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Foreword

I finished an Oxford D.Phil. on multi-criteria optimisation in 1974 and so have been
observing and participating in the field for over four decades.

My research interests have included efficiency and tangency, lattice structure,
set-valued mappings, convex analysis and convex programming. So it is a delight to
see these old friends given a new life and a new purpose in this volume.

Let me turn to some remarks on the specifics of this valuable collection. Early in
my research career, I discovered the power of set-valued analysis, whether for more
efficient proofs of classical results such as the open mapping theorem, or for new
approaches to current research as with the heading results of this volume.

Set Optimization connotes the study of an optimization problem with a
set-valued objective. Why should one do this? What are the prospects?

1. A theory for set optimization problems can only be developed if it is accom-
panied by a convex analysis for set-valued functions; concepts like subdiffer-
entials, Legendre–Fenchel conjugates, dual optimization problems are just too
important and too relevant for all kinds of applications to be ignored; however, a
“canonical convex analysis” for vector-valued functions did not exist so far (not
to speak of set-valued ones), for example, there are many different “conjugates”
for vector-valued functions which work under different—more or less restrictive
—assumptions; recent developments summarized in this volume may fill this
gap by means of set-valued approaches to duality, leading in particular to
conjugation, for vector- as well as set-valued functions;

2. the concepts “infimum” and “supremum” are not relevant in the overwhelming
part of the existing literature on vector- and set-valued optimization problems;
the reason: infima/suprema with respect to vector orders may not exist for many
sets (e.g., if the ordering cone does not generate a lattice) or do not provide
useful solution concepts whence non-dominated (minimal or maximal) points
are usually looked for in multi-criteria decision-making; set relations (order
relations on the power set of an ordered set) not only open the way for a revival
of the infimum/supremum but also trigger investigation of new solution con-
cepts in vector/set optimization which show a split into infimum/supremum
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attainment on the one side and minimality/maximality on the other side (a totally
new idea);

3. this new solution concept (Heyde, Löhne 2011, see already Hamel 2004 and
also Löhne 2011) provides “a fresh look” (title of Heyde, Löhne 2011) to
multi-criteria decision-making problems: the infimum/supremum attainment
property provides the decision maker with overall information about what can
be potentially achieved whereas the minimal/maximal solutions provide
non-dominated outcomes; in this way it is not necessary to look at all “efficient”
points but only at enough of them to make a well-informed decision; this helps
to answer the question of what is actually understood by a solution of a
vector-valued optimization problem. The latter question is rarely answered in a
satisfactory way in the many papers on such problems (one sees discussion of
one or all “weak” or “efficient” or “properly efficient” minimizers/maximizers,
one or all ‘minimal/maximal’ solutions or non-dominated image points; an
evenly distributed subset of minimal/maximal image points, etc.);

4. recent developments in mathematical finance produced sets of superhedging
portfolios and, more generally, set-valued risk measures which turned out to be
appropriate tools for risk evaluation in markets with “frictions” (bid-ask price
spreads, transaction costs etc.); dual representation results (such as Kabanov’s
1999 superhedging theorem) have been identified as special cases of general
set-valued duality theorems; optimization problems involving set-valued risk
measures (optimal risk allocation, risk minimization, and hedging under con-
straints) are highly desirable subjects of study; the overall question—in statis-
tics, math finance, as well as the mathematics of insurance—how to deal with
multivariate risks—is a topical one which may profit from set-valued
approaches;

5. the role of scalarization procedures has been clarified; as it is immediately clear
and already known for decades, a convex vector- or set-valued function has an
equivalent representation by a family of extended real-valued functions (take the
collection of support functions of the images, for example). The set-valued
approach can be seen as just another (efficient and elegant) calculus for such
families; compared to the scalar case additional dual variables appear along with
a new dependence of the classical dual variable (“Lagrange multipliers”) on this
new one which captures the order structure in the image space. This helps
answer the question of what to choose as dual variables in vector/set opti-
mization problems which is usually not answered clearly by the many papers on
such problems (linear operators, some special type of nonlinear functions, etc.
are possible answers); in mathematical finance applications these new dual
variables could be interpreted as “consistent price processes,“ exactly as had
been obtained earlier in finance papers (Kabanov 1999, Schachermayer 2004,
among others); Set-valued duality in terms of scalarizations also paves the way
to efficient algorithms for set-/vector optimization problems–along with a new
‘geometric duality’ which turned out to be extremely useful in particular for
linear and polyhedral vector optimization problems; for such problems,
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algorithms could be constructed which produce a solutions in the set-valued
sense (Löhne, Schrage 2013).
Finally, consideration of a set-valued function as a family of extended
real-valued functions provides a link between set optimization theory and
generalized convexity; this is an area which needs further exploration. An
important application in economics might be utility maximization for incom-
plete preferences (that is, non-total reflexive and transitive relations); for such
relations, multi-utility representations are available (due to Aumann, Evren,
Kannai, Marinacci, Ok, and a few others). That is, families of scalar functions
which represent the preference; however, the problem of maximizing (expected)
utility for such preferences has not yet been addressed. The current set-valued
approach could well provide the missing tools.

Newcastle NSW Jonathan Borwein
July 2015
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Preface

In 1998, a special issue of the journal Mathematical Methods of Operations
Research was published, edited by Guang-Ya Chen and Johannes Jahn. It was
devoted solely to optimization problems with set-valued objective functions.

Since then, major breakthroughs have been made including new “set relations,”
new solution concepts for set optimization problems and a new framework for a
set-valued convex analysis.

The area has been pushed further by the discovery of its relevance for financial
mathematics: risk evaluation in markets with “frictions” such as transaction costs or
illiquidity effects is best done using set-valued functions. It turns out that results
such as the superhedging theorem of Y. Kabanov from 1999 are essentially
set-valued duality results, and the dual variables in this superhedging theorem are
precisely what the recent theory expects them to be.

Finally, development of algorithms was initiated that can deal with the some-
times scaring complexity of a set-valued objective function and can deliver results
which are useful in applications. As a side effect, the theory of vector optimization
is not what it used to be: set-valued approaches produced new insides, extensions
and in many cases provide methods for repairing unsatisfactory “vector results.”
Examples of the latter include duality for linear vector optimization problems and
Benson’s now famous algorithm. The latter method was designed for (linear) vector
optimization problems, but appropriate extensions allow the computation of infima
and even solutions of set optimization problems.

All of this gave rise to a need to summarize the development. This is what
motivated the compilation of this volume. The reader may find both surveys with
extended bibliographies and original research articles, which provide evidence for
the claims above, as well as open questions. The area of “set optimization” is under
rapid development, and it is the opinion of the editors that it is becoming a field in
its own right: new tools for example from lattice theory (residuation) and new
algebraic structures (conlinear spaces of sets) enter the picture. These even shed
new light on scalar optimization theory (the objective function is extended
real-valued).

ix



Looking at a bigger picture, there are two common denominators in many of the
relevant developments in optimization theory. The first is the departure from linear
structures in particular on the “image” side. Conlinear spaces of sets are not linear
since there is no inverse addition, a feature that is already shared by the extended
reals. Modules over L0 turn out to be fundamental for capturing features of con-
ditional risk measurement in a dynamic framework. We are, therefore, happy to
include a contribution from this new field. The second is the utilization of
order-complete lattices which leads to a comeback of the notions “infimum” and
“supremum”—in particular in vector optimization where the infimum with respect
to a vector order is not very useful or does not even exist. This “complete lattice
approach” to set optimization complements the “set relation approach” initiated by
D. Kuroiwa in the 1990s.

The editors joined this development at an early stage: two of us (Hamel, Löhne)
started working on “set relations” in 2001, and were soon followed by the others.
A workshop at Humboldt University Berlin, organized by A. Hamel and R. Henrion
in 2003, witnessed the first talk about set-valued risk measures from a set opti-
mization perspective, and two theses were completed in 2005 (Hamel’s habilitation,
Löhne’s Ph.D.) at Martin Luther University Halle-Wittenberg which paved the way
for the “lattice approach” to set optimization.

A regular conference is now devoted to set optimization and finance, see
www.set-optimization.org. The first edition took place in Lutherstadt-Wittenberg,
Germany, 2012 the second one in Brunico-Bruneck, Italy, 2014. The third one is
planned for 2016.

We thank all contributors of this volume for their effort and their patience.
We thank Springer for publishing this volume. We thank all referees who decisively
contributed to the scientific quality of the articles. Last but not least, we thank
Prof. J. Jahn because he not only contributed to the editorial work of this volume,
but already in 20031 shared our vision of a new area in optimization emerging, and
also gave us the opportunity to publish and to present our results whenever possible
and appropriate.

Brunico Andreas H. Hamel
Freiberg Frank Heyde
Halle Andreas Löhne
Princeton Birgit Rudloff
Bolzano Carola Schrage
December 2014

1J. Jahn, “Grundlagen der Mengenoptimierung” (in German). Multi-Criteria-und Fuzzy-Systeme
in Theorie und Praxis. Deutscher Universitätsverlag, 2003, 37–71.
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A Comparison of Techniques for Dynamic
Multivariate Risk Measures

Zachary Feinstein and Birgit Rudloff

Abstract This paper contains an overview of results for dynamic multivariate risk
measures. We provide the main results of four different approaches. We will prove
under which assumptions results within these approaches coincide, and how prop-
erties like primal and dual representation and time consistency in the different
approaches compare to each other.

Keywords Dynamic risk measures · Transaction costs · Set-valued risk measures ·
Multivariate risk

Mathematics Subject Classification (2010): 91B30 · 46N10 · 26E25

1 Introduction

The concept of coherent risk measures was introduced in an axiomatic way in [3, 4]
to find the minimal capital required to cover the risk of a portfolio. The notion was
relaxed by introducing convex risk measures in [24, 25]. In these papers the risk was
measured only at time zero, in a frictionless market, for univariate claims, and with
only a single eligible asset that can be used for the capital requirements and serves
as the numéraire. We call this the static scalar framework. In this paper these four
assumptions will be removed and different methods compared.

Research supported by NSF award DMS-1007938.

Z. Feinstein
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Washington University in St. Louis, St. Louis, MO 63130, USA
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4 Z. Feinstein and B. Rudloff

The static assumptionswere relaxed by considering dynamic riskmeasures, where
the risk evaluation of a portfolio is updated as time progresses and new information
become available. In the dynamic framework time consistency plays an important
role and has been studied for example in [8, 14, 17, 45, 48].

Eliminating the assumption that the financial markets are frictionless required a
new framework. Since the ‘value’ of a portfolio is not uniquely determined anymore
when bid and ask prices or market illiquidity exist, it is natural to consider portfolios
as vectors in physical units instead, i.e. a portfolio is specified by the number of
each of the asset which is held as opposed to their value. But even in the absence of
transaction costsmultivariate claimsmight be of interest, e.g.when assets are denoted
in different currencieswith fluctuating exchange rates, or different business lineswith
no direct exchange or different regularity rules are considered, see [13]. In contrast to
frictionless univariate models also the choice of the numéraire assets matters, which
leads to different approaches: pick a numéraire and allow capital requirements to be
in this numéraire, which allows a risk manager to work with scalar risk measures
again (see e.g. [5, 18, 26, 39, 49]); or use the more general numéraire-free approach
and allow risk compensation to be made in a basket of assets which leads to risk
measures that are set-valued. This approach was first studied in Jouini et al. [36] in
the coherent case. Several extensions have beenmade. In this paper wewill introduce
four approaches to deal with dynamic multivariate risk measures, and compare and
relate them by giving conditions under which the results obtained in each approach
coincide. The four approaches we discuss are

1. a set-optimization approach;
2. a measurable selector approach;
3. an approach utilizing set-valued portfolios; and
4. a family of multiple asset scalar risk measures.

The first three approaches correspond to the numéraire-free framework, whereas
the last approach includes scalar risk measures where a numéraire asset is chosen.

In [28–31] the results of [36] were extended to the convex case and a stochastic
market model. The extension of the dual representation results were made possible
by an application of convex analysis for set-valued functions (set-optimization), see
Hamel [27]. The dynamic case and time consistency was studied in [21, 23]. We will
call this approach the set-optimization approach. The values of risk measures and its
minimal elements in this framework have been studied and computed in [22, 32, 33,
41, 42] via Benson’s algorithm for linear vector optimization (see e.g. [40]) in the
coherent and polyhedral convex case, respectively via an approximation algorithm
in the convex case, see [22, 42].

Tahar and Lépinette [52] extended the results of [36] for coherent risk measures to
the dynamic case. We will call this the measurable selector approach as it considers
the value of a risk measures as a random set, and then provides a primal and dual
representation for the measurable selectors in that set. Time consistency properties
were also introduced and some equivalent characterizations discussed.

Most recently, in [13], set-valued coherent risk measures were considered as
functions from random sets into the upper sets. The transaction costsmodel, and other
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financial considerations like trading constraints, or illiquidity, are then embedded
into the construction of “set-valued portfolios”. A subclass of risk measures in this
framework can be constructed using a vector of scalar risk measures and [13] gives
upper and lower bounds as well as dual representations for this subclass. We will
present here the dynamic extension of this approach. Time consistency properties
have not yet been studiedwithin this framework. However, by comparing and relating
the different approacheswewill see that a larger subclass can be obtained by using the
set-valued risk measures of the set-optimization approach, which provides already a
link to dual representations and time consistency properties for this larger subclass.

The fourth approach is to consider a family of dynamic scalar risk measures to
evaluate the risk of a multivariate claim. This approach has not been studied so far
in the dynamic case. In the special case of frictionless markets, the family of scalar
risk measures coincides with scalar risk measures using multiple eligible assets as
discussed in [5, 18, 26, 39, 49]. Also the scalar static risk measure of multivariate
claims with a single eligible asset studied in [11]; the scalar liquidity adjusted risk
measures in market with frictions as studied in [53]; and the scalar superhedging
price in markets with transaction costs, see [7, 10, 35, 41, 44, 46, 47], are special
cases of this approach. Thus, the family of dynamic scalar risk measures for portfolio
vectors generalizes these special cases in a unifiedway to allow for frictions, multiple
eligible assets, and multivariate portfolios in a dynamic framework. The connection
to the set-optimization approach allows to utilize the dual representation and time
consistency results deduced there.

Other papers in the context of set-valued risk measures are [51], where an exten-
sion of the tail conditional expectation to the set-valued framework of [36] was
presented and a numerical approximation for calculation was given; and [12], where
set-valued risk measures in a more abstract setting were studied and a consistent
structure for scalar-valued, vector-valued, and set-valued risk measures (but for con-
stant solvency cones) was created. Furthermore, in [12] distribution based risk mea-
sures were extended to the set-valued framework via depth-trimmed regions. More
recently, vector-valued risk measures were studied in [6].

Section2 introduces the four approaches mentioned above. In Sect. 3 these four
approaches are compared by showing how the set-optimization approach corresponds
to each of the other three. For each comparison, assumptions are given under which
there is a one-to-one relationship between the approaches. These relations allow
generalizations inmost of the different approaches that go beyond the results obtained
so far.

2 Dynamic Risk Measures

Consider a filtered probability space
(
�,F, (Ft )

T
t=0, P

)
satisfying the usual condi-

tions with F0 being the completed trivial sigma algebra and FT = F. Let | · | be an
arbitrary norm inR

d . Denote L p
t := L p(�,Ft , P; R

d) for p ∈ [0,+∞] (with L p :=
L p

T ). If p = 0, L0
t is the linear space of the equivalence classes ofFt -measurable func-
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tions X : � → R
d . For p > 0, L p

t denotes the linear space of Ft -measurable func-
tions X : � → R

d such that ‖X‖p = (∫
�

|X (ω)|pdP
)1/p

< +∞ for p ∈ (0,+∞),
and ‖X‖∞ = ess supω∈�|X (ω)| < +∞ for p = +∞. For p ∈ [1,+∞] wewill con-
sider the dual pair

(
L p

t , Lq
t

)
, where 1

p + 1
q = 1 (withq = +∞when p = 1 andq = 1

when p = +∞), and endow it with the norm topology, respectively the weak* topol-
ogy (that is the σ

(
L∞

t , L1
t

)
-topology on L∞

t ) in the case p = +∞ unless otherwise
noted.

We write L p
t,+ = {

X ∈ L p
t : X ∈ R

d+ P-a.s.
}
for the closed convex cone of R

d -
valued Ft -measurable random vectors with non-negative components. Similarly
define L p

+ := L p
T,+. We denote by L p

t (Dt ) those random vectors in L p
t that take

P-a.s. values in Dt . Let 1D : � → {0, 1} be the indicator function of D ∈ F defined
by 1D(ω) = 1 ifω ∈ D and 0 otherwise. Throughoutwewill consider the summation
of sets by Minkowski addition. To distinguish the spaces of random vectors from
those of random variables, we will write L p

t (R) := L p(�,Ft , P; R) for the linear
space of the equivalence classes of p integrable Ft -measurable random variables
X : � → R. Note that an element X ∈ L p

t has components X1, . . . , Xd in L p
t (R).

(In-)equalities between random vectors are always understood componentwise
in the P-a.s. sense. The multiplication between a random variable λ ∈ L∞

t (R)

and a set of random vectors D ⊆ L p is understood in the elementwise sense, i.e.
λD = {λY : Y ∈ D} ⊆ L p with (λY )(ω) = λ(ω)Y (ω). The multiplication and divi-
sion between (random) vectors is understood in the componentwise sense, i.e. xy :=
(x1y1, . . . , xd yd)

T and x/y := (x1/y1, . . . , xd/yd)
T for x, y ∈ R

d (x, y ∈ L p
t ) and

with yi �= 0 (almost surely) for every index i ∈ {1, . . . , d} for division.
As in [37] and discussed in [38, 50], the portfolios in this paper are in “physical

units” of an asset rather than the value in a fixed numéraire, except where otherwise
mentioned. That is, for a portfolio X ∈ L p

t , the values of Xi (for 1 ≤ i ≤ d) are the
number of units of asset i in the portfolio at time t .

Let M̃t [ω] denote the set of eligible portfolios, i.e. those portfolios which can be
used to compensate for the risk of a portfolio, at time t and state ω. We assume
M̃t [ω] is a linear subspace of R

d for almost every ω ∈ �. It then follows that
Mt := L p

t (M̃t ) is a closed (and additionally weak* closed if p = +∞) linear sub-
space of L p

t , see Sect. 5.4 and Proposition 5.5.1 in [38]. For example, M̃t [ω] could
specify a certain ratio of Euros andDollars to be used for risk compensations.Another
typical example is the case where a subset of assets are used for capital require-
ments, i.e. M̃n

t [ω] = {
m ∈ R

d : ∀i ∈ {n + 1, . . . , d} : mi = 0
}
and Mn

t = L p
t (M̃n

t ).
We will denote Mt,+ := Mt ∩ L p

t,+ to be the nonnegative elements of Mt . We will
assume that Mt,+ �= {0}, i.e. Mt,+ is nontrivial.

In the first three methods discussed below the risk measures have set-valued
images. In the set-optimization approach (Sect. 2.1) and the set-valued portfolio
approach (Sect. 2.3) the image space is explicitly given by the upper sets, i.e.
P (

Mt ; Mt,+
)
where P (Z; C) := {D ⊆ Z : D = D + C} for some vector space Z

and anordering coneC ⊂ Z .Additionally, letG(Z; C) := {D ⊆ Z : D = cl co (D + C)} ⊆
P(Z; C) be the upper closed convex subsets. It seems natural to use upper sets as the
values of riskmeasures since if one portfolio can cover the risk then any larger portfo-
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lio should also cover this risk. Alternatively, one could consider the set of “minimal
elements” of the risk compensating portfolios. However, in contrast to the upper
sets, the set of “minimal elements” is in general not a convex set when convex risk
measure are considered.

2.1 Set-Optimization Approach

The set-optimization approach to dynamic riskmeasures is studied in [21, 23], where
set-valued risk measures [29, 31] were extended to the dynamic case. A benefit of
this method is that dual representations are obtained by a direct application of the
set-valued duality developed in [27], which allowed for the first time to study not
only conditional coherent, but also convex set-valued risk measures.

In this setting we consider risk measures that map a portfolio vector into the
complete lattice P (

Mt ; Mt,+
)
of upper sets.

Set-valued conditional risk measures have been defined in [21]. Here we give a
stronger property for finiteness at zero than in [21] to ease the comparison to the
other approaches.

Definition 2.1 A conditional risk measure is a mapping Rt : L p → P(Mt ; Mt,+)

which satisfies:

1. L p
+-monotonicity: if Y − X ∈ L p

+ then Rt (Y ) ⊇ Rt (X);
2. Mt -translativity: Rt (X + m) = Rt (X) − m for any X ∈ L p and m ∈ Mt ;
3. finiteness at zero: Rt (0) �= ∅ and Rt (0)[ω] �= M̃t [ω] for almost every ω ∈ �,

where Rt (0)[ω] := {u(ω) : u ∈ Rt (0)}.
For finiteness at zero, and elsewhere in later sections, we consider theω projection

of the risk compensating set Rt (X).We point out that Rt (X) is a collection of random
vectors and is not a random set; therefore Rt (X)[ω] := {u(ω) : u ∈ Rt (X)} is the col-
lection of risk covering portfolios at stateω. As Rt (X) is not a random set, it is gener-
ally the case that Rt (X) �= L p

t (Rt (X)) := {u ∈ Mt : P (ω ∈ � : u(ω) ∈ Rt (X)[ω]) = 1}.
Below we consider additional properties for conditional risk measures that

have useful financial and mathematical interpretations. Note that the definition for
K -compatibility below is more general than the one given in [21], and corresponds
to the definition in [32]. A conditional risk measure Rt at time t is

• convex (conditionally convex) if for all X, Y ∈ L p and anyλ ∈ [0, 1] (respectively
λ ∈ L∞

t (R) such that 0 ≤ λ ≤ 1)

Rt (λX + (1 − λ)Y ) ⊇ λRt (X) + (1 − λ)Rt (Y );

• positive homogeneous (conditionally positive homogeneous) if for all X ∈ L p

and any λ ∈ R++ (respectively λ ∈ L∞
t (R++))

Rt (λX) = λRt (X);
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• coherent (conditionally coherent) if it is convex and positive homogeneous
(respectively conditionally convex and conditionally positive homogeneous);

• normalized if Rt (X) = Rt (X) + Rt (0) for every X ∈ L p;
• local if for every D ∈ Ft and every X ∈ L p, 1D Rt (X) = 1D Rt (1D X);
• K -compatible for some convex cone K ⊆ L p if Rt (X) = ⋃

k∈K Rt (X − k);
• closed if the graph of the risk measure

graph(Rt ) = {
(X, u) ∈ L p × Mt : u ∈ Rt (X)

}

is closed in the product topology (with the weak* topology if p = +∞);
• convex upper continuous if

R−1
t (D) := {

X ∈ L p : Rt (X) ∩ D �= ∅}

is closed (weak* closed if p = +∞) for any closed convex set D ∈ G(Mt ; Mt,−).

(Conditional) convexity and coherence for a risk measure define a regulatory
framework which promotes diversification. Set-valued normalization is a gener-
alization of the scalar normalization (zero capital needed to compensate the risk
of the 0 portfolio). The local property means that the risks at some state (in Ft )
only depend on the possible future values of the portfolio reachable from that state.
K -compatibility is closely related to a market model; assume for the moment an
investor can trade the initial portfolio 0 into any random vector in −K by the termi-
nal time T , then K -compatibility means considering the (minimal) risk of a portfolio
when all possible trades are taken into account. The closure is the set-valued version
of lower semicontinuity and is necessary for the dual representation to hold. Convex
upper continuity is a stronger property than closure and is useful when characterizing
or creating multi-portfolio time consistent risk measures, the details will be given
below.

A dynamic risk measure is a sequence (Rt )
T
t=0 of conditional risk measures. A

dynamic risk measure is said to have a certain property if Rt has that property for all
times t .

A static risk measure in the sense of [31] is a conditional risk measure at time 0.
Note that for static risk measures convexity (positive homogeneity) coincides with
conditional convexity (conditional positive homogeneity).

Any conditionally convex risk measure Rt : L p → P (
Mt ; Mt,+

)
is local, see

Proposition 2.8 in [21].

Definition 2.2 A set At ⊆ L p is a conditional acceptance set at time t if it satisfies
At + L p

+ ⊆ At , Mt ∩ At �= ∅, and M̃t [ω] ∩ (Rd\At [ω]) �= ∅ for almost every ω ∈
�, where At [ω] = {X (ω) : X ∈ At }.

The acceptance set of a conditional risk measure Rt is given by
At = {

X ∈ L p : 0 ∈ Rt (X)
}
, which is the collection of “risk free” portfolios. For any

conditional acceptance set At , the functiondefinedby Rt (X) = {u ∈ Mt : X + u ∈ At }
is a conditional risk measure. This is the primal representation for conditional risk
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measures via acceptance sets, see [21]. This relation is one-to-one, i.e. we can con-
sider an (Rt , At ) pair or equivalently just one of the two. Given a risk measure and
acceptance set pair (Rt , At ) then the following properties hold, see Proposition 2.11
in [21].

• Rt is normalized if and only if At + At ∩ Mt = At ;
• Rt is (conditionally) convex if and only if At is (conditionally) convex;
• Rt is (conditionally) positive homogeneous if and only if At is a (conditional)
cone;

• Rt has a closed graph if and only if At is closed.

For the duality results below we will consider p ∈ [1,+∞]. Let M denote the
set of d-dimensional probability measures absolutely continuous with respect to P,
and letMe denote the set of d-dimensional probability measures equivalent to P. We
will say Q = P|Ft for vector probability measures Q and some time t ∈ [0, T ] if for
every D ∈ Ft it follows that Qi (D) = P(D) for all i = 1, . . . , d. Consider Q ∈ M.
We will use a P-almost sure version of the Q-conditional expectation of X ∈ L p

given by
E
Q [ X |Ft ] := E

[
ξt,T (Q)X

∣∣Ft
]
,

where ξr,s(Q) = (
ξ̄r,s(Q1), . . . , ξ̄r,s(Qd)

)T
for any times 0 ≤ r ≤ s ≤ T with

ξ̄r,s(Qi )[ω] :=

⎧
⎪⎨

⎪⎩

E

[
dQi
dP

∣∣
∣Fs

]
(ω)

E
[

dQi
dP

∣
∣
∣Fr

]
(ω)

on E

[
dQi
dP

∣
∣∣Fr

]
(ω) > 0

1 else

for everyω ∈ �, see e.g. [15, 21]. For any probabilitymeasureQi � P and any times
0 ≤ r ≤ s ≤ t ≤ T , it follows that dQi

dP = ξ̄0,T (Qi ), ξ̄t,s(Qi ) = ξ̄t,r (Qi )ξ̄r,s(Qi ), and
E

[
ξ̄r,s(Qi )

∣
∣Fr

] = 1 almost surely. The halfspace and the conditional “halfspace”
in L p

t with normal direction w ∈ Lq
t \{0} are denoted by

Gt (w) := {
u ∈ L p

t : 0 ≤ E
[
wTu

]}
, �t (w) := {

u ∈ L p
t : 0 ≤ wTu P-a.s.

}
.

We will define the set of dual variables to be

Wt := {
(Q, w) ∈ M × (

M+
t,+\M⊥

t

) : wT
t (Q, w) ∈ Lq

+, Q = P|Ft

}
,

where for any 0 ≤ t ≤ s ≤ T

ws
t (Q, w) = wξt,s(Q),

M⊥
t = {

v ∈ Lq
t : E

[
vTu

] = 0 ∀u ∈ Mt
}
and C+ =

{
v ∈ Lq

t : E

[
vTu

]
≥ 0 ∀u ∈ C

}

denotes the positive dual cone of a cone C ⊆ L p
t .
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The set of dual variables Wt consists of two elements. The first component is a
vector probability measure absolutely continuous to the physical measure P and cor-
responds to the dual element in the traditional scalar theory. The second component
reflects the order relation in the image space as the w’s are the collection of possible
relative weights between the eligible portfolios. This component is not needed in the
scalar case. The coupling condition wT

t (Q, w) ∈ Lq
+ guarantees that the probability

measure Q and the ordering vector w are “consistent” in the following sense. If a
portfolio X is component-wise (P-)almost surely greater than or equal to another
portfolio Y , then the Q-conditional expectation keeps that relationship with respect
to the order relation defined byw, that iswT

E
Q [ X |Ft ] ≥ wT

E
Q [Y |Ft ] (P-)almost

surely. In the following, we review the duality results from [23]. Note that since we
are only considering closed (conditionally) convex risk measures we can restrict the
image space to G(Mt ; Mt,+) := {

D ⊆ Mt : D = cl co
(
D + Mt,+

)}
.

Corollary 2.3 (Corollary 2.4 of [23]) A conditional risk measure Rt : L p →
G(Mt ; Mt,+) is closed and conditionally convex if and only if

Rt (X) =
⋂

(Q,w)∈Wt

[−αmin
t (Q, w) + (

E
Q [−X |Ft ] + �t (w)

) ∩ Mt
]
, (2.1)

where −αmin
t is the minimal conditional penalty function given by

− αmin
t (Q, w) = cl

⋃

Z∈At

(
E
Q [ Z |Ft ] + �t (w)

) ∩ Mt . (2.2)

Rt is additionally conditionally coherent if and only if

Rt (X) =
⋂

(Q,w)∈Wmax
t

(
E
Q [−X |Ft ] + �t (w)

) ∩ Mt (2.3)

with
Wmax

t = {
(Q, w) ∈ Wt : wT

t (Q, w) ∈ A+
t

}
. (2.4)

The more general convex and coherent case reads analogously to Corollary 2.3,
just with �t (w) replaced by Gt (w) in Eqs. (2.1), (2.2) and (2.3), see Theorem 2.3
in [23]. As shown in [21, 31], the Gt -version of the minimal penalty function −αmin

t
is the set-valued (negative) convex conjugate in the sense of [27] and the dual repre-
sentation is the biconjugate, both with infimum and supremum defined for the image
space G(Mt ; Mt,+).

Remark 2.4 The dual representation given in [36] for the static coherent case (and
in [52] for the dynamic case, see Sect. 2.2 below) uses a single dual variable. This
set of dual variables from [36] is equivalent to

{
wT

t (Q, w) : (Q, w) ∈ Wt
}
, and as

discussed in the Proof of theorem 2.3 in [23], the dual representation (2.1) and (2.3)
can be given by this set alone. Thismeans, the results presented in this section include
the previously known dual representation results.
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We conclude this section by giving a brief description and equivalent charac-
terizations of a time consistency property for set-valued risk measures in the set-
optimization approach. The property we will discuss is multi-portfolio time consis-
tency, which was proposed in [21] and further studied in [23]. We also return to the
general case with p ∈ [0,+∞].
Definition 2.5 A dynamic risk measure (Rt )

T
t=0 is called multi-portfolio time con-

sistent if for all times t, s ∈ [0, T ] with t < s, all portfolios X ∈ L p and all sets
Y ⊆ L p the implication

Rs(X) ⊆
⋃

Y∈Y

Rs(Y ) ⇒ Rt (X) ⊆
⋃

Y∈Y

Rt (Y ) (2.5)

is satisfied.

Multi-portfolio time consistencymeans that if at some time any risk compensating
portfolio for X also compensates the risk of some portfolio Y in the set Y, then at
any prior time the same relation should hold true. Implicitly within the definition,
the choice of eligible portfolios can have an impact on the multi-portfolio time
consistency of a risk measure.

In [21], (set-valued) time consistencywas also introduced. This property is defined
by

Rs(X) ⊆ Rs(Y ) ⇒ Rt (X) ⊆ Rt (Y )

for any time t, s ∈ [0, T ] with t < s and any portfolios X, Y ∈ L p. It is weaker than
multi-portfolio time consistency, though in the scalar case both properties coincide.

Before we give some equivalent characterizations for multi-portfolio time con-
sistency, we must give a few additional definitions. These definitions are used for
defining the stepped risk measures Rt,s : Ms → P(Mt ; Mt,+) for t ≤ s, as dis-
cussed in [23, Appendix C]. We denote and define the stepped acceptance set by
At,s := At ∩ Ms . And akin to Corollary 2.3, for the closed conditionally convex
and closed (conditionally) coherent stepped risk measures we will define the min-
imal stepped penalty function (for the conditionally convex case with Mt ⊆ Ms)
by−αmin

t,s (Q, w) := cl
⋃

X∈At,s

(
E
Q [ X |Ft ] + �t (w)

) ∩ Mt for every (Q, w) ∈ Wt,s

and the maximal stepped dual set (for the (conditionally) coherent case with
Mt ⊆ Ms) by Wmax

t,s := {
(Q, w) ∈ Wt,s : ws

t (Q, w) ∈ A+
t,s

}
. As can be seen, both

the stepped penalty function and the stepped maximal dual set are with respect to
dual elementsWt,s , which in general differ fromWt . In the case that M̃t = M0 almost
surely, it holds Wt,s ⊇ Wt for all times t ≤ s ≤ T ; if M̃s = R

d almost surely then
Wt,s = Wt .

In the below theorem, for the convex upper continuous (conditionally) coherent
case we introduce twomore definitions.We define themapping H s

t : 2Ws → 2Wt for
times t ≤ s ≤ T by H s

t (D) := {
(Q, w) ∈ Wt : (

Q, ws
t (Q, w)

) ∈ D
}
for D ⊆ Ws .
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Additionally, for Q, R ∈ M we denote by Q ⊕s
R the pasting of Q and R in s, i.e.

the vector probability measures S ∈ M defined via

dS

dP
= ξ0,s(Q)ξs,T (R).

The following theorem gives equivalent characterizations of multi-portfolio time
consistency: a recursion in the spirit of Bellman’s principle (property 2 below),
an additive property for the acceptance sets (property 3), the so called cocyclical
property (property 4) and stability (property 6). The properties are important for the
construction of multi-portfolio time consistent risk measures.

Theorem 2.6 (Theorem 3.4 of [21], Corollaries 3.5 and 4.3 and Theorem 4.6 of
[23]) For a normalized dynamic risk measure (Rt )

T
t=0 the following are equivalent:

1. (Rt )
T
t=0 is multi-portfolio time consistent,

2. Rt is recursive, that is for every time t, s ∈ [0, T ] with t < s

Rt (X) =
⋃

Z∈Rs (X)

Rt (−Z) =: Rt (−Rs(X)). (2.6)

If additionally Mt ⊆ Ms for every time t, s ∈ [0, T ] with t < s then all of the above
is also equivalent to

3. for every time t, s ∈ [0, T ] with t < s

At = As + At,s . (2.7)

If additionally p ∈ [1,+∞], M̃t = R
n × {0}d−n almost surely for some n ≤ d for

every time t ∈ [0, T ], (Rt )
T
t=0 is a c.u.c. conditionally convex risk measure and

Rt (X) =
⋂

(Q,w)∈We
t

[−αmin
t (Q, w) + (

E
Q [−X |Ft ] + �t (w)

) ∩ Mt
]

for every X ∈ L p
T where We

t = {(Q, w) ∈ Wt : Q ∈ Me}, then all of the above is
also equivalent to

4. for every time t, s ∈ [0, T ] with t < s

− αmin
t (Q, w) = cl

(−αmin
t,s (Q, w) + E

Q
[−αmin

s (Q, ws
t (Q, w))

∣∣Ft
])

(2.8)

for every (Q, w) ∈ We
t .

If additionally p ∈ [1,+∞], M̃t = R
n × {0}d−n almost surely for some n ≤ d for

every time t ∈ [0, T ] and (Rt )
T
t=0 is a c.u.c. (conditionally) coherent risk measure

then all of the above is also equivalent to
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5. for every time t, s ∈ [0, T ] with t < s

Wmax
t = Wmax

t,s ∩ H s
t

(Wmax
s

)
, (2.9)

which in turn is equivalent to
6. for every time t, s ∈ [0, T ] with t < s

Wmax
t = {

(Q ⊕s
R, w) : (Q, w) ∈ Wmax

t,s , (R, ws
t (Q, w)) ∈ Wmax

s

}
. (2.10)

2.2 Measurable Selector Approach

Themeasurable selector approach was proposed in [52] and is an extension of [36] to
the dynamic framework. Only coherent riskmeasures are considered in this approach
as the technique used to deduce the dual representation relies on coherency. The risk
measures are assumed to be compatible to a conical market model at the final time
T , i.e. portfolios are compared based on the final “values”. In so doing, a new pre-
image space denoted by BKT ,n is introduced, which will be defined below and is
discuss in Remark 3.1. In [52], the space of eligible assets is Mn

t = L0
t (M̃n

t ) with
M̃n

t [ω] = {
m ∈ R

d : ∀i ∈ {n + 1, . . . , d} : mi = 0
}
, i.e. n ≤ d of the d assets can

be used to cover risk.
Let Sd

t be the set of Ft -measurable random sets in R
d . Recall that a mapping

� : � → 2R
d
is an Ft -measurable random set if

graph � = {
(ω, x) ∈ � × R

d : x ∈ �(ω)
}

is Ft ⊗ B(Rd)-measurable (where B(Rd) is the Borel σ -algebra). The random set
� is closed (convex, conical) if �(ω) is closed (convex, conical) for almost every
ω ∈ �.

Let KT ∈ Sd
T satisfy the following assumptions:

k1. for almost every ω ∈ �: KT (ω) is a closed convex cone in R
d ;

k2. for almost every ω ∈ �: R
d+ ⊆ KT (ω) �= R

d ;
k3. for almost every ω ∈ �: KT (ω) is a proper cone, i.e. KT (ω) ∩ −KT (ω) = {0}.
It is then possible to create a partial ordering in L0 defined by KT such that X ≥KT Y
if and only if P(X − Y ∈ KT ) = 1. The solvency cones with friction, see e.g. [37,
38, 50], satisfy the conditions given above for KT .

Let n ≤ d, then we define BKT ,n := {
X ∈ L0 : ∃c ∈ R+ : c1d,n ≥KT X ≥KT −c1d,n

}

where the i-th component of 1d,n ∈ R
d is 1i

d,n =
{
1 if i ∈ {1, . . . , n}
0 else

. Then we can

define a norm on BKT ,n by ‖X‖KT ,n := inf
{
c ∈ R+ : c1d,n ≥KT X ≥KT −c1d,n

}
,

and (BKT ,n, ‖ · ‖KT ,n) defines a Banach space.



14 Z. Feinstein and B. Rudloff

Let Sd,n
t ⊆ Sd

t be such that � ∈ Sd,n
t if � ∈ Sd

t and �(ω) ⊆ M̃n
t [ω] for almost

every ω ∈ �.

Definition 2.7 A risk process is a sequence (R̃t )
T
t=0 ofmappings R̃t : BKT ,n → Sd,n

t

satisfying

1. R̃t (X) is a closed Ft -measurable random set for any X ∈ BKT ,n , R̃t (0) �= ∅, and
R̃t (0)[ω] �= M̃n

t [ω] for almost every ω ∈ �.
2. For any X, Y ∈ BKT ,n with Y ≥KT X it holds R̃t (Y ) ⊇ R̃t (X).
3. R̃t (X + m) = R̃t (X) − m for any X ∈ BKT ,n and m ∈ Mn

t .

A risk process is conditionally convex at time t if for all X, Y ∈ BKT ,n and λ ∈
L∞

t (R) with 0 ≤ λ ≤ 1 almost surely it holds λR̃t (X) + (1 − λ)R̃t (Y ) ⊆ R̃t (λX +
(1 − λ)Y ).

A risk process is conditionally positive homogeneous at time t if for all X ∈
BKT ,n and λ ∈ L0

t (R++) with λX ∈ BKT ,n it holds R̃t (λX) = λR̃t (X).
A risk process is conditionally coherent at time t if it is both conditionally convex

and conditionally positive homogeneous at time t .
A risk process is normalized at time t if R̃t (X) + R̃t (0) = R̃t (X) for every X ∈

BKT ,n .

Thus, the values R̃t (X) of a risk process are Ft -measurable random sets in R
d .

Primal and dual representations can be provided for the measurable selectors of this
set. Recall that γ is aFt -measurable selector of aFt -random set� if γ (ω) ∈ �(ω) for
almost every ω ∈ �. Then using the notation from above, the measurable selectors
in L p are given by L p

t (�) = {
γ ∈ L p

t : P(γ ∈ �) = 1
}
.

Definition 2.8 Given a risk process (R̃t )
T
t=0, then SR̃ : [0, T ] × BKT ,n → 2Mn

t is a
selector risk measure if SR̃(t, X) := L0

t (R̃t (X)) for every time t and portfolio X ∈
BKT ,n . The bounded selector risk measure is defined by S∞

R̃
(t, X) := SR̃(t, X) ∩

BKT ,n .

Definition 2.9 A set At ⊆ BKT ,n is a conditional acceptance set at time t if:

1. At is closed in the (BKT ,n, ‖ · ‖KT ,n) topology.
2. If X ∈ BKT ,n such that X ≥KT 0 then X ∈ At .
3. BKT ,n ∩ Mn

t � At .
4. At is Ft -decomposable, i.e. if for any finite partition (�n

t )
N
n=1 ⊆ Ft of � and any

family (Xn)
N
n=1 ⊆ At , then

∑N
n=1 1�n

t
Xn ∈ At .

5. At is a conditionally convex cone.

Remark 2.10 Note that the definition forFt -decomposability above differs from that
in [52], as in that paper Ft -decomposability is considered with respect to countable
rather than finite partitions. We weakened the condition by adapting the Proof of
theorem 1.6 of Chap.2 from [43] when p = +∞ to the space BKT ,n .
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Proposition 2.11 (Proposition 3.4 of [52]) Given a conditionally coherent risk

process R̃t at time t, then At :=
{

X ∈ BKT ,n : 0 ∈ R̃t (X)
}

is a conditional accep-

tance set at time t.

A primal representation of the selector risk measure is given as follows.

Theorem 2.12 (Theorem 3.3 in [52]) Let At be a closed subset of (BKT ,n, ‖ · ‖KT ,n).
Then At is a conditional acceptance set if and only if there exists some conditionally
coherent risk process R̃t at time t such that the associated bounded selector risk
measure S∞

R̃
satisfies S∞

R̃
(t, X) = {

m ∈ Mn
t : X + m ∈ At

}
for all X ∈ BKT ,n.

Below, we give the dual representation for coherent selector risk measures as
done in Theorems 4.1 and 4.2 of [52]. This dual representation can be viewed as
the intersection of supporting halfspaces for the selector risk measure, which is the
reason that coherence is needed in this approach.

From [52], it is known that (BKT ,n, ‖ · ‖KT ,n) is a Banach space, we will let baKT ,n

be the topological dual of BKT ,n , and let ba+
KT ,n denote the positive linear forms, that

is
ba+

KT ,n := {
φ ∈ baKT ,n : φ(X) ≥ 0 ∀X ≥KT 0

}
.

Definition 2.13 (Definition 4.1 of [52]) A set � ⊆ baKT ,n is called Ft -stable if for
all λ ∈ L∞

t (R+) and φ ∈ �, the linear form φλ : X � BKT ,n �→ φ(λX) is an element
of �.

Theorem 2.14 (Theorem 4.1 of [52]) Let (R̃t )
T
t=0 be a sequence of (Sd,n

t )T
t=0-valued

mappings on BKT ,n. Then the following are equivalent:

1. (R̃t )
T
t=0 is a conditionally coherent risk process.

2. There exists a nonemptyσ(baKT ,n, BKT ,n)-closed subsetQt �= {0} of ba+
KT ,n which

is Ft -stable and satisfies the equality

S∞
R̃

(t, X) = {
u ∈ Mn

t ∩ BKT ,n : φ(X + u) ≥ 0 ∀φ ∈ Qt
}
. (2.11)

We finish the discussion of the dual representation by considering the case when
the risk process additionally satisfies a “Fatou property” as defined below.

Definition 2.15 A sequence (R̃t )
T
t=0 of (Sd,n

t )T
t=0-valued mappings on BKT ,n is said

to satisfy the Fatou property if for all X ∈ BKT ,n and all times t

lim sup
n→+∞

S∞
R̃

(t, Xn) ⊆ S∞
R̃

(t, X)

for any bounded sequence (Xm)m∈N ⊆ BKT ,n which converges to X in probability.

Note that in the above definition the limit superior is defined to be
lim supn→+∞ Bn = cl

⋃
n∈N

⋂
m≥n Bm for a sequence of sets (Bn)n∈N.
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For the following theorem we assume two additional properties on the convex
cone KT :

k4. for almost every ω ∈ �: R
d+\{0} ⊆ int[KT (ω)] or equivalently KT (ω)+\{0} ⊆

int[Rd+];
k5. KT and K +

T are both generated by a finite number of linearly independent and
bounded generators denoted respectively by (ξi )

N
i=1 and (ξ+

i )N+
i=1.

Let L1,n(K +
T ) := {

Z ∈ L0(K +
T ) : 1T

d,n Z ∈ L1(R)
}
. In the following theorem we

will use L1,n(K +
T ) as a dual space for BKT ,n . For Z ∈ L1,n(K +

T ), the linear form
φZ (X) := E

[
ZT X

]
belongs to ba+

KT ,n . The norm ‖Z‖d,n := sup
{|E [

ZT X
] | :

X ∈ BKT ,n, ‖X‖KT ,n ≤ 1
}
is the dual norm for any Z ∈ L1,n(K +

T ).

Theorem 2.16 (Theorem 4.2 of [52]) Let (R̃t )
T
t=0 be a conditionally coherent risk

process on BKT ,n and let KT satisfy property k1 − k5. The following are equivalent:

1. For every time t ∈ [0, T ], there exists a closed conditional cone {0} �= Q1
t ⊆

L1,n(K +
T ) (in the norm topology, with norm ‖ · ‖d,n) such that for any X ∈ BKT ,n

S∞
R̃

(t, X) = {
u ∈ Mn

t ∩ BKT ,n : ∀Z ∈ Q1
t : E

[
ZT(X + u)

] ≥ 0
}
. (2.12)

2. (R̃t )
T
t=0 satisfies the Fatou property.

3. Ct :=
{

X ∈ BKT ,n : 0 ∈ R̃t (X)
}

is σ(BKT ,n, L1,n(K +
T ))-closed.

We conclude this section by discussing time consistency properties as they were
defined in the measurable selector approach in [52]. As in the set-optimization
approach in the previous section one would like to define a property that is equivalent
to a recursive form. For this reason we will extend the risk process to be a function
of a set. For a set X ⊆ BKT ,n , let us define R̃t (X) ∈ Sd,n

t via its selectors, that is

L0
t (R̃t (X)) ∩ BKT ,n = cl envFt

⋃

X∈X

S∞
R̃

(t, X) =: S∞
R̃

(t, X),

where, for any � ⊆ BKT ,n , envFt � denotes the smallest Ft -decomposable set (see
Definition 2.9) which contains �. This means that the measurable selectors of the
risk process of a set are defined by the closed and Ft -decomposable version of the
pointwise union. Note that if X = {X} then this reduces to the prior definition on
portfolios. The risk process of a set is defined in this way because the selection risk
measure must be closed and Ft -decomposable-valued to guarantee the existence of
an Ft -measurable random set R̃t (X) such that S∞

R̃
(t, X) = L0

t (R̃t (X)) ∩ BKT ,n .

Definition 2.17 A risk process (R̃t )
T
t=0 is called consistent in time if for any t, s ∈

[0, T ] with t < s and X ∈ BKT ,n , Y ⊆ BKT ,n

R̃s(X) ⊆ R̃s(Y) ⇒ R̃t (X) ⊆ R̃t (Y).
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The following theorem gives equivalent characterizations of consistency in time,
the last one being a recursion in the spirit of Bellman’s principle.

Theorem 2.18 (Theorem 5.1 of [52]) A normalized risk process (R̃t )
T
t=0 on BKT ,n

is consistent in time if any of the following equivalent conditions hold:

1. If R̃s(X) ⊆ R̃s(Y) for X ∈ BKT ,n and Y ⊆ BKT ,n, then R̃t (X) ⊆ R̃t (Y) for t ≤
s ≤ T .

2. If R̃s(X) = R̃s(Y) for X ∈ BKT ,n and Y ⊆ BKT ,n, then R̃t (X) = R̃t (Y) for t ≤
s ≤ T .

3. For all X ∈ BKT ,n, S∞
R̃

(t, X) = S∞
R̃

(t,−S∞
R̃

(s, X)) for t ≤ s ≤ T .

2.3 Set-Valued Portfolio Approach

The approach for considering sets of portfolios, so called set-valued portfolios, as
the argument of a set-valued risk measure was proposed in [13]. The reasoning for
considering set-valued portfolios is to take the risk, not only of a portfolio X , but
of every possible portfolio that X can be traded for in the market, into account. We
will denote by X the random set of portfolios for which X ∈ L p can be exchanged.
The concept of set-valued portfolios appears naturally when trading opportunities in
the market are taken into account. Below we provide two examples, one in which
no trading is allowed and another in which any possible trade can be used. There
are other examples provided in [13] on how a set-valued portfolio can be obtained,
and the definition of the risk measure is independent of the method used to construct
set-valued portfolios.

Example 2.19 The random mapping X = X + R
d− for a random vector X ∈ L p

describes the case when no exchanges are allowed.

Example 2.20 (Example 2.2 of [13]) The randommappingX = X + K for a random
vector X ∈ L p and a lower convex (random) setK, such that L p(K) is closed, defines
the set-valued portfolios related to the exchanges defined by K. If K is a solvency
cone (see e.g. [37, 38, 50]) or the sum of solvency cones at different time points,
then K = −K is an exchange cone, and the associated random mapping defines a
set-valued portfolio. The setting of Example 2.19 corresponds to the case where
K = R

d−.

We will slightly adjust the definitions given in [13] to include the dynamic exten-
sion of such risk measures, to incorporate the set of eligible portfolios Mt , and go
beyond the coherent case.

Let Sd
T denote the set of F-random sets in R

d (as in Sect. 2.2 above). Let
S̄d

T ⊆ Sd
T be those random sets that are nonempty, closed, convex and lower,

that is for X ∈ X also Y ∈ X whenever X − Y ∈ R
d+ P-a.s. As in [13], we will

consider set-valued portfolios X ∈ S̄d
T . By Proposition 2.1.5 and Theorem 2.1.6

in [43], the collection of p-integrable selectors of X, that is L p(X), is a nonempty,
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closed, (F-)conditionally convex, lower and F-decomposable set, which is an ele-
ment of G(L p; L p

−). In [13], S̄d
T is used as the pre-image set, one could also use

the family of sets of selectors {L p(X) : X ∈ S̄d
T } ⊂ G(L p; L p

−) as the pre-image
set, which is particular useful when dynamic risk measures are considered and
recursions due to multi-portfolio time consistency become important. Recall that
P(Mt ; Mt,+) := {

D ⊆ Mt : D = D + Mt,+
}
denotes the set of upper sets, which

will be used as the image space for the risk measures. Closed (conditionally) convex
risk measures map into G(Mt ; Mt,+).

In the following definition for convex risk measures we consider a modified
version of set-addition used in [13] which is denoted by ⊕. For two random sets
X, Y ∈ Sd

T ,X ⊕ Y ∈ Sd
T is the random set defined by the closure ofX[ω] + Y[ω] for

all ω ∈ �. Note that, by Proposition 2.1.4 in [43], if the probability space (�,F, P)

is non-atomic and p ∈ [1,+∞) then L p(X ⊕ Y) = cl
[
L p(X) + L p(Y)

]
.

Definition 2.21 (Definition 2.9 of [13]) A function Rt : S̄d
T → P(Mt ; Mt,+) is

called a set-valued conditional risk measure if it satisfies the following conditions.

1. Cash invariance: Rt (X + m) = Rt (X) − m for any X and m ∈ Mt .
2. Monotonicity: Let X ⊆ Y almost surely, then Rt (Y) ⊇ Rt (X).

The risk measure Rt is said to be closed-valued if its values are closed sets.
The risk measure Rt is said to be (conditionally) convex if for every set-valued

portfolio X, Y and λ ∈ [0, 1] (respectively λ ∈ L∞
t (R) such that 0 ≤ λ ≤ 1)

Rt (λX ⊕ (1 − λ)Y) ⊇ λRt (X) + (1 − λ)Rt (Y).

The risk measure Rt is said to be (conditionally) positive homogeneous if for
every X and λ > 0 (respectively λ ∈ L∞

t (R++))

Rt (λX) = λRt (X).

The risk measure Rt is said to be (conditionally) coherent if it is (conditionally)
convex and (conditionally) positive homogeneous.

The closed-valued variant of Rt is denoted by R̄t (X) = cl(Rt (X)) for every set-
valued portfolio X ∈ S̄d

T .
A set-valued portfolio X is acceptable if 0 ∈ Rt (X), i.e. we can define the accep-

tance set At ⊆ S̄d
T by At := {X : 0 ∈ Rt (X)}. And a primal representation for the

risk measures can be given by the usual definition Rt (X) = {u ∈ Mt : X + u ∈ At }
due to cash invariance.

Wewill now consider a subclass of set-valued conditional riskmeasures presented
in [13, Sect. 3] that are constructed using a scalar dynamic risk measure for each
component. For the remainder of this section we will consider the case when Mt =
L p

t . In [13], only (scalar) law invariant coherent risk measures were considered for
this approach, we will consider the more general case.
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Letρ1
t , . . . , ρd

t be dynamic riskmeasures defined on L p(R)with values in L p
t (R ∪

{+∞}). For a random vector X = (X1, . . . , Xd)
T ∈ L p we define

ρ t (X) = (
ρ1

t (X1), . . . , ρ
d
t (Xd)

)T
.

We say the vector X ∈ L p is acceptable if ρ t (X) ≤ 0, i.e. ρi
t (Xi ) ≤ 0 for all i =

1, . . . , d. We say the set-valued portfolioX is acceptable if there exists a Z ∈ L p(X)

such that ρ t (Z) ≤ 0.

Definition 2.22 (Definition 3.3 of [13]) The constructive conditional risk measure
Rt : S̄d

T → P(L p
t ; L p

t,+) is defined for any set-valued portfolio X by

Rt (X) = {
u ∈ L p

t : X + u is acceptable
}
,

which is equivalently to

Rt (X) =
⋃

Z∈L p(X)

(ρ t (Z) + L p
t,+). (2.13)

The closed-valued variant is defined by R̄t (X) := cl(Rt (X)) for every X ∈ S̄d
T .

In [13], the constructive (static) risk measures have been called selection risk
measures, we modified the name here in accordance to the title of the paper [13] to
avoid confusion with the measurable selector approach from Sect. 2.2.

Example 2.23 Consider the no-exchange set-valued portfolios from Example 2.19.
Then the constructive conditional risk measure associated with any vector of scalar
conditional risk measures is given by

Rt (X) = ρ t (X) + L p
t,+.

Theorem 2.24 (Theorem 3.4 of [13]) Let ρ t be a vector of dynamic risk measures,
then Rt and R̄t given in Definition 2.22 are both set-valued conditional risk measures.

If ρ t is convex (conditionally convex, positive homogeneous, conditionally positive
homogeneous, law invariant convex on an non-atomic probability space), then Rt and
R̄t are convex (conditionally convex, positive homogeneous, conditionally positive
homogeneous, law invariant convex on an non-atomic probability space).

Furthermore, [13] gives conditions under which the constructive (static) risk mea-
sureR0 defined in (2.13) in the coherent case is closed, orLipschitz and deduces upper
and lower bounds for it and dual representations in certain special cases. Numerical
examples for the calculation of upper and lower bounds are given.
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2.4 Family of Scalar Risk Measures

Consider L p, p ∈ [1,+∞] with the norm topology for p ∈ [1,+∞) and the weak*
topology for p = +∞. Recall fromDefinition 2.2 that a set At ⊆ L p is a conditional
acceptance set at time t if it satisfies Mt ∩ At �= ∅, M̃t [ω] ∩ (Rd\At [ω]) �= ∅ for
almost every ω ∈ �, and At + L p

+ ⊆ At .
We will define a family of scalar conditional risk measures ρw

t with parameter
w ∈ M+

t,+\M⊥
t via their primal representation. The scalar risk measures map into the

random variables with values in the extended real line, that is, into the space L0
t (R̄)

with R̄ := R ∪ {±∞}.
Definition 2.25 A function ρw

t : L p → L0
t (R̄) satisfying

ρw
t (X) = ess inf

{
wTu : u ∈ Mt , X + u ∈ At

}
(2.14)

for a parameterw ∈ M+
t,+\M⊥

t and a conditional acceptance set At is called amultiple
asset conditional risk measure at time t .

Clearly, the scalar risk measures defined above are scalarizations of a set-valued
risk measure from the set-optimization approach (see Sect. 2.1) defined by Rt :=
{u ∈ Mt : X + u ∈ At }, where the scalarizations are taken with respect to vectors
w ∈ M+

t,+\M⊥
t , that is

ρw
t (X) = ess inf

u∈Rt (X)
wTu = ess inf

{
wTu : u ∈ Mt , X + u ∈ At

}
. (2.15)

Note, that when Rt is K -compatible (that is At = At + L p
t (K )) for some

Ft -measurable random cone K ⊆ M̃t , then ρw
t (X)[ω] = −∞ on w(ω) /∈ K [ω]+

for any X ∈ L p. Thus, one can restrict oneself in this case to parameters w in the
basis of Lq

t (K +)\M⊥
t .

We will give some examples from the literature of scalar risk measures of form
(2.14).

Example 2.26 In [5, 18, 26, 39, 49] risk measures of form (2.14) have been studied
in the static case.

In a frictionless market let the time t prices be given by the (random) vector St .
In this case the solvency cones (see [37, 38, 50]) (Kt )

T
t=0 are given by Kt [ω] ={

x ∈ R
d : St (ω)Tx ≥ 0

}
, where the normal vector St (ω) is the unique vector in the

basis of Kt [ω]+. Let At = At + L p
t (Kt ∩ M̃t ) + L p(KT ),

ρ
St
t (X) = ess inf

{
ST

t u : u ∈ Mt , X + u ∈ At
} = ρ̃

St
t (ST

T X)

for any X ∈ L p (since Lq
t ((Kt ∩ M̃t )

+) := Lq
t (K +

t ) + M⊥
t ). It can be seen that

ρ̃
St
t (Z) = ess inf

{
ST

t u : u ∈ Mt , Z + ST
T u ∈ Ãt

}
with Ãt = {

ST
T X : X ∈ At

}
is the

dynamic version of the risk measures with multiple eligible assets defined in [5,
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18, 26, 39, 49] (and with single eligible assets (which is not necessarily the original
numéraire) defined in [19, 20]). Ãt satisfies Definition 1 of [18] for an acceptance set.

Example 2.27 Burgert and Rüschendorf [11] discusses scalar static risk measure of
multivariate claims, when only a single eligible asset is considered, that is

ρ(X) = inf {m ∈ R : X + me1 ∈ A}

for X ∈ L∞, where A ⊆ L∞ is an acceptance set. We can see that this has the
form ρ(X) = inf

{
eT
1 u : u ∈ R × {0}d−1, X + u ∈ A

}
, i.e. the scalarization of a set-

valued risk measure with M0 = R × {0}d−1 and w = e1.

Example 2.28 In [53] so called liquidity-adjusted risk measure ρV : L∞ → R,
which are scalar static risk measure of multivariate claims in markets with frictions,
are studied, when only a single eligible asset is considered. The primal representation

ρV (X) = inf{k ∈ R : X + ke1 ∈ AV }

for AV := {X ∈ L∞ : V (X) ∈ A}, where V is a real valued function providing the
value of a portfolio X under liquidity and portfolio constraints and A ⊆ L∞(R) is the
acceptance set of a scalar convex risk measure in the sense of [24]. Clearly, ρV (X)

is of form (2.14).

Example 2.29 In [7, 10, 35, 44, 46] (andmany other papers) the scalar superhedging
price in a market with two assets and transaction costs has been studied. The d asset
case is treated in [41, 47]. Let (Kt )

T
t=0 be the sequence of solvency cones modeling

the market with proportional transaction costs.
The d dimensional version of the dual representation of the scalar superhedging

price given in Jouini, Kallal [35] reads as follows. Let X ∈ L p be a payoff in physical
units. Under an appropriate robust no arbitrage condition, the scalar superhedging
price πa

i (X) in units of asset i ∈ {1, . . . , d} at time t = 0 is given by

πa
i (X) = sup

(St ,Q)∈Qi

E
Q

[
ST

T X
]
, (2.16)

whereQi is the set of all processes (St )
T
t=0 and their equivalent martingale measures

Q with dQ
dP ∈ L1(FT ), Si

t ≡ 1, E

[
dQ
dP

∣∣∣Ft

]
St ∈ Lq

d(Ft ; K +
t ) for all t . Theorem 6.1

in [41] shows that (2.16) can be obtained by scalarizing the coherent set-valued risk
measure with acceptance set A0 = ∑T

s=0 L p
s (Ks) and single eligible asset (asset i ,

which is also the numéraire asset, i.e. M0 = {
m ∈ R

d : m j = 0 ∀ j �= i
}
) w.r.t. the

unit vector w = ei ∈ (K0 ∩ M0)
+. Thus, πa

i is a special case of (2.14).
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Of course any standard scalar risk measure in a frictionless markets with single
eligible asset as in [4, 24] is also special cases of (2.14), but in that case there is
no advantage to explore the relationship with a set-valued risk measure via (2.15).
In any other case, i.e. if one of the following is considered: multiple eligible assets,
multivariate claims, transaction costs or othermarket frictions, it can be advantageous
to explore (2.15) as the dual representation of the corresponding set-valued risk
measure given in Sect. 2.1 can lead to a dual representation of the scalarization as
demonstrated in (2.16). Furthermore, even if one is interested in only one particular
scalarization (as it is the case in all the examples above), the dual representation
of the scalar risk measure might involve the whole family of scalarizations (as in
Example 2.29, where the constraints St ∈ K +

t a.s. for all t enter the scalar problem
in (2.16)). This is related to time consistency properties of the scalar risk measure
and multi-portfolio time consistency of the corresponding set-valued risk measure
(see Definition 2.5). In this paper we are only concerned with the connection between
a family of scalar risk measures and a set-valued risk measure. Lemma 3.18 below
gives verymild conditions underwhich a set-valued riskmeasures can be equivalently
represented by a family of scalar risk measures. Results about dual representations
and the study of time consistency properties of the family of scalar risk measures are
left for further research.

Themainmotivation to study a family of scalar riskmeasures in this section is that
it allows to generalize all of the examples given above in a unified way by allowing
multiple eligible assets, multivariate claims and frictions in the form of transaction
costs, as well as considering a dynamic setting. As Example 2.29 suggests, viewing a
scalar risk measure in a market with frictions as being a scalarization of a set-valued
risk measure has the advantage of obtaining dual representations and conditions on
time consistency by using the corresponding results of the set-valued risk measure.

A different approach concerning a family of scalar risk measures and multiple
eligible assets in a frictionless market was taken in [34]. In that paper, given a set of
eligible assets (with values Si

T for i = 1, . . . , n), the risk of the portfolio X is the set

of values
{∑n

i=1 ρ
Si

T
t (Xi )Si

T : X = ∑n
i=1 Xi

}
where ρ

Si
T

t is a risk measure in asset i

(with change of numéraire). However, we will not discuss this approach further since

lemma 4.10 of that paper demonstrates that ρ
S0

T
t (X) ≤ ρ

S0
T

t (−∑n
i=1 ρ

Si
T

t (Xi )Si
T ) for

any choice of numéraire 0 and any allocation of X = ∑n
i=1 Xi , i.e. the family of

risks (as a portfolio) has a risk bounded below by the risk of the initial portfolio no
matter the numéraire chosen.

In the following proposition we show that the multiple asset conditional scalar
risk measures satisfy monotonicity and a translative property. These properties are
usually given as the definition of a risk measure in the literature given in the above
examples. However, here we consider the primal representation Definition2.25 as
the starting point.

Proposition 2.30 Let ρw
t : L p → L0

t (R̄) be a multiple asset conditional scalar risk
measure at time t for pricing vector w ∈ M+

t,+\M⊥
t . Then ρw

t satisfies the following
conditions.
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1. If Y − X ∈ L p
+ for X, Y ∈ L p, then ρw

t (Y ) ≤ ρw
t (X).

2. ρw
t (X + m) = ρw

t (X) − wTm for all X ∈ L p and m ∈ Mt .

Further, if we consider the family of such risk measures over all pricing vectors
w ∈ M+

t,+\M⊥
t then we have the following finiteness properties.

3. ρw
t (0) < +∞ for every w ∈ M+

t,+\M⊥
t .

4. ρw
t (0) > −∞ for some w ∈ M+

t,+\M⊥
t .

Proof Let ρw
t (X) := ess inf

{
wTu : u ∈ Mt , X + u ∈ At

}
for every X ∈ L p, every

w ∈ M+
t,+\M⊥

t , and some conditional acceptance set At .

1. Let X, Y ∈ L p such that Y − X ∈ L p
+. Let w ∈ M+

t,+\M⊥
t .

ρw
t (Y ) = ess inf

{
wTu : u ∈ Mt , Y + u ∈ At

}

= ess inf
{
wTu : u ∈ Mt , X + (Y − X) + u ∈ At

}

≤ ess inf
{
wTu : u ∈ Mt , X + u ∈ At

} = ρw
t (X).

2. Let X ∈ L p and m ∈ Mt . Let w ∈ M+
t,+\M⊥

t .

ρw
t (X + m) = ess inf

{
wTu : u ∈ Mt : X + m + u ∈ At

}

= ess inf
{
wT(u − m) : u ∈ Mt , X + u ∈ At

} = ρw
t (X) − wTm.

3. Fix someω ∈ �.ρw
t (0)[ω] = +∞ for somew ∈ M+

t,+\M⊥
t if and only if At [ω] ∩

M̃t [ω] = ∅, which by At ∩ Mt �= ∅ is false.
4. Fix some ω ∈ �. ρw

t (0)[ω] = −∞ for every w ∈ M+
t,+\M⊥

t if and only if
(Rd\At [ω]) ∩ M̃t [ω] = ∅, which by definition is false.

�

3 Relation Between Approaches

In this section we compare the properties for each of the techniques for dynamic
multivariate risk measures. It will be shown that the set-valued portfolio approach to
dynamic risk measures is the most general model into which every other approach
can be embedded. It will be shown in Sect. 3.2 that under weak assumptions on the
construction of the set-valued portfolios, the set-optimization approach is equivalent
to the set-valued portfolio approach. Because additional properties for dynamic risk
measures have been studied previously for the set-optimization approach and due to
the (often) one-to-one relation with the set-portfolio approach, we will present the
relations in this section as comparisons with the set-optimization approach.
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3.1 Set-Optimization Approach Versus Measurable Selectors

In order to compare these two approaches, one first needs to agree on the same preim-
age and image space. One possibility would be to define the riskmeasures of Sect. 2.1
on the space BKT ,n . This can be done as the theory involved (set-optimization) works
for any locally convex space as the preimage space. The other possibility is to con-
sider the measurable selectors approach of Sect. 2.2 on L p spaces. This in not a
problem for the definition of risk processes given in Definition 2.7, but could pose a
problem for primal and dual representations, see discussion in Remark 3.1 for more
details. However, since for the comparison results we just work with the definitions,
we will follow this path here. Thus, consider L p spaces for p ∈ [0,+∞] endowed
with the metric topology (that is the norm topology for p ≥ 1), even for p = +∞
which is in contrast to [21, 23] where the weak* topology is used for p = +∞. Also,
as the definition of the risk process does not rely on the space of eligible portfolios
to be Mn

t , we will use a general space of eligible portfolios Mt . We will show that
when the dynamic risk measure has closed and conditionally convex images, the
set-optimization and the measurable selectors approach coincide.

Remark 3.1 While the space BKT ,n shares many properties with L∞, the two do
not coincide in general. If n = d or additional assumptions (e.g. substitutability
from [36]) are satisfied, then L∞ ⊆ BKT ,n . If n = d and KT = R

d+ almost surely,
then BKT ,n = L∞. However, in general the two spaces are not comparable in the set-
inclusion relation. Therefore, without additional assumptions, it is not trivial to use
the representation results from [52] for the space L∞. Furthermore, the assumptions
for the Fatou duality (Theorem 2.16) exclude the special case KT = R

d+ and thus
exclude the case BKT ,n = L∞ when n = d. However, the definition for risk process
can be given for L p spaces (and this is used in this section). But complications arise in
both, the primal and dual definition, as e.g. boundedness is used in the proofs in [52].

The definition for Ft -decomposability given below can be found in [43, p. 148]
or [38, p. 260].

Definition 3.2 Aset D ⊆ L p is said to beFt -decomposable if for anyfinite partition
(�n

t )
N
n=1 ⊆ Ft of� and any family (Xn)

N
n=1 ⊆ D for N ∈ N, we have

∑N
n=1 1�n

t
Xn ∈

D.

The following theoremandCorollary 3.4 belowstate that there is a one-to-one rela-
tion between conditional risk measures Rt with closed andFt -decomposable images
and closed risk processes R̃t . In Corollary 3.9 we demonstrate that any conditional
riskmeasure with closed and conditionally convex images also hasFt -decomposable
images.

For notational purposes, let St := {� ∈ Sd
t : �(ω) ⊆ M̃t [ω] a.s.} ⊆ Sd

t .

Theorem 3.3 Let R̃t : L p → St be a risk process at time t (see Definition 2.7),
then Rt : L p → P(Mt ; Mt,+), defined by Rt (X) := L p

t (R̃t (X)) for any X ∈ L p, is a
conditional risk measure at time t (see Definition 2.1) withFt -decomposable images.
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Let Rt : L p → P(Mt ; Mt,+) be a conditional risk measure at time t (see Defini-
tion 2.1) with closed and Ft -decomposable images, then there exists a risk process
R̃t : L p → St (see Definition 2.7) such that Rt (X) = L p

t (R̃t (X)) for any X ∈ L p.

Proof 1. Let R̃t : L p → St be a risk process at time t . Let Rt : L p → P(Mt ; Mt,+)

be defined by Rt (X) := L p
t (R̃t (X)) for any X ∈ L p. It remains to show that Rt

is a conditional riskmeasure at time t . L p
+-monotonicity: let X, Y ∈ L p such that

Y − X ∈ L p
+, then R̃t (Y ) ⊇ R̃t (X), and thus Rt (X) ⊇ Rt (X). Mt -translativity:

let X ∈ L p and m ∈ Mt , then Rt (X + m) = L p
t (R̃t (X + m)) = L p

t (R̃t (X) −
m) = L p

t (R̃t (X)) − m = Rt (X) − m. Finiteness at zero: By R̃t (0) �= ∅ almost
surely then trivially Rt (0) = L p

t (R̃t (0)) �= ∅. By R̃t (0) �= M̃t almost surely
then if u(ω) ∈ M̃t [ω]\R̃t (0)[ω] for almost every ω ∈ � such that u ∈ Mt ,
then u(ω) /∈ Rt (0)[ω] for almost every ω ∈ �. Ft -decomposable images: Let
(�n

t )
N
n=1 ⊆ Ft for some N ∈ N be a finite partition of� and let (un)

N
n=1 ⊆ Rt (X)

then
∑N

n=1 1�n
t
un ∈ Mt , then since Rt (X) are the measurable selectors of R̃t (X)

it immediately follows that
∑N

n=1 1�n
t
un ∈ Rt (X).

2. Let Rt : L p → P(Mt ; Mt,+) be a conditional risk measure at time t with closed
and Ft -decomposable images. By Proposition 5.4.3 in [38] (for p ∈ [0,+∞))
and Theorem 1.6 of Chap.2 from [43] (for p = +∞), it follows that Rt (X) =
L p

t (R̃t (X)) for some almost surely closed random set R̃t (X) for every X ∈ L p.
Trivially, we can see that R̃t (X) ⊆ M̃t almost surely. It remains to show that R̃t

is a risk process at time t . Let X ∈ L p, then R̃t (X) is a closed Ft -measurable
random set [38, Proposition 5.4.3] and [43, Chap.2, Theorem 1.6]. Finite-
ness at zero of Rt implies finiteness at zero of R̃t . Consider X, Y ∈ L p with
Y − X ∈ L p

+, then Rt (Y ) ⊇ Rt (X), which implies that R̃t (Y ) ⊇ R̃t (X). Let
X ∈ L p and m ∈ Mt , then Rt (X + m) = Rt (X) − m. This implies L p

t (R̃t (X +
m)) = L p

t (R̃t (X)) − m=L p
t (R̃t (X) − m), i.e. R̃t (X + m)=R̃t (X) − m almost

surely. �

In the below corollaries the conditional risk measure associated with the risk
process (and vice versa) is defined as in Theorem 3.3 above.

Corollary 3.4 Let R̃t : L p → St be a conditionally convex (conditionally positive
homogeneous, normalized) risk process at time t then the associated conditional risk
measure is conditionally convex (conditionally positive homogeneous, normalized).

Let Rt : L p → P(Mt ; Mt,+) be a conditionally convex (conditionally positive
homogeneous, normalized) conditional risk measure at time t with closed and Ft -
decomposable images, then the associated risk process is conditionally convex (con-
ditionally positive homogeneous, normalized).

Proof 1. Let R̃t : L p → St be a risk process at time t and Rt be the associated
conditional risk measure. Let R̃t be conditionally convex. Take X, Y ∈ L p, λ ∈
L∞

t (R) with 0 ≤ λ ≤ 1. Then,
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λRt (X) + (1 − λ)Rt (Y ) = λL p
t (R̃t (X)) + (1 − λ)L p

t (R̃t (Y ))

= L p
t (λR̃t (X) + (1 − λ)R̃t (Y ))

⊆ L p
t (R̃t (λX + (1 − λ)Y )) = Rt (λX + (1 − λ)Y ).

Let R̃t be conditionally positive homogeneous. Take X ∈ L p and λ ∈ L∞
t (R++).

Then,λRt (X) = λL p
t (R̃t (X)) = L p

t (λR̃t (X)) = L p
t (R̃t (λX)) = Rt (λX).Let R̃t

be normalized and let X ∈ L p. Then, Rt (X) + Rt (0) = L p
t (R̃t (X)) +

L p
t (R̃t (0)) = L p

t (R̃t (X) + R̃t (0)) = L p
t (R̃t (X)) = Rt (X).

2. Let Rt : L p → P(Mt ; Mt,+) be a conditional risk measure at time t and let R̃t

be the associated risk process. Let Rt be conditionally convex. Take X, Y ∈ L p

and λ ∈ L∞
t (R) with 0 ≤ λ ≤ 1. Then,

L p
t (λR̃t (X) + (1 − λ)R̃t (Y )) = λRt (X) + (1 − λ)Rt (Y )

⊆ Rt (λX + (1 − λ)Y ) = L p
t (R̃t (λX + (1 − λ)Y )).

By [43, Chap.2, Proposition 1.2 (iii)] it holds λR̃t (X) + (1 − λ)R̃t (Y ) ⊆ R̃t

(λX + (1 − λ)Y ) almost surely. The proof for conditional positive homogeneity
and normalization is analog.

�

As discussed in Sects. 2.1 and 2.2, we have time consistency properties for both
the set-optimization and measurable selector approach to risk measures. Therefore,
we would like to be able to compare multi-portfolio time consistency (Definition 2.5)
and consistency in time (Definition 2.17). These properties coincide in their notation,
however as we will show below the two properties only coincide under additional
assumptions.

Corollary 3.5 Let (R̃t )
T
t=0 be a normalized conditionally convex consistent in time

risk process, then the associated dynamic risk measure is multi-portfolio time con-
sistent if it is convex upper continuous.

Let (Rt )
T
t=0 be a normalized multi-portfolio time consistent dynamic risk measure

with closed and Ft -decomposable images for all times t, then the associated risk
process is consistent in time.

Proof 1. Let (R̃t )
T
t=0 be a normalized conditionally convex risk process which

is consistent in time such that the associated dynamic risk measure (Rt )
T
t=0

is convex upper continuous. By Theorem 2.18, it follows that Rt (X) = cl
envFt

⋃
Z∈Rs (X) Rt (−Z) for any X ∈ L p and any times t, s ∈ [0, T ] such that

t ≤ s. By Corollary 3.4 above, (Rt )
T
t=0 is conditionally convex.

We will show that the recursive form
⋃

Z∈Rs (X) Rt (−Z) is Ft -decomposable.
Let N ∈ N, (un)

N
n=1 ⊆ ⋃

Z∈Rs (X) Rt (−Z) and (�n
t )

N
n=1 ⊆ Ft is a partition of

�. Denote by Zn ∈ Rs(X) the element such that un ∈ Rt (−Zn) for every n ∈
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{1, . . . , N }. By Lemma 3.6, it follows that
∑N

m=1 1�m
t

Zm ∈ Rs(X). Then we can
see

N∑

n=1

1�n
t
un ∈

N∑

n=1

1�n
t
Rt (Zn) =

N∑

n=1

1�n
t
Rt (1�n

t
Zn)

=
N∑

n=1

1�n
t
Rt (1�n

t

N∑

m=1

1�m
t

Zm) =
N∑

n=1

1�n
t
Rt (

N∑

m=1

1�m
t

Zm)

⊆
{

u ∈ Mt : ∃J ⊆ {1, . . . , N } : P(∪ j∈J A j ) = 1,

∀ j ∈ J : 1
�

j
t
u ∈ 1

�
j
t
Rt (

N∑

m=1

1�m
t

Zm)

}

= Rt (

N∑

m=1

1�m
t

Zm) ⊆
⋃

Z∈Rs (X)

Rt (−Z).

In the above we use the local property for conditionally convex risk mea-
sures ([21, Proposition 2.8]) and Lemma 3.6. Therefore,

⋃
Z∈Rs (X) Rt (−Z) is

Ft -decomposable, and thus Rt (X) = cl
⋃

Z∈Rs (X) Rt (−Z). And as seen in [23,
Appendix B], if (Rt )

T
t=0 is convex upper continuous then

⋃
Z∈Rs (X) Rt (−Z) is

closed for any X ∈ L p. Therefore, Rt (X) = ⋃
Z∈Rs (X) Rt (−Z), i.e. Rt (X)multi-

portfolio time consistent.
2. Let (Rt )

T
t=0 be a normalized multi-portfolio time consistent dynamic risk mea-

sure with closed and Ft -decomposable images for all time t . Let (R̃t )
T
t=0

be the associated risk process. By Theorem 2.6, it follows that Rt (X) =⋃
Z∈Rs (X) Rt (−Z) for any X ∈ L p and any times t, s ∈ [0, T ] such that t ≤ s.

Since Rt has closed and Ft -decomposable images then it additionally follows
that

⋃
Z∈Rs (X) Rt (−Z) = cl envFt

⋃
Z∈Rs (X) Rt (−Z) for any X ∈ L p. There-

fore, L p
t (R̃t (X)) = L p

t (R̃t (−Rs(X))) and thus, by Theorem 2.18, it follows that
(R̃t )

T
t=0 is consistent in time.

�

The convex upper continuity in the first part of the above theorem could we
weakened as one only needs

⋃
Z∈Rs (X) Rt (−Z) is closed for any X ∈ L p and t ≤ s.

Up to this point we have made the additional assumption for conditional risk
measures of Sect. 2.1 to be Ft -decomposable. The following results (Lemma 3.6
and Corollary 3.9 below) demonstrate that a conditional risk measure with closed
and conditionally convex images satisfies a property stronger thanFt -decomposable
images as the property remains true for any (possibly uncountable) partition as well.
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Lemma 3.6 Let (Rt )
T
t=0 be a dynamic risk measure with closed and conditionally

convex images. Let (Ai )i∈I ⊆ Ft be a partition of �. Then

Rt (X) = {
u ∈ Mt : ∃J ⊆ I with P(∪ j∈J A j ) = 1 such that 1A j u ∈ 1A j Rt (X) ∀ j ∈ J

}

for any X ∈ L p and any time t.

Before giving the proof we give a remark on the uncountable summation as it will
be used in part 2 (b) of the proof.

Remark 3.7 As given in [9, Chap. 3, Sect. 5] and [16, Chap.3, Sect. 3.9], the arbitrary
summation on a Hausdorff commutative topological group is given by

∑
j∈J f j =

limK∈J
∑

k∈K fk , for any { f j ∈ X : j ∈ J } where X is a Hausdorff commutative
topological group, such thatJ = {K ⊆ J : #K < +∞}, i.e.J are the finite subsets
of J . Note that J is a net with order given by set inclusion and join given by the
union.

In particular, for our concerns, themetric topologies for L p
t for p ∈ [0,+∞] are all

Hausdorff commutative topological groups. (If p = 0 then we consider convergence
inmeasure,which is equivalent to ametric spacewithmetric d( f, g) = ∫

�

| f −g|
1+| f −g|dP

(lemma 13.40 in [1])).

Proof of lemma 3.6 Note that 1D Rt (X) = {1Du : u ∈ Rt (X)} for any D ∈ Ft . For
notational convenience let R̂t (X) := {

u ∈ Mt : ∃J ⊆ I with P(∪ j∈J A j ) = 1
such that1A j u ∈ 1A j Rt (X) ∀ j ∈ J

}
.

1. The inclusion Rt ⊆ R̂t follows straight forward: Let u ∈ Rt (X), then by definition
1Du ∈ 1D Rt (X) for any D ∈ Ft , and in particular this is true for D = Ai for any
i ∈ I . Therefore it follows that u ∈ R̂t (X).

2. To prove R̂t ⊆ Rt we will consider the two case: finite and infinite partitions.
Let u ∈ R̂t (X) and J ⊆ I the underlying subindex. Then u = ∑

j∈J 1A j u almost
surely, therefore u ∈ Rt (X) if and only if

∑
j∈J 1A j u ∈ Rt (X) since they are in

the same equivalence class. Let #J denote the cardinality of the set J . Note that
by definition 1A j u ∈ 1A j Rt (X) for every j ∈ J .

(a) If #J < +∞, i.e. if J is a finite set, then trivially

∑

j∈J

1A j u ∈
∑

j∈J

1A j Rt (X) ⊆ Rt (X)

by closedness and conditional convexity of Rt (X) as shown in Proposi-
tion 3.8 below. And thus u ∈ Rt (X).

(b) Consider the case #J = +∞, i.e. if J is not a finite set. Let u ∈ R̂t (X),
that is there exists J ⊆ I with P(∪ j∈J A j ) = 1 such that 1A j u ∈ 1A j Rt (X)

for all j ∈ J , or equivalently 1A j (u − m) ∈ 1A j Rt (X + m) for all j ∈ J
for some m ∈ Rt (X) by using the translation property of Rt . We want to
show u ∈ Rt (X), respectively u − m ∈ Rt (X + m). Recall the summation
as given in Remark 3.7, and the notation J = {K ⊆ J : #K < +∞}.
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u − m =
∑

j∈J

1A j (u − m) ∈
∑

j∈J

1A j Rt (X + m)

=
⎧
⎨

⎩

∑

j∈J

1A j Z j : ∀ j ∈ J : Z j ∈ Rt (X + m)

⎫
⎬

⎭

=
{

lim
K∈J

∑

k∈K

1Ak Zk : ∀ j ∈ J : Z j ∈ Rt (X + m)

}

(3.1)

=
{

lim
K∈J

(
∑

k∈K

1Ak Zk + 1(∪ j∈J\K A j )0

)

: ∀ j ∈ J : Z j ∈ Rt (X + m)

}

⊆
{

lim
K∈J

(
∑

k∈K

1Ak Zk + 1(∪ j∈J\K A j ) Z̄

)

: ∀ j ∈ J : Z j , Z̄ ∈ Rt (X + m)

}

(3.2)

⊆ lim inf
K∈J

{
∑

k∈K

1Ak Zk + 1(∪ j∈J\K A j ) Z̄ : ∀k ∈ K : Zk, Z̄ ∈ Rt (X + m)

}

= lim inf
K∈J

(
∑

k∈K

1Ak Rt (X + m) + 1(∪ j∈J\K A j ) Rt (X + m)

)

= lim inf
K∈J

Rt (X + m) = Rt (X + m). (3.3)

Equation (3.1) follows from the definition of an arbitrary summation as given
in [9, 16], see Remark 3.7. Inclusion (3.2) follows from 0 ∈ Rt (X + m)

since m ∈ Rt (X). Equation (3.3) follows from the finite case given above
applied to the partition ((Ak)k∈K ,∪ j∈J\K A j ). Note that ∪ j∈J\K A j ∈ Ft by
(Ft )

T
t=0 a filtration satisfying the usual conditions (and Ft is a sigma alge-

bra). Furthermore, note that we define the limit inferior as in [40] to be
lim infn∈N Bn = ⋂

n∈N cl
⋃

m≥n Bm for a net of sets (Bn)n∈N .

�
The following proposition is used in the proof of Lemma 3.6.

Proposition 3.8 A closed set D ⊆ L p
t is conditionally convex if and only if for any

N ∈ N where N ≥ 2
N∑

n=1

λn D ⊆ D (3.4)

for every (λn)
N
n=1 ∈ �N := {

(xn)
N
n=1 : ∑N

n=1 xn = 1 a.s., xn ∈ L∞
t (R+)∀n ∈ {1,

. . . , N }}.

Proof ⇐ If N = 2 then this is the definition of conditional convexity. If N > 2
then choose (λn)

N
n=1 such that λn = 0 almost surely for every n > 2, this then

reduces to the case when N = 2 and thus D is conditionally convex.
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⇒ We will first define a set of multipliers for strict convex combinations

�>
N =

{

(xn)
N
n=1 :

N∑

n=1

xn = 1 a.s., xn ∈ L∞
t (R++) ∀n ∈ {1, . . . , N }

}

.

Then the result for �>
N for any N ∈ N follows as in the static case (i.e. when

xn ∈ R++) by induction.

Let (λn)
N
n=1 ∈ �N . Then there exists a sequence of ((λm

n )N
n=1)

+∞
m=0 ⊆ �>

N which
converges almost surely to (λn)

N
n=1 (i.e. for any n ∈ {1, . . . , N }, (λm

n )+∞
m=0 con-

verges almost surely to λn , and for everym it holds
∑N

n=1 λm
n = 1 almost surely).

By the dominated convergence theorem, it follows that λm
n X converges to λn X

in the metric topology for any X ∈ L p
t . Therefore for any (Xn)

N
n=1 ⊆ D (and let

X̄m = ∑N
n=1 λm

n Xn ∈ D for any m)

N∑

n=1

λn Xn =
N∑

n=1

lim
m→+∞ λm

n Xn = lim
m→+∞

N∑

n=1

λm
n Xn = lim

m→+∞ X̄m ∈ D

by X̄m convergent (since it is the finite sum of converging series) and D closed.
�

Corollary 3.9 Any conditional risk measure Rt with closed and conditionally convex
images has Ft -decomposable images.

Proof Let Rt be a conditional risk measure with closed and conditionally convex
images, and let X ∈ L p. Let (�n

t )
N
n=1 ⊆ Ft , for some N ∈ N, be a finite partition of

�. By Lemma 3.6,

Rt (X) =
{

u ∈ Mt : ∃J ⊆ {1, . . . , N } : P(∪ j∈J �
j
t ) = 1,∀ j ∈ J : 1

�
j
t
u ∈ 1

�
j
t

Rt (X)
}

.

Therefore, if (un)
N
n=1 ⊆ Rt (X), then 1�m

t

∑N
n=1 1�n

t
un = 1�m

t
um ∈ 1�m

t
Rt (X) for

every m ∈ {1, . . . , N }, and thus
∑N

n=1 1�n
t
un ∈ Rt (X). �

We showed that when the dynamic risk measure has closed and conditionally con-
vex images, the set-optimization approach of Sect. 2.1 and the measurable selector
approach of Sect. 2.2 coincide. As a conclusion, the set-optimization approach which
is using convex analysis results for set-valued functions, i.e. set-optimization, seems
to be the richer approach as it allows to handle primal and dual representations for
L p spaces (p ∈ [1,+∞]) as well as for the space BKT ,n (or any other locally con-
vex preimage space). Furthermore, it allows to consider conditionally convex (and
not necessarily conditionally coherent) risk measures as well as convex risk mea-
sures, whereas the measurable selectors approach relies heavily on the conditional
coherency assumption.
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3.2 Set-Optimization Approach Versus Set-Valued Portfolios

As in the prior sections, consider L p spaces with p ∈ [0,+∞].
Theorem 3.10 Given a conditional risk measure Rt : L p → P(Mt ; Mt,+) (see Def-
inition 2.1), then the function Rt : Sd

T → P(Mt ; Mt,+) defined by

Rt (X) :=
⋃

Z∈L p(X)

Rt (Z) (3.5)

for any set-valued portfolio X is a set-valued conditional risk measure (see Defini-
tion 2.21).

Given a set-valued conditional risk measure Rt : S̄d
T → P(Mt ; Mt,+) (see Defin-

ition 2.21) and a mapping X : L p → S̄d
T of the set-valued portfolio associated with a

(random) portfolio vector such that X is monotone and translative, i.e. X(X) ⊆ X(Y )

if Y − X ∈ L p
+ and X(X + u) = X(X) + u for any X, Y ∈ L p and u ∈ Mt , then the

function Rt : L p → P(Mt ; Mt,+) defined by

Rt (X) := Rt (X(X)) (3.6)

for any X ∈ L p is a conditional risk measure (see Definition 2.1) which might not
be finite at zero.

Proof 1. Let Rt : L p → P(Mt ; Mt,+) be a conditional risk measure as in Defini-
tion 2.1. Let Rt (X) := ⋃

Z∈L p(X) Rt (Z) for any set-valued portfolio X. We wish
to show that Rt satisfies Definition 2.21.

(a) Trivially Rt (X) ∈ P(Mt ; Mt,+) for any set-valued portfolio X.
(b) Cash invariance: let X be a set-valued portfolio and let m ∈ Mt , then

Rt (X + m) =
⋃

Z∈L p(X+m)

Rt (Z) =
⋃

Z∈L p(X)

Rt (Z + m)

=
⋃

Z∈L p(X)

Rt (Z) − m = Rt (X) − m.

(c) Monotonicity: Let X ⊆ Y almost surely, then

Rt (X) =
⋃

Z∈L p(X)

Rt (Z) ⊆
⋃

Z∈L p(Y)

Rt (Z) = Rt (Y).

2. Let Rt : S̄d
T → P(Mt ; Mt,+) be a set-valued conditional risk measure as in Def-

inition 2.21. Let X : L p → S̄d
T be a mapping of portfolio vectors to set-valued

portfolios that is monotone and translative. Let Rt (X) := Rt (X(X)) for any
X ∈ L p. We wish to show that Rt satisfies Definition 2.1.
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(a) L p
+-monotonicity: Let X, Y ∈ L p such that Y − X ∈ L p

+. Then X(Y ) ⊇
X(X), and thus Rt (X) = Rt (X(X)) ⊆ Rt (X(Y )) = Rt (Y ).

(b) Mt -translativity: Let X ∈ L p and m ∈ Mt , then

Rt (X + m) = Rt (X(X + m)) = Rt (X(X) + m) = Rt (X(X)) − m = Rt (X) − m.

�

The above theorem states that conditional risk measures as in Definition 2.1 can
be used to construct set-valued conditional risk measure (see Definition 2.21). This
is in analogy to construction (2.13), but yields a larger class of risk measures. If
one restricts oneself to set-valued portfolios X : L p → S̄d

T which are monotonic and
with X(X + m) = X(X) + m for any X ∈ L p and m ∈ Mt , then conditional risk
measures as in Definition 2.1 are one-to-one to set-valued conditional risk measure
as in Definition 2.21. This is the case whenever the set of portfolios X represents
the set of portfolios that can be obtained from X ∈ L p following certain exchange
rules (including transaction costs, trading constraints, illiquidity). The advantage of
considering Rt as a function of the set X(X) as opposed to a function of X as in (3.6)
is that Rt might be law invariant (see Theorem 2.24), whereas Rt is in general not
law invariant.

Example 3.11 If X(X) := X + K for some (almost surely) closed convex lower set
K such that L p(K ) is closed, then triviallyX(X) is a set-valued portfolio and satisfies
monotonicity and translativity.

If X(X) is as in Example 3.11 and K is additionally a convex cone, then for a
given set-valued conditional riskmeasureRt , the associated conditional riskmeasure
Rt defined by (3.6) is L p(K )-compatible.

Note, that constructions very similar to (3.5) appear (a) in [2, 32] to define the
market extension (that is a Ct,T -compatible version) of a risk measures Rt by

Rmar
t (X) :=

⋃

Z∈X+Ct,T

Rt (Z),

whereCt,T = −∑T
s=t L p

s (Ks) and (Kt )
T
t=0 is a sequence of solvency conesmodeling

the bid-ask prices of the d assets, and b) in [21, 23] to define a multi-portfolio time
consistent risk measure (R̃t )

T
t=0 by backward recursion of a discrete time dynamic

risk measure (Rt )
T
t=0 via R̃T (X) = RT (X) and

R̃t (X) :=
⋃

Z∈R̃t+1(X)

Rt (−Z)

for t ∈ {T − 1, . . . , 0}.
The following two corollaries provide additional relations between the condi-

tional risk measures of the set-optimization approach and the set-valued portfolio
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conditional risk measures. Specifically, they provide sufficient conditions for (con-
ditional) convexity and coherence of one type of risk measure to be associated with
a (conditionally) convex and coherent risk measure of the other type.

Corollary 3.12 Let Rt : L p → P(Mt ; Mt,+) be a convex (conditionally convex,
positive homogeneous, conditionally positive homogeneous) conditional risk mea-
sure (see Definition 2.1) at time t, then the associated set-valued conditional risk
measure (see Definition 2.21) Rt defined by (3.5) is convex (conditionally convex,
positive homogeneous, conditionally positive homogeneous).

Proof Let Rt : L p → P(Mt ; Mt,+) be a conditional risk measure and let Rt (X) :=⋃
Z∈L p(X) Rt (Z) for any X ∈ S̄d

T .

1. Let Rt be convex. Consider X, Y ∈ S̄d
T and λ ∈ [0, 1]. Then,

Rt (λX ⊕ (1 − λ)Y) =
⋃

Z∈L p(λX⊕(1−λ)Y)

Rt (Z) ⊇
⋃

Z∈cl(λL p(X)+(1−λ)L p(Y))

Rt (Z)

⊇
⋃

Z X ∈L p(X)

ZY ∈L p(Y)

Rt (λZ X + (1 − λ)ZY )

⊇
⋃

Z X ∈L p(X)

ZY ∈L p(Y)

[λRt (Z X ) + (1 − λ)Rt (ZY )]

= λ
⋃

Z X ∈L p(X)

Rt (Z X ) + (1 − λ)
⋃

ZY ∈L p(Y)

Rt (ZY )

= λRt (X) + (1 − λ)Rt (Y).

The inclusion on the first line follows from cl
(
L p(Z1) + L p(Z2)

) ⊆ L p(Z1 ⊕
Z2) for any random sets Z1, Z2 (with the norm topology on p ∈ [1,+∞], the
metric topology on p ∈ (0, 1), and the topology generated by convergence in
probability for p = 0); for p ∈ [1,+∞) equality holds.

2. Let Rt be conditionally convex. Then the proof is analogous to the convex case
above.

3. Let Rt be positive homogeneous. Consider X ∈ S̄d
T and λ > 0. It holds

Rt (λX) =
⋃

Z∈L p(λX)

Rt (Z) =
⋃

Z∈L p(X)

Rt (λZ) = λ
⋃

Z∈L p(X)

Rt (Z) = λRt (X).

4. Let Rt be conditionally positive homogeneous. Then the proof is analogous to
the positive homogeneous case above.

�

Corollary 3.13 Let Rt : S̄d
T → P(Mt ; Mt,+) be a set-valued conditional risk mea-

sure (see Definition 2.21) at time t, and let X : L p → S̄d
T of the set-valued portfolio
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associated with a (random) portfolio vector be monotonic and translative. Let Rt be
the associated conditional risk measure (see Definition 2.1).

1. If Rt is convex and X(λX + (1 − λ)Y ) ⊇ λX(X) ⊕ (1 − λ)X(Y ) for every X, Y ∈
L p and λ ∈ [0, 1] (X is closed-convex), then Rt is convex.

2. If Rt is conditionally convex and X(λX + (1 − λ)Y ) ⊇ λX(X) ⊕ (1 − λ)X(Y )

for every X, Y ∈ L p and λ ∈ L∞
t (R) with 0 ≤ λ ≤ 1 (X is conditionally closed-

convex), then Rt is conditionally convex.
3. If Rt is positive homogeneous and X(λX) = λX(X) for every X ∈ L p and λ > 0

(X is positive homogeneous), then Rt is positive homogeneous.
4. If Rt is conditionally positive homogeneous and X(λX) = λX(X) for every X ∈

L p and λ ∈ L∞
t (R++) (X is conditionally positive homogeneous), then Rt is

conditionally positive homogeneous.

Proof Let Rt : S̄d
T → P(Mt ; Mt,+) be a set-valued conditional risk measure, let X

be as above and let Rt (X) := Rt (X(X)) for every portfolio vector X ∈ L p.

1. Let Rt be convex and X be closed-convex. Let X, Y ∈ L p and λ ∈ [0, 1].
Rt (λX + (1 − λ)Y ) = Rt (X(λX + (1 − λ)Y )) ⊇ Rt (λX(X) ⊕ (1 − λ)X(Y ))

⊇ λRt (X(X)) + (1 − λ)Rt (X(Y )) = λRt (X) + (1 − λ)Rt (Y ).

2. Let Rt be conditionally convex and X be conditionally closed-convex. Then the
proof is analogous to the convex case above.

3. Let Rt and X be positive homogeneous. Let X ∈ L p and λ > 0.

Rt (λX) = Rt (X(λX)) = Rt (λX(X)) = λRt (X(X)) = λRt (X).

4. LetRt andX be conditionally positive homogeneous. Then the proof is analogous
to the positive homogeneous case above.

�

Example 3.14 (Example 3.11 continued) Let X(X) := X + K for every X ∈ L p

for some random set K . If K is (almost surely) convex and closed then X is
(F-)conditionally closed-convex (and thus closed-convex as well). If K is (almost
surely) a cone then X is (F-)conditionally positive homogeneous (and thus positive
homogeneous as well).

In light of Theorem 3.10, Eq. (3.6) and Corollary 3.13 for set-valued portfolios
of the form X(X) := X + K for all X ∈ L p and some random closed convex cone
K , one obtains the following. The dual representation of a constructive risk measure
R0 with coherent components ρ1, . . . , ρd given in Eq. (5.2) in [13] coincides with a
special case of the dual representation of a KT -compatible risk measure R0 given in
Theorem 4.2 in [31], by choosing A = ×d

i=1Ai (Ai being the acceptance set of ρi ),
M0 = Rd , K I = Rd+ and KT = −K :
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R0(X) = R0(X + K ) =
⋂

w∈Rd+\{0},Q∈Q,w
dQ
dP ∈(−K )+ a.s.

{u ∈ R
d : wT

E
Q [X ] ≤ wTu},

whereQ = ×d
i=1Qi andQi denotes the set of probability measures in the dual repre-

sentation of ρi . This also follows from Corollary 2.3, where the set of dual variables
is

Wmax
0 = {

(Q, w) ∈ W0 : wT
t (Q, w) ∈ A+

t

} = {(Q, w) ∈ W0 : Q ∈ Q} ,

with
W0 := {

(Q, w) ∈ M × R
d
+\{0} : wT

0 (Q, w) ∈ Lq
d(FT ; K +

T )
}

due do KT -compatibility of R0.
Additional to dual representations for constructive risk measure, Theorem 3.10

allows to deduce dual representations of a larger class of conditional risk measure
for set-valued portfolios (Definition 2.21) by using Eq. (3.5) and the duality results
for set-valued risk measures of the set-optimization approach.

3.3 Set-Optimization Approach Versus Family of Scalar
Risk Measures

For this section consider p ∈ [1,+∞], where L p
t has the norm topology for any

p ∈ [1,+∞) and the weak* topology for p = +∞. In the static setting, the relation
between set-valued risk measures and multiple asset scalar risk measures has been
studied in [18, 29, 31].

Theorem 3.15 Let Rt : L p → P(Mt ; Mt,+) be a conditional risk measure at time
t (see Definition 2.1), then ρw

t : L p → L0
t (R̄), defined by

ρw
t (X) := ess inf

u∈Rt (X)

wTu

for any X ∈ L p, is a family of multiple asset scalar risk measures indexed by w ∈
M+

t,+\M⊥
t at time t (see Definition 2.25).

Let
{
ρw

t : L p → L0
t (R̄) : w ∈ M+

t,+\M⊥
t

}
be a family of multiple asset scalar risk

measures at time t indexed by w ∈ M+
t,+\M⊥

t (see Definition 2.25), then Rt : L p →
P(Mt ; Mt,+), defined by

Rt (X) :=
⋂

w∈M+
t,+\M⊥

t

{
u ∈ Mt : ρw

t (X) ≤ wTu P-a.s.
}

for any X ∈ L p, is a conditional risk measure at time t (see Definition 2.1).
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Proof 1. This follows form Definition 2.25 and (2.15).
2. We will show that Rt (X) := ⋂

w∈M+
t,+\M⊥

t

{
u ∈ Mt : ρw

t (X) ≤ wTu P-a.s.
}
is a

conditional risk measure. We use the properties of ρw
t given in Proposition 2.30.

(a) L p
+-monotonicity: let X, Y ∈ L p such that Y − X ∈ L p

+, then ρw
t (Y ) ≤

ρw
t (X) almost surely for every w ∈ M+

t,+\M⊥
t . Therefore Rt (Y ) ⊇ Rt (X).

(b) Mt -translativity: let X ∈ L p and m ∈ Mt , then

Rt (X + m) =
⋂

w∈M+
t,+\M⊥

t

{
u ∈ Mt : ρw

t (X + m) ≤ wTu P-a.s.
}

=
⋂

w∈M+
t,+\M⊥

t

{
u ∈ Mt : ρw

t (X) − wTm ≤ wTu P-a.s.
}

=
⋂

w∈M+
t,+\M⊥

t

{
u ∈ Mt : ρw

t (X) ≤ wT(u + m) P-a.s.
}

=
⋂

w∈M+
t,+\M⊥

t

{
u ∈ Mt : ρw

t (X) ≤ wTu P-a.s.
}

− m = Rt (X) − m.

(c) Finiteness at zero: Rt (0) �= ∅ since ρw
t (0) < +∞ for every w ∈ M+

t,+\M⊥
t ,

and Rt (0)[ω] �= M̃t [ω] since there exists a v ∈ M+
t,+\M⊥

t such that ρv
t (0) >

−∞.

�

Remark 3.16 If Rt is normalized, with closed and conditionally convex images, and
w ∈ Rt (0)+\M⊥

t then ρw
t (0) = 0, i.e. ρw

t is normalized in the scalar framework.

Apart from closedness, many properties are one-to-one for conditional risk mea-
sures Rt and the corresponding family of scalarizations. The corresponding results
for the static case can be found in lemma 5.1 and lemma 6.1 of [29]. An example
showing that closedness of Rt does not necessarily imply closedness of all scalar-
izations can be found in the beginning of Sect. 5 in [29] for the case t = 0.

Corollary 3.17 Let Rt : L p → P(Mt ; Mt,+) be a convex (conditionally convex,
positive homogeneous, conditionally positive homogeneous) conditional risk mea-
sure at time t with closed andFt -decomposable images, then the associated family of
multiple asset scalar risk measures is convex (conditionally convex, positive homo-
geneous, conditionally positive homogeneous).

Let
{
ρw

t : L p → L0
t (R̄) : w ∈ M+

t,+\M⊥
t

}
be a family of convex (positive homo-

geneous, conditionally positive homogeneous, lower semicontinuous) multiple asset
scalar risk measures at time t indexed by w ∈ M+

t,+\M⊥
t then the associated condi-

tional risk measure is convex (positive homogeneous, conditionally positive homoge-
neous, closed). Additionally, if

{
ρw

t : L p → L0
t (R̄) : w ∈ M+

t,+\M⊥
t

}
is a family of

lower semicontinuous conditionally convex risk measures then the associated con-
ditional risk measure is conditionally convex.
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Proof 1. Let Rt : L p → P(Mt ; Mt,+) be a conditional risk measure at time t . Let
ρw

t : L p → L0
t (R̄) be defined byρw

t (X) := ess infu∈Rt (X)w
Tu for every X ∈ L p.

(a) Let Rt be convex. Let X, Y ∈ L p, λ ∈ [0, 1], and w ∈ M+
t,+\M⊥

t .

ρw
t (λX + (1 − λ)Y ) = ess inf

u∈Rt (λX+(1−λ)Y )
wTu

≤ ess inf
u∈λRt (X)+(1−λ)Rt (Y )

wTu

= λ ess inf
u X ∈Rt (X)

wTu X + (1 − λ) ess inf
uY ∈Rt (Y )

wTuY

= λρw
t (X) + (1 − λ)ρw

t (Y ).

(b) Let Rt be conditionally convex. Then the proof is analogous to the convex
case above.

(c) Let Rt be positive homogeneous. Let X ∈ L p, λ > 0, and w ∈ M+
t,+\M⊥

t .

ρw
t (λX) = ess inf

u∈Rt (λX)
wTu = ess inf

u∈λRt (X)
wTu = λ ess inf

u∈Rt (X)
wTu = λρw

t (X).

(d) Let Rt be conditionally positive homogeneous. Then the proof is analogous
to the positive homogeneous case above.

2. Let
{
ρw

t : L p → L0
t (R̄) : w ∈ M+

t,+\M⊥
t

}
be a family of multiple asset scalar

risk measures at time t indexed byw ∈ M+
t,+\M⊥

t . Let Rt : L p → P(Mt ; Mt,+)

be defined by Rt (X) := ⋂
w∈M+

t,+\M⊥
t

{
u ∈ Mt : ρw

t (X) ≤ wTu P-a.s.
}

for
every X ∈ L p.

(a) Let ρw
t be convex for every w ∈ M+

t,+\M⊥
t . Let X, Y ∈ L p and λ ∈ (0, 1).

Rt (λX + (1 − λ)Y ) =
⋂

w∈M+
t,+\M⊥

t

{
u ∈ Mt : ρw

t (λX + (1 − λ)Y ) ≤ wTu P-a.s.
}

⊇
⋂

w∈M+
t,+\M⊥

t

{
u ∈ Mt : λρw

t (X) + (1 − λ)ρw
t (Y ) ≤ wTu P-a.s.

}

⊇
⋂

w∈M+
t,+\M⊥

t

[{
λu X : u X ∈ Mt , ρ

w
t (X) ≤ wTu X P-a.s.

}

+
{
(1 − λ)uY : uY ∈ Mt , ρ

w
t (Y ) ≤ wTuY P-a.s.

}]

⊇ λ
⋂

w∈M+
t,+\M⊥

t

{
u X ∈ Mt : ρw

t (X) ≤ wTu X P-a.s.
}

+ (1 − λ)
⋂

w∈M+
t,+\M⊥

t

{
uY ∈ Mt : ρw

t (Y ) ≤ wTuY P-a.s.
}

= λRt (X) + (1 − λ)Rt (Y ).
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Let λ = 0 (the case for λ = 1 is analogous), then Rt (λX + (1 − λ)Y ) =
λRt (X) + (1 − λ)Rt (Y ) for any conditional risk measure and the result fol-
lows.

(b) Let ρw
t be positive homogeneous for every w ∈ M+

t,+\M⊥
t . Let X ∈ L p and

λ > 0.

Rt (λX) =
⋂

w∈M+
t,+\M⊥

t

{
u ∈ Mt : ρw

t (λX) ≤ wTu P-a.s.
}

=
⋂

w∈M+
t,+\M⊥

t

{
u ∈ Mt : λρw

t (X) ≤ wTu P-a.s.
}

=
⋂

w∈M+
t,+\M⊥

t

{
λu : u ∈ Mt , ρ

w
t (X) ≤ wTu P-a.s.

}

= λRt (X).

(c) Let ρw
t be conditionally positive homogeneous for every w ∈ M+

t,+\M⊥
t .

Then the proof is analogous to the positive homogeneous case above.
(d) Let ρw

t be lower semicontinuous for every w ∈ M+
t,+\M⊥

t . Consider a
sequence (Xn, un)n∈N ⊆ graph Rt (respectively a net if p = +∞) with
limn→+∞(Xn, un) = (X, u). Note that (Xn, un) ∈ graph Rt if and only if
ρv

t (Xn) ≤ vTun for every v ∈ M+
t,+\M⊥

t .

ρw
t (X) ≤ lim inf

n→+∞ ρw
t (Xn) ≤ lim inf

n→+∞ wTun = wTu.

The last equality above follows from un → u in L p
t implies wTun → wTu

in L1
t (R) (by Hölder’s inequality). Thus, (X, u) ∈ graph Rt .

(e) Let ρw
t be lower semicontinuous and conditionally convex for every w ∈

M+
t,+\M⊥

t . Let X, Y ∈ L p and λ ∈ L∞
t (R) with 0 < λ < 1, then the proof

is analogous to the convex case above.
We will now extend conditional convexity to the case for λ ∈ L∞

t (R) with
0 ≤ λ ≤ 1 in the same way as was accomplished in the proof of [21, Corol-
lary 4.9], noting that Rt is closed by ρw

t lower semicontinuous. Take a
sequence (λn)

+∞
n=0 ⊆ L∞

t (R) such that 0 < λn < 1 for every n ∈ N which
converges almost surely to λ. Then by dominated convergence λn X con-
verges to λX in the norm topology (weak* topology if p = +∞) for any
X ∈ L p. Therefore, for any X, Y ∈ L p

Rt (λX + (1 − λ)Y ) = Rt ( lim
n→+∞(λn X + (1 − λn)Y ))

⊇ lim inf
n→+∞ Rt (λn X + (1 − λn)Y )

⊇ lim inf
n→+∞ [λn Rt (X) + (1 − λn)Rt (Y )]

⊇ λRt (X) + (1 − λ)Rt (Y )
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by Rt closed (see proposition 2.34 in [40]) and conditionally convex on the
interval 0 < λn < 1. Note that we use the convention from [40] that the
limit inferior of a sequence of sets (Bi )i∈N is given by lim inf i→+∞ Bi =⋂

i∈N cl
⋃

j≥i B j .

�

In the following lemma we will show that when the conditional risk measure has
closed and conditionally convex images, the family of scalarizations can be used to
recover the conditional risk measure.

Lemma 3.18 Let Rt : L p → P(Mt ; Mt,+) be a dynamic risk measure with closed
and conditionally convex images. Then, for any X ∈ L p

Rt (X) =
⋂

w∈M+
t,+\M⊥

t

{
u ∈ Mt : ρw

t (X) ≤ wTu P-a.s.
}

(3.7)

where ρw
t (X) := ess infu∈Rt (X)w

Tu is the multiple asset scalar risk measure associ-
ated with Rt .

Proof ⊆: By definition it is easy to see that u ∈ Rt (X) implies that wTu ≥ ρw
t (X)

for any w ∈ M+
t,+\M⊥

t .
⊇: Let u ∈ ⋂

w∈M+
t,+\M⊥

t

{
u ∈ Mt : ρw

t (X) ≤ wTu P-a.s.
}
. Assume u /∈ Rt (X).

Then since Rt (X) is closed and convex we can apply the separating hyper-
plane theorem. In particular, there exists a v ∈ M+

t,+\M⊥
t such that E

[
vTu

]
<

inf û∈Rt (X) E
[
vTû

]
(if v /∈ M+

t,+\M⊥
t then inf û∈Rt (X) E

[
vTû

] = −∞ by Rt (X)

= Rt (X) + Mt,+). This implies that E
[
ρv

t (X)
] = E

[
ess infû∈Rt (X)v

Tû
] ≤

E
[
vTu

]
< inf û∈Rt (X) E

[
vTû

]
.

By Corollary 3.9, Rt (X) is Ft -decomposable. Therefore by Theorem 1 of [54]
(and

{
vTu : u ∈ Rt (X)

} ⊆ L1
t (R)), it follows that E

[
ess infû∈Rt (X)v

Tû
] =

inf û∈Rt (X) E
[
vTû

]
. This is a contradiction and thus u ∈ Rt (X).

�
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1 Introduction

Scalarization methods are one of the most powerful mathematical tools to study set-
valued optimization problems with set orderings (see [1, 7, 13–15, 17–19, 31–34,
36, 38–41, 43]). As an example, let us observe that they have been successfully
used to obtain minimal element theorems (see [13, 17–19, 41]), Ekeland variational
principles (see [7, 13, 15, 17, 18]), well-posedness properties (see [14, 43]), stability
results (see [15]), scalar representations without convexity assumptions (see [19]),
nonconvex separation type theorems and alternative theorems (see [1, 38]), Takahashi
type minimization theorems (see [1]) and optimality conditions through solutions of
associated scalar optimization problems (see [1, 11, 19, 34, 36, 40]).

To the best of our knowledge, the first scalarization mappings for set-valued opti-
mization problems with set orderings were introduced by Hamel and Löhne [17]
(see also [18]), Nishizawa et al. [39] and Ha [15]. The mappings defined by Hamel
and Löhne, and Nishizawa et al. extend the so-called Gerstewitz’s nonconvex sepa-
ration functional (see [8–10]) in order to deal with set orderings through the usual
order in R ∪ {±∞}. The approach due to Hamel and Löhne is more general, since
they consider a fixed set that plays the role of “parameter”. This fact is crucial in
order to characterize minimal solutions of set-valued optimization problems with set
orderings through solutions of associated scalar optimization problems (see [1, 34]).
The scalarization mappings due to Nishizawa et al. do not consider this parameter
and they characterize nondominated solutions (see [40]), a particular type of min-
imal solutions. On the other hand, Ha [15] generalized the well-known weighting
scalarization method, extensively used in convex vector optimization problems.

The ideas, concepts and mathematical tools introduced by Hamel and Löhne
in [17, 18] have motivated a lot of new contributions for scalarizing set-valued
optimization problems with set orderings. In [19], Hernández and Rodríguez-Marín
introduced a nonlinear scalarization mapping, studied its properties in deep and, for
the first time in the literature, they characterizedminimal andweakminimal solutions
of set-valued optimization problems with set orderings via solutions of associated
scalar optimization problems. Some new properties of this scalarization mapping
have been stated in [43], where it has been used to derive well-posedness properties
of set-valued optimization problems with set orderings.

Recently and inspired by this approach, Gutiérrez et al. [14] derived new prop-
erties of the scalarization mappings due to Hamel and Löhne, generalized the well-
posedness properties obtained in [43], and characterized minimal and strict minimal
solutions of set-valued optimization problems with set orderings via scalarization.
Also, Gutiérrez et al. [13] defined a sup-inf type scalarization mapping and via this
mapping they derived approximate strict minimal element theorems and approximate
versions of the Ekeland variational principle for set orderings.

On the other hand, Kuwano et al. [31] and Araya [1] introduced scalarization
schemes that unify several nonlinear scalarization mappings introduced in the lit-
erature and allow to characterize via scalarization minimal solutions of set-valued
optimization problems by considering different set orderings (see [34]). Moreover,
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Maeda [36] characterized via the scalarization mappings due to Hamel and Löhne
new concepts of solution based on set orderings motivated by fuzzy mathematical
programming problems (see [35]).

This work is structured as follows. In Sect. 2 we introduce the set-valued optimiza-
tion problem and the basic notations.Moreover, some technical results on topological
properties of the conic extension of a set and about the set orderings induced by an
open ordering cone are stated. In Sect. 3 we introduce the order representing and
monotonicity properties for mappings defined in the power set of a vector space.
This kind of properties have been widely used in vector optimization to characterize
minimal solutions through scalarization.Moreover, we study in deep some properties
of the nonlinear scalarization mappings introduced by Hamel and Löhne [17, 18]
and Gutiérrez et al. [13]. In particular, we analyze when these scalarizationmappings
satisfy the mentioned order representing and monotonicity properties, and we prove
that the scalarization mapping due to Hernández and Rodríguez-Marín [19] coin-
cides with the scalarization mapping due to Hamel and Löhne. Finally, in Sect. 4,
we characterize the minimal and weak minimal solutions of set-valued optimization
problems with set orderings by solutions of scalar optimization problems defined
via generic scalarization mappings that satisfy order representing and monotonicity
properties. We show that these “implicit” characterizations can be done “explicit” by
using Hamel and Löhne scalarization mapping and, in general, by considering any
scalarization mapping that satisfies the required order representing andmonotonicity
properties. The results obtained in Sects. 3 and 4 extend and clarify some results of
the literature.

2 Preliminaries

Let Y be a Hausdorff locally convex topological linear space. The topological dual
space of Y is denoted by Y ∗, and the duality pairing by 〈y∗, y〉, y∗ ∈ Y ∗, y ∈ Y . We
denote by int M , cl M and cone M the interior, the closure and the cone generated
by a set M ⊂ Y , and we say that M is solid if int M 	= ∅. The ordering cone of Y is
denoted by D, which is assumed to be proper (i.e., D 	= Y ), closed, solid and convex.
The nonnegative orthant of R

n is denoted by R
n+.

The positive polar cone of D is denoted by D+, i.e.,

D+ := {λ ∈ Y ∗ : 〈λ, d〉 ≥ 0,∀ d ∈ D}.

For each q ∈ int D we denote

D+(q) := {λ ∈ D+ : 〈λ, q〉 = 1}.

It is well-known (see, for instance, [10]) that D+(q) is compact in the weak star
topology, convex and cone D+(q) = D+.
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We denote the Minkowski sum of two nonempty sets M1, M2 ⊂ Y by M1 + M2,
i.e.,

M1 + M2 := {y1 + y2 : y1 ∈ M1, y2 ∈ M2}.

Moreover, we assume that M + ∅ = ∅ + M = ∅, for all M ⊂ Y , and for each y ∈ Y ,
y + M (resp. M + y) denotes {y} + M (resp. M + {y}). The following topological
properties on the conic extension of a set will be used in the paper. Part (a) was stated
in [4, Lemma2.5] and so its proof is omitted.

Proposition 2.1 Consider a nonempty set M ⊂ Y . We have that

(a) int cl (M + D) = M + int D,
(b) cl (M + D) + int D ⊂ M + int D.

Proof Let us proof part (b). It is clear that

cl (M + D) + int D ⊂ cl (M + D) + D = cl (M + D).

Then, by part (a) it follows that

int (cl (M + D) + int D) ⊂ M + int D

and the proof is completed. �

Recall that a set M ⊂ Y is D-bounded if for each neighborhood U of zero in
Y there exists α > 0 such that M ⊂ αU + D. M is D-compact if any cover of M
of the form {Ui + D : Ui is open} admits a finite subcover. Observe that the family
{Vi + int D : Vi ⊂ Y } fits with this form, since Vi + int D = (Vi + int D) + D, and
the setsUi := Vi + int D are open.Analogously,we say that M is D-closed if M + D
is closed.

On the other hand, M is D-proper if M + D 	= Y . Cone properness is a kind
of boundedness weaker than the cone boundedness (see [14]). Next we recall an
important characterization of this property.

Lemma 2.2 [14, Theorem3.6] A nonempty set M ⊂ Y is D-proper if and only if
there is not an element e ∈ int D such that −e + M ⊂ M + D.

In this paper we study the following set optimization problem:

Min{F(x) : x ∈ S}, (P)

where the objective mapping F : X → 2Y is set-valued, the decision space X is an
arbitrary set, and the feasible set S ⊂ X is nonempty. In [2, 3, 16, 20, 24] the reader
can find some practical problems which are modeled by set optimization problems.

We denote

DomF := {x ∈ X : F(x) 	= ∅}
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andwe suppose that F is proper in S, i.e., DomF ∩ S 	= ∅.We say that F is D-proper
(resp. D-compact, D-closed) valued in S if F(x) is D-proper (resp. D-compact,
D-closed), for all x ∈ S.

To solve this problem one needs to discriminate between the objective values
F(x), x ∈ S. We model this task via the following well-known set orderings (see
[25–30]), where K ∈ {D, int D}:

M1, M2 ⊂ Y, M1 �l
K M2 ⇐⇒ M2 ⊂ M1 + K ,

M1 �u
K M2 ⇐⇒ M1 ⊂ M2 − K ,

M1 � j
K M2 ⇐⇒ M1 � j

K M2 and M2 � j
K M1,

M1 ≺ j
K M2 ⇐⇒ M1 � j

K M2 and M1 �
j
K M2 ( j ∈ {l, u}).

Remark 2.3 (a) Let K ∈ {D, int D}. The following equivalences are clear:

M1 �l
K M2 ⇐⇒ M2 �l

K M1,

M1 �u
K M2 ⇐⇒ M2 �l

−K M1,

M1 �u
K M2 ⇐⇒ M1 �l

−K M2,

M1 ≺u
K M2 ⇐⇒ M2 ≺l

−K M1,

M1 ≺l
K M2 ⇐⇒ M2 ⊂ M1 + K and M1 	⊂ M2 + K ,

M1 ≺u
K M2 ⇐⇒ M1 ⊂ M2 − K and M2 	⊂ M1 − K .

Moreover,

M1 �l
D M2 ⇐⇒ M1 + D = M2 + D,

M1 �u
D M2 ⇐⇒ M1 − D = M2 − D.

These two statements could be false for the relations �l
int D and �u

int D . For example,
consider the following data: Y = R

2, D = R
2+, M1 = intR2+, M2 = R

2+. It is easy
to check that M1 + int D = M2 + int D and M2 ≺l

int D M1.
(b) Let us observe that there exist in the literature a lot of set relations from which

one can model the preferences between the objective values of the problem (P) (see
[6, 23]).

In the next lemma we state two technical properties of the relation �l
int D , which

will be used in the paper.

Lemma 2.4 Consider q ∈ int D and two nonempty sets A, M ⊂ Y . The following
statements hold:

(a) If A is D-bounded, then there exists t ∈ R such that M + tq �l
int D A.

(b) If A is D-compact and M �l
int D A, then there exists t > 0 such that M +

tq �l
int D A.
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Proof (a) Let us consider an arbitrary point y ∈ M . It is obvious that A − y is D-
bounded and −q + int D is a neighborhood of zero in Y . Then there exists α >

0 such that A − y ⊂ α(−q + int D) + D = −αq + int D. Therefore, A ⊂ M −
αq + int D and the proof of part (a) is finished.

(b) As A ⊂ M + int D and M + int D is an open set, for each y ∈ A there exists
ty > 0 such that y − tyq ∈ M + int D, and it follows that

A ⊂
⋃

y∈A

(tyq + M + int D).

Since A is D-compact we deduce that there exist {y1, y2, . . . , yn} ⊂ A such that

A ⊂
n⋃

i=1

(tyi q + M + int D).

By considering t := min{tyi : i = 1, 2, . . . , n} > 0 we obtain

A ⊂ tq + M + int D,

and the proof is completed. �
The set orderings�l and�u define the preferences on the feasible points via their

objective values. The concepts of solution of problem (P) were introduced according
with these preferences (see [19, 25–29]) and the classical minimality notion in the
theory of ordered sets.

Definition 2.5 Consider j ∈ {l, u}. A point x0 ∈ S is a j-minimal (resp. weak
j-minimal) solution of problem (P), denoted by x0 ∈ M j (F, S) (resp. x0 ∈
WM j (F, S)), if

x ∈ S, F(x) � j
D F(x0) ⇒ F(x0) � j

D F(x)

(resp. x ∈ S, F(x) � j
int D F(x0) ⇒ F(x0) � j

int D F(x)).

Remark 2.6 (a) Let G : X → 2Y be such that F(x) = G(x) + D (resp. F(x) =
G(x) − D), for all x ∈ S. It is easy to check that Ml(F, S) = Ml(G, S) and
WMl(F, S) = WMl(G, S) (resp. Mu(F, S) = Mu(G, S) and WMu(F, S) =
WMu(G, S)).

(b) Let us recall that the first concepts of solution of problem (P) introduced in
the literature did not use set relations. They consider feasible points whose images
contain minimal points with respect to the whole image of the objective mapping
and the ordering induced by the cone D (see [5, 21]).

As F is proper in S, it follows that Ml(F, S) ⊂ DomF ∩ S and WMl(F, S) ⊂
DomF ∩ S. Analogously, if S\DomF 	= ∅ then Mu(F, S) = WMu(F, S) =
S\DomF . Therefore, without losing generality, in the sequel we assume that
S ⊂ DomF . Moreover, we denote Y := 2Y \{∅} and F := {F(x) : x ∈ S}.
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Let us observe that if there exists x ∈ S such that F(x) is not D-proper, then

Ml(F, S) = WMl(F, S) = {z ∈ S : F(z) + D = Y }.

On the other hand, if there exists x ∈ S such that F(x) is −D-proper, then F(z) is
−D-proper, for all z ∈ Mu(F, S) and for all z ∈ WMu(F, S). Therefore, for solving
problem (P) in the sense of the l-minimality orweak l-minimality (resp. u-minimality
or weak u-minimality), one could assumewithout loss of generality that the objective
mapping F is D-proper valued (resp. −D-proper valued) in S.

3 Scalarization Processes

The scalarization processes are among the most important techniques to study prob-
lem (P). They relate the solutions of problem (P) with solutions of associated scalar
optimization problems. Usually, these associated scalar optimization problems are
defined by the composition of the objective mapping F with the elements of a
parametric family {ϕp}p∈P of extended real-valued mappings ϕp : Y → R ∪ {±∞},
where P is an index set (see [11, 19]). Then, the scalarization processes relate the
minimal and weak minimal solutions of problem (P) with the solutions of the fol-
lowing scalar optimization problems:

Min{(ϕp ◦ F)(x) : x ∈ S}. (Pϕp )

We denote the set of solutions of problem (Pϕp ) by S(ϕp ◦ F, S). Let us recall that
a point x0 ∈ S is a strict solution of problem (Pϕp ) if ϕp(F(x0)) < ϕp(F(x)), ∀ x ∈
S\{x0}, i.e., if S(ϕp ◦ F, S) = {x0}.

LetM ⊂ Y , we say that an extended real-valued mapping ϕ : M → R ∪ {±∞}
is proper if ϕ(M) > −∞, for all M ∈ M, and

Domϕ := {M ∈ M : ϕ(M) < +∞} 	= ∅.

It is well-known between practitioners and researchers in vector optimization that
a scalarization mapping is useful to characterize the solutions of a vector optimiza-
tion problem through the solutions of the associated scalar optimization problem
whenever it is monotone and satisfies the so-called order representing property (see
[12, 37, 42]). Next we extend these properties to problem (P).

Definition 3.1 Let ϕ : M → R ∪ {±∞}, A ∈ M and j ∈ {l, u}.
(a) ϕ is order �l

D-representing (resp. �u
D-representing) at A if

{M ∈ M : ϕ(M) ≤ ϕ(A)} ⊂ {M ∈ M : M �l
D A}

(resp. {M ∈ M : ϕ(A) ≤ ϕ(M)} ⊂ {M ∈ M : A �u
D M}).



50 C. Gutiérrez et al.

(b) ϕ is strictly order �l
D-representing (resp. strictly �u

D-representing) at A if

{M ∈ M : ϕ(M) < ϕ(A)} ⊂ {M ∈ M : M ≺l
D A}

(resp. {M ∈ M : ϕ(A) < ϕ(M)} ⊂ {M ∈ M : A ≺u
D M}).

(c) ϕ is �l
D-monotone (resp. �u

D-monotone) at A if

M ∈ M, M �l
D A ⇒ ϕ(M) ≤ ϕ(A)

(resp. M ∈ M, A �u
D M ⇒ ϕ(A) ≤ ϕ(M)).

(d) ϕ is strictly �l
D-monotone (resp. strictly �u

D-monotone) at A if

M ∈ M, M ≺l
D A ⇒ ϕ(M) < ϕ(A)

(resp. M ∈ M, A ≺u
D M ⇒ ϕ(A) < ϕ(M)).

(e) ϕ is � j
D-monotone (resp. strictly � j

D-monotone) on M if ϕ is � j
D-monotone

(resp. strictly � j
D-monotone) at A, for all A ∈ M.

In the literature one can find several scalarization processes to deal with problem
(P) without assuming any convexity assumption (see [1, 13, 14, 17–19, 31, 33,
34, 36, 39, 40, 43]). All of them generalize the so-called Gerstewitz scalarization
mapping sq : Y → R (see [8–10]):

sq(y) := inf{t ∈ R : y ∈ tq − D}, ∀ y ∈ Y,

where q is an arbitrary point in int D. This mapping has been extensively used for
scalarizing vector optimization problems (see [5, 10] and the references therein). In
particular, it follows that (see [5, Proposition1.53]):

sq(y) = max{〈λ, y〉 : λ ∈ D+(q)}, ∀ y ∈ Y. (1)

Motivated by the scalarization processes due to Hamel and Löhne, we consider
the following families {� j,D

q,F(x)}x∈S , j ∈ {l, u}, q ∈ int D, of scalarization mappings

of problem (P) (see [1, 14, 17, 18, 34]). For each A ∈ Y , � j,D
q,A : Y → R ∪ {±∞},

�
l,D
q,A(M) := inf �

l,D
q,A(M)

�
u,D
q,A (M) := sup�

u,D
q,A (M)

where

�
l,D
q,A(M) := {t ∈ R : M �l

D tq + A},
�

u,D
q,A (M) := {t ∈ R : tq + A �u

D M},
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and we assume the usual conventions inf ∅ = +∞ and sup∅ = −∞. It is clear that

t ∈ �
l,D
q,A(M) ⇒ [t,∞) ⊂ �

l,D
q,A(M)

and then, one of the following cases happens: �
l,D
q,A(M) = ∅, �

l,D
q,A(M) = R (i.e.,

�
l,D
q,A(M) = −∞) or �

l,D
q,A(M) 	= ∅, �

l,D
q,A(M) 	= R (i.e., �

l,D
q,A(M) ∈ R and

�
l,D
q,A(M) = [�l,D

q,A(M),+∞) or �
l,D
q,A(M) = (�

l,D
q,A(M),+∞)).

On the other hand, it is easy to check that

−�
u,D
q,A (M) = �

l,−D
−q,A(M) = {t ∈ R : M �l

−D t (−q) + A}, ∀ M ∈ Y,

(observe that �l,−D
−q,A(M) is defined by −D instead of D) and so we have that

�
u,D
q,A (M) = −�

l,−D
−q,A(M), ∀ M ∈ Y . (2)

Thus, in the sequel, the statements on the scalarization process �
u,D
q,A are not proved,

since they follow easily from the corresponding statements on the scalarization
process �

l,D
q,A by the equivalences of Remark2.3(a) and relation (2). Let us observe

that �
l,D
q,A and �

u,D
q,A reduce to the scalarization mappings introduced by Nishizawa

et al. in [39] by taking A = {0}, i.e., by removing the “parameter” A.
In the next four resultswe collect someof themain properties of these scalarization

processes. Proposition3.2 and Theorem3.5 extend Proposition4.1 and Theorem4.2
of [14]. In order to simplify the notation we write �l

q,A, �
u
q,A, �

l
q,x and �u

q,x instead

of �
l,D
q,A, �

u,D
q,A , �

l,D
q,F(x) and �

u,D
q,F(x), respectively. Let us recall that mappings �l

q,x

and �u
q,x are defined on Y = 2Y \{∅}.

Proposition 3.2 Let q ∈ int D, x ∈ S and M ∈ Y .

(a) �l
q,x (M) = −∞ if and only if M is not D-proper.

(b) If F(x) is not D-proper, then

�l
q,x (M) =

{+∞ if M is D-proper,
−∞ otherwise.

(c) Suppose that F(x) is D-bounded. Then �l
q,x (M) < +∞.

Proof (a) If �l
q,x (M) = −∞, then �l

q,F(x)(M) = R and M �l
D tq + F(x), for all

t ∈ R. In other words,

⋃

t∈R
(tq + F(x)) ⊂ M + D. (3)

As q ∈ int D, it is easy to check that
⋃

t∈R(tq + D) = Y . Then, by (3) we see that
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Y = Y + F(x) =
⋃

t∈R
(tq + D) + F(x) ⊂ M + D + D = M + D

and M is not D-proper. Reciprocally, if M is not D-proper, then it is obvious that
M �l

D tq + F(x), for all t ∈ R, and so �l
q,x (M) = −∞.

(b) Suppose that F(x) is not D-proper and let M ∈ Y . If M is not D-proper, then
by part (a) we deduce that �l

q,x (M) = −∞. If M is D-proper and �l
q,F(x)(M) 	= ∅,

then there exists t ∈ R such that tq + F(x) ⊂ M + D, and so

Y = tq + F(x) + D ⊂ M + D + D = M + D,

that is a contradiction. Thus�l
q,F(x)(M) = ∅ and so�l

q,x (M) = +∞, which finishes
the proof of part (b).

(c) As F(x) is D-bounded and q ∈ int D, by Lemma2.4(a), there exists t ∈ R

such that F(x) + tq ⊂ M + D. Then t ∈ �l
q,F(x)(M), and as �l

q,F(x)(M) 	= ∅ it
follows that �l

q,x (M) < +∞, which finishes the proof. �

The next similar properties on �u
q,x are direct consequences of Proposition3.2

and relation (2).

Proposition 3.3 Let q ∈ int D, x ∈ S and M ∈ Y . Then:

(a) �u
q,x (M) = +∞ if and only if M is not −D-proper.

(b) If F(x) is not −D-proper, then

�u
q,x (M) =

{−∞ if M is − D-proper,
+∞ otherwise.

(c) Suppose that F(x) is −D-bounded. Then �u
q,x (M) > −∞.

Remark 3.4 The sufficient condition of Proposition3.2(a) and Proposition3.2(c)
reduce to [36, Theorem3.1(i),(ii)] by considering Y = R

n , D = R
n+ and by assum-

ing that M is D-bounded. Analogously, the sufficient condition of Proposition3.3(a)
and Proposition3.3(c) reduce to [36, Theorem3.1(iv), (iii)] by considering Y = R

n ,
D = R

n+ and by assuming that M is −D-bounded.

Theorem 3.5 Consider q ∈ int D, x ∈ S, and suppose that F(x) is D-proper.

(a) �l
q,x (F(x)) = 0.

(b) If F is D-proper valued in S, then �l
q,x : F → R ∪ {±∞} is proper.

(c) �l
q,x (M + tq) = �l

q,x (M) + t , for all M ∈ Y and t ∈ R.
(d) �l

q,x is �l
D-monotone on Y .

(e) Let M ∈ Y and t ∈ R. It follows that

�l
q,x (M) ≤ t ⇐⇒ F(x) ⊂ −tq + cl (M + D). (4)

(f) �l
q,x is strictly order �l

int D-representing at F(x).
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(g) Consider Q, M ∈ Y such that Q is D-compact and M �l
int D Q, and suppose

that F(x) is D-bounded. Then �l
q,x (M) < �l

q,x (Q).
(h) LetM ⊂ Y be a family of D-compact sets and suppose that F(x) is D-bounded.

Then �l
q,x is strictly �l

int D-monotone on M.

Proof (a) It is clear that�l
q,x (F(x)) ≤ 0, since 0 ∈ �l

q,F(x)(F(x)). If�l
q,x (F(x)) <

0, then there exists t > 0 such that F(x) �l
D −tq + F(x), i.e., −tq + F(x) ⊂

F(x) + D. By Lemma2.2 it follows that F(x) is not D-proper, which is a con-
tradiction. Thus �l

q,x (F(x)) = 0 and the proof of part (a) is completed.
(b) As F(z) is D-proper for all z ∈ S, by Proposition3.2(a) we deduce that

�l
q,x (F(z)) > −∞, for all z ∈ S. Moreover, by part (a) we have that F(x) ∈

Dom�l
q,x . Then �l

q,x : F → R ∪ {±∞} is proper.
(c) Consider M ∈ Y and t ∈ R. It is easy to check that �l

q,F(x)(M + tq) =
�l

q,F(x)(M) + t . Then, �l
q,x (M + tq) = +∞ if and only if �l

q,x (M) = +∞, since
�l

q,F(x)(M + tq) = ∅ if and only if �l
q,F(x)(M) = ∅. On the other hand, if �l

q,x (M)

< +∞, then

�l
q,x (M + tq) = inf �l

q,F(x)(M + tq) = inf �l
q,F(x)(M) + t = �l

q,x (M) + t

and part (c) is proved.
(d) Consider A, M ∈ Y such that M �l

D A. As the relation �l
D is transitive, it

is easy to check that �l
q,F(x)(A) ⊂ �l

q,F(x)(M) and so �l
q,x (M) ≤ �l

q,x (A). Thus,
�l

q,x is �l
D-monotone at A, for all A ∈ Y .

(e) It follows that

�l
q,x (M) ≤ t ⇒ t + ε ∈ �l

q,F(x)(M), ∀ ε > 0

⇒ F(x) + (t + ε)q ⊂ M + D, ∀ ε > 0

⇒ y + εq ∈ −tq + M + D, ∀ ε > 0,∀ y ∈ F(x).

Then, by taking the limit when ε ↓ 0 we have that

�l
q,x (M) ≤ t ⇒ y ∈ cl (−tq + M + D) = −tq + cl (M + D), ∀ y ∈ F(x),

and the necessary condition of part (e) is proved. Reciprocally, if y ∈ −tq +
cl (M + D) for all y ∈ F(x), then by Proposition2.1(b) we have

y + εq ∈ −tq + cl (M + D) + εq ⊂ −tq + cl (M + D) + int D

⊂ −tq + M + int D, ∀ ε > 0,∀ y ∈ F(x).

Therefore, t + ε ∈ �l
q,F(x)(M) for all ε > 0, and so �l

q,x (M) ≤ t .
(f ) Let us consider M ∈ Y such that �l

q,x (M) < �l
q,x (F(x)). By part (a) we see

that �l
q,x (M) < 0 and there exists t > 0 such that −tq + F(x) ⊂ M + D. Thus,
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F(x) ⊂ M + (tq + D) ⊂ M + int D

and we see that M �l
int D F(x). If F(x) �l

int D M , then it is obvious that F(x) �l
D M

and as �l
q,x is �l

D-monotone on Y we deduce that �l
q,x (F(x)) ≤ �l

q,x (M), which
is a contradiction. Therefore M ≺l

int D F(x), which finishes the proof of part (f ).
(g) As Q is D-compact it follows that Q is D-proper, and by Proposition3.2(a) we

have that �l
q,x (Q) > −∞. If M is not D-proper, then we see that �l

q,x (M) = −∞,
and so �l

q,x (M) < �l
q,x (Q).

Suppose that M is D-proper. By Lemma2.4(b) it follows that there exists t > 0
such that M + tq �l

D Q. As M is D-proper and F(x) is D-bounded, by Propo-
sition3.2(a), (c) we see that �l

q,x (M) ∈ R. Then, by parts (c) and (d) we deduce
that

�l
q,x (M) < t + �l

q,x (M) = �l
q,x (M + tq) ≤ �l

q,x (Q).

Part (h) is a direct consequence of part (g). �

Similar results for �u
q,x are collected without proof in the next theorem.

Theorem 3.6 Consider q ∈ int D, x ∈ S, and suppose that F(x) is −D-proper.

(a) �u
q,x (F(x)) = 0.

(b) If F is −D-proper valued in S and F(x) is −D-bounded, then �u
q,x : F →

R ∪ {±∞} is finite valued.
(c) �u

q,x (M + tq) = �u
q,x (M) + t , for all M ∈ Y and t ∈ R.

(d) �u
q,x is �u

D-monotone on Y .
(e) Let M ∈ Y and t ∈ R. It follows that

�u
q,x (M) ≥ t ⇐⇒ F(x) ⊂ −tq + cl (M − D).

(f) �u
q,x is strictly order �u

int D-representing at F(x).
(g) Consider Q, M ∈ Y such that Q is −D-compact and Q �u

int D M, and suppose
that F(x) is −D-bounded. Then �u

q,x (Q) < �u
q,x (M).

(h) Let M ⊂ Y be a family of −D-compact sets and suppose that F(x) is −D-
bounded. Then �u

q,x is strictly �u
int D-monotone on M.

Remark 3.7 (a) Parts (c) and (d) in Theorem3.5 have been stated in different papers
(see [18, Theorem3.1(ii), (iii)], [1, Theorem3.2(iii), (v)], [34, Proposition3.2]). The-
orem3.5(d) reduces to [36, Theorem3.2, statement (14)] by considering Y = R

n and
D = R

n+. Analogously, parts (c) and (d) in Theorem3.6 have been obtained in [18,
Corollary3.2], [1, Theorem3.7(iii), (v)], [34, Proposition3.2], and Theorem3.6(d)
reduces to [36, Theorem3.2, statement (13)] by considering Y = R

n and D = R
n+.

On the other hand, Theorems3.5(g) and 3.6(g) reduce to statements (18) and (17)
of [36, Theorem3.3], respectively, by consideringY = R

n , D = R
n+ and by assuming

that Q and M are compact. Analogously, Theorems3.5(a), (f ), (g) and 3.6(a), (f ), (g)
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reduce to statements (i)–(v) of [36, Theorem3.4] by considering Y = R
n , D = R

n+
and the class of all nonempty and compact sets of R

n .
(b) Proposition3.2 and Theorem3.5 extend [18, Theorem3.1]. Analogously,

Proposition3.3 and Theorem 3.6 extend [18, Corollary3.2].
In [18, Theorem3.1], the authors prove that �l

q,x (M) < +∞, for all M ∈ Y ,
M �l

D F(x). In Theorem3.5 we obtain �l
q,x (M) < +∞, for all M ∈ Y whenever

F(x) is D-bounded. On the other hand, in [18, Theorem3.1], the authors prove
that �l

q,x is lower bounded on M ⊂ Y whenever the elements of M are lower
�l

D-bounded by a bounded set A, i.e., whenever there exists a (topological) bounded
set A such that A �l

D M , for all M ∈ M. Moreover, let us observe that [18, Theo-
rem3.1] can be applied if the ordering cone D is not solid whenever D\(−D) 	= ∅.

(c) Proposition3.2 and Theorem3.5 (resp. Proposition3.3 and Theorem3.6)
extend and clarify [1, Theorem3.2] (resp. [1, Theorem3.7]). To be precise, in [1,
Theorem3.2] the mapping �l

q,A is denoted by hl
inf(· ; A) and it is defined by a point

q ∈ D\(−D) instead of q ∈ int D. Under these assumptions, Theorem 3.2(i) of [1]
states that hl

inf(M; A) > −∞, for all D-proper sets M ∈ Y . However, this state-
ment could be wrong if q /∈ int D (compare with Proposition3.2(a)), as it is showed
in the following example. Consider Y = R

2, D = R
2+, q = (1, 0) A = {(0, 0)} and

M = {(y1, y2) ∈ R
2 : y2 ≥ 0}. It is clear that M is D-proper and hl

inf(M; A) = −∞.
On the other hand, for each t ∈ R, Theorem 3.2(ii) of [1] states that

hl
inf(M; A) ≤ t ⇐⇒ A + tq ⊂ M + D,

but this equivalence is truewhenever M is D-closed (comparewith (4)), as the follow-
ing example shows. LetY = R

2, D = R
2+,q = (1, 1), A = {(0, 0)} and M = intR2+.

It is clear that hl
inf(M; A) = 0 and A 	⊂ M + D. Analogously, the sufficient condi-

tion of [1, Theorem3.2(xi)] and [1, Theorem3.2(xii)] could not be true for non-
D-compact sets (compare with parts (g) and (h) of Theorem3.5). Indeed, consider
Y = R

2, D = M = R
2+, q = (1, 1) and A = intR2+. It is obvious that M �l

int D A,
but hl

inf(M; A) = hl
inf(A; A) = 0. Moreover, the necessary condition of [1, Theo-

rem3.2(xi)] can be generalized as follows:

A, M ∈ Y, t ∈ R, hl
inf(M; A) < t ⇒ tq + A ⊂ M + int D, (5)

i.e., the assumptions on the D-properness and D-closedness of M can be removed.
Let us check (5). If hl

inf(M; A) < t there exists ε > 0 such that hl
inf(M; A) < t − ε.

Thus

tq + A ⊂ (t − ε)q + A + εq ⊂ M + (εq + D) ⊂ M + int D

and statement (5) is proved.
(d) Theorem3.5(a) (resp. Theorem3.6(a)) has been stated in [34, Proposition3.3]

for any nonempty set F(x) ⊂ Y , i.e., without assuming that F(x) is D-proper
(resp. −D-proper). However, Proposition3.2 (resp. Proposition3.3) shows that this
assumption cannot be removed.
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Analogously, Theorem3.5(g) (resp. Theorem3.6(g)) has been derived in [34,
Proposition3.6] by assuming that Q is D-closed (resp. −D-closed) instead of D-
compact (resp. −D-compact). The following data show that the D-closedness is not
sufficient to satisfy Theorem3.5(g) (a similar example can be proposed in order to
show that the −D-closedness is not sufficient to satisfy Theorem3.6(g)). Consider
Y = R

2, D = M = R
2+, q = (1, 1) and F(x) = Q = {(y1, y2) ∈ R

2+ : y2 = 1/y1}.
It is easy to check that Q is D-closed, M �l

int D Q and �l
q,x (M) = �l

q,x (Q) = 0.

Next we show an equivalent representation of the mapping �l
q,x .

Theorem 3.8 Consider x ∈ S. We have that

�l
q,x (M) = sup

y∈F(x)

�l
q,{y}(M), ∀ M ∈ Y . (6)

Proof Let us define the mapping Hq : Y × Y → R ∪ {±∞},

Hq(M1, M2) := sup
y∈M2

�l
q,{y}(M1), ∀ M1, M2 ∈ Y,

and consider r ∈ R. Let us prove

Hq(M, F(x)) ≤ r ⇐⇒ �l
q,x (M) ≤ r. (7)

Indeed, by (4) we have that

Hq(M, F(x)) ≤ r ⇐⇒ �l
q,{y}(M) ≤ r, ∀ y ∈ F(x), (8)

⇐⇒ y ∈ −rq + cl (M + D), ∀ y ∈ F(x),

⇐⇒ F(x) + rq ⊂ cl (M + D). (9)

Suppose that Hq(M, F(x)) ≤ r and consider an arbitrary ε > 0. Then by (9) and
Proposition2.1(b) we see that

F(x) + (r + ε)q ⊂ cl (M + D) + int D ⊂ M + D, ∀ ε > 0,

and so r + ε ∈ �l
q,F(x)(M), for all ε > 0. Thus �l

q,x (M) ≤ r .
Reciprocally, if �l

q,x (M) ≤ r then r + ε ∈ �l
q,F(x)(M), for all ε > 0 and we

have F(x) + (r + ε)q ⊂ M + D, for all ε > 0. By (8) and (9) we deduce that
Hq(M, F(x)) ≤ r + ε, for all ε > 0 and it follows that Hq(M, F(x)) ≤ r .

By (7) we have that

�l
q,x (M) = −∞ ⇐⇒ Hq(M, F(x)) = −∞,

�l
q,x (M) = +∞ ⇐⇒ Hq(M, F(x)) = +∞,
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and also �l
q,x (M) = Hq(M, F(x)) whenever �l

q,x (M) ∈ R and Hq(M, F(x)) ∈ R,
which finishes the proof. �

Remark 3.9 The scalarizationmapping Hq was introduced as G−q in [19] by assum-
ing that the ordering cone D is pointed. Theorem3.8 shows that it coincides with the
scalarization mapping �l

q,A due to Hamel and Löhne (see [17, 18]).
Let us observe that some properties stated in Theorem3.5 were obtained implic-

itly in different results of [19] via the formulation Hq and by assuming additional
hypotheses. To be precise, part (a) of Theorem3.5 reduces to [19, Theorem3.10(i)]
by assuming that F(x) is D-closed; Part (d) extends [19, Theorem3.8(v)] to non-
empty sets which are not D-proper; Parts (f ) and (g) extend [19, Corollary3.11(i)]
to sets A, B ∈ Y , where A could not be D-compact.

The following scalarization process {�l
q,x }x∈S ,�l

q,x : Y → R ∪ {±∞} for all x ∈
S, was introduced in [13] to study approximate versions of the Ekeland variational
principle in set-valued optimization problems. Consider q ∈ int D and the mapping
ξq : Y × Y → R ∪ {±∞} given by

ξq(M, y) := inf
z∈M

{max{〈λ, z − y〉 : λ ∈ D+(q)}}, ∀ M ∈ Y, y ∈ Y.

Then, for each x ∈ S,

�l
q,x (M) := sup{ξq(M, y) : y ∈ F(x)}, ∀ M ∈ Y .

If F = f , where f : X → Y (i.e., F is single-valued), then �l
q,x : Y → R reduces

to the Gerstewitz scalarization mapping. Indeed, it is clear that

ξq({z}, y) := max{〈λ, z − y〉 : λ ∈ D+(q)}, ∀ z, y ∈ Y,

and by (1) we see that

�l
q,x ({z}) = ξq({z}, f (x)) = max{〈λ, z − f (x)〉 : λ ∈ D+(q)}

= sq(z − f (x)), ∀ z ∈ Y.

Moreover, in view of the definition it is clear that

�l
q,x (M) = sup

y∈F(x)

inf
z∈M

sq(z − y), ∀ M ∈ Y . (10)

The following theorem shows that �l
q,x is a reformulation of �l

q,x .

Theorem 3.10 Consider q ∈ int D and x ∈ S. Then the mappings �l
q,x and �l

q,x
coincide.

Proof For each y ∈ Y and M ∈ Y we have that:
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�l
q,{y}(M) = inf{t ∈ R : M �l

D tq + y}
= inf{t ∈ R : tq + y ∈ M + D}
= inf

z∈M
inf{t ∈ R : z − y ∈ tq − D}

= inf
z∈M

sq(z − y)

and the proof follows by (6) and (10). �

By Remark3.9 and Theorem3.10 we see that the mapping G−q by Hernández
and Rodríguez-Marín, the mapping �l

q,x due to Hamel and Löhne and the mapping
�l

q,x introduced by ourselves are the same function.

4 Minimality Conditions Through Scalarization

Nextwe obtain necessary and sufficient conditions forweak l-minimal and l-minimal
solutions of problem (P) by scalarization processes {ϕx }x∈S such that for each
x ∈ S, the mapping ϕx : F → R ∪ {±∞} satisfies certain order representing and
monotonicity properties at F(x). For each x0 ∈ S we denote

E(x0) = {x ∈ S : F(x) ∼l
D F(x0)},

S(x0) = (S\E(x0)) ∪ {x0}.

First we derive necessary l-minimality conditions by using order representing map-
pings.

Theorem 4.1 Let {ϕx }x∈S be a scalarization process, ϕx : F → R ∪ {±∞}, for all
x ∈ S.

(a) Let x0 ∈ S and suppose that ϕx0 is strictly order �l
int D-representing at F(x0). If

x0 ∈ WMl(F, S), then x0 ∈ S(ϕx0 ◦ F, S).
(b) Let x0 ∈ S and suppose that ϕx0 is order �l

D-representing at F(x0). If x0 ∈
Ml(F, S), then S(ϕx0 ◦ F, S(x0)) = {x0}. If additionally ϕx0 is �l

D-monotone on
F , then S(ϕx0 ◦ F, S) = E(x0).

Proof (a) Suppose that x0 /∈ S(ϕx0 ◦ F, S). Then there exists x ∈ S such that
ϕx0(F(x)) < ϕx0(F(x0)). As ϕx0 is strictly order �l

int D-representing at F(x0), it fol-
lows that F(x) ≺l

int D F(x0), which is a contradiction since x0 ∈ WMl(F, S).
(b) Consider x ∈ S(x0), x 	= x0. It follows that x ∈ S, F(x) �

l
D F(x0) and since

x0 ∈ Ml(F, S) we have F(x) 	�l
D F(x0). Thus, as ϕx0 is order �l

D-representing at
F(x0) we deduce that ϕx0(F(x)) > ϕx0(F(x0)) and so S(ϕx0 ◦ F, S(x0)) = {x0}.

If additionally ϕx0 is �l
D-monotone, then

S(ϕx0 ◦ F, S(x0)) = {x0} ⇐⇒ S(ϕx0 ◦ F, S) = E(x0) (11)
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and so the last statement of part (b) is a direct consequence of the first one. Let us prove
equivalence (11). The sufficient condition is trivial. On the other hand, suppose that
S(ϕx0 ◦ F, S(x0)) = {x0} and consider x ∈ E(x0). Since F(x) �l

D F(x0), F(x0) �l
D

F(x) and ϕx0 is �l
D-monotone on F , we have that ϕx0(F(x)) = ϕx0(F(x0)) and so

S(ϕx0 ◦ F, S) = E(x0), which finishes the proof. �

In the following theorem we obtain sufficient conditions for weak l-minimal and
l-minimal solutions of problem (P) by solutions and strict solutions of scalarization
processes {ϕx }x∈S such that for each x ∈ S, the mapping ϕx : F → R ∪ {±∞} is
strictly �l

int D-monotone and �l
D-monotone at F(x), respectively.

Theorem 4.2 Let {ϕx }x∈S be a scalarization process, where ϕx : F → R ∪ {±∞},
for all x ∈ S.

(a) Let x0 ∈ S be such that ϕx0 is strictly �l
int D-monotone at F(x0). If x0 ∈ S(ϕx0 ◦

F, S) then x0 ∈ WMl(F, S).
(b) Suppose that ϕx is strictly �l

int D-monotone on F , for all x ∈ S. Then

⋃

x∈S

S(ϕx ◦ F, S) ⊂ WMl(F, S).

(c) Let x0 ∈ S be such that ϕx0 is �l
D-monotone at F(x0). If S(ϕx0 ◦ F, S(x0)) = {x0}

then x0 ∈ Ml(F, S).

Proof Let us prove parts (a) and (c), since the proof of part (b) is similar to the proof
of part (a).

(a) Suppose that x0 /∈ WMl(F, S). Then there exists x ∈ S such that F(x) ≺l
int D

F(x0). As ϕx0 is strictly �l
int D-monotone at F(x0) we deduce that ϕx0(F(x)) <

ϕx0(F(x0)), which is a contradiction.
(c) Suppose that x0 /∈ Ml(F, S). Then there exists x ∈ S such that F(x) ≺l

D
F(x0), i.e., F(x) �l

D F(x0) and F(x) �
l
D F(x0), and so x ∈ S(x0)\{x0}. We have

that ϕx0(F(x)) ≤ ϕx0(F(x0)), since ϕx0 is �l
D-monotone at F(x0). As S(ϕx0 ◦

F, S(x0)) = {x0}, it follows that x = x0, that is a contradiction and the proof is
completed. �

Remark 4.3 Let us observe that if ϕx0 is �l
D-monotone at F(x0) and S(ϕx0 ◦

F, S) = {x0} (i.e., x0 is a strict solution of problem (Pϕp ) with ϕp = ϕx0 ), then
S(ϕx0 ◦ F, S(x0)) = {x0} and by Theorem4.2 it follows that x0 ∈ Ml(F, S).

By applying Theorems4.1 and 4.2 to the mappings {�l
q,x }x∈S one obtains the

following characterizations for weak l-minimal and l-minimal solutions of problem
(P). Moreover, the same approach can be done to characterize weak u-minimal and
u-minimal solutions of problem (P) by considering the scalarization mapping �u

q,x

and the set orderings �u
D and �u

int D instead of �l
D and �l

int D , respectively. In fact,
this approach can be extended to other set orderings (see [11]).

Corollary 4.4 Let q ∈ int D. The following statements hold:
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(a) Assume that F is D-compact valued in S. Then, for each x0 ∈ X it follows that

x0 ∈ WMl(F, S) ⇐⇒ x0 ∈ S(�l
q,x0 ◦ F, S).

Moreover,
WMl(F, S) =

⋃

x∈S

S(�l
q,x ◦ F, S). (12)

(b) Let x0 ∈ S such that F(x0) is D-proper, and assume that F is D-closed valued
in S. Then

x0 ∈ Ml(F, S) ⇐⇒ S(�l
q,x0 ◦ F, S) = E(x0).

Proof (a) By Theorem3.5 it follows that �l
q,x is strictly order �l

int D-representing at
F(x), and strictly�l

int D-monotone onF , for all x ∈ S. Then part (a) is a consequence
of part (a) of Theorem4.1 and parts (a) and (b) of Theorem4.2.

(b) As F(x0) is D-proper, by Theorem3.5(d) we have that �l
q,x0 : F → R ∪

{±∞} is �l
D-monotone on F , and using Theorem3.5(a), (e) it is easy to check that

�l
q,x0 is order �l

D-representing at F(x0), since F is D-closed valued in S. Then the
result follows by Theorem4.1(b), statement (11) and Theorem4.2(c). �

Remark 4.5 (a) Corollary4.4(a) improves [19, Corollary4.11], since it general-
izes the sufficient condition of [19, Corollary4.11] to the whole solution set of
the scalarized problem and so the scalar representation (12) holds. Analogously,
Corollary4.4(b) reduces to [19, Corollary4.8] by assuming that F(x0) is D-bounded
instead of D-proper.

Let us observe that Corollaries 4.8 and 4.11 of [19] characterize also weak
l-maximal and l-maximal solutions of problem (P).

On the other hand, the sufficient condition of Corollary4.4(b) reduces to [34,
Theorem4.3] by assuming that S(�l

q,x0 ◦ F, S) = {x0} (i.e., x0 is a strict solution),
since in this case it follows that E(x0) = {x0} and so S(�l

q,x0 ◦ F, S) = E(x0).
Indeed, suppose that x0 is a strict solution and consider x ∈ E(x0). As �l

q,x0 is �l
D-

monotone on Y we deduce that �l
q,x0(F(x)) = �l

q,x0(F(x0)). Then x = x0, since
S(�l

q,x0 ◦ F, S) = {x0} and we have that E(x0) = {x0}.
(b) Corollary4.4(a) has been stated in [1, Theorem5.2] and [34, Theorem4.2] by

assuming that F is D-bounded and D-closed in S. The following data show that these
assumptions do not guarantee both results. Let X = R,Y = R

2, D = R
2+, q = (1, 1),

F(x) = R
2+, for all x ∈ R, x 	= 0, and F(0) = {(y1, y2) ∈ R

2+ : y2 = 1/y1}. It is easy
to check that F is D-closed and D-bounded in X and �l

q,0(F(x)) = 0 for all x ∈ R,
but 0 /∈ WMl(F, X), since F(x) ≺l

int D F(0), for all x ∈ X\{0}.
Analogously, Corollary4.4(b) clarifies Theorem 5.2 of [1], which could not be

true. For example, if F is constant in the feasible set S then Ml(F, S) = S and for
each x0 ∈ S it is clear that hl

inf(F(x); F(x0)) = 0, for all x ∈ S.
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5 Conclusions

In this paper, a detailed study on the scalarization of set optimization problems has
been carried out. Several concepts of solution based on set relations have been char-
acterized via generic scalarization mappings that satisfy suitable properties. Then
these characterizations have been specified by using well-known scalarization map-
pings, whose properties have previously been studied. An useful research direction
motivated by the results of this paper is to derive from them numerical procedures
to solve this kind of optimization problems.

Recently, another approach called vectorization has been proposed to charac-
terize solutions of set optimization problems based on set relations (see [22]). In
this approach, a suitable vector optimization problem is defined whose solutions are
related with the solutions of the set optimization problem. It would be interesting to
relate this approach with the results of this paper. In particular, one can analyze if
some of these results can be derived by combining the vectorization approach with
some of the well-known scalarization processes used in vector optimization.

Acknowledgments The authors are grateful to the anonymous referees and the editor who have
contributed to improve the quality of the paper.
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24. Khan, A.A., Tammer, C., Zălinescu, C.: Set-valued Optimization. An Introduction with Appli-

cations. Springer, Berlin (2014)
25. Kuroiwa, D.: Some criteria in set-valued optimization. Sūrikaisekikenkyūsho Kōkyūroku 985,
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1 Introduction

In his book [114, p. 378], J. Jahn states that the set relation approach ‘opens a new and
wide field of research’ and the so-called set relations ‘turn out to be very promising in
set optimization.’ We share this opinion, and this note aims at a (partial) fulfillment
of this promise.

What is “set optimization?” The answer given in this note concerns minimiza-
tion problems with set-valued objective functions and is based on a twofold solution
concept: Look for a set of arguments each of which has a function value which is
minimal in some sense, and all those values generate the infimum of the function.
Thus, infimum attainment and minimality are the two, no longer equivalent require-
ments for a solution of a set optimization problem. It turns out that the set relation
infimum is a useful concept in contrast to the vector order infimum which may not
exist, and even if it does, it is of no practical use.

What is a motivation to consider set optimization problems? The heart of the
problem is the question of how to deal with a non-total order relation, i.e. when
there are non-comparable alternatives. The “complete lattice approach” based on
set relations re-gains meaningful and applicable notions of infimum and supremum
even if the departing pre-ordered vector space does not have the least upper bound
property, is not even a lattice, its positivity cone is not pointed, not normal or has an
empty interior. The theory presented in this survey suggests that even vector-valued
optimization problems should be treated as set-valued ones. This point of view has
already been emphasized in [151] for problems with a solid ordering cone.

According to an old theorem by Szpilrajn [215], which is well-known in mathe-
matical economics, but less so in vector and set optimization, a partial order (preorder)
is the intersection of all linear orders (total preorders) including it. In the same spirit,
dual descriptions of objects related to a preorder such as convex functions can be
given in terms of half spaces generating total orders, hence dual objects are naturally
halfspace- or hyperplane-valued.1 Since the simplest dual object is a linear func-
tional, set-valued replacements for them should be halfspace- or hyperplane-valued
as well and “as linear as possible.” This basic idea leads to a new type of duality
which is not only strong enough to provide set-valued analogs of the Fenchel-Moreau
and the Lagrange duality theorem, but also implies known duality results in vector
optimization which are usually stated under much stronger assumptions.

It turns out that convex analysis, in particular duality, does not rely on linearity of
functionals or image spaces, but rather on “conlinearity.” The structure of a conlinear
space as introduced in [77] is precisely the part of the structure of a linear spacewhich
remains invariant under passing to the power set (with Minkowski addition) or order
completion (add a least and greatest element to an ordered vector space). Thus,
IR ∪ {−∞,+∞} is the prototype of a conlinear space. A particular feature is the
resulting bifurcation: The extended reals can be provided with inf-addition or sup-

1In contrast to many duality results in vector optimization, this can bee seen as a realization of one
of the many ‘duality principles in optimization theory that relate a problem expressed in terms of
vectors in a space to a problem expressed in terms of hyperplanes in the space,’ see [160, p. 8].
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addition (see [197, p. 15], but already introduced by Moreau [175]), which produces
two different conlinear spaces. A preoder on a linear space can be extended in two
different ways to the power set of this space, thus producing two different ordered
conlinear spaces. Below, it should become clear why this happens and how to deal
with this ambiguity.

Finally, “set optimization” is motivated by problems in Economics and Mathe-
matical Finance. The classic books [209] (first edition from 1953) and [125] contain
many examples of set-valued functions which naturally occur in economic models,
among them ‘production technologies’ [209, p. 13] which are basically monotone
lattice-valued functions in the sense of this survey. In finance, market models with
transaction costs provide plenty of examples for the theory discussed in this survey;
for example the superhedging theorems in [121, 205] can be identified as partic-
ular cases of the set-valued Fenchel-Moreau theorem stated below, and the theory
of set-valued risk measures, initiated in [120], was particularly motivating for the
development for the set-valued duality in Sect. 5 below.

This survey aims at developing ideas and structures and providing a framework for
principal results. Full proofs are only given for new or unpublished results, or if they
illustrate an important idea particularly nicely. Sections with bibliographical remarks
conclude each part with the goal to put the presented material into perspective with
variational analysis and vector optimization theory in view.

Several results are new, mostly complementing those obtained by the authors in
several recent publications. For example, Proposition2.17 discusses the totalness of
set relations, Sect. 4.2 relies on an improved general scheme for scalarizations and
includes several new observations such as the supermodularity of the scalarizations
given in Corollary4.15, Theorem5.2 characterizes set-valued dual variables parallel
to results for continuous linear functions and convex processes, Sect. 5.5 contains
a new general framework for directionally translative functions and Proposition6.7
provides a new sufficient optimality condition including a complementary slackness
condition for set optimization.

2 Set Relations and Lattices of Sets

2.1 Extending Preorders from Linear Spaces to their Power
Sets

Let Z be a non-trivial real linear space and C ⊆ Z a convex cone with 0 ∈ C �= Z .
In particular, C = {0} is allowed. Here, C is said to be a cone if z ∈ C , t > 0 imply
t z ∈ C . By

z1 ≤C z2 ⇔ z2 − z1 ∈ C

a reflexive and transitive relation ≤C is defined on Z ; such a relation is usually
called a preorder. It is compatible with the linear structure of Z in the usual sense,
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i.e. z1, z2, z ∈ Z , t ≥ 0 and z1 ≤C z2 imply z1 + z ≤C z2 + z as well as t z1 ≤ t z2.
Obviously,

z1 ≤C z2 ⇔ z2 − z1 ∈ C ⇔ z2 ∈ z1 + C ⇔ z1 ∈ z2 − C.

The last two relationships can be used to extend ≤C from Z to P (Z), the set of all
subsets of Z including the empty set ∅. Take A, B ∈ P (Z) and define

A �C B ⇔ B ⊆ A + C,

A �C B ⇔ A ⊆ B − C.

Here and in the following, we use + to denote the usual Minkowski (element-wise)
addition for sets with the conventions A + ∅ = ∅ + A = ∅ for all A ∈ P (Z) and
A − C = A + (−C), −C = {−c | c ∈ C}. The following facts are immediate.

Proposition 2.1 (a) Both �C and �C are reflexive and transitive relations on
P (Z). Moreover, they are not antisymmetric in general, and they do not coincide.

(b) A �C B ⇔−B �C −A⇔ B �−C A.
(c) A �C B ⇔ A + C ⊇ B + C; A �C B ⇔ A − C ⊆ B − C.

Proof Left as exercise. �

The property (c) above gives rise to define the set

P (Z , C) = {A ∈ P (Z) | A = A + C}

and to observe that it can be identified with the set of equivalence classes with respect
to the equivalence relation on P (Z) defined by

A ∼C B ⇔ (A �C B ∧ B �C A) ⇔ A + C = B + C, (2.1)

i.e. ∼C is the symmetric part of �C . Likewise,

P (Z ,−C) = {A ∈ P (Z) | A = A − C}

can be identified with the set of equivalence classes with respect to the equivalence
relation

A ∼(−C) B ⇔ (A �C B ∧ B �C A) ⇔ A − C = B − C.

Below, we will mainly discuss the relation �C which is the appropriate one when it
comes to minimization; however, the theory becomes completely symmetric since
every statement for the�C relation (andminimization) has a counterpart for�C (and
maximization).
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The following proposition relies on (c) of Proposition2.1. We recall that the
infimum of a subset V ⊆ W of a partially ordered set (W,�) is an element w̄ ∈ W
(unique if it exists) satisfying w̄ � v for all v ∈ V and w � w̄ whenever w � v for
all v ∈ V . This means that the infimum is the greatest lower bound of V in W .
The infimum of V is denoted by inf V . Likewise, the supremum sup V is defined
as the least upper bound of V . A partially ordered set (W,�) is called a lattice if
inf {w1, w2} and sup {w1, w2} exist in W for any two elementsw1, w2 ∈ W . A lattice
(W,�) is called (order) complete if each subset has an infimum and a supremum in
W .

Proposition 2.2 The pair (P (Z , C) ,⊇) is a complete lattice. Moreover, for a subset
A ⊆ P (Z , C), the infimum and the supremum of A are given by

inf A =
⋃

A∈A
A, supA =

⋂

A∈A
A (2.2)

where it is understood that inf A = ∅ and supA = Z whenever A = ∅. The greatest
(top) element of P (Z , C) with respect to ⊇ is ∅, the least (bottom) element is Z.

In particular, ⊇ is a partial order on P (Z , C). This property does not depend
on the cone C : It can be a trivial cone, i.e. C = {0}, or a half space, i.e. C =
{z ∈ Z | ξ (z) ≥ 0} where ξ is a (non-zero) linear function on Z (an element of
the algebraic dual of Z ), i.e.≤C is not antisymmetric in the latter case in general. Of
course, a parallel result holds for (P (Z ,−C) ,⊆).

Note that the convention inf ∅ = ∅ and sup ∅ = Z is in accordancewith the follow-
ing monotonicity property: If A1 ⊆ A2 then inf A1 ⊆ inf A2 and supA1 ⊇ supA2

in P (Z , C).

Proof To show the first formula in (2.2) one has to prove two facts: First,

∀A′ ∈ A :
⋃

A∈A
A ⊇ A′,

and secondly, for B ∈ P (Z , C)

(∀A ∈ A : B ⊇ A) ⇒ B ⊇
⋃

A∈A
A.

Both claims are obvious. The second formula of (2.2) also follows from the
definition of the supremum with respect to ⊇. The lattice property is a consequence
of (2.2). �

Remark 2.3 One could also use other representatives of the equivalence classes
defined by (2.1) {

A′ ∈ P (Z) | A �C A′ ∧ A′ �C A
}
.
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As as rule, one has to impose additional assumptions, for example a non-empty
interior of the cone C . An example is the infimal set approach of Nieuwenhuis [179]
which has been extended in [149, 155] (compare also [151, 216]). This approach is
summarized in Example2.12 below.

2.2 Comments on Set Relations

In the (vector and set) optimization community, D. Kuroiwa is credited for the intro-
duction of the two “set relations”�C and�C above and, indeed, he was the first who
used them for defining optimality notions for optimization problemswith a set-valued
objective function, compare [128, 138] and several reports [129–134] published by
RIMS Kokyuroku 1996–1999. However, it should be noted that these “set relations”
were in use much earlier in different contexts.

In the 1993 paper [22], Brink describes an algebraically motivated approach to
power structures where the two relations� and� (analog extensions of a preorder on
a general set, not necessarily a vector space) are denoted by R+0 and R+1 , respectively.
These and similar structures mostly defined on finite or countable sets are widely
used in theoretical computer science as becomes clear from the reference list of [22].
For example, in [188, Definition 1] the following definition is used: A set A ‘can be
reduced to’ another set B if for all a ∈ A there is b ∈ B such that a ≤ b for some
partial order ≤, thus A � B, which is parallel to the definition of �C above.

Nishianidze [180] also used the relations � and � in the context of fixed point
theory. This reference was brought to our attention by J. Jahn. Constructions mainly
motivated by applications in economics and social choice theory can be found e.g. in
[18, 177]. Compare also the references therein, especially [122]. In [56], set relations
(on finite sets) and corresponding best choice problems are motivated by committee
selection, governing coalition formation, product line formation and similar prob-
lems.

As pointed out in [77, 83], the earliest reference known to us is the paper [228]
by Young. It already contains the definitions of �C and �C implicitly and presents
applications to the analysis of upper and lower limits of sequences of real numbers.

Another field of application for set relations is interval mathematics. In the survey
[178, Sect. 2.2] from 1975, an order relation is investigatedwhich is defined on the set
of order intervals of a partially ordered set M . This relation coincides with�C ∩ �C

if M = Z and ≤C is a partial order on Z . It has also been discussed, for example,
in [115, 117]. Jahn [118] applies it in fixed point theory for interval functions, and
Schmidt [206] relates it to general ordered convex cones. Later, the “set-less-or-
equal relation” became a standard part of the FORTRAN 95 specification for interval
arithmetic, see [30]. We point out that the “set less” relation in [115] actually is the
“set-less-or-equal” relation in [30, Sect. 12.8] and also coincides with �C ∩ �C .

In [138], one can find a systematic investigation of six extensions of a preorder≤C

on a topological linear space generated by a convex ordering cone C with nonempty
interior to its power set; the relations �C and �C are proven to be the only such
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relations which are reflexive and transitive; definitions for the convexity of set-valued
functions with respect to several order relations are given. Subsequent papers of the
three authors of [138] contain applications to optimization problemswith a set-valued
objective, see for example [73, 135, 136]. For this topic, compare also the book [114],
especially Chap.5. The recent paper [117] contains even more set relations.

After 2005, many authors adopted the concepts related to�C and�C , see, among
an increasing number of others, [1, 85, 94–96, 140, 163, 164]. Quite recently, robust-
ness for vector optimization problems has been linked to the two (and other) set
relations, see [107–109].

In [77, 149, 155], it has been realized that the set relations unfold their full
potential in the framework of complete lattices; Propositions2.2 above and infimal
set versions of it such as [151, Proposition 1.52] may serve as a blueprint for this
idea. Because of Proposition2.2 (which can be found, even in a more general set-up,
in [77, Theorem 6] and, for a different image space, [149, Proposition 1.2.3]) we call
this approach the “complete lattice approach” to set optimization.2

2.3 Inf-Residuated Conlinear Spaces of Sets

Westartwith a definitionwhich provides the algebraic framework for the image space
analysis. It is taken from [77] where references and more material about structural
properties of conlinear spaces can be found.

Definition 2.4 A nonempty set W together with two algebraic operations +: W ×
W → W and · : IR+ ×W → W is called a conlinear space provided that

(C1) (W,+) is a commutative semigroup with neutral element θ ,
(C2) (i) ∀w1, w2 ∈ W , ∀r ∈ IR+: r · (w1 + w2) = r · w1 + r · w2, (ii) ∀w ∈ W ,

∀r, s ∈ IR+: s · (r · w) = (sr) · w, (iii) ∀w ∈ W : 1 · w = w, (iv) 0 · θ = θ .

An element w ∈ W is called a convex element of the conlinear space W if

∀s, t ≥ 0 : (s + t) · w = s · w + t · w.

A conlinear space (W,+, ·) together with a partial order � on W (a reflexive,
antisymmetric, transitive relation) is called ordered conlinear space provided that
(v) w,w1, w2 ∈ W , w1 � w2 imply w1 + w � w2 + w, (vi) w1, w2 ∈ W , w1 � w2,
r ∈ IR+ imply r · w1 � r · w2.

A non-empty subset V ⊆ W of the conlinear space (W,+, ·) is called a conlinear
subspace of W if (vii) v1, v2 ∈ V implies v1 + v2 ∈ V and (viii) v ∈ V and t ≥ 0
imply t · v ∈ V .

2For apparent reasons, we would like to call this just “set optimization,” but this term is currently
used for just too many other purposes.

http://dx.doi.org/10.1007/978-3-662-48670-2_5
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It can easily be checked that a conlinear subspace of a conlinear space again is a
conlinear space. Note that an important feature of the above definition is the missing
second distributivity law which is used to define convex elements.

Example 2.5 (a) The Minkowski addition+ has already been extended to P (Z , C)

and P (Z ,−C) (see the paragraph before Proposition2.1). The multiplication with
non-negative numbers is extended to P (Z , C) by defining t · A = {ta | a ∈ A} for
A ∈ P (Z , C) \ {∅}, t > 0 and

0 · A = C, t · ∅ = ∅

for all A ∈ P (Z , C) and t > 0. In particular, 0 · ∅ = C by definition, and we will
drop the · in most cases. Since the same can be done for P (Z ,−C), the triples
(P (Z , C) ,+, ·) and (P (Z ,−C) ,+, ·) are conlinear spaces in the sense of Defini-
tion2.4.

Note that it does not hold:

∀s, t ≥ 0, ∀A ∈ P (Z , C) : (s + t) · A = s · A + t · A.

Counterexamples are provided by non-convex sets A ⊆ Z . Therefore,
(P (Z , C) ,+, ·,⊇) is neither an ordered semilinear space [202] nor a semi-module
over the semi-ring IR+ [230].

(b) The extended real numbers IR = IR ∪ {−∞,+∞} provide two more exam-
ples. Supplied with the inf-addition +� and the sup-addition +� , respectively, one
obtains two (different!) conlinear spaces. For terminology and references, see [89,
197].

The next result connects the conlinear structure on (P (Z , C) ,+, ·)with the order
structure of (P (Z , C) ,⊇).

Proposition 2.6 (a) A, B, D, E ∈ P (Z , C), A ⊇ B, D ⊇ E⇒ A + D ⊇ B + E,
(b) A, B ∈ P (Z , C), A ⊇ B, s ≥ 0⇒ s A ⊇ s B,
(c) A ⊆ P (Z , C), B ∈ P (Z , C)⇒

inf (A+ B) = (inf A)+ B (2.3)

sup (A+ B) ⊇ (supA)+ B. (2.4)

where A+ B = {A + B | A ∈ A}.
Proof Exercise. �

The following example shows that (2.4) does not hold with equality in general.

Example 2.7 Let Z = IR, C = IR+, A = {[t,∞) | t ≥ 0}, B = IR. Then,
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∀t ≥ 0 : [t,∞)+ IR = IR and supA =
⋂

t≥0
[t,∞) = ∅,

so sup (A+ B) = IR �= ∅ = (supA)+ B.

Items (a) and (b) of the previous proposition show that (P (Z , C) ,+, ·,⊇) (as
well as (P (Z ,−C) ,+, ·,⊆)) carries the structure of an ordered conlinear space.
Moreover, Proposition2.2 shows that they are also complete lattices. The innocent
looking Eq. (2.3) has far reaching consequences. In lattice theoretical terms, it means
that (P (Z , C) ,+, ·,⊇) is inf-residuated (but not sup-residuated in general). The
opposite is true for (P (Z ,−C) ,+, ·,⊆): it is sup-, but not inf-residuated. The
following proposition is an explanation for the word “inf-residuated.”

Proposition 2.8 The relationship (2.3) given in (c) of Proposition2.6 is equivalent
to: For each A, B ∈ P (Z , C), the set

{D ∈ P (Z , C) | A ⊇ B + D}

has a least element (with respect to ⊇).

Proof Assume (2.3) and fix A, B ∈ P (Z , C). Define

D̂ = inf {D ∈ P (Z , C) | A ⊇ B + D} .

By (2.3) and (2.2),

B + D̂ = B + inf {D ∈ P (Z , C) | A ⊇ B + D}
= inf {B + D ∈ P (Z , C) | A ⊇ B + D}
=

⋃
{B + D ∈ P (Z , C) | A ⊇ B + D} ⊆ A

which means D̂ ∈ {D ∈ P (Z , C) | A ⊇ B + D}, so D̂ is the desired least element.
The converse direction is left as an exercise. �

The inf-residuation of A, B ∈ P (Z , C) is denoted

A−� B = inf {D ∈ P (Z , C) | A ⊇ B + D} . (2.5)

This operation will serve as a substitute for the difference in linear spaces. Indeed,
for Z = IR, C = IR+, A = a + IR+, B = b + IR+, a, b ∈ IR one obtains

A−� B = {r ∈ IR | b + r + IR+ ⊆ a + IR+} = {r ∈ IR | b − a + r + IR+ ⊆ IR+} = a − b + IR+.

Compare Example2.15 below for more about the extended reals. The following
proposition states two elementary properties of−� . A full calculus exists for−� which
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to a large extend can be derived from known results in lattice/residuation theory. One
example is Proposition4.17 below which can be understood as a residuation version
of “the negative of the infimum is the supremum of the negative.”

Proposition 2.9 Let A, B ∈ P (Z , C). Then

A−� B = {z ∈ Z | B + z ⊆ A} , (2.6)

and if A is closed (convex) then A−� B is closed (convex) where Z is required to be
a topological linear space if closedness is involved.

Proof The proof of the equation is immediate from (2.2) and (2.5), and the second
claim follows from the first and

{z ∈ Z | B + z ⊆ A} =
⋂

b∈B

{z ∈ Z | z ∈ A + {−b}} .

Of course, A + {−b} is closed (convex) if A is closed (convex), and these properties
are stable under intersection. �

Remark 2.10 We would like to draw the reader’s attention to the fact that the struc-
ture of an ordered conlinear space which also is an inf-residuated complete lattice
is “rich enough” to serve as an image space in convex analysis. In fact, this struc-
ture is shared by IR with inf-addition and (P (Z , C) ,+, ·,⊇) (as well as others, see
below). Completely symmetric counterparts are provided by IR with sup-addition
and (P (Z ,−C) ,+, ·,⊆)which are sup-residuated complete lattices. The transition
from one to the other, provided by multiplication with−1, is a ‘duality’ in the sense
of [210]. Although elements of this structure were well-known and have been used
before (see the comments section below), the development of this framework for a
“set-valued” convex/variational analysis and optimization theory is one contribution
of the authors of this survey. A nice feature is that this structure admits to estab-
lish many results for vector/set-valued functions in the same way as for extended
real-valued functions—not surprising after one realizes the similarities between the
extended reals and conlinear spaces of sets.

We conclude this section by providing more examples of inf-residuated complete
lattices of sets which will be used later on.

Example 2.11 Let Z be a topological linear space and C ⊆ Z a convex cone with
0 ∈ C . The set

F (Z , C) = {A ⊆ Z | A = cl (A + C)}

clearly is a subset of P (Z , C), but not closed under (Minkowski) addition. There-
fore, we define an associative and commutative binary operation ⊕: F (Z , C)×
F (Z , C)→ F (Z , C) by

A ⊕ B = cl (A + B) (2.7)
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for A, B ∈ F (Z , C). The element-wise multiplication with non-negative real num-
bers is extended by

0� A = clC, t � ∅ = ∅

for all A ∈ F (Z , C) and t > 0. In particular, 0� ∅ = clC by definition, and we
will drop� in most cases. The triple (F (C) ,⊕,�) is a conlinear space with neutral
element clC .

OnF (Z , C),⊇ is a partial orderwhich is compatiblewith the algebraic operations
just introduced. Thus, (F (Z , C) ,⊕,�,⊇) is a partially ordered, conlinear space.

Moreover, the pair (F (Z , C) ,⊇) is a complete lattice, and ifA ⊆ F (Z , C) then

inf
(F(Z ,C),⊇)

A = cl
⋃

A∈A
A, sup

(F(Z ,C),⊇)

A =
⋂

A∈A
A

where again inf (F(Z ,C),⊇) A = ∅ and sup(F(Z ,C),⊇) A = Z whenever A = ∅.
The inf-residuation in F (Z , C) is defined as follows: For A, B ∈ F (Z , C), set

A−� B = inf
(F(Z ,C),⊇)

{D ∈ F (Z , C) | B + D ⊆ A} = {z ∈ Z | B + z ⊆ A} . (2.8)

Note that, for A ∈ F (Z , C), the set on the right hand side of (2.8) is indeed closed
by Proposition2.9.

Example 2.12 Let Z be a topological linear space and C � Z be a closed convex
cone with ∅ �= int C �= Z . The set of weakly minimal points of a subset A ⊆ Z (with
respect to C) is defined by

wMinA = {y ∈ A | ({y} − int C) ∩ A = ∅} .

For A ∈ F(Z , C), it can be shown ([151, Proposition 1.40 and Corollary 1.44]) that
wMinA �= ∅ if and only if A /∈ {Z ,∅}. This justifies the following construction. For
A ∈ F(Z , C), set

InfA =
⎧
⎨

⎩

wMinA : A /∈ {Z ,∅}
{−∞} : A = Z
{+∞} : A = ∅.

Then InfA ⊆ Z ∪ {±∞}, and InfA is never empty. The set A can be reconstructed
from Inf A by

A =
⎧
⎨

⎩

Inf A ⊕ C : Inf A /∈ {{−∞} , {+∞}}
Z : Inf A = {−∞}
∅ : Inf A = {+∞} .

Defining the set I(Z , C) = {Inf A | A ∈ F(Z , C)} (the collection of ‘self-
infimal’ subsets of Z ∪ {±∞}, [151,Definition 1.50]) and appropriate algebraic oper-
ations as well as an order one obtains F(Z , C) = {B ⊕ C | B ∈ I(Z , C)}. More-
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over, I(Z , C) andF(Z , C) are algebraically and order isomorphic ordered conlinear
spaces (compare Proposition 1.52 of [151]). The reader is referred to [151, 155, 179,
216] for more details concerning infimal (and supremal) sets.

Example 2.13 Let Z , C be as in Example2.11. The set

G (Z , C) = {A ⊆ Z | A = cl co (A + C)} ⊆ F (Z , C)

together with the operations ⊕ and � introduced in Example2.11 is a conlinear
subspace of (F (C) ,⊕,�). In fact, G (Z , C) precisely contains the convex elements
of F (Z , C). Moreover, the pair (G (Z , C) ,⊇) is a complete lattice, and for ∅ �=
A ⊆ G (Z , C)

inf
(G(Z ,C),⊇)

A = cl co
⋃

A∈A
A

whereas the formula for the supremum is the same as inF (Z , C). The inf-residuation
in (G (Z , C) ,⊕,�,⊇) is the same as in (F (Z , C) ,⊕,�,⊇) which is a conse-
quence of (2.8) and Proposition2.9.

Example 2.14 If in Example2.12 and under the assumptions therein, F(Z , C) is
replaced by G(Z , C), we obtain a conlinear space Ico(Z , C), which is a subspace of
I(Z , C) that is algebraically and order isomorphic to G(Z , C). For further details,
the reader is referred to [151, Sect. 1.6].

Note that parallel results are obtained for F (Z ,−C), G (Z ,−C) with the same
algebraic operations as in F (Z , C), G (Z , C) and the order relation ⊆.
Example 2.15 Let us consider Z = IR, C = IR+. Then

F (IR, IR+) = G (IR, IR+) = {[r,+∞) | r ∈ IR} ∪ {IR} ∪ {∅} .

Moreover, by
a = inf

(IR,≤)
A for A ∈ G (IR, IR+)

and

A =
⎧
⎨

⎩

IR : a = −∞
[a,+∞) : a ∈ IR
∅ : a = +∞

we obtain an algebraic and order isomorphism between (G (IR, IR+) ,⊕,�,⊇) and(
IR,+� , ·,≤)

where +� is the inf-addition (see [197]) on IR = IR ∪ {±∞} with
(+∞)+� r = r+� (+∞) = +∞ for all r ∈ IR, and · is an extension of the multi-
plication of non-negative real numbers by elements of IR. Note that 0 · (−∞) =
0 · (+∞) = 0 since otherwise

(
IR,+� , ·) is not a conlinear space. Of course, A ⊇ B

if, and only if, inf (IR,≤) A ≤ inf (IR,≤) B. Thus,
(
IR,+� , ·,≤)

is an ordered conlinear
space which is a complete lattice with respect to ≤. Moreover,
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∀M ⊆ IR, ∀r ∈ IR : inf
(IR,≤)

(
M+� {r}) = r+� inf

(IR,≤)

M,

which admits the introduction of the inf-residuation in IR [89]. Here, M+� {r} ={
m+� r | m ∈ M

}
. We have

r−� s = inf
{
t ∈ IR | r ≤ s+� t

}

for all r, s ∈ IR with some strange properties. For examples, expressions like
(+∞)−� (−∞) are well-defined and even useful as shown in [89, 90].

Remark 2.16 As a simple, but instructive exercise the reader should try to estab-
lish the isomorphism between (G (IR,−IR+) ,⊕, ·,⊆) and

(
IR,+� , ·,≤

)
where +�

denotes the “sup-addition” [197]. This shows that the reason why ‘there’s no single
symmetric way of handling (+∞)+ (−∞)’ is basically the same as the one for hav-
ing two “canonical” extensions of a vector pre-order to the power set of the vector
space.3

The image space G (Z , C) will feature prominently in duality theories for set-
valued functions/optimization problems. The last example shows that it shares almost
all properties with the extended reals provided with the inf-addition. The notable
exception is that the order⊇ is not total in general. The following result clarifies this
question.

Proposition 2.17 Let Z be a locally convex space and C ⊆ Z a convex cone with
0 ∈ C and Z �= clC. Then ⊇ is total on F(Z , C) if, and only if, clC coincides with
a half-space H+(z∗) := {z ∈ Z | z∗(z) ≥ 0} for some z∗ ∈ C+\{0}.
Proof The “if” part is immediate. For the “only if” part, assume⊇ is total onF(Z , C)

and clC is not a half space. Then, there are z∗ ∈ C+\{0} and z̄ ∈ Z such that

clC ⊆ H+(z∗) and z̄ ∈ H+(z∗)\clC.

Indeed, the existence of z∗ ∈ C+\{0} and the first inclusion follow from a separation
argument, the second from the assumption. We claim that

∀s ∈ IR : H(z∗, s) := {
z ∈ Z | z∗(z) ≥ s

}
� clC.

In order to verify the claim, assume H(z∗, s) ⊆ clC for some s ∈ IR. Then, there is
zs ∈ Z such that H(z∗, s) = zs + H+(z∗) and z∗(zs) = s. This implies

3R. T. Rockafellar and R.-B. Wets also remark on p. 15 of [197] that the second distributivity law
does not extend to all of IR which is another motivation for the concept of “conlinear” spaces.
Finally, it is interesting to note that the authors of [197] consider it a matter of cause to associate
minimization with inf-addition (see p. 15). In the set optimization community, there is no clear
consensus yet about which relation to use in what context and for what purpose. However, this note
makes a clear point towards [197]: associate �C with minimization and �C with maximization
because the theory works for these cases. One should have a very strong reason for doing otherwise
and be advised that in this case many standard mathematical tools just don’t work.
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∀t > 0 : zs + t z̄ ∈ H(z∗, s)

since z∗(zs + t z̄) = s + t z∗(z̄) ≥ s. By assumption, zs + t z̄ ∈ clC for all t > 0,
hence

∀t > 0 : 1
t

zs + z̄ ∈ clC

which in turn gives z̄ ∈ clC , a contradiction. This proves the claim, i.e. clC �

H(z∗, s) for all s ∈ IR. Since ⊇ is total,

clC ⊆
⋂

s∈IR
H(z∗, s) = ∅,

a contradiction. �

2.4 Comments on Conlinear Spaces and Residuation

The term ’conlinear space’ was coined in [77] because of the analogies to ’convex
cones’ on the one hand and to linear spaces on the other hand.

A related concept is the one of quasilinear spaces or almost linear spaces as
defined in, for example, [66, 168], respectively. A quasilinear (or almost linear)
space satisfies all the axioms of a linear space, but the second distributivity law
which is required only for non-negative reals. Hence (P(Z),+, ·), (P(Z , C),+, ·)
and (F(Z , C),⊕, ·) are not quasilinear spaces in general. With respect to interval
mathematics, Schmidt [206, Sect. 4] observed ‘[. . .] it seems to be convenient to
generalize one step further and to restrict the multiplication by scalars to positive
scalars alone.’ Keeping all the other requirements for a quasilinear space we obtain
an abstract convex cone in the sense of B. Fuchssteiner, W. Lusky [60]. In [124], the
same concept is the basic one, sometimes a convex cone even without a zero element.
Abstract convex cones also coincide with semilinear spaces as probably introduced
by A. M. Rubinov [202] (he refers to a 1975 joint paper with S.S. Kutateladze) and
recalled, for example, in [65, Definition 2.6].

We remark that convex cones in the sense of [60] and semilinear spaces (with a
“zero”) in the sense of [65, Definition 2.6] are also semi-modules over IR+ (and even
semivector spaces) as defined by U. Zimmermann in [230, Sect. 5]. Finally, another
close relative of a conlinear space is a semivector space in the sense of [192]. Prakash
and Sertel (see also [193]) defined this structure in the early Seventies and observed
that the collections of non-empty and non-empty convex sets of a vector space form
a semivector space. In a semivector space, the existence of a neutral element with
respect to the addition is not required. Therefore, it might be considered as the
“weakest” algebraic concept discussed here.

Dedekind [43] already introduced the residuation concept and used it in order
to construct the real numbers as ‘Dedekind sections’ of rational numbers. Among
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others, R. P. Dilworth and M. Ward turned it into a standard tool in abstract lattice
theory, see [46, 223–225] and many followers.

Sometimes, the right hand side of (2.8) is called the geometric difference [189],
star-difference (for example in [220]), or Minkowski difference [76] of the two sets
A and B, and H. Hadwiger should probably be credited for its introduction. The
relationship to residuation theory (see, for instance, [13, 61]) has been established in
[89]. At least, we do not know an earlier reference. In the context of abstract duality,
residuation has been used, for example, in [64, 167] and also in idempotent analysis
(see [62, Sect. 3.3], for example). Note that in [64], the set IR is supplied both with
+� and +� at the same time, and this idea is extended to ‘the canonical enlargement’
of a ‘boundedly complete lattice ordered group’ (see [64, Sect. 3]) which is different
from the point of view of this survey. On the other hand, F(Z , C) and G(Z , C) are
special cases of (A,�) in [64, Sect. 2], but therein the conlinear structure is not used.

3 Minimality Notions

3.1 Basic Concepts

This section is concerned with the question of how to define “infimum attainment”
and “minimality.” We shall focus on the relation⊇ onF (Z , C) and G (Z , C) noting
that there are parallel concepts and results for ⊆ on F (Z ,−C), G (Z ,−C). In the
remainder of the paper, the infimum or supremum is always taken in the correspond-
ing space of elements, for example

inf A = cl
⋃

A∈A
A

whenever A ⊆ F(Z , C) whereas for A ⊆ G(Z , C)

inf A = cl co
⋃

A∈A
A.

With the constructions from the previous section in view, we have at least two
possibilities for a minimality notion. Given a set A ⊆ F (Z , C) or A ⊆ G (Z , C),
look for

(I) inf A = cl
⋃

A∈A A or inf A = cl co
⋃

A∈A A, respectively, or
(II) minimal elements with respect to ⊇, i.e. B ∈ A satisfying

A ∈ A, A ⊇ B ⇒ A = B.
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Note that the second possibility corresponds to the so-called set criterion which
became popular due to the work of D. Kuroiwa and collaborators: One looks for
minimal elements ofA ⊆ P (Z) with respect to �C . Since �C is not antisymmetric
in general one has to look for B ∈ A satisfying

(IIa)
A ∈ A, A �C B ⇒ B �C A.

Neither of the two possibilities above has been considered first. Rather, the following
problem has been studied since the 1980s by Corley [32], Dinh The Luc [156] and
others, and it is still popular.

(III) Find minimal elements of
⋃

A∈A A with respect to ≤C , i.e. find b ∈⋃
A∈A A

satisfying
a ∈

⋃

A∈A
A, a ≤C b ⇒ b ≤C a.

In this way, a set optimization problem is reduced to a vector optimization problem,
and sometimes this problem is referred to as the vector criterion in set optimization.
Note that, in some way, it involves the infimum of A in P(Z , C).

Example 3.1 Let Z = IR2, C = {0} × IR+ and A = {At | t ∈ [0, 1]} where

At = [−1+ t, t]× IR+.

Then each At is minimal with respect to ⊇ and

inf A = A0 ∪ A1 = [−1, 1]× IR+.

This shows that not all minimal elements are required to generate the infimumwhich
prepares the following definition.

Definition 3.2 Let A ⊆ F(Z , C) or A ⊆ G(Z , C).

(a) A set B ⊆ A is said to generate the infimum of A if

inf B = inf A.

(b) An element Ā ∈ A is called minimal for A if it satisfies

A ∈ A, A ⊇ Ā ⇒ A = Ā.

The set of all minimal elements of A is denoted by MinA.

Parallel definitions apply to generators of the supremum and maximal elements.
Of course,A always generates the infimum ofA. On the other hand, a set of minimal
elements of A does not necessarily generate the infimum of A. In Example3.1,
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every subset of A including A0 and A1 consists of minimal elements and generates
the infimum, i.e., in general, sets of minimal elements generating the infimum are not
singletons. If A ⊆ P (IR, IR+), then a single element A ∈ A generates the infimum
ofA if, and only if, it is aminimal one.Definition3.2 leads to the following “complete
lattice approach.” Given a set A ⊆ F(Z , C) or A ⊆ G(Z , C) look for

(IV) a set B ⊆ A such that

inf B = inf A and B ⊆ MinA.

Hence, the minimality notion of the “complete lattice approach” consists of look-
ing for sets of minimal elements which generate the infimum. We turn these notions
into a solution concept for set optimization problems. The following definition is a
special case of the general one given in [102].

Definition 3.3 Let X be a non-empty set, f : X → F (Z , C) (or f : X → G (Z , C))
a function and f [X ] = { f (x) | x ∈ X}.
(a) A set M ⊆ X is called an infimizer for f if

inf f [M] = inf f [X ].

(b) An element x̄ ∈ X is called a minimizer of f if f (x̄) is minimal for f [X ].
(c) A set M ⊆ X is called a solution of the problem

minimize f (x) subject to x ∈ X (P)

if M is an infimizer for f , and each x̄ ∈ M is a minimizer of f . It is called a full
solution if the set f [M] includes all minimal elements of f [X ].

Thus, solutions of set minimization problems in the “complete lattice” sense
are infimizers consisting only of minimizers. Again, parallel definitions apply to
solutions of maximization problems which will later appear in duality results. One
more concept is needed for a Weierstraß type theorem.

Definition 3.4 A setA ⊆ F(Z , C) (orA ⊆ G(Z , C)) is said to satisfy the domina-
tion property if

∀A ∈ A, ∃ Ā ∈ MinA : Ā ⊇ A.

Proposition 3.5 Let f : X → F (Z , C) (or f : X → G (Z , C)) be a function and
f [X ] satisfy the domination property. Then

M = {x ∈ X | f (x) ∈ Min f [X ]}

is a full solution of (P).
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Proof The domination property yields the first of the following inclusions while the
second one follows from M ⊆ X :

inf
x∈M

f (x) ⊇ inf
x∈X

f (x) ⊇ inf
x∈M

f (x).

This already completes the proof since M comprises all minimizers of f [X ]. �

3.2 Comments on Solution Concepts in Set Optimization

The appearance of set-valued functions in optimization theory was mainly motivated
by unifying different forms of constraints, see [14] and also [184, 185]. Problem (P)
in [16, p. 196] seems to be the first explicit set-valued optimization problem. J. M.
Borwein defines its optimal value as the infimum with respect to the underlying
vector order and assumes that the image space is conditional order complete, i.e.
every subset which is bounded from below (above) has an infimum (supremum) in
the space. Clearly, a necessary condition for this is that the image space is a vector
lattice. This restricts the applicability of such results considerably and besides, the
vector infimum/supremum does not produce solution concepts which are useful in
applications.

In [190, 191], Postolica formulates an optimization problem with a set-valued
objective and uses the minimality concept (III) above.

Corley [32, 33] defined ‘the maximization of a set-valued function with respect to
a cone in possibly infinite dimensions’ mainly motivated by the fact that, in duality
theories for multiobjective problems as established by Tanino and Sawaragi [218],
‘dual problems took this form’ (quotes from [32, p. 489]). The same motivation can
be found in Dinh The Luc’s book [156] in which vector optimization problems with
a set-valued objective are investigated using the approach (III).

Both authors considered optimality in the sense of (III) above: Take the union of
all objective values and then look for (weakly, properly etc.) minimal points in this
union with respect to the vector order. This approach has been the leading idea ever
since, among the many followers are [29, 54, 55, 57, 141, 145–147] (just to mention
a few), the book [28], and even the more recent [34, 35, 74, 105, 173, 174, 203],
[19, Sects. 7.1.3., 7.4.2.], [58, 199] and many more. We call this approach the vector
approach to set optimization.

The picture changed when the set relations were popularized by Kuroiwa and his
co-authors [130, 132, 133, 136, 138]. Still, it took several years until the idea to use
(II) above as a solution concept for set-valued optimization problems became more
popular, see [1, 75, 83, 85, 93–96, 229] and also Chap.5 of Jahn’s book [114]. The
basic idea is, of course, to “lift” the concept of minimal (=non-dominated) image
points from elements of a vector space to elements of the power set of the vector
space. Therefore, we call this approach the set relation approach to set optimization.
A comparison of the vector and the set relation approach can be found in [97].
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Roughly another ten years later, it has been realized that the so-called set relations
can be utilized in a more subtle manner which is described in the previous section:
Via equivalence classes with respect to the two pre-orders and hull operations one
defines (conlinear) spaces of sets which enjoy rich algebraic and order structures.
The set relations somehow disappear from the final picture since they serve as a tool
to construct the image spaces in which the subset or superset inclusion appears as
a partial order. This approach, which we call the “complete lattice approach” to set
optimization has been developed in the two theses [77, 149] and led to the solution
concept in [102, 151] which is the basis for the Definitions3.2 and 3.3 above (see
already [91] for a precursor). One may realize that the complete lattice approach (IV)
absorbs both of (I) and (II) as well as (IIa).

It might be interesting to note that Ekeland’s variational principle became one of
the first major results in (nonlinear, nonconvex) functional analysis that was general-
ized to set-valued functions via the set relation approach. While [26], [27, Theorem
4.1], [84, Theorem 5.1], [106, Theorems 2.3 and 2.4] still follow the vector approach,
first set relation versions were independently established in [75, 85] (with precur-
sor [83] already from 2002). Note that the results in [85] are more general (weaker
assumptions like boundedness frombelow,more general pre-image spaces) andmore
complete (both set relations are involved, minimal “set“theorems, not only Ekeland’s
principle). In particular, the main result [75, Theorem 4.1] is a special case of [85,
Theorem 6.1].

4 Set-Valued Functions

4.1 Basic Concepts

Let X be another linear space and f : X → P (Z , C) a function. The goal is to
develop a convex analysis for such functions f . We start by recalling a popular
definition. A function f̂ : X → P (Z) is called C-convex (see e.g. [14, Definition
1.1]) if

t ∈ (0, 1) , x1, x2 ∈ X ⇒ f̂ (t x1 + (1− t) x2)+ C ⊇ t f̂ (x1)+ (1− t) f̂ (x2) ,

(4.1)
and it is called C-concave ([156, p. 117]) if

t ∈ (0, 1) , x1, x2 ∈ X ⇒ t f̂ (x1)+ (1− t) f̂ (x2) ⊆ f̂ (t x1 + (1− t) x2)− C.

(4.2)
Of course, the C-convexity inequality is just

f̂ (t x1 + (1− t) x2) �C t f̂ (x1)+ (1− t) f̂ (x2) ,
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and the C-concavity inequality

t f̂ (x1)+ (1− t) f (x2) �C f̂ (t x1 + (1− t) x2) .

Here is another interesting feature of the set-valued framework. If f maps into
P (Z , C), then the cone C can be dropped from (4.1) whereas (4.2) becomes
meaningless for many interesting cones C (for example, for generating cones, i.e.
C − C = Z ). The opposite is true for P (Z ,−C)-valued functions. This gives a
hint why convexity (and minimization) is related to P (Z , C)-valued functions and
concavity (and maximization) to P (Z ,−C)-valued ones.

The graph of a function f̂ : X → P (Z) is the set

graph f̂ =
{
(x, z) ∈ X × Z | z ∈ f̂ (x)

}
,

and the domain is the set

dom f̂ = {x ∈ X | f (x) �= ∅} .

Definition 4.1 A function f : X → P (Z , C) is called

(a) convex if graph f is a convex subset of X × Z ,
(b) positively homogeneous if graph f is a cone in X × Z ,
(c) sublinear if graph f is a convex cone X × Z ,
(d) proper if dom f �= ∅ and f (x) �= Z for all x ∈ X .

Proposition 4.2 A function f : X → P (Z , C) is convex if, and only if,

t ∈ (0, 1) , x1, x2 ∈ X ⇒ f (t x1 + (1− t) x2) ⊇ t f (x1)+ (1− t) f (x2) . (4.3)

It is positively homogeneous if, and only if,

t > 0, x ∈ X ⇒ f (t x) ⊇ t f (x) , (4.4)

and it is sublinear if, and only if,

s, t > 0, x1, x2 ∈ X ⇒ f (sx1 + t x2) ⊇ s f (x1)+ t f (x2) . (4.5)

Proof Exercise. �

A parallel result for concave P (Z ,−C)-valued functions can be established. As
a straightforward consequence of Proposition4.2 we obtain the following facts.
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Proposition 4.3 Let f : X → P (Z , C) be a convex function. Then

(a) f (x) is convex for all x ∈ X, i.e. f is convex-valued,
(b) {x ∈ X | z ∈ f (x)} is convex for all z ∈ Z,
(c) dom f is convex.

Proof Another exercise. �

In the remainder of this subsection, let X and Z be topological linear spaces. We
shall denote by NX and NZ a neighborhood base of 0 ∈ X and 0 ∈ Z , respectively.

Definition 4.4 A function f : X → P (Z , C) is called

(a) closed-valued if f (x) is a closed set for all x ∈ X ,
(b) level-closed if {x ∈ X | z ∈ f (x)} is closed for all z ∈ Z ,
(c) closed if graph f is a closed subset of X × Z with respect to the product topology.

Remark 4.5 A function f : X → F(Z , C) is level-closed if, and only if,
{x ∈ X | f (x) ⊇ A} is closed for all A ∈ F (Z , C)whichmay justify the term“level-
closed.” Indeed, this follows from {z} ⊕ C ∈ F(Z , C) and

∀A ∈ F(Z , C) : {x ∈ X | f (x) ⊇ A} =
⋂

a∈A

{x ∈ X | a ∈ f (x)} .

Level-closedness is even equivalent to closedness if int C �= ∅, see [151, Proposition
2.38], even for functions mapping into a completely distributive lattice as in [148],
but not in general.

Example 4.6 This example is taken from [176, Example 3.1]. Let X = IR, Z = IR2,
C = {

(0, t)T | t ≥ 0
}
and consider the function

f (x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
x

x + 1

)
+ C : 0 ≤ x < 1

(
1
4

)
+ C : x = 1

∅ : otherwise.

Defining sequences by

xk = 1− 1

k
and zk =

(
1− 1

k
2− 1

k

)

weobtain zk ∈ f (xk) for all k = 1, 2, . . ., xk → 1, zk → (1, 2)T and (1, 2)T /∈ f (1),
thus graph f is not closed. On the other hand,

{x ∈ X | z ∈ f (x)} =
⎧
⎨

⎩

{z1} : 0 ≤ z1 < 1 and z2 ≥ z1 + 1
{1} : z1 = 1 and z2 ≥ 4
∅ : otherwise
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thus f is level-closed.

The following result is immediate.

Proposition 4.7 Let f : X → P(Z , C) be a closed function. Then f is closed-
valued and level-closed.

Proof Yet another exercise. �

Proposition4.7 shows that a closed P(Z , C)-valued function actually maps into
F(Z , C). Therefore, we can restrict the discussion of lower semicontinuity and
closedness to F(Z , C)-valued functions. The following definition introduces two
more related notions.

Definition 4.8 A function f : X → F(Z , C) is called lattice-lower semicontinuous
(lattice-l.s.c.) at x̄ ∈ X iff

f (x) ⊇ lim inf
x→x̄

f (x) = sup
U∈NX

inf
x∈x̄+U

f (x) =
⋂

U∈NX

cl
⋃

x∈x̄+U

f (x). (4.6)

It is called lattice-lower semicontinuous iff it is lattice-l.s.c. at every x̄ ∈ X .

Parallel definitions apply for G(Z , C)-valued functions. The next result shows
the equivalence of lattice-lower semicontinuity and closedness for F(Z , C)-valued
functions.

Proposition 4.9 A function f : X → F(Z , C) is lattice-l.s.c. if, and only if, it is
closed.

Proof The proof of Proposition 2.34 in [151] also applies to this case as already
discussed in [151, p. 59]. �

The following result contains the heart of the argument for the Weierstraß type
theorem.

Proposition 4.10 Let f : X → F (Z , C) be a level-closed function such that dom f
is compact. Then f [X ] satisfies the domination property.

Proof This is a special case of Proposition2.38 in [151]. �

Theorem 4.11 Let f : X → F (Z , C) be a level-closed function such that dom f
is compact. Then (P) has a full solution.

Proof This directly follows from Propositions3.5 and 4.10. �

Because of Propositions4.7 and 4.9, lattice-lower semicontinuity or closedness
are sufficient conditions for level-closedness.

We turn to upper semi-continuity type properties which will mainly be used to
establish sufficient conditions for convex duality results.
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Definition 4.12 A function f : X → F(Z , C) is called lattice-upper semicontinu-
ous (lattice-u.s.c.) at x̄ ∈ X if

lim sup
x→x̄

f (x) = inf
U∈NX

sup
x∈x̄+U

f (x) = cl
⋃

U∈NX

⋂

x∈x̄+U

f (x) ⊇ f (x̄).

It is called lattice-upper semicontinuous (lattice-u.s.c.) if it is lattice-u.s.c. at every
x ∈ X .

Because of Proposition4.3, we only need to consider G(Z , C)-valued functions
in the following result.

Proposition 4.13 Let X be a locally convex topological linear space and NX a
neighborhood base of 0 ∈ X consisting of convex sets. Let f : X → (F(Z , C),⊇)

be convex. Then, f is lattice-l.s.c. (lattics-u.s.c.) at x̄ ∈ X if, and only if, it is lattice-
l.s.c. (lattice-u.s.c.) as a function into (G(Z , C),⊇) at x̄ .

Proof It is easy to prove that if f is convex, then for all x ∈ X and all U ∈ NX the
set

⋃

x∈x̄+U
f (x) is convex, hence

⋂

U∈NX

cl
⋃

x∈x̄+U

f (x) =
⋂

U∈NX

cl co
⋃

x∈x̄+U

f (x).

With the definition of lim inf in view, the case of lattice-lower semi-continuity fol-
lows.

Concerning lattice upper semi-continuity, take

z1, z2 ∈
⋃

U∈NX

⋂

x∈x̄+U

f (x).

Then, there are U1, U2 ∈ NX such that zi ∈ ⋂

x∈x̄+Ui

f (x) for i = 1, 2. Since NX is a

neighborhood base of 0 ∈ X there is V ∈ NX such that V ⊆ U1 ∩U2. Hence

∀x ∈ x̄ + V : z1, z2 ∈ f (x) .

Since f (x) is a convex set, this implies

∀t ∈ (0, 1) ,∀x ∈ x̄ + V : t z1 + (1− t) z2 ∈ f (x) ,

hence t z1 + (1− t) z2 ∈ ⋃

U∈U

⋂

x∈x̄+U
f (x). This shows that the latter is a convex set.

Consequently,
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cl co
⋃

U∈U

⋂

x∈x̄+U

f (x) = cl
⋃

U∈U

⋂

x∈x̄+U

f (x).

The claim for lattice-upper semi-continuity follows from the definition of
lim sup. �

4.2 Scalarization of G (Z, C)-Valued Functions

In the following, we assume that Z is a non-trivial locally convex linear space
with topological dual Z∗. For A ⊆ Z , define the extended real-valued functions
σ�

A : Z∗ → IR and σ�
A : Z∗ → IR by

σ�
A

(
z∗

) = inf
a∈A

z∗ (a) and σ�
A

(
z∗

) = sup
a∈A

z∗ (a) ,

respectively. Of course, σ�
A is the classical support function of A and σ�

A (z∗) =
−σ�

A (−z∗) a version of it. It is well-known (and a consequence of a separation
argument) that A ∈ G (Z , C) if, and only if,

A =
⋂

z∗∈C+\{0}

{
z ∈ Z | σ�

A

(
z∗

) ≤ z∗ (z)
}
. (4.7)

Moreover, one easily checks for A, B ∈ G (Z , C),

∀z∗ ∈ C+\{0} : σ�
A⊕B

(
z∗

) = σ�
A

(
z∗

)+� σ�
B

(
z∗

)
. (4.8)

Lemma 4.14 If A ⊆ G (Z , C) then

∀z∗ ∈ C+\{0} : σ�
inf A

(
z∗

) = inf
{
σ�

A

(
z∗

) | A ∈ A}
, (4.9)

∀z∗ ∈ C+\{0} : σ�
supA

(
z∗

) ≥ sup
{
σ�

A

(
z∗

) | A ∈ A}
. (4.10)

Moreover,

inf A =
⋂

z∗∈C+\{0}

{
z ∈ Z | inf {

σ�
A

(
z∗

) | A ∈ A} ≤ z∗ (z)
}
, (4.11)

supA =
⋂

z∗∈C+\{0}

{
z ∈ Z | sup {

σ�
A

(
z∗

) | A ∈ A} ≤ z∗ (z)
}

(4.12)

Proof If A ⊆ {∅} then there is nothing to prove. Otherwise,

∀A ∈ A : σ�
inf A

(
z∗

) = inf
z∈infA

z∗ (z) ≤ σ�
A

(
z∗

)
,
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hence σ�
inf A (z∗) ≤ inf

{
σ�

A (z∗) | A ∈ A}
. Conversely,

∀z ∈
⋃

A∈A
A : z∗ (z) ≥ inf

{
σ�

A

(
z∗

) | A ∈ A}
,

hence σ�
inf A (z∗) = inf

{
z∗ (z) | z ∈⋃

A∈A A
} ≥ inf

{
σ�

A (z∗) | A ∈ A}
since the

support function of a set coincides with the support function of its closed convex
hull. This proves (4.9) which in turn immediately implies (4.11).

Moreover, if z ∈ supA =⋂
A∈A A then

∀A ∈ A : z∗ (z) ≥ inf
a∈A

z∗ (a) = σ�
A

(
z∗

)

which already proves (4.10). Finally, for all z∗ ∈ C+\{0}
{
z ∈ Z | z∗ (z) ≥ sup

{
σ�

A

(
z∗

) | A ∈ A}} =
⋂

A∈A

{
z ∈ Z | z∗ (z) ≥ σ�

A

(
z∗

)}
,

hence

⋂

z∗∈C+\{0}

{
z ∈ Z | z∗ (z) ≥ sup

{
σ�

A

(
z∗

) | A ∈ A}} =
⋂

z∗∈C+\{0}

⋂

A∈A

{
z ∈ Z | z∗ (z) ≥ σ�

A

(
z∗

)}

=
⋂

A∈A

⋂

z∗∈C+\{0}

{
z ∈ Z | z∗ (z) ≥ σ�

A

(
z∗

)} =
⋂

A∈A
A = supA

according to (4.7), and this is just (4.12). �
The following example shows that the inequality in (4.10) can be strict. Consider

A =
{
{a} + IR2+ | a = (a1, a2)

T ∈ IR2, a1 ≥ 0, a2 ≥ 0, a1 + a2 = 1
}
⊆ G (IR2, IR2+)

and z∗ = (1, 1)T . Then σ�
A (z∗) = 1 for all A ∈ A and σ�

supA (z∗) = 2.
As an immediate consequence, the sub/supermodularity4 of the scalarization func-

tions σ�
A , σ�

A as functions of A ∈ G(Z , C) can be established. This property is fun-
damental in the theory of Choquet integrals [44]. For z∗ ∈ Z∗ define

ψ�
z∗(A) = inf

a∈A
z∗(a) and ψ�

z∗(A) = sup
a∈A

z∗(a)

which are functions ψ�
z∗ , ψ

�
z∗ : G(Z , C)→ IR ∪ {±∞}.

Corollary 4.15 If z∗ ∈ C+\{0}, then ψ�
z∗ is a supermodular function on the complete

lattice (G(Z , C),⊇), i.e.

ψ�
z∗(A)+ ψ�

z∗(B) ≤ ψ�
z∗(A ∩ B)+ ψ�

z∗(A ∪ B).

Likewise, ψ�
z∗ is a submodular function on (G(Z , C),⊇), i.e.

4Sophie Qingzhen Wang provided the hint to this observation.
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ψ�
z∗(A)+ ψ�

z∗(B) ≥ ψ�
z∗(A ∩ B)+ ψ�

z∗(A ∪ B).

Proof This follows from the definition of the functions ψ�
z∗ , ψ

�
z∗ and Lemma4.14.

�

The inf-residuation in G (Z , C) can also be represented via scalarization.

Proposition 4.16 For all A, B ∈ G (Z , C),

A−� B =
⋂

z∗∈C+\{0}

{
z ∈ Z | σ�

A

(
z∗

)−� σ�
B

(
z∗

) ≤ z∗ (z)
}
.

In particular, if A = {
z ∈ Z | σ�

A (z∗) ≤ z∗(z)
} (= A ⊕ H+(z∗)

)
for z∗ ∈ C+\{0},

then

A−� B = {
z ∈ Z | σ�

A

(
z∗

)−� σ�
B

(
z∗

) ≤ z∗ (z)
}
.

Moreover,
∀z∗ ∈ C+\{0} : σ�

A−� B

(
z∗

) ≥ σ�
A

(
z∗

)−� σ�
B

(
z∗

)

with equality if A = {
z ∈ Z | σ�

A (z∗) ≤ z∗(z)
} (= A ⊕ H+(z∗)

)
.

Proof See [89, Proposition 5.20] while recalling H+(z∗) = {z ∈ Z | z∗ (z) ≥ 0} for
z∗ ∈ Z∗. �

The following result can be seen as a “−in f = sup−” rule for the inf-residuation
in G(Z , C). It turns out to be useful later on.

Proposition 4.17 Let A ⊆ G (Z , C), z∗ ∈ C+\{0} and H+(z∗) = {
z ∈ Z | z∗(z) ≥ 0

}
.

Then

H+(z∗)−� inf A = sup
A∈A

[
H+(z∗)−� A

]
, (4.13)

H+(z∗)−� supA ⊇ inf
A∈A

[
H+(z∗)−� A

]
. (4.14)

If A ⊕ H+(z∗) = A for all A ∈ A then (4.14) is satisfied as an equation.

Proof Formula (4.13) directly follows from

H+(z∗)−� inf A =
⎧
⎨

⎩
z ∈ Z | cl co

⋃

A∈A
A + z ⊆ H+(z∗)

⎫
⎬

⎭

= {
z ∈ Z | ∀A ∈ A : A + z ⊆ H+(z∗)

} =
⋂

A∈A

{
z ∈ Z | A + z ⊆ H+(z∗)

}
.
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The proof of (4.14) makes use of the fact B1 ⊆ B2⇔ H+(z∗)−� B2 ⊆ H+(z∗)−� B1.
Applying it to B1 =⋂

A∈A A and B2 = A we obtain (4.14). The equality case can
be proven with the help of Lemma4.14 and Proposition4.16. �

A simple counterexample for equality in (4.14) is as follows: Z = IR2, C = IR2
+,

A = {A1, A2}with A1 = (1, 0)T + IR2
+, A2 = (0, 1)T + IR2

+ and z∗ = (1, 1)T . Both
(4.13) and (4.14) are valid for more general sets than H+(z∗), but this is not needed
in the following.

The previous results establish a one-to-one relationship between G (Z , C) and the
set

�
(
Z∗, C+

) = {
σ : C+ → IR | σ is superlinear and has a closed hypograph

}
.

On �
(
Z∗, C+

)
, we consider the pointwise addition+� and the pointwise multiplica-

tion with non-negative numbers. Finally, two elements of �
(
Z∗, C+

)
are compared

pointwise, and we write σ ≤ γ whenever

∀z∗ ∈ C+ : σ (
z∗

) ≤ γ
(
z∗

)
.

The one-to-one relationship includes the algebraic structure as well as the order
structure.

Proposition 4.18 The quadrupel
(
�

(
Z∗, C+

)
,≤,+� , ·) is an inf-residuated con-

linear space which is algebraically and order isomorphic to (G (Z , C) ,⊇,⊕,�).

Proof The formulas

σ�
A

(
z∗

) = inf
a∈A

z∗ (a) , A�
σ =

⋂

z∗∈C+\{0}

{
z ∈ Z | σ (

z∗
) ≤ z∗ (z)

}

and
σ�

A�
σ
= σ, A�

σ�
A
= A (4.15)

provide the relationship; the algebraic isomorphism is provided by

σ�
A⊕B = σ�

A+� σ�
B , A�

σ ⊕ A�
γ = A�

σ+� γ

and for t ≥ 0
σ�

t A = tσ�
A , t A�

σ = A�
tσ ;

the order isomorphism is provided by

A ⊇ B ⇔ σ�
A ≤ σ�

B

and (4.15). �



92 A.H. Hamel et al.

Corollary 4.19 Let A ⊆ G(Z , C). Then:

(a) A set B ⊆ A generates the infimum of A if, and only if,

σ�
inf B = σ�

inf A.

(b) Ā ∈ A is minimal for A if, and only if, σ�
Ā

is a minimal element of

{
σ�

A | A ∈ A}

with respect to the point-wise order in �
(
Z∗, C+

)
,

Proof This is an obvious consequence of the previous results. �

One may think that this straightforward result reduces G(Z , C)-valued (= set-
valued) problems to vector optimization problemsince the functionsσ�

A could be con-
sidered as elements of some function space with point-wise order. Such an approach
can be found in [115]. The problem with this point of view is that the functions
σ�

A may attain (and frequently do) the values −∞ and/or +∞. Therefore, the dif-
ficulty is conserved by passing from G(Z , C) to �

(
Z∗, C+

)
since the latter is an

ordered conlinear space which, in general, cannot be embedded into a linear space
of functions.

We turn the above ideas into a scalarization concept for set-valued functions. Let
X be a topological linear space and f : X → P (Z), z∗ ∈ C+ be given. Define an
extended real-valued function ϕ f,z∗ : X → IR = IR ∪ {±∞} by

ϕ f,z∗ (x) = σ�
f (x)

(
z∗

) = inf
z∈ f (x)

z∗ (z) . (4.16)

Thenewsymbolϕ f,z∗ is justifiedby the fact thatwewant to emphasize the dependence
on x rather than on z∗. From (4.7) we obtain the following “setification” formula: If
f : X → G (Z , C) then

∀x ∈ X : f (x) =
⋂

z∗∈C+\{0}

{
z ∈ Z | ϕ f,z∗ (x) ≤ z∗ (z)

}
. (4.17)

Several important properties of G (Z , C)-valued functions can equivalently be
expressed using the family of its scalarizations

{
ϕ f,z∗

}
z∗∈C+\{0}. One may say that,

according to formula (4.16), a G (Z , C)-valued function is, as a mathematical object,
equivalent to this family of extended real-valued functions.

Topological properties like closedness pose difficulties in this context since
scalarizations of a closed G (Z , C)-valued function are not necessarily closed.
A simple example is as follows: The function f : IR→ G(IR2, IR2

+) defined by

f (x) =
{(

1
x , 0

)T
}
+ IR2

+ for x > 0 and f (x) = ∅ for x ≤ 0 is closed and convex,

but ϕ f,z∗ for z∗ = (0, 1)T is convex, but not closed. Below, we will deal with this
issue.
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Lemma 4.20 Let f : X → G (Z , C) be a function. Then:

(a) f is convex if, and only if, ϕ f,z∗ : X → IR is convex for all z∗ ∈ C+\{0}.
(b) f is positively homogeneous if, and only if, ϕ f,z∗ : X → IR is positively homo-

geneous for all z∗ ∈ C+\{0}.
(c) f is (sub)additive if, and only if, ϕ f,z∗ : X → IR is (sub)additive for all z∗ ∈

C+\{0}.
(d) f is proper if, and only if, there is z∗ ∈ C+\{0} such that ϕ f,z∗ : X → IR is

proper.
(e) dom f = dom ϕ f,z∗ for all z∗ ∈ C+\{0}.
Proof (a) “⇒” Take t ∈ (0, 1), x, y ∈ X and z∗ ∈ C+\{0}. Then

ϕ f,z∗(t x + (1− t) y) = inf
z∈ f (t x+(1−t)y)

z∗ (z) ≤ inf
z∈t f (t x)+(1−t) f (y)

z∗ (z)

= inf
u∈t f (x)

z∗ (u)+ inf
v∈(1−t) f (y)

z∗ (v)

= t inf
u
t ∈ f (x)

z∗ (u)

t
+ (1− t) inf

v
(1−t)∈ f (y)

z∗ (v)

(1− t)

= tϕ f,z∗(x)+ (1− t) ϕ f,z∗(y)

where the inequality is a consequence of the convexity of f .
“⇐” By the way of contradiction, assume that f is not convex. Then there are

t ∈ (0, 1), x, y ∈ X , z ∈ Z satisfying

z ∈ t f (x)+ (1− t) f (y), z /∈ f (t x + (1− t) y).

Since the values of f are closed convex sets we can apply a separation theorem and
obtain z∗ ∈ C+\{0} such that

z∗ (z) < ϕ f,z∗(t x + (1− t) y) ≤ tϕ f,z∗(x)+ (1− t) ϕ f,z∗(y)

where the second inequality is a consequence of the convexity of the scalarizations.
Since f maps into G (Z , C), z∗ ∈ C+ {0}. Since z ∈ t f (x)+ (1− t) f (y) there are
u ∈ f (x) and v ∈ f (y) such that z = tu + (1− t)v. Hence

z∗ (z) = t z∗ (u)+ (1− t)z∗ (v) ≥ tϕ f,z∗(x)+ (1− t)ϕ f,z∗(y)

by definition of the scalarization. This contradicts the strict inequality above.
(c) If f is (sub)additive, then (sub)additivity of the scalarizations ϕ f,z∗ follows

from (4.8). The converse can be proven using the same separation idea as in the proof
of (a).

The remaining claims are straightforward. �

Finally, we link closedness and semicontinuity of G(Z , C)-valued functions to
corresponding properties of their scalarizations. The main result is Theorem4.22
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belowwhich shows that a proper closed and convex set-valued function and the family
of its proper closed and convex scalarizations are equivalent as mathematical objects.
We start with a characterization of the lattice-limit inferior in terms of scalarizations.

Corollary 4.21 Let f : X → G(Z , C) and x̄ ∈ dom f such that f is lattice-l.s.c. at
x̄ . Then

lim inf
x→x̄

f (x) =
{

z ∈ Z | ∀z∗ ∈ C+\{0} : lim inf
x→x̄

ϕ f,z∗(x) ≤ z∗(z)
}

.

Proof Observing ϕ f,z∗(x) = σ�
f (x)(z

∗) for each x ∈ X and applying Lemma4.14 we
obtain

sup
U∈NX

inf
x∈x̄+U

f (x) =
⋂

z∗∈C+\{0}

{
z ∈ Z | sup

U∈U
σ�

inf
x∈x̄+U

f (x)(z
∗) ≤ z∗(z)

}

=
⋂

z∗∈C+\{0}

{
z ∈ Z | sup

U∈U
inf

x∈x̄+U
σ�

f (x)(z
∗) ≤ z∗(z)

}

=
⋂

z∗∈C+\{0}

{
z ∈ Z | lim inf

x→x̄
ϕ f,z∗(x) ≤ z∗(z)

}
.

Indeed, the first equality follows from the last equation in Lemma4.14 applied to
A = {inf x∈x̄+U f (x) | U ∈ U}whereas the second follows from the first equation in
Lemma4.14 applied to A = { f (x) | x ∈ x̄ +U } for U ∈ U . �

Theorem 4.22 Let f : X → F(Z , C) be a function and dom f �= ∅. Then f is
closed, convex and either constant Z or proper, if and only if,

∀x ∈ X : f (x) =
⋂

z∗∈C+\{0}
cl coϕ f,z∗ : X→IR is proper

{
z ∈ Z | cl coϕ f,z∗(x) ≤ z∗(z)

}
, (4.18)

where cl coϕ f,z∗ denotes the lower semi-continuous convex hull of ϕ f,z∗ defined by

epi
(
cl coϕ f,z∗

) = cl co
(
epi ϕ f,z∗

)
.

Proof If the set
{
z∗ ∈ C+\{0} | cl coϕ f,z∗ : X → IR is proper

}
is empty, then (4.18)

produces f (x) = Z for all x ∈ X since dom f �= ∅. On the other hand, f (x) = Z
for all x ∈ X implies the emptyness of the same set, hence (4.18) is satisfied in this
case.

The graphs of x �→ {
z ∈ Z | cl coϕ f,z∗(x) ≤ z∗(z)

}
are closed convex sets in

X × Z , and
{
z ∈ Z | cl coϕ f,z∗(x) ≤ z∗(z)

} �= Z for all x ∈ X is true whenever
cl coϕ f,z∗ is proper. Thus, (4.18) implies f is closed, convex and either proper or
constantly equal to Z .
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On the other hand, assume f is closed, convex and proper. Then

∀x ∈ X : f (x) = lim inf
y→x

f (y) �= Z ,

and all scalarizations are convex. Corollary4.21 yields

f (x) = sup
U∈U

inf
x∈x̄+U

f (x) =
⋂

z∗∈C+\{0}

{
z ∈ Z | cl coϕ f,z∗(x) ≤ z∗(z)

}
.

If cl coϕ f,z∗ is improper, then
{
z ∈ Z | cl coϕ f,z∗(x) ≤ z∗(z)

} = Z for all x ∈
dom f = dom ϕ f,z∗ (see [235, Proposition 2.2.5]), hence these scalarizations can
be omitted from the intersection. This completes the proof. �

We state a few more facts about relationships between semicontinuity properties
of set-valued functions and their scalarizations.

Proposition 4.23 (a) If f : X → F(Z , C) is lattice-u.s.c. at x̄ ∈ X, then ϕ f,z∗ :
X → IR is u.s.c. at x̄ for all z∗ ∈ C+\{0}.

(b) If f : X → G(Z , C) is such that ϕ f,z∗ : X → IR is l.s.c. at x̄ ∈ X for all z∗ ∈
C+\{0}, then f is lattice-l.s.c. at x̄ .

Proof (a) Define A(x̄) = lim sup
x→x̄

f (x) = cl
⋃

U∈NX

⋂

x∈x̄+U
f (x) and take z∗ ∈ C+\{0}.

By assumption,
ϕ f,z∗(x̄) ≥ σ�

A(x̄)

(
z∗

)
.

By a successive application of the first and the second relation of Lemma4.14,

σ�
A(x̄)

(
z∗

) ≥ inf
U∈NX

sup
x∈x̄+U

ϕ f,z∗(x).

This verifies the upper semicontinuity of the scalarizations.
(b) FromCorollary4.21, the lower semicontinuity of the ϕ f,z∗ ’s and (4.17) we obtain

lim inf
x→x̄

f (x) =
⋂

z∗∈C+\{0}

{
z ∈ Z | lim inf

x→x̄
ϕ f,z∗(x) ≤ z∗(z)

}

⊆
⋂

z∗∈C+\{0}

{
z ∈ Z | ϕ f,z∗(x̄) ≤ z∗(z)

} = f (x̄)

which means that f is lattice-l.s.c. at x̄ .
�

Corollary 4.24 If f : X → F(Z , C) is convex and lattice-u.s.c. at x̄ ∈ dom f , then
each scalarization ϕ f,z∗ is continuous at x̄ and f is lattice-l.s.c. at x̄ . Moreover, in
this case f also is lattice-u.s.c. and -l.s.c. at x̄ as a function into G(Z , C).
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Proof By Proposition4.23 (a), ϕ f,z∗ is u.s.c. at x̄ for each z∗ ∈ C+\{0} (and also
convex by Lemma4.20 (a)). Well-known results about extended real-valued convex
functions [235, Theorem 2.2.9] imply that ϕ f,z∗ for each z∗ ∈ C+\{0} is continuous
which in turn yields that f is lattice-l.s.c. at x̄ by 4.23 (b). The last claim follows
from Proposition4.13. �

Corollary 4.25 Let f : X → G(Z , C) be a convex function and x̄ ∈ X such that
there exists a z̄ ∈ Z with (x̄, z̄) ∈ int (graph f ). Then ϕ f,z∗ : X → IR is continuous
on ∅ �= int (dom f ) for all z∗ ∈ C+\{0}.
Proof If (x̄, z̄) ∈ int (graph f ) then ϕ f,z∗ is bounded from above by z∗(z̄) on a neigh-
borhood of x̄ , thus continuous on ∅ �= int (dom f ) for all z∗ ∈ C+\{0} again by [235,
Theorem 2.2.9]. �

4.3 Comments on Convexity, Semicontinuity and
Scalarization

The properties which are called lattice-lower and lattice-upper semicontinuity can
already be found in the 1978 paper [142]. Note that in this survey, for obvious
reasons, ‘upper’ and ‘lower’ are swapped compared to [142]. Therein, the result of
Proposition4.9 is even referenced to a paper by Choquet from 1947.

Level-closedness features in [54, 55] as ‘D-lower semi-continuity’ and ‘C-lower
semi-continuity’, respectively: Proposition 2.3 in [54] states the equivalence of
(epi)closedness and level-closedness whenever the cone has a non-empty interior.
The assumption “pointedness of the cone” and a compactness assumption used in
[54] are not necessary, the latter already removed in [55, Proposition 3.1]. Compare
also [176].

Of course, the lattice semicontinuity concepts of this survey differ from the def-
initions of lower and upper semicontinuity as used, for example, in [4, Definitions
1.4.1 and 1.4.2]. This is one reason why lower and upper continuity replace lower
and upper semicontinuity, respectively, in [67]. We refer to Sect. 2.5 of [67] for a sur-
vey about continuity concepts of set-valued functions and also a few bibliographical
remarks at the end of the section.

For a more detailed discussion of (semi)continuity concepts for set-valued func-
tions, compare [102, 104, 151]: Whereas Corollary4.21 seems to be new in this
form, Proposition4.23 appears in [104] with a (slightly) different proof.

The scalarization approach via (4.16) (and Lemma4.20) has many contributors.
Motivated by economic applications, Shephard used it in [209], compare, for exam-
ple, the definition of the ‘factorminimal cost function’ [209, p. 226, (97)] andProposi-
tion 72 on the following page where essentially Lemma4.20 (a) is stated. Moreover,
the first part of Proposition4.2 corresponds to [209, Appendix 2, Proposition 3].
Rockafellar baptized these functions Kuhn-Tucker functions in his 1967 monograph
[195, Definition 2 on p. 17] where theywere used as an auxiliary tool for representing
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the then new “convex processes.” Compare also the relationship to the orders ⊇ for
sets of ‘convex type’ and ⊆ for sets of ‘concave type,’ [195, p. 16].

Pshenichnyi [194, Lemma 1] also used the functions ϕ f,z∗ and proved Lemma4.20
(a), see also [12]. Another reference is [45, Proposition 1.6]. In [169] as well as in
[170] continuity concepts for set-valued functions are discussed using the ϕ f,z∗ -
functions as essential tool. See also [9, Proposition 2.1] and the more recent [68, p.
188] (see also the references therein).

Theorem4.22 has been established in [207, 208] and is the basis for the scalar-
ization approach to convex duality results for set-valued functions. Together with
the “setification” formula (4.17) it basically tells us that one can either deal with the
G(Z , C)-valued function or a whole family of scalar functions, and both approaches
are equivalent in the sense that major (convex duality) results can be expressed and
proven either way: Using the “set calculus” or “scalarizations.” The reader may
compare the two different proofs for the Lagrange duality theorem in [86].

Finally, we mention that an alternative scalarization approach to (convex as well
as non-convex) problems is based on directionally translative extended real-valued
functions which are used in many areas of mathematics and prominently in vector
optimization, see [67, Sect. 2.3]. To the best of our knowledge, [83] (eventually
published as [85]) was the first generalization to set-valued problems. Subsequent
applications of this construction include [2, 72, 96, 164, 181–183, 229].

5 Set-Valued Convex Analysis

What is convex analysis? A core content of this theory could be described as follows:
Define affine minorants, directional derivatives, (Fenchel) conjugates and subdiffer-
entials for convex functions and relate them by means of a Fenchel-Moreau type
theorem, a max-formula and Young-Fenchel’s inequality as an equation. How can
one establish such a theory for set-valued convex functions? In this section, we
will define appropriate “dual variables” for the set-valued framework, define “affine
minorants” of set-valued functions and introduce corresponding Fenchel conjugates,
directional derivatives and subdifferentials. The difference in expressions involved
in these constructions for scalar functions will be replaced by a residuation.

In the following, we assume that X and Z are non-trivial, locally convex, topologi-
cal linear spaces with topological duals X∗ and Z∗, respectively. As before,C ⊆ Z is
a convex cone with 0 ∈ C , and C+ = {z∗ ∈ Z∗ | ∀z ∈ C : z∗ (z) ≥ 0} is its positive
(topological) dual.

5.1 Conlinear Functions

What is an appropriate replacement for the dual variables x∗ : X → IR in scalar
convex analysis? A good guess might be to use linear operators T : X → Z instead
of linear functionals in expressions like



98 A.H. Hamel et al.

f ∗
(
x∗

) = sup
x∈X

{
x∗ (x)− f (x)

}
.

This has been done in most references about duality for vector/set optimization prob-
lems. A notable exception is the definition of the coderivative of set-valued functions
due to B. S. Mordukhovich which goes back to [171] and can be found in [172,
Sect. 2]. Coderivatives at points of the graph are defined as sets of x∗’s depending
on an element z∗ ∈ Z∗. Another exception is the use of “rank one” operators of the
form ẑx∗ whose existence can be proven using classical separation results, compare
[32, Proof of Theorem 4.1] and [98, Theorem 4.1] for an older and a more recent
example. The constructions in [231] are also based on this idea.

Another attempt to find set-valued analogues of linear functions is the theory of
convex processes. See [4, p. 55] in which the authors state that ‘it is quite natural to
regard set-valued maps, with closed convex cones as their graphs, as these set-valued
analogues.’

In our approach, a class of set-valued functions will be utilized the members of
which almost behave like linear functions. In some sense (see Proposition 8 in [78]),
they are more general than linear operators and also than linear processes as defined
in [4, p. 55], and on the other hand, they form a particular class of convex processes. In
fact, these functions are characterized by the fact that their graphs are homogeneous
closed half spaces in X × Z .

Let x∗ ∈ X∗ and z∗ ∈ Z∗ be given. Define a function S(x∗,z∗) : X → P (Z) by

S(x∗,z∗) (x) = {
z ∈ Z | x∗ (x) ≤ z∗ (z)

}
.

The next result shows that these functions are indeed as “linear” as one can hope for.

Proposition 5.1 Let (x∗, z∗) ∈ X∗ × Z∗\{0}. Then

(a) for all x ∈ X and for all t > 0

S(x∗,z∗) (t x) = t S(x∗,z∗) (x) ;

(b) for all x1, x2 ∈ X

S(x∗,z∗) (x1 + x2) = S(x∗,z∗) (x1)+ S(x∗,z∗) (x2) ,

in particular

S(x∗,z∗) (x)+ S(x∗,z∗) (−x) = S(x∗,z∗) (0) = H+(z∗);

(c) S(x∗,z∗) maps into G (Z , C), hence in particular into P (Z , C), if, and only if,
z∗ ∈ C+;

(d) S(x∗,z∗) (x) is a closed half space with normal z∗ if, and only if, z∗ �= 0; and
S(x∗,0) (x) ∈ {Z ,∅};

(e) if ẑ ∈ Z such that z∗ (̂z) = −1 then
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∀x ∈ X : S(x∗,z∗) (x) = x∗ (x) ẑ + S(x∗,z∗) (0) = x∗ (x) ẑ + H+(z∗). (5.1)

Proof Elementary, see, for instance, [78]. �

A function of the type S(x∗,z∗) is called conlinear. It will turn out that convex
analysis is a “conlinear” theory–not because convex functions are not linear, but
because the image space of a convex function is a conlinear space and all properties
of linear functions necessary for the theory are only the “conlinear” ones from the
previous proposition. The following result gives a characterization of the class of
conlinear functions in the class of all positively homogeneous and additive set-valued
functions.

Theorem 5.2 Let f : X → G(Z , C) be a function. Then, the following are equiva-
lent:

(a) ∃ (x∗, z∗) ∈ X∗ × C+\{0}, ∀x ∈ X: f (x) = S(x∗,z∗)(x).
(b) graph f is a closed homogeneous half-space of X × Z and f (0) �= Z.
(c) f is positively homogeneous, additive, lattice-l.s.c. at 0 ∈ X and f (0) ⊆ Z is a

non-trivial, closed homogeneous half-space.

Proof (a)⇒ (b), (c): Straightforward.
(b)⇒ (a): graph f is a closed homogenous half-space if, and only if,

∃ (
x∗, z∗

) ∈ X∗ × Z∗\{(0, 0)} : graph F = {
(x, z) ∈ X × Z | x∗(x)− z∗(z) ≤ 0

}
.

This implies

∀x ∈ X : f (x) = {
z ∈ Z | x∗(x) ≤ z∗(z)

} = S(x∗,z∗)(x).

Since f (0) �= Z and f maps into G(Z , C), z∗ ∈ C+\{0}. By Proposition5.1 (b), f
is additive.

(c) ⇒ (a): By assumption, f (0) = H+(z∗0) =
{
z ∈ Z | z∗0 (z) ≥ 0

}
for some

z∗0 ∈ C+\{0}. By additivity, f (0) = H+(z∗0) = f (x)⊕ f (−x) for all x ∈ X , hence
f (x) is never ∅ nor Z . Moreover, additivity implies f (x) = f (x + 0) = f (x)⊕
f (0) = f (x)⊕ H+(z∗0) for each x ∈ X . This means that every value f (x) is a
closed half space with normal z∗0.

Next, we use (4.17) which reads

∀x ∈ X : f (x) =
⋂

z∗∈C+\{0}

{
z ∈ Z | ϕ f,z∗ (x) ≤ z∗(z)

}
.

Since every value f (x) is a half space with normal z∗0 the intersection in the above
formula can be replaced just by

{
z ∈ Z | ϕ f,z∗0 (x) ≤ z∗0(z)

}
.

We shall show that ϕ f,z∗0 is linear. By Lemma4.20 (b) and (c) it is additive because
f is additive, and ϕ f,z∗0 (t x) = tϕ f,z∗ for t ≥ 0, so it remains to show this for t < 0
in order to prove homogeneity. Indeed,
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0 = ϕ f,z∗0 (0) = inf
z∈ f (x)⊕ f (−x)

z∗0(z) = inf
z1∈ f (x)

z∗0(z1)+ inf
z2∈ f (−x)

z∗0(z2) = ϕ f,z∗0 (x)+ ϕ f,z∗0 (−x) ,

which gives us

∀t < 0 : ϕ f,z∗0 (t x) = ϕ f,z∗0 (−|t |x) = |t |ϕ f,z∗0 (−x) = − |t |ϕ f,z∗0 (x) = tϕ f,z∗0 (x).

Therefore, ϕ f,z∗0 is a linear function and can be identified with some x ′ ∈ X ′, the
algebraic dual of X . Since f is lower semicontinuous at 0 ∈ X , Corollary4.21 with
x̄ = 0 yields

lim inf
x→0

f (x) =
{

z ∈ Z | ∀z∗ ∈ C+\{0} : lim inf
x→0

x ′(x) ≤ z∗(z)
}

.

If x ′ is not continuous then it is not bounded (from below) on every neighborhood
U ∈ NX . Thus,

∀U ∈ NX : inf
x∈U

x ′(x) = −∞,

hence
lim inf

x→0
x ′(x) = sup

U∈U
inf
x∈U

x ′(x) = −∞

and consequently Z = lim inf x→0 f (x) which contradicts f (0) = H+(z∗0) ⊇
lim inf x→0 f (x). Hence, there is x∗ ∈ X∗ such that x∗(x) = ϕ f,z∗0 (x)

for all x ∈ X . �

The basic idea for the development of a set-valued convex analysis simply is as
follows: Replace the extended reals by G(Z , C), ≤ by ⊇, use the inf/sup-formulas
from Proposition2.2, replace continuous linear functionals by conlinear functions
and the difference by inf-residuation. We start the program with conjugates.

5.2 Fenchel Conjugates of Set-Valued Functions

A crucial observation concerning Fenchel conjugates for extended real-valued func-
tions ϕ : X → IR ∪ {±∞} is as follows:

r ≥ ϕ∗
(
x∗

) ⇔ ∀x ∈ X : x∗ (x)− r ≤ ϕ (x) .

This means, x∗ belongs to the domain of ϕ∗ precisely if there is an affine minorant
of ϕ with “slope” x∗. Replacing x∗ by S(x∗,z∗), ≤ by ⊇ and recalling (2.5) we obtain
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∀x ∈ X : S(x∗,z∗) (x)− z ⊇ f (x) ⇔ ∀x ∈ X : f (x)+ z ⊆ S(x∗,z∗) (x)

⇔ ∀x ∈ X : z ∈ S(x∗,z∗) (x)−� f (x)

⇔ z ∈
⋂

x∈X

{
S(x∗,z∗) (x)−� f (x)

}
.

The function x �→ S(x∗,z∗) (x)− z is called an affine minorant of f precisely if the
above (equivalent) conditions are satisfied. This discussion may justify the following
definition.

Definition 5.3 The Fenchel conjugate of the function f : X → P (Z , C) is f ∗ :
X∗ × C+\{0} → P (Z , C) defined by

f ∗
(
x∗, z∗

) = sup
x∈X

{
S(x∗,z∗) (x)−� f (x)

} =
⋂

x∈X

{
S(x∗,z∗) (x)−� f (x)

}
.

The biconjugate of f is f ∗∗ : X → P (Z , C) defined by

f ∗∗ (x) = sup
x∗∈X∗, z∗∈C+\{0}

{
S(x∗,z∗) (x)−� f ∗

(
x∗, z∗

)}

=
⋂

x∗∈X∗, z∗∈C+\{0}

(
S(x∗,z∗) (x)−� f ∗

(
x∗, z∗

))
.

The Fenchel conjugate defined above shares most properties with her scalar little
sister.

Proposition 5.4 Let f, g : X → P (Z , C) be two functions. Then

(a) f ⊇ g⇒ g∗ ⊇ f ∗.
(b) f ∗ maps into G (Z , C), and each value of f ∗ is a closed half space with normal

z∗, or ∅, or Z.
(c) f ∗∗ ⊇ f and f ∗∗ is a proper closed convex function into G (Z , C), or ≡ Z, or
≡ ∅.

(d) ( f ∗∗)∗ = f ∗.
(e) For all x ∈ X, x∗ ∈ X∗, z∗ ∈ C+\{0},

f ∗
(
x∗, z∗

) ⊆ S(x∗,z∗) (x)−� f (x) ⇔ f ∗
(
x∗, z∗

)+ f (x) ⊆ S(x∗,z∗) (x) .

Proof The equivalence in (e) follows from the definition of −� . The other relation-
ships can be found in [78, 207, 208]. �
Remark 5.5 In [78], the “negative conjugate”

(− f ∗)
(
x∗, z∗

) = inf
x∈X

{
f (x)⊕ S(x∗,z∗) (−x)

} = cl
⋃

x∈X

{
f (x)⊕ S(x∗,z∗) (−x)

}

has been introduced which avoids the residuation. The transition from f ∗ to − f ∗
and vice versa can be done via
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(− f ∗)
(
x∗, z∗

) = H+
(
z∗

)−� f ∗
(
x∗, z∗

)
, f ∗

(
x∗, z∗

) = H+
(
z∗

)−� (− f ∗)
(
x∗, z∗

)

using Proposition4.17. Sometimes, it even seems to be more natural to work with
− f ∗, for example, when it comes to Fenchel-Rockafellar duality results as presented
in [79].

Set-valued conjugates can be expressed using the (scalar) conjugates of the scalar-
izing functions.

Lemma 5.6 If f : X → P (Z , C), then

∀x∗ ∈ X∗, ∀z∗ ∈ C+\{0} : f ∗
(
x∗, z∗

) = {
z ∈ Z | (ϕ f,z∗

)∗ (
x∗

) ≤ z∗(z)
}
, (5.2)

∀x ∈ X : f ∗∗ (x) =
⋂

z∗∈C+\{0}

{
z ∈ Z | (ϕ f,z∗

)∗∗
(x) ≤ z∗(z)

}
.

(5.3)

Proof The first formula is a consequence of the definitions, the second follows from(
ϕ f,z∗

)∗∗ = (
ϕ f ∗∗,z∗

)∗∗
and Theorem4.22. �

Remark 5.7 Conversely, ϕ f ∗(·,z∗),z∗ =
(
ϕ f,z∗

)∗
is true (see [208, Proposition 4.2] and

[86, Lemma 5.1]. On the other hand, ϕ f ∗∗,z∗ does not always coincide with
(
ϕ f,z∗

)∗∗

since the latter is a closed function which is not true for the former even if f is proper
closed convex (see the example before Lemma4.20).

The following result is a set-valued version of the famous Fenchel-Moreau the-
orem. Note that the additional dual variable z∗ disappears via the definition of the
biconjugate.

Theorem 5.8 Let f : X → P (Z , C) be a function. Then f = f ∗∗ if, and only if, f
is proper closed and convex, or identically Z, or identically ∅.
Proof This follows from Theorem4.22, Lemma5.6 and the classical Fenchel-
Moreau theorem for scalar functions, see, for example, [235, Theorem 2.3.3]. �

Remark 5.9 Another, more direct way to prove Theorem5.8 consists in applying the
basic convex duality relationship ‘every closed convex set is the intersection of closed
half spaces containing it’ to the graph of f (such half spaces are generated by pairs
(x∗, z∗) ∈ X∗ × C+), making sure that one can do without z∗ = 0 and converting the
result into formulas involving the S(x∗,z∗)-functions. In this way, the scalar Fenchel-
Moreau theorem is obtained as a special case. See [78] for details.

To conclude this section, we point out that the Fenchel conjugate does not distinct
between a function f : X → P (Z , C) and the function

f̃ (x) = cl co f (x) ;
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we have f̃ ∗ = f ∗ since (compare Proposition2.9)

∀x ∈ X : S(x∗,z∗) (x)−� f (x) = {
z ∈ Z | f (x)+ z ⊆ S(x∗,z∗) (x)

}

= {
z ∈ Z | cl co f (x)+ z ⊆ S(x∗,z∗) (x)

} = S(x∗,z∗) (x)−� f̃ (x) .

The function f̃ maps intoG (Z , C). The above relationshipmeans that when it comes
to Fenchel conjugates it does not make a difference to start with a G (Z , C)-valued
function.

Under additional assumptions, the formulas for (bi)conjugates can be simplified.
One such assumption is as follows: There is an element ẑ ∈ C\ {0} such that

∀z∗ ∈ C+\{0} : z∗
(
ẑ
)

> 0.

In this case, the set B+(ẑ) = {
z∗ ∈ C+ | z∗

(
ẑ
) = 1

}
is a base of C+ with 0 /∈

cl B+(ẑ). That is, for each z∗ ∈ C+\{0} there is a unique representation z∗ = t z∗0
with t > 0 and z∗0 ∈ B+(ẑ). Compare [67], Definition 2.1.14, Theorems 2.1.15 and
2.2.12 applied to C+ instead of C . Clearly, a pointed closed convex cone with non-
empty interior has a base, but, for example, the cone L2+ has an empty interior, but a
base is generated by the constant 1 function.

The very definition of the functions S(x∗,z∗) gives

{
S(x∗,z∗) | x∗ ∈ X∗, z∗ ∈ C+\{0}} = {

S(x∗,z∗) | x∗ ∈ X∗, z∗ ∈ B+(ẑ)
}
.

Therefore, it is sufficient to run an intersection like in the definition of f ∗∗ over
x∗ ∈ X∗ and z∗ ∈ B+(ẑ). Moreover, one easily checks (see also Proposition5.1 (e))
for z∗ ∈ B+(ẑ)

∀x ∈ X : S(x∗,z∗) (x) = {
x∗ (x) ẑ

}+ H+(z∗).

Thus, the negative conjugate of a function f : X → P (Z , C) can be written as

(− f ∗)
(
x∗, z∗

) = cl
⋃

x∈X

[
f (x)− x∗ (x) ẑ + H+(z∗)

] = cl
⋃

x∈X

[
f (x)− x∗ (x) ẑ

]⊕ H+(z∗).

The part which does not depend on z∗ (remember ẑ defines a base of C+ and is the
same for all z∗ ∈ C+\{0}) has been used in [150, 155] for the definition of another
set-valued conjugate, namely

(− f ∗ẑ )
(
x∗

) = cl
⋃

x∈X

[
f (x)− x∗ (x) ẑ

]
.

In particular, if Z = IR, C = IR+, then C+ = IR+, and {1} is a base of C+, thus the
intersection over the z∗’s disappears from the definition of f ∗∗ and formulas like
(5.3).
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5.3 Directional Derivatives

Usually, derivatives for set-valued functions are defined at points of their graphs as for
example in [4, Chap. 5] and [114, Chap.5]. Here, we use the inf-residuation in order
to define a “difference quotient” (which could be called “residuation quotient”) and
take “lattice limits.” This leads to the concept of a lower Dini directional derivative
for G(Z , C)-valued functions as introduced in [36].

Definition 5.10 The lower Dini directional derivative of a function f : X → G (Z , C)

with respect to z∗ ∈ C+\{0} at x̄ ∈ X in direction x ∈ X is defined to be

f ′z∗ (x̄, x) = lim inf
t↓0

1

t

[(
f (x̄ + t x)⊕ H+(z∗)

)−� f (x̄)
]

=
⋂

s>0

cl
⋃

0<t<s

1

t

[(
f (x̄ + t x)⊕ H+(z∗)

)−� f (x̄)
]
.

Obviously, f ′z∗ = f ′t z∗ for t > 0. Hence, if C+ has a base one only gets “as many”
directional derivatives as there are elements in the basis.

One may ask why the set H+(z∗) appears in the definition of the difference quo-
tient. The reason is that frequently the sets f (x̄ + t x)−� f (x̄) and also corresponding
“lattice limits” are empty.

Example 5.11 Let X = IR, Z = IR2, C = {
(0, 1)T s | s ≥ 0

}
and the function

f : X → G(Z , C) be defined by

f (x) =
{ [−x, x] × IR+ : x ∈ [0, 1]

∅ : otherwise
.

Then, f is convex and f (1) = inf x∈X f (x) �= Z . However, f (1+ t x)−� f (1) = ∅
whenever x < 0 and t < − 1

x , or x > 0 and t > 0. This means that the directional
derivative of f at x̄ = 1 (defined without H+(z∗)) would be identically ∅. On the
other hand, f ′z∗ (1, x) is never empty for z∗ ∈ C+\{0} and provides much better
information about the local behavior of f at x̄ = 1.

For scalar functions, the standard definition of the lowerDini directional derivative
can be adapted.

Definition 5.12 The lower Dini directional derivative of a function ϕ : X → IR at x̄
in direction x is

ϕ↓(x̄, x) = lim inf
t↓0

1

t

[
ϕ(x̄ + t x)−� ϕ(x̄)

]
.

In Definition5.12, it is neither assumed x̄ ∈ dom ϕ, nor ϕ be a proper function.
This is possible since the difference operator is replaced by the residual operator. For
G (Z , C)-valued functions, the lower Dini directional derivative can be expressed by
corresponding derivatives of scalarizations.
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Proposition 5.13 (a) For all x̄ ∈ X, for all x ∈ X,

f ↓z∗(x̄, x) =
{

z ∈ Z | ϕ↓f,z∗(x̄, x) ≤ −z∗ (z)
}

(5.4)

ϕ
↓
f,z∗(x̄, x) = ϕ f ↓z∗ (x̄,·),z∗ (x) . (5.5)

Proof See [36, Proposition 3.4]. �

Thenext result is familiar in the scalar case for proper functions, see [235,Theorem
2.1.14].

Lemma 5.14 Let f : X → G (Z , C) be convex, x̄ ∈ X and z∗ ∈ C+\{0}. Then

∀x ∈ X : f ′z∗ (x̄, x) = inf
t>0

1

t

[(
f (x̄ + t x)⊕ H+(z∗)

)−� f (x̄)
]
, (5.6)

and the function
x �→ f ′z∗ (x0, x)

is sublinear as a function from X into G (Z , C). If x̄ ∈ dom f , then dom f ′z∗ (x̄, ·) =
cone (dom f − x̄). Moreover,

f ′z∗ (x̄, 0) =
{

H+(z∗) : f (x̄)⊕ H+(z∗) /∈ {Z ,∅}
Z : f (x̄)⊕ H+(z∗) ∈ {Z ,∅} .

Proof It relies on the monotonicity of the “residuation quotient”

1

t

[(
f (x̄ + t x)⊕ H+(z∗)

)−� f (x̄)
]

which in turn is proven using a calculus for the inf-residuation and the convexity of
f . For details, compare [90]. �

The following result tells us when the directional derivative has only “finite”
values. As usual, we denote by core M the algebraic interior of a set M ⊆ X .

Theorem 5.15 Let f : X → G (Z , C) be convex and x̄ ∈ core (dom f ). If f is
proper, then there exists z∗ ∈ C+\{0} such that f ′z∗ (x̄, x) /∈ {Z ,∅} for all x ∈ X.

Proof See [90]. �

5.4 The Subdifferential

For convex functions, we define elements of the subdifferential using conlinearmino-
rants of the sublinear directional derivative.
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Definition 5.16 Let f : X → G (Z , C) be convex, x̄ ∈ X and z∗ ∈ C+\{0}. The set

∂ fz∗ (x̄) = {
x∗ ∈ X∗ | ∀x ∈ X : S(x∗,z∗) (x) ⊇ f ′z∗ (x̄, x)

}

is called the z∗-subdifferential of f at x̄ .

Again, the basic idea is to replace a continuous linear functional x∗ by S(x∗,z∗). An
alternative characterization of the subdifferential is provided in the following result.

Proposition 5.17 Let f : X → G (Z , C) be convex and x̄ ∈ X. The following state-
ments are equivalent for x∗ ∈ X∗, z∗ ∈ C+\{0}:
(a) ∀x ∈ X: S(x∗,z∗) (x) ⊇ f ′z∗ (x̄, x),
(b) ∀x ∈ X: S(x∗,z∗) (x − x̄) ⊇ (

f (x)⊕ H+(z∗)
)−� f (x̄).

(c) x∗ ∈ ∂ϕ f,z∗(x̄).

Proof See [90]. �

Some extra care is necessary for defining the subdifferential ∂ϕ f,z∗ of the extended
real-valued function ϕ f,z∗ in the previous proposition since its is not necessarily
proper. The reader may compare [89, 90]. Condition (c) opens the path to a subdif-
ferential calculus: With some effort, one can transform the subdifferential rules from
the scalar to the set-valued case obtaining corresponding “z∗-wise” rules, see [207].

Under some “regularity”, the directional derivative can be reconstructed from the
subdifferential. This result is known as themax-formula. Here is a set-valued version.

Theorem 5.18 Let f : X → G (Z , C) be a convex function, x̄ ∈ dom f and z∗ ∈
C+\{0} such that the function x �→ f (x)⊕ H+(z∗) is proper and the function
ϕ f,z∗ : X → IR ∪ {+∞} is upper semi-continuous at x̄ . Then ∂ fz∗ (x̄) �= ∅ and it
holds

∀x ∈ X : f ′z∗ (x̄, x) =
⋂

x∗∈∂ fz∗ (x̄)

S(x∗,z∗) (x) . (5.7)

Moreover, for each x ∈ X there exists x̄∗ ∈ ∂ fz∗ (x̄) such that

f ′z∗ (x̄, x) = S(x̄∗,z∗) (x) . (5.8)

Proof See [90]. �

Next, we link the subdifferential and the Fenchel conjugate.

Proposition 5.19 Let f : X → G (Z , C) be convex, x̄ ∈ X, dom f �= ∅ and f (x̄)⊕
H+(z∗) �= Z. Then, the following statements are equivalent for x∗ ∈ X∗, z∗ ∈
C+\{0}:
(a) x∗ ∈ ∂ fz∗ (x̄),
(b) ∀x ∈ X: S(x∗,z∗) (x)−� f (x) ⊇ S(x∗,z∗) (x̄)−� f (x̄).
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Proof See [90]. �

This results basically says that x∗ ∈ ∂ fz∗ (x̄) if the supremum in the definition of
the conjugate is attained at x̄ since from the Young-Fenchel inequality we have

S(x∗,z∗) (x̄)−� f (x̄) ⊇ f ∗
(
x∗, z∗

)

whereas (b) above produces

f ∗
(
x∗, z∗

) =
⋂

x∈X

{
S(x∗,z∗) (x)−� f (x)

} ⊇ S(x∗,z∗) (x̄)−� f (x̄) .

This means: In the sense of Definition3.3 adapted to maximization, the set {x̄} is a
solution of the problem

maximize S(x∗,z∗) (x)−� f (x) over x ∈ X.

Finally, wewant to describe the set of points satisfying the condition 0 ∈ ∂z∗ f (x̄).

Proposition 5.20 Let f : X → G (Z , C) be convex, z∗ ∈ C+\{0} and x̄ ∈ dom f
such that f (x̄)⊕ H+(z∗) �= Z. Then, the following statements are equivalent:

(a) H+(z∗) ⊇ f ′z∗ (x̄, x) for all x ∈ X,
(b) 0 ∈ ∂ fz∗ (x̄),
(c) f (x̄)⊕ H+(z∗) = [inf x∈X f (x)]⊕ H+(z∗),
(d) ϕ f,z∗(x̄) ≤ ϕ f,z∗(x) for all x ∈ X.

Proof This is immediate from the previous results. �

We will call an x̄ ∈ X for which there is z∗ ∈ C+\{0} satisfying (c) in Propo-
sition5.20 a C+-minimizer of problem (P) in Definition3.3. The question arises if
there is a (full) solution of (P) consisting of C+-minimizers and how such a solution
can be characterized.

We conclude this section by noting that a calculus for the z∗-subdifferential can be
derived from corresponding calculus rules for extended real-valued convex functions.
The additional feature in the set-valued case is the dependence of ∂ fz∗ (x̄) on z∗, i.e.
properties of the mapping z∗ �→ ∂ fz∗ (x̄). It turns out that this is an adjoint process
type relationship as pointed out in [90].

5.5 A Case Study: Set-Valued Translative Functions

Let X , Z be two topological linear spaces and T : Z → X an injective continuous
linear operator. A function f : X → P (Z , C) is called translative with respect to
T (or just T -translative) if
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∀x ∈ X, ∀z ∈ Z : f (x + T z) = f (x)+ {z} .

A special case of interest will be Z = IRm ,
{
h1, . . . , hm

} ⊆ X a set of m linearly
independent elements and T : IRm → X defined by T z =∑m

k=1 zkhk . This construc-
tion is very close to (and motivated by) set-valued risk measures as shown below.

It is an easy exercise to show that a T -translative function f can be represented
as follows:

∀x ∈ X : f (x) = {
z ∈ IRm | x − T z ∈ A f

}
(5.9)

where A f = {x ∈ X | 0 ∈ f (x)} is the zero sublevel set of f . This set satisfies

∀z ∈ C : A f − T z ⊆ A f

since f maps into P (Z , C). The latter property is called (T, C)-translativity of A f .
The representation (5.9) can be written as

∀x ∈ X : f (x) = (
IA f �αT

)
(x) = inf

{
IA f (x1)+ αT (x2) | x1 + x2 = x

}

where αT : X → P (Z , C) is given by

αT (x) =
{ {z} + C : x = T z

∅ : otherwise

and IA is the set-valued indicator function of A: IA (x) = C if x ∈ A and IA (x) = ∅
if x /∈ A. Note that the function αT is well-defined since T is assumed to be injective.

We start the investigation of set-valued translative functions with their conjugates
andmake use of the fact that the conjugate of the infimal convolution of two functions
is the sum of the two conjugates. For set-valued functions, this has been established
in [78, Lemma 2]. The conjugate of the indicator function is indeed the set-valued
support function as shown in [78]:

I ∗A f
(x∗, z∗) =

⋂

x∈A f

S(x∗,z∗)(x).

Moreover,

α∗T
(
x∗, z∗

) =
⋂

x∈X

(
S(x∗,z∗)(x)−� αT (x)

) =
⋂

u∈Z

(
S(x∗,z∗)(T u)−� ({u} + C)

)

=
⋂

u∈Z

{
z ∈ Z | z + u + C ⊆ S(x∗,z∗)(T u)

}

= {
z ∈ Z | ∀u ∈ Z : z∗(z + u) ≥ x∗(T u)

}

=
{

z ∈ Z | z∗(z) ≥ sup
u∈Z

(T ∗x∗ − z∗)(u)

}
=

{
H+(z∗) : z∗ = T ∗x∗
∅ : z∗ �= T ∗x∗
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Hence, for a T -translative function f we get

f ∗(x∗, z∗) = I ∗A f
(x∗, z∗)+ α∗T

(
x∗, z∗

) =
{ ⋂

x∈A f

S(x∗,z∗)(x) : z∗ = T ∗x∗

∅ : z∗ �= T ∗x∗
(5.10)

and (see Remark5.5)

(− f ∗)(x∗, z∗) = H+(z∗)−� f ∗(x∗, z∗) =
{
cl

⋃

x∈A f

S(x∗,z∗)(−x) : z∗ = T ∗x∗

Z : z∗ �= T ∗x∗

since H+(z∗)−� ∅ = Z and H+(z∗)−� ⋂
x∈A f

S(x∗,z∗)(x) = cl
⋃

x∈A f

[
H+(z∗)−� S(x∗,z∗)(x)

] =
S(x∗,z∗)(−x) according to Proposition4.17.

If the function f additionally maps into G(Z , C) and is proper, closed and convex,
then the biconjugation theorem applies, and the following dual representation is
obtained:

∀x ∈ X : f (x) =
⋂

x∗∈X∗
T ∗x∗∈C+\{0}

[
S(x∗,T ∗x∗)(x)−� I ∗A f

(x∗, T ∗x∗)
]
. (5.11)

If f is additionally sublinear, then A f is a closed convex cone and (5.11) simplifies
to

∀x ∈ X : f (x) =
⋂

x∗∈A−f
T ∗x∗∈C+\{0}

S(x∗,T ∗x∗)(x) (5.12)

since in this case

I ∗A f
(x∗, z∗) =

{
H+(z∗) : x∗ ∈ A−f
∅ : otherwise

.

Of course, A−f = −
(

A f
)+
.

The value of these formulas depends on how the dual data x∗, T ∗ and I ∗A f
can be

interpreted in terms of the application at hand. We will show in Sect. 7.4 below that
this can be done very nicely.

Example 5.21 Z = IRm , T : IRm → X defined by T z =∑m
k=1 zkhk . Then

∀z ∈ IRm : (
T ∗x∗

)
(z) =

m∑

k=1
x∗(hk)zk,

thus T ∗x∗ can be identified with
(
x∗

(
h1

)
, . . . , x∗ (hm)

)T ∈ IRm .

We turn to the subdifferential of T -translative functions. The result reads as fol-
lows.
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Corollary 5.22 Let f : X → G (Z , C) be convex, T -translative and z∗ ∈ C+\{0}.
If ∂ fz∗ (x̄) �= ∅ then

∂ fz∗ (x̄) = {
x∗ ∈ X∗ | z∗ = T ∗x∗ and ∀x ∈ A f : S(x∗,T ∗x∗)(x) ⊇ S(x∗,T ∗x∗)(x̄)−� f (x̄)

}
.

(5.13)

Proof First, we show “⊆”. The assumption ∂ fz∗ (x̄) �= ∅ in conjunction with Propo-
sition5.17 implies f (x̄)⊕ H+(z∗) /∈ {Z ,∅}. Hence S(x∗,z∗)(x̄)−� f (x̄) /∈ {Z ,∅}, and
Proposition5.19 produces f ∗(x∗, z∗) /∈ {Z ,∅}. Take x∗ ∈ ∂ fz∗ (x̄). From (5.10) we
now obtain

z∗ = T ∗x∗ and f ∗(x∗, z∗) = I ∗A f
(x∗, z∗).

The definition of the set-valued support function yields that x∗ belongs to the right
hand side of (5.14).

Conversely, assume that x∗ ∈ X∗ satisfies z∗ = T ∗x∗ as well as

∀x ∈ A f : S(x∗,z∗)(x) ⊇ S(x∗,z∗)(x̄)−� f (x̄).

Take x ∈ dom f . Then
∀z ∈ f (x) : x − T z ∈ A f

by T -translativity and hence

∀z ∈ f (x) : S(x∗,z∗)(x − T z) ⊇ S(x∗,z∗)(x̄)−� f (x̄).

Since z∗ = T ∗x∗ we have

S(x∗,z∗)(x − T z) = S(x∗,z∗)(x)+ {−z}

and therefore

∀z ∈ f (x) : S(x∗,z∗)(x)+ {−z} ⊇ S(x∗,z∗)(x̄)−� f (x̄).

This means that any η ∈ S(x∗,z∗)(x̄)−� f (x̄) satisfies

∀z ∈ f (x) : z + η ∈ S(x∗,z∗)(x),

thus η ∈ S(x∗,z∗)(x)−� f (x). Hence

∀x ∈ dom f : S(x∗,z∗)(x)−� f (x) ⊇ S(x∗,z∗)(x̄)−� f (x̄)

which is, according to Proposition5.19, equivalent to x∗ ∈ ∂ fz∗ (x̄). �

The above corollary tells us that the knowledge of ∂ fz∗ can be obtained by knowl-
edge about A f and T ∗. This becomes even more clear in the sublinear case.
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Corollary 5.23 Let f : X → G (Z , C)be sublinear, T -translative and z∗ ∈ C+\{0}.
If ∂ fz∗ (x̄) �= ∅ then

∂ fz∗ (x̄) =
{

x∗ ∈ X∗ | z∗ = T ∗x∗, x∗ ∈ A−f , S(x∗,z∗)(x̄) = f (x̄)⊕ H+(z∗)
}

.

(5.14)

Proof As observed above, in this case A f is a convex cone and I ∗ can only attain
the two values H+(z∗) for x∗ ∈ A−f and ∅ otherwise. Finally,

S(x∗,z∗)(x̄)−� f (x̄) = H+(z∗) ⇔ S(x∗,z∗)(x̄) = f (x̄)⊕ H+(z∗).

The result now follows from Corollary5.22. �

5.6 Comments on Vector- and Set-Valued Convex Analysis

The history of convex analysis for scalar functions is a continuing success story, and
this area of mathematics is the theoretical basis for linear and nonlinear, in particular
non-smooth, optimization and optimal control theory: compare [196, p. 3]5 or the
preface of [8, p. xii].6

Surprisingly, the gap between theory and applications (in optimization and multi-
criteria decision making) is much wider for vector- or even set-valued functions. For
example, there is no canonical (Fenchel) conjugate of a vector-valued function, but
rather a whole bunch of different definitions which work under different assumptions
(see below for references).

If one ignores for a moment scalarization approaches, then there are basically two
different paths to a “vector-valued” convex analysis.

The first one simply consists in an extended interpretation of the infimum and
the supremum in formulas like the definition of the Fenchel conjugate: Under the
assumption that the function maps into a conditional complete vector lattice (this
means that every set which is bounded from below with respect to the vector order
has an infimum in the space) one considers infima/suprema with respect to the vector
order. This approach has been followed by Zowe [232, 233], Elster and Nehse [23,
50], Borwein [16], Zalinescu [234], Kutateladze [139] and others. One may compare
[17] for the state of the art in the mid 1980s and more references. This approach has
the advantage that a corresponding version of the Hahn-Banach theorem is available
which is due to L.V. Kantorovich, see for example Day’s book [42]. Disadvantages
are, of course, the strong assumptions to the image space and, even worth for appli-
cations, the fact that a vector infimum/supremum is hardly an appropriate concept
when it comes to vector optimization and multi-criteria decision making.

5‘In fact the great watershed in optimization isn’t between linearity and nonlinearity, but convexity
and nonconvexity’.
6‘Theoretically, what modern optimization can solve well are convex optimization problems’.
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In the second approach, infima and suprema are therefore replaced by sets of
minimal and maximal points, respectively, with respect to the vector order. This
worked for (and was motivated by) applications of vector optimization, but made the
task of developing a corresponding vector-valued convex analysis incredibly harder:
It turns out that “dual constructions” like conjugates or dual optimization problems
become set-valued: ‘for a vector problem, its dual constructed by several means, is a
problem whose objective function is set-valued, whatever the objective of the primal
problem be’ ([156, p. 57]). Set-valued Legendre–Fenchel conjugates with maximal
points replacing the supremum appear in [156, 204, 219], with weakly maximal
points in [166, 204], with (weakly) supremal points in [123, 190, 191, 212, 214,
217] and an evenmore general construction involving “non-submitted” points is used
in [47], for example.

A major difficulty for this approach is the lack of an appropriate Hahn-Banach
theorem which is at the heart of convex analysis: One has to turn to scalarizations in
order to apply the “usual” Hahn-Banach argument. Zowe’s paper [231] shows how
difficult it is to get back to vector-valued concepts after a scalarization.

In both approaches, continuous linear operators were used as dual variables. One
way to avoid this again is a scalarization approach: An early attempt is Jahn’s work
[113] (compare also [114, Chap.8]). This approach leads to peculiar difficulties even
if the problem at hand is linear: Compare [113, Conclusions] and the discussion at
the ends of [114, Sects. 8.2 and 8.3]. A modern account is given in [19] which leads
to dual problems with a, in general, non-convex feasibility set even if the original
problem is convex (or linear).

Let us mention that there are at least two quite different attempts to answer the
duality question for vector problems: In [5, 6] as well as in [21] Fenchel conjugates of
vector- or set-valued functions are defined in terms of scalar functions depending on
an additional dual variable. Although in both attempts quite strong assumptions are
imposed, they seem to be only a few steps short of the constructions in this section.

The approach summarized in [151] is also based on scalarization via support
functions, but it involves a set infimum/supremum which admits to obtain stronger
results.

The concepts presented in this survey go without the usual assumptions to the
ordering cone C (non-empty interior, pointedness, generating a lattice order etc.),
and they basically produce set-valued versions of all the known (duality) formulas for
scalar convex functions, and this includes the case of vector-valued functions. A cru-
cial observation is the theoretical equivalence of a convexG(Z , C)-valued function f
and the family

{
ϕ f,z∗

}
z∗∈C+\{0}. Formula (5.11) is an example for how the set-valued

theory tells us what kind of scalarizations should be taken into consideration. New
insights can be obtained by investigating relationships between the two components
of the dual variable (x∗, z∗) which is essentially of adjoint process duality type (see
[90, Sect. 4]). Set-valued functions satisfying (a) and (b) of Proposition5.1 are some-
times called linear, e.g. in [186]. On the other hand, Proposition5.1 and Theorem5.2
show that the “conlinear” functions S(x∗,z∗) are in some sense one-sided versions of
linear multivalued operators (linear relations) as surveyed e.g. in [37]. The reader
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may check the relationships in the case of a linear subspace C with C+ = C⊥ its
orthogonal complement.

Directional derivatives for set-valued functions are usually defined at points of
its graph, thus fixing (only) one element in the image set along with a point in the
pre-image set. The standard reference is [4], and Mordukhovich’s coderivative [172]
is of the same type. Compare also [227]. Quite a different path is the attempt to
embed certain subsets of P(Z) into a linear space and then use the usual “linear”
constructions, see [137] for an example. This, of course, only works under strong
assumptions since, in general, G(Z , C) cannot be embedded into a linear space even
if one drops ∅ and Z .

Concerning subgradients for set-valued functions, the paper [98] presents an
overview over the existing concepts each of which is afflicted with a peculiar dif-
ficulty: for example, the ‘weak subgradient’ of [29] (see also [28, Definition 2.53])
leaves the realm of convexity, the ‘strong subgradient’ introduced in [98] needs an
artificial exclusion condition in its definition. Both require rather strong assumptions
for their existence: compare [236, Corollary 9] with respect to weak subgradients
while observing that the space Z therein has the least upper bound property, and with
respect to strong subgradients compare [98, Definition 3.2 and Theorem 4.1].

One should note that the application of Yang’s Hahn-Banach type theorem [226,
236] also suffers the “non-convexity issue:” since it relies on the “not strictly greater
than” relation: inequalities cannot be added whenever the relation is non-complete.
This means that the weak subdifferentials of convex set-valued function obtained for
example via [236, Corollary 9] are not convex in general.

Another way of defining subgradients is to do it at points of the graph of a set-
valued mapping rather than at points of its domain, see [16, 204], [7, Definition 2.1]
and also the ‘positive subgradients’ defined in [143, Definition 2.5], [92, Definition
3.1] and the ‘k-subgradients’ of [19, Definition 7.1.9] among many others.

Most of those concepts use linear operators as dual variables, but when it comes
to existence very often operators of rank 1 show up, see, for example, [28, Theorem
2.55], [98, Theorem 4.1]. The (straightforward) relationships are discussed in [19,
p. 331] and [92, Sect. 4].

We interpret this as evidence that, unless the image space is a (conditional) com-
plete vector lattice and the Hahn-Banach-Kantorovitch theorem is available, the dual
variables should involve linear functionals rather than linear operators.Using “conlin-
ear functions” generated by pairs of linear functionals, the constructions in Sects. 5.3
and 5.4 offer a way to obtain results which are very close in shape to the scalar case
and avoid strong assumptions to the ordering cone in Z . Moreover, in contrast to
most of the “vectorial” constructions in the literature (for example, see the discus-
sion in [19, p. 313]), our set-valued results reproduce the ones for scalar extended
real-valued functions as special cases; this includes e.g. existence of subgradients
and strong duality with attainment of the supremum for the dual problem.

The subdifferential as given in Definition5.16 is exactly the same set which is
called the ‘conjugate to’ f in [194, Definition 2 and the remark thereafter] pro-
vided one assumes that every expression in B. N. Pshenichnyi’s definition is finite.
Section5.4 should make it clear why we call it a subdifferential; the relationship to
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convex process duality can be found in [90]. It should be pointed out that the com-
plete lattice approach of this survey also adds new insights to scalar convex analysis:
the improper case, in particular the function value −∞, can be dealt with using the
residuation. We refer to [89].

Scalar translative functions appear in many areas of applied mathematics, for
example probability (quantile functions and lower previsions [221]), insurance and
finance (constant additive insurance premiums [222] and cash additive riskmeasures,
introduced in [3] and reviewed in [59]), mathematical economics (benefit and short-
age functions [161, 162]), vector optimization (nonlinear scalarization functions,
compare [63] also for earlier references and [67] for an overview) and idempotent
analysis (compare the survey [126]) as well as in max-plus algebra (see e.g. [31]).
A relationship between vector optimization and risk measures in finance is pointed
out in [99].

Following an idea of [120], in [80, 82] cash additive risk measures have been gen-
eralized to set-valued risk measures for multivariate positions which turned out to be
T -translative for some special T . Thus, such functions are important in applications,
and they provide examples for the set optimization theory of this survey.

6 Set-valued Optimization

6.1 Unconstrained Problems

Within the set-up of the previous section, the basic problem again is

minimize f (x) subject to x ∈ X. (P)

The difficulty with the solution concept given in Definition3.3 is that solutions are,
in general, sets rather than single points. Thus, optimality conditions such as “zero
belongs to the subdifferential of some function” should actually be taken “at sets”
rather than “at points.” Of course, this does not sound very attractive. The following
construction provides a remedy.

Definition 6.1 Let f : X → G (Z , C) be a function and M ⊆ X a non-empty set.
The function f̂ (·;M) : X → G (Z , C) defined by

f̂ (x;M) = inf
u∈M

f (x + u) = cl co
⋃

u∈M

f (x + u) (6.1)

is called the inf-translation of f by M .

The function f̂ (·;M) coincides with the canonical extension of f at M + {x} as
defined in [102]. A few elementary properties of the inf-translation are collected in
the following lemma.
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Lemma 6.2 Let M ⊆ X be non-empty and f : X → G (Z , C) a function.

(a) If M ⊆ N ⊆ X then f̂ (x;M) ⊆ f̂ (x; N ) for all x ∈ X.
(b) inf x∈X f (x) = inf x∈X f̂ (x;M).
(c) If f and M are convex, so is f̂ (·;M) : X → G (Z , C), and in this case

f̂ (x;M) = cl
⋃

u∈M f (u + x).

Proof The proof can be found in [90]. �

Proposition 6.3 Let f : X → G (Z , C) be a convex function and ∅ �= M ⊆ dom f .
The following statements are equivalent:

(a) M is an infimizer for f ;
(b) {0} ⊆ X is an infimizer for f̂ (·;M);
(c) {0} is an infimizer for f̂ (·; co M) and f̂ (0;M) = f̂ (0; co M).

Proof The equivalence of (a) and (b) is immediate from f̂ (0;M) = infu∈M f (u)

and Lemma6.2, (b). The equivalence of (a) and (c) follows from f̂ (0; co M) =
infu∈co M f (u) and Lemma6.2, (b). �

The previous proposition makes clear that by an inf-translation an infimizer (set)
can be reduced to a single point, namely just 0 ∈ X . Moreover, it should be apparent
that we need to consider f̂ (·; co M): Since we want to characterize infimizers via
directional derivatives and subdifferentials, a convex function is needed, and f̂ (·;M)

is not convex in general even if f is convex (find a counterexample!). Obviously,
an infimizer is not necessarily a convex set; on the contrary, sometimes one prefers
a nonconvex one, for example a collection of vertices of a polyhedral set instead of
higher dimensional faces.

Theorem 6.4 Let f : X → G(Z , C) be a convex function satisfying

I ( f ) = inf
x∈X

f (x) /∈ {Z ,∅} .

Then f is proper, and the set �+ ( f ) = {
z∗ ∈ C+\{0} | I ( f )⊕ H+(z∗) �= Z

}
is

non-empty. Moreover, a set M ⊆ X is an infimizer for f if, and only if, f̂ (0;M) =
f̂ (0; co M) and

0 ∈
⋂

z∗∈�+( f )

∂ f̂z∗ (·; co M) (0) .

Proof Since {0} is a singleton infimizer of the function x �→ f̂ (x;M), x̄ = 0 ∈ X
satisfies (c) of Proposition5.20 with f replaced by f̂ (·;M) for each z∗ ∈ �+ ( f ).
Now, the result follows from Proposition5.20 and Proposition6.3. �

Theorem6.4 highlights the use of the “z∗-wise” defined directional derivatives
and subdifferentials. One needs to take into consideration all reasonable (= proper)
scalarizations at the same time in order to characterize infimizers.
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6.2 Constrained Problems and Lagrange Duality

Let Y be another locally convex spaces with topological dual Y ∗, and D ⊆ Y a
convex cone. The set G (Y, D) is defined in the same way as G (Z , C). Finally, let
f : X → G (Z , C) and g : X → G(Y, D) be two functions. We are interested in the
problem

minimize f (x) subject to 0 ∈ g (x) . (PC)

The set
X = {x ∈ X | 0 ∈ g (x)}

is called the feasible set for (PC) and I ( f, g) = inf { f (x) | x ∈ X } is the optimal
value of the problem. With Definition3.2 in view we define a solution of (PC) as
follows.

Definition 6.5 A set M ⊆ X is called a solution of (PC) if

(a) inf { f (x) | x ∈ M} = I ( f, g),
(b) x̄ ∈ M , x ∈ X , f (x) ⊇ f (x̄) imply f (x) = f (x̄).

Clearly, M ⊆ X is a solution of (PC) if, and only if f [M] generates the infimum
of f [X ] = { f (x) | x ∈ X } and each f (x̄) for x̄ ∈ M is minimal in f [X ] with
respect to ⊇.

We define the Lagrangian L : X × Y ∗ × C+\{0} → G (Z , C) of problem (PC) by

L
(
x, y∗, z∗

) = f (x)⊕
⋃

y∈g(x)

S(y∗,z∗) (y) = f (x)⊕ inf
{

S(y∗,z∗) (y) | y ∈ g (x)
}
.

(6.2)
Under a mild condition, the primal problem can be reconstructed from the

Lagrangian.

Proposition 6.6 If f (x) �= Z for each x ∈ X , then

sup
(y∗,z∗)∈Y ∗×C+\{0}

L
(
x, y∗, z∗

) =
⋂

(y∗,z∗)∈D+×C+\{0}
L

(
x, y∗, z∗

) =
{

f (x) : 0 ∈ g (x)

∅ : 0 /∈ g (x) .

Proof The proof is based on the assumption that the values of f and g are closed
convex sets. See [86] for details. �

The next proposition provides a Lagrange sufficient condition which is a simple,
but important result with an algorithmic character since it admits to test if a given
set is an infimizer of (PC).

Proposition 6.7 Let M ⊆ X be a non-empty set of feasible points for (PC). Assume
that for each z∗ ∈ C+\{0} there is y∗ ∈ D+ satisfying
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f̂ (0;M)⊕ inf
y∈ĝ(0;M)

S(y∗,z∗) (y) = inf
x∈X

L
(
x, y∗, z∗

)
(6.3)

and
inf

y∈ĝ(0;M)
S(y∗,z∗) (y) = H+(z∗). (6.4)

Then, M is an infimizer for (PC).

Proof Using (6.4) and (6.3) we obtain

f̂ (0;M)⊕ H+(z∗) = f̂ (0;M)⊕ inf
y∈ĝ(0;M)

S(y∗,z∗) (y) = inf
x ′∈X

L
(
x ′, y∗, z∗

)

⊇ f (x)⊕ inf
y∈g(x)

S(y∗,z∗) (y) ⊇ f (x)⊕ H+(z∗)

for all x ∈ X since S(y∗,z∗) (0) = H+(z∗). Taking the infimum over the feasible x on
the right hand side and then the intersection over z∗ ∈ C+\{0} on both sides while
observing f̂ (0;M) = infu∈M f (u)we obtain that M indeed is an infimizer for (PC).
�

Condition (6.4) serves as set-valued complementary slackness condition. If
one considers the Lagrange function (x, y∗, z∗) �→ L̂ (x, y∗, z∗;M) for the “inf-
translated” problem

minimize f̂ (x;M) subject to 0 ∈ ĝ(x;M)

then condition (6.3) means that the infimum of the Lagrange function for the original
problemcoincideswith L̂ (0, y∗, z∗;M). Finally, if z∗ ∈ C+\{0} and y∗ ∈ D+ satisfy
(6.4) and (6.3) then y∗ is nothing else than a Lagrange multiplier for the by z∗
scalarized problem. One may therefore expect that strong duality is something like
“strong duality for all reasonable scalarized problems.” This idea works as shown in
the following.

Define the function h : Y ∗ × C+\{0} → G (Z , C) by

h
(
y∗, z∗

) = inf
x∈X

L
(
x, y∗, z∗

) = cl
⋃

x∈X

L
(
x, y∗, z∗

)
.

Since the values of L(·, y∗, z∗) are closed half spaces with the same normal z∗, the
convex hull can be dropped in the infimum. The dual problem,

maximize h
(
y∗, z∗

)
subject to y∗ ∈ Y ∗, z∗ ∈ C+\{0}, (DC)

thus consists in finding

d = sup
y∗∈Y ∗, z∗∈C+\{0}

h
(
y∗, z∗

) =
⋂

y∗∈Y ∗, z∗∈C+\{0}
h

(
y∗, z∗

)
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and corresponding (full) solutions. The following weak duality result is immediate.

Proposition 6.8 Let f : X → F (Z , C) and g : X → F (Y, D). Then

sup
{
h

(
y∗, z∗

) | y∗ ∈ Y ∗, z∗ ∈ C+\{0}} ⊇ inf { f (x) | x ∈ X, 0 ∈ g (x)} .

Proof This is true since for (y∗, z∗) ∈ Y ∗ × C+\{0} and x ∈ X satisfying 0 ∈ g (x)
we have

h
(
y∗, z∗

) ⊇ f (x)⊕ cl
⋃

y∈g(x)

S(y∗,z∗) (y) ⊇ f (x)⊕ S(y∗,z∗) (0) = f (x)⊕ H+
(
z∗

)
.

�

As usual, a constraint qualification condition is needed as part of sufficient con-
ditions for strong duality. The following condition is called the Slater condition for
problem (PC):

∃x̄ ∈ dom f : g (x̄) ∩ int (−D) �= ∅. (6.5)

The implicit assumption is int D �= ∅.
Theorem 6.9 Assume p = inf { f (x) | x ∈ X } �= Z. If f : X → G (Z , C) and
g : X → G (Y, D) are convex and the Slater condition for problem (PC) is satis-
fied then strong duality holds for (PC), that is

inf { f (x) | 0 ∈ g (x)} = sup
{
h

(
y∗, z∗

) | y∗ ∈ Y ∗, z∗ ∈ C+\{0}} , (6.6)

z∗ ∈ C+\{0}, p ⊕ H+
(
z∗

) �= Z ⇒ ∃y∗ ∈ Y ∗ : p ⊕ H+
(
z∗

) = h
(
y∗, z∗

)
.

(6.7)

Proof Hamel and Löhne [86]. �

Note that the assumption p �= Z implies the existence of z∗ ∈ C+\{0} with p ⊕
H+ (z∗) �= Z . Thus, (6.7) is attainment of the supremum for the dual problem “z∗-
wise.”

Corollary 6.10 Under the assumptions of the strong duality theorem, the set

� = {(
y∗, z∗

) ∈ Y ∗ × C+\{0} | Z �= p ⊕ H+(z∗) = h
(
y∗, z∗

)}

is non-empty and a full solution of the dual problem (DC).

Proof See [86]. �
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6.3 Comments on Set Optimization Duality

Among the first papers in which optimization problems with a set-valued constraint
have been systematically studied are [15, 16, 185]. It is, for example, instructive to
realize that the Lagrange function in (6.2) is nothing else, but a set-valued version
of the one in [185, p. 197]. Compare also [151, Theorem 3.28].

Whereas in [16, Problem (P) in (3.1)] the vector infimum serves as the building
block for optimality, in [15, Theorem 3] a Lagrange duality result is established for
properly efficient points of vector optimization problems. The dual variables are rank
one linear operators. Similarly, in [211, Theorem 3.3] and also [213, Theorem 3.3],
rank one linear operators and a set-valued Lagrange function (see equation (6.8)
below) are used under strong assumptions (cones with weakly compact base). A
similar idea can be found in the proof of the Lagrangian duality theorem, [156, The-
orem 1.6 on p. 113] under the assumption that the ordering cone in Z has non-empty
interior. These examples may suffice with respect to vector optimization problems
in view although the literature is huge.

In [131, 134] the same type of set-valued Lagrangian has been used (without
giving proofs) in connection with set relations, i.e., basically the solution concept
IIa of Sect. 3.1. The more recent [93, 95] proceed similarly: Theorem 3.3 in [95]
(basically the same as Theorem 4.2 in [93]) is a Lagrange duality result for weakly
�C -minimal solutions with Lagrange function

f (x)+ (T ◦ g)(x) = f (x)+ {T y | y ∈ g(x)} (6.8)

where T ∈ L(Y, Z), the set of continuous linear operators from Y to Z . It is again
based on rank one operators, an idea which at least dates back to [32, Theorem
4.1]. The same set of dual variables is used in [81] for a Lagrangian approach to
linear vector optimization. However, the Lagrange function, even for a vector-valued
problem, already is a set-valued one.

A thorough discussion of optimality conditions of Fermat and Lagrange type for
(non-convex) set-valued optimization problems based on the minimality concept III
can be found in [48] (compare also the references therein). These conditions are
formulated in terms of the Mordukhovich subdifferential. It might be worth noting
that the use of F(Z , C)-valued functions ‘gives better conclusions’ [48, Remark
3.10].

A complete lattice approach based on infimal and supremal sets was developed
in [92, 151]. The Lagrange function for a vector-valued function f and a set-valued
G has the form

f (x)+ Inf
{

y∗(y)c | y ∈ G(x)
}

where Inf stands for the infimal set and c ∈ int C is a (fixed) element. Assumptions,
of course, include int C �= ∅. The same assumption also is crucial in [144]; Theorems
3.2 and 3.3 therein are probably as far as one get in terms of conjugate duality based
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on “suprema” of a set, i.e. the elements which belong to the closure of the set, but
are not dominated with respect to the relation which is generated by the interior of
the ordering cone.

Other approaches rely on other set-valued derivatives, for example on contingent
epiderivatives [69] or coderivatives [74, 173].

In virtually all approaches for set/vector optimization problems known to the
authors, the strong duality assertion is based on the assumption of the existence of
a (weakly, properly etc.) minimal element of the primal problem either with respect
to the vector order (see [32], [156, Theorem 1.6 on p. 113, Theorem 2.7 on p. 119],
[214, Theorems 3.4 and 3.5], [19, Theorems 5.2.4 and 5.2.6]) or with respect to
a set relation (see [95, Theorem 3.3], [93, Theorem 4.2]). The two exceptions are
the approaches in [86, 151] where the primal problems only have finite values in
some sense and still existence for the dual problems is obtained–which is standard
in the scalar case. In [151, p. 98] (see also Open Problem 3.6 therein with respect to
Fenchel duality) and [92] it is discussed that the approach based on infimal/supremal
sets indeed yields strong duality, but it is not clear whether the existence of the dual
solution can be guaranteed without the z∗-component of the dual variable.

By means of the “complete lattice approach” surveyed here, the type of results
which is known from the scalar case can be transferred to a “set level.” Strong duality
then indeed means “inf equals sup” and includes the existence of dual solutions:
compare [86, 151] for Lagrange duality and [79] for Fenchel-Rockafellar duality.
The Lagrange function as defined in (6.2) basically is the composition of the two
set-valued functions S(x∗,z∗) and g, compare, for example, [125, Definition 6.3.2] and
for scalar problems with a set-valued constraint already [185, p. 197].

The reduction of a “set solution” in the sense of Definition6.5 to a “point solution”
via an inf-translation (see Definition6.1) is due to [90]. The exploitation of this
construction seems to be very promising for obtaining optimality conditions and
algorithms.

The complementary slackness condition given in Proposition6.7 seems to be new
although it clearly is in the spirit of [14, formulae (10), (12)].

7 Applications

7.1 Vector Optimization

In this section, let X and Z be as in Sect. 5 and C ⊆ Z a closed, convex, pointed
(i.e. C ∩ −C = {0}) and non-trivial cone. Then, ≤C is a partial order (i.e. also anti-
symmetric). Moreover, let a function F : X → Z ∪ {−∞,+∞} be given. Defining
a function f : X → G(Z , C) by
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f (x) =
⎧
⎨

⎩

F(x)+ C : F(x) ∈ Z
Z : F(x) = −∞
∅ : F(x) = +∞

we observe
f (x1) ⊇ f (x2) ⇔ F(x1) ≤C F(x2),

where it is understood that −∞ ≤C z ≤C +∞ for all z ∈ Z ∪ {−∞,+∞}. Hence
the two problems

find minimizers w.r.t. ≤C of F(x) subject to 0 ∈ g(x), (VOP)

find minimizers w.r.t. ⊇ of f (x) subject to 0 ∈ g(x) (SOP)

have the same feasible elements and the same minimizers. The minimizers of (VOP)
are called’minimal solutions’ [114, Definition 7.1] or ‘efficient solutions’ [19, Defi-
nition 2.5.1]. In most cases, it does not make sense to look for the infimum in (VOP)
with respect to ≤C : It may not exist (not even for simple polyhedral cones C , see
e.g. [151, Example 1.9]), and even if it does, it is not useful in practice at it refers
to so-called utopia points which are typically not realizable by feasible points (i.e.
“decisions”).

The (PC) version of (SOP) considered as an F(Z , C)- or G(Z , C)-valued prob-
lem is called the lattice extension of (VOP), and a solution of (VOP) is defined to
be a solution of its lattice extension (see [102], compare Definition6.5). In this way,
the notion of an “infimum” makes a strong comeback, and the infimum attainment
becomes a new feature in vector optimization, which is useful for theory and applica-
tions: It ensures that the decision maker possesses a sufficient amount of information
about the problem if (s)he knows a solution. For a detailed discussion see [151,
Chap.2]. Note that one possibly obtains different solutions depending on the choice
of F(Z , C) or G(Z , C) as image space. Since the infimum in G(Z , C) involves the
convex hull, solutions of G(Z , C)-valued problems may include “fewer” elements,
and this is in particular preferable for convex problems.

If f is the “lattice extension” of a vector-valued function F as given above, the
Lagrange function for (PC) takes the form

L
(
x, y∗, z∗

) = f (x)⊕ inf
y∈g(x)

S(y∗,z∗) (y) = F(x)+ inf
y∈g(x)

S(y∗,z∗) (y)

= inf
y∈g(x)

{
z + F(x) ∈ Z | y∗(y) ≤ z∗(z)

}

=
{

z ∈ Z | inf
y∈g(x)

y∗(y)+ z∗ (F(x)) ≤ z∗(z)
}

whenever F(x) ∈ Z , L (x, y∗, z∗) = ∅ whenever F(x) = +∞ or g(x) = ∅, and
L (x, y∗, z∗) = Z whenever F(x) = −∞ and g(x) �= ∅. The functionz∗ (x, y∗) :=
z∗ (F(x))+ inf y∈g(x) y∗(y) (with the convention z∗(±∞) = ±∞) is the (classical)
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Lagrange function of the (scalar) problem

inf
{
z∗ (F(x)) | 0 ∈ g(x)

}

(see, for example, already [185, p. 197]). Moreover, if g is generated by a vector-
valued function G : X → Y ∪ {−∞,+∞} in the same way as f by F , then

inf
y∈g(x)

y∗(y) =
⎧
⎨

⎩

y∗ (G(x)) : G(y) ∈ Z , y∗ ∈ D+
−∞ : G(y) = −∞, or G(y) ∈ Z and y∗ /∈ D+
+∞ : G(y) = +∞.

Thus,z∗ (x, y∗) = z∗ (F(x))+ y∗ (G(y))whenever F(x) ∈ Z ,G(x) ∈ Y and y∗ ∈
D+. The dual objective becomes

h(y∗, z∗) = inf
x∈X

L
(
x, y∗, z∗

) =
{

z ∈ Z | inf
x∈X

z∗
(
x, y∗

) ≤ z∗(z)
}

.

Corollary 7.1 Let F be C-convex, f its lattice extension and g : X → G(Y, D) con-
vex such that the Slater condition (6.5) is satisfied. If I ( f, g) = inf { f (x) | 0 ∈ g(x)} /∈
{Z , ∅}, then �+( f, g) = {

z∗ ∈ C+\{0} | I ( f, g)⊕ H+(z∗) �= Z
}

is non-empty and

I ( f, g) = cl
⋃
{F (x) | 0 ∈ g (x)} =

⋂

y∗∈D∗, z∗∈�+( f,g)

{
z ∈ Z | z∗

(
x, y∗

) ≤ z∗(z)
}
,

(7.1)

∀z∗ ∈ �+( f, g) ∃y∗ ∈ Y ∗ : I ( f, g)⊕ H+
(
z∗

) = h
(
y∗, z∗

)
. (7.2)

Proof Of course, f is convex if, and only if, F is C-convex (see [156, Definition
1.6 on p. 29] for a definition). Theorem6.9 and the above discussion produce the
result. �

It might be worth to compare Corollary7.1 with standard duality results in vector
optimization. First, there is no assumption about the existence of (weakly, properly)
minimal solutions: This is in contrast to most results in vector optimization such
as [67, Theorems 3.7.4 and 3.7.7], [114, Theorem 8.7], [19, Theorems 4.1.2 and
4.1.4]. Secondly, there are no interior point assumptions to the cone C . Thirdly,
with Corollary6.10 in view, the existence of a dual solution in a set-valued sense
is provided in the sense of the “maximization” version of Definition3.3. Finally,
classical duality results in vector optimization can be obtained from Corollary7.1 as
it is described in [151, Sect. 3.5].
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7.2 A Case Study: Linear Vector Optimization

We proceed with an exemplary application of the set-valued theory to linear vector
optimization problems and show that we obtain what we expect in view of scalar
linear programming duality: a dual program of the same type. In this section, we will
write ≤ and ≥ for ≤IRm+ and ≥IRm+ , respectively, for any m ∈ {1, 2, . . .}.

Consider the linear vector optimization problem

minC Px subject to Ax ≥ b, (PL)

where P ∈ IRq×n , A ∈ IRm×n , b ∈ IRm , and the cone C is polyhedral convex with
nonempty interior. A representation C = {

z ∈ IRq | W T z ≥ 0
}
by a matrix W ∈

IRq×k is given. The feasible set is denoted by S := {x ∈ IRn | Ax ≥ b}.
With (PC) in view we define f (x) = Px + C and g(x) = b − Ax + IRm

+. Then,
the set {(x, z) ∈ IRn × IRq | z ∈ f (x), 0 ∈ g(x)} is polyhedral convex. We modify
the solution concept in Definition6.5 by adding the requirement that a solution is a
finite set of vectors and directions, see [151] and also [87], the latter also including “ε-
variants.” The reason is that every polyhedral set can be expressed as the generalized
convex hull of finitely many vectors and directions. Such a solution is called finitely
generated solution, but we call it just solution if the context of polyhedral convex
set-valued problems or the subclass of linear vector optimization problems is clear.
To keep the notation simple, we only consider bounded problems here, that is, we
assume

∃z̄ ∈ IRq : ∀x ∈ S : z̄ ≤C Px . (7.3)

Under this assumption, a solution consists of finitely many vectors only. For the
general case, see [151, Chap.4]. A solution to (PL ) is a nonempty finite set S̄ ⊆ S of
minimizers (’efficient solutions’ in the most textbooks) such that P[S] ⊆ P[S̄] + C ,
where the latter condition refers to infimum attainment in S̄ with respect to the lattice
extension (compare Definition3.3).

Considering the lattice extension of (PL ) we show that the Lagrange technique
from Sect. 6.2 leads to a dual problem, which enjoys nice properties and is useful for
applications and algorithms. Re-labeling the dual variables by u = y∗, w = z∗ we
obtain the Lagrangian

L(x, u, w) = Px + C + cl
⋃

z≥b−Ax

{
z ∈ IRq | uT y ≤ wT z

}

= Px + C + cl
⋃

r∈IRm+

{
z ∈ IRq | uT (r − Ax + b) ≤ wT z

}
.

The dual objective is
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h(u, w) = cl
⋃

x∈IRn

L(x, u, w)

= cl
⋃

r∈IRm+, x∈IRn , v∈C

{
z ∈ IRq | uT (r − Ax + b) ≤ wT (z − Px − v)

}

= cl
⋃

r∈IRm+, x∈IRn , v∈C

{
z ∈ IRq | (wT P − uT A)x ≤ wT (z − v)− uT (b + r)

}

=
{{

z ∈ IRq | 0 ≤ wT z − uT b
}
: AT u = PT w, u ≥ 0, w ∈ C+\ {0}

IRq : otherwise.

Let C+ = {
w ∈ IRq | V T w ≥ 0

}
be a representation of C+ by a matrix V ∈ IRq×l .

Note that a basis of C+ is already sufficient to cover all values of the dual objective
h (see the end of Sect. 5.2). If we fix some c ∈ int C , we obtain the (set-valued) dual
problem

maximize D(u, w) subject to (u, w) ∈ T (DL)

with objective function

D : IRm × C+ → G(IRq , C), D(u, w) := {
z ∈ IRq | uT b ≤ wT z

}

and feasible set

T := {
(u, w) ∈ IRm × IRq | AT u = PT w, u ≥ 0, V T w ≥ 0, cT w = 1

}
.

This dual problem has a very simple structure: linear constraints, a halfspace-
valued objective function and maximization means to take the intersection over
these halfspaces. The objective function is conlinear in b and in u, i.e., D(u, w) =
S(u,w)(b) = S(b,w)(u), and therefore a natural replacement of the dual objective
“bT u” in (scalar) linear programming. A (finitely generated) solution of (DL ) is
a nonempty set T̄ ⊆ T of maximizers with respect to the ordering ⊇ satisfying⋂

(u,w)∈T̄ D(u, w) =⋂
(u,w)∈T D(u, w), where the latter conditions means supre-

mum attainment in T̄ .

Remark 7.2 Using the construction of Example2.12, we obtain an equivalent prob-
lem with a hyperplane-valued objective. This shows that we indeed have a very
natural generalization of scalar linear programs to the vectorial case because in IR,
a real number and a hyperplane are the same object. In more general linear spaces,
vectors and half-spaces are dual in some sense. Compare the footnote on p. 2.

Weak duality (see Proposition6.8) means that x ∈ S and (u, w) ∈ T imply
D(u, w) ⊇ Px + C . As a consequence, for every subset T̃ ⊆ T of feasible points,
the set

⋂
(u,w)∈T̃ D(u, w) is a superset (“outer approximation”) of the set P :=

{Px | Ax ≥ b} + C , which is just the optimal value (the infimum) of the lattice
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extension. Likewise, for every subset S̃ ⊆ S of feasible points of (PL ), the set
cl co

⋃
x∈S̃ Px + C is a subset (“inner approximation”) of P .

Strong duality means that
⋂

(u,w)∈T D(u, w) = P . A constraint qualification is
not needed as in the case of linear constraints in (scalar) convex programming. Note
further that, if ∅ �= S̄ ⊆ S such that P[S̄] is the set of vertices of P , then S̄ is a
solution to (PL ). Likewise, a set ∅ �= T̄ ⊆ T such that

{
D(u, w) | (u, w) ∈ T̄

}
is the

family of half-spaces supporting P in facets, then T̄ is a solution of (DL ).

Remark 7.3 In the vector optimization literature one can observe the longstanding
paradigm that the dual of a vector optimization problem should be a vector optimiza-
tion problem with the same ordering cone. To fulfill this requirement, problems of
the type

maxC z subject to z ∈ D(u, w), (u, w) ∈ T (7.4)

have been considered, see e.g. [19, Sect. 4.5.1] and in the linear case [20]. The price
is high. In general, important properties like linearity of the constraints and convexity
of the feasible set get lost by such a transformation.

To emphasize the “linear” character of problem (DL ), we transform it into an
equivalent linear vector optimization problem:

maxK D∗(u, w) subject to (u, w) ∈ T, (D∗L)

where the objective function D∗ : IRq × IRm → IRq , given by

D∗(u, w) := (w1, . . . , wq−1, bT u)T ,

is linear and vector-valued, and the ordering cone is K := { z ∈ IRq | z1 =
· · · = zq−1 = 0, zq ≥ 0 }. A (finitely generated) solution of (D∗L ) is a nonempty set
T̄ ⊆ T of maximizers with respect to≤K in IRq satisfying D∗[T ] ⊆ co D∗[T̄ ] − K ,
where the latter condition refers to supremum attainment in T̄ (with respect to the
lattice extension with image space G(IRq , K )).

Proposition 7.4 The problems (DL) and (D∗L) have the same solutions.

Proof See [151, Theorems 4.38 and 4.57]. �

In the sense of the previous proposition, (DL ) and (D∗L ) are equivalent. Thismeans
that the set-valued dual problem (DL ) can be expressed as a linear vector optimization
problem, however, with a different ordering cone K and an interpretation of the
duality relation which differs from the one in standard references.

Of course, we can derive a set-valued dual problem to (D∗L ) by an analogous
procedure. This leads to outer and inner approximations and different representations
ofD := {D∗(u, w)− K | (u, w) ∈ T }, i.e., the optimal value of the lattice extension
of (D∗L ).
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Problem (D∗L ) is called the geometric dual problem, and there is a further duality
relation called geometric duality [101] between (PL ) and (D∗L ): There is an inclusion-
reversing one-to-one map between the proper faces of P and the proper K -maximal
faces ofD. This means, for instance, that a vertex of one set can be used to describe a
facet of the other set and vice versa. For a detailed explanation of geometric duality
see [101, 151]. Geometric duality has been extended to convex vector optimization
problems, see [100]. The paper [157] is in the same spirit.

7.3 Approximate Solutions and Algorithms

In this section, we assume that C is a closed convex cone. Let f : X → G(Z , C) be a
function. The starting point for constructing algorithms for solving the problem (P)
(see Sect. 3.1), i.e.

minimize f (x) subject to x ∈ X (P)

should be Definition3.3: It involves minimal values of f as well as the infimum taken
in G(Z , C). In order to make algorithms reasonable, both notions should be replaced
by appropriate approximate versions.

Recall I ( f ) = inf x∈X f (x). Two sets A, B ∈ G(Z , C) are called an outer approx-
imation and an inner approximation of I ( f ), respectively, if A ⊇ I ( f ) ⊇ B. Outer
and inner approximations of I ( f ) could be generated by sets M ⊆ dom f or by dual
admissible elements.

Definition 7.5 Let D : IR+ → G(Z , C) be a function satisfying

(i) D(ε2) ⊇ D(ε1) for all ε1, ε2 ∈ IR+ with 0 < ε1 ≤ ε2, and
(ii) C = D(0) =⋂

ε>0 D(ε).

A set M ⊆ dom f is called a (D, ε)-solution of (P) if

inf f [M] ⊕ D(ε) ⊇ I ( f ),

and each x ∈ M is a minimizer of f .

A similar concept applies to supremum problems which can be useful in connec-
tion with duality. If M is a (D, ε)-solution of (P), then

inf f [M] ⊕ D(ε) ⊇ I ( f ) ⊇ inf f [M],

i.e., inf f [M] trivially is an inner approximation of I ( f ).
The condition that elements of M be minimizers for f might be relaxed to any

type of approximate minimizers, thus producing sets of (D, ε)-solutions consisting
of approximate minimizers. Similarly, the intersection in (ii) might be replaced by
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any type of set convergence which is sometimes useful if C ⊆ D(ε) is not satisfied
for some (or all) ε > 0.

It turned out that effective algorithms for vector and set optimization problems
generate (D, ε)-solutions, for example with

D(ε) = C − εc

with some c ∈ C\(−C), even c ∈ int C under the assumption that the latter set is non-
empty. This idea has been exploited with Benson’s outer approximation algorithm as
the building block, see [87, Remark 4.10] and [153, Proposition 4.8]. The obtained
algorithms indeed produce approximations of the set-valued infimum for (linear,
convex) vector optimization problems. In [154], it is shown that the same idea can
be used for minimizing a polyhedral set-valued function (i.e., a G(IRq , C)-valued
function whose graph is a polyhedral set): The corresponding algorithm produces
solutions in the sense of Definition3.3 and might be considered as the first “true
set-valued” algorithm. Its extension to non-polyhedral problems is highly desirable
and another challenge for the future.

We note that a different algorithmic approach for producing minimizers with
respect to a set relation can be found in [116]. In particular, it provides a numerical
test if two (compact) sets A, B ⊆ Z are in relationwith respect to�C ∩ �C (compare
the closely related Sect. 4.2 of this survey and [115]). In the polyhedral case, this test
can be implemented on a computer.An algorithm is givenwhich producesminimizers
of a set-valued function if the set of feasible points is finite, and a descent method
[116, Algorithm 4.1] for problem (P) generates feasible points which are minimal
with respect to some finite subset of the set of feasible points.

7.4 Set-valued Risk Measures

Set-valued risk measures shall serve as a prominent example of set-valued translative
functions as discussed in Sect. 5.5. The framework will be the following. By a slight
abuse of notation, X in this section does not denote a linear space, but rather a random
variable etc.

Let (�,FT , P) be a probability space. A multivariate random variable is a P-
measurable function X : �→ IRd for some positive integer d ≥ 2. If d = 1, the
random variable is called univariate. Let us denote by L0

d = L0
d (�,FT , P) the linear

space of the equivalence classes of all IRd -valued random variables which coincide
up to sets of P-measure zero (P-almost surely). As usual, we write

(
L0

d

)
+ =

{
X ∈ L0

d | P
({

ω ∈ � | X (ω) ∈ IRd
+
}) = 1

}
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for the closed convex cone of IRd -valued random vectors with P-almost surely non-
negative components. An element X ∈ L0

d has components X1, . . . , Xd in L0 = L0
1.

In a similar way, we use L p
d for the spaces of equivalence classes of d-dimensional

random variables whose components are to the pth power integrable (if 0 < p <∞)
and essentially bounded (if p = ∞). The symbol 1I denotes the random variable in
L0
1 which has P-almost surely the value 1.
Let M ⊆ IRd be a linear subspace. We set M+ = M ∩ IRd

+ and assume M+ �= {0}
in the following.

Definition 7.6 ([82]) A function R : L p
d → P (M, M+) is called a risk measure if

it is

(R0) finite at 0 ∈ L p
d : R (0) �= ∅, R (0) �= M ;

(R1) M-translative:

∀X ∈ L p
d , ∀u ∈ M : R (X + u1I) = R (X)− u; (7.5)

(R2)
(
L p

d

)
+-monotone: X2 − X1 ∈ (

L p
d

)
+ ⇒ R

(
X2

) ⊇ R
(
X1

)
.

Set-valued risk measures are indeed recognized as T -translative if, within the
notation of Sect. 5.5, X = L p

d , Z = M , C = M+ ⊆ M and the linear operator
T : M → L p

d is defined by T u = −u1I. This means that T assigns to each u ∈ M the
random vector being constantly equal to −u.

A financial interpretation is as follows. A multivariate random variable is under-
stood as a model for an unknown future portfolio or payoff of d assets where each
component indicates the number of units of the corresponding asset in the portfolio.
The elements of R(X) are understood as deposits, to be given at initial time, which
compensate for the risk of X . The collection of all such risk compensating initial
portfolios is understood as a measure of the risk associated to X . Such deposits
usually involve fewer assets than the original portfolio, for example cash in a few
currencies. This motivates the introduction of the space M which is called the space
of eligible portfolios. A typical example is M = IRm × {0}d−m for 1 ≤ m ≤ d with
m  d.

The axiom (R1) roughly means that the risk of X + u1I is the risk of X reduced
by u whenever u ∈ M . Axiom (R2) also has a clear interpretation: if a random
vector Y ∈ L p

d dominates another random vector X ∈ L p
d , then there should be more

possibilities to compensate for the risk of Y (in particular cheaper ones) than for X .
Finiteness at zero means that there is an eligible portfolio which covers the risk of
the zero payoff, but not all eligible portfolios do. Convexity is an important property
as it allows to invoke diversification effects.

From M-translativity and
(
L p

d

)
+-monotonicity it follows that R maps into

P (M, M+). Clearly, the image space of a closed convex risk measure is G (M, M+).
If trading is allowed a market model has to be incorporated. Here, a one-period

market with proportional transaction costs as in [121, 205] is considered. It is given
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by closed convex cones K0 and KT = KT (ω) with IRd
+ ⊆ Kt (ω) � IRd for all ω ∈

� and t ∈ {0, T } such that ω �→ KT (ω) is FT -measurable. These cones, called
solvency cones, include precisely the set of positions which can be exchanged into
a nonnegative portfolio at time 0 and T , respectively, by trading according to the
prevailing exchange rates.We set K M

0 := M ∩ K0 ⊆ M which is the cone containing
the “solvent” eligible portfolios. The set

L p
d (KT ) = {

X ∈ L p
d | P ({ω ∈ � | X (ω) ∈ KT (ω)}) = 1

}

is a closed convex cone in L p
d .

Definition 7.7 ([82]) A risk measure R : L p
d → P (M, M+) is called market-

compatible if it maps into P (
M, K M

0

)
and is L p

d (KT )-monotone, that is X2 − X1 ∈
L p

d (KT ) implies R
(
X2

) ⊇ R
(
X1

)
.

Let 1 ≤ p ≤ ∞. We consider the dual pairs (L p
d , Lq

d) with
1
p + 1

q = 1 and endow

them with the norm topology if p <∞ and the σ
(
L∞d , L1

d

)
-topology on L∞d in the

case p = +∞, respectively. The duality pairing is given by (X, Y ) �→ E[Y T X ] for
X ∈ L p

d ,Y ∈ Lq
d . The adjoint operator T ∗ : Lq

d → M is given by T ∗Y = PrM E [−Y ]
where PrM denotes the projection operator onto the linear subspace M .

The biconjugation theorem, Theorem5.8, can be used to obtain a dual description
of a closed convex market-compatible set-valued risk measure of the form

R(X) = R∗∗(X) =
⋂

Y∈Lq
d , v∈(K M

0 )
+\{0}

(
S(Y,v)(X)+ (−R∗)(Y, v)

)
(7.6)

with
S(Y,v)(X) = {

u ∈ M | vT u ≥ E
[
Y T X

]}

and
(
K M

0

)+ = {
v ∈ M | ∀u ∈ K M

0 : vT u ≥ 0
}
.

Using the considerations of Sect. 5.5 and taking into account that L p
d (KT )-

monotonicity implies (−R∗) (Y, v) = M if −Y /∈ Lq
d

(
K+T

)
we get

(−R∗) (Y, v) =
⎧
⎨

⎩

cl
⋃

X∈AR

S(−Y,v) (X) : −Y ∈ Lq
d

(
K+T

)
, v = PrM E [−Y ]

M : else.
(7.7)

Recall AR =
{

X ∈ L p
d | 0 ∈ R(X)

}
from Sect. 5.5.

The next lemma admits a change of variables from vector densities Y to vector
probability measures Q. This allows a formulation of the dual representation result
in terms of probability measures as it is common in the scalar case.

In the following, diag (w) with w ∈ IRd denotes the diagonal matrix with the
components ofw as entries in itsmaindiagonal and zero elsewhere.Moreover,MP

d =
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MP
d (�,FT ) denotes the set of all vector probability measures with components

being absolutely continuous with respect to P , i.e. Qi : FT → [0, 1] is a probability
measure on (�,FT ) such that d Qi

d P ∈ L1 for i = 1, . . . , d.

Lemma 7.8 (a) Let Y ∈ Lq
d

(
K+T

)
, v = PrM E [Y ] ∈ (

K M
0

)+ \{0}. Then there are
Q ∈MP

d , w ∈ K+0 \M⊥ + M⊥ such that diag (w)
d Q
d P ∈ Lq

d

(
K+T

)
and S(Y,v) =

F M
(Q,w) with

F M
(Q,w) [X ] = {

z ∈ M | wT E Q [X ] ≤ wT z
} = (

E Q [X ]+ H+(w)
) ∩ M.

(7.8)

(b) Vice versa, if Q ∈MP
d , w ∈ K+0 \M⊥ + M⊥ such that diag (w)

d Q
d P ∈ Lq

d

(
K+T

)

then there is Y ∈ Lq
d

(
K+T

)
such that v := PrM E [Y ] ∈ (

K M
0

)+ \{0} and F M
(Q,w)= S(Y,v).

Proof See [82]. �

Let us denote the set of dual variables by

Wq =
{
(Q, w) ∈MP

d × IRd | w ∈ K+0 \M⊥ + M⊥, diag (w)
d Q

d P
∈ Lq

d

(
K+T

)}
.

The preceding considerations lead to the following dual representation result.

Theorem 7.9 A function R : L p
d → G (

M, K M
0

)
is a market-compatible closed

(σ
(
L∞d , L1

d

)
-closed if p = ∞) convex risk measure if, and only if, there is a set

Wq
R ⊆Wq such that

∀X ∈ L p
d : R (X) =

⋂

(Q,w)∈Wq

[
(−αR) (Q, w)+ (

E Q [−X ]+ H+(w)
) ∩ M

]
,

(7.9)
where the function −αR : Wq → G(M, M+) is defined by

∀ (Q, w) ∈Wq
R : (−αR) (Q, w) = cl

⋃

X ′∈AR

(
E Q

[
X ′

]+ H+(w)
) ∩ M

and (−αR) (Q, w) = M whenever (Q, w) ∈Wq\Wq
R.

Proof See [82]. �

Lemma7.8 shows that the setW∞ for M = IRd coincides with the set of so-called
consistent price systems (or processes). Strictly consistent price systems are crucial
for market models with proportional transaction cost: In finite discrete time, the
existence of such a price system is equivalent to the fundamental robust-no-arbitrage
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condition (see [205] for conical and [187] for convex market models). Therefore,
results like Theorem7.9, derived with set-valued duality tools, fit nicely into the
mathematical finance background: They produce the correct dual variables, and they
yield formulas which look like the corresponding scalar ones.

7.5 Comments on Applications

Duality for vector optimization problems is already discussed in Sect. 6.3. We add
a few remarks about the linear case. It is an astounding fact that there still is no
consensus on what to consider as the “canonical” dual of a linear vector optimization
problem. After early contributions by Kornbluth [127], Isermann [110, 111] and
Rödder [198], Ivanov and Nehse [112] discuss five different duals for a given linear
vector optimization problem which illustrates the ambiguity even in the “simplest”,
i.e. linear, case. The difficulty is further illustrated by means of the examples in [24]
and [114, Discussion after Theorem 8.13]. A set-valued approach has been presented
in [81] and later compared to several “vector-valued” duals in [20]. Compare also
[103] and Dinh The Luc [157]. We believe that this ambiguity and the mathematical
difficulties that comewith it are rooted in the non-totalness of the order: A two-player
matrix game with vector payoffs is hardly in equilibrium since the decisions of the
players also depend on their “vertical preferences” (as well as on their guesses about
the vertical preference of the opponent), i.e. the weight they put on the components of
the payoff vectors. This topic, essentially the link between set-valued convex duality
and games with vector payoffs (more general, payoffs which are not totally ordered),
seems to be one of the most interesting open questions that can be derived from the
material presented in this survey.

One advantage of the complete lattice approach is that the set-valued calculus
deals with all “vertical preferences”, i.e. all reasonable scalarizations at the same
time. This admits to re-discover scalar duality results on a “set level.”

In 1998, Benson [10, 11] proposed an “outer approximation algorithm” to solve
linear vector optimization problems “in the outcome space.” Benson motivated this
by three practical reasons: First, the set of minimal elements in the outcome space IRq

has a simpler structure than the set of minimizers in the decision space IRn , because
one usually hasq  n. The same argumentmotivated [40, 41],which already contain
similar algorithms based on the analysis given in [39]. The second reason is that a
decision maker prefers to base her decision on objectives rather than directly on a set
of efficient decisions. The third argument is that many feasible points are mapped on
a single image point which may lead to redundant information.

Later it turned out that Benson’s algorithm just computes solutions to (PL ) and
(DL ) as defined above, see [87, 151]. Therefore Benson’s arguments motivate the
solution concepts introduced in Sect. 3.1 from an application oriented viewpoint,
compare also [154]. The geometric duality theory [100, 101] briefly discussed in
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Sect. 7.2 is a fundamental tool to develop dual algorithms for solving linear and
convex vector optimization problems, see [49, preprint already from 2007] [87, 153].
Compare also [158, 159] for the convex case and [70, 71], even for nonconvex
variants.

Set-valued risk measures have been introduced in [120]. It contains a dual repre-
sentation result for the sublinear case, basically a combination of the formulae (5.12)
and (7.6). A more systematic development including the extension to the general
convex case has been presented in [80] while market compatibility is due to [82].
A link to depth-trimmed regions, yet another set-valued object from statistics, can
be found in [25]. Currently, the set-valued approach for evaluating multivariate risks
is gaining more and more attention, see for example [53, 119, 165] and also [51,
52]. Applications of Benson’s algorithm and its variants to financial problems can
be found in [87, 88, 152] and related approaches in [200, 201] as well as in [38].
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1 Introduction

The set-valued maps receive great attention from more and more authors. This is
partly due to its wide applications in diverse fields as for example: Control theory,
Optimization, Economics or Game theory, to name a few. See, for instance, [4, 51]
and references therein.

On the other hand, set-valued optimization problems are very known in Optimiza-
tion theory and Economics as for example equilibrium theorems for Economies. See,
[1–3, 10, 12, 30, 46].

Throughout this paper, we consider preference relations generated by a pre-order
(a binary relation which is reflexive and transitive). In the sequel M denotes a non-
empty subset of a set X , Y a linear space and K ⊂ Y a convex cone. If y, y′ ∈ Y we
denote by y ≤ y′ if and only if y′ − y ∈ K . This relation ≤ is obviously a pre-order
on Y . Thus, the pair (Y, K ) is called a pre-ordered linear space (or partially ordered
space) with the ordering ≤ induced by K . To consider weakly efficient solutions,
we also assume, in addition, that Y is a topological space and K is solid, that is, its
topological interior is nonempty, int K �= ∅.
Remark 1.1 1. If K is pointed, K ∩ (−K ) = {0}, the preference ≤ is also anti-

symmetric and (Y, K ) is an ordered linear space.
2. In spite of the most optimization theory is based on a pre-order on the criteria

space, other preferences (non-reflexitivy or non-transitivity) are very important
from the practical point of view, for instance, in Economic. Some references and
results can be found in [11]where the variational approach developed in this paper
allows to obtain new necessary conditions for various types of solutions and to
apply it to nonconvex models of welfare economics with finite-dimensional and
infinite-dimensional commodity spaces.

3. In this paper the discussion is based on a general framework.Note that it is possible
to avoid the topological structure on Y to consider weakly efficient solutions via
the algebraic interior of K , that is, core(K ). See also [19].

Given a nonempty set A ⊂ Y , we denote by Min A = {ȳ ∈ A : y ∈ A, y ≤
ȳ imply ȳ ≤ y} the set of minimal points of A. In particular, if K is pointed,
Min A = {ȳ ∈ A : (ȳ − K ) ∩ A = ȳ}. It is said that ȳ ∈ A is a strongly or ideal
minimal point of A, ȳ ∈ IMin A, if A ⊂ ȳ + K . By replacing K by −K , we can
define maximal and ideal maximal point of A.

We denote by (V) the following vector optimization problem:

(V)

{
Min f (x)

subject to x ∈ M ,

where f : M → Y . An element x0 ∈ M is said to be an efficient solution of (V),
x0 ∈ Eff( f ), if f (x0) ∈ Min

⋃

x∈M

f (x).

The above solution is defined via Edgeworth-Pareto solution. However, for a
vector optimization problem there are various solution concepts as for instance
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proper solutions or strong solutions. For more references about this problem, see
[18, 46, 69, 80] and references therein. It is well-known that there exist other solu-
tion concepts (different to Edgeworth-Pareto notions) which have been investigated
by many authors. We remark that according to [21, 22, 28] it is possible to study a
unified vector problem which includes other efficient notions.

The present survey deals with optimization problems where the objective map is
more complex than that given in (V). In addition, our presented results address the
notions of extended Edgeworth-Pareto optimality.

The general formulation of a set-valued optimization problem is as follows:

(SVOP)

{
Min F(x)

subject to x ∈ M ,

where F : M −→ 2Y is a set-valued map with F(x) �= ∅ for all x ∈ M .
Unlike the vector optimization problem (V), for the above problem there is not a

only one approach of solution associated to it. The solutions of (SVOP) are catego-
rized into

(i) vector solutions; when the problem, denoted by (VOP) and called vector set-
valued optimization problem, is a vector optimization problem with set-valued
maps.

(ii) set solutions; when the problem, denoted by (SOP), is a set optimization problem.

Now, we present the above problems to establish the differences between them.
For this, we introduce some notations and define theirs solutions.

The general vector set-valued optimization problem is denoted as follows:

(VOP)

{
Min F(x)

subject to x ∈ M.

We denote F(M) = ⋃
x∈M F(x) the image set under F on M . To define the

solutions of vector type we consider the pre-order ≤ defined on Y by the convex
cone K . Roughly speaking, the solutions of (VOP) are introduced by means the
minimal elements of F(M).

Definition 1.1 We say that x̄ ∈ M is a solution of (VOP), x̄ ∈ Eff(F), if there exists
ȳ ∈ F(x̄) such that ȳ ∈ Min F(M). The pair (x̄, ȳ) is called minimizer of (VOP).

On the contrary, the solutions of set-type are defined via a preference, 
, on the
family of nonempty subsets of Y , ℘0(Y ). We denote a set optimization problem as
follows:

(SOP)

{
 −Min F(x)

subject to x ∈ M.

The essence of set approach consists in considering the whole set as a solution,
not just one point of the image. Following the vector case, the solutions of (SOP)with
respect to 
 are defined by the more preferred sets of {F(x) : x ∈ M} as follows:
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Definition 1.2 Wesay that x̄ ∈ M is a
-solution of (SOP), x̄ ∈
 −Eff F , if x ∈ M
and F(x) 
 F(x̄) imply F(x̄) 
 F(x).

A natural extension of problem (V) is when 
 is compatible with the ordering
defined by K in the following sense:

Definition 1.3 Let a, b ∈ Y be. We say that 
 is compatible with ≤ if {a} 
 {b} is
equivalent to a ≤ b.

Remark 1.2 We point out that we can combine both approach (vector and set) to
define new preferences and solutions for a set-valued optimization problem. For
instance, A ⊆ M is a set solutionof (SVOP) if A ⊆
 −Eff F andMin

⋃
x∈M F(x) =

Min
⋃

x∈A F(x). Such preferences could be related with Finance according to [44].

Remark 1.3 1. It is clear that it is possible to define different vector solutions
of (VOP) from those presented in Definition1.1 like weak, strong or proper
minimizer. See also [9]. Similarly for set solutions of (SOP).

2. Definitions1.1 and 1.2 are given in a natural way. Both seem to be the most
appropriated to generalize the Edgeworth-Pareto notions.

3. A decision maker considers (VOP) or (SOP) depending on his preferences are
given on elements of Y or on elements of ℘0(Y ).

In terms of existing literature, we point out that it is usual to call set-valued
optimization problem or set-optimization problem to refer to (VOP) or (SOP). In
this paper we establish such a difference. On the other hand, about solutions for a
set-valued optimization problem, the vector criterion is the most well-known and
investigated in the branch of set-valued optimization. Thus, the vast majority of
publications on (SVOP) is about optimality conditions for (VOP).

The set approach was introduced by Kuroiwa [52] in 1997 by using set-relations
which generalize that given by the ordering cone (Sect. 3). Since the notion of set
solution was introduced, there has been rapid growth in the field about it. In this
survey, our claim is to show several bibliographic collections reported about the set
approach to give a comprehensive listing and to analyse the research covering its
first 16 years of history which is not available, as far we know.

This paper is decomposed into six sections. The second one is devoted to establish
the main differences between (VOP) and (SOP). In Sect. 3 we introduce the main
preferences defined on ℘0(Y ) which have been explored in the literature in terms
of (SVOP). In the next section, an extensive listing of set optimization research that
covers theoretical developments from the beginning to the year 2013 is given. In
Sect. 5, we present several areas different to optimization in which the set-relations
have been used implicitly. Finally, in Sect. 6, several remarks and conclusions are
presented for new research.
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2 Vector Optimization Problem Versus Set Optimization
Problem

In this section, firstly we show the main (geometric and analytic) aspects of (VOP)
and (SOP) and secondly, the immediate relationships between their solutions.

It is clear that solving a vector set-valued optimization problem is equivalent to
solve a rather simple problem in terms of the the objective map. In other words,
solving (VOP) is equivalent find the solutions of the following vector problem:

(V1)

{
Min �Y (x, y)

(x, y) ∈ Gra(F),

where Gra(F) = {(x, y) ∈ X × Y : x ∈ M, y ∈ F(x)} and �Y is the projection of
Gra(F) ⊂ X × Y on the second space.

Thus, z0 = (x0, y0) ∈ Gra(F) is an solution of (V1) if and only if z0 is aminimizer
of (VOP).

The above result is a peculiar characteristic of (VOP) since if we consider other
level of complexity for the objective map, we know that in order to solve a vector
optimization problem (P) via a scalar optimization problem we have to apply some
technique of scalarization which is not always possible, in general.

In terms of optimality conditions for (SOP) we could consider solutions which
image sets are not related with the boundary line of the image set F(M). It is a
geometric property of the set solutions which must be overcame in order to give
necessary conditions via separation theorems.

One advantage of the set criterion over the vector criterion is the possibility of
considering preference relations on 2Y . On the contrary, the main disadvantage of
set criterion over vector criterion is the loss of structure lineal. Hamel [29] studied
the structure of ℘0(Y ) introducing a conlineal space.

In order to avoid such a problem several authors have considered specializations
of F or tools to study the problem (SOP) via a structure well-known or simpler than
a conlineal space. For instance, in Hernández [33] solutions of (SOP) are charac-
terized via nonlineal scalarization, see also [8, 34, 72]. Nuriya and Kuroiwa [58,
77] construct an embedding vector space. Maeda [71], working on n-dimensional
Euclidean spaces shows that whenever set-valued map is rectangle-valued, (SOP)
is equivalent to a pair of vector-valued optimization problems. Recently Jahn [47]
states that a certain vector optimization problem can be associated to (SOP) when 

is defined by some complicated set relations.

In general, there is no any relationship between solutions obtained by vector
criterion (solutions of (VOP)) and solutions obtained by set criterion (solutions of
(SOP)).Moreover, the existence of solutions of one type does not imply the existence
of solutions of the other type. See, for instance, [27, 40].

On the other hand, it is natural to pose questions about the relationships between
solutions obtained by each criterion. Hernández and Rodríguez-Marín [42], under
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certain assumptions for the set-valued map, show that to solve (SOP) it is possible
to reduce the feasible set through the set criterion.

Even though both criteria are different, they extend (V) in the following sense.
If we consider a pre-order 
 on ℘0(Y ) compatible with ≤ and F is replaced by
a vector-valued map, then (SOP) and (VOP) are equivalent to (V). If, in addition,
we consider weakly solutions of (VOP) and (SOP) it is possible to prove that each
weakly vector solution is a weakly set solution, see [34, Proposition2.10] and [71,
Theorem5].

See also [5, 42, 71] to find more relationships between vector solutions (VOP)
and set solutions (SOP). Thus, for a certain classes of set-valued maps and pre-order
on ℘0(Y ) the set criterion is equivalent to the vector criterion. A particular case is
obtained when Y = R since each image set has a strongly minimal point.

To end this section we refer the reader to [19, 65] for a deeper discussion of the
above approaches of solutions for a optimization problem.

3 Set Relations Considered in the Literature

Now, we introduce the main preferences considered in the existing papers devoted
to study solutions of (SOP). In addition, we focus on pre-order relations defined on
℘0(Y ) which generalizes the ordering defined by K on Y .

The first systematic treatment of set relations in the context of ordered vector
spaces and its power sets is due to Kuroiwa, Tanaka and Ha [59] in 1997.

Definition 3.1 [59] Let A, B ∈ ℘0(Y ).

A ≤i B ⇔ B − A ⊂ K ⇔ a ≤ b for all b ∈ B, a ∈ A
A ≤i i B ⇔ there exists a ∈ A such that a ≤ b for all b ∈ B
A ≤i i i B ⇔ B ⊂ A + K
A ≤iv B ⇔ there exists b ∈ B such that a ≤ b for all a ∈ A
A ≤v B ⇔ A ⊂ B − K
A ≤vi B ⇔ there exist b ∈ B, a ∈ A such that a ≤ b.

It is easy to check that ≤k with k ∈ {i, i i, iv} are preferences such that the anti-
symmetric and reflexive properties do not hold while ≤k with k ∈ {i i i, v, vi} are
pre-orders on ℘0(Y ). In addition,

A ≤i
K B ⇒ A ≤i i B ⇒ A ≤i i i

K B ⇒ A ≤vi B

A ≤i
K B ⇒ A ≤iv B ⇒ A ≤v

K B ⇒ A ≤vi B.

In general, two nonempty sets A and B could not be related by ≤k for any k. Indeed,
let E = R

2 and K = R
2+ be. Then A = {(x + 2)2 + (y − 2)2 = 1} and B = {(x −

3)2 + (y + 3)2 = 1} satisfy that A �
vi B y B �

vi A.
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The authors defined the above set-relations on ℘0(Y ) to study generalized con-
vexity of a set-valued map. Since then, relations of a similar type have been proposed
for other authors, in several papers.

The most important property of set relations introduced in Definition3.1 is that
all of them generalize the ordering defined by K on Y in the sense of Definition1.3.
We emphasize that, in terms of optimality conditions, the set relations ≤i i i and ≤v

are called lower and upper set-relations (denoted by ≤l and ≤u) respectively. It is
clear that A ≤l B is equivalent to −B ≤u −A. In addition, it is possible to rewrite
them via −K instead of K .

So, Kuroiwa, Tanaka and Ha started developing a new approach to set-valued
optimization which is based on comparison among values of the set-valuedmap from
a set into a ordered vector space. At the same year, 1997, Kuroiwa [52] introduced
solutions for (SOP) in the sense of Definition1.2 by using ≤l and ≤u . Due to this
fact, the set criterion is also called in the literature Kuroiwa’s criterion. In order to
illustrate the set criterion we give a example.

Example 3.1 Let Y = R
2 and K = R

2+ be. 1. Consider F : M = [0,∞) −→ 2R
2

such that

F(x) =
{ {(0, 0)} x = 0[

(0, 0),
(−x, 1

x

)]
x �= 0

Then ≤l −Eff(F) = ∅ and Eff(F) = M.

2. Consider F : [−1, 0] −→ 2R
2
such that

F(λ) =
{ {(x,−x2) ∈ R

2 : − 1 < x ≤ 0} λ = −1[
(λ, 0), (λ,−λ2)

]
λ �= −1

Then ≤l −Eff(F) = {−1} and Eff(F) = ∅.

However, the set relations given in Definition3.1 have just been considered in
different frameworks many years ago, as is remarked in [19, 29, 46]. Firstly, Young
in 1931, [84] considered the above ret relations, among others, in terms of algebraic
structures. Fifty years before, Nishnianidze [75] studied theory of fixed points of
monotonic operators. That is the reason why Jahn in [46] called KNY order relations
to refer to set relations presented in Definition3.1.

Alonso and Rodríguez-Marín [5] proved that the study of the set optimization
problems: ≤l −Min F , ≤u −Min F ≤l −Max F and ≤u −Max F is reduced to
the study of the following ones: ≤l −Min F and ≤u −Min F . Moreover, one can
be solved by the other with a suitable definition of the objective map.

To end this section, we recall other set relations defined in set optimization theory.
In 2003, Kuroiwa [56, Definition2.1] introduced new binary relations on ℘0(Y )

which are weaker than ≤l and ≤u by using elements of the positive polar cone of K .
See also, [45].

On the other hand, by combining the set relations ≤l and ≤u we obtain the fol-
lowing pre-order on ℘0(Y )
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A ≤l
u B ⇔ A ≤l B and A ≤u B. (1)

In 2010, Maeda [71], working on n-dimensional Euclidean spaces, defined pref-
erences on ℘0(Y ) via the strong minimal and maximal elements of sets. The same
author, in [72] defined Pareto optimal solutions, semi-weak Pareto optimal solution,
and weak Pareto optimal solutions of (SOP) by considering ≤l

u .
Janh and Ha [48], in a more general framework, introduced new set relations

motivated by analysis interval and related with the above ones which generalize
those given by Maeda [72] and seem be more appropriate to set optimization theory
according to their applications.

In Löhne and Tammer [64] several set relations are presented on the family of all
subsets A of Y = R

n with cl(A + K ) = A (where cl denotes the topological closure)
to construct a pre-ordered conlinear space. See also, [62]. See also set relations given
in [58].

4 Classification of the Literature

In this section we recover the main results presented in the literatures of set-
optimization by using set approach. Several existence theorems for solutions of
(SOP) will be presented under a unified framework.

In the pioneering paper [52],Kuroiwa introduced the definitions of l-type solutions
or u-type solutions (by using ≤l or ≤u respectively) of (SOP) and a motivation for
the study of set optimization problems is given by means non academic examples.

Since 1997, when set criterion was introduced, the optimality conditions for solu-
tions of (SOP) are divided into two categories: those following results from the vector
case (using continuity, properties of a set, differentiability, scalarization, Lagrangian
duality, well-posedness and approximate solutions) and those obtained by applying
new results or tools.

In the sequel we list the main results related with the existence of solutions of
(SOP) from the beginning to up to now.

The first optimality conditions of l-type solutions of (SOP) were presented in
[54, Theorem4] by considering M compact and F a set-valued map with level sets
closed ([54, Definition2]) and, in addition, K closed and pointed. See also [53,
Theorem3.1].

In 2005, Alonso and Rodríguez-Marín [5] extended the definitions of cone-
semicompactness and domination property from a set to a family of sets. In addition,
in Proposition22, gave a sufficient condition of u-type solution by using a notion
of cone-regularity defined by subcovers of a family of subsets. See also [5, Corol-
lary24] to obtain a existence condition of u-type solution under M compact and
F lower cone-semicontinuous. A sufficient condition of l-type solution under M
compact and F upper cone-semicontinuous was given in [5, Propositions29 and 30].

Following the subcovers introduced in [5, Definition27], Hernández and
Rodríguez-Marín [35] introduced the notionof strongly some-compactness and cone-
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completeness for a family of sets to extend optimality conditions from the vector case
to the lower set relation case in Theorems4.1 and 4.6. Such results generalize those
presented in [69] for the vector case. In [35, Sect. 5], several optimality conditions
presented in [5, 55] are slightly improved. On the other hand, under assumptions of
generalized continuity, not only the existence of solutions is proven but also the dom-
ination property of the family {F(x) : x ∈ M} ([35, Definition4.3]) was established
in Corollaries5.5, 5.6 and 5.7 and Theorems 5.8 and 5.9.

Other definitions of semicompactness, completeness and semicontinuity and
related general theoretical properties with respect to a pre-order 
 on ℘0(Y ) was
given in [48] in a more general framework.

Also, assuming Y = R
n and K = R

n+ and considering the combined set-relation
≤l

u defined in (1), Maeda [72, Theorem4.1] gave a sufficient condition for a ≤l
u-

solution under compactness and generalized continuity.

Remark 4.1 The above results allow to state that the existence conditions of solutions
of set type are, in general, weaker that those of vector type and, in addition, several
existence results in vector optimization do not depend on linearity of the image space.

In terms of duality theory, Kuroiwa introduced a generalized Lagrangian as fol-
lows L(x, y, T ) = F(x) + T (y) (where T is a linearmap from X toY and y ∈ F(x))
and the dual problem associates to a constrained set optimization problem. He estab-
lished conditions of saddle points in [53, Theorem4.1] and [54, Theorem9]. Hernán-
dez andRodríguez-Marín [36, 37] generalized the aboveLagrangianmap by defining
L(x, T ) = F(x) + T (F(x)) (where T is an affine map from X to Y ) and gave weak
and strong duality theorems and saddle points results which extend those known in
the vector case. In [36, Sect. 3] and [37, Sect. 4], somemultiplier rules bymeans of an
affine linearmap under generalized convexity assumptionswere given by considering
l-type solutions of (SOP).

By using ≤i Lin and Chen [68] gave weak solutions and strong solutions of set
equilibrium problems and [43, Theorem5.5] established a Lagrange multiplier rule.

Alonso and Rodríguez-Marín [5, Theorems35 and 38] gave optimality conditions
for existence of strict solutions of (SOP) in terms of continuous selections of set-
valued maps. The same authors, in [6, Theorem25] established a necessary and
sufficient condition for the existence of weakly l-type solutions of (SOP) under
generalized convexity assumptions and contingent derivative of F .

Rodríguez-Marín and Sama in [79] gave a notion of following graphical derivative
of a set-valued map.

Definition 4.1 [79] Let X, Y be real normed spaces. Assume K is closed, strongly
minihedral and regular. The (�, C)-lower contingent derivative of F at x is the
set-valued map D�F(x) : X → 2Y defined by

Gra D�F(x) = Limsupt T (Gra ϕ�,t , (x, ϕ�,t (x))),

where T (A, z) with A ⊂ Y denotes the contingent cone to A at z ∈ A. Based on
ordered spaces techniques, the authors defined two types of contingent derivatives to
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set-valuedmaps and gave optimality conditions in terms of the contingent derivatives
for local l-type solutions of (SOP) in Theorems5.1, 5.2, 5.6 and 5.7. The obtained
results prove that the above derivative is suitable for the formulation of necessary and
sufficient conditions for set-valuedoptimizationproblems following the set approach.

In 2009, Kuroiwa [57] also presented directional derivatives based on an embed-
ding idea to establish necessary and sufficient conditions for a weakly minimal and
minimal solutions of (SOP).

Considering constrained optimization problems, Maeda [71, Theorems6 and 7]
established existence conditions for weakly ≤l

u-solutions by radial Dini derivatives
and lower and upper Dini derivatives of F .

Hernández and Rodríguez-Marín [39, Sect. 5] obtained optimality conditions for
the existence of solutions l-type solutions via weak and strong subgradients for a
set-valued map.

Remark 4.2 From the above results, it is clear that even notions on optimality con-
ditions in terms of differentiabily notions for set-valued maps is still an open issue
in set optimization.

In 2007, Hernández and Rodríguez-Marín [34, Sect. 4], by considering the pre-
order was defined by≤l , gave results on scalarization for (SOP) and characterized its
solutions without convexity assumptions for F a K -closed and K -bounded valued.
Hamel and Löhne [31] one year before had introduced a similar generalization to
give minimal element theorems. In this context, see also results given in [50, 61,
76, 81, 82]. Recently, Araya [8] presented new nonconvex separation theorems to
apply to set optimization by using ≤l and ≤u preferences. So, existence theorems of
weakly l-type minimal and weakly u-type minimal solutions via scalarizations were
given in Sect. 5.1 and a Takahashi’s minimization theorem in Sect. 5.2 was presented
in terms of set optimization.

Maeda [72] studied constrained set optimization problems with various types of
set solutions and, via scalarization, gave necessary and sufficient conditions under
compactness assumptions (Theorems4.2 and 4.3) and a characterization under con-
vexity assumptions (Theorem4.4).

Remark 4.3 We emphasize that in all the above papers devoted to scalarization, the
scalarizing function considered was a generalization of the Gerstewitz’s nonconvex
separation function introduced in [23] and extensively studied in [24].

Ha [27, Theorem3.1], by using strict l-type solutions, established a variant of
EVP for F (where X is a complete metric space). In Sects. 4 and 5, other variants
of the EVP by using conical extensions and the concept of cone extension and the
Mordukhovich coderivative (see [73, 74]) were established.

In Kuroiwa [56, Theorem3.5], via weight criteria, problem (SOP) was embed-
ded to a complete metric space to obtain an existence theorem for weakly efficient
solutions based on the Ekeland variational principle.

Also, in a frameworkmore general, Hamel and Löhne [31] obtained two existence
results for minimal of a family of subsets of the product space X × 2Y (where X is
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a separated uniform space) with respect to appropriate ordering relations on 2Y . As
application, the authors established a variant of Ekeland’s principle for a set-valued
optimization problem via generalizations of the functionals introduced in [23]. In
[13, Theorem3.5] by using ≤u the authors established a variational principle for
set-valued maps.

See also [25, Theorems5.1 and 5.2] for approximate variants of the EVP given
in [27, 31] and [20, Theorem6.2 and 6.3] for Ekeland variational principles on
quasi ordered spaces in a framework more abstract. In addition, considering rela-
tions between values of F and pre-orders generated by set-valued maps, in [67,
Theorems3.4 and 3.5] the authors directly expressed the Ekeland principle but in
terms of values of F .

Others generalizations of EVP for set-valued mappings and set approach are
given in [49] (via generalized distances) and [78, Theorem3.1] by considering strict
solutions of (SOP). By using a perturbed map (stability) of F see also, [34, Sect. 5].

In 2009, Zhang, Li and Teo [87] introduced three kinds of well-posedness for a set
optimization problem called k0-well posedness at a minimizer, generalized k0-well
posedness and extended k0-well-posedness (where k0 ∈ int(K )) and extended some
basic results of well-posedness of scalar optimization to set optimization by using a
generalization of the Gerstewitz’s function given in [34].

Compare the above results and the tools used with those presented in [26].
In [27, Theorem4.2]Ha defined properly positive efficient points in the framework

of set approach and gave a sufficient condition of approximated solution of the
perturbed map. Approximate solutions for problem (SOP) were also introduced in
[25, Defintion3.2] and [7, Definitions17 and 19].

About locating set solutions, in [38] using polyhedral cones Hernández and
Rodríguez-Marín extended the first theorem for locating the set of all efficient
points of a set through ordinary mathematical programming introduced by Yu [85].
Recently, in Löhne and Schrage [66] an algorithm which computes a solution of a
set optimization problem was provided.

5 Related Theories or Applications

In this section several papers related with the previous set relations are enumerated
to show its applicability.

On the one hand, to give optimality conditions in set-valued optimization theory,
several set relations have been used to generalize the convexity of a set-valued map
in [59], to give scalar representations of a vector optimization problem in [83], to
study conjugate duality in [62], to show continuity for set-valued maps under some
convexity assumptions in [60], to establish alternative theorems in [76] or to find
vector solutions in [41] where the set approach is used to reduce the feasible set of
(VOP). In addition, as we have shown in Sect. 4, several Ekeland-type principles are
developed in different frameworks by using pre-order or preferences on ℘0(Y ). In
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[13] the authors presentminimaxmethods in variational analysis, exactly, amountain
pass-type theorem.

Hamel, Löhne, Heyde and their collaborators have developed a new research
line in terms of infimum and supremum by using set-relations (which pre-serve the
structure of complete lattices) and definitions understood in the sense of solutions
like those defined in Remark1.2 (in which both criteria are implicitly considered).
Their results can be appropriate in terms of risk function in Finance. An overview of
such results can be found in [63] and references therein.

On the other hand, the preferences between nonempty sets have been also con-
sidered in other theories different to Optimization. For instance, to present existence
results for inclusion problems in [32] and to obtain fixed point theorems in [16, 17].

The relation defined in (1), among others, seems to bemore suitable in practice, for
instance, in the framework of interval analysis according to the basic investigations of
Chiriaev andWalster [15]. In addition, such set relations arewidely used in theoretical
computer sciences, see for example Brink [14] in where a study of power structures
in a universal-algebraic context is presented. For more details see [19, 48].

Since the seminal paper [86], fuzzy sets theory has been applied to various fields
of decision making theory including economics, management science and engineer-
ing widely. In [70] the notion of non-dominated solution is related with Kuroiwa’s
solution by using a both set relations, ≤l and ≤u , in terms of fuzzy mathematical
programming.

6 Conclusions

According to the previous sections, we can conclude that the analysis of Kuroiwa’s
concept deserves an exhaustive treatment. In addition, set optimization theory can be
considered as an area which is beginning since it is possible to identify future lines
of research from the existing literature.

The set-valued optimization theory by using the set criterion is a natural extension
of vector optimization theory. It is due to the published results allow to extend those
given the vector case. In addition, the research on set optimization has proven that
several existence results do not rely on linearity of the image space and therefore
they can be extended to set relations.

There is no doubt that many frameworks of optimization theory can be related
with set relations. However, a result which is worthy of being studied is an academic
example in where a solution criterion in terms of set relations is considered. Maybe
the main problem is to know what is the optimal alternative. It is clear that the set
criterion seems a natural extension of vector optimization theory and seems to have
the potential to become an important tool for many areas in optimization. In the
same direction, Jahn [46] asserts that such set relations open a new and wide field of
research and turn out to be promising in set optimization.

On the other hand, the set relations proposed in Kuroiwa, Tanaka and Ha [59],
among others, have been used as tools not only in optimization but also in others
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fields. Probably, fuzzy programming and analysis interval are areas in which the
practical point of view of the set approach is developed.

To summarize, asmentioned in Sect. 1, new relations ofmore general types should
be explored to find adequate applications. A goal of the present survey is to motivate
such a study.
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Linear Vector Optimization and European
Option Pricing Under Proportional
Transaction Costs

Alet Roux and Tomasz Zastawniak

Abstract A method for pricing and superhedging European options under propor-
tional transaction costs based on linear vector optimisation and geometric duality
developed by Löhne and Rudloff (Int. J. Theor. Appl. Finance 17(2): 1450012–1–
1450012–33, 2014) is compared to a special case of the algorithms for American
type derivatives due to Roux and Zastawniak (Acta ApplicandaeMathematicae, pub-
lished online 2015). An equivalence between these two approaches is established by
means of a general result linking the support function of the upper image of a linear
vector optimisation problem with the lower image of the dual linear optimisation
problem.

Keywords Option pricing · Superhedging · Transaction costs · Linear vector opti-
misation

1 Introduction

We compare two existingmethods for the computational pricing and superhedging of
European options in the presence of proportional transaction costs, and investigate the
relationships between them, highlighting their similarities, differences and relative
strengths.and dual constructions stated inSect. 3.3, goes back to [20, 21],where itwas
developed for the much more general class of American type derivative securities,
of which European options are a special case. The other method, which relies on
linear vector optimisation and geometric duality, was proposed by [17] and named
the SHP-algorithm by them; see Sect. 3.4.

As a by-product,we prove a general result establishing one-to-one correspondence
between the support function of the upper image of a linear vector optimisation
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problem on the one hand, and the lower image of the dual linear vector optimisation
problemon the other hand; see Proposition 2.1. This result provides a link between the
twomethods for pricing and superhedging European options, and it is also interesting
in its own right.

We work within the general model of a currency exchange market of [9], with
proportional transaction costs included in the form of exchange rate bid ask spreads.
This model has been extensively studied, for example, by [10, 11, 22].

All three algorithms, the primal construction, the dual construction and the SHP-
algorithm lend themselves well to computer implementation. For the primal and dual
constructions this has been done by [21] with the aid of the Maple package Convex
developed by [3]. To implement the SHP-algorithm [17] used Benson’s linear vector
optimisation technique; see [2, 4]. We illustrate the results by a numerical example
computed by means of the primal and dual constructions and compare this with a
similar example presented by [17], who employed the SHP-algorithm.

We conclude by suggesting a possible extension of the SHP-algorithm to hedge
and price the seller’s (short) position in an American option, and pointing out an
inherent difficulty in hedging and pricing the buyer’s (long) position in an American
option due to the essential non-convexity of the problem.

2 A General Duality Result

In this section we present a simple observation that links support functions with
duality in linear vector optimization. The relatedwork of [18] provides further insight
on the connection between support functions and duality. This result will prove useful
in comparing the various pricing and hedging algorithms in the following sections.

For a cone C ⊆ R
q we define a partial ordering ≤C on R

q by

y ≤C z ⇐⇒ z − y ∈ C

and denote by C+ the dual (or positive polar) cone of C , i.e.

C+ = {x ∈ R
q : xT y ≥ 0∀y ∈ C

}
.

In what follows we assume that C is a polyhedral cone with non-empty interior,
and there exists some c ∈ int C with cq = 1. Suppose that matrices P ∈ R

q×d and
B ∈ R

m×d and a vector b ∈ R
m are given, and consider the linear vector optimization

problem

minimize Px with respect to ≤C over x ∈ S, (P)

with feasible set

S = {x ∈ R
d : Bx ≥ b}.
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The upper image of problem (P) is the set

P = P[S] + C.

The dual problem to (P) is

maximize D∗(u, w) with respect to ≤K over (u, w) ∈ T, (D∗)

where the linear operator D∗ : Rm × R
q → R

q is defined as

D∗(u, w) = (w1, . . . , wq−1, bT u)T for (u, w) ∈ R
m × R

q ,

with K = cone{eq} for eq = (0, . . . , 0, 1) ∈ R
q , and with

T = {(u, w) ∈ R
m × R

q : u ≥ 0, BT u = PT w, cT w = 1, w ∈ C+}.

The lower image of problem (D∗) is the set

D∗ = D∗[T ] − K .

We now state and prove a general result that links the lower image D∗ of (D∗)
with the support function of −P , where P is the upper image of (P). The support
function Z : Rq → R of −P is defined as (see e.g. [19] p. 28)

Z(x) = sup
{

xT z : z ∈ −P} for all x ∈ R
q .

Note that Z(x) is the negative of a scalarization of P with respect to the weighting
vector x (see e.g. [15] Sect. 4.1.1). Thus the following result can be regarded as a
reformulation of strong geometric duality (see [15] Theorems 4.40, 4.41) by means
of the family of scalarizations of P .

Proposition 2.1 If C contains no lines, i.e. if C ∩ (−C) = {0}, then

D∗ =
{

w ∈ R
q : −wq ≥ Z

(

w1, . . . wq−1, 1 −
q−1∑

i=1

ciwi

)}

, (2.1)

Z(w) =
⎧
⎨

⎩

− sup
{

y ∈ R : 1
cT w

(
w1, . . . , wq−1, y

) ∈ D∗} if cT w > 0,
0 if w = 0,
∞ otherwise.

(2.2)

Proof If C contains no lines, then Theorems 4.40 and 4.41 of [15] (see also [4]
Remark 3.7) give

D∗ = {w ∈ R
q : ϕ(y, w) ≥ 0∀y ∈ P} ,

where the bi-affine coupling function ϕ : Rq × R
q → R is defined as
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ϕ(y, w) =
q−1∑

i=1

yiwi + yq

(

1 −
q−1∑

i=1

ciwi

)

− wq for (y, w) ∈ R
q × R

q .

The function ϕ was first introduced for the special case c = (1, . . . , 1)T by [7] and
for general c by [17].

Observe that ϕ(y, w) ≥ 0 for all y ∈ P if and only if

−wq ≥
q−1∑

i−1

yiwi + yq

(

1 −
q−1∑

i=1

ciwi

)

for all y ∈ −P,

that is, if and only if

−wq ≥ sup

{
q−1∑

i−1

yiwi + yq

(

1 −
q−1∑

i=1

ciwi

)

: y ∈ −P
}

= Z

(

w1, . . . wq−1, 1 −
q−1∑

i=1

ciwi

)

.

This proves (2.1).
Now take any w ∈ R

d such that cT w > 0. Then −y ≥ Z(w) is equivalent to
− y

cT w
≥ Z

(
w

cT w

)
since the support function is positively homogeneous. By (2.1),

the last inequality is in turn equivalent to 1
cT w

(
w1, . . . , wq−1, y

) ∈ D∗. This shows
that

Z(w) = − sup {y ∈ R : −y ≥ Z(w)}
= − sup

{
y ∈ R : 1

cT w

(
w1, . . . , wq−1, y

) ∈ D∗
}

when cT w > 0. If w = 0, then Z(w) = 0 by the definition of the support func-
tion. Finally, take any w = 0 such that cT w ≤ 0. Since c ∈ int C , there is an ε > 0
such that c − εw ∈ C . It follows that (c − εw)T w = cT w − εwT w < 0 because
wT w > 0. As P = P + C , for any fixed x ∈ P and for each λ > 0 we have
x + λ(c − εw) ∈ P . Hence, by the definition of the support function,

Z(w) ≥ − (x + λ(c − εw))T w = −xT w − λ(c − εw)T w

for each λ > 0. Since (c − εw)T w < 0, this means that Z(w) = ∞, completing the
proof of (2.2). �

Remark 2.2 According to Proposition 2.1,

D∗ = {(w1, . . . , wq−1, y) ∈ R
q : (w, y) ∈ − epi Z , cT w = 1

}
, (2.3)
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so D∗ can be identified with the section of the cone − epi Z by the hyperplane
{(w, y) ∈ R

q × R : cT w = 1} in R
q+1. The convex set D∗ (which depends on c)

captures the same information as the support function Z . This is remarkable given
that Z is independent of the arbitrary choice of c. Also note the similarity between
(2.3) and the representation by [6, p. 828] of the dual image in a more general setting.

This section concludes with a simple example.

Example 2.3 Suppose that

P =
(
1 −1
1 1

)
, B =

⎛

⎜⎜
⎝

2 1
1 2
1 0
0 1

⎞

⎟⎟
⎠ , b =

⎛

⎜⎜
⎝

6
6
0
0

⎞

⎟⎟
⎠ , C = cone

{(−3
1

)
,

(
1
2

)}
,

and fix c = (0, 1)T ∈ int C . For this data we have

P = {(z1, z2) ∈ R
2 : z2 ≥ 1

3 z1 + 4, z2 ≥ z1, z2 ≥ − 1
3 z1 + 4},

D∗ = {(w1, y) ∈ R
2 : −1 ≤ w1 ≤ 1

3 , y ≤ 4, y − 6w1 ≤ 6}

(full details in [16] Example 6.4]. The sets P and D∗ are represented graphically in
Fig. 1.

The support function Z is finite on its effective domain, which consists of vectors
w ∈ R

2 such that xT w ≤ 0 for each x ∈ −P , so

dom Z = {w ∈ R
2 : Z(w) < ∞} = {(w1, w2) ∈ R

2 : w2 ≥ −w1, w2 ≥ 3w1}.

For each w ∈ dom Z the linear function x �→ xT w takes a maximum at one of the
extreme points (0,−4), (−6,−6) of the convex set −P , hence

Z(w) = sup{xT w : x ∈ −P} = max{−4w2,−6w1 − 6w2}.

This means that

z1−6 6

z2

4

6

P

w1− 1
3

−1 1
3

y

8

4

D∗

Fig. 1 Upper and lower images in Example 2.3
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{(w1, y) ∈ R
2 : (w, y) ∈ − epi Z , cT w = 1}

= {(w1, y) ∈ R
2 : y ≤ −Z(w1, w2), (w1, w2) ∈ dom Z , w2 = 1}

= {(w1, y) ∈ R
2 : y ≤ −Z(w1, 1),−1 ≤ w1 ≤ 1

3 }
= {(w1, y) ∈ R

2 : y ≤ 4, y ≤ 6w1 + 6,−1 ≤ w1 ≤ 1
3 } = D∗.

This identifies D∗ with the section of − epi Z by the hyperplane

{(w, y) ∈ R
2 × R : cT w = 1} = {(w1, w2, y) ∈ R

3 : w2 = 1}.

3 Pricing and Hedging European Options Under
Proportional Transaction costs

3.1 Currency Model

Themodel is based on a filtered probability space (�,F ,P; (Ft )
T
t=0).We assume that

� is finite, that F0 = {∅,�}, that FT = F = 2� and that P(ω) > 0 for all ω ∈ �.
For each t denote by �t the collection of atoms of Ft , called the time t nodes of the
associated stock price tree model. Note that�0 = {�} and�T = {{w} : ω ∈ �}. For
every t < T a node ν ∈ �t+1 is said to be a successor of a node μ ∈ �t if ν ⊆ μ.
We denote for all μ ∈ �t

succμ = {ν ∈ �t+1 : ν a successor of μ}.

For each t let Lt = L0(Rd;Ft ) be the collection of Ft -measurable R
d -valued

random variables. We identify elements of Lt with functions on �t whenever con-
venient.

We consider the discrete-time currency model introduced by [9] and stud-
ied by others. The model contains d assets or currencies. At each trading date
t = 0, 1, . . . , T one unit of each asset k = 1, . . . , d can be obtained by exchang-
ing π

jk
t > 0 units of asset j = 1, . . . , d. We assume that the exchange rates π

jk
t are

Ft -measurable and π
j j

t = 1 for all t and j, k.
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We say that a portfolio x ∈ Lt can be exchanged into a portfolio y ∈ Lt at time t
whenever there are Ft -measurable random variables β jk ≥ 0, j, k = 1, . . . , d such
that for all k = 1, . . . , d

yk = xk +
d∑

j=1

β jk −
d∑

j=1

βk jπ
k j
t ,

where β jk represents the number of units of asset k received as a result of exchanging
some units of asset j .

The solvency cone Kt ⊆ Lt is the set of portfolios that are solvent at time t , i.e.
those portfolios at time t that can be exchanged into portfolios with non-negative
holdings in all d assets. It is straightforward to show that Kt is the convex cone
generated by the canonical basis e1, . . . , ed of Rd and the vectors π

jk
t e j − ek for

j, k = 1, . . . , d, and so Kt is a polyhedral cone. Note that Kt contains all the non-
negative elements of Lt .

A self-financing strategy y = (yt )
T
t=0 is a predictableR

d -valued process (i.e. y0 ∈
L0 and yt ∈ Lt−1 for t = 1, . . . , T ) such that

yt − yt+1 ∈ Kt for all t = 0, . . . , T − 1

Here y0 ∈ L0 is the initial endowment, and yt ∈ Lt−1 for each t = 1, . . . , T is the
portfolio held from time t − 1 to time t . Let 
 be the set of self-financing strategies.

A self-financing strategy y = (yt ) ∈ 
 is called an arbitrage opportunity if y0 = 0
and there is a portfolio x ∈ LT \ {0} with non-negative holdings in all d assets such
that yT − x ∈ KT . This notion of arbitrage was considered by [22], and its absence
is formally different but equivalent to the weak no-arbitrage condition introduced by
[11].

Theorem 3.1 ([11, 22]) The model admits no arbitrage opportunity if and only if
there exists a probability measure Q equivalent to P and an R

d -valued Q-martingale
S = (St ) such that

St ∈ K+
t \ {0} for all t, (3.1)

where K+
t is the dual cone of Kt .

Remark 3.2 Apair (Q, S) satisfying the conditions in Theorem3.1 is called a consis-
tent pricing pair. In place of such a pair (Q, S) one can equivalently use the so-called
consistent price process StEP(

dQ
dP |Ft ); see [22].

3.2 European Options

A European option with expiry time T > 0 and payoff ξ ∈ LT is a contract that
gives its holder (i.e. the option buyer) the right to receive a portfolio ξ of currencies
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at time T . On the other hand, the writer (seller) of the option is obliged to deliver
this portfolio to the buyer.

To hedge against this liability the writer can follow a self-financing strategy y ∈ 


such that yT − ξ ∈ KT . The initial endowment y0 of such a strategy y is called a
superhedging portfolio, and the strategy y itself is called a superhedging strategy for
the European option ξ .

The ask price (seller’s price, superhedging price)πa
i (ξ) of the European option in

currency i = 1, . . . , d can be understood as the lowest value x such that the portfolio
consisting of x units of currency i and no other currency is a superhedging portfolio
for ξ . In other words,

πa
i (ξ) = min

{
x ∈ R : xei is a superhedging portfolio for ξ

}
.

On the other hand, to hedge his position the option buyer would like to follow
a self-financing strategy y ∈ 
 such that yT + ξ ∈ KT . Here −y0 is a portfolio of
currencies which the option buyer could borrow at time 0 and would be able to settle
later by following the strategy y and using the payoff ξ to be received on exercising
the option at time T . We call −y0 a subhedging portfolio and −y a subhedging
strategy for the European option ξ .

The bid price (buyer’s price, subhedging price) πb
i (ξ) of the European option in

currency i = 1, . . . , d can be understood as the highest value x such that the portfolio
consisting of x units of currency i and no other currency is a subhedging portfolio
for ξ ,

πb
i (ξ) = max

{
x ∈ R : xei is a subhedging portfolio for ξ

}
.

It is the highest amount in currency i that an option holder could raise by using the
option as collateral.

Observe that −y is a subhedging strategy for a European option ξ if and only if
y is a superhedging strategy for −ξ . It follows immediately that

πb
i (ξ) = −πa

i (−ξ).

Because of these relationships it is sufficient to develop algorithms for hedging and
pricing the seller’s (short) position in a European option.

3.3 Primal and Dual Constructions

The constructions presented here for European options are a special case of those
developed by [21] to hedge and price the much wider class of American type options
under proportional transaction costs. Construction 4.2 in [21], which produces the
set of superhedging portfolios, takes a particularly simple form in this special case:

• For each ω ∈ �T put
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Zω
T = ξω + Kω

T .

• If Zt+1 has already been constructed for some t = 0, 1, . . . , T − 1, then for each
ω ∈ �t put

Wω
t =

⋂

ω′∈succω

Zω′
t+1,

Zω
t = Wω

t + Kω
t

(To link this with Construction 4.2 in [21] observe that the formula for Wt can be
written concisely as Wt = Zt+1 ∩ Lt .)

For each t the setZt consists of all portfolios that allow the seller to hedge the option
by following a self-financing strategy between times t and T . In particular, Z0 is the
set of superhedging portfolios. The ask price of the option can be expressed in terms
of Z0 as

πa
i (ξ) = min

{
x ∈ R : xei ∈ Z0

}
. (3.2)

The above construction involves two standard operations on polyhedral convex
sets, namely the intersection of finitelymany such sets and the algebraic sumof such a
set and a polyhedral convex cone.Both operations can be implemented using standard
geometric methods in existing software libraries, for example, Parma Polyhedra
Library [1] and PolyLib [8, 13, 14, 23, among others]. As soon as the set Z0 of
superhedging portfolios has been computed in this manner, it becomes a routine task
to evaluate the option price πa

i (ξ) using (3.2). Roux and Zastawniak [21] provided
a numerical implementation of this procedure for hedging and pricing European
options (and much more generally, American type options) in currency markets with
transaction costs by using the Maple package Convex [3].

Moreover, once the Zt have been constructed, it is straightforward to compute a
superhedging strategy starting from any superhedging portfolio y0 ∈ Z0. Namely, if
yt ∈ Zt has already been computed for some t = 0, 1, . . . , T − 1, we can take yt+1 ∈
(yt − Kt ) ∩ Wt . The intersection is non-empty since Zt = Wt + Kt , so it is always
possible to find such yt+1, though it may be non-unique. The self-financing condition
yt − yt+1 ∈ Kt is clearly satisfied. Moreover, since Wt = Zt+1 ∩ Lt , it follows that
yt+1 is Ft -measurable, so y constructed in this manner will be a predictable process.
It also follows that yt+1 ∈ Zt+1, which makes it possible to iterate the procedure.

It is also possible to follow the construction using convex dual objects to the Zt .
We introduce the support functions

Zt (x) = sup
{

xT z : z ∈ −Zt
}
, Wt (x) = sup

{
xT z : z ∈ −Wt

}

and the linear function



168 A. Roux and T. Zastawniak

U (x) = −xT ξ

defined for all x ∈ R
d . If we need to make the dependence on ω ∈ � explicit in these

functions, we shall write Zω
t , W ω

t , Uω. The above construction (we call it the primal
construction) can now be written in the following equivalent form (called the dual
construction); see Lemma 5.5 in [21]:

• For each ω ∈ �T

Zω
T =

{
Uω on K+ω

T ,

∞ otherwise.

This is the linear function Uω restricted to the domain K+ω
T .

• Suppose that Zt+1 has been constructed for some t = 0, 1, . . . , T − 1. Then, for
each node ω ∈ �t let W ω

t be the convex hull of the family of convex functions
Zω′

t+1 indexed by ω′ ∈ succω, and let Zω
t be the restriction of W ω

t to the domain
K+ω

t :

W ω
t = conv

{
Zω′

t+1 : ω′ ∈ succω
}

,

Zω
t =

{
W ω

t on K+ω
t ,

∞ otherwise.

Once Z0 has been computed, the ask price of the option can be obtained as (see
Theorem 4.4 in [21])

πa
i (ξ) = −min

{
Z0(x) : x ∈ R

d , xi = 1
}
.

This dual construction also lends itself well to computer implementation. Taking
the convex hull of finitely many polyhedral convex functions and restricting the
domain of such a function to a given polyhedral convex cone are operations equivalent
to some standard operations on polyhedral convex sets, which are widely available
in computer packages such as the Convex library in Maple used by [21].

Observe that the dual construction, which follows from Lemma 5.5 in [21] spe-
cialised to the case of European options, is equivalent to the construction in Corol-
lary 6.3 of [17]. The only difference is that the dual construction is expressed in
terms of the support functions Zt and Wt , whereas [17] use Ṽt (x) = −Zt (x) and
Vt (x) = −Wt (x) defined for all x’s on the hyperplane in R

d given by the condition
xi = 1. Both are a straightforward extension to d assets of the construction stated in
Algorithm 4.1 of [20] in the case of 2 assets.
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3.4 SHP-Algorithm

Löhne and Rudloff [17] consider the same problem of pricing and hedging European
options (though not options of American type). In particular, the same sets as in the
primal construction above are denoted by [17] as

SH Pt (ξ) = Zt .

These authors propose a different construction of the Zt based on linear vector
optimisation methods and geometric duality.

From this perspective, S = Wt can be viewed as the feasible set of a linear vector
optimisation problem (P). If the solvency cone Kt contains no lines, which means
that there are non-zero transaction costs between any two currencies, then the matrix
P in (P) is just the d × d unit matrix, and the ordering cone is C = Kt . The upper
image of the linear vector optimisation problem (P) is

P = P[S] + C = Wt + Kt = Zt .

Because C contains no lines, Benson’s algorithm, see [2] or [4], can be applied to
compute a solution to the dual problem (D∗) and hence the corresponding lower
image D∗. The Benson algorithm yields simultaneously a solution to (P) and gives
the upper image P = Zt . We know from Proposition 2.1 that if C contains no lines,
then D∗ can be identified with a section of the epigraph of the support function Z of
−P . SinceP = Z t , it follows that Z = Zt is the function from the dual construction
in Sect. 3.3.

A complication arises when the solvency cone Kt contains some lines, which
means that there are currencies which can be exchanged into one another without
incurring any transaction costs. This is dealt with by taking P to be the matrix
representing the so-called liquidationmap, a linearmapwhich amounts to liquidating
all but one of the assets that can be exchanged into one another without transaction
costs; see (4.1) in [17] for the precise definition of P . In this caseC = P[Kt ] contains
no lines because there are no longer any assets that can be exchanged into one another
without transaction costs. Then the upper image of the linear vector optimisation
problem (P) is

P = P[S] + C = P[Wt + Kt ] = P[Zt ].

Since C contains no lines, Benson’s algorithm can also be applied in this case to
compute a solution to the dual problem (D∗) and hence the corresponding lower
image D∗. The Benson algorithm yields simultaneously a solution to (P) and gives
the upper image P = P[Zt ]. This then givesZt = {x ∈ Lt : Px ∈ P} as the inverse
image of P under P . Once again by Proposition 2.1, since C contains no lines,
it follows that D∗ can be identified with a section of the epigraph of the support
function Z of −P = −P[Zt ]. This is related to Zt , the support function of −Zt , by
Z(x) = Zt (PT x).
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4 Example

In this sectionwe present an example to illustrate the numerical procedures discussed
in Sect. 3.3. Consider a model involving three assets, with time horizon τ = 1 and
with T = 4 time steps. Two of the assets are risky with correlated returns, and
follow the two-asset recombinant [12] model with Cholesky decomposition. That
is, there are (t + 1)2 possibilities for the stock prices St = (S1, S2) at each time
step t = 0, . . . , T , indexed by pairs ( j1, j2)where 1 ≤ j1, j2 ≤ t + 1, and each non-
terminal node with stock price St ( j1, j2) has four successors, associated with the
stock prices St+1( j1, j2), St+1( j1 + 1, j2), St+1( j1, j2 + 1) and St+1( j1 + 1, j2 + 1).
With  = τ

T defined for convenience, the stock prices are given by

S1
t ( j1, j2) = S1

0e
(

r− 1
2 σ 2

1

)
t+ (2 j1 − t − 2)σ1

√

,

S2
t ( j1, j2) = S2

0e
(

r− 1
2 σ 2

2

)
t+

(
(2 j1 − t − 2)ρ+(2 j2−t−2)

√
1−ρ2

)
σ2

√


for t = 0, . . . , T and j1, j2 = 1, . . . , t + 1,where S1
0 = 45 and S2

0 = 50 are the initial
stock prices, σ1 = 15 and σ2 = 20% are the volatilities of the returns and ρ = 20%
is the correlation between the log returns on the two stocks. The third asset is a
risk-free bond with nominal interest rate r = 5% and value process

Bt = (1 + r)−(T −t) for t = 0, . . . , T .

Proportional transaction costs are introduced by allowing the asset prices to have
constant (proportional) bid-ask spreads, i.e. the bid and ask prices are

S1b
t = (1 − k1)S1

t , S1a
t = (1 + k1)S1

t ,

S2b
t = (1 − k2)S2

t , S2a
t = (1 + k2)S2

t ,

Bb
t = (1 − k3)Bt , Ba

t = (1 + k3)Bt

for t = 0, . . . , T , where k1 = 2, k2 = 4 and k3 = 1%. The matrix of exchange rates
at each time step t is then

⎛

⎝
π11

t π12
t π13

t
π21

t π22
t π23

t
π31

t π32
t π33

t

⎞

⎠ =

⎛

⎜⎜
⎝

1 S2a
t

S1b
t

Ba
t

S1b
t

S1a
t

S2b
t

1 Ba
t

S2b
t

S1a
t

Bb
t

S2a
t

Bb
t

1

⎞

⎟⎟
⎠ ,

and the solvency cone is

Kt = cone

⎧
⎨

⎩

⎛

⎝
S2a

t
−S1b

t
0

⎞

⎠ ,

⎛

⎝
Ba

t
0

−S1b
t

⎞

⎠ ,

⎛

⎝
−S2b

t
S1a

t
0

⎞

⎠ ,

⎛

⎝
0

Ba
t

−S1b
t

⎞

⎠ ,

⎛

⎝
−Bb

t
0

S1a
t

⎞

⎠ ,

⎛

⎝
0

−Bb
t

S2a
t

⎞

⎠

⎫
⎬

⎭
.



Linear Vector Optimization and European … 171

This model was also considered by [17, Section5.2]; note that the assets have been
reordered in the present paper.

Consider an exchange option with physical delivery and payoff

ξ = (1{S1a
T ≥S2a

T },−1{S1a
T ≥S2a

T }, 0)

that matures at time step T . [17, Example 5.3] reported

SH P0 = conv

⎧
⎨

⎩

⎛

⎝
0.584

−0.260
−7.760

⎞

⎠ ,

⎛

⎝
0.498

−0.331
0.000

⎞

⎠ ,

⎛

⎝
0.347

−0.446
13.341

⎞

⎠

⎫
⎬

⎭
+ K0,

and gave the ask price of the exchange option in terms of the bond as

πa
3 (ξ) = 7.418.

The boundary of SH P0 is depicted in Fig. 2. Application of the primal construction
in Sect. 3.3 produces

Z0 = conv

⎧
⎨

⎩

⎛

⎝
0.584

−0.260
−7.760

⎞

⎠ ,

⎛

⎝
0.498

−0.331
0.000

⎞

⎠ ,

⎛

⎝
0.399

−0.406
8.714

⎞

⎠ ,

⎛

⎝
0.424

−0.388
6.564

⎞

⎠

⎫
⎬

⎭
+ K0,

from which the ask price of the exchange option in terms of each of three assets can
be computed as

πa
1 (ξ) = 0.152, πa

2 (ξ) = 0.146, πa
3 (ξ) = 7.418.

There is substantial agreement between SH P0 and Z0, which can be confirmed
visually (see Fig. 2), and in view of the agreement on the ask price πa

3 (ξ), we ascribe
the differences in the specifications of SH P0 and Z0 to the error level chosen in

SHP0 Z0

Fig. 2 Boundary of the set of superhedging endowments
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Fig. 3 Lower image D∗
0

associated with Z0

Benson’s algorithm. Finally, application of the dual construction in Sect. 3.3 produces
the support function Z0 of −Z0. The set

D∗
0 = {(w1, w2, y) : y ≤ −Z0(w1, w2, 1)}

is the lower image of the dual problem (D∗) with the choice c = (0, 0, 1)T . It has 12
vertices
⎛

⎝
48.726
51.930
7.081

⎞

⎠ ,

⎛

⎝
48.726
51.681
7.178

⎞

⎠ ,

⎛

⎝
45.888
54.050
4.981

⎞

⎠ ,

⎛

⎝
48.726
55.201
5.702

⎞

⎠ ,

⎛

⎝
45.888
49.946
6.048

⎞

⎠ ,

⎛

⎝
48.726
50.955
7.418

⎞

⎠ ,

⎛

⎝
48.573
50.796
7.395

⎞

⎠ ,

⎛

⎝
47.761
49.946
7.141

⎞

⎠ ,

⎛

⎝
46.565
54.907
5.012

⎞

⎠ ,

⎛

⎝
46.815
55.201
4.982

⎞

⎠ ,

⎛

⎝
46.405
54.718
5.018

⎞

⎠ ,

⎛

⎝
45.888
54.108
4.962

⎞

⎠ ,

and is depicted in Fig. 3. The maximum of D∗
0 in the y-direction is

πa
3 (ξ) = 7.418.

We conclude this numerical example by demonstrating the procedure of finding
a superhedging strategy y = (yt )

T
t=0 starting from the initial endowment

y0 = (0, 0, πa
3 (ξ))T ∈ Z0

along the price path in Table1. At each time step t the portfolio yt (indicated by a
dot on the graph of the boundary of Zt in Table1) is rebalanced into a portfolio

yt+1 ∈ (yt − Kt ) ∩ Wt ⊆ Zt+1.

As can be seen in Table1, for this particular path the set (yt − Kt ) ∩ Wt is a singleton
at time steps t = 0 and t = 1, which means that there is only one choice for yt+1. At
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Table 1 Superhedging strategy along a path
t (j1, j2) yt Zt (yt − Kt) ∩ Wt

0 (1,1)

⎛
⎝
0.000
0.000
7.418

⎞
⎠

⎧⎨
⎩

⎛
⎝

0.498
−0.331
0.000

⎞
⎠

⎫⎬
⎭

1 (2,1)

⎛
⎝

0.498
−0.331
0.000

⎞
⎠

⎧⎨
⎩

⎛
⎝

0.641
−0.491
0.000

⎞
⎠

⎫⎬
⎭

2 (2,1)

⎛
⎝

0.641
−0.491
0.000

⎞
⎠

3 (3,2)

⎛
⎝

0.641
−0.491
0.000

⎞
⎠

4 (3,2)

⎛
⎝

0.641
−0.491
0.000

⎞
⎠ N/A
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time steps t = 2 and t = 3 this set is a convex polytope, and the choice of yt+1 is no
longer unique, which means that other considerations (e.g. a preference for holding
one asset over another, or a preference not to trade) may be used to select yt+1 in
(yt − Kt ) ∩ Wt . In this demonstration we adopted a minimum-trading rule, that is,
whenever possible we selected yt+1 = yt . At the final time step t = 4 we have

y4 − ξ =
⎛

⎝
0.641

−0.491
0.000

⎞

⎠−
⎛

⎝
1.000

−1.000
0.000

⎞

⎠ =
⎛

⎝
−0.359
0.509
0.000

⎞

⎠ ∈ K4.

5 Representation of Superhedging Price

In this section we briefly present and compare the result of [17, 21] concerning the
representation of the superhedging price of a European option in terms of risk-neutral
expectations of the payoff ξ :

πa
i (ξ) = sup

(Q,S)∈P i

EQ((ξ T ST )), (5.1)

where P i is the set of pairs (Q, S) consisting of a probability measure Q and an
R

d -valued martingale S under Q satisfying the conditions of Theorem 3.1 and such
that Si

t = 1 for each t = 0, . . . , T .
In Theorem 6.1 of [17] this result was proved under the so-called robust no-

arbitrage condition of [22] and subject to the simplifying assumption that the solvency
cone Kt contains no lines for any t (that is, the transaction costs are non-zero for any
t). Their proof is based on the scalarisation procedure of [5] for the dual representation
of the set SH P0 of superhedging portfolios.

By comparison, the result in [21] is free of these restrictions: it works under the
assumption that there is no arbitrage opportunity as defined in Sect. 3.1, which is
weaker than the robust no-arbitrage condition, and without the need to assume that
the solvency cone Kt contain no lines. It is also a much more general result that
applies to American type derivatives, which reduces to (5.1) for European options.
The proof is based on the dual construction from Sect. 3.3, which can in fact be used
to produce a pair (Q, S) that realises the supremum in (5.1) (though in general such
a pair does not lie in P i as Q may be a degenerate measure, absolutely continuous
with respect to but not necessarily equivalent to P).
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6 Conclusions

Wehave established a close link, indeed an equivalence between the three approaches:
the above primal and dual constructions and the SHP-algorithm of [17]. The primal
construction involves primal objects only. The dual construction deals exclusively
with dual objects (support functions). Meanwhile, the SHP-algorithm switches back
and forth between primal and dual objects (in this case the lower images of the dual
problem (D∗). By Proposition 2.1, these two types of dual objects are in one-to-one
correspondence, which means that the apparent differences between the algorithms
are merely superficial.

Moreover, all three approaches lend themselves well to numerical implementa-
tion: the primal and dual constructions utilise available software libraries for handling
convex sets, whereas the SHP-algorithm makes an innovative use of Benson’s pro-
cedure. In both approaches the procedure limiting computational efficiency is vertex
enumeration. An advantage offered by Benson’s algorithm is the ability to control the
accuracy versus efficiency by choosing an error level. On the other hand, the Maple
package Convex used by [21] employs exact arithmetic with rational numbers, hence
there is no rounding beyond the conversion (as accurate as one needs it to be) of input
data from real to rational numbers. While accurate rational arithmetic carries obvi-
ous computational overheads, the primal and dual algorithms are efficient enough so
this does not become a problem in realistic multi-step and multi-asset examples that
have been investigated, where the computation times were of the order of a couple
of minutes on a standard PC machine.

One major difference as compared with the SHP-algorithm approach is that the
primal and dual constructions have been developed in [21] for the much wider class
of American type options, and can handle early exercise problems. In this context,
European options are a particularly straightforward special case. It remains an open
question whether or not the SHP-algorithm of [17] could be extended to American
options, at least in the case of hedging and pricing the seller’s position. It would be
exciting to see this happen.

On the other hand, there are limits to what can be expected of the SHP-algorithm.
American options present a particular obstacle that this approach is unlikely to be
able to overcome.Namely, the case of hedging and pricing the buyer’s (rather than the
seller’s) position in an American option leads to a non-convex optimisation problem,
which is unlikely to yield to the power of linear vector optimisation methods and
geometric duality. For the same reason, the dual construction collapses as there
are no convex dual objects to work with in the first place. Nonetheless, the primal
construction can still be adapted to handle this case; see Example 7.1 in [21] for
details.
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1 Introduction

Let L0 be the set of all real-valued measurable functions on a σ -finite measure space
(�,F , μ), where two of them are identified if they agree μ-almost everywhere. The
purpose of this paper is to study the set (L0)d of all d-dimensional vectors with com-
ponents in L0 and functions f : (L0)d → L0. Its main motivation are applications
in the following two special cases:

• If μ is a probability measure, the elements of L0 are random variables, and
subsets C ⊆ (L0)d can be understood as random sets in R

d . A typical function
f : (L0)d → L0 would, for example, be amapping that conditionally onF , assigns
to every random point X ∈ (L0)d its Euclidean distance to C .

• Let (�,G, μ)be the product of aσ -finitemeasure space (T,H, ν) and a probability
space (E, E, P). If F is a sub-σ -algebra of G, the elements of L0 are stochastic
processes (Xt )t∈T on (E, E, P). A subset C ⊆ (L0)d could, for instance, describe
the set of admissible strategies in a stochastic control problem, and an optimal
strategy could be characterized as the conditional optimizer of an appropriate
function f : (L0)d → L0 over C .

Unless� is the union of finitely many atoms, (L0)d is an infinite-dimensional vector
space over R. But conditioned on F , it is only d-dimensional. Or put differently,
it is a free module of rank d over the ring L0. This allows us to derive conditional
analogs of classical results from linear algebra, real analysis and convex analysis that
depend on the fact thatRd is a finite-dimensional vector space. L0-modules have been
studied before; see, for instance, Filipović et al. [4], Kupper and Vogelpoth [9], Guo
[6], Guo [7] and the references in these papers. But since we consider free modules
of finite rank, we are able to provide stronger results under weaker assumptions, and
moreover, do not need Zorn’s lemma or the axiom of choice. Our approach differs
from standardmeasurable selection arguments in that weworkmodulo null-sets with
respect to themeasureμ and do not useω-wise arguments. This has the advantage that
one never leaves the world of measurable functions. But it only works in situations
where a measure μ is given, and the quantities of interest do not depend on μ-null
sets.

The results in this paper are theoretical. But they have already been applied several
times: in Cheridito and Hu [1], they were used to describe stochastic constraints and
characterize optimal strategies in a dynamic consumption and investment problem. In
Cheridito and Stadje [3] they guaranteed the existence of a conditional subgradient.
In Cheridito and Stadje [3] they were applied to show existence and uniqueness of
economic equilibria in incomplete market models.

The structure of the paper is as follows: In Sect. 2 we investigate when an L0-
submodule of (L0)d is finitely generated. Then we study conditional orthogonality
and introduce L0-affine sets, L0-convex sets and L0-convex cones. It turns out that the
notion of σ -stability plays a crucial role. In Sect. 3 we investigate almost everywhere
converging sequences in (L0)d and the corresponding notion of closure. We define
L0-linear and L0-affine functions f : (L0)d → (L0)k and show that they are contin-
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uous with respect to almost everywhere converging sequences. We also give a condi-
tional version of the Bolzano–Weierstrass theorem and show that conditional Cauchy
sequences converge. Moreover, we define L0-bounded sets and give a condition for
L0-convex sets to be L0-bounded. In Sect. 4 we study sequentially semicontinuous
and L0-convex functions f : (L0)d → L0 and prove a result which guarantees that
a conditional optimization problem has an optimal solution. Section5 is devoted
to L0-open sets, interiors and relative interiors. L0-open sets form a topology, but
they are not complements of sequentially closed sets. In Sect. 6 we give strong,
weak and proper separation results of L0-convex sets by L0-hyperplanes. Section7
studies L0-convex functions and introduces conditional notions of differentiability,
directional derivatives, subgradients and convex conjugation.We also provide results
on the existence of conditional subgradients and give a conditional version of the
Fenchel–Moreau theorem. In Sect. 8 we study conditional inf-convolutions.
Notation. We assume μ(�) > 0 and define F+ := {A ∈ F : μ[A] > 0}. By L we
denote the set of all measurable functions X : � → R ∪ {±∞}, where two of them
are identified if they agree a.e. (almost everywhere). In particular, for X, Y ∈ L ,
X = Y , X > Y and X ≥ Y will be understood in the a.e. sense. Analogously, for
sets A, B ∈ F , we write A = B if μ[A�B] = 0 and A ⊆ B if μ[A \ B] = 0. The
set L0 := {X ∈ L : |X | < ∞} with the a.e. order is a lattice ordered ring, and every
non-empty subsetC of L has a least upper bound and a greatest lower bound in L with
respect to the a.e. order.We follow the usual convention inmeasure theory and denote
them by ess supC and ess inf C , respectively. It is well-known (see for instance, [10])
that there exist sequences (Xn) and (Yn) in C such that ess supC = supn Xn and
ess inf C = infn Yn . Moreover, ifC is directed upwards, (Xn) can be chosen such that
Xn+1 ≥ Xn , and if C is directed downwards, (Yn) can be chosen so that Yn+1 ≤ Yn .
For a set A ∈ F , we denote by 1A the characteristic function of A, that is, the function
1A : � → {0, 1} which is 1 on A and 0 elsewhere. If A is a subset of F , we set
ess supA := {

ess supA∈A 1A = 1
} ∈ F and ess inf A := {ess inf A∈A 1A = 1} ∈ F .

Furthermore, we use the notation L0+ := {X ∈ L0 : X ≥ 0}, L0++ := {X ∈ L0 : X >

0}, L := {X ∈ L : X > −∞}, L := {X ∈ L : X < +∞} and N := {1, 2, . . .}. By
N(F) we denote the set of all measurable functions N : � → N.

2 Algebraic Structures and Generating Sets

We fix d ∈ N and consider the set (L0)d := {
(X1, . . . , Xd) : Xi ∈ L0

}
. On (L0)d

we define the conditional inner product and conditional 2-norm by

〈X, Y 〉 :=
d∑

i=1

Xi Y i and ||X || := 〈X, X〉1/2 .

For every A ∈ F , 1A L0 is a subring of L0, and provided that μ[A] > 0, 1A(L0)d is
a free 1A L0-module of rank d generated by the base 1Aei , i = 1, . . . , d, where ei is
the i th unit vector in R

d ⊆ (L0)d . In particular, (L0)d is a free L0-module of rank d.
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Definition 2.1 We call a subset C of (L0)d

• stable if 1A X + 1Ac Y ∈ C for all X, Y ∈ C and A ∈ F ;
• σ -stable if

∑
n∈N 1An Xn ∈ C for every sequence (Xn)n∈N inC andpairwise disjoint

sets An ∈ F satisfying � = ⋃
n∈N An;

• L0-convex if λX + (1 − λ)Y ∈ C for all X, Y ∈ C and λ ∈ L0 such that 0 ≤ λ ≤
1;

• an L0-convex cone if it is L0-convex and λX ∈ C for all X ∈ C and λ ∈ L0++;
• L0-affine if λX + (1 − λ)Y ∈ C for all X, Y ∈ C and λ ∈ L0;
• L0-linear (or an L0-submodule) if λX + Y ∈ C for all X, Y ∈ C and λ ∈ L0.

For an arbitrary subset C of (L0)d and A ∈ F , we denote by stA(C), sstA(C),
convA(C), cconeA(C), aff A(C), linA(C) the smallest subset of 1A(L0)d containing
1AC that is stable, σ -stable, L0-convex, an L0-convex cone, L0-affine, or L0-linear,
respectively. If A = �, we just write st(C), sst(C), conv(C), ccone(C), aff(C),
lin(C) for these sets.

Remark 2.2 It can easily be checked that if C is a non-empty subset of (L0)d and
A ∈ F , then

stA(C) =
{

k∑

n=1

1An Xn : k ∈ N, Xn ∈ C, An ∈ F,

k⋃

n=1

An = A, Am ∩ An = ∅ for m �= n

}

;

sstA(C) =
{
∑

n∈N
1An Xn : Xn ∈ C, An ∈ F,

⋃

n∈N
An = A, Am ∩ An = ∅ for m �= n

}

;

convA(C) =
{

k∑

n=1

λn Xn : k ∈ N, Xn ∈ C, λn ∈ 1A L0+,

k∑

n=1

λn = 1A

}

;

cconeA(C) =
{

k∑

n=1

λn Xn : k ∈ N, Xn ∈ C, λn ∈ 1A L0+,

k∑

n=1

λn ∈ 1A L0++

}

;

aff A(C) =
{

k∑

n=1

λn Xn : k ∈ N, Xn ∈ C, λn ∈ 1A L0,

k∑

n=1

λn = 1A

}

;

linA(C) =
{

k∑

n=1

λn Xn : k ∈ N, Xn ∈ C, λn ∈ 1A L0

}

.

It follows that if C = {X1, . . . , Xk} for finitely many X1, . . . , Xk ∈ (L0)d , then the
sets convA(C), cconeA(C), aff A(C), linA(C) are all σ -stable.

Definition 2.3 Let A ∈ F+ and k ∈ N. We call X1, . . . , Xk ∈ (L0)d linearly inde-
pendent on A if 1A X1, . . . , 1A Xk are linearly independent in the 1A L0-module
1A(L0)d , that is, (0, . . . , 0) is the only vector (λ1, . . . , λk) ∈ 1A(L0)k satisfying

λ1X1 + · · · + λk Xk = 0.

We say that X1, . . . , Xk are orthogonal on A if 1A
〈
Xi , X j

〉 = 0 for i �= j and ortho-
normal on A if in addition, 1A||Xi || = 1A, 1 ≤ i ≤ k. If X1, . . . , Xk are linearly
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independent on A and linA {X1, . . . , Xk} = 1AC for some subset C of (L0)d , we call
them a basis of C on A. If in addition, X1, . . . , Xk are orthogonal or orthonormal on
A, we say X1, . . . , Xk is an orthogonal or orthonormal basis of C on A, respectively.

Lemma 2.4 Let A ∈ F and X1, . . . , Xk, Y ∈ (L0)d for some k ∈ N. Then there
exists a largest subset B ∈ F of A such that 1BY ∈ linB {X1, . . . , Xk}.
Proof The set

A := {B ∈ F : B ⊆ A and 1BY ∈ linB {X1, . . . , Xk}}

is directed upwards. So it contains an increasing sequence (Bn)n∈N such that B :=⋃
n Bn = ess supA. B is the largest element of A. �

Proposition 2.5 Let A ∈ F+ and k, l ∈ N. Assume X1, . . . , Xk ∈ (L0)d are linearly
independent on A and linA {X1, . . . , Xk} ⊆ linA {Y1, . . . , Yl} for some Y1, . . . , Yl ∈
(L0)d . Then k ≤ l. Moreover, if k = l, then Y1, . . . , Yl are linearly independent on
A and linA {X1, . . . , Xk} = linA {Y1, . . . , Yl}.
Proof One can write 1A X1 = ∑l

i=1 λi1AYi for some λi ∈ L0. So there exists a
σ(1) ∈ {1, . . . , l} such that A1 := A ∩ {

λσ(1) �= 0
} ∈ F+, and one obtains

linA1 {X1, . . . , Xk} ⊆ linA1 {Y1, . . . , Yl} = linA1({X1, Y1, . . . , Yl} \ {Yσ(1)
}
).

In particular, if k ≥ 2, one must have l ≥ 2, and it follows inductively that there
exist A2, . . . , Ad ∈ F+ and an injection σ : {1, . . . , k} → {1, . . . , l} such that for all
i ∈ {1, . . . , k},
linAi {X1, . . . , Xk} ⊆ linAi {Y1, . . . , Yl } = linAi ({X1, . . . , Xi , Y1, . . . , Yl } \ {Yσ(1), . . . , Yσ(i)

}
).

This shows that k ≤ l.
Now assume k = l and Y1, . . . , Yl are not linearly independent on A. Then there

exist B ∈ F+ and j ∈ {1, . . . , k} such that

linB {X1, . . . , Xk} ⊆ linB {Y1, . . . , Yk} = linB({Y1, . . . , Yk} \ {Y j
}
),

a contradiction to the first part of the proposition. So if k = l, Y1, . . . , Yk must
be linearly independent on A, and it remains to show that linA {X1, . . . , Xk} =
linA {Y1, . . . , Yk}. To do this, we assume that linA {X1, . . . , Xk} � linA {Y1, . . . , Yk}.
Then Y j /∈ linA {X1, . . . , Xk} for at least one j ∈ {1, . . . , k}. By Lemma2.4, there
exists a largest subset B ∈ F of A such that 1BY j ∈ linB {X1, . . . , Xk}. The set
D := A \ B is in F+, and X1, . . . , Xk, Y j are linearly independent on D. But then

linD
{

X1, . . . , Xk, Y j
} ⊆ linD {Y1, . . . , Yk} ,

again contradicts the first part of the proposition, and the proof is complete. �
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Corollary 2.6 Let A ∈ F+ and k, l ∈ N. Assume X1, . . . , Xk ∈ (L0)d are linearly
independent on A and linA {X1, . . . , Xk} = linA {Y1, . . . , Yl} for some Y1, . . . , Yl ∈
(L0)d that are also linearly independent on A. Then k = l ≤ d, and if k = l = d,
one has linA {X1, . . . , Xk} = linA {Y1, . . . , Yl} = 1A(L0)d .

Proof The corollary follows from Proposition2.5 by noticing that

linA {X1, . . . , Xk} = linA {Y1, . . . , Yl} ⊆ linA(e1, . . . , ed) = 1A(L0)d . �

Lemma 2.7 Let C be a non-empty σ -stable subset of (L0)d and X1, . . . , Xk ∈ (L0)d

for some k ∈ N. Then for given A ∈ F+, each of the collections

{B ∈ F+ : B ⊆ A and there exists a Y ∈ C such that ||Y || > 0 on B} (2.1)

and

{B ∈ F+ : B ⊆ A and there exists Y ∈ C such that X1, . . . , Xk , Y are linearly independent on B}
(2.2)

is either empty or contains a largest set.

Proof Let us denote the collection (2.1) by A1 and (2.2) by A2. Both are directed
upwards. So if either one of them is non-empty, it contains an increasing sequence
of sets Bn with corresponding Yn ∈ C , n ∈ N, such that B := ⋃

n Bn = ess supAi .
Since C is σ -stable,

Y := Y11B1∪Bc +
∑

n≥2

1Bn\Bn−1Yn

belongs to C . In the first case one has ||Y || > 0 on B, and in the second one,
X1, . . . , Xk, Y are linearly independent on B. This proves the lemma. �

Theorem 2.8 Let C be a σ -stable subset of (L0)d containing an element X �= 0.
Then there exist a unique number k ∈ {1, . . . , d}, unique pairwise disjoint sets
A0, . . . , Ak ∈ F and X1, . . . , Xk ∈ C such that the following hold:

(i)
⋃k

i=0 Ai = � and μ[Ak] > 0;
(ii) 1A0C = {0};

(iii) For all i ∈ {1, . . . , k} satisfying μ[Ai ] > 0, X1, . . . , Xi is a basis of lin(C)

on Ai .

Proof That k and the sets A0, . . . , Ak are unique follows fromCorollary2.6. To show
the existence of Ai and Xi satisfying (i)–(iii), we construct them inductively. Since
C contains an element X �= 0, it follows from Lemma2.7 that there exists a largest
set B1 ∈ F+ such that ||Y || > 0 on B1 for some Y ∈ C . Choose such a Y and call it
X1. One must have 1Bc

1
C = {0}. If there exist no B ∈ F+ and Y ∈ C such that X1, Y

are linearly independent on B, one obtains from Lemma2.4 that 1B1Y ∈ linB1 {X1}
for all Y ∈ C , and therefore, linB1(C) = linB1 {X1}. So one can set k = 1, A0 = Bc

1



Conditional Analysis on Rd 185

and A1 = B1. On the other hand, if there exists a B ∈ F+ and Y ∈ C such that
X1, Y are linearly independent on B, Lemma2.7 yields a largest such set B2 with a
corresponding X2 ∈ C . If there exists no B ∈ F+ and Y ∈ C such that X1, X2, Y are
linearly independent on B, then linB2(C) = linB2 {X1, X2} and one can set k = 2,
A0 = B1

c , A1 = B1 \ B2 and A2 = B2. Otherwise, one continues like this until there
is no B ∈ F+ and Y ∈ C such that X1, . . . , Xk, Y are linearly independent on B.
Such a k must exist and k ≤ d. Otherwise one would have X1, . . . , Xd+1 ∈ C that
are linearly independent on some B ∈ F+, a contradiction to Corollary2.6. One sets
A0 = B1

c , A1 = B1 \ B2, . . . , Ak−1 = Bk−1 \ Bk , Ak = Bk . �

Corollary 2.9 Let C be a non-empty σ -stable subset of (L0)d and A ∈ F . Then
aff A(C) and linA(C) are again σ -stable.

Proof If 1AC = {0}, then aff A(C) = linA(C) = {0}, and the corollary is clear. Oth-
erwise, one obtains from Theorem2.8 that there exists a k ∈ {1, . . . , d}, disjoint sets
A0, . . . , Ak ∈ F and X1, . . . , Xk ∈ C such that

⋃k
i=0 Ai = A, 1A0C = {0} and for

all i ∈ {1, . . . , k} satisfying μ[Ai ] > 0, X1, . . . , Xi is a basis of linA(C) on Ai . Now
it can easily be verified that linA(C) is σ -stable. To see that aff A(C) is σ -stable,
one picks an X ∈ 1AC . Then aff A(C) − X = linA(C − X) is σ -stable. So aff A(C)

is σ -stable too. �

Definition 2.10 The orthogonal complement of a non-empty subset C of (L0)d is
given by

C⊥ := {
X ∈ (L0)d : 〈X, Y 〉 = 0 for all Y ∈ C

}
.

It is clear that C⊥ is an L0-linear subset of (L0)d satisfying

C ∩ C⊥ ⊆ {0} and C ⊆ C⊥⊥.

As a consequence of Theorem2.8, one obtains the following corollary.

Corollary 2.11 Let C be a non-empty σ -stable L0-linear subset of (L0)d . Then
there exist unique pairwise disjoint sets A0, . . . , Ad ∈ F satisfying

⋃d
i=0 Ai = �

and an orthonormal basis X1, . . . , Xd of (L0)d on � such that 1A0C = {0}, 1Ad C =
1Ad (L0)d and

1Ai C = linAi {X1, . . . , Xi }, 1Ai C
⊥ = linAi {Xi+1, . . . , Xd} for 1 ≤ i ≤ d − 1.

In particular, C + C⊥ = (L0)d , C ∩ C⊥ = {0} and C = C⊥⊥.

Proof The uniqueness of the sets A1, . . . , Ad follows from Corollary2.6, and in the
special case C = {0}, one can choose A0 = �, Ai = ∅, Xi = ei , i = 1, . . . , d.



186 P. Cheridito et al.

If C is different from {0}, it follows from Theorem2.8 that there exist a unique
number k ∈ {1, . . . , d}, unique pairwise disjoint sets A0, . . . , Ak ∈ F andY1, . . . , Yk

∈ C such that
⋃k

i=0 Ai = �, μ[Ak] > 0, 1A0C = {0} and for all i ∈ {1, . . . , k}
satisfying μ[Ai ] > 0, Y1, . . . , Yi is a basis of C on Ai . Let us define

U1 := 1A1∪···∪Ak

Y1

||Y1|| ∈ C

and

Zi := Yi −
i−1∑

j=1

〈
Yi , U j

〉
U j , Ui = 1Ai ∪···∪Ak

Zi

||Zi || for 2 ≤ i ≤ k.

Then for every i ∈ {1, . . . , k} satisfying μ[Ai ] > 0, U1, . . . , Ui is an orthonor-
mal basis of C on Ai . If k = d, one obtains from Corollary2.6 that 1Ad C =
linAd {U1, . . . , Ud} = 1Ad (L0)d . If k < d, we set Ak+1 = · · · = Ad = ∅, and 1Ad

C = 1Ad (L0)d holds trivially. By Corollary2.6 and Lemma2.7, there exist Vi ∈ C ,
i = 1, . . . , d such that

1A0(L0)d = linA0 {V1, . . . , Vd}

and

1Ai (L0)d = linAi {U1, . . . , Ui , Vi+1 . . . , Vd} for all i = 1, . . . , d − 1.

Set

X1 := 1A1∪···∪Ad U1 + 1A0

V1

||V1||
and

Wi := Vi −
i−1∑

j=1

〈
Vi , X j

〉
X j , Xi = 1Ai ∪···∪Ad Ui + 1A0∪···∪Ai−1

Wi

||Wi || for 2 ≤ i ≤ d.

Then X1, . . . , Xd are orthonormal on � such that

1Ai C = linAi {X1, . . . , Xi }, 1Ai C
⊥ = linAi {Xi+1, . . . , Xd} for 1 ≤ i ≤ d − 1.

It is clear that C + C⊥ = (L0)d , C ∩ C⊥ = {0} and C = C⊥⊥. �

Corollary 2.12 Let C be a non-empty σ -stable L0-linear subset of (L0)d . Then
every X ∈ (L0)d has a unique decomposition X = Y + Z for Y ∈ C, Z ∈ C⊥, and
||Z || ≤ ||X − V || for every V ∈ C.
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Proof That X has a unique decomposition X = Y + Z , Y ∈ C , Z ∈ C⊥ is a conse-
quence of Corollary2.11. Moreover, if V ∈ C , then

||Z ||2 ≤ ||Z ||2 + ||Y − V ||2 = ||Z + Y − V ||2 = ||X − V ||2. �

3 Converging Sequences, Sequential Closures
and Sequential Continuity

Definition 3.1 We call a subset C of (L0)d sequentially closed if it contains every
X ∈ (L0)d that is an a.e. limit of a sequence (Xn)n∈N in C . For an arbitrary subset
C of (L0)d and A ∈ F+, we denote by limA(C) the set consisting of all a.e. lim-
its of sequences in 1AC and by clA(C) the smallest sequentially closed subset of
1A(L0)d containing 1AC . In the special case A = �, we just write lim(C) and cl(C),
respectively.

Proposition 3.2 For all subsets C of (L0)d and A ∈ F+ one has limA(C) = clA(C).

Proof It is clear that limA(C) ⊆ clA(C). To show that the two sets are equal, it is
enough to prove that limA(C) is sequentially closed. So let (Xn)n∈N be a sequence in
limA(C) that converges a.e. to some X ∈ 1A(L0)d . Since (�,F , μ) is σ -finite, there
exists an increasing sequence An , n ∈ N, of measurable sets such that

⋃
n An = A

and μ[An] < +∞. For every n there exists a sequence (Ym)m∈N in 1AC converging
a.e. to Xn . Therefore,

μ[An ∩ {|Ym − Xn| > 1/n}] → 0 for m → ∞,

and one can choose mn ∈ N such that

μ[Bn] ≤ 2−n, where Bn = An ∩ {|Ymn − Xn| > 1/n
}
.

It follows from theBorel–Cantelli lemma thatμ
[⋂

k∈N
⋃

n≥k Bn
] = 0,which implies

Ymn → X a.e. for n → ∞. So X ∈ limA(C), and the proof is
complete. �

Corollary 3.3 If C is a stable subset of (L0)d and A ∈ F+, then

limA(C) = 1A lim(C) = clA(C) = 1Acl(C).

In particular, if C is stable and sequentially closed, then so is 1AC.

Proof limA(C) = 1A lim(C) is a consequence of the stability of C . Moreover, it fol-
lows from Proposition3.2 that limA(C) = clA(C) and lim(C) = cl(C). This proves
the corollary. �
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Corollary 3.4 If C is a stable subset of (L0)d and A ∈ F+, then clA(C) is σ -stable.
Moreover, if C is L0-convex, an L0-convex cone, L0-affine or L0-linear, then so is
clA(C).

Proof By Proposition3.2, clA(C) is equal to limA(C). So for all X, Y ∈ clA(C) there
exist sequences (Xn)n∈N and (Yn)n∈N in 1AC such that Xn → X a.e. and Yn → Y
a.e. Since for all B ∈ F , 1B Xn + 1Bc Yn ∈ 1AC and 1B Xn + 1Bc Yn → 1B X + 1Bc Y
a.e., one obtains that 1B X + 1Bc Y belongs to limA(C) = clA(C). This shows that
clA(C) is stable. Since it is also sequentially closed, it must be σ -stable. The rest of
the corollary follows similarly. �

Proposition 3.5 Every σ -stable L0-affine subset C of (L0)d is sequentially closed.

Proof If C is empty, the corollary is trivial. Otherwise, choose X ∈ C . Then D =
C − X is a σ -stable L0-linear subset of (L0)d , and the corollary follows if we can
show that D is sequentially closed. So let (Yn)n∈N be a sequence in D converging
a.e. to some Y ∈ (L0)d . By Corollary2.11, there exist unique pairwise disjoint sets
A0, . . . , Ad ∈ F satisfying

⋃d
i=0 Ai = � and an orthonormal basis X1, . . . , Xd of

(L0)d on � such that 1A0 D = {0} and 1Ai D = linAi {X1, . . . , Xi } for 1 ≤ i ≤ d.
Define λn and λ in (L0)d by λ

j
n := 〈

Yn, X j
〉
and λ j := 〈

Y, X j
〉
. Since Yn → Y a.e.,

one has λ
j
n → λ j a.e. In particular, λ j = 0 on Ai such that i < j . This shows that

Y = ∑
j λ j X j ∈ D. �

The following example shows that L0-affine subsets of (L0)d that are not σ -stable
need not be sequentially closed.

Example 3.6 Let � = N, F = 2N and μ the counting measure. Set Xn = 1{n}e1.
Then

lin(Xn : n ∈ N) =
{

k∑

n=1

λn Xn : k ∈ N, λ1, . . . , λk ∈ L0

}

is an L0-linear subset of (L0)d that is notσ -stable, andYk = ∑k
n=1 Xn is a sequence in

lin(Xn : n ∈ N) that converges a.e. to
∑

n∈N Xn /∈ lin(Xn : n ∈ N). Note that lin(Xn :
n ∈ N) is an L0-submodule of (L0)d that is not finitely generated.

The next result is a conditional version of the Bolzano–Weierstrass theorem. It is
already known (see for instance, Lemma 2 in Kabanov and Stricker [8] or Lemma
1.63 in Föllmer and Schied [5]). But since it is important to some of our later results,
we give a short proof. To state the result we need the following definition.

Definition 3.7 We call a subset C of (L0)d L0-bounded if ess supX∈C ||X || ∈ L0.

Note that if (Xn)n∈N is a sequence in (L0)d and N ∈ N(F), X N can be written as

X N =
∑

n∈N
1{N=n} Xn.
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In particular, X N is in (L0)d . Moreover, if all Xn belong to a σ -stable subset C of
(L0)d , then X N is again in C .

Theorem 3.8 (Conditional version of the Bolzano–Weierstrass theorem)
Let (Xn)n∈N be an L0-bounded sequence in (L0)d . Then there exists an X ∈ (L0)d and
a sequence (Nn)n∈N in N(F) such that Nn+1 > Nn for all n ∈ N and limn→∞ X Nn =
X a.e.

Proof There exists a Y ∈ L0+ such that ||Xn|| ≤ Y for all n ∈ N. Therefore, the a.e.
limit X1 := limn→∞ infm≥n X1

m exists and is in L0. Define N 1
0 := 0 and

N1
n (ω) := min

{
m ∈ N : m > N1

n−1(ω) and X1
m(ω) ≤ X1(ω) + 1/n

}
∈ N(F), n ∈ N.

Then N 1
n+1 > N 1

n for all n ∈ N and limn→∞ X1
N 1

n
= X1 a.e. Now set Y 2

n = X2
N 1

n
.

Then there exists a sequence (M2
n )n∈N in N(F) such that M2

n+1 > M2
n for all n ∈

N and limn→∞ Y 2
M2

n
= X2 := limn→∞ infm≥n Y 2

m a.e. N 2
n := N 1

M2
n
, n ∈ N, defines a

sequence in N(F) satisfying N 2
n+1 > N 2

n for all n ∈ N, and one has limn→∞ Xi
N 2

n
=

Xi a.e. for i = 1, 2. If one continues like this, one obtains X1, . . . , Xd ∈ L0 and a
sequence (Nn)n∈N in N(F) such that Nn+1 > Nn for all n ∈ N and limn→∞ X Nn =
X = (X1, . . . , Xd) a.e. �

Corollary 3.9 Let (Xn)n∈N be a sequence in a sequentially closed L0-bounded stable
subset C of (L0)d . Then there exists an X ∈ C and a sequence (Nn)n∈N in N(F) such
that Nn+1 > Nn for all n ∈ N and limn→∞ X Nn = X a.e.

Proof Since (Xn)n∈N is L0-bounded, it follows from Theorem3.8 that there exists
X ∈ (L0)d and a sequence (Nn)n∈N in N(F) such that Nn+1 > Nn for all n ∈ N and
limn→∞ X Nn = X a.e. It remains to show that X belongs to C . By Corollary3.4 the
subset C is σ -stable. Hence, X Nn belongs to C for all n ∈ N, which implies that X
is in C too. �

Corollary 3.10 Let C and D be non-empty sequentially closed stable subsets of
(L0)d such that D is L0-bounded. Then C + D is sequentially closed and stable.

Proof That C + D is stable is clear. To show that C + D is sequentially closed,
choose a sequence (Xn)n∈N inC and a sequence (Yn)n∈N in D such that Xn + Yn → Z
a.e. for some Z ∈ (L0)d . ByTheorem3.8, there existsY ∈ D and a sequence (Nn)n∈N
in N(F) such that Nn+1 > Nn for all n ∈ N and limn→∞ YNn = Y a.e. It follows that
limn→∞ X Nn = Z − Y a.e. Since C is and sequentially closed, Z − Y belongs to C .
Hence, Z is in C + D. �

Another consequence of Theorem3.8 is that conditional Cauchy sequences con-
verge if they are defined as follows:

Definition 3.11 We call a sequence (Xn)n∈N in (L0)d L0-Cauchy if for every ε ∈
L0++ there exists an N0 ∈ N(F) such that ||X N1 − X N2 || ≤ ε for all N1, N2 ∈ N(F)

satisfying N1, N2 ≥ N0.
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Theorem 3.12 Every L0-Cauchy sequence (Xn)n∈N in (L0)d converges a.e. to some
X ∈ (L0)d .

Proof Choose N0 ∈ N(F) such that ||X N1 − X N2 || ≤ 1 for all N1, N2 ∈ N(F) sat-
isfying N1, N2 ≥ N0. Then

||Xn|| ≤ 1 +
∑

m∈N
1{m≤N0}||Xm || ∈ L0

for all n ∈ N. So it follows from Theorem3.8 that there exist X ∈ (L0)d and a
sequence (Nn)n∈N inN(F) such that Nn+1 > Nn for all n ∈ N and limn→∞ X Nn = X
a.e. But since (Xn)n∈N is L0-Cauchy, one has limn→∞ Xn = X a.e. �

The following result gives necessary and sufficient conditions for a sequentially
closed L0-convex subset of (L0)d to be L0-bounded.

Theorem 3.13 Let C be a sequentially closed L0-convex subset of (L0)d containing
0. Then C is L0-bounded if and only if for any X ∈ C \ {0} there exists a k ∈ N such
that k X /∈ C.

Proof Suppose that C is L0-bounded. Then for every 0 �= X ∈ C , there exists a
k ∈ N such that μ

[‖k X‖ > ess supY∈C ‖Y‖] > 0, and therefore k X /∈ C .
Conversely, suppose that C is not L0-bounded. The sequence

An := ess sup {B ∈ F : ‖X‖ ≥ n on B for some X ∈ C} , n ∈ N ∪ {0} ,

is decreasing with limit A := ⋂
n An . One must have μ[A] > 0, since otherwise,

‖X‖ ≤ ∑
n∈N n1{Ac

n\Ac
n−1} ∈ L0 for all X ∈ C . Since C is sequentially closed, L0-

convex and therefore stable, it is σ -stable. It follows that there exists a sequence
(Xn)n∈N in C such that ‖Xn‖ ≥ n on A. Since the sequence Yn = 1A Xn/‖Xn‖
is L0-bounded, it follows from Theorem3.8 that there exists Y ∈ (L0)d and a
sequence (Nn)n∈N in N(F) such that Nn+1 > Nn and limn→∞ YNn = Y a.e. Obvi-
ously, 1A||Y || = 1A, and in particular, Y �= 0. Since C is L0-convex, sequentially
closed and contains 0, one has for all n ≥ k,

kYNn = 1A
k

‖X Nn ‖
X Nn ∈ C.

But limn→∞ kYNn = kY . So kY ∈ C for all k ∈ N. �

Definition 3.14 LetC be a non-empty subset of (L0)d and k ∈ N. We call a function
f : C → (L0)k

• sequentially continuous at X ∈ C if f (Xn) → f (X) a.e. for every sequence
(Xn)n∈N in C converging to X a.e.;

• sequentially continuous if it is sequentially continuous at every X ∈ C ;



Conditional Analysis on Rd 191

• L0-affine if f (λX + (1 − λ)Y ) = λ f (X) + (1 − λ) f (Y ) for all X, Y ∈ (L0)d and
λ ∈ L0 such that λX + (1 − λ)Y ∈ C ;

• L0-linear if f (λX + Y ) = λ f (X) + f (Y ) for all X, Y ∈ (L0)d and λ ∈ L0 such
that λX + Y ∈ C .

• We define the conditional norm of f by || f || := ess supX∈C, ||X ||≤1 || f (X)|| ∈ L .

Proposition 3.15 Let C be a non-empty σ -stable L0-linear subset of (L0)d . Then
|| f || ∈ L0+ for every L0-linear function f : C → (L0)k , k ∈ N.

Proof By Corollary2.11, there exist unique pairwise disjoint sets A0, . . . , Ad ∈ F
satisfying

⋃d
i=0 Ai = � and an orthonormal basis X1, . . . , Xd of (L0)d on � such

that 1A0C = {0} and 1Ai C = linAi {X1, . . . , Xi } for 1 ≤ i ≤ d. For every X ∈ C there
exists a unique λ ∈ (L0)d such that X = ∑d

j=1 λ j X j . On the set A0 one has f (X) =
X = 0, and on Ai for 1 ≤ i ≤ d, ||X || =

(∑i
j=1 λ2

j

)1/2
as well as

|| f (X)|| = ||
i∑

j=1

λ j f (X j )|| ≤
i∑

j=1

|λ j ||| f (X j )|| ≤
⎛

⎝
i∑

j=1

λ2j

⎞

⎠

1/2⎛

⎝
i∑

j=1

|| f (X j )||2
⎞

⎠

1/2

.

Therefore, || f || ≤ ∑d
i=1 1Ai

(∑i
j=1 || f (X j )||2

)1/2
. �

Corollary 3.16 Let C be a non-empty σ -stable L0-affine subset of (L0)d . Then every
L0-affine function f : C → (L0)k , k ∈ N, is sequentially continuous.

Proof Choose an X0 ∈ C . Then D = C − X0 is a non-empty σ -stable L0-linear
subset of (L0)d and g(X) = f (X + X0) − f (X0) is an L0-linear function on D. By
Proposition3.15, one has ||g|| ∈ L0+. Moreover, || f (X) − f (Y )|| = ||g(X − Y )|| ≤
||g|| ||X − Y ||, and it follows that f is sequentially continuous. �
Corollary 3.17 Let C be a non-empty sequentially closed subset of a non-empty
σ -stable L0-affine subset D of (L0)d . Then for every injective L0-affine function
f : D → (L0)k , k ∈ N, f (C) is a sequentially closed subset of (L0)k .

Proof Pick an X0 ∈ C . The corollary follows if we can show that f (C) − f (X0) is
sequentially closed. So by replacing C with C − X0, D with D − X0 and f with
f (X + X0) − f (X0), one can assume that X0 = 0, D is a σ -stable L0-linear subset
of (L0)d and f is injective L0-linear. ByCorollary3.16, f is sequentially continuous.
Therefore, f (D) is a non-empty σ -stable L0-linear subset of (L0)k , and it follows
from Proposition3.5 that it is sequentially closed. Since f −1 : f (D) → D is again
L0-linear, it is also sequentially continuous. So if (Yn)n∈N is a sequence in f (C)

converging a.e. to some Y ∈ (L0)k , then Y ∈ f (D) and f −1(Yn) is a sequence in C
converging a.e. to f −1(Y ) ∈ D. It follows that f −1(Y ) ∈ C and Y = f ( f −1(Y )) ∈
f (C). �
Lemma 3.18 Let C be a non-empty σ -stable L0-linear subset of (L0)d and k ∈
N. Then every L0-linear function f : C → (L0)k has an L0-linear extension F :
(L0)d → (L0)k such that || f || = ||F ||.
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Proof By Corollary2.12, every X ∈ (L0)d has a unique decomposition X = Y + Z
such that Y ∈ C and Z ∈ C⊥. F(X) := f (Y ) defines an L0-linear extension of f to
(L0)d such that || f || = ||F ||. �

4 Conditional Optimization

Definition 4.1 LetC be a non-empty subset of (L0)d .We call a function f : C → L

• sequentially lsc (lower semicontinuous) at X ∈ C if f (X) ≤ lim infn→∞ f (Xn)

for every sequence (Xn)n∈N in C with a.e. limit X ;
• sequentially lsc if it is sequentially lsc at every X ∈ C ;
• sequentially usc (upper semicontinuous) at X ∈ C if − f is sequentially lsc at X ;
• sequentially usc if it is sequentially usc at every X ∈ C ;
• sequentially continuous at X ∈ C if it is sequentially lsc and usc at X ;
• sequentially continuous if it is sequentially continuous at every X ∈ C .

In the following definition +∞ − ∞ is understood as +∞ and 0 · (±∞) as 0.

Definition 4.2 Let f : C → L be a function on a non-empty subset C of (L0)d .

• If C is stable, we call f stable if

f (1A X + 1Ac Y ) = 1A f (X) + 1Ac f (Y )

for all X, Y ∈ C and A ∈ F+;
• If C is L0-convex, we call f L0-convex if

f (λX + (1 − λ)Y ) ≤ λ f (X) + (1 − λ) f (Y )

for all X, Y ∈ C and λ ∈ L0 such that 0 ≤ λ ≤ 1;
• If C is L0-convex, we call f strictly L0-convex if

f (λX + (1 − λ)Y ) < λ f (X) + (1 − λ) f (Y ) on the set {X �= λX + (1 − λ)Y ) �= Y }

for all X, Y ∈ C and λ ∈ L0 such that 0 ≤ λ ≤ 1.

Lemma 4.3 Let f : C → L be an L0-convex function on an L0-convex subset C of
(L0)d . Then f is also stable.

Proof Let X, Y ∈ C and A ∈ F+. Denote Z = 1A X + 1Ac Y . Then one has 1A

f (Z) ≤ 1A f (X) and 1A f (X) = 1A f (1A Z + 1Ac X) ≤ 1A f (Z). This shows that
1A f (Z) = 1A f (X). Analogously, one obtains 1Ac f (Z) = 1Ac f (Y ) and therefore
f (Z) = 1A f (X) + 1Ac f (Y ). �
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Theorem 4.4 Let C be a sequentially closed stable subset of (L0)d and f : C → L
a sequentially lsc stable function. Assume there exists an X0 ∈ C such that the set

{X ∈ C : f (X) ≤ f (X0)}

is L0-bounded. Then there exists an X̂ ∈ C such that

f (X̂) = ess inf
X∈C

f (X).

If C and f are L0-convex, then the set

{
X ∈ C : f (X) = f (X̂)

}

is L0-convex. If in addition, f is strictly L0-convex, then

{
X ∈ C : f (X) = f (X̂)

}
=
{

X̂
}

.

Proof The set D := {X ∈ C : f (X) ≤ f (X0)} is sequentially closed, stable and
L0-bounded. It follows that { f (X) : X ∈ D} is directed downwards. Therefore,
there exists a sequence (Xn)n∈N in D such that f (Xn) decreases a.e. to I :=
ess inf X∈D f (X). By Corollary3.9, there exists a sequence (Nn)n∈N in N(F) such
that Nn+1 > Nn for all n ∈ N and limn→∞ X Nn = X̂ a.e. for some X̂ ∈ D. Since X Nn

belongs to D and

f (X Nn ) =
∑

m≥n

1{Nn=m} f (Xm) ≤ f (Xn) for all n,

one obtains from the L0-lower semicontinuity of f that

f (X̂) ≤ lim inf
n→∞ f (X Nn ) ≤ lim

n→∞ f (Xn) = I.

This shows the first part of the theorem. That
{

X ∈ C : f (X) = f (X̂)
}
is L0-convex

if C and f are L0-convex, is clear. Finally, assume C is L0-convex and f strictly
L0-convex. Then if there exists an X in C such that f (X) = f (X̂), one has

f

(
X + X̂

2

)

<
f (X) + f (X̂)

2

on the set
{

X �= X̂
}
. It follows that μ[X �= X̂ ] = 0. �
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Corollary 4.5 Let C and D be non-empty sequentially closed stable subsets of
L0(F)d such that D is L0-bounded. Then there exist X̂ ∈ C and Ŷ ∈ D such that

||X̂ − Ŷ || = ess inf
X∈C, Y∈D

||X − Y ||. (4.1)

If in addition, C and D are L0-convex, then X̂ − Ŷ is unique.

Proof ByCorollary3.10, the set E = C − D is sequentially closed and stable.More-
over, Z �→ ||Z || is a sequentially continuous L0-convex function from E to L0, and
for every Z0 ∈ E , the set {Z ∈ E : ||Z || ≤ ||Z0||} is L0-bounded. So one obtains
from Theorem4.4 that there exists a Ẑ ∈ E such that ||Ẑ || = ess inf Z∈E ||Z ||. This
shows that there exist X̂ ∈ C and Ŷ ∈ D satisfying (4.1). If C and D are L0-convex,
then so is E , and for every Z ∈ E satisfying ||Z || = ||Ẑ ||, one has (Z + Ẑ)/2 ∈ E

and ||(Z + Ẑ)/2|| < ||Ẑ || on the set
{

Z �= Ẑ
}
. It follows that μ[Z �= Ẑ ] = 0, and

the proof is complete. �

5 Interior, Relative Interior and L0-open Sets

Definition 5.1 Let C be a non-empty subset of (L0)d and A ∈ F+.

• For X ∈ (L0)d and ε ∈ L0++, we denote

Bε
A(X) := {

Y ∈ 1A(L0)d : 1A||Y − X || ≤ ε
}
.

• The interior intA(C) of C on A consists of elements X ∈ 1AC for which there
exists an ε ∈ L0++ such that Bε

A(X) ⊆ 1AC . If A = �, we just write int(C) for
intA(C).

• The relative interior riA(C) of C on A consists of elements X ∈ 1AC for which
there exists an ε ∈ L0++ such that Bε

A(X) ∩ aff A(C) ⊆ 1A(C). If A = �, we write
ri(C) instead of riA(C).

• We say C is L0-open on A if 1AC = intA(C). We call it L0-open if it is L0-open
on �.

Note that one always has 1Aint(C) ⊆ intA(C) but not necessarily the other way
around. The collection of all L0-open subsets of (L0)d forms a topology. It is studied
in Filipović et al. [4] and is related to (ε, λ)-topologies on random locally convex
modules (see [6]). We point out that sequentially closed sets in (L0)d are different
from complements of L0-open sets. But one has the following relation between the
two:

Lemma 5.2 Let C be a σ -stable subset of (L0)d . Then cl(C) ∩ int(Cc) = ∅.

Proof Assume X ∈ cl(C) ∩ int(Cc). By Proposition3.2, there exists a sequence
(Xn)n∈N inC such that Xn → X a.e. On the other hand, there is an ε ∈ L0++ such that
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Y ∈ Cc for every Y ∈ (L0)d satisfying ||X − Y || ≤ ε. N (ω) := min{n ∈ N : ||Xn

(ω) − X (ω)|| ≤ ε(ω)} is an element of N(F), and since C is σ -stable, X N belongs
to C . But at the same time one has ||X N − X || ≤ ε, implying X N ∈ Cc. This yields
a contradiction. So cl(C) ∩ int(Cc) = ∅. �

Lemma 5.3 Let C be a non-empty L0-convex subset of (L0)d , A ∈ F+ and λ ∈ L0

such that 0 < λ ≤ 1. Then

λX + (1 − λ)Y ∈ intA(C) for all X ∈ intA(C), Y ∈ 1AC (5.1)

and
λX + (1 − λ)Y ∈ riA(C) for all X ∈ riA(C), Y ∈ 1AC. (5.2)

If in addition, C is σ -stable, then (5.1) and (5.2) also hold for Y ∈ clA(C).

Proof Let X ∈ intA(C) and Y ∈ 1AC . There exists an ε ∈ L0++ such that Bε
A(X) is

contained in 1AC . So

λX + (1 − λ)Y + Z = λ(X + Z/λ) + (1 − λ)Y ⊆ 1AC

for all Z ∈ Bελ
A (0). This shows (5.1).

To prove (5.2), we assume that X ∈ riA(C) andY ∈ 1AC . There exists an ε ∈ L0++
such that Bε

A(X) ∩ aff A(C) ⊆ 1AC . Choose Z ∈ Bελ
A (0) such that

λX + (1 − λ)Y + Z ∈ aff A(C).

Then X + Z/λ ∈ aff A(C), and therefore X + Z/λ ∈ 1AC . It follows that

λX + (1 − λ)Y + Z = λ(X + Z/λ) + (1 − λ)Y ⊆ 1AC.

This shows (5.2).
If C is σ -stable, X ∈ intA(C) and Y ∈ clA(C), there exists an ε ∈ L0++ such that

B2ε
A (X) ⊆ 1AC . From Proposition3.2 we know that there exists a sequence (Yn)n∈N

in 1AC converging a.e. toY . N (ω) := min{n ∈ N : (1 − λ(ω))||Y (ω) − Yn(ω)|| ≤ λ

(ω)ε(ω)} belongs toN(F), andYN is an element ofC satisfying (1 − λ)||Y − YN || ≤
λε. So for Z ∈ Bλε

A (0), one has

λX + (1 − λ)Y + Z = λ

(
X + (1 − λ)

λ
(Y − YN ) + 1

λ
Z

)
+ (1 − λ)YN ∈ 1AC,

which shows that λX + (1 − λ)Y ∈ intA(C).
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If X is in riA(C) instead of intA(C), there exists an ε ∈ L0++ such that B2ε
A (X) ∩

aff A(C) ⊆ 1AC . Let Z ∈ Bλε
A (0) such that

λX + (1 − λ)Y + Z ∈ aff A(C),

then

X + (1 − λ)

λ
(Y − YN ) + 1

λ
Z ∈ aff A(C).

Hence

X + (1 − λ)

λ
(Y − YN ) + 1

λ
Z ∈ 1AC,

and it follows that

λX + (1 − λ)Y + Z = λ

(
X + (1 − λ)

λ
(Y − YN ) + 1

λ
Z

)
+ (1 − λ)YN ∈ 1AC.

So λX + (1 − λ)Y ∈ riA(C), and the proof is complete. �

Corollary 5.4 Let C be an L0-convex subset of (L0)d and A ∈ F+. Then intA(C)

and riA(C) are again L0-convex.

Proof Since C is stable, it follows from Lemma5.3 that for X, Y ∈ intA(C) and
λ ∈ L0 satisfying 0 ≤ λ ≤ 1, one has

λX + (1 − λ)Y = 1{λ>0}(λX + (1 − λ)Y ) + 1{λ=0}Y ∈ intA(C).

This shows that intA(C) is L0-convex. The same argument shows that riA(C) is
L0-convex. �

Definition 5.5 Let A ∈ F+. We call a subset C of (L0)d

• an L0-hyperplane on A if 1AC = {
X ∈ 1A(L0)d : 〈X, Z〉 = V

}

• an L0-halfspace on A if 1AC = {
X ∈ 1A(L0)d : 〈X, Z〉 ≥ V

}

for some V ∈ 1A L0 and Z ∈ 1A(L0)d such that ||Z || > 0 on A.

Lemma 5.6 A subset C of (L0)d is an L0-hyperplane on A ∈ F+ if and only if there
exist X0 ∈ 1A(L0)d and an orthonormal basis X1, . . . , Xd of (L0)d on A such that

1AC =
{

X0 +
d−1∑

i=1

λi Xi : λi ∈ 1A L0

}

. (5.3)
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Similarly, C is an L0-halfspace on A ∈ F+ if and only if there exist X0 ∈ 1A(L0)d

and an orthonormal basis X1, . . . , Xd of (L0)d on A such that

1AC =
{

X0 +
d∑

i=1

λi Xi : λi ∈ 1A L0, λd ≥ 0

}

. (5.4)

Proof If 1AC is of the form (5.3), then 1AC = {X ∈ 1A(L0)d : 〈X, Xd〉 = 〈X0,

Xd〉}. Now assume that 1AC = {
X ∈ 1A(L0)d : 〈X, Z〉 = V

}
for some V ∈ 1A L0

and Z ∈ 1A(L0)d such that ||Z || > 0 on A. By Corollary2.11, there exists an ortho-
normal basis X1, . . . , Xd of (L0)d on A such that 1A Z⊥ = linA {X1, . . . , Xd−1} and
Xd = 1A Z/||Z ||. Choose X0 ∈ 1A(L0)d such that 〈X0, Z〉 = V . Then 1AC is of the
form (5.3). That C is an L0-halfspace on A ∈ F+ if and only if 1AC is of the form
(5.4) follows similarly. �

Lemma 5.7 Let C be a σ -stable L0-convex subset of (L0)d and A ∈ F+. Then
intA(C) �= ∅ if and only if aff A(C) = 1A(L0)d .

Proof Let us first assume that X0 ∈ intA(C). Then 0 ∈ intA(C − X0), and it follows
that

aff A(C) = aff A(C − X0) + X0 = linA(C − X0) + X0 = 1A(L0)d + X0 = 1A(L0)d .

On the other hand, if aff A(C) = 1A(L0)d , choose X0 ∈ 1AC . Then

linA(C − X0) = aff A(C − X0) = aff A(C) − X0 = 1A(L0)d .

So it follows fromTheorem2.8 that there exist X1, . . . , Xd in 1AC such that Xi − X0,
i = 1, . . . , d, form a basis of (L0)d on A. Set

X̂ := 1

d + 1

d∑

i=0

Xi .

It follows fromCorollary2.11 and Lemma5.6 that for every i = 0, . . . , d, there exist
Vi ∈ L0 and Zi ∈ (L0)d such that for all j �= i ,

〈
X̂ , Zi

〉
> Vi = 〈

X j , Zi
〉
on A.

This shows that X̂ ∈ intA
{

X ∈ 1A(L0)d : 〈X, Zi 〉 ≥ Vi
}
for all i , which implies

X̂ ∈ intA(C) since

d⋂

i=0

{
X ∈ 1A(L0)d : 〈X, Zi 〉 ≥ Vi

} = convA {X0, . . . , Xd} ⊆ 1AC.
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6 Separation by L0-hyperplanes

In this section we prove results on the separation of two L0-convex sets in (L0)d by
an L0-hyperplane. As a corollary we obtain a version of the Hahn–Banach extension
theorem. Hahn–Banach extension and separation results have been proved in more
general modules; see e.g., Filipović et al. [4], Guo [6] and the references therein.
However, due to the special form of (L0)d , we here are able to derive analogs of
results that hold in R

d but not in infinite-dimensional vector spaces. Moreover, we
do not need Zorn’s lemma or the axiom of choice.

Theorem 6.1 (Strong separation) Let C and D be non-empty L0-convex subsets of
(L0)d . Then there exists Z ∈ (L0)d such that

ess inf
X∈C

〈X, Z〉 > ess sup
Y∈D

〈Y, Z〉 (6.1)

if and only if 0 /∈ clA(C − D) for all A ∈ F+.

Proof Let us first assume that there exists an A ∈ F+ such that 0 ∈ clA(C − D).
From Proposition3.2 we know that clA(C − D) = limA(C − D). So there exists a
sequence (Xn)n∈N in 1A(C − D) such that Xn → 0 a.e. It follows that there can exist
no Z ∈ (L0)d satisfying (6.1).

Now assume 0 /∈ clA(C − D) for all A ∈ F+. It follows from Corollary3.4 that
cl(C − D) is L0-convex. So one obtains from Corollary4.5 that there exists a Z ∈
cl(C − D) such that

‖Z‖2 ≤ ‖(1 − λ)Z + λW‖2 = ‖Z‖2 + 2λ 〈Z , W − Z〉 + λ2‖W − Z‖2

for all W ∈ cl(C − D) and λ ∈ L0 such that 0 < λ ≤ 1. Division by 2λ and sending
λ to 0 yields 〈W, Z〉 ≥ ‖Z‖2. In particular,

〈W, Z〉 ≥ ||Z ||2 for all W ∈ C − D,

and therefore,

ess inf
X∈C

〈X, Z〉 ≥ ess sup
Y∈D

〈Y, Z〉 + ||Z ||2.

It remains to show that ‖Z‖ > 0. But if this were not the case, the set A = {Z = 0}
would belong to F+ and 1A Z = 0. However, by assumption and Corollary3.3, one
has 0 /∈ clA(C − D) = 1Acl(C − D) for all A ∈ F+, a contradiction. �
Corollary 6.2 Let C and D be non-empty sequentially closed L0-convex subsets of
(L0)d such that D is L0-bounded and 1AC is disjoint from 1A D for all A ∈ F+. Then
there exists a Z ∈ (L0)d such that

ess inf
X∈C

〈X, Z〉 > ess sup
Y∈D

〈Y, Z〉 .
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Proof C − D is a non-empty L0-convex set, which by Corollary3.10 is sequentially
closed. It follows from the assumptions that 0 /∈ 1A(C − D) for all A ∈ F+, and
we know from Corollary3.3 that 1A(C − D) = clA(C − D). So the corollary is a
consequence of Theorem6.1. �

Lemma 6.3 Let C be a non-empty σ -stable L0-convex cone in (L0)d such that
1AC �= 1A(L0)d for all A ∈ F+. Then there exists a Z ∈ (L0)d such that

||Z || > 0 and ess inf
X∈C

〈X, Z〉 ≥ 0. (6.2)

Proof If C = {0}, the lemma is clear. Otherwise one obtains from Theorem2.8
that there exist A ∈ F and X1, . . . , Xd−1 ∈ C such that linA(C) = linA(L0)d and
linAc(C) ⊆ linAc {X1, . . . , Xd−1}. By Corollary2.11, there exists W ∈ linAc{X1,

. . . , Xd−1}⊥ such that ||W || > 0 on Ac. If μ[A] = 0, then Z = W satisfies (6.2),
and the proof is complete. If μ[A] > 0, one notes that since C is an L0-convex cone,
one has aff A(C) = linA(C) = 1A(L0)d . It follows from Lemma5.7 that there exists
a Y ∈ intA(C). Then 1BY ∈ intB(C) for every subset B ∈ F+ of A. But this implies
that −1BY cannot be in clB(C). Otherwise it would follow from Lemma5.3 that 0
belongs to intB(C), implying that 1BC = 1B(L0)d and contradicting the assump-
tions. So Theorem6.1 applied to 1AC and {−Y } viewed as subsets of 1A(L0)d yields
a V ∈ 1A(L0)d such that

ess inf
X∈1AC

〈X, V 〉 > 〈−Y, V 〉 on A.

Since C is an L0-convex cone, Z = 1AV + 1Ac W satisfies condition (6.2). �

Theorem 6.4 (Weak separation) Let C and D be non-empty σ -stable L0-convex
subsets of (L0)d . Then there exists a Z ∈ (L0)d such that

||Z || > 0 and ess inf
X∈C

〈X, Z〉 ≥ ess sup
Y∈D

〈Y, Z〉 (6.3)

if and only if 0 /∈ intA(C − D) for all A ∈ F+.

Proof If there is an A ∈ F+ such that 0 ∈ intA(C − D), there can exist no Z ∈ (L0)d

such that (6.3) holds. Hence, (6.3) implies 0 /∈ intA(C − D) for all A ∈ F+.
To show the converse implication, assume that 0 /∈ intA(C − D) for all A ∈ F+.

Clearly, C − D is σ -stable and L0-convex. Therefore, one has ccone(C − D) ={
λX : λ ∈ L0++, X ∈ C − D

}
, from which it can be seen that ccone(C − D) is σ -

stable and satisfies 1Accone(C − D) �= 1A(L0)d for all A ∈ F+. So one obtains from
Lemma6.3 that there exists a Z ∈ (L0)d such that

||Z || > 0 and ess inf
X∈E

〈X, Z〉 ≥ 0.

This implies (6.3). �
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Corollary 6.5 Let C and D be two non-empty σ -stable L0-convex subsets of (L0)d

such that 1AC is disjoint from 1A D for all A ∈ F+ and D is L0-open. Then there
exists a Z ∈ (L0)d such that

ess inf
X∈C

〈X, Z〉 > 〈Y, Z〉 for all Y ∈ D.

Proof It follows from Theorem6.4 that there exists a Z ∈ (L0)d such that

||Z || > 0 and ess inf
X∈C

〈X, Z〉 ≥ ess sup
V ∈D

〈V, Z〉 ,

and since D is L0-open, one has

ess sup
V ∈D

〈V, Z〉 > 〈Y, Z〉 for all Y ∈ D. �
As another consequence of Theorem6.4 we obtain a conditional version of the

Hahn–Banach extension theorem.

Corollary 6.6 (Conditional version of the Hahn–Banach extension theorem)
Let f : (L0)d → L0 be an L0-convex function such that f (λX) = λ f (X) for all
λ ∈ L0+ and g : E → L0 an L0-linear mapping on a σ -stable L0-linear subset E of
(L0)d such that g(X) ≤ f (X) for all X ∈ E. Then there exists an L0-linear extension
h : (L0)d → L0 of g such that h(X) ≤ f (X) for all X ∈ (L0)d .

Proof Note that

C := {
(X, V ) ∈ (L0)d × L0 : f (X) ≤ V

}
and D := {(Y, g(Y )) : Y ∈ E}

are L0-convex sets in (L0)d × L0. By Lemma4.3, f and g are stable. It follows that
C and D are σ -stable.Moreover, sinceC − D is an L0-convex cone and 1A(0,−1) /∈
1A(C − D) for all A ∈ F+, one has (0, 0) /∈ intA(C − D) for all A ∈ F+. So one
obtains from Theorem6.4 that there exists a pair (Z , W ) ∈ (L0)d × L0 such that

||Z || + |W | > 0 and ess inf
(X,V )∈C

{〈X, Z〉 + V W } ≥ ess sup
Y∈E

{〈Y, Z〉 + g(Y )W } .

(6.4)
It follows thatW > 0.Bymultiplying (Z , W )with 1/W , one can assume thatW = 1.
Since E and g are L0-linear, the ess sup in (6.4) must be zero, and it follows that
g(Y ) = 〈Y,−Z〉 for all Y ∈ E . Moreover, f (X) ≥ 〈X,−Z〉 for all X ∈ (L0)d . So
h(X) := 〈X,−Z〉 is the desired extension of g to (L0)d . �
Theorem 6.7 (Proper separation) Let C and D be two non-empty σ -stable L0-
convex subsets of (L0)d . Then there exists a Z ∈ (L0)d such that

ess inf
X∈C

〈X, Z〉 ≥ ess sup
Y∈D

〈Y, Z〉 and ess sup
X∈C

〈X, Z〉 > ess inf
Y∈D

〈Y, Z〉 (6.5)

if and only if 0 /∈ riA(C − D) for all A ∈ F+.
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Proof Denote E = aff(C − D). By Corollary2.9, 1A E is for all A ∈ F+ σ -stable,
and therefore, by Proposition3.5, sequentially closed.

If there exists an A ∈ F+ such that 0 ∈ riA(C − D), 1A E is L0-linear and there
exists an ε ∈ L0++ such that B A

ε (0) ∩ 1A E ⊆ 1A(C − D). Suppose there exists Z ∈
(L0)d satisfying (6.5). Then

〈X, Z〉 ≥ 0 for all X ∈ clA(C − D) (6.6)

and
〈X, Z〉 > 0 on A for some X ∈ 1A(C − D). (6.7)

One obtains from Corollary2.12 that Z = Z1 + Z2 for some Z1 ∈ 1A E and Z2 ∈
(1A E)⊥. It follows from (6.6) that Z1 = 0. But this contradicts (6.7). So (6.5) implies
that 0 /∈ riA(C − D) for all A ∈ F+.

Now assume 0 /∈ riA(C − D) for all A ∈ F+. Since E is σ -stable, there exists
a largest B ∈ F such that 0 ∈ 1B E . If μ[B] = 0, one has 0 /∈ 1A E for all A ∈
F+, and it follows from Corollary6.2 that there exists a Z ∈ (L0)d such that
ess inf X∈E 〈X, Z〉 > 0, which implies (6.5). If μ[B] > 0, denote A := � \ B. The
same argument as before yields a Z0 ∈ 1A(L0)d satisfying (6.6)–(6.7). On the other
hand, 1B E is L0-linear. So it follows from Corollary2.11 that there exist disjoint
sets B1, . . . , Bd ∈ F satisfying

⋃d
i=1 Bi = B and an orthonormal basis X1, . . . , Xd

of (L0)d on B such that 1Bi E = linBi {X1, . . . , Xi } for all i = 1, . . . , d. For every
i ∈ I := {

j = 1, . . . , d : μ[B j ] > 0
}
one can apply Theorem6.4 in the L0-linear

subset 1Bi E to obtain a Zi ∈ 1Bi E such that

||Zi || > 0 on Bi and ess inf
X∈C

〈X, Zi 〉 ≥ ess sup
Y∈D

〈Y, Zi 〉 .

Since 0 /∈ riA(C − D) for all A ∈ F+, one has

ess sup
X∈C

〈X, Zi 〉 > ess inf
Y∈D

〈Y, Zi 〉 on Bi .

If one sets Z = 1A Z0 +⋃
i∈I 1Bi Zi , one obtains (6.5), and the proof is

complete. �

7 Properties of L0-convex Functions

Definition 7.1 Consider a function f : (L0)d → L and an X0 ∈ (L0)d .

• We call Y ∈ (L0)d an L0-subgradient of f at X0 if

f (X0) ∈ L0 and f (X0 + X) − f (X0) ≥ 〈X, Y 〉 for all X ∈ (L0)d .
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By ∂ f (X0) we denote the set of all L0-subgradients of f at X0.
• If f (X0) ∈ L0 and for some X ∈ (L0)d the limit

f ′(X0; X) := lim
n→∞ n [ f (X0 + X/n) − f (X0)]

exists a.e. (+∞ and−∞ are allowed as limits), we call it L0-directional derivative
of f at X0 in the direction X .

• We say f is L0-differentiable at X0 if f (X0) ∈ L0 and there exists a Y ∈ (L0)d

such that
f (X0 + Xn) − f (X0) − 〈Xn, Y 〉

||Xn|| → 0 a.e.

for every sequence (Xn)n∈N in (L0)d satisfying Xn → 0 a.e. and ||Xn|| > 0 for all
n ∈ N. If such a Y exists, we call it the L0-derivative of f at X0 and denote it by
∇ f (X0).

• The L0-convex conjugate f ∗ : (L0)d → L is given by

f ∗(Y ) := ess sup
X∈(L0)d

{〈X, Y 〉 − f (X)} .

• If f is L0-convex, we set

dom f := {
X ∈ (L0)d : f (X) < +∞}

.

• By conv f we denote the largest L0-convex function below f and by conv f the
largest sequentially lsc L0-convex function below f .

• If f is L0-convex and satisfies f (λX) = λ f (X) for all λ ∈ L0++ and X ∈ (L0)d ,
we call f L0-sublinear.

• For every pair (Y, Z) ∈ (L0)d × L0 we denote by f Y,Z the function from (L0)d

to L0 given by f Y,Z (X) := 〈X, Y 〉 + Z .

Theorem 7.2 Let f : (L0)d → L be an L0-convex function and X0 ∈ int(dom f )

such that f (X0) ∈ L0. Then f (X) ∈ L for all X ∈ (L0)d and f is sequentially
continuous on int(dom f ).

Proof Since X0 ∈ int(dom f ), there exists an ε ∈ L0++ such that V := maxi f (X0 ±
εei ) < +∞. By L0-convexity, one has f (X) ≤ V for all X ∈ X0 + U , where

U :=
{

X ∈ (L0)d :
d∑

i=1

|Xi | ≤ ε

}

.

Assume that there exist X ∈ (L0)d and A ∈ F+ such that f (X) = −∞ on A. Then
one can choose a Z ∈ X0 + U and a λ ∈ L0 such that 0 < λ ≤ 1 and X0 = λX +
(1 − λ)Z . It follows that f (X0) ≤ λ f (X) + (1 − λ) f (Z) = −∞ on A. But this
contradicts the assumptions. So f (X) ∈ L for all X ∈ (L0)d .
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Now pick an X ∈ U and a λ ∈ L0 such that 0 < λ ≤ 1. Then

f (X0 + λX) = f (λ(X0 + X) + (1 − λ)X0) ≤ λ f (X0 + X) + (1 − λ) f (X0),

and therefore,

f (X0 + λX) − f (X0) ≤ λ[ f (X0 + X) − f (X0)] ≤ λ(V − f (X0)).

On the other hand,

X0 = 1

1 + λ
(X0 + λX) + λ

1 + λ
(X0 − X).

So

f (X0) ≤ 1

1 + λ
f (X0 + λX) + λ

1 + λ
f (X0 − X),

which gives

f (X0) − f (X0 + λX) ≤ λ[ f (X0 − X) − f (X0)] ≤ λ(V − f (X0)).

Hence, we have shown that

| f (X) − f (X0)| ≤ λ(V − f (X0)) for all X ∈ X0 + λU.

Let (Xn)n∈N be a sequence in (L0)d converging a.e. to X0. For every k ∈ N, the sets

Ak
m :=

⋂

n≥m

{Xn − X0 ∈ U/k}

are increasing in m with
⋃

m≥1 Ak
m = �. By Lemma4.3, f is stable. Therefore,

| f (Xn) − f (X0)| ≤ (V − f (X0))/k for all n ≥ m on Ak
m,

and one obtains

μ

[
⋃

k≥1

⋂

m≥1

⋃

n≥m

{| f (Xn) − f (X0)| > (V − f (X0))/k}
]

= 0.

So f (Xn) → f (X0) a.e., and the theorem follows. �

As an immediate consequence of Theorem7.2 one obtains the following

Corollary 7.3 An L0-convex function f : (L0)d → L is sequentially continuous on
int(dom f ).
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Theorem 7.4 Let f : (L0)d → L be an L0-convex function and X0 ∈ ri(dom f ).
Then ∂ f (X0) �= ∅. In particular, if f (X) ∈ L0 for all X ∈ (L0)d , then ∂ f (X0) �= ∅
for all X ∈ (L0)d .

Proof By Lemma4.3, f is stable. Therefore,

C := {
(X, V ) ∈ (L0)d × L0 : f (X) ≤ V

}

is an L0-convex, σ -stable subset of (L0)d × L0. Since (X0, f (X0) + 1) is in C , one
has (0, 0) /∈ riA(C − (X0, f (X0)) for all A ∈ F+. So it follows from Theorem6.7
that there exists (Y, Z) ∈ (L0)d × L0 such that

ess inf
(X,V )∈C

{〈X, Y 〉 + V Z} ≥ 〈X0, Y 〉 + f (X0)Z (7.1)

and
ess sup
(X,V )∈C

{〈X, Y 〉 + V Z} > 〈X0, Y 〉 + f (X0)Z . (7.2)

Equation (7.1) implies that Z ≥ 0. Now assume there exists an A ∈ F+ such that
1A Z = 0. Then since X0 ∈ ri(dom f ), (7.2) contradicts (7.1). So one must have
Z > 0, and by multiplying (Y, Z) with 1/Z , one can assume Z = 1. It follows from
(7.1) that

ess inf
X∈dom f

{〈X, Y 〉 + f (X)} = 〈X0, Y 〉 + f (X0),

which shows that −Y is an L0-subgradient of f at X0. �
Lemma 7.5 Let f, g : (L0)d → L be functions such that f ≥ g. Then the following
hold:

(i) f ∗ is sequentially lsc and L0-convex;
(ii) f ∗(Y ) ≥ 〈X, Y 〉 − f (X) for all X, Y ∈ (L0)d ;

(iii) Y ∈ ∂ f (X) if and only if f (X) ∈ L0 and f ∗(Y ) = 〈X, Y 〉 − f (X);
(iv) f ∗ ≤ g∗ and f ∗∗ ≥ g∗∗;
(v) f ≥ f ∗∗ and f ∗ = f ∗∗∗.

Proof To prove (i) let (Yn)n∈N be a sequence in (L0)d converging a.e. to some Y ∈
(L0)d . Then

lim inf
n→∞ f ∗(Yn) = sup

m≥1
inf
n≥m

ess sup
X∈(L0)d

{〈X, Yn〉 − f (X)}
≥ ess sup

X∈(L0)d

sup
m≥1

inf
n≥m

{〈X, Yn〉 − f (X)}
= ess sup

X∈(L0)d

{〈X, Y 〉 − f (X)} = f ∗(Y ).

Hence, f ∗ is sequentially lsc. To show that it is L0-convex, choose Y, Z ∈ (L0)d

and λ ∈ L0 such that 0 ≤ λ ≤ 1. Then, λ f ∗(Y ) + (1 − λ) f ∗(Z) ≥ 〈X, λY + (1 −
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λ)Z〉 − f (X) for all X ∈ (L0)d and therefore, λ f ∗(Y ) + (1 − λ) f ∗(Z) ≥ f ∗(λY +
(1 − λ)Z). (ii) is immediate from the definition of f ∗. Now assume that f (X) ∈ L0.
For any X ′ ∈ (L0)d , f (X ′) − f (X) ≥ 〈

X ′ − X, Y
〉
is equivalent to 〈X, Y 〉 − f (X) ≥〈

X ′, Y
〉− f (X ′). This shows (iii). (iv) is clear. From (ii) one obtains that f (X) ≥

〈X, Y 〉 − f ∗(Y ) for all X, Y ∈ (L0)d . So f ≥ f ∗∗. The same inequality applied to
f ∗ gives f ∗ ≥ f ∗∗∗. On the other hand, we know from (iv) that f ∗ ≤ f ∗∗∗. This
proves (v). �

Lemma 7.6 Let f : (L0)d → L be a sequentially lsc L0-convex function. Then one
has for all X ∈ (L0)d ,

f (X) = ess sup
{

f Y,Z (X) : (Y, Z) ∈ (L0)d × L0, f ≥ f Y,Z
}
.

Proof Note that the set

A := {
A ∈ F : there exists an X ∈ (L0)d such that 1A f (X) ∈ L0

}

is directed upwards. Therefore, there exists an increasing sequence An in A with
corresponding Xn , n ∈ N, such that An ↑ A := ess supA a.e. Set

X0 := 1A1∪Ac X1 +
∑

n≥2

1An\An−1 Xn.

By Lemma4.3, f is stable. Hence, f (X0) < +∞ on A, and f (X) = +∞ on Ac for
all X ∈ (L0)d . The lemma can be proved on A and Ac separately, and on Ac it is
obvious. Therefore, we can assume A = �. Then dom f �= ∅, and it follows that

C := {
(X, V ) ∈ dom f × L0 : f (X) ≤ V

}

is a non-empty sequentially closed L0-convex subset of (L0)d × L0. Choose a pair
(U, W ) ∈ (L0)d × L0 such that 1A(U, W ) /∈ 1AC for all A ∈ F+. By Corollary6.2,
there exists (Y, Z) ∈ (L0)d × L0 such that

I := inf
(X,V )∈C

{〈X, Y 〉 + V Z} > 〈U, Y 〉 + W Z .

It follows that Z ≥ 0. On the set B := {Z > 0} one can multiply (Y, Z) with 1/Z
and assume Z = 1. Then one obtains that on B,

f (X) ≥ f −Y,I (X) for all X ∈ (L0)d and f −Y,I (U ) > W.
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On Bc one has λ := I − 〈U, Y 〉 > 0. Pick a U ′ ∈ dom f . Since 1A(U ′, f (U ′) −
1) /∈ 1AC for all A ∈ F+, one obtains from Corollary6.2 that there exists a pair
(Y ′, Z ′) ∈ (L0)d × L0 such that

I ′ := inf
(X,V )∈C

{〈
X, Y ′〉+ V Z ′} >

〈
U ′, Y ′〉+ ( f (U ′) − 1)Z ′.

SinceU ′ ∈ dom f , onemust have Z ′ > 0. Bymultiplyingwith 1/Z ′, one can assume
Z ′ = 1. Now choose a δ ∈ 1Bc L0+ such that

δ >
1

λ
(W + 〈

U, Y ′〉− I ′)+ on Bc

and set Y ′′ := δY + Y ′. Then, on Bc,

I ′′ := inf
(X,V )∈C

(
〈
X, Y ′′〉+ V ) ≥ δ I + I ′ = δλ + δ 〈U, Y 〉 + I ′ >

〈
U, Y ′′〉+ W.

So on Bc, one has

f (X) ≥ f −Y ′′,I ′′
(X) for all X ∈ (L0)d and f −Y ′′,I ′′

(U ) > W.

Now define (Ŷ , Î ) := 1B(−Y, I ) + 1Bc(−Y ′′, I ′′). Then

f (X) ≥ f Ŷ , Î (X) for all X ∈ (L0)d and f Ŷ , Î (U ) > W.

This proves the lemma. �

Theorem 7.7 (Conditional version of the Fenchel–Moreau theorem)
Let f : (L0)d → L be a function such that conv f takes values in L. Then conv f =
f ∗∗. In particular, if f is sequentially lsc and L0-convex, then f = f ∗∗.

Proof We know from Lemma7.5 that f ∗∗ is a sequentially lsc L0-convex minorant
of f . So conv f ≥ f ∗∗. On the other hand, it follows from Lemma7.6 that

conv f = ess sup
{

f Y,Z (X) : (Y, Z) ∈ (L0)d × L0, conv f ≥ f Y,Z
}
,

and it can easily be checked that ( f Y,Z )∗∗ = f Y,Z for all (Y, Z) ∈ (L0)d × L0. So
one obtains from Lemma7.5 that f ∗∗ ≥ ( f Y,Z )∗∗ = f Y,Z for every pair (Y, Z) ∈
(L0)d × L0 satisfying f ≥ f Y,Z . This shows that f ∗∗ ≥ conv f . �

Lemma 7.8 Let f : (L0)d → L be an L0-convex function and X0 ∈ (L0)d such that
f (X0) ∈ L0. Then f ′(X0; X) exists for all X ∈ (L0)d , f ′(X0, 0) = 0 and f ′(X0; .)

is L0-sublinear. Moreover, ∂ f (X0) = ∂g(0), where g(X) := f ′(X0; X).
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Proof It follows from L0-convexity that for every X ∈ (L0)d , n[ f (X0 + X/n) −
f (X0)] is decreasing in n. This implies that f ′(X0; X) exists. f ′(X0; 0) = 0 is
clear. That f ′(X0; .) is L0-sublinear and ∂ f (X0) = ∂g(0) are straightforward to
check. �

Lemma 7.9 Let f : (L0)d → L be a sequentially lsc L0-sublinear function. If
there exists an X0 ∈ (L0)d such that f (X0) ∈ L0, then ∂ f (0) �= ∅ and f (X) =
ess supY∈∂ f (0) 〈X, Y 〉 for all X ∈ (L0)d . In particular, f (0) = 0.

Proof By Theorem7.7, one has f = f ∗∗. This implies that the set

C := {
Y ∈ (L0)d : 〈X, Y 〉 ≤ f (X) for all X ∈ (L0)d

}

is non-empty and f (X) = ess supY∈C 〈X, Y 〉. It follows that f (0) = 0 and ∂ f (0) =
C . This proves the lemma. �

Theorem 7.10 Let f : (L0)d → L be an L0-convex function. Assume there exist
X0 ∈ (L0)d and V ∈ L0+ such that f (X0) ∈ L0 and

f (X0 + X) ≥ f (X0) − V ||X || for all X ∈ (L0)d . (7.3)

Then there exists a Y ∈ ∂ f (X0) such that ||Y || ≤ V .

Proof Denote g(X) := f ′(X0; X). Then h = convg is a sequentially lsc L0-sub-
linear function which by (7.3), satisfies

h(X) ≥ −V ||X || for all X ∈ (L0)d . (7.4)

It follows that h(0) = 0 and ∂h(0) ⊆ ∂g(0) = ∂ f (X0). Since ∂h(0) and

BV (0) := {
Y ∈ (L0)d : ||Y || ≤ V

}

are L0-convex and sequentially closed, they are both σ -stable. Therefore, there exists
a largest set A ∈ F such that 1A∂h(0) ∩ 1A BV (0) is non-empty. Assume that Ac ∈
F+. Then, if one restricts attention to Ac and assumes � = Ac, the sets ∂h(0) and
BV (0) satisfy the assumptions of Corollary6.2. So there exists a Z ∈ (L0)d such that

−V ||Z || = ess inf
Y∈BV (0)

〈Y, Z〉 > ess sup
Y∈∂h(0)

〈Y, Z〉 .

But by Lemma7.9, one has h(Z) = ess supY∈∂h(0) 〈Y, Z〉, and one obtains a contra-
diction to (7.4). It follows that A = �, which proves the theorem. �
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Theorem 7.11 Let f : (L0)d → L be an L0-convex function and X0 in (L0)d such
that f (X0) ∈ L0. Assume that ∂ f (X0) = {Y } for some Y ∈ (L0)d . Then f is L0-
differentiable at X0 with ∇ f (X0) = Y .

Proof By Lemma7.8, one has ∂g(0) = {Y } for the L0-sublinear function g(X) :=
f ′(X0; X). It follows that

g∗(Z) = 1{Z �=Y }(+∞) and g∗∗(X) = 〈X, Y 〉 . (7.5)

Set

A := {
A ∈ F : there exists an X ∈ (L0)d such that g(X) = +∞ on A

}
.

By Lemma4.3, g is stable. Therefore, there exists a sequence (An)n∈N in A with
corresponding Xn such that An ↑ A := ess supA. The element

X0 := 1A1∪Ac X1 +
∑

n≥2

1An\An−1 Xn

satisfies g(X0) = +∞ on A. We want to show that μ[A] = 0. So let us assume
μ[A] > 0. If one replaces � with A, one has 0 /∈ 1B(dom g − X0) for all B ∈ F+.
By Theorem6.4, there exists a Z ∈ (L0)d such that

||Z || > 0 and ess inf
X∈dom g

〈X, Z〉 ≥ 〈X0, Z〉 .

Define the sequentially lsc L0-convex function h : (L0)d → L as follows:

h(X) := 〈X, Y 〉 1{〈X,Z〉≥〈X0,Z〉} + ∞1{〈X,Z〉<〈X0,Z〉}.

Then g ≥ h and h(X) = +∞ for all X ∈ (L0)d satisfying 〈X, Z〉 < 〈X0, Z〉. It fol-
lows that convg(X) = +∞ for all X ∈ (L0)d satisfying 〈X, Z〉 < 〈X0, Z〉. More-
over, since Y ∈ ∂g(0), g fulfills the assumptions of Theorem7.7, and one obtains
convg = g∗∗, contradicting (7.5). So one must have μ[A] = 0, or in other words,
g(X) ∈ L0 for all X ∈ (L0)d . It follows from Theorem7.2 that g is sequentially
continuous, and therefore, g(X) = g∗∗(X) = 〈X, Y 〉 for all X ∈ (L0)d .

Now let (Xn)n∈N be a sequence in (L0)d such that Xn → 0 a.e. and ||Xn|| > 0 for
all n. Denote ||Xn||1 := ∑d

i=1 |Xi
n| and notice that there exists a constant c > 0 such

that ||Xn||1 ≤ c||Xn|| for all n. Since g(X) = 〈X, Y 〉, one has for all i = 1, . . . , d,

f (X0 ± ||Xn||1ei ) − f (X0)

||Xn||1 → ±Y i a.e.
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Therefore,

f (X0 + Xn) − f (X0) − 〈Xn, Y 〉
||Xn|| ≤ c

f (X0 + Xn) − f (X0) − 〈Xn, Y 〉
||Xn||1

≤ c
d∑

i=1

|Xi
n|

||Xn||1
{

f (X0 + ||Xn||1sign(Xi
n)ei ) − f (X0)

||Xn||1 − sign(Xi
n)Y

i

}
→ 0 a.e.

�

8 Inf-Convolution

Definition 8.1 We define the inf-convolution of finitely many functions f j : (L0)d

→ L , j = 1, . . . , n, by

�n
j=1 f j (X) := ess inf

X1+···+Xn=X

n∑

j=1

f j (X j ).

Lemma 8.2 If f j , j = 1, . . . , n, are L0-convex functions from (L0)d to L, then
�n

j=1 f j is L0-convex too.

Proof Denote f = �n
j=1 f j . Choose X, Y ∈ (L0)d and V, W ∈ L such that f (X) ≤

V and f (Y ) ≤ W . Let ε ∈ L0++ and λ ∈ L0 such that 0 ≤ λ ≤ 1. By Lemma4.3,

the functions f j are stable. Therefore, the family
{∑

j f j (X j ) : ∑ j X j = X
}
is

directed downwards. So there exist sequences Xk
j , k ∈ N, such that

∑
j Xk

j = X and
∑

j f j (Xk
j ) decreases to f (X) a.e. It follows that the sets Ak :=

{∑
j f j (Xk

j ) ≤
V + ε

}
increase to � as k → ∞. So for every j = 1, . . . , n,

X j :=
∑

k≥1

1Ak\Ak−1 Xk
j , where A0 := ∅.

defines an element in (L0)d such that
∑n

j=1 X j = X and
∑n

j=1 f (X j ) ≤ V + ε.
Analogously, there exist Y j ∈ (L0)d , j = 1, . . . , n, such that

∑n
j=1 Y j = Y and∑n

j=1 f (Y j ) ≤ W + ε. Set Z j = λX j + (1 − λ)Y j . Then Z := ∑n
j=1 Z j = λX +

(1 − λ)Y and

f (Z) ≤
n∑

j=1

f j (Z j ) ≤
n∑

j=1

λ f j (X j ) + (1 − λ) f (Y j ) ≤ λV + (1 − λ)W + ε.

It follows that f (Z) ≤ λ f (X) + (1 − λ) f (Y ). �
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Lemma 8.3 Let f j : (L0)d → L, j = 1, . . . , n, be L0-convex functions and denote
f = �n

j=1 f j . Assume f (X0) = ∑n
j=1 f j (X j ) < +∞ for some X j ∈ (L0)d summing

up to X0. If X1 ∈ int(dom f1), then f (X) ∈ L for all X ∈ (L0)d , X0 ∈ int(dom f )

and f is sequentially continuous on int(dom f ).

Proof By definition of f , one has

f (X0 + X) − f (X0) ≤ f1(X1 + X) +
n∑

j=2

f j (X j ) −
n∑

j=1

f j (X j ) = f1(X1 + X) − f1(X1)

for all X ∈ (L0)d . This shows that X0 ∈ int(dom f ). Since f (X0) = ∑n
j=1 f j (X j ) ∈

L0, the rest of the lemma follows from Theorem7.2. �

Lemma 8.4 Consider functions f j : (L0)d → L, j = 1, . . . , n, and denote f =
�n

j=1 f j . Assume f (X0) = ∑n
j=1 f j (X j ) < +∞ for some X j ∈ (L0)d summing up to

X0. Then ∂ f (X0) = ⋂n
j=1 ∂ f j (X j ).

Proof Assume Y ∈ ∂ f (X0) and X ∈ (L0)d . Then

f1(X1 + X) − f1(X1) = f1(X1 + X) +
n∑

j=2

f j (X j ) −
n∑

j=1

f j (X j ) ≥ f (X0 + X)

− f (X0) ≥ 〈X, Y 〉 .

Hence Y ∈ ∂ f1(X1), and by symmetry, ∂ f (X0) ⊆ ⋂n
j=1 ∂ f j (X j ).On the other hand,

ifY ∈ ⋂n
j=1 ∂ f j (X j ) and X ∈ (L0)d , choose Z j such that

∑n
j=1 Z j = X0 + X . Then

n∑

j=1

f j (Z j ) ≥
n∑

j=1

f j (X j ) + 〈
Z j − X j , Y

〉 =
n∑

j=1

f j (X j ) + 〈X, Y 〉 .

So f (X0 + X) − f (X0) ≥ 〈X, Y 〉, and the lemma follows. �

Lemma 8.5 Let f j : (L0)d → L, j = 1, . . . , n, be L0-convex functions and denote
f = �n

j=1 f j . Assume f (X0) = ∑
j f j (X j ) < +∞ for some X j ∈ (L0)d summing

up to X0 and f1 is L0-differentiable at X1. Then f is L0-differentiable at X0 with
∇ f (X0) = ∇ f1(X1).

Proof One has

f (X0 + X) − f (X0) ≤ f1(X1 + X) +
n∑

j=2

f j (X j ) −
n∑

j=1

f j (X j ) = f1(X1 + X) − f1(X1)

for all X ∈ (L0)d . It follows that the L0-directional derivative g(X) := f ′(X0; X)

satisfies



Conditional Analysis on Rd 211

g(X) ≤ f ′
1(X1; X) = 〈X,∇ f1(X1)〉

for all X ∈ (L0)d . But byLemma8.2, f is L0-convex. It follows that g is L0-sublinear,
and therefore,g(X) = 〈X,∇ f1(X1)〉. This implies that ∂ f (X0) = ∂g(0) = {∇ f1(X1)}.
Now the lemma follows from Theorem7.11. �

Lemma 8.6 Consider functions f j : (L0)d → L, j = 1, . . . , n. Then
(
�n

j=1 f j

)∗ =
∑n

j=1 f ∗
j , where the sum is understood to be −∞ if at least one of the terms is −∞.

Proof

(
�n

j=1 f j
)∗

(Y ) = ess sup
X

{〈X, Y 〉 − �n
j=1 f j (X)

}

= ess sup
X1,...,Xn

n∑

j=1

{〈
X j , Y

〉− f j (X j )
} =

n∑

j=1

f ∗
j (Y ). �
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Set Optimization Meets Variational
Inequalities

Giovanni P. Crespi and Carola Schrage

Abstract We study necessary and sufficient conditions to attain solutions of set
optimization problems in terms of variational inequalities of Stampacchia andMinty
type. The notion of solution we deal with has been introduced by Heyde and Löhne
in 2011. To define the set-valued variational inequality, we introduce a set-valued
directional derivative that we relate to Dini derivatives of a family of scalar problems.
Optimality conditions are given by Stampacchia and Minty type variational inequal-
ities, defined both by set-valued directional derivatives and by Dini derivatives of the
scalarizations. The main results allow to obtain known variational characterizations
for vector optimization problems as special cases.

Keywords Set optimization · Variational inequalities · Dini derivatives · Scalar-
ization · Vector optimization

1 Introduction

Since the seminal papers by Giannessi (see [9, 10]), variational inequalities have
been applied to obtain necessary and sufficient optimality conditions in vector opti-
mization. In [18] a new approach to study set-valued problems has been applied to
have a fresh look to vector optimization. Indeed, it turns out that vector optimization
can be treated as a special case of set optimization. The aim of this paper is to provide
some variational characterization of (convex) set-valued optimization. Following the
approach known as set optimization we introduce set-valued variational inequalities,
both of Stampacchia and Minty type, by means of Dini-type derivatives (see e.g.
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[15]). Under suitable assumptions (e.g. lower semicontinuity type assumptions), we
can prove equivalence between solutions of the variational inequalities and solutions
of a (primitive) set optimization problem, as introduced in [18] and deepened in [21].
To prove the main results we need also to deal with scalarization problems. However,
while in the vector case this might only be a technical need, we prove that eventually
the set-valued variational inequalities and their scalar counterparts provide differ-
ent insights into the problem. Some relevant information on the solution of the set
optimization problem is provided only through the scalar version of the inequality.
The special case of vector optimization is finally studied, to recover classical results
stated in [4, 26].

The paper is organized as follows. Section2 is devoted to preliminary results on
set optimization that will be used throughout the paper. The concept of solution to a
set optimization problem and the Dini type derivatives are presented and some prop-
erties are proved. Section3 presents the main results. As the solution concept relies
on two properties, we develop two different sets of relations between our variational
inequalities and the set optimization. The first one provides a variational characteri-
zation of “infimizer”, while the second one is devoted to characterize “minimizers”.
Finally, Sect. 4 applies the previous results to vector optimization. The relations
proved for the convex case in this paper reproduce those already known for the
vector case between optimization and variational inequalities. We leave as an open
question whether convexity can be relaxed, as indeed can be done for vector-valued
functions.

2 Preliminaries

2.1 Order and Operations with Sets

Throughout the paper, unless explicitly stated otherwise, we assume the setting and
notation introduced in this section.

Let Z be a locally convex Hausdorff space with dual space Z∗. The set U is
the set of all closed, convex and balanced 0-neighborhoods in Z , a 0-neighborhood
base of Z . By cl A, co A and int A, we denote the closed or convex hull of a set
A ⊆ Z and the topological interior of A, respectively. The conical hull of a set A is
cone A = {ta | a ∈ A, 0 < t}.

The recession cone of a nonempty closed convex set A ⊆ Z is given by

0+ A = {z ∈ Z | A + {z} ⊆ A} , (2.1)

a closed convex cone, [27, p. 6]. By definition, 0+∅ = ∅.
Z is pre-ordered through a closed convex cone C with 0 ∈ C and nontrivial neg-

ative dual cone
C− = {

z∗ ∈ Z∗ | ∀c ∈ C : z∗(c) ≤ 0
}
,
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C− \ {0} �= ∅ by setting

z1 ≤ z2 ⇔ {z2} + C ⊆ {z1} + C

for all z1, z2 ∈ Z . This relation is extended to P(Z), the power set of Z including ∅
and Z (compare [13] and the references therein) by setting

A1 � A2 ⇔ A2 + C ⊆ A1 + C

for all A1, A2 ⊆ Z .
We introduce the subset

G(Z , C) = {A ⊆ Z | A = cl co (A + C)}

which is an order complete lattice and A1 � A2 is equivalent to A1 ⊇ A2 whenever
A1, A2 ∈ G(Z , C) . For any subset A ⊆ G(Z , C), supremum and infimum of A in
G(Z , C) are given by

inf A = cl co
⋃

A∈A
A; supA =

⋂

A∈A
A (2.2)

and for a net {Ai }i∈I in G(Z , C), limit inferior and limit superior are defined
accordingly,

lim inf A =
⋂

j∈I

cl co
⋃

i≥ j

Ai ; lim supA = cl co
⋃

j∈I

⋂

i≥ j

Ai . (2.3)

When A = ∅, then we agree on inf A = ∅ and supA = Z . Especially, G(Z , C)

possesses a greatest and smallest element inf G(Z , C) = Z and supG(Z , C) = ∅.
TheMinkowsky addition andmultiplicationwith negative reals need to be slightly

adjusted to provide operations on G(Z , C). We define

∀A, B ∈ G(Z , C) : A ⊕ B = cl {a + b ∈ Z | a ∈ A, b ∈ B} ; (2.4)

∀A ∈ G(Z , C), ∀0 < t : t · A = {ta ∈ Z | a ∈ A} ; (2.5)

∀A ∈ G(Z , C) : 0 · A = C. (2.6)

Especially, 0 · ∅ = 0 · Z = C and ∅ dominates the addition in the sense that A ⊕ ∅ =
∅ is true for all A ∈ G(Z , C). Moreover, A ⊕ C = A is satisfied for all A ∈ G(Z , C),
thus C is the neutral element with respect to addition.

As a consequence,

∀A ⊆ G(Z , C), ∀B ∈ G(Z , C) : B ⊕ inf A = inf {B ⊕ A | A ∈ A} , (2.7)



216 G.P. Crespi and C. Schrage

or, equivalently, the inf–residual

A−� B = inf {M ∈ G(Z , C) | A � B ⊕ M} (2.8)

exists for all A, B ∈ G(Z , C). The following properties are well known in lattice
theory, compare also [14, Theorem2.1].

A−� B = {z ∈ Z | B + {z} ⊆ A} ; (2.9)

A � B ⊕ (A−� B) (2.10)

Overall, the structure of G� = (G(Z , C),⊕, ·, C,�) is that of an inf–residuated
conlinear space, compare also [6–8, 12, 22].

Historically, it is interesting to note that Dedekind [5] introduced the residuation
concept and used it in order to construct the real numbers. The construction above
is in this line of ideas, but in a rather abstract setting.

Example 2.1 Let us consider Z = IR, C = IR+. Then G (Z , C) = { [r,+∞) |
r ∈ IR} ∪ {IR} ∪ {∅}, andG� can be identified (with respect to the algebraic and order
structures which turn G (IR, IR+) into an ordered conlinear space and a complete lat-
tice admitting an inf-residuation) with IR = IR ∪ {±∞} using the ’inf-addition’ +�

(see [14, 23]). The inf-residuation on IR is given by

r−� s = inf
{
t ∈ IR | r ≤ s+� t

}

for all r, s ∈ IR, compare [14] for further details.

Each element of G� is closed and convex and A = A + C . Hence, by a separation
argument we can prove

∀A ∈ G� : A =
⋂

z∗∈C−\{0}

{
z ∈ Z | − σ(z∗|A) ≤ −z∗(z)

}
, (2.11)

where σ(z∗|A) = sup {z∗(z) | z ∈ A} is the support function of A at z∗. Especially,
A = ∅ if, and only if, there exists z∗ ∈ C− \ {0} such that −σ(z∗|A) = +∞.

Lemma 2.2 ([25, Proposition3.5]) Let A ⊆ G� be a given subset, then

inf A =
⋂

z∗∈C−\{0}

{
z ∈ Z | inf

{−σ(z∗|A) | A ∈ A} ≤ −z∗(z)
}

(2.12)

∀z∗ ∈ C− \ {0} : −σ(z∗| inf A) = inf
{−σ(z∗|A) | A ∈ A}

. (2.13)

Lemma 2.3 ([14, Proposition5.20]) Let A, B ∈ G�, then

A−� B =
⋂

z∗∈C−\{0}

{
z ∈ Z | (−σ(z∗|A))−� (−σ(z∗|B)) ≤ −z∗(z)

} ; (2.14)
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∀z∗ ∈ C− \ {0} : (−σ(z∗|A)
)−� (−σ

(
z∗|B)) ≤ −σ(z∗|A−� B). (2.15)

In general, the difference of the scalarizations and the scalarization of the differ-
ence do not coincide, as the following example shows.

Example 2.4 Let Z = IR2 and C = cl cone (0, 1)T , B = {
(x, y) ∈ IR2 | − 1 ≤ x

≤ 1, 0 ≤ y} and A = C . Then (−σ(z∗|A))−� (−σ(z∗|B)) ∈ IR is satisfied for all
z∗ ∈ C− \ {0} and

A−� B = {
z ∈ Z | 1 ≤ (−1, 0)T z, 1 ≤ (1, 0)T z, 0 ≤ (0, 1)T z

} = ∅,

thus −σ(A−� B) = +∞.

The following rules will be used frequently later on.

Lemma 2.5 Let A, B, D ∈ G�, 0 < s and t ∈ (0, 1) be given, then

(a) s(A−� B) = s A−� s B;
(b) (t A ⊕ (1 − t)B)−� D � t (A−� D) ⊕ (1 − t)(B−� D);
(c) A−� D �

(
A−� B

) ⊕ (
B−� D

) ;
(d) If A �= ∅, then 0+ A = (

A−� A
)
.

Proof (a) It holds z ∈ (A−� B) if, and only if, B + {z} ⊆ A or equivalently s A �
s B + {sz}.

(b) As D ∈ G� is assumed, t D ⊕ (1 − t)D = D. Let z A ∈ A−� D and zB ∈ B−� D
be given, then (t A ⊕ (1 − t)B) � D + (t z A + (1 − t)zB) is satisfied.

(c) The inclusion is true if, and only if,

A �
(

A−� B
) ⊕ (

B−� D
) ⊕ D.

As we know that B �
(
B−� D

) ⊕ D and A �
(

A−� B
) ⊕ B, this inclusion is

true.
(d) This is immediate from the definition of 0+ A.

�
Lemma2.5 (d) suggests that, if needed, we can use the recession cone of a set as

generalized 0-element in certain inequalities. It is remarkable that for any A ∈ G�,
either A = ∅, or 0+ A � C . To implement these remarks in the sequel, we use the
following properties of recession cones.

Proposition 2.6 Let A ∈ G� \ {∅}, then

0+ A = {
z ∈ Z | ∀z∗ ∈ C− \ {0} : −σ(z∗|A) = −∞ ∨ 0 ≤ −z∗(z)

}
.

Especially, for all A ∈ G�, either A = ∅, or

0+ A =
⋂

z∗∈C−\{0}
−σ(z∗|A)∈IR

{
z ∈ Z | 0 ≤ −z∗(z)

}
. (2.16)
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Proof Assume z /∈ 0+ A, then either A = ∅ or there exists a z∗ ∈ Z∗ such that
σ(z∗|A) < z∗(a + z) is satisfied for some a ∈ A. As z∗(a + z) ≤ σ(z∗|A) + z∗(z),
this implies −z∗(z) < 0 and −σ(z∗|A) �= −∞ and therefore z∗ ∈ C− \ {0}. On the
other hand, assume z ∈ 0+ A, then A is nonempty and A + {z} ⊆ A, hence for all
z∗ ∈ Z∗ it holds σ(z∗|A + {z}) ≤ σ(z∗|A), hence σ(z∗|A) + z∗(z) ≤ σ(z∗|A). This
implies that either −σ(z∗|A) = −∞ or 0 ≤ −z∗(z) is true for all z∗ ∈ Z∗ and thus
especially for z∗ ∈ C− \ {0}.

If A = Z , then −σ(z∗|Z) = −∞ /∈ IR is satisfied for all z∗ ∈ C− \ {0}, hence
(2.16) is true with 0+ Z = Z . Hence let A �= Z or ∅, then −σ(z∗|A) /∈ IR implies
−σ(z∗|A) = −∞ and the statement is proved. �

Lemma 2.7 Let A ∈ G� \ {∅}, then

{
z∗ ∈ Z∗ | − σ(z∗|A) ∈ IR

} ⊆ (0+ A)− ⊆ C−.

Proof Assume −σ(z∗|A) ∈ IR and A + {z} ⊆ A. Then

−σ(z∗|A) ≤ −σ(z∗|A + {z}) = −σ(z∗|A) + (−z∗(z))

implies 0 ≤ −z∗(z), in otherwords z∗ ∈ (0+ A)−. The second inclusion is immediate,
as A ∈ G� \ {∅} implies 0+ A ⊇ C . �

Lemma 2.8 Let A, B ∈ G� \ {∅}, then

0+(A ⊕ B) � cl co
(
0+ A ∪ 0+ B

) = 0+ A ⊕ 0+ B;
A � B ⇒ 0+ A � 0+ B.

Proof Assume A + {z A} ⊆ A and B + {zB} ⊆ B, then for all a ∈ A and all b ∈ B
it holds

a + b + (z A + zB) ∈ A ⊕ B

and as both 0+ A and 0+ B are convex cones, for all t ∈ [0, 1] it holds

ta + (1 − t)b + (z A + zB) ∈ A ⊕ B.

If z ∈ A ⊕ B, then for all U ∈ U there exist a ∈ A, b ∈ B and t ∈ [0, 1] with ta +
(1 − t)b ∈ {z} + U , such that

ta + (1 − t)b + (z A + zB) ∈ {z + (z A + zB)} + U,

and hence z + (z A + zB) ∈ A ⊕ B, proving 0+ A + 0+ B ⊆ 0+(A ⊕ B). As A ⊕ B
is a closed convex set, the recession cone is a closed convex cone, so

0+ A ⊕ 0+ B = cl co (0+ A + 0+ B) ⊆ 0+(A ⊕ B).
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Since 0 ∈ 0+ A∩0+ B implies 0+ A∪0+ B⊆0+ A ⊕ 0+ B, also cl co
(
0+ A ∪ 0+ B

) ⊆
0+ A ⊕ 0+ B holds true. On the other hand, if z A ∈ 0+ A and zB ∈ 0+ B are given,
then z A + zB ∈ co

(
0+ A ∪ 0+ B

)
, hence cl co

(
0+ A ∪ 0+ B

) ⊇ 0+ A ⊕ 0+ B proves
equality.

Finally, let A � B be satisfied, B + {z} ⊆ B and a + z /∈ A for some a ∈ A. Then
there exists a neighborhood U ∈ U such that {a + z} + U ∩ A = ∅, as A is closed
and thus there exists t ∈ (0, 1) such that

t

(
b + 1

t
z

)
+ (1 − t)a = a + z + t (b − a) ∈ {a + z} + U.

But since A is convex and 0+ B is a cone, this implies

t

(
b + 1

t
z

)
+ (1 − t)a ∈ co (B + A) ⊆ A,

a contradiction. �

Moreover, we can remark that for any A ∈ G� the following properties hold true

(i) 0+ A ⊕ 0+∅ = 0+(A ⊕ ∅) = ∅;
(ii) 0+ A � 0+∅ = ∅.
The inequality 0+ A ⊕ 0+∅ � 0+ A ∪ 0+∅ is true only if only if A = ∅.
Lemma 2.9 If A−� B �= ∅, then

0+(A−� B) � 0+ A � 0+ B.

If additionally B �= ∅, then we also get

0+(A−� B) = 0+ A.

Proof Assume A−� B �= ∅. If B = ∅, then A−� B = Z and the first equation is imme-
diate. Hence let B �= ∅. Then ∅ �= B ⊕ (A−� B) ⊆ A and because A is closed and
convex by assumption, we can apply Lemma2.8 to prove

0+ B ∪ 0+(A−� B) ⊆ 0+(B ⊕ (
A−� B

)
) ⊆ 0+ A.

On the other hand, if B + {z} ⊆ A, that is z ∈ A−� B, then for all z0 ∈ 0+ A it holds
B + {z + z0} ⊆ A, hence 0+ A ⊆ 0+(A−� B). �
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2.2 Set-valued Functions

Let X be a linear space. A function f : X → G� is convex when

∀x1, x2 ∈ X, ∀t ∈ (0, 1) : f (t x1 + (1 − t)x2) � t f (x1) ⊕ (1 − t) f (x2) .

(2.17)

It is an easy exercise (see, for instance, [13]) to show that f is convex if, and only
if, the set

graph f = {(x, z) ∈ X × Z : z ∈ f (x)}

is convex. A G�-valued function f is called positively homogeneous when

∀0 < t,∀x ∈ X : f (t x) � t f (x) ,

and it is called sublinear if it is positively homogeneous and convex. It can be shown
that f is sublinear if, and only if, graph f is a convex cone. Compare also [2, Defi-
nition2.1.1.] on above definitions.

The (effective) domain of a function f : X → G� is the set dom f = {x ∈ X |
f (x) �= ∅}. Since ∅ is the supremum of G�, the previous notion of domain of a
set-valued function extends the scalar notion of effective domain. The image set of
a subset A ⊆ X through f is denoted by

f [A] = {
f (x) ∈ G� | x ∈ A

} ⊆ G�.

We underline that f [A] is a subset of P(Z) rather then a subset of Z , while
inf f [A] = cl co

⋃

a∈A
f (a) is an element of P(Z), hence a subset of Z .

Proposition 2.10 Let f : X → G� be convex, x0 ∈ dom f . If x ∈ dom f , then t �→
0+( f (x + t (x0 − x))) is constant on (0, 1) and 0+( f (x + t (x0 − x))) � 0+ f (x) ∪
0+ f (x0) is satisfied for all t ∈ (0, 1).

Proof Let t ∈ [0, 1] and denote xt = x + t (x0 − x). By convexity of f , for any
z0 ∈ 0+ f (x0) and z ∈ 0+ f (x), zt = t z + (1 − t)z0 ∈ 0+ f (xt ) is satisfied. Since
both recession cones contain 0, we have z0 + 0 ∈ 0+ f (xt ) and z + 0 ∈ 0+ f (xt ).
Therefore 0+ f (xt ) ⊇ 0+ f (x0) ∪ 0+ f (x).

Moreover let 0 < s < t < 1 be given. By replacing x with xt in above argument
we have

0+ f (xs) ⊇ 0+ f (x0) ∪ 0+ f (xt ) = 0+ f (xt )

and by replacing x0 by xs instead we have

0+ f (xt ) ⊇ 0+ f (xs) ∪ 0+ f (x) = 0+ f (xs),

hence 0+ f (xs) = 0+ f (xt ) is proven for all s, t ∈ (0, 1). �



Set Optimization Meets Variational Inequalities 221

Given a function f : X → G�, the family of extended real-valued functions
ϕ f,z∗ : X → IR ∪ {±∞} defined by

ϕ f,z∗ (x) = inf
{−z∗ (z) | z ∈ f (x)

}
, z∗ ∈ C−\ {0}

is the family of scalarizations of f . Some properties of f are inherited by its scalar-
izations and vice versa. For instance, f is convex if, and only if, ϕ f,z∗ is convex
for each z∗ ∈ C−\ {0}. In turn, convexity of ϕ f,z∗ is equivalent to convexity of the
function fz∗ : X → G� given by

fz∗(x) = {
z ∈ Z | ϕ f,z∗ (x) ≤ −z∗ (z)

}
.

Moreover, a standard separation argument shows that

∀x ∈ X : f (x) =
⋂

z∗∈C−\{0}
fz∗(x).

Remark 2.11 The function fz∗ : X → G� maps x to the sublevel set L≤
z∗(−ϕ f,z∗(x))

of z∗ at level −ϕ f,z∗(x). For all z∗ ∈ C− \ {0} and all x ∈ X it holds

fz∗(x) = L≤
z∗(σ (z∗| f (x))) = {

z ∈ Z | z∗(z) ≤ −ϕ f,z∗(x)
}
. (2.18)

Therefore either fz∗(x) ∈ {∅, Z}, or it is a closed affine half space with a supporting
point z ∈ fz∗(x) such that ϕ f,z∗(x) = −z∗(z). If f (x) �= ∅, then either fz∗(x) = Z ,
or ϕ f,z∗(x) ∈ IR, thus

∀x ∈ X : f (x) = ∅ ∨ f (x) =
⋂

z∗∈C−\{0}:
ϕ f,z∗ (x)∈IR

fz∗(x).

Definition 2.12 (a) Let ϕ : X → IR be a function, x0 ∈ X . Then ϕ is said to be
lower semicontinuous (l.s.c.) at x0, when

∀r ∈ IR : r < ϕ(x0) ⇒ ∃U ∈ U : ∀u ∈ U : r < ϕ(x0 + u).

(b) Let f : X → G� be a function, M∗ ⊆ C− \ {0}. Then f is said M∗– lower
semicontinuous (M∗–l.s.c.) at x0, when ϕ f,z∗ is l.s.c. at x0 for all z∗ ∈ M∗.

(c) Let f : X → G� be a function. If

f (x) � lim inf
u→0

f (x + u) =
⋂

U∈U
cl co

⋃

u∈U

f (x + u)

is satisfied, then f is lattice lower semicontinuous (lattice l.s.c.) at x .
(d) A function f : X → G� is lattice l.s.c. when it it is lattice l.s.c. everywhere.
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In [19], it has been proven that if f is
(
C− \ {0})–l.s.c. at x , then it is also lattice

l.s.c. at x . One can show that if f is convex, then f is lattice l.s.c. if, and only if,
graph f = {(x, z) | z ∈ f (x)} ⊆ X × Z is a closed set with respect to the product
topology, see [15].

In [19], a detailed study of continuity concepts for set valued functions is proposed.
Indeed it is also shown that none of the concepts in Definition2.12 coincides with
those used in some literature (see e.g. [1, 2, 11]).

Remark 2.13 For notational simplicity the restriction of a set-valued function f :
X → G� to a segment with end points x0, x ∈ X is denoted by fx0,x : IR → G� with

fx0,x (t) =
{

f (x0 + t (x − x0)), if t ∈ [0, 1] ;
∅, elsewhere.

Equivalently, the restriction of a scalar-valued function ϕ : X → IR to the same
segment is defined by

ϕx0,x (t) =
{

ϕ(xt ), if t ∈ [0, 1] ;
+∞, elsewhere.

Setting xt = x0 + t (x − x0) for all t ∈ IR, the scalarization of the restricted function
fx0,x is equal to the restriction of the scalarization of f for all z∗ ∈ C− \ {0}.
If f is convex, x0, xt ∈ dom f for some t ∈ (0, 1), then

(
ϕ f,z∗

)
x0,x

is lower semi-
continuous on (0, t), hence fx0,x is lattice l.s.c. on (0, t).

The following notion, introduced in [15], is used in the sequel.

Definition 2.14 Let f : X → G� be a function and M ⊆ X . We define the inf-
translation of f by M to be the function f̂ (·; M) : X → G� given by

f̂ (x; M) = inf f [M + {x}] = cl co
⋃

m∈M

f (m + x) . (2.19)

The function f̂ (·; M) is nothing but the canonical extension of f at M + {x} as
defined in [18]. The following properties of the inf-translation are used in the proofs
of the main results.

Lemma 2.15 ([15, Lemma5.8(b)]) Let f : X → G� be convex, M ⊆ X, then
f̂ (·; co M) : X → G� is convex.

Lemma 2.16 Let f : X → G�, z∗ ∈ C− \ {0} and M ⊆ X be nonempty. Then

∀x ∈ X : inf ϕ f,z∗ [M + {x}] = ϕ f̂ (·;M),z∗(x).

Moreover, by defining ϕ̂ f,z∗(x; M) = inf ϕ f,z∗ [M + {x}], it holds
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∀x ∈ X : ϕ̂ f,z∗(x; M) = ϕ f̂ (·;M),z∗(x),

that is the operations of taking the inf translation of a function and taking its scalar-
ization commute.

Proof The statement is an easy consequence of Lemma2.2. �
Lemma 2.17 Let f : X → G� and M ⊆ X be nonempty, then the domain of
f̂ (·; M) : X → G� is the set

dom f̂ (·; M) =
⋃

m∈M

dom f + {−m} . (2.20)

Proof Since x ∈ dom f̂ (·; M) if, and only if, inf f [M + {x}] �= ∅, there exists m ∈
M such that f (m + x) �= ∅. Therefore, x ∈ dom f̂ (·; M) if, and only if, m + x ∈
dom f for some m ∈ M . In other words x ∈ ⋃

m∈M
dom f + {−m}. �

Lemma 2.18 Let f : X → G� be convex, M ⊆ X a nonempty set and z∗ ∈ C− \
{0}, If any of the following conditions is satisfied, then the restriction of f̂ (·; co M)

to the segment [0, x] is
(
C− \ {0})–l.s.c. at 0 for all x ∈ X.

(a) f̂ (0; M) = inf f [X ];
(b) 0 ∈ int

⋃

m∈co M
(dom f + {−m});

(c)
(
ϕ f,z∗

)
m,x : X → IR is continuous at 0 for all m ∈ co M, x ∈ X and all z∗ ∈

C− \ {0}.
Proof (a) If f̂ (0; M) = inf f [X ], then ϕ f̂ (·;co M),z∗(0) = inf ϕ f̂ (·;co M),z∗ [X ] is true

for all z∗ ∈ C− \ {0}. Hence each scalarization ϕ f̂ (·;co M),z∗ is l.s.c. at 0 and there-

fore f̂ (·; co M) is C− \ {0}–l.s.c at 0.
(b) By Lemma2.17,

⋃

m∈co M
(dom f + {−m}) is the domain of f̂ (·; co M) and by

Lemma2.15, f̂ (·; co M) is convex. This is true if, and only if, each scalariza-
tion of f̂ (·; co M) i.e.

(
ϕ̂ f,z∗

)
(·; co M) is convex, compare Lemma2.16. If 0 ∈

int
⋃

m∈co M
(dom f + {−m}) is assumed, then the restriction of each scalarization

ϕ f,z∗(·; co M) to [x0, x] is l.s.c. at 0, as dom f̂ (·; co M) = dom
(
ϕ̂ f,z∗

)
(·; co M).

(c) Let
(
ϕ f,z∗

)
m,x : X → IR be continuous at 0 for all m ∈ co M and all x ∈ X . In

this case,

lim sup
t↓0

(ϕ f̂ (·;co M),z∗)0,x (t) = lim sup
t↓0

inf
m∈co M

(
ϕ f,z∗

)
m,x (t)

≤ inf
m∈co M

lim sup
t↓0

(
ϕ f,z∗

)
m,x (t)

= inf
m∈co M

(
ϕ f,z∗

)
m,x (0)

= ϕ̂ f,z∗ (0; co M) .
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Hence for each z∗ ∈ C− \ {0}, the restriction of ϕ f,z∗(·; co M) to [0, x] is convex
and u.s.c. at 0, therefore l.s.c. at 0, too. �

In this framework, we are interested to study the problem

minimize f (x) subject to x ∈ X (P)

where f is a G�-valued function. Following [18], to solve (P) means to look for both
the infimum in G�, as introduced in (2.2), and for subsets of X where the infimum
is attained. This approach is different from most other ones in set optimization, see
for example [20, Definition14.2], [16, 17] and the references therein.

More formally, the solution concept based on Definitions2.19 and 2.23 is stated
in Definition2.25.

Definition 2.19 Let f : X → G�. A subset M ⊆ X is called an infimizer of f when

inf { f (m) | m ∈ M} = inf { f (x) | x ∈ X} .

According to the definition of f̂ (·; M) : X → G�, it follows easily that

∀M �= ∅ : inf
{

f̂ (x; M) | x ∈ X
}

= inf { f (x) | x ∈ X}

and M is an infimizer of f when {0} is an infimizer of f̂ (·; M) : X → G�,

f̂ (0; M) = inf
{

f̂ (x; M) | x ∈ X
}

⇔ inf { f (m) | m ∈ M} = inf { f (x) | x ∈ X} .

Proposition 2.20 ([15, Proposition5.9]) Let f : X → G� be convex and M ⊆ X,
then the following are equivalent

(a) M is an infimizer of f ;
(b) {0} is an infimizer of f̂ (·; M);
(c) {0} is an infimizer of f̂ (·; co M) and f̂ (0; M) = f̂ (0; co M).

Proposition 2.21 Let f : X → G� and x0 ∈ dom f . Then the following are equiv-
alent

(a) f (x0) = inf f [X ];
(b) ∀x ∈ X, ∀z∗ ∈ C− \ {0} : ϕ f,z∗(x0) ≤ ϕ f,z∗(x);
(c) ∀x ∈ X, ∀z∗ ∈ C− \ {0} : ϕ f,z∗(x0)−� ϕ f,z∗(x) ≤ 0;
(d) ∀x ∈ X : 0 ∈ f (x0)−� f (x).

(e) ∀x ∈ X, ∀z∗ ∈ C− \ {0} : ϕ f,z∗(x0) = −∞ ∨ 0 ≤ ϕ f,z∗(x)−� ϕ f,z∗(x0).
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Each of these conditions implies

(f) ∀x ∈ X : 0+ f (x0) � f (x)−� f (x0).

Proof The equivalence between (a), (b), (c) and (e) is immediate. By Lemma2.3 (c)
and (d) are equivalent and by Proposition2.6, (e) implies (f). �

Remark 2.22 For scalars a, b ∈ IR, a ≤ b can be equivalently stated as a − b ≤ 0 or
0 ≤ b − a. For A, B ∈ G� \ {∅}we have a similar result for the equivalence between
A � B and A−� B � C (and actually as ’A−� B � 0+ A’ or 0 ∈ A−� B).

On the other hand, A � B only implies 0+ A � B − A. Moreover 0+ B is not
necessarily equal to C , the neutral element in G�, but 0+ A � C , whenever A �= ∅.
As dom f is always an infimizer of f , further requirements are usually assumed on
the values f (x), x ∈ M , for M to be a solution. e.g. f (x) is minimal in some sense,
compare [15, 18, 21].

Definition 2.23 Let f : X → G� be given. An element x0 ∈ X is called aminimizer
of f , when f (x0) is minimal in f [X ], i.e.

∀x ∈ X : f (x) � f (x0) ⇒ f (x) = f (x0). (Min)

The set of all minimal elements of f [X ] is denoted by Min f [X ].

If x0 is aminimizer of a convex (set-valued) function f , then f (x) = f (x0) is satisfied
if, and only if, f is constant on the set {xt ∈ X | xt = x0 + t (x − x0), t ∈ [0, 1]}.

Notice that if M = {x} is an infimizer, then x automatically is a minimizer of f .
On the other hand, a set of minimizers is not necessarily an infimizer. Let ψ : S ⊆
X → Z and its epigraphical extension f = ψC : X → G�, defined by

f (x) =
{

{ψ(x)} + C, if x ∈ S;
∅, elsewhere.

(2.21)

Then x0 ∈ S is a minimizer of f if, and only if, it is an efficient element to ψ , i.e.
({ψ(x0)} + (−C)) ∩ ⋃

x∈S
ψ(x) ⊆ {ψ(x0)} + C . A set M ⊆ X is an infimizer if and

only if the following domination property is satisfied

⋃

x∈X

f (x) ⊆ cl co
⋃

m∈M

f (m).

The next result provides some characterizations of minimizers via scalarizations.

Proposition 2.24 Let f : X → G� and x0 ∈ dom f . Then the following are equiv-
alent

(a) f (x0) ∈ Min f [X ] ;
(b) f (x) �= f (x0) ⇒ ∃z∗ ∈ C− \ {0} : ϕ f,z∗(x0) < ϕ f,z∗(x);
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(c) f (x) �= f (x0) ⇒ ∃z∗ ∈ C− \ {0} : ϕ f,z∗(x) �= −∞ ∧
ϕ f,z∗(x0)−� ϕ f,z∗(x) < 0;

(d) f (x) �= f (x0) ⇒ ∃z∗ ∈ C− \ {0} : 0 < ϕ f,z∗(x)−� ϕ f,z∗(x0);
(e) f (x) �= f (x0) ⇒ 0 /∈ f (x)−� f (x0).

Proof Equivalences from (a) through (d) are immediate and by Lemma2.3, (d) and
(e) are equivalent. �

Definition 2.25 [18] Let f : X → G�. An infimizer of f consisting of only mini-
mizers is called a solution of the optimization problem (P).

Example 2.26 Let f : IR → G(IR2, IR2
+) be given as

f (x) = {(−x,−x)} ⊕ R2
+.

Then IN ⊆ IR as well as any interval (x,+∞) ⊆ IR are infimizers of f . However,
Min f [IR] = ∅. Hence no solution of f exists.

In [15] the concept of z∗–minimizers was introduced, defining x0 ∈ X as a z∗–
minimizer of f : X → G� if, and only if, x0 is a minimizer of ϕ f,z∗ : X → IR. In
fact, this concept is independent from the one we are investigating. The following
Example2.27(a) due to F. Heyde proves that a solution in the sense of Definition2.25
does not need to be a z∗–solution, while Example2.27(b) provides a counterexample
to the reverse implication.

Example 2.27 (a) Let X = Z = IR2 and C = IR2
+. The (closed and convex) func-

tion f : X → G� is defined as follows

f (x) =
{

{z ∈ −x1 + x2 ≤ z1, −x1 − x2 ≤ z2, x1 ≤ z1 + z2} , if 0 ≤ x1;
∅, else.

Then each x0 ∈ dom f is minimal and M = {x ∈ X | 0 < x1, x2} is a solution
of (P), while no x ∈ M is a z∗–solution for any z∗ ∈ C− \ {0}.

(b) Let X = IR, Z = IR2 and C = IR2
+. The (closed and convex) function f : X →

G� is defined as follows

f (x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

{
z ∈ Z | 1

z1
≤ z2

}
, if 0 = x;

{z ∈ Z | 0 ≤ z1, z2} , if 1 = x;
x f (1) ⊕ (1 − x) f (0), if 0 ≤ x ≤ 1;
∅, else.

Then each x0 ∈ dom f is z∗–minimalwith respect to z∗ ∈ {
(0,−1)T , (−1, 0)T

}
,

but the only minimizer of f is x = 1 and M = {1} is the only solution of (P).
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2.3 Directional Derivatives

The notions of variational inequalities related to an optimization problem involves
the concept of directional derivatives.

We apply the following definition to convex functions f : X → G� which extends
the concept of (lower) Dini derivatives to functions mapping to any inf–residuated
image space.

We stress that this approach allows to extend the classicalDini derivative for scalar-
valued functions to extended real-valued functions (see e.g. [15, 24]), as discussed
in Example2.33 below.

Definition 2.28 Let f : X → G� be convex, x, u ∈ X , then the directional deriva-
tive of f at x along direction u is defined as

f ′(x, u) = lim inf
t↓0

1

t

(
f (x + tu)−� f (x)

) =
⋂

0<t0

cl co
⋃

t∈(0,t0)

1

t

(
f (x + tu)−� f (x)

)
.

For convex (set-valued) functions, the differential quotient is monotone.

Proposition 2.29 Let f : X → G� be convex, x0 ∈ X and g : (0,+∞) → G� be
given by g(t) = 1

t

(
f (x + tu)−� f (x)

)
. Then for all 0 < s ≤ t it holds g(s) � g(t).

Proof Let zt ∈ g(t) and 0 < s < t be satisfied, then there exists an r ∈ (0, 1) such
that s = r t and f (x + su) � (1 − r) f (x) ⊕ r f (x + tu). Thus,

f (x + su)−� f (x) � r( f (x + tu)−� f (x)),

which in turn implies that

1

s

(
f (x + su)−� f (x)

)
� r

r t
( f (x + tu)−� f (x)),

as desired. �

The following result extends a well known property of Dini derivatives for convex
single-valued functions.

Proposition 2.30 Let f : X → G� be convex, x ∈ dom f and u ∈ X. Then

f ′(x, u) = inf
0<t

1

t

(
f (x + tu)−� f (x)

)
,

f ′(x, 0) = 0+ f (x) and the function u �→ f ′(x, u) is sublinear as a function from X
to G(Z , 0+ f (x)).
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Proof The first statement comes directly from Proposition2.29.
For all x ∈ X , f ′(x, 0) = inf 1

t

(
f (x)−� f (x)

)
and thus

f ′(x, 0) =
{
0+ f (x) , if x ∈ dom f ;
Z , elsewhere.

By definition, for all 0 < s, u ∈ X it holds

f ′(x, su) = s · inf
0<t

1

st

(
f (x + tsu)−� f (x)

) = s f ′(x, u).

Let x, u1, u2 ∈ X and s ∈ (0, 1) be assumed. By Proposition2.29 the differential
quotient is decreasing, so for all 0 < t0 it holds

f ′(x, su1 + (1 − s)u2) = inf
0<t≤t0

1

t

(
f (s(x + tu1) + (1 − s)(x + tu2))−� f (x)

)
.

Convexity and Lemma2.5 (b) imply

f ′(x, su1 + (1 − s)u2) � inf
0<t≤t0

1

t

(
s
(

f (x + tu1)−� f (x)
) ⊕ (1 − s)

(
f (x + tu2)−� f (x)

))
.

Since G� is inf–residuated and by Proposition2.29,

f ′(x, su1 + (1 − s)u2) � 1

t0

(
s
(

f (x + t0u1)−� f (x)
)) ⊕ (1 − s) inf

0<t≤t0

1

t

(
f (x + tu2)−� f (x)

)

= s
1

t0

((
f (x + t0u1)−� f (x)

)) ⊕ (1 − s) f ′(x, u2).

But, as this is true for all 0 < t0 and G� is inf–residuated,

f ′(x, su1 + (1 − s)u2) � s f ′(x, u1) ⊕ (1 − s) f ′(x, u2)

is satisfied. �

Remark 2.31 Since the differential quotients 1
t

(
f (x + tu)−� f (x)

)
of a convex

function f : X → G� form a decreasing net of convex sets, their union is convex.
Therefore in this case the following equation holds true.

f ′(x, u) = cl co
⋃

t>0

1

t

(
f (x + tu)−� f (x)

) = cl
⋃

t>0

1

t

(
f (x + tu)−� f (x)

)

Remark 2.32 Let f : X → G� be convex, x0 ∈ dom f and x ∈ X .
If f ′(x0, x − x0) �= ∅, then [0, t0] ⊆ dom fx0,x is true for some t0 ∈ (0, 1) and for

all t ∈ (0, t0) it holds
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0+ f ′(x0, x − x0) � 0+ f (xt ) � 0+ f (x0).

Indeed, as f is convex, 0+ f (xt ) is constant on the set (0, t0) and 0+ f (xt ) � 0+ f (x0).
Also,

f ′(x0, x − x0) � 1

t

(
f (xt )−� f (x0)

)

and both sets are convex, hence 0+ f ′(x0, x − x0) � 0+ f (xt ) by Lemma2.9.

Example 2.33 Let ϕ : X → IR be convex, f : X → G(IR, IR+) its epigraphical
extension as defined in (2.21). If ϕ : X → IR is proper, x ∈ dom ϕ, then f ′(x, u)

coincides with the upper Dedekind cut of the classic directional derivative of ϕ,
while in general,

f ′(x, u) =
(
inf
0<t

1

t

(
ϕ(x + tu)−� ϕ(x)

)) + IR+.

Especially, if ϕ(x) = +∞, then f ′(x, u) = IR for all u ∈ X , while if x ∈ dom ϕ and
ϕ(x) = −∞, then a careful case study provides

f ′(x, u) =
{
IR, if u ∈ cone (dom ϕ − {x})
∅, else.

Therefore

ϕ′(x, u) = inf
0<t

1

t

(
ϕ(x + tu)−� ϕ(x)

)

for all x, u ∈ X provides an extension of Dini derivatives to the case where ϕ is
improper or x /∈ dom ϕ.

Remark 2.34 Let f : X → G� be convex. It is easy to see that if x /∈ dom f , then
f ′(x, u) = Z andϕ′

f,z∗(x, u) = −∞ are satisfied for all u ∈ X and all z∗ ∈ C− \ {0}.
On the other hand, if x ∈ dom f , then dom ϕ′

f,z∗(x, ·) = cone {dom f + {−x}} ∪
{0} is true for all z∗ ∈ C− \ {0} and the derivative is sublinear. Hence, ϕ′

f,z∗(x, u) =
−∞ implies either ϕ f,z∗(x) = −∞, or ϕ′

f,z∗(x,−u) = +∞.
Especially, dom f ′(x, ·) ⊆ dom ϕ′

f,z∗(x, ·) is always satisfied. Hence if ϕ f,z∗(x) ∈
IR, then either x − tu /∈ dom f for all 0 < t , or −∞ < ϕ′

f,z∗(x, u) ≤ ϕ f ′(x,·),z∗(u).

If for some z∗ ∈ C− \ {0} it holds f (x) = fz∗(x) for all x ∈ X and f is convex,
then the scalarization of the derivative is equal to the derivative of the scalarization,
ϕ f ′

z∗ (x,·),z∗(u) = ϕ′
f,z∗(x, u) for all x, u ∈ X . However, in general only the following

inequality can be proven

∀z∗ ∈ C− \ {0} , ∀x, u ∈ X : ϕ′
f,z∗(x, u) ≤ ϕ f ′(x,·),z∗(u).
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Example 2.35 Let f : IR→G(IR, {0})be defined as f (x) =
[
−√

1 − x2,
√
1 − x2

]
,

whenever x ∈ [−1, 1] and f (x) = ∅, else. Then f (0) + {z} � f (t) for any t �= 0,
so f ′(0, u) = ∅. On the other hand, ϕ f,s(x) = −|s| · √

1 − x2 for all s �= 0 and thus
ϕ′

f,s(x, u) = −|s| · x√
1−x2 · u for all x ∈ (−1, 1), especially ϕ′

f,s(0, u) = 0 for all
s �= 0. Hence,

∅ = f ′(0, u) �

⋂

z∗∈({0})−\{0}
f ′
z∗(0, u) = {0}

Proposition 2.36 Let f : X → G� be convex and x, u ∈ X. Then

⋂

z∗∈C−\{0}
f ′
z∗(x, u) � f ′(x, u);

∀z∗ ∈ C− \ {0} : ϕ′
f,z∗(x, u) ≤ ϕ f ′(x,·),z∗(u).

Proof By definition and Lemmas2.3 and 2.2,

f ′(x, u) = cl co
⋃

0<t

⋂

z∗∈C−\{0}

{
z ∈ Z | 1

t

(
ϕ f,z∗(x + tu)−� ϕ f,z∗(x)

) ≤ −z∗(z)
}

⊆
⋂

z∗∈C−\{0}
cl co

⋃

0<t

{
z ∈ Z | 1

t

(
ϕ f,z∗(x + tu)−� ϕ f,z∗(x)

) ≤ −z∗(z)
}

=
⋂

z∗∈C−\{0}

{
z ∈ Z | inf

0<t

1

t

(
ϕ f,z∗(x + tu)−� ϕ f,z∗(x)

) ≤ −z∗(z)
}

hence the inclusion is proven, implying the inequality as well. �

In the sequel, some results require equality in at least one of the inequalities in
Proposition2.36. By strong regularity, we refer to condition

∀z∗ ∈ C− \ {0} : ϕ f ′(x,·),z∗(u) = ϕ′
f,z∗(x, u) (SR)

and by weak regularity to the following condition.

f ′(x, u) =
⋂

z∗∈C−\{0}
f ′
z∗(x, u) (WR)

Clearly, (SR) implies (WR).
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3 Main Results

As our solution concept involves both attainment of the infimum in a set and min-
imality of each element in this set, we need suitable inequalities for each of these
properties. Beginning with the infimizer’s part, we need to consider that the solu-
tion of a variational inequality is usually a singleton, while the infimizer of (P) is
a set. However, Proposition2.20 allows to characterize an infimizer M by proving
f̂ (0; M) = inf f [X ], or in other words {0} is a single-valued infimizer of the opti-
mization problem

minimize f̂ (x; M) subject to x ∈ X.

Given a single-valued convex function ϕ : X → IR, a solution to a variational
inequality of Stampacchia type is a point x0 ∈ X such that 0 ≤ ϕ′(x0, x − x0) for all
x ∈ X . According to our setting, a natural extension of this property is given in the
following definition.

Definition 3.1 Let f : X → G� be convex and x0 ∈ dom f . Then x0 solves the
strict set-valued Stampacchia inequality when

∀x ∈ X : 0+ f (x0) � f ′(x0, x − x0). (SV II )

However, it turns out that, in the set–valued case, infimizers (and minimizers)
are often characterized more adequately if a scalar type of variational inequalities is
considered.

Definition 3.2 Let f : X → G� be convex, x0 ∈ dom f . Then x0 solves the strict
scalarized Stampacchia inequality when

∀x ∈ X, ∀z∗ ∈ C− \ {0} : ϕ f,z∗(x0) = −∞ ∨ 0 ≤ ϕ′
f,z∗(x0, x − x0). (svi I )

Scalarized and set-valued variational inequalities are not equivalent without fur-
ther assumptions.

Proposition 3.3 Let f : X → G� be convex, x0 ∈ dom f . If x0 solves (svi I ), then
it also solves (SV II ). If additionally the strong regularity condition (SR) is satisfied,
then the reverse implication is true as well.

Proof By Proposition2.36, (svi I ) implies

⋂

z∗∈C−\{0}
ϕ( f,z∗)(x0)�=−∞

{
z ∈ Z | 0 ≤ −z∗(z)

}
�

⋂

z∗∈C−\{0}
f ′
z∗(x0, x − x0) � f ′(x0, x − x0).

By (2.16) this implies (SV II ) as dom f = dom ϕ( f,z∗) is true for all z∗ ∈ C− \ {0}.
On the other hand, by Proposition2.6, (SR) combined with (SV II ) implies
(svi I ). �
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Theorem 3.4 Let f : X → G� be convex, x0 ∈ dom f . Then x0 solves (svi I ) if and
only if f (x0) = inf f [X ].

Proof By Proposition2.21 (e), f (x0) = inf f [X ] is true if, and only if,

∀x ∈ X, ∀z∗ ∈ C− \ {0} : ϕ f,z∗(x0) = −∞ ∨ 0 ≤ ϕ f,z∗(x)−� ϕ f,z∗(x0),

which immediately implies (svi I ). The opposite implication is true, as convexity of
f implies ϕ f,z∗ is convex. �

Remark 3.5 According to Proposition3.3 and Theorem3.4, the set-valued varia-
tional inequality (SV II ) is a necessary condition for {x0} to be an infimizer of f .
Under the regularity condition (SR) it is also a sufficient condition.

Given a single-valued convex function ϕ : X → IR, a solution to a variational
inequality of Minty type is a point x0 ∈ X such that ϕ′(x, x0 − x) ≤ 0 for all x ∈ X .

Definition 3.6 Let f : X → G� be convex, x0 ∈ dom f . Then x0 solves the strict
set-valued Minty inequality when

∀x ∈ X : f ′(x, x0 − x) � 0+ f (x0). (MV II )

Equivalently, x0 is a solution to the strict set-valued Minty inequality if, and only
if,

∀x ∈ X : 0 ∈ f ′(x, x0 − x).

The previous definition can be related to the following family of a scalar Minty
inequalities.

Definition 3.7 Let f : X → G� be convex, x0 ∈ dom f . Then x0 solves the strict
scalarized Minty inequality when

∀x ∈ X, ∀z∗ ∈ C− \ {0} : ϕ′
f,z∗(x, x0 − x) ≤ 0. (mvi I )

Proposition 3.8 Let f : X → G� be convex, x0 ∈ dom f . If x0 solves (MV II ), then
it also solves (mvi I ). If additionally the regularity condition (WR) is satisfied, the
reverse implication holds true.

Proof If x0 solves (MV II ), then Proposition2.36 implies (mvi I ). On the other hand,
assuming (mvi I ) and the regularity condition (WR), then 0 ∈ f ′(x, x0 − x) is satis-
fied for all x ∈ X , in other words (MV II ). �

Theorem 3.9 Let f : X → G� be convex, x0 ∈ dom f . Then f (x0) = inf f [X ] if,
and only if, x0 solves (MV II ) and for all x ∈ X the function fx0,x : [0, 1] → G� is
lattice l.s.c. at 0.

If x0 solves (mvi I ) and for all x ∈ X the function fx0,x is
(
C− \ {0})–l.s.c. at 0,

then f (x0) = inf f [X ].
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Proof By Proposition2.21 (d), f (x0) = inf f [X ] if, and only if, 0 ∈ f (x0)−� f (x)

for all x ∈ X , hence by the monotonicity of the differential quotient (see Proposi-
tion2.29)

f ′(x, x0 − x) � f (x0)−� f (x) � 0+ f (x0)

is satisfied, proving (MV II ). When f (x0) � f (x) is assumed,

f (x0) �
⋂

t0∈(0,1)

cl co
⋃

t∈(0,t0)

fx0,x (t)

is satisfied and hence fx0,x is lattice l.s.c. at 0 for all x ∈ X .
On the other hand, (MV II ) combined with convexity of f implies

∀x ∈ X,∀s, t ∈ (0, 1] : s < t ⇒ f (xs) � f (xt ).

Hence if fx0,x is lattice l.s.c. at 0, then we obtain

∀x ∈ X : f (x0) = inf fx0,x [0, 1] � f (x)

and f (x0) = inf f [X ] is proven.
The proof of the last implication goes along the same lines. �

Recall that if fx0,x : [0, 1] → G� is
(
C− \ {0})–l.s.c. at 0 for all x ∈ X , then each

such function is also lattice l.s.c. at 0. In this case, (MV II ) and (mvi I ) are equivalent.

Remark 3.10 The previous results are summarized in the following scheme of rela-
tions.

Applying the previous relations and the inf–translation we get a variational char-
acterization of a set M to be an infimizer of f .

Corollary 3.11 Let f : X → G� be convex, M ⊆ X a set with M ∩ dom f �= ∅ and

f̂ (0; M) = f̂ (0; co M).

Then, M is an infimizer of f if, and only if, (svi I ) is satisfied at 0 for f̂ (·; co M). In
this case, f̂ (·; co M) is

(
C− \ {0})–l.s.c. at 0 and (MV II ) (and (mvi I )) is satisfied

at 0 for f̂ (·; co M).
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On the other hand, if (MV II ) (or (mvi I )) is satisfied at 0 for f̂ (·; co M) and one
of the conditions (b) or (c) of Lemma2.18 is satisfied, then f̂ (·; co M) is

(
C− \ {0})–

l.s.c. at 0 and M is an infimizer of f .

In the remainder of this section, we deal with the relation between solutions of
variational inequalities and minimizers. The variational inequalities of Stampacchia,
as well as Minty type are presented both in a set-valued and a scalar(ized) form.

Definition 3.12 Let f : X → G� be convex, x0 ∈ dom f . Then x0 solves the set-
valued Stampacchia inequality when

f (x0) = Z ∨ ∀x ∈ dom f : f (x) �= f (x0) ⇒ 0 /∈ f ′(x0, x − x0). (SV IM)

Remark 3.13 In (SV IM ), the condition ‘0 /∈ f ′(x0, x − x0)’ provides a set-valued
version of the property ‘ϕ′(x0, x − x0) � 0’ for scalar convex functions. The same
inequality could be expressed also by the condition

f (x0) = Z ∨ ∀x ∈ dom f : f (x) �= f (x0) ⇒ f ′(x0, x − x0) ∩ −0+ f (x0) = ∅.

(3.1)
However, since G� is not totally ordered, there is a notable difference between

these and the condition f ′(x0, x − x0) ⊂ 0+ f (x0).

Definition 3.14 Let f : X → G� be convex, x0 ∈ dom f . Then x0 solves the scalar-
ized Stampacchia inequality, when

f (x0) = Z ∨ ∀x ∈ dom f : f (x) �= f (x0) ⇒ ∃z∗ ∈ C− \ {0} : 0 < ϕ′
f,z∗(x0, x − x0).

(sviM )

Property (sviM ) also implies

{
∀x ∈ dom f : f (x0) �= f (x) ⇒
∃z∗ ∈ C− \ {0} : −∞ = ϕ f,z∗(x0) < ϕ f,z∗(x) ∨ 0 < ϕ′

f,z∗(x0, x − x0).
(3.2)

If additionally fx0,x : IR → IR is
(
C− \ {0})–l.s.c. at 1 for all x ∈ X , then (sviM ) and

(3.2) are equivalent.

Proposition 3.15 Let f : X → G� be convex, x0 ∈ dom f . If x0 solves (sviM ), then
it also solves (SV IM ). If additionally the regularity condition (WR) is satisfied, then
x0 solves (SV IM ) if, and only if, it solves (sviM ).

Proof By Proposition2.36, (sviM ) implies (SV IM ).
On the other hand, (SV IM ) combined with the regularity condition (WR) implies

(sviM ). �
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For the sake of completeness, we quote [15, Proposition5.5], where it is proven
that, if dom f �= ∅, then

fz∗(x) = Z ∨ ∀x ∈ X : 0 ≤ (ϕ f,z∗)′(x0, x − x0)

is equivalent to fz∗(x0) = inf fz∗ [X ]. However, as it has already been shown in
Example2.27, this concept of optimality is not equivalent to the one investigated in
this paper.

Theorem 3.16 Let f : X → G� be convex and x0 ∈ dom f . If x0 solves (SV IM ) or
(3.2), then f (x0) ∈ Min f [X ].

Proof Let x0 be a solution of (SV IM ), then

f (x) �= f (x0) ⇒ 0 /∈ f (x)−� f (x0)

is immediate, hence by Proposition2.24 (e) x0 is a minimizer of f . Assuming (3.2)
is satisfied, then

f (x) �= f (x0) ⇒ ∃z∗ ∈ C− \ {0} : 0 < ϕ f,z∗(x)−� ϕ f,z∗(x0)

is satisfied for all x ∈ dom f , by Proposition2.24 (d) implying f (x0) ∈ Min f [X ].
�

The reverse implication of Theorem3.16 is not true, as the following example
illustrates.

Example 3.17 Let ψ : IR → IR be given as ψ(x) = 1 whenever −1 ≤ x ≤ 1 and
ψ(x) = |x |, elsewhere, f : X → G(IR, IR+) its epigraphical extension. The nega-
tive dual cone of C = IR+ is the set cone ({−1}) ∪ {0} and ϕ f,z∗(x) = −z∗ψ(x)

for all z∗ ∈ C− \ {0}. Notably, it is sufficient to consider the single scalarization
ϕ f,−1 : IR → IR with ϕ f,−1(x) = ψ(x) for all x ∈ IR and (SR) is satisfied. It holds
f (0) ∈ Min f [X ], but neither (SV IM ) nor (3.2) are satisfied, as ψ ′(0,−x) = 0 and
f ′(0,−x) = IR+ holds for all x ∈ IR.

In a similar way, we approach the Minty type inequalities.

Definition 3.18 Let f : X → G� be convex, x0 ∈ dom f . Then x0 solves the set-
valued Minty inequality when

f (x) �= f (x0) ⇒ 0+ f (x) �� f ′(x, x0 − x). (MV IM)

Again, (MV IM ) can be interpreted as the set-valued version of the scalar Minty
variational inequality, given by

ϕ(x) �= ϕ(x0) ⇒ 0 � ϕ′(x, x0 − x),
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but it is significantly different from the condition 0+ f (x) ⊂ f ′(x, x0 − x), as G� is
not totally ordered.

Definition 3.19 Let f : X → G� be convex, x0 ∈ dom f . Then x0 solves the scalar-
ized Minty inequality when

f (x) �= f (x0) ⇒ ∃z∗ ∈ C− \ {0} : ϕ f,z∗(x) �= −∞ ∧ ϕ′
f,z∗(x, x0 − x) < 0.

(mviM)

Proposition 3.20 Let f : X → G� be convex, x0 ∈ dom f . If x0 solves (MV IM ),
then it also solves (mviM ). If additionally the regularity condition (SR) is satisfied,
then x0 solves (MV IM ) if, and only if, it solves (mviM ).

Proof If x0 solves (MV IM ), then Proposition2.36 implies (mvi I ). On the other hand,
assuming (mviM ) and (SR), then for all x ∈ X with f (x) �= f (x0) there exists an
element z ∈ f ′(x, x0 − x) \ 0+ f (x) (compare Proposition2.6 and Remark2.34), in
other words (MV IM ) is satisfied. �

Proposition 3.21 Let f : X → G� be convex and x0 ∈ dom f . Then x0 solves
(mviM ) if, and only if, for all x ∈ dom f

f (x) �= f (x0) ⇒ inf fx0,x (0, 1) � f (x) ∧ inf fx0,x (0, 1) �= f (x). (3.3)

Proof Let x0 be a solution of (mviM ). This is equivalent to state that for each
x ∈ dom f with f (x) �= f (x0) there exists an element z∗ ∈ C− \ {0} and t ∈ (0, 1)
such that ϕ f,z∗(xt )−� ϕ f,z∗(x) < 0 and ϕ f,z∗(x) �= −∞, or equivalently ϕ f,z∗(xt ) <

ϕ f,z∗(x).
In this case, (3.3) is immediate, as

inf fx0,x (0, 1) �
⋂

t0∈(0,1)

cl
⋃

t∈(t0,1)

fx0,x (t) � f (x)

by convexity and inf fx0,x (0, 1) � f (xt ), hence strict inclusion is satisfied.
On the other hand, (3.3) implies that, if f (x) �= f (x0), then there exists t ∈

(0, 1) and z∗ ∈ C− \ {0} such that ϕ f,z∗(xt ) < ϕ f,z∗(x). Hence ϕ f,z∗(x) �= −∞ and
ϕ′

f,z∗(x, x0 − x) < 0 are satisfied, as the scalarization ϕ f,z∗ : X → IR is convex. �

Theorem 3.22 Let f : X → G� be convex and x0 ∈ dom f . If f (x0) ∈ Min f [X ],
then x0 solves (mviM ). If x0 solves

f (x) �= f (x0) ⇒ ∃z∗ ∈ M∗ : ϕ f,z∗(x) �= −∞ ∧ ϕ′
f,z∗(x, x0 − x) < 0 (3.4)

where M∗ ⊆ C− \ {0} is a finite set. If additionally fx0,x is M∗–l.s.c. at 0, then
f (x0) ∈ Min f [X ].
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Proof Let f (x0) ∈ Min f [X ] be assumed, then by Proposition2.24 (c)

f (x) �= f (x0) ⇒ ∃z∗ ∈ C− \ {0} : ϕ f,z∗(x) �= −∞ ∧ ϕ f,z∗(x0)−� ϕ f,z∗(x) < 0.

As the differential quotient is decreasing, this implies (mviM ).
On the other hand, let (3.4) be satisfied and let

(
ϕ f,z∗

)
x,x0

: [0, 1] → IR be l.s.c.
at 0 for all z∗ ∈ M∗. Then f (x) �= f (x0) and convexity and lower semicontinuity of
the scalarizations imply that there exist z∗ ∈ M∗ and t ∈ [0, 1) such that

inf
(
ϕ f,z∗

)
x0,x

[0, 1] = ϕ f,z∗(xt ) < ϕ f,z∗(x).

Now either f (xt ) = f (x0) and f (x) �� f (x0), or there exist t1 ∈ [0, t) and z∗
1 ∈

M∗ \ {z∗} such that

inf
(
ϕ f,z∗

1

)
x0,x

[0, 1] = ϕ f,z∗
1
(xt1) < ϕ f,z∗

1
(xt ) ≤ ϕ f,z∗

1
(x).

Especially,

ϕ f,z∗(xt ) = −∞ ∨ 0 ≤ ϕ′
f,z∗(xt , x0 − x)

ϕ f,z∗
1
(x) �= −∞ ∧ ϕ′

f,z∗
1
(x, x0 − x) < 0

are satisfied. As M∗ is finite, there exists t0 ∈ [0, 1) such that

∃z∗
0 ∈ M∗ : inf

(
ϕ f,z∗

0

)
x0,x

[0, 1] = ϕ f,z∗
0
(xt0) < ϕ f,z∗

0
(x);

∀z∗ ∈ M∗ : 0 ≤ ϕ′
f,z∗(xt0 , x0 − x) ∨ ϕ f,z∗(xt0) = −∞.

Hence especially f (xt0) = f (x0) and f (x) �� f (x0). �

Property (3.4) implies (mviM ), as the relevant set of directions M∗ is a subset
of C− \ {0}. The reverse implication does not hold and the finiteness assumption in
Theorem3.22 cannot be relaxed, as the following example shows.

Example 3.23 Define z∗
i = − 1

i+1 (1, i)T ∈ (R2+)−\ {0} for all i ∈ IN = {0, 1, 2, . . .}.
Let f : IR → G(IR2, IR2

+) be defined by

∀x ∈ IR : f (x) =
⋂

i∈IN

{
z ∈ Z | − ψz∗

i
(x) ≤ −z∗

i (z)
}

where

ψz∗
i
(x) =

{−(i + 1)min{1 − x, i x} : if x ∈ [0, 1] and i ∈ IN;
+∞ : elsewhere.
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As ψz∗
i
: IR → IR is convex and l.s.c. for all i ∈ IN, f is

(
C− \ {0})–l.s.c. and

convex, and it is easy to see that f (0) = f (1) = IR2
+.

Defining zi (x) ∈ IR2 by

∀i ∈ IN\ {0} : {zi (x)} = {
z ∈ Z | z∗

i−1(z) = ϕz∗
i−1

(x)
} ∩ {

z ∈ Z | z∗
i (z) = ϕz∗

i
(x)

}

then f (x) = co {zi (x) | i ∈ IN\ {0}} + C is true for all x ∈ (0, 1). This implies that
ϕ f,z∗

i
(x) = ψz∗

i
(x) is true for all x ∈ [0, 1] and all i ∈ IN and therefore f (x) � f (0)

is satisfied for all x ∈ (0, 1) so 0 is no minimizer of f .
On the other hand, for any given x ∈ (0, 1), it exists an i ∈ IN\ {0} such that x ∈(
1

i+1 , 1
)
, hence ϕ′

f,z∗
i
(x, 0 − x) = −(i + 1) < 0 and −i ≤ ϕ f,z∗

i
(x) �= −∞. Hence

the assumptions of Theorem3.22 are satisfied for x0 = 0, replacing the finite set M∗
by C− \ {0}, although 0 is no minimizer of f .

Remark 3.24 The previous results can be summarized in the following scheme of
relations.

4 Application to Vector Optimization

In this section, we consider a vector-valued function ψ : S ⊆ X → Z and its epi-
graphical extension as defined in (2.21). In the sequel, we refer only to dom f = S,
which is the effective domain of ψ .

The function ψ is called C–convex, when for all x1, x2 ∈ S and all t ∈ (0, 1)
it holds (1 − t)ψ(x1) + tψ(x2) ∈ {ψ(x1 + t (x2 − x1))} + C , or equivalently when
graph f = epiψ = {(x, z) ∈ X × Z | z ∈ {ψ(x)} + C} is a convex set, compare
[20, Definition14.6].

Lemma 4.1 Let ψ : S ⊆ X → Z be C–convex, x0, x ∈ S. Then for all t ∈ (0, 1) it
holds

1

t

(
f (x0 + t (x − x0))−� f (x0)

) =
{
1

t
(ψ(x0 + t (x − x0)) − ψ(x0))

}
+ C.
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Moreover 1
t (ψ(x0 + t (x − x0)) − ψ(x0)) is decreasing as t converges to 0 and (SR)

is satisfied.

Proof By definition, f (xt ) = {ψ(xt )} + C , as x0, x ∈ S. Hence

∀t ∈ (0, 1) :
(

z ∈ 1

t

(
f (xt )−� f (x0)

) ⇔ ψ(x0) + t z ∈ {ψ(xt )} + C

)
,

or equivalently z ∈ {
1
t (ψ(x0 + t (x − x0)) − ψ(x0))

} + C . By Proposition2.29, the
differential quotient is decreasing as t converges to 0 and by Lemma2.2

−σ(z∗| f ′(x0, x − x0)) = inf

{
−σ(z∗|1

t

(
f (x0 + t (x − x0))−� f (x0)

)
) | 0 < t

}

for all z∗ ∈ C− \ {0}. But ϕ f,z∗(x) = −z∗ψ(x) is satisfied for all z∗ ∈ C− \ {0} and
all x ∈ S, hence

−σ(z∗|1
t

(
f (x0 + t (x − x0))−� f (x0)

)
) = −1

t

(
z∗ψ(x0 + t (x − x0)) − z∗ψ(x0)

)
,

for all z∗ ∈ C− \ {0}, proving the statement. �

Following the approach in [3] we introduce the set of infinite elements Z∞ =
{z∞ | z ∈ Z}. An element z∞ is the infinite element in direction z, in other words

z∞ = lim
t↑∞ t z.

It holds z∞ = y∞ if, and only if, y = λz for some 0 < λ and 0∞ = 0 ∈ Z . For
any z∗ ∈ Z∗ and z ∈ Z , we define z∗(z∞) = lim

t↑+∞ z∗(t z). Especially, z∗(z∞) ∈ IR is

satisfied if, and only if, z∗(z∞) = z∗(z) = 0.
For a subset S ⊆ Z , S∞ denotes the set of all z∞ ∈ Z∞ with z ∈ S \ {0}.
The space Z̃ = Z ∪ Z∞ can be endowed with a topology defined by local bases

of neighborhoods as follows. For any element z ∈ Z , the set U(z) = U + {z} is a
local base of neighborhoods in Z̃ . For any element z ∈ Z \ {0}, the set

U(z∞) = {({t z} + cone (U + {z})) ∪ (U + {z})∞ | 0 < t, U ∈ U(z)}

is a local base of neighborhoods of z∞. Especially, if K ⊆ Z is an open cone with z ∈
K and y ∈ Z , then ({y} + K ) ∪ K∞ is a neighborhoodof z∞, for details, compare [3].

Lemma 4.2 Let z ∈ Z be given and define (z∞ + C) = lim inf
t↑∞ ({t z} + C), then

(z∞ + C) = lim sup
t↑∞

({t z} + C) is satisfied.

If z /∈ −C, then (z∞ + C) = sup
0<t

({t z} + C) = ∅. Otherwise, (z∞ + C) = inf
0<t

({t z} + C) holds true.
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Especially, (z∞ + C) = C, if z ∈ C ∩ −C and (z∞ + C) = Z, if for all z∗ ∈
C− \ {0} it holds −z∗(z) < 0.

Proof By definition, (z∞ + C) = ⋂

0<t0

cl co
⋃

t0≤t
({t z} + C) . Let z ∈ −C , then

⋂

t0≤t

({t z} + C) = {t0z} + C and we claim

(

cl co
⋃

0<t0

⋂

t0≤t
({t z} + C)

)

= cl co
⋃

0<t0

({t0z} + C), or equivalently

lim sup
t↑∞

({t z} + C) = inf
t>0

({t z} + C) .

Since inf
t>0

({t z} + C) � lim inf
t↑∞ ({t z} + C) � lim sup

t↑∞
({t z} + C) always holds true,

this implies
(z∞ + C) = inf

t>0
({t z} + C) = lim sup

t↑∞
({t z} + C) .

On the other hand, let z /∈ −C be assumed. Then 0 < −z∗(z) is satisfied for some
z∗ ∈ C− \ {0}. Thus,

−σ(z∗|cl co
⋃

t0≤t

({t z} + C)) = −z∗(t0z)

converges to +∞ as t0 converges to +∞, hence (z∞ + C) = ∅. But, since

∅ = lim inf
t↑∞ ({t z} + C) � lim sup

t↑∞
({t z} + C) � ∅

it is proven that

(z∞ + C) = sup
t>0

({t z} + C) = lim sup
t↑∞

({t z} + C) .

Finally, by Lemma2.2 for z ∈ −C it holds

(z∞ + C) =
⋂

z∗∈C−\{0}

{
y ∈ Z | inf

0<t
−z∗(t z) ≤ −z∗(y)

}
.

Hence if z ∈ C ∩ −C , it is immediate that

(z∞ + C) =
⋂

z∗∈C−\{0}

{
y ∈ Z | 0 ≤ −z∗(y)

} = C,

while if for all z∗ ∈ C− \ {0} it is assumed that −z∗(z) < 0 holds true, then
(z∞ + C) = Z . �
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In [3] infinite elements play a crucial role to define a Dini directional derivative of
ψ : S ⊆ X → Z at x0 ∈ S in direction (x − x0)with x ∈ S. The proposed derivative
is computed as

ψ ′(x0, x − x0) = Lim sup
t↓0

{
1

t
(ψ(x0 + t (x − x0)) − ψ(x0))

}
⊆ Z̃

where Lim sup
t↓0

{zt } =
{

z̃ ∈ Z̃ | ∃ {
zti

}
i∈IN ⊆ {zt }0<t , ztn → z̃

}
is the outer Painlevé-

Kuratowski limit in Z̃ of a net {zt }t↓0 ⊆ Z .
We provide some comparison between the derivative defined in [3] and our set-

valued derivative computed for ψC .

Lemma 4.3 Let ψ : S ⊆ X → Z be C–convex, f (x) = ψC(x) for all x ∈ X and
x0, x ∈ S.

(a) If z ∈ ψ ′(x0, x − x0) ∩ Z, then {z} + C = f ′(x0, x − x0) and for all z∗ ∈ C− \
{0} it holds ϕ′

f,z∗(x0, x − x0) = −z∗(z);
(b) If z∞ ∈ ψ ′(x0, x − x0) ∩ Z∞, then z ∈ −C and (z∞ + C) ⊆ 0+ f ′(x0, x − x0);
(c) If ψ ′(x0, x − x0) ∩ Z �= ∅ and z∞ ∈ ψ ′(x0, x − x0) ∩ Z∞, then z ∈ C ∩ −C.

Proof (a) By definition, z ∈ ψ ′(x0, x − x0) ∩ Z is satisfied if, and only if, there is
a decreasing sequence {ti }i∈IN ⊆ IR+ such that 1

ti
(ψ(x0 + ti (x − x0)) − ψ(x0))

converges to z as i converges to +∞. But this implies

∀z∗ ∈ C− \ {0} : −z∗(z) ≤ ϕ′
f,z∗(x0, x − x0),

hence {z} + C ⊇ f ′(x0, x − x0). On the other hand,

z ∈ cl
⋃

0<t

({
1

t
(ψ(x0 + t (x − x0)) − ψ(x0))

}
+ C

)
= f ′(x0, x − x0).

(b) Assume to the contrary that z∞ ∈ ψ ′(x0, x − x0) and z /∈ −C . Then there
exists U ∈ U such that cone (U + {z}) ∩ −C = ∅ and a subsequence zi =
1
ti

(ψ(x0 + ti (x − x0)) − ψ(x0)) with i ∈ IN such that for all n ∈ IN there exists
a i0 ∈ IN such that for all i0 ≤ i it holds zi ∈ {nz} + cone (U + {z}), espe-
cially ({z1} + (−C)) ∩ ({nz} + cone (U + {z})) �= ∅ for all n ∈ IN. However,
choosing n sufficiently large, nz − z1 ∈ cone (U + {z}) is satisfied, implying
∅ �= −C ∩ ({nz − z1} + cone (U + {z})) ⊆ −C ∩ cone (U + {z}) = ∅, a con-
tradiction.

(c) Especially by (a), y ∈ ψ ′(x0, x − x0) ∩ Z is a lower bound of the set

{
1

t
(ψ(x0 + t (x − x0)) − ψ(x0)) | 0 < t

}
,
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hence if z∞ ∈ ψ ′(x0, x − x0), then ∀z∗ ∈ C− \ {0} : −z∗(y) ≤ −z∗(z∞),
hence by (b) z ∈ C ∩ −C .

�

More generally, we remark that taking the limit over a net of singletons and adding
the ordering cone does not commute.

Example 4.4 Let Z = IR2, C = IR2
+ be given, {zt }0<t ⊆ Z a subset of Z with zt =

(−t,−t2). Then {zt }0<t is decreasing as t converges to +∞ and Lim sup
t↑+∞

{zt } =
(0,−1)∞. However,

Lim sup
t↑+∞

{zt } + C = {z = (z1, z2) ∈ Z | 0 ≤ z1} � lim
t↑∞ ({zt } + C) = Z .

Proposition 4.5 ([3]) If Z has finite dimension, then Z̃ is compact.

By Proposition4.5, if Z has finite dimension, then for a C–convex function ψ :
S ⊆ X → Z , x0, x ∈ S it holds

∅ �= ψ ′(x0, x − x0) ⊆ Z ∪ (−C)∞,

so each element ofψ ′(x0, x − x0) is either finite (i.e. an element of Z ), or an element
of (−C)∞, (that is an infinite element of Z̃ which is ”less or equal” than 0 ∈ Z ).

The set of all efficient elements of ψ [X ] is given by

Effψ[X] = {z ∈ ψ[X]|∀y ∈ ψ[X] : z ∈ {y} + C ⇒ z ∈ {y} + (−C ∩ C)}. (Eff)

and x0 ∈ dom f is an efficient solution if, and only if,ψ(x0) ∈ Effψ [X ]. An element
x0 ∈ dom f is a minimizer of f if, and only if, it is an efficient solution to ψ .
Moreover, ⋃

f (x)∈Min f [X ]

f (x) = Effψ [X ] + C (4.1)

and a solution to (P) exists if, and only if, cl co (Effψ [X ] + C) = cl co (ψ [X ] + C).
In the sequel, we only focus on the characterization of minimizers of f = ψC

or equivalently efficient solutions of ψ . In this setting, we do not get any new
results about infimizer but those already obtained in Sect. 3, as the inf–translation(
ψC

)
(·, M) : X → G� is in general not the epigraphical extension of a vector-valued

function.

Corollary 4.6 Let ψ : S ⊆ X → Z be C–convex, x0 ∈ S and f (x) = ψC(x) for
all x ∈ X. Then (SV IM ), (sviM ) and (3.2) are equivalent. Especially, if for all x ∈
S with ψ(x) �= ψ(x0) there exists z ∈ Z such that z ∈ ψ ′(x0, x − x0) \ −C, then
ψ(x0) ∈ Effψ [X ].
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Proof The first part of the statement is proven in Proposition3.15, as by Lemma4.1,
(SR) and hence especially (WR) are satisfied. The existence of z ∈ Z with z ∈
ψ ′(x0, x − x0) \ −C implies the existence of a z∗ ∈ C− \ {0}with 0 < ϕ′

f,z∗(x0, x −
x0), compare Lemma4.3 (a). Thus (3.2) is satisfied, proving the statement. �

Corollary 4.7 Let ψ : S ⊆ X → Z be C–convex, x0 ∈ S and f (x) = ψC(x) for all
x ∈ X. Then x0 solves (MV IM ) if, and only if, it solves (mviM ). Moreover, (MV IM )
is equivalent to

(x ∈ S, t ∈ (0, 1) , ψ(xt ) �= ψ(x0)) ⇒ ∃z∗ ∈ C− \ {0} : (−z∗ψ)′(xt , x0 − x) < 0.
(4.2)

Proof The first part of the statement is true as (SR) is guaranteed by Lemma4.1
(compare Proposition3.8). As f (x) = ψC(x) for all x ∈ X is assumed, ϕ f,z∗(x) �=
−∞ is always true for all z∗ ∈ C− \ {0}. It is left to prove that (4.2) implies (mviM ).

Let x ∈ S and ψ(xt ) �= ψ(x0) be assumed for some t ∈ (0, 1). By convexity of
ϕ f,z∗ : X → IR, (−z∗ψ)′(xt , x0 − x) < 0 implies (−z∗ψ)′(x, x0 − x) < 0. On the
other hand, if ψ(xt ) = ψ(x0) is satisfied for all t ∈ (0, 1), then by convexity of the
scalarizations

−z∗ψ(x0) = lim inf
t↓0 (−z∗ψ(xt )) ≤ −z∗ψ(x)

is satisfied for all z∗ ∈ C− \ {0}. Especially, ψ(x) �= ψ(x0) implies

∃z∗ ∈ C− \ {0} : −z∗(x0) = −z∗ψ(xt ) < −z∗ψ(x),

hence ϕ′
f,z∗(x, x0 − x) = −∞ < 0. �

Remark 4.8 As (−z∗ψ)′(x, ·) : X → IR is sublinear, if ψ : S ⊆ X → Z is C–
convex, x0, x ∈ S implies (−z∗ψ)′(xt , x0 − x) ∈ IR for all z∗ ∈ C− \ {0} and all
t ∈ (0, 1). In this case, z∞ ∈ ψ ′(xt , x0 − x) implies z ∈ C ∩ −C .

Indeed, under the given assumptions, −z∗ψ(xt ) ∈ IR is true for all t ∈ (0, 1),
hence

0 = (−z∗ψ)′(xt , 0) ≤ (−z∗ψ)′(xt , x − x0)+� (−z∗ψ)′(xt , x0 − x)

and (−z∗ψ)′(xt , x0 − x) = −∞ implies (−z∗ψ)′(xt , x − x0) = +∞. But as dom
(−z∗ψ)′(xt , ·) = cone (S + {−xt }), this is a contradiction. By Lemma4.3 (b), z∞ ∈
ψ ′(xt , x0 − x) implies z ∈ −C . Assuming z /∈ C would imply the existence of a
z∗ ∈ C− \ {0} such that ψ ′(xt , x0 − x) = −∞, a contradiction.

Proposition 4.9 Let ψ : S ⊆ X → Z be C–convex, x0 ∈ S and f (x) = ψC(x) for
all x ∈ X. If x ∈ S and t ∈ (0, 1) imply

ψ(xt ) �= ψ(x0) ⇒ ψ ′(xt , x0 − x) � (C ∪ C∞) ,

then x0 solves (MV IM ) and
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ψ(xt ) �= ψ(x0) ⇒ ψ ′(xt , x0 − x) ⊆ (C ∩ −C)∞ ∪ (Z \ C) .

Proof Under the given assumptions, let ψ(xt ) �= ψ(x0). Then ψ ′(xt , x0 − x) �= ∅
and especially,

ψ ′(xt , x0 − x) ∩ (((−C)∞ \ C∞) ∪ (Z \ C)) �= ∅.

Thus if z ∈ ψ ′(xt , x0 − x) ∩ (Z \ C), then there exists an element z∗ ∈ C− \ {0} sat-
isfying ϕ′

f,z∗(xt , x0 − x) < 0. On the other hand, if z∞ ∈ ψ ′(xt , x0 − x)

∩ (((−C)∞ \ C∞)), then ϕ′
f,z∗(xt , x0 − x) = −∞ is satisfied for some z∗ ∈ C− \

{0}, a contradiction. Hence

∅ �= ψ ′(xt , x0 − x) ⊆ ((−C)∞ ∩ C∞) ∪ Z

and thus by assumption

∅ �= ψ ′(xt , x0 − x) ∩ (Z \ C) .

But this implies

∀z ∈ ψ ′(xt , x0 − x) ∩ (Z \ C) : ∅ �= ψ ′(xt , x0 − x) ∩ Z ⊆ {z} + (C ∩ −C) ⊆ Z \ C,

implying the existence of a z∗ ∈ C− \ {0} satisfying ϕ′
f,z∗(xt , x0 − x) < 0, hence

(mviM ) and therefore (MV IM ) is satisfied. �
We can prove that under certain assumptions the efficient solutions of a vector

valued function are identical with the solutions to the set-valued Minty variational
inequality of its epigraphical extension.

Theorem 4.10 Let ψ : S ⊆ X → Z be C–convex, x0 ∈ S and f (x) = ψC(x) for
all x ∈ X. If fx0,x is

(
C− \ {0})–l.s.c. at 0 for all x ∈ X and C is polyhedral, then

x0 solves (MV IM ) if, and only if, ψ(x0) ∈ Effψ [X ].

Proof If C is polyhedral, then so is C−, that is there exists a finite set M∗ =
{m1, ..., mn} ∈ C− \ {0} such that

C =
n⋂

i=1

{
z ∈ Z | 0 ≤ −m∗

i (z)
}
.

Also, for all z∗ ∈ C− \ {0}, z∗ ∈ cone co M∗ and for all z ∈ Z and all z∗ ∈ C− \
{0}, if

z∗ =
n∑

i=1

ti m
∗
i , 0 ≤ t1, ..., tn,

then −z∗(z) = −∑n
i=1 ti m∗

i (z). Let (−z∗ψ)′(x, x0 − x) < 0 be satisfied for some
z∗ = ∑n

i=1 ti m∗
i ∈ C− \ {0} and x0 ∈ S. Then there exists 0 < s̄ such that (for all
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s ∈ (0, s̄))

−z∗(
1

s
(ψ(x + s(x0 − x)) − ψ(x))) < 0,

hence there exists at least one i ∈ {1, ..., n} such that

−m∗
i (
1

s
(ψ(xt + s(x0 − x)) − ψ(xt ))) < 0,

implying (−m∗
i ψ)′(x, x0 − x) < 0. In this case, (mviM ) implies (3.4), thus they

are equivalent. Moreover, by Corollary4.7, (mviM ) and (MV IM ) are equivalent.
As ψ(x0) ∈ Effψ [X ] is satisfied if, and only if, f (x0) ∈ Min f [X ], Theorem3.22
proves the statement. �

Theorem4.10 provides as special case the following Minty variational principle
for vector-valued functions, which can be found in e.g. [4, 26].

Corollary 4.11 Let Z = IRm and C = IRm
+. Let ψ : S ⊆ X → Z be C–convex, x0 ∈

S and f (x) = ψC(x) for all x ∈ X. If fx0,x is
(
C− \ {0})–l.s.c. at 0 for all x ∈ X,

then ψ(x0) ∈ Effψ [X ] is satisfied if, and only if, x ∈ S and t ∈ (0, 1) imply

ψ(xt ) �= ψ(x0) ⇒ ψ ′(xt , x0 − x) ⊆ Z \ C.

Especially in this case, ψ ′(xt , x0 − x) ⊆ Z is single-valued.

Proof By Proposition4.5, ψ ′(xt , x0 − x) �= ∅ is satisfied under the given assump-
tions and C is polyhedral and pointed, i.e. C ∩ −C = {0}. Thus ∅ �= ψ ′(xt , x0 −
x) ⊆ Z holds true for all x ∈ S and all t ∈ (0, 1) andψ ′(xt , x0 − x) is single-valued.
Hence, ψ ′(xt , x0 − x) ⊆ Z \ C is equivalent to ψ ′(xt , x0 − x) � (C ∪ C∞). More-
over, under the given assumptions (MV IM ) is satisfied (compare Proposition4.9).
By Theorem4.10, (MV IM ) is equivalent to ψ(x0) ∈ Effψ [X ].

On the other hand, by Corollary4.7, (MV IM ) is equivalent to (4.2), implying

t ∈ (0, 1) , ψ(xt ) �= ψ(x0) ⇒ ψ ′(xt , x0 − x) \ C �= ∅,

which in turn implies

t ∈ (0, 1) , ψ(xt ) �= ψ(x0) ⇒ ψ ′(xt , x0 − x) ⊆ Z \ C,

as proposed. �

5 Conclusion

Bymeans of conlinear spaces we developed a variational inequalities scheme to char-
acterize solutions to set optimization problems. The results proved actually allow to
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recover results previously proved in vector optimization under convexity assump-
tions. It is an open question how far the convexity assumption can be relaxed for
set-valued problems.

The graphics in the paper summarize the implications proved. Counterexamples
are given for the equivalences that do not hold for the formulation presented in the
paper.
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Estimates of Error Bounds for Some Sets
of Efficient Solutions of a Set-Valued
Optimization Problem

Truong Xuan Duc Ha

Abstract In this paper, we establish some estimates of the global/local error bounds
for the sets SPareto

ȳ , SW
≤ȳ and SW, where SPareto

ȳ is the set of efficient solutions of a
unconstrained set-valued optimization problem (SP) corresponding to an efficient
value ȳ of a unconstrained set-valued optimization problem (SP), SW

≤ȳ is the set of
weakly efficient solutions of (SP) corresponding to weakly efficient values smaller
than a weakly efficient value ȳ and SW is the set of all weakly efficient solutions of
(SP). These estimates are expressed in terms of the approximate coderivative, the
limiting Fréchet/basic coderivatives and the coderivative of convex analysis. Thus,
we establish conditions ensuring the existence of weak sharp minima for (SP). We
also extend the concept of the good asymptotic behavior to a convex or cone-convex
set-valued map.

Keywords Error bound · Set-valued map · Set optimization · Subdifferential ·
Coderivative · Marginal function
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1 Introduction

Error bounds for a given subset of a metric space is an inequality that bounds the
distance from points of a test set to the given set in terms of a residual function (see
[45]), or of a merit function (see [40]). Let S be a nonempty subset of a metric space
X . A function θ : X → R+ is a merit function for S if

θ(x) = 0 if and only if x ∈ S.

T.X.D. Ha (B)
Institute of Mathematics, Vietnam Academy of Science and Technology,
18 Hoang Quoc Viet Road, Cau Giay District, Hanoi 10307, Vietnam
e-mail: txdha@math.ac.vn

© Springer-Verlag Berlin Heidelberg 2015
A.H. Hamel et al. (eds.), Set Optimization and Applications - The State of the Art,
Springer Proceedings in Mathematics & Statistics 151,
DOI 10.1007/978-3-662-48670-2_8

249



250 T.X.D. Ha

We recall the concepts of global/local error bounds for the distance to the set S.
Let d(.; S) be the distance function associated with S.

Definition 1.1 We say that the distance to the set S has a global error bound with a
merit function θ if there exists a scalar τ > 0 such that

τd(x; S) ≤ θ(x) for all x ∈ X

and denote by σg(S) the supremum of such τ ’s.

Definition 1.2 Let x̄ ∈ S. We say that the distance to the set S has a local error
bound at x̄ with a merit function θ if there exists a scalar τ > 0 such that

τd(x; S) ≤ θ(x) for all x near x̄

and denote by σl(S) the supremum of such τ ’s.

For the sake of simplicity, we will use the expression “the set S has a global/local
error bound” instead of “the distance to the set S has a global/local error bound”.

The case when S is a lower level set {x | f (x) ≤ α} of a lower semicontinuous (in
brief l.s.c.) function f : X → R ∪ {+∞} has attracted attention of many authors due
to its applications in subdifferential calculus, optimality conditions, sensitivity analy-
sis and convergence of numerical methods. There have been obtained a number of
criteria for the global/local error bounds of the lower level set, which are expressed in
terms of various derivative-like objects defined either in the primal space (directional
derivatives, slopes, etc.) or in the dual space (different kinds of subdifferentials), see
[4, 6, 11, 20, 53] for an overview.

Among concepts which are closely related to the error bounds, we would like to
mention the concepts of sharp minimum, weak sharp minima and good asymptotic
behavior. The notion of a sharp minimum was first introduced by Polyak [48] under
the assumption that the optimization problem has only one solution. The terminology
weak sharp minima was proposed by Ferris [21] to include the possibility of non-
unique solution set. Recall that S ⊂ R

n is the set of weak sharpminima for a function
f : R

n → R ∪ {+∞} relative to the set � ⊂ R
n where S ⊂ � if there is a constant

c > 0 such that

f (x) ≥ f (y) + cd(x, S), for all x ∈ � and all y ∈ S.

Clearly, S is the set of global minima of f over � and the above inequality says
that the set S has a global error bound (on the set �) with the merit function θ(x) =
f (x) − min� f . Weak sharp minima frequently occur in linear programming, linear
complementarity, in convex and (under additional assumptions) nonconvex problems
and play important roles in sensitivity analysis and convergence analysis of many
optimization algorithms, see [13–16, 56, 57] and references therein. Recall that a
convex l.s.c. function f : R

n → R ∪ {+∞} has a good asymptotic behavior in the
sense of Auslender and Crouzeix [2] if for any sequence (xi ) ⊂ X we have
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d(0; ∂ f (xi )) → 0 implies f (xi ) → inf
X

f

(∂ f denotes the subdifferential of convex analysis of the function f ). As noted in
[4], the existence of the global error bound at any level α > infX f is necessary and
sufficient for f to have a good asymptotic behavior.

Recently, error bounds and weak sharp minima have been considered for the
case when a (single-valued) map under consideration has values in partially ordered
spaces. Characterizations of error bounds in terms of various slopes and subdif-
ferentials have been obtained for level sets corresponding to Pareto efficiency or
Pareto weak efficiency in [10]. We would like to note that in the vector case, sets
of weak sharp minima have been defined either as the set of Pareto efficient/weakly
efficient solutions corresponding to one Pareto efficient/weakly efficient value of a
vector optimization problem, see [8, 9, 22, 26, 47, 51] or as the set of all Pareto
efficient/weakly efficient solutions of linear, piecewise linear or quadratic vector
optimization problems, see [19, 39, 40, 52, 55, 58, 59] (see also [49]).

The subjects of our study are weak sharp minima of an unconstrained set-valued
optimization problem (SP) and a good asymptotic behavior of a convex/cone-convex
set-valuedmap. In particular, we obtain coderivative estimates of error bounds for the
sets SPareto

ȳ , SW
≤ȳ and SW,which are the set of efficient solutions of (SP) corresponding

to an efficient value ȳ, the set of weakly efficient solutions of (SP) corresponding
to weakly efficient values smaller than a weakly efficient value ȳ and the set of all
weakly efficient solutions of (SP), respectively.

The paper is organized as follows. In Sect. 2, we recall some concepts of subdif-
ferentials, coderivatives, some results about subdifferentials of a marginal function
and error bounds of a lower level set of a scalar function. We also study properties
of a merit function defined by means of the Hiriart-Urruty signed distance function.
In Sect. 3, we obtain coderivative estimates of the global/local error bounds for a
lower level set of a set-valued map and apply them to study error bounds of the sets
SPareto

ȳ , SW
≤ȳ and SW. The last section is devoted to a good asymptotic behavior of a

convex/cone-convex set-valued map.

2 Preliminaries

2.1 A Set-Valued Optimization Problem

In this subsection, we recall some concepts from vector optimization, see [34, 41].
Throughout the paper, unless otherwise stated, let X and Y be Banach spaces with
the duals X∗ and Y ∗, K ⊂ Y be a nonempty closed pointed convex cone with apex
at zero (pointedness means K ∩ (−K ) = {0}). For a nonempty set A, by int A, cl A,
coneA and convA we mean the interior, the closure, the conic hull and the convex
hull of A, respectively. A closed unit ball in any space, say Y , is denoted by BY . Let
K +i = {y∗ ∈ Y ∗ | y∗(k) > 0 for all k ∈ K \ {0}}. In some cases, the cone K has
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a nonempty interior, for instance, when K is the nonnegative orthant in R
n , C[0,1]

[35] or K is a Bishop-Phelps cone in any Banach space Y , which is representable
in the form K = {y ∈ Y | φ(y) ≥ t‖y‖} for some functional φ ∈ Y ∗ with ‖φ‖ > 1
and some scalar t > 0 [33].

In this paper we use the following order relations: For y1, y2, v ∈ Y and A ⊂ Y ,
we define

y1 ≤K y2 if y2 − y1 ∈ K ,

y1 �K y2 if y2 − y1 ∈ int K

and
A l v if v ∈ A + K .

For the order relation l in its more general form, when some nonempty set B ⊂ Y
stays in the place of v, see the Kuroiwa’s paper [37].

Let A ⊂ Y be a nonempty set. Denote by Min(A, K ) and W Min(A, K ) the sets
of efficient points and weakly efficient points of A (w.r.t. K ), i.e.

Min(A, K ) := {a ∈ A | A ∩ (a − K ) = {a}}
W Min(A, K ) := {a ∈ A | A ∩ (a − int K ) = ∅}

(we always assume that int K �= ∅ whenever we are concerning with the weak effi-
ciency).

Throughout the paper, let F be a set-valued map between the spaces X and Y .
Denote dom F := {x ∈ X | F(x) �= ∅}, F(X) := ∪x∈X F(x) and gr F := {(x, y) ∈
X × Y | y ∈ F(x)}.

Consider an unconstrained set-valued optimization problem (SP)

Minimize F(x) subject to x ∈ X.

Recall that: (i) x̄ ∈ X is said to be a (Pareto) efficient solution of (SP) if there
exists ȳ ∈ F(x̄) ∩ Min(F(X), K ), the vector ȳ is then called an efficient value of
(SP); (ii) x̄ ∈ X is said to be a weakly efficient solution of (SP) if there exists
ȳ ∈ F(x̄) ∩ W Min(F(X), K ), the vector ȳ is then called a weakly efficient value of
(SP).

2.2 Subdifferentials and Coderivatives

Let a function f : X → R ∪ {+∞} be given. Denote dom f := {x ∈ X | f (x) �=
+∞} and epi f := {(x, t) ∈ X × R | f (x) ≤ t}. Let us recall some concepts of
convex analysis. The subdifferential of a convex function f at x ∈ dom f is
defined by ∂ f (x) := {x∗ ∈ X∗ | 〈x∗, x ′ − x〉 ≤ f (x ′) − f (x),∀x ′ ∈ X}. Recall that
the normal cone N (x;�) of a nonempty convex set � ⊂ X at x ∈ � is the set
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N (x;�) := {x∗ ∈ X∗ | 〈x∗, x ′ − x〉 ≤ 0,∀x ′ ∈ �} and when a set-valued map F
between Banach spaces X and Y has a convex graph, its convex coderivative
D∗F(x, y) at (x, y) ∈ gr F is defined as follows [1]: for any y∗ ∈ Y ∗,

D∗F(x, y)(y∗) := {x∗ ∈ X∗ | (x∗,−y∗) ∈ N ((x, y); gr F)}.

Next, we recall the concept of approximate subdifferential introduced by Ioffe
[29] (see also [30]) and the concept of limiting subdifferential introduced by
Mordukhovich [36, 42] (see also [43]) and provide estimates of subdifferentials
of a marginal function.

Let x ∈ dom f . The approximate subdifferential ∂A f (x) of f at x in the case f
being a locally Lipschitz function is the set

∂A f (x) :=
⋂

L∈L
lim sup

(ε,y)→(0+,x)

∂−
ε fy+L(y),

where L is the collection of all finite dimensional subspaces of X , fy+L(u) =
f (u) if u ∈ y + L and fy+L(u) = +∞ otherwise, for ε ≥ 0, ∂−

ε fy+L(y) is the ε-
subdifferential

∂−
ε fy+L (y) := {x∗ ∈ X∗ | x∗(v) ≤ ε‖v‖ + lim inf

t→0+
fy+L (y + tv) − fy+L (y)

t
,∀v ∈ X}.

The approximate normal cone NA(x;�) to a set � at x ∈ � is defined as the cone
generated by the approximate subdifferential of the distance function of �:

NA(x;�) :=
⋃

λ>0

λ∂Ad(x;�).

The approximate subdifferential ∂A f (x) of f at x in the case f being an l.s.c.
function is defined by means of the corresponding approximate normal cone as
follows

∂A f (x) := {x∗ ∈ X∗ | (x∗,−1) ∈ NA((x, f (x)); epi f )}.

The limiting subdifferential (also called basic subdifferential, Mordukhovich’s
subdifferential) ∂L f (x) of f at x in the case f being an l.s.c. function is defined by
means of the corresponding limiting normal cone NL(x;�) as follows

∂L f (x) := {x∗ ∈ X∗ | (x∗,−1) ∈ NL((x, f (x)); epi f )},
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where
NL(x;�) := lim sup

x ′ �→x, ε→0+
N̂ε(x ′;�),

N̂ε(x;�) :=
{

x∗ ∈ X∗
∣∣
∣∣ lim sup

x ′ �→x

x∗(x ′ − x)

‖x ′ − x‖ ≤ ε

}

and the limit in the right-hand side of the definition of NL(x;�)means the sequential
Kuratowski-Painlevé upper limit with respect to the norm topology in X and the

weak-star ω∗ topology in X∗, x ′ �→ x refers to all sequences converging to x which
remain in �.

When X = R
n , the approximate subdifferential and the limiting subdifferential

coincide and when f is convex, they reduce to the subdifferential ∂ f of convex
analysis. Moreover, while the subdifferential of convex analysis satisfies the exact
sum rule (one function is continuous and the other one—l.s.c.) see [46, Theorem3.23]
and [32, Theorem0.3.3], the approximate subdifferential in anyBanach space and the
limiting subdifferential in any Asplund space satisfy the semi-Lipschitzian sum rule
(one function is locally Lipschitz and the other one—l.s.c.) see [31, 44]. Recall that X
is Asplund if every continuous convex function defined on it is Fréchet differentiable
on a dense set of points and the Banach spaces R

n , L p
[0,1] and l p (1 < p < ∞) are

Asplund.
The approximate coderivative D∗

A F(x, y) and the limiting coderivative D∗
L F(x, y)

of F at (x, y) ∈ gr F are defined by means of the corresponding normal cone as fol-
lows: for any y∗ ∈ Y ∗,

D∗
A F(x, y)(y∗) = {x∗ ∈ X∗ | (x∗,−y∗) ∈ NA((x, y); gr F)}

and
D∗

L F(x, y)(y∗) = {x∗ ∈ X∗ | (x∗,−y∗) ∈ NL((x, y); gr F)}.

Wemake a convention that by ∂ and D∗ we mean the approximate subdifferential
and approximate coderivative in Banach space settings, the limiting subdifferential
and the limiting coderivative in Asplund space settings and the subdifferential and
coderivative of convex analysis when the considered map is assumed to be convex.

2.3 Properties of a Merit Function

Let us first study properties of a function which will play the role of a merit function.
In the remaining of the paper, we associate with the set-valued map F and the vector
ȳ ∈ Y a scalarizing function g defined by
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g(x) := inf
y∈F(x)

−K (y − ȳ) (1)

and a set-valued map V defined by

V (x) := {y ∈ F(x) | −K (y − ȳ) = g(x)}, (2)

where−K (y) := d(y;−K ) − d(y; Y \ (−K )). Wemake a convention that g(x) =
+∞ and V (x) = ∅ for x /∈ dom F .

Recall that the Hiriart-Urruty signed distance function A associated with a non-
empty set A ⊂ Y [27] possesses nice properties, especially when A is solid (i.e. A
has nonempty interior), and has been used for scalarization in the study of vector
optimization problems [23, 25], for studying error bounds in convex programming
[18] and error bounds for vector-valued maps [12, 40]. We list some known prop-
erties of this function for the special case A = −K presented in [24] and refer the
interested reader to [27] for the general case.

Proposition 2.1 (a) The function −K is convex, Lipschitz with rank 1 on Y .
(b) The function −K satisfies the triangle inequality, i.e., for any y1, y2 ∈ Y , one

has −K (y1 + y2) ≤ −K (y1) + −K (y2).
(c) If K has a nonempty interior, then −int K = −K and ∂−K (y) ⊆ (K + ∩

BY ∗) \ {0} for any y ∈ Y .

Example 2.1 Let Y = R
2, K = R

2+. Then

−R2+(y, z) =
⎧
⎨

⎩

√
y2 + z2} if y ≥ 0, z ≥ 0

y if y ≤ z, y < 0
z if y > z, z < 0

and

∂−R2+(y, z) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

{(y/
√

y2 + z2, z/
√

y2 + z2} if y ≥ 0, z ≥ 0, y, z �= 0
{(0, 1)} if y < z, y < 0
{(1, 0)} if y > z, z < 0
conv{(0, 1), (1, 0)} if y = z < 0
{(u, v) ∈ R

2+ | u2 + v2 ≤ 1 ≤ u + v} if y = z = 0

We refer the interested reader to [18] for the formula of the subdifferential of the
signed distance function U in the case U is an arbitrary solid convex set in R

n .
Let us recall some concepts of set-valued analysis and vector optimization [1, 38,

41]. We say that

• A set A ⊂ Y is K -compact if any open cover of the form {Vα + K | α ∈
I, Vα are open} admits a finite subcover.

• F is upper semicontinuous, in brief u.s.c., (K -upper semicontinuous, in brief K -
u.s.c.) at x̄ ∈ X if for any open set V such that F(x̄) ⊂ V , there exists an open
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neighborhood U of x̄ such that F(x) ⊂ V (respectively, F(x) ⊂ V + K ) for any
x ∈ U .

• F is closed if its graph is closed and F is convex if its graph is convex.
• F is K -convex if for any x1, x2 ∈ X and λ ∈ [0, 1] one has λF(x1) + (1 −

λ)F(x2) ⊆ F(λx1 + (1 − λ)x2) + K .

It is well-known that if F is u.s.c., compact-valued, then it is closed. One can
check that if A is compact, then A + K is K -compact and if F is convex, then it is
is K -convex.

Some properties of the function g are listed in the following proposition.

Proposition 2.2 (a) If F(x) is K -compact, then g(x) > −∞ and V (x) is nonempty.
(b) If F is K -u.s.c. at x, then g is l.s.c. at x.
(c) If F is K -convex, then g is convex.

Proof (a) Since F(x) is K -compact, there exists a bounded set T ⊂ Y such that
F(x) ⊂ T + K (see [41]). Then for any y ∈ F(x) there exists t ∈ T and k ∈ K such
that y = t + k. Using the triangle property of the function −K (see Proposition
2.1), we get

−K (y − ȳ) = −K (t − ȳ + k) ≥ −K (t − ȳk) − −K (−k) ≥
−K (t − ȳ) ≥ ‖t − ȳ‖

and since T is a bounded set, it follows that g(x) = inf y∈F(x) −K (y − ȳ) > −∞.
Further, we show that V (x) �= ∅. Suppose to the contrary that −K (. − ȳ) does not
attain its infimum on F(x). Then for any y ∈ F(x) there exists a positive scalar
ε(y) depending on y such that −K (y − ȳ) > g(x) + ε(y). For each y ∈ F(x), let
Uy := {v ∈ Y |−K (v − ȳ) > g(x) + ε(y)}. One can check that Uy are nonempty
open sets and F(x) ⊂ ∪y∈F(x)Uy . Further, using the triangle property of the function
−K one can verify that Uy = Uy + K . On the other hand, the K -compactness of
F(x) implies that there exist y1, . . . , yi such that y j ∈ F(x) for all j = 1, . . . , i
and F(x) ⊂ ∪i

j=1(Uy j + K ) = ∪i
j=1Uy j . We obtain that g(x) = inf y∈F(x) −K (y −

ȳ) > g(x) + inf{ε(y j ) | j = 1, . . . , i} > g(x), a contradiction.
(b) Since F is K -u.s.c. at x , for ε > 0 there exists δ > 0 such that

F(u) ⊂ F(x) + εBY + K for any u ∈ X such that d(u; x) ≤ δ.

Fix u ∈ X such that d(u; x) ≤ δ. For any v ∈ F(u) there exist e ∈ BY , y ∈ F(x)
and k ∈ K such that v = y − εe + k. Properties of the signed distance function (see
Proposition 2.1) imply

−K (v − ȳ) = −K (y − εe + k − ȳ) ≥ −K (y − ȳ) − −K (εe − k) ≥ −K (y − ȳ)−
−−K (εe) − −K (−k) ≥ −K (y − ȳ) − −K (εe) ≥ −K (y − ȳ) − εe

≥ inf y′∈F(x) −K (y′ − ȳ) − ε = g(x) − ε,

which gives g(u) − g(x) ≥ −ε for any u ∈ X such that d(u; x) ≤ δ. Therefore, g
is l.s.c. at x .
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(c) By the definition, for any y1 ∈ F(x1) and y2 ∈ F(x2) there exist yλ ∈ F(xλ)

and k ∈ K such that λy1 + (1 − λ)y2 = yλ + k. The convexity and the triangle
inequality of the function −K (see Proposition 2.1) imply

g(xλ) = inf y′∈F(xλ) −K (y′ − ȳ) ≤ −K (yλ − ȳ)

≤ −K (yλ − ȳ) + dY\(−K )(−k) = −K (yλ − ȳ) − −K (−k)

≤ −K (yλ − ȳ + k) = −K (λy1 + (1 − λ)y2 − ȳ)

≤ λ−K (y1 − ȳ) + (1 − λ)−K (y2 − ȳ).

Since y1 ∈ F(x1) and y2 ∈ F(x2) are arbitrarily chosen, we deduce that g(λx1 +
(1 − λ)x2) = g(xλ) ≤ λg(x1) + (1 − λ)g(x2), which means that the function g is
convex. �

Next, we provide estimates of the approximate subdifferential and the limiting
subdifferential of g in terms of the corresponding coderivatives of F .

Proposition 2.3 Assume that F is u.s.c. compact-valued and one of the following
conditions is satisfied

(a) V is topologically lower semicompact at x ∈ dom g.
(b) X and Y are Asplund spaces, V is sequentially lower semicompact at x ∈ dom g.

Then we have

∂g(x) ⊆ ∪yx ∈V (x) ∪y∗∈∂−K (yx −ȳ) D∗F(x, yx )(y∗),

where ∂ and D∗ are the approximate subdifferential and the approximate coderivative
in the case (a) and the limiting subdifferential and the limiting coderivative in the
case (b).

Recall that V is topologically lower semicompact at x [31] if for any net (xα)

converging to x there is a subnet (xνα
) and a net (yα) converging to a certain y ∈ F(x)

and such that yα ∈ F(xνα
) for all α and that V is sequential lower semicompact at x̄

[44] if there exists a neighborhood U of x̄ such that for any x ∈ U and any sequence
(xi ) converging to x as i → ∞ there is a sequence (yi )with yi ∈ V (xi ), i = 1, 2, . . .,
which contains a subsequence convergent in the norm topology of Y . The lower
semicompactness is a condition useful for dealingwith the infinite-dimensional space
case and it is often satisfied in finite-dimensional spaces.

Proof The assertion in the case (a) follows from [31, Proposition 3.3] applied to
the function (x, y) → −K (y − ȳ) + τgr F (x, y), where τgr F (x, y) is the indicator
function associated with gr F , i.e., τgr F (x, y) = 0 if (x, y) ∈ gr F and τgr F (x, y) =
∞ otherwise. The assertion in the case (b) is a special Lipschitz case of [44, Theorem
6.1]. �
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In the convex case, we have a stronger conclusion.

Proposition 2.4 Assume that F is convex closed and either X is separable or F is
u.s.c. Let yx ∈ V (x). Then

∂g(x) = ∪y∗∈∂−K (yx −ȳ) D∗F(x, yx )(y∗).

Proof This is a consequence of [25, Theorem 3.3]. �

To deal with the case F is K -convex, we need some auxiliary results. Let F be
the epigraphical set-valued map associated with F defined by

F(x) = F(x) + K .

Recall that the epigraph of the set-valued map F (w.r.t. the cone K ) is the set

epi F =: {(x, v) ∈ X × Y | v ∈ F(x) + K }.

It is clear that the graph of F coincides with the epigraph of F . Denote by (SPK )
the unconstrained set-valued optimization problem with the objective map F . We
associated toF the function gF and the map VF defined by (1) and (2) withF being
in the place of F .

Proposition 2.5 (a) If F is K -convex, then F is convex and if F is u.s.c. compact-
valued, then F is closed.

(b) One has g(x) = gF (x) and V (x) ⊂ VF (x).
(c) The sets of weakly efficient values of (SP) and of (SPK ) coincide and the sets

of weakly efficient values of (SP) and of (SPK ) corresponding to one weakly
efficient value coincide.

Proof (a) It is easy to check that if F is K -convex, then its epigraph (which coincides
with the graph of F) is convex and therefore, F is convex. Further, it is clear that
if F is K -u.s.c. K -compact-valued, then so is F . Suppose that there is a sequence
(xi , zi ) converging to (x, z), where zi ∈ F(xi ) for i = 1, 2, . . . Recalling that F is
K -u.s.c. and passing to a subsequence if necessary, we can assume that F(xi ) ⊂
F(x) + 1/ iB̊Y + K = F(x) + 1/ iB̊Y for i = 1, 2, . . . For each i let ẑi ∈ F(x) and
ei ∈ B̊Y be such that zi = ẑi + 1/ iei . By the assumption, the sequence zi converges
to z and therefore, so does the sequence ẑi . Since F(x) is K -compact, it is K -closed
[41], i.e., F(x) = F(x) + K is closed. Therefore, z ∈ F(x) and thus, F is closed.

(b) Since F(x) ⊂ F(x), we get g(x) ≥ gF (x). On the other hand, using the trian-
gle property of the function −K , see Proposition 2.1, we have −K (y + k − ȳ) ≥
−K (y − ȳ) ≥ g(x) for any y ∈ F(x) and k ∈ K and therefore, gF (x) ≥ g(x).
Hence, the equality g(x) = gF (x) holds. This equality together with the inclusion
F(x) ⊂ F(x) implies V (x) ⊂ VF (x).

(c) It suffices to show that W Min(A, K ) = W Min(A + K , K ) whenever A ⊂ Y
is a nonempty set. By the definition, ā ∈ W Min(A, K ) iff (A − ā) ∩ (−int K ) =
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∅. Hence, W Min(A + K , K ) ⊂ W Min(A, K ). Next, let ā ∈ W Min(A, K ). If ā /∈
W Min(A + K , K ), then one can find a ∈ A, k ∈ K and k0 ∈intK such that a + k −
ā = −k0 and hence, a − ā = −k0 − k ∈ −intK , a contradiction to ā ∈
W Min(A, K ). �

2.4 Some Subdifferential Estimates of Error Bounds for a
Lower Level Set of a l.s.c. Function

In this subsection, we recall some known subdifferential estimates of error bounds
for a lower level set of a l.s.c. function f defined on the Banach space X . For a
unified presentation of results, we will use the notions given in Definitions 1.1 and
1.2 and refer the interested reader to the papers [4, 6, 20] for the classical notions of
error bounds.

Through the subsection, let f : X → R ∪ {+∞} be a proper function and S be
the lower level set

S = [ f ≤ α] := {x ∈ X | f (x) ≤ α}

with α ∈ R. For any α ∈ R, denote α+ = max{α, 0}.
Theorem 2.1 Let σg(S) be as in Definition 1.1 with the merit function θ(x) =
[ f (x) − α]+.

(a) If f is l.s.c., then σg(S) ≥ inf x∈[α< f ] d(0; ∂ f (x)).
(b) If, in addition, f is convex, then σg(S) = inf x /∈[ f ≤α] d(0; ∂ f (x)).

The assertions (a) of Theorem 2.1 is a special case of Proposition 4.1, Corollary
4.1 and Remark 4.1(b) presented in the survey paper [6]. Remark that Ioffe proved a
version of the estimate formulated in this assertion under the Lipschitz assumption
in [28] and, following Ioffe’s idea and the scheme of Ioffe’s proof, other authors
established corresponding results in some general cases. The global error bound in
the convex case has been studied in [5, 50] and the assertion (b) of Theorem 2.1 is
immediate from [6, Theorems 3.1 and 3.2].

Theorem 2.2 Let α = f (x̄) and σl(S) be as in Definition 1.2 with the merit function
θ(x) = [ f (x) − α]+.

(a) If f is l.s.c., then σl(S) ≥ lim inf (x, f (x))→(x̄, f (x̄)) d(0; ∂ f (x)).
(b) If, in addition, f is convex, then

σl(S) = lim inf
x→x̄, f (x)↓ f (x̄)

d(0; ∂ f (x)).

The inequality of Theorem 2.2 follows from [20, Proposition 1, Theorems 1 and
2] and the arguments used in the proof of [20, Proposition 5(ii)] and the equality is
formulated in [20, Theorem 5(ii)].
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3 Error Bounds for a Lower Level Set of a Set-Valued Map

Let F be as before a set-valued map between the spaces X and Y . Let an arbitrary
vector ȳ ∈ Y be given. We define a lower level set [F  ȳ] of F as follows:

[F  ȳ] := {x ∈ X | ȳ ∈ F(x) + K } = {x ∈ X | ∃y ∈ F(x) such that y ≤K ȳ}.

3.1 Global/Local Error Bounds of the Set [F �l ȳ]

The following result plays an important role in our scalarization techniques.

Proposition 3.1 If F is K -compact-valued then we have

[F l ȳ] = [g ≤ 0].

Proof Let x ∈ [F l ȳ], i.e. F(x) l ȳ. There exist y ∈ F(x) such that y ≤K ȳ
and we have −K (y − ȳ) ≤ 0. Hence, g(x) ≤ 0. Next, suppose that x ∈ [g ≤ 0] but
F(x) �l ȳ or ȳ /∈ F(x) + K . For all y ∈ F(x) one has y − ȳ �K 0 and −K (y −
ȳ) > 0. It follows fromProposition 2.2 that−K (. − ȳ) attains its minimumon F(x)

and therefore, we obtain g(x) > 0, a contradiction. �

In this section, let σg([F l ȳ), σg([g ≤ 0]) and σg([F l ȳ), σl([g ≤ 0]) be as in
Definitions 1.1 and 1.2 with the merit function θ = g+, where g+(x) := [g(x)]+. We
will assume that x̄ ∈ [F l ȳ] such that ȳ ∈ V (x̄) whenever the local error bound is
under our consideration. Note that the relation ȳ ∈ V (x̄) implies g(x̄) = 0.

The first result is stated as follows.

Theorem 3.1 Assume that F is u.s.c. compact-valued and one of the following
conditions is satisfied

(a) V is topologically lower semicompact on dom g.
(b) X and Y are Asplund spaces and V is sequentially lower semicompact on dom g.

Then the inequalities

σg(S) ≥ inf
x /∈S

d(0; ∪yx ∈V (x) ∪y∗∈∂−K (yx −ȳ) D∗F(x, yx )(y∗)) (3)

and
σl(S) > lim inf

x→x̄,g(x)→0
d(0; ∪yx ∈V (x) ∪y∗∈∂−K (yx −ȳ) D∗F(x, yx )(y∗)), (4)

hold, where D∗ is the approximate coderivative in the case (a) and the limiting
coderivative in the case (b).
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Proof Applying Theorem 2.1(a) to the set [g ≤ 0] we obtain

σg([g ≤ 0]) ≥ inf
x /∈[g≤0] d(0; ∂g(x))

and applying Proposition 2.3 we obtain

σg([g ≤ 0]) ≥ inf
x /∈[g≤0] d(0; ∪yx ∈V (x) ∪y∗∈∂−K (yx −ȳ) D∗F(x, yx )(y∗)),

where ∂ and D∗ stand for the approximate subdifferential and the approximate
coderivative when (a) is satisfied and the limiting subdifferential and the limiting
coderivative when (b) is satisfied. Since [F l ȳ] = [g ≤ 0] by Proposition 3.1, the
inequality (3) holds. The inequality (4) can be proved analogously. �

Let us now consider the case when F is convex/K -convex.

Theorem 3.2 Suppose that one of the following conditions is satisfied.

(a) The set-valued map F is u.s.c., convex and compact-valued.
(b) X is separable and the set-valued map F is closed, convex and K -compact-

valued.
(c) X is separable and the set-valued map F is u.s.c. K -convex and compact-valued.

Then the equalities

σg(S) = inf
x /∈S

d(0; ∪y∗∈∂−K (yx −ȳ) D∗F(x, yx )(y∗)), (5)

σl(S) = lim inf
x→x̄,yx ∈V (x),−K (yx −ȳ)↓0

d(0,∪y∗∈∂−K (yx −ȳ) D∗F(x, yx )(y∗)) (6)

hold when F is convex and the equalities

σg(S) = inf
x /∈S

d(0; ∪y∗∈∂−K (yx −ȳ) D∗F(x, yx )(y∗)), (7)

σl(S) = lim inf
x→x̄,yx ∈V (x),−K (yx −ȳ)↓0

d(0,∪y∗∈∂−K (yx −ȳ) D∗F(x, yx )(y∗)) (8)

hold when F is K -convex, where yx ∈ V (x) can be arbitrarily chosen.

Proof Let us begin with the convex cases (a)–(b). By Proposition 2.2, the function g
is l.s.c. and convex. Theorems 2.1(b) and 2.2(b) applied to the set [g ≤ 0] yield that
the equalities

σg([g ≤ 0]) = inf
x /∈[g≤0] d(0; ∂g(x))

and
σl([g ≤ 0]) = lim inf

x→x̄,g(x)↓0
d(0; ∂g(x))
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hold. Next, Proposition 2.4 gives

∂g(x) = ∪y∗∈∂−K (yx −ȳ) D∗F(x, yx )(y∗),

where yx ∈ V (x) is arbitrarily chosen. By Proposition 3.1 we have [F l ȳ] = [g ≤
0]. Hence, the equalities (5) and (6) hold.

Next, let us consider the case (c). Proposition 3.1 applied to the map F gives
[F l ȳ] = [gF ≤ 0]. Since g = gF by Proposition 2.5 and [F l ȳ] = [g ≤ 0],
we get [F l ȳ] = [F l ȳ]. Note that the map F satisfies all conditions of (b).
Hence, replacing F by F in (5) and (6), we obtain (7) and (8) �

Remark 3.1 Proposition 2.1(c) implies that for any y∗ in the right-hand side of (4)
and (6) one has y∗ ∈ (K ∗ \ {0}) ∩ BY ∗ .

3.2 Applications: Error Bounds for Some Sets of Efficient
Solutions

Let S be one of the following sets

• The set SPareto
ȳ of efficient solutions of (SP) corresponding to an efficient value ȳ

of (SP):
SPareto

ȳ := {x ∈ X | ȳ ∈ F(x)}.

(Here, we assume that ȳ ∈ Min(F(X), K )).
• The set SW

≤ȳ ofweakly efficient solutions of (SP) corresponding towealky efficient
values which are smaller than some weakly efficient value ȳ of (SP):

SW
≤ȳ := {x ∈ X | ∃y ∈ F(x) ∩ W Min(F(X), K ) such that y ≤K ȳ}.

(Here, we assume that ȳ ∈ W Min(F(X), K ) \ Min(F(X), K )).
• The set SW of all weakly efficient solutions of (SP)

SW := {x ∈ X | ∃y ∈ F(x) ∩ W Min(F(X), K )}.

Proposition 3.2 Suppose that there is a maximal weakly efficient value ȳ of (SP)
(this means that ȳ ∈ W Min(F(X), K ) and y ≤K ȳ for any y ∈ W Min(F(X), K )).
Then

SW = SW
≤ȳ .

Proof It is obvious that SW
≤ȳ ⊂ SW. On the other hand, since is ȳ is a maximal weakly

efficient value of (SP), we get SW ⊂ SW
≤ȳ . The desired equality follows. �
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Remark 3.2 Note that since the cone K is pointed, there exists at most one maximal
weakly efficient value. When such a value ȳ exists, it follows from Proposition 3.2
that any statement which holds true for SW

≤ȳ also holds true for SW.

We provide an illustrating example.

Example 3.1 Let X = R, Y = R
2, K = R

2+.

(i) Let F be a set-valued map defined by

F(x) =
⎧
⎨

⎩

{(u, v) | u2 + (v − 1)2 ≤ 1} if x = 0
{(u, v) | u = |x | and v = 0} if 0 < |x | < 2
{(2, 2)} if 2 ≤ |x |

Then we have MIN(F(X), R
2+) = {(u, v) | u2 + (v − 1)2 = 1,−1 ≤ u ≤ 0,

v ≤ 1},
W MIN(F(X), R

2+) = MIN(F(X), R
2+) ∪ [0, 2[×{0}, SW

≤ȳ = [−1, 1] for ȳ =
(1, 0) and SW =] − 2, 2[. Note that in this case there does not exist any maximal
weakly efficient value of (SP).

(ii) Let F be a set-valued map defined by

F(x) =
⎧
⎨

⎩

{(u, v) | u2 + (v − 1)2 ≤ 1} if x = 0
{(u, v) | u = x and v = 0} if 0 < |x | ≤ 2
{(2, 2)} if 2 < |x |

Then we have MIN(F(X), R
2+) = {(−2, 0)}, W MIN(F(X), R

2+) = [−2, 2] ×
{0}. Since ȳ = (2, 0) is a maximal weakly efficient value of (SP), we have
SW = SW

≤ȳ = [−2, 2].
Proposition 3.3 Let S be any of the sets SPareto

ȳ of SW
≤ȳ . Then we have S = [F l ȳ],

and g(x) = inf y∈F(x) d(y − ȳ;−K ) ≥ 0 for all x ∈ X.

Proof We will consider only the case S = SW
≤ȳ because the case S = SPareto

ȳ can be
checked with similar arguments.

Let x ∈ SW
≤ȳ . By the definition, there exists y ∈ F(x) such that y ∈

W Min(F(X), K ) and y ≤K ȳ. Thismeans that x ∈ [F l ȳ]. Next, let x ∈ [F l ȳ].
Then there exists y ∈ F(x) such that y ≤K ȳ. We show that y ∈ W Min(F(X), K ).
Indeed, if y /∈ W Min(F(X), K ) then there is v ∈ F(X) such that v �K y. Since
y ≤K ȳ, we get v �K ȳ, a contradiction to ȳ ∈ W Min(F(X), K ). Thus, SW

≤ȳ =
[F l ȳ].

Further, since ȳ ∈ W Min(F(X), K ), for any y ∈ F(X) we have y − ȳ /∈ −int K
and −int K (y − ȳ) = d(y − ȳ;−int K ) ≥ 0. Therefore, −K (y − ȳ) = −int K

(y − ȳ) = d(y − ȳ;−int K ) = d(y − ȳ;−K ) ≥ 0 for all y ∈ F(X). It follows that
g(x) = inf y∈F(x) d(y − ȳ;−K ) ≥ 0 for all x ∈ X . �

Proposition 3.3 shows that results about coderivative estimates obtained for the
set [F l ȳ] in the previous subsection can be applied to obtain similar results for the
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sets SPareto
ȳ , SW

≤ȳ and (when a maximal weakly efficient value exists) SW. Moreover,
the merit function in these cases has the form

θ(x) = [g(x)]+ = inf
y∈F(x)

d(y − ȳ;−K ).

Below are some examples which have illustrating character to show possible appli-
cations of Theorems 3.1 and 3.2 to the set SW

≤ȳ .

Example 3.2 Let X = R, Y = R
2, K = R

2+.
(a) Consider a set-valued map

F(x) =
{ {(u, v) | x ≤ u ≤ x + 2,−1 ≤ v ≤ 1} if x ≥ 0

{(u, v) | 0 ≤ u ≤ 2,−1 − x ≤ v ≤ 1 − x} if x < 0

The map F is u.s.c. and compact-valued. The graph of F is

gr F = {(x, u, v) ∈ R
3 | − x ≤ 0, x − u ≤ 0, u − x − 2 ≤ 0, −1 − v ≤ 0, v − 1 ≤ 0}

∪{(x, u, v) ∈ R
3 |x < 0, −u ≤ 0, u − 2 ≤ 0,−1 − x − v ≤ 0, −1 + x + v ≤ 0}

and therefore, it is not convex but is locally convex at any (x, u, v) with x �= 0.
Further, one can check that

F(X) = [0,+∞[×[−1, 1] ∪ [0, 2] × [1,+∞[,
Min(F(X), R

2+) = {(0,−1)},
W Min(F(X), R

2+) = [0,+∞[×{−1}.

and its graph is locally convex but not convex. We will apply the estimate (3) to
the case ȳ = (2,−1). It is easy to see that ȳ ∈ W Min(F(X), R

2+) \ Min(F(X), R
2+)

and SW
≤ȳ = [0, 2]. Let be given x /∈ SW

≤ȳ . Suppose that x > 2. Then V (x) = {yx } =
{(x,−1)} and it follows from Example 2.1 that ∂−R2+(yx − ȳ) = {(1, 0)}. The nor-
mal cone of convex analysis to the graph of F at (x, yx ) is given by

N ((x, (x,−1)); gr F) = {r(t,−t,−1 + t) | t ∈ [0, 1], r ∈ R+}.

The local convexity of the graph of F at (x, yx ) implies that we can consider the
coderivative D∗F(x, yx )(y∗) of convex analysis. By the definition of the coderiva-
tive, x∗ ∈ D∗F(x, yx )(y∗) with y∗ = (1, 0) iff (x∗, (−1, 0)) ∈ N ((x, yx ); gr F). It
follows that x∗ = 1. Hence,

∪y∗∈∂−R2+ (yx −ȳ) D∗F(x, yx )(y∗) = {1}.

Next, suppose that x < 0. Then V (x) = {yx | yx = (s,−1 − x), s ∈ [0, 2]}, and
it follows from Example 2.1 that ∂−R2+(yx − ȳ) = {(0, 1)}. The normal cone of
convex analysis to the graph of F at (x, yx ) with s = 0 is
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N ((x, (0,−1 − x)); gr F) = {r(t − 1, t, t − 1) | t ∈ [0, 1], r ∈ R+} (9)

and at (x, yx ) with s ∈]0, 2[ is

N ((x, (s,−1 − x)); gr F) = {r(−1, 0,−1) | r ∈ R+}. (10)

It follows from (9) and (10) that in case x < 0 one has ∪y∗∈∂−R2+ (yx −ȳ) D∗F(x, yx )

(y∗) = {−1}. Thus, for all x /∈ SW
≤ȳ we have d(0; ∪yx ∈V (x) ∪y∗∈∂−K (yx −ȳ)

D∗F(x, yx )(y∗)) = 1 and the estimate (3) of Theorem 3.1 implies that σg(SW
≤ȳ) ≥ 1.

(b) Consider a set-valued map

F(x) =
⎧
⎨

⎩

{(u, v) | x ≤ u ≤ x + 2,−1 ≤ v ≤ 1} if x ≥ 0
{(u, v) | − x ≤ u ≤ 2 + x,−1 − x ≤ v ≤ 1 + x} if − 1 ≤ x < 0
∅ if x < −1

The map F is u.s.c. and compact-valued and its graph

gr F = {(x, u, v) ∈ R
3 | − x ≤ 0, x − u ≤ 0, u − x − 2 ≤ 0, −1 − v ≤ 0, v − 1 ≤ 0}

∪{(x, u, v) ∈ R
3 |x < 0, −x − 1 ≤ 0, −x − u ≤ 0, −x + u − 2 ≤ 0,

−1 − x − v ≤ 0, −1 − x + v ≤ 0}

is convex. Further, one can check that

F(X) = [0,+∞[×[−1, 1],
Min(F(X), R

2+) = {(0,−1)},
W Min(F(X), R

2+) = [0,+∞[×{−1}.

Let ȳ = (2,−1). It is easy to see that ȳ ∈ W Min(F(X), R
2+) \ Min(F(X), R

2+)

and SW
≤ȳ = [0, 2]. Let be given x /∈ SW

≤ȳ . Suppose that x > 2. It follows from the
example presented in the part (a) that

∪y∗∈∂−R2+ (yx −ȳ) D∗F(x, yx )(y∗) = {1}.

Next, suppose that −1 ≤ x < 0. One can check that V (x) = {yx | yx = (s,−1 −
x), s ∈ [−x, 2 + x]}, ∂−R2+(yx − ȳ) = {(0, 1)}. One also has
N ((x, yx ); gr F) = N ((x, (−x, −1 − x)); gr F) = {r(−1,−t, t − 1) | t ∈ [0, 1], r ∈ R+}

(11)
in case x > −1, yx = (−x,−1), and

N ((x, yx ); gr F) = N ((−1, (1, 0)); gr F) = {(−1, 0,−1)} (12)

in case x = −1 yx = (−1,−1). It follows from (11) and (12) that in case−1 ≤ x < 0
one has
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∪y∗∈∂−R2+ (yx −ȳ) D∗F(x, yx )(y∗) = {−1}.

Thus, for all x /∈ SW
≤ȳ we have d(0; ∪y∗∈∂−K (yx −ȳ) D∗F(x, yx )(y∗)) = 1 and the esti-

mate (5) of Theorem 3.2 implies that σg(SW
≤ȳ) = 1.

(c) Consider a set-valued map

F(x) =
⎧
⎨

⎩

{(u, v) | 0 ≤ u ≤ 2, −2l − 1 + x ≤ v ≤ −2l + 1 + x} if 2l ≤ x < 2l + 1, l = 0, 1, . . .
{(u, v) | 0 ≤ u ≤ 2, 2l − 1 − x ≤ v ≤ 2l + 1 − x} if 2l − 1 ≤ x < 2l, l = 1, 2, . . .
{(u, v) | 0 ≤ u ≤ 2, −1 − x ≤ v ≤ 1 − x} if x < 0

The map F is u.s.c. and compact-valued and its graph is not convex. It is
easy to see that Min(F(X), R

2+) = {(0,−1)}, W Min(F(X), R
2+) = {(u,−1) | 0 ≤

u ≤ 2} and SW = {0, 2, 4, . . .}. Let ȳ = (2,−1) and x̄ = 0. It is clear that ȳ ∈
W Min(F(X), R

2+) \ Min(F(X), R
2+), ȳ ∈ F(x̄), ȳ is a maximal weakly efficient

value and x̄ ∈ SW.
We will consider points x near x̄ so we can assume that x ∈ [−1/2, 1/2]. Firstly,

we consider the case x ∈]0, 1/2].WehaveV (x) = {yx = (u,−1 + x) | 0 ≤ u ≤ 2}}.
Let yx = (0,−1 + x). It follows from Example 2.1 that ∂−R2+(yx − ȳ) = {(0, 1)}.
The local convexity of the graph of F at (x, yx ) implies the normal cone of convex
analysis to the graph of F at (x, yx ) is given by

N ((x, (0,−1 + x)); gr F) = {r(1 − t,−t,−1 + t) | t ∈ [0, 1], r ∈ R+}

and that we can consider the coderivative D∗F(x, yx )(y∗) of convex analysis.
Since, x∗ ∈ D∗F(x, yx )(y∗) with y∗ = (0, 1) iff (x∗, (0,−1)) ∈ N ((x, yx ); gr F),
it follows that x∗ = 1. Similarly, in case yx = (u,−1 + x) (0 < u < 2) we have
∂−R2+(yx − ȳ) = {(0, 1)}, N ((x, (u,−1 + x)); gr F) = {r(1, 0,−1) | r ∈ R+}
and x∗ ∈ D∗F(x, yx )(y∗) with y∗ = (0, 1) iff x∗ = 1 and in case yx = (2,−1 + x)

we have ∂−R2+(yx − ȳ) = {(0, 1)}, N ((x, (2,−1 + x)); gr F) = {r(1 − t, t, t −
1) | r ∈ R+} and x∗ ∈ D∗F(x, yx )(y∗) with y∗ = (0, 1) iff x∗ = 1. Thus, for
x ∈]0, 1/2]we have that D∗F(x, yx )(y∗) = {1} for any yx ∈ V (x) and y∗ ∈ ∂−R2+
(yx − ȳ).

By a similar argument, one can prove that for x ∈ [−1/2, 0[ one has that
D∗F(x, yx )(y∗) = {−1} for any yx ∈ V (x) and any y∗ ∈ ∂−R2+(yx − ȳ).

Therefore,

lim inf
x→x̄,g(x)→0

d(0; ∪yx ∈V (x) ∪y∗∈∂−K (yx −ȳ) D∗F(x, yx )(y∗)) = 1

and the inequality (7) in Theorem 3.2 implies that σl(SW) ≥ 1.

Remark 3.3 Theorems 3.1 and 3.2 may not be applicable when x̄ ∈ SW
≤ȳ is not an

isolated weakly efficient solution. In such a situation, a weakly efficient solution,
say x , exists in any neighborhood of x̄ and for y ∈ F(x) ∩ W Min(F(X), K ) it may
happen that
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0 ∈ D∗
L F(x, y)(y∗) or 0 ∈ D∗F(x, y)(y∗)

for some y∗ ∈ K + \ {0}, due to the fact that the Fermat rule holds for weakly efficient
solutions [7, 54].

4 A Good Asymptotic Behavior of a Set-Valued Map

In this section,we present the concepts of an almost good/good asymptotical behavior
for the set-valued map F . We will assume that

• ȳ is an efficient, ideally efficient or weakly efficient point of cl F(X).

Recall that ȳ is an ideally efficient point of cl F(X) if ȳ ≤K y for all y ∈ cl F(X).

Definition 4.1 Assume that F is convex. We say that

(i) F has an almost good asymptotic behavior at ȳ if for any sequence (xi ) ⊂ X we
have

d(0,∪y∗∈∂−K (yi −ȳ) D∗ F(xi , yi )(y∗)) → 0 for yi ∈ V (xi ) implies d(yi − ȳ; −K ) → 0.
(13)

(ii) F has a good asymptotic behavior at ȳ if for any sequence (xi ) ⊂ X we have

d(0,∪y∗∈∂−K (yi −ȳ) D∗F(xi , yi )(y∗)) → 0 for yi ∈ V (xi ) implies yn → ȳ.

(14)

Clearly, if F has a good asymptotic behavior at ȳ, then it has an almost good
asymptotic behavior at that point. It turns out that the converse holds true under
some additional conditions. To show this, we need the concept of a normal cone.
Recall that the cone K is normal if there exists a scalarN > 0 such that for any pair
k1, k2 ∈ K satisfying k1 ≤K k2 one has ‖k1‖ ≤ N‖k2‖. Note that the nonnegative
orthants in R

n and C[0,1] are normal and they also have nonempty interior [35].

Proposition 4.1 Suppose that the cone K is normal. If ȳ is an ideally efficient
point of cl F(X), then the concepts of good asymptotical behavior and almost good
asymptotical behavior coincide.

Proof It suffices to show that under the assumptions made, d(yi − ȳ;−K ) → 0
implies ‖yi − ȳ‖ → 0whenever yi ∈ F(X). Since d(yi − ȳ;−K ) → 0, there exists
a sequence (ki ) ⊂ K such that ‖yi − ȳ + ki‖ → 0 as i → ∞. As ȳ is an ideally
efficient point of cl F(X), we have yi − ȳ ∈ K and, therefore, 0 ≤K yi − ȳ ≤K yi −
ȳ + ki . LetN > 0 be the scalar stated in the definition of the normal cone. Then we
have ‖yi − ȳ‖ ≤ N‖yi − ȳ + ki‖ and since ‖yi − ȳ + ki‖ → 0,we get ‖yi − ȳ‖ →
0 as it was to be shown. �
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Wewill show that, under some conditions, the almost good asymptotic behavior of
F equivalent to the good asymptotic behavior in the sense of Auslender and Crouzeix
[2] of the convex function g, which means that for any sequence (xi ) ⊂ X we have

d(0, ∂g(xi )) → 0 implies g(xi ) → inf
X
g. (15)

Proposition 4.2 Suppose that one of the following conditions is satisfied.

(a) The set-valued map F is u.s.c., convex and compact-valued.
(b) X is separable and F is closed, convex, u.s.c. and K -compact-valued.

Then F has an almost good asymptotic behavior at ȳ if and only if g has a good
asymptotic behavior.

Proof Firstly, observe that Proposition 2.4 gives

∂g(xi ) = ∪y∗∈∂−K (yi −ȳ) D∗F(xi , yi )(y∗) (16)

for any yi ∈ V (xi ). By the definition we have g(xi ) = −K (yi − ȳ). Let x ∈ X and
yx ∈ V (x). Since ȳ is a Pareto (ideally, weakly) efficient point of cl F(X), we have
either yx − ȳ /∈ −K or yx − ȳ /∈ −int K . Then we have g(x) = −K (yx − ȳ) =
d(yx − ȳ;−K ) ≥ 0 for all x ∈ X . In particular, for i = 1, 2, . . . we have

g(xi ) = −K (yi − ȳ) = d(yi − ȳ;−K ). (17)

Further, we show that
inf

X
g = 0. (18)

Since ȳ ∈ cl F(X), there exists a sequence ((ui , vi )) ⊂ gr F such that vi → ȳ. Recall
that the function−K (. − ȳ) is Lipschitz, by Proposition 2.1(a), we obtain−K (vi −
ȳ) → 0. From the inequalities 0 ≤ g(ui ) ≤ −K (vi − ȳ)we deduce that g(ui ) → 0
and (18) holds.

Finally, it is easy to see that the relations (16)–(18) yield the equivalence between
(15) and (13). �

The main result of this section is the following.

Theorem 4.1 Suppose that X and Y are Banach spaces and one of the following
conditions is satisfied.

(i) The set-valued map F is u.s.c., convex and compact-valued.
(ii) X is separable and F is closed, u.s.c., convex and K -compact-valued.

Then

(a) Let ȳ ∈ W Min(cl F(X), K ). For F to have an almost good asymptotic behavior
at ȳ
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Necessary condition: For every ŷ satisfying ȳ � ŷ one has

inf{τ > 0 | τd(x; [F l ŷ]) ≤ [g(x) − d(ŷ − ȳ; Y \ K )]+ for all x ∈ X} > 0.
(19)

Sufficient condition: For every ŷ satisfying ȳ � ŷ one has

inf{τ > 0 | τd(x; [F l ŷ]) ≤ [g(x) − d(ŷ − ȳ;−K )]+ for all x ∈ X} > 0.
(20)

(b) If the cone K is normal and ȳ is an ideally efficient point of cl F(X) then the
above conditions also are necessary and sufficient, respectively, for F to have a
good asymptotic behavior at ȳ.

To prove Theorem 4.1, we need the following auxiliary fact.

Lemma 4.1 Suppose that F is K -compact-valued and ȳ � ŷ. Then

[g ≤ d(ŷ − ȳ; Y \ K )] ⊂ [F l ŷ] ⊂ [g ≤ d(ŷ − ȳ;−K )].

Proof Let us begin with the first inclusion. Suppose that x ∈ [g ≤ d(ŷ − ȳ; Y \
K )]. Assume to the contrary that x /∈ [F l ŷ]. Then y − ŷ /∈ −K for all y ∈ F(x).
Hence, we get −K (y − ŷ) = d(y − ŷ;−K ) > 0 and

−K (y − ȳ) ≥ −K (y − ŷ) − −K (ȳ − ŷ) = d(y − ŷ; −K ) + d(ȳ − ŷ; Y \ (−K ))

> d(ȳ − ŷ; Y \ (−K )) = d(ŷ − ȳ; Y \ K )

for all y ∈ F(x). Since F(x) is K -compact, g(x) attained its infimum at some y ∈
F(x), see Proposition 2.2. Hence, we get g(x) > d(ŷ − ȳ; Y \ K ), a contradiction.

Next, we prove the second inclusion. Suppose that x ∈ [F l ŷ]. Then there exists
y ∈ F(x) such that y − ŷ ∈ −K and−K (y − ŷ) = −d(y − ŷ; Y \ (−K )). Hence,
we obtain

−K (y − ȳ) ≤ −K (y − ŷ) + −K (ŷ − ȳ) = −d(y − ŷ;
Y \ (−K )) + d(ŷ − ȳ;−K ) ≤ d(ŷ − ȳ;−K ),

which implies g(x) ≤ d(ŷ − ȳ;−K ). �

Remark that the assertion of Lemma4.1 hods true for an arbitrary ȳ not necessarily
a Pareto (ideally, weakly) efficient point of cl F(X).

Let us return to the proof of Theorem 4.1.

Proof Our proof is based on the fact that the convex l.s.c. function g has a good
asymptotical behavior if and only if σg([g ≤ α]) > 0 for any α > infX g, see [3] and
[17, Theorem 5.2].

(a) To prove the necessary condition, suppose that F has an almost good asymp-
totic behavior at ȳ and ŷ ∈ Y such that ŷ − ȳ ∈ int K . Recall that from the proof
of Proposition 4.2, we have infX g = 0. By Proposition 4.2, the function g has
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a good asymptotical behavior and since d(ŷ − ȳ, Y \ K ) > 0 = infX g, we get
σglob([g ≤ d(ŷ − ȳ, Y \ K )]) > 0 or

inf{τ > 0 | τd(x; [g ≤ d(ŷ − ȳ, Y \ K )]) ≤ [g(x) − d(ŷ − ȳ; Y \ K )]+ for all x ∈ X} > 0.
(21)

On the other hand, by Lemma 4.1, we have

[g ≤ d(ŷ − ȳ, Y \ K )] ⊂ [F  ŷ].

It follows that d(x; [F  ŷ]) ≤ d(x; [g ≤ d(ŷ − ȳ, Y \ K )]). This and the relation
(21) yield

inf{τ > 0 | τd(x; [F l ŷ]) ≤ [g(x) − d(ŷ − ȳ; Y \ K )]+ for all x ∈ X} > 0

and (19) holds.
Next, we prove the sufficient condition. We need only to check that (20) implies

σg([g ≤ α]) > 0 for anyα > 0 = infX g. Indeed, thismeans that g has a good asymp-
totic behavior and therefore, the set-valued map F has an almost good asymptotic
behavior at ȳ, by Proposition 4.2. Letα > 0 be an arbitrary scalar. Let k0 ∈ int K such
that d(k0;−K ) = α and let ŷ = ȳ + k0. Then d(ŷ − ȳ;−K ) = d(k0;−K ) = α and
the relation (20) applied to ŷ yields

inf{τ > 0 | τd(x; [F l ŷ]) ≤ [g(x) − α]+ for all x ∈ X} > 0. (22)

On the other hand, by Lemma 4.1, we have

[F  ŷ] ⊂ [g ≤ d(ŷ − ȳ,−K )] = [g ≤ α].

It follows that d(x; [g ≤ α]) ≤ d(x; [F  ŷ]). This and the relation (22) yield
σg([g ≤ α]) > 0, as it was to be shown.

(b) The assertion follows from the assertion(a) and Proposition 4.1. �

We conclude the section with the remark that replacing F in (13) and (14) by
F , one can define analogous concepts for the case when F is K -convex. It is easy
to see that when Y = R, K = R+ and F is single-valued, the concepts of almost
good/good asymptotic behavior defined for F being K -convex reduce to the classical
one introduced by Auslender and Crouzeix for a convex function.
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On Supremal and Maximal Sets with Respect
to Random Partial Orders

Yuri Kabanov and Emmanuel Lepinette

Abstract The paper deals with definition of supremal sets in a rather general
framework where deterministic and random preference relations (preorders) and
partial orders are defined by continuous multi-utility representations. It gives a short
survey of the approach developed in (J. Math. Econ. 14(4–5):554–563, 2011 [4]), (J.
Math. Econ. 49(6):478–487, 2013 [5]) with some new results on maximal sets.

Keywords Preference relation · Partial order · Random cones · Transaction costs ·
European/american options · Hedging
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1 Introduction

The classical notion of essential supremum plays an important role in the theory of
frictionless markets serving to define the generalized Snell envelope of the pay-
off process, an important tool to characterize the set of super-replicating prices
of European and American contingent claims, see [6]. Contrarily to the friction-
less financial markets, in models with proportional transaction costs, a portfolio
process is vector-valued and its dynamic depends on a set-valued adapted process
(Gt )t∈[0,T ] in Rd , d ≥ 1, whose values are the solvency cones in physical units. In
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the discrete-time setting, a self-financing portfolio process (V̂t )t=0,··· ,T has the incre-
ments V̂t − V̂t−1 ∈ −Gt , t ≥ 1, i.e. V̂t−1 ≥Gt V̂t where ≥Gt denotes the random pre-
order (preference relation) generated by the random cone Gt . In this context, it is
reasonable to characterize the minimal vector-valued prices and minimal portfolio
processes super-hedging contingent claims in the sense of random preorders defined
by the solvency cones. Mathematically, it is rather natural to study questions on
existence and properties of suitably defined supremal sets in a much more general
framework of random preorders or partial orders. This study was initiated in our
papers [4, 5] where we use systematically the description of preorders and partial
orders in terms of continuous multi-utility representation. Though our main inter-
est is in the development of the partial ordering in the space of random vectors, it
seems that our approach is new even in the deterministic case. Specific and (pleas-
ant) features is that we do not require that the partial order generates a structure
(i.e. any two elements admit maximum and minimum). The reader should be aware
about the terminology. We are working with random partial orders in the sense of
probability theory, i.e. with partial orders depending on ω (in analogy with random
variables) while wording “stochastic orders” in the literature is usually attributed to
deterministic orders in the space of probability distributions.

In the present article we give a short survey of the approach developed in [4, 5]
with some new results on maximal sets. We discuss the relations with the previous
works [7–10] where the notions of supset and optimal sets were studied in the case
where the partial order is generated by a proper cone of a vector space. Moreover,
we provide an application to models of financial markets with transaction costs.

2 Supremum and Maximum with Respect to a Preorder
in a Deterministic Setting

2.1 Vocabulary

Let� be a preorder (=preference relation) in X , i.e. a binary relation between certain
elements of a set X which is reflexive (x � x) and transitive (if x � y and y � z then
x � z). The elements x and y are equivalent if x � y and y � x ; we write x ∼ y
in this case. The preorder is called partial order if it is antisymmetric (if x � y and
y � x then x = y). For the partial order, the classes of equivalence are singletons.

The word “binary relation” means simply that we are given an indicator function
ID : X × X → {0, 1} and the notation x � y is equivalent to the equality ID(x, y) =
1, i.e. (x, y) belongs to the set D. For the preorder, the diagonal of the product space
should be a subset of D and if the points (x, y), (y, z) are in D, then (x, z) ∈ D. For
the partial order, (x, y), (y, x) are in D if and only if they belong to the diagonal. Let
a set D ⊆ X × X define a preorder. Then its subset D′ not containing the diagonal
and such that for any points (x, y), (y, z) in D′ the point (x, z) ∈ D′ defines a non-
reflexive transitive relation denoted 	.
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We define the order intervals [x, y] := {z ∈ X : y � z � x},

] − ∞, x] := {z ∈ X : x � z}, [x,∞[:= {z ∈ X : z � x}

(the latter objects are called sometimes lower and upper contour sets). If� is a subset
of X , the notation � � x means that y � x for all y ∈ � while �1 � � means that
x � y for all x ∈ �1 and y ∈ �;

[�,∞[:=
⋂

x∈�

{z ∈ X : z � x}

is the set of upper bounds of�, and so on.We shall use the notation x � z synonymous
with z � x .

A preorder � in a topological space X is continuous if its graph, i.e. the set
{(x, y) : x � y}, is closed.

2.2 Maximal and Supremal Sets

In the ample literature on preference theory and vector optimization one can find a
number of definitions of maximal and supremal sets under various hypotheses on
X . On the informal level, the maximal set of � is defined from the primary object,
i.e. from the set � itself, while the supremal set is defined from the object, dual to
� in an appropriate sense, namely, from the set [�,∞[ of upper bounds of �. The
difference between the two approaches is noticeable already in the case of the real
line R with its usual total (linear) order. Indeed, any set � ⊂ R bounded from above
has a supremum but may not have a maximum in the usual sense. But, the set being
“improved” by passing to its closure, will have one, coinciding with the supremum.

With partial orders the situation is more complicated. Let us consider the partial
order in R2 where x � y means that xi ≥ yi for i = 1, 2 (that is the partial order
generated by R2+). Let� = {(0, 0), (1, 0), (0, 1)} and let 1 = (1, 1). Then [�,∞[=
1 + R2+. This set has a minimal element with respect to the partial order, namely, 1,
which is a good candidate to be considered as the supremum of �. The unpleasant
feature is that it lays far from �. On the other hand, the set {(1, 0), (0, 1)} looks,
intuitively, as a good candidate for the maximum: it is a subset of � and for any its
element x the intersection of � and [x,∞[ is the singleton {x}.

Generalizing the above examples we arrive to the following notions.

Definition 2.1 Let � be a non-empty subset of X and let� be a preorder. We denote
by Sup� the largest subset �̂ of X such that the following conditions hold:

(a0) �̂ ⊆ [�,∞[;
(b0) if x ∈ [�,∞[, then there is x̂ ∈ �̂ such that x̂ � x ;
(c0) if two elements x̂1, x̂2 ∈ �̂ are comparable, then they are equivalent.
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In the case of partial order the word “largest” in the above definition can be
omitted: then the comparable elements of �̂ coincide and it is not difficult to prove
that the set with the listed properties is unique, see Lemma 3.3 in [4].

Note that the definition does not involve any additional structure on X . In contrast
to this, to define maximal sets we assume that X is a topological space.

Definition 2.2 Let � be a non-empty subset of a topological space X and let � be
a preorder. We put

Max� = {x ∈ � : � ∩ [x,∞[= [x, x]}.

Definition 2.3 Let � be a non-empty subset of a topological space X and let � be a
preorder. We denote by Max1� the largest subset �̂ ⊆ � (possibly empty) such that
the following conditions hold:

(α) if x ∈ �, then there is x̂ ∈ �̂ such that x̂ � x ;
(β) if two elements x̂1, x̂2 ∈ �̂ are comparable, then they are equivalent.

It is easy to understand that in the case of R our definition of supremum coincides
with the classical one: Sup� = {sup�} when a (non-empty) set � is bounded from
above. Moreover, if � is closed and bounded from above, then Max� = Max1� =
{max�} = Sup�. For non-closed bounded � �= ∅ the value max� in the classical
sensemay not exist while the setsMax� andMax1� arewell-defined and non-empty.
In the case of our introductory example above where � = {(0, 0), (1, 0), (0, 1)},
we have sup� = 1 and max� = Max1� = {(1, 0), (0, 1)}.
Remark 2.4 For a closed set �, the set Max� is just the set of maximal points of �

and it plays an important role in multicriteria optimization. In the latter theory, the
simplest standard problem is the following: given a compact set � and a continuous
function u : Rn → Rn , findMax� with respect to the preorder defined by the multi-
utility representation {ui , 1 ≤ i ≤ d}, formedby the component of the vector function
u. Recall that, in this theory, the set Max u(�) ⊂ Rn defined by the “natural” partial
order in Rn , i.e. generated by the cone Rn+, is called the Pareto frontier.

Though the definitions of Max� and Max1� look quite different, in the case
where Max1� �= ∅, both sets coincide.

Lemma 2.5 Max1� ⊆ Max�.

Proof Assume that Max1� �= ∅ (otherwise the claim is trivial). Consider x̂1 ∈
Max1� and x ∈ �̄ such that x̂1 � x . By (α), there exists x̂2 ∈ Max1� such that
x � x̂2. Hence, by (β), x̂1 ∼ x̂2 ∼ x , i.e. x̂1 ∈ Max�. �

Lemma 2.6 Let Max1� �= ∅. Then Max1� = Max�.

Proof By Lemma 2.5 above it is sufficient to check that the set Max� satisfies the
properties (α) and (β) in Definition 2.3. SinceMax1� �= ∅ andMax1� ⊆ Max� the
condition (α) is satisfied and it remains to observe that (β) automatically holds by
definition of Max�. �
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2.3 Existence Results

The existence theorem below is a synthesis of several, more general, results from
[4, 5].

Theorem 2.7 Let � be a continuous partial order in the Euclidean space Rd such
that all order intervals [x, y], y � x, are compact. Let � be a non-empty sub-
set bounded from above, i.e. the order interval [�,∞[�= ∅. Then Sup� �= ∅ and
Max� = Max1� �= ∅.

We recall some important facts on multi-utility representations of preorders on
topological vector space X .

We say that a set U of real-valued functions defined on X is a multi-utility repre-
sentation of the preorder � if for any x, y ∈ X ,

x � y ⇔ u(x) ≥ u(y), ∀u ∈ U .

It is easy to see that any preorder admits a multi-utility representation given by the
family of indicator functions u(x) = I[x,∞[, x ∈ X . Note that the terminology, taken
from [3], does not coincide with the standard one: properties usually associated with
the utility functions are not required from the elements of U .

The interest in multi-utility representations lays in the possibility to formulate,
in terms of comprehensive properties of functions, assumptions on preorders and
partial orders.

For example, if a preorder admits a continuous multi-utility representation (i.e.
given by continuous functions), then, of course, this preorder is continuous. Under
a suitable assumption the converse is also true: if X is a locally compact and σ -
compact Hausdorff space, then a continuous preorder admits a continuous multi-
utility representation, see [3].

As a corollary, we get that any continuous preorder on Rd (or, more generally, on
any locally compact and σ -compact Hausdorff space) admits a countable continuous
multi-utility representation, see [5].

Proposition 2.8 Let X be a σ -compact metric space. Suppose that a family U of
continuous functions defines a preorder on X. Then, this preorder can be defined by
a countable subfamily of U .

It is obvious that a preorder on Rd defined by a closed (convex) cone G (x � y
means that x − y ∈ G) is continuous. Such a preorder is a partial order if and only
if G is a proper cone, i.e. G0 := G ∩ (−G) = {0}.
Lemma 2.9 Let � be a partial order defined by a closed proper cone G in Rd . Then,
the order intervals [x, y] are compact.

Proof Suppose that an element zn ∈ [x, y] and its Euclidean norm |zn| → ∞. Put
z̃n = zn/(1 + |zn|), x̃ n = x/(1 + |zn|), and ỹn = y/(1 + |zn|). Then x̃ n � z̃n � ỹn .
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Using the compactness of the unit ball in Rd , we may assume that z̃n → z̃ such that
|z̃| = 1. On the other hand, x̃ n, ỹn → 0. Hence, 0 � z̃ � 0, i.e. z̃ ∈ G ∩ (−G) = {0}
contrary to the assumption. �

Thus, Theorem2.7 implies as corollary the following resultwhich seems to bewell
adapted to the needs of the theory of financial markets with proportional transaction
costs:

Theorem 2.10 Let � be a continuous partial order generated by a proper closed
convex cone G ⊂ Rd . Let � be a non-empty subset bounded from above. Then
Sup� �= ∅ and Max� = Max1� �= ∅.

It is rather natural to place the question on the existence of non-empty supremal
sets in a more general context of a preorder on a topological space. Several results in
this direction can be found in the paper [5] where the principal assumptions are: the
preorder admits a countable multi-utility representation with lower semicontinuous
functions and the order intervals in the quotient space X̃ = X/∼ (generated by the
equivalence x ∼ y) are compact. Of course, the quotient mapping q induces the
relation between classes of equivalence which is a partial order and the quotient
space is equipped with the weakest topology such that q is continuous. But even for
the preorder in Rd , the quotient space is, in general, an abstract topological space
and formulations of the corresponding results are too technical except the case when
the preorder is generated by a cone. Also the topological assumptions we need to
use our techniques (requiring the existence of countable representing family) are
considered in the literature as too restrictive. In view of this, in the present survey,
we concentrate ourselves on partial orders.

Theorem 2.11 Let � be a partial order in a topological space X represented by
a countable family U of lower semicontinuous functions and such that all order
intervals [x, y], y � x, are compact. If a subset � is bounded from above, then
Sup� �= ∅ and Max� = Max1� �= ∅.

Recall that a function u : X → R is called lower semicontinuous (l.s.c.) if for any
point x ∈ X

lim inf
xα→x

u(xα) ≥ u(x).

Equivalently,1 u is l.s.c. if all lower level sets {x ∈ X : u(x) ≤ c} are closed, see
[1]. A function g : X̃ → R is l.s.c. if and only if g ◦ q : X → R is l.s.c. If a function
f : X → R is l.s.c. and constant on the classes of equivalences [x], then the function
g : X̃ → R with g([x]) = f (x) is l.s.c.

We complete this section by an example showing that Sup� might not be closed
even if � is closed.

1Recall that (xα)α∈I designates a net, i.e. a sequence of elements in X indexed by an upward directed
set I , such that for all open set O containing x , (xα)α∈I eventually belongs to O.
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Example Let G ⊆ R2+ be defined as

G = {(0, 0)} ∪ {(x, y) ∈ R2
+ : x + y ≥ 2}.

As G ∩ (−G) = {0} and G + G ⊆ G, the relation x � y if x − y ∈ G defines a
partial order. Let us consider the set � := {(0, 0), (4,−1)}. Then,

[�,∞) = {(x, y) ∈ R+ : x + y ≥ 5 and x ≥ 4}.

Indeed, (x, y) � � if and only if (x, y) ∈ G, i.e. (x, y) ∈ R2+ and x + y ≥ 2, and
(x − 4, y + 1) ∈ G, i.e. x ≥ 4 and x − 4 + y + 1 ≥ 2. We deduce that

Sup� = {(x, y) ∈ R+ : 7 > x + y ≥ 5 and x ≥ 4}. (2.1)

Indeed, it suffices to observe that

(4, 1) + G = {(4, 1)} ∪ {(x, y) ∈ R+ : x + y ≥ 7; y ≥ 1},
(5, 0) + G = {(5, 0)} ∪ {(x, y) ∈ R+ : x + y ≥ 7; x ≥ 5},

so that the points in R+ above the line x + y ≥ 7 are greater that (4, 1) or (5, 0)
with respect to G. If two points belong to the set given by (2.1), then they are not
comparable. Observe that this set is not closed though G and � are closed.

Remark 2.12 For unbounded � it may happen that Max� �= Max1� = ∅. Indeed,
let us consider in R2 the partial order generated by the closed cone G = R+e1. For
the set � = {e2} ∪ G we have Max� = {e2} while Max1� = ∅.

2.4 Relations with Other Concepts

In this subsection we discuss some concepts existing in the literature and very close
to those introduced above. We start with the notion of supset �.

Definition 2.13 Let � be a non-empty subset of X and let � be a partial order. Put

supset � := {z ∈ [�,∞[: [�,∞[∩] − ∞, z]} = {z}}.

Since Sup� does not contain comparable elements, Sup� ⊆ supset �. The defin-
ition of the supset was introduced and studied in papers [7–10] under the assumption
that X is a vector space and the partial order is given by a proper cone G such that
G − G = X . In the paper [10], in the same setting, the optimal set of � is defined
as the set of maximal elements of �. In the case where � is closed this definition
coincides with that of Max�.
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In the abovementioned papers the authors introduced the property (called Condi-
tion (A)) of the space X requiring that for every subset � and every a ∈ [�,∞[ there
is a minimal element x ∈ [�,∞[ such that x � a, i.e. an element of supset �. Thus,
supset � satisfies all properties of Sup� and, by the uniqueness of the latter, both
sets coincide. Condition (A) is satisfied when the space X is finite-dimensional.

The proposition below asserts that supset � and Sup� coincide without any
assumption on the partial ordered space provided that Sup� is non-empty and the
counterexample shows that it may happen that supset � �= ∅ though Sup� is empty.

Proposition 2.14 Let � be a subset of partially ordered space X. Then Sup� =
supset � when Sup� �= ∅.

Proof It remains to prove the inclusion supset � ⊆ Sup�. Since Sup� �= ∅, for all
z ∈ supset �, there exists ẑ ∈ Sup� such that z � ẑ. By definition of supset �, we
have z = ẑ and finally z ∈ Sup�, i.e. supset � ⊆ Sup�. �

Counterexample. Let X = R+ and let u be an arbitrary real-valued function on X .
Let x � y when either x = y or, simultaneously, u(x) > u(y) and x > y. Obviously,
this is a partial order.

Let us consider the function u with u(x) = 2x when 0 ≤ x < 1/2 and 1 <

x ≤ 3/2, u(x) = 1 when 1/2 ≤ x ≤ 1, and u(x) strictly decreasing from its value
u(3/2) = 3 to unit when x > 3/2. This function is continuous at all points X except
x = 1 where it is left continuous and u(x) > 1 for all x > 1. Its graph is given on
Fig. 1.

Fig. 1 Graphic representation of x �→ u(x)
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Let � := {z : 0 ≤ z ≤ 1}. Note that [�,∞) = X \ �. Indeed, the inclusion ⊇
is obvious. On the other hand, if x ∈ � and dominates �, then x > y for any other
element of�, i.e. x = 1. But u(1/2) = u(1), i.e. we cannot have the relation 1 � 1/2.

Let us check that supset � = {x : x ≥ 2}. Indeed, if x ≥ 2 and x � y � �, then
x = y: the inequalities u(x) > u(y) and 1 ≤ y < x are not compatible. on the other
hand, if 1 < x < 2, there exists y � � such that y < x and u(y) < u(x), see Fig. 1,
i.e. such that 1 � y � x and y �= x . It follows that x /∈ supset �.

At last, suppose that sup� �= ∅. Since 3/2 � �, by virtue of (b0), there exists
x̂ ∈ sup� such that 3/2 � x̂ . By Proposition 2.14, x̂ ∈ supset �. Hence, x̂ ≥ 2. So,
3/2 �= x̂ implying that 3/2 > 2. A contradiction. �

3 Essential Supremum in L0(X,F)

In this section, we discuss the concept of the Essential Supremum for sets of random
variables. In the scalar case, the traditional definition is obtained by lifting the linear
order of the real line (i.e. the order generated by the cone (ray) R+) to the space L0

of classes of equivalent random variables. The straightforward analog for the vector-
valued random variables could be a procedure consisting in lifting the preorder or
partial order inRd given by a fixed cone. A slightlymore sophisticated generalization
is related with random partial orders given by random cones in Rd , the situation,
typical in models of financial markets with transaction costs. In view of the previous
section, it is natural to study the notion Esssup for the case when the preorder in
L0(Rd) is given by a countable random multi-utility representation. We consider the
setting where the supremal set consists of H-measurable random vectors, where H
is a sub-σ -algebra of F . This additional feature seems to be new even in the scalar
case where, usually, eitherH = F , or H = {∅,�}, but we do not insist on this.

3.1 Essential Supremum in a General Setting

Let (X,BX ) be a separablemetric spacewith its Borel σ -algebra and let (�,F , P) be
a probability space. As usual, Eξ is the expectation of a real-valued random variable
ξ . LetH be a sub-σ -algebra ofF . On the space L0(X,F) (of classes of equivalence)
of X -valued random variables a preference relation is defined by a countable family
U = {u j : j = 1, 2, ...} of Carathéodory functions u j : � × X → R, i.e. functions
with the following properties:

(i) u j (., x) ∈ L0(X,F) for every x ∈ X ;
(ii) u j (ω, .) is continuous for almost all ω ∈ �.

We recall that the important property of a Carathéodory function u on a sepa-
rable metric space is that it is F ⊗ BX -measurable. Note that an order generated
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by a random cone can be generated by a countable family of linear Carathéodory
functions, see the next subsection.

If γ1, γ2 ∈ L0(X,F), the relation γ2 � γ1 means that u j (γ2) � u j (γ1) a.s. for all
j . The just mentioned property ensures that the superpositions u j (γ1), u2(γ1) are
random variables. The equivalence relation γ2 ∼ γ1 has an obvious meaning.

We associate with an order interval [γ1, γ2] in L0(X,F) its ω-sections, that is the
order intervals [γ1(ω), γ2(ω)] in X corresponding to the partial orders represented
by the families U(ω) = {u j (ω) : j = 1, 2, ...}.
Definition 3.1 Let � be a subset of L0(X,F). We denote by H-Esssup� the max-
imal subset �̂ of L0(X,H) such that the following conditions hold:

(a) �̂ � �;
(b) if γ ∈ L0(X,H) and γ � �, then there is γ̂ ∈ �̂ such that γ � γ̂ ;
(c) if γ̂1, γ̂2 ∈ �̂, then γ̂1 � γ̂2 implies γ̂1 ∼ γ̂2.

An inspection of the proof of Theorem 3.7 in [4] (which deals with a partial order
in Rd ) leads to the following statement [5]:

Theorem 3.2 Let � be a preference relation in L0(X,F) represented by a countable
family of Carathéodory functions. Let � �= ∅ be such that γ̄ � � for some γ̄ ∈
L0(X,H). Suppose that for every γ ∈ L0([�,∞[,H)


(γ ) := argminζ∈L0([�,γ ],H)Eu(ζ ) �= ∅, (3.1)

where u(ω, z) = ∑∞
j=1 2

− j arctan u j (ω, z). Then

H−Esssup� = ∪γ∈L0([�,∞],H)
(γ ) �= ∅. (3.2)

Solving (3.1), we “minimize” theH-measurable randomvariables ζ dominating�

with respect to every “direction” u j . It is easy to check that under (3.1) the set defined
by the right-hand side of (3.2) satisfies the properties required ofH−Esssup�. The
verification of the condition (3.1) is far from being trivial. At the moment we are
able to do this only in the case where the ω-sections of the order intervals [γ1, γ2]
are compact, see Theorem 3.7 in [4]. It is not clear how to extend this theorem, for
a general H to the case of preorders, even under the assumption of compactness of
the order intervals in the quotient space (the difficulty is that the quotient mapping
is only F-measurable).

3.2 Essential Supremum in L0(X) with Respect to a Random
Cone

Let (�,F , P) be a complete probability space and let X be a separable Hilbert space.
Let ω �→ G(ω) ⊆ X be a measurable set-valued mapping whose values are closed
convex cones. The measurability means that



On Supremal and Maximal Sets with Respect to Random Partial Orders 285

graph G := {(ω, x) ∈ � × X : x ∈ G(ω)} ∈ F ⊗ BX .

The positive dual G∗(ω) of G(ω) is defined as the set

G∗(ω) := {x ∈ X : xy ≥ 0, ∀y ∈ G(ω)},

where xy is the scalar product generating the norm ||.|| in X . Recall that a measurable
mapping whose values are closed subsets admits a Castaing representation, i.e. there
is a countable set of measurable selectors ξi of G such that G(ω) = {ξi (ω) : i ∈ N}
for all ω ∈ �. Thus,

graph G∗ = {(ω, y) ∈ � × X : yξi (ω) ≥ 0, ∀i ∈ N} ∈ F ⊗ BX ,

hence, G∗ is a measurable mapping and it admits a Castaing representation, i.e.
there exists a countable set of G-measurable selectors ηi of G∗ such that G∗(ω) =
{ηi (ω) : i ∈ N} for all ω ∈ �.

Since G = (G∗)∗,

G(ω) = {(ω, x) ∈ � × X : ηi (ω)x ≥ 0, ∀i ∈ N}. (3.3)

Therefore, the relation γ2 − γ1 ∈ G (a.s.) defines a preference relation γ2 � γ1 in
L0(X,F) and possesses a countable multi-utility representation given by the random
linear functions u j (ω, x) = η j (ω)x where η j is a Castaing representation of G∗.

Notation. Let H be a sub-σ -algebra of F and let � ⊆ L0(X,F). We shall use the
notation (H, G)-Esssup� instead of H-Esssup� to indicate that the partial order
is generated by the random cone G. In the following, we use the notation G0 :=
(−G) ∩ G.

We get the following [4]:

Theorem 3.3 Let X be a separable Hilbert space and let � be a preference relation
in L0(X,F) defined by a random cone G. Suppose that the subspaces (G0(ω))⊥ are
finite-dimensional a.s. Let � �= ∅ be such that γ̄ � � for some γ̄ ∈ L0(X,F). Then
F−Esssup� �= ∅.

Remark 3.4 If we suppose that the ω-sections of G ⊆ Rd are proper, i.e. G0 =
{0}, then the order intervals [γ1(ω), γ2(ω)] are compact. Therefore, the set (H, G)-
Esssup� exists if � is bounded from above (i.e. if there exists γ̄ ∈ L0(Rd ,H) such
that γ̄ − � ∈ G.)
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4 Essential Maximum in L0(X,F)

4.1 Decomposability-Based Approach

Let us recall that the fastest proof of the existence of the element esssup� in the
scalar case is assuming from the very beginning that the elements of � take values
in the interval [0, 1]. It is sufficient to notice that one can replace � by the upward
completion �up, the smallest set containing � and closed with respect to operation
∨. Consider a sequence ξn on which supξ∈� is attained, replace it by the monotone
sequence ξ (n) = ξ1 ∨ ... ∨ ξn , and check that the limit of the latter is the required
random variable. In the case where �up is closed in L0, it belongs to this set. It
happens that this strategy of proof, appropriately modified, may work in the vector
case and leads to a satisfactory definition of the maximal set. The approach presented
in this section is developed in [4] and based on the notion of decomposability.

We start from some minor generalization of classical concepts, see, e.g. [6, 12].

Definition 4.1 The set � ⊆ L0(X,F) is H-decomposable if for any its elements
γ1, γ2 and A ∈ H the random variable γ1 IA + γ2 IAc belongs to �.

Definition 4.2 We denote by envH� the smallest H-decomposable subset of
L0(X,F) containing � and by cl envH� its closure in L0(X,F).

The “interior” description of the H-envelope of � is as follows:

Lemma 4.3 The set envH� is formed by all random variables
∑

γi IAi where γi ∈ �

and {Ai } is an arbitrary finite partition of � into H-measurable subsets. Moreover,
H-cl env� is H-decomposable.

We recall the two notions of Essential Maximum introduced in [5]:

Definition 4.4 Let � be a non-empty subset of L0(X,F). We put

H−Essmax� = {γ ∈ cl envH� : cl envH� ∩ [γ,∞[= [γ, γ ]}.

Definition 4.5 Let � be a non-empty subset of L0(X,F). We denote by H-
Essmax1� the largest subset �̂ ⊆ cl envH� such that the following conditions hold:

(i) if γ ∈ cl envH�, then there is γ̂ ∈ �̂ such that γ̂ � γ ;
(i i) if γ̂1, γ̂2 ∈ �̂, then γ̂1 � γ̂2 implies γ̂1 ∼ γ̂2.

In the same way we define similar notions of H-Essmin and H-Essmin1.
The proofs of the following two lemmata is exactly the same as of Lemmas 2.5

and 2.6.

Lemma 4.6 H-Essmax1� ⊆ H-Essmax�.

Lemma 4.7 Let H-Essmax1� �= ∅. Then H-Essmax1� = H-Essmax�.
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In [5], it is shown thatH-Essmax1� = H-Essmax� �= ∅ as soon as the preference
relation is a partial order in L0(Rd ,F) such that all order intervals [γ1(ω), γ2(ω)],
γ2 � γ1, are compacts a.s. The same result is also claimed for preference relations
when � is a set of measurable selectors of a closed random set.

Corollary 4.8 Let � be a partial order in L0(Rd) such that all order intervals
[γ1(ω), γ2(ω)], γ2 � γ1, are compacts a.s. Let � ⊆ L0(Rd ,F) be such that there is
γ̄ ∈ L0(Rd ,H) such that γ̄ � �. Then

H−Esssup� = Essmin L0([�,∞),H) = Essmin1L0([�,∞),H) �= ∅.

Proof Observe that L0([�,∞),H) � γ̃ where γ̃ ∈ � is arbitrary. Moreover,
L0([�,∞),H) is closed and H-decomposable. Therefore, by [5], the set Essmin
L0([�,∞),H) = Essmin1L0([�,∞),H) �= ∅ is nonempty and satisfies the required
properties to be the unique set H−Esssup�. �

4.2 Convexity-Based Approach

In this subsection we suggest a new notion of the maximal set for the case where X is
a separable normed space. The most interesting case: Rd with a partial order defined
by a closed cone. Of course, for the scalar case and a closed set �, this maximal set
is reduced to the singleton, containing the maximal point of �.

We denote by conv� the smallest convex subset of L0(X,F) containing � and
by cl conv� its closure in L0(X,F).

Definition 4.9 Let � be a non-empty subset of L0(X,F). We put

Essmaxc � = {γ ∈ cl conv� : cl conv� ∩ [γ,∞[= [γ, γ ]}.

Remark 4.10 Suppose that � ⊆ L0(X,F) is both H-decomposable, convex and
closedwhereH ⊆ F is a sub-σ -algebra. Then� = cl conv� = cl envH� and, there-
fore, Essmaxc � = H−Essmax�.

Definition 4.11 Let � be a non-empty subset of L0(X,F).
We denote by Essmaxc

1� the largest subset �̂ ⊆ cl conv� such that the following
conditions hold:

(i) if γ ∈ cl conv�, then there is γ̂ ∈ �̂ such that γ̂ � γ ;
(i i) if γ̂1, γ̂2 ∈ �̂, then γ̂1 � γ̂2 implies γ̂1 ∼ γ̂2.

As in the last section we have the following:

Lemma 4.12 H-Essmaxc
1� ⊆ H-Essmaxc�.

Lemma 4.13 Let H-Essmaxc
1� �= ∅. Then H-Essmaxc

1� = H-Essmaxc�.
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Proposition 4.14 Let � be a partial order in L0(Rd ,F) represented by a count-
able family of linear functions satisfying (i), (i i) and such that all order inter-
vals [γ1(ω), γ2(ω)], γ2 � γ1, are compacts a.s. Let � be a non-empty subset
of L0(Rd ,F). Suppose that there exists γ̄ ∈ L0(Rd ,F) such that γ̄ � �. Then
Essmaxc � = Essmaxc

1� �= ∅.

Proof Note that the set Essmaxc � obviously satisfies (i i) and it remains only to
check (i) and that Essmaxc � �= ∅. For γ ∈ cl conv�, we define random variables

α j (γ ) := α j (ω, γ ) := 2− j/(1 + |u j (γ (ω))| + |u j (γ̄ (ω))|).

Put
u(x, γ ) := u(x, ω, γ ) :=

∑

j

α j (γ )u j (ω, x).

Then the mapping ξ �→ u(ξ, γ ) is well-defined for ξ ∈ [γ, γ̄ ] and for such an argu-
ment u(ξ, γ ) is a random variable with values in the interval [−1, 1]. Let

c := sup
γ̃∈cl conv�∩L0([γ,∞),F)

Eu(γ̃ ).

Let (γ̃n) be a sequence on which the supremum in the above definition is attained.
As the set cl conv� ⊆ L0(Rd ,H) is convex and [γ, γ̄ ] is compact a.s., we may
assume without loss of generality (by applying Theorem 5.2.3 [6] on convergent
subsequences) that the sequence of γ̃n converges a.s. to some γ̃∞ ∈ cl conv� ∩
L0([γ,∞),F) such that c := Eu(γ̃∞).

By definition of c, it is straightforward that γ̃∞ ∈ Essmax� and the conclusion
follows. �

4.3 Comment on Essential Maximum of Processes

Let (�,F ,F := (Ft )t∈R+ , P) be a stochastic basis satisfying the usual assumptions
and let X = (Xt )t∈R+ and Y = (Yt )t∈R+ be two real-valued measurable processes.
Following Dellacherie [2], we say that the process Y is essential majorant of X if the
set {X > Y } = {(ω, t) : Xt (ω) > Yt (ω)} is negligeable, i.e. its projection on � has
zero probability (the projection is measurable because the σ -algebra is complete).
Let � be an arbitrary set of measurable processes. The measurable process Y is the
essential supremum of � (notation: Y = ess.sup�) if Y is an essential majorant for
every process from � and any other process Y ′ with the same property is an essential
majorant of Y . Of course, in this definition the word “measurable” can be replaced by
the words “optional”, “predictable”, etc. To get results one needs to impose certain
assumptions on the regularity of trajectories. In view of financial applications, it is
interesting to study the problem for the vector-valued processes. This is a problem
for further studies.
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5 Application in Finance: Hedging of European Options
in a Discrete-Time Model with Transaction Costs

In this section, we recall an application in finance developed in [4, 5] for a mar-
ket model with proportional transaction costs. Let us consider a stochastic basis
(�,F , F = (Ft )t=0,...,T , P) and a d-dimensional adapted price process S = (St )

with strictly positive components. Let K ⊂ Rd be a closed proper convex conewhose
interior contains Rd+ \ {0}. We interpret K as the set of all solvent portfolio positions
(expressed in some numéraire) that can be liquidated without any debt. Define the
random diagonal operators

φt : (x1, ..., xd) �→ (x1/S1
t , ..., xd/Sd

t ), t = 0, ..., T,

and relate with them the random cones K̂t := φt K . We consider the set V̂ of Rd -
valued adapted processes V̂ such that �V̂t := V̂t − V̂t−1 ∈ −K̂t for all t and the set
V whose elements are the processes V with Vt = φ−1

t V̂t , V̂ ∈ V̂ .
In the context of the theory ofmarkets with proportional transaction costs, K is the

solvency cone in a model with efficient friction corresponding to the description in
terms of a numéraire, V is the set of value processes of self-financing portfolios. The
notations with hat correspond to the description of the model in terms of “physical”
units where the portfolio dynamics is much simpler because it does not depend on
price movements. A typical example is the model of currency market defined via
the matrix of transaction costs coefficients 
 = (λi j ) with non-negative entries and
λi i = 0. In this case

K = cone {(1 + λi j )ei − e j , ei , 1 ≤ i, j ≤ d}.

Another example is the commodity market where all transactions are payed from the
money account. In this case

K = cone {γ i j e1 + ei , (1 + γ 1i )e1 − ei , (−1 + γ j1)e1 + e j , ei , 1 ≤ i, j ≤ d}.

We assumed for simplicity that K is constant. In general, K = (Kt ) is an adapted
random process whose values are convex closed proper cones, e.g., given by an
adapted matrix-valued process 
 = (
t ). But even in the constant case, K̂ = (K̂t )

is a random cone-valued process. Note that one can use modeling involving only K̂
defined, e.g., by the bid-ask (adaptedmatrix-valued) process but this is just a different
parametrization leading to the same geometric structure.

In this model, the contingent claim is a d-dimensional random vector. We shall
use the notation YT when the contingent claim is expressed in units of the numéraire
and ŶT when it is expressed in physical units. The relation is obvious: ŶT = φT YT .

We shall work under the assumption that L0(K̂t+1,Ft ) ⊆ L0(K̂t ,Ft ), t ≤ T − 1,
i.e. the absence of arbitrage opportunities of the second kind (NA2), see [6], Theorem
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3.2.20. Note that it is always fulfilled when the price process S admits an equivalent
martingale measure.

In the following, we use the convention that K̂T +1 = K̂T . The value process
V̂ ∈ V̂ is called cheap if V̂T = ŶT and any process Ŵ ∈ V̂ such that ŴT = ŶT and
Ŵt �K̂t+1

V̂t for all t ≤ T coincides with V̂ . Observe that under NA2 Condition, the
inequality Ŵt �K̂t+1

V̂t is equivalent to Ŵt �K̂t+1∩K̂t
V̂t , i.e. Ŵt is cheaper than V̂t at

times t and t + 1 in the sense that we may turn the position V̂t into Ŵt either at time
t or t + 1 by paying transaction costs. The questions of interest are whether cheap
portfolios do exist and how they can be found. We denote V̂cheap the set of all cheap
processes.

Proposition 5.1 Suppose that L0(K̂t+1,Ft ) ⊆ L0(K̂t ,Ft ), t ≤ T − 1, and suppose
there exits at least one V̂ ∈ V̂ such that V̂T ≥K̂T

ŶT . Then V̂ E
cheap �= ∅ and V̂ E

cheap
coincides with the set of solutions of backward inclusions

V̂t ∈ (Ft , K̂t+1)−Esssup {V̂t+1}, t ≤ T − 1, V̂T = ŶT . (5.4)

Moreover, any Ŵ ∈ V with ŴT � ŶT is such that Ŵt �K̂t
V̂t , t = 0, · · · , T , for some

V̂ ∈ V E
cheap.

Proof Let Ŵ ∈ V̂ be such that ŴT �K̂T
ŶT . Since �ŴT ∈ −K̂T , we have

ŴT −1 �K̂T
ŴT �K̂T

ŶT . By definition of (FT −1, K̂T )−Esssup and Theorem 3.2, we
get that ŴT −1 �K̂T

V̂T −1 where V̂T −1 ∈ (FT −1, K̂T )−Esssup {ŶT } �= ∅. Therefore,
by the hypothesis, ŴT −1 �K̂T −1

V̂T −1. Continuing the backward induction, we obtain
that Ŵt �K̂t

V̂t where V̂t satisfies (5.4).We deduce that any portfolio Ŵ ∈ V̂cheap sat-
isfy (5.4). The same backward induction allows us to conclude that any V̂ ∈ V̂ which
satisfies (5.4) is cheap. Indeed, let V̂ be such a portfolio process such that V̂t �K̂t+1

Ŵt

for all t where W ∈ V̂ satisfies ŴT �K̂T
ŶT . Since V̂T = ŶT , we get that V̂T = ŴT .

By the first step, ŴT −1 �K̂T
ÛT −1 where ÛT −1 ∈ (FT −1, K̂T )−Esssup {ŶT } � V̂T −1.

Therefore, V̂T −1 �K̂T
ÛT −1 which implies that V̂T −1 = ÛT −1. We pursue the reason-

ing and finally get that U = V . �

The minimal portfolio processes V̂ E
cheap are obtained by solving expected utility

minimizationproblems.Therefore,wehave a constructive approach for superhedging
prices for the European claim ŶT :

Corollary 5.2 Suppose that L0(K̂t+1,Ft ) ⊆ L0(K̂t ,Ft ), t ≤ T − 1, and suppose
there exits at least one V̂ ∈ V̂ such that V̂T ≥K̂T

ŶT . The set of all superhedging

prices for the contigent claim ŶT is obtained by adding an arbitrary element of G0

to an initial value of a portfolio process V̂ ∈ V̂ E
cheap satisfying (5.4).

An algorithm to compute the hedging sets for market models with transaction
costs can be found in [11].
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Generalized Minimality in Set Optimization

Daishi Kuroiwa

Abstract In this paper, we propose a generalized minimality in set optimization. At
first, we introduce parametrized embedding functions, which includes the embedding
function in the previous literatures. By using the embedding functions, we gener-
alize notions of minimal solutions for set optimization, and give existence results
of the generalized minimal solutions. Also we introduce parametrized scalarizing
functions which are generalizations of scalarizing functions defined in the previ-
ous literatures, and we characterize the generalized minimal solutions by using the
scalarizing functions.

Keywords Set optimization · Embedding approach · Unification and generaliza-
tion of minimal solution · Existence of minimal solution · Generalized scalarizing
function

1 Introduction

We study the following optimization problem (SP):

(SP) Minimize F(x)

subject to x ∈ X,

where X is a nonempty set, F is a set-valued map from X to an ordered vector space
E . Notions of minimal solutions of (SP) are defined in accordance with set relations,
which are binary relations on the power set of E , e.g., see [12]. Such optimization
problem (SP) is called set optimization.

For every set relation, notions of minimal solutions of (SP) can be defined. For
example, l-minimal and u-minimal solutions are given by using set relations�l
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�u
K , respectively. We studied various notions and properties in each set relation, that

is, notions of weak and proper minimal solutions of (SP), conditions for the existence
for suchminimal notions, duality results for such minimal notions, notions of convex
functions for set-valued maps, and notions of derivatives for set-valued maps in each
set relation. Therefore, it sometimes takes much time to observe them.

In this paper, we propose a unified approach to study set optimization which
covers the study with respect to set relations �l

K and �u
K , and we define a notion

of minimality which is a generalization of l and u-minimality but also s-minimality,
see [6]. In Sects. 2 and 3, we give preliminaries about vector and set optimization. In
Sect. 4, we introduce parametrized embedding functions by observing behavior of a
singleton,which is a generalization of the previous embedding function definedby the
author, and we study properties of the parametrized embedding functions. By using
the parametrized embedding functions, we define generalized minimal solutions for
set optimization, and show existence theorems of the generalized minimal solutions.
In Sect. 5, we introduce parametrized scalarizing functions which are generalizations
of scalarizing functions defined in the previous literatures. By using the scalarizing
functions, we characterize the generalized minimal solutions.

2 Preliminaries—Vector Optimization

Let C be a closed convex cone of a topological vector space E over R satisfying
C ∩ (−C) = {0} and intC �= ∅, where 0 is the null vector and intC is the set of all
interior points of C . The partial order ≤C is given by

x ≤C y if and only if y − x ∈ C,

and binary relation <C by

x <C y if and only if y − x ∈ intC.

For any subset A of E , the set of all minimal elements of A with respect to C is
written by

Min(A | C) = {a ∈ A | (a − C) ∩ A = {a}}
= {a ∈ A | a′ ∈ A, a′ ≤C a ⇒ a ≤C a′},

and the set of all weak minimal elements of A with respect to C is written by

wMin(A | C) = {a ∈ A | (a − intC) ∩ A = ∅}
= {a ∈ A | �a′ ∈ A such that a′ <C a}.

The positive polar cone of C is given by
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C+ = {c∗ ∈ E∗ | 〈c∗, c〉 ≥ 0,∀c ∈ C},

where E∗ is the continuous dual space of E , and it is well known that C++, the
second positive polar cone of C , which is given by

C++ = {c ∈ E | 〈c∗, c〉 ≥ 0,∀c∗ ∈ C∗},

coincides with C .
For a nonempty convex subset A of E , x0 ∈ wMin(A | C), that is, A ∩ (x0 −

intC) = ∅ if and only if there exists c∗ ∈ C+ such that 〈c∗, x0〉 = minx∈A 〈c∗, x〉 by
using a separation theorem.

In the nonconvex case, nonlinear scalarization is a well-known tool to study min-
imal and weak minimal elements. Such scalarizing functions are given as follows:

z(x) = inf{t ∈ R | x ∈ te − C},

or
f (x) = inf{t ∈ R | x ∈ te + a − intC},

for fixed e ∈ C and a ∈ E , see [2, 14]. These two scalarizing functions, which are
essentially the same because z(x − a) = f (x) under the assumptions of this section,
play very important roles to study vector optimization.

3 Preliminaries—Set Optimization

In the rest of the paper, let E be a normed vector space, and C := C(E) be the family
of all nonempty compact convex subsets of E . For each A, B ∈ C and λ ∈ R,

A + B = {x + y | x ∈ A, y ∈ B} and λA = {λx | x ∈ A},

and also A − B = A + (−B). It is clear that C is not a vector space under these
operators, because there does not existC ∈ C satisfying A + C = {0} for given A ∈ C
which has at least two points.

Set relations are binary relations on C based on an ordering cone and these are the
most important notions to consider set optimization problems. Throughout the paper,
let K be a closed convex cone of E satisfying K ∩ (−K ) = {0} and intK �= ∅. We
introduce set relations �l

K and �u
K on C: for each A, B ∈ C,

A �l
K B if and only if A + K ⊃ B,

A �u
K B if and only if A ⊂ B − K ,
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and weak set relations ≺l
K and ≺u

K on C: for each A, B ∈ C,

A ≺l
K B if and only if A + int K ⊃ B,

A ≺u
K B if and only if A ⊂ B − int K .

Also we define A ∼l
K B if A �l

K B and B �l
K A. In the previous literatures [12],

above set relations are called type (iii) or type (v), and then, these are written by
A �(iii)

K B, A �(v)
K B, A ≺(iii)

K B, and A ≺(v)
K B, respectively.

Let A be a subfamily of C. By using these set relations, notions of minimality of
A with respect to K are defined as follows: a set A ∈ A is said to be an l-minimal
element of A if and only if

B ∈ A, B �l
K A ⇒ A �l

K B,

and a set A ∈ A is said to be a weak l-minimal element of A if and only if

B ∈ A, B ≺l
K A ⇒ A ≺l

K B,

or equivalently,
�B ∈ A such that B ≺l

K A.

Replacing l by u, notions of u-minimality and weak u-minimality of A are given.
Consider the following set-valued optimization problem:

(SP) Minimize F(x)

subject to x ∈ X,

where X is a nonempty set and F : X → C. By using the notions of minimality
defined above, we define notions of solutions of (SP) with respect to K . An element
x0 ∈ X is said to be an l-minimal solution of (SP) if and only if F(x0) is an l-minimal
element of {F(x) | x ∈ X}, and is said to be a weak l-minimal solution of (SP) if
and only if F(x0) is a weak l-minimal element of {F(x) | x ∈ X}. In similar way,
u-minimal solutions and weak u-minimal solutions are defined.

To study set-valued optimization problem (SP), many researchers have proposed
several generalizations of scalarizing function which is given in the last section, see
[1, 4, 5, 13]. In these literature, such scalarizing functions are classified broadly into
the following four types:

I l
e(A; B) = inf{t ∈ R | A �l

K te + B},
I u
e (A; B) = inf{t ∈ R | A �u

K te + B},
Sl

e(A; B) = sup{t ∈ R | A �l
K te + B}, and

Su
e (A; B) = sup{t ∈ R | A �u

K te + B}.
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In this paper, we propose an idea of a unification of the above minimalities, and
a unification of the above scalarizing functions. For this purpose, we introduce a
partially ordered normed vector space in which the family C is embedded in the next
section.

4 An Embedding Space and an Embedding Function

In this study, we provide a vector space in which the class C is embedded, in order to
reformulate set optimization problem (SP) as a vector optimization problem. There
are several literatures with respect to the construction of a vector space in which a
family of convex sets is embedded, for example, see [15, 16]. In this section, we
introduce a specialized embedding vector space C2/≡ and an embedding function ψ
to observe l-minimal solutions of (SP). All definitions and results are based on the
previous literatures, see [10, 11].

Let ≡ be a binary relation on C2 defined by

(A, B) ≡ (C, D) if and only if A + D + K = B + C + K ,

then ≡ is an equivalence relation on C2. To show this, the following cancellation law
is used: for each A, B, C ∈ C,

A + C + K = B + C + K ⇒ A + K = B + K .

Denote the equivalence class of (A, B) ∈ C as [A, B] = {(C, D) ∈ C2 | (A, B) ≡
(C, D)}, and the quotient space of C2 by ≡ as C2/≡ = {[A, B] | (A, B) ∈ C2}. On
the quotient space, we define addition and scalar multiplication as follows:

[A, B] + [C, D] = [A + C, B + D],
λ · [A, B] =

{ [λA,λB] if λ ≥ 0,
[(−λ)B, (−λ)A] if λ < 0.

Then (C2/≡,+, · ) becomes a vector space over R with the null vector [{0}, {0}](=:
θ). Clearly, [A, A] = θ for each A ∈ C by using the cancellation law. Next we can
define a norm on C2/≡ for a given bounded base W of K +, that is ∪λ≥0λW = K +,
whose closure does not contain 0.The existenceof suchW is guaranteedby intK �= ∅,
for example, see [7]. Define

‖[A, B]‖ = sup
w∈W

|inf 〈w, A〉 − inf 〈w, B〉| ,

for every [A, B] ∈ C2/≡, then ‖ · ‖ is a norm on C2/≡, and we equip the vector space
C2/≡ with the topology which is induced by the norm. Let K be defined as

K = {[A, B] ∈ C2/≡| B �l
K A}.
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ThenK is a closed convex cone with nonempty interior,K ∩ (−K) = {θ} and more-
over

intK = {[A, B] ∈ C2/≡| B ≺K A}.

From this, we can define the following partial order ≤K and binary relation <K on
C2/≡ in the same manner to vector optimization: for each [A, B], [C, D] ∈ C2/≡,

[A, B] ≤K [C, D] if and only if [C, D] − [A, B] ∈ K,

and
[A, B] <K [C, D] if and only if [C, D] − [A, B] ∈ intK.

Let (C2/≡)∗ be the continuous dual space of C2/≡. The positive polar cone of K
is given by

K+ = {T ∈ (C2/≡)∗ | 〈T, [A, B]〉 ≥ 0,∀[A, B] ∈ K},

and the second positive polar cone of K is given by

K++ = {[A, B] ∈ C2/≡| 〈T, [A, B]〉 ≥ 0,∀T ∈ K+}.

Also we have K = K++ from the closedness of convex cone K.
Define an embedding function ψ : C → C2/≡ by

ψ(A) = [A, {0}]

for all A ∈ C. Because C2/≡ is an ordered normed vector space with convex cone
K, we reconsider notions of minimality with respect to �l

K by using the embedding
function. For a subfamily A of C, A ∈ A is l-minimal of A with respect to K

⇐⇒ B ∈ A, B �l
K A ⇒ A �l

K B

⇐⇒ B ∈ A, [A, B] ∈ K ⇒ [B, A] ∈ K
⇐⇒ B ∈ A, [A, {0}] − [B, {0}] ∈ K ⇒ [B, {0}] − [A, {0}] ∈ K
⇐⇒ B ∈ A,ψ(A) − ψ(B) ∈ K ⇒ ψ(B) − ψ(A) ∈ K
⇐⇒ B ∈ A,ψ(A) − ψ(B) ∈ K ⇒ ψ(B) − ψ(A) = θ

⇐⇒ B ∈ A,ψ(B) ∈ ψ(A) − K ⇒ ψ(B) = ψ(A)

⇐⇒ ψ(A) ∩ (ψ(A) − K) ⊂ {ψ(A)}
⇐⇒ ψ(A) ∈ Min(ψ(A) | K)

⇐⇒ ψ(A) is a minimal element of ψ(A) with respect to K.

Therefore l-minimality is represented by minimality of vector optimization. Also,
A ∈ A is weak l-minimal ofAwith respect to K if and only ifψ(A) ∈ wMin(ψ(A) |
K), that is, ψ(A) is a weak minimal element of ψ(A) with respect to K. In the same
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way, set optimization

(SP) Minimize F(x)

subject to x ∈ X,

can be regarded as the following vector optimization:

(VP) Minimize ψ ◦ F(x)

subject to x ∈ X.

An element x0 ∈ X is an l-minimal solution of (SP) in the last section if and only if
ψ ◦ F(x0) ∈ Min(ψ ◦ F(X) | K) and x0 ∈ X is a weak l-minimal solution of (SP) in
the last section if and only ifψ ◦ F(x0) ∈ wMin(ψ ◦ F(X) | K), whereψ ◦ F(X) =
{ψ(F(x)) | x ∈ X}.

The embedding space C2/≡ and the embedding function ψ play very important
role to study l-minimal solutions and weak l-minimal solutions of set optimization
problems. In the rest of this paper, we propose parameterized embedding functions
ψλ, which include the previous embedding function ψ. By using the parametrized
embedding functions, we define notions of generalized minimal solutions, and we
characterize such solutions by using given parametrized scalarizing functions.

5 Parameterized Embedding Functions

At first, we give an important observation of a singleton {a} ⊂ E as follows:

[{a}, {0}] = [{0},−{a}] = [(1 − λ){a},−λ{a}],

for each λ ∈ R. Indeed, the first equality follows from {a} + (−{a}) = {0} + {0}
and the second equality follows from {0} − λ{a} = −{a} + (1 − λ){a}. From the
observation, we define new embedding functions ψλ : C → C2/≡ as follows:

ψλ(A) = [(1 − λ)A,−λA]

for each A ∈ C. Clearly ψ0 is the same to ψ, which was given previously. By using
the embedding function, we have the following remarkable proposition:

Proposition 1 For each A, B ∈ C, the following are satisfied:

(i) ψ0(A) ≤K ψ0(B) if and only if A �l
K B,

(ii) ψ0(A) <K ψ0(B) if and only if A ≺l
K B,

(iii) ψ0(A) = ψ0(B) if and only if A ∼l
K B,

(iv) ψ1(A) ≤K ψ1(B) if and only if A �u
K B,

(v) ψ1(A) <K ψ1(B) if and only if A ≺u
K B, and

(vi) ψ1(A) = ψ1(B) if and only if A ∼u
K B.
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Proof Proof of (i) is shown as follows:

ψ0(A) ≤K ψ0(B) ⇐⇒ [A, {0}] ≤K [B, {0}] ⇐⇒ θ ≤K [B, A] ⇐⇒ A �l
K B.

From this and K ∩ (−K) = {θ}, (iii) is given immediately. Proof of (iv) is given in
similar way:

ψ1(A) ≤K ψ1(B) ⇐⇒ [{0},−A] ≤K [{0},−B] ⇐⇒ θ ≤K [−A,−B]
⇐⇒ −A �l

K −B ⇐⇒ B �u
K A.

Proofs of (ii), (v) and (vi) are similar and omitted. �
Motivated by Proposition1, we give the following notations:

A �λ
K B if and only if ψλ(A) ≤K ψλ(B),

A ≺λ
K B if and only if ψλ(A) <K ψλ(B), and

A ∼λ
K B if and only if ψλ(A) = ψλ(B).

Clearly these include binary relations �l
K , �u

K , ≺l
K , ≺u

K , ∼l
K and ∼u

K .
Now we observe properties of the parametrized embedding functions.

Proposition 2 For each A ∈ C, the following are satisfied:

(i) for each α,β ∈ [0,∞), αA + β A = (α + β)A;
(ii) for each α,β ∈ [0,∞), [αA,β A] = (α − β)[A, {0}];

(iii) if λ ≤ 0 then ψλ(A) = ψ0(A);
(iv) if 1 ≤ λ then ψλ(A) = ψ1(A).

Proof Let A ∈ C and α,β ∈ [0,∞). (i) is shown from the convexity of A. Indeed,
we may assume that α + β > 0. Then

αA + β A = (α + β)

(
α

α + β
A + β

α + β
A

)
= (α + β)A.

Next we show (ii). When α > β, since α = (α − β) + β and α − β,β ≥ 0, we have

[αA,β A] = [(α − β)A + β A,β A] = [(α − β)A, {0}] + [β A,β A]
= [(α − β)A, {0}] = (α − β)[A, {0}].

The first equality is shown from (i). In similar way, when α ≤ β, since β = α +
(β − α) and α,β − α ≥ 0, we have

[αA,β A] = [αA,αA + (β − α)A] = [αA,αA] + [{0}, (β − α)A]
= [{0}, (β − α)A] = (β − α)[{0}, A] = (α − β)[A, {0}].
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Next we show (iii). Let λ ≤ 0. Since 0 ≤ −λ ≤ 1 − λ, by using (ii), we have

ψλ(A) = [(1 − λ)A,−λA] = ((1 − λ) − (−λ))[A, {0}] = [A, {0}] = ψ0(A).

The proof of (iv) is similar to (iii) and omitted. �

The next proposition is about monotonicity of the embedding functions with
respect to variable λ for a given A ∈ C .

Proposition 3 Let A ∈ C and 0 ≤ λ0 ≤ λ1 ≤ 1. Then the following are satisfied:

(i) ψλ1(A) − ψλ0(A) = (λ1 − λ0)[{0}, A − A];
(ii) ψ(1−t)λ0+tλ1(A) = (1 − t)ψλ0(A) + tψλ1(A) for each t ∈ [0, 1];

(iii) ψλ0(A) ≤K ψλ1(A);
(iv) λ0 < λ1 and A − A ≺l

K {0} if and only if ψλ0(A) <K ψλ1(A);
(v) if λ0 < λ1 and A is not a singleton, then ψλ0(A) �= ψλ1(A).

Proof Let A ∈ C and 0 ≤ λ0 ≤ λ1 ≤ 1. The proof of (i) is as follows:

ψλ1(A) − ψλ0(A) = [(1 − λ1)A,−λ1 A] − [(1 − λ0)A,−λ0 A]
= [(1 − λ1)A − λ0 A, (1 − λ0)A − λ1A]
= [(1 − λ1)A, (1 − λ0)A] + [λ0(−A),λ1(−A)]
= (λ0 − λ1)[A, {0}] + (λ0 − λ1)[−A, {0}]
= (λ0 − λ1)[A − A, {0}]
= (λ1 − λ0)[{0}, A − A].

The fourth equality is shown by using Proposition2 (ii). Next we show (ii). For each
t ∈ [0, 1], by using (i),

ψ(1−t)λ0+tλ1(A) − ψλ0(A) = t (λ1 − λ0)[{0}, A − A], and

ψλ1(A) − ψ(1−t)λ0+tλ1(A) = (1 − t)(λ1 − λ0)[{0}, A − A],

and then, we have the following equality, which is equivalent to (ii):

(1 − t)(ψ(1−t)λ0+tλ1(A) − ψλ0(A)) = t (ψλ1(A) − ψ(1−t)λ0+tλ1(A)).

We show (iii). Since A − A � 0, it is clear that A − A + K ⊃ {0}, that is, A − A �l
K{0}, or equivalently [{0}, A − A] ∈ K, and then we have (λ1 − λ0)[{0}, A − A] ∈ K

because K is a cone and λ1 − λ0 ≥ 0. The proof of (iv) is similar to (iii). Finally
we show (v). Assume that λ0 < λ1, A is not a singleton, and ψλ0(A) = ψλ1(A).
From (i) andλ1 − λ0 > 0, we have [{0}, A − A] = θ, or equivalently, A − A + K =
K . Since A is not a singleton, there exist different two elements a, a′ ∈ A. Since
A − A ⊂ K , a − a′ ∈ K and a′ − a ∈ K , therefore a − a′ ∈ K ∩ (−K ) = {0}. This
is a contradiction. �
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We have observed that if A is a singleton then all embedding functions ψλ have
the same image at the beginning of this section. The inverse implication holds from
the following proposition:

Proposition 4 For each A ∈ C, the following are equivalent:

(i) A = {a} for some a ∈ E;
(ii) there exist different λ0,λ1 ∈ [0, 1] such that ψλ0(A) = ψλ1(A);

(iii) for each λ0,λ1 ∈ [0, 1], ψλ0(A) = ψλ1(A).

Proof It is clear that (i) implies (iii), which is the first observation of this section,
and (iii) implies (ii). Also (ii) implies (i) from (v) of Proposition3. �

The following property is essential to define generalized minimality of (SP):

Proposition 5 Let A, B ∈ C and 0 ≤ λ0 < λ1 ≤ 1. The following are satisfied:

(i) both A �λ0
K B and A �λ1

K B if and only if A �λ
K B for every λ ∈ (λ0,λ1);

(ii) both A ≺λ0
K B and A ≺λ1

K B if and only if A ≺λ
K B for every λ ∈ [λ0,λ1];

(iii) {λ ∈ [0, 1] | A �λ
K B} is a closed interval, a singleton or empty;

(iv) {λ ∈ [0, 1] | A ≺λ
K B} is an interval which is open in [0, 1] or empty.

Proof Let A, B ∈ C and 0 ≤ λ0 < λ1 ≤ 1. We show (i). Assume that A �λ0
K B

and A �λ1
K B, that is, both ψλ0(A) ≤K ψλ0(B) and ψλ1(A) ≤K ψλ1(B). For any

λ ∈ (λ0,λ1), λ = (1 − t)λ0 + tλ1 for some t ∈ (0, 1). From (ii) of Proposition3,

ψλ(A) = (1 − t)ψλ0(A) + tψλ1(A) and ψλ(B) = (1 − t)ψλ0(B) + tψλ1(B).

This implies ψλ(A) ≤K ψλ(B), that is, A �λ
K B. Conversely, assume that A �λ

K B,
that is, ψλ(A) ≤K ψλ(B) for every λ ∈ (λ0,λ1). This is equivalent to

(1 − t)ψλ0(A) + tψλ1(A) ≤K (1 − t)ψλ0(B) + tψλ1(B)

for every t ∈ (0, 1) by using (ii) of Proposition3. From the closedness of K, we
have ψλ0(A) ≤K ψλ0(B) and ψλ1(A) ≤K ψλ1(B) by considering the cases t ↘ 0
and t ↗ 1. The proof of (ii) is similar to (i) and omitted. We show (iii). Put � =
{λ ∈ [0, 1] | A �λ

K B}. We may assume that |�| > 1. For any λ0,λ1 ∈ � such that
λ0 < λ1, we have (λ0,λ1) ⊂ � from (i). This shows that � is an interval in [0, 1].
To prove that � is closed, choose a sequence {λn} ⊂ � converges to λ0. We will
show that A �λ0

K B, that is,

(1 − λ0)A − λ0B + K ⊃ −λ0 A + (1 − λ0)B.

For any a ∈ A and b ∈ B, since

(1 − λn)A − λn B + K ⊃ −λn A + (1 − λn)B
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for every n ∈ N, there exist {an} ⊂ A, {bn} ⊂ B and {kn} ⊂ K such that

(1 − λn)an − λnbn + kn = −λna + (1 − λn)b

for every n ∈ N. From the compactness of A and B, we can choose a subsequence
{n′} of {n} such that {an′ } converges to some a0 ∈ A and {bn′ } converges to some
b0 ∈ B. Therefore {kn′ } converges to k0 = (1 − λ0)(b − a0) + λ0(b0 − a), which is
an element of K because K is closed, and

(1 − λ0)A − λ0B + K � (1 − λ0)a0 − λ0b0 + k0 = −λ0a + (1 − λ0)b.

Finally we show (iv). Put� = {λ ∈ [0, 1] | A ≺λ
K B}. In similar way to (iii),� is an

interval.We show� is open in [0, 1]. Letλ0 ∈ �. Since (1 − λ0)A − λ0B + intK ⊃
−λ0 A + (1 − λ0)B, there exists r > 0 such that

(1 − λ0)A − λ0B + K ⊃ −λ0 A + (1 − λ0)B + 3rU,

where U is the unit closed ball of E . Put ε = r inf ‖W‖/max{‖[−A, B]‖,
‖[A,−B]‖}. We will show that {λ ∈ [0, 1] | |λ − λ0| ≤ ε} ⊂ �. For any λ ∈ [0, 1]
with |λ − λ0| ≤ ε,

|λ − λ0|‖[−A, B]‖ ≤ r inf ‖W‖ and |λ − λ0|‖[A,−B]‖ ≤ r inf ‖W‖,

then for any w ∈ W ,

(λ0 − λ) (inf 〈w,−A〉 − inf 〈w, B〉) ≤ r‖w‖, and

(λ − λ0) (inf 〈w, A〉 − inf 〈w,−B〉) ≤ r‖w‖,

that is,

inf 〈w,−λA + (1 − λ)B〉 ≥ inf 〈w,−λ0 A + (1 − λ0)B〉 − r‖w‖, and

inf 〈w, (1 − λ0)A − λ0B〉 + r‖w‖ ≥ inf 〈w, (1 − λ)A − λB〉.

Therefore, for any w ∈ W ,

inf 〈w,−λA + (1 − λ)B + rU 〉 = inf 〈w,−λA + (1 − λ)B〉 − r‖w‖
≥ inf 〈w,−λ0 A + (1 − λ0)B〉 − 2r‖w‖
= inf 〈w,−λ0 A + (1 − λ0)B + 3rU 〉 + r‖w‖
≥ inf 〈w, (1 − λ0)A − λ0B〉 + r‖w‖
≥ inf 〈w, (1 − λ)A − λB〉.
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This shows
(1 − λ)A − λB + K ⊃ −λA + (1 − λ)B + rU,

that is, A ≺λ
K B. This completes the proof. �

Motivated by Proposition5, we define �-minimality as follows:

Definition 1 Let A be a subfamily of C, A ∈ A, and � be a nonempty subset of
[0, 1]. The set A is said to be a �-minimal element of A with respect to K if and
only if

B ∈ A, B �λ
K A for any λ ∈ � ⇒ A �λ

K B for any λ ∈ �,

or equivalently,

�B ∈ A s.t. ∀λ ∈ �, B �λ
K A and ∃λ0 ∈ � s.t. A �

λ0
K B,

and A is said to be a weak �-minimal element of A with respect to K if and only if

�B ∈ A s.t. ∀λ ∈ �, B ≺λ
K A and ∃λ0 ∈ � s.t. A ⊀

λ0
K B,

When� = {λ}, λ-minimality and weak λ-minimality mean�-minimality and weak
�-minimality respectively.

Clearly, A ∈ A is a λ-minimal element of A if and only if

ψλ(A) ∈ Min(ψλ(A) | K)

and A ∈ A is a weak λ-minimal element of A if and only if

ψλ(A) ∈ wMin(ψλ(A) | K).

The notion of �-minimality includes not only the notions of l and u-minimality,
but also the notion of s-minimality, which was introduced in [6]. Indeed, 0-
minimality, weak 0-minimality, 1-minimality, and weak 1-minimality are equivalent
to l-minimality, weak l-minimality, u-minimality, and weak u-minimality, respec-
tively. For a given family A ⊂ C, remember that A ∈ A is said to be an s-minimal
element of A if and only if

B ∈ A, B �s
K A ⇒ A �s

K B,

where set relation A �s
K B is defined by A �l

K B and A �u
K B. From Proposition5,

A �s
K B ⇐⇒ A �0

K B and A �1
K B ⇐⇒ A �λ

K B for all λ ∈ [0, 1],
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and this shows the equivalence of s-minimality and [0, 1]-minimality. More gener-
ally, �-minimality is equivalent to (co�)-minimality, where co� is the convex hull
of �.

Proposition 6 Let A be a subfamily of C, A ∈ A, and �,�′ be nonempty subsets
of [0, 1]. The following are satisfied:

(i) A is a �-minimal element of A if and only if A is a co(�)-minimal element
of A;

(ii) A is a weak �-minimal element of A if and only if A is a weak co(�)-minimal
element of A;

(iii) if A is a �-minimal element of A and A is a �′-minimal element of A, then A
is a � ∪ �′-minimal element of A;

(iv) if A is a weak �-minimal element of A and A is a weak �′-minimal element of
A, then A is a weak � ∪ �′-minimal element of A.

Proof Weshow (i). Assume that A is a�-minimal element ofA, B ∈ A and B �λ
K A

for all λ ∈ co(�). Since � ⊂ co(�) and A is a �-minimal element of A, A �λ
K B

for all λ ∈ �. For any λ ∈ co(�) \ �, there exist λ0,λ1 ∈ � such that λ ∈ (λ0,λ1).
Since A �λ0

K B and A �λ1
K B, A �λ

K B holds by using (i) of Proposition5. This shows
A is a co(�)-minimal element ofA. Conversely, Assume that A is a co(�)-minimal
element of A, B ∈ A and B �λ

K A for all λ ∈ �. By using (i) of Proposition5, we
have B �λ

K A for all λ ∈ co(�). Since A is a co(�)-minimal element ofA, A �λ
K B

hold for all λ ∈ co(�), and from � ⊂ co(�), we have A is a �-minimal element of
A. To prove (ii), we use (ii) of Proposition5. The proof is similar to (i) and left to
the reader. Proofs of (iii) and (iv) are easy and omitted. �

We define notions of �-minimal solutions of (SP) with respect to K by using the
notions of �-minimality defined above. Remember

(SP) Minimize F(x)

subject to x ∈ X,

where X is a nonempty set, and F : X → C. An element x0 ∈ X is said to be a �-
minimal solution of (SP) if and only if F(x0) is a �-minimal element of {F(x) | x ∈
X}, and is said to be a weak�-minimal solution of (SP) if and only if F(x0) is a weak
�-minimal element of {F(x) | x ∈ X}. Next we give examples of �-minimality.

Example 1 Let A = {(0, 0)}, B = co{(1, 1), (−1,−1), (0,−2), (2, 0)},A= {A, B}
and K = {(x, y) | x, y ≥ 0}. For any λ ∈ [0, 1],

A �λ
K B ⇐⇒ −λB + K ⊃ (1 − λ)B ⇐⇒ 2

3
≤ λ, and

B �λ
K A ⇐⇒ (1 − λ)B + K ⊃ −λB ⇐⇒ λ ≤ 1

3
.
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So, A is a [ 23 , 1]-minimal element of A, and B is a [0, 1
3 ]-minimal element of A.

Clearly, A and B are u and l-minimal elements of A respectively. The notion of
�-minimality shows attributes characteristic of A and B in A.

Example 2 Let F : [0, 2] → 2R be a set-valuedmap defined by F(x)= [ f (x), g(x)],
where f (x) = x − 2 and g(x) = 1

2 |x − 1| − x + 3
2 , for each x ∈ [0, 2]. Consider

(SP) Minimize F(x)

subject to x ∈ [0, 2],

with K = [0,+∞). For fixed λ ∈ [0, 1],
F(x) �λ

K F(y)

⇐⇒ [(1 − λ)[ f (x), g(x)],−λ[ f (x), g(x)]] ≤K [(1 − λ)[ f (y), g(y)],−λ[ f (y), g(y)]]
⇐⇒ [(1 − λ)[ f (y), g(y)] − λ[ f (x), g(x)], (1 − λ)[ f (x), g(x)] − λ[ f (y), g(y)]] ∈ K
⇐⇒ (1 − λ)[ f (x), g(x)] − λ[ f (y), g(y)] + K ⊃ (1 − λ)[ f (y), g(y)] − λ[ f (x), g(x)]
⇐⇒ (1 − λ) f (x) − λg(y) ≤ (1 − λ) f (y) − λg(x)

⇐⇒ (1 − λ) f (x) + λg(x) ≤ (1 − λ) f (y) + λg(y).

Then x̄ ∈ [0, 2] is a�-minimal solution of (SP) if andonly if (1 − λ) f (x̄) + λg(x̄) ≤
(1 − λ) f (x) + λg(x) for any x ∈ [0, 2] and λ ∈ �. Therefore 0 is a [0, 2

5 ]-minimal
solution, each element of (0, 1) is a 2

5 -minimal solution, 1 is a [ 25 , 2
3 ]-minimal solu-

tion, each element of (1, 2) is a 2
3 -minimal solution, and 2 is a [ 23 , 1]-minimal solution.

At the end of this section,we study the existence ofλ-minimal solutions of set opti-
mization problem (SP) because λ0 and λ1-minimality implies [λ0,λ1]-minimality
from Proposition6. We give proofs of the existence theorems in similar ways to the
previous existence theorems of l-minimal solutions of (SP) in [8, 9].

Theorem 1 Let F be a function from a compact topological space X to C. Assume
that the following property: if {xα}α∈T is a totally ordered λ-decreasing net in X, that
is, T is totally ordered, and α < α′ implies F(xα′) ≤λ

K F(xα), and if {xα}α∈T con-
verges x0, then ψλ(F(x0)) ∈ ⋂

α∈T (ψλ(F(xα)) − K). Then there exists a λ-minimal
solution of (SP).

Proof Let {ψλ(F(x))}x∈T be a totally ordered set of {ψλ(F(x))}x∈X . Define a reflex-
ive and transitive binary relation < on T by x < x ′ if ψλ(F(x ′)) ≤K ψλ(F(x)) for
each x , x ′ ∈ T , then (T,<) is a directed set. Since X is compact set, we can choose a
subnet T ′ of T such that T ′ converges to some element x0 of X . From the assumption
of the theorem, ψλ(F(x0)) ∈ ⋂

x∈T ′(ψλ(F(x)) − K).
Now, we will show that ψλ(F(x0)) ≤K ψλ(F(x)) for each x ∈ T . If not, there

exists x̂ ∈ T such that ψλ(F(x0)) �K ψλ(F(x̂)). For each x ∈ T ′ satisfying x̂ <

x ,ψλ(F(x)) ≤K ψλ(F(x̂)), therefore
⋂

x∈T ′,x̂<x (ψλ(F(x)) − K) ⊂ ψλ(F(x̂)) − K.
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Clearly
⋂

x∈T ′(ψλ(F(x)) − K) ⊂ ⋂
x∈T ′,x̂<x (ψλ(F(x)) − K), we have ψλ(F(x0))

∈ ψλ(F(x̂)) − K, or equivalently ψλ(F(x0)) ≤K ψλ(F(x̂)). This is a contradiction.
Hence, we have that ψλ(F(x0)) is a lower bound of {ψλ(F(x))}x∈T with respect to
≤K. From Zorn’s lemma, there exists a minimal element of {ψλ(F(x))}x∈X , that is,
there exists a λ-minimal solution of (SP). �

When λ = 0, the condition of F in Theorem1 is weaker than the notion of Haus-
dorff cone-upper continuity; F is Hausdorff K -upper continuous at x0 if for any
neighborhood V of the origin in E , there is a neighborhood U of x0 in X such that
F(x) ⊂ F(x0) + V + K for all x ∈ U ∩ X , for example, see [3]. From this fact and
Theorem1, the following result is shown, the proof is left to the reader:

Corollary 1 Let F be a function from a compact topological space X to C. If F
is Hausdorff K -upper continuous at every x ∈ X, then there exists an l-minimal
solution of (SP). If F is Hausdorff (−K )-lower continuous at every x ∈ X, that is, for
every x ∈ X and for any neighborhood V of the origin in E, there is a neighborhood
U of x in X such that F(x) ⊂ F(x ′) + V − K for all x ′ ∈ U ∩ X, then there exists
an u-minimal solution of (SP).

Define λ-level sets of F by

Levλ(A) = {x ∈ X | F(x) ≤λ
K A},

where A ∈ C.
Theorem 2 If (X, d) is a complete metric space, Levλ(F(x)) is closed for each
x ∈ X, and the following condition is satisfied:

there exists a function l : X → [0,+∞) such that for each x1, x2 ∈ X, F(x1) �λ
K F(x2)

implies d(x2, x1) ≤ l(x2) − l(x1).

Then, there exists a λ-minimal solution of (SP).

Proof Let x0 ∈ X . We construct a sequence {xk} ⊂ X by induction as follows:

(i) if Levλ(F(xk)) �= {xk}, since ψλ(F(x ′)) ≤K ψλ(F(xk)) for some x ′ �= xk ,

0 < d(xk, x ′) ≤ l(xk) − l(x ′) ≤ l(xk) − inf
x∈Levλ(F(xk ))

l(x).

Since l(xk) − inf x∈Levλ(F(xk )) l(x) > 0, we can choose xk+1 ∈ Levλ(F(xk)) such
that

l(xk+1) ≤ inf
x∈Levλ(F(xk ))

l(x) + 1

2

{
l(xk) − inf

x∈Levλ(F(xk ))
l(x)

}
.

(ii) if Levλ(F(xk)) = {xk}, let xk+1 := xk .

In each case, we can check easily that Levλ(F(xk+1)) ⊂ Levλ(F(xk)) and

l(xk+1) − inf
x∈Levλ(F(xk+1))

l(x) ≤ 1

2

{
l(xk) − inf

x∈Levλ(F(xk ))
l(x)

}
.
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Now we show that diam(Levλ(F(xk))) → 0 as k → +∞. Indeed, let u ∈ Levλ

(F(xk)). From the assumption and ψλ(F(u)) ≤K ψλ(F(xk)), we have d(xk, u) ≤
l(xk) − l(u). Hence

d(xk, u) ≤ l(xk) − l(u)

≤ l(xk) − inf
x∈Levλ(F(xk ))

l(x)

≤ 1

2

{
l(xk−1) − inf

x∈Levλ(F(xk−1))
l(x)

}

≤ · · · ≤ 1

2k

{
l(x0) − inf

x∈Levλ(F(x0))
l(x)

}
≤ · · · ≤ 1

2k
l(x0).

This shows us

diam(Levλ(F(xk))) ≤ 1

2k−1
l(x0),

therefore,we have diam(Levλ(F(xk))) → 0 as k → +∞. SinceLevλ(F(xk)) is non-
empty closed, Levλ(F(xk+1)) ⊂ Levλ(F(xk)), and (X, d) is complete, we conclude⋂

k∈N Levλ(F(xk)) = {x̂} for some x̂ ∈ X . This implies Levλ(F(x̂)) = {x̂} and, it
follows that x̂ is a λ-minimal solution of (SP). �

6 A Generalized Scalarizing Function on C

Since C2/≡ is an ordered vector space with convex cone K, the scalarizing function
from C2/≡ to R is given in this way:

ϕ[P,Q]([A, B]) = inf{t ∈ R | [A, B] ∈ t[P, Q] − K},

for fixed [P, Q] ∈ C2/≡. From the definition, it is clear that ϕ[P,Q]([A, B] +
r [P, Q]) = ϕ[P,Q]([A, B]) + r . When [P, Q] ∈ intK, this function ϕ[P,Q] has the
following properties: it is a special case of vector-valued version in [3], and the proof
of the following theorem is omitted.

Theorem 3 If [P, Q] ∈ intK, then ϕ[P,Q] : C2/≡→ R is a well-defined continuous
function, and for each [A, B], [C, D] ∈ C2/≡, we have

(i) ϕ[P,Q]([A, B]) ≤ r if and only if [A, B] ∈ r [P, Q] − K;
(ii) ϕ[P,Q]([A, B]) < r if and only if [A, B] ∈ r [P, Q] − intK;

(iii) ϕ[P,Q]([A, B]) > r if and only if [A, B] /∈ r [P, Q] − K;
(iv) ϕ[P,Q]([A, B]) ≥ r if and only if [A, B] /∈ r [P, Q] − intK;
(v) [A, B] ≤K [C, D] implies ϕ[P,Q]([A, B]) ≤ ϕ[P,Q]([C, D]);

(vi) [A, B] <K [C, D] implies ϕ[P,Q]([A, B]) < ϕ[P,Q]([C, D]).
Now we characterize solutions of (SP) by using the scalarizing function. At first

we observe λ-minimal elements of a subfamily A ⊂ C with respect to K :
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Theorem 4 Let [P, Q] ∈ intK and A be a subfamily of C. The set A ∈ A is a λ-
minimal element of A if and only if for each B ∈ A, ϕ[P,Q](ψλ(B) − ψλ(A)) > 0 or
B ∼λ

K A. The set A ∈ A is a weak λ-minimal element of A if and only if for each
B ∈ A, ϕ[P,Q](ψλ(B) − ψλ(A)) ≥ 0.

Proof The set A ∈ A is a λ-minimal element ofA if and only if B ∈ A,ψλ(B) ≤K
ψλ(A) implies ψλ(A) ≤K ψλ(B), that is, for each B ∈ A, ψλ(B) �K ψλ(A) or
else ψλ(B) = ψλ(A). By using Theorem3, this is equivalent to for each B ∈
A, ϕ[P,Q](ψλ(B) − ψλ(A)) > 0 or B ∼λ

K A. The latter is shown in the similar
way. �

From this theorem, we may choose any [P, Q] ∈ intK to observe λ-minimal ele-
ments and weak λ-minimal elements. When e ∈ intK , we can check that [{e}, {0}] ∈
intK, and embedding function ψ[P,Q] is a generalization of I l

e(A; B) and I u
e (A; B),

indeed,

I l
e(A; B) = inf{t ∈ R | A �l

K te + B}
= inf{t ∈ R | [A, {0}] ≤K t[{e}, {0}] + [B, {0}]}
= ϕψ0({e})(ψ0(A) − ψ0(B)), and

I u
e (A; B) = inf{t ∈ R | A �u

K te + B}
= inf{t ∈ R | −B �l

K te − A}
= inf{t ∈ R | [−B, {0}] ≤K t[{e}, {0}] + [−A, {0}]}
= ϕψ1({e})(ψ1(A) − ψ1(B)).

Also Sl
e(A; B) and Su

e (A; B) can be written by using ϕ because Sl
e(A; B) =

−I l−e(A; B) and Su
e (A; B) = −I u−e(A; B). Motivated by the observation, we give

the following simple notation ϕλ
e (A, B) as follows: for each λ ∈ [0, 1],

ϕλ
e (A, B) = ϕψλ({e})(ψλ(A) − ψλ(B)).

Clearly we have

ϕ0
e(A, B) = I l

e(A; B), ϕ1
e(A, B) = I u

e (A; B),

ϕ0
e(A, B) = −Sl

−e(A; B), and ϕ1
e(A, B) = −Su

−e(A; B),

and we can characterize solutions of (SP) by using the function:

Corollary 2 Let X be a nonempty set, F : X → C, and e ∈ intK . The element x0 ∈
X is a λ-minimal solution of (SP) if and only if for each x ∈ X, ϕλ

e (F(x), F(x0)) > 0
or F(x) ∼λ

K F(x0). The element x0 ∈ X is a weak λ-minimal solution of (SP) if and
only if for each x ∈ X, ϕλ

e (F(x), F(x0)) ≥ 0 or F(x) ∼λ
K F(x0).

The above characterizations are generalizations of the previous ones of set opti-
mization problems. Finally, we observe the following example:
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Example 3 Let F : X → 2R
n
be a set-valued map defined by

F(x) = ( f0(x) + K ) ∩ ( f1(x) − K )

where functions f0, f1 : X → R
n satisfy f0(x) ≤K f1(x) for each x ∈ X , and con-

sider a set optimization problem

(SP) Minimize F(x)

subject to x ∈ X.

For given e ∈ intK and for any λ ∈ [0, 1], we can check that

ϕλ
e (F(x), F(y)) = inf{t ∈ R | fλ(x) ≤K fλ(y) + te},

in the similar way to Example2, where fλ = (1 − λ) f0 + λ f1. The right-hand side
of the above equality can be regarded as a convolution of fλ and the scalarizing
function in Sect. 2. Then the λ-minimal solutions of (SP) is characterized by the
K -minimal solutions of the following vector optimization (VP):

(VP) Minimize fλ(x)

subject to x ∈ X.

Acknowledgments The author is grateful to anonymous referees for many comments and sug-
gestions improved the quality of the paper. The author’s work was partially supported by JSPS
KAKENHI Grant Number 25400205.

References

1. Araya, Y.: Four types of nonlinear scalarizations and some applications in set optimization.
Nonlinear Anal. 75, 3821–3835 (2012)

2. Gerth, C., Weidner, P.: Nonconvex separation theorems and some applications in vector opti-
mization. J. Optim. Theory Appl. 67, 297–320 (1990)
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On Characterization of Nash
Equilibrium Strategy in Bi-Matrix
Games with Set Payoffs

Takashi Maeda

Abstract In this paper, we consider set-valued payoff bi-matrix games where each
player’s payoffs are given by non-empty sets in n-dimensional Euclidean spacesRn .
First, we define several types of set-orderings on the set of all non-empty subsets
in R

n . Second, by using these orderings, we define four kinds of concepts of Nash
equilibrium strategies to the games and investigate their properties. Finally, we give
sufficient conditions for which there exists these types of Nash equilibrium strategy.

Keywords Set-ordering · Maximal element · Set-valued map · Nonlinear scalar-
ization · Set payoff games · Nash equilibrium strategy ·Maximal Nash equilibrium
strategy · Pareto Nash equilibrium strategy · Incomplete information game · Weak
Pareto Nash equilibrium strategy · Fixed point theorem

AMC: 90C29 · 90C46

1 Introduction

Since seminal works by Neumann and Morgenstern [26] and Nash [24, 25], Game
theory has played an important role in the fields of decision making theory such as
economics, management, and operations research, etc.

When we apply the game theory to model some practical problems with which
we encounter in real situations, we have to know (1) who are players, (2) what
are strategies for each player, and (3) values of payoffs for each player to receive.
However it is difficult for us to know the exact values of payoffs and could only
know the values of payoffs approximately, or with some imprecise degree in general.
In order to model such a situation with game theory, a great number of efforts have
been devoted to the developments of game theory from the theoretical and practical
points of views.
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For the games where the payoffs are given by random variables, Harsanyi [6] has
defined Bayesian games, which is games with incomplete information on players’
payoffs, and the concept of BayesianNash equilibrium to the games, and investigated
the properties.

Campos [4] has considered fuzzy matrix games where the payoffs are given by
fuzzy numbers, and proposed some methods to solve fuzzy matrix games based on
linear programming, but has not defined explicit concepts of equilibrium strategies.

For fuzzy bi-matrix games with fuzzy payoffs, Maeda [18] has defined three
types of Nash equilibrium strategies based on possibility and necessity measures and
investigated their properties; Maeda [19] has defined three types of Nash equilibrium
strategies by using fuzzy max ordering, and proved that fuzzy bi-matrix games are
equivalent to the games with vector payoffs games. While, for fuzzy matrix games,
Maeda [20] has defined fuzzy minimax equilibrium strategies based on fuzzy max
order and investigated their properties.

Aghassi andBertsimas [1] have consideredmatrix gameswhere payoffs are uncer-
tain and players have no information about the probability distributions, and inves-
tigated their properties based on robust optimization methods in mathematical pro-
gramming. Liu and Kao [17], and Li [16] have considered matrix games where the
payoffs are compact intervals in R and proposed some methods to solve the matrix
games based on linear programming approaches. However, Liu and Kao [17] and Li
[16] have not defined explicit concepts of equilibrium strategies.

In this paper, we consider the bi-matrix games where each player’s payoffs are
given by non-empty sets in n-dimensional Euclidean spaces Rn , including interval-
valued payoffs, which means both players don’t know exact values of payoffs but
they know their ranges. Namely, we consider the games that payoffs are deterministic
uncertainty (See Leitmann [15]). Based on set-valued maps optimization methods
(Maeda [21–23]), for set payoff game, we define four kinds of concepts of Nash equi-
librium and give sufficient conditions under which there exist these Nash equilibrium
strategies.

For those purposes, this paper is organized as follows. In Sect. 2, we introduce
several types of set orderings on the set of all non-empty subsets in n-dimensional
Euclidean space R

n and investigate their properties. In Sect. 3, we introduce two
types of extended real-valued set functions defined on the set of all non-empty sub-
sets of Rn , which are extensions of the non-convex separation functions (Gerth and
Weidner [5], Hamel [7] and Hernández and Rodríguez-Marín [8]) and investigate
their properties. In particular, we show that these set functions aremonotone and pos-
itively homogeneous with respect to the set orderings given in Sect. 2. In Sect. 4, we
consider set payoffs bi-matrix games, where the payoffs for each player are compact
convex sets in R

�. First, we define the concepts of Nash equilibrium strategy to the
game; then, associated with the set payoff bi-matrix games, we define the two-person
games with scalar payoffs; bi-matrix games; we investigate relationships between
set payoff bi-matrix games and scalar payoff two-person games. In Sect. 5, we give
sufficient conditions under which there exists at least one Nash equilibrium strategy
to set payoff bi-matrix games.
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2 Orderings on Sets in R
n and Set-Valued Maps

LetRn be n-dimensional Euclidean space andRn+ be its non-negative orthant, respec-
tively. By P(Rn) and C(Rn), we denote the sets of all non-empty subsets of Rn

and the set of all non-empty compact subsets of R
n , respectively. For any ele-

ments A, B ∈ P(Rn) and any real number λ ∈ R, we write A + B := {z ∈ R
n | z =

x + y, x ∈ A, y ∈ B} andλA := {z ∈ R
n | z = λ x, x ∈ A}.Whenever A ∈ P(Rn)

is a singleton, say A = {a}, we abuse notations and write a instead of {a}.
Definition 2.1 For A, B ∈ P(Rn), we write

A �L B iff B ⊆ A + R
n
+, (1)

A �U B iff A ⊆ B − R
n
+, (2)

A � B iff A �L B and A �U B. (3)

A ≺L B iff cl B ⊆ cl A + intRn
+, (4)

A ≺U B iff cl A ⊆ cl B − intRn
+, (5)

A ≺ B iff A ≺L B and A ≺U B, (6)

A � B iff A ≺L B and A �U B, or A �L B and A ≺U B. (7)

where cl A denotes the closure of the set A.

It is easy to see that the binary relations �L , �U , and � are reflexive and transitive,
but not antisymmetric. In fact, for any A, B ∈ P(Rn), A � B and B � A implies
that A + R

n+ = B + R
n+, in general. Therefore, the binary relations �L , �U , and �

are quasi orderings on P(Rn). On the other hand, binary relations ≺L , ≺U , ≺, and
� are strict partial orderings.

The set-orderings � and ≺ are introduced by Young [27]. Kuroiwa [12, 13] use
the set-orderings �L , �U , ≺L and ≺U to study set optimization problems where the
objective map is given by set-valued map. By using the set-ordering �, Maeda [21]
gave the condition that fuzzy mathematical problems are equivalent to set-valued
optimization problems. For the relationships among these set orderings and other set
orderings, see Jahn and Ha [10].

Let A ⊆ P(Rn) be any non-empty subset and A ∈ A be any set. Then, the set
A ∈ A is said to be a maximal element in A with respect to the set-ordering � iff
A′ ∈ A, A � A′ imply A′ � A. While, A ∈ A is said to be a maximal element inA
with respect to the set-ordering � iff there is no Ā ∈ A such thatA � Ā, and A ∈ A
is said to be a maximal element in A with respect to the set ordering ≺ iff there
is no Ā ∈ A such that A ≺ Ā. Similarly, we could define various types of maximal
element in A with respect to other set-orderings given in Definition 2.1

Let F : Rn � R
� be any set-valued map. By Dom(F) := {x ∈ R

n | F(x) �= ∅}
and Gr(F) := {(x, y) ∈ R

n × R
� | y ∈ F(x)}, we denote the effective domain and

the graph of F , respectively. Let F : Rn � R
� be any set-valued map and S ⊆

Dom(F) be any non-empty convex set. Then F is said to be �-concave on S if
(1 − λ)F(x) + λF(y) � F((1 − λ)x + λy) holds for ∀x, y ∈ S and ∀λ ∈ [0, 1];
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F : Rn � R
� is said to be �-convex on S if F((1 − λ)x + λy) � (1 − λ)F(x) +

λF(y) holds for ∀x, y ∈ S and ∀λ ∈ [0, 1] (See Maeda [23]). While F : Rn � R
�

is said to be convex-valued if F(x) is convex for ∀x ∈ Dom(F); F : Rn � R
� is

said to be compact-valued if F(x) is compact for ∀x ∈ Dom(F).
A set-valued map F : Rn � R

� is said to be upper semi-continuous at xo ∈
Dom(F) if, for any sequences {(xν, yν)}∞ν=1 ⊆ Gr(F) converging to (xo, yo) ∈ R

n ×
R

�, we have yo ∈ F(xo). While, F : Rn � R
� is said to be lower semi-continuous at

xo ∈ Dom(F) if, for any (xo, yo) ∈ Gr(F), and any sequence
{xν}∞ν=1 ⊆ Dom(F) such that {xν}∞ν=1 converging to xo, there exists a subsequence
{(xν ′

, yν ′
)}∞ν ′=1 ⊆ Gr(F) such that the sequence {yν ′ }∞ν ′=1 converges to yo; F : Rn �

R
� is said to be continuous at xo ∈ R

n if F is upper semi-continuous and lower semi-
continuous at xo. We say F is continuous on Dom(F) if, for any xo ∈ Dom(F), F
is continuous at xo (see Aubin [3]).

Let F : Rn � R
m be any set-valuedmap, S ⊆ Dom(F) be any non-empty set and

let xo ∈ S be any point. Then F is said to be uniformly compact near xo ∈ S if there
exists a neighborhood N (xo) of xo such that cl ∪x∈N (xo) F(x) is compact, where cl
denotes the closure of the set ∪x∈N (xo)F(x). F is said to be uniformly compact on S
if F is uniformly compact near x for all x ∈ S.

3 Scalarizaion Methods of Set-Valued Maps in R
n

In this section, we define two types of extended real-valued functions defined on
C(Rn),which are extensions ofGerstewitz’s functions and investigate their properties
(see [5, 7, 8], Maeda [23] and Araya [2]) .

Let A ∈ C(Rn) be any non-empty compact set and let ko ∈ int Rn+ be any point.We
define the real-valued set functions φi (·; ko) : C(Rn) → R by φi (A; ko) := sup{t ∈
R | tko �i A}, i = L , U .Note that, for eacha ∈ A,φL(a; ko) = φU (a; ko) = min{ai

/ki | i = 1, 2, · · · , n} and φL(·; ko), φU (·; ko) : Rn → R are continuous on R
n as

functions defined on R
n . Then we have the following lemma (see Hamel [7]).

Lemma 3.1 Let A ∈ C(Rn) be any compact set and let ko ∈ intRn+ be any point.
Then we have

φL(A; ko) = min{φL(a; ko) | a ∈ A}, (8)

φU (A; ko) = max{φU (a; ko) | a ∈ A}, (9)

A ⊆ φL(A; ko)ko + R
n
+, (10)

φU (A; ko)ko ⊆ A − R
n
+. (11)

The following theorem shows that the set functions φL(·; ko) and φU (·; ko) are
superadditive and positively homogeneous on C(Rn), namely φi (·, ko), i = L , U are
concave set functions.
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Theorem 3.1 Let A, B ∈ C(Rn) be any compact sets, ko ∈ int Rn+ be any point and
let λ ∈ R+ be any real number. Then it holds that

φi (A; ko) + φi (B; ko) � φi (A + B; ko), i = L , U, (12)

φi (λA; ko) = λφi (A; ko) i = L , U. (13)

Proof First we show that (12) and (13) hold for φL(·, ko). Let A, B ∈ C(Rn) be any
compact sets. From (8), there exist points ā ∈ A and b̄ ∈ B such that

φL(A + B; ko) = φL(ā + b̄; ko)

= min{ āi + b̄i

ko
i

| i = 1, 2, · · · , n}

� min{ āi

ko
i

| i = 1, 2, · · · , n} + min{ āi

ko
i

| i = 1, 2, · · · , n}
= φL(ā; ko) + φL(b̄; ko)

� φL(A; ko) + φL(B; ko)

Next we show that φL(·; ko) is positively homogeneous. Let λ > 0 be any real
number,

φL(λA; ko) = sup{t ∈ R | λA ⊆ tko + R
n
+}

= sup{t ∈ R | A ⊆ (t/λ)ko + R
n
+}

= sup{λt ′ ∈ R | A ⊆ t ′ko + R
n
+}

= λφL(A; ko).

For λ = 0, it obvious that (13) holds. By a similar way, we could show that (12) and
(13) hold for φU (·, ko). �

Corollary 3.1 Let A, B ∈ C(R) be any intervals and let ko ∈ intR+ be any positive
real number. Then it holds that

φi (A + B; ko) = φi (A; ko) + φi (B; ko), i = L , U.

Proof We omit the proof. �

The following theorem shows that the set functions φL(·; ko) and φU (·; ko) are
monotone increasing with respect to the set orderings�i , ≺i , i = L , U for any given
ko ∈ intRn+.

Theorem 3.2 Let A, B ∈ C(Rn) be any compact sets, and let ko ∈ int Rn+ be any
vector and λ ∈ R+ be any positive number. Then it holds that
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φL(A; ko) � φL(B; ko) if A �L B, (14)

φU (A; ko) � φU (B; ko) if A �U B, (15)

φL(A; ko) < φL(B; ko) if A ≺L B, (16)

φU (A; ko) < φU (B; ko) if A ≺U B. (17)

Proof First we show that (14) holds. Let A, B ∈ C(Rn) be any elements such that
A �L B holds. Since the set orderings �L is a quasi ordering, from Lemma 3.1, we
have φL(A; ko)ko �L A �L B, which implies that φL(A; ko) � φL(B; ko). Second
we show that (15) holds. Let A, B ∈ C(Rn) be any elements such that A �U B
holds. Since the set ordering �U is quasi ordering, from Lemma 3.1, we have
φU (A; ko)ko �U A �U B, which implies that φU (A; ko) � φU (B; ko).

Third, we show that (16) holds. Note that there exists a vector b̄ ∈ B such that
φL(B; ko) = φL(b̄; ko). Since A ≺L B, there exists a vector ā ∈ A and a real number
ε > 0 such that b̄ = ā + εko holds. Therefore, we have φL(B; ko) = φL(b̄; ko) =
φL(ā; ko) + ε > φL(A; ko).

Finally, we show (17) holds. Let ā ∈ A be any vector such that φU (A; ko) =
φU (ā; ko). Then there exist a vector b̄ ∈ B and a real number ε > 0 such that ā = b̄ −
εko holds. Hence we have φU (A; ko) = φU (b̄; ko) − ε < φU (b̄; ko) �
φU (B; ko). �

Let F : Rn � R
m be any set-valued map with compact image, ko ∈ intRm+ be

any point, and let S ⊆ Dom(F) be any non-empty set. We define real-valued func-
tions hi (·; ko) : S → R by hi (x; ko) := φi (F(x); ko), i = L , U . Then we have the
following theorem.

Theorem 3.3 Suppose that the set-valued map F : S � R
m is convex-valued and

compact-valued and S is a convex set. If F is �-concave on S, then real-valued
functions hi (·; ko) : S → R, i = L , U are concave on S.

Proof Let x, y ∈ S be any elements and λ ∈ [0, 1] be any real number. By assump-
tions, since the set S is convex and F is �-concave, from Theorem 3.1 and 3.2, we
have

hi ((1 − λ)x + λy; ko) = φi (F((1 − λ)x + λy); ko)

� φi ((1 − λ)F(x) + λF(y); ko)

� (1 − λ)φi (F(x); ko) + λφi (F(y); ko)

= (1 − λ)hi (x; ko) + λhi (y; ko),

which implies that hi (·; ko) is concave on S, i = L , U . �

Theorem 3.4 Suppose that S is compact, the set-valued map F : S � R
m is compact-

valued and uniformly compact on S. If the set-valued map F is continuous on S, then
functions hi (·; ko), i = L , U are continuous on S.
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Proof From Lemma 3.1, it holds that hL(x; ko) = min{φL(z; ko) | z ∈ F(x)} and
hU (x; ko) = max{φU (z; ko) | z ∈ F(x)} for ∀x ∈ S. By assumptions, since F is
continuous on S and uniformly compact on S, φi (·; ko), i = L , U are continuous as
functions defined onR�. Hence, hi (·, ko), i = L , U are continuous on S (See Hogan
[9], Theorems 5 and 6). �

4 Bi-Matrix Game with Set Payoffs and Its Equilibrium
Strategy

Let I, J denote players and let M := {1, 2, . . . , m} and N := {1, 2, . . . , n}be the sets
of all pure strategies available for players I and J , respectively. We denote the sets of
all mixed strategies available for players I and J by SI := {x := (x1, x2, . . . , xm) ∈
Rm+ | xi � 0, i = 1, 2, . . . , m,

∑m
i=1 xi = 1}, SJ := {y := (y1, y2, . . . , yn) ∈ Rn+ |

y j � 0, j = 1, 2, . . . , n,
∑n

j=1 y j = 1}.
By Ai j , Bi j ∈ C(R�), we denote the payoffs that player I receives and J receives

when player I plays the pure strategy i and player J plays the pure strategy j ,
respectively. We setA := (Ai j ) and B := (Bi j ), whereA and B are m × n matrices
whose i, j th elements are Ai j and Bi j , respectively.

Nowwe define bi-matrix gamewith set payoffs by� := 〈{I, J }, SI × SJ , {A,B}〉
or

Player I

Player J
1 2 · · · n

1 (A11, B11) (A12, B12) · · · (A1n, B1n)

2 (A21, B21) (A22, B22) · · · (A2n, B2n)
...

...
...

. . .
...

m (Am1, Bm1) (Bm2, Bm2) · · · (Amn, Bmn)

Let x ∈ SI and y ∈ SJ be anymixed strategies. For each player I and J , we define
the set-valued payoff maps F, G : SI × SJ � R

� by F(x, y) := ∑m
i=1

∑n
j=1 xi

Ai j y j and G(x, y) := ∑m
i=1

∑n
j=1 xi Bi j y j , which are called expected payoffs.

Player I is said to be L-type, U -type, and LU -type if he maximizes his expected
payoff F(x, y)with respect to the set-orderings �L , �U , and � for given y ∈ SJ and
player J is said to be L-type, U -type, and LU -type if he maximizes his expected
payoff G(x, y) with respect to the set-orderings �L ,�U , and � for given x ∈ SI . By
�(�L ,�U ), we denote the game where player I is L-type and J is U -type. Then,
set-payoff game � is classified into the following five set payoff games �(�L ,�L),

�(�L ,�U ), �(�U ,�L), �(�U ,�U ), and �(�,�).
In the above games, each player knows his/her own type, but does not know the

other player’s type. Therefore, set-payoff games are considered to be incomplete
information games and Nash equilibrium strategy is characterized by Bayesian Nash
equilibrium strategy (see [6]).
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While, from Theorem 3.2, noting that for any A, B ∈ C(Rn), A � B implies that
φL(A; ko) � φL(B; ko) and φU (A; ko) � φU (B; ko) hold, we may assume that both
players use the set-ordering� tomaximize their expected payoffs and this is common
knowledge between players. Moreover, from practical point of views, our approach
is useful to study bi-matrix with fuzzy vector payoffs. Hence, in the following, we
assume that both players I and J are LU type and this is a common knowledge for
the players.

For each (x, y) ∈ SI × SJ , we set F(y) : ={F(x, y) | x∈SI } and G(x):=
{G(x, y) | y ∈ SJ } and denote the sets of all maximal elements inF(y) with respect
to the set orderings�,� and≺ byF(y)�, F(y)�, andF(y)≺, respectively. Similarly,
we denote the sets of all maximal elements in G(x) with respect to the set orderings
�, � and ≺ by G(x)�, G(x)�, and G(x)≺. By definitions, for each (x, y) ∈ SI × SJ ,
it holds that F(y)� ⊆ F(y)� ⊆ F(y)≺ and G(x)� ⊆ G(x)� ⊆ G(x)≺.

Now we define the concept of Nash equilibrium strategies to game �.

Definition 4.1 A pair of strategies (x∗, y∗) ∈ SI × SJ is said to be a Nash equilib-
rium strategy to game � if it holds that

(i) F(x, y∗) � F(x∗, y∗), ∀x ∈ SI ,
(ii) G(x∗, y) � G(x∗, x∗), ∀y ∈ SJ .

The pair of sets (F(x∗, y∗), G(x∗, y∗)) is said to be the value of game �.

Wedefine set-valuedmapsBI : SJ � SI ,BJ : SI � SJ andB : SI × SJ � SI × SJ

by BI (y) := {x ∈ SI | F(u, y) � F(x, y), ∀u ∈ SI }, BJ (x) := {y ∈ SJ |
G(x, v) � G(x, y), ∀v ∈ SJ } and B(x, y) := BI (y) × BJ (x). Then, it is obvious
that the pair of strategies (x, y) ∈ SI × SJ is a Nash equilibrium if and only if
(x, y) ∈ B(x, y) holds.

Example 4.1 We consider the following bi-matrix game with interval-valued pay-
offs. In Game 1 (Fig. 1), there is no pair of pure strategies such that the pair is a
Nash equilibrium. We show that there exists a unique mixed Nash equilibrium in
Game 1. Let x := (x1, x2) ∈ SI and y := (y1, y2) ∈ SJ be any strategies. Then, by
simple calculations, we have

F(x, y) = [(1 − 2y1)x1 + 3y1 + 1, (1 − 2y1)x1 + 3y1 + 3], (18)

G(x, y) = [(2x1 − 1)y1 + x1 + 3, (2x1 − 1)y1 + x1 + 5]. (19)

From (18) and (19), we have the the following best response maps:

BI (y1, y2) =
⎧
⎨

⎩

{(1, 0)} if y1 ∈ [0, 1/2),
SI if y1 = 1/2,
{(0, 1)} if y1 ∈ (1/2, 1],

and BJ (x1, x2) =
⎧
⎨

⎩

{(0, 1)} if x1 ∈ [0, 1/2),
SJ if x1 = 1/2,
{(1, 0)} if x1 ∈ (1/2, 1].

Then, we have ((0.5, 0.5), (0.5, 0.5)) ∈ BI ((0.5, 0.5)) × BJ ((0.5, 0.5)), which
implies that the pair of strategies {(0.5, 0.5), (0.5, 0.5)} is a unique Nash equilibrium
strategy in Game 1.
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Player I

Player J

C D

C ([3, 5], [5, 7]) ([2, 4], [4, 6])

D ([4, 6], [2, 4]) ([1, 3], [3, 5])

Fig. 1 Game 1

The following example shows that there is no Nash equilibrium strategy in set-payoff
games in general.

Example 4.2 Weconsider the following bi-matrix gamewith interval-valued payoffs
(Fig. 2). For any x := (x1, x2) ∈ SI and y := (y1, y2) ∈ SJ , we have

F(x, y) = [(3 − 2y1)x1 − 2y1 + 4, (y1 − 2)x1 − 4y1 + 10].

Then, it holds that BI (y) = ∅, ∀y ∈ SJ . Therefore, there is no Nash equilibrium in
Game 2.

Based on the above example, we introduce three types of concepts of Nash equilib-
rium strategies.

Definition 4.2 A pair of strategies (x∗, y∗) ∈ SI × SJ is said to be a maximal Nash
equilibrium to game � if it holds that (F(x∗, y∗), G(x∗, y∗)) ∈ F(y∗)� × G(x∗)�.

Definition 4.3 A pair of strategies (x∗, y∗) ∈ SI × SJ is said to be a Pareto Nash
equilibrium to game � if it holds that (F(x∗, y∗), G(x∗, y∗)) ∈ F(y∗)� × G(x∗)�.

Player I

Player J

C D

C ([4, 5], [5, 7]) ([7, 8], [4, 6])

D ([2, 6], [2, 4]) ([4, 10], [3, 5])

Fig. 2 Game 2
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Definition 4.4 A pair of strategies (x∗, y∗) ∈ SI × SJ is said to be a weak Pareto
Nash equilibrium to game � if it holds that (F(x∗, y∗), G(x∗, y∗)) ∈ F(y∗)≺ ×
G(x∗)≺.

It is easy to see that pairs of pure strategies {(C, C)} and {(D, D)} are maximal
Nash equilibriums in Game 2 (Fig. 2).

Example 4.3 Consider the following bi-matrix game with interval-valued payoffs
(Fig. 3).

It is easy to see that the pairs of the pure strategies {(C, C)} and {(D, D)} are Nash
equilibrium strategies in Game 3. For each x := (x1, x2) ∈ SI and y := (y1, y2) ∈
SJ , the set-valued payoff maps for players I and J are given by

F(x, y) = [2(5y1 − 1)x1 − y1 + 3, 2x1y1 + 5y1 + 4], (20)

G(x, y) = [2(5x1 − 1)y1 − x1 + 3, 2x1y1 + 5x1 + 4]. (21)

The pair of strategy {(1/6, 5/6), (1/6, 5/6)} is a maximal Nash equilibrium strat-
egy in Game 3. But there are infinite number of maximal Nash equilibrium strategies
in Game 3, and the set of all maximal Nash equilibrium strategies is given by {(x, 1 −
x), (y, 1 − y) ∈ SI × SJ | 0 < x < 1/5, 0 < y < 1/5} ∪ {(C, C)} ∪ {(D, D)}.
Let ko ∈ int R�+ be any point and λi , μi ∈ R+, i = L , U be any real numbers
such that λL + λU = μL + μU = 1. Now we define real-valued functions f, g :
SI × SJ → R by

f (x, y; ko, λL , λU ) := λLφL(F(x, y); ko) + λU φU (F(x, y); ko),

g(x, y; ko, μL , μU ) := μLφL(G(x, y); ko) + μU φU (G(x, y); ko).

Associated with game �, we define the following two person non-cooperative game
with scalar payoffs �(ko, λL , λU μL , μU ) by

�(ko, λL , λU , μL , μU ) := 〈 {I, J }, SI × SJ , { f (·, ·; ko, λL , λU ), g(·, ·; ko, μL , μU )} 〉.

Player I

Player J

C D

C ([10, 11], [10, 11]) ([1, 4], [2, 9])

D ([2, 9], [1, 4]) ([3, 4], [3, 4])

Fig. 3 Game 3
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We assume that λi and μi , i = L , U are common knowledge in �(ko, λL , λU ,

μL , μU ).

Definition 4.5 A pair of strategies (x∗, y∗) ∈ SI × SJ is said to be a Nash equilib-
rium to game �(ko, λL , λU , μL , μU ) if it holds that

(i) f (x, y∗; ko, λL , λU ) � f (x∗, y∗; ko, λL , λU ) ∀x ∈ SI ,
(ii) g(x∗, y; ko, μL , μU ) � g(x∗, y∗; ko, μL , μU ) ∀y ∈ SJ .

Definition 4.6 A pair of strategies (x∗, y∗) ∈ SI × SJ is said to be a strict Nash
equilibrium to game �(ko, λL , λU , μL , μU ) if it holds that

(i) f (x, y∗; ko, λL , λU ) < f (x∗, y∗; ko, λL , λU ) ∀x ∈ SI , x �= x∗,
(ii) g(x∗, y; ko, μL , μU ) < g(x∗, y∗; ko, μL , μU ) ∀y ∈ SJ , y �= y∗.

The following theorem holds between game � and game �(ko, λL , λU , μL , μU ).

Theorem 4.1 Let (x∗, y∗) ∈ SI × SJ be any pair of strategies to game �. Then, if the
pair of strategies (x∗, y∗) ∈ SI × SJ is a Nash equilibrium to game �(ko, λL , λU ,

μL , μU ), then it is a weak Pareto Nash equilibrium to game �.

Proof Suppose that there exists a strategy x̄ ∈ SI such that F(x∗, y∗) ≺ F(x̄, y∗)
holds. Then, from Theorem 3.2, we have f (x∗, y∗; ko, λL , λU , μL) < f (x̄, y∗; ko,

λL , λU ), which contradicts that (x∗, y∗) is Nash equilibrium to game �(ko, λL , λU ,

μL , μU ). Next we suppose that there exists a strategy ȳ ∈ SJ such that G(x∗, y∗) ≺
G(x∗, ȳ) holds. Then, from Theorem 3.2, we have g(x∗, y∗; ko, μL , μU ) < g(x∗, ȳ;
ko, μL , μU ), which contradicts that (x∗, y∗) is a Nash equilibrium to game�(ko, λL ,

λU , μL , μU ). �

Theorem 4.2 Let (x∗, y∗) ∈ SI × SJ be any pair of strategies and suppose that
λi , μi ∈ intR+, i = L , U are positive numbers in game �(ko, λL , λU μL , μU ).
Then we have the following:

(i) If the pair of strategies (x∗, y∗) is a Nash equilibrium to game �(ko, λL , λU , μL ,

μU ), it is a Pareto Nash equilibrium to game �.
(ii) If the pair of strategies (x∗, y∗) is a strict Nash equilibrium to game�(ko, λL , λU ,

μL , μU ), it is a maximal Nash equilibrium to game �.

Proof First, we show that (i) holds. On the contrary, we suppose that the pair of
strategies (x∗, y∗) is not a Pareto Nash equilibrium to game �. Then there exists a
strategy x̄ ∈ SI such that F(x∗, y∗) � F(x̄, y∗) holds. Since λi > 0, i = L , U , from
Theorem 3.2, we have f (x∗, y∗; ko, λL , λU , μL) < f (x̄, y∗; ko, λL , λU ), which
contradicts that (x∗, y∗) is a Nash equilibrium to game �(ko, λL , λU , μL , μU ).
Next we suppose that there exists a strategy ȳ ∈ SJ such that G(x∗, y∗) � G(x∗, ȳ)

holds. Sinceμi > 0, i = L , U , fromTheorem3.2,we have g(x∗, y∗; ko, μL , μU ) <

g(x∗, ȳ; ko, μL , μU ), which contradicts that (x∗, y∗) is a Nash equilibrium to game
�(ko, λL , λU , μL , μU ).

Next we show that (ii) holds. Suppose that there exists a strategy x̄ ∈ SI such
that F(x∗, y∗) � F(x̄, y∗) holds. Since λi > 0, i = L , U , and (x∗, y∗) is a strict
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Nash equilibrium to game �(ko, λL , λU , μL , μU ), from Theorem 3.2, we have
f (x∗, y∗; ko, λL , λU ) = f (x̄, y∗; ko, λL , λU ) and x∗ = x̄ . Therefore, we have
F(x̄, y∗) � F(x∗, y∗).

Next we suppose that there exists a strategy ȳ ∈ SJ such that G(x∗, y∗) �
G(x∗, ȳ) holds. Then, since μi > 0, i = L , U and (x∗, y∗) is a strict Nash equi-
librium to game �(ko, λL , λU , μL , μU ), from Theorem 3.2, we have g(x∗, y∗; ko,

μL , μU ) = g(x∗, ȳ; ko, μL , μU ) and y∗ = ȳ. Therefore, we have G(x̄, y∗) �
G(x∗, y∗). �

From Theorems 4.1 and 4.2, by varying parameters λi , μi , i = L , U, we could
obtain another maximal Nash, Pareto Nash and weak Pareto Nash equilibrium strate-
gies to game �.

We consider Game 3 given in Example 4.3 again. Let ko = 1 ∈ R and λi , μi ∈
intR+, i = L , U be any positive numbers such that λL + λU = μL + μU = 1.
Then, for each x := (x1, x2) ∈ SI and y := (y1, y2) ∈ SJ , real-valued payoff func-
tions f, g : SI × SJ → R for each player I and J are given by

f (x, y; ko, λL , λU ) := 2{(5λL + λU )y1 − 2λL }x1 − (λL − 5λU )y1 + (3λL + 4λU ),

g(x, y; ko, μL , μU ) := 2{(5μL + μU )x1 − 2μL }y1 − (μL − 5μU )x1 + (3μL + 4μU ).

We set x∗
1 := μL/(5μL + μU ) ∈ (0, 1/5) and y∗

1 ;= λL/(5λL + λU ) ∈ (0, 1/5).
Then, the pair of strategies {(x∗

1 , 1 − x∗
1 ), (y∗

1 , 1 − y∗
1 )} is a Nash equilibrium in

game �(ko, λL , λU , μL , μU ). From Theorem 4.2, the pair of strategies {(x∗
1 , 1 −

x∗
1 ), (y∗

1 , 1 − y∗
1 )} is a Pareto Nash equilibrium in game �. We show that the

pair of strategies {(x∗
1 , 1 − x∗

1 ), (y∗
1 , 1 − y∗

1 )} is a maximal Nash equilibrium in
game �. Suppose that there exists a strategy (x1, x2) ∈ SI such that F((x∗

1 , 1 −
x∗
1 ), (y∗

1 , 1 − y∗
1 )) � F((x1, x2), (y∗

1 , 1 − y∗
2 )). Then, by simple calculations, we

have (x1, x2) = (x∗
1 , 1 − x∗

1 ). Similarly,we could show thatG((x∗
1 , 1 − x∗), (y∗

1 , 1 −
y∗
1 )) � G((x∗

1 , 1 − x∗
1 ), (y1, y2)) implies (y1, y2) = (y∗

1 , 1 − y∗
1 ). Therefore, the pair

of strategies {(x∗
1 , 1 − x∗

1 ), (y∗
1 , 1 − y∗

1 )} is a maximal Nash equilibrium in game �.
Note that, the scalar-payoff game �(ko, λL , λU , μL , μU ) induced from set-

payoff game �, is the game with incomplete informations. Because in game
�(ko, λL , λU , μL , μU ), player I does not know μL and μU , while player J does
not know the value of λL and λU which are necessary for each player to find
best response strategies. Moreover, each player may choose different ko in game
�(ko, λL , λU , μL , μU ). Therefore, the Nash equilibrium strategy in the scalar-
payoff game �(ko, λL , λU , μL , μU ) is a Bayesian Nash equilibrium (See Harsanyi
[6]).

5 Existence of Nash Equilibrium Strategy to Game �

In the previous section, for anygiven set payoff bi-matrix games,wedefine twoperson
games with scalar-valued payoff functions, and investigate relationships between
these games. In this section, we shall give some conditions under which there exists
at least one maximal Nash, Pareto Nash and weak Pareto Nash equilibrium strategies
to game �.
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Lemma 5.1 In game �, suppose that Ai j , Bi j ∈ C(R�), i ∈ M, j ∈ N are compact
convex sets. Then, it holds that

(i) (1 − λ)F(x1, y) + λF(x2, y) = F((1 − λ)x1 + λx2, y) ∀x1, x2 ∈ SI , ∀y ∈
SJ , ∀λ ∈ [0, 1],

(ii) The set-valued map F : SI × SJ � R
� is continuous on SI × SJ ,

(iii) F is uniformly compact on SI × SJ ,
(iv) (1 − λ)G(x, y1) + λG(x, y2) = G(x, (1 − λ)y1 + λy2) ∀x ∈ SI , ∀y1, y2 ∈

SJ , ∀λ ∈ [0, 1],
(v) The set-valued map G : Rn × R

n � R
� is continuous on SI × SJ ,

(vi) G is uniformly compact on SI × SJ .

Proof We shall show that (i), (ii) and (iii) hold. Let (x1, y), (x2, y) ∈ SI × SJ be
any strategies and λ ∈ [0, 1] be any real number. Then by simple calculations, we
have

(1 − λ)F(x1, y) + λF(x2, y) = (1 − λ)

m∑

i=1

n∑

j=1

x1
i Ai j y j + λ

m∑

i=1

n∑

j=1

x2
i Ai j y j

= (1 − λ)

m∑

i=1

x1
i

n∑

j=1

Ai j y j + λ

m∑

i=1

x2
i

n∑

j=1

Ai j y j

=
m∑

i=1

{(1 − λ)x1
i + λx2

i }
n∑

j=1

Ai j y j

= F((1 − λ)x1 + λx2, y).

Next we shall show that (ii) holds. First, we shall show that F(·, ·) is upper
semi-continuous on SI × SJ . Let {(xν, yν, zν)}∞ν=1 ⊆ Gr(F) be any sequence con-
verging to (xo, yo, zo) ∈ SI × SJ × R

� . By Definition, for each ν, there exits an
aν

i j ∈ Ai j , i ∈ M, j ∈ N such that zν = ∑m
i=1

∑n
j=1 xν

i aν
i j yν

j . Since Ai j is compact,
without loss of any generality we assume that {aν

i j }∞ν=1 converges to some point
ao

i j ∈ Ai j . Therefore, we have zo ∈ F(xo, yo).
Second we shall show that F(·, ·) is lower semi-continuous on SI × SJ . Let

{(xν, yν)}∞ν=1 ⊆ SI × SJ be any sequence converging to (xo, yo) ∈ SI × SJ and
zo ∈ F(xo, yo) be any point. Then there exists ao

i j ∈ Ai j such that zo = ∑m
i=1

∑n
j=1

xo
i ao

i j yo
j .Bysetting zν := ∑m

i=1

∑n
j=1 xν

i ao
i j yν

j ,wehave zν ∈ F(xν, yν) and zν → zo,
which implies that F(·, ·) is lower semi-continuous on SI × SJ . From the above,
F(·, ·) is continuous on SI × SJ .

Finally we show that (iii) holds. In order to show that F is uniformly compact
on SI × SJ , it suffices to show that F(SI , SJ ) is compact. Let {zν}∞ν=1 ⊆ F(SI , SJ )

be any sequence. By definition, for each ν, there exist points aν
i j ∈ Ai j , xν

i ∈ SI

and yν
j ∈ SJ , i ∈ M, j ∈ N such that zν = ∑m

i=1

∑n
j=1 xν

i aν
i j yν

j . By assumptions,
Ai j , SI and SJ are compact, without loss of any generality, we may assume that
xν

i → xo
i , yν

j → yo
j , and aν

i j → ao
i j , i ∈ M, j ∈ N , which implies that zν → zo ∈
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∑m
i=1

∑n
j=1 xo

i ao
i j yo

j ∈ F(SI , SJ ). By a similar way, we could show that (iv), (v), and
(vi) hold. �

From Theorems 3.3, 3.4 and Lemma 5.1, we have the following lemma.

Lemma 5.2 Suppose that Ai j , Bi j ∈ C(R�), i ∈ M, j ∈ N are compact convex sets
in game �. Then, it holds that

(i) f (·, y; ko, λL , λU ) : SI → R is concave and f (·, ·; ko, λL , λU ) is continuous on
SI × SJ ,

(ii) g(x, ·; ko, μL , μU ) : SJ → R is concave and g(·, ·; ko, μL , μU ) is continuous
on SI × SJ .

Let (x, y) ∈ SI × SJ be any pair of strategies in game �(ko, λL , λU , μL , μU ).
We define the set-valued maps BI (·; ko, λL , λU ) : SJ � SI and BJ (·; ko, μL , μU ) :
SI � SJ by BI (y; ko; λL , λU ) := {u ∈ SI | f (u, y; ko, λL , λU ) � f (x, y; ko, λL ,

λU ) ∀x ∈ SI } and BJ (x; ko, μL , μU ) := {v ∈ SJ | g(x, v; ko, μL , μU ) � g(x, y;
ko, μL , μU ) ∀y ∈ SJ }, which are called the best response maps for players I and
J , respectively.

From Lemma 5.2, we have the following lemmas.

Lemma 5.3 Suppose that Ai j , Bi j ∈ C(R�), i ∈ M, j ∈ N are compact convex sets
in game �. Then, it holds that

(i) BI (y; ko, λL , λU ) and BJ (x; ko, μL , μU ) are non-empty, compact and convex
set for each (x, y) ∈ SI × SJ .

(ii) BI (·; ko, λL , λU ) : SJ � SI and BJ (·; ko, μL , μU ) : SI � SJ are upper semi-
continuous on SJ and SI respectively.

Proof First we show that (i) holds. From Lemma 5.2, for each y ∈ SJ , f (·, y; ko,

λL , λU ) is concave and continuous on SI . Since SI is compact and convex, it holds
that BI (y; ko, λL , λU ) is non-empty, compact and convex for all y ∈ SJ . Similarly,
we could show that (i) holds for BJ (x; ko, μL , μU ).

Next, we prove that (ii) holds for BI (·; ko, λL , λU ). Let {(xν, yν)} ⊆ Gr(BI (·; ko,

λL , λU )) be any sequence converging to (xo, yo) ∈ SI × SJ . Then it holds that
f (xν, yν; ko, λL , λU ) � f (u, yν; ko, λL , λU ) for ∀u ∈ SI . From Lemma 5.2, since
f (·, ·; ko, λL , λU ) is continuous on SI × SJ , we have f (xo, yo; ko, λL , λU )

� f (u, yo; ko, λL , λU ) for ∀u ∈ SI , which implies that xo ∈ BI (yo; ko, λL , λU ).
Similarly, we could show that (ii) holds for BJ (·; ko, μL , μU ). �

Nowwe define the set-valued map B(·, ·; ko, λL , λU , μL , μU ) : SI × SJ � SI ×
SJ by B(x, y; ko, λL , λU , μL , μU ) := BI (y; ko, λL , λU ) × BJ (x; ko, μL , μU ).
Then from Lemma 5.3, we have the following lemma.

Lemma 5.4 Suppose that Ai j , Bi j ∈ C(R�), i ∈ M, j ∈ N are compact convex sets
in game �. Then, it holds that

(i) B(x, y; ko, λL , λU , μL , μU ) is non-empty, compact and convex for each (x, y) ∈
SI × SJ .
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(ii) The set-valued map B(·, ·; ko, λL , λU , μL , μU ) : SI × SJ � SI × SJ is upper
semi-continuous on SI × SJ .

Lemma 5.5 The pair of strategies (x∗, y∗) ∈ SI × SJ is a Nash equilibrium to game
�(ko, λL , λU , μL , μU ) if and only if (x∗, y∗)∈B(x∗, y∗; ko, λL , λU , μL , μU ) holds
(See Kakutani [11]).

Lemma 5.5 shows that a pair of strategies (x∗, y∗) is a Nash equilibrium if and only if
it is a fixed point of the set-valued map B(·, ·; ko, λL , λU , μL , μU ). From the above
lemmas, we have the following theorem.

Theorem 5.1 Suppose that Ai j , Bi j ∈ C(R�), i ∈ M, j ∈ N are compact convex
sets in game �. Then, there exists at least one Pareto Nash equilibrium strategy in
game �.

Proof Let ko ∈ intR�+ be any point and λi , μi ∈ R+, i = L , U be any positive
numbers. Then, from Lemma 5.3, B(x, y; ko, λL , λU , μL , μU ) is non-empty, com-
pact and convex for each (x, y) ∈ SI × SJ and the set-valued map B(·, ·; ko, λL , λU ,

μL , μU ) is upper semi-continuous on SI × SJ . Therefore, from Kakutani’s fixed
point theorem [11], there exists at least one point (x∗, y∗) ∈ SI × SJ such that
(x∗, y∗) ∈ B(x∗, y∗; ko, λL , λU , μL , μU ). Therefore, from Lemma 5.5 and Theo-
rem 4.2, the point (x∗, y∗) is a Pareto Nash equilibrium strategy in game �. �

Theorem 5.2 Suppose that Ai j , Bi j ∈ C(R), i ∈ M, j ∈ N are compact convex sets
in game �. Then there exists at least one maximal Nash equilibrium strategy in game
�.

Proof Without loss of any generality, we assume that ko = 1, λi = μi = 1, i =
L , U and Ai j = [aL

i j , aU
i j ] and Bi j = [bL

i j , bU
i j ], i ∈ M, j ∈ N . Then, fromCorollary

3.1,

f (x, y; ko, λL , λU , μL , μU ) =
m∑

i=1

n∑

j=1

xi (φ
L(Ai j ; ko) + φU (Ai j ; ko))y j ,

=
m∑

i=1

n∑

j=1

xi (a
L
i + aU

i j )y j , (22)

g(x, y; ko, λL , λU , μL , μU ) =
m∑

i=1

n∑

j=1

xi (φ
L(Bi j ; ko) + φU (Bi j ; ko))y j

=
m∑

i=1

n∑

j=1

xi (b
L
i j + bU

i j )y j , (23)

Namely, game�(ko, λL , λU , μL , μU ) is a bi-matrix gamewith scalar valued payoffs.
Let (x∗, y∗) ∈ SI × SJ be any Nash equilibrium strategy to game �(ko, λL , λU ,

μL , μU ). Suppose that there exists a strategy x̄ ∈ SI such that
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m∑

i=1

n∑

j=1

x∗
i [aL

i j , aU
i j ]y∗

j �
m∑

i=1

n∑

j=1

x̄i [aL
i j , aU

i j ]y∗
j . (24)

Then by Definition 2.1, it holds

m∑

i=1

n∑

j=1

x∗
i aL

i j y∗
j �

m∑

i=1

n∑

j=1

x̄i a
L
i j y∗

j , (25)

m∑

i=1

n∑

j=1

x∗
i aU

i j y∗
j �

m∑

i=1

n∑

j=1

x̄i a
U
i j y∗

j . (26)

Since (x∗, y∗) is a Nash equilibrium to game �(ko, λL , λU , μL , μU ), it must hold
that

m∑

i=1

n∑

j=1

x∗
i (aL

i j + aU
i j )y∗

j =
m∑

i=1

n∑

j=1

x̄i (a
L
i j + aU

i j j )y∗
j . (27)

From (25), (26) and (27), it follows that

m∑

i=1

n∑

j=1

x∗
i aL

i j y∗
j =

m∑

i=1

n∑

j=1

x̄i a
L
i j y∗

j

m∑

i=1

n∑

j=1

x∗
i aU

i j y∗
j =

m∑

i=1

n∑

j=1

x̄i a
U
i j y∗

j ,

which implies that

m∑

i=1

n∑

j=1

x̄i [aL
i j , aU

i j ]y∗
j �

m∑

i=1

n∑

j=1

x∗
i [aL

i j , aU
i j ]y∗

j .

Namely, F(x∗, y∗) is a maximal element in F(y∗)�. By a similar way, we could
show that G(x∗, y∗) is a maximal element in G(x∗)�. Hence (x∗, y∗) is a maximal
Nash equilibrium strategy in game �. �

Theorem 5.3 Suppose that Ai j , Bi j ∈ C(R�), i ∈ M, j ∈ N are compact convex
sets and that B(x, y) �= ∅ for each (x, y) ∈ SI × SJ holds in game �. Then, there
exists a Nash equilibrium in game �.

Proof From Kakutani’s fixed point theorem, it suffices to show that the set-valued
map B is convex-valued and upper semi-continuous on SI × SJ .

Firstwe show that set-valuedmapBI is convex-valued. Let y ∈ SJ be any element.
Then from Lemma 5.1, for each x1, x2 ∈ BI (y) and any λ ∈ [0, 1], it holds that
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(1 − λ)F(x1, y) + λF(x2, y) = F((1 − λ)x1 + λx2, y) ⊆ F(u, y) + R
�+ ∀u ∈ SI ,

F(u, y) ⊆ (1 − λ)F(x1, y) + λF(x2, y) = F((1 − λ)x1 + λx2, y) − R
�+ ∀u ∈ SI ,

which implies (1 − λ)x1 + λx2 ∈ BI (y). Namely, the set-valued map BI is convex-
valued. Similarly, we could prove that the set -valued map BJ is convex-valued.

Next, we show that set-valued map BI is upper semi-continuous on SJ . Let
{(yν, xν)} ⊆ SI × SJ be any sequence converging to (yo, xo) such that xν ∈ BI (yν)

for ∀ν. It suffices to show that F(u, yo) � F(xo, yo) holds for ∀u ∈ SI . Let zo ∈
F(xo, yo) ⊆ F(u, yo) + R

�+ be any element. From Lemma 5.1, since F is con-
tinuous on SI × SJ , there exists a sequence {zν} converging to zo such that zν ∈
F(xν, yν) ⊆ F(u, yν) + R

�+. By Definition, it holds that F(u, yν) �L F(xν, yν)

for ∀u ∈ SI and for ∀ν. Again, from Lemma 5.1, F(u, yν) is compact, we have
zo ∈ F(u, yo) + R

�+, ∀u ∈ SI , which implies that F(u, yo) �L F(xo, yo) holds for
∀u ∈ SI .

Finally we show that F(u, yo) �U F(xo, yo) holds for ∀u ∈ SI . Let u ∈ SI

be any element. From the continuity of F , for any zo ∈ F(u, yo), there exists
zν ∈ F(u, yν) ⊆ F(xν, yν) − R

�+ such that zo ∈ F(u, yo). Since F is compact-
valued and continuous on SI × SJ , we have zo ∈ F(xo, yo) − R

�, which implies
that F(u, yo) �U F(xo, yo) holds for ∀u ∈ SI . By a similar way we could show that
BJ is upper semi-continuous on SI . Hence B is upper semi-continuous on
SI × SJ . �

6 Conclusion

In this paper, we considered set payoff bi-matrix gameswhere payoffs for each player
are given by compact convex sets in R

�, namely, players don’t know the values of
payoffs but the ranges of the payoffs. We call this environment deterministic uncer-
tainty. This type of game may encompass interval payoff games, fuzzy payoff games
and robust games. First, we define several types of set orderings on the set of all
non-empty subsets in n-dimensional Euclidean space R

n . Second, by using these
orderings, we define four kinds of concepts of Nash equilibrium strategies, that is,
Nash, maximal Nash, Pareto Nash, and weak Pareto Nash equilibrium strategies to
the games and investigate their properties. In particular, we investigate the relation-
ships between set-payoff games and incomplete information games. Finally, we give
sufficient conditions under which there exists these Nash equilibrium strategies in
bi-matrix games with set-valued payoffs and necessary condition under which there
exists Nash equilibrium strategies in bi-matrix games with interval-valued payoffs.

In this paper, we use the set-orderings �, � and≺ to define the concepts of Nash,
maximal Nash, Pareto Nash, and weak Pareto Nash equilibrium to the games with
set payoff. However, it is easy to use other types of set-orderings, say �i , i = L , U
etc. to define the concepts of Nash, maximal Nash, Pareto Nash, and weak Pareto
Nash equilibrium to the games with set payoff and we could derive similar results to
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the games with set payoffs. Moreover, we could define the incomplete information
gamewith set payoffs, where each player chooses a set-orderings among set-ordering
given inDefinition 2.1, after that, each players plays the gamewith set payoff, without
knowing the set-ordering which the other player chooses each other. This means that
there are deep relationships between set-payoff games and incomplete information
games.
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