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Abstract In this paper, we consider set-valued payoff bi-matrix games where each
player’s payoffs are given by non-empty sets in n-dimensional Euclidean spacesRn .
First, we define several types of set-orderings on the set of all non-empty subsets
in R

n . Second, by using these orderings, we define four kinds of concepts of Nash
equilibrium strategies to the games and investigate their properties. Finally, we give
sufficient conditions for which there exists these types of Nash equilibrium strategy.
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1 Introduction

Since seminal works by Neumann and Morgenstern [26] and Nash [24, 25], Game
theory has played an important role in the fields of decision making theory such as
economics, management, and operations research, etc.

When we apply the game theory to model some practical problems with which
we encounter in real situations, we have to know (1) who are players, (2) what
are strategies for each player, and (3) values of payoffs for each player to receive.
However it is difficult for us to know the exact values of payoffs and could only
know the values of payoffs approximately, or with some imprecise degree in general.
In order to model such a situation with game theory, a great number of efforts have
been devoted to the developments of game theory from the theoretical and practical
points of views.
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For the games where the payoffs are given by random variables, Harsanyi [6] has
defined Bayesian games, which is games with incomplete information on players’
payoffs, and the concept of BayesianNash equilibrium to the games, and investigated
the properties.

Campos [4] has considered fuzzy matrix games where the payoffs are given by
fuzzy numbers, and proposed some methods to solve fuzzy matrix games based on
linear programming, but has not defined explicit concepts of equilibrium strategies.

For fuzzy bi-matrix games with fuzzy payoffs, Maeda [18] has defined three
types of Nash equilibrium strategies based on possibility and necessity measures and
investigated their properties; Maeda [19] has defined three types of Nash equilibrium
strategies by using fuzzy max ordering, and proved that fuzzy bi-matrix games are
equivalent to the games with vector payoffs games. While, for fuzzy matrix games,
Maeda [20] has defined fuzzy minimax equilibrium strategies based on fuzzy max
order and investigated their properties.

Aghassi andBertsimas [1] have consideredmatrix gameswhere payoffs are uncer-
tain and players have no information about the probability distributions, and inves-
tigated their properties based on robust optimization methods in mathematical pro-
gramming. Liu and Kao [17], and Li [16] have considered matrix games where the
payoffs are compact intervals in R and proposed some methods to solve the matrix
games based on linear programming approaches. However, Liu and Kao [17] and Li
[16] have not defined explicit concepts of equilibrium strategies.

In this paper, we consider the bi-matrix games where each player’s payoffs are
given by non-empty sets in n-dimensional Euclidean spaces Rn , including interval-
valued payoffs, which means both players don’t know exact values of payoffs but
they know their ranges. Namely, we consider the games that payoffs are deterministic
uncertainty (See Leitmann [15]). Based on set-valued maps optimization methods
(Maeda [21–23]), for set payoff game, we define four kinds of concepts of Nash equi-
librium and give sufficient conditions under which there exist these Nash equilibrium
strategies.

For those purposes, this paper is organized as follows. In Sect. 2, we introduce
several types of set orderings on the set of all non-empty subsets in n-dimensional
Euclidean space R

n and investigate their properties. In Sect. 3, we introduce two
types of extended real-valued set functions defined on the set of all non-empty sub-
sets of Rn , which are extensions of the non-convex separation functions (Gerth and
Weidner [5], Hamel [7] and Hernández and Rodríguez-Marín [8]) and investigate
their properties. In particular, we show that these set functions aremonotone and pos-
itively homogeneous with respect to the set orderings given in Sect. 2. In Sect. 4, we
consider set payoffs bi-matrix games, where the payoffs for each player are compact
convex sets in R

�. First, we define the concepts of Nash equilibrium strategy to the
game; then, associated with the set payoff bi-matrix games, we define the two-person
games with scalar payoffs; bi-matrix games; we investigate relationships between
set payoff bi-matrix games and scalar payoff two-person games. In Sect. 5, we give
sufficient conditions under which there exists at least one Nash equilibrium strategy
to set payoff bi-matrix games.
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2 Orderings on Sets in R
n and Set-Valued Maps

LetRn be n-dimensional Euclidean space andRn+ be its non-negative orthant, respec-
tively. By P(Rn) and C(Rn), we denote the sets of all non-empty subsets of Rn

and the set of all non-empty compact subsets of R
n , respectively. For any ele-

ments A, B ∈ P(Rn) and any real number λ ∈ R, we write A + B := {z ∈ R
n | z =

x + y, x ∈ A, y ∈ B} andλA := {z ∈ R
n | z = λ x, x ∈ A}.Whenever A ∈ P(Rn)

is a singleton, say A = {a}, we abuse notations and write a instead of {a}.
Definition 2.1 For A, B ∈ P(Rn), we write

A �L B iff B ⊆ A + R
n
+, (1)

A �U B iff A ⊆ B − R
n
+, (2)

A � B iff A �L B and A �U B. (3)

A ≺L B iff cl B ⊆ cl A + intRn
+, (4)

A ≺U B iff cl A ⊆ cl B − intRn
+, (5)

A ≺ B iff A ≺L B and A ≺U B, (6)

A � B iff A ≺L B and A �U B, or A �L B and A ≺U B. (7)

where cl A denotes the closure of the set A.

It is easy to see that the binary relations �L , �U , and � are reflexive and transitive,
but not antisymmetric. In fact, for any A, B ∈ P(Rn), A � B and B � A implies
that A + R

n+ = B + R
n+, in general. Therefore, the binary relations �L , �U , and �

are quasi orderings on P(Rn). On the other hand, binary relations ≺L , ≺U , ≺, and
� are strict partial orderings.

The set-orderings � and ≺ are introduced by Young [27]. Kuroiwa [12, 13] use
the set-orderings �L , �U , ≺L and ≺U to study set optimization problems where the
objective map is given by set-valued map. By using the set-ordering �, Maeda [21]
gave the condition that fuzzy mathematical problems are equivalent to set-valued
optimization problems. For the relationships among these set orderings and other set
orderings, see Jahn and Ha [10].

Let A ⊆ P(Rn) be any non-empty subset and A ∈ A be any set. Then, the set
A ∈ A is said to be a maximal element in A with respect to the set-ordering � iff
A′ ∈ A, A � A′ imply A′ � A. While, A ∈ A is said to be a maximal element inA
with respect to the set-ordering � iff there is no Ā ∈ A such thatA � Ā, and A ∈ A
is said to be a maximal element in A with respect to the set ordering ≺ iff there
is no Ā ∈ A such that A ≺ Ā. Similarly, we could define various types of maximal
element in A with respect to other set-orderings given in Definition 2.1

Let F : Rn � R
� be any set-valued map. By Dom(F) := {x ∈ R

n | F(x) �= ∅}
and Gr(F) := {(x, y) ∈ R

n × R
� | y ∈ F(x)}, we denote the effective domain and

the graph of F , respectively. Let F : Rn � R
� be any set-valued map and S ⊆

Dom(F) be any non-empty convex set. Then F is said to be �-concave on S if
(1 − λ)F(x) + λF(y) � F((1 − λ)x + λy) holds for ∀x, y ∈ S and ∀λ ∈ [0, 1];
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F : Rn � R
� is said to be �-convex on S if F((1 − λ)x + λy) � (1 − λ)F(x) +

λF(y) holds for ∀x, y ∈ S and ∀λ ∈ [0, 1] (See Maeda [23]). While F : Rn � R
�

is said to be convex-valued if F(x) is convex for ∀x ∈ Dom(F); F : Rn � R
� is

said to be compact-valued if F(x) is compact for ∀x ∈ Dom(F).
A set-valued map F : Rn � R

� is said to be upper semi-continuous at xo ∈
Dom(F) if, for any sequences {(xν, yν)}∞ν=1 ⊆ Gr(F) converging to (xo, yo) ∈ R

n ×
R

�, we have yo ∈ F(xo). While, F : Rn � R
� is said to be lower semi-continuous at

xo ∈ Dom(F) if, for any (xo, yo) ∈ Gr(F), and any sequence
{xν}∞ν=1 ⊆ Dom(F) such that {xν}∞ν=1 converging to xo, there exists a subsequence
{(xν ′

, yν ′
)}∞ν ′=1 ⊆ Gr(F) such that the sequence {yν ′ }∞ν ′=1 converges to yo; F : Rn �

R
� is said to be continuous at xo ∈ R

n if F is upper semi-continuous and lower semi-
continuous at xo. We say F is continuous on Dom(F) if, for any xo ∈ Dom(F), F
is continuous at xo (see Aubin [3]).

Let F : Rn � R
m be any set-valuedmap, S ⊆ Dom(F) be any non-empty set and

let xo ∈ S be any point. Then F is said to be uniformly compact near xo ∈ S if there
exists a neighborhood N (xo) of xo such that cl ∪x∈N (xo) F(x) is compact, where cl
denotes the closure of the set ∪x∈N (xo)F(x). F is said to be uniformly compact on S
if F is uniformly compact near x for all x ∈ S.

3 Scalarizaion Methods of Set-Valued Maps in R
n

In this section, we define two types of extended real-valued functions defined on
C(Rn),which are extensions ofGerstewitz’s functions and investigate their properties
(see [5, 7, 8], Maeda [23] and Araya [2]) .

Let A ∈ C(Rn) be any non-empty compact set and let ko ∈ int Rn+ be any point.We
define the real-valued set functions φi (·; ko) : C(Rn) → R by φi (A; ko) := sup{t ∈
R | tko �i A}, i = L , U .Note that, for eacha ∈ A,φL(a; ko) = φU (a; ko) = min{ai

/ki | i = 1, 2, · · · , n} and φL(·; ko), φU (·; ko) : Rn → R are continuous on R
n as

functions defined on R
n . Then we have the following lemma (see Hamel [7]).

Lemma 3.1 Let A ∈ C(Rn) be any compact set and let ko ∈ intRn+ be any point.
Then we have

φL(A; ko) = min{φL(a; ko) | a ∈ A}, (8)

φU (A; ko) = max{φU (a; ko) | a ∈ A}, (9)

A ⊆ φL(A; ko)ko + R
n
+, (10)

φU (A; ko)ko ⊆ A − R
n
+. (11)

The following theorem shows that the set functions φL(·; ko) and φU (·; ko) are
superadditive and positively homogeneous on C(Rn), namely φi (·, ko), i = L , U are
concave set functions.
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Theorem 3.1 Let A, B ∈ C(Rn) be any compact sets, ko ∈ int Rn+ be any point and
let λ ∈ R+ be any real number. Then it holds that

φi (A; ko) + φi (B; ko) � φi (A + B; ko), i = L , U, (12)

φi (λA; ko) = λφi (A; ko) i = L , U. (13)

Proof First we show that (12) and (13) hold for φL(·, ko). Let A, B ∈ C(Rn) be any
compact sets. From (8), there exist points ā ∈ A and b̄ ∈ B such that

φL(A + B; ko) = φL(ā + b̄; ko)

= min{ āi + b̄i

ko
i

| i = 1, 2, · · · , n}

� min{ āi

ko
i

| i = 1, 2, · · · , n} + min{ āi

ko
i

| i = 1, 2, · · · , n}
= φL(ā; ko) + φL(b̄; ko)

� φL(A; ko) + φL(B; ko)

Next we show that φL(·; ko) is positively homogeneous. Let λ > 0 be any real
number,

φL(λA; ko) = sup{t ∈ R | λA ⊆ tko + R
n
+}

= sup{t ∈ R | A ⊆ (t/λ)ko + R
n
+}

= sup{λt ′ ∈ R | A ⊆ t ′ko + R
n
+}

= λφL(A; ko).

For λ = 0, it obvious that (13) holds. By a similar way, we could show that (12) and
(13) hold for φU (·, ko). �

Corollary 3.1 Let A, B ∈ C(R) be any intervals and let ko ∈ intR+ be any positive
real number. Then it holds that

φi (A + B; ko) = φi (A; ko) + φi (B; ko), i = L , U.

Proof We omit the proof. �

The following theorem shows that the set functions φL(·; ko) and φU (·; ko) are
monotone increasing with respect to the set orderings�i , ≺i , i = L , U for any given
ko ∈ intRn+.

Theorem 3.2 Let A, B ∈ C(Rn) be any compact sets, and let ko ∈ int Rn+ be any
vector and λ ∈ R+ be any positive number. Then it holds that
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φL(A; ko) � φL(B; ko) if A �L B, (14)

φU (A; ko) � φU (B; ko) if A �U B, (15)

φL(A; ko) < φL(B; ko) if A ≺L B, (16)

φU (A; ko) < φU (B; ko) if A ≺U B. (17)

Proof First we show that (14) holds. Let A, B ∈ C(Rn) be any elements such that
A �L B holds. Since the set orderings �L is a quasi ordering, from Lemma 3.1, we
have φL(A; ko)ko �L A �L B, which implies that φL(A; ko) � φL(B; ko). Second
we show that (15) holds. Let A, B ∈ C(Rn) be any elements such that A �U B
holds. Since the set ordering �U is quasi ordering, from Lemma 3.1, we have
φU (A; ko)ko �U A �U B, which implies that φU (A; ko) � φU (B; ko).

Third, we show that (16) holds. Note that there exists a vector b̄ ∈ B such that
φL(B; ko) = φL(b̄; ko). Since A ≺L B, there exists a vector ā ∈ A and a real number
ε > 0 such that b̄ = ā + εko holds. Therefore, we have φL(B; ko) = φL(b̄; ko) =
φL(ā; ko) + ε > φL(A; ko).

Finally, we show (17) holds. Let ā ∈ A be any vector such that φU (A; ko) =
φU (ā; ko). Then there exist a vector b̄ ∈ B and a real number ε > 0 such that ā = b̄ −
εko holds. Hence we have φU (A; ko) = φU (b̄; ko) − ε < φU (b̄; ko) �
φU (B; ko). �

Let F : Rn � R
m be any set-valued map with compact image, ko ∈ intRm+ be

any point, and let S ⊆ Dom(F) be any non-empty set. We define real-valued func-
tions hi (·; ko) : S → R by hi (x; ko) := φi (F(x); ko), i = L , U . Then we have the
following theorem.

Theorem 3.3 Suppose that the set-valued map F : S � R
m is convex-valued and

compact-valued and S is a convex set. If F is �-concave on S, then real-valued
functions hi (·; ko) : S → R, i = L , U are concave on S.

Proof Let x, y ∈ S be any elements and λ ∈ [0, 1] be any real number. By assump-
tions, since the set S is convex and F is �-concave, from Theorem 3.1 and 3.2, we
have

hi ((1 − λ)x + λy; ko) = φi (F((1 − λ)x + λy); ko)

� φi ((1 − λ)F(x) + λF(y); ko)

� (1 − λ)φi (F(x); ko) + λφi (F(y); ko)

= (1 − λ)hi (x; ko) + λhi (y; ko),

which implies that hi (·; ko) is concave on S, i = L , U . �

Theorem 3.4 Suppose that S is compact, the set-valued map F : S � R
m is compact-

valued and uniformly compact on S. If the set-valued map F is continuous on S, then
functions hi (·; ko), i = L , U are continuous on S.
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Proof From Lemma 3.1, it holds that hL(x; ko) = min{φL(z; ko) | z ∈ F(x)} and
hU (x; ko) = max{φU (z; ko) | z ∈ F(x)} for ∀x ∈ S. By assumptions, since F is
continuous on S and uniformly compact on S, φi (·; ko), i = L , U are continuous as
functions defined onR�. Hence, hi (·, ko), i = L , U are continuous on S (See Hogan
[9], Theorems 5 and 6). �

4 Bi-Matrix Game with Set Payoffs and Its Equilibrium
Strategy

Let I, J denote players and let M := {1, 2, . . . , m} and N := {1, 2, . . . , n}be the sets
of all pure strategies available for players I and J , respectively. We denote the sets of
all mixed strategies available for players I and J by SI := {x := (x1, x2, . . . , xm) ∈
Rm+ | xi � 0, i = 1, 2, . . . , m,

∑m
i=1 xi = 1}, SJ := {y := (y1, y2, . . . , yn) ∈ Rn+ |

y j � 0, j = 1, 2, . . . , n,
∑n

j=1 y j = 1}.
By Ai j , Bi j ∈ C(R�), we denote the payoffs that player I receives and J receives

when player I plays the pure strategy i and player J plays the pure strategy j ,
respectively. We setA := (Ai j ) and B := (Bi j ), whereA and B are m × n matrices
whose i, j th elements are Ai j and Bi j , respectively.

Nowwe define bi-matrix gamewith set payoffs by� := 〈{I, J }, SI × SJ , {A,B}〉
or

Player I

Player J
1 2 · · · n

1 (A11, B11) (A12, B12) · · · (A1n, B1n)

2 (A21, B21) (A22, B22) · · · (A2n, B2n)
...

...
...

. . .
...

m (Am1, Bm1) (Bm2, Bm2) · · · (Amn, Bmn)

Let x ∈ SI and y ∈ SJ be anymixed strategies. For each player I and J , we define
the set-valued payoff maps F, G : SI × SJ � R

� by F(x, y) := ∑m
i=1

∑n
j=1 xi

Ai j y j and G(x, y) := ∑m
i=1

∑n
j=1 xi Bi j y j , which are called expected payoffs.

Player I is said to be L-type, U -type, and LU -type if he maximizes his expected
payoff F(x, y)with respect to the set-orderings �L , �U , and � for given y ∈ SJ and
player J is said to be L-type, U -type, and LU -type if he maximizes his expected
payoff G(x, y) with respect to the set-orderings �L ,�U , and � for given x ∈ SI . By
�(�L ,�U ), we denote the game where player I is L-type and J is U -type. Then,
set-payoff game � is classified into the following five set payoff games �(�L ,�L),

�(�L ,�U ), �(�U ,�L), �(�U ,�U ), and �(�,�).
In the above games, each player knows his/her own type, but does not know the

other player’s type. Therefore, set-payoff games are considered to be incomplete
information games and Nash equilibrium strategy is characterized by Bayesian Nash
equilibrium strategy (see [6]).
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While, from Theorem 3.2, noting that for any A, B ∈ C(Rn), A � B implies that
φL(A; ko) � φL(B; ko) and φU (A; ko) � φU (B; ko) hold, we may assume that both
players use the set-ordering� tomaximize their expected payoffs and this is common
knowledge between players. Moreover, from practical point of views, our approach
is useful to study bi-matrix with fuzzy vector payoffs. Hence, in the following, we
assume that both players I and J are LU type and this is a common knowledge for
the players.

For each (x, y) ∈ SI × SJ , we set F(y) : ={F(x, y) | x∈SI } and G(x):=
{G(x, y) | y ∈ SJ } and denote the sets of all maximal elements inF(y) with respect
to the set orderings�,� and≺ byF(y)�, F(y)�, andF(y)≺, respectively. Similarly,
we denote the sets of all maximal elements in G(x) with respect to the set orderings
�, � and ≺ by G(x)�, G(x)�, and G(x)≺. By definitions, for each (x, y) ∈ SI × SJ ,
it holds that F(y)� ⊆ F(y)� ⊆ F(y)≺ and G(x)� ⊆ G(x)� ⊆ G(x)≺.

Now we define the concept of Nash equilibrium strategies to game �.

Definition 4.1 A pair of strategies (x∗, y∗) ∈ SI × SJ is said to be a Nash equilib-
rium strategy to game � if it holds that

(i) F(x, y∗) � F(x∗, y∗), ∀x ∈ SI ,
(ii) G(x∗, y) � G(x∗, x∗), ∀y ∈ SJ .

The pair of sets (F(x∗, y∗), G(x∗, y∗)) is said to be the value of game �.

Wedefine set-valuedmapsBI : SJ � SI ,BJ : SI � SJ andB : SI × SJ � SI × SJ

by BI (y) := {x ∈ SI | F(u, y) � F(x, y), ∀u ∈ SI }, BJ (x) := {y ∈ SJ |
G(x, v) � G(x, y), ∀v ∈ SJ } and B(x, y) := BI (y) × BJ (x). Then, it is obvious
that the pair of strategies (x, y) ∈ SI × SJ is a Nash equilibrium if and only if
(x, y) ∈ B(x, y) holds.

Example 4.1 We consider the following bi-matrix game with interval-valued pay-
offs. In Game 1 (Fig. 1), there is no pair of pure strategies such that the pair is a
Nash equilibrium. We show that there exists a unique mixed Nash equilibrium in
Game 1. Let x := (x1, x2) ∈ SI and y := (y1, y2) ∈ SJ be any strategies. Then, by
simple calculations, we have

F(x, y) = [(1 − 2y1)x1 + 3y1 + 1, (1 − 2y1)x1 + 3y1 + 3], (18)

G(x, y) = [(2x1 − 1)y1 + x1 + 3, (2x1 − 1)y1 + x1 + 5]. (19)

From (18) and (19), we have the the following best response maps:

BI (y1, y2) =
⎧
⎨

⎩

{(1, 0)} if y1 ∈ [0, 1/2),
SI if y1 = 1/2,
{(0, 1)} if y1 ∈ (1/2, 1],

and BJ (x1, x2) =
⎧
⎨

⎩

{(0, 1)} if x1 ∈ [0, 1/2),
SJ if x1 = 1/2,
{(1, 0)} if x1 ∈ (1/2, 1].

Then, we have ((0.5, 0.5), (0.5, 0.5)) ∈ BI ((0.5, 0.5)) × BJ ((0.5, 0.5)), which
implies that the pair of strategies {(0.5, 0.5), (0.5, 0.5)} is a unique Nash equilibrium
strategy in Game 1.
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Player I

Player J

C D

C ([3, 5], [5, 7]) ([2, 4], [4, 6])

D ([4, 6], [2, 4]) ([1, 3], [3, 5])

Fig. 1 Game 1

The following example shows that there is no Nash equilibrium strategy in set-payoff
games in general.

Example 4.2 Weconsider the following bi-matrix gamewith interval-valued payoffs
(Fig. 2). For any x := (x1, x2) ∈ SI and y := (y1, y2) ∈ SJ , we have

F(x, y) = [(3 − 2y1)x1 − 2y1 + 4, (y1 − 2)x1 − 4y1 + 10].

Then, it holds that BI (y) = ∅, ∀y ∈ SJ . Therefore, there is no Nash equilibrium in
Game 2.

Based on the above example, we introduce three types of concepts of Nash equilib-
rium strategies.

Definition 4.2 A pair of strategies (x∗, y∗) ∈ SI × SJ is said to be a maximal Nash
equilibrium to game � if it holds that (F(x∗, y∗), G(x∗, y∗)) ∈ F(y∗)� × G(x∗)�.

Definition 4.3 A pair of strategies (x∗, y∗) ∈ SI × SJ is said to be a Pareto Nash
equilibrium to game � if it holds that (F(x∗, y∗), G(x∗, y∗)) ∈ F(y∗)� × G(x∗)�.

Player I

Player J

C D

C ([4, 5], [5, 7]) ([7, 8], [4, 6])

D ([2, 6], [2, 4]) ([4, 10], [3, 5])

Fig. 2 Game 2
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Definition 4.4 A pair of strategies (x∗, y∗) ∈ SI × SJ is said to be a weak Pareto
Nash equilibrium to game � if it holds that (F(x∗, y∗), G(x∗, y∗)) ∈ F(y∗)≺ ×
G(x∗)≺.

It is easy to see that pairs of pure strategies {(C, C)} and {(D, D)} are maximal
Nash equilibriums in Game 2 (Fig. 2).

Example 4.3 Consider the following bi-matrix game with interval-valued payoffs
(Fig. 3).

It is easy to see that the pairs of the pure strategies {(C, C)} and {(D, D)} are Nash
equilibrium strategies in Game 3. For each x := (x1, x2) ∈ SI and y := (y1, y2) ∈
SJ , the set-valued payoff maps for players I and J are given by

F(x, y) = [2(5y1 − 1)x1 − y1 + 3, 2x1y1 + 5y1 + 4], (20)

G(x, y) = [2(5x1 − 1)y1 − x1 + 3, 2x1y1 + 5x1 + 4]. (21)

The pair of strategy {(1/6, 5/6), (1/6, 5/6)} is a maximal Nash equilibrium strat-
egy in Game 3. But there are infinite number of maximal Nash equilibrium strategies
in Game 3, and the set of all maximal Nash equilibrium strategies is given by {(x, 1 −
x), (y, 1 − y) ∈ SI × SJ | 0 < x < 1/5, 0 < y < 1/5} ∪ {(C, C)} ∪ {(D, D)}.
Let ko ∈ int R�+ be any point and λi , μi ∈ R+, i = L , U be any real numbers
such that λL + λU = μL + μU = 1. Now we define real-valued functions f, g :
SI × SJ → R by

f (x, y; ko, λL , λU ) := λLφL(F(x, y); ko) + λU φU (F(x, y); ko),

g(x, y; ko, μL , μU ) := μLφL(G(x, y); ko) + μU φU (G(x, y); ko).

Associated with game �, we define the following two person non-cooperative game
with scalar payoffs �(ko, λL , λU μL , μU ) by

�(ko, λL , λU , μL , μU ) := 〈 {I, J }, SI × SJ , { f (·, ·; ko, λL , λU ), g(·, ·; ko, μL , μU )} 〉.

Player I

Player J

C D

C ([10, 11], [10, 11]) ([1, 4], [2, 9])

D ([2, 9], [1, 4]) ([3, 4], [3, 4])

Fig. 3 Game 3
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We assume that λi and μi , i = L , U are common knowledge in �(ko, λL , λU ,

μL , μU ).

Definition 4.5 A pair of strategies (x∗, y∗) ∈ SI × SJ is said to be a Nash equilib-
rium to game �(ko, λL , λU , μL , μU ) if it holds that

(i) f (x, y∗; ko, λL , λU ) � f (x∗, y∗; ko, λL , λU ) ∀x ∈ SI ,
(ii) g(x∗, y; ko, μL , μU ) � g(x∗, y∗; ko, μL , μU ) ∀y ∈ SJ .

Definition 4.6 A pair of strategies (x∗, y∗) ∈ SI × SJ is said to be a strict Nash
equilibrium to game �(ko, λL , λU , μL , μU ) if it holds that

(i) f (x, y∗; ko, λL , λU ) < f (x∗, y∗; ko, λL , λU ) ∀x ∈ SI , x �= x∗,
(ii) g(x∗, y; ko, μL , μU ) < g(x∗, y∗; ko, μL , μU ) ∀y ∈ SJ , y �= y∗.

The following theorem holds between game � and game �(ko, λL , λU , μL , μU ).

Theorem 4.1 Let (x∗, y∗) ∈ SI × SJ be any pair of strategies to game �. Then, if the
pair of strategies (x∗, y∗) ∈ SI × SJ is a Nash equilibrium to game �(ko, λL , λU ,

μL , μU ), then it is a weak Pareto Nash equilibrium to game �.

Proof Suppose that there exists a strategy x̄ ∈ SI such that F(x∗, y∗) ≺ F(x̄, y∗)
holds. Then, from Theorem 3.2, we have f (x∗, y∗; ko, λL , λU , μL) < f (x̄, y∗; ko,

λL , λU ), which contradicts that (x∗, y∗) is Nash equilibrium to game �(ko, λL , λU ,

μL , μU ). Next we suppose that there exists a strategy ȳ ∈ SJ such that G(x∗, y∗) ≺
G(x∗, ȳ) holds. Then, from Theorem 3.2, we have g(x∗, y∗; ko, μL , μU ) < g(x∗, ȳ;
ko, μL , μU ), which contradicts that (x∗, y∗) is a Nash equilibrium to game�(ko, λL ,

λU , μL , μU ). �

Theorem 4.2 Let (x∗, y∗) ∈ SI × SJ be any pair of strategies and suppose that
λi , μi ∈ intR+, i = L , U are positive numbers in game �(ko, λL , λU μL , μU ).
Then we have the following:

(i) If the pair of strategies (x∗, y∗) is a Nash equilibrium to game �(ko, λL , λU , μL ,

μU ), it is a Pareto Nash equilibrium to game �.
(ii) If the pair of strategies (x∗, y∗) is a strict Nash equilibrium to game�(ko, λL , λU ,

μL , μU ), it is a maximal Nash equilibrium to game �.

Proof First, we show that (i) holds. On the contrary, we suppose that the pair of
strategies (x∗, y∗) is not a Pareto Nash equilibrium to game �. Then there exists a
strategy x̄ ∈ SI such that F(x∗, y∗) � F(x̄, y∗) holds. Since λi > 0, i = L , U , from
Theorem 3.2, we have f (x∗, y∗; ko, λL , λU , μL) < f (x̄, y∗; ko, λL , λU ), which
contradicts that (x∗, y∗) is a Nash equilibrium to game �(ko, λL , λU , μL , μU ).
Next we suppose that there exists a strategy ȳ ∈ SJ such that G(x∗, y∗) � G(x∗, ȳ)

holds. Sinceμi > 0, i = L , U , fromTheorem3.2,we have g(x∗, y∗; ko, μL , μU ) <

g(x∗, ȳ; ko, μL , μU ), which contradicts that (x∗, y∗) is a Nash equilibrium to game
�(ko, λL , λU , μL , μU ).

Next we show that (ii) holds. Suppose that there exists a strategy x̄ ∈ SI such
that F(x∗, y∗) � F(x̄, y∗) holds. Since λi > 0, i = L , U , and (x∗, y∗) is a strict
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Nash equilibrium to game �(ko, λL , λU , μL , μU ), from Theorem 3.2, we have
f (x∗, y∗; ko, λL , λU ) = f (x̄, y∗; ko, λL , λU ) and x∗ = x̄ . Therefore, we have
F(x̄, y∗) � F(x∗, y∗).

Next we suppose that there exists a strategy ȳ ∈ SJ such that G(x∗, y∗) �
G(x∗, ȳ) holds. Then, since μi > 0, i = L , U and (x∗, y∗) is a strict Nash equi-
librium to game �(ko, λL , λU , μL , μU ), from Theorem 3.2, we have g(x∗, y∗; ko,

μL , μU ) = g(x∗, ȳ; ko, μL , μU ) and y∗ = ȳ. Therefore, we have G(x̄, y∗) �
G(x∗, y∗). �

From Theorems 4.1 and 4.2, by varying parameters λi , μi , i = L , U, we could
obtain another maximal Nash, Pareto Nash and weak Pareto Nash equilibrium strate-
gies to game �.

We consider Game 3 given in Example 4.3 again. Let ko = 1 ∈ R and λi , μi ∈
intR+, i = L , U be any positive numbers such that λL + λU = μL + μU = 1.
Then, for each x := (x1, x2) ∈ SI and y := (y1, y2) ∈ SJ , real-valued payoff func-
tions f, g : SI × SJ → R for each player I and J are given by

f (x, y; ko, λL , λU ) := 2{(5λL + λU )y1 − 2λL }x1 − (λL − 5λU )y1 + (3λL + 4λU ),

g(x, y; ko, μL , μU ) := 2{(5μL + μU )x1 − 2μL }y1 − (μL − 5μU )x1 + (3μL + 4μU ).

We set x∗
1 := μL/(5μL + μU ) ∈ (0, 1/5) and y∗

1 ;= λL/(5λL + λU ) ∈ (0, 1/5).
Then, the pair of strategies {(x∗

1 , 1 − x∗
1 ), (y∗

1 , 1 − y∗
1 )} is a Nash equilibrium in

game �(ko, λL , λU , μL , μU ). From Theorem 4.2, the pair of strategies {(x∗
1 , 1 −

x∗
1 ), (y∗

1 , 1 − y∗
1 )} is a Pareto Nash equilibrium in game �. We show that the

pair of strategies {(x∗
1 , 1 − x∗

1 ), (y∗
1 , 1 − y∗

1 )} is a maximal Nash equilibrium in
game �. Suppose that there exists a strategy (x1, x2) ∈ SI such that F((x∗

1 , 1 −
x∗
1 ), (y∗

1 , 1 − y∗
1 )) � F((x1, x2), (y∗

1 , 1 − y∗
2 )). Then, by simple calculations, we

have (x1, x2) = (x∗
1 , 1 − x∗

1 ). Similarly,we could show thatG((x∗
1 , 1 − x∗), (y∗

1 , 1 −
y∗
1 )) � G((x∗

1 , 1 − x∗
1 ), (y1, y2)) implies (y1, y2) = (y∗

1 , 1 − y∗
1 ). Therefore, the pair

of strategies {(x∗
1 , 1 − x∗

1 ), (y∗
1 , 1 − y∗

1 )} is a maximal Nash equilibrium in game �.
Note that, the scalar-payoff game �(ko, λL , λU , μL , μU ) induced from set-

payoff game �, is the game with incomplete informations. Because in game
�(ko, λL , λU , μL , μU ), player I does not know μL and μU , while player J does
not know the value of λL and λU which are necessary for each player to find
best response strategies. Moreover, each player may choose different ko in game
�(ko, λL , λU , μL , μU ). Therefore, the Nash equilibrium strategy in the scalar-
payoff game �(ko, λL , λU , μL , μU ) is a Bayesian Nash equilibrium (See Harsanyi
[6]).

5 Existence of Nash Equilibrium Strategy to Game �

In the previous section, for anygiven set payoff bi-matrix games,wedefine twoperson
games with scalar-valued payoff functions, and investigate relationships between
these games. In this section, we shall give some conditions under which there exists
at least one maximal Nash, Pareto Nash and weak Pareto Nash equilibrium strategies
to game �.
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Lemma 5.1 In game �, suppose that Ai j , Bi j ∈ C(R�), i ∈ M, j ∈ N are compact
convex sets. Then, it holds that

(i) (1 − λ)F(x1, y) + λF(x2, y) = F((1 − λ)x1 + λx2, y) ∀x1, x2 ∈ SI , ∀y ∈
SJ , ∀λ ∈ [0, 1],

(ii) The set-valued map F : SI × SJ � R
� is continuous on SI × SJ ,

(iii) F is uniformly compact on SI × SJ ,
(iv) (1 − λ)G(x, y1) + λG(x, y2) = G(x, (1 − λ)y1 + λy2) ∀x ∈ SI , ∀y1, y2 ∈

SJ , ∀λ ∈ [0, 1],
(v) The set-valued map G : Rn × R

n � R
� is continuous on SI × SJ ,

(vi) G is uniformly compact on SI × SJ .

Proof We shall show that (i), (ii) and (iii) hold. Let (x1, y), (x2, y) ∈ SI × SJ be
any strategies and λ ∈ [0, 1] be any real number. Then by simple calculations, we
have

(1 − λ)F(x1, y) + λF(x2, y) = (1 − λ)

m∑

i=1

n∑

j=1

x1
i Ai j y j + λ

m∑

i=1

n∑

j=1

x2
i Ai j y j

= (1 − λ)

m∑

i=1

x1
i

n∑

j=1

Ai j y j + λ

m∑

i=1

x2
i

n∑

j=1

Ai j y j

=
m∑

i=1

{(1 − λ)x1
i + λx2

i }
n∑

j=1

Ai j y j

= F((1 − λ)x1 + λx2, y).

Next we shall show that (ii) holds. First, we shall show that F(·, ·) is upper
semi-continuous on SI × SJ . Let {(xν, yν, zν)}∞ν=1 ⊆ Gr(F) be any sequence con-
verging to (xo, yo, zo) ∈ SI × SJ × R

� . By Definition, for each ν, there exits an
aν

i j ∈ Ai j , i ∈ M, j ∈ N such that zν = ∑m
i=1

∑n
j=1 xν

i aν
i j yν

j . Since Ai j is compact,
without loss of any generality we assume that {aν

i j }∞ν=1 converges to some point
ao

i j ∈ Ai j . Therefore, we have zo ∈ F(xo, yo).
Second we shall show that F(·, ·) is lower semi-continuous on SI × SJ . Let

{(xν, yν)}∞ν=1 ⊆ SI × SJ be any sequence converging to (xo, yo) ∈ SI × SJ and
zo ∈ F(xo, yo) be any point. Then there exists ao

i j ∈ Ai j such that zo = ∑m
i=1

∑n
j=1

xo
i ao

i j yo
j .Bysetting zν := ∑m

i=1

∑n
j=1 xν

i ao
i j yν

j ,wehave zν ∈ F(xν, yν) and zν → zo,
which implies that F(·, ·) is lower semi-continuous on SI × SJ . From the above,
F(·, ·) is continuous on SI × SJ .

Finally we show that (iii) holds. In order to show that F is uniformly compact
on SI × SJ , it suffices to show that F(SI , SJ ) is compact. Let {zν}∞ν=1 ⊆ F(SI , SJ )

be any sequence. By definition, for each ν, there exist points aν
i j ∈ Ai j , xν

i ∈ SI

and yν
j ∈ SJ , i ∈ M, j ∈ N such that zν = ∑m

i=1

∑n
j=1 xν

i aν
i j yν

j . By assumptions,
Ai j , SI and SJ are compact, without loss of any generality, we may assume that
xν

i → xo
i , yν

j → yo
j , and aν

i j → ao
i j , i ∈ M, j ∈ N , which implies that zν → zo ∈
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∑m
i=1

∑n
j=1 xo

i ao
i j yo

j ∈ F(SI , SJ ). By a similar way, we could show that (iv), (v), and
(vi) hold. �

From Theorems 3.3, 3.4 and Lemma 5.1, we have the following lemma.

Lemma 5.2 Suppose that Ai j , Bi j ∈ C(R�), i ∈ M, j ∈ N are compact convex sets
in game �. Then, it holds that

(i) f (·, y; ko, λL , λU ) : SI → R is concave and f (·, ·; ko, λL , λU ) is continuous on
SI × SJ ,

(ii) g(x, ·; ko, μL , μU ) : SJ → R is concave and g(·, ·; ko, μL , μU ) is continuous
on SI × SJ .

Let (x, y) ∈ SI × SJ be any pair of strategies in game �(ko, λL , λU , μL , μU ).
We define the set-valued maps BI (·; ko, λL , λU ) : SJ � SI and BJ (·; ko, μL , μU ) :
SI � SJ by BI (y; ko; λL , λU ) := {u ∈ SI | f (u, y; ko, λL , λU ) � f (x, y; ko, λL ,

λU ) ∀x ∈ SI } and BJ (x; ko, μL , μU ) := {v ∈ SJ | g(x, v; ko, μL , μU ) � g(x, y;
ko, μL , μU ) ∀y ∈ SJ }, which are called the best response maps for players I and
J , respectively.

From Lemma 5.2, we have the following lemmas.

Lemma 5.3 Suppose that Ai j , Bi j ∈ C(R�), i ∈ M, j ∈ N are compact convex sets
in game �. Then, it holds that

(i) BI (y; ko, λL , λU ) and BJ (x; ko, μL , μU ) are non-empty, compact and convex
set for each (x, y) ∈ SI × SJ .

(ii) BI (·; ko, λL , λU ) : SJ � SI and BJ (·; ko, μL , μU ) : SI � SJ are upper semi-
continuous on SJ and SI respectively.

Proof First we show that (i) holds. From Lemma 5.2, for each y ∈ SJ , f (·, y; ko,

λL , λU ) is concave and continuous on SI . Since SI is compact and convex, it holds
that BI (y; ko, λL , λU ) is non-empty, compact and convex for all y ∈ SJ . Similarly,
we could show that (i) holds for BJ (x; ko, μL , μU ).

Next, we prove that (ii) holds for BI (·; ko, λL , λU ). Let {(xν, yν)} ⊆ Gr(BI (·; ko,

λL , λU )) be any sequence converging to (xo, yo) ∈ SI × SJ . Then it holds that
f (xν, yν; ko, λL , λU ) � f (u, yν; ko, λL , λU ) for ∀u ∈ SI . From Lemma 5.2, since
f (·, ·; ko, λL , λU ) is continuous on SI × SJ , we have f (xo, yo; ko, λL , λU )

� f (u, yo; ko, λL , λU ) for ∀u ∈ SI , which implies that xo ∈ BI (yo; ko, λL , λU ).
Similarly, we could show that (ii) holds for BJ (·; ko, μL , μU ). �

Nowwe define the set-valued map B(·, ·; ko, λL , λU , μL , μU ) : SI × SJ � SI ×
SJ by B(x, y; ko, λL , λU , μL , μU ) := BI (y; ko, λL , λU ) × BJ (x; ko, μL , μU ).
Then from Lemma 5.3, we have the following lemma.

Lemma 5.4 Suppose that Ai j , Bi j ∈ C(R�), i ∈ M, j ∈ N are compact convex sets
in game �. Then, it holds that

(i) B(x, y; ko, λL , λU , μL , μU ) is non-empty, compact and convex for each (x, y) ∈
SI × SJ .
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(ii) The set-valued map B(·, ·; ko, λL , λU , μL , μU ) : SI × SJ � SI × SJ is upper
semi-continuous on SI × SJ .

Lemma 5.5 The pair of strategies (x∗, y∗) ∈ SI × SJ is a Nash equilibrium to game
�(ko, λL , λU , μL , μU ) if and only if (x∗, y∗)∈B(x∗, y∗; ko, λL , λU , μL , μU ) holds
(See Kakutani [11]).

Lemma 5.5 shows that a pair of strategies (x∗, y∗) is a Nash equilibrium if and only if
it is a fixed point of the set-valued map B(·, ·; ko, λL , λU , μL , μU ). From the above
lemmas, we have the following theorem.

Theorem 5.1 Suppose that Ai j , Bi j ∈ C(R�), i ∈ M, j ∈ N are compact convex
sets in game �. Then, there exists at least one Pareto Nash equilibrium strategy in
game �.

Proof Let ko ∈ intR�+ be any point and λi , μi ∈ R+, i = L , U be any positive
numbers. Then, from Lemma 5.3, B(x, y; ko, λL , λU , μL , μU ) is non-empty, com-
pact and convex for each (x, y) ∈ SI × SJ and the set-valued map B(·, ·; ko, λL , λU ,

μL , μU ) is upper semi-continuous on SI × SJ . Therefore, from Kakutani’s fixed
point theorem [11], there exists at least one point (x∗, y∗) ∈ SI × SJ such that
(x∗, y∗) ∈ B(x∗, y∗; ko, λL , λU , μL , μU ). Therefore, from Lemma 5.5 and Theo-
rem 4.2, the point (x∗, y∗) is a Pareto Nash equilibrium strategy in game �. �

Theorem 5.2 Suppose that Ai j , Bi j ∈ C(R), i ∈ M, j ∈ N are compact convex sets
in game �. Then there exists at least one maximal Nash equilibrium strategy in game
�.

Proof Without loss of any generality, we assume that ko = 1, λi = μi = 1, i =
L , U and Ai j = [aL

i j , aU
i j ] and Bi j = [bL

i j , bU
i j ], i ∈ M, j ∈ N . Then, fromCorollary

3.1,

f (x, y; ko, λL , λU , μL , μU ) =
m∑

i=1

n∑

j=1

xi (φ
L(Ai j ; ko) + φU (Ai j ; ko))y j ,

=
m∑

i=1

n∑

j=1

xi (a
L
i + aU

i j )y j , (22)

g(x, y; ko, λL , λU , μL , μU ) =
m∑

i=1

n∑

j=1

xi (φ
L(Bi j ; ko) + φU (Bi j ; ko))y j

=
m∑

i=1

n∑

j=1

xi (b
L
i j + bU

i j )y j , (23)

Namely, game�(ko, λL , λU , μL , μU ) is a bi-matrix gamewith scalar valued payoffs.
Let (x∗, y∗) ∈ SI × SJ be any Nash equilibrium strategy to game �(ko, λL , λU ,

μL , μU ). Suppose that there exists a strategy x̄ ∈ SI such that
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m∑

i=1

n∑

j=1

x∗
i [aL

i j , aU
i j ]y∗

j �
m∑

i=1

n∑

j=1

x̄i [aL
i j , aU

i j ]y∗
j . (24)

Then by Definition 2.1, it holds

m∑

i=1

n∑

j=1

x∗
i aL

i j y∗
j �

m∑

i=1

n∑

j=1

x̄i a
L
i j y∗

j , (25)

m∑

i=1

n∑

j=1

x∗
i aU

i j y∗
j �

m∑

i=1

n∑

j=1

x̄i a
U
i j y∗

j . (26)

Since (x∗, y∗) is a Nash equilibrium to game �(ko, λL , λU , μL , μU ), it must hold
that

m∑

i=1

n∑

j=1

x∗
i (aL

i j + aU
i j )y∗

j =
m∑

i=1

n∑

j=1

x̄i (a
L
i j + aU

i j j )y∗
j . (27)

From (25), (26) and (27), it follows that

m∑

i=1

n∑

j=1

x∗
i aL

i j y∗
j =

m∑

i=1

n∑

j=1

x̄i a
L
i j y∗

j

m∑

i=1

n∑

j=1

x∗
i aU

i j y∗
j =

m∑

i=1

n∑

j=1

x̄i a
U
i j y∗

j ,

which implies that

m∑

i=1

n∑

j=1

x̄i [aL
i j , aU

i j ]y∗
j �

m∑

i=1

n∑

j=1

x∗
i [aL

i j , aU
i j ]y∗

j .

Namely, F(x∗, y∗) is a maximal element in F(y∗)�. By a similar way, we could
show that G(x∗, y∗) is a maximal element in G(x∗)�. Hence (x∗, y∗) is a maximal
Nash equilibrium strategy in game �. �

Theorem 5.3 Suppose that Ai j , Bi j ∈ C(R�), i ∈ M, j ∈ N are compact convex
sets and that B(x, y) �= ∅ for each (x, y) ∈ SI × SJ holds in game �. Then, there
exists a Nash equilibrium in game �.

Proof From Kakutani’s fixed point theorem, it suffices to show that the set-valued
map B is convex-valued and upper semi-continuous on SI × SJ .

Firstwe show that set-valuedmapBI is convex-valued. Let y ∈ SJ be any element.
Then from Lemma 5.1, for each x1, x2 ∈ BI (y) and any λ ∈ [0, 1], it holds that
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(1 − λ)F(x1, y) + λF(x2, y) = F((1 − λ)x1 + λx2, y) ⊆ F(u, y) + R
�+ ∀u ∈ SI ,

F(u, y) ⊆ (1 − λ)F(x1, y) + λF(x2, y) = F((1 − λ)x1 + λx2, y) − R
�+ ∀u ∈ SI ,

which implies (1 − λ)x1 + λx2 ∈ BI (y). Namely, the set-valued map BI is convex-
valued. Similarly, we could prove that the set -valued map BJ is convex-valued.

Next, we show that set-valued map BI is upper semi-continuous on SJ . Let
{(yν, xν)} ⊆ SI × SJ be any sequence converging to (yo, xo) such that xν ∈ BI (yν)

for ∀ν. It suffices to show that F(u, yo) � F(xo, yo) holds for ∀u ∈ SI . Let zo ∈
F(xo, yo) ⊆ F(u, yo) + R

�+ be any element. From Lemma 5.1, since F is con-
tinuous on SI × SJ , there exists a sequence {zν} converging to zo such that zν ∈
F(xν, yν) ⊆ F(u, yν) + R

�+. By Definition, it holds that F(u, yν) �L F(xν, yν)

for ∀u ∈ SI and for ∀ν. Again, from Lemma 5.1, F(u, yν) is compact, we have
zo ∈ F(u, yo) + R

�+, ∀u ∈ SI , which implies that F(u, yo) �L F(xo, yo) holds for
∀u ∈ SI .

Finally we show that F(u, yo) �U F(xo, yo) holds for ∀u ∈ SI . Let u ∈ SI

be any element. From the continuity of F , for any zo ∈ F(u, yo), there exists
zν ∈ F(u, yν) ⊆ F(xν, yν) − R

�+ such that zo ∈ F(u, yo). Since F is compact-
valued and continuous on SI × SJ , we have zo ∈ F(xo, yo) − R

�, which implies
that F(u, yo) �U F(xo, yo) holds for ∀u ∈ SI . By a similar way we could show that
BJ is upper semi-continuous on SI . Hence B is upper semi-continuous on
SI × SJ . �

6 Conclusion

In this paper, we considered set payoff bi-matrix gameswhere payoffs for each player
are given by compact convex sets in R

�, namely, players don’t know the values of
payoffs but the ranges of the payoffs. We call this environment deterministic uncer-
tainty. This type of game may encompass interval payoff games, fuzzy payoff games
and robust games. First, we define several types of set orderings on the set of all
non-empty subsets in n-dimensional Euclidean space R

n . Second, by using these
orderings, we define four kinds of concepts of Nash equilibrium strategies, that is,
Nash, maximal Nash, Pareto Nash, and weak Pareto Nash equilibrium strategies to
the games and investigate their properties. In particular, we investigate the relation-
ships between set-payoff games and incomplete information games. Finally, we give
sufficient conditions under which there exists these Nash equilibrium strategies in
bi-matrix games with set-valued payoffs and necessary condition under which there
exists Nash equilibrium strategies in bi-matrix games with interval-valued payoffs.

In this paper, we use the set-orderings �, � and≺ to define the concepts of Nash,
maximal Nash, Pareto Nash, and weak Pareto Nash equilibrium to the games with
set payoff. However, it is easy to use other types of set-orderings, say �i , i = L , U
etc. to define the concepts of Nash, maximal Nash, Pareto Nash, and weak Pareto
Nash equilibrium to the games with set payoff and we could derive similar results to



330 T. Maeda

the games with set payoffs. Moreover, we could define the incomplete information
gamewith set payoffs, where each player chooses a set-orderings among set-ordering
given inDefinition 2.1, after that, each players plays the gamewith set payoff, without
knowing the set-ordering which the other player chooses each other. This means that
there are deep relationships between set-payoff games and incomplete information
games.
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