cryptology ePrint Archive 2015, p. 413 (2015)

2. Attrapadung, N.: Dual system encryption via doubly selective security: frame-
work, fully secure functional encryption for regular languages, and more. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp.
557–577. Springer, Heidelberg (2014)

3. Attrapadung, N.: Dual system encryption framework in prime-order groups. IACR
Cryptology ePrint Archive 2015, p. 390 (2015)

4. Attrapadung, N., Hanaoka, G., Yamada, S.: Conversions among Several Classes
ofPredicate Encryption and Applications to ABE with Various Compactness
Tradeoffs.IACR Cryptology ePrint Archive 2015:431 (2015)

5. Attrapadung, N., Libert, B., de Panafieu, E.: Expressive key-policy attribute-based
encryption with constant-size ciphertexts. In: Catalano, D., Fazio, N., Gennaro, R.,
Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 90–108. Springer, Heidelberg
(2011)

6. Attrapadung, N., Yamada, S.: Duality in ABE: converting attribute based encryp-
tion for dual predicate and dual policy via computational encodings. In: Nyberg,
K. (ed.) CT-RSA 2015. LNCS, vol. 9048, pp. 87–105. Springer, Heidelberg (2015)

7. Belovs, A.: Span-program-based quantum algorithm for the rank problem. Tech-
nical Report arXiv:1103.0842, arXiv.org, 2011. Available from arXiv:1103.0842

8. Beimel, A., Ishai, Y.: On the power of nonlinear secret-sharing. In: IEEE Confer-
ence on Computational Complexity, pp. 188–202 (2001)

9. Boneh, D., Gentry, C., Gorbunov, S., Halevi, S., Nikolaenko, V., Segev, G., Vaikun-
tanathan, V., Vinayagamurthy, D.: Fully key-homomorphic encryption, arithmetic
circuit ABE and compact garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.)
EUROCRYPT 2014. LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg (2014)

10. Boneh, D., Hamburg, M.: Generalized identity based and broadcast encryption
schemes. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 455–470.
Springer, Heidelberg (2008)

11. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011)

12. Chen, C., Chen, J., Lim, H.W., Zhang, Z., Feng, D., Ling, S., Wang, H.: Fully
secure attribute-based systems with short ciphertexts/signatures and threshold
access structures. In: Dawson, E. (ed.) CT-RSA 2013. LNCS, vol. 7779, pp. 50–67.
Springer, Heidelberg (2013)

13. Chen, C., Zhang, Z., Feng, D.: Efficient ciphertext policy attribute-based encryp-
tion with constant-size ciphertext and constant computation-cost. In: Boyen, X.,
Chen, X. (eds.) ProvSec 2011. LNCS, vol. 6980, pp. 84–101. Springer, Heidelberg
(2011)

14. Chen, C., Zhang, Z., Feng, D.: Fully secure doubly-spatial encryption under simple
assumptions. In: Takagi, T., Wang, G., Qin, Z., Jiang, S., Yu, Y. (eds.) ProvSec
2012. LNCS, vol. 7496, pp. 253–263. Springer, Heidelberg (2012)

15. Chen, J., Lim, H., Ling, S., Wang, H.: The relation and transformation between
hierarchical inner product encryption and spatial encryption. Des. Codes Crypt.
71(2), 347–364 (2014)

16. Chen, J., Gay, R., Wee, H.: Improved dual system ABE in prime-order groups
via predicate encodings. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015.
LNCS, vol. 9057, pp. 595–624. Springer, Heidelberg (2015)

http://arxiv.org/abs/1103.0842
http://arxiv.org
http://arxiv.org/abs/1103.0842

600 N. Attrapadung et al.

17. Chen, J., Wee, H.: Doubly spatial encryption from DBDH. Theor. Comput. Sci.
543, 79–89 (2014)

18. Emura, K., Miyaji, A., Nomura, A., Omote, K., Soshi, M.: A ciphertext-policy
attribute-based encryption scheme with constant ciphertext length. In: Bao, F., Li,
H., Wang, G. (eds.) ISPEC 2009. LNCS, vol. 5451, pp. 13–23. Springer, Heidelberg
(2009)

19. Garg, S., Gentry, C., Halevi, S., Sahai, A., Waters, B.: Attribute-based encryption
for circuits from multilinear maps. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013, Part II. LNCS, vol. 8043, pp. 479–499. Springer, Heidelberg (2013)

20. Ge, A., Zhang, R., Chen, C., Ma, C., Zhang, Z.: Threshold ciphertext policy
attribute-based encryption with constant size ciphertexts. In: Susilo, W., Mu, Y.,
Seberry, J. (eds.) ACISP 2012. LNCS, vol. 7372, pp. 336–349. Springer, Heidelberg
(2012)

21. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for cir-
cuits. In: STOC, pp. 545–554 (2013)

22. Goyal, V., Jain, A., Pandey, O., Sahai, A.: Bounded ciphertext policy attribute
based encryption. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp.
579–591. Springer, Heidelberg (2008)

23. Goyal, V., Kumar, V., Lokam, S., Mahmoody, M.: On black-box reductions between
predicate encryption schemes. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194,
pp. 440–457. Springer, Heidelberg (2012)

24. Goyal, V., Pandey, O., Sahai, A., Waters B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: ACM Conference on Computer and
Communications Security, pp. 89–98 (2006)

25. Hamburg, M.: Spatial encryption. IACR Cryptology ePrint Archive 2011, p. 389
(2011)

26. Herranz, J., Laguillaumie, F., Libert, B., Ràfols, C.: Short attribute-based signa-
tures for threshold predicates. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol.
7178, pp. 51–67. Springer, Heidelberg (2012)

27. Hohenberger, S., Waters, B.: Attribute-based encryption with fast decryption.
In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 162–179.
Springer, Heidelberg (2013)

28. Ishai, Y., Wee, H.: Partial garbling and their applications. ICALP 1, 650–662
(2014)

29. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In: Smart, N.P. (ed.) EUROCRYPT 2008.
LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008)

30. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure
functional encryption: attribute-based encryption and (hierarchical) inner prod-
uct encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
62–91. Springer, Heidelberg (2010)

31. Lewko, A., Waters, B.: Unbounded HIBE and attribute-based encryption. In:
Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 547–567. Springer,
Heidelberg (2011)

32. Lewko, A., Waters, B.: New proof methods for attribute-based encryption: achiev-
ing full security through selective techniques. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 180–198. Springer, Heidelberg (2012)

33. Maji, H.K., Prabhakaran, M., Rosulek, M.: Attribute-based signatures. In: Kiayias,
A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 376–392. Springer, Heidelberg (2011)

Conversions Among Several Classes of Predicate Encryption 601

34. Okamoto, T., Takashima, K.: Efficient attribute-based signatures for non-monotone
predicates in the standard model. In: PKC, pp. 35–52 (2011)

35. Okamoto, T., Takashima, K.: Fully secure unbounded inner-product and attribute-
based encryption. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol.
7658, pp. 349–366. Springer, Heidelberg (2012)

36. Parno, B., Raykova, M., Vaikuntanathan, V.: How to delegate and verify in public:
verifiable computation from attribute-based encryption. In: Cramer, R. (ed.) TCC
2012. LNCS, vol. 7194, pp. 422–439. Springer, Heidelberg (2012)

37. Rouselakis, Y., Waters, B.: Practical constructions and new proof methods for
large universe attribute-based encryption. In: ACM Conference on Computer and
Communications Security, pp. 463–474 (2013)

38. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

39. Takashima, K.: Expressive attribute-based encryption with constant-size cipher-
texts from the decisional linear assumption. In: Abdalla, M., De Prisco, R. (eds.)
SCN 2014. LNCS, vol. 8642, pp. 298–317. Springer, Heidelberg (2014)

40. Waters, B.: Functional encryption for regular languages. In: Safavi-Naini, R.,
Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 218–235. Springer,
Heidelberg (2012)

Zero-Knowledge

QA-NIZK Arguments in Asymmetric Groups:
New Tools and New Constructions

Alonso González1(B), Alejandro Hevia1, and Carla Ràfols2

1 Departamento de Ciencias de la Computación,
Universidad de Chile, Santiago, Chile

alonso.gon@gmail.com
2 Faculty of Mathematics, Horst-Görtz Institute for IT Security,

Ruhr-Universität Bochum, Bochum, Germany

Abstract. A sequence of recent works have constructed constant-size
quasi-adaptive (QA) NIZK arguments of membership in linear subspaces
of Ĝm, where Ĝ is a group equipped with a bilinear map e : Ĝ× Ȟ → T.
Although applicable to any bilinear group, these techniques are less use-
ful in the asymmetric case. For example, Jutla and Roy (Crypto 2014)
show how to do QA aggregation of Groth-Sahai proofs, but the types of
equations which can be aggregated are more restricted in the asymmet-
ric setting. Furthermore, there are natural statements which cannot be
expressed as membership in linear subspaces, for example the satisfiabil-
ity of quadratic equations.

In this paper we develop specific techniques for asymmetric groups.
We introduce a new computational assumption, under which we can
recover all the aggregation results of Groth-Sahai proofs known in the
symmetric setting. We adapt the arguments of membership in linear
spaces of Ĝ

m to linear subspaces of Ĝ
m × Ȟ

n. In particular, we give
a constant-size argument that two sets of Groth-Sahai commitments,
defined over different groups Ĝ, Ȟ, open to the same scalars in Zq, a
useful tool to prove satisfiability of quadratic equations in Zq. We then
use one of the arguments for subspaces in Ĝ

m × Ȟ
n and develop new

techniques to give constant-size QA-NIZK proofs that a commitment
opens to a bit-string. To the best of our knowledge, these are the first
constant-size proofs for quadratic equations in Zq under standard and
falsifiable assumptions. As a result, we obtain improved threshold Groth-
Sahai proofs for pairing product equations, ring signatures, proofs of
membership in a list, and various types of signature schemes.

1 Introduction

Ideally, a NIZK proof system should be both expressive and efficient, meaning
that it should allow to prove statements which are general enough to be useful in

A. González—Funded by CONICYT, CONICYT-PCHA/Doctorado Nacional/2013-
21130937.
C. Ràfols—Part of this work was done while visiting Centro de Modelamiento
Matemático, U. Chile. Gratefully acknowledges the support of CONICYT via Basal
in Applied Mathematics.

c© International Association for Cryptologic Research 2015
T. Iwata and J.H. Cheon (Eds.): ASIACRYPT 2015, Part I, LNCS 9452, pp. 605–629, 2015.
DOI: 10.1007/978-3-662-48797-6 25

606 A. González et al.

practice using a small amount of resources. Furthermore, it should be constructed
under mild security assumptions. As it is usually the case for most cryptographic
primitives, there is a trade off between these three design goals. For instance,
there exist constant-size proofs for any language in NP (e.g. [12]) but based on
very strong and controversial assumptions, namely knowledge-of-exponent type
of assumptions (which are non-falsifiable, according to Naor’s classification [25])
or the random oracle model.

The Groth-Sahai proof system (GS proofs) [16] is an outstanding example
of how these three goals (expressivity, efficiency, and mild assumptions) can be
combined successfully. It provides a proof system for satisfiability of quadratic
equations over bilinear groups. This language suffices to capture almost all of the
statements which appear in practice when designing public-key cryptographic
schemes over bilinear groups. Although GS proofs are quite efficient, proving
satisfiability of m equations in n variables requires sending some commitments
of size Θ(n) and some proofs of size Θ(m) and they easily get expensive unless
the statement is very simple. For this reason, several recent works have focused
on further improving proof efficiency (e.g. [7,8,26])

Among those, a recent line of work [19–22] has succeeded in constructing
constant-size arguments for very specific statements, namely, for membership in
subspaces of Ĝm, where Ĝ is some group equipped with a bilinear map where the
discrete logarithm is hard. The soundness of the schemes is based on standard,
falsifiable assumptions and the proof size is independent of both m and the
witness size. These improvements are in a quasi-adaptive model (QA-NIZK,
[19]). This means that the common reference string of these proof systems is
specialized to the linear space where one wants to prove membership.

Interestingly, Jutla and Roy [20] also showed that their techniques to con-
struct constant-size NIZK in linear spaces can be used to aggregate the GS
proofs of m equations in n variables, that is, the total proof size can be reduced
to Θ(n). Aggregation is also quasi-adaptive, which means that the common ref-
erence string depends on the set of equations one wants to aggregate. Further,
it is only possible if the equations meet some restrictions. The first one is that
only linear equations can be aggregated. The second one is that, in asymmet-
ric bilinear groups, the equations must be one-sided linear, i.e. linear equations
which have variables in only one of the Zq modules Ĝ, Ȟ, or Zq.1

Thus, it is worth to investigate if we can develop new techniques to aggregate
other types of equations, for example, quadratic equations in Zq and also recover
all the aggregation results of [20] (in particular, for two-sided linear equations) in
asymmetric bilinear groups. The latter (Type III bilinear groups, according to the
classification of [11]) are the most attractive from the perspective of a performance
and security trade off, specially since the recent attacks on discrete logarithms
in finite fields by Joux [18] and subsequent improvements. Considerable research

1 Jutla and Roy show how to aggregate two-sided linear equations in symmetric bilin-
ear groups. The asymmetric case is not discussed, yet for one-sided linear equations
it can be easily derived from their results. This is not the case for two-sided ones,
see Sect. 4.

QA-NIZK Arguments in Asymmetric Groups 607

effort (e.g. [1,10]) has been put into translating pairing-based cryptosystems from
a setting with more structure in which design is simpler (e.g. composite-order or
symmetric bilinear groups) to a more efficient setting (e.g. prime order or asym-
metric bilinear groups). In this line, we aim not only at obtaining new results in
the asymmetric setting but also to translate known results and develop new tools
specifically designed for it which might be of independent interest.

1.1 Our Results

In Sect. 3, we give constructions of constant-size QA-NIZK arguments of mem-
bership in linear spaces of Ĝm×Ȟ

n. Denote the elements of Ĝ (respectively of Ȟ)
with a hat (resp. with an inverted hat) , as x̂ ∈ Ĝ (respectively, as y̌ ∈ Ȟ). Given
M̂ ∈ Ĝ

m×t and Ň ∈ Ȟ
n×t, we construct QA-NIZK arguments of membership in

the language

LM̂,Ň := {(x̂, y̌) ∈ Ĝ
m × Ȟ

n : ∃w ∈ Z
t
q, x̂ = M̂w, y̌ := Ňw},

which is the subspace of Ĝm × Ȟ
n spanned by

(
M̂
Ň

)

. This construction is based

on the recent constructions of [21]. When m = n, we construct QA-NIZK argu-
ments of membership in

LM̂,Ň,+ := {(x̂, y̌) ∈ Ĝ
m × Ȟ

m : ∃w ∈ Z
t
q, x + y = (M + N)w},

which is the linear subspace of Ĝm × Ȟ
m of vectors (x̂, y̌) such that the sum of

their discrete logarithms is in the image of M+N (the sum of discrete logarithms
of M̂ and Ň).

From the argument for LM̂,Ň, we easily derive another constant-size QA-
NIZK argument in the space

Lcom,Û,V̌,ν :=
{

(ĉ, ď) ∈ Ĝ
m × Ȟ

n : ∃(w, r, s), ĉ = Û
(
w
r

)

, ď = V̌
(
w
s

) }
,

where Û ∈ Ĝ
m×m̃, V̌ ∈ Ȟ

n×ñ and w ∈ Z
ν
q . Membership in this space captures

the fact that two commitments (or sets of commitments) in Ĝ, Ȟ open to the
same vector w ∈ Z

ν
q . This is significant for the efficiency of quadratic GS proofs in

asymmetric groups since, because of the way the proofs are constructed, one can
only prove satisfiability of equations of degree one in each variable. Therefore, to
prove a quadratic statement one needs to add auxiliary variables with commit-
ments in the other group. For instance, to prove that ĉ opens to b ∈ {0, 1}, one
proves that some commitment ď opens to b such that {b(b − 1) = 0, b − b = 0}.
Our result allows us to aggregate the n proofs of the second statement.

To construct these arguments we introduce a new assumption, the Split Ker-
nel Matrix Diffie-Hellman Assumption (SKerMDH). This assumption is derived
from the recently introduced Kernel Matrix Diffie-Hellman Assumption
(KerMDH, [24]), which says that it is hard to find a vector in the co-kernel

608 A. González et al.

of Â ∈ Ĝ
�×k when A is such that it is hard to decide membership in Im(Â)

(i.e. when A is an instance of a Matrix DH Assumption [8]). Our SKerMDH
Assumption says that one cannot find a solution to the KerMDH problem which
is “split” between the groups Ĝ and Ȟ. We think this assumption can be useful in
other protocols in asymmetric bilinear groups. A particular case of Kernel MDH
Assumption is the Simultaneous Double Pairing Assumption (SDP, [2]), which is
a well established assumption in symmetric bilinear maps, and its “split” variant
is the SSDP Assumption (see Sect. 2.1) [2].

In Sect. 4 we use the SKerMDH Assumption to lift the known aggregation
results in symmetric groups to asymmetric ones. More specifically, we show how
to extend the results of [20] to aggregate proofs of two-sided linear equations in
asymmetric groups. While the original aggregation results of [20] were based on
decisional assumptions, our proof shows that they are implied by computational
assumptions.

Next, in Sect. 5, we address the problem of aggregating the proof of quadratic
equations in Zq. For concreteness, we study the problem of proving that a com-
mitment in Ĝ opens to a bit-string of length n. Such a construction was unknown
even in symmetric bilinear groups (yet, it can be easily generalized to this setting,
see the full version). More specifically, we prove membership in

LÛ,bits := {ĉ ∈ Ĝ
n+m : ĉ := Û1b + Û2w, (b,w) ∈ {0, 1}n × Z

m
q },

where (Û1, Û2) ∈ Ĝ
(n+m)×n × Ĝ

(n+m)×m are matrices which define a per-
fectly binding and computationally hiding commitment to b. Specifically, we
give instantiations for m = 1 (when ĉ is a single commitment to b), and m = n
(when ĉ is the concatenation of n Groth-Sahai commitments to a bit).

We stress that although our proof is constant-size, we need the commitment
to be perfectly binding, thus the size of the commitment is linear in n. The
common reference string which we need for this construction is quadratic in the
size of the bit-string. Our proof is compatible with proving linear statements
about the bit-string, for instance, that

∑
i∈[n] bi = t by adding a linear number

(in n) of elements to the CRS (see the full version). We observe that in the
special case where t = 1 the common reference string can be linear in n. The
costs of our constructions and the cost of GS proofs are summarized in Table 1.

We stress that our results rely solely on falsifiable assumptions. More specif-
ically, in the asymmetric case we need some assumptions which are weaker than
the Symmetric External DH Assumption plus the SSDP Assumption. Interest-
ingly, our construction in the symmetric setting relies on assumptions which are
all weaker than the 2-Lin Assumption (see the full version).

We think that our techniques for constructing QA-NIZK arguments for bit-
strings might be of independent interest. In the asymmetric case, we combine
our QA-NIZK argument for LM̂,Ň,+ with decisional assumptions in Ĝ and Ȟ.
We do this with the purpose of using QA-NIZK arguments even when M + N
has full rank. In this case, strictly speaking “proving membership in the space”
looses all meaning, as every vector in Ĝ

m × Ȟ
m is in the space. However, using

decisional assumptions, we can argue that the generating matrix of the space is

QA-NIZK Arguments in Asymmetric Groups 609

indistinguishable from a lower rank matrix which spans a subspace in which it
is meaningful to prove membership.

Finally, in Sect. 6 we discuss some applications of our results. In particular,
our results provide shorter signature size of several schemes, more efficient ring
signatures, more efficient proofs of membership in a list, and improved threshold
GS proofs for pairing product equations.

Table 1. Comparison for proofs of bi ∈ {0, 1}, for i ∈ [n], between GS proofs and
our different constructions. Our NIZK construction for bit-strings is denoted by Πbit

and the construction for proving that two sets of commitments open to the same value
ΨDk,com. Row “Πbit m = 1” is for our construction for a single commitment of size n+1
to a bit-string of size n, and “Πbit m = n” is for our construction for n concatenated
GS commitments. Row “Πbit weight 1” is for our construction for bit-strings of weight
1 with m = 1. Column “Comms” contains the size of the commitments, “CK” the size
of the commitment keys in the CRS, and “CRS(ρ)” the size of the language dependent
part of the CRS. The size of elements in Ĝ and Ȟ is g and h, respectively. The table is
computed for Dk = L2, the 2-Linear matrix distribution.

Comms Proof CK CRS(ρ) #Pairings

GS [15] 2n(g + h) 4n(g + h) 4(g + h) 0 28n

GS + ΨDk,com 2n(g + h) (2n + 2)(g + h) 4(g + h) (10n + 4)(g + h) 20n + 8

Πbit m = 1 (n + 1)g 10(g + h) (n + 1)g (6n2 + 10n + 32)(g + h) n + 55

Πbit m = n 2ng 10(g + h) 4g (12n2 + 14n + 22)g +

(12n2 + 12n + 24)h

2n + 54

Πbit weight 1, m = 1 (n + 1)g 10(g + h) (n + 1)g (20n + 26)(g + h) n + 55

2 Preliminaries

Let Gena be some probabilistic polynomial time algorithm which on input 1λ,
where λ is the security parameter, returns the description of an asymmetric
bilinear group (q, Ĝ, Ȟ,T, e, ĝ, ȟ), where Ĝ, Ȟ and T are groups of prime order q,
the elements ĝ, ȟ are generators of Ĝ, Ȟ respectively, and e : Ĝ × Ȟ → T is an
efficiently computable, non-degenerate bilinear map.

We denote by g and h the bit-size of the elements of Ĝ and Ȟ, respectively.
Elements x̂ ∈ Ĝ (resp. y̌ ∈ Ȟ, zT ∈ T) are written with a hat (resp, with
inverted hat, sub-index T) and 0̂, 0̌ and 0T denote the neutral elements. Given
x̂ ∈ Ĝ, y̌ ∈ Ȟ, x̂y̌ refers to the pairing operation, i.e. x̂y̌ = e(x̂, y̌). Vectors
and matrices are denoted in boldface and any product of vectors/matrices of
elements in Ĝ and Ȟ is defined in the natural way via the pairing operation.
That is, given X̂ ∈ Ĝ

n×m and Y̌ ∈ Ȟ
m×�, X̂Y̌ ∈ T

n×�. The product X̌Ŷ ∈ T
n×�

is defined similarly by switching the arguments of the pairing. Given a matrix
T = (ti,j) ∈ Z

m×n
q , T̂ (resp. Ť) is the natural embedding of T in Ĝ (resp. in

Ȟ), that is, the matrix whose (i, j)th entry is ti,j ĝ (resp. ti,j ȟ). Conversely, given
T̂ or Ť, we use T ∈ Z

n×m
q for the matrix of discrete logarithms of T̂ (resp.

Ť). We denote by In×n the identity matrix in Z
n×n
q and en

i the ith element of

610 A. González et al.

the canonical basis of Z
n
q (simply ei if n is clear from the context). We make

extensive use of the set [n + k] × [n + k] \ {(i, i) : i ∈ [n]} and for brevity we
denote it by IN,K .

2.1 Computational Assumptions

Definition 1. Let �, k ∈ N with � > k. We call D�,k a matrix distribution if
it outputs (in poly time, with overwhelming probability) matrices in Z

�×k
q . We

define Dk := Dk+1,k and Dk the distribution of the first k rows when A ← Dk.

Definition 2 (Matrix Diffie-Hellman Assumption [8]). Let D�,k be a
matrix distribution and Γ := (q, Ĝ, Ȟ,T, e, ĝ, ȟ) ← Gena(1λ). We say that the
D�,k-Matrix Diffie-Hellman (D�,k-MDDH

Ĝ
) Assumption holds relative to Gena if

for all PPT adversaries D,

AdvD�,k,Gena
(D) :=

∣
∣
∣Pr[D(Γ, Â, Âw) = 1] − Pr[D(Γ, Â, û) = 1]

∣
∣
∣ = negl(λ),

where the probability is taken over Γ ← Gena(1λ), A ← D�,k,w ← Z
k
q , û ← Ĝ

�

and the coin tosses of adversary D.

The D�,k-MDDH
Ȟ

problem is defined similarly. In this paper we will refer to
the following matrix distributions:

Lk : A =

⎛

⎜
⎝

a1 0 ... 0
0 a2 ... 0

.

.

.

.

.

.
. . .

.

.

.
0 0 ... ak
1 1 ... 1

⎞

⎟
⎠,L�,k : A =

(
B

C

)
, U�,k : A =

(a1,1 ... a1,k

.

.

.
. . .

.

.

.
a�,1 ... a�,k

)

,

where ai, ai,j ← Zq, for each i, j ∈ [k], B ← Lk, C ← Z
�−k,k
q .

The Lk-MDDH Assumption is the k-linear family of Decisional Assumptions
[17,27]. The L1-MDDHX , X ∈ {Ĝ, Ȟ}, is the Decisional Diffie-Hellman (DDH)
Assumption in X, and the assumption that it holds in both groups is the Sym-
metric External DH Assumption (SXDH). The L�,k-MDDH Assumption is used
in our construction to commit to multiple elements simultaneously. It can be
shown tightly equivalent to the Lk-MDDH Assumption. The U�,k Assumption is
the Uniform Assumption and is weaker than the Lk-MDDH. Additionally, we
will be using the following family of computational assumptions:

Definition 3 (Kernel Diffie-Hellman Assumption [24]). Let Γ ←Gena(1λ).
TheKernelDiffie-HellmanAssumption in Ȟ (D�,k-KerMDH

Ȟ
) says that everyPPT

Algorithm has negligible advantage in the following game: given Ǎ, where A ←
D�,k, find x̂ ∈ Ĝ

� \ {0̂}, such that x̂�Ǎ = 0T.

The Simultaneous Pairing Assumption in Ȟ (SP
Ȟ
) is the U1-KerMDH

Ȟ
Assump-

tion and the Simultaneous Double Pairing Assumption (SDP
Ȟ
) is the L2,3-

KerMDH
Ȟ

Assumption. The Kernel Diffie-Hellman assumption is a generaliza-
tion and abstraction of these two assumptions to other matrix distributions. The

QA-NIZK Arguments in Asymmetric Groups 611

D�,k-KerMDH
Ȟ

Assumption is weaker than the D�,k-MDDH
Ȟ

Assumption, since
a solution allows to decide membership in Im(Ǎ).

For our construction, we need to introduce a new family of computational
assumptions.

Definition 4 (SplitKernelDiffie-HellmanAssumption).LetΓ←Gena(1λ).
The Split Kernel Diffie-Hellman Assumption in Ĝ, Ȟ (D�,k-SKerMDH) says that
every PPT Algorithm has negligible advantage in the following game: given (Â, Ǎ),
A ← D�,k, find a pair of vectors (r̂, š) ∈ Ĝ

� × Ȟ
�, r �= s, such that r̂�Ǎ = š�Â.

As a particular case we consider the Split Simultaneous Double Pairing
Assumption in Ĝ, Ȟ (SSDP) which is the L2-SKerMDH Assumption. Intuitively,
the Kernel Diffie-Hellman Assumption says one cannot find a non-zero vector in
Ĝ

� which is in the co-kernel of Ǎ, while the new assumption says one cannot
find a pair of vectors in Ĝ

� × Ȟ
� such that the difference of the vector of their

discrete logarithms is in the co-kernel of Ǎ. The name “split” comes from the
idea that the output of a successful adversary would break the Kernel Diffie-
Hellman Assumption, but this instance is “split” between the groups Ĝ and Ȟ.
When k = 1, the D�,k-SKerMDH Assumption does not hold. The assumption is
generically as least as hard as the standard,“non-split” assumption in symmetric
bilinear groups. This means, in particular, that in Type III bilinear groups, one
can use the SSDP Assumption with the same security guarantees as the SDP
Assumption, which is a well established assumption (used for instance in [2,23]).

Lemma 1. If D�,k-KerMDH holds in generic symmetric bilinear groups, then
D�,k-SKerMDH holds in generic asymmetric bilinear groups.

Suppose there is a generic algorithm which breaks the D�,k-SKerMDH Assump-
tion. Intuitively, given two different encodings of A ← D�,k, (Â, Ǎ), this algo-
rithm finds r̂ and š, r �= s such that r̂�Ǎ = š�Â. But since the algorithm is
generic, it also works when Ĝ = Ȟ, and then r̂− ŝ is a solution to D�,k-KerMDH.
We provide a formal proof in the full version.

2.2 Groth-Sahai NIZK Proofs

The GS proof system allows to prove satisfiability of a set of quadratic equations
in a bilinear group. The admissible equation types must be in the following form:

my∑

j=1

f(αj , yj) +
mx∑

i=1

f(xi, βi) +
mx∑

i=1

my∑

j=1

f(xi, γi,jyj) = t, (1)

where A1, A2, AT are Zq-vector spaces equipped with some bilinear map f :
A1 × A2 → AT , α ∈ A

my

1 , β ∈ Amx
2 , Γ = (γi,j) ∈ Z

mx×my
q , t ∈ AT . The

modules and the map f can be defined in different ways as: (a) in pairing-
product equations (PPEs), A1 = Ĝ, A2 = Ȟ, AT = T, f(x̂, y̌) = x̂y̌ ∈ T, in
which case t = 0T, (b1) in multi-scalar multiplication equations in Ĝ (MMEs),

612 A. González et al.

A1 = Ĝ, A2 = Zq, AT = Ĝ, f(x̂, y) = yx̂ ∈ Ĝ, (b2) MMEs in Ȟ (MMEs),
A1 = Zq, A2 = Ȟ, AT = Ȟ, f(x, y̌) = xy̌ ∈ Ȟ, and (c) in quadratic equations
in Zq (QEs), A1 = A2 = AT = Zq, f(x, y) = xy ∈ Zq. An equation is linear if
Γ = 0, it is two-sided linear if both α �= 0 and β �= 0, and one-sided otherwise.

We briefly recall some facts about GS proofs in the SXDH instantiation used
in the rest of the paper. Let Γ ← Gena(1λ), u2,v2 ← L1, u1 := e1 + μu2, v1 :=
e1 + εv2, μ, ε ← Zq. The common reference string is crsGS := (Γ, û1, û2, v̌1, v̌2)
and is known as the perfectly sound CRS. There is also a perfectly witness-
indistinguishable CRS, with the only difference being that u1 := μu2 and v1 :=
εv2 and the simulation trapdoor is (μ, ε). These two CRS distributions are com-
putationally indistinguishable. Implicitly, crsGS defines the maps:

ι1 : Ĝ ∪ Zq → Ĝ
2, ι1(x̂) := (x̂, 0̂)�, ι1(x) := xû1.

ι2 : Ȟ ∪ Zq → Ȟ
2, ι2(y̌) := (y̌, 0̌)�, ι2(y) := yv̌1.

The maps ιX , X ∈ {1, 2} can be naturally extended to vectors of arbitrary length
δ ∈ Am

X and we write ιX(δ) for (ιX(δ1)|| . . . ||ιX(δm)).
The perfectly sound CRS defines perfectly binding commitments for any

variable in A1 or A2. Specifically, the commitment to x ∈ A1 is ĉ := ι1(x) +
r1(û1 − ê1)+ r2û2 ∈ Ĝ

2, and to y ∈ A2 is ď := ι2(y)+ s1(v̌1 − ě1)+ s2v̌2, where
r1, r2, s1, s2 ← Zq, except if A1 = Zq (resp. A2 = Zq) in which case r1 = 0 (resp.
s1 = 0).

2.3 Quasi-Adaptive NIZK Arguments

We recall the definition of Quasi Adaptive NIZK (QA-NIZK) Arguments of
Jutla et al. [19]. A QA-NIZK proof system enables to prove membership in a
language defined by a relation Rρ, which in turn is completely determined by
some parameter ρ sampled from a distribution DΓ . We say that DΓ is witness
samplable if there exist an efficient algorithm that samples (ρ, ω) such that ρ is
distributed according to DΓ , and membership of ρ in the parameter language Lpar

can be efficiently verified with ω. While the Common Reference String can be set
based on ρ, the zero-knowledge simulator is required to be a single probabilistic
polynomial time algorithm that works for the whole collection of relations RΓ .

A tuple of algorithms (K0,K1,P,V) is called a QA-NIZK proof system for
witness-relations RΓ = {Rρ}ρ∈sup(DΓ) with parameters sampled from a distrib-
ution DΓ over associated parameter language Lpar, if there exists a probabilistic
polynomial time simulator (S1,S2), such that for all non-uniform PPT adver-
saries A1, A2, A3 we have:

Quasi-Adaptive Completeness:

Pr
[
Γ ← K0(1λ); ρ ← DΓ ;ψ ← K1(Γ, ρ); (x,w) ← A1(Γ, ψ);
π ← P(ψ, x,w) : V(ψ, x, π) = 1 if Rρ(x,w)

]

= 1.

QA-NIZK Arguments in Asymmetric Groups 613

Computational Quasi-Adaptive Soundness:

Pr
[
Γ ← K0(1λ); ρ ← DΓ ;ψ ← K1(Γ, ρ);
(x, π) ← A2(Γ, ψ) : V(ψ, x, π) = 1 and ¬(∃w : Rρ(x,w))

]

≈ 0.

Perfect Quasi-Adaptive Zero-Knowledge:

Pr[Γ ← K0(1λ); ρ ← DΓ ;ψ ← K1(Γ, ρ) : AP(ψ,·,·)
3 (Γ, ψ) = 1] =

Pr[Γ ← K0(1λ); ρ ← DΓ ; (ψ, τ) ← S1(Γ, ρ) : AS(ψ,τ,·,·)
3 (Γ, ψ) = 1]

where
– P(ψ, ·, ·) emulates the actual prover. It takes input (x,w) and outputs a

proof π if (x,w) ∈ Rρ. Otherwise, it outputs ⊥.
– S(ψ, τ, ·, ·) is an oracle that takes input (x,w). It outputs a simulated

proof S2(ψ, τ, x) if (x,w) ∈ Rρ and ⊥ if (x,w) /∈ Rρ.

Note that ψ is the CRS in the above definitions. We assume that ψ contains an
encoding of ρ, which is thus available to V.

2.4 QA-NIZK Argument for Linear Spaces

In this section we recall the two constructions of QA-NIZK arguments of mem-
bership in linear spaces given by Kiltz and Wee [21], for the language:

LM̂ := {x̂ ∈ Ĝ
n : ∃w ∈ Z

t
q, x̂ = M̂w}.

Algorithm K0(1λ) just outputs Γ := (q, Ĝ, Ȟ,T, e, ĝ, ȟ) ← Gena(1λ), the rest of
the algorithms are described in Fig. 1.

K1(Γ, M̂, n) (S1(Γ, M̂, n))

A ← D̃k,Δ ← Z
k̃×n
q

ǍΔ := Δ�Ǎ, M̂Δ := ΔM̂
Return crs := (M̂Δ, ǍΔ, Ǎ)
(τsim := Δ)

P(crs, x̂,w) \\x̂ = M̂w

Return σ̂ := M̂Δw.

V(crs, x̂, σ̂)

Return (x̂�ǍΔ = σ̂�Ǎ)

S2(crs, x̂, τsim)
Return σ̂ := Δx̂

Fig. 1. The figure describes ΨDk when D̃k = Dk and k̃ = k+1 and ΨDk
when D̃k = Dk

and k̃ = k. Both are QA-NIZK arguments for LM̂. ΨDk is the construction of [21,
Sect. 3.1], which is a generalization of Libert et al ’s QA-NIZK [22] to any Dk-KerMDH

Ȟ

Assumption. ΨDk
is the construction of [21, Sect. 3.2.].

Theorem 1 (Theorem 1 of [21]). If D̃k = Dk and k̃ = k+1, Fig. 1 describes a
QA-NIZK proof system with perfect completeness, computational adaptive sound-
ness based on the Dk-KerMDH

Ȟ
Assumption, perfect zero-knowledge, and proof

size k + 1.

614 A. González et al.

Theorem 2 (Theorem 2 of [21]). If D̃k = Dk and k̃ = k, and DΓ is a wit-
ness samplable distribution, Fig. 1 describes a QA-NIZK proof system with per-
fect completeness, computational adaptive soundness based on the Dk-KerMDH

Ȟ

Assumption, perfect zero-knowledge, and proof size k.

3 New QA-NIZK Arguments in Asymmetric Groups

In this section we construct three QA-NIZK arguments of membership in differ-
ent subspaces of Ĝm×Ȟ

n. Their soundness relies on the Split Kernel Assumption.

3.1 Argument of Membership in Subspace Concatenation

Figure 2 describes a QA-NIZK Argument of Membership in the language

LM̂,Ň := {(x̂, y̌) : ∃w ∈ Z
t
q, x̂ = M̂w, y̌ = Ňw} ⊆ Ĝ

m × Ȟ
n.

We refer to this as the Concatenation Language, because if we define P as the
concatenation of M̂, Ň, that is P :=

(
M̂
Ň

)
, then (x̂, y̌) ∈ LM̂,Ň iff

(
x̂
y̌

)
is in the

span of P.

K1(Γ, M̂, Ň, m, n) (S1(Γ, M̂, Ň, m, n))

A ← D̃k

Λ ← Z
k̃×m
q ,Ξ ← Z

k̃×n
q ,Z ← Z

k̃×t
q

ǍΛ := Λ�Ǎ

ÂΞ := Ξ�Â

M̂Λ := ΛM̂ + Ẑ

ŇΞ := ΞŇ − Ž

Return crs := (M̂Λ, ǍΛ, Ǎ, ŇΞ ,

ÂΞ , Â).
(τsim := (Λ,Ξ).)

P(crs, x̂, y̌,w)

\\(x̂ = M̂w, y̌ = Ňw)

z ← Z
k̃
q

ρ̂ := M̂Λw + ẑ

σ̌ := ŇΞw − ž
Return (ρ̂, σ̌).

V(crs, (x̂, y̌), (ρ̂, σ̌))

Return (x̂�ǍΛ − ρ̂�Ǎ

= σ̌�Â − y̌�ÂΞ).

S2(crs, (x̂, y̌), τsim)

z ← Z
k̃
q

ρ̂ := Λx̂ + ẑ
σ̌ := Ξy̌ − ž
Return (ρ̂, σ̌).

Fig. 2. Two QA-NIZK Arguments for LM̂,Ň. ΨDk,spl is defined for D̃k = Dk and k̃ =
k + 1, and is a generalization of [21] Sect. 3.1 in two groups. The second construction

ΨDk,spl corresponds to D̃k = Dk and k̃ = k, and is a generalization of [21] Sect. 3.2 in
two groups. Computational soundness is based on the Dk-SKerMDH Assumption. The
CRS size is (k̃k + k̃t + mk)g+ (k̃k + k̃t + nk)h and the proof size k̃(g+ h). Verification
requires 2k̃k + (m + n)k pairing computations.

Soundness Intuition. If we ignore for a moment that Ĝ, Ȟ are different groups,
ΨDk,spl (resp. ΨDk,spl) is almost identical to ΨDk

(resp. to ΨDk
) for the language

LP̂, and Δ := (Λ||Ξ), where Λ ∈ Z
k̃×m
q ,Ξ ∈ Z

k̃×n
q . Further, the information

that an unbounded adversary can extract from the CRS about Δ is:

QA-NIZK Arguments in Asymmetric Groups 615

1.
{
PΔ = ΛM + ΞN,AΔ = Δ�A =

(
Λ�A
Ξ�A

) }
from crsΨDk

,

2.
{
MΛ = ΛM + Z,NΞ = ΞN − Z,

(
AΛ

AΞ

)

=
(
Λ�A
Ξ�A

)}
from crsΨDk,spl

.

Given that the matrix Z is uniformly random, crsΨDk
and crsΨDk,spl

reveal the
same information about Δ to an unbounded adversary. Therefore, as the proof
of soundness is essentially based on the fact that parts of Δ are information
theoretically hidden to the adversary, the original proof of [21] can be easily
adapted for the new arguments. The proofs can be found in the full version.

Theorem 3. If D̃k = Dk and k̃ = k + 1, Fig. 2 describes a QA-NIZK proof
system with perfect completeness, computational adaptive soundness based on
the Dk-SKerMDH Assumption, and perfect zero-knowledge.

Theorem 4. If D̃k = Dk and k̃ = k, and DΓ is a witness samplable distribu-
tion, Fig. 2 describes a QA-NIZK proof system with perfect completeness, compu-
tational adaptive soundness based on the Dk-SKerMDH Assumption, and perfect
zero-knowledge.

3.2 Argument of Sum in Subspace

We can adapt the previous construction to the Sum in Subspace Language,

LM̂,Ň,+ := {(x̂, y̌) ∈ Ĝ
m × Ȟ

m : ∃w ∈ Z
t
q, x + y = (M + N)w}.

We define two proof systems ΨDk,+, ΨDk,+ as in Fig. 2, but now with Λ = Ξ.
Intuitively, soundness follows from the same argument because the information
about Λ in the CRS is now Λ�A,Λ(M + N).

3.3 Argument of Equal Opening in Different Groups

Given the results for Subspace Concatenation of Sect. 3.1, it is direct to construct
constant-size NIZK Arguments of membership in:

Lcom,Û,V̌,ν :=
{

(ĉ, ď) ∈ Ĝ
m × Ȟ

n : ∃(w, r, s), ĉ = Û
(
w
r

)

, ď = V̌
(
w
s

)}
,

where Û ∈ Ĝ
m×m̃, V̌ ∈ Ȟ

n×ñ and w ∈ Z
ν
q . The witness is (w, r, s) ∈ Z

ν
q ×

Z
m̃−ν
q × Z

ñ−ν
q . This language is interesting because it can express the fact that

(ĉ, ď) are commitments to the same vector w ∈ Z
ν
q in different groups.

The construction is an immediate consequence of the observation that
Lcom,Û,V̌,ν can be rewritten as some concatenation language LM̂,Ň. Denote by
Û1 the first ν columns of Û and Û2 the remaining ones, and V̌1 the first ν
columns of V̌ and V̌2 the remaining ones. If we define:

M̂ := (Û1||Û2||0̂m×(ñ−ν)) Ň := (V̌1||0̌n×(m̃−ν)||V̌2).

616 A. González et al.

then it is immediate to verify that Lcom,Û,V̌,ν = LM̂,Ň.
In the rest of the paper, we denote as ΨDk,com the proof system for Lcom,Û,V̌,ν

which corresponds to ΨDk,spl for LM̂,Ň, where M̂, Ň are the matrices defined
above. Note that for commitment schemes we can generally assume Û, V̌ to be
drawn from some witness samplable distribution.

4 Aggregating Groth-Sahai Proofs in Asymmetric
Groups

Jutla and Roy [20] show how to aggregate GS proofs of two-sided linear equations
in symmetric bilinear groups. In the original construction of [20] soundness is
based on a decisional assumption (a weaker variant of the 2-Lin Assumption).
Its natural generalization in asymmetric groups (where soundness is based on
the SXDH Assumption) only enables to aggregate the proofs of one-sided linear
equations.

In this section, we revisit their construction. We give an alternative, simpler,
proof of soundness under a computational assumption which avoids altogether
the “Switching Lemma” of [20]. Further, we extend it to two-sided equations in
the asymmetric setting. For one-sided linear equations we can prove soundness
under any kernel assumption and for two-sided linear equations, under any split
kernel assumption.2

Let A1, A2, AT be Zq-vector spaces compatible with some Groth-Sahai equa-
tion as detailed in Sect. 2.2. Let DΓ be a witness samplable distribution which
outputs n pairs of vectors (α�,β�) ∈ A

my

1 × Amx
2 , � ∈ [n], for some mx,my ∈ N.

Given some fixed pairs (α�,β�), we define, for each t̃ ∈ An
T , the set of equations

St̃ as:

St̃ =
{
E�(x, y) = t̃� : � ∈ [n]

}
, E�(x, y) :=

∑

j∈[my]

f(α�,j , yj) +
∑

i∈[mx]

f(xi, β�,i).

We note that, as in [20], we only achieve quasi-adaptive aggregation, that is,
the common reference string is specific to a particular set of equations. More
specifically, it depends on the constants α�,β� (but not on t̃�, which can be
chosen by the prover) and it can be used to aggregate the proofs of St̃, for any t̃.

Given the equation types for which we can construct NIZK GS proofs, there
always exists (1) t� ∈ A1, such that t̃� = f(t�, base2) or (2) t̃� ∈ A2, such that
t̃� = f(base1, t�), where basei = 1 if Ai = Zq, base1 = ĝ if A1 = Ĝ and base2 = ȟ
if A2 = Ȟ. This is because t̃� = 0T for PPEs, and AT = Ai, for some i ∈ [2], for
other types of equations. For simplicity, in the construction we assume that (1)
is the case, otherwise change ι2(a�,i), ι1(t�) for ι1(a�,i), ι2(t�) in the construction
below.
2 The results of [20] are based on what they call the “Switching Lemma”. As noted in

[24], it is implicit in the proof of this lemma that the same results can be obtained
under computational assumptions.

QA-NIZK Arguments in Asymmetric Groups 617

K0(1Λ): Return Γ := (q, Ĝ, Ȟ,T, e, ĝ, ȟ) ← Gena(1Λ).
DΓ : DΓ is some distribution over n pairs of vectors (α�, β�) ∈ Amx

1 × A
my

2 .
K1(Γ,St̃): Let A = (ai,j) ← Dn,k. Define

crs :=

⎛

⎝crsGS,

⎧
⎨

⎩

∑

�∈[n]

ι1(a�,iα�),
∑

�∈[n]

ι2(a�,iβ�),
{
ι2(a�,i) : � ∈ [n]

}
: i ∈ [k]

⎫
⎬

⎭

⎞

⎠

P(Γ,St̃,x,y): Given a solution x = x, y = y to St̃, the prover proceeds as
follows:

– Commit to all xj ∈ A1 as ĉj ← CommGS(xj), and to all yj ∈ A2 as
ďj ← CommGS(yj).

– For each i ∈ [k], run the GS prover for the equation
∑

�∈[n] a�,iE�(x, y) =
∑

�∈[n] f(t�, a�,i) to obtain the proof, which is a pair (Θ̂i, Π̌i).
Output ({ĉj : j ∈ [mx]}, {ďj : j ∈ [my]}, {(Π̌i, Θ̂i) : i ∈ [k]}).

V(crs,St̃, {ĉj}j∈[mx], {ďj}j∈[my], {Θ̂i, Π̌i}i∈[k]): For each i ∈ [k], run the GS
verifier for equation

∑

�∈[n]

a�,iE�(x, y) =
∑

�∈[n]

f(t�, a�,i).

Theorem 5. The above protocol is a QA-NIZK proof system for two-sided linear
equations.

Proof. Completeness. Observe that

∑

�∈[n]

a�,iE�(x, y) =
∑

j∈[my]

f(a�,iα�,j , yj) +
∑

j∈[mx]

f(xj , a�,iβ�,j). (2)

Completeness follows from the observation that to efficiently compute the proof,
the GS Prover [16] only needs, a part from a satisfying assignment to the equa-
tion, the randomness used in the commitments, plus a way to compute the
inclusion map of all involved constants, in this case ι1(a�,iα�,j), ι2(a�,iβ�,j) and
the latter is part of the CRS.

Soundness. We change to a game Game1 where we know the discrete logarithm
of the GS commitment key, as well as the discrete logarithms of (α�,β�), � ∈
[n]. This is possible because they are both chosen from a witness samplable
distribution.

We now prove that an adversary against the soundness in Game1 can be used
to construct an adversary B against the Dn,k-SKerMDH Assumption, where Dn,k

is the matrix distribution used in the CRS generation.
B receives a challenge (Â, Ǎ) ∈ Ĝ

n×k × Ȟ
n×k. Given all the discrete loga-

rithms that B knows, it can compute a properly distributed CRS even without
knowledge of the discrete logarithm of Â. The soundness adversary outputs
commitments {ĉj}j∈[mx], {ďj}j∈[my] together with proofs {Θ̂i, Π̌i}i∈[k], which
are accepted by the verifier.

618 A. González et al.

Let x (resp. x̂) be the vector of openings of {ĉj}j∈[mx] in A1 (resp. in the
group Ĝ) and y (resp. y̌) the vector of openings of {ďj}j∈[my] in A2 (resp. in
the group Ȟ). If A1 = Ĝ (resp. A2 = Ȟ) then x = x̂ (resp. y = y̌). The vectors
x̂ and y̌ are efficiently computable by B who knows the discrete logarithm of
the commitment keys. We claim that the pair (ρ̂, σ̌) ∈ Ĝ

n × Ȟ
n, ρ̂ := (β�

1 x̂ −
t̂1, . . . ,β

�
n x̂ − t̂n), σ̌ := (α�

1 y̌, . . . ,α�
n y̌), solves the Dn,k-SKerMDH challenge.

First, observe that if the adversary is successful in breaking the soundness
property, then ρ �= σ. Indeed, if this is the case there is some index � ∈ [n] such
that E�(x,y) �= t̃�, which means that

∑
j∈[my]

f(α�,j , yj) �= ∑
j∈[mx]

f(xj , β�,j)−
f(t�, base2). If we take discrete logarithms in each side of the equation, this
inequality is exactly equivalent to ρ �= σ.

Further, because GS proofs have perfect soundness, x and y satisfy the equa-
tion

∑
�∈[n] a�,iE�(x, y) =

∑
�∈[n] f(t�, a�,i), for all i ∈ [k], Thus, for all i ∈ [k],

∑

�∈[n]

ǎ�,i

(
β�

� x̂ − t̂�
)

=
∑

�∈[n]

â�,i

(
α�

� y̌
)
, (3)

which implies that ρ̂Ǎ = σ̌Â.

Zero-Knowledge. The same simulator of GS proofs can be used. Specifically the
simulated proof corresponds to k simulated GS proofs.

One-Sided Equations. In the case when α� = 0 and t̃� = f(t�, base2) for
some t� ∈ A1, for all � ∈ [n], proofs can be aggregated under a standard
Kernel Assumption (and thus, in asymmetric bilinear groups we can choose
k = 1). Indeed, in this case, in the soundness proof, the adversary B receives
Ǎ ∈ Ȟ

n×k, an instance of the Dn,k − KerMDH
Ȟ

problem. The adversary B
outputs ρ̂ := (β�

1 x̂ − t̂1, . . . ,β
�
n x̂ − t̂n) as a solution to the challenge. To see

why this works, note that, when α� = 0 for all � ∈ [n], equation (3) reads∑
�∈[n] ǎ�,i

(
β�

� x̂ − t̂�

)
= 0T and thus ρ̂Ǎ = 0T. The case when β� = 0 and

t̃� = f(base1, t�) for some t� ∈ A2, for all � ∈ [n], is analogous.

5 QA-NIZK Arguments for Bit-Strings

We construct a constant-size QA-NIZK for proving that a perfectly binding
commitment opens to a bit-string. That is, we prove membership in the language:

LÛ,bits := {ĉ ∈ Ĝ
n+m : ĉ := Û1b + Û2w, (b,w) ∈ {0, 1}n × Z

m
q },

where Û := (Û1, Û2) ∈ Ĝ
(n+m)×n × Ĝ

(n+m)×m defines perfectly binding and
computationally hiding commitment keys. The witness for membership is (b,w)
and Û ← DΓ , where DΓ is some witness samplable distribution.

To prove that a commitment in Ĝ opens to a vector of bits b, the usual
strategy is to compute another commitment ď ∈ Ȟ

n̄ to a vector b̄ ∈ Z
n
q and

prove (1) bi(bi − 1) = 0, for all i ∈ [n], and (2) bi − bi = 0, for all i ∈ [n].

QA-NIZK Arguments in Asymmetric Groups 619

For statement (2), since Û is witness samplable, we can use our most efficient
QA-NIZK from Sect. 3.3 for equal opening in different groups. Under the SSDP
Assumption, which is the SKerMDH Assumption of minimal size conjectured to
hold in asymmetric groups, the proof is of size 2(g+h). Thus, the challenge is to
aggregate n equations of the form bi(bi −1) = 0. We note that this is a particular
case of the problem of aggregating proofs of quadratic equations, which was left
open in [20].

We finally remark that the proof must include ď and thus it may be not
of size independent of n. However, it turns out that ď needs not be perfectly
binding, in fact n̄ = 2 suffices.

Intuition. A prover wanting to show satisfiability of the equation x(y − 1) = 0
using GS proofs, will commit to a solution x = b and y = b as ĉ = bû1 + rû2

and ď = bv̌1 + sv̌2, for r, s ← Zq, and then give a pair (θ̂, π̌) ∈ Ĝ
2 × Ȟ

2 which
satisfies the following verification equation3:

ĉ
(
ď − v̌1

)�
= û2π̌

� + θ̂v̌�
2 . (4)

The reason why this works is that, if we express both sides of the equation in
the basis of T2×2 given by {û1v̌�

1 , û2v̌�
1 , û1v̌�

2 , û2v̌�
2 }, the coefficient of û1v̌�

1

is b(b − 1) on the left side and 0 on the right side (regardless of (θ̂, π̌)). Our
observation is that the verification equation can be abstracted as saying:

ĉ
(
ď − v̌1

)� ∈ Span(û2v̌�
1 , û1v̌�

2 , û2v̌�
2) ⊂ T

2×2. (5)

Now consider commitments to (b1, . . . , bn) and (b1, . . . , bn) constructed with
some commitment key {(ĝi, ȟi) : i ∈ [n + 1]} ⊂ Ĝ

n × Ȟ
n, for some n ∈ N, to

be determined later, and defined as ĉ :=
∑

i∈[n] biĝi + rĝn+1, ď :=
∑

i∈[n] biȟi +
sȟn+1, r, s ← Zq. Suppose for a moment that {ĝiȟ�

j : i, j ∈ [n + 1]} is a set of
linearly independent vectors. Then,

ĉ

⎛

⎝ď� −
∑

j∈[n]

ȟ�
j

⎞

⎠ ∈ Span{ĝiȟ�
j : (i, j) ∈ IN,1} (6)

if and only if bi(bi − 1) = 0 for all i ∈ [n], because bi(bi − 1) is the coordinate of
ĝiȟ�

i in the left side of the equation.
Equation 6 suggests to use one of the constant-size QA-NIZK Arguments for

linear spaces to get a constant-size proof that bi(bi − 1) = 0 for all i ∈ [n].
Unfortunately, these arguments are only defined for membership in subspaces in
Ĝ

m or Ȟ
m but not in T

m. Our solution is to include information in the CRS
to “bring back” this statement from T to Ĝ, i.e. the matrices Ĉi,j := ĝih�

j , for
each (i, j) ∈ IN,1. Then, to prove that bi(bi − 1) = 0 for all i ∈ [n], the prover

3 For readers familiar with the Groth-Sahai notation, Eq. (4) corresponds to
c • (d − ι2(1)) = u2 • π + θ • v2.

620 A. González et al.

computes Θ̂b(b−1) as a linear combination of C := {Ĉi,j : (i, j) ∈ IN,1} (with
coefficients which depend on b,b, r, s) such that

ĉ

⎛

⎝ď −
∑

j∈[n]

ȟj

⎞

⎠

�

= Θ̂b(b−1)Ǐn×n, (7)

and gives a QA-NIZK proof of Θ̂b(b−1) ∈ Span(C).

This reasoning assumes that {ĝih�
j } (or equivalently, {Ĉi,j}) are linearly

independent, which can only happen if n ≥ n + 1. If that is the case, the proof
cannot be constant because Θ̂b(b̄−1) ∈ Ĝ

n×n and this matrix is part of the
proof. Instead, we choose ĝ1, . . . , ĝn+1 ∈ Ĝ

2 and ȟ1, . . . , ȟn+1 ∈ Ȟ
2, so that

{Ĉi,j} ⊆ Ĝ
2×2. Intuitively, this should still work because the prover receives

these vectors as part of the CRS and he does not know their discrete logarithms,
so to him, they behave as linearly independent vectors.

With this change, the statement Θ̂b(b−1) ∈ Span(C) seems no longer mean-

ingful, as Span(C) is all of Ĝ2×2 with overwhelming probability. But this is not
the case, because by means of decisional assumptions in Ĝ

2 and in Ȟ
2, we switch

to a game where the matrices Ĉi,j span a non-trivial space of Ĝ2×2. Specifically,
to a game where Ĉi∗,i∗ /∈ Span(C) and i∗ ← [n] remains hidden to the adver-
sary. Once we are in such a game, perfect soundness is guaranteed for equation
bi∗(b̄i∗ −1) = 0 and a cheating adversary is caught with probability at least 1/n.
We think this technique might be of independent interest.

The last obstacle is that, using decisional assumptions on the set of vectors
{ȟj}j∈[n+1] is incompatible with using the discrete logarithms of ȟj to compute
the matrices Ĉi,j := ĝih�

j given in the CRS. To account for the fact that, in
some games, we only know gi ∈ Zq and, in some others, only hj ∈ Zq, we replace
each matrix Ĉi,j by a pair (Ĉi,j , Ďi,j) which is uniformly distributed conditioned
on Ci,j +Di,j = gih�

j . This randomization completely hides the group in which
we can compute gih�

j . Finally, we use our QA-NIZK Argument for sum in a
subspace (Sect. 3.2) to prove membership in this space.

Instantiations. We discuss in detail two particular cases of languages LÛ,bits.
First, in Sect. 5.1 we discuss the case when

(a) ĉ is a vector in Ĝ
n+1, ûn+1 ← Ln+1,1 and Û1 :=

(
În×n

0̂1×n

)

∈ Ĝ
(n+1)×n, Û2 :=

ûn+1 ∈ Ĝ
n+1, Û = (Û1||Û2).

In this case, the vectors ĝi in the intuition are defined as ĝi = Δûi, where Δ ←
Z
2×(n+1)
q , and the commitment to b is computed as ĉ :=

∑
i∈[n] biûi + wûn+1.

Then in Sect. 5.3 we discuss how to generalize the construction for a) to

QA-NIZK Arguments in Asymmetric Groups 621

(b) ĉ is the concatenation of n GS commitments. That is, given the GS CRS
crsGS = (Γ, û1, û2, v̌1, v̌2), we define,

Û1 :=

⎛

⎜
⎝

û1 . . . 0̂
...

. . .
...

0̂ . . . û1

⎞

⎟
⎠ ∈ Ĝ

2n×n, Û2 :=

⎛

⎜
⎝

û2 . . . 0̂
...

. . .
...

0̂ . . . û2

⎞

⎟
⎠ ∈ Ĝ

2n×n.

Although the proof size is constant, in both of our instantiations the com-
mitment size is Θ(n). Specifically, (n + 1)g for case a) and 2ng for case b).

5.1 The Scheme

K0(1Λ): Return Γ := (q, Ĝ, Ȟ,T, e, ĝ, ȟ) ← Gena(1Λ).
DΓ : The distribution DΓ over Ĝ

(n+1)×(n+1) is some witness samplable distri-
bution which defines the relation RΓ = {RÛ} ⊆ Ĝ

n+1 × ({0, 1}n × Zq),
where Û ← DΓ , such that (ĉ, 〈b, w〉) ∈ RÛ iff ĉ = Û

(
b
w

)
. The relation Rpar

consists of pairs (Û,U) where Û ← DΓ .
K1(Γ, Û): Let hn+1 ← Z

2
q and for all i ∈ [n], hi := εihn+1, where εi ← Zq.

Define Ȟ := (ȟ1|| . . . ||ȟn+1). Choose Δ ← Z
2×(n+1)
q , define Ĝ := ΔÛ and

ĝi := Δûi ∈ Ĝ
2, for all i ∈ [n + 1]. Let a ← L1 and define ǎΔ := Δ�ǎ ∈

Ȟ
n+1. For any pair (i, j) ∈ IN,1, let Ti,j ← Z

2×2
q and set:

Ĉi,j := ĝih�
j − T̂i,j ∈ Ĝ

2×2, Ďi,j := Ťi,j ∈ Ȟ
2×2.

Note that Ĉi,j can be efficiently computed as hj ∈ Z
2
q is the vector of discrete

logarithms of ȟj .
Let ΨDk,+ be the proof system for Sum in Subspace (Sect. 3.2) and ΨDk,com

be an instance of our proof system for Equal Opening (Sect. 3.3).
Let crsΨDk,+

← K1(Γ, {Ĉi,j , Ďi,j}(i,j)∈IN,1) and4 crsΨDk,com
← K1(Γ,

Ĝ, Ȟ, n).
The common reference string is given by:

crsP :=
(
Û, Ĝ, Ȟ, {Ĉi,j , Ďi,j}(i,j)∈IN,1 , crsΨDk,+

, crsΨDk,com

)
,

crsV :=
(
ǎ, ǎΔ, crsΨDk,+

, crsΨDk,com

)
.

P(crsP , ĉ, 〈b, wg〉): Pick wh ← Zq, R ← Z
2×2
q and then:

1. Define

ĉΔ := Ĝ
(

b
wg

)

, ď := Ȟ
(

b
wh

)

.

4 We identify matrices in Ĝ
2×2 (resp. in Ȟ

2×2) with vectors in Ĝ
4 (resp. in Ȟ

4).

622 A. González et al.

2. Compute (Θ̂b(b−1), Π̌b(b−1)) :=

∑

i∈[n]

(
biwh(Ĉi,n+1, Ďi,n+1) + wg(bi − 1)(Ĉn+1,i, Ďn+1,i)

)

+
∑

i∈[n]

∑

j∈[n]
j �=i

bi(bj − 1)(Ĉi,j , Ďi,j)

+wgwh(Ĉn+1,n+1, Ďn+1,n+1) + (R̂,−Ř). (8)

3. Compute a proof (ρ̂b(b−1), σ̌b(b−1)) that Θb(b−1)+Π̌b(b−1) belongs to the
space spanned by {Ci,j + Di,j}(i,j)∈IN,1 , and a proof (ρ̂b−b, σ̌b−b) that
(ĉΔ, ď) open to the same value, using b, wg, and wh.

V(crsV , ĉ, 〈ĉΔ, ď, (Θ̂b(b−1), Π̌b(b−1)), {(ρ̂X , σ̌X)}X∈{b(b−1),b−b}〉):
1. Check if ĉ�ǎΔ = ĉ�

Δǎ.
2. Check if

ĉΔ

⎛

⎝ď −
∑

j∈[n]

ȟj

⎞

⎠

�

= Θ̂b(b−1)Ǐ2×2 + Î2×2Π̌b(b−1). (9)

3. Verify that (ρ̂b(b−1), σ̌b(b−1)), (ρ̂b−b, σ̌b−b) are valid proofs for (Θ̂b(b−1),

Π̌b(b−1)) and (ĉΔ, ď) using crsΨDk,+
and crsΨDk,com

respectively.
If any of these checks fails, the verifier outputs 0, else it outputs 1.

S1(Γ, Û): The simulator receives as input a description of an asymmetric bilinear
group Γ and a matrix Û ∈ Ĝ

(n+1)×(n+1) sampled according to distribution
DΓ . It generates and outputs the CRS in the same way as K1, but addition-
ally it also outputs the simulation trapdoor

τ =
(
H,Δ, τΨDk,+

, τΨDk,com

)
,

where τΨDk,+
and τΨDk,com

are, respectively, ΨDk,+’s and ΨDk,com’s simulation
trapdoors.

S2(crsP , ĉ, τ): Compute ĉΔ := Δĉ. Then pick random wh ← Zq, R ← Z
2×2
q and

define d := whhn+1. Then set:

Θ̂b(b−1) := ĉΔ

⎛

⎝d −
∑

i∈[n]

hi

⎞

⎠

�

+ R̂, Π̌b(b−1) := −Ř.

Finally, simulate proofs (ρ̂X , σ̌X) for X ∈ {b(b − 1), b − b} using τΨDk,+
and

τΨDk,com
.

QA-NIZK Arguments in Asymmetric Groups 623

5.2 Proof of Security

Completeness is proven in the full version. The following theorem guarantees
Soundness.

Theorem 6. Let AdvPS(A) be the advantage of an adversary A against the
soundness of the proof system described above. There exist PPT adversaries
B1,B2,B3,P

∗
1,P

∗
2 such that

AdvPS(A) ≤ n
(
6/q + AdvU1,Ĝ(B1) + AdvU1,Ȟ(B2) + AdvSP

Ȟ
(B3)

+ AdvΨDk,+
(P∗

1) + AdvΨDk,com
(P∗

2)
)

.

The proof follows from the indistinguishability of the following games:

Real This is the real soundness game. The output is 1 if the adversary breaks
the soundness, i.e. the adversary submits some ĉ = Û

(
b

wg

)
, for some

b /∈ {0, 1}n and w ∈ Zq, and the corresponding proof which is accepted
by the verifier.

Game0 This game is identical to Real except that algorithm K1 does not receive
Û as a input but it samples (Û,U) ∈ Rpar itself according to DΓ .

Game1 This game is identical to Game0 except that the simulator picks a random
i∗ ∈ [n], and uses U to check if the output of the adversary A is such
that bi∗ ∈ {0, 1}. It aborts if bi∗ ∈ {0, 1}.

Game2 This game is identical to Game1 except that now the vectors ĝi, i ∈ [n]
and i �= i∗, are uniform vectors in the space spanned by ĝn+1.

Game3 This game is identical to Game2 except that now the vector ȟi∗ is a
uniform vector in Ȟ

2, sampled independently of ȟn+1.

It is obvious that the first two games are indistinguishable. The rest of the
argument goes as follows (the remaining proofs are in the full version).

Lemma 2. Pr [Game1(A) = 1] ≥ 1
n

Pr [Game0(A) = 1] .

Lemma 3. There exists a U1-MDDH
Ĝ

adversary B such that |Pr [Game1(A) = 1]
−Pr [Game2(A) = 1] | ≤ AdvU1,Ĝ(B) + 2/q.

Proof. The adversary B receives (ŝ, t̂) an instance of the U1-MDDH
Ĝ

problem.
B defines all the parameters honestly except that it embeds the U1-MDDH

Ĝ

challenge in the matrix Ĝ.
Let Ê := (ŝ||t̂). B picks i∗ ← [n], W0 ← Z

2×(i∗−1)
q , W1 ← Z

2×(n−i∗)
q ,

ĝi∗ ← Ĝ
2, and defines Ĝ := (ÊW0||ĝi∗ ||ÊW1||ŝ). In the real algorithm K1, the

generator picks the matrix Δ ∈ Z
2×(n+1)
q . Although B does not know Δ, it can

compute Δ̂ as Δ̂ = ĜU−1, given that U is full rank and was sampled by B,
so it can compute the rest of the elements of the common reference string using
the discrete logarithms of Û, Ȟ and ǎ.

624 A. González et al.

In case t̂ is uniform over Ĝ2, by the Schwartz-Zippel lemma det(Ê) = 0 with
probability at most 2/q. Thus, with probability at least 1 − 2/q, the matrix Ê
is full-rank and Ĝ is uniform over Ĝ

2×(n+1) as in Game1. On the other hand, in
case t̂ = γŝ, all of ĝi, i �= i∗, are in the space spanned by ĝn+1 as in Game2.

Lemma 4. There exists a U1-MDDH
Ȟ

adversary B such that |Pr [Game2(A) = 1]
−Pr [Game3(A) = 1] | ≤ AdvU1,Ȟ(B).

Lemma 5. There exists a SP
Ȟ

adversary B and soundness adversaries P∗
1,P

∗
2

for ΨDk,+ and ΨDk,com such that

Pr [Game3(A) = 1] ≤ 4/q + AdvSP
Ȟ
(B) + AdvΨDk,+

(P∗
1) + AdvΨDk,com

(P∗
2).

Proof. Pr[det((gi∗ ||gn+1)) = 0] = Pr[det((hi∗ ||hn+1)) = 0] ≤ 2/q, by the
Schwartz-Zippel lemma. Then, with probability at least 1 − 4/q, gi∗h�

i∗ is lin-
early independent from {gih�

j : (i, j) ∈ [n + 1]2 \ {(i∗, i∗)}} which implies that
gi∗h�

i∗ /∈ Span({Ci,j +Di,j : (i, j) ∈ IN,1}}). Additionally Game3(A) = 1 implies
that bi∗ /∈ {0, 1} while the verifier accepts the proof produced by A, which
is (ĉΔ, ď, (Θ̂b(b−1), Π̌b(b−1)), {(ρ̂X , σ̌X)}X∈{b(b−1),b−b}). Since {ȟi∗ , ȟn+1} is a
basis of Ȟ

2, we can define wh, bi∗ as the unique coefficients in Zq such that
ď = bi∗ ȟi∗ + whȟn+1. We distinguish three cases:

(1) If ĉΔ �= Δĉ, we can construct an adversary B against the SP
Ȟ

Assumption
that outputs ĉΔ − Δĉ ∈ ker(ǎ�).

(2) If ĉΔ = Δĉ but bi∗ �= bi∗ . Given that (bigi∗ , b̄i∗hi∗) is linearly independent
from {(gi∗ ,hi∗), (gn+1,hn+1)} whenever bi∗ �= b̄i∗ , an adversary P∗

2 against
ΨDk,com outputs the pair (ρ̂b−b, σ̌b−b) which is a fake proof for (ĉΔ, ď).

(3) If ĉΔ = Δĉ and bi∗ = bi∗ , then bi∗(bi∗ − 1) �= 0. If we express Θb(b−1) +
Πb(b−1) as a linear combination of gih�

j , the coordinate of gi∗h�
i∗ is bi∗(bi∗ −

1) �= 0 and thus Θb(b−1) + Πb(b−1) /∈ Span({Ci,j + Di,j : (i, j) ∈ IN,1}). The
adversary P∗

1 against ΨDk,+ outputs the pair (ρ̂b(b−1), σ̌b(b−1)) which is a

fake proof for (Θ̂b(b−1), Π̌b(b−1)).

This concludes the proof of soundness. Now we prove Zero-Knowledge.

Theorem 7. The proof system is perfect quasi-adaptive zero-knowledge.

Proof. First, note that the vector ď ∈ Ȟ
2 output by the prover and the vector

output by S2 follow exactly the same distribution. This is because the rank of
Ȟ is 1. In particular, although the simulator S2 does not know the opening of ĉ,
which is some b ∈ {0, 1}n, there exists wh ∈ Zq such that ď = Ȟ

(
b

wh

)
. Since R

is chosen uniformly at random in Z
2×2
q , the proof (Θ̂b(b−1), Π̌b(b−1)) is uniformly

distributed conditioned on satisfying check 2) of algorithm V. Therefore, these
elements of the simulated proof have the same distribution as in a real proof. This
fact combined with the perfect zero-knowledge property of ΨDk,+ and ΨDk,com

concludes the proof.

QA-NIZK Arguments in Asymmetric Groups 625

5.3 Extensions

CRS Generation for Individual Commitments. When using individual
commitments (distribution b) from Sect. 5), the only change is that Δ is sampled
uniformly from Z

2×2n
q (the distribution of Ȟ is not changed). Thus, the matrix

Ĝ := ΔÛ has 2n columns instead of n+1 and ĉΔ := Ĝ
(

b
wg

)
for some wg ∈ Z

n
q .

In the soundness proof, the only change is that in Game2, the extra columns are
also changed to span a one-dimensional space, i.e. in this game ĝi, i ∈ [2n − 1]
and i �= i∗, are uniform vectors in the space spanned by ĝ2n.

Bit-Strings of Weight 1. In the special case when the bit-string has only one
1 (this case is useful in some applications, see Sect. 6), the size of the CRS can be
made linear in n, instead of quadratic. To prove this statement we would combine
our proof system for bit-strings of Sect. 5.1 and a proof that

∑
i∈[n] bi = 1 as

described above. In the definition of (Θ̂b(b−1), Π̌b(b−1)) in Eq. 8, one sees that

for all pairs (i, j) ∈ [n] × [n], the coefficient of (Ĉi,j , Ďi,j) is bi(bj − 1). If i∗ is
the only index such that bi∗ = 1, then we have:

∑

i∈[n]

∑

j∈[n]

bi(bj − 1)(Ĉi,j , Ďi,j) =
∑

j �=i∗
(Ĉi∗,j , Ďi∗,j) =: (Ĉi∗, �=, Ďi∗, �=).

Therefore, one can replace in the CRS the pairs of matrices (Ĉi,j , Ďi,j) by
(Ĉi, �=, Ďi, �=), i ∈ [n]. The resulting CRS is linear in n.

6 Applications

Many protocols use proofs that a commitment opens to a bit-string as a building
block. Since our commitments are still of size Θ(n), our results may not apply
to some of these protocols (e.g. range proofs). Yet, there are several applications
where bits need to be used independently and our results provide significant
improvements. Table 2 summarizes them.

Signatures. Some application examples are the signature schemes of [3–5,9].
For example, in the revocable attribute-based signature scheme of Escala et. al
[9], every signature includes a proof that a set of GS commitments, whose size is
the number of attributes, opens to a bit-string. Further, the proof of membership
in a list which is discussed below can also be used to reduce the size of Ring
Signature scheme of [6], which is the most efficient ring signature in the standard
model. To sign a message m, among other things, the signer picks a one-time
signature key and certifies the one-time verification key by signing it with a
Boneh-Boyen signature under vkα. Then, the signer commits to vkα and shows
that vkα belongs to the list of Boneh-Boyen verification keys (vk1, . . . , vkn) of
the parties in the ring R.

626 A. González et al.

Table 2. Comparison of the application of our techniques and results from the litera-
ture. In rows labeled as “Threshold GS” we give the size of the proof of satisfiability
of t-out-of-n sets Si, where mx is the sum of the number of variables in Ĝ in each set
Si, and n̄ is the total number of two-sided and quadratic equations in some

⋃
i∈[n] Si.

For all rows, we must add to the proof size the cost of a GS proof of each equation in
one of the sets Si. In the other rows n is the size of the list.

Proof System Author Proof Size

Threshold GS Ràfols [26] (1) (mx + 3(n − t) + 2n̄)g

Ràfols [26] (2) 2(n − t + 1)h + 2n(g + h)

This work 2(n + 1)g + 10(g + h)

Dynamic list (ring signature) Chandran et al. [6] (16
√

n + 4)(g + h)

Ràfols [26] (8
√

n + 6)g + 12
√

nh

This work (4
√

n + 14)g + (8
√

n + 14)h

Threshold GS Proofs for PPEs. There are two approaches to construct
threshold GS proofs for PPEs, i.e. proofs of satisfiability of t-out-of-n equations.
One is due to [13] and consists of compiling the n equations into a single equation
which is satisfied only if t of the original equations are satisfied. For the case
of PPEs, this method adds new variables and proves that each of them opens
to a bit. Our result reduces the cost of this approach, but we omit any further
discussion as it is quite inefficient because the number of additional variables
is Θ(mvar + n), where mvar is the total number of variables in the original n
equations.

The second approach is due to Ràfols [26]. The basic idea behind [26], which
extends [14], follows from the observation that for each GS equation type tp, the
CRS space K is partitioned into a perfectly sound CRS space Kb

tp and a perfectly
witness indistinguishable CRS space Kh

tp.
In particular, to prove satisfiability of t-out-of-n sets of equations from {Si :

i ∈ [n]} of type tp, it suffices to construct an algorithm Kcorr which on input
crsGS and some set of indexes A ⊂ [n], |A| = t, generates n GS common reference
strings {crsi, i ∈ [n]} and simulation trapdoors τi,sim, i ∈ Ac, in a such a way
that5:

(a) it can be publicly verified the set of perfectly sound keys, {crsi : crsi ∈ Kb
tp}

is of size at least t,
(b) there exists a simulator Scorr who outputs (crsi, τi,sim) for all i ∈ [n], and the

distribution of {crsi : i ∈ [n]} is the same as the one of the keys output by
Kcorr when crsGS is the perfectly witness-indistinguishable CRS.

5 More technically, this is the notion of Simulatable Verifiable Correlated Key Gener-
ation in [26], which extends the definition of Verifiable Correlated Key Generation
of [14].

QA-NIZK Arguments in Asymmetric Groups 627

The prover of t-out-of-n satisfiability can run Kcorr and, for all i ∈ [n], compute
a real (resp. simulated) proof for Si with respect to crsi when i ∈ A (resp. when
i ∈ Ac).

Ràfols gives two constructions for PPEs, the first one can be found in [26],
App. C and the other follows from [26, Sect. 7]6. Our algorithm Kcorr for PPEs7

goes as follows:

– Define (b1, . . . , bn) as bi = 1 if i ∈ A and bi = 0 if i ∈ Ac. For all i ∈ [n], let
ẑi := Comm(bi) = biû1 + riû2, ri ∈ Zq, and define τsim,i = ri, for all i ∈ Ac.
Define crsi := (Γ, ẑi, û2, v̌1, v̌2).

– Prove that {ĉi} opens to b ∈ {0, 1}n and that
∑

i∈[n] bi = t.

The simulator just defines b = 0. The reason why this works is that when
bi = 1, (ẑi − û1) ∈ Span(û2), therefore crsi ∈ Kb

PPE and when bi = 0, (ẑi − û1) /∈
Span(û2) so crsi ∈ Kh

PPE .

More Efficient Proof of Membership in a List. Chandran et al. construct
a ring signature of size Θ(

√
n) [6], which is the most efficient ring signature in

the standard model. Their construction uses as a subroutine a non-interactive
proof of membership in some list L = (l̂1, . . . , l̂n) which is of size Θ(

√
n). The

trick of Chandran et al. to achieve this asymptotic complexity is to view L as
a matrix L̂ ∈ Ĝ

m×m, for m =
√

n, where the i, j th element of L̂ is l̂i,j := l̂(i,j)
and (i, j) := (i − 1)m + j. Given a commitment ĉ to some element l̂α, where
α = (iα, jα), their construction in asymmetric bilinear groups works as follows :

1. Compute GS commitments in Ȟ to b1 . . . , bm and b′
1, . . . , b

′
m, where bi = 1 if

i = iα and 0 otherwise, and b′
j = 1 if j = jα, and 0 otherwise.

2. Compute a GS proof that bi ∈ {0, 1} and b′
j ∈ {0, 1} for all i, j ∈ [m], and

that
∑

i∈[m] bi = 1, and
∑

j∈[m] b
′
j = 1.

3. Compute GS commitments to x̂1 := l̂(iα,1), . . . , x̂m := l̂(iα,m).
4. Compute a GS proof that x̂j =

∑
i∈[m] bi l̂(i,j), for all j ∈ [m], is satisfied.

5. Compute a GS proof that l̂α =
∑

j∈[m] b
′
j x̂j is satisfied.

With respect to the naive use of GS proofs, Step 2 was improved by Ràfols [26].
Using our proofs for bit-strings of weight 1 from Sect. 5.3, we can further reduce
the size of the proof in step 2, see table.

We note that although in step 4 the equations are all two-sided linear equa-
tions, proofs can only be aggregated if the list comes from a witness samplable
distribution and the CRS is set to depend on that specific list. This is not useful
for the application to ring signatures, since the CRS should be independent of
the ring R (which defines the list). If aggregation is possible then the size of the

6 The construction in [26, Sect. 7] is for other equation types but can be used to prove
that t-out-of-n of crs1, . . . , crsn are perfectly binding for PPEs.

7 Properly speaking the construction is for PPEs which are left-simulatable in the
terminology of [26].

628 A. González et al.

proof in step 4 is reduced from (2g + 4h)
√

n to 4g + 8h. A complete description
of the proof can be found in the full version, where we also show that when
the CRS depends on the list and the list is witness samplable, the proof can be
further reduced to Θ(3

√
n).

References

1. Abe, M., Groth, J., Ohkubo, M., Tango, T.: Converting cryptographic schemes
from symmetric to asymmetric bilinear groups. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 241–260. Springer, Heidelberg (2014)

2. Abe, M., Haralambiev, K., Ohkubo, M.: Signing on elements in bilinear groups
for modular protocol design. Cryptology ePrint Archive, Report 2010/133 (2010).
http://eprint.iacr.org/2010/133

3. Blazy, O., Fuchsbauer, G., Pointcheval, D., Vergnaud, D.: Signatures on randomiz-
able ciphertexts. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC
2011. LNCS, vol. 6571, pp. 403–422. Springer, Heidelberg (2011)

4. Blazy, O., Pointcheval, D., Vergnaud, D.: Compact round-optimal partially-blind
signatures. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp.
95–112. Springer, Heidelberg (2012)

5. Camacho, P.: Fair exchange of short signatures without trusted third party. In:
Dawson, E. (ed.) CT-RSA 2013. LNCS, vol. 7779, pp. 34–49. Springer, Heidelberg
(2013)

6. Chandran, N., Groth, J., Sahai, A.: Ring signatures of sub-linear size without
random oracles. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP
2007. LNCS, vol. 4596, pp. 423–434. Springer, Heidelberg (2007)

7. Escala, A., Groth, J.: Fine-tuning Groth-Sahai proofs. In: Krawczyk, H. (ed.) PKC
2014. LNCS, vol. 8383, pp. 630–649. Springer, Heidelberg (2014)

8. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework
for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part II. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013)

9. Escala, A., Herranz, J., Morillo, P.: Revocable attribute-based signatures with
adaptive security in the standard model. In: Nitaj, A., Pointcheval, D. (eds.)
AFRICACRYPT 2011. LNCS, vol. 6737, pp. 224–241. Springer, Heidelberg (2011)

10. Freeman, D.M.: Converting pairing-based cryptosystems from composite-order
groups to prime-order groups. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 44–61. Springer, Heidelberg (2010)

11. Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discrete
Appl. Math. 156(16), 3113–3121 (2008)

12. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013)

13. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant
size group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol.
4284, pp. 444–459. Springer, Heidelberg (2006)

14. Groth, J., Ostrovsky, R., Sahai, A.: Non-interactive zaps and new techniques for
NIZK. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 97–111. Springer,
Heidelberg (2006)

15. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In:
Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008)

http://eprint.iacr.org/2010/133

QA-NIZK Arguments in Asymmetric Groups 629

16. Groth, J., Sahai, A.: Efficient noninteractive proof systems for bilinear groups.
SIAM J. Comput. 41(5), 1193–1232 (2012)

17. Hofheinz, D., Kiltz, E.: Secure hybrid encryption from weakened key encapsulation.
In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 553–571. Springer,
Heidelberg (2007)

18. Joux, A.: A new index calculus algorithm with complexity L(1/4 + o(1)) in small
characteristic. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC 2013. LNCS, vol.
8282, pp. 355–380. Springer, Heidelberg (2014)

19. Jutla, C.S., Roy, A.: Shorter quasi-adaptive NIZK proofs for linear subspaces. In:
Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 1–20.
Springer, Heidelberg (2013)

20. Jutla, C.S., Roy, A.: Switching lemma for bilinear tests and constant-size NIZK
proofs for linear subspaces. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014,
Part II. LNCS, vol. 8617, pp. 295–312. Springer, Heidelberg (2014)

21. Kiltz, E., Wee, H.: Quasi-adaptive NIZK for linear subspaces revisited. In: Oswald,
E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 101–128. Springer,
Heidelberg (2015)

22. Libert, B., Peters, T., Joye, M., Yung, M.: Non-malleability from malleability:
simulation-sound quasi-adaptive NIZK proofs and CCA2-secure encryption from
homomorphic signatures. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 514–532. Springer, Heidelberg (2014)

23. Libert, B., Peters, T., Yung, M.: Group signatures with almost-for-free revocation.
In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 571–
589. Springer, Heidelberg (2012)

24. Morillo, P., Ràfols, C., Villar, J.L.: Matrix computational assumptions in multi-
linear groups. Cryptology ePrint Archive, Report 2015/353 (2015). http://eprint.
iacr.org/2015/353

25. Naor, M.: On cryptographic assumptions and challenges. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg (2003)

26. Ràfols, C.: Stretching Groth-Sahai: NIZK proofs of partial satisfiability. In: Dodis,
Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 247–276. Springer,
Heidelberg (2015)

27. Shacham, H.: A cramer-shoup encryption scheme from the linear assumption
and from progressively weaker linear variants. Cryptology ePrint Archive, Report
2007/074 (2007). http://eprint.iacr.org/

http://eprint.iacr.org/2015/353
http://eprint.iacr.org/2015/353
http://eprint.iacr.org/

Dual-System Simulation-Soundness
with Applications to UC-PAKE and More

Charanjit S. Jutla1(B) and Arnab Roy2

1 IBM T. J. Watson Research Center, Yorktown Heights, NY, USA
csjutla@us.ibm.com

2 Fujitsu Laboratories of America, Sunnyvale, CA, USA
aroy@us.fujitsu.com

Abstract. We introduce a novel concept of dual-system simulation-
sound non-interactive zero-knowledge (NIZK) proofs. Dual-system NIZK
proof system can be seen as a two-tier proof system. As opposed to the
usual notion of zero-knowledge proofs, dual-system defines an intermedi-
ate partial-simulation world, where the proof simulator may have access
to additional auxiliary information about the word, for example a mem-
bership bit, and simulation of proofs is only guaranteed if the membership
bit is correct. Further, dual-system NIZK proofs allow a quasi-adaptive
setting where the CRS can be generated based on language parame-
ters. This allows for the further possibility that the partial-world CRS
simulator may have access to additional trapdoors related to the lan-
guage parameters. We show that for important hard languages like the
Diffie-Hellman language, such dual-system proof systems can be given
which allow unbounded partial simulation soundness, and which further
allow transition between partial simulation world and single-theorem full
simulation world even when proofs are sought on non-members. The
construction is surprisingly simple, involving only two additional group
elements for general linear-subspace languages in asymmetric bilinear
pairing groups.

As a direct application we give a short keyed-homomorphic CCA-
secure encryption scheme. The ciphertext in this scheme consists of
only six group elements (under the SXDH assumption) and the secu-
rity reduction is tight. An earlier scheme of Libert et al. based on their
efficient unbounded simulation-sound QA-NIZK proofs only provided a
loose security reduction, and further had ciphertexts almost twice as long
as ours.

We also show a single-round universally-composable password
authenticated key-exchange (UC-PAKE) protocol which is secure under
adaptive corruption in the erasure model. The single message flow only
requires four group elements under the SXDH assumption.

This is the shortest known UC-PAKE even without considering adap-
tive corruption. The latest published scheme which considered adaptive
corruption, by Abdalla et al [ABB+13], required non-constant (more
than 10 times the bit-size of the password) number of group elements.

Keywords: NIZK · Bilinear pairings · UC-PAKE · Keyed-
homomorphic encryption · SXDH

c© International Association for Cryptologic Research 2015
T. Iwata and J.H. Cheon (Eds.): ASIACRYPT 2015, Part I, LNCS 9452, pp. 630–655, 2015.
DOI: 10.1007/978-3-662-48797-6 26

Dual-System Simulation-Soundness with Applications 631

1 Introduction

Since the introduction of simulation-sound non-interactive zero-knowledge
proofs (NIZK) in [Sah99] (based on the concept of non-malleability [DDN91]),
simulation-soundness has become an essential cryptographic tool. While the idea
of zero-knowledge simulation [GMR89] brought rigor to the concept of semantic
security, simulation-soundness of some form is usually implicit in most crypto-
graphic applications. While the original construction of [Sah99] was rather inef-
ficient, the advent of pairing based cryptography, and in particular Groth-Sahai
NIZK proofs [GS08], has led to much more efficient simulation-sound NIZK con-
structions. Pairing-based cryptography has also led to efficient construction of
powerful primitives where simulation-soundness is not very explicit.

It has been shown that different forms of simulation-soundness suffice for
many applications. Indeed, the original application (CCA2-secure encryption)
considered in [Sah99] only required what is known as single-theorem simulation-
soundness (also known as one-time simulation-soundness). However, many other
cryptographic constructions are known only using unbounded simulation-sound
NIZK proofs. In this paper, we introduce the concept of dual-system sim-
ulation-sound NIZK proofs, which lie somewhere in between one-time and
unbounded simulation-sound NIZK proofs. The aim is to show that this weaker
concept suffices for constructions where unbounded simulation-soundness was
being used till now. We also show that in many applications this new concept
of dual-system simulation soundness is implicit, in the sense that although we
cannot get a generic construction from a NIZK proof, we can use the underlying
ideas of the dual-system simulation-sound NIZK proofs.

Indeed, our novel definition is inspired by the dual-system identity-based
encryption (IBE) scheme of Waters [Wat09], where such a concept was implicit,
and led to the first IBE scheme which was fully-secure under static and stan-
dard assumptions. So without further ado, we jump straight into the main idea
of the new concept. In dual-system simulation-sound NIZK proof systems we
will consider three worlds: the real-world, the partial-simulation world, and the
one-time full-simulation world. The real world consists of a common-reference
string (CRS), an efficient prover P, and an efficient verifier V. The concept of
completeness and soundness of P and V with respect to a witness-relation R is
well-understood. The full-simulation world is also standard, and it includes two
simulators: a CRS simulator and a proof simulator. The proof simulator is a
zero-knowledge simulator in the sense that it can simulate proofs even without
access to the witness. In order to achieve this, the CRS simulator generates the
CRS in a potentially different way and produces a trapdoor for the proof sim-
ulator. The partial-simulation world we consider also has a CRS simulator,
and a proof simulator, but this proof simulator is allowed partial access to the
witness (or some other auxiliary information) about the member on which the
proof is sought.

At this point, we also bring in the possibility of the CRS being gener-
ated as a function of the language or witness-relation under consideration. The
recent quasi-adaptive NIZK (QA-NIZK) proofs of [JR13] allow this possibility for

632 C.S. Jutla and A. Roy

distributions of witness-relations. The CRS in the real and the full-simulation
world is generated based on a language parameter generated according to some
distribution. Now we consider the possibility that in the partial-simulation world,
the CRS simulator actually generates the language parameter itself. In other
words, the CRS simulator has access to the “witness” of the language parame-
ter. For example, the CRS simulator may know the discrete-logs of the language
parameters. This leads to the possibility that in the partial simulation world the
proof simulator may have access to additional trapdoors which makes simulation
and/or simulation soundness easier to achieve.

In this paper, we will only define and consider dual-system simulation sound
QA-NIZK proofs (called DSS-QA-NIZK), where the only auxiliary information
that the partial proof simulator gets is a single bit which is called the member-
ship bit. The membership bit indicates whether the word on which the proof
is sought is in the language or not. We show that we can achieve unbounded
partial-simulation soundness for important languages like the Diffie-Hellman lan-
guage by relatively simple constructions. The constructions also allow one-time
full-ZK simulation, and hence form a DSS-QA-NIZK for the Diffie-Hellman lan-
guage. We actually give a general construction for arbitrary languages which
allow smooth and universal2 projective hash proofs [CS02] and have QA-NIZKs
for the language augmented with such a hash proof. We show that for linear
subspace languages (over bilinear groups), like the Diffie-Hellman and decisional-
linear (DLIN) languages, the requirements for the general construction are easy
to obtain. Thus, for all such languages, under the standard and static SXDH
assumption in bilinear pairing groups, we get a DSS-QA-NIZK proof of only two
group elements.

Table 1 summarizes comparison among existing schemes and ours. DSS is
weaker than unbounded simulation soundness, and although incomparable with
one time simulation soundness, it seems to enjoy better properties. Consis-
tent with this, we observe that the proof sizes also place in the middle of
the shortest known OTSS-NIZKs [ABP15,KW15] and the shortest known USS-
NIZKs [KW15] for linear subspaces.

Applications. We now give the main idea as to why such a construction is use-
ful. The security of most applications is shown by reduction to a hard language.
However, a particular application may have a more complex language for which
the NIZK proofs are required, and the security proof may require soundness of
the NIZK system while proofs of many elements (real or fake) of such a complex
language are being simulated. The idea is that multiple simulations of such ele-
ments can be performed in a partial-simulation manner (i.e. it is always possible
to supply the correct membership-bit), and full simulation is only required of
one member at a time, on which the hardness assumption can then be invoked.

Keyed-Homomorphic CCA-secure Encryption. As a first application we consider
the keyed-homomorphic CCA-secure encryption scheme notion of [EHO+13]. In
such an encryption scheme, a further functionality called Eval is available which

Dual-System Simulation-Soundness with Applications 633

Table 1. Comparison with existing NIZK schemes for linear subspaces with table
adapted from [KW15]. The language of interest is a t dimensional subspace of an n
dimensional ambient space. m is the bit-size of the tag. AS is adaptive-soundness.
OTSS is one-time simulation-soundness and USS is unbounded simulation-soundness.

Soundness Assumption Proof CRS #pairings

[GS08] AS DLIN 2n+ 3t 6 3n(t+ 3)

[LPJY14] AS DLIN 3 2n+ 3t+ 3 2n+ 4

[JR13] AS k-Linear k(n− t) 2kt(n− t) + k + 1 k(n− t)(t+ 2)

[JR14a] AS k-Linear k kn+ kt+ k2 kn+ k2

[ABP15] AS k-Linear k kn+ kt+ k kn+ k

[KW15] AS k-Linear k kn+ kt+ k − 1 kn+ k − 1

[ABP15] OTSS k-Linear k 2m(kn+ (k + 1)t) + k mkn+ k

[KW15] OTSS k-Linear k 2m(kn+ (k + 1)t)+k−1 mkn+k−1

This paper DSS k-Linear k + 1 k(n+ 1) + kt+ k2 k(n+ 1) + k2

[CCS09] USS DLIN 2n+ 6t+ 52 18 O(tn)

[LPJY14] USS DLIN 20 2n+ 3t+ 3m+ 10 2n+ 30

[KW15] USS k-Linear 2k + 2 kn+ 4(k + t+ 1)k + 2k k(n+ k + 1) + k

using a key can homomorphically combine valid ciphertexts. The scheme should
provide IND-CCA2 security when this Eval key is unavailable to the adversary,
and should continue to enjoy IND-CCA1 security when the Eval key is exposed
to the adversary. Emura et al. also gave constructions for such a scheme, albeit
schemes which are not publicly verifiable, and further satisfying a weaker notion
than CCA1-security when Eval key is revealed. Recently, Libert et al. gave a
publicly-verifiable construction which is more efficient and also CCA1-secure
when Eval key is revealed. Their construction is based on a new and improved
unbounded simulation-sound QA-NIZK for linear subspace languages. We show
in this paper that a DSS-QA-NIZK for the Diffie-Hellman language suffice, and
leads to a much improved construction. While the construction in [LPJY14],
under the SXDH assumption, requires nine group elements in one group, and
two more in the other plus a one-time signature key pair, our construction only
requires six group elements in any one of the bilinear groups. Further, while the
earlier construction was loose (i.e. loses a factor quadratic in number of Eval
calls), our reduction is tight.

UC Password-Authenticated Key Exchange (UC-PAKE). The UC-PAKE ideal
functionality was introduced in [CHK+05] where they also gave a three-round
construction. In [KV11] a single-round construction for UC-PAKE was given
using Groth-Sahai NIZK proofs along with unbounded simulation-soundness
construction of [CCS09] (also see [JR12]). Later [BBC+13] gave a UC-PAKE
construction based on novel trapdoor smooth projective hash functions, but
secure only under static corruption; each message consisted of six group ele-
ments in one group, and another five elements in the other group (under the
SXDH assumption).

634 C.S. Jutla and A. Roy

Table 2. Comparison with existing UC-PAKE schemes. m is the password size in bits
and λ is the security parameter. AC stands for Adaptive Corruption. For one-round
schemes, message size is per flow.

AC One-round Assumption Message size

[ACP09] yes no DDH O(mλ)

[KV11] no yes DLIN > 65 × G

[JR12] no yes SXDH > 30 total group elements

[BBC+13] no yes SXDH 6 × G1 + 5 × G2

[ABB+13] yes yes SXDH 10 ∗ m × G1 + m × G2

This paper yes yes SXDH 3 × G1 + 1 × G2

In this paper, we construct a a single-round construction based on dual-
system simulation-soundness which is UC-secure under adaptive corruption (in
the erasure model), and which has only a total of four group elements in each
message. The key is generated in the target group. The construction is not a
black-box application of the DSS-QA-NIZK for the Diffie-Hellman language,
but uses its underlying idea as well as the various component algorithms of the
DSS-QA-NIZK. The main idea of the construction is given in more detail in
Sect. 6.2.

To the best of our knowledge, this is the shortest known UC-PAKE, even
without considering adaptive corruption. The first UC-PAKE to consider adap-
tive corruption was by Abdalla, Chevalier and Pointcheval [ACP09], which was
a two round construction. Recently, Abdalla et al [ABB+13] also constructed a
single round protocol, which required a non-constant (more than 10 times the
bit-size of the password) number of group elements in each flow. Comparison
with existing UC-PAKEs is given in Table 2.

Identity-Based Encryption (IBE). In the full version of this paper [JR14b], we
show that the recent efficient dual-system IBE [JR13] (inspired by the original
dual-system IBE of Waters [Wat09]) can also be obtained using the ideas of
DSS-QA-NIZK. While the construction is not black-box and utilizes additional
“smoothness” and “single-pairing-product test” properties of the verifier, it along
with the other two applications clearly demonstrate the power and utility of the
new notion, which we expect will find many more applications.

2 Preliminaries: Quasi-Adaptive NIZK Proofs

A witness relation is a binary relation on pairs of inputs, the first called a word
and the second called a witness. Note that each witness relation R defines a
corresponding language L which is the set of all x for which there exists a
witness w, such that R(x,w) holds.

We will consider Quasi-Adaptive NIZK proofs [JR13] for a probability distri-
bution D on a collection of (witness-) relations R = {Rρ} (with corresponding

Dual-System Simulation-Soundness with Applications 635

languages Lρ). Recall that in a quasi-adaptive NIZK, the CRS can be set after
the language parameter has been chosen according to D. Please refer to [JR13]
for detailed definitions.

Definition 1. ([JR13]) We call (pargen, crsgen, prover, ver) a (labeled) quasi-
adaptive non-interactive zero-knowledge (QA-NIZK) proof system for witness-
relations Rλ = {Rρ} with parameters sampled from a distribution D over
associated parameter language Lpar, if there exist simulators crs − sim, sim
such that for all non-uniform PPT adversaries A1,A2,A3 we have (in all of
the following probabilistic experiments, the experiment starts by setting λ as
λ ← pargen(1m), and choosing ρ as ρ ← Dλ):

Quasi-Adaptive Completeness:

Pr
[

crs ← crsgen(λ, ρ); (x,w, l) ← A1(crs, ρ);
π ← prover(crs, x, w, l) : ver(crs, x, l , π) = 1 if Rρ(x,w)

]

= 1

Quasi-Adaptive Soundness:
Pr[crs←crsgen(λ, ρ); (x, l , π) ← A2(crs, ρ) : x �∈ Lρ ∧ ver(crs, x, l , π) =
1] ≈ 0

Quasi-Adaptive Zero-Knowledge:
Pr[crs ← crsgen(λ, ρ) : Aprover(crs,·,·,·)

3 (crs, ρ) = 1] ≈
Pr[(crs, trap) ← crs − sim(λ, ρ) : Asim∗(crs,trap,·,·,·)

3 (crs, ρ) = 1],
where sim∗(crs, trap, x, w, l) = sim(crs, trap, x, l) for (x,w) ∈ Rρ and both
oracles (i.e. prover and sim∗) output failure if (x,w) �∈ Rρ.

The QA-NIZK is called a statistical zero-knowledge QA-NIZK if the view
of adversary A3 above in the two experiments is statistically indistinguishable.

3 Dual-System Simulation-Soundness

To define dual-system simulation soundness of QA-NIZK proofs, we will con-
sider three worlds: the real-world, the partial-simulation world, and the one-
time (or single theorem) full-simulation world. While the real-world and the
full-simulation world should be familiar from earlier definitions of NIZK proof
systems, the partial-simulation world leads to interesting possibilities. To start
with, in the partial simulation world, one would like the proof simulator to have
access to partial or complete witness of the word1. Finally, in the quasi-adaptive
setting, the language parameters may actually be generated by the CRS simu-
lator and hence the simulator may have access to, say, the discrete logs of the
language parameters, which can serve as further trapdoors.

Rather than considering these general settings, we focus on a simple partial-
simulation setting, where (a) the CRS simulator can generate the language para-
meters itself and (b) the proof simulator when invoked with a word x is given
1 In case the proof simulator is being invoked on a non-language word, it is not imme-

diately clear what this witness can be, unless we also define a language and a dis-
tribution for a super-language which includes the language under consideration as a
subset.

636 C.S. Jutla and A. Roy

an additional bit β, which we call the membership bit, that represents the
information whether x is indeed a member or not.

The partial simulation world is required to be unbounded simulation-sound,
and hopefully this should be easier to prove than usual unbounded simulation-
soundness (given that its simulators have additional information). We also allow
the partial simulation world to be sound with respect to a private verifier (this
concept has been considered earlier in [JR12]), and this further leads to the pos-
sibility of easier and/or simpler constructions. A surprising property achievable
under such a definition is that one can go back and forth between the partial-
simulation world and the one-time full-simulation world even when simulating
fake tuples.

Definition 2 (Dual − SystemNon − InteractiveProofs). A Dual-system
non-interactive proof system consists of PPT algorithms defined in three worlds
as follows:

Real World consisting of:
– A pair of CRS generators (K0,K1), where K0 takes a unary string and

produces an ensemble parameter λ. (The ensemble parameter λ is used to
sample a witness-relation parameter ρ using Dλ in the security definition.)
PPT algorithm K1 uses ρ (and λ) to produce the real-world CRS ψ.

– A prover P that takes as input a CRS, a language member and its witness,
a label, and produces a proof.

– A verifier V that takes as input a CRS, a word, a label, and a proof, and
outputs a single bit.

Partial-Simulation World consisting of:
– A semi-functional CRS simulator sfK1 that takes ensemble parameter

λ as input and produces a witness relation parameter ρ, a semi-functional
CRS σ, as well as two trapdoors τ and η. The first trapdoor is used by the
proof simulator, and the second by the private verifier.

– A semi-functional simulator sfSim that takes a CRS, a trapdoor τ , a
word, a membership-bit β, and a label, to produce a proof.

– A private verifier pV that takes a CRS, a trapdoor η, a word, a label, and
a proof and outputs a single bit.

One-time Full Simulation World consisting of:
– A one-time full-simulation CRS generator otfK1, that takes as input

the ensemble parameter λ, the witness relation parameter ρ to produce a
CRS and three trapdoors τ , τ1 and η.

– A one-time full simulator otfSim that takes as input a CRS, a trapdoor
τ1, a word, a label, and produces a proof2.

2 We remark here that the One-time Full Simulation World also uses a semi-functional
simulator as can be seen in Fig. 1. It has the same black-box properties as in the
Partial-Simulation World, but could potentially have a different internal construc-
tion. In this paper it turns out that the same construction suffices for both the
worlds, so for the sake of simplicity we forgo making this explicit in the definition.

Dual-System Simulation-Soundness with Applications 637

– A semi-functional verifier sfV that takes as input a CRS, a trapdoor η, a
word, a label, a proof and outputs a bit. The adversaries also have access to
the semi-functional simulator.

Definition 3 (DSS-QA-NIZK). The definition of the real-world components
of a dual-system non-interactive proof to be complete and (computationally)
sound are same as in QA-NIZK Definition 1. Such a proof system is called a
dual-system simulation-sound quasi-adaptive NIZK (DSS-QA-NIZK)
for a collection of witness relations Rλ = {Rρ}, with parameters sampled from a
distribution D, if its real-world components are complete and (computationally)
sound, and if for all non-uniform PPT adversaries A = (A0,A1,A2,A3,A4)
all of the following properties are satisfied (in all of the following probabilistic
experiments, the experiment starts by setting λ as λ ← K0(1m)):

• (Composable) Partial-ZK:

Pr[ρ ← Dλ;σ ← K1(λ, ρ) : A0(σ, ρ) = 1] ≈
Pr[(ρ, σ, τ, η) ← sfK1(λ) : A0(σ, ρ) = 1],

and

Pr[(ρ, σ, τ, η) ← sfK1(λ) : A P(σ,·,·,·), sfSim(σ,τ,·,·,·), V(σ,·,·,·)
1 (σ, ρ) = 1] ≈

Pr[(ρ, σ, τ, η) ← sfK1(λ) : A sfSim∗(σ,τ,·,·,·), sfSim(σ,τ,·,·,·), pV(σ,η,·,·,·)
1 (σ, ρ) = 1],

where sfSim∗(σ, τ, x, w, l) is defined to be sfSim(σ, τ, x, β = 1, l) (i.e. witness
is dropped, and membership-bit β = 1), and the experiment aborts if either a
call to the first oracle (i.e. P and sfSim∗) is with (x,w, l) s.t. ¬Rρ(x,w), or
call to the second oracle is with an (x, β, l) s.t. x �∈ Lρ or β = 0.

• Unbounded Partial-Simulation Soundness:

Pr
[

(ρ, σ, τ, η) ← sfK1(λ); (x, l , π) ← A sfSim(σ,τ,·,·,·), pV(σ,η,·,·,·)
2 (σ, ρ) :

((x �∈ Lρ) ∨ V(σ, x, l , π) = 0) ∧ pV(σ, η, x, l , π) = 1

]

≈ 0.

• One-time Full-ZK:

Pr

[
(ρ, σ, τ, η) ← sfK1(λ); (x∗, l∗, β∗, s) ← A sfSim(σ,τ,·,·,·), pV(σ,η,·,·,·)

3 (σ, ρ);
π∗ ← sfSim(σ, τ, x∗, β∗, l∗) : A sfSim(σ,τ,·,·,·), pV(σ,η,·,·,·)

4 (π∗, s) = 1

]

≈ Pr

⎡

⎢
⎣

ρ ← Dλ; (σ, τ, τ1, η) ← otfK1(λ, ρ);
(x∗, l∗, β∗, s) ← A sfSim(σ,τ,·,·,·), sfV(σ,η,·,·,·)

3 (σ, ρ);
π∗ ← otfSim(σ, τ1, x

∗, l∗) : A sfSim(σ,τ,·,·,·), sfV(σ,η,·,·,·)
4 (π∗, s) = 1

⎤

⎥
⎦,

638 C.S. Jutla and A. Roy

Fig. 1. The three worlds of a DSS-QA-NIZK

where the experiment aborts if either in the call to the first oracle, or in the
(x∗, β∗) produced by A3, the membership-bit provided is not correct for Lρ, or
if 〈x∗, l∗, π∗〉 is queried to sfV/pV. Here s is a state variable.

The three worlds and the properties of a DSS-QA-NIZK are depicted in
Fig. 1.

Remark 1. In the partial-simulation soundness definition, there is no restriction
of x, l , π being not the same as that obtained from a call to the first oracle sfSim.

Remark 2. Note that in the partial-ZK definition, the calls to the prover are
restricted to ones satisfying the relation. However, the calls to the simulator
sfSim in the one-time full-ZK definition are only restricted to having the correct
membership bit β.

Remark 3. It can be shown that sfSim generated proofs on words (whether
members or not) are accepted by real-world verifier V (with semi-functional
CRS). Of course, the private verifier pV will even reject proofs generated by sfSim
on non-language words. This justifies the name “semi-functional simulator”. See
[JR14b] for a precise claim and proof.

It can also be shown that the semi-functional verifier sfV is still complete, i.e.
it accepts language members and proofs generated on them by P(σ, ·, ·, ·) (with
σ generated by otfK1). As opposed to P and pV, it may no longer be sound.
This justifies the name “semi-functional verifier” a la Waters’ dual-system IBE

Dual-System Simulation-Soundness with Applications 639

construction. However, if the one-time full-ZK property holds statistically, it can
be shown that the semi-functional verifier is sound in the one-time full-simulation
world. See [JR14b] for a precise statement.

Remark 4. The composable partial-ZK and unbounded partial-simulation sound-
ness imply that that the system is true-simulation-sound (cf. true-simulation
extractable [Har11]) w.r.t. the semi-functional simulator, as stated below.

Lemma 1. (true-simulation-soundness) For a DSS-QA-NIZK, for all PPT A,

Pr
[

(ρ, σ, τ, η) ← sfK1(λ); (x, l , π) ← AsfSim(σ,τ,·,·,·) (σ, ρ) :
(x �∈ Lρ) ∧ V(σ, x, l , π) = 1

]

≈ 0, where the

experiment aborts if A calls the oracle with some (y, β, l), s.t. y �∈ Lρ or β = 0.

4 DSS-QA-NIZK for Linear Subspaces

In this section we show that languages that are linear subspaces of vector spaces
of hard bilinear groups have very short dual-system simulation sound QA-NIZK.
In fact, under the Symmetric-eXternal Diffie-Hellman (SXDH) assumption, such
proofs only require two group elements, regardless of the subspace. It was shown
in [JR14a] that such subspaces have a QA-NIZK proof of just one group ele-
ment (under the SXDH assumption). Our construction essentially shows that
with one additional group element, one can make the QA-NIZK dual-system
simulation-sound. We will actually show a more general construction which is
more widely applicable, and does not even refer to bilinear groups or linear sub-
spaces. Informally speaking, the requirement for such a general construction for
parameterized languages is that each language has a 2-universal projective hash
proof system and the augmented language with this hash proof attached has a
QA-NIZK proof system with statistical zero-knowledge. A few other properties
of the QA-NIZK are required for this construction, and we show that such prop-
erties already hold for the construction of [JR14a]. Since for linear subspaces,
2-universal projective hash proofs are rather easy to obtain, the general construc-
tion along with the QA-NIZK of [JR14a] allows us to obtain a short DSS-QA-
NIZK for linear subspaces. Apart from abstracting the main ideas involved in
the DSS-QA-NIZK construction for linear subspaces, the general construction’s
wider applicability also allows us to extend our results to linear subspaces with
tags.

We start this section by briefly reviewing projective hash proofs [CS02], and
their extensions to distributions of languages, as they are extensively used in the
rest of the section.

Projective Hash Proof System. For a language L, let X be a superset of L and
let H = (Hk)k∈K be a collection of (hash) functions indexed by K with domain
X and range another set Π. The hash function family is generalized to a notion
of projective hash function family if there is a set S of projection keys, and a
projection map α : K → S, and further the action of Hk on subset L of X is

640 C.S. Jutla and A. Roy

completely determined by the projection key α(k). Finally, the projective hash
function family is defined to be ε-universal2 is for all s ∈ S, x, x∗ ∈ X, and
π, π∗ ∈ Π with x �∈ L ∪ {x∗}, the following holds:

Pr[Hk(x) = π | Hk(x∗) = π∗ ∧ α(k) = s] ≤ ε.

A projective hash function family is called ε-smooth if for all x ∈ X \ L, the
statistical difference between the following two distributions is ε: sample k uni-
formly from K and π′ uniformly from Π; the first distribution is given by the
pair (α(k),Hk(x)) and the second by the pair (α(k), π′). For languages defined
by a witness-relation R, the projective hash proof family constitutes a projective
hash proof system (PHPS) if α, Hk, and another public evaluation function Ĥ
that computes Hk on x ∈ L, given a witness of x and only the projection key
α(k), are all efficiently computable. An efficient algorithm for sampling the key
k ∈ K is also assumed.

The above notions can also incorporate labels. In an extended PHPS, the
hash functions take an additional input called label. The public evaluation algo-
rithm also takes this additional input called label. All the above notions are now
required to hold for each possible value of label. The extended PHPS is now
defined to be ε-universal2 is for all s ∈ S, x, x∗ ∈ X, all labels l and l∗, and
π, π∗ ∈ Π with x �∈ L and (x, l) �= (x∗, l∗), the following holds: Pr[Hk(x, l) = π
| Hk(x∗, l∗) = π∗ ∧ α(k) = s] ≤ ε.

Since, we are interested in distributions of languages, we extend the above
definition to distribution of languages. So consider a parametrized class of lan-
guages {Lρ}ρ∈Lpar with the parameters coming from an associated parameter
language Lpar. Assume that all the languages in this collection are subsets of
X. Let H as above be a collection of hash functions from X to Π. We say that
the hash family is a projective hash family if for all Lρ, the action of Hk on
Lρ is determined by α(k). Similarly, the hash family is ε-universal2 (ε-smooth)
for {Lρ}ρ∈Lpar if for all languages Lρ the ε-universal2 (resp. ε-smooth) property
holds.

Intuition for the Construction. The main idea of the construction is to first
attach (as a proof component) a universal2 and smooth projective hash proof
T . The DSS-QA-NIZK is then just (T, π), where π is a QA-NIZK proof of the
original language augmented with hash proof T . So, why should this work? First
note that the smooth projective hash function is a designated-verifier NIZK,
and hence this component T is used in private verification. Secondly, since it
is universal2, its soundness will hold even when the Adversary gets to see the
projection key α(k) plus one possibly fake hash proof (i.e. Hk(x), where x not
in the language).

We will assume in our general construction that the parameterized language is
such that the simulator can sample the language parameters along with auxiliary
information that allows it to easily verify a language member. For example, this
auxiliary information can be discrete logs of the language parameters. The idea of
obtaining partial-ZK and unbounded partial-simulation soundness is then pretty

Dual-System Simulation-Soundness with Applications 641

simple. The proof simulation of T is easy to accomplish given the hash keys and,
crucially, the correct membership-bit. In fact, if the membership-bit is false, T
can just be set randomly (by smoothness). The simulation of π part of the proof
is done using the QA-NIZK simulation trapdoor. The private verification is done
as conjunction of three separate checks: (a) using the auxiliary information, (b)
using the hash proof and (c) using the real-world verifier.

Now, in the one-time full simulation, the auxiliary information is not avail-
able, but the semi-functional verifier can still use hash keys. Further, we can
have one bad use of keys (in full simulation of one proof. Since the oracle calls to
semi-functional simulator sfSim are restricted to having correct membership-bit,
they do not yield any additional information about the hash keys.

Requirements of the General Construction. Consider a parameterized class of
languages {Lρ}ρ∈Lpar, and a probability distribution D on Lpar. Assume that this
class has a projective hash proof system as above. Let Rρ be the corresponding
witness relation of Lρ. Now consider the augmented witness-relation R∗

ρ,s defined
as follows (for ρ ∈ Lpar and s ∈ S):

Rρ,s(〈x, T, l〉, w) ≡ (Rρ(x,w) ∧ T
?= Ĥ(s, 〈x, l〉, w)).

Note, the witness remains the same for the augmented relation. Since H is a pro-
jective hash function, it follows that for s = α(k), the corresponding augmented
language is L∗

ρ,s = {(x, T, l) | x ∈ Lρ ∧ T
?= Hk(x, l)}. Let the distribution

D′ on pairs (ρ, s) be defined by sampling ρ according to D and sampling k uni-
formly from K, and setting s = α(k). We remark that the language parameters
of the augmented language include projection keys s (instead of keys k) because
it is crucial that the CRS simulator in the quasi-adaptive NIZK gets only the
projection key s (and not k).

We will also assume that the distribution D on Lpar is efficiently witness
samplable which is defined by requiring that there are two efficient (probabilis-
tic) algorithms E1, E2 such that E1 can sample ρ from D along with auxiliary
information ψ (which can be thought of as witness of ρ in the language Lpar),
and E2 can decide w.h.p. if a word x is in Lρ given ρ and ψ, where the probability
is defined over choice of ρ according to D and the internal coins of E2.

Finally, we need a few additional properties of QA-NIZK proofs (Sect. 2)
that we now define. We will later show that the single group element QA-NIZK
construction for linear-subspaces of [JR14a] already satisfies these properties.

Definition 4. There are various specializations of QA-NIZK of interest:

– The QA-NIZK (Sect. 2) is said to have composable zero-knowledge [GS08]
if the CRS are indistinguishable in the real and simulation worlds, and the
simulation is indistinguishable even if the adversary is given the trapdoor.

642 C.S. Jutla and A. Roy

More precisely, for all PPT adversary A1,A2,

Pr[crs ← crsgen(λ, ρ) : A1(crs, ρ) = 1] ≈
Pr[(crs, trap) ← crs − sim(λ, ρ) : A1(crs, ρ) = 1],
and

Pr[(crs, trap) ← crs − sim(λ, ρ) : Aprover(crs,·,·,·)
2 (crs, ρ, trap) = 1] ≈

Pr[(crs, trap) ← crs − sim(λ, ρ) : Asim∗(crs,trap,·,·,·)
2 (crs, ρ, trap) = 1],

where A2 is restricted to calling the oracle only on (x,w, l) with (x,w) ∈ Rρ.
– The QA-NIZK is called true-simulation-sound [Har11] if the verifier is

sound even when an adaptive adversary has access to simulated proofs on
language members. More precisely, for all PPT A,

Pr
[

(crs, trap) ← crs − sim(λ, ρ)
(x, l , π) ← Asim(crs,trap,·,·)(crs, ρ)

: x �∈ Lρ ∧ ver(crs, x, l , π) = 1
]

≈ 0,

where the experiment aborts if the oracle is called with some y �∈ Lρ.
– The simulator is said to generate unique acceptable proofs if for all x, all

labels l , and all proofs π∗,

Pr
[

(crs, trap) ← crs − sim(λ, ρ)
π ← sim(crs, trap, x, l) : (π∗ �= π) ∧ ver(crs, x, l , π∗) = 1

]

≈ 0.

General Construction. We now show that given:

1. An ε-smooth and ε-universal2 (labeled) projective hash proof system for the
collection {Lρ}ρ∈Lpar, and

2. A composable zero-knowledge, true-simulation-sound QA-NIZK Q= (pargen,
crsgen, prover, ver, crs-sim, sim) for the augmented parameterized language
L∗

ρ,s with probability distribution D′, such that the simulator generates unique
acceptable proofs, and

3. Efficient algorithms (E1, E2) s.t. D is efficiently witness-samplable using
(E1, E2), and

4. An efficient algorithm E3 to sample uniformly from Π,

one can construct a DSS-QA-NIZK for {Lρ}ρ∈Lpar with probability distribution
D. We first give the construction, and then prove the required properties. The
QA-NIZK Q need not take any labels as input. The various components of the
dual-system non-interactive proof system Σ are as follows.

Real World consisting of:
– The algorithm K0 takes a unary string 1m as input and generates parameters

λ using pargen of Q on 1m. The CRS generation algorithm K1 uses crsgen of
Q and produces the CRS as follows: it takes λ and the language parameter
ρ, and first samples k uniformly from Kλ (recalling that the hash function
families are ensembles, one for each λ). It then outputs the CRS to be the
pair (crsgen(λ, 〈ρ, α(k)〉), α(k)).

Dual-System Simulation-Soundness with Applications 643

– The prover P takes a CRS (σ, s), input x, witness w, and label l and outputs
the proof to be (T, W) where T is computed using the public evaluation
algorithm Ĥ as Ĥ(s, 〈x, l〉, w) and W = prover(σ, 〈x, T, l〉, w).

– The verifier V on input CRS = (σ′, s), x, l , and proof (T,W), returns the
value ver(σ′, 〈x, T, l〉, W) (using ver of Q).

Partial-Simulation World consisting of:
– The semi-functional CRS simulator sfK1 takes λ as input and samples

(ρ, ψ) using E1, and also samples k uniformly from Kλ. It then uses crs − sim
of Q, and key projection algorithm α to generate the CRS σ as follows: Let
(σ′, trap) = crs − sim(λ, 〈ρ, α(k)〉). The CRS σ is then the pair (σ′, α(k)).
sfK1 also outputs k, trap as proof simulator trapdoors τ , and ρ, ψ, k as private
verifier trapdoors η.

– The semi-functional simulator sfSim uses trapdoors k, trap to produce a
(partially-simulated) proof for a word x, a label l and a binary bit β using
sim of Q as follows: if β = 1, output

T = Hk(x, l), W = sim(σ, trap, 〈x, T, l〉),
else sample π′ at random from Π (using E3) and output

T = π′ , W = sim(σ, trap, 〈x, T, l〉).
This proof is partially simulated as it uses the bit β.

– The private verifier pV uses trapdoors (ρ, ψ, k) to check a word x, label l
and a proof T,W as follows: it outputs 1 iff (a) E2 using ρ and ψ confirms
that x is in Lρ, and (b) Hk(x, l) = T , and (c) verifier of Q accepts, i.e.
ver(σ, 〈x, T, l〉,W) = 1.

One-time Full Simulation World consisting of:
– The one-time full-simulation CRS generator otfK1 takes as input λ

and language parameter ρ, and using crs − sim of Q outputs σ as follows:
first it samples k uniformly from Kλ. Let (σ′, trap) = crs − sim(λ, 〈ρ, α(k)〉).
Then σ = (σ′, α(k)). otfK1 also outputs k, trap as proof simulator trapdoors
τ and τ1, and outputs k as private verifier trapdoor η.

– The one-time full simulator otfSim takes as input the trapdoors k, trap
and a word x and a label l to produce a proof as follows:

T = Hk(x, l), W = sim(σ, trap, 〈x, T, l〉).
– The semi-functional verifier sfV uses trapdoors k to verify a word x, a

label l and a proof T,W as follows: output 1 iff (a) Hk(x, l) = T , and (b)
ver(σ, 〈x, T, l〉,W) = 1.

Theorem 1. For a parameterized class of languages {Lρ}ρ∈Lpar with probability
distribution D, if the above four conditions hold for projective hash family H,
QA-NIZK Q, and efficient algorithms E1, E2, E3, then the above dual-system
non-interactive proof system Σ is a DSS-QA-NIZK for {Lρ}ρ∈Lpar with probabil-
ity distribution D.

644 C.S. Jutla and A. Roy

Remark. In [JR14b] we instantiate the general construction for linear subspaces
of vector spaces of hard bilinear groups. As a corollary, it follows that under the
SXDH assumption the Diffie-Hellman (DH) language has a DSS-QA-NIZK with
only two group elements.

Due to space limitations, we will focus on only the proof of one-time zero-
knowledge (otzk) property, as that is the most non-trivial proof. Indeed, this
property is a significant generalization of the usual dual-system technique
employed in IBE constructions because although in otzk only one proof needs
to be fully simulated (i.e. without its membership bit being available), all the
private verifier calls in the partial-simulation world need to be simulated in
the otzk world without the quasi-adaptive trapdoors (i.e. trapdoor obtained by
witness-sampling the language parameters). Recall, in the IBE construction the
ciphertext is the counterpart of our verifier, and the IBE private keys are the
QA-NIZK proofs. Thus, in IBE only a single ciphertext needs to be simulated
when the different private keys are being “fixed” one-by-one by otzk simulation.

The detailed proof of all other properties is given in [JR14b]. The main idea
of the proof of these properties is already sketched earlier in this section.

Lemma 2. In the context of Theorem 1, let the maximum probability that the
simulator of Q does not generate unique acceptable proofs be δ. Let H be an
ε-smooth and ε-universal2 (labeled) projective hash proof system for the collection
{Lρ}ρ∈Lpar. Let M be the number of calls to the second oracle (verifier) by A3 and
A4 combined in the two experiments of the one-time full-ZK property of DSS-QA-
NIZK Σ. Then the maximum statistical distance (over all PPT Adversaries A3

and A4) between the views of the adversaries (A3,A4) in these two experiments,
denoted distotzk(Σ), is at most (ε + δ) ∗ (1 + M).

Proof. We will show that the one-time full-ZK property holds statistically. We
will define a sequence of experiments and show that the view of the PPT adver-
sary is statistically indistinguishable in every two consecutive experiments. The
first experiment H0 is identical to the partial-simulation world. First, note that
ρ is identically generated using D in both worlds. Next, note that the CRS σ
and trapdoors τ generated by sfK1 is identically distributed to the CRS σ and
both the trapdoors τ and τ1 generated by otfK1.

The next experiment H1 is identical to H0 except that on A3 supplied input
(x∗, l∗, β∗) the proof π∗ generated by sfSim is replaced by proof generated by
otfSim. If β∗ provided by A3 is not the valid membership bit for x∗ then both
experiments abort. So, assume that β∗ is the correct membership bit. In case
β∗ = 1, both sfSim and otfSim behave identically. When β∗ = 0, the random T ∗

produced by sfSim is identically distributed to the T ∗ generated by Hk(x∗, l∗)
since H is assumed to be smooth.

The next experiment H2 is identical to H1 except that the second oracle is
replaced by sfV (from being pV). In order to show that the view of the adver-
sary is indistinguishable in experiments H2 and H1, we define several hybrid
experiments H1,i (for 0 ≤ i ≤ N , where N is the total number of calls to the

Dual-System Simulation-Soundness with Applications 645

second-oracle by A3 and A4 combined). Experiment H1,0 is identical to H1, and
the intermediate experiments are defined inductively, by modifying the response
of one additional second-oracle call starting with the last (N -th) second-oracle
call, and ending with the changed response of the first second-oracle call. The
last hybrid experiment H1,N will then be same as H2. The second-oracle call
response in experiment H1,i+1 differs only in the (N − i)-th second-oracle call
response in H1,i. In the latter experiment, this call is still served as in H1 (i.e.
using pV). In the former experiment H1,i+1, the (N − i)-th call is responded to
as defined in H2 above (i.e. using sfV).

To show that the view of the adversary is statistically indistinguishable in
H1,i and H1,i+1, first note that the view of the adversary (A3 and A4 combined)
till it’s (N − i)-th call in both experiments is identical. Moreover, as we next
show, the dependence on k of this partial view (i.e. till the (N − i)-th call) is
limited to α(k) and at most one evaluation of Hk (by otfSim) on an input that is
not in Lρ. To start with, the CRS generated by sfK1 depends only on α(k). Next,
the first oracle sfSim produces T using Hk on its input only if the membership bit
β is 1 and correct, and since H is projective this hash value is then completely
determined by α(k). Finally, all calls to the second oracle till the (N − i)-th call
are still served using pV, and again using the projective property of H, it is clear
that the conjunct (b) in pV can be computed using only α(k), because for non
Lρ members, the conjunct (a) is already false, and hence (b) is redundant.

Now, the difference in the (N − i)-th call is that the conjunct (a) of pV is
missing in sfV. Let x, l , T,W be the input supplied by the PPT Adversary to this
call. If Hk(x, l) is not equal to the supplied T , then both pV and sfV return 0.
So, suppose Hk(x, l) is equal to T , and yet x is not in Lρ, i.e. conjunct (a) of pV
is false. First, if this input x, l , T,W is same as (x∗, l∗, T ∗,W ∗) associated with
the one-time call to otfSim, then the experiment aborts. Thus, we can assume
that this is a different input. If (x, l) is same as (x∗, l∗), then (T,W) �= (T ∗,W ∗).
Now, by construction (i.e. by definition of otfSim) T ∗ = Hk(x∗, l∗), and hence
either T �= Hk(x, l) which is not possible by hypothesis, or (x, l , T) = (x∗, l∗, T ∗)
and W �= W ∗. But, W ∗ is proof generated by the simulator of Q, and since the
simulator of Q generates unique acceptable proofs (by assumption), the verifier
ver of Q rejects (x, l , T,W), and thus both pV and sfV return 0.

On the other hand, if (x, l) �= (x∗, l∗) then by the ε-universal2 property of H,
the probability of T being same as Hk(x, l) is at most ε. Thus, both pV and sfV
return 0. That completes the induction step, and thus the view of the adversary
in experiments H1 and H2 is statistically indistinguishable.

The next experiment H3 is identical to H2 except that the CRS is generated
using otfK1. The only difference is that the (verifier) trapdoor does not include
ρ, ψ. But, since the second oracle is served by sfV and it does not need ρ, ψ,
the experiment H3 is well-defined and statistically indistinguishable from H2,
Further, H3 is identical to the one-time simulation world, and that completes
the proof.

The statistical distance between the views of the adversaries (A3,A4) in H0

and H3 is at most (ε + δ) ∗ (1 + M). ��

646 C.S. Jutla and A. Roy

5 Keyed-Homomorphic CCA Encryption

Keyed-Homomorphic Encryption is a primitive, first developed in [EHO+13],
which allows homomorphic operations with a restricted evaluation key, while
preserving different flavors of semantic security depending on whether access to
the evaluation key is provided or not. For an adversary not having access to the
evaluation key, the homomorphic operation should not be available and this is
ensured by requiring CCA security. However, if an adversary comes into posses-
sion of the evaluation key, CCA security can no longer be preserved and thus
weaker forms of security, such as CCA1, are required. In [LPJY14], the authors
gave improved constructions for multiplicative homomorphism with better secu-
rity guarantees.

A KH-PKE scheme consists of algorithms (KeyGen,Enc,Dec,Eval),
where the first three are familiar from public-key encryption, and KeyGen gen-
erates a public key pk, a decryption key skd and an Eval key skh. Algorithm
Eval takes two ciphertexts and returns a ciphertext or ⊥. Detailed definitions
can be found in [JR14b]. The scheme is said to be correct if (i) for Enc we have
Dec(skd, Enc(pk,M)) = M , where skd is the secret decryption key, and (ii) for
Eval we have Dec(skd, Eval(skh, C1, C2)) = Dec(skd, C1)�Dec(skd, C2), where
� is a binary operation on plaintexts, and if any operand of � is ⊥ then the
result is ⊥. The KH-PKE scheme is defined to be KH-CCA secure by a usual
public-key CCA experiment with the following twists: the challenger maintains
a set D of ciphertexts dependent on the challenge ciphertext (via Eval); decryp-
tion queries are not allowed on ciphertexts in D. Further, an adversary A can
adaptively ask for skh, which we call the reveal event. After the reveal event,
the Eval oracle is not available. Similarly, decryption is not available after A has
both requested skh and obtained the challenge ciphertext, in any order. Again,
detailed definitions can be found in [JR14b].

Construction. We present a construction of a KH-CCA secure KH-PKE encryp-
tion scheme with multiplicative homomorphism which utilizes our general DSS-
QA-NIZK construction for the Diffie-Hellman (DH) language. In fact, if we
assume that the adversary never invokes RevHK, we can prove security generi-
cally assuming any DSS-QA-NIZK (with statistical one-time full-ZK) for the DH
language. When the adversary invokes RevHK, the partial-simulation trapdoor
is revealed to the Adversary, and hence the one-time full-ZK property of DSS-
QA-NIZK may not hold. Thus, we a need a stronger notion of DSS-QA-NIZK
that incorporates the reveal event, and includes an additional requirement that
the semi-functional verifier remains sound as before. Using this stronger notion,
we can prove generic security of the KH-PKE scheme even with RevHK, and
we further show that our general construction of Sect. 4 continues to satisfy this
stronger property.

We start with the observation that a standard ElGamal encryption scheme
(gx,m · fx) is multiplicatively homomorphic, but is not CCA secure due to
the exact same reason. The main idea of our construction is as follows. The
ciphertexts include an ElGamal encryption of the message M , say gr,M ·gkr for

Dual-System Simulation-Soundness with Applications 647

a public key gk. The public key also consists of a member ga, and the ciphertext
also include gar (we refer to this triple in the ciphertext as augmented ElGamal
encryption). It is well-known [JR12] that if a one-time simulation-sound NIZK
proof of gr and gar being of the correct form is also included in the ciphertext
then it becomes a publicly-verifiable CCA2-secure encryption scheme. In our
keyed-homomorphic construction, we include a DSS-QA-NIZK for gr and gar

being of the correct form (i.e. being a DH tuple). Although the DSS-QA-NIZK
itself is not homomorphic, we can take advantage of the corresponding Semi-
Functional Simulator sfSim and simulate the proof of a multiplicatively generated
(augmented) ElGamal encryption when computing a homomorphic evaluation.

So, given a dual-system non-interactive proof Σ, consider the following algo-
rithms for a KH-PKE scheme P:

KeyGen: Generate g, a, k randomly. Use sfK1 of Σ to get CRS σ and trap-
doors τ and η, and language parameters ρ = (g,ga). Set pk = (g,ga,gk, σ),
skh = τ , skd = k.
Enc: Given plaintext m, generate w ← Zq and compute (using P of Σ)
c := (gw,gaw, γ,P(σ, (gw,gaw), w, l = γ)), where γ := m · gkw.
Dec: Given ciphertext c = (ρ, ρ̂, γ, π), first check if V(σ, π, (ρ, ρ̂), γ) of Σ
holds, then compute m := γ/ρk.
Eval (Multiplicative): Given ciphertexts c1 = (ρ1, ρ̂1, γ1, π1) and c2 =
(ρ2, ρ̂2, γ2, π2), first check if V(σ, πi, (ρi, ρ̂i), γi) of Σ holds for all i ∈ {1, 2}.
Then compute: ρ = ρ1ρ2ρ3, ρ̂ = ρ̂1ρ̂2ρ̂3, γ = γ1γ2γ3, where 〈ρ3, ρ̂3, γ3〉 is a
fresh random tuple obtained by picking r at random and setting the tuple
to be 〈gr, (ga)r, (gk)r〉. Then compute π := sfSim(σ, τ, (ρ, ρ̂), β = 1, l = γ)
using sfSim of Σ. Output ciphertext c := (ρ, ρ̂, γ, π).

Theorem 2. (Security of Construction). The above algorithms P= (Key-
Gen, Enc, Dec, Eval) constitute a KH-CCA secure Keyed-Homomorphic Public
Key Encryption scheme with multiplicative homomorphism, if Σ is a DSS-QA-
NIZK for the parameterized Diffie-Hellman language (with language parameters
distributed randomly) and RevHK is not available.

The main idea of the proof of the above theorem is similar to proofs of CCA2-
secure public key encryption schemes using alternate decryption. In other words,
the ciphertext can be decrypted as m := γ/ρk, or as m := γ/(ρk0 ρ̂k1), where
k = k0 +ak1. But, this requires that the ciphertext has correct ρ̂ component, i.e.
ρ̂ = ρa. The ciphertexts include a NIZK for this purpose, but the NIZK needs
to be simulation-sound. Additional complication arises because of dependent
ciphertexts. To handle this, we first build an intermediate experiment where all
dependent ciphertexts are generated using fresh random ElGamal tuples. Indis-
tinguishability of such an intermediate experiment from the KH-CCA experi-
ment is shown inductively, by carefully employing one-time full-ZK and partial-
simulation unbounded simulation soundness. The theorem is proved in detail
in [JR14b]. The Adversary’s advantage in the KH-CCA security game is at most
(8L + 1) · ADVDDH + O(L/q), where L is the total number of calls to Eval.

648 C.S. Jutla and A. Roy

Functionality Fpake

The functionality Fpake is parameterized by a security parameter k. It interacts with an
adversary S and a set of parties via the following queries:

Upon receiving a query (NewSession, sid, Pi, Pj , pw, role) from party Pi:
Send (NewSession, sid, Pi, Pj , role) to S. In addition, if this is the first NewSession query,
or if this is the second NewSession query and there is a record (Pj , Pi, pw

′), then record
(Pi, Pj , pw) and mark this record fresh.

Upon receiving a query (TestPwd, sid, Pi, pw
′) from the adversary S:

If there is a record of the form (Pi, Pj , pw) which is fresh, then do: If pw = pw′, mark
the record compromised and reply to S with “correct guess”. If pw �= pw′, mark the
record interrupted and reply with “wrong guess”.

Upon receiving a query (NewKey, sid, Pi, sk) from S, where |sk| = k:
If there is a record of the form (Pi, Pj , pw), and this is the first NewKey query for Pi,
then:
– If this record is compromised, or either Pi or Pj is corrupted, then output (sid, sk)

to player Pi.
– If this record is fresh, and there is a record (Pj , Pi, pw

′) with pw′ = pw, and a key
sk′ was sent to Pj , and (Pj , Pi, pw) was fresh at the time, then output (sid, sk′) to
Pi.

– In any other case, pick a new random key sk′ of length k and send (sid, sk′) to Pi.
Either way, mark the record (Pi, Pj , pw) as completed.

Upon receiving (Corrupt, sid, Pi) from S: if there is a (Pi, Pj , pw) recorded, return
pw to S, and mark Pi corrupted.

Fig. 2. The password-based key-exchange functionality Fpake

The more general theorem (with RevHK) is stated and proved in [JR14b].
Under the SXDH assumption, the above construction leads to ciphertexts of size
only five group elements. Further, using an augmented Diffie Hellman language
(augmented with a smooth hash proof of DH tuple) and its DSS-QA-NIZK,
we also extend our result to get CCA1-security despite the key being revealed
(see [JR14b]). The resulting scheme has KH-PKE ciphertexts of size six group
elements.

6 Single-Round UC Password-Based Key Exchange

The essential elements of the Universal Composability framework can be found
in [Can01]. In the following, we adopt the definition for password-based key
exchange (UC-PAKE) from Canetti et al [CHK+05].

6.1 UC-PAKE Definition

Just as in the normal key-exchange functionality, if both participating parties
are not corrupted, then they receive the same uniformly distributed session key
and the adversary learns nothing of the key except that it was generated. How-
ever, if one of the parties is corrupted, then the adversary determines the session
key. This power to the adversary is also given in case it succeeds in guessing the
parties’ shared password. Participants also detect when the adversary makes an
unsuccessful attempt. If the adversary makes a wrong password guess in a given

Dual-System Simulation-Soundness with Applications 649

Generate g1 ← G1,g2 ← G2 and a, b, c, d, e, u1, u2 ← Zq, and let H be a CRHF.

Compute a = ga
1 , d = gd

1, e = ge
1, w1 = gu1

1 , w2 = gu2
1

b = gb
2, c = gc

2, v1 = gu1b−d−ca
2 , v2 = gu2b−e

2 .

CRS := (g1,g2,a,b, c,d, e,w1,w2,v1,v2, H).

Party Pi Network

Input (NewSession, sid, ssid, Pi, Pj , pwd, initiator/responder)

Choose r1, s1
$←− Zq.

Set R1 = gr1
1 , S1 = pwd · ar1 , T1 = (d · ei1)r1 , ρ̂1 = bs1 ,

R1,S1,T1,ρ̂1−−−−−−−−→ Pj

W1 = (w1w
i1
2)r1 , where i1 = H(sid, ssid, Pi, Pj , R1, S1, ρ̂1)

and erase r1. Send R1, S1, T1 and ρ̂1, and retain W1.

Receive R′
2, S

′
2, T

′
2, ρ̂

′
2.

If any of R′
2, S

′
2, T

′
2, ρ̂

′
2 is not in their respective group or is 1,

set sk1
$←− GT , else

compute i′2 = H(sid, ssid, Pj , Pi, R
′
2, S

′
2, ρ̂

′
2),

R′
2,S′

2,T ′
2,ρ̂′

2←−−−−−−−− Pj

ρ1 = gs1
2 , θ1 = cs1 , γ1 = (v1v

i′
2
2)s1 .

Compute sk1 = e(T ′
2, ρ1) · e(S′

2/pwd, θ1) · e(R′
2, γ1) · e(W1, ρ̂

′
2)

Output (sid, ssid, sk1).

Fig. 3. Single round UC-secure Password-authenticated KE under SXDH Assumption.

session, then the session is marked interrupted and the parties are provided ran-
dom and independent session keys. If however the adversary makes a successful
guess, then the session is marked compromised, and the adversary is allowed to
set the session key. If a session remains marked fresh, meaning that it is neither
interrupted nor compromised. uncorrupted parties conclude with both parties
receiving the same, uniformly distributed session key. The formal description of
the UC-PAKE functionality Fpake is given in Fig. 2.

The real-world protocol we provide is also shown to be secure when different
sessions use the same common reference string (CRS). To achieve this goal, we
consider the universal Composability with joint state (JUC) formalism of Canetti
and Rabin [CR03]. This formalism provides a “wrapper layer” that deals with
“joint state” among different copies of the protocol. In particular, defining a
functionality F also implicitly defines the multi-session extension of F (denoted
by F̂): F̂ runs multiple independent copies of F , where the copies are distin-
guished via sub-session IDs ssid. The JUC theorem [CR03] asserts that for any
protocol π that uses multiple independent copies of F , composing π instead with
a single copy of a protocol that realizes F̂ , preserves the security of π.

6.2 Main Idea of the UC Protocol Using DSS-QA-NIZK

For the sake of exposition, let’s call one party in the session the server and the
other the client. (There is no such distinction in the actual protocol, and in fact

650 C.S. Jutla and A. Roy

each party will run two parallel protocols, one as a client and another as a server,
and output the product of the two keys generated). The common reference string
(CRS) defines a Diffie-Hellman language, i.e. ρ = g1,ga

1 . The client picks a fresh
Diffie-Hellman tuple by picking a witness r and computing 〈x1 = gr

1,x2 = ga·r
1 〉.

It also computes a DSS-QA-NIZK proof on this tuple, which is a hash proof T
and a QA-NIZK proof W of the augmented Diffie-Hellman tuple. Note, the QA-
NIZK proof W is just a single group element [JR14a] (see [JR14b] for details).
It next modifies the Diffie-Hellman tuple using the password pwd it possesses.
Essentially, it multiplies x2 by pwd to get a modified group element which we
will denote by S - in fact (x1, S) is an ElGamal encryption of pwd. It next sends
this ElGamal encryption x1, S and the T component of the proof to the server.
It retains W for later use. At this point it can erase the witness r.

As a first step, we intend to utilize an interesting property of the real-world
verifier V of the DSS-QA-NIZK: the verifier is just the verifier of the QA-NIZK for
the DH language augmented with the hash proof, and the QA-NIZK verifiers for
linear subspaces are just a single bi-linear product test. Specifically (see [JR14b]),
V on input x1,x2 and proof T,W , computes ι = H(x1,x2), and outputs true iff

e(x1, (v1vι
2)) · e(x2, c) · e(T,g2) = e(W,b).

Thus, it outputs true iff the left-hand-size (LHS) equals the right-hand-side
(RHS) of the above equation. Note that the client sent x1, S (i.e. x2 linearly
modified by pwd) and T to the server. Assuming the server has the same pass-
word pwd, it can un-modify the received message and get x2 = S/pwd, and
hence can compute this LHS (using the CRS). The client retained W , and can
compute the RHS (using the CRS).

The intuition is that unless an adversary out-right guesses the password, it
cannot produce a different x′

1, S′, T ′, such that x′
1, S′/pwd, T ′ used to compute

the LHS will match the RHS above. While we make this intuition rigorous later
by showing a UC simulator, to complete the description of the protocol, and
using this intuition, the client and server actually compute the LHS and RHS
respectively of the following equation (for a fresh random s ∈ Zq picked by the
server):

e(x1, (v1vι
2)

s) · e(x2, cs) · e(T,gs
2) = e(W,bs). (1)

Now note that for the client to be able to compute the RHS, it must have bs,
since s was picked by the server afresh. For this purpose, the protocol requires
that the server send bs to the client (note this can be done independently and
asynchronously of the message coming from the client). It is not difficult to see,
from completeness of the prover and verifier of the DSS-QA-NIZK, that both
parties compute the same quantity.

As mentioned earlier, each pair of parties actually run two versions of the
above protocol, where-in each party plays the part of client in one version, and
the part of server in the other version. Each party then outputs the product of the
LHS of (1) computation (in the server version) and the RHS of (1) computation
(in the client version) as the session-key. We will refer to these two factors in
the session-key computation as the server factor and the client factor resp. This

Dual-System Simulation-Soundness with Applications 651

is the final UC-PAKE protocol described in Fig. 3 (with the parties identities,
session identifiers and bs from its server version, used as label). The quantity x1

is called R in the protocol, as subscripts will be used for other purposes.

Theorem 3. Assuming the existence of SXDH-hard groups, the protocol given
in Fig. 3 securely realizes the F̂pake functionality in the Fcrs hybrid model, in the
presence of adaptive corruption adversaries.

The theorem is proved in [JR14b]. We provide the intuition below.

6.3 Main Idea of the UC Simulator

We first re-define the various verifiers in the DSS-QA-NIZK for the DH lan-
guage described in [JR14b], to bring them in line with the above description.
In particular, the real-world verifier V is defined equivalently to be: the verifier
V takes as input CRSv, a word 〈x1,x2〉, and a proof π = (T,W), computes
ι = H(x1,x2, l), picks a fresh random s ∈ Zq, and outputs true iff

e(x1, (v1vι
2))

s · e(x2, c)s · e(T,g2)s = e(W,bs).

This is equivalent as long as s �= 0.
The partial-simulation world private-verifier pV is now defined as: it checks a

word 〈x1,x2〉 and a proof T,W as follows: compute ι = H(x1,x2, l); pick s and
s′ randomly and independently from Zq, and if x2 = xa

1 and T = xd+ιe
1 then set

ξ = 1T else set ξ = e(g1,g2)s′
and output true iff

e(x1, (v1vι
2))

s · e(x2, c)s · e(T,g2)s · ξ = e(W,bs). (2)

This is equivalent to the earlier definition of pV with high probability by an
information-theoretic argument, if the trapdoors used were generated by the
semi-functional CRS generator sfK1.

The UC simulator S works as follows: It will generate the CRS for F̂pake

using the semi-functional CRS generator sfK1 for the Diffie-Hellman language.
The next main difference is in the simulation of the outgoing message of the
real world parties: S uses a dummy message μ instead of the real password
which it does not have access to. Further, it postpones computation of W till
the session-key generation time. Finally, another difference is in the processing
of the incoming message, where S decrypts the incoming message R′

2, S
′
2, T

′
2 to

compute a pwd′, which it uses to call the ideal functionality’s test function. It
next generates a sk similar to how it is generated in the real-world (recall the
computation of server factor and client factor by LHS and RHS of (1)) except
that it uses the Eq. (2) corresponding to the private verifier. It sends sk to the
ideal functionality to be output to the party concerned.

Note, S simulating the server factor computation can compute the LHS of
Eq. (2), except S does not have direct access to pwd and hence cannot get x2

from the modified Ŝ that it receives. However, it can do the following: Use the
TestPwd functionality of the ideal functionality F̂pake with a pwd′ computed as

652 C.S. Jutla and A. Roy

Ŝ/xa
1 . If this pwd′ does not match the pwd recorded in F̂pake for this session and

party, then F̂pake anyway outputs a fresh random session key, which will then
turn out to be correct simulation (note, this case is same as x2 (= S/pwd) �= xa

1 ,
which would also have resulted in the same computation on the LHS). If the
pwd′ matched the pwd, the simulator is notified the same, and hence it can now
do the following: if T = xd+ιe

1 then set ξ = 1T else set ξ = e(g1,g2)s′
. Next,

it calls F̂pake’s NewKey with session key e(x1, (v1vι
2))

s · e(xa
1 , c)

s · e(T,g2)s · ξ
(multiplied by a RHS computation of (2) in simulation of the client factor, which
we will discuss later).

The UC Simulator S must also simulate gr
1,pwd · (ga

1)
r and the T component

of the DSS-QA-NIZK, as that is the message sent out to the adversary by the real
party (“client” part of the protocol). However, S does not have access to pwd.
It can just generate a fake tuple gr

1, μ · (ga
1)

r ·gr′
1 (for some constant or randomly

chosen group element μ, and some random and independent r′ ∈ Zq). Now, the
semi-functional (proof) simulator sfSim of the DSS-QA-NIZK of [JR14b] has an
interesting property that when the tuple 〈x1,x2〉 does not belong to the language
(language membership-bit zero), the T component of the simulated proof can
just be generated randomly.

The simulator also needs W to compute the client factor, and we had post-
poned it till the session-key computation phase. As mentioned above, if the
password pwd′ “decrypted” from the incoming message is not correct then the
key is anyway set to be random, and hence a proper W is not even required.
However, if the pwd′ is correct, the simulator is notified of same, and hence it
can compute W component of the proof by passing x2 = μ · (ga

1)
r · gr′

1 /pwd′

along with x1 (= gr
1) to sfSim.

Of course, fixing the above fake tuples employs one-time full-simulation prop-
erty of the DSS-QA-NIZK (and the DDH assumption).

6.4 Main Idea of the Proof of UC Realization

The proof that the simulator S described above simulates the Adversary in the
real-world protocol, follows essentially from the properties of the DSS-QA-NIZK,
although not generically since the real-world protocol and the simulator use the
verifiers V and pV (resp.) in a split fashion. However, as described above the
proof is very similar and we give a broad outline here. The proof will describe
various experiments between a challenger C and the adversary, which we will just
assume to be the environment Z (as the adversary A can be assumed to be just
dummy and following Z’s commands). In the first experiment the challenger C
will just be the combination of the code of the simulator S above and F̂pake. In
particular, after the environment issues a NewSession request with a password
pwd, the challenger gets that password. So, while in the first experiment, the
challenger (copying S) does not use pwd directly, from the next experiment on-
wards, it can use pwd. Thus, the main goal of the ensuing experiments is to
modify the fake tuples gr

1, μ · (ga
1)

r ·gr′
1 by real tuples (as in real-world) gr

1,pwd ·
(ga

1)
r, since the challenger has access to pwd. This is accomplished by a hybrid

Dual-System Simulation-Soundness with Applications 653

argument, modifying one instance at a time using DDH assumption in group G1

and using one-time full-ZK property (and using the otfSim proof simulator for
that instance). A variant of the one-time full-ZK semi-functional verifier sfV (just
as the variants for pV and V described above) is easily obtained. Note that in
each experiment, whenever the simulator invokes partial proof simulation it can
provide the correct membership bit (with high probability) as in each experiment
it knows exactly which tuples are real and which are fake.

Once all the instances are corrected, i.e. R,S generated as gr
1,pwd · (ga

1)
r,

the challenger can switch to the real-world because the tuples R,S/pwd are now
Diffie-Hellman tuples. This implies that the session keys are generated using the
V variant described above, which is exactly as in the real-world.

6.5 Adaptive Corruption

The UC protocol described above is also UC-secure against adaptive corruption
of parties by the Adversary in the erasure model. In the real-world when the
adversary corrupts a party (with a Corrupt command), it gets the internal state
of the party. Clearly, if the party has already been invoked with a NewSession
command then the password pwd is leaked at the minimum, and hence the ideal
functionality Fpake leaks the password to the Adversary in the ideal world. In the
protocol described above, the Adversary also gets W and s, as this is the only
state maintained by each party between sending R,S, T, ρ̂, and the final issuance
of session-key. Simulation of s is easy for the simulator S since S generates
s exactly as in the real world. For generating W , which S had postponed to
computing till it received an incoming message from the adversary, it can now
use the pwd which it gets from F̂pake by issuing a Corrupt call to F̂pake. More
precisely, it issues the Corrupt call, and gets pwd, and then calls the semi-
functional simulator with x2 = μ ·(ga

1)
r ·gr′

1 /pwd along with x1 (= gr
1) to get W .

Note that this computation of W is identical to the postponed computation of
W in the computation of client factor of sk1 (which is really used in the output
to the environment when pwd′ = pwd).

References

[ABB+13] Abdalla, M., Benhamouda, F., Blazy, O., Chevalier, C., Pointcheval,
D.: SPHF-friendly non-interactive commitments. In: Sako, K., Sarkar, P.
(eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 214–234. Springer,
Heidelberg (2013)

[ABP15] Abdalla, M., Benhamouda, F., Pointcheval, D.: Disjunctions for hash proof
systems: new constructions and applications. In: Oswald, E., Fischlin,
M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 69–100. Springer,
Heidelberg (2015)

[ACP09] Abdalla, M., Chevalier, C., Pointcheval, D.: Smooth projective hashing for
conditionally extractable commitments. In: Halevi, S. (ed.) CRYPTO 2009.
LNCS, vol. 5677, pp. 671–689. Springer, Heidelberg (2009)

654 C.S. Jutla and A. Roy

[BBC+13] Benhamouda, F., Blazy, O., Chevalier, C., Pointcheval, D., Vergnaud, D.:
New techniques for SPHFs and efficient one-round PAKE protocols. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042,
pp. 449–475. Springer, Heidelberg (2013)

[Can01] Canetti, R.: Universally composable security: a new paradigm for crypto-
graphic protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society
Press, October 2001

[CCS09] Camenisch, J., Chandran, N., Shoup, V.: A public key encryption scheme
secure against key dependent chosen plaintext and adaptive chosen cipher-
text attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp.
351–368. Springer, Heidelberg (2009)

[CHK+05] Canetti, R., Halevi, S., Katz, J., Lindell, Y., MacKenzie, P.: Universally
composable password-based key exchange. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 404–421. Springer, Heidelberg (2005)

[CR03] Canetti, R., Rabin, T.: Universal composition with joint state. In: Boneh, D.
(ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 265–281. Springer, Heidelberg
(2003)

[CS02] Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive
chosen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.)
EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg
(2002)

[DDN91] Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography (extended
abstract). In: Proceedings of 23rd ACM STOC, pp. 542–552 (1991)

[EHO+13] Emura, K., Hanaoka, G., Ohtake, G., Matsuda, T., Yamada, S.: Chosen
ciphertext secure keyed-homomorphic public-key encryption. In: Kurosawa,
K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 32–50. Springer,
Heidelberg (2013)

[GMR89] Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of inter-
active proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

[GS08] Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear
groups. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp.
415–432. springer, Heidelberg (2008)

[Har11] Haralambiev, K.:Efficient cryptographic primitives for non-interactive zero-
knowledge proofs and applications. Ph.D. dissertation (2011)

[JR12] Jutla, C., Roy, A.: Relatively-sound NIZKs and password-based key-
exchange. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012.
LNCS, vol. 7293, pp. 485–503. Springer, Heidelberg (2012)

[JR13] Jutla, C.S., Roy, A.: Shorter quasi-adaptive NIZK proofs for linear sub-
spaces. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS,
vol. 8269, pp. 1–20. Springer, Heidelberg (2013)

[JR14a] Jutla, C.S., Roy, A.: Switching lemma for bilinear tests and constant-
size NIZK proofs for linear subspaces. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 295–312. Springer, Heidelberg
(2014)

[JR14b] Jutla, C.S., Roy, A.: Dual-system simulation-soundness with applications
to UC-PAKE and more. Cryptology ePrint Archive, Report 2014/805.
https://eprint.iacr.org/2014/805

[KV11] Katz, J., Vaikuntanathan, V.: Round-optimal password-based authenti-
cated key exchange. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp.
293–310. Springer, Heidelberg (2011)

https://eprint.iacr.org/2014/805

Dual-System Simulation-Soundness with Applications 655

[KW15] Kiltz, E., Wee, H.: Quasi-adaptive NIZK for linear subspaces revisited. In:
Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp.
101–128. Springer, Heidelberg (2015)

[LPJY14] Libert, B., Peters, T., Joye, M., Yung, M.: Non-malleability from malleabil-
ity: simulation-sound quasi-adaptive NIZK proofs and CCA2-secure encryp-
tion from homomorphic signatures. In: Nguyen, P.Q., Oswald, E. (eds.)
EUROCRYPT 2014. LNCS, vol. 8441, pp. 514–532. Springer, Heidelberg
(2014)

[Sah99] Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive
chosen-ciphertext security. In: 40th FOCS, pp. 543–553. IEEE Computer
Society Press, October 1999

[Wat09] Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE
under simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol.
5677, pp. 619–636. Springer, Heidelberg (2009)

Secret Sharing and Statistical Zero Knowledge

Vinod Vaikuntanathan(B) and Prashant Nalini Vasudevan

MIT CSAIL, Cambridge, USA
vinodv@csail.mit.edu, prashvas@mit.edu

Abstract. We show a general connection between various types of sta-
tistical zero-knowledge (SZK) proof systems and (unconditionally secure)
secret sharing schemes. Viewed through the SZK lens, we obtain several
new results on secret-sharing:

– Characterizations: We obtain an almost-characterization of access
structures for which there are secret-sharing schemes with an effi-
cient sharing algorithm (but not necessarily efficient reconstruction).
In particular, we show that for every language L ∈ SZKL (the class of
languages that have statistical zero knowledge proofs with log-space
verifiers and simulators), a (monotonized) access structure associated
with L has such a secret-sharing scheme. Conversely, we show that
such secret-sharing schemes can only exist for languages in SZK.

– Constructions: We show new constructions of secret-sharing schemes
with both efficient sharing and efficient reconstruction for access struc-
tures associated with languages that are in P, but are not known to
be in NC, namely Bounded-Degree Graph Isomorphism and constant-
dimensional lattice problems. In particular, this gives us the first com-
binatorial access structure that is conjectured to be outside NC but
has an efficient secret-sharing scheme. Previous such constructions
(Beimel and Ishai; CCC 2001) were algebraic and number-theoretic
in nature.

– Limitations: We also show that universally-efficient secret-sharing
schemes, where the complexity of computing the shares is a polyno-
mial independent of the complexity of deciding the access structure,
cannot exist for all (monotone languages in) P, unless there is a poly-
nomial q such that P ⊆ DSPACE(q(n)).

Keywords: Statistical zero knowledge · Secret sharing

1 Introduction

Secret-sharing [8,29], a foundational primitive in information-theoretic cryptog-
raphy, enables a dealer to distribute shares of a secret to n parties such that

V. Vaikuntanathan—Supported in part by NSF CNS-1350619, CNS-1414119, the
Qatar Computing Research Institute, NEC Corporation, Alfred P. Sloan Research
Fellowship, Microsoft Faculty Fellowship, and a Steven and Renee Finn Career Devel-
opment Chair.
P.N. Vasudevan—Supported by the Qatar Computing Research Institute.

c© International Association for Cryptologic Research 2015
T. Iwata and J.H. Cheon (Eds.): ASIACRYPT 2015, Part I, LNCS 9452, pp. 656–680, 2015.
DOI: 10.1007/978-3-662-48797-6 27

Secret Sharing and Statistical Zero Knowledge 657

only some predefined authorized sets of parties will be able to reconstruct the
secret from their shares. Moreover, the shares of any unauthorized set of parties
should reveal no information about the secret, even if the parties are compu-
tationally unbounded. The (monotone) collection of authorized sets is called an
access structure.

We call a secret-sharing scheme efficient if both the sharing algorithm (exe-
cuted by the dealer) and reconstruction algorithm (executed by the parties) run
in time polynomial in n. Associating sets S ⊆ [n] with their characteristic vectors
xS ∈ {0, 1}n, we can define a language LA associated with an access structure
A.1 Namely, LA is simply the set of all xS such that S ∈ A. For an access
structure A to have an efficient secret sharing scheme, it must be the case that
the language LA is computable in polynomial time.

A major open question in information-theoretic cryptography is:

Q1: Characterize access structures with efficient secret-sharing schemes

Indeed, this question has been widely studied [6,8,19,20,29], culminating with
the result of Karchmer and Wigderson [20] who showed efficient secret sharing
schemes for various log-space classes.2 We refer the reader to Beimel’s excellent
survey [4] for more details. In any event, it is wide open whether all of mP, the
class of languages recognized by monotone polynomial-size circuits, has efficient
secret sharing schemes.

Restricting the reconstruction algorithm to be a linear function of the
shares gives us a special kind of secret-sharing scheme called a linear secret-
sharing scheme. The Karchmer-Wigderson secret sharing scheme [20] for log-
space classes is a linear secret-sharing scheme. We also know that linear and
even the slightly more general quasi-linear schemes [5,20] cannot exist for access
structures outside NC, the class of languages computable by boolean circuits of
polylogarithmic depth. Finally, Beimel and Ishai [5] showed non-linear secret-
sharing schemes for two specific access structures associated to algebraic prob-
lems (related to computing quadratic residuosity and co-primality) which are in
P but are believed not to be in NC.

We will also study secret-sharing schemes (which we call semi-efficient) where
the dealer is efficient, namely runs in time polynomial in n, however the recon-
struction algorithm need not be efficient. Aside from their theoretical interest,
such secret-sharing schemes may find use in scenarios where sharing happens in
the present (and thus has to be efficient) but reconstruction happens in a future
where computational resources might be cheaper. This also justifies our desire to
achieve information-theoretic (unconditional) security since not only the honest
parties, but also the adversary gains more computational resources with time.

Beimel and Ishai [5] show a semi-efficient secret-sharing scheme for the lan-
guage of quadratic residuosity modulo a composite, which is believed not to be
1 More formally, we have to speak of a family of access structures {An}n∈N, one for

every n. We abuse notation slightly and denote A, consisting of subsets of n parties,
as the access structure.

2 We use this as a short-hand to say “secret sharing schemes for access structures A
whose associated language LA can be recognized in log-space”.

658 V. Vaikuntanathan and P.N. Vasudevan

in P. However, quite surprisingly, a characterization of access structures with
semi-efficient secret-sharing schemes also appears to be open:

Q2: Characterize access structures with semi-efficient secret-sharing
schemes

As a parenthetical remark, we note that a different interpretation of efficiency is
sometimes used in the secret-sharing literature. Namely, a secret-sharing scheme
is termed efficient [9,11,21] if the total length of the n shares is polynomial
in n. Let us call this notion size efficiency. This makes no reference to the
complexity of either the sharing or the reconstruction algorithms. In this work,
we use the strong interpretation of efficient, namely where both the sharing and
reconstruction algorithms run in time poly(n) and that of semi-efficient where
only the sharing algorithm needs to run in time poly(n). We note that either of
these two notions is stronger than size efficiency.

It is against this backdrop that we begin our study. Our main contribution
is to develop an interactive proof lens to study these questions. As concrete
results of this connection, we obtain an almost-characterization of access struc-
tures with semi-efficent secret-sharing schemes (almost solving Q2), new com-
binatorial access structures conjectured to lie outside NC which have efficient
secret-sharing schemes (extending [5]), and limitations on an ambitious notion
of universally efficient secret-sharing. We describe our results in detail below.

1.1 Our Results

Our central tool is a special type of two-message interactive proof system (that
we call Special Interactive Proofs). Roughly speaking, the restriction on the proof
system for a language L (aside from the fact that it has two messages) is that
the verifier uses a special procedure to accept or reject. In particular, the verifier
V on input x and a uniformly random bit b, comes up with a message m to
send to the prover. The prover wins (the verifier accepts) if he can guess the
bit b, given m. If x ∈ L, the prover should have a distinguishing (and therefore
an accepting) strategy. However, if x /∈ L, the verifier messages for bits 0 and 1
should be statistically indistinguishable.

Before we proceed, we must clarify what it means to have a secret sharing
scheme for a language L which is not necessarily monotone. We follow the app-
roach of Beimel and Ishai [5] and define a (monotonized) access structure on
2n parties {Pi,0, Pi,1}i∈[n] associated with L (more precisely, L ∩ {0, 1}n): for
every i, the pair of parties {Pi,0, Pi,1} is in the access structure, as is every set
of parties {P1,x1 , P2,x2 , . . . , Pn,xn

} for all x ∈ L. These are the minimal sets that
make up the access structure AL. Note that the complexity of deciding whether
a set S ∈ AL is precisely the complexity of deciding the language L.

Our research in this direction was motivated by the fact that if, for some
language L, AL has a semi-efficient secret sharing scheme, then L has a special
interactive proof: the verifier simply shares a random bit b according to the shar-
ing algorithm and sends the prover the shares corresponding to the input, and

Secret Sharing and Statistical Zero Knowledge 659

the prover has to guess b. The honest prover runs the reconstruction algorithm,
and completeness and soundness are guaranteed by correctness and privacy of
the secret sharing scheme, respectively. We then investigated the circumstances
under which the converse might also hold. We were able to show the following:

Theorem 1 (Informal). Let L be a language and let AL be the associated
access structure. If L has a special interactive proof with a log-space verifier,
then AL has a semi-efficient secret-sharing scheme. Conversely, if AL has a
semi-efficient secret-sharing scheme, then L has a special interactive proof.

Our proof goes through the notion of partial garbling schemes, defined and
studied in the work of Ishai and Wee [18].

Characterizing Semi-Efficient Secret-Sharing. Using Theorem 1, we char-
acterize access structures that have semi-efficient secret-sharing schemes: we
show that all languages in SZKL, the class of languages with statistical zero
knowledge proof systems [28] where the verifier and simulator run in log-space,
have semi-efficient secret-sharing schemes. This follows from the observation,
using a result of Sahai and Vadhan [28], that L has a special interactive proof
with a log-space verifier if and only if L ∈ SZKL. Conversely, it is easy to see that
if a language L has a semi-efficient secret-sharing scheme, then L ∈ SZK, the
class of languages with statistical zero knowledge proof systems with polynomial-
time verifier and simulator. Together, this almost characterizes languages with
semi-efficient secret-sharing schemes.

The class SZKL, which is contained in SZK, and hence in AM ∩ coAM,
contains several problems of both historical and contemporary significance to
cryptography, such as Quadratic Residosity, Discrete Logarithm, and the Approx-
imate Closest Vector Problem, as well as other well-studied problems like Graph
Isomorphism. For further details, including those about complete problems and
about prospects of basing cryptography on the worst-case hardness of SZKL,
see [12]. As a result of these containments, our characterization captures as a
special case the Beimel-Ishai secret-sharing scheme for the language of quadratic
residuosity modulo composites [5].

We also show a version of this theorem for efficient (as opposed to semi-
efficient) secret-sharing schemes. In particular:

Theorem 2 (Informal). Let L be a language and let AL be the associated
access structure. If L has a special interactive proof with a log-space verifier
and a polynomial-time prover, then AL has an efficient secret-sharing scheme.
Conversely, if AL has an efficient secret-sharing scheme, then L has a special
interactive proof with a polynomial-time prover.

Constructions of Efficient Secret-Sharing Schemes. We show new con-
structions of efficient secret-sharing schemes for languages that are in P but are
not known to be in NC, namely Bounded-Degree Graph Isomorphism [2,26], and
lattice Shortest and Closest Vector problems in constant dimensions [16,24]. Our

660 V. Vaikuntanathan and P.N. Vasudevan

constructions arise from special interactive proofs for these languages together
with an application of Theorem 2. In particular, our construction for Bounded-
Degree Graph Isomorphism gives us the first efficient secret-sharing scheme for
a combinatorial access structure conjectured to be in P\NC (The results of
Beimel and Ishai were for algebraic access structures associated to quadratic
residuosity modulo primes and co-primality). Moreover, our interactive proofs
and secret-sharing schemes are simple, natural and easy to describe.

Limitations on Universally Efficient Secret-Sharing Schemes. Consider
secret sharing schemes that are defined not for a given access structure, but
uniformly for some class of access structures. The sharing algorithm in such
a case gets a description of the access structure, in the form of a circuit or a
Turing machine that decides membership in the access structure. Typically, the
sharing algorithm runs for as much time as the Turing machine (and therefore
as much time as required to decide membership). However, there is no a-priori
reason why this should be the case. Indeed, one can reasonably require that
the sharing algorithm runs in some fixed polynomial time t(n), even though the
access structure may take arbitrary polynomial time to decide. (We allow the
reconstruction algorithm to run in arbitrary polynomial time to make up for
the deficiency of the sharing algorithm). Can such universally efficient secret-
sharing schemes exist?

Our definition is inspired by the recent progress on (computationally secure)
succinct randomized encodings [7,10,23,25]. Indeed, these works show, assuming
indistinguishability obfuscation [3,14], that P has computationally secure suc-
cinct randomized encoding schemes. One could also reasonably ask: Can such
succinct randomized encodings exist unconditionally for all of P? It was observed
in [7] that this cannot be the case under certain complexity-theoretic assump-
tions about speeding up non-deterministic algorithms.

Using our interactive proof characterization, we show that unconditionally
secure universally efficient secret-sharing schemes (and succinct randomized
encodings) cannot exist for all languages in P, unless there is a fixed poly-
nomial q such that P ⊆ DSPACE(q(n)) (the class of languages computable
by a deterministic single-tape Turing machine with q(n) space). We remind the
reader that P �= DSPACE(q(n)) for any fixed q, although non-containment
either way is not known.

1.2 Related Work and Open Problems

In this work, we insist on statistical (or unconditional) security from our secret-
sharing schemes. A number of works relax this to computational security and
achieve stronger positive results. Settling for computational security and assum-
ing the existence of one-way functions, Yao [32,34] showed an efficient secret-
sharing scheme for all monotone languages in P recognized by polynomial-sized
monotone circuits. We mention that even here, we are far from a characterization
as there are monotone languages in P that cannot be recognized by polynomial-
sized monotone circuits [27,30].

Secret Sharing and Statistical Zero Knowledge 661

Komargodski, Naor and Yogev [22] also exploit the relaxation to computa-
tional security, and show secret-sharing schemes for all of monotone NP, where
the sharing algorithm is polynomial-time, and the reconstruction algorithm is
polynomial-time given the NP witness. Their result relies on strong computa-
tional assumptions related to indistinguishability obfuscation [3,14].

While we show semi-efficient secret-sharing schemes for monotonized access
structures corresponding to all languages in SZKL, it remains open to char-
acterize which monotone languages in SZKhave semi-efficient secret-sharing
schemes. The central difficulty is that even if a language is monotone, there
is no reason why the verifier in the SZK proof for the language should inherit
monotonicity-like properties (and indeed, this is hard to even define).

2 Preliminaries and Definitions

Notation. Given a set S, we denote by 2S the set of all subsets of S. Let
T = (t1, . . . , tn) and B = {i1, . . . , im} ⊆ [n]; TB is used to denote the tuple
(ti1 , . . . , tim

).
We use languages and Boolean functions interchangeably. Given a language

L, we overload L to also denote the corresponding Boolean function, namely,
L(x) = 0 if x /∈ L and L(x) = 1 otherwise. Given a randomized algorithm A,
we denote by A(x) the random variable arising from running A on x, and by
A(x; r) the output when A is run on x with randomness r.

Given a distribution D over a finite set X and an x ∈ X, we denote by D(x)
the probability mass D places on x, and for a subset S ⊆ X, D(S) =

∑
x∈S D(x).

x ← D indicates that x is a sample drawn according to the distribution D. For
a set S, x ← S indicates that x is drawn uniformly at random from S.

We use the notion of statistical distance (also called total variation distance
or �1 distance) between distributions, defined as follows.

Definition 3 (Statistical Distance). The statistical distance between two
distributions D1 and D2 over the domain X is defined as

d(D1,D2) =
1
2

∑

x∈X

|D1(x) − D2(x)| = max
S⊆X

(D1(S) − D2(S))

Of particular interest to us is the following relationship of statistical distance
to the advantage of any unbounded procedure in distinguishing between two
distributions given a uniform prior.

Fact 4. Given distributions D1,D2 over a domain X, for functions f : X →
{0, 1}, we have:

max
f

Pr [f(x) = b : b ← {0, 1}, x ← Db] =
1
2

+
d(D1,D2)

2

662 V. Vaikuntanathan and P.N. Vasudevan

2.1 Complexity Classes

We briefly define the following complexity classes that are referred to frequently
in the rest of the paper. To start with, P (resp. BPP) is the class of languages
decidable in deterministic (resp. randomized) polynomial time and L is the class
of languages decidable in deterministic logarithmic space. NCk is the class of
languages decidable by circuits of depth O((log n)k) (here, n denotes the input
length). A language is in NC if it is in NCk for some k.

Definition 5 (NCk). For any k ∈ N ∪ {0}, NCk is the class of languages L
for which there exists a family of boolean circuits {Cn}n∈N such that:

– There is a constant c such that for all n, Cn has depth at most c(log n)k.
– For any input x of length n, x ∈ L ⇔ Cn(x) = 1

DSPACE(p(n)) is the class of languages decidable by deterministic uring
machines running with space p(n). Thus, L is the union of DSPACE(c log n)
over all constants c.

Definition 6 (DSPACE). For any function p : N → N, DSPACE(p(n)) is
the class of languages L for which there exists a deterministic Turing machine
L such that for any input x:

– x ∈ L ⇔ M(x) = 1
– M uses at most p(|x|) cells on its work tape.

And finally, SZK consists of languages that have Statistical Zero Knowledge
(SZK) proofs, which are interactive proofs with some additional properties, as
described below.

Definition 7 (SZK). A language L is in SZK if there exist a tuple of Turing
machines (P, V, S), where the verifier V and simulator S run in probabilistic
polynomial time, satisfying the following:

– (P, V) is an interactive proof for L with negligible completeness and soundness
errors.

– Let (P, V)(x) denote the distribution of transcripts of the interaction between
P and V on input x. For any x ∈ L of large enough size,

d(S(x), (P, V)(x)) ≤ negl(|x|)
The above is actually a definition of honest-verifier Statistical Zero Knowl-

edge, but we know from [28] that any language with an honest-verifier SZK
proof also has an SZK proof against cheating verifiers. So this follows as a defi-
nition of SZK as well. We refer the reader to [31] for extensive definitions and
explanations.

SZKL is the same as SZK, but with the verifier and simulator running
with logarithmic space. In this case too, the above definition is only for honest
verifiers, but as this would only define a larger class, and we show positive results
for this class, we will work with this definition.

Secret Sharing and Statistical Zero Knowledge 663

2.2 Secret Sharing

Definition 8 (Access Structure). Given a set of parties P = {P1, . . . , Pn},
an access structure A is a monotone collection of subsets of P . That is, if S ∈ A
and T ⊇ S, then T ∈ A.

In the context of a secret-sharing scheme, the access structure consists of
all subsets of parties that are allowed to reconstruct a secret shared among
them. Of course, as the access structure is monotone, it suffices to specify its
minimal elements. Along the lines of [5], we associate with every language L an
family of access structures {AL,n}n∈N where AL,n is defined for 2n parties. We
will then study the efficiency of secret sharing schemes for access structures in
such families as a function of n. As will be evident from the definition below,
the complexity of deciding whether a set S ∈ AL,n is exactly the hardness of
deciding the language.

Definition 9 (Access Structure associated with Language L). For a
language L, its associated access structure, denoted by AL,n, for a set of 2n
parties Pn = {Pi,b}i∈[n],b∈{0,1} is defined by the following minimal elements:

• ∀i : {Pi,0, Pi,1} ∈ AL,n

• ∀x ∈ L ∩ {0, 1}n : {P1,x1 , . . . , Pn,xn
} ∈ AL,n

We use the following definition of secret sharing schemes.

Definition 10 (Statistical Secret Sharing). An (ε, δ)-Secret Sharing Scheme
for n parties P = {P1, . . . , Pn} and a domain of secrets D under access structure
A ⊆ 2P is a pair of algorithms (S,R), where

– S is the randomized sharing algorithm that takes as input a secret s ∈ D and
outputs a sequence of shares (s1, s2, . . . , sn); and

– R is the deterministic reconstruction algorithm that takes as input a subset
of parties B ⊆ [n] and the corresponding subset of shares (si)i∈B and outputs
either a secret s or a special symbol ⊥.

We require (S,R) to satisfy the following conditions:

1. Correctness: For any B ∈ A and any s ∈ D, the reconstruction algorithm R
works: Pr [R(B,S(s)B) = s] ≥ 1 − ε(n)

2. Privacy: For any B /∈ A and any s, s′ ∈ D: d(S(s)B , S(s′)B) ≤ δ(n).

The scheme is said to be semi-efficient if S is computable in poly(n) time, and
it is said to be efficient if both S and R are computable in poly(n) time.

Unless otherwise specified, the domain of secrets for all schemes we talk about
in this work shall be {0, 1}, which is without loss of generality.

Remark 11. When we talk about access structures associated with promise prob-
lems, we require no guarantees from a secret sharing scheme for sets correspond-
ing to inputs that do not satisfy the promise (even though technically they are
not part of the associated access structure, and so privacy would otherwise be
expected to hold).

664 V. Vaikuntanathan and P.N. Vasudevan

While much of the literature on secret sharing schemes studies the size of the
shares (and call schemes that produce shares of size poly(n) efficient), we use a
stronger interpretation of efficiency. Namely, in all our exposition, the sharing
algorithm S is required to run in time polynomial in n. Thus, we will not discuss
the sizes of the shares produced by the schemes, which is always poly(n).

2.3 Partial Randomized Encodings

We use the notion of partial randomized encodings (defined as partial garbling
schemes in [18]). They are essentially randomized encodings [17] where part of
the input is allowed to be public.

Definition 12 (Partial Randomized Encodings). An (ε, δ)-partial random-
ized encoding (PRE) of a (bi-variate) function f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗

is a pair of (randomized) functions (Ef ,Df), called the encoding and decoding
functions, respectively, that satisfy the following conditions for all n, n′:

1. Correctness: ∀(x, z) ∈ {0, 1}n × {0, 1}n′
:

Pr [Df (x,Ef (x, z)) = f(x, z)] ≥ 1 − ε(n)

Note that the decoder gets the first half of the input, namely the public part
x, in addition to the randomized encoding Ef (x, z).

2. Privacy: ∀x ∈ {0, 1}n and ∀z1, z2 ∈ {0, 1}n′
:

f(x, z1) = f(x, z2) ⇒ d(Ef (x, z1), Ef (x, z2)) ≤ δ(n)

Furthermore:

– (Ef ,Df) is local (or locally computable) if Ef can be decomposed into a set
of functions {E

(i)
f (xi, z)}i∈[|x|], where E

(i)
f depends only on the ith bit of x

and on z.
– (Ef ,Df) is perfect if ε(n) = δ(n) = 0.
– (Ef ,Df) is said to be semi-efficient if Ef is computable in poly(|x|, |z|) time,

and it is said to be efficient if both Ef and Df are computable in poly(|x|, |z|)
time.

We can extend the above definition to PREs of randomized functions in
a natural way. Namely, to construct an (ε, δ)-PRE for a randomized function
A(x, z; r), simply construct an (ε, δ)-PRE (EA′ ,DA′) for the deterministic func-
tion A′(x, (z, r)) = A(x, z; r), and take EA(x, z) to be the random variable
EA′(x, (z, r)) when r is chosen uniformly at random, and have DA be the same
as DA′ . Note that in EA′ , the randomness r used by A is part of the private
input. This is crucial, as revealing r along with x and A(x, b; r) could end up
revealing b.

We then have the following lemma, whose proof is in Appendix A.

Secret Sharing and Statistical Zero Knowledge 665

Lemma 13. Let A(x, z) be a randomized function, and (EA,DA) be an (ε, δ)-
PRE of A as described above. Then, for any x and any z1, z2:

d(A(x, z1), A(x, z2)) ≤ δ′ ⇒ d(EA(x, z1), EA(x, z2)) ≤ δ(|x|) + δ′

We also use the following lemma.

Lemma 14 ([1,18]). Every function f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ that can be
computed in L/poly has efficient perfect locally computable PREs, with encoding
in NC0 and decoding in NC2.

Finally, we abuse notation slightly and define partial randomized encodings
for languages (boolean functions) a bit differently, for somewhat technical reasons
(instead of calling this object something different).

Definition 15 (PREs for Languages). An (ε, δ)-partial randomized encoding
(PRE) of a language L ⊆ {0, 1}∗ is a pair of (randomized) functions (EL,DL),
called the encoding and decoding functions, respectively, that satisfy the following
conditions:

1. Correctness: ∀x ∈ L and b ∈ {0, 1}: Pr [DL(x,EL(x, b)) = b] ≥ 1 − ε(|x|).
2. Privacy: ∀x /∈ L, d(EL(x, 0), EL(x, 1)) ≤ δ(|x|).
Semi-efficiency, efficiency and locality are defined as for general partial random-
ized encodings.

In other words, a PRE for a language L is a PRE for the following function:

fL(x, b) =
{

b if x ∈ L
⊥ otherwise

Using the above equivalence and Lemma 14, we have the following:

Lemma 16 ([18]). Every language in L/poly has efficient perfect locally com-
putable PREs, with encoding in NC0 and decoding in NC2.

2.4 Special Interactive Proofs

We define a special type of interactive proof system with two messages. Roughly
speaking, the restriction on the proof system (aside from the fact that it has
two messages) is that the verifier uses a special procedure to accept or reject.
In particular, the verifier V on input x and a uniformly random bit b, comes up
with a message m to send to the prover. The prover wins if he can guess the bit
b, given m.

Definition 17 (SIP). An (ε, δ)-Special Interactive Proof (SIP) for a language
L is a pair (P, V), where:

1. V is a PPT algorithm that takes as input an instance x and a bit b, and
outputs a message m; and

666 V. Vaikuntanathan and P.N. Vasudevan

2. P takes as input the instance x and the verifier message m, and outputs a
bit b′.

We require (P, V) to satisfy the following conditions, when b ← {0, 1}:
1. Completeness: ∀x ∈ L, Pr [P (x, V (x, b)) = b] ≥ 1 − ε(|x|).
2. Soundness: ∀x /∈ L, and for any P ∗, Pr [P ∗(x, V (x, b)) = b] ≤ 1/2 + δ(|x|).
While the restrictions imposed on these proofs seem rather severe, they turn out
to be quite general. In fact, it follows from the work of Sahai and Vadhan [28] that
the set of languages with such proofs is exactly the class SZK. See Theorem 20.

2.5 Statistical Zero Knowledge

Recall that the class SZK is the set of languages that have statistical zero-
knowledge proofs, and the class SZKL is set of languages that have statistical
zero-knowledge proofs where the verifier and the simulator (for a statistically
close simulation) both run in log-space.

Definition 18 (Promise Problems SD, SDL). The promise problem (ε, δ)-
Statistical Difference (SD) is defined by the following YES and NO instances:

SDY ES = {(M1,M2, 1n) : d(Mn
1 ,Mn

2) > 1 − ε(n)}
SDNO = {(M1,M2, 1n) : d(Mn

1 ,Mn
2) < δ(n)}

where M1,M2 are deterministic Turing machines, and Mn
1 ,Mn

2 represent the
random variables corresponding to their outputs when the input is distributed
uniformly at random in {0, 1}n.

If M1 and M2 are log-space machines, then the language is called (ε, δ)-
Statistical Difference for Log-space Machines, or simply SDL.

Theorem 19 ([28]). For every ε(n), δ(n) = 2−nO(1)
such that δ(n) < (1 −

ε(n))2, the (ε, δ)-SD problem is complete for SZK, and the (ε, δ)-SDL problem
is complete for SZKL.

We will use the following theorem which is a slightly stronger version of
Theorem 19. We describe the proof (which follows from the proof of Theorem 19
in [28]) in Appendix B for completeness.

Theorem 20 ([28]). There exist negligible functions ε(n), δ(n) = n−ω(1) such
that for any language L ∈ SZK, L has an (ε, δ)-special interactive proof system
(P, V). Furthermore, if L ∈ SZKL, then the verifier V can be computed in log-
space.

Sketch of Proof. For the main statement, we observe that the complete prob-
lem for SZK, namely (ε, δ)-SD, has a simple (ε/2, δ/2)-special interactive proof
which works as follows.

Secret Sharing and Statistical Zero Knowledge 667

– The verifier V , on input an instance (M0,M1, 1n) of the SD problem chooses
a uniformly random bit b, and outputs a sample from Mn

b ; and
– The prover’s goal is to guess the bit b.

By Fact 4, it follows that the best success probability of any prover in this game
is 1+d(Mn

0 ,Mn
1)

2 . By the completeness of SD (Theorem 19), we get that SZK has
(ε, δ)-special interactive proofs for some ε(n), δ(n) = n−ω(1).

The proof for SZKL works in exactly the same way, except it is now a con-
cern that the verifier has to first run the SZK-completeness reduction to obtain
an instance of the statistical distance problem SDL, since it is not guaranteed
that the reduction runs in log-space. However, we show that the Sahai-Vadhan
reduction indeed does. We refer the reader to AppendixB for more details.

In fact, the connection between languages with special interactive proofs and
SZK goes both ways. Namely,

Fact 21. Let (1 − 2ε(n))2 > 2δ(n). If a language L has an (ε, δ)-SIP, then
L ∈ SZK.

This is because deciding a language L that has an (ε, δ)-SIP (P, V) is the
same as deciding whether (V(x,0), V(x,1), 1|r(|x|)|) ∈ (2ε, 2δ)-SD, where V(x,b)(r) =
V (x, b; r), and (2ε, 2δ)-SD is in SZK for ε and δ satisfying the above property.

3 From Zero Knowledge to Secret Sharing and Back

In this section, we show tight connections between languages with special inter-
active proofs, partial randomized encodings (PRE), and secret sharing schemes.
In particular, we show:

Theorem 22 (Main Theorem). For any language L and parameters ε(n) and
δ(n), the following three statements are equivalent:

1. There are parameters ε1 = O(ε) and δ1 = O(δ) such that L has an (ε1, δ1)-
special interactive proof (P, V), where the verifier V has a semi-efficient,
locally computable, (ε1, δ1)-PRE.

2. There are parameters ε2 = O(ε) and δ2 = O(δ) such that L has a semi-
efficient, locally computable, (ε2, δ2)-PRE.

3. There are parameters ε3 = O(ε) and δ3 = O(δ) such that for all n, there is a
semi-efficient (ε3, δ3)-secret sharing scheme under the access structure AL,n.

We will prove Theorem 22 in Sect. 3.1, and here we state a number of inter-
esting corollaries. The first two corollaries “almost” characterize the languages
L whose associated access structure AL,n (as defined in Definition 9) has a semi-
efficient secret-sharing scheme. Corollary 23 shows that any language in SZKL

has a semi-efficient secret-sharing scheme. Corollary 24 shows that furthermore,
if P/poly has semi-efficient, locally computable PREs, then any language in the
entire class SZK has a semi-efficient secret-sharing scheme. Moreover, it also
says that no language outside SZK has semi-efficient secret-sharing schemes,
implying that our characterization is almost tight.

668 V. Vaikuntanathan and P.N. Vasudevan

Corollary 23. Let ε(n), δ(n) = n−ω(1) be negligible functions. For any language
L ∈ SZKL, and for every n, there is a semi-efficient (ε, δ)-secret sharing scheme
under the associated access structure AL,n.

Proof. Theorem 20 asserts that for any L ∈ SZKL, there is an (ε, δ)-special
interactive proof (P, V) for some ε(n), δ(n) = n−ω(1), where the verifier algorithm
V can be computed in log-space. Therefore, by Lemma 14, V has an efficient
(and not just semi-efficient) perfect, locally computable PRE. Applying Theorem
22 (in particular, that (1) ⇒ (3)), there is a semi-efficient (O(ε), O(δ))-secret
sharing scheme for AL,n.

Corollary 24. Let ε(n), δ(n) = n−ω(1) be negligible functions.

– Assume that P/poly has semi-efficient (ε, δ)-locally computable PREs. Then,
for any language L ∈ SZK, and for every n, there is a semi-efficient (ε, δ)-
secret sharing scheme under the associated access structure AL,n.

– Conversely, if AL,n has a semi-efficient (ε, δ)-secret sharing scheme, then L ∈
SZK.

This follows from the same arguments as Corollary 23, but with the absence
of something like Lemma 14 to complete the argument. In fact, one may replace
P/poly in Corollary 24 with any complexity class C that is closed under the
operations involved in the reduction used in the proof of Theorem 36 (while
replacing SZK with the appropriate SZKC). The converse is true because of
Theorem 22 and Fact 21

We also have the following theorem about efficient secret sharing schemes,
where both the sharing and reconstruction algorithms run in time polynomial
in n. The difference from Theorem 22 is that here, we require the prover in
the special interactive proof to be efficient, namely run in time polynomial in
n. We view this theorem as an avenue to constructing efficient secret sharing
schemes for languages L outside L: namely, to construct a secret-sharing scheme
for AL,n, it suffices to construct special interactive proofs for L wherein the
verifier algorithm can be computed in L.

The proof of Theorem 25 follows directly from that of Theorem 22.

Theorem 25. For any language L and parameters ε(n) and δ(n), the following
three statements are equivalent:

1. There are parameters ε1 = O(ε) and δ1 = O(δ) such that L has an (ε1, δ1)-
special interactive proof (P, V), where the prover algorithm is computable
in polynomial time, and the verifier V has an efficient, locally computable,
(ε1, δ1)-PRE.

2. There are parameters ε2 = O(ε) and δ2 = O(δ) such that L has an efficient,
locally computable, (ε2, δ2)-PRE.

3. There are parameters ε3 = O(ε) and δ3 = O(δ) such that for all n, there is
an efficient (ε3, δ3)-secret sharing scheme under the access structure AL,n.

Secret Sharing and Statistical Zero Knowledge 669

3.1 Proof of the Main Theorem

We prove Theorem 22 by showing that (1) ⇒ (2) ⇒ (3) ⇒ (1).

(1) ⇒ (2). Let (P, V) be an (ε, δ)-special interactive proof for the language L,
and let (EV ,DV) be the hypothesized semi-efficient, locally computable (ε, δ)-
PRE for V . The PRE for the language L works as follows:

– EL(x, b) = EV (x, b)
– DL(x, y) = P (x,DV (x, y))

We first show correctness. Let x ∈ L and b ∈ {0, 1}. From the correctness of the
PRE for the verifier algorithm V , we know that:

DV (x,EV (x, b)) = V (x, b)

with probability at least 1−ε. Now, by the completeness of the special interactive
proof, we know that:

P (x, V (x, b)) = b

with probability at least 1 − 2ε (because this probability is at least 1 − ε when
b is chosen at random). Putting these together, we have:

DL(x,EL(x, b)) = P
(
x,DV (x,EV (x, b))

)
= P

(
x, V (x, b)

)
= b

with probability at least 1 − 3ε.
Next, we turn to privacy. Let x /∈ L. We will show that EL(x, 0) and EL(x, 1)

are statistically close. First, note that by the δ-soundness of the special inter-
active proof, we know that the distributions V (x, 0) and V (x, 1) are O(δ)-close.
Now, by Lemma 13 and using the δ-privacy of the PRE scheme for V , this means
that EV (x, 0) and EV (x, 1) are also O(δ)-close. This demonstrates privacy of our
PRE scheme for L.

Since EL is the same as EV , it is clear that if the PRE scheme (EV ,DV)
is locally computable, so is (EL,DL). Moreover, if (EV ,DV) is semi-efficient,
so is (EL,DL). Finally, if (EV ,DV) is efficient and the prover P in the spe-
cial interactive proof is computable in polynomial time, then (EL,DL) is also
efficient.

(2) ⇒ (3). This implication follows from the work of Ishai and Wee [18]. We
provide a proof here for completeness.

Given a locally computable (ε, δ)-PRE (EL,DL) for a language L, let the
set of functions {E

(i)
L (xi, b)}i∈[n] be the local decomposition of EL(x, b). The

following is the secret sharing scheme (S,R) for the access structure AL,n:

– Sharing : Let s ∈ {0, 1} be the secret bit to be shared. S(s) works as follows:
1. For each i, pick si,0, si,1 ∈ {0, 1} at random such that si,0 ⊕ si,1 = s, and

give si,b to the party Pi,b.
2. Select bits {s0, . . . , sn} at random such that

⊕n
i=0 si = s. For each i ∈ [n],

give si to both Pi,0 and Pi,1.

670 V. Vaikuntanathan and P.N. Vasudevan

3. Choose a random string r, compute ψi,b ← E
(i)
L (b, s0; r) for every i ∈ [n]

and b ∈ {0, 1}, and give ψi,b to party Pi,b.
– Reconstruction: Any authorized set B ∈ AL,n reconstructs the secret as fol-

lows:
• If B contains Pi,0 and Pi,1 for some i, the secret s can be retrieved as

s = si,0 ⊕ si,1.
• If not, then B = {Pi,xi

} for some x ∈ L. This means that between them,
the parties contain EL(x, s0; r) = {E

(i)
L (xi, s0; r)}i∈[n]. Output

DL(x,EL(x, s0; r)) ⊕
⊕

i∈[n]

si

as the secret.

For correctness, note that there are two possible types of authorized sets B
in AL,n. If the set B contains parties Pi,0 and Pi,1 for some i, they recover the
secret as si,0⊕si,1. If not, the authorized set contains the parties P1,x1 , . . . , Pn,xn

for some x = (x1, x2, . . . , xn) ∈ L. By the correctness of the PRE scheme for L,
we know that DL(x,EL(x, s0; r)) = s0 with probability at least 1 − ε. Thus, the
recovered secret is

DL(x,EL(x, s0; r)) ⊕
⊕

i∈[n]

si =
⊕

i∈{0,1,...,n}
si = s

with probability at least 1 − ε.
For privacy, there are again two types of sets B that are not present in

AL,n. If there is an i such that the set of parties B does not contain either of
Pi,0 and Pi,1, then B’s shares look completely random due to the absence of any
information about si. The other case is when B = {Pi,xi

} for some x /∈ L. In this
case, d(S(0)B , S(1)B) is exactly the distance between EL(x, 0) and EL(x, 1) due
to how the si’s are picked, which is at most δ by the privacy of the randomized
encoding of L.

It is also easy to see from the definition of S and R that if (EL,DL) is
semi-efficient, then so is (S,R); and the same if it is efficient.

(3) ⇒ (1). Given an (ε, δ)-secret sharing scheme (S,R) for the access structure
AL,n, we construct a special interactive proof (P, V) for L, as follows:

– The verifier V , on input x and a bit b, outputs S(b)Bx
, where Bx = {Pi,xi

}.
– The prover P on input x and the verifier message m, outputs R(Bx,m), where

Bx = {Pi,xi
}.

For completeness, we have that for any x ∈ L, when b ← {0, 1},

Pr [P (x, V (x, b)) = b] = Pr [R(Bx, (S(b)Bx
) = b] ≥ 1 − ε

by the correctness of secret sharing scheme, as Bx ∈ A(L.n).

Secret Sharing and Statistical Zero Knowledge 671

For privacy, we have that for any x /∈ L, when b ← {0, 1}, for any P ∗,

Pr [P ∗(x, V (x, b)) = b] ≤ 1 + d(V (x, 0), V (x, 1))
2

≤ 1
2

+
δ

2

by privacy of the secret sharing scheme, as Bx /∈ AL,n.
V is a PPT algorithm if (S,R) is semi-efficient, and P is computable in

polynomial time if (S,R) is efficient. Also, V is local because it can be split into
the collection {V (i)(xi, b) = S(b){Pi,xi

}}, so it serves as its own semi-efficient
locally computable PRE.

4 Positive Results on Efficient Secret Sharing

In this section we present efficient secret sharing schemes for access structures
associated with Bounded-Degree Graph Non-Isomorphism, Lattice Closest Vec-
tor in small dimensions, and Co-Primality. These are obtained by the application
of Theorem 25 (in particular, the implication (1) ⇒ (2) in the theorem).

Useful throughout this section is the fact that arithmetic over integers (and
rational numbers) may be performed in NC1 (see [33] for details).

4.1 Bounded-Degree Graph Non-Isomorphism

Notation. Given an upper triangular matrix M ∈ {0, 1}n×n, denote by G(M)
the undirected graph whose adjacency matrix is (M +MT), and for a symmetric
matrix M , the undirected graph whose adjacency matrix is M . The degree of a
graph, deg(G), is the maximum degree of any vertex in the graph. If G1 and G2

are isomorphic, we denote this as G1 ≡ G2.

Definition 26 (dBDGNI). d-Bounded Degree Graph Non-Isomorphism is the
promise problem given by the following sets of YES and NO instances over pairs
of upper triangular matrices:

dBDGNIY ES = {(M0,M1)|G(M0) �≡ G(M1); deg(G(M0)), deg(G(M1)) ≤ d}
dBDGNINO = {(M0,M1)|G(M0) ≡ G(M1); deg(G(M0)), deg(G(M1)) ≤ d}

While Graph (Non-)Isomorphism is not known to be in P, there is a clas-
sical polynomial time algorithm known for dBDGNI due to Luks [26]. However,
it appears to be a long open question whether dBDGNI is in NC (or even in
RNC) [2].

Theorem 27. For every constant d and every n, there is an efficient (perfect)
secret sharing scheme for the access structure AdBDGNI,n. The complexity of the
reconstruction algorithm grows as nO(d), whereas sharing runs in time polynomial
in n.

672 V. Vaikuntanathan and P.N. Vasudevan

Proof. We prove this by showing a special interactive proof for dBDGNI where the
verifier runs in log-space (and therefore, has efficient perfect locally computable
PREs) and the prover runs in polynomial time. This satisfies statement (1)
in Theorem 25, and hence implies the existence of the required secret sharing
scheme.

The SIP proof (P, V) works along the lines of the classical SZK proof for
Graph Non-Isomorphism [15], as follows:

– The verifier V ((M0,M1), b), on input upper triangular matrices M0,M1 ∈
{0, 1}n×n and bit b, selects a random permutation matrix P ∈ Sn, and outputs
P (Mb + MT

b)PT .
– The prover P ((M0,M1),M), checks whether G(M) ≡ G(M0). If so, it outputs

0, else 1.

Note that the operation P (M + MT)PT is equivalent to permuting the ver-
tices of the graph G(M) by the permutation P .

Perfect completeness of this protocol follows from the fact that if M0 �≡ M1,
then the verifier’s output M will be such that G(M) is isomorphic to exactly
one of G(M0) and G(M1), and P can identify which by running the algorithm
for dBDGNI [26].

The protocol is perfectly sound because if M0 ≡ M1, then the distribution
of the verifier’s output is the same whether b = 0 or 1, and P has probability
exactly 1/2 of guessing b correctly.

The complexity of the verifier V in the above protocol is that of selecting a
random permutation and performing two matrix multiplications, both of which
can be done in log-space. Hence by Lemma 14, V has efficient perfect locally
computable PREs. The prover P is computable in polynomial time because all
the prover does is run the (polynomial time) algorithm for dBDGNI.

(That the running time of reconstruction algorithm of the resulting secret
sharing scheme is nO(d) can be seen by tracing its dependence on the running
time of the algorithm for dBDGNI - the one in [26] runs in time nO(d) - in the
proof of Theorem 22.)

4.2 Lattice Closest Vectors

Notation. For a full-rank (over Q) matrix B ∈ Z
d×d, let Λ(B) denote the inte-

ger lattice (of dimension d) whose basis is B, and P(B) denote the fundamental
parallelepiped of the same lattice (the parallelepiped formed by the column vec-
tors of B and the origin). We denote by B(y, δ) the set of points in the ball of
radius δ centered at the point y (note that as we work with discretised space
and not with R

d, the number of points in this set is finite).
Given full-rank matrix B ∈ Z

d×d, a vector y ∈ Z
d, δ ∈ Z

+ and γ ∈ [0, 1], the
(decision version of the) gap closest vector problem in d dimensions (GapCVPγ,d)
asks whether the Euclidean distance of y from (any point in) Λ(B) is at most
(γδ) or at least δ.

While classical algorithms due to Gauss, and Lenstra, Lenstra and Lovasz
(from [24]) show that for any d, GapCVPγ,d is in P for any γ, it is not known to

Secret Sharing and Statistical Zero Knowledge 673

be (and conjectured not to be) in NC. We are interested in the complement of
this problem, as defined below.

Definition 28 (coGapCVPγ,d). For any d ∈ Z
+ and γ ∈ [0, 1], coGapCVPγ,d

is the promise problem defined by the following YES and NO instances over
triples (B, y, δ), where B ∈ Z

d×d is full-rank over Q, y ∈ Z
d and δ ∈ Z

+:

coGapCVPY ES
γ,d = {(B, y, δ) | ∀x ∈ Λ(B) : ||y − x|| > δ}

coGapCVPNO
γ,d = {(B, y, δ) | ∃x ∈ Λ(B) : ||y − x|| ≤ γδ}

The following theorem asserts the existence of efficient secret sharing schemes
under access structures associated with the above problem.

Theorem 29. For every c, d, n, and any γ =
(
1 − Ω(1

nc)
)
, there is an efficient

(o(1), o(1))-secret sharing scheme under the access structure AcoGapCVPγ,d,n.

We prove this theorem by constructing a (o(1), o(1))-Special Interactive Proof
for coGapCVPγ,d with a log-space verifier and a poly time prover. As the verifier
is computable in log-space, it has efficient perfect locally computable PREs, by
Lemma 14. The existence of such an SIP, along with Theorem 25, implies the
efficient secret sharing schemes we need. In interest of space, we defer details of
the proof to the full version of this paper.

4.3 Co-primality

Efficient secret sharing schemes for non-co-primality and semi-efficient ones for
quadratic non-residuosity were shown by Beimel and Ishai [5] as an illustration
of the power of non-linear secret sharing schemes over linear ones. We note that
these follow as implications of our Theorem 22 given the existence of SZK proofs
for these languages with logspace verifiers (which are indeed known to exist).

We demonstrate here, as an example, the case of Non-Co-Primality, which is
in P, but again, as noted in [5], not known to be in NC.

Definition 30 (NCoP). The language Non-Co-Primality (NCoP) consists of
pairs of positive integers that are not co-prime, represented as strings, that is,

NCoP = {(u, v) | u, v ∈ Z
+, gcd(u, v) > 1}

Theorem 31 asserts the existence of statistically correct, statistically private
efficient secret sharing schemes under the access structure associated with NCoP.

Theorem 31. For every n, there is an efficient (ε, δ)-secret sharing scheme
under the access structure ANCoP,n from some ε(n), δ(n) = o(1).

Proof. Again, we prove this by demonstrating a (o(1), o(1))-SIP for Non-co-
primality where the prover is efficient and the verifier has efficient perfect locally
computable PREs. This implies what we need, by Theorem 25.

We denote by |u| the length of the representation of u as a boolean string.
Below, we assume |u| ≥ |v|. The SIP proof (P, V) is roughly as follows, for some
m = Θ(|u|):

674 V. Vaikuntanathan and P.N. Vasudevan

– The verifier V takes as input (u, v) and a bit b.
• If b = 1, it outputs m random multiples of u modulo v; that is, it picks m

random numbers {ri}i∈[m] ← {0, 1}|u| and outputs {(riu)(mod v)}.
• If b = 0, it outputs m random numbers in [v].

– The prover P takes as input (u, v) and the verifiers message, which is a set of
m numbers {ai}i∈[m]. If gcd({ai}) = 1, the prover outptus 0, else 1.

The above SIP is complete because if gcd(u, v) > 1, then if b = 1, all multiples
of u modulo v will be divisible by gcd(u, v), and the prover will always output
1, and if b = 0, with high probability the gcd of m random numbers in [v] will
be 1 and the prover will output 0. It is sound because when gcd(u, v) = 1, the
distribution of multiples of u (drawn from a large enough range) modulo v is
negligibly close to uniform, and the cases b = 0 and b = 1 are indistinguishable.

The verifier V is computable in L, as all it does is multiply n-bit numbers,
and so has efficient perfect locally computable PREs, by Lemma 14. The prover
is efficient, as all it has to do is compute the gcd of some numbers.

5 Negative Results on Universally Efficient Secret
Sharing

In this section, we show that a natural strengthening of efficient secret-sharing,
that we call universally efficient secret-sharing, cannot exist for all of P, if for
every polynomial t, P �⊆ DSPACE(t(n)).

Notation. Below, by L we denote both a language in a class C, and its standard
representation as a member of this class, say, for example, as a Turing machine
that decides the language in case C = P. For a function f that takes two argu-
ments (as f(x, y)), by f(x, ·), we denote f curried with x, that is, the function
g(y) = f(x, y); this extends naturally to the case where f takes more than two
arguments.

Definition 32 (Universal Secret Sharing). An (ε, δ)-Universally Efficient
Secret Sharing Scheme (USS), or simply a universal secret sharing scheme, for
a class of languages C over a domain D is a pair of (randomized) algorithms
(S,R) such that for any L ∈ C and any n, (S(L, 1n, ·), R(L, 1n, ·, ·)) is an (ε, δ)-
secret sharing scheme under the access structure AL,n over the domain D.

For any polynomial t, a universal secret sharing scheme is said to be t-semi-
efficient if for any L ∈ C, S(L, 1n, ·) is computable in time t(n). The scheme is
said to be t-efficient if both S(L, 1n, ·) and R(L, 1n, ·, ·) are computable in time
t(n).

Theorem 33. Let, for all n, 1 − ε(n) > δ(n). If a class of languages C has
t-semi-efficient (ε, δ)-universal secret sharing (USS) schemes, then there exists
t′ such that t′(n) = O(t(n)) and C ⊆ DSPACE(t′(n)).

Secret Sharing and Statistical Zero Knowledge 675

Sketch of Proof. Suppose (S,R) is a t-semi-efficient (ε, δ) USS scheme for the
class C. Theorem 33 follows from applying Lemma34 to each language L ∈ C,
using the fact that by definition, (S(L, 1n, ·), R(L, 1n, ·, ·)) is an (ε, δ)-secret shar-
ing scheme for AL,n where the sharing algorithm runs in time t(n).

In particular, Theorem 33 implies that if P had a t-semi-efficient USS scheme,
then it would be contained in DSPACE(t(n)) for some polynomial t(n).

Lemma 34. Let, for all n, 1 − 3ε(n) > 3δ(n). If, for some language L, there is
an (ε, δ)-secret sharing scheme (S,R) for AL,n for all n, where S runs in time
t(n), then L ∈ DSPACE(t′(n)), where t′(n) = O(t(n)).

The proof below is adapted from that of a more general statement from [13].

Proof. We start by using Theorem 22 to recognize the existence of an (ε′, δ′)-SIP
(P, V) for L where V runs in time t(n), where ε′ = 3ε and δ′ = 3δ (the constant
3 comes out of the proof of Theorem 22), and we have 1 − ε′(n) > δ′(n).

In order to decide whether x ∈ L, it is sufficient to determine whether any
P ′ can guess b given V (x, b) with probability ≥ (1 − ε′(|x|)) or only ≤ (1/2 +
δ′(|x|)/2). This is equivalent to whether d(V (x, 0), V (x, 1)) is ≥ (1 − ε(|x|)) or
≤ δ(|x|). But d(V (x, 0), V (x, 1)) itself can be computed in space O(t(|x|)) as
follows.

First, for any v of length at most t(|x|), Prr [V (x, b; r) = v] can be computed
by iterating over the possible values of r – note that |r| ≤ t(|x|)– and simulating
V to see if it outputs v, and counting the number of r’s for which it does. This
requires only O(t(|x|)) space because V can be simulated in this much space,
and the count of r’s is at most 2t(|x|).

So for each v, we can also compute

p(v) := |Prr [V (x, 0; r) = v] − Prr [V (x, 1; r) = v]|

in O(t(|x|)) space. What we need is the sum
(∑

v:|v|≤t(|x|) p(v)
)
. To compute

this, we simply iterate over all the v’s, storing at the end of each iteration only the
sum

(∑
v′:v′≤v p(v)

)
. As each p(v) ≥ 2−t(|x|), and the cumulative sum is at most

1, this adds at most O(t(|x|)) space to what is needed for each iteration. Hence,
the entire computation of d(V (x, 0), V (x, 1)) can be done in space t′(|x|) =
O(t(|x|)), and hence L ∈ DSPACE(t′(n)).

Acknowledgments. We thank an anonymous ASIACRYPT reviewer for comments
that helped improve the presentation of this paper.

A Proof of Lemma 13

In this section, we restate and prove Lemma 13. This essential lemma extends
the privacy properties of PREs to the case of PREs of randomized functions -
while the original definition of PREs (for deterministic functions) states that

676 V. Vaikuntanathan and P.N. Vasudevan

if for some x, f(x, z1) = f(x, z2), then Ef (x, z1) and Ef (x, z2) are statistically
close, Lemma 13 states that even for a randomized function g, if g(x, z1) and
g(x, z2) are statistically close, then so are Eg(x, z1) and Eg(x, z2).

Note that PREs for randomized functions are defined as described in Sect. 2:
To construct an (ε, δ)-PRE for a randomized function A(x, z; r), simply construct
an (ε, δ)-PRE (EA′ ,DA′) for the deterministic function A′(x, (z, r)) = A(x, z; r),
and let EA(x, z) be the random variable EA′(x, (z, r)) when r is chosen uniformly
at random, and have DA be the same as DA′ .

Lemma 35. Let A(x, z) be a randomized function, and (EA,DA) be an (ε, δ)-
PRE of A as described above. Then, for any x and any z1, z2:

d(A(x, z1), A(x, z2)) ≤ δ′ ⇒ d(EA(x, z1), EA(x, z2)) ≤ δ(|x|) + δ′

Proof. As above, consider the deterministic function A′(x, (z, r)) = A(x, z; r).
By definition, d(EA(x, z1), EA(x, z2)) = d(EA′(x, (z1, r)), EA′(x, (z2, r))), which
is given by:

∑

v̂

|Pr [EA′(x, (z1, r)) = v̂] − Pr [EA′(x, (z2, r)) = v̂]|

where r is distributed uniformly over its domain. We wish to prove that this
expression is small. From the privacy of PREs, we have promises on the behaviour
of EA′ on inputs for which A′ has the same output value. Towards exploiting
this, we expand the above expression, conditioning on possible values of A′ to
get:

∑

v̂

∣
∣
∣
∣
∣

∑

v

Pr [A′(x, (z1, r)) = v]Pr
[
EA′(x, (z1, r)) = v̂

∣
∣
∣A′(x, (z1, r)) = v

]

−
∑

v

Pr [A′(x, (z2, r)) = v]Pr
[
EA′(x, (z2, r)) = v̂

∣
∣
∣A′(x, (z2, r)) = v

]
∣
∣
∣
∣
∣

For the same reason - so that we may compare EA′ on points where A′ has
the same output value - we add and subtract (

∑
v Pr [A′(x, (z1, r)) = v]) to the

factor in the second term above and use the triangle inequality to say that what
we have is at most:

∑

v

Pr [A′(x, (z1, r)) = v]
(∑

v̂

∣
∣
∣Pr

[
EA′(x, (z1, r)) = v̂

∣
∣
∣A′(x, (z1, r)) = v

]

−Pr
[
EA′(x, (z2, r)) = v̂

∣
∣
∣A′(x, (z2, r)) = v

]∣
∣
∣
)

+
∑

v

∑

v̂

Pr
[
EA(x, (z2, r)) = v̂

∣
∣
∣A(x, (z2, r)) = v

]
·

|Pr [A(x, (z1, r)) = v] − Pr [A(x, (z2, r)) = v]|

Secret Sharing and Statistical Zero Knowledge 677

The first summand above is a convex combination of several terms, each of
which is at most δ(|x|) by the privacy guarantee of EA′ (as each of these terms
is some convex combination of the distance between EA′ on input values for
which A′ produces the same output). The second summand is simply equal to
d(A′(x, z1), A′(x, z2)) = δ′. Hence the whole thing is at most (δ(|x|) + δ′), which
is what we wanted to prove.

B A Refined Completeness Theorem for SZKL

In this section, we complete the proof sketch of Theorem 20. In order to do so,
we shall first demonstrate Lemma 36.

Lemma 36 ([28]). There exist negligible functions ε(n), δ(n) = n−ω(1) such
that every language L in SZKL reduces to (ε, δ)-SDL. Furthermore, there is
a logspace program DL such that, if an instance x is mapped to the instance
(C0, C1) by the above reduction, DL(b, x, r) = Cb(r).

Given DL from Lemma 36 for a language L ∈ SZKL, we can prove Theorem
20 by constructing a special interactive proof (P, V) for L as follows:

– V (x, b; r) = DL(b, x, r)
– P (x,m) outputs 0 if Pr [DL(0, x, r) = m] > Pr [D(1, x, r) = m], and 1 other-

wise.

Note that the above is an (ε/2, δ/2)-SIP proof for L where the verifier can
be computed in logspace.

We shall now sketch a proof of Lemma 36, for which we shall need the fol-
lowing amplification lemma for statistical distance of distributions.

Lemma 37 (Polarization Lemma, [28]). Let α, β ∈ [0, 1] be constants such
that α2 > β. Given two logspace machines X0,X1 : {0, 1}n → {0, 1}m, there are
logspace machines Y0, Y1 : {0, 1}n′ → {0, 1}m′

(where n′, m′ grow polynomially
with n, m) that use X0,X1 only as blackboxes such that:

d(X0,X1) ≥ α ⇒ d(Y0, Y1) ≥ 1 − 2−n′

d(X0,X1) ≤ β ⇒ d(Y0, Y1) ≤ 2−n′

Both the above lemmas are not stated in precisely this manner in either [28]
or [31], but these extensions follow easily from the proofs of statements that are
indeed made in these works.

Sketch of Proof. of Lemma 36 (The lemma follows directly from the proof of
completeness of SD for SZK presented in [31], noticing that the reduction from
any L ∈ SZK to SD, outlined below, leads to logspace machines if one starts
with an L ∈ SZKL, as L has a logspace simulator.)

678 V. Vaikuntanathan and P.N. Vasudevan

Suppose L has an SZK proof (P, V) in which, on inputs of length n, the total
communication is t(n) over v(n) messages, V uses r(n) bits of randomness, and
there is a logspace simulator S that achieves deviation μ(n) ≤ 1/(Ct(n)2), for
some constant C to be determined. Let Si denote the distribution of the output
of S (on a given input) truncated to the first i rounds. We assume, without
loss of generality, that the prover speaks first, messages alternate, and that the
last message of the verifier consists of all its randomness. We shall describe now
distributions that witness the reduction of L to SDL. Proofs and further details
may be found in [31], Chap. 3.

Define the following distributions:

X : S2 ⊗ S4 ⊗ · · · ⊗ S2v

Y1 : S1 ⊗ S3 ⊗ · · · ⊗ S2v−1 ⊗ Ur−7

Y2 : Run S 8ln(tv + 2) times, and if the transcript is rejecting in
a majority of these, output Utv+2, else output nothing.

Y : Y1 ⊗ Y2

We may arrange, again without loss of generality, for a given input length n
of L, for both X and Y to use at most m′ bits of randomness and have output
length n′. Let q = 9 km′2 for some constant k to be determined later.

Let X ′′ = ⊗qX and Y ′′ = ⊗qY , and m′′ and n′′ be the (upper bound
on) number of bits of randomness used and output length of X ′′ and Y ′′. Let
H = Hm′′+n′′,m′′ be a family of 2-universal hash functions from {0, 1}m′′+n′′ →
{0, 1}m′′

. Define now the following distributions:

A : Choose r ← {0, 1}m′′
, h ← H, y ← Y , let x = X ′′(r). Output (x, h, h(r, y)).

B : Choose x ← X ′′, h ← H, z ← {0, 1}m′′
. Output (x, h, z).

As proven in [31], if x ∈ L, then d(A,B) ≥ 1 − O(2−k), and if x /∈ L,
d(A,B) ≤ 2−Ω(k). Note that all steps involved so far, including evaluating the
hash function, may be done in logspace, meaning that there is a randomised
logspace program that on input x can sample A (or B).

This lets us apply Lemma 37 to (A,B) to get distributions (A′, B′) which
are still sampleable in logspace given x (as they are logspace programs that
only use the samplers for A and B as blackboxes), and are such that if x ∈ L,
d(A′, B′) ≥ 1 − 2−r and if x /∈ L, d(A′, B′) ≤ 2−r, where r (a polynomial in |x|
and Ω(|x|)) is the amount of randomness used by the sampler for A′ (or B′).
This gives us the reduction to SDL.

We now define DL to simply emulate the above steps. On input (b, x, r),
where |r| is a function of |x| resulting from above operations (DL is undefined
on input lengths that do not obey this relation between |x| and |r|), if b = 0, DL

runs the logspace sampler for A′ with input x and randomness r, and simliarly
the sampler for B′ if b = 1. Note that DL is still in logspace, and that if x ∈ L,
d(DL(0, x, r),DL(1, x, r)) ≥ 1 − 2−|x|, and if x /∈ L, d(DL(0, x, r),DL(1, x, r)) ≤
2−|x|. ��

Secret Sharing and Statistical Zero Knowledge 679

References

1. Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography in nc0. SIAM J. Comput.
36(4), 845–888 (2006)

2. Arvind, V., Torán, J.: Isomorphism testing: perspective and open problems. Bull.
EATCS 86, 66–84 (2005)

3. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. J. ACM 59(2), 6 (2012)

4. Beimel, A.: Secret-sharing schemes: a survey. In: Chee, Y.M., Guo, Z., Ling, S.,
Shao, F., Tang, Y., Wang, H., Xing, C. (eds.) IWCC 2011. LNCS, vol. 6639, pp.
11–46. Springer, Heidelberg (2011)

5. Beimel, A., Ishai, Y.: On the power of nonlinear secret-sharing. IACR Cryptol.
ePrint Arch. 2001, 30 (2001)

6. Benaloh, J.C., Leichter, J.: Generalized secret sharing and monotone functions.
In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 27–35. Springer,
Heidelberg (1990)

7. Bitansky, N., Garg, S., Telang, S.: Succinct randomized encodings and their appli-
cations. IACR Cryptol. ePrint Arch. 2014, 771 (2014)

8. Blakley, G.: Safeguarding cryptographic keys. In: Proceedings of the National Com-
puter Conference, vol. 48, pp. 313–317 (1979)

9. Blundo, C., De Santis, A., De Simone, R., Vaccaro, U.: Tight bounds on the infor-
mation rate of secret sharing schemes. Des. Codes Cryptography 11(2), 107–122
(1997)

10. Canetti, R., Holmgren, J., Jain, A., Vaikuntanathan, V.: Indistinguishability obfus-
cation of iterated circuits and RAM programs. IACR Cryptology ePrint Archive
2014, 769 (2014)

11. Csirmaz, L.: The size of a share must be large. J. Cryptology 10(4), 223–231 (1997)
12. Dvir, Z., Gutfreund, D., Rothblum, G. N., Vadhan, S.: On approximating the

entropy of polynomial mappings. In: Proceedings of the 2nd Innovations in Com-
puter Science Conference, pp. 460–475 (2011)

13. Fortnow, L., Lund, C.: Interactive proof systems and alternating time-space com-
plexity. Theor. Comput. Sci. 113(1), 55–73 (1993)

14. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candi-
date indistinguishability obfuscation and functional encryption for all circuits. In:
FOCS, pp. 40–49 (2013)

15. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity
and a methodology of cryptographic protocol design (extended abstract). In: 27th
Annual Symposium on Foundations of Computer Science, Toronto, Canada, 27–29
October 1986, pp. 174–187 (1986)

16. Greenlaw, R., Hoover, H.J., Ruzzo, W.L.: Limits to Parallel Computation:
P-completeness Theory. Oxford University Press Inc, New York (1995)

17. Ishai, Y., Kushilevitz, E.: Randomizing polynomials: A new representation with
applications to round-efficient secure computation. In: FOCS, pp. 294–304 (2000)

18. Ishai, Y., Wee, H.: Partial garbling schemes and their applications. In: Esparza,
J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol.
8572, pp. 650–662. Springer, Heidelberg (2014)

19. Ito, M., Saio, A., Nishizeki, T.: Multiple assignment scheme for sharing secret.
J. Cryptology 6(1), 15–20 (1993)

20. Karchmer, M., Wigderson, A.: On span programs. In: Proceedings of the Eigth
Annual Structure in Complexity Theory Conference, San Diego, CA, USA, May
18–21, 1993, pp. 102–111. IEEE Computer Society (1993)

680 V. Vaikuntanathan and P.N. Vasudevan

21. Karnin, E.D., Greene, J.W., Hellman, M.E.: On secret sharing systems. IEEE
Trans. Inf. Theor. 29(1), 35–41 (1983)

22. Komargodski, I., Naor, M., Yogev, E.: Secret-sharing for NP. In: Sarkar, P., Iwata,
T. (eds.) ASIACRYPT 2014, Part II. LNCS, vol. 8874, pp. 254–273. Springer,
Heidelberg (2014)

23. Koppula, V., Lewko, A. B., Waters, B.: Indistinguishability obfuscation for turing
machines with unbounded memory. IACR Cryptology ePrint Archive, 2014/925
(2014)

24. Lenstra Jr., A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational
coefficients. Math. Ann. 261(4), 515–534 (1982)

25. Lin, H., Pass, R.: Succinct garbling schemes and applications. IACR Cryptology
ePrint Archive 2014, 766 (2014)

26. Luks, E.M.: Isomorphism of graphs of bounded valence can be tested in polynomial
time. In: FOCS, pp. 42–49 (1980)

27. Razborov, A.A.: Lower bounds on the monotone complexity of some Boolean func-
tions. Doklady Akademii Nauk SSSR 285, 798–801 (1985)

28. Sahai, A., Vadhan, S.P.: A complete problem for statistical zero knowledge. Elec-
tron. Colloquium on Comput. Complex. (ECCC) 7(84) (2000)

29. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
30. Tardos, É.: The gap between monotone and non-monotone circuit complexity is

exponential. Combinatorica 8(1), 141–142 (1988)
31. Vadhan, S.: A study of statistical zero-knowledge proofs. Ph.D. thesis, Massa-

chusetts Institute of Technology (1999)
32. Vinod, V., Narayanan, A., Srinathan, K., Pandu Rangan, C., Kim, K.: On

the power of computational secret sharing. In: Johansson, T., Maitra, S. (eds.)
INDOCRYPT 2003. LNCS, vol. 2904, pp. 162–176. Springer, Heidelberg (2003)

33. Wegener, I.: The Complexity of Boolean Functions. Wiley, New York (1987)
34. Yao, A.: Unpublished manuscript (1989). Presented at Oberwolfach and DIMACS

Workshops

Compactly Hiding Linear Spans

Tightly Secure Constant-Size Simulation-Sound
QA-NIZK Proofs and Applications

Benôıt Libert1(B), Thomas Peters2, Marc Joye3, and Moti Yung4,5

1 Ecole Normale Supérieure de Lyon, Lyon, France
benoit.libert@ens-lyon.fr

2 Ecole Normale Supérieure, Paris, France
thomas.peters@ens.fr

3 Technicolor, Los Altos, USA
marc.joye@technicolor.com

4 Google Inc., New York, NY, USA
moti@cs.columbia.edu

5 Columbia University, New York, NY, USA

Abstract. Quasi-adaptive non-interactive zero-knowledge (QA-NIZK)
proofs is a recent paradigm, suggested by Jutla and Roy (Asiacrypt ’13),
which is motivated by the Groth-Sahai seminal techniques for efficient
non-interactive zero-knowledge (NIZK) proofs. In this paradigm, the
common reference string may depend on specific language parameters, a
fact that allows much shorter proofs in important cases. It even makes
certain standard model applications competitive with the Fiat-Shamir
heuristic in the Random Oracle idealization. Such QA-NIZK proofs were
recently optimized to constant size by Jutla and Roy (Crypto ’14) and
Libert et al. (Eurocrypt ’14) for the important case of proving that
a vector of group elements belongs to a linear subspace. While the
QA-NIZK arguments of Libert et al. provide unbounded simulation-
soundness and constant proof length, their simulation-soundness is only
loosely related to the underlying assumption (with a gap proportional to
the number of adversarial queries) and it is unknown how to alleviate this
limitation without sacrificing efficiency. In this paper, we deal with the
question of whether we can simultaneously optimize the proof size and
the tightness of security reductions, allowing for important applications
with tight security (which are typically quite lengthy) to be of shorter
size. We resolve this question by designing a novel simulation-sound QA-
NIZK argument showing that a vector v ∈ G

n belongs to a subspace of
rank t < n using a constant number of group elements. Unlike previous
short QA-NIZK proofs of such statements, the unbounded simulation-
soundness of our system is nearly tightly related (i.e., the reduction only
loses a factor proportional to the security parameter) to the standard
Decision Linear assumption. To show simulation-soundness in the con-
strained context of tight reductions, we explicitly point at a technique—
which may be of independent interest—of hiding the linear span of a
vector defined by a signature (which is part of an OR proof). As an appli-
cation, we design a public-key cryptosystem with almost tight CCA2-
security in the multi-challenge, multi-user setting with improved length

c© International Association for Cryptologic Research 2015
T. Iwata and J.H. Cheon (Eds.): ASIACRYPT 2015, Part I, LNCS 9452, pp. 681–707, 2015.
DOI: 10.1007/978-3-662-48797-6 28

682 B. Libert et al.

(asymptotically optimal for long messages). We also adapt our scheme
to provide CCA security in the key-dependent message scenario (KDM-
CCA2) with ciphertext length reduced by 75% when compared to the
best known tightly secure KDM-CCA2 system so far.

Keywords: Security tightness · Constant-size QA-NIZK proofs · Sim-
ulation soundness · CCA2 security

1 Introduction

In this paper, we consider the problem of achieving (almost) tight security
in short simulation-sound non-interactive zero-knowledge proofs and chosen-
ciphertext-secure encryption. While tight security results are known in both
cases [35,38], they incur quite long proofs and ciphertexts. A natural question
is to develop tools and techniques to make them short and, in the process,
develop deeper understanding of this highly constrained setting. As an answer
in this direction, we describe space-efficient methods and constructions with
almost tight security. For the specific problem of proving that a vector of group
elements belongs to a linear subspace, our main result is the first constant-
size NIZK arguments whose simulation-soundness tightly relates to a standard
assumption.

Tight and Almost Tight Security. Any public-key system must rely on
some hardness assumption. To provide concrete guarantees, the security proof
should preferably give a tight reduction from a well-established assumption.
Namely, a successful adversary should imply a probabilistic polynomial time
(PPT) algorithm breaking the assumption with nearly the same advantage.
Tightness matters because the loss in the reduction may necessitate the use of a
larger (at times prohibitively larger) security parameter to counteract the loss.
The importance of tightness was first advocated by Bellare and Rogaway [10] in
the context of digital signatures 18 years ago. Since then, it received a continu-
ous attention with a flurry of positive and negative results in the random oracle
model [2,11,24–26,44,46,57] and in the standard model [6,14,39,40,57].

A highly challenging problem has been to obtain tight security under stan-
dard assumptions in the standard model. For many primitives, satisfactory solu-
tions have remained elusive until very recently. Bellare, Boldyreva and Micali [7]
raised the problem of constructing a chosen-ciphertext-secure public-key cryp-
tosystem based on a standard assumption and whose exact security does not
degrade with the number of users or the number of challenge ciphertexts. The
first answer to this question was only given more than a decade later by Hofheinz
and Jager [38] and it was more a feasibility result than a practical solution. In
the context of identity-based encryption (IBE), Chen and Wee [23] designed the
first “almost tightly” secure system —meaning that the degradation factor only
depends on the security parameter λ, and not on the number q of adversarial

Compactly Hiding Linear Spans 683

queries— based on a simple assumption in the standard model,1 which resolved
an 8-year-old open problem [58].

NIZK Proofs and Simulation-Soundness. Non-interactive zero-
knowledge proofs [15] are crucial tools used in the design of countless crypto-
graphic protocols. In the standard model, truly efficient constructions remained
lacking until the last decade, when Groth and Sahai [36] gave nearly practical
non-interactive witness indistinguishable (NIWI) and zero-knowledge (NIZK)
proof systems for a wide class of languages in groups endowed with a bilinear
map. While quite powerful, their methods remain significantly more costly than
the non-interactive proof heuristics enabled by the Fiat-Shamir paradigm [30]
in the idealized random oracle model [9]. recently, Jutla and Roy [42] showed
that important efficiency improvements are possible for quasi-adaptive NIZK
(QA-NIZK) proofs, i.e., where the common reference string (CRS) may depend
on the specific language for which proofs are being generated but a single CRS
simulator works for the entire class of languages. For the specific task of proving
that a vector of n group elements belongs to a linear subspace of rank t, Jutla
and Roy [42] gave computationally sound QA-NIZK proofs of length Θ(n − t)
where the Groth-Sahai (GS) techniques entail Θ(n+t) group elements per proof.
They subsequently refined their techniques, reducing the proof’s length to a
constant [43], regardless of the number of equations or the number of variables.
Libert et al. [49] independently obtained similar improvements using different
techniques. Other constructions were recently given by Abdalla et al. [1] and
Kiltz and Wee [47] who gave a general methodology for building short QA-NIZK
arguments.

The design of non-malleable protocols, primarily IND-CCA2-secure encryp-
tion schemes, at times appeals to NIZK proofs endowed with a property named
simulation-soundness by Sahai [56]: informally, an adversary should remain
unable to prove a false statement by itself, even with the help of an oracle
generating simulated proofs for (possibly false) adversarially-chosen statements.
Groth [35] and Camenisch et al. [19] extended the Groth-Sahai techniques so as
to obtain simulation-sound NIZK proofs. Their techniques incur a substantial
overhead due to the use of quadratic pairing product equations, OR proofs or
IND-CCA2-secure encryption schemes. It was shown [41,45,51] that one-time
simulation-soundness —where the adversary obtains only one simulated proof—
is much cheaper to achieve than unbounded simulation-soundness (USS). When
it comes to proving membership of linear subspaces, Libert, Peters, Joye and
Yung [49] gave very efficient unbounded simulation-sound quasi-adaptive NIZK
proofs which do not require quadratic pairing product equations or IND-CCA2-
secure encryption. As in the improved solution of Kiltz and Wee [47], their USS
QA-NIZK arguments have constant size, regardless of the dimensions of the con-
sidered subspace. Unfortunately, the simulation-soundness of their proof system
does not tightly reduce to the underlying assumption. The multiplicative gap
between the reduction’s probability of success and the adversary’s advantage
1 Using random oracles, Katz and Wang [46] previously gave a tightly secure variant

of the Boneh-Franklin IBE [17].

684 B. Libert et al.

depends on the number q of simulated proofs observed by the adversary. As a
consequence, the results of [47,49] do not imply tight chosen-ciphertext secu-
rity [38] in a scenario —first envisioned by Bellare, Boldyreva and Micali [7]—
where the adversary obtains polynomially many challenge ciphertexts. As of
now, USS proof systems based on OR proofs [35,38] are the only ones to enable
tight multi-challenge security and it is unclear how to render them as efficient
as [49] for linear equations.

Tightness and Chosen-Ciphertext Security. Bellare, Boldyreva and
Micali [7] showed that, if a public-key cryptosystem is secure in the sense of
the one-user, one-challenge security definition [55], it remains secure in a more
realistic multi-user setting where the adversary obtains polynomially many chal-
lenge ciphertexts. Their reduction involves a loss of exact security which is pro-
portional to the number of users and the number of challenge ciphertexts. They
also showed that, in the Cramer-Shoup encryption scheme [28], the degradation
factor only depends on the number of challenges per user. Hofheinz and Jager [38]
used a tightly secure simulation-sound proof system to build the first encryp-
tion system whose IND-CCA2 security tightly reduces to a standard assumption
in the multi-user, multi-challenge setting. Due to very large ciphertexts, their
scheme was mostly a feasibility result and the same holds for the improved
constructions of Abe et al. [5]. Until recently, the only known CCA2-secure
encryption schemes with tight security in the multi-challenge, multi-user setting
either relied on non-standard q-type assumptions [37] —where the number of
input elements depends on the number of adversarial queries— or incurred long
ciphertexts [5,38] comprised of hundreds of group elements (or both). One of
the reasons is that solutions based on standard assumptions [5,38,50] build on
simulation-sound proof systems relying on OR proofs. Libert et al. [50] gave an
almost tightly IND-CCA2 system in the multi-challenge setting where, despite
their use of OR proofs, ciphertexts only require 69 group elements under the
Decision Linear assumption. Unfortunately, their result falls short of implying
constant-size simulation-sound QA-NIZK proofs of linear subspace membership
since each vector coordinate would require its own proof elements. In particular,
the technique of [50] would result in long proofs made of O(λ) group elements in
the setting of key-dependent message CCA2 security, where O(1) group elements
per proof suffices [43, Section6] if we accept a loose reduction.

Very recently, Hofheinz et al. [40] put forth an almost tightly secure IBE
scheme in the multi-challenge, multi-instance scenario. While their result implies
an almost tightly CCA2 secure public-key encryption scheme via the Canetti-
Halevi-Katz paradigm [21], it relies on composite order groups. In [40], it was left
as an open problem to apply the same technique under standard assumptions in
the (notoriously much more efficient) prime order setting.

Our Contributions. As a core technical innovation, this paper presents short
QA-NIZK proofs of linear subspace membership (motivated by those in [43,49])
where the unbounded simulation-soundness property can be almost tightly —in
the terminology of Chen and Wee [23]— related to the standard Decision Linear

Compactly Hiding Linear Spans 685

(DLIN) assumption [16]. As in [23], the loss of concrete security only depends on
the security parameter, and not on the number of simulated proofs obtained by
the adversary, which solves a problem left open in [49]. Our construction only
lengthens the QA-NIZK proofs of Libert et al. [49] by a factor of 2 and thus
retains the constant proof length of [49], independently of the dimensions of
the subspace. In particular, it does not rely on an IND-CCA2-secure encryption
scheme —which, in this context, would require a tightly secure CCA2 cryptosys-
tem to begin with— and it does not even require quadratic equations.

Building on our QA-NIZK proofs and the Naor-Yung paradigm [54], we
obtain a new public-key encryption scheme which is proved IND-CCA2-secure
in the multi-challenge, multi-user setting under the Decision Linear assumption
via an almost tight reduction. While the reduction is slightly looser than those
of [5,38], our security bound does not depend on the number of users or the
number of challenges, so that our scheme is as secure in the multi-challenge,
multi-user scenario as in the single-challenge, single-user setting. Like [5,38], our
construction features publicly recognizable well-formed ciphertexts, which makes
it suitable for non-interactive threshold decryption. Moreover, our ciphertexts
are much shorter than those of [5,38] as they only consist of 48 group elements
under the DLIN assumption, whereas the most efficient construction based on
the same assumption [50] entails 69 group elements per ciphertext.

Our constant-size proofs offer more dramatic savings when it comes
to encrypting long messages without affecting the compatibility with zero-
knowledge proofs. We can encrypt N group elements at once while retaining
short proofs, which only takes 2N+46 group elements per ciphertext. The asymp-
totic expansion ratio of 2 —which is inherent to the Naor-Yung technique— is
thus optimal. To our knowledge, all prior results on tight CCA2 security would
incur Θ(N) elements per proof and thus a higher expansion rate in this sit-
uation. In turn, our encryption schemes imply tightly secure non-interactive
universally composable (UC) commitments [20,27] with adaptive security in the
erasure model. In particular, using the same design principle as previous UC
commitments [31,42,52] based on CCA2-secure cryptosystems, our scheme for
long messages allows committing to N group elements at once with a two-fold
expansion rate.

Using our QA-NIZK proof system, we also construct an almost tightly
secure encryption scheme with key-dependent message chosen-ciphertext
security (KDM-CCA2) [12,18] —in the sense of [19]— with shorter ciphertexts.
Analogously to the Jutla-Roy construction [43, Section6], our system offers sub-
stantial savings w.r.t. [19] as it allows for constant-size proofs even though, due
to the use of the Boneh et al. approach [18] to KDM security, the dimension of
underlying vectors of group elements depends on the security parameter. Like the
Jutla-Roy construction [43], our KDM-CCA2 system only lengthens the cipher-
texts of its underlying KDM-CPA counterpart by a constant number of group
elements. Unlike [43], however, the KDM-CCA2 security of our scheme is almost
tightly related to the DLIN assumption. So far, the most efficient tightly KDM-
CCA2 system was implied by the results of Hofheinz-Jager [38] and Abe et al. [5],

686 B. Libert et al.

which incur rather long proofs. Our QA-NIZK proofs yield ciphertexts that are
about 75% shorter, as we show in the full version of the paper.

Our Techniques. Our QA-NIZK arguments (as the construction in [49]) build
on linearly homomorphic structure-preserving signatures (LHSPS) [48]. In [49],
each proof of subspace membership is a Groth-Sahai NIWI proof of knowledge
of a homomorphic signature on the vector v whose membership is being proved.
The security analysis relies on the fact that, with some probability, all simulated
proofs take place on a perfectly NIWI Groth-Sahai CRS while the adversary’s
fake proof pertains to a perfectly binding CRS. Here, in order to do this without
applying Waters’ partitioning method [58] to the CRS space as in [53], we let
the prover generate a Groth-Sahai CRS F = (f1,f2,F) of its choice (a similar
technique was used by Escala and Groth [29] in a different context), for vectors of
group elements f1,f2,F ∈ G

3, and first prove that this CRS is perfectly binding
(i.e., F lives in span〈f1,f2〉). This seemingly additional “freedom” that we give
the prover ends up allowing a stronger simulator (tight simulation-soundness).

Simulation-soundness is, in fact, obtained by having the prover demonstrate
that either: (i) The prover’s CRS F is perfectly binding; or (ii) The prover knows
a signature which only the NIZK simulator would be able to compute using some
simulation trapdoor. One key idea is that, since the latter OR proof involves a
relatively short statement (namely, the membership of a two-dimensional sub-
space) which the adversary has no control on, it can be generated using a con-
stant number of group elements and using only linear pairing product equations.

In order to efficiently prove the above OR statement, we leverage the algebraic
properties of a variant of the Chen-Wee signature scheme [23], which was proved
almost tightly secure under the DLIN assumption, recently proposed by Libert
et al. [50]. In short, the real prover computes a pseudo-signature σ (without
knowing the signing key) on the verification key of a one-time signature and
uses the real witnesses to prove that F is a perfectly binding CRS. In contrast,
the simulator computes a real signature σ using the private key instead of the real
witnesses. In order to make sure that simulated proofs will be indistinguishable
from real proofs, we apply a technique —implicitly used in [50]— consisting
of hiding the linear subspace from where a partially committed vector of group
elements defined by the signature σ is chosen: while a pseudo-signature fits within
a proper subspace of a linear space specified by the public key, real signatures
live in the full linear space. A difference between our approach and the one
of [50] is our non-modular and more involved use of the signature scheme, yet
the technique we point at above may be useful elsewhere. Our QA-NIZK CRS
actually contains the description of a linear subspace which mixes the public key
components of the signature and vectors used to build the prover’s Groth-Sahai
CRS F. In order to implement the OR proof, our idea is to make sure that the
only way to prove a non-perfectly-binding CRS F is to compute the committed
σ as a real signature for a legally modified public key. By “legally modified key,”
we mean that some of its underlying private components may be scaled by an
adversarially-chosen factor x ∈ Zp as long as the adversary also outputs gx.
While we rely on an unusual security property of the signature which allows the

Compactly Hiding Linear Spans 687

adversary to tamper with the public key, this property can be proved under the
standard DLIN assumption in the scheme of [50]. This unusual property is a
crucial technique allowing us to prove the OR statement about the ephemeral
CRS F without using quadratic equations.

In turn, the simulation-soundness relies on the fact that, unless some security
property of the signature of [50] is broken, the adversary still has to generate
its fake proof on a perfectly binding CRS. If this condition is satisfied, we can
employ the arguments as in [49] to show that the reduction is able to extract a
non-trivial homomorphic signature, thus breaking the DLIN assumption.

Full Version. The full version of this paper is available as Cryptology ePrint
Archive, Report 2015/242 at URL http://eprint.iacr.org/2015/242.

2 Background and Definitions

2.1 Hardness Assumptions

We consider groups (G,GT) of prime-order p endowed with a bilinear map e :
G×G → GT . In this setting, we rely on the standard Decision Linear assumption.

Definition 1. [16] The Decision Linear Problem (DLIN) in G, is to distinguish
the distributions (ga, gb, gac, gbd, gc+d) and (ga, gb, gac, gbd, gz), with a, b, c, d

R←
Zp, z

R← Zp. The DLIN assumption asserts the intractability of DLIN for any
PPT distinguisher.

We also use the following problem, which is at least as hard as DLIN [22].

Definition 2. The Simultaneous Double Pairing problem (SDP) in (G,GT) is,
given group elements (gz, gr, hz, hu) ∈ G

4, to find a non-trivial triple (z, r, u) ∈
G

3\{(1G, 1G, 1G)} such that e(z, gz) · e(r, gr) = 1GT
and e(z, hz) · e(u, hu) = 1GT

.

2.2 Quasi-Adaptive NIZK Proofs and Simulation-Soundness

Quasi-Adaptive NIZK (QA-NIZK) proofs are NIZK proofs where the CRS is
allowed to depend on the specific language for which proofs have to be generated.
The CRS is divided into a fixed part Γ, produced by an algorithm K0, and a
language-dependent part ψ. However, there should be a single simulator for the
entire class of languages.

Let λ be a security parameter. For public parameters Γ ← K0(λ), let DΓ be
a probability distribution over a collection of relations R = {Rρ} parametrized
by a string ρ with an associated language Lρ = {x | ∃w : Rρ(x,w) = 1}.

We consider proof systems where the prover and the verifier both take a label
lbl as additional input. For example, this label can be the message-carrying part
of an ElGamal-like encryption. Formally, a tuple of algorithms (K0,K1,P,V) is
a QA-NIZK proof system for R if there exists a PPT simulator (S 1,S 2) such
that, for any PPT adversaries A1,A2 and A3, we have the following properties:

http://eprint.iacr.org/2015/242

688 B. Libert et al.

Quasi-Adaptive Completeness:

Pr[Γ ← K0(λ); ρ ← DΓ; ψ ← K1(Γ, ρ);
(x,w, lbl) ← A1(Γ, ψ, ρ); π ← P(ψ, x,w, lbl) :

V(ψ, x, π, lbl) = 1 if Rρ(x,w) = 1] = 1.

Quasi-Adaptive Soundness:

Pr[Γ ← K0(λ); ρ ← DΓ; ψ ← K1(Γ, ρ); (x, π, lbl) ← A2(Γ, ψ, ρ) :
V(ψ, x, π, lbl) = 1 ∧ ¬(∃w : Rρ(x,w) = 1)] ∈ negl(λ).

Quasi-Adaptive Zero-Knowledge:

Pr[Γ ← K0(λ); ρ ← DΓ; ψ ← K1(Γ, ρ) : AP(ψ,.,.)
3 (Γ, ψ, ρ) = 1]

≈ Pr[Γ ← K0(λ); ρ ← DΓ; (ψ, τsim) ← S1(Γ, ρ) :

AS(ψ,τsim,.,.,.)
3 (Γ, ψ, ρ) = 1],

where
P(ψ, ., ., .) emulates the actual prover. It takes as input (x,w) and lbl and
outputs a proof π if (x,w) ∈ Rρ. Otherwise, it outputs ⊥.
S(ψ, τsim, ., ., .) is an oracle that takes as input (x,w) and lbl. It outputs
a simulated proof S2(ψ, τsim, x, lbl) if (x,w) ∈ Rρ and ⊥ if (x,w) �∈ Rρ.

We assume that the CRS ψ contains an encoding of ρ, which is thus avail-
able to V. The definition of Quasi-Adaptive Zero-Knowledge requires a single
simulator for the entire family of relations R.

The property called simulation-soundness [56] requires that the adversary
remain unable to prove false statements even after having seen simulated proofs
for potentially false statements. We consider the strongest form, called unbounded
simulation-soundness (USS) as opposed to one-time simulation-soundness, where
the adversary is allowed to see polynomially many simulated proofs.

In order to use QA-NIZK proofs in a modular manner without degrading the
exact security of our constructions, we will require simulation-soundness to hold
even if the adversary A4 has a trapdoor τm that allows deciding membership
in the language Lρ. We thus assume that the algorithm DΓ outputs a language
parameter ρ and a trapdoor τm that allows recognizing elements of Lρ. This
trapdoor τm is revealed to A4 and should not help prove false statements.

Enhanced Unbounded Simulation-Soundness: For any PPT adversary A4,

Pr[Γ ← K0(λ); (ρ, τm) ← DΓ; (ψ, τsim) ← S1(Γ, ρ);

(x, π, lbl) ← AS2(ψ,τsim,.,.)
4 (Γ, ψ, ρ, τm) :

V(ψ, x, π, lbl) = 1 ∧ ¬(∃w : Rρ(x,w) = 1) ∧ (x, π, lbl) �∈ Q] ∈ negl(λ) ,

Compactly Hiding Linear Spans 689

where the adversary is allowed unbounded access to an oracle S2(ψ, τ, ., .)
that takes as input statement-label pairs (x, lbl) (where x may be outside
Lρ) and outputs simulated proofs π ← S2(ψ, τsim, x, lbl) before updating the
set Q = Q ∪ {(x, π, lbl)}, which is initially empty.

The standard notion of soundness can be enhanced in a similar way, by handing
the membership testing trapdoor τm to A2. In the weaker notion of one-time
simulation-soundness, only one query to the S2 oracle is allowed.

In order to achieve tight security in the multi-user setting, we also consider
a notion of unbounded simulation-soundness in the multi-CRS setting. Namely,
the adversary is given a set of μ reference strings {ψκ}μ

κ=1 for language para-
meters {ρκ}μ

κ=1 and should remain unable to break the soundness of one these
after having seen multiple simulated proofs for each CRS ψκ. A standard argu-
ment shows that (enhanced) unbounded simulation-soundness in the multi CRS
setting is implied by the same notion in the single CRS setting. However, the
reduction is far from being tight as it loses a factor μ. In our construction,
the random self-reducibility of the underlying hard problems fortunately allows
avoiding this security loss in a simple and natural way.

Enhanced Unbounded Simulation-Soundness in the multi-CRS set-
ting: For any PPT adversary A4, we have

Pr[Γ ← K0(λ); {ρκ, τm,κ}μ
κ=1 ← DΓ; ({ψκ, τsim,κ}μ

κ=1) ← S1(Γ, {ρκ}μ
κ=1);

(κ�, x, π, lbl) ← AS2({ψκ}μ
κ=1,{τsim,κ}μ

κ=1,.,.,.)
4 (Γ, {ψκ, ρκ, τm,κ}μ

κ=1) :
V(ψκ� , x, π, lbl) = 1 ∧ ¬(∃w : Rρκ� (x,w) = 1) ∧ (κ�, x, π, lbl) �∈ Q] ∈ negl(λ).

Here, A4 has access to an oracle S2({ψκ}μ
κ=1, {τsim,κ}μ

κ=1, ., ., .) that takes as
input tuples (j, x, lbl) (where x may be outside Lρj

) and outputs simulated
proofs π ← S2({ψκ}μ

κ=1, {τsim,κ}μ
κ=1, j, x, lbl) for Lρj

before updating the set
Q = Q ∪ {(j, x, π, lbl)}, which is initially empty.

The standard notion of soundness extends to the multi-CRS setting in a
similar way and it can be enhanced by giving {ψκ}μ

κ=1 and the membership
trapdoors {τm,κ}μ

κ=1 to the adversary. The definition of quasi-adaptive zero-
knowledge readily extends as well, by having S1 output {ψκ, τsim,κ}μ

κ=1 while
the oracle S and the simulator S2 both take an additional index j ∈ {1, . . . , μ}
as input.

2.3 Linearly Homomorphic Structure-Preserving Signatures

Structure-preserving signatures [3,4] are signature schemes where messages and
public keys consist of elements in the group G of a bilinear configuration (G,GT).

Libert et al. [48] considered structure-preserving with linear homomorphic
properties (see the full version of the paper for formal definitions). This section
reviews the one-time linearly homomorphic structure-preserving signature
(LHSPS) of [48].

690 B. Libert et al.

Keygen(λ, n): given a security parameter λ and the subspace dimension
n ∈ N, choose bilinear group (G,GT) of prime order p > 2λ. Then, choose
gz, gr, hz, hu

R← G. For i = 1 to n, choose χi, γi, δi
R← Zp and compute

gi = gz
χigr

γi , hi = hz
χihu

δi . The private key is sk = {(χi, γi, δi)}n
i=1 and

the public key is pk =
(
gz, gr, hz, hu, {(gi, hi)}n

i=1

) ∈ G
2n+4.

Sign(sk, (M1, . . . ,Mn)): to sign a vector (M1, . . . ,Mn) ∈ G
n using

sk = {(χi, γi, δi)}n
i=1, output σ = (z, r, u) =

(∏n
i=1 M−χi

i ,
∏n

i=1,M
−γi

i ,
∏n

i=1 M−δi
i

)
.

SignDerive(pk, {(ωi, σ
(i))}�

i=1): given pk as well as � tuples (ωi, σ
(i)), parse σ(i)

as σ(i) =
(
zi, ri, ui

)
for i = 1 to �. Return the triple σ = (z, r, u) ∈ G

3,
where z =

∏�
i=1 zωi

i , r =
∏�

i=1 rωi
i , u =

∏�
i=1 uωi

i .

Verify(pk, σ, (M1, . . . ,Mn)): given σ = (z, r, u) ∈ G
3 and (M1, . . . ,Mn), return

1 if and only if (M1, . . . ,Mn) �= (1G, . . . , 1G) and (z, r, u) satisfy

1GT
= e(gz, z) ·e(gr, r) ·

n∏

i=1

e(gi,Mi) = e(hz, z) ·e(hu, u) ·
n∏

i=1

e(hi,Mi) . (1)

Our simulation-sound proof system will rely on the fact that the above scheme
provides tight security under the DLIN assumption, as implicitly shown in [48].

3 Constant-Size QA-NIZK Proofs of Linear Subspace
Membership with Tight Simulation-Soundness

At a high level, our proof system can be seen as a variant of the construction
of Libert et al. [49] with several modifications allowing to tightly relate the
simulation-soundness property to the DLIN assumption. The construction also
uses the tightly signature scheme of [50].

3.1 Intuition

Like [49], we combine linearly homomorphic signatures and Groth-Sahai proofs
for pairing product equations. Each QA-NIZK proof consists of a Groth-Sahai
NIWI proof of knowledge of a homomorphic signature on the candidate vector2 v.
By making sure that all simulated proofs take place on a perfectly WI CRS, the
simulator is guaranteed to leak little information about its simulation trapdoor,
2 At first, tight simulation-soundness may seem achievable via an OR proof showing

the knowledge of either a homomorphic signature on v or a digital signature on
the verification key of a one-time signature. However, proving that a disjunction of
pairing product equations [35] is satisfiable requires a proof length proportional to
the number of pairings (which is linear in the dimension n here) in pairing product
equations.

Compactly Hiding Linear Spans 691

which is the private key of the homomorphic signature. At the same time, if the
adversary’s proof involves a perfectly binding CRS, the reduction can extract a
homomorphic signature that it would have been unable to compute and solve
a DLIN instance. To implement this approach, the system of [49] uses Waters’
partitioning technique [58] in the fashion of [53], which inevitably [39] affects the
concrete security by a factor proportional to the number q of queries.

Our first main modification is that we let the prover compute the Groth-
Sahai NIWI proof on a CRS F of his own and append a proof πF that the
chosen CRS is perfectly binding, which amounts to proving the membership of
a two-dimensional linear subspace span〈f1,f2〉. At first, it appears that πF has
to be simulation-sound itself since, in all simulated proofs, the reduction must
trick the adversary into believing that the ephemeral CRS F is perfectly sound.
Fortunately, the reduction only needs to do this for vectors of its choice —rather
than adversarially chosen vectors— and this scenario can be accommodated by
appropriately mixing the subspace of Groth-Sahai vectors f1,f2 ∈ G

3 with the
one in the public key of the signature scheme of [50].

The NIWI proof of knowledge is thus generated for a Groth-Sahai CRS
F = (f1,f2,F) where f1 and f2 are part of the global CRS but F ∈ G

3 is chosen
by the prover and included in the proof. To prove that F is a perfectly sound CRS,
honest provers derive a homomorphic signature (Z,R,U) from the first 4L + 2
rows of a matrix M ∈ G

(4L+5)×(4L+6) defined by the public key of the signature
scheme and fixed vectors f1,f2,f0 ∈ G

3. The first two rows allow deriving a
signature on the honestly generated F = fμ1

1 ·fμ2
2 from publicly available homo-

morphic signatures on f1 and f2. The next 4L rows are used to demonstrate the
validity of a pseudo-signature (σ1, σ2, σ3) = (H(V ,VK)r · H(W ,VK)s, fr, hs)
on the verification key VK of a one-time signature. This allows the prover to
derive a homomorphic signature (Z,R,U) that authenticates a specific vector
σ ∈ G

(4L+6) determined by F and the pseudo-signature (σ1, σ2, σ3).
The proof of simulation-soundness uses a strategy where, with high probabil-

ity, all simulated proofs will take place on a perfectly NIWI CRS F = (f1,f2,F)
—where F ∈ G

3 is linearly independent of (f1,f2)— whereas the adversary’s
fake proof π� will contain a vector F � ∈ G

3 such that F = (f1,f2,F �) is an
extractable CRS (namely, F � ∈ span〈f1,f2〉). In order to satisfy the above con-
ditions, the key idea is to have each QA-NIZK proof demonstrate that either:
(i) The vector F contained in π satisfies F ∈ span〈f1,f2〉; (ii) (σ1, σ2, σ3) is a
real signature rather than a pseudo-signature. Since F ∈ G

3 is chosen by the
simulator, we can prove this compound statement without resorting to quadratic
equations, by appropriately mixing linear subspaces. In more details, using a per-
fectly NIWI CRS in all simulated proofs requires the reduction to introduce a
dependency on the fixed f0 ∈ G

3 in the vector F which is included in the
proof π. In turn, in order to obtain a valid homomorphic signature on the vec-
tor σ ∈ G

(4L+6) determined by F and (σ1, σ2, σ3), this forces the simulator to
use the last row of the matrix M which contains the vector f0 ∈ G

3 and the
public key components Ω1,Ω2 of the signature scheme in [50]. To satisfy the
verification algorithm, the vector σ must contain 1G in the coordinates where

692 B. Libert et al.

Ω1,Ω2 are located in the last row of M. In order to retain these 1G’s at these
places, the simulator must use two other rows of M to cancel out the intro-
duction of Ω1,Ω2 in σ. Applying such a “correction” implies the capability of
replacing the pseudo-signature (σ1, σ2, σ3, Z,R,U) by a pair (σ,X = gx), where
σ = (σ1, σ2, σ3, Z,R,U) is a real signature for a possibly modified key.

In order to obtain a perfectly NIZK proof system, we need to uncondition-
ally hide the actual subspace where σ ∈ G

(4L+6) lives as well as the fact that
(σ1, σ2, σ3) is a real signature in simulated proofs. To this end, we refrain from let-
ting (σ1, Z,R,U) appear in the clear and replace them by perfectly hiding com-
mitments Cσ1 ,CZ ,CR,CU to the same values and a NIWI proof that (Z,R,U)
is a valid homomorphic signature on the partially committed vector σ. Using
our technique, we only need to prove linear pairing product equations.

In a construction of nearly tightly CCA2-secure cryptosystem, Libert
et al. [50] used a somewhat similar approach based on pseudo-signatures and
consisting of hiding the subspace where a partially committed vector is cho-
sen. However, besides falling short of providing constant-size QA-NIZK proofs
of subspace membership, the approach of [50] requires quadratic equations. In
contrast, while we also relying on pseudo-signatures, our technique for compactly
hiding the underlying linear span completely avoids quadratic equations. It fur-
ther yields simulation-sound QA-NIZK arguments that is constant size fitting
within 42 group elements, regardless of the dimensions of the subspace.

3.2 Construction

For simplicity, the description below assumes symmetric pairings e : G×G → GT

but instantiations in asymmetric pairings e : G × Ĝ → GT , with G �= Ĝ, are
possible, as explained in the full version of the paper.

As in [42], we assume that the language parameter ρ is a matrix in G
t×n, for

some integers t, n ∈ poly(λ) such that t < n, with an underlying witness relation
Rpar such that, for any A ∈ Z

t×n
p and ρ ∈ G

t×n, Rpar(A,ρ) = 1 if and only
if ρ = gA. We consider distributions DΓ ⊂ G

t×n that are efficiently witness-
samplable: namely, there is a PPT algorithm which outputs a pair (ρ,A) such
that Rpar(A,ρ) = 1 and describing a relation Rρ with its associated language
Lρ according to DΓ. For example, the sampling algorithm could pick a random
matrix A R← Z

t×n
p and define ρ = gA.

K0(λ): choose symmetric bilinear groups (G,GT) of prime order p > 2λ with
f, g, h

R← G. Choose a strongly unforgeable one-time signature Σ = (G,S,V)
with verification keys consisting of L-bit strings, for a suitable L ∈ poly(λ).
Then, output Γ = (G,GT , f, g, h,Σ).

The dimensions (t, n) of the matrix A ∈ Z
t×n
p such that ρ = gA can be part of

the language, so that t, n can be given as input to algorithm K1.

K1(Γ, ρ): parse Γ as (G,GT , f, g, h,Σ) and ρ as ρ =
(
Gi,j

)
1≤i≤t, 1≤j≤n

∈ G
t×n.

Compactly Hiding Linear Spans 693

1. Generate key pairs {(skb, pkb)}1
b=0 for the one-time homomorphic sig-

nature of Sect. 2.3 in order to sign vectors of G
n and G

4L+6, respec-
tively. Namely, choose gz, gr, hz, hu

R← G, Gz, Gr,Hz,Hu
R← G. Then,

for i = 1 to n, pick χi, γi, δi
R← Zp and compute gi = gz

χigr
γi and

hi = hz
χihu

δi . Let sk0 = {χi, γi, δi}n
i=1 be the private key and let

pk0 =
(
gz, gr, hz, hu, {gi, hi}n

i=1

)
be the public key. The second LHSPS

key pair (sk1, pk1) is generated analogously as sk1 = {ϕi, φi, ϑi}4L+6
i=1 and

pk1 =
(
Gz, Gr, Hz, Hu, {Gi = Gϕi

z Gφi
r , Hi = Hϕi

z Hϑi
u }4L+6

i=1

)
.

2. Choose y1, y2, ξ1, ξ2, ξ3
R← Zp and compute f1 = gy1 , f2 = gy2 . Define

vectors f1 = (f1, 1G, g), f2 = (1G, f2, g) and f3 = f1
ξ1 · f2

ξ2 · ι(g)ξ3 ,
where ι(g) = (1G, 1G, g). Define the Groth-Sahai CRS f = (f1,f2,f3).
Then, define yet another vector f0 = f1

ν1 · f2
ν2 , with ν1, ν2

R← Zp.
3. For � = 1 to L, choose V�,0, V�,1,W�,0,W�,1

R← G and define row vectors
V = (V1,0, V1,1, . . . , VL,0, VL,1), W = (W1,0,W1,1, . . . ,WL,0,WL,1).

4. Choose random exponents ω1, ω2
R← Zp and group elements u1, u2

R← G,
and compute Ω1 = uω1

1 ∈ G, Ω2 = uω2
2 ∈ G.

5. Define the matrix M =
(
Mi,j

)
i,j

∈ G
(4L+5)×(4L+6) as

(
Mi,j

)
i,j

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 11×2L 11×2L 1 1 f1

1 11×2L 11×2L 1 1 f2

V � Idf,2L 12L×2L 12L×1 12L×1 12L×3

W � 12L×2L Idh,2L 12L×1 12L×1 12L×3

g 11×2L 11×2L u1 1 11×3

g 11×2L 11×2L 1 u2 11×3

1 11×2L 11×2L Ω−1
1 Ω−1

2 f0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(2)

with Idf,2L = f I2L ∈ G
2L×2L, Idh,2L = hI2L ∈ G

2L×2L, and where
I2L ∈ Z

2L×2L
p stands for the identity matrix. Note that the last row

allows linking f0 and Ω1,Ω2.
6. Use sk0 to generate one-time homomorphic signatures {(zi, ri, ui)}t

i=1

on the vectors (Gi1, . . . , Gin) ∈ G
n that form the rows of ρ ∈ G

t×n.
These are given by (zi, ri, ui) =

(∏n
j=1 G

−χj

i,j ,
∏n

j=1 G
−γj

i,j ,
∏n

j=1 G
−δj

i,j

)

for each i ∈ {1, . . . , t}. Likewise, use sk1 to sign the rows Mj = (Mj,1, . . . ,
Mj,4L+6) of the matrix (2) and obtain signatures

(Zj , Rj , Uj) =
(4L+6∏

k=1

M−ϕk

j,k ,
4L+6∏

k=1

M−φk

j,k ,
4L+6∏

k=1

M−ϑk

j,k

)

for each j ∈ {1, . . . , 4L + 5}.

694 B. Libert et al.

7. The CRS ψ = (CRS1,CRS2) consists of two parts which are defined as

CRS1 =
(
ρ, f , f0, u1, u2, Ω1, Ω2, V , W , pk0, pk1,

{(zi, ri, ui)}t
i=1, {(Zj , Rj , Uj)}4L+5

j=1

)
,

CRS2 =
(
f , f0, pk0, pk1, Ω1, Ω2, V , W

)
,

while the simulation trapdoor is τsim =
(
ω1, ω2, {χi, γi, δi}n

i=1

)
.

P(Γ, ψ, v, x, lbl): given v ∈ G
n and a witness x = (x1, . . . , xt) ∈ Z

t
p such that

v = gx·A, generate a one-time signature key pair (VK,SK) ← G(λ).

1. Using {(zj , rj , uj)}t
j=1, derive a one-time linearly homomorphic signa-

ture (z, r, u) on the vector v with respect to pk0. Namely, compute
z =

∏t
i=1 zxi

i , r =
∏t

i=1 rxi
i and u =

∏t
i=1 uxi

i .
2. Choose a vector F = (F1, F2, F3) = fμ1

1 · fμ2
2 , for random μ1, μ2

R← Zp.
3. Pick r, s

R← Zp and compute a pseudo-signature on VK = VK[1] . . .VK[L],
which is obtained as (σ1, σ2, σ3) = (H(V ,VK)r · H(W ,VK)s, fr, hs),
where H(V ,VK) =

∏L
�=1 V�,VK[�] and H(W ,VK) =

∏L
�=1 W�,VK[�].

4. Derive a one-time linearly homomorphic signature (Z,R,U) ∈ G
3 for

pk1 on the vector

σ = (σ1,σ
1−VK[1]
2 , σ

VK[1]
2 , . . . , σ

1−VK[L]
2 , σ

VK[L]
2 , σ

1−VK[1]
3 ,

σ
VK[1]
3 , . . . , σ

1−VK[L]
3 , σ

VK[L]
3 , 1G, 1G, F1, F2, F3) ∈ G

4L+6 (3)

which belongs to subspace spanned by the first 4L + 2 rows of the
matrix M ∈ G

(4L+5)×(4L+6). Hence, the coefficients r, s, μ1, μ2 ∈ Zp

allow deriving a homomorphic signature (Z,R,U) on σ in (3). Note that
the (4L + 2)-th and the (4L + 3)-th coordinates of σ must both equal
1G.

5. Using the CRS f = (f1,f2,f3), generate Groth-Sahai commitments
Cσ1 ,CZ ,CR,CU ∈ G

3. Then, compute NIWI proofs πσ,1,πσ,2 ∈ G
3

that committed variables (σ1, Z,R,U) satisfy

e(Z,Gz) · e(R,Gr) · e(σ1, G1) = tG,

e(Z,Hz) · e(U,Hu) · e(σ1,H1) = tH ,
(4)

where

tG = e(σ2,
L∏

i=1

G2i+VK[i])
−1 · e(σ3,

L∏
i=1

G2L+2i+VK[i])
−1 ·

3∏
i=1

e(Fi, G4L+3+i)
−1

and

tH = e(σ2,
L∏

i=1

H2i+VK[i])−1 · e(σ3,
L∏

i=1

H2L+2i+VK[i])−1

·
3∏

i=1

e(Fi,H4L+3+i)−1.

Compactly Hiding Linear Spans 695

6. Using the vector F = (F1, F2, F3) of Step 2, define a new Groth-Sahai
CRS F = (f1,f2,F) and use it to compute commitments

Cz = ι(z) · f
θz,1
1 · f

θz,2
2 · F θz,3 , Cr = ι(r) · f

θr,1
1 · f

θr,2
2 · F θr,3 ,

Cu = ι(u) · f
θu,1
1 · f

θu,2
2 · F θu,3

to the components of (z, r, u) along with NIWI proofs (π1,π2) ∈ G
6

that v and (z, r, u) satisfy (1). Let (Cz,Cr,Cu,π1,π2) ∈ G
15 be the

resulting commitments and proofs.
7. Set σ = S(SK, (v,F ,Cσ1 , σ2, σ3,CZ ,CR,CU ,Cz,Cr,Cu,πσ,1,πσ,2,

π1,π2, lbl)) and output

π =
(
VK,F ,Cσ1 , σ2, σ3,CZ ,CR,CU ,Cz,Cr,Cu,

πσ,1,πσ,2,π1,π2, σ
)
.

(5)

V(Γ, ψ, v, π, lbl): parse π as in (5) and v as (v1, . . . , vn) ∈ G
n. Return 1 if the

conditions hereunder all hold. Otherwise, return 0.

(i) V(VK, (v,F ,Cσ1 , σ2, σ3,CZ ,CR,CU ,Cz,Cr,Cu,πσ,1,πσ,2,π1,π2,
lbl), σ) = 1;

(ii) πσ,1,πσ,2 are valid proofs that the variables (σ1, Z,R,U), which are con-
tained in commitments Cσ1 ,CZ ,CR,CU , satisfy equations (4).

(iii) The tuple (Cz,Cr,Cu,π1,π2) forms a valid a valid NIWI proof for the
Groth-Sahai CRS F = (f1,f2,F). Namely, π1 = (π1,1, π1,2, π1,3) and
π2 = (π2,1, π2,2, π2,3) satisfy

n∏

i=1

E
(
gi, ι(vi)

)−1 = E
(
gz,Cz

) · E
(
gr,Cr

) · E(π1,1,f1).

E(π1,2,f2) · E(π1,3,F)
n∏

i=1

E
(
hi, ι(vi)

)−1 = E
(
hz,Cz

) · E
(
hu,Cu

) · E(π2,1,f1).

E(π2,2,f2) · E(π2,3,F).

(6)

The proof only requires 38 elements of G and a pair (VK, σ). In instantiations
using the one-time signature of [38], its total size amounts to 42 group elements,
which only lengthens the QA-NIZK proofs of [49] by a factor of 2.

4 Security

To avoid unnecessarily overloading notations, we will prove our results in the
single CRS setting. At the main steps, we will explain how the proof can be
adapted to the multi-CRS setting without affecting the tightness of reductions.

Theorem 1. The above proof system is perfectly quasi-adaptive zero-knowledge.

696 B. Libert et al.

Proof (sketch). We describe the QA-NIZK simulator here but we refer to the full
paper for a detailed proof that the simulation is perfect. This simulator (S1, S2)
is defined by having S1 generate the CRS ψ as in the real K0 algorithm but retain
the simulation trapdoor τsim =

(
ω1, ω2, {χi, γi, δi}n

i=1

)
for later use. As for S2, it

generates a simulated proof for v = (v1, . . . , vn) ∈ G
n by using {(χi, γi, δi)}n

i=1

to compute (z, r, u) =
(∏n

j=1 v
−χj

j ,
∏n

j=1 v
−γj

j ,
∏n

j=1 v
−δj

j) at step 1 of the simu-
lation instead of using the witness x ∈ Z

t
p as in the real proving algorithm P. At

step 2, it defines (F1, F2, F3) = f0 ·fμ1
1 ·fμ2

2 with μ1, μ2
R← Zp. At step 3, it picks

r, s
R← Zp to compute (σ1, σ2, σ3) =

(
gω1+ω2 · H(V ,VK)r · H(W ,VK)s, fr, hs

)

before using the coefficients μ1, μ2, r, s, ω1, ω2, 1 ∈ Zp to derive a homomorphic
signature (Z,R,U) from {(Zj , Rj , Uj)}4L+5

j=1 at step 4. Steps 5 to 7 are conducted
as in the real P. In the full paper, we prove that the simulation is perfect in that
the simulated CRS ψ is distributed as a real CRS and, for all v ∈ G

n such that
v = gx·A for some x ∈ Z

t
p, simulated proofs are distributed as real proofs. ��

We now prove that the system remains computationally sound and simulation-
sound, even when the adversary is given the matrix A = logg(ρ) ∈ Z

t×n
p , which

allows recognizing elements of Lρ. Although the enhanced soundness property
is implied by that of enhanced simulation-soundness, we prove it separately (see
the full paper for the proof) in Theorem 2 since the reduction is optimal.

Theorem 2. The system provides quasi-adaptive soundness under the DLIN
assumption. Any enhanced soundness adversary A with running time tA implies
a DLIN distinguisher B with running time tB ≤ tA + q · poly(λ,L, t, n) and such
that Adve-sound

A (λ) ≤ 2 · AdvDLIN
B (λ) + 2/p.

Theorem 3. The above system provides quasi-adaptive unbounded simulation-
soundness if: (i) Σ is a strongly unforgeable one-time signature; (ii) The DLIN
assumption holds. For any enhanced unbounded simulation-soundness adversary
A, there exist a one-time signature forger B′ in the multi-key setting and a DLIN
distinguisher B with running times tB, tB′ ≤ tA + q · poly(λ,L, t, n) such that

Adve-uss
A (λ) ≤ Advq-suf-ots

B′ (λ) + 3 · (L + 2) · AdvDLIN
B (λ) + 4/p, (7)

where L is the verification key length of Σ and q is the number of simulations.

Proof. To prove the result, we consider a sequence of games. In Gamei, we denote
by Si the event that the challenger outputs 1.

Game1: This game is the actual attack. Namely, the adversary A receives as
input the description of the language Lρ and has access to a simulated CRS
ψ and the simulated prover S2(ψ, τsim, ., .) which is described in the proof
of Theorem 1. At each invocation, S2(ψ, τsim, ., .) inputs a vector-label pair
(v, lbl) and outputs a simulated proof π that v ∈ Lρ. In order a generate
the matrix ρ ∈ G

t×n with the appropriate distribution DΓ, the challenger
chooses a matrix A ∈ Z

t×n
p with the suitable distribution (which is possible

since DΓ is efficiently witness-samplable) and computes ρ = gA. Also, the

Compactly Hiding Linear Spans 697

challenger B computes a basis W ∈ Z
n×(n−t)
p of the nullspace of A. The

adversary receives as input the simulated CRS ψ and the matrix A ∈ Z
t×n
p ,

which serves as a membership testing trapdoor τm, and queries the simulator
S2(ψ, τsim, ., .) on a polynomial number of occasions. When the adversary A
halts, it outputs an element v�, a proof π� and a label lbl�. The adversary
is declared successful and the challenger outputs 1 if and only if (π�, lbl�) is
a verifying proof but v� �∈ Lρ (i.e., v� is linearly independent of the rows
of ρ ∈ G

t×n) and (π�, lbl�) was not trivially obtained from the simulator.
We call S1 the latter event, which is easily recognizable by the challenger
B since the latter knows a basis W ∈ Z

n×(n−t)
p of the right kernel of A.

Indeed, W allows testing if v = (v1, . . . , vn) ∈ G
n satisfies

∏n
j=1 v

wji

j = 1G
for each column w�

i = (w1i, . . . , wni)� of W. By definition, the adversary’s
advantage is Adv(A) := Pr[S1].

Game2: We modify the generation of the CRS ψ = (CRS1,CRS2). Instead of
choosing f3 ∈R G

3 as a uniformly random vector, S1 sets f3 = f ξ1
1 ·f ξ2

2 , for
random ξ1, ξ2

R← Zp. Hence, f1,f2 and f3 now underlie a subspace of dimen-
sion 2 and f = (f1,f2,f3) thus becomes a perfectly binding CRS. Under
the DLIN assumption, this modification should have no noticeable impact
on A’s probability of success. We have |Pr[S2] − Pr[S1]| ≤ AdvDLIN(B).

Game3: We modify again the generation of ψ. Now, instead of choosing f0 in
span〈f1,f2〉, S1 sets f0 = fν1

1 ·fν2
2 · ι(g), for random ν1, ν2

R← Z
∗
p. The vector

f0 is now linearly independent of (f1,f2). Under the DLIN assumption,
this modification will remain unnoticed to the adversary. In particular, A’s
winning probability should only change by a negligible amount. A two-step
reduction from DLIN shows that |Pr[S3] − Pr[S2]| ≤ 2 · AdvDLIN(B).

Game4: This game is like Game3 but B halts and outputs a random bit if A out-
puts a proof π� containing a one-time verification key VK� that is recycled
from an output of the S2(ψ, τsim, ., .) oracle. Game4 and Game3 proceed iden-
tically until the latter event occurs. This event further contradicts the strong
unforgeability of Σ. If Σ has tight multi-key security3 (in the sense of [38]),
the probability of this event can be bounded independently of the number q
of queries to S2(ψ, τsim, ., .). We have |Pr[S4] − Pr[S3]| ≤ Advq-suf-ots

B (λ).
Game5: This game is identical to Game4 but we raise a failure event E5. When A

outputs its fake proof π� =
(
VK�,F �,C�

σ1
, σ�

2 , σ�
3 ,C�

Z ,C�
R,C�

U ,C�
z,C

�
r ,C

�
u,

π�
σ,1,π

�
σ,2,π

�
1,π

�
2, σ

�
)
, B parses the vector F � as (F �

1 , F �
2 , F �

3) ∈ G
3 and

uses the extraction trapdoor (y1, y2) = (logg(f1), logg(f2)) of the Groth-
Sahai CRS f = (f1,f2,f3) to test if F �

3 �= F �
1

1/y1 · F �
2

1/y2 , meaning that
F� = (f1,f2,F �) is not a perfectly binding Groth-Sahai CRS. We denote
by E5 the latter event, which causes B to abort and output a random bit

3 This notion (see Definition 4 in [38]) is defined via a game where the adversary is
given q verification keys {VKi}q

i=1 and an oracle that returns exactly one signature
for each key. The adversary’s tasks is to output a triple (i�, M�, σ�), where i� ∈
{1, . . . , q} and (M�, σ�) was not produced by the signing oracle for VKi� . Hofheinz
and Jager [38, Section4.2] gave a discrete-log-based one-time signature with tight
security in the multi-key setting.

698 B. Libert et al.

if it occurs. Clearly, Game5 is identical to Game4 unless E5 occurs, so that
|Pr[S5] − Pr[S4]| ≤ Pr[E5]. Lemma 1 demonstrates that event E5 occurs
with negligible probability if the DLIN assumption holds. More precisely, the
probability Pr[E5] is at most Pr[E5] ≤ (2·L+1)·AdvDLIN

B (λ)+2/p, where B
is a DLIN distinguisher whose computational complexity only exceeds that
of A by the cost of a polynomial number of exponentiations in G and a
constant number of pairing evaluations.

In Game5, we have Pr[S5] = Pr[S5∧E5]+Pr[S5∧¬E5] = 1
2 ·Pr[E5]+Pr[S5∧¬E5],

so that Pr[S5] ≤ (L + 1) · AdvDLIN
B (λ) + 1

p + Pr[S5 ∧ ¬E5].
In Game5, we show that event S5∧¬E5 implies an algorithm B solving a given

SDP instance (gz, gr, hz, hu), which also contradicts the DLIN assumption.
Assuming that event S5 ∧ ¬E5 indeed occurs, we know that the adversary A

manages to output a correct proof π� =
(
VK�,F �,C�

σ1
, σ�

2 , σ�
3 ,C�

Z ,C�
R,C�

U ,C�
z,

C�
r ,C

�
u,π�

σ,1,π
�
σ,2,π

�
1,π

�
2, σ

�
)

for a vector v� = (v�
1 , . . . , v�

n) outside the row
space of ρ = gA and such that F � = (F �

1 , F �
2 , F �

3) is a BBS encryption of 1G
(namely, F �

3 = F �
1

1/y1 · F �
2

1/y1). This means that, although the simulated proofs
produced by S2(ψ, τsim, ., .) were all generated for a perfectly NIWI Groth-Sahai
CRS F = (f1,f2,F), the last part (C�

z,C
�
r ,C

�
u,π�

1,π
�
2) of A’s proof π� takes

place on a perfectly binding CRS F� = (f1,f2,F
�). Moreover, although B does

not know μ�
1, μ

�
2 ∈ Zp such that F � = f1

μ�
1 · f2

μ�
2 , B can still use the extraction

trapdoor (y1, y2) = (logg(f1), logg(f2)) to recover (z�, r�, u�) from (C�
z,C

�
r ,C

�
u)

by performing BBS decryptions. Indeed, C�
z = ι(z�) · f1

θz,1 · f2
θz,2 · F �θz,3 is of

the form C�
z = ι(z�) · f1

θz,1+μ�
1 ·θz,3 · f2

θz,2+μ�
2 ·θz,3 , which decrypts to z�.

The perfect soundness of the Groth-Sahai CRS F� = (f1,f2,F
�) ensures

that extracted group elements (z�, r�, u�) satisfy the pairing product equations

e(gz, z
�) · e(gr, r

�) ·
∏

i=1

e(gi, v
�
i) = e(hz, z

�) · e(hu, u�) ·
∏

i=1

e(hi, v
�
i) = 1GT

. (8)

In addition, B computes (z†, r†, u†) =
(∏n

i=1 v�
i

−χi ,
∏n

i=1 v�
i

−γi ,
∏n

i=1 v�
i

−δi
)
,

which also satisfies the equations (8). Since (z†, r†, u†) and (z�, r�, u�) both sat-
isfy (8), the triple (z‡, r‡, u‡) =

(
z�

z† , r�

r† , u�

u†
)

necessarily satisfies the equalities
e(gz, z

‡) · e(gr, r
‡) = e(hz, z

‡) · e(hu, u‡) = 1GT
. We argue that z‡ �= 1G with

probability 1 − 1/p, so that (z‡, r‡, u‡) breaks the SDP assumption.
To see this, we remark that, if event S5 ∧ ¬E5 actually happens, B never

reveals any information about (χ1, . . . , χn) when it emulates S2(ψ, τsim, ., .).
Indeed, in simulated proofs, the only components that depend on (χ1, . . . , χn) are
(Cz,Cr,Cu,π1,π2), which are generated for a perfectly NIWI Groth-Sahai CRS
(f1,f2,F). Consequently, the same arguments as in [48, Theorem1] show that
z† �= z� with probability 1 − 1/p. In the CRS, {(gi, hi)}n

i=1 and {(zi, ri, ui)}t
i=1

provide A with a linear system of 2n + t < 3n equations in 3n unknowns
{(χi, γi, δi)}n

i=1, which leaves z† completely undetermined in A’s view if v� is
linearly independent of the rows of ρ =

(
Gi,j

)
i,j

. We thus find Pr[S5 ∧ ¬E5] ≤
AdvSDP

B (λ)+1/p, which yields the bound (7) since AdvSDP
B (λ) ≤ 1

2 ·AdvDLIN
B (λ)

if we translate the SDP solver B into a DLIN distinguisher. ��

Compactly Hiding Linear Spans 699

The result easily extends to the multi-CRS setting via the following changes.
In the transitions from Game1 to Game2 and Game2 to Game3, we can simultane-
ously modify all CRSes {ψ(κ)}μ

κ=1 by using the random self-reducibility of DLIN
to build μ instances of the DLIN assumption from a given instance. In Game5,
the probability Pr[E5] can be bounded by implicitly relying on the multi-user
security (in the sense of [33]) of the signature scheme of [50], which remains
almost tight in the multi-key setting. In the proof of the following lemma, we
will explain at each step how the proof can be adapted to the multi-CRS setting.
Finally, the probability of event S5 ∧ ¬E5 in Game5 can be proved by applying
the same arguments as in the proof (see [50, AppendixG]) that the signature
of [50] provides tight security in the multi-user setting.

Lemma 1. In Game5, there is a DLIN distinguisher B such that the probability
Pr[E5] is at most Pr[E5] ≤ (2·L+1)·AdvDLIN

B (λ)+2/p. Moreover, B’s complexity
only exceeds that of A by a polynomial number of exponentiations and a constant
number of pairing computations. (The proof is given in the full version).

5 Applications to Tightly Secure Primitives

As an application of our QA-NIZK proof system, we present a new encryp-
tion scheme whose IND-CCA2 security in the multi-challenge-multi-user setting
(almost) tightly relates to the DLIN assumption. We show that the resulting
construction allows improving the expansion rate of non-interactive universally
composable commitments based on IND-CCA2-secure public-key encryption.

5.1 CCA2-Secure (Threshold) Encryption with Shorter Ciphertexts

Like [38,50], our scheme builds on the Naor-Yung paradigm [54] and the encryp-
tion scheme of Boneh, Boyen and Shacham (BBS) [16].

The encryption phase computes (C0, C1, C2) = (M · gθ1+θ2 ,Xθ1
1 , Y θ2

1) and
(D0,D1,D3) = (M · gθ3+θ4 ,Xθ3

2 , Y θ4
2), where (X1, Y1,X2, Y2) are part of the

public key, and generates a QA-NIZK proof π that the vector

v =
(
C1/D1, C2/D2, C0/D0, C1 · C2,D

−1
1 · D−1

2

) ∈ G
5

=
(
Xθ1

1 · X−θ3
2 , Y θ2

1 · Y −θ4
2 , g(θ1+θ2)−(θ3+θ4), Xθ1

1 · Y θ2
1 ,X−θ3

2 · Y −θ4
2

)

is in the subspace spanned by X1 = (X1, 1, g,X1, 1), Y 1 = (1, Y1, g, Y1, 1),
X2 = (X2, 1, g, 1,X2) and Y 2 = (1,X2, g, 1,X2). As in [50], our reduction is
not quite as tight as in [5,38] since a factor Θ(λ) is lost. On the other hand,
our scheme becomes nearly practical as the ciphertext overhead now decreases
to 48 group elements. In comparison, the solution of Libert et al. [50] incurs 69
group elements per ciphertext. Our technique thus improves upon [50] by 30%
and also outperforms the most efficient perfectly tight solution [5], which entails
over 300 group elements per ciphertext.

The CRS of the proof system is included in the user’s public key rather than
in the common public parameters since, in the QA-NIZK setting, it depends on
the considered language which is defined by certain public key components.

700 B. Libert et al.

Par-Gen(λ): Run the K0 algorithm of Sect. 3 in order to obtain common public
parameters Γ =

(
(G,GT), f, g, h,Σ

)
.

Keygen(Γ): Parse Γ as
(
(G,GT), f, g, h,Σ

)
and conduct the following steps.

1. Choose random exponents x1, x2, y1, y2
R← Zp and define X1 = gx1 ,

X2 = gx2 , Y1 = gy1 , Y2 = gy2 . Then, define the independent vectors
X1 = (X1, 1, g,X1, 1), Y 1 = (1, Y1, g, Y1, 1), X2 = (X2, 1, g, 1,X2) and
Y 2 = (1,X2, g, 1,X2).

2. Run algorithm K1(Γ,ρ) of Sect. 3 to generate the language-dependent
part of the CRS for the proof system, where the rows of the matrix
ρ ∈ G

4×5 consist of X1, Y 1, X2 and Y 2. Let ψ = (CRS1,CRS2) be
the obtained CRS, where

CRS1 =
(
ρ, f ,f0, {ui}2

i=1, {Ωi}2
i=1,V ,W ,

{pki}2
i=1, {(zi, ri, ui)}4

i=1, {(Zj , Rj , Uj)}4L+5
j=1

)
,

CRS2 =
(
f , f0, {pki}2

i=1, {Ωi}2
i=1, V , W

)
.

3. Define the private key as the pair SK = (x1, y1) ∈ Z
4
p. The public key is

PK =
(
g, X1, Y 1, X2, Y 2, ψ = (CRS1,CRS2)

)
.

Encrypt(M,PK): to encrypt M ∈ G, conduct the following steps.

1. Pick random exponents θ1, θ2, θ3, θ4
R← Zp and compute

(C0, C1, C2) = (M · gθ1+θ2 ,Xθ1
1 , Y θ2

1)

(D0,D1,D3) = (M · gθ3+θ4 ,Xθ3
2 , Y θ4

2).

2. Define lbl = (C0, C1, C2,D0,D1,D2). Using the witness x = (θ1, θ2,−θ3,
−θ4) ∈ Z

4
p and the label lbl, run Steps 1–7 of Algorithm P in Sect. 3 to

generate a proof π that the vector

v =
(
C1/D1, C2/D2, C0/D0, C1 · C2,D

−1
1 · D−1

2

) ∈ G
5

=
(
Xθ1

1 · X−θ3
2 , Y θ2

1 · Y −θ4
2 , g(θ1+θ2)−(θ3+θ4), Xθ1

1 · Y θ2
1 ,X−θ3

2 · Y −θ4
2

)

belongs to span〈X1,Y 1,X2,Y 2〉. The QA-NIZK proof is

π =
(
VK,F ,Cσ1 , σ2, σ3,CZ ,CR,CU ,Cz,Cr,Cu,πσ,1,πσ,2,π1,π2, σ

)
.

3. Output the ciphertext C = (C0, C1, C2,D0,D1,D2, π).
Decrypt(SK,C): given C = (C0, C1, C2,D0,D1,D2, π), do the following.

1. Run the verification algorithm V of Sect. 3 on input of lbl = (C0, C1, C2,
D0,D1,D2), the vector v =

(
C1/D1, C2/D2, C0/D0, C1 · C2,D

−1
1 · D−1

2

)

and π. Return ⊥ if π is not a valid proof for the label lbl that v is in
span〈X1,Y 1,X2,Y 2〉.

Compactly Hiding Linear Spans 701

2. Using SK = (x1, y1) ∈ Z
2
p, compute and return M = C0 ·C−1/x1

1 ·C−1/y1
2 .

Using our proof system of Sect. 3 and the one-time signature of [38], the
ciphertext size amounts to that of 48 group elements, instead of 69 in [50].

While our construction is described in terms of symmetric pairings in order to
lighten notations as much as possible, it readily extends to asymmetric pairings.

Theorem 4. The scheme is (1, qe)-IND-CCA secure provided: (i) Σ is a strongly
unforgeable one-time signature; (ii) The DLIN assumption holds in G. For any
adversary A, there exist a one-time signature forger B′ and a DLIN distinguisher
B with running times tB, tB′ ≤ tA + qe · poly(λ,L) such that

Adv(1,qe)-cca
A (λ) ≤ Advqe-suf-ots

B′ (λ) + (3L + 10) · AdvDLIN
B (λ) + 8/p ,

where L is the length of one-time verification keys and qe is the number of encryp-
tion queries. (The proof is given in the full version of the paper.)

The result of Theorem 4 carries over to a scenario involving μ > 1 public keys
modulo an additional negligible term μ/p in the bound which is inherited from
[38, Theorem 6]. This is achieved by relying on the enhanced USS property of
the QA-NIZK proof system in the multi-CRS setting.

Similarly to previous IND-CCA2-secure encryption schemes based on the
Naor-Yung paradigm (e.g., [32]), the public verifiability of ciphertexts makes our
scheme amenable for non-interactive threshold decryption in a static corruption
model.

By instantiating the construction of Camenisch et al. [19] with our QA-NIZK
proofs, we similarly obtain more efficient KDM-CCA2-secure systems with tight
security, as explained in the full version of the paper.

5.2 Encrypting Long Messages

In some applications, it is useful to encrypt long messages while preserving the
feasibility of efficiently proving statements about encrypted values using Groth-
Sahai proofs. In this case, the amortized efficiency of our system can be signif-
icantly improved. Suppose that we want to encrypt messages (M1, . . . ,MN) ∈
G

N . The technique of Bellare et al. [8] allows doing so while making opti-
mal use of encryption exponents. In more details, the public key consists of
group elements

(
g, h, {(Xi,1, Yi,1,Xi,2, Yi,2)}N

i=1

)
, with (Xi,1, Yi,1,Xi,2, Yi,2) =

(gxi,1 , hyi,1 , gxi,2 , hyi,2) and the secret key is {(xi,1, yi,1)}N
i=1. The vector is

encrypted by choosing θ1, θ2, θ3, θ4
R← Zp and computing

C0 = fθ1 , C ′
0 = hθ2 ,

{
Ci = Mi · Xθ1

i,1 · Y θ2
i,1

}N

i=1
,

D0 = fθ3 , D′
0 = hθ4 ,

{
Di = Mi · Xθ3

i,2 · Y θ4
i,2

}N

i=1
,

while appending a simulation-sound QA-NIZK argument that the vector

702 B. Libert et al.

(
C1/D1, . . . , CN/DN ,

N times
︷ ︸︸ ︷
C0, . . . , C0,

N times
︷ ︸︸ ︷
D−1

0 , . . . , D−1
0 ,

N times
︷ ︸︸ ︷
C ′

0, . . . , C
′
0,

N times
︷ ︸︸ ︷

D′
0
−1

, . . . , D′
0
−1) ∈ G

5N

lives in the 4N -dimensional linear subspace span〈Xi,1,Xi,2,Y i,1,Y i,2〉N
i=1, with

Xi,1 = (1i−1,Xi,1,1N−i,1i−1, f,1N−i,13N) ,

Xi,2 = (1i−1,Xi,2,1N−i,1N ,1i−1, f,1N−i,12N) ,

Y i,1 = (1i−1, Yi,1,1N−i,12N ,1i−1, h,1N−i,1N) ,

Y i,2 = (1i−1, Yi,2,1N−i,13N ,1i−1, h,1N−i) ,

where, for each i ∈ N, 1i stands for the i-dimensional vector (1G, . . . , 1G) ∈ G
i.

The entire ciphertext fits within 2N + 46 group elements, of which only 42
elements are consumed by the QA-NIZK proof.

The tight IND-CCA2 security can be proved in the same way as in Theorem 4.
In particular, we rely on the tight IND-CPA security in the multi-challenge set-
ting of a variant of the BBS encryption scheme where messages M are encrypted4

as (fθ1 , hθ2 ,M · Xθ1 · Y θ2).
In Sect. 5.3, we explain how the compatibility of this construction with zero-

knowledge proofs comes in handy to build non-interactive and adaptively secure
universally composable commitments based on CCA2-secure encryption.

5.3 Application to UC Commitments

Universally composable commitments [20,27] are commitment schemes that prov-
ably remain secure when composed with arbitrary other protocols. They are
known [20] to require some setup assumption like a common reference string.
In some constructions, the CRS can only be used in a single commitment.
Back in 2001, Canetti and Fischlin [20] gave re-usable bit commitments based
on chosen-ciphertext-secure public-key encryption. In [52], Lindell described a
simple and practical re-usable construction which allows committing to strings
rather than individual bits. In short, each commitment consists of an IND-CCA2-
secure encryption. In order to open a commitment later on, the sender generates
an interactive zero-knowledge proof that the ciphertext encrypts the underly-
ing plaintext. In its basic variant, Lindell’s commitment only provides security
against static adversaries that have to choose whom to corrupt upfront5. Sub-
sequently, Fischlin et al. [31] showed that Lindell’s commitment can be made

4 The reduction from the DLIN assumption is straightforward and sets up X = fα ·gγ ,
Y = hβ ·gγ . From a given DLIN instance (f, g, h, fa, hb, η), where η = ga+b or η ∈R G,
the challenge ciphertext is computed as (C1, C2, C3) = (fa, hb, Mβ ·(fa)α ·(hb)β ·ηγ).

5 Lindell’s commitment can actually be made adaptively secure (modulo a patch [13]),
but even its optimized variant [13] remains interactive with 3 rounds of communica-
tion during the commitment phase.

Compactly Hiding Linear Spans 703

adaptively secure in the erasure model by the simple expedient of opening com-
mitments via a NIZK proof (rather than an interactive one) which the sender
generates at commitment time before erasing his encryption coins. Jutla and
Roy [42] gave an optimization of the latter approach where the use of QA-NIZK
proofs allows reducing the size of commitments and openings.

Using our CCA2-secure encryption scheme for long messages, we can build a
tightly secure non-interactive universally composable commitment [20,27] that
allows committing to long messages with expansion rate 2. In constructions of
UC commitments from IND-CCA2-secure encryption (e.g., [20,31,42]), a multi-
challenge definition of IND-CCA2 security is usually considered in proofs of UC
security. In the erasure model, the non-interactive and adaptively secure variants
of Lindell’s commitment [31,42] can be optimized using the techniques of [43,49]
to achieve a two-fold expansion rate. However, these solutions are not known to
provide tight security. At the cost of a CRS of size Θ(N), the labeled version of
our encryption scheme for long messages (where the label L of the ciphertext is
simply included in lbl) allows eliminating this limitation. As in [42], the sender
can encrypt the message (M1, . . . ,MN) he wants to commit to and open the
commitment via a QA-NIZK proof that

(
C1/M1, . . . , CN/MN ,

N times
︷ ︸︸ ︷
C0, . . . , C0,

N times
︷ ︸︸ ︷
1, . . . , 1,

N times
︷ ︸︸ ︷
C ′

0, . . . , C
′
0,

N times
︷ ︸︸ ︷
1, . . . , 1

) ∈ G
5N

is in span〈Xi,1,Xi,2,Y i,1,Y i,2〉N
i=1. For long messages, this construction thus

achieves a two-fold expansion rate. While not as efficient as the recent rate-1
commitments of Garay et al. [34], it retains adaptive security assuming reliable
erasures while [34] is only known to be secure against static adversaries.

Acknowledgments. The first author’s work was supported by the “Programme
Avenir Lyon Saint-Etienne de l’Université de Lyon” in the framework of the programme
“Investissements d’Avenir” (ANR-11-IDEX-0007). The second author was supported
by the European Research Council (FP7/2007-2013 Grant Agreement no. 339563 Cryp-
toCloud). Part of this work of the fourth author was done while visiting the Simons
Institute for Theory of Computing, U.C. Berkeley.

References

1. Abdalla, M., Benhamouda, F., Pointcheval, D.: Disjunctions for hash proof sys-
tems: new constructions and applications. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015. LNCS, vol. 9057, pp. 69–100. Springer, Heidelberg (2015)

2. Abdalla, M., Fouque, P.-A., Lyubashevsky, V., Tibouchi, M.: Tightly-secure sig-
natures from lossy identification schemes. In: Pointcheval, D., Johansson, T. (eds.)
EUROCRYPT 2012. LNCS, vol. 7237, pp. 572–590. Springer, Heidelberg (2012)

3. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-
preserving signatures and commitments to group elements. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010)

4. Abe, M., Haralambiev, K., Ohkubo, M.: Signing on elements in bilinear groups for
modular protocol design. In: Cryptology ePrint Archive: Report 2010/133 (2010)

704 B. Libert et al.

5. Abe, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo, M.: Tagged one-time
signatures: tight security and optimal tag size. In: Kurosawa, K., Hanaoka, G.
(eds.) PKC 2013. LNCS, vol. 7778, pp. 312–331. Springer, Heidelberg (2013)

6. Bader, C., Hofheinz, D., Jager, T., Kiltz, E., Li, Y.: Tightly-secure authenticated
key exchange. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part I. LNCS, vol.
9014, pp. 629–658. Springer, Heidelberg (2015)

7. Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user setting:
security proofs and improvements. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, p. 259. Springer, Heidelberg (2000)

8. Bellare, M., Boldyreva, A., Kurosawa, K., Staddon, J.: Multi-recipient encryption
schemes: how to save on bandwidth and computation without sacrificing security.
IEEE Trans. Inf. Theor. 53(11), 3927–3943 (2007)

9. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: ACM CCS 1993, pp. 62–73. ACM Press (1993)

10. Bellare, M., Rogaway, P.: The exact security of digital signatures - how to sign with
RSA and Rabin. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp.
399–416. Springer, Heidelberg (1996)

11. Bernstein, D.J.: Proving tight security for Rabin-Williams signatures. In: Smart,
N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 70–87. Springer, Heidelberg
(2008)

12. Black, J., Rogaway, P., Shrimpton, T.: Encryption scheme security in the presence
of key-dependent messages. In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS,
vol. 2595, pp. 62–75. Springer, Heidelberg (2002)

13. Blazy, O., Chevalier, C., Pointcheval, D., Vergnaud, D.: Analysis and improve-
ment of Lindell’s UC-secure commitment schemes. In: Jacobson, M., Locasto, M.,
Mohassel, P., Safavi-Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 534–551.
Springer, Heidelberg (2013)

14. Blazy, O., Kiltz, E., Pan, J.: (Hierarchical) identity-based encryption from affine
message authentication. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part
I. LNCS, vol. 8616, pp. 408–425. Springer, Heidelberg (2014)

15. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its appli-
cations. In: STOC 1988, pp. 103–112. ACM Press (1988)

16. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

17. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. SIAM
J. Comput. 32(3), 586–615 (2003). Earlier version in Crypto 2001

18. Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure encryption
from decision Diffie-Hellman. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol.
5157, pp. 108–125. Springer, Heidelberg (2008)

19. Camenisch, J., Chandran, N., Shoup, V.: A public key encryption scheme secure
against key dependent chosen plaintext and adaptive chosen ciphertext attacks.
In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 351–368. Springer,
Heidelberg (2009)

20. Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, p. 19. Springer, Heidelberg (2001)

21. Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based
encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol.
3027, pp. 207–222. Springer, Heidelberg (2004)

22. Cathalo, J., Libert, B., Yung, M.: Group encryption: non-interactive realization in
the standard model. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
179–196. Springer, Heidelberg (2009)

Compactly Hiding Linear Spans 705

23. Chen, J., Wee, H.: Fully, (almost) tightly secure IBE and dual system groups.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp.
435–460. Springer, Heidelberg (2013)

24. Chevallier-Mames, B.: An efficient CDH-based signature scheme with a tight secu-
rity reduction. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 511–526.
Springer, Heidelberg (2005)

25. Coron, J.-S.: On the exact security of full domain hash. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, p. 229. Springer, Heidelberg (2000)

26. Coron, J.-S.: Optimal security proofs for PSS and other signature schemes. In:
Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, p. 272. Springer,
Heidelberg (2002)

27. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: FOCS 2001, pp. 136–145 2001

28. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462, p. 13. Springer, Heidelberg (1998)

29. Escala, A., Groth, J.: Fine-tuning Groth-Sahai proofs. In: Krawczyk, H. (ed.) PKC
2014. LNCS, vol. 8383, pp. 630–649. Springer, Heidelberg (2014)

30. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987)

31. Fischlin, M., Libert, B., Manulis, M.: Non-interactive and re-usable universally com-
posable string commitments with adaptive security. In: Lee, D.H., Wang, X. (eds.)
ASIACRYPT 2011. LNCS, vol. 7073, pp. 468–485. Springer, Heidelberg (2011)

32. Fouque, P.-A., Pointcheval, D.: Threshold cryptosystems secure against chosen-
ciphertext attacks. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, p. 351.
Springer, Heidelberg (2001)

33. Galbraith, S., Malone-Lee, J., Smart, N.: Public-key signatures in the multi-user
setting. Inf. Process. Lett. 83(5), 263–266 (2002)

34. Garay, J.A., Ishai, Y., Kumaresan, R., Wee, H.: On the complexity of UC commit-
ments. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441,
pp. 677–694. Springer, Heidelberg (2014)

35. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant
size group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol.
4284, pp. 444–459. Springer, Heidelberg (2006)

36. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In:
Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008)

37. Hofheinz, D.: All-but-many lossy trapdoor functions. In: Pointcheval, D., Johans-
son, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 209–227. Springer,
Heidelberg (2012)

38. Hofheinz, D., Jager, T.: Tightly secure signatures and public-key encryption. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 590–607.
Springer, Heidelberg (2012)

39. Hofheinz, D., Jager, T., Knapp, E.: Waters signatures with optimal security reduc-
tion. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol.
7293, pp. 66–83. Springer, Heidelberg (2012)

706 B. Libert et al.

40. Hofheinz, D., Koch, J., Striecks, C.: Identity-based encryption with (almost) tight
security in the multi-instance, multi-ciphertext setting. In: Katz, J. (ed.) PKC
2015. LNCS, vol. 9020, pp. 799–822. Springer, Heidelberg (2015)

41. Jutla, C., Roy, A.: Relatively-sound NIZKs and password-based key-exchange. In:
Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp.
485–503. Springer, Heidelberg (2012)

42. Jutla, C.S., Roy, A.: Shorter quasi-adaptive NIZK proofs for linear subspaces. In:
Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 1–20.
Springer, Heidelberg (2013)

43. Jutla, C.S., Roy, A.: Switching lemma for bilinear tests and constant-size NIZK
proofs for linear subspaces. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014,
Part II. LNCS, vol. 8617, pp. 295–312. Springer, Heidelberg (2014)

44. Kakvi, S.A., Kiltz, E.: Optimal security proofs for full domain hash, revisited. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
537–553. Springer, Heidelberg (2012)

45. Katz, J., Vaikuntanathan, V.: Round-optimal password-based authenticated key
exchange. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 293–310. Springer,
Heidelberg (2011)

46. Katz, J., Wang, N.: Efficiency improvements for signature schemes with tight secu-
rity reductions. In: ACM-CCS 2003, pp. 155–164. ACM Press (2003)

47. Kiltz, E., Wee, H.: Quasi-adaptive NIZK for linear subspaces revisited. In: Oswald,
E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 101–128. Springer,
Heidelberg (2015)

48. Libert, B., Peters, T., Joye, M., Yung, M.: Linearly homomorphic structure-
preserving signatures and their applications. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 289–307. Springer, Heidelberg (2013)

49. Libert, B., Peters, T., Joye, M., Yung, M.: Non-malleability from malleability:
simulation-sound quasi-adaptive NIZK proofs and CCA2-secure encryption from
homomorphic signatures. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 514–532. Springer, Heidelberg (2014)

50. Libert, B., Joye, M., Yung, M., Peters, T.: Concise multi-challenge CCA-secure
encryption and signatures with almost tight security. In: Sarkar, P., Iwata, T.
(eds.) ASIACRYPT 2014, Part II. LNCS, vol. 8874, pp. 1–21. Springer, Heidelberg
(2014)

51. Libert, B., Yung, M.: Non-interactive CCA-secure threshold cryptosystems with
adaptive security: new framework and constructions. In: Cramer, R. (ed.) TCC
2012. LNCS, vol. 7194, pp. 75–93. Springer, Heidelberg (2012)

52. Lindell, Y.: Highly-efficient universally-composable commitments based on the
DDH assumption. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632,
pp. 446–466. Springer, Heidelberg (2011)

53. Malkin, T., Teranishi, I., Vahlis, Y., Yung, M.: Signatures resilient to continual
leakage on memory and computation. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol.
6597, pp. 89–106. Springer, Heidelberg (2011)

54. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen
ciphertext attacks. In: STOC 1990. ACM Press (1990)

55. Rackoff, C., Simon, D.R.: Non-interactive zero-knowledge proof of knowledge and
chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576,
pp. 433–444. Springer, Heidelberg (1992)

Compactly Hiding Linear Spans 707

56. Sahai, A.: Non-malleable non-interactive zero-knowledge and adaptive chosen-
ciphertext security. In: FOCS 1999, pp. 543–553, IEEE Press (1999)

57. Schäge, S.: Tight proofs for signature schemes without random oracles. In: Pater-
son, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 189–206. Springer,
Heidelberg (2011)

58. Waters, B.: Efficient Identity-Based Encryption Without Random Oracles. In:
Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer,
Heidelberg (2005)

Multiparty Computation II

A Unified Approach to MPC
with Preprocessing Using OT

Tore Kasper Frederiksen1, Marcel Keller2(B),
Emmanuela Orsini2, and Peter Scholl2

1 Department of Computer Science, Aarhus University, Aarhus, Denmark
jot2re@cs.au.dk

2 Department of Computer Science, University of Bristol, Bristol, UK
{m.keller,emmanuela.orsini,peter.scholl}@bristol.ac.uk

Abstract. SPDZ, TinyOT and MiniMAC are a family of MPC proto-
cols based on secret sharing with MACs, where a preprocessing stage
produces multiplication triples in a finite field. This work describes new
protocols for generating multiplication triples in fields of characteris-
tic two using OT extensions. Before this work, TinyOT, which works on
binary circuits, was the only protocol in this family using OT extensions.
Previous SPDZ protocols for triples in large finite fields require some-
what homomorphic encryption, which leads to very inefficient runtimes in
practice, while no dedicated preprocessing protocol for MiniMAC (which
operates on vectors of small field elements) was previously known. Since
actively secure OT extensions can be performed very efficiently using
only symmetric primitives, it is highly desirable to base MPC protocols
on these rather than expensive public key primitives. We analyze the
practical efficiency of our protocols, showing that they should all per-
form favorably compared with previous works; we estimate our protocol
for SPDZ triples in F240 will perform around 2 orders of magnitude faster
than the best known previous protocol.

Keywords: MPC · SPDZ · TinyOT · MiniMAC · Preprocessing · OT
extension

1 Introduction

Secure multi-party computation (MPC) allows parties to perform computations
on their private inputs, without revealing their inputs to each other. Recently,
there has been much progress in the design of practical MPC protocols that can
be efficiently implemented in the real world. These protocols are based on secret
sharing over a finite field, and they provide security against an active, static
adversary who can corrupt up to n − 1 of n parties (dishonest majority).

In the preprocessing model, an MPC protocol is divided into two phases: a
preprocessing (or offline) phase, which is independent of the parties’ inputs and
hence can be performed in advance, and an online phase. The preprocessing stage

c© International Association for Cryptologic Research 2015
T. Iwata and J.H. Cheon (Eds.): ASIACRYPT 2015, Part I, LNCS 9452, pp. 711–735, 2015.
DOI: 10.1007/978-3-662-48797-6 29

712 T.K. Frederiksen et al.

only generates random, correlated data, often in the form of secret shared mul-
tiplication triples [2]. The online phase then uses this correlated randomness to
perform the actual computation; the reason for this separation is that the online
phase can usually be much more efficient than the preprocessing, which results
in a lower latency during execution than if the whole computation was done
together. This paper builds on the so-called ‘MPC with MACs’ family of proto-
cols, which use information-theoretic MACs to authenticate secret-shared data,
efficiently providing active security in the online phase, starting with the work
of Bendlin et al. [4]. We focus on the SPDZ [10], MiniMAC [11] and TinyOT [19]
protocols, which we now describe.

The ‘SPDZ’ protocol of Damg̊ard et al. [8,10] evaluates arithmetic circuits
over a finite field of size at least 2k, where k is a statistical security parameter.
All values in the computation are represented using additive secret sharing and
with an additive secret sharing of a MAC that is the product of the value and
a secret key. The online phase can be essentially performed with only informa-
tion theoretic techniques and thus is extremely efficient, with throughputs of
almost 1 million multiplications per second as reported by Keller et al. [16]. The
preprocessing of the triples uses somewhat homomorphic encryption (SHE) to
create an initial set of triples, which may have errors due to the faulty distributed
decryption procedure used. These are then paired up and a ‘sacrificing’ proce-
dure is done: one triple is wasted to check the correctness of another. Using SHE
requires either expensive zero knowledge proofs or cut-and-choose techniques to
achieve active security, which are much slower than the online phase – produc-
ing a triple in Fp (for 64-bit prime p) takes around 0.03 s [8], whilst F240 triples
are even more costly due to the algebra of the homomorphic encryption scheme,
taking roughly 0.27 s [7].

TinyOT [19] is a two-party protocol for binary circuits based on OT exten-
sions. It has similar efficiency to SPDZ in the online phase but has faster pre-
processing, producing around 10000 F2 triples per second. Larraia et al. [17]
extended TinyOT to the multi-party setting and adapted it to fit with the SPDZ
online phase. The multi-party TinyOT protocol also checks correctness of triples
using sacrificing, and two-party TinyOT uses a similar procedure called combin-
ing to remove possible leakage from a triple, but when working in small fields
simple pairwise checks are not enough. Instead an expensive ‘bucketing’ method
is used, which gives an overhead of around 3–8 times for each check, depending
on the number of triples required and the statistical security parameter.

MiniMAC [11] is another protocol in the SPDZ family, which reduces the size
of MACs in the online phase for the case of binary circuits (or arithmetic cir-
cuits over small fields). Using SPDZ or multi-party TinyOT requires the MAC on
every secret shared value to be at least as big as the statistical security parame-
ter, whereas MiniMAC can authenticate vectors of bits at once combining them
into a codeword, allowing the MAC size to be constant. Damg̊ard et al. [9] imple-
mented the online phase of MiniMAC and found it to be faster than TinyOT
for performing many operations in parallel, however no dedicated preprocessing
protocol for MiniMAC has been published.

A Unified Approach to MPC with Preprocessing Using OT 713

1.1 Our Contributions

In this paper we present new, improved protocols for the preprocessing stages
of the ‘MPC with MACs’ family of protocols based on OT extensions, focusing
on finite fields of characteristic two. Our main contribution is a new method
of creating SPDZ triples in F2k using only symmetric primitives, so it is much
more efficient than previous protocols using SHE. Our protocol is based on a
novel correlated OT extension protocol that increases efficiency by allowing an
adversary to introduce errors of a specific form, which may be of independent
interest. Additionally, we revisit the multi-party TinyOT protocol by Larraia
et al. from CRYPTO 2014 [17], and identify a crucial security flaw that results
in a selective failure attack. A standard fix has an efficiency cost of at least 9x,
which we show how to reduce to just 3x with a modified protocol. Finally, we
give the first dedicated preprocessing protocol for MiniMAC, by building on the
same correlated OT that lies at the heart of our SPDZ triple generation protocol.

Table 1 gives the main costs of our protocols in terms of the number of cor-
related and random OTs required, as well as an estimate of the total time per
triple, based on OT extension implementation figures. We include the SPDZ pro-
tocol timings based on SHE to give a rough comparison with our new protocol
for F240 triples. For a full explanation of the derivation of our time estimates,
see Sect. 7. Our protocol for F240 triples has the biggest advantage over previ-
ous protocols, with an estimated 200x speed-up over the SPDZ implementation.
For binary circuits, our multi-party protocol is comparable with the two-party
TinyOT protocol and around 3x faster than the fixed protocol of Larraia et
al. [17]. For MiniMAC, we give figures for the amortized cost of a single multi-
plication in F28 . This seems to incur a slight cost penalty compared with using
SPDZ triples and embedding the circuit in F240 , however this is traded off by
the more efficient online phase of MiniMAC when computing highly parallel
circuits [9].

We now highlight our contributions in detail.
F2k Triples. We show how to use a new variant of correlated OT extension

to create multiplication triples in the field F2k , where k is at least the statis-
tical security parameter. Note that this finite field allows much more efficient
evaluation of AES in MPC than using binary circuits [7], and is also more effi-
cient than Fp for computing ORAM functionalities for secure computation on
RAM programs [15]. Previously, creating big field triples for the SPDZ protocol
required using somewhat homomorphic encryption and therefore was very slow
(particularly for the binary field case, due to limitations of the underlying SHE
plaintext algebra [7]). It seems likely that our OT based protocol can improve
the performance of SPDZ triples by 2 orders of magnitude, since OT extensions
can be performed very efficiently using just symmetric primitives.

The naive approach to achieving this is to create k2 triples in F2, and use these
to evaluate the F2k multiplication circuit. Each of these F2 triples would need
sacrificing and combining, in total requiring many more than k2 OT extensions.
Instead, our protocol in Sect. 5.1 creates a F2k triple using only O(k) OTs. The
key insight into our technique lies in the way we look at OT: instead of taking

714 T.K. Frederiksen et al.

Table 1. Number of OTs and estimates of time required to create a multiplication
triple using our protocols and previous protocols, for n parties. See Sect. 7 for details.

Finite field Protocol # Correlated
OTs

Random OTs Time estimate,
ms (n = 2)

F2 2-party
TinyOT [5,19]

0 54 0.07

n-party
TinyOT [5,17]

81n(n − 1) 27n(n − 1) 0.24

This work
Sect. 5.2

27n(n − 1) 9n(n − 1) 0.08

F240 SPDZ [7] N/A N/A 272

This work
Sect. 5.1

240n(n − 1) 240n(n − 1) 1.13

F28 (MiniMAC) This work
Sect. 6

1020n(n − 1) 175n(n − 1) 2.63

the traditional view of a sender and a receiver, we use a linear algebra approach
with matrices, vectors and tensor products, which pinpoints the precise role of
OT in secure computation. A correlated OT is a set of OTs where the sender’s
messages are all (x, x + Δ) for some fixed string Δ. We represent a set of k
correlated OTs between two parties, with inputs x,y ∈ F

k
2 , as:

Q + T = x ⊗ y

where Q,T ∈ F
k×k
2 are the respective outputs to each party. Thus, correlated

OT gives precisely a secret sharing of the tensor product of two vectors. From
the tensor product it is then straightforward to obtain a F2k multiplication of
the corresponding field elements by taking the appropriate linear combination
of the components.

An actively secure protocol for correlated OT was presented by Nielsen et
al. [19], with an overhead of ≈7.3 calls to the base OT protocol due to the need
for consistency checks and privacy amplification, to avoid any leakage on the
secret correlation. In our protocol, we choose to miss out the consistency check,
allowing the party creating correlation to input different correlations to each
OT. We show that if this party attempts to cheat then the error introduced
will be amplified by the privacy amplification step so much that it can always
be detected in the pairwise sacrificing check we later perform on the triples.
Allowing these errors significantly complicates the analysis and security proofs,
but reduces the overhead of the correlated OT protocol down to just 3 times
that of a basic OT extension.

F2 Triples. The triple production protocol by Larraia et al. [17] has two main
stages: first, unauthenticated shares of triples are created (using the aBit protocol
by Nielsen et al. [19] as a black box) and secondly the shares are authenticated,

A Unified Approach to MPC with Preprocessing Using OT 715

again using aBit, and checked for correctness with a sacrificing procedure. The
main problem with this approach is that given shares of an unauthenticated triple
for a, b, c ∈ F2 where c = a · b, the parties may not input their correct shares of
this triple into the authentication step. A corrupt party can change their share
such that a+1 is authenticated instead of a; if b = 0 (with probability 1/2) then
(a + 1) · b = a · b, the sacrificing check still passes, and the corrupt party hence
learns the value of b.1

To combat this problem, an additional combining procedure can be done:
similarly to sacrificing, a batch of triples are randomly grouped together into
buckets and combined, such that as long as one of them is secure, the resulting
triple remains secure, as was done by Nielsen et al. [19]. However, combining only
removes leakage on either a or b. To remove leakage on both a and b, combining
must be done twice, which results in an overhead of at least 9x, depending on
the batch size. Note that this fix is described in full in a recent preprint [5],
which is a merged and extended version of the two TinyOT papers [17,19].

In Sect. 5.2 we modify the triple generation procedure so that combining only
needs to be done once, reducing the overhead on top of the original (insecure)
protocol to just 3x (for a large enough batch of triples). Our technique exploits
the structure of the OT extension protocol to allow a triple to be created, whilst
simultaneously authenticating one of the values a or b, preventing the selective
failure attack on the other value. Combining still needs to be performed once to
prevent leakage, however.

MiniMAC Triples. The MiniMAC protocol [11] uses multiplication triples of
the form C∗(c) = C(a) ∗ C(b), where a,b ∈ F

k
2u and C is a systematic, lin-

ear code over F2u , for ‘small’ u (e.g. F2 or F28), ∗ denotes the component-wise
vector product and C∗ is the product code given by the span of all products
of codewords in C. Based on the protocol for correlated OT used for the F2k

multiplication triples, we present the first dedicated construction of MiniMAC
multiplication triples. The major obstacles to overcome are that we must some-
how guarantee that the triples produced form valid codewords. This must be
ensured both during the triple generation stage and the authentication stage,
otherwise another subtle selective failure attack can arise. To do this, we see a
and b as vectors over Fu·k

2 and input these to the same secure correlated OT pro-
cedure as used for the F2k multiplication triples. From the resulting shared tensor
product, we can compute shares of all of the required products in C(a) ∗ C(b),
due to the linearity of the code. For authentication we use the same correlated
OT as used for authentication of the F2k triples. However, this only allows us to
authenticate components in F2u one at a time, so we also add a “compression”
step to combine individual authentications of each component in C(x) into a
single MAC. Finally, the construction is ended with a pairwise sacrificing step.

Furthermore, since the result of multiplication of two codewords results in
an element in the Schur transform, we need some more preprocessed material,
1 We stress that this attack only applies to the multi-party protocol from CRYPTO

2014 [17], and not the original two-party protocol of Nielsen et al. [19].

716 T.K. Frederiksen et al.

in order to move such an element back down to an “ordinary” codeword. This
is done using an authenticated pair of equal elements; one being an ordinary
codeword and one in the Schur transform of the code. We also construct these
pairs by authenticating the k components in F2u and then, using the linearity of
the code, computing authenticated shares of the entire codeword. Since this again
results in a MAC for each component of the codeword we execute a compression
step to combine the MAC’s into a single MAC.

Efficient Authentication from Passively Secure OT. All of our protocols
are unified by a common method of authenticating shared values using corre-
lated OT extension. Instead of using an actively secure correlated OT extension
protocol as was previously done [17,19], we use just a passively secure protocol,
which is simply the passive OT extension of Ishai et al. [13], without the hashing
at the end of the protocol (which removes the correlation).

Fig. 1. Illustration of the relationship between our proto-
cols. Protocols in boxes indicate final elements for use in
online execution.

This allows cor-
rupt parties to intro-
duce errors on MACs
that depend on the
secret MAC key, which
could result in a few
bits of the MAC key
being leaked if the
MAC check protocol
still passes. Essentially,
this means that cor-
rupt parties can try
to guess subsets of
the field in which the
MAC key shares lie,
but if their guess is
incorrect the protocol
aborts. We model this
ability in all the rel-
evant functionalities,
showing that the resulting protocols are actively secure, even when this leak-
age is present.

Security. The security of our protocols is proven in the standard UC framework
of Canetti [6] (see the full version for details). We consider security against mali-
cious, static adversaries, i.e. corruption may only take place before the protocols
start, corrupting up to n − 1 of n parties.

Setup Assumption. The security of our protocols is in the FOT-hybrid model,
i.e. all parties have access to an ideal 1-out-of-2 OT functionality. Moreover we
assume authenticated communication between parties, in the form of a func-
tionality FAT which, on input (m, i, j) from Pi, gives m to Pj and also leaks m

A Unified Approach to MPC with Preprocessing Using OT 717

to the adversary. Our security proof for F2 triples also uses the random oracle
(RO) model [3] to model the hash function used in an OT extension protocol.
This means that the parties and the adversaries have access to a uniformly ran-
dom H : {0, 1}∗ → {0, 1}κ, such that if it is queried on the same input twice,
it returns the same output. We also use a standard coin flipping functionality,
FRand, which can be efficiently implemented using hash-based commitments in
the random oracle model as done previously [8].

Overview. The rest of this paper is organized as follows: In Sect. 2 we go through
our general notation, variable naming and how we represent shared values. We
continue in Sect. 3 with a description of the passively secure OT extensions we
use as building block for our triple generation and authentication. We then go
into more details on our authentication procedure in Sect. 4. This is followed by
a description of how we generate TinyOT (F2) and SPDZ (F2k) triples in Sect. 5
and MiniMAC triples in Sect. 6. We end with a complexity analysis in Sect. 7.
Many protocols and proofs are omitted due to space reasons; we refer the reader
to the full version for details [12].

We illustrate the relationship between all of our protocols in Fig. 1. In the
top we have the protocol producing final triples used in online execution and on
the bottom the protocols for correlated OT extension and authentication.

2 Notation

We denote by κ the computational security parameter and s the statistical secu-
rity parameter. We let negl(κ) denote some unspecified function f(κ), such that
f = o(κ−c) for every fixed constant c, saying that such a function is negligible in
κ. We say that a probability is overwhelming in κ if it is 1 − negl(κ). We denote

by a
$← A the random sampling of a from a distribution A, and by [d] the set of

integers {1, . . . d}.
We consider the sets {0, 1} and F

κ
2 endowed with the structure of the fields

F2 and F2κ , respectively. We denote by F any finite field of characteristic two,
and use roman lower case letters to denote elements in F, and bold lower case
letters for vectors. We will use the notation v[i] to denote the i-th entry of v.
Sometimes we will use v[i; j] to denote the range of bits from i to j when viewing
v as a bit vector. Given matrix A, we denote its rows by subindices ai and its
columns by superindices aj . If we need to denote a particular entry we use the
notation A[i, j]. We will use O to denote the matrix full of ones and Dx for some
vector x to denote the square matrix whose diagonal is x and where every other
positions is 0.

We use · to denote multiplication of elements in a finite field; note that
in this case we often switch between elements in the field F2κ , vectors in F

κ
2

and vectors in F
κ/u
2u (where u|κ), but when multiplication is involved we always

imply multiplication over the field, or and entry-wise multiplication if the first
operand is a scalar. If a,b are vectors over F then a ∗b denotes the component-
wise product of the vectors, and a⊗b to denote the matrix containing the tensor
(or outer) product of the two vectors.

718 T.K. Frederiksen et al.

We consider a systematic linear error correcting code C over finite field F2u

of length m, dimension k and distance d. So if a ∈ F
k
2u , we denote by C(a) ∈ F

m
2u

the encoding of a in C, which contains a in its first k positions, due to the
systematic property of the code. We let C∗ denote the product code (or Schur
transform) of C, which consists of the linear span of C(a) ∗ C(b), for all vectors
a,b ∈ F

k
2u . If C is a [m, k, d] linear error correcting code then C∗ is a [m, k∗, d∗]

linear error correcting code for which it holds that k∗ ≥ k and d∗ ≤ d.

2.1 Authenticating Secret-Shared Values

Let F be a finite field, we additively secret share bits and elements in F among
a set of parties P = {P1, . . . , Pn}, and sometimes abuse notation identifying
subsets I ⊆ {1, . . . , n} with the subset of parties indexed by i ∈ I. We write 〈a〉
if a is additively secret shared amongst the set of parties, with party Pi holding
a value a(i), such that

∑
i∈P a(i) = a. We adopt the convention that, if a ∈ F

then the shares also lie in the same field, i.e. a(i) ∈ F.
Our main technique for authentication of secret shared values is similar to

the one by Larraia et al. [17] and Damg̊ard et al. [10], i.e. we authenticate a
secret globally held by a system of parties, by placing an information theoretic
tag (MAC) on the secret shared value. We will use a fixed global key Δ ∈ F2M ,
M ≥ κ, which is additively secret shared amongst parties, and we represent an
authenticated value x ∈ F, where F = F2u and u|M , as follows:

�x� = (〈x〉, 〈mx〉, 〈Δ〉),

where mx = x·Δ is the MAC authenticating x under Δ. We drop the dependence
on x in mx when it is clear from the context. In particular this notation indicates
that each party Pi has a share x(i) of x ∈ F, a share m(i) ∈ F

M
2 of the MAC,

and a uniform share Δ(i) of Δ; hence a �·�-representation of x implies that x is
both authenticated with the global key Δ and 〈·〉-shared, i.e. its value is actually
unknown to the parties. Looking ahead, we say that �x� is partially open if 〈x〉
is opened, i.e. the parties reveal x, but not the shares of the MAC value m. It
is straightforward to see that all the linear operations on �·� can be performed
locally on the �·�-sharings. We describe the ideal functionality for generating
elements in the �·�-representation in Fig. 4.

In Sect. 6 we will see a generalization of this representation for codewords,
i.e. we denote an authenticated codeword C(x) by �C(x)�∗ = (〈C(x)〉, 〈m〉, 〈Δ〉),
where the ∗ is used to denote that the MAC will be “component-wise” on the
codeword C(x), i.e. that m = C(x) ∗ Δ.

3 OT Extension Protocols

In this section we describe the OT extensions that we use as building blocks
for our triple generation protocols. Two of these are standard – a 1-out-of-2
OT functionality and a passively secure correlated OT functionality – whilst

A Unified Approach to MPC with Preprocessing Using OT 719

Functionality Fκ,�
COTe

The Initialize step is independent of inputs and only needs to be called once. After
this, Extend can be called multiple times. The functionality is parametrized by
the number � of resulting OTs and by the bit length κ.
Running with parties PS , PR and an ideal adversary denoted by S, it operates as
follows.

Initialize: Upon receiving Δ ∈ F
κ
2 from PS , the functionality stores Δ.

Extend(R,S): Upon receiving (PR, (x1, . . . ,x�)) from PR, where xh ∈ F
κ
2 , it does

the following:
- It samples th ∈ F

κ
2 , h = 1, . . . , �, for PR. If PR is corrupted then it waits

for S to input th.
- It computes qh = th +xh ∗ Δ, h = 1, . . . , �, and sends them to PS . If PS is

corrupted, the functionality waits for S to input qh , and then it outputs
to PR values of th consistent with the adversarial inputs.

Fig. 2. IKNP extension functionality Fκ,�
COTe

the third protocol is our variant on passively secure correlated OT with privacy
amplification, which may be of independent interest for other uses.

We denote by FOT the standard
(
2
1

)
OT functionality, where the sender PS

inputs two messages v0,v1 ∈ F
κ
2 and the receiver inputs a choice bit b, and at

the end of the protocol the receiver PR learns only the selected message vb. We
use the notation Fκ,�

OT to denote the functionality that provides �
(
2
1

)
OTs in F

κ
2 .

Note that Fκ,�
OT can be implemented very efficiently for any � = poly(κ) using

just one call to Fκ,κ
OT and symmetric primitives, for example with actively secure

OT extensions [1,14,19].
A slightly different variant of FOT is correlated OT, which is a batch of OTs

where the sender’s messages are correlated, i.e. vi
0 + vi

1 = Δ for some constant
Δ, for every pair of messages. We do not use an actively secure correlated OT
protocol but a passively secure protocol, which is essentially the OT extension
of Ishai et al. [13] without the hashing that removes correlation at the end of
the protocol. We model this protocol with a functionality that accounts for the
deviations an active adversary could make, introducing errors into the output,
and call this correlated OT with errors (Fig. 2). The implementation of this is
exactly the same as the first stage of the IKNP protocol, but for completeness
we include the description in the full version. The security was proven e.g. by
Nielsen [18], where it was referred to as the ABM box.

3.1 Amplified Correlated OT with Errors

Our main new OT extension protocol is a variant of correlated OT that we call
amplified correlated OT with errors. To best illustrate our use of the protocol,
we find it useful to use the concept of a tensor product to describe it. We observe

720 T.K. Frederiksen et al.

that performing k correlated OTs on k-bit strings between two parties PR and
PS gives a symmetric protocol: if the input strings of the two parties are x and
y then the output is given by

Q + T = x ⊗ y

where Q and T are the k × k matrices over F2 output to each respective party.
Thus we view correlated OT as producing a secret sharing of the tensor product
of two input vectors. The matrix x ⊗ y consists of every possible bit product
between bits in x held by PR and bits in y held by PS . We will later use this to
compute a secret sharing of the product in an extension field of F2.

The main difficulty in implementing this with active security is ensuring
that a corrupt PR inputs the same correlation into each OT: if they cheat in just
one OT, for example, they can guess PS ’s corresponding input bit, resulting in a
selective failure attack in a wider protocol. The previous construction used in the
TinyOT protocol [19] first employed a consistency check to ensure that PR used
the same correlation on most of the inputs. Since the consistency check cannot
completely eliminate cheating, a privacy amplification step is then used, which
multiplies all of the OTs by a random binary matrix to remove any potential
leakage on the sender’s input from the few, possibly incorrect OTs.

In our protocol, we choose to omit the consistency check, since the correctness
of SPDZ multiplication triples is later checked in the sacrificing procedure. This
means that an adversary is able to break the correlation, but the output will be
distorted in a way such that sacrificing will fail for all but one possible x input
by PR. Without amplification, the adversary could craft a situation where the
latter check succeeds if, for example, first bit is zero, allowing the selective failure
attack. On the other hand, if the success of the adversary depends on guessing
k random bits, the probability of a privacy breach is 2−k, which is negligible in
k. In the functionality Fk,s

ACOT (see the full version), the amplification manifests
itself in the fact that the environment does not learn x′ which amplifies the error
Y ′.

The protocol Πk,s
ACOT (Fig. 3) requires parties to create the initial correlated

OTs on strings of length �′ = 2k+s, where s is the statistical security parameter.
The sender PS is then allowed to input a �′ × k matrix Y instead of a vector y,
whilst the receiver chooses a random string x′ ∈ F

�′
2 . FOT then produces a sharing

of Dx′Y , instead of x′ ⊗ y in the honest case. For the privacy amplification, a
random k × �′ binary matrix M is chosen, and everything is multiplied by this
to give outputs of length k as required. Finally, PR sends Mx′ + x to switch to
their real input x. Multiplying by M ensures that even if PS learns a few bits
of x′, all of x remains secure as every bit of x′ is combined into every bit of the
output.

Lemma 1. The protocol Πk,s
ACOT (Fig. 3) implements the functionality Fk,s

ACOT

(see the full version) in the Fk,�′
OT -hybrid model with statistical security s.

Proof. The proof essentially involves checking that Q + T = x ⊗ y for honest
parties, that at most k deviations by PS are canceled by M with overwhelming

A Unified Approach to MPC with Preprocessing Using OT 721

Protocol Πk,s
ACOT

Let x ∈ F
k
2 and y ∈ F

k
2 denote the inputs of PR and PS , respectively. Let �′ := 2k+s.

1. Parties run Fk,�′
OT :

(a) PS samples Q′ $← F
�′×k
2 , sets Y = ODy where O ∈ F

�′×k
2 is the matrix full

of ones and inputs (Q′, Q′ + Y).

(b) PR samples and inputs x′ $← F
�′
2 .

(c) PR receives T ′ = Q′ + Dx′Y .

2. Parties sample a random matrix M ∈ F
k×�′
2 using FRand (see full version).

3. PR sends δ = Mx′ + x to PS and outputs T = MT ′.
4. PS outputs Q = MQ′ + δ ⊗ y.

Fig. 3. Amplified correlated OT

probability, and that more than k deviations cause the desired entropy in the
output. The two cases are modeled by two different possible adversarial inputs
to the functionality. See the full version for further details.

4 Authentication Protocol

In this section we describe our protocol to authenticate secret shared values
over characteristic two finite fields, using correlated OT extension. The resulting
MACs, and the relative MAC keys, are always elements of a finite field F :=
F2M , where M ≥ κ and κ is a computational security parameter, whilst the
secret values may lie in F2u for any u|M . We then view the global MAC key
as an element of FM/u

2u and the MAC multiplicative relation as componentwise
multiplication in this ring. Our authentication method is similar to that by
Larraia et al. [17] (with modifications to avoid the selective failure attack) but
here we only use a passively secure correlated OT functionality (FCOTe), allowing
an adversary to introduce errors in the MACs that depend on arbitrary bits of
other parties’ MAC key shares. When combined with the MAC check protocol
by Damg̊ard et al. [8] (see full version), this turns out to be sufficient for our
purposes, avoiding the need for additional consistency checks in the OTs.

Our authentication protocol Π�·� (see the full version) begins with an Initialize
stage, which initializes a FCOTe instance between every pair of parties (Pi, Pj),
where Pj inputs their MAC key share Δ(j). This introduces the subtle issue that
a corrupt Pj may initialize FCOTe with two different MAC shares for Pi1 and Pi2 ,
say Δ(j) and Δ̂(j), which allows for the selective failure attack mentioned earlier
– if Pi2 authenticates a bit b, the MAC check will still pass if b = 0, despite being
authenticated under the wrong key. However, since FCOTe.Initialize is only called
once, the MAC key shares are fixed for the entire protocol, so it is clear that
Pj could not remain undetected if enough random values are authenticated and
checked. To ensure this in our protocol we add a consistency check to the Initialize

722 T.K. Frederiksen et al.

Functionality FF

Let F = F2M , with M ≥ κ. Let A be the indices of corrupt parties. Running with
parties P1, . . . , Pn and an ideal adversary S, the functionality authenticates values
in F2u for u|M .

Initialize: On input (Init) the functionality activates and waits for the adversary
to input a set of shares {Δ(j)}j∈A in F. It samples random {Δ(i)}i/∈A in F for
the honest parties, defining Δ :=

∑
i∈[n] Δ

(i). If any j ∈ A outputs Abort then
the functionality aborts.

n-Share: On input (Authenticate,x
(i)
1 , . . . ,x

(i)
�) from the honest parties and the

adversary where x
(i)
h ∈ F2u , the functionality proceeds as follows.

Honest parties: ∀h ∈ [�], it computes xh =
∑

i∈P x
(i)
h and mh = xh ·Δ. a Then

it creates a sharing 〈mh〉 = {m(1)
h , . . . ,m

(n)
h } and outputs m

(i)
h to Pi for

each i ∈ P, h ∈ [�].
Corrupted parties: The functionality waits for the adversary S to input the set

A of corrupted parties. Then it proceeds as follows:
- ∀h ∈ [�], the functionality waits for S to input shares {m(j)

h }j∈A and

it generates 〈mh〉, with honest shares {m(i)
h }i�∈A,h∈[�], consistent with

adversarial shares but otherwise random.
- If the adversary inputs (Error, {e

(k)
h,j}k �∈A,h∈[�],j∈[M]) with elements in

F2M , the functionality sets m
(k)
h = m

(k)
h +

∑M
j=1 e

(k)
h,j · Δ

(k)
j · Xj−1

where Δ
(k)
j denotes the j-th bit of Δ(k).

- For each k
∈ A, the functionality outputs {m(k)
h } to Pk.

Key queries: On input of a description of an affine subspace S ⊂ (FM
2)n, return

Success if (Δ(1), . . . , Δ(n)) ∈ S. Otherwise return Abort.

a If u
= M we view Δ as an element of F
M/u
2u and perform the multiplication by

xh componentwise.

Fig. 4. Ideal Generation of �·�-representations

stage, where κ dummy values are authenticated, then opened and checked. If the
check passes then every party’s MAC key has been initialized correctly, except
with probability 2−κ. Although in practice this overhead is not needed when
authenticating � ≥ κ values, modeling this would introduce additional errors
into the functionality and make the analysis of the triple generation protocols
more complex.

Now we present the protocol Π�·�, realizing the ideal functionality of Fig. 4,
more in detail. We describe the authentication procedure for bits first and then
the extension to F2u .

Suppose parties need to authenticate an additively secret shared random bit
x = x(1) + · · · + x(n). Once the global key Δ is initialized, the parties call the
subprotocol Π[·] (see the full version) n times. Output of each of these calls is a

A Unified Approach to MPC with Preprocessing Using OT 723

value u(i) for Pi and values q(j,i) for each Pj , j = i, such that

u(i) + q(j,i) =
∑

j �=i

t(i,j) + x(i) · Δ(i) +
∑

j �=i

q(j,i) = x(i) · Δ. (1)

To create a complete authentication �x�, each party sets m(i) = u(i)+
∑

j �=i q
(i,j).

Notice that if we add up all the MAC shares, we obtain:

m =
∑

i∈P
m(i) =

∑

i∈P

(
u(i)+

∑

j �=i

q(i,j)
)

=
∑

i∈P

(
u(i)+

∑

j �=i

q(j,i)
)

=
∑

i∈P
x(i) ·Δ = x·Δ,

where the second equality holds for the symmetry of the notation q(i,j) and the
third follows from (1).

Finally, if Pi wants to authenticate a bit x(i), it is enough, from Equation
(1), setting m(i) = u(i) and m(j) = q(j,i), ∀j = i. Clearly, from (1), we have∑

i∈P m(i) = x(i) · Δ.
Consider now the case where parties need to authenticate elements in F2u .

We can represent any element x ∈ F2u as a binary vector (x1, . . . , xu) ∈ F
u
2 .

In order to obtain a representation �x� it is sufficient to repeat the previous
procedure u times to get �xi� and then compute �x� as

∑u
k=1�xk� · Xk−1 (see

the full version for details). Here we let X denote the variable in polynomial
representation of F2u and �xk� the k’th coefficient.

We now describe what happens to the MAC representation in presence
of corrupted parties. As we have already pointed out before, a corrupt party
could input different MAC key shares when initializing FCOTe with different par-
ties. Moreover a corrupt Pi could input vectors x(i)

1 , . . .x(i)
� instead of bits to

n-Share(i) (i.e. to FCOTe). This will produce an error in the authentication
depending on the MAC key. Putting things together we obtain the following
faulty representation:

m = x · Δ +
∑

k �∈A

x(k) · δ(i) +
∑

k �∈A

e(i,k) ∗ Δ(k), for some i ∈ A

where A is the set of corrupt parties, δ(i) is an offset vector known to the adver-
sary which represents the possibility that corrupted parties input different MAC
key shares, whilst e(i,k) depends on the adversary inputting vectors and not just
bits to FCOTe. More precisely, if Pi inputs a vector x(i) to n-Share(i), we can
rewrite it as x(i) = x(i) ·1+e(i,k), where e(i,k) ∈ F

M
2 is an error vector known to

the adversary. While we prevent the first type of errors by adding a MACCheck
step in the Initialize phase, we allow the second type of corruption. This faulty
authentication suffices for our purposes due to the MAC checking procedure used
later on.

Lemma 2. In the Fκ,�
COTe-hybrid model, the protocol Π�·� implements F�·� against

any static adversary corrupting up to n − 1 parties.

Proof. See the full version.

724 T.K. Frederiksen et al.

Fig. 5. Ideal functionality for triples generation

5 Triple Generation in F2 and F2k

In this section we describe our protocols generating triples in finite fields. First we
describe the protocols for multiplication triples in F2κ (Figs. 7 and 8), and then
the protocol for bit triples (Fig. 9). Both approaches implement the functionality
FF

Triples, given in Fig. 5. Note that the functionality allows an adversary to try
and guess an affine subspace containing the parties’ MAC key shares, which is
required because of our faulty authentication procedure described in the previous
section.

5.1 F2k Triples

In this section, we show how to generate F2k authenticated triples using two
functionalities Fk,s

GFMult and FF2k

�·� (see the full version). We realize the function-

ality Fk,s
GFMult with protocol Πk,s

GFMult (Fig. 6). This protocol is a simple extension
of FACOT that converts the sharing of a tensor product matrix in F

k×k
2 to the

sharing of a product in F2k . Taking this modular approach simplifies the proof
for triple generation, as we can deal with the complex errors from FACOT sepa-
rately. Our first triple generation protocol (ΠUncheckedTriples) will not reveal any
information about the values or the authentication key, but an active adversary

A Unified Approach to MPC with Preprocessing Using OT 725

Protocol Πk,s
GFMult

Let x and y denote the inputs of PR and PS respectively, in F2k , and let s be
a statistical security parameter. Furthermore, let e = (1, X, . . . , Xk−1) and �′ =
2k + s.

1. The parties run Fk,s
ACOT:

(a) PR inputs x and PS inputs y.
(b) PR receives T and PS receives Q such that T + Q = x ⊗ y.

2. PR outputs t = eTe� and PS outputs q = eQe�.

Fig. 6. F2k multiplication

Fig. 7. Protocol for generation of unchecked F2k triples.

can distort the output in various ways. We then present a protocol (ΠTripleCheck)
to check the generated triples from ΠUncheckedTriples, similarly to the sacrificing
step of the SPDZ protocol [8], to ensure that an adversary has not distorted
them.

The protocol is somewhat similar to the one in the previous section. Instead
of using n(n− 1) instances of FCOTe, it uses n(n− 1) instances of Fk,s

GFMult, which
is necessary to compute a secret sharing of x · y, where x and y are known to
different parties.

Lemma 3. The protocol ΠUncheckedTriples (see the full version) implements the
functionality FUncheckedTriples in the (Fk,s

GFMult,F
F2k

�·�)-hybrid model with perfect
security.

Proof. The proof is straightforward using an appropriate simulator. See the full
version for further details.

The protocol ΠTripleCheck produces N triples using 2N unchecked triples sim-
ilar to the sacrificing step of the SPDZ protocol. However, corrupted parties

726 T.K. Frederiksen et al.

Fig. 8. Triple checking protocol.

have more options to deviate here, which we counter by using more random
coefficients for checking. Recall that, in the SPDZ protocol, parties input their
random shares by broadcasting a homomorphic encryption thereof. Here, the
parties have to input such a share by using an instance of Fk,s

GFMult and FF2k

�·�
with every other party, which opens up the possibility of using a different value
in every instance. We will prove that, if the check passes, the parties have used
consistent inputs to Fk,s

GFMult. On the other hand, FF2k

�·� provides less security guar-

antees. However, we will also prove that the more deviation there is with FF2k

�·� ,
the more likely the check is to fail. This is modeled using the key query access
of FTriples. Note that, while this reveals some information about the MAC key
Δ, this does not contradict the security of the resulting MPC protocol because
Δ does not protect any private information. Furthermore, breaking correctness
corresponds to guessing Δ, which will only succeed with probability negligible
in k because incorrect guesses lead to an abort.

We use a supplemental functionality FBatchCheck, which checks that a batch of
shared values are equal to zero, and can be easily implemented using commitment
and FRand (see the full version for details). The first use of FBatchCheck corresponds
to using the SPDZ MAC check protocol for rj and sj for all j ∈ [N], and the
second use corresponds to the sacrificing step, which checks whether t · cj + t′′ ·
cj+N + rjaj + sj · bj+N = 0 for all j ∈ [N].

Theorem 1. The protocol ΠTripleCheck, described in Fig. 8, implements FTriples in
the (FUncheckedTriples,FRand)-hybrid model with statistical security (k − 4).

Proof. The proof mainly consists of proving that, if cj = aj · bj or the MAC
values are incorrect for some j, and the check passes, then the adversary can
compute the offset of cj or the MAC values. See the full version.

A Unified Approach to MPC with Preprocessing Using OT 727

5.2 F2 Triples

This section shows how to produce a large number � of random, authenticated
bit triples using the correlated OT with errors functionality FCOTe from Sect. 3.
We describe the main steps of the protocol in Fig. 9. The main difference with
respect to the protocol by Larraia et al. [17] is that here we use the outputs of
FCOTe to simultaneously generate triples, 〈zh〉 = 〈xh〉 ·〈yh〉, and authenticate the
random bits xh, for h = 1, . . . , �, under the fixed global key Δ, giving �xh� =
(〈xh〉, 〈mh〉, 〈Δ〉). To do this, we need to double the length of the correlation
used in FCOTe, so that half of the output is used to authenticate xh, and the
other half is hashed to produce shares of the random triple.2

The shares 〈yh〉, 〈zh〉 are then authenticated with additional calls to FCOTe

to obtain �yh�, �zh�. We then use a random bucketing technique to combine the
xh values in several triples, removing any potential leakage due to incorrect
authentication of yh (avoiding the selective failure attack present in the previous
protocol [17]) and then sacrifice to check for correctness (as in the previous
protocol).

The Initialize stage consists of initializing the functionality F2κ,�
COTe with Δ̂ ∈

F
2κ
2 . Note that Δ̂ is the concatenation of a random Δ̃ ∈ F

κ
2 and the MAC key

Δ. We add a consistency check to ensure that each party initialize Δ̂ correctly,
as we did in Π�·�.

Then, in COTe.Extend, each party Pi runs a COTe2κ,� with all other parties
on input x(i) = (x(i)

1 , . . . , x
(i)
�) ∈ F

�
2. For each i ∈ P, we obtain q̂(j,i)

h = t̂(i,j)h +
x
(i)
h · Δ̂(j), h ∈ [�], where

q̂(j,i)
h = (q̃(j,i)

h ‖q(j,i)
h) ∈ F

2κ
2 and t̂(j,i)h = (t̃(j,i)h ‖t(j,i)h) ∈ F

2κ
2 .

Note that we allow corrupt parties to input vectors x(i)
h instead of bits.

Parties use the first κ components of their shares during the Triple Gener-
ation phase. More precisely, each party Pi samples � random bits y

(i)
h and then

uses the first κ components of the output of COTe2κ,� to generate shares z
(i)
h .

The idea (as previously [17]) is that of using OT-relations to produce multiplica-
tive triples. In step 2, in order to generate � random and independent triples,
we need to break the correlation generated by COTe. For this purpose we use
a hash function H, but after that, as we need to “bootstrap” to an n-parties
representation, we must create new correlations for each h ∈ [�]. Pi sums all the
values n

(i,j)
h , j = i, and x

(i)
h · y

(i)
h to get u

(i,j)
h =

∑
j �=i n

(j,i)
h + x

(i)
h · y

(i)
h . Notice

that adding up the share u
(i,j)
h held by Pi and all the shares of other parties,

after step 2 we have:
u
(i,j)
h +

∑

j �=i

v
(j,i)
0,h = x

(i)
h · yh.

2 If the correlation length is not doubled, and the same output is used both for authen-
tication and as input to the hash function, we cannot prove UC security as the values
and MACs of a triple are no longer independent.

728 T.K. Frederiksen et al.

Fig. 9. F2-triples generation

A Unified Approach to MPC with Preprocessing Using OT 729

Repeating this procedure for each i ∈ P and adding up, we get zh = xh · yh.
Once the multiplication triples are generated the parties Authenticate zh

and yh using F�·�, while to authenticate xh they use the remaining κ components
of the outputs of the COTe.Extend step.

Checking Triples. In the last step we want to check that the authenticated
triples are correctly generated. For this we use the bucket-based cut-and-choose
technique by Larraia et al. [17]. In the full version we generalize and optimize
the parameters for this method.

The bucket-cut-and-choose step ensures that the generated triples are correct.
Privacy on x is then guaranteed by the combine step, whereas privacy on y follows
from the use of the original COTe for both creating triples and authenticating x.

Note also that if a corrupt party inputs an inconsistent bit x
(i)
h in n

(i,k)
h , for

some k ∈ A in step 2.b, then the resulting triples zh = xh · yh + s
(k,i)
h · yh will

pass the checks if and only if s
(k,i)
h = 0, revealing nothing about yh.

We conclude by stating the main result of this section.

Theorem 2. For every static adversary A corrupting up to n − 1 parties, the
protocol ΠBitTriples κ-securely implements FTriples (Fig. 5) in the (Fκ,�

COTe,F�·�)-
hybrid model.

Proof. Correctness easily follows from the above discussion. For more details see
the full version.

6 Triple Generation for MiniMACs

In this section we describe how to construct the preprocessing data needed for
the online execution of the MiniMAC protocol [9,11]. The complete protocols
and security proofs are in the full version. Here we briefly outline the protocols
and give some intuition of security.

6.1 Raw Material

The raw material used for MiniMAC is very similar to the raw material in both
TinyOT and SPDZ. In particular this includes random multiplication triples.
These are used in the same manner as F2 and F2k triples to allow for multipli-
cation during an online phase. However, remember that we work on elements
which are codewords of some systematic linear error correcting code, C. Thus
an authenticated element is defined as �C (x)�∗ = {〈C(x)〉, 〈m〉, 〈Δ〉} where
m = C(x) ∗ Δ with C(x), m and Δ elements of F

m
2u and x ∈ F

k
2u . Similarly

a triple is a set of three authenticated elements, {�C (a)�∗, �C (b)�∗, �C∗ (c)�∗}
under the constraint that C∗(c) = C(a)∗C(b), where ∗ denotes component-wise
multiplication. We notice that the multiplication of two codewords results in an
element in the Schur transform. Since we might often be doing multiplication
involving the result of another multiplication, that thus lives in C∗, we need

730 T.K. Frederiksen et al.

some way of bringing elements from C∗ back down to C. To do this we need
another piece of raw material: the Schur pair. Such a pair is simply two authen-
ticated elements of the same message, one in the codespace and one in the Schur
transform. That is, the pair {�C (r)�∗, �C∗ (s)�∗} with r = s. After doing a mul-
tiplication using a preprocessed random triple in the online phase, we use the
�C∗ (s)�∗ element to onetime pad the result, which can then be partially opened.
This opened value is re-encoded using C and then added to �C (r)�∗. This gives
a shared codeword element in C, that is the correct output of the multiplication.

Finally, to avoid being restricted to just parallel computation within each
codeword vector, we also need a way to reorganize these components within a
codeword. To do so we need to construct “reorganization pairs”. Like the Schur
pairs, these will simply be two elements with a certain relation on the values
they authenticate. Specifically, one will encode a random element and the other
a linear function applied to the random element encoded by the first. Thus the
pair will be {�C (r)�∗, �C (f(r))�∗} for some linear function f : Fk

2u → F
k
2u . We

use these by subtracting �C (r)�∗ from the shared element we will be working
on. We then partially open and decode the result. This is then re-encoded and
added to �C (f(r))�∗, resulting in the linear computation defined by f(·) on each
of the components.

6.2 Authentication

For the MiniMAC protocol to be secure, we need a way of ensuring that authenti-
cated vectors always form valid codewords. We do this based on the functionality
FCodeAuth in two steps, first a ‘BigMAC’ authentication, which is then compressed
to give a ‘MiniMAC’ authentication. For the BigMAC authentication, we simply
use the F�·� functionality to authenticate each component of x (living in F2u)
separately under the whole of Δ ∈ F

m
2u . Because every component of x is then

under the same MAC key, we can compute MACs for the rest of the codeword
C(x) by simply linearly combining the MACs on x, due to the linearity of C. We
use the notation �C (x)� =

{
〈C(x)〉, {〈mxi

〉}i∈[m], 〈Δ〉
}

to denote the BigMAC
share. To go from BigMAC to MiniMAC authentication, we just extract the rel-
evant F2u element from each MAC. We then use �C (x)� = {〈C(x)〉, 〈mx〉, 〈Δ〉}
to denote a MiniMAC element, where mx is made up of one component of each
of the m BigMACs. The steps are described in detail in the full version.

6.3 Multiplication Triples

To generate a raw, unauthenticated MiniMAC triple, we need to be able to
create vectors of shares 〈C(a)〉, 〈C(b)〉, 〈C∗(c)〉 where C∗(c) = C(a)∗C(b) and
a,b ∈ F

k
2u . These can then be authenticated using the FCodeAuth functionality

described above.
Since the authentication procedure only allows shares of valid codewords to

be authenticated, it might be tempting to directly use the SPDZ triple generation
protocol from Sect. 5.1 in F2u for each component of the codewords C(a) and

A Unified Approach to MPC with Preprocessing Using OT 731

C(b). In this case, it is possible that parties do not input valid codewords,
but this would be detected in the authentication stage. However, it turns out
this approach is vulnerable to a subtle selective failure attack – a party could
input to the triple protocol a share for C(a) that differs from a codeword in
just one component, and then change their share to the correct codeword before
submitting it for authentication. If the corresponding component of C(b) is zero
then this would go undetected, leaking that fact to the adversary.

To counter this, we must ensure that shares output by the triple genera-
tion procedure are guaranteed to be codewords. To do this, we only generate
shares of the F

k
2u vectors a and b – since C is a linear [m, k, d] code, the shares

for the parity components of C(a) and C(b) can be computed locally. For the
product C∗(c), we need to ensure that the first k∗ ≥ k components can be
computed, since C∗ is a [m, k∗, d∗] code. Note that the first k components are
just (a1, . . . ,ak) ∗ (b1, . . . ,bk), which could be computed similarly to the SPDZ
triples. However, for the next k∗ − k components, we also need the cross terms
ai ·bj , for every i, j ∈ [k]. To ensure that these are computed correctly, we input
vectors containing all the bits of a,b to FACOT, which outputs the tensor prod-
uct a⊗b, from which all the required codeword shares can be computed locally.
Similarly to the BigMAC authentication technique, this results in an overhead
of O(k ·u) = O(κ log κ) for every multiplication triple when using Reed-Solomon
codes.

Taking our departure in the above description we generate the multiplication
triples in two steps: First unauthenticated multiplication triples are generated
by using the CodeOT subprotocol, which calls FACOT and takes the diagonal of
the resulting shared matrices. The codewords of these diagonals are then used
as inputs to FCodeAuth, which authenticates them. This is described by protocol
ΠUncheckedMiniTriples in (see the full version). Then a random pairwise sacrificing is
done to ensure that it was in fact shares of multiplication being authenticated.
This is done using protocol ΠMiniTriples (see the full version). One minor issue
that arises during this stage is that we also need to use a Schur pair to perform
the sacrifice, to change one of the multiplication triple outputs back down to the
code C, before it is multiplied by a challenge codeword and checked.

Security intuition. Since the CodeOT procedure is guaranteed to produces shares
of valid codewords, and the authentication procedure can only be used to authen-
ticate valid codewords, if an adversary changes their share before authenticating
it, they must change it in at least d positions, where d is the minimum distance
of the code. For the pairwise sacrifice check to pass, the adversary then has to
essentially guess d components of the random challenge codeword to win, which
only happens with probability 2−u·d.

6.4 Schur and Reorganization Pairs

The protocols ΠSchur and ΠReorg (see the full version for more details) describe
how to create the Schur and reorganization pairs. We now give a brief intuition
of how these work.

732 T.K. Frederiksen et al.

Schur Pairs. We require random authenticated codewords �C(r)�∗, �C∗(s)�∗

such that the first k components of r and s are equal. Note that since C ⊂ C∗,
it might be tempting to use the same codeword (in C) for both elements. How-
ever, this will be insecure – during the online phase, parties reveal elements of
the form �C∗(x ∗ y)�∗ − �C∗(s)�∗. If C∗(s) is actually in the code C then it is
uniquely determined by its first k components, which means C∗(x ∗ y) will not
be masked properly and could leak information on x,y.

Instead, we have parties authenticate a random codeword in C∗ that is zero
in the first k positions, reveal the MACs at these positions to check that this
was honestly generated, and then add this to �C(r)�∗ to obtain �C∗(s)�∗. This
results in a pair where the parties’ shares are identical in the first k positions,
however we prove in the full version that this does not introduce any security
issues for the online phase.

Reorganizing Pairs. To produce the pairs �C(r)�∗, �C(f(r))�∗, we take advantage
of the fact that during BigMAC authentication, every component of a codeword
vector has the same MAC key. This means linear functions can be applied across
the components, which makes creating the required data very straightforward.
Note that with MiniMAC shares, this would not be possible, since you cannot
add two elements with different MAC keys.

7 Complexity Analysis

We now turn to analyzing the complexity of our triple generation protocols, in
terms of the required number of correlated and random OTs (on κ-bit strings)
and the number of parties n.

Two-Party TinyOT. The appendix of TinyOT [19] states that 54 aBits are
required to compute an AND gate, when using a bucket size of 4. An aBit is
essentially a passive correlated OT combined with a consistency check and some
hashes, so we choose to model this as roughly the cost of an actively secure
random OT.

Multi-party TinyOT. Note that although the original protocol of Larraia
et al. [17] and the fixed protocol of Burra et al. [5] construct secret-shared OT
quadruples, these are locally equivalent to multiplication triples, which turn out
to be simpler to produce as one less authentication is required. Producing a
triple requires one random OT per pair of parties, and the 3 correlated OTs
per pair of parties to authenticate the 3 components of each triple. Combining
twice, and sacrificing gives an additional overhead of B3, where B is the bucket
size. When creating a batch of at least 1 million triples with statistical security
parameter 40, the proofs in the full version show that we can use bucket size 3,
giving 81n(n − 1) calls to FCOTe and 27n(n − 1) to FOT.

A Unified Approach to MPC with Preprocessing Using OT 733

Authentication. To authenticate a single bit, the Π�·� protocol requires
n(n − 1) calls to FCOTe. For full field elements in F2k this is simply performed k
times, taking kn(n − 1) calls.

F2 Triples. The protocol starts with n(n−1) calls to FCOTe to create the initial
triple and authenticate x; however, these are on strings of length 2κ rather than
κ and also require a call to H, so we choose to count this as n(n−1) calls to both
FOT and FCOTe to give a conservative estimate. Next, y and z are authenticated
using F�·�, needing a further 2n(n − 1) × FCOTe.

We need to sacrifice once and combine once, and if we again use buckets of
size 3 this gives a total overhead of 9x. So the total cost of an F2 triple with our
protocol is 27n(n − 1) FCOTe calls and 9n(n − 1) FOT calls.

F2k Triples. We start with n(n − 1) calls to Fk,s
ACOT, each of which requires 3k

FOT calls, assuming that k is equal to the statistical security parameter. We
then need to authenticate the resulting triple (three field elements) for a cost
of 3kn(n − 1) calls to FCOTe. The sacrificing step in the checked triple protocol
wastes one triple to check one, so doubling these numbers gives 6kn(n − 1) for
each of FOT and FCOTe.

MiniMAC Triples. Each MiniMAC triple also requires one Schur pair for the
sacrificing step and one Schur pair for the online phase multiplication protocol.

Codeword Authentication. Authenticating a codeword with ΠCodeAuth takes k
calls to F�·� on u-bit field elements, giving kun(n − 1) COTe’s on a u · m-bit
MAC key. Since COTe is usually performed with a κ-bit MAC key and scales
linearly, we choose to scale by u · m/κ and model this as ku2mn(n − 1)/κ calls
to FCOTe.

Schur and Reorganization Pairs. These both just perform 1 call to FCodeAuth, so
have the same cost as above.

Multiplication Triples. Creating an unchecked triple first uses n(n − 1) calls to
CodeOT on k·u-bit strings, each of which calls FACOT, for a total of (2ku+s)n(n−
1) FOT’s. The resulting shares are then authenticated with 3 calls to FCodeAuth.
Pairwise sacrificing doubles all of these costs, to give 2kun(n − 1)(2ku + s)/κ
FOT’s and 6 calls to FCodeAuth, which becomes 8ku2mn(n − 1)/κ FCOTe’s when
adding on the requirement for two Schur pairs.

Parameters. [9] implemented the online phase using Reed-Solomon codes over
F28 , with (m, k) = (256, 120) and (255, 85), for a 128-bit statistical security level.
The choice (255, 85) allowed for efficient FFT encoding, resulting in a much faster
implementation, so we choose to follow this and use u = 8, k = 85. This means
the cost of a single (vector) multiplication triple is 86700n(n − 1) calls to FCOTe

and 14875(n − 1) calls to FOT. Scaling this down by k, the amortized cost of a

734 T.K. Frederiksen et al.

single F2u multiplication becomes 1020(n−1) and 175(n−1) calls. Note that this
is around twice the cost of F240 triples, which were used to embed the AES circuit
by Damg̊ard et al. [7], so it seems that although the MiniMAC online phase was
reported by Damg̊ard et al. [9] to be more efficient than other protocols for
certain applications, there is some extra cost when it comes to the preprocessing
using our protocol.

7.1 Estimating Runtimes

To provide rough estimates of the runtimes for generating triples, we use the OT
extension implementation of Asharov et al. [1] to provide estimates for FCOTe

and FOT. For FCOTe, we simply use the time required for a passively secure
extended OT (1.07µs), and for FOT the time for an actively secure extended
OT (1.29µs) (both running over a LAN). Note that these estimates will be too
high, since FCOTe does not require hashing, unlike a passively secure random
OT. However, there will be additional overheads due to communication etc., so
the figures given in Table 1 are only supposed to be a rough guide.

Acknowledgements. We would like to thank Nigel Smart, Rasmus Zakarias and
the anonymous reviewers, whose comments helped to improve the paper. The first
author has been supported by the Danish National Research Foundation and The
National Science Foundation of China (under the grant 61361136003) for the Sino-
Danish Center for the Theory of Interactive Computation and from the Center for
Research in Foundations of Electronic Markets (CFEM), supported by the Danish
Strategic Research Council. Furthermore, partially supported by Danish Council for
Independent Research via DFF Starting Grant 10-081612 and the European Research
Commission Starting Grant 279447. The second, third and fourth authors have been
supported in part by EPSRC via grant EP/I03126X.

References

1. Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More efficient oblivious transfer
extensions with security for malicious adversaries. In: Oswald, E., Fischlin, M.
(eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 673–701. Springer, Heidelberg
(2015)

2. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigen-
baum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg
(1992)

3. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: CCS 1993, Proceedings of the 1st ACM Conference on Com-
puter and Communications Security, Fairfax, Virginia, USA, 3–5 November 1993,
pp. 62–73 (1993)

4. Bendlin, R., Damg̊ard, I., Orlandi, C., Zakarias, S.: Semi-homomorphic encryption
and multiparty computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS,
vol. 6632, pp. 169–188. Springer, Heidelberg (2011)

A Unified Approach to MPC with Preprocessing Using OT 735

5. Burra, S.S., Larraia, E., Nielsen, J.B., Nordholt, P.S., Orlandi, C., Orsini, E.,
Scholl, P., Smart, N.P.: High performance multi-party computation for binary cir-
cuits based on oblivious transfer. Cryptology ePrint Archive, Report 2015/472
(2015). https://eprint.iacr.org/

6. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd Annual Symposium on Foundations of Computer Science,
FOCS 2001, Las Vegas, Nevada, USA, 14–17 October 2001, pp. 136–145 (2001)

7. Damg̊ard, I., Keller, M., Larraia, E., Miles, C., Smart, N.P.: Implementing AES
via an actively/covertly secure dishonest-majority MPC protocol. In: Visconti, I.,
De Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 241–263. Springer, Heidelberg
(2012)

8. Damg̊ard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical
covertly secure MPC for dishonest majority – or: breaking the SPDZ limits. In:
Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp.
1–18. Springer, Heidelberg (2013)

9. Damg̊ard, I., Lauritsen, R., Toft, T.: An empirical study and some improvements
of the minimac protocol for secure computation. In: Abdalla, M., De Prisco, R.
(eds.) SCN 2014. LNCS, vol. 8642, pp. 398–415. Springer, Heidelberg (2014)

10. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012)

11. Damg̊ard, I., Zakarias, S.: Constant-overhead secure computation of Boolean cir-
cuits using preprocessing. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp.
621–641. Springer, Heidelberg (2013)

12. Frederiksen, T.K., Keller, M., Orsini, E., Scholl, P.: A unified approach to MPC
with preprocessing using OT. Cryptology ePrint Archive (2015, to appear).
https://eprint.iacr.org/

13. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers effi-
ciently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer,
Heidelberg (2003)

14. Keller, M., Orsini, E., Scholl, P.: Actively secure OT extension with optimal over-
head. In: Advances in Cryptology - CRYPTO 2015–35th Annual Cryptology Con-
ference, Santa Barbara, CA, USA, 16–20 August 2015, Proceedings, Part I, pp.
724–741 (2015)

15. Keller, M., Scholl, P.: Efficient, oblivious data structures for MPC. In: Sarkar,
P., Iwata, T. (eds.) ASIACRYPT 2014, Part II. LNCS, vol. 8874, pp. 506–525.
Springer, Heidelberg (2014)

16. Keller, M., Scholl, P., Smart, N.P.: An architecture for practical actively secure
MPC with dishonest majority. In: ACM Conference on Computer and Communi-
cations Security, pp. 549–560 (2013)

17. Larraia, E., Orsini, E., Smart, N.P.: Dishonest majority multi-party computation
for binary circuits. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II.
LNCS, vol. 8617, pp. 495–512. Springer, Heidelberg (2014)

18. Nielsen, J.B.: Extending oblivious transfers efficiently - how to get robustness
almost for free. IACR Cryptology ePrint Archive 2007:215 (2007)

19. Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to prac-
tical active-secure two-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 681–700. Springer, Heidelberg (2012)

https://eprint.iacr.org/
https://eprint.iacr.org/

Secure Computation from Millionaire

Abhi Shelat1(B) and Muthuramakrishnan Venkitasubramaniam2

1 University of Virginia, Charlottesville, VA, USA
abhi@virginia.edu

2 University of Rochester, Rochester, NY, USA
muthuv@cs.rochester.edu

Abstract. The standard method for designing a secure computation
protocol for function f first transforms f into either a circuit or a RAM
program and then applies a generic secure computation protocol that
either handles boolean gates or translates the RAM program into obliv-
ious RAM instructions.

In this paper, we show a large class of functions for which a differ-
ent iterative approach to secure computation results in more efficient
protocols. The first such examples of this technique was presented by
Aggarwal, Mishra, and Pinkas (J. of Cryptology, 2010) for computing
the median; later, Brickell and Shmatikov (Asiacrypt 2005) showed a
similar technique for shortest path problems.

We generalize the technique in both of those works and show that
it applies to a large class of problems including certain matroid opti-
mizations, sub-modular optimization, convex hulls, and other scheduling
problems. The crux of our technique is to securely reduce these prob-
lems to secure comparison operations and to employ the idea of grad-
ually releasing part of the output. We then identify conditions under
which both of these techniques for protocol design are compatible with
achieving simulation-based security in the honest-but-curious and covert
adversary models. In special cases such as median, we also show how to
achieve malicious security.

Keywords: Secure computation · Semi-honest · Covert security ·
Greedy algorithms

1 Introduction

Secure two-party computation allows Alice with private input x and Bob, with
input y, to jointly compute f(x, y) without revealing any information other than
the output f(x, y).

A. Shelat — Research supported by Google Faculty Research Grant, Microsoft Fac-
ulty Fellowship, SAIC Scholars Research Award, and NSF Awards TC-1111781,
0939718, 0845811.

M. Venkitasubramaniam — Research supported by Google Faculty Research
Grant and NSF Award CNS-1526377.

c© International Association for Cryptologic Research 2015
T. Iwata and J.H. Cheon (Eds.): ASIACRYPT 2015, Part I, LNCS 9452, pp. 736–757, 2015.
DOI: 10.1007/978-3-662-48797-6 30

Secure Computation from Millionaire 737

Building on Yao’s celebrated garbled circuits construction [25], many recent
works [4,10,11,14–18,21] construct such protocols by first translating f into a
boolean circuit and then executing a protocol to securely evaluate each gate of
that circuit. Alternatively, Ostrovsky and Shoup [20] demonstrated a way to con-
struct two-party secure computation protocols for RAM programs by first trans-
lating the RAM program into a sequence of oblivious RAM (ORAM) instructions
and then applying a secure computation protocol to implement each ORAM
operation. Further refinements of this idea and state of the art approaches to
ORAM design [7,22,23] limit the overhead in terms of bandwidth, client storage
and total storage to roughly Õ(log3(n)) for each operation on a memory of size
n resulting in protocols [9,12,16,24] that are efficient enough for some problems
in practice.

Reduction-based techniques. In both of the above approaches, the secure eval-
uation of f is reduced to the secure evaluation of either a boolean gate or an
ORAM instruction.

Instead of reducing function f into such low-level primitives and securely
evaluating each primitives, one can also consider reducing f into a program that
only makes secure evaluations of a higher-level primitive. A natural candidate
for this secure primitive is the comparison function, or the millionaires problem.

Aggarwal, Mishra, and Pinkas [1] begin to investigate this approach by study-
ing the problem of securely computing the kth-ranked element of dataset DA∪DB

where Alice privately holds dataset DA ⊂ F and Bob privately holds dataset
DB ⊂ F . They reduce the computation of the kth-ranked element to O(log k)
secure comparisons of (log M)-bit inputs where log M is the number of bits
needed to describe the elements in F ; this protocol outperforms the naive method
for the same problem since a circuit for computing ranked elements has size at
least |DA ∪ DB |.

Their algorithm follows the classic communication-optimal protocol for this
problem: each party computes the median of its own dataset, the parties then
jointly compare their medians, and depending on whose median is larger, each
party eliminates half of its input values and then recurses on the smaller datasets.
Aggarwal, Mishra and Pinkas observe that by replacing each comparison between
the parties’ medians with a secure protocol for comparing two elements, they
can argue that the overall protocol is secure in the honest-but-curious setting.
In particular, for the case of median, they observe that the sequence of answers
from each secure comparison operation can be simulated using only the output
kth-ranked element.

Brickell and Shmatikov [6] use a similar approach to construct semi-honest
secure computation protocols for the all pairs shortest distance (APSD) and
single source shortest distance (SSSD) problems. In both cases, their protocols
are more efficient than circuit-based secure computation protocols. While the
work of [6] considers only the two-party setting the work of [1] additionally
considers the multiparty setting.

738 A. Shelat and M. Venkitasubramaniam

1.1 Our Results

We continue the study of reducing the secure evaluation of function f to secure
evaluation of comparisons in the two-party setting. Our first contribution is to
generalize the approach of Aggarwal, Mishra, and Pinkas and that of Brickell and
Shmatikov as the parameterized protocol in Fig. 1. The parameters to this proto-
col are the comparison functionLTf , and the method F . The comparison function
takes two input elements with their corresponding key values and returns the ele-
ment with the smaller key value; F is the local update function that determines
how each party determines its input for the next iteration based on the answers
from the previous iteration (c1 . . . , cj) and its local input U (or V).

We show that this parameterized protocol can be used to construct more
efficient secure computation protocols for a much larger class of optimization
problems than the three specific instances they considered. In Sect. 4, we con-
struct choices for LT, F that securely compute several combinatorial optimiza-
tion problems, matroid optimization problems, sub-modular optimizations, and
computation of the convex hull.

A key reason for the improved efficiency of this approach over both circuits
and ORAM techniques is the fact that the output is gradually released to both
parties. The result of one iteration of the loop is used to select inputs to the
next iteration of the loop; more generally, the output of the secure computation
can be thought to be released bit-by-bit, node-by-node, or edge-by-edge. Thus
it is not immediately clear that such an approach can be secure, even against
honest-but-curious adversaries.

Our next contribution is to show that an instantiation of the above generic
protocol can be made secure in the honest-but-curious model when the functions
f is greedy-compatible, i.e. it satisfies a few simple properties. First, the problem
must have a unique solution. One can often guarantee this property by specifying
simple rules to break ties among comparisons. Second, the order in which the
output is revealed must be unique, and finally, we require a local updatability
property for the function F which essentially states that F has a very weak
homomorphism with the comparison function LT. (See Definition 1). When these

Generic Iterative Secure Computation
Alice Input: Distinct elements U = {u1, . . . , un}
Bob Input: Distinct elements V = {v1, . . . , vn}
Output: The final output is c1, . . . , c�

1. Alice initializes (ua, ka) ← F (⊥, U) and Bob initializes (vb, kb) ← F (⊥, V).

2. Repeat for �(|U |, |V |) times:

(a) Alice and Bob execute the secure protocol cj ← LTf ((ua, ka), (vb, kb)).

(b) Alice updates (ua, ka) ← F ((c1, . . . , cj), U) and Bob updates (vb, kb) ←
F ((c1, . . . , cj), V).

Fig. 1. The generic structure of a secure iterative protocol.

Secure Computation from Millionaire 739

Algorithm This Work Circuit ORAM

Convex Hull O(|Z|lM) Ω(|I|2lM) Ω(|I| log3 |I|lM)

MST O(V lM) Ω((V α(V))2lM) Ω(V α(V) log3 V lM)

Unit Job Sched O(|Z|lM) Ω(|I|2lM) Ω(|I| log3 |I|lM)

Single-Src ADSP O(V lM) Ω(E2lM) Ω(E log3 ElM)

Submodular Opt O(|Z|lM) Ω(|IS |2lM) Ω(|IS | log |IS |lM)

Fig. 2. Communication costs for secure protocols in the semi-honest case. I = U ∪ V
the union of Alice and Bob’s inputs and Z is the output. V and E are the number
of vertices and edges in graph problems. α(·) is the Inverse Ackermann function. For
problems where each element is a set, IS represents the sum of the set sizes. lM = log M
where M typically represents the maximum integer values the inputs can take. For each
case, the complexity for the generic Circuit-based approach was obtained by relating
it to the number of (dependent) memory accesses made by the best algorithm and the
ORAM complexity was obtained by relating it to the time complexity of best known
algorithm. In many cases, our communication complexity is related to the output-size,
which can be much smaller than the input size for many problems.

three conditions are met, and when the LTf function can be securely evaluated
efficiently, then the instantiated protocol can be asymptotically (and practically)
superior to other approaches. See Fig. 2 for several examples.

1.2 Malicious and Covert Security

We also consider stronger notions of security for our protocols, namely security
against fully malicious adversaries, and security against covert adversaries (which
can be achieved much more efficiently) in the two-party setting.

Recall from the previous section that efficiency gain of our approach owes
in part to the gradual release of output during each iteration. Herein lies a
difficulty: A malicious adversary can manipulate its input used at each iteration
of the protocol based on the results from previous iterations. This cheating ability
complicates the construction of a proper Ideal-simulator.

As a first step, we can require the adversary to commit to its input before the
protocol starts and force the adversary to only use committed data. To perform
a simulation, we will first attempt to extract the adversaries’ input, and then
use this input to simulate the rest of the computation. We can use standard
ideas with extractable commitments to perform this extraction. However, this
is not enough. The main technical problem arises in the case that the adversary
selectively aborts or selectively uses his committed inputs in the iterative protocol
based on the intermediate results of the computation.

The prior work of Aggarwal, Mishra and Pinkas [1] claim that their simulation
works for malicious adversaries; however, their simulation fails to account for the

740 A. Shelat and M. Venkitasubramaniam

case when the adversary selectively aborts. Our second technical contributions is
to present a hardened version of the protocol by Aggarwal, Mishra and Pinkas [1]
for securely computing the median and a simulation argument which proves that
it achieves malicious security.

As we discuss in Sect. 6.1, the techniques we use to show full malicious secu-
rity rely on two specific properties that holds for the median problem. At a
high level, for any input A of Alice and any element a ∈ A, we need that only
one sequence of outputs from the previous iterations of our general protocol
framework lead to Alice using a as an input. Furthermore, there are at most
polynomially-many execution “traces” for any set of inputs from Alice and Bob
(in contrast, graph problems have exponentially many traces). If there were
multiple traces that lead to the use of element a ∈ A, then the adversary can
selectively decide to abort on one of the traces and such an adversary cannot be
simulated since its view depends on the trace and therefore the honest party’s
input. If the second property fails to hold then it can be argued that it would
be hard for the simulator to extract the “right” input of the adversary.

Indeed, the selective abort issue seems to be a fundamental bottleneck to
overcome. When these two properties fail to hold, e.g. in the case of the convex
hull, or submodular optimization problems, we augment our basic protocol into
one that achieves covert security as introduced Aumann and Lindell [2]. Covert
security guarantees that if an adversary deviates in a way that would enable it to
“cheat”, then the honest party is guaranteed to detect the cheating with reason-
able probability. The covert model handles situations in which a malicious party
has a strong incentive “not to be caught cheating,” while offering substantial
improvements in efficiency versus the fully malicious model.

To achieve covert security, we must handle both selective aborts, and also
ensure that an adversary does not cheat by using only a subset of its committed
input during the protocol (perhaps based on a predicate of intermediate output).
To handle this last issue, we require the adversary to prove at the end of the
protocol that all of the committed inputs are either part of the output or used
properly during the protocol. The adversary will provide one proof per “element”
of the input, and thus, we need to design proofs that are sub-linear in the input
size n, preferably logarithmic or even constant-sized.

For each of our selected problems, we provide these novel consistency checks.
In cases such as the convex-hull, single-source shortest paths and job-scheduling,
these checks are simple and have constant size (modulo the security parameter).
For the case of the Minimum Spanning Tree, however, we required an elegant
application of the Union-Find data structure to achieve communication efficient
consistency checks for this problem. We summarize our performance for many
problems in Fig. 3.

Although one might be able to use either Universal arguments [3,19] or
SNARKS [5,8] to achieve malicious security with low communication, both of
those techniques dramatically increase the computational overhead of the pro-
tocol. In particular, when proving an NP -relation of size t on an input state-
ment x, the prover’s computational complexity is proportional to Õ(t) and the

Secure Computation from Millionaire 741

Algorithm This Work (covert) Circuit (malicious)

Convex Hull O(|Z|lM + |I|l2M) Ω(|I|2lM)

MST O(V log V lM) Ω((V α(V))2lM)

Unit Job Scheduling O((|Z| + |I|)lM) Ω(|I|2lM)

Single-Source ADSP O((V + E)lM) Ω(E2lM)

Fig. 3. Comparison of the communication costs of covert security with the malicious
security using circuits ignoring poly(k) factors. lM = log M . I = U ∪ V the union
of Alice and Bob’s inputs. V and E are the number of vertices and edges in graph
problems. We remark that since we ignore poly(k) factors, the complexity of the Circuit-
based approach would be the same as above even if we considered only achieving covert
security. We were unable to estimate costs for achieving malicious security with ORAM.

verifier’s computational complexity is proportional to Õ(|x|). In our context,
since such a proof will be required in each iteration, the computational complex-
ity for both parties would be Õ(|Z|×|I|)+c(f) where Z and I are the inputs and
outputs of the computation and c(f) is the complexity for computing f itself. In
contrast, our covert security and semi-honest protocol computation complexity
is O(|Z| + |I|) + c(f).

2 Preliminaries

We denote (c1, . . . , cj) by c≤j . Two sequences of distributions {Cn}n∈N and
{Dn}n∈N are said to be computationally indistinguishable if for any probabilis-
tic polynomial time algorithm A, |Pr[A(Cn) = 1]−Pr[A(Dn) = 1] is a negligible
function in n. We formally describe a generalized millionaire (comparison) func-
tion in Fig. 4.

generalized compare
Alice Input: Tuple (u, x) with k-bit integer key x

Bob Input: Tuple (v, y) k-bit integer key y

LTf Output: Return u if x < y and v otherwise

Fig. 4. Generic comparison protocol

3 Honest-But-Curious Protocols

For many well-known greedy algorithms we show how to securely compute them
using our Generic Protocol specified in Fig. 1. On a high-level, in this protocol
abstraction, Alice and Bob have a set of inputs U and V . In every iteration, each

742 A. Shelat and M. Venkitasubramaniam

of them provide an input element e from their local inputs and an associated key
ke to the comparison functionality LTf which returns the element with smaller
key value. More precisely, in iteration i, Alice supplies input (ua, ka) and Bob
supplies input (vb, kb) where ua ∈ U and vb ∈ V to the LTf -functionality. The
functionality returns as output ci = ka < kb ? ua : vb. At the end of each
iteration there is a local update rule that determines the next input and key for
the next iteration. Finally, Alice and Bob output c1, . . . , c� as their outputs.

We make the following requirements on the function f that we wish to com-
pute using a greedy-algorithm. For each instantiation, we show that the require-
ments are satisfied.

Definition 1. We say that a two-party function f is greedy compatible if there
exists functions LT, F such that the following holds:

1. Unique Solution: Given the inputs U and V of Alice and Bob, there is a
unique solution.

2. Unique Order: There is a unique order in which the greedy-strategy outputs
the solution. More precisely,

f(U, V) = (c1, . . . , c�)

where c1 = F (⊥, U ∪ V) and ci+1 = F (c≤i, U ∪ V) for every i = 1, . . . , � − 1.
3. Local Updatability: Informally, we require that F on the union of Alice

and Bob’s inputs can be obtained by applying F locally to U and V and then
computing a comparison. More precisely, we require that

F1(c≤j , U ∪ V) = LTf (F (c≤j , U), F (c≤j , V))

where F1 represents the first member in the tuple output by F .

3.1 Honest-but-Curious Security

Theorem 1. For any function f that is greedy compatible, the Generic Iterative
Secure Computation algorithm from Fig. 1 securely computes f on the union of
the inputs held by Alice and Bob, for the case of semi-honest adversaries.

We argue correctness and privacy of our protocols. Our analysis of the pro-
tocol will be in the LTf hybrid, where the parties are assumed to have access
to a trusted party computing the LTf .

Correctness: First we observe that if U and V are Alice and Bob’s inputs,
then from the Unique Order property it holds that f(U, V) = (c1, . . . , c�) where
c1 = F (⊥, U ∪ V) and ci+1 = F (c≤i, U ∪ V) for i = 1, . . . , � − 1. The output
computed by Alice and Bob by executing the Generic Iterative Secure Computation
algorithm is c̃1, . . . , c̃� where

c̃1 = LTf (F (⊥, U), F (⊥, V))
c̃i+1 = LTf (F (c̃≤i, U), F (c̃≤i, V)) for i in {1, . . . , � − 1}

Correctness now follows from the Local Updatability property of f .

Secure Computation from Millionaire 743

Privacy: Next to prove security in the honest-but-curious case, we construct a
simulator that given the parties input and output can simulate the interaction
indistinguishably.

Recall that, our analysis of the security of the protocol is in the LTf hybrid.
Thus the simulator that we describe will play the trusted party implementing
LTf , when simulating the adversary. Below we prove security when one of the
parties are corrupted. We argue for the case when Alice is corrupted and the case
for Bob follows symmetrically since the protocol is symmetric in both parties.

Alice is corrupted. The simulator needs to produce a transcript indistinguishable
to the honest adversary Ah in the LTf hybrid.

– The simulator upon corrupting Alice receives her input U . It feeds U to the
ideal functionality computing f to receive the output c≤l.

– Next run the honest Alice’s code for the Generic Algorithm. Alice in iteration i
for i = 1, . . . , �, submits an input (ua, ka) to the LTf functionality. S simulates
the output by feeding ci to Alice.

– Finally, at the end of �-iterations, S outputs the view of Alice.

From the Unique Order property and the fact that Alice is honest, the view
generated by S in the LTf -hybrid is identical to the view of Alice in the real
experiment. More precisely,

ideal
LTf

f,S(z),I(U, V, k) ≡ real
LTf

f,Ah(z),I
(U, V, k)

Security against semi-honest adversaries follows from a standard composition
theorem (omitted) which concludes this proof sketch.

4 Instantiations of Our Protocol

4.1 Convex Hull

In this problem, Alice and Bob have as input sets of points U and V in a plane
and the goal is to securely compute the convex hull of the union of points. Each
element u = (x, y) consists of two log M -bit integers that represent the X and
Y coordinate of the point. We assume that the union of points are such that no
two points share the same X-coordinate and no three of them are collinear. The
function F for the convex hull is defined as F (c≤j , U) = (ua, ka) where:

– If j = 0, then ua is point with the least value for the x-coordinate (i.e. the
leftmost point) and ka is set to be the x-coordinate of ua.

– If j > 0, ua is the point in U that attains the minimum value for angle(cj , c)
where angle(pt1, pt2) is the (clockwise) angle made by the line joining pt1 and
pt2 with the vertical drawn through pt1 and ka = angle(cj , a).

The correctness of the Convex-hull instantiation follows from the Gift-
Wrapping (or Jarvis march) algorithm. Furthermore, it is easy to verify that
Convex Hull is greedy compatible with F if no two-points have the same x or
y coordinate and no three-points are collinear. Hence, we have the following
theorem.

744 A. Shelat and M. Venkitasubramaniam

Theorem 2. The Generic Iterative Secure Computation protocol
instantiated with the F described above securely computes the convex hull of
the union of inputs of Alice and Bob, for the case of semi-honest adversaries,
assuming all inputs of Alice and Bob are distinct, no two of which share the
same x-coordinate and no three points are collinear.

Overhead: The total number of rounds of communication is |Z|, the size of the
convex-hull Z which is at most |I| where I = U ∪V . In each round, the protocol
performs at most one secure comparison of log M -bit integers. A circuit for per-
forming the comparison has O(log M) gates and log M inputs. The overhead of
the protocol for computing this circuit, secure against semi-honest adversaries, is
log M oblivious-transfers. This can be thought of as O(log M) public-key opera-
tions, O(log M) symmetric key operations and communication of O(log M). The
overall communication complexity is O(|Z| log M).

In comparison, the naive circuit implementation will have at least |I| (depen-
dent) memory accesses which will result in a circuit size of Ω(|I|2 log M). If we
considered an ORAM implementation it would result in total communication
of Ω(|I| log3 |I| log M) since the best algorithm would require O(|I| log |I|) steps
and the overhead for each step is log2 |I| since we need to maintain a memory
of size O(|I|).

In the full version, we provide more examples: Job Interval Scheduling prob-
lem; general Matroid optimization problems for which membership in set I
can be tested locally including minimum spanning tree problems and unit cost
scheduling problems; the single-source shortest distance problem; and sub mod-
ular optimization problems such as set-cover and max cover approximations.

5 Covert Security

We describe the main issues to overcome with the current protocol:

Adaptively chosen inputs. As our iterative protocol gradually releases the answer,
it is possible for the adversary to modify its input as the protocol proceeds. To
defend, we include an input commitment phase. Then in the secure computation
phase, the adversary provides decommitments with every input it uses in the
computation of the LTf -functionality.

Missing inputs. Consider an adversary that commits to its inputs but fails to
follow the greedy strategy, namely, does not perform the local update rule using
F honestly. This is an issue even if the adversary is restricted to only use inputs
that it committed to because it can adaptively decide to use only a subset of
them. Consider the minimum spanning tree problem in which the adversary can
decide to drop a certain edge based on the partial output released before an
iteration. To prevent this attack, we will rely on digital signatures.

Alice and Bob will first pick signature keys and share their verification keys.
Next, in every computation using LTf , Alice and Bob will obtain signatures of

Secure Computation from Millionaire 745

the output along with some specific auxiliary information that will later be used
by each party to demonstrate honest behavior. More precisely, after the secure
computation phase and the output is obtained, for every input u ∈ U of Alice,
it does the following:

– If u is part of the output, then we require Alice to prove to Bob that it has a
signature on u under Bob’s key and modify LTf to reveal the Commitment
of u to Bob in that iteration. This will allow Bob to determine which of the
Commitments made by Alice in the input commitment phase is not part of
the output.

– If u is not part of the output, Alice proves to Bob that u is not part of the
solution. We prove in many of our examples how we can achieve this efficiently.
In essence, Alice will show that in the iteration after which u was eliminated,
a better element was chosen. For instance, in the minimum spanning tree
problem, we demonstrate that an edge e = (a, b) was eliminated because
a cheaper edge e′ got added to the output that connected the components
containing vertices a and b.

Input Commitment Phase: To resolve, we add an Input Commitment Phase at
the beginning of the protocol and a Consistency-Check Phase at the end of the
protocol described in the Sect. 5.1. In an Input Commitment Phase executed
at the beginning of the protocol, both parties commit to their input using an
extractable commitment scheme ΠExt.

Modifications to LT f functionality: Besides the inputs (ua, ka) and (vb, kb)
that Alice and Bob submit, they also submit (auxa, skA) and (auxb, skB) which
are the auxiliary information corresponding to their inputs and their signing keys
respectively. The function besides outputting the answer as in Fig. 1 additionally
signs (ua, auxa) if ua is the output and (ub, auxb) if ub is the output using both
keys skA and skB . We remark here that for modularity we describe that the
signatures are computed by LT functionality. However, in all our instantiations
the message to be signed (u, aux) in the ith iteration can be computed directly
from the outputs of the current and previous calls to the LTf functionality,
namely, c1, . . . , ci and signature of these messages under the keys of Alice and
Bob can be computed and sent directly to the other party. In particular, these
signatures need not be computed securely.

Consistency-Check Phase: Alice and Bob need to prove they followed the greedy
strategy at every iteration. Recall that, ci for each i belongs to Alice or Bob. Alice
proves that corresponding to every commitment C in the Input Commitment
Phase, there exists an input u such that either

– u is one of the ci’s and it has a signature on ci using skB, or
– u could not have been selected by the greedy strategy.

We achieve this by securely evaluating this consistency check procedure where
in the first case, u is revealed to both parties and in the second case, only the
result of the check is revealed.

746 A. Shelat and M. Venkitasubramaniam

5.1 Generic Algorithm for Covert Security

We make the following requirements on the function f we compute. For each
instantiation, we show that the requirements are satisfied. We say that a func-
tion f is covert-greedy compatible if it is greedy compatible and additionally the
following holds:

generalized compare with covert security
Alice Input: Tuple (ua, x, auxa, skA) with k-bit integer key x

Bob Input: Tuple (vb, y, auxb, skB) k-bit integer key y

LTf Output: (ua, auxa, σA, σB) if x < y and (vb, auxb, σA, σB) otherwise where
σA and σB are signatures on message m under keys skA and skB respectively
and m = (ua, auxa) if x < y and m = (vb, auxb) otherwise.

Fig. 5. Generic Millionaire’s protocol with Covert security

– Consistency Check: There exists a consistency-check procedure CC,
functions key, wit and aux which satisfies the following property: Given
inputs U and V for Alice and Bob and any output c̃1, . . . , c̃�, it holds
that, for every input u of Alice (respectively, v of Bob), such that:
CC(u, key(u), {c̃i, aux(i, c̃i)}i∈I)

• Returns TRUE: if u is not part of the solution and I = wit(U) or u = ui

for some i ∈ I
• Returns FALSE: if u is in the solution and u �= ui for any i ∈ I.

Furthermore, we require that aux(ua) for an input ua in iteration i can be
determined by c<i.

Generic Consistency Check
Prover Input: Tuple (u, key(u), C, D, {ui, auxi, σ

i}i∈I)

CCvk Output: It outputs 1 to Verifier and additionally outputs u when u = ui

for some i, if all the following hold:

1. Correct Input: D is a valid decommitment information for C to (u, key(u)).
2. Consistency Check: Either CC(u, key(u), {ui, auxi}i∈I) returns true or ui = u

for some i ∈ I.
3. Signature Check: Vervk((ui, auxi), σ

i) = 1 for i ∈ I

Fig. 6. Generic Consistency Check Procedure GCCvk

Let ΠExt = 〈C,R〉 be an extractable commitment scheme. In Fig. 7, we give our
general protocol to achieve covert security. Then for each of our problems, we

Secure Computation from Millionaire 747

Generic Iterative Secure Computation with Covert Security
Alice Input: A set of distinct elements U = {u1, . . . , un}
Bob Input: A set of distinct elements V = {v1, . . . , vn}
Output: c1, . . . , c�.

Input Commitment Phase:
1. For every i ∈ [n], Alice acting as the Sender with input m = (ui, key(ui))

interacts with Bob as the Receiver using the protocol ΠExt.

2. For every i ∈ [n], Bob acting as the Sender with input m = (vi, key(vi))
interacts with Alice as the Receiver using the protocol ΠExt.

3. Alice and Bob run Gen(1k) to obtain the key-pairs (skA, vkA) and (skB , vkB)
respectively. Alice sends vkA to Bob and Bob sends vkB to Alice.

Secure Computation Phase:
1. Alice initializes (ua, ka) ← F (⊥, U) and Bob initializes (vb, kb) ← F (⊥, V).

2. Repeat for �(|U |, |V |) times:

(a) Alice and Bob execute the protocol computing LTf,vkA,vkB on inputs
(ua, ka, aux(i, ua), skA) and (vb, kb, aux(i, ub), skB)) and receives as output
(cj , σA, σB) where i is the iteration number.

(b) Alice updates (ua, ka) ← F (c≤j , U) and Bob updates (vb, kb) ←
F (c≤j , V). They store σB and σA respectively.

3. Alice outputs c1, . . . , c�. Bob outputs c1, . . . , c�.
Consistency Check Phase:

1. For every commitment C made by Alice in the Input Commitment Phase to
an element ua, Alice and Bob execute the protocol

CCvkB ((ua, key(ua), C, D, σ, {(ci, auxi, σ
i
B)}i∈I), ⊥)

where (a) I = wit(ua), if ua is not part of the output, (b) σ is a signature on
a message of the form (ua, ·), otherwise. If CC outputs 0, then Bob outputs
corruptA. If CC returns ua, Bob stores ua in store OutCheckA.

2. For every commitment C made by Bob in the Input Commitment Phase to
an element vb, Alice and Bob execute the protocol

CCvkA((vb, key(vb), C, D, σ, {(ci, auxi, σ
i
A)}i∈I), ⊥)

where (a) I = wit(vb), if vb is not part of the output, (b)σ is a signature on
a message of the form (vb, ·), otherwise. If CC outputs 0, then Alice outputs
corruptB . If CC returns vb, Bob stores vb in store OutCheckB .

3. If OutCheckA is not equal to c≤� minus the elements that are part of Bob’s
input, then Bob outputs corruptA.

4. If OutCheckB is not equal to c≤� minus the elements that are part of Alice’s
input, then Alice outputs corruptA.

Fig. 7. The generic structure of a secure iterative protocol with covert security

specify how we modify the LTf functionality and provide the Consistency Check
procedure. Let com be a statistically-binding commitment scheme. In Fig. 6, we
give the generic structure of the consistency-check procedure.

748 A. Shelat and M. Venkitasubramaniam

Theorem 3. Let f be a functionality that is covert-greedy compatible. Then the
Generic Covert Security protocol described in Fig. 7 securely computes f in the
presence of covert adversaries with 1-deterrence.

Proof. Our analysis of the security of the protocol is in the LTf , CCvk hybrid,
where the parties are assumed to have access to a trusted party computing
the respective functionalities. Thus the simulator that we describe will play the
trusted party implementing the two functionalities, when simulating the adver-
sary. We consider the different corruption cases: (1) When no party is corrupted
(2) When one of the parties are corrupted. In the first case, the security reduces
to the semi-honest case and follows the proof presented in Sect. 3.1. Below we
prove security when one of the parties are corrupted. We argue for the case when
Alice is corrupted and the case for Bob follows symmetrically since the protocol
is symmetric in both parties.

Alice is corrupted. On a high-level, by our assumptions there is a unique solution
and a unique order in which the output is revealed in every iteration. More
precisely, given the optimal solution, the output of each iteration using LTf is
determined. Furthermore, this output is either an element in Alice’s input or
Bob’s input. The simulator S fixes A’s random tape unfiromly at random and
proceeds as follows:

1. S executes the Input Commitment Phase playing the role of Bob. For all
commitments made by Alice, S runs the extractor algorithm E provided by
the ΠExt protocol to create a transcript and extract all of Alice’s input. For
all of Bob’s, S commits to the all 0 string.

2. Now S has Alice’s input which it feeds to the ideal functionality computing f
and receives the output c1, . . . , c�. Next S interacts with Alice in the Secure
Computation Phase. In iteration i, S receives Alice’s input (ua, x, auxa, skA)
for LTf . S can check if Alice’s input is correct, by performing the computation
of LTf with Alice’s input as (ua, x). If ua = ci then S simply outputs ci as
the output of the computation. Otherwise, ci must be Bob’s input and the
simulator checks if the computation with Bob’s input as ci results in ci. If it
is not, S outputs badi and halts.

3. If S successfully completes the Secure Computation Phase, it proceeds to
simulate the Consistency Check Phase. In this phase, Alice first proves con-
sistency for every commitment C it made in the Input Commitment Phase by
providing input to the CCvkB functionality. The simulator evaluates the input
using the procedure honestly and sends corruptA if the procedure returns 0.

4. Finally, for every Commitment made by Bob that is not part of the input,
S simply sends what the CCvk functionality should send if Bob is honest,
namely, it sends 1 to Alice.

This concludes the description of the simulator S. We now proceed to prove
covert-security. First, we prove the following claim.

Consider an adversarial Alice A∗. We prove indistinguishability in a hybrid
experiment H where we construct another simulator S′ that knows Bob’s input.

Secure Computation from Millionaire 749

In this experiment S′ proceeds identically to S with the exception that in the
Input Commitment Phase it commits to the real inputs of Bob instead of the
all 0 string as S would. Indistinguishability of the output of S and S′ follows
directly from the hiding property of the commitment scheme and the fact that
the views are in the LT, CC-hybrid. More precisely,

idealLT,CC
f,S(z),I(x1, x2, k) ≈ idealLT,CC

f,S′(z),I(x1, x2, k)

Next, we argue indistinguishability of the hybrid experiment H and the real
experiment. First, we observe that both these experiment proceed identically
in the Input Commitment Phase. Fix a partial transcript τ of the view at the
end of Input Commitment Phase. Let c1, . . . , c� be the output obtained by S′.
It now follows that, conditioned on the Secure Computation Phase outputting
c1, . . . , c�, the views in H and the real experiment are identically distributed.
This is because the simulator honestly computes the LT-functionality and the
output is completely determined by c≤i (ci is the output of the iteration and
the other previous outputs are required to determine auxb). For any view v of
the experiment, let Success(v) denote this event. Let bad denote the union of
all events badi. It follows that

Pr[v ← idealLT,CC
f,S′(z),I(x1, x2, k) : D(v) = 1 ∧ ¬bad]

= Pr[v ← realLT,CC
f,A∗(z),I(x1, x2, k)) : D(v) = 1 ∧ Success(v)] (1)

Assume for contradiction, the simulation did not satisfy covert security with
1-deterrence. Then there exists an adversary A, distinguisher D and polynomial
p(·) such that

∣
∣
∣ Pr[D(idealLT,CC

f,S′(z),I(x1, x2, k)) = 1] − Pr[D(realLT,CC
f,A∗(z),I(x1, x2, k))) = 1]

∣
∣
∣

≥ Pr[outB(realf,A∗(z),I(x1, x2, k)) = corruptA] +
1

p(k)

Using Eq. 1, we rewrite the above equation as follows:
∣
∣
∣ Pr[v ← idealLT,CC

f,S′(z),I(x1, x2, k) : D(v) = 1 ∧ bad]

− Pr[v ← realLT,CC
f,A∗(z),I(x1, x2, k)) : D(v) = 1 ∧ ¬Success(v)]

∣
∣
∣

≥ Pr[outB(realf,A∗(z),I(x1, x2, k)) = corruptA] +
1

p(k)
(2)

Below in Claim 1, we show that Pr[bad] is negligible close to Pr[¬Success].
Furthemore, if ¬Success occurs, then it must be the case that Bob outputs
corruptA. Therefore,

∣
∣
∣ Pr[v ← idealLT,CC

f,S′(z),I(x1, x2, k) : D(v) = 1 ∧ bad]

− Pr[v ← realLT,CC
f,A∗(z),I(x1, x2, k)) : D(v) = 1 ∧ ¬Success(v)]

∣
∣
∣

≤ Pr[¬Success] − μ1(n)
= Pr[outB(realf,A∗(z),I(x1, x2, k)) = corruptA] − μ1(k)

750 A. Shelat and M. Venkitasubramaniam

This is a contradiction to Eq. 2.
Claim 1.

∣
∣
∣ Pr[bad] − Pr[¬Success]

∣
∣
∣ < μ1(k)

where the first probability is over the experiment in H and the second is over
the real experiment.
Proof. Observe that if bad occurs, then S′ outputs badi for some i. This means
that in iteration i, the result of the computation using LT was not ci. Since,
we consider unique inputs, it must be the case that the output was something
different from ci. There are two cases:

ci was part of Alice’s input In this case, Alice must not have used the input
corresponding to ci in iteration i. Hence, the output of the ith iteration must
have been different. Since there is a unique order in which the outputs are
revealed, the computation between Alice and Bob must have resulted in an
output different from c≤�. Then by the consistency-check property of f , it
will follow that Alice cannot convince Bob in the Consistency-Check Phase
for the commitment corresponding to Ci on the same transcript output by S′.
This means that Bob would output corruptA in Step 1 on such a transcript.

ci was part of Bob’s input Suppose that Alice used an input u in iteration
i that was chosen by the greedy procedure. In this case, it cannot be that
Alice committed to u in the Input Commitment Phase. This is because, S′

extracted all the inputs from Alice and the output is unique given Alice’s
input. In this case, we show that Alice will fail in the Consistency-Check
Procedure. First, we observe that Alice cannot produce an input to CC such
that the output is u. Recall that it would have to produce both a signature
using Bob’s key for u and a commitment C from the input commitment
phase containing the input u, since there is no such commitment, it cannot
achieve this. Hence, OutCheckA computed by Bob will not contain u but
c≤� does. Therefore, Bob will output corruptA in Step 3.

We recall that the view in H and the real experiments are identically dis-
tributed up until the iteration where badi occurs. Therefore, from the above
argument, it follows that if badi was output by Si on any partial transcript τ in
hybrid experiment H up until iteration i, then Bob must have output corruptA
on a continuation from τ in the real experiment except with negligible probabil-
ity. This concludes the proof of the Claim and the Theorem. ��

5.2 Convex Hull

We present a consistency-check for the convex-hull problem that will provide
covert-security with 1-deterrence. Recall from the general covert-secure protocol
that an adversary can fail to consider some of its input committed in the Com-
mitment Phase. In the Consistency-Check Phase, the adversary needs to show
that a particular point p committed to is not part of the convex hull. Towards
this, it will choose three points p1, p2 and p3 on the convex-hull that was output
and prove that p lies strictly in the interior of the triangle formed by the p1, p2

Secure Computation from Millionaire 751

and p3. As before we assume that no two points share the same x or y coordinate
and no three points are collinear.

We describe below how to instantiate this problem in our framework. First
we show that convex-hull is covert-greedy compatible:

greedy compatible From Sect. 4.1 we know this is greedy compatible.
Consistency Check: We define the key(u) = ⊥ and aux(i, u) = ⊥. The function

wit on input u is defined to be the index of three points in the output
c1, . . . , c� such that u resides within the triangle formed by the three points.
Observe that if a particular point u is not on the convex-hull, it lies inside
and there must be three points on the hull for which u is contained in the
triangle formed by the three points. Moreover, for any point outside the hull,
there exists no set of three points for which this conditions will be true. The
function CC on input (u,C,D, (u1, u2, u3)) outputs 1 only if u is contained
in the triangle formed by u1, u2 and u3.

Theorem 4. The Generic Iterative Secure Computation with Covert
Security protocol instantiated with the Consistency Check Procedure CC, func-
tions aux, key and wit described above securely computes the convex hull of the
union of inputs of Alice and Bob, in the presence of covert-adversaries with 1-
deterrence, assuming all inputs of Alice and Bob are distinct, no two of which
share the same x-coordinate and no three points are collinear.

Overhead: The total number of rounds of communication is O(|Z|+ |I|). This is
because the secure computation phase take O(|Z|)-rounds and the consistency
check phase is O(|I|)-rounds. In each round of the secure computation phase,
the protocol performs at most one secure comparison of log M -bit integers and
one signature computation on a log M bit string. As mentioned before, the sig-
natures need not be securely computed and can be computed locally and sent
to the other party. In particular, for the case of convex-hull, the message to be
signed is the point output in the current iteration. Therefore, the communica-
tion complexity of each round of iteration in this phase is O(log M) + O(k).
In each round of the consistency check phase, the protocol performs (a) One
decommitment verification that will cost poly(k) (b) O(1) signature verifica-
tions that will cost poly(k) (c) O(1) subtractions of log M -bit integers (this
will require O(log M) gates) and O(1) multiplications of log M -bit integers (this
will require O(log2 M) gates). This is for checking if a point is in a triangle.
Since all the circuits need to be securely computed against malicious adversaries
there will be a poly(k) overhead. The overall communication complexity will be
O(|Z| log M + |I| log2 M) times poly(k). In comparison, the naive circuit imple-
mentation will have at least n memory accesses which will result in a circuit size
of Ω(|I|2 log M) times poly(k).

5.3 Matroids

We begin with a simple consistency-check for matroids that will yield covert-
security with 1-deterrence. The communication complexity of implementing this
check would be O(|S|) where the matroid is (S, I).

752 A. Shelat and M. Venkitasubramaniam

We recall some basic notions regarding matroids (see [13]). All sets in I are
referred to as independent sets and any set not in I is called a dependent set.
A cycle of a matroid (S, I) is a setwise minimal dependent set. A cut in (S, I)
is a setwise minimal subset of S intersecting all maximal independent sets. The
names have been so chosen to maintain the intuitive connection with the special
case of MST. 1 Suppose B is an independent set and B∪{x} is dependent. Then
B ∪ {x} contains a cycle. We refer to this cycle as the fundamental cycle of x
and B. The cycle must contain x, since C − {x} ⊆ B and hence independent.
The following proposition follows directly form the properties of a matroid.

Proposition 1. An element x ∈ S is in no minimum weight maximal indepen-
dent set iff it has the largest weight on some cycle.

This proposition will form the basis of the consistency-check as for every element
x not in the minimum weight maximal independent set B, there is a unique cycle,
i.e. the fundamental cycle of x and B which can be computed by both parties
given B and x. Then this cycle can be used to demonstrate that x is not part
of the solution. In the full version, we consider other examples such as the (a)
minimum spanning tree,2 (b) unit job scheduling, and (c) single source shortest
distance examples.

6 Computing the Median: Revisiting the AMP Protocol

To incorporate the median protocol to our framework we need to make a few
modifications; the output of each iteration is not part of the final output. The
output of the final iteration is the output of the protocol.

We define LTf (x, y) function simply returns either 0 or 1 depending on
whether x > y. The definition of F is slightly more complicated and subsumes
the pruning of the input sets that is explicit in the AMP protocol. Specifically,
we define

FA(i,m, x, S) =

⎧
⎨

⎩

n/2 if i = 0
x/2 if m = 0 ∧ i > 0

x + x/2 if m = 1 ∧ i > 0
FB(i,m, x, S) = FA(i,m, x, S)

In words, Alice begins the protocol using her n/2th (i.e. her median) element
in comparison with Bob’s median element. If Alice’s element is larger, then
she updates her index to the median of the smaller half of her array (i.e., the
n/4 rank element) and conversely Bob updates his index to the median of the
larger half of his array (i.e., his n/2 + n/4 rank element). The loop is repeated
�(|U |, |V |) = �log(|U |)� = �log(n)� times and at the end of the looping, the
output O.

1 Note however, the notion of cuts in graphs are a union of cuts as defined here since
the notion of a cut in a graph need not necessarily be setwise minimal.

2 It is possible to achieve better efficiency then the general matroid approach for MST.

Secure Computation from Millionaire 753

Malicious Security for aborting adversaries. The security proof in [1] for the
median protocol does not handle the case when the adversary aborts during
extraction. We improve their simulation to handle this case.

As in [1], we construct a simulator in a hybrid model where all parties have
access to an ideal functionality that computes comparisons. In the malicious
protocol, at every step a lower bound l and an upper bound u is maintained
by secret sharing the values between the two parties. This enforces the input
provided by the parties to lie between l and u. Consider an adversary A for
the protocol. We can visualize the actions of A in each iteration as either going
left or right in a binary tree depending on the output of the comparison at
that iteration. In the malicious setting, the simulator is required to extract the
adversary’s input to feed it to the ideal functionality. Since the actual inputs are
revealed at each node, the simulator needs a mechanism to visit every node. Since
every node can be arrived by a sequence of left or right traversal to a child, the
simulator can reach every node by providing the appropriate sequence of outputs
for the comparison operation and then allowing the adversary to reveal the value
at that node. This value is given as input to the next iteration. Since we are in
the hybrid where the simulator can see every input that the adversary sends,
the simulator can extract the entire tree. Recall that the adversary is required to
provide inputs that respect the lower and upper bound. Hence after extraction,
an in-order traversal of the binary tree gives a sorted set of values. Using this
set as the adversary’s input, the simulator feeds it to the ideal functionality and
obtains the output, and then traverses the tree again giving the actual inputs as
dictated by the median.

We show how to construct a simulator that also allows the adversary to
abort. If the adversary aborts when the execution reaches some particular node,
then the simulator will not be able to extract the values in the entire tree rooted
at that node. Our simulation proceeds as follows. It explores the tree just as
in [1] and marks the nodes on which the adversary aborted. At the end of the
extraction, the simulator has a partial binary tree. However, the simulator needs
to send some input the ideal functionality on behalf of the adversary to obtain
the output. Towards that, the simulator extends the partial tree to a full binary
tree by adding dummy nodes. Next, the simulator assigns values for the dummy
nodes. To do that every dummy node is given a unique label and then following
[1], we perform an in-order traversal of the tree (excluding leaves) to obtain the
adversary’s input. Then each label is assigned a value equal to the first value in
the sequence before the label. Then the sequence is sanitized to handle duplicate
items as in [1].

The following observations follows from [1]. When the computation reaches a
leaf, the adversary provides a single value to the comparison. For the rightmost
leaf, the value is the largest value among all nodes. For the other nodes, the value
is the same value on the lowermost internal node of the path from the root to
the leaf, for which the comparison result returned true. Each item in the input

754 A. Shelat and M. Venkitasubramaniam

of Alice appears exactly once in an internal node and exactly once in a leaf node.
Finally, the values for the labels have so been chosen so that if for the actual
(some hidden) inputs of the adversary the median is revealed in a particular
leaf node, the median calculated by the input constructed by simulator will have
the property that the leaf node corresponding to the median on the simulator’s
reconstructed input and the actual node corresponding to the adversary’s input
will be part of the same subtree of all dummy nodes. Thus, any traversal to
either of these nodes from the root will result on the same node on which the
adversary aborted.

Proof sketch. When S receives the output from the trusted party, it simulates
the route that the execution takes in the tree, and performs any additional
operation that Alice might apply to its view of the protocol. There are two
cases depending on the median: Either the median is the value revealed in one
of the comparisons in a leaf where the adversary aborted in some ancestor of
that node, or it is the value revealed in a leaf that is not a dummy node. In the
latter case, the simulation traverses the route the execution would take using the
median and reach the leaf node. In the former case, the simulation will result in a
traversal to the leaf node corresponding to the input computed by the simulator.
However, by construction, the actual median lies in the same subtree as this leaf
node and the simulator will abort at the same place as it would have with the
actual inputs of the adversary. Hence the simulation proceeds identical to real
experiment.

6.1 On Achieving Malicious Security in Our General Framework

Recall that in our general iterative framework the outputs are gradually released
and this can allow a malicious adversary to alter its input to an intermediate
iteration of the protocol based on the results from previous iterations. As in the
covert security protocol, this can be circumvented by requiring the adversary
to commit to their input before the protocol starts and the simulation extract
these inputs at the beginning to be fed to the ideal functionality. However,
this is not enough, as an adversary can selectively abort or selectively use his
committed inputs in the iterative protocol based on the intermediate results
of the computation. One approach would be to simply require each party to
prove in zero-knowledge that it used the correct input. While this can be made
communication efficient (by relying on universal arguments or SNARKs) it will
blow up the computational complexity. This might be efficient if a short witness
can establish correctness (analogous to our consistency checks for covert security)
but seems unlikely for the applications discussed in this work. For the specific
case of the median, as explained above, we are able to obtain malicious security
without significant blow up in the communication or computation complexity.
Towards obtaining efficient simulation of malicious adversaries, we next try to
identify what property of the median protocol enables such efficient simulation.

Secure Computation from Millionaire 755

Towards this, define tracei in our general framework to be the trace of the
outputs in the first i iterations, namely, c1, . . . , ci which are the outputs of LTf

in each iteration. Let Alice’s input be A = {a1, . . . , an}. For any particular
data element aj held by Alice (analogously for Bob) define T (aj) to be the set
containing all traces tracei such that there is some input set B for Bob such
that aj is Alice’s input in the i+1’st iteration when Alice and Bob interact with
inputs A and B and tracei is the trace for the first i iterations.

When we consider the secure median protocol the first property we observe
is that T (aj) is exactly 1. To see this consider two traces tracei = (c1, . . . , ci)
and t̃racei = ĉ1, . . . , ĉi such that the maximum prefix length that they share is
k, namely, for t = 1, . . . , k, ct = ĉt and ck+1 �= ĉk+1. Since the outputs of each
iteration are results of comparisons, let us assume without loss of generality that
ck+1 = 0 (meaning Alice’s input was less than Bob’s input in that iteration) and
ĉk+1 = 1. Since they share the same prefix until iteration k, the input fed by Alice
in the k + 1st iteration in both the traces must be identical. Call this element
aj1 . Let aj2 and aj3 be the input used by Alice in iteration i + 1 at the end of
traces tracei and t̃racei. It follows from the AMP protocol that aj2 < aj1 < aj3 .
This is because at iteration k +1 the result of the comparisons either prunes the
data of elements less than aj1 or greater than aj1 . Hence, each input aj cannot
be in two different traces. A second property of the median protocol is that
given an adversary every possible trace can be simulated in polynomial time.
This is because the number of iterations is O(log n) and in each iteration there
are at most two outcomes. We next give a rough intuition as to why these two
properties are necessary.

If the first property fails to hold, then for a particular input element there are
two different traces. This means the adversary can decide to selectively abort in
one of the traces and such an adversary cannot be simulated without knowing
the honest parties input. If the second property fails to hold, the adversary can
selectively use its data. Since the all traces cannot enumerated in polynomial
time, the adversary’s input needs to be extracted by other means. If we relied on
extractable commitments as in the case of covert security, the simulator will not
know what to feed to the ideal functionality as some of the committed inputs
may never be used by the adversary. Another example besides the median that
satisfies this would be the bisection method to find roots of a polynomial where
Alice and Bob hold parts of a polynomial and wish to find a root in a prescribed
interval. In future work, we plan to explore more examples that admit malicious
security in our framework.

756 A. Shelat and M. Venkitasubramaniam

References

1. Aggarwal, G., Mishra, N., Pinkas, B.: Secure computation of the median (and other
elements of specified ranks). J. Cryptology 23(3), 373–401 (2010)

2. Aumann, Y., Lindell, Y.: Security against covert adversaries: efficient protocols for
realistic adversaries. J. Cryptology 23, 281–343 (2010)

3. Barak, B., Goldreich, O.: Universal arguments and their applications. In: IEEE
Conference on Computational Complexity, pp. 194–203 (2002)

4. Ben-David, A., Nisan, N., Pinkas, B.: FairplayMP: a system for secure multi-party
computation. In: ACM Conference on Computer and Communications Security
(2008)

5. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision resis-
tance to succinct non-interactive arguments of knowledge, and back again. In:
Innovations in Theoretical Computer Science 2012, Cambridge, MA, USA, 8–10
January 2012, pp. 326–349 (2012)

6. Brickell, J., Shmatikov, V.: Privacy-preserving graph algorithms in the semi-
honest model. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 236–252.
Springer, Heidelberg (2005)

7. Chung, K.-M., Liu, Z., Pass, R.: Statistically-secure oram with Õ(log2 n) overhead
(2013). arXiv preprint arXiv:1307.3699

8. Di Crescenzo, G., Lipmaa, H.: Succinct NP proofs from an extractability assump-
tion. In: Beckmann, A., Dimitracopoulos, C., Löwe, B. (eds.) CiE 2008. LNCS, vol.
5028, pp. 175–185. Springer, Heidelberg (2008)

9. Gordon, S.D., Katz, J., Kolesnikov, V., Krell, F., Malkin, T., Raykova, M., Vahlis,
Y.: Secure two-party computation in sublinear (amortized) time. In: CCS, pp.
513–524 (2012)

10. Shen, C.H., Shelat, A.: Fast two-party secure computation with minimal assump-
tions. In: ACM CCS 2013 (2012)

11. Huang, Y., Evans, D., Katz, J., Malka, L.: Faster secure two-party computation
using garbled circuits. In: USENIX Security Symposium (2011)

12. Keller, M. Scholl, P.: Efficient, oblivious data structures for MPC. Cryptology
ePrint Archive, Report 2014/137 (2014). http://eprint.iacr.org/

13. Kozen, D.C.: Design and Analysis of Algorithms. Texts and Monographs in Com-
puter Science. Springer, New York (1992)

14. Kreuter, B., Mood, B., Shelat, A., Butler, K.: PCF: a portable circuit format for
scalable two-party secure computation. In: USENIX Security Symposium (2013)

15. Kreuter, B., Shelat, A., Shen, C.H.: Billion-gate secure computation with malicious
adversaries. In: USENIX Security Symposium (2012)

16. Liu, C., Huang, Y., Shi, E., Katz, J., Hicks, M.: Automating efficient ram-model
secure computation. In: IEEE S & P (2014)

17. MacKenzie, P., Oprea, A., Reiter, M.: Automatic generation of two-party compu-
tations. In: ACM Conference on Computer and Communications Security (2003)

18. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay: a secure two-party compu-
tation system. In: USENIX Security (2004)

19. Micali, S.: Computationally sound proofs. SIAM J. Comput. 30(4), 1253–1298
(2000)

20. Ostrovsky, R., Shoup, V.: Private information storage. In: STOC 1997, pp. 294–303
(1997)

21. Rastogi, A., Hammer, M.A., Hicks, M.: Wysteria: a programming language for
generic, mixed-mode multiparty computations. In: IEEE S & P (2014)

http://arxiv.org/abs/1307.3699
http://eprint.iacr.org/

Secure Computation from Millionaire 757

22. Shi, E., Chan, T.-H.H., Stefanov, E., Li, M.: Oblivious RAM with O((logN)3)
worst-case cost. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol.
7073, pp. 197–214. Springer, Heidelberg (2011)

23. Stefanov, E., van Dijk, M., Shi, E., Fletcher, C., Ren, L., Yu, X., Devadas, S.: Path
ORAM: an extremely simple oblivious ram protocol. In: CCS (2013)

24. Wang, X.S., Huang, Y., Hubert Chan, T-H., Shelat, A., Shi, E.: Scoram: Oblivious
ram for secure computation. In: CCS 2014 (2014)

25. Yao, A.C.-C.: How to generate and exchange secrets. In: FOCS (1986)

Garbling Scheme for Formulas with Constant
Size of Garbled Gates

Carmen Kempka, Ryo Kikuchi, Susumu Kiyoshima, and Koutarou Suzuki(B)

NTT Secure Platform Laboratories, Tokyo, Japan
{kempka.carmen,kikuchi.ryo,kiyoshima.susumu,

suzuki.koutarou}@lab.ntt.co.jp

Abstract. We provide a garbling scheme which creates garbled circuits
of a very small constant size (four bits per gate) for circuits with fan-
out one (formulas). For arbitrary fan-out, we additionally need only two
ciphertexts per additional connection of each gate output wire. We make
use of a trapdoor permutation for which we define a generalized notion
of correlation robustness. We show that our notion is implied by PRIV-
security, a notion for deterministic (searchable) encryption. We prove our
scheme secure in the programmable random oracle model.

Keywords: Garbled circuits · Constant size of garbled gates · Correla-
tion robustness · PRIV-security

1 Introduction

Yao’s garbled circuit technique [33] is one of the most important techniques
on secure computation. Very roughly speaking, this technique allows a party
(the garbler) to create an encrypted form of a circuit—a “garbled” circuit—and
an encoding of input with which the other party (the evaluator) can evaluate
the circuit on the input but cannot compute anything other than the output.
Compared with other techniques on secure computation (e.g., the technique
by Goldreich et al. [12]), the garbled circuit technique has a big advantage on
efficiency since we can construct constant-round protocols by using it.

Traditionally, the garbled circuit technique was considered to be a theoreti-
cal feasibility result; however, recently many works have demonstrated that the
garbled circuit technique can also be used to construct two-party computation
protocols with practical efficiency. The first implementation of the garbled cir-
cuit technique was shown by Malkhi et al. [28]. Since then, significant efforts
have been devoted toward making the technique more practical.

A major line of research on the garbled circuit technique is the reduction
of the size of garbled circuits. Since the main efficiency bottleneck of garbled-
circuit-based two-party computation protocols is usually network bandwidth,

c© International Association for Cryptologic Research 2015
T. Iwata and J.H. Cheon (Eds.): ASIACRYPT 2015, Part I, LNCS 9452, pp. 758–782, 2015.
DOI: 10.1007/978-3-662-48797-6 31

Garbling Scheme for Formulas with Constant Size of Garbled Gates 759

reducing the size of garbled circuits typically leads to a big improvement of
efficiency in practice.1

Reduction of Garbled Circuit Size. Originally, the garbled circuit technique
uses four ciphertexts for each gate to create “garbled truth tables”, and thus, the
size of a garbled circuit is O(k) bits per gate (where k is the security parameter).
In [22], Kolesnikov and Schneider proposed a technique, called free-XOR tech-
nique, with which we can construct a garbled circuit that contains no ciphertexts
for XOR gates. In [29], Naor et al. proposed a technique that reduces the number
of ciphertexts from four to three for each gate. In [30], Pinkas et al. proposed a
technique that reduces the number of ciphertexts to two for each gate. Recently,
Kolesnikov et al. [21] introduced the fleXOR technique, which requires zero, one,
or two ciphertexts to garble an XOR gate—thus, garbling XOR gates is not
“free” in general—but is compatible with the garbled row-reduction technique
of [30]. Very recently, Zahur et al. [34] introduced a technique that is compatible
with the free-XOR technique and can garble each AND gate by using only two
ciphertexts; thus, this technique requires two ciphertexts for each AND gate and
no ciphertexts for each XOR gate. We remark that although all of these tech-
niques do not achieve an asymptotic reduction of the size of garbled circuits—it
remains to be O(k) bits per gates—they offer a significant reduction of commu-
nication cost in practice.

A different approach for reducing the size of garbled circuits is the technique
of Kolesnikov [19], which is an information-theoretic variant of Yao’s garbled
circuit technique. In this technique, a circuit is garbled by using secret sharing
(instead of encryption), and a garbled circuit is evaluated by recovering a share
assigned to the output wire of each gate from shares assigned to the input wires
of that gate. The size of the garbled circuit is zero (since there is no garbled
truth table) and the size of the encoded input grows with the depth of the
circuit; specifically, the size of the shares is quadratic in the depth of the gate
for formulas, and exponential for circuits. For shallow circuits, the technique of
Kolesnikov [19] is more efficient than other techniques.

Our Contribution. In this paper, we propose a garbling technique for formulas
(i.e., circuits with fan-out 1) such that the size of the garbled circuit is four
bits per gate. Unlike the optimization techniques of [21,22,29,34], our technique
achieves asymptotic reduction of the size of the garbled circuits. Also, unlike the
information-theoretic garbled circuit technique of [19], our technique encodes
input in such a way that the size of the encoded input is independent of the
depth of the circuit. (For detailed comparisons, see Sect. 3.3.)

In our technique, ciphertexts include trapdoor permutations (instead of hash
functions as in most of the previous techniques). To prove the security, we extend

1 In the case of security against malicious adversaries, the number of circuits that are
generated in the cut-and-choose technique also has an impact on efficiency [1,10,14,
15,23,26,27].

760 C. Kempka et al.

the definition of correlation robustness (which is originally defined for hash func-
tions [11]) to the case of trapdoor permutations, and assume that the underlying
trapdoor permutation is correlation robust. We also show that our notion of cor-
relation robustness is implied by PRIV-security as defined in [7].

Idea of Our Garbling Scheme. The idea of our construction is as follows:
Unlike most existing techniques, our construction garbles circuits backwards,
starting from the output gate. This allows us to reduce communication cost
drastically: We can compute the ciphertexts needed for each gate as a hash of
the gate-ID, so the evaluator can re-compute them by himself and they need
not be included in the garbled circuit. These ciphertexts are then interpreted by
the garbler as the XOR of the output key Ki and an image of a trapdoor one-
way permutation of a function of the input keys, which he inverts to compute
appropriate input keys corresponding to a given output key. Altogether we will
have a system of four equations of the form

c0 = E(f0(K,L)) ⊕ K0
C

c1 = E(f1(K,L′)) ⊕ K0
C

c2 = E(f2(K ′, L)) ⊕ K0
C

c3 = E(f3(K ′, L′)) ⊕ K1
C

in permuted order, where K,K ′, L, L′ are the input keys, K0
C and K1

C the output
keys, and fi are linear functions. The garbler can solve this system of equations to
compute the input keys by inverting the trapdoor permutation E. The evaluator
can only go through the circuit forward, using the one-way permutation to obtain
output keys corresponding to his input. However, lacking the trapdoor, he cannot
go backwards to compute any of the other keys.

One caveat of our backwards garbling technique is that the input keys for
each gate are uniquely determined given the output keys and the ciphertexts
assigned to this gate. Thus, we have no freedom in choosing any keys but the
circuit output keys. Therefore, our garbling scheme only allows fan-out one, i. e.,
formulas. Moreover, to communicate wire choice bits, we cannot use the usual
technique of defining the least significant bit of the keys as choice bit, since we
have no freedom in choosing the input keys or their LSBs. Therefore, we use
a hash function H ′ with one bit output, and publish H ′(Ka,Kb) ⊕ li for input
keys Ka,Kb and corresponding choice bit li of the output key, giving a garbled
circuit with l gates an overall size of 4l bits, plus the number of bits needed
to communicate the key of a keyed hash function and the index of a trapdoor
one-way permutation.

Somewhat surprisingly, we can use the free-XOR technique to garble XOR
gates at no additional cost, by using a “local” difference per XOR-sub-tree rather
than a global difference. In the case of formulas, this will only safe us the 4 bit
per gate for the choice bits. However in the case of general circuits, the freedom
an XOR-gate gives us in choosing input keys can safe us additional ciphertexts
needed for dealing with arbitrary fan-out in some cases.

Garbling Scheme for Formulas with Constant Size of Garbled Gates 761

Since our basic construction only allows fan-out one, a problem occurs when
we garble circuits which use the same input variable multiple times, such as
(a ∧ b) ∨ (a ∧ c). In such cases, we can duplicate the input wire for this variable,
and assign a different input key pair to each occurrence of the variable. In the
semi-honest setting, this does not affect security. In the malicious case, additional
care needs to be taken to ensure that the garbler provides the same input for
each occurrence of a variable. We discuss this in Sect. 5.3.

Related Works. The garbled circuit technique was introduced in the seminal
paper of Yao [33]. A formal analysis of the garbled circuit technique (or, more
precisely, the two-party computation protocol based on it) was presented by
Lindell and Pinkas [25]. Bellare et al. [8] introduced an abstraction of the garbled
circuit technique, which they call garbling schemes.

There are a lot of works that studied the size of garbled circuits. Other than
the works we mentioned above [21,22,29,30,34], Choi et al. [11] and Applebaum
[2] studied what assumptions are needed by the free-XOR technique. Choi et
al. showed that a circular security assumption on the underlying hash function
is sufficient. Applebaum showed that the LPN assumption is sufficient. Also,
Boneh et al. [9] showed that an asymptotic reduction of garbled circuit size is
possible under the learning-with-errors (LWE) assumption.

Other than the technique of [19], there are several information-theoretic vari-
ants of the garbled circuit technique, e.g., [17,18,20,32].

The correlation security of trapdoor permutations has also been studied by
previous work in other contexts. For example, Rosen and Segev [31] introduced
correlated product security of trapdoor permutations and used it to construct a
CCA-secure encryption scheme. Also, Hemenway et al. [13] studied the relation
between the decisional variant of correlated product security and the security
of deterministic encryption schemes. We remark however that these notions of
correlation security are different from the one we consider in this work. Roughly
speaking, in correlated product security [31], correlated inputs are applied to k
functions f1, . . . , fk that are independently chosen from a family of functions,
whereas in our notion of correlation robustness, correlated inputs are applied to
a single function f .

The size of inputs of garbled circuits has been studied in the context of ran-
domized encoding [3,4,16]. Applebaum et al. [5] proposed a garbling scheme
with constant online rate, i.e., they improve the online communication complex-
ity for input keys from nk to n + k, where n is the number of inputs and k
is security parameter. In contrast, our proposed scheme improves, only for for-
mulas, communication complexity for garbled circuits from lk to l + k and has
communication complexity nk for input keys, where l is the number of gates, n
is the number of inputs, and k a security parameter. We can combine the scheme
of [5] and our proposed scheme to realize a randomized encoding for formulas
with online communication complexity n + k for input keys and communication
complexity l + k for garbled circuit.

762 C. Kempka et al.

Outline of This Work. The rest of this paper is organized as follows. We
explain preliminaries and notation in Sect. 2, where we also recap the formal
definition of garbling schemes, and introduce our notion of correlation robust-
ness. We describe our basic garbling scheme for formulas in the semi-honest
setting in Sect. 3, and prove its security in Sect. 4. In Sect. 5, we discuss possible
extensions like arbitrary fan-out, incorporation of the free-XOR technique as
well as extending our construction to the case of active adversaries. We discuss
the instantiation of our correlation robust trapdoor one-way permutation with
a PRIV-secure deterministic encryption scheme in Sect. 6.

2 Preliminaries

2.1 Notation

We use the following notations. By x
U← X, we denote that x is randomly selected

from set X according to the uniform distribution. By x ← Algo, we denote that
probabilistic algorithm Algo outputs x. By A := B, we denote that A is defined
by B. By [S]x, we denote the x-th bit of bitstring S.

2.2 Garbling Scheme

In this section, we recall the definition of a garbling scheme and the notion of
simulation-based privacy of Bellare et al. [8].

A circuit is described as f = (n,m, l, A,B,G). Here, n ≥ 2 is the number
of circuit input wires, m ≥ 1 is the number of circuit output wires, and l ≥ 1
is the number of gates (and their output wires). Let W = {1, ..., n + l} be
the set of all wires, Winput = {1, ..., n} the set of circuit input wires, Woutput =
{n+l−m+1, ..., n+l} the set of circuit output wires, and Wgate = {n+1, ..., n+l}
the set of gates (and their output wires). A : Wgate → W \ Woutput is a function
to specify the first input wire A(i) of each gate i. B : Wgate → W \ Woutput

is a function to specify the second input wire B(i) of each gate i. We require
A(i) < B(i) < i for all i ∈ Wgate. G : Wgate × {0, 1}2 → {0, 1} is a function to
specify the gate function G(i, ·, ·) of each gate i. We will later in our garbling
scheme assign to each wire i two keys Ki,0 and Ki,1, representing the truth values
0 and 1 on this wire. To each wire i, we assign a permute bit λi, and to each key
Ki,a representing truth value a ∈ {0, 1}, we assign a choice bit lai = λi ⊕ a.

We define the notion of garbling schemes as follows.

Definition 1 (Garbling Scheme). A garbling scheme for a family of circuits
F = {Fn}n∈N, where n is a polynomial in a security parameter k, consists
of probabilistic polynomial-time algorithms GC = (Garble,Encode,Eval,Decode)
defined as follows.

– Garble takes as input security parameter 1k and circuit f ∈ Fn, and outputs
garbled circuit F , encoding information e, and decoding information d, i.e.,
(F, e, d) ← Garble(1k, f).

Garbling Scheme for Formulas with Constant Size of Garbled Gates 763

– Encode takes as input encoding information e and circuit input x ∈ {0, 1}n,
and outputs garbled input X, i.e., X ← Encode(e, x).

– Eval takes as input garbled circuit F and garbled input X, and outputs garbled
output Y , i.e., Y ← Eval(F,X)

– Decode takes as input decoding information d and garbled output Y , and out-
puts circuit output y, i.e., y ← Decode(d, Y).

A garbling scheme should have the following correctness property: for all secu-
rity parameters k, circuits f ∈ Fn, and input values x ∈ {0, 1}n, (F, e, d) ←
Garble(1k, f), X ← Encode(e, x), Y ← Eval(F,X), y ← Decode(d, Y), it holds
that y = f(x).

We then define the security notion of garbling schemes called simulation-based
privacy as follows. We adapt the notion of Bellare et al. [8] slightly to allow the
adversary access to a random oracle H. We denote by Φ(f) the information about
circuit f that is allowed to be leaked by the garbling scheme, e.g., size Φsize(f) =
(n,m, l), topology Φtopo(f) = (n,m, l, A,B), or the entire information Φcirc(f) =
(n,m, l, A,B,G) of circuit f = (n,m, l, A,B,G).

Definition 2 (Simulation-based Privacy). For a garbling scheme GC =
(Garble,Encode,Eval,Decode), function f ∈ Fn, input values x ∈ {0, 1}n, simu-
lator Sim, adversary A, and random oracle H, we define the advantage

Advprv.sim
GC,Sim,Φ,A(k) :=

∣
∣
∣
∣Pr

[
st ← AH(1k), (F, e, d) ← Garble(1k, f),
X ← Encode(e, x) : AH(st, F,X, d) = 1

]

− Pr
[

st ← AH(1k),
(F,X, d) ← Sim(1k, f(x),Φ(f)) : AH(st, F,X, d) = 1

]∣
∣
∣
∣ .

A garbling scheme GC = (Garble,Encode,Eval,Decode) is private, if there exists
a probabilistic polynomial-time simulator Sim, such that for any function f ∈ Fn,
input values x ∈ {0, 1}n, and probabilistic polynomial-time adversary A, the
advantage Advprv.sim

GC,Sim,Φ,A(k) is negligible.

2.3 Generalized Correlation Robustness

We define a generalized notion of correlation robustness for trapdoor one-way
permutations, in which we extend correlation robustness as defined by Choi
et al. [11]. Choi et al. considered ciphertexts of the form H(K⊕aΔ||L⊕bΔ||i)⊕m,
where i is a gate-ID, H is a hash function, K and L are input keys, a, b ∈ {0, 1}
and Δ is a global difference as needed for the free-XOR technique, meaning
Ki,1 = Ki,0 ⊕ Δ for each wire i. Given four such ciphertexts and two input keys
KA,α = K ⊕αΔ and KB,β = L⊕βΔ for α, β ∈ {0, 1}, the evaluator should only
be able to decrypt one of them. Our ciphertexts have a similar form. However,
we need to extend the definition of Choi et al. in two aspects. We do not have a
global difference Δ. Instead, our definition considers general correlations defined
by arbitrary functions of input keys, rather than correlations given by a global

764 C. Kempka et al.

difference. Since we garble gates backwards, the garbler needs to be able to invert
H. Therefore, instead of a hash function, we use a trapdoor one-way permutation
Eι. Thus, our notion of correlation robustness allows for a trapdoor ι.

Before we define correlation robustness, we recall the syntax of trapdoor
one-way permutations.

Definition 3 (Family of Trapdoor one-way Permutations). A family of
trapdoor one-way permutations E = {Eι : Dι → Dι}ι∈I for finite index set I is
defined by a tuple of ppt algorithms E = (GenE ,SampE ,EvalE , InvE) such that:

– GenE(1k) is a probabilistic algorithm that outputs a pair (ι, tι) of index ι ∈ I
and trapdoor tι.

– SampE(1k, ι) is a probabilistic algorithm that outputs a uniformly random ele-
ment x ∈ Dι.

– EvalE(1k, ι, x) is a deterministic algorithm that outputs y = Eι(x) (assuming
that ι is output by GenE and it holds that x ∈ Dι).

– InvE(ι, tι, y) is a deterministic algorithm that outputs an element x ∈ Dι such
that y = Eι(x) (assuming that (ι, tι) is output by GenE and it holds that
y ∈ Dι).

In abuse of notation, we write x
U← Dι to denote x ← SampE(1k, ι), y = Eι(x)

to denote y = EvalE(1k, ι, x), and x = E−1
ι (tι, y) to denote x = InvE(ι, tι, y).

We define generalized correlation robustness of trapdoor one-way permuta-
tions as follows.

Definition 4 (Generalized Correlation Robustness). Let f0, f1, f2, f3 be
any two-input functions. For a family of trapdoor one-way permutations E =
{Eι : Dι → Dι}ι∈I and a probabilistic polynomial-time adversary A, let us
consider the following probabilistic experiment Expcorr

E,fa,fb,fc,A(k) for a < b < c ∈
{0, 1, 2, 3}.

Experiment Expcorr
E,fa,fb,fc,A(k):

1. β
U← {0, 1}.

2. (K,L) ← A(1k).
3. (ι, tι) ← GenE(1k) and K ′ U← Dι, L′ U← Dι.
4. If β = 0, Za := Eι(fa(K,L′)), Zb := Eι(fb(K ′, L)), Zc := Eι(fc(K ′, L′)),

otherwise, Za
U← Dι, Zb

U← Dι, Zc
U← Dι.

5. β′ ← A(ι, Za, Zb, Zc).
6. Output 1 if and only if β = β′.

Let Advcorr
E,f0,f1,f2,f3,A(k) := maxa<b<c∈{0,1,2,3}{Pr

[
Expcorr

E,fa,fb,fc,A(k)= 1
]−1/2}.

Then, a family of trapdoor one-way permutations E is correlation robust w.r.t.
f0, f1, f2, f3, if for any probabilistic polynomial-time adversary A, the advantage
Advcorr

E,f0,f1,f2,f3,A(k) is negligible.

In the proposed garbling scheme, we use the following invertible linear func-
tion f = (f0, f1, f2, f3), with

f0 : (x, y) 	→ x + 2y,
f1, f2, f3 : (x, y) 	→ x + y.

Garbling Scheme for Formulas with Constant Size of Garbled Gates 765

3 Garbling Scheme for Formulas

We describe our basic garbling scheme for circuits with fan-out one. An exten-
sion to general circuits is given in Sect. 5.1. Our garbling scheme is designed for
the semi-honest case, but can be extended to the malicious case using standard
techniques. A brief discussion about this can be found in Sect. 5.3. As mentioned
in the introduction, we can use each input wire only once. Multiple occurrences
of a variable are handled by duplicating the corresponding input wire and assign-
ing a new key pair for each occurrence of the variable, i. e. we treat multiple
occurrences of the same input variable as different variables. This only affects
security in the malicious case (see Sect. 5.3).

3.1 Garbling

We describe our garbling scheme informally. A formal description of our garbling
algorithm and encoding function is given in Figs. 1 and 2, and the evaluation
algorithm is given in Fig. 3. Our decoding function is defined as

Decode : (Y, d) 	→ d ⊕ Y.

Let q be a prime number such that (2k −q)/2k is negligible, e.g., we can use a
Mersenne prime q = 2k − 1 for appropriate k. k and q are public. We can regard
a random element a ∈ {0, 1}k as an element a ∈ Fq ⊂ {0, 1}k with negligible
error probability. Let H : {0, 1}∗ → {0, 1}k be a keyed hash function, modeled
as a programmable random oracle. Let H ′ : {0, 1}∗ → {0, 1} be a hash function
which outputs one bit, modeled as a (non-programmable) random oracle. Let
Eι : {0, 1}k → {0, 1}k be a trapdoor one-way permutation on {0, 1}k which is
correlation robust with respect to functions (f0, f1, f2, f3) on {0, 1}k, with

f0 : (x, y) 	→ x + 2y ∈ Fq,

f1, f2, f3 : (x, y) 	→ x + y ∈ Fq.

Let l denote the number of gates in circuit f ; since the number of input wires
is n, the circuit output wire is wire l + n. We assume that the evaluator knows
the circuit topology.

During the garbling process, we assign a permute bit λi to each wire i, a key
Ki,0 with choice bit li,0 = λi, and a key Ki,1 with choice bit li,1 = 1 − λi. Ki,0

corresponds to truth value 0, and Ki,1 to truth value 1 on this wire. To garble
a circuit, the garbler first chooses a key R for the hash function H uniformly at
random, and includes it in the garbled circuit. Then, he chooses a pair of output
keys Kl+n,0 and Kl+n,1 for the circuit output wire l+n uniformly at random. He
assigns to the circuit output wire the permute bit λl+n := 0, and sets the output
key choice bits ll+n,0 := 0 and ll+n,1 := 1. Then, starting from gate l + n, the
garbler iteratively computes the remaining keys by computing the input keys of
each gate i depending on its output key pair. Since for the input wires A(i) and
B(i) of gate i we have A(i) < B(i) < i for all i, we can simply iterate over i

766 C. Kempka et al.

backwards and be sure that output keys are defined before their corresponding
input keys. Before the input keys of a gate i are computed, a uniformly random
permute bit λA(i) and, respectively, λB(i) is chosen for its two input wires, which
defines the input key choice bits l0A(i) = λA(i) and l1A(i) = 1 − λA(i) for wire
A(i), and analog for B(i). To compute the input keys for each gate, the garbler
computes four ciphertexts c0, c1, c2, c3 by computing cx := H(R, i||x) for x =
0, 1, 2, 3. The choice bits of the (yet undefined) input keys map each possible
input combination (a, b) ∈ {0, 1}2 to a ciphertext c2la

A(i)+lb
B(i)

. This way, the
evaluator can infer which ciphertext to use when processing gate i, without
knowing the actual truth values on the input wires.

Using his trapdoor tι, for each of the four possible inputs (a, b) ∈ {0, 1}2, the
garbler computes P2laA+lbB

:= E−1
ι (tι, c2laA+lbB

⊕Ki,G(a,b)), and solves the equation
system

P0 = KA,λA
+ 2KB,λB

P1 = KA,λA
+ KB,1−λB

P2 = KA,1−λA
+ KB,λB

P3 = KA,1−λA
+ KB,1−λB

to compute the input keys KA(i),0, KA(i),1, KB(i),0 and KB(i),1. To enable the
evaluator to compute the choice bit of output key Ki,G(a,b), for all four pos-
sible inputs (a, b) ∈ {0, 1}2, the garbler includes in the garbled circuit i the
bit b2laA+lbB

:= H ′(KA,a||KB,b) ⊕ l
Gi(a,b)
i . Since H ′ is a random oracle, each bit

H ′(KA,a||KB,b) is random, and therefore, each bit b2laA+lbB
is also random and

independent of l
Gi(a,b)
i , so the four published bits give no information about

the permute bits or the choice bits. These four bits are sorted according to the
choice bits of the input keys, so the evaluator knows which one to use. The choice
bits assigned to the circuit input keys are directly provided with these keys by
extending them by one bit.

We set the permute bit of the circuit output wire to 0, so the choice bits of
its keys correspond to the actual truth value on this wire. Apart from the keys
for the circuit input wires and their choice bits, the only values communicated to
the evaluator are the key R for the hash function H, the index ι of the trapdoor
one-way function, and the four bits b2laA+lbB

for each gate. Altogether, our garbled
circuit has size 4l + |R| + |ι|.

3.2 Evaluation

Evaluation (see Fig. 3) is then straightforward: after obtaining the garbled circuit
F and the input keys K1, . . . ,Kn, the evaluator processes the circuit forward.
For each gate i, he computes the ciphertext c2lA+lB := H(R, i||2lA + lB). Then
he computes Ki := Eι(KA + 2KB) ⊕ c2lA+lB , if 2lA + lB = 0, and Ki :=
Eι(KA + KB) ⊕ c2lA+lB , otherwise.

Garbling Scheme for Formulas with Constant Size of Garbled Gates 767

Garbling algorithm Garble(1k, f)

Input: Security parameter k, Circuit f = (n, m, l, A, B, G) computing a for-
mula

Output: Garbled circuit F , encoding e, decoding d
Algorithm: 1. Initialize:

Choose a trapdoor permutation Eι : {0, 1}k → {0, 1}k with trapdoor
tι.
Choose a key R ∈ {0, 1}k for hash function H uniformly at random
Initialize empty arrays L[], e[] with |L| = l and |e| = n.
Choose circuit output keys Kl+n,0, Kl+n,1 ∈ {0, 1}k uniformly at ran-
dom.
Set permute bit λl+n := 0 and choice bits l0l+n := 0, l1l+n := 1.

2. Garbling the gates:
For i := l + n to n + 1 do (count i downwards):
(a) Set A := A(i) and B := B(i)
(b) Choose permute bits λA, λB ∈ {0, 1} for wires A and B at ran-

dom.
For all (a, b) ∈ {0, 1}2, set input key choice bits
laA := λA ⊕ a, lbB := λB ⊕ b ∈ {0, 1}.

(c) Deriving the input keys:
– Compute cx := H(R, i||x) ∈ {0, 1}k for x = 0, 1, 2, 3.
– For all (a, b) ∈ {0, 1}2, use trapdoor tι to compute

P2la
A
+lb

B
:= E−1

ι (tι, c2la
A
+lb

B
⊕ Ki,G(a,b)) ∈ {0, 1}k

– Solve the equation system in Fq ⊂ {0, 1}k

P0 = KA,λA + 2KB,λB ∈ Fq

P1 = KA,λA + KB,1−λB ∈ Fq

P2 = KA,1−λA + KB,λB ∈ Fq

P3 = KA,1−λA + KB,1−λB ∈ Fq

to obtain the input keys KA,0, KA,1, KB,0, KB,1 ∈ Fq. Abort
if Pi �∈ Fq for some i. This occurs with negligible probability.
If A is a circuit input wire, set e[A] := (K0

A||l0A, K1
A||l1A).

If B is a circuit input wire, set e[B] := (K0
B ||l0B , K1

B ||l1B).
(d) Indicate choice bits:

For all (a, b) ∈ {0, 1}2, compute

b2la
A
+lb

B
:= H ′(KA,a||KB,b) ⊕ l

Gi(a,b)
i ∈ {0, 1}.

(e) Set L[i] := (b0, b1, b2, b3)
3. Output F := (R, L, ι), e and d := λl+n.

Fig. 1. The proposed garbling algorithm.

To obtain the choice bit li of the output key Ki, the evaluator computes
li := H ′(KA(i)||KB(i)))⊕b2lA+lB . The evaluator proceeds until he finally obtains
the choice bit ll+n of the circuit output key Kl+n, which equals the output f(x).

768 C. Kempka et al.

Encoding algorithm Encode(e, x)

Inputs: Garbled input keys e, input x
Algorithm: Parse x to x = x1 . . . xn

For i = 1 to n do:
Parse e[i] = (e0, e1)
X[i] := exi

Return X

Fig. 2. The function Encode.

Evaluation algorithm Eval(F, X)

Inputs: Garbled circuit F , garbled input X
Algorithm: 1. Parse F to F = (R, L)

2. For j = 1 to n do
Kj ||lj := X[j]

3. Compute gate output keys and choice bits:
For i := n + 1 to l + n do

Set A := A(i) and B := B(i).
Compute c2lA+lB := H(R, i||2lA + lB) ∈ {0, 1}k.
If x = 0, set Ki := Eι(KA + 2KB) ⊕ cx ∈ {0, 1}k,
else set Ki := Eι(KA + KB) ⊕ cx ∈ {0, 1}k.
Parse L[i] to (b0, b1, b2, b3).
Set choice bit li := H ′(KA||KB) ⊕ bx ∈ {0, 1}.

4. Return Y := ll+n.

Fig. 3. The evaluation algorithm.

3.3 Efficiency Comparison with Previous Schemes

Comparison with the Half-Gates Construction. We compare our garbling
scheme with the best known result (the half-gate construction) proposed by
Zahur et al. [34] on efficiency. It is difficult to compare them directly, since ours
uses a public-key primitive, while the half-gate construction uses a symmetric-
key one. Therefore, we evaluate the cost in an abstract way and later discuss the
concrete efficiency in the circuit size.

Let LE be the length of the domain of E, LI the length of ι, TEval the
computation cost of EvalE , TInv the computation cost of InvE , and |R| the length
of a hash key. Also let LH be the length of the range of the correlation robust
hash function used in [34], TH the computation cost of hashing, and lAND the
number of AND gates. Table 1 shows the communication and computation cost
of the two garbling schemes2.
2 We estimate the cost of our basic scheme here although our garbling scheme can be

combined with the free-XOR technique as discussed in Subsect. 5.2.

Garbling Scheme for Formulas with Constant Size of Garbled Gates 769

Table 1. Comparison with the half-gates scheme [34].

Communication cost Computation cost

Circuit Input Garbling Evaluation

Ours 4l + |R| + LI n · LE 4TInv · l TEval · l
[34] LH · lAND n · LH 2TH · lAND TH · lAND

Regarding communication cost, the size of the garbled circuit is a constant
multiple of l in our garbling scheme. Therefore, communication cost is asymptot-
ically small when a formula is large. Regarding computation cost, our garbling
scheme requires executions of EvalE and InvE , which are computationally expen-
sive compared to the computation of a hash function.

We additionally evaluate the circuit size for concrete example parameters.
We assume that the trapdoor one-way permutation is instantiated by an RSA-
based primitive such as RSA-DOAEP [6], the correlation robust hash function
is instantiated by fixed-key AES, and lAND = 0.14l, since this is the case of the
most significant difference among the examples in [34]. AES is regarded with
128-bit security, so we set LE = 4096, LI = 8192, |R| = 128 and LH = 128. In
this case, the circuit size in our garbling scheme is smaller than the one of the
half-gates scheme if l ≥ 709.

Regarding total communication cost, however, our scheme cannot beat the
half-gate construction in its current state. We consider our scheme a proof of
concept of a new way of circuit construction. Finding more efficient instantiations
for the trapdoor permutation or getting rid of the public key primitive altogether
are interesting open problems.

Comparison with Information-Theoretic Garbing Scheme of [19]. We
compare the efficiency of our scheme with that of the information-theoretic gar-
bling scheme of [19], which garbles formulas more efficiently than other tech-
niques. For simplicity, we consider the case of garbling a “balanced” formula
such that all the gates connecting to the input wires have the same depth.

Regarding the communication cost, the scheme of [19] garbles a balanced
formula with depth d in a way that the size of the garbled circuit is zero and
the size of the encoded input is approximately 2d+1 · d2 (each of the 2d+1 wires
has a share with size approximately d2), and our scheme garbles such a formula
in a way that the size of the garbled circuit is 4l + |R| + LI = 4 · 2d + |R| + LI

and the size of the encoded input is n · LE = 2d+1 · LE. Hence, in total, the
communication cost of the scheme of [19] is 2d+1 · d2 whereas that of ours is
2d+1(LE + 2) + |R| + LI ≈ 2d+1 · LE (see Table 2), and thus our scheme has
smaller communication cost when d >

√
LE.

Regarding the computation cost, we note that since the scheme of [19] requires
no cryptographic primitive whereas ours uses a public-key primitive, the compu-
tation cost of our scheme is likely to be much bigger than that of the scheme of [19].

770 C. Kempka et al.

Table 2. Comparison with information-theoretic garbling scheme of [19].

Communication cost

Circuit Input Total

Ours 4 · 2d + |R| + LI 2d+1 · LE 2d+1(LE + 2) + |R| + LI

[19] 0 2d+1 · d2 2d+1 · d2

4 Security of the Proposed Scheme

The proposed garbling scheme is simulation-based private in the (programmable)
random oracle model if the trapdoor permutation E is correlation robust.

Theorem 1 (Simulation-based Privacy). The proposed garbling scheme
described in Sect. 3 satisfies simulation-based privacy of Definition 2 if we assume
that E satisfies correlation robustness as defined in Definition 4, H is a pro-
grammable random oracle and H ′ is a non-programmable random oracle. More
precisely, for any adversary A there exists an adversary B such that

Advprv.sim
GC,Sim,Φ,A(k) ≤ l · Advcorr

E,f0,f1,f2,f3,B(k) + qH · 2−k,

where l is the number of gates and qH is the number of queries A makes to H.

Proof. We consider the following hybrid games Hreal,H0,H1, ...,Hl,Hsim, where
Hreal is identical to the real experiment (β = 0), and Hsim is identical to the sim-
ulated experiment (β = 1) of Definition 2. The simulator Sim(1k, f(x),Φtopo(f))
of Definition 2 is provided in Fig. 6.

Game Hreal : This game is identical to the real experiment of Definition 2. The
garbled circuit (F, e, d) is generated by the garbling algorithm Garble(1k, f) of
the real garbling scheme, as given in Fig. 1, and garbled input X is generated
by the encoding algorithm Encode(e, x) (Fig. 2) of the real scheme.

Game H0 : In this game, the garbled circuit is generated forward, from input
gates to output gate, which is in contrast to the real scheme. The garbled
circuit is generated by algorithm Sim0(1k, f) as described in Fig. 4, and gar-
bled input X is generated by encoding algorithm Encode(e, x) (Fig. 2) of the
real scheme. We note that in step 2-(c), we need to program the random
oracle H to keep consistency.

Game Hs : With the Games Hs, we move from Game H0 to the full simulation
with a gate-wise replacement. We incrementally replace variables not touched
in an evaluation with input x with random values gate by gate, such that
finally, in the full simulation, the “unused” variables of each gate are replaced
by randomness. For s = 1, ..., l, in each Game Hs, the garbled circuit is
generated by algorithm Sims(1k, x, f), given in Fig. 5, and garbled input X is
generated by the encoding algorithm Encode(e, x) (Fig. 2) of the real scheme.
We say that key Ki,β is active if and only if the bit obtained on wire i is β
when circuit f is evaluated with input x. Only in these intermediate games

Garbling Scheme for Formulas with Constant Size of Garbled Gates 771

Simulator Sim0(1
k, f)

Input: Security parameter k, circuit f = (n, m, l, A, B, G) computing a for-
mula.

Output: Garbled circuit F , encoding e, decoding d.
Algorithm: 1. Initialize:

Choose a trapdoor permutation Eι : Fq → Fq with trapdoor tι.
Choose a key R for hash function H uniformly at random
Initialize empty arrays L[], e[] with |L| = l and |e| = n.
For i := 1 to n do:
(a) Choose circuit input keys Ki,0, Ki,1 ∈ Fq uniformly at random.
(b) Choose permute bit λi ∈ {0, 1} uniformly at random and set

choice bits l0i := λi ⊕ 0, l1i := λi ⊕ 1.
(c) Set e[i] := (K0

i ||l0i , K1
i ||l1i).

2. Garbling the gates:
For i := n + 1 to n + l do (count i upwards):

(a) Set A := A(i) and B := B(i).
(b) Choose permute bit λi for output wire i uniformly at random.

Set output key choice bit l0i := λi ⊕ 0, l1i := λi ⊕ 1.
(c) ’Deriving’ the output keys:

– For all (a, b) ∈ {0, 1}2, compute
Y2la

A
+lb

B
:= Eι(KA,a + 2KB,b), if 2laA + lbB = 0 or

Y2la
A
+lb

B
:= Eι(KA,a + KB,b), otherwise.

– Choose output keys Ki,0, Ki,1 uniformly random
– Program random oracle such that

c2la
A
+lb

B
:= Ki,G(a,b) ⊕ Y2la

A
+lb

B

(d) Indicate choice bits:
For all (a, b) ∈ {0, 1}2, compute

b2la
A
+lb

B
:= H ′(KA,a||KB,b) ⊕ l

Gi(a,b)
i .

(e) Set L[i] := (b0, b1, b2, b3)

3. Output F := (R, L, ι), e and d := λn+l.

Fig. 4. The algorithm Sim0 for game H0.

Hs, we give the simulator knowledge of input x and circuit f , so he can
label each key Ki,β as active or inactive. We say that value Eι(KA,a +KB,b)
is active if and only if both KA,a and KB,b are active. We replace inactive
values with random values in step 2-(c) of algorithm Sims(1k, x, f) for gates
i = n + 1, ..., n + s; gates i = n + s + 1, ..., n + l are generated as in game
H0. We also replace the inactive output key by the active output key in this
step.

Game Hsim : This game is identical to the simulated experiment in
Definition 2. The garbled circuit and garbled input (F,X, d) are generated
by algorithm Sim(1k, f(x),Φtopo(f)), given in Fig. 6, without knowledge of x.

The difference between the advantage of adversary A in Hreal and his advan-
tage in H0 is bound by qH · 2−k as follows, where qH is the number of queries

772 C. Kempka et al.

Simulator Sims(1
k, x, f)

Input: Security parameter k, circuit input x, circuit f = (n, m, l, A, B, G)
computing a formula.

Output: Garbled circuit F , encoding e, decoding d.
Algorithm: 1. Initialize:

Same as Sim0.
2. Garbling the gates:

For i := n + 1 to n + s do (count i upwards):

(a) Set A := A(i) and B := B(i).
(b) Choose permute bit λi for output wire i uniformly at random.

Set output key choice bit l0i := λi ⊕ 0, l1i := λi ⊕ 1.
(c) Deriving the output keys:

– For all (a, b) ∈ {0, 1}2,
if KA,a, KB,b are active keys, compute
Y2la

A
+lb

B
:= Eι(KA,a + 2KB,b), if 2laA + lbB = 0 or

Y2la
A
+lb

B
:= Eι(KA,a + KB,b) if 2laA + lbB �= 0,

otherwise choose Y2la
A
+lb

B
∈ Fq uniformly at random.

– Choose output keys Ki,0, Ki,1 uniformly random.
– Let (a∗, b∗) ∈ {0, 1}2 be the values such that KA,a∗ and KB,b∗

are active keys. Then, for all (a, b) ∈ {0, 1}2, program random
oracle such that c2la

A
+lb

B
:= Ki,G(a∗,b∗) ⊕ Y2la

A
+lb

B
.

(d) Indicate choice bits:
For all (a, b) ∈ {0, 1}2, compute

b2la
A
+lb

B
:= H ′(KA,a||KB,b) ⊕ l

Gi(a,b)
i .

(e) Set L[i] := (b0, b1, b2, b3)

3. Garbling the gates:
For i := n + s + 1 to n + l do (count i upwards):
Same as Sim0.

4. Output F := (R, L, ι), e and d := λn+l.

Fig. 5. The algorithm Sims for game Hs.

that A makes to H. Since Eι is a bijective map and f = (f0, f1, f2, f3) is an
invertible linear map, the system of four linear equations

c2laA+lbB
= Ki,G(a,b) ⊕ Eι(f2laA+lbB

(KA,a,KB,b)), (a, b) ∈ {0, 1}2

is uniquely solvable with the input keys KA,0, KA,1, KB,0 and KB,1 as variables.
Therefore, it maps uniformly random output keys Ki,0,Ki,1 to uniformly random
input keys KA,0, KA,1, KB,0, KB,1 in Hreal. In H0, both the input keys KA,0,
KA,1, KB,0, KB,1 and the output keys Ki,0,Ki,1 are chosen uniformly at random.
However, the relation between the values c2laA+lbB

, Ki,G(a,b) and (KA,a,KB,b),
which is given by these four equations, is preserved for all (a, b) ∈ {0, 1}2 by
programming the random oracle H to output consistent values for c0, c1, c2 and
c3. So, all keys are uniformly random in both Hreal and H0, and the distributions
of the garbled circuits created in Hreal and H0 are indistinguishable to the

Garbling Scheme for Formulas with Constant Size of Garbled Gates 773

Simulator Sim(1k, f(x), Φtopo(f))

Input: Security parameter k, output value f(x), topology of circuit
Φtopo(f) = (n, m, l, A, B) of formula f .

Output: Garbled circuit F , garbled input X, decoding d.
Algorithm: 1. Initialize:

Choose a trapdoor permutation Eι : Fq → Fq with trapdoor tι.
Choose a key R for hash function H uniformly at random
Initialize empty arrays L[], X[] with |L| = l and |X| = n.
Set permute bit λn+l := 0
For i := 1 to n do:
(a) Choose Ki ∈ Fq uniformly at random.
(b) Choose li ∈ {0, 1} uniformly at random.
(c) Set X[i] := Ki||li.

2. Garbling the gates:
For i := n + 1 to n + l do (count i upwards):

(a) Set A := A(i) and B := B(i).
(b) If i = n + l, set li := f(x).

Otherwise, choose li ∈ {0, 1} uniformly at random.
(c) ’Deriving’ the output key of gate i:

– If 2lA + lB = 0 compute Y2lA+lB := Eι(KA + 2KB).
Otherwise, compute Y2lA+lB := Eι(KA + KB).
Choose Yx uniformly random, for x = 0, 1, 2, 3, x �= 2lA + lB .

– Choose Ki uniformly at random.
– Program random oracle such that

cx := Ki ⊕ Yx for all x ∈ {0, 1, 2, 3}.
(d) Indicate choice bits:

– Set b2lA+lB := H ′(KA||KB) ⊕ li.
– For each x ∈ {0, 1, 2, 3} \ {2lA + lB}, choose bx ∈ {0, 1} uni-

formly at random.
(e) Set L[i] := (b0, b1, b2, b3)

3. Output F := (R, L, ι), X and d := λn+l.

Fig. 6. The algorithm Sim to create the simulated garbled circuit.

adversary, except for the case where the adversary asks H(R, i||x) for some
x ∈ {0, 1, 2, 3} before the simulator garbles gate i, where he defines this value.
However, the hash key R is given to the adversary only after garbling the whole
circuit. Before that, A can guess R with probability 2−k in each query to H.
Thus, from the union bound, the probability that A makes “a bad query” to H
is bound by qH · 2−k.

The advantage of adversary A in distinguishing Hs and Hs+1 for s = 0, ..., l−
1 is bound by the advantage Advcorr

E,f0,f1,f2,f3,B(k) of the following adversary B of
the correlation robustness game as follows. Let A and B denote the input wires of
gate n+s+1. For simplicity, we assume that KA,0 and KB,1 are the active input
keys of gate n+ s+1; the three other cases are analogous. Remember that gates
are labeled after their output wires; since the first n wires are circuit input wires,

774 C. Kempka et al.

in Game Hs+1, Gate n + s + 1 is the next to be replaced by a “simulated” gate.
At the beginning of the correlation robustness game, the adversary B selects
KA,0 and KB,1 uniformly at random, and outputs K := KA,0 and L := KB,1 as
the target keys of the correlation robustness experiment. Then, B receives index
ι of E and challenge Z1, Z2, Z3 of the correlation robustness experiment.

To provide adversary A with a “challenge circuit”, adversary B simulates
gates n + 1 to n + s as in Step 2 of algorithm Sims(1k, x, f), while setting the
active keys of wire A and B to KA,0 and KB,1, respectively. Since they were
chosen uniformly at random, this does not contradict the construction in Game
Hs or Hs+1.

The adversary B then creates Gate n + s + 1 as follows:

1. Compute active value Y2l0A+l1B
:= Eι(f2l0A+l1B

(K,L)), and set the inactive
values to the random values from the challenge as follows: Y2l0A+(1−l1B) := Z1,
Y2(1−l0A)+l1B

:= Z2 and Y2(1−l0A)+(1−l1B) := Z3.
2. Choose Kn+s+1,0 and Kn+s+1,1 uniformly at random. Program random oracle

such that c2laA+lbB
:= Kn+s+1,G(a,b) ⊕ Y2laA+lbB

for all (a, b) ∈ {0, 1}2.

All remaining gates (Gate n + s + 2 to Gate n + l), if there are any, are created
as in algorithm Sims(1k, x, f). Adversary B gives the created garbled circuit to
A, and outputs whatever A outputs.

If Z1, Z2 and Z3 are correctly formed, i.e., Z1 = Eι(f2l0A+(1−l1B)(KA,0,KB,1)),
Z2 = Eι(f2(1−l0A)+l1B

(KA,1,KB,0)), and Z3 = Eι(f2(1−l0A)+(1−l1B)(KA,1,KB,1)),
the simulated garbled circuit is generated as in Hs. If Z1, Z2 and Z3 are uni-
formly random, c2l0A+l1B

is Kn+s+1,G(a,b) ⊕ Eι(f2l0A+l1B
(K,L)), and c2l0A+(1−l1B),

c2(1−l0A)+l1B
and c2(1−l0A)+(1−l1B) are uniformly random; thus, they are distributed

identically to those in Hs+1. Thus, Adversary B is successful in the correlation
robustness game whenever Adversary A is successful in distinguishing Hs and
Hs+1. Therefore, the advantage of adversary A in distinguishing Hs and Hs+1

is bound by advantage Advcorr
E,f0,f1,f2,f3,B(k) of the correlation robustness exper-

iment.
The distributions of the simulated garbled circuits in Hl and Hsim are indis-

tinguishable as follows. In Hsim, the simulator “loses knowledge” of input x,
i.e., he does not know which values are active, and therefore, which inputs
should result in the active key. He does not need this knowledge anymore,
since the inactive output keys have been replaced by the active ones in the
previous games. The bits bx for x = 0, 1, 2, 3 in Hsim are chosen uniformly
at random. Since H ′ is a random oracle, this is indistinguishable from setting
b2laA+lbB

:= H ′(KA,a||KB,b) ⊕ l
Gi(a,b)
i .

Thus, by summing up the differences between the games, we have
Advprv.sim

GC,Sim,Φ,A(k) ≤ l · Advcorr
E,f0,f1,f2,f3,A(k) + qH · 2−k. ��

5 Extensions

In this section, we generalize our garbling scheme to allow circuits with arbitrary
fan-out. Then we show how to combine our garbling scheme with the free-XOR

Garbling Scheme for Formulas with Constant Size of Garbled Gates 775

technique to further reduce communication cost. We also discuss the malicious
case.

5.1 Arbitrary Fan-Out

Our scheme can handle arbitrary fan-out with a slight modification, which comes
at the cost of going back to linear size of the garbled circuit in the worst case.
Note that if a circuit has more than one circuit output wire, the decoding function
needs to be adjusted in the obvious way. The reason our basic scheme can only be
used for formulas is that our garbling algorithm leaves no degree of freedom when
computing the input keys of a gate. This implies a conflict when a wire is the
input wire of two different gates i and j: W.l.o.g., consider the case of a shared
wire s := B(i) = A(j) and i < j. When garbling gate i, the garbler computes
corresponding input keys Ks,0 and Ks,1 for the shared wire s. However, when
garbling gate j, he obtains different input keys K ′

s,0 �= Ks,0 and K ′
s,1 �= Ks,1 for

the same wire. We can solve this conflict by providing two ciphertexts for this
wire by encrypting K ′

s,0 with key Ks,0, and K ′
s,1 with Ks,1. Then we can use Ks,0

and Ks,1 for gate i, and K ′
s,0 and K ′

s,1 for gate j. We sort the two ciphertexts
according to the permute bit λs of wire s. Since λs applies to both key pairs,
K ′

s,b and Ks,b have the same choice bit for b = 0, 1. This way, whenever a wire is
input for a second gate, the evaluator can compute the “second version” of his
obtained key by decrypting the corresponding ciphertext. Our garbled circuit
now has the size

4l + |R| + |ι| +
dmax∑

d=1

(2(d − 1) · k · ld),

where ld is the number of gates with fan-out d, and dmax is the maximal number
of output wires of a single gate.

In the case that a gate has two conflicting input wires, this gate might need
four ciphertexts, making our scheme seemingly inefficient. However, depending
on the number of circuit input and circuit output wires, we still have an average
of considerably less than four ciphertexts per gate. Consider a circuit with k
gates. According to the model we use, each gate has two input wires and one
output wire. So altogether we have 2k input wires, of which n are circuit input
wires (i.e., cannot origin from other gates), and k output wires, of which m are
circuit output wires (i.e., those m wires cannot induce a conflict). So we have
k−m wires which need to “go somewhere”, and 2k−n places where they can go.
Since the two ciphertexts are only needed for each additional connection of an
output wire, each wire can connect to one input slot “for free”. So in the worst
case, we end up with (2k−n)−(k−m) = k+m−n conflicts, meaning 2(k−n+m)
ciphertexts. In the case of m ≤ n, we have at most two ciphertexts per gate in
the worst case. If m > n, we might have more than two ciphertexts per gate
in the case of an unfortunate layout, but still less than four since m < k. So in
the case of arbitrary fan-out, whether or not our scheme provides an efficiency
gain compared to other optimizations like the half-gate or fleXOR constructions,
strongly depends on the circuit layout. As we can see in the following section,

776 C. Kempka et al.

our basic scheme is compatible to the free-XOR technique. This compatibility
translates to the case of arbitrary fan-out with similar conflict issues arising from
conflicting wire offsets as well as conflicting keys. However, in some cases where
XOR gates are involved in a conflict, only one ciphertext is needed to solve it.
This is elaborated in more detail in Sect. 5.2.

5.2 Incorporating Free-XOR

Going back to the world of formulas, our garbling scheme is compatible with
a slightly adapted version of the free-XOR technique introduced in [22]. The
free-XOR technique allows us to garble XOR gates “for free”, by choosing each
key pair with a constant offset Δ, such that output keys can be obtained by
XORing corresponding input keys. To be compatible with our garbling scheme,
XOR gates, too, have to be garbled backwards, but induce no communication
cost.

For each gate i, let Ki,0 and Ki,1 be the already given output keys for gate i.
(If i is a circuit output wire, choose the two keys at random.) If i is a non-XOR
gate, the garbler does exactly what he does in our basic scheme. If i is an XOR
gate, the garbler sets Δ := Ki,0 ⊕ Ki,1. Then for the input wires A(i) and B(i),
the garbler chooses random keys KA(i),0 and KB(i),0 such that KA(i),0⊕KB(i),0 =
Ki,0 and sets KA(i),1 := KA(i),0 ⊕ Δ and KB(i),1 := KB(i),0 ⊕ Δ. The permute
bits λA(i) and λB(i) of the input wires are set such that λA(i) ⊕ λB(i) = λi. This
way, the evaluator can obtain the choice bit of the output key by applying the
XOR function to the choice bits of the input keys. Using this technique, our
XOR gates are free: they induce no communication cost. This works as long as
the circuit is cycle-free, which is required by the property A(i) < B(i) < i for
each gate.

When incorporating free-XOR, we need our trapdoor permutation Eι to addi-
tionally achieve a circular security property similar to the one introduced by Choi
et al. [11]. Our incorporation of free-XOR seems similar to the combination of
the fleXOR technique with two-row-reduction in [21]. However, we have differ-
ent dependencies: In the fleXOR technique, the offset Δ is determined by the
input keys of a gate, such that if there is a sub-tree in the circuit consisting only
of XOR gates, there might be different offsets Δi within this sub-tree. In our
scheme, Δ is determined by the output key, so there is only one Δ within each
sub-tree. Since input keys depend on output keys, we can define the input keys
of an XOR sub-tree to have the same offset Δ.

Free-XOR and Arbitrary Fan-Out. Incorporating the free-XOR technique
allows us some freedom in choosing the input keys of XOR gates. This can reduce
the number of ciphertexts needed when dealing with conflicting wires in some
cases. Consider gates i and j with shared input wire B(i) = A(j) (other shared
wires are analogous). There are essentially three types of conflicting wires:

– Case 1: The keys of the input wires of both gates i and j cannot be chosen
freely:

Garbling Scheme for Formulas with Constant Size of Garbled Gates 777

This occurs for example when one of the gates has more than one conflicting
input wire, or when both i and j are non-XOR gates. In this case, we solve the
conflict exactly as described in Sect. 5.1, by encrypting the keys determined by
garbling gate j with those determined for gate i. Solving this conflict induces
a communication cost of two ciphertexts, as before.

– Case 2: i and j are both XOR gates with no additional conflict:
The problem here is that for the input wires of i and j we might have to use
different values Δi and Δj . In this case, let λB be the permute bit of wire B(i)
(i.e., KB(i),λB

is the key with choice bit zero) and choose KB(i),λB
= KA(j),λB

at random (the other input wires of i and j then have to be chosen accord-
ingly such that the correct output key is obtained). Then set KB(i),1−λB

:=
KB(i),λB

⊕ Δi and KA(j),1−λB
:= KA(j),λB

⊕ Δj , and include the ciphertext
EncKB(i),1−λB

(KA(j),1−λB
) in the garbled circuit. No additional ciphertext is

needed, so this conflict can be solved with only one ciphertext.
– Case 3: i is an non-XOR gate or an XOR gate with additional conflicts, and

j is an XOR gate with no additional conflict:
This can be solved similar to Case 2: let λB be the permute bit of wire B(i).
Set KA(j),λB

:= KB(i),λB
. Set KA(j),1−λB

:= KA(j),λB
⊕ Δj and include the

ciphertext EncKB(i),1−λB
(KA(j),1−λB

) in the garbled circuit. Like Case 2, this
conflict can be solved with only one ciphertext.

As we can see, if an XOR gate is involved in the conflict, and this is the
only conflict of this XOR gate, we need to include only one ciphertext for the
conflicting wire.

5.3 Security Against Malicious Adversaries

Our scheme extents to the malicious case by using the cut-and-choose-based
techniques described by Lindell and Pinkas [24].

One additional issue we need to address is that our scheme requires us to
duplicate input wires if the same input variable is used multiple times. In the
malicious case, we need to prove that consistent input keys are sent for each wire
representing the same variable.

The case of a malicious evaluator is simply handled by sending all input keys
for one variable in a single OT. The case of a malicious garbler can be solved
by adapting the consistency check of the garbler’s input used by Lindell and
Pinkas (see Fig. 2 in [24]) in a straightforward manner, by grouping the input
wires representing the same variable.

6 Instantiation with PRIV-secure Deterministic
Encryption

In this section, we show that we can instantiate our trapdoor one-way permu-
tation Eι with a deterministic encryption function which achieves the notion of
PRIV-security, introduced by Bellare et al. in [6]. Though not limited to deter-
ministic encryption, PRIV-security has been introduced as the strongest security

778 C. Kempka et al.

notion one can achieve for deterministic encryption. It was proven equivalent to
various other notions of deterministic encryption by Bellare et al. in [7].

In this section, we show that PRIV-security implies correlation robustness
with respect to addition, as needed in our garbling scheme. At the end of this
section, we discuss a concrete instantiation.

We briefly recall the PRIV-notion here. Though we use the term PRIV, we
actually use one of its equivalents called IND in [7]. Let E(pk,m) denote a
deterministic encryption function with key space K(1k), domain space Dom(E)
and image space Im(E). Let x ←R S denote the assignment of a random element
in set S to variable x. As a shortcut, we write E(pk,x) for componentwise
encryption of a vector x . PRIV-security is defined via the experiment ExpPRIV

A
(see Fig. 7). It uses an adversary algorithm A = (At, Am, Ag), which is split into
three adversaries At, Am and Ag. The first one, At, chooses a string st which is
readable (but not writable) by the other two adversaries. It does not exist in the
original PRIV-definition of [6], and only used to show equivalence in [7], where
st is then required to be the empty string in the actual security definition, while
the most fit st is assumed hard-wired into the other two adversaries Am and
Ag. We use At and st for our reduction to correlation robustness in a similar
way. The adversary Am chooses vectors x 0 and x 1 of plaintexts knowing choice
bit b̃, but without knowledge of the public encryption key pk. The vector x b̃ is
then encrypted componentwise. The third adversary, Ag, then tries to guess b̃,
getting the public key pk, the ciphertext E(pk,x b̃) as well as st as input.

Experiment ExpPRIV
A (k)

Input: Security parameter k
st ← At(1

k)
b̃ ←R {0, 1}
(x0,x1) ← Am(1k, b̃, st)
(pk, sk) ←R K(1k)
c := E(pk,xb̃)
b′ ← Ag(1k, pk, c, st)
Return(b′ = b̃)

Fig. 7. The experiment ExpPRIV .

Definition 5 (PRIV-security). An encryption function E is PRIV-secure, if
the advantage AdvPRIVA (k) := Pr[ExpPRIVA (k) = 1] − 1

2 is negligible in k for all
security parameters k and all adversaries A = (At, Am, Ag), under the following
requirements:

1. |x0| = |x1|
2. x0[i] = x0[j] iff x1[i] = x1[j]
3. High min-entropy: Pr[xβ [i] = x : x ← Am(1k, b̃, st)] is negligible in k for all

β ∈ {0, 1}, all 1 ≤ i ≤ |x|, all x ∈ Dom(E), and all st ∈ {0, 1}∗.

Garbling Scheme for Formulas with Constant Size of Garbled Gates 779

4. st is the empty string.

The first requirement prevents the adversary from trivially distinguishing
the two ciphertexts by their length, while the second requirement addresses the
fact that a deterministic encryption maps equal plaintexts to equal ciphertexts,
and prevents the adversary from distinguishing ciphertexts using their equality
pattern.

PRIV-security is sufficient to achieve our notion of correlation robustness
with respect to the linear function we use in our garbling scheme. Therefore,
we can instantiate our trapdoor permutation with a PRIV-secure deterministic
encryption function. We prove this with the following theorem:

Theorem 2 (PRIV-security implies generalized correlation robust-
ness). Let E be a PRIV-secure deterministic encryption function with key space
K = PK × SK, plaintext space P and ciphertext space C. Let f = (f0, f1, f2, f3)
be an invertible linear function, consisting of the four functions f0, f1, f2, f3 :
Dom(E) → Dom(E).

Then the trapdoor permutation Eι : P → C; m 	→ E(ι,m) is correlation
robust with respect to (f0, f1, f2, f3) for all ι ∈ PK.

Proof. We show that for each Acorr who breaks correlation robustness with
non-negligible advantage p, there exists a PRIV-Adversary A who breaks PRIV-
security with advantage 1

2p.
We first construct an adversary with non-empty state st. Let us consider an

adversary Acorr, who can break correlation robustness of Eι with non-negligible
advantage p. The adversary A = (At, Am, Ag) uses Acorr to break PRIV-security
as follows: First, adversary At asks Acorr to output a tuple (K,L), and sets
st := (K,L). Then, Am chooses K ′, L′, R1, R2 and R3 uniformly at random.
In the correlation robustness experiment, there are four ways for the challenger
to pick a, b, c out of {0, 1, 2, 3} with a < b < c. Adversary Am chooses such
(a, b, c) uniformly at random, and sets x0 := (fa(K,L′), fb(K ′, L), fc(K ′, L′)).
He sets x1 := (R1, R2, R3). Since K ′ and L′ are chosen uniformly at random,
the plaintexts chosen by Am all have negligible probability of occurring, and
therefore the desired min-entropy. The plaintext vector elements K +L′, K ′ +L
and K ′ + L′ of x 0 are all mutually different with overwhelming probability, so
x 0 and x 1 have the same equality pattern.

Ag then obtains a public key pk and a ciphertext c = (c1, c2, c3).
If b̃ = 0, c has the form of a challenge in Expcorr

E,f0,f1,f2,f3,A(k) if β = 0 in this
experiment, while in the case b̃ = 1, c has the form of a challenge for β = 1.
Therefore, Ag can feed the adversary Acorr with an appropriate challenge by
handing him (pk, c). Adversary Ag then outputs whatever Acorr outputs.

Now we need to modify A such that st is the empty string. Without loss
of generality, we can divide the random coins of Acorr into (r1, r2), such that
r1 is the randomness used to choose (K,L). Then for each choice of r1, there
is an adversary Acorr

r1
which has r1 hard-wired and always chooses a specific

(Kr1 , Lr1). From an average argument, if Acorr breaks correlation-robustness

780 C. Kempka et al.

with advantage p, then there is random coin rp for which the adversary Acorr
rp

with hard-wired rp breaks correlation-robustness with advantage p.
Consider the PRIV-Adversary Arp = (Arp

t , A
rp
m , A

rp
g) which has his random

coins hard-wired, such that (1) At always chooses st to be the empty string,
(2) Am always chooses K = Krp

and L = Lrp
, randomly chooses a, b, c ∈

{1, 2, 3, 4} with a < b < c, and sets x0 := (fa(K,L′), fb(K ′, L), fc(K ′, L′)), and
(3) Adversary A

rp
g internally executes Acorr

rp
and outputs whatever Acorr

rp
outputs.

Since A
rp
m has K and L hard wired, A

rp
g is the only adversary who communicates

with Acorr
rp

.
If Acorr

rp
breaks correlation robustness with advantage p, then Arp breaks

PRIV-security with advantage at least 1
4p. ��

We can instantiate our correlation robust trapdoor permutation E :
{0, 1}k → {0, 1}k with a PRIV-secure deterministic encryption scheme. In [6],
Bellare et al. introduce a PRIV-secure length-preserving scheme RSA-DOAEP,
which works on bitstrings. This scheme can be used to instantiate our correlation
robust trapdoor permutation.

Acknowledgements. We thank the anonymous reviewers for helpful comments.

References

1. Shelat, A., Shen, C.: Two-output secure computation with malicious adversaries.
In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 386–405.
Springer, Heidelberg (2011)

2. Applebaum, B.: Garbling XOR gates “for free” in the standard model. In: Sahai,
A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 162–181. Springer, Heidelberg (2013)

3. Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography in NC0. FOCS 2004,
166–175 (2004)

4. Applebaum, B., Ishai, Y., Kushilevitz, E.: Computationally private randomizing
polynomials and their applications. Comput. Complex. 15(2), 115–162 (2006)

5. Applebaum, B., Ishai, Y., Kushilevitz, E., Waters, B.: Encoding functions with
constant online rate or how to compress garbled circuits keys. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 166–184. Springer,
Heidelberg (2013)

6. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable
encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535–552.
Springer, Heidelberg (2007)

7. Bellare, M., Fischlin, M. O’Neill, A., Ristenpart, T.: Deterministic encryption:
definitional equivalences and constructions without random oracles. Cryptology
ePrint Archive, Report 2008/267 (2008). http://eprint.iacr.org/

8. Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. Cryptology
ePrint Archive, Report 2012/265 (2012). http://eprint.iacr.org/

9. Boneh, D., Gentry, C., Gorbunov, S., Halevi, S., Nikolaenko, V., Segev, G., Vaikun-
tanathan, V., Vinayagamurthy, D.: Fully key-homomorphic encryption, arithmetic
circuit ABE and compact garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.)
EUROCRYPT 2014. LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg (2014)

http://eprint.iacr.org/
http://eprint.iacr.org/

Garbling Scheme for Formulas with Constant Size of Garbled Gates 781

10. Brandão, L.T.A.N.: Secure two-party computation with reusable bit-commitments,
via a cut-and-choose with forge-and-lose technique. In: Sako, K., Sarkar, P. (eds.)
ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 441–463. Springer, Heidelberg
(2013)

11. Choi, S.G., Katz, J., Kumaresan, R., Zhou, H.-S.: On the security of the “Free-
XOR” technique. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 39–53.
Springer, Heidelberg (2012)

12. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a
completeness theorem for protocols with honest majority. In: STOC, pp. 218–229
(1987)

13. Hemenway, B., Lu, S., Ostrovsky, R.: Correlated product security from any one-
way function. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS,
vol. 7293, pp. 558–575. Springer, Heidelberg (2012)

14. Huang, Y., Katz, J., Evans, D.: Efficient secure two-party computation using sym-
metric cut-and-choose. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II.
LNCS, vol. 8043, pp. 18–35. Springer, Heidelberg (2013)

15. Huang, Y., Katz, J., Kolesnikov, V., Kumaresan, R., Malozemoff, A.J.: Amortizing
garbled circuits. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS,
vol. 8617, pp. 458–475. Springer, Heidelberg (2014)

16. Ishai, Y., Kushilevitz, E.: Randomizing polynomials: a new representation with
applications to round-efficient secure computation. In: FOCS, pp. 294–304 (2000)

17. Ishai, Y., Kushilevitz, E.: Perfect constant-round secure computation via per-
fect randomizing polynomials. In: Widmayer, P., Triguero, F., Morales, R., Hen-
nessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, p. 244.
Springer, Heidelberg (2002)

18. Kilian, J.: Founding cryptography on oblivious transfer. In: STOC, pp. 20–31
(1988)

19. Kolesnikov, V.: Gate evaluation secret sharing and secure one-round two-party
computation. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 136–155.
Springer, Heidelberg (2005)

20. Kolesnikov, V., Kumaresan, R.: Improved secure two-party computation via
information-theoretic garbled circuits. In: Visconti, I., De Prisco, R. (eds.) SCN
2012. LNCS, vol. 7485, pp. 205–221. Springer, Heidelberg (2012)

21. Kolesnikov, V., Mohassel, P., Rosulek, M.: FleXOR: flexible garbling for XOR gates
that beats free-XOR. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II.
LNCS, vol. 8617, pp. 440–457. Springer, Heidelberg (2014)

22. Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates and
applications. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126,
pp. 486–498. Springer, Heidelberg (2008)

23. Lindell, Y.: Fast cut-and-choose based protocols for malicious and covert adver-
saries. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043,
pp. 1–17. Springer, Heidelberg (2013)

24. Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation
in the presence of malicious adversaries. In: Naor, M. (ed.) EUROCRYPT 2007.
LNCS, vol. 4515, pp. 52–78. Springer, Heidelberg (2007)

25. Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party compu-
tation. J. Cryptology 22(2), 161–188 (2009)

26. Lindell, Y., Pinkas, B.: Secure two-party computation via cut-and-choose oblivious
transfer. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 329–346. Springer,
Heidelberg (2011)

782 C. Kempka et al.

27. Lindell, Y., Riva, B.: Cut-and-choose Yao-based secure computation in the
online/offline and batch settings. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014, Part II. LNCS, vol. 8617, pp. 476–494. Springer, Heidelberg (2014)

28. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay - secure two-party computa-
tion system. In: USENIX Security Symposium, pp. 287–302 (2004)

29. Naor, M., Pinkas, B., Sumner, R.: Privacy preserving auctions and mechanism
design. In: EC, pp. 129–139 (1999)

30. Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure two-party compu-
tation is practical. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
250–267. Springer, Heidelberg (2009)

31. Rosen, A., Segev, G.: Chosen-ciphertext security via correlated products. In: Rein-
gold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 419–436. Springer, Heidelberg
(2009)

32. Sander, T., Young, A.L., Yung, M.: Non-interactive cryptocomputing for NC1. In:
FOCS, pp. 554–567 (1999)

33. Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: FOCS,
pp. 162–167 (1986)

34. Zahur, S., Rosulek, M., Evans, D.: Two halves make a whole. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 220–250. Springer,
Heidelberg (2015)

Card-Based Cryptographic Protocols
Using a Minimal Number of Cards

Alexander Koch(B), Stefan Walzer, and Kevin Härtel

Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
alexander.koch@kit.edu, {stefan.walzer,kevin.haertel}@student.kit.edu

Abstract. Secure multiparty computation can be done with a deck of
playing cards. For example, den Boer (EUROCRYPT ’89) devised his
famous “five-card trick”, which is a secure two-party AND protocol using
five cards. However, the output of the protocol is revealed in the process
and it is therefore not suitable for general circuits with hidden intermedi-
ate results. To overcome this limitation, protocols in committed format,
i.e., with concealed output, have been introduced, among them the six-
card AND protocol of (Mizuki and Sone, FAW 2009). In their paper, the
authors ask whether six cards are minimal for committed format AND
protocols.

We give a comprehensive answer to this problem: there is a four-card
AND protocol with a runtime that is finite in expectation (i.e., a Las
Vegas protocol), but no protocol with finite runtime. Moreover, we show
that five cards are sufficient for finite runtime. In other words, improving
on (Mizuki, Kumamoto and Sone, ASIACRYPT 2012) “The Five-Card
Trick can be done with four cards”, our results can be stated as “The
Five-Card Trick can be done in committed format” and furthermore it
“can be done with four cards in Las Vegas committed format”.

By devising a Las Vegas protocol for any k-ary boolean function
using 2k cards, we address the open question posed by (Nishida et al.,
TAMC 2015) on whether 2k + 6 cards are necessary for computing any
k-ary boolean function. For this we use the shuffle abstraction as intro-
duced in the computational model of card-based protocols in (Mizuki and
Shizuya, Int. J. Inf. Secur., 2014). We augment this result by a discussion
on implementing such general shuffle operations.

Keywords: Card-based protocols · Committed format · Boolean AND ·
Secure computation · Cryptography without computers

1 Introduction

The most well known card-based cryptographic protocol uses five cards showing
two different types of symbols, ♥ and ♣, which are otherwise assumed to be
physically indistinguishable. Let us quickly describe the elegant “five-card trick”
of den Boer [B89] for computing a logical AND operation on the bits of two
players. For this, the players input their bits as a commitment, which is two
c© International Association for Cryptologic Research 2015
T. Iwata and J.H. Cheon (Eds.): ASIACRYPT 2015, Part I, LNCS 9452, pp. 783–807, 2015.
DOI: 10.1007/978-3-662-48797-6 32

784 A. Koch et al.

face-down cards either as ♥♣ or ♣♥, encoding 1 or 0, respectively, with a
separating ♣ card in between, so that the possible input sequences look like
this:

♥ ♣
︸︷︷︸
a=1

♣ ♥ ♣
︸︷︷︸
b=1

/ ♥ ♣
︸︷︷︸
a=1

♣ ♣ ♥
︸︷︷︸
b=0

/ ♣ ♥
︸︷︷︸
a=0

♣ ♥ ♣
︸︷︷︸
b=1

/ ♣ ♥
︸︷︷︸
a=0

♣ ♣ ♥
︸︷︷︸
b=0

Now, the second player inverts his bit by swapping his cards, leading to the
following situation:

♥ ♣ ♣ ♣ ♥
︸ ︷︷ ︸

a∧b=1

/ ♥ ♣ ♣ ♥ ♣
︸ ︷︷ ︸

a∧b=0

/ ♣ ♥ ♣ ♣ ♥
︸ ︷︷ ︸

a∧b=0

/ ♣ ♥ ♣ ♥ ♣
︸ ︷︷ ︸

a∧b=0

Observe that only in the case of a = b = 1, the three ♣s are consecutive.
The following cyclic arrangement of cards as seen from below a “glass table”
makes it obvious that this property is preserved under cyclic shifts of the cards:

♣

♣

♥♥

♣ /

♣

♥

♣♥

♣ /

♣
♣

♥♣

♥ /

♣

♥

♣♣

♥

By applying a cyclic shift by a random offset, the correspondence of the positions
to the players is obscured. This “shuffling” of the cards can be done by the players
taking turns in applying a cyclic shift of a random offset, without letting the
other players observe the permutation that has been applied to the cards. By
revealing all cards afterwards, the players can check whether the three ♣s are
consecutive and deduce that the output is 1 if this is the case, and 0 otherwise.

This example illustrates that a deck of cards can be used to securely eval-
uate functions, without the players giving away anything about their inputs
that cannot be deduced from the result of the execution of such a card-based
cryptographic protocol. The utility of these protocols is evident from their use
in classrooms and lectures to illustrate secure multiparty computation to non-
experts to the field of cryptography, or in an introductory course. Moreover,
the possibility of performing these protocols without the use of computers is an
interesting distinctive feature.

In their ASIACRYPT 2012 paper, Mizuki, Kumamoto, and Sone [MKS12]
were able to reduce the number of cards to the best possible of 4, which is already
necessary to encode the inputs. However, both protocols have an important
caveat: They unavoidably reveal the final result during the computation. This
makes them inadequate for use in larger protocols, for instance when evaluating
complex logical circuits.

Therefore, starting with [NR98,S01,CK93], several researchers came up with
so-called committed format protocols, which output a commitment encoding
the result by two cards, as described above. This allows for using the output
commitment of the protocol as an input to another protocol and for having a
fine-grained control on who learns what about the result.

Card-Based Cryptographic Protocols Using a Minimal Number of Cards 785

So far, the protocols using the least number of cards for computing AND in
committed format are

– the six-card protocol of Mizuki and Sone [MS09], which has a deterministic
runtime (cf. Fig. 2), and

– the five-card Las Vegas protocol of [CHL13], as described in Example 1. Note
that this protocol may end in a configuration which needs restarting with
probability 1/2 and utilizes a rather complex shuffle operation. (These opera-
tions will be discussed in Sect. 8).

This leads to the natural question on the minimality of cards needed for a secure
committed format AND, which has been posed in several places in the literature,
see, e.g., [MS09,MS14a,MKS12]. Moreover in [CHL13], the authors ask whether
there is a “deterministic” five-card variant of their protocol. In this paper, we
answer these questions comprehensively.

To cope with these questions, [MS14a] defined a formal computational model
stating the possible operations that a card-based protocol can make. To allow
for strong impossibility results, the authors give a rather wide palette of possible
operations that can be applied to the cards, e.g., shuffling with an arbitrary prob-
ability distribution on the set of permutations. Our paper shows that this yields
rather strong possibility results by utilizing “non-closed” shuffles, as defined in
Sect. 8.

Note that all protocols are in the honest-but-curious setting (although some
analysis of malicious behavior has been done in [MS14b]), i.e., the players execute
the protocol according to its description, but gather any information they can
possibly obtain.

Contribution. In this paper, we

– introduce a four-card Las Vegas protocol for the AND of two players’ bits,
– give a five-card variant, which has an a priori bound on the number of execu-

tion steps, i.e., a finite-runtime protocol,
– show that this is optimal, as four-card finite-runtime protocols computing

AND in committed format are impossible,
– define a method of enriching the description of a protocol, that makes correct-

ness and security transparent and gives a good understanding of how these
protocols work, which can be used as a leverage to devise impossibility results.
We therefore believe that this method is of general interest for research in
card-based cryptography,

– state a general 2k-card protocol for any k-ary boolean function, which can be
seen as a touchstone for the practicability of the underlying computational
model,

– discuss the computational model of [MS14a] briefly.

For comparison with other protocols, we refer the reader to Tables 1 and 2.
For the former, we have three key parameters in describing the properties of
protocols: whether it is committed format, whether it is a finite-runtime or a

786 A. Koch et al.

Table 1. Minimal number of cards required by protocols computing AND of two bits,
subject to the requirements specified in the first three columns.

Format Runtime Shuffles #cards Reference

Committed Exp. finite Non-uniform Closed 4 Theorem 1

Committed Exp. finite Uniform Non-closed 4 Theorem 4 (k=2)

Non-committed Finite Uniform Closed 4 [MKS12]

Committed Finite Non-uniform Non-closed 5 Theorems 2 and 3

Committed Finite Uniform Closed ≤ 6 [MS09]

Table 2. Comparison of protocols for k-ary boolean functions.

#cards Success probability Shuffles #steps Reference

2k 2−k Uniform Non-closed Constant Theorem 4

2k + 6 1 Uniform Closed Large [N+15]

Las Vegas algorithm, and whether “non-closed” or “non-uniform” shuffles are
used in the protocols, for which it is not yet apparent how they can be run in
practice, cf. Section 8 for a discussion. Table 1 states the minimal number of cards
for protocols with the given parameters and gives the corresponding references.

In Table 2 we compare our 2k-card protocol of Sect. 7 with the best protocol
for general boolean functions in the literature, with respect to the number of
cards, namely [N+15]. While our protocol reduces the number of cards by six,
it is a Las Vegas protocol with a substantial probability to end in a state which
requires to restart the protocol. Moreover, it uses the non-closed shuffles men-
tioned above. Even though the expected number of restarts until a successful
run is of order O(2k), each run of our protocol requires only a constant number
of steps. This result can also be interpreted as a touchstone of the plausibility
of the computational model for card-based protocols.

Outline. In Sect. 2 we introduce the basic computational model of card-based
protocols and a strong information-theoretic security definition. We describe a
method for the analysis of protocols in Sect. 3. We give a description of our
four- and five-card protocols in Sects. 4 and 5, respectively. In the subsequent
Sect. 6 we show that five cards are necessary for finite-runtime protocols. In
Sect. 7 we state a Las Vegas protocol for general boolean functions using a strong
shuffle operation that the computational model allows. We discuss these shuffle
operations in Sect. 8. Finally, we conclude the paper in Sect. 9.

Notation. In the paper we use the following notation.

– Cycle Decomposition. For n ∈ N and numbers a1, a2, . . . , ak ≤ n we write
π = (a1 a2 . . . ak) for the permutation π ∈ Sn that maps ai to ai+1 for

Card-Based Cryptographic Protocols Using a Minimal Number of Cards 787

1 ≤ i ≤ k − 1 and ak to a1 and all other x ≤ n to themselves. We call this a
cycle. Cycles are maps, so they can be composed with ◦, which we will omit
in the following, e.g. (1 3 5)(2 4) maps 1 �→ 3, 3 �→ 5, 5 �→ 1, 2 �→ 4 and 4 �→ 2.

– Drawing from a Probability Distribution. If F is a probability distribution on
a set X, we write x ← F to indicate that x ∈ X should be randomly chosen
from X according to F .

– Sequence Indices. Given a sequence x = (α1, . . . , αl) and an index i with
1 ≤ i ≤ l, we denote by x[i], the ith entry of the sequence, namely αi.

2 Machine Model and Security of Card-Based Protocols

Mizuki and Shizuya [MS14a] came up with an elegant framework to model a
computation with card-based cryptographic protocols. We adopt their setting to
our needs and quickly review the important definitions in the following.

A deck D is a finite multiset of symbols, its elements are cards. We will restrict
ourselves to the case where D contains two types of symbols, depicted by ♥ and
♣. For a symbol c ∈ D, c

? denotes a face-up card and ?
c a face-down card with

symbol c, respectively. Here, ‘?’ is a special backside symbol, not contained in
D. For a face-up or face-down card α, top (α) and atom (α) denote the symbol
in the “numerator” and the symbol distinct from ‘?’, respectively.

Cards are lying on the table in a sequence. A sequence is obtained
by permuting D and choosing face-up or face-down for each card. For
example, (?

♣ , ♣
? , ?

♥ , ?
♥ , ?

♣) is a sequence of D = [♣,♣,♣,♥,♥]. We extend
top (·) and atom (·) from single cards to sequences of cards in the canoni-
cal way. For a sequence Γ , top (Γ) is the visible sequence of Γ . For example,
top (?

♣ , ♣
? , ?

♥ , ?
♥ , ?

♣) = (?,♣, ?, ?, ?). We denote the set of all visible sequences of
D by VisD, or Vis for short. Furthermore, we define the set of atomic sequences
AtSeqD, or AtSeq for short, as the set of all permutations of D.

A protocol P is a quadruple (D, U,Q,A), where D is a deck, U is a set of
input sequences, Q is a set of states with two distinguished states q0 and qf, being
the initial and the final state. Moreover, we have a (partial) action function

A : (Q \ {qf}) × Vis → Q × Action,

depending only on the current state and visible sequence, specifying the next
state and an operation on the sequence from Action that contains the following
actions:

– (perm, π) for a permutation π ∈ S|D| from the symmetric group S|D| on ele-
ments {1, . . . , |D|}. This transforms a sequence Γ = (α1, . . . , α|D|) into

permπ(Γ) := (απ−1(1), . . . , απ−1(|D|)),

i.e., it permutes the cards according to π.

788 A. Koch et al.

– (turn, T) for T ⊆ {1, . . . , |D|}. This transforms a sequence Γ = (α1, . . . , α|D|)
into

turnT (Γ) := (β1, . . . , β|D|), where βi =

{
swap(αi), if i ∈ T,

αi, otherwise,

i.e., it turns over all cards from a turn set T . Here swap(c
?) := ?

c and swap(?c) :=
c
? , for c ∈ D.

– (shuffle,Π,F) for a probability distribution F on S|D| with support Π. This
transforms a sequence Γ into the random sequence

shuffleΠ,F (Γ) := permπ(Γ), for π ← F ,

i.e., π ∈ Π is drawn according to F and then applied to Γ . Note that the
players do not learn the chosen permutation when executing the protocol
(unless they can derive it from F and the visible sequence after the operation).
If F is the uniform distribution on Π, we may omit it and write (shuffle,Π).

– (rflip, Φ,G) for a probability distribution G on 2{1,...,|D|} with support Φ. This
transforms a sequence Γ into

rflipΦ,G(Γ) := turnT (Γ), for T ← G,

i.e., T ⊆ {1, . . . , |D|} is drawn according to G and then the corresponding
cards of Γ are turned.

– (restart). This transforms a sequence into the start sequence. This special
operation requires that the first component of A’s output, i.e., the next state,
is q0. This allows for Las Vegas protocols that “fail” and start over with
a certain probability. Protocols with a (deterministic) finite runtime do not
need this operation.

– (result, p1, . . . , pl) for a list of positions p1, . . . , pl ∈ {1, . . . , |D|}. This special
operation occurs if and only if the first component of A’s output is qf. This
halts the protocol and specifies that (αp1 , . . . , αpl

) is the output, where Γ =
(α1, . . . , α|D|) is the current sequence.

A tuple (Γ0, Γ1, . . . , Γt) of sequences such that Γ0 ∈ U and Γi+1 arises from Γi

by an operation as specified by the action function in a protocol run is a sequence
trace; in that case (top (Γ0), top (Γ1), . . . , top (Γt)) is a visible sequence trace.1

A protocol terminates when entering the final state qf. A protocol is called
finite-runtime2 if there is a fixed bound on the number of steps, and in contrast
Las Vegas, if it terminates almost surely (i.e., with probability 1) and in a number
of steps that is only expectedly finite.

Next we describe a canonical form for protocols computing boolean functions.
For this we interpret two cards with distinct symbols as 1, if their symbols are
arranged ♥♣, and 0, if they are arranged as ♣♥.
1 Note that traces in our sense also capture prefixes of complete protocol runs.
2 We avoid the term “deterministic” here, as, for their security, card-based protocols

use randomness as an intrinsic property, albeit not necessarily as a speedup of the
protocol.

Card-Based Cryptographic Protocols Using a Minimal Number of Cards 789

Definition 1. Let f : {0, 1}k → {0, 1} be a boolean function. Then we say a
protocol P = (D, U,Q,A) computes f , if the following holds:

– the deck D contains at least k cards of each symbol,
– there is a one-to-one correspondence between inputs and input sequences,

with the convention that for b ∈ {0, 1}k we have that U contains Γ b =
(α1, . . . , α|D|), where

(α2i−1, α2i) =

{
(?

♥ , ?
♣), if b[i] = 1,

(?
♣ , ?

♥), if b[i] = 0,

for 1 ≤ i ≤ k. The remaining |D| − 2k “helping” cards are arranged in some
canonical way (their arrangement does not depend on b). In this paper we
assume that the helping ♣s are to the left of the helping ♥s.

– it terminates almost surely,
– for an execution starting with Γ b for b ∈ {0, 1}k the protocol ends with the

action (result, p1, p2), such that

atom (βp1 , βp2) =

{
(♥,♣), if f(b) = 1,
(♣,♥), otherwise,

where Γ = (β1, . . . , β|D|) is the final sequence.

Example 1. Let us describe, as an example, the Las Vegas five-card AND proto-
col of Hawthorne, and Lee [CHL13]. Here, the deck is D = [♥,♥,♣,♣,♣] and the
set of inputs is given by U = {Γ 11, Γ 10, Γ 01, Γ 00}, where Γ 11 = (?

♥ , ?
♣ , ?

♥ , ?
♣ , ?

♣),
Γ 10 = (?

♥ , ?
♣ , ?

♣ , ?
♥ , ?

♣), Γ 01 = (?
♣ , ?

♥ , ?
♥ , ?

♣ , ?
♣), and Γ 00 = (?

♣ , ?
♥ , ?

♣ , ?
♥ , ?

♣). The
protocol P = (D, U, {q0, q1, q2, q3, qf}, A) is then described by A as follows:

1. A(q0, v) = (q1, (perm, (2 3 4 5))), i.e., insert the helping card at position 2.3

2. A(q1, v) = (q2, (shuffle,Π)), where Π = {id, (1 4 2 5 3)}.
3. A(q2, v) = (q3, (turn, {1})), i.e., turn the first card.

4. A(q3, v) =

{
(qf, (result, 2, 3)), if v[1] = ♣,

(q0, (restart)), otherwise.

Here, v denotes the current visible sequence in each step. Note that there is no
obvious way to implement the shuffle in step 2 efficiently, as it is non-closed. See
Sect. 8 for discussion.

Definition 2 (secure, committed format). Let P = (D, U,Q,A) be a pro-
tocol. Let Γ0 be a random variable with values in the set of input sequences U
and a distribution M on U . Let V be a random variable for the visible sequence
trace of the protocol execution.

P is secure or private if Γ0 and V are stochastically independent.
3 Note that this step is only needed because our input convention from Definition 1

differs from the input convention of [CHL13].

790 A. Koch et al.

Moreover, let R be a random variable that encodes the output of the protocol.
Then P is said to be in committed format, if atom (R) and V are stochastically
independent. (In particular, this implies that an index occurring in the result
action points to a face-down card, unless this part of the output is constant.)

From this definition it is apparent that if there is a functional dependency
between the inputs and the output, then security implies committed format.
Note that it is stronger than other security definitions in the literature that were
defined to also capture non-committed format protocols, such as the five-card
trick of [B89].

When the input is provided by players, each of them have a partial knowledge
on Γ0. The definition then implies that, even given this partial knowledge, Γ0

and V are still independent. Therefore the players cannot learn anything about
the inputs of the other players, as the result is not part of V .

3 A Calculus of States

From a specification of a protocol it is not immediately obvious whether it is
correct and private. We describe a new method to obtain a rich description of
possible protocol runs, from which correctness and privacy can be more easily
recognized. We use this method in later sections to describe our constructions
and prove the impossibility of finite-runtime four-card AND in Sect. 6. We believe
this method is of general interest for researchers in the field of card-based cryp-
tography.

When describing all possible executions of a protocol we obtain a tree which
branches when the visible sequence differs. The nodes of this tree correspond to
the visible sequence traces that can occur during the run of the protocol. Each
node has an action associated to it, namely the action that the protocol pre-
scribes for that situation. In the following, this action is a label on the outgoing
edges.

Take for instance the six-card AND protocol of [MS09], as shown in Fig. 1.
We hope that it will soon become clear why the protocol works.

Until the fourth step (the turn step) there is no observable difference, i.e.,
all visible sequences contain only ‘?’. After the turn, there are two types of
executions that can be distinguished by players. If security was violated, i.e.,
players can deduce information about the input, then this is because some inputs
are more likely to lead to a specific visible sequence than other inputs.

While the actual sequence on the table and the actual input of the players
is typically unknown, knowledge about the former implies knowledge about the
latter and vice versa. To facilitate the privacy analysis, we annotate the nodes
of the tree with this dependent knowledge. A state in our sense captures the
probability distribution of atomic sequences conditioned on the input sequence.

Definition 3. Let P be a secure protocol computing f : {0, 1}k → {0, 1} and V
be a visible sequence trace of P. The state S of P belonging to V is the map
S : AtSeq → Xk, with s �→ Pr[s|V], where:

Card-Based Cryptographic Protocols Using a Minimal Number of Cards 791

(perm, (2 4 3))

(shuffle, {id, (1 4)(2 5)(3 6)})

(perm, (2 3 4))

(turn, {1, 2})

♥♣???? ♣♥????

(result, 3, 4)
�

(result, 5, 6)
�

Fig. 1. Six-card AND protocol in committed format of [MS09].

– Xk denotes the polynomials over the variables Xb for b ∈ {0, 1}k of the form∑
b∈{0,1}k βbXb, for βb ∈ [0, 1] ⊆ R. We interpret these polynomials as prob-

abilities which depend on the probabilities of the inputs b, symbolized by the
variables Xb for b ∈ {0, 1}k.

– for s ∈ AtSeq, Pr[s|V] denotes the (symbolic) probability that the current
atomic sequence is s given that current visible sequence trace is V . (It will
later be apparent that the probability Pr[s|V] is indeed in Xk.)

We say a state S contains an atomic sequence s (or s is in S for short) if S(s)
is not the zero polynomial. For k ≥ 2, we introduce the additional shorthands
X0 :=

∑
f(b)=0 Xb and X1 :=

∑
f(b)=1 Xb.

Let S be a state. Given a probability distribution M on the inputs, then
substituting each variable Xb with the probability of the input b, yields a prob-
ability distribution on the atomic sequences in S. In particular, if s is an atomic
sequence in S and S(s) the corresponding polynomial, substituting 1 for the vari-
able Xb and 0 for the other variables in S(s), yields the probability that s is the
current atomic sequence, given the input b and any information observed so far.
Accordingly, we can use our notions to analyze player knowledge in multiparty
computations where an agent has partial information about the input.

As an illustration of our method, consider the states of the six-card AND
protocol from above, see Fig. 2 on page 10, where states are represented by a box
with atomic sequences on the left and the associated polynomials on the right.
In such a 2-ary protocol, a state maps each atomic sequence to a polynomial of
the form β11X11 + β10X10 + β01X01 + β00X00, where β11, β10, β01, β00 ∈ [0, 1].

– In the start state, each input b ∈ {00, 01, 10, 11} is associated with a unique
input sequence Γ b ∈ U , which, by our conventions in Definition 1, are

792 A. Koch et al.

♥♣♥♣♣♥ X11

♥♣♣♥♣♥ X10

♣♥♥♣♣♥ X01

♣♥♣♥♣♥ X00

♥♥♣♣♣♥ X11

♥♣♥♣♣♥ X10

♣♥♣♥♣♥ X01

♣♣♥♥♣♥ X00

(perm, (2 4 3))

♥♥♣♣♣♥ 1/2X11

♣♣♥♥♥♣ 1/2X11

♥♣♥♣♣♥ 1/2X10 + 1/2X00

♣♣♥♥♣♥ 1/2X10 + 1/2X00

♣♥♣♥♣♥ 1/2X01

♥♣♥♣♥♣ 1/2X01

(shuffle, {id, (1 4)(2 5)(3 6)})

♥♣♥♣♣♥ 1/2X11

♣♥♣♥♥♣ 1/2X11

♥♣♣♥♣♥ 1/2X10 + 1/2X00

♣♥♣♥♣♥ 1/2X10 + 1/2X00

♣♥♥♣♣♥ 1/2X01

♥♣♣♥♥♣ 1/2X01

(perm, (2 3 4))

♥♣♥♣♣♥ X11

♥♣♣♥♣♥ X10 + X00

♥♣♣♥♥♣ X01

♣♥♣♥♥♣ X11

♣♥♣♥♣♥ X10 + X00

♣♥♥♣♣♥ X01

(turn, {1, 2})
♥♣???? ♣♥????

(result, 3, 4)
�

(result, 5, 6)
�

Fig. 2. Six-card AND protocol in committed format of [MS09] augmented with state
information as in Definition 3.

Card-Based Cryptographic Protocols Using a Minimal Number of Cards 793

Γ 11 = (♥,♣,♥,♣,♣,♥), Γ 10 = (♥,♣,♣,♥,♣,♥), Γ 01 = (♣,♥,♥,♣,♣,♥)
and Γ 00 = (♣,♥,♣,♥,♣,♥). The probability of atom (Γ b) being the cur-
rent atomic sequence is therefore exactly Xb, i.e., the probability that b is
the input. The remaining

(
6
3

) − 4 atomic sequences are mapped to zero and
omitted in the presentation.

– The first (and third) action is a permutation. Mathematically, nothing inter-
esting happens here: If an atomic sequence s had its probability captured by
S(s), then after permuting with a permutation π, these probabilities are then
assigned to the atomic sequence π(s).

– The shuffle introduces uncertainty. Consider for instance the case that the
input was “10”. Then, before the shuffle, we must have had the atomic
sequence s = (♥,♣,♥,♣,♣,♥). It was either permuted by id or by π =
(1 4)(2 5)(3 6), yielding either s itself or s′ = (♣,♣,♥,♥,♣,♥), both with
probability 1/2. This explains the coefficients of X10 in the polynomials for s
and s′.

– The turn step can yield two possible visible sequences: (♥,♣, ?, ?, ?, ?) and
(♣,♥, ?, ?, ?, ?). Crucially, the probability of observing (♣,♥, ?, ?, ?, ?) is the
same for each possible input, so no information about the actual sequence is
leaked: If (♣,♥, ?, ?, ?, ?) would be observed slightly more frequently for, say,
the input “01” than for the input “10”, then observing (♣,♥, ?, ?, ?, ?) would
be weak evidence that the input was “01”. In the case at hand, however,
the probability for the right branch is 1/2 for each input, as the sum of the
polynomials of the atomic sequences branching right is 1/2(X11 +X10 +X01 +
X11).
After the turn our knowledge has changed, for instance, if we have observed
(♥,♣, ?, ?, ?, ?) and know that the input was “11” then we know beyond doubt
that the atomic sequence must then be (♥,♣,♥,♣,♣,♥), explaining the coef-
ficient 1 of X11.

– The output given by the result actions is correct: For all polynomials con-
taining X11 with non-zero coefficient, the corresponding atomic sequence has
(♥,♣) at the specified positions and for all polynomials containing one of the
other variables with non-zero coefficient, the corresponding atomic sequence
has (♣,♥) there.
Note that “mixed” polynomials with non-zero coefficients of both types cannot
occur in a final state of a protocol.

Derivation Rules for States. To compute the states we first identify the start
state and then specify how subsequent states arise from a given state when per-
forming an action. The rules of our calculus can also be seen as an inductive proof
that our definition of a state is sound in secure protocols, as the probabilities
are in Xk as claimed.

The start state S0 with initial visible sequence trace V0 contains exactly
the input sequences in U . Each Γb ∈ U of input b ∈ {0, 1}k is mapped to the
probability Pr[atom (Γb)|V0] = Xb.

An action act ∈ Action on a state S belonging to a visible sequence trace V
can result in visible sequences v1, . . . , vn. In the following, we state the rules for

794 A. Koch et al.

S

act ∈ Action

S1 S2 S3

· · ·
Sn

v1
v2 v3

vn

Fig. 3. Performing an action on a state can result in different visible sequences corre-
sponding to a state each.

the derivation of these subsequent states S1, . . . , Sn belonging to the extended
visible sequences traces V ‖ vi, obtained by appending the new visible sequence vi

to the trace, for 1 ≤ i ≤ n. We restrict the presentation to shuffle and randomized
flip operations, as the permutation and turn operations are special cases. For an
illustration, we refer to Fig. 3.

Shuffle Action. Let act = (shuffle,Π,F). If all cards are face-down before the
shuffle, act can result in only one visible sequence, but in general let Πv be the
subset of Π that leads to some visible sequence v with corresponding state S′.
If F|v denotes the probability distribution on Πv conditioned on the fact that v
is observed, we have that

S′(s) =
∑

π∈Πv

F|v(π) · S(π−1(s)).

In other words, the probability for the atomic sequence s in the new state S′

is obtained by considering all atomic sequences π−1(s) from which s may have
originated through some π ∈ Πv and summing the probability of those atomic
sequences in the old state, weighted with the probabilities that the corresponding
π is chosen.

Randomized Flip Action. Let act = (rflip, Φ,G). Consider the state S′ belonging
to the visible sequence trace V ′ := V ‖ v for the new visible sequence v, resulting
from a flip of some turn set T ∈ Φ. We say that v is compatible with an atomic
sequence s from S if v and s agree in all positions that are not ‘?’ in v. The set
of all atomic sequences compatible with v is denoted by Cv.

Let Pv :=
∑

s∈Cv
S(s). This polynomial represents the probability of observ-

ing v if T is turned in state S. Let βb be the coefficients of Pv, i.e., Pv =∑
b∈{0,1}k βbXb. If the coefficients differ, i.e., βb1 = βb2 for two inputs b1 and b2,

then the probability of observing v when turning T in state S depends on the
input. This must not be the case in secure protocols where visible sequences and
inputs are independent.

Card-Based Cryptographic Protocols Using a Minimal Number of Cards 795

In secure protocols, we therefore know that

Pv =
∑

b∈{0,1}k

βvXb = βv

∑

b∈{0,1}k

Xb,

for some βv ∈ R. In our interpretation as probabilities, we have
∑

b∈{0,1}k Xb =
1, i.e., the sum over all input probabilities is 1. From this, we obtain Pv = βv.

Then, using Bayes’ formula yields

S′(s) = Pr[s|V ′] = Pr[s|(V ‖ v)] = Pr[v|V, s] · Pr[s|V]
Pr[v|V]

= Pr[v|V, s] · S(s)
Pv

=

{
S(s)/βv, if s ∈ Cv,

0, otherwise,

where Pr[v|V, s] denotes the probability that v occurs, given that the visible
sequence trace is V and the actual atomic sequence is s, and Pr[v|V] denotes the
probability that v occurs, given that the visible sequence trace is V . Note that
the actual atomic sequence s determines the visible sequence of the turn action,
so Pr[v|V, s] is either 0 or 1.

Checking Correctness and Security. Since we keep track of the set of pos-
sible atomic sequences for any state of the protocol, we can decide for any result
action whether it yields the correct output in all cases.

To check privacy, first note that shuffle actions never reveal new critical
information: When shuffling with face-up cards, the shuffle may reveal infor-
mation about which permutation was used to shuffle, but this information is
a fresh random variable independent of all previous information. Considering
turns or randomized flips, we already identified the condition before: A turn
does not violate privacy if for every visible sequence v that may result from
the turn, the set Cv of atomic sequences that are compatible with v must fulfill∑

s∈Cv
S(s) = βv ∈ [0, 1] since this exactly means that the probability to observe

a visible sequence does not depend on the inputs. As this was a precondition for
the derivation rule of randomized flips, being able to construct a diagram by the
rules above is a witness to the security of the protocol. (In this sense, Fig. 2 is
an alternative proof for the security of the six-card AND protocol of [MS09].)

Las Vegas vs Finite-Runtime. In our formalism, the states of a finite-runtime
protocol form a finite tree without restart actions. A Las Vegas protocol, in
contrast, makes use of restart actions, or its states form a cyclic or infinite
diagram.

4 A Four-Card Las Vegas AND Protocol

We present a secure protocol to compute AND on two bits in committed format
and without restarts. An algorithmic description is given in Protocol 1 and a

796 A. Koch et al.

representation in the state calculus of Sect. 3, from which correctness and privacy
can be deduced, is given in Fig. 4.

Note that the state diagram contains a cycle, i.e., it is possible to return to
a state that was encountered before. This implies that the protocol is not finite-
runtime. However, on the cycle there are two turn operations each of which have
a chance of 1/3 to yield a final state and therefore leave the cycle. The probability
to return to a state on the cycle is therefore (23)2 = 4

9 and the probability to
take the cycle k times is (49)k. The expected number of times the cycle is taken
is therefore

∑
k≥0(

4
9)k = (1 − 4

9)−1 = 9
5 . In particular, the expected runtime of

the protocol is bounded. We summarize our result in the following theorem.

Theorem 1. There is a secure Las Vegas protocol to compute AND on two bits
in committed format and without restarts.

In contrast to the protocol for general boolean functions presented in Sect. 7
the shuffle operations are “closed”, a circumstance we discuss more closely in
Sect. 8.

5 A Five-Card Finite-Runtime AND Protocol

In the presentation of our five-card finite-runtime AND protocol in committed
format, we reuse part of our four-card protocol from Sect. 4. We just have to
show that we can “break out” of the cycle of the four card protocol by using the
fifth card. This yields a finite-runtime protocol with at most 12 steps in every
execution. Here, the fifth card is chosen to have symbol ♥.

An algorithmic description is given in Protocol 2 and a representation of
the crucial component in the state calculus of Sect. 3, from which correctness
and privacy can be deduced, is given in Fig. 5. We summarize our result in the
following theorem.

Theorem 2. There is a secure five-card finite-runtime protocol to compute AND
on two bits in committed format.

6 Finite-Runtime AND Requires Five Cards

There are secure protocols with four cards computing AND in committed format
using either the restart operation (see Sect. 7) or running in cycles for a number
of iterations that is finite only in expectation (see Sect. 4). However, it would
be nice to have a protocol that is finite-runtime, i.e., is guaranteed to terminate
after a finite number of steps. In the following we show that this is impossible.

To this end, we distinguish several different types of states and later analyze
which state transitions are possible. We need the following definitions and obser-
vations only for the deck D = [♥,♥,♣,♣], but choose to state some of them in
a more general form to better convey the underlying ideas.

Card-Based Cryptographic Protocols Using a Minimal Number of Cards 797

♥♣♥♣ X11

♥♣♣♥ X10

♣♥♥♣ X01

♣♥♣♥ X00

♥♣♥♣ X11

♣♥♥♣ 1/2X10 + 1/2X01

♥♣♣♥ 1/2X10 + 1/2X01

♣♥♣♥ X00

(shuffle, {id, (1 3)(2 4)})

♥♥♣♣ 1/2X11

♥♣♥♣ 1/2X11

♣♥♥♣ 1/2X10 + 1/2X01

♥♣♣♥ 1/2X10 + 1/2X01

♣♥♣♥ 1/2X00

♣♣♥♥ 1/2X00

(shuffle, {id, (2 3)})

♥♥♣♣ X11

♣♥♥♣ X10 + X01

♣♥♣♥ X00

♥♥♣♣ X1

♣♥♥♣ 1/2X0

♣♥♣♥ 1/2X0

(shuffle, {id, (3 4)})

♥♥♣♣ 1/3X1

♣♣♥♥ 2/3X1

♣♥♥♣ 1/6X0

♥♣♣♥ 1/3X0

♣♥♣♥ 1/2X0

(shuffle, {id, (1 3)(2 4)},F)
F : id �→ 1/3, (1 3)(2 4) �→ 2/3

♥♥♣♣ X1

♥♣♣♥ X0

(result, 2, 4)
�

♣♣♥♥ X1

♣♥♥♣ 1/4X0

♣♥♣♥ 3/4X0

(turn, {1})

♣??? ♥???

♣♣♥♥ X1

♣♥♥♣ 1/2X0

♣♥♣♥ 1/2X0

(shuffle, {id, (3 4)})

♥♣♥♣ X11

♥♣♣♥ X10 + X01

♣♣♥♥ X00

♥♣♥♣ X1

♥♣♣♥ 1/2X0

♣♣♥♥ 1/2X0

(shuffle, {id, (1 3)})

♥♣♥♣ 1/3X1

♣♥♣♥ 2/3X1

♥♣♣♥ 1/6X0

♣♥♥♣ 1/3X0

♣♣♥♥ 1/2X0

(shuffle, {id, (1 2)(3 4)},F)
F : id �→ 1/3, (1 2)(3 4) �→ 2/3

♥♣♥♣ X1

♣♥♥♣ X0

(result, 1, 2)
�

♣♥♣♥ X1

♥♣♣♥ 1/4X0

♣♣♥♥ 3/4X0

(turn, {4})

???♣ ???♥

♣♥♣♥ X1

♥♣♣♥ 1/2X0

♣♣♥♥ 1/2X0

(shuffle, {id, (1 3)})

(turn, {2})

?♣?? ?♥??

(perm, (1 3 4 2))(perm, (1 2 4 3))

Fig. 4. The four-card Las Vegas AND protocol without restart operations from Proto-
col 1. Note that we make use of the shorthands X1 := X11 and X0 := X00 + X10 + X01

and omit the turn actions that merely turn cards back to face-down. Starting at certain
points the tree becomes self-similar, which we represent by drawing backwards edges.

798 A. Koch et al.

Protocol 1. Protocol to compute AND in committed format using four cards.
Note that, because of the goto operations, no bound on the number of steps
can be given.
(shuffle, {id, (1 3)(2 4)})
(shuffle, {id, (2 3)})
(turn, {2})
if v = (?, ♣, ?, ?) then

(turn, {2}) // turn back
(shuffle, {id, (1 3)})

1 (shuffle, {id, (1 2)(3 4)}, F : id �→ 1/3, (1 2)(3 4) �→ 2/3)
(turn, {4})
if v = (?, ?, ?, ♣) then

(result, 1, 2)
else if v = (?, ?, ?, ♥) then

(turn, {4}) // turn back
(shuffle, {id, (1 3)})
(perm, (1 3 4 2))
goto 2

else if v = (?, ♥, ?, ?) then
(turn, {2}) // turn back
(shuffle, {id, (3 4)})

2 (shuffle, {id, (1 3)(2 4)}, F : id �→ 1/3, (1 3)(2 4) �→ 2/3)
(turn, {1})
if v = (♥, ?, ?, ?) then

(result, 2, 4)
else if v = (♣, ?, ?, ?) then

(turn, {1}) // turn back
(shuffle, {id, (3 4)})
(perm, (1 2 4 3))
goto 1

Definition 4. Let P be a protocol with deck D computing a boolean function f .
Let s be an atomic sequence, S a state of P and P = S(s) the polynomial
representing the probability of s in S.

1. If P contains only variables Xb with f(b) = 1 or f(b) = 0, then s is called a
1-sequence or 0-sequence, respectively.

2. If P contains variables of both types, then s is called a ⊥-sequence.
3. We say that S is of type i/j, or an i/j-state, if its number of 0-sequences and

1-sequences is i and j, respectively, and it does not contain any ⊥-sequences.
4. We call a state S final if it does not contain a ⊥-sequence and there are

indices m,n ∈ {1, . . . , |D|}, such that all 1-sequences have ♥ at position m,
all 0-sequences have ♣ at position m, and the other way round at position n.
In that case (result,m, n) is a correct output operation.

Note that a protocol that produces a ⊥-sequence cannot be finite-runtime: once
the ⊥-sequence is lying on the table, it is impossible to decide whether the

Card-Based Cryptographic Protocols Using a Minimal Number of Cards 799

Protocol 2. A five-card finite-runtime AND protocol. It proceeds as in Pro-
tocol 1 (ignoring card 5) until reaching the line marked as 1, when instead of
executing the line, an alternative path is taken using the fifth card.
(shuffle, {id, (1 3)(2 4)})
(shuffle, {id, (2 3)})
(turn, {2})
if v = (?, ♣, ?, ?, ?) then

(turn, {2}) // turn back
(shuffle, {id, (1 3)})

� (perm, (1 5 2 4)) // sort in the fifth card
(shuffle, {id, (5 4 3 2 1)}, F : id �→ 1/3, (5 4 3 2 1) �→ 2/3)
(turn, {5})
if v = (?, ?, ?, ?, ♣) then

(result, 4, 3)
else if v = (?, ?, ?, ?, ♥) then

(result, 3, 1)

else if v = (?, ♥, ?, ?, ?) then
(turn, {2}) // turn back
(shuffle, {id, (3 4)})
(shuffle, {id, (1 3)(2 4)}, F : id �→ 1/3, (1 3)(2 4) �→ 2/3)
(turn, {1})
if v = (♥, ?, ?, ?, ?) then

(result, 2, 4)
else if v = (♣, ?, ?, ?, ?) then

(turn, {1}) // turn back
(shuffle, {id, (3 4)})
(perm, (1 2 4 3))
goto �

output should be 0 or 1. Thus, any protocol that proceeds to output something
without restarting in between produces an incorrect result with positive proba-
bility; and any protocol that may use a restart, may take this execution path an
unbounded number of times.

Since we are interested in the existence of finite-runtime protocols, we restrict
our attention to protocols that never produce ⊥-sequences. We now bundle a few
simple properties about i/j-states in the following lemma.

Lemma 1. Given a secure protocol computing a non-constant boolean function
with deck D, consisting of n ♥s and m ♣s where n,m ≥ 1, the following holds.

1. In a state of type i/j, we have i, j ≥ 1, otherwise players could derive the
the result, contradicting the committed format property.

2. If a turn in a state S of type i/j can result in two different successor states S1

and S2 of type i1/j1 and i2/j2, respectively, then i = i1 + i2 and j = j1 + j2.
In particular, i ≥ 2 and j ≥ 2.

3. In a state of type i/j resulting from a turn that revealed a ♥ or ♣ we have
i + j ≤ (

n+m−1
n−1

)
or i + j ≤ (

n+m−1
m−1

)
, respectively.

800 A. Koch et al.

...

♥♣♥♣♥ X1

♥♣♣♥♥ 1/2X0

♣♣♥♥♥ 1/2X0

♣♥♥♣♥ X1

♥♥♣♣♥ 1/2X0

♥♥♥♣♣ 1/2X0

(perm, (1 5 2 4))

♣♥♥♣♥ 2/3X1

♥♥♣♥♣ 1/3X1

♥♥♣♣♥ 1/2X0

♥♣♣♥♥ 1/6X0

♥♥♥♣♣ 1/3X0

(shuffle, {id, (5 4 3 2 1)},F)
F : id �→ 2/3, (5 4 3 2 1) �→ 1/3

♥♥♣♥♣ X1

♥♥♥♣♣ X0

(result, 4, 3)
�

♣♥♥♣♥ X1

♥♥♣♣♥ 3/4X0

♥♣♣♥♥ 1/4X0

(result, 3, 1)
�

(turn, {5})

????♣ ????♥

Fig. 5. The crucial part of a five-card finite-runtime AND protocol that allows to
“break out” of the cycle in the four-card Las Vegas AND protocol.

4. Let S be a state of type i/j and S′ a state of type i′/j′ resulting from S via
a shuffle operation. Then we have i′ ≥ i, j′ ≥ j.

5. If S is a final state of type i/j, then i, j ≤ (
n+m−2

n−1

)
.

6. Two atomic sequences differ in an even number of positions, i.e., have even
distance.

7. Given an atomic sequence s ∈ AtSeq, there are
(

n
d
2

)(
m
d
2

)

atomic sequences of (even) distance d to s.
8. Any two sequences have distance at most min {2m, 2n}.
9. After a single-card turn revealing ♥ or ♣, any two sequences of the state

have distance at most 2n − 2 or 2m − 2, respectively.

Card-Based Cryptographic Protocols Using a Minimal Number of Cards 801

Theorem 3. There is no secure finite-runtime four-card AND protocol in com-
mitted format.

Proof. Let P be a secure protocol computing AND with four cards in committed
format.

We will define a set of good states, denoted by G, that contain all final states
but not the starting state and show that any operation on a non-good state will
produce at least one non-good state as a successor. From this it is then clear by
induction that P is not finite-runtime.

A state S is good iff it fulfills one of the following properties:

– S is a 1/1-state,
– S is a 2/2-state,
– S is a 1/2- or 2/1-state containing two atomic sequences of distance 4.

We first observe which state types i/j can occur with our deck: Since there
are 6 =

(
4
2

)
atomic sequences in total, we need i + j ≤ 6. By Lemma 1, item 1,

states with i = 0 or j = 0 cannot occur.

Final States are Good. From item 5 in Lemma 1 we know that final states fulfil
i, j ≤ 2 so the only candidate for final states are 1/1, 2/2, 1/2 and 2/1. We need
to show that they are good which is true by definition for 1/1 and 2/2. Consider
a final 1/2-state (the argument for the 2/1-state is symmetric). Its 0-sequence
differs from both 1-sequences in the two positions used for the output. Since the
two 1-sequences are distinct, at least one of them must differ from the 0-sequence
in another position, meaning they must have distance at least 3 and therefore
distance 4 (item 6 in Lemma 1).

Therefore, all final sequences are good, but the start state, which is a
3/1-state, is non-good. Consider an action act ∈ Action that acts on a non-
good state. We show that act has a non-good successor state by considering all
cases for the type of act:

Non-trivial Single-card Turns. Let S be a non-good state of type i/j, and S♥
and S♣ the two possible states after a turn of a single card. From item 2 in
Lemma 1, we know that S has to be of type i/j, with i, j ≥ 2, excluding the
case of 2/2, as S is non-good. This leaves the following possible types for S:
2/3, 3/3, 2/4 where we assume without loss of generality that i ≤ j. The turn
partitions the sequences onto the two branches in one of the following ways:

2/3

1/1 1/2

3/3

1/1 2/2

3/3

1/2 2/1

2/4

1/2 1/2

2/4

1/3 1/1

From item 3 in Lemma 1, we know that a state resulting directly from a turn
contains at most 3 atomic sequences, thereby ruling out turn-transitions that
lead to a 2/2- or 1/3-state. Moreover, any 2/1- or 1/2-state occurring after a
turn has the property that all atomic sequences have pairwise distance 2 by

802 A. Koch et al.

item 9 in Lemma 1. By definition, such 2/1-states are non-good. Note that a
turn action on a 2/3-state – while producing a good and even final 1/1-state –
produces a non-good 1/2-state on the other branch.4

Non-branching Shuffles. Now consider a shuffle that produces a unique sub-
sequent state S′ of type i′/j′. We want to show that S′ is non-good. Using
item 4 in Lemma 1 and the fact that a good S′ would require i′, j′ ≤ 2,
we only need to consider the case that S is a non-good state with i, j ≤
2, i.e., S is of type 1/2 or 2/1 with pairwise distance 2 – without loss
of generality of type 1/2 and with a 0-sequence s0 and two 1-sequences s1
and s′

1. We argue that without loss of generality S is of the form *6pt
s0: ♥♥♣♣
s1: ♥♣♥♣
s′
1: ♥♣♣♥

This is because

– S contains a constant column: Let k and l be the positions where s0 dif-
fers from s1, and m, n the positions where s0 differs from s′

1. If {k, l} and
{m,n} are disjoint, then s1 and s′

1 have distance 4 – a contradiction. Other-
wise {k, l,m, n} has size at most 3 so there is one position where all atomic
sequences agree.

– The constant column can be assumed to be in position 1 and to contain ♥s.
This completely determines the atomic sequences occurring in S. Our choice
to pick the 0-sequence is arbitrary, but inconsequential.

If all permutations in the shuffle map 1 to the same i ∈ {1, 2, 3, 4}, then S′

will have a constant column in position i. Then S′ is still of type 1/2 with
sequences of pairwise distance 2, so non-good. If there are two permutations in
the shuffle that map 1 to different positions i = j, then S′ will contain all three
atomic sequences with ♥ in position i and all three atomic sequences with ♥ in
position j. There is only one atomic sequence with ♥ in both positions. So S′

contains at least 3 + 3 − 1 = 5 atomic sequences and is therefore non-good.

Other Actions. The hard work is done, but for completeness, we need to consider
the remaining actions as well:

Restart. This action is not allowed in our finite-runtime setting.
Result. Since non-good states are non-final this action cannot be

applied.
Permutation. This is just a special case of a non-branching shuffle.

4 Moreover, this is the only way to produce a good state from a non-good state via a
turn action. We make use of such a turn in our four-card protocol in Sect. 4, which
did not require finite-runtime. (In contrast to our protocol in Sect. 7 this allows us
to avoid restart actions.).

Card-Based Cryptographic Protocols Using a Minimal Number of Cards 803

Trivial turn. If act is a turn operation that can only result in a single
visible sequence (the turn is trivial), then the outcome of the
turn was known in advance and the state does not change.

Multi-card turn. If act turns more than one card, then act can be decomposed
into single-card turn actions, turning the cards one after the
other. We already know that a single-card turn from a non-
good state yields a non-good subsequent state, so following
a “trail” of non-good states shows act produces a non-good
state as well.

Randomized flip. If act is a randomized flip then consider any turn set T that
act might be picked. We already know that turning T yields
a non-good subsequent state and this is also a subsequent
state of act.

Branching shuffle. If act is a shuffle that produces several subsequent states (this
requires shuffling with a face-up card), then restricting the
set of allowed permutations to those corresponding to one of
the visible sequences yields an ordinary shuffle that therefore
yields a single subsequent non-good state. This state is also
a subsequent state of act.

This concludes the proof. �

7 A 2k-Card Protocol for any k-ary Boolean Function

The following protocol will compute a k-ary boolean function with 2k cards
and success probability 2−k in three steps: One shuffle, one turn and one result
or restart action. The “hard work” is done in an “irregularly complex” shuffle
operation, which may pose practical problems we expand upon in Sect. 8.

Theorem 4. For any boolean function f : {0, 1}k → {0, 1} there is a secure
Las Vegas protocol in committed format using 2k cards. The expected number of
restart actions in a run is 2k − 1.

Proof. Note first that all unary boolean functions can easily be implemented:
The identity and not-function is simple (just output the input or the inversed
input) and for the constant functions we may shuffle the two cards (to obscure
the input), then turn the cards over, arrange them to represent the constant and
then return the positions of the corresponding cards, via result.

We now assume k ≥ 2. For each input b = (b1, b2, . . . , bk) ∈ {0, 1}k we define
the permutation:

πb := (2 3)1−f(b) ◦ (1 2)b1(3 4)b2 · · · (2k − 1 2k)bk .

In other words, when applied to an input sequence, πb first swaps the i-th input
bit for each i such that bi = 1. Afterwards, it swaps the second and third card
if f(b) = 0.

We can now describe the steps of our protocol:

804 A. Koch et al.

1. (shuffle, {πb : b ∈ {0, 1}k}), i.e., pick b ∈ {0, 1}k uniformly at random and
permute the cards with πb.

2. (turn, {1, 4, 6, 8, . . . , 2k}), i.e., turn over the first card and all cards with even
indices except 2.

3. If the turn revealed ♣ in position 1 and ♥ everywhere else, i.e., the visible
sequence is (♣, ?, ?,♥, ?,♥, . . . , ?,♥), then perform (result, 2, 3). Otherwise,
(restart).

For a deeper understanding of what is actually going on, we suggest contemplat-
ing on Fig. 6 (which is, admittedly, somewhat intimidating), but correctness and
privacy are surprisingly easy to show directly:

♣♥ ♣♥ ♣♥· · ·♣♥ ♣♥ X00···00
♣♥ ♣♥ ♣♥· · ·♣♥ ♥♣ X00···01
♣♥ ♣♥ ♣♥· · ·♥♣ ♣♥ X00···10

...
...

♥♣ ♥♣ ♥♣· · ·♥♣ ♣♥ X11···10
♥♣ ♥♣ ♥♣· · ·♥♣ ♥♣ X11···11

♣♥ ♣♥ ♣♥ · · · ♣♥ ♣♥ 2−k
∑

f(b)=1 Xb

♣♣ ♥♥ ♣♥ · · · ♣♥ ♣♥ 2−k
∑

f(b)=0 Xb

♣♥ ♣♥ ♣♥ · · · ♣♥ ♥♣ 2−k
∑

f(b)=1 Xb⊕00···01
♣♣ ♥♥ ♣♥ · · · ♣♥ ♥♣ 2−k

∑
f(b)=0 Xb⊕00···01

...
...

♥♣ ♥♣ ♥♣ · · · ♥♣ ♣♥ 2−k
∑

f(b)=1 Xb⊕11···10
♥♥ ♣♣ ♥♣ · · · ♥♣ ♣♥ 2−k

∑
f(b)=0 Xb⊕11···10

♥♣ ♥♣ ♥♣ · · · ♥♣ ♥♣ 2−k
∑

f(b)=1 Xb⊕11···11
♥♥ ♣♣ ♥♣ · · · ♥♣ ♥♣ 2−k

∑
f(b)=0 Xb⊕11···11

(shuffle, {πb : b ∈ {0, 1}k})

♣♥ ♣♥ ♣♥ · · · ♣♥ ♣♥ ∑
f(b)=1 Xb

♣♣ ♥♥ ♣♥ · · · ♣♥ ♣♥ ∑
f(b)=0 Xb

♣♥ ♣♥ ♣♥ · · · ♣♥ ♥♣ ∑
f(b)=1 Xb⊕00···01

♣♣ ♥♥ ♣♥ · · · ♣♥ ♥♣ ∑
f(b)=0 Xb⊕00···01

· · ·

♥♣ ♥♣ ♥♣ · · · ♥♣ ♣♥ ∑
f(b)=1 Xb⊕11···10

♥♥ ♣♣ ♥♣ · · · ♥♣ ♣♥ ∑
f(b)=0 Xb⊕11···10

♥♣ ♥♣ ♥♣ · · · ♥♣ ♥♣ ∑
f(b)=1 Xb⊕11···11

♥♥ ♣♣ ♥♣ · · · ♥♣ ♥♣ ∑
f(b)=0 Xb⊕11···11

(turn, {1, 4, 6, 8, · · · , 2k})

♣??♥?♥ · · · ?♥?♥

♣??♥?♥ · · · ?♥?♣ ♥??♣?♣ · · · ?♣?♥

♥??♣?♣ · · · ?♣?♣

(result, 2, 3)
�

(restart)
�

(restart)
�

(restart)
�

Fig. 6. The 2k-card protocol for an arbitrary boolean function f of Theorem 4. We use
the notation b1⊕b2 to denote the bitwise exclusive-or operation, e.g. 0011⊕0101 = 0110.

Card-Based Cryptographic Protocols Using a Minimal Number of Cards 805

Correctness. Assume the input is b ∈ {0, 1}k and a result action is performed.
Then the visible sequence after the turn was (♣, ?, ?,♥, ?,♥, . . . , ?,♥). This
means the permutation π done by the shuffle must have first transformed the
input sequence to (♣,♥,♣,♥,♣,♥, . . . ,♣,♥) (before potentially flipping the
cards in position 2 and 3). This can be interpreted as the sequence encoding
only 0s, therefore π has flipped exactly the card pairs, where the input sequence
had (♥,♣) encoding 1. This implies π = πb. From the definition of πb it is now
clear that the output is (♥,♣) if f(b) = 1 and (♣,♥) if f(b) = 0.

Privacy. Let v be a visible sequence after the turn step. Consider an input
sequence Γb belonging to the input b ∈ {0, 1}k. The probability that Γb yields
the visible sequence v in the turn is exactly 2−k since exactly one of the 2k

permutations in the shuffle action swaps the appropriate set of pairs of positions.
This means the probability to observe v is 2−k – and thus independent of the
input sequence.

Runtime. The probability to observe (♣, ?, ?,♥, . . . , ?,♥) in the turn step is 2−k,
the probability to restart is therefore 1−2−k. This yields a runtime that is finite
in expectation – of order O(2k). �

8 On the Implementation of Shuffle Operations

The shuffle used in the protocol in Sect. 7, while allowed in the formalism by
[MS14a], is of questionable practicality: in general there is no obvious way to
perform it in a real world situation with actual people and actual cards such
that the players do not learn anything about the permutation that was done in
the shuffle. In a weaker form this also applies to the protocols in Sects. 4 and 5.

Other shuffle operations, such as (shuffle, {id, (1 2)}) that either perform a
swap or do nothing, both with probability 1

2 , are unproblematic to implement
with two players Alice and Bob: first let Alice perform the shuffle while Bob is
looking away and then have Bob perform the shuffle while Alice is looking away.
Provided they do not tell each other what they did, to both of them the cards
seem to be swapped with probability 1/2. Here, it is crucial that performing the
swap twice yields the identity: one of the allowed permutations.

In general, a shuffle action act = (shuffle,Π,F) can be implemented in this
way if act is closed, i.e., Π2 := {π1 ◦π2 | π1, π2 ∈ Π} = Π and uniform, i.e., F is
the uniform distribution on Π. Note that our protocols in Sects. 4, 5 and 7 use
shuffles that are not uniform and/or not closed, see Tables 1 and 2. Therefore,
it may be worthwhile to continue studying shuffles in several directions:

– Restrict the computational model to uniform closed shuffles and examine the
properties of the new model.

– Replace the action shuffle of the computational model by an alternative action
playerPerm executed by a single player, while other players are not allowed
to look on the table. Here, (playerPerm, p,Π,F) is like (shuffle,Π,F), with
the difference that the executing player p learns which permutation has been

806 A. Koch et al.

chosen. As argued above, this at least as powerful as allowing uniform closed
shuffles.

– Search for a more clever way to implement shuffles with everyday objects.
– Weaken the honest-but-curious assumption and discuss implementations of

shuffles with respect to, e.g., robustness against active attacks.

9 Conclusion

To summarize our results, we have extensively considered the question on tight
lower bound on the number of cards for AND protocols, which has been open for
several years. We believe that our answer to this question is satisfactory, as we
do not only give two concrete AND protocols with different properties, we also
show an impossibility result. Apart from the impossibility for perfect copy of a
single card in [MS14a], we are the first to give such a type of result. This may
be because of the sparsity of good ways to speak about card-based protocols.
We believe to have overcome this problem by introducing an elegant “calculus
of protocol states” in Sect. 3. Finally, we give a protocol for evaluating a k-ary
boolean function with the theoretical minimum of cards, i.e., the 2k cards which
are already necessary for encoding the input.

Open Problems. Our paper identifies a number of open problems in the field
of card-based cryptographic protocols. This is, for example, how to implement
non-closed or non-uniform shuffles and in consequence back up the current com-
putational model with more evidence that its definition is rooted in reality. In
the same way, we ask whether there is a finite-runtime five-card protocol using
only closed and/or uniform shuffles.

The same set of questions which have been answered in Table 1 can also be
asked for general boolean functions: What is the minimal number of cards for
finite-runtime protocols with and without closed shuffles. Analogously, a tight
lower bound on the number of cards in Las Vegas protocols using only uniform
closed shuffles would be interesting.

Acknowledgments. We would like to thank the anonymous reviewers and Gunnar
Hartung for helpful comments.

References

[B89] den Boer, B.: More efficient match-making and satisfiability. In: Quisquater,
J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 208–
217. Springer, Heidelberg (1990)

[CHL13] Cheung, E., Hawthorne, C., Lee, P.: CS 758 Project: Secure Computation
with Playing Cards (2013). https://cs.uwaterloo.ca/∼p3lee/projects/cs758.
pdf. Accessed on 02 October 2015

[CK93] Crépeau, C., Kilian, J.: Discreet solitary games. In: Stinson, D.R. (ed.)
CRYPTO 1993. LNCS, vol. 773, pp. 319–330. Springer, Heidelberg (1994)

https://cs.uwaterloo.ca/~p3lee/projects/cs758.pdf
https://cs.uwaterloo.ca/~p3lee/projects/cs758.pdf

Card-Based Cryptographic Protocols Using a Minimal Number of Cards 807

[MKS12] Mizuki, T., Kumamoto, M., Sone, H.: The five-card trick can be done with
four cards. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol.
7658, pp. 598–606. Springer, Heidelberg (2012)

[MS09] Mizuki, T., Sone, H.: Six-card secure AND and four-card secure XOR. In:
Deng, X., Hopcroft, J.E., Xue, J. (eds.) FAW 2009. LNCS, vol. 5598, pp.
358–369. Springer, Heidelberg (2009)

[MS14a] Mizuki, T., Shizuya, H.: A formalization of card-based cryptographic pro-
tocols via abstract machine. Int. J. Inf. Secur. 13(1), 15–23 (2014). doi:10.
1007/s10207-013-0219-4

[MS14b] Mizuki, T., Shizuya, H.: Practical card-based cryptography. In: Ferro, A.,
Luccio, F., Widmayer, P. (eds.) FUN 2014. LNCS, vol. 8496, pp. 313–324.
Springer, Heidelberg (2014)

[N+15] Nishida, T., Hayashi, Y., Mizuki, T., Sone, H.: Card-based protocols for
any boolean function. In: Jain, R., Jain, S., Stephan, F. (eds.) TAMC 2015.
LNCS, vol. 9076, pp. 110–121. Springer, Heidelberg (2015)

[NR98] Niemi, V., Renvall, A.: Secure multiparty computations without com-
puters. Theor. Comput. Sci. 191(1–2), 173–183 (1998). doi:10.1016/
S0304-3975(97)00107-2

[S01] Stiglic, A.: Computations with a deck of cards. Theor. Comput. Sci. 259(1–
2), 671–678 (2001). doi:10.1016/S0304-3975(00)00409-6

http://dx.doi.org/10.1007/s10207-013-0219-4
http://dx.doi.org/10.1007/s10207-013-0219-4
http://dx.doi.org/10.1016/S0304-3975(97)00107-2
http://dx.doi.org/10.1016/S0304-3975(97)00107-2
http://dx.doi.org/10.1016/S0304-3975(00)00409-6

Author Index

Abdalla, Michel I-103
Akishita, Toru II-411
Albrecht, Martin R. II-752
Attrapadung, Nuttapong I-521, I-575

Badrinarayanan, Saikrishna I-27
Bai, Shi I-3
Banik, Subhadeep II-411
Barbulescu, Razvan II-31
Benhamouda, Fabrice I-103
Bhaumik, Ritam II-159
Biryukov, Alex II-633
Bishop, Allison I-470, II-776
Bogdanov, Andrey II-361, II-411
Bogos, Sonia II-704
Boyle, Elette II-236

Camenisch, Jan II-262
Chatterjee, Sanjit I-286, II-658
Chen, Ming-Shing I-311
Cocis, Catalin II-752
Cogliati, Benoît II-134
Costello, Craig I-214

Dachman-Soled, Dana I-337
Das, M. Prem Laxman II-658
Derbez, Patrick II-3
Ding, A. Adam II-338
Ding, Jintai I-311
Dinur, Itai II-535
Dobraunig, Christoph II-490, II-612
Dubovitskaya, Maria II-262
Dwork, Cynthia II-735

Eichlseder, Maria II-490, II-612
Ezerman, Martianus Frederic I-260

Faber, Sky I-360
Fei, Yunsi II-338
Fillinger, Max II-586
Fouque, Pierre-Alain II-3
Frederiksen, Tore Kasper I-711
Fuhr, Thomas II-510

Gaudry, Pierrick II-31
Gaži, Peter II-85
Gong, Xinxin II-561
González, Alonso I-605
Gorbunov, Sergey I-550
Grosso, Vincent II-291
Groth, Jens I-239
Guillevic, Aurore I-149
Guo, Chun II-389
Gupta, Divya I-27

Hanaoka, Goichiro I-415, I-521, I-575
Haralambiev, Kristiyan II-262
Härtel, Kevin I-783
Hazay, Carmit I-443, II-183
Hevia, Alejandro I-605
Hiwatari, Harunaga II-411
Hofheinz, Dennis I-495
Hohenberger, Susan I-79, II-776

Isobe, Takanori II-361, II-411

Jain, Abhishek I-27, I-470
Jarecki, Stanislaw I-360
Joye, Marc I-681
Jutla, Charanjit S. I-630

Karpman, Pierre II-3
Keller, Marcel I-711
Kempka, Carmen I-758
Kentros, Sotirios I-360
Khovratovich, Dmitry II-633
Khurana, Dakshita I-52
Kikuchi, Ryo I-758
Kim, Taechan I-174
Kiyoshima, Susumu I-758
Kleinjung, Thorsten II-31
Koch, Alexander I-783
Kohlweiss, Markulf II-262
Kolesnikov, Vladimir I-386, II-210
Koppula, Venkata I-79
Kowalczyk, Lucas I-470
Kumaresan, Ranjit I-386

Laguillaumie, Fabien II-752
Langlois, Adeline I-3, II-752
Lee, Hyung Tae I-260
Lepoint, Tancrède I-3
Leurent, Gaëtan II-510
Libert, Benoît I-681
Lin, Dongdai I-189, II-389
Ling, San I-260
Liu, Chang I-337
Liu, Yunwen II-535
Longa, Patrick I-214
Lu, Yao I-189
Luo, Pei II-338

Malozemoff, Alex J. II-210
Martin, Daniel P. II-313
Matsuda, Takahiro I-415
Matt, Christian I-495
Maurer, Ueli I-495
Meier, Willi II-535
Mendel, Florian II-490, II-612
Menezes, Alfred I-286
Mennink, Bart II-59, II-465
Minaud, Brice II-3

Nandi, Mridul II-113, II-159
Naor, Moni II-735
Nguyen, Khoa I-260
Nikolić, Ivica II-683

O’Connell, Jonathan F. II-313
Okamoto, Tatsuaki I-121
Orsini, Emmanuela I-711
Oswald, Elisabeth II-313

Papamanthou, Charalampos I-337
Pass, Rafael II-236
Passelègue, Alain I-103
Patra, Arpita I-443
Peng, Liqiang I-189
Peters, Thomas I-681
Petzoldt, Albrecht I-311
Pietrzak, Krzysztof I-121, II-85
Preneel, Bart II-59

Ràfols, Carla I-605
Rao, Vanishree I-52
Regazzoni, Francesco II-411

Reingold, Omer II-735
Reyhanitabar, Reza II-465
Rothblum, Guy N. II-735
Roy, Arnab I-630

Sahai, Amit I-27, I-52
Sasaki, Yu II-683
Scholl, Peter I-711
Seurin, Yannick II-134
Shelat, Abhi I-736
Shi, Elaine I-337
Shibutani, Kyoji II-411
Stam, Martijn II-313
Standaert, François-Xavier II-291
Stehlé, Damien I-3
Steinfeld, Ron I-3
Stevens, Marc II-586
Suder, Valentin II-510
Suzuki, Koutarou I-758

Tao, Chengdong I-311
Tessaro, Stefano II-85, II-437

Vaikuntanathan, Vinod I-656
Vasudevan, Prashant Nalini I-656
Vaudenay, Serge II-704
Venkitasubramaniam, Muthuramakrishnan

I-736, II-183
Vinayagamurthy, Dhinakaran I-550
Vishkin, Uzi I-337
Vizár, Damian II-465

Walzer, Stefan I-783
Wang, Huaxiong I-260
Wang, Qingju II-535
Warinschi, Bogdan I-443
Waters, Brent I-79, I-121, II-776
Wei, Boyang I-360
Wichs, Daniel I-121

Yamada, Shota I-521, I-575
Yang, Bo-Yin I-311
Yung, Moti I-681

Zhang, Bin II-561
Zhang, Liwei II-338
Zhang, Rui I-189

810 Author Index

	Preface
	ASIACRYPT 2015
	Invited Talks
	Structure-Preserving Cryptography
	Computer-Aided Cryptography:Status and Perspectives
	The Moral Character of Cryptographic Work
	Contents – Part I
	Contents – Part II
	Best Paper
	Improved Security Proofs in Lattice-Based Cryptography: Using the Rényi Divergence Rather Than the Statistical Distance
	1 Introduction
	2 Preliminaries
	2.1 Lattices
	2.2 The SIS and LWE Problems
	2.3 The Rényi Divergence
	2.4 RD Bounds

	3 Application to Lattice-Based Signature Schemes
	3.1 Sampling Discrete Gaussians and the BLISS Signature Scheme
	3.2 GPV Signature Scheme

	4 Rényi Divergence and Distinguishing Problems
	4.1 Problems with Public Sampleability
	4.2 Application to Dual-Regev Encryption

	5 Application to LWE with Uniform Noise
	6 Open Problems
	References

	Indistinguishability Obfuscation
	Multi-input Functional Encryption for Unbounded Arity Functions
	1 Introduction
	1.1 Our Results
	1.2 Technical Overview

	2 Preliminaries
	2.1 Public-Coin Differing-Inputs Obfuscation
	2.2 Non Interactive Proof Systems
	2.3 Collision Resistent Hash Functions

	3 Unbounded Arity Multi-input Functional Encryption
	3.1 Syntax
	3.2 Security Definition

	4 A Construction from Public-Coin Differing-Inputs Obfuscation
	5 Security Proof
	References

	Multi-party Key Exchange for Unbounded Parties from Indistinguishability Obfuscation
	1 Introduction
	1.1 Our Contributions
	1.2 Technical Overview
	1.3 Other Related Work

	2 Preliminaries
	2.1 Indistinguishability Obfuscation and PRFs
	2.2 Somewhere Statistically Binding Hash

	3 Definitions
	4 Static Secure NIKE for Unbounded Parties
	4.1 Construction
	4.2 Security Game and Hybrids
	4.3 Removing the Setup

	5 ID-NIKE for Unbounded Parties
	5.1 Construction
	5.2 Security Game and Hybrids

	6 Conclusion
	A NIKE: Proofs of Indistinguishability of the Hybrids
	References

	PRFs and Hashes
	Adaptively Secure Puncturable Pseudorandom Functions in the Standard Model
	1 Introduction
	2 Preliminaries
	2.1 Assumptions

	3 Constrained Pseudorandom Functions
	3.1 Puncturable Pseudorandom Functions

	4 Construction
	4.1 Proof of Security

	5 t-Puncturable PRFs
	5.1 Construction
	5.2 Proof of Security

	6 Conclusion
	References

	Multilinear and Aggregate Pseudorandom Functions: New Constructions and Improved Security
	1 Introduction
	2 Definitions
	3 Polynomial Linear Pseudorandomness Security
	3.1 Intuition
	3.2 Formal Security Notion and Theorem

	4 Applications
	4.1 Aggregate Pseudorandom Functions
	4.2 Multilinear Pseudorandom Functions

	References

	New Realizations of Somewhere Statistically Binding Hashing and Positional Accumulators
	1 Introduction
	1.1 Our Results

	2 Preliminaries
	3 Two-to-One SSB Hash
	3.1 Two-to-One SSB Hash from DDH
	3.2 Two-to-One SSB Hash from DCR
	3.3 SSB with Local Opening from Two-to-One SSB

	4 SSB Hash from Lossy Functions
	5 SSB from -hiding
	5.1 RSA and -hiding Preliminaries
	5.2 Conforming Function
	5.3 Our -hiding SSB Construction

	6 Positional Accumulators
	A Constructing a Conforming Function
	References

	Discrete Logarithms and Number Theory
	Computing Individual Discrete Logarithms Faster in `39`42`"613A``45`47`"603AGF(pn) with the NFS-DL Algorithm
	1 Introduction
	1.1 Cryptographic Interest
	1.2 The Number Field Sieve Algorithm for DL in Finite Fields
	1.3 Previous Work on Individual Discrete Logarithm
	1.4 Our Contributions
	1.5 Outline

	2 Preliminaries
	2.1 Polynomial Selection Methods
	2.2 Norm Upper Bound in a Number Field
	2.3 Joux--Lercier--Smart--Vercauteren Fraction Method

	3 Asymptotic Complexity of Individual DL Computation
	3.1 Asymptotic Complexity of Initialization or Booting Step
	3.2 Running-Time of Special-q Descent

	4 Computing a Preimage in the Number Field
	4.1 Preimage Computation in the JLSV1 Case
	4.2 Preimage Computation in the gJL and Conjugation Cases

	5 Preimages of Smaller Norm with Quadratic Subfields
	5.1 Smaller Preimage Degree
	5.2 Smaller Preimage Norm
	5.3 Summary of Results

	6 Practical Examples
	6.1 Examples for Small n and pn of 180 Decimal Digits (dd)
	6.2 Experiments: Finding Boots for Fp4 of 120 dd

	7 Conclusion
	References

	Multiple Discrete Logarithm Problems with Auxiliary Inputs
	1 Introduction
	2 Discrete Logarithm Problem and Related Problems
	3 Multiple DLPwAI: Cheon's Algorithm
	3.1 Reduction of DLPwAI to DLP in the Exponent Using Cheon's Algorithm
	3.2 Algorithm for Multiple DLP in the Exponent
	3.3 Solving Multiple DLPwAI Using Cheon's Algorithm

	4 Multiple DLPwAI: Kim and Cheon's Algorithm
	4.1 Description of Algorithm
	4.2 Complexity Analysis
	4.3 Explicit Choices of Polynomials for Efficient Algorithms in the Case Of d P 1

	5 Conclusion
	A A Failed Approach for MDLPwAI When d P+1
	B Non-uniform Birthday Problem: Girls and Boys
	References

	Solving Linear Equations Modulo Unknown Divisors: Revisited
	1 Introduction
	1.1 Our Contributions

	2 Preliminary
	3 The First Type of Equations
	3.1 Our Main Result
	3.2 Analysis of Multi-power RSA

	4 The Second Type of Equations
	4.1 Our Main Result
	4.2 Applications

	5 The Third Type of Equations
	5.1 Our Main Result
	5.2 Common Prime RSA

	6 Conclusion
	References

	FourQ: Four-Dimensional Decompositions on a Q-curve over the Mersenne Prime
	1 Introduction
	2 The Curve: FourQ
	2.1 A Complete Twisted Edwards Curve
	2.2 Where did this Curve Come From?
	2.3 The Cryptographic Security of FourQ

	3 The Endomorphisms and
	3.1 Explicit Formulas for
	3.2 Deriving Explicit Formulas for
	3.3 Eigenvalues
	3.4 Section Summary

	4 Optimal Scalar Decompositions
	4.1 Babai Rounding and Optimal Bases
	4.2 Handling Round-Off Errors
	4.3 All-Positive Multiscalars

	5 The Scalar Multiplication
	5.1 Recoding the Multiscalar
	5.2 The Full Routine

	6 Performance Analysis and Results
	6.1 Operation Counts
	6.2 Experimental Results

	References

	Signatures
	Efficient Fully Structure-Preserving Signatures for Large Messages
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work

	2 Preliminaries
	2.1 Bilinear Groups
	2.2 Signature Schemes
	2.3 Structure-Preserving Signature Schemes

	3 Randomizable and Strongly Unforgeable Signatures
	4 Structure-Preserving Combined Signature Scheme
	5 Fully Structure-Preserving Combined Signature Scheme
	References

	A Provably Secure Group Signature Scheme from Code-Based Assumptions
	1 Introduction
	1.1 Background and Motivation
	1.2 Our Contributions
	1.3 Overview of Our Techniques
	1.4 Related Works and Open Questions

	2 Preliminaries
	2.1 Background on Code-Based Cryptography
	2.2 Group Signatures

	3 The Underlying Zero-Knowledge Argument System
	3.1 The Interactive Protocol
	3.2 Analysis of the Protocol

	4 Our Code-Based Group Signature Scheme
	4.1 Description of the Scheme
	4.2 Efficiency and Correctness
	4.3 Anonymity
	4.4 Traceability

	5 Implementation Results
	References

	Type 2 Structure-Preserving Signature Schemes Revisited
	1 Introduction
	2 Asymmetric Bilinear Pairings
	3 Strongly Unforgeable Structure-Preserving Signatures
	3.1 Type 2 Strongly Unforgeable SPS [4]
	3.2 Type 3 Strongly Unforgeable SPS
	3.3 Comparisons

	4 Randomizable Structure-Preserving Signatures
	4.1 Type 2 Randomizable SPS [4]
	4.2 Type 3 Randomizable SPS
	4.3 Comparisons
	4.4 Strongly-Optimal Signatures

	5 A Closer Look at Type 2 Schemes
	5.1 Conversion from Type 2 to Type 3
	5.2 Impossibility of Single PPE in Verification
	5.3 Separation
	5.4 Type 2: A Designer's Artifact?

	6 Concluding Remarks
	A Groth-Sahai Proofs
	A.1 DLIN-Based Proofs
	A.2 DDH-Based Proofs

	References

	Design Principles for HFEv- Based Multivariate Signature Schemes
	1 Introduction
	2 Multivariate Cryptography
	3 The HFEv- Signature Scheme
	3.1 QUARTZ
	3.2 Performance
	3.3 Security of HFEv- Based Schemes

	4 Design Principles for HFEv- Based Signature Schemes
	4.1 Can We Use HFE Polynomials of Low Degree D?
	4.2 Is the Ratio Between a and v Important for the Security of the Scheme?
	4.3 Is the Upper Bound on dreg Given by Eq.(12) Reasonably Tight?
	4.4 Does it Help to Guess Some Variables Before Applying a Gröbner Basis Algorithm?

	5 The New Multivariate Signature Scheme Gui
	5.1 Signature Generation
	5.2 Signature Verification

	6 Implementation and Comparison
	6.1 Arithmetics Over Finite Fields
	6.2 Inverting the HFEv- Core
	6.3 Experiments and Comparison
	6.4 Platforms Without PCLMULQDQ
	6.5 Grover's Algorithm and Potential Extension to Larger Fields

	7 Conclusion and Future Work
	References

	Multiparty Computation I
	Oblivious Network RAM and Leveraging Parallelism to Achieve Obliviousness
	1 Introduction
	1.1 Practical Applications
	1.2 Background: The PRAM Model
	1.3 Results and Contributions
	1.4 Technical Highlights
	1.5 Related Work

	2 Definitions
	2.1 Background: Random Access Machines (RAM)
	2.2 Network RAM (NRAM)
	2.3 Oblivious Network RAM (O-NRAM)
	2.4 Notion of Simulation

	3 Sequential Oblivious Simulation
	4 Sequential Oblivious Simulation of Parallel Programs
	4.1 Parallel RAM
	4.2 Warmup: Restricted Parallel RAM to Oblivious NRAM
	4.3 Parallel RAM to Oblivious NRAM

	5 Parallel Oblivious Simulation of Parallel Programs
	5.1 Network PRAM (NPRAM) Definitions
	5.2 Construction of Oblivious Network PRAM

	References

	Three-Party ORAM for Secure Computation
	1 Introduction
	2 Baseline Client-Server ORAM Protocol
	3 Three-Party Protocol Building Blocks
	4 Three-Party SC-ORAM Protocol
	5 Protocol Analysis
	6 Implementation and Testing
	References

	On Cut-and-Choose Oblivious Transfer and Its Variants
	1 Introduction
	1.1 Cut-and-Choose Oblivious Transfer and Its Variants
	1.2 Selective Failure Attacks
	1.3 Overview of Definitions and Constructions

	2 Definitions
	3 Constructions
	References

	Public Key Encryption
	An Asymptotically Optimal Method for Converting Bit Encryption to Multi-Bit Encryption
	1 Introduction
	1.1 Background and Motivation
	1.2 Our Contributions
	1.3 Related Work

	2 Preliminaries
	2.1 (Detectable) Public Key Encryption
	2.2 (Detectable) Key Encapsulation Mechanism
	2.3 Non-malleable Codes
	2.4 Other Standard Primitives

	3 New Security Notions for Detectable PKE and KEM
	3.1 ``Weak'' Non-malleability Under DCCA and Its ``Replayable'' Variant
	3.2 Randomness-Inextractability
	3.3 Useful Facts

	4 Chosen Ciphertext Security of the Double-Layered Construction
	5 Concrete Instantiations of Building Blocks
	5.1 Bitwise-Encrypt Construction
	5.2 Encode-then-Bitwise-Encrypt Construction

	6 Full Description of Our 1-bit-to-Multi-bit Conversion
	7 Comparison
	References

	Selective Opening Security for Receivers
	1 Introduction
	1.1 Related Work
	1.2 Our Contribution

	2 Preliminaries
	2.1 Public Key Encryption
	2.2 Selective Opening Security

	3 Building Blocks
	4 Selective Opening Security for the Receiver
	4.1 rind-so Secure PKE rind-so Secure PKE
	4.2 Secure Tweaked NCER -3mu rind-so Secure PKE
	4.3 Secure NCER -3mu rsim-so Secure PKE
	4.4 rsim-so Secure PKE Secure NCER and Tweaked NCER
	4.5 Realizing Tweaked NCER

	5 Selective Opening Security for the Sender
	References

	Function-Hiding Inner Product Encryption
	1 Introduction
	2 Preliminaries
	2.1 Functional Encryption Specifications and Security Definitions
	2.2 Asymmetric Bilinear Groups
	2.3 Dual Pairing Vector Spaces

	3 Construction
	4 Security Proof
	References

	ABE and IBE
	Idealizing Identity-Based Encryption
	1 Introduction
	1.1 Motivation
	1.2 Identity-Based Encryption and Its Security
	1.3 Contributions
	1.4 Related Work

	2 Preliminaries
	2.1 Resources, Converters, and Distinguishers
	2.2 Filtered Resources
	2.3 Communication Resources
	2.4 Construction of Resources

	3 Delivery Controlled Channels
	4 IBE Schemes and Protocols
	4.1 IBE Schemes and Their Security
	4.2 Using IBE Schemes in Constructions

	5 Constructing Delivery Controlled Channels
	5.1 Impossibility of Construction
	5.2 Equivalence of IND-ID-CPA Security and Construction of Statically Delivery Controlled Channels

	6 Construction with Random Oracles
	6.1 Random Oracles
	6.2 Construction of Delivery Controlled Channels

	References

	A Framework for Identity-Based Encryption with Almost Tight Security
	1 Introduction
	1.1 Backgrounds
	1.2 Our Results
	1.3 Our Techniques
	1.4 Related Works

	2 Preliminaries
	2.1 Identity-Based Encryption
	2.2 Composite-Order Bilinear Groups

	3 Broadcast Encoding: Definitions and Reductions
	3.1 Broadcast Encoding: Syntax
	3.2 Broadcast Encoding: Security
	3.3 Multi-master-key Hiding Security in Composite Order Groups
	3.4 Reduction from MMH Security to CMH Security

	4 Almost Tight IBE from Broadcast Encoding in Composite-Order Groups
	5 Framework for Constructions in Prime-Order Groups
	5.1 Preparation
	5.2 Almost Tightly Secure IBE from Broadcast Encoding in Prime Order Groups

	6 Construction of Broadcast Encoding Schemes
	6.1 Broadcast Encoding with Constant-Size Ciphertexts
	6.2 Encoding with Sub-linear Parameters
	6.3 Implications

	7 Anonymous IBE with Tight Security Reduction
	8 Application to CCA Secure Public Key Encryption
	References

	Riding on Asymmetry: Efficient ABE for Branching Programs
	1 Introduction
	1.1 Our Results
	1.2 Applications
	1.3 Other Related Work
	1.4 Organization

	2 Preliminaries
	2.1 Lattice Preliminaries
	2.2 Attribute-Based Encryption
	2.3 Branching Programs

	3 Our Evaluation Algorithms
	3.1 Basic Homomorphic Operations
	3.2 Our Public Key Evaluation Algorithm
	3.3 Our Encoding Evaluation Algorithm
	3.4 Our Simulated Public Key Evaluation Algorithm

	4 Our Attribute-Based Encryption
	4.1 Correctness
	4.2 Security Proof

	5 Parameter Selection
	6 Extensions
	References

	Conversions Among Several Classes of Predicate Encryption and Applications to ABE with Various Compactness Tradeoffs
	1 Introduction
	1.1 Our Results
	1.2 Related Works

	2 Preliminaries
	2.1 Definition of Predicate Encryption
	2.2 (Arithmetic) Span Program, ABE, and Doubly Spatial Encryption
	2.3 Embedding Lemma for PE

	3 Conversion from ABE to DSE
	3.1 The Conversion
	3.2 Correctness of the Conversion

	4 From DSE to Non-Monotonic ABE
	4.1 The Conversion
	4.2 Correctness of the Conversion

	5 From KP(CP)-ABE to KASP(CASP)
	5.1 The Conversion
	5.2 Correctness of the Conversion

	6 Implications of Our Result
	7 Application to Attribute-Based Signature
	References

	Zero-Knowledge
	QA-NIZK Arguments in Asymmetric Groups: New Tools and New Constructions
	1 Introduction
	1.1 Our Results

	2 Preliminaries
	2.1 Computational Assumptions
	2.2 Groth-Sahai NIZK Proofs
	2.3 Quasi-Adaptive NIZK Arguments
	2.4 QA-NIZK Argument for Linear Spaces

	3 New QA-NIZK Arguments in Asymmetric Groups
	3.1 Argument of Membership in Subspace Concatenation
	3.2 Argument of Sum in Subspace
	3.3 Argument of Equal Opening in Different Groups

	4 Aggregating Groth-Sahai Proofs in Asymmetric Groups
	5 QA-NIZK Arguments for Bit-Strings
	5.1 The Scheme
	5.2 Proof of Security
	5.3 Extensions

	6 Applications
	References

	Dual-System Simulation-Soundness with Applications to UC-PAKE and More
	1 Introduction
	2 Preliminaries: Quasi-Adaptive NIZK Proofs
	3 Dual-System Simulation-Soundness
	4 DSS-QA-NIZK for Linear Subspaces
	5 Keyed-Homomorphic CCA Encryption
	6 Single-Round UC Password-Based Key Exchange
	6.1 UC-PAKE Definition
	6.2 Main Idea of the UC Protocol Using DSS-QA-NIZK
	6.3 Main Idea of the UC Simulator
	6.4 Main Idea of the Proof of UC Realization
	6.5 Adaptive Corruption

	References

	Secret Sharing and Statistical Zero Knowledge
	1 Introduction
	1.1 Our Results
	1.2 Related Work and Open Problems

	2 Preliminaries and Definitions
	2.1 Complexity Classes
	2.2 Secret Sharing
	2.3 Partial Randomized Encodings
	2.4 Special Interactive Proofs
	2.5 Statistical Zero Knowledge

	3 From Zero Knowledge to Secret Sharing and Back
	3.1 Proof of the Main Theorem

	4 Positive Results on Efficient Secret Sharing
	4.1 Bounded-Degree Graph Non-Isomorphism
	4.2 Lattice Closest Vectors
	4.3 Co-primality

	5 Negative Results on Universally Efficient Secret Sharing
	A Proof of Lemma [13]
	B A Refined Completeness Theorem for SZKL
	References

	Compactly Hiding Linear Spans
	1 Introduction
	2 Background and Definitions
	2.1 Hardness Assumptions
	2.2 Quasi-Adaptive NIZK Proofs and Simulation-Soundness
	2.3 Linearly Homomorphic Structure-Preserving Signatures

	3 Constant-Size QA-NIZK Proofs of Linear Subspace Membership with Tight Simulation-Soundness
	3.1 Intuition
	3.2 Construction

	4 Security
	5 Applications to Tightly Secure Primitives
	5.1 CCA2-Secure (Threshold) Encryption with Shorter Ciphertexts
	5.2 Encrypting Long Messages
	5.3 Application to UC Commitments

	References

	Multiparty Computation II
	A Unified Approach to MPC with Preprocessing Using OT
	1 Introduction
	1.1 Our Contributions

	2 Notation
	2.1 Authenticating Secret-Shared Values

	3 OT Extension Protocols
	3.1 Amplified Correlated OT with Errors

	4 Authentication Protocol
	5 Triple Generation in F2 and F2k
	5.1 F2k Triples
	5.2 F2 Triples

	6 Triple Generation for MiniMACs
	6.1 Raw Material
	6.2 Authentication
	6.3 Multiplication Triples
	6.4 Schur and Reorganization Pairs

	7 Complexity Analysis
	7.1 Estimating Runtimes

	References

	Secure Computation from Millionaire
	1 Introduction
	1.1 Our Results
	1.2 Malicious and Covert Security

	2 Preliminaries
	3 Honest-But-Curious Protocols
	3.1 Honest-but-Curious Security

	4 Instantiations of Our Protocol
	4.1 Convex Hull

	5 Covert Security
	5.1 Generic Algorithm for Covert Security
	5.2 Convex Hull
	5.3 Matroids

	6 Computing the Median: Revisiting the AMP Protocol
	6.1 On Achieving Malicious Security in Our General Framework

	References

	Garbling Scheme for Formulas with Constant Size of Garbled Gates
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Garbling Scheme
	2.3 Generalized Correlation Robustness

	3 Garbling Scheme for Formulas
	3.1 Garbling
	3.2 Evaluation
	3.3 Efficiency Comparison with Previous Schemes

	4 Security of the Proposed Scheme
	5 Extensions
	5.1 Arbitrary Fan-Out
	5.2 Incorporating Free-XOR
	5.3 Security Against Malicious Adversaries

	6 Instantiation with PRIV-secure Deterministic Encryption
	References

	Card-Based Cryptographic Protocols Using a Minimal Number of Cards
	1 Introduction
	2 Machine Model and Security of Card-Based Protocols
	3 A Calculus of States
	4 A Four-Card Las Vegas AND Protocol
	5 A Five-Card Finite-Runtime AND Protocol
	6 Finite-Runtime AND Requires Five Cards
	7 A 2k-Card Protocol for any k-ary Boolean Function
	8 On the Implementation of Shuffle Operations
	9 Conclusion
	References

	Author Index

