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1 Introduction

Let L° be the set of all real-valued measurable functions on a o -finite measure space
(2, F, n), where two of them are identified if they agree p-almost everywhere. The
purpose of this paper is to study the set (L°) of all d-dimensional vectors with com-
ponents in L° and functions f : (L°)¢ — L°. Its main motivation are applications
in the following two special cases:

e If 41 is a probability measure, the elements of L are random variables, and
subsets C € (L°)¢ can be understood as random sets in R?. A typical function
f 1 (L"? — L°would, for example, be a mapping that conditionally on F, assigns
to every random point X € (L°)? its Euclidean distance to C.

e Let (2, G, ) be the product of a o -finite measure space (T, H, v) and a probability
space (E, &, P). If F is a sub-o-algebra of G, the elements of LY are stochastic
processes (X;);er on (E, £, P). A subset C C (L) could, for instance, describe
the set of admissible strategies in a stochastic control problem, and an optimal
strategy could be characterized as the conditional optimizer of an appropriate
function f : (L°)? — L% over C.

Unless 2 is the union of finitely many atoms, (L°)¢ is an infinite-dimensional vector
space over R. But conditioned on F, it is only d-dimensional. Or put differently,
it is a free module of rank d over the ring L. This allows us to derive conditional
analogs of classical results from linear algebra, real analysis and convex analysis that
depend on the fact that R is a finite-dimensional vector space. L°-modules have been
studied before; see, for instance, Filipovic et al. [4], Kupper and Vogelpoth [9], Guo
[6], Guo [7] and the references in these papers. But since we consider free modules
of finite rank, we are able to provide stronger results under weaker assumptions, and
moreover, do not need Zorn’s lemma or the axiom of choice. Our approach differs
from standard measurable selection arguments in that we work modulo null-sets with
respect to the measure ¢ and do not use w-wise arguments. This has the advantage that
one never leaves the world of measurable functions. But it only works in situations
where a measure p is given, and the quantities of interest do not depend on p-null
sets.

The results in this paper are theoretical. But they have already been applied several
times: in Cheridito and Hu [1], they were used to describe stochastic constraints and
characterize optimal strategies in a dynamic consumption and investment problem. In
Cheridito and Stadje [3] they guaranteed the existence of a conditional subgradient.
In Cheridito and Stadje [3] they were applied to show existence and uniqueness of
economic equilibria in incomplete market models.

The structure of the paper is as follows: In Sect.2 we investigate when an L°-
submodule of (L°)? is finitely generated. Then we study conditional orthogonality
and introduce LC-affine sets, L°-convex sets and L°-convex cones. It turns out that the
notion of o -stability plays a crucial role. In Sect. 3 we investigate almost everywhere
converging sequences in (L°)? and the corresponding notion of closure. We define
L-linear and L°-affine functions f : (L%)? — (L°)* and show that they are contin-
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uous with respect to almost everywhere converging sequences. We also give a condi-
tional version of the Bolzano—Weierstrass theorem and show that conditional Cauchy
sequences converge. Moreover, we define L°-bounded sets and give a condition for
L%-convex sets to be L°-bounded. In Sect.4 we study sequentially semicontinuous
and L°-convex functions f : (L°)? — L° and prove a result which guarantees that
a conditional optimization problem has an optimal solution. Section$5 is devoted
to L%-open sets, interiors and relative interiors. L°-open sets form a topology, but
they are not complements of sequentially closed sets. In Sect.6 we give strong,
weak and proper separation results of L-convex sets by L°-hyperplanes. Section7
studies L°-convex functions and introduces conditional notions of differentiability,
directional derivatives, subgradients and convex conjugation. We also provide results
on the existence of conditional subgradients and give a conditional version of the
Fenchel-Moreau theorem. In Sect. 8 we study conditional inf-convolutions.
Notation. We assume (2) > 0 and define F, :={A € F : u[A] > 0}. By L we
denote the set of all measurable functions X : Q — R U {#o00}, where two of them
are identified if they agree a.e. (almost everywhere). In particular, for X, Y € L,
X =Y,X >Y and X > Y will be understood in the a.e. sense. Analogously, for
sets A, B € F, we write A = B if uy[AAB]=0and A C B if u[A\ B] =0. The
set LY := {X € L : |X| < oo} with the a.e. order is a lattice ordered ring, and every
non-empty subset C of L has aleast upper bound and a greatest lower bound in L with
respect to the a.e. order. We follow the usual convention in measure theory and denote
them by ess sup C and ess inf C, respectively. It is well-known (see for instance, [10])
that there exist sequences (X,) and (Y,) in C such that esssup C = sup, X, and
essinf C = inf, Y,,. Moreover, if C is directed upwards, (X,,) can be chosen such that
X1 > X,, and if C is directed downwards, (Y,,) can be chosen so that ¥, ; < Y,,.
Foraset A € F, we denote by 14 the characteristic function of A, that is, the function
I4:92 — {0,1} whichis 1 on A and O elsewhere. If A is a subset of F, we set
esssup A := {esssup, 4 14 =1} € F and essinf A := {essinfycq 14 = 1} € F.
Furthermore, we use the notation Lg ={XelL’: X >0} L‘i+ ={Xel': X >
0, L:={XeL:X>—o0}, L:={XeL:X <4o0}and N:={1,2,...}. By
N(F) we denote the set of all measurable functions N : 2 — N.

2 Algebraic Structures and Generating Sets

We fix d € N and consider the set (L)¢ := {(Xl, XD X e LO}. On (L%
we define the conditional inner product and conditional 2-norm by

d
(X,Y):= ZX’Y" and ||X|| == (X, X)"?.
i=1

For every A € F, 1,L° is a subring of L°, and provided that u[A] > 0, 14,(L%)? is
a free 1, L°-module of rank d generated by the base 14¢;,i =1, ..., d, where ¢; is
the ith unit vector in R? € (L%%. In particular, (L% is a free L%-module of rank d.
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Definition 2.1 We call a subset C of (L°)?

o stableif 14X + 14 Y e Cforall X,Y € C and A € F;

e o-stableif D, 14,X, € Cforeverysequence (X,),enin C and pairwise disjoint
sets A, € F satisfying Q = |,y An;

e LO-convexif AX + (1 —A)Y e Cforall X,Y € Cand A € LO suchthat0 < A <
I;

e an L°-convex cone if it is L%-convex and X € C forall X € Cand A € L ;

o Ll-affineif AX + (1 —A)Y e Cforall X,Y € Cand A € LY;

e L'-linear (or an L%-submodule) if A X +Y € C forall X, Y € C and » € L.

For an arbitrary subset C of (L°)? and A € F, we denote by sts(C), sst4(C),
conv 4 (C), ccone 4 (C), aff 4 (C), ling (C) the smallest subset of 14 (L%)¢ containing
1,C that is stable, o-stable, L°-convex, an L°-convex cone, L°-affine, or L°-linear,
respectively. If A = Q, we just write st(C), sst(C), conv(C), ccone(C), aff(C),
lin(C) for these sets.

Remark 2.2 Tt can easily be checked that if C is a non-empty subset of (L°)¢ and
A € F, then

k k
st4(C) = {Z“»X" tkeN, X,eC Ay eF, | JAr=A AyNA, =0form ;én];

n=1 n=1

sst4(C) = {ZIA”X,I (X, €C AyeF, |JAr=A AyNA, =@form ;én];
neN neN
k

k
convs(C) = <anxn tkeN, X, €C, ayelall, D o= 1A];
n=1

n=1
k k
ccones (C) = {ZAHX,, ckeN, X,eC, ), € lALg_, ZA,, € lAL3_+};
n=1

n=1

k k
aff4(C) = {anxn ckeN, X, €C, Ay € 14L°, an = 1A];

n=1 n=l1

k
ling (C) = [anxn ‘keN, X, €C, A, € IALO] .
n=1

It follows that if C = {X}, ..., X} for finitely many X, ..., Xy € (L), then the
sets conv 4 (C), ccone, (C), aff 4 (C), ling (C) are all o -stable.

Definition 2.3 Let A € 7, and k € N. We call Xy, ..., X} € (LY linearly inde-
pendent on A if 14X, ..., 14X} are linearly independent in the 1 A L%module
14(L%4, thatis, (O, ..., 0) is the only vector (Ay, ..., Ag) € 1a(L%* satisfying

MX1 o+ X =0.

We say that X, ..., X, are orthogonal on A if 14 (X;, X;) = 0 fori  j and ortho-
normal on A if in addition, 14||X;|| = 14, 1 <i <k. If Xy, ..., X} are linearly
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independent on A and ling { X1, ..., X;} = 1,4C for some subset C of (L%)¢, we call
them a basis of C on A. If in addition, X1, ..., X are orthogonal or orthonormal on
A,wesay X1, ..., X is an orthogonal or orthonormal basis of C on A, respectively.

Lemma24 Let A€ F and Xy, ..., X, Y € (LY? for some k € N. Then there
exists a largest subset B € F of A such that 1gY € ling {X1, ..., X;}.

Proof The set
A:={BeF:BC Aand 1gY €ling {Xy, ..., X}}

is directed upwards. So it contains an increasing sequence (B, ),en such that B :=

U, Bn = esssup A. B is the largest element of A. O
Proposition 2.5 Let A € F, andk,l € N. Assume X1, ..., Xy € (LY are linearly
independent on A and ling {X1, ..., Xi} C ling {Yy, ..., Y} forsome Yy, ..., Y, €
(Lo)d. Then k < 1. Moreover, if k =1, then Yy, ..., Y; are linearly independent on

AandlinA {Xl,...,Xk} = liIIA {Yl, ey Y[}.

Proof One can write 14X, = Zﬁ:l Axi14Y; for some A; € LO. So there exists a
o(l) e {l1,...,l}suchthat A} := AN {)»(,(1) =+ 0} € F., and one obtains

ling, {X1,.... Xg} Sling, {Y1,.... ¥} =ling (X1, Y1, ... Y\ {Yoy D-

In particular, if k > 2, one must have / > 2, and it follows inductively that there

exist Ay, ..., Ay € Fy and aninjectiono : {1,...,k} — {1,..., 1} such thatforall
ie{l,... .k},
ling, {X1,..., Xi} C ling, {Y1, ..., Y} = ling, ({X1, ..., Xi, Yi,..., Y\ Yoy - - Yo D)-

This shows that k < [.
Now assume k =/ and Y, ..., ¥; are not linearly independent on A. Then there
exist B € F, and j € {1, ..., k} such that

liIlB {X], ...,Xk} g lil’lB {Y], ey Yk} ZIiHB({Y], ,Yk}\{Y]}),

a contradiction to the first part of the proposition. So if k =1/, Yi, ..., ¥; must
be linearly independent on A, and it remains to show that liny {X;,..., X;} =
ling {Y1, ..., Yi}. Todo this, we assume that ling {X, ..., Xz} C ling {Y}, ..., Yi}.
Then Y; ¢ ling {X1, ..., Xi} for at least one j € {1, ..., k}. By LemmaZ2.4, there
exists a largest subset B € F of A such that 13Y; € ling {Xy, ..., X;}. The set
D :=A\BisinF,and X, ..., Xy, Y; are linearly independent on D. But then

linp {X1,.... X&. Y;} Slinp {Y1,..., Y4},

again contradicts the first part of the proposition, and the proof is complete. O
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Corollary 2.6 Let A € F, and k,l € N. Assume Xy, ..., X} € (L9 are linearly
independent on A and ling {X1, ..., Xx} =ling {Yy, ..., Y} forsome Yy, ..., Y, €
(LYY that are also linearly independent on A. Then k =1 <d, and if k =1 = d,
one has ling {Xy, ..., X} =ling {Y1, ..., Y} = L, (LO%

Proof The corollary follows from Proposition2.5 by noticing that

ling {X1, ..., Xe} =ling (Y1, ..., Y} Cling(eq, ..., eq) =144, O

Lemma 2.7 Let C be a non-empty o -stable subset of (L) and X1, ..., Xx € (L%)?
for some k € N. Then for given A € F., each of the collections

{BeF.:B C AandthereexistsaY € C such that ||Y|| > 0 on B} (2.1)
and

{B € Fy: B C Aandthere exists Y € C such that Xy, ..., Xk, Y are linearly independent on B}
2.2)

is either empty or contains a largest set.

Proof Let us denote the collection (2.1) by 4; and (2.2) by A,. Both are directed
upwards. So if either one of them is non-empty, it contains an increasing sequence
of sets B, with corresponding Y, € C, n € N, such that B := | J, B, = esssup A;.
Since C is o-stable,

Y :=Y1pup + Z Ig\B,  Yu

n>2

belongs to C. In the first case one has [|Y]|| > 0 on B, and in the second one,
X1, ..., Xk, Y are linearly independent on B. This proves the lemma. O

Theorem 2.8 Let C be a o-stable subset of (L°)? containing an element X # 0.
Then there exist a unique number k € {1, ...,d}, unique pairwise disjoint sets
Ao, ..., Ar € Fand Xy, ..., Xy € C such that the following hold:

(i) U, Ai = Qand ulAs] > 0;
(ii) 14,C ={0};
(iii) For alli € {1, ...,k} satisfying u[A;]1 >0, X1, ..., X; is a basis of lin(C)
on A;.

Proof Thatk and the sets Ay, . .., Ay are unique follows from Corollary 2.6. To show
the existence of A; and X; satisfying (i)—(iii), we construct them inductively. Since
C contains an element X # 0, it follows from Lemma?2.7 that there exists a largest
set By € F, such that ||Y]|| > 0 on B for some Y € C. Choose such a Y and call it
X1. One must have 15:C = {0}. If there existno B € F and Y € C suchthat X, Y
are linearly independent on B, one obtains from Lemma?2.4 that 15 Y € ling, {X,}
forall Y € C, and therefore, ling, (C) = ling, {X}. Soone cansetk =1, Ag = By
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and A; = Bj. On the other hand, if there exists a B € 7, and Y € C such that
X1, Y are linearly independent on B, Lemma?2.7 yields a largest such set B, with a
corresponding X, € C.If there existsno B € F, and Y € C such that X, X,, Y are
linearly independent on B, then ling,(C) = ling, {X;, X»} and one can set k = 2,
Ag = BC', Ay = B; \ By and A, = B,. Otherwise, one continues like this until there
isno B € F, and Y € C such that Xy, ..., X, Y are linearly independent on B.
Such a k£ must exist and k < d. Otherwise one would have X1, ..., X 4, € C that
are linearly independent on some B € F, a contradiction to Corollary 2.6. One sets
Ao=B!, A\ =B\ By, ..., Ay_1 = Bi_1 \ Bi, Ay = By. O

Corollary 2.9 Let C be a non-empty o-stable subset of (L°)? and A € F. Then
aff 4 (C) and lins (C) are again o -stable.

Proof Tt 1,C = {0}, then aff 4, (C) = lins (C) = {0}, and the corollary is clear. Oth-
erwise, one obtains from Theorem 2.8 that there exists ak € {1, ..., d}, disjoint sets
Aoy, ..., Ay € Fand X4, ..., X; € C such that Uf:oAi = A, 14,C = {0} and for
alli € {1, ..., k} satisfying u[A;] > 0, X, ..., X; isabasis of liny (C) on A;. Now
it can easily be verified that ling (C) is o-stable. To see that aff 4 (C) is o-stable,
one picks an X € 14C. Then aff 4 (C) — X =ling (C — X) is o-stable. So aff 4, (C)
is o -stable too. O

Definition 2.10 The orthogonal complement of a non-empty subset C of (L°)¢ is
given by
Ct={Xe @) :(X,Y)=0forallY € C}.
It is clear that C* is an L-linear subset of (L°)? satisfying

CNCtc{0} and C CC*t.

As a consequence of Theorem 2.8, one obtains the following corollary.

Corollary 2.11 Let C be a non-empty o -stable L°-linear subset of (L°)?. Then
there exist unique pairwise disjoint sets Ao, ..., Aqg € F satisfying Uf:(, A =Q
and an orthonormal basis X1, . .., Xq of (L°)¢ on Q such that 14,C ={0}, 14,C =
14,(L%4 and

14,C =ling {X1,....X;}, 1,4,C*H =ling, {Xiy1,.... Xy} forl <i<d—1.

In particular, C + C+ = (LY, cNCt={0and C = C++.

Proof The uniqueness of the sets Ay, ..., A, follows from Corollary 2.6, and in the
special case C = {0}, one can choose Ag = 2, A; =0, X, =¢;,i =1,...,d.
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If C is different from {0}, it follows from Theorem2.8 that there exist a unique
numberk € {1, ..., d}, unique pairwise disjoint sets Ay, ..., Ay € Fand Yy, ..., ¥}
€ C such that Uf:o A =, u[Ax] >0, 14,C = {0} and for all i € {1,...,k}
satisfying u[A;] > 0, Yy, ..., Y; is a basis of C on A;. Let us define

1
U =1 wUA, T €
VAT

and

i-1 7

Z; ::Yi_Z(Yi»Uj>Uja Ui:lAiU"'UAkHZ_l” for2 <i <k.

j=1 i
Then for every i € {1, ..., k} satisfying u[A;] >0, Uy, ..., U; is an orthonor-
mal basis of C on A;. If k =d, one obtains from Corollary2.6 that 14,C =
ling, {Uy, ..., Ug} = lAd(LO)d. If k <d, weset Apy1=---=As =1, and 14,

C = 14,(L% holds trivially. By Corollary 2.6 and Lemma?2.7, there exist V; € C,
i =1,...,d such that

Lay (L)Y =ling, {Vi, ..., Va)
and
1a, (LY =ling, (Uy, ..., Ui, Vigy ..., Vy) foralli=1,...,d — 1.
Set
X1 = 14,0.04,U1 + 1AOL
Vil
and

i-1
Wi=Vi— Z(Vi, X)X, Xi=1,0.0a,Ui + 145004
j=1

W.
1.7171 for2 <i <d.
[Will

Then X4, ..., X, are orthonormal on €2 such that

14,C =ling (X1, ..., X;}, 14,CT =ling, {Xiy1,..., Xy} forl<i<d-—1.
Itis clearthat C + Ct = (L%¢, cNC*+ = {0} and C = C*+*. O
Corollary 2.12 Let C be a non-empty o-stable L°-linear subset of (L°)¢. Then

every X € (LY has a unique decomposition X =Y + Z forY € C, Z € C+, and
NZ|| = [IX — V|| for every V € C.
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Proof That X has a unique decomposition X =Y +Z,Y € C, Z € C1is a conse-
quence of Corollary 2.11. Moreover, if V € C, then

WZIP < NZIPH+IY = VIP=Z+Y = VI =[IX - V]| O

3 Converging Sequences, Sequential Closures
and Sequential Continuity

Definition 3.1 We call a subset C of (L°)? sequentially closed if it contains every
X e (L% that is an a.e. limit of a sequence (X,),en in C. For an arbitrary subset
C of (L% and A € F,, we denote by lim4(C) the set consisting of all a.e. lim-
its of sequences in 1,C and by cl4(C) the smallest sequentially closed subset of
14(L%)¢ containing 1 ,C. In the special case A = €2, we just write lim(C) and cl(C),
respectively.

Proposition 3.2 For all subsets C of(LO)d and A € F one haslim4(C) = cls(C).

Proof 1t is clear that lim4 (C) C cls(C). To show that the two sets are equal, it is
enough to prove that lim 4 (C) is sequentially closed. So let (X,,),cn be a sequence in
lim4 (C) that converges a.e. to some X € 14(L%4. Since (2, F, ) is o -finite, there
exists an increasing sequence A,, n € N, of measurable sets such that Un A, =A
and u[A,] < +o00. For every n there exists a sequence (Y,) ey in 14C converging
a.e. to X,,. Therefore,

ulA, N{Y,, — X,| > 1/n}] - 0 form — oo,
and one can choose m,, € N such that
wlB,] <27", where B, = A, N {|Y,, — X,| > 1/n}.

It follows from the Borel-Cantelli lemma that u [ () cy U= Ba] = 0, whichimplies
Y, > X ae. for n—>o00. So X elimy(C), and the proof is
complete. ]

Corollary 3.3 If C is a stable subset of (L°)¢ and A € F, then
lim,(C) = 1, im(C) = cl(C) = 1,¢l(C).

In particular, if C is stable and sequentially closed, then so is 1,C.

Proof 1lim4(C) = 14 1im(C) is a consequence of the stability of C. Moreover, it fol-
lows from Proposition 3.2 that lim4 (C) = cl4(C) and lim(C) = cI(C). This proves
the corollary. ]
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Corollary 3.4 IfC is a stable subset of (L°)? and A € F., then cl4(C) is o -stable.
Moreover, if C is LO%-convex, an L°-convex cone, Lo-ajﬁne or LY-linear; then so is
cla(0).

Proof By Proposition3.2,cl4(C)isequal tolim4 (C). Soforall X, Y € cl,(C) there
exist sequences (X,)uen and (¥,),ey in 14C such that X, - X ae.and ¥, —» Y
a.e.Since forall B € F, 13X, + 1p.Y, € 1,Cand 13X, + 15 Y, —> 15X + 1Y
a.e., one obtains that 15X + 15:Y belongs to lim4(C) = cl4(C). This shows that
cl4(C) is stable. Since it is also sequentially closed, it must be o -stable. The rest of
the corollary follows similarly. ]

Proposition 3.5 Every o-stable L°-affine subset C of (L°)? is sequentially closed.

Proof 1If C is empty, the corollary is trivial. Otherwise, choose X € C. Then D =
C — X is a o-stable L°-linear subset of (L°)?, and the corollary follows if we can
show that D is sequentially closed. So let (¥,),ecn be a sequence in D converging
a.e. to some Y € (L°)¢. By Corollary2.11, there exist unique pairwise disjoint sets
Ao, ..., Ag € F satisfying U?:o A; = © and an orthonormal basis X1, ..., X, of
(L%4 on Q such that 1,,D = {0} and 14, D = lins, {Xy,..., X;} for 1 <i <d.
Define A, and A in (L°)¢ by A/ := (Y,, X;) and A := (Y, X;). Since ¥, — Y ae.,
one has A}, — A/ a.e. In particular, A/ = 0 on A; such that i < j. This shows that
Y=3,MX;eD. O

The following example shows that L°-affine subsets of (L°)¢ that are not o -stable
need not be sequentially closed.

Example 3.6 Let Q =N, F = 2N and 1 the counting measure. Set X, = lye;.
Then

k
lin(X, :neN)=1>"1,X, : kN, Al,...,kkeLO]

n=1

is an L-linear subset of (L°)¢ thatis not o--stable,and ¥; = >"*_ X, isasequencein
lin(X, : n € N) thatconverges a.e. to ZneN X, ¢ lin(X, : n € N).Note thatlin(X,, :
n € N) is an L°-submodule of (L°)? that is not finitely generated.

The next result is a conditional version of the Bolzano—Weierstrass theorem. It is
already known (see for instance, Lemma 2 in Kabanov and Stricker [8] or Lemma
1.63 in Follmer and Schied [5]). But since it is important to some of our later results,
we give a short proof. To state the result we need the following definition.

Definition 3.7 We call a subset C of (L°)? L°-bounded if ess supy .. || X|| € L.

Note that if (X,,),en is a sequence in (L°)? and N € N(F), Xy can be written as

XN = Z 1{N:n]Xn-
neN
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In particular, X is in (L°)?. Moreover, if all X, belong to a o-stable subset C of
, then X 1s again in C.
(L%, then Xy is again in C

Theorem 3.8 (Conditional version of the Bolzano—Weierstrass theorem)

Let (X)) nen be an L°-bounded sequence in (LY. Then there existsan X € (L°)? and
a sequence (N,)nen in N(F) such that N,y > N, foralln € Nandlim,_, o Xy, =
X a.e.

Proof There existsa Y € Lg such that || X,,|| < Y for all n € N. Therefore, the a.e.
limit X! := lim,,_, oo inf,,>, X ), exists and is in L°. Define N} := 0 and

N () _mln{meN m >N () and X}, (@) < X (a))+1/n}eN(f) neN.

Then N! , > N} for all n € N and lim,_ X}Vl = X! ae. Now set ¥? = X2

Then there exists a sequence (M Jnen in N(F) such that M +1 > M2 for all n e

N and lim,_ oo Yz%ﬁ = X? :=lim,_ oo infy>, Y2 ae. N2 := Nztﬁ’ ne N defines a

sequence in N(F) satisfying N2 > N? forall n € N, and one has lim,,_, « X'

N2 =

X' ae. for i = 1, 2. If one continues like this, one obtains X!, , X9 e L%and a
sequence (Ny)yen in N(F) such that N,y > N, foralln € N and lim, 0 Xy, =
=X ..., XY ae. O

Corollary 3.9 Let (X,)nen be asequence in a sequentially closed L°-bounded stable
subset C of (L°)?. Then there exists an X € C and a sequence (N,,)en in N(F) such
that Ny > N, foralln € N andlim,_,o. Xy, = X a.e.

Proof Since (X,)nen is L°-bounded, it follows from Theorem 3.8 that there exists
X e (L°? and a sequence (N,),cr in N(F) such that N,,; > N, forall n € N and
lim,—, o X, = X a.e. It remains to show that X belongs to C. By Corollary 3.4 the
subset C is o-stable. Hence, Xy, belongs to C for all n € N, which implies that X
is in C too. O

Corollary 3.10 Let C and D be non-empty sequentially closed stable subsets of
(L% such that D is L°-bounded. Then C + D is sequentially closed and stable.

Proof That C + D is stable is clear. To show that C + D is sequentially closed,
choose asequence (X,,),cn in C and asequence (Y;),enin D suchthat X, + Y, — Z
a.e.forsome Z € (L°)?. By Theorem 3.8, there exists Y € D and asequence (N,),ex
in N(F) such that N,,;; > N, foralln € Nandlim,_, , Yy, = Y a.e. It follows that
lim, .o Xn, = Z — Y a.e. Since C is and sequentially closed, Z — Y belongs to C.
Hence, Zisin C + D. [l

Another consequence of Theorem 3.8 is that conditional Cauchy sequences con-
verge if they are defined as follows:

Definition 3.11 We call a sequence (X,),ey in (L?)¢ L°-Cauchy if for every ¢ €
L°+ there exists an Ny € N(F) such that || Xy, — Xp,|| < ¢ forall Nj, N, € N(F)
satisfying Ny, Ny > Nj.
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Theorem 3.12 Every LO—Cauchy sequence (X,)nen in (L4 converges a.e. to some
X e (L%

Proof Choose Ny € N(F) such that || Xy, — Xn,|| <1 for all Ny, N, € N(F) sat-
isfying Ny, Ny > Ny. Then

IXall < 14 D" meng | Xull € L

meN

for all n € N. So it follows from Theorem 3.8 that there exist X € (L°)? and a
sequence (N,),en in N(F) suchthat N,y > N, foralln € Nandlim, o Xy, = X
a.e. But since (X,,),en 1S LO—Cauchy, one has lim,_, o, X, = X a.e. U

The following result gives necessary and sufficient conditions for a sequentially
closed L%-convex subset of (L% to be L°-bounded.

Theorem 3.13 Let C be a sequentially closed L°-convex subset of (L°)¢ containing
0. Then C is L°-bounded if and only if for any X € C \ {0} there exists a k € N such
that kX ¢ C.

Proof Suppose that C is L°-bounded. Then for every 0 # X € C, there exists a
k € N such that u [||kX|| > eSS SUPy ¢ ||Y||] > 0, and therefore kX ¢ C.
Conversely, suppose that C is not L°-bounded. The sequence

A, :=esssup{B € F: ||X|| > non Bforsome X € C}, neNU{0},

is decreasing with limit A := ﬂn A,. One must have u[A] > 0, since otherwise,
X < ZneN”l{A;\AZ,I} e L° for all X e C. Since C is sequentially closed, L°-
convex and therefore stable, it is o-stable. It follows that there exists a sequence
(X,)nen in C such that || X,|| > n on A. Since the sequence Y, = 14X,/ X, |l
is L°-bounded, it follows from Theorem3.8 that there exists ¥ € (L°)? and a
sequence (Ny)nen in N(F) such that N, > N, and lim,,_,o Y5, =Y a.e. Obvi-
ously, 14]|Y|| = 14, and in particular, ¥ # 0. Since C is L’-convex, sequentially
closed and contains 0, one has for all n > £,

XN eC

Yy, =1la g
X, I

But lim,_, o kYy, = kY.So kY € C forall k € N. ([l

Definition 3.14 Let C be anon-empty subset of (L°)? and k € N. We call a function
f:C— (LY

e sequentially continuous at X € C if f(X,) — f(X) ae. for every sequence
(X1)nen in C converging to X a.e.;
e sequentially continuous if it is sequentially continuous at every X € C;
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o Ll-affineif f(AX 4+ (1 —A)Y) =Af(X) + (1 — 1) f(¥Y)forall X, Y € (L°)?and
L€ LY suchthat AX + (1 — 1Y € C;

o L linearif f(AX +Y) =Af(X)+ f(Y) forall X,Y e (L% and A € L° such
that AX +Y e C.

e We define the conditional norm of f by || f|| := esssupycc, xj <1 /(X € L.

Proposition 3.15 Let C be a non-empty o-stable L°-linear subset of (L°)?. Then
1 f1]l € L?rfor every L%-linear function f : C — (L°*, k e N.

Proof By Corollary2.11, there exist unique pairwise disjoint sets Ao, ..., Ay € F
satisfying U?:o A; = Q and an orthonormal basis X1, ..., Xz of (L% on  such
that 14,C = {0}and 14,C = ling, {X;, ..., X;}forl <i < d.Forevery X € C there
exists a unique A € (L°)? such that X = 27:, 1;X ;. Onthe set Ag one has f(X) =

‘ 12
X =0,andon A, for 1 <i <d, ||X|| = (le.:l A?) as well as

i i i 12 172
HFCON =11 D A FX DI = D AP < (in) <Z||f<xj)||2> :
j=1

j=1 j=1 j=1

d i N\ 2
Therefore, || £11 = 3, L, (St I1FXIP) O

Corollary 3.16 Let C be a non-empty o -stable L°-affine subset of (L°)?. Then every
LO-affine function f : C — (L°)%, k € N, is sequentially continuous.

Proof Choose an Xo € C. Then D = C — Xy is a non-empty o-stable L°-linear
subset of (L%)? and g(X) = f(X + Xo) — f(Xo) is an LO-linear function on D. By
Proposition3.15, one has ||g|| € L(J’r.Moreover, [1f(X)— fI] =1lg(X =Y)|| <
llgll 11X — Y|, and it follows that f is sequentially continuous. ([

Corollary 3.17 Let C be a non-empty sequentially closed subset of a non-empty
o-stable LC-affine subset D of (L°)?. Then for every injective L°-affine function
f:D— (LY, k e N, f(C) is a sequentially closed subset of (L.

Proof Pick an Xy € C. The corollary follows if we can show that f(C) — f(Xj) is
sequentially closed. So by replacing C with C — Xy, D with D — X and f with
f(X + Xo) — f(Xp), one can assume that X, = 0, D is a o-stable L°-linear subset
of (L%)? and f is injective L-linear. By Corollary 3.16, f is sequentially continuous.
Therefore, f(D) is a non-empty o-stable L°-linear subset of (L°)¥, and it follows
from Proposition 3.5 that it is sequentially closed. Since f~! : f(D) — D is again
LO-linear, it is also sequentially continuous. So if (¥,),en is a sequence in f(C)
converging a.e. to some Y € (L%, then Y € f(D) and f~'(Y,) is a sequence in C
converging a.e. to f~'(Y) € D. It follows that f~'(¥Y) e Cand Y = f(f~'(Y)) e
F(O). U
Lemma 3.18 Let C be a non-empty o-stable L°-linear subset of (L°)? and k

N. Then every L°-linear function f : C — (L°)* has an L°-linear extension F :
(L) — (L) such that || f|| = || F||.
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Proof By Corollary2.12, every X e (L°)“ has a unique decomposition X =Y + Z
suchthatY € Cand Z € C*. F(X) := f(Y) defines an LO-linear extension of f to
(L%)? such that || f|| = || F]|. (]

4 Conditional Optimization

Definition 4.1 Let C be a non-empty subset of (L°)?. We call a function f : C — L

e sequentially Isc (lower semicontinuous) at X € C if f(X) < liminf,_ » f(X,)
for every sequence (X, ),en in C with a.e. limit X;

sequentially Isc if it is sequentially Isc at every X € C;

sequentially usc (upper semicontinuous) at X € C if — f is sequentially Isc at X;
sequentially usc if it is sequentially usc at every X € C;

sequentially continuous at X € C if it is sequentially Isc and usc at X;
sequentially continuous if it is sequentially continuous at every X € C.

In the following definition 400 — oo is understood as +00 and 0 - (£00) as 0.
Definition 4.2 Let f : C — L be a function on a non-empty subset C of (L%)¢.
e If C is stable, we call f stable if

SAAX +14Y) =14 f(X) + 14 f(V)

forall X,Y € Cand A € F4;
e If C is L°-convex, we call f L-convex if

FOX+A=-MY) <Aif(X)+ (A =-21)f(T)

forall X,Y € C and A € L such that0 < A < [;
e If C is LO-convex, we call f strictly L°-convex if

FOX 4+ =0Y) < AfX)+ (1 =1 F) ontheset {X £ X +(1—A)Y) #£7Y)
forall X,Y € C and » € L° such that0 < A < 1.

Lemma 4.3 Let f : C — L be an L°-convex function on an L°-convex subset C of
(L. Then f is also stable.

Proof Let X,Y € C and A € F,. Denote Z = 14X + 14Y. Then one has 1,4
f(Z) <14f(X) and 14 f(X) =14 f(14Z + 14X) < 14 f(Z). This shows that
14 f(Z) = 14f(X). Analogously, one obtains 14c f(Z) = 14 f(Y) and therefore
F(Z) =14 f (X0 + Ly f(Y). O
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Theorem 4.4 Let C be a sequentially closed stable subset of (L°)* and f : C — L
a sequentially Isc stable function. Assume there exists an X € C such that the set

(XeC:f(X) < f(Xo)
is LO-bounded. Then there exists an X € C such that
X) = essinf f(X).
f(X) =essinf f(X)
If C and f are L°-convex, then the set
[xec:ru=rd)
is LO-convex. If in addition, f is strictly L°-convex, then
{X eC: f(X)= f(f()} _ {X} .
Proof The set D :={X € C : f(X) < f(Xp)} is sequentially closed, stable and
L%-bounded. It follows that { f(X) : X € D} is directed downwards. Therefore,
there exists a sequence (X,),eny in D such that f(X,) decreases a.e. to [ :=
essinfxcp f(X). By Corollary 3.9, there exists a sequence (Ny)pen in N(F) such

that N,.; > N, foralln € Nandlim,_,. Xy, = X a.e.forsome X € D. Since Xy,
belongs to D and

FXn) =D Nny=my [ (X) < f(X,) foralln,

one obtains from the L°-lower semicontinuity of f that
f£(X) < liminf fXy,) < lim f(X,) =1
n—00 n—o00

This shows the first part of the theorem. That {X eC: f(X)= f()A()} is L%-convex

if C and f are LO-convex, is clear. Finally, assume C is Lo—cogvex and f strictly
L°-convex. Then if there exists an X in C such that f(X) = f(X), one has

(X + X) X)) + £(X)
f <

2 2

on the set {X * )2'} It follows that u[X # X1=o0. (Il
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Corollary 4.5 Let C and D be non-empty sequentially closed stable subsets of
LO(F)? such that D is L°-bounded. Then there exist X € C and Y € D such that

X Y| = inf ||X — Y]I. 4.1
IX = V|| = essinf |IX — ]| (@.1)

If in addition, C and D are LO%-convex, then X —7VYis unique.

Proof By Corollary 3.10, the set E = C — D is sequentially closed and stable. More-
over, Z > ||Z|| is a sequentially continuous L°-convex function from E to L°, and
for every Zy € E, the set {Z € E : ||Z|| < ||Zo||} is L°-bounded. So one obtains
from Theorem4.4 that there exists a Z € E such that ||2|| =essinfzcg || Z]]. This
shows that there exist X € Cand ¥ € D satisfying (4.1). If C and D are L°-convex,
then so is E, and for every Z € E satisfying ||Z|| = ||2||, one has (Z + 2)/2 ek

and ||(Z + 2)/2]] < [|Z]] on the set {z ) z} It follows that u[Z # 2] = 0, and
the proof is complete. O

5 Interior, Relative Interior and L’-open Sets

Definition 5.1 Let C be a non-empty subset of (L°)¢ and A € F,.

e For X e (L and ¢ € L?|—+’ we denote

Bi(X) = {Y € La(LO) : 14]lY — X|| < ¢}.

e The interior int4 (C) of C on A consists of elements X € 1,C for which there
exists an € € L?H such that B§(X) C 1,C. If A = , we just write int(C) for
int4 (C).

e The relative interior rig (C) of C on A consists of elements X € 1,C for which
there exists an € € L(_)Hr such that B4 (X) Naff 4(C) C 1,(C). If A = Q, we write
ri(C) instead of ris (C).

e We say C is L°-open on A if 1,C = int4(C). We call it L°-open if it is L°-open
on 2.

Note that one always has 14int(C) C int4(C) but not necessarily the other way
around. The collection of all L°-open subsets of (L°)? forms a topology. It is studied
in Filipovi€ et al. [4] and is related to (e, A)-topologies on random locally convex
modules (see [6]). We point out that sequentially closed sets in (L°)¢ are different
from complements of L°-open sets. But one has the following relation between the
two:

Lemma 5.2 Let C be a o-stable subset of (LY. Then cl(C) Nint(C°) = @.

Proof Assume X € cl(C) Nint(C¢). By Proposition3.2, there exists a sequence
(X,)nen in C such that X,, — X a.e. On the other hand, there isan ¢ € LE)Hr such that



Conditional Analysis on R? 195

Y € C¢ for every Y € (L°)? satisfying || X — Y|| < e. N(w) :=min{n € N : ||X,,
(w) — X(w)]| < e(w)} is an element of N(F), and since C is o-stable, Xy belongs
to C. But at the same time one has || Xy — X|| < ¢, implying Xy € C¢. This yields
a contradiction. So cl(C) N int(C¢) = @. O

Lemma 5.3 Let C be a non-empty L°-convex subset of (L°)?, A € F and ) € L°
such that 0 < A < 1. Then

AX + (1 =1)Y einty(C) forall X € inty(C), Y € 1,C (5.1)

and
AX + (1 =AY €r1ig(C) forall X €rig(C), Y € 1,4C. (5.2)

If in addition, C is o-stable, then (5.1) and (5.2) also hold for Y € cl4(C).

Proof Let X € int4(C) and Y € 1,C. There exists an ¢ € L(J)r+ such that B (X) is
contained in 1,C. So

AX+(1—MY+Z=xX4+Z/A)+(1—1Y C1,C

for all Z € B%*(0). This shows (5.1).
To prove (5.2), weassume that X € rig(C)andY € 14C. Thereexistsane € L9r+
such that B4 (X) Naff4(C) € 1,C. Choose Z € Bff(O) such that

AX+ (1 —=2Y + Z e aff4(C).
Then X + Z /X € aff 5 (C), and therefore X + Z/A € 14C. It follows that
A X+ A=Y+ Z=2X+Z/A)+(1—-1Y C1,C.

This shows (5.2).

If C is o-stable, X € int4(C) and Y € cl,(C), there exists an ¢ € L?H such that
Bff(X ) C 14C. From Proposition 3.2 we know that there exists a sequence (Y,,),en
in1,4C converginga.e.toY. N(w) := min{n € N : (1 — A(w))||Y () — YV, (w)|| < A
(w)e(w)} belongs to N(F), and Yy is an element of C satisfying (1 — 1)||Y — Yy|| <
re.Sofor Z € Bﬁg (0), one has

I-»
A

1
AX+(1—A)Y+Z:A(X+ (Y—YN)+XZ)+(1—A)YN61AC,

which shows that A X 4+ (1 — L)Y € int4(C).
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If X is inria (C) instead of int4(C), there exists an & € LY, such that B (X) N
aff,(C) C 14C. Let Z € B?;S(O) such that

AX 4+ (1 = W)Y + Z € aff4(C),

then

a-»
A

1
X + (Y—YN)+XZEaffA(C).

Hence

x4+ 4=

1
Y —Yy)+ XZ € 14C,

and it follows that

I-»
A

1
xx+(1—)\)Y+zzx(X+ (Y—YN)+XZ)+(1—)\)YNe1AC.

SoAX 4+ (1 — A)Y € rig(C), and the proof is complete. U

Corollary 5.4 Let C be an L°-convex subset of (L°)? and A € F. Then int,(C)
and tis(C) are again L°-convex.

Proof Since C is stable, it follows from Lemma5.3 that for X, Y € int4(C) and
X e L0 satisfying 0 < A < 1, one has

AX 4+ =2Y =1p-00AX + (1 = 1)Y) + 1= € inty(C).

This shows that int4(C) is L°-convex. The same argument shows that ris (C) is
L%-convex. O

Definition 5.5 Let A € F.. We call a subset C of (L%)¢

e an L%-hyperplane on A if 1,C = {X € 1,(L%* : (X, Z) = V}
e an L%-halfspace on A if 1,C = {X € 14(L%)" : (X, Z) > V}

for some V € 1,L° and Z € 1,4(L%) such that || Z|| > 0 on A.

Lemma 5.6 A subset C of (L°)? is an L°-hyperplane on A € F if and only if there
exist Xo € 1,(L°)? and an orthonormal basis X1, . .., Xq of (L°)? on A such that

d—1
lACzIXO—'—Z)"iXi:)\‘ielALO}' (53)

i=l1
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Similarly, C is an L-halfspace on A € F, if and only if there exist Xy € 1,(L%)¢
and an orthonormal basis X, ..., X4 of (L% on A such that

d
14C = [X()+ZA,»X,~ i € 1410, Ay zo]. (5.4)
i=1

Proof If 1,C is of the form (5.3), then 1,C = {X € 14,(L%¢ : (X, X;) = (Xo,
Xg4)}. Now assume that 1,C = {X e 14(LY (X, Z) = V} for some V € 14L°
and Z € 1,(L°)? such that || Z|| > 0 on A. By Corollary2.11, there exists an ortho-
normal basis X, ..., Xz of (L°)? on A suchthat 1 4 Z+ = ling {X,, ..., X4_} and
X4 =14Z/||Z]|. Choose X € 14(L%? such that (X, Z) = V. Then 14C is of the
form (5.3). That C is an LO—halfspace on A € F, if and only if 14C is of the form
(5.4) follows similarly. [l

Lemma 5.7 Let C be a o-stable L°-convex subset of (L°)? and A € F,. Then
int4(C) # ¢ if and only if aff 4 (C) = 1,4 (L%)“.

Proof Let us first assume that X € int4(C). Then 0 € int4(C — X)), and it follows
that

aff 4 (C) = aff 4 (C — Xo) + X0 = ling (C — Xo) + Xo = 14(LO)? + Xo = 14,(L0)7.
On the other hand, if aff , (C) = 14(L%)4, choose X, € 14C. Then

lina(C — Xo) = aff 4 (C — Xo) = aff4(C) — Xo = 14 (L")

Soitfollows from Theorem 2.8 that there exist X1, ..., Xyin 1,C suchthat X; — X,
i=1,...,d, form a basis of (L°)? on A. Set
1
Xi=— X;.
P
It follows from Corollary 2.11 and Lemma 5.6 that forevery i = 0, . . ., d, there exist

Vi € L° and Z; € (L°)¢ such that for all j # i,

(X.2:) > vi = (X}, ;) on A.
This shows that X € inty {X € 14(L%? : (X, Z;) = V;} for all i, which implies
X e int 4 (C) since

d
({X € 14" : (X. Z:) = Vi} = convy {Xo. ... Xa} € 14C.
i=0
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6 Separation by L°-hyperplanes

In this section we prove results on the separation of two L%-convex sets in (L%)¢ by
an L°-hyperplane. As a corollary we obtain a version of the Hahn—Banach extension
theorem. Hahn—Banach extension and separation results have been proved in more
general modules; see e.g., Filipovi¢ et al. [4], Guo [6] and the references therein.
However, due to the special form of (L%, we here are able to derive analogs of
results that hold in R? but not in infinite-dimensional vector spaces. Moreover, we
do not need Zorn’s lemma or the axiom of choice.

Theorem 6.1 (Strong separation) Let C and D be non-empty L°-convex subsets of
(L. Then there exists Z € (L) such that

essinf (X, Z) > esssup (Y, Z) (6.1)
XeC YeD

ifand only if 0 ¢ cl4(C — D) forall A € F,.

Proof Let us first assume that there exists an A € F such that 0 € cl4(C — D).
From Proposition 3.2 we know that cl,(C — D) = lim4 (C — D). So there exists a
sequence (X ) enin 14 (C — D) such that X,, — 0 a.e. It follows that there can exist
no Z € (L% satisfying (6.1).

Now assume 0 ¢ cls(C — D) for all A € F.. It follows from Corollary 3.4 that
cl(C — D) is L%-convex. So one obtains from Corollary 4.5 that there exists a Z €
cl(C — D) such that

IZIIF < (1 =MZ + AW = | ZIIF + 24 (Z, W — Z) + 2| W — Z|?

forall W € cI(C — D) and A € L such that0 < A < 1. Division by 21 and sending
A to 0 yields (W, Z) > 1ZI?>. In particular,

(W, Z) > ||Z||* foral W e C — D,

and therefore,

essinf (X, Z) > esssup (Y, Z) + || Z||*.
XeC YeD

It remains to show that || Z|| > 0. But if this were not the case, the set A = {Z = 0}
would belong to F and 14Z = 0. However, by assumption and Corollary 3.3, one
has 0 ¢ cl4(C — D) = 14cl(C — D) forall A € F,, a contradiction. U

Corollary 6.2 Let C and D be non-empty sequentially closed L°-convex subsets of
(L% such that D is L°-bounded and 1 ,C is disjoint from 14D forall A € F,. Then
there exists a Z € (L°)? such that

essinf (X, Z) > esssup (Y, Z) .
XeC YeD
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Proof C — D is anon-empty L’-convex set, which by Corollary 3.10 is sequentially
closed. It follows from the assumptions that 0 ¢ 1,(C — D) for all A € F, and
we know from Corollary 3.3 that 14,(C — D) = cl4(C — D). So the corollary is a
consequence of Theorem6.1. (]

Lemma 6.3 Let C be a non-empty o-stable L°-convex cone in (L°)¢ such that
14C # 14(L% for all A € F.,. Then there exists a Z € (L) such that

[1Z|| >0 and essinf (X, Z) > 0. 6.2)
XeC

Proof If C = {0}, the lemma is clear. Otherwise one obtains from Theorem 2.8
that there exist A € F and X, ..., X4_; € C such that lin, (C) = ling (L%)¢ and
linge(C) C linge {Xy, ..., Xy—1}. By Corollary2.11, there exists W € ling-{X;,
..., Xq_1)* such that ||W|| > 0 on A€. If u[A] =0, then Z = W satisfies (6.2),
and the proof is complete. If u[A] > 0, one notes that since C is an LO-convex cone,
one has aff 4 (C) = ling (C) = 14(L%¢. It follows from Lemma 5.7 that there exists
aY €inty(C). Then 15Y € intg(C) for every subset B € F, of A. But this implies
that —1zY cannot be in clz(C). Otherwise it would follow from Lemma5.3 that O
belongs to intg(C), implying that 13C = 15(L%)¢ and contradicting the assump-
tions. So Theorem 6.1 applied to 1 4C and {—Y} viewed as subsets of 14 (L% yields
aV e 1,(L%? such that

essinf (X, V) > (=Y, V) onA.
XelsC

Since C is an L%-convex cone, Z = 1,V + 14 W satisfies condition (6.2). ([l

Theorem 6.4 (Weak separation) Let C and D be non-empty o-stable L°-convex
subsets of (L°)?. Then there exists a Z € (L°)? such that

[|Z]| > 0 and essinf (X, Z) > esssup (Y, Z) (6.3)
XeC YeD

if and only if O ¢ inty(C — D) forall A € F;.

Proof Ifthereisan A € F, suchthatO € int,(C — D), there can existno Z € (L%)?
such that (6.3) holds. Hence, (6.3) implies 0 ¢ int4(C — D) forall A € F..

To show the converse implication, assume that 0 ¢ int4(C — D) for all A € F.
Clearly, C — D is o-stable and L°-convex. Therefore, one has ccone(C — D) =
{*X :1 €LY, X e C— D}, from which it can be seen that ccone(C — D) is o-
stable and satisfies 1 4ccone(C — D) # 1,(L%)? forall A € F+.Soone obtains from
Lemma 6.3 that there exists a Z € (L°)? such that

[1Z]] > 0 and essinf (X, Z) > 0.
XeE

This implies (6.3). (]
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Corollary 6.5 Let C and D be two non-empty o -stable L°-convex subsets of (L°)?
such that 1,C is disjoint from 1,D for all A € F, and D is L°-open. Then there
exists a Z € (L°)? such that

essinf (X, Z) > (Y, Z) forallY € D.
XeC

Proof Tt follows from Theorem 6.4 that there exists a Z € (L% such that

[IZ]] >0 and essinf (X, Z) > esssup(V, Z),
XeC veD

and since D is L°-open, one has

esssup(V,Z) > (Y, Z) forallY € D. 0
VeD

As another consequence of Theorem 6.4 we obtain a conditional version of the
Hahn—Banach extension theorem.

Corollary 6.6 (Conditional version of the Hahn—Banach extension theorem)
Let f: (L%? — L° be an L-convex function such that f(AX) = Af(X) for all
rE L(l and g : E — L° an L°-linear mapping on a o -stable L°-linear subset E of
(L% such that g(X) < f(X) forall X € E. Thenthere exists an LO-linear extension
h: (LYY — L° of g such that h(X) < f(X) forall X e (L%)%.

Proof Note that
C={X,V)e (LY xL°: f(X) <V} and D:={(, g(¥)) :Y € E}

are L°-convex sets in (L°)¢ x L. By Lemma4.3, f and g are stable. It follows that
C and D are o-stable. Moreover, since C — D is an L%-convex cone and 14 (0, —1) ¢
14(C — D) for all A € F,, one has (0,0) ¢ int,(C — D) for all A € F. So one
obtains from Theorem 6.4 that there exists a pair (Z, W) € (L% x L° such that

NZ|| +|W| >0 and (eXssVi)ng{(X, Z)+ VW} >esssup{(Y, Z) + g(Y)W}.
N €

YeE
(6.4)
It follows that W > 0. By multiplying (Z, W) with 1/ W, one can assume that W = 1.
Since E and g are LC-linear, the ess sup in (6.4) must be zero, and it follows that
g(Y) = (Y,—Z) forall Y € E. Moreover, f(X) > (X, —Z) for all X € (L°)?. So
h(X) := (X, —Z) is the desired extension of ¢ to (L%)“. O

Theorem 6.7 (Proper separation) Let C and D be two non-empty o -stable L°-
convex subsets of (L°)?. Then there exists a Z € (L°)? such that

essinf (X, Z) > esssup (Y, Z) and esssup (X, Z) > essinf (Y, Z) (6.5)
XeC YeD XeC YeD

if and only if O ¢ 1is(C — D) forall A € F,.
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Proof Denote E = aff (C — D). By Corollary2.9, 14E is for all A € F o-stable,
and therefore, by Proposition 3.5, sequentially closed.

If there exists an A € F such that O € riy (C — D), 14 E is L°linear and there
exists an & € L9, such that BA(0) N 14E € 14(C — D). Suppose there exists Z €
(L%)? satisfying (6.5). Then

(X,Z)>0forall X € cly(C — D) (6.6)

and
(X,Z) > 0on A forsome X € 14,(C — D). (6.7)

One obtains from Corollary2.12 that Z = Z| + Z, for some Z, € 14E and Z; €
(14 E)*. It follows from (6.6) that Z; = 0. But this contradicts (6.7). So (6.5) implies
that O ¢ riy(C — D) forall A € F..

Now assume 0 ¢ rig(C — D) for all A € F. Since E is o-stable, there exists
a largest B € F such that 0 € 1gE. If u[B] =0, one has 0 ¢ 1,F for all A €
Fy, and it follows from Corollary6.2 that there exists a Z € (L°)¢ such that
essinfycp (X, Z) > 0, which implies (6.5). If u[B] > 0, denote A := 2\ B. The
same argument as before yields a Zy € 1,(L%)¢ satisfying (6.6)—(6.7). On the other
hand, 1gE is LO-linear. So it follows from Corollary2.11 that there exist disjoint
sets By, ..., By € F satisfying Ufl:l B; = B and an orthonormal basis X1, ..., Xy
of (L% on B such that 13 E = ling {X;,..., X;} foralli =1,...,d. For every
ieZl:={j=1,....d:u[B;]> 0} one can apply Theorem6.4 in the L°-linear
subset 15 E to obtain a Z; € 1, E such that

[|Z;]| > 0on B; and essinf (X, Z;) > esssup (Y, Z;) .
XeC YeD

Since 0 ¢ 1ig(C — D) for all A € F, one has

esssup (X, Z;) > essinf (Y, Z;) on B;.
XeC YeD

If one sets Z = IAZ0+U,.€I 15 Z;, one obtains (6.5), and the proof is
complete. ]

7 Properties of L-convex Functions

Definition 7.1 Consider a function f : (L°)¢ — L and an X, € (L°)?.

e Wecall Y e (L% an L°-subgradient of f at X, if

f(Xo) e L and f(Xo+ X)— f(Xo) > (X,Y) forall X e (L%)?.
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By df (X,) we denote the set of all L°-subgradients of f at Xj.
If f(Xo) € LY and for some X € (L% the limit

f'(Xo: X) i= lim n[f(Xo + X/n) = f(Xo)]

exists a.e. (400 and —oo are allowed as limits), we call it L-directional derivative
of f at X in the direction X.
e We say f is LO-differentiable at X, if f(Xo) € L° and there exists a ¥ € (L°)¢

such that
f(XO + Xn) - f(X()) - (Xna Y)
X2l

— 0 a.e.

for every sequence (X, ),en in (L% satisfying X, — Oa.e.and || X, || > O for all
n € N. If such a Y exists, we call it the L°-derivative of f at X and denote it by
V f(Xo).

e The L°-convex conjugate f* : (L°)¢ — L is given by

frY) :==esssup{({X,Y) — f(X)}.
Xe(LY

o If fis LO%-convex, we set
dom f :={X € (L") : f(X) < +o0}.

e By conv f we denote the largest L-convex function below f and by conv f the
largest sequentially Isc L°-convex function below f.

o If f is L'-convex and satisfies f(AX) = Af(X) forall A € LY and X € (L"),
we call f LO-sublinear.

e For every pair (Y, Z) € (L°)? x L° we denote by f¥? the function from (L°)?
to L given by fV4(X) = (X,Y) + Z.

Theorem 7.2 Let f : (L% — L be an LO-convex function and X, € int(dom f)
such that f(X) € L°. Then f(X) € L for all X € (L°)? and f is sequentially
continuous on int(dom f).

Proof Since X € int(dom f), thereexistsane € L9L+ suchthat V := max; f(Xo %+
ge;) < +00. By L%-convexity, one has f(X) < V forall X € X, + U, where

d
U:= [Xe (L : DX 58].

i=1

Assume that there exist X € (L°)? and A € F, such that f(X) = —oo on A. Then
one can choose a Z € Xo+ U anda A € L such that 0 < A < 1 and Xo = A X +
(1 —A)Z. It follows that f(Xo) <Af(X)+ (1 —X)f(Z) =—00 on A. But this
contradicts the assumptions. So f(X) € L forall X € (L%,
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Now pickan X € U anda A € L such that 0 < A < 1. Then
fXo+4X) = fA(Xo+ X) + (1 —2)Xo) = Af (Xo + X) + (1 = 1) f(Xo),
and therefore,
f(Xo+21X) = f(Xo) = ALf(Xo + X) — f(Xo)] = A(V — f(Xo)).

On the other hand,

1 A
Xo=—(X A X — Xy — X).
0 1+A( 0o+ )+1+k(0 )

So
1 A
fXo) < mf(xo +1X) + mf(xo - X),

which gives
f(Xo) = f(Xo+2X) < A[f(Xo — X) — f(Xo)] = A(V — f(Xo)).
Hence, we have shown that
1£(X) — F(Xo)| <MV — f(Xo)) forall X € Xo+ AU.

Let (X,,),qen be a sequence in (L°)¢ converging a.e. to X,. For every k € N, the sets

Al = () (X0 — Xo € U/}

n=m

are increasing in m with {J,, .| Ak = Q. By Lemma4.3, f is stable. Therefore,

|f (X)) = f(X0)| < (V = f(Xo))/k foralln>m on A},

and one obtains
i [U N U Ur&x) = FXo)l > (v — f(Xo))/k}} =0.
k>1m>1n>m
So f(X,) = f(Xp) a.e., and the theorem follows. O
As an immediate consequence of Theorem 7.2 one obtains the following

Corollary 7.3 An L°-convex function f : (L°)? — L is sequentially continuous on
int(dom f).
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Theorem 7.4 Let f : (LYY = L be an L -convex function and X, € ri(dom f).
Then df (Xo) # 0. In particular, if f(X) € L° for all X e (L°)?, then 3f (Xo) # ¢
forall X € (LY.

Proof By Lemma4.3, f is stable. Therefore,
C={X,V)e ) xL°: f(X) <V}

is an L-convex, o-stable subset of (L%)? x L°. Since (Xy, f(Xo) + 1) is in C, one
has (0, 0) ¢ ris (C — (Xo, f(Xp)) for all A € F,. So it follows from Theorem 6.7
that there exists (¥, Z) € (L% x L° such that

(eXssmf (X, YY)+ VZ} > (X0, Y)+ f(X0)Z (7.1)
and

esssup {(X, ¥) + VZ} > (Xo, Y) + f(Xo)Z. (7.2)

(X,V)eC

Equation (7.1) implies that Z > 0. Now assume there exists an A € F, such that
14Z = 0. Then since Xy € ri(dom f), (7.2) contradicts (7.1). So one must have
Z > 0, and by multiplying (Y, Z) with 1/Z, one can assume Z = 1. It follows from
(7.1) that

essinf {(X. ¥) + (X)) = (Xo. ¥) + [ (Xo).

Xedom

which shows that —Y is an L°-subgradient of f at X,,. (]

Lemma 7.5 Let f, g : (L% — L be functions such that f > g. Then the following
hold:

(i) f*is sequentially Isc and L°-convex;

(i) *(Y) = (X,Y)— f(X)forall X,Y e (L4
(iii) Y € 3f(X) lfandonlylff(X)eLoandf Y)= — f(X);
(iv) f*<g*and [ = g*,

Proof To prove (i) let (Y,),en be a sequence in (L°)? converging a.e. to some Y €
(LY. Then

hmmff (Y,,) = sup inf esssup {(X, V) — f(X)}

m>1"1"ZM xe(L0)d
> esssup sup inf {(X, V,) — f(X)}

Xe(LV)d m>17=m

= esssup {(X, ¥) — f(X)} = f*(Y).
Xe(Loy

Hence, f* is sequentially Isc. To show that it is L’-convex, choose Y, Z € (L%)¢
and A € L% such that 0 < A < 1. Then, Af*(Y) + (1 — A) f*(Z) = (X, AY + (1 —
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MZ) — f(X)forall X e (L) and therefore, A f*(Y) + (1 — 1) f*(Z) > f*(AY +
(1 — A)Z). (ii) is immediate from the definition of f*. Now assume that f(X) € LO.
Forany X’ € (L%4, f(X') — f(X) > (X’ - X, Y)isequivalentto (X,Y)— f(X) >
(X', Y)— f(X'). This shows (iii). (iv) is clear. From (ii) one obtains that f(X) >
(X,Y)— f*(Y) forall X, Y € (L. So f > f**. The same inequality applied to
f* gives f* > f** On the other hand, we know from (iv) that f* < f***. This
proves (v). O

Lemma 7.6 Let f : (L°)? — L be a sequentially Isc L°-convex function. Then one
has for all X € (LY?,

FX) =esssup {f"7(X): (Y. 2) e (L) x L°, f > f"7}.
Proof Note that the set
A= {A € F : there exists an X € (L°)? such that 14f(X) € LO}

is directed upwards. Therefore, there exists an increasing sequence A, in 4 with
corresponding X,,, n € N, such that A, 1 A := esssup .4 a.e. Set

X() = 1A1UA"X1 +Z 1A,,\A,,,1Xn~

n>2

By Lemma4.3, f is stable. Hence, f(Xo) < +ooon A, and f(X) = +oo on A€ for
all X € (L°?. The lemma can be proved on A and A¢ separately, and on A€ it is
obvious. Therefore, we can assume A = Q. Then dom f # ¢4, and it follows that

C:={(X,V)edomf x L°: f(X) <V}
is a non-empty sequentially closed L°-convex subset of (L%)? x L°. Choose a pair

(U, W) e (L°? x L such that 14, (U, W) ¢ 14C forall A € F,. By Corollary 6.2,
there exists (Y, Z) € (L%? x L° such that

[:= inf {(X,Y)+VZ}>(UY)+WZ.
(X,V)eC

It follows that Z > 0. On the set B := {Z > 0} one can multiply (¥, Z) with 1/Z
and assume Z = 1. Then one obtains that on B,

FX)= N (X) forall X € (L9 and f(U) > W.
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On B¢ one has A :=1 — (U, Y) > 0. Pick a U’ € dom f. Since 14(U’, f(U") —
1) ¢ 1,C for all A € F,, one obtains from Corollary 6.2 that there exists a pair
(Y', 2"y € (L%? x L° such that

1= ot {(X.Y)+VZ} > (U Y)+(fU) = DZ.

Since U’ € dom f,one musthave Z’ > 0. By multiplying with 1/Z’, one can assume
Z' = 1. Now choose a § € 1BcL3 such that

1 / N+ c
8>X(W+(U,Y)—I) on B
and set Y” := 8Y + Y’. Then, on B¢,

"= inf (X.Y')+V)=6l+1'=6r+8(U.Y)+1'>(U.Y)+W.
(X,V)eC

So on B¢, one has
fx)> £ (x) forall X € (LY and f~1"(U) > W.
Now define (¥, I) := 15(=Y, I) + 15:(=Y”, I"). Then
FX) > fRAx) forall X e (L% and f7I(U) > w.
This proves the lemma. O

Theorem 7.7 (Conditional version of the Fenchel-Moreau theorem)
Let f : (L°)? — L be a function such that conv f takes values in L. Then conv f =
F**. In particular, if f is sequentially Isc and L°-convex, then f = f**.

Proof We know from Lemma 7.5 that f** is a sequentially Isc L°-convex minorant
of f.Soconvf > f**. On the other hand, it follows from Lemma 7.6 that

conv f = esssup { f14(X) : (¥, Z) € (LY x L, convf = f1*},

and it can easily be checked that (f¥%)™ = f¥Z for all (¥, Z) € (L°)¢ x L°. So
one obtains from Lemma7.5 that f** > (fV?)** = f¥Z for every pair (Y, Z) €
(L%? x L satisfying f > f¥Z. This shows that f** > conv f. O

Lemma 7.8 Let f : (L°)Y — L be an L°-convex function and Xy € (L°)? such that
f(Xo) € LO. Then f'(Xo; X) exists for all X € (L%, f'(Xo,0) = 0and f'(Xo;.)
is LO-sublinear. Moreover, 3f (Xo) = 8g(0), where g(X) 1= f'(Xo; X).
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Proof Tt follows from L°-convexity that for every X € (L%, n[f(Xo + X/n) —
f(Xp)] is decreasing in n. This implies that f'(Xo; X) exists. f'(Xo;0) =0 is
clear. That f’(Xy;.) is L-sublinear and df(X,) = d¢(0) are straightforward to
check. O

Lemma 7.9 Let f: (L°) — L be a sequentially Isc L°-sublinear function. If
there exists an Xo € (L°)? such that f(Xo) € L°, then 3f(0) # @ and f(X) =
ess SUPycyf (o) (X, Y) for all X € (L°). In particular; f(0) = 0.

Proof By Theorem7.7, one has f = f**. This implies that the set
C:={Y el :(X,Y) < f(X)forall X e (L°)}

is non-empty and f(X) = esssupy. (X, Y). It follows that f(0) =0 and 9f(0) =
C. This proves the lemma. (]

Theorem 7.10 Let f : (L°)? — L be an L°-convex function. Assume there exist
Xoe (LY and V e LS’r such that f(Xo) € L° and

f(Xo+ X) > f(Xo) — VIIXI| forall X € (L°)". (7.3)

Then there exists a Y € 0f (Xo) such that ||Y|| < V.

Proof Denote g(X) := f'(Xo; X). Then h = convg is a sequentially 1sc L°-sub-
linear function which by (7.3), satisfies

h(X) > —V||X|| forall X e (L% (7.4)
It follows that 4(0) = 0 and 0k(0) € 9g(0) = df (Xo). Since A (0) and
BY(0):={Y e (L)Y : ||Y|| <V}

are L°-convex and sequentially closed, they are both o -stable. Therefore, there exists
a largest set A € F such that 1,3h(0) N 1,BY (0) is non-empty. Assume that A° €
F.. Then, if one restricts attention to A and assumes Q = A€, the sets d/#(0) and
BV (0) satisfy the assumptions of Corollary 6.2. So there exists a Z € (L%)¢ such that

—V||Z|| = essinf (Y, Z) > esssup (Y, Z) .
YeBY(0) Y€dh(0)

But by Lemma7.9, one has h(Z) = ess supy ) (¥, Z), and one obtains a contra-
diction to (7.4). It follows that A = €2, which proves the theorem. U
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Theorem 7.11 Let f : (LY = L be an Lo—convexfunction and Xo in (L°)? such
that f(Xo) € L°. Assume that 3f (Xo) = {Y} for some Y € (L°)?. Then f is L°-
differentiable at Xo with V f(Xo) =Y.

Proof By Lemma?7.8, one has d¢g(0) = {Y} for the L°-sublinear function g(X) :=
f'(Xp; X). It follows that

9" (Z) = liz2yy(+00) and ¢ (X) =(X,Y). (7.5)
Set
A= {A € F : there exists an X € (L") such that g(X) = +oc on A} .

By Lemma4.3, g is stable. Therefore, there exists a sequence (A,),cn in A with
corresponding X, such that A, 1 A := esssup.A. The element

Xo = 1A1UA“X1 =+ Z lA,,\A”_IXn

n>2

satisfies g(Xp) = 400 on A. We want to show that u[A] = 0. So let us assume
u[A] > 0. If one replaces 2 with A, one has 0 ¢ 1z(dom g — Xy) forall B € F..
By Theorem 6.4, there exists a Z € (L°)“ such that

1Z|]] > 0 and )e(ssinf (X,Z)> (X0, Z).

edom g
Define the sequentially Isc L°-convex function & : (L°)? — L as follows:

h(X) == (X, Y) Lix,2)>(x0.2)) + 001 ((x,2)<(x0,2))-

Then g > hand h(X) = +oo forall X € (L% satisfying (X, Z) < (Xy, Z). It fol-
lows that convg(X) = +oo for all X e (L% satisfying (X, Z) < (Xo, Z). More-
over, since Y € d¢g(0), g fulfills the assumptions of Theorem 7.7, and one obtains
convg = ¢g**, contradicting (7.5). So one must have u[A] = 0, or in other words,
g(X) e L° for all X e (L%?. It follows from Theorem7.2 that g is sequentially
continuous, and therefore, g(X) = ¢**(X) = (X, Y) forall X e (L°).

Now let (X,,),en be a sequence in (L% such that X, — O a.e. and || X,,|| > O for
all n. Denote || X, |]; := Z?:l | X! | and notice that there exists a constant ¢ > 0 such
that || X, ||1 < c||X,|| for all n. Since g(X) = (X, Y),one has foralli =1, ...,d,

fXo £ 1Xull1ei) — f(Xo)
N
Xl

+Y' ae.



Conditional Analysis on R? 209

Therefore,

fXo+Xo) — f(Xo) = (X, V) f(Xo+Xy) = f(Xo) — (X, ¥)
1 X!l B 1 Xnll

< chl | IXi | [ﬂxo + |1 Xallisign(X;)e;) — f(Xo)
i=1

sign(X,’;)Yi] — 0 a.e.
| Xl Xl

O

8 Inf-Convolution

Definition 8.1 We define the inf-convolution of finitely many functions f; : (L°)?
—L,j=1,...,n,by

n
i fi(X) = x,fﬁ.sfif:x Z; 1i(X;).
=

Lemma8.2 If f;, j=1,...,n, are L°-convex functions from (L°) to L, then
Lo fiis LO-convex too.

Proof Denote f =[)_, f;. Choose X, Y € (L% and V, W € L such that f(X) <
Vand f(¥Y) <W.Lete e LY, and A € L° such that 0 < A < 1. By Lemma4.3,
the functions f; are stable. Therefore, the family {Z X)) Zj X=X } is
directed downwards. So there exist sequences X ’J‘-, k € N, such that > j X ’j‘ = X and
> i (Xf) decreases to f(X) a.e. It follows that the sets Ay := {z] fj(X’;.) <

%4 +e} increase to 2 as k — oo. So forevery j =1, ..., n,

Xj:= Z lAk\AHXf», where Ay 1= 0.
k=1

defines an element in (L%¢ such that Z;zl X; =X and Z'}:l fX)<V+e.
Analogously, there exist ¥; € (L%, j=1,...,n, such that > Y=Y and
DI f(Y) <WHe Set Z; =aX; + (1 —A)Y;. Then Z:=3_| Z; =X +
(I —A)Y and

F@D) <D HEZ) <D MiX )+ U =fE) <AV + A=W +e.

j=1 j=1

It follows that £(Z) < Af(X) + (1 — ) £ (Y). O



210 P. Cheridito et al.

Lemma 8.3 Let f; : (L% — L, j=1,...,n be Lo—convexfunctions and denote
f= D;lefj.Assume f(Xp) = Zj‘:l fj(Xj)_< “+ooforsome X ; € (L% summing
up to Xo. If X € int(dom f1), then f(X) € L forall X € (LY, X, € int(dom )
and f is sequentially continuous on int(dom f).

Proof By definition of f, one has

f(Xo+ X) — f(Xo) < fi(X) +X)+ij(Xj)—ij(Xj) = fitXi +X) — fiXy)

j=2 j=1

forall X e (L%)?. This shows that X, € int(dom f). Since f(X,) = 2?21 fi(X;) e
L°, the rest of the lemma follows from Theorem7.2. O

Lemma 8.4 Consider functions f; : (L)Y — L, j=1,...,n, and denote f =
Li_ fj- Assume f(Xo) = Z?:l fi(X;) < +ooforsomeX; € (L°)? summing up to
Xo. Then 0f (Xo) = ﬂjzl afi(X ;).

Proof Assume Y € df(Xo) and X € (L°)¢. Then
A+ X) = AXD = A+ X) + D (X)) = D fi(X) = f(Xo+ X)
j=2 Jj=1

— f(Xo) = (X, Y).

Hence Y € 9f;(X), and by symmetry, df (Xo) C ﬂ;':l dfj(X ;). On the other hand,
ifY € (j_, af;(X;)and X € (L"), choose Z; suchthat >>_, Z; = X + X.Then

S HEH =D LX) H(Z =X Y) =D fi(X)+ (X, Y).
j=1 j=1

j=1
So f(Xo+ X) — f(Xo) = (X, Y), and the lemma follows. [l
Lemma 8.5 Let f; : (L% — L, j=1,...,n be Lo—convexfunctions and denote

=/ Assume f(Xo) = Zj fi(X;) < +oo for some X; € (L°) summing
up to Xo and fi is LO-differentiable at X,. Then f is L°-differentiable at X, with
Vf(Xo) =V fi(Xy).

Proof One has

FXo+X) = f(Xo) < filX1 +X)+ D f1(X) = D fi(X)) = X1 +X) — fiX)

= j=1

for all X e (L°)?. It follows that the L°-directional derivative ¢(X) := f'(Xo; X)
satisfies
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9(X) < filX1; X) = (X, Vfi(X1)

forall X e (L°)?. Butby Lemma38.2, f is L°-convex. It follows that ¢ is L°-sublinear,
and therefore, g(X) = (X, V f1(X1)). Thisimplies that f (Xo) = 9¢(0) = {V f1(X1)}.
Now the lemma follows from Theorem7.11. (I

Lemma 8.6 Considerfunctions f; : (L°) — L, j = 1,...,n.Then (D;lefj) =

> i—1 [}, where the sum is understood to be —o< if at least one of the terms is —00.

Proof

(@, f) ()= ess sup {(x.y)-0O0_, £,(X}
=esssup > _{(X;.¥) = f;(Xp} =D fr(0). O
j=1
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