Discover Abnormal Behaviors Using HTTP
Header Fields Measurement

Quan Bai, Gang Xiong(g), Yong Zhao, and Zhenzhen Li

Institute of Information Engineering,
Chinese Academy of Sciences, Beijing, China
{baiquan, xionggang, zhaoyong, lizhenzhen}@iie. ac. cn

Abstract. In recent years, in order to be secure, more and more Intrusion
Detection Systems (IDS) and firewalls have been used to detect and block
malicious applications or even unknown protocols. As a result, some malicious
applications begin to shape themselves as common application protocols to get
rid of detection. Being an important protocol for many Internet services, HTTP
is responsible more than half of the total traffic volume. As a result, many
applications choose HTTP protocol as their shaping object, leading to many
abnormal behaviors. In the paper, we study the problem of discovering these
abnormal behaviors in HTTP protocol. A method based on HTTP header fields’
measurement is proposed. We measure HTTP header fields’ information from
HTTP traffic from normal application such as IE-8, find some characteristics and
we use them to find abnormal behaviors of shaping HTTP protocol.

Keywords: HTTP header fields - Measurement - Abnormal behaviors -
Protocol format

1 Introduction

With the development of the Internet, more and more Intrusion Detection Systems
(IDS) and firewalls have been used to detect and block malicious applications or even
unknown protocols. As a result, some malicious applications begin to shape themselves
as normal application protocols to get rid of detection.

However, a malicious application can do protocol confusion, but its web traffic may
have abnormal protocol format. Houmansadr et al. [1] shows that, “unobservability by
imitation” is a fundamentally flawed approach. The web traffic produced by malicious
application has abnormal protocol format. So we can find those abnormal behaviors
based on the discovery of abnormal protocol format.

Being an important protocol for many Internet services, HTTP is responsible more
than half of the total traffic volume. Our measurement on HTTP traffic shows that, there
are nearly 12000 types of HTTP header field in HTTP request traffic and nearly 32000
types in HTTP response traffic. The diversity of HTTP header fields of HTTP message
brings a difficult problem for web applications based intrusion detection [2]. As a
result, many applications choose HTTP protocol as their shaping object, which leads to
many abnormal behaviors.

© Springer-Verlag Berlin Heidelberg 2015
W. Niu et al. (Eds.): ATIS 2015, CCIS 557, pp. 89-100, 2015.
DOI: 10.1007/978-3-662-48683-2_9

90 Q. Bai et al.

Take FTE (Format-Transforming Encryption) proxy as an example. FTE works by
transforming encrypted data in words of a specific language based on a regular
expression. It is now integrated in Tor and is mainly transformed into HTTP traffic. The
principle of Format-Transforming Encryption is shown in Fig. 1.

The FTE client transforms original traffic into HTTP-like traffic using a regular
expression shown in Fig. 2. The shaped data is detected as HTTP traffic by the firewall
and get through the firewall. Then the proxy will reverse the data into original traffic. In
this way, FTE sends its data through the firewall by shaping as HTTP [3].

Tranform into HTTP

&' 'y '®

FTE Client Firewall FTE proxy Internet

Original traffic HTTP traffic Original traffic

Fig. 1. FTE proxy principle

"MHTTP/1\\.1\\ 200 OK\\r \\nContent-Type:\\ ([a-2A-Z0-9]+)\\r\\n\\r\\n\\C*$ '
NGET\\\\ /([a-zA-Z0-9\\\\/1*) HTTP/1\\. 1\\r\\n\\r\\n$.

Fig. 2. Example of regular expression used by FTE proxy

These shaping applications hazard the Internet security seriously and they create
many abnormal behaviors in the web. So it is necessary to find a method to detect
abnormal behavior of web traffic. In the paper, we study the problem of discovering
these abnormal behaviors in HTTP protocol. A method based on HTTP header fields’
measurement is proposed. We measure HTTP header fields’ information from HTTP
traffic from normal application, find some characteristics and we use them to find
abnormal behaviors of shaped HTTP protocol.

The rest of the paper is organized as follows. Section 2 reviews the related work.
Section 3 shows our approach to find abnormal behaviors. A method base on mea-
surement is proposed. In Sect. 4 we take HTTP protocol as an example to show that
method based on measurement and statistics is useful to find behaviors of network
evasion and protocol obfuscation. Finally, Sect. 5 concludes our work.

2 Related Work

2.1 Discovery of Abnormal Behaviors

There are many researches on discovery of abnormal behaviors, and many feasible
methods are proposed. These methods have something in common, that is they are all

Discover Abnormal Behaviors Using HTTP Header Fields Measurement 91

done in the application layer. These methods can be used to find abnormal behaviors
such as network evasion and protocol obfuscation.

Roelker [4] reviews HTTP IDS (Intrusion Detection System) evasions approaches
such as invalid protocol parsing and invalid protocol field decoding. And the work
divides the detection methods into two classes: protocol analysis and pattern matching.

Hernacki et al. [5] overviews the existing network evasion methods based on
abnormal protocol format. The work summarizes them into five classes: Tunneling,
Flooding, Desynchronization, Encoding variations and Segmentation & reordering.
They also show that network attack based on network evasion technology may affect
the network security seriously.

Hjelmvik et al. [6] proposes a traffic classification method based on statistical
analysis. This work divides traffic classification methods into four classes: payload
examination, social host behavior, statistical flow fingerprints and obfuscated traffic.
Besides this paper give some examples of protocol obfuscation behaviors. For example,
Skype obfuscates VoIP protocol, BitTorrent has its Message Stream Encryption
(MSE) protocol, which is also called Protocol Header Encryption, (PHE) and eDonkey
obfuscates UDP protocol or TCP protocol. Using these protocol obfuscation behaviors,
these P2P (Peer to Peer) applications get through the Intrusion Detection Systems and
realized network evasion behaviors. At last, this paper proposes that one can improve
the obfuscation behaviors’ obfuscation performance by randomizing data stream
structure, randomizing packet header, obfuscating the direction of packet and so on.

Mahoney et al. [7] proposes a method based on payload keyword to detect
abnormal web behaviors. This work detects the application layer attack using specific
keywords of the data packet payload and they also construct union attribute pairs (pairs
of keyword and destination port) to find attack behaviors.

Wang and Stolfo [8] proposes a method based on statistical distributions of char-
acter of payload. They discover and detect application layer network attack using
statistical distributions of character of payload.

Hjelmvik and John [6] also proposes a frame for protocol identification called
SPID, which is short for Statistical Protocol Identification. The frame analyzes the
payload by attribute classification and successfully identifies application protocol of
obfuscated traffic based on the traffic characteristics of the session.

Shen [9] proposes a algorithm to detect web anomaly behaviors using the char-
acteristic of length of HTTP request, characters distribution, structure of attribute fields,
enumeration of attribute fields and so on.

2.2 Automatic Discovery of Protocol Format

There are also researches on distinguishing unwanted crawlers and valid ones.
Reverse engineering is the traditional method of protocol format analysis. Reverse
engineering, also called back engineering, is the process of extracting knowledge or
design information from anything man-made and re-producing it or reproducing any-
thing based on the extracted information.
Traditional reverse engineering is done by artificial manual analysis, which is a
Boring process and is easy to make errors. As a result, Analysis of automation

92 Q. Bai et al.

discovery is becoming a new Research point. Luo et al. [10] summarizes the methods
of analysis of Unknown protocol into three classes.

Program Analysis. These methods are based on the protocol information in the
application by using dynamic stain spread and binary tracking to track process of the
protocol. Caballero et al. [11] proposes the system Polyglot to mine the packet format
is based on dynamic stain technology. If the length of a field is controlled by certain
parameters, then this filed can be recognized as fixed-length fields. Unfixed-length
fields are usually recognized by the length of the field and the separators. This system
can not only extract the information format, but also discover protocol keywords by
tracking stain data and comparing them with constant character strings.

Research on Protocol Similarity. These methods are all doing clustering with net-
work data packets and using sequence pairs alignment, similar matrix, evolutionary tree
and other algorithms to extract the protocol [12].

Data Mining. These methods extract protocol format by searching the common
characteristics of the protocols.

The first class of method is Suitable for both text protocol and binary protocol.
While the last two classes can get good results when dealing with text protocol but their
accuracy is not ideal with dealing with binary protocol.

Above all we can find that there will be further works on discovering the protocol
format automatically. At the same time, accuracy of the analysis results will become
much higher. Realizing the automatic analysis with much higher accuracy will become
hot research point on protocol structure. We can also see that, the existed works are
mainly to get the abnormal format of protocol through snifferring certain applications.
And what we do is to discover abnormal protocol format in the real network envi-
ronment, and further more to find abnormal behaviors based on traffic measurement.

3 Methodology

The purpose of protocol confusion is to implement the features of “unobservability”.
Intuitively, unobservability means that a censor can neither recognize the traffic gen-
erated by the circumvention system, nor identify the endpoints engaged in circum-
vention. However, to implement unobservability, the malicious applications need to
mimic the protocol in its entirety (include Correct, IntraDepend, InterDepend), mimic
reaction to errors and network conditions (include Errors, Network), mimicking typical
traffic (include Content, Patterns, geographic location), and mimic implementation-
specific artifacts (include Soft, operating system). Houmansadr et al. [1] shows that, it
is impossible to satisfy all these requests.

So we can see that although a malicious application may shape itself as a common
protocol, it cannot get all the characteristics of the common protocol, especially the
general characteristics of message structure in statistics.

Discover Abnormal Behaviors Using HTTP Header Fields Measurement 93

Once again we take FTE as an example: although it can shape itself as HTTP
protocol using a regular expression, it cannot get all the characteristics of fields of
normal HTTP request message. We find a regular expression in its configuration file of
Tor Browser, an application which FTE is integrated in. It format is like below:

“AGET\\ \\/ ([a-2zA-Z0-9\\.\\/1*) HTTP/I\\.I\\r\\n\\r\\ns$”

Figure 3 shows the HTTP request message created by Tor Browser using this
regular expression. We can see that the shaped HTTP request message only has key
words like “GET” and “HTTP” and even no HTTP Header Fields.

GET //

HffedctIazk/. w3VC. OM3yNms1ZnIQxks6TTmikswoQioh6EXt4qHQNVTV3S52S3rROt1zet 827
VCOBSL}IrzzsKipCcckSIpoBCTeBQPU. QRSAOCGCNITALQPFNLPAMP. mBGPNTTWNGS4TST KK
8zEpve2cPNKkG2V/HZy3KA4LWNNs . uwkaPY44cqjAbTzbwIhRWPt8X4FT5KCpRH HTTP/1.1

b o0oltb =610 hooooc (e ot 0000000 (1] I —— 0..a.x..r4l...[poy.m
e 1N ooCaoaofanodhoooo ol |locVelReolE bVao |
{.8.$m..n....70.D...... Wios 170 o)lloo otk 8o0g loal % b 0G0 goofinh) G
I.Z......L.cd.b....W.4t.. 8., ..., T =8 o Xeverrnns K.4%..)...
H. 7ddA W2, Rool 740000000 B.f..&

Fig. 3. HTTP request message created by FTE proxy

Figure 4 shows the HTTP request message created by normal web Browser (IE
Browser). We can see that the normal HTTP request message not only has key words
like “GET” and “HTTP” but also and has HTTP Header Fields like “Host”, “Con-
nection”, “Accept”, “User-Agent” and so on, and they are placed in a specific order.

Follow TCP Stream - . l

Stream Content

GET / HTTP/1.1

Host: www.baidu.com

connection: keep-alive

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,%/%;q=0.8
User-Agent: Moz111a/5 0 (windows NT 6. 1) App]ewebK1t/537 36 (KHTML Tike Gecko)
Chrome/28.0.1500.95 safari/537.36 SE 2.X Metasr 1.0

Accept-Encoding: gzip,deflate,sdch

Accept-Language: zh-CN,zh;g=0.8

Fig. 4. HTTP request message created by normal web Browser

So we can see, for a specific HTTP application like IE Browser, its HTTP header
fields is usually constant, some other applications may shape their data or declare
themselves by User-Agent as traffic of IE Browser, but their HTTP header fields
information will still be abnormal in fields’ details and orders. We can firstly measure
the traffic of a certain normal application protocol in real network; and secondly we do
statistics on HTTP header fields to summarize general characteristics; finally we use
these characteristics to do match and those shaped traffic may be classified as abnormal
ones.

94 Q. Bai et al.

4 Experiments and Results

4.1 Environment

We take IE-8 Browser as an example. We know that HTTP request message from
normal /E-8 Browser has string like “Mozilla/4.0 (compatible; MSIE 8.0;....” [13].
According to our idea, we began with matching this User-Agent to do statistics with
massive of IE-8 Browser traffic in the real network CSTNET, one of Chinese ISPs. We
focus on how much HTTP header fields the traffic will have on average and the general
order of them. We got some statistical characteristics of HTTP header fields to use them
to discover abnormal behaviors of web flow. We did measurement for a full week.

4.2 The Basic Statistical Analysis of HTTP Header Field

We measured the count of HTTP header fields the traffic will have on average and the
frequency of them. To get a more accurate result, we did this in two directions: C2S
(which is short of Client to Server) and (S2C which is short for Server to Client).

There are 11248 kinds of HTTP header field keywords in the 208360203 measured
HTTP flows in the direction of C2S. There are 9.80534 header fields on average, as is
shown in Table 1.

Table 1. The basic statistical analysis in the direction of C2S

Ranking | HTTP request field | Count Frequency
1 Host 137121850 | 65.81 %
2 Connection 125776314 | 60.99 %
3 User-Agent 121032201 | 58.57 %
4 Accept-Encoding | 102451704 | 50.25 %
5 Accept 95398172 | 46.70 %

There are 31330 kinds of HTTP header field keywords in the 237540382 measured
HTTP flows in the direction of S2C. There are 6.64656 header fields on average, as is
shown in Table 2.

Table 2. The basic statistical analysis in the direction of S2C

Ranking | HTTP response field | Count Frequency
1 Date 232314493 1 97.80 %
2 Server 231734078 | 97.56 %
3 Connection 214881782 |90.46 %
4 Content-Type 194919502 | 82.06 %
5 Content-Length 175658286 | 73.95 %

22 Age 6546036 | 3.47 %

Discover Abnormal Behaviors Using HTTP Header Fields Measurement 95

The results of the measurement can be used as a characteristic to discover
Abnormal HTTP traffic, which we will use in Section C. And with these results, we can
future mining the order of the Top 20 field keywords in the two directions.

4.3 The Mining Analysis of HTTP Header Field Order

Scheme I, Mining the header keyword based on position: Firstly, We the count of
each HTTP header field of each position and sort them. And then we deal with each sorted
position synthetically and get the most frequent HTTP header field of each position. For
example, firstly we divide the data set into 20 files based on the position of each HTTP
header field. As is shown in Fig. 5, “File 1” stands for HTTP header field keyword
appeared in the first position in the whole data set. At last we summarize “File 1" to “File
20 to get the final file, which is the most common field keyword of the 20 positions.

Data
Set

v

ceccee File 20

v
Final
Order

Fig. 5. Mining the header keyword based on position

Table 3 shows the result of order based on Scheme I.
The advantage of Scheme I is that its model is simple to understand, and the
disadvantage is that it is sensitive to difference. If adding a new field at the beginning,

all the fields’ value will change.

Table 3. The result of order based on Scheme I

C2S S2C
Host Data
Connection Server

Accept-Encoding | Content-Length

User-Agent
Content-Type
Accept
Referer

From

Connection
X-Rowered-By
Cache-Control
Accept-Ranges
Set-Cookie

96 Q. Bai et al.

Scheme II, Mining the header keyword based on the weighted order: To overcome
the sensibility to difference in Scheme I, We mining the data set again in another
dimension. Scheme II is based on order rather than position. We scored each HTTP
header field keywords based on their coming order. Keyword with higher score means
it will coming earlier in the position.

We traversed each HTTP protocol request or response packet, the keyword coming
first weight higher (N), and the keyword coming later weight lower, the weight value
diminishes according to the order. The weight formula is shown below:

score[F] = Zj (N — order[F][}])

Score[F] stands for order score of HTTP header F, and order[F][j] means the order
of F in the jth HTTP flow of the data set. N is set 20 because we only checked the top
20 header fields. Table 4 shows the result of order based on Scheme II.

Table 4. The result of order based on Scheme II

C2S S2C
Host Server
Connection Date

Accept-Encoding | Content-Type

Accept x-powered-by
Content-type Content-Length
Accept-Language | Connection
User-Agent Cache-Control

X-Requested-With | Pragma

The advantage of Scheme II is that it is based on order rather than position, so that

it can recover the sensibility in Scheme I. And the disadvantage is that it will ignore
special header field. As it is just addition simply, the field appears more will get more
changes to addition which will lead to a higher score in position order.
Scheme ITI, Mining the header keyword based on the average weighted order: To
recover the problem of field appears more will score higher in Scheme II, we modified
the formula on the basis of Scheme II: we added a variable count[F] to record the
coming count of field keyword, and averaged the value at last, The weight formula is
shown below:

2. (N — order[F][J])

count[F]

score|F] =

Variable count[F] stands for count of HTTP request messages that contain HTTP
header F. Table 5 shows the result of order based on Scheme III.

Discover Abnormal Behaviors Using HTTP Header Fields Measurement 97

Table 5. The result of order based on Scheme III

C2S S2C
Host Date
Connection Server

Accept-Encoding | Connection

Accept Content-Length
User-Agent Content-Type
Accept-Language | X-Powered-By
Content-Type Cache-Control

X-Requested-With | Last-Modified

The advantage of Scheme III is that it is based on order rather than position, and it
can recover the disadvantage in Scheme II. But the disadvantage is that this scheme is
strongly statistical. However, in the real network, it is reasonable for HTTP protocol
header field keywords to have a variety of orders. This is similar to the overfitting in
machine learning.

We compared the different results of 3 schemes and took C2S direction as an
example, the result is shown in Fig. 6.

C2S Schemel C2S Schemell C2S Schemelll

Host Host Host

Connection Connection Connection

GCCeREENCHANGNN—. | ¥ Accept-Encoding _ _ _ _ _ / Accept-Encoding _ _ _ _ _

User-Agent Accept Accept

Content-Type Content-type User-Agent

Accept Accept-Language Accept-Language
—_Referer_ __________ UserAgent_ _ _ _ _ _ _ _ ContentType

From X-Requested-With: X-Requested-With)

Accept-Language If-Modified-Since If-Modified-Since

Fig. 6. Comparison of different results of these three schemes

Firstly, Scheme II and Scheme III are in the dimension of order, Scheme III is an
improvement of Scheme II, while Scheme I is in the dimension of position. As a result,
the results of Scheme II and III are relatively more similar than Scheme 1.

Secondly, although the results of these three schemes are different in detail, they
still have some similarities. For example, the first three header field keywords of three
schemes are the same, they are “Host”, “Connection” and “Accept-Encoding”. As for
the 4th to 7th keywords, although the orders of them from three schemes have some
differences, they are just simply different in position; they are still the same in the view
of a set.

So we can see, in the view of set, the header field keywords order are the same in
block from three schemes. We can use keywords block instead of keywords position: the
Ist block includes keywords like “Host”, “Connection” and “Accept-Encoding”; the
2nd block includes “Accept”, “Content-Type”, “Accept-Language”, “User-Agent”...

98 Q. Bai et al.

and so on. In the view of keywords block, we can also solve the problem of overfitting in
Scheme III.

4.4 Recognize Abnormal HTTP Flow

We analyzed the data we got and found some statistical characteristics of HTTP header
fields. Table 1 shows the main header fields of IE-8 Browser traffic and their percentage
of appearance.

Table 6. Statistical characteristics of HTTP header fields

HTTP header name C2S

HTTP header name S2C

Host

Connection
Accept-Encoding
Accept
User-Agent
Accept-Language
Content-Type
X-Requested-With
If-Modified-Since
From

Date

Server
Connection
Content-Length
Content-Type
X-Powered-By
Cache-Control
Last-Modified
Accept-Ranges
Pragma

Firstly, we used the count of HTTP header fields the traffic have on average and the
frequency of them we got in Tables 1 and 2. As for the result may do not cover all the
cases, for example, some HTTP request message contain header field of cookie while
others do not. So we only checked the common fields listed in Table 6.

And then we sorted the score[F] in Scheme III and got the general order of header
fields of IE-8 Browser traffic, the result of C2S direction is shown in Fig. 7.

We reviewed the data by matching the header fields and the general order of them

by formula below. N stands for the set of header fields listed in Table 1, and F stands
for the set of fields of HTTP request message being tested. Card (N) is the number of
elements of set N. Inverse (F) means the inverse number compared with the common
order of F. When the value_x(F) is less than the threshold value we set, this HTTP
request message will be recognized as an abnormal one.

card(FNN)

lue_x(F) = a——
value_x(F) = a card(N)

- b*Inverse (F)

We found that most of the request messages passed the test, while some are
recognized as abnormal ones. We checked those data and found them indeed different
from the common ones. They do not even have GET fields, which mean they do not for
the purpose of requesting.

Discover Abnormal Behaviors Using HTTP Header Fields Measurement 99

-
Host
Connection
Accept-Encoding
N
4)
User-Agent
Accept- Language
Accept
Content-Type
\ J
4 N
X-Requested-With
If-Modified-Since
From
\ <
(3\
v | e
(. J

Fig. 7. General order of HTTP header fields of IE-8

There are also abnormal behaviors of IE-8 traffic with other request method. An
example is shown in Fig. 8.

CONNECT api.foxitcloud.com:443 HTTP/1.0

User-Agent: Mozilla/4.0 (compatible; MSIE 8.0; Windows NT
6.1; Trident/4.0; SLCC2; .NET CLR 2.0.50727; .NET CLR
3.5.30729; .NET CLR 3.0.30729; Media Center PC 6.0;
.NET4.0C; .NET4.0E)

Host: api.foxitcloud.com:443

Content-Length: 0

Proxy-Connection: Keep-Alive

Pragma: no-cache

Fig. 8. An abnormal HTTP flow of IE-8

This packet is started with request method CONNECT and it is not pass the
formula test. The method name CONNECT is used for a proxy that can dynamically
switch to being a tunnel, and we can see that this packet is used for Foxit cloud to
switch to a SSL tunnel.

5 Conclusions

In the paper, we study the problem of discovering these abnormal behaviors in HTTP
protocol. A method based on HTTP header fields’ measurement is proposed. We
measure header fields’ information from HTTP traffic from normal application, find
some characteristics in statistics such as count of header field in each packet on
average, the frequency of each field and the order block of them. Using them we found
some abnormal behaviors of shaped HTTP protocol. The result shows that it is possible
to discover abnormal web behaviors using HTTP header fields’ measurement.

100 Q. Bai et al.

Acknowledgements. This work is supported by the National Science and Technology Support
Program (No. 2012BAH46B02); the Strategic Priority Research Program of the Chinese
Academy of Sciences (No. XDA06030200).

References

1. Houmansadr, A., Brubaker, C., Shmatikov, V.: The parrot is dead: observing unobservable
network communications. In: 2013 IEEE Symposium on Security and Privacy (SP), pp. 65—
79. IEEE (2013)

2. Hjelmvik, E., John, W.: Breaking and improving protocol obfuscation. Technical report
123751, Chalmers University of Technology (2010)

3. Dyer, K.P., Coull, S.E., Ristenpart, T., et al.: Format-transforming encryption: more than
meets the DPI. The IACR Cryptology, p. 494. ePrint Archive (2012)

4. Roelker, D.J.: HTTP IDS evasions revisited. Sourcefire Inc. (2003)

5. Hernacki, B., Bennett, J., Hoagland, J.: An overview of network evasion methods. Inf.
Secur. Tech. Report 10(3), 140-149 (2005)

6. Hjelmvik, E., John, W.: Breaking and improving protocol obfuscation. Technical report
123751, Chalmers University of Technology (2010)

7. Mahoney, M.V., Chan, P.K.: Learning nonstationary models of normal network traffic for
detecting novel attacks. In: Proceedings of the Eighth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 376-385. ACM (2002)

8. Wang, K., Stolfo, S.J.: Anomalous payload-based network intrusion detection. In: Jonsson,
E., Valdes, A., Almgren, M. (eds.) RAID 2004. LNCS, vol. 3224, pp. 203-222. Springer,
Heidelberg (2004)

9. Shen, X.: A implementation of intrusion detection system based on web anomaly detection.
Shanghai Jiaotong University (2010)

10. Luo, C., Zhang, Y., Wang, Q., et al.: Automatic network protocol analysis and vulnerability
discovery based on symbolic expression. J. Grad. Univ. Chin. Acad. Sci. 30(2), 278-284
(2013)

11. Caballero, J., Yin, H., Liang, Z., et al.: Polyglot: automatic extraction of protocol message
format using dynamic binary analysis. In: Proceedings of the 14th ACM Conference on
Computer and Communications Security, pp. 317-329. ACM (2007)

12. Li, W.M,, Zhang, A.F., Liu, J.C., et al.: An automatic network protocol fuzz testing and
vulnerability discovering method. Jisuanji Xuebao (Chinese Journal of Computers) 34(2),
242-255 (2011)

13. Microsoft Developer Network (MSDN): Understanding user-agent strings. https://msdn.
microsoft.com/zh-cn/library/ms537503(en-us).aspx

https://msdn.microsoft.com/zh-cn/library/ms537503(en-us).aspx
https://msdn.microsoft.com/zh-cn/library/ms537503(en-us).aspx

	Discover Abnormal Behaviors Using HTTP Header Fields Measurement
	Abstract
	1 Introduction
	2 Related Work
	2.1 Discovery of Abnormal Behaviors
	2.2 Automatic Discovery of Protocol Format

	3 Methodology
	4 Experiments and Results
	4.1 Environment
	4.2 The Basic Statistical Analysis of HTTP Header Field
	4.3 The Mining Analysis of HTTP Header Field Order
	4.4 Recognize Abnormal HTTP Flow

	5 Conclusions
	Acknowledgements
	References

