
On the Optimal Space Complexity
of Consensus for Anonymous Processes

Rati Gelashvili(B)

MIT, Cambridge, USA
gelash@mit.edu

Abstract. The optimal space complexity of consensus in shared mem-
ory is a decades-old open problem. For a system of n processes, no algo-
rithm is known that uses a sublinear number of registers. However, the
best known lower bound due to Fich, Herlihy, and Shavit requires Ω(

√
n)

registers.
The special symmetric case of the problem where processes are anony-

mous (run the same algorithm) has also attracted attention. Even in
this case, the best lower and upper bounds are still Ω(

√
n) and O(n).

Moreover, Fich, Herlihy, and Shavit first proved their lower bound for
anonymous processes, and then extended it to the general case. As such,
resolving the anonymous case might be a significant step towards under-
standing and solving the general problem.

In this work, we show that in a system of anonymous processes, any
consensus algorithm satisfying nondeterministic solo termination has to
use Ω(n) read-write registers in some execution. This implies an Ω(n)
lower bound on the space complexity of deterministic obstruction-free
and randomized wait-free consensus, matching the upper bound and clos-
ing the symmetric case of the open problem.

1 Introduction

The celebrated Fischer, Lynch and Paterson (FLP) [FLP85] result proved that
fundamental synchronization tasks including consensus and test-and-set are not
solvable in a wait-free manner using read-write registers. However, the work of
Ben-Or [BO83] shows that it is possible to circumvent FLP and obtain efficient
distributed algorithms, if we relax the problem specification to allow probabilis-
tic termination. It is also possible to solve these tasks deterministically, but
obstruction-free instead of wait-free; it is known how to convert any determinis-
tic obstruction-free algorithm into a randomized wait-free algorithm against an
oblivious adversary (see [GHHW13]).

The space complexity of an algorithm is the maximum number of regis-
ters used in any execution. A lot of research has been dedicated to improv-
ing the upper and lower bounds on the space complexity for canonical tasks.
For test-and-set, an Ω(log n) lower bound was shown in [SP89] and indepen-
dently in [GW12]. On the other hand, an O(

√
n) deterministic obstruction-

free upper bound was given in [GHHW13]. The final breakthrough was the
c© Springer-Verlag Berlin Heidelberg 2015
Y. Moses (Ed.): DISC 2015, LNCS 9363, pp. 452–466, 2015.
DOI: 10.1007/978-3-662-48653-5 30

On the Optimal Space Complexity of Consensus for Anonymous Processes 453

recent obstruction-free algorithm designed by Giakkoupis et al. [GHHW14], with
O(log n) space complexity, essentially closing the problem1.

For consensus, an upper bound with n registers was long known from [AH90].
A lower bound of Ω(

√
n) by Fich et al. [FHS98] first appeared in 1993. The

proof is notorious for its technicality and utilizes a neat inductive combination
of covering and valency arguments. Another version of the proof appeared in a
textbook [AE14]. However, a linear lower bound or a sublinear space algorithm
has remained elusive to date.

The authors of [FHS98] conjectured a tight lower bound of Ω(n). But the
linear lower bound has not been proven even in a restricted, symmetric case,
where all processes are anonymous. In such a system processes can be thought
of as running the same code: all processes with the same input start in the
same initial state and behave identically. The same linear upper bound holds for
anonymous processes, since a deterministic obstruction free consensus algorithm
that uses O(n) registers is known [GR05]. Interestingly, the proof in [FHS98]
starts by showing the Ω(

√
n) lower bound for anonymous processes, which is

then extended to a much more complex argument for the general case. Therefore,
a linear lower bound in the anonymous setting might prove to be a meaningful
step in better understanding and solving the general case of the open problem.

Contribution: In this paper we prove the Ω(n) lower bound in the symmetric
(anonymous) case for consensus algorithms satisfying the standard nondeter-
ministic solo termination property. Any lower bound for algorithms satisfying
the nondeterministic solo termination implies a lower bound for deterministic
obstruction-free and randomized wait-free algorithms. As in [FHS98,AE14], the
bound is for the worst-case space complexity of the algorithm, i.e. for the number
of registers used in some execution, regardless of its actual probability.

Our argument relies on a specific class of executions which we call reserving,
and on the ability to define valency, corresponding to possible return values, for
these executions. This definition of valency and the ability to cover registers with
modified contents by reserved processes greatly simplifies the task of performing
an inductive argument. We hope these techniques will be useful for future work.

We also show how the lower bound can be extended to a non-anonymous,
adaptive, setting where processes come from a very large namespace and the
bound depends on the size of the subset of processes that actually participate in
the execution. However, this extension requires additional restrictions on register
size and termination, and is provided mainly to illustrate an approach.

Definitions and Notation: We use the standard shared-memory model and
similar notation to [FHS98,AE14]. We consider anonymous processes and atomic
read-write registers. A process is covering a register R, if the next step of p can
be a write to R. A block write of a set of processes P to a set of covered registers
V is a sequence of write steps by processes in P , where each step is a write to a
different register and all registers get written to.

1 The space complexity of randomized test-and-set against a strong (adaptive) adver-
sary remains open.

454 R. Gelashvili

In a system of anonymous processes, if a process p in state s performs a
particular operation, for any configuration with any process q in the same state s,
q can also perform the exact same operation. Finally, if p and q perform the same
operation from the same state with the same outcome (i.e. read the same value),
then both p and q end up in the same state after the operation. In randomized
algorithms, anonymous processes always perform the same operation from the
same state (including flipping coins with the same random distribution), and
end up in identical state if they observe the same results.

A clone of a process p, exactly as in [FHS98,AE14], is defined as another
process with the same input as p, that shadows p by performing the same oper-
ations as p in lockstep, reading and writing the same values immediately after p,
and remaining in the same state, all the way until some write of p. Because the
system consists of anonymous processes, in any execution with sufficiently many
processes, for any write operation of p, there always exists an alternative execu-
tion with a clone q that shadowed p all the way until the write. In particular,
in the alternative execution, process q covers the register and is about to write
the value that p last wrote there. Moreover, the two executions with or without
the clone covering the register are completely indistinguishable to all processes
other than the clone itself.

An execution is a sequence of steps by processes and a solo execution is an
execution where all steps are taken by a single process. An execution interval is
a subsequence of consecutive steps from some execution. In the binary consensus
problem each participating process starts with a binary input 0 or 1, and must
return a binary output. The correctness criterium is that all outputs must be
the same and equal to the input of some process. We say that an execution
interval decides 0 (or 1) if some process returns 0 (or 1, respectively) during this
execution interval.

A wait-free termination requirement means that each participating process
must eventually return an output within a finite number of own steps, regardless
of how the other processes are scheduled. The FLP result shows that in the
asynchronous shared memory model with read-write registers, no deterministic
algorithm can solve binary consensus in a wait-free way. However, it is possible to
deterministically solve obstruction-free consensus, i.e. when processes are only
required to return an output if they run solo from some configuration. It is
also possible to solve consensus in a randomized wait-free way, when processes
are allowed to flip random coins and decide their next steps accordingly. A
nondeterministic solo termination property of an algorithm means that from
each reachable configuration, for each process, there exists a finite solo execution
by the process where it terminates and returns an output. We prove our lower
bounds for binary consensus algorithms that satisfy this nondeterministic solo
termination property, because both deterministic obstruction-free algorithms
and randomized wait-free algorithms fall into this category.

On the Optimal Space Complexity of Consensus for Anonymous Processes 455

2 Space Complexity Lower Bound

In order to demonstrate our approach, we start by presenting a different proof of
the Ω(

√
n) space lower bound in the anonymous setting. It uses induction on the

number of registers written during an execution, as opposed to induction on the
tuple of sizes of pending block writes in [FHS98]. The proof also has an additional
benefit that the use of covering and valency arguments is decoupled. As usual,
we use covering to enforce writing to a new register, while a valency argument
reminiscent of [FLP85] ensures that both decision values remain reachable by
solo executions.

Next, building upon this new argument, we prove an Ω(n) space lower bound
for consensus with nondeterministic solo termination in a system of anonymous
processes. There are some significant differences, for instance, the execution is
constructed in such a way that after a register is written to, it always remains
covered. Moreover, valency is redefined to account for this specific class of exe-
cutions. The rest is induction.

2.1 A Square-Root Lower Bound

In this section, we define valency as follows. If there is a solo execution of some
process returning 0 from a configuration, then we call this configuration 0-valent
(and 1-valent if there is a solo execution of a process that returns 1). Solo termi-
nation implies that every configuration is 0-valent or 1-valent. Note that unlike
the standard definition of valency, our definition allows the same configuration
to be simultaneously 0-valent and 1-valent. We call such configurations that are
both 0-valent and 1-valent bivalent, and univalent otherwise. Notice that a con-
figuration is bivalent if two solo executions of the same process return different
values. If a configuration is 0-valent, but not 1-valent (i.e. no solo execution from
this configuration decides 1), then we call it 0-univalent, meaning that the con-
figuration is univalent with valency 0. Analogously, a configuration is 1-univalent
if it is 1-valent but not 0-valent.

Observe that if we have at least two processes, then in every bivalent con-
figuration we can always find two distinct processes p and q, such that there is
a solo execution of p returning 0 and a solo execution of q returning 1. This is
because either the configuration is bivalent because of solo executions of distinct
processes, in which case we are done, or two solo executions of some process
return different values, in which case it suffices to consider any terminating solo
execution of another process.

For the system of anonymous processes, and a consensus algorithm that uses
atomic read-write registers and satisfies the nondeterministic solo termination
property, we prove the following statement by induction:

Lemma 1. For r ≥ 0, there exists a system of (r−1)r
2 +2 anonymous processes,

such that for any consensus algorithm, a configuration Cr is reachable by an
execution Er with the following properties:

456 R. Gelashvili

– There is a set R of r registers, each of which has been written to during Er,
and

– the configuration Cr is bivalent.

Proof. The proof is by induction, with the base case r = 0. Our system consists
of two processes p and q, p starts with input 0, q starts with input 1, and C0 is
the initial state. Clearly, no registers have been written to in C0 and bivalency
follows by nondeterministic solo termination.

Now, let us assume the induction hypothesis for some r and prove it for r+1.
By the induction hypothesis, we can reach a configuration Cr using (r−1)r

2 +
2 processes. The goal is to use another r processes and extend Cr to Cr+1,
completing the proof since r + (r−1)r

2 + 2 = r(r+1)
2 + 2.

As discussed above, because we have at least 2 processes and Cr is bivalent,
there exists a process p and its solo execution α from Cr after which p returns 0
and a process q �= p and its solo execution β from Cr after which q returns 1.2

Recall that R is the set of r registers that were written to in execution Er. For
each register in R, let a new process clone the process that last wrote to it all
the way to covering the register poised to write the same value as present in the
register in configuration Cr.

Let us now apply the covering argument utilizing the clones. Consider exe-
cution Erαγβ, where γ is a block write to R by the new clones. We know that
process p returns 0 after Erα. During its solo execution α, process p has to write
to a register outside of R. Otherwise, the configuration after Erαγ is indistin-
guishable from Cr to process q as the values in all registers are the same, and
q is still in the same state as in Cr. Hence, q will return 1 after Erαγβ as it
would after Erβ, contradicting the correctness of the consensus algorithm. Anal-
ogously, process q has to write outside of R during β. Let α = α′wpα

′′, where
wp is the first write of p outside the set of registers R, and let β = β′wqβ

′′, with
wq being the first write outside of R. Let � be the length of γβ′wq and Bi be a
prefix of γβ′wq of length i, for all possible 0 ≤ i ≤ �.

Next, we use a valency argument to reach Cr+1. We show that either the
configuration reached after Erα

′γβ′wq, or one of the configurations reached after
Erα

′Biwp for some i, satisfies the properties necessary to be Cr+1. Clearly, we
have used the right number of processes to reach any of these configurations and
r + 1 registers have been written to while doing so, including R and the register
written by wp or wq. Thus, we only need to show that one of these configurations
is bivalent.

Assume the contrary. The configuration for i = 0 must be 0-univalent, since
p returns 0 only throughout α′′, and we assumed that the configuration is not
bivalent. Similarly, the configuration reached after Erα

′γβ′wq = Erα
′B� is 1-

univalent. It is univalent by our assumption and 1-valent as q running solo
returns 1 through β′′ (α′ does not involve a write outside of R and q cannot
distinguish from Erβ

′wqβ
′′). Because the configuration reached after Erα

′B� is

2 Alternatively one can say execution Erα ends with p returning 0 and Erβ ends with
q returning 1.

On the Optimal Space Complexity of Consensus for Anonymous Processes 457

1-univalent, any terminating solo execution of process p from that configuration
must also return 1. In particular, every terminating solo execution that starts
by p performing its next step wp returns 1. So the configuration reached after
Erα

′B�wp must be 1-univalent: solo executions of p return 1 (some solo exe-
cution terminates due to nondeterministic solo execution), and it is univalent
by our assumption (it is the same as configuration for i = �). Therefore, the
configuration reached after Erα

′Biwp is 0-univalent for i = 0 and 1-univalent
for i = �. Hence, we can find a switching point for some i and i + 1, where the
configuration X reached by Erα

′Biwp is 0-univalent, while the configuration Y
reached by Erα

′Bi+1wp is 1-univalent. Let o be the extra operation in Bi+1.
Operation o is not by p and may not be a read or a write to the same

register as wp writes to since p would not distinguish between X and Y and
would return the same output from both configurations through the same solo
execution, contradicting the existence of the different univalencies. Otherwise,
operations wp and o commute. Let σ be a terminating solo execution from Y by
the process that performed operation o, where it returns 1 due to the univalency
of Y . Also consider this process performing its next operation o from X. Since
wp and o commute, and o is not a read, the process cannot distinguish between
the resulting configuration and Y and returns 1 through σ as from Y . However,
oσ is a solo execution from X that returns 1, contradicting the 0-univalency
of X. The contradiction proves the induction step, completing our induction.

Notice that for n processes, Lemma 1 directly implies the existence of an execu-
tion where Ω(

√
n) registers are written to, proving the desired lower bound.

2.2 Linear Lower Bound

Consider systems with n anonymous processes and an arbitrary correct consen-
sus algorithm satisfying the nondeterministic solo termination property. We will
assume that no execution of the algorithm uses more than n/20 registers (oth-
erwise, we are trivially done), and prove that such an algorithm has to use Ω(n)
registers, which completes the proof. For notational convenience, let us define m
to be n/20.

The argument in Lemma 1 relies on a new set of clones in each iteration to
overwrite the changes to the contents of the registers made during the inductive
step. This is the primary reason why we only get an Ω(

√
n) lower bound. As

the authors of [FHS98] also mention, to get a stronger lower bound we would
instead have to reuse existing processes. In order to do so, these existing processes
need to cover the registers in our inductive configurations (we must also ensure
proper valency conditions on what they are about to write, but let us focus on
the covering). Now, even if we reach such a configuration, during a solo execution
interval of some process in the subsequent induction step, all the registers may
get written to, and we would have to use all the covering existing processes to
overwrite the changes. Therefore, in the next configuration, there is no way to
guarantee that the existing processes would still cover various registers.

458 R. Gelashvili

This is the primary reason why we have to replace solo executions in the proof
with a different class of executions that we call reserving. Intuitively, reserving
executions ensure that for the registers that are written to, some processes are
reserved to cover them. This way, we can have reserved processes cover the
registers in subsequent inductive configurations. Notice that the definition of
valency used in the proof of Lemma 1 was based on solo executions. Thus, we
also redefine valency based on reserving executions.

Reserving Executions. The following is a formal definition of a reserving
execution interval.

Definition 1. Let C be some configuration reachable by the algorithm, and let
P be a set of at least m+1 processes. We call an execution interval γ that starts
from configuration C reserving from C by P if:
– Every step in γ is by a process in P .
– At any time during the execution of γ: if we let Rw be the set of registers

written to so far during γ, then, for each register in Rw, there is a reserved
process p ∈ P covering that register, one per register.

– If a process p ∈ P returns during γ then it does so in the last step of γ.

Notice that by definition any prefix of a reserving execution interval is also a
reserving execution interval. Let Res(C,P) be the set of all reserving execution
intervals from C by processes in P that end with a process p ∈ P returning.
We first show that given sufficiently many processes, such an execution interval
exists. This is essential for defining the valency later. Recall that we assumed a
strict upper bound of m on the number of registers that can ever be written.

Lemma 2. For any reachable configuration C and a set of at least m + 1 pro-
cesses P , none of which have returned yet, we have that Res(C,P) �= ∅.

Proof. For a given C and P , we will prove the lemma by constructing a particular
reserving execution interval γ that ends when some process p ∈ P returns. We
start with an empty γ and continuously extend it. In the first stage, one by one,
for each process p ∈ P :

– Due to the nondeterministic solo termination, there exists a solo execution
of p where p returns.

• If p ever writes to any register during this solo execution, extend γ by the
prefix of the execution before this write, and move to the next process
in P .

• Otherwise, complete γ by extending it with the whole solo execution of
p.

We have finitely many processes and the first stage described above consists
of extending the execution interval at most |P | times. Each time, because of
the nondeterministic solo termination for some process p ∈ P , we extend γ by
a prefix of a finite solo execution of p. Moreover, all operations are reads by
processes in P , and therefore the prefix of γ constructed so far is reserving.

On the Optimal Space Complexity of Consensus for Anonymous Processes 459

If some process returns in the first stage, the construction of γ is complete.
Otherwise, since the first stage is finite, we move on to the second stage described
below. In the configuration after the first stage each of the at least m+1 processes
in P is covering a register (by their next write operation after the first stage).
From that configuration, the execution interval γ is extended by repeatedly doing
the following:
1. Let R be the set of covered registers by processes of P . Since |R| ≤ m < |P |,

we can find two processes p, q ∈ P covering the same register in R.
2. Due to the nondeterministic solo termination, there exists a solo execution

of p where p returns.
• If p ever writes to a register outside of R during this solo execution,

extend γ by the prefix of the execution before this write, and continue
from the first step. Notice that at the beginning of the next iteration,
process p still covers a register as required.

• Otherwise, complete γ by extending it with the whole solo execution
of p.

In the second stage, each iteration terminates, since for any process p ∈ P , we
can extend by at most the terminating solo execution of p, which exists and
is finite. After each iteration, if the construction is not complete, the size of R
increases by one. But there are at most m registers in the system and |R| ≤ m.
Thus, after at most m finite extensions, we will complete the construction of γ
when some process returns.

The execution is reserving because at all times, the registers that were
written-to are in R. Moreover, for each register in R, there is always a pro-
cess covering it starting from the time it was first covered by some process p in
the second step of some iteration all the way until the end of γ.

The next lemma follows immediately from the definition of reserving executions.

Lemma 3. Consider a reachable configuration C, a set of at least m+1 processes
P ′ none of which have returned yet, and another configuration C ′ reached after
some process p �∈ P ′ performs a write operation wp in C. Moreover, assume that
another process q �= p with q �∈ P ′ is covering the same register that wp writes
to. Then if γ ∈ Res(C ′, P ′), then wpγ is in Res(C,P) where P = P ′ ∪ {p} ∪ {q}.

New Definition of Valency. We say that a configuration C is 0-valentU with
respect to the set of processes U , if there exists a subset of at least m + 1
processes P ⊆ U and a reserving execution in Res(C,P) that finishes when some
process in P returns 0. We call C 0-valentm+1

U w.r.t. U , if there exists a subset of
exactly m+1 processes P ⊆ U (|P | = m+1), and a reserving execution interval
in Res(C,P) returning 0. We define 1-valentU and 1-valentm+1

U analogously. If
U contains at least m + 1 processes that have not returned, Lemma 2 implies
that every configuration is 0-valentm+1

U or 1-valentm+1
U (and thus 0-valentU or

1-valentU).

460 R. Gelashvili

As in our earlier definition in Section 2.1, but unlike the standard definition,
a configuration that is 0-valentm+1

U can still also be 1-valentm+1
U in which case

we call it bivalentm+1
U . Basically, a configuration is bivalentm+1

U if it is both
0-valentm+1

U due to some P ⊆ U and 1-valentm+1
U due to some Q ⊆ U . A

configuration that is not bivalentm+1
U is called univalentm+1

U . Finally, similar
to our earlier convention, we define a configuration to be 0-univalentm+1

U if it
is 0-valentm+1

U but not 1-valentm+1
U . On the other hand, a configuration that

is 1-valentm+1
U but not 0-valentm+1

U is called 1-univalentm+1
U . Terms bivalentU ,

univalentU , 0-univalentU and 1-univalentU are defined analogously.
Next we prove a lemma that lets us find reserving executions consisting of

disjoint processes.

Lemma 4. Consider a configuration C which is bivalentU w.r.t. U . Assume that
there are (possibly intersecting) sets of at least m + 1 processes each P ⊆ U and
Q ⊆ U such that |U | ≥ |P |+ |Q|+m, and some reserving execution in Res(C,P)
ends when p ∈ P returns 0, while some reserving execution in Res(C,Q) ends
when q ∈ Q returns 1. Then there are also disjoint sets of processes P ′ ⊆ U
and Q′ ⊆ U (P ′ ∩ Q′ = ∅), such that an execution in Res(C,P ′) returns 0
and an execution in Res(C,Q′) returns 1. Moreover, m + 1 ≤ min(|P ′|, |Q′|) ≤
min(|P |, |Q|) and max(|P ′|, |Q′|) ≤ max(|P |, |Q|).
Proof. None of the processes in U may have already returned in configuration
C, as that would contradict the existence of a reserving execution returning the
other output. If P and Q do not intersect then we set P ′ = P and Q′ = Q. Other-
wise, we can find a set H ⊆ U−P −Q of m+1 processes. By Lemma 2, Res(C,H)
is non-empty, and without loss of generality, some execution in Res(C,H) returns
0. Then, we set P ′ = H and Q′ = Q (if all executions in Res(C,H) return 1, we
would set P ′ = P and Q′ = H).

The Process-Clone Pairs and the Proof. As mentioned earlier, it is obvi-
ously not sufficient to simply cover registers with existing processes without any
knowledge of what they are about to write. In the proof of Lemma 1 we used
new clones that covered registers to block-overwrite these registers back to the
contents whose valency we knew. In order to do something similar with existing
processes, we associate a dedicated clone to each process. The process and its
clone remain in the same states and perform the same operations during the
whole execution.

Usually, when we schedule a process to perform an operation, its clone per-
forms the same operation immediately after the process. Thus the pair of the
process and the clone remain in the same state. Under these circumstances, we
can treat the pair of the process and its clone as a single process, because no
process can distinguish the execution from when the clone would not take steps.
However, sometimes we will split the pair by having only the process perform a
write operation and let the clone cover the register. We will explicitly say when
this is the case. After we split the pair of process and clone in such a way, we will
not schedule the process to take any more steps and thus the clone will remain

On the Optimal Space Complexity of Consensus for Anonymous Processes 461

poised to write to the covered register. After some delay, we will schedule the
clone of the process to write, effectively resetting the register to the value it
had when the process wrote. Moreover, because meanwhile the process did not
take any steps, after the write the clone will again be in the same state as its
associated process. Hence the pair of the process and clone will no longer be
split, and will continue taking steps in sync like a single process.

This is different from the way clones were used in the proof of Lemma 1,
because after the pair of the process and its clone is united, it can be split
again. Therefore, the same clone can reset the contents of registers written by
its associated process multiple times, instead of requiring a new clone every time.

We call a split pair of a process and a clone fresh as long as the register that
the process wrote to, and its clone is covering, has not been overwritten. After
the register is overwritten, we call the split pair stale.

In addition, we also use cloning in a way similar to the proof of Lemma 1,
except that we do this at most constantly many times, as opposed to r times,
to reach the next configuration Cr+1. Moreover, each time when we do this,
we create duplicates of both the process and its corresponding clone. This new
process-clone pair is in the same state as the original pair, and from there on
behaves like a single new process similar to all other pairs. We will always con-
sider valency with respect to sets of processes whose pairs are not split. Therefore,
the definition of valency does not need to change when the clones keep taking
steps immediately after their processes.

Sometimes, when considering process-clone pairs, none of which are split, we
may refer to them as processes, i.e. we may talk about a process taking steps or
returning a value. As mentioned earlier, it is assumed that as long as the pair
is not split, the clone always follows and takes the same steps right after the
process. Hence, in this context, a process taking a step means a pair taking a
step.

Now we are ready to prove the main result.

Theorem 1. In the system of anonymous processes, consider any correct con-
sensus algorithm satisfying nondeterministic solo termination, with the property
that every execution uses at most m registers. For each r with 0 ≤ r ≤ m, there
exists a set U containing 5m+6+2r process-clone pairs such that a configuration
Cr is reachable through an execution Er by processes and clones in U with the
following properties:
1. There exists a set R of r registers, that can be partitioned in two disjoint

subsets R = Rs ∪ Rc, where:
• Rs consists of all registers in the system that each have one fresh split pair

on them, last written by some process whose clone has not yet performed
the write and is covering the register.

• Rc = R − Rs. Each register in Rc is covered by an unique pair of both a
process and its clone.

Thus, each fresh pair is split on a different register in Rs, and an additional
|Rc| pairs are covering the registers in Rc. Let V be the set of these |Rs| +
|Rc| = r pairs.

462 R. Gelashvili

2. There are at most r stale split pairs in the system, that are all split on
pairwise different registers from R. Let L be the set of these at most r stale
split pairs.

3. There exist disjoint sets of process-clone pairs that are not split P,Q ⊆
U − V − L with |P | + |Q| ≤ 2m + 4, such that an execution in Res(Cr, P)
returns 0 and an execution in Res(Cr, Q) returns 1.3

Proof. The proof is by induction on r, with the base case r = 0. Out of the
5m + 6 processes-clone pairs, half of them start with an input 0 and half start
with an input 1. We let C0 be the initial state, P be a set of some m + 1
pairs with input 0, and Q be a set of some m + 1 pairs with input 1. The first
two properties are trivially satisfied; also P ∩ Q = ∅ and |P | + |Q| = 2m + 2.
By Lemma 2 and correctness of consensus, there is a reserving execution in
Res(C0, P) that decides 0, and a reserving execution in Res(C0, Q) that decides
1 (C0 is bivalentU). Observe that the pairs are not split and for the purposes of
valency we can just consider the steps of processes.

Now, let us assume induction hypothesis for some r, i.e. the existence of
Er and Cr with the required three properties, and prove the step for r + 1 by
extending Er to Er+1, resulting in the configuration Cr+1. Let U , P , Q, V , L
and R = Rs ∪ Rc all be defined as in the theorem statement for r. Our goal is
to construct sets U ′, P ′, Q′, V ′, L′ and R′ = R′

s ∪ R′
c for r + 1. In U ′ − U we

have two more process-clone pairs available that have not taken steps and can
be used to clone an existing process-clone pair. Let T denote U −V −L−P −Q.
Since |V | = r, L ≤ r and |P | + |Q| ≤ 2m + 4, we have |T | ≥ 3m + 2.

For all but |Rs| + |L| split pairs both processes and clones are in the same
states, about to perform the same operations. By definition, each stale pair in
L is split on a different register from R. In the following argument, we extend
the execution from Er to Er+1 by steps of processes and clones not in L. This
can introduce new stale split pairs and the resulting configuration Cr+1 may not
immediately satisfy the second property. We will then show how to modify the
extension and unite some stale split pairs, such that the resulting configuration
satisfies all properties, including the second property with the new L′.

Let α ∈ Res(Cr, P) be the reserving execution interval that returns 0, and
let β ∈ Res(Cr, Q) be the reserving execution interval that returns 1. Notice
that each time a process in P or Q takes a step in α or β, its clone performs an
identical step immediately after. The execution Erα ends with a process-clone
pair p ∈ P returning 0 and the execution Erβ ends with a process-clone pair
q ∈ Q returning 1.

Each register in Rc was covered by some pair of both a process and its clone in
V . Let γc be a block write to all registers in Rc by only the processes but not the
clones of these respective covering pairs: i.e. after each write we get a new fresh
split pair. Consider a configuration D reached from Cr by executing this block
write, i.e. a configuration reached after Erγc. Assume that D is 1-valentm+1

T ,
3 The pairs of processes in P and Q are not split, because all split pairs belong to V ∪L
(fresh to V and stale to L). Also, the third condition implies that the configuration
Cr is bivalentU−V −L.

On the Optimal Space Complexity of Consensus for Anonymous Processes 463

without loss of generality, because it has a valency. For any execution interval e,
let us denote by W (e) the set of registers written to during e. Hence, Rs ∩W (e)
is the set of registers in Rs that are written-to during e. Each register in Rs is
covered by a clone of a split pair whose process has already performed the write
and is stopped. Define γs(e) as a block write to all registers in Rs ∩ W (e) by
these trailing clones of the split pairs in V : i.e. after each write another clone
catches up with its process and a previously split pair is united. Basically, if
we run an execution interval e from Cr that changes contents of some registers
in Rs, we can then clean these changes up by executing γs(e), which leads to all
registers in Rs having the same contents as in Cr.

Using a crude covering argument we can first show that

Lemma 5. The execution interval α must contain a write operation outside R.

The proof of this lemma is provided later.
Based on this we can write α = α′wpα

′′, where wp is the write operation to
a register reg �∈ R, performed by some process-clone pair p ∈ P .

Looking ahead, when we reach Cr+1, the new set of registers R′ will be
R ∪ {reg}. Next, we prove the following lemma using an FLP-like case analysis:

Lemma 6. We can extend execution Er (i.e. from Cr) with an execution inter-
val e and reach a configuration satisfying the first and the third inductive require-
ments to be Cr+1 with a properly defined U ′, P ′, Q′, V ′ and R′ = R′

s ∪ R′
c, and

with all process-clone pairs that are not split being in sync. But the second prop-
erty is not immediately satisfied. All stale split pairs from L remain stale and
split, but some pairs that were fresh and split on registers in Rs ∩ W (e) may
have become stale in Cr+1 (because neither the process nor the clone in the split
pair has taken steps while the register was overwritten in e). However, these are
the only possible new stale split pairs in Cr+1, and they do not belong to the new
sets V ′ ∪ P ′ ∪ Q′.

The proof of this lemma can be found in the full version.4

In order to finish the proof of the theorem, we need to show how to construct
L′. According to the above Lemma 6 we can extend the execution to reach the
next configuration Cr+1 satisfying first and third but not the second property
about the stale split pairs L′. In Cr we had at most r stale pairs in the system,
each split on a different register, and L was the set of these pairs. But on the
way to reaching Cr+1, we may have introduced new stale pairs in the system.
According to Lemma 6 these must be the pairs that were fresh and split on
registers in Rs ∩ W (e) in Cr, and whose associated register in Rs has been
overwritten during e, making them stale in Cr+1.

The set of all stale pairs in Cr+1 may not satisfy the requirements imposed
for L′, since there could already have been a stale pair split on a register in
Rs ∩ W (e) in L (in Cr). Then two stale pairs would be split on this register in
Cr+1, violating the second property. However, for each such register in Rs∩W (e),
we know a stale pair ρ ∈ L was split on it in Cr, and that this register was

4 Available at http://arxiv.org/abs/1506.06817.

http://arxiv.org/abs/1506.06817

464 R. Gelashvili

written-to during extension W (e). We now modify the extension e; we add a
single write by the clone of the stale split pair ρ immediately before a write
operation to the same register that was already in e. This way, no pair other
than the clone of ρ observes a difference between the two executions, and we
will use the configuration reached by the modified execution as Cr+1. Because
of this indistinguishability, the new Cr+1 still satisfies other required properties.
Moreover, the pair ρ is not split anymore; it is united since the clone has caught
up with its process.

We can do the above modification to the execution for each register in Rs ∩
W (e) that previously ended up with two stale split processes in Cr+1. Let the
modified execution extension be e′. In e′, some stale split pairs from L are united,
indistinguishably to all other processes and clones, leading to a configuration
Cr+1, that still satisfies the first and third properties, and has at most one
stale pair split on any register. We take L′ to be the set of stale split pairs.
By construction, all stale pairs are split on registers in R′ and no two on the
same register, so we do have |L′| ≤ r + 1 as desired. Hence, we have reached
configuration Cr+1 satisfying all properties and completing the proof.

Corollary 1. In a system of n anonymous processes, any consensus algorithm
satisfying non-deterministic solo termination must use Ω(n) registers.

Proof. Theorem 1 directly implies the Ω(n) lower bound on the number of reg-
isters used in some execution. If n is the number of anonymous processes and
no execution uses more than m = n/20 registers, by Theorem 1 we can reach
Cm for large enough n, and we have enough processes n ≥ 10m + 12 + 4m. In
Cm there are m registers in R, each of which has either already been written-to
(Rs) or are covered by unique processes (Rc). We could perform a block write to
Rc by covering processes from V in Cm, after which in the resulting execution
m = n/20 = Ω(n) different registers would have been written to.

We now provide the delayed proof of Lemma 5.

Proof. Assume the contrary. We know that the execution Erα decides 0. No
process or clone that takes a step in γc or γs(α) appears in α (they belong to V ,
disjoint from P and Q), and by definition, no process or clone from T takes a
step in α, γc or γs(α). Thus, to all processes (and clones) in T , the configurations
after Erαγs(α)γc and after Erγc, which is configuration D, are indistinguishable.
This is because no process (or clone) in T has taken steps, the registers in R
contain the same values, and other registers were not touched during α, γs(α)
or γc. Configuration D is 1-valentm+1

T , so some extension from Erαγs(α)γc by
an execution interval from Res(D,T) decides 1. This contradicts the correctness
of the algorithm.

3 Extensions

Adaptive Lower Bound: Let us sketch a proof for an adaptive linear lower
bound on the space complexity of consensus for non-anonymous processes but

On the Optimal Space Complexity of Consensus for Anonymous Processes 465

under extra restrictions on register size and solo termination. In this setting,
processes are no longer anonymous, but we assume they come from a very large
namespace. Each of these huge number of processes executes its own code, how-
ever, we get to choose which subset of processes participates in the execution.
We show that there is a linear space lower bound that depends on the number
of participating processes, that is, for large enough namespace, we can find an
execution of n processes (out of all processes) where Ω(n) registers get written.

The restrictions are that the registers have a bounded size and that the con-
sensus algorithm satisfies bounded nondeterministic solo termination property,
meaning that there always is a terminating solo execution of a process consisting
of less than certain number of steps. If we had bounded nondeterministic solo
termination, the lower bound execution for anonymous processes constructed
in Theorem 1 would always contain less than B steps, where B is a finite bound
that only depends on n and the solo termination bound. As registers have a
bounded size, for both input values, a process can exhibit only finitely many
different behaviors during its first B steps, because in each step it can either
read or write a fixed number of different values. For a sufficiently large names-
pace (depending on B, n and register size), by pigeon-hole principle, we can
find n processes such that half of them start with input 1, half start with 0 and
all processes with the same input behave as anonymous for the first B steps of
an execution. Hence, we can use Theorem 1 and get an execution where n/20
registers are written to, as described at the end of Section 2.2.

Future Work: We believe that is should be possible to derive the above adaptive
lower bound without the bounded solo termination assumption, and to get good
estimate on the required size of the namespace. However, the major open problem
is still to resolve the general, non-anonymous and non-adaptive case, i.e. to get
tight bounds on the space required to solve consensus with exactly n asymmetric
processes.

Acknowledgments. Support is gratefully acknowledged from the National Science
Foundation under grants CCF-1217921, CCF-1301926, and IIS-1447786, the Depart-
ment of Energy under grant ER26116/DE-SC0008923, and the Oracle and Intel cor-
porations.

The author would like to thank Nir Shavit, Michael Coulombe and Dan Alistarh for
helpful conversations and feedback, and the anonymous reviewers for their excellent
comments.

References

[AE14] Attiya, H., Ellen, F.: Impossibility results for distributed computing. Syn-
thesis Lectures on Distributed Computing Theory 5(1), 1–162 (2014)

[AH90] Aspnes, J., Herlihy, M.: Fast randomized consensus using shared memory.
Journal of Algorithms 11(3), 441–461 (1990)

[BO83] Ben-Or, M.: Another advantage of free choice (extended abstract): Com-
pletely asynchronous agreement protocols. In: Proceedings of the Second
Annual ACM Symposium on Principles of Distributed Computing, PODC
1983, pp. 27–30. ACM, New York (1983)

466 R. Gelashvili

[FHS98] Fich, F., Herlihy, M., Shavit, N.: On the space complexity of randomized
synchronization. Journal of the ACM (JACM) 45(5), 843–862 (1998)

[FLP85] Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed
consensus with one faulty process. Journal of the ACM (JACM) 32(2),
374–382 (1985)

[GHHW13] Giakkoupis, G., Helmi, M., Higham, L., Woelfel, P.: An O(
√

n) space
bound for obstruction-free leader election. In: Afek, Y. (ed.) DISC 2013.
LNCS, vol. 8205, pp. 46–60. Springer, Heidelberg (2013)

[GHHW14] Giakkoupis, G., Helmi, M., Higham, L., Woelfel, P.: Test-and-set in optimal
space. In: Accepted to STOC 2015 (2014–2015)

[GR05] Guerraoui, R., Ruppert, E.: What can be implemented anonymously? In:
Fraigniaud, P. (ed.) DISC 2005. LNCS, vol. 3724, pp. 244–259. Springer,
Heidelberg (2005)

[GW12] Giakkoupis, G., Woelfel, P.: On the time and space complexity of ran-
domized test-and-set. In: Proceedings of the 2012 ACM Symposium on
Principles of Distributed Computing, pp. 19–28. ACM (2012)

[SP89] Styer, E., Peterson, G.L.: Tight bounds for shared memory symmetric
mutual exclusion problems. In: Proceedings of the Eighth Annual ACM
Symposium on Principles of Distributed Computing, pp. 177–191. ACM
(1989)

	On the Optimal Space Complexity of Consensus for Anonymous Processes
	1 Introduction
	2 Space Complexity Lower Bound
	2.1 A Square-Root Lower Bound
	2.2 Linear Lower Bound

	3 Extensions
	References

