
Chapter 4
Bulk Dissipation in Nanofluid Dynamic
Wetting: Wettability-Related Parameters

Abstract In this chapter, we study how nanoparticles alter the surface tension,
viscosity, and rheology of nanofluids from microscopic viewpoints using molecular
dynamics simulations. The results reveal the roles of additional nanoparticles on the
modification of wettability-related parameters (surface tension, viscosity, and rhe-
ology) and then provide the guidelines in building nanofluid dynamic wetting
models.

4.1 Introduction

The suspensions of nanoparticles in the nanofluids significantly modify the prop-
erties of the base fluids. Therefore, nanofluids exhibit attractive properties, such as
high thermal conductivity and tunable surface tension, viscosity, and rheology.
Various attempts have been made to understand the mechanisms for these property
modifications caused by the additional nanoparticles. However, these mechanisms
are still unclear due to the lack of direct nanoscale evidences.

Most previous studies on the thermophysical properties of nanofluids have
explored the effects of the nanofluid parameters, such as the nanoparticle loading,
diameter, and material and the base fluid type on the thermal conductivity, surface
tension, viscosity, and rheology. Among these properties, the surface tension,
viscosity, and rheology are related to the dynamic wetting, a process dominated by
the surface tension and viscous forces. Therefore, the surface tension, viscosity, and
rheology are defined as wettability-related parameters in this book. The modifica-
tion of surface tension, viscosity, and rheology by adding nanoparticles greatly
affects the dynamic wetting behaviors. These effects are regarded as the bulk dis-
sipation here. Nanofluids are reported to have higher thermal conductivity than the
base fluids, which were explained by several established models, e.g., Brownian
motion, the solid/liquid interface layer around the nanoparticles, or the ballistic
phonon transport hypotheses [1–10]. There have been many studies on thermal
conductivity, but only a few studies on nanofluid surface tension, viscosity, and
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rheology. Table 4.1 summarizes the studies on the nanofluid surface tensions [11].
The studies are still controversial because the surface tensions of nanofluids have
been reported to be increased [12–14], unchanged [15, 16], or decreased [17, 18]
compared with that of the base fluids. Even for the same nanofluids, such as Al2O3/
H2O nanofluids, surface tension was reported to be increased by Zhu et al. [12], but
unchanged by Das et al. [17]. Some studies have tried to qualitatively explain the
mechanisms of these modifications in the nanofluid surface tension [14, 19–21].
Tanvir and Li [14] suggested that the attractive forces between the particles at the
liquid–vapor interface increase as the particle concentration increases which
increase the surface tension. However, Murshed et al. [19], Radiom et al. [20], and
Liu and Kai [21] proposed that the surface tension reduction may be attributed to
the reduction of the cohesive energy at the liquid–vapor interface, because nano-
sized particles are brought to the lowest interfacial energy level by the Brownian
motion. They also suggested that the nanoparticles function as surfactant molecules
since nanoparticles are absorbed onto the liquid–vapor interface to reduce the
surface tension. However, all these analyses are only suggestions without any direct
evidences, and some are even contradictory.

The nanofluids are usually regarded as colloidal suspensions. Rigorously
speaking, colloidal suspensions are mixture solutions containing micro-/milli-sized
particles, while nanofluids containing nanosized particles. Several classical models
have been proposed to predict the effective viscosity of colloidal suspensions [22–
25]. However, these models failed to predict the effective viscosity of nanofluids
[26–28]. The models of nanofluid viscosity have been reviewed by Eastman et al.
[29], Keblinski et al. [30], and Mahbubul et al. [31]. Most of these models were
only based on hypotheses or empirical correlations between the effective viscosity
and macroscopic parameters, such as the loading fractions or temperatures. Some

Table 4.1 Studies of the surface tension of nanofluids

Authors Nanofluids Method σ

Zhu et al. [12] Al2O3/H2O Experiment Increase

Moosavi et al. [13] ZnO/EG/glycerol Experiment Increase

Tanvir and Li [14] Al/Al2O3/B/MWCNT
H2O

Experiment Increase

Kumar and
Milanova [15]

CNT/H2O Experiment Increase

Chen et al. [16] Laponite/Fe2O3/
Ag/H2O

Experiment Constant/decrease

Das et al. [17] Al2O3/H2O Experiment Constant

Vafaei et al. [18] Bi2Te3/AOT Experiment/model Decrease/increase

Murshed et al. [19] TiO2/H2O Experiment Decrease

Radiom et al. [20] TiO2/H2O Experiment Decrease

Liu and Kai [21] TiN/SiC/Al2O3/
CNT/ammonia–H2O

Experiment TiN/SiC decrease
Al2O3/CN increase

Reprinted from Ref. [11], with kind permission from Springer Science+Business Media
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correlations had considered the effects of particle size, which is related to the
Brownian motion [32, 33]; however, undetermined constants in these models must
be fit from macroscopic experimental measurements. Thus, more studies are needed
to identify the enhancement mechanism with microscopic evidence.

The rheological properties of nanofluids had been reviewed by Chen et al. [34].
According to the summary in Table 4.2, there is still debate about whether nano-
fluids exhibit Newtonian [16, 35–37] or non-Newtonian [38–47] in experiments.
Even for the same nanofluid, such as Al2O3/H2O nanofluids, Newtonian rheological
behavior was reported by Das et al. [17] and Prasher et al. [35], while
non-Newtonian rheological behavior was observed by Wang et al. [38], Murshed
et al. [40], Kole and Dey [43], and Kim et al. [46]. Most of these studies mainly
reported the experimental data, with few focused on the mechanisms for the rhe-
ological transformation from Newtonian to non-Newtonian fluids by adding
nanoparticles. Yu et al. [45] stated that the rheological properties of nanofluids
depend strongly on many factors, such as nanoparticle material, shape, the loading
fractions, and temperatures. Chen et al. [34] proposed an aggregation mechanism to

Table 4.2 Studies of the rheology of nanofluids

Authors Nanofluids Method Rheology

Das et al. [17] Al2O3/H2O, CuO/H2O Experiment Newtonian

Prasher et al. [35] Al2O3/PG Experiment Newtonian

Chen et al. [36] TiO2/ethylene glycol Experiment Newtonian

Susan-Resiga et al. [37] Fe3O4/MOL Experiment Newtonian

Wang et al. [38] CuO/H2O/ethylene
glycol,
Al2O3/H2O/ethylene
glycol/engine oil

Experiment Non-Newtonian

He et al. [39] TiO2/H2O Experiment Non-Newtonian

Murshed et al. [40] Al2O3/H2O Experiment Non-Newtonian

Chen et al. [41] TNT/EG Experiment Non-Newtonian (shear
thinning)

Ding et al. [42] CNT/H2O Experiment Non-Newtonian (shear
thinning)

Kole and Dey [43] Al2O3/car coolant,
CuO/gear oil

Experiment Non-Newtonian

Yu et al. [44] AlN/Eg, AlN/PG Experiment φ < 5 %: Newtonian,
φ > 5 %: non-Newtonian

Yu et al. [45] ZnO/EG Experiment φ < 2 %: Newtonian,
φ > 3 %: non-Newtonian

Kim et al. [46] Al2O3/H2O Experiment φ < 2 %: Newtonian,
3 % < φ < 5 %:
non-Newtonian

Abareshi et al. [47] α-Fe2O3-glycerol Experiment Non-Newtonian@low
temperature

Reprinted from Ref. [11], with kind permission from Springer Science+Business Media
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interpret the rheological behavior of nanofluids and categorized the rheological
behavior of nanofluids into four groups such as dilute, semi-dilute,
semi-concentrated, and concentrated. However, they did not consider the mecha-
nism of rheological transform. In addition, no direct evidence was provided to
support their hypotheses.

Most previous studies of nanofluid have focused on collecting the thermo-
physical property data. The macroscopic measurements were then used to establish
models to explain the mechanisms; however, these explanations have not been
supported by direct evidence. MD simulations can provide microscopic under-
standing of the thermophysical properties in much greater detail, which have been
extensively used to investigate the surface tension, viscosity, and rheology of pure
liquids [48–55] or binary mixture solutions [56–60]. Recently, the MD simulations
have also been used to model the nanofluid thermal conductivity [61–67] with some
promising results that verify the theories based on macroscopic measurements.
However, few MD studies have focused on the surface tension, viscosity, and
rheology of nanofluids.

The objective of this chapter is to study how nanoparticles alter the surface
tension, viscosity, and rheology of nanofluids from microscopic viewpoints using
MD simulations. The results reveal the roles of additional nanoparticles on the
modification of wettability-related parameters and then provide the guidelines in
building nanofluid dynamic wetting models.

4.2 Simulation Methods

4.2.1 Simulation Systems

Figure 4.1 shows the simulated systems had four nanofluid loadings. Bulk water
films (4500 water molecules) were simulated at 300 K using the molecular dynamic
simulations with four gold nanoparticle loadings (φ = 0, 3.43 %, 6.77 %, and

Fig. 4.1 Illustrations of the molecular structures of pure water and three gold nanoparticle
nanofluid loading fractions (the water molecules are transparent to illustrate the nanoparticle
positions for φ = 3.43 %). Reprinted from Ref. [11], with kind permission from Springer
Science+Business Media
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9.81 %). The gold nanoparticles (0.8 × 0.8 × 0.8 nm3) randomly distributed inside
the bulk liquid. The four-point TIP4P-Ew water model, PPPM technique, and
SHAKE algorithm were used to describe the water–water interactions [68, 69].
The EAM [70] was used for the gold–gold interactions. The simulation details have
been described in Chap. 3. A 12-6 LJ potential with σ = 3.1 Å [71] and a cutoff
distance of 9 Å was used to describe the water–gold interactions. The gold
nanoparticle wettability was changed with different gold–water interaction param-
eter ε (ε = 0.0070, 0.02714, 0.05427 and 0.08141 eV). The NVT ensembles at T =
300 K with a time step of 1 fs were used to calculate the thermodynamic properties.
The simulations were performed with LAMMPS software packages [72].

4.2.2 Surface Tension Calculation Method

In most MD simulations, the surface tension is calculated based on Young–Laplace
equation [73], as shown in Eq. (4.1).

Dp ¼ rLV
R

ð4:1Þ

where Δp is the pressure difference between the inside and outside of the droplet,
σLV is the liquid–vapor surface tension, and R is the droplet radius. However, the
pressure fluctuates greatly in LAMMPS. For example, for a set pressure of 1 bar,
the standard deviation of the fluctuations is about 40 bar. Thus, the surface tension
cannot be calculated with such large pressure variations even with time averaging.
Therefore, a new method, referred to as excess energy method here, was used to
calculate the surface tension. The simulation details are shown in Chap. 3.

4.2.3 Viscosity and Rheology Calculation Method

The reverse non-equilibrium MD (rNEMD) method [74] was used to calculate the
nanofluid viscosity. The method is based on Onsager linear response theory,

ja ¼ �
X

b

LabXb ð4:2Þ

where jα is the momentum flux, Xβ is the driving force (velocity gradient), and Lαβ is
the diffusion coefficient (viscosity).

As shown in Fig. 4.2, a momentum flux was imposed on the bulk liquid to
generate a velocity gradient. The diffusion coefficient, in this case the viscosity, was
then obtained using:
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ja pxh i ¼ Px

2tA
ð4:3Þ

where Px is the pressure in the x direction, t is the velocity swapping period, and
A is the area of xy plane.

To impose the momentum flux onto the bulk liquid, two water molecules were
moved in the bottom and middle plates against the intended current, one with the
minimum velocity and the other with the maximum velocity. The velocities were
then swapped in another calculation. The momentum flux then generated a velocity
gradient, dVx/dz. As shown in Fig. 4.3, a good linear velocity profile was obtained
along the z direction that was fit with a straight line with the momentum flux and
then calculated using Eq. (4.3).

Fig. 4.2 Momentum exchange in the rNEMD simulation method. Reprinted from Ref. [11], with
kind permission from Springer Science+Business Media
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Fig. 4.3 Velocity profile in the rNEMD method. Reprinted from Ref. [11], with kind permission
from Springer Science+Business Media
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The velocity swapping period, t, in Eq. (4.3) was varied to create various
momentum fluxes and velocities to relate the viscosity to the shear rate (rheology).

Figure 4.4 compares the present MD results with the experimental data for pure
water at various temperatures. The good agreement indicates the accuracy of the
present water model and the rNEMD method.

4.3 Results and Discussion

4.3.1 Surface Tension of Gold–Water Nanofluids

For pure water, the calculated surface tension from the MD simulations was
σ = 0.0679 N/m at T = 300 K, close to the experimental value of σ = 0.072 N/m
[75]. For the 3.43 % nanofluid, the addition of nanoparticles increased the surface
tension for the nanoparticles with εwater–gold = 0.05427 eV, but reduced it for those
with εwater–gold = 0.0070 eV. The different tendencies for these two cases are related
to the different water–gold interactions (εwater–gold) and water–water interactions
(εwater–water = 0.0071 eV for TIP4P-Ew). For εwater–gold < εwater–water, the nanopar-
ticles are hydrophobic, so they tend to stay on the free surface (liquid–vapor
interface), acting as surfactant-like particles, as shown in Fig. 4.5a. For εwater–
gold > εwater–water, the nanoparticles are hydrophilic, so they tend to submerge into
the bulk liquid, acting as non-surfactant particles, as shown in Fig. 4.5b.

The surface tension indicates the unbalanced forces acting on the liquid mole-
cules at the interface due to the van der Waals force, as shown in Fig. 4.6a. The
liquid molecules at the surface do not have an equal number of molecules in the
vapor side, so they are pulled inward by the internal molecules, which results in the
surface tension, pulling the liquid surface to contract to the minimum area. Thus,
the nanoparticle wettability is responsible for the different surface tensions. For
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Fig. 4.4 Verification of the rNEMD method: viscosity of pure water at various temperatures.
Reprinted from Ref. [11], with kind permission from Springer Science+Business Media
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hydrophobic nanoparticles, the nanoparticles gather on the free surface. The
repulsion force between the nanoparticles and the water molecules increases the
intermolecular spacing at the interface and reduces the attraction forces between the
water molecules inside the bulk liquid and the ones on the free surface regions, thus
reducing the surface tension, as shown in Fig. 4.6b. However, some hydrophilic
nanoparticles are transported toward the interfacial region by Brownian motion
where the attraction forces between the nanoparticles and the water molecules
reduce the intermolecular spacing at the interface. The water molecules at the free
surface are more strongly pulled inward due to the presence of the hydrophilic
nanoparticles with stronger gold–water interaction forces than those with the water–
water interactions, which increase the surface tension, as shown in Fig. 4.6c.

Figure 4.7 shows the evidences for the hydrophobic/hydrophilic nanoparticles
changing the intermolecular spacing in the interfacial region. The water density
remains constant in the bulk liquid but decreases sharply near the interface. The
thickness of the reduced density region, defined as the interface width, d, decreases
with increasing nanoparticle wettability, leading to the increased surface tension. In

Fig. 4.5 Snapshots of the
3.43 % nanofluid with
a hydrophobic gold
nanoparticles (ε = 0.007 eV);
b hydrophilic gold
nanoparticles
(ε = 0.05427 eV). Reprinted
from Ref. [11], with kind
permission from Springer
Science+Business Media
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addition, the interface width, d, decreases with increasing φ for the hydrophilic
nanoparticles, but increases with increasing φ for the hydrophobic nanoparticles.

Therefore, for nanofluids, the dynamic wetting can be facilitated by adding
hydrophobic nanoparticles, but inhibited by adding hydrophilic nanoparticles,
which is related to the modification of nanofluid surface tension.

Fig. 4.6 Schematic of the van der Waals forces between water molecules and nanoparticle–water
molecule near the interfacial region: a water molecular interaction for pure water; b gold
nanoparticle–water molecule interactions for εwater–gold < εwater–water; c gold nanoparticle–water
molecule interactions for εwater–gold < εwater–water. Reprinted from Ref. [11], with kind permission
from Springer Science+Business Media
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4.3.2 Viscosity of Gold–Water Nanofluids

Figure 4.8 shows the viscosities of pure water and low loading nanofluids (φ = 0 %,
φ = 3.43 %, and φ = 6.77 %). The viscosity increases with increasing volume
concentration, which agrees with experimental data [76]. The increasing viscosity
with loading is illustrated by the microscopic picture of one randomly selected gold
nanoparticle shown in the inset in Fig. 4.9, in which the hydrogen atoms are hidden.
An absorbed water layer has formed around the gold nanoparticle, which can be
observed by plotting the water density along the radial direction, as shown in
Fig. 4.9. The water density near the nanoparticle at 19 Å is five times that of the
bulk liquid, indicating a solid-like absorbed water layer around the gold nanopar-
ticle. The effect can be explained by the Einstein diffusion equation [77],
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Fig. 4.7 Water density profiles perpendicular to the free surface for pure water and nanofluids
with hydrophobic or hydrophilic nanoparticles (φ = 3.43 %). Reprinted from Ref. [11], with kind
permission from Springer Science+Business Media
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DNP ¼ kBT
6plr

ð4:4Þ

where DNP is the nanoparticle diffusion coefficient, kB is Boltzmann’s constant, T is
the absolute temperature, μ is the base liquid viscosity, and r is the particle radius.
The absorbed water layer increases the equivalent nanoparticle radius which hinders
nanoparticle diffusion within the base liquid according to Eq. (4.4). Consequently,
the increased nanofluid viscosity can be explained by the decreased nanoparticle
diffusion coefficient. The absorbed layer is also reported as the reasons for the
nanofluid thermal conductivity enhancement [51, 53]. The interactions between the
nanoparticles and the water molecules were changed by modifying ε. As shown in
Fig. 4.10a, the density of the absorbed water layer increases with the increasing
gold–water interaction parameter. Thus, smaller diffusion coefficients occur for
stronger NP–water molecule interactions, and the nanofluid viscosity can be
expected to increase with increasing the gold–water interaction parameter, as shown
in Fig. 4.10b. The number of gold nanoparticles in the solution affects the viscosity,
as shown in Fig. 4.10b, but does not affect the intensity of the absorbed water layer
for a single nanoparticle if the nanoparticle loading is low enough.

4.3.3 Rheology of Gold–Water Nanofluids

Figure 4.11 shows the viscosity versus shear rate variation, as known as rheological
relations. For pure water and low nanofluid loadings (φ = 3.43 % and φ = 6.77 %),
the viscosity remains constant for shear rates from 10−1 to 3 × 102 s−1. However,
the viscosity of the φ = 9.81 % nanofluid remains constant only with a narrow shear
rate range (from 10−1 to 100 s−1) and decreases as the shear rate increases from 100

to 3 × 102 s−1, indicating shear-thinning non-Newtonian rheological behavior. This
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Fig. 4.9 Water density near a
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rheology transformation at high shear rates was also seen experimentally by Carré
and Woehl [78].

The inset in Fig. 4.12 shows a typical microscopic structure of two nanoparticle–
water molecule cluster. Comparison of the particle distribution with the high
loading in the inset in Fig. 4.12 with the distribution for a lower loadings seen in the
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Fig. 4.11 Viscosity versus shear rate (rheology) for nanofluids for various loadings
(ε = 0.05427 eV). Reprinted from Ref. [11], with kind permission from Springer Science+Business
Media
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inset in Fig. 4.9 shows that there are more chances for nanoparticles to move closer
together for high loadings since nanoparticles always move randomly in the base
liquid due to Brownian motion. The solid-like absorbed water layers around the
nanoparticles are also observed in this structure. Additionally, the water density
between these two closed nanoparticles is several times larger than that of the bulk
liquid density, as shown in Fig. 4.12, indicating that solidification of the water
molecules also occurs in this structure, which is defined here as a solidification
structure due to the additional nanoparticle–nanoparticle interactions. This solidi-
fication structure further increases the nanofluid viscosity for higher loadings. The
solidification structures remain unchanged at low shear rates, where the nanofluids
exhibit Newtonian rheological behavior. However, there is a critical shear rate
above which the solidification structures are disrupted and the solidified water
molecules move more freely, which reduces the nanofluid viscosity, leading to the
shear-thinning non-Newtonian rheological behavior.

When the gold–water interactions increase for lower loadings (φ = 3.43 % and
φ = 6.77 %), the viscosity increases, while the rheology remains unchanged, as
shown in Fig. 4.13. Therefore, the mechanism for the solidification effect, which is
more likely at high loadings, is related to but differs from the mechanism for the
solid-like absorbed water layer that alters the viscosity.
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4.4 Conclusions

The surface tension, viscosity, and rheology of gold–water nanofluids were
examined using molecular dynamic simulations. The effects of the gold nanopar-
ticle loadings and particle wettability were examined. The main conclusions are as
follows:

1. The microscopic mechanism for the surface tension variation is related to the
nanoparticle wettability. The repulsion of water molecules by surfactant-like
nanoparticles increases the molecular spacing on the free surface which reduces
the fluid surface tension. The attraction induced by non-surfactant nanoparticles
reduces the molecular spacing on the free surface which increases the surface
tension.

2. A solid-like absorbed water layer around the nanoparticles increases the
equivalent nanoparticle radius and hinders the nanoparticle mobility within the
base fluid which increases the nanofluid viscosity.

3. The nanofluid rheological behavior depends on the nanoparticle loading. For
low loadings, the viscosity increases with increasing gold–water interaction
forces, but remains unchanged with the shear rate, indicating Newtonian
behavior. For high loadings, water molecule solidification is observed between
neighboring nanoparticles due to the strong particle–particle interactions. These
solidification structures are then disrupted for shear rates exceeding a critical
value, which leads to shear-thinning non-Newtonian rheological behavior.
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