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1 Introduction

Let L0 be the set of all real-valued measurable functions on a σ -finite measure space
(�,F , μ), where two of them are identified if they agree μ-almost everywhere. The
purpose of this paper is to study the set (L0)d of all d-dimensional vectors with com-
ponents in L0 and functions f : (L0)d → L0. Its main motivation are applications
in the following two special cases:

• If μ is a probability measure, the elements of L0 are random variables, and
subsets C ⊆ (L0)d can be understood as random sets in R

d . A typical function
f : (L0)d → L0 would, for example, be amapping that conditionally onF , assigns
to every random point X ∈ (L0)d its Euclidean distance to C .

• Let (�,G, μ)be the product of aσ -finitemeasure space (T,H, ν) and a probability
space (E, E, P). If F is a sub-σ -algebra of G, the elements of L0 are stochastic
processes (Xt )t∈T on (E, E, P). A subset C ⊆ (L0)d could, for instance, describe
the set of admissible strategies in a stochastic control problem, and an optimal
strategy could be characterized as the conditional optimizer of an appropriate
function f : (L0)d → L0 over C .

Unless� is the union of finitely many atoms, (L0)d is an infinite-dimensional vector
space over R. But conditioned on F , it is only d-dimensional. Or put differently,
it is a free module of rank d over the ring L0. This allows us to derive conditional
analogs of classical results from linear algebra, real analysis and convex analysis that
depend on the fact thatRd is a finite-dimensional vector space. L0-modules have been
studied before; see, for instance, Filipović et al. [4], Kupper and Vogelpoth [9], Guo
[6], Guo [7] and the references in these papers. But since we consider free modules
of finite rank, we are able to provide stronger results under weaker assumptions, and
moreover, do not need Zorn’s lemma or the axiom of choice. Our approach differs
from standardmeasurable selection arguments in that weworkmodulo null-sets with
respect to themeasureμ and do not useω-wise arguments. This has the advantage that
one never leaves the world of measurable functions. But it only works in situations
where a measure μ is given, and the quantities of interest do not depend on μ-null
sets.

The results in this paper are theoretical. But they have already been applied several
times: in Cheridito and Hu [1], they were used to describe stochastic constraints and
characterize optimal strategies in a dynamic consumption and investment problem. In
Cheridito and Stadje [3] they guaranteed the existence of a conditional subgradient.
In Cheridito and Stadje [3] they were applied to show existence and uniqueness of
economic equilibria in incomplete market models.

The structure of the paper is as follows: In Sect. 2 we investigate when an L0-
submodule of (L0)d is finitely generated. Then we study conditional orthogonality
and introduce L0-affine sets, L0-convex sets and L0-convex cones. It turns out that the
notion of σ -stability plays a crucial role. In Sect. 3 we investigate almost everywhere
converging sequences in (L0)d and the corresponding notion of closure. We define
L0-linear and L0-affine functions f : (L0)d → (L0)k and show that they are contin-
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uous with respect to almost everywhere converging sequences. We also give a condi-
tional version of the Bolzano–Weierstrass theorem and show that conditional Cauchy
sequences converge. Moreover, we define L0-bounded sets and give a condition for
L0-convex sets to be L0-bounded. In Sect. 4 we study sequentially semicontinuous
and L0-convex functions f : (L0)d → L0 and prove a result which guarantees that
a conditional optimization problem has an optimal solution. Section5 is devoted
to L0-open sets, interiors and relative interiors. L0-open sets form a topology, but
they are not complements of sequentially closed sets. In Sect. 6 we give strong,
weak and proper separation results of L0-convex sets by L0-hyperplanes. Section7
studies L0-convex functions and introduces conditional notions of differentiability,
directional derivatives, subgradients and convex conjugation.We also provide results
on the existence of conditional subgradients and give a conditional version of the
Fenchel–Moreau theorem. In Sect. 8 we study conditional inf-convolutions.
Notation. We assume μ(�) > 0 and define F+ := {A ∈ F : μ[A] > 0}. By L we
denote the set of all measurable functions X : � → R ∪ {±∞}, where two of them
are identified if they agree a.e. (almost everywhere). In particular, for X, Y ∈ L ,
X = Y , X > Y and X ≥ Y will be understood in the a.e. sense. Analogously, for
sets A, B ∈ F , we write A = B if μ[A�B] = 0 and A ⊆ B if μ[A \ B] = 0. The
set L0 := {X ∈ L : |X | < ∞} with the a.e. order is a lattice ordered ring, and every
non-empty subsetC of L has a least upper bound and a greatest lower bound in L with
respect to the a.e. order.We follow the usual convention inmeasure theory and denote
them by ess supC and ess inf C , respectively. It is well-known (see for instance, [10])
that there exist sequences (Xn) and (Yn) in C such that ess supC = supn Xn and
ess inf C = infn Yn . Moreover, ifC is directed upwards, (Xn) can be chosen such that
Xn+1 ≥ Xn , and if C is directed downwards, (Yn) can be chosen so that Yn+1 ≤ Yn .
For a set A ∈ F , we denote by 1A the characteristic function of A, that is, the function
1A : � → {0, 1} which is 1 on A and 0 elsewhere. If A is a subset of F , we set
ess supA := {

ess supA∈A 1A = 1
} ∈ F and ess inf A := {ess inf A∈A 1A = 1} ∈ F .

Furthermore, we use the notation L0+ := {X ∈ L0 : X ≥ 0}, L0++ := {X ∈ L0 : X >

0}, L := {X ∈ L : X > −∞}, L := {X ∈ L : X < +∞} and N := {1, 2, . . .}. By
N(F) we denote the set of all measurable functions N : � → N.

2 Algebraic Structures and Generating Sets

We fix d ∈ N and consider the set (L0)d := {
(X1, . . . , Xd) : Xi ∈ L0

}
. On (L0)d

we define the conditional inner product and conditional 2-norm by

〈X, Y 〉 :=
d∑

i=1

Xi Y i and ||X || := 〈X, X〉1/2 .

For every A ∈ F , 1A L0 is a subring of L0, and provided that μ[A] > 0, 1A(L0)d is
a free 1A L0-module of rank d generated by the base 1Aei , i = 1, . . . , d, where ei is
the i th unit vector in R

d ⊆ (L0)d . In particular, (L0)d is a free L0-module of rank d.
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Definition 2.1 We call a subset C of (L0)d

• stable if 1A X + 1Ac Y ∈ C for all X, Y ∈ C and A ∈ F ;
• σ -stable if

∑
n∈N 1An Xn ∈ C for every sequence (Xn)n∈N inC andpairwise disjoint

sets An ∈ F satisfying � = ⋃
n∈N An;

• L0-convex if λX + (1 − λ)Y ∈ C for all X, Y ∈ C and λ ∈ L0 such that 0 ≤ λ ≤
1;

• an L0-convex cone if it is L0-convex and λX ∈ C for all X ∈ C and λ ∈ L0++;
• L0-affine if λX + (1 − λ)Y ∈ C for all X, Y ∈ C and λ ∈ L0;
• L0-linear (or an L0-submodule) if λX + Y ∈ C for all X, Y ∈ C and λ ∈ L0.

For an arbitrary subset C of (L0)d and A ∈ F , we denote by stA(C), sstA(C),
convA(C), cconeA(C), aff A(C), linA(C) the smallest subset of 1A(L0)d containing
1AC that is stable, σ -stable, L0-convex, an L0-convex cone, L0-affine, or L0-linear,
respectively. If A = �, we just write st(C), sst(C), conv(C), ccone(C), aff(C),
lin(C) for these sets.

Remark 2.2 It can easily be checked that if C is a non-empty subset of (L0)d and
A ∈ F , then

stA(C) =
{

k∑

n=1

1An Xn : k ∈ N, Xn ∈ C, An ∈ F,

k⋃

n=1

An = A, Am ∩ An = ∅ for m �= n

}

;

sstA(C) =
{
∑

n∈N
1An Xn : Xn ∈ C, An ∈ F,

⋃

n∈N
An = A, Am ∩ An = ∅ for m �= n

}

;

convA(C) =
{

k∑

n=1

λn Xn : k ∈ N, Xn ∈ C, λn ∈ 1A L0+,

k∑

n=1

λn = 1A

}

;

cconeA(C) =
{

k∑

n=1

λn Xn : k ∈ N, Xn ∈ C, λn ∈ 1A L0+,

k∑

n=1

λn ∈ 1A L0++

}

;

aff A(C) =
{

k∑

n=1

λn Xn : k ∈ N, Xn ∈ C, λn ∈ 1A L0,

k∑

n=1

λn = 1A

}

;

linA(C) =
{

k∑

n=1

λn Xn : k ∈ N, Xn ∈ C, λn ∈ 1A L0

}

.

It follows that if C = {X1, . . . , Xk} for finitely many X1, . . . , Xk ∈ (L0)d , then the
sets convA(C), cconeA(C), aff A(C), linA(C) are all σ -stable.

Definition 2.3 Let A ∈ F+ and k ∈ N. We call X1, . . . , Xk ∈ (L0)d linearly inde-
pendent on A if 1A X1, . . . , 1A Xk are linearly independent in the 1A L0-module
1A(L0)d , that is, (0, . . . , 0) is the only vector (λ1, . . . , λk) ∈ 1A(L0)k satisfying

λ1X1 + · · · + λk Xk = 0.

We say that X1, . . . , Xk are orthogonal on A if 1A
〈
Xi , X j

〉 = 0 for i �= j and ortho-
normal on A if in addition, 1A||Xi || = 1A, 1 ≤ i ≤ k. If X1, . . . , Xk are linearly
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independent on A and linA {X1, . . . , Xk} = 1AC for some subset C of (L0)d , we call
them a basis of C on A. If in addition, X1, . . . , Xk are orthogonal or orthonormal on
A, we say X1, . . . , Xk is an orthogonal or orthonormal basis of C on A, respectively.

Lemma 2.4 Let A ∈ F and X1, . . . , Xk, Y ∈ (L0)d for some k ∈ N. Then there
exists a largest subset B ∈ F of A such that 1BY ∈ linB {X1, . . . , Xk}.
Proof The set

A := {B ∈ F : B ⊆ A and 1BY ∈ linB {X1, . . . , Xk}}

is directed upwards. So it contains an increasing sequence (Bn)n∈N such that B :=⋃
n Bn = ess supA. B is the largest element of A. �

Proposition 2.5 Let A ∈ F+ and k, l ∈ N. Assume X1, . . . , Xk ∈ (L0)d are linearly
independent on A and linA {X1, . . . , Xk} ⊆ linA {Y1, . . . , Yl} for some Y1, . . . , Yl ∈
(L0)d . Then k ≤ l. Moreover, if k = l, then Y1, . . . , Yl are linearly independent on
A and linA {X1, . . . , Xk} = linA {Y1, . . . , Yl}.
Proof One can write 1A X1 = ∑l

i=1 λi1AYi for some λi ∈ L0. So there exists a
σ(1) ∈ {1, . . . , l} such that A1 := A ∩ {

λσ(1) �= 0
} ∈ F+, and one obtains

linA1 {X1, . . . , Xk} ⊆ linA1 {Y1, . . . , Yl} = linA1({X1, Y1, . . . , Yl} \ {Yσ(1)
}
).

In particular, if k ≥ 2, one must have l ≥ 2, and it follows inductively that there
exist A2, . . . , Ad ∈ F+ and an injection σ : {1, . . . , k} → {1, . . . , l} such that for all
i ∈ {1, . . . , k},
linAi {X1, . . . , Xk} ⊆ linAi {Y1, . . . , Yl } = linAi ({X1, . . . , Xi , Y1, . . . , Yl } \ {Yσ(1), . . . , Yσ(i)

}
).

This shows that k ≤ l.
Now assume k = l and Y1, . . . , Yl are not linearly independent on A. Then there

exist B ∈ F+ and j ∈ {1, . . . , k} such that

linB {X1, . . . , Xk} ⊆ linB {Y1, . . . , Yk} = linB({Y1, . . . , Yk} \ {Y j
}
),

a contradiction to the first part of the proposition. So if k = l, Y1, . . . , Yk must
be linearly independent on A, and it remains to show that linA {X1, . . . , Xk} =
linA {Y1, . . . , Yk}. To do this, we assume that linA {X1, . . . , Xk} � linA {Y1, . . . , Yk}.
Then Y j /∈ linA {X1, . . . , Xk} for at least one j ∈ {1, . . . , k}. By Lemma2.4, there
exists a largest subset B ∈ F of A such that 1BY j ∈ linB {X1, . . . , Xk}. The set
D := A \ B is in F+, and X1, . . . , Xk, Y j are linearly independent on D. But then

linD
{

X1, . . . , Xk, Y j
} ⊆ linD {Y1, . . . , Yk} ,

again contradicts the first part of the proposition, and the proof is complete. �
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Corollary 2.6 Let A ∈ F+ and k, l ∈ N. Assume X1, . . . , Xk ∈ (L0)d are linearly
independent on A and linA {X1, . . . , Xk} = linA {Y1, . . . , Yl} for some Y1, . . . , Yl ∈
(L0)d that are also linearly independent on A. Then k = l ≤ d, and if k = l = d,
one has linA {X1, . . . , Xk} = linA {Y1, . . . , Yl} = 1A(L0)d .

Proof The corollary follows from Proposition2.5 by noticing that

linA {X1, . . . , Xk} = linA {Y1, . . . , Yl} ⊆ linA(e1, . . . , ed) = 1A(L0)d . �

Lemma 2.7 Let C be a non-empty σ -stable subset of (L0)d and X1, . . . , Xk ∈ (L0)d

for some k ∈ N. Then for given A ∈ F+, each of the collections

{B ∈ F+ : B ⊆ A and there exists a Y ∈ C such that ||Y || > 0 on B} (2.1)

and

{B ∈ F+ : B ⊆ A and there exists Y ∈ C such that X1, . . . , Xk , Y are linearly independent on B}
(2.2)

is either empty or contains a largest set.

Proof Let us denote the collection (2.1) by A1 and (2.2) by A2. Both are directed
upwards. So if either one of them is non-empty, it contains an increasing sequence
of sets Bn with corresponding Yn ∈ C , n ∈ N, such that B := ⋃

n Bn = ess supAi .
Since C is σ -stable,

Y := Y11B1∪Bc +
∑

n≥2

1Bn\Bn−1Yn

belongs to C . In the first case one has ||Y || > 0 on B, and in the second one,
X1, . . . , Xk, Y are linearly independent on B. This proves the lemma. �

Theorem 2.8 Let C be a σ -stable subset of (L0)d containing an element X �= 0.
Then there exist a unique number k ∈ {1, . . . , d}, unique pairwise disjoint sets
A0, . . . , Ak ∈ F and X1, . . . , Xk ∈ C such that the following hold:

(i)
⋃k

i=0 Ai = � and μ[Ak] > 0;
(ii) 1A0C = {0};

(iii) For all i ∈ {1, . . . , k} satisfying μ[Ai ] > 0, X1, . . . , Xi is a basis of lin(C)

on Ai .

Proof That k and the sets A0, . . . , Ak are unique follows fromCorollary2.6. To show
the existence of Ai and Xi satisfying (i)–(iii), we construct them inductively. Since
C contains an element X �= 0, it follows from Lemma2.7 that there exists a largest
set B1 ∈ F+ such that ||Y || > 0 on B1 for some Y ∈ C . Choose such a Y and call it
X1. One must have 1Bc

1
C = {0}. If there exist no B ∈ F+ and Y ∈ C such that X1, Y

are linearly independent on B, one obtains from Lemma2.4 that 1B1Y ∈ linB1 {X1}
for all Y ∈ C , and therefore, linB1(C) = linB1 {X1}. So one can set k = 1, A0 = Bc

1
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and A1 = B1. On the other hand, if there exists a B ∈ F+ and Y ∈ C such that
X1, Y are linearly independent on B, Lemma2.7 yields a largest such set B2 with a
corresponding X2 ∈ C . If there exists no B ∈ F+ and Y ∈ C such that X1, X2, Y are
linearly independent on B, then linB2(C) = linB2 {X1, X2} and one can set k = 2,
A0 = B1

c , A1 = B1 \ B2 and A2 = B2. Otherwise, one continues like this until there
is no B ∈ F+ and Y ∈ C such that X1, . . . , Xk, Y are linearly independent on B.
Such a k must exist and k ≤ d. Otherwise one would have X1, . . . , Xd+1 ∈ C that
are linearly independent on some B ∈ F+, a contradiction to Corollary2.6. One sets
A0 = B1

c , A1 = B1 \ B2, . . . , Ak−1 = Bk−1 \ Bk , Ak = Bk . �

Corollary 2.9 Let C be a non-empty σ -stable subset of (L0)d and A ∈ F . Then
aff A(C) and linA(C) are again σ -stable.

Proof If 1AC = {0}, then aff A(C) = linA(C) = {0}, and the corollary is clear. Oth-
erwise, one obtains from Theorem2.8 that there exists a k ∈ {1, . . . , d}, disjoint sets
A0, . . . , Ak ∈ F and X1, . . . , Xk ∈ C such that

⋃k
i=0 Ai = A, 1A0C = {0} and for

all i ∈ {1, . . . , k} satisfying μ[Ai ] > 0, X1, . . . , Xi is a basis of linA(C) on Ai . Now
it can easily be verified that linA(C) is σ -stable. To see that aff A(C) is σ -stable,
one picks an X ∈ 1AC . Then aff A(C) − X = linA(C − X) is σ -stable. So aff A(C)

is σ -stable too. �

Definition 2.10 The orthogonal complement of a non-empty subset C of (L0)d is
given by

C⊥ := {
X ∈ (L0)d : 〈X, Y 〉 = 0 for all Y ∈ C

}
.

It is clear that C⊥ is an L0-linear subset of (L0)d satisfying

C ∩ C⊥ ⊆ {0} and C ⊆ C⊥⊥.

As a consequence of Theorem2.8, one obtains the following corollary.

Corollary 2.11 Let C be a non-empty σ -stable L0-linear subset of (L0)d . Then
there exist unique pairwise disjoint sets A0, . . . , Ad ∈ F satisfying

⋃d
i=0 Ai = �

and an orthonormal basis X1, . . . , Xd of (L0)d on � such that 1A0C = {0}, 1Ad C =
1Ad (L0)d and

1Ai C = linAi {X1, . . . , Xi }, 1Ai C
⊥ = linAi {Xi+1, . . . , Xd} for 1 ≤ i ≤ d − 1.

In particular, C + C⊥ = (L0)d , C ∩ C⊥ = {0} and C = C⊥⊥.

Proof The uniqueness of the sets A1, . . . , Ad follows from Corollary2.6, and in the
special case C = {0}, one can choose A0 = �, Ai = ∅, Xi = ei , i = 1, . . . , d.
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If C is different from {0}, it follows from Theorem2.8 that there exist a unique
number k ∈ {1, . . . , d}, unique pairwise disjoint sets A0, . . . , Ak ∈ F andY1, . . . , Yk

∈ C such that
⋃k

i=0 Ai = �, μ[Ak] > 0, 1A0C = {0} and for all i ∈ {1, . . . , k}
satisfying μ[Ai ] > 0, Y1, . . . , Yi is a basis of C on Ai . Let us define

U1 := 1A1∪···∪Ak

Y1

||Y1|| ∈ C

and

Zi := Yi −
i−1∑

j=1

〈
Yi , U j

〉
U j , Ui = 1Ai ∪···∪Ak

Zi

||Zi || for 2 ≤ i ≤ k.

Then for every i ∈ {1, . . . , k} satisfying μ[Ai ] > 0, U1, . . . , Ui is an orthonor-
mal basis of C on Ai . If k = d, one obtains from Corollary2.6 that 1Ad C =
linAd {U1, . . . , Ud} = 1Ad (L0)d . If k < d, we set Ak+1 = · · · = Ad = ∅, and 1Ad

C = 1Ad (L0)d holds trivially. By Corollary2.6 and Lemma2.7, there exist Vi ∈ C ,
i = 1, . . . , d such that

1A0(L0)d = linA0 {V1, . . . , Vd}

and

1Ai (L0)d = linAi {U1, . . . , Ui , Vi+1 . . . , Vd} for all i = 1, . . . , d − 1.

Set

X1 := 1A1∪···∪Ad U1 + 1A0

V1

||V1||
and

Wi := Vi −
i−1∑

j=1

〈
Vi , X j

〉
X j , Xi = 1Ai ∪···∪Ad Ui + 1A0∪···∪Ai−1

Wi

||Wi || for 2 ≤ i ≤ d.

Then X1, . . . , Xd are orthonormal on � such that

1Ai C = linAi {X1, . . . , Xi }, 1Ai C
⊥ = linAi {Xi+1, . . . , Xd} for 1 ≤ i ≤ d − 1.

It is clear that C + C⊥ = (L0)d , C ∩ C⊥ = {0} and C = C⊥⊥. �

Corollary 2.12 Let C be a non-empty σ -stable L0-linear subset of (L0)d . Then
every X ∈ (L0)d has a unique decomposition X = Y + Z for Y ∈ C, Z ∈ C⊥, and
||Z || ≤ ||X − V || for every V ∈ C.
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Proof That X has a unique decomposition X = Y + Z , Y ∈ C , Z ∈ C⊥ is a conse-
quence of Corollary2.11. Moreover, if V ∈ C , then

||Z ||2 ≤ ||Z ||2 + ||Y − V ||2 = ||Z + Y − V ||2 = ||X − V ||2. �

3 Converging Sequences, Sequential Closures
and Sequential Continuity

Definition 3.1 We call a subset C of (L0)d sequentially closed if it contains every
X ∈ (L0)d that is an a.e. limit of a sequence (Xn)n∈N in C . For an arbitrary subset
C of (L0)d and A ∈ F+, we denote by limA(C) the set consisting of all a.e. lim-
its of sequences in 1AC and by clA(C) the smallest sequentially closed subset of
1A(L0)d containing 1AC . In the special case A = �, we just write lim(C) and cl(C),
respectively.

Proposition 3.2 For all subsets C of (L0)d and A ∈ F+ one has limA(C) = clA(C).

Proof It is clear that limA(C) ⊆ clA(C). To show that the two sets are equal, it is
enough to prove that limA(C) is sequentially closed. So let (Xn)n∈N be a sequence in
limA(C) that converges a.e. to some X ∈ 1A(L0)d . Since (�,F , μ) is σ -finite, there
exists an increasing sequence An , n ∈ N, of measurable sets such that

⋃
n An = A

and μ[An] < +∞. For every n there exists a sequence (Ym)m∈N in 1AC converging
a.e. to Xn . Therefore,

μ[An ∩ {|Ym − Xn| > 1/n}] → 0 for m → ∞,

and one can choose mn ∈ N such that

μ[Bn] ≤ 2−n, where Bn = An ∩ {|Ymn − Xn| > 1/n
}
.

It follows from theBorel–Cantelli lemma thatμ
[⋂

k∈N
⋃

n≥k Bn
] = 0,which implies

Ymn → X a.e. for n → ∞. So X ∈ limA(C), and the proof is
complete. �

Corollary 3.3 If C is a stable subset of (L0)d and A ∈ F+, then

limA(C) = 1A lim(C) = clA(C) = 1Acl(C).

In particular, if C is stable and sequentially closed, then so is 1AC.

Proof limA(C) = 1A lim(C) is a consequence of the stability of C . Moreover, it fol-
lows from Proposition3.2 that limA(C) = clA(C) and lim(C) = cl(C). This proves
the corollary. �
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Corollary 3.4 If C is a stable subset of (L0)d and A ∈ F+, then clA(C) is σ -stable.
Moreover, if C is L0-convex, an L0-convex cone, L0-affine or L0-linear, then so is
clA(C).

Proof By Proposition3.2, clA(C) is equal to limA(C). So for all X, Y ∈ clA(C) there
exist sequences (Xn)n∈N and (Yn)n∈N in 1AC such that Xn → X a.e. and Yn → Y
a.e. Since for all B ∈ F , 1B Xn + 1Bc Yn ∈ 1AC and 1B Xn + 1Bc Yn → 1B X + 1Bc Y
a.e., one obtains that 1B X + 1Bc Y belongs to limA(C) = clA(C). This shows that
clA(C) is stable. Since it is also sequentially closed, it must be σ -stable. The rest of
the corollary follows similarly. �

Proposition 3.5 Every σ -stable L0-affine subset C of (L0)d is sequentially closed.

Proof If C is empty, the corollary is trivial. Otherwise, choose X ∈ C . Then D =
C − X is a σ -stable L0-linear subset of (L0)d , and the corollary follows if we can
show that D is sequentially closed. So let (Yn)n∈N be a sequence in D converging
a.e. to some Y ∈ (L0)d . By Corollary2.11, there exist unique pairwise disjoint sets
A0, . . . , Ad ∈ F satisfying

⋃d
i=0 Ai = � and an orthonormal basis X1, . . . , Xd of

(L0)d on � such that 1A0 D = {0} and 1Ai D = linAi {X1, . . . , Xi } for 1 ≤ i ≤ d.
Define λn and λ in (L0)d by λ

j
n := 〈

Yn, X j
〉
and λ j := 〈

Y, X j
〉
. Since Yn → Y a.e.,

one has λ
j
n → λ j a.e. In particular, λ j = 0 on Ai such that i < j . This shows that

Y = ∑
j λ j X j ∈ D. �

The following example shows that L0-affine subsets of (L0)d that are not σ -stable
need not be sequentially closed.

Example 3.6 Let � = N, F = 2N and μ the counting measure. Set Xn = 1{n}e1.
Then

lin(Xn : n ∈ N) =
{

k∑

n=1

λn Xn : k ∈ N, λ1, . . . , λk ∈ L0

}

is an L0-linear subset of (L0)d that is notσ -stable, andYk = ∑k
n=1 Xn is a sequence in

lin(Xn : n ∈ N) that converges a.e. to
∑

n∈N Xn /∈ lin(Xn : n ∈ N). Note that lin(Xn :
n ∈ N) is an L0-submodule of (L0)d that is not finitely generated.

The next result is a conditional version of the Bolzano–Weierstrass theorem. It is
already known (see for instance, Lemma 2 in Kabanov and Stricker [8] or Lemma
1.63 in Föllmer and Schied [5]). But since it is important to some of our later results,
we give a short proof. To state the result we need the following definition.

Definition 3.7 We call a subset C of (L0)d L0-bounded if ess supX∈C ||X || ∈ L0.

Note that if (Xn)n∈N is a sequence in (L0)d and N ∈ N(F), X N can be written as

X N =
∑

n∈N
1{N=n} Xn.
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In particular, X N is in (L0)d . Moreover, if all Xn belong to a σ -stable subset C of
(L0)d , then X N is again in C .

Theorem 3.8 (Conditional version of the Bolzano–Weierstrass theorem)
Let (Xn)n∈N be an L0-bounded sequence in (L0)d . Then there exists an X ∈ (L0)d and
a sequence (Nn)n∈N in N(F) such that Nn+1 > Nn for all n ∈ N and limn→∞ X Nn =
X a.e.

Proof There exists a Y ∈ L0+ such that ||Xn|| ≤ Y for all n ∈ N. Therefore, the a.e.
limit X1 := limn→∞ infm≥n X1

m exists and is in L0. Define N 1
0 := 0 and

N1
n (ω) := min

{
m ∈ N : m > N1

n−1(ω) and X1
m(ω) ≤ X1(ω) + 1/n

}
∈ N(F), n ∈ N.

Then N 1
n+1 > N 1

n for all n ∈ N and limn→∞ X1
N 1

n
= X1 a.e. Now set Y 2

n = X2
N 1

n
.

Then there exists a sequence (M2
n )n∈N in N(F) such that M2

n+1 > M2
n for all n ∈

N and limn→∞ Y 2
M2

n
= X2 := limn→∞ infm≥n Y 2

m a.e. N 2
n := N 1

M2
n
, n ∈ N, defines a

sequence in N(F) satisfying N 2
n+1 > N 2

n for all n ∈ N, and one has limn→∞ Xi
N 2

n
=

Xi a.e. for i = 1, 2. If one continues like this, one obtains X1, . . . , Xd ∈ L0 and a
sequence (Nn)n∈N in N(F) such that Nn+1 > Nn for all n ∈ N and limn→∞ X Nn =
X = (X1, . . . , Xd) a.e. �

Corollary 3.9 Let (Xn)n∈N be a sequence in a sequentially closed L0-bounded stable
subset C of (L0)d . Then there exists an X ∈ C and a sequence (Nn)n∈N in N(F) such
that Nn+1 > Nn for all n ∈ N and limn→∞ X Nn = X a.e.

Proof Since (Xn)n∈N is L0-bounded, it follows from Theorem3.8 that there exists
X ∈ (L0)d and a sequence (Nn)n∈N in N(F) such that Nn+1 > Nn for all n ∈ N and
limn→∞ X Nn = X a.e. It remains to show that X belongs to C . By Corollary3.4 the
subset C is σ -stable. Hence, X Nn belongs to C for all n ∈ N, which implies that X
is in C too. �

Corollary 3.10 Let C and D be non-empty sequentially closed stable subsets of
(L0)d such that D is L0-bounded. Then C + D is sequentially closed and stable.

Proof That C + D is stable is clear. To show that C + D is sequentially closed,
choose a sequence (Xn)n∈N inC and a sequence (Yn)n∈N in D such that Xn + Yn → Z
a.e. for some Z ∈ (L0)d . ByTheorem3.8, there existsY ∈ D and a sequence (Nn)n∈N
in N(F) such that Nn+1 > Nn for all n ∈ N and limn→∞ YNn = Y a.e. It follows that
limn→∞ X Nn = Z − Y a.e. Since C is and sequentially closed, Z − Y belongs to C .
Hence, Z is in C + D. �

Another consequence of Theorem3.8 is that conditional Cauchy sequences con-
verge if they are defined as follows:

Definition 3.11 We call a sequence (Xn)n∈N in (L0)d L0-Cauchy if for every ε ∈
L0++ there exists an N0 ∈ N(F) such that ||X N1 − X N2 || ≤ ε for all N1, N2 ∈ N(F)

satisfying N1, N2 ≥ N0.
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Theorem 3.12 Every L0-Cauchy sequence (Xn)n∈N in (L0)d converges a.e. to some
X ∈ (L0)d .

Proof Choose N0 ∈ N(F) such that ||X N1 − X N2 || ≤ 1 for all N1, N2 ∈ N(F) sat-
isfying N1, N2 ≥ N0. Then

||Xn|| ≤ 1 +
∑

m∈N
1{m≤N0}||Xm || ∈ L0

for all n ∈ N. So it follows from Theorem3.8 that there exist X ∈ (L0)d and a
sequence (Nn)n∈N inN(F) such that Nn+1 > Nn for all n ∈ N and limn→∞ X Nn = X
a.e. But since (Xn)n∈N is L0-Cauchy, one has limn→∞ Xn = X a.e. �

The following result gives necessary and sufficient conditions for a sequentially
closed L0-convex subset of (L0)d to be L0-bounded.

Theorem 3.13 Let C be a sequentially closed L0-convex subset of (L0)d containing
0. Then C is L0-bounded if and only if for any X ∈ C \ {0} there exists a k ∈ N such
that k X /∈ C.

Proof Suppose that C is L0-bounded. Then for every 0 �= X ∈ C , there exists a
k ∈ N such that μ

[‖k X‖ > ess supY∈C ‖Y‖] > 0, and therefore k X /∈ C .
Conversely, suppose that C is not L0-bounded. The sequence

An := ess sup {B ∈ F : ‖X‖ ≥ n on B for some X ∈ C} , n ∈ N ∪ {0} ,

is decreasing with limit A := ⋂
n An . One must have μ[A] > 0, since otherwise,

‖X‖ ≤ ∑
n∈N n1{Ac

n\Ac
n−1} ∈ L0 for all X ∈ C . Since C is sequentially closed, L0-

convex and therefore stable, it is σ -stable. It follows that there exists a sequence
(Xn)n∈N in C such that ‖Xn‖ ≥ n on A. Since the sequence Yn = 1A Xn/‖Xn‖
is L0-bounded, it follows from Theorem3.8 that there exists Y ∈ (L0)d and a
sequence (Nn)n∈N in N(F) such that Nn+1 > Nn and limn→∞ YNn = Y a.e. Obvi-
ously, 1A||Y || = 1A, and in particular, Y �= 0. Since C is L0-convex, sequentially
closed and contains 0, one has for all n ≥ k,

kYNn = 1A
k

‖X Nn ‖
X Nn ∈ C.

But limn→∞ kYNn = kY . So kY ∈ C for all k ∈ N. �

Definition 3.14 LetC be a non-empty subset of (L0)d and k ∈ N. We call a function
f : C → (L0)k

• sequentially continuous at X ∈ C if f (Xn) → f (X) a.e. for every sequence
(Xn)n∈N in C converging to X a.e.;

• sequentially continuous if it is sequentially continuous at every X ∈ C ;
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• L0-affine if f (λX + (1 − λ)Y ) = λ f (X) + (1 − λ) f (Y ) for all X, Y ∈ (L0)d and
λ ∈ L0 such that λX + (1 − λ)Y ∈ C ;

• L0-linear if f (λX + Y ) = λ f (X) + f (Y ) for all X, Y ∈ (L0)d and λ ∈ L0 such
that λX + Y ∈ C .

• We define the conditional norm of f by || f || := ess supX∈C, ||X ||≤1 || f (X)|| ∈ L .

Proposition 3.15 Let C be a non-empty σ -stable L0-linear subset of (L0)d . Then
|| f || ∈ L0+ for every L0-linear function f : C → (L0)k , k ∈ N.

Proof By Corollary2.11, there exist unique pairwise disjoint sets A0, . . . , Ad ∈ F
satisfying

⋃d
i=0 Ai = � and an orthonormal basis X1, . . . , Xd of (L0)d on � such

that 1A0C = {0} and 1Ai C = linAi {X1, . . . , Xi } for 1 ≤ i ≤ d. For every X ∈ C there
exists a unique λ ∈ (L0)d such that X = ∑d

j=1 λ j X j . On the set A0 one has f (X) =
X = 0, and on Ai for 1 ≤ i ≤ d, ||X || =

(∑i
j=1 λ2

j

)1/2
as well as

|| f (X)|| = ||
i∑

j=1

λ j f (X j )|| ≤
i∑

j=1

|λ j ||| f (X j )|| ≤
⎛

⎝
i∑

j=1

λ2j

⎞

⎠

1/2⎛

⎝
i∑

j=1

|| f (X j )||2
⎞

⎠

1/2

.

Therefore, || f || ≤ ∑d
i=1 1Ai

(∑i
j=1 || f (X j )||2

)1/2
. �

Corollary 3.16 Let C be a non-empty σ -stable L0-affine subset of (L0)d . Then every
L0-affine function f : C → (L0)k , k ∈ N, is sequentially continuous.

Proof Choose an X0 ∈ C . Then D = C − X0 is a non-empty σ -stable L0-linear
subset of (L0)d and g(X) = f (X + X0) − f (X0) is an L0-linear function on D. By
Proposition3.15, one has ||g|| ∈ L0+. Moreover, || f (X) − f (Y )|| = ||g(X − Y )|| ≤
||g|| ||X − Y ||, and it follows that f is sequentially continuous. �
Corollary 3.17 Let C be a non-empty sequentially closed subset of a non-empty
σ -stable L0-affine subset D of (L0)d . Then for every injective L0-affine function
f : D → (L0)k , k ∈ N, f (C) is a sequentially closed subset of (L0)k .

Proof Pick an X0 ∈ C . The corollary follows if we can show that f (C) − f (X0) is
sequentially closed. So by replacing C with C − X0, D with D − X0 and f with
f (X + X0) − f (X0), one can assume that X0 = 0, D is a σ -stable L0-linear subset
of (L0)d and f is injective L0-linear. ByCorollary3.16, f is sequentially continuous.
Therefore, f (D) is a non-empty σ -stable L0-linear subset of (L0)k , and it follows
from Proposition3.5 that it is sequentially closed. Since f −1 : f (D) → D is again
L0-linear, it is also sequentially continuous. So if (Yn)n∈N is a sequence in f (C)

converging a.e. to some Y ∈ (L0)k , then Y ∈ f (D) and f −1(Yn) is a sequence in C
converging a.e. to f −1(Y ) ∈ D. It follows that f −1(Y ) ∈ C and Y = f ( f −1(Y )) ∈
f (C). �
Lemma 3.18 Let C be a non-empty σ -stable L0-linear subset of (L0)d and k ∈
N. Then every L0-linear function f : C → (L0)k has an L0-linear extension F :
(L0)d → (L0)k such that || f || = ||F ||.
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Proof By Corollary2.12, every X ∈ (L0)d has a unique decomposition X = Y + Z
such that Y ∈ C and Z ∈ C⊥. F(X) := f (Y ) defines an L0-linear extension of f to
(L0)d such that || f || = ||F ||. �

4 Conditional Optimization

Definition 4.1 LetC be a non-empty subset of (L0)d .We call a function f : C → L

• sequentially lsc (lower semicontinuous) at X ∈ C if f (X) ≤ lim infn→∞ f (Xn)

for every sequence (Xn)n∈N in C with a.e. limit X ;
• sequentially lsc if it is sequentially lsc at every X ∈ C ;
• sequentially usc (upper semicontinuous) at X ∈ C if − f is sequentially lsc at X ;
• sequentially usc if it is sequentially usc at every X ∈ C ;
• sequentially continuous at X ∈ C if it is sequentially lsc and usc at X ;
• sequentially continuous if it is sequentially continuous at every X ∈ C .

In the following definition +∞ − ∞ is understood as +∞ and 0 · (±∞) as 0.

Definition 4.2 Let f : C → L be a function on a non-empty subset C of (L0)d .

• If C is stable, we call f stable if

f (1A X + 1Ac Y ) = 1A f (X) + 1Ac f (Y )

for all X, Y ∈ C and A ∈ F+;
• If C is L0-convex, we call f L0-convex if

f (λX + (1 − λ)Y ) ≤ λ f (X) + (1 − λ) f (Y )

for all X, Y ∈ C and λ ∈ L0 such that 0 ≤ λ ≤ 1;
• If C is L0-convex, we call f strictly L0-convex if

f (λX + (1 − λ)Y ) < λ f (X) + (1 − λ) f (Y ) on the set {X �= λX + (1 − λ)Y ) �= Y }

for all X, Y ∈ C and λ ∈ L0 such that 0 ≤ λ ≤ 1.

Lemma 4.3 Let f : C → L be an L0-convex function on an L0-convex subset C of
(L0)d . Then f is also stable.

Proof Let X, Y ∈ C and A ∈ F+. Denote Z = 1A X + 1Ac Y . Then one has 1A

f (Z) ≤ 1A f (X) and 1A f (X) = 1A f (1A Z + 1Ac X) ≤ 1A f (Z). This shows that
1A f (Z) = 1A f (X). Analogously, one obtains 1Ac f (Z) = 1Ac f (Y ) and therefore
f (Z) = 1A f (X) + 1Ac f (Y ). �
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Theorem 4.4 Let C be a sequentially closed stable subset of (L0)d and f : C → L
a sequentially lsc stable function. Assume there exists an X0 ∈ C such that the set

{X ∈ C : f (X) ≤ f (X0)}

is L0-bounded. Then there exists an X̂ ∈ C such that

f (X̂) = ess inf
X∈C

f (X).

If C and f are L0-convex, then the set

{
X ∈ C : f (X) = f (X̂)

}

is L0-convex. If in addition, f is strictly L0-convex, then

{
X ∈ C : f (X) = f (X̂)

}
=
{

X̂
}

.

Proof The set D := {X ∈ C : f (X) ≤ f (X0)} is sequentially closed, stable and
L0-bounded. It follows that { f (X) : X ∈ D} is directed downwards. Therefore,
there exists a sequence (Xn)n∈N in D such that f (Xn) decreases a.e. to I :=
ess inf X∈D f (X). By Corollary3.9, there exists a sequence (Nn)n∈N in N(F) such
that Nn+1 > Nn for all n ∈ N and limn→∞ X Nn = X̂ a.e. for some X̂ ∈ D. Since X Nn

belongs to D and

f (X Nn ) =
∑

m≥n

1{Nn=m} f (Xm) ≤ f (Xn) for all n,

one obtains from the L0-lower semicontinuity of f that

f (X̂) ≤ lim inf
n→∞ f (X Nn ) ≤ lim

n→∞ f (Xn) = I.

This shows the first part of the theorem. That
{

X ∈ C : f (X) = f (X̂)
}
is L0-convex

if C and f are L0-convex, is clear. Finally, assume C is L0-convex and f strictly
L0-convex. Then if there exists an X in C such that f (X) = f (X̂), one has

f

(
X + X̂

2

)

<
f (X) + f (X̂)

2

on the set
{

X �= X̂
}
. It follows that μ[X �= X̂ ] = 0. �
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Corollary 4.5 Let C and D be non-empty sequentially closed stable subsets of
L0(F)d such that D is L0-bounded. Then there exist X̂ ∈ C and Ŷ ∈ D such that

||X̂ − Ŷ || = ess inf
X∈C, Y∈D

||X − Y ||. (4.1)

If in addition, C and D are L0-convex, then X̂ − Ŷ is unique.

Proof ByCorollary3.10, the set E = C − D is sequentially closed and stable.More-
over, Z �→ ||Z || is a sequentially continuous L0-convex function from E to L0, and
for every Z0 ∈ E , the set {Z ∈ E : ||Z || ≤ ||Z0||} is L0-bounded. So one obtains
from Theorem4.4 that there exists a Ẑ ∈ E such that ||Ẑ || = ess inf Z∈E ||Z ||. This
shows that there exist X̂ ∈ C and Ŷ ∈ D satisfying (4.1). If C and D are L0-convex,
then so is E , and for every Z ∈ E satisfying ||Z || = ||Ẑ ||, one has (Z + Ẑ)/2 ∈ E

and ||(Z + Ẑ)/2|| < ||Ẑ || on the set
{

Z �= Ẑ
}
. It follows that μ[Z �= Ẑ ] = 0, and

the proof is complete. �

5 Interior, Relative Interior and L0-open Sets

Definition 5.1 Let C be a non-empty subset of (L0)d and A ∈ F+.

• For X ∈ (L0)d and ε ∈ L0++, we denote

Bε
A(X) := {

Y ∈ 1A(L0)d : 1A||Y − X || ≤ ε
}
.

• The interior intA(C) of C on A consists of elements X ∈ 1AC for which there
exists an ε ∈ L0++ such that Bε

A(X) ⊆ 1AC . If A = �, we just write int(C) for
intA(C).

• The relative interior riA(C) of C on A consists of elements X ∈ 1AC for which
there exists an ε ∈ L0++ such that Bε

A(X) ∩ aff A(C) ⊆ 1A(C). If A = �, we write
ri(C) instead of riA(C).

• We say C is L0-open on A if 1AC = intA(C). We call it L0-open if it is L0-open
on �.

Note that one always has 1Aint(C) ⊆ intA(C) but not necessarily the other way
around. The collection of all L0-open subsets of (L0)d forms a topology. It is studied
in Filipović et al. [4] and is related to (ε, λ)-topologies on random locally convex
modules (see [6]). We point out that sequentially closed sets in (L0)d are different
from complements of L0-open sets. But one has the following relation between the
two:

Lemma 5.2 Let C be a σ -stable subset of (L0)d . Then cl(C) ∩ int(Cc) = ∅.

Proof Assume X ∈ cl(C) ∩ int(Cc). By Proposition3.2, there exists a sequence
(Xn)n∈N inC such that Xn → X a.e. On the other hand, there is an ε ∈ L0++ such that



Conditional Analysis on R
d 195

Y ∈ Cc for every Y ∈ (L0)d satisfying ||X − Y || ≤ ε. N (ω) := min{n ∈ N : ||Xn

(ω) − X (ω)|| ≤ ε(ω)} is an element of N(F), and since C is σ -stable, X N belongs
to C . But at the same time one has ||X N − X || ≤ ε, implying X N ∈ Cc. This yields
a contradiction. So cl(C) ∩ int(Cc) = ∅. �

Lemma 5.3 Let C be a non-empty L0-convex subset of (L0)d , A ∈ F+ and λ ∈ L0

such that 0 < λ ≤ 1. Then

λX + (1 − λ)Y ∈ intA(C) for all X ∈ intA(C), Y ∈ 1AC (5.1)

and
λX + (1 − λ)Y ∈ riA(C) for all X ∈ riA(C), Y ∈ 1AC. (5.2)

If in addition, C is σ -stable, then (5.1) and (5.2) also hold for Y ∈ clA(C).

Proof Let X ∈ intA(C) and Y ∈ 1AC . There exists an ε ∈ L0++ such that Bε
A(X) is

contained in 1AC . So

λX + (1 − λ)Y + Z = λ(X + Z/λ) + (1 − λ)Y ⊆ 1AC

for all Z ∈ Bελ
A (0). This shows (5.1).

To prove (5.2), we assume that X ∈ riA(C) andY ∈ 1AC . There exists an ε ∈ L0++
such that Bε

A(X) ∩ aff A(C) ⊆ 1AC . Choose Z ∈ Bελ
A (0) such that

λX + (1 − λ)Y + Z ∈ aff A(C).

Then X + Z/λ ∈ aff A(C), and therefore X + Z/λ ∈ 1AC . It follows that

λX + (1 − λ)Y + Z = λ(X + Z/λ) + (1 − λ)Y ⊆ 1AC.

This shows (5.2).
If C is σ -stable, X ∈ intA(C) and Y ∈ clA(C), there exists an ε ∈ L0++ such that

B2ε
A (X) ⊆ 1AC . From Proposition3.2 we know that there exists a sequence (Yn)n∈N

in 1AC converging a.e. toY . N (ω) := min{n ∈ N : (1 − λ(ω))||Y (ω) − Yn(ω)|| ≤ λ

(ω)ε(ω)} belongs toN(F), andYN is an element ofC satisfying (1 − λ)||Y − YN || ≤
λε. So for Z ∈ Bλε

A (0), one has

λX + (1 − λ)Y + Z = λ

(
X + (1 − λ)

λ
(Y − YN ) + 1

λ
Z

)
+ (1 − λ)YN ∈ 1AC,

which shows that λX + (1 − λ)Y ∈ intA(C).
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If X is in riA(C) instead of intA(C), there exists an ε ∈ L0++ such that B2ε
A (X) ∩

aff A(C) ⊆ 1AC . Let Z ∈ Bλε
A (0) such that

λX + (1 − λ)Y + Z ∈ aff A(C),

then

X + (1 − λ)

λ
(Y − YN ) + 1

λ
Z ∈ aff A(C).

Hence

X + (1 − λ)

λ
(Y − YN ) + 1

λ
Z ∈ 1AC,

and it follows that

λX + (1 − λ)Y + Z = λ

(
X + (1 − λ)

λ
(Y − YN ) + 1

λ
Z

)
+ (1 − λ)YN ∈ 1AC.

So λX + (1 − λ)Y ∈ riA(C), and the proof is complete. �

Corollary 5.4 Let C be an L0-convex subset of (L0)d and A ∈ F+. Then intA(C)

and riA(C) are again L0-convex.

Proof Since C is stable, it follows from Lemma5.3 that for X, Y ∈ intA(C) and
λ ∈ L0 satisfying 0 ≤ λ ≤ 1, one has

λX + (1 − λ)Y = 1{λ>0}(λX + (1 − λ)Y ) + 1{λ=0}Y ∈ intA(C).

This shows that intA(C) is L0-convex. The same argument shows that riA(C) is
L0-convex. �

Definition 5.5 Let A ∈ F+. We call a subset C of (L0)d

• an L0-hyperplane on A if 1AC = {
X ∈ 1A(L0)d : 〈X, Z〉 = V

}

• an L0-halfspace on A if 1AC = {
X ∈ 1A(L0)d : 〈X, Z〉 ≥ V

}

for some V ∈ 1A L0 and Z ∈ 1A(L0)d such that ||Z || > 0 on A.

Lemma 5.6 A subset C of (L0)d is an L0-hyperplane on A ∈ F+ if and only if there
exist X0 ∈ 1A(L0)d and an orthonormal basis X1, . . . , Xd of (L0)d on A such that

1AC =
{

X0 +
d−1∑

i=1

λi Xi : λi ∈ 1A L0

}

. (5.3)
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Similarly, C is an L0-halfspace on A ∈ F+ if and only if there exist X0 ∈ 1A(L0)d

and an orthonormal basis X1, . . . , Xd of (L0)d on A such that

1AC =
{

X0 +
d∑

i=1

λi Xi : λi ∈ 1A L0, λd ≥ 0

}

. (5.4)

Proof If 1AC is of the form (5.3), then 1AC = {X ∈ 1A(L0)d : 〈X, Xd〉 = 〈X0,

Xd〉}. Now assume that 1AC = {
X ∈ 1A(L0)d : 〈X, Z〉 = V

}
for some V ∈ 1A L0

and Z ∈ 1A(L0)d such that ||Z || > 0 on A. By Corollary2.11, there exists an ortho-
normal basis X1, . . . , Xd of (L0)d on A such that 1A Z⊥ = linA {X1, . . . , Xd−1} and
Xd = 1A Z/||Z ||. Choose X0 ∈ 1A(L0)d such that 〈X0, Z〉 = V . Then 1AC is of the
form (5.3). That C is an L0-halfspace on A ∈ F+ if and only if 1AC is of the form
(5.4) follows similarly. �

Lemma 5.7 Let C be a σ -stable L0-convex subset of (L0)d and A ∈ F+. Then
intA(C) �= ∅ if and only if aff A(C) = 1A(L0)d .

Proof Let us first assume that X0 ∈ intA(C). Then 0 ∈ intA(C − X0), and it follows
that

aff A(C) = aff A(C − X0) + X0 = linA(C − X0) + X0 = 1A(L0)d + X0 = 1A(L0)d .

On the other hand, if aff A(C) = 1A(L0)d , choose X0 ∈ 1AC . Then

linA(C − X0) = aff A(C − X0) = aff A(C) − X0 = 1A(L0)d .

So it follows fromTheorem2.8 that there exist X1, . . . , Xd in 1AC such that Xi − X0,
i = 1, . . . , d, form a basis of (L0)d on A. Set

X̂ := 1

d + 1

d∑

i=0

Xi .

It follows fromCorollary2.11 and Lemma5.6 that for every i = 0, . . . , d, there exist
Vi ∈ L0 and Zi ∈ (L0)d such that for all j �= i ,

〈
X̂ , Zi

〉
> Vi = 〈

X j , Zi
〉
on A.

This shows that X̂ ∈ intA
{

X ∈ 1A(L0)d : 〈X, Zi 〉 ≥ Vi
}
for all i , which implies

X̂ ∈ intA(C) since

d⋂

i=0

{
X ∈ 1A(L0)d : 〈X, Zi 〉 ≥ Vi

} = convA {X0, . . . , Xd} ⊆ 1AC.
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6 Separation by L0-hyperplanes

In this section we prove results on the separation of two L0-convex sets in (L0)d by
an L0-hyperplane. As a corollary we obtain a version of the Hahn–Banach extension
theorem. Hahn–Banach extension and separation results have been proved in more
general modules; see e.g., Filipović et al. [4], Guo [6] and the references therein.
However, due to the special form of (L0)d , we here are able to derive analogs of
results that hold in R

d but not in infinite-dimensional vector spaces. Moreover, we
do not need Zorn’s lemma or the axiom of choice.

Theorem 6.1 (Strong separation) Let C and D be non-empty L0-convex subsets of
(L0)d . Then there exists Z ∈ (L0)d such that

ess inf
X∈C

〈X, Z〉 > ess sup
Y∈D

〈Y, Z〉 (6.1)

if and only if 0 /∈ clA(C − D) for all A ∈ F+.

Proof Let us first assume that there exists an A ∈ F+ such that 0 ∈ clA(C − D).
From Proposition3.2 we know that clA(C − D) = limA(C − D). So there exists a
sequence (Xn)n∈N in 1A(C − D) such that Xn → 0 a.e. It follows that there can exist
no Z ∈ (L0)d satisfying (6.1).

Now assume 0 /∈ clA(C − D) for all A ∈ F+. It follows from Corollary3.4 that
cl(C − D) is L0-convex. So one obtains from Corollary4.5 that there exists a Z ∈
cl(C − D) such that

‖Z‖2 ≤ ‖(1 − λ)Z + λW‖2 = ‖Z‖2 + 2λ 〈Z , W − Z〉 + λ2‖W − Z‖2

for all W ∈ cl(C − D) and λ ∈ L0 such that 0 < λ ≤ 1. Division by 2λ and sending
λ to 0 yields 〈W, Z〉 ≥ ‖Z‖2. In particular,

〈W, Z〉 ≥ ||Z ||2 for all W ∈ C − D,

and therefore,

ess inf
X∈C

〈X, Z〉 ≥ ess sup
Y∈D

〈Y, Z〉 + ||Z ||2.

It remains to show that ‖Z‖ > 0. But if this were not the case, the set A = {Z = 0}
would belong to F+ and 1A Z = 0. However, by assumption and Corollary3.3, one
has 0 /∈ clA(C − D) = 1Acl(C − D) for all A ∈ F+, a contradiction. �
Corollary 6.2 Let C and D be non-empty sequentially closed L0-convex subsets of
(L0)d such that D is L0-bounded and 1AC is disjoint from 1A D for all A ∈ F+. Then
there exists a Z ∈ (L0)d such that

ess inf
X∈C

〈X, Z〉 > ess sup
Y∈D

〈Y, Z〉 .
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Proof C − D is a non-empty L0-convex set, which by Corollary3.10 is sequentially
closed. It follows from the assumptions that 0 /∈ 1A(C − D) for all A ∈ F+, and
we know from Corollary3.3 that 1A(C − D) = clA(C − D). So the corollary is a
consequence of Theorem6.1. �

Lemma 6.3 Let C be a non-empty σ -stable L0-convex cone in (L0)d such that
1AC �= 1A(L0)d for all A ∈ F+. Then there exists a Z ∈ (L0)d such that

||Z || > 0 and ess inf
X∈C

〈X, Z〉 ≥ 0. (6.2)

Proof If C = {0}, the lemma is clear. Otherwise one obtains from Theorem2.8
that there exist A ∈ F and X1, . . . , Xd−1 ∈ C such that linA(C) = linA(L0)d and
linAc(C) ⊆ linAc {X1, . . . , Xd−1}. By Corollary2.11, there exists W ∈ linAc{X1,

. . . , Xd−1}⊥ such that ||W || > 0 on Ac. If μ[A] = 0, then Z = W satisfies (6.2),
and the proof is complete. If μ[A] > 0, one notes that since C is an L0-convex cone,
one has aff A(C) = linA(C) = 1A(L0)d . It follows from Lemma5.7 that there exists
a Y ∈ intA(C). Then 1BY ∈ intB(C) for every subset B ∈ F+ of A. But this implies
that −1BY cannot be in clB(C). Otherwise it would follow from Lemma5.3 that 0
belongs to intB(C), implying that 1BC = 1B(L0)d and contradicting the assump-
tions. So Theorem6.1 applied to 1AC and {−Y } viewed as subsets of 1A(L0)d yields
a V ∈ 1A(L0)d such that

ess inf
X∈1AC

〈X, V 〉 > 〈−Y, V 〉 on A.

Since C is an L0-convex cone, Z = 1AV + 1Ac W satisfies condition (6.2). �

Theorem 6.4 (Weak separation) Let C and D be non-empty σ -stable L0-convex
subsets of (L0)d . Then there exists a Z ∈ (L0)d such that

||Z || > 0 and ess inf
X∈C

〈X, Z〉 ≥ ess sup
Y∈D

〈Y, Z〉 (6.3)

if and only if 0 /∈ intA(C − D) for all A ∈ F+.

Proof If there is an A ∈ F+ such that 0 ∈ intA(C − D), there can exist no Z ∈ (L0)d

such that (6.3) holds. Hence, (6.3) implies 0 /∈ intA(C − D) for all A ∈ F+.
To show the converse implication, assume that 0 /∈ intA(C − D) for all A ∈ F+.

Clearly, C − D is σ -stable and L0-convex. Therefore, one has ccone(C − D) ={
λX : λ ∈ L0++, X ∈ C − D

}
, from which it can be seen that ccone(C − D) is σ -

stable and satisfies 1Accone(C − D) �= 1A(L0)d for all A ∈ F+. So one obtains from
Lemma6.3 that there exists a Z ∈ (L0)d such that

||Z || > 0 and ess inf
X∈E

〈X, Z〉 ≥ 0.

This implies (6.3). �
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Corollary 6.5 Let C and D be two non-empty σ -stable L0-convex subsets of (L0)d

such that 1AC is disjoint from 1A D for all A ∈ F+ and D is L0-open. Then there
exists a Z ∈ (L0)d such that

ess inf
X∈C

〈X, Z〉 > 〈Y, Z〉 for all Y ∈ D.

Proof It follows from Theorem6.4 that there exists a Z ∈ (L0)d such that

||Z || > 0 and ess inf
X∈C

〈X, Z〉 ≥ ess sup
V ∈D

〈V, Z〉 ,

and since D is L0-open, one has

ess sup
V ∈D

〈V, Z〉 > 〈Y, Z〉 for all Y ∈ D. �
As another consequence of Theorem6.4 we obtain a conditional version of the

Hahn–Banach extension theorem.

Corollary 6.6 (Conditional version of the Hahn–Banach extension theorem)
Let f : (L0)d → L0 be an L0-convex function such that f (λX) = λ f (X) for all
λ ∈ L0+ and g : E → L0 an L0-linear mapping on a σ -stable L0-linear subset E of
(L0)d such that g(X) ≤ f (X) for all X ∈ E. Then there exists an L0-linear extension
h : (L0)d → L0 of g such that h(X) ≤ f (X) for all X ∈ (L0)d .

Proof Note that

C := {
(X, V ) ∈ (L0)d × L0 : f (X) ≤ V

}
and D := {(Y, g(Y )) : Y ∈ E}

are L0-convex sets in (L0)d × L0. By Lemma4.3, f and g are stable. It follows that
C and D are σ -stable.Moreover, sinceC − D is an L0-convex cone and 1A(0,−1) /∈
1A(C − D) for all A ∈ F+, one has (0, 0) /∈ intA(C − D) for all A ∈ F+. So one
obtains from Theorem6.4 that there exists a pair (Z , W ) ∈ (L0)d × L0 such that

||Z || + |W | > 0 and ess inf
(X,V )∈C

{〈X, Z〉 + V W } ≥ ess sup
Y∈E

{〈Y, Z〉 + g(Y )W } .

(6.4)
It follows thatW > 0.Bymultiplying (Z , W )with 1/W , one can assume thatW = 1.
Since E and g are L0-linear, the ess sup in (6.4) must be zero, and it follows that
g(Y ) = 〈Y,−Z〉 for all Y ∈ E . Moreover, f (X) ≥ 〈X,−Z〉 for all X ∈ (L0)d . So
h(X) := 〈X,−Z〉 is the desired extension of g to (L0)d . �
Theorem 6.7 (Proper separation) Let C and D be two non-empty σ -stable L0-
convex subsets of (L0)d . Then there exists a Z ∈ (L0)d such that

ess inf
X∈C

〈X, Z〉 ≥ ess sup
Y∈D

〈Y, Z〉 and ess sup
X∈C

〈X, Z〉 > ess inf
Y∈D

〈Y, Z〉 (6.5)

if and only if 0 /∈ riA(C − D) for all A ∈ F+.



Conditional Analysis on R
d 201

Proof Denote E = aff(C − D). By Corollary2.9, 1A E is for all A ∈ F+ σ -stable,
and therefore, by Proposition3.5, sequentially closed.

If there exists an A ∈ F+ such that 0 ∈ riA(C − D), 1A E is L0-linear and there
exists an ε ∈ L0++ such that B A

ε (0) ∩ 1A E ⊆ 1A(C − D). Suppose there exists Z ∈
(L0)d satisfying (6.5). Then

〈X, Z〉 ≥ 0 for all X ∈ clA(C − D) (6.6)

and
〈X, Z〉 > 0 on A for some X ∈ 1A(C − D). (6.7)

One obtains from Corollary2.12 that Z = Z1 + Z2 for some Z1 ∈ 1A E and Z2 ∈
(1A E)⊥. It follows from (6.6) that Z1 = 0. But this contradicts (6.7). So (6.5) implies
that 0 /∈ riA(C − D) for all A ∈ F+.

Now assume 0 /∈ riA(C − D) for all A ∈ F+. Since E is σ -stable, there exists
a largest B ∈ F such that 0 ∈ 1B E . If μ[B] = 0, one has 0 /∈ 1A E for all A ∈
F+, and it follows from Corollary6.2 that there exists a Z ∈ (L0)d such that
ess inf X∈E 〈X, Z〉 > 0, which implies (6.5). If μ[B] > 0, denote A := � \ B. The
same argument as before yields a Z0 ∈ 1A(L0)d satisfying (6.6)–(6.7). On the other
hand, 1B E is L0-linear. So it follows from Corollary2.11 that there exist disjoint
sets B1, . . . , Bd ∈ F satisfying

⋃d
i=1 Bi = B and an orthonormal basis X1, . . . , Xd

of (L0)d on B such that 1Bi E = linBi {X1, . . . , Xi } for all i = 1, . . . , d. For every
i ∈ I := {

j = 1, . . . , d : μ[B j ] > 0
}
one can apply Theorem6.4 in the L0-linear

subset 1Bi E to obtain a Zi ∈ 1Bi E such that

||Zi || > 0 on Bi and ess inf
X∈C

〈X, Zi 〉 ≥ ess sup
Y∈D

〈Y, Zi 〉 .

Since 0 /∈ riA(C − D) for all A ∈ F+, one has

ess sup
X∈C

〈X, Zi 〉 > ess inf
Y∈D

〈Y, Zi 〉 on Bi .

If one sets Z = 1A Z0 +⋃
i∈I 1Bi Zi , one obtains (6.5), and the proof is

complete. �

7 Properties of L0-convex Functions

Definition 7.1 Consider a function f : (L0)d → L and an X0 ∈ (L0)d .

• We call Y ∈ (L0)d an L0-subgradient of f at X0 if

f (X0) ∈ L0 and f (X0 + X) − f (X0) ≥ 〈X, Y 〉 for all X ∈ (L0)d .
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By ∂ f (X0) we denote the set of all L0-subgradients of f at X0.
• If f (X0) ∈ L0 and for some X ∈ (L0)d the limit

f ′(X0; X) := lim
n→∞ n [ f (X0 + X/n) − f (X0)]

exists a.e. (+∞ and−∞ are allowed as limits), we call it L0-directional derivative
of f at X0 in the direction X .

• We say f is L0-differentiable at X0 if f (X0) ∈ L0 and there exists a Y ∈ (L0)d

such that
f (X0 + Xn) − f (X0) − 〈Xn, Y 〉

||Xn|| → 0 a.e.

for every sequence (Xn)n∈N in (L0)d satisfying Xn → 0 a.e. and ||Xn|| > 0 for all
n ∈ N. If such a Y exists, we call it the L0-derivative of f at X0 and denote it by
∇ f (X0).

• The L0-convex conjugate f ∗ : (L0)d → L is given by

f ∗(Y ) := ess sup
X∈(L0)d

{〈X, Y 〉 − f (X)} .

• If f is L0-convex, we set

dom f := {
X ∈ (L0)d : f (X) < +∞}

.

• By conv f we denote the largest L0-convex function below f and by conv f the
largest sequentially lsc L0-convex function below f .

• If f is L0-convex and satisfies f (λX) = λ f (X) for all λ ∈ L0++ and X ∈ (L0)d ,
we call f L0-sublinear.

• For every pair (Y, Z) ∈ (L0)d × L0 we denote by f Y,Z the function from (L0)d

to L0 given by f Y,Z (X) := 〈X, Y 〉 + Z .

Theorem 7.2 Let f : (L0)d → L be an L0-convex function and X0 ∈ int(dom f )

such that f (X0) ∈ L0. Then f (X) ∈ L for all X ∈ (L0)d and f is sequentially
continuous on int(dom f ).

Proof Since X0 ∈ int(dom f ), there exists an ε ∈ L0++ such that V := maxi f (X0 ±
εei ) < +∞. By L0-convexity, one has f (X) ≤ V for all X ∈ X0 + U , where

U :=
{

X ∈ (L0)d :
d∑

i=1

|Xi | ≤ ε

}

.

Assume that there exist X ∈ (L0)d and A ∈ F+ such that f (X) = −∞ on A. Then
one can choose a Z ∈ X0 + U and a λ ∈ L0 such that 0 < λ ≤ 1 and X0 = λX +
(1 − λ)Z . It follows that f (X0) ≤ λ f (X) + (1 − λ) f (Z) = −∞ on A. But this
contradicts the assumptions. So f (X) ∈ L for all X ∈ (L0)d .
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Now pick an X ∈ U and a λ ∈ L0 such that 0 < λ ≤ 1. Then

f (X0 + λX) = f (λ(X0 + X) + (1 − λ)X0) ≤ λ f (X0 + X) + (1 − λ) f (X0),

and therefore,

f (X0 + λX) − f (X0) ≤ λ[ f (X0 + X) − f (X0)] ≤ λ(V − f (X0)).

On the other hand,

X0 = 1

1 + λ
(X0 + λX) + λ

1 + λ
(X0 − X).

So

f (X0) ≤ 1

1 + λ
f (X0 + λX) + λ

1 + λ
f (X0 − X),

which gives

f (X0) − f (X0 + λX) ≤ λ[ f (X0 − X) − f (X0)] ≤ λ(V − f (X0)).

Hence, we have shown that

| f (X) − f (X0)| ≤ λ(V − f (X0)) for all X ∈ X0 + λU.

Let (Xn)n∈N be a sequence in (L0)d converging a.e. to X0. For every k ∈ N, the sets

Ak
m :=

⋂

n≥m

{Xn − X0 ∈ U/k}

are increasing in m with
⋃

m≥1 Ak
m = �. By Lemma4.3, f is stable. Therefore,

| f (Xn) − f (X0)| ≤ (V − f (X0))/k for all n ≥ m on Ak
m,

and one obtains

μ

[
⋃

k≥1

⋂

m≥1

⋃

n≥m

{| f (Xn) − f (X0)| > (V − f (X0))/k}
]

= 0.

So f (Xn) → f (X0) a.e., and the theorem follows. �

As an immediate consequence of Theorem7.2 one obtains the following

Corollary 7.3 An L0-convex function f : (L0)d → L is sequentially continuous on
int(dom f ).
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Theorem 7.4 Let f : (L0)d → L be an L0-convex function and X0 ∈ ri(dom f ).
Then ∂ f (X0) �= ∅. In particular, if f (X) ∈ L0 for all X ∈ (L0)d , then ∂ f (X0) �= ∅
for all X ∈ (L0)d .

Proof By Lemma4.3, f is stable. Therefore,

C := {
(X, V ) ∈ (L0)d × L0 : f (X) ≤ V

}

is an L0-convex, σ -stable subset of (L0)d × L0. Since (X0, f (X0) + 1) is in C , one
has (0, 0) /∈ riA(C − (X0, f (X0)) for all A ∈ F+. So it follows from Theorem6.7
that there exists (Y, Z) ∈ (L0)d × L0 such that

ess inf
(X,V )∈C

{〈X, Y 〉 + V Z} ≥ 〈X0, Y 〉 + f (X0)Z (7.1)

and
ess sup
(X,V )∈C

{〈X, Y 〉 + V Z} > 〈X0, Y 〉 + f (X0)Z . (7.2)

Equation (7.1) implies that Z ≥ 0. Now assume there exists an A ∈ F+ such that
1A Z = 0. Then since X0 ∈ ri(dom f ), (7.2) contradicts (7.1). So one must have
Z > 0, and by multiplying (Y, Z) with 1/Z , one can assume Z = 1. It follows from
(7.1) that

ess inf
X∈dom f

{〈X, Y 〉 + f (X)} = 〈X0, Y 〉 + f (X0),

which shows that −Y is an L0-subgradient of f at X0. �
Lemma 7.5 Let f, g : (L0)d → L be functions such that f ≥ g. Then the following
hold:

(i) f ∗ is sequentially lsc and L0-convex;
(ii) f ∗(Y ) ≥ 〈X, Y 〉 − f (X) for all X, Y ∈ (L0)d ;

(iii) Y ∈ ∂ f (X) if and only if f (X) ∈ L0 and f ∗(Y ) = 〈X, Y 〉 − f (X);
(iv) f ∗ ≤ g∗ and f ∗∗ ≥ g∗∗;
(v) f ≥ f ∗∗ and f ∗ = f ∗∗∗.

Proof To prove (i) let (Yn)n∈N be a sequence in (L0)d converging a.e. to some Y ∈
(L0)d . Then

lim inf
n→∞ f ∗(Yn) = sup

m≥1
inf
n≥m

ess sup
X∈(L0)d

{〈X, Yn〉 − f (X)}
≥ ess sup

X∈(L0)d

sup
m≥1

inf
n≥m

{〈X, Yn〉 − f (X)}
= ess sup

X∈(L0)d

{〈X, Y 〉 − f (X)} = f ∗(Y ).

Hence, f ∗ is sequentially lsc. To show that it is L0-convex, choose Y, Z ∈ (L0)d

and λ ∈ L0 such that 0 ≤ λ ≤ 1. Then, λ f ∗(Y ) + (1 − λ) f ∗(Z) ≥ 〈X, λY + (1 −
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λ)Z〉 − f (X) for all X ∈ (L0)d and therefore, λ f ∗(Y ) + (1 − λ) f ∗(Z) ≥ f ∗(λY +
(1 − λ)Z). (ii) is immediate from the definition of f ∗. Now assume that f (X) ∈ L0.
For any X ′ ∈ (L0)d , f (X ′) − f (X) ≥ 〈

X ′ − X, Y
〉
is equivalent to 〈X, Y 〉 − f (X) ≥〈

X ′, Y
〉− f (X ′). This shows (iii). (iv) is clear. From (ii) one obtains that f (X) ≥

〈X, Y 〉 − f ∗(Y ) for all X, Y ∈ (L0)d . So f ≥ f ∗∗. The same inequality applied to
f ∗ gives f ∗ ≥ f ∗∗∗. On the other hand, we know from (iv) that f ∗ ≤ f ∗∗∗. This
proves (v). �

Lemma 7.6 Let f : (L0)d → L be a sequentially lsc L0-convex function. Then one
has for all X ∈ (L0)d ,

f (X) = ess sup
{

f Y,Z (X) : (Y, Z) ∈ (L0)d × L0, f ≥ f Y,Z
}
.

Proof Note that the set

A := {
A ∈ F : there exists an X ∈ (L0)d such that 1A f (X) ∈ L0

}

is directed upwards. Therefore, there exists an increasing sequence An in A with
corresponding Xn , n ∈ N, such that An ↑ A := ess supA a.e. Set

X0 := 1A1∪Ac X1 +
∑

n≥2

1An\An−1 Xn.

By Lemma4.3, f is stable. Hence, f (X0) < +∞ on A, and f (X) = +∞ on Ac for
all X ∈ (L0)d . The lemma can be proved on A and Ac separately, and on Ac it is
obvious. Therefore, we can assume A = �. Then dom f �= ∅, and it follows that

C := {
(X, V ) ∈ dom f × L0 : f (X) ≤ V

}

is a non-empty sequentially closed L0-convex subset of (L0)d × L0. Choose a pair
(U, W ) ∈ (L0)d × L0 such that 1A(U, W ) /∈ 1AC for all A ∈ F+. By Corollary6.2,
there exists (Y, Z) ∈ (L0)d × L0 such that

I := inf
(X,V )∈C

{〈X, Y 〉 + V Z} > 〈U, Y 〉 + W Z .

It follows that Z ≥ 0. On the set B := {Z > 0} one can multiply (Y, Z) with 1/Z
and assume Z = 1. Then one obtains that on B,

f (X) ≥ f −Y,I (X) for all X ∈ (L0)d and f −Y,I (U ) > W.
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On Bc one has λ := I − 〈U, Y 〉 > 0. Pick a U ′ ∈ dom f . Since 1A(U ′, f (U ′) −
1) /∈ 1AC for all A ∈ F+, one obtains from Corollary6.2 that there exists a pair
(Y ′, Z ′) ∈ (L0)d × L0 such that

I ′ := inf
(X,V )∈C

{〈
X, Y ′〉+ V Z ′} >

〈
U ′, Y ′〉+ ( f (U ′) − 1)Z ′.

SinceU ′ ∈ dom f , onemust have Z ′ > 0. Bymultiplyingwith 1/Z ′, one can assume
Z ′ = 1. Now choose a δ ∈ 1Bc L0+ such that

δ >
1

λ
(W + 〈

U, Y ′〉− I ′)+ on Bc

and set Y ′′ := δY + Y ′. Then, on Bc,

I ′′ := inf
(X,V )∈C

(
〈
X, Y ′′〉+ V ) ≥ δ I + I ′ = δλ + δ 〈U, Y 〉 + I ′ >

〈
U, Y ′′〉+ W.

So on Bc, one has

f (X) ≥ f −Y ′′,I ′′
(X) for all X ∈ (L0)d and f −Y ′′,I ′′

(U ) > W.

Now define (Ŷ , Î ) := 1B(−Y, I ) + 1Bc(−Y ′′, I ′′). Then

f (X) ≥ f Ŷ , Î (X) for all X ∈ (L0)d and f Ŷ , Î (U ) > W.

This proves the lemma. �

Theorem 7.7 (Conditional version of the Fenchel–Moreau theorem)
Let f : (L0)d → L be a function such that conv f takes values in L. Then conv f =
f ∗∗. In particular, if f is sequentially lsc and L0-convex, then f = f ∗∗.

Proof We know from Lemma7.5 that f ∗∗ is a sequentially lsc L0-convex minorant
of f . So conv f ≥ f ∗∗. On the other hand, it follows from Lemma7.6 that

conv f = ess sup
{

f Y,Z (X) : (Y, Z) ∈ (L0)d × L0, conv f ≥ f Y,Z
}
,

and it can easily be checked that ( f Y,Z )∗∗ = f Y,Z for all (Y, Z) ∈ (L0)d × L0. So
one obtains from Lemma7.5 that f ∗∗ ≥ ( f Y,Z )∗∗ = f Y,Z for every pair (Y, Z) ∈
(L0)d × L0 satisfying f ≥ f Y,Z . This shows that f ∗∗ ≥ conv f . �

Lemma 7.8 Let f : (L0)d → L be an L0-convex function and X0 ∈ (L0)d such that
f (X0) ∈ L0. Then f ′(X0; X) exists for all X ∈ (L0)d , f ′(X0, 0) = 0 and f ′(X0; .)

is L0-sublinear. Moreover, ∂ f (X0) = ∂g(0), where g(X) := f ′(X0; X).
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Proof It follows from L0-convexity that for every X ∈ (L0)d , n[ f (X0 + X/n) −
f (X0)] is decreasing in n. This implies that f ′(X0; X) exists. f ′(X0; 0) = 0 is
clear. That f ′(X0; .) is L0-sublinear and ∂ f (X0) = ∂g(0) are straightforward to
check. �

Lemma 7.9 Let f : (L0)d → L be a sequentially lsc L0-sublinear function. If
there exists an X0 ∈ (L0)d such that f (X0) ∈ L0, then ∂ f (0) �= ∅ and f (X) =
ess supY∈∂ f (0) 〈X, Y 〉 for all X ∈ (L0)d . In particular, f (0) = 0.

Proof By Theorem7.7, one has f = f ∗∗. This implies that the set

C := {
Y ∈ (L0)d : 〈X, Y 〉 ≤ f (X) for all X ∈ (L0)d

}

is non-empty and f (X) = ess supY∈C 〈X, Y 〉. It follows that f (0) = 0 and ∂ f (0) =
C . This proves the lemma. �

Theorem 7.10 Let f : (L0)d → L be an L0-convex function. Assume there exist
X0 ∈ (L0)d and V ∈ L0+ such that f (X0) ∈ L0 and

f (X0 + X) ≥ f (X0) − V ||X || for all X ∈ (L0)d . (7.3)

Then there exists a Y ∈ ∂ f (X0) such that ||Y || ≤ V .

Proof Denote g(X) := f ′(X0; X). Then h = convg is a sequentially lsc L0-sub-
linear function which by (7.3), satisfies

h(X) ≥ −V ||X || for all X ∈ (L0)d . (7.4)

It follows that h(0) = 0 and ∂h(0) ⊆ ∂g(0) = ∂ f (X0). Since ∂h(0) and

BV (0) := {
Y ∈ (L0)d : ||Y || ≤ V

}

are L0-convex and sequentially closed, they are both σ -stable. Therefore, there exists
a largest set A ∈ F such that 1A∂h(0) ∩ 1A BV (0) is non-empty. Assume that Ac ∈
F+. Then, if one restricts attention to Ac and assumes � = Ac, the sets ∂h(0) and
BV (0) satisfy the assumptions of Corollary6.2. So there exists a Z ∈ (L0)d such that

−V ||Z || = ess inf
Y∈BV (0)

〈Y, Z〉 > ess sup
Y∈∂h(0)

〈Y, Z〉 .

But by Lemma7.9, one has h(Z) = ess supY∈∂h(0) 〈Y, Z〉, and one obtains a contra-
diction to (7.4). It follows that A = �, which proves the theorem. �
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Theorem 7.11 Let f : (L0)d → L be an L0-convex function and X0 in (L0)d such
that f (X0) ∈ L0. Assume that ∂ f (X0) = {Y } for some Y ∈ (L0)d . Then f is L0-
differentiable at X0 with ∇ f (X0) = Y .

Proof By Lemma7.8, one has ∂g(0) = {Y } for the L0-sublinear function g(X) :=
f ′(X0; X). It follows that

g∗(Z) = 1{Z �=Y }(+∞) and g∗∗(X) = 〈X, Y 〉 . (7.5)

Set

A := {
A ∈ F : there exists an X ∈ (L0)d such that g(X) = +∞ on A

}
.

By Lemma4.3, g is stable. Therefore, there exists a sequence (An)n∈N in A with
corresponding Xn such that An ↑ A := ess supA. The element

X0 := 1A1∪Ac X1 +
∑

n≥2

1An\An−1 Xn

satisfies g(X0) = +∞ on A. We want to show that μ[A] = 0. So let us assume
μ[A] > 0. If one replaces � with A, one has 0 /∈ 1B(dom g − X0) for all B ∈ F+.
By Theorem6.4, there exists a Z ∈ (L0)d such that

||Z || > 0 and ess inf
X∈dom g

〈X, Z〉 ≥ 〈X0, Z〉 .

Define the sequentially lsc L0-convex function h : (L0)d → L as follows:

h(X) := 〈X, Y 〉 1{〈X,Z〉≥〈X0,Z〉} + ∞1{〈X,Z〉<〈X0,Z〉}.

Then g ≥ h and h(X) = +∞ for all X ∈ (L0)d satisfying 〈X, Z〉 < 〈X0, Z〉. It fol-
lows that convg(X) = +∞ for all X ∈ (L0)d satisfying 〈X, Z〉 < 〈X0, Z〉. More-
over, since Y ∈ ∂g(0), g fulfills the assumptions of Theorem7.7, and one obtains
convg = g∗∗, contradicting (7.5). So one must have μ[A] = 0, or in other words,
g(X) ∈ L0 for all X ∈ (L0)d . It follows from Theorem7.2 that g is sequentially
continuous, and therefore, g(X) = g∗∗(X) = 〈X, Y 〉 for all X ∈ (L0)d .

Now let (Xn)n∈N be a sequence in (L0)d such that Xn → 0 a.e. and ||Xn|| > 0 for
all n. Denote ||Xn||1 := ∑d

i=1 |Xi
n| and notice that there exists a constant c > 0 such

that ||Xn||1 ≤ c||Xn|| for all n. Since g(X) = 〈X, Y 〉, one has for all i = 1, . . . , d,

f (X0 ± ||Xn||1ei ) − f (X0)

||Xn||1 → ±Y i a.e.
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Therefore,

f (X0 + Xn) − f (X0) − 〈Xn, Y 〉
||Xn|| ≤ c

f (X0 + Xn) − f (X0) − 〈Xn, Y 〉
||Xn||1

≤ c
d∑

i=1

|Xi
n|

||Xn||1
{

f (X0 + ||Xn||1sign(Xi
n)ei ) − f (X0)

||Xn||1 − sign(Xi
n)Y

i

}
→ 0 a.e.

�

8 Inf-Convolution

Definition 8.1 We define the inf-convolution of finitely many functions f j : (L0)d

→ L , j = 1, . . . , n, by

�n
j=1 f j (X) := ess inf

X1+···+Xn=X

n∑

j=1

f j (X j ).

Lemma 8.2 If f j , j = 1, . . . , n, are L0-convex functions from (L0)d to L, then
�n

j=1 f j is L0-convex too.

Proof Denote f = �n
j=1 f j . Choose X, Y ∈ (L0)d and V, W ∈ L such that f (X) ≤

V and f (Y ) ≤ W . Let ε ∈ L0++ and λ ∈ L0 such that 0 ≤ λ ≤ 1. By Lemma4.3,

the functions f j are stable. Therefore, the family
{∑

j f j (X j ) : ∑ j X j = X
}
is

directed downwards. So there exist sequences Xk
j , k ∈ N, such that

∑
j Xk

j = X and
∑

j f j (Xk
j ) decreases to f (X) a.e. It follows that the sets Ak :=

{∑
j f j (Xk

j ) ≤
V + ε

}
increase to � as k → ∞. So for every j = 1, . . . , n,

X j :=
∑

k≥1

1Ak\Ak−1 Xk
j , where A0 := ∅.

defines an element in (L0)d such that
∑n

j=1 X j = X and
∑n

j=1 f (X j ) ≤ V + ε.
Analogously, there exist Y j ∈ (L0)d , j = 1, . . . , n, such that

∑n
j=1 Y j = Y and∑n

j=1 f (Y j ) ≤ W + ε. Set Z j = λX j + (1 − λ)Y j . Then Z := ∑n
j=1 Z j = λX +

(1 − λ)Y and

f (Z) ≤
n∑

j=1

f j (Z j ) ≤
n∑

j=1

λ f j (X j ) + (1 − λ) f (Y j ) ≤ λV + (1 − λ)W + ε.

It follows that f (Z) ≤ λ f (X) + (1 − λ) f (Y ). �
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Lemma 8.3 Let f j : (L0)d → L, j = 1, . . . , n, be L0-convex functions and denote
f = �n

j=1 f j . Assume f (X0) = ∑n
j=1 f j (X j ) < +∞ for some X j ∈ (L0)d summing

up to X0. If X1 ∈ int(dom f1), then f (X) ∈ L for all X ∈ (L0)d , X0 ∈ int(dom f )

and f is sequentially continuous on int(dom f ).

Proof By definition of f , one has

f (X0 + X) − f (X0) ≤ f1(X1 + X) +
n∑

j=2

f j (X j ) −
n∑

j=1

f j (X j ) = f1(X1 + X) − f1(X1)

for all X ∈ (L0)d . This shows that X0 ∈ int(dom f ). Since f (X0) = ∑n
j=1 f j (X j ) ∈

L0, the rest of the lemma follows from Theorem7.2. �

Lemma 8.4 Consider functions f j : (L0)d → L, j = 1, . . . , n, and denote f =
�n

j=1 f j . Assume f (X0) = ∑n
j=1 f j (X j ) < +∞ for some X j ∈ (L0)d summing up to

X0. Then ∂ f (X0) = ⋂n
j=1 ∂ f j (X j ).

Proof Assume Y ∈ ∂ f (X0) and X ∈ (L0)d . Then

f1(X1 + X) − f1(X1) = f1(X1 + X) +
n∑

j=2

f j (X j ) −
n∑

j=1

f j (X j ) ≥ f (X0 + X)

− f (X0) ≥ 〈X, Y 〉 .

Hence Y ∈ ∂ f1(X1), and by symmetry, ∂ f (X0) ⊆ ⋂n
j=1 ∂ f j (X j ).On the other hand,

ifY ∈ ⋂n
j=1 ∂ f j (X j ) and X ∈ (L0)d , choose Z j such that

∑n
j=1 Z j = X0 + X . Then

n∑

j=1

f j (Z j ) ≥
n∑

j=1

f j (X j ) + 〈
Z j − X j , Y

〉 =
n∑

j=1

f j (X j ) + 〈X, Y 〉 .

So f (X0 + X) − f (X0) ≥ 〈X, Y 〉, and the lemma follows. �

Lemma 8.5 Let f j : (L0)d → L, j = 1, . . . , n, be L0-convex functions and denote
f = �n

j=1 f j . Assume f (X0) = ∑
j f j (X j ) < +∞ for some X j ∈ (L0)d summing

up to X0 and f1 is L0-differentiable at X1. Then f is L0-differentiable at X0 with
∇ f (X0) = ∇ f1(X1).

Proof One has

f (X0 + X) − f (X0) ≤ f1(X1 + X) +
n∑

j=2

f j (X j ) −
n∑

j=1

f j (X j ) = f1(X1 + X) − f1(X1)

for all X ∈ (L0)d . It follows that the L0-directional derivative g(X) := f ′(X0; X)

satisfies
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g(X) ≤ f ′
1(X1; X) = 〈X,∇ f1(X1)〉

for all X ∈ (L0)d . But byLemma8.2, f is L0-convex. It follows that g is L0-sublinear,
and therefore,g(X) = 〈X,∇ f1(X1)〉. This implies that ∂ f (X0) = ∂g(0) = {∇ f1(X1)}.
Now the lemma follows from Theorem7.11. �

Lemma 8.6 Consider functions f j : (L0)d → L, j = 1, . . . , n. Then
(
�n

j=1 f j

)∗ =
∑n

j=1 f ∗
j , where the sum is understood to be −∞ if at least one of the terms is −∞.

Proof

(
�n

j=1 f j
)∗

(Y ) = ess sup
X

{〈X, Y 〉 − �n
j=1 f j (X)

}

= ess sup
X1,...,Xn

n∑

j=1

{〈
X j , Y

〉− f j (X j )
} =

n∑

j=1

f ∗
j (Y ). �
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