
Set Optimization—A Rather Short
Introduction

Andreas H. Hamel, Frank Heyde, Andreas Löhne, Birgit Rudloff
and Carola Schrage

Abstract Recent developments in set optimization are surveyed and extended
including various set relations as well as fundamental constructions of a convex
analysis for set- and vector-valued functions, and duality for set optimization prob-
lems. Extensive sections with bibliographical comments summarize the state of the
art. Applications to vector optimization and financial risk measures are discussed
along with algorithmic approaches to set optimization problems.

Keywords Set relation · Conlinear space · Infimizer · Scalarization · Set-valued
function ·Duality · Subdifferential ·Vector optimization · Risk measure · Benson’s
algorithm

AMS subject classification: 06B23 · 49N10 · 52A41 · 90C29 · 90C46 · 90C48 ·
91B30

A.H. Hamel (B)
Free University Bolzano-Bozen, Bolzano, Italy
e-mail: andreas.hamel@unibz.it

F. Heyde
TU Bergakademie Freiberg, Freiberg, Germany
e-mail: frank.heyde@math.tu-freiberg.de

A. Löhne
Friedrich Schiller University Jena, Jena, Germany
e-mail: andreas.loehne@uni-jena.de

B. Rudloff
Vienna University of Economics and Business, Vienna, Austria
e-mail: brudloff@wu.ac.at

C. Schrage
Free University of Bolzano-Bozen, Bolzano, Italy
e-mail: carolaschrage@gmail.com

© Springer-Verlag Berlin Heidelberg 2015
A.H. Hamel et al. (eds.), Set Optimization and Applications - The State of the Art,
Springer Proceedings in Mathematics & Statistics 151,
DOI 10.1007/978-3-662-48670-2_3

65



66 A.H. Hamel et al.

1 Introduction

In his book [114, p. 378], J. Jahn states that the set relation approach ‘opens a new and
wide field of research’ and the so-called set relations ‘turn out to be very promising in
set optimization.’ We share this opinion, and this note aims at a (partial) fulfillment
of this promise.

What is “set optimization?” The answer given in this note concerns minimiza-
tion problems with set-valued objective functions and is based on a twofold solution
concept: Look for a set of arguments each of which has a function value which is
minimal in some sense, and all those values generate the infimum of the function.
Thus, infimum attainment and minimality are the two, no longer equivalent require-
ments for a solution of a set optimization problem. It turns out that the set relation
infimum is a useful concept in contrast to the vector order infimum which may not
exist, and even if it does, it is of no practical use.

What is a motivation to consider set optimization problems? The heart of the
problem is the question of how to deal with a non-total order relation, i.e. when
there are non-comparable alternatives. The “complete lattice approach” based on
set relations re-gains meaningful and applicable notions of infimum and supremum
even if the departing pre-ordered vector space does not have the least upper bound
property, is not even a lattice, its positivity cone is not pointed, not normal or has an
empty interior. The theory presented in this survey suggests that even vector-valued
optimization problems should be treated as set-valued ones. This point of view has
already been emphasized in [151] for problems with a solid ordering cone.

According to an old theorem by Szpilrajn [215], which is well-known in mathe-
matical economics, but less so in vector and set optimization, a partial order (preorder)
is the intersection of all linear orders (total preorders) including it. In the same spirit,
dual descriptions of objects related to a preorder such as convex functions can be
given in terms of half spaces generating total orders, hence dual objects are naturally
halfspace- or hyperplane-valued.1 Since the simplest dual object is a linear func-
tional, set-valued replacements for them should be halfspace- or hyperplane-valued
as well and “as linear as possible.” This basic idea leads to a new type of duality
which is not only strong enough to provide set-valued analogs of the Fenchel-Moreau
and the Lagrange duality theorem, but also implies known duality results in vector
optimization which are usually stated under much stronger assumptions.

It turns out that convex analysis, in particular duality, does not rely on linearity of
functionals or image spaces, but rather on “conlinearity.” The structure of a conlinear
space as introduced in [77] is precisely the part of the structure of a linear spacewhich
remains invariant under passing to the power set (with Minkowski addition) or order
completion (add a least and greatest element to an ordered vector space). Thus,
IR ∪ {−∞,+∞} is the prototype of a conlinear space. A particular feature is the
resulting bifurcation: The extended reals can be provided with inf-addition or sup-

1In contrast to many duality results in vector optimization, this can bee seen as a realization of one
of the many ‘duality principles in optimization theory that relate a problem expressed in terms of
vectors in a space to a problem expressed in terms of hyperplanes in the space,’ see [160, p. 8].
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addition (see [197, p. 15], but already introduced by Moreau [175]), which produces
two different conlinear spaces. A preoder on a linear space can be extended in two
different ways to the power set of this space, thus producing two different ordered
conlinear spaces. Below, it should become clear why this happens and how to deal
with this ambiguity.

Finally, “set optimization” is motivated by problems in Economics and Mathe-
matical Finance. The classic books [209] (first edition from 1953) and [125] contain
many examples of set-valued functions which naturally occur in economic models,
among them ‘production technologies’ [209, p. 13] which are basically monotone
lattice-valued functions in the sense of this survey. In finance, market models with
transaction costs provide plenty of examples for the theory discussed in this survey;
for example the superhedging theorems in [121, 205] can be identified as partic-
ular cases of the set-valued Fenchel-Moreau theorem stated below, and the theory
of set-valued risk measures, initiated in [120], was particularly motivating for the
development for the set-valued duality in Sect. 5 below.

This survey aims at developing ideas and structures and providing a framework for
principal results. Full proofs are only given for new or unpublished results, or if they
illustrate an important idea particularly nicely. Sections with bibliographical remarks
conclude each part with the goal to put the presented material into perspective with
variational analysis and vector optimization theory in view.

Several results are new, mostly complementing those obtained by the authors in
several recent publications. For example, Proposition2.17 discusses the totalness of
set relations, Sect. 4.2 relies on an improved general scheme for scalarizations and
includes several new observations such as the supermodularity of the scalarizations
given in Corollary4.15, Theorem5.2 characterizes set-valued dual variables parallel
to results for continuous linear functions and convex processes, Sect. 5.5 contains
a new general framework for directionally translative functions and Proposition6.7
provides a new sufficient optimality condition including a complementary slackness
condition for set optimization.

2 Set Relations and Lattices of Sets

2.1 Extending Preorders from Linear Spaces to their Power
Sets

Let Z be a non-trivial real linear space and C ⊆ Z a convex cone with 0 ∈ C �= Z .
In particular, C = {0} is allowed. Here, C is said to be a cone if z ∈ C , t > 0 imply
t z ∈ C . By

z1 ≤C z2 ⇔ z2 − z1 ∈ C

a reflexive and transitive relation ≤C is defined on Z ; such a relation is usually
called a preorder. It is compatible with the linear structure of Z in the usual sense,
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i.e. z1, z2, z ∈ Z , t ≥ 0 and z1 ≤C z2 imply z1 + z ≤C z2 + z as well as t z1 ≤ t z2.
Obviously,

z1 ≤C z2 ⇔ z2 − z1 ∈ C ⇔ z2 ∈ z1 + C ⇔ z1 ∈ z2 − C.

The last two relationships can be used to extend ≤C from Z to P (Z), the set of all
subsets of Z including the empty set ∅. Take A, B ∈ P (Z) and define

A �C B ⇔ B ⊆ A + C,

A �C B ⇔ A ⊆ B − C.

Here and in the following, we use + to denote the usual Minkowski (element-wise)
addition for sets with the conventions A + ∅ = ∅ + A = ∅ for all A ∈ P (Z) and
A − C = A + (−C), −C = {−c | c ∈ C}. The following facts are immediate.

Proposition 2.1 (a) Both �C and �C are reflexive and transitive relations on
P (Z). Moreover, they are not antisymmetric in general, and they do not coincide.

(b) A �C B ⇔−B �C −A⇔ B �−C A.
(c) A �C B ⇔ A + C ⊇ B + C; A �C B ⇔ A − C ⊆ B − C.

Proof Left as exercise. �

The property (c) above gives rise to define the set

P (Z , C) = {A ∈ P (Z) | A = A + C}

and to observe that it can be identified with the set of equivalence classes with respect
to the equivalence relation on P (Z) defined by

A ∼C B ⇔ (A �C B ∧ B �C A) ⇔ A + C = B + C, (2.1)

i.e. ∼C is the symmetric part of �C . Likewise,

P (Z ,−C) = {A ∈ P (Z) | A = A − C}

can be identified with the set of equivalence classes with respect to the equivalence
relation

A ∼(−C) B ⇔ (A �C B ∧ B �C A) ⇔ A − C = B − C.

Below, we will mainly discuss the relation �C which is the appropriate one when it
comes to minimization; however, the theory becomes completely symmetric since
every statement for the�C relation (andminimization) has a counterpart for�C (and
maximization).
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The following proposition relies on (c) of Proposition2.1. We recall that the
infimum of a subset V ⊆ W of a partially ordered set (W,�) is an element w̄ ∈ W
(unique if it exists) satisfying w̄ � v for all v ∈ V and w � w̄ whenever w � v for
all v ∈ V . This means that the infimum is the greatest lower bound of V in W .
The infimum of V is denoted by inf V . Likewise, the supremum sup V is defined
as the least upper bound of V . A partially ordered set (W,�) is called a lattice if
inf {w1, w2} and sup {w1, w2} exist in W for any two elementsw1, w2 ∈ W . A lattice
(W,�) is called (order) complete if each subset has an infimum and a supremum in
W .

Proposition 2.2 The pair (P (Z , C) ,⊇) is a complete lattice. Moreover, for a subset
A ⊆ P (Z , C), the infimum and the supremum of A are given by

inf A =
⋃

A∈A
A, supA =

⋂

A∈A
A (2.2)

where it is understood that inf A = ∅ and supA = Z whenever A = ∅. The greatest
(top) element of P (Z , C) with respect to ⊇ is ∅, the least (bottom) element is Z.

In particular, ⊇ is a partial order on P (Z , C). This property does not depend
on the cone C : It can be a trivial cone, i.e. C = {0}, or a half space, i.e. C =
{z ∈ Z | ξ (z) ≥ 0} where ξ is a (non-zero) linear function on Z (an element of
the algebraic dual of Z ), i.e.≤C is not antisymmetric in the latter case in general. Of
course, a parallel result holds for (P (Z ,−C) ,⊆).

Note that the convention inf ∅ = ∅ and sup ∅ = Z is in accordancewith the follow-
ing monotonicity property: If A1 ⊆ A2 then inf A1 ⊆ inf A2 and supA1 ⊇ supA2

in P (Z , C).

Proof To show the first formula in (2.2) one has to prove two facts: First,

∀A′ ∈ A :
⋃

A∈A
A ⊇ A′,

and secondly, for B ∈ P (Z , C)

(∀A ∈ A : B ⊇ A) ⇒ B ⊇
⋃

A∈A
A.

Both claims are obvious. The second formula of (2.2) also follows from the
definition of the supremum with respect to ⊇. The lattice property is a consequence
of (2.2). �

Remark 2.3 One could also use other representatives of the equivalence classes
defined by (2.1) {

A′ ∈ P (Z) | A �C A′ ∧ A′ �C A
}
.



70 A.H. Hamel et al.

As as rule, one has to impose additional assumptions, for example a non-empty
interior of the cone C . An example is the infimal set approach of Nieuwenhuis [179]
which has been extended in [149, 155] (compare also [151, 216]). This approach is
summarized in Example2.12 below.

2.2 Comments on Set Relations

In the (vector and set) optimization community, D. Kuroiwa is credited for the intro-
duction of the two “set relations”�C and�C above and, indeed, he was the first who
used them for defining optimality notions for optimization problemswith a set-valued
objective function, compare [128, 138] and several reports [129–134] published by
RIMS Kokyuroku 1996–1999. However, it should be noted that these “set relations”
were in use much earlier in different contexts.

In the 1993 paper [22], Brink describes an algebraically motivated approach to
power structures where the two relations� and� (analog extensions of a preorder on
a general set, not necessarily a vector space) are denoted by R+0 and R+1 , respectively.
These and similar structures mostly defined on finite or countable sets are widely
used in theoretical computer science as becomes clear from the reference list of [22].
For example, in [188, Definition 1] the following definition is used: A set A ‘can be
reduced to’ another set B if for all a ∈ A there is b ∈ B such that a ≤ b for some
partial order ≤, thus A � B, which is parallel to the definition of �C above.

Nishianidze [180] also used the relations � and � in the context of fixed point
theory. This reference was brought to our attention by J. Jahn. Constructions mainly
motivated by applications in economics and social choice theory can be found e.g. in
[18, 177]. Compare also the references therein, especially [122]. In [56], set relations
(on finite sets) and corresponding best choice problems are motivated by committee
selection, governing coalition formation, product line formation and similar prob-
lems.

As pointed out in [77, 83], the earliest reference known to us is the paper [228]
by Young. It already contains the definitions of �C and �C implicitly and presents
applications to the analysis of upper and lower limits of sequences of real numbers.

Another field of application for set relations is interval mathematics. In the survey
[178, Sect. 2.2] from 1975, an order relation is investigatedwhich is defined on the set
of order intervals of a partially ordered set M . This relation coincides with�C ∩ �C

if M = Z and ≤C is a partial order on Z . It has also been discussed, for example,
in [115, 117]. Jahn [118] applies it in fixed point theory for interval functions, and
Schmidt [206] relates it to general ordered convex cones. Later, the “set-less-or-
equal relation” became a standard part of the FORTRAN 95 specification for interval
arithmetic, see [30]. We point out that the “set less” relation in [115] actually is the
“set-less-or-equal” relation in [30, Sect. 12.8] and also coincides with �C ∩ �C .

In [138], one can find a systematic investigation of six extensions of a preorder≤C

on a topological linear space generated by a convex ordering cone C with nonempty
interior to its power set; the relations �C and �C are proven to be the only such
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relations which are reflexive and transitive; definitions for the convexity of set-valued
functions with respect to several order relations are given. Subsequent papers of the
three authors of [138] contain applications to optimization problemswith a set-valued
objective, see for example [73, 135, 136]. For this topic, compare also the book [114],
especially Chap.5. The recent paper [117] contains even more set relations.

After 2005, many authors adopted the concepts related to�C and�C , see, among
an increasing number of others, [1, 85, 94–96, 140, 163, 164]. Quite recently, robust-
ness for vector optimization problems has been linked to the two (and other) set
relations, see [107–109].

In [77, 149, 155], it has been realized that the set relations unfold their full
potential in the framework of complete lattices; Propositions2.2 above and infimal
set versions of it such as [151, Proposition 1.52] may serve as a blueprint for this
idea. Because of Proposition2.2 (which can be found, even in a more general set-up,
in [77, Theorem 6] and, for a different image space, [149, Proposition 1.2.3]) we call
this approach the “complete lattice approach” to set optimization.2

2.3 Inf-Residuated Conlinear Spaces of Sets

Westartwith a definitionwhich provides the algebraic framework for the image space
analysis. It is taken from [77] where references and more material about structural
properties of conlinear spaces can be found.

Definition 2.4 A nonempty set W together with two algebraic operations +: W ×
W → W and · : IR+ ×W → W is called a conlinear space provided that

(C1) (W,+) is a commutative semigroup with neutral element θ ,
(C2) (i) ∀w1, w2 ∈ W , ∀r ∈ IR+: r · (w1 + w2) = r · w1 + r · w2, (ii) ∀w ∈ W ,

∀r, s ∈ IR+: s · (r · w) = (sr) · w, (iii) ∀w ∈ W : 1 · w = w, (iv) 0 · θ = θ .

An element w ∈ W is called a convex element of the conlinear space W if

∀s, t ≥ 0 : (s + t) · w = s · w + t · w.

A conlinear space (W,+, ·) together with a partial order � on W (a reflexive,
antisymmetric, transitive relation) is called ordered conlinear space provided that
(v) w,w1, w2 ∈ W , w1 � w2 imply w1 + w � w2 + w, (vi) w1, w2 ∈ W , w1 � w2,
r ∈ IR+ imply r · w1 � r · w2.

A non-empty subset V ⊆ W of the conlinear space (W,+, ·) is called a conlinear
subspace of W if (vii) v1, v2 ∈ V implies v1 + v2 ∈ V and (viii) v ∈ V and t ≥ 0
imply t · v ∈ V .

2For apparent reasons, we would like to call this just “set optimization,” but this term is currently
used for just too many other purposes.

http://dx.doi.org/10.1007/978-3-662-48670-2_5
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It can easily be checked that a conlinear subspace of a conlinear space again is a
conlinear space. Note that an important feature of the above definition is the missing
second distributivity law which is used to define convex elements.

Example 2.5 (a) The Minkowski addition+ has already been extended to P (Z , C)

and P (Z ,−C) (see the paragraph before Proposition2.1). The multiplication with
non-negative numbers is extended to P (Z , C) by defining t · A = {ta | a ∈ A} for
A ∈ P (Z , C) \ {∅}, t > 0 and

0 · A = C, t · ∅ = ∅

for all A ∈ P (Z , C) and t > 0. In particular, 0 · ∅ = C by definition, and we will
drop the · in most cases. Since the same can be done for P (Z ,−C), the triples
(P (Z , C) ,+, ·) and (P (Z ,−C) ,+, ·) are conlinear spaces in the sense of Defini-
tion2.4.

Note that it does not hold:

∀s, t ≥ 0, ∀A ∈ P (Z , C) : (s + t) · A = s · A + t · A.

Counterexamples are provided by non-convex sets A ⊆ Z . Therefore,
(P (Z , C) ,+, ·,⊇) is neither an ordered semilinear space [202] nor a semi-module
over the semi-ring IR+ [230].

(b) The extended real numbers IR = IR ∪ {−∞,+∞} provide two more exam-
ples. Supplied with the inf-addition +� and the sup-addition +� , respectively, one
obtains two (different!) conlinear spaces. For terminology and references, see [89,
197].

The next result connects the conlinear structure on (P (Z , C) ,+, ·)with the order
structure of (P (Z , C) ,⊇).

Proposition 2.6 (a) A, B, D, E ∈ P (Z , C), A ⊇ B, D ⊇ E⇒ A + D ⊇ B + E,
(b) A, B ∈ P (Z , C), A ⊇ B, s ≥ 0⇒ s A ⊇ s B,
(c) A ⊆ P (Z , C), B ∈ P (Z , C)⇒

inf (A+ B) = (inf A)+ B (2.3)

sup (A+ B) ⊇ (supA)+ B. (2.4)

where A+ B = {A + B | A ∈ A}.
Proof Exercise. �

The following example shows that (2.4) does not hold with equality in general.

Example 2.7 Let Z = IR, C = IR+, A = {[t,∞) | t ≥ 0}, B = IR. Then,
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∀t ≥ 0 : [t,∞)+ IR = IR and supA =
⋂

t≥0
[t,∞) = ∅,

so sup (A+ B) = IR �= ∅ = (supA)+ B.

Items (a) and (b) of the previous proposition show that (P (Z , C) ,+, ·,⊇) (as
well as (P (Z ,−C) ,+, ·,⊆)) carries the structure of an ordered conlinear space.
Moreover, Proposition2.2 shows that they are also complete lattices. The innocent
looking Eq. (2.3) has far reaching consequences. In lattice theoretical terms, it means
that (P (Z , C) ,+, ·,⊇) is inf-residuated (but not sup-residuated in general). The
opposite is true for (P (Z ,−C) ,+, ·,⊆): it is sup-, but not inf-residuated. The
following proposition is an explanation for the word “inf-residuated.”

Proposition 2.8 The relationship (2.3) given in (c) of Proposition2.6 is equivalent
to: For each A, B ∈ P (Z , C), the set

{D ∈ P (Z , C) | A ⊇ B + D}

has a least element (with respect to ⊇).

Proof Assume (2.3) and fix A, B ∈ P (Z , C). Define

D̂ = inf {D ∈ P (Z , C) | A ⊇ B + D} .

By (2.3) and (2.2),

B + D̂ = B + inf {D ∈ P (Z , C) | A ⊇ B + D}
= inf {B + D ∈ P (Z , C) | A ⊇ B + D}
=

⋃
{B + D ∈ P (Z , C) | A ⊇ B + D} ⊆ A

which means D̂ ∈ {D ∈ P (Z , C) | A ⊇ B + D}, so D̂ is the desired least element.
The converse direction is left as an exercise. �

The inf-residuation of A, B ∈ P (Z , C) is denoted

A−� B = inf {D ∈ P (Z , C) | A ⊇ B + D} . (2.5)

This operation will serve as a substitute for the difference in linear spaces. Indeed,
for Z = IR, C = IR+, A = a + IR+, B = b + IR+, a, b ∈ IR one obtains

A−� B = {r ∈ IR | b + r + IR+ ⊆ a + IR+} = {r ∈ IR | b − a + r + IR+ ⊆ IR+} = a − b + IR+.

Compare Example2.15 below for more about the extended reals. The following
proposition states two elementary properties of−� . A full calculus exists for−� which
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to a large extend can be derived from known results in lattice/residuation theory. One
example is Proposition4.17 below which can be understood as a residuation version
of “the negative of the infimum is the supremum of the negative.”

Proposition 2.9 Let A, B ∈ P (Z , C). Then

A−� B = {z ∈ Z | B + z ⊆ A} , (2.6)

and if A is closed (convex) then A−� B is closed (convex) where Z is required to be
a topological linear space if closedness is involved.

Proof The proof of the equation is immediate from (2.2) and (2.5), and the second
claim follows from the first and

{z ∈ Z | B + z ⊆ A} =
⋂

b∈B

{z ∈ Z | z ∈ A + {−b}} .

Of course, A + {−b} is closed (convex) if A is closed (convex), and these properties
are stable under intersection. �

Remark 2.10 We would like to draw the reader’s attention to the fact that the struc-
ture of an ordered conlinear space which also is an inf-residuated complete lattice
is “rich enough” to serve as an image space in convex analysis. In fact, this struc-
ture is shared by IR with inf-addition and (P (Z , C) ,+, ·,⊇) (as well as others, see
below). Completely symmetric counterparts are provided by IR with sup-addition
and (P (Z ,−C) ,+, ·,⊆)which are sup-residuated complete lattices. The transition
from one to the other, provided by multiplication with−1, is a ‘duality’ in the sense
of [210]. Although elements of this structure were well-known and have been used
before (see the comments section below), the development of this framework for a
“set-valued” convex/variational analysis and optimization theory is one contribution
of the authors of this survey. A nice feature is that this structure admits to estab-
lish many results for vector/set-valued functions in the same way as for extended
real-valued functions—not surprising after one realizes the similarities between the
extended reals and conlinear spaces of sets.

We conclude this section by providing more examples of inf-residuated complete
lattices of sets which will be used later on.

Example 2.11 Let Z be a topological linear space and C ⊆ Z a convex cone with
0 ∈ C . The set

F (Z , C) = {A ⊆ Z | A = cl (A + C)}

clearly is a subset of P (Z , C), but not closed under (Minkowski) addition. There-
fore, we define an associative and commutative binary operation ⊕: F (Z , C)×
F (Z , C)→ F (Z , C) by

A ⊕ B = cl (A + B) (2.7)
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for A, B ∈ F (Z , C). The element-wise multiplication with non-negative real num-
bers is extended by

0� A = clC, t � ∅ = ∅

for all A ∈ F (Z , C) and t > 0. In particular, 0� ∅ = clC by definition, and we
will drop� in most cases. The triple (F (C) ,⊕,�) is a conlinear space with neutral
element clC .

OnF (Z , C),⊇ is a partial orderwhich is compatiblewith the algebraic operations
just introduced. Thus, (F (Z , C) ,⊕,�,⊇) is a partially ordered, conlinear space.

Moreover, the pair (F (Z , C) ,⊇) is a complete lattice, and ifA ⊆ F (Z , C) then

inf
(F(Z ,C),⊇)

A = cl
⋃

A∈A
A, sup

(F(Z ,C),⊇)

A =
⋂

A∈A
A

where again inf (F(Z ,C),⊇) A = ∅ and sup(F(Z ,C),⊇) A = Z whenever A = ∅.
The inf-residuation in F (Z , C) is defined as follows: For A, B ∈ F (Z , C), set

A−� B = inf
(F(Z ,C),⊇)

{D ∈ F (Z , C) | B + D ⊆ A} = {z ∈ Z | B + z ⊆ A} . (2.8)

Note that, for A ∈ F (Z , C), the set on the right hand side of (2.8) is indeed closed
by Proposition2.9.

Example 2.12 Let Z be a topological linear space and C � Z be a closed convex
cone with ∅ �= int C �= Z . The set of weakly minimal points of a subset A ⊆ Z (with
respect to C) is defined by

wMinA = {y ∈ A | ({y} − int C) ∩ A = ∅} .

For A ∈ F(Z , C), it can be shown ([151, Proposition 1.40 and Corollary 1.44]) that
wMinA �= ∅ if and only if A /∈ {Z ,∅}. This justifies the following construction. For
A ∈ F(Z , C), set

InfA =
⎧
⎨

⎩

wMinA : A /∈ {Z ,∅}
{−∞} : A = Z
{+∞} : A = ∅.

Then InfA ⊆ Z ∪ {±∞}, and InfA is never empty. The set A can be reconstructed
from Inf A by

A =
⎧
⎨

⎩

Inf A ⊕ C : Inf A /∈ {{−∞} , {+∞}}
Z : Inf A = {−∞}
∅ : Inf A = {+∞} .

Defining the set I(Z , C) = {Inf A | A ∈ F(Z , C)} (the collection of ‘self-
infimal’ subsets of Z ∪ {±∞}, [151,Definition 1.50]) and appropriate algebraic oper-
ations as well as an order one obtains F(Z , C) = {B ⊕ C | B ∈ I(Z , C)}. More-



76 A.H. Hamel et al.

over, I(Z , C) andF(Z , C) are algebraically and order isomorphic ordered conlinear
spaces (compare Proposition 1.52 of [151]). The reader is referred to [151, 155, 179,
216] for more details concerning infimal (and supremal) sets.

Example 2.13 Let Z , C be as in Example2.11. The set

G (Z , C) = {A ⊆ Z | A = cl co (A + C)} ⊆ F (Z , C)

together with the operations ⊕ and � introduced in Example2.11 is a conlinear
subspace of (F (C) ,⊕,�). In fact, G (Z , C) precisely contains the convex elements
of F (Z , C). Moreover, the pair (G (Z , C) ,⊇) is a complete lattice, and for ∅ �=
A ⊆ G (Z , C)

inf
(G(Z ,C),⊇)

A = cl co
⋃

A∈A
A

whereas the formula for the supremum is the same as inF (Z , C). The inf-residuation
in (G (Z , C) ,⊕,�,⊇) is the same as in (F (Z , C) ,⊕,�,⊇) which is a conse-
quence of (2.8) and Proposition2.9.

Example 2.14 If in Example2.12 and under the assumptions therein, F(Z , C) is
replaced by G(Z , C), we obtain a conlinear space Ico(Z , C), which is a subspace of
I(Z , C) that is algebraically and order isomorphic to G(Z , C). For further details,
the reader is referred to [151, Sect. 1.6].

Note that parallel results are obtained for F (Z ,−C), G (Z ,−C) with the same
algebraic operations as in F (Z , C), G (Z , C) and the order relation ⊆.
Example 2.15 Let us consider Z = IR, C = IR+. Then

F (IR, IR+) = G (IR, IR+) = {[r,+∞) | r ∈ IR} ∪ {IR} ∪ {∅} .

Moreover, by
a = inf

(IR,≤)
A for A ∈ G (IR, IR+)

and

A =
⎧
⎨

⎩

IR : a = −∞
[a,+∞) : a ∈ IR
∅ : a = +∞

we obtain an algebraic and order isomorphism between (G (IR, IR+) ,⊕,�,⊇) and(
IR,+� , ·,≤)

where +� is the inf-addition (see [197]) on IR = IR ∪ {±∞} with
(+∞)+� r = r+� (+∞) = +∞ for all r ∈ IR, and · is an extension of the multi-
plication of non-negative real numbers by elements of IR. Note that 0 · (−∞) =
0 · (+∞) = 0 since otherwise

(
IR,+� , ·) is not a conlinear space. Of course, A ⊇ B

if, and only if, inf (IR,≤) A ≤ inf (IR,≤) B. Thus,
(
IR,+� , ·,≤)

is an ordered conlinear
space which is a complete lattice with respect to ≤. Moreover,
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∀M ⊆ IR, ∀r ∈ IR : inf
(IR,≤)

(
M+� {r}) = r+� inf

(IR,≤)

M,

which admits the introduction of the inf-residuation in IR [89]. Here, M+� {r} ={
m+� r | m ∈ M

}
. We have

r−� s = inf
{
t ∈ IR | r ≤ s+� t

}

for all r, s ∈ IR with some strange properties. For examples, expressions like
(+∞)−� (−∞) are well-defined and even useful as shown in [89, 90].

Remark 2.16 As a simple, but instructive exercise the reader should try to estab-
lish the isomorphism between (G (IR,−IR+) ,⊕, ·,⊆) and

(
IR,+� , ·,≤

)
where +�

denotes the “sup-addition” [197]. This shows that the reason why ‘there’s no single
symmetric way of handling (+∞)+ (−∞)’ is basically the same as the one for hav-
ing two “canonical” extensions of a vector pre-order to the power set of the vector
space.3

The image space G (Z , C) will feature prominently in duality theories for set-
valued functions/optimization problems. The last example shows that it shares almost
all properties with the extended reals provided with the inf-addition. The notable
exception is that the order⊇ is not total in general. The following result clarifies this
question.

Proposition 2.17 Let Z be a locally convex space and C ⊆ Z a convex cone with
0 ∈ C and Z �= clC. Then ⊇ is total on F(Z , C) if, and only if, clC coincides with
a half-space H+(z∗) := {z ∈ Z | z∗(z) ≥ 0} for some z∗ ∈ C+\{0}.
Proof The “if” part is immediate. For the “only if” part, assume⊇ is total onF(Z , C)

and clC is not a half space. Then, there are z∗ ∈ C+\{0} and z̄ ∈ Z such that

clC ⊆ H+(z∗) and z̄ ∈ H+(z∗)\clC.

Indeed, the existence of z∗ ∈ C+\{0} and the first inclusion follow from a separation
argument, the second from the assumption. We claim that

∀s ∈ IR : H(z∗, s) := {
z ∈ Z | z∗(z) ≥ s

}
� clC.

In order to verify the claim, assume H(z∗, s) ⊆ clC for some s ∈ IR. Then, there is
zs ∈ Z such that H(z∗, s) = zs + H+(z∗) and z∗(zs) = s. This implies

3R. T. Rockafellar and R.-B. Wets also remark on p. 15 of [197] that the second distributivity law
does not extend to all of IR which is another motivation for the concept of “conlinear” spaces.
Finally, it is interesting to note that the authors of [197] consider it a matter of cause to associate
minimization with inf-addition (see p. 15). In the set optimization community, there is no clear
consensus yet about which relation to use in what context and for what purpose. However, this note
makes a clear point towards [197]: associate �C with minimization and �C with maximization
because the theory works for these cases. One should have a very strong reason for doing otherwise
and be advised that in this case many standard mathematical tools just don’t work.
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∀t > 0 : zs + t z̄ ∈ H(z∗, s)

since z∗(zs + t z̄) = s + t z∗(z̄) ≥ s. By assumption, zs + t z̄ ∈ clC for all t > 0,
hence

∀t > 0 : 1
t

zs + z̄ ∈ clC

which in turn gives z̄ ∈ clC , a contradiction. This proves the claim, i.e. clC �

H(z∗, s) for all s ∈ IR. Since ⊇ is total,

clC ⊆
⋂

s∈IR
H(z∗, s) = ∅,

a contradiction. �

2.4 Comments on Conlinear Spaces and Residuation

The term ’conlinear space’ was coined in [77] because of the analogies to ’convex
cones’ on the one hand and to linear spaces on the other hand.

A related concept is the one of quasilinear spaces or almost linear spaces as
defined in, for example, [66, 168], respectively. A quasilinear (or almost linear)
space satisfies all the axioms of a linear space, but the second distributivity law
which is required only for non-negative reals. Hence (P(Z),+, ·), (P(Z , C),+, ·)
and (F(Z , C),⊕, ·) are not quasilinear spaces in general. With respect to interval
mathematics, Schmidt [206, Sect. 4] observed ‘[. . .] it seems to be convenient to
generalize one step further and to restrict the multiplication by scalars to positive
scalars alone.’ Keeping all the other requirements for a quasilinear space we obtain
an abstract convex cone in the sense of B. Fuchssteiner, W. Lusky [60]. In [124], the
same concept is the basic one, sometimes a convex cone even without a zero element.
Abstract convex cones also coincide with semilinear spaces as probably introduced
by A. M. Rubinov [202] (he refers to a 1975 joint paper with S.S. Kutateladze) and
recalled, for example, in [65, Definition 2.6].

We remark that convex cones in the sense of [60] and semilinear spaces (with a
“zero”) in the sense of [65, Definition 2.6] are also semi-modules over IR+ (and even
semivector spaces) as defined by U. Zimmermann in [230, Sect. 5]. Finally, another
close relative of a conlinear space is a semivector space in the sense of [192]. Prakash
and Sertel (see also [193]) defined this structure in the early Seventies and observed
that the collections of non-empty and non-empty convex sets of a vector space form
a semivector space. In a semivector space, the existence of a neutral element with
respect to the addition is not required. Therefore, it might be considered as the
“weakest” algebraic concept discussed here.

Dedekind [43] already introduced the residuation concept and used it in order
to construct the real numbers as ‘Dedekind sections’ of rational numbers. Among
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others, R. P. Dilworth and M. Ward turned it into a standard tool in abstract lattice
theory, see [46, 223–225] and many followers.

Sometimes, the right hand side of (2.8) is called the geometric difference [189],
star-difference (for example in [220]), or Minkowski difference [76] of the two sets
A and B, and H. Hadwiger should probably be credited for its introduction. The
relationship to residuation theory (see, for instance, [13, 61]) has been established in
[89]. At least, we do not know an earlier reference. In the context of abstract duality,
residuation has been used, for example, in [64, 167] and also in idempotent analysis
(see [62, Sect. 3.3], for example). Note that in [64], the set IR is supplied both with
+� and +� at the same time, and this idea is extended to ‘the canonical enlargement’
of a ‘boundedly complete lattice ordered group’ (see [64, Sect. 3]) which is different
from the point of view of this survey. On the other hand, F(Z , C) and G(Z , C) are
special cases of (A,�) in [64, Sect. 2], but therein the conlinear structure is not used.

3 Minimality Notions

3.1 Basic Concepts

This section is concerned with the question of how to define “infimum attainment”
and “minimality.” We shall focus on the relation⊇ onF (Z , C) and G (Z , C) noting
that there are parallel concepts and results for ⊆ on F (Z ,−C), G (Z ,−C). In the
remainder of the paper, the infimum or supremum is always taken in the correspond-
ing space of elements, for example

inf A = cl
⋃

A∈A
A

whenever A ⊆ F(Z , C) whereas for A ⊆ G(Z , C)

inf A = cl co
⋃

A∈A
A.

With the constructions from the previous section in view, we have at least two
possibilities for a minimality notion. Given a set A ⊆ F (Z , C) or A ⊆ G (Z , C),
look for

(I) inf A = cl
⋃

A∈A A or inf A = cl co
⋃

A∈A A, respectively, or
(II) minimal elements with respect to ⊇, i.e. B ∈ A satisfying

A ∈ A, A ⊇ B ⇒ A = B.
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Note that the second possibility corresponds to the so-called set criterion which
became popular due to the work of D. Kuroiwa and collaborators: One looks for
minimal elements ofA ⊆ P (Z) with respect to �C . Since �C is not antisymmetric
in general one has to look for B ∈ A satisfying

(IIa)
A ∈ A, A �C B ⇒ B �C A.

Neither of the two possibilities above has been considered first. Rather, the following
problem has been studied since the 1980s by Corley [32], Dinh The Luc [156] and
others, and it is still popular.

(III) Find minimal elements of
⋃

A∈A A with respect to ≤C , i.e. find b ∈⋃
A∈A A

satisfying
a ∈

⋃

A∈A
A, a ≤C b ⇒ b ≤C a.

In this way, a set optimization problem is reduced to a vector optimization problem,
and sometimes this problem is referred to as the vector criterion in set optimization.
Note that, in some way, it involves the infimum of A in P(Z , C).

Example 3.1 Let Z = IR2, C = {0} × IR+ and A = {At | t ∈ [0, 1]} where

At = [−1+ t, t]× IR+.

Then each At is minimal with respect to ⊇ and

inf A = A0 ∪ A1 = [−1, 1]× IR+.

This shows that not all minimal elements are required to generate the infimumwhich
prepares the following definition.

Definition 3.2 Let A ⊆ F(Z , C) or A ⊆ G(Z , C).

(a) A set B ⊆ A is said to generate the infimum of A if

inf B = inf A.

(b) An element Ā ∈ A is called minimal for A if it satisfies

A ∈ A, A ⊇ Ā ⇒ A = Ā.

The set of all minimal elements of A is denoted by MinA.

Parallel definitions apply to generators of the supremum and maximal elements.
Of course,A always generates the infimum ofA. On the other hand, a set of minimal
elements of A does not necessarily generate the infimum of A. In Example3.1,
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every subset of A including A0 and A1 consists of minimal elements and generates
the infimum, i.e., in general, sets of minimal elements generating the infimum are not
singletons. If A ⊆ P (IR, IR+), then a single element A ∈ A generates the infimum
ofA if, and only if, it is aminimal one.Definition3.2 leads to the following “complete
lattice approach.” Given a set A ⊆ F(Z , C) or A ⊆ G(Z , C) look for

(IV) a set B ⊆ A such that

inf B = inf A and B ⊆ MinA.

Hence, the minimality notion of the “complete lattice approach” consists of look-
ing for sets of minimal elements which generate the infimum. We turn these notions
into a solution concept for set optimization problems. The following definition is a
special case of the general one given in [102].

Definition 3.3 Let X be a non-empty set, f : X → F (Z , C) (or f : X → G (Z , C))
a function and f [X ] = { f (x) | x ∈ X}.
(a) A set M ⊆ X is called an infimizer for f if

inf f [M] = inf f [X ].

(b) An element x̄ ∈ X is called a minimizer of f if f (x̄) is minimal for f [X ].
(c) A set M ⊆ X is called a solution of the problem

minimize f (x) subject to x ∈ X (P)

if M is an infimizer for f , and each x̄ ∈ M is a minimizer of f . It is called a full
solution if the set f [M] includes all minimal elements of f [X ].

Thus, solutions of set minimization problems in the “complete lattice” sense
are infimizers consisting only of minimizers. Again, parallel definitions apply to
solutions of maximization problems which will later appear in duality results. One
more concept is needed for a Weierstraß type theorem.

Definition 3.4 A setA ⊆ F(Z , C) (orA ⊆ G(Z , C)) is said to satisfy the domina-
tion property if

∀A ∈ A, ∃ Ā ∈ MinA : Ā ⊇ A.

Proposition 3.5 Let f : X → F (Z , C) (or f : X → G (Z , C)) be a function and
f [X ] satisfy the domination property. Then

M = {x ∈ X | f (x) ∈ Min f [X ]}

is a full solution of (P).
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Proof The domination property yields the first of the following inclusions while the
second one follows from M ⊆ X :

inf
x∈M

f (x) ⊇ inf
x∈X

f (x) ⊇ inf
x∈M

f (x).

This already completes the proof since M comprises all minimizers of f [X ]. �

3.2 Comments on Solution Concepts in Set Optimization

The appearance of set-valued functions in optimization theory was mainly motivated
by unifying different forms of constraints, see [14] and also [184, 185]. Problem (P)
in [16, p. 196] seems to be the first explicit set-valued optimization problem. J. M.
Borwein defines its optimal value as the infimum with respect to the underlying
vector order and assumes that the image space is conditional order complete, i.e.
every subset which is bounded from below (above) has an infimum (supremum) in
the space. Clearly, a necessary condition for this is that the image space is a vector
lattice. This restricts the applicability of such results considerably and besides, the
vector infimum/supremum does not produce solution concepts which are useful in
applications.

In [190, 191], Postolica formulates an optimization problem with a set-valued
objective and uses the minimality concept (III) above.

Corley [32, 33] defined ‘the maximization of a set-valued function with respect to
a cone in possibly infinite dimensions’ mainly motivated by the fact that, in duality
theories for multiobjective problems as established by Tanino and Sawaragi [218],
‘dual problems took this form’ (quotes from [32, p. 489]). The same motivation can
be found in Dinh The Luc’s book [156] in which vector optimization problems with
a set-valued objective are investigated using the approach (III).

Both authors considered optimality in the sense of (III) above: Take the union of
all objective values and then look for (weakly, properly etc.) minimal points in this
union with respect to the vector order. This approach has been the leading idea ever
since, among the many followers are [29, 54, 55, 57, 141, 145–147] (just to mention
a few), the book [28], and even the more recent [34, 35, 74, 105, 173, 174, 203],
[19, Sects. 7.1.3., 7.4.2.], [58, 199] and many more. We call this approach the vector
approach to set optimization.

The picture changed when the set relations were popularized by Kuroiwa and his
co-authors [130, 132, 133, 136, 138]. Still, it took several years until the idea to use
(II) above as a solution concept for set-valued optimization problems became more
popular, see [1, 75, 83, 85, 93–96, 229] and also Chap.5 of Jahn’s book [114]. The
basic idea is, of course, to “lift” the concept of minimal (=non-dominated) image
points from elements of a vector space to elements of the power set of the vector
space. Therefore, we call this approach the set relation approach to set optimization.
A comparison of the vector and the set relation approach can be found in [97].
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Roughly another ten years later, it has been realized that the so-called set relations
can be utilized in a more subtle manner which is described in the previous section:
Via equivalence classes with respect to the two pre-orders and hull operations one
defines (conlinear) spaces of sets which enjoy rich algebraic and order structures.
The set relations somehow disappear from the final picture since they serve as a tool
to construct the image spaces in which the subset or superset inclusion appears as
a partial order. This approach, which we call the “complete lattice approach” to set
optimization has been developed in the two theses [77, 149] and led to the solution
concept in [102, 151] which is the basis for the Definitions3.2 and 3.3 above (see
already [91] for a precursor). One may realize that the complete lattice approach (IV)
absorbs both of (I) and (II) as well as (IIa).

It might be interesting to note that Ekeland’s variational principle became one of
the first major results in (nonlinear, nonconvex) functional analysis that was general-
ized to set-valued functions via the set relation approach. While [26], [27, Theorem
4.1], [84, Theorem 5.1], [106, Theorems 2.3 and 2.4] still follow the vector approach,
first set relation versions were independently established in [75, 85] (with precur-
sor [83] already from 2002). Note that the results in [85] are more general (weaker
assumptions like boundedness frombelow,more general pre-image spaces) andmore
complete (both set relations are involved, minimal “set“theorems, not only Ekeland’s
principle). In particular, the main result [75, Theorem 4.1] is a special case of [85,
Theorem 6.1].

4 Set-Valued Functions

4.1 Basic Concepts

Let X be another linear space and f : X → P (Z , C) a function. The goal is to
develop a convex analysis for such functions f . We start by recalling a popular
definition. A function f̂ : X → P (Z) is called C-convex (see e.g. [14, Definition
1.1]) if

t ∈ (0, 1) , x1, x2 ∈ X ⇒ f̂ (t x1 + (1− t) x2)+ C ⊇ t f̂ (x1)+ (1− t) f̂ (x2) ,

(4.1)
and it is called C-concave ([156, p. 117]) if

t ∈ (0, 1) , x1, x2 ∈ X ⇒ t f̂ (x1)+ (1− t) f̂ (x2) ⊆ f̂ (t x1 + (1− t) x2)− C.

(4.2)
Of course, the C-convexity inequality is just

f̂ (t x1 + (1− t) x2) �C t f̂ (x1)+ (1− t) f̂ (x2) ,
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and the C-concavity inequality

t f̂ (x1)+ (1− t) f (x2) �C f̂ (t x1 + (1− t) x2) .

Here is another interesting feature of the set-valued framework. If f maps into
P (Z , C), then the cone C can be dropped from (4.1) whereas (4.2) becomes
meaningless for many interesting cones C (for example, for generating cones, i.e.
C − C = Z ). The opposite is true for P (Z ,−C)-valued functions. This gives a
hint why convexity (and minimization) is related to P (Z , C)-valued functions and
concavity (and maximization) to P (Z ,−C)-valued ones.

The graph of a function f̂ : X → P (Z) is the set

graph f̂ =
{
(x, z) ∈ X × Z | z ∈ f̂ (x)

}
,

and the domain is the set

dom f̂ = {x ∈ X | f (x) �= ∅} .

Definition 4.1 A function f : X → P (Z , C) is called

(a) convex if graph f is a convex subset of X × Z ,
(b) positively homogeneous if graph f is a cone in X × Z ,
(c) sublinear if graph f is a convex cone X × Z ,
(d) proper if dom f �= ∅ and f (x) �= Z for all x ∈ X .

Proposition 4.2 A function f : X → P (Z , C) is convex if, and only if,

t ∈ (0, 1) , x1, x2 ∈ X ⇒ f (t x1 + (1− t) x2) ⊇ t f (x1)+ (1− t) f (x2) . (4.3)

It is positively homogeneous if, and only if,

t > 0, x ∈ X ⇒ f (t x) ⊇ t f (x) , (4.4)

and it is sublinear if, and only if,

s, t > 0, x1, x2 ∈ X ⇒ f (sx1 + t x2) ⊇ s f (x1)+ t f (x2) . (4.5)

Proof Exercise. �

A parallel result for concave P (Z ,−C)-valued functions can be established. As
a straightforward consequence of Proposition4.2 we obtain the following facts.
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Proposition 4.3 Let f : X → P (Z , C) be a convex function. Then

(a) f (x) is convex for all x ∈ X, i.e. f is convex-valued,
(b) {x ∈ X | z ∈ f (x)} is convex for all z ∈ Z,
(c) dom f is convex.

Proof Another exercise. �

In the remainder of this subsection, let X and Z be topological linear spaces. We
shall denote by NX and NZ a neighborhood base of 0 ∈ X and 0 ∈ Z , respectively.

Definition 4.4 A function f : X → P (Z , C) is called

(a) closed-valued if f (x) is a closed set for all x ∈ X ,
(b) level-closed if {x ∈ X | z ∈ f (x)} is closed for all z ∈ Z ,
(c) closed if graph f is a closed subset of X × Z with respect to the product topology.

Remark 4.5 A function f : X → F(Z , C) is level-closed if, and only if,
{x ∈ X | f (x) ⊇ A} is closed for all A ∈ F (Z , C)whichmay justify the term“level-
closed.” Indeed, this follows from {z} ⊕ C ∈ F(Z , C) and

∀A ∈ F(Z , C) : {x ∈ X | f (x) ⊇ A} =
⋂

a∈A

{x ∈ X | a ∈ f (x)} .

Level-closedness is even equivalent to closedness if int C �= ∅, see [151, Proposition
2.38], even for functions mapping into a completely distributive lattice as in [148],
but not in general.

Example 4.6 This example is taken from [176, Example 3.1]. Let X = IR, Z = IR2,
C = {

(0, t)T | t ≥ 0
}
and consider the function

f (x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
x

x + 1

)
+ C : 0 ≤ x < 1

(
1
4

)
+ C : x = 1

∅ : otherwise.

Defining sequences by

xk = 1− 1

k
and zk =

(
1− 1

k
2− 1

k

)

weobtain zk ∈ f (xk) for all k = 1, 2, . . ., xk → 1, zk → (1, 2)T and (1, 2)T /∈ f (1),
thus graph f is not closed. On the other hand,

{x ∈ X | z ∈ f (x)} =
⎧
⎨

⎩

{z1} : 0 ≤ z1 < 1 and z2 ≥ z1 + 1
{1} : z1 = 1 and z2 ≥ 4
∅ : otherwise
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thus f is level-closed.

The following result is immediate.

Proposition 4.7 Let f : X → P(Z , C) be a closed function. Then f is closed-
valued and level-closed.

Proof Yet another exercise. �

Proposition4.7 shows that a closed P(Z , C)-valued function actually maps into
F(Z , C). Therefore, we can restrict the discussion of lower semicontinuity and
closedness to F(Z , C)-valued functions. The following definition introduces two
more related notions.

Definition 4.8 A function f : X → F(Z , C) is called lattice-lower semicontinuous
(lattice-l.s.c.) at x̄ ∈ X iff

f (x) ⊇ lim inf
x→x̄

f (x) = sup
U∈NX

inf
x∈x̄+U

f (x) =
⋂

U∈NX

cl
⋃

x∈x̄+U

f (x). (4.6)

It is called lattice-lower semicontinuous iff it is lattice-l.s.c. at every x̄ ∈ X .

Parallel definitions apply for G(Z , C)-valued functions. The next result shows
the equivalence of lattice-lower semicontinuity and closedness for F(Z , C)-valued
functions.

Proposition 4.9 A function f : X → F(Z , C) is lattice-l.s.c. if, and only if, it is
closed.

Proof The proof of Proposition 2.34 in [151] also applies to this case as already
discussed in [151, p. 59]. �

The following result contains the heart of the argument for the Weierstraß type
theorem.

Proposition 4.10 Let f : X → F (Z , C) be a level-closed function such that dom f
is compact. Then f [X ] satisfies the domination property.

Proof This is a special case of Proposition2.38 in [151]. �

Theorem 4.11 Let f : X → F (Z , C) be a level-closed function such that dom f
is compact. Then (P) has a full solution.

Proof This directly follows from Propositions3.5 and 4.10. �

Because of Propositions4.7 and 4.9, lattice-lower semicontinuity or closedness
are sufficient conditions for level-closedness.

We turn to upper semi-continuity type properties which will mainly be used to
establish sufficient conditions for convex duality results.
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Definition 4.12 A function f : X → F(Z , C) is called lattice-upper semicontinu-
ous (lattice-u.s.c.) at x̄ ∈ X if

lim sup
x→x̄

f (x) = inf
U∈NX

sup
x∈x̄+U

f (x) = cl
⋃

U∈NX

⋂

x∈x̄+U

f (x) ⊇ f (x̄).

It is called lattice-upper semicontinuous (lattice-u.s.c.) if it is lattice-u.s.c. at every
x ∈ X .

Because of Proposition4.3, we only need to consider G(Z , C)-valued functions
in the following result.

Proposition 4.13 Let X be a locally convex topological linear space and NX a
neighborhood base of 0 ∈ X consisting of convex sets. Let f : X → (F(Z , C),⊇)

be convex. Then, f is lattice-l.s.c. (lattics-u.s.c.) at x̄ ∈ X if, and only if, it is lattice-
l.s.c. (lattice-u.s.c.) as a function into (G(Z , C),⊇) at x̄ .

Proof It is easy to prove that if f is convex, then for all x ∈ X and all U ∈ NX the
set

⋃
x∈x̄+U

f (x) is convex, hence

⋂

U∈NX

cl
⋃

x∈x̄+U

f (x) =
⋂

U∈NX

cl co
⋃

x∈x̄+U

f (x).

With the definition of lim inf in view, the case of lattice-lower semi-continuity fol-
lows.

Concerning lattice upper semi-continuity, take

z1, z2 ∈
⋃

U∈NX

⋂

x∈x̄+U

f (x).

Then, there are U1, U2 ∈ NX such that zi ∈ ⋂
x∈x̄+Ui

f (x) for i = 1, 2. Since NX is a

neighborhood base of 0 ∈ X there is V ∈ NX such that V ⊆ U1 ∩U2. Hence

∀x ∈ x̄ + V : z1, z2 ∈ f (x) .

Since f (x) is a convex set, this implies

∀t ∈ (0, 1) ,∀x ∈ x̄ + V : t z1 + (1− t) z2 ∈ f (x) ,

hence t z1 + (1− t) z2 ∈ ⋃
U∈U

⋂
x∈x̄+U

f (x). This shows that the latter is a convex set.

Consequently,
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cl co
⋃

U∈U

⋂

x∈x̄+U

f (x) = cl
⋃

U∈U

⋂

x∈x̄+U

f (x).

The claim for lattice-upper semi-continuity follows from the definition of
lim sup. �

4.2 Scalarization of G (Z, C)-Valued Functions

In the following, we assume that Z is a non-trivial locally convex linear space
with topological dual Z∗. For A ⊆ Z , define the extended real-valued functions
σ�

A : Z∗ → IR and σ�
A : Z∗ → IR by

σ�
A

(
z∗

) = inf
a∈A

z∗ (a) and σ�
A

(
z∗

) = sup
a∈A

z∗ (a) ,

respectively. Of course, σ�
A is the classical support function of A and σ�

A (z∗) =
−σ�

A (−z∗) a version of it. It is well-known (and a consequence of a separation
argument) that A ∈ G (Z , C) if, and only if,

A =
⋂

z∗∈C+\{0}

{
z ∈ Z | σ�

A

(
z∗

) ≤ z∗ (z)
}
. (4.7)

Moreover, one easily checks for A, B ∈ G (Z , C),

∀z∗ ∈ C+\{0} : σ�
A⊕B

(
z∗

) = σ�
A

(
z∗

)+� σ�
B

(
z∗

)
. (4.8)

Lemma 4.14 If A ⊆ G (Z , C) then

∀z∗ ∈ C+\{0} : σ�
inf A

(
z∗

) = inf
{
σ�

A

(
z∗

) | A ∈ A}
, (4.9)

∀z∗ ∈ C+\{0} : σ�
supA

(
z∗

) ≥ sup
{
σ�

A

(
z∗

) | A ∈ A}
. (4.10)

Moreover,

inf A =
⋂

z∗∈C+\{0}

{
z ∈ Z | inf {

σ�
A

(
z∗

) | A ∈ A} ≤ z∗ (z)
}
, (4.11)

supA =
⋂

z∗∈C+\{0}

{
z ∈ Z | sup {

σ�
A

(
z∗

) | A ∈ A} ≤ z∗ (z)
}

(4.12)

Proof If A ⊆ {∅} then there is nothing to prove. Otherwise,

∀A ∈ A : σ�
inf A

(
z∗

) = inf
z∈infA

z∗ (z) ≤ σ�
A

(
z∗

)
,
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hence σ�
inf A (z∗) ≤ inf

{
σ�

A (z∗) | A ∈ A}
. Conversely,

∀z ∈
⋃

A∈A
A : z∗ (z) ≥ inf

{
σ�

A

(
z∗

) | A ∈ A}
,

hence σ�
inf A (z∗) = inf

{
z∗ (z) | z ∈⋃

A∈A A
} ≥ inf

{
σ�

A (z∗) | A ∈ A}
since the

support function of a set coincides with the support function of its closed convex
hull. This proves (4.9) which in turn immediately implies (4.11).

Moreover, if z ∈ supA =⋂
A∈A A then

∀A ∈ A : z∗ (z) ≥ inf
a∈A

z∗ (a) = σ�
A

(
z∗

)

which already proves (4.10). Finally, for all z∗ ∈ C+\{0}
{
z ∈ Z | z∗ (z) ≥ sup

{
σ�

A

(
z∗

) | A ∈ A}} =
⋂

A∈A

{
z ∈ Z | z∗ (z) ≥ σ�

A

(
z∗

)}
,

hence

⋂

z∗∈C+\{0}

{
z ∈ Z | z∗ (z) ≥ sup

{
σ�

A

(
z∗

) | A ∈ A}} =
⋂

z∗∈C+\{0}

⋂

A∈A

{
z ∈ Z | z∗ (z) ≥ σ�

A

(
z∗

)}

=
⋂

A∈A

⋂

z∗∈C+\{0}

{
z ∈ Z | z∗ (z) ≥ σ�

A

(
z∗

)} =
⋂

A∈A
A = supA

according to (4.7), and this is just (4.12). �
The following example shows that the inequality in (4.10) can be strict. Consider

A =
{
{a} + IR2+ | a = (a1, a2)

T ∈ IR2, a1 ≥ 0, a2 ≥ 0, a1 + a2 = 1
}
⊆ G (IR2, IR2+)

and z∗ = (1, 1)T . Then σ�
A (z∗) = 1 for all A ∈ A and σ�

supA (z∗) = 2.
As an immediate consequence, the sub/supermodularity4 of the scalarization func-

tions σ�
A , σ�

A as functions of A ∈ G(Z , C) can be established. This property is fun-
damental in the theory of Choquet integrals [44]. For z∗ ∈ Z∗ define

ψ�
z∗(A) = inf

a∈A
z∗(a) and ψ�

z∗(A) = sup
a∈A

z∗(a)

which are functions ψ�
z∗ , ψ

�
z∗ : G(Z , C)→ IR ∪ {±∞}.

Corollary 4.15 If z∗ ∈ C+\{0}, then ψ�
z∗ is a supermodular function on the complete

lattice (G(Z , C),⊇), i.e.

ψ�
z∗(A)+ ψ�

z∗(B) ≤ ψ�
z∗(A ∩ B)+ ψ�

z∗(A ∪ B).

Likewise, ψ�
z∗ is a submodular function on (G(Z , C),⊇), i.e.

4Sophie Qingzhen Wang provided the hint to this observation.
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ψ�
z∗(A)+ ψ�

z∗(B) ≥ ψ�
z∗(A ∩ B)+ ψ�

z∗(A ∪ B).

Proof This follows from the definition of the functions ψ�
z∗ , ψ

�
z∗ and Lemma4.14.

�

The inf-residuation in G (Z , C) can also be represented via scalarization.

Proposition 4.16 For all A, B ∈ G (Z , C),

A−� B =
⋂

z∗∈C+\{0}

{
z ∈ Z | σ�

A

(
z∗

)−� σ�
B

(
z∗

) ≤ z∗ (z)
}
.

In particular, if A = {
z ∈ Z | σ�

A (z∗) ≤ z∗(z)
} (= A ⊕ H+(z∗)

)
for z∗ ∈ C+\{0},

then

A−� B = {
z ∈ Z | σ�

A

(
z∗

)−� σ�
B

(
z∗

) ≤ z∗ (z)
}
.

Moreover,
∀z∗ ∈ C+\{0} : σ�

A−� B

(
z∗

) ≥ σ�
A

(
z∗

)−� σ�
B

(
z∗

)

with equality if A = {
z ∈ Z | σ�

A (z∗) ≤ z∗(z)
} (= A ⊕ H+(z∗)

)
.

Proof See [89, Proposition 5.20] while recalling H+(z∗) = {z ∈ Z | z∗ (z) ≥ 0} for
z∗ ∈ Z∗. �

The following result can be seen as a “−in f = sup−” rule for the inf-residuation
in G(Z , C). It turns out to be useful later on.

Proposition 4.17 Let A ⊆ G (Z , C), z∗ ∈ C+\{0} and H+(z∗) = {
z ∈ Z | z∗(z) ≥ 0

}
.

Then

H+(z∗)−� inf A = sup
A∈A

[
H+(z∗)−� A

]
, (4.13)

H+(z∗)−� supA ⊇ inf
A∈A

[
H+(z∗)−� A

]
. (4.14)

If A ⊕ H+(z∗) = A for all A ∈ A then (4.14) is satisfied as an equation.

Proof Formula (4.13) directly follows from

H+(z∗)−� inf A =
⎧
⎨

⎩z ∈ Z | cl co
⋃

A∈A
A + z ⊆ H+(z∗)

⎫
⎬

⎭

= {
z ∈ Z | ∀A ∈ A : A + z ⊆ H+(z∗)

} =
⋂

A∈A

{
z ∈ Z | A + z ⊆ H+(z∗)

}
.
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The proof of (4.14) makes use of the fact B1 ⊆ B2⇔ H+(z∗)−� B2 ⊆ H+(z∗)−� B1.
Applying it to B1 =⋂

A∈A A and B2 = A we obtain (4.14). The equality case can
be proven with the help of Lemma4.14 and Proposition4.16. �

A simple counterexample for equality in (4.14) is as follows: Z = IR2, C = IR2
+,

A = {A1, A2}with A1 = (1, 0)T + IR2
+, A2 = (0, 1)T + IR2

+ and z∗ = (1, 1)T . Both
(4.13) and (4.14) are valid for more general sets than H+(z∗), but this is not needed
in the following.

The previous results establish a one-to-one relationship between G (Z , C) and the
set

�
(
Z∗, C+

) = {
σ : C+ → IR | σ is superlinear and has a closed hypograph

}
.

On �
(
Z∗, C+

)
, we consider the pointwise addition+� and the pointwise multiplica-

tion with non-negative numbers. Finally, two elements of �
(
Z∗, C+

)
are compared

pointwise, and we write σ ≤ γ whenever

∀z∗ ∈ C+ : σ (
z∗

) ≤ γ
(
z∗

)
.

The one-to-one relationship includes the algebraic structure as well as the order
structure.

Proposition 4.18 The quadrupel
(
�

(
Z∗, C+

)
,≤,+� , ·) is an inf-residuated con-

linear space which is algebraically and order isomorphic to (G (Z , C) ,⊇,⊕,�).

Proof The formulas

σ�
A

(
z∗

) = inf
a∈A

z∗ (a) , A�
σ =

⋂

z∗∈C+\{0}

{
z ∈ Z | σ (

z∗
) ≤ z∗ (z)

}

and
σ�

A�
σ
= σ, A�

σ�
A
= A (4.15)

provide the relationship; the algebraic isomorphism is provided by

σ�
A⊕B = σ�

A+� σ�
B , A�

σ ⊕ A�
γ = A�

σ+� γ

and for t ≥ 0
σ�

t A = tσ�
A , t A�

σ = A�
tσ ;

the order isomorphism is provided by

A ⊇ B ⇔ σ�
A ≤ σ�

B

and (4.15). �
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Corollary 4.19 Let A ⊆ G(Z , C). Then:

(a) A set B ⊆ A generates the infimum of A if, and only if,

σ�
inf B = σ�

inf A.

(b) Ā ∈ A is minimal for A if, and only if, σ�
Ā

is a minimal element of

{
σ�

A | A ∈ A}

with respect to the point-wise order in �
(
Z∗, C+

)
,

Proof This is an obvious consequence of the previous results. �

One may think that this straightforward result reduces G(Z , C)-valued (= set-
valued) problems to vector optimization problemsince the functionsσ�

A could be con-
sidered as elements of some function space with point-wise order. Such an approach
can be found in [115]. The problem with this point of view is that the functions
σ�

A may attain (and frequently do) the values −∞ and/or +∞. Therefore, the dif-
ficulty is conserved by passing from G(Z , C) to �

(
Z∗, C+

)
since the latter is an

ordered conlinear space which, in general, cannot be embedded into a linear space
of functions.

We turn the above ideas into a scalarization concept for set-valued functions. Let
X be a topological linear space and f : X → P (Z), z∗ ∈ C+ be given. Define an
extended real-valued function ϕ f,z∗ : X → IR = IR ∪ {±∞} by

ϕ f,z∗ (x) = σ�
f (x)

(
z∗

) = inf
z∈ f (x)

z∗ (z) . (4.16)

Thenewsymbolϕ f,z∗ is justifiedby the fact thatwewant to emphasize the dependence
on x rather than on z∗. From (4.7) we obtain the following “setification” formula: If
f : X → G (Z , C) then

∀x ∈ X : f (x) =
⋂

z∗∈C+\{0}

{
z ∈ Z | ϕ f,z∗ (x) ≤ z∗ (z)

}
. (4.17)

Several important properties of G (Z , C)-valued functions can equivalently be
expressed using the family of its scalarizations

{
ϕ f,z∗

}
z∗∈C+\{0}. One may say that,

according to formula (4.16), a G (Z , C)-valued function is, as a mathematical object,
equivalent to this family of extended real-valued functions.

Topological properties like closedness pose difficulties in this context since
scalarizations of a closed G (Z , C)-valued function are not necessarily closed.
A simple example is as follows: The function f : IR→ G(IR2, IR2

+) defined by

f (x) =
{(

1
x , 0

)T
}
+ IR2

+ for x > 0 and f (x) = ∅ for x ≤ 0 is closed and convex,

but ϕ f,z∗ for z∗ = (0, 1)T is convex, but not closed. Below, we will deal with this
issue.
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Lemma 4.20 Let f : X → G (Z , C) be a function. Then:

(a) f is convex if, and only if, ϕ f,z∗ : X → IR is convex for all z∗ ∈ C+\{0}.
(b) f is positively homogeneous if, and only if, ϕ f,z∗ : X → IR is positively homo-

geneous for all z∗ ∈ C+\{0}.
(c) f is (sub)additive if, and only if, ϕ f,z∗ : X → IR is (sub)additive for all z∗ ∈

C+\{0}.
(d) f is proper if, and only if, there is z∗ ∈ C+\{0} such that ϕ f,z∗ : X → IR is

proper.
(e) dom f = dom ϕ f,z∗ for all z∗ ∈ C+\{0}.
Proof (a) “⇒” Take t ∈ (0, 1), x, y ∈ X and z∗ ∈ C+\{0}. Then

ϕ f,z∗(t x + (1− t) y) = inf
z∈ f (t x+(1−t)y)

z∗ (z) ≤ inf
z∈t f (t x)+(1−t) f (y)

z∗ (z)

= inf
u∈t f (x)

z∗ (u)+ inf
v∈(1−t) f (y)

z∗ (v)

= t inf
u
t ∈ f (x)

z∗ (u)

t
+ (1− t) inf

v
(1−t)∈ f (y)

z∗ (v)

(1− t)

= tϕ f,z∗(x)+ (1− t) ϕ f,z∗(y)

where the inequality is a consequence of the convexity of f .
“⇐” By the way of contradiction, assume that f is not convex. Then there are

t ∈ (0, 1), x, y ∈ X , z ∈ Z satisfying

z ∈ t f (x)+ (1− t) f (y), z /∈ f (t x + (1− t) y).

Since the values of f are closed convex sets we can apply a separation theorem and
obtain z∗ ∈ C+\{0} such that

z∗ (z) < ϕ f,z∗(t x + (1− t) y) ≤ tϕ f,z∗(x)+ (1− t) ϕ f,z∗(y)

where the second inequality is a consequence of the convexity of the scalarizations.
Since f maps into G (Z , C), z∗ ∈ C+ {0}. Since z ∈ t f (x)+ (1− t) f (y) there are
u ∈ f (x) and v ∈ f (y) such that z = tu + (1− t)v. Hence

z∗ (z) = t z∗ (u)+ (1− t)z∗ (v) ≥ tϕ f,z∗(x)+ (1− t)ϕ f,z∗(y)

by definition of the scalarization. This contradicts the strict inequality above.
(c) If f is (sub)additive, then (sub)additivity of the scalarizations ϕ f,z∗ follows

from (4.8). The converse can be proven using the same separation idea as in the proof
of (a).

The remaining claims are straightforward. �

Finally, we link closedness and semicontinuity of G(Z , C)-valued functions to
corresponding properties of their scalarizations. The main result is Theorem4.22
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belowwhich shows that a proper closed and convex set-valued function and the family
of its proper closed and convex scalarizations are equivalent as mathematical objects.
We start with a characterization of the lattice-limit inferior in terms of scalarizations.

Corollary 4.21 Let f : X → G(Z , C) and x̄ ∈ dom f such that f is lattice-l.s.c. at
x̄ . Then

lim inf
x→x̄

f (x) =
{

z ∈ Z | ∀z∗ ∈ C+\{0} : lim inf
x→x̄

ϕ f,z∗(x) ≤ z∗(z)
}

.

Proof Observing ϕ f,z∗(x) = σ�
f (x)(z

∗) for each x ∈ X and applying Lemma4.14 we
obtain

sup
U∈NX

inf
x∈x̄+U

f (x) =
⋂

z∗∈C+\{0}

{
z ∈ Z | sup

U∈U
σ�

inf
x∈x̄+U

f (x)(z
∗) ≤ z∗(z)

}

=
⋂

z∗∈C+\{0}

{
z ∈ Z | sup

U∈U
inf

x∈x̄+U
σ�

f (x)(z
∗) ≤ z∗(z)

}

=
⋂

z∗∈C+\{0}

{
z ∈ Z | lim inf

x→x̄
ϕ f,z∗(x) ≤ z∗(z)

}
.

Indeed, the first equality follows from the last equation in Lemma4.14 applied to
A = {inf x∈x̄+U f (x) | U ∈ U}whereas the second follows from the first equation in
Lemma4.14 applied to A = { f (x) | x ∈ x̄ +U } for U ∈ U . �

Theorem 4.22 Let f : X → F(Z , C) be a function and dom f �= ∅. Then f is
closed, convex and either constant Z or proper, if and only if,

∀x ∈ X : f (x) =
⋂

z∗∈C+\{0}
cl coϕ f,z∗ : X→IR is proper

{
z ∈ Z | cl coϕ f,z∗(x) ≤ z∗(z)

}
, (4.18)

where cl coϕ f,z∗ denotes the lower semi-continuous convex hull of ϕ f,z∗ defined by

epi
(
cl coϕ f,z∗

) = cl co
(
epi ϕ f,z∗

)
.

Proof If the set
{
z∗ ∈ C+\{0} | cl coϕ f,z∗ : X → IR is proper

}
is empty, then (4.18)

produces f (x) = Z for all x ∈ X since dom f �= ∅. On the other hand, f (x) = Z
for all x ∈ X implies the emptyness of the same set, hence (4.18) is satisfied in this
case.

The graphs of x �→ {
z ∈ Z | cl coϕ f,z∗(x) ≤ z∗(z)

}
are closed convex sets in

X × Z , and
{
z ∈ Z | cl coϕ f,z∗(x) ≤ z∗(z)

} �= Z for all x ∈ X is true whenever
cl coϕ f,z∗ is proper. Thus, (4.18) implies f is closed, convex and either proper or
constantly equal to Z .
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On the other hand, assume f is closed, convex and proper. Then

∀x ∈ X : f (x) = lim inf
y→x

f (y) �= Z ,

and all scalarizations are convex. Corollary4.21 yields

f (x) = sup
U∈U

inf
x∈x̄+U

f (x) =
⋂

z∗∈C+\{0}

{
z ∈ Z | cl coϕ f,z∗(x) ≤ z∗(z)

}
.

If cl coϕ f,z∗ is improper, then
{
z ∈ Z | cl coϕ f,z∗(x) ≤ z∗(z)

} = Z for all x ∈
dom f = dom ϕ f,z∗ (see [235, Proposition 2.2.5]), hence these scalarizations can
be omitted from the intersection. This completes the proof. �

We state a few more facts about relationships between semicontinuity properties
of set-valued functions and their scalarizations.

Proposition 4.23 (a) If f : X → F(Z , C) is lattice-u.s.c. at x̄ ∈ X, then ϕ f,z∗ :
X → IR is u.s.c. at x̄ for all z∗ ∈ C+\{0}.

(b) If f : X → G(Z , C) is such that ϕ f,z∗ : X → IR is l.s.c. at x̄ ∈ X for all z∗ ∈
C+\{0}, then f is lattice-l.s.c. at x̄ .

Proof (a) Define A(x̄) = lim sup
x→x̄

f (x) = cl
⋃

U∈NX

⋂
x∈x̄+U

f (x) and take z∗ ∈ C+\{0}.
By assumption,

ϕ f,z∗(x̄) ≥ σ�
A(x̄)

(
z∗

)
.

By a successive application of the first and the second relation of Lemma4.14,

σ�
A(x̄)

(
z∗

) ≥ inf
U∈NX

sup
x∈x̄+U

ϕ f,z∗(x).

This verifies the upper semicontinuity of the scalarizations.
(b) FromCorollary4.21, the lower semicontinuity of the ϕ f,z∗ ’s and (4.17) we obtain

lim inf
x→x̄

f (x) =
⋂

z∗∈C+\{0}

{
z ∈ Z | lim inf

x→x̄
ϕ f,z∗(x) ≤ z∗(z)

}

⊆
⋂

z∗∈C+\{0}

{
z ∈ Z | ϕ f,z∗(x̄) ≤ z∗(z)

} = f (x̄)

which means that f is lattice-l.s.c. at x̄ .
�

Corollary 4.24 If f : X → F(Z , C) is convex and lattice-u.s.c. at x̄ ∈ dom f , then
each scalarization ϕ f,z∗ is continuous at x̄ and f is lattice-l.s.c. at x̄ . Moreover, in
this case f also is lattice-u.s.c. and -l.s.c. at x̄ as a function into G(Z , C).
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Proof By Proposition4.23 (a), ϕ f,z∗ is u.s.c. at x̄ for each z∗ ∈ C+\{0} (and also
convex by Lemma4.20 (a)). Well-known results about extended real-valued convex
functions [235, Theorem 2.2.9] imply that ϕ f,z∗ for each z∗ ∈ C+\{0} is continuous
which in turn yields that f is lattice-l.s.c. at x̄ by 4.23 (b). The last claim follows
from Proposition4.13. �

Corollary 4.25 Let f : X → G(Z , C) be a convex function and x̄ ∈ X such that
there exists a z̄ ∈ Z with (x̄, z̄) ∈ int (graph f ). Then ϕ f,z∗ : X → IR is continuous
on ∅ �= int (dom f ) for all z∗ ∈ C+\{0}.
Proof If (x̄, z̄) ∈ int (graph f ) then ϕ f,z∗ is bounded from above by z∗(z̄) on a neigh-
borhood of x̄ , thus continuous on ∅ �= int (dom f ) for all z∗ ∈ C+\{0} again by [235,
Theorem 2.2.9]. �

4.3 Comments on Convexity, Semicontinuity and
Scalarization

The properties which are called lattice-lower and lattice-upper semicontinuity can
already be found in the 1978 paper [142]. Note that in this survey, for obvious
reasons, ‘upper’ and ‘lower’ are swapped compared to [142]. Therein, the result of
Proposition4.9 is even referenced to a paper by Choquet from 1947.

Level-closedness features in [54, 55] as ‘D-lower semi-continuity’ and ‘C-lower
semi-continuity’, respectively: Proposition 2.3 in [54] states the equivalence of
(epi)closedness and level-closedness whenever the cone has a non-empty interior.
The assumption “pointedness of the cone” and a compactness assumption used in
[54] are not necessary, the latter already removed in [55, Proposition 3.1]. Compare
also [176].

Of course, the lattice semicontinuity concepts of this survey differ from the def-
initions of lower and upper semicontinuity as used, for example, in [4, Definitions
1.4.1 and 1.4.2]. This is one reason why lower and upper continuity replace lower
and upper semicontinuity, respectively, in [67]. We refer to Sect. 2.5 of [67] for a sur-
vey about continuity concepts of set-valued functions and also a few bibliographical
remarks at the end of the section.

For a more detailed discussion of (semi)continuity concepts for set-valued func-
tions, compare [102, 104, 151]: Whereas Corollary4.21 seems to be new in this
form, Proposition4.23 appears in [104] with a (slightly) different proof.

The scalarization approach via (4.16) (and Lemma4.20) has many contributors.
Motivated by economic applications, Shephard used it in [209], compare, for exam-
ple, the definition of the ‘factorminimal cost function’ [209, p. 226, (97)] andProposi-
tion 72 on the following page where essentially Lemma4.20 (a) is stated. Moreover,
the first part of Proposition4.2 corresponds to [209, Appendix 2, Proposition 3].
Rockafellar baptized these functions Kuhn-Tucker functions in his 1967 monograph
[195, Definition 2 on p. 17] where theywere used as an auxiliary tool for representing
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the then new “convex processes.” Compare also the relationship to the orders ⊇ for
sets of ‘convex type’ and ⊆ for sets of ‘concave type,’ [195, p. 16].

Pshenichnyi [194, Lemma 1] also used the functions ϕ f,z∗ and proved Lemma4.20
(a), see also [12]. Another reference is [45, Proposition 1.6]. In [169] as well as in
[170] continuity concepts for set-valued functions are discussed using the ϕ f,z∗ -
functions as essential tool. See also [9, Proposition 2.1] and the more recent [68, p.
188] (see also the references therein).

Theorem4.22 has been established in [207, 208] and is the basis for the scalar-
ization approach to convex duality results for set-valued functions. Together with
the “setification” formula (4.17) it basically tells us that one can either deal with the
G(Z , C)-valued function or a whole family of scalar functions, and both approaches
are equivalent in the sense that major (convex duality) results can be expressed and
proven either way: Using the “set calculus” or “scalarizations.” The reader may
compare the two different proofs for the Lagrange duality theorem in [86].

Finally, we mention that an alternative scalarization approach to (convex as well
as non-convex) problems is based on directionally translative extended real-valued
functions which are used in many areas of mathematics and prominently in vector
optimization, see [67, Sect. 2.3]. To the best of our knowledge, [83] (eventually
published as [85]) was the first generalization to set-valued problems. Subsequent
applications of this construction include [2, 72, 96, 164, 181–183, 229].

5 Set-Valued Convex Analysis

What is convex analysis? A core content of this theory could be described as follows:
Define affine minorants, directional derivatives, (Fenchel) conjugates and subdiffer-
entials for convex functions and relate them by means of a Fenchel-Moreau type
theorem, a max-formula and Young-Fenchel’s inequality as an equation. How can
one establish such a theory for set-valued convex functions? In this section, we
will define appropriate “dual variables” for the set-valued framework, define “affine
minorants” of set-valued functions and introduce corresponding Fenchel conjugates,
directional derivatives and subdifferentials. The difference in expressions involved
in these constructions for scalar functions will be replaced by a residuation.

In the following, we assume that X and Z are non-trivial, locally convex, topologi-
cal linear spaces with topological duals X∗ and Z∗, respectively. As before,C ⊆ Z is
a convex cone with 0 ∈ C , and C+ = {z∗ ∈ Z∗ | ∀z ∈ C : z∗ (z) ≥ 0} is its positive
(topological) dual.

5.1 Conlinear Functions

What is an appropriate replacement for the dual variables x∗ : X → IR in scalar
convex analysis? A good guess might be to use linear operators T : X → Z instead
of linear functionals in expressions like
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f ∗
(
x∗

) = sup
x∈X

{
x∗ (x)− f (x)

}
.

This has been done in most references about duality for vector/set optimization prob-
lems. A notable exception is the definition of the coderivative of set-valued functions
due to B. S. Mordukhovich which goes back to [171] and can be found in [172,
Sect. 2]. Coderivatives at points of the graph are defined as sets of x∗’s depending
on an element z∗ ∈ Z∗. Another exception is the use of “rank one” operators of the
form ẑx∗ whose existence can be proven using classical separation results, compare
[32, Proof of Theorem 4.1] and [98, Theorem 4.1] for an older and a more recent
example. The constructions in [231] are also based on this idea.

Another attempt to find set-valued analogues of linear functions is the theory of
convex processes. See [4, p. 55] in which the authors state that ‘it is quite natural to
regard set-valued maps, with closed convex cones as their graphs, as these set-valued
analogues.’

In our approach, a class of set-valued functions will be utilized the members of
which almost behave like linear functions. In some sense (see Proposition 8 in [78]),
they are more general than linear operators and also than linear processes as defined
in [4, p. 55], and on the other hand, they form a particular class of convex processes. In
fact, these functions are characterized by the fact that their graphs are homogeneous
closed half spaces in X × Z .

Let x∗ ∈ X∗ and z∗ ∈ Z∗ be given. Define a function S(x∗,z∗) : X → P (Z) by

S(x∗,z∗) (x) = {
z ∈ Z | x∗ (x) ≤ z∗ (z)

}
.

The next result shows that these functions are indeed as “linear” as one can hope for.

Proposition 5.1 Let (x∗, z∗) ∈ X∗ × Z∗\{0}. Then

(a) for all x ∈ X and for all t > 0

S(x∗,z∗) (t x) = t S(x∗,z∗) (x) ;

(b) for all x1, x2 ∈ X

S(x∗,z∗) (x1 + x2) = S(x∗,z∗) (x1)+ S(x∗,z∗) (x2) ,

in particular

S(x∗,z∗) (x)+ S(x∗,z∗) (−x) = S(x∗,z∗) (0) = H+(z∗);

(c) S(x∗,z∗) maps into G (Z , C), hence in particular into P (Z , C), if, and only if,
z∗ ∈ C+;

(d) S(x∗,z∗) (x) is a closed half space with normal z∗ if, and only if, z∗ �= 0; and
S(x∗,0) (x) ∈ {Z ,∅};

(e) if ẑ ∈ Z such that z∗ (̂z) = −1 then
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∀x ∈ X : S(x∗,z∗) (x) = x∗ (x) ẑ + S(x∗,z∗) (0) = x∗ (x) ẑ + H+(z∗). (5.1)

Proof Elementary, see, for instance, [78]. �

A function of the type S(x∗,z∗) is called conlinear. It will turn out that convex
analysis is a “conlinear” theory–not because convex functions are not linear, but
because the image space of a convex function is a conlinear space and all properties
of linear functions necessary for the theory are only the “conlinear” ones from the
previous proposition. The following result gives a characterization of the class of
conlinear functions in the class of all positively homogeneous and additive set-valued
functions.

Theorem 5.2 Let f : X → G(Z , C) be a function. Then, the following are equiva-
lent:

(a) ∃ (x∗, z∗) ∈ X∗ × C+\{0}, ∀x ∈ X: f (x) = S(x∗,z∗)(x).
(b) graph f is a closed homogeneous half-space of X × Z and f (0) �= Z.
(c) f is positively homogeneous, additive, lattice-l.s.c. at 0 ∈ X and f (0) ⊆ Z is a

non-trivial, closed homogeneous half-space.

Proof (a)⇒ (b), (c): Straightforward.
(b)⇒ (a): graph f is a closed homogenous half-space if, and only if,

∃ (
x∗, z∗

) ∈ X∗ × Z∗\{(0, 0)} : graph F = {
(x, z) ∈ X × Z | x∗(x)− z∗(z) ≤ 0

}
.

This implies

∀x ∈ X : f (x) = {
z ∈ Z | x∗(x) ≤ z∗(z)

} = S(x∗,z∗)(x).

Since f (0) �= Z and f maps into G(Z , C), z∗ ∈ C+\{0}. By Proposition5.1 (b), f
is additive.

(c) ⇒ (a): By assumption, f (0) = H+(z∗0) =
{
z ∈ Z | z∗0 (z) ≥ 0

}
for some

z∗0 ∈ C+\{0}. By additivity, f (0) = H+(z∗0) = f (x)⊕ f (−x) for all x ∈ X , hence
f (x) is never ∅ nor Z . Moreover, additivity implies f (x) = f (x + 0) = f (x)⊕
f (0) = f (x)⊕ H+(z∗0) for each x ∈ X . This means that every value f (x) is a
closed half space with normal z∗0.

Next, we use (4.17) which reads

∀x ∈ X : f (x) =
⋂

z∗∈C+\{0}

{
z ∈ Z | ϕ f,z∗ (x) ≤ z∗(z)

}
.

Since every value f (x) is a half space with normal z∗0 the intersection in the above
formula can be replaced just by

{
z ∈ Z | ϕ f,z∗0 (x) ≤ z∗0(z)

}
.

We shall show that ϕ f,z∗0 is linear. By Lemma4.20 (b) and (c) it is additive because
f is additive, and ϕ f,z∗0 (t x) = tϕ f,z∗ for t ≥ 0, so it remains to show this for t < 0
in order to prove homogeneity. Indeed,



100 A.H. Hamel et al.

0 = ϕ f,z∗0 (0) = inf
z∈ f (x)⊕ f (−x)

z∗0(z) = inf
z1∈ f (x)

z∗0(z1)+ inf
z2∈ f (−x)

z∗0(z2) = ϕ f,z∗0 (x)+ ϕ f,z∗0 (−x) ,

which gives us

∀t < 0 : ϕ f,z∗0 (t x) = ϕ f,z∗0 (−|t |x) = |t |ϕ f,z∗0 (−x) = − |t |ϕ f,z∗0 (x) = tϕ f,z∗0 (x).

Therefore, ϕ f,z∗0 is a linear function and can be identified with some x ′ ∈ X ′, the
algebraic dual of X . Since f is lower semicontinuous at 0 ∈ X , Corollary4.21 with
x̄ = 0 yields

lim inf
x→0

f (x) =
{

z ∈ Z | ∀z∗ ∈ C+\{0} : lim inf
x→0

x ′(x) ≤ z∗(z)
}

.

If x ′ is not continuous then it is not bounded (from below) on every neighborhood
U ∈ NX . Thus,

∀U ∈ NX : inf
x∈U

x ′(x) = −∞,

hence
lim inf

x→0
x ′(x) = sup

U∈U
inf
x∈U

x ′(x) = −∞

and consequently Z = lim inf x→0 f (x) which contradicts f (0) = H+(z∗0) ⊇
lim inf x→0 f (x). Hence, there is x∗ ∈ X∗ such that x∗(x) = ϕ f,z∗0 (x)

for all x ∈ X . �

The basic idea for the development of a set-valued convex analysis simply is as
follows: Replace the extended reals by G(Z , C), ≤ by ⊇, use the inf/sup-formulas
from Proposition2.2, replace continuous linear functionals by conlinear functions
and the difference by inf-residuation. We start the program with conjugates.

5.2 Fenchel Conjugates of Set-Valued Functions

A crucial observation concerning Fenchel conjugates for extended real-valued func-
tions ϕ : X → IR ∪ {±∞} is as follows:

r ≥ ϕ∗
(
x∗

) ⇔ ∀x ∈ X : x∗ (x)− r ≤ ϕ (x) .

This means, x∗ belongs to the domain of ϕ∗ precisely if there is an affine minorant
of ϕ with “slope” x∗. Replacing x∗ by S(x∗,z∗), ≤ by ⊇ and recalling (2.5) we obtain
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∀x ∈ X : S(x∗,z∗) (x)− z ⊇ f (x) ⇔ ∀x ∈ X : f (x)+ z ⊆ S(x∗,z∗) (x)

⇔ ∀x ∈ X : z ∈ S(x∗,z∗) (x)−� f (x)

⇔ z ∈
⋂

x∈X

{
S(x∗,z∗) (x)−� f (x)

}
.

The function x �→ S(x∗,z∗) (x)− z is called an affine minorant of f precisely if the
above (equivalent) conditions are satisfied. This discussion may justify the following
definition.

Definition 5.3 The Fenchel conjugate of the function f : X → P (Z , C) is f ∗ :
X∗ × C+\{0} → P (Z , C) defined by

f ∗
(
x∗, z∗

) = sup
x∈X

{
S(x∗,z∗) (x)−� f (x)

} =
⋂

x∈X

{
S(x∗,z∗) (x)−� f (x)

}
.

The biconjugate of f is f ∗∗ : X → P (Z , C) defined by

f ∗∗ (x) = sup
x∗∈X∗, z∗∈C+\{0}

{
S(x∗,z∗) (x)−� f ∗

(
x∗, z∗

)}

=
⋂

x∗∈X∗, z∗∈C+\{0}

(
S(x∗,z∗) (x)−� f ∗

(
x∗, z∗

))
.

The Fenchel conjugate defined above shares most properties with her scalar little
sister.

Proposition 5.4 Let f, g : X → P (Z , C) be two functions. Then

(a) f ⊇ g⇒ g∗ ⊇ f ∗.
(b) f ∗ maps into G (Z , C), and each value of f ∗ is a closed half space with normal

z∗, or ∅, or Z.
(c) f ∗∗ ⊇ f and f ∗∗ is a proper closed convex function into G (Z , C), or ≡ Z, or
≡ ∅.

(d) ( f ∗∗)∗ = f ∗.
(e) For all x ∈ X, x∗ ∈ X∗, z∗ ∈ C+\{0},

f ∗
(
x∗, z∗

) ⊆ S(x∗,z∗) (x)−� f (x) ⇔ f ∗
(
x∗, z∗

)+ f (x) ⊆ S(x∗,z∗) (x) .

Proof The equivalence in (e) follows from the definition of −� . The other relation-
ships can be found in [78, 207, 208]. �
Remark 5.5 In [78], the “negative conjugate”

(− f ∗)
(
x∗, z∗

) = inf
x∈X

{
f (x)⊕ S(x∗,z∗) (−x)

} = cl
⋃

x∈X

{
f (x)⊕ S(x∗,z∗) (−x)

}

has been introduced which avoids the residuation. The transition from f ∗ to − f ∗
and vice versa can be done via
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(− f ∗)
(
x∗, z∗

) = H+
(
z∗

)−� f ∗
(
x∗, z∗

)
, f ∗

(
x∗, z∗

) = H+
(
z∗

)−� (− f ∗)
(
x∗, z∗

)

using Proposition4.17. Sometimes, it even seems to be more natural to work with
− f ∗, for example, when it comes to Fenchel-Rockafellar duality results as presented
in [79].

Set-valued conjugates can be expressed using the (scalar) conjugates of the scalar-
izing functions.

Lemma 5.6 If f : X → P (Z , C), then

∀x∗ ∈ X∗, ∀z∗ ∈ C+\{0} : f ∗
(
x∗, z∗

) = {
z ∈ Z | (ϕ f,z∗

)∗ (
x∗

) ≤ z∗(z)
}
, (5.2)

∀x ∈ X : f ∗∗ (x) =
⋂

z∗∈C+\{0}

{
z ∈ Z | (ϕ f,z∗

)∗∗
(x) ≤ z∗(z)

}
.

(5.3)

Proof The first formula is a consequence of the definitions, the second follows from(
ϕ f,z∗

)∗∗ = (
ϕ f ∗∗,z∗

)∗∗
and Theorem4.22. �

Remark 5.7 Conversely, ϕ f ∗(·,z∗),z∗ =
(
ϕ f,z∗

)∗
is true (see [208, Proposition 4.2] and

[86, Lemma 5.1]. On the other hand, ϕ f ∗∗,z∗ does not always coincide with
(
ϕ f,z∗

)∗∗

since the latter is a closed function which is not true for the former even if f is proper
closed convex (see the example before Lemma4.20).

The following result is a set-valued version of the famous Fenchel-Moreau the-
orem. Note that the additional dual variable z∗ disappears via the definition of the
biconjugate.

Theorem 5.8 Let f : X → P (Z , C) be a function. Then f = f ∗∗ if, and only if, f
is proper closed and convex, or identically Z, or identically ∅.
Proof This follows from Theorem4.22, Lemma5.6 and the classical Fenchel-
Moreau theorem for scalar functions, see, for example, [235, Theorem 2.3.3]. �

Remark 5.9 Another, more direct way to prove Theorem5.8 consists in applying the
basic convex duality relationship ‘every closed convex set is the intersection of closed
half spaces containing it’ to the graph of f (such half spaces are generated by pairs
(x∗, z∗) ∈ X∗ × C+), making sure that one can do without z∗ = 0 and converting the
result into formulas involving the S(x∗,z∗)-functions. In this way, the scalar Fenchel-
Moreau theorem is obtained as a special case. See [78] for details.

To conclude this section, we point out that the Fenchel conjugate does not distinct
between a function f : X → P (Z , C) and the function

f̃ (x) = cl co f (x) ;
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we have f̃ ∗ = f ∗ since (compare Proposition2.9)

∀x ∈ X : S(x∗,z∗) (x)−� f (x) = {
z ∈ Z | f (x)+ z ⊆ S(x∗,z∗) (x)

}

= {
z ∈ Z | cl co f (x)+ z ⊆ S(x∗,z∗) (x)

} = S(x∗,z∗) (x)−� f̃ (x) .

The function f̃ maps intoG (Z , C). The above relationshipmeans that when it comes
to Fenchel conjugates it does not make a difference to start with a G (Z , C)-valued
function.

Under additional assumptions, the formulas for (bi)conjugates can be simplified.
One such assumption is as follows: There is an element ẑ ∈ C\ {0} such that

∀z∗ ∈ C+\{0} : z∗
(
ẑ
)

> 0.

In this case, the set B+(ẑ) = {
z∗ ∈ C+ | z∗

(
ẑ
) = 1

}
is a base of C+ with 0 /∈

cl B+(ẑ). That is, for each z∗ ∈ C+\{0} there is a unique representation z∗ = t z∗0
with t > 0 and z∗0 ∈ B+(ẑ). Compare [67], Definition 2.1.14, Theorems 2.1.15 and
2.2.12 applied to C+ instead of C . Clearly, a pointed closed convex cone with non-
empty interior has a base, but, for example, the cone L2+ has an empty interior, but a
base is generated by the constant 1 function.

The very definition of the functions S(x∗,z∗) gives

{
S(x∗,z∗) | x∗ ∈ X∗, z∗ ∈ C+\{0}} = {

S(x∗,z∗) | x∗ ∈ X∗, z∗ ∈ B+(ẑ)
}
.

Therefore, it is sufficient to run an intersection like in the definition of f ∗∗ over
x∗ ∈ X∗ and z∗ ∈ B+(ẑ). Moreover, one easily checks (see also Proposition5.1 (e))
for z∗ ∈ B+(ẑ)

∀x ∈ X : S(x∗,z∗) (x) = {
x∗ (x) ẑ

}+ H+(z∗).

Thus, the negative conjugate of a function f : X → P (Z , C) can be written as

(− f ∗)
(
x∗, z∗

) = cl
⋃

x∈X

[
f (x)− x∗ (x) ẑ + H+(z∗)

] = cl
⋃

x∈X

[
f (x)− x∗ (x) ẑ

]⊕ H+(z∗).

The part which does not depend on z∗ (remember ẑ defines a base of C+ and is the
same for all z∗ ∈ C+\{0}) has been used in [150, 155] for the definition of another
set-valued conjugate, namely

(− f ∗ẑ )
(
x∗

) = cl
⋃

x∈X

[
f (x)− x∗ (x) ẑ

]
.

In particular, if Z = IR, C = IR+, then C+ = IR+, and {1} is a base of C+, thus the
intersection over the z∗’s disappears from the definition of f ∗∗ and formulas like
(5.3).



104 A.H. Hamel et al.

5.3 Directional Derivatives

Usually, derivatives for set-valued functions are defined at points of their graphs as for
example in [4, Chap. 5] and [114, Chap.5]. Here, we use the inf-residuation in order
to define a “difference quotient” (which could be called “residuation quotient”) and
take “lattice limits.” This leads to the concept of a lower Dini directional derivative
for G(Z , C)-valued functions as introduced in [36].

Definition 5.10 The lower Dini directional derivative of a function f : X → G (Z , C)

with respect to z∗ ∈ C+\{0} at x̄ ∈ X in direction x ∈ X is defined to be

f ′z∗ (x̄, x) = lim inf
t↓0

1

t

[(
f (x̄ + t x)⊕ H+(z∗)

)−� f (x̄)
]

=
⋂

s>0

cl
⋃

0<t<s

1

t

[(
f (x̄ + t x)⊕ H+(z∗)

)−� f (x̄)
]
.

Obviously, f ′z∗ = f ′t z∗ for t > 0. Hence, if C+ has a base one only gets “as many”
directional derivatives as there are elements in the basis.

One may ask why the set H+(z∗) appears in the definition of the difference quo-
tient. The reason is that frequently the sets f (x̄ + t x)−� f (x̄) and also corresponding
“lattice limits” are empty.

Example 5.11 Let X = IR, Z = IR2, C = {
(0, 1)T s | s ≥ 0

}
and the function

f : X → G(Z , C) be defined by

f (x) =
{ [−x, x] × IR+ : x ∈ [0, 1]

∅ : otherwise
.

Then, f is convex and f (1) = inf x∈X f (x) �= Z . However, f (1+ t x)−� f (1) = ∅
whenever x < 0 and t < − 1

x , or x > 0 and t > 0. This means that the directional
derivative of f at x̄ = 1 (defined without H+(z∗)) would be identically ∅. On the
other hand, f ′z∗ (1, x) is never empty for z∗ ∈ C+\{0} and provides much better
information about the local behavior of f at x̄ = 1.

For scalar functions, the standard definition of the lowerDini directional derivative
can be adapted.

Definition 5.12 The lower Dini directional derivative of a function ϕ : X → IR at x̄
in direction x is

ϕ↓(x̄, x) = lim inf
t↓0

1

t

[
ϕ(x̄ + t x)−� ϕ(x̄)

]
.

In Definition5.12, it is neither assumed x̄ ∈ dom ϕ, nor ϕ be a proper function.
This is possible since the difference operator is replaced by the residual operator. For
G (Z , C)-valued functions, the lower Dini directional derivative can be expressed by
corresponding derivatives of scalarizations.
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Proposition 5.13 (a) For all x̄ ∈ X, for all x ∈ X,

f ↓z∗(x̄, x) =
{

z ∈ Z | ϕ↓f,z∗(x̄, x) ≤ −z∗ (z)
}

(5.4)

ϕ
↓
f,z∗(x̄, x) = ϕ f ↓z∗ (x̄,·),z∗ (x) . (5.5)

Proof See [36, Proposition 3.4]. �

Thenext result is familiar in the scalar case for proper functions, see [235,Theorem
2.1.14].

Lemma 5.14 Let f : X → G (Z , C) be convex, x̄ ∈ X and z∗ ∈ C+\{0}. Then

∀x ∈ X : f ′z∗ (x̄, x) = inf
t>0

1

t

[(
f (x̄ + t x)⊕ H+(z∗)

)−� f (x̄)
]
, (5.6)

and the function
x �→ f ′z∗ (x0, x)

is sublinear as a function from X into G (Z , C). If x̄ ∈ dom f , then dom f ′z∗ (x̄, ·) =
cone (dom f − x̄). Moreover,

f ′z∗ (x̄, 0) =
{

H+(z∗) : f (x̄)⊕ H+(z∗) /∈ {Z ,∅}
Z : f (x̄)⊕ H+(z∗) ∈ {Z ,∅} .

Proof It relies on the monotonicity of the “residuation quotient”

1

t

[(
f (x̄ + t x)⊕ H+(z∗)

)−� f (x̄)
]

which in turn is proven using a calculus for the inf-residuation and the convexity of
f . For details, compare [90]. �

The following result tells us when the directional derivative has only “finite”
values. As usual, we denote by core M the algebraic interior of a set M ⊆ X .

Theorem 5.15 Let f : X → G (Z , C) be convex and x̄ ∈ core (dom f ). If f is
proper, then there exists z∗ ∈ C+\{0} such that f ′z∗ (x̄, x) /∈ {Z ,∅} for all x ∈ X.

Proof See [90]. �

5.4 The Subdifferential

For convex functions, we define elements of the subdifferential using conlinearmino-
rants of the sublinear directional derivative.
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Definition 5.16 Let f : X → G (Z , C) be convex, x̄ ∈ X and z∗ ∈ C+\{0}. The set

∂ fz∗ (x̄) = {
x∗ ∈ X∗ | ∀x ∈ X : S(x∗,z∗) (x) ⊇ f ′z∗ (x̄, x)

}

is called the z∗-subdifferential of f at x̄ .

Again, the basic idea is to replace a continuous linear functional x∗ by S(x∗,z∗). An
alternative characterization of the subdifferential is provided in the following result.

Proposition 5.17 Let f : X → G (Z , C) be convex and x̄ ∈ X. The following state-
ments are equivalent for x∗ ∈ X∗, z∗ ∈ C+\{0}:
(a) ∀x ∈ X: S(x∗,z∗) (x) ⊇ f ′z∗ (x̄, x),
(b) ∀x ∈ X: S(x∗,z∗) (x − x̄) ⊇ (

f (x)⊕ H+(z∗)
)−� f (x̄).

(c) x∗ ∈ ∂ϕ f,z∗(x̄).

Proof See [90]. �

Some extra care is necessary for defining the subdifferential ∂ϕ f,z∗ of the extended
real-valued function ϕ f,z∗ in the previous proposition since its is not necessarily
proper. The reader may compare [89, 90]. Condition (c) opens the path to a subdif-
ferential calculus: With some effort, one can transform the subdifferential rules from
the scalar to the set-valued case obtaining corresponding “z∗-wise” rules, see [207].

Under some “regularity”, the directional derivative can be reconstructed from the
subdifferential. This result is known as themax-formula. Here is a set-valued version.

Theorem 5.18 Let f : X → G (Z , C) be a convex function, x̄ ∈ dom f and z∗ ∈
C+\{0} such that the function x �→ f (x)⊕ H+(z∗) is proper and the function
ϕ f,z∗ : X → IR ∪ {+∞} is upper semi-continuous at x̄ . Then ∂ fz∗ (x̄) �= ∅ and it
holds

∀x ∈ X : f ′z∗ (x̄, x) =
⋂

x∗∈∂ fz∗ (x̄)

S(x∗,z∗) (x) . (5.7)

Moreover, for each x ∈ X there exists x̄∗ ∈ ∂ fz∗ (x̄) such that

f ′z∗ (x̄, x) = S(x̄∗,z∗) (x) . (5.8)

Proof See [90]. �

Next, we link the subdifferential and the Fenchel conjugate.

Proposition 5.19 Let f : X → G (Z , C) be convex, x̄ ∈ X, dom f �= ∅ and f (x̄)⊕
H+(z∗) �= Z. Then, the following statements are equivalent for x∗ ∈ X∗, z∗ ∈
C+\{0}:
(a) x∗ ∈ ∂ fz∗ (x̄),
(b) ∀x ∈ X: S(x∗,z∗) (x)−� f (x) ⊇ S(x∗,z∗) (x̄)−� f (x̄).



Set Optimization—A Rather Short Introduction 107

Proof See [90]. �

This results basically says that x∗ ∈ ∂ fz∗ (x̄) if the supremum in the definition of
the conjugate is attained at x̄ since from the Young-Fenchel inequality we have

S(x∗,z∗) (x̄)−� f (x̄) ⊇ f ∗
(
x∗, z∗

)

whereas (b) above produces

f ∗
(
x∗, z∗

) =
⋂

x∈X

{
S(x∗,z∗) (x)−� f (x)

} ⊇ S(x∗,z∗) (x̄)−� f (x̄) .

This means: In the sense of Definition3.3 adapted to maximization, the set {x̄} is a
solution of the problem

maximize S(x∗,z∗) (x)−� f (x) over x ∈ X.

Finally, wewant to describe the set of points satisfying the condition 0 ∈ ∂z∗ f (x̄).

Proposition 5.20 Let f : X → G (Z , C) be convex, z∗ ∈ C+\{0} and x̄ ∈ dom f
such that f (x̄)⊕ H+(z∗) �= Z. Then, the following statements are equivalent:

(a) H+(z∗) ⊇ f ′z∗ (x̄, x) for all x ∈ X,
(b) 0 ∈ ∂ fz∗ (x̄),
(c) f (x̄)⊕ H+(z∗) = [inf x∈X f (x)]⊕ H+(z∗),
(d) ϕ f,z∗(x̄) ≤ ϕ f,z∗(x) for all x ∈ X.

Proof This is immediate from the previous results. �

We will call an x̄ ∈ X for which there is z∗ ∈ C+\{0} satisfying (c) in Propo-
sition5.20 a C+-minimizer of problem (P) in Definition3.3. The question arises if
there is a (full) solution of (P) consisting of C+-minimizers and how such a solution
can be characterized.

We conclude this section by noting that a calculus for the z∗-subdifferential can be
derived from corresponding calculus rules for extended real-valued convex functions.
The additional feature in the set-valued case is the dependence of ∂ fz∗ (x̄) on z∗, i.e.
properties of the mapping z∗ �→ ∂ fz∗ (x̄). It turns out that this is an adjoint process
type relationship as pointed out in [90].

5.5 A Case Study: Set-Valued Translative Functions

Let X , Z be two topological linear spaces and T : Z → X an injective continuous
linear operator. A function f : X → P (Z , C) is called translative with respect to
T (or just T -translative) if
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∀x ∈ X, ∀z ∈ Z : f (x + T z) = f (x)+ {z} .

A special case of interest will be Z = IRm ,
{
h1, . . . , hm

} ⊆ X a set of m linearly
independent elements and T : IRm → X defined by T z =∑m

k=1 zkhk . This construc-
tion is very close to (and motivated by) set-valued risk measures as shown below.

It is an easy exercise to show that a T -translative function f can be represented
as follows:

∀x ∈ X : f (x) = {
z ∈ IRm | x − T z ∈ A f

}
(5.9)

where A f = {x ∈ X | 0 ∈ f (x)} is the zero sublevel set of f . This set satisfies

∀z ∈ C : A f − T z ⊆ A f

since f maps into P (Z , C). The latter property is called (T, C)-translativity of A f .
The representation (5.9) can be written as

∀x ∈ X : f (x) = (
IA f �αT

)
(x) = inf

{
IA f (x1)+ αT (x2) | x1 + x2 = x

}

where αT : X → P (Z , C) is given by

αT (x) =
{ {z} + C : x = T z

∅ : otherwise

and IA is the set-valued indicator function of A: IA (x) = C if x ∈ A and IA (x) = ∅
if x /∈ A. Note that the function αT is well-defined since T is assumed to be injective.

We start the investigation of set-valued translative functions with their conjugates
andmake use of the fact that the conjugate of the infimal convolution of two functions
is the sum of the two conjugates. For set-valued functions, this has been established
in [78, Lemma 2]. The conjugate of the indicator function is indeed the set-valued
support function as shown in [78]:

I ∗A f
(x∗, z∗) =

⋂

x∈A f

S(x∗,z∗)(x).

Moreover,

α∗T
(
x∗, z∗

) =
⋂

x∈X

(
S(x∗,z∗)(x)−� αT (x)

) =
⋂

u∈Z

(
S(x∗,z∗)(T u)−� ({u} + C)

)

=
⋂

u∈Z

{
z ∈ Z | z + u + C ⊆ S(x∗,z∗)(T u)

}

= {
z ∈ Z | ∀u ∈ Z : z∗(z + u) ≥ x∗(T u)

}

=
{

z ∈ Z | z∗(z) ≥ sup
u∈Z

(T ∗x∗ − z∗)(u)

}
=

{
H+(z∗) : z∗ = T ∗x∗
∅ : z∗ �= T ∗x∗
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Hence, for a T -translative function f we get

f ∗(x∗, z∗) = I ∗A f
(x∗, z∗)+ α∗T

(
x∗, z∗

) =
{ ⋂

x∈A f

S(x∗,z∗)(x) : z∗ = T ∗x∗

∅ : z∗ �= T ∗x∗
(5.10)

and (see Remark5.5)

(− f ∗)(x∗, z∗) = H+(z∗)−� f ∗(x∗, z∗) =
{
cl

⋃
x∈A f

S(x∗,z∗)(−x) : z∗ = T ∗x∗

Z : z∗ �= T ∗x∗

since H+(z∗)−� ∅ = Z and H+(z∗)−� ⋂
x∈A f

S(x∗,z∗)(x) = cl
⋃

x∈A f

[
H+(z∗)−� S(x∗,z∗)(x)

] =
S(x∗,z∗)(−x) according to Proposition4.17.

If the function f additionally maps into G(Z , C) and is proper, closed and convex,
then the biconjugation theorem applies, and the following dual representation is
obtained:

∀x ∈ X : f (x) =
⋂

x∗∈X∗
T ∗x∗∈C+\{0}

[
S(x∗,T ∗x∗)(x)−� I ∗A f

(x∗, T ∗x∗)
]
. (5.11)

If f is additionally sublinear, then A f is a closed convex cone and (5.11) simplifies
to

∀x ∈ X : f (x) =
⋂

x∗∈A−f
T ∗x∗∈C+\{0}

S(x∗,T ∗x∗)(x) (5.12)

since in this case

I ∗A f
(x∗, z∗) =

{
H+(z∗) : x∗ ∈ A−f
∅ : otherwise

.

Of course, A−f = −
(

A f
)+
.

The value of these formulas depends on how the dual data x∗, T ∗ and I ∗A f
can be

interpreted in terms of the application at hand. We will show in Sect. 7.4 below that
this can be done very nicely.

Example 5.21 Z = IRm , T : IRm → X defined by T z =∑m
k=1 zkhk . Then

∀z ∈ IRm : (
T ∗x∗

)
(z) =

m∑

k=1
x∗(hk)zk,

thus T ∗x∗ can be identified with
(
x∗

(
h1

)
, . . . , x∗ (hm)

)T ∈ IRm .

We turn to the subdifferential of T -translative functions. The result reads as fol-
lows.
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Corollary 5.22 Let f : X → G (Z , C) be convex, T -translative and z∗ ∈ C+\{0}.
If ∂ fz∗ (x̄) �= ∅ then

∂ fz∗ (x̄) = {
x∗ ∈ X∗ | z∗ = T ∗x∗ and ∀x ∈ A f : S(x∗,T ∗x∗)(x) ⊇ S(x∗,T ∗x∗)(x̄)−� f (x̄)

}
.

(5.13)

Proof First, we show “⊆”. The assumption ∂ fz∗ (x̄) �= ∅ in conjunction with Propo-
sition5.17 implies f (x̄)⊕ H+(z∗) /∈ {Z ,∅}. Hence S(x∗,z∗)(x̄)−� f (x̄) /∈ {Z ,∅}, and
Proposition5.19 produces f ∗(x∗, z∗) /∈ {Z ,∅}. Take x∗ ∈ ∂ fz∗ (x̄). From (5.10) we
now obtain

z∗ = T ∗x∗ and f ∗(x∗, z∗) = I ∗A f
(x∗, z∗).

The definition of the set-valued support function yields that x∗ belongs to the right
hand side of (5.14).

Conversely, assume that x∗ ∈ X∗ satisfies z∗ = T ∗x∗ as well as

∀x ∈ A f : S(x∗,z∗)(x) ⊇ S(x∗,z∗)(x̄)−� f (x̄).

Take x ∈ dom f . Then
∀z ∈ f (x) : x − T z ∈ A f

by T -translativity and hence

∀z ∈ f (x) : S(x∗,z∗)(x − T z) ⊇ S(x∗,z∗)(x̄)−� f (x̄).

Since z∗ = T ∗x∗ we have

S(x∗,z∗)(x − T z) = S(x∗,z∗)(x)+ {−z}

and therefore

∀z ∈ f (x) : S(x∗,z∗)(x)+ {−z} ⊇ S(x∗,z∗)(x̄)−� f (x̄).

This means that any η ∈ S(x∗,z∗)(x̄)−� f (x̄) satisfies

∀z ∈ f (x) : z + η ∈ S(x∗,z∗)(x),

thus η ∈ S(x∗,z∗)(x)−� f (x). Hence

∀x ∈ dom f : S(x∗,z∗)(x)−� f (x) ⊇ S(x∗,z∗)(x̄)−� f (x̄)

which is, according to Proposition5.19, equivalent to x∗ ∈ ∂ fz∗ (x̄). �

The above corollary tells us that the knowledge of ∂ fz∗ can be obtained by knowl-
edge about A f and T ∗. This becomes even more clear in the sublinear case.
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Corollary 5.23 Let f : X → G (Z , C)be sublinear, T -translative and z∗ ∈ C+\{0}.
If ∂ fz∗ (x̄) �= ∅ then

∂ fz∗ (x̄) =
{

x∗ ∈ X∗ | z∗ = T ∗x∗, x∗ ∈ A−f , S(x∗,z∗)(x̄) = f (x̄)⊕ H+(z∗)
}

.

(5.14)

Proof As observed above, in this case A f is a convex cone and I ∗ can only attain
the two values H+(z∗) for x∗ ∈ A−f and ∅ otherwise. Finally,

S(x∗,z∗)(x̄)−� f (x̄) = H+(z∗) ⇔ S(x∗,z∗)(x̄) = f (x̄)⊕ H+(z∗).

The result now follows from Corollary5.22. �

5.6 Comments on Vector- and Set-Valued Convex Analysis

The history of convex analysis for scalar functions is a continuing success story, and
this area of mathematics is the theoretical basis for linear and nonlinear, in particular
non-smooth, optimization and optimal control theory: compare [196, p. 3]5 or the
preface of [8, p. xii].6

Surprisingly, the gap between theory and applications (in optimization and multi-
criteria decision making) is much wider for vector- or even set-valued functions. For
example, there is no canonical (Fenchel) conjugate of a vector-valued function, but
rather a whole bunch of different definitions which work under different assumptions
(see below for references).

If one ignores for a moment scalarization approaches, then there are basically two
different paths to a “vector-valued” convex analysis.

The first one simply consists in an extended interpretation of the infimum and
the supremum in formulas like the definition of the Fenchel conjugate: Under the
assumption that the function maps into a conditional complete vector lattice (this
means that every set which is bounded from below with respect to the vector order
has an infimum in the space) one considers infima/suprema with respect to the vector
order. This approach has been followed by Zowe [232, 233], Elster and Nehse [23,
50], Borwein [16], Zalinescu [234], Kutateladze [139] and others. One may compare
[17] for the state of the art in the mid 1980s and more references. This approach has
the advantage that a corresponding version of the Hahn-Banach theorem is available
which is due to L.V. Kantorovich, see for example Day’s book [42]. Disadvantages
are, of course, the strong assumptions to the image space and, even worth for appli-
cations, the fact that a vector infimum/supremum is hardly an appropriate concept
when it comes to vector optimization and multi-criteria decision making.

5‘In fact the great watershed in optimization isn’t between linearity and nonlinearity, but convexity
and nonconvexity’.
6‘Theoretically, what modern optimization can solve well are convex optimization problems’.
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In the second approach, infima and suprema are therefore replaced by sets of
minimal and maximal points, respectively, with respect to the vector order. This
worked for (and was motivated by) applications of vector optimization, but made the
task of developing a corresponding vector-valued convex analysis incredibly harder:
It turns out that “dual constructions” like conjugates or dual optimization problems
become set-valued: ‘for a vector problem, its dual constructed by several means, is a
problem whose objective function is set-valued, whatever the objective of the primal
problem be’ ([156, p. 57]). Set-valued Legendre–Fenchel conjugates with maximal
points replacing the supremum appear in [156, 204, 219], with weakly maximal
points in [166, 204], with (weakly) supremal points in [123, 190, 191, 212, 214,
217] and an evenmore general construction involving “non-submitted” points is used
in [47], for example.

A major difficulty for this approach is the lack of an appropriate Hahn-Banach
theorem which is at the heart of convex analysis: One has to turn to scalarizations in
order to apply the “usual” Hahn-Banach argument. Zowe’s paper [231] shows how
difficult it is to get back to vector-valued concepts after a scalarization.

In both approaches, continuous linear operators were used as dual variables. One
way to avoid this again is a scalarization approach: An early attempt is Jahn’s work
[113] (compare also [114, Chap.8]). This approach leads to peculiar difficulties even
if the problem at hand is linear: Compare [113, Conclusions] and the discussion at
the ends of [114, Sects. 8.2 and 8.3]. A modern account is given in [19] which leads
to dual problems with a, in general, non-convex feasibility set even if the original
problem is convex (or linear).

Let us mention that there are at least two quite different attempts to answer the
duality question for vector problems: In [5, 6] as well as in [21] Fenchel conjugates of
vector- or set-valued functions are defined in terms of scalar functions depending on
an additional dual variable. Although in both attempts quite strong assumptions are
imposed, they seem to be only a few steps short of the constructions in this section.

The approach summarized in [151] is also based on scalarization via support
functions, but it involves a set infimum/supremum which admits to obtain stronger
results.

The concepts presented in this survey go without the usual assumptions to the
ordering cone C (non-empty interior, pointedness, generating a lattice order etc.),
and they basically produce set-valued versions of all the known (duality) formulas for
scalar convex functions, and this includes the case of vector-valued functions. A cru-
cial observation is the theoretical equivalence of a convexG(Z , C)-valued function f
and the family

{
ϕ f,z∗

}
z∗∈C+\{0}. Formula (5.11) is an example for how the set-valued

theory tells us what kind of scalarizations should be taken into consideration. New
insights can be obtained by investigating relationships between the two components
of the dual variable (x∗, z∗) which is essentially of adjoint process duality type (see
[90, Sect. 4]). Set-valued functions satisfying (a) and (b) of Proposition5.1 are some-
times called linear, e.g. in [186]. On the other hand, Proposition5.1 and Theorem5.2
show that the “conlinear” functions S(x∗,z∗) are in some sense one-sided versions of
linear multivalued operators (linear relations) as surveyed e.g. in [37]. The reader
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may check the relationships in the case of a linear subspace C with C+ = C⊥ its
orthogonal complement.

Directional derivatives for set-valued functions are usually defined at points of
its graph, thus fixing (only) one element in the image set along with a point in the
pre-image set. The standard reference is [4], and Mordukhovich’s coderivative [172]
is of the same type. Compare also [227]. Quite a different path is the attempt to
embed certain subsets of P(Z) into a linear space and then use the usual “linear”
constructions, see [137] for an example. This, of course, only works under strong
assumptions since, in general, G(Z , C) cannot be embedded into a linear space even
if one drops ∅ and Z .

Concerning subgradients for set-valued functions, the paper [98] presents an
overview over the existing concepts each of which is afflicted with a peculiar dif-
ficulty: for example, the ‘weak subgradient’ of [29] (see also [28, Definition 2.53])
leaves the realm of convexity, the ‘strong subgradient’ introduced in [98] needs an
artificial exclusion condition in its definition. Both require rather strong assumptions
for their existence: compare [236, Corollary 9] with respect to weak subgradients
while observing that the space Z therein has the least upper bound property, and with
respect to strong subgradients compare [98, Definition 3.2 and Theorem 4.1].

One should note that the application of Yang’s Hahn-Banach type theorem [226,
236] also suffers the “non-convexity issue:” since it relies on the “not strictly greater
than” relation: inequalities cannot be added whenever the relation is non-complete.
This means that the weak subdifferentials of convex set-valued function obtained for
example via [236, Corollary 9] are not convex in general.

Another way of defining subgradients is to do it at points of the graph of a set-
valued mapping rather than at points of its domain, see [16, 204], [7, Definition 2.1]
and also the ‘positive subgradients’ defined in [143, Definition 2.5], [92, Definition
3.1] and the ‘k-subgradients’ of [19, Definition 7.1.9] among many others.

Most of those concepts use linear operators as dual variables, but when it comes
to existence very often operators of rank 1 show up, see, for example, [28, Theorem
2.55], [98, Theorem 4.1]. The (straightforward) relationships are discussed in [19,
p. 331] and [92, Sect. 4].

We interpret this as evidence that, unless the image space is a (conditional) com-
plete vector lattice and the Hahn-Banach-Kantorovitch theorem is available, the dual
variables should involve linear functionals rather than linear operators.Using “conlin-
ear functions” generated by pairs of linear functionals, the constructions in Sects. 5.3
and 5.4 offer a way to obtain results which are very close in shape to the scalar case
and avoid strong assumptions to the ordering cone in Z . Moreover, in contrast to
most of the “vectorial” constructions in the literature (for example, see the discus-
sion in [19, p. 313]), our set-valued results reproduce the ones for scalar extended
real-valued functions as special cases; this includes e.g. existence of subgradients
and strong duality with attainment of the supremum for the dual problem.

The subdifferential as given in Definition5.16 is exactly the same set which is
called the ‘conjugate to’ f in [194, Definition 2 and the remark thereafter] pro-
vided one assumes that every expression in B. N. Pshenichnyi’s definition is finite.
Section5.4 should make it clear why we call it a subdifferential; the relationship to
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convex process duality can be found in [90]. It should be pointed out that the com-
plete lattice approach of this survey also adds new insights to scalar convex analysis:
the improper case, in particular the function value −∞, can be dealt with using the
residuation. We refer to [89].

Scalar translative functions appear in many areas of applied mathematics, for
example probability (quantile functions and lower previsions [221]), insurance and
finance (constant additive insurance premiums [222] and cash additive riskmeasures,
introduced in [3] and reviewed in [59]), mathematical economics (benefit and short-
age functions [161, 162]), vector optimization (nonlinear scalarization functions,
compare [63] also for earlier references and [67] for an overview) and idempotent
analysis (compare the survey [126]) as well as in max-plus algebra (see e.g. [31]).
A relationship between vector optimization and risk measures in finance is pointed
out in [99].

Following an idea of [120], in [80, 82] cash additive risk measures have been gen-
eralized to set-valued risk measures for multivariate positions which turned out to be
T -translative for some special T . Thus, such functions are important in applications,
and they provide examples for the set optimization theory of this survey.

6 Set-valued Optimization

6.1 Unconstrained Problems

Within the set-up of the previous section, the basic problem again is

minimize f (x) subject to x ∈ X. (P)

The difficulty with the solution concept given in Definition3.3 is that solutions are,
in general, sets rather than single points. Thus, optimality conditions such as “zero
belongs to the subdifferential of some function” should actually be taken “at sets”
rather than “at points.” Of course, this does not sound very attractive. The following
construction provides a remedy.

Definition 6.1 Let f : X → G (Z , C) be a function and M ⊆ X a non-empty set.
The function f̂ (·;M) : X → G (Z , C) defined by

f̂ (x;M) = inf
u∈M

f (x + u) = cl co
⋃

u∈M

f (x + u) (6.1)

is called the inf-translation of f by M .

The function f̂ (·;M) coincides with the canonical extension of f at M + {x} as
defined in [102]. A few elementary properties of the inf-translation are collected in
the following lemma.
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Lemma 6.2 Let M ⊆ X be non-empty and f : X → G (Z , C) a function.

(a) If M ⊆ N ⊆ X then f̂ (x;M) ⊆ f̂ (x; N ) for all x ∈ X.
(b) inf x∈X f (x) = inf x∈X f̂ (x;M).
(c) If f and M are convex, so is f̂ (·;M) : X → G (Z , C), and in this case

f̂ (x;M) = cl
⋃

u∈M f (u + x).

Proof The proof can be found in [90]. �

Proposition 6.3 Let f : X → G (Z , C) be a convex function and ∅ �= M ⊆ dom f .
The following statements are equivalent:

(a) M is an infimizer for f ;
(b) {0} ⊆ X is an infimizer for f̂ (·;M);
(c) {0} is an infimizer for f̂ (·; co M) and f̂ (0;M) = f̂ (0; co M).

Proof The equivalence of (a) and (b) is immediate from f̂ (0;M) = infu∈M f (u)

and Lemma6.2, (b). The equivalence of (a) and (c) follows from f̂ (0; co M) =
infu∈co M f (u) and Lemma6.2, (b). �

The previous proposition makes clear that by an inf-translation an infimizer (set)
can be reduced to a single point, namely just 0 ∈ X . Moreover, it should be apparent
that we need to consider f̂ (·; co M): Since we want to characterize infimizers via
directional derivatives and subdifferentials, a convex function is needed, and f̂ (·;M)

is not convex in general even if f is convex (find a counterexample!). Obviously,
an infimizer is not necessarily a convex set; on the contrary, sometimes one prefers
a nonconvex one, for example a collection of vertices of a polyhedral set instead of
higher dimensional faces.

Theorem 6.4 Let f : X → G(Z , C) be a convex function satisfying

I ( f ) = inf
x∈X

f (x) /∈ {Z ,∅} .

Then f is proper, and the set �+ ( f ) = {
z∗ ∈ C+\{0} | I ( f )⊕ H+(z∗) �= Z

}
is

non-empty. Moreover, a set M ⊆ X is an infimizer for f if, and only if, f̂ (0;M) =
f̂ (0; co M) and

0 ∈
⋂

z∗∈�+( f )

∂ f̂z∗ (·; co M) (0) .

Proof Since {0} is a singleton infimizer of the function x �→ f̂ (x;M), x̄ = 0 ∈ X
satisfies (c) of Proposition5.20 with f replaced by f̂ (·;M) for each z∗ ∈ �+ ( f ).
Now, the result follows from Proposition5.20 and Proposition6.3. �

Theorem6.4 highlights the use of the “z∗-wise” defined directional derivatives
and subdifferentials. One needs to take into consideration all reasonable (= proper)
scalarizations at the same time in order to characterize infimizers.
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6.2 Constrained Problems and Lagrange Duality

Let Y be another locally convex spaces with topological dual Y ∗, and D ⊆ Y a
convex cone. The set G (Y, D) is defined in the same way as G (Z , C). Finally, let
f : X → G (Z , C) and g : X → G(Y, D) be two functions. We are interested in the
problem

minimize f (x) subject to 0 ∈ g (x) . (PC)

The set
X = {x ∈ X | 0 ∈ g (x)}

is called the feasible set for (PC) and I ( f, g) = inf { f (x) | x ∈ X } is the optimal
value of the problem. With Definition3.2 in view we define a solution of (PC) as
follows.

Definition 6.5 A set M ⊆ X is called a solution of (PC) if

(a) inf { f (x) | x ∈ M} = I ( f, g),
(b) x̄ ∈ M , x ∈ X , f (x) ⊇ f (x̄) imply f (x) = f (x̄).

Clearly, M ⊆ X is a solution of (PC) if, and only if f [M] generates the infimum
of f [X ] = { f (x) | x ∈ X } and each f (x̄) for x̄ ∈ M is minimal in f [X ] with
respect to ⊇.

We define the Lagrangian L : X × Y ∗ × C+\{0} → G (Z , C) of problem (PC) by

L
(
x, y∗, z∗

) = f (x)⊕
⋃

y∈g(x)

S(y∗,z∗) (y) = f (x)⊕ inf
{

S(y∗,z∗) (y) | y ∈ g (x)
}
.

(6.2)
Under a mild condition, the primal problem can be reconstructed from the

Lagrangian.

Proposition 6.6 If f (x) �= Z for each x ∈ X , then

sup
(y∗,z∗)∈Y ∗×C+\{0}

L
(
x, y∗, z∗

) =
⋂

(y∗,z∗)∈D+×C+\{0}
L

(
x, y∗, z∗

) =
{

f (x) : 0 ∈ g (x)

∅ : 0 /∈ g (x) .

Proof The proof is based on the assumption that the values of f and g are closed
convex sets. See [86] for details. �

The next proposition provides a Lagrange sufficient condition which is a simple,
but important result with an algorithmic character since it admits to test if a given
set is an infimizer of (PC).

Proposition 6.7 Let M ⊆ X be a non-empty set of feasible points for (PC). Assume
that for each z∗ ∈ C+\{0} there is y∗ ∈ D+ satisfying
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f̂ (0;M)⊕ inf
y∈ĝ(0;M)

S(y∗,z∗) (y) = inf
x∈X

L
(
x, y∗, z∗

)
(6.3)

and
inf

y∈ĝ(0;M)
S(y∗,z∗) (y) = H+(z∗). (6.4)

Then, M is an infimizer for (PC).

Proof Using (6.4) and (6.3) we obtain

f̂ (0;M)⊕ H+(z∗) = f̂ (0;M)⊕ inf
y∈ĝ(0;M)

S(y∗,z∗) (y) = inf
x ′∈X

L
(
x ′, y∗, z∗

)

⊇ f (x)⊕ inf
y∈g(x)

S(y∗,z∗) (y) ⊇ f (x)⊕ H+(z∗)

for all x ∈ X since S(y∗,z∗) (0) = H+(z∗). Taking the infimum over the feasible x on
the right hand side and then the intersection over z∗ ∈ C+\{0} on both sides while
observing f̂ (0;M) = infu∈M f (u)we obtain that M indeed is an infimizer for (PC).
�

Condition (6.4) serves as set-valued complementary slackness condition. If
one considers the Lagrange function (x, y∗, z∗) �→ L̂ (x, y∗, z∗;M) for the “inf-
translated” problem

minimize f̂ (x;M) subject to 0 ∈ ĝ(x;M)

then condition (6.3) means that the infimum of the Lagrange function for the original
problemcoincideswith L̂ (0, y∗, z∗;M). Finally, if z∗ ∈ C+\{0} and y∗ ∈ D+ satisfy
(6.4) and (6.3) then y∗ is nothing else than a Lagrange multiplier for the by z∗
scalarized problem. One may therefore expect that strong duality is something like
“strong duality for all reasonable scalarized problems.” This idea works as shown in
the following.

Define the function h : Y ∗ × C+\{0} → G (Z , C) by

h
(
y∗, z∗

) = inf
x∈X

L
(
x, y∗, z∗

) = cl
⋃

x∈X

L
(
x, y∗, z∗

)
.

Since the values of L(·, y∗, z∗) are closed half spaces with the same normal z∗, the
convex hull can be dropped in the infimum. The dual problem,

maximize h
(
y∗, z∗

)
subject to y∗ ∈ Y ∗, z∗ ∈ C+\{0}, (DC)

thus consists in finding

d = sup
y∗∈Y ∗, z∗∈C+\{0}

h
(
y∗, z∗

) =
⋂

y∗∈Y ∗, z∗∈C+\{0}
h

(
y∗, z∗

)
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and corresponding (full) solutions. The following weak duality result is immediate.

Proposition 6.8 Let f : X → F (Z , C) and g : X → F (Y, D). Then

sup
{
h

(
y∗, z∗

) | y∗ ∈ Y ∗, z∗ ∈ C+\{0}} ⊇ inf { f (x) | x ∈ X, 0 ∈ g (x)} .

Proof This is true since for (y∗, z∗) ∈ Y ∗ × C+\{0} and x ∈ X satisfying 0 ∈ g (x)
we have

h
(
y∗, z∗

) ⊇ f (x)⊕ cl
⋃

y∈g(x)

S(y∗,z∗) (y) ⊇ f (x)⊕ S(y∗,z∗) (0) = f (x)⊕ H+
(
z∗

)
.

�

As usual, a constraint qualification condition is needed as part of sufficient con-
ditions for strong duality. The following condition is called the Slater condition for
problem (PC):

∃x̄ ∈ dom f : g (x̄) ∩ int (−D) �= ∅. (6.5)

The implicit assumption is int D �= ∅.
Theorem 6.9 Assume p = inf { f (x) | x ∈ X } �= Z. If f : X → G (Z , C) and
g : X → G (Y, D) are convex and the Slater condition for problem (PC) is satis-
fied then strong duality holds for (PC), that is

inf { f (x) | 0 ∈ g (x)} = sup
{
h

(
y∗, z∗

) | y∗ ∈ Y ∗, z∗ ∈ C+\{0}} , (6.6)

z∗ ∈ C+\{0}, p ⊕ H+
(
z∗

) �= Z ⇒ ∃y∗ ∈ Y ∗ : p ⊕ H+
(
z∗

) = h
(
y∗, z∗

)
.

(6.7)

Proof Hamel and Löhne [86]. �

Note that the assumption p �= Z implies the existence of z∗ ∈ C+\{0} with p ⊕
H+ (z∗) �= Z . Thus, (6.7) is attainment of the supremum for the dual problem “z∗-
wise.”

Corollary 6.10 Under the assumptions of the strong duality theorem, the set

� = {(
y∗, z∗

) ∈ Y ∗ × C+\{0} | Z �= p ⊕ H+(z∗) = h
(
y∗, z∗

)}

is non-empty and a full solution of the dual problem (DC).

Proof See [86]. �
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6.3 Comments on Set Optimization Duality

Among the first papers in which optimization problems with a set-valued constraint
have been systematically studied are [15, 16, 185]. It is, for example, instructive to
realize that the Lagrange function in (6.2) is nothing else, but a set-valued version
of the one in [185, p. 197]. Compare also [151, Theorem 3.28].

Whereas in [16, Problem (P) in (3.1)] the vector infimum serves as the building
block for optimality, in [15, Theorem 3] a Lagrange duality result is established for
properly efficient points of vector optimization problems. The dual variables are rank
one linear operators. Similarly, in [211, Theorem 3.3] and also [213, Theorem 3.3],
rank one linear operators and a set-valued Lagrange function (see equation (6.8)
below) are used under strong assumptions (cones with weakly compact base). A
similar idea can be found in the proof of the Lagrangian duality theorem, [156, The-
orem 1.6 on p. 113] under the assumption that the ordering cone in Z has non-empty
interior. These examples may suffice with respect to vector optimization problems
in view although the literature is huge.

In [131, 134] the same type of set-valued Lagrangian has been used (without
giving proofs) in connection with set relations, i.e., basically the solution concept
IIa of Sect. 3.1. The more recent [93, 95] proceed similarly: Theorem 3.3 in [95]
(basically the same as Theorem 4.2 in [93]) is a Lagrange duality result for weakly
�C -minimal solutions with Lagrange function

f (x)+ (T ◦ g)(x) = f (x)+ {T y | y ∈ g(x)} (6.8)

where T ∈ L(Y, Z), the set of continuous linear operators from Y to Z . It is again
based on rank one operators, an idea which at least dates back to [32, Theorem
4.1]. The same set of dual variables is used in [81] for a Lagrangian approach to
linear vector optimization. However, the Lagrange function, even for a vector-valued
problem, already is a set-valued one.

A thorough discussion of optimality conditions of Fermat and Lagrange type for
(non-convex) set-valued optimization problems based on the minimality concept III
can be found in [48] (compare also the references therein). These conditions are
formulated in terms of the Mordukhovich subdifferential. It might be worth noting
that the use of F(Z , C)-valued functions ‘gives better conclusions’ [48, Remark
3.10].

A complete lattice approach based on infimal and supremal sets was developed
in [92, 151]. The Lagrange function for a vector-valued function f and a set-valued
G has the form

f (x)+ Inf
{

y∗(y)c | y ∈ G(x)
}

where Inf stands for the infimal set and c ∈ int C is a (fixed) element. Assumptions,
of course, include int C �= ∅. The same assumption also is crucial in [144]; Theorems
3.2 and 3.3 therein are probably as far as one get in terms of conjugate duality based
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on “suprema” of a set, i.e. the elements which belong to the closure of the set, but
are not dominated with respect to the relation which is generated by the interior of
the ordering cone.

Other approaches rely on other set-valued derivatives, for example on contingent
epiderivatives [69] or coderivatives [74, 173].

In virtually all approaches for set/vector optimization problems known to the
authors, the strong duality assertion is based on the assumption of the existence of
a (weakly, properly etc.) minimal element of the primal problem either with respect
to the vector order (see [32], [156, Theorem 1.6 on p. 113, Theorem 2.7 on p. 119],
[214, Theorems 3.4 and 3.5], [19, Theorems 5.2.4 and 5.2.6]) or with respect to
a set relation (see [95, Theorem 3.3], [93, Theorem 4.2]). The two exceptions are
the approaches in [86, 151] where the primal problems only have finite values in
some sense and still existence for the dual problems is obtained–which is standard
in the scalar case. In [151, p. 98] (see also Open Problem 3.6 therein with respect to
Fenchel duality) and [92] it is discussed that the approach based on infimal/supremal
sets indeed yields strong duality, but it is not clear whether the existence of the dual
solution can be guaranteed without the z∗-component of the dual variable.

By means of the “complete lattice approach” surveyed here, the type of results
which is known from the scalar case can be transferred to a “set level.” Strong duality
then indeed means “inf equals sup” and includes the existence of dual solutions:
compare [86, 151] for Lagrange duality and [79] for Fenchel-Rockafellar duality.
The Lagrange function as defined in (6.2) basically is the composition of the two
set-valued functions S(x∗,z∗) and g, compare, for example, [125, Definition 6.3.2] and
for scalar problems with a set-valued constraint already [185, p. 197].

The reduction of a “set solution” in the sense of Definition6.5 to a “point solution”
via an inf-translation (see Definition6.1) is due to [90]. The exploitation of this
construction seems to be very promising for obtaining optimality conditions and
algorithms.

The complementary slackness condition given in Proposition6.7 seems to be new
although it clearly is in the spirit of [14, formulae (10), (12)].

7 Applications

7.1 Vector Optimization

In this section, let X and Z be as in Sect. 5 and C ⊆ Z a closed, convex, pointed
(i.e. C ∩ −C = {0}) and non-trivial cone. Then, ≤C is a partial order (i.e. also anti-
symmetric). Moreover, let a function F : X → Z ∪ {−∞,+∞} be given. Defining
a function f : X → G(Z , C) by
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f (x) =
⎧
⎨

⎩

F(x)+ C : F(x) ∈ Z
Z : F(x) = −∞
∅ : F(x) = +∞

we observe
f (x1) ⊇ f (x2) ⇔ F(x1) ≤C F(x2),

where it is understood that −∞ ≤C z ≤C +∞ for all z ∈ Z ∪ {−∞,+∞}. Hence
the two problems

find minimizers w.r.t. ≤C of F(x) subject to 0 ∈ g(x), (VOP)

find minimizers w.r.t. ⊇ of f (x) subject to 0 ∈ g(x) (SOP)

have the same feasible elements and the same minimizers. The minimizers of (VOP)
are called’minimal solutions’ [114, Definition 7.1] or ‘efficient solutions’ [19, Defi-
nition 2.5.1]. In most cases, it does not make sense to look for the infimum in (VOP)
with respect to ≤C : It may not exist (not even for simple polyhedral cones C , see
e.g. [151, Example 1.9]), and even if it does, it is not useful in practice at it refers
to so-called utopia points which are typically not realizable by feasible points (i.e.
“decisions”).

The (PC) version of (SOP) considered as an F(Z , C)- or G(Z , C)-valued prob-
lem is called the lattice extension of (VOP), and a solution of (VOP) is defined to
be a solution of its lattice extension (see [102], compare Definition6.5). In this way,
the notion of an “infimum” makes a strong comeback, and the infimum attainment
becomes a new feature in vector optimization, which is useful for theory and applica-
tions: It ensures that the decision maker possesses a sufficient amount of information
about the problem if (s)he knows a solution. For a detailed discussion see [151,
Chap.2]. Note that one possibly obtains different solutions depending on the choice
of F(Z , C) or G(Z , C) as image space. Since the infimum in G(Z , C) involves the
convex hull, solutions of G(Z , C)-valued problems may include “fewer” elements,
and this is in particular preferable for convex problems.

If f is the “lattice extension” of a vector-valued function F as given above, the
Lagrange function for (PC) takes the form

L
(
x, y∗, z∗

) = f (x)⊕ inf
y∈g(x)

S(y∗,z∗) (y) = F(x)+ inf
y∈g(x)

S(y∗,z∗) (y)

= inf
y∈g(x)

{
z + F(x) ∈ Z | y∗(y) ≤ z∗(z)

}

=
{

z ∈ Z | inf
y∈g(x)

y∗(y)+ z∗ (F(x)) ≤ z∗(z)
}

whenever F(x) ∈ Z , L (x, y∗, z∗) = ∅ whenever F(x) = +∞ or g(x) = ∅, and
L (x, y∗, z∗) = Z whenever F(x) = −∞ and g(x) �= ∅. The functionz∗ (x, y∗) :=
z∗ (F(x))+ inf y∈g(x) y∗(y) (with the convention z∗(±∞) = ±∞) is the (classical)
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Lagrange function of the (scalar) problem

inf
{
z∗ (F(x)) | 0 ∈ g(x)

}

(see, for example, already [185, p. 197]). Moreover, if g is generated by a vector-
valued function G : X → Y ∪ {−∞,+∞} in the same way as f by F , then

inf
y∈g(x)

y∗(y) =
⎧
⎨

⎩

y∗ (G(x)) : G(y) ∈ Z , y∗ ∈ D+
−∞ : G(y) = −∞, or G(y) ∈ Z and y∗ /∈ D+
+∞ : G(y) = +∞.

Thus,z∗ (x, y∗) = z∗ (F(x))+ y∗ (G(y))whenever F(x) ∈ Z ,G(x) ∈ Y and y∗ ∈
D+. The dual objective becomes

h(y∗, z∗) = inf
x∈X

L
(
x, y∗, z∗

) =
{

z ∈ Z | inf
x∈X

z∗
(
x, y∗

) ≤ z∗(z)
}

.

Corollary 7.1 Let F be C-convex, f its lattice extension and g : X → G(Y, D) con-
vex such that the Slater condition (6.5) is satisfied. If I ( f, g) = inf { f (x) | 0 ∈ g(x)} /∈
{Z , ∅}, then �+( f, g) = {

z∗ ∈ C+\{0} | I ( f, g)⊕ H+(z∗) �= Z
}

is non-empty and

I ( f, g) = cl
⋃
{F (x) | 0 ∈ g (x)} =

⋂

y∗∈D∗, z∗∈�+( f,g)

{
z ∈ Z | z∗

(
x, y∗

) ≤ z∗(z)
}
,

(7.1)

∀z∗ ∈ �+( f, g) ∃y∗ ∈ Y ∗ : I ( f, g)⊕ H+
(
z∗

) = h
(
y∗, z∗

)
. (7.2)

Proof Of course, f is convex if, and only if, F is C-convex (see [156, Definition
1.6 on p. 29] for a definition). Theorem6.9 and the above discussion produce the
result. �

It might be worth to compare Corollary7.1 with standard duality results in vector
optimization. First, there is no assumption about the existence of (weakly, properly)
minimal solutions: This is in contrast to most results in vector optimization such
as [67, Theorems 3.7.4 and 3.7.7], [114, Theorem 8.7], [19, Theorems 4.1.2 and
4.1.4]. Secondly, there are no interior point assumptions to the cone C . Thirdly,
with Corollary6.10 in view, the existence of a dual solution in a set-valued sense
is provided in the sense of the “maximization” version of Definition3.3. Finally,
classical duality results in vector optimization can be obtained from Corollary7.1 as
it is described in [151, Sect. 3.5].
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7.2 A Case Study: Linear Vector Optimization

We proceed with an exemplary application of the set-valued theory to linear vector
optimization problems and show that we obtain what we expect in view of scalar
linear programming duality: a dual program of the same type. In this section, we will
write ≤ and ≥ for ≤IRm+ and ≥IRm+ , respectively, for any m ∈ {1, 2, . . .}.

Consider the linear vector optimization problem

minC Px subject to Ax ≥ b, (PL)

where P ∈ IRq×n , A ∈ IRm×n , b ∈ IRm , and the cone C is polyhedral convex with
nonempty interior. A representation C = {

z ∈ IRq | W T z ≥ 0
}
by a matrix W ∈

IRq×k is given. The feasible set is denoted by S := {x ∈ IRn | Ax ≥ b}.
With (PC) in view we define f (x) = Px + C and g(x) = b − Ax + IRm

+. Then,
the set {(x, z) ∈ IRn × IRq | z ∈ f (x), 0 ∈ g(x)} is polyhedral convex. We modify
the solution concept in Definition6.5 by adding the requirement that a solution is a
finite set of vectors and directions, see [151] and also [87], the latter also including “ε-
variants.” The reason is that every polyhedral set can be expressed as the generalized
convex hull of finitely many vectors and directions. Such a solution is called finitely
generated solution, but we call it just solution if the context of polyhedral convex
set-valued problems or the subclass of linear vector optimization problems is clear.
To keep the notation simple, we only consider bounded problems here, that is, we
assume

∃z̄ ∈ IRq : ∀x ∈ S : z̄ ≤C Px . (7.3)

Under this assumption, a solution consists of finitely many vectors only. For the
general case, see [151, Chap.4]. A solution to (PL ) is a nonempty finite set S̄ ⊆ S of
minimizers (’efficient solutions’ in the most textbooks) such that P[S] ⊆ P[S̄] + C ,
where the latter condition refers to infimum attainment in S̄ with respect to the lattice
extension (compare Definition3.3).

Considering the lattice extension of (PL ) we show that the Lagrange technique
from Sect. 6.2 leads to a dual problem, which enjoys nice properties and is useful for
applications and algorithms. Re-labeling the dual variables by u = y∗, w = z∗ we
obtain the Lagrangian

L(x, u, w) = Px + C + cl
⋃

z≥b−Ax

{
z ∈ IRq | uT y ≤ wT z

}

= Px + C + cl
⋃

r∈IRm+

{
z ∈ IRq | uT (r − Ax + b) ≤ wT z

}
.

The dual objective is
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h(u, w) = cl
⋃

x∈IRn

L(x, u, w)

= cl
⋃

r∈IRm+, x∈IRn , v∈C

{
z ∈ IRq | uT (r − Ax + b) ≤ wT (z − Px − v)

}

= cl
⋃

r∈IRm+, x∈IRn , v∈C

{
z ∈ IRq | (wT P − uT A)x ≤ wT (z − v)− uT (b + r)

}

=
{{

z ∈ IRq | 0 ≤ wT z − uT b
}
: AT u = PT w, u ≥ 0, w ∈ C+\ {0}

IRq : otherwise.

Let C+ = {
w ∈ IRq | V T w ≥ 0

}
be a representation of C+ by a matrix V ∈ IRq×l .

Note that a basis of C+ is already sufficient to cover all values of the dual objective
h (see the end of Sect. 5.2). If we fix some c ∈ int C , we obtain the (set-valued) dual
problem

maximize D(u, w) subject to (u, w) ∈ T (DL)

with objective function

D : IRm × C+ → G(IRq , C), D(u, w) := {
z ∈ IRq | uT b ≤ wT z

}

and feasible set

T := {
(u, w) ∈ IRm × IRq | AT u = PT w, u ≥ 0, V T w ≥ 0, cT w = 1

}
.

This dual problem has a very simple structure: linear constraints, a halfspace-
valued objective function and maximization means to take the intersection over
these halfspaces. The objective function is conlinear in b and in u, i.e., D(u, w) =
S(u,w)(b) = S(b,w)(u), and therefore a natural replacement of the dual objective
“bT u” in (scalar) linear programming. A (finitely generated) solution of (DL ) is
a nonempty set T̄ ⊆ T of maximizers with respect to the ordering ⊇ satisfying⋂

(u,w)∈T̄ D(u, w) =⋂
(u,w)∈T D(u, w), where the latter conditions means supre-

mum attainment in T̄ .

Remark 7.2 Using the construction of Example2.12, we obtain an equivalent prob-
lem with a hyperplane-valued objective. This shows that we indeed have a very
natural generalization of scalar linear programs to the vectorial case because in IR,
a real number and a hyperplane are the same object. In more general linear spaces,
vectors and half-spaces are dual in some sense. Compare the footnote on p. 2.

Weak duality (see Proposition6.8) means that x ∈ S and (u, w) ∈ T imply
D(u, w) ⊇ Px + C . As a consequence, for every subset T̃ ⊆ T of feasible points,
the set

⋂
(u,w)∈T̃ D(u, w) is a superset (“outer approximation”) of the set P :=

{Px | Ax ≥ b} + C , which is just the optimal value (the infimum) of the lattice



Set Optimization—A Rather Short Introduction 125

extension. Likewise, for every subset S̃ ⊆ S of feasible points of (PL ), the set
cl co

⋃
x∈S̃ Px + C is a subset (“inner approximation”) of P .

Strong duality means that
⋂

(u,w)∈T D(u, w) = P . A constraint qualification is
not needed as in the case of linear constraints in (scalar) convex programming. Note
further that, if ∅ �= S̄ ⊆ S such that P[S̄] is the set of vertices of P , then S̄ is a
solution to (PL ). Likewise, a set ∅ �= T̄ ⊆ T such that

{
D(u, w) | (u, w) ∈ T̄

}
is the

family of half-spaces supporting P in facets, then T̄ is a solution of (DL ).

Remark 7.3 In the vector optimization literature one can observe the longstanding
paradigm that the dual of a vector optimization problem should be a vector optimiza-
tion problem with the same ordering cone. To fulfill this requirement, problems of
the type

maxC z subject to z ∈ D(u, w), (u, w) ∈ T (7.4)

have been considered, see e.g. [19, Sect. 4.5.1] and in the linear case [20]. The price
is high. In general, important properties like linearity of the constraints and convexity
of the feasible set get lost by such a transformation.

To emphasize the “linear” character of problem (DL ), we transform it into an
equivalent linear vector optimization problem:

maxK D∗(u, w) subject to (u, w) ∈ T, (D∗L)

where the objective function D∗ : IRq × IRm → IRq , given by

D∗(u, w) := (w1, . . . , wq−1, bT u)T ,

is linear and vector-valued, and the ordering cone is K := { z ∈ IRq | z1 =
· · · = zq−1 = 0, zq ≥ 0 }. A (finitely generated) solution of (D∗L ) is a nonempty set
T̄ ⊆ T of maximizers with respect to≤K in IRq satisfying D∗[T ] ⊆ co D∗[T̄ ] − K ,
where the latter condition refers to supremum attainment in T̄ (with respect to the
lattice extension with image space G(IRq , K )).

Proposition 7.4 The problems (DL) and (D∗L) have the same solutions.

Proof See [151, Theorems 4.38 and 4.57]. �

In the sense of the previous proposition, (DL ) and (D∗L ) are equivalent. Thismeans
that the set-valued dual problem (DL ) can be expressed as a linear vector optimization
problem, however, with a different ordering cone K and an interpretation of the
duality relation which differs from the one in standard references.

Of course, we can derive a set-valued dual problem to (D∗L ) by an analogous
procedure. This leads to outer and inner approximations and different representations
ofD := {D∗(u, w)− K | (u, w) ∈ T }, i.e., the optimal value of the lattice extension
of (D∗L ).
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Problem (D∗L ) is called the geometric dual problem, and there is a further duality
relation called geometric duality [101] between (PL ) and (D∗L ): There is an inclusion-
reversing one-to-one map between the proper faces of P and the proper K -maximal
faces ofD. This means, for instance, that a vertex of one set can be used to describe a
facet of the other set and vice versa. For a detailed explanation of geometric duality
see [101, 151]. Geometric duality has been extended to convex vector optimization
problems, see [100]. The paper [157] is in the same spirit.

7.3 Approximate Solutions and Algorithms

In this section, we assume that C is a closed convex cone. Let f : X → G(Z , C) be a
function. The starting point for constructing algorithms for solving the problem (P)
(see Sect. 3.1), i.e.

minimize f (x) subject to x ∈ X (P)

should be Definition3.3: It involves minimal values of f as well as the infimum taken
in G(Z , C). In order to make algorithms reasonable, both notions should be replaced
by appropriate approximate versions.

Recall I ( f ) = inf x∈X f (x). Two sets A, B ∈ G(Z , C) are called an outer approx-
imation and an inner approximation of I ( f ), respectively, if A ⊇ I ( f ) ⊇ B. Outer
and inner approximations of I ( f ) could be generated by sets M ⊆ dom f or by dual
admissible elements.

Definition 7.5 Let D : IR+ → G(Z , C) be a function satisfying

(i) D(ε2) ⊇ D(ε1) for all ε1, ε2 ∈ IR+ with 0 < ε1 ≤ ε2, and
(ii) C = D(0) =⋂

ε>0 D(ε).

A set M ⊆ dom f is called a (D, ε)-solution of (P) if

inf f [M] ⊕ D(ε) ⊇ I ( f ),

and each x ∈ M is a minimizer of f .

A similar concept applies to supremum problems which can be useful in connec-
tion with duality. If M is a (D, ε)-solution of (P), then

inf f [M] ⊕ D(ε) ⊇ I ( f ) ⊇ inf f [M],

i.e., inf f [M] trivially is an inner approximation of I ( f ).
The condition that elements of M be minimizers for f might be relaxed to any

type of approximate minimizers, thus producing sets of (D, ε)-solutions consisting
of approximate minimizers. Similarly, the intersection in (ii) might be replaced by
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any type of set convergence which is sometimes useful if C ⊆ D(ε) is not satisfied
for some (or all) ε > 0.

It turned out that effective algorithms for vector and set optimization problems
generate (D, ε)-solutions, for example with

D(ε) = C − εc

with some c ∈ C\(−C), even c ∈ int C under the assumption that the latter set is non-
empty. This idea has been exploited with Benson’s outer approximation algorithm as
the building block, see [87, Remark 4.10] and [153, Proposition 4.8]. The obtained
algorithms indeed produce approximations of the set-valued infimum for (linear,
convex) vector optimization problems. In [154], it is shown that the same idea can
be used for minimizing a polyhedral set-valued function (i.e., a G(IRq , C)-valued
function whose graph is a polyhedral set): The corresponding algorithm produces
solutions in the sense of Definition3.3 and might be considered as the first “true
set-valued” algorithm. Its extension to non-polyhedral problems is highly desirable
and another challenge for the future.

We note that a different algorithmic approach for producing minimizers with
respect to a set relation can be found in [116]. In particular, it provides a numerical
test if two (compact) sets A, B ⊆ Z are in relationwith respect to�C ∩ �C (compare
the closely related Sect. 4.2 of this survey and [115]). In the polyhedral case, this test
can be implemented on a computer.An algorithm is givenwhich producesminimizers
of a set-valued function if the set of feasible points is finite, and a descent method
[116, Algorithm 4.1] for problem (P) generates feasible points which are minimal
with respect to some finite subset of the set of feasible points.

7.4 Set-valued Risk Measures

Set-valued risk measures shall serve as a prominent example of set-valued translative
functions as discussed in Sect. 5.5. The framework will be the following. By a slight
abuse of notation, X in this section does not denote a linear space, but rather a random
variable etc.

Let (�,FT , P) be a probability space. A multivariate random variable is a P-
measurable function X : �→ IRd for some positive integer d ≥ 2. If d = 1, the
random variable is called univariate. Let us denote by L0

d = L0
d (�,FT , P) the linear

space of the equivalence classes of all IRd -valued random variables which coincide
up to sets of P-measure zero (P-almost surely). As usual, we write

(
L0

d

)
+ =

{
X ∈ L0

d | P
({

ω ∈ � | X (ω) ∈ IRd
+
}) = 1

}
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for the closed convex cone of IRd -valued random vectors with P-almost surely non-
negative components. An element X ∈ L0

d has components X1, . . . , Xd in L0 = L0
1.

In a similar way, we use L p
d for the spaces of equivalence classes of d-dimensional

random variables whose components are to the pth power integrable (if 0 < p <∞)
and essentially bounded (if p = ∞). The symbol 1I denotes the random variable in
L0
1 which has P-almost surely the value 1.
Let M ⊆ IRd be a linear subspace. We set M+ = M ∩ IRd

+ and assume M+ �= {0}
in the following.

Definition 7.6 ([82]) A function R : L p
d → P (M, M+) is called a risk measure if

it is

(R0) finite at 0 ∈ L p
d : R (0) �= ∅, R (0) �= M ;

(R1) M-translative:

∀X ∈ L p
d , ∀u ∈ M : R (X + u1I) = R (X)− u; (7.5)

(R2)
(
L p

d

)
+-monotone: X2 − X1 ∈ (

L p
d

)
+ ⇒ R

(
X2

) ⊇ R
(
X1

)
.

Set-valued risk measures are indeed recognized as T -translative if, within the
notation of Sect. 5.5, X = L p

d , Z = M , C = M+ ⊆ M and the linear operator
T : M → L p

d is defined by T u = −u1I. This means that T assigns to each u ∈ M the
random vector being constantly equal to −u.

A financial interpretation is as follows. A multivariate random variable is under-
stood as a model for an unknown future portfolio or payoff of d assets where each
component indicates the number of units of the corresponding asset in the portfolio.
The elements of R(X) are understood as deposits, to be given at initial time, which
compensate for the risk of X . The collection of all such risk compensating initial
portfolios is understood as a measure of the risk associated to X . Such deposits
usually involve fewer assets than the original portfolio, for example cash in a few
currencies. This motivates the introduction of the space M which is called the space
of eligible portfolios. A typical example is M = IRm × {0}d−m for 1 ≤ m ≤ d with
m  d.

The axiom (R1) roughly means that the risk of X + u1I is the risk of X reduced
by u whenever u ∈ M . Axiom (R2) also has a clear interpretation: if a random
vector Y ∈ L p

d dominates another random vector X ∈ L p
d , then there should be more

possibilities to compensate for the risk of Y (in particular cheaper ones) than for X .
Finiteness at zero means that there is an eligible portfolio which covers the risk of
the zero payoff, but not all eligible portfolios do. Convexity is an important property
as it allows to invoke diversification effects.

From M-translativity and
(
L p

d

)
+-monotonicity it follows that R maps into

P (M, M+). Clearly, the image space of a closed convex risk measure is G (M, M+).
If trading is allowed a market model has to be incorporated. Here, a one-period

market with proportional transaction costs as in [121, 205] is considered. It is given
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by closed convex cones K0 and KT = KT (ω) with IRd
+ ⊆ Kt (ω) � IRd for all ω ∈

� and t ∈ {0, T } such that ω �→ KT (ω) is FT -measurable. These cones, called
solvency cones, include precisely the set of positions which can be exchanged into
a nonnegative portfolio at time 0 and T , respectively, by trading according to the
prevailing exchange rates.We set K M

0 := M ∩ K0 ⊆ M which is the cone containing
the “solvent” eligible portfolios. The set

L p
d (KT ) = {

X ∈ L p
d | P ({ω ∈ � | X (ω) ∈ KT (ω)}) = 1

}

is a closed convex cone in L p
d .

Definition 7.7 ([82]) A risk measure R : L p
d → P (M, M+) is called market-

compatible if it maps into P (
M, K M

0

)
and is L p

d (KT )-monotone, that is X2 − X1 ∈
L p

d (KT ) implies R
(
X2

) ⊇ R
(
X1

)
.

Let 1 ≤ p ≤ ∞. We consider the dual pairs (L p
d , Lq

d) with
1
p + 1

q = 1 and endow

them with the norm topology if p <∞ and the σ
(
L∞d , L1

d

)
-topology on L∞d in the

case p = +∞, respectively. The duality pairing is given by (X, Y ) �→ E[Y T X ] for
X ∈ L p

d ,Y ∈ Lq
d . The adjoint operator T ∗ : Lq

d → M is given by T ∗Y = PrM E [−Y ]
where PrM denotes the projection operator onto the linear subspace M .

The biconjugation theorem, Theorem5.8, can be used to obtain a dual description
of a closed convex market-compatible set-valued risk measure of the form

R(X) = R∗∗(X) =
⋂

Y∈Lq
d , v∈(K M

0 )
+\{0}

(
S(Y,v)(X)+ (−R∗)(Y, v)

)
(7.6)

with
S(Y,v)(X) = {

u ∈ M | vT u ≥ E
[
Y T X

]}

and
(
K M

0

)+ = {
v ∈ M | ∀u ∈ K M

0 : vT u ≥ 0
}
.

Using the considerations of Sect. 5.5 and taking into account that L p
d (KT )-

monotonicity implies (−R∗) (Y, v) = M if −Y /∈ Lq
d

(
K+T

)
we get

(−R∗) (Y, v) =
⎧
⎨

⎩
cl

⋃

X∈AR

S(−Y,v) (X) : −Y ∈ Lq
d

(
K+T

)
, v = PrM E [−Y ]

M : else.
(7.7)

Recall AR =
{

X ∈ L p
d | 0 ∈ R(X)

}
from Sect. 5.5.

The next lemma admits a change of variables from vector densities Y to vector
probability measures Q. This allows a formulation of the dual representation result
in terms of probability measures as it is common in the scalar case.

In the following, diag (w) with w ∈ IRd denotes the diagonal matrix with the
components ofw as entries in itsmaindiagonal and zero elsewhere.Moreover,MP

d =
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MP
d (�,FT ) denotes the set of all vector probability measures with components

being absolutely continuous with respect to P , i.e. Qi : FT → [0, 1] is a probability
measure on (�,FT ) such that d Qi

d P ∈ L1 for i = 1, . . . , d.

Lemma 7.8 (a) Let Y ∈ Lq
d

(
K+T

)
, v = PrM E [Y ] ∈ (

K M
0

)+ \{0}. Then there are
Q ∈MP

d , w ∈ K+0 \M⊥ + M⊥ such that diag (w)
d Q
d P ∈ Lq

d

(
K+T

)
and S(Y,v) =

F M
(Q,w) with

F M
(Q,w) [X ] = {

z ∈ M | wT E Q [X ] ≤ wT z
} = (

E Q [X ]+ H+(w)
) ∩ M.

(7.8)

(b) Vice versa, if Q ∈MP
d , w ∈ K+0 \M⊥ + M⊥ such that diag (w)

d Q
d P ∈ Lq

d

(
K+T

)

then there is Y ∈ Lq
d

(
K+T

)
such that v := PrM E [Y ] ∈ (

K M
0

)+ \{0} and F M
(Q,w)= S(Y,v).

Proof See [82]. �

Let us denote the set of dual variables by

Wq =
{
(Q, w) ∈MP

d × IRd | w ∈ K+0 \M⊥ + M⊥, diag (w)
d Q

d P
∈ Lq

d

(
K+T

)}
.

The preceding considerations lead to the following dual representation result.

Theorem 7.9 A function R : L p
d → G (

M, K M
0

)
is a market-compatible closed

(σ
(
L∞d , L1

d

)
-closed if p = ∞) convex risk measure if, and only if, there is a set

Wq
R ⊆Wq such that

∀X ∈ L p
d : R (X) =

⋂

(Q,w)∈Wq

[
(−αR) (Q, w)+ (

E Q [−X ]+ H+(w)
) ∩ M

]
,

(7.9)
where the function −αR : Wq → G(M, M+) is defined by

∀ (Q, w) ∈Wq
R : (−αR) (Q, w) = cl

⋃

X ′∈AR

(
E Q

[
X ′

]+ H+(w)
) ∩ M

and (−αR) (Q, w) = M whenever (Q, w) ∈Wq\Wq
R.

Proof See [82]. �

Lemma7.8 shows that the setW∞ for M = IRd coincides with the set of so-called
consistent price systems (or processes). Strictly consistent price systems are crucial
for market models with proportional transaction cost: In finite discrete time, the
existence of such a price system is equivalent to the fundamental robust-no-arbitrage
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condition (see [205] for conical and [187] for convex market models). Therefore,
results like Theorem7.9, derived with set-valued duality tools, fit nicely into the
mathematical finance background: They produce the correct dual variables, and they
yield formulas which look like the corresponding scalar ones.

7.5 Comments on Applications

Duality for vector optimization problems is already discussed in Sect. 6.3. We add
a few remarks about the linear case. It is an astounding fact that there still is no
consensus on what to consider as the “canonical” dual of a linear vector optimization
problem. After early contributions by Kornbluth [127], Isermann [110, 111] and
Rödder [198], Ivanov and Nehse [112] discuss five different duals for a given linear
vector optimization problem which illustrates the ambiguity even in the “simplest”,
i.e. linear, case. The difficulty is further illustrated by means of the examples in [24]
and [114, Discussion after Theorem 8.13]. A set-valued approach has been presented
in [81] and later compared to several “vector-valued” duals in [20]. Compare also
[103] and Dinh The Luc [157]. We believe that this ambiguity and the mathematical
difficulties that comewith it are rooted in the non-totalness of the order: A two-player
matrix game with vector payoffs is hardly in equilibrium since the decisions of the
players also depend on their “vertical preferences” (as well as on their guesses about
the vertical preference of the opponent), i.e. the weight they put on the components of
the payoff vectors. This topic, essentially the link between set-valued convex duality
and games with vector payoffs (more general, payoffs which are not totally ordered),
seems to be one of the most interesting open questions that can be derived from the
material presented in this survey.

One advantage of the complete lattice approach is that the set-valued calculus
deals with all “vertical preferences”, i.e. all reasonable scalarizations at the same
time. This admits to re-discover scalar duality results on a “set level.”

In 1998, Benson [10, 11] proposed an “outer approximation algorithm” to solve
linear vector optimization problems “in the outcome space.” Benson motivated this
by three practical reasons: First, the set of minimal elements in the outcome space IRq

has a simpler structure than the set of minimizers in the decision space IRn , because
one usually hasq  n. The same argumentmotivated [40, 41],which already contain
similar algorithms based on the analysis given in [39]. The second reason is that a
decision maker prefers to base her decision on objectives rather than directly on a set
of efficient decisions. The third argument is that many feasible points are mapped on
a single image point which may lead to redundant information.

Later it turned out that Benson’s algorithm just computes solutions to (PL ) and
(DL ) as defined above, see [87, 151]. Therefore Benson’s arguments motivate the
solution concepts introduced in Sect. 3.1 from an application oriented viewpoint,
compare also [154]. The geometric duality theory [100, 101] briefly discussed in
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Sect. 7.2 is a fundamental tool to develop dual algorithms for solving linear and
convex vector optimization problems, see [49, preprint already from 2007] [87, 153].
Compare also [158, 159] for the convex case and [70, 71], even for nonconvex
variants.

Set-valued risk measures have been introduced in [120]. It contains a dual repre-
sentation result for the sublinear case, basically a combination of the formulae (5.12)
and (7.6). A more systematic development including the extension to the general
convex case has been presented in [80] while market compatibility is due to [82].
A link to depth-trimmed regions, yet another set-valued object from statistics, can
be found in [25]. Currently, the set-valued approach for evaluating multivariate risks
is gaining more and more attention, see for example [53, 119, 165] and also [51,
52]. Applications of Benson’s algorithm and its variants to financial problems can
be found in [87, 88, 152] and related approaches in [200, 201] as well as in [38].
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