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Abstract. Reliability modeling and assessment for a single numerical control
(NC) machine tool with zero-failure is a new problem that cannot be solved
using classic statistical methods. Thus a Bayesian method is proposed aiming at
this problem. In combination with the two-parameter Weibull distribution, the
Bayes model of zero-failure problem for a single NC machine tool is built. The
method of building the Weibull parameters’ prior distributions is presented. The
theoretical formula for the parameter vector’s posterior distribution is derived. In
software WinBUGS, the Markov chain Monte Carlo (MCMC) simulation is
developed to simulate each parameter’s posterior distribution, solving calcula-
tion difficulties in high-dimensional integration and parameter estimation. The
proposed method is applied to real data, obtaining the parameter estimators and
meant time between failures (MTBF). The result is in consistent with the
engineering reality. Given the fact that the actual MTBF cannot be achieved by
any means, the proposed method achieves the fusion of the expert experience,
multi-source prior information and data. The proposed method is advocated to
be a standard solution to the zero-failure reliability assessment for NC machine
tools.
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1 Introduction

1.1 Zero-Failure Problem for a Single Machine Tool

Traditionally, a reliability test on NC machine tools relies on many machines and a
long time to collect sufficient data required by classic statistical methods. For, example,
Keller et al. [1], collected field data on 35 NC machine tools over three years, and Yang
et al. [2], collected field data on 12 NC machine tools over five years. Nowadays, some
high-end NC machine tools are of high cost and few copies. Thus the reliability test on
a single machine tool has come to reality, and sometimes, zero failures occur. The
zero-failure result is an event that the time between failures (TBF) is larger than the
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total test time. This event is equivalent to a censored datum. Under zero-failure case,
the reliability modeling and assessment is named the zero-failure problem, and classic
statistical methods cannot solve this problem since they require sufficient failure data.
To solve this new problem, literatures on other products’ zero-failure cases are firstly
reviewed, and then the solution to the zero-failure problem of single machine tool is
developed.

1.2 Zero-Failure Cases of Other Products

In reliability demonstration tests, the zero-failure cases are common. Martz and Waller
[3] presented a Bayesian reliability demonstration testing plan, which expects zero
failures to demonstrate the pre-specified reliability target and determine the test time
and the number of products to be tested, and the failure time of the tested products is
assumed to follow an exponential distribution. To demonstrate a level of reliability of a
technical system under zero failures, such as an alarm system, Coolen et al. [4] ana-
lyzed optimal test numbers for a type of task using Bayesian method, and tasks arrive
as a Poisson process. Fan et al. [5] employed an accelerated experiment on
electro-explosive devices of which the lifetime follows an exponential distribution, and
the minimum sample size and testing length were designed under the assumption that
zero failures occur. Obviously, in reliability demonstration test, the zero-failure is
expected by researchers.

However, in reliability modeling and assessment, a zero-failure result is not
expected by people, since it causes difficulties in reliability modeling and assessment.
Some scholars have proposed methods to implement reliability modeling and assess-
ment under zero failures. For example, Miller et al. [6] estimated the failure probability
of software products under zero failures using Bayesian theory. Guo et al. [7] designed
a Bayesian method to estimate the reliability of one-shot systems such as missiles and
rockets when there are few or no failures. Aiming at zero-failure data, Mao et al. [8]
estimated the reliability of engines, of which the failure time follows a Weibull dis-
tribution, and the method is based on Bayesian theory and expert experience.

After reviewing literatures, it is found that nearly all the above methods dealing
with zero-failure problems fall into the framework of Bayes statistics. So far, no reports
have been found aiming at the zero-failure problem of a single NC machine tool.
Therefore, a Bayesian reliability modeling and assessment method is proposed aiming
at the zero-failure result for a single NC machine tool.

1.3 Bayesian Method of the Zero-Failure Problem

In Sect. 2, the two-parameter Weibull distribution is firstly used to model the Bayesian
zero-failure problem for a single machine tool. In Sect. 3, the method of obtaining the
Weibull parameters’ prior distributions is proposed; Sect. 4 derives the formula of
calculating parameter vector’s posterior distribution and parameters’ estimators.
Section 5 applies the proposed method to real zero-failure data and develops an MCMC
algorithm in software WinBUGS, obtaining the MTBF of the tested product.
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2 Bayesian Model of Zero-Failure Problem for Single NC
Machine Tools

In machine tools industry, the two-parameter Weibull distribution is usually adopted to
describe the time between failures (TBF) by many scholars, such as Keller [1] and Jia
[9]. In this study, random variable T denotes the TBF of a single machine tool; t
denotes an observation of T. The cumulative distribution function (CDF) and reliability
function of the two-parameter Weibull distribution are given as follows.

F t a; bjð Þ ¼ F t hjð Þ ¼ 1� exp � t
a

� �b
� �

; t[ 0 ð1Þ

R t a; bjð Þ ¼ R t hjð Þ ¼ exp � t
a

� �b
� �

ð2Þ

Where α > 0 and β > 0 are the scale and shape parameters, respectively. The parameter
vector is denoted by θ = (α, β).

The prior distributions of the Weibull parameters are denoted by two probability
density functions (PDF): π(α) and π(β), respectively; the prior distribution of the
parameter vector is denoted by π(θ). The two parameters are assumed to be mutually
independent and thus π(θ) is obtained as follows:

p hð Þ ¼ p a; bð Þ ¼ p að Þ � p bð Þ ð3Þ

Suppose the total test time on a single NC machine tool is tc (c for censored), and
zero failures occur after the test. This event is denoted as: T > tc, which is a censored
datum. The likelihood function of data given parameter vector is given by Eq. (4).

Pr T [ tc hjð Þ ¼ R tc hjð Þ ¼ exp � tc
a

� �b
� �

ð4Þ

The marginal probability distribution of data is given by Eq. (5)

Pr T[ tcð Þ ¼
Z

p hð Þ Pr T[ tc hjð Þdh ð5Þ

Let π(θ|T > tc) denote the posterior distribution of the parameter vector, which is
obtained by the Bayes theorem given by Eq. (6).

p h T [ tcjð Þ ¼ p hð Þ Pr T [ tc hjð Þ
Pr T [ tcð Þ ð6Þ

A detailed theoretical formula for the posterior distribution can be obtained by
substituting Eqs. (3)–(5) into (6).
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p h T [ tcjð Þ ¼ p a; b T [ tcjð Þ ¼ p hð ÞR tc hjð Þ
R tcð Þ

¼
p að Þp bð Þ exp � tc

a

� �bh i

RR
p að Þp bð Þ exp � tc

a

� �bh i
dadb

ð7Þ

The posterior distributions of α and β are denoted by π(α|T > tc) and π(β|T > tc),
which are obtained from Eq. (7). The posterior means are usually adopted as the
Bayesian parameter estimators. When the two parameters are both random variables,
the double integral in (7) has no closed form, which is called the high-dimensional
integration according to the study of Soland [10]. Thus, to get the estimators analyti-
cally based on formula (7) is impossible, and some numerical method is needed to
calculate the estimators. Therefore, a Markov chain Monte Carlo algorithm is devel-
oped in software WinBUGS to simulate the parameters’ posterior distributions, cal-
culate the parameter estimators and estimate MTBF.

3 Building Weibull Parameters’ Prior Distributions

In Bayesian methods, parameters are treated as random variables which have prior
distributions. Parameters’ prior distributions are generally obtained by historical data,
engineering experience and expert judgment [11]. However, experts with abundant
engineering experience in machine tools industry are generally not familiar with
probability or reliability knowledge. To ask experts to directly give the prior distri-
butions of the Weibull parameters is not feasible. Hence, to assist the experts, an
indirect method of building the Weibull parameters’ prior distributions are as follows.

The type of NC machine tool to be tested is denoted by A. The expert panel should
identify two similar types of NC machine tools, A− and A+, with large samples of
history data. If RL denotes reliability level of a product, then the following relations
should be satisfied, that is, RL(A−) < RL(A) < RL(A+). Considering the multi-source
prior information such as machine’s type, structure, functions, cost, and manufacturer’s
technology level, the expert panel is responsible to identify A− and A+ satisfying the
above requirements qualitatively based on their expertise.

Based on the large sample of history data, the Weibull parameter estimators for A−
can be obtained by classic method such as least squares estimation (LSE) and denoted
by αA- and βA-. Similarly, the Weibull parameter estimators for A+ can be obtained and
denoted by αA+, βA+. Let αL = min(αA+, αA-) and αU = max(αA+, αA-), then the prior
distribution interval for the Weibull scale parameter α for A is (αL, αU). Let βL = min
(βA-, βA+) and βU = min(βA-, βA+) then the prior distribution interval for the Weibull
shape parameter β for A is (βL, βU).

The two parameters are assumed to be uniformly, independently distributed on their
own ranges of value, respectively. Thus the prior distributions are given by PDFs as
follows:
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p að Þ ¼ 1
aU � aL

; aL\a\aU ð8Þ

p bð Þ ¼ 1
bL � bU

; bL\b\bU ð9Þ

4 Posterior Distribution and Parameter Estimation

Based on discussion in Sect. 2, there are no analytic solutions to the posterior distri-
butions. Since the double integral in Eq. (7) is a constant which represents the
unconditional probability of the event T > tc, Eq. (7) is rewritten in a proportionality
form. See Eq. (10).

p h T [ tcjð Þ / p að Þp bð Þ exp � tc
a

� �b
� �

ð10Þ

Given Eq. (10), the high-dimensional integration can be avoided and an MCMC
algorithm can be developed. The developed MCMC algorithm can generate a large
number of random values of parameters denoted as {αi, βi}, i = 1, 2, …, N. Two
Markov chains are formed which are denoted as {αi} and {βi}, i = 1, 2, …, N. If the
first B values of {αi} and {βi} are discarded as the burn-in period, the remaining values
{αB+1, αB+2, ···, αN} and {βB+1, βB+2, ···, βN} are assumed to be generated from the
posterior distributions π(α|t) and π(β|t), and this is how the MCMC algorithm simulate
the posterior distributions [11].

MCMC algorithm or simulation is a name of a family of specific algorithms. The
famous MCMC algorithms include the Metropolis algorithm, Metropolis-Hastings
algorithm, Gibbs sampling [11] and Slice sampling [12]. The free software product
WinBUGS can develop and run various algorithms. The MCMC algorithm for the
zero-failure problem in this study is developed in WinBUGS.

The arithmetic averages of values of two sets ALPHA = {αB+1, αB+2, ···, αN} and
BETA = {βB+1, βB+2, ···, βN} are usually adopted as the point estimator of the
parameters.

â ¼ 1
N � B

XN
i¼Bþ 1

ai ð11Þ

b̂ ¼ 1
N � B

XN
i¼Bþ 1

bi ð12Þ

The elements of the two sets are sorted in an ascending order respectively, to obtain
ALPHA�¼ a 1ð Þ; a 2ð Þ ; . . .; a N � Bð Þf g and BETA�¼ b 1ð Þ; b 2ð Þ ; � � � ; b N � Bð Þf g. Let
m1 ¼ 0:025� N � Bð Þb c and m2 ¼ 0:975� N � Bð Þb c; thus [α(m1), α(m2)] and
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[β(m1), β(m2)] are the 95 % credible intervals for α and β, respectively. WinBUGS
calculates these statistics automatically after running algorithms.

Based on the theoretical formula of the expectation of the two-parameter Weibull
distribution, the MTBF is given by Eq. (13).

MTBF ¼ â� C 1þ 1
.
b̂

� �
ð13Þ

5 Case Study

5.1 Zero-Failure Data

A reliability test was implemented on a single NC machine tool. Zero failures were
observed. The type of this machine is denoted by A. the total test time is 415 h. See
Table 1.

5.2 Building Prior Distributions

Two types of NC machine tools A− and A+ were identified by the expert panel
according to the multi-source prior information on structure, type, functions, cost and
the technology levels of manufacturers. A− and A+ have large samples of history data,
and based on LSE [13], the Weibull parameters for these two types are αA- = 803.15,
βA- = 0.9377, αA+ = 1298.33, βA+ = 1.5554. Thus the prior distributions are π(α) = 1/1
(1298.33 − 803.15), α ∊ (803.15, 1298.33), π(β) = 1/1(1.5554 − 0.9377),
β ∊ (0.9377, 1.5554).

5.3 BUGS Model for the Zero-Failure Problem

Substituting tc = 415 (h), π(α) and π(β) into Eq. (10) obtains the basis for developing an
BUGS model in WinBUGS, and WinBUGS develops a suitable MCMC algorithm
according to the BUGS model. A BUGS model consists of 3 parts: (1) describing prior
distributions; (2) describing the likelihood function; and (3) describing the data.

Firstly, the prior distributions of α and β is described using BUGS language as
follows

Where alpha and beta denote α and β, respectively; and “dunif” represents the
uniform distribution.

Table 1. The zero-failure data of test on a single machine tool

Index Type Number of machines Test time (h) Number of failures

1 A 1 415 0
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Secondly, the likelihood function given by reliability function R(tc|θ) in Eq. (4)
needs to be described. In WinBUGS, any likelihood function is treated as a probability
distribution function, but the reliability function given by (4) is a non-standard dis-
tribution function. Non-standard distributions are common in Bayesian methods and
programming skills are needed to represent them. The “zeros-trick” is utilized to
describe the likelihood function. That is, Poisson distribution is utilized to represent R
(tc|θ) equivalently. The principle of “zeros-trick” is introduced in literature [14], and the
BUGS code for the case in this study is given as follows:

Where “L” denotes the likelihood function; “dpois” denotes the Poisson distribu-
tion; “lambda” is the parameter of the Poisson distribution; and “z” is a random
variable following Poisson distribution.

Thirdly, since tc = 415 h, the data is described as follows

list(tc = 415)

The complete BUGS model is obtained by (1) creating a new blank document in
WinBUGS; (2) typing the above three parts of BUGS code in the document; (3) en-
closing the code of prior distributions and liklihood with a pair of curly braces; and
(4) adding a keyword “model” at the front. The BUGS model for the zero-failure
Bayesian problem is as follow.

After checking model, loading data, compiling code, generating initial values,
setting nodes (monitoring alpha and beta) and specifying length of Markov chain
(N = 10,000 in this application), WinBUGS is ready to select a suitable MCMC
algorithm and run it. Clicking on “update” starts the simulation. See Fig. 1.

The dymanic trace of iterations in the simulation process are shown in Figs. 2 and 3.
The complete trace of iterations of the MCMC simulation is shown in Figs. 4 and 5.
The various posterior statistics are obtained by specifying the burn-in period

B = 2000 and using the remaining 8000 generated values. See Fig. 6 and Table 2.
Based on Table 2, the posterior statistics are listed in Table 3.
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The approximated posterior PDF curves for alpha and beta after simulation are
displayed in Figs. 7 and 8.

Based on the simulation result, the posterior means are adopted as the parameter
estimators, where â ¼ 1058:0 and b̂ ¼ 1:257. Substituting the corresponding values
into Eq. (13) obtains the MTBF = 984.1609 h for the single NC machine tool A.

According to the parameters for A− and A+, the MTBFs are 827.1905 (h) and
1167.3 (h) repectively. It is concluded that MTBF(A−) < MTBF(A) < MTBF (A+).
This conclusion is consistent with the expert judgment.

Fig. 1. The settings of WinBUGS given BUGS model
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Fig. 2. Dynamic trace of iterations of MCMC simulation for α
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Fig. 3. Dynamic trace of iterations of MCMC simulation for β
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Fig. 4. Complete trace of iterations of the MCMC simulation for α
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Fig. 5. Complete trace of iterations of the MCMC simulation for β
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Fig. 6. Specifying the burn-in period

Table 2. The posterior statistics

Node Mean Sd MC error 2.50 % Median 97.50 % Start Sample

alpha 1058 143.3 1.645 817.5 1061 1288 2000 8001
beta 1.257 0.1801 0.001935 0.9563 1.263 1.542 2000 8001

Table 3. Posterior statistics after the MCMC simulation

Point estimator
of α

Point estimator
of β

95 % credible interval
of α

90 % credible interval
of β

1058.0 1.257 [817.5, 1288.0] [0.9563, 1.542]

Fig. 7. Simulated posterior PDF curves for α
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6 Conclusion

(1) Compared with the expert judgment which only gives the qualitative conclusions,
the proposed method achieves the combination of the subjective experience and
the data and gives the quantitative results.

(2) Given the zero-failure case, the actual value of MTBF cannot be obtained by any
means, and the MTBF estimated by the proposed method cannot be compared
with the actual MTBF mathematically.

(3) However, since the proposed method utilizes the multi-source prior information in
combination with the data, the results of the proposed method is believed to reflect
the engineering realities and the expert experience accurately. The proposed
method can serve as a new method of reliability assessment for a single NC
machine tool under zero-failure case currently.
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