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Abstract This paper presents a state-of-the-art survey on set-valued optimization
problems whose solutions are defined by set criteria. It provides a general framework
that allows to give an overview about set-valued optimization problems according to
decision concepts based on certain set relations. The first part of this paper (Sects. 1
and 2)motivates and describes the set-valued optimization problem (in short, SVOP).
The present survey deals with general problems of set-valued optimization and recall
its main properties in order to establish the differences between vector set-valued
optimizationproblems (VOP) and set optimizationproblems (SOP). In this context, in
the second part (Sects. 3–5) we focus on those results existing in the literature related
with optimality conditions by using a set approach. We list and quote references
devoted to (SOP) from the beginning up to now. In Sect. 5, a particular attention
is paid to applications of the set relations considered in other fields as fixed point
theory. The last section provides some conclusions and suggestions for further study.
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1 Introduction

The set-valued maps receive great attention from more and more authors. This is
partly due to its wide applications in diverse fields as for example: Control theory,
Optimization, Economics or Game theory, to name a few. See, for instance, [4, 51]
and references therein.

On the other hand, set-valued optimization problems are very known in Optimiza-
tion theory and Economics as for example equilibrium theorems for Economies. See,
[1–3, 10, 12, 30, 46].

Throughout this paper, we consider preference relations generated by a pre-order
(a binary relation which is reflexive and transitive). In the sequel M denotes a non-
empty subset of a set X , Y a linear space and K ⊂ Y a convex cone. If y, y′ ∈ Y we
denote by y ≤ y′ if and only if y′ − y ∈ K . This relation ≤ is obviously a pre-order
on Y . Thus, the pair (Y, K ) is called a pre-ordered linear space (or partially ordered
space) with the ordering ≤ induced by K . To consider weakly efficient solutions,
we also assume, in addition, that Y is a topological space and K is solid, that is, its
topological interior is nonempty, int K �= ∅.
Remark 1.1 1. If K is pointed, K ∩ (−K ) = {0}, the preference ≤ is also anti-

symmetric and (Y, K ) is an ordered linear space.
2. In spite of the most optimization theory is based on a pre-order on the criteria

space, other preferences (non-reflexitivy or non-transitivity) are very important
from the practical point of view, for instance, in Economic. Some references and
results can be found in [11]where the variational approach developed in this paper
allows to obtain new necessary conditions for various types of solutions and to
apply it to nonconvex models of welfare economics with finite-dimensional and
infinite-dimensional commodity spaces.

3. In this paper the discussion is based on a general framework.Note that it is possible
to avoid the topological structure on Y to consider weakly efficient solutions via
the algebraic interior of K , that is, core(K ). See also [19].

Given a nonempty set A ⊂ Y , we denote by Min A = {ȳ ∈ A : y ∈ A, y ≤
ȳ imply ȳ ≤ y} the set of minimal points of A. In particular, if K is pointed,
Min A = {ȳ ∈ A : (ȳ − K ) ∩ A = ȳ}. It is said that ȳ ∈ A is a strongly or ideal
minimal point of A, ȳ ∈ IMin A, if A ⊂ ȳ + K . By replacing K by −K , we can
define maximal and ideal maximal point of A.

We denote by (V) the following vector optimization problem:

(V)

{
Min f (x)

subject to x ∈ M ,

where f : M → Y . An element x0 ∈ M is said to be an efficient solution of (V),
x0 ∈ Eff( f ), if f (x0) ∈ Min

⋃
x∈M

f (x).

The above solution is defined via Edgeworth-Pareto solution. However, for a
vector optimization problem there are various solution concepts as for instance
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proper solutions or strong solutions. For more references about this problem, see
[18, 46, 69, 80] and references therein. It is well-known that there exist other solu-
tion concepts (different to Edgeworth-Pareto notions) which have been investigated
by many authors. We remark that according to [21, 22, 28] it is possible to study a
unified vector problem which includes other efficient notions.

The present survey deals with optimization problems where the objective map is
more complex than that given in (V). In addition, our presented results address the
notions of extended Edgeworth-Pareto optimality.

The general formulation of a set-valued optimization problem is as follows:

(SVOP)

{
Min F(x)

subject to x ∈ M ,

where F : M −→ 2Y is a set-valued map with F(x) �= ∅ for all x ∈ M .
Unlike the vector optimization problem (V), for the above problem there is not a

only one approach of solution associated to it. The solutions of (SVOP) are catego-
rized into

(i) vector solutions; when the problem, denoted by (VOP) and called vector set-
valued optimization problem, is a vector optimization problem with set-valued
maps.

(ii) set solutions; when the problem, denoted by (SOP), is a set optimization problem.

Now, we present the above problems to establish the differences between them.
For this, we introduce some notations and define theirs solutions.

The general vector set-valued optimization problem is denoted as follows:

(VOP)

{
Min F(x)

subject to x ∈ M.

We denote F(M) = ⋃
x∈M F(x) the image set under F on M . To define the

solutions of vector type we consider the pre-order ≤ defined on Y by the convex
cone K . Roughly speaking, the solutions of (VOP) are introduced by means the
minimal elements of F(M).

Definition 1.1 We say that x̄ ∈ M is a solution of (VOP), x̄ ∈ Eff(F), if there exists
ȳ ∈ F(x̄) such that ȳ ∈ Min F(M). The pair (x̄, ȳ) is called minimizer of (VOP).

On the contrary, the solutions of set-type are defined via a preference, 
, on the
family of nonempty subsets of Y , ℘0(Y ). We denote a set optimization problem as
follows:

(SOP)

{
 −Min F(x)

subject to x ∈ M.

The essence of set approach consists in considering the whole set as a solution,
not just one point of the image. Following the vector case, the solutions of (SOP)with
respect to 
 are defined by the more preferred sets of {F(x) : x ∈ M} as follows:
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Definition 1.2 Wesay that x̄ ∈ M is a
-solution of (SOP), x̄ ∈
 −Eff F , if x ∈ M
and F(x) 
 F(x̄) imply F(x̄) 
 F(x).

A natural extension of problem (V) is when 
 is compatible with the ordering
defined by K in the following sense:

Definition 1.3 Let a, b ∈ Y be. We say that 
 is compatible with ≤ if {a} 
 {b} is
equivalent to a ≤ b.

Remark 1.2 We point out that we can combine both approach (vector and set) to
define new preferences and solutions for a set-valued optimization problem. For
instance, A ⊆ M is a set solutionof (SVOP) if A ⊆
 −Eff F andMin

⋃
x∈M F(x) =

Min
⋃

x∈A F(x). Such preferences could be related with Finance according to [44].

Remark 1.3 1. It is clear that it is possible to define different vector solutions
of (VOP) from those presented in Definition1.1 like weak, strong or proper
minimizer. See also [9]. Similarly for set solutions of (SOP).

2. Definitions1.1 and 1.2 are given in a natural way. Both seem to be the most
appropriated to generalize the Edgeworth-Pareto notions.

3. A decision maker considers (VOP) or (SOP) depending on his preferences are
given on elements of Y or on elements of ℘0(Y ).

In terms of existing literature, we point out that it is usual to call set-valued
optimization problem or set-optimization problem to refer to (VOP) or (SOP). In
this paper we establish such a difference. On the other hand, about solutions for a
set-valued optimization problem, the vector criterion is the most well-known and
investigated in the branch of set-valued optimization. Thus, the vast majority of
publications on (SVOP) is about optimality conditions for (VOP).

The set approach was introduced by Kuroiwa [52] in 1997 by using set-relations
which generalize that given by the ordering cone (Sect. 3). Since the notion of set
solution was introduced, there has been rapid growth in the field about it. In this
survey, our claim is to show several bibliographic collections reported about the set
approach to give a comprehensive listing and to analyse the research covering its
first 16 years of history which is not available, as far we know.

This paper is decomposed into six sections. The second one is devoted to establish
the main differences between (VOP) and (SOP). In Sect. 3 we introduce the main
preferences defined on ℘0(Y ) which have been explored in the literature in terms
of (SVOP). In the next section, an extensive listing of set optimization research that
covers theoretical developments from the beginning to the year 2013 is given. In
Sect. 5, we present several areas different to optimization in which the set-relations
have been used implicitly. Finally, in Sect. 6, several remarks and conclusions are
presented for new research.



A Survey of Set Optimization Problems with Set Solutions 147

2 Vector Optimization Problem Versus Set Optimization
Problem

In this section, firstly we show the main (geometric and analytic) aspects of (VOP)
and (SOP) and secondly, the immediate relationships between their solutions.

It is clear that solving a vector set-valued optimization problem is equivalent to
solve a rather simple problem in terms of the the objective map. In other words,
solving (VOP) is equivalent find the solutions of the following vector problem:

(V1)

{
Min �Y (x, y)

(x, y) ∈ Gra(F),

where Gra(F) = {(x, y) ∈ X × Y : x ∈ M, y ∈ F(x)} and �Y is the projection of
Gra(F) ⊂ X × Y on the second space.

Thus, z0 = (x0, y0) ∈ Gra(F) is an solution of (V1) if and only if z0 is aminimizer
of (VOP).

The above result is a peculiar characteristic of (VOP) since if we consider other
level of complexity for the objective map, we know that in order to solve a vector
optimization problem (P) via a scalar optimization problem we have to apply some
technique of scalarization which is not always possible, in general.

In terms of optimality conditions for (SOP) we could consider solutions which
image sets are not related with the boundary line of the image set F(M). It is a
geometric property of the set solutions which must be overcame in order to give
necessary conditions via separation theorems.

One advantage of the set criterion over the vector criterion is the possibility of
considering preference relations on 2Y . On the contrary, the main disadvantage of
set criterion over vector criterion is the loss of structure lineal. Hamel [29] studied
the structure of ℘0(Y ) introducing a conlineal space.

In order to avoid such a problem several authors have considered specializations
of F or tools to study the problem (SOP) via a structure well-known or simpler than
a conlineal space. For instance, in Hernández [33] solutions of (SOP) are charac-
terized via nonlineal scalarization, see also [8, 34, 72]. Nuriya and Kuroiwa [58,
77] construct an embedding vector space. Maeda [71], working on n-dimensional
Euclidean spaces shows that whenever set-valued map is rectangle-valued, (SOP)
is equivalent to a pair of vector-valued optimization problems. Recently Jahn [47]
states that a certain vector optimization problem can be associated to (SOP) when 

is defined by some complicated set relations.

In general, there is no any relationship between solutions obtained by vector
criterion (solutions of (VOP)) and solutions obtained by set criterion (solutions of
(SOP)).Moreover, the existence of solutions of one type does not imply the existence
of solutions of the other type. See, for instance, [27, 40].

On the other hand, it is natural to pose questions about the relationships between
solutions obtained by each criterion. Hernández and Rodríguez-Marín [42], under
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certain assumptions for the set-valued map, show that to solve (SOP) it is possible
to reduce the feasible set through the set criterion.

Even though both criteria are different, they extend (V) in the following sense.
If we consider a pre-order 
 on ℘0(Y ) compatible with ≤ and F is replaced by
a vector-valued map, then (SOP) and (VOP) are equivalent to (V). If, in addition,
we consider weakly solutions of (VOP) and (SOP) it is possible to prove that each
weakly vector solution is a weakly set solution, see [34, Proposition2.10] and [71,
Theorem5].

See also [5, 42, 71] to find more relationships between vector solutions (VOP)
and set solutions (SOP). Thus, for a certain classes of set-valued maps and pre-order
on ℘0(Y ) the set criterion is equivalent to the vector criterion. A particular case is
obtained when Y = R since each image set has a strongly minimal point.

To end this section we refer the reader to [19, 65] for a deeper discussion of the
above approaches of solutions for a optimization problem.

3 Set Relations Considered in the Literature

Now, we introduce the main preferences considered in the existing papers devoted
to study solutions of (SOP). In addition, we focus on pre-order relations defined on
℘0(Y ) which generalizes the ordering defined by K on Y .

The first systematic treatment of set relations in the context of ordered vector
spaces and its power sets is due to Kuroiwa, Tanaka and Ha [59] in 1997.

Definition 3.1 [59] Let A, B ∈ ℘0(Y ).

A ≤i B ⇔ B − A ⊂ K ⇔ a ≤ b for all b ∈ B, a ∈ A
A ≤i i B ⇔ there exists a ∈ A such that a ≤ b for all b ∈ B
A ≤i i i B ⇔ B ⊂ A + K
A ≤iv B ⇔ there exists b ∈ B such that a ≤ b for all a ∈ A
A ≤v B ⇔ A ⊂ B − K
A ≤vi B ⇔ there exist b ∈ B, a ∈ A such that a ≤ b.

It is easy to check that ≤k with k ∈ {i, i i, iv} are preferences such that the anti-
symmetric and reflexive properties do not hold while ≤k with k ∈ {i i i, v, vi} are
pre-orders on ℘0(Y ). In addition,

A ≤i
K B ⇒ A ≤i i B ⇒ A ≤i i i

K B ⇒ A ≤vi B

A ≤i
K B ⇒ A ≤iv B ⇒ A ≤v

K B ⇒ A ≤vi B.

In general, two nonempty sets A and B could not be related by ≤k for any k. Indeed,
let E = R

2 and K = R
2+ be. Then A = {(x + 2)2 + (y − 2)2 = 1} and B = {(x −

3)2 + (y + 3)2 = 1} satisfy that A �
vi B y B �

vi A.
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The authors defined the above set-relations on ℘0(Y ) to study generalized con-
vexity of a set-valued map. Since then, relations of a similar type have been proposed
for other authors, in several papers.

The most important property of set relations introduced in Definition3.1 is that
all of them generalize the ordering defined by K on Y in the sense of Definition1.3.
We emphasize that, in terms of optimality conditions, the set relations ≤i i i and ≤v

are called lower and upper set-relations (denoted by ≤l and ≤u) respectively. It is
clear that A ≤l B is equivalent to −B ≤u −A. In addition, it is possible to rewrite
them via −K instead of K .

So, Kuroiwa, Tanaka and Ha started developing a new approach to set-valued
optimization which is based on comparison among values of the set-valuedmap from
a set into a ordered vector space. At the same year, 1997, Kuroiwa [52] introduced
solutions for (SOP) in the sense of Definition1.2 by using ≤l and ≤u . Due to this
fact, the set criterion is also called in the literature Kuroiwa’s criterion. In order to
illustrate the set criterion we give a example.

Example 3.1 Let Y = R
2 and K = R

2+ be. 1. Consider F : M = [0,∞) −→ 2R
2

such that

F(x) =
{ {(0, 0)} x = 0[

(0, 0),
(−x, 1

x

)]
x �= 0

Then ≤l −Eff(F) = ∅ and Eff(F) = M.

2. Consider F : [−1, 0] −→ 2R
2
such that

F(λ) =
{ {(x,−x2) ∈ R

2 : − 1 < x ≤ 0} λ = −1[
(λ, 0), (λ,−λ2)

]
λ �= −1

Then ≤l −Eff(F) = {−1} and Eff(F) = ∅.

However, the set relations given in Definition3.1 have just been considered in
different frameworks many years ago, as is remarked in [19, 29, 46]. Firstly, Young
in 1931, [84] considered the above ret relations, among others, in terms of algebraic
structures. Fifty years before, Nishnianidze [75] studied theory of fixed points of
monotonic operators. That is the reason why Jahn in [46] called KNY order relations
to refer to set relations presented in Definition3.1.

Alonso and Rodríguez-Marín [5] proved that the study of the set optimization
problems: ≤l −Min F , ≤u −Min F ≤l −Max F and ≤u −Max F is reduced to
the study of the following ones: ≤l −Min F and ≤u −Min F . Moreover, one can
be solved by the other with a suitable definition of the objective map.

To end this section, we recall other set relations defined in set optimization theory.
In 2003, Kuroiwa [56, Definition2.1] introduced new binary relations on ℘0(Y )

which are weaker than ≤l and ≤u by using elements of the positive polar cone of K .
See also, [45].

On the other hand, by combining the set relations ≤l and ≤u we obtain the fol-
lowing pre-order on ℘0(Y )
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A ≤l
u B ⇔ A ≤l B and A ≤u B. (1)

In 2010, Maeda [71], working on n-dimensional Euclidean spaces, defined pref-
erences on ℘0(Y ) via the strong minimal and maximal elements of sets. The same
author, in [72] defined Pareto optimal solutions, semi-weak Pareto optimal solution,
and weak Pareto optimal solutions of (SOP) by considering ≤l

u .
Janh and Ha [48], in a more general framework, introduced new set relations

motivated by analysis interval and related with the above ones which generalize
those given by Maeda [72] and seem be more appropriate to set optimization theory
according to their applications.

In Löhne and Tammer [64] several set relations are presented on the family of all
subsets A of Y = R

n with cl(A + K ) = A (where cl denotes the topological closure)
to construct a pre-ordered conlinear space. See also, [62]. See also set relations given
in [58].

4 Classification of the Literature

In this section we recover the main results presented in the literatures of set-
optimization by using set approach. Several existence theorems for solutions of
(SOP) will be presented under a unified framework.

In the pioneering paper [52],Kuroiwa introduced the definitions of l-type solutions
or u-type solutions (by using ≤l or ≤u respectively) of (SOP) and a motivation for
the study of set optimization problems is given by means non academic examples.

Since 1997, when set criterion was introduced, the optimality conditions for solu-
tions of (SOP) are divided into two categories: those following results from the vector
case (using continuity, properties of a set, differentiability, scalarization, Lagrangian
duality, well-posedness and approximate solutions) and those obtained by applying
new results or tools.

In the sequel we list the main results related with the existence of solutions of
(SOP) from the beginning to up to now.

The first optimality conditions of l-type solutions of (SOP) were presented in
[54, Theorem4] by considering M compact and F a set-valued map with level sets
closed ([54, Definition2]) and, in addition, K closed and pointed. See also [53,
Theorem3.1].

In 2005, Alonso and Rodríguez-Marín [5] extended the definitions of cone-
semicompactness and domination property from a set to a family of sets. In addition,
in Proposition22, gave a sufficient condition of u-type solution by using a notion
of cone-regularity defined by subcovers of a family of subsets. See also [5, Corol-
lary24] to obtain a existence condition of u-type solution under M compact and
F lower cone-semicontinuous. A sufficient condition of l-type solution under M
compact and F upper cone-semicontinuous was given in [5, Propositions29 and 30].

Following the subcovers introduced in [5, Definition27], Hernández and
Rodríguez-Marín [35] introduced the notionof strongly some-compactness and cone-
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completeness for a family of sets to extend optimality conditions from the vector case
to the lower set relation case in Theorems4.1 and 4.6. Such results generalize those
presented in [69] for the vector case. In [35, Sect. 5], several optimality conditions
presented in [5, 55] are slightly improved. On the other hand, under assumptions of
generalized continuity, not only the existence of solutions is proven but also the dom-
ination property of the family {F(x) : x ∈ M} ([35, Definition4.3]) was established
in Corollaries5.5, 5.6 and 5.7 and Theorems 5.8 and 5.9.

Other definitions of semicompactness, completeness and semicontinuity and
related general theoretical properties with respect to a pre-order 
 on ℘0(Y ) was
given in [48] in a more general framework.

Also, assuming Y = R
n and K = R

n+ and considering the combined set-relation
≤l

u defined in (1), Maeda [72, Theorem4.1] gave a sufficient condition for a ≤l
u-

solution under compactness and generalized continuity.

Remark 4.1 The above results allow to state that the existence conditions of solutions
of set type are, in general, weaker that those of vector type and, in addition, several
existence results in vector optimization do not depend on linearity of the image space.

In terms of duality theory, Kuroiwa introduced a generalized Lagrangian as fol-
lows L(x, y, T ) = F(x) + T (y) (where T is a linearmap from X toY and y ∈ F(x))
and the dual problem associates to a constrained set optimization problem. He estab-
lished conditions of saddle points in [53, Theorem4.1] and [54, Theorem9]. Hernán-
dez andRodríguez-Marín [36, 37] generalized the aboveLagrangianmap by defining
L(x, T ) = F(x) + T (F(x)) (where T is an affine map from X to Y ) and gave weak
and strong duality theorems and saddle points results which extend those known in
the vector case. In [36, Sect. 3] and [37, Sect. 4], somemultiplier rules bymeans of an
affine linearmap under generalized convexity assumptionswere given by considering
l-type solutions of (SOP).

By using ≤i Lin and Chen [68] gave weak solutions and strong solutions of set
equilibrium problems and [43, Theorem5.5] established a Lagrange multiplier rule.

Alonso and Rodríguez-Marín [5, Theorems35 and 38] gave optimality conditions
for existence of strict solutions of (SOP) in terms of continuous selections of set-
valued maps. The same authors, in [6, Theorem25] established a necessary and
sufficient condition for the existence of weakly l-type solutions of (SOP) under
generalized convexity assumptions and contingent derivative of F .

Rodríguez-Marín and Sama in [79] gave a notion of following graphical derivative
of a set-valued map.

Definition 4.1 [79] Let X, Y be real normed spaces. Assume K is closed, strongly
minihedral and regular. The (�, C)-lower contingent derivative of F at x is the
set-valued map D�F(x) : X → 2Y defined by

Gra D�F(x) = Limsupt T (Gra ϕ�,t , (x, ϕ�,t (x))),

where T (A, z) with A ⊂ Y denotes the contingent cone to A at z ∈ A. Based on
ordered spaces techniques, the authors defined two types of contingent derivatives to
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set-valuedmaps and gave optimality conditions in terms of the contingent derivatives
for local l-type solutions of (SOP) in Theorems5.1, 5.2, 5.6 and 5.7. The obtained
results prove that the above derivative is suitable for the formulation of necessary and
sufficient conditions for set-valuedoptimizationproblems following the set approach.

In 2009, Kuroiwa [57] also presented directional derivatives based on an embed-
ding idea to establish necessary and sufficient conditions for a weakly minimal and
minimal solutions of (SOP).

Considering constrained optimization problems, Maeda [71, Theorems6 and 7]
established existence conditions for weakly ≤l

u-solutions by radial Dini derivatives
and lower and upper Dini derivatives of F .

Hernández and Rodríguez-Marín [39, Sect. 5] obtained optimality conditions for
the existence of solutions l-type solutions via weak and strong subgradients for a
set-valued map.

Remark 4.2 From the above results, it is clear that even notions on optimality con-
ditions in terms of differentiabily notions for set-valued maps is still an open issue
in set optimization.

In 2007, Hernández and Rodríguez-Marín [34, Sect. 4], by considering the pre-
order was defined by≤l , gave results on scalarization for (SOP) and characterized its
solutions without convexity assumptions for F a K -closed and K -bounded valued.
Hamel and Löhne [31] one year before had introduced a similar generalization to
give minimal element theorems. In this context, see also results given in [50, 61,
76, 81, 82]. Recently, Araya [8] presented new nonconvex separation theorems to
apply to set optimization by using ≤l and ≤u preferences. So, existence theorems of
weakly l-type minimal and weakly u-type minimal solutions via scalarizations were
given in Sect. 5.1 and a Takahashi’s minimization theorem in Sect. 5.2 was presented
in terms of set optimization.

Maeda [72] studied constrained set optimization problems with various types of
set solutions and, via scalarization, gave necessary and sufficient conditions under
compactness assumptions (Theorems4.2 and 4.3) and a characterization under con-
vexity assumptions (Theorem4.4).

Remark 4.3 We emphasize that in all the above papers devoted to scalarization, the
scalarizing function considered was a generalization of the Gerstewitz’s nonconvex
separation function introduced in [23] and extensively studied in [24].

Ha [27, Theorem3.1], by using strict l-type solutions, established a variant of
EVP for F (where X is a complete metric space). In Sects. 4 and 5, other variants
of the EVP by using conical extensions and the concept of cone extension and the
Mordukhovich coderivative (see [73, 74]) were established.

In Kuroiwa [56, Theorem3.5], via weight criteria, problem (SOP) was embed-
ded to a complete metric space to obtain an existence theorem for weakly efficient
solutions based on the Ekeland variational principle.

Also, in a frameworkmore general, Hamel and Löhne [31] obtained two existence
results for minimal of a family of subsets of the product space X × 2Y (where X is
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a separated uniform space) with respect to appropriate ordering relations on 2Y . As
application, the authors established a variant of Ekeland’s principle for a set-valued
optimization problem via generalizations of the functionals introduced in [23]. In
[13, Theorem3.5] by using ≤u the authors established a variational principle for
set-valued maps.

See also [25, Theorems5.1 and 5.2] for approximate variants of the EVP given
in [27, 31] and [20, Theorem6.2 and 6.3] for Ekeland variational principles on
quasi ordered spaces in a framework more abstract. In addition, considering rela-
tions between values of F and pre-orders generated by set-valued maps, in [67,
Theorems3.4 and 3.5] the authors directly expressed the Ekeland principle but in
terms of values of F .

Others generalizations of EVP for set-valued mappings and set approach are
given in [49] (via generalized distances) and [78, Theorem3.1] by considering strict
solutions of (SOP). By using a perturbed map (stability) of F see also, [34, Sect. 5].

In 2009, Zhang, Li and Teo [87] introduced three kinds of well-posedness for a set
optimization problem called k0-well posedness at a minimizer, generalized k0-well
posedness and extended k0-well-posedness (where k0 ∈ int(K )) and extended some
basic results of well-posedness of scalar optimization to set optimization by using a
generalization of the Gerstewitz’s function given in [34].

Compare the above results and the tools used with those presented in [26].
In [27, Theorem4.2]Ha defined properly positive efficient points in the framework

of set approach and gave a sufficient condition of approximated solution of the
perturbed map. Approximate solutions for problem (SOP) were also introduced in
[25, Defintion3.2] and [7, Definitions17 and 19].

About locating set solutions, in [38] using polyhedral cones Hernández and
Rodríguez-Marín extended the first theorem for locating the set of all efficient
points of a set through ordinary mathematical programming introduced by Yu [85].
Recently, in Löhne and Schrage [66] an algorithm which computes a solution of a
set optimization problem was provided.

5 Related Theories or Applications

In this section several papers related with the previous set relations are enumerated
to show its applicability.

On the one hand, to give optimality conditions in set-valued optimization theory,
several set relations have been used to generalize the convexity of a set-valued map
in [59], to give scalar representations of a vector optimization problem in [83], to
study conjugate duality in [62], to show continuity for set-valued maps under some
convexity assumptions in [60], to establish alternative theorems in [76] or to find
vector solutions in [41] where the set approach is used to reduce the feasible set of
(VOP). In addition, as we have shown in Sect. 4, several Ekeland-type principles are
developed in different frameworks by using pre-order or preferences on ℘0(Y ). In
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[13] the authors presentminimaxmethods in variational analysis, exactly, amountain
pass-type theorem.

Hamel, Löhne, Heyde and their collaborators have developed a new research
line in terms of infimum and supremum by using set-relations (which pre-serve the
structure of complete lattices) and definitions understood in the sense of solutions
like those defined in Remark1.2 (in which both criteria are implicitly considered).
Their results can be appropriate in terms of risk function in Finance. An overview of
such results can be found in [63] and references therein.

On the other hand, the preferences between nonempty sets have been also con-
sidered in other theories different to Optimization. For instance, to present existence
results for inclusion problems in [32] and to obtain fixed point theorems in [16, 17].

The relation defined in (1), among others, seems to bemore suitable in practice, for
instance, in the framework of interval analysis according to the basic investigations of
Chiriaev andWalster [15]. In addition, such set relations arewidely used in theoretical
computer sciences, see for example Brink [14] in where a study of power structures
in a universal-algebraic context is presented. For more details see [19, 48].

Since the seminal paper [86], fuzzy sets theory has been applied to various fields
of decision making theory including economics, management science and engineer-
ing widely. In [70] the notion of non-dominated solution is related with Kuroiwa’s
solution by using a both set relations, ≤l and ≤u , in terms of fuzzy mathematical
programming.

6 Conclusions

According to the previous sections, we can conclude that the analysis of Kuroiwa’s
concept deserves an exhaustive treatment. In addition, set optimization theory can be
considered as an area which is beginning since it is possible to identify future lines
of research from the existing literature.

The set-valued optimization theory by using the set criterion is a natural extension
of vector optimization theory. It is due to the published results allow to extend those
given the vector case. In addition, the research on set optimization has proven that
several existence results do not rely on linearity of the image space and therefore
they can be extended to set relations.

There is no doubt that many frameworks of optimization theory can be related
with set relations. However, a result which is worthy of being studied is an academic
example in where a solution criterion in terms of set relations is considered. Maybe
the main problem is to know what is the optimal alternative. It is clear that the set
criterion seems a natural extension of vector optimization theory and seems to have
the potential to become an important tool for many areas in optimization. In the
same direction, Jahn [46] asserts that such set relations open a new and wide field of
research and turn out to be promising in set optimization.

On the other hand, the set relations proposed in Kuroiwa, Tanaka and Ha [59],
among others, have been used as tools not only in optimization but also in others
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fields. Probably, fuzzy programming and analysis interval are areas in which the
practical point of view of the set approach is developed.

To summarize, asmentioned in Sect. 1, new relations ofmore general types should
be explored to find adequate applications. A goal of the present survey is to motivate
such a study.
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