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Abstract In this paper, we propose a generalized minimality in set optimization. At
first, we introduce parametrized embedding functions, which includes the embedding
function in the previous literatures. By using the embedding functions, we gener-
alize notions of minimal solutions for set optimization, and give existence results
of the generalized minimal solutions. Also we introduce parametrized scalarizing
functions which are generalizations of scalarizing functions defined in the previ-
ous literatures, and we characterize the generalized minimal solutions by using the
scalarizing functions.
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1 Introduction

We study the following optimization problem (SP):

(SP) Minimize F(x)

subject to x ∈ X,

where X is a nonempty set, F is a set-valued map from X to an ordered vector space
E . Notions of minimal solutions of (SP) are defined in accordance with set relations,
which are binary relations on the power set of E , e.g., see [12]. Such optimization
problem (SP) is called set optimization.

For every set relation, notions of minimal solutions of (SP) can be defined. For
example, l-minimal and u-minimal solutions are given by using set relations�l
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�u
K , respectively. We studied various notions and properties in each set relation, that

is, notions of weak and proper minimal solutions of (SP), conditions for the existence
for suchminimal notions, duality results for such minimal notions, notions of convex
functions for set-valued maps, and notions of derivatives for set-valued maps in each
set relation. Therefore, it sometimes takes much time to observe them.

In this paper, we propose a unified approach to study set optimization which
covers the study with respect to set relations �l

K and �u
K , and we define a notion

of minimality which is a generalization of l and u-minimality but also s-minimality,
see [6]. In Sects. 2 and 3, we give preliminaries about vector and set optimization. In
Sect. 4, we introduce parametrized embedding functions by observing behavior of a
singleton,which is a generalization of the previous embedding function definedby the
author, and we study properties of the parametrized embedding functions. By using
the parametrized embedding functions, we define generalized minimal solutions for
set optimization, and show existence theorems of the generalized minimal solutions.
In Sect. 5, we introduce parametrized scalarizing functions which are generalizations
of scalarizing functions defined in the previous literatures. By using the scalarizing
functions, we characterize the generalized minimal solutions.

2 Preliminaries—Vector Optimization

Let C be a closed convex cone of a topological vector space E over R satisfying
C ∩ (−C) = {0} and intC �= ∅, where 0 is the null vector and intC is the set of all
interior points of C . The partial order ≤C is given by

x ≤C y if and only if y − x ∈ C,

and binary relation <C by

x <C y if and only if y − x ∈ intC.

For any subset A of E , the set of all minimal elements of A with respect to C is
written by

Min(A | C) = {a ∈ A | (a − C) ∩ A = {a}}
= {a ∈ A | a′ ∈ A, a′ ≤C a ⇒ a ≤C a′},

and the set of all weak minimal elements of A with respect to C is written by

wMin(A | C) = {a ∈ A | (a − intC) ∩ A = ∅}
= {a ∈ A | �a′ ∈ A such that a′ <C a}.

The positive polar cone of C is given by
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C+ = {c∗ ∈ E∗ | 〈c∗, c〉 ≥ 0,∀c ∈ C},

where E∗ is the continuous dual space of E , and it is well known that C++, the
second positive polar cone of C , which is given by

C++ = {c ∈ E | 〈c∗, c〉 ≥ 0,∀c∗ ∈ C∗},

coincides with C .
For a nonempty convex subset A of E , x0 ∈ wMin(A | C), that is, A ∩ (x0 −

intC) = ∅ if and only if there exists c∗ ∈ C+ such that 〈c∗, x0〉 = minx∈A 〈c∗, x〉 by
using a separation theorem.

In the nonconvex case, nonlinear scalarization is a well-known tool to study min-
imal and weak minimal elements. Such scalarizing functions are given as follows:

z(x) = inf{t ∈ R | x ∈ te − C},

or
f (x) = inf{t ∈ R | x ∈ te + a − intC},

for fixed e ∈ C and a ∈ E , see [2, 14]. These two scalarizing functions, which are
essentially the same because z(x − a) = f (x) under the assumptions of this section,
play very important roles to study vector optimization.

3 Preliminaries—Set Optimization

In the rest of the paper, let E be a normed vector space, and C := C(E) be the family
of all nonempty compact convex subsets of E . For each A, B ∈ C and λ ∈ R,

A + B = {x + y | x ∈ A, y ∈ B} and λA = {λx | x ∈ A},

and also A − B = A + (−B). It is clear that C is not a vector space under these
operators, because there does not existC ∈ C satisfying A + C = {0} for given A ∈ C
which has at least two points.

Set relations are binary relations on C based on an ordering cone and these are the
most important notions to consider set optimization problems. Throughout the paper,
let K be a closed convex cone of E satisfying K ∩ (−K ) = {0} and intK �= ∅. We
introduce set relations �l

K and �u
K on C: for each A, B ∈ C,

A �l
K B if and only if A + K ⊃ B,

A �u
K B if and only if A ⊂ B − K ,
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and weak set relations ≺l
K and ≺u

K on C: for each A, B ∈ C,

A ≺l
K B if and only if A + int K ⊃ B,

A ≺u
K B if and only if A ⊂ B − int K .

Also we define A ∼l
K B if A �l

K B and B �l
K A. In the previous literatures [12],

above set relations are called type (iii) or type (v), and then, these are written by
A �(iii)

K B, A �(v)
K B, A ≺(iii)

K B, and A ≺(v)
K B, respectively.

Let A be a subfamily of C. By using these set relations, notions of minimality of
A with respect to K are defined as follows: a set A ∈ A is said to be an l-minimal
element of A if and only if

B ∈ A, B �l
K A ⇒ A �l

K B,

and a set A ∈ A is said to be a weak l-minimal element of A if and only if

B ∈ A, B ≺l
K A ⇒ A ≺l

K B,

or equivalently,
�B ∈ A such that B ≺l

K A.

Replacing l by u, notions of u-minimality and weak u-minimality of A are given.
Consider the following set-valued optimization problem:

(SP) Minimize F(x)

subject to x ∈ X,

where X is a nonempty set and F : X → C. By using the notions of minimality
defined above, we define notions of solutions of (SP) with respect to K . An element
x0 ∈ X is said to be an l-minimal solution of (SP) if and only if F(x0) is an l-minimal
element of {F(x) | x ∈ X}, and is said to be a weak l-minimal solution of (SP) if
and only if F(x0) is a weak l-minimal element of {F(x) | x ∈ X}. In similar way,
u-minimal solutions and weak u-minimal solutions are defined.

To study set-valued optimization problem (SP), many researchers have proposed
several generalizations of scalarizing function which is given in the last section, see
[1, 4, 5, 13]. In these literature, such scalarizing functions are classified broadly into
the following four types:

I l
e(A; B) = inf{t ∈ R | A �l

K te + B},
I u
e (A; B) = inf{t ∈ R | A �u

K te + B},
Sl

e(A; B) = sup{t ∈ R | A �l
K te + B}, and

Su
e (A; B) = sup{t ∈ R | A �u

K te + B}.
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In this paper, we propose an idea of a unification of the above minimalities, and
a unification of the above scalarizing functions. For this purpose, we introduce a
partially ordered normed vector space in which the family C is embedded in the next
section.

4 An Embedding Space and an Embedding Function

In this study, we provide a vector space in which the class C is embedded, in order to
reformulate set optimization problem (SP) as a vector optimization problem. There
are several literatures with respect to the construction of a vector space in which a
family of convex sets is embedded, for example, see [15, 16]. In this section, we
introduce a specialized embedding vector space C2/≡ and an embedding function ψ
to observe l-minimal solutions of (SP). All definitions and results are based on the
previous literatures, see [10, 11].

Let ≡ be a binary relation on C2 defined by

(A, B) ≡ (C, D) if and only if A + D + K = B + C + K ,

then ≡ is an equivalence relation on C2. To show this, the following cancellation law
is used: for each A, B, C ∈ C,

A + C + K = B + C + K ⇒ A + K = B + K .

Denote the equivalence class of (A, B) ∈ C as [A, B] = {(C, D) ∈ C2 | (A, B) ≡
(C, D)}, and the quotient space of C2 by ≡ as C2/≡ = {[A, B] | (A, B) ∈ C2}. On
the quotient space, we define addition and scalar multiplication as follows:

[A, B] + [C, D] = [A + C, B + D],
λ · [A, B] =

{ [λA,λB] if λ ≥ 0,
[(−λ)B, (−λ)A] if λ < 0.

Then (C2/≡,+, · ) becomes a vector space over R with the null vector [{0}, {0}](=:
θ). Clearly, [A, A] = θ for each A ∈ C by using the cancellation law. Next we can
define a norm on C2/≡ for a given bounded base W of K +, that is ∪λ≥0λW = K +,
whose closure does not contain 0.The existenceof suchW is guaranteedby intK �= ∅,
for example, see [7]. Define

‖[A, B]‖ = sup
w∈W

|inf 〈w, A〉 − inf 〈w, B〉| ,

for every [A, B] ∈ C2/≡, then ‖ · ‖ is a norm on C2/≡, and we equip the vector space
C2/≡ with the topology which is induced by the norm. Let K be defined as

K = {[A, B] ∈ C2/≡| B �l
K A}.
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ThenK is a closed convex cone with nonempty interior,K ∩ (−K) = {θ} and more-
over

intK = {[A, B] ∈ C2/≡| B ≺K A}.

From this, we can define the following partial order ≤K and binary relation <K on
C2/≡ in the same manner to vector optimization: for each [A, B], [C, D] ∈ C2/≡,

[A, B] ≤K [C, D] if and only if [C, D] − [A, B] ∈ K,

and
[A, B] <K [C, D] if and only if [C, D] − [A, B] ∈ intK.

Let (C2/≡)∗ be the continuous dual space of C2/≡. The positive polar cone of K
is given by

K+ = {T ∈ (C2/≡)∗ | 〈T, [A, B]〉 ≥ 0,∀[A, B] ∈ K},

and the second positive polar cone of K is given by

K++ = {[A, B] ∈ C2/≡| 〈T, [A, B]〉 ≥ 0,∀T ∈ K+}.

Also we have K = K++ from the closedness of convex cone K.
Define an embedding function ψ : C → C2/≡ by

ψ(A) = [A, {0}]

for all A ∈ C. Because C2/≡ is an ordered normed vector space with convex cone
K, we reconsider notions of minimality with respect to �l

K by using the embedding
function. For a subfamily A of C, A ∈ A is l-minimal of A with respect to K

⇐⇒ B ∈ A, B �l
K A ⇒ A �l

K B

⇐⇒ B ∈ A, [A, B] ∈ K ⇒ [B, A] ∈ K
⇐⇒ B ∈ A, [A, {0}] − [B, {0}] ∈ K ⇒ [B, {0}] − [A, {0}] ∈ K
⇐⇒ B ∈ A,ψ(A) − ψ(B) ∈ K ⇒ ψ(B) − ψ(A) ∈ K
⇐⇒ B ∈ A,ψ(A) − ψ(B) ∈ K ⇒ ψ(B) − ψ(A) = θ

⇐⇒ B ∈ A,ψ(B) ∈ ψ(A) − K ⇒ ψ(B) = ψ(A)

⇐⇒ ψ(A) ∩ (ψ(A) − K) ⊂ {ψ(A)}
⇐⇒ ψ(A) ∈ Min(ψ(A) | K)

⇐⇒ ψ(A) is a minimal element of ψ(A) with respect to K.

Therefore l-minimality is represented by minimality of vector optimization. Also,
A ∈ A is weak l-minimal ofAwith respect to K if and only ifψ(A) ∈ wMin(ψ(A) |
K), that is, ψ(A) is a weak minimal element of ψ(A) with respect to K. In the same
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way, set optimization

(SP) Minimize F(x)

subject to x ∈ X,

can be regarded as the following vector optimization:

(VP) Minimize ψ ◦ F(x)

subject to x ∈ X.

An element x0 ∈ X is an l-minimal solution of (SP) in the last section if and only if
ψ ◦ F(x0) ∈ Min(ψ ◦ F(X) | K) and x0 ∈ X is a weak l-minimal solution of (SP) in
the last section if and only ifψ ◦ F(x0) ∈ wMin(ψ ◦ F(X) | K), whereψ ◦ F(X) =
{ψ(F(x)) | x ∈ X}.

The embedding space C2/≡ and the embedding function ψ play very important
role to study l-minimal solutions and weak l-minimal solutions of set optimization
problems. In the rest of this paper, we propose parameterized embedding functions
ψλ, which include the previous embedding function ψ. By using the parametrized
embedding functions, we define notions of generalized minimal solutions, and we
characterize such solutions by using given parametrized scalarizing functions.

5 Parameterized Embedding Functions

At first, we give an important observation of a singleton {a} ⊂ E as follows:

[{a}, {0}] = [{0},−{a}] = [(1 − λ){a},−λ{a}],

for each λ ∈ R. Indeed, the first equality follows from {a} + (−{a}) = {0} + {0}
and the second equality follows from {0} − λ{a} = −{a} + (1 − λ){a}. From the
observation, we define new embedding functions ψλ : C → C2/≡ as follows:

ψλ(A) = [(1 − λ)A,−λA]

for each A ∈ C. Clearly ψ0 is the same to ψ, which was given previously. By using
the embedding function, we have the following remarkable proposition:

Proposition 1 For each A, B ∈ C, the following are satisfied:

(i) ψ0(A) ≤K ψ0(B) if and only if A �l
K B,

(ii) ψ0(A) <K ψ0(B) if and only if A ≺l
K B,

(iii) ψ0(A) = ψ0(B) if and only if A ∼l
K B,

(iv) ψ1(A) ≤K ψ1(B) if and only if A �u
K B,

(v) ψ1(A) <K ψ1(B) if and only if A ≺u
K B, and

(vi) ψ1(A) = ψ1(B) if and only if A ∼u
K B.
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Proof Proof of (i) is shown as follows:

ψ0(A) ≤K ψ0(B) ⇐⇒ [A, {0}] ≤K [B, {0}] ⇐⇒ θ ≤K [B, A] ⇐⇒ A �l
K B.

From this and K ∩ (−K) = {θ}, (iii) is given immediately. Proof of (iv) is given in
similar way:

ψ1(A) ≤K ψ1(B) ⇐⇒ [{0},−A] ≤K [{0},−B] ⇐⇒ θ ≤K [−A,−B]
⇐⇒ −A �l

K −B ⇐⇒ B �u
K A.

Proofs of (ii), (v) and (vi) are similar and omitted. �
Motivated by Proposition1, we give the following notations:

A �λ
K B if and only if ψλ(A) ≤K ψλ(B),

A ≺λ
K B if and only if ψλ(A) <K ψλ(B), and

A ∼λ
K B if and only if ψλ(A) = ψλ(B).

Clearly these include binary relations �l
K , �u

K , ≺l
K , ≺u

K , ∼l
K and ∼u

K .
Now we observe properties of the parametrized embedding functions.

Proposition 2 For each A ∈ C, the following are satisfied:

(i) for each α,β ∈ [0,∞), αA + β A = (α + β)A;
(ii) for each α,β ∈ [0,∞), [αA,β A] = (α − β)[A, {0}];

(iii) if λ ≤ 0 then ψλ(A) = ψ0(A);
(iv) if 1 ≤ λ then ψλ(A) = ψ1(A).

Proof Let A ∈ C and α,β ∈ [0,∞). (i) is shown from the convexity of A. Indeed,
we may assume that α + β > 0. Then

αA + β A = (α + β)

(
α

α + β
A + β

α + β
A

)
= (α + β)A.

Next we show (ii). When α > β, since α = (α − β) + β and α − β,β ≥ 0, we have

[αA,β A] = [(α − β)A + β A,β A] = [(α − β)A, {0}] + [β A,β A]
= [(α − β)A, {0}] = (α − β)[A, {0}].

The first equality is shown from (i). In similar way, when α ≤ β, since β = α +
(β − α) and α,β − α ≥ 0, we have

[αA,β A] = [αA,αA + (β − α)A] = [αA,αA] + [{0}, (β − α)A]
= [{0}, (β − α)A] = (β − α)[{0}, A] = (α − β)[A, {0}].
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Next we show (iii). Let λ ≤ 0. Since 0 ≤ −λ ≤ 1 − λ, by using (ii), we have

ψλ(A) = [(1 − λ)A,−λA] = ((1 − λ) − (−λ))[A, {0}] = [A, {0}] = ψ0(A).

The proof of (iv) is similar to (iii) and omitted. �

The next proposition is about monotonicity of the embedding functions with
respect to variable λ for a given A ∈ C .

Proposition 3 Let A ∈ C and 0 ≤ λ0 ≤ λ1 ≤ 1. Then the following are satisfied:

(i) ψλ1(A) − ψλ0(A) = (λ1 − λ0)[{0}, A − A];
(ii) ψ(1−t)λ0+tλ1(A) = (1 − t)ψλ0(A) + tψλ1(A) for each t ∈ [0, 1];

(iii) ψλ0(A) ≤K ψλ1(A);
(iv) λ0 < λ1 and A − A ≺l

K {0} if and only if ψλ0(A) <K ψλ1(A);
(v) if λ0 < λ1 and A is not a singleton, then ψλ0(A) �= ψλ1(A).

Proof Let A ∈ C and 0 ≤ λ0 ≤ λ1 ≤ 1. The proof of (i) is as follows:

ψλ1(A) − ψλ0(A) = [(1 − λ1)A,−λ1 A] − [(1 − λ0)A,−λ0 A]
= [(1 − λ1)A − λ0 A, (1 − λ0)A − λ1A]
= [(1 − λ1)A, (1 − λ0)A] + [λ0(−A),λ1(−A)]
= (λ0 − λ1)[A, {0}] + (λ0 − λ1)[−A, {0}]
= (λ0 − λ1)[A − A, {0}]
= (λ1 − λ0)[{0}, A − A].

The fourth equality is shown by using Proposition2 (ii). Next we show (ii). For each
t ∈ [0, 1], by using (i),

ψ(1−t)λ0+tλ1(A) − ψλ0(A) = t (λ1 − λ0)[{0}, A − A], and

ψλ1(A) − ψ(1−t)λ0+tλ1(A) = (1 − t)(λ1 − λ0)[{0}, A − A],

and then, we have the following equality, which is equivalent to (ii):

(1 − t)(ψ(1−t)λ0+tλ1(A) − ψλ0(A)) = t (ψλ1(A) − ψ(1−t)λ0+tλ1(A)).

We show (iii). Since A − A � 0, it is clear that A − A + K ⊃ {0}, that is, A − A �l
K{0}, or equivalently [{0}, A − A] ∈ K, and then we have (λ1 − λ0)[{0}, A − A] ∈ K

because K is a cone and λ1 − λ0 ≥ 0. The proof of (iv) is similar to (iii). Finally
we show (v). Assume that λ0 < λ1, A is not a singleton, and ψλ0(A) = ψλ1(A).
From (i) andλ1 − λ0 > 0, we have [{0}, A − A] = θ, or equivalently, A − A + K =
K . Since A is not a singleton, there exist different two elements a, a′ ∈ A. Since
A − A ⊂ K , a − a′ ∈ K and a′ − a ∈ K , therefore a − a′ ∈ K ∩ (−K ) = {0}. This
is a contradiction. �
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We have observed that if A is a singleton then all embedding functions ψλ have
the same image at the beginning of this section. The inverse implication holds from
the following proposition:

Proposition 4 For each A ∈ C, the following are equivalent:

(i) A = {a} for some a ∈ E;
(ii) there exist different λ0,λ1 ∈ [0, 1] such that ψλ0(A) = ψλ1(A);

(iii) for each λ0,λ1 ∈ [0, 1], ψλ0(A) = ψλ1(A).

Proof It is clear that (i) implies (iii), which is the first observation of this section,
and (iii) implies (ii). Also (ii) implies (i) from (v) of Proposition3. �

The following property is essential to define generalized minimality of (SP):

Proposition 5 Let A, B ∈ C and 0 ≤ λ0 < λ1 ≤ 1. The following are satisfied:

(i) both A �λ0
K B and A �λ1

K B if and only if A �λ
K B for every λ ∈ (λ0,λ1);

(ii) both A ≺λ0
K B and A ≺λ1

K B if and only if A ≺λ
K B for every λ ∈ [λ0,λ1];

(iii) {λ ∈ [0, 1] | A �λ
K B} is a closed interval, a singleton or empty;

(iv) {λ ∈ [0, 1] | A ≺λ
K B} is an interval which is open in [0, 1] or empty.

Proof Let A, B ∈ C and 0 ≤ λ0 < λ1 ≤ 1. We show (i). Assume that A �λ0
K B

and A �λ1
K B, that is, both ψλ0(A) ≤K ψλ0(B) and ψλ1(A) ≤K ψλ1(B). For any

λ ∈ (λ0,λ1), λ = (1 − t)λ0 + tλ1 for some t ∈ (0, 1). From (ii) of Proposition3,

ψλ(A) = (1 − t)ψλ0(A) + tψλ1(A) and ψλ(B) = (1 − t)ψλ0(B) + tψλ1(B).

This implies ψλ(A) ≤K ψλ(B), that is, A �λ
K B. Conversely, assume that A �λ

K B,
that is, ψλ(A) ≤K ψλ(B) for every λ ∈ (λ0,λ1). This is equivalent to

(1 − t)ψλ0(A) + tψλ1(A) ≤K (1 − t)ψλ0(B) + tψλ1(B)

for every t ∈ (0, 1) by using (ii) of Proposition3. From the closedness of K, we
have ψλ0(A) ≤K ψλ0(B) and ψλ1(A) ≤K ψλ1(B) by considering the cases t ↘ 0
and t ↗ 1. The proof of (ii) is similar to (i) and omitted. We show (iii). Put � =
{λ ∈ [0, 1] | A �λ

K B}. We may assume that |�| > 1. For any λ0,λ1 ∈ � such that
λ0 < λ1, we have (λ0,λ1) ⊂ � from (i). This shows that � is an interval in [0, 1].
To prove that � is closed, choose a sequence {λn} ⊂ � converges to λ0. We will
show that A �λ0

K B, that is,

(1 − λ0)A − λ0B + K ⊃ −λ0 A + (1 − λ0)B.

For any a ∈ A and b ∈ B, since

(1 − λn)A − λn B + K ⊃ −λn A + (1 − λn)B
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for every n ∈ N, there exist {an} ⊂ A, {bn} ⊂ B and {kn} ⊂ K such that

(1 − λn)an − λnbn + kn = −λna + (1 − λn)b

for every n ∈ N. From the compactness of A and B, we can choose a subsequence
{n′} of {n} such that {an′ } converges to some a0 ∈ A and {bn′ } converges to some
b0 ∈ B. Therefore {kn′ } converges to k0 = (1 − λ0)(b − a0) + λ0(b0 − a), which is
an element of K because K is closed, and

(1 − λ0)A − λ0B + K � (1 − λ0)a0 − λ0b0 + k0 = −λ0a + (1 − λ0)b.

Finally we show (iv). Put� = {λ ∈ [0, 1] | A ≺λ
K B}. In similar way to (iii),� is an

interval.We show� is open in [0, 1]. Letλ0 ∈ �. Since (1 − λ0)A − λ0B + intK ⊃
−λ0 A + (1 − λ0)B, there exists r > 0 such that

(1 − λ0)A − λ0B + K ⊃ −λ0 A + (1 − λ0)B + 3rU,

where U is the unit closed ball of E . Put ε = r inf ‖W‖/max{‖[−A, B]‖,
‖[A,−B]‖}. We will show that {λ ∈ [0, 1] | |λ − λ0| ≤ ε} ⊂ �. For any λ ∈ [0, 1]
with |λ − λ0| ≤ ε,

|λ − λ0|‖[−A, B]‖ ≤ r inf ‖W‖ and |λ − λ0|‖[A,−B]‖ ≤ r inf ‖W‖,

then for any w ∈ W ,

(λ0 − λ) (inf 〈w,−A〉 − inf 〈w, B〉) ≤ r‖w‖, and

(λ − λ0) (inf 〈w, A〉 − inf 〈w,−B〉) ≤ r‖w‖,

that is,

inf 〈w,−λA + (1 − λ)B〉 ≥ inf 〈w,−λ0 A + (1 − λ0)B〉 − r‖w‖, and

inf 〈w, (1 − λ0)A − λ0B〉 + r‖w‖ ≥ inf 〈w, (1 − λ)A − λB〉.

Therefore, for any w ∈ W ,

inf 〈w,−λA + (1 − λ)B + rU 〉 = inf 〈w,−λA + (1 − λ)B〉 − r‖w‖
≥ inf 〈w,−λ0 A + (1 − λ0)B〉 − 2r‖w‖
= inf 〈w,−λ0 A + (1 − λ0)B + 3rU 〉 + r‖w‖
≥ inf 〈w, (1 − λ0)A − λ0B〉 + r‖w‖
≥ inf 〈w, (1 − λ)A − λB〉.
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This shows
(1 − λ)A − λB + K ⊃ −λA + (1 − λ)B + rU,

that is, A ≺λ
K B. This completes the proof. �

Motivated by Proposition5, we define �-minimality as follows:

Definition 1 Let A be a subfamily of C, A ∈ A, and � be a nonempty subset of
[0, 1]. The set A is said to be a �-minimal element of A with respect to K if and
only if

B ∈ A, B �λ
K A for any λ ∈ � ⇒ A �λ

K B for any λ ∈ �,

or equivalently,

�B ∈ A s.t. ∀λ ∈ �, B �λ
K A and ∃λ0 ∈ � s.t. A �

λ0
K B,

and A is said to be a weak �-minimal element of A with respect to K if and only if

�B ∈ A s.t. ∀λ ∈ �, B ≺λ
K A and ∃λ0 ∈ � s.t. A ⊀

λ0
K B,

When� = {λ}, λ-minimality and weak λ-minimality mean�-minimality and weak
�-minimality respectively.

Clearly, A ∈ A is a λ-minimal element of A if and only if

ψλ(A) ∈ Min(ψλ(A) | K)

and A ∈ A is a weak λ-minimal element of A if and only if

ψλ(A) ∈ wMin(ψλ(A) | K).

The notion of �-minimality includes not only the notions of l and u-minimality,
but also the notion of s-minimality, which was introduced in [6]. Indeed, 0-
minimality, weak 0-minimality, 1-minimality, and weak 1-minimality are equivalent
to l-minimality, weak l-minimality, u-minimality, and weak u-minimality, respec-
tively. For a given family A ⊂ C, remember that A ∈ A is said to be an s-minimal
element of A if and only if

B ∈ A, B �s
K A ⇒ A �s

K B,

where set relation A �s
K B is defined by A �l

K B and A �u
K B. From Proposition5,

A �s
K B ⇐⇒ A �0

K B and A �1
K B ⇐⇒ A �λ

K B for all λ ∈ [0, 1],
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and this shows the equivalence of s-minimality and [0, 1]-minimality. More gener-
ally, �-minimality is equivalent to (co�)-minimality, where co� is the convex hull
of �.

Proposition 6 Let A be a subfamily of C, A ∈ A, and �,�′ be nonempty subsets
of [0, 1]. The following are satisfied:

(i) A is a �-minimal element of A if and only if A is a co(�)-minimal element
of A;

(ii) A is a weak �-minimal element of A if and only if A is a weak co(�)-minimal
element of A;

(iii) if A is a �-minimal element of A and A is a �′-minimal element of A, then A
is a � ∪ �′-minimal element of A;

(iv) if A is a weak �-minimal element of A and A is a weak �′-minimal element of
A, then A is a weak � ∪ �′-minimal element of A.

Proof Weshow (i). Assume that A is a�-minimal element ofA, B ∈ A and B �λ
K A

for all λ ∈ co(�). Since � ⊂ co(�) and A is a �-minimal element of A, A �λ
K B

for all λ ∈ �. For any λ ∈ co(�) \ �, there exist λ0,λ1 ∈ � such that λ ∈ (λ0,λ1).
Since A �λ0

K B and A �λ1
K B, A �λ

K B holds by using (i) of Proposition5. This shows
A is a co(�)-minimal element ofA. Conversely, Assume that A is a co(�)-minimal
element of A, B ∈ A and B �λ

K A for all λ ∈ �. By using (i) of Proposition5, we
have B �λ

K A for all λ ∈ co(�). Since A is a co(�)-minimal element ofA, A �λ
K B

hold for all λ ∈ co(�), and from � ⊂ co(�), we have A is a �-minimal element of
A. To prove (ii), we use (ii) of Proposition5. The proof is similar to (i) and left to
the reader. Proofs of (iii) and (iv) are easy and omitted. �

We define notions of �-minimal solutions of (SP) with respect to K by using the
notions of �-minimality defined above. Remember

(SP) Minimize F(x)

subject to x ∈ X,

where X is a nonempty set, and F : X → C. An element x0 ∈ X is said to be a �-
minimal solution of (SP) if and only if F(x0) is a �-minimal element of {F(x) | x ∈
X}, and is said to be a weak�-minimal solution of (SP) if and only if F(x0) is a weak
�-minimal element of {F(x) | x ∈ X}. Next we give examples of �-minimality.

Example 1 Let A = {(0, 0)}, B = co{(1, 1), (−1,−1), (0,−2), (2, 0)},A= {A, B}
and K = {(x, y) | x, y ≥ 0}. For any λ ∈ [0, 1],

A �λ
K B ⇐⇒ −λB + K ⊃ (1 − λ)B ⇐⇒ 2

3
≤ λ, and

B �λ
K A ⇐⇒ (1 − λ)B + K ⊃ −λB ⇐⇒ λ ≤ 1

3
.
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So, A is a [ 23 , 1]-minimal element of A, and B is a [0, 1
3 ]-minimal element of A.

Clearly, A and B are u and l-minimal elements of A respectively. The notion of
�-minimality shows attributes characteristic of A and B in A.

Example 2 Let F : [0, 2] → 2R be a set-valuedmap defined by F(x)= [ f (x), g(x)],
where f (x) = x − 2 and g(x) = 1

2 |x − 1| − x + 3
2 , for each x ∈ [0, 2]. Consider

(SP) Minimize F(x)

subject to x ∈ [0, 2],

with K = [0,+∞). For fixed λ ∈ [0, 1],
F(x) �λ

K F(y)

⇐⇒ [(1 − λ)[ f (x), g(x)],−λ[ f (x), g(x)]] ≤K [(1 − λ)[ f (y), g(y)],−λ[ f (y), g(y)]]
⇐⇒ [(1 − λ)[ f (y), g(y)] − λ[ f (x), g(x)], (1 − λ)[ f (x), g(x)] − λ[ f (y), g(y)]] ∈ K
⇐⇒ (1 − λ)[ f (x), g(x)] − λ[ f (y), g(y)] + K ⊃ (1 − λ)[ f (y), g(y)] − λ[ f (x), g(x)]
⇐⇒ (1 − λ) f (x) − λg(y) ≤ (1 − λ) f (y) − λg(x)

⇐⇒ (1 − λ) f (x) + λg(x) ≤ (1 − λ) f (y) + λg(y).

Then x̄ ∈ [0, 2] is a�-minimal solution of (SP) if andonly if (1 − λ) f (x̄) + λg(x̄) ≤
(1 − λ) f (x) + λg(x) for any x ∈ [0, 2] and λ ∈ �. Therefore 0 is a [0, 2

5 ]-minimal
solution, each element of (0, 1) is a 2

5 -minimal solution, 1 is a [ 25 , 2
3 ]-minimal solu-

tion, each element of (1, 2) is a 2
3 -minimal solution, and 2 is a [ 23 , 1]-minimal solution.

At the end of this section,we study the existence ofλ-minimal solutions of set opti-
mization problem (SP) because λ0 and λ1-minimality implies [λ0,λ1]-minimality
from Proposition6. We give proofs of the existence theorems in similar ways to the
previous existence theorems of l-minimal solutions of (SP) in [8, 9].

Theorem 1 Let F be a function from a compact topological space X to C. Assume
that the following property: if {xα}α∈T is a totally ordered λ-decreasing net in X, that
is, T is totally ordered, and α < α′ implies F(xα′) ≤λ

K F(xα), and if {xα}α∈T con-
verges x0, then ψλ(F(x0)) ∈ ⋂

α∈T (ψλ(F(xα)) − K). Then there exists a λ-minimal
solution of (SP).

Proof Let {ψλ(F(x))}x∈T be a totally ordered set of {ψλ(F(x))}x∈X . Define a reflex-
ive and transitive binary relation < on T by x < x ′ if ψλ(F(x ′)) ≤K ψλ(F(x)) for
each x , x ′ ∈ T , then (T,<) is a directed set. Since X is compact set, we can choose a
subnet T ′ of T such that T ′ converges to some element x0 of X . From the assumption
of the theorem, ψλ(F(x0)) ∈ ⋂

x∈T ′(ψλ(F(x)) − K).
Now, we will show that ψλ(F(x0)) ≤K ψλ(F(x)) for each x ∈ T . If not, there

exists x̂ ∈ T such that ψλ(F(x0)) �K ψλ(F(x̂)). For each x ∈ T ′ satisfying x̂ <

x ,ψλ(F(x)) ≤K ψλ(F(x̂)), therefore
⋂

x∈T ′,x̂<x (ψλ(F(x)) − K) ⊂ ψλ(F(x̂)) − K.



Generalized Minimality in Set Optimization 307

Clearly
⋂

x∈T ′(ψλ(F(x)) − K) ⊂ ⋂
x∈T ′,x̂<x (ψλ(F(x)) − K), we have ψλ(F(x0))

∈ ψλ(F(x̂)) − K, or equivalently ψλ(F(x0)) ≤K ψλ(F(x̂)). This is a contradiction.
Hence, we have that ψλ(F(x0)) is a lower bound of {ψλ(F(x))}x∈T with respect to
≤K. From Zorn’s lemma, there exists a minimal element of {ψλ(F(x))}x∈X , that is,
there exists a λ-minimal solution of (SP). �

When λ = 0, the condition of F in Theorem1 is weaker than the notion of Haus-
dorff cone-upper continuity; F is Hausdorff K -upper continuous at x0 if for any
neighborhood V of the origin in E , there is a neighborhood U of x0 in X such that
F(x) ⊂ F(x0) + V + K for all x ∈ U ∩ X , for example, see [3]. From this fact and
Theorem1, the following result is shown, the proof is left to the reader:

Corollary 1 Let F be a function from a compact topological space X to C. If F
is Hausdorff K -upper continuous at every x ∈ X, then there exists an l-minimal
solution of (SP). If F is Hausdorff (−K )-lower continuous at every x ∈ X, that is, for
every x ∈ X and for any neighborhood V of the origin in E, there is a neighborhood
U of x in X such that F(x) ⊂ F(x ′) + V − K for all x ′ ∈ U ∩ X, then there exists
an u-minimal solution of (SP).

Define λ-level sets of F by

Levλ(A) = {x ∈ X | F(x) ≤λ
K A},

where A ∈ C.
Theorem 2 If (X, d) is a complete metric space, Levλ(F(x)) is closed for each
x ∈ X, and the following condition is satisfied:

there exists a function l : X → [0,+∞) such that for each x1, x2 ∈ X, F(x1) �λ
K F(x2)

implies d(x2, x1) ≤ l(x2) − l(x1).

Then, there exists a λ-minimal solution of (SP).

Proof Let x0 ∈ X . We construct a sequence {xk} ⊂ X by induction as follows:

(i) if Levλ(F(xk)) �= {xk}, since ψλ(F(x ′)) ≤K ψλ(F(xk)) for some x ′ �= xk ,

0 < d(xk, x ′) ≤ l(xk) − l(x ′) ≤ l(xk) − inf
x∈Levλ(F(xk ))

l(x).

Since l(xk) − inf x∈Levλ(F(xk )) l(x) > 0, we can choose xk+1 ∈ Levλ(F(xk)) such
that

l(xk+1) ≤ inf
x∈Levλ(F(xk ))

l(x) + 1

2

{
l(xk) − inf

x∈Levλ(F(xk ))
l(x)

}
.

(ii) if Levλ(F(xk)) = {xk}, let xk+1 := xk .

In each case, we can check easily that Levλ(F(xk+1)) ⊂ Levλ(F(xk)) and

l(xk+1) − inf
x∈Levλ(F(xk+1))

l(x) ≤ 1

2

{
l(xk) − inf

x∈Levλ(F(xk ))
l(x)

}
.
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Now we show that diam(Levλ(F(xk))) → 0 as k → +∞. Indeed, let u ∈ Levλ

(F(xk)). From the assumption and ψλ(F(u)) ≤K ψλ(F(xk)), we have d(xk, u) ≤
l(xk) − l(u). Hence

d(xk, u) ≤ l(xk) − l(u)

≤ l(xk) − inf
x∈Levλ(F(xk ))

l(x)

≤ 1

2

{
l(xk−1) − inf

x∈Levλ(F(xk−1))
l(x)

}

≤ · · · ≤ 1

2k

{
l(x0) − inf

x∈Levλ(F(x0))
l(x)

}
≤ · · · ≤ 1

2k
l(x0).

This shows us

diam(Levλ(F(xk))) ≤ 1

2k−1
l(x0),

therefore,we have diam(Levλ(F(xk))) → 0 as k → +∞. SinceLevλ(F(xk)) is non-
empty closed, Levλ(F(xk+1)) ⊂ Levλ(F(xk)), and (X, d) is complete, we conclude⋂

k∈N Levλ(F(xk)) = {x̂} for some x̂ ∈ X . This implies Levλ(F(x̂)) = {x̂} and, it
follows that x̂ is a λ-minimal solution of (SP). �

6 A Generalized Scalarizing Function on C

Since C2/≡ is an ordered vector space with convex cone K, the scalarizing function
from C2/≡ to R is given in this way:

ϕ[P,Q]([A, B]) = inf{t ∈ R | [A, B] ∈ t[P, Q] − K},

for fixed [P, Q] ∈ C2/≡. From the definition, it is clear that ϕ[P,Q]([A, B] +
r [P, Q]) = ϕ[P,Q]([A, B]) + r . When [P, Q] ∈ intK, this function ϕ[P,Q] has the
following properties: it is a special case of vector-valued version in [3], and the proof
of the following theorem is omitted.

Theorem 3 If [P, Q] ∈ intK, then ϕ[P,Q] : C2/≡→ R is a well-defined continuous
function, and for each [A, B], [C, D] ∈ C2/≡, we have

(i) ϕ[P,Q]([A, B]) ≤ r if and only if [A, B] ∈ r [P, Q] − K;
(ii) ϕ[P,Q]([A, B]) < r if and only if [A, B] ∈ r [P, Q] − intK;

(iii) ϕ[P,Q]([A, B]) > r if and only if [A, B] /∈ r [P, Q] − K;
(iv) ϕ[P,Q]([A, B]) ≥ r if and only if [A, B] /∈ r [P, Q] − intK;
(v) [A, B] ≤K [C, D] implies ϕ[P,Q]([A, B]) ≤ ϕ[P,Q]([C, D]);

(vi) [A, B] <K [C, D] implies ϕ[P,Q]([A, B]) < ϕ[P,Q]([C, D]).
Now we characterize solutions of (SP) by using the scalarizing function. At first

we observe λ-minimal elements of a subfamily A ⊂ C with respect to K :
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Theorem 4 Let [P, Q] ∈ intK and A be a subfamily of C. The set A ∈ A is a λ-
minimal element of A if and only if for each B ∈ A, ϕ[P,Q](ψλ(B) − ψλ(A)) > 0 or
B ∼λ

K A. The set A ∈ A is a weak λ-minimal element of A if and only if for each
B ∈ A, ϕ[P,Q](ψλ(B) − ψλ(A)) ≥ 0.

Proof The set A ∈ A is a λ-minimal element ofA if and only if B ∈ A,ψλ(B) ≤K
ψλ(A) implies ψλ(A) ≤K ψλ(B), that is, for each B ∈ A, ψλ(B) �K ψλ(A) or
else ψλ(B) = ψλ(A). By using Theorem3, this is equivalent to for each B ∈
A, ϕ[P,Q](ψλ(B) − ψλ(A)) > 0 or B ∼λ

K A. The latter is shown in the similar
way. �

From this theorem, we may choose any [P, Q] ∈ intK to observe λ-minimal ele-
ments and weak λ-minimal elements. When e ∈ intK , we can check that [{e}, {0}] ∈
intK, and embedding function ψ[P,Q] is a generalization of I l

e(A; B) and I u
e (A; B),

indeed,

I l
e(A; B) = inf{t ∈ R | A �l

K te + B}
= inf{t ∈ R | [A, {0}] ≤K t[{e}, {0}] + [B, {0}]}
= ϕψ0({e})(ψ0(A) − ψ0(B)), and

I u
e (A; B) = inf{t ∈ R | A �u

K te + B}
= inf{t ∈ R | −B �l

K te − A}
= inf{t ∈ R | [−B, {0}] ≤K t[{e}, {0}] + [−A, {0}]}
= ϕψ1({e})(ψ1(A) − ψ1(B)).

Also Sl
e(A; B) and Su

e (A; B) can be written by using ϕ because Sl
e(A; B) =

−I l−e(A; B) and Su
e (A; B) = −I u−e(A; B). Motivated by the observation, we give

the following simple notation ϕλ
e (A, B) as follows: for each λ ∈ [0, 1],

ϕλ
e (A, B) = ϕψλ({e})(ψλ(A) − ψλ(B)).

Clearly we have

ϕ0
e(A, B) = I l

e(A; B), ϕ1
e(A, B) = I u

e (A; B),

ϕ0
e(A, B) = −Sl

−e(A; B), and ϕ1
e(A, B) = −Su

−e(A; B),

and we can characterize solutions of (SP) by using the function:

Corollary 2 Let X be a nonempty set, F : X → C, and e ∈ intK . The element x0 ∈
X is a λ-minimal solution of (SP) if and only if for each x ∈ X, ϕλ

e (F(x), F(x0)) > 0
or F(x) ∼λ

K F(x0). The element x0 ∈ X is a weak λ-minimal solution of (SP) if and
only if for each x ∈ X, ϕλ

e (F(x), F(x0)) ≥ 0 or F(x) ∼λ
K F(x0).

The above characterizations are generalizations of the previous ones of set opti-
mization problems. Finally, we observe the following example:
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Example 3 Let F : X → 2R
n
be a set-valued map defined by

F(x) = ( f0(x) + K ) ∩ ( f1(x) − K )

where functions f0, f1 : X → R
n satisfy f0(x) ≤K f1(x) for each x ∈ X , and con-

sider a set optimization problem

(SP) Minimize F(x)

subject to x ∈ X.

For given e ∈ intK and for any λ ∈ [0, 1], we can check that

ϕλ
e (F(x), F(y)) = inf{t ∈ R | fλ(x) ≤K fλ(y) + te},

in the similar way to Example2, where fλ = (1 − λ) f0 + λ f1. The right-hand side
of the above equality can be regarded as a convolution of fλ and the scalarizing
function in Sect. 2. Then the λ-minimal solutions of (SP) is characterized by the
K -minimal solutions of the following vector optimization (VP):

(VP) Minimize fλ(x)

subject to x ∈ X.
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