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Abstract Based on the Cartesian frame, the dynamic model of the linear array
deployable structures was established, the motion constraint equations were com-
pleted by the constraint conditions of the scissor-like element (SLE). The numerical
calculation was carried out using multi-step Runge–Kutta method, the law of
velocity and acceleration during the motion process were obtained, and the con-
straint default stabilization method was also utilized to avoid the divergence of the
results. The results show that the velocity, acceleration, and reaction force of the
scissor mechanism along y-axis presents better symmetry properties because the
horizontal constant force is in x direction. Meanwhile, at the side of the mechanism
withstanding the external force, the dynamic properties of each node along x di-
rection change more obviously; however, the changing amplitude of the velocity,
acceleration, and other physical quantities are very small along x-axis on the
non-force side.

Keywords Scissor-like element (SLE) � Linear array � Symmetrical features �
Stability constraint default � Dynamic

1 Introduction

Deployable structure has the characteristics of small size, large space, which can be
expanded into a preset contracted state and maintain a steady configuration.
Therefore, it has a broad application prospects in the fields of aviation, aerospace,
and construction. The scissor deployable structure in the paper is a kind of bar
deployable structures, the scissor unit is the basic unit consisting of scissor
deployable structures, which is connected by two links to form “X”-type structure
through the hinge with the movement contraction function. The scissor hinge units
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can be composed of a variety of specific deployable forms using different ways,
such as flat stretch arm, spherical grid system, and quadrilateral cross-sectional
stretching arms.

In recent years, with the increasing of the competition of the international aero-
space engineering, the demanding for dynamic behavior of deployable structures [1–
3] in the motion process becomes more intense, the need to accurately predict the
dynamics of deployable structures grows more urgent. Cambridge University
Professor Pellegrino [4] together with the European Space Agency carried out the
design and structure optimization of the two-dimensional and three-dimensional
scissor structure as the basic unit consisting of deployable structure; Gantes [5, 6]
completed the geometric design of the hemispherical deployable structures through
symbols operation method and made sure the advantage of symbolic operation
method in the geometric design of deployable structures; Langbecker [7] made an
in-depth research on the motion characteristics and expanding conditions of
deployable scissor-type mechanism and established a folding equations to analyze
translation, cylindrical and the expanding process of ball deputy agencies; Oxford
University Chen et al. [8] and Gan and Pellegrino [9] studied the bifurcation phe-
nomenon in the kinematic analysis of deployable structures and thus may explain the
emergence of mutations of hexagonal ring. Huang et al. [10, 11] carried out the
simulation analysis of dynamics of the deployable structures with clearance after the
expansion lock structure through clearance collision hinge model; Chen et al. [12]
carried out structure design study for six prism unit deployable antenna; Ji et al. [13]
analyzed and simulated the expanding process of the asymmetrical planar deploy-
able structure, the expanding conditions of asymmetrical bodies were discussed, and
the dynamics acceleration, velocity, and other physical quantities were carried out
using the numerical simulation, but the impact of reaction force on institutions was
not made a full discussion. In the engineering field, symmetry deployable structures
can be applied to a broader field [14]; the symmetrical array deployable institutions
were regarded as objects in the paper; Lagrange multipliers were used to build a
dynamic model; the Baumgarte stabilization method was used to avoid numerical
divergence; the dynamic characteristics of the reaction force, acceleration, and other
physical dynamics during the expanding process of the deployable structures were
made a thorough study, as opposed to asymmetrical bodies, which shows a speci-
ficity of symmetrical institutions during motion process.

2 Dynamics Model and Equations of Symmetrical
Deployable Structures

The scissor unit was arrayed along a straight line, and the adjacent units were
connected by joints, the linear array combination deployable structures can be
obtained, shown in Fig. 1. Scissor unit consists of two bars (d1, d2), which was
connected by joint o3. A unit was made up with five nodes, including a hinge point
and four endpoints which were equaled by hinged point.
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2.1 Constraint Equation of Scissor Mechanism

Constraint equation is a prerequisite for dynamics analysis. Due to the symmetry of
scissor mechanism, a detailed analysis of constraint equations for unit mechanism
was in favor of considering the overall organization of the constraint equations.
Figure 2 shows the plane mathematical model of any scissor unit. The bar ij and bar
kl rely on hinge o to connect and transmit motion, achieving scalability. Due to the
design needs, the distance between the endpoint of each rod and the hinge o can be
changed.

According to the basic constraint equations between the rigid bodies, the con-
straint equation of any plane scissor unit can be established as follows:

Uq ¼ b
aþ b

xi þ a
aþ b

xj � d
cþ d

xk � c
cþ d

xl ¼ 0 ð1Þ

where a, b, c, d refer to the distance from endpoints i, j, k, l to the pin o.
The constraint equations of scissor units obtained can be assembled; then, the

whole constraint equations of the mechanism can be obtained. For the unit sym-
metry deployable mechanism shown in Fig. 1, its constraint equation can be written
as follows:

Fig. 1 Linear array
deployable mechanism-based
SLE
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U ¼

xa
ya
yh

xa þ xg � xb � xh
ya þ yg � yb � yh
xc þ xg � xb � xf
yc þ yg � yb � yf
xc þ xe � xd � xf
yc þ ye � yd � yf

ðxa � xgÞ2 þðya � ygÞ2 � l2ag

ðxb � xhÞ2 þðyb � yhÞ2 � l2bh
ðxb � xf Þ2 þðyb � yf Þ2 � l2bf

ðxc � xgÞ2 þðyc � ygÞ2 � l2cg

ðxc � xeÞ2 þðyc � yeÞ2 � l2ce
ðxd � xf Þ2 þðyd � yf Þ2 � l2df

2
6666666666666666666666666666666664

3
7777777777777777777777777777777775

¼ 0 ð2Þ

the constraint Eq. (2) can be represented as a matrix form.

Uðq; tÞ ¼ U1ðq; tÞ U2ðq; tÞ � � � Uiðq; tÞ½ �T¼ 0 i ¼ 15 ð3Þ

Fig. 2 Unit scissor hinge
constraints
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2.2 Dynamic Equation of Scissor Mechanism

The speed and acceleration equation of the system can be obtained after the con-
straint equations were calculated first- and second-order derivative:

_/ðq; _q; tÞ ¼ /qðq; tÞ _qþ/tðq; tÞ ¼ 0 ð4Þ

€/ðq; _q; €q; tÞ ¼ /qðq; tÞ€qþð/q _qÞq _qþ 2/qt _qþ/tt ¼ 0 ð5Þ

where Uqðq; tÞ is the Jacobian matrix order:

g ¼ �ð/q _qÞq � 2/qt _q� /tt ð6Þ

Then, Eq. (5) can be converted to

€/ðq; _q; €q; tÞ ¼ /qðq; tÞ€q� g ¼ 0 ð7Þ

Mass matrix of the scissor mechanism in Fig. 1 can be assembled as follows:

M ¼ qAl
6

2I2 I2
I2 2I2

� �
ð8Þ

where q, A, l, respectively, represent rod density, cross-sectional area and unit rod
length, I2 is the 2 × 2 unit matrix.

The scissor mechanism variation equation can be obtained according to
Newton’s law:

dqTðM€q� QÞ ¼ 0 ð9Þ

where M, Q stand mass matrix and generalized force matrix respectively.
The variation equations can be obtained from constraint equations:

Uqdq ¼ 0 ð10Þ

The Lagrange motion differential equations can be obtained through arranging
formula (9) and (10):

M€qþ/T
Qk ¼ Q ð11Þ

where k is the Lagrange multiplier.
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The Lagrange augmented matrix can be combined with motion differential
equations and acceleration constraint equations:

M /T
Q

/q 0

� �
€q
k

� �
¼ Q

g

� �
ð12Þ

Formula (12) only introduced an acceleration constraint equation, the velocity,
and position obtained will not necessarily meet the position constraint equations
and velocity constraint equations; the constraint violation phenomenon would occur
during the solving process. To avoid the constraint violation problem, this paper
used a constraint violation stabilization method Baumgarte [15] proposed, namely
the correction factors were introduced to correct the system

/€q� g� 2a _/� b2/ ¼ 0 ð13Þ

where g is acceleration right item which includes velocity, displacement, time. a
and b are the correction coefficient greater than 0, usually it would have a good
stability when a and b equal each other. a and b are taken as 5 in the paper during
the process of simulation and calculation.

Stable dynamics equation can be obtained after constraint correction:

M /T
q

/q 0

� �
€q
k

� �
¼ Q

g� 2a _/� b2/

� �
ð14Þ

Although the correction coefficient introduced which destroyed the initial
dynamics equation of the system has some influence on acceleration time history, it
has small impact on coordinate time history and avoiding the divergence of the
results in a large part. Meanwhile, the stability of the equation even can reach about
75 % when a and b are equal.

3 Numerical Simulation of Scissor Array Symmetrical
Deployable Mechanisms

According to the geometric model shown in Fig. 1, each bar is in uniform quality,
density q ¼ 2840 kg=m3, each bar length is l ¼ 2 m, the expansion rod cross
section is rectangular, the cross-sectional width is b ¼ 0:02 m, height is
h ¼ 0:05 m, the axial force F ¼ �50 N was applied to point H. The initial values
_qðt0Þ and qðt0Þ have been known at the initial time, the integration step is taken as
0.02 s, and the constraint force of the scissor deployable mechanism can be
obtained according to R ¼ �UT

qk. Also, the multi-step Runge–Kutta method was
used to solve the kinetic equation, the changing curve of displacement, velocity,
acceleration, and reaction forces of endpoint of each rod for the scissor array
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deployable structures with time can be obtained during deploying process, which is
shown in Figs. 3, 4, 5, and 6.

It can be concluded from all the figures shown above that the movement of each
node is very complex, but which presents the unique symmetry properties that the
array structure owns during the expansion process that the freedom of y direction of
endpoint H is constrained and the node H suffers the reverse force of x-axis. As
shown in Figs. 3, 4, and 5 that the displacement, velocity, and acceleration of node
A, B, C, D converge to 0 in the x direction during the kinematic process. The
acceleration and velocity of node E, F, G, H along x direction are gradually
increasing, the displacement of node approaches zero simultaneously. The dis-
placement, velocity, and acceleration of node A, H, node B, G, node C, F, node D,
E along the y-axis show the symmetry property. It is shown in three figures, when
t = 0.8 s, the mechanism reached a critical state; after more than 0.8 s, the geom-
etry properties of the scissor mechanism will be damaged. During the process of 0–
0.8 s, velocity and displacement gradually increased with the changing of accel-
eration. The similar situation is shown in Fig. 6, and the movement of the
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Fig. 3 Changing curve of the node displacement with time
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Fig. 4 Changing curve of the node velocity with time
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mechanism will be damaged after the time beyond 0.8 s. At this moment, the
constraint force of the corresponding node along the y-axis still maintained sym-
metry. Meanwhile, the symmetrical characteristic of each node in the x direction
was not obvious since the force was along the x-axis.

4 Conclusions

1. As shown in Fig. 5, the change of the acceleration of node in x direction is
relatively stable before 0.4 s and the acceleration increased rapidly after 0.4 s. In
order to ensure the mechanism can slowly deploy, a reasonable strategy can be
made according to Figs. 5 and 6;

2. During the deployment process of the scissor array deployable mechanism, the
dynamics of the each node along x direction on the force side changed more
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Fig. 5 Changing curve of the node acceleration with time
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Fig. 6 Changing curve of the node constraint force with time
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obviously. However, the dynamics of x direction of the each node on the
non-force side changed slightly, which was caused by constraints, and sym-
metry properties of the scissor mechanism;

3. It can be seen from the figures above that the scissor mechanism along y-axis
has a uniform variation in displacement, velocity, acceleration, and force, which
shows the symmetry of the scissor linear array deployable structure along y-axis
is more obvious. Due to the impact of the external force in x-axis, the symmetry
properties of the constraint force for the node in x direction do not turn out.
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