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Abstract A method for pricing and superhedging European options under propor-
tional transaction costs based on linear vector optimisation and geometric duality
developed by Löhne and Rudloff (Int. J. Theor. Appl. Finance 17(2): 1450012–1–
1450012–33, 2014) is compared to a special case of the algorithms for American
type derivatives due to Roux and Zastawniak (Acta ApplicandaeMathematicae, pub-
lished online 2015). An equivalence between these two approaches is established by
means of a general result linking the support function of the upper image of a linear
vector optimisation problem with the lower image of the dual linear optimisation
problem.
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1 Introduction

We compare two existingmethods for the computational pricing and superhedging of
European options in the presence of proportional transaction costs, and investigate the
relationships between them, highlighting their similarities, differences and relative
strengths.and dual constructions stated inSect. 3.3, goes back to [20, 21],where itwas
developed for the much more general class of American type derivative securities,
of which European options are a special case. The other method, which relies on
linear vector optimisation and geometric duality, was proposed by [17] and named
the SHP-algorithm by them; see Sect. 3.4.

As a by-product,we prove a general result establishing one-to-one correspondence
between the support function of the upper image of a linear vector optimisation

A. Roux · T. Zastawniak (B)
Department of Mathematics, University of York, Heslington YO105DD, UK
e-mail: tomasz.zastawniak@york.ac.uk

A. Roux
e-mail: alet.roux@york.ac.uk

© Springer-Verlag Berlin Heidelberg 2015
A.H. Hamel et al. (eds.), Set Optimization and Applications - The State of the Art,
Springer Proceedings in Mathematics & Statistics 151,
DOI 10.1007/978-3-662-48670-2_5

159



160 A. Roux and T. Zastawniak

problem on the one hand, and the lower image of the dual linear vector optimisation
problemon the other hand; see Proposition 2.1. This result provides a link between the
twomethods for pricing and superhedging European options, and it is also interesting
in its own right.

We work within the general model of a currency exchange market of [9], with
proportional transaction costs included in the form of exchange rate bid ask spreads.
This model has been extensively studied, for example, by [10, 11, 22].

All three algorithms, the primal construction, the dual construction and the SHP-
algorithm lend themselves well to computer implementation. For the primal and dual
constructions this has been done by [21] with the aid of the Maple package Convex
developed by [3]. To implement the SHP-algorithm [17] used Benson’s linear vector
optimisation technique; see [2, 4]. We illustrate the results by a numerical example
computed by means of the primal and dual constructions and compare this with a
similar example presented by [17], who employed the SHP-algorithm.

We conclude by suggesting a possible extension of the SHP-algorithm to hedge
and price the seller’s (short) position in an American option, and pointing out an
inherent difficulty in hedging and pricing the buyer’s (long) position in an American
option due to the essential non-convexity of the problem.

2 A General Duality Result

In this section we present a simple observation that links support functions with
duality in linear vector optimization. The relatedwork of [18] provides further insight
on the connection between support functions and duality. This result will prove useful
in comparing the various pricing and hedging algorithms in the following sections.

For a cone C ⊆ R
q we define a partial ordering ≤C on R

q by

y ≤C z ⇐⇒ z − y ∈ C

and denote by C+ the dual (or positive polar) cone of C , i.e.

C+ = {x ∈ R
q : xT y ≥ 0∀y ∈ C

}
.

In what follows we assume that C is a polyhedral cone with non-empty interior,
and there exists some c ∈ int C with cq = 1. Suppose that matrices P ∈ R

q×d and
B ∈ R

m×d and a vector b ∈ R
m are given, and consider the linear vector optimization

problem

minimize Px with respect to ≤C over x ∈ S, (P)

with feasible set

S = {x ∈ R
d : Bx ≥ b}.
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The upper image of problem (P) is the set

P = P[S] + C.

The dual problem to (P) is

maximize D∗(u, w) with respect to ≤K over (u, w) ∈ T, (D∗)

where the linear operator D∗ : Rm × R
q → R

q is defined as

D∗(u, w) = (w1, . . . , wq−1, bT u)T for (u, w) ∈ R
m × R

q ,

with K = cone{eq} for eq = (0, . . . , 0, 1) ∈ R
q , and with

T = {(u, w) ∈ R
m × R

q : u ≥ 0, BT u = PT w, cT w = 1, w ∈ C+}.

The lower image of problem (D∗) is the set

D∗ = D∗[T ] − K .

We now state and prove a general result that links the lower image D∗ of (D∗)
with the support function of −P , where P is the upper image of (P). The support
function Z : Rq → R of −P is defined as (see e.g. [19] p. 28)

Z(x) = sup
{

xT z : z ∈ −P} for all x ∈ R
q .

Note that Z(x) is the negative of a scalarization of P with respect to the weighting
vector x (see e.g. [15] Sect. 4.1.1). Thus the following result can be regarded as a
reformulation of strong geometric duality (see [15] Theorems 4.40, 4.41) by means
of the family of scalarizations of P .

Proposition 2.1 If C contains no lines, i.e. if C ∩ (−C) = {0}, then

D∗ =
{

w ∈ R
q : −wq ≥ Z

(

w1, . . . wq−1, 1 −
q−1∑

i=1

ciwi

)}

, (2.1)

Z(w) =
⎧
⎨

⎩

− sup
{

y ∈ R : 1
cT w

(
w1, . . . , wq−1, y

) ∈ D∗} if cT w > 0,
0 if w = 0,
∞ otherwise.

(2.2)

Proof If C contains no lines, then Theorems 4.40 and 4.41 of [15] (see also [4]
Remark 3.7) give

D∗ = {w ∈ R
q : ϕ(y, w) ≥ 0∀y ∈ P} ,

where the bi-affine coupling function ϕ : Rq × R
q → R is defined as
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ϕ(y, w) =
q−1∑

i=1

yiwi + yq

(

1 −
q−1∑

i=1

ciwi

)

− wq for (y, w) ∈ R
q × R

q .

The function ϕ was first introduced for the special case c = (1, . . . , 1)T by [7] and
for general c by [17].

Observe that ϕ(y, w) ≥ 0 for all y ∈ P if and only if

−wq ≥
q−1∑

i−1

yiwi + yq

(

1 −
q−1∑

i=1

ciwi

)

for all y ∈ −P,

that is, if and only if

−wq ≥ sup

{
q−1∑

i−1

yiwi + yq

(

1 −
q−1∑

i=1

ciwi

)

: y ∈ −P
}

= Z

(

w1, . . . wq−1, 1 −
q−1∑

i=1

ciwi

)

.

This proves (2.1).
Now take any w ∈ R

d such that cT w > 0. Then −y ≥ Z(w) is equivalent to
− y

cT w
≥ Z

(
w

cT w

)
since the support function is positively homogeneous. By (2.1),

the last inequality is in turn equivalent to 1
cT w

(
w1, . . . , wq−1, y

) ∈ D∗. This shows
that

Z(w) = − sup {y ∈ R : −y ≥ Z(w)}
= − sup

{
y ∈ R : 1

cT w

(
w1, . . . , wq−1, y

) ∈ D∗
}

when cT w > 0. If w = 0, then Z(w) = 0 by the definition of the support func-
tion. Finally, take any w = 0 such that cT w ≤ 0. Since c ∈ int C , there is an ε > 0
such that c − εw ∈ C . It follows that (c − εw)T w = cT w − εwT w < 0 because
wT w > 0. As P = P + C , for any fixed x ∈ P and for each λ > 0 we have
x + λ(c − εw) ∈ P . Hence, by the definition of the support function,

Z(w) ≥ − (x + λ(c − εw))T w = −xT w − λ(c − εw)T w

for each λ > 0. Since (c − εw)T w < 0, this means that Z(w) = ∞, completing the
proof of (2.2). �

Remark 2.2 According to Proposition 2.1,

D∗ = {(w1, . . . , wq−1, y) ∈ R
q : (w, y) ∈ − epi Z , cT w = 1

}
, (2.3)
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so D∗ can be identified with the section of the cone − epi Z by the hyperplane
{(w, y) ∈ R

q × R : cT w = 1} in R
q+1. The convex set D∗ (which depends on c)

captures the same information as the support function Z . This is remarkable given
that Z is independent of the arbitrary choice of c. Also note the similarity between
(2.3) and the representation by [6, p. 828] of the dual image in a more general setting.

This section concludes with a simple example.

Example 2.3 Suppose that

P =
(
1 −1
1 1

)
, B =

⎛

⎜
⎜
⎝

2 1
1 2
1 0
0 1

⎞

⎟
⎟
⎠ , b =

⎛

⎜
⎜
⎝

6
6
0
0

⎞

⎟
⎟
⎠ , C = cone

{(−3
1

)
,

(
1
2

)}
,

and fix c = (0, 1)T ∈ int C . For this data we have

P = {(z1, z2) ∈ R
2 : z2 ≥ 1

3 z1 + 4, z2 ≥ z1, z2 ≥ − 1
3 z1 + 4},

D∗ = {(w1, y) ∈ R
2 : −1 ≤ w1 ≤ 1

3 , y ≤ 4, y − 6w1 ≤ 6}

(full details in [16] Example 6.4]. The sets P and D∗ are represented graphically in
Fig. 1.

The support function Z is finite on its effective domain, which consists of vectors
w ∈ R

2 such that xT w ≤ 0 for each x ∈ −P , so

dom Z = {w ∈ R
2 : Z(w) < ∞} = {(w1, w2) ∈ R

2 : w2 ≥ −w1, w2 ≥ 3w1}.

For each w ∈ dom Z the linear function x �→ xT w takes a maximum at one of the
extreme points (0,−4), (−6,−6) of the convex set −P , hence

Z(w) = sup{xT w : x ∈ −P} = max{−4w2,−6w1 − 6w2}.

This means that

z1−6 6

z2

4

6

P

w1− 1
3

−1 1
3

y

8

4

D∗

Fig. 1 Upper and lower images in Example 2.3
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{(w1, y) ∈ R
2 : (w, y) ∈ − epi Z , cT w = 1}

= {(w1, y) ∈ R
2 : y ≤ −Z(w1, w2), (w1, w2) ∈ dom Z , w2 = 1}

= {(w1, y) ∈ R
2 : y ≤ −Z(w1, 1),−1 ≤ w1 ≤ 1

3 }
= {(w1, y) ∈ R

2 : y ≤ 4, y ≤ 6w1 + 6,−1 ≤ w1 ≤ 1
3 } = D∗.

This identifies D∗ with the section of − epi Z by the hyperplane

{(w, y) ∈ R
2 × R : cT w = 1} = {(w1, w2, y) ∈ R

3 : w2 = 1}.

3 Pricing and Hedging European Options Under
Proportional Transaction costs

3.1 Currency Model

Themodel is based on a filtered probability space (�,F ,P; (Ft )
T
t=0).We assume that

� is finite, that F0 = {∅,�}, that FT = F = 2� and that P(ω) > 0 for all ω ∈ �.
For each t denote by �t the collection of atoms of Ft , called the time t nodes of the
associated stock price tree model. Note that�0 = {�} and�T = {{w} : ω ∈ �}. For
every t < T a node ν ∈ �t+1 is said to be a successor of a node μ ∈ �t if ν ⊆ μ.
We denote for all μ ∈ �t

succμ = {ν ∈ �t+1 : ν a successor of μ}.

For each t let Lt = L0(Rd;Ft ) be the collection of Ft -measurable R
d -valued

random variables. We identify elements of Lt with functions on �t whenever con-
venient.

We consider the discrete-time currency model introduced by [9] and stud-
ied by others. The model contains d assets or currencies. At each trading date
t = 0, 1, . . . , T one unit of each asset k = 1, . . . , d can be obtained by exchang-
ing π

jk
t > 0 units of asset j = 1, . . . , d. We assume that the exchange rates π

jk
t are

Ft -measurable and π
j j

t = 1 for all t and j, k.



Linear Vector Optimization and European … 165

We say that a portfolio x ∈ Lt can be exchanged into a portfolio y ∈ Lt at time t
whenever there are Ft -measurable random variables β jk ≥ 0, j, k = 1, . . . , d such
that for all k = 1, . . . , d

yk = xk +
d∑

j=1

β jk −
d∑

j=1

βk jπ
k j
t ,

where β jk represents the number of units of asset k received as a result of exchanging
some units of asset j .

The solvency cone Kt ⊆ Lt is the set of portfolios that are solvent at time t , i.e.
those portfolios at time t that can be exchanged into portfolios with non-negative
holdings in all d assets. It is straightforward to show that Kt is the convex cone
generated by the canonical basis e1, . . . , ed of Rd and the vectors π

jk
t e j − ek for

j, k = 1, . . . , d, and so Kt is a polyhedral cone. Note that Kt contains all the non-
negative elements of Lt .

A self-financing strategy y = (yt )
T
t=0 is a predictableR

d -valued process (i.e. y0 ∈
L0 and yt ∈ Lt−1 for t = 1, . . . , T ) such that

yt − yt+1 ∈ Kt for all t = 0, . . . , T − 1

Here y0 ∈ L0 is the initial endowment, and yt ∈ Lt−1 for each t = 1, . . . , T is the
portfolio held from time t − 1 to time t . Let 
 be the set of self-financing strategies.

A self-financing strategy y = (yt ) ∈ 
 is called an arbitrage opportunity if y0 = 0
and there is a portfolio x ∈ LT \ {0} with non-negative holdings in all d assets such
that yT − x ∈ KT . This notion of arbitrage was considered by [22], and its absence
is formally different but equivalent to the weak no-arbitrage condition introduced by
[11].

Theorem 3.1 ([11, 22]) The model admits no arbitrage opportunity if and only if
there exists a probability measure Q equivalent to P and an R

d -valued Q-martingale
S = (St ) such that

St ∈ K+
t \ {0} for all t, (3.1)

where K+
t is the dual cone of Kt .

Remark 3.2 Apair (Q, S) satisfying the conditions in Theorem3.1 is called a consis-
tent pricing pair. In place of such a pair (Q, S) one can equivalently use the so-called
consistent price process StEP(

dQ
dP |Ft ); see [22].

3.2 European Options

A European option with expiry time T > 0 and payoff ξ ∈ LT is a contract that
gives its holder (i.e. the option buyer) the right to receive a portfolio ξ of currencies
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at time T . On the other hand, the writer (seller) of the option is obliged to deliver
this portfolio to the buyer.

To hedge against this liability the writer can follow a self-financing strategy y ∈ 


such that yT − ξ ∈ KT . The initial endowment y0 of such a strategy y is called a
superhedging portfolio, and the strategy y itself is called a superhedging strategy for
the European option ξ .

The ask price (seller’s price, superhedging price)πa
i (ξ) of the European option in

currency i = 1, . . . , d can be understood as the lowest value x such that the portfolio
consisting of x units of currency i and no other currency is a superhedging portfolio
for ξ . In other words,

πa
i (ξ) = min

{
x ∈ R : xei is a superhedging portfolio for ξ

}
.

On the other hand, to hedge his position the option buyer would like to follow
a self-financing strategy y ∈ 
 such that yT + ξ ∈ KT . Here −y0 is a portfolio of
currencies which the option buyer could borrow at time 0 and would be able to settle
later by following the strategy y and using the payoff ξ to be received on exercising
the option at time T . We call −y0 a subhedging portfolio and −y a subhedging
strategy for the European option ξ .

The bid price (buyer’s price, subhedging price) πb
i (ξ) of the European option in

currency i = 1, . . . , d can be understood as the highest value x such that the portfolio
consisting of x units of currency i and no other currency is a subhedging portfolio
for ξ ,

πb
i (ξ) = max

{
x ∈ R : xei is a subhedging portfolio for ξ

}
.

It is the highest amount in currency i that an option holder could raise by using the
option as collateral.

Observe that −y is a subhedging strategy for a European option ξ if and only if
y is a superhedging strategy for −ξ . It follows immediately that

πb
i (ξ) = −πa

i (−ξ).

Because of these relationships it is sufficient to develop algorithms for hedging and
pricing the seller’s (short) position in a European option.

3.3 Primal and Dual Constructions

The constructions presented here for European options are a special case of those
developed by [21] to hedge and price the much wider class of American type options
under proportional transaction costs. Construction 4.2 in [21], which produces the
set of superhedging portfolios, takes a particularly simple form in this special case:

• For each ω ∈ �T put
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Zω
T = ξω + Kω

T .

• If Zt+1 has already been constructed for some t = 0, 1, . . . , T − 1, then for each
ω ∈ �t put

Wω
t =

⋂

ω′∈succω

Zω′
t+1,

Zω
t = Wω

t + Kω
t

(To link this with Construction 4.2 in [21] observe that the formula for Wt can be
written concisely as Wt = Zt+1 ∩ Lt .)

For each t the setZt consists of all portfolios that allow the seller to hedge the option
by following a self-financing strategy between times t and T . In particular, Z0 is the
set of superhedging portfolios. The ask price of the option can be expressed in terms
of Z0 as

πa
i (ξ) = min

{
x ∈ R : xei ∈ Z0

}
. (3.2)

The above construction involves two standard operations on polyhedral convex
sets, namely the intersection of finitelymany such sets and the algebraic sumof such a
set and a polyhedral convex cone.Both operations can be implemented using standard
geometric methods in existing software libraries, for example, Parma Polyhedra
Library [1] and PolyLib [8, 13, 14, 23, among others]. As soon as the set Z0 of
superhedging portfolios has been computed in this manner, it becomes a routine task
to evaluate the option price πa

i (ξ) using (3.2). Roux and Zastawniak [21] provided
a numerical implementation of this procedure for hedging and pricing European
options (and much more generally, American type options) in currency markets with
transaction costs by using the Maple package Convex [3].

Moreover, once the Zt have been constructed, it is straightforward to compute a
superhedging strategy starting from any superhedging portfolio y0 ∈ Z0. Namely, if
yt ∈ Zt has already been computed for some t = 0, 1, . . . , T − 1, we can take yt+1 ∈
(yt − Kt ) ∩ Wt . The intersection is non-empty since Zt = Wt + Kt , so it is always
possible to find such yt+1, though it may be non-unique. The self-financing condition
yt − yt+1 ∈ Kt is clearly satisfied. Moreover, since Wt = Zt+1 ∩ Lt , it follows that
yt+1 is Ft -measurable, so y constructed in this manner will be a predictable process.
It also follows that yt+1 ∈ Zt+1, which makes it possible to iterate the procedure.

It is also possible to follow the construction using convex dual objects to the Zt .
We introduce the support functions

Zt (x) = sup
{

xT z : z ∈ −Zt
}
, Wt (x) = sup

{
xT z : z ∈ −Wt

}

and the linear function
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U (x) = −xT ξ

defined for all x ∈ R
d . If we need to make the dependence on ω ∈ � explicit in these

functions, we shall write Zω
t , W ω

t , Uω. The above construction (we call it the primal
construction) can now be written in the following equivalent form (called the dual
construction); see Lemma 5.5 in [21]:

• For each ω ∈ �T

Zω
T =

{
Uω on K+ω

T ,

∞ otherwise.

This is the linear function Uω restricted to the domain K+ω
T .

• Suppose that Zt+1 has been constructed for some t = 0, 1, . . . , T − 1. Then, for
each node ω ∈ �t let W ω

t be the convex hull of the family of convex functions
Zω′

t+1 indexed by ω′ ∈ succω, and let Zω
t be the restriction of W ω

t to the domain
K+ω

t :

W ω
t = conv

{
Zω′

t+1 : ω′ ∈ succω
}

,

Zω
t =

{
W ω

t on K+ω
t ,

∞ otherwise.

Once Z0 has been computed, the ask price of the option can be obtained as (see
Theorem 4.4 in [21])

πa
i (ξ) = −min

{
Z0(x) : x ∈ R

d , xi = 1
}
.

This dual construction also lends itself well to computer implementation. Taking
the convex hull of finitely many polyhedral convex functions and restricting the
domain of such a function to a given polyhedral convex cone are operations equivalent
to some standard operations on polyhedral convex sets, which are widely available
in computer packages such as the Convex library in Maple used by [21].

Observe that the dual construction, which follows from Lemma 5.5 in [21] spe-
cialised to the case of European options, is equivalent to the construction in Corol-
lary 6.3 of [17]. The only difference is that the dual construction is expressed in
terms of the support functions Zt and Wt , whereas [17] use Ṽt (x) = −Zt (x) and
Vt (x) = −Wt (x) defined for all x’s on the hyperplane in R

d given by the condition
xi = 1. Both are a straightforward extension to d assets of the construction stated in
Algorithm 4.1 of [20] in the case of 2 assets.
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3.4 SHP-Algorithm

Löhne and Rudloff [17] consider the same problem of pricing and hedging European
options (though not options of American type). In particular, the same sets as in the
primal construction above are denoted by [17] as

SH Pt (ξ) = Zt .

These authors propose a different construction of the Zt based on linear vector
optimisation methods and geometric duality.

From this perspective, S = Wt can be viewed as the feasible set of a linear vector
optimisation problem (P). If the solvency cone Kt contains no lines, which means
that there are non-zero transaction costs between any two currencies, then the matrix
P in (P) is just the d × d unit matrix, and the ordering cone is C = Kt . The upper
image of the linear vector optimisation problem (P) is

P = P[S] + C = Wt + Kt = Zt .

Because C contains no lines, Benson’s algorithm, see [2] or [4], can be applied to
compute a solution to the dual problem (D∗) and hence the corresponding lower
image D∗. The Benson algorithm yields simultaneously a solution to (P) and gives
the upper image P = Zt . We know from Proposition 2.1 that if C contains no lines,
then D∗ can be identified with a section of the epigraph of the support function Z of
−P . SinceP = Z t , it follows that Z = Zt is the function from the dual construction
in Sect. 3.3.

A complication arises when the solvency cone Kt contains some lines, which
means that there are currencies which can be exchanged into one another without
incurring any transaction costs. This is dealt with by taking P to be the matrix
representing the so-called liquidationmap, a linearmapwhich amounts to liquidating
all but one of the assets that can be exchanged into one another without transaction
costs; see (4.1) in [17] for the precise definition of P . In this caseC = P[Kt ] contains
no lines because there are no longer any assets that can be exchanged into one another
without transaction costs. Then the upper image of the linear vector optimisation
problem (P) is

P = P[S] + C = P[Wt + Kt ] = P[Zt ].

Since C contains no lines, Benson’s algorithm can also be applied in this case to
compute a solution to the dual problem (D∗) and hence the corresponding lower
image D∗. The Benson algorithm yields simultaneously a solution to (P) and gives
the upper image P = P[Zt ]. This then givesZt = {x ∈ Lt : Px ∈ P} as the inverse
image of P under P . Once again by Proposition 2.1, since C contains no lines,
it follows that D∗ can be identified with a section of the epigraph of the support
function Z of −P = −P[Zt ]. This is related to Zt , the support function of −Zt , by
Z(x) = Zt (PT x).
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4 Example

In this sectionwe present an example to illustrate the numerical procedures discussed
in Sect. 3.3. Consider a model involving three assets, with time horizon τ = 1 and
with T = 4 time steps. Two of the assets are risky with correlated returns, and
follow the two-asset recombinant [12] model with Cholesky decomposition. That
is, there are (t + 1)2 possibilities for the stock prices St = (S1, S2) at each time
step t = 0, . . . , T , indexed by pairs ( j1, j2)where 1 ≤ j1, j2 ≤ t + 1, and each non-
terminal node with stock price St ( j1, j2) has four successors, associated with the
stock prices St+1( j1, j2), St+1( j1 + 1, j2), St+1( j1, j2 + 1) and St+1( j1 + 1, j2 + 1).
With  = τ

T defined for convenience, the stock prices are given by

S1
t ( j1, j2) = S1

0e
(

r− 1
2 σ 2

1

)
t+ (2 j1 − t − 2)σ1

√

,

S2
t ( j1, j2) = S2

0e
(

r− 1
2 σ 2

2

)
t+

(
(2 j1 − t − 2)ρ+(2 j2−t−2)

√
1−ρ2

)
σ2

√


for t = 0, . . . , T and j1, j2 = 1, . . . , t + 1,where S1
0 = 45 and S2

0 = 50 are the initial
stock prices, σ1 = 15 and σ2 = 20% are the volatilities of the returns and ρ = 20%
is the correlation between the log returns on the two stocks. The third asset is a
risk-free bond with nominal interest rate r = 5% and value process

Bt = (1 + r)−(T −t) for t = 0, . . . , T .

Proportional transaction costs are introduced by allowing the asset prices to have
constant (proportional) bid-ask spreads, i.e. the bid and ask prices are

S1b
t = (1 − k1)S1

t , S1a
t = (1 + k1)S1

t ,

S2b
t = (1 − k2)S2

t , S2a
t = (1 + k2)S2

t ,

Bb
t = (1 − k3)Bt , Ba

t = (1 + k3)Bt

for t = 0, . . . , T , where k1 = 2, k2 = 4 and k3 = 1%. The matrix of exchange rates
at each time step t is then

⎛

⎝
π11

t π12
t π13

t
π21

t π22
t π23

t
π31

t π32
t π33

t

⎞

⎠ =

⎛

⎜
⎜
⎝

1 S2a
t

S1b
t

Ba
t

S1b
t

S1a
t

S2b
t

1 Ba
t

S2b
t

S1a
t

Bb
t

S2a
t

Bb
t

1

⎞

⎟
⎟
⎠ ,

and the solvency cone is

Kt = cone

⎧
⎨

⎩

⎛

⎝
S2a

t
−S1b

t
0

⎞

⎠ ,

⎛

⎝
Ba

t
0

−S1b
t

⎞

⎠ ,

⎛

⎝
−S2b

t
S1a

t
0

⎞

⎠ ,

⎛

⎝
0

Ba
t

−S1b
t

⎞

⎠ ,

⎛

⎝
−Bb

t
0

S1a
t

⎞

⎠ ,

⎛

⎝
0

−Bb
t

S2a
t

⎞

⎠

⎫
⎬

⎭
.
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This model was also considered by [17, Section5.2]; note that the assets have been
reordered in the present paper.

Consider an exchange option with physical delivery and payoff

ξ = (1{S1a
T ≥S2a

T },−1{S1a
T ≥S2a

T }, 0)

that matures at time step T . [17, Example 5.3] reported

SH P0 = conv

⎧
⎨

⎩

⎛

⎝
0.584

−0.260
−7.760

⎞

⎠ ,

⎛

⎝
0.498

−0.331
0.000

⎞

⎠ ,

⎛

⎝
0.347

−0.446
13.341

⎞

⎠

⎫
⎬

⎭
+ K0,

and gave the ask price of the exchange option in terms of the bond as

πa
3 (ξ) = 7.418.

The boundary of SH P0 is depicted in Fig. 2. Application of the primal construction
in Sect. 3.3 produces

Z0 = conv

⎧
⎨

⎩

⎛

⎝
0.584

−0.260
−7.760

⎞

⎠ ,

⎛

⎝
0.498

−0.331
0.000

⎞

⎠ ,

⎛

⎝
0.399

−0.406
8.714

⎞

⎠ ,

⎛

⎝
0.424

−0.388
6.564

⎞

⎠

⎫
⎬

⎭
+ K0,

from which the ask price of the exchange option in terms of each of three assets can
be computed as

πa
1 (ξ) = 0.152, πa

2 (ξ) = 0.146, πa
3 (ξ) = 7.418.

There is substantial agreement between SH P0 and Z0, which can be confirmed
visually (see Fig. 2), and in view of the agreement on the ask price πa

3 (ξ), we ascribe
the differences in the specifications of SH P0 and Z0 to the error level chosen in

SHP0 Z0

Fig. 2 Boundary of the set of superhedging endowments
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Fig. 3 Lower image D∗
0

associated with Z0

Benson’s algorithm. Finally, application of the dual construction in Sect. 3.3 produces
the support function Z0 of −Z0. The set

D∗
0 = {(w1, w2, y) : y ≤ −Z0(w1, w2, 1)}

is the lower image of the dual problem (D∗) with the choice c = (0, 0, 1)T . It has 12
vertices
⎛

⎝
48.726
51.930
7.081

⎞

⎠ ,

⎛

⎝
48.726
51.681
7.178

⎞

⎠ ,

⎛

⎝
45.888
54.050
4.981

⎞

⎠ ,

⎛

⎝
48.726
55.201
5.702

⎞

⎠ ,

⎛

⎝
45.888
49.946
6.048

⎞

⎠ ,

⎛

⎝
48.726
50.955
7.418

⎞

⎠ ,

⎛

⎝
48.573
50.796
7.395

⎞

⎠ ,

⎛

⎝
47.761
49.946
7.141

⎞

⎠ ,

⎛

⎝
46.565
54.907
5.012

⎞

⎠ ,

⎛

⎝
46.815
55.201
4.982

⎞

⎠ ,

⎛

⎝
46.405
54.718
5.018

⎞

⎠ ,

⎛

⎝
45.888
54.108
4.962

⎞

⎠ ,

and is depicted in Fig. 3. The maximum of D∗
0 in the y-direction is

πa
3 (ξ) = 7.418.

We conclude this numerical example by demonstrating the procedure of finding
a superhedging strategy y = (yt )

T
t=0 starting from the initial endowment

y0 = (0, 0, πa
3 (ξ))T ∈ Z0

along the price path in Table1. At each time step t the portfolio yt (indicated by a
dot on the graph of the boundary of Zt in Table1) is rebalanced into a portfolio

yt+1 ∈ (yt − Kt ) ∩ Wt ⊆ Zt+1.

As can be seen in Table1, for this particular path the set (yt − Kt ) ∩ Wt is a singleton
at time steps t = 0 and t = 1, which means that there is only one choice for yt+1. At
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Table 1 Superhedging strategy along a path
t (j1, j2) yt Zt (yt − Kt) ∩ Wt

0 (1,1)

⎛
⎝
0.000
0.000
7.418

⎞
⎠

⎧⎨
⎩

⎛
⎝

0.498
−0.331
0.000

⎞
⎠

⎫⎬
⎭

1 (2,1)

⎛
⎝

0.498
−0.331
0.000

⎞
⎠

⎧⎨
⎩

⎛
⎝

0.641
−0.491
0.000

⎞
⎠

⎫⎬
⎭

2 (2,1)

⎛
⎝

0.641
−0.491
0.000

⎞
⎠

3 (3,2)

⎛
⎝

0.641
−0.491
0.000

⎞
⎠

4 (3,2)

⎛
⎝

0.641
−0.491
0.000

⎞
⎠ N/A
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time steps t = 2 and t = 3 this set is a convex polytope, and the choice of yt+1 is no
longer unique, which means that other considerations (e.g. a preference for holding
one asset over another, or a preference not to trade) may be used to select yt+1 in
(yt − Kt ) ∩ Wt . In this demonstration we adopted a minimum-trading rule, that is,
whenever possible we selected yt+1 = yt . At the final time step t = 4 we have

y4 − ξ =
⎛

⎝
0.641

−0.491
0.000

⎞

⎠−
⎛

⎝
1.000

−1.000
0.000

⎞

⎠ =
⎛

⎝
−0.359
0.509
0.000

⎞

⎠ ∈ K4.

5 Representation of Superhedging Price

In this section we briefly present and compare the result of [17, 21] concerning the
representation of the superhedging price of a European option in terms of risk-neutral
expectations of the payoff ξ :

πa
i (ξ) = sup

(Q,S)∈P i

EQ((ξ T ST )), (5.1)

where P i is the set of pairs (Q, S) consisting of a probability measure Q and an
R

d -valued martingale S under Q satisfying the conditions of Theorem 3.1 and such
that Si

t = 1 for each t = 0, . . . , T .
In Theorem 6.1 of [17] this result was proved under the so-called robust no-

arbitrage condition of [22] and subject to the simplifying assumption that the solvency
cone Kt contains no lines for any t (that is, the transaction costs are non-zero for any
t). Their proof is based on the scalarisation procedure of [5] for the dual representation
of the set SH P0 of superhedging portfolios.

By comparison, the result in [21] is free of these restrictions: it works under the
assumption that there is no arbitrage opportunity as defined in Sect. 3.1, which is
weaker than the robust no-arbitrage condition, and without the need to assume that
the solvency cone Kt contain no lines. It is also a much more general result that
applies to American type derivatives, which reduces to (5.1) for European options.
The proof is based on the dual construction from Sect. 3.3, which can in fact be used
to produce a pair (Q, S) that realises the supremum in (5.1) (though in general such
a pair does not lie in P i as Q may be a degenerate measure, absolutely continuous
with respect to but not necessarily equivalent to P).
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6 Conclusions

Wehave established a close link, indeed an equivalence between the three approaches:
the above primal and dual constructions and the SHP-algorithm of [17]. The primal
construction involves primal objects only. The dual construction deals exclusively
with dual objects (support functions). Meanwhile, the SHP-algorithm switches back
and forth between primal and dual objects (in this case the lower images of the dual
problem (D∗). By Proposition 2.1, these two types of dual objects are in one-to-one
correspondence, which means that the apparent differences between the algorithms
are merely superficial.

Moreover, all three approaches lend themselves well to numerical implementa-
tion: the primal and dual constructions utilise available software libraries for handling
convex sets, whereas the SHP-algorithm makes an innovative use of Benson’s pro-
cedure. In both approaches the procedure limiting computational efficiency is vertex
enumeration. An advantage offered by Benson’s algorithm is the ability to control the
accuracy versus efficiency by choosing an error level. On the other hand, the Maple
package Convex used by [21] employs exact arithmetic with rational numbers, hence
there is no rounding beyond the conversion (as accurate as one needs it to be) of input
data from real to rational numbers. While accurate rational arithmetic carries obvi-
ous computational overheads, the primal and dual algorithms are efficient enough so
this does not become a problem in realistic multi-step and multi-asset examples that
have been investigated, where the computation times were of the order of a couple
of minutes on a standard PC machine.

One major difference as compared with the SHP-algorithm approach is that the
primal and dual constructions have been developed in [21] for the much wider class
of American type options, and can handle early exercise problems. In this context,
European options are a particularly straightforward special case. It remains an open
question whether or not the SHP-algorithm of [17] could be extended to American
options, at least in the case of hedging and pricing the seller’s position. It would be
exciting to see this happen.

On the other hand, there are limits to what can be expected of the SHP-algorithm.
American options present a particular obstacle that this approach is unlikely to be
able to overcome.Namely, the case of hedging and pricing the buyer’s (rather than the
seller’s) position in an American option leads to a non-convex optimisation problem,
which is unlikely to yield to the power of linear vector optimisation methods and
geometric duality. For the same reason, the dual construction collapses as there
are no convex dual objects to work with in the first place. Nonetheless, the primal
construction can still be adapted to handle this case; see Example 7.1 in [21] for
details.
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