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Abstract. Tasks and objects are two predominant ways of specifying
distributed problems. A task specifies for each set of processes (which
may run concurrently) the valid outputs of the processes. An object spec-
ifies the outputs the object may produce when it is accessed sequentially.
Each one requires its own implementation notion, to tell when an exe-
cution satisfies the specification. For objects linearizability is commonly
used, while for tasks implementation notions are less explored.

Sequential specifications are very convenient, especially important
is the locality property of linearizability, which states that linearizable
objects compose for free into a linearizable object. However, most well-
known tasks have no sequential specification. Also, tasks have no clear
locality property.

The paper introduces the notion of interval-sequential object. The
corresponding implementation notion of interval-linearizability gener-
alizes linearizability. Interval-linearizability allows to specify any task.
However, there are sequential one-shot objects that cannot be expressed
as tasks, under the simplest interpretation of a task. The paper also shows
that a natural extension of the notion of a task is expressive enough to
specify any interval-sequential object.

Keywords: Concurrent object · Task · Linearizability · Sequential
specification

1 Introduction

Concurrent Objects. Distributed computer scientists excel at thinking con-
currently, and building large distributed programs that work under difficult
conditions where processes experience asynchrony and failures. Yet, they evade
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thinking about concurrent problem specifications. A central paradigm is that of
a shared object that processes may access concurrently [19,22], but the object
is specified in terms of a sequential specification, i.e., an automaton describing
the outputs the object produces only when it is accessed sequentially. Thus, a
concurrent algorithm seeks to emulate an allowed sequential behavior.

There are various ways of defining what it means for an algorithm to imple-
ment an object, namely, that it satisfies its sequential specification. One of the
most popular consistency conditions is linearizability [20]. An implementation is
linearizable if each of its executions is linearizable: intuitively, for each operation
call, it is possible to find a unique point in the interval of real-time defined by the
invocation and response of the operation, and these linearization points induce
a valid sequential execution. Linearizability is very popular to design compo-
nents of large systems because it is local, namely, one can consider linearizable
object implementations in isolation and compose them for free, without sacrific-
ing linearizability of the whole system [11]. Also, linearizability is a non-blocking
property, which means that a pending invocation (of a total operation) is never
required to wait for another pending invocation to complete.

Linearizability has various desirable properties, additionally to being local
and non-blocking: it allows talking about the state of an object, interactions
among operations is captured by side-effects on object states; documentation
size of an object is linear in the number of operations; new operations can be
added without changing descriptions of old operations. However, as we argue
here, linearizability is sometimes too restrictive. First, there are problems which
have no sequential specifications (more on this below). Second, some problems
are more naturally and succinctly defined in term of concurrent behaviors. Third,
as it is well known, the specification of a problem should be as general as possible,
to allow maximum flexibility to both programmers and program executions.

Distributed Tasks. Another predominant way of specifying a one-shot distributed
problem, especially in distributed computability, is through the notion of a task.
Several tasks have been intensively studied in distributed computability, lead-
ing to an understanding of their relative power [18], to the design of simula-
tions between models [5], and to the development of a deep connection between
distributed computing and topology [17]. Formally, a task is specified by an
input/output relation, defining for each set of processes that may run concur-
rently, and each assignment of inputs to the processes in the set, the valid outputs
of the processes. Implementation notions for tasks are less explored, and they are
not as elegant as linearizability. In practice, task and implementation are usually
described operationally, somewhat informally. One of the versions widely used
is that an algorithm implements a task if, in every execution where a set of pro-
cesses participate (run to completion, and the other crash from the beginning),
input and outputs satisfy the task specification.

Tasks and objects model in a very different way the concurrency that natu-
rally arises in distributed systems: while tasks explicitly state what might hap-
pen when a set of processes run concurrently, objects only specify what happens
when processes access the object sequentially.
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It is remarkable that these two approaches have largely remained indepen-
dent, while the main distributed computing paradigm, consensus, is central to
both. Neiger [21] noticed this and proposed a generalization of linearizability
called set-linearizability. He discussed that there are tasks, like immediate snap-
shot [4], with no natural specification as sequential objects. An object modeling
the immediate snapshot task is necessarily stronger than the immediate snap-
shot task, because such an object implements test-and-set. In contrast there are
read/write algorithms solving the immediate snapshot task and it is well-known
that there are no read/write linearizable implementations of test-and-set. There-
fore, Neiger proposed the notion of a set-sequential object, that allows a set of
processes to access an object simultaneously. Then, one can define an immediate
snapshot set-sequential object, and there are set-linearizable implementations.

Contributions. We propose the notion of an interval-sequential concurrent
object, a framework in which an object is specified by an automaton that
can express any concurrency pattern of overlapping invocations of operations,
that might occur in an execution (although one is not forced to describe all of
them). The automaton is a direct generalization of the automaton of a sequential
object, except that transitions are labeled with sets of invocations and responses,
allowing operations to span several consecutive transitions. The corresponding
implementation notion of interval-linearizability generalizes linearizability and
set-linearizability, and allows to associate states along the interval of execution
of an operation. While linearizing an execution requires finding linearization
points, in interval-linearizability one needs to identify a linearization interval for
each operation (the intervals might overlap). Remarkably, this general notion
remains local and non-blocking. We show that important tasks have no specifi-
cation neither as a sequential object nor as a set-sequential object, but they can
be naturally expressed as interval-sequential objects.

Fig. 1. Equivalence between refined
tasks and one-shot interval-sequential
objects.

Establishing the relationship between
tasks and (sequential, set-sequential and
interval-sequential) automaton-based spec-
ifications is subtle, because tasks admit
several natural interpretations. Interval-
linearizability is a framework that allows
to specify any task, however, there are
sequential one-shot objects that cannot
be expressed as tasks, under the simplest
interpretation of what it means to solve
a task. However, a natural extension of
the notion of solving a task, which we call refined tasks, has the same expres-
sive power to specify one-shot concurrent problems, hence strictly more than
sequential and set-sequential objects. See Figure 1. Interval-linearizability goes
beyond unifying sequentially specified objects and tasks, it sheds new light on
both of them. On the one hand, interval-sequential linearizability provides an
explicit operational semantics for a task (whose semantics, as we argue here, is
not well understood), gives a more precise implementation notion, and brings
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a locality property to tasks. On the other hand, tasks provide a static speci-
fication for automaton-based formalisms such as sequential, set-sequential and
interval-sequential objects.

Finally, Shavit [24] summarizes beautifully the common knowledge state that
“it is infinitely easier and more intuitive for us humans to specify how abstract
data structures behave in a sequential setting.” We hope interval-linearizability
opens the possibility of facilitating reasoning about concurrent specifications,
when no sequential specifications are possible.

All proofs and additional examples can be found in [7].

Related Work. Neiger proposed unifying sequential objects and tasks, using set-
linearizability [21]. Later on, it was again observed that for some concurrent
objects it is impossible to provide a sequential specification, and concurrency-
aware linearizability was defined [16] (still, no locality properties were proved).
Set linearizability and concurrency-aware linearizability are closely related and
both are strictly less powerful than interval linearizability to model tasks. Trans-
forming the question of wait-free read/write solvability of a one-shot sequential
object, into the question of solvability of a task was suggested in [13]. The refined
tasks we propose here is reminiscent to the construction in [13] Linearizability
can be used in an operation that must wait for some other thread to establish
a precondition, by defining two linearization points, representing a request and
a follow-up [23]. These points are reminiscent of the interval used to define an
interval-linearization. Higher dimensional automata are used to model execution
of concurrent operations, and are the most expressive model among other com-
mon operations [14]. They can model transitions which consist of sets of oper-
ations, and hence are related to set-linearizability, but do not naturally model
interval-linearizability. There is work on partial order semantics of programs,
including more flexible notions of linearizability, relating two arbitrary sets of
histories [10], although no compositionality result is proved, and concurrent exe-
cutions are not explicitly studied. It is worth exploring this direction further, as
the properties hold for concurrent executions, and it establishes that lineariz-
ability implies observational refinement, which usually entails compositionality
(see, e.g., [15]).

2 Limitations of Linearizability and Set-Linearizability

Sometimes we work with objects with two operations, but that are intended to
be used as one. For instance, a snapshot object [1] has operations write() and
snapshot(). This object has a sequential specification and there are linearizable
read/write algorithms implementing it (see, e.g., [19,22]). But many times, a
snapshot object is used in a canonical way, namely, each time a process invokes
write(), immediately after it always invokes snapshot(). Indeed, one would like to
think of such an object as providing a single operation, write snapshot(), invoked
with a value x to be deposited in the object, and when the operation returns,
it gives back to the invoking process a snapshot of the contents of the object.
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It turns out that this write-snapshot object has neither a natural sequential nor
a set-sequential specification. However, it can be specified as a task and actually
is implementable from read/write registers.

As observed in [21], in a sequential specification of write-snapshot any of
its executions can be seen as if all invocations occurred one after the other, in
some order. Thus, always there is a first invocation, which must output the set
containing only its input value, and hence could solve test-and-set, contradict-
ing the fact that test-and-set cannot be implemented from read/write registers.
Neiger noted this problem in the context of the immediate snapshot task. He
proposed in [21] the idea that a specification should allow to express that sets
of operations that can be concurrent. He called this notion set-linearizability.
In set-linearizability, an execution accepted by a set-sequential automaton is a
sequence of non-empty sets with operations, and each set denotes operations
that are executed concurrently. While set-linearizability is sufficient to model
the immediate-snapshot task, it is not enough for specifying the write-snapshot
task, and most other tasks.

p

q

write snapshot(1) → {1, 2}

write snapshot(2) → {1, 2, 3}

write snapshot(3) → {1, 2, 3}
r

linearization points

Fig. 2. A write-snapshot execution
that is not set-linearizable.

In set-linearizability, in the execution
in Figure 2, one has to decide if the oper-
ation of q goes together with the one
of p or r. In either case, in the result-
ing execution a process seems to predict
a future operation. The problem is that
there are operations that are affected by
several operations that are not concur-
rent. This cannot be expressed as a set-
sequential execution. Hence, to succinctly
express this type of behavior, we need a
more flexible framework in which it is pos-
sible to express that an operation happens
in an interval of time that can be affected by several operations.

To deal with these problematic tasks, one is tempted to separate an operation
into two operations, set() and get(). The first communicates the input value of a
process, while the second produces an output value to a process. For instance, k-
set agreement is easily transformed into an object with a sequential specification,
by accessing it through set() to deposit a value into the object and get() to
obtain one of the values in the object. In fact, every task can be represented as
a sequential object by splitting the operation of the task in two operations.

Separating an operation into a proposal operation and a returning operation
has several problems (although it is useful in other contexts [23]). First, the
program is forced to produce two operations, and wait for two responses. There
is a consequent loss of clarity in the code of the program, in addition to a loss
in performance, incurred by a two-round trip delay. Also, the intended meaning
of linearization points is lost; an operation is now linearized at two linearization
points. Furthermore, the resulting object may be more powerful; a phenomenon
that has been observed several times in the context of iterated models e.g. [9].
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Additional Examples of Problematic Tasks. Several tasks are problematic for
dealing with them through linearizability, and have no deterministic sequential
specifications. Some have been studied in the past, such as the following.

– adopt-commit [12] is useful to implement round-based protocols for set-
agreement and consensus. Given an input u to the object, the result is an
output of the form (commit, v) or (adopt, v), where commit/adopt is a deci-
sion that indicates whether the process should decide value v immediately
or adopt it as its preferred value in later rounds of the protocol.

– conflict detection [3] has been shown to be equivalent to the adopt-commit.
Roughly, if at least two different values are proposed concurrently at least
one process outputs true.

– safe-consensus [2], a weakening of consensus, where the agreement condi-
tion of consensus is retained, but the validity condition becomes: if the first
process to invoke it returns before any other process invokes it, then it out-
puts its input; otherwise the consensus output can be arbitrary, not even the
input of any process.

– immediate snapshot [4], which plays an important role in distributed com-
putability [17]. A process can write a value to the shared memory using this
operation, and gets back a snapshot of the shared memory, such that the
snapshot occurs immediately after the write.

– k-set agreement [8], where processes agree on at most k input values.
– Exchanger [16], is a Java object that serves as a synchronization point at

which threads can pair up and atomically swap elements.

3 Concurrent Objects

3.1 System Model

The presentation follows [6,20,22]. The system consists of n asynchronous
sequential processes, P = {p1, . . . , pn}, which communicate through a set of
concurrent objects, OBS. Given a set OP of operations offered by the objects
of the system to the processes P , let Inv be the set of all invocations to oper-
ations that can be issued by a process in a system, and Res be the set of all
responses to the invocations in Inv. There are functions: (1) id : Inv → P , (2)
Inv → OP , (3) Res → OP , (4) Res → Inv and (5) obj : OP → OBS, where
id(in) tells which process invoked in ∈ Inv, op(in) tells which operation was
invoked, op(r) tells which operation was responded, res(r) tells which invocation
corresponds to r ∈ Res, and obj(oper) indicates the object that offers operation
oper. There is an induced function id : Res → P defined by id(r) = id(res(r)).
Also, induced functions obj : Inv → OBS defined by obj(in) = obj(op(in)), and
obj : Res → OBS defined by obj(r) = obj(op(r)). The set of operations of an
object X, OP (X), consists of all operations oper, with obj(oper) = X. Similarly,
Inv(X) and Res(X) are resp. the set of invocations and responses of X.

A process is a deterministic automaton that interacts with the objects in
OBS. It produces a sequence of steps, where a step is an invocation of an object’s
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operation, or reacting to an object’s response (including local processing). Con-
sider the set of all operations OP of objects in OBS, and all the correspond-
ing possible invocations Inv and responses Res. A process p is an automaton
(Σ, ν, τ), with states Σ and functions ν, τ that describe the interaction of the
process with the objects. Often there is also a set of initial states Σ0 ⊆ Σ. Intu-
itively, if p is in state σ and ν(σ) = (op,X) then in its next step p will apply
operation op to object X. Based on its current state, X will return a response r
to p and will enter a new state, in accordance to its transition relation. Finally,
p will enter state τ(σ, r) as a result of the response it received from X.

A system consists of a set of processes, P , a set of objects OBS so that each
p ∈ P uses a subset of OBS, together with an initial state for each of the objects.

A configuration is a tuple consisting of the state
of each process and each object, and a configura-
tion is initial if each process and each object is in
an initial state. An execution of the system is mod-
eled by a sequence of events H arranged in a total
order ̂H = (H,<H), where each event is an invo-
cation in ∈ Inv or a response r ∈ Res, that can be
produced following the process automata, interacting
with the objects. Namely, an execution starts, given any initial configuration,
by having any process invoke an operation, according to its transition relation.
In general, once a configuration is reached, the next event can be a response
from an object to an operation of a process or an invocation of an operation
by a process whose last invocation has been responded. Thus, an execution is
well-formed, in the sense that it consists of an interleaving of invocations and
responses to operations, where a processes invokes an operation only when its
last invocation has been responded.

3.2 The Notion of an Interval-Sequential Object

To generalize the usual notion of a sequential object e.g. [6,20] instead of con-
sidering sequences of invocations and responses, we consider sequences of sets of
invocations and responses. An invoking concurrency class C ⊆ 2Inv, is a non-
empty subset of Inv such that C contains at most one invocation by the same
process. A responding concurrency class C, C ⊆ 2Res, is defined similarly.

Interval-Sequential Execution. An interval-sequential execution h is an alter-
nating sequence of invoking and responding concurrency classes, starting in an
invoking class, h = I0, R0, I1, R1, . . . , Im, Rm, where the following conditions are
satisfied

1. For each Ii ∈ h, any two invocations in1, in2 ∈ Ii are by different processes,
id(in1) �= id(in2). Similarly, for Ri ∈ h if r1, r2 ∈ Ri then id(r1) �= id(r2),

2. Let r ∈ Ri for some Ri ∈ h. There is in ∈ Ij for some j ≤ i, such that
res(r) = in and there is no other in′ with id(in) = id(in′) and in′ ∈ Ij′ ,
j < j′ ≤ i.
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It follows that an execution h consists of matching invocations and responses,
perhaps with some pending invocations with no response.

Interval-Sequential Object. An interval-sequential object X is a (not necessarily
finite) Mealy state machine (Q, 2Inv(X), 2Res(X), δ) whose output values R are
responding concurrency classes R of X, R ⊆ 2Res(X), are determined both by
its current state s ∈ Q and the current input I ∈ 2Inv(X), where I is an invoking
concurrency class of X. There is a set of initial states Q0 of X, Q0 ⊆ Q. The
transition relation δ ⊆ Q × 2inv(X) × 2Res(X) × Q specifies both, the output of
the automaton and its next state. If X is in state q and it receives as input a set
of invocations I, then, if (R, q′) ∈ δ(q, I), the meaning is that X may return the
non-empty set of responses R and move to state q′. We stress that always both
I and R are non-empty sets.

Interval-Sequential Execution of an Object. Consider an initial state q0 ∈ Q0 of
X and a sequence of inputs I0, I1, . . . Im. Then a sequence of outputs that X
may produce is R0, R1, . . . Rm, where (Ri, qi+1) ∈ δ(qi, Ii). Then the interval-
sequential execution of X starting in q0 is q0, I0, R0, q1, I1, R1, . . . , qm, Im, Rm.
However, we require that the object’s response at a state uniquely determines the
new state, i.e. we assume if δ(q, Ii) contains (Ri, qi+1) and (Ri, q

′
i+1) then qi+1 =

q′
i+1. Then we may denote the interval-sequential execution of X, starting in q0

by h = I0, R0, I1, R1, . . . , Im, Rm, because the sequence of states q0, q1, . . . , qm
is uniquely determined by q0, and by the sequences of inputs and responses.
When we omit mentioning q0 we assume there is some initial state in Q0 that
can produce h.

Note that X may be non-deterministic, in a given state qi with input Ii it may
move to more than one state and return more than one response. Sometimes it
is convenient to require that the object is total, meaning that, for every singleton
set I ∈ 2Inv and every state q in which the invocation inv in I is not pending,
there is an (R, q′) ∈ δ(q, I) in which there is a response to inv in R.

Our definition of interval-sequential execution is motivated by the fact that
we are interested in well-formed executions h = I0, R0, I1, R1, . . . , Im, Rm. Infor-
mally, the processes should behave well, in the sense that a process does not
invoke a new operation before its last invocation received a response. Also, the
object should behave well, in the sense that it should not return a response to
an operation that is not pending.

The interval-sequential specification of X, ISSpec(X), is the set of all its
interval-sequential executions.

Representation of Interval-Sequential Executions. In general, we will be think-
ing of an interval-sequential execution h as an alternating sequence of invok-
ing and responding concurrency classes starting with an invoking class, h =
I0, R0, I1, R1, . . . , Im, Rm. However, it is sometimes convenient to think of an
execution as a a total order ̂S = (S,

S−→) on a subset S ⊆ CC(X), where
CC(X), is the set with all invoking and responding concurrency classes of X;
namely, h = I0

S−→ R0
S−→ I1

S−→ R1
S−→ · · · S−→ Im

S−→ Rm.
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In addition, the execution h = I0, R0, I1, R1, . . . , Im, Rm can be represented
by a table, with a column for each element in the sequence h, and a row for
each process. A member in ∈ Ij invoked by pk (resp. a response r ∈ Rj to pk)
is placed in the k’th row, at the 2j-th column (resp. 2j + 1-th column). Thus, a
transition of the automaton will correspond to two consecutive columns, Ij , Rj .
See Figure 3, and several more examples in the figures below.

Remark 1. Let X be an interval-sequential object. Suppose for all states q and
all I, if δ(q, I) = (R, q′), then |R| = |I|, and additionally each r ∈ R is a response
to one in ∈ I. Then X is a set-sequential object. If in addition, |I| = |R| = 1,
then X is a sequential object in the usual sense (see Figure 1).

3.3 An Example: The Validity Task

Consider an object X with a single operation validity(x), that can be invoked by
each process, with a proposed input parameter x, and a very simple specification:
an operation returns a value that has been proposed. This problem is easily
specified as a task. Indeed, many tasks include this property, such as consensus,
set-agreement, write-snapshot, etc. As an interval-sequential object, it is formally
specified by an automaton, where each state q is labeled with two values, q.vals is
the set of values that have been proposed so far, and q.pend is the set of processes
with pending invocations. The initial state q0 has q0.vals = ∅ and q0.pend = ∅.
If in is an invocation to the object, let val(in) be the proposed value, and if r
is a response from the object, let val(r) be the responded value. For a set of
invocations I (resp. responses R) vals(I) denotes the proposed values in I (resp.
vals(R)). The transition relation δ(q, I) contains all pairs (R, q′) such that:

– If r ∈ R then id(r) ∈ q.pend or there is an in ∈ I with id(in) = id(r),
– If r ∈ R then val(r) ∈ q.vals or there is an in ∈ I with val(in) = val(r),
– q′.vals = q.val ∪ vals(I) and q′.pend = (q.pend ∪ ids(I)) \ ids(R).

On the right of Figure 3 there is part of a validity object automaton. On the
left of Figure 3 it is illustrated an interval-sequential execution with the vertical
red double-dot lines: I0, R0, I1, R1, where I0 = {p.validity(1), q.validity(2)}, R0 =
{p.resp(2)}, I1 = {r.validity(3)}, R1 = {q.sfresp(3), r.resp(1)}.

The interval-linearizability consistency notion described in Section 4 will for-
mally define how a general execution (blue double-arrows in the figure) can be
represented by an interval-sequential execution (red double-dot lines), and hence
tell if it satisfies the validity object specification. Notice that the execution in
Figure 3 shows that the validity object has no specification neither as a sequential
nor as a set-sequential object.

4 Interval-Linearizability

Interval-Sequential Execution of the System. Consider a subset S ⊆ CC of
the concurrency classes of the objects OBS in the system and an interval-
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Fig. 3. An execution of a validity object, and the corresponding part of its interval-
sequential automaton

sequential execution ̂S = (S,
S−→), defining an alternating sequence of invok-

ing and responding concurrency classes, starting with an invoking class. For an
object X, the projection of ̂S at X, ̂S|X = (SX ,

SX−→), is defined as follows: (1) for
every C ∈ S with at least one invocation or response on X, SX contains a con-
currency class C ′, consisting of the (non-empty) subset of C of all invocations
or responses of X, and (2) for every C ′, C ′′ ∈ SX , C ′ SX−→ C ′′ if and only if there
are T ′, T ′′ ∈ S such that C ′ ⊆ T ′, C ′′ ⊆ T ′′ and T ′ S−→ T ′′.

We say that ̂S = (S,
S−→) is an interval-sequential execution of the system

if ̂S|X is an interval-sequential execution of X for every X ∈ OBS. That is,
if ̂S|X ∈ ISSpec(X), the interval-sequential specification of X, for every X ∈
OBS. Let ̂S = (S,

S−→) be an interval-sequential execution. For a process p, the

projection of ̂S at p, ̂S|p = (Sp,
Sp−→), is defined as follows: (1) for every C ∈ S

with an invocation or response by p, Sp contains contains a class C with the
invocation or response by p (there is at most one event by p in C), and (2) for

every a, b ∈ Sp, a
Sp−→ b if and only if there are T ′, T ′′ ∈ S such that a ∈ T ′,

b ∈ T ′′ and T ′ S−→ T ′′.

Interval-Linearizability. Recall that an execution of the system is a sequence
of invocations and responses (Section 3.1). An invocation in an execution E is
pending if it has no matching response, otherwise it is complete. An extension
of an execution E is obtained by appending zero or more responses to pending
invocations.

An operation call in E is a pair consisting of an invocation and its matching
response. Let comp(E) be the sequence obtained from E by removing its pend-
ing invocations. The order in which invocation and responses in E happened,
induces the following partial order: ̂OP = (OP,

op−→) where OP is the set with all
operation calls in E, and for each pair op1, op2 ∈ OP , op1

op−→ op2 if and only if
term(op1) < init(op2) in E, namely, the response of op1 appears before the invo-
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cation of op2. Given two operation op1 and op2, op1 precedes op2 if op1
op−→ op2,

and they are concurrent if op1
op
� op2 and op2

op
� op1.

Consider an execution of the system E and its associated partial order ̂OP =
(OP,

op−→), and let ̂S = (S,
S−→) be an interval-sequential execution. We say that

an operation a ∈ OP appears in a concurrency class S′ ∈ S if its invocation or
response is in S′. Abusing notation, we write a ∈ S′. We say that S−→ respects
op−→, also written as

op−→⊆ S−→, if for every a, b ∈ OP such that a
op−→ b, for every

T ′, T ′′ ∈ S with a ∈ T ′ and b ∈ T ′′, it holds that T ′ S−→ T ′′.

Definition 1 (Interval-linearizability). An execution E is interval-
linearizable if there is an extension E of E and an interval-sequential execution
̂S = (S,

S−→) such that

1. for every process p, comp(E)|p = ̂S|p,
2. for every object X, ̂S|X ∈ ISS(X) and
3. S−→ respects

op−→, where ̂OP = (OP,
op−→) is the partial order associated to

comp(E).

We say that ̂S = (S,
S−→) is an interval-linearization of E.

Remark 2. When we restrict to interval-sequential executions in which for every
invocation there is a response to it in the very next concurrency class, then
interval-linearizability boils down to set-linearizability. If in addition we demand
that every concurrency class contains only one element, then we have lineariz-
ability. See Figure 1.

We can now complete the example of the validity object. In Figure 4 there
is an interval linearization of the execution in Figure 3.

init term init term
p validity(1) resp(2)
q validity(2) resp(3)
r validity(3) resp(1)

Fig. 4. An execution of a Validity object

Even though interval-linearizability is much more general than linearizability
it retains some of its benefits.

Theorem 1 (Locality of Interval-Linearizability). An execution E is
interval-linearizable if and only if E|X is interval-linearizable, for every object X.

Theorem 2 (Set-Linearizability is Non-Blocking). Let E be an interval-
linearizable execution in which there is a pending invocation inv(op) of a total
operation. Then, there is a response res(op) such that E · res(op) is interval-
linearizable.
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5 Tasks and Interval-Sequential Objects

A task is a static way of specifying a one-shot concurrent problem, namely, a
problem with one operation that can be invoked only once by each process.
Here we study the relationship between tasks and the automata-based ways of
specifying a concurrent problem that we have been considering.

A task is usually specified informally, in the style of Section 2. E.g., for the
k-set agreement task one would say that each process proposes a value, and
decides a value, such that (validity) a decided value has been proposed, and
(agreement) at most k different values are decided.

Formally, a task (I,O,Δ) consists of an input complex I, an output complex
O, and an input/output relation Δ. Each complex consists of a set of simplexes, of
the form s = {(id1, x1), . . . , (idk, xk)}, and closed under containment. An input
(resp. output) simplex specifies an assignment of input (resp. output) values,
xi to process idi. A singleton simplex is a vertex. The relation Δ specifies for
each input simplex s ∈ I, a sub-complex Δ(s) ⊆ O, such that if s, s′ are two
simplexes in I with s′ ⊂ s, then Δ(s′) ⊂ Δ(s).

A task has only one operation, task(), which process idi may call with value
xi, if (idi, xi) is a vertex of I. The operation task(xi) may return yi to the
process, if (idi, yi) is a vertex of O. Let E be an execution where each process
calls task() once. Then, σE is the input simplex defined as follows: (idi, xi) is in
σE iff in E there is an invocation of task(xi) by process idi. The output simplex
τE is defined similarly: (idi, yi) is in τE iff there is a response yi to a process idi

in E. We say that E satisfies 〈I,O,Δ〉 if for every prefix E′ of E, it holds that
τE′ ∈ Δ(σE′). The prefix requirement prevents executions that globally seem
correct, but in a prefix a process predicts future invocations.1

From Tasks to Interval-Sequential Objects. A task is a very compact way of spec-
ifying a distributed problem that is capable of describing allowed behaviors for
certain concurrency patterns, and indeed it is hard to understand what exactly
is the problem being specified. The following theorem (with its proof) provides
an automata-based representation of a task, explaining which outputs may be
produced in each execution, as permitted by Δ.

Theorem 3. For every task T , there is an interval-sequential object OT such
that an execution E satisfies T if and only if it is interval-linearizable with respect
to OT .

To give an intuition of this theorem, consider the immediate snapshot task
for three processes in Figure 5 with two additional output simplexes, σ1 and σ2.
A simple case is the output simplex in the center of the output complex, where
the three processes output {p, q, r}. The case is simple because this simplex does
not intersect the boundary, hence, it can be produced as output only when all

1 This requirement has been implicitly considered in the past by stating that an algo-
rithm solves a task if any of its executions agree with the task specification.
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Fig. 5. Two special output simplexes σ1, σ2, and interval-linearizations of two execu-
tions with corresponding outputs

three operations are concurrent and then the corresponding interval-sequential
object models this simplex with a single interval-sequential execution in which
the three processes run concurrently. More interesting is the output simplex σ3,
where the processes also may run concurrently, but in addition, the same out-
puts may be returned in a fully sequential execution, because σ3 intersects both
the 0-dimensional (the corners) and the 1-dimensional boundary of the output
complex. In fact σ3 can also be produced if p, q are concurrent, and later comes
r, because 2 vertices of σ3 are in Δ(p, q) (such an execution is set-sequential).

Now, consider the two more awkward output simplexes σ1, σ2 in Δ(σ) added
to the immediate-snapshot output complex, where σ1 = {(p, {p, q}), (q, {p, q, r}),
(r, {p, r})}, and σ2 = {(p, {p, q, r}), (q, {q}), (r, {r})}. At the bottom of the
figure, two executions and their interval-linearizations are shown, though there
are more executions that are interval-linearizable and can produce σ1 and σ2.
Consider σ2. It has a face, {(q, {q})}, in Δ({q}), and another face, {(r, {r})} in
Δ({r}). This specifies a different behavior from the output simplex in the center,
that does not intersect with the boundary. Since {(q, {q})} ∈ Δ({q}), it is OK
for q to return {q} when it invokes and returns before the others invoke. But
also it is OK for q to return {q} when it invokes and runs concurrently with p
and r because {(q, {q})} ∈ Δ({p, q, r}). It similarly happens to r. Aditionally
since {(p, {p, q, r})} is not in the boundary, p can return {p, q, r} only if it runs
concurrently with the others. The main observation here is that the structure of
the mapping Δ encodes the interval-sequential executions that can produce the
outputs in a given output simplex. In the example, Δ precludes the possibility
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that in a sequential execution the processes outputs the values in σ1, since Δ
specifies no process can decide without seeing anyone else.

From One-Shot Interval-Sequential Objects to Tasks. The converse of Theorem 3
is not true. Lemma 1 shows that even some sequential objects, such as one-shot
queues, cannot be represented as a task. Also, recall that there are tasks with
no set-sequential specification. Thus, both tasks and set-sequential objects are
interval-sequential objects, but they are incomparable.

Lemma 1. There is a sequential one-shot object O such that there is no task
TO, satisfying that an execution E is linearizable with respect to O if and only
if E satisfies TO (for every E).

While this version of tasks have strictly less expressive power than interval-
sequential one-shot objects, a slightly different version has the same power for
specifying distributed one-shot problems. Roughly, tasks cannot model interval-
sequential objects because they do not have a mechanism to encode the state of
an object. The extension below allows to model states.

In a refined task T = 〈I,O,Δ〉, I is defined as usual and each output
vertex of O has the form (idi.yi, σ′

i) where idi and yi are, as usual, the ID
of a process and an output value, and σ′

i is an input simplex called the set-
view of idi. The properties of Δ are maintained and in addition it satisfies
the following: for every σ ∈ I, for every (idi, yi, σ′

i) ∈ Δ(σ), it holds that
σ′
i ⊆ σ. An execution E satisfies a refined task T if for every prefix E′

of E, it holds that Δ(σE′) contains the simplex {(idi, yi, σi E′′) : (idi, yi) ∈
τE′ ∧ E′′ (which defines σiE′′) is the shortest prefix of E′ containing (idi, yi)}.

We stress that, for each input simplex σ, for each output vertex (idi, yi, σi) ∈
Δ(σ), σi is a way to model distinct output vertexes in Δ(σ) whose output val-
ues (in (idi, yi)) are the same, then a process that outputs that vertex does not
actually output σi. In fact, the set-view of a process idi corresponds to the set
of invocations that precede the response (idi, yi) to its invocation in a given
execution (intuitively, the invocations that a process “sees” while computing its
output value ). Set-views are the tool to encode the state of an object. Also
observe that if E satisfies a refined task T , then the set-views behave like snap-
shots: (1) a process itself (formally, its invocation) appears in its set-view and
(2) all set-view are ordered by containment (since we assume E is well-formed).

Theorem 4. For every one-shot interval-sequential object O with a single total
operation, there is a refined task TO such that any execution E is interval-
linearizable with respect to O if and only if E satisfies TO.

Theorem 5. For every refined task T , there is an interval-sequential object OT

such that an execution E satisfies T if and only if it is interval-linearizable with
respect to OT .
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