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Abstract. This work studies distributed algorithms for locally optimal
load-balancing : We are given a graph of maximum degree Δ, and each
node has up to L units of load. The task is to distribute the load more
evenly so that the loads of adjacent nodes differ by at most 1. If the
graph is a path (Δ = 2), it is easy to solve the fractional version of the
problem in O(L) communication rounds, independently of the number
of nodes. We show that this is tight, and we show that it is possible to
solve also the discrete version of the problem in O(L) rounds in paths.
For the general case (Δ > 2), we show that fractional load balancing can
be solved in poly(L, Δ) rounds and discrete load balancing in f(L, Δ)
rounds for some function f , independently of the number of nodes.

1 Introduction

In this work, we introduce the problem of locally optimal load balancing, and
study it from the perspective of distributed algorithms. In this problem, we are
given a graph G = (V,E), and each node has up to L units of load. The task is
to distribute load more evenly so that the loads of adjacent nodes differ by at
most 1:

G:

G:

input:

output:

That is, we want to smooth out the load distribution, and find an equilibrium in
which no edge can improve its load distribution by selfishly moving load between
its endpoints.

See the full version of this work [10] for detailed proofs and additional illustrations.
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A bit more formally, in the load balancing problem we are given an input
vector x : V → {0, 1, . . . , L}, and the task is to find an output vector y : V →
[0, L] and a flow f : E → R so that for each node v ∈ V we have

y(v) = x(v) +
∑

(u,v)∈E

f(u, v), (1)

and for each edge (u, v) ∈ E we have

|y(u) − y(v)| ≤ 1. (2)

Here is an illustration of the input and a feasible solution in the special case that
G is a path:

The problem comes in two natural flavours:

– Discrete load balancing : y(v) ∈ {0, 1, . . . , L}, i.e., load units are indivisible.
– Fractional load balancing : y(v) ∈ [0, L], i.e., load units can be divided.

1.1 Centralised Algorithms

Both discrete and fractional load balancing can be solved easily with the follow-
ing algorithm: Start with y ← x and f ← 0. Then repeatedly pick an unhappy
edge (u, v) ∈ E with y(u) ≥ y(v) + 2, and move one unit of load from u to v.
This algorithm clearly converges, as the potential function

∑
v y(v)2 decreases

by at least 2 in each step.

1.2 Local Solutions and Local Algorithms

In the above centralised algorithm, we can think that each node v has a pile of
y(v) tokens and we always move the topmost token. Then the height of a token
decreases by at least one every time we move it; hence no individual token is
moved more than L times. This argument shows that there always exists a local
solution in which the final position of a token is always within distance L from
its origin; that is, each token can stay in its radius-L neighbourhood.

In this work we are interested if the problem can be solved with a local
algorithm: is it possible to solve the problem so that we can compute the flow
f(u, v) for each edge (u, v) ∈ E based on only the information that is available
within distance T from (u, v) in graph G, for some T . Equivalently, we want
to know if there is a (deterministic) distributed algorithm in the usual LOCAL
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model [21] that solves the load balancing problem in T communication rounds,
or more succinctly, in time T .

We will assume that the input graph has a maximum degree of Δ. We are
interested in local algorithms with a running time of T = T (L,Δ) that may
depend on the maximum load L and maximum degree Δ, but is independent
of the number of nodes n = |V |. Such an algorithm could be used to solve
load balancing even in infinitely large graphs, and it would be very easy to e.g.
parallelise such algorithms, as each part of the output can be determined based
on its local neighbourhood.

1.3 Smoothing with Moving Average

There is a special case that can be easily solved with a local algorithm in time
T = O(L): fractional load balancing in 2-regular graphs (cycles and infinite
paths). We can simply calculate the moving average of the input loads with a
window of size Θ(L). More concretely, each node gives a fraction 1/(2L + 1) of
its input load to every node (including itself) in its radius-L neighbourhood.
This way the final loads of adjacent nodes differ by at most L/(2L + 1) < 1/2
units. The same strategy can be applied easily in, e.g., d-dimensional grids.

Among others, the present work seeks to answer the following questions:

– Is the running time of O(L) optimal here, or could we solve it in time o(L)?
– Can we generalise this kind of smoothing algorithms to arbitrary graphs,

and if so, what is the running time?
– Can we generalise this kind of smoothing algorithms to discrete load

balancing?

1.4 Contributions

The contributions of this work are as follows. We start with a simple lower
bound:

Theorem 1. Load balancing requires Ω(L) rounds, even in the case of paths
and cycles.

Then we prove negative results for various algorithm families that have been
used widely in the prior work. To this end, we define the following algorithm
families:

– Match-and-balance algorithms: In each step, the algorithm finds a matching
M and balances the load (fully or partially) for each edge in M . More pre-
cisely, for each edge (u, v) ∈ M with y(u) > y(v), the algorithm increases
the flow f(u, v) by at most (y(u) − y(v))/2. For example, many natural dis-
tributed versions of the centralised algorithm from Section 1.1 are of match-
and-balance type.

– Careful algorithms: In each round, for each edge (u, v) ∈ E, the algorithm
increases or decreases f(u, v) by at most poly(L). All match-and-balance
algorithms are also careful algorithms.
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– Oblivious algorithms: The total amount of load moved from node u to v
only depends on the initial load of u and the distance between u and v. For
example, the moving average algorithm from Section 1.3 is oblivious.

We show that algorithms of any of these types cannot find a locally optimal load
balancing efficiently (or at all):

Theorem 2. Any match-and-balance algorithm takes Ω(L2) rounds in the worst
case, even in paths and cycles.

Theorem 3. Any careful algorithm takes ΔΩ(L) rounds in the worst case.

Theorem 4. There are no oblivious algorithms for infinite d-regular trees with
d ≥ 3.

We then present the main contributions—local algorithms for load balancing.
First, we show that we can circumvent the barrier of Theorem 2:

Theorem 5. Discrete load balancing can be solved in time O(L) in paths and
cycles, with a deterministic local algorithm.

Corollary 1. The time complexity of both fractional and discrete load balancing
in paths and cycles is Θ(L).

Next we show that we can also circumvent the barriers of Theorem 3 and 4
for fractional load balancing—naturally, we have to design an algorithm that is
neither oblivious nor careful:

Theorem 6. Fractional load balancing can be solved in time poly(L,Δ) in
graphs of maximum degree Δ with a deterministic local algorithm.

Finally, we show that discrete load balancing can be solved locally, i.e., in
time that is independent of n:

Theorem 7. Discrete load balancing can be solved in time T (L,Δ), for some
function T , in graphs of maximum degree Δ with a deterministic local algorithm.

Whether there is an efficient algorithm for discrete load balancing in the
general case remains an open question.

2 Related Work

There is a vast body of literature related to problems that are superficially similar
to locally optimal load balancing. However, in many cases the primary goal is
something else—for example, achieving a near-optimal global solution—and the
algorithms just happen to also find a locally optimal solution.

Most of the previous solutions are inefficient. In particular, we are not aware
of any solution that comes close to O(L) for discrete load balancing on paths,
or close to poly(L,Δ) for fractional load balancing in general graphs. In prior
work, the inefficiency typically stems from at least one of the following factors:
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1. Inherently global problems: A lot of prior work focuses on problems that are
inherently global—for example, the task is to find a solution such that the
difference between the minimum load and the maximum load is at most 1.
It is easy to see that any algorithm for solving such problems takes Ω(n)
rounds in the worst case.

2. Natural but inefficient algorithms: Many papers study various natural pro-
cesses for doing load balancing. Many of these are of match-and-balance
type, and virtually all of these are careful. Typically, the negative results of
Theorems 2 and 3 apply.

In contrast, we study a problem that can be solved efficiently, and our algorithms
demonstrate that it is indeed possible to break the barriers of Theorems 2 and 3.
In what follows, we will discuss related work in more detail.

Reducing a Global Potential with Local Rules. There is a lot of litera-
ture on load balancing when the goal is to reduce a global potential function
by iterating a local balancing rule. Examples of such potential functions are
the difference between the maximum and the minimum load (discrepancy), the
maximum load (makespan), and the quadratic difference to the average load.

Various models are considered: two classic models are the diffusion model,
where vertices distribute their load to all their neighbours, and the matching
model, where the load is exchanged only along the edges of a matching—for
example a random matching or an edge colouring.

In the continuous case, where the loads are assumed to be infinitely divisible,
the speed of convergence was analysed for simple schemes both in the diffusion
model [23,25] and the matching model [6,13]. In both the speed of convergence
is essentially captured by the spectral properties of the graph in question.

In the context of indivisible loads, known as the discrete case, similar prob-
lems were first studied for networks designed to balance the load quickly [22].
Different schemes for reducing the discrepancy in the discrete case were anal-
ysed, and the question of whether the speed of convergence in the continuous
case could be matched remained open [1,12,13,20]. Recently Sauerwald and
Sun [24] were able to prove convergence as fast as in the continous case, up to
constant factors. Nevertheless, reducing discrepancy is a global problem and can
take linear time in the worst case.

Semi-matching Problem. In the semi-matching problem the nodes of a graph
are divided into clients and servers [15]. Each client has to be assigned to an
adjacent server. The goal is to optimise the total waiting time of the clients.
Czygrinow et al. [8] presented a distributed algorithm for finding a locally opti-
mal semi-matching in time poly(Δ); this also implies a factor-2 approximation
of globally optimal semi-matchings. The semi-matching problem is very similar
to the locally optimal load balancing problem, especially when limited to the
case of degree 2 clients, with the tokens being more “localised”. Indeed, our
linear lower bound can be adapted to prove a lower bound for locally optimal
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semi-matchings. However, to our knowledge, efficient semi-matching algorithms
do not directly imply efficient load-balancing algorithms.

Balls into Bins. In the d-choice process each of n balls goes in the least loaded
of d random bins. Dependency of the maximum load on the parameter d is well
known [3,17,26]. The choice of the bins can be modelled by a graph [18]; in
one variant the bins are connected by edges and each ball does a local search
until it finds a local minimum [5,7]. This process produces a locally optimal load
balancing, but the model of computing is sequential (balls arrive one at a time).

Sandpile Models and Chip-Firing Games. Our stability condition is similar
to what is used in sandpile models [4,9,16] and chip-firing games [2]. However,
in these problems the goal is usually to describe final configurations for fixed,
very simple algorithms that simulate a natural phenomenon.

Filtering. Sliding window algorithms for computing the running average or for
image filtering are natural local algorithms. Averaging type algorithms, how-
ever, cannot guarantee an integral solution to load balancing problems. Median
filtering does guarantee integral solutions for integral inputs; however, it does
not preserve the total load.

Games and Equilibriums. The locally optimal load balancing problem can
be seen as a problem of finding an equilibrium state, where no single load token
can gain advantage by moving. We show that such an equilibrium can be found
locally, that is, the decisions made in one part of the graph do not propagate too
far. This is in contrast with problems such as finding stable matchings, where
there is a local algorithm only for finding almost-stable matchings [11].

Matchings. Locally optimal load balancing is closely related to bipartite max-
imal matching : if the initial loads are x(v) ∈ {0, 2}, then it is easy to see that a
solution can be found using a bipartite maximal matching algorithm. This is a
problem that can be solved in time O(Δ) [14]. Showing a matching lower bounds
is a major open question, and we do not expect that one can prove tight lower
bounds for locally optimal load balancing as a function of Δ before we resolve
the distributed time complexity of bipartite maximal matching.

In our algorithms for discrete load balancing, we will use the bipartite max-
imal matching [14] algorithm as a subroutine. For fractional load balancing, we
use the almost-maximal fractional matching algorithm due to Khuller et al. [19]
as a subroutine.

3 Negative Results

We will now prove the negative results of Theorems 1–4. For simplicity,
we prove the statements for deterministic distributed algorithms; it is fairly
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straightforward to extend the results to randomised algorithms (e.g., consider
the expected values of the outputs).

Recall that in Section 1 we defined the problem so that the output is bounded
by L. However, we will not exploit this restriction in any of the lower-bound
proofs. The negative results hold verbatim for a relaxed version of the problem
in which the outputs can be any nonnegative real numbers. We only assume that
the inputs are bounded by L.

3.1 Load Balancing on Paths and Cycles

We start with the unconditional lower bound that holds for any algorithm, for
both fractional and discrete load balancing, and in the simplest possible case of
paths or cycles.

Theorem 1. Load balancing requires Ω(L) rounds, even in the case of paths
and cycles.

Proof. We will give the proof for the case of paths; the case of cycles is very
similar. Consider a path P with n nodes, labelled with the numbers 1, 2, . . . , n
from left to right, for a sufficiently large n. Let A be a load-balancing algorithm.
For an input x : V → {0, ..., L}, we write A(x) for the output of A on input x.
Let h = �L/2� − 1.

Consider the following constant inputs: x0 : v 	→ 0 and xL : v 	→ L. Let
y0 = A(x0) and yL = A(xL). Clearly y0(v) = 0 for all v and yL(v) ≥ L for at
least one v. Hence we can find two nodes, � and r, such that y0(�) = 0, yL(r) ≥ L,
and |r − �| = L − 1.

W.l.o.g., assume that � < r. Let m = (r + �)/2 be the midpoint between
� and r. Now define an input x such that x(i) = 0 for i ≤ m and x(i) = L
otherwise. Note that the radius-h neighbourhoods of � are identical in x0 and x.
Similarly, the radius-h neighbourhoods of r are identical in xL and x.

Let y = A(x). If y(�) = y0(�) and y(r) = yL(r), we have a contradiction: the
distance between � and r is smaller than their load difference, and hence there has
to be an unhappy edge between them. Therefore y(�) 
= y0(�) or y(r) 
= yL(r).
In both cases, there is a node v that changed its output between two instances,
even though the inputs were identical up to distance h. Hence the running time
of A has to be at least h + 1 = Θ(L). ��

3.2 Match-and-Balance Algorithms

Recall that in each round, a match-and-balance algorithm finds some matching
M , and then for each edge (u, v) ∈ M with y(u) > y(v), the algorithm increases
the flow f(u, v) by at most (y(u) − y(v))/2. Note that M does not need to
be a maximal matching, a maximum matching, or a random matching—the
following lower bound holds regardless of how clever the algorithm tries to be in
its selection of the matching M , and even if it gets the matchings in zero time
from an oracle.
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Theorem 2. Any match-and-balance algorithm takes Ω(L2) rounds in the worst
case, even in paths and cycles.

The basic idea of the proof is simple. Let A be a match-and-balance algo-
rithm.

1. We construct an instance in which A has to move Ω(L3) units of load in
total.

2. We prove that A can move only O(L) units of load per round.

Hence we have a lower bound of Ω(L2) for the running time of A.
We will again study the case of paths; the case of cycles is very similar. Let

P be a path with 2n + 1 nodes, labelled with −n,−n + 1, . . . , n from left to
right. We say that a load vector is monotone if y(i) ≥ y(j) for all i ≤ j. The key
feature of match-and-balance algorithms is that a monotone load vector remains
monotone after each step.

Lemma 1. Match-and-balance algorithms maintain a monotone load configura-
tion on P .

Proof. A simple case analysis, see the full version of this work [10]. ��
In a monotone configuration, we can only move O(L) units of load per round.

Lemma 2. Any match-and-balance algorithm A can move at most L/2 units of
load in a single round on path P with a monotone load configuration.

Proof. Since A maintains a monotone load configuration, the sum of the load
differences over all edges is at most L. Therefore even if M contains all edges
with a non-zero load difference, the algorithm can move only at most L/2 units
of load per round in total. ��
Proof (of Theorem 2). We will consider the input vector x where x(i) = L for
i ≤ 0 and x(i) = 0 otherwise. The vector is monotone and hence it remains
monotone throughout the execution of A. Consider the output of node 0. There
are two cases:

1. The output of node 0 is at most h = L/2. Now for each i = 0, 1, . . . , h − 1,
we can observe that the load of node −i has decreased by at least h − i
units, and by monotonicity, all of this load has been moved to the right. In
particular, for each i we have moved h− i units of load from node −i over at
least i+1 edges. The total amount of work done by the nonpositive nodes is
at least the tetrahedral number 1 ·h+2 ·(h−1)+ . . .+h ·1 = Θ(h3) = Θ(L3).

2. The output of node 0 is at least h = L/2. Now for each i = 0, 1, . . . , h − 1,
we can observe that the load of node i has increased by at least h − i units,
and by monotonicity, all of this load has been moved from the left. The total
amount of work done by the nonnegative nodes is at least Θ(L3).

By Lemma 2, moving Θ(L3) units of load takes Ω(L2) rounds. ��
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3.3 Careful Algorithms

Recall that careful algorithms move O(L) units of load per round—this includes,
for example, all match-and-balance algorithms, as well as many other natural
algorithms that simulate the physical process of collapsing piles of tokens.

Theorem 3. Any careful algorithm takes ΔΩ(L) rounds in the worst case.

Proof. Construct the input (G, x) as follows: We have a tree Gu rooted at u,
a tree Gv rooted at v, plus an edge {u, v}. Both trees are of depth L/4; each
non-leaf node has d − 1 children. All nodes of Gu have an input load of 0, and
all nodes of Gv have an input load of L.

Now consider any solution (y, f). If y(u) ≥ L/4, then all nodes of Gu have
a load of at least 1, and there are dΩ(L) nodes in Gu. All of the load has to be
moved across the edge {u, v}, and hence f(v, u) = dΩ(L). Otherwise y(u) < L/4,
and y(v) < L/4 + 1. In this case all nodes of Gv have a load of at most L − 1,
and again we can conclude that f(v, u) = dΩ(L).

A careful algorithm starts with y ← x and f ← 0 and changes each element
of f by at most poly(L) in each round. Hence any careful algorithm has to spend
dΩ(L) for this instance. ��

3.4 Oblivious Algorithms

Recall that in an oblivious algorithm, the total amount of load moved from node
u to v only depends on the initial load of u and the distance between u and v.
For example, the algorithm that computes the moving average in an infinite path
is an oblivious algorithm. In the full version of this work [10] we show that such
algorithms do not exist for infinite regular trees of a degree larger than 2:

Theorem 4. There are no oblivious algorithms for infinite d-regular trees with
d ≥ 3.

4 Discrete Load Balancing in Paths and Cycles

We will now prove the positive results. We first give an algorithm that exactly
matches the lower bound of Theorem 1.

Theorem 5. Discrete load balancing can be solved in time O(L) in paths and
cycles, with a deterministic local algorithm.

Infinite Directed Paths. We will first show how to do load balancing in an
infinite path with a consistent orientation. That is, each node v has a degree
of 2, and it can refer to its left neighbour v − 1 and right neighbour v + 1 in a
globally consistent manner.

We will interpret the path with tokens as a 2-dimensional grid, indexed by
(v, i), where v ∈ V is a node and i ∈ {1, . . . , L} is a possible location for a token.
We say that (v, i) is a slot. Initially, slot (v, i) holds a token if x(v) ≥ i. Our
plan is to move the tokens around in the grid so that we maintain the following
stability conditions.
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Definition 1. A token in slot (v, i) is k-stable if i = 1 or there is a token in
slot (v + k, i − 1). A configuration is k-stable if all tokens are k-stable. For a set
K, a configuration is K-stable if it is k-stable for all k ∈ K.

We write �a, b� = {a, a + 1, . . . , b}. Initially, the configuration is 0-stable. If
we can find a �−1, 1�-stable configuration, we can construct a feasible solution
to the load balancing problem by simply setting y(v) to be equal to the number
of tokens in slots (v, ·).

However, we will now design an O(L)-time algorithm with a stronger stability
condition: it will compute a �−3, 3�-stable configuration. Informally, we smooth
out the load distribution so that the slope of the load curve is at most 1/3. This
extra slack will be helpful when we eventually want to solve the problem in paths
without consistent orientations.

This algorithm is based on the concept of pushes. For a node v and integer
�, define the �-diagonal of v as the following list of slots:

S(v, �) =
(
(v − �, 1), (v − 2�, 2), . . . , (v − L�, L)

)

In an �-push we redistribute the tokens in each S(v, �): if there are k tokens in
S(v, �), then we redistribute the tokens so that the first k elements of S(v, �) are
occupied and the remaining L − k elements are empty. In essence, we let the
tokens slide along each diagonal so that they are piled on the bottom of each
diagonal.

An �-push can be efficiently implemented in time O(�L) with a distributed
algorithm: for example, node v is responsible for redistributing the tokens in
slots S(v, �), and we first use O(�L) rounds so that each node v can discover
everything related to S(v, �), and then another O(�L) rounds so that node v can
inform the relevant nodes regarding how to move tokens in S(v, �).

Clearly, after an �-push we will have an �-stable configuration. The non-trivial
part is that �-pushes do not interfere with any stability that we have previously
achieved.

Lemma 3. For every choice of integers � and k, if a configuration is k-stable,
then it is still k-stable after an �-push.

Proof. See the full version of this work [10]. ��
Now we can easily find a �−3, 3�-stable configuration in time O(L): the algo-

rithm simply does an �-push for each � ∈ �−3, 3�, sequentially, in an arbitrary
order. We will call this algorithm A1.

Remark 1. It may be helpful to compare pushing with the lower-bound construc-
tion of Theorem 2: while a match-and-balance algorithm can only move O(L)
units of load per round in monotone configurations, an O(1)-push can move
Ω(L3) units of load per O(L) rounds in certain monotone configurations.
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Finite Directed Paths and Cycles. Algorithm A1 finds a �−3, 3�-stable
configuration in infinite directed paths in time O(L). It is fairly straightforward
to use A1 to design an algorithm A2 that works in finite directed paths and
cycles and still finds a �−3, 3�-stable configuration in time O(L). We give the
technical details in the full version of this work [10].

Undirected Paths and Cycles. So far we have designed an algorithm A2 that
finds a �−3, 3�-stable configuration in paths and cycles with a globally consistent
orientation. Now we show how to use it to design an algorithm A3 that finds a
�−1, 1�-stable configuration in paths and cycles without an orientation.

It can be shown that some form of local symmetry-breaking is needed. We
will use the familiar port-numbering model : Each node v has up to two commu-
nication ports, labelled with (v, 1) and (v, 2). The ports are identified with the
endpoints of the edges; each edge joins a pair of ports. The port numbers at the
endpoints of an edge do not need to match—for example, an edge {u, v} may
join (u, 1) to (v, 1) or (u, 1) to (v, 2).

In algorithm A2, we construct a virtual graph G′ as follows: Each node v
splits itself in two virtual nodes, v1 and v2. The virtual nodes also have two
ports. For each edge e = {u, v}, depending on the type of e we connect the
virtual nodes of u and v as follows:

– e joins (u, 1) to (v, 1): connect (u1, 1) to (v2, 2) and (u2, 2) to (v1, 1),
– e joins (u, 1) to (v, 2): connect (u1, 1) to (v1, 2) and (u2, 2) to (v2, 1),
– e joins (u, 2) to (v, 1): connect (u1, 2) to (v2, 1) and (u2, 1) to (v1, 2),
– e joins (u, 2) to (v, 2): connect (u1, 2) to (v1, 1) and (u2, 1) to (v2, 2).

If G was a path with n nodes, then G′ consists of two disjoint paths with n nodes
each. If G was an n-cycle, then G′ consists of either one cycle with 2n nodes or
two cycles with n nodes each.

The key observation is that there is a consistent port numbering in G: port
1 of a virtual node is always connected to port 2 of an adjacent virtual node.
We can now interpret the ports so that in each virtual node port 1 points “left”
and port 2 points “right”.

Each node first splits its input load arbitrarily between its virtual copies.
Then we run algorithm A2 to find a �−3, 3�-stable configuration in the virtual
graph, and then map all tokens back to the original graph: the new load of v is
the sum of the new loads of v1 and v2.

Now we have a configuration where the maximum load difference between a
pair of adjacent nodes is 2. However, the load is approximately well-balanced : a
load difference of more than 2 implies a distance of at least 4. Therefore we can
easily find a �−1, 1�-stable configuration in O(1) time with local operations. For
example, we can apply a match-and-balance algorithm: find a maximal matching
M of unhappy edges and move a token over each edge. Conveniently, all edges
become happy, including those that were not in M . It is easy to find a maximal
matching M in O(1) time, as this is in essence maximal matching in a bipartite
graph of maximum degree 2: on one side we have the nodes that are “too low”
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and on the other side we have the nodes that are “too high” in comparison with
their neighbours.

In summary, we can find a �−1, 1�-stable configuration in any path or cycle
in time O(L), and therefore we can do discrete load balancing in any path or
cycle in time O(L).

5 Discrete Load Balancing in General Graphs

We will now show how to do discrete load balancing in graphs of maximum
degree Δ.

Theorem 7. Discrete load balancing can be solved in time T (L,Δ), for some
function T , in graphs of maximum degree Δ with a deterministic local algorithm.

Again, we will imagine that each node v has L slots, labelled (v, ·), and each
token is placed in one of the slots. Initially slots (v, 1), (v, 2), . . . , (v, x(v)) are
occupied with tokens.

We define the (downward) cone C(v, i) of slot (v, i) as the set of slots (u, j) 
=
(v, i) such that i − j ≥ dist(v, u). In the algorithm, if there is a token in (v, i)
and all slots of the cone C(v, i) are full, then we say that the token is stable, and
we freeze it, i.e. it will never be moved again.

In the algorithm we try to match the highest unfrozen tokens with the free
slots in their cones. If they succeed then they move to these slots; otherwise they
can be frozen.

We now give the pseudo-code of the algorithm in a centralised way, prove the
correctness of the algorithm, and then show that it is actually a local algorithm.
The algorithm proceeds as follows:

1. All stable tokens of the initial configuration are frozen.
2. For each h = L,L − 1, . . . , 1:

(a) Construct the virtual bipartite graph Fh = (T ∪ S,E), where T consists
of unfrozen tokens at level h, S consists of all empty slots at levels below
h, and there is an edge {t, s} if s ∈ S is an empty slot in the cone of
token t ∈ T .

(b) In Fh, find a maximal matching M .
(c) For every unfrozen token t at level h: if the token is matched with a slot

s in M , move the token to slot s, otherwise freeze it.
(d) Collapse the tokens so that for each node v that holds k tokens, the

tokens are in the slots (v, 1), (v, 2), . . . , (v, k).

First, remark that we maintain the invariant that at round h, all load in
slots at height h either moves down or is safely frozen. Indeed, if a token is not
matched, then all slots in its cone will be full at the end of the loop, and if it
is matched, it moves to a strictly lower level, thereafter the invariant is true for
level h and maintained for the levels above. At the end of the algorithm all the
tokens are frozen, thus the configuration is stable.
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We stated the algorithm in a centralised manner, but it is actually local: The
vertices only need the knowledge of their radius-L neighbourhood to find their
neighbours in graph Fh. Graph Fh has a maximum degree of O(LΔL). Therefore
we can find a maximal matching in Fh by simulating O(LΔL) rounds of the pro-
posal algorithm [14] in the virtual graph Fh. The simulation has a multiplicative
O(L) overhead—adjacent nodes in Fh are at distance O(L) in graph G. Finally,
we have O(L) iterations, giving the overall complexity of O(L3ΔL).

6 Fractional Load Balancing in General Graphs

In fractional load balancing, we can use the same basic idea as what we had in
the discrete case, but much faster:

Theorem 6. Fractional load balancing can be solved in time poly(L,Δ) in
graphs of maximum degree Δ with a deterministic local algorithm.

The key idea is that we can add ε units of slack, and find an almost maximal
fractional matching, instead of a maximal integral matching. With the algorithm
by Khuller et al. [19], this can be done in O(log 1

ε +log Δ) rounds, which gives us
an exponential speedup over the O(Δ)-round algorithm for maximal bipartite
matching. We give the details of the algorithm in the full version of this work [10].

7 Conclusions

In this work, we have introduced the problem of finding a locally optimal load
balancing, and studied its distributed time complexity. We have shown that the
problem can be solved in a strictly local fashion, but to do it, one has to resort
to algorithms that are very different from typical load-balancing strategies that
are used in the literature. Among the key findings are:

– an O(L)-time algorithms for discrete load balancing in paths and cycles,
– a poly(L,Δ)-time algorithm for fractional load balancing in graphs of max-

imum degree Δ.

The main open question is the distributed time complexity of the discrete
load balancing problem. Our algorithm is local, but it has a running time expo-
nential in L; the key question is whether poly(L,Δ)-time algorithms exist. We
suspect that it is related to another long-standing open question—the distributed
time complexity of bipartite maximal matching. Indeed, a polylog(Δ)-time algo-
rithm for bipartite maximal matching would imply a poly(L,Δ)-time algorithm
for discrete load balancing. We conjecture that such algorithms do not exist,
but proving such lower bounds seems to be still beyond the reach of current
techniques.

Another open question is the generalisation of the results from the LOCAL
model to the CONGEST model [21]. In particular, the polynomial-time algo-
rithm for fractional load balancing heavily abuses the unlimited bandwidth of
the LOCAL model, but it seems that there are no major obstacles for designing
an analogous algorithm that works efficiently in the CONGEST model.
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