
Modular Verification of Concurrency-Aware
Linearizability

Nir Hemed1, Noam Rinetzky1(B), and Viktor Vafeiadis2

1 Tel Aviv University, Tel Aviv, Israel
maon@cs.tau.ac.il

2 MPI-SWS, Kaiserslautern, Germany

Abstract. Linearizability is the de facto correctness condition for con-
current objects. Informally, linearizable objects provide the illusion that
each operation takes effect instantaneously at a unique point in time
between its invocation and response. Hence, by design, linearizability
cannot describe behaviors of concurrency-aware concurrent objects (CA-
objects), objects in which several overlapping operations “seem to take
effect simultaneously”. In this paper, we introduce concurrency-aware
linearizability (CAL), a generalized notion of linearizability which allows
to formally describe the behavior of CA-objects. Based on CAL, we
develop a thread- and procedure-modular verification technique for rea-
soning about CA-objects and their clients. Using our new technique, we
present the first proof of linearizability of the elimination stack of Hendler
et al. [10] in which the stack’s elimination subcomponent, which is a
general-purpose CA-object, is specified and verified independently of its
particular usage by the stack.

1 Introduction

Linearizability [12] is a property of the externally observable behavior of con-
current objects and is considered the de facto standard for specifying concur-
rent objects. Intuitively, a concurrent object is linearizable if in every execution
each operation seems to take effect instantaneously between its invocation and
response, and the resulting sequence of (seemingly instantaneous) operations
respects a given sequential specification. For certain concurrent objects, however,
it is impossible to provide a useful sequential specification: their behavior in the
presence of concurrent (overlapping) operations is, and should be, observably
different from their behavior in the sequential setting. We refer to such objects
as Concurrency-Aware Concurrent Objects (CA-objects). We show that the tra-
ditional notion of linearizability is not expressive enough to allow for describing
all the desired behaviors of certain important CA-objects without introducing
unacceptable ones, i.e., ones which their clients would find to be too lax.

Providing clear and precise specifications for concurrent objects is an impor-
tant goal and is a necessary step towards developing thread-modular composi-
tional verification techniques, i.e., ones which allow to reason about each thread

c© Springer-Verlag Berlin Heidelberg 2015
Y. Moses (Ed.): DISC 2015, LNCS 9363, pp. 371–387, 2015.
DOI: 10.1007/978-3-662-48653-5 25

372 N. Hemed et al.

separately (thread-modular verification) and to compose the proofs of concur-
rent objects from the proofs of their subcomponents (compositional verification).
Designing such techniques is challenging because they have to take into account
the possible interference by other threads on the shared subcomponents without
exposing the internal structure of the latter.

We continue to describe the notions of CA-objects and CA-linearizability via
examples. A prominent example of a CA-object is the exchanger object (see,
e.g., java.util. concurrent.Exchanger). Exchangers allow threads to pair up
and atomically swap elements so that either both threads manage to swap their
elements or none of them does. Although exchangers are widely used in practice
in genetic algorithms, pipeline designs, and implementations of thread pools and
highly concurrent data structures such as channels, queues, and stacks [10,21,
22,24], they do not have a formal specification, which precludes modular proofs
of their clients. This is perhaps not so surprising: exchangers are CA-objects,
and as we show, they cannot be given a useful sequential specification (see §3).
In order to specify CA-objects, we extend the notion of linearizability: we relax
the requirement that specifications should be sequential, and allow them to be
“concurrency-aware” as in the following informal exchanger specification.

{true} t1 : x = exchange(v1) || t2 : y = exchange(v2) {x = (true, v2) ∧ y = (true, v1)}
{true} t : x = exchange(v) {x = (false, v)}

where the notation t : r = exchange(v) indicates that exchange is invoked
by thread t. This specification says that two concurrent threads t1 and t2 can
succeed in exchanging their values but that a thread can also fail to find a partner
and return back its argument.

We next consider a client of the exchanger, the elimination stack of Hendler
et al. [10]. The elimination stack is comprised of a lock-free stack and an elimina-
tion module (an array of exchangers). It achieves high performance under high
workloads by allowing concurrent pairs of push and pop operations to eliminate
each other and thus reduce contention on the main stack. To verify the correct-
ness of the elimination stack, one needs to ensure that every push operation
can be eliminated by exactly one pop operation, and vice versa, and that the
paired operations agree on the effect of the successful exchange to the observable
behavior of the elimination stack as a whole. We present a reasoning technique
which allows to provide natural specifications for such intricate interactions, and
modularly verify their correct implementation. Intuitively, we instrument the pro-
gram with an auxiliary variable that logs the sets of “seemingly simultaneous”
operations on objects (CA-trace), e.g., pairs of matching successful exchange
operations and singletons of failed ones.

The contributions of this paper can be summarized as follows:
– We identify the class of concurrency-aware objects in which certain opera-

tions should “seem to take effect simultaneously” and provide formal means
to specify them using concurrency-aware linearizability (CAL), a generalized
notion of linearizability built on top of as restricted form of concurrent spec-
ifications.

Modular Verification of Concurrency-Aware Linearizability 373

– We present a simple and effective method for verifying CAL. The unique
aspects of our approach are: (i) The ability to treat a single atomic action as
a sequence of operations by different threads which must execute completely
and without interruptions, thus providing the illusion of simultaneity, and
(ii) Allowing CA-objects built over other CA-objects to define their CA-trace
as a function over the traces of their encapsulated objects, which makes
reasoning about clients straightforward.

– We present the first modular proof of linearizability of the elimination
stack [10] in which (i) the elimination subcomponent is verified indepen-
dently of its particular usage by the stack, and (ii) the stack is verified using
an implementation-independent concurrency-aware specification of the elim-
ination module.

2 Motivating Examples

In this section, we describe an implementation of an exchanger object, which we
use as our running example, and of one of its clients, an elimination stack. In [9],
we describe another client of the exchanger, a synchronous queue [22].

We assume an imperative programming language which allows to implement
concurrent objects using object-local variables, dynamically (heap) allocated
memory and a static (i.e., a priori fixed) number of concurrent subobjects. A pro-
gram is comprised of a parallel composition of sequential commands (threads),
where each thread has its own local variables. Threads share access to the dynam-
ically allocated memory and to a static number of concurrent objects. We assume
that concurrent objects follow a strict ownership discipline: (1) objects can be
manipulated only by invoking their methods; (2) subobjects contained in an
object o can be used only by o, the (unique) concurrent object that contains
them; and (3) there is a strict separation between the parts of the memory used
for the implementation of different objects. The operational semantics of our lan-
guage is standard and can be found in [9]. We denote the object-local variables
of an object o by Vars(o). For readability, we write our examples in a Java-like
syntax.

2.1 Exchanger

Figure 1 shows a simplified implementation of the (wait-free) exchanger object
in the java.util.concurrent library. A client thread uses the exchanger by
invoking the exchange method with a value that it offers to swap. The exchange
method attempts to find a partner thread and, if successful, instantaneously
exchanges the offered value with the one offered by the partner. It then returns
a pair (true,data), where data is the partner’s value of type int. If a partner
thread is not found, exchange returns (false,v), communicating to the client
that the operation has failed. In more detail, an exchange is performed using
Offer objects, consisting of the data offered for exchange and a hole pointer. A

374 N. Hemed et al.

1 class Offer {
2 thread id tid;
3 int data;
4 Offer hole;
5 Offer(thread id t, int d)
6 { tid = t; data = d; hole = null; }
7 }
8 class Exchanger {

9 private Offer g = null;
10 private Offer fail = new Offer(0,0);

11
{

TE|tid = T
}

12 (bool,int) exchange(int v) {
13 Offer n = new Offer(tid,v);
14

{
A
}

15 if (CAS(g, null, n)){ // init

16
{
(TE|tid = T ∧ n �→ tid, v, null ∧ g = n) ∨ B(n.hole)

}

17 sleep(50);
18 if (CAS(n.hole, null, fail)) // pass

19
{

TE|tid = T
}

20 return (false,v); // fail

21 else
{
B(n.hole)

}

22 return (true,n.hole.data);
23 }
24

{
A
}

25 Offer cur = g;
26

{
A ∧ (g = cur ∨ cur.hole �= null)

}

27 if (cur != null) {
28

{
A ∧ (g = cur ∨ cur.hole �= null) ∧ cur �= null ∧ ¬s

}

29 bool s = CAS(cur.hole, null, n); // xchg

30
{
(¬s ∧ A ∨ s ∧ B(cur)) ∧ cur �= null ∧ cur.hole �= null

}

31 CAS(g, cur, null); // clean

32 if (s)
{
B(cur)

}

33 return (true,cur.data);
34 }
35 return (false,v); // fail
36 }

37
{
(∃t′, v′. ret = (true, v′) ∧ TE|tid = T ·E.swap(tid, v, t′, v′))
∨ (ret = (false, v) ∧ TE|tid = T ·(E.{(tid, ex(v) � false, v)}))

}

38 }

Fig. 1. Implementation of the exchanger CA-object annotated with its proof outline.

successful swap occurs when the hole pointer in the Offer of one thread points
to the Offer of another thread, as depicted in Figure 1(d).

A thread can participate in a swap in two ways. The first way happens when
the thread finds that the value of g is null, as in the state depicted in Figure 1(a).
In this case, the thread attempts to set g to its Offer (line 15) resulting in a state
like the one shown in Figure 1(b). It then waits for a partner thread to match
with (line 17). Upon awakening, it checks whether it was paired with another
thread by executing a CAS on its own hole (line 18). If the CAS succeeds, then a
match did not occur, and setting the hole pointer to point to the fail sentinel
signals that the thread is no longer interested in the exchange. (The resulting
state is depicted in Figure 1(c).) A failed CAS means that another thread has
already matched the Offer and the exchange can complete successfully.

The second way happens when the thread finds at line 15 that g is not null. In
this case, the thread attempts to update the hole field of the Offer pointed to by
g from its initial null value to its own Offer (CAS at line 29). An additional CAS
(line 31) sets g back to null. By doing so, the thread helps to remove an already-
matched offer from the global pointer; hence, the CAS at line 31 is unconditional.
Moreover, this cleanup prevents having to wait for the thread that set g to its
offer; such a wait would compromise the wait-free property of the exchanger.

2.2 Elimination Stack

The elimination stack [10] is a scalable concurrent stack implemented using two
subobjects: a concurrent stack, S, which implements the internal stack data
structure, and an elimination layer, AR. The concurrent stack, S, exposes push()
and pop() methods that perform CAS operations to modify the top of the stack,
and fail if there is any contention on the head of the stack. The elimination layer,

Modular Verification of Concurrency-Aware Linearizability 375

1 class ElimArray {
2 Exchanger[] E = new Exchanger[K];
3 (bool, int) exchange(int data) {
4 int slot = random(0,K-1);
5 return E[slot].exchange(data);
6 } }

7 class Stack {
8 class Cell {int data; Cell next;}
9 Cell top = null;

10 bool push(int data) {
11 Cell h = top;
12 Cell n = new Cell(data, h);
13 return CAS(&top, h, n);
14 }

15 (bool, int) pop() {
16 Cell h = top;
17 if (h == null)
18 return (false, 0); // EMPTY
19 Cell n = h.next;
20 if (CAS(&top, h, n))
21 return (true, h.data);
22 else
23 return (false, 0);
24 } }

25 class EliminationStack {
26 final int POP_SENTINAL = INFINITY;
27 Stack S = new Stack();
28 ElimArray AR = new ElimArray();

29 bool push(int v) {
30 int d;
31 while(true) {
32 bool b = S.push(v);
33 if (b) return true;
34 (b,d) = AR.exchange(v);
35 if (d == POP_SENTINAL)
36 return true;
37 } }

38 (bool, int) pop() {
39 bool b;
40 int v;
41 while(true) {
42 (b,v) = S.pop();
43 if (b) return (true,v);
44 (b,v) = AR.exchange(POP_SENTINAL);
45 if (v != POP_SENTINAL)
46 return (true,v);
47 } }
48 }

Fig. 2. An implementation of the elimination stack of Hendler et al. [10].

AR, essentially acts as an exchanger object, but is implemented as an array of
exchangers to reduce contention.

Figure 2 shows a simplified version of the elimination stack. A pushing,
respectively, popping, thread first tries to perform its operation on the main
stack (lines 32 and 42). If it fails due to contention, it uses the elimination layer
to directly exchange a value with a concurrently executing thread: A pushing
thread invokes AR.exchange (line 34) with its input value as argument, and a
popping thread offers the special value POP SENTINAL (line 44). When push calls
AR.exchange, it randomly selects an array entry within the elimination array’s
range and attempts to exchange a value with another thread. The pushing thread
checks if the return value matches the POP SENTINAL. Symmetrically, a popping
thread that calls AR.exchange checks if the return value is not POP SENTINAL.
Note that the exchange operation might fail. This might happen either because
no exchange took place (the call to exchange returned (false, 0)) or because
the exchange was performed between two threads executing the same operation.
A thread deals with such a failure by simply retrying its operation.

3 Concurrency-Aware Linearizability (CAL)

Linearizability [12] relates (the observable behavior of) an implementation of
a concurrent object with a sequential specification. Both the implementation
and the specification are formalized as prefix-closed sets of histories. A history
H = ψ1ψ2 . . . is a sequence of method invocation (call) and response (return)
actions. Specifications are given using sequential histories, histories in which

376 N. Hemed et al.

(H1)
t1:

t2:

t3:

inv(3) res(4)

inv(4) res(3)

inv(7) res(⊥)

(H2)
t1:

t2:

t3:

inv(3) res(4)

inv(4) res(3)

inv(7)res(⊥)

(H3)

t1:

t2:

t3:

inv(3) res(4)

inv(4) res(3)

inv(7)res(⊥)

time

(P) exchg(3)
︸ ︷︷ ︸

t1

‖ exchg(4)
︸ ︷︷ ︸

t2

‖ exchg(7)
︸ ︷︷ ︸

t3

(SH)

(CAH)

(CH)

Fig. 3. A client program P together with a concurrent history (H1), a CA-history
(H2), and an undesired sequential history (H3). We also show schematic depictions of
a sequential history (SH), a CA-history (CAH), and an arbitrary concurrent history
(CH).

every response is immediately preceded by its matching invocation. Implemen-
tations, on the other hand, allow arbitrary interleaving of actions by different
threads, as long as the subsequence of actions of every thread is sequential.
Informally, a concurrent object OSC is linearizable with respect to a specifica-
tion OSA if every history H in OSC can be explained by a history S in OSA

that “looks similar” to H. The similarity is formalized by a real-time relation
H �RT S, which requires S to be a permutation of H preserving the per-thread
order of actions and the order of non-overlapping operations (execution of meth-
ods) on objects.

We claim that it is impossible to provide a useful sequential specification for
the exchanger. Figure 3 shows a program P which uses an exchanger object and
three histories, where an exchange(n) operation returning value n′ is depicted
using an interval bounded by an “inv(n)” and a “res(n′)” actions. Note that
histories H1 and H2 might occur when P executes, but H3 cannot. Histories H1

and H2 correspond to the case where threads t1 and t2 exchange items 3 and 4,
respectively, and t3 fails to pair up. History H3 is one possible sequential explana-
tion of H1. Using H3 to explain H1 raises the following problem: if H3 is allowed
by the specification then every prefix of H3 must be allowed as well. In particu-
lar, history H ′

3 in which only t1 performs its operation should be allowed. Note
that in H ′

3, a thread exchanges an item without finding a partner. Clearly, H ′
3 is

an undesired behavior. In fact, any sequential history that attempts to explain
H1 would allow for similar undesired behaviors. Indeed, sequential histories can
explain only executions in which all exchange operations fail. We conclude that
any sequential specification of the exchanger is either too restrictive or too loose.

Modular Verification of Concurrency-Aware Linearizability 377

3.1 A Formal Definition of Concurrency-Aware Linearizability

We now formalize the notion of concurrency-aware linearizability. We assume
infinite sets of object names o ∈ O, method names f ∈ F, and threads identifiers
t ∈ T.

Definition 1. An object action is either an invocation ψ = (t, inv o.f(n)) or
a response ψ = (t, res o.f � n). We denote the thread, object, and method of
ψ by tid(ψ) = t, oid(ψ) = o, and fid(ψ) = f , respectively.

Intuitively, an invocation ψ = (t, inv o.f(n)) means that thread t started
executing method f on object o passing n as a parameter, and a response
ψ = (t, res o.f ′ � n) means that the execution of method f ′ terminated with
a return value n.

Definition 2. A history H is a finite sequence of invocations and responses.
A history is sequential if it comprised of an alternation of invocations and
responses starting with an invocation. A history H is well-formed if for every
thread t, H|t is sequential, where H|t is the subsequence of H comprised of
actions of thread t. A history is complete if it is well-formed and every invo-
cation has a matching response. History Hc is a completion of a well-formed
history H if it is complete and can be obtained from H by (possibly) extending
H with some response actions and (possibly) removing some invocation actions.
We denote by complete(H) the set of all completions of H. An object system
is a prefix-closed set of well-formed histories.

Definition 3. The real-time order between actions of a well-formed history
H is an irreflexive partial order ≺H on (indices of) object actions: i ≺H j if
there exists i ≤ i′ < j′ ≤ j such that tid(Hi) = tid(Hi′), tid(Hj) = tid(Hj′),
Hi′ = (, res) and Hj′ = (, inv)).

Essentially, a history records the interaction between the the client program
and the object system. The interaction is recorded at the interface level of the
latter at the point where control passes from the program to the object system
and vice versa. Given two operations, the real-time order determines whether
one operation precedes the other or whether the two are concurrent, i.e., their
executions overlap.

Definition 4 (CA-traces). An operation of a concurrent object o, denoted
by (t, f(n) � n′), is a pair of an invocation (t, inv o.f(n)) and its matching
response(t, res o.f � n′). A concurrency-aware trace T is a sequence of CA-
elements where each CA-element is a pair o.S of an object o and a non-empty
set S of operations of o.

Roughly speaking, every CA-element represents a set of overlapping oper-
ations on one object and a CA-trace is a sequence of such sets. CA-
traces provide a uniform representation of complete histories where opera-
tions may only overlap in a pairwise manner. For example, the CA-element

378 N. Hemed et al.

o.{(t1, f1(n1) � r1), . . . , (tk, fk(nk) � rk)} represents, among others, the history
((t1, inv o.f1(n1))· . . . ·(tk, inv o.fk(nk))· (t1, res o.f1 � r1)· . . . ·(tk, res o.fk � rk)).

Given a CA-trace T , the projection of T to a thread t, denoted by T |t, is
the subsequence of CA-elements of T mentioning t. Note that the projection of
a trace T to thread t returns not only the operations of t but also all operations
of other threads that are concurrent with some operation of thread t. Similarly,
T |o denotes the subsequence of CA-elements of T mentioning o.

Let H be a complete history, and i and j indices of an invoke action
Hi = (t, inv o.f(n)) and of its matching response Hj = (t, res o.f �n′). The oper-
ation pertaining to Hi, denoted by OP(H, i), is (t, f(n) � n′). Let J ⊆ {1..H}
be a set of indices of actions in H which operate on the same object o, i.e.,
∀j ∈ J. oid(Hj) = o. The operation set corresponding to J in H, denoted by
OPSet(H,J), is o.{OP(H, j) | j ∈ J}.

Definition 5. A complete history H agrees with a CA-trace T , denoted by
H �CAL T , if there is a surjective function π : {i | 1 ≤ i ≤ |H| ∧ Hi =
(, inv)} → {1..|T |} such that

∀i, j. (i ≺H j =⇒ π(i) < π(j)) ∧ ∀k ∈ {1, · · · , |T |}. Tk = OPSet(H, {m | π(m) = k}) .

Intuitively, a complete history H agrees with a CA-trace T if every operation
in H appears in one CA-element of T , and vice versa. Furthermore, the real-
time order between the operations in H must be included in the order of the
CA-elements of T that they appear in (i.e., T must preserve the order of any
operations ordered according to H).

Formally, concurrency-aware linearizability of an object system is described
by relating each of its histories to a corresponding CA-trace:

Definition 6 (Concurrency-Aware Linearizability). We say that an object
system, OS, is concurrency-aware linearizable (CAL) with respect to a set
of CA-traces, T , if ∀H ∈ OS.∃Hc ∈ complete(H).∃T ∈ T . Hc �CAL T .

Thus, a CA-linearizable object is one that every interaction with it can be
“explained” by a CA-trace adhering to its specification.

Note. In [8], we formalized the notion of concurrency-aware linearizability in
terms of a relation between sets of histories. The novelty there was that the spec-
ification was comprised of concurrency-aware histories (CA-histories) instead
of sequential ones. Informally, a CA-history allows for operations of different
threads to overlap, as long as they overlap in a pairwise manner: An invoke
action can follow a response action only if the latter appears at the end a com-
plete history. As a result, a CA-histories can be seen as a sequence of sets of
concurrent operations where each set is an equivalence class with respect to the
real-time order. In this paper, we found that it is more convenient to work with
CA-traces, which provide an equivalent alternative presentation of complete CA-
histories that is insensitive to the order of actions of overlapping operations.

Modular Verification of Concurrency-Aware Linearizability 379

4 Specifying Concurrency-Aware Concurrent Objects

In this section, we gradually develop our approach for providing logical (sym-
bolic) specifications of CA-objects by applying it to the exchanger. An accu-
rate specification of the exchanger is one where every successful exchange corre-
sponds to the overlapping of exactly the two operations that participated in the
exchange, while an unsuccessful exchange, i.e., one that returns (false,), does
not overlap with any other operation. Formally, the specification of an exchanger
object E can be given as the set of CA-traces S1S2S3 · · · where each CA-element
Si is either

– E.{(t, ex(v)� true, v′), (t′, ex(v′)� true, v)} for some t, t′, v, v′ such that t �= t′

(which in the following we will abbreviate as E.swap(t, v, t′, v′)), or
– E.{(t, ex(v) � false, v)} for some thread t and value v.

This specification, however, has a very global nature and is therefore cumbersome
to use when reasoning about a particular exchange.

What we would like is a local way to specify CA-objects that is amenable to
logical (syntactic) treatment. Our idea is to specify the effect of individual oper-
ations using Hoare triples [13], as is common in the sequential setting. Indeed,
Herlihy and Wing [12] have also adopted this approach to describe the set of
histories in the sequential specification of linearizable concurrent objects. Can
we provide such a specification to the exchanger?

As a first attempt, consider the concurrent specification shown in §1. This
specification states that only two threads that execute exchange() concurrently
can match and successfully swap elements, while a thread that failed to find a
partner fails to swap.

This specification may appear intuitive, but it is difficult to give it a formal
meaning. The standard interpretation of Hoare triples is insufficient, because it
precludes thread-modular compositional reasoning. The most obvious problem
is that it is not possible to reason about the body of one thread in a sequen-
tial manner because the specification explicitly contains the parallel composition
operator. A second problem is that it is difficult to adapt the concurrent specifi-
cation of the exchange operations to an agreed asymmetric view in the context
in which it is used. For example, when verifying the elimination stack, we would
like to pretend that the exchange operation of the pushing thread happens right
before that of the popping thread. This would allow to correctly interpret the
simultaneous exchange operations as an elimination of a push(n) operation by
a pop() which returns n.

To overcome the first problem, we extend the specification with an auxiliary
variable TE recording the CA-trace witnessing that the exchanger is CAL. The
specification of the exchange operation says that if initially the recorded trace
was T , then after the exchange operation, it contains one more CA-element,
corresponding either to the successful exchange if exchange() returns true or
to the unsuccessful exchange otherwise.

{TE|tid = T} tid : ret = E.exchange(v){
(∃t′, v′. ret = (true, v′) ∧ TE|tid = T ·E.swap(tid, v, t′, v′) ∧ t′ �= tid)
∨ (ret = (false, v) ∧ TE|tid = T ·(E.{(tid, ex(v) � false, v)}))

}

380 N. Hemed et al.

Note that in the precondition and the postcondition, we do not describe the
contents of the entire trace, but rather only of its projection to the current
thread. We do so because there may be other exchanges running concurrently
to the specified exchange, which may also append CA-elements to the recorded
trace. To ensure that our specification is usable in a concurrent setting, we thus
ensure that the precondition and postcondition are stable under interference from
other threads, i.e., that concurrent operations cannot invalidate these assertions.

To address the second problem, we only need to perform a minor change. We
do not change the specification as such, only the understanding of the auxiliary
variable TE. Instead of having for each object one auxiliary variable that records
its CA-trace, we have one global auxiliary variable T that records the CA-traces
for all the objects, and define TE to be the view of T according to object E. Our
key idea is to let the exchanger module define TE as a function of T . For the
exchanger, we simply define TE to be the projection of T to the CA-elements of
the exchanger (i.e., TE = T |E).

Logging the Object Interaction Using an Auxiliary History Variable.
To specify and verify CAL, we instrument the program with an auxiliary variable
T that records the CA-trace that is equivalent to a given concurrent history. Our
idea is to add auxiliary assignments to the programs that append CA-elements
to T at the appropriate points.

Since multiple objects can manipulate T , the specification of an object o
should not directly mention o, but rather its view on T , which we denote as
To. A simple choice would be to define this view to be T |o, the projection of
the trace to the CA-elements of object o. While this works for objects that do
not depend on subobjects, it does not enable compositional verification of higher-
level objects. The reason is that the desired equivalent CA-trace of a higher-level
object is typically determined by the CA-traces of its subobjects. If, however,
we want to verify an object compositionally, we are not allowed to peek into the
implementations of its subobjects in order to add auxiliary assignments to T .

Instead, we require for each object o to provide a function Fo from the CA-
elements of its immediate subobjects to CA-traces containing only operations
for o. Given such a function Fo, we define its total extension F̂o as the function
that given an element a returns Fo(a) if this is defined or a otherwise. Note that
F̂o is idempotent and that for disjoint objects o and o′, F̂o ◦ F̂o′ = F̂o′ ◦ F̂o. Next,
we define Fo to recursively apply F̂oi for all objects oi encapsulated by o. This
is defined by induction on the object nesting depth. At each level, if o depends
on objects o1, . . . , on, we define Fo � F̂o ◦ (Fo1 ◦ . . . ◦ Fon). Again, because of
encapsulation, the order in which Fo1 to Fon are composed does not matter.
Finally, define To � Fo(T).

Encoding Interference and Cooperation Using Rely-Guarantee Con-
ditions. Next, since the exchange operations are concurrent, we cannot merely
give a sequential specification in Hoare logic, but instead use rely/guarantee
reasoning [15], a more expressive formalism that allows expressing concurrent

Modular Verification of Concurrency-Aware Linearizability 381

specifications. In rely/guarantee, each program C is specified not only by a
precondition P and a postcondition Q, but also by a rely condition R and a
guarantee condition G, which we have written as R,G � {P} C {Q}. These
rely/guarantee conditions are parameterized by thread identifiers and describe
the interaction between threads. For a thread t, the rely condition Rt records
the interference that t might incur from the other threads, while the guarantee
Gt records the effect t is allowed to have on other threads. Rely/guarantee gives
thread-modular reasoning as it exposes the interaction between threads without
referring to the code of other threads.

Internally, in the verification of the exchanger, these conditions will correlate
the concrete state manipulated by the algorithm and the recorded history. For
example, they require that when a thread successfully modifies the g.hole to
point to its own offer, it also logs in T a CA-element which records the successful
exchange (see §5).

From the client’s perspective, however, the internal definitions of Rtid and
Gtid are irrelevant. For them to be usable, however, they should adhere to a few
minimal constraints, which are common for any object o:

– For every two distinct threads t �= t′, we should have Gt ⇒ Rt′
. This is

the standard requirement in rely/guarantee reasoning ensuring that multiple
methods of o may be invoked in parallel.

– The methods of o may only modify the auxiliary history variable, T , the
parts of the memory used in its own representation, and (via method calls)
the state of its concurrent subobjects. Moreover, they may only append onto
T entries corresponding to o and its encapsulated objects, and pertaining
only to threads currently executing one of its methods. Formally, this is

Gt ⇒ (∃T. T =
↼−T ·T ∧ T = T |o = T |t ∧ ∀x /∈ {h} ∪Vars(o). x = ↼−x), where

we use the hook arrow notation to represent the value of a program variable
in prior state.

– The object o does not assume anything about the private state of other
objects, and allows them to extend the auxiliary history variable, T . For-
mally, we require that irrelevantt

o ⇒ Rt where irrelevantt
o � ∃T. To =

↼−To ·T ∧ T |t = T |o = ε ∧ (∀x ∈ Vars(o). x = ↼−x).
Finally, since there are may be multiple threads running concurrently, the pre-
condition and postcondition of the exchange method, we take the projection of
TE to the thread of interest (i.e., TE|tid). As is standard in Hoare logic, we use
the logical variable T to record the initial value of TE|tid.

Stack Specification. The specification of the elimination stack as well as the
ordinary concurrent stack it contains is expressed in a similar style. Technically,
we say that a sequential history of stack operations is well-defined over an initial
stack, if executing the (successful) operations in order is possible and yields the
same results for the pop operations. A history is well-formed with respect to the
stack object, denoted WFS(H), if H|S is a sequential well-defined history over
the empty initial stack. The specifications for the stack methods f ∈ {push, pop}

382 N. Hemed et al.

are:

Rt, Gt � {WFS(TS)∧TS|t = H} t : r := S.f(n) {WFS(TS)∧TS|t = H·(S.{(t, f(n)�r)})}

The abstract value of a concurrent object, if needed (e.g., to determine the
result of a pop() operation), can be “computed” by replaying the logged actions.

5 Verifying the Exchanger and the Elimination Stack

In this section, we prove that the elimination stack is linearizable by verifying
each of objects—the exchanger, the elimination array, the central stack, and
the elimination stack—modularly. For space reasons, we only present the key
ingredients of the proof. The full proofs can be found in [9].

We start with the elimination array, whose correctness is the simplest to
demonstrate. The elimination array, AR, encapsulates an array of exchanger
objects E[0], . . . , E[K-1] and exposes the same specification as a single
exchanger. To verify that it conforms to its specification, we define the FAR func-
tion as FAR(E[i].S) � (AR.S), i.e., an exchange done by any of AR’s exchanger
subobjects is converted to look like an exchange on the elimination array. This
hides the implementation of the elimination array from its clients, in our case, the
elimination stack. To verify the implementation of the elimination array, we pick
the rely condition to be the conjunction of all the rely conditions of the encapsu-
lated objects, Rt

AR �
∧

i RE[i], and the guarantee condition to be the disjunction
of the corresponding guarantee conditions, Gt

AR �
∨

i G
t
E[i]. The postcondition of

AR.exchange follows directly from the postcondition of E[slot].exchange by
observing that hAR = FAR(hE[slot]).

Verifying that the central stack is a straightforward proof of linearizability,
and we omit it for brevity. Next, we consider the elimination stack assuming that
the central stack, S, and the elimination array, AR, satisfy their specifications.
Given our setup, this proof is also straightforward. The key step is to define the
function FES correctly:

FES((S.(t, push(n) � true))) � ((ES.(t, push(n) � true)))

FES((S.(t, pop() � true, n))) � ((ES.(t, pop() � true, n)))

FES

(
AR.

{
(t, ex(n) � true,∞),
(t′, ex(∞) � true, n)

})
� (ES.(t, push(n) � true)) ·

(ES.(t′, pop() � true, n)) provided n �= ∞

FES(S.) � ε FES(AR.) � ε

This function picks as linearization points the successful pushes and pops of S,
as well as a successful exchange where the exchanged values are ∞ and n �= ∞.
In the latter case, the push is linearized before the pop. All other operations are
ignored.

Modular Verification of Concurrency-Aware Linearizability 383

initt � [∃n. ↼−g = null ∧ n.tid = t ∧ n.hole = null ∧ g = n]g

cleant � [↼−g .hole �= null ∧ g′ = null]g

passt � [g
↼−−
.hole = null ∧ g.tid = t ∧ g.hole = fail]g.hole

xchgt �
[
∃n �= fail . n.tid = t ∧ g

↼−−
.hole = null ∧ g.tid �= t ∧ g.hole = n ∧

T =
↼−T ·E.swap(g.tid, g.data, t, n.data)

]
g.hole,T

failt �
[
∃d. T =

↼−T ·(E.{(t, ex(d) � false, d)})
]

T
Gt

E � (initt ∨ cleant ∨ passt ∨ xchgt ∨ failt) Rt
E � (irrelevanttE ∨ ∃t′ �= t. Gt′

ex)

J � ∀t. g �= null ∧ g.hole = null =⇒ InE(g.tid)

A � TE|tid = T ∧ (g = null ∨ g.hole �= null ∨ g.tid �= tid) ∧ n �→ tid, p, null

B(k) � (k �= null ∧ k.tid �= tid ∧ TE|tid = T ·E.swap(tid, p, k.tid, k.data))

Fig. 4. Rely/guarantee conditions and assertions used for the exchanger proof.

5.1 Verifying the Exchanger

We move on to the verification of the exchanger, which is more challenging than
that of its clients. As the exchanger does not encapsulate other objects besides
memory cells, we take FE to be the completely undefined function, which means
that TE = T |E. The proof outline is shown in Figure 1. The proof uses two forms
of auxiliary state. First, we instrument the code with assignments to the history
variable, T , which appears in the specification of the exchanger. We instrument
the code with assignments to T at the successful CAS on line 29 and at the
return statements on line 35. (The exact assignments we add can be read from
the corresponding actions in Figure 4.) Second, we extend the Offer class with
an auxiliary field tid to record the identifier of the thread that allocated the
offer object. This field is used to ensure that the auxiliary assignment to T in
the xchg action records the correct thread identifiers.

Figure 4 defines the rely/guarantee conditions that are used in the proof.
Following the trend in modern program logics [5,26], the rely/guarantee condi-
tions are defined in terms of actions corresponding to the individual shared state
updates performed. Here, actions are parametrized by the thread t performing
the action. The first four actions describe the effects of the algorithm’s CAS
operations to the shared state, when they succeed. They modify g or g.hole and
in the case of xchg also the auxiliary history variable h. The fail action records
the auxiliary assignments to h for failed exchanges, while irr is a ‘frame’ action
allowing other objects to append their events to h. Discarding the effects to the
memory cells encapsulated by the exchanger (i.e., restricting attention to the
variable h), the actions match those in the exchanger specification.

Figure 4 also defines the global invariant J saying that g cannot contain an
unsatisfied offer of a thread not currently participating in the exchange, and two
assertions A and B that will be used in the proof outline. We write n �→ t, d,m
as an abbreviation for n.tid = t ∧ n.data = d ∧ n.hole = m. We note that J is
stable both under the rely and guarantee conditions and we implicitly assume it
to hold throughout execution.

384 N. Hemed et al.

We now proceed to the proof outline in Figure 1. Thanks to the encapsulated
nature of concurrent objects in our programming language, we may assume that
just before the start of the function ¬InE(tid) holds, i.e., that thread tid is
not executing a function of E. Hence, from invariant J , we can deduce that
g = null ∨ g.hole = null ∨ g.tid �= tid. Then after allocating the offer object,
we have the assertion A. The assertion states that the thread has not performed
its operation yet, which is implied by TE|tid = T , and that no other thread can
access the newly allocated offer.

If the initialization CAS succeeds at line 15, we know that g = n ∧ g.hole =
null ∧ TE|tid = T . This assertion, however, is not stable because another thread
can come along and modify g.hole, i.e., performs the xchg action. If this happens,
then it would have made n.hole non-null and extend the history appropriately
(i.e., B(n.hole) will hold). Therefore, at line 16, the disjunction of these two
assertions holds: Either an exchange has not happened, and then n.hole = null,
or that it was done by some other thread, and then B(b.hole) holds.

The CAS at line 18 checks which of the above cases hold: If it succeeds, it
means that waiting passively for a partner thread did not pan out. This failure,
indicated by the ability to set n.hole to fail , is manifested in the history by
extending it with the failed operation (action passt). If the CAS failed than the
wait did work out. Specifically, because a thread can modify the hole field of an
offer of anther thread only when it can justify it using the xchg action, which
implies that the partner thread has also logged the successful exchange in the
history variable.

Otherwise, if the initialization CAS fails, the algorithm reads g into the local
variable cur at line 25. After this, we cannot assert that g = cur because another
thread may have modified g in the meantime. For this to happen, however, we
know that cur.hole must be non-null; thus the disjunction g = cur∨g.hole �= null
is stable. Then, if cur is non-null, the algorithm performs a CAS at line 29 trying
to satisfy the exchange offer made by cur.tid. If the CAS succeeds, we know that
cur = g at the point that the CAS succeeded, and thus we can perform action
xchg and get the postcondition B(cur). Whether the CAS succeeds or not,
afterwards at line 30, we know that cur.hole �= null, which allows us to satisfy
the precondition of the clean action corresponding to the final CAS operation.

6 Related Work

Neiger [18] proposed set-linearlizability as a means to unify specification of
concurrent objects with task solutions. The main idea is to linearize concur-
rent operations against (a sequence of) sets of simultaneous operations. Neiger
showed that set-linearizability is expressive enough to provide a specification
for certain important tasks e.g., for Borowsky and Gafni’s immediate atomic
snapshot objects [2]. The notion of concurrency-aware lineraizabiity is simi-
lar to set-linearizability. Neiger, however, neither provides a formal definition
of set-linearizability nor a syntactic approach to define concurrent specifica-
tions. Also, Neiger does not provide a proof technique that takes advantage

Modular Verification of Concurrency-Aware Linearizability 385

of set-linearizability. In contrast, we develop a modualr proof the more general
specification. In contrast, we develop all a formal proof technique for verify-
ing concurrency-aware linearizability and employ it to produce the first com-
positional proof of a CA-object and of its client, namely the exchanger and
the elimination stack [10]. Castaneda et al. [3] showed that set-linearizability
cannot express certain tasks, e.g., write snapshot, and extended it to interval-
linearizability which allows for arbitrary concurrent specification.

Linearizability is shown to be equivalent to observational refinement [7]. The
equivalence was shown to hold even when the specification is not sequential.
Thus, a direct implication of their result is that concurrency-aware linearizability
also ensures observational refinement.

The idea of elimination was introduced in [24], where it was used to con-
struct pools and queues using trees. Example for other CA-linearizable concur-
rent objects can be found in [1,11,17,22].

Scherer et al. present a family of dual-data structures [14] which support
“operations that must wait for some other thread to establish a precondition”.
Linearizability of dual-data structures is established by explicitly specifying a
“request” and “follow-up” observable checkpoints within the object’s purview,
each with its own linearization point. Dual-data structures are in fact CA-objects.
We believe that using CA-histories to describe the behavior of dual data structure
would help streamline their specification as it would obviate the need to specify
two linearization points.

Vafeiadis [26] gives a thread modular proof for a variant of the HSY stack
using RGSep [26], an extension of separation logic [19] to reason about fine-
grained concurrency. His proof is not compositional as the reasoning about the
elimination module is coupled with the reasoning about the stack. In particular,
the elimination module is not given a context-independent specification. Dragoi
et al. [6] present a technique for automatically verifying linearizability for concur-
rent objects are where the linearization points may be is in the body of another
thread. Their technique rewrites the program to introduce combined methods
whose linearization points are easy to find. They verified the elimination stack
by introducing a new method push+pop, which simulates the elimination. As
a result, their proof is inherently non compositional. In contrast, we allow for
compositional proofs by (i) providing usage-context specifications for CA-object
objects, (ii) allowing clients to interpret operations that seem to happen in the
same point in time as an imaginary sequence of abstract operations, (iii) hiding
operations on subobjects from clients of their containing object.

Sergey et al. [23] present a framework for verifying linearizability of highly
concurrent data structures using time-stamped histories and subjective states,
and used it to verify Hendler et al.’s flat combining algorithm. Their approach
allows to hide the inter-thread interaction in the algorithm, but does not allow,
at least by its current instantiations, to verify CA-linearizability. Schellhorn et
al. [20] proved that backward simulation is complete for verification linearizabil-
ity; it would be interesting to see if their result extends to CAL.

386 N. Hemed et al.

A novel feature of our proof technique is that it allows to relate a single con-
crete atomic step done by one thread with a sequence of abstract steps done by
multiple threads. Our approach stands in contrast with the standard technique of
using atomicity abstraction [4,16,23,25], which allows to relate several concrete
atomic actions with a single abstract step executed by one thread.

Acknowledgments. This research was sponsored by the EC FP7 FET project
ADVENT (308830) and by Broadcom Foundation and Tel Aviv University Authen-
tication Initiative.

References

1. Afek, Y., Hakimi, M., Morrison, A.: Fast and scalable rendezvousing. Distributed
Computing 26(4), 243–269 (2013)

2. Borowsky, E., Gafni, E.: Immediate atomic snapshots and fast renaming. In:
Anderson, J., Toueg, S. (eds.) PODC (1993)

3. Castaneda, A., Rajsbaum, S., Raynal, M.: Specifying concurrent problems: beyond
linearizability and up to tasks. In: DISC (2015)

4. da Rocha Pinto, P., Dinsdale-Young, T., Gardner, P.: TaDA: a logic for time and
data abstraction. In: Jones, R. (ed.) ECOOP 2014. LNCS, vol. 8586, pp. 207–231.
Springer, Heidelberg (2014)

5. Dinsdale-Young, T., Dodds, M., Gardner, P., Parkinson, M.J., Vafeiadis, V.: Con-
current abstract predicates. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183,
pp. 504–528. Springer, Heidelberg (2010)

6. Drăgoi, C., Gupta, A., Henzinger, T.A.: Automatic linearizability proofs of con-
current objects with cooperating updates. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 174–190. Springer, Heidelberg (2013)

7. Filipovic, I., O’Hearn, P., Rinetzky, N., Yang, H.: Abstraction for concurrent
objects. Theor. Comput. Sci. 411(51–52) (2010)

8. Hemed, N., Rinetzky, N.: Brief announcement: concurrency-aware linearizability.
In: Halldórsson, M.M., Dolev, S. (eds.) PODC, pp. 209–211. ACM (2014)

9. Hemed, N., Rinetzky, N., Vafeiadis, V.: Modular verification of concurrency-aware
linearizability (2015). http://www.cs.tau.ac.il/nirh/disc15-ext.pdf

10. Hendler, D., Shavit, N., Yerushalmi, L.: A scalable lock-free stack algorithm. In:
SPAA (2004)

11. Hendler, D., Incze, I., Shavit, N., Tzafrir, M.: Scalable flat-combining based syn-
chronous queues. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS,
vol. 6343, pp. 79–93. Springer, Heidelberg (2010)

12. Herlihy, M., Wing, J.M.: Linearizability: A correctness condition for concurrent
objects. Trans. Program. Lang. Syst. 12(3), 463–492 (1990)

13. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580 (1969)

14. Scherer III, W.N., Scott, M.L.: Nonblocking concurrent data structures with con-
dition synchronization. In: Guerraoui, R. (ed.) DISC 2004. LNCS, vol. 3274,
pp. 174–187. Springer, Heidelberg (2004)

15. Jones, C.B.: Specification and design of (parallel) programs. In: IFIP Congress
(1983)

http://www.cs.tau.ac.il/ nirh/disc15-ext.pdf

Modular Verification of Concurrency-Aware Linearizability 387

16. Jung, R., Swasey, D., Sieczkowski, F., Svendsen, K., Turon, A., Birkedal, L.,
Dreyer, D.: Iris: monoids and invariants as an orthogonal basis for concurrent
reasoning. In: POPL (2015)

17. Moir, M., Nussbaum, D., Shalev, O., Shavit, N.: Using elimination to implement
scalable and lock-free fifo queues. In: SPAA, pp. 253–262. ACM (2005)

18. Neiger, G.: Set-linearizability. In: Anderson, J.H., Peleg, D., Borowsky, E. (eds.)
PODC 1994, pp. 396–396. ACM (1994)

19. O’Hearn, P.W., Reynolds, J.C., Yang, H.: Local reasoning about programs that
alter data structures. In: Fribourg, L. (ed.) CSL 2001 and EACSL 2001. LNCS,
vol. 2142, p. 1. Springer, Heidelberg (2001)

20. Schellhorn, G., Derrick, J., Wehrheim, H.: A sound and complete proof technique
for linearizability of concurrent data structures. ACM Trans. Comput. Logic 15(4)
(2014)

21. Scherer III, W.N., Lea, D., Scott, M.L.: A scalable elimination-based exchange
channel. SCOOL (2005)

22. Scherer III, W.N., Lea, D., Scott, M.L.: Scalable synchronous queues. In: Torrellas,
J., Chatterjee, S. (eds.) PPoPP 2006, pp. 147–156. ACM (2006)

23. Sergey, I., Nanevski, A., Banerjee, A.: Specifying and verifying concurrent algo-
rithms with histories and subjectivity. In: Vitek, J. (ed.) ESOP 2015. LNCS,
vol. 9032, pp. 333–358. Springer, Heidelberg (2015)

24. Shavit, N., Touitou, D.: Elimination trees and the construction of pools and stacks.
Theory Comput. Syst. 30(6), 645–670 (1997)

25. Svendsen, K., Birkedal, L.: Impredicative concurrent abstract predicates. In: Shao,
Z. (ed.) ESOP 2014 (ETAPS). LNCS, vol. 8410, pp. 149–168. Springer, Heidelberg
(2014)

26. Vafeiadis, V.: Modular fine-grained concurrency verification. Ph.D. thesis, Univer-
sity of Cambridge (2008)

	Modular Verification of Concurrency-Aware Linearizability
	1 Introduction
	2 Motivating Examples
	2.1 Exchanger
	2.2 Elimination Stack

	3 Concurrency-Aware Linearizability (CAL)
	3.1 A Formal Definition of Concurrency-Aware Linearizability

	4 Specifying Concurrency-Aware Concurrent Objects
	5 Verifying the Exchanger and the Elimination Stack
	5.1 Verifying the Exchanger

	6 Related Work
	References

